]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Target-dependent code for GDB, the GNU debugger. |
7aea86e6 AC |
2 | |
3 | Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, | |
4 | 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software | |
5 | Foundation, Inc. | |
c906108c | 6 | |
c5aa993b | 7 | This file is part of GDB. |
c906108c | 8 | |
c5aa993b JM |
9 | This program is free software; you can redistribute it and/or modify |
10 | it under the terms of the GNU General Public License as published by | |
11 | the Free Software Foundation; either version 2 of the License, or | |
12 | (at your option) any later version. | |
c906108c | 13 | |
c5aa993b JM |
14 | This program is distributed in the hope that it will be useful, |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
c906108c | 18 | |
c5aa993b JM |
19 | You should have received a copy of the GNU General Public License |
20 | along with this program; if not, write to the Free Software | |
21 | Foundation, Inc., 59 Temple Place - Suite 330, | |
22 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
23 | |
24 | #include "defs.h" | |
25 | #include "frame.h" | |
26 | #include "inferior.h" | |
27 | #include "symtab.h" | |
28 | #include "target.h" | |
29 | #include "gdbcore.h" | |
30 | #include "gdbcmd.h" | |
c906108c | 31 | #include "objfiles.h" |
7a78ae4e | 32 | #include "arch-utils.h" |
4e052eda | 33 | #include "regcache.h" |
d195bc9f | 34 | #include "regset.h" |
d16aafd8 | 35 | #include "doublest.h" |
fd0407d6 | 36 | #include "value.h" |
1fcc0bb8 | 37 | #include "parser-defs.h" |
4be87837 | 38 | #include "osabi.h" |
7d9b040b | 39 | #include "infcall.h" |
7a78ae4e | 40 | |
2fccf04a | 41 | #include "libbfd.h" /* for bfd_default_set_arch_mach */ |
7a78ae4e | 42 | #include "coff/internal.h" /* for libcoff.h */ |
2fccf04a | 43 | #include "libcoff.h" /* for xcoff_data */ |
11ed25ac KB |
44 | #include "coff/xcoff.h" |
45 | #include "libxcoff.h" | |
7a78ae4e | 46 | |
9aa1e687 | 47 | #include "elf-bfd.h" |
7a78ae4e | 48 | |
6ded7999 | 49 | #include "solib-svr4.h" |
9aa1e687 | 50 | #include "ppc-tdep.h" |
7a78ae4e | 51 | |
338ef23d | 52 | #include "gdb_assert.h" |
a89aa300 | 53 | #include "dis-asm.h" |
338ef23d | 54 | |
61a65099 KB |
55 | #include "trad-frame.h" |
56 | #include "frame-unwind.h" | |
57 | #include "frame-base.h" | |
58 | ||
7a78ae4e ND |
59 | /* If the kernel has to deliver a signal, it pushes a sigcontext |
60 | structure on the stack and then calls the signal handler, passing | |
61 | the address of the sigcontext in an argument register. Usually | |
62 | the signal handler doesn't save this register, so we have to | |
63 | access the sigcontext structure via an offset from the signal handler | |
64 | frame. | |
65 | The following constants were determined by experimentation on AIX 3.2. */ | |
66 | #define SIG_FRAME_PC_OFFSET 96 | |
67 | #define SIG_FRAME_LR_OFFSET 108 | |
68 | #define SIG_FRAME_FP_OFFSET 284 | |
69 | ||
7a78ae4e ND |
70 | /* To be used by skip_prologue. */ |
71 | ||
72 | struct rs6000_framedata | |
73 | { | |
74 | int offset; /* total size of frame --- the distance | |
75 | by which we decrement sp to allocate | |
76 | the frame */ | |
77 | int saved_gpr; /* smallest # of saved gpr */ | |
78 | int saved_fpr; /* smallest # of saved fpr */ | |
6be8bc0c | 79 | int saved_vr; /* smallest # of saved vr */ |
96ff0de4 | 80 | int saved_ev; /* smallest # of saved ev */ |
7a78ae4e ND |
81 | int alloca_reg; /* alloca register number (frame ptr) */ |
82 | char frameless; /* true if frameless functions. */ | |
83 | char nosavedpc; /* true if pc not saved. */ | |
84 | int gpr_offset; /* offset of saved gprs from prev sp */ | |
85 | int fpr_offset; /* offset of saved fprs from prev sp */ | |
6be8bc0c | 86 | int vr_offset; /* offset of saved vrs from prev sp */ |
96ff0de4 | 87 | int ev_offset; /* offset of saved evs from prev sp */ |
7a78ae4e ND |
88 | int lr_offset; /* offset of saved lr */ |
89 | int cr_offset; /* offset of saved cr */ | |
6be8bc0c | 90 | int vrsave_offset; /* offset of saved vrsave register */ |
7a78ae4e ND |
91 | }; |
92 | ||
93 | /* Description of a single register. */ | |
94 | ||
95 | struct reg | |
96 | { | |
97 | char *name; /* name of register */ | |
98 | unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */ | |
99 | unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */ | |
100 | unsigned char fpr; /* whether register is floating-point */ | |
489461e2 | 101 | unsigned char pseudo; /* whether register is pseudo */ |
13ac140c JB |
102 | int spr_num; /* PowerPC SPR number, or -1 if not an SPR. |
103 | This is an ISA SPR number, not a GDB | |
104 | register number. */ | |
7a78ae4e ND |
105 | }; |
106 | ||
c906108c SS |
107 | /* Breakpoint shadows for the single step instructions will be kept here. */ |
108 | ||
c5aa993b JM |
109 | static struct sstep_breaks |
110 | { | |
111 | /* Address, or 0 if this is not in use. */ | |
112 | CORE_ADDR address; | |
113 | /* Shadow contents. */ | |
114 | char data[4]; | |
115 | } | |
116 | stepBreaks[2]; | |
c906108c SS |
117 | |
118 | /* Hook for determining the TOC address when calling functions in the | |
119 | inferior under AIX. The initialization code in rs6000-nat.c sets | |
120 | this hook to point to find_toc_address. */ | |
121 | ||
7a78ae4e ND |
122 | CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL; |
123 | ||
124 | /* Hook to set the current architecture when starting a child process. | |
125 | rs6000-nat.c sets this. */ | |
126 | ||
127 | void (*rs6000_set_host_arch_hook) (int) = NULL; | |
c906108c SS |
128 | |
129 | /* Static function prototypes */ | |
130 | ||
a14ed312 KB |
131 | static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc, |
132 | CORE_ADDR safety); | |
077276e8 KB |
133 | static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR, |
134 | struct rs6000_framedata *); | |
c906108c | 135 | |
64b84175 KB |
136 | /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */ |
137 | int | |
138 | altivec_register_p (int regno) | |
139 | { | |
140 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); | |
141 | if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0) | |
142 | return 0; | |
143 | else | |
144 | return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum); | |
145 | } | |
146 | ||
383f0f5b | 147 | |
867e2dc5 JB |
148 | /* Return true if REGNO is an SPE register, false otherwise. */ |
149 | int | |
150 | spe_register_p (int regno) | |
151 | { | |
152 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); | |
153 | ||
154 | /* Is it a reference to EV0 -- EV31, and do we have those? */ | |
155 | if (tdep->ppc_ev0_regnum >= 0 | |
156 | && tdep->ppc_ev31_regnum >= 0 | |
157 | && tdep->ppc_ev0_regnum <= regno && regno <= tdep->ppc_ev31_regnum) | |
158 | return 1; | |
159 | ||
160 | /* Is it a reference to the 64-bit accumulator, and do we have that? */ | |
161 | if (tdep->ppc_acc_regnum >= 0 | |
162 | && tdep->ppc_acc_regnum == regno) | |
163 | return 1; | |
164 | ||
165 | /* Is it a reference to the SPE floating-point status and control register, | |
166 | and do we have that? */ | |
167 | if (tdep->ppc_spefscr_regnum >= 0 | |
168 | && tdep->ppc_spefscr_regnum == regno) | |
169 | return 1; | |
170 | ||
171 | return 0; | |
172 | } | |
173 | ||
174 | ||
383f0f5b JB |
175 | /* Return non-zero if the architecture described by GDBARCH has |
176 | floating-point registers (f0 --- f31 and fpscr). */ | |
0a613259 AC |
177 | int |
178 | ppc_floating_point_unit_p (struct gdbarch *gdbarch) | |
179 | { | |
383f0f5b JB |
180 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
181 | ||
182 | return (tdep->ppc_fp0_regnum >= 0 | |
183 | && tdep->ppc_fpscr_regnum >= 0); | |
0a613259 | 184 | } |
d195bc9f MK |
185 | \f |
186 | ||
187 | /* Register set support functions. */ | |
188 | ||
189 | static void | |
190 | ppc_supply_reg (struct regcache *regcache, int regnum, | |
191 | const char *regs, size_t offset) | |
192 | { | |
193 | if (regnum != -1 && offset != -1) | |
194 | regcache_raw_supply (regcache, regnum, regs + offset); | |
195 | } | |
196 | ||
197 | static void | |
198 | ppc_collect_reg (const struct regcache *regcache, int regnum, | |
199 | char *regs, size_t offset) | |
200 | { | |
201 | if (regnum != -1 && offset != -1) | |
202 | regcache_raw_collect (regcache, regnum, regs + offset); | |
203 | } | |
204 | ||
205 | /* Supply register REGNUM in the general-purpose register set REGSET | |
206 | from the buffer specified by GREGS and LEN to register cache | |
207 | REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */ | |
208 | ||
209 | void | |
210 | ppc_supply_gregset (const struct regset *regset, struct regcache *regcache, | |
211 | int regnum, const void *gregs, size_t len) | |
212 | { | |
213 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
214 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
215 | const struct ppc_reg_offsets *offsets = regset->descr; | |
216 | size_t offset; | |
217 | int i; | |
218 | ||
cdf2c5f5 | 219 | for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset; |
063715bf | 220 | i < tdep->ppc_gp0_regnum + ppc_num_gprs; |
cdf2c5f5 | 221 | i++, offset += 4) |
d195bc9f MK |
222 | { |
223 | if (regnum == -1 || regnum == i) | |
224 | ppc_supply_reg (regcache, i, gregs, offset); | |
225 | } | |
226 | ||
227 | if (regnum == -1 || regnum == PC_REGNUM) | |
228 | ppc_supply_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset); | |
229 | if (regnum == -1 || regnum == tdep->ppc_ps_regnum) | |
230 | ppc_supply_reg (regcache, tdep->ppc_ps_regnum, | |
231 | gregs, offsets->ps_offset); | |
232 | if (regnum == -1 || regnum == tdep->ppc_cr_regnum) | |
233 | ppc_supply_reg (regcache, tdep->ppc_cr_regnum, | |
234 | gregs, offsets->cr_offset); | |
235 | if (regnum == -1 || regnum == tdep->ppc_lr_regnum) | |
236 | ppc_supply_reg (regcache, tdep->ppc_lr_regnum, | |
237 | gregs, offsets->lr_offset); | |
238 | if (regnum == -1 || regnum == tdep->ppc_ctr_regnum) | |
239 | ppc_supply_reg (regcache, tdep->ppc_ctr_regnum, | |
240 | gregs, offsets->ctr_offset); | |
241 | if (regnum == -1 || regnum == tdep->ppc_xer_regnum) | |
242 | ppc_supply_reg (regcache, tdep->ppc_xer_regnum, | |
243 | gregs, offsets->cr_offset); | |
244 | if (regnum == -1 || regnum == tdep->ppc_mq_regnum) | |
245 | ppc_supply_reg (regcache, tdep->ppc_mq_regnum, gregs, offsets->mq_offset); | |
246 | } | |
247 | ||
248 | /* Supply register REGNUM in the floating-point register set REGSET | |
249 | from the buffer specified by FPREGS and LEN to register cache | |
250 | REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */ | |
251 | ||
252 | void | |
253 | ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache, | |
254 | int regnum, const void *fpregs, size_t len) | |
255 | { | |
256 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
257 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
258 | const struct ppc_reg_offsets *offsets = regset->descr; | |
259 | size_t offset; | |
260 | int i; | |
261 | ||
383f0f5b JB |
262 | gdb_assert (ppc_floating_point_unit_p (gdbarch)); |
263 | ||
d195bc9f | 264 | offset = offsets->f0_offset; |
366f009f JB |
265 | for (i = tdep->ppc_fp0_regnum; |
266 | i < tdep->ppc_fp0_regnum + ppc_num_fprs; | |
267 | i++, offset += 4) | |
d195bc9f MK |
268 | { |
269 | if (regnum == -1 || regnum == i) | |
270 | ppc_supply_reg (regcache, i, fpregs, offset); | |
271 | } | |
272 | ||
273 | if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum) | |
274 | ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum, | |
275 | fpregs, offsets->fpscr_offset); | |
276 | } | |
277 | ||
278 | /* Collect register REGNUM in the general-purpose register set | |
279 | REGSET. from register cache REGCACHE into the buffer specified by | |
280 | GREGS and LEN. If REGNUM is -1, do this for all registers in | |
281 | REGSET. */ | |
282 | ||
283 | void | |
284 | ppc_collect_gregset (const struct regset *regset, | |
285 | const struct regcache *regcache, | |
286 | int regnum, void *gregs, size_t len) | |
287 | { | |
288 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
289 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
290 | const struct ppc_reg_offsets *offsets = regset->descr; | |
291 | size_t offset; | |
292 | int i; | |
293 | ||
294 | offset = offsets->r0_offset; | |
cdf2c5f5 | 295 | for (i = tdep->ppc_gp0_regnum; |
063715bf | 296 | i < tdep->ppc_gp0_regnum + ppc_num_gprs; |
cdf2c5f5 | 297 | i++, offset += 4) |
d195bc9f MK |
298 | { |
299 | if (regnum == -1 || regnum == i) | |
2e56e9c1 | 300 | ppc_collect_reg (regcache, i, gregs, offset); |
d195bc9f MK |
301 | } |
302 | ||
303 | if (regnum == -1 || regnum == PC_REGNUM) | |
304 | ppc_collect_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset); | |
305 | if (regnum == -1 || regnum == tdep->ppc_ps_regnum) | |
306 | ppc_collect_reg (regcache, tdep->ppc_ps_regnum, | |
307 | gregs, offsets->ps_offset); | |
308 | if (regnum == -1 || regnum == tdep->ppc_cr_regnum) | |
309 | ppc_collect_reg (regcache, tdep->ppc_cr_regnum, | |
310 | gregs, offsets->cr_offset); | |
311 | if (regnum == -1 || regnum == tdep->ppc_lr_regnum) | |
312 | ppc_collect_reg (regcache, tdep->ppc_lr_regnum, | |
313 | gregs, offsets->lr_offset); | |
314 | if (regnum == -1 || regnum == tdep->ppc_ctr_regnum) | |
315 | ppc_collect_reg (regcache, tdep->ppc_ctr_regnum, | |
316 | gregs, offsets->ctr_offset); | |
317 | if (regnum == -1 || regnum == tdep->ppc_xer_regnum) | |
318 | ppc_collect_reg (regcache, tdep->ppc_xer_regnum, | |
319 | gregs, offsets->xer_offset); | |
320 | if (regnum == -1 || regnum == tdep->ppc_mq_regnum) | |
321 | ppc_collect_reg (regcache, tdep->ppc_mq_regnum, | |
322 | gregs, offsets->mq_offset); | |
323 | } | |
324 | ||
325 | /* Collect register REGNUM in the floating-point register set | |
326 | REGSET. from register cache REGCACHE into the buffer specified by | |
327 | FPREGS and LEN. If REGNUM is -1, do this for all registers in | |
328 | REGSET. */ | |
329 | ||
330 | void | |
331 | ppc_collect_fpregset (const struct regset *regset, | |
332 | const struct regcache *regcache, | |
333 | int regnum, void *fpregs, size_t len) | |
334 | { | |
335 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
336 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
337 | const struct ppc_reg_offsets *offsets = regset->descr; | |
338 | size_t offset; | |
339 | int i; | |
340 | ||
383f0f5b JB |
341 | gdb_assert (ppc_floating_point_unit_p (gdbarch)); |
342 | ||
d195bc9f | 343 | offset = offsets->f0_offset; |
366f009f JB |
344 | for (i = tdep->ppc_fp0_regnum; |
345 | i <= tdep->ppc_fp0_regnum + ppc_num_fprs; | |
346 | i++, offset += 4) | |
d195bc9f MK |
347 | { |
348 | if (regnum == -1 || regnum == i) | |
349 | ppc_collect_reg (regcache, regnum, fpregs, offset); | |
350 | } | |
351 | ||
352 | if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum) | |
353 | ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum, | |
354 | fpregs, offsets->fpscr_offset); | |
355 | } | |
356 | \f | |
0a613259 | 357 | |
7a78ae4e | 358 | /* Read a LEN-byte address from debugged memory address MEMADDR. */ |
c906108c | 359 | |
7a78ae4e ND |
360 | static CORE_ADDR |
361 | read_memory_addr (CORE_ADDR memaddr, int len) | |
362 | { | |
363 | return read_memory_unsigned_integer (memaddr, len); | |
364 | } | |
c906108c | 365 | |
7a78ae4e ND |
366 | static CORE_ADDR |
367 | rs6000_skip_prologue (CORE_ADDR pc) | |
b83266a0 SS |
368 | { |
369 | struct rs6000_framedata frame; | |
077276e8 | 370 | pc = skip_prologue (pc, 0, &frame); |
b83266a0 SS |
371 | return pc; |
372 | } | |
373 | ||
374 | ||
c906108c SS |
375 | /* Fill in fi->saved_regs */ |
376 | ||
377 | struct frame_extra_info | |
378 | { | |
379 | /* Functions calling alloca() change the value of the stack | |
380 | pointer. We need to use initial stack pointer (which is saved in | |
381 | r31 by gcc) in such cases. If a compiler emits traceback table, | |
382 | then we should use the alloca register specified in traceback | |
383 | table. FIXME. */ | |
c5aa993b | 384 | CORE_ADDR initial_sp; /* initial stack pointer. */ |
c906108c SS |
385 | }; |
386 | ||
143985b7 | 387 | /* Get the ith function argument for the current function. */ |
b9362cc7 | 388 | static CORE_ADDR |
143985b7 AF |
389 | rs6000_fetch_pointer_argument (struct frame_info *frame, int argi, |
390 | struct type *type) | |
391 | { | |
392 | CORE_ADDR addr; | |
7f5f525d | 393 | get_frame_register (frame, 3 + argi, &addr); |
143985b7 AF |
394 | return addr; |
395 | } | |
396 | ||
c906108c SS |
397 | /* Calculate the destination of a branch/jump. Return -1 if not a branch. */ |
398 | ||
399 | static CORE_ADDR | |
7a78ae4e | 400 | branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety) |
c906108c SS |
401 | { |
402 | CORE_ADDR dest; | |
403 | int immediate; | |
404 | int absolute; | |
405 | int ext_op; | |
406 | ||
407 | absolute = (int) ((instr >> 1) & 1); | |
408 | ||
c5aa993b JM |
409 | switch (opcode) |
410 | { | |
411 | case 18: | |
412 | immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */ | |
413 | if (absolute) | |
414 | dest = immediate; | |
415 | else | |
416 | dest = pc + immediate; | |
417 | break; | |
418 | ||
419 | case 16: | |
420 | immediate = ((instr & ~3) << 16) >> 16; /* br conditional */ | |
421 | if (absolute) | |
422 | dest = immediate; | |
423 | else | |
424 | dest = pc + immediate; | |
425 | break; | |
426 | ||
427 | case 19: | |
428 | ext_op = (instr >> 1) & 0x3ff; | |
429 | ||
430 | if (ext_op == 16) /* br conditional register */ | |
431 | { | |
2188cbdd | 432 | dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3; |
c5aa993b JM |
433 | |
434 | /* If we are about to return from a signal handler, dest is | |
435 | something like 0x3c90. The current frame is a signal handler | |
436 | caller frame, upon completion of the sigreturn system call | |
437 | execution will return to the saved PC in the frame. */ | |
438 | if (dest < TEXT_SEGMENT_BASE) | |
439 | { | |
440 | struct frame_info *fi; | |
441 | ||
442 | fi = get_current_frame (); | |
443 | if (fi != NULL) | |
8b36eed8 | 444 | dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET, |
21283beb | 445 | gdbarch_tdep (current_gdbarch)->wordsize); |
c5aa993b JM |
446 | } |
447 | } | |
448 | ||
449 | else if (ext_op == 528) /* br cond to count reg */ | |
450 | { | |
2188cbdd | 451 | dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3; |
c5aa993b JM |
452 | |
453 | /* If we are about to execute a system call, dest is something | |
454 | like 0x22fc or 0x3b00. Upon completion the system call | |
455 | will return to the address in the link register. */ | |
456 | if (dest < TEXT_SEGMENT_BASE) | |
2188cbdd | 457 | dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3; |
c5aa993b JM |
458 | } |
459 | else | |
460 | return -1; | |
461 | break; | |
c906108c | 462 | |
c5aa993b JM |
463 | default: |
464 | return -1; | |
465 | } | |
c906108c SS |
466 | return (dest < TEXT_SEGMENT_BASE) ? safety : dest; |
467 | } | |
468 | ||
469 | ||
470 | /* Sequence of bytes for breakpoint instruction. */ | |
471 | ||
f4f9705a | 472 | const static unsigned char * |
7a78ae4e | 473 | rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size) |
c906108c | 474 | { |
aaab4dba AC |
475 | static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 }; |
476 | static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d }; | |
c906108c | 477 | *bp_size = 4; |
d7449b42 | 478 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) |
c906108c SS |
479 | return big_breakpoint; |
480 | else | |
481 | return little_breakpoint; | |
482 | } | |
483 | ||
484 | ||
485 | /* AIX does not support PT_STEP. Simulate it. */ | |
486 | ||
487 | void | |
379d08a1 AC |
488 | rs6000_software_single_step (enum target_signal signal, |
489 | int insert_breakpoints_p) | |
c906108c | 490 | { |
7c40d541 KB |
491 | CORE_ADDR dummy; |
492 | int breakp_sz; | |
f4f9705a | 493 | const char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz); |
c906108c SS |
494 | int ii, insn; |
495 | CORE_ADDR loc; | |
496 | CORE_ADDR breaks[2]; | |
497 | int opcode; | |
498 | ||
c5aa993b JM |
499 | if (insert_breakpoints_p) |
500 | { | |
c906108c | 501 | |
c5aa993b | 502 | loc = read_pc (); |
c906108c | 503 | |
c5aa993b | 504 | insn = read_memory_integer (loc, 4); |
c906108c | 505 | |
7c40d541 | 506 | breaks[0] = loc + breakp_sz; |
c5aa993b JM |
507 | opcode = insn >> 26; |
508 | breaks[1] = branch_dest (opcode, insn, loc, breaks[0]); | |
c906108c | 509 | |
c5aa993b JM |
510 | /* Don't put two breakpoints on the same address. */ |
511 | if (breaks[1] == breaks[0]) | |
512 | breaks[1] = -1; | |
c906108c | 513 | |
c5aa993b | 514 | stepBreaks[1].address = 0; |
c906108c | 515 | |
c5aa993b JM |
516 | for (ii = 0; ii < 2; ++ii) |
517 | { | |
c906108c | 518 | |
c5aa993b JM |
519 | /* ignore invalid breakpoint. */ |
520 | if (breaks[ii] == -1) | |
521 | continue; | |
7c40d541 | 522 | target_insert_breakpoint (breaks[ii], stepBreaks[ii].data); |
c5aa993b JM |
523 | stepBreaks[ii].address = breaks[ii]; |
524 | } | |
c906108c | 525 | |
c5aa993b JM |
526 | } |
527 | else | |
528 | { | |
c906108c | 529 | |
c5aa993b JM |
530 | /* remove step breakpoints. */ |
531 | for (ii = 0; ii < 2; ++ii) | |
532 | if (stepBreaks[ii].address != 0) | |
7c40d541 KB |
533 | target_remove_breakpoint (stepBreaks[ii].address, |
534 | stepBreaks[ii].data); | |
c5aa993b | 535 | } |
c906108c | 536 | errno = 0; /* FIXME, don't ignore errors! */ |
c5aa993b | 537 | /* What errors? {read,write}_memory call error(). */ |
c906108c SS |
538 | } |
539 | ||
540 | ||
541 | /* return pc value after skipping a function prologue and also return | |
542 | information about a function frame. | |
543 | ||
544 | in struct rs6000_framedata fdata: | |
c5aa993b JM |
545 | - frameless is TRUE, if function does not have a frame. |
546 | - nosavedpc is TRUE, if function does not save %pc value in its frame. | |
547 | - offset is the initial size of this stack frame --- the amount by | |
548 | which we decrement the sp to allocate the frame. | |
549 | - saved_gpr is the number of the first saved gpr. | |
550 | - saved_fpr is the number of the first saved fpr. | |
6be8bc0c | 551 | - saved_vr is the number of the first saved vr. |
96ff0de4 | 552 | - saved_ev is the number of the first saved ev. |
c5aa993b JM |
553 | - alloca_reg is the number of the register used for alloca() handling. |
554 | Otherwise -1. | |
555 | - gpr_offset is the offset of the first saved gpr from the previous frame. | |
556 | - fpr_offset is the offset of the first saved fpr from the previous frame. | |
6be8bc0c | 557 | - vr_offset is the offset of the first saved vr from the previous frame. |
96ff0de4 | 558 | - ev_offset is the offset of the first saved ev from the previous frame. |
c5aa993b JM |
559 | - lr_offset is the offset of the saved lr |
560 | - cr_offset is the offset of the saved cr | |
6be8bc0c | 561 | - vrsave_offset is the offset of the saved vrsave register |
c5aa993b | 562 | */ |
c906108c SS |
563 | |
564 | #define SIGNED_SHORT(x) \ | |
565 | ((sizeof (short) == 2) \ | |
566 | ? ((int)(short)(x)) \ | |
567 | : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000))) | |
568 | ||
569 | #define GET_SRC_REG(x) (((x) >> 21) & 0x1f) | |
570 | ||
55d05f3b KB |
571 | /* Limit the number of skipped non-prologue instructions, as the examining |
572 | of the prologue is expensive. */ | |
573 | static int max_skip_non_prologue_insns = 10; | |
574 | ||
575 | /* Given PC representing the starting address of a function, and | |
576 | LIM_PC which is the (sloppy) limit to which to scan when looking | |
577 | for a prologue, attempt to further refine this limit by using | |
578 | the line data in the symbol table. If successful, a better guess | |
579 | on where the prologue ends is returned, otherwise the previous | |
580 | value of lim_pc is returned. */ | |
634aa483 AC |
581 | |
582 | /* FIXME: cagney/2004-02-14: This function and logic have largely been | |
583 | superseded by skip_prologue_using_sal. */ | |
584 | ||
55d05f3b KB |
585 | static CORE_ADDR |
586 | refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc) | |
587 | { | |
588 | struct symtab_and_line prologue_sal; | |
589 | ||
590 | prologue_sal = find_pc_line (pc, 0); | |
591 | if (prologue_sal.line != 0) | |
592 | { | |
593 | int i; | |
594 | CORE_ADDR addr = prologue_sal.end; | |
595 | ||
596 | /* Handle the case in which compiler's optimizer/scheduler | |
597 | has moved instructions into the prologue. We scan ahead | |
598 | in the function looking for address ranges whose corresponding | |
599 | line number is less than or equal to the first one that we | |
600 | found for the function. (It can be less than when the | |
601 | scheduler puts a body instruction before the first prologue | |
602 | instruction.) */ | |
603 | for (i = 2 * max_skip_non_prologue_insns; | |
604 | i > 0 && (lim_pc == 0 || addr < lim_pc); | |
605 | i--) | |
606 | { | |
607 | struct symtab_and_line sal; | |
608 | ||
609 | sal = find_pc_line (addr, 0); | |
610 | if (sal.line == 0) | |
611 | break; | |
612 | if (sal.line <= prologue_sal.line | |
613 | && sal.symtab == prologue_sal.symtab) | |
614 | { | |
615 | prologue_sal = sal; | |
616 | } | |
617 | addr = sal.end; | |
618 | } | |
619 | ||
620 | if (lim_pc == 0 || prologue_sal.end < lim_pc) | |
621 | lim_pc = prologue_sal.end; | |
622 | } | |
623 | return lim_pc; | |
624 | } | |
625 | ||
773df3e5 JB |
626 | /* Return nonzero if the given instruction OP can be part of the prologue |
627 | of a function and saves a parameter on the stack. FRAMEP should be | |
628 | set if one of the previous instructions in the function has set the | |
629 | Frame Pointer. */ | |
630 | ||
631 | static int | |
632 | store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg) | |
633 | { | |
634 | /* Move parameters from argument registers to temporary register. */ | |
635 | if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */ | |
636 | { | |
637 | /* Rx must be scratch register r0. */ | |
638 | const int rx_regno = (op >> 16) & 31; | |
639 | /* Ry: Only r3 - r10 are used for parameter passing. */ | |
640 | const int ry_regno = GET_SRC_REG (op); | |
641 | ||
642 | if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10) | |
643 | { | |
644 | *r0_contains_arg = 1; | |
645 | return 1; | |
646 | } | |
647 | else | |
648 | return 0; | |
649 | } | |
650 | ||
651 | /* Save a General Purpose Register on stack. */ | |
652 | ||
653 | if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */ | |
654 | (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */ | |
655 | { | |
656 | /* Rx: Only r3 - r10 are used for parameter passing. */ | |
657 | const int rx_regno = GET_SRC_REG (op); | |
658 | ||
659 | return (rx_regno >= 3 && rx_regno <= 10); | |
660 | } | |
661 | ||
662 | /* Save a General Purpose Register on stack via the Frame Pointer. */ | |
663 | ||
664 | if (framep && | |
665 | ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */ | |
666 | (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */ | |
667 | (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */ | |
668 | { | |
669 | /* Rx: Usually, only r3 - r10 are used for parameter passing. | |
670 | However, the compiler sometimes uses r0 to hold an argument. */ | |
671 | const int rx_regno = GET_SRC_REG (op); | |
672 | ||
673 | return ((rx_regno >= 3 && rx_regno <= 10) | |
674 | || (rx_regno == 0 && *r0_contains_arg)); | |
675 | } | |
676 | ||
677 | if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */ | |
678 | { | |
679 | /* Only f2 - f8 are used for parameter passing. */ | |
680 | const int src_regno = GET_SRC_REG (op); | |
681 | ||
682 | return (src_regno >= 2 && src_regno <= 8); | |
683 | } | |
684 | ||
685 | if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */ | |
686 | { | |
687 | /* Only f2 - f8 are used for parameter passing. */ | |
688 | const int src_regno = GET_SRC_REG (op); | |
689 | ||
690 | return (src_regno >= 2 && src_regno <= 8); | |
691 | } | |
692 | ||
693 | /* Not an insn that saves a parameter on stack. */ | |
694 | return 0; | |
695 | } | |
55d05f3b | 696 | |
7a78ae4e | 697 | static CORE_ADDR |
077276e8 | 698 | skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata) |
c906108c SS |
699 | { |
700 | CORE_ADDR orig_pc = pc; | |
55d05f3b | 701 | CORE_ADDR last_prologue_pc = pc; |
6be8bc0c | 702 | CORE_ADDR li_found_pc = 0; |
c906108c SS |
703 | char buf[4]; |
704 | unsigned long op; | |
705 | long offset = 0; | |
6be8bc0c | 706 | long vr_saved_offset = 0; |
482ca3f5 KB |
707 | int lr_reg = -1; |
708 | int cr_reg = -1; | |
6be8bc0c | 709 | int vr_reg = -1; |
96ff0de4 EZ |
710 | int ev_reg = -1; |
711 | long ev_offset = 0; | |
6be8bc0c | 712 | int vrsave_reg = -1; |
c906108c SS |
713 | int reg; |
714 | int framep = 0; | |
715 | int minimal_toc_loaded = 0; | |
ddb20c56 | 716 | int prev_insn_was_prologue_insn = 1; |
55d05f3b | 717 | int num_skip_non_prologue_insns = 0; |
773df3e5 | 718 | int r0_contains_arg = 0; |
96ff0de4 | 719 | const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch); |
6f99cb26 | 720 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
96ff0de4 | 721 | |
55d05f3b KB |
722 | /* Attempt to find the end of the prologue when no limit is specified. |
723 | Note that refine_prologue_limit() has been written so that it may | |
724 | be used to "refine" the limits of non-zero PC values too, but this | |
725 | is only safe if we 1) trust the line information provided by the | |
726 | compiler and 2) iterate enough to actually find the end of the | |
727 | prologue. | |
728 | ||
729 | It may become a good idea at some point (for both performance and | |
730 | accuracy) to unconditionally call refine_prologue_limit(). But, | |
731 | until we can make a clear determination that this is beneficial, | |
732 | we'll play it safe and only use it to obtain a limit when none | |
733 | has been specified. */ | |
734 | if (lim_pc == 0) | |
735 | lim_pc = refine_prologue_limit (pc, lim_pc); | |
c906108c | 736 | |
ddb20c56 | 737 | memset (fdata, 0, sizeof (struct rs6000_framedata)); |
c906108c SS |
738 | fdata->saved_gpr = -1; |
739 | fdata->saved_fpr = -1; | |
6be8bc0c | 740 | fdata->saved_vr = -1; |
96ff0de4 | 741 | fdata->saved_ev = -1; |
c906108c SS |
742 | fdata->alloca_reg = -1; |
743 | fdata->frameless = 1; | |
744 | fdata->nosavedpc = 1; | |
745 | ||
55d05f3b | 746 | for (;; pc += 4) |
c906108c | 747 | { |
ddb20c56 KB |
748 | /* Sometimes it isn't clear if an instruction is a prologue |
749 | instruction or not. When we encounter one of these ambiguous | |
750 | cases, we'll set prev_insn_was_prologue_insn to 0 (false). | |
751 | Otherwise, we'll assume that it really is a prologue instruction. */ | |
752 | if (prev_insn_was_prologue_insn) | |
753 | last_prologue_pc = pc; | |
55d05f3b KB |
754 | |
755 | /* Stop scanning if we've hit the limit. */ | |
756 | if (lim_pc != 0 && pc >= lim_pc) | |
757 | break; | |
758 | ||
ddb20c56 KB |
759 | prev_insn_was_prologue_insn = 1; |
760 | ||
55d05f3b | 761 | /* Fetch the instruction and convert it to an integer. */ |
ddb20c56 KB |
762 | if (target_read_memory (pc, buf, 4)) |
763 | break; | |
764 | op = extract_signed_integer (buf, 4); | |
c906108c | 765 | |
c5aa993b JM |
766 | if ((op & 0xfc1fffff) == 0x7c0802a6) |
767 | { /* mflr Rx */ | |
43b1ab88 AC |
768 | /* Since shared library / PIC code, which needs to get its |
769 | address at runtime, can appear to save more than one link | |
770 | register vis: | |
771 | ||
772 | *INDENT-OFF* | |
773 | stwu r1,-304(r1) | |
774 | mflr r3 | |
775 | bl 0xff570d0 (blrl) | |
776 | stw r30,296(r1) | |
777 | mflr r30 | |
778 | stw r31,300(r1) | |
779 | stw r3,308(r1); | |
780 | ... | |
781 | *INDENT-ON* | |
782 | ||
783 | remember just the first one, but skip over additional | |
784 | ones. */ | |
785 | if (lr_reg < 0) | |
786 | lr_reg = (op & 0x03e00000); | |
773df3e5 JB |
787 | if (lr_reg == 0) |
788 | r0_contains_arg = 0; | |
c5aa993b | 789 | continue; |
c5aa993b JM |
790 | } |
791 | else if ((op & 0xfc1fffff) == 0x7c000026) | |
792 | { /* mfcr Rx */ | |
98f08d3d | 793 | cr_reg = (op & 0x03e00000); |
773df3e5 JB |
794 | if (cr_reg == 0) |
795 | r0_contains_arg = 0; | |
c5aa993b | 796 | continue; |
c906108c | 797 | |
c906108c | 798 | } |
c5aa993b JM |
799 | else if ((op & 0xfc1f0000) == 0xd8010000) |
800 | { /* stfd Rx,NUM(r1) */ | |
801 | reg = GET_SRC_REG (op); | |
802 | if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg) | |
803 | { | |
804 | fdata->saved_fpr = reg; | |
805 | fdata->fpr_offset = SIGNED_SHORT (op) + offset; | |
806 | } | |
807 | continue; | |
c906108c | 808 | |
c5aa993b JM |
809 | } |
810 | else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */ | |
7a78ae4e ND |
811 | (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */ |
812 | (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */ | |
813 | (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */ | |
c5aa993b JM |
814 | { |
815 | ||
816 | reg = GET_SRC_REG (op); | |
817 | if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg) | |
818 | { | |
819 | fdata->saved_gpr = reg; | |
7a78ae4e | 820 | if ((op & 0xfc1f0003) == 0xf8010000) |
98f08d3d | 821 | op &= ~3UL; |
c5aa993b JM |
822 | fdata->gpr_offset = SIGNED_SHORT (op) + offset; |
823 | } | |
824 | continue; | |
c906108c | 825 | |
ddb20c56 KB |
826 | } |
827 | else if ((op & 0xffff0000) == 0x60000000) | |
828 | { | |
96ff0de4 | 829 | /* nop */ |
ddb20c56 KB |
830 | /* Allow nops in the prologue, but do not consider them to |
831 | be part of the prologue unless followed by other prologue | |
832 | instructions. */ | |
833 | prev_insn_was_prologue_insn = 0; | |
834 | continue; | |
835 | ||
c906108c | 836 | } |
c5aa993b JM |
837 | else if ((op & 0xffff0000) == 0x3c000000) |
838 | { /* addis 0,0,NUM, used | |
839 | for >= 32k frames */ | |
840 | fdata->offset = (op & 0x0000ffff) << 16; | |
841 | fdata->frameless = 0; | |
773df3e5 | 842 | r0_contains_arg = 0; |
c5aa993b JM |
843 | continue; |
844 | ||
845 | } | |
846 | else if ((op & 0xffff0000) == 0x60000000) | |
847 | { /* ori 0,0,NUM, 2nd ha | |
848 | lf of >= 32k frames */ | |
849 | fdata->offset |= (op & 0x0000ffff); | |
850 | fdata->frameless = 0; | |
773df3e5 | 851 | r0_contains_arg = 0; |
c5aa993b JM |
852 | continue; |
853 | ||
854 | } | |
98f08d3d KB |
855 | else if (lr_reg != -1 && |
856 | /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */ | |
857 | (((op & 0xffff0000) == (lr_reg | 0xf8010000)) || | |
858 | /* stw Rx, NUM(r1) */ | |
859 | ((op & 0xffff0000) == (lr_reg | 0x90010000)) || | |
860 | /* stwu Rx, NUM(r1) */ | |
861 | ((op & 0xffff0000) == (lr_reg | 0x94010000)))) | |
862 | { /* where Rx == lr */ | |
863 | fdata->lr_offset = offset; | |
c5aa993b JM |
864 | fdata->nosavedpc = 0; |
865 | lr_reg = 0; | |
98f08d3d KB |
866 | if ((op & 0xfc000003) == 0xf8000000 || /* std */ |
867 | (op & 0xfc000000) == 0x90000000) /* stw */ | |
868 | { | |
869 | /* Does not update r1, so add displacement to lr_offset. */ | |
870 | fdata->lr_offset += SIGNED_SHORT (op); | |
871 | } | |
c5aa993b JM |
872 | continue; |
873 | ||
874 | } | |
98f08d3d KB |
875 | else if (cr_reg != -1 && |
876 | /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */ | |
877 | (((op & 0xffff0000) == (cr_reg | 0xf8010000)) || | |
878 | /* stw Rx, NUM(r1) */ | |
879 | ((op & 0xffff0000) == (cr_reg | 0x90010000)) || | |
880 | /* stwu Rx, NUM(r1) */ | |
881 | ((op & 0xffff0000) == (cr_reg | 0x94010000)))) | |
882 | { /* where Rx == cr */ | |
883 | fdata->cr_offset = offset; | |
c5aa993b | 884 | cr_reg = 0; |
98f08d3d KB |
885 | if ((op & 0xfc000003) == 0xf8000000 || |
886 | (op & 0xfc000000) == 0x90000000) | |
887 | { | |
888 | /* Does not update r1, so add displacement to cr_offset. */ | |
889 | fdata->cr_offset += SIGNED_SHORT (op); | |
890 | } | |
c5aa993b JM |
891 | continue; |
892 | ||
893 | } | |
894 | else if (op == 0x48000005) | |
895 | { /* bl .+4 used in | |
896 | -mrelocatable */ | |
897 | continue; | |
898 | ||
899 | } | |
900 | else if (op == 0x48000004) | |
901 | { /* b .+4 (xlc) */ | |
902 | break; | |
903 | ||
c5aa993b | 904 | } |
6be8bc0c EZ |
905 | else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used |
906 | in V.4 -mminimal-toc */ | |
c5aa993b JM |
907 | (op & 0xffff0000) == 0x3bde0000) |
908 | { /* addi 30,30,foo@l */ | |
909 | continue; | |
c906108c | 910 | |
c5aa993b JM |
911 | } |
912 | else if ((op & 0xfc000001) == 0x48000001) | |
913 | { /* bl foo, | |
914 | to save fprs??? */ | |
c906108c | 915 | |
c5aa993b | 916 | fdata->frameless = 0; |
6be8bc0c EZ |
917 | /* Don't skip over the subroutine call if it is not within |
918 | the first three instructions of the prologue. */ | |
c5aa993b JM |
919 | if ((pc - orig_pc) > 8) |
920 | break; | |
921 | ||
922 | op = read_memory_integer (pc + 4, 4); | |
923 | ||
6be8bc0c EZ |
924 | /* At this point, make sure this is not a trampoline |
925 | function (a function that simply calls another functions, | |
926 | and nothing else). If the next is not a nop, this branch | |
927 | was part of the function prologue. */ | |
c5aa993b JM |
928 | |
929 | if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */ | |
930 | break; /* don't skip over | |
931 | this branch */ | |
932 | continue; | |
933 | ||
c5aa993b | 934 | } |
98f08d3d KB |
935 | /* update stack pointer */ |
936 | else if ((op & 0xfc1f0000) == 0x94010000) | |
937 | { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */ | |
c5aa993b JM |
938 | fdata->frameless = 0; |
939 | fdata->offset = SIGNED_SHORT (op); | |
940 | offset = fdata->offset; | |
941 | continue; | |
c5aa993b | 942 | } |
98f08d3d KB |
943 | else if ((op & 0xfc1f016a) == 0x7c01016e) |
944 | { /* stwux rX,r1,rY */ | |
945 | /* no way to figure out what r1 is going to be */ | |
946 | fdata->frameless = 0; | |
947 | offset = fdata->offset; | |
948 | continue; | |
949 | } | |
950 | else if ((op & 0xfc1f0003) == 0xf8010001) | |
951 | { /* stdu rX,NUM(r1) */ | |
952 | fdata->frameless = 0; | |
953 | fdata->offset = SIGNED_SHORT (op & ~3UL); | |
954 | offset = fdata->offset; | |
955 | continue; | |
956 | } | |
957 | else if ((op & 0xfc1f016a) == 0x7c01016a) | |
958 | { /* stdux rX,r1,rY */ | |
959 | /* no way to figure out what r1 is going to be */ | |
c5aa993b JM |
960 | fdata->frameless = 0; |
961 | offset = fdata->offset; | |
962 | continue; | |
c5aa993b | 963 | } |
98f08d3d KB |
964 | /* Load up minimal toc pointer */ |
965 | else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */ | |
966 | (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */ | |
c5aa993b | 967 | && !minimal_toc_loaded) |
98f08d3d | 968 | { |
c5aa993b JM |
969 | minimal_toc_loaded = 1; |
970 | continue; | |
971 | ||
f6077098 KB |
972 | /* move parameters from argument registers to local variable |
973 | registers */ | |
974 | } | |
975 | else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */ | |
976 | (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */ | |
977 | (((op >> 21) & 31) <= 10) && | |
96ff0de4 | 978 | ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */ |
f6077098 KB |
979 | { |
980 | continue; | |
981 | ||
c5aa993b JM |
982 | /* store parameters in stack */ |
983 | } | |
e802b915 | 984 | /* Move parameters from argument registers to temporary register. */ |
773df3e5 | 985 | else if (store_param_on_stack_p (op, framep, &r0_contains_arg)) |
e802b915 | 986 | { |
c5aa993b JM |
987 | continue; |
988 | ||
989 | /* Set up frame pointer */ | |
990 | } | |
991 | else if (op == 0x603f0000 /* oril r31, r1, 0x0 */ | |
992 | || op == 0x7c3f0b78) | |
993 | { /* mr r31, r1 */ | |
994 | fdata->frameless = 0; | |
995 | framep = 1; | |
6f99cb26 | 996 | fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31); |
c5aa993b JM |
997 | continue; |
998 | ||
999 | /* Another way to set up the frame pointer. */ | |
1000 | } | |
1001 | else if ((op & 0xfc1fffff) == 0x38010000) | |
1002 | { /* addi rX, r1, 0x0 */ | |
1003 | fdata->frameless = 0; | |
1004 | framep = 1; | |
6f99cb26 AC |
1005 | fdata->alloca_reg = (tdep->ppc_gp0_regnum |
1006 | + ((op & ~0x38010000) >> 21)); | |
c5aa993b | 1007 | continue; |
c5aa993b | 1008 | } |
6be8bc0c EZ |
1009 | /* AltiVec related instructions. */ |
1010 | /* Store the vrsave register (spr 256) in another register for | |
1011 | later manipulation, or load a register into the vrsave | |
1012 | register. 2 instructions are used: mfvrsave and | |
1013 | mtvrsave. They are shorthand notation for mfspr Rn, SPR256 | |
1014 | and mtspr SPR256, Rn. */ | |
1015 | /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110 | |
1016 | mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */ | |
1017 | else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */ | |
1018 | { | |
1019 | vrsave_reg = GET_SRC_REG (op); | |
1020 | continue; | |
1021 | } | |
1022 | else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */ | |
1023 | { | |
1024 | continue; | |
1025 | } | |
1026 | /* Store the register where vrsave was saved to onto the stack: | |
1027 | rS is the register where vrsave was stored in a previous | |
1028 | instruction. */ | |
1029 | /* 100100 sssss 00001 dddddddd dddddddd */ | |
1030 | else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */ | |
1031 | { | |
1032 | if (vrsave_reg == GET_SRC_REG (op)) | |
1033 | { | |
1034 | fdata->vrsave_offset = SIGNED_SHORT (op) + offset; | |
1035 | vrsave_reg = -1; | |
1036 | } | |
1037 | continue; | |
1038 | } | |
1039 | /* Compute the new value of vrsave, by modifying the register | |
1040 | where vrsave was saved to. */ | |
1041 | else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */ | |
1042 | || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */ | |
1043 | { | |
1044 | continue; | |
1045 | } | |
1046 | /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first | |
1047 | in a pair of insns to save the vector registers on the | |
1048 | stack. */ | |
1049 | /* 001110 00000 00000 iiii iiii iiii iiii */ | |
96ff0de4 EZ |
1050 | /* 001110 01110 00000 iiii iiii iiii iiii */ |
1051 | else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */ | |
1052 | || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */ | |
6be8bc0c | 1053 | { |
773df3e5 JB |
1054 | if ((op & 0xffff0000) == 0x38000000) |
1055 | r0_contains_arg = 0; | |
6be8bc0c EZ |
1056 | li_found_pc = pc; |
1057 | vr_saved_offset = SIGNED_SHORT (op); | |
773df3e5 JB |
1058 | |
1059 | /* This insn by itself is not part of the prologue, unless | |
1060 | if part of the pair of insns mentioned above. So do not | |
1061 | record this insn as part of the prologue yet. */ | |
1062 | prev_insn_was_prologue_insn = 0; | |
6be8bc0c EZ |
1063 | } |
1064 | /* Store vector register S at (r31+r0) aligned to 16 bytes. */ | |
1065 | /* 011111 sssss 11111 00000 00111001110 */ | |
1066 | else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */ | |
1067 | { | |
1068 | if (pc == (li_found_pc + 4)) | |
1069 | { | |
1070 | vr_reg = GET_SRC_REG (op); | |
1071 | /* If this is the first vector reg to be saved, or if | |
1072 | it has a lower number than others previously seen, | |
1073 | reupdate the frame info. */ | |
1074 | if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg) | |
1075 | { | |
1076 | fdata->saved_vr = vr_reg; | |
1077 | fdata->vr_offset = vr_saved_offset + offset; | |
1078 | } | |
1079 | vr_saved_offset = -1; | |
1080 | vr_reg = -1; | |
1081 | li_found_pc = 0; | |
1082 | } | |
1083 | } | |
1084 | /* End AltiVec related instructions. */ | |
96ff0de4 EZ |
1085 | |
1086 | /* Start BookE related instructions. */ | |
1087 | /* Store gen register S at (r31+uimm). | |
1088 | Any register less than r13 is volatile, so we don't care. */ | |
1089 | /* 000100 sssss 11111 iiiii 01100100001 */ | |
1090 | else if (arch_info->mach == bfd_mach_ppc_e500 | |
1091 | && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */ | |
1092 | { | |
1093 | if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */ | |
1094 | { | |
1095 | unsigned int imm; | |
1096 | ev_reg = GET_SRC_REG (op); | |
1097 | imm = (op >> 11) & 0x1f; | |
1098 | ev_offset = imm * 8; | |
1099 | /* If this is the first vector reg to be saved, or if | |
1100 | it has a lower number than others previously seen, | |
1101 | reupdate the frame info. */ | |
1102 | if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg) | |
1103 | { | |
1104 | fdata->saved_ev = ev_reg; | |
1105 | fdata->ev_offset = ev_offset + offset; | |
1106 | } | |
1107 | } | |
1108 | continue; | |
1109 | } | |
1110 | /* Store gen register rS at (r1+rB). */ | |
1111 | /* 000100 sssss 00001 bbbbb 01100100000 */ | |
1112 | else if (arch_info->mach == bfd_mach_ppc_e500 | |
1113 | && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */ | |
1114 | { | |
1115 | if (pc == (li_found_pc + 4)) | |
1116 | { | |
1117 | ev_reg = GET_SRC_REG (op); | |
1118 | /* If this is the first vector reg to be saved, or if | |
1119 | it has a lower number than others previously seen, | |
1120 | reupdate the frame info. */ | |
1121 | /* We know the contents of rB from the previous instruction. */ | |
1122 | if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg) | |
1123 | { | |
1124 | fdata->saved_ev = ev_reg; | |
1125 | fdata->ev_offset = vr_saved_offset + offset; | |
1126 | } | |
1127 | vr_saved_offset = -1; | |
1128 | ev_reg = -1; | |
1129 | li_found_pc = 0; | |
1130 | } | |
1131 | continue; | |
1132 | } | |
1133 | /* Store gen register r31 at (rA+uimm). */ | |
1134 | /* 000100 11111 aaaaa iiiii 01100100001 */ | |
1135 | else if (arch_info->mach == bfd_mach_ppc_e500 | |
1136 | && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */ | |
1137 | { | |
1138 | /* Wwe know that the source register is 31 already, but | |
1139 | it can't hurt to compute it. */ | |
1140 | ev_reg = GET_SRC_REG (op); | |
1141 | ev_offset = ((op >> 11) & 0x1f) * 8; | |
1142 | /* If this is the first vector reg to be saved, or if | |
1143 | it has a lower number than others previously seen, | |
1144 | reupdate the frame info. */ | |
1145 | if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg) | |
1146 | { | |
1147 | fdata->saved_ev = ev_reg; | |
1148 | fdata->ev_offset = ev_offset + offset; | |
1149 | } | |
1150 | ||
1151 | continue; | |
1152 | } | |
1153 | /* Store gen register S at (r31+r0). | |
1154 | Store param on stack when offset from SP bigger than 4 bytes. */ | |
1155 | /* 000100 sssss 11111 00000 01100100000 */ | |
1156 | else if (arch_info->mach == bfd_mach_ppc_e500 | |
1157 | && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */ | |
1158 | { | |
1159 | if (pc == (li_found_pc + 4)) | |
1160 | { | |
1161 | if ((op & 0x03e00000) >= 0x01a00000) | |
1162 | { | |
1163 | ev_reg = GET_SRC_REG (op); | |
1164 | /* If this is the first vector reg to be saved, or if | |
1165 | it has a lower number than others previously seen, | |
1166 | reupdate the frame info. */ | |
1167 | /* We know the contents of r0 from the previous | |
1168 | instruction. */ | |
1169 | if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg) | |
1170 | { | |
1171 | fdata->saved_ev = ev_reg; | |
1172 | fdata->ev_offset = vr_saved_offset + offset; | |
1173 | } | |
1174 | ev_reg = -1; | |
1175 | } | |
1176 | vr_saved_offset = -1; | |
1177 | li_found_pc = 0; | |
1178 | continue; | |
1179 | } | |
1180 | } | |
1181 | /* End BookE related instructions. */ | |
1182 | ||
c5aa993b JM |
1183 | else |
1184 | { | |
55d05f3b KB |
1185 | /* Not a recognized prologue instruction. |
1186 | Handle optimizer code motions into the prologue by continuing | |
1187 | the search if we have no valid frame yet or if the return | |
1188 | address is not yet saved in the frame. */ | |
1189 | if (fdata->frameless == 0 | |
1190 | && (lr_reg == -1 || fdata->nosavedpc == 0)) | |
1191 | break; | |
1192 | ||
1193 | if (op == 0x4e800020 /* blr */ | |
1194 | || op == 0x4e800420) /* bctr */ | |
1195 | /* Do not scan past epilogue in frameless functions or | |
1196 | trampolines. */ | |
1197 | break; | |
1198 | if ((op & 0xf4000000) == 0x40000000) /* bxx */ | |
64366f1c | 1199 | /* Never skip branches. */ |
55d05f3b KB |
1200 | break; |
1201 | ||
1202 | if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns) | |
1203 | /* Do not scan too many insns, scanning insns is expensive with | |
1204 | remote targets. */ | |
1205 | break; | |
1206 | ||
1207 | /* Continue scanning. */ | |
1208 | prev_insn_was_prologue_insn = 0; | |
1209 | continue; | |
c5aa993b | 1210 | } |
c906108c SS |
1211 | } |
1212 | ||
1213 | #if 0 | |
1214 | /* I have problems with skipping over __main() that I need to address | |
1215 | * sometime. Previously, I used to use misc_function_vector which | |
1216 | * didn't work as well as I wanted to be. -MGO */ | |
1217 | ||
1218 | /* If the first thing after skipping a prolog is a branch to a function, | |
1219 | this might be a call to an initializer in main(), introduced by gcc2. | |
64366f1c | 1220 | We'd like to skip over it as well. Fortunately, xlc does some extra |
c906108c | 1221 | work before calling a function right after a prologue, thus we can |
64366f1c | 1222 | single out such gcc2 behaviour. */ |
c906108c | 1223 | |
c906108c | 1224 | |
c5aa993b JM |
1225 | if ((op & 0xfc000001) == 0x48000001) |
1226 | { /* bl foo, an initializer function? */ | |
1227 | op = read_memory_integer (pc + 4, 4); | |
1228 | ||
1229 | if (op == 0x4def7b82) | |
1230 | { /* cror 0xf, 0xf, 0xf (nop) */ | |
c906108c | 1231 | |
64366f1c EZ |
1232 | /* Check and see if we are in main. If so, skip over this |
1233 | initializer function as well. */ | |
c906108c | 1234 | |
c5aa993b | 1235 | tmp = find_pc_misc_function (pc); |
6314a349 AC |
1236 | if (tmp >= 0 |
1237 | && strcmp (misc_function_vector[tmp].name, main_name ()) == 0) | |
c5aa993b JM |
1238 | return pc + 8; |
1239 | } | |
c906108c | 1240 | } |
c906108c | 1241 | #endif /* 0 */ |
c5aa993b JM |
1242 | |
1243 | fdata->offset = -fdata->offset; | |
ddb20c56 | 1244 | return last_prologue_pc; |
c906108c SS |
1245 | } |
1246 | ||
1247 | ||
1248 | /************************************************************************* | |
f6077098 | 1249 | Support for creating pushing a dummy frame into the stack, and popping |
c906108c SS |
1250 | frames, etc. |
1251 | *************************************************************************/ | |
1252 | ||
c906108c | 1253 | |
11269d7e AC |
1254 | /* All the ABI's require 16 byte alignment. */ |
1255 | static CORE_ADDR | |
1256 | rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr) | |
1257 | { | |
1258 | return (addr & -16); | |
1259 | } | |
1260 | ||
7a78ae4e | 1261 | /* Pass the arguments in either registers, or in the stack. In RS/6000, |
c906108c SS |
1262 | the first eight words of the argument list (that might be less than |
1263 | eight parameters if some parameters occupy more than one word) are | |
7a78ae4e | 1264 | passed in r3..r10 registers. float and double parameters are |
64366f1c EZ |
1265 | passed in fpr's, in addition to that. Rest of the parameters if any |
1266 | are passed in user stack. There might be cases in which half of the | |
c906108c SS |
1267 | parameter is copied into registers, the other half is pushed into |
1268 | stack. | |
1269 | ||
7a78ae4e ND |
1270 | Stack must be aligned on 64-bit boundaries when synthesizing |
1271 | function calls. | |
1272 | ||
c906108c SS |
1273 | If the function is returning a structure, then the return address is passed |
1274 | in r3, then the first 7 words of the parameters can be passed in registers, | |
64366f1c | 1275 | starting from r4. */ |
c906108c | 1276 | |
7a78ae4e | 1277 | static CORE_ADDR |
7d9b040b | 1278 | rs6000_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
77b2b6d4 AC |
1279 | struct regcache *regcache, CORE_ADDR bp_addr, |
1280 | int nargs, struct value **args, CORE_ADDR sp, | |
1281 | int struct_return, CORE_ADDR struct_addr) | |
c906108c | 1282 | { |
7a41266b | 1283 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
c906108c SS |
1284 | int ii; |
1285 | int len = 0; | |
c5aa993b JM |
1286 | int argno; /* current argument number */ |
1287 | int argbytes; /* current argument byte */ | |
1288 | char tmp_buffer[50]; | |
1289 | int f_argno = 0; /* current floating point argno */ | |
21283beb | 1290 | int wordsize = gdbarch_tdep (current_gdbarch)->wordsize; |
7d9b040b | 1291 | CORE_ADDR func_addr = find_function_addr (function, NULL); |
c906108c | 1292 | |
ea7c478f | 1293 | struct value *arg = 0; |
c906108c SS |
1294 | struct type *type; |
1295 | ||
1296 | CORE_ADDR saved_sp; | |
1297 | ||
383f0f5b JB |
1298 | /* The calling convention this function implements assumes the |
1299 | processor has floating-point registers. We shouldn't be using it | |
1300 | on PPC variants that lack them. */ | |
1301 | gdb_assert (ppc_floating_point_unit_p (current_gdbarch)); | |
1302 | ||
64366f1c | 1303 | /* The first eight words of ther arguments are passed in registers. |
7a41266b AC |
1304 | Copy them appropriately. */ |
1305 | ii = 0; | |
1306 | ||
1307 | /* If the function is returning a `struct', then the first word | |
1308 | (which will be passed in r3) is used for struct return address. | |
1309 | In that case we should advance one word and start from r4 | |
1310 | register to copy parameters. */ | |
1311 | if (struct_return) | |
1312 | { | |
1313 | regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3, | |
1314 | struct_addr); | |
1315 | ii++; | |
1316 | } | |
c906108c SS |
1317 | |
1318 | /* | |
c5aa993b JM |
1319 | effectively indirect call... gcc does... |
1320 | ||
1321 | return_val example( float, int); | |
1322 | ||
1323 | eabi: | |
1324 | float in fp0, int in r3 | |
1325 | offset of stack on overflow 8/16 | |
1326 | for varargs, must go by type. | |
1327 | power open: | |
1328 | float in r3&r4, int in r5 | |
1329 | offset of stack on overflow different | |
1330 | both: | |
1331 | return in r3 or f0. If no float, must study how gcc emulates floats; | |
1332 | pay attention to arg promotion. | |
1333 | User may have to cast\args to handle promotion correctly | |
1334 | since gdb won't know if prototype supplied or not. | |
1335 | */ | |
c906108c | 1336 | |
c5aa993b JM |
1337 | for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii) |
1338 | { | |
12c266ea | 1339 | int reg_size = DEPRECATED_REGISTER_RAW_SIZE (ii + 3); |
c5aa993b JM |
1340 | |
1341 | arg = args[argno]; | |
1342 | type = check_typedef (VALUE_TYPE (arg)); | |
1343 | len = TYPE_LENGTH (type); | |
1344 | ||
1345 | if (TYPE_CODE (type) == TYPE_CODE_FLT) | |
1346 | { | |
1347 | ||
64366f1c | 1348 | /* Floating point arguments are passed in fpr's, as well as gpr's. |
c5aa993b | 1349 | There are 13 fpr's reserved for passing parameters. At this point |
64366f1c | 1350 | there is no way we would run out of them. */ |
c5aa993b JM |
1351 | |
1352 | if (len > 8) | |
c2b6b4aa JB |
1353 | printf_unfiltered ("Fatal Error: a floating point parameter " |
1354 | "#%d with a size > 8 is found!\n", argno); | |
c5aa993b | 1355 | |
366f009f JB |
1356 | memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE |
1357 | (tdep->ppc_fp0_regnum + 1 + f_argno)], | |
c5aa993b JM |
1358 | VALUE_CONTENTS (arg), |
1359 | len); | |
1360 | ++f_argno; | |
1361 | } | |
1362 | ||
f6077098 | 1363 | if (len > reg_size) |
c5aa993b JM |
1364 | { |
1365 | ||
64366f1c | 1366 | /* Argument takes more than one register. */ |
c5aa993b JM |
1367 | while (argbytes < len) |
1368 | { | |
62700349 | 1369 | memset (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)], 0, |
524d7c18 | 1370 | reg_size); |
62700349 | 1371 | memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)], |
c5aa993b | 1372 | ((char *) VALUE_CONTENTS (arg)) + argbytes, |
f6077098 KB |
1373 | (len - argbytes) > reg_size |
1374 | ? reg_size : len - argbytes); | |
1375 | ++ii, argbytes += reg_size; | |
c5aa993b JM |
1376 | |
1377 | if (ii >= 8) | |
1378 | goto ran_out_of_registers_for_arguments; | |
1379 | } | |
1380 | argbytes = 0; | |
1381 | --ii; | |
1382 | } | |
1383 | else | |
64366f1c EZ |
1384 | { |
1385 | /* Argument can fit in one register. No problem. */ | |
d7449b42 | 1386 | int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0; |
62700349 AC |
1387 | memset (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)], 0, reg_size); |
1388 | memcpy ((char *)&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)] + adj, | |
f6077098 | 1389 | VALUE_CONTENTS (arg), len); |
c5aa993b JM |
1390 | } |
1391 | ++argno; | |
c906108c | 1392 | } |
c906108c SS |
1393 | |
1394 | ran_out_of_registers_for_arguments: | |
1395 | ||
7a78ae4e | 1396 | saved_sp = read_sp (); |
cc9836a8 | 1397 | |
64366f1c | 1398 | /* Location for 8 parameters are always reserved. */ |
7a78ae4e | 1399 | sp -= wordsize * 8; |
f6077098 | 1400 | |
64366f1c | 1401 | /* Another six words for back chain, TOC register, link register, etc. */ |
7a78ae4e | 1402 | sp -= wordsize * 6; |
f6077098 | 1403 | |
64366f1c | 1404 | /* Stack pointer must be quadword aligned. */ |
7a78ae4e | 1405 | sp &= -16; |
c906108c | 1406 | |
64366f1c EZ |
1407 | /* If there are more arguments, allocate space for them in |
1408 | the stack, then push them starting from the ninth one. */ | |
c906108c | 1409 | |
c5aa993b JM |
1410 | if ((argno < nargs) || argbytes) |
1411 | { | |
1412 | int space = 0, jj; | |
c906108c | 1413 | |
c5aa993b JM |
1414 | if (argbytes) |
1415 | { | |
1416 | space += ((len - argbytes + 3) & -4); | |
1417 | jj = argno + 1; | |
1418 | } | |
1419 | else | |
1420 | jj = argno; | |
c906108c | 1421 | |
c5aa993b JM |
1422 | for (; jj < nargs; ++jj) |
1423 | { | |
ea7c478f | 1424 | struct value *val = args[jj]; |
c5aa993b JM |
1425 | space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4; |
1426 | } | |
c906108c | 1427 | |
64366f1c | 1428 | /* Add location required for the rest of the parameters. */ |
f6077098 | 1429 | space = (space + 15) & -16; |
c5aa993b | 1430 | sp -= space; |
c906108c | 1431 | |
7aea86e6 AC |
1432 | /* This is another instance we need to be concerned about |
1433 | securing our stack space. If we write anything underneath %sp | |
1434 | (r1), we might conflict with the kernel who thinks he is free | |
1435 | to use this area. So, update %sp first before doing anything | |
1436 | else. */ | |
1437 | ||
1438 | regcache_raw_write_signed (regcache, SP_REGNUM, sp); | |
1439 | ||
64366f1c EZ |
1440 | /* If the last argument copied into the registers didn't fit there |
1441 | completely, push the rest of it into stack. */ | |
c906108c | 1442 | |
c5aa993b JM |
1443 | if (argbytes) |
1444 | { | |
1445 | write_memory (sp + 24 + (ii * 4), | |
1446 | ((char *) VALUE_CONTENTS (arg)) + argbytes, | |
1447 | len - argbytes); | |
1448 | ++argno; | |
1449 | ii += ((len - argbytes + 3) & -4) / 4; | |
1450 | } | |
c906108c | 1451 | |
64366f1c | 1452 | /* Push the rest of the arguments into stack. */ |
c5aa993b JM |
1453 | for (; argno < nargs; ++argno) |
1454 | { | |
c906108c | 1455 | |
c5aa993b JM |
1456 | arg = args[argno]; |
1457 | type = check_typedef (VALUE_TYPE (arg)); | |
1458 | len = TYPE_LENGTH (type); | |
c906108c SS |
1459 | |
1460 | ||
64366f1c EZ |
1461 | /* Float types should be passed in fpr's, as well as in the |
1462 | stack. */ | |
c5aa993b JM |
1463 | if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13) |
1464 | { | |
c906108c | 1465 | |
c5aa993b | 1466 | if (len > 8) |
c2b6b4aa JB |
1467 | printf_unfiltered ("Fatal Error: a floating point parameter" |
1468 | " #%d with a size > 8 is found!\n", argno); | |
c906108c | 1469 | |
366f009f JB |
1470 | memcpy (&(deprecated_registers |
1471 | [DEPRECATED_REGISTER_BYTE | |
1472 | (tdep->ppc_fp0_regnum + 1 + f_argno)]), | |
c5aa993b JM |
1473 | VALUE_CONTENTS (arg), |
1474 | len); | |
1475 | ++f_argno; | |
1476 | } | |
c906108c | 1477 | |
c2b6b4aa JB |
1478 | write_memory (sp + 24 + (ii * 4), |
1479 | (char *) VALUE_CONTENTS (arg), | |
1480 | len); | |
c5aa993b JM |
1481 | ii += ((len + 3) & -4) / 4; |
1482 | } | |
c906108c | 1483 | } |
c906108c | 1484 | |
69517000 | 1485 | /* Set the stack pointer. According to the ABI, the SP is meant to |
7aea86e6 AC |
1486 | be set _before_ the corresponding stack space is used. On AIX, |
1487 | this even applies when the target has been completely stopped! | |
1488 | Not doing this can lead to conflicts with the kernel which thinks | |
1489 | that it still has control over this not-yet-allocated stack | |
1490 | region. */ | |
33a7c2fc AC |
1491 | regcache_raw_write_signed (regcache, SP_REGNUM, sp); |
1492 | ||
7aea86e6 AC |
1493 | /* Set back chain properly. */ |
1494 | store_unsigned_integer (tmp_buffer, 4, saved_sp); | |
1495 | write_memory (sp, tmp_buffer, 4); | |
1496 | ||
e56a0ecc AC |
1497 | /* Point the inferior function call's return address at the dummy's |
1498 | breakpoint. */ | |
1499 | regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr); | |
1500 | ||
794a477a AC |
1501 | /* Set the TOC register, get the value from the objfile reader |
1502 | which, in turn, gets it from the VMAP table. */ | |
1503 | if (rs6000_find_toc_address_hook != NULL) | |
1504 | { | |
1505 | CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr); | |
1506 | regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue); | |
1507 | } | |
1508 | ||
c906108c SS |
1509 | target_store_registers (-1); |
1510 | return sp; | |
1511 | } | |
c906108c | 1512 | |
b9ff3018 AC |
1513 | /* PowerOpen always puts structures in memory. Vectors, which were |
1514 | added later, do get returned in a register though. */ | |
1515 | ||
1516 | static int | |
1517 | rs6000_use_struct_convention (int gcc_p, struct type *value_type) | |
1518 | { | |
1519 | if ((TYPE_LENGTH (value_type) == 16 || TYPE_LENGTH (value_type) == 8) | |
1520 | && TYPE_VECTOR (value_type)) | |
1521 | return 0; | |
1522 | return 1; | |
1523 | } | |
1524 | ||
7a78ae4e ND |
1525 | static void |
1526 | rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf) | |
c906108c SS |
1527 | { |
1528 | int offset = 0; | |
ace1378a | 1529 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
c906108c | 1530 | |
383f0f5b JB |
1531 | /* The calling convention this function implements assumes the |
1532 | processor has floating-point registers. We shouldn't be using it | |
1533 | on PPC variants that lack them. */ | |
1534 | gdb_assert (ppc_floating_point_unit_p (current_gdbarch)); | |
1535 | ||
c5aa993b JM |
1536 | if (TYPE_CODE (valtype) == TYPE_CODE_FLT) |
1537 | { | |
c906108c | 1538 | |
c5aa993b JM |
1539 | /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes. |
1540 | We need to truncate the return value into float size (4 byte) if | |
64366f1c | 1541 | necessary. */ |
c906108c | 1542 | |
65951cd9 | 1543 | convert_typed_floating (®buf[DEPRECATED_REGISTER_BYTE |
366f009f | 1544 | (tdep->ppc_fp0_regnum + 1)], |
65951cd9 JG |
1545 | builtin_type_double, |
1546 | valbuf, | |
1547 | valtype); | |
c5aa993b | 1548 | } |
ace1378a EZ |
1549 | else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY |
1550 | && TYPE_LENGTH (valtype) == 16 | |
1551 | && TYPE_VECTOR (valtype)) | |
1552 | { | |
62700349 | 1553 | memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (tdep->ppc_vr0_regnum + 2), |
ace1378a EZ |
1554 | TYPE_LENGTH (valtype)); |
1555 | } | |
c5aa993b JM |
1556 | else |
1557 | { | |
1558 | /* return value is copied starting from r3. */ | |
d7449b42 | 1559 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG |
12c266ea AC |
1560 | && TYPE_LENGTH (valtype) < DEPRECATED_REGISTER_RAW_SIZE (3)) |
1561 | offset = DEPRECATED_REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype); | |
c5aa993b JM |
1562 | |
1563 | memcpy (valbuf, | |
62700349 | 1564 | regbuf + DEPRECATED_REGISTER_BYTE (3) + offset, |
c906108c | 1565 | TYPE_LENGTH (valtype)); |
c906108c | 1566 | } |
c906108c SS |
1567 | } |
1568 | ||
977adac5 ND |
1569 | /* Return whether handle_inferior_event() should proceed through code |
1570 | starting at PC in function NAME when stepping. | |
1571 | ||
1572 | The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to | |
1573 | handle memory references that are too distant to fit in instructions | |
1574 | generated by the compiler. For example, if 'foo' in the following | |
1575 | instruction: | |
1576 | ||
1577 | lwz r9,foo(r2) | |
1578 | ||
1579 | is greater than 32767, the linker might replace the lwz with a branch to | |
1580 | somewhere in @FIX1 that does the load in 2 instructions and then branches | |
1581 | back to where execution should continue. | |
1582 | ||
1583 | GDB should silently step over @FIX code, just like AIX dbx does. | |
1584 | Unfortunately, the linker uses the "b" instruction for the branches, | |
1585 | meaning that the link register doesn't get set. Therefore, GDB's usual | |
1586 | step_over_function() mechanism won't work. | |
1587 | ||
1588 | Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks | |
1589 | in handle_inferior_event() to skip past @FIX code. */ | |
1590 | ||
1591 | int | |
1592 | rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name) | |
1593 | { | |
1594 | return name && !strncmp (name, "@FIX", 4); | |
1595 | } | |
1596 | ||
1597 | /* Skip code that the user doesn't want to see when stepping: | |
1598 | ||
1599 | 1. Indirect function calls use a piece of trampoline code to do context | |
1600 | switching, i.e. to set the new TOC table. Skip such code if we are on | |
1601 | its first instruction (as when we have single-stepped to here). | |
1602 | ||
1603 | 2. Skip shared library trampoline code (which is different from | |
c906108c | 1604 | indirect function call trampolines). |
977adac5 ND |
1605 | |
1606 | 3. Skip bigtoc fixup code. | |
1607 | ||
c906108c | 1608 | Result is desired PC to step until, or NULL if we are not in |
977adac5 | 1609 | code that should be skipped. */ |
c906108c SS |
1610 | |
1611 | CORE_ADDR | |
7a78ae4e | 1612 | rs6000_skip_trampoline_code (CORE_ADDR pc) |
c906108c | 1613 | { |
52f0bd74 | 1614 | unsigned int ii, op; |
977adac5 | 1615 | int rel; |
c906108c | 1616 | CORE_ADDR solib_target_pc; |
977adac5 | 1617 | struct minimal_symbol *msymbol; |
c906108c | 1618 | |
c5aa993b JM |
1619 | static unsigned trampoline_code[] = |
1620 | { | |
1621 | 0x800b0000, /* l r0,0x0(r11) */ | |
1622 | 0x90410014, /* st r2,0x14(r1) */ | |
1623 | 0x7c0903a6, /* mtctr r0 */ | |
1624 | 0x804b0004, /* l r2,0x4(r11) */ | |
1625 | 0x816b0008, /* l r11,0x8(r11) */ | |
1626 | 0x4e800420, /* bctr */ | |
1627 | 0x4e800020, /* br */ | |
1628 | 0 | |
c906108c SS |
1629 | }; |
1630 | ||
977adac5 ND |
1631 | /* Check for bigtoc fixup code. */ |
1632 | msymbol = lookup_minimal_symbol_by_pc (pc); | |
22abf04a | 1633 | if (msymbol && rs6000_in_solib_return_trampoline (pc, DEPRECATED_SYMBOL_NAME (msymbol))) |
977adac5 ND |
1634 | { |
1635 | /* Double-check that the third instruction from PC is relative "b". */ | |
1636 | op = read_memory_integer (pc + 8, 4); | |
1637 | if ((op & 0xfc000003) == 0x48000000) | |
1638 | { | |
1639 | /* Extract bits 6-29 as a signed 24-bit relative word address and | |
1640 | add it to the containing PC. */ | |
1641 | rel = ((int)(op << 6) >> 6); | |
1642 | return pc + 8 + rel; | |
1643 | } | |
1644 | } | |
1645 | ||
c906108c SS |
1646 | /* If pc is in a shared library trampoline, return its target. */ |
1647 | solib_target_pc = find_solib_trampoline_target (pc); | |
1648 | if (solib_target_pc) | |
1649 | return solib_target_pc; | |
1650 | ||
c5aa993b JM |
1651 | for (ii = 0; trampoline_code[ii]; ++ii) |
1652 | { | |
1653 | op = read_memory_integer (pc + (ii * 4), 4); | |
1654 | if (op != trampoline_code[ii]) | |
1655 | return 0; | |
1656 | } | |
1657 | ii = read_register (11); /* r11 holds destination addr */ | |
21283beb | 1658 | pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */ |
c906108c SS |
1659 | return pc; |
1660 | } | |
1661 | ||
7a78ae4e | 1662 | /* Return the size of register REG when words are WORDSIZE bytes long. If REG |
64366f1c | 1663 | isn't available with that word size, return 0. */ |
7a78ae4e ND |
1664 | |
1665 | static int | |
1666 | regsize (const struct reg *reg, int wordsize) | |
1667 | { | |
1668 | return wordsize == 8 ? reg->sz64 : reg->sz32; | |
1669 | } | |
1670 | ||
1671 | /* Return the name of register number N, or null if no such register exists | |
64366f1c | 1672 | in the current architecture. */ |
7a78ae4e | 1673 | |
fa88f677 | 1674 | static const char * |
7a78ae4e ND |
1675 | rs6000_register_name (int n) |
1676 | { | |
21283beb | 1677 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
7a78ae4e ND |
1678 | const struct reg *reg = tdep->regs + n; |
1679 | ||
1680 | if (!regsize (reg, tdep->wordsize)) | |
1681 | return NULL; | |
1682 | return reg->name; | |
1683 | } | |
1684 | ||
7a78ae4e ND |
1685 | /* Return the GDB type object for the "standard" data type |
1686 | of data in register N. */ | |
1687 | ||
1688 | static struct type * | |
691d145a | 1689 | rs6000_register_type (struct gdbarch *gdbarch, int n) |
7a78ae4e | 1690 | { |
691d145a | 1691 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
7a78ae4e ND |
1692 | const struct reg *reg = tdep->regs + n; |
1693 | ||
1fcc0bb8 EZ |
1694 | if (reg->fpr) |
1695 | return builtin_type_double; | |
1696 | else | |
1697 | { | |
1698 | int size = regsize (reg, tdep->wordsize); | |
1699 | switch (size) | |
1700 | { | |
449a5da4 AC |
1701 | case 0: |
1702 | return builtin_type_int0; | |
1703 | case 4: | |
ed6edd9b | 1704 | return builtin_type_uint32; |
1fcc0bb8 | 1705 | case 8: |
c8001721 EZ |
1706 | if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum) |
1707 | return builtin_type_vec64; | |
1708 | else | |
ed6edd9b | 1709 | return builtin_type_uint64; |
1fcc0bb8 EZ |
1710 | break; |
1711 | case 16: | |
08cf96df | 1712 | return builtin_type_vec128; |
1fcc0bb8 EZ |
1713 | break; |
1714 | default: | |
449a5da4 AC |
1715 | internal_error (__FILE__, __LINE__, "Register %d size %d unknown", |
1716 | n, size); | |
1fcc0bb8 EZ |
1717 | } |
1718 | } | |
7a78ae4e ND |
1719 | } |
1720 | ||
691d145a | 1721 | /* The register format for RS/6000 floating point registers is always |
64366f1c | 1722 | double, we need a conversion if the memory format is float. */ |
7a78ae4e ND |
1723 | |
1724 | static int | |
691d145a | 1725 | rs6000_convert_register_p (int regnum, struct type *type) |
7a78ae4e | 1726 | { |
691d145a JB |
1727 | const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum; |
1728 | ||
1729 | return (reg->fpr | |
1730 | && TYPE_CODE (type) == TYPE_CODE_FLT | |
1731 | && TYPE_LENGTH (type) != TYPE_LENGTH (builtin_type_double)); | |
7a78ae4e ND |
1732 | } |
1733 | ||
7a78ae4e | 1734 | static void |
691d145a JB |
1735 | rs6000_register_to_value (struct frame_info *frame, |
1736 | int regnum, | |
1737 | struct type *type, | |
1738 | void *to) | |
7a78ae4e | 1739 | { |
691d145a JB |
1740 | const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum; |
1741 | char from[MAX_REGISTER_SIZE]; | |
1742 | ||
1743 | gdb_assert (reg->fpr); | |
1744 | gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT); | |
7a78ae4e | 1745 | |
691d145a JB |
1746 | get_frame_register (frame, regnum, from); |
1747 | convert_typed_floating (from, builtin_type_double, to, type); | |
1748 | } | |
7a292a7a | 1749 | |
7a78ae4e | 1750 | static void |
691d145a JB |
1751 | rs6000_value_to_register (struct frame_info *frame, |
1752 | int regnum, | |
1753 | struct type *type, | |
1754 | const void *from) | |
7a78ae4e | 1755 | { |
691d145a JB |
1756 | const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum; |
1757 | char to[MAX_REGISTER_SIZE]; | |
1758 | ||
1759 | gdb_assert (reg->fpr); | |
1760 | gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT); | |
1761 | ||
1762 | convert_typed_floating (from, type, to, builtin_type_double); | |
1763 | put_frame_register (frame, regnum, to); | |
7a78ae4e | 1764 | } |
c906108c | 1765 | |
c8001721 EZ |
1766 | static void |
1767 | e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache, | |
1768 | int reg_nr, void *buffer) | |
1769 | { | |
1770 | int base_regnum; | |
1771 | int offset = 0; | |
d9d9c31f | 1772 | char temp_buffer[MAX_REGISTER_SIZE]; |
c8001721 EZ |
1773 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
1774 | ||
1775 | if (reg_nr >= tdep->ppc_gp0_regnum | |
8bf659e8 | 1776 | && reg_nr < tdep->ppc_gp0_regnum + ppc_num_gprs) |
c8001721 EZ |
1777 | { |
1778 | base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum; | |
1779 | ||
1780 | /* Build the value in the provided buffer. */ | |
1781 | /* Read the raw register of which this one is the lower portion. */ | |
1782 | regcache_raw_read (regcache, base_regnum, temp_buffer); | |
1783 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) | |
1784 | offset = 4; | |
1785 | memcpy ((char *) buffer, temp_buffer + offset, 4); | |
1786 | } | |
1787 | } | |
1788 | ||
1789 | static void | |
1790 | e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache, | |
1791 | int reg_nr, const void *buffer) | |
1792 | { | |
1793 | int base_regnum; | |
1794 | int offset = 0; | |
d9d9c31f | 1795 | char temp_buffer[MAX_REGISTER_SIZE]; |
c8001721 EZ |
1796 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
1797 | ||
1798 | if (reg_nr >= tdep->ppc_gp0_regnum | |
8bf659e8 | 1799 | && reg_nr < tdep->ppc_gp0_regnum + ppc_num_gprs) |
c8001721 EZ |
1800 | { |
1801 | base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum; | |
1802 | /* reg_nr is 32 bit here, and base_regnum is 64 bits. */ | |
1803 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) | |
1804 | offset = 4; | |
1805 | ||
1806 | /* Let's read the value of the base register into a temporary | |
1807 | buffer, so that overwriting the last four bytes with the new | |
1808 | value of the pseudo will leave the upper 4 bytes unchanged. */ | |
1809 | regcache_raw_read (regcache, base_regnum, temp_buffer); | |
1810 | ||
1811 | /* Write as an 8 byte quantity. */ | |
1812 | memcpy (temp_buffer + offset, (char *) buffer, 4); | |
1813 | regcache_raw_write (regcache, base_regnum, temp_buffer); | |
1814 | } | |
1815 | } | |
1816 | ||
18ed0c4e | 1817 | /* Convert a DBX STABS register number to a GDB register number. */ |
c8001721 | 1818 | static int |
18ed0c4e | 1819 | rs6000_stab_reg_to_regnum (int num) |
c8001721 | 1820 | { |
9f744501 | 1821 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
c8001721 | 1822 | |
9f744501 JB |
1823 | if (0 <= num && num <= 31) |
1824 | return tdep->ppc_gp0_regnum + num; | |
1825 | else if (32 <= num && num <= 63) | |
383f0f5b JB |
1826 | /* FIXME: jimb/2004-05-05: What should we do when the debug info |
1827 | specifies registers the architecture doesn't have? Our | |
1828 | callers don't check the value we return. */ | |
366f009f | 1829 | return tdep->ppc_fp0_regnum + (num - 32); |
18ed0c4e JB |
1830 | else if (77 <= num && num <= 108) |
1831 | return tdep->ppc_vr0_regnum + (num - 77); | |
9f744501 JB |
1832 | else if (1200 <= num && num < 1200 + 32) |
1833 | return tdep->ppc_ev0_regnum + (num - 1200); | |
1834 | else | |
1835 | switch (num) | |
1836 | { | |
1837 | case 64: | |
1838 | return tdep->ppc_mq_regnum; | |
1839 | case 65: | |
1840 | return tdep->ppc_lr_regnum; | |
1841 | case 66: | |
1842 | return tdep->ppc_ctr_regnum; | |
1843 | case 76: | |
1844 | return tdep->ppc_xer_regnum; | |
1845 | case 109: | |
1846 | return tdep->ppc_vrsave_regnum; | |
18ed0c4e JB |
1847 | case 110: |
1848 | return tdep->ppc_vrsave_regnum - 1; /* vscr */ | |
867e2dc5 | 1849 | case 111: |
18ed0c4e | 1850 | return tdep->ppc_acc_regnum; |
867e2dc5 | 1851 | case 112: |
18ed0c4e | 1852 | return tdep->ppc_spefscr_regnum; |
9f744501 JB |
1853 | default: |
1854 | return num; | |
1855 | } | |
18ed0c4e | 1856 | } |
9f744501 | 1857 | |
9f744501 | 1858 | |
18ed0c4e JB |
1859 | /* Convert a Dwarf 2 register number to a GDB register number. */ |
1860 | static int | |
1861 | rs6000_dwarf2_reg_to_regnum (int num) | |
1862 | { | |
1863 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); | |
9f744501 | 1864 | |
18ed0c4e JB |
1865 | if (0 <= num && num <= 31) |
1866 | return tdep->ppc_gp0_regnum + num; | |
1867 | else if (32 <= num && num <= 63) | |
1868 | /* FIXME: jimb/2004-05-05: What should we do when the debug info | |
1869 | specifies registers the architecture doesn't have? Our | |
1870 | callers don't check the value we return. */ | |
1871 | return tdep->ppc_fp0_regnum + (num - 32); | |
1872 | else if (1124 <= num && num < 1124 + 32) | |
1873 | return tdep->ppc_vr0_regnum + (num - 1124); | |
1874 | else if (1200 <= num && num < 1200 + 32) | |
1875 | return tdep->ppc_ev0_regnum + (num - 1200); | |
1876 | else | |
1877 | switch (num) | |
1878 | { | |
1879 | case 67: | |
1880 | return tdep->ppc_vrsave_regnum - 1; /* vscr */ | |
1881 | case 99: | |
1882 | return tdep->ppc_acc_regnum; | |
1883 | case 100: | |
1884 | return tdep->ppc_mq_regnum; | |
1885 | case 101: | |
1886 | return tdep->ppc_xer_regnum; | |
1887 | case 108: | |
1888 | return tdep->ppc_lr_regnum; | |
1889 | case 109: | |
1890 | return tdep->ppc_ctr_regnum; | |
1891 | case 356: | |
1892 | return tdep->ppc_vrsave_regnum; | |
1893 | case 612: | |
1894 | return tdep->ppc_spefscr_regnum; | |
1895 | default: | |
1896 | return num; | |
1897 | } | |
2188cbdd EZ |
1898 | } |
1899 | ||
18ed0c4e | 1900 | |
7a78ae4e | 1901 | static void |
a3c001ce JB |
1902 | rs6000_store_return_value (struct type *type, |
1903 | struct regcache *regcache, | |
1904 | const void *valbuf) | |
7a78ae4e | 1905 | { |
a3c001ce JB |
1906 | struct gdbarch *gdbarch = get_regcache_arch (regcache); |
1907 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
1908 | int regnum = -1; | |
ace1378a | 1909 | |
383f0f5b JB |
1910 | /* The calling convention this function implements assumes the |
1911 | processor has floating-point registers. We shouldn't be using it | |
1912 | on PPC variants that lack them. */ | |
a3c001ce | 1913 | gdb_assert (ppc_floating_point_unit_p (gdbarch)); |
383f0f5b | 1914 | |
7a78ae4e | 1915 | if (TYPE_CODE (type) == TYPE_CODE_FLT) |
7a78ae4e ND |
1916 | /* Floating point values are returned starting from FPR1 and up. |
1917 | Say a double_double_double type could be returned in | |
64366f1c | 1918 | FPR1/FPR2/FPR3 triple. */ |
a3c001ce | 1919 | regnum = tdep->ppc_fp0_regnum + 1; |
ace1378a EZ |
1920 | else if (TYPE_CODE (type) == TYPE_CODE_ARRAY) |
1921 | { | |
1922 | if (TYPE_LENGTH (type) == 16 | |
1923 | && TYPE_VECTOR (type)) | |
a3c001ce JB |
1924 | regnum = tdep->ppc_vr0_regnum + 2; |
1925 | else | |
1926 | gdb_assert (0); | |
ace1378a | 1927 | } |
7a78ae4e | 1928 | else |
64366f1c | 1929 | /* Everything else is returned in GPR3 and up. */ |
a3c001ce JB |
1930 | regnum = tdep->ppc_gp0_regnum + 3; |
1931 | ||
1932 | { | |
1933 | size_t bytes_written = 0; | |
1934 | ||
1935 | while (bytes_written < TYPE_LENGTH (type)) | |
1936 | { | |
1937 | /* How much of this value can we write to this register? */ | |
1938 | size_t bytes_to_write = min (TYPE_LENGTH (type) - bytes_written, | |
1939 | register_size (gdbarch, regnum)); | |
1940 | regcache_cooked_write_part (regcache, regnum, | |
1941 | 0, bytes_to_write, | |
1942 | (char *) valbuf + bytes_written); | |
1943 | regnum++; | |
1944 | bytes_written += bytes_to_write; | |
1945 | } | |
1946 | } | |
7a78ae4e ND |
1947 | } |
1948 | ||
a3c001ce | 1949 | |
7a78ae4e ND |
1950 | /* Extract from an array REGBUF containing the (raw) register state |
1951 | the address in which a function should return its structure value, | |
1952 | as a CORE_ADDR (or an expression that can be used as one). */ | |
1953 | ||
1954 | static CORE_ADDR | |
11269d7e AC |
1955 | rs6000_extract_struct_value_address (struct regcache *regcache) |
1956 | { | |
1957 | /* FIXME: cagney/2002-09-26: PR gdb/724: When making an inferior | |
1958 | function call GDB knows the address of the struct return value | |
1959 | and hence, should not need to call this function. Unfortunately, | |
e8a8712a AC |
1960 | the current call_function_by_hand() code only saves the most |
1961 | recent struct address leading to occasional calls. The code | |
1962 | should instead maintain a stack of such addresses (in the dummy | |
1963 | frame object). */ | |
11269d7e AC |
1964 | /* NOTE: cagney/2002-09-26: Return 0 which indicates that we've |
1965 | really got no idea where the return value is being stored. While | |
1966 | r3, on function entry, contained the address it will have since | |
1967 | been reused (scratch) and hence wouldn't be valid */ | |
1968 | return 0; | |
7a78ae4e ND |
1969 | } |
1970 | ||
64366f1c | 1971 | /* Hook called when a new child process is started. */ |
7a78ae4e ND |
1972 | |
1973 | void | |
1974 | rs6000_create_inferior (int pid) | |
1975 | { | |
1976 | if (rs6000_set_host_arch_hook) | |
1977 | rs6000_set_host_arch_hook (pid); | |
c906108c SS |
1978 | } |
1979 | \f | |
e2d0e7eb | 1980 | /* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG). |
7a78ae4e ND |
1981 | |
1982 | Usually a function pointer's representation is simply the address | |
1983 | of the function. On the RS/6000 however, a function pointer is | |
1984 | represented by a pointer to a TOC entry. This TOC entry contains | |
1985 | three words, the first word is the address of the function, the | |
1986 | second word is the TOC pointer (r2), and the third word is the | |
1987 | static chain value. Throughout GDB it is currently assumed that a | |
1988 | function pointer contains the address of the function, which is not | |
1989 | easy to fix. In addition, the conversion of a function address to | |
1990 | a function pointer would require allocation of a TOC entry in the | |
1991 | inferior's memory space, with all its drawbacks. To be able to | |
1992 | call C++ virtual methods in the inferior (which are called via | |
f517ea4e | 1993 | function pointers), find_function_addr uses this function to get the |
7a78ae4e ND |
1994 | function address from a function pointer. */ |
1995 | ||
f517ea4e PS |
1996 | /* Return real function address if ADDR (a function pointer) is in the data |
1997 | space and is therefore a special function pointer. */ | |
c906108c | 1998 | |
b9362cc7 | 1999 | static CORE_ADDR |
e2d0e7eb AC |
2000 | rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch, |
2001 | CORE_ADDR addr, | |
2002 | struct target_ops *targ) | |
c906108c SS |
2003 | { |
2004 | struct obj_section *s; | |
2005 | ||
2006 | s = find_pc_section (addr); | |
2007 | if (s && s->the_bfd_section->flags & SEC_CODE) | |
7a78ae4e | 2008 | return addr; |
c906108c | 2009 | |
7a78ae4e | 2010 | /* ADDR is in the data space, so it's a special function pointer. */ |
21283beb | 2011 | return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize); |
c906108c | 2012 | } |
c906108c | 2013 | \f |
c5aa993b | 2014 | |
7a78ae4e | 2015 | /* Handling the various POWER/PowerPC variants. */ |
c906108c SS |
2016 | |
2017 | ||
7a78ae4e ND |
2018 | /* The arrays here called registers_MUMBLE hold information about available |
2019 | registers. | |
c906108c SS |
2020 | |
2021 | For each family of PPC variants, I've tried to isolate out the | |
2022 | common registers and put them up front, so that as long as you get | |
2023 | the general family right, GDB will correctly identify the registers | |
2024 | common to that family. The common register sets are: | |
2025 | ||
2026 | For the 60x family: hid0 hid1 iabr dabr pir | |
2027 | ||
2028 | For the 505 and 860 family: eie eid nri | |
2029 | ||
2030 | For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi | |
c5aa993b JM |
2031 | tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1 |
2032 | pbu1 pbl2 pbu2 | |
c906108c SS |
2033 | |
2034 | Most of these register groups aren't anything formal. I arrived at | |
2035 | them by looking at the registers that occurred in more than one | |
6f5987a6 KB |
2036 | processor. |
2037 | ||
2038 | Note: kevinb/2002-04-30: Support for the fpscr register was added | |
2039 | during April, 2002. Slot 70 is being used for PowerPC and slot 71 | |
2040 | for Power. For PowerPC, slot 70 was unused and was already in the | |
2041 | PPC_UISA_SPRS which is ideally where fpscr should go. For Power, | |
2042 | slot 70 was being used for "mq", so the next available slot (71) | |
2043 | was chosen. It would have been nice to be able to make the | |
2044 | register numbers the same across processor cores, but this wasn't | |
2045 | possible without either 1) renumbering some registers for some | |
2046 | processors or 2) assigning fpscr to a really high slot that's | |
2047 | larger than any current register number. Doing (1) is bad because | |
2048 | existing stubs would break. Doing (2) is undesirable because it | |
2049 | would introduce a really large gap between fpscr and the rest of | |
2050 | the registers for most processors. */ | |
7a78ae4e | 2051 | |
64366f1c | 2052 | /* Convenience macros for populating register arrays. */ |
7a78ae4e | 2053 | |
64366f1c | 2054 | /* Within another macro, convert S to a string. */ |
7a78ae4e ND |
2055 | |
2056 | #define STR(s) #s | |
2057 | ||
2058 | /* Return a struct reg defining register NAME that's 32 bits on 32-bit systems | |
64366f1c | 2059 | and 64 bits on 64-bit systems. */ |
13ac140c | 2060 | #define R(name) { STR(name), 4, 8, 0, 0, -1 } |
7a78ae4e ND |
2061 | |
2062 | /* Return a struct reg defining register NAME that's 32 bits on all | |
64366f1c | 2063 | systems. */ |
13ac140c | 2064 | #define R4(name) { STR(name), 4, 4, 0, 0, -1 } |
7a78ae4e ND |
2065 | |
2066 | /* Return a struct reg defining register NAME that's 64 bits on all | |
64366f1c | 2067 | systems. */ |
13ac140c | 2068 | #define R8(name) { STR(name), 8, 8, 0, 0, -1 } |
7a78ae4e | 2069 | |
1fcc0bb8 | 2070 | /* Return a struct reg defining register NAME that's 128 bits on all |
64366f1c | 2071 | systems. */ |
13ac140c | 2072 | #define R16(name) { STR(name), 16, 16, 0, 0, -1 } |
1fcc0bb8 | 2073 | |
64366f1c | 2074 | /* Return a struct reg defining floating-point register NAME. */ |
13ac140c | 2075 | #define F(name) { STR(name), 8, 8, 1, 0, -1 } |
489461e2 | 2076 | |
64366f1c | 2077 | /* Return a struct reg defining a pseudo register NAME. */ |
13ac140c | 2078 | #define P(name) { STR(name), 4, 8, 0, 1, -1 } |
7a78ae4e ND |
2079 | |
2080 | /* Return a struct reg defining register NAME that's 32 bits on 32-bit | |
64366f1c | 2081 | systems and that doesn't exist on 64-bit systems. */ |
13ac140c | 2082 | #define R32(name) { STR(name), 4, 0, 0, 0, -1 } |
7a78ae4e ND |
2083 | |
2084 | /* Return a struct reg defining register NAME that's 64 bits on 64-bit | |
64366f1c | 2085 | systems and that doesn't exist on 32-bit systems. */ |
13ac140c | 2086 | #define R64(name) { STR(name), 0, 8, 0, 0, -1 } |
7a78ae4e | 2087 | |
64366f1c | 2088 | /* Return a struct reg placeholder for a register that doesn't exist. */ |
13ac140c | 2089 | #define R0 { 0, 0, 0, 0, 0, -1 } |
7a78ae4e | 2090 | |
13ac140c JB |
2091 | /* Return a struct reg defining an SPR named NAME that is 32 bits on |
2092 | 32-bit systems and 64 bits on 64-bit systems. */ | |
2093 | #define S(name) { STR(name), 4, 8, 0, 0, ppc_spr_ ## name } | |
2094 | ||
2095 | /* Return a struct reg defining an SPR named NAME that is 32 bits on | |
2096 | all systems. */ | |
2097 | #define S4(name) { STR(name), 4, 4, 0, 0, ppc_spr_ ## name } | |
2098 | ||
2099 | /* Return a struct reg defining an SPR named NAME that is 32 bits on | |
2100 | all systems, and whose SPR number is NUMBER. */ | |
2101 | #define SN4(name, number) { STR(name), 4, 4, 0, 0, (number) } | |
2102 | ||
2103 | /* Return a struct reg defining an SPR named NAME that's 64 bits on | |
2104 | 64-bit systems and that doesn't exist on 32-bit systems. */ | |
2105 | #define S64(name) { STR(name), 0, 8, 0, 0, ppc_spr_ ## name } | |
2106 | ||
7a78ae4e ND |
2107 | /* UISA registers common across all architectures, including POWER. */ |
2108 | ||
2109 | #define COMMON_UISA_REGS \ | |
2110 | /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \ | |
2111 | /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \ | |
2112 | /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \ | |
2113 | /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \ | |
2114 | /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \ | |
2115 | /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \ | |
2116 | /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \ | |
2117 | /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \ | |
2118 | /* 64 */ R(pc), R(ps) | |
2119 | ||
2120 | /* UISA-level SPRs for PowerPC. */ | |
2121 | #define PPC_UISA_SPRS \ | |
13ac140c | 2122 | /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R4(fpscr) |
7a78ae4e | 2123 | |
c8001721 EZ |
2124 | /* UISA-level SPRs for PowerPC without floating point support. */ |
2125 | #define PPC_UISA_NOFP_SPRS \ | |
13ac140c | 2126 | /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R0 |
c8001721 | 2127 | |
7a78ae4e ND |
2128 | /* Segment registers, for PowerPC. */ |
2129 | #define PPC_SEGMENT_REGS \ | |
2130 | /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \ | |
2131 | /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \ | |
2132 | /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \ | |
2133 | /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15) | |
2134 | ||
2135 | /* OEA SPRs for PowerPC. */ | |
2136 | #define PPC_OEA_SPRS \ | |
13ac140c JB |
2137 | /* 87 */ S4(pvr), \ |
2138 | /* 88 */ S(ibat0u), S(ibat0l), S(ibat1u), S(ibat1l), \ | |
2139 | /* 92 */ S(ibat2u), S(ibat2l), S(ibat3u), S(ibat3l), \ | |
2140 | /* 96 */ S(dbat0u), S(dbat0l), S(dbat1u), S(dbat1l), \ | |
2141 | /* 100 */ S(dbat2u), S(dbat2l), S(dbat3u), S(dbat3l), \ | |
2142 | /* 104 */ S(sdr1), S64(asr), S(dar), S4(dsisr), \ | |
2143 | /* 108 */ S(sprg0), S(sprg1), S(sprg2), S(sprg3), \ | |
2144 | /* 112 */ S(srr0), S(srr1), S(tbl), S(tbu), \ | |
2145 | /* 116 */ S4(dec), S(dabr), S4(ear) | |
7a78ae4e | 2146 | |
64366f1c | 2147 | /* AltiVec registers. */ |
1fcc0bb8 EZ |
2148 | #define PPC_ALTIVEC_REGS \ |
2149 | /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \ | |
2150 | /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \ | |
2151 | /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \ | |
2152 | /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \ | |
2153 | /*151*/R4(vscr), R4(vrsave) | |
2154 | ||
c8001721 EZ |
2155 | /* Vectors of hi-lo general purpose registers. */ |
2156 | #define PPC_EV_REGS \ | |
2157 | /* 0*/R8(ev0), R8(ev1), R8(ev2), R8(ev3), R8(ev4), R8(ev5), R8(ev6), R8(ev7), \ | |
2158 | /* 8*/R8(ev8), R8(ev9), R8(ev10),R8(ev11),R8(ev12),R8(ev13),R8(ev14),R8(ev15), \ | |
2159 | /*16*/R8(ev16),R8(ev17),R8(ev18),R8(ev19),R8(ev20),R8(ev21),R8(ev22),R8(ev23), \ | |
2160 | /*24*/R8(ev24),R8(ev25),R8(ev26),R8(ev27),R8(ev28),R8(ev29),R8(ev30),R8(ev31) | |
2161 | ||
2162 | /* Lower half of the EV registers. */ | |
2163 | #define PPC_GPRS_PSEUDO_REGS \ | |
2164 | /* 0 */ P(r0), P(r1), P(r2), P(r3), P(r4), P(r5), P(r6), P(r7), \ | |
2165 | /* 8 */ P(r8), P(r9), P(r10),P(r11),P(r12),P(r13),P(r14),P(r15), \ | |
2166 | /* 16 */ P(r16),P(r17),P(r18),P(r19),P(r20),P(r21),P(r22),P(r23), \ | |
338ef23d | 2167 | /* 24 */ P(r24),P(r25),P(r26),P(r27),P(r28),P(r29),P(r30),P(r31) |
c8001721 | 2168 | |
7a78ae4e | 2169 | /* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover |
64366f1c | 2170 | user-level SPR's. */ |
7a78ae4e | 2171 | static const struct reg registers_power[] = |
c906108c | 2172 | { |
7a78ae4e | 2173 | COMMON_UISA_REGS, |
13ac140c | 2174 | /* 66 */ R4(cnd), S(lr), S(cnt), S4(xer), S4(mq), |
e3f36dbd | 2175 | /* 71 */ R4(fpscr) |
c906108c SS |
2176 | }; |
2177 | ||
7a78ae4e | 2178 | /* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only |
64366f1c | 2179 | view of the PowerPC. */ |
7a78ae4e | 2180 | static const struct reg registers_powerpc[] = |
c906108c | 2181 | { |
7a78ae4e | 2182 | COMMON_UISA_REGS, |
1fcc0bb8 EZ |
2183 | PPC_UISA_SPRS, |
2184 | PPC_ALTIVEC_REGS | |
c906108c SS |
2185 | }; |
2186 | ||
13ac140c JB |
2187 | /* IBM PowerPC 403. |
2188 | ||
2189 | Some notes about the "tcr" special-purpose register: | |
2190 | - On the 403 and 403GC, SPR 986 is named "tcr", and it controls the | |
2191 | 403's programmable interval timer, fixed interval timer, and | |
2192 | watchdog timer. | |
2193 | - On the 602, SPR 984 is named "tcr", and it controls the 602's | |
2194 | watchdog timer, and nothing else. | |
2195 | ||
2196 | Some of the fields are similar between the two, but they're not | |
2197 | compatible with each other. Since the two variants have different | |
2198 | registers, with different numbers, but the same name, we can't | |
2199 | splice the register name to get the SPR number. */ | |
7a78ae4e | 2200 | static const struct reg registers_403[] = |
c5aa993b | 2201 | { |
7a78ae4e ND |
2202 | COMMON_UISA_REGS, |
2203 | PPC_UISA_SPRS, | |
2204 | PPC_SEGMENT_REGS, | |
2205 | PPC_OEA_SPRS, | |
13ac140c JB |
2206 | /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr), |
2207 | /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit), | |
2208 | /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3), | |
2209 | /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2), | |
2210 | /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr), | |
2211 | /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2) | |
c906108c SS |
2212 | }; |
2213 | ||
13ac140c JB |
2214 | /* IBM PowerPC 403GC. |
2215 | See the comments about 'tcr' for the 403, above. */ | |
7a78ae4e | 2216 | static const struct reg registers_403GC[] = |
c5aa993b | 2217 | { |
7a78ae4e ND |
2218 | COMMON_UISA_REGS, |
2219 | PPC_UISA_SPRS, | |
2220 | PPC_SEGMENT_REGS, | |
2221 | PPC_OEA_SPRS, | |
13ac140c JB |
2222 | /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr), |
2223 | /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit), | |
2224 | /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3), | |
2225 | /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2), | |
2226 | /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr), | |
2227 | /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2), | |
2228 | /* 143 */ S(zpr), S(pid), S(sgr), S(dcwr), | |
2229 | /* 147 */ S(tbhu), S(tblu) | |
c906108c SS |
2230 | }; |
2231 | ||
64366f1c | 2232 | /* Motorola PowerPC 505. */ |
7a78ae4e | 2233 | static const struct reg registers_505[] = |
c5aa993b | 2234 | { |
7a78ae4e ND |
2235 | COMMON_UISA_REGS, |
2236 | PPC_UISA_SPRS, | |
2237 | PPC_SEGMENT_REGS, | |
2238 | PPC_OEA_SPRS, | |
13ac140c | 2239 | /* 119 */ S(eie), S(eid), S(nri) |
c906108c SS |
2240 | }; |
2241 | ||
64366f1c | 2242 | /* Motorola PowerPC 860 or 850. */ |
7a78ae4e | 2243 | static const struct reg registers_860[] = |
c5aa993b | 2244 | { |
7a78ae4e ND |
2245 | COMMON_UISA_REGS, |
2246 | PPC_UISA_SPRS, | |
2247 | PPC_SEGMENT_REGS, | |
2248 | PPC_OEA_SPRS, | |
13ac140c JB |
2249 | /* 119 */ S(eie), S(eid), S(nri), S(cmpa), |
2250 | /* 123 */ S(cmpb), S(cmpc), S(cmpd), S(icr), | |
2251 | /* 127 */ S(der), S(counta), S(countb), S(cmpe), | |
2252 | /* 131 */ S(cmpf), S(cmpg), S(cmph), S(lctrl1), | |
2253 | /* 135 */ S(lctrl2), S(ictrl), S(bar), S(ic_cst), | |
2254 | /* 139 */ S(ic_adr), S(ic_dat), S(dc_cst), S(dc_adr), | |
2255 | /* 143 */ S(dc_dat), S(dpdr), S(dpir), S(immr), | |
2256 | /* 147 */ S(mi_ctr), S(mi_ap), S(mi_epn), S(mi_twc), | |
2257 | /* 151 */ S(mi_rpn), S(md_ctr), S(m_casid), S(md_ap), | |
2258 | /* 155 */ S(md_epn), S(m_twb), S(md_twc), S(md_rpn), | |
2259 | /* 159 */ S(m_tw), S(mi_dbcam), S(mi_dbram0), S(mi_dbram1), | |
2260 | /* 163 */ S(md_dbcam), S(md_dbram0), S(md_dbram1) | |
c906108c SS |
2261 | }; |
2262 | ||
7a78ae4e ND |
2263 | /* Motorola PowerPC 601. Note that the 601 has different register numbers |
2264 | for reading and writing RTCU and RTCL. However, how one reads and writes a | |
c906108c | 2265 | register is the stub's problem. */ |
7a78ae4e | 2266 | static const struct reg registers_601[] = |
c5aa993b | 2267 | { |
7a78ae4e ND |
2268 | COMMON_UISA_REGS, |
2269 | PPC_UISA_SPRS, | |
2270 | PPC_SEGMENT_REGS, | |
2271 | PPC_OEA_SPRS, | |
13ac140c JB |
2272 | /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr), |
2273 | /* 123 */ S(pir), S(mq), S(rtcu), S(rtcl) | |
c906108c SS |
2274 | }; |
2275 | ||
13ac140c JB |
2276 | /* Motorola PowerPC 602. |
2277 | See the notes under the 403 about 'tcr'. */ | |
7a78ae4e | 2278 | static const struct reg registers_602[] = |
c5aa993b | 2279 | { |
7a78ae4e ND |
2280 | COMMON_UISA_REGS, |
2281 | PPC_UISA_SPRS, | |
2282 | PPC_SEGMENT_REGS, | |
2283 | PPC_OEA_SPRS, | |
13ac140c JB |
2284 | /* 119 */ S(hid0), S(hid1), S(iabr), R0, |
2285 | /* 123 */ R0, SN4(tcr, ppc_spr_602_tcr), S(ibr), S(esasrr), | |
2286 | /* 127 */ S(sebr), S(ser), S(sp), S(lt) | |
c906108c SS |
2287 | }; |
2288 | ||
64366f1c | 2289 | /* Motorola/IBM PowerPC 603 or 603e. */ |
7a78ae4e | 2290 | static const struct reg registers_603[] = |
c5aa993b | 2291 | { |
7a78ae4e ND |
2292 | COMMON_UISA_REGS, |
2293 | PPC_UISA_SPRS, | |
2294 | PPC_SEGMENT_REGS, | |
2295 | PPC_OEA_SPRS, | |
13ac140c JB |
2296 | /* 119 */ S(hid0), S(hid1), S(iabr), R0, |
2297 | /* 123 */ R0, S(dmiss), S(dcmp), S(hash1), | |
2298 | /* 127 */ S(hash2), S(imiss), S(icmp), S(rpa) | |
c906108c SS |
2299 | }; |
2300 | ||
64366f1c | 2301 | /* Motorola PowerPC 604 or 604e. */ |
7a78ae4e | 2302 | static const struct reg registers_604[] = |
c5aa993b | 2303 | { |
7a78ae4e ND |
2304 | COMMON_UISA_REGS, |
2305 | PPC_UISA_SPRS, | |
2306 | PPC_SEGMENT_REGS, | |
2307 | PPC_OEA_SPRS, | |
13ac140c JB |
2308 | /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr), |
2309 | /* 123 */ S(pir), S(mmcr0), S(pmc1), S(pmc2), | |
2310 | /* 127 */ S(sia), S(sda) | |
c906108c SS |
2311 | }; |
2312 | ||
64366f1c | 2313 | /* Motorola/IBM PowerPC 750 or 740. */ |
7a78ae4e | 2314 | static const struct reg registers_750[] = |
c5aa993b | 2315 | { |
7a78ae4e ND |
2316 | COMMON_UISA_REGS, |
2317 | PPC_UISA_SPRS, | |
2318 | PPC_SEGMENT_REGS, | |
2319 | PPC_OEA_SPRS, | |
13ac140c JB |
2320 | /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr), |
2321 | /* 123 */ R0, S(ummcr0), S(upmc1), S(upmc2), | |
2322 | /* 127 */ S(usia), S(ummcr1), S(upmc3), S(upmc4), | |
2323 | /* 131 */ S(mmcr0), S(pmc1), S(pmc2), S(sia), | |
2324 | /* 135 */ S(mmcr1), S(pmc3), S(pmc4), S(l2cr), | |
2325 | /* 139 */ S(ictc), S(thrm1), S(thrm2), S(thrm3) | |
c906108c SS |
2326 | }; |
2327 | ||
2328 | ||
64366f1c | 2329 | /* Motorola PowerPC 7400. */ |
1fcc0bb8 EZ |
2330 | static const struct reg registers_7400[] = |
2331 | { | |
2332 | /* gpr0-gpr31, fpr0-fpr31 */ | |
2333 | COMMON_UISA_REGS, | |
13c7b1ca | 2334 | /* cr, lr, ctr, xer, fpscr */ |
1fcc0bb8 EZ |
2335 | PPC_UISA_SPRS, |
2336 | /* sr0-sr15 */ | |
2337 | PPC_SEGMENT_REGS, | |
2338 | PPC_OEA_SPRS, | |
2339 | /* vr0-vr31, vrsave, vscr */ | |
2340 | PPC_ALTIVEC_REGS | |
2341 | /* FIXME? Add more registers? */ | |
2342 | }; | |
2343 | ||
c8001721 EZ |
2344 | /* Motorola e500. */ |
2345 | static const struct reg registers_e500[] = | |
2346 | { | |
2347 | R(pc), R(ps), | |
2348 | /* cr, lr, ctr, xer, "" */ | |
2349 | PPC_UISA_NOFP_SPRS, | |
2350 | /* 7...38 */ | |
2351 | PPC_EV_REGS, | |
13ac140c | 2352 | R8(acc), S4(spefscr), |
338ef23d AC |
2353 | /* NOTE: Add new registers here the end of the raw register |
2354 | list and just before the first pseudo register. */ | |
13c7b1ca | 2355 | /* 41...72 */ |
c8001721 EZ |
2356 | PPC_GPRS_PSEUDO_REGS |
2357 | }; | |
2358 | ||
c906108c | 2359 | /* Information about a particular processor variant. */ |
7a78ae4e | 2360 | |
c906108c | 2361 | struct variant |
c5aa993b JM |
2362 | { |
2363 | /* Name of this variant. */ | |
2364 | char *name; | |
c906108c | 2365 | |
c5aa993b JM |
2366 | /* English description of the variant. */ |
2367 | char *description; | |
c906108c | 2368 | |
64366f1c | 2369 | /* bfd_arch_info.arch corresponding to variant. */ |
7a78ae4e ND |
2370 | enum bfd_architecture arch; |
2371 | ||
64366f1c | 2372 | /* bfd_arch_info.mach corresponding to variant. */ |
7a78ae4e ND |
2373 | unsigned long mach; |
2374 | ||
489461e2 EZ |
2375 | /* Number of real registers. */ |
2376 | int nregs; | |
2377 | ||
2378 | /* Number of pseudo registers. */ | |
2379 | int npregs; | |
2380 | ||
2381 | /* Number of total registers (the sum of nregs and npregs). */ | |
2382 | int num_tot_regs; | |
2383 | ||
c5aa993b JM |
2384 | /* Table of register names; registers[R] is the name of the register |
2385 | number R. */ | |
7a78ae4e | 2386 | const struct reg *regs; |
c5aa993b | 2387 | }; |
c906108c | 2388 | |
489461e2 EZ |
2389 | #define tot_num_registers(list) (sizeof (list) / sizeof((list)[0])) |
2390 | ||
2391 | static int | |
2392 | num_registers (const struct reg *reg_list, int num_tot_regs) | |
2393 | { | |
2394 | int i; | |
2395 | int nregs = 0; | |
2396 | ||
2397 | for (i = 0; i < num_tot_regs; i++) | |
2398 | if (!reg_list[i].pseudo) | |
2399 | nregs++; | |
2400 | ||
2401 | return nregs; | |
2402 | } | |
2403 | ||
2404 | static int | |
2405 | num_pseudo_registers (const struct reg *reg_list, int num_tot_regs) | |
2406 | { | |
2407 | int i; | |
2408 | int npregs = 0; | |
2409 | ||
2410 | for (i = 0; i < num_tot_regs; i++) | |
2411 | if (reg_list[i].pseudo) | |
2412 | npregs ++; | |
2413 | ||
2414 | return npregs; | |
2415 | } | |
c906108c | 2416 | |
c906108c SS |
2417 | /* Information in this table comes from the following web sites: |
2418 | IBM: http://www.chips.ibm.com:80/products/embedded/ | |
2419 | Motorola: http://www.mot.com/SPS/PowerPC/ | |
2420 | ||
2421 | I'm sure I've got some of the variant descriptions not quite right. | |
2422 | Please report any inaccuracies you find to GDB's maintainer. | |
2423 | ||
2424 | If you add entries to this table, please be sure to allow the new | |
2425 | value as an argument to the --with-cpu flag, in configure.in. */ | |
2426 | ||
489461e2 | 2427 | static struct variant variants[] = |
c906108c | 2428 | { |
489461e2 | 2429 | |
7a78ae4e | 2430 | {"powerpc", "PowerPC user-level", bfd_arch_powerpc, |
489461e2 EZ |
2431 | bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc), |
2432 | registers_powerpc}, | |
7a78ae4e | 2433 | {"power", "POWER user-level", bfd_arch_rs6000, |
489461e2 EZ |
2434 | bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power), |
2435 | registers_power}, | |
7a78ae4e | 2436 | {"403", "IBM PowerPC 403", bfd_arch_powerpc, |
489461e2 EZ |
2437 | bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403), |
2438 | registers_403}, | |
7a78ae4e | 2439 | {"601", "Motorola PowerPC 601", bfd_arch_powerpc, |
489461e2 EZ |
2440 | bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601), |
2441 | registers_601}, | |
7a78ae4e | 2442 | {"602", "Motorola PowerPC 602", bfd_arch_powerpc, |
489461e2 EZ |
2443 | bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602), |
2444 | registers_602}, | |
7a78ae4e | 2445 | {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc, |
489461e2 EZ |
2446 | bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603), |
2447 | registers_603}, | |
7a78ae4e | 2448 | {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc, |
489461e2 EZ |
2449 | 604, -1, -1, tot_num_registers (registers_604), |
2450 | registers_604}, | |
7a78ae4e | 2451 | {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc, |
489461e2 EZ |
2452 | bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC), |
2453 | registers_403GC}, | |
7a78ae4e | 2454 | {"505", "Motorola PowerPC 505", bfd_arch_powerpc, |
489461e2 EZ |
2455 | bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505), |
2456 | registers_505}, | |
7a78ae4e | 2457 | {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc, |
489461e2 EZ |
2458 | bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860), |
2459 | registers_860}, | |
7a78ae4e | 2460 | {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc, |
489461e2 EZ |
2461 | bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750), |
2462 | registers_750}, | |
1fcc0bb8 | 2463 | {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc, |
489461e2 EZ |
2464 | bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400), |
2465 | registers_7400}, | |
c8001721 EZ |
2466 | {"e500", "Motorola PowerPC e500", bfd_arch_powerpc, |
2467 | bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500), | |
2468 | registers_e500}, | |
7a78ae4e | 2469 | |
5d57ee30 KB |
2470 | /* 64-bit */ |
2471 | {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc, | |
489461e2 EZ |
2472 | bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc), |
2473 | registers_powerpc}, | |
7a78ae4e | 2474 | {"620", "Motorola PowerPC 620", bfd_arch_powerpc, |
489461e2 EZ |
2475 | bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc), |
2476 | registers_powerpc}, | |
5d57ee30 | 2477 | {"630", "Motorola PowerPC 630", bfd_arch_powerpc, |
489461e2 EZ |
2478 | bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc), |
2479 | registers_powerpc}, | |
7a78ae4e | 2480 | {"a35", "PowerPC A35", bfd_arch_powerpc, |
489461e2 EZ |
2481 | bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc), |
2482 | registers_powerpc}, | |
5d57ee30 | 2483 | {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc, |
489461e2 EZ |
2484 | bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc), |
2485 | registers_powerpc}, | |
5d57ee30 | 2486 | {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc, |
489461e2 EZ |
2487 | bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc), |
2488 | registers_powerpc}, | |
5d57ee30 | 2489 | |
64366f1c | 2490 | /* FIXME: I haven't checked the register sets of the following. */ |
7a78ae4e | 2491 | {"rs1", "IBM POWER RS1", bfd_arch_rs6000, |
489461e2 EZ |
2492 | bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power), |
2493 | registers_power}, | |
7a78ae4e | 2494 | {"rsc", "IBM POWER RSC", bfd_arch_rs6000, |
489461e2 EZ |
2495 | bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power), |
2496 | registers_power}, | |
7a78ae4e | 2497 | {"rs2", "IBM POWER RS2", bfd_arch_rs6000, |
489461e2 EZ |
2498 | bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power), |
2499 | registers_power}, | |
7a78ae4e | 2500 | |
489461e2 | 2501 | {0, 0, 0, 0, 0, 0, 0, 0} |
c906108c SS |
2502 | }; |
2503 | ||
64366f1c | 2504 | /* Initialize the number of registers and pseudo registers in each variant. */ |
489461e2 EZ |
2505 | |
2506 | static void | |
2507 | init_variants (void) | |
2508 | { | |
2509 | struct variant *v; | |
2510 | ||
2511 | for (v = variants; v->name; v++) | |
2512 | { | |
2513 | if (v->nregs == -1) | |
2514 | v->nregs = num_registers (v->regs, v->num_tot_regs); | |
2515 | if (v->npregs == -1) | |
2516 | v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs); | |
2517 | } | |
2518 | } | |
c906108c | 2519 | |
7a78ae4e | 2520 | /* Return the variant corresponding to architecture ARCH and machine number |
64366f1c | 2521 | MACH. If no such variant exists, return null. */ |
c906108c | 2522 | |
7a78ae4e ND |
2523 | static const struct variant * |
2524 | find_variant_by_arch (enum bfd_architecture arch, unsigned long mach) | |
c906108c | 2525 | { |
7a78ae4e | 2526 | const struct variant *v; |
c5aa993b | 2527 | |
7a78ae4e ND |
2528 | for (v = variants; v->name; v++) |
2529 | if (arch == v->arch && mach == v->mach) | |
2530 | return v; | |
c906108c | 2531 | |
7a78ae4e | 2532 | return NULL; |
c906108c | 2533 | } |
9364a0ef EZ |
2534 | |
2535 | static int | |
2536 | gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info) | |
2537 | { | |
2538 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) | |
2539 | return print_insn_big_powerpc (memaddr, info); | |
2540 | else | |
2541 | return print_insn_little_powerpc (memaddr, info); | |
2542 | } | |
7a78ae4e | 2543 | \f |
61a65099 KB |
2544 | static CORE_ADDR |
2545 | rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
2546 | { | |
2547 | return frame_unwind_register_unsigned (next_frame, PC_REGNUM); | |
2548 | } | |
2549 | ||
2550 | static struct frame_id | |
2551 | rs6000_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
2552 | { | |
2553 | return frame_id_build (frame_unwind_register_unsigned (next_frame, | |
2554 | SP_REGNUM), | |
2555 | frame_pc_unwind (next_frame)); | |
2556 | } | |
2557 | ||
2558 | struct rs6000_frame_cache | |
2559 | { | |
2560 | CORE_ADDR base; | |
2561 | CORE_ADDR initial_sp; | |
2562 | struct trad_frame_saved_reg *saved_regs; | |
2563 | }; | |
2564 | ||
2565 | static struct rs6000_frame_cache * | |
2566 | rs6000_frame_cache (struct frame_info *next_frame, void **this_cache) | |
2567 | { | |
2568 | struct rs6000_frame_cache *cache; | |
2569 | struct gdbarch *gdbarch = get_frame_arch (next_frame); | |
2570 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
2571 | struct rs6000_framedata fdata; | |
2572 | int wordsize = tdep->wordsize; | |
2573 | ||
2574 | if ((*this_cache) != NULL) | |
2575 | return (*this_cache); | |
2576 | cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache); | |
2577 | (*this_cache) = cache; | |
2578 | cache->saved_regs = trad_frame_alloc_saved_regs (next_frame); | |
2579 | ||
2580 | skip_prologue (frame_func_unwind (next_frame), frame_pc_unwind (next_frame), | |
2581 | &fdata); | |
2582 | ||
2583 | /* If there were any saved registers, figure out parent's stack | |
2584 | pointer. */ | |
2585 | /* The following is true only if the frame doesn't have a call to | |
2586 | alloca(), FIXME. */ | |
2587 | ||
2588 | if (fdata.saved_fpr == 0 | |
2589 | && fdata.saved_gpr == 0 | |
2590 | && fdata.saved_vr == 0 | |
2591 | && fdata.saved_ev == 0 | |
2592 | && fdata.lr_offset == 0 | |
2593 | && fdata.cr_offset == 0 | |
2594 | && fdata.vr_offset == 0 | |
2595 | && fdata.ev_offset == 0) | |
2596 | cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM); | |
2597 | else | |
2598 | { | |
2599 | /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most | |
2600 | address of the current frame. Things might be easier if the | |
2601 | ->frame pointed to the outer-most address of the frame. In | |
2602 | the mean time, the address of the prev frame is used as the | |
2603 | base address of this frame. */ | |
2604 | cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM); | |
2605 | if (!fdata.frameless) | |
2606 | /* Frameless really means stackless. */ | |
2607 | cache->base = read_memory_addr (cache->base, wordsize); | |
2608 | } | |
2609 | trad_frame_set_value (cache->saved_regs, SP_REGNUM, cache->base); | |
2610 | ||
2611 | /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr. | |
2612 | All fpr's from saved_fpr to fp31 are saved. */ | |
2613 | ||
2614 | if (fdata.saved_fpr >= 0) | |
2615 | { | |
2616 | int i; | |
2617 | CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset; | |
383f0f5b JB |
2618 | |
2619 | /* If skip_prologue says floating-point registers were saved, | |
2620 | but the current architecture has no floating-point registers, | |
2621 | then that's strange. But we have no indices to even record | |
2622 | the addresses under, so we just ignore it. */ | |
2623 | if (ppc_floating_point_unit_p (gdbarch)) | |
063715bf | 2624 | for (i = fdata.saved_fpr; i < ppc_num_fprs; i++) |
383f0f5b JB |
2625 | { |
2626 | cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr; | |
2627 | fpr_addr += 8; | |
2628 | } | |
61a65099 KB |
2629 | } |
2630 | ||
2631 | /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr. | |
2632 | All gpr's from saved_gpr to gpr31 are saved. */ | |
2633 | ||
2634 | if (fdata.saved_gpr >= 0) | |
2635 | { | |
2636 | int i; | |
2637 | CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset; | |
063715bf | 2638 | for (i = fdata.saved_gpr; i < ppc_num_gprs; i++) |
61a65099 KB |
2639 | { |
2640 | cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr; | |
2641 | gpr_addr += wordsize; | |
2642 | } | |
2643 | } | |
2644 | ||
2645 | /* if != -1, fdata.saved_vr is the smallest number of saved_vr. | |
2646 | All vr's from saved_vr to vr31 are saved. */ | |
2647 | if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1) | |
2648 | { | |
2649 | if (fdata.saved_vr >= 0) | |
2650 | { | |
2651 | int i; | |
2652 | CORE_ADDR vr_addr = cache->base + fdata.vr_offset; | |
2653 | for (i = fdata.saved_vr; i < 32; i++) | |
2654 | { | |
2655 | cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr; | |
2656 | vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum); | |
2657 | } | |
2658 | } | |
2659 | } | |
2660 | ||
2661 | /* if != -1, fdata.saved_ev is the smallest number of saved_ev. | |
2662 | All vr's from saved_ev to ev31 are saved. ????? */ | |
2663 | if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1) | |
2664 | { | |
2665 | if (fdata.saved_ev >= 0) | |
2666 | { | |
2667 | int i; | |
2668 | CORE_ADDR ev_addr = cache->base + fdata.ev_offset; | |
063715bf | 2669 | for (i = fdata.saved_ev; i < ppc_num_gprs; i++) |
61a65099 KB |
2670 | { |
2671 | cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr; | |
2672 | cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + 4; | |
2673 | ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum); | |
2674 | } | |
2675 | } | |
2676 | } | |
2677 | ||
2678 | /* If != 0, fdata.cr_offset is the offset from the frame that | |
2679 | holds the CR. */ | |
2680 | if (fdata.cr_offset != 0) | |
2681 | cache->saved_regs[tdep->ppc_cr_regnum].addr = cache->base + fdata.cr_offset; | |
2682 | ||
2683 | /* If != 0, fdata.lr_offset is the offset from the frame that | |
2684 | holds the LR. */ | |
2685 | if (fdata.lr_offset != 0) | |
2686 | cache->saved_regs[tdep->ppc_lr_regnum].addr = cache->base + fdata.lr_offset; | |
2687 | /* The PC is found in the link register. */ | |
2688 | cache->saved_regs[PC_REGNUM] = cache->saved_regs[tdep->ppc_lr_regnum]; | |
2689 | ||
2690 | /* If != 0, fdata.vrsave_offset is the offset from the frame that | |
2691 | holds the VRSAVE. */ | |
2692 | if (fdata.vrsave_offset != 0) | |
2693 | cache->saved_regs[tdep->ppc_vrsave_regnum].addr = cache->base + fdata.vrsave_offset; | |
2694 | ||
2695 | if (fdata.alloca_reg < 0) | |
2696 | /* If no alloca register used, then fi->frame is the value of the | |
2697 | %sp for this frame, and it is good enough. */ | |
2698 | cache->initial_sp = frame_unwind_register_unsigned (next_frame, SP_REGNUM); | |
2699 | else | |
2700 | cache->initial_sp = frame_unwind_register_unsigned (next_frame, | |
2701 | fdata.alloca_reg); | |
2702 | ||
2703 | return cache; | |
2704 | } | |
2705 | ||
2706 | static void | |
2707 | rs6000_frame_this_id (struct frame_info *next_frame, void **this_cache, | |
2708 | struct frame_id *this_id) | |
2709 | { | |
2710 | struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame, | |
2711 | this_cache); | |
2712 | (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame)); | |
2713 | } | |
2714 | ||
2715 | static void | |
2716 | rs6000_frame_prev_register (struct frame_info *next_frame, | |
2717 | void **this_cache, | |
2718 | int regnum, int *optimizedp, | |
2719 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
2720 | int *realnump, void *valuep) | |
2721 | { | |
2722 | struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame, | |
2723 | this_cache); | |
2724 | trad_frame_prev_register (next_frame, info->saved_regs, regnum, | |
2725 | optimizedp, lvalp, addrp, realnump, valuep); | |
2726 | } | |
2727 | ||
2728 | static const struct frame_unwind rs6000_frame_unwind = | |
2729 | { | |
2730 | NORMAL_FRAME, | |
2731 | rs6000_frame_this_id, | |
2732 | rs6000_frame_prev_register | |
2733 | }; | |
2734 | ||
2735 | static const struct frame_unwind * | |
2736 | rs6000_frame_sniffer (struct frame_info *next_frame) | |
2737 | { | |
2738 | return &rs6000_frame_unwind; | |
2739 | } | |
2740 | ||
2741 | \f | |
2742 | ||
2743 | static CORE_ADDR | |
2744 | rs6000_frame_base_address (struct frame_info *next_frame, | |
2745 | void **this_cache) | |
2746 | { | |
2747 | struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame, | |
2748 | this_cache); | |
2749 | return info->initial_sp; | |
2750 | } | |
2751 | ||
2752 | static const struct frame_base rs6000_frame_base = { | |
2753 | &rs6000_frame_unwind, | |
2754 | rs6000_frame_base_address, | |
2755 | rs6000_frame_base_address, | |
2756 | rs6000_frame_base_address | |
2757 | }; | |
2758 | ||
2759 | static const struct frame_base * | |
2760 | rs6000_frame_base_sniffer (struct frame_info *next_frame) | |
2761 | { | |
2762 | return &rs6000_frame_base; | |
2763 | } | |
2764 | ||
7a78ae4e ND |
2765 | /* Initialize the current architecture based on INFO. If possible, re-use an |
2766 | architecture from ARCHES, which is a list of architectures already created | |
2767 | during this debugging session. | |
c906108c | 2768 | |
7a78ae4e | 2769 | Called e.g. at program startup, when reading a core file, and when reading |
64366f1c | 2770 | a binary file. */ |
c906108c | 2771 | |
7a78ae4e ND |
2772 | static struct gdbarch * |
2773 | rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
2774 | { | |
2775 | struct gdbarch *gdbarch; | |
2776 | struct gdbarch_tdep *tdep; | |
708ff411 | 2777 | int wordsize, from_xcoff_exec, from_elf_exec, i, off; |
7a78ae4e ND |
2778 | struct reg *regs; |
2779 | const struct variant *v; | |
2780 | enum bfd_architecture arch; | |
2781 | unsigned long mach; | |
2782 | bfd abfd; | |
7b112f9c | 2783 | int sysv_abi; |
5bf1c677 | 2784 | asection *sect; |
7a78ae4e | 2785 | |
9aa1e687 | 2786 | from_xcoff_exec = info.abfd && info.abfd->format == bfd_object && |
7a78ae4e ND |
2787 | bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour; |
2788 | ||
9aa1e687 KB |
2789 | from_elf_exec = info.abfd && info.abfd->format == bfd_object && |
2790 | bfd_get_flavour (info.abfd) == bfd_target_elf_flavour; | |
2791 | ||
2792 | sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour; | |
2793 | ||
e712c1cf | 2794 | /* Check word size. If INFO is from a binary file, infer it from |
64366f1c | 2795 | that, else choose a likely default. */ |
9aa1e687 | 2796 | if (from_xcoff_exec) |
c906108c | 2797 | { |
11ed25ac | 2798 | if (bfd_xcoff_is_xcoff64 (info.abfd)) |
7a78ae4e ND |
2799 | wordsize = 8; |
2800 | else | |
2801 | wordsize = 4; | |
c906108c | 2802 | } |
9aa1e687 KB |
2803 | else if (from_elf_exec) |
2804 | { | |
2805 | if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64) | |
2806 | wordsize = 8; | |
2807 | else | |
2808 | wordsize = 4; | |
2809 | } | |
c906108c | 2810 | else |
7a78ae4e | 2811 | { |
27b15785 KB |
2812 | if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0) |
2813 | wordsize = info.bfd_arch_info->bits_per_word / | |
2814 | info.bfd_arch_info->bits_per_byte; | |
2815 | else | |
2816 | wordsize = 4; | |
7a78ae4e | 2817 | } |
c906108c | 2818 | |
64366f1c | 2819 | /* Find a candidate among extant architectures. */ |
7a78ae4e ND |
2820 | for (arches = gdbarch_list_lookup_by_info (arches, &info); |
2821 | arches != NULL; | |
2822 | arches = gdbarch_list_lookup_by_info (arches->next, &info)) | |
2823 | { | |
2824 | /* Word size in the various PowerPC bfd_arch_info structs isn't | |
2825 | meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform | |
64366f1c | 2826 | separate word size check. */ |
7a78ae4e | 2827 | tdep = gdbarch_tdep (arches->gdbarch); |
4be87837 | 2828 | if (tdep && tdep->wordsize == wordsize) |
7a78ae4e ND |
2829 | return arches->gdbarch; |
2830 | } | |
c906108c | 2831 | |
7a78ae4e ND |
2832 | /* None found, create a new architecture from INFO, whose bfd_arch_info |
2833 | validity depends on the source: | |
2834 | - executable useless | |
2835 | - rs6000_host_arch() good | |
2836 | - core file good | |
2837 | - "set arch" trust blindly | |
2838 | - GDB startup useless but harmless */ | |
c906108c | 2839 | |
9aa1e687 | 2840 | if (!from_xcoff_exec) |
c906108c | 2841 | { |
b732d07d | 2842 | arch = info.bfd_arch_info->arch; |
7a78ae4e | 2843 | mach = info.bfd_arch_info->mach; |
c906108c | 2844 | } |
7a78ae4e | 2845 | else |
c906108c | 2846 | { |
7a78ae4e | 2847 | arch = bfd_arch_powerpc; |
35cec841 | 2848 | bfd_default_set_arch_mach (&abfd, arch, 0); |
7a78ae4e | 2849 | info.bfd_arch_info = bfd_get_arch_info (&abfd); |
35cec841 | 2850 | mach = info.bfd_arch_info->mach; |
7a78ae4e ND |
2851 | } |
2852 | tdep = xmalloc (sizeof (struct gdbarch_tdep)); | |
2853 | tdep->wordsize = wordsize; | |
5bf1c677 EZ |
2854 | |
2855 | /* For e500 executables, the apuinfo section is of help here. Such | |
2856 | section contains the identifier and revision number of each | |
2857 | Application-specific Processing Unit that is present on the | |
2858 | chip. The content of the section is determined by the assembler | |
2859 | which looks at each instruction and determines which unit (and | |
2860 | which version of it) can execute it. In our case we just look for | |
2861 | the existance of the section. */ | |
2862 | ||
2863 | if (info.abfd) | |
2864 | { | |
2865 | sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo"); | |
2866 | if (sect) | |
2867 | { | |
2868 | arch = info.bfd_arch_info->arch; | |
2869 | mach = bfd_mach_ppc_e500; | |
2870 | bfd_default_set_arch_mach (&abfd, arch, mach); | |
2871 | info.bfd_arch_info = bfd_get_arch_info (&abfd); | |
2872 | } | |
2873 | } | |
2874 | ||
7a78ae4e | 2875 | gdbarch = gdbarch_alloc (&info, tdep); |
7a78ae4e | 2876 | |
489461e2 EZ |
2877 | /* Initialize the number of real and pseudo registers in each variant. */ |
2878 | init_variants (); | |
2879 | ||
64366f1c | 2880 | /* Choose variant. */ |
7a78ae4e ND |
2881 | v = find_variant_by_arch (arch, mach); |
2882 | if (!v) | |
dd47e6fd EZ |
2883 | return NULL; |
2884 | ||
7a78ae4e ND |
2885 | tdep->regs = v->regs; |
2886 | ||
2188cbdd | 2887 | tdep->ppc_gp0_regnum = 0; |
01904826 | 2888 | tdep->ppc_gprs_pseudo_p = 0; |
2188cbdd EZ |
2889 | tdep->ppc_toc_regnum = 2; |
2890 | tdep->ppc_ps_regnum = 65; | |
2891 | tdep->ppc_cr_regnum = 66; | |
2892 | tdep->ppc_lr_regnum = 67; | |
2893 | tdep->ppc_ctr_regnum = 68; | |
2894 | tdep->ppc_xer_regnum = 69; | |
2895 | if (v->mach == bfd_mach_ppc_601) | |
2896 | tdep->ppc_mq_regnum = 124; | |
708ff411 | 2897 | else if (arch == bfd_arch_rs6000) |
2188cbdd | 2898 | tdep->ppc_mq_regnum = 70; |
e3f36dbd KB |
2899 | else |
2900 | tdep->ppc_mq_regnum = -1; | |
366f009f | 2901 | tdep->ppc_fp0_regnum = 32; |
708ff411 | 2902 | tdep->ppc_fpscr_regnum = (arch == bfd_arch_rs6000) ? 71 : 70; |
f86a7158 | 2903 | tdep->ppc_sr0_regnum = 71; |
baffbae0 JB |
2904 | tdep->ppc_vr0_regnum = -1; |
2905 | tdep->ppc_vrsave_regnum = -1; | |
2906 | tdep->ppc_ev0_regnum = -1; | |
2907 | tdep->ppc_ev31_regnum = -1; | |
867e2dc5 JB |
2908 | tdep->ppc_acc_regnum = -1; |
2909 | tdep->ppc_spefscr_regnum = -1; | |
2188cbdd | 2910 | |
c8001721 EZ |
2911 | set_gdbarch_pc_regnum (gdbarch, 64); |
2912 | set_gdbarch_sp_regnum (gdbarch, 1); | |
0ba6dca9 | 2913 | set_gdbarch_deprecated_fp_regnum (gdbarch, 1); |
afd48b75 | 2914 | if (sysv_abi && wordsize == 8) |
05580c65 | 2915 | set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value); |
e754ae69 | 2916 | else if (sysv_abi && wordsize == 4) |
05580c65 | 2917 | set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value); |
afd48b75 AC |
2918 | else |
2919 | { | |
2920 | set_gdbarch_deprecated_extract_return_value (gdbarch, rs6000_extract_return_value); | |
a3c001ce | 2921 | set_gdbarch_store_return_value (gdbarch, rs6000_store_return_value); |
afd48b75 | 2922 | } |
c8001721 | 2923 | |
baffbae0 JB |
2924 | /* Set lr_frame_offset. */ |
2925 | if (wordsize == 8) | |
2926 | tdep->lr_frame_offset = 16; | |
2927 | else if (sysv_abi) | |
2928 | tdep->lr_frame_offset = 4; | |
2929 | else | |
2930 | tdep->lr_frame_offset = 8; | |
2931 | ||
f86a7158 JB |
2932 | if (v->arch == bfd_arch_rs6000) |
2933 | tdep->ppc_sr0_regnum = -1; | |
2934 | else if (v->arch == bfd_arch_powerpc) | |
1fcc0bb8 EZ |
2935 | switch (v->mach) |
2936 | { | |
2937 | case bfd_mach_ppc: | |
2938 | tdep->ppc_vr0_regnum = 71; | |
2939 | tdep->ppc_vrsave_regnum = 104; | |
2940 | break; | |
2941 | case bfd_mach_ppc_7400: | |
2942 | tdep->ppc_vr0_regnum = 119; | |
54c2a1e6 | 2943 | tdep->ppc_vrsave_regnum = 152; |
c8001721 EZ |
2944 | break; |
2945 | case bfd_mach_ppc_e500: | |
338ef23d | 2946 | tdep->ppc_gp0_regnum = 41; |
01904826 | 2947 | tdep->ppc_gprs_pseudo_p = 1; |
c8001721 EZ |
2948 | tdep->ppc_toc_regnum = -1; |
2949 | tdep->ppc_ps_regnum = 1; | |
2950 | tdep->ppc_cr_regnum = 2; | |
2951 | tdep->ppc_lr_regnum = 3; | |
2952 | tdep->ppc_ctr_regnum = 4; | |
2953 | tdep->ppc_xer_regnum = 5; | |
2954 | tdep->ppc_ev0_regnum = 7; | |
2955 | tdep->ppc_ev31_regnum = 38; | |
383f0f5b JB |
2956 | tdep->ppc_fp0_regnum = -1; |
2957 | tdep->ppc_fpscr_regnum = -1; | |
f86a7158 | 2958 | tdep->ppc_sr0_regnum = -1; |
867e2dc5 JB |
2959 | tdep->ppc_acc_regnum = 39; |
2960 | tdep->ppc_spefscr_regnum = 40; | |
c8001721 | 2961 | set_gdbarch_pc_regnum (gdbarch, 0); |
338ef23d | 2962 | set_gdbarch_sp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1); |
0ba6dca9 | 2963 | set_gdbarch_deprecated_fp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1); |
c8001721 EZ |
2964 | set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read); |
2965 | set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write); | |
1fcc0bb8 | 2966 | break; |
f86a7158 JB |
2967 | |
2968 | case bfd_mach_ppc64: | |
2969 | case bfd_mach_ppc_620: | |
2970 | case bfd_mach_ppc_630: | |
2971 | case bfd_mach_ppc_a35: | |
2972 | case bfd_mach_ppc_rs64ii: | |
2973 | case bfd_mach_ppc_rs64iii: | |
2974 | /* These processor's register sets don't have segment registers. */ | |
2975 | tdep->ppc_sr0_regnum = -1; | |
2976 | break; | |
1fcc0bb8 | 2977 | } |
f86a7158 JB |
2978 | else |
2979 | internal_error (__FILE__, __LINE__, | |
2980 | "rs6000_gdbarch_init: " | |
2981 | "received unexpected BFD 'arch' value"); | |
1fcc0bb8 | 2982 | |
338ef23d AC |
2983 | /* Sanity check on registers. */ |
2984 | gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0); | |
2985 | ||
56a6dfb9 | 2986 | /* Select instruction printer. */ |
708ff411 | 2987 | if (arch == bfd_arch_rs6000) |
9364a0ef | 2988 | set_gdbarch_print_insn (gdbarch, print_insn_rs6000); |
56a6dfb9 | 2989 | else |
9364a0ef | 2990 | set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc); |
7495d1dc | 2991 | |
7a78ae4e | 2992 | set_gdbarch_write_pc (gdbarch, generic_target_write_pc); |
7a78ae4e ND |
2993 | |
2994 | set_gdbarch_num_regs (gdbarch, v->nregs); | |
c8001721 | 2995 | set_gdbarch_num_pseudo_regs (gdbarch, v->npregs); |
7a78ae4e | 2996 | set_gdbarch_register_name (gdbarch, rs6000_register_name); |
691d145a | 2997 | set_gdbarch_register_type (gdbarch, rs6000_register_type); |
7a78ae4e ND |
2998 | |
2999 | set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT); | |
3000 | set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT); | |
3001 | set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
3002 | set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT); | |
3003 | set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT); | |
3004 | set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
3005 | set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT); | |
ab9fe00e KB |
3006 | if (sysv_abi) |
3007 | set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT); | |
3008 | else | |
3009 | set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT); | |
4e409299 | 3010 | set_gdbarch_char_signed (gdbarch, 0); |
7a78ae4e | 3011 | |
11269d7e | 3012 | set_gdbarch_frame_align (gdbarch, rs6000_frame_align); |
8b148df9 AC |
3013 | if (sysv_abi && wordsize == 8) |
3014 | /* PPC64 SYSV. */ | |
3015 | set_gdbarch_frame_red_zone_size (gdbarch, 288); | |
3016 | else if (!sysv_abi && wordsize == 4) | |
5bffac25 AC |
3017 | /* PowerOpen / AIX 32 bit. The saved area or red zone consists of |
3018 | 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes. | |
3019 | Problem is, 220 isn't frame (16 byte) aligned. Round it up to | |
3020 | 224. */ | |
3021 | set_gdbarch_frame_red_zone_size (gdbarch, 224); | |
7a78ae4e | 3022 | |
691d145a JB |
3023 | set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p); |
3024 | set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value); | |
3025 | set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register); | |
3026 | ||
18ed0c4e JB |
3027 | set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum); |
3028 | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum); | |
2ea5f656 KB |
3029 | /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments() |
3030 | is correct for the SysV ABI when the wordsize is 8, but I'm also | |
3031 | fairly certain that ppc_sysv_abi_push_arguments() will give even | |
3032 | worse results since it only works for 32-bit code. So, for the moment, | |
3033 | we're better off calling rs6000_push_arguments() since it works for | |
3034 | 64-bit code. At some point in the future, this matter needs to be | |
3035 | revisited. */ | |
3036 | if (sysv_abi && wordsize == 4) | |
77b2b6d4 | 3037 | set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call); |
8be9034a AC |
3038 | else if (sysv_abi && wordsize == 8) |
3039 | set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call); | |
9aa1e687 | 3040 | else |
77b2b6d4 | 3041 | set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call); |
7a78ae4e | 3042 | |
74055713 | 3043 | set_gdbarch_deprecated_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address); |
7a78ae4e ND |
3044 | |
3045 | set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue); | |
3046 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | |
7a78ae4e ND |
3047 | set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc); |
3048 | ||
6066c3de AC |
3049 | /* Handle the 64-bit SVR4 minimal-symbol convention of using "FN" |
3050 | for the descriptor and ".FN" for the entry-point -- a user | |
3051 | specifying "break FN" will unexpectedly end up with a breakpoint | |
3052 | on the descriptor and not the function. This architecture method | |
3053 | transforms any breakpoints on descriptors into breakpoints on the | |
3054 | corresponding entry point. */ | |
3055 | if (sysv_abi && wordsize == 8) | |
3056 | set_gdbarch_adjust_breakpoint_address (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address); | |
3057 | ||
7a78ae4e ND |
3058 | /* Not sure on this. FIXMEmgo */ |
3059 | set_gdbarch_frame_args_skip (gdbarch, 8); | |
3060 | ||
05580c65 | 3061 | if (!sysv_abi) |
b5622e8d | 3062 | set_gdbarch_deprecated_use_struct_convention (gdbarch, rs6000_use_struct_convention); |
8e0662df | 3063 | |
15813d3f AC |
3064 | if (!sysv_abi) |
3065 | { | |
3066 | /* Handle RS/6000 function pointers (which are really function | |
3067 | descriptors). */ | |
f517ea4e PS |
3068 | set_gdbarch_convert_from_func_ptr_addr (gdbarch, |
3069 | rs6000_convert_from_func_ptr_addr); | |
9aa1e687 | 3070 | } |
7a78ae4e | 3071 | |
143985b7 AF |
3072 | /* Helpers for function argument information. */ |
3073 | set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument); | |
3074 | ||
7b112f9c | 3075 | /* Hook in ABI-specific overrides, if they have been registered. */ |
4be87837 | 3076 | gdbarch_init_osabi (info, gdbarch); |
7b112f9c | 3077 | |
61a65099 KB |
3078 | switch (info.osabi) |
3079 | { | |
3080 | case GDB_OSABI_NETBSD_AOUT: | |
3081 | case GDB_OSABI_NETBSD_ELF: | |
3082 | case GDB_OSABI_UNKNOWN: | |
3083 | case GDB_OSABI_LINUX: | |
3084 | set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc); | |
3085 | frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer); | |
3086 | set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id); | |
3087 | frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer); | |
3088 | break; | |
3089 | default: | |
61a65099 | 3090 | set_gdbarch_believe_pcc_promotion (gdbarch, 1); |
81332287 KB |
3091 | |
3092 | set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc); | |
3093 | frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer); | |
3094 | set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id); | |
3095 | frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer); | |
61a65099 KB |
3096 | } |
3097 | ||
ef5200c1 AC |
3098 | if (from_xcoff_exec) |
3099 | { | |
3100 | /* NOTE: jimix/2003-06-09: This test should really check for | |
3101 | GDB_OSABI_AIX when that is defined and becomes | |
3102 | available. (Actually, once things are properly split apart, | |
3103 | the test goes away.) */ | |
3104 | /* RS6000/AIX does not support PT_STEP. Has to be simulated. */ | |
3105 | set_gdbarch_software_single_step (gdbarch, rs6000_software_single_step); | |
3106 | } | |
3107 | ||
7a78ae4e | 3108 | return gdbarch; |
c906108c SS |
3109 | } |
3110 | ||
7b112f9c JT |
3111 | static void |
3112 | rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file) | |
3113 | { | |
3114 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); | |
3115 | ||
3116 | if (tdep == NULL) | |
3117 | return; | |
3118 | ||
4be87837 | 3119 | /* FIXME: Dump gdbarch_tdep. */ |
7b112f9c JT |
3120 | } |
3121 | ||
1fcc0bb8 EZ |
3122 | static struct cmd_list_element *info_powerpc_cmdlist = NULL; |
3123 | ||
3124 | static void | |
3125 | rs6000_info_powerpc_command (char *args, int from_tty) | |
3126 | { | |
3127 | help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout); | |
3128 | } | |
3129 | ||
c906108c SS |
3130 | /* Initialization code. */ |
3131 | ||
a78f21af | 3132 | extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */ |
b9362cc7 | 3133 | |
c906108c | 3134 | void |
fba45db2 | 3135 | _initialize_rs6000_tdep (void) |
c906108c | 3136 | { |
7b112f9c JT |
3137 | gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep); |
3138 | gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep); | |
1fcc0bb8 EZ |
3139 | |
3140 | /* Add root prefix command for "info powerpc" commands */ | |
3141 | add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command, | |
3142 | "Various POWERPC info specific commands.", | |
3143 | &info_powerpc_cmdlist, "info powerpc ", 0, &infolist); | |
c906108c | 3144 | } |