]> Git Repo - qemu.git/blame - hw/ppc/spapr.c
ppc: xics: fix compilation with CentOS 6
[qemu.git] / hw / ppc / spapr.c
CommitLineData
9fdf0c29
DG
1/*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 *
26 */
0d75590d 27#include "qemu/osdep.h"
da34e65c 28#include "qapi/error.h"
9c17d615 29#include "sysemu/sysemu.h"
e35704ba 30#include "sysemu/numa.h"
83c9f4ca 31#include "hw/hw.h"
03dd024f 32#include "qemu/log.h"
71461b0f 33#include "hw/fw-path-provider.h"
9fdf0c29 34#include "elf.h"
1422e32d 35#include "net/net.h"
ad440b4a 36#include "sysemu/device_tree.h"
fa1d36df 37#include "sysemu/block-backend.h"
9c17d615 38#include "sysemu/cpus.h"
b3946626 39#include "sysemu/hw_accel.h"
e97c3636 40#include "kvm_ppc.h"
ff14e817 41#include "migration/migration.h"
4be21d56 42#include "mmu-hash64.h"
b4db5413 43#include "mmu-book3s-v3.h"
3794d548 44#include "qom/cpu.h"
9fdf0c29
DG
45
46#include "hw/boards.h"
0d09e41a 47#include "hw/ppc/ppc.h"
9fdf0c29
DG
48#include "hw/loader.h"
49
7804c353 50#include "hw/ppc/fdt.h"
0d09e41a
PB
51#include "hw/ppc/spapr.h"
52#include "hw/ppc/spapr_vio.h"
53#include "hw/pci-host/spapr.h"
54#include "hw/ppc/xics.h"
a2cb15b0 55#include "hw/pci/msi.h"
9fdf0c29 56
83c9f4ca 57#include "hw/pci/pci.h"
71461b0f
AK
58#include "hw/scsi/scsi.h"
59#include "hw/virtio/virtio-scsi.h"
f61b4bed 60
022c62cb 61#include "exec/address-spaces.h"
35139a59 62#include "hw/usb.h"
1de7afc9 63#include "qemu/config-file.h"
135a129a 64#include "qemu/error-report.h"
2a6593cb 65#include "trace.h"
34316482 66#include "hw/nmi.h"
6449da45 67#include "hw/intc/intc.h"
890c2b77 68
68a27b20 69#include "hw/compat.h"
f348b6d1 70#include "qemu/cutils.h"
94a94e4c 71#include "hw/ppc/spapr_cpu_core.h"
2474bfd4 72#include "qmp-commands.h"
68a27b20 73
9fdf0c29
DG
74#include <libfdt.h>
75
4d8d5467
BH
76/* SLOF memory layout:
77 *
78 * SLOF raw image loaded at 0, copies its romfs right below the flat
79 * device-tree, then position SLOF itself 31M below that
80 *
81 * So we set FW_OVERHEAD to 40MB which should account for all of that
82 * and more
83 *
84 * We load our kernel at 4M, leaving space for SLOF initial image
85 */
38b02bd8 86#define FDT_MAX_SIZE 0x100000
39ac8455 87#define RTAS_MAX_SIZE 0x10000
b7d1f77a 88#define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
a9f8ad8f
DG
89#define FW_MAX_SIZE 0x400000
90#define FW_FILE_NAME "slof.bin"
4d8d5467
BH
91#define FW_OVERHEAD 0x2800000
92#define KERNEL_LOAD_ADDR FW_MAX_SIZE
a9f8ad8f 93
4d8d5467 94#define MIN_RMA_SLOF 128UL
9fdf0c29 95
0c103f8e
DG
96#define PHANDLE_XICP 0x00001111
97
7f763a5d
DG
98#define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift))
99
71cd4dac
CLG
100static ICSState *spapr_ics_create(sPAPRMachineState *spapr,
101 const char *type_ics,
102 int nr_irqs, Error **errp)
c04d6cfa 103{
4e4169f7 104 Error *err = NULL, *local_err = NULL;
71cd4dac 105 Object *obj;
4e4169f7 106
71cd4dac
CLG
107 obj = object_new(type_ics);
108 object_property_add_child(OBJECT(spapr), "ics", obj, NULL);
109 object_property_add_const_link(obj, "xics", OBJECT(spapr), &error_abort);
110 object_property_set_int(obj, nr_irqs, "nr-irqs", &err);
111 object_property_set_bool(obj, true, "realized", &local_err);
4e4169f7
CLG
112 error_propagate(&err, local_err);
113 if (err) {
5bc8d26d 114 error_propagate(errp, err);
71cd4dac 115 return NULL;
4e4169f7 116 }
4e4169f7 117
71cd4dac 118 return ICS_SIMPLE(obj);
c04d6cfa
AL
119}
120
71cd4dac 121static void xics_system_init(MachineState *machine, int nr_irqs, Error **errp)
c04d6cfa 122{
71cd4dac 123 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
c04d6cfa 124
11ad93f6 125 if (kvm_enabled()) {
34f2af3d
MA
126 Error *err = NULL;
127
2192a930 128 if (machine_kernel_irqchip_allowed(machine) &&
71cd4dac
CLG
129 !xics_kvm_init(spapr, errp)) {
130 spapr->icp_type = TYPE_KVM_ICP;
131 spapr->ics = spapr_ics_create(spapr, TYPE_ICS_KVM, nr_irqs, &err);
11ad93f6 132 }
71cd4dac 133 if (machine_kernel_irqchip_required(machine) && !spapr->ics) {
b83baa60
MA
134 error_reportf_err(err,
135 "kernel_irqchip requested but unavailable: ");
136 } else {
137 error_free(err);
11ad93f6
DG
138 }
139 }
140
71cd4dac
CLG
141 if (!spapr->ics) {
142 xics_spapr_init(spapr, errp);
143 spapr->icp_type = TYPE_ICP;
144 spapr->ics = spapr_ics_create(spapr, TYPE_ICS_SIMPLE, nr_irqs, errp);
c04d6cfa 145 }
c04d6cfa
AL
146}
147
833d4668
AK
148static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
149 int smt_threads)
150{
151 int i, ret = 0;
152 uint32_t servers_prop[smt_threads];
153 uint32_t gservers_prop[smt_threads * 2];
154 int index = ppc_get_vcpu_dt_id(cpu);
155
d6e166c0
DG
156 if (cpu->compat_pvr) {
157 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
6d9412ea
AK
158 if (ret < 0) {
159 return ret;
160 }
161 }
162
833d4668
AK
163 /* Build interrupt servers and gservers properties */
164 for (i = 0; i < smt_threads; i++) {
165 servers_prop[i] = cpu_to_be32(index + i);
166 /* Hack, direct the group queues back to cpu 0 */
167 gservers_prop[i*2] = cpu_to_be32(index + i);
168 gservers_prop[i*2 + 1] = 0;
169 }
170 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
171 servers_prop, sizeof(servers_prop));
172 if (ret < 0) {
173 return ret;
174 }
175 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
176 gservers_prop, sizeof(gservers_prop));
177
178 return ret;
179}
180
0da6f3fe
BR
181static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, CPUState *cs)
182{
183 int ret = 0;
184 PowerPCCPU *cpu = POWERPC_CPU(cs);
185 int index = ppc_get_vcpu_dt_id(cpu);
186 uint32_t associativity[] = {cpu_to_be32(0x5),
187 cpu_to_be32(0x0),
188 cpu_to_be32(0x0),
189 cpu_to_be32(0x0),
190 cpu_to_be32(cs->numa_node),
191 cpu_to_be32(index)};
192
193 /* Advertise NUMA via ibm,associativity */
194 if (nb_numa_nodes > 1) {
195 ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
196 sizeof(associativity));
197 }
198
199 return ret;
200}
201
86d5771a 202/* Populate the "ibm,pa-features" property */
e957f6a9
SB
203static void spapr_populate_pa_features(CPUPPCState *env, void *fdt, int offset,
204 bool legacy_guest)
86d5771a
SB
205{
206 uint8_t pa_features_206[] = { 6, 0,
207 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
208 uint8_t pa_features_207[] = { 24, 0,
209 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
210 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
211 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
212 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
9fb4541f
SB
213 uint8_t pa_features_300[] = { 66, 0,
214 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
215 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
216 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
217 /* 6: DS207 */
218 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
219 /* 16: Vector */
86d5771a 220 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
9fb4541f
SB
221 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
222 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 18 - 23 */
223 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
224 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
225 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
226 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
227 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
228 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
229 /* 42: PM, 44: PC RA, 46: SC vec'd */
230 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
231 /* 48: SIMD, 50: QP BFP, 52: String */
232 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
233 /* 54: DecFP, 56: DecI, 58: SHA */
234 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
235 /* 60: NM atomic, 62: RNG */
236 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
237 };
86d5771a
SB
238 uint8_t *pa_features;
239 size_t pa_size;
240
241 switch (POWERPC_MMU_VER(env->mmu_model)) {
242 case POWERPC_MMU_VER_2_06:
243 pa_features = pa_features_206;
244 pa_size = sizeof(pa_features_206);
245 break;
246 case POWERPC_MMU_VER_2_07:
247 pa_features = pa_features_207;
248 pa_size = sizeof(pa_features_207);
249 break;
250 case POWERPC_MMU_VER_3_00:
251 pa_features = pa_features_300;
252 pa_size = sizeof(pa_features_300);
253 break;
254 default:
255 return;
256 }
257
258 if (env->ci_large_pages) {
259 /*
260 * Note: we keep CI large pages off by default because a 64K capable
261 * guest provisioned with large pages might otherwise try to map a qemu
262 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
263 * even if that qemu runs on a 4k host.
264 * We dd this bit back here if we are confident this is not an issue
265 */
266 pa_features[3] |= 0x20;
267 }
268 if (kvmppc_has_cap_htm() && pa_size > 24) {
269 pa_features[24] |= 0x80; /* Transactional memory support */
270 }
e957f6a9
SB
271 if (legacy_guest && pa_size > 40) {
272 /* Workaround for broken kernels that attempt (guest) radix
273 * mode when they can't handle it, if they see the radix bit set
274 * in pa-features. So hide it from them. */
275 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
276 }
86d5771a
SB
277
278 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
279}
280
28e02042 281static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
6e806cc3 282{
82677ed2
AK
283 int ret = 0, offset, cpus_offset;
284 CPUState *cs;
6e806cc3
BR
285 char cpu_model[32];
286 int smt = kvmppc_smt_threads();
7f763a5d 287 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
6e806cc3 288
82677ed2
AK
289 CPU_FOREACH(cs) {
290 PowerPCCPU *cpu = POWERPC_CPU(cs);
e957f6a9 291 CPUPPCState *env = &cpu->env;
82677ed2
AK
292 DeviceClass *dc = DEVICE_GET_CLASS(cs);
293 int index = ppc_get_vcpu_dt_id(cpu);
12dbeb16 294 int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
6e806cc3 295
0f20ba62 296 if ((index % smt) != 0) {
6e806cc3
BR
297 continue;
298 }
299
82677ed2 300 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
6e806cc3 301
82677ed2
AK
302 cpus_offset = fdt_path_offset(fdt, "/cpus");
303 if (cpus_offset < 0) {
304 cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
305 "cpus");
306 if (cpus_offset < 0) {
307 return cpus_offset;
308 }
309 }
310 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
6e806cc3 311 if (offset < 0) {
82677ed2
AK
312 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
313 if (offset < 0) {
314 return offset;
315 }
6e806cc3
BR
316 }
317
7f763a5d
DG
318 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
319 pft_size_prop, sizeof(pft_size_prop));
6e806cc3
BR
320 if (ret < 0) {
321 return ret;
322 }
833d4668 323
0da6f3fe
BR
324 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cs);
325 if (ret < 0) {
326 return ret;
327 }
328
12dbeb16 329 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
833d4668
AK
330 if (ret < 0) {
331 return ret;
332 }
e957f6a9
SB
333
334 spapr_populate_pa_features(env, fdt, offset,
335 spapr->cas_legacy_guest_workaround);
6e806cc3
BR
336 }
337 return ret;
338}
339
b082d65a
AK
340static hwaddr spapr_node0_size(void)
341{
fb164994
DG
342 MachineState *machine = MACHINE(qdev_get_machine());
343
b082d65a
AK
344 if (nb_numa_nodes) {
345 int i;
346 for (i = 0; i < nb_numa_nodes; ++i) {
347 if (numa_info[i].node_mem) {
fb164994
DG
348 return MIN(pow2floor(numa_info[i].node_mem),
349 machine->ram_size);
b082d65a
AK
350 }
351 }
352 }
fb164994 353 return machine->ram_size;
b082d65a
AK
354}
355
a1d59c0f
AK
356static void add_str(GString *s, const gchar *s1)
357{
358 g_string_append_len(s, s1, strlen(s1) + 1);
359}
7f763a5d 360
03d196b7 361static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
26a8c353
AK
362 hwaddr size)
363{
364 uint32_t associativity[] = {
365 cpu_to_be32(0x4), /* length */
366 cpu_to_be32(0x0), cpu_to_be32(0x0),
c3b4f589 367 cpu_to_be32(0x0), cpu_to_be32(nodeid)
26a8c353
AK
368 };
369 char mem_name[32];
370 uint64_t mem_reg_property[2];
371 int off;
372
373 mem_reg_property[0] = cpu_to_be64(start);
374 mem_reg_property[1] = cpu_to_be64(size);
375
376 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
377 off = fdt_add_subnode(fdt, 0, mem_name);
378 _FDT(off);
379 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
380 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
381 sizeof(mem_reg_property))));
382 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
383 sizeof(associativity))));
03d196b7 384 return off;
26a8c353
AK
385}
386
28e02042 387static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
7f763a5d 388{
fb164994 389 MachineState *machine = MACHINE(spapr);
7db8a127
AK
390 hwaddr mem_start, node_size;
391 int i, nb_nodes = nb_numa_nodes;
392 NodeInfo *nodes = numa_info;
393 NodeInfo ramnode;
394
395 /* No NUMA nodes, assume there is just one node with whole RAM */
396 if (!nb_numa_nodes) {
397 nb_nodes = 1;
fb164994 398 ramnode.node_mem = machine->ram_size;
7db8a127 399 nodes = &ramnode;
5fe269b1 400 }
7f763a5d 401
7db8a127
AK
402 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
403 if (!nodes[i].node_mem) {
404 continue;
405 }
fb164994 406 if (mem_start >= machine->ram_size) {
5fe269b1
PM
407 node_size = 0;
408 } else {
7db8a127 409 node_size = nodes[i].node_mem;
fb164994
DG
410 if (node_size > machine->ram_size - mem_start) {
411 node_size = machine->ram_size - mem_start;
5fe269b1
PM
412 }
413 }
7db8a127
AK
414 if (!mem_start) {
415 /* ppc_spapr_init() checks for rma_size <= node0_size already */
e8f986fc 416 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
7db8a127
AK
417 mem_start += spapr->rma_size;
418 node_size -= spapr->rma_size;
419 }
6010818c
AK
420 for ( ; node_size; ) {
421 hwaddr sizetmp = pow2floor(node_size);
422
423 /* mem_start != 0 here */
424 if (ctzl(mem_start) < ctzl(sizetmp)) {
425 sizetmp = 1ULL << ctzl(mem_start);
426 }
427
428 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
429 node_size -= sizetmp;
430 mem_start += sizetmp;
431 }
7f763a5d
DG
432 }
433
434 return 0;
435}
436
0da6f3fe
BR
437static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
438 sPAPRMachineState *spapr)
439{
440 PowerPCCPU *cpu = POWERPC_CPU(cs);
441 CPUPPCState *env = &cpu->env;
442 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
443 int index = ppc_get_vcpu_dt_id(cpu);
444 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
445 0xffffffff, 0xffffffff};
afd10a0f
BR
446 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
447 : SPAPR_TIMEBASE_FREQ;
0da6f3fe
BR
448 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
449 uint32_t page_sizes_prop[64];
450 size_t page_sizes_prop_size;
22419c2a 451 uint32_t vcpus_per_socket = smp_threads * smp_cores;
0da6f3fe 452 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
12dbeb16 453 int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
af81cf32
BR
454 sPAPRDRConnector *drc;
455 sPAPRDRConnectorClass *drck;
456 int drc_index;
c64abd1f
SB
457 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
458 int i;
af81cf32
BR
459
460 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index);
461 if (drc) {
462 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
463 drc_index = drck->get_index(drc);
464 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
465 }
0da6f3fe
BR
466
467 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
468 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
469
470 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
471 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
472 env->dcache_line_size)));
473 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
474 env->dcache_line_size)));
475 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
476 env->icache_line_size)));
477 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
478 env->icache_line_size)));
479
480 if (pcc->l1_dcache_size) {
481 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
482 pcc->l1_dcache_size)));
483 } else {
ce9863b7 484 error_report("Warning: Unknown L1 dcache size for cpu");
0da6f3fe
BR
485 }
486 if (pcc->l1_icache_size) {
487 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
488 pcc->l1_icache_size)));
489 } else {
ce9863b7 490 error_report("Warning: Unknown L1 icache size for cpu");
0da6f3fe
BR
491 }
492
493 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
494 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
fd5da5c4 495 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
0da6f3fe
BR
496 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
497 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
498 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
499
500 if (env->spr_cb[SPR_PURR].oea_read) {
501 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
502 }
503
504 if (env->mmu_model & POWERPC_MMU_1TSEG) {
505 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
506 segs, sizeof(segs))));
507 }
508
509 /* Advertise VMX/VSX (vector extensions) if available
510 * 0 / no property == no vector extensions
511 * 1 == VMX / Altivec available
512 * 2 == VSX available */
513 if (env->insns_flags & PPC_ALTIVEC) {
514 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
515
516 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
517 }
518
519 /* Advertise DFP (Decimal Floating Point) if available
520 * 0 / no property == no DFP
521 * 1 == DFP available */
522 if (env->insns_flags2 & PPC2_DFP) {
523 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
524 }
525
3654fa95 526 page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop,
0da6f3fe
BR
527 sizeof(page_sizes_prop));
528 if (page_sizes_prop_size) {
529 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
530 page_sizes_prop, page_sizes_prop_size)));
531 }
532
e957f6a9 533 spapr_populate_pa_features(env, fdt, offset, false);
90da0d5a 534
0da6f3fe 535 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
22419c2a 536 cs->cpu_index / vcpus_per_socket)));
0da6f3fe
BR
537
538 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
539 pft_size_prop, sizeof(pft_size_prop))));
540
541 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cs));
542
12dbeb16 543 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
c64abd1f
SB
544
545 if (pcc->radix_page_info) {
546 for (i = 0; i < pcc->radix_page_info->count; i++) {
547 radix_AP_encodings[i] =
548 cpu_to_be32(pcc->radix_page_info->entries[i]);
549 }
550 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
551 radix_AP_encodings,
552 pcc->radix_page_info->count *
553 sizeof(radix_AP_encodings[0]))));
554 }
0da6f3fe
BR
555}
556
557static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
558{
559 CPUState *cs;
560 int cpus_offset;
561 char *nodename;
562 int smt = kvmppc_smt_threads();
563
564 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
565 _FDT(cpus_offset);
566 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
567 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
568
569 /*
570 * We walk the CPUs in reverse order to ensure that CPU DT nodes
571 * created by fdt_add_subnode() end up in the right order in FDT
572 * for the guest kernel the enumerate the CPUs correctly.
573 */
574 CPU_FOREACH_REVERSE(cs) {
575 PowerPCCPU *cpu = POWERPC_CPU(cs);
576 int index = ppc_get_vcpu_dt_id(cpu);
577 DeviceClass *dc = DEVICE_GET_CLASS(cs);
578 int offset;
579
580 if ((index % smt) != 0) {
581 continue;
582 }
583
584 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
585 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
586 g_free(nodename);
587 _FDT(offset);
588 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
589 }
590
591}
592
03d196b7
BR
593/*
594 * Adds ibm,dynamic-reconfiguration-memory node.
595 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
596 * of this device tree node.
597 */
598static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
599{
600 MachineState *machine = MACHINE(spapr);
601 int ret, i, offset;
602 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
603 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
d0e5a8f2
BR
604 uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size;
605 uint32_t nr_lmbs = (spapr->hotplug_memory.base +
606 memory_region_size(&spapr->hotplug_memory.mr)) /
607 lmb_size;
03d196b7 608 uint32_t *int_buf, *cur_index, buf_len;
6663864e 609 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
03d196b7 610
16c25aef 611 /*
d0e5a8f2 612 * Don't create the node if there is no hotpluggable memory
16c25aef 613 */
d0e5a8f2 614 if (machine->ram_size == machine->maxram_size) {
16c25aef
BR
615 return 0;
616 }
617
ef001f06
TH
618 /*
619 * Allocate enough buffer size to fit in ibm,dynamic-memory
620 * or ibm,associativity-lookup-arrays
621 */
622 buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
623 * sizeof(uint32_t);
03d196b7
BR
624 cur_index = int_buf = g_malloc0(buf_len);
625
626 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
627
628 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
629 sizeof(prop_lmb_size));
630 if (ret < 0) {
631 goto out;
632 }
633
634 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
635 if (ret < 0) {
636 goto out;
637 }
638
639 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
640 if (ret < 0) {
641 goto out;
642 }
643
644 /* ibm,dynamic-memory */
645 int_buf[0] = cpu_to_be32(nr_lmbs);
646 cur_index++;
647 for (i = 0; i < nr_lmbs; i++) {
d0e5a8f2 648 uint64_t addr = i * lmb_size;
03d196b7
BR
649 uint32_t *dynamic_memory = cur_index;
650
d0e5a8f2
BR
651 if (i >= hotplug_lmb_start) {
652 sPAPRDRConnector *drc;
653 sPAPRDRConnectorClass *drck;
654
655 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB, i);
656 g_assert(drc);
657 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
658
659 dynamic_memory[0] = cpu_to_be32(addr >> 32);
660 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
661 dynamic_memory[2] = cpu_to_be32(drck->get_index(drc));
662 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
663 dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL));
664 if (memory_region_present(get_system_memory(), addr)) {
665 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
666 } else {
667 dynamic_memory[5] = cpu_to_be32(0);
668 }
03d196b7 669 } else {
d0e5a8f2
BR
670 /*
671 * LMB information for RMA, boot time RAM and gap b/n RAM and
672 * hotplug memory region -- all these are marked as reserved
673 * and as having no valid DRC.
674 */
675 dynamic_memory[0] = cpu_to_be32(addr >> 32);
676 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
677 dynamic_memory[2] = cpu_to_be32(0);
678 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
679 dynamic_memory[4] = cpu_to_be32(-1);
680 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
681 SPAPR_LMB_FLAGS_DRC_INVALID);
03d196b7
BR
682 }
683
684 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
685 }
686 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
687 if (ret < 0) {
688 goto out;
689 }
690
691 /* ibm,associativity-lookup-arrays */
692 cur_index = int_buf;
6663864e 693 int_buf[0] = cpu_to_be32(nr_nodes);
03d196b7
BR
694 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
695 cur_index += 2;
6663864e 696 for (i = 0; i < nr_nodes; i++) {
03d196b7
BR
697 uint32_t associativity[] = {
698 cpu_to_be32(0x0),
699 cpu_to_be32(0x0),
700 cpu_to_be32(0x0),
701 cpu_to_be32(i)
702 };
703 memcpy(cur_index, associativity, sizeof(associativity));
704 cur_index += 4;
705 }
706 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
707 (cur_index - int_buf) * sizeof(uint32_t));
708out:
709 g_free(int_buf);
710 return ret;
711}
712
6787d27b
MR
713static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
714 sPAPROptionVector *ov5_updates)
715{
716 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
417ece33 717 int ret = 0, offset;
6787d27b
MR
718
719 /* Generate ibm,dynamic-reconfiguration-memory node if required */
720 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
721 g_assert(smc->dr_lmb_enabled);
722 ret = spapr_populate_drconf_memory(spapr, fdt);
417ece33
MR
723 if (ret) {
724 goto out;
725 }
6787d27b
MR
726 }
727
417ece33
MR
728 offset = fdt_path_offset(fdt, "/chosen");
729 if (offset < 0) {
730 offset = fdt_add_subnode(fdt, 0, "chosen");
731 if (offset < 0) {
732 return offset;
733 }
734 }
735 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
736 "ibm,architecture-vec-5");
737
738out:
6787d27b
MR
739 return ret;
740}
741
03d196b7
BR
742int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
743 target_ulong addr, target_ulong size,
6787d27b 744 sPAPROptionVector *ov5_updates)
03d196b7
BR
745{
746 void *fdt, *fdt_skel;
747 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
03d196b7
BR
748
749 size -= sizeof(hdr);
750
751 /* Create sceleton */
752 fdt_skel = g_malloc0(size);
753 _FDT((fdt_create(fdt_skel, size)));
754 _FDT((fdt_begin_node(fdt_skel, "")));
755 _FDT((fdt_end_node(fdt_skel)));
756 _FDT((fdt_finish(fdt_skel)));
757 fdt = g_malloc0(size);
758 _FDT((fdt_open_into(fdt_skel, fdt, size)));
759 g_free(fdt_skel);
760
761 /* Fixup cpu nodes */
5b120785 762 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
03d196b7 763
6787d27b
MR
764 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
765 return -1;
03d196b7
BR
766 }
767
768 /* Pack resulting tree */
769 _FDT((fdt_pack(fdt)));
770
771 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
772 trace_spapr_cas_failed(size);
773 return -1;
774 }
775
776 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
777 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
778 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
779 g_free(fdt);
780
781 return 0;
782}
783
3f5dabce
DG
784static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
785{
786 int rtas;
787 GString *hypertas = g_string_sized_new(256);
788 GString *qemu_hypertas = g_string_sized_new(256);
789 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
790 uint64_t max_hotplug_addr = spapr->hotplug_memory.base +
791 memory_region_size(&spapr->hotplug_memory.mr);
792 uint32_t lrdr_capacity[] = {
793 cpu_to_be32(max_hotplug_addr >> 32),
794 cpu_to_be32(max_hotplug_addr & 0xffffffff),
795 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
796 cpu_to_be32(max_cpus / smp_threads),
797 };
798
799 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
800
801 /* hypertas */
802 add_str(hypertas, "hcall-pft");
803 add_str(hypertas, "hcall-term");
804 add_str(hypertas, "hcall-dabr");
805 add_str(hypertas, "hcall-interrupt");
806 add_str(hypertas, "hcall-tce");
807 add_str(hypertas, "hcall-vio");
808 add_str(hypertas, "hcall-splpar");
809 add_str(hypertas, "hcall-bulk");
810 add_str(hypertas, "hcall-set-mode");
811 add_str(hypertas, "hcall-sprg0");
812 add_str(hypertas, "hcall-copy");
813 add_str(hypertas, "hcall-debug");
814 add_str(qemu_hypertas, "hcall-memop1");
815
816 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
817 add_str(hypertas, "hcall-multi-tce");
818 }
819 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
820 hypertas->str, hypertas->len));
821 g_string_free(hypertas, TRUE);
822 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
823 qemu_hypertas->str, qemu_hypertas->len));
824 g_string_free(qemu_hypertas, TRUE);
825
826 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
827 refpoints, sizeof(refpoints)));
828
829 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
830 RTAS_ERROR_LOG_MAX));
831 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
832 RTAS_EVENT_SCAN_RATE));
833
834 if (msi_nonbroken) {
835 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
836 }
837
838 /*
839 * According to PAPR, rtas ibm,os-term does not guarantee a return
840 * back to the guest cpu.
841 *
842 * While an additional ibm,extended-os-term property indicates
843 * that rtas call return will always occur. Set this property.
844 */
845 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
846
847 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
848 lrdr_capacity, sizeof(lrdr_capacity)));
849
850 spapr_dt_rtas_tokens(fdt, rtas);
851}
852
9fb4541f
SB
853/* Prepare ibm,arch-vec-5-platform-support, which indicates the MMU features
854 * that the guest may request and thus the valid values for bytes 24..26 of
855 * option vector 5: */
856static void spapr_dt_ov5_platform_support(void *fdt, int chosen)
857{
545d6e2b
SJS
858 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
859
9fb4541f
SB
860 char val[2 * 3] = {
861 24, 0x00, /* Hash/Radix, filled in below. */
862 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
863 26, 0x40, /* Radix options: GTSE == yes. */
864 };
865
866 if (kvm_enabled()) {
867 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
868 val[1] = 0x80; /* OV5_MMU_BOTH */
869 } else if (kvmppc_has_cap_mmu_radix()) {
870 val[1] = 0x40; /* OV5_MMU_RADIX_300 */
871 } else {
872 val[1] = 0x00; /* Hash */
873 }
874 } else {
545d6e2b
SJS
875 if (first_ppc_cpu->env.mmu_model & POWERPC_MMU_V3) {
876 /* V3 MMU supports both hash and radix (with dynamic switching) */
877 val[1] = 0xC0;
878 } else {
879 /* Otherwise we can only do hash */
880 val[1] = 0x00;
881 }
9fb4541f
SB
882 }
883 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
884 val, sizeof(val)));
885}
886
7c866c6a
DG
887static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
888{
889 MachineState *machine = MACHINE(spapr);
890 int chosen;
891 const char *boot_device = machine->boot_order;
892 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
893 size_t cb = 0;
894 char *bootlist = get_boot_devices_list(&cb, true);
7c866c6a
DG
895
896 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
897
7c866c6a
DG
898 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
899 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
900 spapr->initrd_base));
901 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
902 spapr->initrd_base + spapr->initrd_size));
903
904 if (spapr->kernel_size) {
905 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
906 cpu_to_be64(spapr->kernel_size) };
907
908 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
909 &kprop, sizeof(kprop)));
910 if (spapr->kernel_le) {
911 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
912 }
913 }
914 if (boot_menu) {
915 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
916 }
917 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
918 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
919 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
920
921 if (cb && bootlist) {
922 int i;
923
924 for (i = 0; i < cb; i++) {
925 if (bootlist[i] == '\n') {
926 bootlist[i] = ' ';
927 }
928 }
929 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
930 }
931
932 if (boot_device && strlen(boot_device)) {
933 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
934 }
935
936 if (!spapr->has_graphics && stdout_path) {
937 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
938 }
939
9fb4541f
SB
940 spapr_dt_ov5_platform_support(fdt, chosen);
941
7c866c6a
DG
942 g_free(stdout_path);
943 g_free(bootlist);
944}
945
fca5f2dc
DG
946static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
947{
948 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
949 * KVM to work under pHyp with some guest co-operation */
950 int hypervisor;
951 uint8_t hypercall[16];
952
953 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
954 /* indicate KVM hypercall interface */
955 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
956 if (kvmppc_has_cap_fixup_hcalls()) {
957 /*
958 * Older KVM versions with older guest kernels were broken
959 * with the magic page, don't allow the guest to map it.
960 */
961 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
962 sizeof(hypercall))) {
963 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
964 hypercall, sizeof(hypercall)));
965 }
966 }
967}
968
997b6cfc
DG
969static void *spapr_build_fdt(sPAPRMachineState *spapr,
970 hwaddr rtas_addr,
971 hwaddr rtas_size)
a3467baa 972{
5b2128d2 973 MachineState *machine = MACHINE(qdev_get_machine());
3c0c47e3 974 MachineClass *mc = MACHINE_GET_CLASS(machine);
c20d332a 975 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
7c866c6a 976 int ret;
a3467baa 977 void *fdt;
3384f95c 978 sPAPRPHBState *phb;
398a0bd5 979 char *buf;
71cd4dac 980 int smt = kvmppc_smt_threads();
a3467baa 981
398a0bd5
DG
982 fdt = g_malloc0(FDT_MAX_SIZE);
983 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
a3467baa 984
398a0bd5
DG
985 /* Root node */
986 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
987 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
988 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
989
990 /*
991 * Add info to guest to indentify which host is it being run on
992 * and what is the uuid of the guest
993 */
994 if (kvmppc_get_host_model(&buf)) {
995 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
996 g_free(buf);
997 }
998 if (kvmppc_get_host_serial(&buf)) {
999 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1000 g_free(buf);
1001 }
1002
1003 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1004
1005 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1006 if (qemu_uuid_set) {
1007 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1008 }
1009 g_free(buf);
1010
1011 if (qemu_get_vm_name()) {
1012 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1013 qemu_get_vm_name()));
1014 }
1015
1016 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1017 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
4040ab72 1018
9b9a1908 1019 /* /interrupt controller */
71cd4dac 1020 spapr_dt_xics(DIV_ROUND_UP(max_cpus * smt, smp_threads), fdt, PHANDLE_XICP);
9b9a1908 1021
e8f986fc
BR
1022 ret = spapr_populate_memory(spapr, fdt);
1023 if (ret < 0) {
ce9863b7 1024 error_report("couldn't setup memory nodes in fdt");
e8f986fc 1025 exit(1);
7f763a5d
DG
1026 }
1027
bf5a6696
DG
1028 /* /vdevice */
1029 spapr_dt_vdevice(spapr->vio_bus, fdt);
4040ab72 1030
4d9392be
TH
1031 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1032 ret = spapr_rng_populate_dt(fdt);
1033 if (ret < 0) {
ce9863b7 1034 error_report("could not set up rng device in the fdt");
4d9392be
TH
1035 exit(1);
1036 }
1037 }
1038
3384f95c 1039 QLIST_FOREACH(phb, &spapr->phbs, list) {
e0fdbd7c 1040 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
da34fed7
TH
1041 if (ret < 0) {
1042 error_report("couldn't setup PCI devices in fdt");
1043 exit(1);
1044 }
3384f95c
DG
1045 }
1046
0da6f3fe
BR
1047 /* cpus */
1048 spapr_populate_cpus_dt_node(fdt, spapr);
6e806cc3 1049
c20d332a
BR
1050 if (smc->dr_lmb_enabled) {
1051 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1052 }
1053
c5514d0e 1054 if (mc->has_hotpluggable_cpus) {
af81cf32
BR
1055 int offset = fdt_path_offset(fdt, "/cpus");
1056 ret = spapr_drc_populate_dt(fdt, offset, NULL,
1057 SPAPR_DR_CONNECTOR_TYPE_CPU);
1058 if (ret < 0) {
1059 error_report("Couldn't set up CPU DR device tree properties");
1060 exit(1);
1061 }
1062 }
1063
ffb1e275 1064 /* /event-sources */
ffbb1705 1065 spapr_dt_events(spapr, fdt);
ffb1e275 1066
3f5dabce
DG
1067 /* /rtas */
1068 spapr_dt_rtas(spapr, fdt);
1069
7c866c6a
DG
1070 /* /chosen */
1071 spapr_dt_chosen(spapr, fdt);
cf6e5223 1072
fca5f2dc
DG
1073 /* /hypervisor */
1074 if (kvm_enabled()) {
1075 spapr_dt_hypervisor(spapr, fdt);
1076 }
1077
cf6e5223
DG
1078 /* Build memory reserve map */
1079 if (spapr->kernel_size) {
1080 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1081 }
1082 if (spapr->initrd_size) {
1083 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1084 }
1085
6787d27b
MR
1086 /* ibm,client-architecture-support updates */
1087 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1088 if (ret < 0) {
1089 error_report("couldn't setup CAS properties fdt");
1090 exit(1);
1091 }
1092
997b6cfc 1093 return fdt;
9fdf0c29
DG
1094}
1095
1096static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1097{
1098 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1099}
1100
1d1be34d
DG
1101static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1102 PowerPCCPU *cpu)
9fdf0c29 1103{
1b14670a
AF
1104 CPUPPCState *env = &cpu->env;
1105
8d04fb55
JK
1106 /* The TCG path should also be holding the BQL at this point */
1107 g_assert(qemu_mutex_iothread_locked());
1108
efcb9383
DG
1109 if (msr_pr) {
1110 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1111 env->gpr[3] = H_PRIVILEGE;
1112 } else {
aa100fa4 1113 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
efcb9383 1114 }
9fdf0c29
DG
1115}
1116
9861bb3e
SJS
1117static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp)
1118{
1119 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1120
1121 return spapr->patb_entry;
1122}
1123
e6b8fd24
SMJ
1124#define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1125#define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1126#define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1127#define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1128#define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1129
715c5407
DG
1130/*
1131 * Get the fd to access the kernel htab, re-opening it if necessary
1132 */
1133static int get_htab_fd(sPAPRMachineState *spapr)
1134{
1135 if (spapr->htab_fd >= 0) {
1136 return spapr->htab_fd;
1137 }
1138
1139 spapr->htab_fd = kvmppc_get_htab_fd(false);
1140 if (spapr->htab_fd < 0) {
1141 error_report("Unable to open fd for reading hash table from KVM: %s",
1142 strerror(errno));
1143 }
1144
1145 return spapr->htab_fd;
1146}
1147
b4db5413 1148void close_htab_fd(sPAPRMachineState *spapr)
715c5407
DG
1149{
1150 if (spapr->htab_fd >= 0) {
1151 close(spapr->htab_fd);
1152 }
1153 spapr->htab_fd = -1;
1154}
1155
e57ca75c
DG
1156static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1157{
1158 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1159
1160 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1161}
1162
1163static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1164 hwaddr ptex, int n)
1165{
1166 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1167 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1168
1169 if (!spapr->htab) {
1170 /*
1171 * HTAB is controlled by KVM. Fetch into temporary buffer
1172 */
1173 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1174 kvmppc_read_hptes(hptes, ptex, n);
1175 return hptes;
1176 }
1177
1178 /*
1179 * HTAB is controlled by QEMU. Just point to the internally
1180 * accessible PTEG.
1181 */
1182 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1183}
1184
1185static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1186 const ppc_hash_pte64_t *hptes,
1187 hwaddr ptex, int n)
1188{
1189 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1190
1191 if (!spapr->htab) {
1192 g_free((void *)hptes);
1193 }
1194
1195 /* Nothing to do for qemu managed HPT */
1196}
1197
1198static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1199 uint64_t pte0, uint64_t pte1)
1200{
1201 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1202 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1203
1204 if (!spapr->htab) {
1205 kvmppc_write_hpte(ptex, pte0, pte1);
1206 } else {
1207 stq_p(spapr->htab + offset, pte0);
1208 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1209 }
1210}
1211
8dfe8e7f
DG
1212static int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1213{
1214 int shift;
1215
1216 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1217 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1218 * that's much more than is needed for Linux guests */
1219 shift = ctz64(pow2ceil(ramsize)) - 7;
1220 shift = MAX(shift, 18); /* Minimum architected size */
1221 shift = MIN(shift, 46); /* Maximum architected size */
1222 return shift;
1223}
1224
c5f54f3e
DG
1225static void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1226 Error **errp)
7f763a5d 1227{
c5f54f3e
DG
1228 long rc;
1229
1230 /* Clean up any HPT info from a previous boot */
1231 g_free(spapr->htab);
1232 spapr->htab = NULL;
1233 spapr->htab_shift = 0;
1234 close_htab_fd(spapr);
1235
1236 rc = kvmppc_reset_htab(shift);
1237 if (rc < 0) {
1238 /* kernel-side HPT needed, but couldn't allocate one */
1239 error_setg_errno(errp, errno,
1240 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1241 shift);
1242 /* This is almost certainly fatal, but if the caller really
1243 * wants to carry on with shift == 0, it's welcome to try */
1244 } else if (rc > 0) {
1245 /* kernel-side HPT allocated */
1246 if (rc != shift) {
1247 error_setg(errp,
1248 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1249 shift, rc);
7735feda
BR
1250 }
1251
7f763a5d 1252 spapr->htab_shift = shift;
c18ad9a5 1253 spapr->htab = NULL;
b817772a 1254 } else {
c5f54f3e
DG
1255 /* kernel-side HPT not needed, allocate in userspace instead */
1256 size_t size = 1ULL << shift;
1257 int i;
b817772a 1258
c5f54f3e
DG
1259 spapr->htab = qemu_memalign(size, size);
1260 if (!spapr->htab) {
1261 error_setg_errno(errp, errno,
1262 "Could not allocate HPT of order %d", shift);
1263 return;
7735feda
BR
1264 }
1265
c5f54f3e
DG
1266 memset(spapr->htab, 0, size);
1267 spapr->htab_shift = shift;
e6b8fd24 1268
c5f54f3e
DG
1269 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1270 DIRTY_HPTE(HPTE(spapr->htab, i));
e6b8fd24 1271 }
7f763a5d 1272 }
9fdf0c29
DG
1273}
1274
b4db5413
SJS
1275void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr)
1276{
1277 spapr_reallocate_hpt(spapr,
1278 spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size),
1279 &error_fatal);
1280 if (spapr->vrma_adjust) {
1281 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
1282 spapr->htab_shift);
1283 }
1284 /* We're setting up a hash table, so that means we're not radix */
1285 spapr->patb_entry = 0;
1286}
1287
4f01a637 1288static void find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
9e3f9733
AG
1289{
1290 bool matched = false;
1291
1292 if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
1293 matched = true;
1294 }
1295
1296 if (!matched) {
1297 error_report("Device %s is not supported by this machine yet.",
1298 qdev_fw_name(DEVICE(sbdev)));
1299 exit(1);
1300 }
9e3f9733
AG
1301}
1302
c8787ad4 1303static void ppc_spapr_reset(void)
a3467baa 1304{
c5f54f3e
DG
1305 MachineState *machine = MACHINE(qdev_get_machine());
1306 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
182735ef 1307 PowerPCCPU *first_ppc_cpu;
b7d1f77a 1308 uint32_t rtas_limit;
cae172ab 1309 hwaddr rtas_addr, fdt_addr;
997b6cfc
DG
1310 void *fdt;
1311 int rc;
259186a7 1312
9e3f9733
AG
1313 /* Check for unknown sysbus devices */
1314 foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
1315
b4db5413
SJS
1316 if (kvm_enabled() && kvmppc_has_cap_mmu_radix()) {
1317 /* If using KVM with radix mode available, VCPUs can be started
1318 * without a HPT because KVM will start them in radix mode.
1319 * Set the GR bit in PATB so that we know there is no HPT. */
1320 spapr->patb_entry = PATBE1_GR;
1321 } else {
1322 spapr->patb_entry = 0;
1323 spapr_setup_hpt_and_vrma(spapr);
c5f54f3e 1324 }
a3467baa 1325
c8787ad4 1326 qemu_devices_reset();
a3467baa 1327
b7d1f77a
BH
1328 /*
1329 * We place the device tree and RTAS just below either the top of the RMA,
1330 * or just below 2GB, whichever is lowere, so that it can be
1331 * processed with 32-bit real mode code if necessary
1332 */
1333 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
cae172ab
DG
1334 rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1335 fdt_addr = rtas_addr - FDT_MAX_SIZE;
b7d1f77a 1336
6787d27b
MR
1337 /* if this reset wasn't generated by CAS, we should reset our
1338 * negotiated options and start from scratch */
1339 if (!spapr->cas_reboot) {
1340 spapr_ovec_cleanup(spapr->ov5_cas);
1341 spapr->ov5_cas = spapr_ovec_new();
1342 }
1343
cae172ab 1344 fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size);
a3467baa 1345
2cac78c1 1346 spapr_load_rtas(spapr, fdt, rtas_addr);
b7d1f77a 1347
997b6cfc
DG
1348 rc = fdt_pack(fdt);
1349
1350 /* Should only fail if we've built a corrupted tree */
1351 assert(rc == 0);
1352
1353 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1354 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1355 fdt_totalsize(fdt), FDT_MAX_SIZE);
1356 exit(1);
1357 }
1358
1359 /* Load the fdt */
1360 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
cae172ab 1361 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
997b6cfc
DG
1362 g_free(fdt);
1363
a3467baa 1364 /* Set up the entry state */
182735ef 1365 first_ppc_cpu = POWERPC_CPU(first_cpu);
cae172ab 1366 first_ppc_cpu->env.gpr[3] = fdt_addr;
182735ef
AF
1367 first_ppc_cpu->env.gpr[5] = 0;
1368 first_cpu->halted = 0;
1b718907 1369 first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
a3467baa 1370
6787d27b 1371 spapr->cas_reboot = false;
a3467baa
DG
1372}
1373
28e02042 1374static void spapr_create_nvram(sPAPRMachineState *spapr)
639e8102 1375{
2ff3de68 1376 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
3978b863 1377 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
639e8102 1378
3978b863 1379 if (dinfo) {
6231a6da
MA
1380 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1381 &error_fatal);
639e8102
DG
1382 }
1383
1384 qdev_init_nofail(dev);
1385
1386 spapr->nvram = (struct sPAPRNVRAM *)dev;
1387}
1388
28e02042 1389static void spapr_rtc_create(sPAPRMachineState *spapr)
28df36a1 1390{
147ff807
CLG
1391 object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC);
1392 object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc),
1393 &error_fatal);
1394 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1395 &error_fatal);
1396 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1397 "date", &error_fatal);
28df36a1
DG
1398}
1399
8c57b867 1400/* Returns whether we want to use VGA or not */
14c6a894 1401static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
f28359d8 1402{
8c57b867 1403 switch (vga_interface_type) {
8c57b867 1404 case VGA_NONE:
7effdaa3
MW
1405 return false;
1406 case VGA_DEVICE:
1407 return true;
1ddcae82 1408 case VGA_STD:
b798c190 1409 case VGA_VIRTIO:
1ddcae82 1410 return pci_vga_init(pci_bus) != NULL;
8c57b867 1411 default:
14c6a894
DG
1412 error_setg(errp,
1413 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1414 return false;
f28359d8 1415 }
f28359d8
LZ
1416}
1417
880ae7de
DG
1418static int spapr_post_load(void *opaque, int version_id)
1419{
28e02042 1420 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
880ae7de
DG
1421 int err = 0;
1422
a7ff1212 1423 if (!object_dynamic_cast(OBJECT(spapr->ics), TYPE_ICS_KVM)) {
5bc8d26d
CLG
1424 CPUState *cs;
1425 CPU_FOREACH(cs) {
1426 PowerPCCPU *cpu = POWERPC_CPU(cs);
1427 icp_resend(ICP(cpu->intc));
a7ff1212
CLG
1428 }
1429 }
1430
631b22ea 1431 /* In earlier versions, there was no separate qdev for the PAPR
880ae7de
DG
1432 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1433 * So when migrating from those versions, poke the incoming offset
1434 * value into the RTC device */
1435 if (version_id < 3) {
147ff807 1436 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
880ae7de
DG
1437 }
1438
1439 return err;
1440}
1441
1442static bool version_before_3(void *opaque, int version_id)
1443{
1444 return version_id < 3;
1445}
1446
62ef3760
MR
1447static bool spapr_ov5_cas_needed(void *opaque)
1448{
1449 sPAPRMachineState *spapr = opaque;
1450 sPAPROptionVector *ov5_mask = spapr_ovec_new();
1451 sPAPROptionVector *ov5_legacy = spapr_ovec_new();
1452 sPAPROptionVector *ov5_removed = spapr_ovec_new();
1453 bool cas_needed;
1454
1455 /* Prior to the introduction of sPAPROptionVector, we had two option
1456 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1457 * Both of these options encode machine topology into the device-tree
1458 * in such a way that the now-booted OS should still be able to interact
1459 * appropriately with QEMU regardless of what options were actually
1460 * negotiatied on the source side.
1461 *
1462 * As such, we can avoid migrating the CAS-negotiated options if these
1463 * are the only options available on the current machine/platform.
1464 * Since these are the only options available for pseries-2.7 and
1465 * earlier, this allows us to maintain old->new/new->old migration
1466 * compatibility.
1467 *
1468 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1469 * via default pseries-2.8 machines and explicit command-line parameters.
1470 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1471 * of the actual CAS-negotiated values to continue working properly. For
1472 * example, availability of memory unplug depends on knowing whether
1473 * OV5_HP_EVT was negotiated via CAS.
1474 *
1475 * Thus, for any cases where the set of available CAS-negotiatable
1476 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1477 * include the CAS-negotiated options in the migration stream.
1478 */
1479 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1480 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1481
1482 /* spapr_ovec_diff returns true if bits were removed. we avoid using
1483 * the mask itself since in the future it's possible "legacy" bits may be
1484 * removed via machine options, which could generate a false positive
1485 * that breaks migration.
1486 */
1487 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1488 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1489
1490 spapr_ovec_cleanup(ov5_mask);
1491 spapr_ovec_cleanup(ov5_legacy);
1492 spapr_ovec_cleanup(ov5_removed);
1493
1494 return cas_needed;
1495}
1496
1497static const VMStateDescription vmstate_spapr_ov5_cas = {
1498 .name = "spapr_option_vector_ov5_cas",
1499 .version_id = 1,
1500 .minimum_version_id = 1,
1501 .needed = spapr_ov5_cas_needed,
1502 .fields = (VMStateField[]) {
1503 VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
1504 vmstate_spapr_ovec, sPAPROptionVector),
1505 VMSTATE_END_OF_LIST()
1506 },
1507};
1508
9861bb3e
SJS
1509static bool spapr_patb_entry_needed(void *opaque)
1510{
1511 sPAPRMachineState *spapr = opaque;
1512
1513 return !!spapr->patb_entry;
1514}
1515
1516static const VMStateDescription vmstate_spapr_patb_entry = {
1517 .name = "spapr_patb_entry",
1518 .version_id = 1,
1519 .minimum_version_id = 1,
1520 .needed = spapr_patb_entry_needed,
1521 .fields = (VMStateField[]) {
1522 VMSTATE_UINT64(patb_entry, sPAPRMachineState),
1523 VMSTATE_END_OF_LIST()
1524 },
1525};
1526
4be21d56
DG
1527static const VMStateDescription vmstate_spapr = {
1528 .name = "spapr",
880ae7de 1529 .version_id = 3,
4be21d56 1530 .minimum_version_id = 1,
880ae7de 1531 .post_load = spapr_post_load,
3aff6c2f 1532 .fields = (VMStateField[]) {
880ae7de
DG
1533 /* used to be @next_irq */
1534 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
4be21d56
DG
1535
1536 /* RTC offset */
28e02042 1537 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
880ae7de 1538
28e02042 1539 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
4be21d56
DG
1540 VMSTATE_END_OF_LIST()
1541 },
62ef3760
MR
1542 .subsections = (const VMStateDescription*[]) {
1543 &vmstate_spapr_ov5_cas,
9861bb3e 1544 &vmstate_spapr_patb_entry,
62ef3760
MR
1545 NULL
1546 }
4be21d56
DG
1547};
1548
4be21d56
DG
1549static int htab_save_setup(QEMUFile *f, void *opaque)
1550{
28e02042 1551 sPAPRMachineState *spapr = opaque;
4be21d56 1552
4be21d56
DG
1553 /* "Iteration" header */
1554 qemu_put_be32(f, spapr->htab_shift);
1555
e68cb8b4
AK
1556 if (spapr->htab) {
1557 spapr->htab_save_index = 0;
1558 spapr->htab_first_pass = true;
1559 } else {
1560 assert(kvm_enabled());
e68cb8b4
AK
1561 }
1562
1563
4be21d56
DG
1564 return 0;
1565}
1566
28e02042 1567static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
4be21d56
DG
1568 int64_t max_ns)
1569{
378bc217 1570 bool has_timeout = max_ns != -1;
4be21d56
DG
1571 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1572 int index = spapr->htab_save_index;
bc72ad67 1573 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
4be21d56
DG
1574
1575 assert(spapr->htab_first_pass);
1576
1577 do {
1578 int chunkstart;
1579
1580 /* Consume invalid HPTEs */
1581 while ((index < htabslots)
1582 && !HPTE_VALID(HPTE(spapr->htab, index))) {
4be21d56 1583 CLEAN_HPTE(HPTE(spapr->htab, index));
24ec2863 1584 index++;
4be21d56
DG
1585 }
1586
1587 /* Consume valid HPTEs */
1588 chunkstart = index;
338c25b6 1589 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
4be21d56 1590 && HPTE_VALID(HPTE(spapr->htab, index))) {
4be21d56 1591 CLEAN_HPTE(HPTE(spapr->htab, index));
24ec2863 1592 index++;
4be21d56
DG
1593 }
1594
1595 if (index > chunkstart) {
1596 int n_valid = index - chunkstart;
1597
1598 qemu_put_be32(f, chunkstart);
1599 qemu_put_be16(f, n_valid);
1600 qemu_put_be16(f, 0);
1601 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1602 HASH_PTE_SIZE_64 * n_valid);
1603
378bc217
DG
1604 if (has_timeout &&
1605 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
4be21d56
DG
1606 break;
1607 }
1608 }
1609 } while ((index < htabslots) && !qemu_file_rate_limit(f));
1610
1611 if (index >= htabslots) {
1612 assert(index == htabslots);
1613 index = 0;
1614 spapr->htab_first_pass = false;
1615 }
1616 spapr->htab_save_index = index;
1617}
1618
28e02042 1619static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
e68cb8b4 1620 int64_t max_ns)
4be21d56
DG
1621{
1622 bool final = max_ns < 0;
1623 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1624 int examined = 0, sent = 0;
1625 int index = spapr->htab_save_index;
bc72ad67 1626 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
4be21d56
DG
1627
1628 assert(!spapr->htab_first_pass);
1629
1630 do {
1631 int chunkstart, invalidstart;
1632
1633 /* Consume non-dirty HPTEs */
1634 while ((index < htabslots)
1635 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1636 index++;
1637 examined++;
1638 }
1639
1640 chunkstart = index;
1641 /* Consume valid dirty HPTEs */
338c25b6 1642 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
4be21d56
DG
1643 && HPTE_DIRTY(HPTE(spapr->htab, index))
1644 && HPTE_VALID(HPTE(spapr->htab, index))) {
1645 CLEAN_HPTE(HPTE(spapr->htab, index));
1646 index++;
1647 examined++;
1648 }
1649
1650 invalidstart = index;
1651 /* Consume invalid dirty HPTEs */
338c25b6 1652 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
4be21d56
DG
1653 && HPTE_DIRTY(HPTE(spapr->htab, index))
1654 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1655 CLEAN_HPTE(HPTE(spapr->htab, index));
1656 index++;
1657 examined++;
1658 }
1659
1660 if (index > chunkstart) {
1661 int n_valid = invalidstart - chunkstart;
1662 int n_invalid = index - invalidstart;
1663
1664 qemu_put_be32(f, chunkstart);
1665 qemu_put_be16(f, n_valid);
1666 qemu_put_be16(f, n_invalid);
1667 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1668 HASH_PTE_SIZE_64 * n_valid);
1669 sent += index - chunkstart;
1670
bc72ad67 1671 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
4be21d56
DG
1672 break;
1673 }
1674 }
1675
1676 if (examined >= htabslots) {
1677 break;
1678 }
1679
1680 if (index >= htabslots) {
1681 assert(index == htabslots);
1682 index = 0;
1683 }
1684 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1685
1686 if (index >= htabslots) {
1687 assert(index == htabslots);
1688 index = 0;
1689 }
1690
1691 spapr->htab_save_index = index;
1692
e68cb8b4 1693 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
4be21d56
DG
1694}
1695
e68cb8b4
AK
1696#define MAX_ITERATION_NS 5000000 /* 5 ms */
1697#define MAX_KVM_BUF_SIZE 2048
1698
4be21d56
DG
1699static int htab_save_iterate(QEMUFile *f, void *opaque)
1700{
28e02042 1701 sPAPRMachineState *spapr = opaque;
715c5407 1702 int fd;
e68cb8b4 1703 int rc = 0;
4be21d56
DG
1704
1705 /* Iteration header */
1706 qemu_put_be32(f, 0);
1707
e68cb8b4
AK
1708 if (!spapr->htab) {
1709 assert(kvm_enabled());
1710
715c5407
DG
1711 fd = get_htab_fd(spapr);
1712 if (fd < 0) {
1713 return fd;
01a57972
SMJ
1714 }
1715
715c5407 1716 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
e68cb8b4
AK
1717 if (rc < 0) {
1718 return rc;
1719 }
1720 } else if (spapr->htab_first_pass) {
4be21d56
DG
1721 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1722 } else {
e68cb8b4 1723 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
4be21d56
DG
1724 }
1725
1726 /* End marker */
1727 qemu_put_be32(f, 0);
1728 qemu_put_be16(f, 0);
1729 qemu_put_be16(f, 0);
1730
e68cb8b4 1731 return rc;
4be21d56
DG
1732}
1733
1734static int htab_save_complete(QEMUFile *f, void *opaque)
1735{
28e02042 1736 sPAPRMachineState *spapr = opaque;
715c5407 1737 int fd;
4be21d56
DG
1738
1739 /* Iteration header */
1740 qemu_put_be32(f, 0);
1741
e68cb8b4
AK
1742 if (!spapr->htab) {
1743 int rc;
1744
1745 assert(kvm_enabled());
1746
715c5407
DG
1747 fd = get_htab_fd(spapr);
1748 if (fd < 0) {
1749 return fd;
01a57972
SMJ
1750 }
1751
715c5407 1752 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
e68cb8b4
AK
1753 if (rc < 0) {
1754 return rc;
1755 }
e68cb8b4 1756 } else {
378bc217
DG
1757 if (spapr->htab_first_pass) {
1758 htab_save_first_pass(f, spapr, -1);
1759 }
e68cb8b4
AK
1760 htab_save_later_pass(f, spapr, -1);
1761 }
4be21d56
DG
1762
1763 /* End marker */
1764 qemu_put_be32(f, 0);
1765 qemu_put_be16(f, 0);
1766 qemu_put_be16(f, 0);
1767
1768 return 0;
1769}
1770
1771static int htab_load(QEMUFile *f, void *opaque, int version_id)
1772{
28e02042 1773 sPAPRMachineState *spapr = opaque;
4be21d56 1774 uint32_t section_hdr;
e68cb8b4 1775 int fd = -1;
4be21d56
DG
1776
1777 if (version_id < 1 || version_id > 1) {
98a5d100 1778 error_report("htab_load() bad version");
4be21d56
DG
1779 return -EINVAL;
1780 }
1781
1782 section_hdr = qemu_get_be32(f);
1783
1784 if (section_hdr) {
9897e462 1785 Error *local_err = NULL;
c5f54f3e
DG
1786
1787 /* First section gives the htab size */
1788 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
1789 if (local_err) {
1790 error_report_err(local_err);
4be21d56
DG
1791 return -EINVAL;
1792 }
1793 return 0;
1794 }
1795
e68cb8b4
AK
1796 if (!spapr->htab) {
1797 assert(kvm_enabled());
1798
1799 fd = kvmppc_get_htab_fd(true);
1800 if (fd < 0) {
98a5d100
DG
1801 error_report("Unable to open fd to restore KVM hash table: %s",
1802 strerror(errno));
e68cb8b4
AK
1803 }
1804 }
1805
4be21d56
DG
1806 while (true) {
1807 uint32_t index;
1808 uint16_t n_valid, n_invalid;
1809
1810 index = qemu_get_be32(f);
1811 n_valid = qemu_get_be16(f);
1812 n_invalid = qemu_get_be16(f);
1813
1814 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1815 /* End of Stream */
1816 break;
1817 }
1818
e68cb8b4 1819 if ((index + n_valid + n_invalid) >
4be21d56
DG
1820 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1821 /* Bad index in stream */
98a5d100
DG
1822 error_report(
1823 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
1824 index, n_valid, n_invalid, spapr->htab_shift);
4be21d56
DG
1825 return -EINVAL;
1826 }
1827
e68cb8b4
AK
1828 if (spapr->htab) {
1829 if (n_valid) {
1830 qemu_get_buffer(f, HPTE(spapr->htab, index),
1831 HASH_PTE_SIZE_64 * n_valid);
1832 }
1833 if (n_invalid) {
1834 memset(HPTE(spapr->htab, index + n_valid), 0,
1835 HASH_PTE_SIZE_64 * n_invalid);
1836 }
1837 } else {
1838 int rc;
1839
1840 assert(fd >= 0);
1841
1842 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1843 if (rc < 0) {
1844 return rc;
1845 }
4be21d56
DG
1846 }
1847 }
1848
e68cb8b4
AK
1849 if (!spapr->htab) {
1850 assert(fd >= 0);
1851 close(fd);
1852 }
1853
4be21d56
DG
1854 return 0;
1855}
1856
c573fc03
TH
1857static void htab_cleanup(void *opaque)
1858{
1859 sPAPRMachineState *spapr = opaque;
1860
1861 close_htab_fd(spapr);
1862}
1863
4be21d56
DG
1864static SaveVMHandlers savevm_htab_handlers = {
1865 .save_live_setup = htab_save_setup,
1866 .save_live_iterate = htab_save_iterate,
a3e06c3d 1867 .save_live_complete_precopy = htab_save_complete,
c573fc03 1868 .cleanup = htab_cleanup,
4be21d56
DG
1869 .load_state = htab_load,
1870};
1871
5b2128d2
AG
1872static void spapr_boot_set(void *opaque, const char *boot_device,
1873 Error **errp)
1874{
1875 MachineState *machine = MACHINE(qdev_get_machine());
1876 machine->boot_order = g_strdup(boot_device);
1877}
1878
224245bf
DG
1879/*
1880 * Reset routine for LMB DR devices.
1881 *
1882 * Unlike PCI DR devices, LMB DR devices explicitly register this reset
1883 * routine. Reset for PCI DR devices will be handled by PHB reset routine
1884 * when it walks all its children devices. LMB devices reset occurs
1885 * as part of spapr_ppc_reset().
1886 */
1887static void spapr_drc_reset(void *opaque)
1888{
1889 sPAPRDRConnector *drc = opaque;
1890 DeviceState *d = DEVICE(drc);
1891
1892 if (d) {
1893 device_reset(d);
1894 }
1895}
1896
1897static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
1898{
1899 MachineState *machine = MACHINE(spapr);
1900 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
e8f986fc 1901 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
224245bf
DG
1902 int i;
1903
1904 for (i = 0; i < nr_lmbs; i++) {
1905 sPAPRDRConnector *drc;
1906 uint64_t addr;
1907
e8f986fc 1908 addr = i * lmb_size + spapr->hotplug_memory.base;
224245bf
DG
1909 drc = spapr_dr_connector_new(OBJECT(spapr), SPAPR_DR_CONNECTOR_TYPE_LMB,
1910 addr/lmb_size);
1911 qemu_register_reset(spapr_drc_reset, drc);
1912 }
1913}
1914
1915/*
1916 * If RAM size, maxmem size and individual node mem sizes aren't aligned
1917 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
1918 * since we can't support such unaligned sizes with DRCONF_MEMORY.
1919 */
7c150d6f 1920static void spapr_validate_node_memory(MachineState *machine, Error **errp)
224245bf
DG
1921{
1922 int i;
1923
7c150d6f
DG
1924 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1925 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
1926 " is not aligned to %llu MiB",
1927 machine->ram_size,
1928 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1929 return;
1930 }
1931
1932 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1933 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
1934 " is not aligned to %llu MiB",
1935 machine->ram_size,
1936 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1937 return;
224245bf
DG
1938 }
1939
1940 for (i = 0; i < nb_numa_nodes; i++) {
1941 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
7c150d6f
DG
1942 error_setg(errp,
1943 "Node %d memory size 0x%" PRIx64
1944 " is not aligned to %llu MiB",
1945 i, numa_info[i].node_mem,
1946 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1947 return;
224245bf
DG
1948 }
1949 }
1950}
1951
535455fd
IM
1952/* find cpu slot in machine->possible_cpus by core_id */
1953static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
1954{
1955 int index = id / smp_threads;
1956
1957 if (index >= ms->possible_cpus->len) {
1958 return NULL;
1959 }
1960 if (idx) {
1961 *idx = index;
1962 }
1963 return &ms->possible_cpus->cpus[index];
1964}
1965
0c86d0fd
DG
1966static void spapr_init_cpus(sPAPRMachineState *spapr)
1967{
1968 MachineState *machine = MACHINE(spapr);
1969 MachineClass *mc = MACHINE_GET_CLASS(machine);
1970 char *type = spapr_get_cpu_core_type(machine->cpu_model);
1971 int smt = kvmppc_smt_threads();
535455fd
IM
1972 const CPUArchIdList *possible_cpus;
1973 int boot_cores_nr = smp_cpus / smp_threads;
0c86d0fd
DG
1974 int i;
1975
1976 if (!type) {
1977 error_report("Unable to find sPAPR CPU Core definition");
1978 exit(1);
1979 }
1980
535455fd 1981 possible_cpus = mc->possible_cpu_arch_ids(machine);
c5514d0e 1982 if (mc->has_hotpluggable_cpus) {
0c86d0fd
DG
1983 if (smp_cpus % smp_threads) {
1984 error_report("smp_cpus (%u) must be multiple of threads (%u)",
1985 smp_cpus, smp_threads);
1986 exit(1);
1987 }
1988 if (max_cpus % smp_threads) {
1989 error_report("max_cpus (%u) must be multiple of threads (%u)",
1990 max_cpus, smp_threads);
1991 exit(1);
1992 }
0c86d0fd
DG
1993 } else {
1994 if (max_cpus != smp_cpus) {
1995 error_report("This machine version does not support CPU hotplug");
1996 exit(1);
1997 }
535455fd 1998 boot_cores_nr = possible_cpus->len;
0c86d0fd
DG
1999 }
2000
535455fd 2001 for (i = 0; i < possible_cpus->len; i++) {
0c86d0fd
DG
2002 int core_id = i * smp_threads;
2003
c5514d0e 2004 if (mc->has_hotpluggable_cpus) {
0c86d0fd
DG
2005 sPAPRDRConnector *drc =
2006 spapr_dr_connector_new(OBJECT(spapr),
2007 SPAPR_DR_CONNECTOR_TYPE_CPU,
2008 (core_id / smp_threads) * smt);
2009
2010 qemu_register_reset(spapr_drc_reset, drc);
2011 }
2012
535455fd 2013 if (i < boot_cores_nr) {
0c86d0fd
DG
2014 Object *core = object_new(type);
2015 int nr_threads = smp_threads;
2016
2017 /* Handle the partially filled core for older machine types */
2018 if ((i + 1) * smp_threads >= smp_cpus) {
2019 nr_threads = smp_cpus - i * smp_threads;
2020 }
2021
2022 object_property_set_int(core, nr_threads, "nr-threads",
2023 &error_fatal);
2024 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2025 &error_fatal);
2026 object_property_set_bool(core, true, "realized", &error_fatal);
2027 }
2028 }
2029 g_free(type);
2030}
2031
9fdf0c29 2032/* pSeries LPAR / sPAPR hardware init */
3ef96221 2033static void ppc_spapr_init(MachineState *machine)
9fdf0c29 2034{
28e02042 2035 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
224245bf 2036 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
3ef96221 2037 const char *kernel_filename = machine->kernel_filename;
3ef96221 2038 const char *initrd_filename = machine->initrd_filename;
8c9f64df 2039 PCIHostState *phb;
9fdf0c29 2040 int i;
890c2b77
AK
2041 MemoryRegion *sysmem = get_system_memory();
2042 MemoryRegion *ram = g_new(MemoryRegion, 1);
658fa66b
AK
2043 MemoryRegion *rma_region;
2044 void *rma = NULL;
a8170e5e 2045 hwaddr rma_alloc_size;
b082d65a 2046 hwaddr node0_size = spapr_node0_size();
b7d1f77a 2047 long load_limit, fw_size;
39ac8455 2048 char *filename;
9fdf0c29 2049
226419d6 2050 msi_nonbroken = true;
0ee2c058 2051
d43b45e2
DG
2052 QLIST_INIT(&spapr->phbs);
2053
354ac20a 2054 /* Allocate RMA if necessary */
658fa66b 2055 rma_alloc_size = kvmppc_alloc_rma(&rma);
354ac20a
DG
2056
2057 if (rma_alloc_size == -1) {
730fce59 2058 error_report("Unable to create RMA");
354ac20a
DG
2059 exit(1);
2060 }
7f763a5d 2061
c4177479 2062 if (rma_alloc_size && (rma_alloc_size < node0_size)) {
7f763a5d 2063 spapr->rma_size = rma_alloc_size;
354ac20a 2064 } else {
c4177479 2065 spapr->rma_size = node0_size;
7f763a5d
DG
2066
2067 /* With KVM, we don't actually know whether KVM supports an
2068 * unbounded RMA (PR KVM) or is limited by the hash table size
2069 * (HV KVM using VRMA), so we always assume the latter
2070 *
2071 * In that case, we also limit the initial allocations for RTAS
2072 * etc... to 256M since we have no way to know what the VRMA size
2073 * is going to be as it depends on the size of the hash table
2074 * isn't determined yet.
2075 */
2076 if (kvm_enabled()) {
2077 spapr->vrma_adjust = 1;
2078 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2079 }
912acdf4
BH
2080
2081 /* Actually we don't support unbounded RMA anymore since we
2082 * added proper emulation of HV mode. The max we can get is
2083 * 16G which also happens to be what we configure for PAPR
2084 * mode so make sure we don't do anything bigger than that
2085 */
2086 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
354ac20a
DG
2087 }
2088
c4177479 2089 if (spapr->rma_size > node0_size) {
d54e4d76
DG
2090 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2091 spapr->rma_size);
c4177479
AK
2092 exit(1);
2093 }
2094
b7d1f77a
BH
2095 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2096 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
9fdf0c29 2097
7b565160 2098 /* Set up Interrupt Controller before we create the VCPUs */
71cd4dac 2099 xics_system_init(machine, XICS_IRQS_SPAPR, &error_fatal);
7b565160 2100
facdb8b6
MR
2101 /* Set up containers for ibm,client-set-architecture negotiated options */
2102 spapr->ov5 = spapr_ovec_new();
2103 spapr->ov5_cas = spapr_ovec_new();
2104
224245bf 2105 if (smc->dr_lmb_enabled) {
facdb8b6 2106 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
7c150d6f 2107 spapr_validate_node_memory(machine, &error_fatal);
224245bf
DG
2108 }
2109
417ece33 2110 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
545d6e2b
SJS
2111 if (!kvm_enabled() || kvmppc_has_cap_mmu_radix()) {
2112 /* KVM and TCG always allow GTSE with radix... */
9fb4541f
SB
2113 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2114 }
2115 /* ... but not with hash (currently). */
417ece33 2116
ffbb1705
MR
2117 /* advertise support for dedicated HP event source to guests */
2118 if (spapr->use_hotplug_event_source) {
2119 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2120 }
2121
9fdf0c29 2122 /* init CPUs */
19fb2c36 2123 if (machine->cpu_model == NULL) {
3daa4a9f 2124 machine->cpu_model = kvm_enabled() ? "host" : smc->tcg_default_cpu;
9fdf0c29 2125 }
94a94e4c 2126
e703d2f7
GK
2127 ppc_cpu_parse_features(machine->cpu_model);
2128
0c86d0fd 2129 spapr_init_cpus(spapr);
9fdf0c29 2130
026bfd89
DG
2131 if (kvm_enabled()) {
2132 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2133 kvmppc_enable_logical_ci_hcalls();
ef9971dd 2134 kvmppc_enable_set_mode_hcall();
5145ad4f
NW
2135
2136 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2137 kvmppc_enable_clear_ref_mod_hcalls();
026bfd89
DG
2138 }
2139
9fdf0c29 2140 /* allocate RAM */
f92f5da1 2141 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
fb164994 2142 machine->ram_size);
f92f5da1 2143 memory_region_add_subregion(sysmem, 0, ram);
9fdf0c29 2144
658fa66b
AK
2145 if (rma_alloc_size && rma) {
2146 rma_region = g_new(MemoryRegion, 1);
2147 memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
2148 rma_alloc_size, rma);
2149 vmstate_register_ram_global(rma_region);
2150 memory_region_add_subregion(sysmem, 0, rma_region);
2151 }
2152
4a1c9cf0
BR
2153 /* initialize hotplug memory address space */
2154 if (machine->ram_size < machine->maxram_size) {
2155 ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
71c9a3dd
BR
2156 /*
2157 * Limit the number of hotpluggable memory slots to half the number
2158 * slots that KVM supports, leaving the other half for PCI and other
2159 * devices. However ensure that number of slots doesn't drop below 32.
2160 */
2161 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2162 SPAPR_MAX_RAM_SLOTS;
4a1c9cf0 2163
71c9a3dd
BR
2164 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2165 max_memslots = SPAPR_MAX_RAM_SLOTS;
2166 }
2167 if (machine->ram_slots > max_memslots) {
d54e4d76
DG
2168 error_report("Specified number of memory slots %"
2169 PRIu64" exceeds max supported %d",
71c9a3dd 2170 machine->ram_slots, max_memslots);
d54e4d76 2171 exit(1);
4a1c9cf0
BR
2172 }
2173
2174 spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
2175 SPAPR_HOTPLUG_MEM_ALIGN);
2176 memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
2177 "hotplug-memory", hotplug_mem_size);
2178 memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
2179 &spapr->hotplug_memory.mr);
2180 }
2181
224245bf
DG
2182 if (smc->dr_lmb_enabled) {
2183 spapr_create_lmb_dr_connectors(spapr);
2184 }
2185
39ac8455 2186 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
4c56440d 2187 if (!filename) {
730fce59 2188 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
4c56440d
SW
2189 exit(1);
2190 }
b7d1f77a 2191 spapr->rtas_size = get_image_size(filename);
8afc22a2
ZJ
2192 if (spapr->rtas_size < 0) {
2193 error_report("Could not get size of LPAR rtas '%s'", filename);
2194 exit(1);
2195 }
b7d1f77a
BH
2196 spapr->rtas_blob = g_malloc(spapr->rtas_size);
2197 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
730fce59 2198 error_report("Could not load LPAR rtas '%s'", filename);
39ac8455
DG
2199 exit(1);
2200 }
4d8d5467 2201 if (spapr->rtas_size > RTAS_MAX_SIZE) {
730fce59
TH
2202 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2203 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
4d8d5467
BH
2204 exit(1);
2205 }
7267c094 2206 g_free(filename);
39ac8455 2207
ffbb1705 2208 /* Set up RTAS event infrastructure */
74d042e5
DG
2209 spapr_events_init(spapr);
2210
12f42174 2211 /* Set up the RTC RTAS interfaces */
28df36a1 2212 spapr_rtc_create(spapr);
12f42174 2213
b5cec4c5 2214 /* Set up VIO bus */
4040ab72
DG
2215 spapr->vio_bus = spapr_vio_bus_init();
2216
277f9acf 2217 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
4040ab72 2218 if (serial_hds[i]) {
d601fac4 2219 spapr_vty_create(spapr->vio_bus, serial_hds[i]);
4040ab72
DG
2220 }
2221 }
9fdf0c29 2222
639e8102
DG
2223 /* We always have at least the nvram device on VIO */
2224 spapr_create_nvram(spapr);
2225
3384f95c 2226 /* Set up PCI */
fa28f71b
AK
2227 spapr_pci_rtas_init();
2228
89dfd6e1 2229 phb = spapr_create_phb(spapr, 0);
3384f95c 2230
277f9acf 2231 for (i = 0; i < nb_nics; i++) {
8d90ad90
DG
2232 NICInfo *nd = &nd_table[i];
2233
2234 if (!nd->model) {
7267c094 2235 nd->model = g_strdup("ibmveth");
8d90ad90
DG
2236 }
2237
2238 if (strcmp(nd->model, "ibmveth") == 0) {
d601fac4 2239 spapr_vlan_create(spapr->vio_bus, nd);
8d90ad90 2240 } else {
29b358f9 2241 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
8d90ad90
DG
2242 }
2243 }
2244
6e270446 2245 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
d601fac4 2246 spapr_vscsi_create(spapr->vio_bus);
6e270446
BH
2247 }
2248
f28359d8 2249 /* Graphics */
14c6a894 2250 if (spapr_vga_init(phb->bus, &error_fatal)) {
3fc5acde 2251 spapr->has_graphics = true;
c6e76503 2252 machine->usb |= defaults_enabled() && !machine->usb_disabled;
f28359d8
LZ
2253 }
2254
4ee9ced9 2255 if (machine->usb) {
57040d45
TH
2256 if (smc->use_ohci_by_default) {
2257 pci_create_simple(phb->bus, -1, "pci-ohci");
2258 } else {
2259 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2260 }
c86580b8 2261
35139a59 2262 if (spapr->has_graphics) {
c86580b8
MA
2263 USBBus *usb_bus = usb_bus_find(-1);
2264
2265 usb_create_simple(usb_bus, "usb-kbd");
2266 usb_create_simple(usb_bus, "usb-mouse");
35139a59
DG
2267 }
2268 }
2269
7f763a5d 2270 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
d54e4d76
DG
2271 error_report(
2272 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2273 MIN_RMA_SLOF);
4d8d5467
BH
2274 exit(1);
2275 }
2276
9fdf0c29
DG
2277 if (kernel_filename) {
2278 uint64_t lowaddr = 0;
2279
a19f7fb0
DG
2280 spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address,
2281 NULL, NULL, &lowaddr, NULL, 1,
2282 PPC_ELF_MACHINE, 0, 0);
2283 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2284 spapr->kernel_size = load_elf(kernel_filename,
2285 translate_kernel_address, NULL, NULL,
2286 &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2287 0, 0);
2288 spapr->kernel_le = spapr->kernel_size > 0;
16457e7f 2289 }
a19f7fb0
DG
2290 if (spapr->kernel_size < 0) {
2291 error_report("error loading %s: %s", kernel_filename,
2292 load_elf_strerror(spapr->kernel_size));
9fdf0c29
DG
2293 exit(1);
2294 }
2295
2296 /* load initrd */
2297 if (initrd_filename) {
4d8d5467
BH
2298 /* Try to locate the initrd in the gap between the kernel
2299 * and the firmware. Add a bit of space just in case
2300 */
a19f7fb0
DG
2301 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2302 + 0x1ffff) & ~0xffff;
2303 spapr->initrd_size = load_image_targphys(initrd_filename,
2304 spapr->initrd_base,
2305 load_limit
2306 - spapr->initrd_base);
2307 if (spapr->initrd_size < 0) {
d54e4d76
DG
2308 error_report("could not load initial ram disk '%s'",
2309 initrd_filename);
9fdf0c29
DG
2310 exit(1);
2311 }
9fdf0c29 2312 }
4d8d5467 2313 }
a3467baa 2314
8e7ea787
AF
2315 if (bios_name == NULL) {
2316 bios_name = FW_FILE_NAME;
2317 }
2318 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
4c56440d 2319 if (!filename) {
68fea5a0 2320 error_report("Could not find LPAR firmware '%s'", bios_name);
4c56440d
SW
2321 exit(1);
2322 }
4d8d5467 2323 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
68fea5a0
TH
2324 if (fw_size <= 0) {
2325 error_report("Could not load LPAR firmware '%s'", filename);
4d8d5467
BH
2326 exit(1);
2327 }
2328 g_free(filename);
4d8d5467 2329
28e02042
DG
2330 /* FIXME: Should register things through the MachineState's qdev
2331 * interface, this is a legacy from the sPAPREnvironment structure
2332 * which predated MachineState but had a similar function */
4be21d56
DG
2333 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2334 register_savevm_live(NULL, "spapr/htab", -1, 1,
2335 &savevm_htab_handlers, spapr);
2336
46503c2b
MR
2337 /* used by RTAS */
2338 QTAILQ_INIT(&spapr->ccs_list);
2339 qemu_register_reset(spapr_ccs_reset_hook, spapr);
2340
5b2128d2 2341 qemu_register_boot_set(spapr_boot_set, spapr);
42043e4f 2342
42043e4f 2343 if (kvm_enabled()) {
3dc410ae 2344 /* to stop and start vmclock */
42043e4f
LV
2345 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2346 &spapr->tb);
3dc410ae
AK
2347
2348 kvmppc_spapr_enable_inkernel_multitce();
42043e4f 2349 }
9fdf0c29
DG
2350}
2351
135a129a
AK
2352static int spapr_kvm_type(const char *vm_type)
2353{
2354 if (!vm_type) {
2355 return 0;
2356 }
2357
2358 if (!strcmp(vm_type, "HV")) {
2359 return 1;
2360 }
2361
2362 if (!strcmp(vm_type, "PR")) {
2363 return 2;
2364 }
2365
2366 error_report("Unknown kvm-type specified '%s'", vm_type);
2367 exit(1);
2368}
2369
71461b0f 2370/*
627b84f4 2371 * Implementation of an interface to adjust firmware path
71461b0f
AK
2372 * for the bootindex property handling.
2373 */
2374static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2375 DeviceState *dev)
2376{
2377#define CAST(type, obj, name) \
2378 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2379 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
2380 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2381
2382 if (d) {
2383 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2384 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2385 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2386
2387 if (spapr) {
2388 /*
2389 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2390 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2391 * in the top 16 bits of the 64-bit LUN
2392 */
2393 unsigned id = 0x8000 | (d->id << 8) | d->lun;
2394 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2395 (uint64_t)id << 48);
2396 } else if (virtio) {
2397 /*
2398 * We use SRP luns of the form 01000000 | (target << 8) | lun
2399 * in the top 32 bits of the 64-bit LUN
2400 * Note: the quote above is from SLOF and it is wrong,
2401 * the actual binding is:
2402 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2403 */
2404 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2405 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2406 (uint64_t)id << 32);
2407 } else if (usb) {
2408 /*
2409 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2410 * in the top 32 bits of the 64-bit LUN
2411 */
2412 unsigned usb_port = atoi(usb->port->path);
2413 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2414 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2415 (uint64_t)id << 32);
2416 }
2417 }
2418
b99260eb
TH
2419 /*
2420 * SLOF probes the USB devices, and if it recognizes that the device is a
2421 * storage device, it changes its name to "storage" instead of "usb-host",
2422 * and additionally adds a child node for the SCSI LUN, so the correct
2423 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
2424 */
2425 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
2426 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
2427 if (usb_host_dev_is_scsi_storage(usbdev)) {
2428 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
2429 }
2430 }
2431
71461b0f
AK
2432 if (phb) {
2433 /* Replace "pci" with "pci@800000020000000" */
2434 return g_strdup_printf("pci@%"PRIX64, phb->buid);
2435 }
2436
2437 return NULL;
2438}
2439
23825581
EH
2440static char *spapr_get_kvm_type(Object *obj, Error **errp)
2441{
28e02042 2442 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
23825581 2443
28e02042 2444 return g_strdup(spapr->kvm_type);
23825581
EH
2445}
2446
2447static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2448{
28e02042 2449 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
23825581 2450
28e02042
DG
2451 g_free(spapr->kvm_type);
2452 spapr->kvm_type = g_strdup(value);
23825581
EH
2453}
2454
f6229214
MR
2455static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
2456{
2457 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2458
2459 return spapr->use_hotplug_event_source;
2460}
2461
2462static void spapr_set_modern_hotplug_events(Object *obj, bool value,
2463 Error **errp)
2464{
2465 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2466
2467 spapr->use_hotplug_event_source = value;
2468}
2469
23825581
EH
2470static void spapr_machine_initfn(Object *obj)
2471{
715c5407
DG
2472 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2473
2474 spapr->htab_fd = -1;
f6229214 2475 spapr->use_hotplug_event_source = true;
23825581
EH
2476 object_property_add_str(obj, "kvm-type",
2477 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
49d2e648
MA
2478 object_property_set_description(obj, "kvm-type",
2479 "Specifies the KVM virtualization mode (HV, PR)",
2480 NULL);
f6229214
MR
2481 object_property_add_bool(obj, "modern-hotplug-events",
2482 spapr_get_modern_hotplug_events,
2483 spapr_set_modern_hotplug_events,
2484 NULL);
2485 object_property_set_description(obj, "modern-hotplug-events",
2486 "Use dedicated hotplug event mechanism in"
2487 " place of standard EPOW events when possible"
2488 " (required for memory hot-unplug support)",
2489 NULL);
23825581
EH
2490}
2491
87bbdd9c
DG
2492static void spapr_machine_finalizefn(Object *obj)
2493{
2494 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2495
2496 g_free(spapr->kvm_type);
2497}
2498
1c7ad77e 2499void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
34316482 2500{
34316482
AK
2501 cpu_synchronize_state(cs);
2502 ppc_cpu_do_system_reset(cs);
2503}
2504
2505static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
2506{
2507 CPUState *cs;
2508
2509 CPU_FOREACH(cs) {
1c7ad77e 2510 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
34316482
AK
2511 }
2512}
2513
79b78a6b
MR
2514static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
2515 uint32_t node, bool dedicated_hp_event_source,
2516 Error **errp)
c20d332a
BR
2517{
2518 sPAPRDRConnector *drc;
2519 sPAPRDRConnectorClass *drck;
2520 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
2521 int i, fdt_offset, fdt_size;
2522 void *fdt;
79b78a6b 2523 uint64_t addr = addr_start;
c20d332a 2524
c20d332a
BR
2525 for (i = 0; i < nr_lmbs; i++) {
2526 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2527 addr/SPAPR_MEMORY_BLOCK_SIZE);
2528 g_assert(drc);
2529
2530 fdt = create_device_tree(&fdt_size);
2531 fdt_offset = spapr_populate_memory_node(fdt, node, addr,
2532 SPAPR_MEMORY_BLOCK_SIZE);
2533
2534 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2535 drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, errp);
c20d332a 2536 addr += SPAPR_MEMORY_BLOCK_SIZE;
5c0139a8
MR
2537 if (!dev->hotplugged) {
2538 /* guests expect coldplugged LMBs to be pre-allocated */
2539 drck->set_allocation_state(drc, SPAPR_DR_ALLOCATION_STATE_USABLE);
2540 drck->set_isolation_state(drc, SPAPR_DR_ISOLATION_STATE_UNISOLATED);
2541 }
c20d332a 2542 }
5dd5238c
JD
2543 /* send hotplug notification to the
2544 * guest only in case of hotplugged memory
2545 */
2546 if (dev->hotplugged) {
79b78a6b
MR
2547 if (dedicated_hp_event_source) {
2548 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2549 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
2550 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2551 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
2552 nr_lmbs,
2553 drck->get_index(drc));
2554 } else {
2555 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
2556 nr_lmbs);
2557 }
5dd5238c 2558 }
c20d332a
BR
2559}
2560
2561static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2562 uint32_t node, Error **errp)
2563{
2564 Error *local_err = NULL;
2565 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2566 PCDIMMDevice *dimm = PC_DIMM(dev);
2567 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2568 MemoryRegion *mr = ddc->get_memory_region(dimm);
2569 uint64_t align = memory_region_get_alignment(mr);
2570 uint64_t size = memory_region_size(mr);
2571 uint64_t addr;
df587133 2572 char *mem_dev;
c20d332a
BR
2573
2574 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
2575 error_setg(&local_err, "Hotplugged memory size must be a multiple of "
2576 "%lld MB", SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
2577 goto out;
2578 }
2579
df587133
TH
2580 mem_dev = object_property_get_str(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, NULL);
2581 if (mem_dev && !kvmppc_is_mem_backend_page_size_ok(mem_dev)) {
2582 error_setg(&local_err, "Memory backend has bad page size. "
2583 "Use 'memory-backend-file' with correct mem-path.");
2584 goto out;
2585 }
2586
d6a9b0b8 2587 pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
c20d332a
BR
2588 if (local_err) {
2589 goto out;
2590 }
2591
2592 addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
2593 if (local_err) {
2594 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2595 goto out;
2596 }
2597
79b78a6b
MR
2598 spapr_add_lmbs(dev, addr, size, node,
2599 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
2600 &error_abort);
c20d332a
BR
2601
2602out:
2603 error_propagate(errp, local_err);
2604}
2605
cf632463
BR
2606typedef struct sPAPRDIMMState {
2607 uint32_t nr_lmbs;
2608} sPAPRDIMMState;
2609
2610static void spapr_lmb_release(DeviceState *dev, void *opaque)
2611{
2612 sPAPRDIMMState *ds = (sPAPRDIMMState *)opaque;
2613 HotplugHandler *hotplug_ctrl;
2614
2615 if (--ds->nr_lmbs) {
2616 return;
2617 }
2618
2619 g_free(ds);
2620
2621 /*
2622 * Now that all the LMBs have been removed by the guest, call the
2623 * pc-dimm unplug handler to cleanup up the pc-dimm device.
2624 */
2625 hotplug_ctrl = qdev_get_hotplug_handler(dev);
2626 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
2627}
2628
2629static void spapr_del_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
2630 Error **errp)
2631{
2632 sPAPRDRConnector *drc;
2633 sPAPRDRConnectorClass *drck;
2634 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
2635 int i;
2636 sPAPRDIMMState *ds = g_malloc0(sizeof(sPAPRDIMMState));
2637 uint64_t addr = addr_start;
2638
2639 ds->nr_lmbs = nr_lmbs;
2640 for (i = 0; i < nr_lmbs; i++) {
2641 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2642 addr / SPAPR_MEMORY_BLOCK_SIZE);
2643 g_assert(drc);
2644
2645 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2646 drck->detach(drc, dev, spapr_lmb_release, ds, errp);
2647 addr += SPAPR_MEMORY_BLOCK_SIZE;
2648 }
2649
2650 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2651 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
2652 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2653 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
2654 nr_lmbs,
2655 drck->get_index(drc));
2656}
2657
2658static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev,
2659 Error **errp)
2660{
2661 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2662 PCDIMMDevice *dimm = PC_DIMM(dev);
2663 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2664 MemoryRegion *mr = ddc->get_memory_region(dimm);
2665
2666 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2667 object_unparent(OBJECT(dev));
2668}
2669
2670static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
2671 DeviceState *dev, Error **errp)
2672{
2673 Error *local_err = NULL;
2674 PCDIMMDevice *dimm = PC_DIMM(dev);
2675 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2676 MemoryRegion *mr = ddc->get_memory_region(dimm);
2677 uint64_t size = memory_region_size(mr);
2678 uint64_t addr;
2679
2680 addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
2681 if (local_err) {
2682 goto out;
2683 }
2684
2685 spapr_del_lmbs(dev, addr, size, &error_abort);
2686out:
2687 error_propagate(errp, local_err);
2688}
2689
af81cf32
BR
2690void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
2691 sPAPRMachineState *spapr)
2692{
2693 PowerPCCPU *cpu = POWERPC_CPU(cs);
2694 DeviceClass *dc = DEVICE_GET_CLASS(cs);
2695 int id = ppc_get_vcpu_dt_id(cpu);
2696 void *fdt;
2697 int offset, fdt_size;
2698 char *nodename;
2699
2700 fdt = create_device_tree(&fdt_size);
2701 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
2702 offset = fdt_add_subnode(fdt, 0, nodename);
2703
2704 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
2705 g_free(nodename);
2706
2707 *fdt_offset = offset;
2708 return fdt;
2709}
2710
115debf2
IM
2711static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev,
2712 Error **errp)
ff9006dd 2713{
535455fd 2714 MachineState *ms = MACHINE(qdev_get_machine());
ff9006dd 2715 CPUCore *cc = CPU_CORE(dev);
535455fd 2716 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
ff9006dd 2717
535455fd 2718 core_slot->cpu = NULL;
ff9006dd
IM
2719 object_unparent(OBJECT(dev));
2720}
2721
115debf2
IM
2722static void spapr_core_release(DeviceState *dev, void *opaque)
2723{
2724 HotplugHandler *hotplug_ctrl;
2725
2726 hotplug_ctrl = qdev_get_hotplug_handler(dev);
2727 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
2728}
2729
2730static
2731void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
2732 Error **errp)
ff9006dd 2733{
535455fd
IM
2734 int index;
2735 sPAPRDRConnector *drc;
ff9006dd
IM
2736 sPAPRDRConnectorClass *drck;
2737 Error *local_err = NULL;
535455fd
IM
2738 CPUCore *cc = CPU_CORE(dev);
2739 int smt = kvmppc_smt_threads();
ff9006dd 2740
535455fd
IM
2741 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
2742 error_setg(errp, "Unable to find CPU core with core-id: %d",
2743 cc->core_id);
2744 return;
2745 }
ff9006dd
IM
2746 if (index == 0) {
2747 error_setg(errp, "Boot CPU core may not be unplugged");
2748 return;
2749 }
2750
535455fd 2751 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index * smt);
ff9006dd
IM
2752 g_assert(drc);
2753
2754 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2755 drck->detach(drc, dev, spapr_core_release, NULL, &local_err);
2756 if (local_err) {
2757 error_propagate(errp, local_err);
2758 return;
2759 }
2760
2761 spapr_hotplug_req_remove_by_index(drc);
2762}
2763
2764static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2765 Error **errp)
2766{
2767 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
2768 MachineClass *mc = MACHINE_GET_CLASS(spapr);
2769 sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
2770 CPUCore *cc = CPU_CORE(dev);
2771 CPUState *cs = CPU(core->threads);
2772 sPAPRDRConnector *drc;
2773 Error *local_err = NULL;
2774 void *fdt = NULL;
2775 int fdt_offset = 0;
ff9006dd 2776 int smt = kvmppc_smt_threads();
535455fd
IM
2777 CPUArchId *core_slot;
2778 int index;
ff9006dd 2779
535455fd
IM
2780 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
2781 if (!core_slot) {
2782 error_setg(errp, "Unable to find CPU core with core-id: %d",
2783 cc->core_id);
2784 return;
2785 }
ff9006dd 2786 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index * smt);
ff9006dd 2787
c5514d0e 2788 g_assert(drc || !mc->has_hotpluggable_cpus);
ff9006dd
IM
2789
2790 /*
2791 * Setup CPU DT entries only for hotplugged CPUs. For boot time or
2792 * coldplugged CPUs DT entries are setup in spapr_build_fdt().
2793 */
2794 if (dev->hotplugged) {
2795 fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr);
2796 }
2797
2798 if (drc) {
2799 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2800 drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, &local_err);
2801 if (local_err) {
2802 g_free(fdt);
ff9006dd
IM
2803 error_propagate(errp, local_err);
2804 return;
2805 }
2806 }
2807
2808 if (dev->hotplugged) {
2809 /*
2810 * Send hotplug notification interrupt to the guest only in case
2811 * of hotplugged CPUs.
2812 */
2813 spapr_hotplug_req_add_by_index(drc);
2814 } else {
2815 /*
2816 * Set the right DRC states for cold plugged CPU.
2817 */
2818 if (drc) {
2819 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2820 drck->set_allocation_state(drc, SPAPR_DR_ALLOCATION_STATE_USABLE);
2821 drck->set_isolation_state(drc, SPAPR_DR_ISOLATION_STATE_UNISOLATED);
2822 }
2823 }
535455fd 2824 core_slot->cpu = OBJECT(dev);
ff9006dd
IM
2825}
2826
2827static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2828 Error **errp)
2829{
2830 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
2831 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
ff9006dd
IM
2832 Error *local_err = NULL;
2833 CPUCore *cc = CPU_CORE(dev);
2834 char *base_core_type = spapr_get_cpu_core_type(machine->cpu_model);
2835 const char *type = object_get_typename(OBJECT(dev));
535455fd
IM
2836 CPUArchId *core_slot;
2837 int index;
ff9006dd 2838
c5514d0e 2839 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
ff9006dd
IM
2840 error_setg(&local_err, "CPU hotplug not supported for this machine");
2841 goto out;
2842 }
2843
2844 if (strcmp(base_core_type, type)) {
2845 error_setg(&local_err, "CPU core type should be %s", base_core_type);
2846 goto out;
2847 }
2848
2849 if (cc->core_id % smp_threads) {
2850 error_setg(&local_err, "invalid core id %d", cc->core_id);
2851 goto out;
2852 }
2853
8149e299
DG
2854 if (cc->nr_threads != smp_threads) {
2855 error_setg(errp, "invalid nr-threads %d, must be %d",
2856 cc->nr_threads, smp_threads);
2857 return;
2858 }
2859
535455fd
IM
2860 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
2861 if (!core_slot) {
ff9006dd
IM
2862 error_setg(&local_err, "core id %d out of range", cc->core_id);
2863 goto out;
2864 }
2865
535455fd 2866 if (core_slot->cpu) {
ff9006dd
IM
2867 error_setg(&local_err, "core %d already populated", cc->core_id);
2868 goto out;
2869 }
2870
2871out:
2872 g_free(base_core_type);
2873 error_propagate(errp, local_err);
2874}
2875
c20d332a
BR
2876static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
2877 DeviceState *dev, Error **errp)
2878{
2879 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
2880
2881 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
b556854b 2882 int node;
c20d332a
BR
2883
2884 if (!smc->dr_lmb_enabled) {
2885 error_setg(errp, "Memory hotplug not supported for this machine");
2886 return;
2887 }
2888 node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
2889 if (*errp) {
2890 return;
2891 }
1a5512bb
GA
2892 if (node < 0 || node >= MAX_NODES) {
2893 error_setg(errp, "Invaild node %d", node);
2894 return;
2895 }
c20d332a 2896
b556854b
BR
2897 /*
2898 * Currently PowerPC kernel doesn't allow hot-adding memory to
2899 * memory-less node, but instead will silently add the memory
2900 * to the first node that has some memory. This causes two
2901 * unexpected behaviours for the user.
2902 *
2903 * - Memory gets hotplugged to a different node than what the user
2904 * specified.
2905 * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
2906 * to memory-less node, a reboot will set things accordingly
2907 * and the previously hotplugged memory now ends in the right node.
2908 * This appears as if some memory moved from one node to another.
2909 *
2910 * So until kernel starts supporting memory hotplug to memory-less
2911 * nodes, just prevent such attempts upfront in QEMU.
2912 */
2913 if (nb_numa_nodes && !numa_info[node].node_mem) {
2914 error_setg(errp, "Can't hotplug memory to memory-less node %d",
2915 node);
2916 return;
2917 }
2918
c20d332a 2919 spapr_memory_plug(hotplug_dev, dev, node, errp);
af81cf32
BR
2920 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2921 spapr_core_plug(hotplug_dev, dev, errp);
c20d332a
BR
2922 }
2923}
2924
2925static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
2926 DeviceState *dev, Error **errp)
2927{
cf632463 2928 sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine());
3c0c47e3 2929 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
6f4b5c3e 2930
c20d332a 2931 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
cf632463
BR
2932 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
2933 spapr_memory_unplug(hotplug_dev, dev, errp);
2934 } else {
2935 error_setg(errp, "Memory hot unplug not supported for this guest");
2936 }
2937 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
c5514d0e 2938 if (!mc->has_hotpluggable_cpus) {
cf632463
BR
2939 error_setg(errp, "CPU hot unplug not supported on this machine");
2940 return;
2941 }
2942 spapr_core_unplug(hotplug_dev, dev, errp);
2943 }
2944}
2945
2946static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
2947 DeviceState *dev, Error **errp)
2948{
2949 sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine());
2950 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
2951
2952 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2953 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
2954 spapr_memory_unplug_request(hotplug_dev, dev, errp);
2955 } else {
2956 /* NOTE: this means there is a window after guest reset, prior to
2957 * CAS negotiation, where unplug requests will fail due to the
2958 * capability not being detected yet. This is a bit different than
2959 * the case with PCI unplug, where the events will be queued and
2960 * eventually handled by the guest after boot
2961 */
2962 error_setg(errp, "Memory hot unplug not supported for this guest");
2963 }
6f4b5c3e 2964 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
c5514d0e 2965 if (!mc->has_hotpluggable_cpus) {
6f4b5c3e
BR
2966 error_setg(errp, "CPU hot unplug not supported on this machine");
2967 return;
2968 }
115debf2 2969 spapr_core_unplug_request(hotplug_dev, dev, errp);
c20d332a
BR
2970 }
2971}
2972
94a94e4c
BR
2973static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
2974 DeviceState *dev, Error **errp)
2975{
2976 if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2977 spapr_core_pre_plug(hotplug_dev, dev, errp);
2978 }
2979}
2980
7ebaf795
BR
2981static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
2982 DeviceState *dev)
c20d332a 2983{
94a94e4c
BR
2984 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2985 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
c20d332a
BR
2986 return HOTPLUG_HANDLER(machine);
2987 }
2988 return NULL;
2989}
2990
20bb648d
DG
2991static unsigned spapr_cpu_index_to_socket_id(unsigned cpu_index)
2992{
2993 /* Allocate to NUMA nodes on a "socket" basis (not that concept of
2994 * socket means much for the paravirtualized PAPR platform) */
2995 return cpu_index / smp_threads / smp_cores;
2996}
2997
535455fd
IM
2998static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
2999{
3000 int i;
3001 int spapr_max_cores = max_cpus / smp_threads;
3002 MachineClass *mc = MACHINE_GET_CLASS(machine);
3003
c5514d0e 3004 if (!mc->has_hotpluggable_cpus) {
535455fd
IM
3005 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
3006 }
3007 if (machine->possible_cpus) {
3008 assert(machine->possible_cpus->len == spapr_max_cores);
3009 return machine->possible_cpus;
3010 }
3011
3012 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
3013 sizeof(CPUArchId) * spapr_max_cores);
3014 machine->possible_cpus->len = spapr_max_cores;
3015 for (i = 0; i < machine->possible_cpus->len; i++) {
3016 int core_id = i * smp_threads;
3017
f2d672c2 3018 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
535455fd
IM
3019 machine->possible_cpus->cpus[i].arch_id = core_id;
3020 machine->possible_cpus->cpus[i].props.has_core_id = true;
3021 machine->possible_cpus->cpus[i].props.core_id = core_id;
3022 /* TODO: add 'has_node/node' here to describe
3023 to which node core belongs */
3024 }
3025 return machine->possible_cpus;
3026}
3027
6737d9ad 3028static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
daa23699
DG
3029 uint64_t *buid, hwaddr *pio,
3030 hwaddr *mmio32, hwaddr *mmio64,
6737d9ad
DG
3031 unsigned n_dma, uint32_t *liobns, Error **errp)
3032{
357d1e3b
DG
3033 /*
3034 * New-style PHB window placement.
3035 *
3036 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
3037 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
3038 * windows.
3039 *
3040 * Some guest kernels can't work with MMIO windows above 1<<46
3041 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
3042 *
3043 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
3044 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
3045 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
3046 * 1TiB 64-bit MMIO windows for each PHB.
3047 */
6737d9ad 3048 const uint64_t base_buid = 0x800000020000000ULL;
25e6a118
MT
3049#define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \
3050 SPAPR_PCI_MEM64_WIN_SIZE - 1)
6737d9ad
DG
3051 int i;
3052
357d1e3b
DG
3053 /* Sanity check natural alignments */
3054 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3055 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3056 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
3057 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
3058 /* Sanity check bounds */
25e6a118
MT
3059 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
3060 SPAPR_PCI_MEM32_WIN_SIZE);
3061 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
3062 SPAPR_PCI_MEM64_WIN_SIZE);
3063
3064 if (index >= SPAPR_MAX_PHBS) {
3065 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
3066 SPAPR_MAX_PHBS - 1);
6737d9ad
DG
3067 return;
3068 }
3069
3070 *buid = base_buid + index;
3071 for (i = 0; i < n_dma; ++i) {
3072 liobns[i] = SPAPR_PCI_LIOBN(index, i);
3073 }
3074
357d1e3b
DG
3075 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
3076 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
3077 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
6737d9ad
DG
3078}
3079
7844e12b
CLG
3080static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
3081{
3082 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3083
3084 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
3085}
3086
3087static void spapr_ics_resend(XICSFabric *dev)
3088{
3089 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3090
3091 ics_resend(spapr->ics);
3092}
3093
06747ba6 3094static ICPState *spapr_icp_get(XICSFabric *xi, int cpu_dt_id)
b2fc59aa 3095{
5bc8d26d 3096 PowerPCCPU *cpu = ppc_get_vcpu_by_dt_id(cpu_dt_id);
b2fc59aa 3097
5bc8d26d 3098 return cpu ? ICP(cpu->intc) : NULL;
b2fc59aa
CLG
3099}
3100
6449da45
CLG
3101static void spapr_pic_print_info(InterruptStatsProvider *obj,
3102 Monitor *mon)
3103{
3104 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
5bc8d26d
CLG
3105 CPUState *cs;
3106
3107 CPU_FOREACH(cs) {
3108 PowerPCCPU *cpu = POWERPC_CPU(cs);
6449da45 3109
5bc8d26d 3110 icp_pic_print_info(ICP(cpu->intc), mon);
6449da45
CLG
3111 }
3112
3113 ics_pic_print_info(spapr->ics, mon);
3114}
3115
29ee3247
AK
3116static void spapr_machine_class_init(ObjectClass *oc, void *data)
3117{
3118 MachineClass *mc = MACHINE_CLASS(oc);
224245bf 3119 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
71461b0f 3120 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
34316482 3121 NMIClass *nc = NMI_CLASS(oc);
c20d332a 3122 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
1d1be34d 3123 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
7844e12b 3124 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
6449da45 3125 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
958db90c 3126
0eb9054c 3127 mc->desc = "pSeries Logical Partition (PAPR compliant)";
fc9f38c3
DG
3128
3129 /*
3130 * We set up the default / latest behaviour here. The class_init
3131 * functions for the specific versioned machine types can override
3132 * these details for backwards compatibility
3133 */
958db90c
MA
3134 mc->init = ppc_spapr_init;
3135 mc->reset = ppc_spapr_reset;
3136 mc->block_default_type = IF_SCSI;
6244bb7e 3137 mc->max_cpus = 1024;
958db90c 3138 mc->no_parallel = 1;
5b2128d2 3139 mc->default_boot_order = "";
a34944fe 3140 mc->default_ram_size = 512 * M_BYTE;
958db90c 3141 mc->kvm_type = spapr_kvm_type;
9e3f9733 3142 mc->has_dynamic_sysbus = true;
e4024630 3143 mc->pci_allow_0_address = true;
7ebaf795 3144 mc->get_hotplug_handler = spapr_get_hotplug_handler;
94a94e4c 3145 hc->pre_plug = spapr_machine_device_pre_plug;
c20d332a
BR
3146 hc->plug = spapr_machine_device_plug;
3147 hc->unplug = spapr_machine_device_unplug;
20bb648d 3148 mc->cpu_index_to_socket_id = spapr_cpu_index_to_socket_id;
535455fd 3149 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
cf632463 3150 hc->unplug_request = spapr_machine_device_unplug_request;
00b4fbe2 3151
fc9f38c3 3152 smc->dr_lmb_enabled = true;
3daa4a9f 3153 smc->tcg_default_cpu = "POWER8";
c5514d0e 3154 mc->has_hotpluggable_cpus = true;
71461b0f 3155 fwc->get_dev_path = spapr_get_fw_dev_path;
34316482 3156 nc->nmi_monitor_handler = spapr_nmi;
6737d9ad 3157 smc->phb_placement = spapr_phb_placement;
1d1be34d 3158 vhc->hypercall = emulate_spapr_hypercall;
e57ca75c
DG
3159 vhc->hpt_mask = spapr_hpt_mask;
3160 vhc->map_hptes = spapr_map_hptes;
3161 vhc->unmap_hptes = spapr_unmap_hptes;
3162 vhc->store_hpte = spapr_store_hpte;
9861bb3e 3163 vhc->get_patbe = spapr_get_patbe;
7844e12b
CLG
3164 xic->ics_get = spapr_ics_get;
3165 xic->ics_resend = spapr_ics_resend;
b2fc59aa 3166 xic->icp_get = spapr_icp_get;
6449da45 3167 ispc->print_info = spapr_pic_print_info;
55641213
LV
3168 /* Force NUMA node memory size to be a multiple of
3169 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
3170 * in which LMBs are represented and hot-added
3171 */
3172 mc->numa_mem_align_shift = 28;
29ee3247
AK
3173}
3174
3175static const TypeInfo spapr_machine_info = {
3176 .name = TYPE_SPAPR_MACHINE,
3177 .parent = TYPE_MACHINE,
4aee7362 3178 .abstract = true,
6ca1502e 3179 .instance_size = sizeof(sPAPRMachineState),
23825581 3180 .instance_init = spapr_machine_initfn,
87bbdd9c 3181 .instance_finalize = spapr_machine_finalizefn,
183930c0 3182 .class_size = sizeof(sPAPRMachineClass),
29ee3247 3183 .class_init = spapr_machine_class_init,
71461b0f
AK
3184 .interfaces = (InterfaceInfo[]) {
3185 { TYPE_FW_PATH_PROVIDER },
34316482 3186 { TYPE_NMI },
c20d332a 3187 { TYPE_HOTPLUG_HANDLER },
1d1be34d 3188 { TYPE_PPC_VIRTUAL_HYPERVISOR },
7844e12b 3189 { TYPE_XICS_FABRIC },
6449da45 3190 { TYPE_INTERRUPT_STATS_PROVIDER },
71461b0f
AK
3191 { }
3192 },
29ee3247
AK
3193};
3194
fccbc785 3195#define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
5013c547
DG
3196 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
3197 void *data) \
3198 { \
3199 MachineClass *mc = MACHINE_CLASS(oc); \
3200 spapr_machine_##suffix##_class_options(mc); \
fccbc785
DG
3201 if (latest) { \
3202 mc->alias = "pseries"; \
3203 mc->is_default = 1; \
3204 } \
5013c547
DG
3205 } \
3206 static void spapr_machine_##suffix##_instance_init(Object *obj) \
3207 { \
3208 MachineState *machine = MACHINE(obj); \
3209 spapr_machine_##suffix##_instance_options(machine); \
3210 } \
3211 static const TypeInfo spapr_machine_##suffix##_info = { \
3212 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
3213 .parent = TYPE_SPAPR_MACHINE, \
3214 .class_init = spapr_machine_##suffix##_class_init, \
3215 .instance_init = spapr_machine_##suffix##_instance_init, \
3216 }; \
3217 static void spapr_machine_register_##suffix(void) \
3218 { \
3219 type_register(&spapr_machine_##suffix##_info); \
3220 } \
0e6aac87 3221 type_init(spapr_machine_register_##suffix)
5013c547 3222
3fa14fbe
DG
3223/*
3224 * pseries-2.10
3225 */
3226static void spapr_machine_2_10_instance_options(MachineState *machine)
3227{
3228}
3229
3230static void spapr_machine_2_10_class_options(MachineClass *mc)
3231{
3232 /* Defaults for the latest behaviour inherited from the base class */
3233}
3234
3235DEFINE_SPAPR_MACHINE(2_10, "2.10", true);
3236
fa325e6c
DG
3237/*
3238 * pseries-2.9
3239 */
3fa14fbe
DG
3240#define SPAPR_COMPAT_2_9 \
3241 HW_COMPAT_2_9
3242
fa325e6c
DG
3243static void spapr_machine_2_9_instance_options(MachineState *machine)
3244{
3fa14fbe 3245 spapr_machine_2_10_instance_options(machine);
fa325e6c
DG
3246}
3247
3248static void spapr_machine_2_9_class_options(MachineClass *mc)
3249{
3fa14fbe
DG
3250 spapr_machine_2_10_class_options(mc);
3251 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_9);
fa325e6c
DG
3252}
3253
3fa14fbe 3254DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
fa325e6c 3255
db800b21
DG
3256/*
3257 * pseries-2.8
3258 */
82516263
DG
3259#define SPAPR_COMPAT_2_8 \
3260 HW_COMPAT_2_8 \
3261 { \
3262 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3263 .property = "pcie-extended-configuration-space", \
3264 .value = "off", \
3265 },
fa325e6c 3266
db800b21
DG
3267static void spapr_machine_2_8_instance_options(MachineState *machine)
3268{
fa325e6c 3269 spapr_machine_2_9_instance_options(machine);
db800b21
DG
3270}
3271
3272static void spapr_machine_2_8_class_options(MachineClass *mc)
3273{
fa325e6c
DG
3274 spapr_machine_2_9_class_options(mc);
3275 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8);
55641213 3276 mc->numa_mem_align_shift = 23;
db800b21
DG
3277}
3278
fa325e6c 3279DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
db800b21 3280
1ea1eefc
BR
3281/*
3282 * pseries-2.7
3283 */
357d1e3b
DG
3284#define SPAPR_COMPAT_2_7 \
3285 HW_COMPAT_2_7 \
3286 { \
3287 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3288 .property = "mem_win_size", \
3289 .value = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
3290 }, \
3291 { \
3292 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3293 .property = "mem64_win_size", \
3294 .value = "0", \
146c11f1
DG
3295 }, \
3296 { \
3297 .driver = TYPE_POWERPC_CPU, \
3298 .property = "pre-2.8-migration", \
3299 .value = "on", \
5c4537bd
DG
3300 }, \
3301 { \
3302 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3303 .property = "pre-2.8-migration", \
3304 .value = "on", \
357d1e3b
DG
3305 },
3306
3307static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
3308 uint64_t *buid, hwaddr *pio,
3309 hwaddr *mmio32, hwaddr *mmio64,
3310 unsigned n_dma, uint32_t *liobns, Error **errp)
3311{
3312 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
3313 const uint64_t base_buid = 0x800000020000000ULL;
3314 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
3315 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
3316 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
3317 const uint32_t max_index = 255;
3318 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
3319
3320 uint64_t ram_top = MACHINE(spapr)->ram_size;
3321 hwaddr phb0_base, phb_base;
3322 int i;
3323
3324 /* Do we have hotpluggable memory? */
3325 if (MACHINE(spapr)->maxram_size > ram_top) {
3326 /* Can't just use maxram_size, because there may be an
3327 * alignment gap between normal and hotpluggable memory
3328 * regions */
3329 ram_top = spapr->hotplug_memory.base +
3330 memory_region_size(&spapr->hotplug_memory.mr);
3331 }
3332
3333 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
3334
3335 if (index > max_index) {
3336 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
3337 max_index);
3338 return;
3339 }
3340
3341 *buid = base_buid + index;
3342 for (i = 0; i < n_dma; ++i) {
3343 liobns[i] = SPAPR_PCI_LIOBN(index, i);
3344 }
3345
3346 phb_base = phb0_base + index * phb_spacing;
3347 *pio = phb_base + pio_offset;
3348 *mmio32 = phb_base + mmio_offset;
3349 /*
3350 * We don't set the 64-bit MMIO window, relying on the PHB's
3351 * fallback behaviour of automatically splitting a large "32-bit"
3352 * window into contiguous 32-bit and 64-bit windows
3353 */
3354}
db800b21 3355
1ea1eefc
BR
3356static void spapr_machine_2_7_instance_options(MachineState *machine)
3357{
f6229214
MR
3358 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
3359
672de881 3360 spapr_machine_2_8_instance_options(machine);
f6229214 3361 spapr->use_hotplug_event_source = false;
1ea1eefc
BR
3362}
3363
3364static void spapr_machine_2_7_class_options(MachineClass *mc)
3365{
3daa4a9f
TH
3366 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3367
db800b21 3368 spapr_machine_2_8_class_options(mc);
3daa4a9f 3369 smc->tcg_default_cpu = "POWER7";
db800b21 3370 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7);
357d1e3b 3371 smc->phb_placement = phb_placement_2_7;
1ea1eefc
BR
3372}
3373
db800b21 3374DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
1ea1eefc 3375
4b23699c
DG
3376/*
3377 * pseries-2.6
3378 */
1ea1eefc 3379#define SPAPR_COMPAT_2_6 \
ae4de14c
AK
3380 HW_COMPAT_2_6 \
3381 { \
3382 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3383 .property = "ddw",\
3384 .value = stringify(off),\
3385 },
1ea1eefc 3386
4b23699c
DG
3387static void spapr_machine_2_6_instance_options(MachineState *machine)
3388{
672de881 3389 spapr_machine_2_7_instance_options(machine);
4b23699c
DG
3390}
3391
3392static void spapr_machine_2_6_class_options(MachineClass *mc)
3393{
1ea1eefc 3394 spapr_machine_2_7_class_options(mc);
c5514d0e 3395 mc->has_hotpluggable_cpus = false;
1ea1eefc 3396 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
4b23699c
DG
3397}
3398
1ea1eefc 3399DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4b23699c 3400
1c5f29bb
DG
3401/*
3402 * pseries-2.5
3403 */
4b23699c 3404#define SPAPR_COMPAT_2_5 \
57c522f4
TH
3405 HW_COMPAT_2_5 \
3406 { \
3407 .driver = "spapr-vlan", \
3408 .property = "use-rx-buffer-pools", \
3409 .value = "off", \
3410 },
4b23699c 3411
5013c547 3412static void spapr_machine_2_5_instance_options(MachineState *machine)
1c5f29bb 3413{
672de881 3414 spapr_machine_2_6_instance_options(machine);
5013c547
DG
3415}
3416
3417static void spapr_machine_2_5_class_options(MachineClass *mc)
3418{
57040d45
TH
3419 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3420
4b23699c 3421 spapr_machine_2_6_class_options(mc);
57040d45 3422 smc->use_ohci_by_default = true;
4b23699c 3423 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
1c5f29bb
DG
3424}
3425
4b23699c 3426DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
1c5f29bb
DG
3427
3428/*
3429 * pseries-2.4
3430 */
80fd50f9
CH
3431#define SPAPR_COMPAT_2_4 \
3432 HW_COMPAT_2_4
3433
5013c547 3434static void spapr_machine_2_4_instance_options(MachineState *machine)
1c5f29bb 3435{
5013c547
DG
3436 spapr_machine_2_5_instance_options(machine);
3437}
1c5f29bb 3438
5013c547
DG
3439static void spapr_machine_2_4_class_options(MachineClass *mc)
3440{
fc9f38c3
DG
3441 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3442
3443 spapr_machine_2_5_class_options(mc);
fc9f38c3 3444 smc->dr_lmb_enabled = false;
f949b4e5 3445 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
1c5f29bb
DG
3446}
3447
fccbc785 3448DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
1c5f29bb
DG
3449
3450/*
3451 * pseries-2.3
3452 */
38ff32c6 3453#define SPAPR_COMPAT_2_3 \
7619c7b0
MR
3454 HW_COMPAT_2_3 \
3455 {\
3456 .driver = "spapr-pci-host-bridge",\
3457 .property = "dynamic-reconfiguration",\
3458 .value = "off",\
3459 },
38ff32c6 3460
5013c547 3461static void spapr_machine_2_3_instance_options(MachineState *machine)
d25228e7 3462{
5013c547 3463 spapr_machine_2_4_instance_options(machine);
ff14e817 3464 savevm_skip_section_footers();
13d16814 3465 global_state_set_optional();
09b5e30d 3466 savevm_skip_configuration();
d25228e7
JW
3467}
3468
5013c547 3469static void spapr_machine_2_3_class_options(MachineClass *mc)
6026db45 3470{
fc9f38c3 3471 spapr_machine_2_4_class_options(mc);
f949b4e5 3472 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
6026db45 3473}
fccbc785 3474DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
6026db45 3475
1c5f29bb
DG
3476/*
3477 * pseries-2.2
3478 */
3479
3480#define SPAPR_COMPAT_2_2 \
1c5f29bb
DG
3481 HW_COMPAT_2_2 \
3482 {\
3483 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3484 .property = "mem_win_size",\
3485 .value = "0x20000000",\
3486 },
3487
5013c547 3488static void spapr_machine_2_2_instance_options(MachineState *machine)
1c5f29bb 3489{
5013c547 3490 spapr_machine_2_3_instance_options(machine);
cba0e779 3491 machine->suppress_vmdesc = true;
1c5f29bb
DG
3492}
3493
5013c547 3494static void spapr_machine_2_2_class_options(MachineClass *mc)
4aee7362 3495{
fc9f38c3 3496 spapr_machine_2_3_class_options(mc);
f949b4e5 3497 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
4aee7362 3498}
fccbc785 3499DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4aee7362 3500
1c5f29bb
DG
3501/*
3502 * pseries-2.1
3503 */
3504#define SPAPR_COMPAT_2_1 \
1c5f29bb 3505 HW_COMPAT_2_1
3dab0244 3506
5013c547 3507static void spapr_machine_2_1_instance_options(MachineState *machine)
1c5f29bb 3508{
5013c547 3509 spapr_machine_2_2_instance_options(machine);
1c5f29bb 3510}
d25228e7 3511
5013c547 3512static void spapr_machine_2_1_class_options(MachineClass *mc)
d25228e7 3513{
fc9f38c3 3514 spapr_machine_2_2_class_options(mc);
f949b4e5 3515 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
d25228e7 3516}
fccbc785 3517DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
fb0fc8f6 3518
29ee3247 3519static void spapr_machine_register_types(void)
9fdf0c29 3520{
29ee3247 3521 type_register_static(&spapr_machine_info);
9fdf0c29
DG
3522}
3523
29ee3247 3524type_init(spapr_machine_register_types)
This page took 1.208291 seconds and 4 git commands to generate.