]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Target-dependent code for GDB, the GNU debugger. |
7aea86e6 | 2 | |
6aba47ca DJ |
3 | Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, |
4 | 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 | |
721d14ba | 5 | Free Software Foundation, Inc. |
c906108c | 6 | |
c5aa993b | 7 | This file is part of GDB. |
c906108c | 8 | |
c5aa993b JM |
9 | This program is free software; you can redistribute it and/or modify |
10 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 11 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 12 | (at your option) any later version. |
c906108c | 13 | |
c5aa993b JM |
14 | This program is distributed in the hope that it will be useful, |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
c906108c | 18 | |
c5aa993b | 19 | You should have received a copy of the GNU General Public License |
a9762ec7 | 20 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c SS |
21 | |
22 | #include "defs.h" | |
23 | #include "frame.h" | |
24 | #include "inferior.h" | |
25 | #include "symtab.h" | |
26 | #include "target.h" | |
27 | #include "gdbcore.h" | |
28 | #include "gdbcmd.h" | |
c906108c | 29 | #include "objfiles.h" |
7a78ae4e | 30 | #include "arch-utils.h" |
4e052eda | 31 | #include "regcache.h" |
d195bc9f | 32 | #include "regset.h" |
d16aafd8 | 33 | #include "doublest.h" |
fd0407d6 | 34 | #include "value.h" |
1fcc0bb8 | 35 | #include "parser-defs.h" |
4be87837 | 36 | #include "osabi.h" |
7d9b040b | 37 | #include "infcall.h" |
9f643768 JB |
38 | #include "sim-regno.h" |
39 | #include "gdb/sim-ppc.h" | |
6ced10dd | 40 | #include "reggroups.h" |
4fc771b8 | 41 | #include "dwarf2-frame.h" |
7cc46491 DJ |
42 | #include "target-descriptions.h" |
43 | #include "user-regs.h" | |
7a78ae4e | 44 | |
2fccf04a | 45 | #include "libbfd.h" /* for bfd_default_set_arch_mach */ |
7a78ae4e | 46 | #include "coff/internal.h" /* for libcoff.h */ |
2fccf04a | 47 | #include "libcoff.h" /* for xcoff_data */ |
11ed25ac KB |
48 | #include "coff/xcoff.h" |
49 | #include "libxcoff.h" | |
7a78ae4e | 50 | |
9aa1e687 | 51 | #include "elf-bfd.h" |
55eddb0f | 52 | #include "elf/ppc.h" |
7a78ae4e | 53 | |
6ded7999 | 54 | #include "solib-svr4.h" |
9aa1e687 | 55 | #include "ppc-tdep.h" |
7a78ae4e | 56 | |
338ef23d | 57 | #include "gdb_assert.h" |
a89aa300 | 58 | #include "dis-asm.h" |
338ef23d | 59 | |
61a65099 KB |
60 | #include "trad-frame.h" |
61 | #include "frame-unwind.h" | |
62 | #include "frame-base.h" | |
63 | ||
1f82754b | 64 | #include "rs6000-tdep.h" |
c44ca51c | 65 | |
7cc46491 DJ |
66 | #include "features/rs6000/powerpc-32.c" |
67 | #include "features/rs6000/powerpc-403.c" | |
68 | #include "features/rs6000/powerpc-403gc.c" | |
69 | #include "features/rs6000/powerpc-505.c" | |
70 | #include "features/rs6000/powerpc-601.c" | |
71 | #include "features/rs6000/powerpc-602.c" | |
72 | #include "features/rs6000/powerpc-603.c" | |
73 | #include "features/rs6000/powerpc-604.c" | |
74 | #include "features/rs6000/powerpc-64.c" | |
75 | #include "features/rs6000/powerpc-7400.c" | |
76 | #include "features/rs6000/powerpc-750.c" | |
77 | #include "features/rs6000/powerpc-860.c" | |
78 | #include "features/rs6000/powerpc-e500.c" | |
79 | #include "features/rs6000/rs6000.c" | |
80 | ||
55eddb0f DJ |
81 | /* The list of available "set powerpc ..." and "show powerpc ..." |
82 | commands. */ | |
83 | static struct cmd_list_element *setpowerpccmdlist = NULL; | |
84 | static struct cmd_list_element *showpowerpccmdlist = NULL; | |
85 | ||
86 | static enum auto_boolean powerpc_soft_float_global = AUTO_BOOLEAN_AUTO; | |
87 | ||
88 | /* The vector ABI to use. Keep this in sync with powerpc_vector_abi. */ | |
89 | static const char *powerpc_vector_strings[] = | |
90 | { | |
91 | "auto", | |
92 | "generic", | |
93 | "altivec", | |
94 | "spe", | |
95 | NULL | |
96 | }; | |
97 | ||
98 | /* A variable that can be configured by the user. */ | |
99 | static enum powerpc_vector_abi powerpc_vector_abi_global = POWERPC_VEC_AUTO; | |
100 | static const char *powerpc_vector_abi_string = "auto"; | |
101 | ||
7a78ae4e ND |
102 | /* If the kernel has to deliver a signal, it pushes a sigcontext |
103 | structure on the stack and then calls the signal handler, passing | |
104 | the address of the sigcontext in an argument register. Usually | |
105 | the signal handler doesn't save this register, so we have to | |
106 | access the sigcontext structure via an offset from the signal handler | |
107 | frame. | |
108 | The following constants were determined by experimentation on AIX 3.2. */ | |
109 | #define SIG_FRAME_PC_OFFSET 96 | |
110 | #define SIG_FRAME_LR_OFFSET 108 | |
111 | #define SIG_FRAME_FP_OFFSET 284 | |
112 | ||
7a78ae4e ND |
113 | /* To be used by skip_prologue. */ |
114 | ||
115 | struct rs6000_framedata | |
116 | { | |
117 | int offset; /* total size of frame --- the distance | |
118 | by which we decrement sp to allocate | |
119 | the frame */ | |
120 | int saved_gpr; /* smallest # of saved gpr */ | |
121 | int saved_fpr; /* smallest # of saved fpr */ | |
6be8bc0c | 122 | int saved_vr; /* smallest # of saved vr */ |
96ff0de4 | 123 | int saved_ev; /* smallest # of saved ev */ |
7a78ae4e ND |
124 | int alloca_reg; /* alloca register number (frame ptr) */ |
125 | char frameless; /* true if frameless functions. */ | |
126 | char nosavedpc; /* true if pc not saved. */ | |
127 | int gpr_offset; /* offset of saved gprs from prev sp */ | |
128 | int fpr_offset; /* offset of saved fprs from prev sp */ | |
6be8bc0c | 129 | int vr_offset; /* offset of saved vrs from prev sp */ |
96ff0de4 | 130 | int ev_offset; /* offset of saved evs from prev sp */ |
7a78ae4e ND |
131 | int lr_offset; /* offset of saved lr */ |
132 | int cr_offset; /* offset of saved cr */ | |
6be8bc0c | 133 | int vrsave_offset; /* offset of saved vrsave register */ |
7a78ae4e ND |
134 | }; |
135 | ||
136 | /* Description of a single register. */ | |
137 | ||
138 | struct reg | |
139 | { | |
140 | char *name; /* name of register */ | |
0bcc32ae JB |
141 | unsigned char sz32; /* size on 32-bit arch, 0 if nonexistent */ |
142 | unsigned char sz64; /* size on 64-bit arch, 0 if nonexistent */ | |
7a78ae4e | 143 | unsigned char fpr; /* whether register is floating-point */ |
489461e2 | 144 | unsigned char pseudo; /* whether register is pseudo */ |
13ac140c JB |
145 | int spr_num; /* PowerPC SPR number, or -1 if not an SPR. |
146 | This is an ISA SPR number, not a GDB | |
147 | register number. */ | |
7a78ae4e ND |
148 | }; |
149 | ||
c906108c SS |
150 | /* Hook for determining the TOC address when calling functions in the |
151 | inferior under AIX. The initialization code in rs6000-nat.c sets | |
152 | this hook to point to find_toc_address. */ | |
153 | ||
7a78ae4e ND |
154 | CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL; |
155 | ||
c906108c SS |
156 | /* Static function prototypes */ |
157 | ||
0b1b3e42 UW |
158 | static CORE_ADDR branch_dest (struct frame_info *frame, int opcode, |
159 | int instr, CORE_ADDR pc, CORE_ADDR safety); | |
077276e8 KB |
160 | static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR, |
161 | struct rs6000_framedata *); | |
c906108c | 162 | |
64b84175 KB |
163 | /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */ |
164 | int | |
165 | altivec_register_p (int regno) | |
166 | { | |
167 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); | |
168 | if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0) | |
169 | return 0; | |
170 | else | |
171 | return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum); | |
172 | } | |
173 | ||
383f0f5b | 174 | |
867e2dc5 JB |
175 | /* Return true if REGNO is an SPE register, false otherwise. */ |
176 | int | |
177 | spe_register_p (int regno) | |
178 | { | |
179 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); | |
180 | ||
181 | /* Is it a reference to EV0 -- EV31, and do we have those? */ | |
182 | if (tdep->ppc_ev0_regnum >= 0 | |
183 | && tdep->ppc_ev31_regnum >= 0 | |
184 | && tdep->ppc_ev0_regnum <= regno && regno <= tdep->ppc_ev31_regnum) | |
185 | return 1; | |
186 | ||
6ced10dd JB |
187 | /* Is it a reference to one of the raw upper GPR halves? */ |
188 | if (tdep->ppc_ev0_upper_regnum >= 0 | |
189 | && tdep->ppc_ev0_upper_regnum <= regno | |
190 | && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs) | |
191 | return 1; | |
192 | ||
867e2dc5 JB |
193 | /* Is it a reference to the 64-bit accumulator, and do we have that? */ |
194 | if (tdep->ppc_acc_regnum >= 0 | |
195 | && tdep->ppc_acc_regnum == regno) | |
196 | return 1; | |
197 | ||
198 | /* Is it a reference to the SPE floating-point status and control register, | |
199 | and do we have that? */ | |
200 | if (tdep->ppc_spefscr_regnum >= 0 | |
201 | && tdep->ppc_spefscr_regnum == regno) | |
202 | return 1; | |
203 | ||
204 | return 0; | |
205 | } | |
206 | ||
207 | ||
383f0f5b JB |
208 | /* Return non-zero if the architecture described by GDBARCH has |
209 | floating-point registers (f0 --- f31 and fpscr). */ | |
0a613259 AC |
210 | int |
211 | ppc_floating_point_unit_p (struct gdbarch *gdbarch) | |
212 | { | |
383f0f5b JB |
213 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
214 | ||
215 | return (tdep->ppc_fp0_regnum >= 0 | |
216 | && tdep->ppc_fpscr_regnum >= 0); | |
0a613259 | 217 | } |
9f643768 | 218 | |
06caf7d2 CES |
219 | /* Return non-zero if the architecture described by GDBARCH has |
220 | Altivec registers (vr0 --- vr31, vrsave and vscr). */ | |
221 | int | |
222 | ppc_altivec_support_p (struct gdbarch *gdbarch) | |
223 | { | |
224 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
225 | ||
226 | return (tdep->ppc_vr0_regnum >= 0 | |
227 | && tdep->ppc_vrsave_regnum >= 0); | |
228 | } | |
09991fa0 JB |
229 | |
230 | /* Check that TABLE[GDB_REGNO] is not already initialized, and then | |
231 | set it to SIM_REGNO. | |
232 | ||
233 | This is a helper function for init_sim_regno_table, constructing | |
234 | the table mapping GDB register numbers to sim register numbers; we | |
235 | initialize every element in that table to -1 before we start | |
236 | filling it in. */ | |
9f643768 JB |
237 | static void |
238 | set_sim_regno (int *table, int gdb_regno, int sim_regno) | |
239 | { | |
240 | /* Make sure we don't try to assign any given GDB register a sim | |
241 | register number more than once. */ | |
242 | gdb_assert (table[gdb_regno] == -1); | |
243 | table[gdb_regno] = sim_regno; | |
244 | } | |
245 | ||
09991fa0 JB |
246 | |
247 | /* Initialize ARCH->tdep->sim_regno, the table mapping GDB register | |
248 | numbers to simulator register numbers, based on the values placed | |
249 | in the ARCH->tdep->ppc_foo_regnum members. */ | |
9f643768 JB |
250 | static void |
251 | init_sim_regno_table (struct gdbarch *arch) | |
252 | { | |
253 | struct gdbarch_tdep *tdep = gdbarch_tdep (arch); | |
7cc46491 | 254 | int total_regs = gdbarch_num_regs (arch); |
9f643768 JB |
255 | int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int); |
256 | int i; | |
7cc46491 DJ |
257 | static const char *const segment_regs[] = { |
258 | "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7", | |
259 | "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15" | |
260 | }; | |
9f643768 JB |
261 | |
262 | /* Presume that all registers not explicitly mentioned below are | |
263 | unavailable from the sim. */ | |
264 | for (i = 0; i < total_regs; i++) | |
265 | sim_regno[i] = -1; | |
266 | ||
267 | /* General-purpose registers. */ | |
268 | for (i = 0; i < ppc_num_gprs; i++) | |
269 | set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i); | |
270 | ||
271 | /* Floating-point registers. */ | |
272 | if (tdep->ppc_fp0_regnum >= 0) | |
273 | for (i = 0; i < ppc_num_fprs; i++) | |
274 | set_sim_regno (sim_regno, | |
275 | tdep->ppc_fp0_regnum + i, | |
276 | sim_ppc_f0_regnum + i); | |
277 | if (tdep->ppc_fpscr_regnum >= 0) | |
278 | set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum); | |
279 | ||
280 | set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum); | |
281 | set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum); | |
282 | set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum); | |
283 | ||
284 | /* Segment registers. */ | |
7cc46491 DJ |
285 | for (i = 0; i < ppc_num_srs; i++) |
286 | { | |
287 | int gdb_regno; | |
288 | ||
289 | gdb_regno = user_reg_map_name_to_regnum (arch, segment_regs[i], -1); | |
290 | if (gdb_regno >= 0) | |
291 | set_sim_regno (sim_regno, gdb_regno, sim_ppc_sr0_regnum + i); | |
292 | } | |
9f643768 JB |
293 | |
294 | /* Altivec registers. */ | |
295 | if (tdep->ppc_vr0_regnum >= 0) | |
296 | { | |
297 | for (i = 0; i < ppc_num_vrs; i++) | |
298 | set_sim_regno (sim_regno, | |
299 | tdep->ppc_vr0_regnum + i, | |
300 | sim_ppc_vr0_regnum + i); | |
301 | ||
302 | /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum, | |
303 | we can treat this more like the other cases. */ | |
304 | set_sim_regno (sim_regno, | |
305 | tdep->ppc_vr0_regnum + ppc_num_vrs, | |
306 | sim_ppc_vscr_regnum); | |
307 | } | |
308 | /* vsave is a special-purpose register, so the code below handles it. */ | |
309 | ||
310 | /* SPE APU (E500) registers. */ | |
6ced10dd JB |
311 | if (tdep->ppc_ev0_upper_regnum >= 0) |
312 | for (i = 0; i < ppc_num_gprs; i++) | |
313 | set_sim_regno (sim_regno, | |
314 | tdep->ppc_ev0_upper_regnum + i, | |
315 | sim_ppc_rh0_regnum + i); | |
9f643768 JB |
316 | if (tdep->ppc_acc_regnum >= 0) |
317 | set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum); | |
318 | /* spefscr is a special-purpose register, so the code below handles it. */ | |
319 | ||
7cc46491 | 320 | #ifdef WITH_SIM |
9f643768 JB |
321 | /* Now handle all special-purpose registers. Verify that they |
322 | haven't mistakenly been assigned numbers by any of the above | |
7cc46491 DJ |
323 | code. */ |
324 | for (i = 0; i < sim_ppc_num_sprs; i++) | |
325 | { | |
326 | const char *spr_name = sim_spr_register_name (i); | |
327 | int gdb_regno = -1; | |
328 | ||
329 | if (spr_name != NULL) | |
330 | gdb_regno = user_reg_map_name_to_regnum (arch, spr_name, -1); | |
331 | ||
332 | if (gdb_regno != -1) | |
333 | set_sim_regno (sim_regno, gdb_regno, sim_ppc_spr0_regnum + i); | |
334 | } | |
335 | #endif | |
9f643768 JB |
336 | |
337 | /* Drop the initialized array into place. */ | |
338 | tdep->sim_regno = sim_regno; | |
339 | } | |
340 | ||
09991fa0 JB |
341 | |
342 | /* Given a GDB register number REG, return the corresponding SIM | |
343 | register number. */ | |
9f643768 JB |
344 | static int |
345 | rs6000_register_sim_regno (int reg) | |
346 | { | |
347 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); | |
348 | int sim_regno; | |
349 | ||
7cc46491 DJ |
350 | if (tdep->sim_regno == NULL) |
351 | init_sim_regno_table (current_gdbarch); | |
352 | ||
f57d151a UW |
353 | gdb_assert (0 <= reg |
354 | && reg <= gdbarch_num_regs (current_gdbarch) | |
355 | + gdbarch_num_pseudo_regs (current_gdbarch)); | |
9f643768 JB |
356 | sim_regno = tdep->sim_regno[reg]; |
357 | ||
358 | if (sim_regno >= 0) | |
359 | return sim_regno; | |
360 | else | |
361 | return LEGACY_SIM_REGNO_IGNORE; | |
362 | } | |
363 | ||
d195bc9f MK |
364 | \f |
365 | ||
366 | /* Register set support functions. */ | |
367 | ||
f2db237a AM |
368 | /* REGS + OFFSET contains register REGNUM in a field REGSIZE wide. |
369 | Write the register to REGCACHE. */ | |
370 | ||
d195bc9f MK |
371 | static void |
372 | ppc_supply_reg (struct regcache *regcache, int regnum, | |
f2db237a | 373 | const gdb_byte *regs, size_t offset, int regsize) |
d195bc9f MK |
374 | { |
375 | if (regnum != -1 && offset != -1) | |
f2db237a AM |
376 | { |
377 | if (regsize > 4) | |
378 | { | |
379 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
380 | int gdb_regsize = register_size (gdbarch, regnum); | |
381 | if (gdb_regsize < regsize | |
382 | && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) | |
383 | offset += regsize - gdb_regsize; | |
384 | } | |
385 | regcache_raw_supply (regcache, regnum, regs + offset); | |
386 | } | |
d195bc9f MK |
387 | } |
388 | ||
f2db237a AM |
389 | /* Read register REGNUM from REGCACHE and store to REGS + OFFSET |
390 | in a field REGSIZE wide. Zero pad as necessary. */ | |
391 | ||
d195bc9f MK |
392 | static void |
393 | ppc_collect_reg (const struct regcache *regcache, int regnum, | |
f2db237a | 394 | gdb_byte *regs, size_t offset, int regsize) |
d195bc9f MK |
395 | { |
396 | if (regnum != -1 && offset != -1) | |
f2db237a AM |
397 | { |
398 | if (regsize > 4) | |
399 | { | |
400 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
401 | int gdb_regsize = register_size (gdbarch, regnum); | |
402 | if (gdb_regsize < regsize) | |
403 | { | |
404 | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) | |
405 | { | |
406 | memset (regs + offset, 0, regsize - gdb_regsize); | |
407 | offset += regsize - gdb_regsize; | |
408 | } | |
409 | else | |
410 | memset (regs + offset + regsize - gdb_regsize, 0, | |
411 | regsize - gdb_regsize); | |
412 | } | |
413 | } | |
414 | regcache_raw_collect (regcache, regnum, regs + offset); | |
415 | } | |
d195bc9f MK |
416 | } |
417 | ||
f2db237a AM |
418 | static int |
419 | ppc_greg_offset (struct gdbarch *gdbarch, | |
420 | struct gdbarch_tdep *tdep, | |
421 | const struct ppc_reg_offsets *offsets, | |
422 | int regnum, | |
423 | int *regsize) | |
424 | { | |
425 | *regsize = offsets->gpr_size; | |
426 | if (regnum >= tdep->ppc_gp0_regnum | |
427 | && regnum < tdep->ppc_gp0_regnum + ppc_num_gprs) | |
428 | return (offsets->r0_offset | |
429 | + (regnum - tdep->ppc_gp0_regnum) * offsets->gpr_size); | |
430 | ||
431 | if (regnum == gdbarch_pc_regnum (gdbarch)) | |
432 | return offsets->pc_offset; | |
433 | ||
434 | if (regnum == tdep->ppc_ps_regnum) | |
435 | return offsets->ps_offset; | |
436 | ||
437 | if (regnum == tdep->ppc_lr_regnum) | |
438 | return offsets->lr_offset; | |
439 | ||
440 | if (regnum == tdep->ppc_ctr_regnum) | |
441 | return offsets->ctr_offset; | |
442 | ||
443 | *regsize = offsets->xr_size; | |
444 | if (regnum == tdep->ppc_cr_regnum) | |
445 | return offsets->cr_offset; | |
446 | ||
447 | if (regnum == tdep->ppc_xer_regnum) | |
448 | return offsets->xer_offset; | |
449 | ||
450 | if (regnum == tdep->ppc_mq_regnum) | |
451 | return offsets->mq_offset; | |
452 | ||
453 | return -1; | |
454 | } | |
455 | ||
456 | static int | |
457 | ppc_fpreg_offset (struct gdbarch_tdep *tdep, | |
458 | const struct ppc_reg_offsets *offsets, | |
459 | int regnum) | |
460 | { | |
461 | if (regnum >= tdep->ppc_fp0_regnum | |
462 | && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs) | |
463 | return offsets->f0_offset + (regnum - tdep->ppc_fp0_regnum) * 8; | |
464 | ||
465 | if (regnum == tdep->ppc_fpscr_regnum) | |
466 | return offsets->fpscr_offset; | |
467 | ||
468 | return -1; | |
469 | } | |
470 | ||
06caf7d2 CES |
471 | static int |
472 | ppc_vrreg_offset (struct gdbarch_tdep *tdep, | |
473 | const struct ppc_reg_offsets *offsets, | |
474 | int regnum) | |
475 | { | |
476 | if (regnum >= tdep->ppc_vr0_regnum | |
477 | && regnum < tdep->ppc_vr0_regnum + ppc_num_vrs) | |
478 | return offsets->vr0_offset + (regnum - tdep->ppc_vr0_regnum) * 16; | |
479 | ||
480 | if (regnum == tdep->ppc_vrsave_regnum - 1) | |
481 | return offsets->vscr_offset; | |
482 | ||
483 | if (regnum == tdep->ppc_vrsave_regnum) | |
484 | return offsets->vrsave_offset; | |
485 | ||
486 | return -1; | |
487 | } | |
488 | ||
d195bc9f MK |
489 | /* Supply register REGNUM in the general-purpose register set REGSET |
490 | from the buffer specified by GREGS and LEN to register cache | |
491 | REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */ | |
492 | ||
493 | void | |
494 | ppc_supply_gregset (const struct regset *regset, struct regcache *regcache, | |
495 | int regnum, const void *gregs, size_t len) | |
496 | { | |
497 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
498 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
499 | const struct ppc_reg_offsets *offsets = regset->descr; | |
500 | size_t offset; | |
f2db237a | 501 | int regsize; |
d195bc9f | 502 | |
f2db237a | 503 | if (regnum == -1) |
d195bc9f | 504 | { |
f2db237a AM |
505 | int i; |
506 | int gpr_size = offsets->gpr_size; | |
507 | ||
508 | for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset; | |
509 | i < tdep->ppc_gp0_regnum + ppc_num_gprs; | |
510 | i++, offset += gpr_size) | |
511 | ppc_supply_reg (regcache, i, gregs, offset, gpr_size); | |
512 | ||
513 | ppc_supply_reg (regcache, gdbarch_pc_regnum (gdbarch), | |
514 | gregs, offsets->pc_offset, gpr_size); | |
515 | ppc_supply_reg (regcache, tdep->ppc_ps_regnum, | |
516 | gregs, offsets->ps_offset, gpr_size); | |
517 | ppc_supply_reg (regcache, tdep->ppc_lr_regnum, | |
518 | gregs, offsets->lr_offset, gpr_size); | |
519 | ppc_supply_reg (regcache, tdep->ppc_ctr_regnum, | |
520 | gregs, offsets->ctr_offset, gpr_size); | |
521 | ppc_supply_reg (regcache, tdep->ppc_cr_regnum, | |
522 | gregs, offsets->cr_offset, offsets->xr_size); | |
523 | ppc_supply_reg (regcache, tdep->ppc_xer_regnum, | |
524 | gregs, offsets->xer_offset, offsets->xr_size); | |
525 | ppc_supply_reg (regcache, tdep->ppc_mq_regnum, | |
526 | gregs, offsets->mq_offset, offsets->xr_size); | |
527 | return; | |
d195bc9f MK |
528 | } |
529 | ||
f2db237a AM |
530 | offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, ®size); |
531 | ppc_supply_reg (regcache, regnum, gregs, offset, regsize); | |
d195bc9f MK |
532 | } |
533 | ||
534 | /* Supply register REGNUM in the floating-point register set REGSET | |
535 | from the buffer specified by FPREGS and LEN to register cache | |
536 | REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */ | |
537 | ||
538 | void | |
539 | ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache, | |
540 | int regnum, const void *fpregs, size_t len) | |
541 | { | |
542 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
f2db237a AM |
543 | struct gdbarch_tdep *tdep; |
544 | const struct ppc_reg_offsets *offsets; | |
d195bc9f | 545 | size_t offset; |
d195bc9f | 546 | |
f2db237a AM |
547 | if (!ppc_floating_point_unit_p (gdbarch)) |
548 | return; | |
383f0f5b | 549 | |
f2db237a AM |
550 | tdep = gdbarch_tdep (gdbarch); |
551 | offsets = regset->descr; | |
552 | if (regnum == -1) | |
d195bc9f | 553 | { |
f2db237a AM |
554 | int i; |
555 | ||
556 | for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset; | |
557 | i < tdep->ppc_fp0_regnum + ppc_num_fprs; | |
558 | i++, offset += 8) | |
559 | ppc_supply_reg (regcache, i, fpregs, offset, 8); | |
560 | ||
561 | ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum, | |
562 | fpregs, offsets->fpscr_offset, offsets->fpscr_size); | |
563 | return; | |
d195bc9f MK |
564 | } |
565 | ||
f2db237a AM |
566 | offset = ppc_fpreg_offset (tdep, offsets, regnum); |
567 | ppc_supply_reg (regcache, regnum, fpregs, offset, | |
568 | regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8); | |
d195bc9f MK |
569 | } |
570 | ||
06caf7d2 CES |
571 | /* Supply register REGNUM in the Altivec register set REGSET |
572 | from the buffer specified by VRREGS and LEN to register cache | |
573 | REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */ | |
574 | ||
575 | void | |
576 | ppc_supply_vrregset (const struct regset *regset, struct regcache *regcache, | |
577 | int regnum, const void *vrregs, size_t len) | |
578 | { | |
579 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
580 | struct gdbarch_tdep *tdep; | |
581 | const struct ppc_reg_offsets *offsets; | |
582 | size_t offset; | |
583 | ||
584 | if (!ppc_altivec_support_p (gdbarch)) | |
585 | return; | |
586 | ||
587 | tdep = gdbarch_tdep (gdbarch); | |
588 | offsets = regset->descr; | |
589 | if (regnum == -1) | |
590 | { | |
591 | int i; | |
592 | ||
593 | for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset; | |
594 | i < tdep->ppc_vr0_regnum + ppc_num_vrs; | |
595 | i++, offset += 16) | |
596 | ppc_supply_reg (regcache, i, vrregs, offset, 16); | |
597 | ||
598 | ppc_supply_reg (regcache, (tdep->ppc_vrsave_regnum - 1), | |
599 | vrregs, offsets->vscr_offset, 4); | |
600 | ||
601 | ppc_supply_reg (regcache, tdep->ppc_vrsave_regnum, | |
602 | vrregs, offsets->vrsave_offset, 4); | |
603 | return; | |
604 | } | |
605 | ||
606 | offset = ppc_vrreg_offset (tdep, offsets, regnum); | |
607 | if (regnum != tdep->ppc_vrsave_regnum | |
608 | && regnum != tdep->ppc_vrsave_regnum - 1) | |
609 | ppc_supply_reg (regcache, regnum, vrregs, offset, 16); | |
610 | else | |
611 | ppc_supply_reg (regcache, regnum, | |
612 | vrregs, offset, 4); | |
613 | } | |
614 | ||
d195bc9f | 615 | /* Collect register REGNUM in the general-purpose register set |
f2db237a | 616 | REGSET from register cache REGCACHE into the buffer specified by |
d195bc9f MK |
617 | GREGS and LEN. If REGNUM is -1, do this for all registers in |
618 | REGSET. */ | |
619 | ||
620 | void | |
621 | ppc_collect_gregset (const struct regset *regset, | |
622 | const struct regcache *regcache, | |
623 | int regnum, void *gregs, size_t len) | |
624 | { | |
625 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
626 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
627 | const struct ppc_reg_offsets *offsets = regset->descr; | |
628 | size_t offset; | |
f2db237a | 629 | int regsize; |
d195bc9f | 630 | |
f2db237a | 631 | if (regnum == -1) |
d195bc9f | 632 | { |
f2db237a AM |
633 | int i; |
634 | int gpr_size = offsets->gpr_size; | |
635 | ||
636 | for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset; | |
637 | i < tdep->ppc_gp0_regnum + ppc_num_gprs; | |
638 | i++, offset += gpr_size) | |
639 | ppc_collect_reg (regcache, i, gregs, offset, gpr_size); | |
640 | ||
641 | ppc_collect_reg (regcache, gdbarch_pc_regnum (gdbarch), | |
642 | gregs, offsets->pc_offset, gpr_size); | |
643 | ppc_collect_reg (regcache, tdep->ppc_ps_regnum, | |
644 | gregs, offsets->ps_offset, gpr_size); | |
645 | ppc_collect_reg (regcache, tdep->ppc_lr_regnum, | |
646 | gregs, offsets->lr_offset, gpr_size); | |
647 | ppc_collect_reg (regcache, tdep->ppc_ctr_regnum, | |
648 | gregs, offsets->ctr_offset, gpr_size); | |
649 | ppc_collect_reg (regcache, tdep->ppc_cr_regnum, | |
650 | gregs, offsets->cr_offset, offsets->xr_size); | |
651 | ppc_collect_reg (regcache, tdep->ppc_xer_regnum, | |
652 | gregs, offsets->xer_offset, offsets->xr_size); | |
653 | ppc_collect_reg (regcache, tdep->ppc_mq_regnum, | |
654 | gregs, offsets->mq_offset, offsets->xr_size); | |
655 | return; | |
d195bc9f MK |
656 | } |
657 | ||
f2db237a AM |
658 | offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, ®size); |
659 | ppc_collect_reg (regcache, regnum, gregs, offset, regsize); | |
d195bc9f MK |
660 | } |
661 | ||
662 | /* Collect register REGNUM in the floating-point register set | |
f2db237a | 663 | REGSET from register cache REGCACHE into the buffer specified by |
d195bc9f MK |
664 | FPREGS and LEN. If REGNUM is -1, do this for all registers in |
665 | REGSET. */ | |
666 | ||
667 | void | |
668 | ppc_collect_fpregset (const struct regset *regset, | |
669 | const struct regcache *regcache, | |
670 | int regnum, void *fpregs, size_t len) | |
671 | { | |
672 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
f2db237a AM |
673 | struct gdbarch_tdep *tdep; |
674 | const struct ppc_reg_offsets *offsets; | |
d195bc9f | 675 | size_t offset; |
d195bc9f | 676 | |
f2db237a AM |
677 | if (!ppc_floating_point_unit_p (gdbarch)) |
678 | return; | |
383f0f5b | 679 | |
f2db237a AM |
680 | tdep = gdbarch_tdep (gdbarch); |
681 | offsets = regset->descr; | |
682 | if (regnum == -1) | |
d195bc9f | 683 | { |
f2db237a AM |
684 | int i; |
685 | ||
686 | for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset; | |
687 | i < tdep->ppc_fp0_regnum + ppc_num_fprs; | |
688 | i++, offset += 8) | |
689 | ppc_collect_reg (regcache, i, fpregs, offset, 8); | |
690 | ||
691 | ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum, | |
692 | fpregs, offsets->fpscr_offset, offsets->fpscr_size); | |
693 | return; | |
d195bc9f MK |
694 | } |
695 | ||
f2db237a AM |
696 | offset = ppc_fpreg_offset (tdep, offsets, regnum); |
697 | ppc_collect_reg (regcache, regnum, fpregs, offset, | |
698 | regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8); | |
d195bc9f | 699 | } |
06caf7d2 CES |
700 | |
701 | /* Collect register REGNUM in the Altivec register set | |
702 | REGSET from register cache REGCACHE into the buffer specified by | |
703 | VRREGS and LEN. If REGNUM is -1, do this for all registers in | |
704 | REGSET. */ | |
705 | ||
706 | void | |
707 | ppc_collect_vrregset (const struct regset *regset, | |
708 | const struct regcache *regcache, | |
709 | int regnum, void *vrregs, size_t len) | |
710 | { | |
711 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
712 | struct gdbarch_tdep *tdep; | |
713 | const struct ppc_reg_offsets *offsets; | |
714 | size_t offset; | |
715 | ||
716 | if (!ppc_altivec_support_p (gdbarch)) | |
717 | return; | |
718 | ||
719 | tdep = gdbarch_tdep (gdbarch); | |
720 | offsets = regset->descr; | |
721 | if (regnum == -1) | |
722 | { | |
723 | int i; | |
724 | ||
725 | for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset; | |
726 | i < tdep->ppc_vr0_regnum + ppc_num_vrs; | |
727 | i++, offset += 16) | |
728 | ppc_collect_reg (regcache, i, vrregs, offset, 16); | |
729 | ||
730 | ppc_collect_reg (regcache, (tdep->ppc_vrsave_regnum - 1), | |
731 | vrregs, offsets->vscr_offset, 4); | |
732 | ||
733 | ppc_collect_reg (regcache, tdep->ppc_vrsave_regnum, | |
734 | vrregs, offsets->vrsave_offset, 4); | |
735 | return; | |
736 | } | |
737 | ||
738 | offset = ppc_vrreg_offset (tdep, offsets, regnum); | |
739 | if (regnum != tdep->ppc_vrsave_regnum | |
740 | && regnum != tdep->ppc_vrsave_regnum - 1) | |
741 | ppc_collect_reg (regcache, regnum, vrregs, offset, 16); | |
742 | else | |
743 | ppc_collect_reg (regcache, regnum, | |
744 | vrregs, offset, 4); | |
745 | } | |
d195bc9f | 746 | \f |
0a613259 | 747 | |
7a78ae4e | 748 | /* Read a LEN-byte address from debugged memory address MEMADDR. */ |
c906108c | 749 | |
7a78ae4e ND |
750 | static CORE_ADDR |
751 | read_memory_addr (CORE_ADDR memaddr, int len) | |
752 | { | |
753 | return read_memory_unsigned_integer (memaddr, len); | |
754 | } | |
c906108c | 755 | |
7a78ae4e ND |
756 | static CORE_ADDR |
757 | rs6000_skip_prologue (CORE_ADDR pc) | |
b83266a0 SS |
758 | { |
759 | struct rs6000_framedata frame; | |
4e463ff5 DJ |
760 | CORE_ADDR limit_pc, func_addr; |
761 | ||
762 | /* See if we can determine the end of the prologue via the symbol table. | |
763 | If so, then return either PC, or the PC after the prologue, whichever | |
764 | is greater. */ | |
765 | if (find_pc_partial_function (pc, NULL, &func_addr, NULL)) | |
766 | { | |
767 | CORE_ADDR post_prologue_pc = skip_prologue_using_sal (func_addr); | |
768 | if (post_prologue_pc != 0) | |
769 | return max (pc, post_prologue_pc); | |
770 | } | |
771 | ||
772 | /* Can't determine prologue from the symbol table, need to examine | |
773 | instructions. */ | |
774 | ||
775 | /* Find an upper limit on the function prologue using the debug | |
776 | information. If the debug information could not be used to provide | |
777 | that bound, then use an arbitrary large number as the upper bound. */ | |
778 | limit_pc = skip_prologue_using_sal (pc); | |
779 | if (limit_pc == 0) | |
780 | limit_pc = pc + 100; /* Magic. */ | |
781 | ||
782 | pc = skip_prologue (pc, limit_pc, &frame); | |
b83266a0 SS |
783 | return pc; |
784 | } | |
785 | ||
0d1243d9 PG |
786 | static int |
787 | insn_changes_sp_or_jumps (unsigned long insn) | |
788 | { | |
789 | int opcode = (insn >> 26) & 0x03f; | |
790 | int sd = (insn >> 21) & 0x01f; | |
791 | int a = (insn >> 16) & 0x01f; | |
792 | int subcode = (insn >> 1) & 0x3ff; | |
793 | ||
794 | /* Changes the stack pointer. */ | |
795 | ||
796 | /* NOTE: There are many ways to change the value of a given register. | |
797 | The ways below are those used when the register is R1, the SP, | |
798 | in a funtion's epilogue. */ | |
799 | ||
800 | if (opcode == 31 && subcode == 444 && a == 1) | |
801 | return 1; /* mr R1,Rn */ | |
802 | if (opcode == 14 && sd == 1) | |
803 | return 1; /* addi R1,Rn,simm */ | |
804 | if (opcode == 58 && sd == 1) | |
805 | return 1; /* ld R1,ds(Rn) */ | |
806 | ||
807 | /* Transfers control. */ | |
808 | ||
809 | if (opcode == 18) | |
810 | return 1; /* b */ | |
811 | if (opcode == 16) | |
812 | return 1; /* bc */ | |
813 | if (opcode == 19 && subcode == 16) | |
814 | return 1; /* bclr */ | |
815 | if (opcode == 19 && subcode == 528) | |
816 | return 1; /* bcctr */ | |
817 | ||
818 | return 0; | |
819 | } | |
820 | ||
821 | /* Return true if we are in the function's epilogue, i.e. after the | |
822 | instruction that destroyed the function's stack frame. | |
823 | ||
824 | 1) scan forward from the point of execution: | |
825 | a) If you find an instruction that modifies the stack pointer | |
826 | or transfers control (except a return), execution is not in | |
827 | an epilogue, return. | |
828 | b) Stop scanning if you find a return instruction or reach the | |
829 | end of the function or reach the hard limit for the size of | |
830 | an epilogue. | |
831 | 2) scan backward from the point of execution: | |
832 | a) If you find an instruction that modifies the stack pointer, | |
833 | execution *is* in an epilogue, return. | |
834 | b) Stop scanning if you reach an instruction that transfers | |
835 | control or the beginning of the function or reach the hard | |
836 | limit for the size of an epilogue. */ | |
837 | ||
838 | static int | |
839 | rs6000_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc) | |
840 | { | |
841 | bfd_byte insn_buf[PPC_INSN_SIZE]; | |
842 | CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end; | |
843 | unsigned long insn; | |
844 | struct frame_info *curfrm; | |
845 | ||
846 | /* Find the search limits based on function boundaries and hard limit. */ | |
847 | ||
848 | if (!find_pc_partial_function (pc, NULL, &func_start, &func_end)) | |
849 | return 0; | |
850 | ||
851 | epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE; | |
852 | if (epilogue_start < func_start) epilogue_start = func_start; | |
853 | ||
854 | epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE; | |
855 | if (epilogue_end > func_end) epilogue_end = func_end; | |
856 | ||
857 | curfrm = get_current_frame (); | |
858 | ||
859 | /* Scan forward until next 'blr'. */ | |
860 | ||
861 | for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE) | |
862 | { | |
863 | if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE)) | |
864 | return 0; | |
4e463ff5 | 865 | insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE); |
0d1243d9 PG |
866 | if (insn == 0x4e800020) |
867 | break; | |
868 | if (insn_changes_sp_or_jumps (insn)) | |
869 | return 0; | |
870 | } | |
871 | ||
872 | /* Scan backward until adjustment to stack pointer (R1). */ | |
873 | ||
874 | for (scan_pc = pc - PPC_INSN_SIZE; | |
875 | scan_pc >= epilogue_start; | |
876 | scan_pc -= PPC_INSN_SIZE) | |
877 | { | |
878 | if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE)) | |
879 | return 0; | |
4e463ff5 | 880 | insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE); |
0d1243d9 PG |
881 | if (insn_changes_sp_or_jumps (insn)) |
882 | return 1; | |
883 | } | |
884 | ||
885 | return 0; | |
886 | } | |
887 | ||
143985b7 | 888 | /* Get the ith function argument for the current function. */ |
b9362cc7 | 889 | static CORE_ADDR |
143985b7 AF |
890 | rs6000_fetch_pointer_argument (struct frame_info *frame, int argi, |
891 | struct type *type) | |
892 | { | |
50fd1280 | 893 | return get_frame_register_unsigned (frame, 3 + argi); |
143985b7 AF |
894 | } |
895 | ||
c906108c SS |
896 | /* Calculate the destination of a branch/jump. Return -1 if not a branch. */ |
897 | ||
898 | static CORE_ADDR | |
0b1b3e42 UW |
899 | branch_dest (struct frame_info *frame, int opcode, int instr, |
900 | CORE_ADDR pc, CORE_ADDR safety) | |
c906108c | 901 | { |
0b1b3e42 | 902 | struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame)); |
c906108c SS |
903 | CORE_ADDR dest; |
904 | int immediate; | |
905 | int absolute; | |
906 | int ext_op; | |
907 | ||
908 | absolute = (int) ((instr >> 1) & 1); | |
909 | ||
c5aa993b JM |
910 | switch (opcode) |
911 | { | |
912 | case 18: | |
913 | immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */ | |
914 | if (absolute) | |
915 | dest = immediate; | |
916 | else | |
917 | dest = pc + immediate; | |
918 | break; | |
919 | ||
920 | case 16: | |
921 | immediate = ((instr & ~3) << 16) >> 16; /* br conditional */ | |
922 | if (absolute) | |
923 | dest = immediate; | |
924 | else | |
925 | dest = pc + immediate; | |
926 | break; | |
927 | ||
928 | case 19: | |
929 | ext_op = (instr >> 1) & 0x3ff; | |
930 | ||
931 | if (ext_op == 16) /* br conditional register */ | |
932 | { | |
0b1b3e42 | 933 | dest = get_frame_register_unsigned (frame, tdep->ppc_lr_regnum) & ~3; |
c5aa993b JM |
934 | |
935 | /* If we are about to return from a signal handler, dest is | |
936 | something like 0x3c90. The current frame is a signal handler | |
937 | caller frame, upon completion of the sigreturn system call | |
938 | execution will return to the saved PC in the frame. */ | |
0b1b3e42 UW |
939 | if (dest < tdep->text_segment_base) |
940 | dest = read_memory_addr (get_frame_base (frame) + SIG_FRAME_PC_OFFSET, | |
941 | tdep->wordsize); | |
c5aa993b JM |
942 | } |
943 | ||
944 | else if (ext_op == 528) /* br cond to count reg */ | |
945 | { | |
0b1b3e42 | 946 | dest = get_frame_register_unsigned (frame, tdep->ppc_ctr_regnum) & ~3; |
c5aa993b JM |
947 | |
948 | /* If we are about to execute a system call, dest is something | |
949 | like 0x22fc or 0x3b00. Upon completion the system call | |
950 | will return to the address in the link register. */ | |
0b1b3e42 UW |
951 | if (dest < tdep->text_segment_base) |
952 | dest = get_frame_register_unsigned (frame, tdep->ppc_lr_regnum) & ~3; | |
c5aa993b JM |
953 | } |
954 | else | |
955 | return -1; | |
956 | break; | |
c906108c | 957 | |
c5aa993b JM |
958 | default: |
959 | return -1; | |
960 | } | |
0b1b3e42 | 961 | return (dest < tdep->text_segment_base) ? safety : dest; |
c906108c SS |
962 | } |
963 | ||
964 | ||
965 | /* Sequence of bytes for breakpoint instruction. */ | |
966 | ||
f4f9705a | 967 | const static unsigned char * |
67d57894 MD |
968 | rs6000_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr, |
969 | int *bp_size) | |
c906108c | 970 | { |
aaab4dba AC |
971 | static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 }; |
972 | static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d }; | |
c906108c | 973 | *bp_size = 4; |
67d57894 | 974 | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) |
c906108c SS |
975 | return big_breakpoint; |
976 | else | |
977 | return little_breakpoint; | |
978 | } | |
979 | ||
980 | ||
ce5eab59 UW |
981 | /* Instruction masks used during single-stepping of atomic sequences. */ |
982 | #define LWARX_MASK 0xfc0007fe | |
983 | #define LWARX_INSTRUCTION 0x7c000028 | |
984 | #define LDARX_INSTRUCTION 0x7c0000A8 | |
985 | #define STWCX_MASK 0xfc0007ff | |
986 | #define STWCX_INSTRUCTION 0x7c00012d | |
987 | #define STDCX_INSTRUCTION 0x7c0001ad | |
988 | #define BC_MASK 0xfc000000 | |
989 | #define BC_INSTRUCTION 0x40000000 | |
990 | ||
991 | /* Checks for an atomic sequence of instructions beginning with a LWARX/LDARX | |
992 | instruction and ending with a STWCX/STDCX instruction. If such a sequence | |
993 | is found, attempt to step through it. A breakpoint is placed at the end of | |
994 | the sequence. */ | |
995 | ||
996 | static int | |
0b1b3e42 | 997 | deal_with_atomic_sequence (struct frame_info *frame) |
ce5eab59 | 998 | { |
0b1b3e42 | 999 | CORE_ADDR pc = get_frame_pc (frame); |
ce5eab59 UW |
1000 | CORE_ADDR breaks[2] = {-1, -1}; |
1001 | CORE_ADDR loc = pc; | |
1002 | CORE_ADDR branch_bp; /* Breakpoint at branch instruction's destination. */ | |
24d45690 | 1003 | CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */ |
ce5eab59 UW |
1004 | int insn = read_memory_integer (loc, PPC_INSN_SIZE); |
1005 | int insn_count; | |
1006 | int index; | |
1007 | int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */ | |
1008 | const int atomic_sequence_length = 16; /* Instruction sequence length. */ | |
24d45690 | 1009 | int opcode; /* Branch instruction's OPcode. */ |
ce5eab59 UW |
1010 | int bc_insn_count = 0; /* Conditional branch instruction count. */ |
1011 | ||
1012 | /* Assume all atomic sequences start with a lwarx/ldarx instruction. */ | |
1013 | if ((insn & LWARX_MASK) != LWARX_INSTRUCTION | |
1014 | && (insn & LWARX_MASK) != LDARX_INSTRUCTION) | |
1015 | return 0; | |
1016 | ||
1017 | /* Assume that no atomic sequence is longer than "atomic_sequence_length" | |
1018 | instructions. */ | |
1019 | for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count) | |
1020 | { | |
1021 | loc += PPC_INSN_SIZE; | |
1022 | insn = read_memory_integer (loc, PPC_INSN_SIZE); | |
1023 | ||
1024 | /* Assume that there is at most one conditional branch in the atomic | |
1025 | sequence. If a conditional branch is found, put a breakpoint in | |
1026 | its destination address. */ | |
1027 | if ((insn & BC_MASK) == BC_INSTRUCTION) | |
1028 | { | |
1029 | if (bc_insn_count >= 1) | |
1030 | return 0; /* More than one conditional branch found, fallback | |
1031 | to the standard single-step code. */ | |
1032 | ||
24d45690 | 1033 | opcode = insn >> 26; |
0b1b3e42 | 1034 | branch_bp = branch_dest (frame, opcode, insn, pc, breaks[0]); |
ce5eab59 UW |
1035 | |
1036 | if (branch_bp != -1) | |
1037 | { | |
1038 | breaks[1] = branch_bp; | |
1039 | bc_insn_count++; | |
1040 | last_breakpoint++; | |
1041 | } | |
1042 | } | |
1043 | ||
1044 | if ((insn & STWCX_MASK) == STWCX_INSTRUCTION | |
1045 | || (insn & STWCX_MASK) == STDCX_INSTRUCTION) | |
1046 | break; | |
1047 | } | |
1048 | ||
1049 | /* Assume that the atomic sequence ends with a stwcx/stdcx instruction. */ | |
1050 | if ((insn & STWCX_MASK) != STWCX_INSTRUCTION | |
1051 | && (insn & STWCX_MASK) != STDCX_INSTRUCTION) | |
1052 | return 0; | |
1053 | ||
24d45690 | 1054 | closing_insn = loc; |
ce5eab59 UW |
1055 | loc += PPC_INSN_SIZE; |
1056 | insn = read_memory_integer (loc, PPC_INSN_SIZE); | |
1057 | ||
1058 | /* Insert a breakpoint right after the end of the atomic sequence. */ | |
1059 | breaks[0] = loc; | |
1060 | ||
24d45690 UW |
1061 | /* Check for duplicated breakpoints. Check also for a breakpoint |
1062 | placed (branch instruction's destination) at the stwcx/stdcx | |
1063 | instruction, this resets the reservation and take us back to the | |
1064 | lwarx/ldarx instruction at the beginning of the atomic sequence. */ | |
1065 | if (last_breakpoint && ((breaks[1] == breaks[0]) | |
1066 | || (breaks[1] == closing_insn))) | |
ce5eab59 UW |
1067 | last_breakpoint = 0; |
1068 | ||
1069 | /* Effectively inserts the breakpoints. */ | |
1070 | for (index = 0; index <= last_breakpoint; index++) | |
1071 | insert_single_step_breakpoint (breaks[index]); | |
1072 | ||
1073 | return 1; | |
1074 | } | |
1075 | ||
1076 | /* AIX does not support PT_STEP. Simulate it. */ | |
c906108c | 1077 | |
e6590a1b | 1078 | int |
0b1b3e42 | 1079 | rs6000_software_single_step (struct frame_info *frame) |
c906108c | 1080 | { |
7c40d541 KB |
1081 | CORE_ADDR dummy; |
1082 | int breakp_sz; | |
67d57894 MD |
1083 | const gdb_byte *breakp |
1084 | = rs6000_breakpoint_from_pc (get_frame_arch (frame), &dummy, &breakp_sz); | |
c906108c SS |
1085 | int ii, insn; |
1086 | CORE_ADDR loc; | |
1087 | CORE_ADDR breaks[2]; | |
1088 | int opcode; | |
1089 | ||
0b1b3e42 | 1090 | loc = get_frame_pc (frame); |
c906108c | 1091 | |
e0cd558a | 1092 | insn = read_memory_integer (loc, 4); |
c906108c | 1093 | |
0b1b3e42 | 1094 | if (deal_with_atomic_sequence (frame)) |
ce5eab59 UW |
1095 | return 1; |
1096 | ||
e0cd558a UW |
1097 | breaks[0] = loc + breakp_sz; |
1098 | opcode = insn >> 26; | |
0b1b3e42 | 1099 | breaks[1] = branch_dest (frame, opcode, insn, loc, breaks[0]); |
c906108c | 1100 | |
e0cd558a UW |
1101 | /* Don't put two breakpoints on the same address. */ |
1102 | if (breaks[1] == breaks[0]) | |
1103 | breaks[1] = -1; | |
c906108c | 1104 | |
e0cd558a UW |
1105 | for (ii = 0; ii < 2; ++ii) |
1106 | { | |
1107 | /* ignore invalid breakpoint. */ | |
1108 | if (breaks[ii] == -1) | |
1109 | continue; | |
1110 | insert_single_step_breakpoint (breaks[ii]); | |
c5aa993b | 1111 | } |
c906108c | 1112 | |
c906108c | 1113 | errno = 0; /* FIXME, don't ignore errors! */ |
c5aa993b | 1114 | /* What errors? {read,write}_memory call error(). */ |
e6590a1b | 1115 | return 1; |
c906108c SS |
1116 | } |
1117 | ||
1118 | ||
c906108c SS |
1119 | #define SIGNED_SHORT(x) \ |
1120 | ((sizeof (short) == 2) \ | |
1121 | ? ((int)(short)(x)) \ | |
1122 | : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000))) | |
1123 | ||
1124 | #define GET_SRC_REG(x) (((x) >> 21) & 0x1f) | |
1125 | ||
55d05f3b KB |
1126 | /* Limit the number of skipped non-prologue instructions, as the examining |
1127 | of the prologue is expensive. */ | |
1128 | static int max_skip_non_prologue_insns = 10; | |
1129 | ||
773df3e5 JB |
1130 | /* Return nonzero if the given instruction OP can be part of the prologue |
1131 | of a function and saves a parameter on the stack. FRAMEP should be | |
1132 | set if one of the previous instructions in the function has set the | |
1133 | Frame Pointer. */ | |
1134 | ||
1135 | static int | |
1136 | store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg) | |
1137 | { | |
1138 | /* Move parameters from argument registers to temporary register. */ | |
1139 | if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */ | |
1140 | { | |
1141 | /* Rx must be scratch register r0. */ | |
1142 | const int rx_regno = (op >> 16) & 31; | |
1143 | /* Ry: Only r3 - r10 are used for parameter passing. */ | |
1144 | const int ry_regno = GET_SRC_REG (op); | |
1145 | ||
1146 | if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10) | |
1147 | { | |
1148 | *r0_contains_arg = 1; | |
1149 | return 1; | |
1150 | } | |
1151 | else | |
1152 | return 0; | |
1153 | } | |
1154 | ||
1155 | /* Save a General Purpose Register on stack. */ | |
1156 | ||
1157 | if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */ | |
1158 | (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */ | |
1159 | { | |
1160 | /* Rx: Only r3 - r10 are used for parameter passing. */ | |
1161 | const int rx_regno = GET_SRC_REG (op); | |
1162 | ||
1163 | return (rx_regno >= 3 && rx_regno <= 10); | |
1164 | } | |
1165 | ||
1166 | /* Save a General Purpose Register on stack via the Frame Pointer. */ | |
1167 | ||
1168 | if (framep && | |
1169 | ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */ | |
1170 | (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */ | |
1171 | (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */ | |
1172 | { | |
1173 | /* Rx: Usually, only r3 - r10 are used for parameter passing. | |
1174 | However, the compiler sometimes uses r0 to hold an argument. */ | |
1175 | const int rx_regno = GET_SRC_REG (op); | |
1176 | ||
1177 | return ((rx_regno >= 3 && rx_regno <= 10) | |
1178 | || (rx_regno == 0 && *r0_contains_arg)); | |
1179 | } | |
1180 | ||
1181 | if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */ | |
1182 | { | |
1183 | /* Only f2 - f8 are used for parameter passing. */ | |
1184 | const int src_regno = GET_SRC_REG (op); | |
1185 | ||
1186 | return (src_regno >= 2 && src_regno <= 8); | |
1187 | } | |
1188 | ||
1189 | if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */ | |
1190 | { | |
1191 | /* Only f2 - f8 are used for parameter passing. */ | |
1192 | const int src_regno = GET_SRC_REG (op); | |
1193 | ||
1194 | return (src_regno >= 2 && src_regno <= 8); | |
1195 | } | |
1196 | ||
1197 | /* Not an insn that saves a parameter on stack. */ | |
1198 | return 0; | |
1199 | } | |
55d05f3b | 1200 | |
3c77c82a DJ |
1201 | /* Assuming that INSN is a "bl" instruction located at PC, return |
1202 | nonzero if the destination of the branch is a "blrl" instruction. | |
1203 | ||
1204 | This sequence is sometimes found in certain function prologues. | |
1205 | It allows the function to load the LR register with a value that | |
1206 | they can use to access PIC data using PC-relative offsets. */ | |
1207 | ||
1208 | static int | |
1209 | bl_to_blrl_insn_p (CORE_ADDR pc, int insn) | |
1210 | { | |
0b1b3e42 UW |
1211 | CORE_ADDR dest; |
1212 | int immediate; | |
1213 | int absolute; | |
3c77c82a DJ |
1214 | int dest_insn; |
1215 | ||
0b1b3e42 UW |
1216 | absolute = (int) ((insn >> 1) & 1); |
1217 | immediate = ((insn & ~3) << 6) >> 6; | |
1218 | if (absolute) | |
1219 | dest = immediate; | |
1220 | else | |
1221 | dest = pc + immediate; | |
1222 | ||
3c77c82a DJ |
1223 | dest_insn = read_memory_integer (dest, 4); |
1224 | if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */ | |
1225 | return 1; | |
1226 | ||
1227 | return 0; | |
1228 | } | |
1229 | ||
6a16c029 TJB |
1230 | /* return pc value after skipping a function prologue and also return |
1231 | information about a function frame. | |
1232 | ||
1233 | in struct rs6000_framedata fdata: | |
1234 | - frameless is TRUE, if function does not have a frame. | |
1235 | - nosavedpc is TRUE, if function does not save %pc value in its frame. | |
1236 | - offset is the initial size of this stack frame --- the amount by | |
1237 | which we decrement the sp to allocate the frame. | |
1238 | - saved_gpr is the number of the first saved gpr. | |
1239 | - saved_fpr is the number of the first saved fpr. | |
1240 | - saved_vr is the number of the first saved vr. | |
1241 | - saved_ev is the number of the first saved ev. | |
1242 | - alloca_reg is the number of the register used for alloca() handling. | |
1243 | Otherwise -1. | |
1244 | - gpr_offset is the offset of the first saved gpr from the previous frame. | |
1245 | - fpr_offset is the offset of the first saved fpr from the previous frame. | |
1246 | - vr_offset is the offset of the first saved vr from the previous frame. | |
1247 | - ev_offset is the offset of the first saved ev from the previous frame. | |
1248 | - lr_offset is the offset of the saved lr | |
1249 | - cr_offset is the offset of the saved cr | |
1250 | - vrsave_offset is the offset of the saved vrsave register | |
1251 | */ | |
1252 | ||
7a78ae4e | 1253 | static CORE_ADDR |
077276e8 | 1254 | skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata) |
c906108c SS |
1255 | { |
1256 | CORE_ADDR orig_pc = pc; | |
55d05f3b | 1257 | CORE_ADDR last_prologue_pc = pc; |
6be8bc0c | 1258 | CORE_ADDR li_found_pc = 0; |
50fd1280 | 1259 | gdb_byte buf[4]; |
c906108c SS |
1260 | unsigned long op; |
1261 | long offset = 0; | |
6be8bc0c | 1262 | long vr_saved_offset = 0; |
482ca3f5 KB |
1263 | int lr_reg = -1; |
1264 | int cr_reg = -1; | |
6be8bc0c | 1265 | int vr_reg = -1; |
96ff0de4 EZ |
1266 | int ev_reg = -1; |
1267 | long ev_offset = 0; | |
6be8bc0c | 1268 | int vrsave_reg = -1; |
c906108c SS |
1269 | int reg; |
1270 | int framep = 0; | |
1271 | int minimal_toc_loaded = 0; | |
ddb20c56 | 1272 | int prev_insn_was_prologue_insn = 1; |
55d05f3b | 1273 | int num_skip_non_prologue_insns = 0; |
773df3e5 | 1274 | int r0_contains_arg = 0; |
96ff0de4 | 1275 | const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch); |
6f99cb26 | 1276 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
c906108c | 1277 | |
ddb20c56 | 1278 | memset (fdata, 0, sizeof (struct rs6000_framedata)); |
c906108c SS |
1279 | fdata->saved_gpr = -1; |
1280 | fdata->saved_fpr = -1; | |
6be8bc0c | 1281 | fdata->saved_vr = -1; |
96ff0de4 | 1282 | fdata->saved_ev = -1; |
c906108c SS |
1283 | fdata->alloca_reg = -1; |
1284 | fdata->frameless = 1; | |
1285 | fdata->nosavedpc = 1; | |
1286 | ||
55d05f3b | 1287 | for (;; pc += 4) |
c906108c | 1288 | { |
ddb20c56 KB |
1289 | /* Sometimes it isn't clear if an instruction is a prologue |
1290 | instruction or not. When we encounter one of these ambiguous | |
1291 | cases, we'll set prev_insn_was_prologue_insn to 0 (false). | |
1292 | Otherwise, we'll assume that it really is a prologue instruction. */ | |
1293 | if (prev_insn_was_prologue_insn) | |
1294 | last_prologue_pc = pc; | |
55d05f3b KB |
1295 | |
1296 | /* Stop scanning if we've hit the limit. */ | |
4e463ff5 | 1297 | if (pc >= lim_pc) |
55d05f3b KB |
1298 | break; |
1299 | ||
ddb20c56 KB |
1300 | prev_insn_was_prologue_insn = 1; |
1301 | ||
55d05f3b | 1302 | /* Fetch the instruction and convert it to an integer. */ |
ddb20c56 KB |
1303 | if (target_read_memory (pc, buf, 4)) |
1304 | break; | |
4e463ff5 | 1305 | op = extract_unsigned_integer (buf, 4); |
c906108c | 1306 | |
c5aa993b JM |
1307 | if ((op & 0xfc1fffff) == 0x7c0802a6) |
1308 | { /* mflr Rx */ | |
43b1ab88 AC |
1309 | /* Since shared library / PIC code, which needs to get its |
1310 | address at runtime, can appear to save more than one link | |
1311 | register vis: | |
1312 | ||
1313 | *INDENT-OFF* | |
1314 | stwu r1,-304(r1) | |
1315 | mflr r3 | |
1316 | bl 0xff570d0 (blrl) | |
1317 | stw r30,296(r1) | |
1318 | mflr r30 | |
1319 | stw r31,300(r1) | |
1320 | stw r3,308(r1); | |
1321 | ... | |
1322 | *INDENT-ON* | |
1323 | ||
1324 | remember just the first one, but skip over additional | |
1325 | ones. */ | |
721d14ba | 1326 | if (lr_reg == -1) |
43b1ab88 | 1327 | lr_reg = (op & 0x03e00000); |
773df3e5 JB |
1328 | if (lr_reg == 0) |
1329 | r0_contains_arg = 0; | |
c5aa993b | 1330 | continue; |
c5aa993b JM |
1331 | } |
1332 | else if ((op & 0xfc1fffff) == 0x7c000026) | |
1333 | { /* mfcr Rx */ | |
98f08d3d | 1334 | cr_reg = (op & 0x03e00000); |
773df3e5 JB |
1335 | if (cr_reg == 0) |
1336 | r0_contains_arg = 0; | |
c5aa993b | 1337 | continue; |
c906108c | 1338 | |
c906108c | 1339 | } |
c5aa993b JM |
1340 | else if ((op & 0xfc1f0000) == 0xd8010000) |
1341 | { /* stfd Rx,NUM(r1) */ | |
1342 | reg = GET_SRC_REG (op); | |
1343 | if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg) | |
1344 | { | |
1345 | fdata->saved_fpr = reg; | |
1346 | fdata->fpr_offset = SIGNED_SHORT (op) + offset; | |
1347 | } | |
1348 | continue; | |
c906108c | 1349 | |
c5aa993b JM |
1350 | } |
1351 | else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */ | |
7a78ae4e ND |
1352 | (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */ |
1353 | (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */ | |
1354 | (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */ | |
c5aa993b JM |
1355 | { |
1356 | ||
1357 | reg = GET_SRC_REG (op); | |
1358 | if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg) | |
1359 | { | |
1360 | fdata->saved_gpr = reg; | |
7a78ae4e | 1361 | if ((op & 0xfc1f0003) == 0xf8010000) |
98f08d3d | 1362 | op &= ~3UL; |
c5aa993b JM |
1363 | fdata->gpr_offset = SIGNED_SHORT (op) + offset; |
1364 | } | |
1365 | continue; | |
c906108c | 1366 | |
ddb20c56 KB |
1367 | } |
1368 | else if ((op & 0xffff0000) == 0x60000000) | |
1369 | { | |
96ff0de4 | 1370 | /* nop */ |
ddb20c56 KB |
1371 | /* Allow nops in the prologue, but do not consider them to |
1372 | be part of the prologue unless followed by other prologue | |
1373 | instructions. */ | |
1374 | prev_insn_was_prologue_insn = 0; | |
1375 | continue; | |
1376 | ||
c906108c | 1377 | } |
c5aa993b JM |
1378 | else if ((op & 0xffff0000) == 0x3c000000) |
1379 | { /* addis 0,0,NUM, used | |
1380 | for >= 32k frames */ | |
1381 | fdata->offset = (op & 0x0000ffff) << 16; | |
1382 | fdata->frameless = 0; | |
773df3e5 | 1383 | r0_contains_arg = 0; |
c5aa993b JM |
1384 | continue; |
1385 | ||
1386 | } | |
1387 | else if ((op & 0xffff0000) == 0x60000000) | |
1388 | { /* ori 0,0,NUM, 2nd ha | |
1389 | lf of >= 32k frames */ | |
1390 | fdata->offset |= (op & 0x0000ffff); | |
1391 | fdata->frameless = 0; | |
773df3e5 | 1392 | r0_contains_arg = 0; |
c5aa993b JM |
1393 | continue; |
1394 | ||
1395 | } | |
be723e22 | 1396 | else if (lr_reg >= 0 && |
98f08d3d KB |
1397 | /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */ |
1398 | (((op & 0xffff0000) == (lr_reg | 0xf8010000)) || | |
1399 | /* stw Rx, NUM(r1) */ | |
1400 | ((op & 0xffff0000) == (lr_reg | 0x90010000)) || | |
1401 | /* stwu Rx, NUM(r1) */ | |
1402 | ((op & 0xffff0000) == (lr_reg | 0x94010000)))) | |
1403 | { /* where Rx == lr */ | |
1404 | fdata->lr_offset = offset; | |
c5aa993b | 1405 | fdata->nosavedpc = 0; |
be723e22 MS |
1406 | /* Invalidate lr_reg, but don't set it to -1. |
1407 | That would mean that it had never been set. */ | |
1408 | lr_reg = -2; | |
98f08d3d KB |
1409 | if ((op & 0xfc000003) == 0xf8000000 || /* std */ |
1410 | (op & 0xfc000000) == 0x90000000) /* stw */ | |
1411 | { | |
1412 | /* Does not update r1, so add displacement to lr_offset. */ | |
1413 | fdata->lr_offset += SIGNED_SHORT (op); | |
1414 | } | |
c5aa993b JM |
1415 | continue; |
1416 | ||
1417 | } | |
be723e22 | 1418 | else if (cr_reg >= 0 && |
98f08d3d KB |
1419 | /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */ |
1420 | (((op & 0xffff0000) == (cr_reg | 0xf8010000)) || | |
1421 | /* stw Rx, NUM(r1) */ | |
1422 | ((op & 0xffff0000) == (cr_reg | 0x90010000)) || | |
1423 | /* stwu Rx, NUM(r1) */ | |
1424 | ((op & 0xffff0000) == (cr_reg | 0x94010000)))) | |
1425 | { /* where Rx == cr */ | |
1426 | fdata->cr_offset = offset; | |
be723e22 MS |
1427 | /* Invalidate cr_reg, but don't set it to -1. |
1428 | That would mean that it had never been set. */ | |
1429 | cr_reg = -2; | |
98f08d3d KB |
1430 | if ((op & 0xfc000003) == 0xf8000000 || |
1431 | (op & 0xfc000000) == 0x90000000) | |
1432 | { | |
1433 | /* Does not update r1, so add displacement to cr_offset. */ | |
1434 | fdata->cr_offset += SIGNED_SHORT (op); | |
1435 | } | |
c5aa993b JM |
1436 | continue; |
1437 | ||
1438 | } | |
721d14ba DJ |
1439 | else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1) |
1440 | { | |
1441 | /* bcl 20,xx,.+4 is used to get the current PC, with or without | |
1442 | prediction bits. If the LR has already been saved, we can | |
1443 | skip it. */ | |
1444 | continue; | |
1445 | } | |
c5aa993b JM |
1446 | else if (op == 0x48000005) |
1447 | { /* bl .+4 used in | |
1448 | -mrelocatable */ | |
1449 | continue; | |
1450 | ||
1451 | } | |
1452 | else if (op == 0x48000004) | |
1453 | { /* b .+4 (xlc) */ | |
1454 | break; | |
1455 | ||
c5aa993b | 1456 | } |
6be8bc0c EZ |
1457 | else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used |
1458 | in V.4 -mminimal-toc */ | |
c5aa993b JM |
1459 | (op & 0xffff0000) == 0x3bde0000) |
1460 | { /* addi 30,30,foo@l */ | |
1461 | continue; | |
c906108c | 1462 | |
c5aa993b JM |
1463 | } |
1464 | else if ((op & 0xfc000001) == 0x48000001) | |
1465 | { /* bl foo, | |
1466 | to save fprs??? */ | |
c906108c | 1467 | |
c5aa993b | 1468 | fdata->frameless = 0; |
3c77c82a DJ |
1469 | |
1470 | /* If the return address has already been saved, we can skip | |
1471 | calls to blrl (for PIC). */ | |
1472 | if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op)) | |
1473 | continue; | |
1474 | ||
6be8bc0c | 1475 | /* Don't skip over the subroutine call if it is not within |
ebd98106 FF |
1476 | the first three instructions of the prologue and either |
1477 | we have no line table information or the line info tells | |
1478 | us that the subroutine call is not part of the line | |
1479 | associated with the prologue. */ | |
c5aa993b | 1480 | if ((pc - orig_pc) > 8) |
ebd98106 FF |
1481 | { |
1482 | struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0); | |
1483 | struct symtab_and_line this_sal = find_pc_line (pc, 0); | |
1484 | ||
1485 | if ((prologue_sal.line == 0) || (prologue_sal.line != this_sal.line)) | |
1486 | break; | |
1487 | } | |
c5aa993b JM |
1488 | |
1489 | op = read_memory_integer (pc + 4, 4); | |
1490 | ||
6be8bc0c EZ |
1491 | /* At this point, make sure this is not a trampoline |
1492 | function (a function that simply calls another functions, | |
1493 | and nothing else). If the next is not a nop, this branch | |
1494 | was part of the function prologue. */ | |
c5aa993b JM |
1495 | |
1496 | if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */ | |
1497 | break; /* don't skip over | |
1498 | this branch */ | |
1499 | continue; | |
1500 | ||
c5aa993b | 1501 | } |
98f08d3d KB |
1502 | /* update stack pointer */ |
1503 | else if ((op & 0xfc1f0000) == 0x94010000) | |
1504 | { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */ | |
c5aa993b JM |
1505 | fdata->frameless = 0; |
1506 | fdata->offset = SIGNED_SHORT (op); | |
1507 | offset = fdata->offset; | |
1508 | continue; | |
c5aa993b | 1509 | } |
98f08d3d KB |
1510 | else if ((op & 0xfc1f016a) == 0x7c01016e) |
1511 | { /* stwux rX,r1,rY */ | |
1512 | /* no way to figure out what r1 is going to be */ | |
1513 | fdata->frameless = 0; | |
1514 | offset = fdata->offset; | |
1515 | continue; | |
1516 | } | |
1517 | else if ((op & 0xfc1f0003) == 0xf8010001) | |
1518 | { /* stdu rX,NUM(r1) */ | |
1519 | fdata->frameless = 0; | |
1520 | fdata->offset = SIGNED_SHORT (op & ~3UL); | |
1521 | offset = fdata->offset; | |
1522 | continue; | |
1523 | } | |
1524 | else if ((op & 0xfc1f016a) == 0x7c01016a) | |
1525 | { /* stdux rX,r1,rY */ | |
1526 | /* no way to figure out what r1 is going to be */ | |
c5aa993b JM |
1527 | fdata->frameless = 0; |
1528 | offset = fdata->offset; | |
1529 | continue; | |
c5aa993b | 1530 | } |
7313566f FF |
1531 | else if ((op & 0xffff0000) == 0x38210000) |
1532 | { /* addi r1,r1,SIMM */ | |
1533 | fdata->frameless = 0; | |
1534 | fdata->offset += SIGNED_SHORT (op); | |
1535 | offset = fdata->offset; | |
1536 | continue; | |
1537 | } | |
4e463ff5 DJ |
1538 | /* Load up minimal toc pointer. Do not treat an epilogue restore |
1539 | of r31 as a minimal TOC load. */ | |
98f08d3d KB |
1540 | else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */ |
1541 | (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */ | |
4e463ff5 | 1542 | && !framep |
c5aa993b | 1543 | && !minimal_toc_loaded) |
98f08d3d | 1544 | { |
c5aa993b JM |
1545 | minimal_toc_loaded = 1; |
1546 | continue; | |
1547 | ||
f6077098 KB |
1548 | /* move parameters from argument registers to local variable |
1549 | registers */ | |
1550 | } | |
1551 | else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */ | |
1552 | (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */ | |
1553 | (((op >> 21) & 31) <= 10) && | |
96ff0de4 | 1554 | ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */ |
f6077098 KB |
1555 | { |
1556 | continue; | |
1557 | ||
c5aa993b JM |
1558 | /* store parameters in stack */ |
1559 | } | |
e802b915 | 1560 | /* Move parameters from argument registers to temporary register. */ |
773df3e5 | 1561 | else if (store_param_on_stack_p (op, framep, &r0_contains_arg)) |
e802b915 | 1562 | { |
c5aa993b JM |
1563 | continue; |
1564 | ||
1565 | /* Set up frame pointer */ | |
1566 | } | |
1567 | else if (op == 0x603f0000 /* oril r31, r1, 0x0 */ | |
1568 | || op == 0x7c3f0b78) | |
1569 | { /* mr r31, r1 */ | |
1570 | fdata->frameless = 0; | |
1571 | framep = 1; | |
6f99cb26 | 1572 | fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31); |
c5aa993b JM |
1573 | continue; |
1574 | ||
1575 | /* Another way to set up the frame pointer. */ | |
1576 | } | |
1577 | else if ((op & 0xfc1fffff) == 0x38010000) | |
1578 | { /* addi rX, r1, 0x0 */ | |
1579 | fdata->frameless = 0; | |
1580 | framep = 1; | |
6f99cb26 AC |
1581 | fdata->alloca_reg = (tdep->ppc_gp0_regnum |
1582 | + ((op & ~0x38010000) >> 21)); | |
c5aa993b | 1583 | continue; |
c5aa993b | 1584 | } |
6be8bc0c EZ |
1585 | /* AltiVec related instructions. */ |
1586 | /* Store the vrsave register (spr 256) in another register for | |
1587 | later manipulation, or load a register into the vrsave | |
1588 | register. 2 instructions are used: mfvrsave and | |
1589 | mtvrsave. They are shorthand notation for mfspr Rn, SPR256 | |
1590 | and mtspr SPR256, Rn. */ | |
1591 | /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110 | |
1592 | mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */ | |
1593 | else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */ | |
1594 | { | |
1595 | vrsave_reg = GET_SRC_REG (op); | |
1596 | continue; | |
1597 | } | |
1598 | else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */ | |
1599 | { | |
1600 | continue; | |
1601 | } | |
1602 | /* Store the register where vrsave was saved to onto the stack: | |
1603 | rS is the register where vrsave was stored in a previous | |
1604 | instruction. */ | |
1605 | /* 100100 sssss 00001 dddddddd dddddddd */ | |
1606 | else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */ | |
1607 | { | |
1608 | if (vrsave_reg == GET_SRC_REG (op)) | |
1609 | { | |
1610 | fdata->vrsave_offset = SIGNED_SHORT (op) + offset; | |
1611 | vrsave_reg = -1; | |
1612 | } | |
1613 | continue; | |
1614 | } | |
1615 | /* Compute the new value of vrsave, by modifying the register | |
1616 | where vrsave was saved to. */ | |
1617 | else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */ | |
1618 | || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */ | |
1619 | { | |
1620 | continue; | |
1621 | } | |
1622 | /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first | |
1623 | in a pair of insns to save the vector registers on the | |
1624 | stack. */ | |
1625 | /* 001110 00000 00000 iiii iiii iiii iiii */ | |
96ff0de4 EZ |
1626 | /* 001110 01110 00000 iiii iiii iiii iiii */ |
1627 | else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */ | |
1628 | || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */ | |
6be8bc0c | 1629 | { |
773df3e5 JB |
1630 | if ((op & 0xffff0000) == 0x38000000) |
1631 | r0_contains_arg = 0; | |
6be8bc0c EZ |
1632 | li_found_pc = pc; |
1633 | vr_saved_offset = SIGNED_SHORT (op); | |
773df3e5 JB |
1634 | |
1635 | /* This insn by itself is not part of the prologue, unless | |
1636 | if part of the pair of insns mentioned above. So do not | |
1637 | record this insn as part of the prologue yet. */ | |
1638 | prev_insn_was_prologue_insn = 0; | |
6be8bc0c EZ |
1639 | } |
1640 | /* Store vector register S at (r31+r0) aligned to 16 bytes. */ | |
1641 | /* 011111 sssss 11111 00000 00111001110 */ | |
1642 | else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */ | |
1643 | { | |
1644 | if (pc == (li_found_pc + 4)) | |
1645 | { | |
1646 | vr_reg = GET_SRC_REG (op); | |
1647 | /* If this is the first vector reg to be saved, or if | |
1648 | it has a lower number than others previously seen, | |
1649 | reupdate the frame info. */ | |
1650 | if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg) | |
1651 | { | |
1652 | fdata->saved_vr = vr_reg; | |
1653 | fdata->vr_offset = vr_saved_offset + offset; | |
1654 | } | |
1655 | vr_saved_offset = -1; | |
1656 | vr_reg = -1; | |
1657 | li_found_pc = 0; | |
1658 | } | |
1659 | } | |
1660 | /* End AltiVec related instructions. */ | |
96ff0de4 EZ |
1661 | |
1662 | /* Start BookE related instructions. */ | |
1663 | /* Store gen register S at (r31+uimm). | |
1664 | Any register less than r13 is volatile, so we don't care. */ | |
1665 | /* 000100 sssss 11111 iiiii 01100100001 */ | |
1666 | else if (arch_info->mach == bfd_mach_ppc_e500 | |
1667 | && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */ | |
1668 | { | |
1669 | if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */ | |
1670 | { | |
1671 | unsigned int imm; | |
1672 | ev_reg = GET_SRC_REG (op); | |
1673 | imm = (op >> 11) & 0x1f; | |
1674 | ev_offset = imm * 8; | |
1675 | /* If this is the first vector reg to be saved, or if | |
1676 | it has a lower number than others previously seen, | |
1677 | reupdate the frame info. */ | |
1678 | if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg) | |
1679 | { | |
1680 | fdata->saved_ev = ev_reg; | |
1681 | fdata->ev_offset = ev_offset + offset; | |
1682 | } | |
1683 | } | |
1684 | continue; | |
1685 | } | |
1686 | /* Store gen register rS at (r1+rB). */ | |
1687 | /* 000100 sssss 00001 bbbbb 01100100000 */ | |
1688 | else if (arch_info->mach == bfd_mach_ppc_e500 | |
1689 | && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */ | |
1690 | { | |
1691 | if (pc == (li_found_pc + 4)) | |
1692 | { | |
1693 | ev_reg = GET_SRC_REG (op); | |
1694 | /* If this is the first vector reg to be saved, or if | |
1695 | it has a lower number than others previously seen, | |
1696 | reupdate the frame info. */ | |
1697 | /* We know the contents of rB from the previous instruction. */ | |
1698 | if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg) | |
1699 | { | |
1700 | fdata->saved_ev = ev_reg; | |
1701 | fdata->ev_offset = vr_saved_offset + offset; | |
1702 | } | |
1703 | vr_saved_offset = -1; | |
1704 | ev_reg = -1; | |
1705 | li_found_pc = 0; | |
1706 | } | |
1707 | continue; | |
1708 | } | |
1709 | /* Store gen register r31 at (rA+uimm). */ | |
1710 | /* 000100 11111 aaaaa iiiii 01100100001 */ | |
1711 | else if (arch_info->mach == bfd_mach_ppc_e500 | |
1712 | && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */ | |
1713 | { | |
1714 | /* Wwe know that the source register is 31 already, but | |
1715 | it can't hurt to compute it. */ | |
1716 | ev_reg = GET_SRC_REG (op); | |
1717 | ev_offset = ((op >> 11) & 0x1f) * 8; | |
1718 | /* If this is the first vector reg to be saved, or if | |
1719 | it has a lower number than others previously seen, | |
1720 | reupdate the frame info. */ | |
1721 | if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg) | |
1722 | { | |
1723 | fdata->saved_ev = ev_reg; | |
1724 | fdata->ev_offset = ev_offset + offset; | |
1725 | } | |
1726 | ||
1727 | continue; | |
1728 | } | |
1729 | /* Store gen register S at (r31+r0). | |
1730 | Store param on stack when offset from SP bigger than 4 bytes. */ | |
1731 | /* 000100 sssss 11111 00000 01100100000 */ | |
1732 | else if (arch_info->mach == bfd_mach_ppc_e500 | |
1733 | && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */ | |
1734 | { | |
1735 | if (pc == (li_found_pc + 4)) | |
1736 | { | |
1737 | if ((op & 0x03e00000) >= 0x01a00000) | |
1738 | { | |
1739 | ev_reg = GET_SRC_REG (op); | |
1740 | /* If this is the first vector reg to be saved, or if | |
1741 | it has a lower number than others previously seen, | |
1742 | reupdate the frame info. */ | |
1743 | /* We know the contents of r0 from the previous | |
1744 | instruction. */ | |
1745 | if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg) | |
1746 | { | |
1747 | fdata->saved_ev = ev_reg; | |
1748 | fdata->ev_offset = vr_saved_offset + offset; | |
1749 | } | |
1750 | ev_reg = -1; | |
1751 | } | |
1752 | vr_saved_offset = -1; | |
1753 | li_found_pc = 0; | |
1754 | continue; | |
1755 | } | |
1756 | } | |
1757 | /* End BookE related instructions. */ | |
1758 | ||
c5aa993b JM |
1759 | else |
1760 | { | |
55d05f3b KB |
1761 | /* Not a recognized prologue instruction. |
1762 | Handle optimizer code motions into the prologue by continuing | |
1763 | the search if we have no valid frame yet or if the return | |
1764 | address is not yet saved in the frame. */ | |
4e463ff5 | 1765 | if (fdata->frameless == 0 && fdata->nosavedpc == 0) |
55d05f3b KB |
1766 | break; |
1767 | ||
1768 | if (op == 0x4e800020 /* blr */ | |
1769 | || op == 0x4e800420) /* bctr */ | |
1770 | /* Do not scan past epilogue in frameless functions or | |
1771 | trampolines. */ | |
1772 | break; | |
1773 | if ((op & 0xf4000000) == 0x40000000) /* bxx */ | |
64366f1c | 1774 | /* Never skip branches. */ |
55d05f3b KB |
1775 | break; |
1776 | ||
1777 | if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns) | |
1778 | /* Do not scan too many insns, scanning insns is expensive with | |
1779 | remote targets. */ | |
1780 | break; | |
1781 | ||
1782 | /* Continue scanning. */ | |
1783 | prev_insn_was_prologue_insn = 0; | |
1784 | continue; | |
c5aa993b | 1785 | } |
c906108c SS |
1786 | } |
1787 | ||
1788 | #if 0 | |
1789 | /* I have problems with skipping over __main() that I need to address | |
1790 | * sometime. Previously, I used to use misc_function_vector which | |
1791 | * didn't work as well as I wanted to be. -MGO */ | |
1792 | ||
1793 | /* If the first thing after skipping a prolog is a branch to a function, | |
1794 | this might be a call to an initializer in main(), introduced by gcc2. | |
64366f1c | 1795 | We'd like to skip over it as well. Fortunately, xlc does some extra |
c906108c | 1796 | work before calling a function right after a prologue, thus we can |
64366f1c | 1797 | single out such gcc2 behaviour. */ |
c906108c | 1798 | |
c906108c | 1799 | |
c5aa993b JM |
1800 | if ((op & 0xfc000001) == 0x48000001) |
1801 | { /* bl foo, an initializer function? */ | |
1802 | op = read_memory_integer (pc + 4, 4); | |
1803 | ||
1804 | if (op == 0x4def7b82) | |
1805 | { /* cror 0xf, 0xf, 0xf (nop) */ | |
c906108c | 1806 | |
64366f1c EZ |
1807 | /* Check and see if we are in main. If so, skip over this |
1808 | initializer function as well. */ | |
c906108c | 1809 | |
c5aa993b | 1810 | tmp = find_pc_misc_function (pc); |
6314a349 AC |
1811 | if (tmp >= 0 |
1812 | && strcmp (misc_function_vector[tmp].name, main_name ()) == 0) | |
c5aa993b JM |
1813 | return pc + 8; |
1814 | } | |
c906108c | 1815 | } |
c906108c | 1816 | #endif /* 0 */ |
c5aa993b JM |
1817 | |
1818 | fdata->offset = -fdata->offset; | |
ddb20c56 | 1819 | return last_prologue_pc; |
c906108c SS |
1820 | } |
1821 | ||
1822 | ||
1823 | /************************************************************************* | |
f6077098 | 1824 | Support for creating pushing a dummy frame into the stack, and popping |
c906108c SS |
1825 | frames, etc. |
1826 | *************************************************************************/ | |
1827 | ||
c906108c | 1828 | |
11269d7e AC |
1829 | /* All the ABI's require 16 byte alignment. */ |
1830 | static CORE_ADDR | |
1831 | rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr) | |
1832 | { | |
1833 | return (addr & -16); | |
1834 | } | |
1835 | ||
7a78ae4e | 1836 | /* Pass the arguments in either registers, or in the stack. In RS/6000, |
c906108c SS |
1837 | the first eight words of the argument list (that might be less than |
1838 | eight parameters if some parameters occupy more than one word) are | |
7a78ae4e | 1839 | passed in r3..r10 registers. float and double parameters are |
64366f1c EZ |
1840 | passed in fpr's, in addition to that. Rest of the parameters if any |
1841 | are passed in user stack. There might be cases in which half of the | |
c906108c SS |
1842 | parameter is copied into registers, the other half is pushed into |
1843 | stack. | |
1844 | ||
7a78ae4e ND |
1845 | Stack must be aligned on 64-bit boundaries when synthesizing |
1846 | function calls. | |
1847 | ||
c906108c SS |
1848 | If the function is returning a structure, then the return address is passed |
1849 | in r3, then the first 7 words of the parameters can be passed in registers, | |
64366f1c | 1850 | starting from r4. */ |
c906108c | 1851 | |
7a78ae4e | 1852 | static CORE_ADDR |
7d9b040b | 1853 | rs6000_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
77b2b6d4 AC |
1854 | struct regcache *regcache, CORE_ADDR bp_addr, |
1855 | int nargs, struct value **args, CORE_ADDR sp, | |
1856 | int struct_return, CORE_ADDR struct_addr) | |
c906108c | 1857 | { |
8b164abb | 1858 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
c906108c SS |
1859 | int ii; |
1860 | int len = 0; | |
c5aa993b JM |
1861 | int argno; /* current argument number */ |
1862 | int argbytes; /* current argument byte */ | |
50fd1280 | 1863 | gdb_byte tmp_buffer[50]; |
c5aa993b | 1864 | int f_argno = 0; /* current floating point argno */ |
8b164abb | 1865 | int wordsize = gdbarch_tdep (gdbarch)->wordsize; |
7d9b040b | 1866 | CORE_ADDR func_addr = find_function_addr (function, NULL); |
c906108c | 1867 | |
ea7c478f | 1868 | struct value *arg = 0; |
c906108c SS |
1869 | struct type *type; |
1870 | ||
fb4443d8 | 1871 | ULONGEST saved_sp; |
c906108c | 1872 | |
383f0f5b JB |
1873 | /* The calling convention this function implements assumes the |
1874 | processor has floating-point registers. We shouldn't be using it | |
1875 | on PPC variants that lack them. */ | |
8b164abb | 1876 | gdb_assert (ppc_floating_point_unit_p (gdbarch)); |
383f0f5b | 1877 | |
64366f1c | 1878 | /* The first eight words of ther arguments are passed in registers. |
7a41266b AC |
1879 | Copy them appropriately. */ |
1880 | ii = 0; | |
1881 | ||
1882 | /* If the function is returning a `struct', then the first word | |
1883 | (which will be passed in r3) is used for struct return address. | |
1884 | In that case we should advance one word and start from r4 | |
1885 | register to copy parameters. */ | |
1886 | if (struct_return) | |
1887 | { | |
1888 | regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3, | |
1889 | struct_addr); | |
1890 | ii++; | |
1891 | } | |
c906108c SS |
1892 | |
1893 | /* | |
c5aa993b JM |
1894 | effectively indirect call... gcc does... |
1895 | ||
1896 | return_val example( float, int); | |
1897 | ||
1898 | eabi: | |
1899 | float in fp0, int in r3 | |
1900 | offset of stack on overflow 8/16 | |
1901 | for varargs, must go by type. | |
1902 | power open: | |
1903 | float in r3&r4, int in r5 | |
1904 | offset of stack on overflow different | |
1905 | both: | |
1906 | return in r3 or f0. If no float, must study how gcc emulates floats; | |
1907 | pay attention to arg promotion. | |
1908 | User may have to cast\args to handle promotion correctly | |
1909 | since gdb won't know if prototype supplied or not. | |
1910 | */ | |
c906108c | 1911 | |
c5aa993b JM |
1912 | for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii) |
1913 | { | |
8b164abb | 1914 | int reg_size = register_size (gdbarch, ii + 3); |
c5aa993b JM |
1915 | |
1916 | arg = args[argno]; | |
df407dfe | 1917 | type = check_typedef (value_type (arg)); |
c5aa993b JM |
1918 | len = TYPE_LENGTH (type); |
1919 | ||
1920 | if (TYPE_CODE (type) == TYPE_CODE_FLT) | |
1921 | { | |
1922 | ||
64366f1c | 1923 | /* Floating point arguments are passed in fpr's, as well as gpr's. |
c5aa993b | 1924 | There are 13 fpr's reserved for passing parameters. At this point |
64366f1c | 1925 | there is no way we would run out of them. */ |
c5aa993b | 1926 | |
9f335945 KB |
1927 | gdb_assert (len <= 8); |
1928 | ||
1929 | regcache_cooked_write (regcache, | |
1930 | tdep->ppc_fp0_regnum + 1 + f_argno, | |
0fd88904 | 1931 | value_contents (arg)); |
c5aa993b JM |
1932 | ++f_argno; |
1933 | } | |
1934 | ||
f6077098 | 1935 | if (len > reg_size) |
c5aa993b JM |
1936 | { |
1937 | ||
64366f1c | 1938 | /* Argument takes more than one register. */ |
c5aa993b JM |
1939 | while (argbytes < len) |
1940 | { | |
50fd1280 | 1941 | gdb_byte word[MAX_REGISTER_SIZE]; |
9f335945 KB |
1942 | memset (word, 0, reg_size); |
1943 | memcpy (word, | |
0fd88904 | 1944 | ((char *) value_contents (arg)) + argbytes, |
f6077098 KB |
1945 | (len - argbytes) > reg_size |
1946 | ? reg_size : len - argbytes); | |
9f335945 KB |
1947 | regcache_cooked_write (regcache, |
1948 | tdep->ppc_gp0_regnum + 3 + ii, | |
1949 | word); | |
f6077098 | 1950 | ++ii, argbytes += reg_size; |
c5aa993b JM |
1951 | |
1952 | if (ii >= 8) | |
1953 | goto ran_out_of_registers_for_arguments; | |
1954 | } | |
1955 | argbytes = 0; | |
1956 | --ii; | |
1957 | } | |
1958 | else | |
64366f1c EZ |
1959 | { |
1960 | /* Argument can fit in one register. No problem. */ | |
8b164abb | 1961 | int adj = gdbarch_byte_order (gdbarch) |
4c6b5505 | 1962 | == BFD_ENDIAN_BIG ? reg_size - len : 0; |
50fd1280 | 1963 | gdb_byte word[MAX_REGISTER_SIZE]; |
9f335945 KB |
1964 | |
1965 | memset (word, 0, reg_size); | |
0fd88904 | 1966 | memcpy (word, value_contents (arg), len); |
9f335945 | 1967 | regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3 +ii, word); |
c5aa993b JM |
1968 | } |
1969 | ++argno; | |
c906108c | 1970 | } |
c906108c SS |
1971 | |
1972 | ran_out_of_registers_for_arguments: | |
1973 | ||
3e8c568d | 1974 | regcache_cooked_read_unsigned (regcache, |
8b164abb | 1975 | gdbarch_sp_regnum (gdbarch), |
3e8c568d | 1976 | &saved_sp); |
cc9836a8 | 1977 | |
64366f1c | 1978 | /* Location for 8 parameters are always reserved. */ |
7a78ae4e | 1979 | sp -= wordsize * 8; |
f6077098 | 1980 | |
64366f1c | 1981 | /* Another six words for back chain, TOC register, link register, etc. */ |
7a78ae4e | 1982 | sp -= wordsize * 6; |
f6077098 | 1983 | |
64366f1c | 1984 | /* Stack pointer must be quadword aligned. */ |
7a78ae4e | 1985 | sp &= -16; |
c906108c | 1986 | |
64366f1c EZ |
1987 | /* If there are more arguments, allocate space for them in |
1988 | the stack, then push them starting from the ninth one. */ | |
c906108c | 1989 | |
c5aa993b JM |
1990 | if ((argno < nargs) || argbytes) |
1991 | { | |
1992 | int space = 0, jj; | |
c906108c | 1993 | |
c5aa993b JM |
1994 | if (argbytes) |
1995 | { | |
1996 | space += ((len - argbytes + 3) & -4); | |
1997 | jj = argno + 1; | |
1998 | } | |
1999 | else | |
2000 | jj = argno; | |
c906108c | 2001 | |
c5aa993b JM |
2002 | for (; jj < nargs; ++jj) |
2003 | { | |
ea7c478f | 2004 | struct value *val = args[jj]; |
df407dfe | 2005 | space += ((TYPE_LENGTH (value_type (val))) + 3) & -4; |
c5aa993b | 2006 | } |
c906108c | 2007 | |
64366f1c | 2008 | /* Add location required for the rest of the parameters. */ |
f6077098 | 2009 | space = (space + 15) & -16; |
c5aa993b | 2010 | sp -= space; |
c906108c | 2011 | |
7aea86e6 AC |
2012 | /* This is another instance we need to be concerned about |
2013 | securing our stack space. If we write anything underneath %sp | |
2014 | (r1), we might conflict with the kernel who thinks he is free | |
2015 | to use this area. So, update %sp first before doing anything | |
2016 | else. */ | |
2017 | ||
3e8c568d | 2018 | regcache_raw_write_signed (regcache, |
8b164abb | 2019 | gdbarch_sp_regnum (gdbarch), sp); |
7aea86e6 | 2020 | |
64366f1c EZ |
2021 | /* If the last argument copied into the registers didn't fit there |
2022 | completely, push the rest of it into stack. */ | |
c906108c | 2023 | |
c5aa993b JM |
2024 | if (argbytes) |
2025 | { | |
2026 | write_memory (sp + 24 + (ii * 4), | |
50fd1280 | 2027 | value_contents (arg) + argbytes, |
c5aa993b JM |
2028 | len - argbytes); |
2029 | ++argno; | |
2030 | ii += ((len - argbytes + 3) & -4) / 4; | |
2031 | } | |
c906108c | 2032 | |
64366f1c | 2033 | /* Push the rest of the arguments into stack. */ |
c5aa993b JM |
2034 | for (; argno < nargs; ++argno) |
2035 | { | |
c906108c | 2036 | |
c5aa993b | 2037 | arg = args[argno]; |
df407dfe | 2038 | type = check_typedef (value_type (arg)); |
c5aa993b | 2039 | len = TYPE_LENGTH (type); |
c906108c SS |
2040 | |
2041 | ||
64366f1c EZ |
2042 | /* Float types should be passed in fpr's, as well as in the |
2043 | stack. */ | |
c5aa993b JM |
2044 | if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13) |
2045 | { | |
c906108c | 2046 | |
9f335945 | 2047 | gdb_assert (len <= 8); |
c906108c | 2048 | |
9f335945 KB |
2049 | regcache_cooked_write (regcache, |
2050 | tdep->ppc_fp0_regnum + 1 + f_argno, | |
0fd88904 | 2051 | value_contents (arg)); |
c5aa993b JM |
2052 | ++f_argno; |
2053 | } | |
c906108c | 2054 | |
50fd1280 | 2055 | write_memory (sp + 24 + (ii * 4), value_contents (arg), len); |
c5aa993b JM |
2056 | ii += ((len + 3) & -4) / 4; |
2057 | } | |
c906108c | 2058 | } |
c906108c | 2059 | |
69517000 | 2060 | /* Set the stack pointer. According to the ABI, the SP is meant to |
7aea86e6 AC |
2061 | be set _before_ the corresponding stack space is used. On AIX, |
2062 | this even applies when the target has been completely stopped! | |
2063 | Not doing this can lead to conflicts with the kernel which thinks | |
2064 | that it still has control over this not-yet-allocated stack | |
2065 | region. */ | |
8b164abb | 2066 | regcache_raw_write_signed (regcache, gdbarch_sp_regnum (gdbarch), sp); |
33a7c2fc | 2067 | |
7aea86e6 | 2068 | /* Set back chain properly. */ |
8ba0209f AM |
2069 | store_unsigned_integer (tmp_buffer, wordsize, saved_sp); |
2070 | write_memory (sp, tmp_buffer, wordsize); | |
7aea86e6 | 2071 | |
e56a0ecc AC |
2072 | /* Point the inferior function call's return address at the dummy's |
2073 | breakpoint. */ | |
2074 | regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr); | |
2075 | ||
794a477a AC |
2076 | /* Set the TOC register, get the value from the objfile reader |
2077 | which, in turn, gets it from the VMAP table. */ | |
2078 | if (rs6000_find_toc_address_hook != NULL) | |
2079 | { | |
2080 | CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr); | |
2081 | regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue); | |
2082 | } | |
2083 | ||
56be3814 | 2084 | target_store_registers (regcache, -1); |
c906108c SS |
2085 | return sp; |
2086 | } | |
c906108c | 2087 | |
d217aaed MK |
2088 | static enum return_value_convention |
2089 | rs6000_return_value (struct gdbarch *gdbarch, struct type *valtype, | |
2090 | struct regcache *regcache, gdb_byte *readbuf, | |
2091 | const gdb_byte *writebuf) | |
c906108c | 2092 | { |
8b164abb | 2093 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
d217aaed | 2094 | gdb_byte buf[8]; |
c906108c | 2095 | |
383f0f5b JB |
2096 | /* The calling convention this function implements assumes the |
2097 | processor has floating-point registers. We shouldn't be using it | |
d217aaed | 2098 | on PowerPC variants that lack them. */ |
8b164abb | 2099 | gdb_assert (ppc_floating_point_unit_p (gdbarch)); |
383f0f5b | 2100 | |
d217aaed MK |
2101 | /* AltiVec extension: Functions that declare a vector data type as a |
2102 | return value place that return value in VR2. */ | |
2103 | if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY && TYPE_VECTOR (valtype) | |
2104 | && TYPE_LENGTH (valtype) == 16) | |
c5aa993b | 2105 | { |
d217aaed MK |
2106 | if (readbuf) |
2107 | regcache_cooked_read (regcache, tdep->ppc_vr0_regnum + 2, readbuf); | |
2108 | if (writebuf) | |
2109 | regcache_cooked_write (regcache, tdep->ppc_vr0_regnum + 2, writebuf); | |
c906108c | 2110 | |
d217aaed | 2111 | return RETURN_VALUE_REGISTER_CONVENTION; |
c5aa993b | 2112 | } |
d217aaed MK |
2113 | |
2114 | /* If the called subprogram returns an aggregate, there exists an | |
2115 | implicit first argument, whose value is the address of a caller- | |
2116 | allocated buffer into which the callee is assumed to store its | |
2117 | return value. All explicit parameters are appropriately | |
2118 | relabeled. */ | |
2119 | if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT | |
2120 | || TYPE_CODE (valtype) == TYPE_CODE_UNION | |
2121 | || TYPE_CODE (valtype) == TYPE_CODE_ARRAY) | |
2122 | return RETURN_VALUE_STRUCT_CONVENTION; | |
2123 | ||
2124 | /* Scalar floating-point values are returned in FPR1 for float or | |
2125 | double, and in FPR1:FPR2 for quadword precision. Fortran | |
2126 | complex*8 and complex*16 are returned in FPR1:FPR2, and | |
2127 | complex*32 is returned in FPR1:FPR4. */ | |
2128 | if (TYPE_CODE (valtype) == TYPE_CODE_FLT | |
2129 | && (TYPE_LENGTH (valtype) == 4 || TYPE_LENGTH (valtype) == 8)) | |
2130 | { | |
2131 | struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum); | |
2132 | gdb_byte regval[8]; | |
2133 | ||
2134 | /* FIXME: kettenis/2007-01-01: Add support for quadword | |
2135 | precision and complex. */ | |
2136 | ||
2137 | if (readbuf) | |
2138 | { | |
2139 | regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval); | |
2140 | convert_typed_floating (regval, regtype, readbuf, valtype); | |
2141 | } | |
2142 | if (writebuf) | |
2143 | { | |
2144 | convert_typed_floating (writebuf, valtype, regval, regtype); | |
2145 | regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval); | |
2146 | } | |
2147 | ||
2148 | return RETURN_VALUE_REGISTER_CONVENTION; | |
2149 | } | |
2150 | ||
2151 | /* Values of the types int, long, short, pointer, and char (length | |
2152 | is less than or equal to four bytes), as well as bit values of | |
2153 | lengths less than or equal to 32 bits, must be returned right | |
2154 | justified in GPR3 with signed values sign extended and unsigned | |
2155 | values zero extended, as necessary. */ | |
2156 | if (TYPE_LENGTH (valtype) <= tdep->wordsize) | |
ace1378a | 2157 | { |
d217aaed MK |
2158 | if (readbuf) |
2159 | { | |
2160 | ULONGEST regval; | |
2161 | ||
2162 | /* For reading we don't have to worry about sign extension. */ | |
2163 | regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3, | |
2164 | ®val); | |
2165 | store_unsigned_integer (readbuf, TYPE_LENGTH (valtype), regval); | |
2166 | } | |
2167 | if (writebuf) | |
2168 | { | |
2169 | /* For writing, use unpack_long since that should handle any | |
2170 | required sign extension. */ | |
2171 | regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3, | |
2172 | unpack_long (valtype, writebuf)); | |
2173 | } | |
2174 | ||
2175 | return RETURN_VALUE_REGISTER_CONVENTION; | |
ace1378a | 2176 | } |
d217aaed MK |
2177 | |
2178 | /* Eight-byte non-floating-point scalar values must be returned in | |
2179 | GPR3:GPR4. */ | |
2180 | ||
2181 | if (TYPE_LENGTH (valtype) == 8) | |
c5aa993b | 2182 | { |
d217aaed MK |
2183 | gdb_assert (TYPE_CODE (valtype) != TYPE_CODE_FLT); |
2184 | gdb_assert (tdep->wordsize == 4); | |
2185 | ||
2186 | if (readbuf) | |
2187 | { | |
2188 | gdb_byte regval[8]; | |
2189 | ||
2190 | regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3, regval); | |
2191 | regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4, | |
2192 | regval + 4); | |
2193 | memcpy (readbuf, regval, 8); | |
2194 | } | |
2195 | if (writebuf) | |
2196 | { | |
2197 | regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3, writebuf); | |
2198 | regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4, | |
2199 | writebuf + 4); | |
2200 | } | |
2201 | ||
2202 | return RETURN_VALUE_REGISTER_CONVENTION; | |
c906108c | 2203 | } |
d217aaed MK |
2204 | |
2205 | return RETURN_VALUE_STRUCT_CONVENTION; | |
c906108c SS |
2206 | } |
2207 | ||
977adac5 ND |
2208 | /* Return whether handle_inferior_event() should proceed through code |
2209 | starting at PC in function NAME when stepping. | |
2210 | ||
2211 | The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to | |
2212 | handle memory references that are too distant to fit in instructions | |
2213 | generated by the compiler. For example, if 'foo' in the following | |
2214 | instruction: | |
2215 | ||
2216 | lwz r9,foo(r2) | |
2217 | ||
2218 | is greater than 32767, the linker might replace the lwz with a branch to | |
2219 | somewhere in @FIX1 that does the load in 2 instructions and then branches | |
2220 | back to where execution should continue. | |
2221 | ||
2222 | GDB should silently step over @FIX code, just like AIX dbx does. | |
2ec664f5 MS |
2223 | Unfortunately, the linker uses the "b" instruction for the |
2224 | branches, meaning that the link register doesn't get set. | |
2225 | Therefore, GDB's usual step_over_function () mechanism won't work. | |
977adac5 | 2226 | |
e76f05fa UW |
2227 | Instead, use the gdbarch_skip_trampoline_code and |
2228 | gdbarch_skip_trampoline_code hooks in handle_inferior_event() to skip past | |
2ec664f5 | 2229 | @FIX code. */ |
977adac5 ND |
2230 | |
2231 | int | |
2232 | rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name) | |
2233 | { | |
2234 | return name && !strncmp (name, "@FIX", 4); | |
2235 | } | |
2236 | ||
2237 | /* Skip code that the user doesn't want to see when stepping: | |
2238 | ||
2239 | 1. Indirect function calls use a piece of trampoline code to do context | |
2240 | switching, i.e. to set the new TOC table. Skip such code if we are on | |
2241 | its first instruction (as when we have single-stepped to here). | |
2242 | ||
2243 | 2. Skip shared library trampoline code (which is different from | |
c906108c | 2244 | indirect function call trampolines). |
977adac5 ND |
2245 | |
2246 | 3. Skip bigtoc fixup code. | |
2247 | ||
c906108c | 2248 | Result is desired PC to step until, or NULL if we are not in |
977adac5 | 2249 | code that should be skipped. */ |
c906108c SS |
2250 | |
2251 | CORE_ADDR | |
52f729a7 | 2252 | rs6000_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc) |
c906108c | 2253 | { |
52f0bd74 | 2254 | unsigned int ii, op; |
977adac5 | 2255 | int rel; |
c906108c | 2256 | CORE_ADDR solib_target_pc; |
977adac5 | 2257 | struct minimal_symbol *msymbol; |
c906108c | 2258 | |
c5aa993b JM |
2259 | static unsigned trampoline_code[] = |
2260 | { | |
2261 | 0x800b0000, /* l r0,0x0(r11) */ | |
2262 | 0x90410014, /* st r2,0x14(r1) */ | |
2263 | 0x7c0903a6, /* mtctr r0 */ | |
2264 | 0x804b0004, /* l r2,0x4(r11) */ | |
2265 | 0x816b0008, /* l r11,0x8(r11) */ | |
2266 | 0x4e800420, /* bctr */ | |
2267 | 0x4e800020, /* br */ | |
2268 | 0 | |
c906108c SS |
2269 | }; |
2270 | ||
977adac5 ND |
2271 | /* Check for bigtoc fixup code. */ |
2272 | msymbol = lookup_minimal_symbol_by_pc (pc); | |
2ec664f5 MS |
2273 | if (msymbol |
2274 | && rs6000_in_solib_return_trampoline (pc, | |
2275 | DEPRECATED_SYMBOL_NAME (msymbol))) | |
977adac5 ND |
2276 | { |
2277 | /* Double-check that the third instruction from PC is relative "b". */ | |
2278 | op = read_memory_integer (pc + 8, 4); | |
2279 | if ((op & 0xfc000003) == 0x48000000) | |
2280 | { | |
2281 | /* Extract bits 6-29 as a signed 24-bit relative word address and | |
2282 | add it to the containing PC. */ | |
2283 | rel = ((int)(op << 6) >> 6); | |
2284 | return pc + 8 + rel; | |
2285 | } | |
2286 | } | |
2287 | ||
c906108c | 2288 | /* If pc is in a shared library trampoline, return its target. */ |
52f729a7 | 2289 | solib_target_pc = find_solib_trampoline_target (frame, pc); |
c906108c SS |
2290 | if (solib_target_pc) |
2291 | return solib_target_pc; | |
2292 | ||
c5aa993b JM |
2293 | for (ii = 0; trampoline_code[ii]; ++ii) |
2294 | { | |
2295 | op = read_memory_integer (pc + (ii * 4), 4); | |
2296 | if (op != trampoline_code[ii]) | |
2297 | return 0; | |
2298 | } | |
52f729a7 | 2299 | ii = get_frame_register_unsigned (frame, 11); /* r11 holds destination addr */ |
8b164abb UW |
2300 | pc = read_memory_addr (ii, |
2301 | gdbarch_tdep (get_frame_arch (frame))->wordsize); /* (r11) value */ | |
c906108c SS |
2302 | return pc; |
2303 | } | |
2304 | ||
794ac428 UW |
2305 | /* ISA-specific vector types. */ |
2306 | ||
2307 | static struct type * | |
2308 | rs6000_builtin_type_vec64 (struct gdbarch *gdbarch) | |
2309 | { | |
2310 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
2311 | ||
2312 | if (!tdep->ppc_builtin_type_vec64) | |
2313 | { | |
2314 | /* The type we're building is this: */ | |
2315 | #if 0 | |
2316 | union __gdb_builtin_type_vec64 | |
2317 | { | |
2318 | int64_t uint64; | |
2319 | float v2_float[2]; | |
2320 | int32_t v2_int32[2]; | |
2321 | int16_t v4_int16[4]; | |
2322 | int8_t v8_int8[8]; | |
2323 | }; | |
2324 | #endif | |
2325 | ||
2326 | struct type *t; | |
2327 | ||
2328 | t = init_composite_type ("__ppc_builtin_type_vec64", TYPE_CODE_UNION); | |
2329 | append_composite_type_field (t, "uint64", builtin_type_int64); | |
2330 | append_composite_type_field (t, "v2_float", | |
2331 | init_vector_type (builtin_type_float, 2)); | |
2332 | append_composite_type_field (t, "v2_int32", | |
2333 | init_vector_type (builtin_type_int32, 2)); | |
2334 | append_composite_type_field (t, "v4_int16", | |
2335 | init_vector_type (builtin_type_int16, 4)); | |
2336 | append_composite_type_field (t, "v8_int8", | |
2337 | init_vector_type (builtin_type_int8, 8)); | |
2338 | ||
2339 | TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR; | |
2340 | TYPE_NAME (t) = "ppc_builtin_type_vec64"; | |
2341 | tdep->ppc_builtin_type_vec64 = t; | |
2342 | } | |
2343 | ||
2344 | return tdep->ppc_builtin_type_vec64; | |
2345 | } | |
2346 | ||
7a78ae4e | 2347 | /* Return the size of register REG when words are WORDSIZE bytes long. If REG |
64366f1c | 2348 | isn't available with that word size, return 0. */ |
7a78ae4e ND |
2349 | |
2350 | static int | |
2351 | regsize (const struct reg *reg, int wordsize) | |
2352 | { | |
2353 | return wordsize == 8 ? reg->sz64 : reg->sz32; | |
2354 | } | |
2355 | ||
7cc46491 DJ |
2356 | /* Return the name of register number REGNO, or the empty string if it |
2357 | is an anonymous register. */ | |
7a78ae4e | 2358 | |
fa88f677 | 2359 | static const char * |
d93859e2 | 2360 | rs6000_register_name (struct gdbarch *gdbarch, int regno) |
7a78ae4e | 2361 | { |
d93859e2 | 2362 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
7a78ae4e | 2363 | |
7cc46491 DJ |
2364 | /* The upper half "registers" have names in the XML description, |
2365 | but we present only the low GPRs and the full 64-bit registers | |
2366 | to the user. */ | |
2367 | if (tdep->ppc_ev0_upper_regnum >= 0 | |
2368 | && tdep->ppc_ev0_upper_regnum <= regno | |
2369 | && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs) | |
2370 | return ""; | |
2371 | ||
2372 | /* Check if the SPE pseudo registers are available. */ | |
2373 | if (tdep->ppc_ev0_regnum >= 0 | |
2374 | && tdep->ppc_ev0_regnum <= regno | |
2375 | && regno < tdep->ppc_ev0_regnum + ppc_num_gprs) | |
2376 | { | |
2377 | static const char *const spe_regnames[] = { | |
2378 | "ev0", "ev1", "ev2", "ev3", "ev4", "ev5", "ev6", "ev7", | |
2379 | "ev8", "ev9", "ev10", "ev11", "ev12", "ev13", "ev14", "ev15", | |
2380 | "ev16", "ev17", "ev18", "ev19", "ev20", "ev21", "ev22", "ev23", | |
2381 | "ev24", "ev25", "ev26", "ev27", "ev28", "ev29", "ev30", "ev31", | |
2382 | }; | |
2383 | return spe_regnames[regno - tdep->ppc_ev0_regnum]; | |
2384 | } | |
2385 | ||
d93859e2 | 2386 | return tdesc_register_name (gdbarch, regno); |
7a78ae4e ND |
2387 | } |
2388 | ||
7cc46491 DJ |
2389 | /* Return the GDB type object for the "standard" data type of data in |
2390 | register N. */ | |
7a78ae4e ND |
2391 | |
2392 | static struct type * | |
7cc46491 | 2393 | rs6000_pseudo_register_type (struct gdbarch *gdbarch, int regnum) |
7a78ae4e | 2394 | { |
691d145a | 2395 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
7a78ae4e | 2396 | |
7cc46491 DJ |
2397 | /* These are the only pseudo-registers we support. */ |
2398 | gdb_assert (tdep->ppc_ev0_regnum >= 0 | |
2399 | && regnum >= tdep->ppc_ev0_regnum | |
2400 | && regnum < tdep->ppc_ev0_regnum + 32); | |
2401 | ||
2402 | return rs6000_builtin_type_vec64 (gdbarch); | |
7a78ae4e ND |
2403 | } |
2404 | ||
c44ca51c AC |
2405 | /* Is REGNUM a member of REGGROUP? */ |
2406 | static int | |
7cc46491 DJ |
2407 | rs6000_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum, |
2408 | struct reggroup *group) | |
c44ca51c AC |
2409 | { |
2410 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
c44ca51c | 2411 | |
7cc46491 DJ |
2412 | /* These are the only pseudo-registers we support. */ |
2413 | gdb_assert (tdep->ppc_ev0_regnum >= 0 | |
2414 | && regnum >= tdep->ppc_ev0_regnum | |
2415 | && regnum < tdep->ppc_ev0_regnum + 32); | |
c44ca51c | 2416 | |
7cc46491 DJ |
2417 | if (group == all_reggroup || group == vector_reggroup) |
2418 | return 1; | |
2419 | else | |
2420 | return 0; | |
c44ca51c AC |
2421 | } |
2422 | ||
691d145a | 2423 | /* The register format for RS/6000 floating point registers is always |
64366f1c | 2424 | double, we need a conversion if the memory format is float. */ |
7a78ae4e ND |
2425 | |
2426 | static int | |
0abe36f5 MD |
2427 | rs6000_convert_register_p (struct gdbarch *gdbarch, int regnum, |
2428 | struct type *type) | |
7a78ae4e | 2429 | { |
0abe36f5 | 2430 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
7cc46491 DJ |
2431 | |
2432 | return (tdep->ppc_fp0_regnum >= 0 | |
2433 | && regnum >= tdep->ppc_fp0_regnum | |
2434 | && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs | |
2435 | && TYPE_CODE (type) == TYPE_CODE_FLT | |
2436 | && TYPE_LENGTH (type) != TYPE_LENGTH (builtin_type_double)); | |
7a78ae4e ND |
2437 | } |
2438 | ||
7a78ae4e | 2439 | static void |
691d145a JB |
2440 | rs6000_register_to_value (struct frame_info *frame, |
2441 | int regnum, | |
2442 | struct type *type, | |
50fd1280 | 2443 | gdb_byte *to) |
7a78ae4e | 2444 | { |
50fd1280 | 2445 | gdb_byte from[MAX_REGISTER_SIZE]; |
691d145a | 2446 | |
691d145a | 2447 | gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT); |
7a78ae4e | 2448 | |
691d145a JB |
2449 | get_frame_register (frame, regnum, from); |
2450 | convert_typed_floating (from, builtin_type_double, to, type); | |
2451 | } | |
7a292a7a | 2452 | |
7a78ae4e | 2453 | static void |
691d145a JB |
2454 | rs6000_value_to_register (struct frame_info *frame, |
2455 | int regnum, | |
2456 | struct type *type, | |
50fd1280 | 2457 | const gdb_byte *from) |
7a78ae4e | 2458 | { |
50fd1280 | 2459 | gdb_byte to[MAX_REGISTER_SIZE]; |
691d145a | 2460 | |
691d145a JB |
2461 | gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT); |
2462 | ||
2463 | convert_typed_floating (from, type, to, builtin_type_double); | |
2464 | put_frame_register (frame, regnum, to); | |
7a78ae4e | 2465 | } |
c906108c | 2466 | |
6ced10dd JB |
2467 | /* Move SPE vector register values between a 64-bit buffer and the two |
2468 | 32-bit raw register halves in a regcache. This function handles | |
2469 | both splitting a 64-bit value into two 32-bit halves, and joining | |
2470 | two halves into a whole 64-bit value, depending on the function | |
2471 | passed as the MOVE argument. | |
2472 | ||
2473 | EV_REG must be the number of an SPE evN vector register --- a | |
2474 | pseudoregister. REGCACHE must be a regcache, and BUFFER must be a | |
2475 | 64-bit buffer. | |
2476 | ||
2477 | Call MOVE once for each 32-bit half of that register, passing | |
2478 | REGCACHE, the number of the raw register corresponding to that | |
2479 | half, and the address of the appropriate half of BUFFER. | |
2480 | ||
2481 | For example, passing 'regcache_raw_read' as the MOVE function will | |
2482 | fill BUFFER with the full 64-bit contents of EV_REG. Or, passing | |
2483 | 'regcache_raw_supply' will supply the contents of BUFFER to the | |
2484 | appropriate pair of raw registers in REGCACHE. | |
2485 | ||
2486 | You may need to cast away some 'const' qualifiers when passing | |
2487 | MOVE, since this function can't tell at compile-time which of | |
2488 | REGCACHE or BUFFER is acting as the source of the data. If C had | |
2489 | co-variant type qualifiers, ... */ | |
2490 | static void | |
2491 | e500_move_ev_register (void (*move) (struct regcache *regcache, | |
50fd1280 | 2492 | int regnum, gdb_byte *buf), |
6ced10dd | 2493 | struct regcache *regcache, int ev_reg, |
50fd1280 | 2494 | gdb_byte *buffer) |
6ced10dd JB |
2495 | { |
2496 | struct gdbarch *arch = get_regcache_arch (regcache); | |
2497 | struct gdbarch_tdep *tdep = gdbarch_tdep (arch); | |
2498 | int reg_index; | |
50fd1280 | 2499 | gdb_byte *byte_buffer = buffer; |
6ced10dd JB |
2500 | |
2501 | gdb_assert (tdep->ppc_ev0_regnum <= ev_reg | |
2502 | && ev_reg < tdep->ppc_ev0_regnum + ppc_num_gprs); | |
2503 | ||
2504 | reg_index = ev_reg - tdep->ppc_ev0_regnum; | |
2505 | ||
8b164abb | 2506 | if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG) |
6ced10dd JB |
2507 | { |
2508 | move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer); | |
2509 | move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer + 4); | |
2510 | } | |
2511 | else | |
2512 | { | |
2513 | move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer); | |
2514 | move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer + 4); | |
2515 | } | |
2516 | } | |
2517 | ||
c8001721 EZ |
2518 | static void |
2519 | e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache, | |
50fd1280 | 2520 | int reg_nr, gdb_byte *buffer) |
c8001721 | 2521 | { |
6ced10dd | 2522 | struct gdbarch *regcache_arch = get_regcache_arch (regcache); |
c8001721 EZ |
2523 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
2524 | ||
6ced10dd JB |
2525 | gdb_assert (regcache_arch == gdbarch); |
2526 | ||
2527 | if (tdep->ppc_ev0_regnum <= reg_nr | |
2528 | && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs) | |
2529 | e500_move_ev_register (regcache_raw_read, regcache, reg_nr, buffer); | |
2530 | else | |
a44bddec | 2531 | internal_error (__FILE__, __LINE__, |
e2e0b3e5 AC |
2532 | _("e500_pseudo_register_read: " |
2533 | "called on unexpected register '%s' (%d)"), | |
a44bddec | 2534 | gdbarch_register_name (gdbarch, reg_nr), reg_nr); |
c8001721 EZ |
2535 | } |
2536 | ||
2537 | static void | |
2538 | e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache, | |
50fd1280 | 2539 | int reg_nr, const gdb_byte *buffer) |
c8001721 | 2540 | { |
6ced10dd | 2541 | struct gdbarch *regcache_arch = get_regcache_arch (regcache); |
c8001721 EZ |
2542 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
2543 | ||
6ced10dd JB |
2544 | gdb_assert (regcache_arch == gdbarch); |
2545 | ||
2546 | if (tdep->ppc_ev0_regnum <= reg_nr | |
2547 | && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs) | |
50fd1280 | 2548 | e500_move_ev_register ((void (*) (struct regcache *, int, gdb_byte *)) |
6ced10dd | 2549 | regcache_raw_write, |
50fd1280 | 2550 | regcache, reg_nr, (gdb_byte *) buffer); |
6ced10dd | 2551 | else |
a44bddec | 2552 | internal_error (__FILE__, __LINE__, |
e2e0b3e5 AC |
2553 | _("e500_pseudo_register_read: " |
2554 | "called on unexpected register '%s' (%d)"), | |
a44bddec | 2555 | gdbarch_register_name (gdbarch, reg_nr), reg_nr); |
6ced10dd JB |
2556 | } |
2557 | ||
18ed0c4e | 2558 | /* Convert a DBX STABS register number to a GDB register number. */ |
c8001721 | 2559 | static int |
18ed0c4e | 2560 | rs6000_stab_reg_to_regnum (int num) |
c8001721 | 2561 | { |
9f744501 | 2562 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
c8001721 | 2563 | |
9f744501 JB |
2564 | if (0 <= num && num <= 31) |
2565 | return tdep->ppc_gp0_regnum + num; | |
2566 | else if (32 <= num && num <= 63) | |
383f0f5b JB |
2567 | /* FIXME: jimb/2004-05-05: What should we do when the debug info |
2568 | specifies registers the architecture doesn't have? Our | |
2569 | callers don't check the value we return. */ | |
366f009f | 2570 | return tdep->ppc_fp0_regnum + (num - 32); |
18ed0c4e JB |
2571 | else if (77 <= num && num <= 108) |
2572 | return tdep->ppc_vr0_regnum + (num - 77); | |
9f744501 JB |
2573 | else if (1200 <= num && num < 1200 + 32) |
2574 | return tdep->ppc_ev0_regnum + (num - 1200); | |
2575 | else | |
2576 | switch (num) | |
2577 | { | |
2578 | case 64: | |
2579 | return tdep->ppc_mq_regnum; | |
2580 | case 65: | |
2581 | return tdep->ppc_lr_regnum; | |
2582 | case 66: | |
2583 | return tdep->ppc_ctr_regnum; | |
2584 | case 76: | |
2585 | return tdep->ppc_xer_regnum; | |
2586 | case 109: | |
2587 | return tdep->ppc_vrsave_regnum; | |
18ed0c4e JB |
2588 | case 110: |
2589 | return tdep->ppc_vrsave_regnum - 1; /* vscr */ | |
867e2dc5 | 2590 | case 111: |
18ed0c4e | 2591 | return tdep->ppc_acc_regnum; |
867e2dc5 | 2592 | case 112: |
18ed0c4e | 2593 | return tdep->ppc_spefscr_regnum; |
9f744501 JB |
2594 | default: |
2595 | return num; | |
2596 | } | |
18ed0c4e | 2597 | } |
9f744501 | 2598 | |
9f744501 | 2599 | |
18ed0c4e JB |
2600 | /* Convert a Dwarf 2 register number to a GDB register number. */ |
2601 | static int | |
2602 | rs6000_dwarf2_reg_to_regnum (int num) | |
2603 | { | |
2604 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); | |
9f744501 | 2605 | |
18ed0c4e JB |
2606 | if (0 <= num && num <= 31) |
2607 | return tdep->ppc_gp0_regnum + num; | |
2608 | else if (32 <= num && num <= 63) | |
2609 | /* FIXME: jimb/2004-05-05: What should we do when the debug info | |
2610 | specifies registers the architecture doesn't have? Our | |
2611 | callers don't check the value we return. */ | |
2612 | return tdep->ppc_fp0_regnum + (num - 32); | |
2613 | else if (1124 <= num && num < 1124 + 32) | |
2614 | return tdep->ppc_vr0_regnum + (num - 1124); | |
2615 | else if (1200 <= num && num < 1200 + 32) | |
2616 | return tdep->ppc_ev0_regnum + (num - 1200); | |
2617 | else | |
2618 | switch (num) | |
2619 | { | |
a489f789 AS |
2620 | case 64: |
2621 | return tdep->ppc_cr_regnum; | |
18ed0c4e JB |
2622 | case 67: |
2623 | return tdep->ppc_vrsave_regnum - 1; /* vscr */ | |
2624 | case 99: | |
2625 | return tdep->ppc_acc_regnum; | |
2626 | case 100: | |
2627 | return tdep->ppc_mq_regnum; | |
2628 | case 101: | |
2629 | return tdep->ppc_xer_regnum; | |
2630 | case 108: | |
2631 | return tdep->ppc_lr_regnum; | |
2632 | case 109: | |
2633 | return tdep->ppc_ctr_regnum; | |
2634 | case 356: | |
2635 | return tdep->ppc_vrsave_regnum; | |
2636 | case 612: | |
2637 | return tdep->ppc_spefscr_regnum; | |
2638 | default: | |
2639 | return num; | |
2640 | } | |
2188cbdd EZ |
2641 | } |
2642 | ||
4fc771b8 DJ |
2643 | /* Translate a .eh_frame register to DWARF register, or adjust a |
2644 | .debug_frame register. */ | |
2645 | ||
2646 | static int | |
2647 | rs6000_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p) | |
2648 | { | |
2649 | /* GCC releases before 3.4 use GCC internal register numbering in | |
2650 | .debug_frame (and .debug_info, et cetera). The numbering is | |
2651 | different from the standard SysV numbering for everything except | |
2652 | for GPRs and FPRs. We can not detect this problem in most cases | |
2653 | - to get accurate debug info for variables living in lr, ctr, v0, | |
2654 | et cetera, use a newer version of GCC. But we must detect | |
2655 | one important case - lr is in column 65 in .debug_frame output, | |
2656 | instead of 108. | |
2657 | ||
2658 | GCC 3.4, and the "hammer" branch, have a related problem. They | |
2659 | record lr register saves in .debug_frame as 108, but still record | |
2660 | the return column as 65. We fix that up too. | |
2661 | ||
2662 | We can do this because 65 is assigned to fpsr, and GCC never | |
2663 | generates debug info referring to it. To add support for | |
2664 | handwritten debug info that restores fpsr, we would need to add a | |
2665 | producer version check to this. */ | |
2666 | if (!eh_frame_p) | |
2667 | { | |
2668 | if (num == 65) | |
2669 | return 108; | |
2670 | else | |
2671 | return num; | |
2672 | } | |
2673 | ||
2674 | /* .eh_frame is GCC specific. For binary compatibility, it uses GCC | |
2675 | internal register numbering; translate that to the standard DWARF2 | |
2676 | register numbering. */ | |
2677 | if (0 <= num && num <= 63) /* r0-r31,fp0-fp31 */ | |
2678 | return num; | |
2679 | else if (68 <= num && num <= 75) /* cr0-cr8 */ | |
2680 | return num - 68 + 86; | |
2681 | else if (77 <= num && num <= 108) /* vr0-vr31 */ | |
2682 | return num - 77 + 1124; | |
2683 | else | |
2684 | switch (num) | |
2685 | { | |
2686 | case 64: /* mq */ | |
2687 | return 100; | |
2688 | case 65: /* lr */ | |
2689 | return 108; | |
2690 | case 66: /* ctr */ | |
2691 | return 109; | |
2692 | case 76: /* xer */ | |
2693 | return 101; | |
2694 | case 109: /* vrsave */ | |
2695 | return 356; | |
2696 | case 110: /* vscr */ | |
2697 | return 67; | |
2698 | case 111: /* spe_acc */ | |
2699 | return 99; | |
2700 | case 112: /* spefscr */ | |
2701 | return 612; | |
2702 | default: | |
2703 | return num; | |
2704 | } | |
2705 | } | |
c906108c | 2706 | \f |
e2d0e7eb | 2707 | /* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG). |
7a78ae4e ND |
2708 | |
2709 | Usually a function pointer's representation is simply the address | |
2710 | of the function. On the RS/6000 however, a function pointer is | |
8ba0209f | 2711 | represented by a pointer to an OPD entry. This OPD entry contains |
7a78ae4e ND |
2712 | three words, the first word is the address of the function, the |
2713 | second word is the TOC pointer (r2), and the third word is the | |
2714 | static chain value. Throughout GDB it is currently assumed that a | |
2715 | function pointer contains the address of the function, which is not | |
2716 | easy to fix. In addition, the conversion of a function address to | |
8ba0209f | 2717 | a function pointer would require allocation of an OPD entry in the |
7a78ae4e ND |
2718 | inferior's memory space, with all its drawbacks. To be able to |
2719 | call C++ virtual methods in the inferior (which are called via | |
f517ea4e | 2720 | function pointers), find_function_addr uses this function to get the |
7a78ae4e ND |
2721 | function address from a function pointer. */ |
2722 | ||
f517ea4e PS |
2723 | /* Return real function address if ADDR (a function pointer) is in the data |
2724 | space and is therefore a special function pointer. */ | |
c906108c | 2725 | |
b9362cc7 | 2726 | static CORE_ADDR |
e2d0e7eb AC |
2727 | rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch, |
2728 | CORE_ADDR addr, | |
2729 | struct target_ops *targ) | |
c906108c SS |
2730 | { |
2731 | struct obj_section *s; | |
2732 | ||
2733 | s = find_pc_section (addr); | |
2734 | if (s && s->the_bfd_section->flags & SEC_CODE) | |
7a78ae4e | 2735 | return addr; |
c906108c | 2736 | |
7a78ae4e | 2737 | /* ADDR is in the data space, so it's a special function pointer. */ |
7f68ac27 | 2738 | return read_memory_addr (addr, gdbarch_tdep (gdbarch)->wordsize); |
c906108c | 2739 | } |
c906108c | 2740 | \f |
c5aa993b | 2741 | |
7a78ae4e | 2742 | /* Handling the various POWER/PowerPC variants. */ |
c906108c | 2743 | |
c906108c | 2744 | /* Information about a particular processor variant. */ |
7a78ae4e | 2745 | |
c906108c | 2746 | struct variant |
c5aa993b JM |
2747 | { |
2748 | /* Name of this variant. */ | |
2749 | char *name; | |
c906108c | 2750 | |
c5aa993b JM |
2751 | /* English description of the variant. */ |
2752 | char *description; | |
c906108c | 2753 | |
64366f1c | 2754 | /* bfd_arch_info.arch corresponding to variant. */ |
7a78ae4e ND |
2755 | enum bfd_architecture arch; |
2756 | ||
64366f1c | 2757 | /* bfd_arch_info.mach corresponding to variant. */ |
7a78ae4e ND |
2758 | unsigned long mach; |
2759 | ||
7cc46491 DJ |
2760 | /* Target description for this variant. */ |
2761 | struct target_desc **tdesc; | |
c5aa993b | 2762 | }; |
c906108c | 2763 | |
489461e2 | 2764 | static struct variant variants[] = |
c906108c | 2765 | { |
7a78ae4e | 2766 | {"powerpc", "PowerPC user-level", bfd_arch_powerpc, |
7cc46491 | 2767 | bfd_mach_ppc, &tdesc_powerpc_32}, |
7a78ae4e | 2768 | {"power", "POWER user-level", bfd_arch_rs6000, |
7cc46491 | 2769 | bfd_mach_rs6k, &tdesc_rs6000}, |
7a78ae4e | 2770 | {"403", "IBM PowerPC 403", bfd_arch_powerpc, |
7cc46491 | 2771 | bfd_mach_ppc_403, &tdesc_powerpc_403}, |
7a78ae4e | 2772 | {"601", "Motorola PowerPC 601", bfd_arch_powerpc, |
7cc46491 | 2773 | bfd_mach_ppc_601, &tdesc_powerpc_601}, |
7a78ae4e | 2774 | {"602", "Motorola PowerPC 602", bfd_arch_powerpc, |
7cc46491 | 2775 | bfd_mach_ppc_602, &tdesc_powerpc_602}, |
7a78ae4e | 2776 | {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc, |
7cc46491 | 2777 | bfd_mach_ppc_603, &tdesc_powerpc_603}, |
7a78ae4e | 2778 | {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc, |
7cc46491 | 2779 | 604, &tdesc_powerpc_604}, |
7a78ae4e | 2780 | {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc, |
7cc46491 | 2781 | bfd_mach_ppc_403gc, &tdesc_powerpc_403gc}, |
7a78ae4e | 2782 | {"505", "Motorola PowerPC 505", bfd_arch_powerpc, |
7cc46491 | 2783 | bfd_mach_ppc_505, &tdesc_powerpc_505}, |
7a78ae4e | 2784 | {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc, |
7cc46491 | 2785 | bfd_mach_ppc_860, &tdesc_powerpc_860}, |
7a78ae4e | 2786 | {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc, |
7cc46491 | 2787 | bfd_mach_ppc_750, &tdesc_powerpc_750}, |
1fcc0bb8 | 2788 | {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc, |
7cc46491 | 2789 | bfd_mach_ppc_7400, &tdesc_powerpc_7400}, |
c8001721 | 2790 | {"e500", "Motorola PowerPC e500", bfd_arch_powerpc, |
7cc46491 | 2791 | bfd_mach_ppc_e500, &tdesc_powerpc_e500}, |
7a78ae4e | 2792 | |
5d57ee30 KB |
2793 | /* 64-bit */ |
2794 | {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc, | |
7cc46491 | 2795 | bfd_mach_ppc64, &tdesc_powerpc_64}, |
7a78ae4e | 2796 | {"620", "Motorola PowerPC 620", bfd_arch_powerpc, |
7cc46491 | 2797 | bfd_mach_ppc_620, &tdesc_powerpc_64}, |
5d57ee30 | 2798 | {"630", "Motorola PowerPC 630", bfd_arch_powerpc, |
7cc46491 | 2799 | bfd_mach_ppc_630, &tdesc_powerpc_64}, |
7a78ae4e | 2800 | {"a35", "PowerPC A35", bfd_arch_powerpc, |
7cc46491 | 2801 | bfd_mach_ppc_a35, &tdesc_powerpc_64}, |
5d57ee30 | 2802 | {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc, |
7cc46491 | 2803 | bfd_mach_ppc_rs64ii, &tdesc_powerpc_64}, |
5d57ee30 | 2804 | {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc, |
7cc46491 | 2805 | bfd_mach_ppc_rs64iii, &tdesc_powerpc_64}, |
5d57ee30 | 2806 | |
64366f1c | 2807 | /* FIXME: I haven't checked the register sets of the following. */ |
7a78ae4e | 2808 | {"rs1", "IBM POWER RS1", bfd_arch_rs6000, |
7cc46491 | 2809 | bfd_mach_rs6k_rs1, &tdesc_rs6000}, |
7a78ae4e | 2810 | {"rsc", "IBM POWER RSC", bfd_arch_rs6000, |
7cc46491 | 2811 | bfd_mach_rs6k_rsc, &tdesc_rs6000}, |
7a78ae4e | 2812 | {"rs2", "IBM POWER RS2", bfd_arch_rs6000, |
7cc46491 | 2813 | bfd_mach_rs6k_rs2, &tdesc_rs6000}, |
7a78ae4e | 2814 | |
7cc46491 | 2815 | {0, 0, 0, 0, 0} |
c906108c SS |
2816 | }; |
2817 | ||
7a78ae4e | 2818 | /* Return the variant corresponding to architecture ARCH and machine number |
64366f1c | 2819 | MACH. If no such variant exists, return null. */ |
c906108c | 2820 | |
7a78ae4e ND |
2821 | static const struct variant * |
2822 | find_variant_by_arch (enum bfd_architecture arch, unsigned long mach) | |
c906108c | 2823 | { |
7a78ae4e | 2824 | const struct variant *v; |
c5aa993b | 2825 | |
7a78ae4e ND |
2826 | for (v = variants; v->name; v++) |
2827 | if (arch == v->arch && mach == v->mach) | |
2828 | return v; | |
c906108c | 2829 | |
7a78ae4e | 2830 | return NULL; |
c906108c | 2831 | } |
9364a0ef EZ |
2832 | |
2833 | static int | |
2834 | gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info) | |
2835 | { | |
ee4f0f76 DJ |
2836 | if (!info->disassembler_options) |
2837 | info->disassembler_options = "any"; | |
2838 | ||
4c6b5505 | 2839 | if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG) |
9364a0ef EZ |
2840 | return print_insn_big_powerpc (memaddr, info); |
2841 | else | |
2842 | return print_insn_little_powerpc (memaddr, info); | |
2843 | } | |
7a78ae4e | 2844 | \f |
61a65099 KB |
2845 | static CORE_ADDR |
2846 | rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
2847 | { | |
3e8c568d | 2848 | return frame_unwind_register_unsigned (next_frame, |
8b164abb | 2849 | gdbarch_pc_regnum (gdbarch)); |
61a65099 KB |
2850 | } |
2851 | ||
2852 | static struct frame_id | |
2853 | rs6000_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
2854 | { | |
3e8c568d | 2855 | return frame_id_build (frame_unwind_register_unsigned |
8b164abb | 2856 | (next_frame, gdbarch_sp_regnum (gdbarch)), |
3e8c568d | 2857 | frame_pc_unwind (next_frame)); |
61a65099 KB |
2858 | } |
2859 | ||
2860 | struct rs6000_frame_cache | |
2861 | { | |
2862 | CORE_ADDR base; | |
2863 | CORE_ADDR initial_sp; | |
2864 | struct trad_frame_saved_reg *saved_regs; | |
2865 | }; | |
2866 | ||
2867 | static struct rs6000_frame_cache * | |
2868 | rs6000_frame_cache (struct frame_info *next_frame, void **this_cache) | |
2869 | { | |
2870 | struct rs6000_frame_cache *cache; | |
2871 | struct gdbarch *gdbarch = get_frame_arch (next_frame); | |
2872 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
2873 | struct rs6000_framedata fdata; | |
2874 | int wordsize = tdep->wordsize; | |
e10b1c4c | 2875 | CORE_ADDR func, pc; |
61a65099 KB |
2876 | |
2877 | if ((*this_cache) != NULL) | |
2878 | return (*this_cache); | |
2879 | cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache); | |
2880 | (*this_cache) = cache; | |
2881 | cache->saved_regs = trad_frame_alloc_saved_regs (next_frame); | |
2882 | ||
93d42b30 | 2883 | func = frame_func_unwind (next_frame, NORMAL_FRAME); |
e10b1c4c DJ |
2884 | pc = frame_pc_unwind (next_frame); |
2885 | skip_prologue (func, pc, &fdata); | |
2886 | ||
2887 | /* Figure out the parent's stack pointer. */ | |
2888 | ||
2889 | /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most | |
2890 | address of the current frame. Things might be easier if the | |
2891 | ->frame pointed to the outer-most address of the frame. In | |
2892 | the mean time, the address of the prev frame is used as the | |
2893 | base address of this frame. */ | |
3e8c568d | 2894 | cache->base = frame_unwind_register_unsigned |
8b164abb | 2895 | (next_frame, gdbarch_sp_regnum (gdbarch)); |
e10b1c4c DJ |
2896 | |
2897 | /* If the function appears to be frameless, check a couple of likely | |
2898 | indicators that we have simply failed to find the frame setup. | |
2899 | Two common cases of this are missing symbols (i.e. | |
2900 | frame_func_unwind returns the wrong address or 0), and assembly | |
2901 | stubs which have a fast exit path but set up a frame on the slow | |
2902 | path. | |
2903 | ||
2904 | If the LR appears to return to this function, then presume that | |
2905 | we have an ABI compliant frame that we failed to find. */ | |
2906 | if (fdata.frameless && fdata.lr_offset == 0) | |
61a65099 | 2907 | { |
e10b1c4c DJ |
2908 | CORE_ADDR saved_lr; |
2909 | int make_frame = 0; | |
2910 | ||
2911 | saved_lr = frame_unwind_register_unsigned (next_frame, | |
2912 | tdep->ppc_lr_regnum); | |
2913 | if (func == 0 && saved_lr == pc) | |
2914 | make_frame = 1; | |
2915 | else if (func != 0) | |
2916 | { | |
2917 | CORE_ADDR saved_func = get_pc_function_start (saved_lr); | |
2918 | if (func == saved_func) | |
2919 | make_frame = 1; | |
2920 | } | |
2921 | ||
2922 | if (make_frame) | |
2923 | { | |
2924 | fdata.frameless = 0; | |
de6a76fd | 2925 | fdata.lr_offset = tdep->lr_frame_offset; |
e10b1c4c | 2926 | } |
61a65099 | 2927 | } |
e10b1c4c DJ |
2928 | |
2929 | if (!fdata.frameless) | |
2930 | /* Frameless really means stackless. */ | |
2931 | cache->base = read_memory_addr (cache->base, wordsize); | |
2932 | ||
3e8c568d | 2933 | trad_frame_set_value (cache->saved_regs, |
8b164abb | 2934 | gdbarch_sp_regnum (gdbarch), cache->base); |
61a65099 KB |
2935 | |
2936 | /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr. | |
2937 | All fpr's from saved_fpr to fp31 are saved. */ | |
2938 | ||
2939 | if (fdata.saved_fpr >= 0) | |
2940 | { | |
2941 | int i; | |
2942 | CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset; | |
383f0f5b JB |
2943 | |
2944 | /* If skip_prologue says floating-point registers were saved, | |
2945 | but the current architecture has no floating-point registers, | |
2946 | then that's strange. But we have no indices to even record | |
2947 | the addresses under, so we just ignore it. */ | |
2948 | if (ppc_floating_point_unit_p (gdbarch)) | |
063715bf | 2949 | for (i = fdata.saved_fpr; i < ppc_num_fprs; i++) |
383f0f5b JB |
2950 | { |
2951 | cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr; | |
2952 | fpr_addr += 8; | |
2953 | } | |
61a65099 KB |
2954 | } |
2955 | ||
2956 | /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr. | |
2957 | All gpr's from saved_gpr to gpr31 are saved. */ | |
2958 | ||
2959 | if (fdata.saved_gpr >= 0) | |
2960 | { | |
2961 | int i; | |
2962 | CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset; | |
063715bf | 2963 | for (i = fdata.saved_gpr; i < ppc_num_gprs; i++) |
61a65099 KB |
2964 | { |
2965 | cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr; | |
2966 | gpr_addr += wordsize; | |
2967 | } | |
2968 | } | |
2969 | ||
2970 | /* if != -1, fdata.saved_vr is the smallest number of saved_vr. | |
2971 | All vr's from saved_vr to vr31 are saved. */ | |
2972 | if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1) | |
2973 | { | |
2974 | if (fdata.saved_vr >= 0) | |
2975 | { | |
2976 | int i; | |
2977 | CORE_ADDR vr_addr = cache->base + fdata.vr_offset; | |
2978 | for (i = fdata.saved_vr; i < 32; i++) | |
2979 | { | |
2980 | cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr; | |
2981 | vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum); | |
2982 | } | |
2983 | } | |
2984 | } | |
2985 | ||
2986 | /* if != -1, fdata.saved_ev is the smallest number of saved_ev. | |
2987 | All vr's from saved_ev to ev31 are saved. ????? */ | |
2988 | if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1) | |
2989 | { | |
2990 | if (fdata.saved_ev >= 0) | |
2991 | { | |
2992 | int i; | |
2993 | CORE_ADDR ev_addr = cache->base + fdata.ev_offset; | |
063715bf | 2994 | for (i = fdata.saved_ev; i < ppc_num_gprs; i++) |
61a65099 KB |
2995 | { |
2996 | cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr; | |
2997 | cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + 4; | |
2998 | ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum); | |
2999 | } | |
3000 | } | |
3001 | } | |
3002 | ||
3003 | /* If != 0, fdata.cr_offset is the offset from the frame that | |
3004 | holds the CR. */ | |
3005 | if (fdata.cr_offset != 0) | |
3006 | cache->saved_regs[tdep->ppc_cr_regnum].addr = cache->base + fdata.cr_offset; | |
3007 | ||
3008 | /* If != 0, fdata.lr_offset is the offset from the frame that | |
3009 | holds the LR. */ | |
3010 | if (fdata.lr_offset != 0) | |
3011 | cache->saved_regs[tdep->ppc_lr_regnum].addr = cache->base + fdata.lr_offset; | |
3012 | /* The PC is found in the link register. */ | |
8b164abb | 3013 | cache->saved_regs[gdbarch_pc_regnum (gdbarch)] = |
3e8c568d | 3014 | cache->saved_regs[tdep->ppc_lr_regnum]; |
61a65099 KB |
3015 | |
3016 | /* If != 0, fdata.vrsave_offset is the offset from the frame that | |
3017 | holds the VRSAVE. */ | |
3018 | if (fdata.vrsave_offset != 0) | |
3019 | cache->saved_regs[tdep->ppc_vrsave_regnum].addr = cache->base + fdata.vrsave_offset; | |
3020 | ||
3021 | if (fdata.alloca_reg < 0) | |
3022 | /* If no alloca register used, then fi->frame is the value of the | |
3023 | %sp for this frame, and it is good enough. */ | |
3e8c568d | 3024 | cache->initial_sp = frame_unwind_register_unsigned |
8b164abb | 3025 | (next_frame, gdbarch_sp_regnum (gdbarch)); |
61a65099 KB |
3026 | else |
3027 | cache->initial_sp = frame_unwind_register_unsigned (next_frame, | |
3028 | fdata.alloca_reg); | |
3029 | ||
3030 | return cache; | |
3031 | } | |
3032 | ||
3033 | static void | |
3034 | rs6000_frame_this_id (struct frame_info *next_frame, void **this_cache, | |
3035 | struct frame_id *this_id) | |
3036 | { | |
3037 | struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame, | |
3038 | this_cache); | |
93d42b30 DJ |
3039 | (*this_id) = frame_id_build (info->base, |
3040 | frame_func_unwind (next_frame, NORMAL_FRAME)); | |
61a65099 KB |
3041 | } |
3042 | ||
3043 | static void | |
3044 | rs6000_frame_prev_register (struct frame_info *next_frame, | |
3045 | void **this_cache, | |
3046 | int regnum, int *optimizedp, | |
3047 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
50fd1280 | 3048 | int *realnump, gdb_byte *valuep) |
61a65099 KB |
3049 | { |
3050 | struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame, | |
3051 | this_cache); | |
1f67027d AC |
3052 | trad_frame_get_prev_register (next_frame, info->saved_regs, regnum, |
3053 | optimizedp, lvalp, addrp, realnump, valuep); | |
61a65099 KB |
3054 | } |
3055 | ||
3056 | static const struct frame_unwind rs6000_frame_unwind = | |
3057 | { | |
3058 | NORMAL_FRAME, | |
3059 | rs6000_frame_this_id, | |
3060 | rs6000_frame_prev_register | |
3061 | }; | |
3062 | ||
3063 | static const struct frame_unwind * | |
3064 | rs6000_frame_sniffer (struct frame_info *next_frame) | |
3065 | { | |
3066 | return &rs6000_frame_unwind; | |
3067 | } | |
3068 | ||
3069 | \f | |
3070 | ||
3071 | static CORE_ADDR | |
3072 | rs6000_frame_base_address (struct frame_info *next_frame, | |
3073 | void **this_cache) | |
3074 | { | |
3075 | struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame, | |
3076 | this_cache); | |
3077 | return info->initial_sp; | |
3078 | } | |
3079 | ||
3080 | static const struct frame_base rs6000_frame_base = { | |
3081 | &rs6000_frame_unwind, | |
3082 | rs6000_frame_base_address, | |
3083 | rs6000_frame_base_address, | |
3084 | rs6000_frame_base_address | |
3085 | }; | |
3086 | ||
3087 | static const struct frame_base * | |
3088 | rs6000_frame_base_sniffer (struct frame_info *next_frame) | |
3089 | { | |
3090 | return &rs6000_frame_base; | |
3091 | } | |
3092 | ||
9274a07c LM |
3093 | /* DWARF-2 frame support. Used to handle the detection of |
3094 | clobbered registers during function calls. */ | |
3095 | ||
3096 | static void | |
3097 | ppc_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum, | |
3098 | struct dwarf2_frame_state_reg *reg, | |
3099 | struct frame_info *next_frame) | |
3100 | { | |
3101 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
3102 | ||
3103 | /* PPC32 and PPC64 ABI's are the same regarding volatile and | |
3104 | non-volatile registers. We will use the same code for both. */ | |
3105 | ||
3106 | /* Call-saved GP registers. */ | |
3107 | if ((regnum >= tdep->ppc_gp0_regnum + 14 | |
3108 | && regnum <= tdep->ppc_gp0_regnum + 31) | |
3109 | || (regnum == tdep->ppc_gp0_regnum + 1)) | |
3110 | reg->how = DWARF2_FRAME_REG_SAME_VALUE; | |
3111 | ||
3112 | /* Call-clobbered GP registers. */ | |
3113 | if ((regnum >= tdep->ppc_gp0_regnum + 3 | |
3114 | && regnum <= tdep->ppc_gp0_regnum + 12) | |
3115 | || (regnum == tdep->ppc_gp0_regnum)) | |
3116 | reg->how = DWARF2_FRAME_REG_UNDEFINED; | |
3117 | ||
3118 | /* Deal with FP registers, if supported. */ | |
3119 | if (tdep->ppc_fp0_regnum >= 0) | |
3120 | { | |
3121 | /* Call-saved FP registers. */ | |
3122 | if ((regnum >= tdep->ppc_fp0_regnum + 14 | |
3123 | && regnum <= tdep->ppc_fp0_regnum + 31)) | |
3124 | reg->how = DWARF2_FRAME_REG_SAME_VALUE; | |
3125 | ||
3126 | /* Call-clobbered FP registers. */ | |
3127 | if ((regnum >= tdep->ppc_fp0_regnum | |
3128 | && regnum <= tdep->ppc_fp0_regnum + 13)) | |
3129 | reg->how = DWARF2_FRAME_REG_UNDEFINED; | |
3130 | } | |
3131 | ||
3132 | /* Deal with ALTIVEC registers, if supported. */ | |
3133 | if (tdep->ppc_vr0_regnum > 0 && tdep->ppc_vrsave_regnum > 0) | |
3134 | { | |
3135 | /* Call-saved Altivec registers. */ | |
3136 | if ((regnum >= tdep->ppc_vr0_regnum + 20 | |
3137 | && regnum <= tdep->ppc_vr0_regnum + 31) | |
3138 | || regnum == tdep->ppc_vrsave_regnum) | |
3139 | reg->how = DWARF2_FRAME_REG_SAME_VALUE; | |
3140 | ||
3141 | /* Call-clobbered Altivec registers. */ | |
3142 | if ((regnum >= tdep->ppc_vr0_regnum | |
3143 | && regnum <= tdep->ppc_vr0_regnum + 19)) | |
3144 | reg->how = DWARF2_FRAME_REG_UNDEFINED; | |
3145 | } | |
3146 | ||
3147 | /* Handle PC register and Stack Pointer correctly. */ | |
3148 | if (regnum == gdbarch_pc_regnum (current_gdbarch)) | |
3149 | reg->how = DWARF2_FRAME_REG_RA; | |
3150 | else if (regnum == gdbarch_sp_regnum (current_gdbarch)) | |
3151 | reg->how = DWARF2_FRAME_REG_CFA; | |
3152 | } | |
3153 | ||
3154 | ||
7a78ae4e ND |
3155 | /* Initialize the current architecture based on INFO. If possible, re-use an |
3156 | architecture from ARCHES, which is a list of architectures already created | |
3157 | during this debugging session. | |
c906108c | 3158 | |
7a78ae4e | 3159 | Called e.g. at program startup, when reading a core file, and when reading |
64366f1c | 3160 | a binary file. */ |
c906108c | 3161 | |
7a78ae4e ND |
3162 | static struct gdbarch * |
3163 | rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
3164 | { | |
3165 | struct gdbarch *gdbarch; | |
3166 | struct gdbarch_tdep *tdep; | |
7cc46491 | 3167 | int wordsize, from_xcoff_exec, from_elf_exec; |
7a78ae4e ND |
3168 | enum bfd_architecture arch; |
3169 | unsigned long mach; | |
3170 | bfd abfd; | |
7b112f9c | 3171 | int sysv_abi; |
5bf1c677 | 3172 | asection *sect; |
55eddb0f DJ |
3173 | enum auto_boolean soft_float_flag = powerpc_soft_float_global; |
3174 | int soft_float; | |
3175 | enum powerpc_vector_abi vector_abi = powerpc_vector_abi_global; | |
7cc46491 DJ |
3176 | int have_fpu = 1, have_spe = 0, have_mq = 0, have_altivec = 0; |
3177 | int tdesc_wordsize = -1; | |
3178 | const struct target_desc *tdesc = info.target_desc; | |
3179 | struct tdesc_arch_data *tdesc_data = NULL; | |
3180 | int num_sprs = 0; | |
7a78ae4e | 3181 | |
9aa1e687 | 3182 | from_xcoff_exec = info.abfd && info.abfd->format == bfd_object && |
7a78ae4e ND |
3183 | bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour; |
3184 | ||
9aa1e687 KB |
3185 | from_elf_exec = info.abfd && info.abfd->format == bfd_object && |
3186 | bfd_get_flavour (info.abfd) == bfd_target_elf_flavour; | |
3187 | ||
3188 | sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour; | |
3189 | ||
e712c1cf | 3190 | /* Check word size. If INFO is from a binary file, infer it from |
64366f1c | 3191 | that, else choose a likely default. */ |
9aa1e687 | 3192 | if (from_xcoff_exec) |
c906108c | 3193 | { |
11ed25ac | 3194 | if (bfd_xcoff_is_xcoff64 (info.abfd)) |
7a78ae4e ND |
3195 | wordsize = 8; |
3196 | else | |
3197 | wordsize = 4; | |
c906108c | 3198 | } |
9aa1e687 KB |
3199 | else if (from_elf_exec) |
3200 | { | |
3201 | if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64) | |
3202 | wordsize = 8; | |
3203 | else | |
3204 | wordsize = 4; | |
3205 | } | |
7cc46491 DJ |
3206 | else if (tdesc_has_registers (tdesc)) |
3207 | wordsize = -1; | |
c906108c | 3208 | else |
7a78ae4e | 3209 | { |
27b15785 KB |
3210 | if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0) |
3211 | wordsize = info.bfd_arch_info->bits_per_word / | |
3212 | info.bfd_arch_info->bits_per_byte; | |
3213 | else | |
3214 | wordsize = 4; | |
7a78ae4e | 3215 | } |
c906108c | 3216 | |
9aa1e687 | 3217 | if (!from_xcoff_exec) |
c906108c | 3218 | { |
b732d07d | 3219 | arch = info.bfd_arch_info->arch; |
7a78ae4e | 3220 | mach = info.bfd_arch_info->mach; |
c906108c | 3221 | } |
7a78ae4e | 3222 | else |
c906108c | 3223 | { |
7a78ae4e | 3224 | arch = bfd_arch_powerpc; |
35cec841 | 3225 | bfd_default_set_arch_mach (&abfd, arch, 0); |
7a78ae4e | 3226 | info.bfd_arch_info = bfd_get_arch_info (&abfd); |
35cec841 | 3227 | mach = info.bfd_arch_info->mach; |
7a78ae4e | 3228 | } |
5bf1c677 EZ |
3229 | |
3230 | /* For e500 executables, the apuinfo section is of help here. Such | |
3231 | section contains the identifier and revision number of each | |
3232 | Application-specific Processing Unit that is present on the | |
3233 | chip. The content of the section is determined by the assembler | |
3234 | which looks at each instruction and determines which unit (and | |
3235 | which version of it) can execute it. In our case we just look for | |
3236 | the existance of the section. */ | |
3237 | ||
3238 | if (info.abfd) | |
3239 | { | |
3240 | sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo"); | |
3241 | if (sect) | |
3242 | { | |
3243 | arch = info.bfd_arch_info->arch; | |
3244 | mach = bfd_mach_ppc_e500; | |
3245 | bfd_default_set_arch_mach (&abfd, arch, mach); | |
3246 | info.bfd_arch_info = bfd_get_arch_info (&abfd); | |
3247 | } | |
3248 | } | |
3249 | ||
7cc46491 DJ |
3250 | /* Find a default target description which describes our register |
3251 | layout, if we do not already have one. */ | |
3252 | if (! tdesc_has_registers (tdesc)) | |
3253 | { | |
3254 | const struct variant *v; | |
3255 | ||
3256 | /* Choose variant. */ | |
3257 | v = find_variant_by_arch (arch, mach); | |
3258 | if (!v) | |
3259 | return NULL; | |
3260 | ||
3261 | tdesc = *v->tdesc; | |
3262 | } | |
3263 | ||
3264 | gdb_assert (tdesc_has_registers (tdesc)); | |
3265 | ||
3266 | /* Check any target description for validity. */ | |
3267 | if (tdesc_has_registers (tdesc)) | |
3268 | { | |
3269 | static const char *const gprs[] = { | |
3270 | "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", | |
3271 | "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", | |
3272 | "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", | |
3273 | "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31" | |
3274 | }; | |
3275 | static const char *const segment_regs[] = { | |
3276 | "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7", | |
3277 | "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15" | |
3278 | }; | |
3279 | const struct tdesc_feature *feature; | |
3280 | int i, valid_p; | |
3281 | static const char *const msr_names[] = { "msr", "ps" }; | |
3282 | static const char *const cr_names[] = { "cr", "cnd" }; | |
3283 | static const char *const ctr_names[] = { "ctr", "cnt" }; | |
3284 | ||
3285 | feature = tdesc_find_feature (tdesc, | |
3286 | "org.gnu.gdb.power.core"); | |
3287 | if (feature == NULL) | |
3288 | return NULL; | |
3289 | ||
3290 | tdesc_data = tdesc_data_alloc (); | |
3291 | ||
3292 | valid_p = 1; | |
3293 | for (i = 0; i < ppc_num_gprs; i++) | |
3294 | valid_p &= tdesc_numbered_register (feature, tdesc_data, i, gprs[i]); | |
3295 | valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_PC_REGNUM, | |
3296 | "pc"); | |
3297 | valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_LR_REGNUM, | |
3298 | "lr"); | |
3299 | valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_XER_REGNUM, | |
3300 | "xer"); | |
3301 | ||
3302 | /* Allow alternate names for these registers, to accomodate GDB's | |
3303 | historic naming. */ | |
3304 | valid_p &= tdesc_numbered_register_choices (feature, tdesc_data, | |
3305 | PPC_MSR_REGNUM, msr_names); | |
3306 | valid_p &= tdesc_numbered_register_choices (feature, tdesc_data, | |
3307 | PPC_CR_REGNUM, cr_names); | |
3308 | valid_p &= tdesc_numbered_register_choices (feature, tdesc_data, | |
3309 | PPC_CTR_REGNUM, ctr_names); | |
3310 | ||
3311 | if (!valid_p) | |
3312 | { | |
3313 | tdesc_data_cleanup (tdesc_data); | |
3314 | return NULL; | |
3315 | } | |
3316 | ||
3317 | have_mq = tdesc_numbered_register (feature, tdesc_data, PPC_MQ_REGNUM, | |
3318 | "mq"); | |
3319 | ||
3320 | tdesc_wordsize = tdesc_register_size (feature, "pc") / 8; | |
3321 | if (wordsize == -1) | |
3322 | wordsize = tdesc_wordsize; | |
3323 | ||
3324 | feature = tdesc_find_feature (tdesc, | |
3325 | "org.gnu.gdb.power.fpu"); | |
3326 | if (feature != NULL) | |
3327 | { | |
3328 | static const char *const fprs[] = { | |
3329 | "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", | |
3330 | "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", | |
3331 | "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", | |
3332 | "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31" | |
3333 | }; | |
3334 | valid_p = 1; | |
3335 | for (i = 0; i < ppc_num_fprs; i++) | |
3336 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
3337 | PPC_F0_REGNUM + i, fprs[i]); | |
3338 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
3339 | PPC_FPSCR_REGNUM, "fpscr"); | |
3340 | ||
3341 | if (!valid_p) | |
3342 | { | |
3343 | tdesc_data_cleanup (tdesc_data); | |
3344 | return NULL; | |
3345 | } | |
3346 | have_fpu = 1; | |
3347 | } | |
3348 | else | |
3349 | have_fpu = 0; | |
3350 | ||
3351 | feature = tdesc_find_feature (tdesc, | |
3352 | "org.gnu.gdb.power.altivec"); | |
3353 | if (feature != NULL) | |
3354 | { | |
3355 | static const char *const vector_regs[] = { | |
3356 | "vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7", | |
3357 | "vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15", | |
3358 | "vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23", | |
3359 | "vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31" | |
3360 | }; | |
3361 | ||
3362 | valid_p = 1; | |
3363 | for (i = 0; i < ppc_num_gprs; i++) | |
3364 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
3365 | PPC_VR0_REGNUM + i, | |
3366 | vector_regs[i]); | |
3367 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
3368 | PPC_VSCR_REGNUM, "vscr"); | |
3369 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
3370 | PPC_VRSAVE_REGNUM, "vrsave"); | |
3371 | ||
3372 | if (have_spe || !valid_p) | |
3373 | { | |
3374 | tdesc_data_cleanup (tdesc_data); | |
3375 | return NULL; | |
3376 | } | |
3377 | have_altivec = 1; | |
3378 | } | |
3379 | else | |
3380 | have_altivec = 0; | |
3381 | ||
3382 | /* On machines supporting the SPE APU, the general-purpose registers | |
3383 | are 64 bits long. There are SIMD vector instructions to treat them | |
3384 | as pairs of floats, but the rest of the instruction set treats them | |
3385 | as 32-bit registers, and only operates on their lower halves. | |
3386 | ||
3387 | In the GDB regcache, we treat their high and low halves as separate | |
3388 | registers. The low halves we present as the general-purpose | |
3389 | registers, and then we have pseudo-registers that stitch together | |
3390 | the upper and lower halves and present them as pseudo-registers. | |
3391 | ||
3392 | Thus, the target description is expected to supply the upper | |
3393 | halves separately. */ | |
3394 | ||
3395 | feature = tdesc_find_feature (tdesc, | |
3396 | "org.gnu.gdb.power.spe"); | |
3397 | if (feature != NULL) | |
3398 | { | |
3399 | static const char *const upper_spe[] = { | |
3400 | "ev0h", "ev1h", "ev2h", "ev3h", | |
3401 | "ev4h", "ev5h", "ev6h", "ev7h", | |
3402 | "ev8h", "ev9h", "ev10h", "ev11h", | |
3403 | "ev12h", "ev13h", "ev14h", "ev15h", | |
3404 | "ev16h", "ev17h", "ev18h", "ev19h", | |
3405 | "ev20h", "ev21h", "ev22h", "ev23h", | |
3406 | "ev24h", "ev25h", "ev26h", "ev27h", | |
3407 | "ev28h", "ev29h", "ev30h", "ev31h" | |
3408 | }; | |
3409 | ||
3410 | valid_p = 1; | |
3411 | for (i = 0; i < ppc_num_gprs; i++) | |
3412 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
3413 | PPC_SPE_UPPER_GP0_REGNUM + i, | |
3414 | upper_spe[i]); | |
3415 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
3416 | PPC_SPE_ACC_REGNUM, "acc"); | |
3417 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
3418 | PPC_SPE_FSCR_REGNUM, "spefscr"); | |
3419 | ||
3420 | if (have_mq || have_fpu || !valid_p) | |
3421 | { | |
3422 | tdesc_data_cleanup (tdesc_data); | |
3423 | return NULL; | |
3424 | } | |
3425 | have_spe = 1; | |
3426 | } | |
3427 | else | |
3428 | have_spe = 0; | |
3429 | } | |
3430 | ||
3431 | /* If we have a 64-bit binary on a 32-bit target, complain. Also | |
3432 | complain for a 32-bit binary on a 64-bit target; we do not yet | |
3433 | support that. For instance, the 32-bit ABI routines expect | |
3434 | 32-bit GPRs. | |
3435 | ||
3436 | As long as there isn't an explicit target description, we'll | |
3437 | choose one based on the BFD architecture and get a word size | |
3438 | matching the binary (probably powerpc:common or | |
3439 | powerpc:common64). So there is only trouble if a 64-bit target | |
3440 | supplies a 64-bit description while debugging a 32-bit | |
3441 | binary. */ | |
3442 | if (tdesc_wordsize != -1 && tdesc_wordsize != wordsize) | |
3443 | { | |
3444 | tdesc_data_cleanup (tdesc_data); | |
3445 | return NULL; | |
3446 | } | |
3447 | ||
55eddb0f DJ |
3448 | #ifdef HAVE_ELF |
3449 | if (soft_float_flag == AUTO_BOOLEAN_AUTO && from_elf_exec) | |
3450 | { | |
3451 | switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU, | |
3452 | Tag_GNU_Power_ABI_FP)) | |
3453 | { | |
3454 | case 1: | |
3455 | soft_float_flag = AUTO_BOOLEAN_FALSE; | |
3456 | break; | |
3457 | case 2: | |
3458 | soft_float_flag = AUTO_BOOLEAN_TRUE; | |
3459 | break; | |
3460 | default: | |
3461 | break; | |
3462 | } | |
3463 | } | |
3464 | ||
3465 | if (vector_abi == POWERPC_VEC_AUTO && from_elf_exec) | |
3466 | { | |
3467 | switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU, | |
3468 | Tag_GNU_Power_ABI_Vector)) | |
3469 | { | |
3470 | case 1: | |
3471 | vector_abi = POWERPC_VEC_GENERIC; | |
3472 | break; | |
3473 | case 2: | |
3474 | vector_abi = POWERPC_VEC_ALTIVEC; | |
3475 | break; | |
3476 | case 3: | |
3477 | vector_abi = POWERPC_VEC_SPE; | |
3478 | break; | |
3479 | default: | |
3480 | break; | |
3481 | } | |
3482 | } | |
3483 | #endif | |
3484 | ||
3485 | if (soft_float_flag == AUTO_BOOLEAN_TRUE) | |
3486 | soft_float = 1; | |
3487 | else if (soft_float_flag == AUTO_BOOLEAN_FALSE) | |
3488 | soft_float = 0; | |
3489 | else | |
3490 | soft_float = !have_fpu; | |
3491 | ||
3492 | /* If we have a hard float binary or setting but no floating point | |
3493 | registers, downgrade to soft float anyway. We're still somewhat | |
3494 | useful in this scenario. */ | |
3495 | if (!soft_float && !have_fpu) | |
3496 | soft_float = 1; | |
3497 | ||
3498 | /* Similarly for vector registers. */ | |
3499 | if (vector_abi == POWERPC_VEC_ALTIVEC && !have_altivec) | |
3500 | vector_abi = POWERPC_VEC_GENERIC; | |
3501 | ||
3502 | if (vector_abi == POWERPC_VEC_SPE && !have_spe) | |
3503 | vector_abi = POWERPC_VEC_GENERIC; | |
3504 | ||
3505 | if (vector_abi == POWERPC_VEC_AUTO) | |
3506 | { | |
3507 | if (have_altivec) | |
3508 | vector_abi = POWERPC_VEC_ALTIVEC; | |
3509 | else if (have_spe) | |
3510 | vector_abi = POWERPC_VEC_SPE; | |
3511 | else | |
3512 | vector_abi = POWERPC_VEC_GENERIC; | |
3513 | } | |
3514 | ||
3515 | /* Do not limit the vector ABI based on available hardware, since we | |
3516 | do not yet know what hardware we'll decide we have. Yuck! FIXME! */ | |
3517 | ||
7cc46491 DJ |
3518 | /* Find a candidate among extant architectures. */ |
3519 | for (arches = gdbarch_list_lookup_by_info (arches, &info); | |
3520 | arches != NULL; | |
3521 | arches = gdbarch_list_lookup_by_info (arches->next, &info)) | |
3522 | { | |
3523 | /* Word size in the various PowerPC bfd_arch_info structs isn't | |
3524 | meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform | |
3525 | separate word size check. */ | |
3526 | tdep = gdbarch_tdep (arches->gdbarch); | |
55eddb0f DJ |
3527 | if (tdep && tdep->soft_float != soft_float) |
3528 | continue; | |
3529 | if (tdep && tdep->vector_abi != vector_abi) | |
3530 | continue; | |
7cc46491 DJ |
3531 | if (tdep && tdep->wordsize == wordsize) |
3532 | { | |
3533 | if (tdesc_data != NULL) | |
3534 | tdesc_data_cleanup (tdesc_data); | |
3535 | return arches->gdbarch; | |
3536 | } | |
3537 | } | |
3538 | ||
3539 | /* None found, create a new architecture from INFO, whose bfd_arch_info | |
3540 | validity depends on the source: | |
3541 | - executable useless | |
3542 | - rs6000_host_arch() good | |
3543 | - core file good | |
3544 | - "set arch" trust blindly | |
3545 | - GDB startup useless but harmless */ | |
3546 | ||
3547 | tdep = XCALLOC (1, struct gdbarch_tdep); | |
3548 | tdep->wordsize = wordsize; | |
55eddb0f DJ |
3549 | tdep->soft_float = soft_float; |
3550 | tdep->vector_abi = vector_abi; | |
7cc46491 | 3551 | |
7a78ae4e | 3552 | gdbarch = gdbarch_alloc (&info, tdep); |
7a78ae4e | 3553 | |
7cc46491 DJ |
3554 | tdep->ppc_gp0_regnum = PPC_R0_REGNUM; |
3555 | tdep->ppc_toc_regnum = PPC_R0_REGNUM + 2; | |
3556 | tdep->ppc_ps_regnum = PPC_MSR_REGNUM; | |
3557 | tdep->ppc_cr_regnum = PPC_CR_REGNUM; | |
3558 | tdep->ppc_lr_regnum = PPC_LR_REGNUM; | |
3559 | tdep->ppc_ctr_regnum = PPC_CTR_REGNUM; | |
3560 | tdep->ppc_xer_regnum = PPC_XER_REGNUM; | |
3561 | tdep->ppc_mq_regnum = have_mq ? PPC_MQ_REGNUM : -1; | |
3562 | ||
3563 | tdep->ppc_fp0_regnum = have_fpu ? PPC_F0_REGNUM : -1; | |
3564 | tdep->ppc_fpscr_regnum = have_fpu ? PPC_FPSCR_REGNUM : -1; | |
3565 | tdep->ppc_vr0_regnum = have_altivec ? PPC_VR0_REGNUM : -1; | |
3566 | tdep->ppc_vrsave_regnum = have_altivec ? PPC_VRSAVE_REGNUM : -1; | |
3567 | tdep->ppc_ev0_upper_regnum = have_spe ? PPC_SPE_UPPER_GP0_REGNUM : -1; | |
3568 | tdep->ppc_acc_regnum = have_spe ? PPC_SPE_ACC_REGNUM : -1; | |
3569 | tdep->ppc_spefscr_regnum = have_spe ? PPC_SPE_FSCR_REGNUM : -1; | |
3570 | ||
3571 | set_gdbarch_pc_regnum (gdbarch, PPC_PC_REGNUM); | |
3572 | set_gdbarch_sp_regnum (gdbarch, PPC_R0_REGNUM + 1); | |
3573 | set_gdbarch_deprecated_fp_regnum (gdbarch, PPC_R0_REGNUM + 1); | |
3574 | set_gdbarch_fp0_regnum (gdbarch, tdep->ppc_fp0_regnum); | |
9f643768 | 3575 | set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno); |
7cc46491 DJ |
3576 | |
3577 | /* The XML specification for PowerPC sensibly calls the MSR "msr". | |
3578 | GDB traditionally called it "ps", though, so let GDB add an | |
3579 | alias. */ | |
3580 | set_gdbarch_ps_regnum (gdbarch, tdep->ppc_ps_regnum); | |
3581 | ||
afd48b75 | 3582 | if (sysv_abi && wordsize == 8) |
05580c65 | 3583 | set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value); |
e754ae69 | 3584 | else if (sysv_abi && wordsize == 4) |
05580c65 | 3585 | set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value); |
afd48b75 | 3586 | else |
d217aaed | 3587 | set_gdbarch_return_value (gdbarch, rs6000_return_value); |
c8001721 | 3588 | |
baffbae0 JB |
3589 | /* Set lr_frame_offset. */ |
3590 | if (wordsize == 8) | |
3591 | tdep->lr_frame_offset = 16; | |
3592 | else if (sysv_abi) | |
3593 | tdep->lr_frame_offset = 4; | |
3594 | else | |
3595 | tdep->lr_frame_offset = 8; | |
3596 | ||
7cc46491 DJ |
3597 | if (have_spe) |
3598 | { | |
3599 | set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read); | |
3600 | set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write); | |
3601 | } | |
1fcc0bb8 | 3602 | |
e0d24f8d WZ |
3603 | set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1); |
3604 | ||
56a6dfb9 | 3605 | /* Select instruction printer. */ |
708ff411 | 3606 | if (arch == bfd_arch_rs6000) |
9364a0ef | 3607 | set_gdbarch_print_insn (gdbarch, print_insn_rs6000); |
56a6dfb9 | 3608 | else |
9364a0ef | 3609 | set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc); |
7495d1dc | 3610 | |
7cc46491 DJ |
3611 | set_gdbarch_num_regs (gdbarch, PPC_NUM_REGS + num_sprs); |
3612 | set_gdbarch_num_pseudo_regs (gdbarch, have_spe ? 32 : 0); | |
7a78ae4e ND |
3613 | |
3614 | set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT); | |
3615 | set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT); | |
3616 | set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
3617 | set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT); | |
3618 | set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT); | |
3619 | set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
3620 | set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT); | |
ab9fe00e KB |
3621 | if (sysv_abi) |
3622 | set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT); | |
3623 | else | |
3624 | set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT); | |
4e409299 | 3625 | set_gdbarch_char_signed (gdbarch, 0); |
7a78ae4e | 3626 | |
11269d7e | 3627 | set_gdbarch_frame_align (gdbarch, rs6000_frame_align); |
8b148df9 AC |
3628 | if (sysv_abi && wordsize == 8) |
3629 | /* PPC64 SYSV. */ | |
3630 | set_gdbarch_frame_red_zone_size (gdbarch, 288); | |
3631 | else if (!sysv_abi && wordsize == 4) | |
5bffac25 AC |
3632 | /* PowerOpen / AIX 32 bit. The saved area or red zone consists of |
3633 | 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes. | |
3634 | Problem is, 220 isn't frame (16 byte) aligned. Round it up to | |
3635 | 224. */ | |
3636 | set_gdbarch_frame_red_zone_size (gdbarch, 224); | |
7a78ae4e | 3637 | |
691d145a JB |
3638 | set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p); |
3639 | set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value); | |
3640 | set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register); | |
3641 | ||
18ed0c4e JB |
3642 | set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum); |
3643 | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum); | |
d217aaed | 3644 | |
2ea5f656 | 3645 | if (sysv_abi && wordsize == 4) |
77b2b6d4 | 3646 | set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call); |
8be9034a AC |
3647 | else if (sysv_abi && wordsize == 8) |
3648 | set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call); | |
9aa1e687 | 3649 | else |
77b2b6d4 | 3650 | set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call); |
7a78ae4e | 3651 | |
7a78ae4e | 3652 | set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue); |
0d1243d9 PG |
3653 | set_gdbarch_in_function_epilogue_p (gdbarch, rs6000_in_function_epilogue_p); |
3654 | ||
7a78ae4e | 3655 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); |
7a78ae4e ND |
3656 | set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc); |
3657 | ||
203c3895 UW |
3658 | /* The value of symbols of type N_SO and N_FUN maybe null when |
3659 | it shouldn't be. */ | |
3660 | set_gdbarch_sofun_address_maybe_missing (gdbarch, 1); | |
3661 | ||
ce5eab59 UW |
3662 | /* Handles single stepping of atomic sequences. */ |
3663 | set_gdbarch_software_single_step (gdbarch, deal_with_atomic_sequence); | |
3664 | ||
6066c3de AC |
3665 | /* Handle the 64-bit SVR4 minimal-symbol convention of using "FN" |
3666 | for the descriptor and ".FN" for the entry-point -- a user | |
3667 | specifying "break FN" will unexpectedly end up with a breakpoint | |
3668 | on the descriptor and not the function. This architecture method | |
3669 | transforms any breakpoints on descriptors into breakpoints on the | |
3670 | corresponding entry point. */ | |
3671 | if (sysv_abi && wordsize == 8) | |
3672 | set_gdbarch_adjust_breakpoint_address (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address); | |
3673 | ||
7a78ae4e ND |
3674 | /* Not sure on this. FIXMEmgo */ |
3675 | set_gdbarch_frame_args_skip (gdbarch, 8); | |
3676 | ||
15813d3f AC |
3677 | if (!sysv_abi) |
3678 | { | |
3679 | /* Handle RS/6000 function pointers (which are really function | |
3680 | descriptors). */ | |
f517ea4e PS |
3681 | set_gdbarch_convert_from_func_ptr_addr (gdbarch, |
3682 | rs6000_convert_from_func_ptr_addr); | |
9aa1e687 | 3683 | } |
7a78ae4e | 3684 | |
143985b7 AF |
3685 | /* Helpers for function argument information. */ |
3686 | set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument); | |
3687 | ||
6f7f3f0d UW |
3688 | /* Trampoline. */ |
3689 | set_gdbarch_in_solib_return_trampoline | |
3690 | (gdbarch, rs6000_in_solib_return_trampoline); | |
3691 | set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code); | |
3692 | ||
4fc771b8 DJ |
3693 | /* Hook in the DWARF CFI frame unwinder. */ |
3694 | frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer); | |
3695 | dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_adjust_frame_regnum); | |
3696 | ||
9274a07c LM |
3697 | /* Frame handling. */ |
3698 | dwarf2_frame_set_init_reg (gdbarch, ppc_dwarf2_frame_init_reg); | |
3699 | ||
7b112f9c | 3700 | /* Hook in ABI-specific overrides, if they have been registered. */ |
4be87837 | 3701 | gdbarch_init_osabi (info, gdbarch); |
7b112f9c | 3702 | |
61a65099 KB |
3703 | switch (info.osabi) |
3704 | { | |
f5aecab8 | 3705 | case GDB_OSABI_LINUX: |
61a65099 KB |
3706 | case GDB_OSABI_NETBSD_AOUT: |
3707 | case GDB_OSABI_NETBSD_ELF: | |
3708 | case GDB_OSABI_UNKNOWN: | |
61a65099 KB |
3709 | set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc); |
3710 | frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer); | |
3711 | set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id); | |
3712 | frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer); | |
3713 | break; | |
3714 | default: | |
61a65099 | 3715 | set_gdbarch_believe_pcc_promotion (gdbarch, 1); |
81332287 KB |
3716 | |
3717 | set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc); | |
3718 | frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer); | |
3719 | set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id); | |
3720 | frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer); | |
61a65099 KB |
3721 | } |
3722 | ||
7cc46491 DJ |
3723 | set_tdesc_pseudo_register_type (gdbarch, rs6000_pseudo_register_type); |
3724 | set_tdesc_pseudo_register_reggroup_p (gdbarch, | |
3725 | rs6000_pseudo_register_reggroup_p); | |
3726 | tdesc_use_registers (gdbarch, tdesc, tdesc_data); | |
3727 | ||
3728 | /* Override the normal target description method to make the SPE upper | |
3729 | halves anonymous. */ | |
3730 | set_gdbarch_register_name (gdbarch, rs6000_register_name); | |
3731 | ||
3732 | /* Recording the numbering of pseudo registers. */ | |
3733 | tdep->ppc_ev0_regnum = have_spe ? gdbarch_num_regs (gdbarch) : -1; | |
3734 | tdep->ppc_ev31_regnum = have_spe ? tdep->ppc_ev0_regnum + 31 : -1; | |
9f643768 | 3735 | |
7a78ae4e | 3736 | return gdbarch; |
c906108c SS |
3737 | } |
3738 | ||
7b112f9c | 3739 | static void |
8b164abb | 3740 | rs6000_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file) |
7b112f9c | 3741 | { |
8b164abb | 3742 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
7b112f9c JT |
3743 | |
3744 | if (tdep == NULL) | |
3745 | return; | |
3746 | ||
4be87837 | 3747 | /* FIXME: Dump gdbarch_tdep. */ |
7b112f9c JT |
3748 | } |
3749 | ||
55eddb0f DJ |
3750 | /* PowerPC-specific commands. */ |
3751 | ||
3752 | static void | |
3753 | set_powerpc_command (char *args, int from_tty) | |
3754 | { | |
3755 | printf_unfiltered (_("\ | |
3756 | \"set powerpc\" must be followed by an appropriate subcommand.\n")); | |
3757 | help_list (setpowerpccmdlist, "set powerpc ", all_commands, gdb_stdout); | |
3758 | } | |
3759 | ||
3760 | static void | |
3761 | show_powerpc_command (char *args, int from_tty) | |
3762 | { | |
3763 | cmd_show_list (showpowerpccmdlist, from_tty, ""); | |
3764 | } | |
3765 | ||
3766 | static void | |
3767 | powerpc_set_soft_float (char *args, int from_tty, | |
3768 | struct cmd_list_element *c) | |
3769 | { | |
3770 | struct gdbarch_info info; | |
3771 | ||
3772 | /* Update the architecture. */ | |
3773 | gdbarch_info_init (&info); | |
3774 | if (!gdbarch_update_p (info)) | |
3775 | internal_error (__FILE__, __LINE__, "could not update architecture"); | |
3776 | } | |
3777 | ||
3778 | static void | |
3779 | powerpc_set_vector_abi (char *args, int from_tty, | |
3780 | struct cmd_list_element *c) | |
3781 | { | |
3782 | struct gdbarch_info info; | |
3783 | enum powerpc_vector_abi vector_abi; | |
3784 | ||
3785 | for (vector_abi = POWERPC_VEC_AUTO; | |
3786 | vector_abi != POWERPC_VEC_LAST; | |
3787 | vector_abi++) | |
3788 | if (strcmp (powerpc_vector_abi_string, | |
3789 | powerpc_vector_strings[vector_abi]) == 0) | |
3790 | { | |
3791 | powerpc_vector_abi_global = vector_abi; | |
3792 | break; | |
3793 | } | |
3794 | ||
3795 | if (vector_abi == POWERPC_VEC_LAST) | |
3796 | internal_error (__FILE__, __LINE__, _("Invalid vector ABI accepted: %s."), | |
3797 | powerpc_vector_abi_string); | |
3798 | ||
3799 | /* Update the architecture. */ | |
3800 | gdbarch_info_init (&info); | |
3801 | if (!gdbarch_update_p (info)) | |
3802 | internal_error (__FILE__, __LINE__, "could not update architecture"); | |
3803 | } | |
3804 | ||
c906108c SS |
3805 | /* Initialization code. */ |
3806 | ||
a78f21af | 3807 | extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */ |
b9362cc7 | 3808 | |
c906108c | 3809 | void |
fba45db2 | 3810 | _initialize_rs6000_tdep (void) |
c906108c | 3811 | { |
7b112f9c JT |
3812 | gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep); |
3813 | gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep); | |
7cc46491 DJ |
3814 | |
3815 | /* Initialize the standard target descriptions. */ | |
3816 | initialize_tdesc_powerpc_32 (); | |
3817 | initialize_tdesc_powerpc_403 (); | |
3818 | initialize_tdesc_powerpc_403gc (); | |
3819 | initialize_tdesc_powerpc_505 (); | |
3820 | initialize_tdesc_powerpc_601 (); | |
3821 | initialize_tdesc_powerpc_602 (); | |
3822 | initialize_tdesc_powerpc_603 (); | |
3823 | initialize_tdesc_powerpc_604 (); | |
3824 | initialize_tdesc_powerpc_64 (); | |
3825 | initialize_tdesc_powerpc_7400 (); | |
3826 | initialize_tdesc_powerpc_750 (); | |
3827 | initialize_tdesc_powerpc_860 (); | |
3828 | initialize_tdesc_powerpc_e500 (); | |
3829 | initialize_tdesc_rs6000 (); | |
55eddb0f DJ |
3830 | |
3831 | /* Add root prefix command for all "set powerpc"/"show powerpc" | |
3832 | commands. */ | |
3833 | add_prefix_cmd ("powerpc", no_class, set_powerpc_command, | |
3834 | _("Various PowerPC-specific commands."), | |
3835 | &setpowerpccmdlist, "set powerpc ", 0, &setlist); | |
3836 | ||
3837 | add_prefix_cmd ("powerpc", no_class, show_powerpc_command, | |
3838 | _("Various PowerPC-specific commands."), | |
3839 | &showpowerpccmdlist, "show powerpc ", 0, &showlist); | |
3840 | ||
3841 | /* Add a command to allow the user to force the ABI. */ | |
3842 | add_setshow_auto_boolean_cmd ("soft-float", class_support, | |
3843 | &powerpc_soft_float_global, | |
3844 | _("Set whether to use a soft-float ABI."), | |
3845 | _("Show whether to use a soft-float ABI."), | |
3846 | NULL, | |
3847 | powerpc_set_soft_float, NULL, | |
3848 | &setpowerpccmdlist, &showpowerpccmdlist); | |
3849 | ||
3850 | add_setshow_enum_cmd ("vector-abi", class_support, powerpc_vector_strings, | |
3851 | &powerpc_vector_abi_string, | |
3852 | _("Set the vector ABI."), | |
3853 | _("Show the vector ABI."), | |
3854 | NULL, powerpc_set_vector_abi, NULL, | |
3855 | &setpowerpccmdlist, &showpowerpccmdlist); | |
c906108c | 3856 | } |