]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Target-dependent code for GDB, the GNU debugger. |
7aea86e6 | 2 | |
42a4f53d | 3 | Copyright (C) 1986-2019 Free Software Foundation, Inc. |
c906108c | 4 | |
c5aa993b | 5 | This file is part of GDB. |
c906108c | 6 | |
c5aa993b JM |
7 | This program is free software; you can redistribute it and/or modify |
8 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 9 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 10 | (at your option) any later version. |
c906108c | 11 | |
c5aa993b JM |
12 | This program is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
c906108c | 16 | |
c5aa993b | 17 | You should have received a copy of the GNU General Public License |
a9762ec7 | 18 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c SS |
19 | |
20 | #include "defs.h" | |
21 | #include "frame.h" | |
22 | #include "inferior.h" | |
45741a9c | 23 | #include "infrun.h" |
c906108c SS |
24 | #include "symtab.h" |
25 | #include "target.h" | |
26 | #include "gdbcore.h" | |
27 | #include "gdbcmd.h" | |
c906108c | 28 | #include "objfiles.h" |
7a78ae4e | 29 | #include "arch-utils.h" |
4e052eda | 30 | #include "regcache.h" |
d195bc9f | 31 | #include "regset.h" |
3b2ca824 | 32 | #include "target-float.h" |
fd0407d6 | 33 | #include "value.h" |
1fcc0bb8 | 34 | #include "parser-defs.h" |
4be87837 | 35 | #include "osabi.h" |
7d9b040b | 36 | #include "infcall.h" |
9f643768 JB |
37 | #include "sim-regno.h" |
38 | #include "gdb/sim-ppc.h" | |
6f072a10 | 39 | #include "reggroups.h" |
4fc771b8 | 40 | #include "dwarf2-frame.h" |
7cc46491 DJ |
41 | #include "target-descriptions.h" |
42 | #include "user-regs.h" | |
b4cdae6f WW |
43 | #include "record-full.h" |
44 | #include "auxv.h" | |
7a78ae4e | 45 | |
7a78ae4e | 46 | #include "coff/internal.h" /* for libcoff.h */ |
2fccf04a | 47 | #include "libcoff.h" /* for xcoff_data */ |
11ed25ac KB |
48 | #include "coff/xcoff.h" |
49 | #include "libxcoff.h" | |
7a78ae4e | 50 | |
9aa1e687 | 51 | #include "elf-bfd.h" |
55eddb0f | 52 | #include "elf/ppc.h" |
cd453cd0 | 53 | #include "elf/ppc64.h" |
7a78ae4e | 54 | |
6ded7999 | 55 | #include "solib-svr4.h" |
9aa1e687 | 56 | #include "ppc-tdep.h" |
debb1f09 | 57 | #include "ppc-ravenscar-thread.h" |
7a78ae4e | 58 | |
a89aa300 | 59 | #include "dis-asm.h" |
338ef23d | 60 | |
61a65099 KB |
61 | #include "trad-frame.h" |
62 | #include "frame-unwind.h" | |
63 | #include "frame-base.h" | |
64 | ||
a67914de MK |
65 | #include "ax.h" |
66 | #include "ax-gdb.h" | |
325fac50 | 67 | #include <algorithm> |
a67914de | 68 | |
7cc46491 | 69 | #include "features/rs6000/powerpc-32.c" |
7284e1be | 70 | #include "features/rs6000/powerpc-altivec32.c" |
604c2f83 | 71 | #include "features/rs6000/powerpc-vsx32.c" |
7cc46491 DJ |
72 | #include "features/rs6000/powerpc-403.c" |
73 | #include "features/rs6000/powerpc-403gc.c" | |
4d09ffea | 74 | #include "features/rs6000/powerpc-405.c" |
7cc46491 DJ |
75 | #include "features/rs6000/powerpc-505.c" |
76 | #include "features/rs6000/powerpc-601.c" | |
77 | #include "features/rs6000/powerpc-602.c" | |
78 | #include "features/rs6000/powerpc-603.c" | |
79 | #include "features/rs6000/powerpc-604.c" | |
80 | #include "features/rs6000/powerpc-64.c" | |
7284e1be | 81 | #include "features/rs6000/powerpc-altivec64.c" |
604c2f83 | 82 | #include "features/rs6000/powerpc-vsx64.c" |
7cc46491 DJ |
83 | #include "features/rs6000/powerpc-7400.c" |
84 | #include "features/rs6000/powerpc-750.c" | |
85 | #include "features/rs6000/powerpc-860.c" | |
86 | #include "features/rs6000/powerpc-e500.c" | |
87 | #include "features/rs6000/rs6000.c" | |
88 | ||
5a9e69ba TJB |
89 | /* Determine if regnum is an SPE pseudo-register. */ |
90 | #define IS_SPE_PSEUDOREG(tdep, regnum) ((tdep)->ppc_ev0_regnum >= 0 \ | |
91 | && (regnum) >= (tdep)->ppc_ev0_regnum \ | |
92 | && (regnum) < (tdep)->ppc_ev0_regnum + 32) | |
93 | ||
f949c649 TJB |
94 | /* Determine if regnum is a decimal float pseudo-register. */ |
95 | #define IS_DFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_dl0_regnum >= 0 \ | |
96 | && (regnum) >= (tdep)->ppc_dl0_regnum \ | |
97 | && (regnum) < (tdep)->ppc_dl0_regnum + 16) | |
98 | ||
6f072a10 PFC |
99 | /* Determine if regnum is a "vX" alias for the raw "vrX" vector |
100 | registers. */ | |
101 | #define IS_V_ALIAS_PSEUDOREG(tdep, regnum) (\ | |
102 | (tdep)->ppc_v0_alias_regnum >= 0 \ | |
103 | && (regnum) >= (tdep)->ppc_v0_alias_regnum \ | |
104 | && (regnum) < (tdep)->ppc_v0_alias_regnum + ppc_num_vrs) | |
105 | ||
604c2f83 LM |
106 | /* Determine if regnum is a POWER7 VSX register. */ |
107 | #define IS_VSX_PSEUDOREG(tdep, regnum) ((tdep)->ppc_vsr0_regnum >= 0 \ | |
108 | && (regnum) >= (tdep)->ppc_vsr0_regnum \ | |
109 | && (regnum) < (tdep)->ppc_vsr0_regnum + ppc_num_vsrs) | |
110 | ||
111 | /* Determine if regnum is a POWER7 Extended FP register. */ | |
112 | #define IS_EFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_efpr0_regnum >= 0 \ | |
113 | && (regnum) >= (tdep)->ppc_efpr0_regnum \ | |
d9492458 | 114 | && (regnum) < (tdep)->ppc_efpr0_regnum + ppc_num_efprs) |
604c2f83 | 115 | |
8d619c01 EBM |
116 | /* Determine if regnum is a checkpointed decimal float |
117 | pseudo-register. */ | |
118 | #define IS_CDFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_cdl0_regnum >= 0 \ | |
119 | && (regnum) >= (tdep)->ppc_cdl0_regnum \ | |
120 | && (regnum) < (tdep)->ppc_cdl0_regnum + 16) | |
121 | ||
122 | /* Determine if regnum is a Checkpointed POWER7 VSX register. */ | |
123 | #define IS_CVSX_PSEUDOREG(tdep, regnum) ((tdep)->ppc_cvsr0_regnum >= 0 \ | |
124 | && (regnum) >= (tdep)->ppc_cvsr0_regnum \ | |
125 | && (regnum) < (tdep)->ppc_cvsr0_regnum + ppc_num_vsrs) | |
126 | ||
127 | /* Determine if regnum is a Checkpointed POWER7 Extended FP register. */ | |
128 | #define IS_CEFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_cefpr0_regnum >= 0 \ | |
129 | && (regnum) >= (tdep)->ppc_cefpr0_regnum \ | |
130 | && (regnum) < (tdep)->ppc_cefpr0_regnum + ppc_num_efprs) | |
131 | ||
65b48a81 PB |
132 | /* Holds the current set of options to be passed to the disassembler. */ |
133 | static char *powerpc_disassembler_options; | |
134 | ||
55eddb0f DJ |
135 | /* The list of available "set powerpc ..." and "show powerpc ..." |
136 | commands. */ | |
137 | static struct cmd_list_element *setpowerpccmdlist = NULL; | |
138 | static struct cmd_list_element *showpowerpccmdlist = NULL; | |
139 | ||
140 | static enum auto_boolean powerpc_soft_float_global = AUTO_BOOLEAN_AUTO; | |
141 | ||
142 | /* The vector ABI to use. Keep this in sync with powerpc_vector_abi. */ | |
40478521 | 143 | static const char *const powerpc_vector_strings[] = |
55eddb0f DJ |
144 | { |
145 | "auto", | |
146 | "generic", | |
147 | "altivec", | |
148 | "spe", | |
149 | NULL | |
150 | }; | |
151 | ||
152 | /* A variable that can be configured by the user. */ | |
153 | static enum powerpc_vector_abi powerpc_vector_abi_global = POWERPC_VEC_AUTO; | |
154 | static const char *powerpc_vector_abi_string = "auto"; | |
155 | ||
0df8b418 | 156 | /* To be used by skip_prologue. */ |
7a78ae4e ND |
157 | |
158 | struct rs6000_framedata | |
159 | { | |
160 | int offset; /* total size of frame --- the distance | |
161 | by which we decrement sp to allocate | |
162 | the frame */ | |
163 | int saved_gpr; /* smallest # of saved gpr */ | |
46a9b8ed | 164 | unsigned int gpr_mask; /* Each bit is an individual saved GPR. */ |
7a78ae4e | 165 | int saved_fpr; /* smallest # of saved fpr */ |
6be8bc0c | 166 | int saved_vr; /* smallest # of saved vr */ |
96ff0de4 | 167 | int saved_ev; /* smallest # of saved ev */ |
7a78ae4e | 168 | int alloca_reg; /* alloca register number (frame ptr) */ |
0df8b418 MS |
169 | char frameless; /* true if frameless functions. */ |
170 | char nosavedpc; /* true if pc not saved. */ | |
46a9b8ed | 171 | char used_bl; /* true if link register clobbered */ |
7a78ae4e ND |
172 | int gpr_offset; /* offset of saved gprs from prev sp */ |
173 | int fpr_offset; /* offset of saved fprs from prev sp */ | |
6be8bc0c | 174 | int vr_offset; /* offset of saved vrs from prev sp */ |
96ff0de4 | 175 | int ev_offset; /* offset of saved evs from prev sp */ |
7a78ae4e | 176 | int lr_offset; /* offset of saved lr */ |
46a9b8ed | 177 | int lr_register; /* register of saved lr, if trustworthy */ |
7a78ae4e | 178 | int cr_offset; /* offset of saved cr */ |
6be8bc0c | 179 | int vrsave_offset; /* offset of saved vrsave register */ |
7a78ae4e ND |
180 | }; |
181 | ||
c906108c | 182 | |
604c2f83 LM |
183 | /* Is REGNO a VSX register? Return 1 if so, 0 otherwise. */ |
184 | int | |
185 | vsx_register_p (struct gdbarch *gdbarch, int regno) | |
186 | { | |
187 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
188 | if (tdep->ppc_vsr0_regnum < 0) | |
189 | return 0; | |
190 | else | |
191 | return (regno >= tdep->ppc_vsr0_upper_regnum && regno | |
192 | <= tdep->ppc_vsr0_upper_regnum + 31); | |
193 | } | |
194 | ||
64b84175 KB |
195 | /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */ |
196 | int | |
be8626e0 | 197 | altivec_register_p (struct gdbarch *gdbarch, int regno) |
64b84175 | 198 | { |
be8626e0 | 199 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
64b84175 KB |
200 | if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0) |
201 | return 0; | |
202 | else | |
203 | return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum); | |
204 | } | |
205 | ||
383f0f5b | 206 | |
867e2dc5 JB |
207 | /* Return true if REGNO is an SPE register, false otherwise. */ |
208 | int | |
be8626e0 | 209 | spe_register_p (struct gdbarch *gdbarch, int regno) |
867e2dc5 | 210 | { |
be8626e0 | 211 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
867e2dc5 JB |
212 | |
213 | /* Is it a reference to EV0 -- EV31, and do we have those? */ | |
5a9e69ba | 214 | if (IS_SPE_PSEUDOREG (tdep, regno)) |
867e2dc5 JB |
215 | return 1; |
216 | ||
6ced10dd JB |
217 | /* Is it a reference to one of the raw upper GPR halves? */ |
218 | if (tdep->ppc_ev0_upper_regnum >= 0 | |
219 | && tdep->ppc_ev0_upper_regnum <= regno | |
220 | && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs) | |
221 | return 1; | |
222 | ||
867e2dc5 JB |
223 | /* Is it a reference to the 64-bit accumulator, and do we have that? */ |
224 | if (tdep->ppc_acc_regnum >= 0 | |
225 | && tdep->ppc_acc_regnum == regno) | |
226 | return 1; | |
227 | ||
228 | /* Is it a reference to the SPE floating-point status and control register, | |
229 | and do we have that? */ | |
230 | if (tdep->ppc_spefscr_regnum >= 0 | |
231 | && tdep->ppc_spefscr_regnum == regno) | |
232 | return 1; | |
233 | ||
234 | return 0; | |
235 | } | |
236 | ||
237 | ||
383f0f5b JB |
238 | /* Return non-zero if the architecture described by GDBARCH has |
239 | floating-point registers (f0 --- f31 and fpscr). */ | |
0a613259 AC |
240 | int |
241 | ppc_floating_point_unit_p (struct gdbarch *gdbarch) | |
242 | { | |
383f0f5b JB |
243 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
244 | ||
245 | return (tdep->ppc_fp0_regnum >= 0 | |
246 | && tdep->ppc_fpscr_regnum >= 0); | |
0a613259 | 247 | } |
9f643768 | 248 | |
06caf7d2 CES |
249 | /* Return non-zero if the architecture described by GDBARCH has |
250 | Altivec registers (vr0 --- vr31, vrsave and vscr). */ | |
251 | int | |
252 | ppc_altivec_support_p (struct gdbarch *gdbarch) | |
253 | { | |
254 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
255 | ||
256 | return (tdep->ppc_vr0_regnum >= 0 | |
257 | && tdep->ppc_vrsave_regnum >= 0); | |
258 | } | |
09991fa0 JB |
259 | |
260 | /* Check that TABLE[GDB_REGNO] is not already initialized, and then | |
261 | set it to SIM_REGNO. | |
262 | ||
263 | This is a helper function for init_sim_regno_table, constructing | |
264 | the table mapping GDB register numbers to sim register numbers; we | |
265 | initialize every element in that table to -1 before we start | |
266 | filling it in. */ | |
9f643768 JB |
267 | static void |
268 | set_sim_regno (int *table, int gdb_regno, int sim_regno) | |
269 | { | |
270 | /* Make sure we don't try to assign any given GDB register a sim | |
271 | register number more than once. */ | |
272 | gdb_assert (table[gdb_regno] == -1); | |
273 | table[gdb_regno] = sim_regno; | |
274 | } | |
275 | ||
09991fa0 JB |
276 | |
277 | /* Initialize ARCH->tdep->sim_regno, the table mapping GDB register | |
278 | numbers to simulator register numbers, based on the values placed | |
279 | in the ARCH->tdep->ppc_foo_regnum members. */ | |
9f643768 JB |
280 | static void |
281 | init_sim_regno_table (struct gdbarch *arch) | |
282 | { | |
283 | struct gdbarch_tdep *tdep = gdbarch_tdep (arch); | |
7cc46491 | 284 | int total_regs = gdbarch_num_regs (arch); |
9f643768 JB |
285 | int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int); |
286 | int i; | |
7cc46491 DJ |
287 | static const char *const segment_regs[] = { |
288 | "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7", | |
289 | "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15" | |
290 | }; | |
9f643768 JB |
291 | |
292 | /* Presume that all registers not explicitly mentioned below are | |
293 | unavailable from the sim. */ | |
294 | for (i = 0; i < total_regs; i++) | |
295 | sim_regno[i] = -1; | |
296 | ||
297 | /* General-purpose registers. */ | |
298 | for (i = 0; i < ppc_num_gprs; i++) | |
299 | set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i); | |
300 | ||
301 | /* Floating-point registers. */ | |
302 | if (tdep->ppc_fp0_regnum >= 0) | |
303 | for (i = 0; i < ppc_num_fprs; i++) | |
304 | set_sim_regno (sim_regno, | |
305 | tdep->ppc_fp0_regnum + i, | |
306 | sim_ppc_f0_regnum + i); | |
307 | if (tdep->ppc_fpscr_regnum >= 0) | |
308 | set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum); | |
309 | ||
310 | set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum); | |
311 | set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum); | |
312 | set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum); | |
313 | ||
314 | /* Segment registers. */ | |
7cc46491 DJ |
315 | for (i = 0; i < ppc_num_srs; i++) |
316 | { | |
317 | int gdb_regno; | |
318 | ||
319 | gdb_regno = user_reg_map_name_to_regnum (arch, segment_regs[i], -1); | |
320 | if (gdb_regno >= 0) | |
321 | set_sim_regno (sim_regno, gdb_regno, sim_ppc_sr0_regnum + i); | |
322 | } | |
9f643768 JB |
323 | |
324 | /* Altivec registers. */ | |
325 | if (tdep->ppc_vr0_regnum >= 0) | |
326 | { | |
327 | for (i = 0; i < ppc_num_vrs; i++) | |
328 | set_sim_regno (sim_regno, | |
329 | tdep->ppc_vr0_regnum + i, | |
330 | sim_ppc_vr0_regnum + i); | |
331 | ||
332 | /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum, | |
333 | we can treat this more like the other cases. */ | |
334 | set_sim_regno (sim_regno, | |
335 | tdep->ppc_vr0_regnum + ppc_num_vrs, | |
336 | sim_ppc_vscr_regnum); | |
337 | } | |
338 | /* vsave is a special-purpose register, so the code below handles it. */ | |
339 | ||
340 | /* SPE APU (E500) registers. */ | |
6ced10dd JB |
341 | if (tdep->ppc_ev0_upper_regnum >= 0) |
342 | for (i = 0; i < ppc_num_gprs; i++) | |
343 | set_sim_regno (sim_regno, | |
344 | tdep->ppc_ev0_upper_regnum + i, | |
345 | sim_ppc_rh0_regnum + i); | |
9f643768 JB |
346 | if (tdep->ppc_acc_regnum >= 0) |
347 | set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum); | |
348 | /* spefscr is a special-purpose register, so the code below handles it. */ | |
349 | ||
976102cd | 350 | #ifdef WITH_PPC_SIM |
9f643768 JB |
351 | /* Now handle all special-purpose registers. Verify that they |
352 | haven't mistakenly been assigned numbers by any of the above | |
7cc46491 DJ |
353 | code. */ |
354 | for (i = 0; i < sim_ppc_num_sprs; i++) | |
355 | { | |
356 | const char *spr_name = sim_spr_register_name (i); | |
357 | int gdb_regno = -1; | |
358 | ||
359 | if (spr_name != NULL) | |
360 | gdb_regno = user_reg_map_name_to_regnum (arch, spr_name, -1); | |
361 | ||
362 | if (gdb_regno != -1) | |
363 | set_sim_regno (sim_regno, gdb_regno, sim_ppc_spr0_regnum + i); | |
364 | } | |
365 | #endif | |
9f643768 JB |
366 | |
367 | /* Drop the initialized array into place. */ | |
368 | tdep->sim_regno = sim_regno; | |
369 | } | |
370 | ||
09991fa0 JB |
371 | |
372 | /* Given a GDB register number REG, return the corresponding SIM | |
373 | register number. */ | |
9f643768 | 374 | static int |
e7faf938 | 375 | rs6000_register_sim_regno (struct gdbarch *gdbarch, int reg) |
9f643768 | 376 | { |
e7faf938 | 377 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
9f643768 JB |
378 | int sim_regno; |
379 | ||
7cc46491 | 380 | if (tdep->sim_regno == NULL) |
e7faf938 | 381 | init_sim_regno_table (gdbarch); |
7cc46491 | 382 | |
f6efe3f8 | 383 | gdb_assert (0 <= reg && reg <= gdbarch_num_cooked_regs (gdbarch)); |
9f643768 JB |
384 | sim_regno = tdep->sim_regno[reg]; |
385 | ||
386 | if (sim_regno >= 0) | |
387 | return sim_regno; | |
388 | else | |
389 | return LEGACY_SIM_REGNO_IGNORE; | |
390 | } | |
391 | ||
d195bc9f MK |
392 | \f |
393 | ||
394 | /* Register set support functions. */ | |
395 | ||
f2db237a AM |
396 | /* REGS + OFFSET contains register REGNUM in a field REGSIZE wide. |
397 | Write the register to REGCACHE. */ | |
398 | ||
7284e1be | 399 | void |
d195bc9f | 400 | ppc_supply_reg (struct regcache *regcache, int regnum, |
f2db237a | 401 | const gdb_byte *regs, size_t offset, int regsize) |
d195bc9f MK |
402 | { |
403 | if (regnum != -1 && offset != -1) | |
f2db237a AM |
404 | { |
405 | if (regsize > 4) | |
406 | { | |
ac7936df | 407 | struct gdbarch *gdbarch = regcache->arch (); |
f2db237a AM |
408 | int gdb_regsize = register_size (gdbarch, regnum); |
409 | if (gdb_regsize < regsize | |
410 | && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) | |
411 | offset += regsize - gdb_regsize; | |
412 | } | |
73e1c03f | 413 | regcache->raw_supply (regnum, regs + offset); |
f2db237a | 414 | } |
d195bc9f MK |
415 | } |
416 | ||
f2db237a AM |
417 | /* Read register REGNUM from REGCACHE and store to REGS + OFFSET |
418 | in a field REGSIZE wide. Zero pad as necessary. */ | |
419 | ||
7284e1be | 420 | void |
d195bc9f | 421 | ppc_collect_reg (const struct regcache *regcache, int regnum, |
f2db237a | 422 | gdb_byte *regs, size_t offset, int regsize) |
d195bc9f MK |
423 | { |
424 | if (regnum != -1 && offset != -1) | |
f2db237a AM |
425 | { |
426 | if (regsize > 4) | |
427 | { | |
ac7936df | 428 | struct gdbarch *gdbarch = regcache->arch (); |
f2db237a AM |
429 | int gdb_regsize = register_size (gdbarch, regnum); |
430 | if (gdb_regsize < regsize) | |
431 | { | |
432 | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) | |
433 | { | |
434 | memset (regs + offset, 0, regsize - gdb_regsize); | |
435 | offset += regsize - gdb_regsize; | |
436 | } | |
437 | else | |
438 | memset (regs + offset + regsize - gdb_regsize, 0, | |
439 | regsize - gdb_regsize); | |
440 | } | |
441 | } | |
34a79281 | 442 | regcache->raw_collect (regnum, regs + offset); |
f2db237a | 443 | } |
d195bc9f MK |
444 | } |
445 | ||
f2db237a AM |
446 | static int |
447 | ppc_greg_offset (struct gdbarch *gdbarch, | |
448 | struct gdbarch_tdep *tdep, | |
449 | const struct ppc_reg_offsets *offsets, | |
450 | int regnum, | |
451 | int *regsize) | |
452 | { | |
453 | *regsize = offsets->gpr_size; | |
454 | if (regnum >= tdep->ppc_gp0_regnum | |
455 | && regnum < tdep->ppc_gp0_regnum + ppc_num_gprs) | |
456 | return (offsets->r0_offset | |
457 | + (regnum - tdep->ppc_gp0_regnum) * offsets->gpr_size); | |
458 | ||
459 | if (regnum == gdbarch_pc_regnum (gdbarch)) | |
460 | return offsets->pc_offset; | |
461 | ||
462 | if (regnum == tdep->ppc_ps_regnum) | |
463 | return offsets->ps_offset; | |
464 | ||
465 | if (regnum == tdep->ppc_lr_regnum) | |
466 | return offsets->lr_offset; | |
467 | ||
468 | if (regnum == tdep->ppc_ctr_regnum) | |
469 | return offsets->ctr_offset; | |
470 | ||
471 | *regsize = offsets->xr_size; | |
472 | if (regnum == tdep->ppc_cr_regnum) | |
473 | return offsets->cr_offset; | |
474 | ||
475 | if (regnum == tdep->ppc_xer_regnum) | |
476 | return offsets->xer_offset; | |
477 | ||
478 | if (regnum == tdep->ppc_mq_regnum) | |
479 | return offsets->mq_offset; | |
480 | ||
481 | return -1; | |
482 | } | |
483 | ||
484 | static int | |
485 | ppc_fpreg_offset (struct gdbarch_tdep *tdep, | |
486 | const struct ppc_reg_offsets *offsets, | |
487 | int regnum) | |
488 | { | |
489 | if (regnum >= tdep->ppc_fp0_regnum | |
490 | && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs) | |
491 | return offsets->f0_offset + (regnum - tdep->ppc_fp0_regnum) * 8; | |
492 | ||
493 | if (regnum == tdep->ppc_fpscr_regnum) | |
494 | return offsets->fpscr_offset; | |
495 | ||
496 | return -1; | |
497 | } | |
498 | ||
d195bc9f MK |
499 | /* Supply register REGNUM in the general-purpose register set REGSET |
500 | from the buffer specified by GREGS and LEN to register cache | |
501 | REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */ | |
502 | ||
503 | void | |
504 | ppc_supply_gregset (const struct regset *regset, struct regcache *regcache, | |
505 | int regnum, const void *gregs, size_t len) | |
506 | { | |
ac7936df | 507 | struct gdbarch *gdbarch = regcache->arch (); |
d195bc9f | 508 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
19ba03f4 SM |
509 | const struct ppc_reg_offsets *offsets |
510 | = (const struct ppc_reg_offsets *) regset->regmap; | |
d195bc9f | 511 | size_t offset; |
f2db237a | 512 | int regsize; |
d195bc9f | 513 | |
f2db237a | 514 | if (regnum == -1) |
d195bc9f | 515 | { |
f2db237a AM |
516 | int i; |
517 | int gpr_size = offsets->gpr_size; | |
518 | ||
519 | for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset; | |
520 | i < tdep->ppc_gp0_regnum + ppc_num_gprs; | |
521 | i++, offset += gpr_size) | |
19ba03f4 SM |
522 | ppc_supply_reg (regcache, i, (const gdb_byte *) gregs, offset, |
523 | gpr_size); | |
f2db237a AM |
524 | |
525 | ppc_supply_reg (regcache, gdbarch_pc_regnum (gdbarch), | |
19ba03f4 | 526 | (const gdb_byte *) gregs, offsets->pc_offset, gpr_size); |
f2db237a | 527 | ppc_supply_reg (regcache, tdep->ppc_ps_regnum, |
19ba03f4 | 528 | (const gdb_byte *) gregs, offsets->ps_offset, gpr_size); |
f2db237a | 529 | ppc_supply_reg (regcache, tdep->ppc_lr_regnum, |
19ba03f4 | 530 | (const gdb_byte *) gregs, offsets->lr_offset, gpr_size); |
f2db237a | 531 | ppc_supply_reg (regcache, tdep->ppc_ctr_regnum, |
19ba03f4 | 532 | (const gdb_byte *) gregs, offsets->ctr_offset, gpr_size); |
f2db237a | 533 | ppc_supply_reg (regcache, tdep->ppc_cr_regnum, |
19ba03f4 SM |
534 | (const gdb_byte *) gregs, offsets->cr_offset, |
535 | offsets->xr_size); | |
f2db237a | 536 | ppc_supply_reg (regcache, tdep->ppc_xer_regnum, |
19ba03f4 SM |
537 | (const gdb_byte *) gregs, offsets->xer_offset, |
538 | offsets->xr_size); | |
f2db237a | 539 | ppc_supply_reg (regcache, tdep->ppc_mq_regnum, |
19ba03f4 SM |
540 | (const gdb_byte *) gregs, offsets->mq_offset, |
541 | offsets->xr_size); | |
f2db237a | 542 | return; |
d195bc9f MK |
543 | } |
544 | ||
f2db237a | 545 | offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, ®size); |
19ba03f4 | 546 | ppc_supply_reg (regcache, regnum, (const gdb_byte *) gregs, offset, regsize); |
d195bc9f MK |
547 | } |
548 | ||
549 | /* Supply register REGNUM in the floating-point register set REGSET | |
550 | from the buffer specified by FPREGS and LEN to register cache | |
551 | REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */ | |
552 | ||
553 | void | |
554 | ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache, | |
555 | int regnum, const void *fpregs, size_t len) | |
556 | { | |
ac7936df | 557 | struct gdbarch *gdbarch = regcache->arch (); |
f2db237a AM |
558 | struct gdbarch_tdep *tdep; |
559 | const struct ppc_reg_offsets *offsets; | |
d195bc9f | 560 | size_t offset; |
d195bc9f | 561 | |
f2db237a AM |
562 | if (!ppc_floating_point_unit_p (gdbarch)) |
563 | return; | |
383f0f5b | 564 | |
f2db237a | 565 | tdep = gdbarch_tdep (gdbarch); |
19ba03f4 | 566 | offsets = (const struct ppc_reg_offsets *) regset->regmap; |
f2db237a | 567 | if (regnum == -1) |
d195bc9f | 568 | { |
f2db237a AM |
569 | int i; |
570 | ||
571 | for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset; | |
572 | i < tdep->ppc_fp0_regnum + ppc_num_fprs; | |
573 | i++, offset += 8) | |
19ba03f4 | 574 | ppc_supply_reg (regcache, i, (const gdb_byte *) fpregs, offset, 8); |
f2db237a AM |
575 | |
576 | ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum, | |
19ba03f4 SM |
577 | (const gdb_byte *) fpregs, offsets->fpscr_offset, |
578 | offsets->fpscr_size); | |
f2db237a | 579 | return; |
d195bc9f MK |
580 | } |
581 | ||
f2db237a | 582 | offset = ppc_fpreg_offset (tdep, offsets, regnum); |
19ba03f4 | 583 | ppc_supply_reg (regcache, regnum, (const gdb_byte *) fpregs, offset, |
f2db237a | 584 | regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8); |
d195bc9f MK |
585 | } |
586 | ||
587 | /* Collect register REGNUM in the general-purpose register set | |
f2db237a | 588 | REGSET from register cache REGCACHE into the buffer specified by |
d195bc9f MK |
589 | GREGS and LEN. If REGNUM is -1, do this for all registers in |
590 | REGSET. */ | |
591 | ||
592 | void | |
593 | ppc_collect_gregset (const struct regset *regset, | |
594 | const struct regcache *regcache, | |
595 | int regnum, void *gregs, size_t len) | |
596 | { | |
ac7936df | 597 | struct gdbarch *gdbarch = regcache->arch (); |
d195bc9f | 598 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
19ba03f4 SM |
599 | const struct ppc_reg_offsets *offsets |
600 | = (const struct ppc_reg_offsets *) regset->regmap; | |
d195bc9f | 601 | size_t offset; |
f2db237a | 602 | int regsize; |
d195bc9f | 603 | |
f2db237a | 604 | if (regnum == -1) |
d195bc9f | 605 | { |
f2db237a AM |
606 | int i; |
607 | int gpr_size = offsets->gpr_size; | |
608 | ||
609 | for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset; | |
610 | i < tdep->ppc_gp0_regnum + ppc_num_gprs; | |
611 | i++, offset += gpr_size) | |
19ba03f4 | 612 | ppc_collect_reg (regcache, i, (gdb_byte *) gregs, offset, gpr_size); |
f2db237a AM |
613 | |
614 | ppc_collect_reg (regcache, gdbarch_pc_regnum (gdbarch), | |
19ba03f4 | 615 | (gdb_byte *) gregs, offsets->pc_offset, gpr_size); |
f2db237a | 616 | ppc_collect_reg (regcache, tdep->ppc_ps_regnum, |
19ba03f4 | 617 | (gdb_byte *) gregs, offsets->ps_offset, gpr_size); |
f2db237a | 618 | ppc_collect_reg (regcache, tdep->ppc_lr_regnum, |
19ba03f4 | 619 | (gdb_byte *) gregs, offsets->lr_offset, gpr_size); |
f2db237a | 620 | ppc_collect_reg (regcache, tdep->ppc_ctr_regnum, |
19ba03f4 | 621 | (gdb_byte *) gregs, offsets->ctr_offset, gpr_size); |
f2db237a | 622 | ppc_collect_reg (regcache, tdep->ppc_cr_regnum, |
19ba03f4 SM |
623 | (gdb_byte *) gregs, offsets->cr_offset, |
624 | offsets->xr_size); | |
f2db237a | 625 | ppc_collect_reg (regcache, tdep->ppc_xer_regnum, |
19ba03f4 SM |
626 | (gdb_byte *) gregs, offsets->xer_offset, |
627 | offsets->xr_size); | |
f2db237a | 628 | ppc_collect_reg (regcache, tdep->ppc_mq_regnum, |
19ba03f4 SM |
629 | (gdb_byte *) gregs, offsets->mq_offset, |
630 | offsets->xr_size); | |
f2db237a | 631 | return; |
d195bc9f MK |
632 | } |
633 | ||
f2db237a | 634 | offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, ®size); |
19ba03f4 | 635 | ppc_collect_reg (regcache, regnum, (gdb_byte *) gregs, offset, regsize); |
d195bc9f MK |
636 | } |
637 | ||
638 | /* Collect register REGNUM in the floating-point register set | |
f2db237a | 639 | REGSET from register cache REGCACHE into the buffer specified by |
d195bc9f MK |
640 | FPREGS and LEN. If REGNUM is -1, do this for all registers in |
641 | REGSET. */ | |
642 | ||
643 | void | |
644 | ppc_collect_fpregset (const struct regset *regset, | |
645 | const struct regcache *regcache, | |
646 | int regnum, void *fpregs, size_t len) | |
647 | { | |
ac7936df | 648 | struct gdbarch *gdbarch = regcache->arch (); |
f2db237a AM |
649 | struct gdbarch_tdep *tdep; |
650 | const struct ppc_reg_offsets *offsets; | |
d195bc9f | 651 | size_t offset; |
d195bc9f | 652 | |
f2db237a AM |
653 | if (!ppc_floating_point_unit_p (gdbarch)) |
654 | return; | |
383f0f5b | 655 | |
f2db237a | 656 | tdep = gdbarch_tdep (gdbarch); |
19ba03f4 | 657 | offsets = (const struct ppc_reg_offsets *) regset->regmap; |
f2db237a | 658 | if (regnum == -1) |
d195bc9f | 659 | { |
f2db237a AM |
660 | int i; |
661 | ||
662 | for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset; | |
663 | i < tdep->ppc_fp0_regnum + ppc_num_fprs; | |
664 | i++, offset += 8) | |
19ba03f4 | 665 | ppc_collect_reg (regcache, i, (gdb_byte *) fpregs, offset, 8); |
f2db237a AM |
666 | |
667 | ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum, | |
19ba03f4 SM |
668 | (gdb_byte *) fpregs, offsets->fpscr_offset, |
669 | offsets->fpscr_size); | |
f2db237a | 670 | return; |
d195bc9f MK |
671 | } |
672 | ||
f2db237a | 673 | offset = ppc_fpreg_offset (tdep, offsets, regnum); |
19ba03f4 | 674 | ppc_collect_reg (regcache, regnum, (gdb_byte *) fpregs, offset, |
f2db237a | 675 | regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8); |
d195bc9f | 676 | } |
06caf7d2 | 677 | |
0d1243d9 PG |
678 | static int |
679 | insn_changes_sp_or_jumps (unsigned long insn) | |
680 | { | |
681 | int opcode = (insn >> 26) & 0x03f; | |
682 | int sd = (insn >> 21) & 0x01f; | |
683 | int a = (insn >> 16) & 0x01f; | |
684 | int subcode = (insn >> 1) & 0x3ff; | |
685 | ||
686 | /* Changes the stack pointer. */ | |
687 | ||
688 | /* NOTE: There are many ways to change the value of a given register. | |
689 | The ways below are those used when the register is R1, the SP, | |
690 | in a funtion's epilogue. */ | |
691 | ||
692 | if (opcode == 31 && subcode == 444 && a == 1) | |
693 | return 1; /* mr R1,Rn */ | |
694 | if (opcode == 14 && sd == 1) | |
695 | return 1; /* addi R1,Rn,simm */ | |
696 | if (opcode == 58 && sd == 1) | |
697 | return 1; /* ld R1,ds(Rn) */ | |
698 | ||
699 | /* Transfers control. */ | |
700 | ||
701 | if (opcode == 18) | |
702 | return 1; /* b */ | |
703 | if (opcode == 16) | |
704 | return 1; /* bc */ | |
705 | if (opcode == 19 && subcode == 16) | |
706 | return 1; /* bclr */ | |
707 | if (opcode == 19 && subcode == 528) | |
708 | return 1; /* bcctr */ | |
709 | ||
710 | return 0; | |
711 | } | |
712 | ||
713 | /* Return true if we are in the function's epilogue, i.e. after the | |
714 | instruction that destroyed the function's stack frame. | |
715 | ||
716 | 1) scan forward from the point of execution: | |
717 | a) If you find an instruction that modifies the stack pointer | |
718 | or transfers control (except a return), execution is not in | |
719 | an epilogue, return. | |
720 | b) Stop scanning if you find a return instruction or reach the | |
721 | end of the function or reach the hard limit for the size of | |
722 | an epilogue. | |
723 | 2) scan backward from the point of execution: | |
724 | a) If you find an instruction that modifies the stack pointer, | |
725 | execution *is* in an epilogue, return. | |
726 | b) Stop scanning if you reach an instruction that transfers | |
727 | control or the beginning of the function or reach the hard | |
728 | limit for the size of an epilogue. */ | |
729 | ||
730 | static int | |
2608dbf8 WW |
731 | rs6000_in_function_epilogue_frame_p (struct frame_info *curfrm, |
732 | struct gdbarch *gdbarch, CORE_ADDR pc) | |
0d1243d9 | 733 | { |
46a9b8ed | 734 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
e17a4113 | 735 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
0d1243d9 PG |
736 | bfd_byte insn_buf[PPC_INSN_SIZE]; |
737 | CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end; | |
738 | unsigned long insn; | |
0d1243d9 PG |
739 | |
740 | /* Find the search limits based on function boundaries and hard limit. */ | |
741 | ||
742 | if (!find_pc_partial_function (pc, NULL, &func_start, &func_end)) | |
743 | return 0; | |
744 | ||
745 | epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE; | |
746 | if (epilogue_start < func_start) epilogue_start = func_start; | |
747 | ||
748 | epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE; | |
749 | if (epilogue_end > func_end) epilogue_end = func_end; | |
750 | ||
0d1243d9 PG |
751 | /* Scan forward until next 'blr'. */ |
752 | ||
753 | for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE) | |
754 | { | |
755 | if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE)) | |
756 | return 0; | |
e17a4113 | 757 | insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order); |
0d1243d9 PG |
758 | if (insn == 0x4e800020) |
759 | break; | |
46a9b8ed DJ |
760 | /* Assume a bctr is a tail call unless it points strictly within |
761 | this function. */ | |
762 | if (insn == 0x4e800420) | |
763 | { | |
764 | CORE_ADDR ctr = get_frame_register_unsigned (curfrm, | |
765 | tdep->ppc_ctr_regnum); | |
766 | if (ctr > func_start && ctr < func_end) | |
767 | return 0; | |
768 | else | |
769 | break; | |
770 | } | |
0d1243d9 PG |
771 | if (insn_changes_sp_or_jumps (insn)) |
772 | return 0; | |
773 | } | |
774 | ||
775 | /* Scan backward until adjustment to stack pointer (R1). */ | |
776 | ||
777 | for (scan_pc = pc - PPC_INSN_SIZE; | |
778 | scan_pc >= epilogue_start; | |
779 | scan_pc -= PPC_INSN_SIZE) | |
780 | { | |
781 | if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE)) | |
782 | return 0; | |
e17a4113 | 783 | insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order); |
0d1243d9 PG |
784 | if (insn_changes_sp_or_jumps (insn)) |
785 | return 1; | |
786 | } | |
787 | ||
788 | return 0; | |
789 | } | |
790 | ||
c9cf6e20 | 791 | /* Implement the stack_frame_destroyed_p gdbarch method. */ |
2608dbf8 WW |
792 | |
793 | static int | |
c9cf6e20 | 794 | rs6000_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc) |
2608dbf8 WW |
795 | { |
796 | return rs6000_in_function_epilogue_frame_p (get_current_frame (), | |
797 | gdbarch, pc); | |
798 | } | |
799 | ||
143985b7 | 800 | /* Get the ith function argument for the current function. */ |
b9362cc7 | 801 | static CORE_ADDR |
143985b7 AF |
802 | rs6000_fetch_pointer_argument (struct frame_info *frame, int argi, |
803 | struct type *type) | |
804 | { | |
50fd1280 | 805 | return get_frame_register_unsigned (frame, 3 + argi); |
143985b7 AF |
806 | } |
807 | ||
c906108c SS |
808 | /* Sequence of bytes for breakpoint instruction. */ |
809 | ||
04180708 YQ |
810 | constexpr gdb_byte big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 }; |
811 | constexpr gdb_byte little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d }; | |
d19280ad | 812 | |
04180708 YQ |
813 | typedef BP_MANIPULATION_ENDIAN (little_breakpoint, big_breakpoint) |
814 | rs6000_breakpoint; | |
c906108c | 815 | |
f74c6cad LM |
816 | /* Instruction masks for displaced stepping. */ |
817 | #define BRANCH_MASK 0xfc000000 | |
818 | #define BP_MASK 0xFC0007FE | |
819 | #define B_INSN 0x48000000 | |
820 | #define BC_INSN 0x40000000 | |
821 | #define BXL_INSN 0x4c000000 | |
822 | #define BP_INSN 0x7C000008 | |
823 | ||
7f03bd92 PA |
824 | /* Instruction masks used during single-stepping of atomic |
825 | sequences. */ | |
2039d74e | 826 | #define LOAD_AND_RESERVE_MASK 0xfc0007fe |
7f03bd92 PA |
827 | #define LWARX_INSTRUCTION 0x7c000028 |
828 | #define LDARX_INSTRUCTION 0x7c0000A8 | |
2039d74e EBM |
829 | #define LBARX_INSTRUCTION 0x7c000068 |
830 | #define LHARX_INSTRUCTION 0x7c0000e8 | |
831 | #define LQARX_INSTRUCTION 0x7c000228 | |
832 | #define STORE_CONDITIONAL_MASK 0xfc0007ff | |
7f03bd92 PA |
833 | #define STWCX_INSTRUCTION 0x7c00012d |
834 | #define STDCX_INSTRUCTION 0x7c0001ad | |
2039d74e EBM |
835 | #define STBCX_INSTRUCTION 0x7c00056d |
836 | #define STHCX_INSTRUCTION 0x7c0005ad | |
837 | #define STQCX_INSTRUCTION 0x7c00016d | |
838 | ||
839 | /* Check if insn is one of the Load And Reserve instructions used for atomic | |
840 | sequences. */ | |
841 | #define IS_LOAD_AND_RESERVE_INSN(insn) ((insn & LOAD_AND_RESERVE_MASK) == LWARX_INSTRUCTION \ | |
842 | || (insn & LOAD_AND_RESERVE_MASK) == LDARX_INSTRUCTION \ | |
843 | || (insn & LOAD_AND_RESERVE_MASK) == LBARX_INSTRUCTION \ | |
844 | || (insn & LOAD_AND_RESERVE_MASK) == LHARX_INSTRUCTION \ | |
845 | || (insn & LOAD_AND_RESERVE_MASK) == LQARX_INSTRUCTION) | |
846 | /* Check if insn is one of the Store Conditional instructions used for atomic | |
847 | sequences. */ | |
848 | #define IS_STORE_CONDITIONAL_INSN(insn) ((insn & STORE_CONDITIONAL_MASK) == STWCX_INSTRUCTION \ | |
849 | || (insn & STORE_CONDITIONAL_MASK) == STDCX_INSTRUCTION \ | |
850 | || (insn & STORE_CONDITIONAL_MASK) == STBCX_INSTRUCTION \ | |
851 | || (insn & STORE_CONDITIONAL_MASK) == STHCX_INSTRUCTION \ | |
852 | || (insn & STORE_CONDITIONAL_MASK) == STQCX_INSTRUCTION) | |
7f03bd92 | 853 | |
cfba9872 SM |
854 | typedef buf_displaced_step_closure ppc_displaced_step_closure; |
855 | ||
c2508e90 | 856 | /* We can't displaced step atomic sequences. */ |
7f03bd92 PA |
857 | |
858 | static struct displaced_step_closure * | |
859 | ppc_displaced_step_copy_insn (struct gdbarch *gdbarch, | |
860 | CORE_ADDR from, CORE_ADDR to, | |
861 | struct regcache *regs) | |
862 | { | |
863 | size_t len = gdbarch_max_insn_length (gdbarch); | |
cfba9872 SM |
864 | std::unique_ptr<ppc_displaced_step_closure> closure |
865 | (new ppc_displaced_step_closure (len)); | |
866 | gdb_byte *buf = closure->buf.data (); | |
7f03bd92 PA |
867 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
868 | int insn; | |
869 | ||
870 | read_memory (from, buf, len); | |
871 | ||
872 | insn = extract_signed_integer (buf, PPC_INSN_SIZE, byte_order); | |
873 | ||
2039d74e EBM |
874 | /* Assume all atomic sequences start with a Load and Reserve instruction. */ |
875 | if (IS_LOAD_AND_RESERVE_INSN (insn)) | |
7f03bd92 PA |
876 | { |
877 | if (debug_displaced) | |
878 | { | |
879 | fprintf_unfiltered (gdb_stdlog, | |
880 | "displaced: can't displaced step " | |
881 | "atomic sequence at %s\n", | |
882 | paddress (gdbarch, from)); | |
883 | } | |
cfba9872 | 884 | |
7f03bd92 PA |
885 | return NULL; |
886 | } | |
887 | ||
888 | write_memory (to, buf, len); | |
889 | ||
890 | if (debug_displaced) | |
891 | { | |
892 | fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ", | |
893 | paddress (gdbarch, from), paddress (gdbarch, to)); | |
894 | displaced_step_dump_bytes (gdb_stdlog, buf, len); | |
895 | } | |
896 | ||
cfba9872 | 897 | return closure.release (); |
7f03bd92 PA |
898 | } |
899 | ||
f74c6cad LM |
900 | /* Fix up the state of registers and memory after having single-stepped |
901 | a displaced instruction. */ | |
63807e1d | 902 | static void |
f74c6cad | 903 | ppc_displaced_step_fixup (struct gdbarch *gdbarch, |
cfba9872 | 904 | struct displaced_step_closure *closure_, |
63807e1d PA |
905 | CORE_ADDR from, CORE_ADDR to, |
906 | struct regcache *regs) | |
f74c6cad | 907 | { |
e17a4113 | 908 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
7f03bd92 | 909 | /* Our closure is a copy of the instruction. */ |
cfba9872 SM |
910 | ppc_displaced_step_closure *closure = (ppc_displaced_step_closure *) closure_; |
911 | ULONGEST insn = extract_unsigned_integer (closure->buf.data (), | |
912 | PPC_INSN_SIZE, byte_order); | |
f74c6cad LM |
913 | ULONGEST opcode = 0; |
914 | /* Offset for non PC-relative instructions. */ | |
915 | LONGEST offset = PPC_INSN_SIZE; | |
916 | ||
917 | opcode = insn & BRANCH_MASK; | |
918 | ||
919 | if (debug_displaced) | |
920 | fprintf_unfiltered (gdb_stdlog, | |
5af949e3 UW |
921 | "displaced: (ppc) fixup (%s, %s)\n", |
922 | paddress (gdbarch, from), paddress (gdbarch, to)); | |
f74c6cad LM |
923 | |
924 | ||
925 | /* Handle PC-relative branch instructions. */ | |
926 | if (opcode == B_INSN || opcode == BC_INSN || opcode == BXL_INSN) | |
927 | { | |
a4fafde3 | 928 | ULONGEST current_pc; |
f74c6cad LM |
929 | |
930 | /* Read the current PC value after the instruction has been executed | |
931 | in a displaced location. Calculate the offset to be applied to the | |
932 | original PC value before the displaced stepping. */ | |
933 | regcache_cooked_read_unsigned (regs, gdbarch_pc_regnum (gdbarch), | |
934 | ¤t_pc); | |
935 | offset = current_pc - to; | |
936 | ||
937 | if (opcode != BXL_INSN) | |
938 | { | |
939 | /* Check for AA bit indicating whether this is an absolute | |
940 | addressing or PC-relative (1: absolute, 0: relative). */ | |
941 | if (!(insn & 0x2)) | |
942 | { | |
943 | /* PC-relative addressing is being used in the branch. */ | |
944 | if (debug_displaced) | |
945 | fprintf_unfiltered | |
946 | (gdb_stdlog, | |
5af949e3 UW |
947 | "displaced: (ppc) branch instruction: %s\n" |
948 | "displaced: (ppc) adjusted PC from %s to %s\n", | |
949 | paddress (gdbarch, insn), paddress (gdbarch, current_pc), | |
950 | paddress (gdbarch, from + offset)); | |
f74c6cad | 951 | |
0df8b418 MS |
952 | regcache_cooked_write_unsigned (regs, |
953 | gdbarch_pc_regnum (gdbarch), | |
f74c6cad LM |
954 | from + offset); |
955 | } | |
956 | } | |
957 | else | |
958 | { | |
959 | /* If we're here, it means we have a branch to LR or CTR. If the | |
960 | branch was taken, the offset is probably greater than 4 (the next | |
961 | instruction), so it's safe to assume that an offset of 4 means we | |
962 | did not take the branch. */ | |
963 | if (offset == PPC_INSN_SIZE) | |
964 | regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch), | |
965 | from + PPC_INSN_SIZE); | |
966 | } | |
967 | ||
968 | /* Check for LK bit indicating whether we should set the link | |
969 | register to point to the next instruction | |
970 | (1: Set, 0: Don't set). */ | |
971 | if (insn & 0x1) | |
972 | { | |
973 | /* Link register needs to be set to the next instruction's PC. */ | |
974 | regcache_cooked_write_unsigned (regs, | |
975 | gdbarch_tdep (gdbarch)->ppc_lr_regnum, | |
976 | from + PPC_INSN_SIZE); | |
977 | if (debug_displaced) | |
978 | fprintf_unfiltered (gdb_stdlog, | |
5af949e3 UW |
979 | "displaced: (ppc) adjusted LR to %s\n", |
980 | paddress (gdbarch, from + PPC_INSN_SIZE)); | |
f74c6cad LM |
981 | |
982 | } | |
983 | } | |
984 | /* Check for breakpoints in the inferior. If we've found one, place the PC | |
985 | right at the breakpoint instruction. */ | |
986 | else if ((insn & BP_MASK) == BP_INSN) | |
987 | regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch), from); | |
988 | else | |
989 | /* Handle any other instructions that do not fit in the categories above. */ | |
990 | regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch), | |
991 | from + offset); | |
992 | } | |
c906108c | 993 | |
99e40580 UW |
994 | /* Always use hardware single-stepping to execute the |
995 | displaced instruction. */ | |
996 | static int | |
997 | ppc_displaced_step_hw_singlestep (struct gdbarch *gdbarch, | |
998 | struct displaced_step_closure *closure) | |
999 | { | |
1000 | return 1; | |
1001 | } | |
1002 | ||
2039d74e EBM |
1003 | /* Checks for an atomic sequence of instructions beginning with a |
1004 | Load And Reserve instruction and ending with a Store Conditional | |
1005 | instruction. If such a sequence is found, attempt to step through it. | |
1006 | A breakpoint is placed at the end of the sequence. */ | |
a0ff9e1a | 1007 | std::vector<CORE_ADDR> |
f5ea389a | 1008 | ppc_deal_with_atomic_sequence (struct regcache *regcache) |
ce5eab59 | 1009 | { |
ac7936df | 1010 | struct gdbarch *gdbarch = regcache->arch (); |
e17a4113 | 1011 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
41e26ad3 | 1012 | CORE_ADDR pc = regcache_read_pc (regcache); |
70ab8ccd | 1013 | CORE_ADDR breaks[2] = {CORE_ADDR_MAX, CORE_ADDR_MAX}; |
ce5eab59 | 1014 | CORE_ADDR loc = pc; |
24d45690 | 1015 | CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */ |
e17a4113 | 1016 | int insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order); |
ce5eab59 UW |
1017 | int insn_count; |
1018 | int index; | |
1019 | int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */ | |
1020 | const int atomic_sequence_length = 16; /* Instruction sequence length. */ | |
ce5eab59 UW |
1021 | int bc_insn_count = 0; /* Conditional branch instruction count. */ |
1022 | ||
2039d74e EBM |
1023 | /* Assume all atomic sequences start with a Load And Reserve instruction. */ |
1024 | if (!IS_LOAD_AND_RESERVE_INSN (insn)) | |
a0ff9e1a | 1025 | return {}; |
ce5eab59 UW |
1026 | |
1027 | /* Assume that no atomic sequence is longer than "atomic_sequence_length" | |
1028 | instructions. */ | |
1029 | for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count) | |
1030 | { | |
1031 | loc += PPC_INSN_SIZE; | |
e17a4113 | 1032 | insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order); |
ce5eab59 UW |
1033 | |
1034 | /* Assume that there is at most one conditional branch in the atomic | |
1035 | sequence. If a conditional branch is found, put a breakpoint in | |
1036 | its destination address. */ | |
f74c6cad | 1037 | if ((insn & BRANCH_MASK) == BC_INSN) |
ce5eab59 | 1038 | { |
a3769e0c AM |
1039 | int immediate = ((insn & 0xfffc) ^ 0x8000) - 0x8000; |
1040 | int absolute = insn & 2; | |
4a7622d1 | 1041 | |
ce5eab59 | 1042 | if (bc_insn_count >= 1) |
a0ff9e1a SM |
1043 | return {}; /* More than one conditional branch found, fallback |
1044 | to the standard single-step code. */ | |
4a7622d1 UW |
1045 | |
1046 | if (absolute) | |
1047 | breaks[1] = immediate; | |
1048 | else | |
a3769e0c | 1049 | breaks[1] = loc + immediate; |
4a7622d1 UW |
1050 | |
1051 | bc_insn_count++; | |
1052 | last_breakpoint++; | |
ce5eab59 UW |
1053 | } |
1054 | ||
2039d74e | 1055 | if (IS_STORE_CONDITIONAL_INSN (insn)) |
ce5eab59 UW |
1056 | break; |
1057 | } | |
1058 | ||
2039d74e EBM |
1059 | /* Assume that the atomic sequence ends with a Store Conditional |
1060 | instruction. */ | |
1061 | if (!IS_STORE_CONDITIONAL_INSN (insn)) | |
a0ff9e1a | 1062 | return {}; |
ce5eab59 | 1063 | |
24d45690 | 1064 | closing_insn = loc; |
ce5eab59 | 1065 | loc += PPC_INSN_SIZE; |
ce5eab59 UW |
1066 | |
1067 | /* Insert a breakpoint right after the end of the atomic sequence. */ | |
1068 | breaks[0] = loc; | |
1069 | ||
24d45690 | 1070 | /* Check for duplicated breakpoints. Check also for a breakpoint |
a3769e0c AM |
1071 | placed (branch instruction's destination) anywhere in sequence. */ |
1072 | if (last_breakpoint | |
1073 | && (breaks[1] == breaks[0] | |
1074 | || (breaks[1] >= pc && breaks[1] <= closing_insn))) | |
ce5eab59 UW |
1075 | last_breakpoint = 0; |
1076 | ||
a0ff9e1a SM |
1077 | std::vector<CORE_ADDR> next_pcs; |
1078 | ||
ce5eab59 | 1079 | for (index = 0; index <= last_breakpoint; index++) |
a0ff9e1a | 1080 | next_pcs.push_back (breaks[index]); |
ce5eab59 | 1081 | |
93f9a11f | 1082 | return next_pcs; |
ce5eab59 UW |
1083 | } |
1084 | ||
c906108c | 1085 | |
c906108c SS |
1086 | #define SIGNED_SHORT(x) \ |
1087 | ((sizeof (short) == 2) \ | |
1088 | ? ((int)(short)(x)) \ | |
1089 | : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000))) | |
1090 | ||
1091 | #define GET_SRC_REG(x) (((x) >> 21) & 0x1f) | |
1092 | ||
55d05f3b KB |
1093 | /* Limit the number of skipped non-prologue instructions, as the examining |
1094 | of the prologue is expensive. */ | |
1095 | static int max_skip_non_prologue_insns = 10; | |
1096 | ||
773df3e5 JB |
1097 | /* Return nonzero if the given instruction OP can be part of the prologue |
1098 | of a function and saves a parameter on the stack. FRAMEP should be | |
1099 | set if one of the previous instructions in the function has set the | |
1100 | Frame Pointer. */ | |
1101 | ||
1102 | static int | |
1103 | store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg) | |
1104 | { | |
1105 | /* Move parameters from argument registers to temporary register. */ | |
1106 | if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */ | |
1107 | { | |
1108 | /* Rx must be scratch register r0. */ | |
1109 | const int rx_regno = (op >> 16) & 31; | |
1110 | /* Ry: Only r3 - r10 are used for parameter passing. */ | |
1111 | const int ry_regno = GET_SRC_REG (op); | |
1112 | ||
1113 | if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10) | |
1114 | { | |
1115 | *r0_contains_arg = 1; | |
1116 | return 1; | |
1117 | } | |
1118 | else | |
1119 | return 0; | |
1120 | } | |
1121 | ||
1122 | /* Save a General Purpose Register on stack. */ | |
1123 | ||
1124 | if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */ | |
1125 | (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */ | |
1126 | { | |
1127 | /* Rx: Only r3 - r10 are used for parameter passing. */ | |
1128 | const int rx_regno = GET_SRC_REG (op); | |
1129 | ||
1130 | return (rx_regno >= 3 && rx_regno <= 10); | |
1131 | } | |
1132 | ||
1133 | /* Save a General Purpose Register on stack via the Frame Pointer. */ | |
1134 | ||
1135 | if (framep && | |
1136 | ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */ | |
1137 | (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */ | |
1138 | (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */ | |
1139 | { | |
1140 | /* Rx: Usually, only r3 - r10 are used for parameter passing. | |
1141 | However, the compiler sometimes uses r0 to hold an argument. */ | |
1142 | const int rx_regno = GET_SRC_REG (op); | |
1143 | ||
1144 | return ((rx_regno >= 3 && rx_regno <= 10) | |
1145 | || (rx_regno == 0 && *r0_contains_arg)); | |
1146 | } | |
1147 | ||
1148 | if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */ | |
1149 | { | |
1150 | /* Only f2 - f8 are used for parameter passing. */ | |
1151 | const int src_regno = GET_SRC_REG (op); | |
1152 | ||
1153 | return (src_regno >= 2 && src_regno <= 8); | |
1154 | } | |
1155 | ||
1156 | if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */ | |
1157 | { | |
1158 | /* Only f2 - f8 are used for parameter passing. */ | |
1159 | const int src_regno = GET_SRC_REG (op); | |
1160 | ||
1161 | return (src_regno >= 2 && src_regno <= 8); | |
1162 | } | |
1163 | ||
1164 | /* Not an insn that saves a parameter on stack. */ | |
1165 | return 0; | |
1166 | } | |
55d05f3b | 1167 | |
3c77c82a DJ |
1168 | /* Assuming that INSN is a "bl" instruction located at PC, return |
1169 | nonzero if the destination of the branch is a "blrl" instruction. | |
1170 | ||
1171 | This sequence is sometimes found in certain function prologues. | |
1172 | It allows the function to load the LR register with a value that | |
1173 | they can use to access PIC data using PC-relative offsets. */ | |
1174 | ||
1175 | static int | |
e17a4113 | 1176 | bl_to_blrl_insn_p (CORE_ADDR pc, int insn, enum bfd_endian byte_order) |
3c77c82a | 1177 | { |
0b1b3e42 UW |
1178 | CORE_ADDR dest; |
1179 | int immediate; | |
1180 | int absolute; | |
3c77c82a DJ |
1181 | int dest_insn; |
1182 | ||
0b1b3e42 UW |
1183 | absolute = (int) ((insn >> 1) & 1); |
1184 | immediate = ((insn & ~3) << 6) >> 6; | |
1185 | if (absolute) | |
1186 | dest = immediate; | |
1187 | else | |
1188 | dest = pc + immediate; | |
1189 | ||
e17a4113 | 1190 | dest_insn = read_memory_integer (dest, 4, byte_order); |
3c77c82a DJ |
1191 | if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */ |
1192 | return 1; | |
1193 | ||
1194 | return 0; | |
1195 | } | |
1196 | ||
dd6d677f PFC |
1197 | /* Return true if OP is a stw or std instruction with |
1198 | register operands RS and RA and any immediate offset. | |
1199 | ||
1200 | If WITH_UPDATE is true, also return true if OP is | |
1201 | a stwu or stdu instruction with the same operands. | |
1202 | ||
1203 | Return false otherwise. | |
1204 | */ | |
1205 | static bool | |
1206 | store_insn_p (unsigned long op, unsigned long rs, | |
1207 | unsigned long ra, bool with_update) | |
1208 | { | |
1209 | rs = rs << 21; | |
1210 | ra = ra << 16; | |
1211 | ||
1212 | if (/* std RS, SIMM(RA) */ | |
1213 | ((op & 0xffff0003) == (rs | ra | 0xf8000000)) || | |
1214 | /* stw RS, SIMM(RA) */ | |
1215 | ((op & 0xffff0000) == (rs | ra | 0x90000000))) | |
1216 | return true; | |
1217 | ||
1218 | if (with_update) | |
1219 | { | |
1220 | if (/* stdu RS, SIMM(RA) */ | |
1221 | ((op & 0xffff0003) == (rs | ra | 0xf8000001)) || | |
1222 | /* stwu RS, SIMM(RA) */ | |
1223 | ((op & 0xffff0000) == (rs | ra | 0x94000000))) | |
1224 | return true; | |
1225 | } | |
1226 | ||
1227 | return false; | |
1228 | } | |
1229 | ||
0df8b418 | 1230 | /* Masks for decoding a branch-and-link (bl) instruction. |
8ab3d180 KB |
1231 | |
1232 | BL_MASK and BL_INSTRUCTION are used in combination with each other. | |
1233 | The former is anded with the opcode in question; if the result of | |
1234 | this masking operation is equal to BL_INSTRUCTION, then the opcode in | |
1235 | question is a ``bl'' instruction. | |
1236 | ||
1237 | BL_DISPLACMENT_MASK is anded with the opcode in order to extract | |
1238 | the branch displacement. */ | |
1239 | ||
1240 | #define BL_MASK 0xfc000001 | |
1241 | #define BL_INSTRUCTION 0x48000001 | |
1242 | #define BL_DISPLACEMENT_MASK 0x03fffffc | |
1243 | ||
de9f48f0 | 1244 | static unsigned long |
e17a4113 | 1245 | rs6000_fetch_instruction (struct gdbarch *gdbarch, const CORE_ADDR pc) |
de9f48f0 | 1246 | { |
e17a4113 | 1247 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
de9f48f0 JG |
1248 | gdb_byte buf[4]; |
1249 | unsigned long op; | |
1250 | ||
1251 | /* Fetch the instruction and convert it to an integer. */ | |
1252 | if (target_read_memory (pc, buf, 4)) | |
1253 | return 0; | |
e17a4113 | 1254 | op = extract_unsigned_integer (buf, 4, byte_order); |
de9f48f0 JG |
1255 | |
1256 | return op; | |
1257 | } | |
1258 | ||
1259 | /* GCC generates several well-known sequences of instructions at the begining | |
1260 | of each function prologue when compiling with -fstack-check. If one of | |
1261 | such sequences starts at START_PC, then return the address of the | |
1262 | instruction immediately past this sequence. Otherwise, return START_PC. */ | |
1263 | ||
1264 | static CORE_ADDR | |
e17a4113 | 1265 | rs6000_skip_stack_check (struct gdbarch *gdbarch, const CORE_ADDR start_pc) |
de9f48f0 JG |
1266 | { |
1267 | CORE_ADDR pc = start_pc; | |
e17a4113 | 1268 | unsigned long op = rs6000_fetch_instruction (gdbarch, pc); |
de9f48f0 JG |
1269 | |
1270 | /* First possible sequence: A small number of probes. | |
1271 | stw 0, -<some immediate>(1) | |
0df8b418 | 1272 | [repeat this instruction any (small) number of times]. */ |
de9f48f0 JG |
1273 | |
1274 | if ((op & 0xffff0000) == 0x90010000) | |
1275 | { | |
1276 | while ((op & 0xffff0000) == 0x90010000) | |
1277 | { | |
1278 | pc = pc + 4; | |
e17a4113 | 1279 | op = rs6000_fetch_instruction (gdbarch, pc); |
de9f48f0 JG |
1280 | } |
1281 | return pc; | |
1282 | } | |
1283 | ||
1284 | /* Second sequence: A probing loop. | |
1285 | addi 12,1,-<some immediate> | |
1286 | lis 0,-<some immediate> | |
1287 | [possibly ori 0,0,<some immediate>] | |
1288 | add 0,12,0 | |
1289 | cmpw 0,12,0 | |
1290 | beq 0,<disp> | |
1291 | addi 12,12,-<some immediate> | |
1292 | stw 0,0(12) | |
1293 | b <disp> | |
0df8b418 | 1294 | [possibly one last probe: stw 0,<some immediate>(12)]. */ |
de9f48f0 JG |
1295 | |
1296 | while (1) | |
1297 | { | |
1298 | /* addi 12,1,-<some immediate> */ | |
1299 | if ((op & 0xffff0000) != 0x39810000) | |
1300 | break; | |
1301 | ||
1302 | /* lis 0,-<some immediate> */ | |
1303 | pc = pc + 4; | |
e17a4113 | 1304 | op = rs6000_fetch_instruction (gdbarch, pc); |
de9f48f0 JG |
1305 | if ((op & 0xffff0000) != 0x3c000000) |
1306 | break; | |
1307 | ||
1308 | pc = pc + 4; | |
e17a4113 | 1309 | op = rs6000_fetch_instruction (gdbarch, pc); |
de9f48f0 JG |
1310 | /* [possibly ori 0,0,<some immediate>] */ |
1311 | if ((op & 0xffff0000) == 0x60000000) | |
1312 | { | |
1313 | pc = pc + 4; | |
e17a4113 | 1314 | op = rs6000_fetch_instruction (gdbarch, pc); |
de9f48f0 JG |
1315 | } |
1316 | /* add 0,12,0 */ | |
1317 | if (op != 0x7c0c0214) | |
1318 | break; | |
1319 | ||
1320 | /* cmpw 0,12,0 */ | |
1321 | pc = pc + 4; | |
e17a4113 | 1322 | op = rs6000_fetch_instruction (gdbarch, pc); |
de9f48f0 JG |
1323 | if (op != 0x7c0c0000) |
1324 | break; | |
1325 | ||
1326 | /* beq 0,<disp> */ | |
1327 | pc = pc + 4; | |
e17a4113 | 1328 | op = rs6000_fetch_instruction (gdbarch, pc); |
de9f48f0 JG |
1329 | if ((op & 0xff9f0001) != 0x41820000) |
1330 | break; | |
1331 | ||
1332 | /* addi 12,12,-<some immediate> */ | |
1333 | pc = pc + 4; | |
e17a4113 | 1334 | op = rs6000_fetch_instruction (gdbarch, pc); |
de9f48f0 JG |
1335 | if ((op & 0xffff0000) != 0x398c0000) |
1336 | break; | |
1337 | ||
1338 | /* stw 0,0(12) */ | |
1339 | pc = pc + 4; | |
e17a4113 | 1340 | op = rs6000_fetch_instruction (gdbarch, pc); |
de9f48f0 JG |
1341 | if (op != 0x900c0000) |
1342 | break; | |
1343 | ||
1344 | /* b <disp> */ | |
1345 | pc = pc + 4; | |
e17a4113 | 1346 | op = rs6000_fetch_instruction (gdbarch, pc); |
de9f48f0 JG |
1347 | if ((op & 0xfc000001) != 0x48000000) |
1348 | break; | |
1349 | ||
0df8b418 | 1350 | /* [possibly one last probe: stw 0,<some immediate>(12)]. */ |
de9f48f0 | 1351 | pc = pc + 4; |
e17a4113 | 1352 | op = rs6000_fetch_instruction (gdbarch, pc); |
de9f48f0 JG |
1353 | if ((op & 0xffff0000) == 0x900c0000) |
1354 | { | |
1355 | pc = pc + 4; | |
e17a4113 | 1356 | op = rs6000_fetch_instruction (gdbarch, pc); |
de9f48f0 JG |
1357 | } |
1358 | ||
1359 | /* We found a valid stack-check sequence, return the new PC. */ | |
1360 | return pc; | |
1361 | } | |
1362 | ||
1363 | /* Third sequence: No probe; instead, a comparizon between the stack size | |
1364 | limit (saved in a run-time global variable) and the current stack | |
1365 | pointer: | |
1366 | ||
1367 | addi 0,1,-<some immediate> | |
1368 | lis 12,__gnat_stack_limit@ha | |
1369 | lwz 12,__gnat_stack_limit@l(12) | |
1370 | twllt 0,12 | |
1371 | ||
1372 | or, with a small variant in the case of a bigger stack frame: | |
1373 | addis 0,1,<some immediate> | |
1374 | addic 0,0,-<some immediate> | |
1375 | lis 12,__gnat_stack_limit@ha | |
1376 | lwz 12,__gnat_stack_limit@l(12) | |
1377 | twllt 0,12 | |
1378 | */ | |
1379 | while (1) | |
1380 | { | |
1381 | /* addi 0,1,-<some immediate> */ | |
1382 | if ((op & 0xffff0000) != 0x38010000) | |
1383 | { | |
1384 | /* small stack frame variant not recognized; try the | |
1385 | big stack frame variant: */ | |
1386 | ||
1387 | /* addis 0,1,<some immediate> */ | |
1388 | if ((op & 0xffff0000) != 0x3c010000) | |
1389 | break; | |
1390 | ||
1391 | /* addic 0,0,-<some immediate> */ | |
1392 | pc = pc + 4; | |
e17a4113 | 1393 | op = rs6000_fetch_instruction (gdbarch, pc); |
de9f48f0 JG |
1394 | if ((op & 0xffff0000) != 0x30000000) |
1395 | break; | |
1396 | } | |
1397 | ||
1398 | /* lis 12,<some immediate> */ | |
1399 | pc = pc + 4; | |
e17a4113 | 1400 | op = rs6000_fetch_instruction (gdbarch, pc); |
de9f48f0 JG |
1401 | if ((op & 0xffff0000) != 0x3d800000) |
1402 | break; | |
1403 | ||
1404 | /* lwz 12,<some immediate>(12) */ | |
1405 | pc = pc + 4; | |
e17a4113 | 1406 | op = rs6000_fetch_instruction (gdbarch, pc); |
de9f48f0 JG |
1407 | if ((op & 0xffff0000) != 0x818c0000) |
1408 | break; | |
1409 | ||
1410 | /* twllt 0,12 */ | |
1411 | pc = pc + 4; | |
e17a4113 | 1412 | op = rs6000_fetch_instruction (gdbarch, pc); |
de9f48f0 JG |
1413 | if ((op & 0xfffffffe) != 0x7c406008) |
1414 | break; | |
1415 | ||
1416 | /* We found a valid stack-check sequence, return the new PC. */ | |
1417 | return pc; | |
1418 | } | |
1419 | ||
1420 | /* No stack check code in our prologue, return the start_pc. */ | |
1421 | return start_pc; | |
1422 | } | |
1423 | ||
6a16c029 TJB |
1424 | /* return pc value after skipping a function prologue and also return |
1425 | information about a function frame. | |
1426 | ||
1427 | in struct rs6000_framedata fdata: | |
1428 | - frameless is TRUE, if function does not have a frame. | |
1429 | - nosavedpc is TRUE, if function does not save %pc value in its frame. | |
1430 | - offset is the initial size of this stack frame --- the amount by | |
1431 | which we decrement the sp to allocate the frame. | |
1432 | - saved_gpr is the number of the first saved gpr. | |
1433 | - saved_fpr is the number of the first saved fpr. | |
1434 | - saved_vr is the number of the first saved vr. | |
1435 | - saved_ev is the number of the first saved ev. | |
1436 | - alloca_reg is the number of the register used for alloca() handling. | |
1437 | Otherwise -1. | |
1438 | - gpr_offset is the offset of the first saved gpr from the previous frame. | |
1439 | - fpr_offset is the offset of the first saved fpr from the previous frame. | |
1440 | - vr_offset is the offset of the first saved vr from the previous frame. | |
1441 | - ev_offset is the offset of the first saved ev from the previous frame. | |
1442 | - lr_offset is the offset of the saved lr | |
1443 | - cr_offset is the offset of the saved cr | |
0df8b418 | 1444 | - vrsave_offset is the offset of the saved vrsave register. */ |
6a16c029 | 1445 | |
7a78ae4e | 1446 | static CORE_ADDR |
be8626e0 MD |
1447 | skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc, |
1448 | struct rs6000_framedata *fdata) | |
c906108c SS |
1449 | { |
1450 | CORE_ADDR orig_pc = pc; | |
55d05f3b | 1451 | CORE_ADDR last_prologue_pc = pc; |
6be8bc0c | 1452 | CORE_ADDR li_found_pc = 0; |
50fd1280 | 1453 | gdb_byte buf[4]; |
c906108c SS |
1454 | unsigned long op; |
1455 | long offset = 0; | |
dd6d677f | 1456 | long alloca_reg_offset = 0; |
6be8bc0c | 1457 | long vr_saved_offset = 0; |
482ca3f5 KB |
1458 | int lr_reg = -1; |
1459 | int cr_reg = -1; | |
6be8bc0c | 1460 | int vr_reg = -1; |
96ff0de4 EZ |
1461 | int ev_reg = -1; |
1462 | long ev_offset = 0; | |
6be8bc0c | 1463 | int vrsave_reg = -1; |
c906108c SS |
1464 | int reg; |
1465 | int framep = 0; | |
1466 | int minimal_toc_loaded = 0; | |
ddb20c56 | 1467 | int prev_insn_was_prologue_insn = 1; |
55d05f3b | 1468 | int num_skip_non_prologue_insns = 0; |
773df3e5 | 1469 | int r0_contains_arg = 0; |
be8626e0 MD |
1470 | const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (gdbarch); |
1471 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
e17a4113 | 1472 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
c906108c | 1473 | |
ddb20c56 | 1474 | memset (fdata, 0, sizeof (struct rs6000_framedata)); |
c906108c SS |
1475 | fdata->saved_gpr = -1; |
1476 | fdata->saved_fpr = -1; | |
6be8bc0c | 1477 | fdata->saved_vr = -1; |
96ff0de4 | 1478 | fdata->saved_ev = -1; |
c906108c SS |
1479 | fdata->alloca_reg = -1; |
1480 | fdata->frameless = 1; | |
1481 | fdata->nosavedpc = 1; | |
46a9b8ed | 1482 | fdata->lr_register = -1; |
c906108c | 1483 | |
e17a4113 | 1484 | pc = rs6000_skip_stack_check (gdbarch, pc); |
de9f48f0 JG |
1485 | if (pc >= lim_pc) |
1486 | pc = lim_pc; | |
1487 | ||
55d05f3b | 1488 | for (;; pc += 4) |
c906108c | 1489 | { |
ddb20c56 KB |
1490 | /* Sometimes it isn't clear if an instruction is a prologue |
1491 | instruction or not. When we encounter one of these ambiguous | |
1492 | cases, we'll set prev_insn_was_prologue_insn to 0 (false). | |
0df8b418 | 1493 | Otherwise, we'll assume that it really is a prologue instruction. */ |
ddb20c56 KB |
1494 | if (prev_insn_was_prologue_insn) |
1495 | last_prologue_pc = pc; | |
55d05f3b KB |
1496 | |
1497 | /* Stop scanning if we've hit the limit. */ | |
4e463ff5 | 1498 | if (pc >= lim_pc) |
55d05f3b KB |
1499 | break; |
1500 | ||
ddb20c56 KB |
1501 | prev_insn_was_prologue_insn = 1; |
1502 | ||
55d05f3b | 1503 | /* Fetch the instruction and convert it to an integer. */ |
ddb20c56 KB |
1504 | if (target_read_memory (pc, buf, 4)) |
1505 | break; | |
e17a4113 | 1506 | op = extract_unsigned_integer (buf, 4, byte_order); |
c906108c | 1507 | |
c5aa993b JM |
1508 | if ((op & 0xfc1fffff) == 0x7c0802a6) |
1509 | { /* mflr Rx */ | |
43b1ab88 AC |
1510 | /* Since shared library / PIC code, which needs to get its |
1511 | address at runtime, can appear to save more than one link | |
1512 | register vis: | |
1513 | ||
1514 | *INDENT-OFF* | |
1515 | stwu r1,-304(r1) | |
1516 | mflr r3 | |
1517 | bl 0xff570d0 (blrl) | |
1518 | stw r30,296(r1) | |
1519 | mflr r30 | |
1520 | stw r31,300(r1) | |
1521 | stw r3,308(r1); | |
1522 | ... | |
1523 | *INDENT-ON* | |
1524 | ||
1525 | remember just the first one, but skip over additional | |
1526 | ones. */ | |
721d14ba | 1527 | if (lr_reg == -1) |
dd6d677f | 1528 | lr_reg = (op & 0x03e00000) >> 21; |
773df3e5 JB |
1529 | if (lr_reg == 0) |
1530 | r0_contains_arg = 0; | |
c5aa993b | 1531 | continue; |
c5aa993b JM |
1532 | } |
1533 | else if ((op & 0xfc1fffff) == 0x7c000026) | |
1534 | { /* mfcr Rx */ | |
dd6d677f | 1535 | cr_reg = (op & 0x03e00000) >> 21; |
773df3e5 JB |
1536 | if (cr_reg == 0) |
1537 | r0_contains_arg = 0; | |
c5aa993b | 1538 | continue; |
c906108c | 1539 | |
c906108c | 1540 | } |
c5aa993b JM |
1541 | else if ((op & 0xfc1f0000) == 0xd8010000) |
1542 | { /* stfd Rx,NUM(r1) */ | |
1543 | reg = GET_SRC_REG (op); | |
1544 | if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg) | |
1545 | { | |
1546 | fdata->saved_fpr = reg; | |
1547 | fdata->fpr_offset = SIGNED_SHORT (op) + offset; | |
1548 | } | |
1549 | continue; | |
c906108c | 1550 | |
c5aa993b JM |
1551 | } |
1552 | else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */ | |
7a78ae4e ND |
1553 | (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */ |
1554 | (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */ | |
1555 | (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */ | |
c5aa993b JM |
1556 | { |
1557 | ||
1558 | reg = GET_SRC_REG (op); | |
46a9b8ed DJ |
1559 | if ((op & 0xfc1f0000) == 0xbc010000) |
1560 | fdata->gpr_mask |= ~((1U << reg) - 1); | |
1561 | else | |
1562 | fdata->gpr_mask |= 1U << reg; | |
c5aa993b JM |
1563 | if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg) |
1564 | { | |
1565 | fdata->saved_gpr = reg; | |
7a78ae4e | 1566 | if ((op & 0xfc1f0003) == 0xf8010000) |
98f08d3d | 1567 | op &= ~3UL; |
c5aa993b JM |
1568 | fdata->gpr_offset = SIGNED_SHORT (op) + offset; |
1569 | } | |
1570 | continue; | |
c906108c | 1571 | |
ddb20c56 | 1572 | } |
ef1bc9e7 AM |
1573 | else if ((op & 0xffff0000) == 0x3c4c0000 |
1574 | || (op & 0xffff0000) == 0x3c400000 | |
1575 | || (op & 0xffff0000) == 0x38420000) | |
1576 | { | |
1577 | /* . 0: addis 2,12,.TOC.-0b@ha | |
1578 | . addi 2,2,.TOC.-0b@l | |
1579 | or | |
1580 | . lis 2,.TOC.@ha | |
1581 | . addi 2,2,.TOC.@l | |
1582 | used by ELFv2 global entry points to set up r2. */ | |
1583 | continue; | |
1584 | } | |
1585 | else if (op == 0x60000000) | |
ddb20c56 | 1586 | { |
96ff0de4 | 1587 | /* nop */ |
ddb20c56 KB |
1588 | /* Allow nops in the prologue, but do not consider them to |
1589 | be part of the prologue unless followed by other prologue | |
0df8b418 | 1590 | instructions. */ |
ddb20c56 KB |
1591 | prev_insn_was_prologue_insn = 0; |
1592 | continue; | |
1593 | ||
c906108c | 1594 | } |
c5aa993b | 1595 | else if ((op & 0xffff0000) == 0x3c000000) |
ef1bc9e7 | 1596 | { /* addis 0,0,NUM, used for >= 32k frames */ |
c5aa993b JM |
1597 | fdata->offset = (op & 0x0000ffff) << 16; |
1598 | fdata->frameless = 0; | |
773df3e5 | 1599 | r0_contains_arg = 0; |
c5aa993b JM |
1600 | continue; |
1601 | ||
1602 | } | |
1603 | else if ((op & 0xffff0000) == 0x60000000) | |
ef1bc9e7 | 1604 | { /* ori 0,0,NUM, 2nd half of >= 32k frames */ |
c5aa993b JM |
1605 | fdata->offset |= (op & 0x0000ffff); |
1606 | fdata->frameless = 0; | |
773df3e5 | 1607 | r0_contains_arg = 0; |
c5aa993b JM |
1608 | continue; |
1609 | ||
1610 | } | |
be723e22 | 1611 | else if (lr_reg >= 0 && |
dd6d677f PFC |
1612 | ((store_insn_p (op, lr_reg, 1, true)) || |
1613 | (framep && | |
1614 | (store_insn_p (op, lr_reg, | |
1615 | fdata->alloca_reg - tdep->ppc_gp0_regnum, | |
1616 | false))))) | |
1617 | { | |
1618 | if (store_insn_p (op, lr_reg, 1, true)) | |
1619 | fdata->lr_offset = offset; | |
1620 | else /* LR save through frame pointer. */ | |
1621 | fdata->lr_offset = alloca_reg_offset; | |
1622 | ||
c5aa993b | 1623 | fdata->nosavedpc = 0; |
be723e22 MS |
1624 | /* Invalidate lr_reg, but don't set it to -1. |
1625 | That would mean that it had never been set. */ | |
1626 | lr_reg = -2; | |
98f08d3d KB |
1627 | if ((op & 0xfc000003) == 0xf8000000 || /* std */ |
1628 | (op & 0xfc000000) == 0x90000000) /* stw */ | |
1629 | { | |
1630 | /* Does not update r1, so add displacement to lr_offset. */ | |
1631 | fdata->lr_offset += SIGNED_SHORT (op); | |
1632 | } | |
c5aa993b JM |
1633 | continue; |
1634 | ||
1635 | } | |
be723e22 | 1636 | else if (cr_reg >= 0 && |
dd6d677f PFC |
1637 | (store_insn_p (op, cr_reg, 1, true))) |
1638 | { | |
98f08d3d | 1639 | fdata->cr_offset = offset; |
be723e22 MS |
1640 | /* Invalidate cr_reg, but don't set it to -1. |
1641 | That would mean that it had never been set. */ | |
1642 | cr_reg = -2; | |
98f08d3d KB |
1643 | if ((op & 0xfc000003) == 0xf8000000 || |
1644 | (op & 0xfc000000) == 0x90000000) | |
1645 | { | |
1646 | /* Does not update r1, so add displacement to cr_offset. */ | |
1647 | fdata->cr_offset += SIGNED_SHORT (op); | |
1648 | } | |
c5aa993b JM |
1649 | continue; |
1650 | ||
1651 | } | |
721d14ba DJ |
1652 | else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1) |
1653 | { | |
1654 | /* bcl 20,xx,.+4 is used to get the current PC, with or without | |
1655 | prediction bits. If the LR has already been saved, we can | |
1656 | skip it. */ | |
1657 | continue; | |
1658 | } | |
c5aa993b JM |
1659 | else if (op == 0x48000005) |
1660 | { /* bl .+4 used in | |
1661 | -mrelocatable */ | |
46a9b8ed | 1662 | fdata->used_bl = 1; |
c5aa993b JM |
1663 | continue; |
1664 | ||
1665 | } | |
1666 | else if (op == 0x48000004) | |
1667 | { /* b .+4 (xlc) */ | |
1668 | break; | |
1669 | ||
c5aa993b | 1670 | } |
6be8bc0c EZ |
1671 | else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used |
1672 | in V.4 -mminimal-toc */ | |
c5aa993b JM |
1673 | (op & 0xffff0000) == 0x3bde0000) |
1674 | { /* addi 30,30,foo@l */ | |
1675 | continue; | |
c906108c | 1676 | |
c5aa993b JM |
1677 | } |
1678 | else if ((op & 0xfc000001) == 0x48000001) | |
1679 | { /* bl foo, | |
0df8b418 | 1680 | to save fprs??? */ |
c906108c | 1681 | |
c5aa993b | 1682 | fdata->frameless = 0; |
3c77c82a DJ |
1683 | |
1684 | /* If the return address has already been saved, we can skip | |
1685 | calls to blrl (for PIC). */ | |
e17a4113 | 1686 | if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op, byte_order)) |
46a9b8ed DJ |
1687 | { |
1688 | fdata->used_bl = 1; | |
1689 | continue; | |
1690 | } | |
3c77c82a | 1691 | |
6be8bc0c | 1692 | /* Don't skip over the subroutine call if it is not within |
ebd98106 FF |
1693 | the first three instructions of the prologue and either |
1694 | we have no line table information or the line info tells | |
1695 | us that the subroutine call is not part of the line | |
1696 | associated with the prologue. */ | |
c5aa993b | 1697 | if ((pc - orig_pc) > 8) |
ebd98106 FF |
1698 | { |
1699 | struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0); | |
1700 | struct symtab_and_line this_sal = find_pc_line (pc, 0); | |
1701 | ||
0df8b418 MS |
1702 | if ((prologue_sal.line == 0) |
1703 | || (prologue_sal.line != this_sal.line)) | |
ebd98106 FF |
1704 | break; |
1705 | } | |
c5aa993b | 1706 | |
e17a4113 | 1707 | op = read_memory_integer (pc + 4, 4, byte_order); |
c5aa993b | 1708 | |
6be8bc0c EZ |
1709 | /* At this point, make sure this is not a trampoline |
1710 | function (a function that simply calls another functions, | |
1711 | and nothing else). If the next is not a nop, this branch | |
0df8b418 | 1712 | was part of the function prologue. */ |
c5aa993b JM |
1713 | |
1714 | if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */ | |
0df8b418 MS |
1715 | break; /* Don't skip over |
1716 | this branch. */ | |
c5aa993b | 1717 | |
46a9b8ed DJ |
1718 | fdata->used_bl = 1; |
1719 | continue; | |
c5aa993b | 1720 | } |
98f08d3d KB |
1721 | /* update stack pointer */ |
1722 | else if ((op & 0xfc1f0000) == 0x94010000) | |
1723 | { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */ | |
c5aa993b JM |
1724 | fdata->frameless = 0; |
1725 | fdata->offset = SIGNED_SHORT (op); | |
1726 | offset = fdata->offset; | |
1727 | continue; | |
c5aa993b | 1728 | } |
7a8f494c PFC |
1729 | else if ((op & 0xfc1f07fa) == 0x7c01016a) |
1730 | { /* stwux rX,r1,rY || stdux rX,r1,rY */ | |
0df8b418 | 1731 | /* No way to figure out what r1 is going to be. */ |
98f08d3d KB |
1732 | fdata->frameless = 0; |
1733 | offset = fdata->offset; | |
1734 | continue; | |
1735 | } | |
1736 | else if ((op & 0xfc1f0003) == 0xf8010001) | |
1737 | { /* stdu rX,NUM(r1) */ | |
1738 | fdata->frameless = 0; | |
1739 | fdata->offset = SIGNED_SHORT (op & ~3UL); | |
1740 | offset = fdata->offset; | |
1741 | continue; | |
1742 | } | |
7313566f FF |
1743 | else if ((op & 0xffff0000) == 0x38210000) |
1744 | { /* addi r1,r1,SIMM */ | |
1745 | fdata->frameless = 0; | |
1746 | fdata->offset += SIGNED_SHORT (op); | |
1747 | offset = fdata->offset; | |
1748 | continue; | |
1749 | } | |
4e463ff5 DJ |
1750 | /* Load up minimal toc pointer. Do not treat an epilogue restore |
1751 | of r31 as a minimal TOC load. */ | |
0df8b418 MS |
1752 | else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */ |
1753 | (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */ | |
4e463ff5 | 1754 | && !framep |
c5aa993b | 1755 | && !minimal_toc_loaded) |
98f08d3d | 1756 | { |
c5aa993b JM |
1757 | minimal_toc_loaded = 1; |
1758 | continue; | |
1759 | ||
f6077098 KB |
1760 | /* move parameters from argument registers to local variable |
1761 | registers */ | |
1762 | } | |
1763 | else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */ | |
1764 | (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */ | |
1765 | (((op >> 21) & 31) <= 10) && | |
0df8b418 MS |
1766 | ((long) ((op >> 16) & 31) |
1767 | >= fdata->saved_gpr)) /* Rx: local var reg */ | |
f6077098 KB |
1768 | { |
1769 | continue; | |
1770 | ||
c5aa993b JM |
1771 | /* store parameters in stack */ |
1772 | } | |
e802b915 | 1773 | /* Move parameters from argument registers to temporary register. */ |
773df3e5 | 1774 | else if (store_param_on_stack_p (op, framep, &r0_contains_arg)) |
e802b915 | 1775 | { |
c5aa993b JM |
1776 | continue; |
1777 | ||
1778 | /* Set up frame pointer */ | |
1779 | } | |
76219d77 JB |
1780 | else if (op == 0x603d0000) /* oril r29, r1, 0x0 */ |
1781 | { | |
1782 | fdata->frameless = 0; | |
1783 | framep = 1; | |
1784 | fdata->alloca_reg = (tdep->ppc_gp0_regnum + 29); | |
dd6d677f | 1785 | alloca_reg_offset = offset; |
76219d77 JB |
1786 | continue; |
1787 | ||
1788 | /* Another way to set up the frame pointer. */ | |
1789 | } | |
c5aa993b JM |
1790 | else if (op == 0x603f0000 /* oril r31, r1, 0x0 */ |
1791 | || op == 0x7c3f0b78) | |
1792 | { /* mr r31, r1 */ | |
1793 | fdata->frameless = 0; | |
1794 | framep = 1; | |
6f99cb26 | 1795 | fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31); |
dd6d677f | 1796 | alloca_reg_offset = offset; |
c5aa993b JM |
1797 | continue; |
1798 | ||
1799 | /* Another way to set up the frame pointer. */ | |
1800 | } | |
1801 | else if ((op & 0xfc1fffff) == 0x38010000) | |
1802 | { /* addi rX, r1, 0x0 */ | |
1803 | fdata->frameless = 0; | |
1804 | framep = 1; | |
6f99cb26 AC |
1805 | fdata->alloca_reg = (tdep->ppc_gp0_regnum |
1806 | + ((op & ~0x38010000) >> 21)); | |
dd6d677f | 1807 | alloca_reg_offset = offset; |
c5aa993b | 1808 | continue; |
c5aa993b | 1809 | } |
6be8bc0c EZ |
1810 | /* AltiVec related instructions. */ |
1811 | /* Store the vrsave register (spr 256) in another register for | |
1812 | later manipulation, or load a register into the vrsave | |
1813 | register. 2 instructions are used: mfvrsave and | |
1814 | mtvrsave. They are shorthand notation for mfspr Rn, SPR256 | |
1815 | and mtspr SPR256, Rn. */ | |
1816 | /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110 | |
1817 | mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */ | |
1818 | else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */ | |
1819 | { | |
1820 | vrsave_reg = GET_SRC_REG (op); | |
1821 | continue; | |
1822 | } | |
1823 | else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */ | |
1824 | { | |
1825 | continue; | |
1826 | } | |
1827 | /* Store the register where vrsave was saved to onto the stack: | |
1828 | rS is the register where vrsave was stored in a previous | |
1829 | instruction. */ | |
1830 | /* 100100 sssss 00001 dddddddd dddddddd */ | |
1831 | else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */ | |
1832 | { | |
1833 | if (vrsave_reg == GET_SRC_REG (op)) | |
1834 | { | |
1835 | fdata->vrsave_offset = SIGNED_SHORT (op) + offset; | |
1836 | vrsave_reg = -1; | |
1837 | } | |
1838 | continue; | |
1839 | } | |
1840 | /* Compute the new value of vrsave, by modifying the register | |
1841 | where vrsave was saved to. */ | |
1842 | else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */ | |
1843 | || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */ | |
1844 | { | |
1845 | continue; | |
1846 | } | |
1847 | /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first | |
1848 | in a pair of insns to save the vector registers on the | |
1849 | stack. */ | |
1850 | /* 001110 00000 00000 iiii iiii iiii iiii */ | |
96ff0de4 EZ |
1851 | /* 001110 01110 00000 iiii iiii iiii iiii */ |
1852 | else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */ | |
1853 | || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */ | |
6be8bc0c | 1854 | { |
773df3e5 JB |
1855 | if ((op & 0xffff0000) == 0x38000000) |
1856 | r0_contains_arg = 0; | |
6be8bc0c EZ |
1857 | li_found_pc = pc; |
1858 | vr_saved_offset = SIGNED_SHORT (op); | |
773df3e5 JB |
1859 | |
1860 | /* This insn by itself is not part of the prologue, unless | |
0df8b418 | 1861 | if part of the pair of insns mentioned above. So do not |
773df3e5 JB |
1862 | record this insn as part of the prologue yet. */ |
1863 | prev_insn_was_prologue_insn = 0; | |
6be8bc0c EZ |
1864 | } |
1865 | /* Store vector register S at (r31+r0) aligned to 16 bytes. */ | |
1866 | /* 011111 sssss 11111 00000 00111001110 */ | |
1867 | else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */ | |
1868 | { | |
1869 | if (pc == (li_found_pc + 4)) | |
1870 | { | |
1871 | vr_reg = GET_SRC_REG (op); | |
1872 | /* If this is the first vector reg to be saved, or if | |
1873 | it has a lower number than others previously seen, | |
1874 | reupdate the frame info. */ | |
1875 | if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg) | |
1876 | { | |
1877 | fdata->saved_vr = vr_reg; | |
1878 | fdata->vr_offset = vr_saved_offset + offset; | |
1879 | } | |
1880 | vr_saved_offset = -1; | |
1881 | vr_reg = -1; | |
1882 | li_found_pc = 0; | |
1883 | } | |
1884 | } | |
1885 | /* End AltiVec related instructions. */ | |
96ff0de4 EZ |
1886 | |
1887 | /* Start BookE related instructions. */ | |
1888 | /* Store gen register S at (r31+uimm). | |
1889 | Any register less than r13 is volatile, so we don't care. */ | |
1890 | /* 000100 sssss 11111 iiiii 01100100001 */ | |
1891 | else if (arch_info->mach == bfd_mach_ppc_e500 | |
1892 | && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */ | |
1893 | { | |
1894 | if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */ | |
1895 | { | |
1896 | unsigned int imm; | |
1897 | ev_reg = GET_SRC_REG (op); | |
1898 | imm = (op >> 11) & 0x1f; | |
1899 | ev_offset = imm * 8; | |
1900 | /* If this is the first vector reg to be saved, or if | |
1901 | it has a lower number than others previously seen, | |
1902 | reupdate the frame info. */ | |
1903 | if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg) | |
1904 | { | |
1905 | fdata->saved_ev = ev_reg; | |
1906 | fdata->ev_offset = ev_offset + offset; | |
1907 | } | |
1908 | } | |
1909 | continue; | |
1910 | } | |
1911 | /* Store gen register rS at (r1+rB). */ | |
1912 | /* 000100 sssss 00001 bbbbb 01100100000 */ | |
1913 | else if (arch_info->mach == bfd_mach_ppc_e500 | |
1914 | && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */ | |
1915 | { | |
1916 | if (pc == (li_found_pc + 4)) | |
1917 | { | |
1918 | ev_reg = GET_SRC_REG (op); | |
1919 | /* If this is the first vector reg to be saved, or if | |
1920 | it has a lower number than others previously seen, | |
1921 | reupdate the frame info. */ | |
1922 | /* We know the contents of rB from the previous instruction. */ | |
1923 | if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg) | |
1924 | { | |
1925 | fdata->saved_ev = ev_reg; | |
1926 | fdata->ev_offset = vr_saved_offset + offset; | |
1927 | } | |
1928 | vr_saved_offset = -1; | |
1929 | ev_reg = -1; | |
1930 | li_found_pc = 0; | |
1931 | } | |
1932 | continue; | |
1933 | } | |
1934 | /* Store gen register r31 at (rA+uimm). */ | |
1935 | /* 000100 11111 aaaaa iiiii 01100100001 */ | |
1936 | else if (arch_info->mach == bfd_mach_ppc_e500 | |
1937 | && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */ | |
1938 | { | |
1939 | /* Wwe know that the source register is 31 already, but | |
1940 | it can't hurt to compute it. */ | |
1941 | ev_reg = GET_SRC_REG (op); | |
1942 | ev_offset = ((op >> 11) & 0x1f) * 8; | |
1943 | /* If this is the first vector reg to be saved, or if | |
1944 | it has a lower number than others previously seen, | |
1945 | reupdate the frame info. */ | |
1946 | if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg) | |
1947 | { | |
1948 | fdata->saved_ev = ev_reg; | |
1949 | fdata->ev_offset = ev_offset + offset; | |
1950 | } | |
1951 | ||
1952 | continue; | |
1953 | } | |
1954 | /* Store gen register S at (r31+r0). | |
1955 | Store param on stack when offset from SP bigger than 4 bytes. */ | |
1956 | /* 000100 sssss 11111 00000 01100100000 */ | |
1957 | else if (arch_info->mach == bfd_mach_ppc_e500 | |
1958 | && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */ | |
1959 | { | |
1960 | if (pc == (li_found_pc + 4)) | |
1961 | { | |
1962 | if ((op & 0x03e00000) >= 0x01a00000) | |
1963 | { | |
1964 | ev_reg = GET_SRC_REG (op); | |
1965 | /* If this is the first vector reg to be saved, or if | |
1966 | it has a lower number than others previously seen, | |
1967 | reupdate the frame info. */ | |
1968 | /* We know the contents of r0 from the previous | |
1969 | instruction. */ | |
1970 | if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg) | |
1971 | { | |
1972 | fdata->saved_ev = ev_reg; | |
1973 | fdata->ev_offset = vr_saved_offset + offset; | |
1974 | } | |
1975 | ev_reg = -1; | |
1976 | } | |
1977 | vr_saved_offset = -1; | |
1978 | li_found_pc = 0; | |
1979 | continue; | |
1980 | } | |
1981 | } | |
1982 | /* End BookE related instructions. */ | |
1983 | ||
c5aa993b JM |
1984 | else |
1985 | { | |
55d05f3b KB |
1986 | /* Not a recognized prologue instruction. |
1987 | Handle optimizer code motions into the prologue by continuing | |
1988 | the search if we have no valid frame yet or if the return | |
46a9b8ed DJ |
1989 | address is not yet saved in the frame. Also skip instructions |
1990 | if some of the GPRs expected to be saved are not yet saved. */ | |
1991 | if (fdata->frameless == 0 && fdata->nosavedpc == 0 | |
1cc62f2e JB |
1992 | && fdata->saved_gpr != -1) |
1993 | { | |
1994 | unsigned int all_mask = ~((1U << fdata->saved_gpr) - 1); | |
1995 | ||
1996 | if ((fdata->gpr_mask & all_mask) == all_mask) | |
1997 | break; | |
1998 | } | |
55d05f3b KB |
1999 | |
2000 | if (op == 0x4e800020 /* blr */ | |
2001 | || op == 0x4e800420) /* bctr */ | |
2002 | /* Do not scan past epilogue in frameless functions or | |
2003 | trampolines. */ | |
2004 | break; | |
2005 | if ((op & 0xf4000000) == 0x40000000) /* bxx */ | |
64366f1c | 2006 | /* Never skip branches. */ |
55d05f3b KB |
2007 | break; |
2008 | ||
2009 | if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns) | |
2010 | /* Do not scan too many insns, scanning insns is expensive with | |
2011 | remote targets. */ | |
2012 | break; | |
2013 | ||
2014 | /* Continue scanning. */ | |
2015 | prev_insn_was_prologue_insn = 0; | |
2016 | continue; | |
c5aa993b | 2017 | } |
c906108c SS |
2018 | } |
2019 | ||
2020 | #if 0 | |
2021 | /* I have problems with skipping over __main() that I need to address | |
0df8b418 | 2022 | * sometime. Previously, I used to use misc_function_vector which |
c906108c SS |
2023 | * didn't work as well as I wanted to be. -MGO */ |
2024 | ||
2025 | /* If the first thing after skipping a prolog is a branch to a function, | |
2026 | this might be a call to an initializer in main(), introduced by gcc2. | |
64366f1c | 2027 | We'd like to skip over it as well. Fortunately, xlc does some extra |
c906108c | 2028 | work before calling a function right after a prologue, thus we can |
64366f1c | 2029 | single out such gcc2 behaviour. */ |
c906108c | 2030 | |
c906108c | 2031 | |
c5aa993b | 2032 | if ((op & 0xfc000001) == 0x48000001) |
0df8b418 | 2033 | { /* bl foo, an initializer function? */ |
e17a4113 | 2034 | op = read_memory_integer (pc + 4, 4, byte_order); |
c5aa993b JM |
2035 | |
2036 | if (op == 0x4def7b82) | |
2037 | { /* cror 0xf, 0xf, 0xf (nop) */ | |
c906108c | 2038 | |
64366f1c EZ |
2039 | /* Check and see if we are in main. If so, skip over this |
2040 | initializer function as well. */ | |
c906108c | 2041 | |
c5aa993b | 2042 | tmp = find_pc_misc_function (pc); |
6314a349 AC |
2043 | if (tmp >= 0 |
2044 | && strcmp (misc_function_vector[tmp].name, main_name ()) == 0) | |
c5aa993b JM |
2045 | return pc + 8; |
2046 | } | |
c906108c | 2047 | } |
c906108c | 2048 | #endif /* 0 */ |
c5aa993b | 2049 | |
46a9b8ed | 2050 | if (pc == lim_pc && lr_reg >= 0) |
dd6d677f | 2051 | fdata->lr_register = lr_reg; |
46a9b8ed | 2052 | |
c5aa993b | 2053 | fdata->offset = -fdata->offset; |
ddb20c56 | 2054 | return last_prologue_pc; |
c906108c SS |
2055 | } |
2056 | ||
7a78ae4e | 2057 | static CORE_ADDR |
4a7622d1 | 2058 | rs6000_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) |
c906108c | 2059 | { |
4a7622d1 | 2060 | struct rs6000_framedata frame; |
e3acb115 | 2061 | CORE_ADDR limit_pc, func_addr, func_end_addr = 0; |
c906108c | 2062 | |
4a7622d1 UW |
2063 | /* See if we can determine the end of the prologue via the symbol table. |
2064 | If so, then return either PC, or the PC after the prologue, whichever | |
2065 | is greater. */ | |
e3acb115 | 2066 | if (find_pc_partial_function (pc, NULL, &func_addr, &func_end_addr)) |
c5aa993b | 2067 | { |
d80b854b UW |
2068 | CORE_ADDR post_prologue_pc |
2069 | = skip_prologue_using_sal (gdbarch, func_addr); | |
4a7622d1 | 2070 | if (post_prologue_pc != 0) |
325fac50 | 2071 | return std::max (pc, post_prologue_pc); |
c906108c | 2072 | } |
c906108c | 2073 | |
4a7622d1 UW |
2074 | /* Can't determine prologue from the symbol table, need to examine |
2075 | instructions. */ | |
c906108c | 2076 | |
4a7622d1 UW |
2077 | /* Find an upper limit on the function prologue using the debug |
2078 | information. If the debug information could not be used to provide | |
2079 | that bound, then use an arbitrary large number as the upper bound. */ | |
d80b854b | 2080 | limit_pc = skip_prologue_using_sal (gdbarch, pc); |
4a7622d1 UW |
2081 | if (limit_pc == 0) |
2082 | limit_pc = pc + 100; /* Magic. */ | |
794a477a | 2083 | |
e3acb115 JB |
2084 | /* Do not allow limit_pc to be past the function end, if we know |
2085 | where that end is... */ | |
2086 | if (func_end_addr && limit_pc > func_end_addr) | |
2087 | limit_pc = func_end_addr; | |
2088 | ||
4a7622d1 UW |
2089 | pc = skip_prologue (gdbarch, pc, limit_pc, &frame); |
2090 | return pc; | |
c906108c | 2091 | } |
c906108c | 2092 | |
8ab3d180 KB |
2093 | /* When compiling for EABI, some versions of GCC emit a call to __eabi |
2094 | in the prologue of main(). | |
2095 | ||
2096 | The function below examines the code pointed at by PC and checks to | |
2097 | see if it corresponds to a call to __eabi. If so, it returns the | |
2098 | address of the instruction following that call. Otherwise, it simply | |
2099 | returns PC. */ | |
2100 | ||
63807e1d | 2101 | static CORE_ADDR |
8ab3d180 KB |
2102 | rs6000_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) |
2103 | { | |
e17a4113 | 2104 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
8ab3d180 KB |
2105 | gdb_byte buf[4]; |
2106 | unsigned long op; | |
2107 | ||
2108 | if (target_read_memory (pc, buf, 4)) | |
2109 | return pc; | |
e17a4113 | 2110 | op = extract_unsigned_integer (buf, 4, byte_order); |
8ab3d180 KB |
2111 | |
2112 | if ((op & BL_MASK) == BL_INSTRUCTION) | |
2113 | { | |
2114 | CORE_ADDR displ = op & BL_DISPLACEMENT_MASK; | |
2115 | CORE_ADDR call_dest = pc + 4 + displ; | |
7cbd4a93 | 2116 | struct bound_minimal_symbol s = lookup_minimal_symbol_by_pc (call_dest); |
8ab3d180 KB |
2117 | |
2118 | /* We check for ___eabi (three leading underscores) in addition | |
2119 | to __eabi in case the GCC option "-fleading-underscore" was | |
2120 | used to compile the program. */ | |
7cbd4a93 | 2121 | if (s.minsym != NULL |
efd66ac6 TT |
2122 | && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL |
2123 | && (strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__eabi") == 0 | |
2124 | || strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "___eabi") == 0)) | |
8ab3d180 KB |
2125 | pc += 4; |
2126 | } | |
2127 | return pc; | |
2128 | } | |
383f0f5b | 2129 | |
4a7622d1 UW |
2130 | /* All the ABI's require 16 byte alignment. */ |
2131 | static CORE_ADDR | |
2132 | rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr) | |
2133 | { | |
2134 | return (addr & -16); | |
c906108c SS |
2135 | } |
2136 | ||
977adac5 ND |
2137 | /* Return whether handle_inferior_event() should proceed through code |
2138 | starting at PC in function NAME when stepping. | |
2139 | ||
2140 | The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to | |
2141 | handle memory references that are too distant to fit in instructions | |
2142 | generated by the compiler. For example, if 'foo' in the following | |
2143 | instruction: | |
2144 | ||
2145 | lwz r9,foo(r2) | |
2146 | ||
2147 | is greater than 32767, the linker might replace the lwz with a branch to | |
2148 | somewhere in @FIX1 that does the load in 2 instructions and then branches | |
2149 | back to where execution should continue. | |
2150 | ||
2151 | GDB should silently step over @FIX code, just like AIX dbx does. | |
2ec664f5 MS |
2152 | Unfortunately, the linker uses the "b" instruction for the |
2153 | branches, meaning that the link register doesn't get set. | |
2154 | Therefore, GDB's usual step_over_function () mechanism won't work. | |
977adac5 | 2155 | |
e76f05fa UW |
2156 | Instead, use the gdbarch_skip_trampoline_code and |
2157 | gdbarch_skip_trampoline_code hooks in handle_inferior_event() to skip past | |
2ec664f5 | 2158 | @FIX code. */ |
977adac5 | 2159 | |
63807e1d | 2160 | static int |
e17a4113 | 2161 | rs6000_in_solib_return_trampoline (struct gdbarch *gdbarch, |
2c02bd72 | 2162 | CORE_ADDR pc, const char *name) |
977adac5 | 2163 | { |
61012eef | 2164 | return name && startswith (name, "@FIX"); |
977adac5 ND |
2165 | } |
2166 | ||
2167 | /* Skip code that the user doesn't want to see when stepping: | |
2168 | ||
2169 | 1. Indirect function calls use a piece of trampoline code to do context | |
2170 | switching, i.e. to set the new TOC table. Skip such code if we are on | |
2171 | its first instruction (as when we have single-stepped to here). | |
2172 | ||
2173 | 2. Skip shared library trampoline code (which is different from | |
c906108c | 2174 | indirect function call trampolines). |
977adac5 ND |
2175 | |
2176 | 3. Skip bigtoc fixup code. | |
2177 | ||
c906108c | 2178 | Result is desired PC to step until, or NULL if we are not in |
977adac5 | 2179 | code that should be skipped. */ |
c906108c | 2180 | |
63807e1d | 2181 | static CORE_ADDR |
52f729a7 | 2182 | rs6000_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc) |
c906108c | 2183 | { |
e17a4113 UW |
2184 | struct gdbarch *gdbarch = get_frame_arch (frame); |
2185 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
2186 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
52f0bd74 | 2187 | unsigned int ii, op; |
977adac5 | 2188 | int rel; |
c906108c | 2189 | CORE_ADDR solib_target_pc; |
7cbd4a93 | 2190 | struct bound_minimal_symbol msymbol; |
c906108c | 2191 | |
c5aa993b JM |
2192 | static unsigned trampoline_code[] = |
2193 | { | |
2194 | 0x800b0000, /* l r0,0x0(r11) */ | |
2195 | 0x90410014, /* st r2,0x14(r1) */ | |
2196 | 0x7c0903a6, /* mtctr r0 */ | |
2197 | 0x804b0004, /* l r2,0x4(r11) */ | |
2198 | 0x816b0008, /* l r11,0x8(r11) */ | |
2199 | 0x4e800420, /* bctr */ | |
2200 | 0x4e800020, /* br */ | |
2201 | 0 | |
c906108c SS |
2202 | }; |
2203 | ||
977adac5 ND |
2204 | /* Check for bigtoc fixup code. */ |
2205 | msymbol = lookup_minimal_symbol_by_pc (pc); | |
7cbd4a93 | 2206 | if (msymbol.minsym |
e17a4113 | 2207 | && rs6000_in_solib_return_trampoline (gdbarch, pc, |
efd66ac6 | 2208 | MSYMBOL_LINKAGE_NAME (msymbol.minsym))) |
977adac5 ND |
2209 | { |
2210 | /* Double-check that the third instruction from PC is relative "b". */ | |
e17a4113 | 2211 | op = read_memory_integer (pc + 8, 4, byte_order); |
977adac5 ND |
2212 | if ((op & 0xfc000003) == 0x48000000) |
2213 | { | |
2214 | /* Extract bits 6-29 as a signed 24-bit relative word address and | |
2215 | add it to the containing PC. */ | |
2216 | rel = ((int)(op << 6) >> 6); | |
2217 | return pc + 8 + rel; | |
2218 | } | |
2219 | } | |
2220 | ||
c906108c | 2221 | /* If pc is in a shared library trampoline, return its target. */ |
52f729a7 | 2222 | solib_target_pc = find_solib_trampoline_target (frame, pc); |
c906108c SS |
2223 | if (solib_target_pc) |
2224 | return solib_target_pc; | |
2225 | ||
c5aa993b JM |
2226 | for (ii = 0; trampoline_code[ii]; ++ii) |
2227 | { | |
e17a4113 | 2228 | op = read_memory_integer (pc + (ii * 4), 4, byte_order); |
c5aa993b JM |
2229 | if (op != trampoline_code[ii]) |
2230 | return 0; | |
2231 | } | |
0df8b418 MS |
2232 | ii = get_frame_register_unsigned (frame, 11); /* r11 holds destination |
2233 | addr. */ | |
e17a4113 | 2234 | pc = read_memory_unsigned_integer (ii, tdep->wordsize, byte_order); |
c906108c SS |
2235 | return pc; |
2236 | } | |
2237 | ||
794ac428 UW |
2238 | /* ISA-specific vector types. */ |
2239 | ||
2240 | static struct type * | |
2241 | rs6000_builtin_type_vec64 (struct gdbarch *gdbarch) | |
2242 | { | |
2243 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
2244 | ||
2245 | if (!tdep->ppc_builtin_type_vec64) | |
2246 | { | |
df4df182 UW |
2247 | const struct builtin_type *bt = builtin_type (gdbarch); |
2248 | ||
794ac428 UW |
2249 | /* The type we're building is this: */ |
2250 | #if 0 | |
2251 | union __gdb_builtin_type_vec64 | |
2252 | { | |
2253 | int64_t uint64; | |
2254 | float v2_float[2]; | |
2255 | int32_t v2_int32[2]; | |
2256 | int16_t v4_int16[4]; | |
2257 | int8_t v8_int8[8]; | |
2258 | }; | |
2259 | #endif | |
2260 | ||
2261 | struct type *t; | |
2262 | ||
e9bb382b UW |
2263 | t = arch_composite_type (gdbarch, |
2264 | "__ppc_builtin_type_vec64", TYPE_CODE_UNION); | |
df4df182 | 2265 | append_composite_type_field (t, "uint64", bt->builtin_int64); |
794ac428 | 2266 | append_composite_type_field (t, "v2_float", |
df4df182 | 2267 | init_vector_type (bt->builtin_float, 2)); |
794ac428 | 2268 | append_composite_type_field (t, "v2_int32", |
df4df182 | 2269 | init_vector_type (bt->builtin_int32, 2)); |
794ac428 | 2270 | append_composite_type_field (t, "v4_int16", |
df4df182 | 2271 | init_vector_type (bt->builtin_int16, 4)); |
794ac428 | 2272 | append_composite_type_field (t, "v8_int8", |
df4df182 | 2273 | init_vector_type (bt->builtin_int8, 8)); |
794ac428 | 2274 | |
876cecd0 | 2275 | TYPE_VECTOR (t) = 1; |
794ac428 UW |
2276 | TYPE_NAME (t) = "ppc_builtin_type_vec64"; |
2277 | tdep->ppc_builtin_type_vec64 = t; | |
2278 | } | |
2279 | ||
2280 | return tdep->ppc_builtin_type_vec64; | |
2281 | } | |
2282 | ||
604c2f83 LM |
2283 | /* Vector 128 type. */ |
2284 | ||
2285 | static struct type * | |
2286 | rs6000_builtin_type_vec128 (struct gdbarch *gdbarch) | |
2287 | { | |
2288 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
2289 | ||
2290 | if (!tdep->ppc_builtin_type_vec128) | |
2291 | { | |
df4df182 UW |
2292 | const struct builtin_type *bt = builtin_type (gdbarch); |
2293 | ||
604c2f83 LM |
2294 | /* The type we're building is this |
2295 | ||
2296 | type = union __ppc_builtin_type_vec128 { | |
2297 | uint128_t uint128; | |
db9f5df8 | 2298 | double v2_double[2]; |
604c2f83 LM |
2299 | float v4_float[4]; |
2300 | int32_t v4_int32[4]; | |
2301 | int16_t v8_int16[8]; | |
2302 | int8_t v16_int8[16]; | |
2303 | } | |
2304 | */ | |
2305 | ||
2306 | struct type *t; | |
2307 | ||
e9bb382b UW |
2308 | t = arch_composite_type (gdbarch, |
2309 | "__ppc_builtin_type_vec128", TYPE_CODE_UNION); | |
df4df182 | 2310 | append_composite_type_field (t, "uint128", bt->builtin_uint128); |
db9f5df8 UW |
2311 | append_composite_type_field (t, "v2_double", |
2312 | init_vector_type (bt->builtin_double, 2)); | |
604c2f83 | 2313 | append_composite_type_field (t, "v4_float", |
df4df182 | 2314 | init_vector_type (bt->builtin_float, 4)); |
604c2f83 | 2315 | append_composite_type_field (t, "v4_int32", |
df4df182 | 2316 | init_vector_type (bt->builtin_int32, 4)); |
604c2f83 | 2317 | append_composite_type_field (t, "v8_int16", |
df4df182 | 2318 | init_vector_type (bt->builtin_int16, 8)); |
604c2f83 | 2319 | append_composite_type_field (t, "v16_int8", |
df4df182 | 2320 | init_vector_type (bt->builtin_int8, 16)); |
604c2f83 | 2321 | |
803e1097 | 2322 | TYPE_VECTOR (t) = 1; |
604c2f83 LM |
2323 | TYPE_NAME (t) = "ppc_builtin_type_vec128"; |
2324 | tdep->ppc_builtin_type_vec128 = t; | |
2325 | } | |
2326 | ||
2327 | return tdep->ppc_builtin_type_vec128; | |
2328 | } | |
2329 | ||
7cc46491 DJ |
2330 | /* Return the name of register number REGNO, or the empty string if it |
2331 | is an anonymous register. */ | |
7a78ae4e | 2332 | |
fa88f677 | 2333 | static const char * |
d93859e2 | 2334 | rs6000_register_name (struct gdbarch *gdbarch, int regno) |
7a78ae4e | 2335 | { |
d93859e2 | 2336 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
7a78ae4e | 2337 | |
7cc46491 DJ |
2338 | /* The upper half "registers" have names in the XML description, |
2339 | but we present only the low GPRs and the full 64-bit registers | |
2340 | to the user. */ | |
2341 | if (tdep->ppc_ev0_upper_regnum >= 0 | |
2342 | && tdep->ppc_ev0_upper_regnum <= regno | |
2343 | && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs) | |
2344 | return ""; | |
2345 | ||
604c2f83 LM |
2346 | /* Hide the upper halves of the vs0~vs31 registers. */ |
2347 | if (tdep->ppc_vsr0_regnum >= 0 | |
2348 | && tdep->ppc_vsr0_upper_regnum <= regno | |
2349 | && regno < tdep->ppc_vsr0_upper_regnum + ppc_num_gprs) | |
2350 | return ""; | |
2351 | ||
8d619c01 EBM |
2352 | /* Hide the upper halves of the cvs0~cvs31 registers. */ |
2353 | if (PPC_CVSR0_UPPER_REGNUM <= regno | |
2354 | && regno < PPC_CVSR0_UPPER_REGNUM + ppc_num_gprs) | |
2355 | return ""; | |
2356 | ||
7cc46491 | 2357 | /* Check if the SPE pseudo registers are available. */ |
5a9e69ba | 2358 | if (IS_SPE_PSEUDOREG (tdep, regno)) |
7cc46491 DJ |
2359 | { |
2360 | static const char *const spe_regnames[] = { | |
2361 | "ev0", "ev1", "ev2", "ev3", "ev4", "ev5", "ev6", "ev7", | |
2362 | "ev8", "ev9", "ev10", "ev11", "ev12", "ev13", "ev14", "ev15", | |
2363 | "ev16", "ev17", "ev18", "ev19", "ev20", "ev21", "ev22", "ev23", | |
2364 | "ev24", "ev25", "ev26", "ev27", "ev28", "ev29", "ev30", "ev31", | |
2365 | }; | |
2366 | return spe_regnames[regno - tdep->ppc_ev0_regnum]; | |
2367 | } | |
2368 | ||
f949c649 TJB |
2369 | /* Check if the decimal128 pseudo-registers are available. */ |
2370 | if (IS_DFP_PSEUDOREG (tdep, regno)) | |
2371 | { | |
2372 | static const char *const dfp128_regnames[] = { | |
2373 | "dl0", "dl1", "dl2", "dl3", | |
2374 | "dl4", "dl5", "dl6", "dl7", | |
2375 | "dl8", "dl9", "dl10", "dl11", | |
2376 | "dl12", "dl13", "dl14", "dl15" | |
2377 | }; | |
2378 | return dfp128_regnames[regno - tdep->ppc_dl0_regnum]; | |
2379 | } | |
2380 | ||
6f072a10 PFC |
2381 | /* Check if this is a vX alias for a raw vrX vector register. */ |
2382 | if (IS_V_ALIAS_PSEUDOREG (tdep, regno)) | |
2383 | { | |
2384 | static const char *const vector_alias_regnames[] = { | |
2385 | "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", | |
2386 | "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15", | |
2387 | "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", | |
2388 | "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31" | |
2389 | }; | |
2390 | return vector_alias_regnames[regno - tdep->ppc_v0_alias_regnum]; | |
2391 | } | |
2392 | ||
604c2f83 LM |
2393 | /* Check if this is a VSX pseudo-register. */ |
2394 | if (IS_VSX_PSEUDOREG (tdep, regno)) | |
2395 | { | |
2396 | static const char *const vsx_regnames[] = { | |
2397 | "vs0", "vs1", "vs2", "vs3", "vs4", "vs5", "vs6", "vs7", | |
2398 | "vs8", "vs9", "vs10", "vs11", "vs12", "vs13", "vs14", | |
2399 | "vs15", "vs16", "vs17", "vs18", "vs19", "vs20", "vs21", | |
2400 | "vs22", "vs23", "vs24", "vs25", "vs26", "vs27", "vs28", | |
2401 | "vs29", "vs30", "vs31", "vs32", "vs33", "vs34", "vs35", | |
2402 | "vs36", "vs37", "vs38", "vs39", "vs40", "vs41", "vs42", | |
2403 | "vs43", "vs44", "vs45", "vs46", "vs47", "vs48", "vs49", | |
2404 | "vs50", "vs51", "vs52", "vs53", "vs54", "vs55", "vs56", | |
2405 | "vs57", "vs58", "vs59", "vs60", "vs61", "vs62", "vs63" | |
2406 | }; | |
2407 | return vsx_regnames[regno - tdep->ppc_vsr0_regnum]; | |
2408 | } | |
2409 | ||
2410 | /* Check if the this is a Extended FP pseudo-register. */ | |
2411 | if (IS_EFP_PSEUDOREG (tdep, regno)) | |
2412 | { | |
2413 | static const char *const efpr_regnames[] = { | |
2414 | "f32", "f33", "f34", "f35", "f36", "f37", "f38", | |
2415 | "f39", "f40", "f41", "f42", "f43", "f44", "f45", | |
2416 | "f46", "f47", "f48", "f49", "f50", "f51", | |
2417 | "f52", "f53", "f54", "f55", "f56", "f57", | |
2418 | "f58", "f59", "f60", "f61", "f62", "f63" | |
2419 | }; | |
2420 | return efpr_regnames[regno - tdep->ppc_efpr0_regnum]; | |
2421 | } | |
2422 | ||
8d619c01 EBM |
2423 | /* Check if this is a Checkpointed DFP pseudo-register. */ |
2424 | if (IS_CDFP_PSEUDOREG (tdep, regno)) | |
2425 | { | |
2426 | static const char *const cdfp128_regnames[] = { | |
2427 | "cdl0", "cdl1", "cdl2", "cdl3", | |
2428 | "cdl4", "cdl5", "cdl6", "cdl7", | |
2429 | "cdl8", "cdl9", "cdl10", "cdl11", | |
2430 | "cdl12", "cdl13", "cdl14", "cdl15" | |
2431 | }; | |
2432 | return cdfp128_regnames[regno - tdep->ppc_cdl0_regnum]; | |
2433 | } | |
2434 | ||
2435 | /* Check if this is a Checkpointed VSX pseudo-register. */ | |
2436 | if (IS_CVSX_PSEUDOREG (tdep, regno)) | |
2437 | { | |
2438 | static const char *const cvsx_regnames[] = { | |
2439 | "cvs0", "cvs1", "cvs2", "cvs3", "cvs4", "cvs5", "cvs6", "cvs7", | |
2440 | "cvs8", "cvs9", "cvs10", "cvs11", "cvs12", "cvs13", "cvs14", | |
2441 | "cvs15", "cvs16", "cvs17", "cvs18", "cvs19", "cvs20", "cvs21", | |
2442 | "cvs22", "cvs23", "cvs24", "cvs25", "cvs26", "cvs27", "cvs28", | |
2443 | "cvs29", "cvs30", "cvs31", "cvs32", "cvs33", "cvs34", "cvs35", | |
2444 | "cvs36", "cvs37", "cvs38", "cvs39", "cvs40", "cvs41", "cvs42", | |
2445 | "cvs43", "cvs44", "cvs45", "cvs46", "cvs47", "cvs48", "cvs49", | |
2446 | "cvs50", "cvs51", "cvs52", "cvs53", "cvs54", "cvs55", "cvs56", | |
2447 | "cvs57", "cvs58", "cvs59", "cvs60", "cvs61", "cvs62", "cvs63" | |
2448 | }; | |
2449 | return cvsx_regnames[regno - tdep->ppc_cvsr0_regnum]; | |
2450 | } | |
2451 | ||
2452 | /* Check if the this is a Checkpointed Extended FP pseudo-register. */ | |
2453 | if (IS_CEFP_PSEUDOREG (tdep, regno)) | |
2454 | { | |
2455 | static const char *const cefpr_regnames[] = { | |
2456 | "cf32", "cf33", "cf34", "cf35", "cf36", "cf37", "cf38", | |
2457 | "cf39", "cf40", "cf41", "cf42", "cf43", "cf44", "cf45", | |
2458 | "cf46", "cf47", "cf48", "cf49", "cf50", "cf51", | |
2459 | "cf52", "cf53", "cf54", "cf55", "cf56", "cf57", | |
2460 | "cf58", "cf59", "cf60", "cf61", "cf62", "cf63" | |
2461 | }; | |
2462 | return cefpr_regnames[regno - tdep->ppc_cefpr0_regnum]; | |
2463 | } | |
2464 | ||
d93859e2 | 2465 | return tdesc_register_name (gdbarch, regno); |
7a78ae4e ND |
2466 | } |
2467 | ||
7cc46491 DJ |
2468 | /* Return the GDB type object for the "standard" data type of data in |
2469 | register N. */ | |
7a78ae4e ND |
2470 | |
2471 | static struct type * | |
7cc46491 | 2472 | rs6000_pseudo_register_type (struct gdbarch *gdbarch, int regnum) |
7a78ae4e | 2473 | { |
691d145a | 2474 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
7a78ae4e | 2475 | |
f949c649 TJB |
2476 | /* These are the e500 pseudo-registers. */ |
2477 | if (IS_SPE_PSEUDOREG (tdep, regnum)) | |
2478 | return rs6000_builtin_type_vec64 (gdbarch); | |
8d619c01 EBM |
2479 | else if (IS_DFP_PSEUDOREG (tdep, regnum) |
2480 | || IS_CDFP_PSEUDOREG (tdep, regnum)) | |
604c2f83 | 2481 | /* PPC decimal128 pseudo-registers. */ |
f949c649 | 2482 | return builtin_type (gdbarch)->builtin_declong; |
6f072a10 PFC |
2483 | else if (IS_V_ALIAS_PSEUDOREG (tdep, regnum)) |
2484 | return gdbarch_register_type (gdbarch, | |
2485 | tdep->ppc_vr0_regnum | |
2486 | + (regnum | |
2487 | - tdep->ppc_v0_alias_regnum)); | |
8d619c01 EBM |
2488 | else if (IS_VSX_PSEUDOREG (tdep, regnum) |
2489 | || IS_CVSX_PSEUDOREG (tdep, regnum)) | |
604c2f83 LM |
2490 | /* POWER7 VSX pseudo-registers. */ |
2491 | return rs6000_builtin_type_vec128 (gdbarch); | |
8d619c01 EBM |
2492 | else if (IS_EFP_PSEUDOREG (tdep, regnum) |
2493 | || IS_CEFP_PSEUDOREG (tdep, regnum)) | |
604c2f83 LM |
2494 | /* POWER7 Extended FP pseudo-registers. */ |
2495 | return builtin_type (gdbarch)->builtin_double; | |
8d619c01 EBM |
2496 | else |
2497 | internal_error (__FILE__, __LINE__, | |
2498 | _("rs6000_pseudo_register_type: " | |
2499 | "called on unexpected register '%s' (%d)"), | |
2500 | gdbarch_register_name (gdbarch, regnum), regnum); | |
7a78ae4e ND |
2501 | } |
2502 | ||
6f072a10 PFC |
2503 | /* Check if REGNUM is a member of REGGROUP. We only need to handle |
2504 | the vX aliases for the vector registers by always returning false | |
2505 | to avoid duplicated information in "info register vector/all", | |
2506 | since the raw vrX registers will already show in these cases. For | |
2507 | other pseudo-registers we use the default membership function. */ | |
2508 | ||
2509 | static int | |
2510 | rs6000_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum, | |
2511 | struct reggroup *group) | |
2512 | { | |
2513 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
2514 | ||
2515 | if (IS_V_ALIAS_PSEUDOREG (tdep, regnum)) | |
2516 | return 0; | |
2517 | else | |
2518 | return default_register_reggroup_p (gdbarch, regnum, group); | |
2519 | } | |
2520 | ||
691d145a | 2521 | /* The register format for RS/6000 floating point registers is always |
64366f1c | 2522 | double, we need a conversion if the memory format is float. */ |
7a78ae4e ND |
2523 | |
2524 | static int | |
0abe36f5 MD |
2525 | rs6000_convert_register_p (struct gdbarch *gdbarch, int regnum, |
2526 | struct type *type) | |
7a78ae4e | 2527 | { |
0abe36f5 | 2528 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
7cc46491 DJ |
2529 | |
2530 | return (tdep->ppc_fp0_regnum >= 0 | |
2531 | && regnum >= tdep->ppc_fp0_regnum | |
2532 | && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs | |
2533 | && TYPE_CODE (type) == TYPE_CODE_FLT | |
0dfff4cb UW |
2534 | && TYPE_LENGTH (type) |
2535 | != TYPE_LENGTH (builtin_type (gdbarch)->builtin_double)); | |
7a78ae4e ND |
2536 | } |
2537 | ||
8dccd430 | 2538 | static int |
691d145a JB |
2539 | rs6000_register_to_value (struct frame_info *frame, |
2540 | int regnum, | |
2541 | struct type *type, | |
8dccd430 PA |
2542 | gdb_byte *to, |
2543 | int *optimizedp, int *unavailablep) | |
7a78ae4e | 2544 | { |
0dfff4cb | 2545 | struct gdbarch *gdbarch = get_frame_arch (frame); |
0f068fb5 | 2546 | gdb_byte from[PPC_MAX_REGISTER_SIZE]; |
691d145a | 2547 | |
691d145a | 2548 | gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT); |
7a78ae4e | 2549 | |
8dccd430 PA |
2550 | if (!get_frame_register_bytes (frame, regnum, 0, |
2551 | register_size (gdbarch, regnum), | |
2552 | from, optimizedp, unavailablep)) | |
2553 | return 0; | |
2554 | ||
3b2ca824 UW |
2555 | target_float_convert (from, builtin_type (gdbarch)->builtin_double, |
2556 | to, type); | |
8dccd430 PA |
2557 | *optimizedp = *unavailablep = 0; |
2558 | return 1; | |
691d145a | 2559 | } |
7a292a7a | 2560 | |
7a78ae4e | 2561 | static void |
691d145a JB |
2562 | rs6000_value_to_register (struct frame_info *frame, |
2563 | int regnum, | |
2564 | struct type *type, | |
50fd1280 | 2565 | const gdb_byte *from) |
7a78ae4e | 2566 | { |
0dfff4cb | 2567 | struct gdbarch *gdbarch = get_frame_arch (frame); |
0f068fb5 | 2568 | gdb_byte to[PPC_MAX_REGISTER_SIZE]; |
691d145a | 2569 | |
691d145a JB |
2570 | gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT); |
2571 | ||
3b2ca824 UW |
2572 | target_float_convert (from, type, |
2573 | to, builtin_type (gdbarch)->builtin_double); | |
691d145a | 2574 | put_frame_register (frame, regnum, to); |
7a78ae4e | 2575 | } |
c906108c | 2576 | |
05d1431c PA |
2577 | /* The type of a function that moves the value of REG between CACHE |
2578 | or BUF --- in either direction. */ | |
2579 | typedef enum register_status (*move_ev_register_func) (struct regcache *, | |
2580 | int, void *); | |
2581 | ||
6ced10dd JB |
2582 | /* Move SPE vector register values between a 64-bit buffer and the two |
2583 | 32-bit raw register halves in a regcache. This function handles | |
2584 | both splitting a 64-bit value into two 32-bit halves, and joining | |
2585 | two halves into a whole 64-bit value, depending on the function | |
2586 | passed as the MOVE argument. | |
2587 | ||
2588 | EV_REG must be the number of an SPE evN vector register --- a | |
2589 | pseudoregister. REGCACHE must be a regcache, and BUFFER must be a | |
2590 | 64-bit buffer. | |
2591 | ||
2592 | Call MOVE once for each 32-bit half of that register, passing | |
2593 | REGCACHE, the number of the raw register corresponding to that | |
2594 | half, and the address of the appropriate half of BUFFER. | |
2595 | ||
2596 | For example, passing 'regcache_raw_read' as the MOVE function will | |
2597 | fill BUFFER with the full 64-bit contents of EV_REG. Or, passing | |
2598 | 'regcache_raw_supply' will supply the contents of BUFFER to the | |
2599 | appropriate pair of raw registers in REGCACHE. | |
2600 | ||
2601 | You may need to cast away some 'const' qualifiers when passing | |
2602 | MOVE, since this function can't tell at compile-time which of | |
2603 | REGCACHE or BUFFER is acting as the source of the data. If C had | |
2604 | co-variant type qualifiers, ... */ | |
05d1431c PA |
2605 | |
2606 | static enum register_status | |
2607 | e500_move_ev_register (move_ev_register_func move, | |
2608 | struct regcache *regcache, int ev_reg, void *buffer) | |
6ced10dd | 2609 | { |
ac7936df | 2610 | struct gdbarch *arch = regcache->arch (); |
6ced10dd JB |
2611 | struct gdbarch_tdep *tdep = gdbarch_tdep (arch); |
2612 | int reg_index; | |
19ba03f4 | 2613 | gdb_byte *byte_buffer = (gdb_byte *) buffer; |
05d1431c | 2614 | enum register_status status; |
6ced10dd | 2615 | |
5a9e69ba | 2616 | gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg)); |
6ced10dd JB |
2617 | |
2618 | reg_index = ev_reg - tdep->ppc_ev0_regnum; | |
2619 | ||
8b164abb | 2620 | if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG) |
6ced10dd | 2621 | { |
05d1431c PA |
2622 | status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, |
2623 | byte_buffer); | |
2624 | if (status == REG_VALID) | |
2625 | status = move (regcache, tdep->ppc_gp0_regnum + reg_index, | |
2626 | byte_buffer + 4); | |
6ced10dd JB |
2627 | } |
2628 | else | |
2629 | { | |
05d1431c PA |
2630 | status = move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer); |
2631 | if (status == REG_VALID) | |
2632 | status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, | |
2633 | byte_buffer + 4); | |
6ced10dd | 2634 | } |
05d1431c PA |
2635 | |
2636 | return status; | |
6ced10dd JB |
2637 | } |
2638 | ||
05d1431c PA |
2639 | static enum register_status |
2640 | do_regcache_raw_write (struct regcache *regcache, int regnum, void *buffer) | |
2641 | { | |
10eaee5f | 2642 | regcache->raw_write (regnum, (const gdb_byte *) buffer); |
05d1431c PA |
2643 | |
2644 | return REG_VALID; | |
2645 | } | |
2646 | ||
2647 | static enum register_status | |
849d0ba8 YQ |
2648 | e500_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache, |
2649 | int ev_reg, gdb_byte *buffer) | |
f949c649 | 2650 | { |
849d0ba8 YQ |
2651 | struct gdbarch *arch = regcache->arch (); |
2652 | struct gdbarch_tdep *tdep = gdbarch_tdep (arch); | |
2653 | int reg_index; | |
2654 | enum register_status status; | |
2655 | ||
2656 | gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg)); | |
2657 | ||
2658 | reg_index = ev_reg - tdep->ppc_ev0_regnum; | |
2659 | ||
2660 | if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG) | |
2661 | { | |
2662 | status = regcache->raw_read (tdep->ppc_ev0_upper_regnum + reg_index, | |
2663 | buffer); | |
2664 | if (status == REG_VALID) | |
2665 | status = regcache->raw_read (tdep->ppc_gp0_regnum + reg_index, | |
2666 | buffer + 4); | |
2667 | } | |
2668 | else | |
2669 | { | |
2670 | status = regcache->raw_read (tdep->ppc_gp0_regnum + reg_index, buffer); | |
2671 | if (status == REG_VALID) | |
2672 | status = regcache->raw_read (tdep->ppc_ev0_upper_regnum + reg_index, | |
2673 | buffer + 4); | |
2674 | } | |
2675 | ||
2676 | return status; | |
2677 | ||
f949c649 TJB |
2678 | } |
2679 | ||
2680 | static void | |
2681 | e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache, | |
2682 | int reg_nr, const gdb_byte *buffer) | |
2683 | { | |
05d1431c PA |
2684 | e500_move_ev_register (do_regcache_raw_write, regcache, |
2685 | reg_nr, (void *) buffer); | |
f949c649 TJB |
2686 | } |
2687 | ||
604c2f83 | 2688 | /* Read method for DFP pseudo-registers. */ |
05d1431c | 2689 | static enum register_status |
849d0ba8 | 2690 | dfp_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache, |
f949c649 TJB |
2691 | int reg_nr, gdb_byte *buffer) |
2692 | { | |
2693 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
8d619c01 | 2694 | int reg_index, fp0; |
05d1431c | 2695 | enum register_status status; |
f949c649 | 2696 | |
8d619c01 EBM |
2697 | if (IS_DFP_PSEUDOREG (tdep, reg_nr)) |
2698 | { | |
2699 | reg_index = reg_nr - tdep->ppc_dl0_regnum; | |
2700 | fp0 = PPC_F0_REGNUM; | |
2701 | } | |
2702 | else | |
2703 | { | |
2704 | gdb_assert (IS_CDFP_PSEUDOREG (tdep, reg_nr)); | |
2705 | ||
2706 | reg_index = reg_nr - tdep->ppc_cdl0_regnum; | |
2707 | fp0 = PPC_CF0_REGNUM; | |
2708 | } | |
2709 | ||
f949c649 TJB |
2710 | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) |
2711 | { | |
2712 | /* Read two FP registers to form a whole dl register. */ | |
8d619c01 | 2713 | status = regcache->raw_read (fp0 + 2 * reg_index, buffer); |
05d1431c | 2714 | if (status == REG_VALID) |
8d619c01 EBM |
2715 | status = regcache->raw_read (fp0 + 2 * reg_index + 1, |
2716 | buffer + 8); | |
f949c649 TJB |
2717 | } |
2718 | else | |
2719 | { | |
8d619c01 | 2720 | status = regcache->raw_read (fp0 + 2 * reg_index + 1, buffer); |
05d1431c | 2721 | if (status == REG_VALID) |
8d619c01 | 2722 | status = regcache->raw_read (fp0 + 2 * reg_index, buffer + 8); |
f949c649 | 2723 | } |
05d1431c PA |
2724 | |
2725 | return status; | |
f949c649 TJB |
2726 | } |
2727 | ||
604c2f83 | 2728 | /* Write method for DFP pseudo-registers. */ |
f949c649 | 2729 | static void |
604c2f83 | 2730 | dfp_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache, |
f949c649 TJB |
2731 | int reg_nr, const gdb_byte *buffer) |
2732 | { | |
2733 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
8d619c01 EBM |
2734 | int reg_index, fp0; |
2735 | ||
2736 | if (IS_DFP_PSEUDOREG (tdep, reg_nr)) | |
2737 | { | |
2738 | reg_index = reg_nr - tdep->ppc_dl0_regnum; | |
2739 | fp0 = PPC_F0_REGNUM; | |
2740 | } | |
2741 | else | |
2742 | { | |
2743 | gdb_assert (IS_CDFP_PSEUDOREG (tdep, reg_nr)); | |
2744 | ||
2745 | reg_index = reg_nr - tdep->ppc_cdl0_regnum; | |
2746 | fp0 = PPC_CF0_REGNUM; | |
2747 | } | |
f949c649 TJB |
2748 | |
2749 | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) | |
2750 | { | |
2751 | /* Write each half of the dl register into a separate | |
8d619c01 EBM |
2752 | FP register. */ |
2753 | regcache->raw_write (fp0 + 2 * reg_index, buffer); | |
2754 | regcache->raw_write (fp0 + 2 * reg_index + 1, buffer + 8); | |
f949c649 TJB |
2755 | } |
2756 | else | |
2757 | { | |
8d619c01 EBM |
2758 | regcache->raw_write (fp0 + 2 * reg_index + 1, buffer); |
2759 | regcache->raw_write (fp0 + 2 * reg_index, buffer + 8); | |
f949c649 TJB |
2760 | } |
2761 | } | |
2762 | ||
6f072a10 PFC |
2763 | /* Read method for the vX aliases for the raw vrX registers. */ |
2764 | ||
2765 | static enum register_status | |
2766 | v_alias_pseudo_register_read (struct gdbarch *gdbarch, | |
2767 | readable_regcache *regcache, int reg_nr, | |
2768 | gdb_byte *buffer) | |
2769 | { | |
2770 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
2771 | gdb_assert (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr)); | |
2772 | ||
2773 | return regcache->raw_read (tdep->ppc_vr0_regnum | |
2774 | + (reg_nr - tdep->ppc_v0_alias_regnum), | |
2775 | buffer); | |
2776 | } | |
2777 | ||
2778 | /* Write method for the vX aliases for the raw vrX registers. */ | |
2779 | ||
2780 | static void | |
2781 | v_alias_pseudo_register_write (struct gdbarch *gdbarch, | |
2782 | struct regcache *regcache, | |
2783 | int reg_nr, const gdb_byte *buffer) | |
2784 | { | |
2785 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
2786 | gdb_assert (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr)); | |
2787 | ||
2788 | regcache->raw_write (tdep->ppc_vr0_regnum | |
2789 | + (reg_nr - tdep->ppc_v0_alias_regnum), buffer); | |
2790 | } | |
2791 | ||
604c2f83 | 2792 | /* Read method for POWER7 VSX pseudo-registers. */ |
05d1431c | 2793 | static enum register_status |
849d0ba8 | 2794 | vsx_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache, |
604c2f83 LM |
2795 | int reg_nr, gdb_byte *buffer) |
2796 | { | |
2797 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
8d619c01 | 2798 | int reg_index, vr0, fp0, vsr0_upper; |
05d1431c | 2799 | enum register_status status; |
604c2f83 | 2800 | |
8d619c01 EBM |
2801 | if (IS_VSX_PSEUDOREG (tdep, reg_nr)) |
2802 | { | |
2803 | reg_index = reg_nr - tdep->ppc_vsr0_regnum; | |
2804 | vr0 = PPC_VR0_REGNUM; | |
2805 | fp0 = PPC_F0_REGNUM; | |
2806 | vsr0_upper = PPC_VSR0_UPPER_REGNUM; | |
2807 | } | |
2808 | else | |
2809 | { | |
2810 | gdb_assert (IS_CVSX_PSEUDOREG (tdep, reg_nr)); | |
2811 | ||
2812 | reg_index = reg_nr - tdep->ppc_cvsr0_regnum; | |
2813 | vr0 = PPC_CVR0_REGNUM; | |
2814 | fp0 = PPC_CF0_REGNUM; | |
2815 | vsr0_upper = PPC_CVSR0_UPPER_REGNUM; | |
2816 | } | |
2817 | ||
604c2f83 LM |
2818 | /* Read the portion that overlaps the VMX registers. */ |
2819 | if (reg_index > 31) | |
8d619c01 | 2820 | status = regcache->raw_read (vr0 + reg_index - 32, buffer); |
604c2f83 LM |
2821 | else |
2822 | /* Read the portion that overlaps the FPR registers. */ | |
2823 | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) | |
2824 | { | |
8d619c01 | 2825 | status = regcache->raw_read (fp0 + reg_index, buffer); |
05d1431c | 2826 | if (status == REG_VALID) |
8d619c01 EBM |
2827 | status = regcache->raw_read (vsr0_upper + reg_index, |
2828 | buffer + 8); | |
604c2f83 LM |
2829 | } |
2830 | else | |
2831 | { | |
8d619c01 | 2832 | status = regcache->raw_read (fp0 + reg_index, buffer + 8); |
05d1431c | 2833 | if (status == REG_VALID) |
8d619c01 | 2834 | status = regcache->raw_read (vsr0_upper + reg_index, buffer); |
604c2f83 | 2835 | } |
05d1431c PA |
2836 | |
2837 | return status; | |
604c2f83 LM |
2838 | } |
2839 | ||
2840 | /* Write method for POWER7 VSX pseudo-registers. */ | |
2841 | static void | |
2842 | vsx_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache, | |
2843 | int reg_nr, const gdb_byte *buffer) | |
2844 | { | |
2845 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
8d619c01 EBM |
2846 | int reg_index, vr0, fp0, vsr0_upper; |
2847 | ||
2848 | if (IS_VSX_PSEUDOREG (tdep, reg_nr)) | |
2849 | { | |
2850 | reg_index = reg_nr - tdep->ppc_vsr0_regnum; | |
2851 | vr0 = PPC_VR0_REGNUM; | |
2852 | fp0 = PPC_F0_REGNUM; | |
2853 | vsr0_upper = PPC_VSR0_UPPER_REGNUM; | |
2854 | } | |
2855 | else | |
2856 | { | |
2857 | gdb_assert (IS_CVSX_PSEUDOREG (tdep, reg_nr)); | |
2858 | ||
2859 | reg_index = reg_nr - tdep->ppc_cvsr0_regnum; | |
2860 | vr0 = PPC_CVR0_REGNUM; | |
2861 | fp0 = PPC_CF0_REGNUM; | |
2862 | vsr0_upper = PPC_CVSR0_UPPER_REGNUM; | |
2863 | } | |
604c2f83 LM |
2864 | |
2865 | /* Write the portion that overlaps the VMX registers. */ | |
2866 | if (reg_index > 31) | |
8d619c01 | 2867 | regcache->raw_write (vr0 + reg_index - 32, buffer); |
604c2f83 LM |
2868 | else |
2869 | /* Write the portion that overlaps the FPR registers. */ | |
2870 | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) | |
2871 | { | |
8d619c01 EBM |
2872 | regcache->raw_write (fp0 + reg_index, buffer); |
2873 | regcache->raw_write (vsr0_upper + reg_index, buffer + 8); | |
604c2f83 LM |
2874 | } |
2875 | else | |
2876 | { | |
8d619c01 EBM |
2877 | regcache->raw_write (fp0 + reg_index, buffer + 8); |
2878 | regcache->raw_write (vsr0_upper + reg_index, buffer); | |
604c2f83 LM |
2879 | } |
2880 | } | |
2881 | ||
2882 | /* Read method for POWER7 Extended FP pseudo-registers. */ | |
05d1431c | 2883 | static enum register_status |
8d619c01 | 2884 | efp_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache, |
604c2f83 LM |
2885 | int reg_nr, gdb_byte *buffer) |
2886 | { | |
2887 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
8d619c01 EBM |
2888 | int reg_index, vr0; |
2889 | ||
2890 | if (IS_EFP_PSEUDOREG (tdep, reg_nr)) | |
2891 | { | |
2892 | reg_index = reg_nr - tdep->ppc_efpr0_regnum; | |
2893 | vr0 = PPC_VR0_REGNUM; | |
2894 | } | |
2895 | else | |
2896 | { | |
2897 | gdb_assert (IS_CEFP_PSEUDOREG (tdep, reg_nr)); | |
2898 | ||
2899 | reg_index = reg_nr - tdep->ppc_cefpr0_regnum; | |
2900 | vr0 = PPC_CVR0_REGNUM; | |
2901 | } | |
2902 | ||
084ee545 | 2903 | int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8; |
604c2f83 | 2904 | |
d9492458 | 2905 | /* Read the portion that overlaps the VMX register. */ |
8d619c01 EBM |
2906 | return regcache->raw_read_part (vr0 + reg_index, offset, |
2907 | register_size (gdbarch, reg_nr), | |
849d0ba8 | 2908 | buffer); |
604c2f83 LM |
2909 | } |
2910 | ||
2911 | /* Write method for POWER7 Extended FP pseudo-registers. */ | |
2912 | static void | |
8d619c01 | 2913 | efp_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache, |
604c2f83 LM |
2914 | int reg_nr, const gdb_byte *buffer) |
2915 | { | |
2916 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
8d619c01 | 2917 | int reg_index, vr0; |
084ee545 | 2918 | int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8; |
604c2f83 | 2919 | |
8d619c01 EBM |
2920 | if (IS_EFP_PSEUDOREG (tdep, reg_nr)) |
2921 | { | |
2922 | reg_index = reg_nr - tdep->ppc_efpr0_regnum; | |
2923 | vr0 = PPC_VR0_REGNUM; | |
2924 | } | |
2925 | else | |
2926 | { | |
2927 | gdb_assert (IS_CEFP_PSEUDOREG (tdep, reg_nr)); | |
2928 | ||
2929 | reg_index = reg_nr - tdep->ppc_cefpr0_regnum; | |
2930 | vr0 = PPC_CVR0_REGNUM; | |
2931 | ||
2932 | /* The call to raw_write_part fails silently if the initial read | |
2933 | of the read-update-write sequence returns an invalid status, | |
2934 | so we check this manually and throw an error if needed. */ | |
2935 | regcache->raw_update (vr0 + reg_index); | |
2936 | if (regcache->get_register_status (vr0 + reg_index) != REG_VALID) | |
2937 | error (_("Cannot write to the checkpointed EFP register, " | |
2938 | "the corresponding vector register is unavailable.")); | |
2939 | } | |
2940 | ||
d9492458 | 2941 | /* Write the portion that overlaps the VMX register. */ |
8d619c01 | 2942 | regcache->raw_write_part (vr0 + reg_index, offset, |
4f0420fd | 2943 | register_size (gdbarch, reg_nr), buffer); |
604c2f83 LM |
2944 | } |
2945 | ||
05d1431c | 2946 | static enum register_status |
0df8b418 | 2947 | rs6000_pseudo_register_read (struct gdbarch *gdbarch, |
849d0ba8 | 2948 | readable_regcache *regcache, |
f949c649 | 2949 | int reg_nr, gdb_byte *buffer) |
c8001721 | 2950 | { |
ac7936df | 2951 | struct gdbarch *regcache_arch = regcache->arch (); |
c8001721 EZ |
2952 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
2953 | ||
6ced10dd | 2954 | gdb_assert (regcache_arch == gdbarch); |
f949c649 | 2955 | |
5a9e69ba | 2956 | if (IS_SPE_PSEUDOREG (tdep, reg_nr)) |
05d1431c | 2957 | return e500_pseudo_register_read (gdbarch, regcache, reg_nr, buffer); |
8d619c01 EBM |
2958 | else if (IS_DFP_PSEUDOREG (tdep, reg_nr) |
2959 | || IS_CDFP_PSEUDOREG (tdep, reg_nr)) | |
05d1431c | 2960 | return dfp_pseudo_register_read (gdbarch, regcache, reg_nr, buffer); |
6f072a10 PFC |
2961 | else if (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr)) |
2962 | return v_alias_pseudo_register_read (gdbarch, regcache, reg_nr, | |
2963 | buffer); | |
8d619c01 EBM |
2964 | else if (IS_VSX_PSEUDOREG (tdep, reg_nr) |
2965 | || IS_CVSX_PSEUDOREG (tdep, reg_nr)) | |
05d1431c | 2966 | return vsx_pseudo_register_read (gdbarch, regcache, reg_nr, buffer); |
8d619c01 EBM |
2967 | else if (IS_EFP_PSEUDOREG (tdep, reg_nr) |
2968 | || IS_CEFP_PSEUDOREG (tdep, reg_nr)) | |
2969 | return efp_pseudo_register_read (gdbarch, regcache, reg_nr, buffer); | |
6ced10dd | 2970 | else |
a44bddec | 2971 | internal_error (__FILE__, __LINE__, |
f949c649 TJB |
2972 | _("rs6000_pseudo_register_read: " |
2973 | "called on unexpected register '%s' (%d)"), | |
2974 | gdbarch_register_name (gdbarch, reg_nr), reg_nr); | |
c8001721 EZ |
2975 | } |
2976 | ||
2977 | static void | |
f949c649 TJB |
2978 | rs6000_pseudo_register_write (struct gdbarch *gdbarch, |
2979 | struct regcache *regcache, | |
2980 | int reg_nr, const gdb_byte *buffer) | |
c8001721 | 2981 | { |
ac7936df | 2982 | struct gdbarch *regcache_arch = regcache->arch (); |
c8001721 EZ |
2983 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
2984 | ||
6ced10dd | 2985 | gdb_assert (regcache_arch == gdbarch); |
f949c649 | 2986 | |
5a9e69ba | 2987 | if (IS_SPE_PSEUDOREG (tdep, reg_nr)) |
f949c649 | 2988 | e500_pseudo_register_write (gdbarch, regcache, reg_nr, buffer); |
8d619c01 EBM |
2989 | else if (IS_DFP_PSEUDOREG (tdep, reg_nr) |
2990 | || IS_CDFP_PSEUDOREG (tdep, reg_nr)) | |
604c2f83 | 2991 | dfp_pseudo_register_write (gdbarch, regcache, reg_nr, buffer); |
6f072a10 PFC |
2992 | else if (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr)) |
2993 | v_alias_pseudo_register_write (gdbarch, regcache, reg_nr, buffer); | |
8d619c01 EBM |
2994 | else if (IS_VSX_PSEUDOREG (tdep, reg_nr) |
2995 | || IS_CVSX_PSEUDOREG (tdep, reg_nr)) | |
604c2f83 | 2996 | vsx_pseudo_register_write (gdbarch, regcache, reg_nr, buffer); |
8d619c01 EBM |
2997 | else if (IS_EFP_PSEUDOREG (tdep, reg_nr) |
2998 | || IS_CEFP_PSEUDOREG (tdep, reg_nr)) | |
2999 | efp_pseudo_register_write (gdbarch, regcache, reg_nr, buffer); | |
6ced10dd | 3000 | else |
a44bddec | 3001 | internal_error (__FILE__, __LINE__, |
f949c649 TJB |
3002 | _("rs6000_pseudo_register_write: " |
3003 | "called on unexpected register '%s' (%d)"), | |
3004 | gdbarch_register_name (gdbarch, reg_nr), reg_nr); | |
6ced10dd JB |
3005 | } |
3006 | ||
8d619c01 EBM |
3007 | /* Set the register mask in AX with the registers that form the DFP or |
3008 | checkpointed DFP pseudo-register REG_NR. */ | |
3009 | ||
3010 | static void | |
3011 | dfp_ax_pseudo_register_collect (struct gdbarch *gdbarch, | |
3012 | struct agent_expr *ax, int reg_nr) | |
3013 | { | |
3014 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
3015 | int reg_index, fp0; | |
3016 | ||
3017 | if (IS_DFP_PSEUDOREG (tdep, reg_nr)) | |
3018 | { | |
3019 | reg_index = reg_nr - tdep->ppc_dl0_regnum; | |
3020 | fp0 = PPC_F0_REGNUM; | |
3021 | } | |
3022 | else | |
3023 | { | |
3024 | gdb_assert (IS_CDFP_PSEUDOREG (tdep, reg_nr)); | |
3025 | ||
3026 | reg_index = reg_nr - tdep->ppc_cdl0_regnum; | |
3027 | fp0 = PPC_CF0_REGNUM; | |
3028 | } | |
3029 | ||
3030 | ax_reg_mask (ax, fp0 + 2 * reg_index); | |
3031 | ax_reg_mask (ax, fp0 + 2 * reg_index + 1); | |
3032 | } | |
3033 | ||
6f072a10 PFC |
3034 | /* Set the register mask in AX with the raw vector register that |
3035 | corresponds to its REG_NR alias. */ | |
3036 | ||
3037 | static void | |
3038 | v_alias_pseudo_register_collect (struct gdbarch *gdbarch, | |
3039 | struct agent_expr *ax, int reg_nr) | |
3040 | { | |
3041 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
3042 | gdb_assert (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr)); | |
3043 | ||
3044 | ax_reg_mask (ax, tdep->ppc_vr0_regnum | |
3045 | + (reg_nr - tdep->ppc_v0_alias_regnum)); | |
3046 | } | |
3047 | ||
8d619c01 EBM |
3048 | /* Set the register mask in AX with the registers that form the VSX or |
3049 | checkpointed VSX pseudo-register REG_NR. */ | |
3050 | ||
3051 | static void | |
3052 | vsx_ax_pseudo_register_collect (struct gdbarch *gdbarch, | |
3053 | struct agent_expr *ax, int reg_nr) | |
3054 | { | |
3055 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
3056 | int reg_index, vr0, fp0, vsr0_upper; | |
3057 | ||
3058 | if (IS_VSX_PSEUDOREG (tdep, reg_nr)) | |
3059 | { | |
3060 | reg_index = reg_nr - tdep->ppc_vsr0_regnum; | |
3061 | vr0 = PPC_VR0_REGNUM; | |
3062 | fp0 = PPC_F0_REGNUM; | |
3063 | vsr0_upper = PPC_VSR0_UPPER_REGNUM; | |
3064 | } | |
3065 | else | |
3066 | { | |
3067 | gdb_assert (IS_CVSX_PSEUDOREG (tdep, reg_nr)); | |
3068 | ||
3069 | reg_index = reg_nr - tdep->ppc_cvsr0_regnum; | |
3070 | vr0 = PPC_CVR0_REGNUM; | |
3071 | fp0 = PPC_CF0_REGNUM; | |
3072 | vsr0_upper = PPC_CVSR0_UPPER_REGNUM; | |
3073 | } | |
3074 | ||
3075 | if (reg_index > 31) | |
3076 | { | |
3077 | ax_reg_mask (ax, vr0 + reg_index - 32); | |
3078 | } | |
3079 | else | |
3080 | { | |
3081 | ax_reg_mask (ax, fp0 + reg_index); | |
3082 | ax_reg_mask (ax, vsr0_upper + reg_index); | |
3083 | } | |
3084 | } | |
3085 | ||
3086 | /* Set the register mask in AX with the register that corresponds to | |
3087 | the EFP or checkpointed EFP pseudo-register REG_NR. */ | |
3088 | ||
3089 | static void | |
3090 | efp_ax_pseudo_register_collect (struct gdbarch *gdbarch, | |
3091 | struct agent_expr *ax, int reg_nr) | |
3092 | { | |
3093 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
3094 | int reg_index, vr0; | |
3095 | ||
3096 | if (IS_EFP_PSEUDOREG (tdep, reg_nr)) | |
3097 | { | |
3098 | reg_index = reg_nr - tdep->ppc_efpr0_regnum; | |
3099 | vr0 = PPC_VR0_REGNUM; | |
3100 | } | |
3101 | else | |
3102 | { | |
3103 | gdb_assert (IS_CEFP_PSEUDOREG (tdep, reg_nr)); | |
3104 | ||
3105 | reg_index = reg_nr - tdep->ppc_cefpr0_regnum; | |
3106 | vr0 = PPC_CVR0_REGNUM; | |
3107 | } | |
3108 | ||
3109 | ax_reg_mask (ax, vr0 + reg_index); | |
3110 | } | |
3111 | ||
2a2fa07b MK |
3112 | static int |
3113 | rs6000_ax_pseudo_register_collect (struct gdbarch *gdbarch, | |
3114 | struct agent_expr *ax, int reg_nr) | |
3115 | { | |
3116 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
3117 | if (IS_SPE_PSEUDOREG (tdep, reg_nr)) | |
3118 | { | |
3119 | int reg_index = reg_nr - tdep->ppc_ev0_regnum; | |
3120 | ax_reg_mask (ax, tdep->ppc_gp0_regnum + reg_index); | |
3121 | ax_reg_mask (ax, tdep->ppc_ev0_upper_regnum + reg_index); | |
3122 | } | |
8d619c01 EBM |
3123 | else if (IS_DFP_PSEUDOREG (tdep, reg_nr) |
3124 | || IS_CDFP_PSEUDOREG (tdep, reg_nr)) | |
2a2fa07b | 3125 | { |
8d619c01 | 3126 | dfp_ax_pseudo_register_collect (gdbarch, ax, reg_nr); |
2a2fa07b | 3127 | } |
6f072a10 PFC |
3128 | else if (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr)) |
3129 | { | |
3130 | v_alias_pseudo_register_collect (gdbarch, ax, reg_nr); | |
3131 | } | |
8d619c01 EBM |
3132 | else if (IS_VSX_PSEUDOREG (tdep, reg_nr) |
3133 | || IS_CVSX_PSEUDOREG (tdep, reg_nr)) | |
2a2fa07b | 3134 | { |
8d619c01 | 3135 | vsx_ax_pseudo_register_collect (gdbarch, ax, reg_nr); |
2a2fa07b | 3136 | } |
8d619c01 EBM |
3137 | else if (IS_EFP_PSEUDOREG (tdep, reg_nr) |
3138 | || IS_CEFP_PSEUDOREG (tdep, reg_nr)) | |
2a2fa07b | 3139 | { |
8d619c01 | 3140 | efp_ax_pseudo_register_collect (gdbarch, ax, reg_nr); |
2a2fa07b MK |
3141 | } |
3142 | else | |
3143 | internal_error (__FILE__, __LINE__, | |
3144 | _("rs6000_pseudo_register_collect: " | |
3145 | "called on unexpected register '%s' (%d)"), | |
3146 | gdbarch_register_name (gdbarch, reg_nr), reg_nr); | |
3147 | return 0; | |
3148 | } | |
3149 | ||
3150 | ||
a67914de MK |
3151 | static void |
3152 | rs6000_gen_return_address (struct gdbarch *gdbarch, | |
3153 | struct agent_expr *ax, struct axs_value *value, | |
3154 | CORE_ADDR scope) | |
3155 | { | |
3156 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
3157 | value->type = register_type (gdbarch, tdep->ppc_lr_regnum); | |
3158 | value->kind = axs_lvalue_register; | |
3159 | value->u.reg = tdep->ppc_lr_regnum; | |
3160 | } | |
3161 | ||
3162 | ||
18ed0c4e | 3163 | /* Convert a DBX STABS register number to a GDB register number. */ |
c8001721 | 3164 | static int |
d3f73121 | 3165 | rs6000_stab_reg_to_regnum (struct gdbarch *gdbarch, int num) |
c8001721 | 3166 | { |
d3f73121 | 3167 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
c8001721 | 3168 | |
9f744501 JB |
3169 | if (0 <= num && num <= 31) |
3170 | return tdep->ppc_gp0_regnum + num; | |
3171 | else if (32 <= num && num <= 63) | |
383f0f5b JB |
3172 | /* FIXME: jimb/2004-05-05: What should we do when the debug info |
3173 | specifies registers the architecture doesn't have? Our | |
3174 | callers don't check the value we return. */ | |
366f009f | 3175 | return tdep->ppc_fp0_regnum + (num - 32); |
18ed0c4e JB |
3176 | else if (77 <= num && num <= 108) |
3177 | return tdep->ppc_vr0_regnum + (num - 77); | |
9f744501 | 3178 | else if (1200 <= num && num < 1200 + 32) |
e1ec1b42 | 3179 | return tdep->ppc_ev0_upper_regnum + (num - 1200); |
9f744501 JB |
3180 | else |
3181 | switch (num) | |
3182 | { | |
3183 | case 64: | |
3184 | return tdep->ppc_mq_regnum; | |
3185 | case 65: | |
3186 | return tdep->ppc_lr_regnum; | |
3187 | case 66: | |
3188 | return tdep->ppc_ctr_regnum; | |
3189 | case 76: | |
3190 | return tdep->ppc_xer_regnum; | |
3191 | case 109: | |
3192 | return tdep->ppc_vrsave_regnum; | |
18ed0c4e JB |
3193 | case 110: |
3194 | return tdep->ppc_vrsave_regnum - 1; /* vscr */ | |
867e2dc5 | 3195 | case 111: |
18ed0c4e | 3196 | return tdep->ppc_acc_regnum; |
867e2dc5 | 3197 | case 112: |
18ed0c4e | 3198 | return tdep->ppc_spefscr_regnum; |
9f744501 JB |
3199 | default: |
3200 | return num; | |
3201 | } | |
18ed0c4e | 3202 | } |
9f744501 | 3203 | |
9f744501 | 3204 | |
18ed0c4e JB |
3205 | /* Convert a Dwarf 2 register number to a GDB register number. */ |
3206 | static int | |
d3f73121 | 3207 | rs6000_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int num) |
18ed0c4e | 3208 | { |
d3f73121 | 3209 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
9f744501 | 3210 | |
18ed0c4e JB |
3211 | if (0 <= num && num <= 31) |
3212 | return tdep->ppc_gp0_regnum + num; | |
3213 | else if (32 <= num && num <= 63) | |
3214 | /* FIXME: jimb/2004-05-05: What should we do when the debug info | |
3215 | specifies registers the architecture doesn't have? Our | |
3216 | callers don't check the value we return. */ | |
3217 | return tdep->ppc_fp0_regnum + (num - 32); | |
3218 | else if (1124 <= num && num < 1124 + 32) | |
3219 | return tdep->ppc_vr0_regnum + (num - 1124); | |
3220 | else if (1200 <= num && num < 1200 + 32) | |
e1ec1b42 | 3221 | return tdep->ppc_ev0_upper_regnum + (num - 1200); |
18ed0c4e JB |
3222 | else |
3223 | switch (num) | |
3224 | { | |
a489f789 AS |
3225 | case 64: |
3226 | return tdep->ppc_cr_regnum; | |
18ed0c4e JB |
3227 | case 67: |
3228 | return tdep->ppc_vrsave_regnum - 1; /* vscr */ | |
3229 | case 99: | |
3230 | return tdep->ppc_acc_regnum; | |
3231 | case 100: | |
3232 | return tdep->ppc_mq_regnum; | |
3233 | case 101: | |
3234 | return tdep->ppc_xer_regnum; | |
3235 | case 108: | |
3236 | return tdep->ppc_lr_regnum; | |
3237 | case 109: | |
3238 | return tdep->ppc_ctr_regnum; | |
3239 | case 356: | |
3240 | return tdep->ppc_vrsave_regnum; | |
3241 | case 612: | |
3242 | return tdep->ppc_spefscr_regnum; | |
3243 | default: | |
3244 | return num; | |
3245 | } | |
2188cbdd EZ |
3246 | } |
3247 | ||
4fc771b8 DJ |
3248 | /* Translate a .eh_frame register to DWARF register, or adjust a |
3249 | .debug_frame register. */ | |
3250 | ||
3251 | static int | |
3252 | rs6000_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p) | |
3253 | { | |
3254 | /* GCC releases before 3.4 use GCC internal register numbering in | |
3255 | .debug_frame (and .debug_info, et cetera). The numbering is | |
3256 | different from the standard SysV numbering for everything except | |
3257 | for GPRs and FPRs. We can not detect this problem in most cases | |
3258 | - to get accurate debug info for variables living in lr, ctr, v0, | |
3259 | et cetera, use a newer version of GCC. But we must detect | |
3260 | one important case - lr is in column 65 in .debug_frame output, | |
3261 | instead of 108. | |
3262 | ||
3263 | GCC 3.4, and the "hammer" branch, have a related problem. They | |
3264 | record lr register saves in .debug_frame as 108, but still record | |
3265 | the return column as 65. We fix that up too. | |
3266 | ||
3267 | We can do this because 65 is assigned to fpsr, and GCC never | |
3268 | generates debug info referring to it. To add support for | |
3269 | handwritten debug info that restores fpsr, we would need to add a | |
3270 | producer version check to this. */ | |
3271 | if (!eh_frame_p) | |
3272 | { | |
3273 | if (num == 65) | |
3274 | return 108; | |
3275 | else | |
3276 | return num; | |
3277 | } | |
3278 | ||
3279 | /* .eh_frame is GCC specific. For binary compatibility, it uses GCC | |
3280 | internal register numbering; translate that to the standard DWARF2 | |
3281 | register numbering. */ | |
3282 | if (0 <= num && num <= 63) /* r0-r31,fp0-fp31 */ | |
3283 | return num; | |
3284 | else if (68 <= num && num <= 75) /* cr0-cr8 */ | |
3285 | return num - 68 + 86; | |
3286 | else if (77 <= num && num <= 108) /* vr0-vr31 */ | |
3287 | return num - 77 + 1124; | |
3288 | else | |
3289 | switch (num) | |
3290 | { | |
3291 | case 64: /* mq */ | |
3292 | return 100; | |
3293 | case 65: /* lr */ | |
3294 | return 108; | |
3295 | case 66: /* ctr */ | |
3296 | return 109; | |
3297 | case 76: /* xer */ | |
3298 | return 101; | |
3299 | case 109: /* vrsave */ | |
3300 | return 356; | |
3301 | case 110: /* vscr */ | |
3302 | return 67; | |
3303 | case 111: /* spe_acc */ | |
3304 | return 99; | |
3305 | case 112: /* spefscr */ | |
3306 | return 612; | |
3307 | default: | |
3308 | return num; | |
3309 | } | |
3310 | } | |
c906108c | 3311 | \f |
c5aa993b | 3312 | |
7a78ae4e | 3313 | /* Handling the various POWER/PowerPC variants. */ |
c906108c | 3314 | |
c906108c | 3315 | /* Information about a particular processor variant. */ |
7a78ae4e | 3316 | |
c906108c | 3317 | struct variant |
c5aa993b JM |
3318 | { |
3319 | /* Name of this variant. */ | |
a121b7c1 | 3320 | const char *name; |
c906108c | 3321 | |
c5aa993b | 3322 | /* English description of the variant. */ |
a121b7c1 | 3323 | const char *description; |
c906108c | 3324 | |
64366f1c | 3325 | /* bfd_arch_info.arch corresponding to variant. */ |
7a78ae4e ND |
3326 | enum bfd_architecture arch; |
3327 | ||
64366f1c | 3328 | /* bfd_arch_info.mach corresponding to variant. */ |
7a78ae4e ND |
3329 | unsigned long mach; |
3330 | ||
7cc46491 DJ |
3331 | /* Target description for this variant. */ |
3332 | struct target_desc **tdesc; | |
c5aa993b | 3333 | }; |
c906108c | 3334 | |
489461e2 | 3335 | static struct variant variants[] = |
c906108c | 3336 | { |
7a78ae4e | 3337 | {"powerpc", "PowerPC user-level", bfd_arch_powerpc, |
7284e1be | 3338 | bfd_mach_ppc, &tdesc_powerpc_altivec32}, |
7a78ae4e | 3339 | {"power", "POWER user-level", bfd_arch_rs6000, |
7cc46491 | 3340 | bfd_mach_rs6k, &tdesc_rs6000}, |
7a78ae4e | 3341 | {"403", "IBM PowerPC 403", bfd_arch_powerpc, |
7cc46491 | 3342 | bfd_mach_ppc_403, &tdesc_powerpc_403}, |
4d09ffea MS |
3343 | {"405", "IBM PowerPC 405", bfd_arch_powerpc, |
3344 | bfd_mach_ppc_405, &tdesc_powerpc_405}, | |
7a78ae4e | 3345 | {"601", "Motorola PowerPC 601", bfd_arch_powerpc, |
7cc46491 | 3346 | bfd_mach_ppc_601, &tdesc_powerpc_601}, |
7a78ae4e | 3347 | {"602", "Motorola PowerPC 602", bfd_arch_powerpc, |
7cc46491 | 3348 | bfd_mach_ppc_602, &tdesc_powerpc_602}, |
7a78ae4e | 3349 | {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc, |
7cc46491 | 3350 | bfd_mach_ppc_603, &tdesc_powerpc_603}, |
7a78ae4e | 3351 | {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc, |
7cc46491 | 3352 | 604, &tdesc_powerpc_604}, |
7a78ae4e | 3353 | {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc, |
7cc46491 | 3354 | bfd_mach_ppc_403gc, &tdesc_powerpc_403gc}, |
7a78ae4e | 3355 | {"505", "Motorola PowerPC 505", bfd_arch_powerpc, |
7cc46491 | 3356 | bfd_mach_ppc_505, &tdesc_powerpc_505}, |
7a78ae4e | 3357 | {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc, |
7cc46491 | 3358 | bfd_mach_ppc_860, &tdesc_powerpc_860}, |
7a78ae4e | 3359 | {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc, |
7cc46491 | 3360 | bfd_mach_ppc_750, &tdesc_powerpc_750}, |
1fcc0bb8 | 3361 | {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc, |
7cc46491 | 3362 | bfd_mach_ppc_7400, &tdesc_powerpc_7400}, |
c8001721 | 3363 | {"e500", "Motorola PowerPC e500", bfd_arch_powerpc, |
7cc46491 | 3364 | bfd_mach_ppc_e500, &tdesc_powerpc_e500}, |
7a78ae4e | 3365 | |
5d57ee30 KB |
3366 | /* 64-bit */ |
3367 | {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc, | |
7284e1be | 3368 | bfd_mach_ppc64, &tdesc_powerpc_altivec64}, |
7a78ae4e | 3369 | {"620", "Motorola PowerPC 620", bfd_arch_powerpc, |
7cc46491 | 3370 | bfd_mach_ppc_620, &tdesc_powerpc_64}, |
5d57ee30 | 3371 | {"630", "Motorola PowerPC 630", bfd_arch_powerpc, |
7cc46491 | 3372 | bfd_mach_ppc_630, &tdesc_powerpc_64}, |
7a78ae4e | 3373 | {"a35", "PowerPC A35", bfd_arch_powerpc, |
7cc46491 | 3374 | bfd_mach_ppc_a35, &tdesc_powerpc_64}, |
5d57ee30 | 3375 | {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc, |
7cc46491 | 3376 | bfd_mach_ppc_rs64ii, &tdesc_powerpc_64}, |
5d57ee30 | 3377 | {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc, |
7cc46491 | 3378 | bfd_mach_ppc_rs64iii, &tdesc_powerpc_64}, |
5d57ee30 | 3379 | |
64366f1c | 3380 | /* FIXME: I haven't checked the register sets of the following. */ |
7a78ae4e | 3381 | {"rs1", "IBM POWER RS1", bfd_arch_rs6000, |
7cc46491 | 3382 | bfd_mach_rs6k_rs1, &tdesc_rs6000}, |
7a78ae4e | 3383 | {"rsc", "IBM POWER RSC", bfd_arch_rs6000, |
7cc46491 | 3384 | bfd_mach_rs6k_rsc, &tdesc_rs6000}, |
7a78ae4e | 3385 | {"rs2", "IBM POWER RS2", bfd_arch_rs6000, |
7cc46491 | 3386 | bfd_mach_rs6k_rs2, &tdesc_rs6000}, |
7a78ae4e | 3387 | |
3e45d68b | 3388 | {0, 0, (enum bfd_architecture) 0, 0, 0} |
c906108c SS |
3389 | }; |
3390 | ||
7a78ae4e | 3391 | /* Return the variant corresponding to architecture ARCH and machine number |
64366f1c | 3392 | MACH. If no such variant exists, return null. */ |
c906108c | 3393 | |
7a78ae4e ND |
3394 | static const struct variant * |
3395 | find_variant_by_arch (enum bfd_architecture arch, unsigned long mach) | |
c906108c | 3396 | { |
7a78ae4e | 3397 | const struct variant *v; |
c5aa993b | 3398 | |
7a78ae4e ND |
3399 | for (v = variants; v->name; v++) |
3400 | if (arch == v->arch && mach == v->mach) | |
3401 | return v; | |
c906108c | 3402 | |
7a78ae4e | 3403 | return NULL; |
c906108c | 3404 | } |
9364a0ef | 3405 | |
7a78ae4e | 3406 | \f |
61a65099 KB |
3407 | static CORE_ADDR |
3408 | rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
3409 | { | |
3e8c568d | 3410 | return frame_unwind_register_unsigned (next_frame, |
8b164abb | 3411 | gdbarch_pc_regnum (gdbarch)); |
61a65099 KB |
3412 | } |
3413 | ||
3414 | static struct frame_id | |
1af5d7ce | 3415 | rs6000_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame) |
61a65099 | 3416 | { |
1af5d7ce UW |
3417 | return frame_id_build (get_frame_register_unsigned |
3418 | (this_frame, gdbarch_sp_regnum (gdbarch)), | |
3419 | get_frame_pc (this_frame)); | |
61a65099 KB |
3420 | } |
3421 | ||
3422 | struct rs6000_frame_cache | |
3423 | { | |
3424 | CORE_ADDR base; | |
3425 | CORE_ADDR initial_sp; | |
3426 | struct trad_frame_saved_reg *saved_regs; | |
50ae56ec WW |
3427 | |
3428 | /* Set BASE_P to true if this frame cache is properly initialized. | |
3429 | Otherwise set to false because some registers or memory cannot | |
3430 | collected. */ | |
3431 | int base_p; | |
3432 | /* Cache PC for building unavailable frame. */ | |
3433 | CORE_ADDR pc; | |
61a65099 KB |
3434 | }; |
3435 | ||
3436 | static struct rs6000_frame_cache * | |
1af5d7ce | 3437 | rs6000_frame_cache (struct frame_info *this_frame, void **this_cache) |
61a65099 KB |
3438 | { |
3439 | struct rs6000_frame_cache *cache; | |
1af5d7ce | 3440 | struct gdbarch *gdbarch = get_frame_arch (this_frame); |
61a65099 | 3441 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
e17a4113 | 3442 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
61a65099 KB |
3443 | struct rs6000_framedata fdata; |
3444 | int wordsize = tdep->wordsize; | |
338435ef | 3445 | CORE_ADDR func = 0, pc = 0; |
61a65099 KB |
3446 | |
3447 | if ((*this_cache) != NULL) | |
19ba03f4 | 3448 | return (struct rs6000_frame_cache *) (*this_cache); |
61a65099 KB |
3449 | cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache); |
3450 | (*this_cache) = cache; | |
50ae56ec | 3451 | cache->pc = 0; |
1af5d7ce | 3452 | cache->saved_regs = trad_frame_alloc_saved_regs (this_frame); |
61a65099 | 3453 | |
50ae56ec WW |
3454 | TRY |
3455 | { | |
3456 | func = get_frame_func (this_frame); | |
3457 | cache->pc = func; | |
3458 | pc = get_frame_pc (this_frame); | |
3459 | skip_prologue (gdbarch, func, pc, &fdata); | |
3460 | ||
3461 | /* Figure out the parent's stack pointer. */ | |
3462 | ||
3463 | /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most | |
3464 | address of the current frame. Things might be easier if the | |
3465 | ->frame pointed to the outer-most address of the frame. In | |
3466 | the mean time, the address of the prev frame is used as the | |
3467 | base address of this frame. */ | |
3468 | cache->base = get_frame_register_unsigned | |
3469 | (this_frame, gdbarch_sp_regnum (gdbarch)); | |
3470 | } | |
3471 | CATCH (ex, RETURN_MASK_ERROR) | |
3472 | { | |
3473 | if (ex.error != NOT_AVAILABLE_ERROR) | |
3474 | throw_exception (ex); | |
1ed0c2a4 | 3475 | return (struct rs6000_frame_cache *) (*this_cache); |
50ae56ec WW |
3476 | } |
3477 | END_CATCH | |
e10b1c4c DJ |
3478 | |
3479 | /* If the function appears to be frameless, check a couple of likely | |
3480 | indicators that we have simply failed to find the frame setup. | |
3481 | Two common cases of this are missing symbols (i.e. | |
ef02daa9 | 3482 | get_frame_func returns the wrong address or 0), and assembly |
e10b1c4c DJ |
3483 | stubs which have a fast exit path but set up a frame on the slow |
3484 | path. | |
3485 | ||
3486 | If the LR appears to return to this function, then presume that | |
3487 | we have an ABI compliant frame that we failed to find. */ | |
3488 | if (fdata.frameless && fdata.lr_offset == 0) | |
61a65099 | 3489 | { |
e10b1c4c DJ |
3490 | CORE_ADDR saved_lr; |
3491 | int make_frame = 0; | |
3492 | ||
1af5d7ce | 3493 | saved_lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum); |
e10b1c4c DJ |
3494 | if (func == 0 && saved_lr == pc) |
3495 | make_frame = 1; | |
3496 | else if (func != 0) | |
3497 | { | |
3498 | CORE_ADDR saved_func = get_pc_function_start (saved_lr); | |
3499 | if (func == saved_func) | |
3500 | make_frame = 1; | |
3501 | } | |
3502 | ||
3503 | if (make_frame) | |
3504 | { | |
3505 | fdata.frameless = 0; | |
de6a76fd | 3506 | fdata.lr_offset = tdep->lr_frame_offset; |
e10b1c4c | 3507 | } |
61a65099 | 3508 | } |
e10b1c4c DJ |
3509 | |
3510 | if (!fdata.frameless) | |
9d9bf2df EBM |
3511 | { |
3512 | /* Frameless really means stackless. */ | |
cc2c4da8 | 3513 | ULONGEST backchain; |
9d9bf2df | 3514 | |
cc2c4da8 MK |
3515 | if (safe_read_memory_unsigned_integer (cache->base, wordsize, |
3516 | byte_order, &backchain)) | |
9d9bf2df EBM |
3517 | cache->base = (CORE_ADDR) backchain; |
3518 | } | |
e10b1c4c | 3519 | |
3e8c568d | 3520 | trad_frame_set_value (cache->saved_regs, |
8b164abb | 3521 | gdbarch_sp_regnum (gdbarch), cache->base); |
61a65099 KB |
3522 | |
3523 | /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr. | |
3524 | All fpr's from saved_fpr to fp31 are saved. */ | |
3525 | ||
3526 | if (fdata.saved_fpr >= 0) | |
3527 | { | |
3528 | int i; | |
3529 | CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset; | |
383f0f5b JB |
3530 | |
3531 | /* If skip_prologue says floating-point registers were saved, | |
3532 | but the current architecture has no floating-point registers, | |
3533 | then that's strange. But we have no indices to even record | |
3534 | the addresses under, so we just ignore it. */ | |
3535 | if (ppc_floating_point_unit_p (gdbarch)) | |
063715bf | 3536 | for (i = fdata.saved_fpr; i < ppc_num_fprs; i++) |
383f0f5b JB |
3537 | { |
3538 | cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr; | |
3539 | fpr_addr += 8; | |
3540 | } | |
61a65099 KB |
3541 | } |
3542 | ||
3543 | /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr. | |
46a9b8ed DJ |
3544 | All gpr's from saved_gpr to gpr31 are saved (except during the |
3545 | prologue). */ | |
61a65099 KB |
3546 | |
3547 | if (fdata.saved_gpr >= 0) | |
3548 | { | |
3549 | int i; | |
3550 | CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset; | |
063715bf | 3551 | for (i = fdata.saved_gpr; i < ppc_num_gprs; i++) |
61a65099 | 3552 | { |
46a9b8ed DJ |
3553 | if (fdata.gpr_mask & (1U << i)) |
3554 | cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr; | |
61a65099 KB |
3555 | gpr_addr += wordsize; |
3556 | } | |
3557 | } | |
3558 | ||
3559 | /* if != -1, fdata.saved_vr is the smallest number of saved_vr. | |
3560 | All vr's from saved_vr to vr31 are saved. */ | |
3561 | if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1) | |
3562 | { | |
3563 | if (fdata.saved_vr >= 0) | |
3564 | { | |
3565 | int i; | |
3566 | CORE_ADDR vr_addr = cache->base + fdata.vr_offset; | |
3567 | for (i = fdata.saved_vr; i < 32; i++) | |
3568 | { | |
3569 | cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr; | |
3570 | vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum); | |
3571 | } | |
3572 | } | |
3573 | } | |
3574 | ||
3575 | /* if != -1, fdata.saved_ev is the smallest number of saved_ev. | |
0df8b418 | 3576 | All vr's from saved_ev to ev31 are saved. ????? */ |
5a9e69ba | 3577 | if (tdep->ppc_ev0_regnum != -1) |
61a65099 KB |
3578 | { |
3579 | if (fdata.saved_ev >= 0) | |
3580 | { | |
3581 | int i; | |
3582 | CORE_ADDR ev_addr = cache->base + fdata.ev_offset; | |
dea80df0 MR |
3583 | CORE_ADDR off = (byte_order == BFD_ENDIAN_BIG ? 4 : 0); |
3584 | ||
063715bf | 3585 | for (i = fdata.saved_ev; i < ppc_num_gprs; i++) |
61a65099 KB |
3586 | { |
3587 | cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr; | |
dea80df0 | 3588 | cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + off; |
61a65099 | 3589 | ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum); |
dea80df0 | 3590 | } |
61a65099 KB |
3591 | } |
3592 | } | |
3593 | ||
3594 | /* If != 0, fdata.cr_offset is the offset from the frame that | |
3595 | holds the CR. */ | |
3596 | if (fdata.cr_offset != 0) | |
0df8b418 MS |
3597 | cache->saved_regs[tdep->ppc_cr_regnum].addr |
3598 | = cache->base + fdata.cr_offset; | |
61a65099 KB |
3599 | |
3600 | /* If != 0, fdata.lr_offset is the offset from the frame that | |
3601 | holds the LR. */ | |
3602 | if (fdata.lr_offset != 0) | |
0df8b418 MS |
3603 | cache->saved_regs[tdep->ppc_lr_regnum].addr |
3604 | = cache->base + fdata.lr_offset; | |
46a9b8ed DJ |
3605 | else if (fdata.lr_register != -1) |
3606 | cache->saved_regs[tdep->ppc_lr_regnum].realreg = fdata.lr_register; | |
61a65099 | 3607 | /* The PC is found in the link register. */ |
8b164abb | 3608 | cache->saved_regs[gdbarch_pc_regnum (gdbarch)] = |
3e8c568d | 3609 | cache->saved_regs[tdep->ppc_lr_regnum]; |
61a65099 KB |
3610 | |
3611 | /* If != 0, fdata.vrsave_offset is the offset from the frame that | |
3612 | holds the VRSAVE. */ | |
3613 | if (fdata.vrsave_offset != 0) | |
0df8b418 MS |
3614 | cache->saved_regs[tdep->ppc_vrsave_regnum].addr |
3615 | = cache->base + fdata.vrsave_offset; | |
61a65099 KB |
3616 | |
3617 | if (fdata.alloca_reg < 0) | |
3618 | /* If no alloca register used, then fi->frame is the value of the | |
3619 | %sp for this frame, and it is good enough. */ | |
1af5d7ce UW |
3620 | cache->initial_sp |
3621 | = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch)); | |
61a65099 | 3622 | else |
1af5d7ce UW |
3623 | cache->initial_sp |
3624 | = get_frame_register_unsigned (this_frame, fdata.alloca_reg); | |
61a65099 | 3625 | |
50ae56ec | 3626 | cache->base_p = 1; |
61a65099 KB |
3627 | return cache; |
3628 | } | |
3629 | ||
3630 | static void | |
1af5d7ce | 3631 | rs6000_frame_this_id (struct frame_info *this_frame, void **this_cache, |
61a65099 KB |
3632 | struct frame_id *this_id) |
3633 | { | |
1af5d7ce | 3634 | struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame, |
61a65099 | 3635 | this_cache); |
50ae56ec WW |
3636 | |
3637 | if (!info->base_p) | |
3638 | { | |
3639 | (*this_id) = frame_id_build_unavailable_stack (info->pc); | |
3640 | return; | |
3641 | } | |
3642 | ||
5b197912 UW |
3643 | /* This marks the outermost frame. */ |
3644 | if (info->base == 0) | |
3645 | return; | |
3646 | ||
1af5d7ce | 3647 | (*this_id) = frame_id_build (info->base, get_frame_func (this_frame)); |
61a65099 KB |
3648 | } |
3649 | ||
1af5d7ce UW |
3650 | static struct value * |
3651 | rs6000_frame_prev_register (struct frame_info *this_frame, | |
3652 | void **this_cache, int regnum) | |
61a65099 | 3653 | { |
1af5d7ce | 3654 | struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame, |
61a65099 | 3655 | this_cache); |
1af5d7ce | 3656 | return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum); |
61a65099 KB |
3657 | } |
3658 | ||
3659 | static const struct frame_unwind rs6000_frame_unwind = | |
3660 | { | |
3661 | NORMAL_FRAME, | |
8fbca658 | 3662 | default_frame_unwind_stop_reason, |
61a65099 | 3663 | rs6000_frame_this_id, |
1af5d7ce UW |
3664 | rs6000_frame_prev_register, |
3665 | NULL, | |
3666 | default_frame_sniffer | |
61a65099 | 3667 | }; |
2608dbf8 | 3668 | |
ddeca1df WW |
3669 | /* Allocate and initialize a frame cache for an epilogue frame. |
3670 | SP is restored and prev-PC is stored in LR. */ | |
3671 | ||
2608dbf8 WW |
3672 | static struct rs6000_frame_cache * |
3673 | rs6000_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache) | |
3674 | { | |
2608dbf8 WW |
3675 | struct rs6000_frame_cache *cache; |
3676 | struct gdbarch *gdbarch = get_frame_arch (this_frame); | |
3677 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
2608dbf8 WW |
3678 | |
3679 | if (*this_cache) | |
19ba03f4 | 3680 | return (struct rs6000_frame_cache *) *this_cache; |
2608dbf8 WW |
3681 | |
3682 | cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache); | |
3683 | (*this_cache) = cache; | |
3684 | cache->saved_regs = trad_frame_alloc_saved_regs (this_frame); | |
3685 | ||
492d29ea | 3686 | TRY |
2608dbf8 WW |
3687 | { |
3688 | /* At this point the stack looks as if we just entered the | |
3689 | function, and the return address is stored in LR. */ | |
3690 | CORE_ADDR sp, lr; | |
3691 | ||
3692 | sp = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch)); | |
3693 | lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum); | |
3694 | ||
3695 | cache->base = sp; | |
3696 | cache->initial_sp = sp; | |
3697 | ||
3698 | trad_frame_set_value (cache->saved_regs, | |
3699 | gdbarch_pc_regnum (gdbarch), lr); | |
3700 | } | |
492d29ea | 3701 | CATCH (ex, RETURN_MASK_ERROR) |
7556d4a4 PA |
3702 | { |
3703 | if (ex.error != NOT_AVAILABLE_ERROR) | |
3704 | throw_exception (ex); | |
3705 | } | |
492d29ea | 3706 | END_CATCH |
2608dbf8 WW |
3707 | |
3708 | return cache; | |
3709 | } | |
3710 | ||
ddeca1df WW |
3711 | /* Implementation of frame_unwind.this_id, as defined in frame_unwind.h. |
3712 | Return the frame ID of an epilogue frame. */ | |
3713 | ||
2608dbf8 WW |
3714 | static void |
3715 | rs6000_epilogue_frame_this_id (struct frame_info *this_frame, | |
3716 | void **this_cache, struct frame_id *this_id) | |
3717 | { | |
3718 | CORE_ADDR pc; | |
3719 | struct rs6000_frame_cache *info = | |
3720 | rs6000_epilogue_frame_cache (this_frame, this_cache); | |
3721 | ||
3722 | pc = get_frame_func (this_frame); | |
3723 | if (info->base == 0) | |
3724 | (*this_id) = frame_id_build_unavailable_stack (pc); | |
3725 | else | |
3726 | (*this_id) = frame_id_build (info->base, pc); | |
3727 | } | |
3728 | ||
ddeca1df WW |
3729 | /* Implementation of frame_unwind.prev_register, as defined in frame_unwind.h. |
3730 | Return the register value of REGNUM in previous frame. */ | |
3731 | ||
2608dbf8 WW |
3732 | static struct value * |
3733 | rs6000_epilogue_frame_prev_register (struct frame_info *this_frame, | |
3734 | void **this_cache, int regnum) | |
3735 | { | |
3736 | struct rs6000_frame_cache *info = | |
3737 | rs6000_epilogue_frame_cache (this_frame, this_cache); | |
3738 | return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum); | |
3739 | } | |
3740 | ||
ddeca1df WW |
3741 | /* Implementation of frame_unwind.sniffer, as defined in frame_unwind.h. |
3742 | Check whether this an epilogue frame. */ | |
3743 | ||
2608dbf8 WW |
3744 | static int |
3745 | rs6000_epilogue_frame_sniffer (const struct frame_unwind *self, | |
3746 | struct frame_info *this_frame, | |
3747 | void **this_prologue_cache) | |
3748 | { | |
3749 | if (frame_relative_level (this_frame) == 0) | |
3750 | return rs6000_in_function_epilogue_frame_p (this_frame, | |
3751 | get_frame_arch (this_frame), | |
3752 | get_frame_pc (this_frame)); | |
3753 | else | |
3754 | return 0; | |
3755 | } | |
3756 | ||
ddeca1df WW |
3757 | /* Frame unwinder for epilogue frame. This is required for reverse step-over |
3758 | a function without debug information. */ | |
3759 | ||
2608dbf8 WW |
3760 | static const struct frame_unwind rs6000_epilogue_frame_unwind = |
3761 | { | |
3762 | NORMAL_FRAME, | |
3763 | default_frame_unwind_stop_reason, | |
3764 | rs6000_epilogue_frame_this_id, rs6000_epilogue_frame_prev_register, | |
3765 | NULL, | |
3766 | rs6000_epilogue_frame_sniffer | |
3767 | }; | |
61a65099 KB |
3768 | \f |
3769 | ||
3770 | static CORE_ADDR | |
1af5d7ce | 3771 | rs6000_frame_base_address (struct frame_info *this_frame, void **this_cache) |
61a65099 | 3772 | { |
1af5d7ce | 3773 | struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame, |
61a65099 KB |
3774 | this_cache); |
3775 | return info->initial_sp; | |
3776 | } | |
3777 | ||
3778 | static const struct frame_base rs6000_frame_base = { | |
3779 | &rs6000_frame_unwind, | |
3780 | rs6000_frame_base_address, | |
3781 | rs6000_frame_base_address, | |
3782 | rs6000_frame_base_address | |
3783 | }; | |
3784 | ||
3785 | static const struct frame_base * | |
1af5d7ce | 3786 | rs6000_frame_base_sniffer (struct frame_info *this_frame) |
61a65099 KB |
3787 | { |
3788 | return &rs6000_frame_base; | |
3789 | } | |
3790 | ||
9274a07c LM |
3791 | /* DWARF-2 frame support. Used to handle the detection of |
3792 | clobbered registers during function calls. */ | |
3793 | ||
3794 | static void | |
3795 | ppc_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum, | |
3796 | struct dwarf2_frame_state_reg *reg, | |
4a4e5149 | 3797 | struct frame_info *this_frame) |
9274a07c LM |
3798 | { |
3799 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
3800 | ||
3801 | /* PPC32 and PPC64 ABI's are the same regarding volatile and | |
3802 | non-volatile registers. We will use the same code for both. */ | |
3803 | ||
3804 | /* Call-saved GP registers. */ | |
3805 | if ((regnum >= tdep->ppc_gp0_regnum + 14 | |
3806 | && regnum <= tdep->ppc_gp0_regnum + 31) | |
3807 | || (regnum == tdep->ppc_gp0_regnum + 1)) | |
3808 | reg->how = DWARF2_FRAME_REG_SAME_VALUE; | |
3809 | ||
3810 | /* Call-clobbered GP registers. */ | |
3811 | if ((regnum >= tdep->ppc_gp0_regnum + 3 | |
3812 | && regnum <= tdep->ppc_gp0_regnum + 12) | |
3813 | || (regnum == tdep->ppc_gp0_regnum)) | |
3814 | reg->how = DWARF2_FRAME_REG_UNDEFINED; | |
3815 | ||
3816 | /* Deal with FP registers, if supported. */ | |
3817 | if (tdep->ppc_fp0_regnum >= 0) | |
3818 | { | |
3819 | /* Call-saved FP registers. */ | |
3820 | if ((regnum >= tdep->ppc_fp0_regnum + 14 | |
3821 | && regnum <= tdep->ppc_fp0_regnum + 31)) | |
3822 | reg->how = DWARF2_FRAME_REG_SAME_VALUE; | |
3823 | ||
3824 | /* Call-clobbered FP registers. */ | |
3825 | if ((regnum >= tdep->ppc_fp0_regnum | |
3826 | && regnum <= tdep->ppc_fp0_regnum + 13)) | |
3827 | reg->how = DWARF2_FRAME_REG_UNDEFINED; | |
3828 | } | |
3829 | ||
3830 | /* Deal with ALTIVEC registers, if supported. */ | |
3831 | if (tdep->ppc_vr0_regnum > 0 && tdep->ppc_vrsave_regnum > 0) | |
3832 | { | |
3833 | /* Call-saved Altivec registers. */ | |
3834 | if ((regnum >= tdep->ppc_vr0_regnum + 20 | |
3835 | && regnum <= tdep->ppc_vr0_regnum + 31) | |
3836 | || regnum == tdep->ppc_vrsave_regnum) | |
3837 | reg->how = DWARF2_FRAME_REG_SAME_VALUE; | |
3838 | ||
3839 | /* Call-clobbered Altivec registers. */ | |
3840 | if ((regnum >= tdep->ppc_vr0_regnum | |
3841 | && regnum <= tdep->ppc_vr0_regnum + 19)) | |
3842 | reg->how = DWARF2_FRAME_REG_UNDEFINED; | |
3843 | } | |
3844 | ||
3845 | /* Handle PC register and Stack Pointer correctly. */ | |
40a6adc1 | 3846 | if (regnum == gdbarch_pc_regnum (gdbarch)) |
9274a07c | 3847 | reg->how = DWARF2_FRAME_REG_RA; |
40a6adc1 | 3848 | else if (regnum == gdbarch_sp_regnum (gdbarch)) |
9274a07c LM |
3849 | reg->how = DWARF2_FRAME_REG_CFA; |
3850 | } | |
3851 | ||
3852 | ||
74af9197 NF |
3853 | /* Return true if a .gnu_attributes section exists in BFD and it |
3854 | indicates we are using SPE extensions OR if a .PPC.EMB.apuinfo | |
3855 | section exists in BFD and it indicates that SPE extensions are in | |
3856 | use. Check the .gnu.attributes section first, as the binary might be | |
3857 | compiled for SPE, but not actually using SPE instructions. */ | |
3858 | ||
3859 | static int | |
3860 | bfd_uses_spe_extensions (bfd *abfd) | |
3861 | { | |
3862 | asection *sect; | |
3863 | gdb_byte *contents = NULL; | |
3864 | bfd_size_type size; | |
3865 | gdb_byte *ptr; | |
3866 | int success = 0; | |
74af9197 NF |
3867 | |
3868 | if (!abfd) | |
3869 | return 0; | |
3870 | ||
50a99728 | 3871 | #ifdef HAVE_ELF |
74af9197 NF |
3872 | /* Using Tag_GNU_Power_ABI_Vector here is a bit of a hack, as the user |
3873 | could be using the SPE vector abi without actually using any spe | |
3874 | bits whatsoever. But it's close enough for now. */ | |
17cbafdb SM |
3875 | int vector_abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_GNU, |
3876 | Tag_GNU_Power_ABI_Vector); | |
74af9197 NF |
3877 | if (vector_abi == 3) |
3878 | return 1; | |
50a99728 | 3879 | #endif |
74af9197 NF |
3880 | |
3881 | sect = bfd_get_section_by_name (abfd, ".PPC.EMB.apuinfo"); | |
3882 | if (!sect) | |
3883 | return 0; | |
3884 | ||
3885 | size = bfd_get_section_size (sect); | |
224c3ddb | 3886 | contents = (gdb_byte *) xmalloc (size); |
74af9197 NF |
3887 | if (!bfd_get_section_contents (abfd, sect, contents, 0, size)) |
3888 | { | |
3889 | xfree (contents); | |
3890 | return 0; | |
3891 | } | |
3892 | ||
3893 | /* Parse the .PPC.EMB.apuinfo section. The layout is as follows: | |
3894 | ||
3895 | struct { | |
3896 | uint32 name_len; | |
3897 | uint32 data_len; | |
3898 | uint32 type; | |
3899 | char name[name_len rounded up to 4-byte alignment]; | |
3900 | char data[data_len]; | |
3901 | }; | |
3902 | ||
3903 | Technically, there's only supposed to be one such structure in a | |
3904 | given apuinfo section, but the linker is not always vigilant about | |
3905 | merging apuinfo sections from input files. Just go ahead and parse | |
3906 | them all, exiting early when we discover the binary uses SPE | |
3907 | insns. | |
3908 | ||
3909 | It's not specified in what endianness the information in this | |
3910 | section is stored. Assume that it's the endianness of the BFD. */ | |
3911 | ptr = contents; | |
3912 | while (1) | |
3913 | { | |
3914 | unsigned int name_len; | |
3915 | unsigned int data_len; | |
3916 | unsigned int type; | |
3917 | ||
3918 | /* If we can't read the first three fields, we're done. */ | |
3919 | if (size < 12) | |
3920 | break; | |
3921 | ||
3922 | name_len = bfd_get_32 (abfd, ptr); | |
3923 | name_len = (name_len + 3) & ~3U; /* Round to 4 bytes. */ | |
3924 | data_len = bfd_get_32 (abfd, ptr + 4); | |
3925 | type = bfd_get_32 (abfd, ptr + 8); | |
3926 | ptr += 12; | |
3927 | ||
3928 | /* The name must be "APUinfo\0". */ | |
3929 | if (name_len != 8 | |
3930 | && strcmp ((const char *) ptr, "APUinfo") != 0) | |
3931 | break; | |
3932 | ptr += name_len; | |
3933 | ||
3934 | /* The type must be 2. */ | |
3935 | if (type != 2) | |
3936 | break; | |
3937 | ||
3938 | /* The data is stored as a series of uint32. The upper half of | |
3939 | each uint32 indicates the particular APU used and the lower | |
3940 | half indicates the revision of that APU. We just care about | |
3941 | the upper half. */ | |
3942 | ||
3943 | /* Not 4-byte quantities. */ | |
3944 | if (data_len & 3U) | |
3945 | break; | |
3946 | ||
3947 | while (data_len) | |
3948 | { | |
3949 | unsigned int apuinfo = bfd_get_32 (abfd, ptr); | |
3950 | unsigned int apu = apuinfo >> 16; | |
3951 | ptr += 4; | |
3952 | data_len -= 4; | |
3953 | ||
3954 | /* The SPE APU is 0x100; the SPEFP APU is 0x101. Accept | |
3955 | either. */ | |
3956 | if (apu == 0x100 || apu == 0x101) | |
3957 | { | |
3958 | success = 1; | |
3959 | data_len = 0; | |
3960 | } | |
3961 | } | |
3962 | ||
3963 | if (success) | |
3964 | break; | |
3965 | } | |
3966 | ||
3967 | xfree (contents); | |
3968 | return success; | |
3969 | } | |
3970 | ||
b4cdae6f WW |
3971 | /* These are macros for parsing instruction fields (I.1.6.28) */ |
3972 | ||
3973 | #define PPC_FIELD(value, from, len) \ | |
3974 | (((value) >> (32 - (from) - (len))) & ((1 << (len)) - 1)) | |
3975 | #define PPC_SEXT(v, bs) \ | |
3976 | ((((CORE_ADDR) (v) & (((CORE_ADDR) 1 << (bs)) - 1)) \ | |
3977 | ^ ((CORE_ADDR) 1 << ((bs) - 1))) \ | |
3978 | - ((CORE_ADDR) 1 << ((bs) - 1))) | |
3979 | #define PPC_OP6(insn) PPC_FIELD (insn, 0, 6) | |
3980 | #define PPC_EXTOP(insn) PPC_FIELD (insn, 21, 10) | |
3981 | #define PPC_RT(insn) PPC_FIELD (insn, 6, 5) | |
3982 | #define PPC_RS(insn) PPC_FIELD (insn, 6, 5) | |
3983 | #define PPC_RA(insn) PPC_FIELD (insn, 11, 5) | |
3984 | #define PPC_RB(insn) PPC_FIELD (insn, 16, 5) | |
3985 | #define PPC_NB(insn) PPC_FIELD (insn, 16, 5) | |
3986 | #define PPC_VRT(insn) PPC_FIELD (insn, 6, 5) | |
3987 | #define PPC_FRT(insn) PPC_FIELD (insn, 6, 5) | |
3988 | #define PPC_SPR(insn) (PPC_FIELD (insn, 11, 5) \ | |
3989 | | (PPC_FIELD (insn, 16, 5) << 5)) | |
3990 | #define PPC_BO(insn) PPC_FIELD (insn, 6, 5) | |
3991 | #define PPC_T(insn) PPC_FIELD (insn, 6, 5) | |
3992 | #define PPC_D(insn) PPC_SEXT (PPC_FIELD (insn, 16, 16), 16) | |
3993 | #define PPC_DS(insn) PPC_SEXT (PPC_FIELD (insn, 16, 14), 14) | |
6ec2b213 | 3994 | #define PPC_DQ(insn) PPC_SEXT (PPC_FIELD (insn, 16, 12), 12) |
b4cdae6f WW |
3995 | #define PPC_BIT(insn,n) ((insn & (1 << (31 - (n)))) ? 1 : 0) |
3996 | #define PPC_OE(insn) PPC_BIT (insn, 21) | |
3997 | #define PPC_RC(insn) PPC_BIT (insn, 31) | |
3998 | #define PPC_Rc(insn) PPC_BIT (insn, 21) | |
3999 | #define PPC_LK(insn) PPC_BIT (insn, 31) | |
4000 | #define PPC_TX(insn) PPC_BIT (insn, 31) | |
4001 | #define PPC_LEV(insn) PPC_FIELD (insn, 20, 7) | |
4002 | ||
4003 | #define PPC_XT(insn) ((PPC_TX (insn) << 5) | PPC_T (insn)) | |
4004 | #define PPC_XER_NB(xer) (xer & 0x7f) | |
4005 | ||
ddeca1df WW |
4006 | /* Record Vector-Scalar Registers. |
4007 | For VSR less than 32, it's represented by an FPR and an VSR-upper register. | |
4008 | Otherwise, it's just a VR register. Record them accordingly. */ | |
b4cdae6f WW |
4009 | |
4010 | static int | |
4011 | ppc_record_vsr (struct regcache *regcache, struct gdbarch_tdep *tdep, int vsr) | |
4012 | { | |
4013 | if (vsr < 0 || vsr >= 64) | |
4014 | return -1; | |
4015 | ||
4016 | if (vsr >= 32) | |
4017 | { | |
4018 | if (tdep->ppc_vr0_regnum >= 0) | |
4019 | record_full_arch_list_add_reg (regcache, tdep->ppc_vr0_regnum + vsr - 32); | |
4020 | } | |
4021 | else | |
4022 | { | |
4023 | if (tdep->ppc_fp0_regnum >= 0) | |
4024 | record_full_arch_list_add_reg (regcache, tdep->ppc_fp0_regnum + vsr); | |
4025 | if (tdep->ppc_vsr0_upper_regnum >= 0) | |
4026 | record_full_arch_list_add_reg (regcache, | |
4027 | tdep->ppc_vsr0_upper_regnum + vsr); | |
4028 | } | |
4029 | ||
4030 | return 0; | |
4031 | } | |
4032 | ||
ddeca1df WW |
4033 | /* Parse and record instructions primary opcode-4 at ADDR. |
4034 | Return 0 if successful. */ | |
b4cdae6f WW |
4035 | |
4036 | static int | |
4037 | ppc_process_record_op4 (struct gdbarch *gdbarch, struct regcache *regcache, | |
ddeca1df | 4038 | CORE_ADDR addr, uint32_t insn) |
b4cdae6f WW |
4039 | { |
4040 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
4041 | int ext = PPC_FIELD (insn, 21, 11); | |
6ec2b213 | 4042 | int vra = PPC_FIELD (insn, 11, 5); |
b4cdae6f WW |
4043 | |
4044 | switch (ext & 0x3f) | |
4045 | { | |
4046 | case 32: /* Vector Multiply-High-Add Signed Halfword Saturate */ | |
4047 | case 33: /* Vector Multiply-High-Round-Add Signed Halfword Saturate */ | |
4048 | case 39: /* Vector Multiply-Sum Unsigned Halfword Saturate */ | |
4049 | case 41: /* Vector Multiply-Sum Signed Halfword Saturate */ | |
4050 | record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM); | |
4051 | /* FALL-THROUGH */ | |
4052 | case 42: /* Vector Select */ | |
4053 | case 43: /* Vector Permute */ | |
6ec2b213 | 4054 | case 59: /* Vector Permute Right-indexed */ |
b4cdae6f WW |
4055 | case 44: /* Vector Shift Left Double by Octet Immediate */ |
4056 | case 45: /* Vector Permute and Exclusive-OR */ | |
4057 | case 60: /* Vector Add Extended Unsigned Quadword Modulo */ | |
4058 | case 61: /* Vector Add Extended & write Carry Unsigned Quadword */ | |
4059 | case 62: /* Vector Subtract Extended Unsigned Quadword Modulo */ | |
4060 | case 63: /* Vector Subtract Extended & write Carry Unsigned Quadword */ | |
4061 | case 34: /* Vector Multiply-Low-Add Unsigned Halfword Modulo */ | |
6ec2b213 | 4062 | case 35: /* Vector Multiply-Sum Unsigned Doubleword Modulo */ |
b4cdae6f WW |
4063 | case 36: /* Vector Multiply-Sum Unsigned Byte Modulo */ |
4064 | case 37: /* Vector Multiply-Sum Mixed Byte Modulo */ | |
4065 | case 38: /* Vector Multiply-Sum Unsigned Halfword Modulo */ | |
4066 | case 40: /* Vector Multiply-Sum Signed Halfword Modulo */ | |
4067 | case 46: /* Vector Multiply-Add Single-Precision */ | |
4068 | case 47: /* Vector Negative Multiply-Subtract Single-Precision */ | |
4069 | record_full_arch_list_add_reg (regcache, | |
4070 | tdep->ppc_vr0_regnum + PPC_VRT (insn)); | |
4071 | return 0; | |
6ec2b213 EBM |
4072 | |
4073 | case 48: /* Multiply-Add High Doubleword */ | |
4074 | case 49: /* Multiply-Add High Doubleword Unsigned */ | |
4075 | case 51: /* Multiply-Add Low Doubleword */ | |
4076 | record_full_arch_list_add_reg (regcache, | |
4077 | tdep->ppc_gp0_regnum + PPC_RT (insn)); | |
4078 | return 0; | |
b4cdae6f WW |
4079 | } |
4080 | ||
4081 | switch ((ext & 0x1ff)) | |
4082 | { | |
6ec2b213 EBM |
4083 | case 385: |
4084 | if (vra != 0 /* Decimal Convert To Signed Quadword */ | |
4085 | && vra != 2 /* Decimal Convert From Signed Quadword */ | |
4086 | && vra != 4 /* Decimal Convert To Zoned */ | |
4087 | && vra != 5 /* Decimal Convert To National */ | |
4088 | && vra != 6 /* Decimal Convert From Zoned */ | |
4089 | && vra != 7 /* Decimal Convert From National */ | |
4090 | && vra != 31) /* Decimal Set Sign */ | |
4091 | break; | |
e3829d13 | 4092 | /* Fall through. */ |
b4cdae6f WW |
4093 | /* 5.16 Decimal Integer Arithmetic Instructions */ |
4094 | case 1: /* Decimal Add Modulo */ | |
4095 | case 65: /* Decimal Subtract Modulo */ | |
4096 | ||
6ec2b213 EBM |
4097 | case 193: /* Decimal Shift */ |
4098 | case 129: /* Decimal Unsigned Shift */ | |
4099 | case 449: /* Decimal Shift and Round */ | |
4100 | ||
4101 | case 257: /* Decimal Truncate */ | |
4102 | case 321: /* Decimal Unsigned Truncate */ | |
4103 | ||
b4cdae6f WW |
4104 | /* Bit-21 should be set. */ |
4105 | if (!PPC_BIT (insn, 21)) | |
4106 | break; | |
4107 | ||
4108 | record_full_arch_list_add_reg (regcache, | |
4109 | tdep->ppc_vr0_regnum + PPC_VRT (insn)); | |
4110 | record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum); | |
4111 | return 0; | |
4112 | } | |
4113 | ||
4114 | /* Bit-21 is used for RC */ | |
4115 | switch (ext & 0x3ff) | |
4116 | { | |
4117 | case 6: /* Vector Compare Equal To Unsigned Byte */ | |
4118 | case 70: /* Vector Compare Equal To Unsigned Halfword */ | |
4119 | case 134: /* Vector Compare Equal To Unsigned Word */ | |
4120 | case 199: /* Vector Compare Equal To Unsigned Doubleword */ | |
4121 | case 774: /* Vector Compare Greater Than Signed Byte */ | |
4122 | case 838: /* Vector Compare Greater Than Signed Halfword */ | |
4123 | case 902: /* Vector Compare Greater Than Signed Word */ | |
4124 | case 967: /* Vector Compare Greater Than Signed Doubleword */ | |
4125 | case 518: /* Vector Compare Greater Than Unsigned Byte */ | |
4126 | case 646: /* Vector Compare Greater Than Unsigned Word */ | |
4127 | case 582: /* Vector Compare Greater Than Unsigned Halfword */ | |
4128 | case 711: /* Vector Compare Greater Than Unsigned Doubleword */ | |
4129 | case 966: /* Vector Compare Bounds Single-Precision */ | |
4130 | case 198: /* Vector Compare Equal To Single-Precision */ | |
4131 | case 454: /* Vector Compare Greater Than or Equal To Single-Precision */ | |
4132 | case 710: /* Vector Compare Greater Than Single-Precision */ | |
6ec2b213 EBM |
4133 | case 7: /* Vector Compare Not Equal Byte */ |
4134 | case 71: /* Vector Compare Not Equal Halfword */ | |
4135 | case 135: /* Vector Compare Not Equal Word */ | |
4136 | case 263: /* Vector Compare Not Equal or Zero Byte */ | |
4137 | case 327: /* Vector Compare Not Equal or Zero Halfword */ | |
4138 | case 391: /* Vector Compare Not Equal or Zero Word */ | |
b4cdae6f WW |
4139 | if (PPC_Rc (insn)) |
4140 | record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum); | |
4141 | record_full_arch_list_add_reg (regcache, | |
4142 | tdep->ppc_vr0_regnum + PPC_VRT (insn)); | |
4143 | return 0; | |
4144 | } | |
4145 | ||
6ec2b213 EBM |
4146 | if (ext == 1538) |
4147 | { | |
4148 | switch (vra) | |
4149 | { | |
4150 | case 0: /* Vector Count Leading Zero Least-Significant Bits | |
4151 | Byte */ | |
4152 | case 1: /* Vector Count Trailing Zero Least-Significant Bits | |
4153 | Byte */ | |
4154 | record_full_arch_list_add_reg (regcache, | |
4155 | tdep->ppc_gp0_regnum + PPC_RT (insn)); | |
4156 | return 0; | |
4157 | ||
4158 | case 6: /* Vector Negate Word */ | |
4159 | case 7: /* Vector Negate Doubleword */ | |
4160 | case 8: /* Vector Parity Byte Word */ | |
4161 | case 9: /* Vector Parity Byte Doubleword */ | |
4162 | case 10: /* Vector Parity Byte Quadword */ | |
4163 | case 16: /* Vector Extend Sign Byte To Word */ | |
4164 | case 17: /* Vector Extend Sign Halfword To Word */ | |
4165 | case 24: /* Vector Extend Sign Byte To Doubleword */ | |
4166 | case 25: /* Vector Extend Sign Halfword To Doubleword */ | |
4167 | case 26: /* Vector Extend Sign Word To Doubleword */ | |
4168 | case 28: /* Vector Count Trailing Zeros Byte */ | |
4169 | case 29: /* Vector Count Trailing Zeros Halfword */ | |
4170 | case 30: /* Vector Count Trailing Zeros Word */ | |
4171 | case 31: /* Vector Count Trailing Zeros Doubleword */ | |
4172 | record_full_arch_list_add_reg (regcache, | |
4173 | tdep->ppc_vr0_regnum + PPC_VRT (insn)); | |
4174 | return 0; | |
4175 | } | |
4176 | } | |
4177 | ||
b4cdae6f WW |
4178 | switch (ext) |
4179 | { | |
4180 | case 142: /* Vector Pack Unsigned Halfword Unsigned Saturate */ | |
4181 | case 206: /* Vector Pack Unsigned Word Unsigned Saturate */ | |
4182 | case 270: /* Vector Pack Signed Halfword Unsigned Saturate */ | |
4183 | case 334: /* Vector Pack Signed Word Unsigned Saturate */ | |
4184 | case 398: /* Vector Pack Signed Halfword Signed Saturate */ | |
4185 | case 462: /* Vector Pack Signed Word Signed Saturate */ | |
4186 | case 1230: /* Vector Pack Unsigned Doubleword Unsigned Saturate */ | |
4187 | case 1358: /* Vector Pack Signed Doubleword Unsigned Saturate */ | |
4188 | case 1486: /* Vector Pack Signed Doubleword Signed Saturate */ | |
4189 | case 512: /* Vector Add Unsigned Byte Saturate */ | |
4190 | case 576: /* Vector Add Unsigned Halfword Saturate */ | |
4191 | case 640: /* Vector Add Unsigned Word Saturate */ | |
4192 | case 768: /* Vector Add Signed Byte Saturate */ | |
4193 | case 832: /* Vector Add Signed Halfword Saturate */ | |
4194 | case 896: /* Vector Add Signed Word Saturate */ | |
4195 | case 1536: /* Vector Subtract Unsigned Byte Saturate */ | |
4196 | case 1600: /* Vector Subtract Unsigned Halfword Saturate */ | |
4197 | case 1664: /* Vector Subtract Unsigned Word Saturate */ | |
4198 | case 1792: /* Vector Subtract Signed Byte Saturate */ | |
4199 | case 1856: /* Vector Subtract Signed Halfword Saturate */ | |
4200 | case 1920: /* Vector Subtract Signed Word Saturate */ | |
4201 | ||
4202 | case 1544: /* Vector Sum across Quarter Unsigned Byte Saturate */ | |
4203 | case 1800: /* Vector Sum across Quarter Signed Byte Saturate */ | |
4204 | case 1608: /* Vector Sum across Quarter Signed Halfword Saturate */ | |
4205 | case 1672: /* Vector Sum across Half Signed Word Saturate */ | |
4206 | case 1928: /* Vector Sum across Signed Word Saturate */ | |
4207 | case 970: /* Vector Convert To Signed Fixed-Point Word Saturate */ | |
4208 | case 906: /* Vector Convert To Unsigned Fixed-Point Word Saturate */ | |
4209 | record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM); | |
4210 | /* FALL-THROUGH */ | |
4211 | case 12: /* Vector Merge High Byte */ | |
4212 | case 14: /* Vector Pack Unsigned Halfword Unsigned Modulo */ | |
4213 | case 76: /* Vector Merge High Halfword */ | |
4214 | case 78: /* Vector Pack Unsigned Word Unsigned Modulo */ | |
4215 | case 140: /* Vector Merge High Word */ | |
4216 | case 268: /* Vector Merge Low Byte */ | |
4217 | case 332: /* Vector Merge Low Halfword */ | |
4218 | case 396: /* Vector Merge Low Word */ | |
4219 | case 526: /* Vector Unpack High Signed Byte */ | |
4220 | case 590: /* Vector Unpack High Signed Halfword */ | |
4221 | case 654: /* Vector Unpack Low Signed Byte */ | |
4222 | case 718: /* Vector Unpack Low Signed Halfword */ | |
4223 | case 782: /* Vector Pack Pixel */ | |
4224 | case 846: /* Vector Unpack High Pixel */ | |
4225 | case 974: /* Vector Unpack Low Pixel */ | |
4226 | case 1102: /* Vector Pack Unsigned Doubleword Unsigned Modulo */ | |
4227 | case 1614: /* Vector Unpack High Signed Word */ | |
4228 | case 1676: /* Vector Merge Odd Word */ | |
4229 | case 1742: /* Vector Unpack Low Signed Word */ | |
4230 | case 1932: /* Vector Merge Even Word */ | |
4231 | case 524: /* Vector Splat Byte */ | |
4232 | case 588: /* Vector Splat Halfword */ | |
4233 | case 652: /* Vector Splat Word */ | |
4234 | case 780: /* Vector Splat Immediate Signed Byte */ | |
4235 | case 844: /* Vector Splat Immediate Signed Halfword */ | |
4236 | case 908: /* Vector Splat Immediate Signed Word */ | |
4237 | case 452: /* Vector Shift Left */ | |
4238 | case 708: /* Vector Shift Right */ | |
4239 | case 1036: /* Vector Shift Left by Octet */ | |
4240 | case 1100: /* Vector Shift Right by Octet */ | |
4241 | case 0: /* Vector Add Unsigned Byte Modulo */ | |
4242 | case 64: /* Vector Add Unsigned Halfword Modulo */ | |
4243 | case 128: /* Vector Add Unsigned Word Modulo */ | |
4244 | case 192: /* Vector Add Unsigned Doubleword Modulo */ | |
4245 | case 256: /* Vector Add Unsigned Quadword Modulo */ | |
4246 | case 320: /* Vector Add & write Carry Unsigned Quadword */ | |
4247 | case 384: /* Vector Add and Write Carry-Out Unsigned Word */ | |
4248 | case 8: /* Vector Multiply Odd Unsigned Byte */ | |
4249 | case 72: /* Vector Multiply Odd Unsigned Halfword */ | |
4250 | case 136: /* Vector Multiply Odd Unsigned Word */ | |
4251 | case 264: /* Vector Multiply Odd Signed Byte */ | |
4252 | case 328: /* Vector Multiply Odd Signed Halfword */ | |
4253 | case 392: /* Vector Multiply Odd Signed Word */ | |
4254 | case 520: /* Vector Multiply Even Unsigned Byte */ | |
4255 | case 584: /* Vector Multiply Even Unsigned Halfword */ | |
4256 | case 648: /* Vector Multiply Even Unsigned Word */ | |
4257 | case 776: /* Vector Multiply Even Signed Byte */ | |
4258 | case 840: /* Vector Multiply Even Signed Halfword */ | |
4259 | case 904: /* Vector Multiply Even Signed Word */ | |
4260 | case 137: /* Vector Multiply Unsigned Word Modulo */ | |
4261 | case 1024: /* Vector Subtract Unsigned Byte Modulo */ | |
4262 | case 1088: /* Vector Subtract Unsigned Halfword Modulo */ | |
4263 | case 1152: /* Vector Subtract Unsigned Word Modulo */ | |
4264 | case 1216: /* Vector Subtract Unsigned Doubleword Modulo */ | |
4265 | case 1280: /* Vector Subtract Unsigned Quadword Modulo */ | |
4266 | case 1344: /* Vector Subtract & write Carry Unsigned Quadword */ | |
4267 | case 1408: /* Vector Subtract and Write Carry-Out Unsigned Word */ | |
4268 | case 1282: /* Vector Average Signed Byte */ | |
4269 | case 1346: /* Vector Average Signed Halfword */ | |
4270 | case 1410: /* Vector Average Signed Word */ | |
4271 | case 1026: /* Vector Average Unsigned Byte */ | |
4272 | case 1090: /* Vector Average Unsigned Halfword */ | |
4273 | case 1154: /* Vector Average Unsigned Word */ | |
4274 | case 258: /* Vector Maximum Signed Byte */ | |
4275 | case 322: /* Vector Maximum Signed Halfword */ | |
4276 | case 386: /* Vector Maximum Signed Word */ | |
4277 | case 450: /* Vector Maximum Signed Doubleword */ | |
4278 | case 2: /* Vector Maximum Unsigned Byte */ | |
4279 | case 66: /* Vector Maximum Unsigned Halfword */ | |
4280 | case 130: /* Vector Maximum Unsigned Word */ | |
4281 | case 194: /* Vector Maximum Unsigned Doubleword */ | |
4282 | case 770: /* Vector Minimum Signed Byte */ | |
4283 | case 834: /* Vector Minimum Signed Halfword */ | |
4284 | case 898: /* Vector Minimum Signed Word */ | |
4285 | case 962: /* Vector Minimum Signed Doubleword */ | |
4286 | case 514: /* Vector Minimum Unsigned Byte */ | |
4287 | case 578: /* Vector Minimum Unsigned Halfword */ | |
4288 | case 642: /* Vector Minimum Unsigned Word */ | |
4289 | case 706: /* Vector Minimum Unsigned Doubleword */ | |
4290 | case 1028: /* Vector Logical AND */ | |
4291 | case 1668: /* Vector Logical Equivalent */ | |
4292 | case 1092: /* Vector Logical AND with Complement */ | |
4293 | case 1412: /* Vector Logical NAND */ | |
4294 | case 1348: /* Vector Logical OR with Complement */ | |
4295 | case 1156: /* Vector Logical OR */ | |
4296 | case 1284: /* Vector Logical NOR */ | |
4297 | case 1220: /* Vector Logical XOR */ | |
4298 | case 4: /* Vector Rotate Left Byte */ | |
4299 | case 132: /* Vector Rotate Left Word VX-form */ | |
4300 | case 68: /* Vector Rotate Left Halfword */ | |
4301 | case 196: /* Vector Rotate Left Doubleword */ | |
4302 | case 260: /* Vector Shift Left Byte */ | |
4303 | case 388: /* Vector Shift Left Word */ | |
4304 | case 324: /* Vector Shift Left Halfword */ | |
4305 | case 1476: /* Vector Shift Left Doubleword */ | |
4306 | case 516: /* Vector Shift Right Byte */ | |
4307 | case 644: /* Vector Shift Right Word */ | |
4308 | case 580: /* Vector Shift Right Halfword */ | |
4309 | case 1732: /* Vector Shift Right Doubleword */ | |
4310 | case 772: /* Vector Shift Right Algebraic Byte */ | |
4311 | case 900: /* Vector Shift Right Algebraic Word */ | |
4312 | case 836: /* Vector Shift Right Algebraic Halfword */ | |
4313 | case 964: /* Vector Shift Right Algebraic Doubleword */ | |
4314 | case 10: /* Vector Add Single-Precision */ | |
4315 | case 74: /* Vector Subtract Single-Precision */ | |
4316 | case 1034: /* Vector Maximum Single-Precision */ | |
4317 | case 1098: /* Vector Minimum Single-Precision */ | |
4318 | case 842: /* Vector Convert From Signed Fixed-Point Word */ | |
4319 | case 778: /* Vector Convert From Unsigned Fixed-Point Word */ | |
4320 | case 714: /* Vector Round to Single-Precision Integer toward -Infinity */ | |
4321 | case 522: /* Vector Round to Single-Precision Integer Nearest */ | |
4322 | case 650: /* Vector Round to Single-Precision Integer toward +Infinity */ | |
4323 | case 586: /* Vector Round to Single-Precision Integer toward Zero */ | |
4324 | case 394: /* Vector 2 Raised to the Exponent Estimate Floating-Point */ | |
4325 | case 458: /* Vector Log Base 2 Estimate Floating-Point */ | |
4326 | case 266: /* Vector Reciprocal Estimate Single-Precision */ | |
4327 | case 330: /* Vector Reciprocal Square Root Estimate Single-Precision */ | |
4328 | case 1288: /* Vector AES Cipher */ | |
4329 | case 1289: /* Vector AES Cipher Last */ | |
4330 | case 1352: /* Vector AES Inverse Cipher */ | |
4331 | case 1353: /* Vector AES Inverse Cipher Last */ | |
4332 | case 1480: /* Vector AES SubBytes */ | |
4333 | case 1730: /* Vector SHA-512 Sigma Doubleword */ | |
4334 | case 1666: /* Vector SHA-256 Sigma Word */ | |
4335 | case 1032: /* Vector Polynomial Multiply-Sum Byte */ | |
4336 | case 1160: /* Vector Polynomial Multiply-Sum Word */ | |
4337 | case 1096: /* Vector Polynomial Multiply-Sum Halfword */ | |
4338 | case 1224: /* Vector Polynomial Multiply-Sum Doubleword */ | |
4339 | case 1292: /* Vector Gather Bits by Bytes by Doubleword */ | |
4340 | case 1794: /* Vector Count Leading Zeros Byte */ | |
4341 | case 1858: /* Vector Count Leading Zeros Halfword */ | |
4342 | case 1922: /* Vector Count Leading Zeros Word */ | |
4343 | case 1986: /* Vector Count Leading Zeros Doubleword */ | |
4344 | case 1795: /* Vector Population Count Byte */ | |
4345 | case 1859: /* Vector Population Count Halfword */ | |
4346 | case 1923: /* Vector Population Count Word */ | |
4347 | case 1987: /* Vector Population Count Doubleword */ | |
4348 | case 1356: /* Vector Bit Permute Quadword */ | |
6ec2b213 EBM |
4349 | case 1484: /* Vector Bit Permute Doubleword */ |
4350 | case 513: /* Vector Multiply-by-10 Unsigned Quadword */ | |
4351 | case 1: /* Vector Multiply-by-10 & write Carry Unsigned | |
4352 | Quadword */ | |
4353 | case 577: /* Vector Multiply-by-10 Extended Unsigned Quadword */ | |
4354 | case 65: /* Vector Multiply-by-10 Extended & write Carry | |
4355 | Unsigned Quadword */ | |
4356 | case 1027: /* Vector Absolute Difference Unsigned Byte */ | |
4357 | case 1091: /* Vector Absolute Difference Unsigned Halfword */ | |
4358 | case 1155: /* Vector Absolute Difference Unsigned Word */ | |
4359 | case 1796: /* Vector Shift Right Variable */ | |
4360 | case 1860: /* Vector Shift Left Variable */ | |
4361 | case 133: /* Vector Rotate Left Word then Mask Insert */ | |
4362 | case 197: /* Vector Rotate Left Doubleword then Mask Insert */ | |
4363 | case 389: /* Vector Rotate Left Word then AND with Mask */ | |
4364 | case 453: /* Vector Rotate Left Doubleword then AND with Mask */ | |
4365 | case 525: /* Vector Extract Unsigned Byte */ | |
4366 | case 589: /* Vector Extract Unsigned Halfword */ | |
4367 | case 653: /* Vector Extract Unsigned Word */ | |
4368 | case 717: /* Vector Extract Doubleword */ | |
4369 | case 781: /* Vector Insert Byte */ | |
4370 | case 845: /* Vector Insert Halfword */ | |
4371 | case 909: /* Vector Insert Word */ | |
4372 | case 973: /* Vector Insert Doubleword */ | |
b4cdae6f WW |
4373 | record_full_arch_list_add_reg (regcache, |
4374 | tdep->ppc_vr0_regnum + PPC_VRT (insn)); | |
4375 | return 0; | |
4376 | ||
6ec2b213 EBM |
4377 | case 1549: /* Vector Extract Unsigned Byte Left-Indexed */ |
4378 | case 1613: /* Vector Extract Unsigned Halfword Left-Indexed */ | |
4379 | case 1677: /* Vector Extract Unsigned Word Left-Indexed */ | |
4380 | case 1805: /* Vector Extract Unsigned Byte Right-Indexed */ | |
4381 | case 1869: /* Vector Extract Unsigned Halfword Right-Indexed */ | |
4382 | case 1933: /* Vector Extract Unsigned Word Right-Indexed */ | |
4383 | record_full_arch_list_add_reg (regcache, | |
4384 | tdep->ppc_gp0_regnum + PPC_RT (insn)); | |
4385 | return 0; | |
4386 | ||
b4cdae6f WW |
4387 | case 1604: /* Move To Vector Status and Control Register */ |
4388 | record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM); | |
4389 | return 0; | |
4390 | case 1540: /* Move From Vector Status and Control Register */ | |
4391 | record_full_arch_list_add_reg (regcache, | |
4392 | tdep->ppc_vr0_regnum + PPC_VRT (insn)); | |
4393 | return 0; | |
6ec2b213 EBM |
4394 | case 833: /* Decimal Copy Sign */ |
4395 | record_full_arch_list_add_reg (regcache, | |
4396 | tdep->ppc_vr0_regnum + PPC_VRT (insn)); | |
4397 | record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum); | |
4398 | return 0; | |
b4cdae6f WW |
4399 | } |
4400 | ||
810c1026 WW |
4401 | fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x " |
4402 | "at %s, 4-%d.\n", insn, paddress (gdbarch, addr), ext); | |
b4cdae6f WW |
4403 | return -1; |
4404 | } | |
4405 | ||
ddeca1df WW |
4406 | /* Parse and record instructions of primary opcode-19 at ADDR. |
4407 | Return 0 if successful. */ | |
b4cdae6f WW |
4408 | |
4409 | static int | |
4410 | ppc_process_record_op19 (struct gdbarch *gdbarch, struct regcache *regcache, | |
4411 | CORE_ADDR addr, uint32_t insn) | |
4412 | { | |
4413 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
4414 | int ext = PPC_EXTOP (insn); | |
4415 | ||
6ec2b213 EBM |
4416 | switch (ext & 0x01f) |
4417 | { | |
4418 | case 2: /* Add PC Immediate Shifted */ | |
4419 | record_full_arch_list_add_reg (regcache, | |
4420 | tdep->ppc_gp0_regnum + PPC_RT (insn)); | |
4421 | return 0; | |
4422 | } | |
4423 | ||
b4cdae6f WW |
4424 | switch (ext) |
4425 | { | |
4426 | case 0: /* Move Condition Register Field */ | |
4427 | case 33: /* Condition Register NOR */ | |
4428 | case 129: /* Condition Register AND with Complement */ | |
4429 | case 193: /* Condition Register XOR */ | |
4430 | case 225: /* Condition Register NAND */ | |
4431 | case 257: /* Condition Register AND */ | |
4432 | case 289: /* Condition Register Equivalent */ | |
4433 | case 417: /* Condition Register OR with Complement */ | |
4434 | case 449: /* Condition Register OR */ | |
4435 | record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum); | |
4436 | return 0; | |
4437 | ||
4438 | case 16: /* Branch Conditional */ | |
4439 | case 560: /* Branch Conditional to Branch Target Address Register */ | |
4440 | if ((PPC_BO (insn) & 0x4) == 0) | |
4441 | record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum); | |
4442 | /* FALL-THROUGH */ | |
4443 | case 528: /* Branch Conditional to Count Register */ | |
4444 | if (PPC_LK (insn)) | |
4445 | record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum); | |
4446 | return 0; | |
4447 | ||
4448 | case 150: /* Instruction Synchronize */ | |
4449 | /* Do nothing. */ | |
4450 | return 0; | |
4451 | } | |
4452 | ||
810c1026 WW |
4453 | fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x " |
4454 | "at %s, 19-%d.\n", insn, paddress (gdbarch, addr), ext); | |
b4cdae6f WW |
4455 | return -1; |
4456 | } | |
4457 | ||
ddeca1df WW |
4458 | /* Parse and record instructions of primary opcode-31 at ADDR. |
4459 | Return 0 if successful. */ | |
b4cdae6f WW |
4460 | |
4461 | static int | |
4462 | ppc_process_record_op31 (struct gdbarch *gdbarch, struct regcache *regcache, | |
4463 | CORE_ADDR addr, uint32_t insn) | |
4464 | { | |
4465 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
4466 | int ext = PPC_EXTOP (insn); | |
4467 | int tmp, nr, nb, i; | |
4468 | CORE_ADDR at_dcsz, ea = 0; | |
4469 | ULONGEST rb, ra, xer; | |
4470 | int size = 0; | |
4471 | ||
4472 | /* These instructions have OE bit. */ | |
4473 | switch (ext & 0x1ff) | |
4474 | { | |
4475 | /* These write RT and XER. Update CR if RC is set. */ | |
4476 | case 8: /* Subtract from carrying */ | |
4477 | case 10: /* Add carrying */ | |
4478 | case 136: /* Subtract from extended */ | |
4479 | case 138: /* Add extended */ | |
4480 | case 200: /* Subtract from zero extended */ | |
4481 | case 202: /* Add to zero extended */ | |
4482 | case 232: /* Subtract from minus one extended */ | |
4483 | case 234: /* Add to minus one extended */ | |
4484 | /* CA is always altered, but SO/OV are only altered when OE=1. | |
4485 | In any case, XER is always altered. */ | |
4486 | record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum); | |
4487 | if (PPC_RC (insn)) | |
4488 | record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum); | |
4489 | record_full_arch_list_add_reg (regcache, | |
4490 | tdep->ppc_gp0_regnum + PPC_RT (insn)); | |
4491 | return 0; | |
4492 | ||
4493 | /* These write RT. Update CR if RC is set and update XER if OE is set. */ | |
4494 | case 40: /* Subtract from */ | |
4495 | case 104: /* Negate */ | |
4496 | case 233: /* Multiply low doubleword */ | |
4497 | case 235: /* Multiply low word */ | |
4498 | case 266: /* Add */ | |
4499 | case 393: /* Divide Doubleword Extended Unsigned */ | |
4500 | case 395: /* Divide Word Extended Unsigned */ | |
4501 | case 425: /* Divide Doubleword Extended */ | |
4502 | case 427: /* Divide Word Extended */ | |
4503 | case 457: /* Divide Doubleword Unsigned */ | |
4504 | case 459: /* Divide Word Unsigned */ | |
4505 | case 489: /* Divide Doubleword */ | |
4506 | case 491: /* Divide Word */ | |
4507 | if (PPC_OE (insn)) | |
4508 | record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum); | |
4509 | /* FALL-THROUGH */ | |
4510 | case 9: /* Multiply High Doubleword Unsigned */ | |
4511 | case 11: /* Multiply High Word Unsigned */ | |
4512 | case 73: /* Multiply High Doubleword */ | |
4513 | case 75: /* Multiply High Word */ | |
4514 | if (PPC_RC (insn)) | |
4515 | record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum); | |
4516 | record_full_arch_list_add_reg (regcache, | |
4517 | tdep->ppc_gp0_regnum + PPC_RT (insn)); | |
4518 | return 0; | |
4519 | } | |
4520 | ||
4521 | if ((ext & 0x1f) == 15) | |
4522 | { | |
4523 | /* Integer Select. bit[16:20] is used for BC. */ | |
4524 | record_full_arch_list_add_reg (regcache, | |
4525 | tdep->ppc_gp0_regnum + PPC_RT (insn)); | |
4526 | return 0; | |
4527 | } | |
4528 | ||
6ec2b213 EBM |
4529 | if ((ext & 0xff) == 170) |
4530 | { | |
4531 | /* Add Extended using alternate carry bits */ | |
4532 | record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum); | |
4533 | record_full_arch_list_add_reg (regcache, | |
4534 | tdep->ppc_gp0_regnum + PPC_RT (insn)); | |
4535 | return 0; | |
4536 | } | |
4537 | ||
b4cdae6f WW |
4538 | switch (ext) |
4539 | { | |
4540 | case 78: /* Determine Leftmost Zero Byte */ | |
4541 | if (PPC_RC (insn)) | |
4542 | record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum); | |
4543 | record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum); | |
4544 | record_full_arch_list_add_reg (regcache, | |
4545 | tdep->ppc_gp0_regnum + PPC_RT (insn)); | |
4546 | return 0; | |
4547 | ||
4548 | /* These only write RT. */ | |
4549 | case 19: /* Move from condition register */ | |
4550 | /* Move From One Condition Register Field */ | |
4551 | case 74: /* Add and Generate Sixes */ | |
4552 | case 74 | 0x200: /* Add and Generate Sixes (bit-21 dont-care) */ | |
4553 | case 302: /* Move From Branch History Rolling Buffer */ | |
4554 | case 339: /* Move From Special Purpose Register */ | |
4555 | case 371: /* Move From Time Base [Phased-Out] */ | |
6ec2b213 EBM |
4556 | case 309: /* Load Doubleword Monitored Indexed */ |
4557 | case 128: /* Set Boolean */ | |
4558 | case 755: /* Deliver A Random Number */ | |
b4cdae6f WW |
4559 | record_full_arch_list_add_reg (regcache, |
4560 | tdep->ppc_gp0_regnum + PPC_RT (insn)); | |
4561 | return 0; | |
4562 | ||
4563 | /* These only write to RA. */ | |
4564 | case 51: /* Move From VSR Doubleword */ | |
4565 | case 115: /* Move From VSR Word and Zero */ | |
4566 | case 122: /* Population count bytes */ | |
4567 | case 378: /* Population count words */ | |
4568 | case 506: /* Population count doublewords */ | |
4569 | case 154: /* Parity Word */ | |
4570 | case 186: /* Parity Doubleword */ | |
4571 | case 252: /* Bit Permute Doubleword */ | |
4572 | case 282: /* Convert Declets To Binary Coded Decimal */ | |
4573 | case 314: /* Convert Binary Coded Decimal To Declets */ | |
4574 | case 508: /* Compare bytes */ | |
6ec2b213 | 4575 | case 307: /* Move From VSR Lower Doubleword */ |
b4cdae6f WW |
4576 | record_full_arch_list_add_reg (regcache, |
4577 | tdep->ppc_gp0_regnum + PPC_RA (insn)); | |
4578 | return 0; | |
4579 | ||
4580 | /* These write CR and optional RA. */ | |
4581 | case 792: /* Shift Right Algebraic Word */ | |
4582 | case 794: /* Shift Right Algebraic Doubleword */ | |
4583 | case 824: /* Shift Right Algebraic Word Immediate */ | |
4584 | case 826: /* Shift Right Algebraic Doubleword Immediate (413) */ | |
4585 | case 826 | 1: /* Shift Right Algebraic Doubleword Immediate (413) */ | |
4586 | record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum); | |
4587 | record_full_arch_list_add_reg (regcache, | |
4588 | tdep->ppc_gp0_regnum + PPC_RA (insn)); | |
4589 | /* FALL-THROUGH */ | |
4590 | case 0: /* Compare */ | |
4591 | case 32: /* Compare logical */ | |
4592 | case 144: /* Move To Condition Register Fields */ | |
4593 | /* Move To One Condition Register Field */ | |
6ec2b213 EBM |
4594 | case 192: /* Compare Ranged Byte */ |
4595 | case 224: /* Compare Equal Byte */ | |
4596 | case 576: /* Move XER to CR Extended */ | |
4597 | case 902: /* Paste (should always fail due to single-stepping and | |
4598 | the memory location might not be accessible, so | |
4599 | record only CR) */ | |
b4cdae6f WW |
4600 | record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum); |
4601 | return 0; | |
4602 | ||
4603 | /* These write to RT. Update RA if 'update indexed.' */ | |
4604 | case 53: /* Load Doubleword with Update Indexed */ | |
4605 | case 119: /* Load Byte and Zero with Update Indexed */ | |
4606 | case 311: /* Load Halfword and Zero with Update Indexed */ | |
4607 | case 55: /* Load Word and Zero with Update Indexed */ | |
4608 | case 375: /* Load Halfword Algebraic with Update Indexed */ | |
4609 | case 373: /* Load Word Algebraic with Update Indexed */ | |
4610 | record_full_arch_list_add_reg (regcache, | |
4611 | tdep->ppc_gp0_regnum + PPC_RA (insn)); | |
4612 | /* FALL-THROUGH */ | |
4613 | case 21: /* Load Doubleword Indexed */ | |
4614 | case 52: /* Load Byte And Reserve Indexed */ | |
4615 | case 116: /* Load Halfword And Reserve Indexed */ | |
4616 | case 20: /* Load Word And Reserve Indexed */ | |
4617 | case 84: /* Load Doubleword And Reserve Indexed */ | |
4618 | case 87: /* Load Byte and Zero Indexed */ | |
4619 | case 279: /* Load Halfword and Zero Indexed */ | |
4620 | case 23: /* Load Word and Zero Indexed */ | |
4621 | case 343: /* Load Halfword Algebraic Indexed */ | |
4622 | case 341: /* Load Word Algebraic Indexed */ | |
4623 | case 790: /* Load Halfword Byte-Reverse Indexed */ | |
4624 | case 534: /* Load Word Byte-Reverse Indexed */ | |
4625 | case 532: /* Load Doubleword Byte-Reverse Indexed */ | |
6ec2b213 EBM |
4626 | case 582: /* Load Word Atomic */ |
4627 | case 614: /* Load Doubleword Atomic */ | |
4628 | case 265: /* Modulo Unsigned Doubleword */ | |
4629 | case 777: /* Modulo Signed Doubleword */ | |
4630 | case 267: /* Modulo Unsigned Word */ | |
4631 | case 779: /* Modulo Signed Word */ | |
b4cdae6f WW |
4632 | record_full_arch_list_add_reg (regcache, |
4633 | tdep->ppc_gp0_regnum + PPC_RT (insn)); | |
4634 | return 0; | |
4635 | ||
4636 | case 597: /* Load String Word Immediate */ | |
4637 | case 533: /* Load String Word Indexed */ | |
4638 | if (ext == 597) | |
4639 | { | |
4640 | nr = PPC_NB (insn); | |
4641 | if (nr == 0) | |
4642 | nr = 32; | |
4643 | } | |
4644 | else | |
4645 | { | |
4646 | regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &xer); | |
4647 | nr = PPC_XER_NB (xer); | |
4648 | } | |
4649 | ||
4650 | nr = (nr + 3) >> 2; | |
4651 | ||
4652 | /* If n=0, the contents of register RT are undefined. */ | |
4653 | if (nr == 0) | |
4654 | nr = 1; | |
4655 | ||
4656 | for (i = 0; i < nr; i++) | |
4657 | record_full_arch_list_add_reg (regcache, | |
4658 | tdep->ppc_gp0_regnum | |
4659 | + ((PPC_RT (insn) + i) & 0x1f)); | |
4660 | return 0; | |
4661 | ||
4662 | case 276: /* Load Quadword And Reserve Indexed */ | |
4663 | tmp = tdep->ppc_gp0_regnum + (PPC_RT (insn) & ~1); | |
4664 | record_full_arch_list_add_reg (regcache, tmp); | |
4665 | record_full_arch_list_add_reg (regcache, tmp + 1); | |
4666 | return 0; | |
4667 | ||
4668 | /* These write VRT. */ | |
4669 | case 6: /* Load Vector for Shift Left Indexed */ | |
4670 | case 38: /* Load Vector for Shift Right Indexed */ | |
4671 | case 7: /* Load Vector Element Byte Indexed */ | |
4672 | case 39: /* Load Vector Element Halfword Indexed */ | |
4673 | case 71: /* Load Vector Element Word Indexed */ | |
4674 | case 103: /* Load Vector Indexed */ | |
4675 | case 359: /* Load Vector Indexed LRU */ | |
4676 | record_full_arch_list_add_reg (regcache, | |
4677 | tdep->ppc_vr0_regnum + PPC_VRT (insn)); | |
4678 | return 0; | |
4679 | ||
4680 | /* These write FRT. Update RA if 'update indexed.' */ | |
4681 | case 567: /* Load Floating-Point Single with Update Indexed */ | |
4682 | case 631: /* Load Floating-Point Double with Update Indexed */ | |
4683 | record_full_arch_list_add_reg (regcache, | |
4684 | tdep->ppc_gp0_regnum + PPC_RA (insn)); | |
4685 | /* FALL-THROUGH */ | |
4686 | case 535: /* Load Floating-Point Single Indexed */ | |
4687 | case 599: /* Load Floating-Point Double Indexed */ | |
4688 | case 855: /* Load Floating-Point as Integer Word Algebraic Indexed */ | |
4689 | case 887: /* Load Floating-Point as Integer Word and Zero Indexed */ | |
4690 | record_full_arch_list_add_reg (regcache, | |
4691 | tdep->ppc_fp0_regnum + PPC_FRT (insn)); | |
4692 | return 0; | |
4693 | ||
4694 | case 791: /* Load Floating-Point Double Pair Indexed */ | |
4695 | tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1); | |
4696 | record_full_arch_list_add_reg (regcache, tmp); | |
4697 | record_full_arch_list_add_reg (regcache, tmp + 1); | |
4698 | return 0; | |
4699 | ||
4700 | case 179: /* Move To VSR Doubleword */ | |
4701 | case 211: /* Move To VSR Word Algebraic */ | |
4702 | case 243: /* Move To VSR Word and Zero */ | |
4703 | case 588: /* Load VSX Scalar Doubleword Indexed */ | |
4704 | case 524: /* Load VSX Scalar Single-Precision Indexed */ | |
4705 | case 76: /* Load VSX Scalar as Integer Word Algebraic Indexed */ | |
4706 | case 12: /* Load VSX Scalar as Integer Word and Zero Indexed */ | |
4707 | case 844: /* Load VSX Vector Doubleword*2 Indexed */ | |
4708 | case 332: /* Load VSX Vector Doubleword & Splat Indexed */ | |
4709 | case 780: /* Load VSX Vector Word*4 Indexed */ | |
6ec2b213 EBM |
4710 | case 268: /* Load VSX Vector Indexed */ |
4711 | case 364: /* Load VSX Vector Word & Splat Indexed */ | |
4712 | case 812: /* Load VSX Vector Halfword*8 Indexed */ | |
4713 | case 876: /* Load VSX Vector Byte*16 Indexed */ | |
4714 | case 269: /* Load VSX Vector with Length */ | |
4715 | case 301: /* Load VSX Vector Left-justified with Length */ | |
4716 | case 781: /* Load VSX Scalar as Integer Byte & Zero Indexed */ | |
4717 | case 813: /* Load VSX Scalar as Integer Halfword & Zero Indexed */ | |
4718 | case 403: /* Move To VSR Word & Splat */ | |
4719 | case 435: /* Move To VSR Double Doubleword */ | |
b4cdae6f WW |
4720 | ppc_record_vsr (regcache, tdep, PPC_XT (insn)); |
4721 | return 0; | |
4722 | ||
4723 | /* These write RA. Update CR if RC is set. */ | |
4724 | case 24: /* Shift Left Word */ | |
4725 | case 26: /* Count Leading Zeros Word */ | |
4726 | case 27: /* Shift Left Doubleword */ | |
4727 | case 28: /* AND */ | |
4728 | case 58: /* Count Leading Zeros Doubleword */ | |
4729 | case 60: /* AND with Complement */ | |
4730 | case 124: /* NOR */ | |
4731 | case 284: /* Equivalent */ | |
4732 | case 316: /* XOR */ | |
4733 | case 476: /* NAND */ | |
4734 | case 412: /* OR with Complement */ | |
4735 | case 444: /* OR */ | |
4736 | case 536: /* Shift Right Word */ | |
4737 | case 539: /* Shift Right Doubleword */ | |
4738 | case 922: /* Extend Sign Halfword */ | |
4739 | case 954: /* Extend Sign Byte */ | |
4740 | case 986: /* Extend Sign Word */ | |
6ec2b213 EBM |
4741 | case 538: /* Count Trailing Zeros Word */ |
4742 | case 570: /* Count Trailing Zeros Doubleword */ | |
4743 | case 890: /* Extend-Sign Word and Shift Left Immediate (445) */ | |
4744 | case 890 | 1: /* Extend-Sign Word and Shift Left Immediate (445) */ | |
7ca18ed6 EBM |
4745 | |
4746 | if (ext == 444 && tdep->ppc_ppr_regnum >= 0 | |
4747 | && (PPC_RS (insn) == PPC_RA (insn)) | |
4748 | && (PPC_RA (insn) == PPC_RB (insn)) | |
4749 | && !PPC_RC (insn)) | |
4750 | { | |
4751 | /* or Rx,Rx,Rx alters PRI in PPR. */ | |
4752 | record_full_arch_list_add_reg (regcache, tdep->ppc_ppr_regnum); | |
4753 | return 0; | |
4754 | } | |
4755 | ||
b4cdae6f WW |
4756 | if (PPC_RC (insn)) |
4757 | record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum); | |
4758 | record_full_arch_list_add_reg (regcache, | |
4759 | tdep->ppc_gp0_regnum + PPC_RA (insn)); | |
4760 | return 0; | |
4761 | ||
4762 | /* Store memory. */ | |
4763 | case 181: /* Store Doubleword with Update Indexed */ | |
4764 | case 183: /* Store Word with Update Indexed */ | |
4765 | case 247: /* Store Byte with Update Indexed */ | |
4766 | case 439: /* Store Half Word with Update Indexed */ | |
4767 | case 695: /* Store Floating-Point Single with Update Indexed */ | |
4768 | case 759: /* Store Floating-Point Double with Update Indexed */ | |
4769 | record_full_arch_list_add_reg (regcache, | |
4770 | tdep->ppc_gp0_regnum + PPC_RA (insn)); | |
4771 | /* FALL-THROUGH */ | |
4772 | case 135: /* Store Vector Element Byte Indexed */ | |
4773 | case 167: /* Store Vector Element Halfword Indexed */ | |
4774 | case 199: /* Store Vector Element Word Indexed */ | |
4775 | case 231: /* Store Vector Indexed */ | |
4776 | case 487: /* Store Vector Indexed LRU */ | |
4777 | case 716: /* Store VSX Scalar Doubleword Indexed */ | |
4778 | case 140: /* Store VSX Scalar as Integer Word Indexed */ | |
4779 | case 652: /* Store VSX Scalar Single-Precision Indexed */ | |
4780 | case 972: /* Store VSX Vector Doubleword*2 Indexed */ | |
4781 | case 908: /* Store VSX Vector Word*4 Indexed */ | |
4782 | case 149: /* Store Doubleword Indexed */ | |
4783 | case 151: /* Store Word Indexed */ | |
4784 | case 215: /* Store Byte Indexed */ | |
4785 | case 407: /* Store Half Word Indexed */ | |
4786 | case 694: /* Store Byte Conditional Indexed */ | |
4787 | case 726: /* Store Halfword Conditional Indexed */ | |
4788 | case 150: /* Store Word Conditional Indexed */ | |
4789 | case 214: /* Store Doubleword Conditional Indexed */ | |
4790 | case 182: /* Store Quadword Conditional Indexed */ | |
4791 | case 662: /* Store Word Byte-Reverse Indexed */ | |
4792 | case 918: /* Store Halfword Byte-Reverse Indexed */ | |
4793 | case 660: /* Store Doubleword Byte-Reverse Indexed */ | |
4794 | case 663: /* Store Floating-Point Single Indexed */ | |
4795 | case 727: /* Store Floating-Point Double Indexed */ | |
4796 | case 919: /* Store Floating-Point Double Pair Indexed */ | |
4797 | case 983: /* Store Floating-Point as Integer Word Indexed */ | |
6ec2b213 EBM |
4798 | case 396: /* Store VSX Vector Indexed */ |
4799 | case 940: /* Store VSX Vector Halfword*8 Indexed */ | |
4800 | case 1004: /* Store VSX Vector Byte*16 Indexed */ | |
4801 | case 909: /* Store VSX Scalar as Integer Byte Indexed */ | |
4802 | case 941: /* Store VSX Scalar as Integer Halfword Indexed */ | |
b4cdae6f WW |
4803 | if (ext == 694 || ext == 726 || ext == 150 || ext == 214 || ext == 182) |
4804 | record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum); | |
4805 | ||
4806 | ra = 0; | |
4807 | if (PPC_RA (insn) != 0) | |
4808 | regcache_raw_read_unsigned (regcache, | |
4809 | tdep->ppc_gp0_regnum + PPC_RA (insn), &ra); | |
4810 | regcache_raw_read_unsigned (regcache, | |
4811 | tdep->ppc_gp0_regnum + PPC_RB (insn), &rb); | |
4812 | ea = ra + rb; | |
4813 | ||
4814 | switch (ext) | |
4815 | { | |
4816 | case 183: /* Store Word with Update Indexed */ | |
4817 | case 199: /* Store Vector Element Word Indexed */ | |
4818 | case 140: /* Store VSX Scalar as Integer Word Indexed */ | |
4819 | case 652: /* Store VSX Scalar Single-Precision Indexed */ | |
4820 | case 151: /* Store Word Indexed */ | |
4821 | case 150: /* Store Word Conditional Indexed */ | |
4822 | case 662: /* Store Word Byte-Reverse Indexed */ | |
4823 | case 663: /* Store Floating-Point Single Indexed */ | |
4824 | case 695: /* Store Floating-Point Single with Update Indexed */ | |
4825 | case 983: /* Store Floating-Point as Integer Word Indexed */ | |
4826 | size = 4; | |
4827 | break; | |
4828 | case 247: /* Store Byte with Update Indexed */ | |
4829 | case 135: /* Store Vector Element Byte Indexed */ | |
4830 | case 215: /* Store Byte Indexed */ | |
4831 | case 694: /* Store Byte Conditional Indexed */ | |
6ec2b213 | 4832 | case 909: /* Store VSX Scalar as Integer Byte Indexed */ |
b4cdae6f WW |
4833 | size = 1; |
4834 | break; | |
4835 | case 439: /* Store Halfword with Update Indexed */ | |
4836 | case 167: /* Store Vector Element Halfword Indexed */ | |
4837 | case 407: /* Store Halfword Indexed */ | |
4838 | case 726: /* Store Halfword Conditional Indexed */ | |
4839 | case 918: /* Store Halfword Byte-Reverse Indexed */ | |
6ec2b213 | 4840 | case 941: /* Store VSX Scalar as Integer Halfword Indexed */ |
b4cdae6f WW |
4841 | size = 2; |
4842 | break; | |
4843 | case 181: /* Store Doubleword with Update Indexed */ | |
4844 | case 716: /* Store VSX Scalar Doubleword Indexed */ | |
4845 | case 149: /* Store Doubleword Indexed */ | |
4846 | case 214: /* Store Doubleword Conditional Indexed */ | |
4847 | case 660: /* Store Doubleword Byte-Reverse Indexed */ | |
4848 | case 727: /* Store Floating-Point Double Indexed */ | |
4849 | case 759: /* Store Floating-Point Double with Update Indexed */ | |
4850 | size = 8; | |
4851 | break; | |
4852 | case 972: /* Store VSX Vector Doubleword*2 Indexed */ | |
4853 | case 908: /* Store VSX Vector Word*4 Indexed */ | |
4854 | case 182: /* Store Quadword Conditional Indexed */ | |
4855 | case 231: /* Store Vector Indexed */ | |
4856 | case 487: /* Store Vector Indexed LRU */ | |
4857 | case 919: /* Store Floating-Point Double Pair Indexed */ | |
6ec2b213 EBM |
4858 | case 396: /* Store VSX Vector Indexed */ |
4859 | case 940: /* Store VSX Vector Halfword*8 Indexed */ | |
4860 | case 1004: /* Store VSX Vector Byte*16 Indexed */ | |
b4cdae6f WW |
4861 | size = 16; |
4862 | break; | |
4863 | default: | |
4864 | gdb_assert (0); | |
4865 | } | |
4866 | ||
4867 | /* Align address for Store Vector instructions. */ | |
4868 | switch (ext) | |
4869 | { | |
4870 | case 167: /* Store Vector Element Halfword Indexed */ | |
4871 | addr = addr & ~0x1ULL; | |
4872 | break; | |
4873 | ||
4874 | case 199: /* Store Vector Element Word Indexed */ | |
4875 | addr = addr & ~0x3ULL; | |
4876 | break; | |
4877 | ||
4878 | case 231: /* Store Vector Indexed */ | |
4879 | case 487: /* Store Vector Indexed LRU */ | |
4880 | addr = addr & ~0xfULL; | |
4881 | break; | |
4882 | } | |
4883 | ||
4884 | record_full_arch_list_add_mem (addr, size); | |
4885 | return 0; | |
4886 | ||
6ec2b213 EBM |
4887 | case 397: /* Store VSX Vector with Length */ |
4888 | case 429: /* Store VSX Vector Left-justified with Length */ | |
de678454 | 4889 | ra = 0; |
6ec2b213 EBM |
4890 | if (PPC_RA (insn) != 0) |
4891 | regcache_raw_read_unsigned (regcache, | |
de678454 EBM |
4892 | tdep->ppc_gp0_regnum + PPC_RA (insn), &ra); |
4893 | ea = ra; | |
6ec2b213 EBM |
4894 | regcache_raw_read_unsigned (regcache, |
4895 | tdep->ppc_gp0_regnum + PPC_RB (insn), &rb); | |
4896 | /* Store up to 16 bytes. */ | |
4897 | nb = (rb & 0xff) > 16 ? 16 : (rb & 0xff); | |
4898 | if (nb > 0) | |
4899 | record_full_arch_list_add_mem (ea, nb); | |
4900 | return 0; | |
4901 | ||
4902 | case 710: /* Store Word Atomic */ | |
4903 | case 742: /* Store Doubleword Atomic */ | |
de678454 | 4904 | ra = 0; |
6ec2b213 EBM |
4905 | if (PPC_RA (insn) != 0) |
4906 | regcache_raw_read_unsigned (regcache, | |
de678454 EBM |
4907 | tdep->ppc_gp0_regnum + PPC_RA (insn), &ra); |
4908 | ea = ra; | |
6ec2b213 EBM |
4909 | switch (ext) |
4910 | { | |
4911 | case 710: /* Store Word Atomic */ | |
4912 | size = 8; | |
4913 | break; | |
4914 | case 742: /* Store Doubleword Atomic */ | |
4915 | size = 16; | |
4916 | break; | |
4917 | default: | |
4918 | gdb_assert (0); | |
4919 | } | |
4920 | record_full_arch_list_add_mem (ea, size); | |
4921 | return 0; | |
4922 | ||
b4cdae6f WW |
4923 | case 725: /* Store String Word Immediate */ |
4924 | ra = 0; | |
4925 | if (PPC_RA (insn) != 0) | |
9f7efd5b EBM |
4926 | regcache_raw_read_unsigned (regcache, |
4927 | tdep->ppc_gp0_regnum + PPC_RA (insn), &ra); | |
b4cdae6f WW |
4928 | ea += ra; |
4929 | ||
4930 | nb = PPC_NB (insn); | |
4931 | if (nb == 0) | |
4932 | nb = 32; | |
4933 | ||
4934 | record_full_arch_list_add_mem (ea, nb); | |
4935 | ||
4936 | return 0; | |
4937 | ||
4938 | case 661: /* Store String Word Indexed */ | |
4939 | ra = 0; | |
4940 | if (PPC_RA (insn) != 0) | |
9f7efd5b EBM |
4941 | regcache_raw_read_unsigned (regcache, |
4942 | tdep->ppc_gp0_regnum + PPC_RA (insn), &ra); | |
b4cdae6f WW |
4943 | ea += ra; |
4944 | ||
4945 | regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &xer); | |
4946 | nb = PPC_XER_NB (xer); | |
4947 | ||
4948 | if (nb != 0) | |
4949 | { | |
9f7efd5b EBM |
4950 | regcache_raw_read_unsigned (regcache, |
4951 | tdep->ppc_gp0_regnum + PPC_RB (insn), | |
4952 | &rb); | |
b4cdae6f WW |
4953 | ea += rb; |
4954 | record_full_arch_list_add_mem (ea, nb); | |
4955 | } | |
4956 | ||
4957 | return 0; | |
4958 | ||
4959 | case 467: /* Move To Special Purpose Register */ | |
4960 | switch (PPC_SPR (insn)) | |
4961 | { | |
4962 | case 1: /* XER */ | |
4963 | record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum); | |
4964 | return 0; | |
7ca18ed6 EBM |
4965 | case 3: /* DSCR */ |
4966 | if (tdep->ppc_dscr_regnum >= 0) | |
4967 | record_full_arch_list_add_reg (regcache, tdep->ppc_dscr_regnum); | |
4968 | return 0; | |
b4cdae6f WW |
4969 | case 8: /* LR */ |
4970 | record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum); | |
4971 | return 0; | |
4972 | case 9: /* CTR */ | |
4973 | record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum); | |
4974 | return 0; | |
4975 | case 256: /* VRSAVE */ | |
4976 | record_full_arch_list_add_reg (regcache, tdep->ppc_vrsave_regnum); | |
4977 | return 0; | |
f2cf6173 EBM |
4978 | case 815: /* TAR */ |
4979 | if (tdep->ppc_tar_regnum >= 0) | |
4980 | record_full_arch_list_add_reg (regcache, tdep->ppc_tar_regnum); | |
4981 | return 0; | |
7ca18ed6 EBM |
4982 | case 896: |
4983 | case 898: /* PPR */ | |
4984 | if (tdep->ppc_ppr_regnum >= 0) | |
4985 | record_full_arch_list_add_reg (regcache, tdep->ppc_ppr_regnum); | |
4986 | return 0; | |
b4cdae6f WW |
4987 | } |
4988 | ||
4989 | goto UNKNOWN_OP; | |
4990 | ||
4991 | case 147: /* Move To Split Little Endian */ | |
4992 | record_full_arch_list_add_reg (regcache, tdep->ppc_ps_regnum); | |
4993 | return 0; | |
4994 | ||
4995 | case 512: /* Move to Condition Register from XER */ | |
4996 | record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum); | |
4997 | record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum); | |
4998 | return 0; | |
4999 | ||
5000 | case 4: /* Trap Word */ | |
5001 | case 68: /* Trap Doubleword */ | |
5002 | case 430: /* Clear BHRB */ | |
5003 | case 598: /* Synchronize */ | |
5004 | case 62: /* Wait for Interrupt */ | |
6ec2b213 | 5005 | case 30: /* Wait */ |
b4cdae6f WW |
5006 | case 22: /* Instruction Cache Block Touch */ |
5007 | case 854: /* Enforce In-order Execution of I/O */ | |
5008 | case 246: /* Data Cache Block Touch for Store */ | |
5009 | case 54: /* Data Cache Block Store */ | |
5010 | case 86: /* Data Cache Block Flush */ | |
5011 | case 278: /* Data Cache Block Touch */ | |
5012 | case 758: /* Data Cache Block Allocate */ | |
5013 | case 982: /* Instruction Cache Block Invalidate */ | |
6ec2b213 EBM |
5014 | case 774: /* Copy */ |
5015 | case 838: /* CP_Abort */ | |
b4cdae6f WW |
5016 | return 0; |
5017 | ||
5018 | case 654: /* Transaction Begin */ | |
5019 | case 686: /* Transaction End */ | |
b4cdae6f WW |
5020 | case 750: /* Transaction Suspend or Resume */ |
5021 | case 782: /* Transaction Abort Word Conditional */ | |
5022 | case 814: /* Transaction Abort Doubleword Conditional */ | |
5023 | case 846: /* Transaction Abort Word Conditional Immediate */ | |
5024 | case 878: /* Transaction Abort Doubleword Conditional Immediate */ | |
5025 | case 910: /* Transaction Abort */ | |
d44c67f3 EBM |
5026 | record_full_arch_list_add_reg (regcache, tdep->ppc_ps_regnum); |
5027 | /* FALL-THROUGH */ | |
5028 | case 718: /* Transaction Check */ | |
5029 | record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum); | |
5030 | return 0; | |
b4cdae6f WW |
5031 | |
5032 | case 1014: /* Data Cache Block set to Zero */ | |
8b88a78e | 5033 | if (target_auxv_search (current_top_target (), AT_DCACHEBSIZE, &at_dcsz) <= 0 |
b4cdae6f WW |
5034 | || at_dcsz == 0) |
5035 | at_dcsz = 128; /* Assume 128-byte cache line size (POWER8) */ | |
5036 | ||
bec734b2 | 5037 | ra = 0; |
b4cdae6f WW |
5038 | if (PPC_RA (insn) != 0) |
5039 | regcache_raw_read_unsigned (regcache, | |
5040 | tdep->ppc_gp0_regnum + PPC_RA (insn), &ra); | |
5041 | regcache_raw_read_unsigned (regcache, | |
5042 | tdep->ppc_gp0_regnum + PPC_RB (insn), &rb); | |
5043 | ea = (ra + rb) & ~((ULONGEST) (at_dcsz - 1)); | |
5044 | record_full_arch_list_add_mem (ea, at_dcsz); | |
5045 | return 0; | |
5046 | } | |
5047 | ||
5048 | UNKNOWN_OP: | |
810c1026 WW |
5049 | fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x " |
5050 | "at %s, 31-%d.\n", insn, paddress (gdbarch, addr), ext); | |
b4cdae6f WW |
5051 | return -1; |
5052 | } | |
5053 | ||
ddeca1df WW |
5054 | /* Parse and record instructions of primary opcode-59 at ADDR. |
5055 | Return 0 if successful. */ | |
b4cdae6f WW |
5056 | |
5057 | static int | |
5058 | ppc_process_record_op59 (struct gdbarch *gdbarch, struct regcache *regcache, | |
5059 | CORE_ADDR addr, uint32_t insn) | |
5060 | { | |
5061 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
5062 | int ext = PPC_EXTOP (insn); | |
5063 | ||
5064 | switch (ext & 0x1f) | |
5065 | { | |
5066 | case 18: /* Floating Divide */ | |
5067 | case 20: /* Floating Subtract */ | |
5068 | case 21: /* Floating Add */ | |
5069 | case 22: /* Floating Square Root */ | |
5070 | case 24: /* Floating Reciprocal Estimate */ | |
5071 | case 25: /* Floating Multiply */ | |
5072 | case 26: /* Floating Reciprocal Square Root Estimate */ | |
5073 | case 28: /* Floating Multiply-Subtract */ | |
5074 | case 29: /* Floating Multiply-Add */ | |
5075 | case 30: /* Floating Negative Multiply-Subtract */ | |
5076 | case 31: /* Floating Negative Multiply-Add */ | |
5077 | record_full_arch_list_add_reg (regcache, | |
5078 | tdep->ppc_fp0_regnum + PPC_FRT (insn)); | |
5079 | if (PPC_RC (insn)) | |
5080 | record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum); | |
5081 | record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum); | |
5082 | ||
5083 | return 0; | |
5084 | } | |
5085 | ||
5086 | switch (ext) | |
5087 | { | |
5088 | case 2: /* DFP Add */ | |
5089 | case 3: /* DFP Quantize */ | |
5090 | case 34: /* DFP Multiply */ | |
5091 | case 35: /* DFP Reround */ | |
5092 | case 67: /* DFP Quantize Immediate */ | |
5093 | case 99: /* DFP Round To FP Integer With Inexact */ | |
5094 | case 227: /* DFP Round To FP Integer Without Inexact */ | |
5095 | case 258: /* DFP Convert To DFP Long! */ | |
5096 | case 290: /* DFP Convert To Fixed */ | |
5097 | case 514: /* DFP Subtract */ | |
5098 | case 546: /* DFP Divide */ | |
5099 | case 770: /* DFP Round To DFP Short! */ | |
5100 | case 802: /* DFP Convert From Fixed */ | |
5101 | case 834: /* DFP Encode BCD To DPD */ | |
5102 | if (PPC_RC (insn)) | |
5103 | record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum); | |
5104 | record_full_arch_list_add_reg (regcache, | |
5105 | tdep->ppc_fp0_regnum + PPC_FRT (insn)); | |
5106 | record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum); | |
5107 | return 0; | |
5108 | ||
5109 | case 130: /* DFP Compare Ordered */ | |
5110 | case 162: /* DFP Test Exponent */ | |
5111 | case 194: /* DFP Test Data Class */ | |
5112 | case 226: /* DFP Test Data Group */ | |
5113 | case 642: /* DFP Compare Unordered */ | |
5114 | case 674: /* DFP Test Significance */ | |
6ec2b213 | 5115 | case 675: /* DFP Test Significance Immediate */ |
b4cdae6f WW |
5116 | record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum); |
5117 | record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum); | |
5118 | return 0; | |
5119 | ||
5120 | case 66: /* DFP Shift Significand Left Immediate */ | |
5121 | case 98: /* DFP Shift Significand Right Immediate */ | |
5122 | case 322: /* DFP Decode DPD To BCD */ | |
5123 | case 354: /* DFP Extract Biased Exponent */ | |
5124 | case 866: /* DFP Insert Biased Exponent */ | |
5125 | record_full_arch_list_add_reg (regcache, | |
5126 | tdep->ppc_fp0_regnum + PPC_FRT (insn)); | |
5127 | if (PPC_RC (insn)) | |
5128 | record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum); | |
5129 | return 0; | |
5130 | ||
5131 | case 846: /* Floating Convert From Integer Doubleword Single */ | |
5132 | case 974: /* Floating Convert From Integer Doubleword Unsigned | |
5133 | Single */ | |
5134 | record_full_arch_list_add_reg (regcache, | |
5135 | tdep->ppc_fp0_regnum + PPC_FRT (insn)); | |
5136 | if (PPC_RC (insn)) | |
5137 | record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum); | |
5138 | record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum); | |
5139 | ||
5140 | return 0; | |
5141 | } | |
5142 | ||
810c1026 WW |
5143 | fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x " |
5144 | "at %s, 59-%d.\n", insn, paddress (gdbarch, addr), ext); | |
b4cdae6f WW |
5145 | return -1; |
5146 | } | |
5147 | ||
ddeca1df WW |
5148 | /* Parse and record instructions of primary opcode-60 at ADDR. |
5149 | Return 0 if successful. */ | |
b4cdae6f WW |
5150 | |
5151 | static int | |
5152 | ppc_process_record_op60 (struct gdbarch *gdbarch, struct regcache *regcache, | |
5153 | CORE_ADDR addr, uint32_t insn) | |
5154 | { | |
5155 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
5156 | int ext = PPC_EXTOP (insn); | |
b4cdae6f WW |
5157 | |
5158 | switch (ext >> 2) | |
5159 | { | |
5160 | case 0: /* VSX Scalar Add Single-Precision */ | |
5161 | case 32: /* VSX Scalar Add Double-Precision */ | |
5162 | case 24: /* VSX Scalar Divide Single-Precision */ | |
5163 | case 56: /* VSX Scalar Divide Double-Precision */ | |
5164 | case 176: /* VSX Scalar Copy Sign Double-Precision */ | |
5165 | case 33: /* VSX Scalar Multiply-Add Double-Precision */ | |
5166 | case 41: /* ditto */ | |
5167 | case 1: /* VSX Scalar Multiply-Add Single-Precision */ | |
5168 | case 9: /* ditto */ | |
5169 | case 160: /* VSX Scalar Maximum Double-Precision */ | |
5170 | case 168: /* VSX Scalar Minimum Double-Precision */ | |
5171 | case 49: /* VSX Scalar Multiply-Subtract Double-Precision */ | |
5172 | case 57: /* ditto */ | |
5173 | case 17: /* VSX Scalar Multiply-Subtract Single-Precision */ | |
5174 | case 25: /* ditto */ | |
5175 | case 48: /* VSX Scalar Multiply Double-Precision */ | |
5176 | case 16: /* VSX Scalar Multiply Single-Precision */ | |
5177 | case 161: /* VSX Scalar Negative Multiply-Add Double-Precision */ | |
5178 | case 169: /* ditto */ | |
5179 | case 129: /* VSX Scalar Negative Multiply-Add Single-Precision */ | |
5180 | case 137: /* ditto */ | |
5181 | case 177: /* VSX Scalar Negative Multiply-Subtract Double-Precision */ | |
5182 | case 185: /* ditto */ | |
5183 | case 145: /* VSX Scalar Negative Multiply-Subtract Single-Precision */ | |
5184 | case 153: /* ditto */ | |
5185 | case 40: /* VSX Scalar Subtract Double-Precision */ | |
5186 | case 8: /* VSX Scalar Subtract Single-Precision */ | |
5187 | case 96: /* VSX Vector Add Double-Precision */ | |
5188 | case 64: /* VSX Vector Add Single-Precision */ | |
5189 | case 120: /* VSX Vector Divide Double-Precision */ | |
5190 | case 88: /* VSX Vector Divide Single-Precision */ | |
5191 | case 97: /* VSX Vector Multiply-Add Double-Precision */ | |
5192 | case 105: /* ditto */ | |
5193 | case 65: /* VSX Vector Multiply-Add Single-Precision */ | |
5194 | case 73: /* ditto */ | |
5195 | case 224: /* VSX Vector Maximum Double-Precision */ | |
5196 | case 192: /* VSX Vector Maximum Single-Precision */ | |
5197 | case 232: /* VSX Vector Minimum Double-Precision */ | |
5198 | case 200: /* VSX Vector Minimum Single-Precision */ | |
5199 | case 113: /* VSX Vector Multiply-Subtract Double-Precision */ | |
5200 | case 121: /* ditto */ | |
5201 | case 81: /* VSX Vector Multiply-Subtract Single-Precision */ | |
5202 | case 89: /* ditto */ | |
5203 | case 112: /* VSX Vector Multiply Double-Precision */ | |
5204 | case 80: /* VSX Vector Multiply Single-Precision */ | |
5205 | case 225: /* VSX Vector Negative Multiply-Add Double-Precision */ | |
5206 | case 233: /* ditto */ | |
5207 | case 193: /* VSX Vector Negative Multiply-Add Single-Precision */ | |
5208 | case 201: /* ditto */ | |
5209 | case 241: /* VSX Vector Negative Multiply-Subtract Double-Precision */ | |
5210 | case 249: /* ditto */ | |
5211 | case 209: /* VSX Vector Negative Multiply-Subtract Single-Precision */ | |
5212 | case 217: /* ditto */ | |
5213 | case 104: /* VSX Vector Subtract Double-Precision */ | |
5214 | case 72: /* VSX Vector Subtract Single-Precision */ | |
6ec2b213 EBM |
5215 | case 128: /* VSX Scalar Maximum Type-C Double-Precision */ |
5216 | case 136: /* VSX Scalar Minimum Type-C Double-Precision */ | |
5217 | case 144: /* VSX Scalar Maximum Type-J Double-Precision */ | |
5218 | case 152: /* VSX Scalar Minimum Type-J Double-Precision */ | |
5219 | case 3: /* VSX Scalar Compare Equal Double-Precision */ | |
5220 | case 11: /* VSX Scalar Compare Greater Than Double-Precision */ | |
5221 | case 19: /* VSX Scalar Compare Greater Than or Equal | |
5222 | Double-Precision */ | |
b4cdae6f | 5223 | record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum); |
6ec2b213 | 5224 | /* FALL-THROUGH */ |
b4cdae6f WW |
5225 | case 240: /* VSX Vector Copy Sign Double-Precision */ |
5226 | case 208: /* VSX Vector Copy Sign Single-Precision */ | |
5227 | case 130: /* VSX Logical AND */ | |
5228 | case 138: /* VSX Logical AND with Complement */ | |
5229 | case 186: /* VSX Logical Equivalence */ | |
5230 | case 178: /* VSX Logical NAND */ | |
5231 | case 170: /* VSX Logical OR with Complement */ | |
5232 | case 162: /* VSX Logical NOR */ | |
5233 | case 146: /* VSX Logical OR */ | |
5234 | case 154: /* VSX Logical XOR */ | |
5235 | case 18: /* VSX Merge High Word */ | |
5236 | case 50: /* VSX Merge Low Word */ | |
5237 | case 10: /* VSX Permute Doubleword Immediate (DM=0) */ | |
5238 | case 10 | 0x20: /* VSX Permute Doubleword Immediate (DM=1) */ | |
5239 | case 10 | 0x40: /* VSX Permute Doubleword Immediate (DM=2) */ | |
5240 | case 10 | 0x60: /* VSX Permute Doubleword Immediate (DM=3) */ | |
5241 | case 2: /* VSX Shift Left Double by Word Immediate (SHW=0) */ | |
5242 | case 2 | 0x20: /* VSX Shift Left Double by Word Immediate (SHW=1) */ | |
5243 | case 2 | 0x40: /* VSX Shift Left Double by Word Immediate (SHW=2) */ | |
5244 | case 2 | 0x60: /* VSX Shift Left Double by Word Immediate (SHW=3) */ | |
6ec2b213 EBM |
5245 | case 216: /* VSX Vector Insert Exponent Single-Precision */ |
5246 | case 248: /* VSX Vector Insert Exponent Double-Precision */ | |
5247 | case 26: /* VSX Vector Permute */ | |
5248 | case 58: /* VSX Vector Permute Right-indexed */ | |
5249 | case 213: /* VSX Vector Test Data Class Single-Precision (DC=0) */ | |
5250 | case 213 | 0x8: /* VSX Vector Test Data Class Single-Precision (DC=1) */ | |
5251 | case 245: /* VSX Vector Test Data Class Double-Precision (DC=0) */ | |
5252 | case 245 | 0x8: /* VSX Vector Test Data Class Double-Precision (DC=1) */ | |
b4cdae6f WW |
5253 | ppc_record_vsr (regcache, tdep, PPC_XT (insn)); |
5254 | return 0; | |
5255 | ||
5256 | case 61: /* VSX Scalar Test for software Divide Double-Precision */ | |
5257 | case 125: /* VSX Vector Test for software Divide Double-Precision */ | |
5258 | case 93: /* VSX Vector Test for software Divide Single-Precision */ | |
5259 | record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum); | |
5260 | return 0; | |
5261 | ||
5262 | case 35: /* VSX Scalar Compare Unordered Double-Precision */ | |
5263 | case 43: /* VSX Scalar Compare Ordered Double-Precision */ | |
6ec2b213 | 5264 | case 59: /* VSX Scalar Compare Exponents Double-Precision */ |
b4cdae6f WW |
5265 | record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum); |
5266 | record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum); | |
5267 | return 0; | |
5268 | } | |
5269 | ||
5270 | switch ((ext >> 2) & 0x7f) /* Mask out Rc-bit. */ | |
5271 | { | |
5272 | case 99: /* VSX Vector Compare Equal To Double-Precision */ | |
5273 | case 67: /* VSX Vector Compare Equal To Single-Precision */ | |
5274 | case 115: /* VSX Vector Compare Greater Than or | |
5275 | Equal To Double-Precision */ | |
5276 | case 83: /* VSX Vector Compare Greater Than or | |
5277 | Equal To Single-Precision */ | |
5278 | case 107: /* VSX Vector Compare Greater Than Double-Precision */ | |
5279 | case 75: /* VSX Vector Compare Greater Than Single-Precision */ | |
5280 | if (PPC_Rc (insn)) | |
5281 | record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum); | |
5282 | record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum); | |
5283 | ppc_record_vsr (regcache, tdep, PPC_XT (insn)); | |
5284 | return 0; | |
5285 | } | |
5286 | ||
5287 | switch (ext >> 1) | |
5288 | { | |
5289 | case 265: /* VSX Scalar round Double-Precision to | |
5290 | Single-Precision and Convert to | |
5291 | Single-Precision format */ | |
5292 | case 344: /* VSX Scalar truncate Double-Precision to | |
5293 | Integer and Convert to Signed Integer | |
5294 | Doubleword format with Saturate */ | |
5295 | case 88: /* VSX Scalar truncate Double-Precision to | |
5296 | Integer and Convert to Signed Integer Word | |
5297 | Format with Saturate */ | |
5298 | case 328: /* VSX Scalar truncate Double-Precision integer | |
5299 | and Convert to Unsigned Integer Doubleword | |
5300 | Format with Saturate */ | |
5301 | case 72: /* VSX Scalar truncate Double-Precision to | |
5302 | Integer and Convert to Unsigned Integer Word | |
5303 | Format with Saturate */ | |
5304 | case 329: /* VSX Scalar Convert Single-Precision to | |
5305 | Double-Precision format */ | |
5306 | case 376: /* VSX Scalar Convert Signed Integer | |
5307 | Doubleword to floating-point format and | |
5308 | Round to Double-Precision format */ | |
5309 | case 312: /* VSX Scalar Convert Signed Integer | |
5310 | Doubleword to floating-point format and | |
5311 | round to Single-Precision */ | |
5312 | case 360: /* VSX Scalar Convert Unsigned Integer | |
5313 | Doubleword to floating-point format and | |
5314 | Round to Double-Precision format */ | |
5315 | case 296: /* VSX Scalar Convert Unsigned Integer | |
5316 | Doubleword to floating-point format and | |
5317 | Round to Single-Precision */ | |
5318 | case 73: /* VSX Scalar Round to Double-Precision Integer | |
5319 | Using Round to Nearest Away */ | |
5320 | case 107: /* VSX Scalar Round to Double-Precision Integer | |
5321 | Exact using Current rounding mode */ | |
5322 | case 121: /* VSX Scalar Round to Double-Precision Integer | |
5323 | Using Round toward -Infinity */ | |
5324 | case 105: /* VSX Scalar Round to Double-Precision Integer | |
5325 | Using Round toward +Infinity */ | |
5326 | case 89: /* VSX Scalar Round to Double-Precision Integer | |
5327 | Using Round toward Zero */ | |
5328 | case 90: /* VSX Scalar Reciprocal Estimate Double-Precision */ | |
5329 | case 26: /* VSX Scalar Reciprocal Estimate Single-Precision */ | |
5330 | case 281: /* VSX Scalar Round to Single-Precision */ | |
5331 | case 74: /* VSX Scalar Reciprocal Square Root Estimate | |
5332 | Double-Precision */ | |
5333 | case 10: /* VSX Scalar Reciprocal Square Root Estimate | |
5334 | Single-Precision */ | |
5335 | case 75: /* VSX Scalar Square Root Double-Precision */ | |
5336 | case 11: /* VSX Scalar Square Root Single-Precision */ | |
5337 | case 393: /* VSX Vector round Double-Precision to | |
5338 | Single-Precision and Convert to | |
5339 | Single-Precision format */ | |
5340 | case 472: /* VSX Vector truncate Double-Precision to | |
5341 | Integer and Convert to Signed Integer | |
5342 | Doubleword format with Saturate */ | |
5343 | case 216: /* VSX Vector truncate Double-Precision to | |
5344 | Integer and Convert to Signed Integer Word | |
5345 | Format with Saturate */ | |
5346 | case 456: /* VSX Vector truncate Double-Precision to | |
5347 | Integer and Convert to Unsigned Integer | |
5348 | Doubleword format with Saturate */ | |
5349 | case 200: /* VSX Vector truncate Double-Precision to | |
5350 | Integer and Convert to Unsigned Integer Word | |
5351 | Format with Saturate */ | |
5352 | case 457: /* VSX Vector Convert Single-Precision to | |
5353 | Double-Precision format */ | |
5354 | case 408: /* VSX Vector truncate Single-Precision to | |
5355 | Integer and Convert to Signed Integer | |
5356 | Doubleword format with Saturate */ | |
5357 | case 152: /* VSX Vector truncate Single-Precision to | |
5358 | Integer and Convert to Signed Integer Word | |
5359 | Format with Saturate */ | |
5360 | case 392: /* VSX Vector truncate Single-Precision to | |
5361 | Integer and Convert to Unsigned Integer | |
5362 | Doubleword format with Saturate */ | |
5363 | case 136: /* VSX Vector truncate Single-Precision to | |
5364 | Integer and Convert to Unsigned Integer Word | |
5365 | Format with Saturate */ | |
5366 | case 504: /* VSX Vector Convert and round Signed Integer | |
5367 | Doubleword to Double-Precision format */ | |
5368 | case 440: /* VSX Vector Convert and round Signed Integer | |
5369 | Doubleword to Single-Precision format */ | |
5370 | case 248: /* VSX Vector Convert Signed Integer Word to | |
5371 | Double-Precision format */ | |
5372 | case 184: /* VSX Vector Convert and round Signed Integer | |
5373 | Word to Single-Precision format */ | |
5374 | case 488: /* VSX Vector Convert and round Unsigned | |
5375 | Integer Doubleword to Double-Precision format */ | |
5376 | case 424: /* VSX Vector Convert and round Unsigned | |
5377 | Integer Doubleword to Single-Precision format */ | |
5378 | case 232: /* VSX Vector Convert and round Unsigned | |
5379 | Integer Word to Double-Precision format */ | |
5380 | case 168: /* VSX Vector Convert and round Unsigned | |
5381 | Integer Word to Single-Precision format */ | |
5382 | case 201: /* VSX Vector Round to Double-Precision | |
5383 | Integer using round to Nearest Away */ | |
5384 | case 235: /* VSX Vector Round to Double-Precision | |
5385 | Integer Exact using Current rounding mode */ | |
5386 | case 249: /* VSX Vector Round to Double-Precision | |
5387 | Integer using round toward -Infinity */ | |
5388 | case 233: /* VSX Vector Round to Double-Precision | |
5389 | Integer using round toward +Infinity */ | |
5390 | case 217: /* VSX Vector Round to Double-Precision | |
5391 | Integer using round toward Zero */ | |
5392 | case 218: /* VSX Vector Reciprocal Estimate Double-Precision */ | |
5393 | case 154: /* VSX Vector Reciprocal Estimate Single-Precision */ | |
5394 | case 137: /* VSX Vector Round to Single-Precision Integer | |
5395 | Using Round to Nearest Away */ | |
5396 | case 171: /* VSX Vector Round to Single-Precision Integer | |
5397 | Exact Using Current rounding mode */ | |
5398 | case 185: /* VSX Vector Round to Single-Precision Integer | |
5399 | Using Round toward -Infinity */ | |
5400 | case 169: /* VSX Vector Round to Single-Precision Integer | |
5401 | Using Round toward +Infinity */ | |
5402 | case 153: /* VSX Vector Round to Single-Precision Integer | |
5403 | Using round toward Zero */ | |
5404 | case 202: /* VSX Vector Reciprocal Square Root Estimate | |
5405 | Double-Precision */ | |
5406 | case 138: /* VSX Vector Reciprocal Square Root Estimate | |
5407 | Single-Precision */ | |
5408 | case 203: /* VSX Vector Square Root Double-Precision */ | |
5409 | case 139: /* VSX Vector Square Root Single-Precision */ | |
5410 | record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum); | |
6ec2b213 | 5411 | /* FALL-THROUGH */ |
b4cdae6f WW |
5412 | case 345: /* VSX Scalar Absolute Value Double-Precision */ |
5413 | case 267: /* VSX Scalar Convert Scalar Single-Precision to | |
5414 | Vector Single-Precision format Non-signalling */ | |
5415 | case 331: /* VSX Scalar Convert Single-Precision to | |
5416 | Double-Precision format Non-signalling */ | |
5417 | case 361: /* VSX Scalar Negative Absolute Value Double-Precision */ | |
5418 | case 377: /* VSX Scalar Negate Double-Precision */ | |
5419 | case 473: /* VSX Vector Absolute Value Double-Precision */ | |
5420 | case 409: /* VSX Vector Absolute Value Single-Precision */ | |
5421 | case 489: /* VSX Vector Negative Absolute Value Double-Precision */ | |
5422 | case 425: /* VSX Vector Negative Absolute Value Single-Precision */ | |
5423 | case 505: /* VSX Vector Negate Double-Precision */ | |
5424 | case 441: /* VSX Vector Negate Single-Precision */ | |
5425 | case 164: /* VSX Splat Word */ | |
6ec2b213 EBM |
5426 | case 165: /* VSX Vector Extract Unsigned Word */ |
5427 | case 181: /* VSX Vector Insert Word */ | |
b4cdae6f WW |
5428 | ppc_record_vsr (regcache, tdep, PPC_XT (insn)); |
5429 | return 0; | |
5430 | ||
6ec2b213 EBM |
5431 | case 298: /* VSX Scalar Test Data Class Single-Precision */ |
5432 | case 362: /* VSX Scalar Test Data Class Double-Precision */ | |
5433 | record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum); | |
5434 | /* FALL-THROUGH */ | |
b4cdae6f WW |
5435 | case 106: /* VSX Scalar Test for software Square Root |
5436 | Double-Precision */ | |
5437 | case 234: /* VSX Vector Test for software Square Root | |
5438 | Double-Precision */ | |
5439 | case 170: /* VSX Vector Test for software Square Root | |
5440 | Single-Precision */ | |
5441 | record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum); | |
5442 | return 0; | |
6ec2b213 EBM |
5443 | |
5444 | case 347: | |
5445 | switch (PPC_FIELD (insn, 11, 5)) | |
5446 | { | |
5447 | case 0: /* VSX Scalar Extract Exponent Double-Precision */ | |
5448 | case 1: /* VSX Scalar Extract Significand Double-Precision */ | |
5449 | record_full_arch_list_add_reg (regcache, | |
5450 | tdep->ppc_gp0_regnum + PPC_RT (insn)); | |
5451 | return 0; | |
5452 | case 16: /* VSX Scalar Convert Half-Precision format to | |
5453 | Double-Precision format */ | |
5454 | case 17: /* VSX Scalar round & Convert Double-Precision format | |
5455 | to Half-Precision format */ | |
5456 | record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum); | |
5457 | ppc_record_vsr (regcache, tdep, PPC_XT (insn)); | |
5458 | return 0; | |
5459 | } | |
5460 | break; | |
5461 | ||
5462 | case 475: | |
5463 | switch (PPC_FIELD (insn, 11, 5)) | |
5464 | { | |
5465 | case 24: /* VSX Vector Convert Half-Precision format to | |
5466 | Single-Precision format */ | |
5467 | case 25: /* VSX Vector round and Convert Single-Precision format | |
5468 | to Half-Precision format */ | |
5469 | record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum); | |
5470 | /* FALL-THROUGH */ | |
5471 | case 0: /* VSX Vector Extract Exponent Double-Precision */ | |
5472 | case 1: /* VSX Vector Extract Significand Double-Precision */ | |
5473 | case 7: /* VSX Vector Byte-Reverse Halfword */ | |
5474 | case 8: /* VSX Vector Extract Exponent Single-Precision */ | |
5475 | case 9: /* VSX Vector Extract Significand Single-Precision */ | |
5476 | case 15: /* VSX Vector Byte-Reverse Word */ | |
5477 | case 23: /* VSX Vector Byte-Reverse Doubleword */ | |
5478 | case 31: /* VSX Vector Byte-Reverse Quadword */ | |
5479 | ppc_record_vsr (regcache, tdep, PPC_XT (insn)); | |
5480 | return 0; | |
5481 | } | |
5482 | break; | |
5483 | } | |
5484 | ||
5485 | switch (ext) | |
5486 | { | |
5487 | case 360: /* VSX Vector Splat Immediate Byte */ | |
5488 | if (PPC_FIELD (insn, 11, 2) == 0) | |
5489 | { | |
5490 | ppc_record_vsr (regcache, tdep, PPC_XT (insn)); | |
5491 | return 0; | |
5492 | } | |
5493 | break; | |
5494 | case 918: /* VSX Scalar Insert Exponent Double-Precision */ | |
5495 | ppc_record_vsr (regcache, tdep, PPC_XT (insn)); | |
5496 | return 0; | |
b4cdae6f WW |
5497 | } |
5498 | ||
5499 | if (((ext >> 3) & 0x3) == 3) /* VSX Select */ | |
5500 | { | |
5501 | ppc_record_vsr (regcache, tdep, PPC_XT (insn)); | |
5502 | return 0; | |
5503 | } | |
5504 | ||
810c1026 WW |
5505 | fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x " |
5506 | "at %s, 60-%d.\n", insn, paddress (gdbarch, addr), ext); | |
b4cdae6f WW |
5507 | return -1; |
5508 | } | |
5509 | ||
6ec2b213 EBM |
5510 | /* Parse and record instructions of primary opcode-61 at ADDR. |
5511 | Return 0 if successful. */ | |
5512 | ||
5513 | static int | |
5514 | ppc_process_record_op61 (struct gdbarch *gdbarch, struct regcache *regcache, | |
5515 | CORE_ADDR addr, uint32_t insn) | |
5516 | { | |
5517 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
5518 | ULONGEST ea = 0; | |
5519 | int size; | |
5520 | ||
5521 | switch (insn & 0x3) | |
5522 | { | |
5523 | case 0: /* Store Floating-Point Double Pair */ | |
5524 | case 2: /* Store VSX Scalar Doubleword */ | |
5525 | case 3: /* Store VSX Scalar Single */ | |
5526 | if (PPC_RA (insn) != 0) | |
5527 | regcache_raw_read_unsigned (regcache, | |
5528 | tdep->ppc_gp0_regnum + PPC_RA (insn), | |
5529 | &ea); | |
5530 | ea += PPC_DS (insn) << 2; | |
5531 | switch (insn & 0x3) | |
5532 | { | |
5533 | case 0: /* Store Floating-Point Double Pair */ | |
5534 | size = 16; | |
5535 | break; | |
5536 | case 2: /* Store VSX Scalar Doubleword */ | |
5537 | size = 8; | |
5538 | break; | |
5539 | case 3: /* Store VSX Scalar Single */ | |
5540 | size = 4; | |
5541 | break; | |
5542 | default: | |
5543 | gdb_assert (0); | |
5544 | } | |
5545 | record_full_arch_list_add_mem (ea, size); | |
5546 | return 0; | |
5547 | } | |
5548 | ||
5549 | switch (insn & 0x7) | |
5550 | { | |
5551 | case 1: /* Load VSX Vector */ | |
5552 | ppc_record_vsr (regcache, tdep, PPC_XT (insn)); | |
5553 | return 0; | |
5554 | case 5: /* Store VSX Vector */ | |
5555 | if (PPC_RA (insn) != 0) | |
5556 | regcache_raw_read_unsigned (regcache, | |
5557 | tdep->ppc_gp0_regnum + PPC_RA (insn), | |
5558 | &ea); | |
5559 | ea += PPC_DQ (insn) << 4; | |
5560 | record_full_arch_list_add_mem (ea, 16); | |
5561 | return 0; | |
5562 | } | |
5563 | ||
5564 | fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x " | |
5565 | "at %s.\n", insn, paddress (gdbarch, addr)); | |
5566 | return -1; | |
5567 | } | |
5568 | ||
ddeca1df WW |
5569 | /* Parse and record instructions of primary opcode-63 at ADDR. |
5570 | Return 0 if successful. */ | |
b4cdae6f WW |
5571 | |
5572 | static int | |
5573 | ppc_process_record_op63 (struct gdbarch *gdbarch, struct regcache *regcache, | |
5574 | CORE_ADDR addr, uint32_t insn) | |
5575 | { | |
5576 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
5577 | int ext = PPC_EXTOP (insn); | |
5578 | int tmp; | |
5579 | ||
5580 | switch (ext & 0x1f) | |
5581 | { | |
5582 | case 18: /* Floating Divide */ | |
5583 | case 20: /* Floating Subtract */ | |
5584 | case 21: /* Floating Add */ | |
5585 | case 22: /* Floating Square Root */ | |
5586 | case 24: /* Floating Reciprocal Estimate */ | |
5587 | case 25: /* Floating Multiply */ | |
5588 | case 26: /* Floating Reciprocal Square Root Estimate */ | |
5589 | case 28: /* Floating Multiply-Subtract */ | |
5590 | case 29: /* Floating Multiply-Add */ | |
5591 | case 30: /* Floating Negative Multiply-Subtract */ | |
5592 | case 31: /* Floating Negative Multiply-Add */ | |
5593 | record_full_arch_list_add_reg (regcache, | |
5594 | tdep->ppc_fp0_regnum + PPC_FRT (insn)); | |
5595 | if (PPC_RC (insn)) | |
5596 | record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum); | |
5597 | record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum); | |
5598 | return 0; | |
5599 | ||
5600 | case 23: /* Floating Select */ | |
5601 | record_full_arch_list_add_reg (regcache, | |
5602 | tdep->ppc_fp0_regnum + PPC_FRT (insn)); | |
5603 | if (PPC_RC (insn)) | |
5604 | record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum); | |
8aabe2e2 | 5605 | return 0; |
b4cdae6f WW |
5606 | } |
5607 | ||
6ec2b213 EBM |
5608 | switch (ext & 0xff) |
5609 | { | |
5610 | case 5: /* VSX Scalar Round to Quad-Precision Integer */ | |
5611 | case 37: /* VSX Scalar Round Quad-Precision to Double-Extended | |
5612 | Precision */ | |
5613 | record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum); | |
5614 | ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32); | |
5615 | return 0; | |
5616 | } | |
5617 | ||
b4cdae6f WW |
5618 | switch (ext) |
5619 | { | |
5620 | case 2: /* DFP Add Quad */ | |
5621 | case 3: /* DFP Quantize Quad */ | |
5622 | case 34: /* DFP Multiply Quad */ | |
5623 | case 35: /* DFP Reround Quad */ | |
5624 | case 67: /* DFP Quantize Immediate Quad */ | |
5625 | case 99: /* DFP Round To FP Integer With Inexact Quad */ | |
5626 | case 227: /* DFP Round To FP Integer Without Inexact Quad */ | |
5627 | case 258: /* DFP Convert To DFP Extended Quad */ | |
5628 | case 514: /* DFP Subtract Quad */ | |
5629 | case 546: /* DFP Divide Quad */ | |
5630 | case 770: /* DFP Round To DFP Long Quad */ | |
5631 | case 802: /* DFP Convert From Fixed Quad */ | |
5632 | case 834: /* DFP Encode BCD To DPD Quad */ | |
5633 | if (PPC_RC (insn)) | |
5634 | record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum); | |
5635 | tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1); | |
5636 | record_full_arch_list_add_reg (regcache, tmp); | |
5637 | record_full_arch_list_add_reg (regcache, tmp + 1); | |
5638 | record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum); | |
5639 | return 0; | |
5640 | ||
5641 | case 130: /* DFP Compare Ordered Quad */ | |
5642 | case 162: /* DFP Test Exponent Quad */ | |
5643 | case 194: /* DFP Test Data Class Quad */ | |
5644 | case 226: /* DFP Test Data Group Quad */ | |
5645 | case 642: /* DFP Compare Unordered Quad */ | |
5646 | case 674: /* DFP Test Significance Quad */ | |
6ec2b213 | 5647 | case 675: /* DFP Test Significance Immediate Quad */ |
b4cdae6f WW |
5648 | record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum); |
5649 | record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum); | |
5650 | return 0; | |
5651 | ||
5652 | case 66: /* DFP Shift Significand Left Immediate Quad */ | |
5653 | case 98: /* DFP Shift Significand Right Immediate Quad */ | |
5654 | case 322: /* DFP Decode DPD To BCD Quad */ | |
5655 | case 866: /* DFP Insert Biased Exponent Quad */ | |
5656 | tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1); | |
5657 | record_full_arch_list_add_reg (regcache, tmp); | |
5658 | record_full_arch_list_add_reg (regcache, tmp + 1); | |
5659 | if (PPC_RC (insn)) | |
5660 | record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum); | |
5661 | return 0; | |
5662 | ||
5663 | case 290: /* DFP Convert To Fixed Quad */ | |
5664 | record_full_arch_list_add_reg (regcache, | |
5665 | tdep->ppc_fp0_regnum + PPC_FRT (insn)); | |
5666 | if (PPC_RC (insn)) | |
5667 | record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum); | |
5668 | record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum); | |
8aabe2e2 | 5669 | return 0; |
b4cdae6f WW |
5670 | |
5671 | case 354: /* DFP Extract Biased Exponent Quad */ | |
5672 | record_full_arch_list_add_reg (regcache, | |
5673 | tdep->ppc_fp0_regnum + PPC_FRT (insn)); | |
5674 | if (PPC_RC (insn)) | |
5675 | record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum); | |
5676 | return 0; | |
5677 | ||
5678 | case 12: /* Floating Round to Single-Precision */ | |
5679 | case 14: /* Floating Convert To Integer Word */ | |
5680 | case 15: /* Floating Convert To Integer Word | |
5681 | with round toward Zero */ | |
5682 | case 142: /* Floating Convert To Integer Word Unsigned */ | |
5683 | case 143: /* Floating Convert To Integer Word Unsigned | |
5684 | with round toward Zero */ | |
5685 | case 392: /* Floating Round to Integer Nearest */ | |
5686 | case 424: /* Floating Round to Integer Toward Zero */ | |
5687 | case 456: /* Floating Round to Integer Plus */ | |
5688 | case 488: /* Floating Round to Integer Minus */ | |
5689 | case 814: /* Floating Convert To Integer Doubleword */ | |
5690 | case 815: /* Floating Convert To Integer Doubleword | |
5691 | with round toward Zero */ | |
5692 | case 846: /* Floating Convert From Integer Doubleword */ | |
5693 | case 942: /* Floating Convert To Integer Doubleword Unsigned */ | |
5694 | case 943: /* Floating Convert To Integer Doubleword Unsigned | |
5695 | with round toward Zero */ | |
5696 | case 974: /* Floating Convert From Integer Doubleword Unsigned */ | |
5697 | record_full_arch_list_add_reg (regcache, | |
5698 | tdep->ppc_fp0_regnum + PPC_FRT (insn)); | |
5699 | if (PPC_RC (insn)) | |
5700 | record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum); | |
5701 | record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum); | |
5702 | return 0; | |
5703 | ||
6ec2b213 EBM |
5704 | case 583: |
5705 | switch (PPC_FIELD (insn, 11, 5)) | |
5706 | { | |
5707 | case 1: /* Move From FPSCR & Clear Enables */ | |
5708 | case 20: /* Move From FPSCR Control & set DRN */ | |
5709 | case 21: /* Move From FPSCR Control & set DRN Immediate */ | |
5710 | case 22: /* Move From FPSCR Control & set RN */ | |
5711 | case 23: /* Move From FPSCR Control & set RN Immediate */ | |
5712 | record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum); | |
e3829d13 | 5713 | /* Fall through. */ |
6ec2b213 EBM |
5714 | case 0: /* Move From FPSCR */ |
5715 | case 24: /* Move From FPSCR Lightweight */ | |
5716 | if (PPC_FIELD (insn, 11, 5) == 0 && PPC_RC (insn)) | |
5717 | record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum); | |
5718 | record_full_arch_list_add_reg (regcache, | |
5719 | tdep->ppc_fp0_regnum | |
5720 | + PPC_FRT (insn)); | |
5721 | return 0; | |
5722 | } | |
5723 | break; | |
5724 | ||
b4cdae6f WW |
5725 | case 8: /* Floating Copy Sign */ |
5726 | case 40: /* Floating Negate */ | |
5727 | case 72: /* Floating Move Register */ | |
5728 | case 136: /* Floating Negative Absolute Value */ | |
5729 | case 264: /* Floating Absolute Value */ | |
5730 | record_full_arch_list_add_reg (regcache, | |
5731 | tdep->ppc_fp0_regnum + PPC_FRT (insn)); | |
5732 | if (PPC_RC (insn)) | |
5733 | record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum); | |
5734 | return 0; | |
5735 | ||
5736 | case 838: /* Floating Merge Odd Word */ | |
5737 | case 966: /* Floating Merge Even Word */ | |
5738 | record_full_arch_list_add_reg (regcache, | |
5739 | tdep->ppc_fp0_regnum + PPC_FRT (insn)); | |
5740 | return 0; | |
5741 | ||
5742 | case 38: /* Move To FPSCR Bit 1 */ | |
5743 | case 70: /* Move To FPSCR Bit 0 */ | |
5744 | case 134: /* Move To FPSCR Field Immediate */ | |
5745 | case 711: /* Move To FPSCR Fields */ | |
5746 | if (PPC_RC (insn)) | |
5747 | record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum); | |
5748 | record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum); | |
8aabe2e2 | 5749 | return 0; |
b4cdae6f WW |
5750 | |
5751 | case 0: /* Floating Compare Unordered */ | |
5752 | case 32: /* Floating Compare Ordered */ | |
5753 | case 64: /* Move to Condition Register from FPSCR */ | |
6ec2b213 EBM |
5754 | case 132: /* VSX Scalar Compare Ordered Quad-Precision */ |
5755 | case 164: /* VSX Scalar Compare Exponents Quad-Precision */ | |
5756 | case 644: /* VSX Scalar Compare Unordered Quad-Precision */ | |
5757 | case 708: /* VSX Scalar Test Data Class Quad-Precision */ | |
b4cdae6f WW |
5758 | record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum); |
5759 | /* FALL-THROUGH */ | |
5760 | case 128: /* Floating Test for software Divide */ | |
5761 | case 160: /* Floating Test for software Square Root */ | |
5762 | record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum); | |
5763 | return 0; | |
5764 | ||
6ec2b213 EBM |
5765 | case 4: /* VSX Scalar Add Quad-Precision */ |
5766 | case 36: /* VSX Scalar Multiply Quad-Precision */ | |
5767 | case 388: /* VSX Scalar Multiply-Add Quad-Precision */ | |
5768 | case 420: /* VSX Scalar Multiply-Subtract Quad-Precision */ | |
5769 | case 452: /* VSX Scalar Negative Multiply-Add Quad-Precision */ | |
5770 | case 484: /* VSX Scalar Negative Multiply-Subtract | |
5771 | Quad-Precision */ | |
5772 | case 516: /* VSX Scalar Subtract Quad-Precision */ | |
5773 | case 548: /* VSX Scalar Divide Quad-Precision */ | |
5774 | record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum); | |
5775 | /* FALL-THROUGH */ | |
5776 | case 100: /* VSX Scalar Copy Sign Quad-Precision */ | |
5777 | case 868: /* VSX Scalar Insert Exponent Quad-Precision */ | |
5778 | ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32); | |
5779 | return 0; | |
5780 | ||
5781 | case 804: | |
5782 | switch (PPC_FIELD (insn, 11, 5)) | |
5783 | { | |
5784 | case 27: /* VSX Scalar Square Root Quad-Precision */ | |
5785 | record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum); | |
5786 | /* FALL-THROUGH */ | |
5787 | case 0: /* VSX Scalar Absolute Quad-Precision */ | |
5788 | case 2: /* VSX Scalar Extract Exponent Quad-Precision */ | |
5789 | case 8: /* VSX Scalar Negative Absolute Quad-Precision */ | |
5790 | case 16: /* VSX Scalar Negate Quad-Precision */ | |
5791 | case 18: /* VSX Scalar Extract Significand Quad-Precision */ | |
5792 | ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32); | |
5793 | return 0; | |
5794 | } | |
5795 | break; | |
5796 | ||
5797 | case 836: | |
5798 | switch (PPC_FIELD (insn, 11, 5)) | |
5799 | { | |
5800 | case 1: /* VSX Scalar truncate & Convert Quad-Precision format | |
5801 | to Unsigned Word format */ | |
5802 | case 2: /* VSX Scalar Convert Unsigned Doubleword format to | |
5803 | Quad-Precision format */ | |
5804 | case 9: /* VSX Scalar truncate & Convert Quad-Precision format | |
5805 | to Signed Word format */ | |
5806 | case 10: /* VSX Scalar Convert Signed Doubleword format to | |
5807 | Quad-Precision format */ | |
5808 | case 17: /* VSX Scalar truncate & Convert Quad-Precision format | |
5809 | to Unsigned Doubleword format */ | |
5810 | case 20: /* VSX Scalar round & Convert Quad-Precision format to | |
5811 | Double-Precision format */ | |
5812 | case 22: /* VSX Scalar Convert Double-Precision format to | |
5813 | Quad-Precision format */ | |
5814 | case 25: /* VSX Scalar truncate & Convert Quad-Precision format | |
5815 | to Signed Doubleword format */ | |
5816 | record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum); | |
5817 | ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32); | |
5818 | return 0; | |
5819 | } | |
b4cdae6f WW |
5820 | } |
5821 | ||
810c1026 | 5822 | fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x " |
6ec2b213 | 5823 | "at %s, 63-%d.\n", insn, paddress (gdbarch, addr), ext); |
b4cdae6f WW |
5824 | return -1; |
5825 | } | |
5826 | ||
5827 | /* Parse the current instruction and record the values of the registers and | |
5828 | memory that will be changed in current instruction to "record_arch_list". | |
5829 | Return -1 if something wrong. */ | |
5830 | ||
5831 | int | |
5832 | ppc_process_record (struct gdbarch *gdbarch, struct regcache *regcache, | |
5833 | CORE_ADDR addr) | |
5834 | { | |
5835 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
5836 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
5837 | uint32_t insn; | |
5838 | int op6, tmp, i; | |
5839 | ||
5840 | insn = read_memory_unsigned_integer (addr, 4, byte_order); | |
5841 | op6 = PPC_OP6 (insn); | |
5842 | ||
5843 | switch (op6) | |
5844 | { | |
5845 | case 2: /* Trap Doubleword Immediate */ | |
5846 | case 3: /* Trap Word Immediate */ | |
5847 | /* Do nothing. */ | |
5848 | break; | |
5849 | ||
5850 | case 4: | |
5851 | if (ppc_process_record_op4 (gdbarch, regcache, addr, insn) != 0) | |
5852 | return -1; | |
5853 | break; | |
5854 | ||
5855 | case 17: /* System call */ | |
5856 | if (PPC_LEV (insn) != 0) | |
5857 | goto UNKNOWN_OP; | |
5858 | ||
5859 | if (tdep->ppc_syscall_record != NULL) | |
5860 | { | |
5861 | if (tdep->ppc_syscall_record (regcache) != 0) | |
5862 | return -1; | |
5863 | } | |
5864 | else | |
5865 | { | |
5866 | printf_unfiltered (_("no syscall record support\n")); | |
5867 | return -1; | |
5868 | } | |
5869 | break; | |
5870 | ||
5871 | case 7: /* Multiply Low Immediate */ | |
5872 | record_full_arch_list_add_reg (regcache, | |
5873 | tdep->ppc_gp0_regnum + PPC_RT (insn)); | |
5874 | break; | |
5875 | ||
5876 | case 8: /* Subtract From Immediate Carrying */ | |
5877 | record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum); | |
5878 | record_full_arch_list_add_reg (regcache, | |
5879 | tdep->ppc_gp0_regnum + PPC_RT (insn)); | |
5880 | break; | |
5881 | ||
5882 | case 10: /* Compare Logical Immediate */ | |
5883 | case 11: /* Compare Immediate */ | |
5884 | record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum); | |
5885 | break; | |
5886 | ||
5887 | case 13: /* Add Immediate Carrying and Record */ | |
5888 | record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum); | |
5889 | /* FALL-THROUGH */ | |
5890 | case 12: /* Add Immediate Carrying */ | |
5891 | record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum); | |
5892 | /* FALL-THROUGH */ | |
5893 | case 14: /* Add Immediate */ | |
5894 | case 15: /* Add Immediate Shifted */ | |
5895 | record_full_arch_list_add_reg (regcache, | |
5896 | tdep->ppc_gp0_regnum + PPC_RT (insn)); | |
5897 | break; | |
5898 | ||
5899 | case 16: /* Branch Conditional */ | |
5900 | if ((PPC_BO (insn) & 0x4) == 0) | |
5901 | record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum); | |
5902 | /* FALL-THROUGH */ | |
5903 | case 18: /* Branch */ | |
5904 | if (PPC_LK (insn)) | |
5905 | record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum); | |
5906 | break; | |
5907 | ||
5908 | case 19: | |
5909 | if (ppc_process_record_op19 (gdbarch, regcache, addr, insn) != 0) | |
5910 | return -1; | |
5911 | break; | |
5912 | ||
5913 | case 20: /* Rotate Left Word Immediate then Mask Insert */ | |
5914 | case 21: /* Rotate Left Word Immediate then AND with Mask */ | |
5915 | case 23: /* Rotate Left Word then AND with Mask */ | |
5916 | case 30: /* Rotate Left Doubleword Immediate then Clear Left */ | |
5917 | /* Rotate Left Doubleword Immediate then Clear Right */ | |
5918 | /* Rotate Left Doubleword Immediate then Clear */ | |
5919 | /* Rotate Left Doubleword then Clear Left */ | |
5920 | /* Rotate Left Doubleword then Clear Right */ | |
5921 | /* Rotate Left Doubleword Immediate then Mask Insert */ | |
5922 | if (PPC_RC (insn)) | |
5923 | record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum); | |
5924 | record_full_arch_list_add_reg (regcache, | |
5925 | tdep->ppc_gp0_regnum + PPC_RA (insn)); | |
5926 | break; | |
5927 | ||
5928 | case 28: /* AND Immediate */ | |
5929 | case 29: /* AND Immediate Shifted */ | |
5930 | record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum); | |
5931 | /* FALL-THROUGH */ | |
5932 | case 24: /* OR Immediate */ | |
5933 | case 25: /* OR Immediate Shifted */ | |
5934 | case 26: /* XOR Immediate */ | |
5935 | case 27: /* XOR Immediate Shifted */ | |
5936 | record_full_arch_list_add_reg (regcache, | |
5937 | tdep->ppc_gp0_regnum + PPC_RA (insn)); | |
5938 | break; | |
5939 | ||
5940 | case 31: | |
5941 | if (ppc_process_record_op31 (gdbarch, regcache, addr, insn) != 0) | |
5942 | return -1; | |
5943 | break; | |
5944 | ||
5945 | case 33: /* Load Word and Zero with Update */ | |
5946 | case 35: /* Load Byte and Zero with Update */ | |
5947 | case 41: /* Load Halfword and Zero with Update */ | |
5948 | case 43: /* Load Halfword Algebraic with Update */ | |
5949 | record_full_arch_list_add_reg (regcache, | |
5950 | tdep->ppc_gp0_regnum + PPC_RA (insn)); | |
5951 | /* FALL-THROUGH */ | |
5952 | case 32: /* Load Word and Zero */ | |
5953 | case 34: /* Load Byte and Zero */ | |
5954 | case 40: /* Load Halfword and Zero */ | |
5955 | case 42: /* Load Halfword Algebraic */ | |
5956 | record_full_arch_list_add_reg (regcache, | |
5957 | tdep->ppc_gp0_regnum + PPC_RT (insn)); | |
5958 | break; | |
5959 | ||
5960 | case 46: /* Load Multiple Word */ | |
5961 | for (i = PPC_RT (insn); i < 32; i++) | |
5962 | record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + i); | |
5963 | break; | |
5964 | ||
5965 | case 56: /* Load Quadword */ | |
5966 | tmp = tdep->ppc_gp0_regnum + (PPC_RT (insn) & ~1); | |
5967 | record_full_arch_list_add_reg (regcache, tmp); | |
5968 | record_full_arch_list_add_reg (regcache, tmp + 1); | |
5969 | break; | |
5970 | ||
5971 | case 49: /* Load Floating-Point Single with Update */ | |
5972 | case 51: /* Load Floating-Point Double with Update */ | |
5973 | record_full_arch_list_add_reg (regcache, | |
5974 | tdep->ppc_gp0_regnum + PPC_RA (insn)); | |
5975 | /* FALL-THROUGH */ | |
5976 | case 48: /* Load Floating-Point Single */ | |
5977 | case 50: /* Load Floating-Point Double */ | |
5978 | record_full_arch_list_add_reg (regcache, | |
5979 | tdep->ppc_fp0_regnum + PPC_FRT (insn)); | |
5980 | break; | |
5981 | ||
5982 | case 47: /* Store Multiple Word */ | |
5983 | { | |
b926417a | 5984 | ULONGEST iaddr = 0; |
b4cdae6f WW |
5985 | |
5986 | if (PPC_RA (insn) != 0) | |
5987 | regcache_raw_read_unsigned (regcache, | |
5988 | tdep->ppc_gp0_regnum + PPC_RA (insn), | |
b926417a | 5989 | &iaddr); |
b4cdae6f | 5990 | |
b926417a TT |
5991 | iaddr += PPC_D (insn); |
5992 | record_full_arch_list_add_mem (iaddr, 4 * (32 - PPC_RS (insn))); | |
b4cdae6f WW |
5993 | } |
5994 | break; | |
5995 | ||
5996 | case 37: /* Store Word with Update */ | |
5997 | case 39: /* Store Byte with Update */ | |
5998 | case 45: /* Store Halfword with Update */ | |
5999 | case 53: /* Store Floating-Point Single with Update */ | |
6000 | case 55: /* Store Floating-Point Double with Update */ | |
6001 | record_full_arch_list_add_reg (regcache, | |
6002 | tdep->ppc_gp0_regnum + PPC_RA (insn)); | |
6003 | /* FALL-THROUGH */ | |
6004 | case 36: /* Store Word */ | |
6005 | case 38: /* Store Byte */ | |
6006 | case 44: /* Store Halfword */ | |
6007 | case 52: /* Store Floating-Point Single */ | |
6008 | case 54: /* Store Floating-Point Double */ | |
6009 | { | |
b926417a | 6010 | ULONGEST iaddr = 0; |
b4cdae6f WW |
6011 | int size = -1; |
6012 | ||
6013 | if (PPC_RA (insn) != 0) | |
6014 | regcache_raw_read_unsigned (regcache, | |
6015 | tdep->ppc_gp0_regnum + PPC_RA (insn), | |
b926417a TT |
6016 | &iaddr); |
6017 | iaddr += PPC_D (insn); | |
b4cdae6f WW |
6018 | |
6019 | if (op6 == 36 || op6 == 37 || op6 == 52 || op6 == 53) | |
6020 | size = 4; | |
6021 | else if (op6 == 54 || op6 == 55) | |
6022 | size = 8; | |
6023 | else if (op6 == 44 || op6 == 45) | |
6024 | size = 2; | |
6025 | else if (op6 == 38 || op6 == 39) | |
6026 | size = 1; | |
6027 | else | |
6028 | gdb_assert (0); | |
6029 | ||
b926417a | 6030 | record_full_arch_list_add_mem (iaddr, size); |
b4cdae6f WW |
6031 | } |
6032 | break; | |
6033 | ||
6ec2b213 EBM |
6034 | case 57: |
6035 | switch (insn & 0x3) | |
6036 | { | |
6037 | case 0: /* Load Floating-Point Double Pair */ | |
6038 | tmp = tdep->ppc_fp0_regnum + (PPC_RT (insn) & ~1); | |
6039 | record_full_arch_list_add_reg (regcache, tmp); | |
6040 | record_full_arch_list_add_reg (regcache, tmp + 1); | |
6041 | break; | |
6042 | case 2: /* Load VSX Scalar Doubleword */ | |
6043 | case 3: /* Load VSX Scalar Single */ | |
6044 | ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32); | |
6045 | break; | |
6046 | default: | |
6047 | goto UNKNOWN_OP; | |
6048 | } | |
b4cdae6f WW |
6049 | break; |
6050 | ||
6051 | case 58: /* Load Doubleword */ | |
6052 | /* Load Doubleword with Update */ | |
6053 | /* Load Word Algebraic */ | |
6054 | if (PPC_FIELD (insn, 30, 2) > 2) | |
6055 | goto UNKNOWN_OP; | |
6056 | ||
6057 | record_full_arch_list_add_reg (regcache, | |
6058 | tdep->ppc_gp0_regnum + PPC_RT (insn)); | |
6059 | if (PPC_BIT (insn, 31)) | |
6060 | record_full_arch_list_add_reg (regcache, | |
6061 | tdep->ppc_gp0_regnum + PPC_RA (insn)); | |
6062 | break; | |
6063 | ||
6064 | case 59: | |
6065 | if (ppc_process_record_op59 (gdbarch, regcache, addr, insn) != 0) | |
6066 | return -1; | |
6067 | break; | |
6068 | ||
6069 | case 60: | |
6070 | if (ppc_process_record_op60 (gdbarch, regcache, addr, insn) != 0) | |
6071 | return -1; | |
6072 | break; | |
6073 | ||
6ec2b213 EBM |
6074 | case 61: |
6075 | if (ppc_process_record_op61 (gdbarch, regcache, addr, insn) != 0) | |
6076 | return -1; | |
6077 | break; | |
6078 | ||
b4cdae6f WW |
6079 | case 62: /* Store Doubleword */ |
6080 | /* Store Doubleword with Update */ | |
6081 | /* Store Quadword with Update */ | |
6082 | { | |
b926417a | 6083 | ULONGEST iaddr = 0; |
b4cdae6f WW |
6084 | int size; |
6085 | int sub2 = PPC_FIELD (insn, 30, 2); | |
6086 | ||
6ec2b213 | 6087 | if (sub2 > 2) |
b4cdae6f WW |
6088 | goto UNKNOWN_OP; |
6089 | ||
6090 | if (PPC_RA (insn) != 0) | |
6091 | regcache_raw_read_unsigned (regcache, | |
6092 | tdep->ppc_gp0_regnum + PPC_RA (insn), | |
b926417a | 6093 | &iaddr); |
b4cdae6f | 6094 | |
6ec2b213 | 6095 | size = (sub2 == 2) ? 16 : 8; |
b4cdae6f | 6096 | |
b926417a TT |
6097 | iaddr += PPC_DS (insn) << 2; |
6098 | record_full_arch_list_add_mem (iaddr, size); | |
b4cdae6f WW |
6099 | |
6100 | if (op6 == 62 && sub2 == 1) | |
6101 | record_full_arch_list_add_reg (regcache, | |
6102 | tdep->ppc_gp0_regnum + | |
6103 | PPC_RA (insn)); | |
6104 | ||
6105 | break; | |
6106 | } | |
6107 | ||
6108 | case 63: | |
6109 | if (ppc_process_record_op63 (gdbarch, regcache, addr, insn) != 0) | |
6110 | return -1; | |
6111 | break; | |
6112 | ||
6113 | default: | |
6114 | UNKNOWN_OP: | |
810c1026 WW |
6115 | fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x " |
6116 | "at %s, %d.\n", insn, paddress (gdbarch, addr), op6); | |
b4cdae6f WW |
6117 | return -1; |
6118 | } | |
6119 | ||
6120 | if (record_full_arch_list_add_reg (regcache, PPC_PC_REGNUM)) | |
6121 | return -1; | |
6122 | if (record_full_arch_list_add_end ()) | |
6123 | return -1; | |
6124 | return 0; | |
6125 | } | |
6126 | ||
7a78ae4e ND |
6127 | /* Initialize the current architecture based on INFO. If possible, re-use an |
6128 | architecture from ARCHES, which is a list of architectures already created | |
6129 | during this debugging session. | |
c906108c | 6130 | |
7a78ae4e | 6131 | Called e.g. at program startup, when reading a core file, and when reading |
64366f1c | 6132 | a binary file. */ |
c906108c | 6133 | |
7a78ae4e ND |
6134 | static struct gdbarch * |
6135 | rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
6136 | { | |
6137 | struct gdbarch *gdbarch; | |
6138 | struct gdbarch_tdep *tdep; | |
7cc46491 | 6139 | int wordsize, from_xcoff_exec, from_elf_exec; |
7a78ae4e ND |
6140 | enum bfd_architecture arch; |
6141 | unsigned long mach; | |
6142 | bfd abfd; | |
55eddb0f DJ |
6143 | enum auto_boolean soft_float_flag = powerpc_soft_float_global; |
6144 | int soft_float; | |
ed0f4273 | 6145 | enum powerpc_long_double_abi long_double_abi = POWERPC_LONG_DOUBLE_AUTO; |
55eddb0f | 6146 | enum powerpc_vector_abi vector_abi = powerpc_vector_abi_global; |
cd453cd0 | 6147 | enum powerpc_elf_abi elf_abi = POWERPC_ELF_AUTO; |
93b4691f | 6148 | int have_fpu = 0, have_spe = 0, have_mq = 0, have_altivec = 0; |
7ca18ed6 | 6149 | int have_dfp = 0, have_vsx = 0, have_ppr = 0, have_dscr = 0; |
8d619c01 EBM |
6150 | int have_tar = 0, have_ebb = 0, have_pmu = 0, have_htm_spr = 0; |
6151 | int have_htm_core = 0, have_htm_fpu = 0, have_htm_altivec = 0; | |
6152 | int have_htm_vsx = 0, have_htm_ppr = 0, have_htm_dscr = 0; | |
6153 | int have_htm_tar = 0; | |
7cc46491 DJ |
6154 | int tdesc_wordsize = -1; |
6155 | const struct target_desc *tdesc = info.target_desc; | |
6156 | struct tdesc_arch_data *tdesc_data = NULL; | |
f949c649 | 6157 | int num_pseudoregs = 0; |
604c2f83 | 6158 | int cur_reg; |
7a78ae4e | 6159 | |
f4d9bade UW |
6160 | /* INFO may refer to a binary that is not of the PowerPC architecture, |
6161 | e.g. when debugging a stand-alone SPE executable on a Cell/B.E. system. | |
6162 | In this case, we must not attempt to infer properties of the (PowerPC | |
6163 | side) of the target system from properties of that executable. Trust | |
6164 | the target description instead. */ | |
6165 | if (info.abfd | |
6166 | && bfd_get_arch (info.abfd) != bfd_arch_powerpc | |
6167 | && bfd_get_arch (info.abfd) != bfd_arch_rs6000) | |
6168 | info.abfd = NULL; | |
6169 | ||
9aa1e687 | 6170 | from_xcoff_exec = info.abfd && info.abfd->format == bfd_object && |
7a78ae4e ND |
6171 | bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour; |
6172 | ||
9aa1e687 KB |
6173 | from_elf_exec = info.abfd && info.abfd->format == bfd_object && |
6174 | bfd_get_flavour (info.abfd) == bfd_target_elf_flavour; | |
6175 | ||
e712c1cf | 6176 | /* Check word size. If INFO is from a binary file, infer it from |
64366f1c | 6177 | that, else choose a likely default. */ |
9aa1e687 | 6178 | if (from_xcoff_exec) |
c906108c | 6179 | { |
11ed25ac | 6180 | if (bfd_xcoff_is_xcoff64 (info.abfd)) |
7a78ae4e ND |
6181 | wordsize = 8; |
6182 | else | |
6183 | wordsize = 4; | |
c906108c | 6184 | } |
9aa1e687 KB |
6185 | else if (from_elf_exec) |
6186 | { | |
6187 | if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64) | |
6188 | wordsize = 8; | |
6189 | else | |
6190 | wordsize = 4; | |
6191 | } | |
7cc46491 DJ |
6192 | else if (tdesc_has_registers (tdesc)) |
6193 | wordsize = -1; | |
c906108c | 6194 | else |
7a78ae4e | 6195 | { |
27b15785 | 6196 | if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0) |
16d8013c JB |
6197 | wordsize = (info.bfd_arch_info->bits_per_word |
6198 | / info.bfd_arch_info->bits_per_byte); | |
27b15785 KB |
6199 | else |
6200 | wordsize = 4; | |
7a78ae4e | 6201 | } |
c906108c | 6202 | |
475bbd17 JB |
6203 | /* Get the architecture and machine from the BFD. */ |
6204 | arch = info.bfd_arch_info->arch; | |
6205 | mach = info.bfd_arch_info->mach; | |
5bf1c677 EZ |
6206 | |
6207 | /* For e500 executables, the apuinfo section is of help here. Such | |
6208 | section contains the identifier and revision number of each | |
6209 | Application-specific Processing Unit that is present on the | |
6210 | chip. The content of the section is determined by the assembler | |
6211 | which looks at each instruction and determines which unit (and | |
74af9197 NF |
6212 | which version of it) can execute it. Grovel through the section |
6213 | looking for relevant e500 APUs. */ | |
5bf1c677 | 6214 | |
74af9197 | 6215 | if (bfd_uses_spe_extensions (info.abfd)) |
5bf1c677 | 6216 | { |
74af9197 NF |
6217 | arch = info.bfd_arch_info->arch; |
6218 | mach = bfd_mach_ppc_e500; | |
6219 | bfd_default_set_arch_mach (&abfd, arch, mach); | |
6220 | info.bfd_arch_info = bfd_get_arch_info (&abfd); | |
5bf1c677 EZ |
6221 | } |
6222 | ||
7cc46491 DJ |
6223 | /* Find a default target description which describes our register |
6224 | layout, if we do not already have one. */ | |
6225 | if (! tdesc_has_registers (tdesc)) | |
6226 | { | |
6227 | const struct variant *v; | |
6228 | ||
6229 | /* Choose variant. */ | |
6230 | v = find_variant_by_arch (arch, mach); | |
6231 | if (!v) | |
6232 | return NULL; | |
6233 | ||
6234 | tdesc = *v->tdesc; | |
6235 | } | |
6236 | ||
6237 | gdb_assert (tdesc_has_registers (tdesc)); | |
6238 | ||
6239 | /* Check any target description for validity. */ | |
6240 | if (tdesc_has_registers (tdesc)) | |
6241 | { | |
6242 | static const char *const gprs[] = { | |
6243 | "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", | |
6244 | "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", | |
6245 | "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", | |
6246 | "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31" | |
6247 | }; | |
7cc46491 DJ |
6248 | const struct tdesc_feature *feature; |
6249 | int i, valid_p; | |
6250 | static const char *const msr_names[] = { "msr", "ps" }; | |
6251 | static const char *const cr_names[] = { "cr", "cnd" }; | |
6252 | static const char *const ctr_names[] = { "ctr", "cnt" }; | |
6253 | ||
6254 | feature = tdesc_find_feature (tdesc, | |
6255 | "org.gnu.gdb.power.core"); | |
6256 | if (feature == NULL) | |
6257 | return NULL; | |
6258 | ||
6259 | tdesc_data = tdesc_data_alloc (); | |
6260 | ||
6261 | valid_p = 1; | |
6262 | for (i = 0; i < ppc_num_gprs; i++) | |
6263 | valid_p &= tdesc_numbered_register (feature, tdesc_data, i, gprs[i]); | |
6264 | valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_PC_REGNUM, | |
6265 | "pc"); | |
6266 | valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_LR_REGNUM, | |
6267 | "lr"); | |
6268 | valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_XER_REGNUM, | |
6269 | "xer"); | |
6270 | ||
6271 | /* Allow alternate names for these registers, to accomodate GDB's | |
6272 | historic naming. */ | |
6273 | valid_p &= tdesc_numbered_register_choices (feature, tdesc_data, | |
6274 | PPC_MSR_REGNUM, msr_names); | |
6275 | valid_p &= tdesc_numbered_register_choices (feature, tdesc_data, | |
6276 | PPC_CR_REGNUM, cr_names); | |
6277 | valid_p &= tdesc_numbered_register_choices (feature, tdesc_data, | |
6278 | PPC_CTR_REGNUM, ctr_names); | |
6279 | ||
6280 | if (!valid_p) | |
6281 | { | |
6282 | tdesc_data_cleanup (tdesc_data); | |
6283 | return NULL; | |
6284 | } | |
6285 | ||
6286 | have_mq = tdesc_numbered_register (feature, tdesc_data, PPC_MQ_REGNUM, | |
6287 | "mq"); | |
6288 | ||
12863263 | 6289 | tdesc_wordsize = tdesc_register_bitsize (feature, "pc") / 8; |
7cc46491 DJ |
6290 | if (wordsize == -1) |
6291 | wordsize = tdesc_wordsize; | |
6292 | ||
6293 | feature = tdesc_find_feature (tdesc, | |
6294 | "org.gnu.gdb.power.fpu"); | |
6295 | if (feature != NULL) | |
6296 | { | |
6297 | static const char *const fprs[] = { | |
6298 | "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", | |
6299 | "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", | |
6300 | "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", | |
6301 | "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31" | |
6302 | }; | |
6303 | valid_p = 1; | |
6304 | for (i = 0; i < ppc_num_fprs; i++) | |
6305 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
6306 | PPC_F0_REGNUM + i, fprs[i]); | |
6307 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
6308 | PPC_FPSCR_REGNUM, "fpscr"); | |
6309 | ||
6310 | if (!valid_p) | |
6311 | { | |
6312 | tdesc_data_cleanup (tdesc_data); | |
6313 | return NULL; | |
6314 | } | |
6315 | have_fpu = 1; | |
0fb2aaa1 PFC |
6316 | |
6317 | /* The fpscr register was expanded in isa 2.05 to 64 bits | |
6318 | along with the addition of the decimal floating point | |
6319 | facility. */ | |
12863263 | 6320 | if (tdesc_register_bitsize (feature, "fpscr") > 32) |
0fb2aaa1 | 6321 | have_dfp = 1; |
7cc46491 DJ |
6322 | } |
6323 | else | |
6324 | have_fpu = 0; | |
6325 | ||
6326 | feature = tdesc_find_feature (tdesc, | |
6327 | "org.gnu.gdb.power.altivec"); | |
6328 | if (feature != NULL) | |
6329 | { | |
6330 | static const char *const vector_regs[] = { | |
6331 | "vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7", | |
6332 | "vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15", | |
6333 | "vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23", | |
6334 | "vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31" | |
6335 | }; | |
6336 | ||
6337 | valid_p = 1; | |
6338 | for (i = 0; i < ppc_num_gprs; i++) | |
6339 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
6340 | PPC_VR0_REGNUM + i, | |
6341 | vector_regs[i]); | |
6342 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
6343 | PPC_VSCR_REGNUM, "vscr"); | |
6344 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
6345 | PPC_VRSAVE_REGNUM, "vrsave"); | |
6346 | ||
6347 | if (have_spe || !valid_p) | |
6348 | { | |
6349 | tdesc_data_cleanup (tdesc_data); | |
6350 | return NULL; | |
6351 | } | |
6352 | have_altivec = 1; | |
6353 | } | |
6354 | else | |
6355 | have_altivec = 0; | |
6356 | ||
604c2f83 LM |
6357 | /* Check for POWER7 VSX registers support. */ |
6358 | feature = tdesc_find_feature (tdesc, | |
6359 | "org.gnu.gdb.power.vsx"); | |
6360 | ||
6361 | if (feature != NULL) | |
6362 | { | |
6363 | static const char *const vsx_regs[] = { | |
6364 | "vs0h", "vs1h", "vs2h", "vs3h", "vs4h", "vs5h", | |
6365 | "vs6h", "vs7h", "vs8h", "vs9h", "vs10h", "vs11h", | |
6366 | "vs12h", "vs13h", "vs14h", "vs15h", "vs16h", "vs17h", | |
6367 | "vs18h", "vs19h", "vs20h", "vs21h", "vs22h", "vs23h", | |
6368 | "vs24h", "vs25h", "vs26h", "vs27h", "vs28h", "vs29h", | |
6369 | "vs30h", "vs31h" | |
6370 | }; | |
6371 | ||
6372 | valid_p = 1; | |
6373 | ||
6374 | for (i = 0; i < ppc_num_vshrs; i++) | |
6375 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
6376 | PPC_VSR0_UPPER_REGNUM + i, | |
6377 | vsx_regs[i]); | |
81ab84fd PFC |
6378 | |
6379 | if (!valid_p || !have_fpu || !have_altivec) | |
604c2f83 LM |
6380 | { |
6381 | tdesc_data_cleanup (tdesc_data); | |
6382 | return NULL; | |
6383 | } | |
6384 | ||
6385 | have_vsx = 1; | |
6386 | } | |
6387 | else | |
6388 | have_vsx = 0; | |
6389 | ||
7cc46491 DJ |
6390 | /* On machines supporting the SPE APU, the general-purpose registers |
6391 | are 64 bits long. There are SIMD vector instructions to treat them | |
6392 | as pairs of floats, but the rest of the instruction set treats them | |
6393 | as 32-bit registers, and only operates on their lower halves. | |
6394 | ||
6395 | In the GDB regcache, we treat their high and low halves as separate | |
6396 | registers. The low halves we present as the general-purpose | |
6397 | registers, and then we have pseudo-registers that stitch together | |
6398 | the upper and lower halves and present them as pseudo-registers. | |
6399 | ||
6400 | Thus, the target description is expected to supply the upper | |
6401 | halves separately. */ | |
6402 | ||
6403 | feature = tdesc_find_feature (tdesc, | |
6404 | "org.gnu.gdb.power.spe"); | |
6405 | if (feature != NULL) | |
6406 | { | |
6407 | static const char *const upper_spe[] = { | |
6408 | "ev0h", "ev1h", "ev2h", "ev3h", | |
6409 | "ev4h", "ev5h", "ev6h", "ev7h", | |
6410 | "ev8h", "ev9h", "ev10h", "ev11h", | |
6411 | "ev12h", "ev13h", "ev14h", "ev15h", | |
6412 | "ev16h", "ev17h", "ev18h", "ev19h", | |
6413 | "ev20h", "ev21h", "ev22h", "ev23h", | |
6414 | "ev24h", "ev25h", "ev26h", "ev27h", | |
6415 | "ev28h", "ev29h", "ev30h", "ev31h" | |
6416 | }; | |
6417 | ||
6418 | valid_p = 1; | |
6419 | for (i = 0; i < ppc_num_gprs; i++) | |
6420 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
6421 | PPC_SPE_UPPER_GP0_REGNUM + i, | |
6422 | upper_spe[i]); | |
6423 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
6424 | PPC_SPE_ACC_REGNUM, "acc"); | |
6425 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
6426 | PPC_SPE_FSCR_REGNUM, "spefscr"); | |
6427 | ||
6428 | if (have_mq || have_fpu || !valid_p) | |
6429 | { | |
6430 | tdesc_data_cleanup (tdesc_data); | |
6431 | return NULL; | |
6432 | } | |
6433 | have_spe = 1; | |
6434 | } | |
6435 | else | |
6436 | have_spe = 0; | |
7ca18ed6 EBM |
6437 | |
6438 | /* Program Priority Register. */ | |
6439 | feature = tdesc_find_feature (tdesc, | |
6440 | "org.gnu.gdb.power.ppr"); | |
6441 | if (feature != NULL) | |
6442 | { | |
6443 | valid_p = 1; | |
6444 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
6445 | PPC_PPR_REGNUM, "ppr"); | |
6446 | ||
6447 | if (!valid_p) | |
6448 | { | |
6449 | tdesc_data_cleanup (tdesc_data); | |
6450 | return NULL; | |
6451 | } | |
6452 | have_ppr = 1; | |
6453 | } | |
6454 | else | |
6455 | have_ppr = 0; | |
6456 | ||
6457 | /* Data Stream Control Register. */ | |
6458 | feature = tdesc_find_feature (tdesc, | |
6459 | "org.gnu.gdb.power.dscr"); | |
6460 | if (feature != NULL) | |
6461 | { | |
6462 | valid_p = 1; | |
6463 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
6464 | PPC_DSCR_REGNUM, "dscr"); | |
6465 | ||
6466 | if (!valid_p) | |
6467 | { | |
6468 | tdesc_data_cleanup (tdesc_data); | |
6469 | return NULL; | |
6470 | } | |
6471 | have_dscr = 1; | |
6472 | } | |
6473 | else | |
6474 | have_dscr = 0; | |
f2cf6173 EBM |
6475 | |
6476 | /* Target Address Register. */ | |
6477 | feature = tdesc_find_feature (tdesc, | |
6478 | "org.gnu.gdb.power.tar"); | |
6479 | if (feature != NULL) | |
6480 | { | |
6481 | valid_p = 1; | |
6482 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
6483 | PPC_TAR_REGNUM, "tar"); | |
6484 | ||
6485 | if (!valid_p) | |
6486 | { | |
6487 | tdesc_data_cleanup (tdesc_data); | |
6488 | return NULL; | |
6489 | } | |
6490 | have_tar = 1; | |
6491 | } | |
6492 | else | |
6493 | have_tar = 0; | |
232bfb86 EBM |
6494 | |
6495 | /* Event-based Branching Registers. */ | |
6496 | feature = tdesc_find_feature (tdesc, | |
6497 | "org.gnu.gdb.power.ebb"); | |
6498 | if (feature != NULL) | |
6499 | { | |
6500 | static const char *const ebb_regs[] = { | |
6501 | "bescr", "ebbhr", "ebbrr" | |
6502 | }; | |
6503 | ||
6504 | valid_p = 1; | |
6505 | for (i = 0; i < ARRAY_SIZE (ebb_regs); i++) | |
6506 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
6507 | PPC_BESCR_REGNUM + i, | |
6508 | ebb_regs[i]); | |
6509 | if (!valid_p) | |
6510 | { | |
6511 | tdesc_data_cleanup (tdesc_data); | |
6512 | return NULL; | |
6513 | } | |
6514 | have_ebb = 1; | |
6515 | } | |
6516 | else | |
6517 | have_ebb = 0; | |
6518 | ||
6519 | /* Subset of the ISA 2.07 Performance Monitor Registers provided | |
6520 | by Linux. */ | |
6521 | feature = tdesc_find_feature (tdesc, | |
6522 | "org.gnu.gdb.power.linux.pmu"); | |
6523 | if (feature != NULL) | |
6524 | { | |
6525 | valid_p = 1; | |
6526 | ||
6527 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
6528 | PPC_MMCR0_REGNUM, | |
6529 | "mmcr0"); | |
6530 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
6531 | PPC_MMCR2_REGNUM, | |
6532 | "mmcr2"); | |
6533 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
6534 | PPC_SIAR_REGNUM, | |
6535 | "siar"); | |
6536 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
6537 | PPC_SDAR_REGNUM, | |
6538 | "sdar"); | |
6539 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
6540 | PPC_SIER_REGNUM, | |
6541 | "sier"); | |
6542 | ||
6543 | if (!valid_p) | |
6544 | { | |
6545 | tdesc_data_cleanup (tdesc_data); | |
6546 | return NULL; | |
6547 | } | |
6548 | have_pmu = 1; | |
6549 | } | |
6550 | else | |
6551 | have_pmu = 0; | |
8d619c01 EBM |
6552 | |
6553 | /* Hardware Transactional Memory Registers. */ | |
6554 | feature = tdesc_find_feature (tdesc, | |
6555 | "org.gnu.gdb.power.htm.spr"); | |
6556 | if (feature != NULL) | |
6557 | { | |
6558 | static const char *const tm_spr_regs[] = { | |
6559 | "tfhar", "texasr", "tfiar" | |
6560 | }; | |
6561 | ||
6562 | valid_p = 1; | |
6563 | for (i = 0; i < ARRAY_SIZE (tm_spr_regs); i++) | |
6564 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
6565 | PPC_TFHAR_REGNUM + i, | |
6566 | tm_spr_regs[i]); | |
6567 | if (!valid_p) | |
6568 | { | |
6569 | tdesc_data_cleanup (tdesc_data); | |
6570 | return NULL; | |
6571 | } | |
6572 | ||
6573 | have_htm_spr = 1; | |
6574 | } | |
6575 | else | |
6576 | have_htm_spr = 0; | |
6577 | ||
6578 | feature = tdesc_find_feature (tdesc, | |
6579 | "org.gnu.gdb.power.htm.core"); | |
6580 | if (feature != NULL) | |
6581 | { | |
6582 | static const char *const cgprs[] = { | |
6583 | "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7", | |
6584 | "cr8", "cr9", "cr10", "cr11", "cr12", "cr13", "cr14", | |
6585 | "cr15", "cr16", "cr17", "cr18", "cr19", "cr20", "cr21", | |
6586 | "cr22", "cr23", "cr24", "cr25", "cr26", "cr27", "cr28", | |
6587 | "cr29", "cr30", "cr31", "ccr", "cxer", "clr", "cctr" | |
6588 | }; | |
6589 | ||
6590 | valid_p = 1; | |
6591 | ||
6592 | for (i = 0; i < ARRAY_SIZE (cgprs); i++) | |
6593 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
6594 | PPC_CR0_REGNUM + i, | |
6595 | cgprs[i]); | |
6596 | if (!valid_p) | |
6597 | { | |
6598 | tdesc_data_cleanup (tdesc_data); | |
6599 | return NULL; | |
6600 | } | |
6601 | ||
6602 | have_htm_core = 1; | |
6603 | } | |
6604 | else | |
6605 | have_htm_core = 0; | |
6606 | ||
6607 | feature = tdesc_find_feature (tdesc, | |
6608 | "org.gnu.gdb.power.htm.fpu"); | |
6609 | if (feature != NULL) | |
6610 | { | |
6611 | valid_p = 1; | |
6612 | ||
6613 | static const char *const cfprs[] = { | |
6614 | "cf0", "cf1", "cf2", "cf3", "cf4", "cf5", "cf6", "cf7", | |
6615 | "cf8", "cf9", "cf10", "cf11", "cf12", "cf13", "cf14", "cf15", | |
6616 | "cf16", "cf17", "cf18", "cf19", "cf20", "cf21", "cf22", | |
6617 | "cf23", "cf24", "cf25", "cf26", "cf27", "cf28", "cf29", | |
6618 | "cf30", "cf31", "cfpscr" | |
6619 | }; | |
6620 | ||
6621 | for (i = 0; i < ARRAY_SIZE (cfprs); i++) | |
6622 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
6623 | PPC_CF0_REGNUM + i, | |
6624 | cfprs[i]); | |
6625 | ||
6626 | if (!valid_p) | |
6627 | { | |
6628 | tdesc_data_cleanup (tdesc_data); | |
6629 | return NULL; | |
6630 | } | |
6631 | have_htm_fpu = 1; | |
6632 | } | |
6633 | else | |
6634 | have_htm_fpu = 0; | |
6635 | ||
6636 | feature = tdesc_find_feature (tdesc, | |
6637 | "org.gnu.gdb.power.htm.altivec"); | |
6638 | if (feature != NULL) | |
6639 | { | |
6640 | valid_p = 1; | |
6641 | ||
6642 | static const char *const cvmx[] = { | |
6643 | "cvr0", "cvr1", "cvr2", "cvr3", "cvr4", "cvr5", "cvr6", | |
6644 | "cvr7", "cvr8", "cvr9", "cvr10", "cvr11", "cvr12", "cvr13", | |
6645 | "cvr14", "cvr15","cvr16", "cvr17", "cvr18", "cvr19", "cvr20", | |
6646 | "cvr21", "cvr22", "cvr23", "cvr24", "cvr25", "cvr26", | |
6647 | "cvr27", "cvr28", "cvr29", "cvr30", "cvr31", "cvscr", | |
6648 | "cvrsave" | |
6649 | }; | |
6650 | ||
6651 | for (i = 0; i < ARRAY_SIZE (cvmx); i++) | |
6652 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
6653 | PPC_CVR0_REGNUM + i, | |
6654 | cvmx[i]); | |
6655 | ||
6656 | if (!valid_p) | |
6657 | { | |
6658 | tdesc_data_cleanup (tdesc_data); | |
6659 | return NULL; | |
6660 | } | |
6661 | have_htm_altivec = 1; | |
6662 | } | |
6663 | else | |
6664 | have_htm_altivec = 0; | |
6665 | ||
6666 | feature = tdesc_find_feature (tdesc, | |
6667 | "org.gnu.gdb.power.htm.vsx"); | |
6668 | if (feature != NULL) | |
6669 | { | |
6670 | valid_p = 1; | |
6671 | ||
6672 | static const char *const cvsx[] = { | |
6673 | "cvs0h", "cvs1h", "cvs2h", "cvs3h", "cvs4h", "cvs5h", | |
6674 | "cvs6h", "cvs7h", "cvs8h", "cvs9h", "cvs10h", "cvs11h", | |
6675 | "cvs12h", "cvs13h", "cvs14h", "cvs15h", "cvs16h", "cvs17h", | |
6676 | "cvs18h", "cvs19h", "cvs20h", "cvs21h", "cvs22h", "cvs23h", | |
6677 | "cvs24h", "cvs25h", "cvs26h", "cvs27h", "cvs28h", "cvs29h", | |
6678 | "cvs30h", "cvs31h" | |
6679 | }; | |
6680 | ||
6681 | for (i = 0; i < ARRAY_SIZE (cvsx); i++) | |
6682 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
6683 | (PPC_CVSR0_UPPER_REGNUM | |
6684 | + i), | |
6685 | cvsx[i]); | |
6686 | ||
6687 | if (!valid_p || !have_htm_fpu || !have_htm_altivec) | |
6688 | { | |
6689 | tdesc_data_cleanup (tdesc_data); | |
6690 | return NULL; | |
6691 | } | |
6692 | have_htm_vsx = 1; | |
6693 | } | |
6694 | else | |
6695 | have_htm_vsx = 0; | |
6696 | ||
6697 | feature = tdesc_find_feature (tdesc, | |
6698 | "org.gnu.gdb.power.htm.ppr"); | |
6699 | if (feature != NULL) | |
6700 | { | |
6701 | valid_p = tdesc_numbered_register (feature, tdesc_data, | |
6702 | PPC_CPPR_REGNUM, "cppr"); | |
6703 | ||
6704 | if (!valid_p) | |
6705 | { | |
6706 | tdesc_data_cleanup (tdesc_data); | |
6707 | return NULL; | |
6708 | } | |
6709 | have_htm_ppr = 1; | |
6710 | } | |
6711 | else | |
6712 | have_htm_ppr = 0; | |
6713 | ||
6714 | feature = tdesc_find_feature (tdesc, | |
6715 | "org.gnu.gdb.power.htm.dscr"); | |
6716 | if (feature != NULL) | |
6717 | { | |
6718 | valid_p = tdesc_numbered_register (feature, tdesc_data, | |
6719 | PPC_CDSCR_REGNUM, "cdscr"); | |
6720 | ||
6721 | if (!valid_p) | |
6722 | { | |
6723 | tdesc_data_cleanup (tdesc_data); | |
6724 | return NULL; | |
6725 | } | |
6726 | have_htm_dscr = 1; | |
6727 | } | |
6728 | else | |
6729 | have_htm_dscr = 0; | |
6730 | ||
6731 | feature = tdesc_find_feature (tdesc, | |
6732 | "org.gnu.gdb.power.htm.tar"); | |
6733 | if (feature != NULL) | |
6734 | { | |
6735 | valid_p = tdesc_numbered_register (feature, tdesc_data, | |
6736 | PPC_CTAR_REGNUM, "ctar"); | |
6737 | ||
6738 | if (!valid_p) | |
6739 | { | |
6740 | tdesc_data_cleanup (tdesc_data); | |
6741 | return NULL; | |
6742 | } | |
6743 | have_htm_tar = 1; | |
6744 | } | |
6745 | else | |
6746 | have_htm_tar = 0; | |
7cc46491 DJ |
6747 | } |
6748 | ||
6749 | /* If we have a 64-bit binary on a 32-bit target, complain. Also | |
6750 | complain for a 32-bit binary on a 64-bit target; we do not yet | |
6751 | support that. For instance, the 32-bit ABI routines expect | |
6752 | 32-bit GPRs. | |
6753 | ||
6754 | As long as there isn't an explicit target description, we'll | |
6755 | choose one based on the BFD architecture and get a word size | |
6756 | matching the binary (probably powerpc:common or | |
6757 | powerpc:common64). So there is only trouble if a 64-bit target | |
6758 | supplies a 64-bit description while debugging a 32-bit | |
6759 | binary. */ | |
6760 | if (tdesc_wordsize != -1 && tdesc_wordsize != wordsize) | |
6761 | { | |
6762 | tdesc_data_cleanup (tdesc_data); | |
6763 | return NULL; | |
6764 | } | |
6765 | ||
55eddb0f | 6766 | #ifdef HAVE_ELF |
cd453cd0 UW |
6767 | if (from_elf_exec) |
6768 | { | |
6769 | switch (elf_elfheader (info.abfd)->e_flags & EF_PPC64_ABI) | |
6770 | { | |
6771 | case 1: | |
6772 | elf_abi = POWERPC_ELF_V1; | |
6773 | break; | |
6774 | case 2: | |
6775 | elf_abi = POWERPC_ELF_V2; | |
6776 | break; | |
6777 | default: | |
6778 | break; | |
6779 | } | |
6780 | } | |
6781 | ||
55eddb0f DJ |
6782 | if (soft_float_flag == AUTO_BOOLEAN_AUTO && from_elf_exec) |
6783 | { | |
6784 | switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU, | |
ed0f4273 | 6785 | Tag_GNU_Power_ABI_FP) & 3) |
55eddb0f DJ |
6786 | { |
6787 | case 1: | |
6788 | soft_float_flag = AUTO_BOOLEAN_FALSE; | |
6789 | break; | |
6790 | case 2: | |
6791 | soft_float_flag = AUTO_BOOLEAN_TRUE; | |
6792 | break; | |
6793 | default: | |
6794 | break; | |
6795 | } | |
6796 | } | |
6797 | ||
ed0f4273 UW |
6798 | if (long_double_abi == POWERPC_LONG_DOUBLE_AUTO && from_elf_exec) |
6799 | { | |
6800 | switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU, | |
6801 | Tag_GNU_Power_ABI_FP) >> 2) | |
6802 | { | |
6803 | case 1: | |
6804 | long_double_abi = POWERPC_LONG_DOUBLE_IBM128; | |
6805 | break; | |
6806 | case 3: | |
6807 | long_double_abi = POWERPC_LONG_DOUBLE_IEEE128; | |
6808 | break; | |
6809 | default: | |
6810 | break; | |
6811 | } | |
6812 | } | |
6813 | ||
55eddb0f DJ |
6814 | if (vector_abi == POWERPC_VEC_AUTO && from_elf_exec) |
6815 | { | |
6816 | switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU, | |
6817 | Tag_GNU_Power_ABI_Vector)) | |
6818 | { | |
6819 | case 1: | |
6820 | vector_abi = POWERPC_VEC_GENERIC; | |
6821 | break; | |
6822 | case 2: | |
6823 | vector_abi = POWERPC_VEC_ALTIVEC; | |
6824 | break; | |
6825 | case 3: | |
6826 | vector_abi = POWERPC_VEC_SPE; | |
6827 | break; | |
6828 | default: | |
6829 | break; | |
6830 | } | |
6831 | } | |
6832 | #endif | |
6833 | ||
cd453cd0 UW |
6834 | /* At this point, the only supported ELF-based 64-bit little-endian |
6835 | operating system is GNU/Linux, and this uses the ELFv2 ABI by | |
6836 | default. All other supported ELF-based operating systems use the | |
6837 | ELFv1 ABI by default. Therefore, if the ABI marker is missing, | |
6838 | e.g. because we run a legacy binary, or have attached to a process | |
6839 | and have not found any associated binary file, set the default | |
6840 | according to this heuristic. */ | |
6841 | if (elf_abi == POWERPC_ELF_AUTO) | |
6842 | { | |
6843 | if (wordsize == 8 && info.byte_order == BFD_ENDIAN_LITTLE) | |
6844 | elf_abi = POWERPC_ELF_V2; | |
6845 | else | |
6846 | elf_abi = POWERPC_ELF_V1; | |
6847 | } | |
6848 | ||
55eddb0f DJ |
6849 | if (soft_float_flag == AUTO_BOOLEAN_TRUE) |
6850 | soft_float = 1; | |
6851 | else if (soft_float_flag == AUTO_BOOLEAN_FALSE) | |
6852 | soft_float = 0; | |
6853 | else | |
6854 | soft_float = !have_fpu; | |
6855 | ||
6856 | /* If we have a hard float binary or setting but no floating point | |
6857 | registers, downgrade to soft float anyway. We're still somewhat | |
6858 | useful in this scenario. */ | |
6859 | if (!soft_float && !have_fpu) | |
6860 | soft_float = 1; | |
6861 | ||
6862 | /* Similarly for vector registers. */ | |
6863 | if (vector_abi == POWERPC_VEC_ALTIVEC && !have_altivec) | |
6864 | vector_abi = POWERPC_VEC_GENERIC; | |
6865 | ||
6866 | if (vector_abi == POWERPC_VEC_SPE && !have_spe) | |
6867 | vector_abi = POWERPC_VEC_GENERIC; | |
6868 | ||
6869 | if (vector_abi == POWERPC_VEC_AUTO) | |
6870 | { | |
6871 | if (have_altivec) | |
6872 | vector_abi = POWERPC_VEC_ALTIVEC; | |
6873 | else if (have_spe) | |
6874 | vector_abi = POWERPC_VEC_SPE; | |
6875 | else | |
6876 | vector_abi = POWERPC_VEC_GENERIC; | |
6877 | } | |
6878 | ||
6879 | /* Do not limit the vector ABI based on available hardware, since we | |
6880 | do not yet know what hardware we'll decide we have. Yuck! FIXME! */ | |
6881 | ||
7cc46491 DJ |
6882 | /* Find a candidate among extant architectures. */ |
6883 | for (arches = gdbarch_list_lookup_by_info (arches, &info); | |
6884 | arches != NULL; | |
6885 | arches = gdbarch_list_lookup_by_info (arches->next, &info)) | |
6886 | { | |
6887 | /* Word size in the various PowerPC bfd_arch_info structs isn't | |
6888 | meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform | |
6889 | separate word size check. */ | |
6890 | tdep = gdbarch_tdep (arches->gdbarch); | |
cd453cd0 UW |
6891 | if (tdep && tdep->elf_abi != elf_abi) |
6892 | continue; | |
55eddb0f DJ |
6893 | if (tdep && tdep->soft_float != soft_float) |
6894 | continue; | |
ed0f4273 UW |
6895 | if (tdep && tdep->long_double_abi != long_double_abi) |
6896 | continue; | |
55eddb0f DJ |
6897 | if (tdep && tdep->vector_abi != vector_abi) |
6898 | continue; | |
7cc46491 DJ |
6899 | if (tdep && tdep->wordsize == wordsize) |
6900 | { | |
6901 | if (tdesc_data != NULL) | |
6902 | tdesc_data_cleanup (tdesc_data); | |
6903 | return arches->gdbarch; | |
6904 | } | |
6905 | } | |
6906 | ||
6907 | /* None found, create a new architecture from INFO, whose bfd_arch_info | |
6908 | validity depends on the source: | |
6909 | - executable useless | |
6910 | - rs6000_host_arch() good | |
6911 | - core file good | |
6912 | - "set arch" trust blindly | |
6913 | - GDB startup useless but harmless */ | |
6914 | ||
fc270c35 | 6915 | tdep = XCNEW (struct gdbarch_tdep); |
7cc46491 | 6916 | tdep->wordsize = wordsize; |
cd453cd0 | 6917 | tdep->elf_abi = elf_abi; |
55eddb0f | 6918 | tdep->soft_float = soft_float; |
ed0f4273 | 6919 | tdep->long_double_abi = long_double_abi; |
55eddb0f | 6920 | tdep->vector_abi = vector_abi; |
7cc46491 | 6921 | |
7a78ae4e | 6922 | gdbarch = gdbarch_alloc (&info, tdep); |
7a78ae4e | 6923 | |
7cc46491 DJ |
6924 | tdep->ppc_gp0_regnum = PPC_R0_REGNUM; |
6925 | tdep->ppc_toc_regnum = PPC_R0_REGNUM + 2; | |
6926 | tdep->ppc_ps_regnum = PPC_MSR_REGNUM; | |
6927 | tdep->ppc_cr_regnum = PPC_CR_REGNUM; | |
6928 | tdep->ppc_lr_regnum = PPC_LR_REGNUM; | |
6929 | tdep->ppc_ctr_regnum = PPC_CTR_REGNUM; | |
6930 | tdep->ppc_xer_regnum = PPC_XER_REGNUM; | |
6931 | tdep->ppc_mq_regnum = have_mq ? PPC_MQ_REGNUM : -1; | |
6932 | ||
6933 | tdep->ppc_fp0_regnum = have_fpu ? PPC_F0_REGNUM : -1; | |
6934 | tdep->ppc_fpscr_regnum = have_fpu ? PPC_FPSCR_REGNUM : -1; | |
604c2f83 | 6935 | tdep->ppc_vsr0_upper_regnum = have_vsx ? PPC_VSR0_UPPER_REGNUM : -1; |
7cc46491 DJ |
6936 | tdep->ppc_vr0_regnum = have_altivec ? PPC_VR0_REGNUM : -1; |
6937 | tdep->ppc_vrsave_regnum = have_altivec ? PPC_VRSAVE_REGNUM : -1; | |
6938 | tdep->ppc_ev0_upper_regnum = have_spe ? PPC_SPE_UPPER_GP0_REGNUM : -1; | |
6939 | tdep->ppc_acc_regnum = have_spe ? PPC_SPE_ACC_REGNUM : -1; | |
6940 | tdep->ppc_spefscr_regnum = have_spe ? PPC_SPE_FSCR_REGNUM : -1; | |
7ca18ed6 EBM |
6941 | tdep->ppc_ppr_regnum = have_ppr ? PPC_PPR_REGNUM : -1; |
6942 | tdep->ppc_dscr_regnum = have_dscr ? PPC_DSCR_REGNUM : -1; | |
f2cf6173 | 6943 | tdep->ppc_tar_regnum = have_tar ? PPC_TAR_REGNUM : -1; |
232bfb86 EBM |
6944 | tdep->have_ebb = have_ebb; |
6945 | ||
6946 | /* If additional pmu registers are added, care must be taken when | |
6947 | setting new fields in the tdep below, to maintain compatibility | |
6948 | with features that only provide some of the registers. Currently | |
6949 | gdb access to the pmu registers is only supported in linux, and | |
6950 | linux only provides a subset of the pmu registers defined in the | |
6951 | architecture. */ | |
6952 | ||
6953 | tdep->ppc_mmcr0_regnum = have_pmu ? PPC_MMCR0_REGNUM : -1; | |
6954 | tdep->ppc_mmcr2_regnum = have_pmu ? PPC_MMCR2_REGNUM : -1; | |
6955 | tdep->ppc_siar_regnum = have_pmu ? PPC_SIAR_REGNUM : -1; | |
6956 | tdep->ppc_sdar_regnum = have_pmu ? PPC_SDAR_REGNUM : -1; | |
6957 | tdep->ppc_sier_regnum = have_pmu ? PPC_SIER_REGNUM : -1; | |
7cc46491 | 6958 | |
8d619c01 EBM |
6959 | tdep->have_htm_spr = have_htm_spr; |
6960 | tdep->have_htm_core = have_htm_core; | |
6961 | tdep->have_htm_fpu = have_htm_fpu; | |
6962 | tdep->have_htm_altivec = have_htm_altivec; | |
6963 | tdep->have_htm_vsx = have_htm_vsx; | |
6964 | tdep->ppc_cppr_regnum = have_htm_ppr ? PPC_CPPR_REGNUM : -1; | |
6965 | tdep->ppc_cdscr_regnum = have_htm_dscr ? PPC_CDSCR_REGNUM : -1; | |
6966 | tdep->ppc_ctar_regnum = have_htm_tar ? PPC_CTAR_REGNUM : -1; | |
6967 | ||
7cc46491 DJ |
6968 | set_gdbarch_pc_regnum (gdbarch, PPC_PC_REGNUM); |
6969 | set_gdbarch_sp_regnum (gdbarch, PPC_R0_REGNUM + 1); | |
7cc46491 | 6970 | set_gdbarch_fp0_regnum (gdbarch, tdep->ppc_fp0_regnum); |
9f643768 | 6971 | set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno); |
7cc46491 DJ |
6972 | |
6973 | /* The XML specification for PowerPC sensibly calls the MSR "msr". | |
6974 | GDB traditionally called it "ps", though, so let GDB add an | |
6975 | alias. */ | |
6976 | set_gdbarch_ps_regnum (gdbarch, tdep->ppc_ps_regnum); | |
6977 | ||
4a7622d1 | 6978 | if (wordsize == 8) |
05580c65 | 6979 | set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value); |
afd48b75 | 6980 | else |
4a7622d1 | 6981 | set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value); |
c8001721 | 6982 | |
baffbae0 JB |
6983 | /* Set lr_frame_offset. */ |
6984 | if (wordsize == 8) | |
6985 | tdep->lr_frame_offset = 16; | |
baffbae0 | 6986 | else |
4a7622d1 | 6987 | tdep->lr_frame_offset = 4; |
baffbae0 | 6988 | |
6f072a10 PFC |
6989 | if (have_spe || have_dfp || have_altivec |
6990 | || have_vsx || have_htm_fpu || have_htm_vsx) | |
7cc46491 | 6991 | { |
f949c649 | 6992 | set_gdbarch_pseudo_register_read (gdbarch, rs6000_pseudo_register_read); |
0df8b418 MS |
6993 | set_gdbarch_pseudo_register_write (gdbarch, |
6994 | rs6000_pseudo_register_write); | |
2a2fa07b MK |
6995 | set_gdbarch_ax_pseudo_register_collect (gdbarch, |
6996 | rs6000_ax_pseudo_register_collect); | |
7cc46491 | 6997 | } |
1fcc0bb8 | 6998 | |
a67914de MK |
6999 | set_gdbarch_gen_return_address (gdbarch, rs6000_gen_return_address); |
7000 | ||
e0d24f8d WZ |
7001 | set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1); |
7002 | ||
5a9e69ba | 7003 | set_gdbarch_num_regs (gdbarch, PPC_NUM_REGS); |
f949c649 TJB |
7004 | |
7005 | if (have_spe) | |
7006 | num_pseudoregs += 32; | |
7007 | if (have_dfp) | |
7008 | num_pseudoregs += 16; | |
6f072a10 PFC |
7009 | if (have_altivec) |
7010 | num_pseudoregs += 32; | |
604c2f83 LM |
7011 | if (have_vsx) |
7012 | /* Include both VSX and Extended FP registers. */ | |
7013 | num_pseudoregs += 96; | |
8d619c01 EBM |
7014 | if (have_htm_fpu) |
7015 | num_pseudoregs += 16; | |
7016 | /* Include both checkpointed VSX and EFP registers. */ | |
7017 | if (have_htm_vsx) | |
7018 | num_pseudoregs += 64 + 32; | |
f949c649 TJB |
7019 | |
7020 | set_gdbarch_num_pseudo_regs (gdbarch, num_pseudoregs); | |
7a78ae4e ND |
7021 | |
7022 | set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT); | |
7023 | set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT); | |
7024 | set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
7025 | set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT); | |
7026 | set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT); | |
7027 | set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
7028 | set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT); | |
4a7622d1 | 7029 | set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT); |
4e409299 | 7030 | set_gdbarch_char_signed (gdbarch, 0); |
7a78ae4e | 7031 | |
11269d7e | 7032 | set_gdbarch_frame_align (gdbarch, rs6000_frame_align); |
4a7622d1 | 7033 | if (wordsize == 8) |
8b148df9 AC |
7034 | /* PPC64 SYSV. */ |
7035 | set_gdbarch_frame_red_zone_size (gdbarch, 288); | |
7a78ae4e | 7036 | |
691d145a JB |
7037 | set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p); |
7038 | set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value); | |
7039 | set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register); | |
7040 | ||
18ed0c4e JB |
7041 | set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum); |
7042 | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum); | |
d217aaed | 7043 | |
4a7622d1 | 7044 | if (wordsize == 4) |
77b2b6d4 | 7045 | set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call); |
4a7622d1 | 7046 | else if (wordsize == 8) |
8be9034a | 7047 | set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call); |
7a78ae4e | 7048 | |
7a78ae4e | 7049 | set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue); |
c9cf6e20 | 7050 | set_gdbarch_stack_frame_destroyed_p (gdbarch, rs6000_stack_frame_destroyed_p); |
8ab3d180 | 7051 | set_gdbarch_skip_main_prologue (gdbarch, rs6000_skip_main_prologue); |
0d1243d9 | 7052 | |
7a78ae4e | 7053 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); |
04180708 YQ |
7054 | |
7055 | set_gdbarch_breakpoint_kind_from_pc (gdbarch, | |
7056 | rs6000_breakpoint::kind_from_pc); | |
7057 | set_gdbarch_sw_breakpoint_from_kind (gdbarch, | |
7058 | rs6000_breakpoint::bp_from_kind); | |
7a78ae4e | 7059 | |
203c3895 | 7060 | /* The value of symbols of type N_SO and N_FUN maybe null when |
0df8b418 | 7061 | it shouldn't be. */ |
203c3895 UW |
7062 | set_gdbarch_sofun_address_maybe_missing (gdbarch, 1); |
7063 | ||
ce5eab59 | 7064 | /* Handles single stepping of atomic sequences. */ |
4a7622d1 | 7065 | set_gdbarch_software_single_step (gdbarch, ppc_deal_with_atomic_sequence); |
ce5eab59 | 7066 | |
0df8b418 | 7067 | /* Not sure on this. FIXMEmgo */ |
7a78ae4e ND |
7068 | set_gdbarch_frame_args_skip (gdbarch, 8); |
7069 | ||
143985b7 AF |
7070 | /* Helpers for function argument information. */ |
7071 | set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument); | |
7072 | ||
6f7f3f0d UW |
7073 | /* Trampoline. */ |
7074 | set_gdbarch_in_solib_return_trampoline | |
7075 | (gdbarch, rs6000_in_solib_return_trampoline); | |
7076 | set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code); | |
7077 | ||
4fc771b8 | 7078 | /* Hook in the DWARF CFI frame unwinder. */ |
1af5d7ce | 7079 | dwarf2_append_unwinders (gdbarch); |
4fc771b8 DJ |
7080 | dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_adjust_frame_regnum); |
7081 | ||
9274a07c LM |
7082 | /* Frame handling. */ |
7083 | dwarf2_frame_set_init_reg (gdbarch, ppc_dwarf2_frame_init_reg); | |
7084 | ||
2454a024 UW |
7085 | /* Setup displaced stepping. */ |
7086 | set_gdbarch_displaced_step_copy_insn (gdbarch, | |
7f03bd92 | 7087 | ppc_displaced_step_copy_insn); |
99e40580 UW |
7088 | set_gdbarch_displaced_step_hw_singlestep (gdbarch, |
7089 | ppc_displaced_step_hw_singlestep); | |
2454a024 | 7090 | set_gdbarch_displaced_step_fixup (gdbarch, ppc_displaced_step_fixup); |
2454a024 UW |
7091 | set_gdbarch_displaced_step_location (gdbarch, |
7092 | displaced_step_at_entry_point); | |
7093 | ||
7094 | set_gdbarch_max_insn_length (gdbarch, PPC_INSN_SIZE); | |
7095 | ||
7b112f9c | 7096 | /* Hook in ABI-specific overrides, if they have been registered. */ |
8a4c2d24 | 7097 | info.target_desc = tdesc; |
0dba2a6c | 7098 | info.tdesc_data = tdesc_data; |
4be87837 | 7099 | gdbarch_init_osabi (info, gdbarch); |
7b112f9c | 7100 | |
61a65099 KB |
7101 | switch (info.osabi) |
7102 | { | |
f5aecab8 | 7103 | case GDB_OSABI_LINUX: |
1736a7bd | 7104 | case GDB_OSABI_NETBSD: |
61a65099 | 7105 | case GDB_OSABI_UNKNOWN: |
61a65099 | 7106 | set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc); |
2608dbf8 | 7107 | frame_unwind_append_unwinder (gdbarch, &rs6000_epilogue_frame_unwind); |
1af5d7ce UW |
7108 | frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind); |
7109 | set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id); | |
61a65099 KB |
7110 | frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer); |
7111 | break; | |
7112 | default: | |
61a65099 | 7113 | set_gdbarch_believe_pcc_promotion (gdbarch, 1); |
81332287 KB |
7114 | |
7115 | set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc); | |
2608dbf8 | 7116 | frame_unwind_append_unwinder (gdbarch, &rs6000_epilogue_frame_unwind); |
1af5d7ce UW |
7117 | frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind); |
7118 | set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id); | |
81332287 | 7119 | frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer); |
61a65099 KB |
7120 | } |
7121 | ||
7cc46491 | 7122 | set_tdesc_pseudo_register_type (gdbarch, rs6000_pseudo_register_type); |
6f072a10 PFC |
7123 | set_tdesc_pseudo_register_reggroup_p (gdbarch, |
7124 | rs6000_pseudo_register_reggroup_p); | |
7cc46491 DJ |
7125 | tdesc_use_registers (gdbarch, tdesc, tdesc_data); |
7126 | ||
7127 | /* Override the normal target description method to make the SPE upper | |
7128 | halves anonymous. */ | |
7129 | set_gdbarch_register_name (gdbarch, rs6000_register_name); | |
7130 | ||
604c2f83 LM |
7131 | /* Choose register numbers for all supported pseudo-registers. */ |
7132 | tdep->ppc_ev0_regnum = -1; | |
7133 | tdep->ppc_dl0_regnum = -1; | |
6f072a10 | 7134 | tdep->ppc_v0_alias_regnum = -1; |
604c2f83 LM |
7135 | tdep->ppc_vsr0_regnum = -1; |
7136 | tdep->ppc_efpr0_regnum = -1; | |
8d619c01 EBM |
7137 | tdep->ppc_cdl0_regnum = -1; |
7138 | tdep->ppc_cvsr0_regnum = -1; | |
7139 | tdep->ppc_cefpr0_regnum = -1; | |
9f643768 | 7140 | |
604c2f83 LM |
7141 | cur_reg = gdbarch_num_regs (gdbarch); |
7142 | ||
7143 | if (have_spe) | |
7144 | { | |
7145 | tdep->ppc_ev0_regnum = cur_reg; | |
7146 | cur_reg += 32; | |
7147 | } | |
7148 | if (have_dfp) | |
7149 | { | |
7150 | tdep->ppc_dl0_regnum = cur_reg; | |
7151 | cur_reg += 16; | |
7152 | } | |
6f072a10 PFC |
7153 | if (have_altivec) |
7154 | { | |
7155 | tdep->ppc_v0_alias_regnum = cur_reg; | |
7156 | cur_reg += 32; | |
7157 | } | |
604c2f83 LM |
7158 | if (have_vsx) |
7159 | { | |
7160 | tdep->ppc_vsr0_regnum = cur_reg; | |
7161 | cur_reg += 64; | |
7162 | tdep->ppc_efpr0_regnum = cur_reg; | |
7163 | cur_reg += 32; | |
7164 | } | |
8d619c01 EBM |
7165 | if (have_htm_fpu) |
7166 | { | |
7167 | tdep->ppc_cdl0_regnum = cur_reg; | |
7168 | cur_reg += 16; | |
7169 | } | |
7170 | if (have_htm_vsx) | |
7171 | { | |
7172 | tdep->ppc_cvsr0_regnum = cur_reg; | |
7173 | cur_reg += 64; | |
7174 | tdep->ppc_cefpr0_regnum = cur_reg; | |
7175 | cur_reg += 32; | |
7176 | } | |
f949c649 | 7177 | |
f6efe3f8 | 7178 | gdb_assert (gdbarch_num_cooked_regs (gdbarch) == cur_reg); |
f949c649 | 7179 | |
debb1f09 JB |
7180 | /* Register the ravenscar_arch_ops. */ |
7181 | if (mach == bfd_mach_ppc_e500) | |
7182 | register_e500_ravenscar_ops (gdbarch); | |
7183 | else | |
7184 | register_ppc_ravenscar_ops (gdbarch); | |
7185 | ||
65b48a81 PB |
7186 | set_gdbarch_disassembler_options (gdbarch, &powerpc_disassembler_options); |
7187 | set_gdbarch_valid_disassembler_options (gdbarch, | |
7188 | disassembler_options_powerpc ()); | |
7189 | ||
7a78ae4e | 7190 | return gdbarch; |
c906108c SS |
7191 | } |
7192 | ||
7b112f9c | 7193 | static void |
8b164abb | 7194 | rs6000_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file) |
7b112f9c | 7195 | { |
8b164abb | 7196 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
7b112f9c JT |
7197 | |
7198 | if (tdep == NULL) | |
7199 | return; | |
7200 | ||
4be87837 | 7201 | /* FIXME: Dump gdbarch_tdep. */ |
7b112f9c JT |
7202 | } |
7203 | ||
55eddb0f DJ |
7204 | /* PowerPC-specific commands. */ |
7205 | ||
7206 | static void | |
981a3fb3 | 7207 | set_powerpc_command (const char *args, int from_tty) |
55eddb0f DJ |
7208 | { |
7209 | printf_unfiltered (_("\ | |
7210 | \"set powerpc\" must be followed by an appropriate subcommand.\n")); | |
7211 | help_list (setpowerpccmdlist, "set powerpc ", all_commands, gdb_stdout); | |
7212 | } | |
7213 | ||
7214 | static void | |
981a3fb3 | 7215 | show_powerpc_command (const char *args, int from_tty) |
55eddb0f DJ |
7216 | { |
7217 | cmd_show_list (showpowerpccmdlist, from_tty, ""); | |
7218 | } | |
7219 | ||
7220 | static void | |
eb4c3f4a | 7221 | powerpc_set_soft_float (const char *args, int from_tty, |
55eddb0f DJ |
7222 | struct cmd_list_element *c) |
7223 | { | |
7224 | struct gdbarch_info info; | |
7225 | ||
7226 | /* Update the architecture. */ | |
7227 | gdbarch_info_init (&info); | |
7228 | if (!gdbarch_update_p (info)) | |
9b20d036 | 7229 | internal_error (__FILE__, __LINE__, _("could not update architecture")); |
55eddb0f DJ |
7230 | } |
7231 | ||
7232 | static void | |
eb4c3f4a | 7233 | powerpc_set_vector_abi (const char *args, int from_tty, |
55eddb0f DJ |
7234 | struct cmd_list_element *c) |
7235 | { | |
7236 | struct gdbarch_info info; | |
570dc176 | 7237 | int vector_abi; |
55eddb0f DJ |
7238 | |
7239 | for (vector_abi = POWERPC_VEC_AUTO; | |
7240 | vector_abi != POWERPC_VEC_LAST; | |
7241 | vector_abi++) | |
7242 | if (strcmp (powerpc_vector_abi_string, | |
7243 | powerpc_vector_strings[vector_abi]) == 0) | |
7244 | { | |
aead7601 | 7245 | powerpc_vector_abi_global = (enum powerpc_vector_abi) vector_abi; |
55eddb0f DJ |
7246 | break; |
7247 | } | |
7248 | ||
7249 | if (vector_abi == POWERPC_VEC_LAST) | |
7250 | internal_error (__FILE__, __LINE__, _("Invalid vector ABI accepted: %s."), | |
7251 | powerpc_vector_abi_string); | |
7252 | ||
7253 | /* Update the architecture. */ | |
7254 | gdbarch_info_init (&info); | |
7255 | if (!gdbarch_update_p (info)) | |
9b20d036 | 7256 | internal_error (__FILE__, __LINE__, _("could not update architecture")); |
55eddb0f DJ |
7257 | } |
7258 | ||
e09342b5 TJB |
7259 | /* Show the current setting of the exact watchpoints flag. */ |
7260 | ||
7261 | static void | |
7262 | show_powerpc_exact_watchpoints (struct ui_file *file, int from_tty, | |
7263 | struct cmd_list_element *c, | |
7264 | const char *value) | |
7265 | { | |
7266 | fprintf_filtered (file, _("Use of exact watchpoints is %s.\n"), value); | |
7267 | } | |
7268 | ||
845d4708 | 7269 | /* Read a PPC instruction from memory. */ |
d78489bf AT |
7270 | |
7271 | static unsigned int | |
845d4708 | 7272 | read_insn (struct frame_info *frame, CORE_ADDR pc) |
d78489bf | 7273 | { |
845d4708 AM |
7274 | struct gdbarch *gdbarch = get_frame_arch (frame); |
7275 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
7276 | ||
7277 | return read_memory_unsigned_integer (pc, 4, byte_order); | |
d78489bf AT |
7278 | } |
7279 | ||
7280 | /* Return non-zero if the instructions at PC match the series | |
7281 | described in PATTERN, or zero otherwise. PATTERN is an array of | |
7282 | 'struct ppc_insn_pattern' objects, terminated by an entry whose | |
7283 | mask is zero. | |
7284 | ||
7433498b | 7285 | When the match is successful, fill INSNS[i] with what PATTERN[i] |
d78489bf | 7286 | matched. If PATTERN[i] is optional, and the instruction wasn't |
7433498b AM |
7287 | present, set INSNS[i] to 0 (which is not a valid PPC instruction). |
7288 | INSNS should have as many elements as PATTERN, minus the terminator. | |
7289 | Note that, if PATTERN contains optional instructions which aren't | |
7290 | present in memory, then INSNS will have holes, so INSNS[i] isn't | |
7291 | necessarily the i'th instruction in memory. */ | |
d78489bf AT |
7292 | |
7293 | int | |
845d4708 | 7294 | ppc_insns_match_pattern (struct frame_info *frame, CORE_ADDR pc, |
7433498b | 7295 | const struct ppc_insn_pattern *pattern, |
845d4708 | 7296 | unsigned int *insns) |
d78489bf AT |
7297 | { |
7298 | int i; | |
845d4708 | 7299 | unsigned int insn; |
d78489bf | 7300 | |
845d4708 | 7301 | for (i = 0, insn = 0; pattern[i].mask; i++) |
d78489bf | 7302 | { |
845d4708 AM |
7303 | if (insn == 0) |
7304 | insn = read_insn (frame, pc); | |
7305 | insns[i] = 0; | |
7306 | if ((insn & pattern[i].mask) == pattern[i].data) | |
7307 | { | |
7308 | insns[i] = insn; | |
7309 | pc += 4; | |
7310 | insn = 0; | |
7311 | } | |
7312 | else if (!pattern[i].optional) | |
d78489bf AT |
7313 | return 0; |
7314 | } | |
7315 | ||
7316 | return 1; | |
7317 | } | |
7318 | ||
7319 | /* Return the 'd' field of the d-form instruction INSN, properly | |
7320 | sign-extended. */ | |
7321 | ||
7322 | CORE_ADDR | |
7323 | ppc_insn_d_field (unsigned int insn) | |
7324 | { | |
7325 | return ((((CORE_ADDR) insn & 0xffff) ^ 0x8000) - 0x8000); | |
7326 | } | |
7327 | ||
7328 | /* Return the 'ds' field of the ds-form instruction INSN, with the two | |
7329 | zero bits concatenated at the right, and properly | |
7330 | sign-extended. */ | |
7331 | ||
7332 | CORE_ADDR | |
7333 | ppc_insn_ds_field (unsigned int insn) | |
7334 | { | |
7335 | return ((((CORE_ADDR) insn & 0xfffc) ^ 0x8000) - 0x8000); | |
7336 | } | |
7337 | ||
c906108c SS |
7338 | /* Initialization code. */ |
7339 | ||
7340 | void | |
fba45db2 | 7341 | _initialize_rs6000_tdep (void) |
c906108c | 7342 | { |
7b112f9c JT |
7343 | gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep); |
7344 | gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep); | |
7cc46491 DJ |
7345 | |
7346 | /* Initialize the standard target descriptions. */ | |
7347 | initialize_tdesc_powerpc_32 (); | |
7284e1be | 7348 | initialize_tdesc_powerpc_altivec32 (); |
604c2f83 | 7349 | initialize_tdesc_powerpc_vsx32 (); |
7cc46491 DJ |
7350 | initialize_tdesc_powerpc_403 (); |
7351 | initialize_tdesc_powerpc_403gc (); | |
4d09ffea | 7352 | initialize_tdesc_powerpc_405 (); |
7cc46491 DJ |
7353 | initialize_tdesc_powerpc_505 (); |
7354 | initialize_tdesc_powerpc_601 (); | |
7355 | initialize_tdesc_powerpc_602 (); | |
7356 | initialize_tdesc_powerpc_603 (); | |
7357 | initialize_tdesc_powerpc_604 (); | |
7358 | initialize_tdesc_powerpc_64 (); | |
7284e1be | 7359 | initialize_tdesc_powerpc_altivec64 (); |
604c2f83 | 7360 | initialize_tdesc_powerpc_vsx64 (); |
7cc46491 DJ |
7361 | initialize_tdesc_powerpc_7400 (); |
7362 | initialize_tdesc_powerpc_750 (); | |
7363 | initialize_tdesc_powerpc_860 (); | |
7364 | initialize_tdesc_powerpc_e500 (); | |
7365 | initialize_tdesc_rs6000 (); | |
55eddb0f DJ |
7366 | |
7367 | /* Add root prefix command for all "set powerpc"/"show powerpc" | |
7368 | commands. */ | |
7369 | add_prefix_cmd ("powerpc", no_class, set_powerpc_command, | |
7370 | _("Various PowerPC-specific commands."), | |
7371 | &setpowerpccmdlist, "set powerpc ", 0, &setlist); | |
7372 | ||
7373 | add_prefix_cmd ("powerpc", no_class, show_powerpc_command, | |
7374 | _("Various PowerPC-specific commands."), | |
7375 | &showpowerpccmdlist, "show powerpc ", 0, &showlist); | |
7376 | ||
7377 | /* Add a command to allow the user to force the ABI. */ | |
7378 | add_setshow_auto_boolean_cmd ("soft-float", class_support, | |
7379 | &powerpc_soft_float_global, | |
7380 | _("Set whether to use a soft-float ABI."), | |
7381 | _("Show whether to use a soft-float ABI."), | |
7382 | NULL, | |
7383 | powerpc_set_soft_float, NULL, | |
7384 | &setpowerpccmdlist, &showpowerpccmdlist); | |
7385 | ||
7386 | add_setshow_enum_cmd ("vector-abi", class_support, powerpc_vector_strings, | |
7387 | &powerpc_vector_abi_string, | |
7388 | _("Set the vector ABI."), | |
7389 | _("Show the vector ABI."), | |
7390 | NULL, powerpc_set_vector_abi, NULL, | |
7391 | &setpowerpccmdlist, &showpowerpccmdlist); | |
e09342b5 TJB |
7392 | |
7393 | add_setshow_boolean_cmd ("exact-watchpoints", class_support, | |
7394 | &target_exact_watchpoints, | |
7395 | _("\ | |
7396 | Set whether to use just one debug register for watchpoints on scalars."), | |
7397 | _("\ | |
7398 | Show whether to use just one debug register for watchpoints on scalars."), | |
7399 | _("\ | |
7400 | If true, GDB will use only one debug register when watching a variable of\n\ | |
7401 | scalar type, thus assuming that the variable is accessed through the address\n\ | |
7402 | of its first byte."), | |
7403 | NULL, show_powerpc_exact_watchpoints, | |
7404 | &setpowerpccmdlist, &showpowerpccmdlist); | |
c906108c | 7405 | } |