]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Target-dependent code for GDB, the GNU debugger. |
7aea86e6 AC |
2 | |
3 | Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, | |
4 | 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software | |
5 | Foundation, Inc. | |
c906108c | 6 | |
c5aa993b | 7 | This file is part of GDB. |
c906108c | 8 | |
c5aa993b JM |
9 | This program is free software; you can redistribute it and/or modify |
10 | it under the terms of the GNU General Public License as published by | |
11 | the Free Software Foundation; either version 2 of the License, or | |
12 | (at your option) any later version. | |
c906108c | 13 | |
c5aa993b JM |
14 | This program is distributed in the hope that it will be useful, |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
c906108c | 18 | |
c5aa993b JM |
19 | You should have received a copy of the GNU General Public License |
20 | along with this program; if not, write to the Free Software | |
21 | Foundation, Inc., 59 Temple Place - Suite 330, | |
22 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
23 | |
24 | #include "defs.h" | |
25 | #include "frame.h" | |
26 | #include "inferior.h" | |
27 | #include "symtab.h" | |
28 | #include "target.h" | |
29 | #include "gdbcore.h" | |
30 | #include "gdbcmd.h" | |
c906108c | 31 | #include "objfiles.h" |
7a78ae4e | 32 | #include "arch-utils.h" |
4e052eda | 33 | #include "regcache.h" |
d195bc9f | 34 | #include "regset.h" |
d16aafd8 | 35 | #include "doublest.h" |
fd0407d6 | 36 | #include "value.h" |
1fcc0bb8 | 37 | #include "parser-defs.h" |
4be87837 | 38 | #include "osabi.h" |
7d9b040b | 39 | #include "infcall.h" |
9f643768 JB |
40 | #include "sim-regno.h" |
41 | #include "gdb/sim-ppc.h" | |
6ced10dd | 42 | #include "reggroups.h" |
7a78ae4e | 43 | |
2fccf04a | 44 | #include "libbfd.h" /* for bfd_default_set_arch_mach */ |
7a78ae4e | 45 | #include "coff/internal.h" /* for libcoff.h */ |
2fccf04a | 46 | #include "libcoff.h" /* for xcoff_data */ |
11ed25ac KB |
47 | #include "coff/xcoff.h" |
48 | #include "libxcoff.h" | |
7a78ae4e | 49 | |
9aa1e687 | 50 | #include "elf-bfd.h" |
7a78ae4e | 51 | |
6ded7999 | 52 | #include "solib-svr4.h" |
9aa1e687 | 53 | #include "ppc-tdep.h" |
7a78ae4e | 54 | |
338ef23d | 55 | #include "gdb_assert.h" |
a89aa300 | 56 | #include "dis-asm.h" |
338ef23d | 57 | |
61a65099 KB |
58 | #include "trad-frame.h" |
59 | #include "frame-unwind.h" | |
60 | #include "frame-base.h" | |
61 | ||
7a78ae4e ND |
62 | /* If the kernel has to deliver a signal, it pushes a sigcontext |
63 | structure on the stack and then calls the signal handler, passing | |
64 | the address of the sigcontext in an argument register. Usually | |
65 | the signal handler doesn't save this register, so we have to | |
66 | access the sigcontext structure via an offset from the signal handler | |
67 | frame. | |
68 | The following constants were determined by experimentation on AIX 3.2. */ | |
69 | #define SIG_FRAME_PC_OFFSET 96 | |
70 | #define SIG_FRAME_LR_OFFSET 108 | |
71 | #define SIG_FRAME_FP_OFFSET 284 | |
72 | ||
7a78ae4e ND |
73 | /* To be used by skip_prologue. */ |
74 | ||
75 | struct rs6000_framedata | |
76 | { | |
77 | int offset; /* total size of frame --- the distance | |
78 | by which we decrement sp to allocate | |
79 | the frame */ | |
80 | int saved_gpr; /* smallest # of saved gpr */ | |
81 | int saved_fpr; /* smallest # of saved fpr */ | |
6be8bc0c | 82 | int saved_vr; /* smallest # of saved vr */ |
96ff0de4 | 83 | int saved_ev; /* smallest # of saved ev */ |
7a78ae4e ND |
84 | int alloca_reg; /* alloca register number (frame ptr) */ |
85 | char frameless; /* true if frameless functions. */ | |
86 | char nosavedpc; /* true if pc not saved. */ | |
87 | int gpr_offset; /* offset of saved gprs from prev sp */ | |
88 | int fpr_offset; /* offset of saved fprs from prev sp */ | |
6be8bc0c | 89 | int vr_offset; /* offset of saved vrs from prev sp */ |
96ff0de4 | 90 | int ev_offset; /* offset of saved evs from prev sp */ |
7a78ae4e ND |
91 | int lr_offset; /* offset of saved lr */ |
92 | int cr_offset; /* offset of saved cr */ | |
6be8bc0c | 93 | int vrsave_offset; /* offset of saved vrsave register */ |
7a78ae4e ND |
94 | }; |
95 | ||
96 | /* Description of a single register. */ | |
97 | ||
98 | struct reg | |
99 | { | |
100 | char *name; /* name of register */ | |
101 | unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */ | |
102 | unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */ | |
103 | unsigned char fpr; /* whether register is floating-point */ | |
489461e2 | 104 | unsigned char pseudo; /* whether register is pseudo */ |
13ac140c JB |
105 | int spr_num; /* PowerPC SPR number, or -1 if not an SPR. |
106 | This is an ISA SPR number, not a GDB | |
107 | register number. */ | |
7a78ae4e ND |
108 | }; |
109 | ||
c906108c SS |
110 | /* Breakpoint shadows for the single step instructions will be kept here. */ |
111 | ||
c5aa993b JM |
112 | static struct sstep_breaks |
113 | { | |
114 | /* Address, or 0 if this is not in use. */ | |
115 | CORE_ADDR address; | |
116 | /* Shadow contents. */ | |
117 | char data[4]; | |
118 | } | |
119 | stepBreaks[2]; | |
c906108c SS |
120 | |
121 | /* Hook for determining the TOC address when calling functions in the | |
122 | inferior under AIX. The initialization code in rs6000-nat.c sets | |
123 | this hook to point to find_toc_address. */ | |
124 | ||
7a78ae4e ND |
125 | CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL; |
126 | ||
127 | /* Hook to set the current architecture when starting a child process. | |
128 | rs6000-nat.c sets this. */ | |
129 | ||
130 | void (*rs6000_set_host_arch_hook) (int) = NULL; | |
c906108c SS |
131 | |
132 | /* Static function prototypes */ | |
133 | ||
a14ed312 KB |
134 | static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc, |
135 | CORE_ADDR safety); | |
077276e8 KB |
136 | static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR, |
137 | struct rs6000_framedata *); | |
c906108c | 138 | |
64b84175 KB |
139 | /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */ |
140 | int | |
141 | altivec_register_p (int regno) | |
142 | { | |
143 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); | |
144 | if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0) | |
145 | return 0; | |
146 | else | |
147 | return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum); | |
148 | } | |
149 | ||
383f0f5b | 150 | |
867e2dc5 JB |
151 | /* Return true if REGNO is an SPE register, false otherwise. */ |
152 | int | |
153 | spe_register_p (int regno) | |
154 | { | |
155 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); | |
156 | ||
157 | /* Is it a reference to EV0 -- EV31, and do we have those? */ | |
158 | if (tdep->ppc_ev0_regnum >= 0 | |
159 | && tdep->ppc_ev31_regnum >= 0 | |
160 | && tdep->ppc_ev0_regnum <= regno && regno <= tdep->ppc_ev31_regnum) | |
161 | return 1; | |
162 | ||
6ced10dd JB |
163 | /* Is it a reference to one of the raw upper GPR halves? */ |
164 | if (tdep->ppc_ev0_upper_regnum >= 0 | |
165 | && tdep->ppc_ev0_upper_regnum <= regno | |
166 | && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs) | |
167 | return 1; | |
168 | ||
867e2dc5 JB |
169 | /* Is it a reference to the 64-bit accumulator, and do we have that? */ |
170 | if (tdep->ppc_acc_regnum >= 0 | |
171 | && tdep->ppc_acc_regnum == regno) | |
172 | return 1; | |
173 | ||
174 | /* Is it a reference to the SPE floating-point status and control register, | |
175 | and do we have that? */ | |
176 | if (tdep->ppc_spefscr_regnum >= 0 | |
177 | && tdep->ppc_spefscr_regnum == regno) | |
178 | return 1; | |
179 | ||
180 | return 0; | |
181 | } | |
182 | ||
183 | ||
383f0f5b JB |
184 | /* Return non-zero if the architecture described by GDBARCH has |
185 | floating-point registers (f0 --- f31 and fpscr). */ | |
0a613259 AC |
186 | int |
187 | ppc_floating_point_unit_p (struct gdbarch *gdbarch) | |
188 | { | |
383f0f5b JB |
189 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
190 | ||
191 | return (tdep->ppc_fp0_regnum >= 0 | |
192 | && tdep->ppc_fpscr_regnum >= 0); | |
0a613259 | 193 | } |
9f643768 | 194 | |
09991fa0 JB |
195 | |
196 | /* Check that TABLE[GDB_REGNO] is not already initialized, and then | |
197 | set it to SIM_REGNO. | |
198 | ||
199 | This is a helper function for init_sim_regno_table, constructing | |
200 | the table mapping GDB register numbers to sim register numbers; we | |
201 | initialize every element in that table to -1 before we start | |
202 | filling it in. */ | |
9f643768 JB |
203 | static void |
204 | set_sim_regno (int *table, int gdb_regno, int sim_regno) | |
205 | { | |
206 | /* Make sure we don't try to assign any given GDB register a sim | |
207 | register number more than once. */ | |
208 | gdb_assert (table[gdb_regno] == -1); | |
209 | table[gdb_regno] = sim_regno; | |
210 | } | |
211 | ||
09991fa0 JB |
212 | |
213 | /* Initialize ARCH->tdep->sim_regno, the table mapping GDB register | |
214 | numbers to simulator register numbers, based on the values placed | |
215 | in the ARCH->tdep->ppc_foo_regnum members. */ | |
9f643768 JB |
216 | static void |
217 | init_sim_regno_table (struct gdbarch *arch) | |
218 | { | |
219 | struct gdbarch_tdep *tdep = gdbarch_tdep (arch); | |
220 | int total_regs = gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch); | |
221 | const struct reg *regs = tdep->regs; | |
222 | int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int); | |
223 | int i; | |
224 | ||
225 | /* Presume that all registers not explicitly mentioned below are | |
226 | unavailable from the sim. */ | |
227 | for (i = 0; i < total_regs; i++) | |
228 | sim_regno[i] = -1; | |
229 | ||
230 | /* General-purpose registers. */ | |
231 | for (i = 0; i < ppc_num_gprs; i++) | |
232 | set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i); | |
233 | ||
234 | /* Floating-point registers. */ | |
235 | if (tdep->ppc_fp0_regnum >= 0) | |
236 | for (i = 0; i < ppc_num_fprs; i++) | |
237 | set_sim_regno (sim_regno, | |
238 | tdep->ppc_fp0_regnum + i, | |
239 | sim_ppc_f0_regnum + i); | |
240 | if (tdep->ppc_fpscr_regnum >= 0) | |
241 | set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum); | |
242 | ||
243 | set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum); | |
244 | set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum); | |
245 | set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum); | |
246 | ||
247 | /* Segment registers. */ | |
248 | if (tdep->ppc_sr0_regnum >= 0) | |
249 | for (i = 0; i < ppc_num_srs; i++) | |
250 | set_sim_regno (sim_regno, | |
251 | tdep->ppc_sr0_regnum + i, | |
252 | sim_ppc_sr0_regnum + i); | |
253 | ||
254 | /* Altivec registers. */ | |
255 | if (tdep->ppc_vr0_regnum >= 0) | |
256 | { | |
257 | for (i = 0; i < ppc_num_vrs; i++) | |
258 | set_sim_regno (sim_regno, | |
259 | tdep->ppc_vr0_regnum + i, | |
260 | sim_ppc_vr0_regnum + i); | |
261 | ||
262 | /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum, | |
263 | we can treat this more like the other cases. */ | |
264 | set_sim_regno (sim_regno, | |
265 | tdep->ppc_vr0_regnum + ppc_num_vrs, | |
266 | sim_ppc_vscr_regnum); | |
267 | } | |
268 | /* vsave is a special-purpose register, so the code below handles it. */ | |
269 | ||
270 | /* SPE APU (E500) registers. */ | |
271 | if (tdep->ppc_ev0_regnum >= 0) | |
272 | for (i = 0; i < ppc_num_gprs; i++) | |
273 | set_sim_regno (sim_regno, | |
274 | tdep->ppc_ev0_regnum + i, | |
275 | sim_ppc_ev0_regnum + i); | |
6ced10dd JB |
276 | if (tdep->ppc_ev0_upper_regnum >= 0) |
277 | for (i = 0; i < ppc_num_gprs; i++) | |
278 | set_sim_regno (sim_regno, | |
279 | tdep->ppc_ev0_upper_regnum + i, | |
280 | sim_ppc_rh0_regnum + i); | |
9f643768 JB |
281 | if (tdep->ppc_acc_regnum >= 0) |
282 | set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum); | |
283 | /* spefscr is a special-purpose register, so the code below handles it. */ | |
284 | ||
285 | /* Now handle all special-purpose registers. Verify that they | |
286 | haven't mistakenly been assigned numbers by any of the above | |
287 | code). */ | |
288 | for (i = 0; i < total_regs; i++) | |
289 | if (regs[i].spr_num >= 0) | |
290 | set_sim_regno (sim_regno, i, regs[i].spr_num + sim_ppc_spr0_regnum); | |
291 | ||
292 | /* Drop the initialized array into place. */ | |
293 | tdep->sim_regno = sim_regno; | |
294 | } | |
295 | ||
09991fa0 JB |
296 | |
297 | /* Given a GDB register number REG, return the corresponding SIM | |
298 | register number. */ | |
9f643768 JB |
299 | static int |
300 | rs6000_register_sim_regno (int reg) | |
301 | { | |
302 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); | |
303 | int sim_regno; | |
304 | ||
305 | gdb_assert (0 <= reg && reg <= NUM_REGS + NUM_PSEUDO_REGS); | |
306 | sim_regno = tdep->sim_regno[reg]; | |
307 | ||
308 | if (sim_regno >= 0) | |
309 | return sim_regno; | |
310 | else | |
311 | return LEGACY_SIM_REGNO_IGNORE; | |
312 | } | |
313 | ||
d195bc9f MK |
314 | \f |
315 | ||
316 | /* Register set support functions. */ | |
317 | ||
318 | static void | |
319 | ppc_supply_reg (struct regcache *regcache, int regnum, | |
320 | const char *regs, size_t offset) | |
321 | { | |
322 | if (regnum != -1 && offset != -1) | |
323 | regcache_raw_supply (regcache, regnum, regs + offset); | |
324 | } | |
325 | ||
326 | static void | |
327 | ppc_collect_reg (const struct regcache *regcache, int regnum, | |
328 | char *regs, size_t offset) | |
329 | { | |
330 | if (regnum != -1 && offset != -1) | |
331 | regcache_raw_collect (regcache, regnum, regs + offset); | |
332 | } | |
333 | ||
334 | /* Supply register REGNUM in the general-purpose register set REGSET | |
335 | from the buffer specified by GREGS and LEN to register cache | |
336 | REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */ | |
337 | ||
338 | void | |
339 | ppc_supply_gregset (const struct regset *regset, struct regcache *regcache, | |
340 | int regnum, const void *gregs, size_t len) | |
341 | { | |
342 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
343 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
344 | const struct ppc_reg_offsets *offsets = regset->descr; | |
345 | size_t offset; | |
346 | int i; | |
347 | ||
cdf2c5f5 | 348 | for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset; |
063715bf | 349 | i < tdep->ppc_gp0_regnum + ppc_num_gprs; |
cdf2c5f5 | 350 | i++, offset += 4) |
d195bc9f MK |
351 | { |
352 | if (regnum == -1 || regnum == i) | |
353 | ppc_supply_reg (regcache, i, gregs, offset); | |
354 | } | |
355 | ||
356 | if (regnum == -1 || regnum == PC_REGNUM) | |
357 | ppc_supply_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset); | |
358 | if (regnum == -1 || regnum == tdep->ppc_ps_regnum) | |
359 | ppc_supply_reg (regcache, tdep->ppc_ps_regnum, | |
360 | gregs, offsets->ps_offset); | |
361 | if (regnum == -1 || regnum == tdep->ppc_cr_regnum) | |
362 | ppc_supply_reg (regcache, tdep->ppc_cr_regnum, | |
363 | gregs, offsets->cr_offset); | |
364 | if (regnum == -1 || regnum == tdep->ppc_lr_regnum) | |
365 | ppc_supply_reg (regcache, tdep->ppc_lr_regnum, | |
366 | gregs, offsets->lr_offset); | |
367 | if (regnum == -1 || regnum == tdep->ppc_ctr_regnum) | |
368 | ppc_supply_reg (regcache, tdep->ppc_ctr_regnum, | |
369 | gregs, offsets->ctr_offset); | |
370 | if (regnum == -1 || regnum == tdep->ppc_xer_regnum) | |
371 | ppc_supply_reg (regcache, tdep->ppc_xer_regnum, | |
372 | gregs, offsets->cr_offset); | |
373 | if (regnum == -1 || regnum == tdep->ppc_mq_regnum) | |
374 | ppc_supply_reg (regcache, tdep->ppc_mq_regnum, gregs, offsets->mq_offset); | |
375 | } | |
376 | ||
377 | /* Supply register REGNUM in the floating-point register set REGSET | |
378 | from the buffer specified by FPREGS and LEN to register cache | |
379 | REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */ | |
380 | ||
381 | void | |
382 | ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache, | |
383 | int regnum, const void *fpregs, size_t len) | |
384 | { | |
385 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
386 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
387 | const struct ppc_reg_offsets *offsets = regset->descr; | |
388 | size_t offset; | |
389 | int i; | |
390 | ||
383f0f5b JB |
391 | gdb_assert (ppc_floating_point_unit_p (gdbarch)); |
392 | ||
d195bc9f | 393 | offset = offsets->f0_offset; |
366f009f JB |
394 | for (i = tdep->ppc_fp0_regnum; |
395 | i < tdep->ppc_fp0_regnum + ppc_num_fprs; | |
396 | i++, offset += 4) | |
d195bc9f MK |
397 | { |
398 | if (regnum == -1 || regnum == i) | |
399 | ppc_supply_reg (regcache, i, fpregs, offset); | |
400 | } | |
401 | ||
402 | if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum) | |
403 | ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum, | |
404 | fpregs, offsets->fpscr_offset); | |
405 | } | |
406 | ||
407 | /* Collect register REGNUM in the general-purpose register set | |
408 | REGSET. from register cache REGCACHE into the buffer specified by | |
409 | GREGS and LEN. If REGNUM is -1, do this for all registers in | |
410 | REGSET. */ | |
411 | ||
412 | void | |
413 | ppc_collect_gregset (const struct regset *regset, | |
414 | const struct regcache *regcache, | |
415 | int regnum, void *gregs, size_t len) | |
416 | { | |
417 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
418 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
419 | const struct ppc_reg_offsets *offsets = regset->descr; | |
420 | size_t offset; | |
421 | int i; | |
422 | ||
423 | offset = offsets->r0_offset; | |
cdf2c5f5 | 424 | for (i = tdep->ppc_gp0_regnum; |
063715bf | 425 | i < tdep->ppc_gp0_regnum + ppc_num_gprs; |
cdf2c5f5 | 426 | i++, offset += 4) |
d195bc9f MK |
427 | { |
428 | if (regnum == -1 || regnum == i) | |
2e56e9c1 | 429 | ppc_collect_reg (regcache, i, gregs, offset); |
d195bc9f MK |
430 | } |
431 | ||
432 | if (regnum == -1 || regnum == PC_REGNUM) | |
433 | ppc_collect_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset); | |
434 | if (regnum == -1 || regnum == tdep->ppc_ps_regnum) | |
435 | ppc_collect_reg (regcache, tdep->ppc_ps_regnum, | |
436 | gregs, offsets->ps_offset); | |
437 | if (regnum == -1 || regnum == tdep->ppc_cr_regnum) | |
438 | ppc_collect_reg (regcache, tdep->ppc_cr_regnum, | |
439 | gregs, offsets->cr_offset); | |
440 | if (regnum == -1 || regnum == tdep->ppc_lr_regnum) | |
441 | ppc_collect_reg (regcache, tdep->ppc_lr_regnum, | |
442 | gregs, offsets->lr_offset); | |
443 | if (regnum == -1 || regnum == tdep->ppc_ctr_regnum) | |
444 | ppc_collect_reg (regcache, tdep->ppc_ctr_regnum, | |
445 | gregs, offsets->ctr_offset); | |
446 | if (regnum == -1 || regnum == tdep->ppc_xer_regnum) | |
447 | ppc_collect_reg (regcache, tdep->ppc_xer_regnum, | |
448 | gregs, offsets->xer_offset); | |
449 | if (regnum == -1 || regnum == tdep->ppc_mq_regnum) | |
450 | ppc_collect_reg (regcache, tdep->ppc_mq_regnum, | |
451 | gregs, offsets->mq_offset); | |
452 | } | |
453 | ||
454 | /* Collect register REGNUM in the floating-point register set | |
455 | REGSET. from register cache REGCACHE into the buffer specified by | |
456 | FPREGS and LEN. If REGNUM is -1, do this for all registers in | |
457 | REGSET. */ | |
458 | ||
459 | void | |
460 | ppc_collect_fpregset (const struct regset *regset, | |
461 | const struct regcache *regcache, | |
462 | int regnum, void *fpregs, size_t len) | |
463 | { | |
464 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
465 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
466 | const struct ppc_reg_offsets *offsets = regset->descr; | |
467 | size_t offset; | |
468 | int i; | |
469 | ||
383f0f5b JB |
470 | gdb_assert (ppc_floating_point_unit_p (gdbarch)); |
471 | ||
d195bc9f | 472 | offset = offsets->f0_offset; |
366f009f JB |
473 | for (i = tdep->ppc_fp0_regnum; |
474 | i <= tdep->ppc_fp0_regnum + ppc_num_fprs; | |
475 | i++, offset += 4) | |
d195bc9f MK |
476 | { |
477 | if (regnum == -1 || regnum == i) | |
478 | ppc_collect_reg (regcache, regnum, fpregs, offset); | |
479 | } | |
480 | ||
481 | if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum) | |
482 | ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum, | |
483 | fpregs, offsets->fpscr_offset); | |
484 | } | |
485 | \f | |
0a613259 | 486 | |
7a78ae4e | 487 | /* Read a LEN-byte address from debugged memory address MEMADDR. */ |
c906108c | 488 | |
7a78ae4e ND |
489 | static CORE_ADDR |
490 | read_memory_addr (CORE_ADDR memaddr, int len) | |
491 | { | |
492 | return read_memory_unsigned_integer (memaddr, len); | |
493 | } | |
c906108c | 494 | |
7a78ae4e ND |
495 | static CORE_ADDR |
496 | rs6000_skip_prologue (CORE_ADDR pc) | |
b83266a0 SS |
497 | { |
498 | struct rs6000_framedata frame; | |
077276e8 | 499 | pc = skip_prologue (pc, 0, &frame); |
b83266a0 SS |
500 | return pc; |
501 | } | |
502 | ||
503 | ||
c906108c SS |
504 | /* Fill in fi->saved_regs */ |
505 | ||
506 | struct frame_extra_info | |
507 | { | |
508 | /* Functions calling alloca() change the value of the stack | |
509 | pointer. We need to use initial stack pointer (which is saved in | |
510 | r31 by gcc) in such cases. If a compiler emits traceback table, | |
511 | then we should use the alloca register specified in traceback | |
512 | table. FIXME. */ | |
c5aa993b | 513 | CORE_ADDR initial_sp; /* initial stack pointer. */ |
c906108c SS |
514 | }; |
515 | ||
143985b7 | 516 | /* Get the ith function argument for the current function. */ |
b9362cc7 | 517 | static CORE_ADDR |
143985b7 AF |
518 | rs6000_fetch_pointer_argument (struct frame_info *frame, int argi, |
519 | struct type *type) | |
520 | { | |
521 | CORE_ADDR addr; | |
7f5f525d | 522 | get_frame_register (frame, 3 + argi, &addr); |
143985b7 AF |
523 | return addr; |
524 | } | |
525 | ||
c906108c SS |
526 | /* Calculate the destination of a branch/jump. Return -1 if not a branch. */ |
527 | ||
528 | static CORE_ADDR | |
7a78ae4e | 529 | branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety) |
c906108c SS |
530 | { |
531 | CORE_ADDR dest; | |
532 | int immediate; | |
533 | int absolute; | |
534 | int ext_op; | |
535 | ||
536 | absolute = (int) ((instr >> 1) & 1); | |
537 | ||
c5aa993b JM |
538 | switch (opcode) |
539 | { | |
540 | case 18: | |
541 | immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */ | |
542 | if (absolute) | |
543 | dest = immediate; | |
544 | else | |
545 | dest = pc + immediate; | |
546 | break; | |
547 | ||
548 | case 16: | |
549 | immediate = ((instr & ~3) << 16) >> 16; /* br conditional */ | |
550 | if (absolute) | |
551 | dest = immediate; | |
552 | else | |
553 | dest = pc + immediate; | |
554 | break; | |
555 | ||
556 | case 19: | |
557 | ext_op = (instr >> 1) & 0x3ff; | |
558 | ||
559 | if (ext_op == 16) /* br conditional register */ | |
560 | { | |
2188cbdd | 561 | dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3; |
c5aa993b JM |
562 | |
563 | /* If we are about to return from a signal handler, dest is | |
564 | something like 0x3c90. The current frame is a signal handler | |
565 | caller frame, upon completion of the sigreturn system call | |
566 | execution will return to the saved PC in the frame. */ | |
567 | if (dest < TEXT_SEGMENT_BASE) | |
568 | { | |
569 | struct frame_info *fi; | |
570 | ||
571 | fi = get_current_frame (); | |
572 | if (fi != NULL) | |
8b36eed8 | 573 | dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET, |
21283beb | 574 | gdbarch_tdep (current_gdbarch)->wordsize); |
c5aa993b JM |
575 | } |
576 | } | |
577 | ||
578 | else if (ext_op == 528) /* br cond to count reg */ | |
579 | { | |
2188cbdd | 580 | dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3; |
c5aa993b JM |
581 | |
582 | /* If we are about to execute a system call, dest is something | |
583 | like 0x22fc or 0x3b00. Upon completion the system call | |
584 | will return to the address in the link register. */ | |
585 | if (dest < TEXT_SEGMENT_BASE) | |
2188cbdd | 586 | dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3; |
c5aa993b JM |
587 | } |
588 | else | |
589 | return -1; | |
590 | break; | |
c906108c | 591 | |
c5aa993b JM |
592 | default: |
593 | return -1; | |
594 | } | |
c906108c SS |
595 | return (dest < TEXT_SEGMENT_BASE) ? safety : dest; |
596 | } | |
597 | ||
598 | ||
599 | /* Sequence of bytes for breakpoint instruction. */ | |
600 | ||
f4f9705a | 601 | const static unsigned char * |
7a78ae4e | 602 | rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size) |
c906108c | 603 | { |
aaab4dba AC |
604 | static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 }; |
605 | static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d }; | |
c906108c | 606 | *bp_size = 4; |
d7449b42 | 607 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) |
c906108c SS |
608 | return big_breakpoint; |
609 | else | |
610 | return little_breakpoint; | |
611 | } | |
612 | ||
613 | ||
614 | /* AIX does not support PT_STEP. Simulate it. */ | |
615 | ||
616 | void | |
379d08a1 AC |
617 | rs6000_software_single_step (enum target_signal signal, |
618 | int insert_breakpoints_p) | |
c906108c | 619 | { |
7c40d541 KB |
620 | CORE_ADDR dummy; |
621 | int breakp_sz; | |
f4f9705a | 622 | const char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz); |
c906108c SS |
623 | int ii, insn; |
624 | CORE_ADDR loc; | |
625 | CORE_ADDR breaks[2]; | |
626 | int opcode; | |
627 | ||
c5aa993b JM |
628 | if (insert_breakpoints_p) |
629 | { | |
c906108c | 630 | |
c5aa993b | 631 | loc = read_pc (); |
c906108c | 632 | |
c5aa993b | 633 | insn = read_memory_integer (loc, 4); |
c906108c | 634 | |
7c40d541 | 635 | breaks[0] = loc + breakp_sz; |
c5aa993b JM |
636 | opcode = insn >> 26; |
637 | breaks[1] = branch_dest (opcode, insn, loc, breaks[0]); | |
c906108c | 638 | |
c5aa993b JM |
639 | /* Don't put two breakpoints on the same address. */ |
640 | if (breaks[1] == breaks[0]) | |
641 | breaks[1] = -1; | |
c906108c | 642 | |
c5aa993b | 643 | stepBreaks[1].address = 0; |
c906108c | 644 | |
c5aa993b JM |
645 | for (ii = 0; ii < 2; ++ii) |
646 | { | |
c906108c | 647 | |
c5aa993b JM |
648 | /* ignore invalid breakpoint. */ |
649 | if (breaks[ii] == -1) | |
650 | continue; | |
7c40d541 | 651 | target_insert_breakpoint (breaks[ii], stepBreaks[ii].data); |
c5aa993b JM |
652 | stepBreaks[ii].address = breaks[ii]; |
653 | } | |
c906108c | 654 | |
c5aa993b JM |
655 | } |
656 | else | |
657 | { | |
c906108c | 658 | |
c5aa993b JM |
659 | /* remove step breakpoints. */ |
660 | for (ii = 0; ii < 2; ++ii) | |
661 | if (stepBreaks[ii].address != 0) | |
7c40d541 KB |
662 | target_remove_breakpoint (stepBreaks[ii].address, |
663 | stepBreaks[ii].data); | |
c5aa993b | 664 | } |
c906108c | 665 | errno = 0; /* FIXME, don't ignore errors! */ |
c5aa993b | 666 | /* What errors? {read,write}_memory call error(). */ |
c906108c SS |
667 | } |
668 | ||
669 | ||
670 | /* return pc value after skipping a function prologue and also return | |
671 | information about a function frame. | |
672 | ||
673 | in struct rs6000_framedata fdata: | |
c5aa993b JM |
674 | - frameless is TRUE, if function does not have a frame. |
675 | - nosavedpc is TRUE, if function does not save %pc value in its frame. | |
676 | - offset is the initial size of this stack frame --- the amount by | |
677 | which we decrement the sp to allocate the frame. | |
678 | - saved_gpr is the number of the first saved gpr. | |
679 | - saved_fpr is the number of the first saved fpr. | |
6be8bc0c | 680 | - saved_vr is the number of the first saved vr. |
96ff0de4 | 681 | - saved_ev is the number of the first saved ev. |
c5aa993b JM |
682 | - alloca_reg is the number of the register used for alloca() handling. |
683 | Otherwise -1. | |
684 | - gpr_offset is the offset of the first saved gpr from the previous frame. | |
685 | - fpr_offset is the offset of the first saved fpr from the previous frame. | |
6be8bc0c | 686 | - vr_offset is the offset of the first saved vr from the previous frame. |
96ff0de4 | 687 | - ev_offset is the offset of the first saved ev from the previous frame. |
c5aa993b JM |
688 | - lr_offset is the offset of the saved lr |
689 | - cr_offset is the offset of the saved cr | |
6be8bc0c | 690 | - vrsave_offset is the offset of the saved vrsave register |
c5aa993b | 691 | */ |
c906108c SS |
692 | |
693 | #define SIGNED_SHORT(x) \ | |
694 | ((sizeof (short) == 2) \ | |
695 | ? ((int)(short)(x)) \ | |
696 | : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000))) | |
697 | ||
698 | #define GET_SRC_REG(x) (((x) >> 21) & 0x1f) | |
699 | ||
55d05f3b KB |
700 | /* Limit the number of skipped non-prologue instructions, as the examining |
701 | of the prologue is expensive. */ | |
702 | static int max_skip_non_prologue_insns = 10; | |
703 | ||
704 | /* Given PC representing the starting address of a function, and | |
705 | LIM_PC which is the (sloppy) limit to which to scan when looking | |
706 | for a prologue, attempt to further refine this limit by using | |
707 | the line data in the symbol table. If successful, a better guess | |
708 | on where the prologue ends is returned, otherwise the previous | |
709 | value of lim_pc is returned. */ | |
634aa483 AC |
710 | |
711 | /* FIXME: cagney/2004-02-14: This function and logic have largely been | |
712 | superseded by skip_prologue_using_sal. */ | |
713 | ||
55d05f3b KB |
714 | static CORE_ADDR |
715 | refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc) | |
716 | { | |
717 | struct symtab_and_line prologue_sal; | |
718 | ||
719 | prologue_sal = find_pc_line (pc, 0); | |
720 | if (prologue_sal.line != 0) | |
721 | { | |
722 | int i; | |
723 | CORE_ADDR addr = prologue_sal.end; | |
724 | ||
725 | /* Handle the case in which compiler's optimizer/scheduler | |
726 | has moved instructions into the prologue. We scan ahead | |
727 | in the function looking for address ranges whose corresponding | |
728 | line number is less than or equal to the first one that we | |
729 | found for the function. (It can be less than when the | |
730 | scheduler puts a body instruction before the first prologue | |
731 | instruction.) */ | |
732 | for (i = 2 * max_skip_non_prologue_insns; | |
733 | i > 0 && (lim_pc == 0 || addr < lim_pc); | |
734 | i--) | |
735 | { | |
736 | struct symtab_and_line sal; | |
737 | ||
738 | sal = find_pc_line (addr, 0); | |
739 | if (sal.line == 0) | |
740 | break; | |
741 | if (sal.line <= prologue_sal.line | |
742 | && sal.symtab == prologue_sal.symtab) | |
743 | { | |
744 | prologue_sal = sal; | |
745 | } | |
746 | addr = sal.end; | |
747 | } | |
748 | ||
749 | if (lim_pc == 0 || prologue_sal.end < lim_pc) | |
750 | lim_pc = prologue_sal.end; | |
751 | } | |
752 | return lim_pc; | |
753 | } | |
754 | ||
773df3e5 JB |
755 | /* Return nonzero if the given instruction OP can be part of the prologue |
756 | of a function and saves a parameter on the stack. FRAMEP should be | |
757 | set if one of the previous instructions in the function has set the | |
758 | Frame Pointer. */ | |
759 | ||
760 | static int | |
761 | store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg) | |
762 | { | |
763 | /* Move parameters from argument registers to temporary register. */ | |
764 | if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */ | |
765 | { | |
766 | /* Rx must be scratch register r0. */ | |
767 | const int rx_regno = (op >> 16) & 31; | |
768 | /* Ry: Only r3 - r10 are used for parameter passing. */ | |
769 | const int ry_regno = GET_SRC_REG (op); | |
770 | ||
771 | if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10) | |
772 | { | |
773 | *r0_contains_arg = 1; | |
774 | return 1; | |
775 | } | |
776 | else | |
777 | return 0; | |
778 | } | |
779 | ||
780 | /* Save a General Purpose Register on stack. */ | |
781 | ||
782 | if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */ | |
783 | (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */ | |
784 | { | |
785 | /* Rx: Only r3 - r10 are used for parameter passing. */ | |
786 | const int rx_regno = GET_SRC_REG (op); | |
787 | ||
788 | return (rx_regno >= 3 && rx_regno <= 10); | |
789 | } | |
790 | ||
791 | /* Save a General Purpose Register on stack via the Frame Pointer. */ | |
792 | ||
793 | if (framep && | |
794 | ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */ | |
795 | (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */ | |
796 | (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */ | |
797 | { | |
798 | /* Rx: Usually, only r3 - r10 are used for parameter passing. | |
799 | However, the compiler sometimes uses r0 to hold an argument. */ | |
800 | const int rx_regno = GET_SRC_REG (op); | |
801 | ||
802 | return ((rx_regno >= 3 && rx_regno <= 10) | |
803 | || (rx_regno == 0 && *r0_contains_arg)); | |
804 | } | |
805 | ||
806 | if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */ | |
807 | { | |
808 | /* Only f2 - f8 are used for parameter passing. */ | |
809 | const int src_regno = GET_SRC_REG (op); | |
810 | ||
811 | return (src_regno >= 2 && src_regno <= 8); | |
812 | } | |
813 | ||
814 | if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */ | |
815 | { | |
816 | /* Only f2 - f8 are used for parameter passing. */ | |
817 | const int src_regno = GET_SRC_REG (op); | |
818 | ||
819 | return (src_regno >= 2 && src_regno <= 8); | |
820 | } | |
821 | ||
822 | /* Not an insn that saves a parameter on stack. */ | |
823 | return 0; | |
824 | } | |
55d05f3b | 825 | |
7a78ae4e | 826 | static CORE_ADDR |
077276e8 | 827 | skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata) |
c906108c SS |
828 | { |
829 | CORE_ADDR orig_pc = pc; | |
55d05f3b | 830 | CORE_ADDR last_prologue_pc = pc; |
6be8bc0c | 831 | CORE_ADDR li_found_pc = 0; |
c906108c SS |
832 | char buf[4]; |
833 | unsigned long op; | |
834 | long offset = 0; | |
6be8bc0c | 835 | long vr_saved_offset = 0; |
482ca3f5 KB |
836 | int lr_reg = -1; |
837 | int cr_reg = -1; | |
6be8bc0c | 838 | int vr_reg = -1; |
96ff0de4 EZ |
839 | int ev_reg = -1; |
840 | long ev_offset = 0; | |
6be8bc0c | 841 | int vrsave_reg = -1; |
c906108c SS |
842 | int reg; |
843 | int framep = 0; | |
844 | int minimal_toc_loaded = 0; | |
ddb20c56 | 845 | int prev_insn_was_prologue_insn = 1; |
55d05f3b | 846 | int num_skip_non_prologue_insns = 0; |
773df3e5 | 847 | int r0_contains_arg = 0; |
96ff0de4 | 848 | const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch); |
6f99cb26 | 849 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
96ff0de4 | 850 | |
55d05f3b KB |
851 | /* Attempt to find the end of the prologue when no limit is specified. |
852 | Note that refine_prologue_limit() has been written so that it may | |
853 | be used to "refine" the limits of non-zero PC values too, but this | |
854 | is only safe if we 1) trust the line information provided by the | |
855 | compiler and 2) iterate enough to actually find the end of the | |
856 | prologue. | |
857 | ||
858 | It may become a good idea at some point (for both performance and | |
859 | accuracy) to unconditionally call refine_prologue_limit(). But, | |
860 | until we can make a clear determination that this is beneficial, | |
861 | we'll play it safe and only use it to obtain a limit when none | |
862 | has been specified. */ | |
863 | if (lim_pc == 0) | |
864 | lim_pc = refine_prologue_limit (pc, lim_pc); | |
c906108c | 865 | |
ddb20c56 | 866 | memset (fdata, 0, sizeof (struct rs6000_framedata)); |
c906108c SS |
867 | fdata->saved_gpr = -1; |
868 | fdata->saved_fpr = -1; | |
6be8bc0c | 869 | fdata->saved_vr = -1; |
96ff0de4 | 870 | fdata->saved_ev = -1; |
c906108c SS |
871 | fdata->alloca_reg = -1; |
872 | fdata->frameless = 1; | |
873 | fdata->nosavedpc = 1; | |
874 | ||
55d05f3b | 875 | for (;; pc += 4) |
c906108c | 876 | { |
ddb20c56 KB |
877 | /* Sometimes it isn't clear if an instruction is a prologue |
878 | instruction or not. When we encounter one of these ambiguous | |
879 | cases, we'll set prev_insn_was_prologue_insn to 0 (false). | |
880 | Otherwise, we'll assume that it really is a prologue instruction. */ | |
881 | if (prev_insn_was_prologue_insn) | |
882 | last_prologue_pc = pc; | |
55d05f3b KB |
883 | |
884 | /* Stop scanning if we've hit the limit. */ | |
885 | if (lim_pc != 0 && pc >= lim_pc) | |
886 | break; | |
887 | ||
ddb20c56 KB |
888 | prev_insn_was_prologue_insn = 1; |
889 | ||
55d05f3b | 890 | /* Fetch the instruction and convert it to an integer. */ |
ddb20c56 KB |
891 | if (target_read_memory (pc, buf, 4)) |
892 | break; | |
893 | op = extract_signed_integer (buf, 4); | |
c906108c | 894 | |
c5aa993b JM |
895 | if ((op & 0xfc1fffff) == 0x7c0802a6) |
896 | { /* mflr Rx */ | |
43b1ab88 AC |
897 | /* Since shared library / PIC code, which needs to get its |
898 | address at runtime, can appear to save more than one link | |
899 | register vis: | |
900 | ||
901 | *INDENT-OFF* | |
902 | stwu r1,-304(r1) | |
903 | mflr r3 | |
904 | bl 0xff570d0 (blrl) | |
905 | stw r30,296(r1) | |
906 | mflr r30 | |
907 | stw r31,300(r1) | |
908 | stw r3,308(r1); | |
909 | ... | |
910 | *INDENT-ON* | |
911 | ||
912 | remember just the first one, but skip over additional | |
913 | ones. */ | |
914 | if (lr_reg < 0) | |
915 | lr_reg = (op & 0x03e00000); | |
773df3e5 JB |
916 | if (lr_reg == 0) |
917 | r0_contains_arg = 0; | |
c5aa993b | 918 | continue; |
c5aa993b JM |
919 | } |
920 | else if ((op & 0xfc1fffff) == 0x7c000026) | |
921 | { /* mfcr Rx */ | |
98f08d3d | 922 | cr_reg = (op & 0x03e00000); |
773df3e5 JB |
923 | if (cr_reg == 0) |
924 | r0_contains_arg = 0; | |
c5aa993b | 925 | continue; |
c906108c | 926 | |
c906108c | 927 | } |
c5aa993b JM |
928 | else if ((op & 0xfc1f0000) == 0xd8010000) |
929 | { /* stfd Rx,NUM(r1) */ | |
930 | reg = GET_SRC_REG (op); | |
931 | if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg) | |
932 | { | |
933 | fdata->saved_fpr = reg; | |
934 | fdata->fpr_offset = SIGNED_SHORT (op) + offset; | |
935 | } | |
936 | continue; | |
c906108c | 937 | |
c5aa993b JM |
938 | } |
939 | else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */ | |
7a78ae4e ND |
940 | (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */ |
941 | (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */ | |
942 | (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */ | |
c5aa993b JM |
943 | { |
944 | ||
945 | reg = GET_SRC_REG (op); | |
946 | if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg) | |
947 | { | |
948 | fdata->saved_gpr = reg; | |
7a78ae4e | 949 | if ((op & 0xfc1f0003) == 0xf8010000) |
98f08d3d | 950 | op &= ~3UL; |
c5aa993b JM |
951 | fdata->gpr_offset = SIGNED_SHORT (op) + offset; |
952 | } | |
953 | continue; | |
c906108c | 954 | |
ddb20c56 KB |
955 | } |
956 | else if ((op & 0xffff0000) == 0x60000000) | |
957 | { | |
96ff0de4 | 958 | /* nop */ |
ddb20c56 KB |
959 | /* Allow nops in the prologue, but do not consider them to |
960 | be part of the prologue unless followed by other prologue | |
961 | instructions. */ | |
962 | prev_insn_was_prologue_insn = 0; | |
963 | continue; | |
964 | ||
c906108c | 965 | } |
c5aa993b JM |
966 | else if ((op & 0xffff0000) == 0x3c000000) |
967 | { /* addis 0,0,NUM, used | |
968 | for >= 32k frames */ | |
969 | fdata->offset = (op & 0x0000ffff) << 16; | |
970 | fdata->frameless = 0; | |
773df3e5 | 971 | r0_contains_arg = 0; |
c5aa993b JM |
972 | continue; |
973 | ||
974 | } | |
975 | else if ((op & 0xffff0000) == 0x60000000) | |
976 | { /* ori 0,0,NUM, 2nd ha | |
977 | lf of >= 32k frames */ | |
978 | fdata->offset |= (op & 0x0000ffff); | |
979 | fdata->frameless = 0; | |
773df3e5 | 980 | r0_contains_arg = 0; |
c5aa993b JM |
981 | continue; |
982 | ||
983 | } | |
be723e22 | 984 | else if (lr_reg >= 0 && |
98f08d3d KB |
985 | /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */ |
986 | (((op & 0xffff0000) == (lr_reg | 0xf8010000)) || | |
987 | /* stw Rx, NUM(r1) */ | |
988 | ((op & 0xffff0000) == (lr_reg | 0x90010000)) || | |
989 | /* stwu Rx, NUM(r1) */ | |
990 | ((op & 0xffff0000) == (lr_reg | 0x94010000)))) | |
991 | { /* where Rx == lr */ | |
992 | fdata->lr_offset = offset; | |
c5aa993b | 993 | fdata->nosavedpc = 0; |
be723e22 MS |
994 | /* Invalidate lr_reg, but don't set it to -1. |
995 | That would mean that it had never been set. */ | |
996 | lr_reg = -2; | |
98f08d3d KB |
997 | if ((op & 0xfc000003) == 0xf8000000 || /* std */ |
998 | (op & 0xfc000000) == 0x90000000) /* stw */ | |
999 | { | |
1000 | /* Does not update r1, so add displacement to lr_offset. */ | |
1001 | fdata->lr_offset += SIGNED_SHORT (op); | |
1002 | } | |
c5aa993b JM |
1003 | continue; |
1004 | ||
1005 | } | |
be723e22 | 1006 | else if (cr_reg >= 0 && |
98f08d3d KB |
1007 | /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */ |
1008 | (((op & 0xffff0000) == (cr_reg | 0xf8010000)) || | |
1009 | /* stw Rx, NUM(r1) */ | |
1010 | ((op & 0xffff0000) == (cr_reg | 0x90010000)) || | |
1011 | /* stwu Rx, NUM(r1) */ | |
1012 | ((op & 0xffff0000) == (cr_reg | 0x94010000)))) | |
1013 | { /* where Rx == cr */ | |
1014 | fdata->cr_offset = offset; | |
be723e22 MS |
1015 | /* Invalidate cr_reg, but don't set it to -1. |
1016 | That would mean that it had never been set. */ | |
1017 | cr_reg = -2; | |
98f08d3d KB |
1018 | if ((op & 0xfc000003) == 0xf8000000 || |
1019 | (op & 0xfc000000) == 0x90000000) | |
1020 | { | |
1021 | /* Does not update r1, so add displacement to cr_offset. */ | |
1022 | fdata->cr_offset += SIGNED_SHORT (op); | |
1023 | } | |
c5aa993b JM |
1024 | continue; |
1025 | ||
1026 | } | |
1027 | else if (op == 0x48000005) | |
1028 | { /* bl .+4 used in | |
1029 | -mrelocatable */ | |
1030 | continue; | |
1031 | ||
1032 | } | |
1033 | else if (op == 0x48000004) | |
1034 | { /* b .+4 (xlc) */ | |
1035 | break; | |
1036 | ||
c5aa993b | 1037 | } |
6be8bc0c EZ |
1038 | else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used |
1039 | in V.4 -mminimal-toc */ | |
c5aa993b JM |
1040 | (op & 0xffff0000) == 0x3bde0000) |
1041 | { /* addi 30,30,foo@l */ | |
1042 | continue; | |
c906108c | 1043 | |
c5aa993b JM |
1044 | } |
1045 | else if ((op & 0xfc000001) == 0x48000001) | |
1046 | { /* bl foo, | |
1047 | to save fprs??? */ | |
c906108c | 1048 | |
c5aa993b | 1049 | fdata->frameless = 0; |
6be8bc0c | 1050 | /* Don't skip over the subroutine call if it is not within |
ebd98106 FF |
1051 | the first three instructions of the prologue and either |
1052 | we have no line table information or the line info tells | |
1053 | us that the subroutine call is not part of the line | |
1054 | associated with the prologue. */ | |
c5aa993b | 1055 | if ((pc - orig_pc) > 8) |
ebd98106 FF |
1056 | { |
1057 | struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0); | |
1058 | struct symtab_and_line this_sal = find_pc_line (pc, 0); | |
1059 | ||
1060 | if ((prologue_sal.line == 0) || (prologue_sal.line != this_sal.line)) | |
1061 | break; | |
1062 | } | |
c5aa993b JM |
1063 | |
1064 | op = read_memory_integer (pc + 4, 4); | |
1065 | ||
6be8bc0c EZ |
1066 | /* At this point, make sure this is not a trampoline |
1067 | function (a function that simply calls another functions, | |
1068 | and nothing else). If the next is not a nop, this branch | |
1069 | was part of the function prologue. */ | |
c5aa993b JM |
1070 | |
1071 | if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */ | |
1072 | break; /* don't skip over | |
1073 | this branch */ | |
1074 | continue; | |
1075 | ||
c5aa993b | 1076 | } |
98f08d3d KB |
1077 | /* update stack pointer */ |
1078 | else if ((op & 0xfc1f0000) == 0x94010000) | |
1079 | { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */ | |
c5aa993b JM |
1080 | fdata->frameless = 0; |
1081 | fdata->offset = SIGNED_SHORT (op); | |
1082 | offset = fdata->offset; | |
1083 | continue; | |
c5aa993b | 1084 | } |
98f08d3d KB |
1085 | else if ((op & 0xfc1f016a) == 0x7c01016e) |
1086 | { /* stwux rX,r1,rY */ | |
1087 | /* no way to figure out what r1 is going to be */ | |
1088 | fdata->frameless = 0; | |
1089 | offset = fdata->offset; | |
1090 | continue; | |
1091 | } | |
1092 | else if ((op & 0xfc1f0003) == 0xf8010001) | |
1093 | { /* stdu rX,NUM(r1) */ | |
1094 | fdata->frameless = 0; | |
1095 | fdata->offset = SIGNED_SHORT (op & ~3UL); | |
1096 | offset = fdata->offset; | |
1097 | continue; | |
1098 | } | |
1099 | else if ((op & 0xfc1f016a) == 0x7c01016a) | |
1100 | { /* stdux rX,r1,rY */ | |
1101 | /* no way to figure out what r1 is going to be */ | |
c5aa993b JM |
1102 | fdata->frameless = 0; |
1103 | offset = fdata->offset; | |
1104 | continue; | |
c5aa993b | 1105 | } |
98f08d3d KB |
1106 | /* Load up minimal toc pointer */ |
1107 | else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */ | |
1108 | (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */ | |
c5aa993b | 1109 | && !minimal_toc_loaded) |
98f08d3d | 1110 | { |
c5aa993b JM |
1111 | minimal_toc_loaded = 1; |
1112 | continue; | |
1113 | ||
f6077098 KB |
1114 | /* move parameters from argument registers to local variable |
1115 | registers */ | |
1116 | } | |
1117 | else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */ | |
1118 | (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */ | |
1119 | (((op >> 21) & 31) <= 10) && | |
96ff0de4 | 1120 | ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */ |
f6077098 KB |
1121 | { |
1122 | continue; | |
1123 | ||
c5aa993b JM |
1124 | /* store parameters in stack */ |
1125 | } | |
e802b915 | 1126 | /* Move parameters from argument registers to temporary register. */ |
773df3e5 | 1127 | else if (store_param_on_stack_p (op, framep, &r0_contains_arg)) |
e802b915 | 1128 | { |
c5aa993b JM |
1129 | continue; |
1130 | ||
1131 | /* Set up frame pointer */ | |
1132 | } | |
1133 | else if (op == 0x603f0000 /* oril r31, r1, 0x0 */ | |
1134 | || op == 0x7c3f0b78) | |
1135 | { /* mr r31, r1 */ | |
1136 | fdata->frameless = 0; | |
1137 | framep = 1; | |
6f99cb26 | 1138 | fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31); |
c5aa993b JM |
1139 | continue; |
1140 | ||
1141 | /* Another way to set up the frame pointer. */ | |
1142 | } | |
1143 | else if ((op & 0xfc1fffff) == 0x38010000) | |
1144 | { /* addi rX, r1, 0x0 */ | |
1145 | fdata->frameless = 0; | |
1146 | framep = 1; | |
6f99cb26 AC |
1147 | fdata->alloca_reg = (tdep->ppc_gp0_regnum |
1148 | + ((op & ~0x38010000) >> 21)); | |
c5aa993b | 1149 | continue; |
c5aa993b | 1150 | } |
6be8bc0c EZ |
1151 | /* AltiVec related instructions. */ |
1152 | /* Store the vrsave register (spr 256) in another register for | |
1153 | later manipulation, or load a register into the vrsave | |
1154 | register. 2 instructions are used: mfvrsave and | |
1155 | mtvrsave. They are shorthand notation for mfspr Rn, SPR256 | |
1156 | and mtspr SPR256, Rn. */ | |
1157 | /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110 | |
1158 | mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */ | |
1159 | else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */ | |
1160 | { | |
1161 | vrsave_reg = GET_SRC_REG (op); | |
1162 | continue; | |
1163 | } | |
1164 | else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */ | |
1165 | { | |
1166 | continue; | |
1167 | } | |
1168 | /* Store the register where vrsave was saved to onto the stack: | |
1169 | rS is the register where vrsave was stored in a previous | |
1170 | instruction. */ | |
1171 | /* 100100 sssss 00001 dddddddd dddddddd */ | |
1172 | else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */ | |
1173 | { | |
1174 | if (vrsave_reg == GET_SRC_REG (op)) | |
1175 | { | |
1176 | fdata->vrsave_offset = SIGNED_SHORT (op) + offset; | |
1177 | vrsave_reg = -1; | |
1178 | } | |
1179 | continue; | |
1180 | } | |
1181 | /* Compute the new value of vrsave, by modifying the register | |
1182 | where vrsave was saved to. */ | |
1183 | else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */ | |
1184 | || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */ | |
1185 | { | |
1186 | continue; | |
1187 | } | |
1188 | /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first | |
1189 | in a pair of insns to save the vector registers on the | |
1190 | stack. */ | |
1191 | /* 001110 00000 00000 iiii iiii iiii iiii */ | |
96ff0de4 EZ |
1192 | /* 001110 01110 00000 iiii iiii iiii iiii */ |
1193 | else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */ | |
1194 | || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */ | |
6be8bc0c | 1195 | { |
773df3e5 JB |
1196 | if ((op & 0xffff0000) == 0x38000000) |
1197 | r0_contains_arg = 0; | |
6be8bc0c EZ |
1198 | li_found_pc = pc; |
1199 | vr_saved_offset = SIGNED_SHORT (op); | |
773df3e5 JB |
1200 | |
1201 | /* This insn by itself is not part of the prologue, unless | |
1202 | if part of the pair of insns mentioned above. So do not | |
1203 | record this insn as part of the prologue yet. */ | |
1204 | prev_insn_was_prologue_insn = 0; | |
6be8bc0c EZ |
1205 | } |
1206 | /* Store vector register S at (r31+r0) aligned to 16 bytes. */ | |
1207 | /* 011111 sssss 11111 00000 00111001110 */ | |
1208 | else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */ | |
1209 | { | |
1210 | if (pc == (li_found_pc + 4)) | |
1211 | { | |
1212 | vr_reg = GET_SRC_REG (op); | |
1213 | /* If this is the first vector reg to be saved, or if | |
1214 | it has a lower number than others previously seen, | |
1215 | reupdate the frame info. */ | |
1216 | if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg) | |
1217 | { | |
1218 | fdata->saved_vr = vr_reg; | |
1219 | fdata->vr_offset = vr_saved_offset + offset; | |
1220 | } | |
1221 | vr_saved_offset = -1; | |
1222 | vr_reg = -1; | |
1223 | li_found_pc = 0; | |
1224 | } | |
1225 | } | |
1226 | /* End AltiVec related instructions. */ | |
96ff0de4 EZ |
1227 | |
1228 | /* Start BookE related instructions. */ | |
1229 | /* Store gen register S at (r31+uimm). | |
1230 | Any register less than r13 is volatile, so we don't care. */ | |
1231 | /* 000100 sssss 11111 iiiii 01100100001 */ | |
1232 | else if (arch_info->mach == bfd_mach_ppc_e500 | |
1233 | && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */ | |
1234 | { | |
1235 | if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */ | |
1236 | { | |
1237 | unsigned int imm; | |
1238 | ev_reg = GET_SRC_REG (op); | |
1239 | imm = (op >> 11) & 0x1f; | |
1240 | ev_offset = imm * 8; | |
1241 | /* If this is the first vector reg to be saved, or if | |
1242 | it has a lower number than others previously seen, | |
1243 | reupdate the frame info. */ | |
1244 | if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg) | |
1245 | { | |
1246 | fdata->saved_ev = ev_reg; | |
1247 | fdata->ev_offset = ev_offset + offset; | |
1248 | } | |
1249 | } | |
1250 | continue; | |
1251 | } | |
1252 | /* Store gen register rS at (r1+rB). */ | |
1253 | /* 000100 sssss 00001 bbbbb 01100100000 */ | |
1254 | else if (arch_info->mach == bfd_mach_ppc_e500 | |
1255 | && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */ | |
1256 | { | |
1257 | if (pc == (li_found_pc + 4)) | |
1258 | { | |
1259 | ev_reg = GET_SRC_REG (op); | |
1260 | /* If this is the first vector reg to be saved, or if | |
1261 | it has a lower number than others previously seen, | |
1262 | reupdate the frame info. */ | |
1263 | /* We know the contents of rB from the previous instruction. */ | |
1264 | if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg) | |
1265 | { | |
1266 | fdata->saved_ev = ev_reg; | |
1267 | fdata->ev_offset = vr_saved_offset + offset; | |
1268 | } | |
1269 | vr_saved_offset = -1; | |
1270 | ev_reg = -1; | |
1271 | li_found_pc = 0; | |
1272 | } | |
1273 | continue; | |
1274 | } | |
1275 | /* Store gen register r31 at (rA+uimm). */ | |
1276 | /* 000100 11111 aaaaa iiiii 01100100001 */ | |
1277 | else if (arch_info->mach == bfd_mach_ppc_e500 | |
1278 | && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */ | |
1279 | { | |
1280 | /* Wwe know that the source register is 31 already, but | |
1281 | it can't hurt to compute it. */ | |
1282 | ev_reg = GET_SRC_REG (op); | |
1283 | ev_offset = ((op >> 11) & 0x1f) * 8; | |
1284 | /* If this is the first vector reg to be saved, or if | |
1285 | it has a lower number than others previously seen, | |
1286 | reupdate the frame info. */ | |
1287 | if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg) | |
1288 | { | |
1289 | fdata->saved_ev = ev_reg; | |
1290 | fdata->ev_offset = ev_offset + offset; | |
1291 | } | |
1292 | ||
1293 | continue; | |
1294 | } | |
1295 | /* Store gen register S at (r31+r0). | |
1296 | Store param on stack when offset from SP bigger than 4 bytes. */ | |
1297 | /* 000100 sssss 11111 00000 01100100000 */ | |
1298 | else if (arch_info->mach == bfd_mach_ppc_e500 | |
1299 | && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */ | |
1300 | { | |
1301 | if (pc == (li_found_pc + 4)) | |
1302 | { | |
1303 | if ((op & 0x03e00000) >= 0x01a00000) | |
1304 | { | |
1305 | ev_reg = GET_SRC_REG (op); | |
1306 | /* If this is the first vector reg to be saved, or if | |
1307 | it has a lower number than others previously seen, | |
1308 | reupdate the frame info. */ | |
1309 | /* We know the contents of r0 from the previous | |
1310 | instruction. */ | |
1311 | if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg) | |
1312 | { | |
1313 | fdata->saved_ev = ev_reg; | |
1314 | fdata->ev_offset = vr_saved_offset + offset; | |
1315 | } | |
1316 | ev_reg = -1; | |
1317 | } | |
1318 | vr_saved_offset = -1; | |
1319 | li_found_pc = 0; | |
1320 | continue; | |
1321 | } | |
1322 | } | |
1323 | /* End BookE related instructions. */ | |
1324 | ||
c5aa993b JM |
1325 | else |
1326 | { | |
55d05f3b KB |
1327 | /* Not a recognized prologue instruction. |
1328 | Handle optimizer code motions into the prologue by continuing | |
1329 | the search if we have no valid frame yet or if the return | |
1330 | address is not yet saved in the frame. */ | |
1331 | if (fdata->frameless == 0 | |
1332 | && (lr_reg == -1 || fdata->nosavedpc == 0)) | |
1333 | break; | |
1334 | ||
1335 | if (op == 0x4e800020 /* blr */ | |
1336 | || op == 0x4e800420) /* bctr */ | |
1337 | /* Do not scan past epilogue in frameless functions or | |
1338 | trampolines. */ | |
1339 | break; | |
1340 | if ((op & 0xf4000000) == 0x40000000) /* bxx */ | |
64366f1c | 1341 | /* Never skip branches. */ |
55d05f3b KB |
1342 | break; |
1343 | ||
1344 | if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns) | |
1345 | /* Do not scan too many insns, scanning insns is expensive with | |
1346 | remote targets. */ | |
1347 | break; | |
1348 | ||
1349 | /* Continue scanning. */ | |
1350 | prev_insn_was_prologue_insn = 0; | |
1351 | continue; | |
c5aa993b | 1352 | } |
c906108c SS |
1353 | } |
1354 | ||
1355 | #if 0 | |
1356 | /* I have problems with skipping over __main() that I need to address | |
1357 | * sometime. Previously, I used to use misc_function_vector which | |
1358 | * didn't work as well as I wanted to be. -MGO */ | |
1359 | ||
1360 | /* If the first thing after skipping a prolog is a branch to a function, | |
1361 | this might be a call to an initializer in main(), introduced by gcc2. | |
64366f1c | 1362 | We'd like to skip over it as well. Fortunately, xlc does some extra |
c906108c | 1363 | work before calling a function right after a prologue, thus we can |
64366f1c | 1364 | single out such gcc2 behaviour. */ |
c906108c | 1365 | |
c906108c | 1366 | |
c5aa993b JM |
1367 | if ((op & 0xfc000001) == 0x48000001) |
1368 | { /* bl foo, an initializer function? */ | |
1369 | op = read_memory_integer (pc + 4, 4); | |
1370 | ||
1371 | if (op == 0x4def7b82) | |
1372 | { /* cror 0xf, 0xf, 0xf (nop) */ | |
c906108c | 1373 | |
64366f1c EZ |
1374 | /* Check and see if we are in main. If so, skip over this |
1375 | initializer function as well. */ | |
c906108c | 1376 | |
c5aa993b | 1377 | tmp = find_pc_misc_function (pc); |
6314a349 AC |
1378 | if (tmp >= 0 |
1379 | && strcmp (misc_function_vector[tmp].name, main_name ()) == 0) | |
c5aa993b JM |
1380 | return pc + 8; |
1381 | } | |
c906108c | 1382 | } |
c906108c | 1383 | #endif /* 0 */ |
c5aa993b JM |
1384 | |
1385 | fdata->offset = -fdata->offset; | |
ddb20c56 | 1386 | return last_prologue_pc; |
c906108c SS |
1387 | } |
1388 | ||
1389 | ||
1390 | /************************************************************************* | |
f6077098 | 1391 | Support for creating pushing a dummy frame into the stack, and popping |
c906108c SS |
1392 | frames, etc. |
1393 | *************************************************************************/ | |
1394 | ||
c906108c | 1395 | |
11269d7e AC |
1396 | /* All the ABI's require 16 byte alignment. */ |
1397 | static CORE_ADDR | |
1398 | rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr) | |
1399 | { | |
1400 | return (addr & -16); | |
1401 | } | |
1402 | ||
7a78ae4e | 1403 | /* Pass the arguments in either registers, or in the stack. In RS/6000, |
c906108c SS |
1404 | the first eight words of the argument list (that might be less than |
1405 | eight parameters if some parameters occupy more than one word) are | |
7a78ae4e | 1406 | passed in r3..r10 registers. float and double parameters are |
64366f1c EZ |
1407 | passed in fpr's, in addition to that. Rest of the parameters if any |
1408 | are passed in user stack. There might be cases in which half of the | |
c906108c SS |
1409 | parameter is copied into registers, the other half is pushed into |
1410 | stack. | |
1411 | ||
7a78ae4e ND |
1412 | Stack must be aligned on 64-bit boundaries when synthesizing |
1413 | function calls. | |
1414 | ||
c906108c SS |
1415 | If the function is returning a structure, then the return address is passed |
1416 | in r3, then the first 7 words of the parameters can be passed in registers, | |
64366f1c | 1417 | starting from r4. */ |
c906108c | 1418 | |
7a78ae4e | 1419 | static CORE_ADDR |
7d9b040b | 1420 | rs6000_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
77b2b6d4 AC |
1421 | struct regcache *regcache, CORE_ADDR bp_addr, |
1422 | int nargs, struct value **args, CORE_ADDR sp, | |
1423 | int struct_return, CORE_ADDR struct_addr) | |
c906108c | 1424 | { |
7a41266b | 1425 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
c906108c SS |
1426 | int ii; |
1427 | int len = 0; | |
c5aa993b JM |
1428 | int argno; /* current argument number */ |
1429 | int argbytes; /* current argument byte */ | |
1430 | char tmp_buffer[50]; | |
1431 | int f_argno = 0; /* current floating point argno */ | |
21283beb | 1432 | int wordsize = gdbarch_tdep (current_gdbarch)->wordsize; |
7d9b040b | 1433 | CORE_ADDR func_addr = find_function_addr (function, NULL); |
c906108c | 1434 | |
ea7c478f | 1435 | struct value *arg = 0; |
c906108c SS |
1436 | struct type *type; |
1437 | ||
1438 | CORE_ADDR saved_sp; | |
1439 | ||
383f0f5b JB |
1440 | /* The calling convention this function implements assumes the |
1441 | processor has floating-point registers. We shouldn't be using it | |
1442 | on PPC variants that lack them. */ | |
1443 | gdb_assert (ppc_floating_point_unit_p (current_gdbarch)); | |
1444 | ||
64366f1c | 1445 | /* The first eight words of ther arguments are passed in registers. |
7a41266b AC |
1446 | Copy them appropriately. */ |
1447 | ii = 0; | |
1448 | ||
1449 | /* If the function is returning a `struct', then the first word | |
1450 | (which will be passed in r3) is used for struct return address. | |
1451 | In that case we should advance one word and start from r4 | |
1452 | register to copy parameters. */ | |
1453 | if (struct_return) | |
1454 | { | |
1455 | regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3, | |
1456 | struct_addr); | |
1457 | ii++; | |
1458 | } | |
c906108c SS |
1459 | |
1460 | /* | |
c5aa993b JM |
1461 | effectively indirect call... gcc does... |
1462 | ||
1463 | return_val example( float, int); | |
1464 | ||
1465 | eabi: | |
1466 | float in fp0, int in r3 | |
1467 | offset of stack on overflow 8/16 | |
1468 | for varargs, must go by type. | |
1469 | power open: | |
1470 | float in r3&r4, int in r5 | |
1471 | offset of stack on overflow different | |
1472 | both: | |
1473 | return in r3 or f0. If no float, must study how gcc emulates floats; | |
1474 | pay attention to arg promotion. | |
1475 | User may have to cast\args to handle promotion correctly | |
1476 | since gdb won't know if prototype supplied or not. | |
1477 | */ | |
c906108c | 1478 | |
c5aa993b JM |
1479 | for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii) |
1480 | { | |
3acba339 | 1481 | int reg_size = register_size (current_gdbarch, ii + 3); |
c5aa993b JM |
1482 | |
1483 | arg = args[argno]; | |
df407dfe | 1484 | type = check_typedef (value_type (arg)); |
c5aa993b JM |
1485 | len = TYPE_LENGTH (type); |
1486 | ||
1487 | if (TYPE_CODE (type) == TYPE_CODE_FLT) | |
1488 | { | |
1489 | ||
64366f1c | 1490 | /* Floating point arguments are passed in fpr's, as well as gpr's. |
c5aa993b | 1491 | There are 13 fpr's reserved for passing parameters. At this point |
64366f1c | 1492 | there is no way we would run out of them. */ |
c5aa993b | 1493 | |
9f335945 KB |
1494 | gdb_assert (len <= 8); |
1495 | ||
1496 | regcache_cooked_write (regcache, | |
1497 | tdep->ppc_fp0_regnum + 1 + f_argno, | |
1498 | VALUE_CONTENTS (arg)); | |
c5aa993b JM |
1499 | ++f_argno; |
1500 | } | |
1501 | ||
f6077098 | 1502 | if (len > reg_size) |
c5aa993b JM |
1503 | { |
1504 | ||
64366f1c | 1505 | /* Argument takes more than one register. */ |
c5aa993b JM |
1506 | while (argbytes < len) |
1507 | { | |
9f335945 KB |
1508 | char word[MAX_REGISTER_SIZE]; |
1509 | memset (word, 0, reg_size); | |
1510 | memcpy (word, | |
c5aa993b | 1511 | ((char *) VALUE_CONTENTS (arg)) + argbytes, |
f6077098 KB |
1512 | (len - argbytes) > reg_size |
1513 | ? reg_size : len - argbytes); | |
9f335945 KB |
1514 | regcache_cooked_write (regcache, |
1515 | tdep->ppc_gp0_regnum + 3 + ii, | |
1516 | word); | |
f6077098 | 1517 | ++ii, argbytes += reg_size; |
c5aa993b JM |
1518 | |
1519 | if (ii >= 8) | |
1520 | goto ran_out_of_registers_for_arguments; | |
1521 | } | |
1522 | argbytes = 0; | |
1523 | --ii; | |
1524 | } | |
1525 | else | |
64366f1c EZ |
1526 | { |
1527 | /* Argument can fit in one register. No problem. */ | |
d7449b42 | 1528 | int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0; |
9f335945 KB |
1529 | char word[MAX_REGISTER_SIZE]; |
1530 | ||
1531 | memset (word, 0, reg_size); | |
1532 | memcpy (word, VALUE_CONTENTS (arg), len); | |
1533 | regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3 +ii, word); | |
c5aa993b JM |
1534 | } |
1535 | ++argno; | |
c906108c | 1536 | } |
c906108c SS |
1537 | |
1538 | ran_out_of_registers_for_arguments: | |
1539 | ||
7a78ae4e | 1540 | saved_sp = read_sp (); |
cc9836a8 | 1541 | |
64366f1c | 1542 | /* Location for 8 parameters are always reserved. */ |
7a78ae4e | 1543 | sp -= wordsize * 8; |
f6077098 | 1544 | |
64366f1c | 1545 | /* Another six words for back chain, TOC register, link register, etc. */ |
7a78ae4e | 1546 | sp -= wordsize * 6; |
f6077098 | 1547 | |
64366f1c | 1548 | /* Stack pointer must be quadword aligned. */ |
7a78ae4e | 1549 | sp &= -16; |
c906108c | 1550 | |
64366f1c EZ |
1551 | /* If there are more arguments, allocate space for them in |
1552 | the stack, then push them starting from the ninth one. */ | |
c906108c | 1553 | |
c5aa993b JM |
1554 | if ((argno < nargs) || argbytes) |
1555 | { | |
1556 | int space = 0, jj; | |
c906108c | 1557 | |
c5aa993b JM |
1558 | if (argbytes) |
1559 | { | |
1560 | space += ((len - argbytes + 3) & -4); | |
1561 | jj = argno + 1; | |
1562 | } | |
1563 | else | |
1564 | jj = argno; | |
c906108c | 1565 | |
c5aa993b JM |
1566 | for (; jj < nargs; ++jj) |
1567 | { | |
ea7c478f | 1568 | struct value *val = args[jj]; |
df407dfe | 1569 | space += ((TYPE_LENGTH (value_type (val))) + 3) & -4; |
c5aa993b | 1570 | } |
c906108c | 1571 | |
64366f1c | 1572 | /* Add location required for the rest of the parameters. */ |
f6077098 | 1573 | space = (space + 15) & -16; |
c5aa993b | 1574 | sp -= space; |
c906108c | 1575 | |
7aea86e6 AC |
1576 | /* This is another instance we need to be concerned about |
1577 | securing our stack space. If we write anything underneath %sp | |
1578 | (r1), we might conflict with the kernel who thinks he is free | |
1579 | to use this area. So, update %sp first before doing anything | |
1580 | else. */ | |
1581 | ||
1582 | regcache_raw_write_signed (regcache, SP_REGNUM, sp); | |
1583 | ||
64366f1c EZ |
1584 | /* If the last argument copied into the registers didn't fit there |
1585 | completely, push the rest of it into stack. */ | |
c906108c | 1586 | |
c5aa993b JM |
1587 | if (argbytes) |
1588 | { | |
1589 | write_memory (sp + 24 + (ii * 4), | |
1590 | ((char *) VALUE_CONTENTS (arg)) + argbytes, | |
1591 | len - argbytes); | |
1592 | ++argno; | |
1593 | ii += ((len - argbytes + 3) & -4) / 4; | |
1594 | } | |
c906108c | 1595 | |
64366f1c | 1596 | /* Push the rest of the arguments into stack. */ |
c5aa993b JM |
1597 | for (; argno < nargs; ++argno) |
1598 | { | |
c906108c | 1599 | |
c5aa993b | 1600 | arg = args[argno]; |
df407dfe | 1601 | type = check_typedef (value_type (arg)); |
c5aa993b | 1602 | len = TYPE_LENGTH (type); |
c906108c SS |
1603 | |
1604 | ||
64366f1c EZ |
1605 | /* Float types should be passed in fpr's, as well as in the |
1606 | stack. */ | |
c5aa993b JM |
1607 | if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13) |
1608 | { | |
c906108c | 1609 | |
9f335945 | 1610 | gdb_assert (len <= 8); |
c906108c | 1611 | |
9f335945 KB |
1612 | regcache_cooked_write (regcache, |
1613 | tdep->ppc_fp0_regnum + 1 + f_argno, | |
1614 | VALUE_CONTENTS (arg)); | |
c5aa993b JM |
1615 | ++f_argno; |
1616 | } | |
c906108c | 1617 | |
c2b6b4aa JB |
1618 | write_memory (sp + 24 + (ii * 4), |
1619 | (char *) VALUE_CONTENTS (arg), | |
1620 | len); | |
c5aa993b JM |
1621 | ii += ((len + 3) & -4) / 4; |
1622 | } | |
c906108c | 1623 | } |
c906108c | 1624 | |
69517000 | 1625 | /* Set the stack pointer. According to the ABI, the SP is meant to |
7aea86e6 AC |
1626 | be set _before_ the corresponding stack space is used. On AIX, |
1627 | this even applies when the target has been completely stopped! | |
1628 | Not doing this can lead to conflicts with the kernel which thinks | |
1629 | that it still has control over this not-yet-allocated stack | |
1630 | region. */ | |
33a7c2fc AC |
1631 | regcache_raw_write_signed (regcache, SP_REGNUM, sp); |
1632 | ||
7aea86e6 AC |
1633 | /* Set back chain properly. */ |
1634 | store_unsigned_integer (tmp_buffer, 4, saved_sp); | |
1635 | write_memory (sp, tmp_buffer, 4); | |
1636 | ||
e56a0ecc AC |
1637 | /* Point the inferior function call's return address at the dummy's |
1638 | breakpoint. */ | |
1639 | regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr); | |
1640 | ||
794a477a AC |
1641 | /* Set the TOC register, get the value from the objfile reader |
1642 | which, in turn, gets it from the VMAP table. */ | |
1643 | if (rs6000_find_toc_address_hook != NULL) | |
1644 | { | |
1645 | CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr); | |
1646 | regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue); | |
1647 | } | |
1648 | ||
c906108c SS |
1649 | target_store_registers (-1); |
1650 | return sp; | |
1651 | } | |
c906108c | 1652 | |
b9ff3018 AC |
1653 | /* PowerOpen always puts structures in memory. Vectors, which were |
1654 | added later, do get returned in a register though. */ | |
1655 | ||
1656 | static int | |
1657 | rs6000_use_struct_convention (int gcc_p, struct type *value_type) | |
1658 | { | |
1659 | if ((TYPE_LENGTH (value_type) == 16 || TYPE_LENGTH (value_type) == 8) | |
1660 | && TYPE_VECTOR (value_type)) | |
1661 | return 0; | |
1662 | return 1; | |
1663 | } | |
1664 | ||
7a78ae4e ND |
1665 | static void |
1666 | rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf) | |
c906108c SS |
1667 | { |
1668 | int offset = 0; | |
ace1378a | 1669 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
c906108c | 1670 | |
383f0f5b JB |
1671 | /* The calling convention this function implements assumes the |
1672 | processor has floating-point registers. We shouldn't be using it | |
1673 | on PPC variants that lack them. */ | |
1674 | gdb_assert (ppc_floating_point_unit_p (current_gdbarch)); | |
1675 | ||
c5aa993b JM |
1676 | if (TYPE_CODE (valtype) == TYPE_CODE_FLT) |
1677 | { | |
c906108c | 1678 | |
c5aa993b JM |
1679 | /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes. |
1680 | We need to truncate the return value into float size (4 byte) if | |
64366f1c | 1681 | necessary. */ |
c906108c | 1682 | |
65951cd9 | 1683 | convert_typed_floating (®buf[DEPRECATED_REGISTER_BYTE |
366f009f | 1684 | (tdep->ppc_fp0_regnum + 1)], |
65951cd9 JG |
1685 | builtin_type_double, |
1686 | valbuf, | |
1687 | valtype); | |
c5aa993b | 1688 | } |
ace1378a EZ |
1689 | else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY |
1690 | && TYPE_LENGTH (valtype) == 16 | |
1691 | && TYPE_VECTOR (valtype)) | |
1692 | { | |
62700349 | 1693 | memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (tdep->ppc_vr0_regnum + 2), |
ace1378a EZ |
1694 | TYPE_LENGTH (valtype)); |
1695 | } | |
c5aa993b JM |
1696 | else |
1697 | { | |
1698 | /* return value is copied starting from r3. */ | |
d7449b42 | 1699 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG |
3acba339 AC |
1700 | && TYPE_LENGTH (valtype) < register_size (current_gdbarch, 3)) |
1701 | offset = register_size (current_gdbarch, 3) - TYPE_LENGTH (valtype); | |
c5aa993b JM |
1702 | |
1703 | memcpy (valbuf, | |
62700349 | 1704 | regbuf + DEPRECATED_REGISTER_BYTE (3) + offset, |
c906108c | 1705 | TYPE_LENGTH (valtype)); |
c906108c | 1706 | } |
c906108c SS |
1707 | } |
1708 | ||
977adac5 ND |
1709 | /* Return whether handle_inferior_event() should proceed through code |
1710 | starting at PC in function NAME when stepping. | |
1711 | ||
1712 | The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to | |
1713 | handle memory references that are too distant to fit in instructions | |
1714 | generated by the compiler. For example, if 'foo' in the following | |
1715 | instruction: | |
1716 | ||
1717 | lwz r9,foo(r2) | |
1718 | ||
1719 | is greater than 32767, the linker might replace the lwz with a branch to | |
1720 | somewhere in @FIX1 that does the load in 2 instructions and then branches | |
1721 | back to where execution should continue. | |
1722 | ||
1723 | GDB should silently step over @FIX code, just like AIX dbx does. | |
2ec664f5 MS |
1724 | Unfortunately, the linker uses the "b" instruction for the |
1725 | branches, meaning that the link register doesn't get set. | |
1726 | Therefore, GDB's usual step_over_function () mechanism won't work. | |
977adac5 | 1727 | |
2ec664f5 MS |
1728 | Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and |
1729 | SKIP_TRAMPOLINE_CODE hooks in handle_inferior_event() to skip past | |
1730 | @FIX code. */ | |
977adac5 ND |
1731 | |
1732 | int | |
1733 | rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name) | |
1734 | { | |
1735 | return name && !strncmp (name, "@FIX", 4); | |
1736 | } | |
1737 | ||
1738 | /* Skip code that the user doesn't want to see when stepping: | |
1739 | ||
1740 | 1. Indirect function calls use a piece of trampoline code to do context | |
1741 | switching, i.e. to set the new TOC table. Skip such code if we are on | |
1742 | its first instruction (as when we have single-stepped to here). | |
1743 | ||
1744 | 2. Skip shared library trampoline code (which is different from | |
c906108c | 1745 | indirect function call trampolines). |
977adac5 ND |
1746 | |
1747 | 3. Skip bigtoc fixup code. | |
1748 | ||
c906108c | 1749 | Result is desired PC to step until, or NULL if we are not in |
977adac5 | 1750 | code that should be skipped. */ |
c906108c SS |
1751 | |
1752 | CORE_ADDR | |
7a78ae4e | 1753 | rs6000_skip_trampoline_code (CORE_ADDR pc) |
c906108c | 1754 | { |
52f0bd74 | 1755 | unsigned int ii, op; |
977adac5 | 1756 | int rel; |
c906108c | 1757 | CORE_ADDR solib_target_pc; |
977adac5 | 1758 | struct minimal_symbol *msymbol; |
c906108c | 1759 | |
c5aa993b JM |
1760 | static unsigned trampoline_code[] = |
1761 | { | |
1762 | 0x800b0000, /* l r0,0x0(r11) */ | |
1763 | 0x90410014, /* st r2,0x14(r1) */ | |
1764 | 0x7c0903a6, /* mtctr r0 */ | |
1765 | 0x804b0004, /* l r2,0x4(r11) */ | |
1766 | 0x816b0008, /* l r11,0x8(r11) */ | |
1767 | 0x4e800420, /* bctr */ | |
1768 | 0x4e800020, /* br */ | |
1769 | 0 | |
c906108c SS |
1770 | }; |
1771 | ||
977adac5 ND |
1772 | /* Check for bigtoc fixup code. */ |
1773 | msymbol = lookup_minimal_symbol_by_pc (pc); | |
2ec664f5 MS |
1774 | if (msymbol |
1775 | && rs6000_in_solib_return_trampoline (pc, | |
1776 | DEPRECATED_SYMBOL_NAME (msymbol))) | |
977adac5 ND |
1777 | { |
1778 | /* Double-check that the third instruction from PC is relative "b". */ | |
1779 | op = read_memory_integer (pc + 8, 4); | |
1780 | if ((op & 0xfc000003) == 0x48000000) | |
1781 | { | |
1782 | /* Extract bits 6-29 as a signed 24-bit relative word address and | |
1783 | add it to the containing PC. */ | |
1784 | rel = ((int)(op << 6) >> 6); | |
1785 | return pc + 8 + rel; | |
1786 | } | |
1787 | } | |
1788 | ||
c906108c SS |
1789 | /* If pc is in a shared library trampoline, return its target. */ |
1790 | solib_target_pc = find_solib_trampoline_target (pc); | |
1791 | if (solib_target_pc) | |
1792 | return solib_target_pc; | |
1793 | ||
c5aa993b JM |
1794 | for (ii = 0; trampoline_code[ii]; ++ii) |
1795 | { | |
1796 | op = read_memory_integer (pc + (ii * 4), 4); | |
1797 | if (op != trampoline_code[ii]) | |
1798 | return 0; | |
1799 | } | |
1800 | ii = read_register (11); /* r11 holds destination addr */ | |
21283beb | 1801 | pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */ |
c906108c SS |
1802 | return pc; |
1803 | } | |
1804 | ||
7a78ae4e | 1805 | /* Return the size of register REG when words are WORDSIZE bytes long. If REG |
64366f1c | 1806 | isn't available with that word size, return 0. */ |
7a78ae4e ND |
1807 | |
1808 | static int | |
1809 | regsize (const struct reg *reg, int wordsize) | |
1810 | { | |
1811 | return wordsize == 8 ? reg->sz64 : reg->sz32; | |
1812 | } | |
1813 | ||
1814 | /* Return the name of register number N, or null if no such register exists | |
64366f1c | 1815 | in the current architecture. */ |
7a78ae4e | 1816 | |
fa88f677 | 1817 | static const char * |
7a78ae4e ND |
1818 | rs6000_register_name (int n) |
1819 | { | |
21283beb | 1820 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
7a78ae4e ND |
1821 | const struct reg *reg = tdep->regs + n; |
1822 | ||
1823 | if (!regsize (reg, tdep->wordsize)) | |
1824 | return NULL; | |
1825 | return reg->name; | |
1826 | } | |
1827 | ||
7a78ae4e ND |
1828 | /* Return the GDB type object for the "standard" data type |
1829 | of data in register N. */ | |
1830 | ||
1831 | static struct type * | |
691d145a | 1832 | rs6000_register_type (struct gdbarch *gdbarch, int n) |
7a78ae4e | 1833 | { |
691d145a | 1834 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
7a78ae4e ND |
1835 | const struct reg *reg = tdep->regs + n; |
1836 | ||
1fcc0bb8 EZ |
1837 | if (reg->fpr) |
1838 | return builtin_type_double; | |
1839 | else | |
1840 | { | |
1841 | int size = regsize (reg, tdep->wordsize); | |
1842 | switch (size) | |
1843 | { | |
449a5da4 AC |
1844 | case 0: |
1845 | return builtin_type_int0; | |
1846 | case 4: | |
ed6edd9b | 1847 | return builtin_type_uint32; |
1fcc0bb8 | 1848 | case 8: |
c8001721 EZ |
1849 | if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum) |
1850 | return builtin_type_vec64; | |
1851 | else | |
ed6edd9b | 1852 | return builtin_type_uint64; |
1fcc0bb8 EZ |
1853 | break; |
1854 | case 16: | |
08cf96df | 1855 | return builtin_type_vec128; |
1fcc0bb8 EZ |
1856 | break; |
1857 | default: | |
449a5da4 AC |
1858 | internal_error (__FILE__, __LINE__, "Register %d size %d unknown", |
1859 | n, size); | |
1fcc0bb8 EZ |
1860 | } |
1861 | } | |
7a78ae4e ND |
1862 | } |
1863 | ||
691d145a | 1864 | /* The register format for RS/6000 floating point registers is always |
64366f1c | 1865 | double, we need a conversion if the memory format is float. */ |
7a78ae4e ND |
1866 | |
1867 | static int | |
691d145a | 1868 | rs6000_convert_register_p (int regnum, struct type *type) |
7a78ae4e | 1869 | { |
691d145a JB |
1870 | const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum; |
1871 | ||
1872 | return (reg->fpr | |
1873 | && TYPE_CODE (type) == TYPE_CODE_FLT | |
1874 | && TYPE_LENGTH (type) != TYPE_LENGTH (builtin_type_double)); | |
7a78ae4e ND |
1875 | } |
1876 | ||
7a78ae4e | 1877 | static void |
691d145a JB |
1878 | rs6000_register_to_value (struct frame_info *frame, |
1879 | int regnum, | |
1880 | struct type *type, | |
1881 | void *to) | |
7a78ae4e | 1882 | { |
691d145a JB |
1883 | const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum; |
1884 | char from[MAX_REGISTER_SIZE]; | |
1885 | ||
1886 | gdb_assert (reg->fpr); | |
1887 | gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT); | |
7a78ae4e | 1888 | |
691d145a JB |
1889 | get_frame_register (frame, regnum, from); |
1890 | convert_typed_floating (from, builtin_type_double, to, type); | |
1891 | } | |
7a292a7a | 1892 | |
7a78ae4e | 1893 | static void |
691d145a JB |
1894 | rs6000_value_to_register (struct frame_info *frame, |
1895 | int regnum, | |
1896 | struct type *type, | |
1897 | const void *from) | |
7a78ae4e | 1898 | { |
691d145a JB |
1899 | const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum; |
1900 | char to[MAX_REGISTER_SIZE]; | |
1901 | ||
1902 | gdb_assert (reg->fpr); | |
1903 | gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT); | |
1904 | ||
1905 | convert_typed_floating (from, type, to, builtin_type_double); | |
1906 | put_frame_register (frame, regnum, to); | |
7a78ae4e | 1907 | } |
c906108c | 1908 | |
6ced10dd JB |
1909 | /* Move SPE vector register values between a 64-bit buffer and the two |
1910 | 32-bit raw register halves in a regcache. This function handles | |
1911 | both splitting a 64-bit value into two 32-bit halves, and joining | |
1912 | two halves into a whole 64-bit value, depending on the function | |
1913 | passed as the MOVE argument. | |
1914 | ||
1915 | EV_REG must be the number of an SPE evN vector register --- a | |
1916 | pseudoregister. REGCACHE must be a regcache, and BUFFER must be a | |
1917 | 64-bit buffer. | |
1918 | ||
1919 | Call MOVE once for each 32-bit half of that register, passing | |
1920 | REGCACHE, the number of the raw register corresponding to that | |
1921 | half, and the address of the appropriate half of BUFFER. | |
1922 | ||
1923 | For example, passing 'regcache_raw_read' as the MOVE function will | |
1924 | fill BUFFER with the full 64-bit contents of EV_REG. Or, passing | |
1925 | 'regcache_raw_supply' will supply the contents of BUFFER to the | |
1926 | appropriate pair of raw registers in REGCACHE. | |
1927 | ||
1928 | You may need to cast away some 'const' qualifiers when passing | |
1929 | MOVE, since this function can't tell at compile-time which of | |
1930 | REGCACHE or BUFFER is acting as the source of the data. If C had | |
1931 | co-variant type qualifiers, ... */ | |
1932 | static void | |
1933 | e500_move_ev_register (void (*move) (struct regcache *regcache, | |
1934 | int regnum, void *buf), | |
1935 | struct regcache *regcache, int ev_reg, | |
1936 | void *buffer) | |
1937 | { | |
1938 | struct gdbarch *arch = get_regcache_arch (regcache); | |
1939 | struct gdbarch_tdep *tdep = gdbarch_tdep (arch); | |
1940 | int reg_index; | |
1941 | char *byte_buffer = buffer; | |
1942 | ||
1943 | gdb_assert (tdep->ppc_ev0_regnum <= ev_reg | |
1944 | && ev_reg < tdep->ppc_ev0_regnum + ppc_num_gprs); | |
1945 | ||
1946 | reg_index = ev_reg - tdep->ppc_ev0_regnum; | |
1947 | ||
1948 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) | |
1949 | { | |
1950 | move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer); | |
1951 | move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer + 4); | |
1952 | } | |
1953 | else | |
1954 | { | |
1955 | move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer); | |
1956 | move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer + 4); | |
1957 | } | |
1958 | } | |
1959 | ||
c8001721 EZ |
1960 | static void |
1961 | e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache, | |
1962 | int reg_nr, void *buffer) | |
1963 | { | |
6ced10dd | 1964 | struct gdbarch *regcache_arch = get_regcache_arch (regcache); |
c8001721 EZ |
1965 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
1966 | ||
6ced10dd JB |
1967 | gdb_assert (regcache_arch == gdbarch); |
1968 | ||
1969 | if (tdep->ppc_ev0_regnum <= reg_nr | |
1970 | && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs) | |
1971 | e500_move_ev_register (regcache_raw_read, regcache, reg_nr, buffer); | |
1972 | else | |
a44bddec JB |
1973 | internal_error (__FILE__, __LINE__, |
1974 | "e500_pseudo_register_read: " | |
1975 | "called on unexpected register '%s' (%d)", | |
1976 | gdbarch_register_name (gdbarch, reg_nr), reg_nr); | |
c8001721 EZ |
1977 | } |
1978 | ||
1979 | static void | |
1980 | e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache, | |
1981 | int reg_nr, const void *buffer) | |
1982 | { | |
6ced10dd | 1983 | struct gdbarch *regcache_arch = get_regcache_arch (regcache); |
c8001721 EZ |
1984 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
1985 | ||
6ced10dd JB |
1986 | gdb_assert (regcache_arch == gdbarch); |
1987 | ||
1988 | if (tdep->ppc_ev0_regnum <= reg_nr | |
1989 | && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs) | |
1990 | e500_move_ev_register ((void (*) (struct regcache *, int, void *)) | |
1991 | regcache_raw_write, | |
1992 | regcache, reg_nr, (void *) buffer); | |
1993 | else | |
a44bddec JB |
1994 | internal_error (__FILE__, __LINE__, |
1995 | "e500_pseudo_register_read: " | |
1996 | "called on unexpected register '%s' (%d)", | |
1997 | gdbarch_register_name (gdbarch, reg_nr), reg_nr); | |
6ced10dd JB |
1998 | } |
1999 | ||
2000 | /* The E500 needs a custom reggroup function: it has anonymous raw | |
2001 | registers, and default_register_reggroup_p assumes that anonymous | |
2002 | registers are not members of any reggroup. */ | |
2003 | static int | |
2004 | e500_register_reggroup_p (struct gdbarch *gdbarch, | |
2005 | int regnum, | |
2006 | struct reggroup *group) | |
2007 | { | |
2008 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
2009 | ||
2010 | /* The save and restore register groups need to include the | |
2011 | upper-half registers, even though they're anonymous. */ | |
2012 | if ((group == save_reggroup | |
2013 | || group == restore_reggroup) | |
2014 | && (tdep->ppc_ev0_upper_regnum <= regnum | |
2015 | && regnum < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)) | |
2016 | return 1; | |
2017 | ||
2018 | /* In all other regards, the default reggroup definition is fine. */ | |
2019 | return default_register_reggroup_p (gdbarch, regnum, group); | |
c8001721 EZ |
2020 | } |
2021 | ||
18ed0c4e | 2022 | /* Convert a DBX STABS register number to a GDB register number. */ |
c8001721 | 2023 | static int |
18ed0c4e | 2024 | rs6000_stab_reg_to_regnum (int num) |
c8001721 | 2025 | { |
9f744501 | 2026 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
c8001721 | 2027 | |
9f744501 JB |
2028 | if (0 <= num && num <= 31) |
2029 | return tdep->ppc_gp0_regnum + num; | |
2030 | else if (32 <= num && num <= 63) | |
383f0f5b JB |
2031 | /* FIXME: jimb/2004-05-05: What should we do when the debug info |
2032 | specifies registers the architecture doesn't have? Our | |
2033 | callers don't check the value we return. */ | |
366f009f | 2034 | return tdep->ppc_fp0_regnum + (num - 32); |
18ed0c4e JB |
2035 | else if (77 <= num && num <= 108) |
2036 | return tdep->ppc_vr0_regnum + (num - 77); | |
9f744501 JB |
2037 | else if (1200 <= num && num < 1200 + 32) |
2038 | return tdep->ppc_ev0_regnum + (num - 1200); | |
2039 | else | |
2040 | switch (num) | |
2041 | { | |
2042 | case 64: | |
2043 | return tdep->ppc_mq_regnum; | |
2044 | case 65: | |
2045 | return tdep->ppc_lr_regnum; | |
2046 | case 66: | |
2047 | return tdep->ppc_ctr_regnum; | |
2048 | case 76: | |
2049 | return tdep->ppc_xer_regnum; | |
2050 | case 109: | |
2051 | return tdep->ppc_vrsave_regnum; | |
18ed0c4e JB |
2052 | case 110: |
2053 | return tdep->ppc_vrsave_regnum - 1; /* vscr */ | |
867e2dc5 | 2054 | case 111: |
18ed0c4e | 2055 | return tdep->ppc_acc_regnum; |
867e2dc5 | 2056 | case 112: |
18ed0c4e | 2057 | return tdep->ppc_spefscr_regnum; |
9f744501 JB |
2058 | default: |
2059 | return num; | |
2060 | } | |
18ed0c4e | 2061 | } |
9f744501 | 2062 | |
9f744501 | 2063 | |
18ed0c4e JB |
2064 | /* Convert a Dwarf 2 register number to a GDB register number. */ |
2065 | static int | |
2066 | rs6000_dwarf2_reg_to_regnum (int num) | |
2067 | { | |
2068 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); | |
9f744501 | 2069 | |
18ed0c4e JB |
2070 | if (0 <= num && num <= 31) |
2071 | return tdep->ppc_gp0_regnum + num; | |
2072 | else if (32 <= num && num <= 63) | |
2073 | /* FIXME: jimb/2004-05-05: What should we do when the debug info | |
2074 | specifies registers the architecture doesn't have? Our | |
2075 | callers don't check the value we return. */ | |
2076 | return tdep->ppc_fp0_regnum + (num - 32); | |
2077 | else if (1124 <= num && num < 1124 + 32) | |
2078 | return tdep->ppc_vr0_regnum + (num - 1124); | |
2079 | else if (1200 <= num && num < 1200 + 32) | |
2080 | return tdep->ppc_ev0_regnum + (num - 1200); | |
2081 | else | |
2082 | switch (num) | |
2083 | { | |
2084 | case 67: | |
2085 | return tdep->ppc_vrsave_regnum - 1; /* vscr */ | |
2086 | case 99: | |
2087 | return tdep->ppc_acc_regnum; | |
2088 | case 100: | |
2089 | return tdep->ppc_mq_regnum; | |
2090 | case 101: | |
2091 | return tdep->ppc_xer_regnum; | |
2092 | case 108: | |
2093 | return tdep->ppc_lr_regnum; | |
2094 | case 109: | |
2095 | return tdep->ppc_ctr_regnum; | |
2096 | case 356: | |
2097 | return tdep->ppc_vrsave_regnum; | |
2098 | case 612: | |
2099 | return tdep->ppc_spefscr_regnum; | |
2100 | default: | |
2101 | return num; | |
2102 | } | |
2188cbdd EZ |
2103 | } |
2104 | ||
18ed0c4e | 2105 | |
7a78ae4e | 2106 | static void |
a3c001ce JB |
2107 | rs6000_store_return_value (struct type *type, |
2108 | struct regcache *regcache, | |
2109 | const void *valbuf) | |
7a78ae4e | 2110 | { |
a3c001ce JB |
2111 | struct gdbarch *gdbarch = get_regcache_arch (regcache); |
2112 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
2113 | int regnum = -1; | |
ace1378a | 2114 | |
383f0f5b JB |
2115 | /* The calling convention this function implements assumes the |
2116 | processor has floating-point registers. We shouldn't be using it | |
2117 | on PPC variants that lack them. */ | |
a3c001ce | 2118 | gdb_assert (ppc_floating_point_unit_p (gdbarch)); |
383f0f5b | 2119 | |
7a78ae4e | 2120 | if (TYPE_CODE (type) == TYPE_CODE_FLT) |
7a78ae4e ND |
2121 | /* Floating point values are returned starting from FPR1 and up. |
2122 | Say a double_double_double type could be returned in | |
64366f1c | 2123 | FPR1/FPR2/FPR3 triple. */ |
a3c001ce | 2124 | regnum = tdep->ppc_fp0_regnum + 1; |
ace1378a EZ |
2125 | else if (TYPE_CODE (type) == TYPE_CODE_ARRAY) |
2126 | { | |
2127 | if (TYPE_LENGTH (type) == 16 | |
2128 | && TYPE_VECTOR (type)) | |
a3c001ce JB |
2129 | regnum = tdep->ppc_vr0_regnum + 2; |
2130 | else | |
a44bddec JB |
2131 | internal_error (__FILE__, __LINE__, |
2132 | "rs6000_store_return_value: " | |
2133 | "unexpected array return type"); | |
ace1378a | 2134 | } |
7a78ae4e | 2135 | else |
64366f1c | 2136 | /* Everything else is returned in GPR3 and up. */ |
a3c001ce JB |
2137 | regnum = tdep->ppc_gp0_regnum + 3; |
2138 | ||
2139 | { | |
2140 | size_t bytes_written = 0; | |
2141 | ||
2142 | while (bytes_written < TYPE_LENGTH (type)) | |
2143 | { | |
2144 | /* How much of this value can we write to this register? */ | |
2145 | size_t bytes_to_write = min (TYPE_LENGTH (type) - bytes_written, | |
2146 | register_size (gdbarch, regnum)); | |
2147 | regcache_cooked_write_part (regcache, regnum, | |
2148 | 0, bytes_to_write, | |
2149 | (char *) valbuf + bytes_written); | |
2150 | regnum++; | |
2151 | bytes_written += bytes_to_write; | |
2152 | } | |
2153 | } | |
7a78ae4e ND |
2154 | } |
2155 | ||
a3c001ce | 2156 | |
7a78ae4e ND |
2157 | /* Extract from an array REGBUF containing the (raw) register state |
2158 | the address in which a function should return its structure value, | |
2159 | as a CORE_ADDR (or an expression that can be used as one). */ | |
2160 | ||
2161 | static CORE_ADDR | |
11269d7e AC |
2162 | rs6000_extract_struct_value_address (struct regcache *regcache) |
2163 | { | |
2164 | /* FIXME: cagney/2002-09-26: PR gdb/724: When making an inferior | |
2165 | function call GDB knows the address of the struct return value | |
2166 | and hence, should not need to call this function. Unfortunately, | |
e8a8712a AC |
2167 | the current call_function_by_hand() code only saves the most |
2168 | recent struct address leading to occasional calls. The code | |
2169 | should instead maintain a stack of such addresses (in the dummy | |
2170 | frame object). */ | |
11269d7e AC |
2171 | /* NOTE: cagney/2002-09-26: Return 0 which indicates that we've |
2172 | really got no idea where the return value is being stored. While | |
2173 | r3, on function entry, contained the address it will have since | |
2174 | been reused (scratch) and hence wouldn't be valid */ | |
2175 | return 0; | |
7a78ae4e ND |
2176 | } |
2177 | ||
64366f1c | 2178 | /* Hook called when a new child process is started. */ |
7a78ae4e ND |
2179 | |
2180 | void | |
2181 | rs6000_create_inferior (int pid) | |
2182 | { | |
2183 | if (rs6000_set_host_arch_hook) | |
2184 | rs6000_set_host_arch_hook (pid); | |
c906108c SS |
2185 | } |
2186 | \f | |
e2d0e7eb | 2187 | /* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG). |
7a78ae4e ND |
2188 | |
2189 | Usually a function pointer's representation is simply the address | |
2190 | of the function. On the RS/6000 however, a function pointer is | |
2191 | represented by a pointer to a TOC entry. This TOC entry contains | |
2192 | three words, the first word is the address of the function, the | |
2193 | second word is the TOC pointer (r2), and the third word is the | |
2194 | static chain value. Throughout GDB it is currently assumed that a | |
2195 | function pointer contains the address of the function, which is not | |
2196 | easy to fix. In addition, the conversion of a function address to | |
2197 | a function pointer would require allocation of a TOC entry in the | |
2198 | inferior's memory space, with all its drawbacks. To be able to | |
2199 | call C++ virtual methods in the inferior (which are called via | |
f517ea4e | 2200 | function pointers), find_function_addr uses this function to get the |
7a78ae4e ND |
2201 | function address from a function pointer. */ |
2202 | ||
f517ea4e PS |
2203 | /* Return real function address if ADDR (a function pointer) is in the data |
2204 | space and is therefore a special function pointer. */ | |
c906108c | 2205 | |
b9362cc7 | 2206 | static CORE_ADDR |
e2d0e7eb AC |
2207 | rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch, |
2208 | CORE_ADDR addr, | |
2209 | struct target_ops *targ) | |
c906108c SS |
2210 | { |
2211 | struct obj_section *s; | |
2212 | ||
2213 | s = find_pc_section (addr); | |
2214 | if (s && s->the_bfd_section->flags & SEC_CODE) | |
7a78ae4e | 2215 | return addr; |
c906108c | 2216 | |
7a78ae4e | 2217 | /* ADDR is in the data space, so it's a special function pointer. */ |
21283beb | 2218 | return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize); |
c906108c | 2219 | } |
c906108c | 2220 | \f |
c5aa993b | 2221 | |
7a78ae4e | 2222 | /* Handling the various POWER/PowerPC variants. */ |
c906108c SS |
2223 | |
2224 | ||
7a78ae4e ND |
2225 | /* The arrays here called registers_MUMBLE hold information about available |
2226 | registers. | |
c906108c SS |
2227 | |
2228 | For each family of PPC variants, I've tried to isolate out the | |
2229 | common registers and put them up front, so that as long as you get | |
2230 | the general family right, GDB will correctly identify the registers | |
2231 | common to that family. The common register sets are: | |
2232 | ||
2233 | For the 60x family: hid0 hid1 iabr dabr pir | |
2234 | ||
2235 | For the 505 and 860 family: eie eid nri | |
2236 | ||
2237 | For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi | |
c5aa993b JM |
2238 | tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1 |
2239 | pbu1 pbl2 pbu2 | |
c906108c SS |
2240 | |
2241 | Most of these register groups aren't anything formal. I arrived at | |
2242 | them by looking at the registers that occurred in more than one | |
6f5987a6 KB |
2243 | processor. |
2244 | ||
2245 | Note: kevinb/2002-04-30: Support for the fpscr register was added | |
2246 | during April, 2002. Slot 70 is being used for PowerPC and slot 71 | |
2247 | for Power. For PowerPC, slot 70 was unused and was already in the | |
2248 | PPC_UISA_SPRS which is ideally where fpscr should go. For Power, | |
2249 | slot 70 was being used for "mq", so the next available slot (71) | |
2250 | was chosen. It would have been nice to be able to make the | |
2251 | register numbers the same across processor cores, but this wasn't | |
2252 | possible without either 1) renumbering some registers for some | |
2253 | processors or 2) assigning fpscr to a really high slot that's | |
2254 | larger than any current register number. Doing (1) is bad because | |
2255 | existing stubs would break. Doing (2) is undesirable because it | |
2256 | would introduce a really large gap between fpscr and the rest of | |
2257 | the registers for most processors. */ | |
7a78ae4e | 2258 | |
64366f1c | 2259 | /* Convenience macros for populating register arrays. */ |
7a78ae4e | 2260 | |
64366f1c | 2261 | /* Within another macro, convert S to a string. */ |
7a78ae4e ND |
2262 | |
2263 | #define STR(s) #s | |
2264 | ||
2265 | /* Return a struct reg defining register NAME that's 32 bits on 32-bit systems | |
64366f1c | 2266 | and 64 bits on 64-bit systems. */ |
13ac140c | 2267 | #define R(name) { STR(name), 4, 8, 0, 0, -1 } |
7a78ae4e ND |
2268 | |
2269 | /* Return a struct reg defining register NAME that's 32 bits on all | |
64366f1c | 2270 | systems. */ |
13ac140c | 2271 | #define R4(name) { STR(name), 4, 4, 0, 0, -1 } |
7a78ae4e ND |
2272 | |
2273 | /* Return a struct reg defining register NAME that's 64 bits on all | |
64366f1c | 2274 | systems. */ |
13ac140c | 2275 | #define R8(name) { STR(name), 8, 8, 0, 0, -1 } |
7a78ae4e | 2276 | |
1fcc0bb8 | 2277 | /* Return a struct reg defining register NAME that's 128 bits on all |
64366f1c | 2278 | systems. */ |
13ac140c | 2279 | #define R16(name) { STR(name), 16, 16, 0, 0, -1 } |
1fcc0bb8 | 2280 | |
64366f1c | 2281 | /* Return a struct reg defining floating-point register NAME. */ |
13ac140c | 2282 | #define F(name) { STR(name), 8, 8, 1, 0, -1 } |
489461e2 | 2283 | |
6ced10dd JB |
2284 | /* Return a struct reg defining a pseudo register NAME that is 64 bits |
2285 | long on all systems. */ | |
2286 | #define P8(name) { STR(name), 8, 8, 0, 1, -1 } | |
7a78ae4e ND |
2287 | |
2288 | /* Return a struct reg defining register NAME that's 32 bits on 32-bit | |
64366f1c | 2289 | systems and that doesn't exist on 64-bit systems. */ |
13ac140c | 2290 | #define R32(name) { STR(name), 4, 0, 0, 0, -1 } |
7a78ae4e ND |
2291 | |
2292 | /* Return a struct reg defining register NAME that's 64 bits on 64-bit | |
64366f1c | 2293 | systems and that doesn't exist on 32-bit systems. */ |
13ac140c | 2294 | #define R64(name) { STR(name), 0, 8, 0, 0, -1 } |
7a78ae4e | 2295 | |
64366f1c | 2296 | /* Return a struct reg placeholder for a register that doesn't exist. */ |
13ac140c | 2297 | #define R0 { 0, 0, 0, 0, 0, -1 } |
7a78ae4e | 2298 | |
6ced10dd JB |
2299 | /* Return a struct reg defining an anonymous raw register that's 32 |
2300 | bits on all systems. */ | |
2301 | #define A4 { 0, 4, 4, 0, 0, -1 } | |
2302 | ||
13ac140c JB |
2303 | /* Return a struct reg defining an SPR named NAME that is 32 bits on |
2304 | 32-bit systems and 64 bits on 64-bit systems. */ | |
2305 | #define S(name) { STR(name), 4, 8, 0, 0, ppc_spr_ ## name } | |
2306 | ||
2307 | /* Return a struct reg defining an SPR named NAME that is 32 bits on | |
2308 | all systems. */ | |
2309 | #define S4(name) { STR(name), 4, 4, 0, 0, ppc_spr_ ## name } | |
2310 | ||
2311 | /* Return a struct reg defining an SPR named NAME that is 32 bits on | |
2312 | all systems, and whose SPR number is NUMBER. */ | |
2313 | #define SN4(name, number) { STR(name), 4, 4, 0, 0, (number) } | |
2314 | ||
2315 | /* Return a struct reg defining an SPR named NAME that's 64 bits on | |
2316 | 64-bit systems and that doesn't exist on 32-bit systems. */ | |
2317 | #define S64(name) { STR(name), 0, 8, 0, 0, ppc_spr_ ## name } | |
2318 | ||
7a78ae4e ND |
2319 | /* UISA registers common across all architectures, including POWER. */ |
2320 | ||
2321 | #define COMMON_UISA_REGS \ | |
2322 | /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \ | |
2323 | /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \ | |
2324 | /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \ | |
2325 | /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \ | |
2326 | /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \ | |
2327 | /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \ | |
2328 | /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \ | |
2329 | /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \ | |
2330 | /* 64 */ R(pc), R(ps) | |
2331 | ||
2332 | /* UISA-level SPRs for PowerPC. */ | |
2333 | #define PPC_UISA_SPRS \ | |
13ac140c | 2334 | /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R4(fpscr) |
7a78ae4e | 2335 | |
c8001721 EZ |
2336 | /* UISA-level SPRs for PowerPC without floating point support. */ |
2337 | #define PPC_UISA_NOFP_SPRS \ | |
13ac140c | 2338 | /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R0 |
c8001721 | 2339 | |
7a78ae4e ND |
2340 | /* Segment registers, for PowerPC. */ |
2341 | #define PPC_SEGMENT_REGS \ | |
2342 | /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \ | |
2343 | /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \ | |
2344 | /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \ | |
2345 | /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15) | |
2346 | ||
2347 | /* OEA SPRs for PowerPC. */ | |
2348 | #define PPC_OEA_SPRS \ | |
13ac140c JB |
2349 | /* 87 */ S4(pvr), \ |
2350 | /* 88 */ S(ibat0u), S(ibat0l), S(ibat1u), S(ibat1l), \ | |
2351 | /* 92 */ S(ibat2u), S(ibat2l), S(ibat3u), S(ibat3l), \ | |
2352 | /* 96 */ S(dbat0u), S(dbat0l), S(dbat1u), S(dbat1l), \ | |
2353 | /* 100 */ S(dbat2u), S(dbat2l), S(dbat3u), S(dbat3l), \ | |
2354 | /* 104 */ S(sdr1), S64(asr), S(dar), S4(dsisr), \ | |
2355 | /* 108 */ S(sprg0), S(sprg1), S(sprg2), S(sprg3), \ | |
2356 | /* 112 */ S(srr0), S(srr1), S(tbl), S(tbu), \ | |
2357 | /* 116 */ S4(dec), S(dabr), S4(ear) | |
7a78ae4e | 2358 | |
64366f1c | 2359 | /* AltiVec registers. */ |
1fcc0bb8 EZ |
2360 | #define PPC_ALTIVEC_REGS \ |
2361 | /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \ | |
2362 | /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \ | |
2363 | /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \ | |
2364 | /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \ | |
2365 | /*151*/R4(vscr), R4(vrsave) | |
2366 | ||
c8001721 | 2367 | |
6ced10dd JB |
2368 | /* On machines supporting the SPE APU, the general-purpose registers |
2369 | are 64 bits long. There are SIMD vector instructions to treat them | |
2370 | as pairs of floats, but the rest of the instruction set treats them | |
2371 | as 32-bit registers, and only operates on their lower halves. | |
2372 | ||
2373 | In the GDB regcache, we treat their high and low halves as separate | |
2374 | registers. The low halves we present as the general-purpose | |
2375 | registers, and then we have pseudo-registers that stitch together | |
2376 | the upper and lower halves and present them as pseudo-registers. */ | |
2377 | ||
2378 | /* SPE GPR lower halves --- raw registers. */ | |
2379 | #define PPC_SPE_GP_REGS \ | |
2380 | /* 0 */ R4(r0), R4(r1), R4(r2), R4(r3), R4(r4), R4(r5), R4(r6), R4(r7), \ | |
2381 | /* 8 */ R4(r8), R4(r9), R4(r10),R4(r11),R4(r12),R4(r13),R4(r14),R4(r15), \ | |
2382 | /* 16 */ R4(r16),R4(r17),R4(r18),R4(r19),R4(r20),R4(r21),R4(r22),R4(r23), \ | |
2383 | /* 24 */ R4(r24),R4(r25),R4(r26),R4(r27),R4(r28),R4(r29),R4(r30),R4(r31) | |
2384 | ||
2385 | /* SPE GPR upper halves --- anonymous raw registers. */ | |
2386 | #define PPC_SPE_UPPER_GP_REGS \ | |
2387 | /* 0 */ A4, A4, A4, A4, A4, A4, A4, A4, \ | |
2388 | /* 8 */ A4, A4, A4, A4, A4, A4, A4, A4, \ | |
2389 | /* 16 */ A4, A4, A4, A4, A4, A4, A4, A4, \ | |
2390 | /* 24 */ A4, A4, A4, A4, A4, A4, A4, A4 | |
2391 | ||
2392 | /* SPE GPR vector registers --- pseudo registers based on underlying | |
2393 | gprs and the anonymous upper half raw registers. */ | |
2394 | #define PPC_EV_PSEUDO_REGS \ | |
2395 | /* 0*/P8(ev0), P8(ev1), P8(ev2), P8(ev3), P8(ev4), P8(ev5), P8(ev6), P8(ev7), \ | |
2396 | /* 8*/P8(ev8), P8(ev9), P8(ev10),P8(ev11),P8(ev12),P8(ev13),P8(ev14),P8(ev15),\ | |
2397 | /*16*/P8(ev16),P8(ev17),P8(ev18),P8(ev19),P8(ev20),P8(ev21),P8(ev22),P8(ev23),\ | |
2398 | /*24*/P8(ev24),P8(ev25),P8(ev26),P8(ev27),P8(ev28),P8(ev29),P8(ev30),P8(ev31) | |
c8001721 | 2399 | |
7a78ae4e | 2400 | /* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover |
64366f1c | 2401 | user-level SPR's. */ |
7a78ae4e | 2402 | static const struct reg registers_power[] = |
c906108c | 2403 | { |
7a78ae4e | 2404 | COMMON_UISA_REGS, |
13ac140c | 2405 | /* 66 */ R4(cnd), S(lr), S(cnt), S4(xer), S4(mq), |
e3f36dbd | 2406 | /* 71 */ R4(fpscr) |
c906108c SS |
2407 | }; |
2408 | ||
7a78ae4e | 2409 | /* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only |
64366f1c | 2410 | view of the PowerPC. */ |
7a78ae4e | 2411 | static const struct reg registers_powerpc[] = |
c906108c | 2412 | { |
7a78ae4e | 2413 | COMMON_UISA_REGS, |
1fcc0bb8 EZ |
2414 | PPC_UISA_SPRS, |
2415 | PPC_ALTIVEC_REGS | |
c906108c SS |
2416 | }; |
2417 | ||
13ac140c JB |
2418 | /* IBM PowerPC 403. |
2419 | ||
2420 | Some notes about the "tcr" special-purpose register: | |
2421 | - On the 403 and 403GC, SPR 986 is named "tcr", and it controls the | |
2422 | 403's programmable interval timer, fixed interval timer, and | |
2423 | watchdog timer. | |
2424 | - On the 602, SPR 984 is named "tcr", and it controls the 602's | |
2425 | watchdog timer, and nothing else. | |
2426 | ||
2427 | Some of the fields are similar between the two, but they're not | |
2428 | compatible with each other. Since the two variants have different | |
2429 | registers, with different numbers, but the same name, we can't | |
2430 | splice the register name to get the SPR number. */ | |
7a78ae4e | 2431 | static const struct reg registers_403[] = |
c5aa993b | 2432 | { |
7a78ae4e ND |
2433 | COMMON_UISA_REGS, |
2434 | PPC_UISA_SPRS, | |
2435 | PPC_SEGMENT_REGS, | |
2436 | PPC_OEA_SPRS, | |
13ac140c JB |
2437 | /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr), |
2438 | /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit), | |
2439 | /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3), | |
2440 | /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2), | |
2441 | /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr), | |
2442 | /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2) | |
c906108c SS |
2443 | }; |
2444 | ||
13ac140c JB |
2445 | /* IBM PowerPC 403GC. |
2446 | See the comments about 'tcr' for the 403, above. */ | |
7a78ae4e | 2447 | static const struct reg registers_403GC[] = |
c5aa993b | 2448 | { |
7a78ae4e ND |
2449 | COMMON_UISA_REGS, |
2450 | PPC_UISA_SPRS, | |
2451 | PPC_SEGMENT_REGS, | |
2452 | PPC_OEA_SPRS, | |
13ac140c JB |
2453 | /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr), |
2454 | /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit), | |
2455 | /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3), | |
2456 | /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2), | |
2457 | /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr), | |
2458 | /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2), | |
2459 | /* 143 */ S(zpr), S(pid), S(sgr), S(dcwr), | |
2460 | /* 147 */ S(tbhu), S(tblu) | |
c906108c SS |
2461 | }; |
2462 | ||
64366f1c | 2463 | /* Motorola PowerPC 505. */ |
7a78ae4e | 2464 | static const struct reg registers_505[] = |
c5aa993b | 2465 | { |
7a78ae4e ND |
2466 | COMMON_UISA_REGS, |
2467 | PPC_UISA_SPRS, | |
2468 | PPC_SEGMENT_REGS, | |
2469 | PPC_OEA_SPRS, | |
13ac140c | 2470 | /* 119 */ S(eie), S(eid), S(nri) |
c906108c SS |
2471 | }; |
2472 | ||
64366f1c | 2473 | /* Motorola PowerPC 860 or 850. */ |
7a78ae4e | 2474 | static const struct reg registers_860[] = |
c5aa993b | 2475 | { |
7a78ae4e ND |
2476 | COMMON_UISA_REGS, |
2477 | PPC_UISA_SPRS, | |
2478 | PPC_SEGMENT_REGS, | |
2479 | PPC_OEA_SPRS, | |
13ac140c JB |
2480 | /* 119 */ S(eie), S(eid), S(nri), S(cmpa), |
2481 | /* 123 */ S(cmpb), S(cmpc), S(cmpd), S(icr), | |
2482 | /* 127 */ S(der), S(counta), S(countb), S(cmpe), | |
2483 | /* 131 */ S(cmpf), S(cmpg), S(cmph), S(lctrl1), | |
2484 | /* 135 */ S(lctrl2), S(ictrl), S(bar), S(ic_cst), | |
2485 | /* 139 */ S(ic_adr), S(ic_dat), S(dc_cst), S(dc_adr), | |
2486 | /* 143 */ S(dc_dat), S(dpdr), S(dpir), S(immr), | |
2487 | /* 147 */ S(mi_ctr), S(mi_ap), S(mi_epn), S(mi_twc), | |
2488 | /* 151 */ S(mi_rpn), S(md_ctr), S(m_casid), S(md_ap), | |
2489 | /* 155 */ S(md_epn), S(m_twb), S(md_twc), S(md_rpn), | |
2490 | /* 159 */ S(m_tw), S(mi_dbcam), S(mi_dbram0), S(mi_dbram1), | |
2491 | /* 163 */ S(md_dbcam), S(md_dbram0), S(md_dbram1) | |
c906108c SS |
2492 | }; |
2493 | ||
7a78ae4e ND |
2494 | /* Motorola PowerPC 601. Note that the 601 has different register numbers |
2495 | for reading and writing RTCU and RTCL. However, how one reads and writes a | |
c906108c | 2496 | register is the stub's problem. */ |
7a78ae4e | 2497 | static const struct reg registers_601[] = |
c5aa993b | 2498 | { |
7a78ae4e ND |
2499 | COMMON_UISA_REGS, |
2500 | PPC_UISA_SPRS, | |
2501 | PPC_SEGMENT_REGS, | |
2502 | PPC_OEA_SPRS, | |
13ac140c JB |
2503 | /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr), |
2504 | /* 123 */ S(pir), S(mq), S(rtcu), S(rtcl) | |
c906108c SS |
2505 | }; |
2506 | ||
13ac140c JB |
2507 | /* Motorola PowerPC 602. |
2508 | See the notes under the 403 about 'tcr'. */ | |
7a78ae4e | 2509 | static const struct reg registers_602[] = |
c5aa993b | 2510 | { |
7a78ae4e ND |
2511 | COMMON_UISA_REGS, |
2512 | PPC_UISA_SPRS, | |
2513 | PPC_SEGMENT_REGS, | |
2514 | PPC_OEA_SPRS, | |
13ac140c JB |
2515 | /* 119 */ S(hid0), S(hid1), S(iabr), R0, |
2516 | /* 123 */ R0, SN4(tcr, ppc_spr_602_tcr), S(ibr), S(esasrr), | |
2517 | /* 127 */ S(sebr), S(ser), S(sp), S(lt) | |
c906108c SS |
2518 | }; |
2519 | ||
64366f1c | 2520 | /* Motorola/IBM PowerPC 603 or 603e. */ |
7a78ae4e | 2521 | static const struct reg registers_603[] = |
c5aa993b | 2522 | { |
7a78ae4e ND |
2523 | COMMON_UISA_REGS, |
2524 | PPC_UISA_SPRS, | |
2525 | PPC_SEGMENT_REGS, | |
2526 | PPC_OEA_SPRS, | |
13ac140c JB |
2527 | /* 119 */ S(hid0), S(hid1), S(iabr), R0, |
2528 | /* 123 */ R0, S(dmiss), S(dcmp), S(hash1), | |
2529 | /* 127 */ S(hash2), S(imiss), S(icmp), S(rpa) | |
c906108c SS |
2530 | }; |
2531 | ||
64366f1c | 2532 | /* Motorola PowerPC 604 or 604e. */ |
7a78ae4e | 2533 | static const struct reg registers_604[] = |
c5aa993b | 2534 | { |
7a78ae4e ND |
2535 | COMMON_UISA_REGS, |
2536 | PPC_UISA_SPRS, | |
2537 | PPC_SEGMENT_REGS, | |
2538 | PPC_OEA_SPRS, | |
13ac140c JB |
2539 | /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr), |
2540 | /* 123 */ S(pir), S(mmcr0), S(pmc1), S(pmc2), | |
2541 | /* 127 */ S(sia), S(sda) | |
c906108c SS |
2542 | }; |
2543 | ||
64366f1c | 2544 | /* Motorola/IBM PowerPC 750 or 740. */ |
7a78ae4e | 2545 | static const struct reg registers_750[] = |
c5aa993b | 2546 | { |
7a78ae4e ND |
2547 | COMMON_UISA_REGS, |
2548 | PPC_UISA_SPRS, | |
2549 | PPC_SEGMENT_REGS, | |
2550 | PPC_OEA_SPRS, | |
13ac140c JB |
2551 | /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr), |
2552 | /* 123 */ R0, S(ummcr0), S(upmc1), S(upmc2), | |
2553 | /* 127 */ S(usia), S(ummcr1), S(upmc3), S(upmc4), | |
2554 | /* 131 */ S(mmcr0), S(pmc1), S(pmc2), S(sia), | |
2555 | /* 135 */ S(mmcr1), S(pmc3), S(pmc4), S(l2cr), | |
2556 | /* 139 */ S(ictc), S(thrm1), S(thrm2), S(thrm3) | |
c906108c SS |
2557 | }; |
2558 | ||
2559 | ||
64366f1c | 2560 | /* Motorola PowerPC 7400. */ |
1fcc0bb8 EZ |
2561 | static const struct reg registers_7400[] = |
2562 | { | |
2563 | /* gpr0-gpr31, fpr0-fpr31 */ | |
2564 | COMMON_UISA_REGS, | |
13c7b1ca | 2565 | /* cr, lr, ctr, xer, fpscr */ |
1fcc0bb8 EZ |
2566 | PPC_UISA_SPRS, |
2567 | /* sr0-sr15 */ | |
2568 | PPC_SEGMENT_REGS, | |
2569 | PPC_OEA_SPRS, | |
2570 | /* vr0-vr31, vrsave, vscr */ | |
2571 | PPC_ALTIVEC_REGS | |
2572 | /* FIXME? Add more registers? */ | |
2573 | }; | |
2574 | ||
c8001721 EZ |
2575 | /* Motorola e500. */ |
2576 | static const struct reg registers_e500[] = | |
2577 | { | |
6ced10dd JB |
2578 | /* 0 .. 31 */ PPC_SPE_GP_REGS, |
2579 | /* 32 .. 63 */ PPC_SPE_UPPER_GP_REGS, | |
2580 | /* 64 .. 65 */ R(pc), R(ps), | |
2581 | /* 66 .. 70 */ PPC_UISA_NOFP_SPRS, | |
2582 | /* 71 .. 72 */ R8(acc), S4(spefscr), | |
338ef23d AC |
2583 | /* NOTE: Add new registers here the end of the raw register |
2584 | list and just before the first pseudo register. */ | |
6ced10dd | 2585 | /* 73 .. 104 */ PPC_EV_PSEUDO_REGS |
c8001721 EZ |
2586 | }; |
2587 | ||
c906108c | 2588 | /* Information about a particular processor variant. */ |
7a78ae4e | 2589 | |
c906108c | 2590 | struct variant |
c5aa993b JM |
2591 | { |
2592 | /* Name of this variant. */ | |
2593 | char *name; | |
c906108c | 2594 | |
c5aa993b JM |
2595 | /* English description of the variant. */ |
2596 | char *description; | |
c906108c | 2597 | |
64366f1c | 2598 | /* bfd_arch_info.arch corresponding to variant. */ |
7a78ae4e ND |
2599 | enum bfd_architecture arch; |
2600 | ||
64366f1c | 2601 | /* bfd_arch_info.mach corresponding to variant. */ |
7a78ae4e ND |
2602 | unsigned long mach; |
2603 | ||
489461e2 EZ |
2604 | /* Number of real registers. */ |
2605 | int nregs; | |
2606 | ||
2607 | /* Number of pseudo registers. */ | |
2608 | int npregs; | |
2609 | ||
2610 | /* Number of total registers (the sum of nregs and npregs). */ | |
2611 | int num_tot_regs; | |
2612 | ||
c5aa993b JM |
2613 | /* Table of register names; registers[R] is the name of the register |
2614 | number R. */ | |
7a78ae4e | 2615 | const struct reg *regs; |
c5aa993b | 2616 | }; |
c906108c | 2617 | |
489461e2 EZ |
2618 | #define tot_num_registers(list) (sizeof (list) / sizeof((list)[0])) |
2619 | ||
2620 | static int | |
2621 | num_registers (const struct reg *reg_list, int num_tot_regs) | |
2622 | { | |
2623 | int i; | |
2624 | int nregs = 0; | |
2625 | ||
2626 | for (i = 0; i < num_tot_regs; i++) | |
2627 | if (!reg_list[i].pseudo) | |
2628 | nregs++; | |
2629 | ||
2630 | return nregs; | |
2631 | } | |
2632 | ||
2633 | static int | |
2634 | num_pseudo_registers (const struct reg *reg_list, int num_tot_regs) | |
2635 | { | |
2636 | int i; | |
2637 | int npregs = 0; | |
2638 | ||
2639 | for (i = 0; i < num_tot_regs; i++) | |
2640 | if (reg_list[i].pseudo) | |
2641 | npregs ++; | |
2642 | ||
2643 | return npregs; | |
2644 | } | |
c906108c | 2645 | |
c906108c SS |
2646 | /* Information in this table comes from the following web sites: |
2647 | IBM: http://www.chips.ibm.com:80/products/embedded/ | |
2648 | Motorola: http://www.mot.com/SPS/PowerPC/ | |
2649 | ||
2650 | I'm sure I've got some of the variant descriptions not quite right. | |
2651 | Please report any inaccuracies you find to GDB's maintainer. | |
2652 | ||
2653 | If you add entries to this table, please be sure to allow the new | |
2654 | value as an argument to the --with-cpu flag, in configure.in. */ | |
2655 | ||
489461e2 | 2656 | static struct variant variants[] = |
c906108c | 2657 | { |
489461e2 | 2658 | |
7a78ae4e | 2659 | {"powerpc", "PowerPC user-level", bfd_arch_powerpc, |
489461e2 EZ |
2660 | bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc), |
2661 | registers_powerpc}, | |
7a78ae4e | 2662 | {"power", "POWER user-level", bfd_arch_rs6000, |
489461e2 EZ |
2663 | bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power), |
2664 | registers_power}, | |
7a78ae4e | 2665 | {"403", "IBM PowerPC 403", bfd_arch_powerpc, |
489461e2 EZ |
2666 | bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403), |
2667 | registers_403}, | |
7a78ae4e | 2668 | {"601", "Motorola PowerPC 601", bfd_arch_powerpc, |
489461e2 EZ |
2669 | bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601), |
2670 | registers_601}, | |
7a78ae4e | 2671 | {"602", "Motorola PowerPC 602", bfd_arch_powerpc, |
489461e2 EZ |
2672 | bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602), |
2673 | registers_602}, | |
7a78ae4e | 2674 | {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc, |
489461e2 EZ |
2675 | bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603), |
2676 | registers_603}, | |
7a78ae4e | 2677 | {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc, |
489461e2 EZ |
2678 | 604, -1, -1, tot_num_registers (registers_604), |
2679 | registers_604}, | |
7a78ae4e | 2680 | {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc, |
489461e2 EZ |
2681 | bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC), |
2682 | registers_403GC}, | |
7a78ae4e | 2683 | {"505", "Motorola PowerPC 505", bfd_arch_powerpc, |
489461e2 EZ |
2684 | bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505), |
2685 | registers_505}, | |
7a78ae4e | 2686 | {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc, |
489461e2 EZ |
2687 | bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860), |
2688 | registers_860}, | |
7a78ae4e | 2689 | {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc, |
489461e2 EZ |
2690 | bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750), |
2691 | registers_750}, | |
1fcc0bb8 | 2692 | {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc, |
489461e2 EZ |
2693 | bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400), |
2694 | registers_7400}, | |
c8001721 EZ |
2695 | {"e500", "Motorola PowerPC e500", bfd_arch_powerpc, |
2696 | bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500), | |
2697 | registers_e500}, | |
7a78ae4e | 2698 | |
5d57ee30 KB |
2699 | /* 64-bit */ |
2700 | {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc, | |
489461e2 EZ |
2701 | bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc), |
2702 | registers_powerpc}, | |
7a78ae4e | 2703 | {"620", "Motorola PowerPC 620", bfd_arch_powerpc, |
489461e2 EZ |
2704 | bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc), |
2705 | registers_powerpc}, | |
5d57ee30 | 2706 | {"630", "Motorola PowerPC 630", bfd_arch_powerpc, |
489461e2 EZ |
2707 | bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc), |
2708 | registers_powerpc}, | |
7a78ae4e | 2709 | {"a35", "PowerPC A35", bfd_arch_powerpc, |
489461e2 EZ |
2710 | bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc), |
2711 | registers_powerpc}, | |
5d57ee30 | 2712 | {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc, |
489461e2 EZ |
2713 | bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc), |
2714 | registers_powerpc}, | |
5d57ee30 | 2715 | {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc, |
489461e2 EZ |
2716 | bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc), |
2717 | registers_powerpc}, | |
5d57ee30 | 2718 | |
64366f1c | 2719 | /* FIXME: I haven't checked the register sets of the following. */ |
7a78ae4e | 2720 | {"rs1", "IBM POWER RS1", bfd_arch_rs6000, |
489461e2 EZ |
2721 | bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power), |
2722 | registers_power}, | |
7a78ae4e | 2723 | {"rsc", "IBM POWER RSC", bfd_arch_rs6000, |
489461e2 EZ |
2724 | bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power), |
2725 | registers_power}, | |
7a78ae4e | 2726 | {"rs2", "IBM POWER RS2", bfd_arch_rs6000, |
489461e2 EZ |
2727 | bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power), |
2728 | registers_power}, | |
7a78ae4e | 2729 | |
489461e2 | 2730 | {0, 0, 0, 0, 0, 0, 0, 0} |
c906108c SS |
2731 | }; |
2732 | ||
64366f1c | 2733 | /* Initialize the number of registers and pseudo registers in each variant. */ |
489461e2 EZ |
2734 | |
2735 | static void | |
2736 | init_variants (void) | |
2737 | { | |
2738 | struct variant *v; | |
2739 | ||
2740 | for (v = variants; v->name; v++) | |
2741 | { | |
2742 | if (v->nregs == -1) | |
2743 | v->nregs = num_registers (v->regs, v->num_tot_regs); | |
2744 | if (v->npregs == -1) | |
2745 | v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs); | |
2746 | } | |
2747 | } | |
c906108c | 2748 | |
7a78ae4e | 2749 | /* Return the variant corresponding to architecture ARCH and machine number |
64366f1c | 2750 | MACH. If no such variant exists, return null. */ |
c906108c | 2751 | |
7a78ae4e ND |
2752 | static const struct variant * |
2753 | find_variant_by_arch (enum bfd_architecture arch, unsigned long mach) | |
c906108c | 2754 | { |
7a78ae4e | 2755 | const struct variant *v; |
c5aa993b | 2756 | |
7a78ae4e ND |
2757 | for (v = variants; v->name; v++) |
2758 | if (arch == v->arch && mach == v->mach) | |
2759 | return v; | |
c906108c | 2760 | |
7a78ae4e | 2761 | return NULL; |
c906108c | 2762 | } |
9364a0ef EZ |
2763 | |
2764 | static int | |
2765 | gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info) | |
2766 | { | |
2767 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) | |
2768 | return print_insn_big_powerpc (memaddr, info); | |
2769 | else | |
2770 | return print_insn_little_powerpc (memaddr, info); | |
2771 | } | |
7a78ae4e | 2772 | \f |
61a65099 KB |
2773 | static CORE_ADDR |
2774 | rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
2775 | { | |
2776 | return frame_unwind_register_unsigned (next_frame, PC_REGNUM); | |
2777 | } | |
2778 | ||
2779 | static struct frame_id | |
2780 | rs6000_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
2781 | { | |
2782 | return frame_id_build (frame_unwind_register_unsigned (next_frame, | |
2783 | SP_REGNUM), | |
2784 | frame_pc_unwind (next_frame)); | |
2785 | } | |
2786 | ||
2787 | struct rs6000_frame_cache | |
2788 | { | |
2789 | CORE_ADDR base; | |
2790 | CORE_ADDR initial_sp; | |
2791 | struct trad_frame_saved_reg *saved_regs; | |
2792 | }; | |
2793 | ||
2794 | static struct rs6000_frame_cache * | |
2795 | rs6000_frame_cache (struct frame_info *next_frame, void **this_cache) | |
2796 | { | |
2797 | struct rs6000_frame_cache *cache; | |
2798 | struct gdbarch *gdbarch = get_frame_arch (next_frame); | |
2799 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
2800 | struct rs6000_framedata fdata; | |
2801 | int wordsize = tdep->wordsize; | |
2802 | ||
2803 | if ((*this_cache) != NULL) | |
2804 | return (*this_cache); | |
2805 | cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache); | |
2806 | (*this_cache) = cache; | |
2807 | cache->saved_regs = trad_frame_alloc_saved_regs (next_frame); | |
2808 | ||
2809 | skip_prologue (frame_func_unwind (next_frame), frame_pc_unwind (next_frame), | |
2810 | &fdata); | |
2811 | ||
2812 | /* If there were any saved registers, figure out parent's stack | |
2813 | pointer. */ | |
2814 | /* The following is true only if the frame doesn't have a call to | |
2815 | alloca(), FIXME. */ | |
2816 | ||
2817 | if (fdata.saved_fpr == 0 | |
2818 | && fdata.saved_gpr == 0 | |
2819 | && fdata.saved_vr == 0 | |
2820 | && fdata.saved_ev == 0 | |
2821 | && fdata.lr_offset == 0 | |
2822 | && fdata.cr_offset == 0 | |
2823 | && fdata.vr_offset == 0 | |
2824 | && fdata.ev_offset == 0) | |
2825 | cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM); | |
2826 | else | |
2827 | { | |
2828 | /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most | |
2829 | address of the current frame. Things might be easier if the | |
2830 | ->frame pointed to the outer-most address of the frame. In | |
2831 | the mean time, the address of the prev frame is used as the | |
2832 | base address of this frame. */ | |
2833 | cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM); | |
2834 | if (!fdata.frameless) | |
2835 | /* Frameless really means stackless. */ | |
2836 | cache->base = read_memory_addr (cache->base, wordsize); | |
2837 | } | |
2838 | trad_frame_set_value (cache->saved_regs, SP_REGNUM, cache->base); | |
2839 | ||
2840 | /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr. | |
2841 | All fpr's from saved_fpr to fp31 are saved. */ | |
2842 | ||
2843 | if (fdata.saved_fpr >= 0) | |
2844 | { | |
2845 | int i; | |
2846 | CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset; | |
383f0f5b JB |
2847 | |
2848 | /* If skip_prologue says floating-point registers were saved, | |
2849 | but the current architecture has no floating-point registers, | |
2850 | then that's strange. But we have no indices to even record | |
2851 | the addresses under, so we just ignore it. */ | |
2852 | if (ppc_floating_point_unit_p (gdbarch)) | |
063715bf | 2853 | for (i = fdata.saved_fpr; i < ppc_num_fprs; i++) |
383f0f5b JB |
2854 | { |
2855 | cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr; | |
2856 | fpr_addr += 8; | |
2857 | } | |
61a65099 KB |
2858 | } |
2859 | ||
2860 | /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr. | |
2861 | All gpr's from saved_gpr to gpr31 are saved. */ | |
2862 | ||
2863 | if (fdata.saved_gpr >= 0) | |
2864 | { | |
2865 | int i; | |
2866 | CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset; | |
063715bf | 2867 | for (i = fdata.saved_gpr; i < ppc_num_gprs; i++) |
61a65099 KB |
2868 | { |
2869 | cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr; | |
2870 | gpr_addr += wordsize; | |
2871 | } | |
2872 | } | |
2873 | ||
2874 | /* if != -1, fdata.saved_vr is the smallest number of saved_vr. | |
2875 | All vr's from saved_vr to vr31 are saved. */ | |
2876 | if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1) | |
2877 | { | |
2878 | if (fdata.saved_vr >= 0) | |
2879 | { | |
2880 | int i; | |
2881 | CORE_ADDR vr_addr = cache->base + fdata.vr_offset; | |
2882 | for (i = fdata.saved_vr; i < 32; i++) | |
2883 | { | |
2884 | cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr; | |
2885 | vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum); | |
2886 | } | |
2887 | } | |
2888 | } | |
2889 | ||
2890 | /* if != -1, fdata.saved_ev is the smallest number of saved_ev. | |
2891 | All vr's from saved_ev to ev31 are saved. ????? */ | |
2892 | if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1) | |
2893 | { | |
2894 | if (fdata.saved_ev >= 0) | |
2895 | { | |
2896 | int i; | |
2897 | CORE_ADDR ev_addr = cache->base + fdata.ev_offset; | |
063715bf | 2898 | for (i = fdata.saved_ev; i < ppc_num_gprs; i++) |
61a65099 KB |
2899 | { |
2900 | cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr; | |
2901 | cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + 4; | |
2902 | ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum); | |
2903 | } | |
2904 | } | |
2905 | } | |
2906 | ||
2907 | /* If != 0, fdata.cr_offset is the offset from the frame that | |
2908 | holds the CR. */ | |
2909 | if (fdata.cr_offset != 0) | |
2910 | cache->saved_regs[tdep->ppc_cr_regnum].addr = cache->base + fdata.cr_offset; | |
2911 | ||
2912 | /* If != 0, fdata.lr_offset is the offset from the frame that | |
2913 | holds the LR. */ | |
2914 | if (fdata.lr_offset != 0) | |
2915 | cache->saved_regs[tdep->ppc_lr_regnum].addr = cache->base + fdata.lr_offset; | |
2916 | /* The PC is found in the link register. */ | |
2917 | cache->saved_regs[PC_REGNUM] = cache->saved_regs[tdep->ppc_lr_regnum]; | |
2918 | ||
2919 | /* If != 0, fdata.vrsave_offset is the offset from the frame that | |
2920 | holds the VRSAVE. */ | |
2921 | if (fdata.vrsave_offset != 0) | |
2922 | cache->saved_regs[tdep->ppc_vrsave_regnum].addr = cache->base + fdata.vrsave_offset; | |
2923 | ||
2924 | if (fdata.alloca_reg < 0) | |
2925 | /* If no alloca register used, then fi->frame is the value of the | |
2926 | %sp for this frame, and it is good enough. */ | |
2927 | cache->initial_sp = frame_unwind_register_unsigned (next_frame, SP_REGNUM); | |
2928 | else | |
2929 | cache->initial_sp = frame_unwind_register_unsigned (next_frame, | |
2930 | fdata.alloca_reg); | |
2931 | ||
2932 | return cache; | |
2933 | } | |
2934 | ||
2935 | static void | |
2936 | rs6000_frame_this_id (struct frame_info *next_frame, void **this_cache, | |
2937 | struct frame_id *this_id) | |
2938 | { | |
2939 | struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame, | |
2940 | this_cache); | |
2941 | (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame)); | |
2942 | } | |
2943 | ||
2944 | static void | |
2945 | rs6000_frame_prev_register (struct frame_info *next_frame, | |
2946 | void **this_cache, | |
2947 | int regnum, int *optimizedp, | |
2948 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
2949 | int *realnump, void *valuep) | |
2950 | { | |
2951 | struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame, | |
2952 | this_cache); | |
1f67027d AC |
2953 | trad_frame_get_prev_register (next_frame, info->saved_regs, regnum, |
2954 | optimizedp, lvalp, addrp, realnump, valuep); | |
61a65099 KB |
2955 | } |
2956 | ||
2957 | static const struct frame_unwind rs6000_frame_unwind = | |
2958 | { | |
2959 | NORMAL_FRAME, | |
2960 | rs6000_frame_this_id, | |
2961 | rs6000_frame_prev_register | |
2962 | }; | |
2963 | ||
2964 | static const struct frame_unwind * | |
2965 | rs6000_frame_sniffer (struct frame_info *next_frame) | |
2966 | { | |
2967 | return &rs6000_frame_unwind; | |
2968 | } | |
2969 | ||
2970 | \f | |
2971 | ||
2972 | static CORE_ADDR | |
2973 | rs6000_frame_base_address (struct frame_info *next_frame, | |
2974 | void **this_cache) | |
2975 | { | |
2976 | struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame, | |
2977 | this_cache); | |
2978 | return info->initial_sp; | |
2979 | } | |
2980 | ||
2981 | static const struct frame_base rs6000_frame_base = { | |
2982 | &rs6000_frame_unwind, | |
2983 | rs6000_frame_base_address, | |
2984 | rs6000_frame_base_address, | |
2985 | rs6000_frame_base_address | |
2986 | }; | |
2987 | ||
2988 | static const struct frame_base * | |
2989 | rs6000_frame_base_sniffer (struct frame_info *next_frame) | |
2990 | { | |
2991 | return &rs6000_frame_base; | |
2992 | } | |
2993 | ||
7a78ae4e ND |
2994 | /* Initialize the current architecture based on INFO. If possible, re-use an |
2995 | architecture from ARCHES, which is a list of architectures already created | |
2996 | during this debugging session. | |
c906108c | 2997 | |
7a78ae4e | 2998 | Called e.g. at program startup, when reading a core file, and when reading |
64366f1c | 2999 | a binary file. */ |
c906108c | 3000 | |
7a78ae4e ND |
3001 | static struct gdbarch * |
3002 | rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
3003 | { | |
3004 | struct gdbarch *gdbarch; | |
3005 | struct gdbarch_tdep *tdep; | |
708ff411 | 3006 | int wordsize, from_xcoff_exec, from_elf_exec, i, off; |
7a78ae4e ND |
3007 | struct reg *regs; |
3008 | const struct variant *v; | |
3009 | enum bfd_architecture arch; | |
3010 | unsigned long mach; | |
3011 | bfd abfd; | |
7b112f9c | 3012 | int sysv_abi; |
5bf1c677 | 3013 | asection *sect; |
7a78ae4e | 3014 | |
9aa1e687 | 3015 | from_xcoff_exec = info.abfd && info.abfd->format == bfd_object && |
7a78ae4e ND |
3016 | bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour; |
3017 | ||
9aa1e687 KB |
3018 | from_elf_exec = info.abfd && info.abfd->format == bfd_object && |
3019 | bfd_get_flavour (info.abfd) == bfd_target_elf_flavour; | |
3020 | ||
3021 | sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour; | |
3022 | ||
e712c1cf | 3023 | /* Check word size. If INFO is from a binary file, infer it from |
64366f1c | 3024 | that, else choose a likely default. */ |
9aa1e687 | 3025 | if (from_xcoff_exec) |
c906108c | 3026 | { |
11ed25ac | 3027 | if (bfd_xcoff_is_xcoff64 (info.abfd)) |
7a78ae4e ND |
3028 | wordsize = 8; |
3029 | else | |
3030 | wordsize = 4; | |
c906108c | 3031 | } |
9aa1e687 KB |
3032 | else if (from_elf_exec) |
3033 | { | |
3034 | if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64) | |
3035 | wordsize = 8; | |
3036 | else | |
3037 | wordsize = 4; | |
3038 | } | |
c906108c | 3039 | else |
7a78ae4e | 3040 | { |
27b15785 KB |
3041 | if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0) |
3042 | wordsize = info.bfd_arch_info->bits_per_word / | |
3043 | info.bfd_arch_info->bits_per_byte; | |
3044 | else | |
3045 | wordsize = 4; | |
7a78ae4e | 3046 | } |
c906108c | 3047 | |
64366f1c | 3048 | /* Find a candidate among extant architectures. */ |
7a78ae4e ND |
3049 | for (arches = gdbarch_list_lookup_by_info (arches, &info); |
3050 | arches != NULL; | |
3051 | arches = gdbarch_list_lookup_by_info (arches->next, &info)) | |
3052 | { | |
3053 | /* Word size in the various PowerPC bfd_arch_info structs isn't | |
3054 | meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform | |
64366f1c | 3055 | separate word size check. */ |
7a78ae4e | 3056 | tdep = gdbarch_tdep (arches->gdbarch); |
4be87837 | 3057 | if (tdep && tdep->wordsize == wordsize) |
7a78ae4e ND |
3058 | return arches->gdbarch; |
3059 | } | |
c906108c | 3060 | |
7a78ae4e ND |
3061 | /* None found, create a new architecture from INFO, whose bfd_arch_info |
3062 | validity depends on the source: | |
3063 | - executable useless | |
3064 | - rs6000_host_arch() good | |
3065 | - core file good | |
3066 | - "set arch" trust blindly | |
3067 | - GDB startup useless but harmless */ | |
c906108c | 3068 | |
9aa1e687 | 3069 | if (!from_xcoff_exec) |
c906108c | 3070 | { |
b732d07d | 3071 | arch = info.bfd_arch_info->arch; |
7a78ae4e | 3072 | mach = info.bfd_arch_info->mach; |
c906108c | 3073 | } |
7a78ae4e | 3074 | else |
c906108c | 3075 | { |
7a78ae4e | 3076 | arch = bfd_arch_powerpc; |
35cec841 | 3077 | bfd_default_set_arch_mach (&abfd, arch, 0); |
7a78ae4e | 3078 | info.bfd_arch_info = bfd_get_arch_info (&abfd); |
35cec841 | 3079 | mach = info.bfd_arch_info->mach; |
7a78ae4e ND |
3080 | } |
3081 | tdep = xmalloc (sizeof (struct gdbarch_tdep)); | |
3082 | tdep->wordsize = wordsize; | |
5bf1c677 EZ |
3083 | |
3084 | /* For e500 executables, the apuinfo section is of help here. Such | |
3085 | section contains the identifier and revision number of each | |
3086 | Application-specific Processing Unit that is present on the | |
3087 | chip. The content of the section is determined by the assembler | |
3088 | which looks at each instruction and determines which unit (and | |
3089 | which version of it) can execute it. In our case we just look for | |
3090 | the existance of the section. */ | |
3091 | ||
3092 | if (info.abfd) | |
3093 | { | |
3094 | sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo"); | |
3095 | if (sect) | |
3096 | { | |
3097 | arch = info.bfd_arch_info->arch; | |
3098 | mach = bfd_mach_ppc_e500; | |
3099 | bfd_default_set_arch_mach (&abfd, arch, mach); | |
3100 | info.bfd_arch_info = bfd_get_arch_info (&abfd); | |
3101 | } | |
3102 | } | |
3103 | ||
7a78ae4e | 3104 | gdbarch = gdbarch_alloc (&info, tdep); |
7a78ae4e | 3105 | |
489461e2 EZ |
3106 | /* Initialize the number of real and pseudo registers in each variant. */ |
3107 | init_variants (); | |
3108 | ||
64366f1c | 3109 | /* Choose variant. */ |
7a78ae4e ND |
3110 | v = find_variant_by_arch (arch, mach); |
3111 | if (!v) | |
dd47e6fd EZ |
3112 | return NULL; |
3113 | ||
7a78ae4e ND |
3114 | tdep->regs = v->regs; |
3115 | ||
2188cbdd | 3116 | tdep->ppc_gp0_regnum = 0; |
2188cbdd EZ |
3117 | tdep->ppc_toc_regnum = 2; |
3118 | tdep->ppc_ps_regnum = 65; | |
3119 | tdep->ppc_cr_regnum = 66; | |
3120 | tdep->ppc_lr_regnum = 67; | |
3121 | tdep->ppc_ctr_regnum = 68; | |
3122 | tdep->ppc_xer_regnum = 69; | |
3123 | if (v->mach == bfd_mach_ppc_601) | |
3124 | tdep->ppc_mq_regnum = 124; | |
708ff411 | 3125 | else if (arch == bfd_arch_rs6000) |
2188cbdd | 3126 | tdep->ppc_mq_regnum = 70; |
e3f36dbd KB |
3127 | else |
3128 | tdep->ppc_mq_regnum = -1; | |
366f009f | 3129 | tdep->ppc_fp0_regnum = 32; |
708ff411 | 3130 | tdep->ppc_fpscr_regnum = (arch == bfd_arch_rs6000) ? 71 : 70; |
f86a7158 | 3131 | tdep->ppc_sr0_regnum = 71; |
baffbae0 JB |
3132 | tdep->ppc_vr0_regnum = -1; |
3133 | tdep->ppc_vrsave_regnum = -1; | |
6ced10dd | 3134 | tdep->ppc_ev0_upper_regnum = -1; |
baffbae0 JB |
3135 | tdep->ppc_ev0_regnum = -1; |
3136 | tdep->ppc_ev31_regnum = -1; | |
867e2dc5 JB |
3137 | tdep->ppc_acc_regnum = -1; |
3138 | tdep->ppc_spefscr_regnum = -1; | |
2188cbdd | 3139 | |
c8001721 EZ |
3140 | set_gdbarch_pc_regnum (gdbarch, 64); |
3141 | set_gdbarch_sp_regnum (gdbarch, 1); | |
0ba6dca9 | 3142 | set_gdbarch_deprecated_fp_regnum (gdbarch, 1); |
9f643768 | 3143 | set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno); |
afd48b75 | 3144 | if (sysv_abi && wordsize == 8) |
05580c65 | 3145 | set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value); |
e754ae69 | 3146 | else if (sysv_abi && wordsize == 4) |
05580c65 | 3147 | set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value); |
afd48b75 AC |
3148 | else |
3149 | { | |
3150 | set_gdbarch_deprecated_extract_return_value (gdbarch, rs6000_extract_return_value); | |
a3c001ce | 3151 | set_gdbarch_store_return_value (gdbarch, rs6000_store_return_value); |
afd48b75 | 3152 | } |
c8001721 | 3153 | |
baffbae0 JB |
3154 | /* Set lr_frame_offset. */ |
3155 | if (wordsize == 8) | |
3156 | tdep->lr_frame_offset = 16; | |
3157 | else if (sysv_abi) | |
3158 | tdep->lr_frame_offset = 4; | |
3159 | else | |
3160 | tdep->lr_frame_offset = 8; | |
3161 | ||
f86a7158 JB |
3162 | if (v->arch == bfd_arch_rs6000) |
3163 | tdep->ppc_sr0_regnum = -1; | |
3164 | else if (v->arch == bfd_arch_powerpc) | |
1fcc0bb8 EZ |
3165 | switch (v->mach) |
3166 | { | |
3167 | case bfd_mach_ppc: | |
412b3060 | 3168 | tdep->ppc_sr0_regnum = -1; |
1fcc0bb8 EZ |
3169 | tdep->ppc_vr0_regnum = 71; |
3170 | tdep->ppc_vrsave_regnum = 104; | |
3171 | break; | |
3172 | case bfd_mach_ppc_7400: | |
3173 | tdep->ppc_vr0_regnum = 119; | |
54c2a1e6 | 3174 | tdep->ppc_vrsave_regnum = 152; |
c8001721 EZ |
3175 | break; |
3176 | case bfd_mach_ppc_e500: | |
c8001721 | 3177 | tdep->ppc_toc_regnum = -1; |
6ced10dd JB |
3178 | tdep->ppc_ev0_upper_regnum = 32; |
3179 | tdep->ppc_ev0_regnum = 73; | |
3180 | tdep->ppc_ev31_regnum = 104; | |
3181 | tdep->ppc_acc_regnum = 71; | |
3182 | tdep->ppc_spefscr_regnum = 72; | |
383f0f5b JB |
3183 | tdep->ppc_fp0_regnum = -1; |
3184 | tdep->ppc_fpscr_regnum = -1; | |
f86a7158 | 3185 | tdep->ppc_sr0_regnum = -1; |
c8001721 EZ |
3186 | set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read); |
3187 | set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write); | |
6ced10dd | 3188 | set_gdbarch_register_reggroup_p (gdbarch, e500_register_reggroup_p); |
1fcc0bb8 | 3189 | break; |
f86a7158 JB |
3190 | |
3191 | case bfd_mach_ppc64: | |
3192 | case bfd_mach_ppc_620: | |
3193 | case bfd_mach_ppc_630: | |
3194 | case bfd_mach_ppc_a35: | |
3195 | case bfd_mach_ppc_rs64ii: | |
3196 | case bfd_mach_ppc_rs64iii: | |
3197 | /* These processor's register sets don't have segment registers. */ | |
3198 | tdep->ppc_sr0_regnum = -1; | |
3199 | break; | |
1fcc0bb8 | 3200 | } |
f86a7158 JB |
3201 | else |
3202 | internal_error (__FILE__, __LINE__, | |
3203 | "rs6000_gdbarch_init: " | |
3204 | "received unexpected BFD 'arch' value"); | |
1fcc0bb8 | 3205 | |
338ef23d AC |
3206 | /* Sanity check on registers. */ |
3207 | gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0); | |
3208 | ||
56a6dfb9 | 3209 | /* Select instruction printer. */ |
708ff411 | 3210 | if (arch == bfd_arch_rs6000) |
9364a0ef | 3211 | set_gdbarch_print_insn (gdbarch, print_insn_rs6000); |
56a6dfb9 | 3212 | else |
9364a0ef | 3213 | set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc); |
7495d1dc | 3214 | |
7a78ae4e | 3215 | set_gdbarch_write_pc (gdbarch, generic_target_write_pc); |
7a78ae4e ND |
3216 | |
3217 | set_gdbarch_num_regs (gdbarch, v->nregs); | |
c8001721 | 3218 | set_gdbarch_num_pseudo_regs (gdbarch, v->npregs); |
7a78ae4e | 3219 | set_gdbarch_register_name (gdbarch, rs6000_register_name); |
691d145a | 3220 | set_gdbarch_register_type (gdbarch, rs6000_register_type); |
7a78ae4e ND |
3221 | |
3222 | set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT); | |
3223 | set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT); | |
3224 | set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
3225 | set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT); | |
3226 | set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT); | |
3227 | set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
3228 | set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT); | |
ab9fe00e KB |
3229 | if (sysv_abi) |
3230 | set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT); | |
3231 | else | |
3232 | set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT); | |
4e409299 | 3233 | set_gdbarch_char_signed (gdbarch, 0); |
7a78ae4e | 3234 | |
11269d7e | 3235 | set_gdbarch_frame_align (gdbarch, rs6000_frame_align); |
8b148df9 AC |
3236 | if (sysv_abi && wordsize == 8) |
3237 | /* PPC64 SYSV. */ | |
3238 | set_gdbarch_frame_red_zone_size (gdbarch, 288); | |
3239 | else if (!sysv_abi && wordsize == 4) | |
5bffac25 AC |
3240 | /* PowerOpen / AIX 32 bit. The saved area or red zone consists of |
3241 | 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes. | |
3242 | Problem is, 220 isn't frame (16 byte) aligned. Round it up to | |
3243 | 224. */ | |
3244 | set_gdbarch_frame_red_zone_size (gdbarch, 224); | |
7a78ae4e | 3245 | |
691d145a JB |
3246 | set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p); |
3247 | set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value); | |
3248 | set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register); | |
3249 | ||
18ed0c4e JB |
3250 | set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum); |
3251 | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum); | |
2ea5f656 KB |
3252 | /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments() |
3253 | is correct for the SysV ABI when the wordsize is 8, but I'm also | |
3254 | fairly certain that ppc_sysv_abi_push_arguments() will give even | |
3255 | worse results since it only works for 32-bit code. So, for the moment, | |
3256 | we're better off calling rs6000_push_arguments() since it works for | |
3257 | 64-bit code. At some point in the future, this matter needs to be | |
3258 | revisited. */ | |
3259 | if (sysv_abi && wordsize == 4) | |
77b2b6d4 | 3260 | set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call); |
8be9034a AC |
3261 | else if (sysv_abi && wordsize == 8) |
3262 | set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call); | |
9aa1e687 | 3263 | else |
77b2b6d4 | 3264 | set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call); |
7a78ae4e | 3265 | |
74055713 | 3266 | set_gdbarch_deprecated_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address); |
7a78ae4e ND |
3267 | |
3268 | set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue); | |
3269 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | |
7a78ae4e ND |
3270 | set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc); |
3271 | ||
6066c3de AC |
3272 | /* Handle the 64-bit SVR4 minimal-symbol convention of using "FN" |
3273 | for the descriptor and ".FN" for the entry-point -- a user | |
3274 | specifying "break FN" will unexpectedly end up with a breakpoint | |
3275 | on the descriptor and not the function. This architecture method | |
3276 | transforms any breakpoints on descriptors into breakpoints on the | |
3277 | corresponding entry point. */ | |
3278 | if (sysv_abi && wordsize == 8) | |
3279 | set_gdbarch_adjust_breakpoint_address (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address); | |
3280 | ||
7a78ae4e ND |
3281 | /* Not sure on this. FIXMEmgo */ |
3282 | set_gdbarch_frame_args_skip (gdbarch, 8); | |
3283 | ||
05580c65 | 3284 | if (!sysv_abi) |
b5622e8d | 3285 | set_gdbarch_deprecated_use_struct_convention (gdbarch, rs6000_use_struct_convention); |
8e0662df | 3286 | |
15813d3f AC |
3287 | if (!sysv_abi) |
3288 | { | |
3289 | /* Handle RS/6000 function pointers (which are really function | |
3290 | descriptors). */ | |
f517ea4e PS |
3291 | set_gdbarch_convert_from_func_ptr_addr (gdbarch, |
3292 | rs6000_convert_from_func_ptr_addr); | |
9aa1e687 | 3293 | } |
7a78ae4e | 3294 | |
143985b7 AF |
3295 | /* Helpers for function argument information. */ |
3296 | set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument); | |
3297 | ||
7b112f9c | 3298 | /* Hook in ABI-specific overrides, if they have been registered. */ |
4be87837 | 3299 | gdbarch_init_osabi (info, gdbarch); |
7b112f9c | 3300 | |
61a65099 KB |
3301 | switch (info.osabi) |
3302 | { | |
3303 | case GDB_OSABI_NETBSD_AOUT: | |
3304 | case GDB_OSABI_NETBSD_ELF: | |
3305 | case GDB_OSABI_UNKNOWN: | |
3306 | case GDB_OSABI_LINUX: | |
3307 | set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc); | |
3308 | frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer); | |
3309 | set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id); | |
3310 | frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer); | |
3311 | break; | |
3312 | default: | |
61a65099 | 3313 | set_gdbarch_believe_pcc_promotion (gdbarch, 1); |
81332287 KB |
3314 | |
3315 | set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc); | |
3316 | frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer); | |
3317 | set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id); | |
3318 | frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer); | |
61a65099 KB |
3319 | } |
3320 | ||
ef5200c1 AC |
3321 | if (from_xcoff_exec) |
3322 | { | |
3323 | /* NOTE: jimix/2003-06-09: This test should really check for | |
3324 | GDB_OSABI_AIX when that is defined and becomes | |
3325 | available. (Actually, once things are properly split apart, | |
3326 | the test goes away.) */ | |
3327 | /* RS6000/AIX does not support PT_STEP. Has to be simulated. */ | |
3328 | set_gdbarch_software_single_step (gdbarch, rs6000_software_single_step); | |
3329 | } | |
3330 | ||
9f643768 JB |
3331 | init_sim_regno_table (gdbarch); |
3332 | ||
7a78ae4e | 3333 | return gdbarch; |
c906108c SS |
3334 | } |
3335 | ||
7b112f9c JT |
3336 | static void |
3337 | rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file) | |
3338 | { | |
3339 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); | |
3340 | ||
3341 | if (tdep == NULL) | |
3342 | return; | |
3343 | ||
4be87837 | 3344 | /* FIXME: Dump gdbarch_tdep. */ |
7b112f9c JT |
3345 | } |
3346 | ||
1fcc0bb8 EZ |
3347 | static struct cmd_list_element *info_powerpc_cmdlist = NULL; |
3348 | ||
3349 | static void | |
3350 | rs6000_info_powerpc_command (char *args, int from_tty) | |
3351 | { | |
3352 | help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout); | |
3353 | } | |
3354 | ||
c906108c SS |
3355 | /* Initialization code. */ |
3356 | ||
a78f21af | 3357 | extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */ |
b9362cc7 | 3358 | |
c906108c | 3359 | void |
fba45db2 | 3360 | _initialize_rs6000_tdep (void) |
c906108c | 3361 | { |
7b112f9c JT |
3362 | gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep); |
3363 | gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep); | |
1fcc0bb8 EZ |
3364 | |
3365 | /* Add root prefix command for "info powerpc" commands */ | |
3366 | add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command, | |
3367 | "Various POWERPC info specific commands.", | |
3368 | &info_powerpc_cmdlist, "info powerpc ", 0, &infolist); | |
c906108c | 3369 | } |