]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Target-dependent code for GDB, the GNU debugger. |
7aea86e6 AC |
2 | |
3 | Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, | |
4 | 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software | |
5 | Foundation, Inc. | |
c906108c | 6 | |
c5aa993b | 7 | This file is part of GDB. |
c906108c | 8 | |
c5aa993b JM |
9 | This program is free software; you can redistribute it and/or modify |
10 | it under the terms of the GNU General Public License as published by | |
11 | the Free Software Foundation; either version 2 of the License, or | |
12 | (at your option) any later version. | |
c906108c | 13 | |
c5aa993b JM |
14 | This program is distributed in the hope that it will be useful, |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
c906108c | 18 | |
c5aa993b JM |
19 | You should have received a copy of the GNU General Public License |
20 | along with this program; if not, write to the Free Software | |
21 | Foundation, Inc., 59 Temple Place - Suite 330, | |
22 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
23 | |
24 | #include "defs.h" | |
25 | #include "frame.h" | |
26 | #include "inferior.h" | |
27 | #include "symtab.h" | |
28 | #include "target.h" | |
29 | #include "gdbcore.h" | |
30 | #include "gdbcmd.h" | |
c906108c | 31 | #include "objfiles.h" |
7a78ae4e | 32 | #include "arch-utils.h" |
4e052eda | 33 | #include "regcache.h" |
d195bc9f | 34 | #include "regset.h" |
d16aafd8 | 35 | #include "doublest.h" |
fd0407d6 | 36 | #include "value.h" |
1fcc0bb8 | 37 | #include "parser-defs.h" |
4be87837 | 38 | #include "osabi.h" |
7d9b040b | 39 | #include "infcall.h" |
7a78ae4e | 40 | |
2fccf04a | 41 | #include "libbfd.h" /* for bfd_default_set_arch_mach */ |
7a78ae4e | 42 | #include "coff/internal.h" /* for libcoff.h */ |
2fccf04a | 43 | #include "libcoff.h" /* for xcoff_data */ |
11ed25ac KB |
44 | #include "coff/xcoff.h" |
45 | #include "libxcoff.h" | |
7a78ae4e | 46 | |
9aa1e687 | 47 | #include "elf-bfd.h" |
7a78ae4e | 48 | |
6ded7999 | 49 | #include "solib-svr4.h" |
9aa1e687 | 50 | #include "ppc-tdep.h" |
7a78ae4e | 51 | |
338ef23d | 52 | #include "gdb_assert.h" |
a89aa300 | 53 | #include "dis-asm.h" |
338ef23d | 54 | |
61a65099 KB |
55 | #include "trad-frame.h" |
56 | #include "frame-unwind.h" | |
57 | #include "frame-base.h" | |
58 | ||
7a78ae4e ND |
59 | /* If the kernel has to deliver a signal, it pushes a sigcontext |
60 | structure on the stack and then calls the signal handler, passing | |
61 | the address of the sigcontext in an argument register. Usually | |
62 | the signal handler doesn't save this register, so we have to | |
63 | access the sigcontext structure via an offset from the signal handler | |
64 | frame. | |
65 | The following constants were determined by experimentation on AIX 3.2. */ | |
66 | #define SIG_FRAME_PC_OFFSET 96 | |
67 | #define SIG_FRAME_LR_OFFSET 108 | |
68 | #define SIG_FRAME_FP_OFFSET 284 | |
69 | ||
7a78ae4e ND |
70 | /* To be used by skip_prologue. */ |
71 | ||
72 | struct rs6000_framedata | |
73 | { | |
74 | int offset; /* total size of frame --- the distance | |
75 | by which we decrement sp to allocate | |
76 | the frame */ | |
77 | int saved_gpr; /* smallest # of saved gpr */ | |
78 | int saved_fpr; /* smallest # of saved fpr */ | |
6be8bc0c | 79 | int saved_vr; /* smallest # of saved vr */ |
96ff0de4 | 80 | int saved_ev; /* smallest # of saved ev */ |
7a78ae4e ND |
81 | int alloca_reg; /* alloca register number (frame ptr) */ |
82 | char frameless; /* true if frameless functions. */ | |
83 | char nosavedpc; /* true if pc not saved. */ | |
84 | int gpr_offset; /* offset of saved gprs from prev sp */ | |
85 | int fpr_offset; /* offset of saved fprs from prev sp */ | |
6be8bc0c | 86 | int vr_offset; /* offset of saved vrs from prev sp */ |
96ff0de4 | 87 | int ev_offset; /* offset of saved evs from prev sp */ |
7a78ae4e ND |
88 | int lr_offset; /* offset of saved lr */ |
89 | int cr_offset; /* offset of saved cr */ | |
6be8bc0c | 90 | int vrsave_offset; /* offset of saved vrsave register */ |
7a78ae4e ND |
91 | }; |
92 | ||
93 | /* Description of a single register. */ | |
94 | ||
95 | struct reg | |
96 | { | |
97 | char *name; /* name of register */ | |
98 | unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */ | |
99 | unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */ | |
100 | unsigned char fpr; /* whether register is floating-point */ | |
489461e2 | 101 | unsigned char pseudo; /* whether register is pseudo */ |
7a78ae4e ND |
102 | }; |
103 | ||
c906108c SS |
104 | /* Breakpoint shadows for the single step instructions will be kept here. */ |
105 | ||
c5aa993b JM |
106 | static struct sstep_breaks |
107 | { | |
108 | /* Address, or 0 if this is not in use. */ | |
109 | CORE_ADDR address; | |
110 | /* Shadow contents. */ | |
111 | char data[4]; | |
112 | } | |
113 | stepBreaks[2]; | |
c906108c SS |
114 | |
115 | /* Hook for determining the TOC address when calling functions in the | |
116 | inferior under AIX. The initialization code in rs6000-nat.c sets | |
117 | this hook to point to find_toc_address. */ | |
118 | ||
7a78ae4e ND |
119 | CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL; |
120 | ||
121 | /* Hook to set the current architecture when starting a child process. | |
122 | rs6000-nat.c sets this. */ | |
123 | ||
124 | void (*rs6000_set_host_arch_hook) (int) = NULL; | |
c906108c SS |
125 | |
126 | /* Static function prototypes */ | |
127 | ||
a14ed312 KB |
128 | static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc, |
129 | CORE_ADDR safety); | |
077276e8 KB |
130 | static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR, |
131 | struct rs6000_framedata *); | |
c906108c | 132 | |
64b84175 KB |
133 | /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */ |
134 | int | |
135 | altivec_register_p (int regno) | |
136 | { | |
137 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); | |
138 | if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0) | |
139 | return 0; | |
140 | else | |
141 | return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum); | |
142 | } | |
143 | ||
383f0f5b | 144 | |
867e2dc5 JB |
145 | /* Return true if REGNO is an SPE register, false otherwise. */ |
146 | int | |
147 | spe_register_p (int regno) | |
148 | { | |
149 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); | |
150 | ||
151 | /* Is it a reference to EV0 -- EV31, and do we have those? */ | |
152 | if (tdep->ppc_ev0_regnum >= 0 | |
153 | && tdep->ppc_ev31_regnum >= 0 | |
154 | && tdep->ppc_ev0_regnum <= regno && regno <= tdep->ppc_ev31_regnum) | |
155 | return 1; | |
156 | ||
157 | /* Is it a reference to the 64-bit accumulator, and do we have that? */ | |
158 | if (tdep->ppc_acc_regnum >= 0 | |
159 | && tdep->ppc_acc_regnum == regno) | |
160 | return 1; | |
161 | ||
162 | /* Is it a reference to the SPE floating-point status and control register, | |
163 | and do we have that? */ | |
164 | if (tdep->ppc_spefscr_regnum >= 0 | |
165 | && tdep->ppc_spefscr_regnum == regno) | |
166 | return 1; | |
167 | ||
168 | return 0; | |
169 | } | |
170 | ||
171 | ||
383f0f5b JB |
172 | /* Return non-zero if the architecture described by GDBARCH has |
173 | floating-point registers (f0 --- f31 and fpscr). */ | |
0a613259 AC |
174 | int |
175 | ppc_floating_point_unit_p (struct gdbarch *gdbarch) | |
176 | { | |
383f0f5b JB |
177 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
178 | ||
179 | return (tdep->ppc_fp0_regnum >= 0 | |
180 | && tdep->ppc_fpscr_regnum >= 0); | |
0a613259 | 181 | } |
d195bc9f MK |
182 | \f |
183 | ||
184 | /* Register set support functions. */ | |
185 | ||
186 | static void | |
187 | ppc_supply_reg (struct regcache *regcache, int regnum, | |
188 | const char *regs, size_t offset) | |
189 | { | |
190 | if (regnum != -1 && offset != -1) | |
191 | regcache_raw_supply (regcache, regnum, regs + offset); | |
192 | } | |
193 | ||
194 | static void | |
195 | ppc_collect_reg (const struct regcache *regcache, int regnum, | |
196 | char *regs, size_t offset) | |
197 | { | |
198 | if (regnum != -1 && offset != -1) | |
199 | regcache_raw_collect (regcache, regnum, regs + offset); | |
200 | } | |
201 | ||
202 | /* Supply register REGNUM in the general-purpose register set REGSET | |
203 | from the buffer specified by GREGS and LEN to register cache | |
204 | REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */ | |
205 | ||
206 | void | |
207 | ppc_supply_gregset (const struct regset *regset, struct regcache *regcache, | |
208 | int regnum, const void *gregs, size_t len) | |
209 | { | |
210 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
211 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
212 | const struct ppc_reg_offsets *offsets = regset->descr; | |
213 | size_t offset; | |
214 | int i; | |
215 | ||
cdf2c5f5 | 216 | for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset; |
063715bf | 217 | i < tdep->ppc_gp0_regnum + ppc_num_gprs; |
cdf2c5f5 | 218 | i++, offset += 4) |
d195bc9f MK |
219 | { |
220 | if (regnum == -1 || regnum == i) | |
221 | ppc_supply_reg (regcache, i, gregs, offset); | |
222 | } | |
223 | ||
224 | if (regnum == -1 || regnum == PC_REGNUM) | |
225 | ppc_supply_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset); | |
226 | if (regnum == -1 || regnum == tdep->ppc_ps_regnum) | |
227 | ppc_supply_reg (regcache, tdep->ppc_ps_regnum, | |
228 | gregs, offsets->ps_offset); | |
229 | if (regnum == -1 || regnum == tdep->ppc_cr_regnum) | |
230 | ppc_supply_reg (regcache, tdep->ppc_cr_regnum, | |
231 | gregs, offsets->cr_offset); | |
232 | if (regnum == -1 || regnum == tdep->ppc_lr_regnum) | |
233 | ppc_supply_reg (regcache, tdep->ppc_lr_regnum, | |
234 | gregs, offsets->lr_offset); | |
235 | if (regnum == -1 || regnum == tdep->ppc_ctr_regnum) | |
236 | ppc_supply_reg (regcache, tdep->ppc_ctr_regnum, | |
237 | gregs, offsets->ctr_offset); | |
238 | if (regnum == -1 || regnum == tdep->ppc_xer_regnum) | |
239 | ppc_supply_reg (regcache, tdep->ppc_xer_regnum, | |
240 | gregs, offsets->cr_offset); | |
241 | if (regnum == -1 || regnum == tdep->ppc_mq_regnum) | |
242 | ppc_supply_reg (regcache, tdep->ppc_mq_regnum, gregs, offsets->mq_offset); | |
243 | } | |
244 | ||
245 | /* Supply register REGNUM in the floating-point register set REGSET | |
246 | from the buffer specified by FPREGS and LEN to register cache | |
247 | REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */ | |
248 | ||
249 | void | |
250 | ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache, | |
251 | int regnum, const void *fpregs, size_t len) | |
252 | { | |
253 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
254 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
255 | const struct ppc_reg_offsets *offsets = regset->descr; | |
256 | size_t offset; | |
257 | int i; | |
258 | ||
383f0f5b JB |
259 | gdb_assert (ppc_floating_point_unit_p (gdbarch)); |
260 | ||
d195bc9f | 261 | offset = offsets->f0_offset; |
366f009f JB |
262 | for (i = tdep->ppc_fp0_regnum; |
263 | i < tdep->ppc_fp0_regnum + ppc_num_fprs; | |
264 | i++, offset += 4) | |
d195bc9f MK |
265 | { |
266 | if (regnum == -1 || regnum == i) | |
267 | ppc_supply_reg (regcache, i, fpregs, offset); | |
268 | } | |
269 | ||
270 | if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum) | |
271 | ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum, | |
272 | fpregs, offsets->fpscr_offset); | |
273 | } | |
274 | ||
275 | /* Collect register REGNUM in the general-purpose register set | |
276 | REGSET. from register cache REGCACHE into the buffer specified by | |
277 | GREGS and LEN. If REGNUM is -1, do this for all registers in | |
278 | REGSET. */ | |
279 | ||
280 | void | |
281 | ppc_collect_gregset (const struct regset *regset, | |
282 | const struct regcache *regcache, | |
283 | int regnum, void *gregs, size_t len) | |
284 | { | |
285 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
286 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
287 | const struct ppc_reg_offsets *offsets = regset->descr; | |
288 | size_t offset; | |
289 | int i; | |
290 | ||
291 | offset = offsets->r0_offset; | |
cdf2c5f5 | 292 | for (i = tdep->ppc_gp0_regnum; |
063715bf | 293 | i < tdep->ppc_gp0_regnum + ppc_num_gprs; |
cdf2c5f5 | 294 | i++, offset += 4) |
d195bc9f MK |
295 | { |
296 | if (regnum == -1 || regnum == i) | |
2e56e9c1 | 297 | ppc_collect_reg (regcache, i, gregs, offset); |
d195bc9f MK |
298 | } |
299 | ||
300 | if (regnum == -1 || regnum == PC_REGNUM) | |
301 | ppc_collect_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset); | |
302 | if (regnum == -1 || regnum == tdep->ppc_ps_regnum) | |
303 | ppc_collect_reg (regcache, tdep->ppc_ps_regnum, | |
304 | gregs, offsets->ps_offset); | |
305 | if (regnum == -1 || regnum == tdep->ppc_cr_regnum) | |
306 | ppc_collect_reg (regcache, tdep->ppc_cr_regnum, | |
307 | gregs, offsets->cr_offset); | |
308 | if (regnum == -1 || regnum == tdep->ppc_lr_regnum) | |
309 | ppc_collect_reg (regcache, tdep->ppc_lr_regnum, | |
310 | gregs, offsets->lr_offset); | |
311 | if (regnum == -1 || regnum == tdep->ppc_ctr_regnum) | |
312 | ppc_collect_reg (regcache, tdep->ppc_ctr_regnum, | |
313 | gregs, offsets->ctr_offset); | |
314 | if (regnum == -1 || regnum == tdep->ppc_xer_regnum) | |
315 | ppc_collect_reg (regcache, tdep->ppc_xer_regnum, | |
316 | gregs, offsets->xer_offset); | |
317 | if (regnum == -1 || regnum == tdep->ppc_mq_regnum) | |
318 | ppc_collect_reg (regcache, tdep->ppc_mq_regnum, | |
319 | gregs, offsets->mq_offset); | |
320 | } | |
321 | ||
322 | /* Collect register REGNUM in the floating-point register set | |
323 | REGSET. from register cache REGCACHE into the buffer specified by | |
324 | FPREGS and LEN. If REGNUM is -1, do this for all registers in | |
325 | REGSET. */ | |
326 | ||
327 | void | |
328 | ppc_collect_fpregset (const struct regset *regset, | |
329 | const struct regcache *regcache, | |
330 | int regnum, void *fpregs, size_t len) | |
331 | { | |
332 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
333 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
334 | const struct ppc_reg_offsets *offsets = regset->descr; | |
335 | size_t offset; | |
336 | int i; | |
337 | ||
383f0f5b JB |
338 | gdb_assert (ppc_floating_point_unit_p (gdbarch)); |
339 | ||
d195bc9f | 340 | offset = offsets->f0_offset; |
366f009f JB |
341 | for (i = tdep->ppc_fp0_regnum; |
342 | i <= tdep->ppc_fp0_regnum + ppc_num_fprs; | |
343 | i++, offset += 4) | |
d195bc9f MK |
344 | { |
345 | if (regnum == -1 || regnum == i) | |
346 | ppc_collect_reg (regcache, regnum, fpregs, offset); | |
347 | } | |
348 | ||
349 | if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum) | |
350 | ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum, | |
351 | fpregs, offsets->fpscr_offset); | |
352 | } | |
353 | \f | |
0a613259 | 354 | |
7a78ae4e | 355 | /* Read a LEN-byte address from debugged memory address MEMADDR. */ |
c906108c | 356 | |
7a78ae4e ND |
357 | static CORE_ADDR |
358 | read_memory_addr (CORE_ADDR memaddr, int len) | |
359 | { | |
360 | return read_memory_unsigned_integer (memaddr, len); | |
361 | } | |
c906108c | 362 | |
7a78ae4e ND |
363 | static CORE_ADDR |
364 | rs6000_skip_prologue (CORE_ADDR pc) | |
b83266a0 SS |
365 | { |
366 | struct rs6000_framedata frame; | |
077276e8 | 367 | pc = skip_prologue (pc, 0, &frame); |
b83266a0 SS |
368 | return pc; |
369 | } | |
370 | ||
371 | ||
c906108c SS |
372 | /* Fill in fi->saved_regs */ |
373 | ||
374 | struct frame_extra_info | |
375 | { | |
376 | /* Functions calling alloca() change the value of the stack | |
377 | pointer. We need to use initial stack pointer (which is saved in | |
378 | r31 by gcc) in such cases. If a compiler emits traceback table, | |
379 | then we should use the alloca register specified in traceback | |
380 | table. FIXME. */ | |
c5aa993b | 381 | CORE_ADDR initial_sp; /* initial stack pointer. */ |
c906108c SS |
382 | }; |
383 | ||
143985b7 | 384 | /* Get the ith function argument for the current function. */ |
b9362cc7 | 385 | static CORE_ADDR |
143985b7 AF |
386 | rs6000_fetch_pointer_argument (struct frame_info *frame, int argi, |
387 | struct type *type) | |
388 | { | |
389 | CORE_ADDR addr; | |
7f5f525d | 390 | get_frame_register (frame, 3 + argi, &addr); |
143985b7 AF |
391 | return addr; |
392 | } | |
393 | ||
c906108c SS |
394 | /* Calculate the destination of a branch/jump. Return -1 if not a branch. */ |
395 | ||
396 | static CORE_ADDR | |
7a78ae4e | 397 | branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety) |
c906108c SS |
398 | { |
399 | CORE_ADDR dest; | |
400 | int immediate; | |
401 | int absolute; | |
402 | int ext_op; | |
403 | ||
404 | absolute = (int) ((instr >> 1) & 1); | |
405 | ||
c5aa993b JM |
406 | switch (opcode) |
407 | { | |
408 | case 18: | |
409 | immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */ | |
410 | if (absolute) | |
411 | dest = immediate; | |
412 | else | |
413 | dest = pc + immediate; | |
414 | break; | |
415 | ||
416 | case 16: | |
417 | immediate = ((instr & ~3) << 16) >> 16; /* br conditional */ | |
418 | if (absolute) | |
419 | dest = immediate; | |
420 | else | |
421 | dest = pc + immediate; | |
422 | break; | |
423 | ||
424 | case 19: | |
425 | ext_op = (instr >> 1) & 0x3ff; | |
426 | ||
427 | if (ext_op == 16) /* br conditional register */ | |
428 | { | |
2188cbdd | 429 | dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3; |
c5aa993b JM |
430 | |
431 | /* If we are about to return from a signal handler, dest is | |
432 | something like 0x3c90. The current frame is a signal handler | |
433 | caller frame, upon completion of the sigreturn system call | |
434 | execution will return to the saved PC in the frame. */ | |
435 | if (dest < TEXT_SEGMENT_BASE) | |
436 | { | |
437 | struct frame_info *fi; | |
438 | ||
439 | fi = get_current_frame (); | |
440 | if (fi != NULL) | |
8b36eed8 | 441 | dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET, |
21283beb | 442 | gdbarch_tdep (current_gdbarch)->wordsize); |
c5aa993b JM |
443 | } |
444 | } | |
445 | ||
446 | else if (ext_op == 528) /* br cond to count reg */ | |
447 | { | |
2188cbdd | 448 | dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3; |
c5aa993b JM |
449 | |
450 | /* If we are about to execute a system call, dest is something | |
451 | like 0x22fc or 0x3b00. Upon completion the system call | |
452 | will return to the address in the link register. */ | |
453 | if (dest < TEXT_SEGMENT_BASE) | |
2188cbdd | 454 | dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3; |
c5aa993b JM |
455 | } |
456 | else | |
457 | return -1; | |
458 | break; | |
c906108c | 459 | |
c5aa993b JM |
460 | default: |
461 | return -1; | |
462 | } | |
c906108c SS |
463 | return (dest < TEXT_SEGMENT_BASE) ? safety : dest; |
464 | } | |
465 | ||
466 | ||
467 | /* Sequence of bytes for breakpoint instruction. */ | |
468 | ||
f4f9705a | 469 | const static unsigned char * |
7a78ae4e | 470 | rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size) |
c906108c | 471 | { |
aaab4dba AC |
472 | static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 }; |
473 | static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d }; | |
c906108c | 474 | *bp_size = 4; |
d7449b42 | 475 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) |
c906108c SS |
476 | return big_breakpoint; |
477 | else | |
478 | return little_breakpoint; | |
479 | } | |
480 | ||
481 | ||
482 | /* AIX does not support PT_STEP. Simulate it. */ | |
483 | ||
484 | void | |
379d08a1 AC |
485 | rs6000_software_single_step (enum target_signal signal, |
486 | int insert_breakpoints_p) | |
c906108c | 487 | { |
7c40d541 KB |
488 | CORE_ADDR dummy; |
489 | int breakp_sz; | |
f4f9705a | 490 | const char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz); |
c906108c SS |
491 | int ii, insn; |
492 | CORE_ADDR loc; | |
493 | CORE_ADDR breaks[2]; | |
494 | int opcode; | |
495 | ||
c5aa993b JM |
496 | if (insert_breakpoints_p) |
497 | { | |
c906108c | 498 | |
c5aa993b | 499 | loc = read_pc (); |
c906108c | 500 | |
c5aa993b | 501 | insn = read_memory_integer (loc, 4); |
c906108c | 502 | |
7c40d541 | 503 | breaks[0] = loc + breakp_sz; |
c5aa993b JM |
504 | opcode = insn >> 26; |
505 | breaks[1] = branch_dest (opcode, insn, loc, breaks[0]); | |
c906108c | 506 | |
c5aa993b JM |
507 | /* Don't put two breakpoints on the same address. */ |
508 | if (breaks[1] == breaks[0]) | |
509 | breaks[1] = -1; | |
c906108c | 510 | |
c5aa993b | 511 | stepBreaks[1].address = 0; |
c906108c | 512 | |
c5aa993b JM |
513 | for (ii = 0; ii < 2; ++ii) |
514 | { | |
c906108c | 515 | |
c5aa993b JM |
516 | /* ignore invalid breakpoint. */ |
517 | if (breaks[ii] == -1) | |
518 | continue; | |
7c40d541 | 519 | target_insert_breakpoint (breaks[ii], stepBreaks[ii].data); |
c5aa993b JM |
520 | stepBreaks[ii].address = breaks[ii]; |
521 | } | |
c906108c | 522 | |
c5aa993b JM |
523 | } |
524 | else | |
525 | { | |
c906108c | 526 | |
c5aa993b JM |
527 | /* remove step breakpoints. */ |
528 | for (ii = 0; ii < 2; ++ii) | |
529 | if (stepBreaks[ii].address != 0) | |
7c40d541 KB |
530 | target_remove_breakpoint (stepBreaks[ii].address, |
531 | stepBreaks[ii].data); | |
c5aa993b | 532 | } |
c906108c | 533 | errno = 0; /* FIXME, don't ignore errors! */ |
c5aa993b | 534 | /* What errors? {read,write}_memory call error(). */ |
c906108c SS |
535 | } |
536 | ||
537 | ||
538 | /* return pc value after skipping a function prologue and also return | |
539 | information about a function frame. | |
540 | ||
541 | in struct rs6000_framedata fdata: | |
c5aa993b JM |
542 | - frameless is TRUE, if function does not have a frame. |
543 | - nosavedpc is TRUE, if function does not save %pc value in its frame. | |
544 | - offset is the initial size of this stack frame --- the amount by | |
545 | which we decrement the sp to allocate the frame. | |
546 | - saved_gpr is the number of the first saved gpr. | |
547 | - saved_fpr is the number of the first saved fpr. | |
6be8bc0c | 548 | - saved_vr is the number of the first saved vr. |
96ff0de4 | 549 | - saved_ev is the number of the first saved ev. |
c5aa993b JM |
550 | - alloca_reg is the number of the register used for alloca() handling. |
551 | Otherwise -1. | |
552 | - gpr_offset is the offset of the first saved gpr from the previous frame. | |
553 | - fpr_offset is the offset of the first saved fpr from the previous frame. | |
6be8bc0c | 554 | - vr_offset is the offset of the first saved vr from the previous frame. |
96ff0de4 | 555 | - ev_offset is the offset of the first saved ev from the previous frame. |
c5aa993b JM |
556 | - lr_offset is the offset of the saved lr |
557 | - cr_offset is the offset of the saved cr | |
6be8bc0c | 558 | - vrsave_offset is the offset of the saved vrsave register |
c5aa993b | 559 | */ |
c906108c SS |
560 | |
561 | #define SIGNED_SHORT(x) \ | |
562 | ((sizeof (short) == 2) \ | |
563 | ? ((int)(short)(x)) \ | |
564 | : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000))) | |
565 | ||
566 | #define GET_SRC_REG(x) (((x) >> 21) & 0x1f) | |
567 | ||
55d05f3b KB |
568 | /* Limit the number of skipped non-prologue instructions, as the examining |
569 | of the prologue is expensive. */ | |
570 | static int max_skip_non_prologue_insns = 10; | |
571 | ||
572 | /* Given PC representing the starting address of a function, and | |
573 | LIM_PC which is the (sloppy) limit to which to scan when looking | |
574 | for a prologue, attempt to further refine this limit by using | |
575 | the line data in the symbol table. If successful, a better guess | |
576 | on where the prologue ends is returned, otherwise the previous | |
577 | value of lim_pc is returned. */ | |
634aa483 AC |
578 | |
579 | /* FIXME: cagney/2004-02-14: This function and logic have largely been | |
580 | superseded by skip_prologue_using_sal. */ | |
581 | ||
55d05f3b KB |
582 | static CORE_ADDR |
583 | refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc) | |
584 | { | |
585 | struct symtab_and_line prologue_sal; | |
586 | ||
587 | prologue_sal = find_pc_line (pc, 0); | |
588 | if (prologue_sal.line != 0) | |
589 | { | |
590 | int i; | |
591 | CORE_ADDR addr = prologue_sal.end; | |
592 | ||
593 | /* Handle the case in which compiler's optimizer/scheduler | |
594 | has moved instructions into the prologue. We scan ahead | |
595 | in the function looking for address ranges whose corresponding | |
596 | line number is less than or equal to the first one that we | |
597 | found for the function. (It can be less than when the | |
598 | scheduler puts a body instruction before the first prologue | |
599 | instruction.) */ | |
600 | for (i = 2 * max_skip_non_prologue_insns; | |
601 | i > 0 && (lim_pc == 0 || addr < lim_pc); | |
602 | i--) | |
603 | { | |
604 | struct symtab_and_line sal; | |
605 | ||
606 | sal = find_pc_line (addr, 0); | |
607 | if (sal.line == 0) | |
608 | break; | |
609 | if (sal.line <= prologue_sal.line | |
610 | && sal.symtab == prologue_sal.symtab) | |
611 | { | |
612 | prologue_sal = sal; | |
613 | } | |
614 | addr = sal.end; | |
615 | } | |
616 | ||
617 | if (lim_pc == 0 || prologue_sal.end < lim_pc) | |
618 | lim_pc = prologue_sal.end; | |
619 | } | |
620 | return lim_pc; | |
621 | } | |
622 | ||
773df3e5 JB |
623 | /* Return nonzero if the given instruction OP can be part of the prologue |
624 | of a function and saves a parameter on the stack. FRAMEP should be | |
625 | set if one of the previous instructions in the function has set the | |
626 | Frame Pointer. */ | |
627 | ||
628 | static int | |
629 | store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg) | |
630 | { | |
631 | /* Move parameters from argument registers to temporary register. */ | |
632 | if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */ | |
633 | { | |
634 | /* Rx must be scratch register r0. */ | |
635 | const int rx_regno = (op >> 16) & 31; | |
636 | /* Ry: Only r3 - r10 are used for parameter passing. */ | |
637 | const int ry_regno = GET_SRC_REG (op); | |
638 | ||
639 | if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10) | |
640 | { | |
641 | *r0_contains_arg = 1; | |
642 | return 1; | |
643 | } | |
644 | else | |
645 | return 0; | |
646 | } | |
647 | ||
648 | /* Save a General Purpose Register on stack. */ | |
649 | ||
650 | if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */ | |
651 | (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */ | |
652 | { | |
653 | /* Rx: Only r3 - r10 are used for parameter passing. */ | |
654 | const int rx_regno = GET_SRC_REG (op); | |
655 | ||
656 | return (rx_regno >= 3 && rx_regno <= 10); | |
657 | } | |
658 | ||
659 | /* Save a General Purpose Register on stack via the Frame Pointer. */ | |
660 | ||
661 | if (framep && | |
662 | ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */ | |
663 | (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */ | |
664 | (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */ | |
665 | { | |
666 | /* Rx: Usually, only r3 - r10 are used for parameter passing. | |
667 | However, the compiler sometimes uses r0 to hold an argument. */ | |
668 | const int rx_regno = GET_SRC_REG (op); | |
669 | ||
670 | return ((rx_regno >= 3 && rx_regno <= 10) | |
671 | || (rx_regno == 0 && *r0_contains_arg)); | |
672 | } | |
673 | ||
674 | if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */ | |
675 | { | |
676 | /* Only f2 - f8 are used for parameter passing. */ | |
677 | const int src_regno = GET_SRC_REG (op); | |
678 | ||
679 | return (src_regno >= 2 && src_regno <= 8); | |
680 | } | |
681 | ||
682 | if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */ | |
683 | { | |
684 | /* Only f2 - f8 are used for parameter passing. */ | |
685 | const int src_regno = GET_SRC_REG (op); | |
686 | ||
687 | return (src_regno >= 2 && src_regno <= 8); | |
688 | } | |
689 | ||
690 | /* Not an insn that saves a parameter on stack. */ | |
691 | return 0; | |
692 | } | |
55d05f3b | 693 | |
7a78ae4e | 694 | static CORE_ADDR |
077276e8 | 695 | skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata) |
c906108c SS |
696 | { |
697 | CORE_ADDR orig_pc = pc; | |
55d05f3b | 698 | CORE_ADDR last_prologue_pc = pc; |
6be8bc0c | 699 | CORE_ADDR li_found_pc = 0; |
c906108c SS |
700 | char buf[4]; |
701 | unsigned long op; | |
702 | long offset = 0; | |
6be8bc0c | 703 | long vr_saved_offset = 0; |
482ca3f5 KB |
704 | int lr_reg = -1; |
705 | int cr_reg = -1; | |
6be8bc0c | 706 | int vr_reg = -1; |
96ff0de4 EZ |
707 | int ev_reg = -1; |
708 | long ev_offset = 0; | |
6be8bc0c | 709 | int vrsave_reg = -1; |
c906108c SS |
710 | int reg; |
711 | int framep = 0; | |
712 | int minimal_toc_loaded = 0; | |
ddb20c56 | 713 | int prev_insn_was_prologue_insn = 1; |
55d05f3b | 714 | int num_skip_non_prologue_insns = 0; |
773df3e5 | 715 | int r0_contains_arg = 0; |
96ff0de4 | 716 | const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch); |
6f99cb26 | 717 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
96ff0de4 | 718 | |
55d05f3b KB |
719 | /* Attempt to find the end of the prologue when no limit is specified. |
720 | Note that refine_prologue_limit() has been written so that it may | |
721 | be used to "refine" the limits of non-zero PC values too, but this | |
722 | is only safe if we 1) trust the line information provided by the | |
723 | compiler and 2) iterate enough to actually find the end of the | |
724 | prologue. | |
725 | ||
726 | It may become a good idea at some point (for both performance and | |
727 | accuracy) to unconditionally call refine_prologue_limit(). But, | |
728 | until we can make a clear determination that this is beneficial, | |
729 | we'll play it safe and only use it to obtain a limit when none | |
730 | has been specified. */ | |
731 | if (lim_pc == 0) | |
732 | lim_pc = refine_prologue_limit (pc, lim_pc); | |
c906108c | 733 | |
ddb20c56 | 734 | memset (fdata, 0, sizeof (struct rs6000_framedata)); |
c906108c SS |
735 | fdata->saved_gpr = -1; |
736 | fdata->saved_fpr = -1; | |
6be8bc0c | 737 | fdata->saved_vr = -1; |
96ff0de4 | 738 | fdata->saved_ev = -1; |
c906108c SS |
739 | fdata->alloca_reg = -1; |
740 | fdata->frameless = 1; | |
741 | fdata->nosavedpc = 1; | |
742 | ||
55d05f3b | 743 | for (;; pc += 4) |
c906108c | 744 | { |
ddb20c56 KB |
745 | /* Sometimes it isn't clear if an instruction is a prologue |
746 | instruction or not. When we encounter one of these ambiguous | |
747 | cases, we'll set prev_insn_was_prologue_insn to 0 (false). | |
748 | Otherwise, we'll assume that it really is a prologue instruction. */ | |
749 | if (prev_insn_was_prologue_insn) | |
750 | last_prologue_pc = pc; | |
55d05f3b KB |
751 | |
752 | /* Stop scanning if we've hit the limit. */ | |
753 | if (lim_pc != 0 && pc >= lim_pc) | |
754 | break; | |
755 | ||
ddb20c56 KB |
756 | prev_insn_was_prologue_insn = 1; |
757 | ||
55d05f3b | 758 | /* Fetch the instruction and convert it to an integer. */ |
ddb20c56 KB |
759 | if (target_read_memory (pc, buf, 4)) |
760 | break; | |
761 | op = extract_signed_integer (buf, 4); | |
c906108c | 762 | |
c5aa993b JM |
763 | if ((op & 0xfc1fffff) == 0x7c0802a6) |
764 | { /* mflr Rx */ | |
43b1ab88 AC |
765 | /* Since shared library / PIC code, which needs to get its |
766 | address at runtime, can appear to save more than one link | |
767 | register vis: | |
768 | ||
769 | *INDENT-OFF* | |
770 | stwu r1,-304(r1) | |
771 | mflr r3 | |
772 | bl 0xff570d0 (blrl) | |
773 | stw r30,296(r1) | |
774 | mflr r30 | |
775 | stw r31,300(r1) | |
776 | stw r3,308(r1); | |
777 | ... | |
778 | *INDENT-ON* | |
779 | ||
780 | remember just the first one, but skip over additional | |
781 | ones. */ | |
782 | if (lr_reg < 0) | |
783 | lr_reg = (op & 0x03e00000); | |
773df3e5 JB |
784 | if (lr_reg == 0) |
785 | r0_contains_arg = 0; | |
c5aa993b | 786 | continue; |
c5aa993b JM |
787 | } |
788 | else if ((op & 0xfc1fffff) == 0x7c000026) | |
789 | { /* mfcr Rx */ | |
98f08d3d | 790 | cr_reg = (op & 0x03e00000); |
773df3e5 JB |
791 | if (cr_reg == 0) |
792 | r0_contains_arg = 0; | |
c5aa993b | 793 | continue; |
c906108c | 794 | |
c906108c | 795 | } |
c5aa993b JM |
796 | else if ((op & 0xfc1f0000) == 0xd8010000) |
797 | { /* stfd Rx,NUM(r1) */ | |
798 | reg = GET_SRC_REG (op); | |
799 | if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg) | |
800 | { | |
801 | fdata->saved_fpr = reg; | |
802 | fdata->fpr_offset = SIGNED_SHORT (op) + offset; | |
803 | } | |
804 | continue; | |
c906108c | 805 | |
c5aa993b JM |
806 | } |
807 | else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */ | |
7a78ae4e ND |
808 | (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */ |
809 | (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */ | |
810 | (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */ | |
c5aa993b JM |
811 | { |
812 | ||
813 | reg = GET_SRC_REG (op); | |
814 | if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg) | |
815 | { | |
816 | fdata->saved_gpr = reg; | |
7a78ae4e | 817 | if ((op & 0xfc1f0003) == 0xf8010000) |
98f08d3d | 818 | op &= ~3UL; |
c5aa993b JM |
819 | fdata->gpr_offset = SIGNED_SHORT (op) + offset; |
820 | } | |
821 | continue; | |
c906108c | 822 | |
ddb20c56 KB |
823 | } |
824 | else if ((op & 0xffff0000) == 0x60000000) | |
825 | { | |
96ff0de4 | 826 | /* nop */ |
ddb20c56 KB |
827 | /* Allow nops in the prologue, but do not consider them to |
828 | be part of the prologue unless followed by other prologue | |
829 | instructions. */ | |
830 | prev_insn_was_prologue_insn = 0; | |
831 | continue; | |
832 | ||
c906108c | 833 | } |
c5aa993b JM |
834 | else if ((op & 0xffff0000) == 0x3c000000) |
835 | { /* addis 0,0,NUM, used | |
836 | for >= 32k frames */ | |
837 | fdata->offset = (op & 0x0000ffff) << 16; | |
838 | fdata->frameless = 0; | |
773df3e5 | 839 | r0_contains_arg = 0; |
c5aa993b JM |
840 | continue; |
841 | ||
842 | } | |
843 | else if ((op & 0xffff0000) == 0x60000000) | |
844 | { /* ori 0,0,NUM, 2nd ha | |
845 | lf of >= 32k frames */ | |
846 | fdata->offset |= (op & 0x0000ffff); | |
847 | fdata->frameless = 0; | |
773df3e5 | 848 | r0_contains_arg = 0; |
c5aa993b JM |
849 | continue; |
850 | ||
851 | } | |
98f08d3d KB |
852 | else if (lr_reg != -1 && |
853 | /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */ | |
854 | (((op & 0xffff0000) == (lr_reg | 0xf8010000)) || | |
855 | /* stw Rx, NUM(r1) */ | |
856 | ((op & 0xffff0000) == (lr_reg | 0x90010000)) || | |
857 | /* stwu Rx, NUM(r1) */ | |
858 | ((op & 0xffff0000) == (lr_reg | 0x94010000)))) | |
859 | { /* where Rx == lr */ | |
860 | fdata->lr_offset = offset; | |
c5aa993b JM |
861 | fdata->nosavedpc = 0; |
862 | lr_reg = 0; | |
98f08d3d KB |
863 | if ((op & 0xfc000003) == 0xf8000000 || /* std */ |
864 | (op & 0xfc000000) == 0x90000000) /* stw */ | |
865 | { | |
866 | /* Does not update r1, so add displacement to lr_offset. */ | |
867 | fdata->lr_offset += SIGNED_SHORT (op); | |
868 | } | |
c5aa993b JM |
869 | continue; |
870 | ||
871 | } | |
98f08d3d KB |
872 | else if (cr_reg != -1 && |
873 | /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */ | |
874 | (((op & 0xffff0000) == (cr_reg | 0xf8010000)) || | |
875 | /* stw Rx, NUM(r1) */ | |
876 | ((op & 0xffff0000) == (cr_reg | 0x90010000)) || | |
877 | /* stwu Rx, NUM(r1) */ | |
878 | ((op & 0xffff0000) == (cr_reg | 0x94010000)))) | |
879 | { /* where Rx == cr */ | |
880 | fdata->cr_offset = offset; | |
c5aa993b | 881 | cr_reg = 0; |
98f08d3d KB |
882 | if ((op & 0xfc000003) == 0xf8000000 || |
883 | (op & 0xfc000000) == 0x90000000) | |
884 | { | |
885 | /* Does not update r1, so add displacement to cr_offset. */ | |
886 | fdata->cr_offset += SIGNED_SHORT (op); | |
887 | } | |
c5aa993b JM |
888 | continue; |
889 | ||
890 | } | |
891 | else if (op == 0x48000005) | |
892 | { /* bl .+4 used in | |
893 | -mrelocatable */ | |
894 | continue; | |
895 | ||
896 | } | |
897 | else if (op == 0x48000004) | |
898 | { /* b .+4 (xlc) */ | |
899 | break; | |
900 | ||
c5aa993b | 901 | } |
6be8bc0c EZ |
902 | else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used |
903 | in V.4 -mminimal-toc */ | |
c5aa993b JM |
904 | (op & 0xffff0000) == 0x3bde0000) |
905 | { /* addi 30,30,foo@l */ | |
906 | continue; | |
c906108c | 907 | |
c5aa993b JM |
908 | } |
909 | else if ((op & 0xfc000001) == 0x48000001) | |
910 | { /* bl foo, | |
911 | to save fprs??? */ | |
c906108c | 912 | |
c5aa993b | 913 | fdata->frameless = 0; |
6be8bc0c EZ |
914 | /* Don't skip over the subroutine call if it is not within |
915 | the first three instructions of the prologue. */ | |
c5aa993b JM |
916 | if ((pc - orig_pc) > 8) |
917 | break; | |
918 | ||
919 | op = read_memory_integer (pc + 4, 4); | |
920 | ||
6be8bc0c EZ |
921 | /* At this point, make sure this is not a trampoline |
922 | function (a function that simply calls another functions, | |
923 | and nothing else). If the next is not a nop, this branch | |
924 | was part of the function prologue. */ | |
c5aa993b JM |
925 | |
926 | if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */ | |
927 | break; /* don't skip over | |
928 | this branch */ | |
929 | continue; | |
930 | ||
c5aa993b | 931 | } |
98f08d3d KB |
932 | /* update stack pointer */ |
933 | else if ((op & 0xfc1f0000) == 0x94010000) | |
934 | { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */ | |
c5aa993b JM |
935 | fdata->frameless = 0; |
936 | fdata->offset = SIGNED_SHORT (op); | |
937 | offset = fdata->offset; | |
938 | continue; | |
c5aa993b | 939 | } |
98f08d3d KB |
940 | else if ((op & 0xfc1f016a) == 0x7c01016e) |
941 | { /* stwux rX,r1,rY */ | |
942 | /* no way to figure out what r1 is going to be */ | |
943 | fdata->frameless = 0; | |
944 | offset = fdata->offset; | |
945 | continue; | |
946 | } | |
947 | else if ((op & 0xfc1f0003) == 0xf8010001) | |
948 | { /* stdu rX,NUM(r1) */ | |
949 | fdata->frameless = 0; | |
950 | fdata->offset = SIGNED_SHORT (op & ~3UL); | |
951 | offset = fdata->offset; | |
952 | continue; | |
953 | } | |
954 | else if ((op & 0xfc1f016a) == 0x7c01016a) | |
955 | { /* stdux rX,r1,rY */ | |
956 | /* no way to figure out what r1 is going to be */ | |
c5aa993b JM |
957 | fdata->frameless = 0; |
958 | offset = fdata->offset; | |
959 | continue; | |
c5aa993b | 960 | } |
98f08d3d KB |
961 | /* Load up minimal toc pointer */ |
962 | else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */ | |
963 | (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */ | |
c5aa993b | 964 | && !minimal_toc_loaded) |
98f08d3d | 965 | { |
c5aa993b JM |
966 | minimal_toc_loaded = 1; |
967 | continue; | |
968 | ||
f6077098 KB |
969 | /* move parameters from argument registers to local variable |
970 | registers */ | |
971 | } | |
972 | else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */ | |
973 | (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */ | |
974 | (((op >> 21) & 31) <= 10) && | |
96ff0de4 | 975 | ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */ |
f6077098 KB |
976 | { |
977 | continue; | |
978 | ||
c5aa993b JM |
979 | /* store parameters in stack */ |
980 | } | |
e802b915 | 981 | /* Move parameters from argument registers to temporary register. */ |
773df3e5 | 982 | else if (store_param_on_stack_p (op, framep, &r0_contains_arg)) |
e802b915 | 983 | { |
c5aa993b JM |
984 | continue; |
985 | ||
986 | /* Set up frame pointer */ | |
987 | } | |
988 | else if (op == 0x603f0000 /* oril r31, r1, 0x0 */ | |
989 | || op == 0x7c3f0b78) | |
990 | { /* mr r31, r1 */ | |
991 | fdata->frameless = 0; | |
992 | framep = 1; | |
6f99cb26 | 993 | fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31); |
c5aa993b JM |
994 | continue; |
995 | ||
996 | /* Another way to set up the frame pointer. */ | |
997 | } | |
998 | else if ((op & 0xfc1fffff) == 0x38010000) | |
999 | { /* addi rX, r1, 0x0 */ | |
1000 | fdata->frameless = 0; | |
1001 | framep = 1; | |
6f99cb26 AC |
1002 | fdata->alloca_reg = (tdep->ppc_gp0_regnum |
1003 | + ((op & ~0x38010000) >> 21)); | |
c5aa993b | 1004 | continue; |
c5aa993b | 1005 | } |
6be8bc0c EZ |
1006 | /* AltiVec related instructions. */ |
1007 | /* Store the vrsave register (spr 256) in another register for | |
1008 | later manipulation, or load a register into the vrsave | |
1009 | register. 2 instructions are used: mfvrsave and | |
1010 | mtvrsave. They are shorthand notation for mfspr Rn, SPR256 | |
1011 | and mtspr SPR256, Rn. */ | |
1012 | /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110 | |
1013 | mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */ | |
1014 | else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */ | |
1015 | { | |
1016 | vrsave_reg = GET_SRC_REG (op); | |
1017 | continue; | |
1018 | } | |
1019 | else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */ | |
1020 | { | |
1021 | continue; | |
1022 | } | |
1023 | /* Store the register where vrsave was saved to onto the stack: | |
1024 | rS is the register where vrsave was stored in a previous | |
1025 | instruction. */ | |
1026 | /* 100100 sssss 00001 dddddddd dddddddd */ | |
1027 | else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */ | |
1028 | { | |
1029 | if (vrsave_reg == GET_SRC_REG (op)) | |
1030 | { | |
1031 | fdata->vrsave_offset = SIGNED_SHORT (op) + offset; | |
1032 | vrsave_reg = -1; | |
1033 | } | |
1034 | continue; | |
1035 | } | |
1036 | /* Compute the new value of vrsave, by modifying the register | |
1037 | where vrsave was saved to. */ | |
1038 | else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */ | |
1039 | || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */ | |
1040 | { | |
1041 | continue; | |
1042 | } | |
1043 | /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first | |
1044 | in a pair of insns to save the vector registers on the | |
1045 | stack. */ | |
1046 | /* 001110 00000 00000 iiii iiii iiii iiii */ | |
96ff0de4 EZ |
1047 | /* 001110 01110 00000 iiii iiii iiii iiii */ |
1048 | else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */ | |
1049 | || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */ | |
6be8bc0c | 1050 | { |
773df3e5 JB |
1051 | if ((op & 0xffff0000) == 0x38000000) |
1052 | r0_contains_arg = 0; | |
6be8bc0c EZ |
1053 | li_found_pc = pc; |
1054 | vr_saved_offset = SIGNED_SHORT (op); | |
773df3e5 JB |
1055 | |
1056 | /* This insn by itself is not part of the prologue, unless | |
1057 | if part of the pair of insns mentioned above. So do not | |
1058 | record this insn as part of the prologue yet. */ | |
1059 | prev_insn_was_prologue_insn = 0; | |
6be8bc0c EZ |
1060 | } |
1061 | /* Store vector register S at (r31+r0) aligned to 16 bytes. */ | |
1062 | /* 011111 sssss 11111 00000 00111001110 */ | |
1063 | else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */ | |
1064 | { | |
1065 | if (pc == (li_found_pc + 4)) | |
1066 | { | |
1067 | vr_reg = GET_SRC_REG (op); | |
1068 | /* If this is the first vector reg to be saved, or if | |
1069 | it has a lower number than others previously seen, | |
1070 | reupdate the frame info. */ | |
1071 | if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg) | |
1072 | { | |
1073 | fdata->saved_vr = vr_reg; | |
1074 | fdata->vr_offset = vr_saved_offset + offset; | |
1075 | } | |
1076 | vr_saved_offset = -1; | |
1077 | vr_reg = -1; | |
1078 | li_found_pc = 0; | |
1079 | } | |
1080 | } | |
1081 | /* End AltiVec related instructions. */ | |
96ff0de4 EZ |
1082 | |
1083 | /* Start BookE related instructions. */ | |
1084 | /* Store gen register S at (r31+uimm). | |
1085 | Any register less than r13 is volatile, so we don't care. */ | |
1086 | /* 000100 sssss 11111 iiiii 01100100001 */ | |
1087 | else if (arch_info->mach == bfd_mach_ppc_e500 | |
1088 | && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */ | |
1089 | { | |
1090 | if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */ | |
1091 | { | |
1092 | unsigned int imm; | |
1093 | ev_reg = GET_SRC_REG (op); | |
1094 | imm = (op >> 11) & 0x1f; | |
1095 | ev_offset = imm * 8; | |
1096 | /* If this is the first vector reg to be saved, or if | |
1097 | it has a lower number than others previously seen, | |
1098 | reupdate the frame info. */ | |
1099 | if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg) | |
1100 | { | |
1101 | fdata->saved_ev = ev_reg; | |
1102 | fdata->ev_offset = ev_offset + offset; | |
1103 | } | |
1104 | } | |
1105 | continue; | |
1106 | } | |
1107 | /* Store gen register rS at (r1+rB). */ | |
1108 | /* 000100 sssss 00001 bbbbb 01100100000 */ | |
1109 | else if (arch_info->mach == bfd_mach_ppc_e500 | |
1110 | && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */ | |
1111 | { | |
1112 | if (pc == (li_found_pc + 4)) | |
1113 | { | |
1114 | ev_reg = GET_SRC_REG (op); | |
1115 | /* If this is the first vector reg to be saved, or if | |
1116 | it has a lower number than others previously seen, | |
1117 | reupdate the frame info. */ | |
1118 | /* We know the contents of rB from the previous instruction. */ | |
1119 | if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg) | |
1120 | { | |
1121 | fdata->saved_ev = ev_reg; | |
1122 | fdata->ev_offset = vr_saved_offset + offset; | |
1123 | } | |
1124 | vr_saved_offset = -1; | |
1125 | ev_reg = -1; | |
1126 | li_found_pc = 0; | |
1127 | } | |
1128 | continue; | |
1129 | } | |
1130 | /* Store gen register r31 at (rA+uimm). */ | |
1131 | /* 000100 11111 aaaaa iiiii 01100100001 */ | |
1132 | else if (arch_info->mach == bfd_mach_ppc_e500 | |
1133 | && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */ | |
1134 | { | |
1135 | /* Wwe know that the source register is 31 already, but | |
1136 | it can't hurt to compute it. */ | |
1137 | ev_reg = GET_SRC_REG (op); | |
1138 | ev_offset = ((op >> 11) & 0x1f) * 8; | |
1139 | /* If this is the first vector reg to be saved, or if | |
1140 | it has a lower number than others previously seen, | |
1141 | reupdate the frame info. */ | |
1142 | if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg) | |
1143 | { | |
1144 | fdata->saved_ev = ev_reg; | |
1145 | fdata->ev_offset = ev_offset + offset; | |
1146 | } | |
1147 | ||
1148 | continue; | |
1149 | } | |
1150 | /* Store gen register S at (r31+r0). | |
1151 | Store param on stack when offset from SP bigger than 4 bytes. */ | |
1152 | /* 000100 sssss 11111 00000 01100100000 */ | |
1153 | else if (arch_info->mach == bfd_mach_ppc_e500 | |
1154 | && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */ | |
1155 | { | |
1156 | if (pc == (li_found_pc + 4)) | |
1157 | { | |
1158 | if ((op & 0x03e00000) >= 0x01a00000) | |
1159 | { | |
1160 | ev_reg = GET_SRC_REG (op); | |
1161 | /* If this is the first vector reg to be saved, or if | |
1162 | it has a lower number than others previously seen, | |
1163 | reupdate the frame info. */ | |
1164 | /* We know the contents of r0 from the previous | |
1165 | instruction. */ | |
1166 | if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg) | |
1167 | { | |
1168 | fdata->saved_ev = ev_reg; | |
1169 | fdata->ev_offset = vr_saved_offset + offset; | |
1170 | } | |
1171 | ev_reg = -1; | |
1172 | } | |
1173 | vr_saved_offset = -1; | |
1174 | li_found_pc = 0; | |
1175 | continue; | |
1176 | } | |
1177 | } | |
1178 | /* End BookE related instructions. */ | |
1179 | ||
c5aa993b JM |
1180 | else |
1181 | { | |
55d05f3b KB |
1182 | /* Not a recognized prologue instruction. |
1183 | Handle optimizer code motions into the prologue by continuing | |
1184 | the search if we have no valid frame yet or if the return | |
1185 | address is not yet saved in the frame. */ | |
1186 | if (fdata->frameless == 0 | |
1187 | && (lr_reg == -1 || fdata->nosavedpc == 0)) | |
1188 | break; | |
1189 | ||
1190 | if (op == 0x4e800020 /* blr */ | |
1191 | || op == 0x4e800420) /* bctr */ | |
1192 | /* Do not scan past epilogue in frameless functions or | |
1193 | trampolines. */ | |
1194 | break; | |
1195 | if ((op & 0xf4000000) == 0x40000000) /* bxx */ | |
64366f1c | 1196 | /* Never skip branches. */ |
55d05f3b KB |
1197 | break; |
1198 | ||
1199 | if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns) | |
1200 | /* Do not scan too many insns, scanning insns is expensive with | |
1201 | remote targets. */ | |
1202 | break; | |
1203 | ||
1204 | /* Continue scanning. */ | |
1205 | prev_insn_was_prologue_insn = 0; | |
1206 | continue; | |
c5aa993b | 1207 | } |
c906108c SS |
1208 | } |
1209 | ||
1210 | #if 0 | |
1211 | /* I have problems with skipping over __main() that I need to address | |
1212 | * sometime. Previously, I used to use misc_function_vector which | |
1213 | * didn't work as well as I wanted to be. -MGO */ | |
1214 | ||
1215 | /* If the first thing after skipping a prolog is a branch to a function, | |
1216 | this might be a call to an initializer in main(), introduced by gcc2. | |
64366f1c | 1217 | We'd like to skip over it as well. Fortunately, xlc does some extra |
c906108c | 1218 | work before calling a function right after a prologue, thus we can |
64366f1c | 1219 | single out such gcc2 behaviour. */ |
c906108c | 1220 | |
c906108c | 1221 | |
c5aa993b JM |
1222 | if ((op & 0xfc000001) == 0x48000001) |
1223 | { /* bl foo, an initializer function? */ | |
1224 | op = read_memory_integer (pc + 4, 4); | |
1225 | ||
1226 | if (op == 0x4def7b82) | |
1227 | { /* cror 0xf, 0xf, 0xf (nop) */ | |
c906108c | 1228 | |
64366f1c EZ |
1229 | /* Check and see if we are in main. If so, skip over this |
1230 | initializer function as well. */ | |
c906108c | 1231 | |
c5aa993b | 1232 | tmp = find_pc_misc_function (pc); |
6314a349 AC |
1233 | if (tmp >= 0 |
1234 | && strcmp (misc_function_vector[tmp].name, main_name ()) == 0) | |
c5aa993b JM |
1235 | return pc + 8; |
1236 | } | |
c906108c | 1237 | } |
c906108c | 1238 | #endif /* 0 */ |
c5aa993b JM |
1239 | |
1240 | fdata->offset = -fdata->offset; | |
ddb20c56 | 1241 | return last_prologue_pc; |
c906108c SS |
1242 | } |
1243 | ||
1244 | ||
1245 | /************************************************************************* | |
f6077098 | 1246 | Support for creating pushing a dummy frame into the stack, and popping |
c906108c SS |
1247 | frames, etc. |
1248 | *************************************************************************/ | |
1249 | ||
c906108c | 1250 | |
11269d7e AC |
1251 | /* All the ABI's require 16 byte alignment. */ |
1252 | static CORE_ADDR | |
1253 | rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr) | |
1254 | { | |
1255 | return (addr & -16); | |
1256 | } | |
1257 | ||
7a78ae4e | 1258 | /* Pass the arguments in either registers, or in the stack. In RS/6000, |
c906108c SS |
1259 | the first eight words of the argument list (that might be less than |
1260 | eight parameters if some parameters occupy more than one word) are | |
7a78ae4e | 1261 | passed in r3..r10 registers. float and double parameters are |
64366f1c EZ |
1262 | passed in fpr's, in addition to that. Rest of the parameters if any |
1263 | are passed in user stack. There might be cases in which half of the | |
c906108c SS |
1264 | parameter is copied into registers, the other half is pushed into |
1265 | stack. | |
1266 | ||
7a78ae4e ND |
1267 | Stack must be aligned on 64-bit boundaries when synthesizing |
1268 | function calls. | |
1269 | ||
c906108c SS |
1270 | If the function is returning a structure, then the return address is passed |
1271 | in r3, then the first 7 words of the parameters can be passed in registers, | |
64366f1c | 1272 | starting from r4. */ |
c906108c | 1273 | |
7a78ae4e | 1274 | static CORE_ADDR |
7d9b040b | 1275 | rs6000_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
77b2b6d4 AC |
1276 | struct regcache *regcache, CORE_ADDR bp_addr, |
1277 | int nargs, struct value **args, CORE_ADDR sp, | |
1278 | int struct_return, CORE_ADDR struct_addr) | |
c906108c | 1279 | { |
7a41266b | 1280 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
c906108c SS |
1281 | int ii; |
1282 | int len = 0; | |
c5aa993b JM |
1283 | int argno; /* current argument number */ |
1284 | int argbytes; /* current argument byte */ | |
1285 | char tmp_buffer[50]; | |
1286 | int f_argno = 0; /* current floating point argno */ | |
21283beb | 1287 | int wordsize = gdbarch_tdep (current_gdbarch)->wordsize; |
7d9b040b | 1288 | CORE_ADDR func_addr = find_function_addr (function, NULL); |
c906108c | 1289 | |
ea7c478f | 1290 | struct value *arg = 0; |
c906108c SS |
1291 | struct type *type; |
1292 | ||
1293 | CORE_ADDR saved_sp; | |
1294 | ||
383f0f5b JB |
1295 | /* The calling convention this function implements assumes the |
1296 | processor has floating-point registers. We shouldn't be using it | |
1297 | on PPC variants that lack them. */ | |
1298 | gdb_assert (ppc_floating_point_unit_p (current_gdbarch)); | |
1299 | ||
64366f1c | 1300 | /* The first eight words of ther arguments are passed in registers. |
7a41266b AC |
1301 | Copy them appropriately. */ |
1302 | ii = 0; | |
1303 | ||
1304 | /* If the function is returning a `struct', then the first word | |
1305 | (which will be passed in r3) is used for struct return address. | |
1306 | In that case we should advance one word and start from r4 | |
1307 | register to copy parameters. */ | |
1308 | if (struct_return) | |
1309 | { | |
1310 | regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3, | |
1311 | struct_addr); | |
1312 | ii++; | |
1313 | } | |
c906108c SS |
1314 | |
1315 | /* | |
c5aa993b JM |
1316 | effectively indirect call... gcc does... |
1317 | ||
1318 | return_val example( float, int); | |
1319 | ||
1320 | eabi: | |
1321 | float in fp0, int in r3 | |
1322 | offset of stack on overflow 8/16 | |
1323 | for varargs, must go by type. | |
1324 | power open: | |
1325 | float in r3&r4, int in r5 | |
1326 | offset of stack on overflow different | |
1327 | both: | |
1328 | return in r3 or f0. If no float, must study how gcc emulates floats; | |
1329 | pay attention to arg promotion. | |
1330 | User may have to cast\args to handle promotion correctly | |
1331 | since gdb won't know if prototype supplied or not. | |
1332 | */ | |
c906108c | 1333 | |
c5aa993b JM |
1334 | for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii) |
1335 | { | |
12c266ea | 1336 | int reg_size = DEPRECATED_REGISTER_RAW_SIZE (ii + 3); |
c5aa993b JM |
1337 | |
1338 | arg = args[argno]; | |
1339 | type = check_typedef (VALUE_TYPE (arg)); | |
1340 | len = TYPE_LENGTH (type); | |
1341 | ||
1342 | if (TYPE_CODE (type) == TYPE_CODE_FLT) | |
1343 | { | |
1344 | ||
64366f1c | 1345 | /* Floating point arguments are passed in fpr's, as well as gpr's. |
c5aa993b | 1346 | There are 13 fpr's reserved for passing parameters. At this point |
64366f1c | 1347 | there is no way we would run out of them. */ |
c5aa993b JM |
1348 | |
1349 | if (len > 8) | |
c2b6b4aa JB |
1350 | printf_unfiltered ("Fatal Error: a floating point parameter " |
1351 | "#%d with a size > 8 is found!\n", argno); | |
c5aa993b | 1352 | |
366f009f JB |
1353 | memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE |
1354 | (tdep->ppc_fp0_regnum + 1 + f_argno)], | |
c5aa993b JM |
1355 | VALUE_CONTENTS (arg), |
1356 | len); | |
1357 | ++f_argno; | |
1358 | } | |
1359 | ||
f6077098 | 1360 | if (len > reg_size) |
c5aa993b JM |
1361 | { |
1362 | ||
64366f1c | 1363 | /* Argument takes more than one register. */ |
c5aa993b JM |
1364 | while (argbytes < len) |
1365 | { | |
62700349 | 1366 | memset (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)], 0, |
524d7c18 | 1367 | reg_size); |
62700349 | 1368 | memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)], |
c5aa993b | 1369 | ((char *) VALUE_CONTENTS (arg)) + argbytes, |
f6077098 KB |
1370 | (len - argbytes) > reg_size |
1371 | ? reg_size : len - argbytes); | |
1372 | ++ii, argbytes += reg_size; | |
c5aa993b JM |
1373 | |
1374 | if (ii >= 8) | |
1375 | goto ran_out_of_registers_for_arguments; | |
1376 | } | |
1377 | argbytes = 0; | |
1378 | --ii; | |
1379 | } | |
1380 | else | |
64366f1c EZ |
1381 | { |
1382 | /* Argument can fit in one register. No problem. */ | |
d7449b42 | 1383 | int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0; |
62700349 AC |
1384 | memset (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)], 0, reg_size); |
1385 | memcpy ((char *)&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)] + adj, | |
f6077098 | 1386 | VALUE_CONTENTS (arg), len); |
c5aa993b JM |
1387 | } |
1388 | ++argno; | |
c906108c | 1389 | } |
c906108c SS |
1390 | |
1391 | ran_out_of_registers_for_arguments: | |
1392 | ||
7a78ae4e | 1393 | saved_sp = read_sp (); |
cc9836a8 | 1394 | |
64366f1c | 1395 | /* Location for 8 parameters are always reserved. */ |
7a78ae4e | 1396 | sp -= wordsize * 8; |
f6077098 | 1397 | |
64366f1c | 1398 | /* Another six words for back chain, TOC register, link register, etc. */ |
7a78ae4e | 1399 | sp -= wordsize * 6; |
f6077098 | 1400 | |
64366f1c | 1401 | /* Stack pointer must be quadword aligned. */ |
7a78ae4e | 1402 | sp &= -16; |
c906108c | 1403 | |
64366f1c EZ |
1404 | /* If there are more arguments, allocate space for them in |
1405 | the stack, then push them starting from the ninth one. */ | |
c906108c | 1406 | |
c5aa993b JM |
1407 | if ((argno < nargs) || argbytes) |
1408 | { | |
1409 | int space = 0, jj; | |
c906108c | 1410 | |
c5aa993b JM |
1411 | if (argbytes) |
1412 | { | |
1413 | space += ((len - argbytes + 3) & -4); | |
1414 | jj = argno + 1; | |
1415 | } | |
1416 | else | |
1417 | jj = argno; | |
c906108c | 1418 | |
c5aa993b JM |
1419 | for (; jj < nargs; ++jj) |
1420 | { | |
ea7c478f | 1421 | struct value *val = args[jj]; |
c5aa993b JM |
1422 | space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4; |
1423 | } | |
c906108c | 1424 | |
64366f1c | 1425 | /* Add location required for the rest of the parameters. */ |
f6077098 | 1426 | space = (space + 15) & -16; |
c5aa993b | 1427 | sp -= space; |
c906108c | 1428 | |
7aea86e6 AC |
1429 | /* This is another instance we need to be concerned about |
1430 | securing our stack space. If we write anything underneath %sp | |
1431 | (r1), we might conflict with the kernel who thinks he is free | |
1432 | to use this area. So, update %sp first before doing anything | |
1433 | else. */ | |
1434 | ||
1435 | regcache_raw_write_signed (regcache, SP_REGNUM, sp); | |
1436 | ||
64366f1c EZ |
1437 | /* If the last argument copied into the registers didn't fit there |
1438 | completely, push the rest of it into stack. */ | |
c906108c | 1439 | |
c5aa993b JM |
1440 | if (argbytes) |
1441 | { | |
1442 | write_memory (sp + 24 + (ii * 4), | |
1443 | ((char *) VALUE_CONTENTS (arg)) + argbytes, | |
1444 | len - argbytes); | |
1445 | ++argno; | |
1446 | ii += ((len - argbytes + 3) & -4) / 4; | |
1447 | } | |
c906108c | 1448 | |
64366f1c | 1449 | /* Push the rest of the arguments into stack. */ |
c5aa993b JM |
1450 | for (; argno < nargs; ++argno) |
1451 | { | |
c906108c | 1452 | |
c5aa993b JM |
1453 | arg = args[argno]; |
1454 | type = check_typedef (VALUE_TYPE (arg)); | |
1455 | len = TYPE_LENGTH (type); | |
c906108c SS |
1456 | |
1457 | ||
64366f1c EZ |
1458 | /* Float types should be passed in fpr's, as well as in the |
1459 | stack. */ | |
c5aa993b JM |
1460 | if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13) |
1461 | { | |
c906108c | 1462 | |
c5aa993b | 1463 | if (len > 8) |
c2b6b4aa JB |
1464 | printf_unfiltered ("Fatal Error: a floating point parameter" |
1465 | " #%d with a size > 8 is found!\n", argno); | |
c906108c | 1466 | |
366f009f JB |
1467 | memcpy (&(deprecated_registers |
1468 | [DEPRECATED_REGISTER_BYTE | |
1469 | (tdep->ppc_fp0_regnum + 1 + f_argno)]), | |
c5aa993b JM |
1470 | VALUE_CONTENTS (arg), |
1471 | len); | |
1472 | ++f_argno; | |
1473 | } | |
c906108c | 1474 | |
c2b6b4aa JB |
1475 | write_memory (sp + 24 + (ii * 4), |
1476 | (char *) VALUE_CONTENTS (arg), | |
1477 | len); | |
c5aa993b JM |
1478 | ii += ((len + 3) & -4) / 4; |
1479 | } | |
c906108c | 1480 | } |
c906108c | 1481 | |
69517000 | 1482 | /* Set the stack pointer. According to the ABI, the SP is meant to |
7aea86e6 AC |
1483 | be set _before_ the corresponding stack space is used. On AIX, |
1484 | this even applies when the target has been completely stopped! | |
1485 | Not doing this can lead to conflicts with the kernel which thinks | |
1486 | that it still has control over this not-yet-allocated stack | |
1487 | region. */ | |
33a7c2fc AC |
1488 | regcache_raw_write_signed (regcache, SP_REGNUM, sp); |
1489 | ||
7aea86e6 AC |
1490 | /* Set back chain properly. */ |
1491 | store_unsigned_integer (tmp_buffer, 4, saved_sp); | |
1492 | write_memory (sp, tmp_buffer, 4); | |
1493 | ||
e56a0ecc AC |
1494 | /* Point the inferior function call's return address at the dummy's |
1495 | breakpoint. */ | |
1496 | regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr); | |
1497 | ||
794a477a AC |
1498 | /* Set the TOC register, get the value from the objfile reader |
1499 | which, in turn, gets it from the VMAP table. */ | |
1500 | if (rs6000_find_toc_address_hook != NULL) | |
1501 | { | |
1502 | CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr); | |
1503 | regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue); | |
1504 | } | |
1505 | ||
c906108c SS |
1506 | target_store_registers (-1); |
1507 | return sp; | |
1508 | } | |
c906108c | 1509 | |
b9ff3018 AC |
1510 | /* PowerOpen always puts structures in memory. Vectors, which were |
1511 | added later, do get returned in a register though. */ | |
1512 | ||
1513 | static int | |
1514 | rs6000_use_struct_convention (int gcc_p, struct type *value_type) | |
1515 | { | |
1516 | if ((TYPE_LENGTH (value_type) == 16 || TYPE_LENGTH (value_type) == 8) | |
1517 | && TYPE_VECTOR (value_type)) | |
1518 | return 0; | |
1519 | return 1; | |
1520 | } | |
1521 | ||
7a78ae4e ND |
1522 | static void |
1523 | rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf) | |
c906108c SS |
1524 | { |
1525 | int offset = 0; | |
ace1378a | 1526 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
c906108c | 1527 | |
383f0f5b JB |
1528 | /* The calling convention this function implements assumes the |
1529 | processor has floating-point registers. We shouldn't be using it | |
1530 | on PPC variants that lack them. */ | |
1531 | gdb_assert (ppc_floating_point_unit_p (current_gdbarch)); | |
1532 | ||
c5aa993b JM |
1533 | if (TYPE_CODE (valtype) == TYPE_CODE_FLT) |
1534 | { | |
c906108c | 1535 | |
c5aa993b JM |
1536 | /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes. |
1537 | We need to truncate the return value into float size (4 byte) if | |
64366f1c | 1538 | necessary. */ |
c906108c | 1539 | |
65951cd9 | 1540 | convert_typed_floating (®buf[DEPRECATED_REGISTER_BYTE |
366f009f | 1541 | (tdep->ppc_fp0_regnum + 1)], |
65951cd9 JG |
1542 | builtin_type_double, |
1543 | valbuf, | |
1544 | valtype); | |
c5aa993b | 1545 | } |
ace1378a EZ |
1546 | else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY |
1547 | && TYPE_LENGTH (valtype) == 16 | |
1548 | && TYPE_VECTOR (valtype)) | |
1549 | { | |
62700349 | 1550 | memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (tdep->ppc_vr0_regnum + 2), |
ace1378a EZ |
1551 | TYPE_LENGTH (valtype)); |
1552 | } | |
c5aa993b JM |
1553 | else |
1554 | { | |
1555 | /* return value is copied starting from r3. */ | |
d7449b42 | 1556 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG |
12c266ea AC |
1557 | && TYPE_LENGTH (valtype) < DEPRECATED_REGISTER_RAW_SIZE (3)) |
1558 | offset = DEPRECATED_REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype); | |
c5aa993b JM |
1559 | |
1560 | memcpy (valbuf, | |
62700349 | 1561 | regbuf + DEPRECATED_REGISTER_BYTE (3) + offset, |
c906108c | 1562 | TYPE_LENGTH (valtype)); |
c906108c | 1563 | } |
c906108c SS |
1564 | } |
1565 | ||
977adac5 ND |
1566 | /* Return whether handle_inferior_event() should proceed through code |
1567 | starting at PC in function NAME when stepping. | |
1568 | ||
1569 | The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to | |
1570 | handle memory references that are too distant to fit in instructions | |
1571 | generated by the compiler. For example, if 'foo' in the following | |
1572 | instruction: | |
1573 | ||
1574 | lwz r9,foo(r2) | |
1575 | ||
1576 | is greater than 32767, the linker might replace the lwz with a branch to | |
1577 | somewhere in @FIX1 that does the load in 2 instructions and then branches | |
1578 | back to where execution should continue. | |
1579 | ||
1580 | GDB should silently step over @FIX code, just like AIX dbx does. | |
1581 | Unfortunately, the linker uses the "b" instruction for the branches, | |
1582 | meaning that the link register doesn't get set. Therefore, GDB's usual | |
1583 | step_over_function() mechanism won't work. | |
1584 | ||
1585 | Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks | |
1586 | in handle_inferior_event() to skip past @FIX code. */ | |
1587 | ||
1588 | int | |
1589 | rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name) | |
1590 | { | |
1591 | return name && !strncmp (name, "@FIX", 4); | |
1592 | } | |
1593 | ||
1594 | /* Skip code that the user doesn't want to see when stepping: | |
1595 | ||
1596 | 1. Indirect function calls use a piece of trampoline code to do context | |
1597 | switching, i.e. to set the new TOC table. Skip such code if we are on | |
1598 | its first instruction (as when we have single-stepped to here). | |
1599 | ||
1600 | 2. Skip shared library trampoline code (which is different from | |
c906108c | 1601 | indirect function call trampolines). |
977adac5 ND |
1602 | |
1603 | 3. Skip bigtoc fixup code. | |
1604 | ||
c906108c | 1605 | Result is desired PC to step until, or NULL if we are not in |
977adac5 | 1606 | code that should be skipped. */ |
c906108c SS |
1607 | |
1608 | CORE_ADDR | |
7a78ae4e | 1609 | rs6000_skip_trampoline_code (CORE_ADDR pc) |
c906108c | 1610 | { |
52f0bd74 | 1611 | unsigned int ii, op; |
977adac5 | 1612 | int rel; |
c906108c | 1613 | CORE_ADDR solib_target_pc; |
977adac5 | 1614 | struct minimal_symbol *msymbol; |
c906108c | 1615 | |
c5aa993b JM |
1616 | static unsigned trampoline_code[] = |
1617 | { | |
1618 | 0x800b0000, /* l r0,0x0(r11) */ | |
1619 | 0x90410014, /* st r2,0x14(r1) */ | |
1620 | 0x7c0903a6, /* mtctr r0 */ | |
1621 | 0x804b0004, /* l r2,0x4(r11) */ | |
1622 | 0x816b0008, /* l r11,0x8(r11) */ | |
1623 | 0x4e800420, /* bctr */ | |
1624 | 0x4e800020, /* br */ | |
1625 | 0 | |
c906108c SS |
1626 | }; |
1627 | ||
977adac5 ND |
1628 | /* Check for bigtoc fixup code. */ |
1629 | msymbol = lookup_minimal_symbol_by_pc (pc); | |
22abf04a | 1630 | if (msymbol && rs6000_in_solib_return_trampoline (pc, DEPRECATED_SYMBOL_NAME (msymbol))) |
977adac5 ND |
1631 | { |
1632 | /* Double-check that the third instruction from PC is relative "b". */ | |
1633 | op = read_memory_integer (pc + 8, 4); | |
1634 | if ((op & 0xfc000003) == 0x48000000) | |
1635 | { | |
1636 | /* Extract bits 6-29 as a signed 24-bit relative word address and | |
1637 | add it to the containing PC. */ | |
1638 | rel = ((int)(op << 6) >> 6); | |
1639 | return pc + 8 + rel; | |
1640 | } | |
1641 | } | |
1642 | ||
c906108c SS |
1643 | /* If pc is in a shared library trampoline, return its target. */ |
1644 | solib_target_pc = find_solib_trampoline_target (pc); | |
1645 | if (solib_target_pc) | |
1646 | return solib_target_pc; | |
1647 | ||
c5aa993b JM |
1648 | for (ii = 0; trampoline_code[ii]; ++ii) |
1649 | { | |
1650 | op = read_memory_integer (pc + (ii * 4), 4); | |
1651 | if (op != trampoline_code[ii]) | |
1652 | return 0; | |
1653 | } | |
1654 | ii = read_register (11); /* r11 holds destination addr */ | |
21283beb | 1655 | pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */ |
c906108c SS |
1656 | return pc; |
1657 | } | |
1658 | ||
7a78ae4e | 1659 | /* Return the size of register REG when words are WORDSIZE bytes long. If REG |
64366f1c | 1660 | isn't available with that word size, return 0. */ |
7a78ae4e ND |
1661 | |
1662 | static int | |
1663 | regsize (const struct reg *reg, int wordsize) | |
1664 | { | |
1665 | return wordsize == 8 ? reg->sz64 : reg->sz32; | |
1666 | } | |
1667 | ||
1668 | /* Return the name of register number N, or null if no such register exists | |
64366f1c | 1669 | in the current architecture. */ |
7a78ae4e | 1670 | |
fa88f677 | 1671 | static const char * |
7a78ae4e ND |
1672 | rs6000_register_name (int n) |
1673 | { | |
21283beb | 1674 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
7a78ae4e ND |
1675 | const struct reg *reg = tdep->regs + n; |
1676 | ||
1677 | if (!regsize (reg, tdep->wordsize)) | |
1678 | return NULL; | |
1679 | return reg->name; | |
1680 | } | |
1681 | ||
7a78ae4e ND |
1682 | /* Return the GDB type object for the "standard" data type |
1683 | of data in register N. */ | |
1684 | ||
1685 | static struct type * | |
691d145a | 1686 | rs6000_register_type (struct gdbarch *gdbarch, int n) |
7a78ae4e | 1687 | { |
691d145a | 1688 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
7a78ae4e ND |
1689 | const struct reg *reg = tdep->regs + n; |
1690 | ||
1fcc0bb8 EZ |
1691 | if (reg->fpr) |
1692 | return builtin_type_double; | |
1693 | else | |
1694 | { | |
1695 | int size = regsize (reg, tdep->wordsize); | |
1696 | switch (size) | |
1697 | { | |
449a5da4 AC |
1698 | case 0: |
1699 | return builtin_type_int0; | |
1700 | case 4: | |
ed6edd9b | 1701 | return builtin_type_uint32; |
1fcc0bb8 | 1702 | case 8: |
c8001721 EZ |
1703 | if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum) |
1704 | return builtin_type_vec64; | |
1705 | else | |
ed6edd9b | 1706 | return builtin_type_uint64; |
1fcc0bb8 EZ |
1707 | break; |
1708 | case 16: | |
08cf96df | 1709 | return builtin_type_vec128; |
1fcc0bb8 EZ |
1710 | break; |
1711 | default: | |
449a5da4 AC |
1712 | internal_error (__FILE__, __LINE__, "Register %d size %d unknown", |
1713 | n, size); | |
1fcc0bb8 EZ |
1714 | } |
1715 | } | |
7a78ae4e ND |
1716 | } |
1717 | ||
691d145a | 1718 | /* The register format for RS/6000 floating point registers is always |
64366f1c | 1719 | double, we need a conversion if the memory format is float. */ |
7a78ae4e ND |
1720 | |
1721 | static int | |
691d145a | 1722 | rs6000_convert_register_p (int regnum, struct type *type) |
7a78ae4e | 1723 | { |
691d145a JB |
1724 | const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum; |
1725 | ||
1726 | return (reg->fpr | |
1727 | && TYPE_CODE (type) == TYPE_CODE_FLT | |
1728 | && TYPE_LENGTH (type) != TYPE_LENGTH (builtin_type_double)); | |
7a78ae4e ND |
1729 | } |
1730 | ||
7a78ae4e | 1731 | static void |
691d145a JB |
1732 | rs6000_register_to_value (struct frame_info *frame, |
1733 | int regnum, | |
1734 | struct type *type, | |
1735 | void *to) | |
7a78ae4e | 1736 | { |
691d145a JB |
1737 | const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum; |
1738 | char from[MAX_REGISTER_SIZE]; | |
1739 | ||
1740 | gdb_assert (reg->fpr); | |
1741 | gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT); | |
7a78ae4e | 1742 | |
691d145a JB |
1743 | get_frame_register (frame, regnum, from); |
1744 | convert_typed_floating (from, builtin_type_double, to, type); | |
1745 | } | |
7a292a7a | 1746 | |
7a78ae4e | 1747 | static void |
691d145a JB |
1748 | rs6000_value_to_register (struct frame_info *frame, |
1749 | int regnum, | |
1750 | struct type *type, | |
1751 | const void *from) | |
7a78ae4e | 1752 | { |
691d145a JB |
1753 | const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum; |
1754 | char to[MAX_REGISTER_SIZE]; | |
1755 | ||
1756 | gdb_assert (reg->fpr); | |
1757 | gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT); | |
1758 | ||
1759 | convert_typed_floating (from, type, to, builtin_type_double); | |
1760 | put_frame_register (frame, regnum, to); | |
7a78ae4e | 1761 | } |
c906108c | 1762 | |
c8001721 EZ |
1763 | static void |
1764 | e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache, | |
1765 | int reg_nr, void *buffer) | |
1766 | { | |
1767 | int base_regnum; | |
1768 | int offset = 0; | |
d9d9c31f | 1769 | char temp_buffer[MAX_REGISTER_SIZE]; |
c8001721 EZ |
1770 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
1771 | ||
1772 | if (reg_nr >= tdep->ppc_gp0_regnum | |
8bf659e8 | 1773 | && reg_nr < tdep->ppc_gp0_regnum + ppc_num_gprs) |
c8001721 EZ |
1774 | { |
1775 | base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum; | |
1776 | ||
1777 | /* Build the value in the provided buffer. */ | |
1778 | /* Read the raw register of which this one is the lower portion. */ | |
1779 | regcache_raw_read (regcache, base_regnum, temp_buffer); | |
1780 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) | |
1781 | offset = 4; | |
1782 | memcpy ((char *) buffer, temp_buffer + offset, 4); | |
1783 | } | |
1784 | } | |
1785 | ||
1786 | static void | |
1787 | e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache, | |
1788 | int reg_nr, const void *buffer) | |
1789 | { | |
1790 | int base_regnum; | |
1791 | int offset = 0; | |
d9d9c31f | 1792 | char temp_buffer[MAX_REGISTER_SIZE]; |
c8001721 EZ |
1793 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
1794 | ||
1795 | if (reg_nr >= tdep->ppc_gp0_regnum | |
8bf659e8 | 1796 | && reg_nr < tdep->ppc_gp0_regnum + ppc_num_gprs) |
c8001721 EZ |
1797 | { |
1798 | base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum; | |
1799 | /* reg_nr is 32 bit here, and base_regnum is 64 bits. */ | |
1800 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) | |
1801 | offset = 4; | |
1802 | ||
1803 | /* Let's read the value of the base register into a temporary | |
1804 | buffer, so that overwriting the last four bytes with the new | |
1805 | value of the pseudo will leave the upper 4 bytes unchanged. */ | |
1806 | regcache_raw_read (regcache, base_regnum, temp_buffer); | |
1807 | ||
1808 | /* Write as an 8 byte quantity. */ | |
1809 | memcpy (temp_buffer + offset, (char *) buffer, 4); | |
1810 | regcache_raw_write (regcache, base_regnum, temp_buffer); | |
1811 | } | |
1812 | } | |
1813 | ||
18ed0c4e | 1814 | /* Convert a DBX STABS register number to a GDB register number. */ |
c8001721 | 1815 | static int |
18ed0c4e | 1816 | rs6000_stab_reg_to_regnum (int num) |
c8001721 | 1817 | { |
9f744501 | 1818 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
c8001721 | 1819 | |
9f744501 JB |
1820 | if (0 <= num && num <= 31) |
1821 | return tdep->ppc_gp0_regnum + num; | |
1822 | else if (32 <= num && num <= 63) | |
383f0f5b JB |
1823 | /* FIXME: jimb/2004-05-05: What should we do when the debug info |
1824 | specifies registers the architecture doesn't have? Our | |
1825 | callers don't check the value we return. */ | |
366f009f | 1826 | return tdep->ppc_fp0_regnum + (num - 32); |
18ed0c4e JB |
1827 | else if (77 <= num && num <= 108) |
1828 | return tdep->ppc_vr0_regnum + (num - 77); | |
9f744501 JB |
1829 | else if (1200 <= num && num < 1200 + 32) |
1830 | return tdep->ppc_ev0_regnum + (num - 1200); | |
1831 | else | |
1832 | switch (num) | |
1833 | { | |
1834 | case 64: | |
1835 | return tdep->ppc_mq_regnum; | |
1836 | case 65: | |
1837 | return tdep->ppc_lr_regnum; | |
1838 | case 66: | |
1839 | return tdep->ppc_ctr_regnum; | |
1840 | case 76: | |
1841 | return tdep->ppc_xer_regnum; | |
1842 | case 109: | |
1843 | return tdep->ppc_vrsave_regnum; | |
18ed0c4e JB |
1844 | case 110: |
1845 | return tdep->ppc_vrsave_regnum - 1; /* vscr */ | |
867e2dc5 | 1846 | case 111: |
18ed0c4e | 1847 | return tdep->ppc_acc_regnum; |
867e2dc5 | 1848 | case 112: |
18ed0c4e | 1849 | return tdep->ppc_spefscr_regnum; |
9f744501 JB |
1850 | default: |
1851 | return num; | |
1852 | } | |
18ed0c4e | 1853 | } |
9f744501 | 1854 | |
9f744501 | 1855 | |
18ed0c4e JB |
1856 | /* Convert a Dwarf 2 register number to a GDB register number. */ |
1857 | static int | |
1858 | rs6000_dwarf2_reg_to_regnum (int num) | |
1859 | { | |
1860 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); | |
9f744501 | 1861 | |
18ed0c4e JB |
1862 | if (0 <= num && num <= 31) |
1863 | return tdep->ppc_gp0_regnum + num; | |
1864 | else if (32 <= num && num <= 63) | |
1865 | /* FIXME: jimb/2004-05-05: What should we do when the debug info | |
1866 | specifies registers the architecture doesn't have? Our | |
1867 | callers don't check the value we return. */ | |
1868 | return tdep->ppc_fp0_regnum + (num - 32); | |
1869 | else if (1124 <= num && num < 1124 + 32) | |
1870 | return tdep->ppc_vr0_regnum + (num - 1124); | |
1871 | else if (1200 <= num && num < 1200 + 32) | |
1872 | return tdep->ppc_ev0_regnum + (num - 1200); | |
1873 | else | |
1874 | switch (num) | |
1875 | { | |
1876 | case 67: | |
1877 | return tdep->ppc_vrsave_regnum - 1; /* vscr */ | |
1878 | case 99: | |
1879 | return tdep->ppc_acc_regnum; | |
1880 | case 100: | |
1881 | return tdep->ppc_mq_regnum; | |
1882 | case 101: | |
1883 | return tdep->ppc_xer_regnum; | |
1884 | case 108: | |
1885 | return tdep->ppc_lr_regnum; | |
1886 | case 109: | |
1887 | return tdep->ppc_ctr_regnum; | |
1888 | case 356: | |
1889 | return tdep->ppc_vrsave_regnum; | |
1890 | case 612: | |
1891 | return tdep->ppc_spefscr_regnum; | |
1892 | default: | |
1893 | return num; | |
1894 | } | |
2188cbdd EZ |
1895 | } |
1896 | ||
18ed0c4e | 1897 | |
7a78ae4e | 1898 | static void |
a3c001ce JB |
1899 | rs6000_store_return_value (struct type *type, |
1900 | struct regcache *regcache, | |
1901 | const void *valbuf) | |
7a78ae4e | 1902 | { |
a3c001ce JB |
1903 | struct gdbarch *gdbarch = get_regcache_arch (regcache); |
1904 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
1905 | int regnum = -1; | |
ace1378a | 1906 | |
383f0f5b JB |
1907 | /* The calling convention this function implements assumes the |
1908 | processor has floating-point registers. We shouldn't be using it | |
1909 | on PPC variants that lack them. */ | |
a3c001ce | 1910 | gdb_assert (ppc_floating_point_unit_p (gdbarch)); |
383f0f5b | 1911 | |
7a78ae4e | 1912 | if (TYPE_CODE (type) == TYPE_CODE_FLT) |
7a78ae4e ND |
1913 | /* Floating point values are returned starting from FPR1 and up. |
1914 | Say a double_double_double type could be returned in | |
64366f1c | 1915 | FPR1/FPR2/FPR3 triple. */ |
a3c001ce | 1916 | regnum = tdep->ppc_fp0_regnum + 1; |
ace1378a EZ |
1917 | else if (TYPE_CODE (type) == TYPE_CODE_ARRAY) |
1918 | { | |
1919 | if (TYPE_LENGTH (type) == 16 | |
1920 | && TYPE_VECTOR (type)) | |
a3c001ce JB |
1921 | regnum = tdep->ppc_vr0_regnum + 2; |
1922 | else | |
1923 | gdb_assert (0); | |
ace1378a | 1924 | } |
7a78ae4e | 1925 | else |
64366f1c | 1926 | /* Everything else is returned in GPR3 and up. */ |
a3c001ce JB |
1927 | regnum = tdep->ppc_gp0_regnum + 3; |
1928 | ||
1929 | { | |
1930 | size_t bytes_written = 0; | |
1931 | ||
1932 | while (bytes_written < TYPE_LENGTH (type)) | |
1933 | { | |
1934 | /* How much of this value can we write to this register? */ | |
1935 | size_t bytes_to_write = min (TYPE_LENGTH (type) - bytes_written, | |
1936 | register_size (gdbarch, regnum)); | |
1937 | regcache_cooked_write_part (regcache, regnum, | |
1938 | 0, bytes_to_write, | |
1939 | (char *) valbuf + bytes_written); | |
1940 | regnum++; | |
1941 | bytes_written += bytes_to_write; | |
1942 | } | |
1943 | } | |
7a78ae4e ND |
1944 | } |
1945 | ||
a3c001ce | 1946 | |
7a78ae4e ND |
1947 | /* Extract from an array REGBUF containing the (raw) register state |
1948 | the address in which a function should return its structure value, | |
1949 | as a CORE_ADDR (or an expression that can be used as one). */ | |
1950 | ||
1951 | static CORE_ADDR | |
11269d7e AC |
1952 | rs6000_extract_struct_value_address (struct regcache *regcache) |
1953 | { | |
1954 | /* FIXME: cagney/2002-09-26: PR gdb/724: When making an inferior | |
1955 | function call GDB knows the address of the struct return value | |
1956 | and hence, should not need to call this function. Unfortunately, | |
e8a8712a AC |
1957 | the current call_function_by_hand() code only saves the most |
1958 | recent struct address leading to occasional calls. The code | |
1959 | should instead maintain a stack of such addresses (in the dummy | |
1960 | frame object). */ | |
11269d7e AC |
1961 | /* NOTE: cagney/2002-09-26: Return 0 which indicates that we've |
1962 | really got no idea where the return value is being stored. While | |
1963 | r3, on function entry, contained the address it will have since | |
1964 | been reused (scratch) and hence wouldn't be valid */ | |
1965 | return 0; | |
7a78ae4e ND |
1966 | } |
1967 | ||
64366f1c | 1968 | /* Hook called when a new child process is started. */ |
7a78ae4e ND |
1969 | |
1970 | void | |
1971 | rs6000_create_inferior (int pid) | |
1972 | { | |
1973 | if (rs6000_set_host_arch_hook) | |
1974 | rs6000_set_host_arch_hook (pid); | |
c906108c SS |
1975 | } |
1976 | \f | |
e2d0e7eb | 1977 | /* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG). |
7a78ae4e ND |
1978 | |
1979 | Usually a function pointer's representation is simply the address | |
1980 | of the function. On the RS/6000 however, a function pointer is | |
1981 | represented by a pointer to a TOC entry. This TOC entry contains | |
1982 | three words, the first word is the address of the function, the | |
1983 | second word is the TOC pointer (r2), and the third word is the | |
1984 | static chain value. Throughout GDB it is currently assumed that a | |
1985 | function pointer contains the address of the function, which is not | |
1986 | easy to fix. In addition, the conversion of a function address to | |
1987 | a function pointer would require allocation of a TOC entry in the | |
1988 | inferior's memory space, with all its drawbacks. To be able to | |
1989 | call C++ virtual methods in the inferior (which are called via | |
f517ea4e | 1990 | function pointers), find_function_addr uses this function to get the |
7a78ae4e ND |
1991 | function address from a function pointer. */ |
1992 | ||
f517ea4e PS |
1993 | /* Return real function address if ADDR (a function pointer) is in the data |
1994 | space and is therefore a special function pointer. */ | |
c906108c | 1995 | |
b9362cc7 | 1996 | static CORE_ADDR |
e2d0e7eb AC |
1997 | rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch, |
1998 | CORE_ADDR addr, | |
1999 | struct target_ops *targ) | |
c906108c SS |
2000 | { |
2001 | struct obj_section *s; | |
2002 | ||
2003 | s = find_pc_section (addr); | |
2004 | if (s && s->the_bfd_section->flags & SEC_CODE) | |
7a78ae4e | 2005 | return addr; |
c906108c | 2006 | |
7a78ae4e | 2007 | /* ADDR is in the data space, so it's a special function pointer. */ |
21283beb | 2008 | return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize); |
c906108c | 2009 | } |
c906108c | 2010 | \f |
c5aa993b | 2011 | |
7a78ae4e | 2012 | /* Handling the various POWER/PowerPC variants. */ |
c906108c SS |
2013 | |
2014 | ||
7a78ae4e ND |
2015 | /* The arrays here called registers_MUMBLE hold information about available |
2016 | registers. | |
c906108c SS |
2017 | |
2018 | For each family of PPC variants, I've tried to isolate out the | |
2019 | common registers and put them up front, so that as long as you get | |
2020 | the general family right, GDB will correctly identify the registers | |
2021 | common to that family. The common register sets are: | |
2022 | ||
2023 | For the 60x family: hid0 hid1 iabr dabr pir | |
2024 | ||
2025 | For the 505 and 860 family: eie eid nri | |
2026 | ||
2027 | For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi | |
c5aa993b JM |
2028 | tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1 |
2029 | pbu1 pbl2 pbu2 | |
c906108c SS |
2030 | |
2031 | Most of these register groups aren't anything formal. I arrived at | |
2032 | them by looking at the registers that occurred in more than one | |
6f5987a6 KB |
2033 | processor. |
2034 | ||
2035 | Note: kevinb/2002-04-30: Support for the fpscr register was added | |
2036 | during April, 2002. Slot 70 is being used for PowerPC and slot 71 | |
2037 | for Power. For PowerPC, slot 70 was unused and was already in the | |
2038 | PPC_UISA_SPRS which is ideally where fpscr should go. For Power, | |
2039 | slot 70 was being used for "mq", so the next available slot (71) | |
2040 | was chosen. It would have been nice to be able to make the | |
2041 | register numbers the same across processor cores, but this wasn't | |
2042 | possible without either 1) renumbering some registers for some | |
2043 | processors or 2) assigning fpscr to a really high slot that's | |
2044 | larger than any current register number. Doing (1) is bad because | |
2045 | existing stubs would break. Doing (2) is undesirable because it | |
2046 | would introduce a really large gap between fpscr and the rest of | |
2047 | the registers for most processors. */ | |
7a78ae4e | 2048 | |
64366f1c | 2049 | /* Convenience macros for populating register arrays. */ |
7a78ae4e | 2050 | |
64366f1c | 2051 | /* Within another macro, convert S to a string. */ |
7a78ae4e ND |
2052 | |
2053 | #define STR(s) #s | |
2054 | ||
2055 | /* Return a struct reg defining register NAME that's 32 bits on 32-bit systems | |
64366f1c | 2056 | and 64 bits on 64-bit systems. */ |
489461e2 | 2057 | #define R(name) { STR(name), 4, 8, 0, 0 } |
7a78ae4e ND |
2058 | |
2059 | /* Return a struct reg defining register NAME that's 32 bits on all | |
64366f1c | 2060 | systems. */ |
489461e2 | 2061 | #define R4(name) { STR(name), 4, 4, 0, 0 } |
7a78ae4e ND |
2062 | |
2063 | /* Return a struct reg defining register NAME that's 64 bits on all | |
64366f1c | 2064 | systems. */ |
489461e2 | 2065 | #define R8(name) { STR(name), 8, 8, 0, 0 } |
7a78ae4e | 2066 | |
1fcc0bb8 | 2067 | /* Return a struct reg defining register NAME that's 128 bits on all |
64366f1c | 2068 | systems. */ |
489461e2 | 2069 | #define R16(name) { STR(name), 16, 16, 0, 0 } |
1fcc0bb8 | 2070 | |
64366f1c | 2071 | /* Return a struct reg defining floating-point register NAME. */ |
489461e2 EZ |
2072 | #define F(name) { STR(name), 8, 8, 1, 0 } |
2073 | ||
64366f1c | 2074 | /* Return a struct reg defining a pseudo register NAME. */ |
489461e2 | 2075 | #define P(name) { STR(name), 4, 8, 0, 1} |
7a78ae4e ND |
2076 | |
2077 | /* Return a struct reg defining register NAME that's 32 bits on 32-bit | |
64366f1c | 2078 | systems and that doesn't exist on 64-bit systems. */ |
489461e2 | 2079 | #define R32(name) { STR(name), 4, 0, 0, 0 } |
7a78ae4e ND |
2080 | |
2081 | /* Return a struct reg defining register NAME that's 64 bits on 64-bit | |
64366f1c | 2082 | systems and that doesn't exist on 32-bit systems. */ |
489461e2 | 2083 | #define R64(name) { STR(name), 0, 8, 0, 0 } |
7a78ae4e | 2084 | |
64366f1c | 2085 | /* Return a struct reg placeholder for a register that doesn't exist. */ |
489461e2 | 2086 | #define R0 { 0, 0, 0, 0, 0 } |
7a78ae4e ND |
2087 | |
2088 | /* UISA registers common across all architectures, including POWER. */ | |
2089 | ||
2090 | #define COMMON_UISA_REGS \ | |
2091 | /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \ | |
2092 | /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \ | |
2093 | /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \ | |
2094 | /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \ | |
2095 | /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \ | |
2096 | /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \ | |
2097 | /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \ | |
2098 | /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \ | |
2099 | /* 64 */ R(pc), R(ps) | |
2100 | ||
ebeac11a EZ |
2101 | #define COMMON_UISA_NOFP_REGS \ |
2102 | /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \ | |
2103 | /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \ | |
2104 | /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \ | |
2105 | /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \ | |
2106 | /* 32 */ R0, R0, R0, R0, R0, R0, R0, R0, \ | |
2107 | /* 40 */ R0, R0, R0, R0, R0, R0, R0, R0, \ | |
2108 | /* 48 */ R0, R0, R0, R0, R0, R0, R0, R0, \ | |
2109 | /* 56 */ R0, R0, R0, R0, R0, R0, R0, R0, \ | |
2110 | /* 64 */ R(pc), R(ps) | |
2111 | ||
7a78ae4e ND |
2112 | /* UISA-level SPRs for PowerPC. */ |
2113 | #define PPC_UISA_SPRS \ | |
e3f36dbd | 2114 | /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R4(fpscr) |
7a78ae4e | 2115 | |
c8001721 EZ |
2116 | /* UISA-level SPRs for PowerPC without floating point support. */ |
2117 | #define PPC_UISA_NOFP_SPRS \ | |
2118 | /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R0 | |
2119 | ||
7a78ae4e ND |
2120 | /* Segment registers, for PowerPC. */ |
2121 | #define PPC_SEGMENT_REGS \ | |
2122 | /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \ | |
2123 | /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \ | |
2124 | /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \ | |
2125 | /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15) | |
2126 | ||
2127 | /* OEA SPRs for PowerPC. */ | |
2128 | #define PPC_OEA_SPRS \ | |
2129 | /* 87 */ R4(pvr), \ | |
2130 | /* 88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \ | |
2131 | /* 92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \ | |
2132 | /* 96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \ | |
2133 | /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \ | |
2134 | /* 104 */ R(sdr1), R64(asr), R(dar), R4(dsisr), \ | |
2135 | /* 108 */ R(sprg0), R(sprg1), R(sprg2), R(sprg3), \ | |
2136 | /* 112 */ R(srr0), R(srr1), R(tbl), R(tbu), \ | |
2137 | /* 116 */ R4(dec), R(dabr), R4(ear) | |
2138 | ||
64366f1c | 2139 | /* AltiVec registers. */ |
1fcc0bb8 EZ |
2140 | #define PPC_ALTIVEC_REGS \ |
2141 | /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \ | |
2142 | /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \ | |
2143 | /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \ | |
2144 | /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \ | |
2145 | /*151*/R4(vscr), R4(vrsave) | |
2146 | ||
c8001721 EZ |
2147 | /* Vectors of hi-lo general purpose registers. */ |
2148 | #define PPC_EV_REGS \ | |
2149 | /* 0*/R8(ev0), R8(ev1), R8(ev2), R8(ev3), R8(ev4), R8(ev5), R8(ev6), R8(ev7), \ | |
2150 | /* 8*/R8(ev8), R8(ev9), R8(ev10),R8(ev11),R8(ev12),R8(ev13),R8(ev14),R8(ev15), \ | |
2151 | /*16*/R8(ev16),R8(ev17),R8(ev18),R8(ev19),R8(ev20),R8(ev21),R8(ev22),R8(ev23), \ | |
2152 | /*24*/R8(ev24),R8(ev25),R8(ev26),R8(ev27),R8(ev28),R8(ev29),R8(ev30),R8(ev31) | |
2153 | ||
2154 | /* Lower half of the EV registers. */ | |
2155 | #define PPC_GPRS_PSEUDO_REGS \ | |
2156 | /* 0 */ P(r0), P(r1), P(r2), P(r3), P(r4), P(r5), P(r6), P(r7), \ | |
2157 | /* 8 */ P(r8), P(r9), P(r10),P(r11),P(r12),P(r13),P(r14),P(r15), \ | |
2158 | /* 16 */ P(r16),P(r17),P(r18),P(r19),P(r20),P(r21),P(r22),P(r23), \ | |
338ef23d | 2159 | /* 24 */ P(r24),P(r25),P(r26),P(r27),P(r28),P(r29),P(r30),P(r31) |
c8001721 | 2160 | |
7a78ae4e | 2161 | /* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover |
64366f1c | 2162 | user-level SPR's. */ |
7a78ae4e | 2163 | static const struct reg registers_power[] = |
c906108c | 2164 | { |
7a78ae4e | 2165 | COMMON_UISA_REGS, |
e3f36dbd KB |
2166 | /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq), |
2167 | /* 71 */ R4(fpscr) | |
c906108c SS |
2168 | }; |
2169 | ||
7a78ae4e | 2170 | /* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only |
64366f1c | 2171 | view of the PowerPC. */ |
7a78ae4e | 2172 | static const struct reg registers_powerpc[] = |
c906108c | 2173 | { |
7a78ae4e | 2174 | COMMON_UISA_REGS, |
1fcc0bb8 EZ |
2175 | PPC_UISA_SPRS, |
2176 | PPC_ALTIVEC_REGS | |
c906108c SS |
2177 | }; |
2178 | ||
ebeac11a EZ |
2179 | /* PowerPC UISA - a PPC processor as viewed by user-level |
2180 | code, but without floating point registers. */ | |
2181 | static const struct reg registers_powerpc_nofp[] = | |
2182 | { | |
2183 | COMMON_UISA_NOFP_REGS, | |
2184 | PPC_UISA_SPRS | |
2185 | }; | |
2186 | ||
64366f1c | 2187 | /* IBM PowerPC 403. */ |
7a78ae4e | 2188 | static const struct reg registers_403[] = |
c5aa993b | 2189 | { |
7a78ae4e ND |
2190 | COMMON_UISA_REGS, |
2191 | PPC_UISA_SPRS, | |
2192 | PPC_SEGMENT_REGS, | |
2193 | PPC_OEA_SPRS, | |
2194 | /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr), | |
2195 | /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit), | |
2196 | /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3), | |
2197 | /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2), | |
2198 | /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr), | |
2199 | /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2) | |
c906108c SS |
2200 | }; |
2201 | ||
64366f1c | 2202 | /* IBM PowerPC 403GC. */ |
7a78ae4e | 2203 | static const struct reg registers_403GC[] = |
c5aa993b | 2204 | { |
7a78ae4e ND |
2205 | COMMON_UISA_REGS, |
2206 | PPC_UISA_SPRS, | |
2207 | PPC_SEGMENT_REGS, | |
2208 | PPC_OEA_SPRS, | |
2209 | /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr), | |
2210 | /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit), | |
2211 | /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3), | |
2212 | /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2), | |
2213 | /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr), | |
2214 | /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2), | |
2215 | /* 143 */ R(zpr), R(pid), R(sgr), R(dcwr), | |
2216 | /* 147 */ R(tbhu), R(tblu) | |
c906108c SS |
2217 | }; |
2218 | ||
64366f1c | 2219 | /* Motorola PowerPC 505. */ |
7a78ae4e | 2220 | static const struct reg registers_505[] = |
c5aa993b | 2221 | { |
7a78ae4e ND |
2222 | COMMON_UISA_REGS, |
2223 | PPC_UISA_SPRS, | |
2224 | PPC_SEGMENT_REGS, | |
2225 | PPC_OEA_SPRS, | |
2226 | /* 119 */ R(eie), R(eid), R(nri) | |
c906108c SS |
2227 | }; |
2228 | ||
64366f1c | 2229 | /* Motorola PowerPC 860 or 850. */ |
7a78ae4e | 2230 | static const struct reg registers_860[] = |
c5aa993b | 2231 | { |
7a78ae4e ND |
2232 | COMMON_UISA_REGS, |
2233 | PPC_UISA_SPRS, | |
2234 | PPC_SEGMENT_REGS, | |
2235 | PPC_OEA_SPRS, | |
2236 | /* 119 */ R(eie), R(eid), R(nri), R(cmpa), | |
2237 | /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr), | |
2238 | /* 127 */ R(der), R(counta), R(countb), R(cmpe), | |
2239 | /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1), | |
2240 | /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst), | |
2241 | /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr), | |
2242 | /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr), | |
2243 | /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc), | |
2244 | /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap), | |
2245 | /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn), | |
2246 | /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1), | |
2247 | /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1) | |
c906108c SS |
2248 | }; |
2249 | ||
7a78ae4e ND |
2250 | /* Motorola PowerPC 601. Note that the 601 has different register numbers |
2251 | for reading and writing RTCU and RTCL. However, how one reads and writes a | |
c906108c | 2252 | register is the stub's problem. */ |
7a78ae4e | 2253 | static const struct reg registers_601[] = |
c5aa993b | 2254 | { |
7a78ae4e ND |
2255 | COMMON_UISA_REGS, |
2256 | PPC_UISA_SPRS, | |
2257 | PPC_SEGMENT_REGS, | |
2258 | PPC_OEA_SPRS, | |
2259 | /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr), | |
2260 | /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl) | |
c906108c SS |
2261 | }; |
2262 | ||
64366f1c | 2263 | /* Motorola PowerPC 602. */ |
7a78ae4e | 2264 | static const struct reg registers_602[] = |
c5aa993b | 2265 | { |
7a78ae4e ND |
2266 | COMMON_UISA_REGS, |
2267 | PPC_UISA_SPRS, | |
2268 | PPC_SEGMENT_REGS, | |
2269 | PPC_OEA_SPRS, | |
2270 | /* 119 */ R(hid0), R(hid1), R(iabr), R0, | |
2271 | /* 123 */ R0, R(tcr), R(ibr), R(esassr), | |
2272 | /* 127 */ R(sebr), R(ser), R(sp), R(lt) | |
c906108c SS |
2273 | }; |
2274 | ||
64366f1c | 2275 | /* Motorola/IBM PowerPC 603 or 603e. */ |
7a78ae4e | 2276 | static const struct reg registers_603[] = |
c5aa993b | 2277 | { |
7a78ae4e ND |
2278 | COMMON_UISA_REGS, |
2279 | PPC_UISA_SPRS, | |
2280 | PPC_SEGMENT_REGS, | |
2281 | PPC_OEA_SPRS, | |
2282 | /* 119 */ R(hid0), R(hid1), R(iabr), R0, | |
2283 | /* 123 */ R0, R(dmiss), R(dcmp), R(hash1), | |
2284 | /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa) | |
c906108c SS |
2285 | }; |
2286 | ||
64366f1c | 2287 | /* Motorola PowerPC 604 or 604e. */ |
7a78ae4e | 2288 | static const struct reg registers_604[] = |
c5aa993b | 2289 | { |
7a78ae4e ND |
2290 | COMMON_UISA_REGS, |
2291 | PPC_UISA_SPRS, | |
2292 | PPC_SEGMENT_REGS, | |
2293 | PPC_OEA_SPRS, | |
2294 | /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr), | |
2295 | /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2), | |
2296 | /* 127 */ R(sia), R(sda) | |
c906108c SS |
2297 | }; |
2298 | ||
64366f1c | 2299 | /* Motorola/IBM PowerPC 750 or 740. */ |
7a78ae4e | 2300 | static const struct reg registers_750[] = |
c5aa993b | 2301 | { |
7a78ae4e ND |
2302 | COMMON_UISA_REGS, |
2303 | PPC_UISA_SPRS, | |
2304 | PPC_SEGMENT_REGS, | |
2305 | PPC_OEA_SPRS, | |
2306 | /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr), | |
2307 | /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2), | |
2308 | /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4), | |
2309 | /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia), | |
2310 | /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr), | |
2311 | /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3) | |
c906108c SS |
2312 | }; |
2313 | ||
2314 | ||
64366f1c | 2315 | /* Motorola PowerPC 7400. */ |
1fcc0bb8 EZ |
2316 | static const struct reg registers_7400[] = |
2317 | { | |
2318 | /* gpr0-gpr31, fpr0-fpr31 */ | |
2319 | COMMON_UISA_REGS, | |
13c7b1ca | 2320 | /* cr, lr, ctr, xer, fpscr */ |
1fcc0bb8 EZ |
2321 | PPC_UISA_SPRS, |
2322 | /* sr0-sr15 */ | |
2323 | PPC_SEGMENT_REGS, | |
2324 | PPC_OEA_SPRS, | |
2325 | /* vr0-vr31, vrsave, vscr */ | |
2326 | PPC_ALTIVEC_REGS | |
2327 | /* FIXME? Add more registers? */ | |
2328 | }; | |
2329 | ||
c8001721 EZ |
2330 | /* Motorola e500. */ |
2331 | static const struct reg registers_e500[] = | |
2332 | { | |
2333 | R(pc), R(ps), | |
2334 | /* cr, lr, ctr, xer, "" */ | |
2335 | PPC_UISA_NOFP_SPRS, | |
2336 | /* 7...38 */ | |
2337 | PPC_EV_REGS, | |
338ef23d AC |
2338 | R8(acc), R(spefscr), |
2339 | /* NOTE: Add new registers here the end of the raw register | |
2340 | list and just before the first pseudo register. */ | |
13c7b1ca | 2341 | /* 41...72 */ |
c8001721 EZ |
2342 | PPC_GPRS_PSEUDO_REGS |
2343 | }; | |
2344 | ||
c906108c | 2345 | /* Information about a particular processor variant. */ |
7a78ae4e | 2346 | |
c906108c | 2347 | struct variant |
c5aa993b JM |
2348 | { |
2349 | /* Name of this variant. */ | |
2350 | char *name; | |
c906108c | 2351 | |
c5aa993b JM |
2352 | /* English description of the variant. */ |
2353 | char *description; | |
c906108c | 2354 | |
64366f1c | 2355 | /* bfd_arch_info.arch corresponding to variant. */ |
7a78ae4e ND |
2356 | enum bfd_architecture arch; |
2357 | ||
64366f1c | 2358 | /* bfd_arch_info.mach corresponding to variant. */ |
7a78ae4e ND |
2359 | unsigned long mach; |
2360 | ||
489461e2 EZ |
2361 | /* Number of real registers. */ |
2362 | int nregs; | |
2363 | ||
2364 | /* Number of pseudo registers. */ | |
2365 | int npregs; | |
2366 | ||
2367 | /* Number of total registers (the sum of nregs and npregs). */ | |
2368 | int num_tot_regs; | |
2369 | ||
c5aa993b JM |
2370 | /* Table of register names; registers[R] is the name of the register |
2371 | number R. */ | |
7a78ae4e | 2372 | const struct reg *regs; |
c5aa993b | 2373 | }; |
c906108c | 2374 | |
489461e2 EZ |
2375 | #define tot_num_registers(list) (sizeof (list) / sizeof((list)[0])) |
2376 | ||
2377 | static int | |
2378 | num_registers (const struct reg *reg_list, int num_tot_regs) | |
2379 | { | |
2380 | int i; | |
2381 | int nregs = 0; | |
2382 | ||
2383 | for (i = 0; i < num_tot_regs; i++) | |
2384 | if (!reg_list[i].pseudo) | |
2385 | nregs++; | |
2386 | ||
2387 | return nregs; | |
2388 | } | |
2389 | ||
2390 | static int | |
2391 | num_pseudo_registers (const struct reg *reg_list, int num_tot_regs) | |
2392 | { | |
2393 | int i; | |
2394 | int npregs = 0; | |
2395 | ||
2396 | for (i = 0; i < num_tot_regs; i++) | |
2397 | if (reg_list[i].pseudo) | |
2398 | npregs ++; | |
2399 | ||
2400 | return npregs; | |
2401 | } | |
c906108c | 2402 | |
c906108c SS |
2403 | /* Information in this table comes from the following web sites: |
2404 | IBM: http://www.chips.ibm.com:80/products/embedded/ | |
2405 | Motorola: http://www.mot.com/SPS/PowerPC/ | |
2406 | ||
2407 | I'm sure I've got some of the variant descriptions not quite right. | |
2408 | Please report any inaccuracies you find to GDB's maintainer. | |
2409 | ||
2410 | If you add entries to this table, please be sure to allow the new | |
2411 | value as an argument to the --with-cpu flag, in configure.in. */ | |
2412 | ||
489461e2 | 2413 | static struct variant variants[] = |
c906108c | 2414 | { |
489461e2 | 2415 | |
7a78ae4e | 2416 | {"powerpc", "PowerPC user-level", bfd_arch_powerpc, |
489461e2 EZ |
2417 | bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc), |
2418 | registers_powerpc}, | |
7a78ae4e | 2419 | {"power", "POWER user-level", bfd_arch_rs6000, |
489461e2 EZ |
2420 | bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power), |
2421 | registers_power}, | |
7a78ae4e | 2422 | {"403", "IBM PowerPC 403", bfd_arch_powerpc, |
489461e2 EZ |
2423 | bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403), |
2424 | registers_403}, | |
7a78ae4e | 2425 | {"601", "Motorola PowerPC 601", bfd_arch_powerpc, |
489461e2 EZ |
2426 | bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601), |
2427 | registers_601}, | |
7a78ae4e | 2428 | {"602", "Motorola PowerPC 602", bfd_arch_powerpc, |
489461e2 EZ |
2429 | bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602), |
2430 | registers_602}, | |
7a78ae4e | 2431 | {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc, |
489461e2 EZ |
2432 | bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603), |
2433 | registers_603}, | |
7a78ae4e | 2434 | {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc, |
489461e2 EZ |
2435 | 604, -1, -1, tot_num_registers (registers_604), |
2436 | registers_604}, | |
7a78ae4e | 2437 | {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc, |
489461e2 EZ |
2438 | bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC), |
2439 | registers_403GC}, | |
7a78ae4e | 2440 | {"505", "Motorola PowerPC 505", bfd_arch_powerpc, |
489461e2 EZ |
2441 | bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505), |
2442 | registers_505}, | |
7a78ae4e | 2443 | {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc, |
489461e2 EZ |
2444 | bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860), |
2445 | registers_860}, | |
7a78ae4e | 2446 | {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc, |
489461e2 EZ |
2447 | bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750), |
2448 | registers_750}, | |
1fcc0bb8 | 2449 | {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc, |
489461e2 EZ |
2450 | bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400), |
2451 | registers_7400}, | |
c8001721 EZ |
2452 | {"e500", "Motorola PowerPC e500", bfd_arch_powerpc, |
2453 | bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500), | |
2454 | registers_e500}, | |
7a78ae4e | 2455 | |
5d57ee30 KB |
2456 | /* 64-bit */ |
2457 | {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc, | |
489461e2 EZ |
2458 | bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc), |
2459 | registers_powerpc}, | |
7a78ae4e | 2460 | {"620", "Motorola PowerPC 620", bfd_arch_powerpc, |
489461e2 EZ |
2461 | bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc), |
2462 | registers_powerpc}, | |
5d57ee30 | 2463 | {"630", "Motorola PowerPC 630", bfd_arch_powerpc, |
489461e2 EZ |
2464 | bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc), |
2465 | registers_powerpc}, | |
7a78ae4e | 2466 | {"a35", "PowerPC A35", bfd_arch_powerpc, |
489461e2 EZ |
2467 | bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc), |
2468 | registers_powerpc}, | |
5d57ee30 | 2469 | {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc, |
489461e2 EZ |
2470 | bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc), |
2471 | registers_powerpc}, | |
5d57ee30 | 2472 | {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc, |
489461e2 EZ |
2473 | bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc), |
2474 | registers_powerpc}, | |
5d57ee30 | 2475 | |
64366f1c | 2476 | /* FIXME: I haven't checked the register sets of the following. */ |
7a78ae4e | 2477 | {"rs1", "IBM POWER RS1", bfd_arch_rs6000, |
489461e2 EZ |
2478 | bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power), |
2479 | registers_power}, | |
7a78ae4e | 2480 | {"rsc", "IBM POWER RSC", bfd_arch_rs6000, |
489461e2 EZ |
2481 | bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power), |
2482 | registers_power}, | |
7a78ae4e | 2483 | {"rs2", "IBM POWER RS2", bfd_arch_rs6000, |
489461e2 EZ |
2484 | bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power), |
2485 | registers_power}, | |
7a78ae4e | 2486 | |
489461e2 | 2487 | {0, 0, 0, 0, 0, 0, 0, 0} |
c906108c SS |
2488 | }; |
2489 | ||
64366f1c | 2490 | /* Initialize the number of registers and pseudo registers in each variant. */ |
489461e2 EZ |
2491 | |
2492 | static void | |
2493 | init_variants (void) | |
2494 | { | |
2495 | struct variant *v; | |
2496 | ||
2497 | for (v = variants; v->name; v++) | |
2498 | { | |
2499 | if (v->nregs == -1) | |
2500 | v->nregs = num_registers (v->regs, v->num_tot_regs); | |
2501 | if (v->npregs == -1) | |
2502 | v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs); | |
2503 | } | |
2504 | } | |
c906108c | 2505 | |
7a78ae4e | 2506 | /* Return the variant corresponding to architecture ARCH and machine number |
64366f1c | 2507 | MACH. If no such variant exists, return null. */ |
c906108c | 2508 | |
7a78ae4e ND |
2509 | static const struct variant * |
2510 | find_variant_by_arch (enum bfd_architecture arch, unsigned long mach) | |
c906108c | 2511 | { |
7a78ae4e | 2512 | const struct variant *v; |
c5aa993b | 2513 | |
7a78ae4e ND |
2514 | for (v = variants; v->name; v++) |
2515 | if (arch == v->arch && mach == v->mach) | |
2516 | return v; | |
c906108c | 2517 | |
7a78ae4e | 2518 | return NULL; |
c906108c | 2519 | } |
9364a0ef EZ |
2520 | |
2521 | static int | |
2522 | gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info) | |
2523 | { | |
2524 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) | |
2525 | return print_insn_big_powerpc (memaddr, info); | |
2526 | else | |
2527 | return print_insn_little_powerpc (memaddr, info); | |
2528 | } | |
7a78ae4e | 2529 | \f |
61a65099 KB |
2530 | static CORE_ADDR |
2531 | rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
2532 | { | |
2533 | return frame_unwind_register_unsigned (next_frame, PC_REGNUM); | |
2534 | } | |
2535 | ||
2536 | static struct frame_id | |
2537 | rs6000_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
2538 | { | |
2539 | return frame_id_build (frame_unwind_register_unsigned (next_frame, | |
2540 | SP_REGNUM), | |
2541 | frame_pc_unwind (next_frame)); | |
2542 | } | |
2543 | ||
2544 | struct rs6000_frame_cache | |
2545 | { | |
2546 | CORE_ADDR base; | |
2547 | CORE_ADDR initial_sp; | |
2548 | struct trad_frame_saved_reg *saved_regs; | |
2549 | }; | |
2550 | ||
2551 | static struct rs6000_frame_cache * | |
2552 | rs6000_frame_cache (struct frame_info *next_frame, void **this_cache) | |
2553 | { | |
2554 | struct rs6000_frame_cache *cache; | |
2555 | struct gdbarch *gdbarch = get_frame_arch (next_frame); | |
2556 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
2557 | struct rs6000_framedata fdata; | |
2558 | int wordsize = tdep->wordsize; | |
2559 | ||
2560 | if ((*this_cache) != NULL) | |
2561 | return (*this_cache); | |
2562 | cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache); | |
2563 | (*this_cache) = cache; | |
2564 | cache->saved_regs = trad_frame_alloc_saved_regs (next_frame); | |
2565 | ||
2566 | skip_prologue (frame_func_unwind (next_frame), frame_pc_unwind (next_frame), | |
2567 | &fdata); | |
2568 | ||
2569 | /* If there were any saved registers, figure out parent's stack | |
2570 | pointer. */ | |
2571 | /* The following is true only if the frame doesn't have a call to | |
2572 | alloca(), FIXME. */ | |
2573 | ||
2574 | if (fdata.saved_fpr == 0 | |
2575 | && fdata.saved_gpr == 0 | |
2576 | && fdata.saved_vr == 0 | |
2577 | && fdata.saved_ev == 0 | |
2578 | && fdata.lr_offset == 0 | |
2579 | && fdata.cr_offset == 0 | |
2580 | && fdata.vr_offset == 0 | |
2581 | && fdata.ev_offset == 0) | |
2582 | cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM); | |
2583 | else | |
2584 | { | |
2585 | /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most | |
2586 | address of the current frame. Things might be easier if the | |
2587 | ->frame pointed to the outer-most address of the frame. In | |
2588 | the mean time, the address of the prev frame is used as the | |
2589 | base address of this frame. */ | |
2590 | cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM); | |
2591 | if (!fdata.frameless) | |
2592 | /* Frameless really means stackless. */ | |
2593 | cache->base = read_memory_addr (cache->base, wordsize); | |
2594 | } | |
2595 | trad_frame_set_value (cache->saved_regs, SP_REGNUM, cache->base); | |
2596 | ||
2597 | /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr. | |
2598 | All fpr's from saved_fpr to fp31 are saved. */ | |
2599 | ||
2600 | if (fdata.saved_fpr >= 0) | |
2601 | { | |
2602 | int i; | |
2603 | CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset; | |
383f0f5b JB |
2604 | |
2605 | /* If skip_prologue says floating-point registers were saved, | |
2606 | but the current architecture has no floating-point registers, | |
2607 | then that's strange. But we have no indices to even record | |
2608 | the addresses under, so we just ignore it. */ | |
2609 | if (ppc_floating_point_unit_p (gdbarch)) | |
063715bf | 2610 | for (i = fdata.saved_fpr; i < ppc_num_fprs; i++) |
383f0f5b JB |
2611 | { |
2612 | cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr; | |
2613 | fpr_addr += 8; | |
2614 | } | |
61a65099 KB |
2615 | } |
2616 | ||
2617 | /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr. | |
2618 | All gpr's from saved_gpr to gpr31 are saved. */ | |
2619 | ||
2620 | if (fdata.saved_gpr >= 0) | |
2621 | { | |
2622 | int i; | |
2623 | CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset; | |
063715bf | 2624 | for (i = fdata.saved_gpr; i < ppc_num_gprs; i++) |
61a65099 KB |
2625 | { |
2626 | cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr; | |
2627 | gpr_addr += wordsize; | |
2628 | } | |
2629 | } | |
2630 | ||
2631 | /* if != -1, fdata.saved_vr is the smallest number of saved_vr. | |
2632 | All vr's from saved_vr to vr31 are saved. */ | |
2633 | if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1) | |
2634 | { | |
2635 | if (fdata.saved_vr >= 0) | |
2636 | { | |
2637 | int i; | |
2638 | CORE_ADDR vr_addr = cache->base + fdata.vr_offset; | |
2639 | for (i = fdata.saved_vr; i < 32; i++) | |
2640 | { | |
2641 | cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr; | |
2642 | vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum); | |
2643 | } | |
2644 | } | |
2645 | } | |
2646 | ||
2647 | /* if != -1, fdata.saved_ev is the smallest number of saved_ev. | |
2648 | All vr's from saved_ev to ev31 are saved. ????? */ | |
2649 | if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1) | |
2650 | { | |
2651 | if (fdata.saved_ev >= 0) | |
2652 | { | |
2653 | int i; | |
2654 | CORE_ADDR ev_addr = cache->base + fdata.ev_offset; | |
063715bf | 2655 | for (i = fdata.saved_ev; i < ppc_num_gprs; i++) |
61a65099 KB |
2656 | { |
2657 | cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr; | |
2658 | cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + 4; | |
2659 | ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum); | |
2660 | } | |
2661 | } | |
2662 | } | |
2663 | ||
2664 | /* If != 0, fdata.cr_offset is the offset from the frame that | |
2665 | holds the CR. */ | |
2666 | if (fdata.cr_offset != 0) | |
2667 | cache->saved_regs[tdep->ppc_cr_regnum].addr = cache->base + fdata.cr_offset; | |
2668 | ||
2669 | /* If != 0, fdata.lr_offset is the offset from the frame that | |
2670 | holds the LR. */ | |
2671 | if (fdata.lr_offset != 0) | |
2672 | cache->saved_regs[tdep->ppc_lr_regnum].addr = cache->base + fdata.lr_offset; | |
2673 | /* The PC is found in the link register. */ | |
2674 | cache->saved_regs[PC_REGNUM] = cache->saved_regs[tdep->ppc_lr_regnum]; | |
2675 | ||
2676 | /* If != 0, fdata.vrsave_offset is the offset from the frame that | |
2677 | holds the VRSAVE. */ | |
2678 | if (fdata.vrsave_offset != 0) | |
2679 | cache->saved_regs[tdep->ppc_vrsave_regnum].addr = cache->base + fdata.vrsave_offset; | |
2680 | ||
2681 | if (fdata.alloca_reg < 0) | |
2682 | /* If no alloca register used, then fi->frame is the value of the | |
2683 | %sp for this frame, and it is good enough. */ | |
2684 | cache->initial_sp = frame_unwind_register_unsigned (next_frame, SP_REGNUM); | |
2685 | else | |
2686 | cache->initial_sp = frame_unwind_register_unsigned (next_frame, | |
2687 | fdata.alloca_reg); | |
2688 | ||
2689 | return cache; | |
2690 | } | |
2691 | ||
2692 | static void | |
2693 | rs6000_frame_this_id (struct frame_info *next_frame, void **this_cache, | |
2694 | struct frame_id *this_id) | |
2695 | { | |
2696 | struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame, | |
2697 | this_cache); | |
2698 | (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame)); | |
2699 | } | |
2700 | ||
2701 | static void | |
2702 | rs6000_frame_prev_register (struct frame_info *next_frame, | |
2703 | void **this_cache, | |
2704 | int regnum, int *optimizedp, | |
2705 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
2706 | int *realnump, void *valuep) | |
2707 | { | |
2708 | struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame, | |
2709 | this_cache); | |
2710 | trad_frame_prev_register (next_frame, info->saved_regs, regnum, | |
2711 | optimizedp, lvalp, addrp, realnump, valuep); | |
2712 | } | |
2713 | ||
2714 | static const struct frame_unwind rs6000_frame_unwind = | |
2715 | { | |
2716 | NORMAL_FRAME, | |
2717 | rs6000_frame_this_id, | |
2718 | rs6000_frame_prev_register | |
2719 | }; | |
2720 | ||
2721 | static const struct frame_unwind * | |
2722 | rs6000_frame_sniffer (struct frame_info *next_frame) | |
2723 | { | |
2724 | return &rs6000_frame_unwind; | |
2725 | } | |
2726 | ||
2727 | \f | |
2728 | ||
2729 | static CORE_ADDR | |
2730 | rs6000_frame_base_address (struct frame_info *next_frame, | |
2731 | void **this_cache) | |
2732 | { | |
2733 | struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame, | |
2734 | this_cache); | |
2735 | return info->initial_sp; | |
2736 | } | |
2737 | ||
2738 | static const struct frame_base rs6000_frame_base = { | |
2739 | &rs6000_frame_unwind, | |
2740 | rs6000_frame_base_address, | |
2741 | rs6000_frame_base_address, | |
2742 | rs6000_frame_base_address | |
2743 | }; | |
2744 | ||
2745 | static const struct frame_base * | |
2746 | rs6000_frame_base_sniffer (struct frame_info *next_frame) | |
2747 | { | |
2748 | return &rs6000_frame_base; | |
2749 | } | |
2750 | ||
7a78ae4e ND |
2751 | /* Initialize the current architecture based on INFO. If possible, re-use an |
2752 | architecture from ARCHES, which is a list of architectures already created | |
2753 | during this debugging session. | |
c906108c | 2754 | |
7a78ae4e | 2755 | Called e.g. at program startup, when reading a core file, and when reading |
64366f1c | 2756 | a binary file. */ |
c906108c | 2757 | |
7a78ae4e ND |
2758 | static struct gdbarch * |
2759 | rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
2760 | { | |
2761 | struct gdbarch *gdbarch; | |
2762 | struct gdbarch_tdep *tdep; | |
9aa1e687 | 2763 | int wordsize, from_xcoff_exec, from_elf_exec, power, i, off; |
7a78ae4e ND |
2764 | struct reg *regs; |
2765 | const struct variant *v; | |
2766 | enum bfd_architecture arch; | |
2767 | unsigned long mach; | |
2768 | bfd abfd; | |
7b112f9c | 2769 | int sysv_abi; |
5bf1c677 | 2770 | asection *sect; |
7a78ae4e | 2771 | |
9aa1e687 | 2772 | from_xcoff_exec = info.abfd && info.abfd->format == bfd_object && |
7a78ae4e ND |
2773 | bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour; |
2774 | ||
9aa1e687 KB |
2775 | from_elf_exec = info.abfd && info.abfd->format == bfd_object && |
2776 | bfd_get_flavour (info.abfd) == bfd_target_elf_flavour; | |
2777 | ||
2778 | sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour; | |
2779 | ||
e712c1cf | 2780 | /* Check word size. If INFO is from a binary file, infer it from |
64366f1c | 2781 | that, else choose a likely default. */ |
9aa1e687 | 2782 | if (from_xcoff_exec) |
c906108c | 2783 | { |
11ed25ac | 2784 | if (bfd_xcoff_is_xcoff64 (info.abfd)) |
7a78ae4e ND |
2785 | wordsize = 8; |
2786 | else | |
2787 | wordsize = 4; | |
c906108c | 2788 | } |
9aa1e687 KB |
2789 | else if (from_elf_exec) |
2790 | { | |
2791 | if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64) | |
2792 | wordsize = 8; | |
2793 | else | |
2794 | wordsize = 4; | |
2795 | } | |
c906108c | 2796 | else |
7a78ae4e | 2797 | { |
27b15785 KB |
2798 | if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0) |
2799 | wordsize = info.bfd_arch_info->bits_per_word / | |
2800 | info.bfd_arch_info->bits_per_byte; | |
2801 | else | |
2802 | wordsize = 4; | |
7a78ae4e | 2803 | } |
c906108c | 2804 | |
64366f1c | 2805 | /* Find a candidate among extant architectures. */ |
7a78ae4e ND |
2806 | for (arches = gdbarch_list_lookup_by_info (arches, &info); |
2807 | arches != NULL; | |
2808 | arches = gdbarch_list_lookup_by_info (arches->next, &info)) | |
2809 | { | |
2810 | /* Word size in the various PowerPC bfd_arch_info structs isn't | |
2811 | meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform | |
64366f1c | 2812 | separate word size check. */ |
7a78ae4e | 2813 | tdep = gdbarch_tdep (arches->gdbarch); |
4be87837 | 2814 | if (tdep && tdep->wordsize == wordsize) |
7a78ae4e ND |
2815 | return arches->gdbarch; |
2816 | } | |
c906108c | 2817 | |
7a78ae4e ND |
2818 | /* None found, create a new architecture from INFO, whose bfd_arch_info |
2819 | validity depends on the source: | |
2820 | - executable useless | |
2821 | - rs6000_host_arch() good | |
2822 | - core file good | |
2823 | - "set arch" trust blindly | |
2824 | - GDB startup useless but harmless */ | |
c906108c | 2825 | |
9aa1e687 | 2826 | if (!from_xcoff_exec) |
c906108c | 2827 | { |
b732d07d | 2828 | arch = info.bfd_arch_info->arch; |
7a78ae4e | 2829 | mach = info.bfd_arch_info->mach; |
c906108c | 2830 | } |
7a78ae4e | 2831 | else |
c906108c | 2832 | { |
7a78ae4e | 2833 | arch = bfd_arch_powerpc; |
35cec841 | 2834 | bfd_default_set_arch_mach (&abfd, arch, 0); |
7a78ae4e | 2835 | info.bfd_arch_info = bfd_get_arch_info (&abfd); |
35cec841 | 2836 | mach = info.bfd_arch_info->mach; |
7a78ae4e ND |
2837 | } |
2838 | tdep = xmalloc (sizeof (struct gdbarch_tdep)); | |
2839 | tdep->wordsize = wordsize; | |
5bf1c677 EZ |
2840 | |
2841 | /* For e500 executables, the apuinfo section is of help here. Such | |
2842 | section contains the identifier and revision number of each | |
2843 | Application-specific Processing Unit that is present on the | |
2844 | chip. The content of the section is determined by the assembler | |
2845 | which looks at each instruction and determines which unit (and | |
2846 | which version of it) can execute it. In our case we just look for | |
2847 | the existance of the section. */ | |
2848 | ||
2849 | if (info.abfd) | |
2850 | { | |
2851 | sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo"); | |
2852 | if (sect) | |
2853 | { | |
2854 | arch = info.bfd_arch_info->arch; | |
2855 | mach = bfd_mach_ppc_e500; | |
2856 | bfd_default_set_arch_mach (&abfd, arch, mach); | |
2857 | info.bfd_arch_info = bfd_get_arch_info (&abfd); | |
2858 | } | |
2859 | } | |
2860 | ||
7a78ae4e ND |
2861 | gdbarch = gdbarch_alloc (&info, tdep); |
2862 | power = arch == bfd_arch_rs6000; | |
2863 | ||
489461e2 EZ |
2864 | /* Initialize the number of real and pseudo registers in each variant. */ |
2865 | init_variants (); | |
2866 | ||
64366f1c | 2867 | /* Choose variant. */ |
7a78ae4e ND |
2868 | v = find_variant_by_arch (arch, mach); |
2869 | if (!v) | |
dd47e6fd EZ |
2870 | return NULL; |
2871 | ||
7a78ae4e ND |
2872 | tdep->regs = v->regs; |
2873 | ||
2188cbdd | 2874 | tdep->ppc_gp0_regnum = 0; |
01904826 | 2875 | tdep->ppc_gprs_pseudo_p = 0; |
2188cbdd EZ |
2876 | tdep->ppc_toc_regnum = 2; |
2877 | tdep->ppc_ps_regnum = 65; | |
2878 | tdep->ppc_cr_regnum = 66; | |
2879 | tdep->ppc_lr_regnum = 67; | |
2880 | tdep->ppc_ctr_regnum = 68; | |
2881 | tdep->ppc_xer_regnum = 69; | |
2882 | if (v->mach == bfd_mach_ppc_601) | |
2883 | tdep->ppc_mq_regnum = 124; | |
e3f36dbd | 2884 | else if (power) |
2188cbdd | 2885 | tdep->ppc_mq_regnum = 70; |
e3f36dbd KB |
2886 | else |
2887 | tdep->ppc_mq_regnum = -1; | |
366f009f | 2888 | tdep->ppc_fp0_regnum = 32; |
e3f36dbd | 2889 | tdep->ppc_fpscr_regnum = power ? 71 : 70; |
baffbae0 JB |
2890 | tdep->ppc_vr0_regnum = -1; |
2891 | tdep->ppc_vrsave_regnum = -1; | |
2892 | tdep->ppc_ev0_regnum = -1; | |
2893 | tdep->ppc_ev31_regnum = -1; | |
867e2dc5 JB |
2894 | tdep->ppc_acc_regnum = -1; |
2895 | tdep->ppc_spefscr_regnum = -1; | |
2188cbdd | 2896 | |
c8001721 EZ |
2897 | set_gdbarch_pc_regnum (gdbarch, 64); |
2898 | set_gdbarch_sp_regnum (gdbarch, 1); | |
0ba6dca9 | 2899 | set_gdbarch_deprecated_fp_regnum (gdbarch, 1); |
afd48b75 | 2900 | if (sysv_abi && wordsize == 8) |
05580c65 | 2901 | set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value); |
e754ae69 | 2902 | else if (sysv_abi && wordsize == 4) |
05580c65 | 2903 | set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value); |
afd48b75 AC |
2904 | else |
2905 | { | |
2906 | set_gdbarch_deprecated_extract_return_value (gdbarch, rs6000_extract_return_value); | |
a3c001ce | 2907 | set_gdbarch_store_return_value (gdbarch, rs6000_store_return_value); |
afd48b75 | 2908 | } |
c8001721 | 2909 | |
baffbae0 JB |
2910 | /* Set lr_frame_offset. */ |
2911 | if (wordsize == 8) | |
2912 | tdep->lr_frame_offset = 16; | |
2913 | else if (sysv_abi) | |
2914 | tdep->lr_frame_offset = 4; | |
2915 | else | |
2916 | tdep->lr_frame_offset = 8; | |
2917 | ||
1fcc0bb8 EZ |
2918 | if (v->arch == bfd_arch_powerpc) |
2919 | switch (v->mach) | |
2920 | { | |
2921 | case bfd_mach_ppc: | |
2922 | tdep->ppc_vr0_regnum = 71; | |
2923 | tdep->ppc_vrsave_regnum = 104; | |
2924 | break; | |
2925 | case bfd_mach_ppc_7400: | |
2926 | tdep->ppc_vr0_regnum = 119; | |
54c2a1e6 | 2927 | tdep->ppc_vrsave_regnum = 152; |
c8001721 EZ |
2928 | break; |
2929 | case bfd_mach_ppc_e500: | |
338ef23d | 2930 | tdep->ppc_gp0_regnum = 41; |
01904826 | 2931 | tdep->ppc_gprs_pseudo_p = 1; |
c8001721 EZ |
2932 | tdep->ppc_toc_regnum = -1; |
2933 | tdep->ppc_ps_regnum = 1; | |
2934 | tdep->ppc_cr_regnum = 2; | |
2935 | tdep->ppc_lr_regnum = 3; | |
2936 | tdep->ppc_ctr_regnum = 4; | |
2937 | tdep->ppc_xer_regnum = 5; | |
2938 | tdep->ppc_ev0_regnum = 7; | |
2939 | tdep->ppc_ev31_regnum = 38; | |
383f0f5b JB |
2940 | tdep->ppc_fp0_regnum = -1; |
2941 | tdep->ppc_fpscr_regnum = -1; | |
867e2dc5 JB |
2942 | tdep->ppc_acc_regnum = 39; |
2943 | tdep->ppc_spefscr_regnum = 40; | |
c8001721 | 2944 | set_gdbarch_pc_regnum (gdbarch, 0); |
338ef23d | 2945 | set_gdbarch_sp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1); |
0ba6dca9 | 2946 | set_gdbarch_deprecated_fp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1); |
c8001721 EZ |
2947 | set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read); |
2948 | set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write); | |
1fcc0bb8 | 2949 | break; |
1fcc0bb8 EZ |
2950 | } |
2951 | ||
338ef23d AC |
2952 | /* Sanity check on registers. */ |
2953 | gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0); | |
2954 | ||
56a6dfb9 KB |
2955 | /* Select instruction printer. */ |
2956 | if (arch == power) | |
9364a0ef | 2957 | set_gdbarch_print_insn (gdbarch, print_insn_rs6000); |
56a6dfb9 | 2958 | else |
9364a0ef | 2959 | set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc); |
7495d1dc | 2960 | |
7a78ae4e | 2961 | set_gdbarch_write_pc (gdbarch, generic_target_write_pc); |
7a78ae4e ND |
2962 | |
2963 | set_gdbarch_num_regs (gdbarch, v->nregs); | |
c8001721 | 2964 | set_gdbarch_num_pseudo_regs (gdbarch, v->npregs); |
7a78ae4e | 2965 | set_gdbarch_register_name (gdbarch, rs6000_register_name); |
691d145a | 2966 | set_gdbarch_register_type (gdbarch, rs6000_register_type); |
7a78ae4e ND |
2967 | |
2968 | set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT); | |
2969 | set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT); | |
2970 | set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
2971 | set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT); | |
2972 | set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT); | |
2973 | set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
2974 | set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT); | |
ab9fe00e KB |
2975 | if (sysv_abi) |
2976 | set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT); | |
2977 | else | |
2978 | set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT); | |
4e409299 | 2979 | set_gdbarch_char_signed (gdbarch, 0); |
7a78ae4e | 2980 | |
11269d7e | 2981 | set_gdbarch_frame_align (gdbarch, rs6000_frame_align); |
8b148df9 AC |
2982 | if (sysv_abi && wordsize == 8) |
2983 | /* PPC64 SYSV. */ | |
2984 | set_gdbarch_frame_red_zone_size (gdbarch, 288); | |
2985 | else if (!sysv_abi && wordsize == 4) | |
5bffac25 AC |
2986 | /* PowerOpen / AIX 32 bit. The saved area or red zone consists of |
2987 | 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes. | |
2988 | Problem is, 220 isn't frame (16 byte) aligned. Round it up to | |
2989 | 224. */ | |
2990 | set_gdbarch_frame_red_zone_size (gdbarch, 224); | |
7a78ae4e | 2991 | |
691d145a JB |
2992 | set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p); |
2993 | set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value); | |
2994 | set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register); | |
2995 | ||
18ed0c4e JB |
2996 | set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum); |
2997 | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum); | |
2ea5f656 KB |
2998 | /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments() |
2999 | is correct for the SysV ABI when the wordsize is 8, but I'm also | |
3000 | fairly certain that ppc_sysv_abi_push_arguments() will give even | |
3001 | worse results since it only works for 32-bit code. So, for the moment, | |
3002 | we're better off calling rs6000_push_arguments() since it works for | |
3003 | 64-bit code. At some point in the future, this matter needs to be | |
3004 | revisited. */ | |
3005 | if (sysv_abi && wordsize == 4) | |
77b2b6d4 | 3006 | set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call); |
8be9034a AC |
3007 | else if (sysv_abi && wordsize == 8) |
3008 | set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call); | |
9aa1e687 | 3009 | else |
77b2b6d4 | 3010 | set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call); |
7a78ae4e | 3011 | |
74055713 | 3012 | set_gdbarch_deprecated_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address); |
7a78ae4e ND |
3013 | |
3014 | set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue); | |
3015 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | |
7a78ae4e ND |
3016 | set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc); |
3017 | ||
6066c3de AC |
3018 | /* Handle the 64-bit SVR4 minimal-symbol convention of using "FN" |
3019 | for the descriptor and ".FN" for the entry-point -- a user | |
3020 | specifying "break FN" will unexpectedly end up with a breakpoint | |
3021 | on the descriptor and not the function. This architecture method | |
3022 | transforms any breakpoints on descriptors into breakpoints on the | |
3023 | corresponding entry point. */ | |
3024 | if (sysv_abi && wordsize == 8) | |
3025 | set_gdbarch_adjust_breakpoint_address (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address); | |
3026 | ||
7a78ae4e ND |
3027 | /* Not sure on this. FIXMEmgo */ |
3028 | set_gdbarch_frame_args_skip (gdbarch, 8); | |
3029 | ||
05580c65 | 3030 | if (!sysv_abi) |
7b112f9c | 3031 | set_gdbarch_use_struct_convention (gdbarch, |
b9ff3018 | 3032 | rs6000_use_struct_convention); |
8e0662df | 3033 | |
15813d3f AC |
3034 | if (!sysv_abi) |
3035 | { | |
3036 | /* Handle RS/6000 function pointers (which are really function | |
3037 | descriptors). */ | |
f517ea4e PS |
3038 | set_gdbarch_convert_from_func_ptr_addr (gdbarch, |
3039 | rs6000_convert_from_func_ptr_addr); | |
9aa1e687 | 3040 | } |
7a78ae4e | 3041 | |
143985b7 AF |
3042 | /* Helpers for function argument information. */ |
3043 | set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument); | |
3044 | ||
7b112f9c | 3045 | /* Hook in ABI-specific overrides, if they have been registered. */ |
4be87837 | 3046 | gdbarch_init_osabi (info, gdbarch); |
7b112f9c | 3047 | |
61a65099 KB |
3048 | switch (info.osabi) |
3049 | { | |
3050 | case GDB_OSABI_NETBSD_AOUT: | |
3051 | case GDB_OSABI_NETBSD_ELF: | |
3052 | case GDB_OSABI_UNKNOWN: | |
3053 | case GDB_OSABI_LINUX: | |
3054 | set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc); | |
3055 | frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer); | |
3056 | set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id); | |
3057 | frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer); | |
3058 | break; | |
3059 | default: | |
61a65099 | 3060 | set_gdbarch_believe_pcc_promotion (gdbarch, 1); |
81332287 KB |
3061 | |
3062 | set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc); | |
3063 | frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer); | |
3064 | set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id); | |
3065 | frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer); | |
61a65099 KB |
3066 | } |
3067 | ||
ef5200c1 AC |
3068 | if (from_xcoff_exec) |
3069 | { | |
3070 | /* NOTE: jimix/2003-06-09: This test should really check for | |
3071 | GDB_OSABI_AIX when that is defined and becomes | |
3072 | available. (Actually, once things are properly split apart, | |
3073 | the test goes away.) */ | |
3074 | /* RS6000/AIX does not support PT_STEP. Has to be simulated. */ | |
3075 | set_gdbarch_software_single_step (gdbarch, rs6000_software_single_step); | |
3076 | } | |
3077 | ||
7a78ae4e | 3078 | return gdbarch; |
c906108c SS |
3079 | } |
3080 | ||
7b112f9c JT |
3081 | static void |
3082 | rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file) | |
3083 | { | |
3084 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); | |
3085 | ||
3086 | if (tdep == NULL) | |
3087 | return; | |
3088 | ||
4be87837 | 3089 | /* FIXME: Dump gdbarch_tdep. */ |
7b112f9c JT |
3090 | } |
3091 | ||
1fcc0bb8 EZ |
3092 | static struct cmd_list_element *info_powerpc_cmdlist = NULL; |
3093 | ||
3094 | static void | |
3095 | rs6000_info_powerpc_command (char *args, int from_tty) | |
3096 | { | |
3097 | help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout); | |
3098 | } | |
3099 | ||
c906108c SS |
3100 | /* Initialization code. */ |
3101 | ||
a78f21af | 3102 | extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */ |
b9362cc7 | 3103 | |
c906108c | 3104 | void |
fba45db2 | 3105 | _initialize_rs6000_tdep (void) |
c906108c | 3106 | { |
7b112f9c JT |
3107 | gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep); |
3108 | gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep); | |
1fcc0bb8 EZ |
3109 | |
3110 | /* Add root prefix command for "info powerpc" commands */ | |
3111 | add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command, | |
3112 | "Various POWERPC info specific commands.", | |
3113 | &info_powerpc_cmdlist, "info powerpc ", 0, &infolist); | |
c906108c | 3114 | } |