]> Git Repo - qemu.git/blame - hw/ppc/spapr.c
pseries: Remove redundant calls to spapr_machine_initfn()
[qemu.git] / hw / ppc / spapr.c
CommitLineData
9fdf0c29
DG
1/*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 *
26 */
9c17d615 27#include "sysemu/sysemu.h"
e35704ba 28#include "sysemu/numa.h"
83c9f4ca 29#include "hw/hw.h"
71461b0f 30#include "hw/fw-path-provider.h"
9fdf0c29 31#include "elf.h"
1422e32d 32#include "net/net.h"
ad440b4a 33#include "sysemu/device_tree.h"
fa1d36df 34#include "sysemu/block-backend.h"
9c17d615
PB
35#include "sysemu/cpus.h"
36#include "sysemu/kvm.h"
c20d332a 37#include "sysemu/device_tree.h"
e97c3636 38#include "kvm_ppc.h"
ff14e817 39#include "migration/migration.h"
4be21d56 40#include "mmu-hash64.h"
3794d548 41#include "qom/cpu.h"
9fdf0c29
DG
42
43#include "hw/boards.h"
0d09e41a 44#include "hw/ppc/ppc.h"
9fdf0c29
DG
45#include "hw/loader.h"
46
0d09e41a
PB
47#include "hw/ppc/spapr.h"
48#include "hw/ppc/spapr_vio.h"
49#include "hw/pci-host/spapr.h"
50#include "hw/ppc/xics.h"
a2cb15b0 51#include "hw/pci/msi.h"
9fdf0c29 52
83c9f4ca 53#include "hw/pci/pci.h"
71461b0f
AK
54#include "hw/scsi/scsi.h"
55#include "hw/virtio/virtio-scsi.h"
f61b4bed 56
022c62cb 57#include "exec/address-spaces.h"
35139a59 58#include "hw/usb.h"
1de7afc9 59#include "qemu/config-file.h"
135a129a 60#include "qemu/error-report.h"
2a6593cb 61#include "trace.h"
34316482 62#include "hw/nmi.h"
890c2b77 63
68a27b20 64#include "hw/compat.h"
224245bf 65#include "qemu-common.h"
68a27b20 66
9fdf0c29
DG
67#include <libfdt.h>
68
4d8d5467
BH
69/* SLOF memory layout:
70 *
71 * SLOF raw image loaded at 0, copies its romfs right below the flat
72 * device-tree, then position SLOF itself 31M below that
73 *
74 * So we set FW_OVERHEAD to 40MB which should account for all of that
75 * and more
76 *
77 * We load our kernel at 4M, leaving space for SLOF initial image
78 */
38b02bd8 79#define FDT_MAX_SIZE 0x100000
39ac8455 80#define RTAS_MAX_SIZE 0x10000
b7d1f77a 81#define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
a9f8ad8f
DG
82#define FW_MAX_SIZE 0x400000
83#define FW_FILE_NAME "slof.bin"
4d8d5467
BH
84#define FW_OVERHEAD 0x2800000
85#define KERNEL_LOAD_ADDR FW_MAX_SIZE
a9f8ad8f 86
4d8d5467 87#define MIN_RMA_SLOF 128UL
9fdf0c29
DG
88
89#define TIMEBASE_FREQ 512000000ULL
90
0c103f8e
DG
91#define PHANDLE_XICP 0x00001111
92
7f763a5d
DG
93#define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift))
94
c04d6cfa 95static XICSState *try_create_xics(const char *type, int nr_servers,
34f2af3d 96 int nr_irqs, Error **errp)
c04d6cfa 97{
34f2af3d 98 Error *err = NULL;
c04d6cfa
AL
99 DeviceState *dev;
100
101 dev = qdev_create(NULL, type);
102 qdev_prop_set_uint32(dev, "nr_servers", nr_servers);
103 qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs);
34f2af3d
MA
104 object_property_set_bool(OBJECT(dev), true, "realized", &err);
105 if (err) {
106 error_propagate(errp, err);
107 object_unparent(OBJECT(dev));
c04d6cfa
AL
108 return NULL;
109 }
5a3d7b23 110 return XICS_COMMON(dev);
c04d6cfa
AL
111}
112
446f16a6
MA
113static XICSState *xics_system_init(MachineState *machine,
114 int nr_servers, int nr_irqs)
c04d6cfa
AL
115{
116 XICSState *icp = NULL;
117
11ad93f6 118 if (kvm_enabled()) {
34f2af3d
MA
119 Error *err = NULL;
120
446f16a6 121 if (machine_kernel_irqchip_allowed(machine)) {
34f2af3d 122 icp = try_create_xics(TYPE_KVM_XICS, nr_servers, nr_irqs, &err);
11ad93f6 123 }
446f16a6 124 if (machine_kernel_irqchip_required(machine) && !icp) {
34f2af3d
MA
125 error_report("kernel_irqchip requested but unavailable: %s",
126 error_get_pretty(err));
11ad93f6 127 }
903a41d3 128 error_free(err);
11ad93f6
DG
129 }
130
131 if (!icp) {
34f2af3d 132 icp = try_create_xics(TYPE_XICS, nr_servers, nr_irqs, &error_abort);
c04d6cfa
AL
133 }
134
135 return icp;
136}
137
833d4668
AK
138static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
139 int smt_threads)
140{
141 int i, ret = 0;
142 uint32_t servers_prop[smt_threads];
143 uint32_t gservers_prop[smt_threads * 2];
144 int index = ppc_get_vcpu_dt_id(cpu);
145
6d9412ea 146 if (cpu->cpu_version) {
4bce526e 147 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->cpu_version);
6d9412ea
AK
148 if (ret < 0) {
149 return ret;
150 }
151 }
152
833d4668
AK
153 /* Build interrupt servers and gservers properties */
154 for (i = 0; i < smt_threads; i++) {
155 servers_prop[i] = cpu_to_be32(index + i);
156 /* Hack, direct the group queues back to cpu 0 */
157 gservers_prop[i*2] = cpu_to_be32(index + i);
158 gservers_prop[i*2 + 1] = 0;
159 }
160 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
161 servers_prop, sizeof(servers_prop));
162 if (ret < 0) {
163 return ret;
164 }
165 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
166 gservers_prop, sizeof(gservers_prop));
167
168 return ret;
169}
170
0da6f3fe
BR
171static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, CPUState *cs)
172{
173 int ret = 0;
174 PowerPCCPU *cpu = POWERPC_CPU(cs);
175 int index = ppc_get_vcpu_dt_id(cpu);
176 uint32_t associativity[] = {cpu_to_be32(0x5),
177 cpu_to_be32(0x0),
178 cpu_to_be32(0x0),
179 cpu_to_be32(0x0),
180 cpu_to_be32(cs->numa_node),
181 cpu_to_be32(index)};
182
183 /* Advertise NUMA via ibm,associativity */
184 if (nb_numa_nodes > 1) {
185 ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
186 sizeof(associativity));
187 }
188
189 return ret;
190}
191
28e02042 192static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
6e806cc3 193{
82677ed2
AK
194 int ret = 0, offset, cpus_offset;
195 CPUState *cs;
6e806cc3
BR
196 char cpu_model[32];
197 int smt = kvmppc_smt_threads();
7f763a5d 198 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
6e806cc3 199
82677ed2
AK
200 CPU_FOREACH(cs) {
201 PowerPCCPU *cpu = POWERPC_CPU(cs);
202 DeviceClass *dc = DEVICE_GET_CLASS(cs);
203 int index = ppc_get_vcpu_dt_id(cpu);
6e806cc3 204
0f20ba62 205 if ((index % smt) != 0) {
6e806cc3
BR
206 continue;
207 }
208
82677ed2 209 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
6e806cc3 210
82677ed2
AK
211 cpus_offset = fdt_path_offset(fdt, "/cpus");
212 if (cpus_offset < 0) {
213 cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
214 "cpus");
215 if (cpus_offset < 0) {
216 return cpus_offset;
217 }
218 }
219 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
6e806cc3 220 if (offset < 0) {
82677ed2
AK
221 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
222 if (offset < 0) {
223 return offset;
224 }
6e806cc3
BR
225 }
226
7f763a5d
DG
227 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
228 pft_size_prop, sizeof(pft_size_prop));
6e806cc3
BR
229 if (ret < 0) {
230 return ret;
231 }
833d4668 232
0da6f3fe
BR
233 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cs);
234 if (ret < 0) {
235 return ret;
236 }
237
82677ed2 238 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
2a48d993 239 ppc_get_compat_smt_threads(cpu));
833d4668
AK
240 if (ret < 0) {
241 return ret;
242 }
6e806cc3
BR
243 }
244 return ret;
245}
246
5af9873d
BH
247
248static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
249 size_t maxsize)
250{
251 size_t maxcells = maxsize / sizeof(uint32_t);
252 int i, j, count;
253 uint32_t *p = prop;
254
255 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
256 struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
257
258 if (!sps->page_shift) {
259 break;
260 }
261 for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
262 if (sps->enc[count].page_shift == 0) {
263 break;
264 }
265 }
266 if ((p - prop) >= (maxcells - 3 - count * 2)) {
267 break;
268 }
269 *(p++) = cpu_to_be32(sps->page_shift);
270 *(p++) = cpu_to_be32(sps->slb_enc);
271 *(p++) = cpu_to_be32(count);
272 for (j = 0; j < count; j++) {
273 *(p++) = cpu_to_be32(sps->enc[j].page_shift);
274 *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
275 }
276 }
277
278 return (p - prop) * sizeof(uint32_t);
279}
280
b082d65a
AK
281static hwaddr spapr_node0_size(void)
282{
fb164994
DG
283 MachineState *machine = MACHINE(qdev_get_machine());
284
b082d65a
AK
285 if (nb_numa_nodes) {
286 int i;
287 for (i = 0; i < nb_numa_nodes; ++i) {
288 if (numa_info[i].node_mem) {
fb164994
DG
289 return MIN(pow2floor(numa_info[i].node_mem),
290 machine->ram_size);
b082d65a
AK
291 }
292 }
293 }
fb164994 294 return machine->ram_size;
b082d65a
AK
295}
296
7f763a5d
DG
297#define _FDT(exp) \
298 do { \
299 int ret = (exp); \
300 if (ret < 0) { \
301 fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
302 #exp, fdt_strerror(ret)); \
303 exit(1); \
304 } \
305 } while (0)
306
a1d59c0f
AK
307static void add_str(GString *s, const gchar *s1)
308{
309 g_string_append_len(s, s1, strlen(s1) + 1);
310}
7f763a5d 311
3bbf37f2 312static void *spapr_create_fdt_skel(hwaddr initrd_base,
a8170e5e
AK
313 hwaddr initrd_size,
314 hwaddr kernel_size,
16457e7f 315 bool little_endian,
74d042e5
DG
316 const char *kernel_cmdline,
317 uint32_t epow_irq)
9fdf0c29
DG
318{
319 void *fdt;
9fdf0c29
DG
320 uint32_t start_prop = cpu_to_be32(initrd_base);
321 uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
a1d59c0f
AK
322 GString *hypertas = g_string_sized_new(256);
323 GString *qemu_hypertas = g_string_sized_new(256);
7f763a5d 324 uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
9e734e3d 325 uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(max_cpus)};
6e806cc3 326 unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
ef951443 327 char *buf;
9fdf0c29 328
a1d59c0f
AK
329 add_str(hypertas, "hcall-pft");
330 add_str(hypertas, "hcall-term");
331 add_str(hypertas, "hcall-dabr");
332 add_str(hypertas, "hcall-interrupt");
333 add_str(hypertas, "hcall-tce");
334 add_str(hypertas, "hcall-vio");
335 add_str(hypertas, "hcall-splpar");
336 add_str(hypertas, "hcall-bulk");
337 add_str(hypertas, "hcall-set-mode");
338 add_str(qemu_hypertas, "hcall-memop1");
339
7267c094 340 fdt = g_malloc0(FDT_MAX_SIZE);
9fdf0c29
DG
341 _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
342
4d8d5467
BH
343 if (kernel_size) {
344 _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
345 }
346 if (initrd_size) {
347 _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
348 }
9fdf0c29
DG
349 _FDT((fdt_finish_reservemap(fdt)));
350
351 /* Root node */
352 _FDT((fdt_begin_node(fdt, "")));
353 _FDT((fdt_property_string(fdt, "device_type", "chrp")));
5d73dd66 354 _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
d63919c9 355 _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries")));
9fdf0c29 356
ef951443
ND
357 /*
358 * Add info to guest to indentify which host is it being run on
359 * and what is the uuid of the guest
360 */
361 if (kvmppc_get_host_model(&buf)) {
362 _FDT((fdt_property_string(fdt, "host-model", buf)));
363 g_free(buf);
364 }
365 if (kvmppc_get_host_serial(&buf)) {
366 _FDT((fdt_property_string(fdt, "host-serial", buf)));
367 g_free(buf);
368 }
369
370 buf = g_strdup_printf(UUID_FMT, qemu_uuid[0], qemu_uuid[1],
371 qemu_uuid[2], qemu_uuid[3], qemu_uuid[4],
372 qemu_uuid[5], qemu_uuid[6], qemu_uuid[7],
373 qemu_uuid[8], qemu_uuid[9], qemu_uuid[10],
374 qemu_uuid[11], qemu_uuid[12], qemu_uuid[13],
375 qemu_uuid[14], qemu_uuid[15]);
376
377 _FDT((fdt_property_string(fdt, "vm,uuid", buf)));
3dc0a66d
AK
378 if (qemu_uuid_set) {
379 _FDT((fdt_property_string(fdt, "system-id", buf)));
380 }
ef951443
ND
381 g_free(buf);
382
2c1aaa81
SB
383 if (qemu_get_vm_name()) {
384 _FDT((fdt_property_string(fdt, "ibm,partition-name",
385 qemu_get_vm_name())));
386 }
387
9fdf0c29
DG
388 _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
389 _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
390
391 /* /chosen */
392 _FDT((fdt_begin_node(fdt, "chosen")));
393
6e806cc3
BR
394 /* Set Form1_affinity */
395 _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));
396
9fdf0c29
DG
397 _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
398 _FDT((fdt_property(fdt, "linux,initrd-start",
399 &start_prop, sizeof(start_prop))));
400 _FDT((fdt_property(fdt, "linux,initrd-end",
401 &end_prop, sizeof(end_prop))));
4d8d5467
BH
402 if (kernel_size) {
403 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
404 cpu_to_be64(kernel_size) };
9fdf0c29 405
4d8d5467 406 _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
16457e7f
BH
407 if (little_endian) {
408 _FDT((fdt_property(fdt, "qemu,boot-kernel-le", NULL, 0)));
409 }
4d8d5467 410 }
cc84c0f3
AS
411 if (boot_menu) {
412 _FDT((fdt_property_cell(fdt, "qemu,boot-menu", boot_menu)));
413 }
f28359d8
LZ
414 _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
415 _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
416 _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
3384f95c 417
9fdf0c29
DG
418 _FDT((fdt_end_node(fdt)));
419
f43e3525
DG
420 /* RTAS */
421 _FDT((fdt_begin_node(fdt, "rtas")));
422
da95324e
AK
423 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
424 add_str(hypertas, "hcall-multi-tce");
425 }
a1d59c0f
AK
426 _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas->str,
427 hypertas->len)));
428 g_string_free(hypertas, TRUE);
429 _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas->str,
430 qemu_hypertas->len)));
431 g_string_free(qemu_hypertas, TRUE);
f43e3525 432
6e806cc3
BR
433 _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
434 refpoints, sizeof(refpoints))));
435
74d042e5 436 _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX)));
79853e18
TD
437 _FDT((fdt_property_cell(fdt, "rtas-event-scan-rate",
438 RTAS_EVENT_SCAN_RATE)));
74d042e5 439
a95f9922
SB
440 if (msi_supported) {
441 _FDT((fdt_property(fdt, "ibm,change-msix-capable", NULL, 0)));
442 }
443
2e14072f 444 /*
9d632f5f 445 * According to PAPR, rtas ibm,os-term does not guarantee a return
2e14072f
ND
446 * back to the guest cpu.
447 *
448 * While an additional ibm,extended-os-term property indicates that
449 * rtas call return will always occur. Set this property.
450 */
451 _FDT((fdt_property(fdt, "ibm,extended-os-term", NULL, 0)));
452
f43e3525
DG
453 _FDT((fdt_end_node(fdt)));
454
b5cec4c5 455 /* interrupt controller */
9dfef5aa 456 _FDT((fdt_begin_node(fdt, "interrupt-controller")));
b5cec4c5
DG
457
458 _FDT((fdt_property_string(fdt, "device_type",
459 "PowerPC-External-Interrupt-Presentation")));
460 _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
b5cec4c5
DG
461 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
462 _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
463 interrupt_server_ranges_prop,
464 sizeof(interrupt_server_ranges_prop))));
0c103f8e
DG
465 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
466 _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
467 _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
b5cec4c5
DG
468
469 _FDT((fdt_end_node(fdt)));
470
4040ab72
DG
471 /* vdevice */
472 _FDT((fdt_begin_node(fdt, "vdevice")));
473
474 _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
475 _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
476 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
477 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
b5cec4c5
DG
478 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
479 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
4040ab72
DG
480
481 _FDT((fdt_end_node(fdt)));
482
74d042e5
DG
483 /* event-sources */
484 spapr_events_fdt_skel(fdt, epow_irq);
485
f7d69146
AG
486 /* /hypervisor node */
487 if (kvm_enabled()) {
488 uint8_t hypercall[16];
489
490 /* indicate KVM hypercall interface */
491 _FDT((fdt_begin_node(fdt, "hypervisor")));
492 _FDT((fdt_property_string(fdt, "compatible", "linux,kvm")));
493 if (kvmppc_has_cap_fixup_hcalls()) {
494 /*
495 * Older KVM versions with older guest kernels were broken with the
496 * magic page, don't allow the guest to map it.
497 */
498 kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
499 sizeof(hypercall));
500 _FDT((fdt_property(fdt, "hcall-instructions", hypercall,
501 sizeof(hypercall))));
502 }
503 _FDT((fdt_end_node(fdt)));
504 }
505
9fdf0c29
DG
506 _FDT((fdt_end_node(fdt))); /* close root node */
507 _FDT((fdt_finish(fdt)));
508
a3467baa
DG
509 return fdt;
510}
511
03d196b7 512static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
26a8c353
AK
513 hwaddr size)
514{
515 uint32_t associativity[] = {
516 cpu_to_be32(0x4), /* length */
517 cpu_to_be32(0x0), cpu_to_be32(0x0),
c3b4f589 518 cpu_to_be32(0x0), cpu_to_be32(nodeid)
26a8c353
AK
519 };
520 char mem_name[32];
521 uint64_t mem_reg_property[2];
522 int off;
523
524 mem_reg_property[0] = cpu_to_be64(start);
525 mem_reg_property[1] = cpu_to_be64(size);
526
527 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
528 off = fdt_add_subnode(fdt, 0, mem_name);
529 _FDT(off);
530 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
531 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
532 sizeof(mem_reg_property))));
533 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
534 sizeof(associativity))));
03d196b7 535 return off;
26a8c353
AK
536}
537
28e02042 538static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
7f763a5d 539{
fb164994 540 MachineState *machine = MACHINE(spapr);
7db8a127
AK
541 hwaddr mem_start, node_size;
542 int i, nb_nodes = nb_numa_nodes;
543 NodeInfo *nodes = numa_info;
544 NodeInfo ramnode;
545
546 /* No NUMA nodes, assume there is just one node with whole RAM */
547 if (!nb_numa_nodes) {
548 nb_nodes = 1;
fb164994 549 ramnode.node_mem = machine->ram_size;
7db8a127 550 nodes = &ramnode;
5fe269b1 551 }
7f763a5d 552
7db8a127
AK
553 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
554 if (!nodes[i].node_mem) {
555 continue;
556 }
fb164994 557 if (mem_start >= machine->ram_size) {
5fe269b1
PM
558 node_size = 0;
559 } else {
7db8a127 560 node_size = nodes[i].node_mem;
fb164994
DG
561 if (node_size > machine->ram_size - mem_start) {
562 node_size = machine->ram_size - mem_start;
5fe269b1
PM
563 }
564 }
7db8a127
AK
565 if (!mem_start) {
566 /* ppc_spapr_init() checks for rma_size <= node0_size already */
e8f986fc 567 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
7db8a127
AK
568 mem_start += spapr->rma_size;
569 node_size -= spapr->rma_size;
570 }
6010818c
AK
571 for ( ; node_size; ) {
572 hwaddr sizetmp = pow2floor(node_size);
573
574 /* mem_start != 0 here */
575 if (ctzl(mem_start) < ctzl(sizetmp)) {
576 sizetmp = 1ULL << ctzl(mem_start);
577 }
578
579 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
580 node_size -= sizetmp;
581 mem_start += sizetmp;
582 }
7f763a5d
DG
583 }
584
585 return 0;
586}
587
0da6f3fe
BR
588static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
589 sPAPRMachineState *spapr)
590{
591 PowerPCCPU *cpu = POWERPC_CPU(cs);
592 CPUPPCState *env = &cpu->env;
593 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
594 int index = ppc_get_vcpu_dt_id(cpu);
595 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
596 0xffffffff, 0xffffffff};
597 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
598 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
599 uint32_t page_sizes_prop[64];
600 size_t page_sizes_prop_size;
22419c2a 601 uint32_t vcpus_per_socket = smp_threads * smp_cores;
0da6f3fe
BR
602 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
603
90da0d5a
BH
604 /* Note: we keep CI large pages off for now because a 64K capable guest
605 * provisioned with large pages might otherwise try to map a qemu
606 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
607 * even if that qemu runs on a 4k host.
608 *
609 * We can later add this bit back when we are confident this is not
610 * an issue (!HV KVM or 64K host)
611 */
612 uint8_t pa_features_206[] = { 6, 0,
613 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
614 uint8_t pa_features_207[] = { 24, 0,
615 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
616 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
617 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
618 0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
619 uint8_t *pa_features;
620 size_t pa_size;
621
0da6f3fe
BR
622 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
623 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
624
625 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
626 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
627 env->dcache_line_size)));
628 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
629 env->dcache_line_size)));
630 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
631 env->icache_line_size)));
632 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
633 env->icache_line_size)));
634
635 if (pcc->l1_dcache_size) {
636 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
637 pcc->l1_dcache_size)));
638 } else {
639 fprintf(stderr, "Warning: Unknown L1 dcache size for cpu\n");
640 }
641 if (pcc->l1_icache_size) {
642 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
643 pcc->l1_icache_size)));
644 } else {
645 fprintf(stderr, "Warning: Unknown L1 icache size for cpu\n");
646 }
647
648 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
649 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
fd5da5c4 650 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
0da6f3fe
BR
651 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
652 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
653 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
654
655 if (env->spr_cb[SPR_PURR].oea_read) {
656 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
657 }
658
659 if (env->mmu_model & POWERPC_MMU_1TSEG) {
660 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
661 segs, sizeof(segs))));
662 }
663
664 /* Advertise VMX/VSX (vector extensions) if available
665 * 0 / no property == no vector extensions
666 * 1 == VMX / Altivec available
667 * 2 == VSX available */
668 if (env->insns_flags & PPC_ALTIVEC) {
669 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
670
671 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
672 }
673
674 /* Advertise DFP (Decimal Floating Point) if available
675 * 0 / no property == no DFP
676 * 1 == DFP available */
677 if (env->insns_flags2 & PPC2_DFP) {
678 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
679 }
680
681 page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
682 sizeof(page_sizes_prop));
683 if (page_sizes_prop_size) {
684 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
685 page_sizes_prop, page_sizes_prop_size)));
686 }
687
90da0d5a
BH
688 /* Do the ibm,pa-features property, adjust it for ci-large-pages */
689 if (env->mmu_model == POWERPC_MMU_2_06) {
690 pa_features = pa_features_206;
691 pa_size = sizeof(pa_features_206);
692 } else /* env->mmu_model == POWERPC_MMU_2_07 */ {
693 pa_features = pa_features_207;
694 pa_size = sizeof(pa_features_207);
695 }
696 if (env->ci_large_pages) {
697 pa_features[3] |= 0x20;
698 }
699 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
700
0da6f3fe 701 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
22419c2a 702 cs->cpu_index / vcpus_per_socket)));
0da6f3fe
BR
703
704 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
705 pft_size_prop, sizeof(pft_size_prop))));
706
707 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cs));
708
709 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
710 ppc_get_compat_smt_threads(cpu)));
711}
712
713static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
714{
715 CPUState *cs;
716 int cpus_offset;
717 char *nodename;
718 int smt = kvmppc_smt_threads();
719
720 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
721 _FDT(cpus_offset);
722 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
723 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
724
725 /*
726 * We walk the CPUs in reverse order to ensure that CPU DT nodes
727 * created by fdt_add_subnode() end up in the right order in FDT
728 * for the guest kernel the enumerate the CPUs correctly.
729 */
730 CPU_FOREACH_REVERSE(cs) {
731 PowerPCCPU *cpu = POWERPC_CPU(cs);
732 int index = ppc_get_vcpu_dt_id(cpu);
733 DeviceClass *dc = DEVICE_GET_CLASS(cs);
734 int offset;
735
736 if ((index % smt) != 0) {
737 continue;
738 }
739
740 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
741 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
742 g_free(nodename);
743 _FDT(offset);
744 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
745 }
746
747}
748
03d196b7
BR
749/*
750 * Adds ibm,dynamic-reconfiguration-memory node.
751 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
752 * of this device tree node.
753 */
754static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
755{
756 MachineState *machine = MACHINE(spapr);
757 int ret, i, offset;
758 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
759 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
e8f986fc 760 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
03d196b7 761 uint32_t *int_buf, *cur_index, buf_len;
6663864e 762 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
03d196b7 763
ef001f06
TH
764 /*
765 * Allocate enough buffer size to fit in ibm,dynamic-memory
766 * or ibm,associativity-lookup-arrays
767 */
768 buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
769 * sizeof(uint32_t);
03d196b7
BR
770 cur_index = int_buf = g_malloc0(buf_len);
771
772 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
773
774 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
775 sizeof(prop_lmb_size));
776 if (ret < 0) {
777 goto out;
778 }
779
780 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
781 if (ret < 0) {
782 goto out;
783 }
784
785 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
786 if (ret < 0) {
787 goto out;
788 }
789
790 /* ibm,dynamic-memory */
791 int_buf[0] = cpu_to_be32(nr_lmbs);
792 cur_index++;
793 for (i = 0; i < nr_lmbs; i++) {
794 sPAPRDRConnector *drc;
795 sPAPRDRConnectorClass *drck;
e8f986fc 796 uint64_t addr = i * lmb_size + spapr->hotplug_memory.base;;
03d196b7
BR
797 uint32_t *dynamic_memory = cur_index;
798
03d196b7
BR
799 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
800 addr/lmb_size);
801 g_assert(drc);
802 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
803
804 dynamic_memory[0] = cpu_to_be32(addr >> 32);
805 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
806 dynamic_memory[2] = cpu_to_be32(drck->get_index(drc));
807 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
808 dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL));
809 if (addr < machine->ram_size ||
810 memory_region_present(get_system_memory(), addr)) {
811 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
812 } else {
813 dynamic_memory[5] = cpu_to_be32(0);
814 }
815
816 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
817 }
818 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
819 if (ret < 0) {
820 goto out;
821 }
822
823 /* ibm,associativity-lookup-arrays */
824 cur_index = int_buf;
6663864e 825 int_buf[0] = cpu_to_be32(nr_nodes);
03d196b7
BR
826 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
827 cur_index += 2;
6663864e 828 for (i = 0; i < nr_nodes; i++) {
03d196b7
BR
829 uint32_t associativity[] = {
830 cpu_to_be32(0x0),
831 cpu_to_be32(0x0),
832 cpu_to_be32(0x0),
833 cpu_to_be32(i)
834 };
835 memcpy(cur_index, associativity, sizeof(associativity));
836 cur_index += 4;
837 }
838 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
839 (cur_index - int_buf) * sizeof(uint32_t));
840out:
841 g_free(int_buf);
842 return ret;
843}
844
845int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
846 target_ulong addr, target_ulong size,
847 bool cpu_update, bool memory_update)
848{
849 void *fdt, *fdt_skel;
850 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
851 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
852
853 size -= sizeof(hdr);
854
855 /* Create sceleton */
856 fdt_skel = g_malloc0(size);
857 _FDT((fdt_create(fdt_skel, size)));
858 _FDT((fdt_begin_node(fdt_skel, "")));
859 _FDT((fdt_end_node(fdt_skel)));
860 _FDT((fdt_finish(fdt_skel)));
861 fdt = g_malloc0(size);
862 _FDT((fdt_open_into(fdt_skel, fdt, size)));
863 g_free(fdt_skel);
864
865 /* Fixup cpu nodes */
866 if (cpu_update) {
867 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
868 }
869
870 /* Generate memory nodes or ibm,dynamic-reconfiguration-memory node */
871 if (memory_update && smc->dr_lmb_enabled) {
872 _FDT((spapr_populate_drconf_memory(spapr, fdt)));
03d196b7
BR
873 }
874
875 /* Pack resulting tree */
876 _FDT((fdt_pack(fdt)));
877
878 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
879 trace_spapr_cas_failed(size);
880 return -1;
881 }
882
883 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
884 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
885 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
886 g_free(fdt);
887
888 return 0;
889}
890
28e02042 891static void spapr_finalize_fdt(sPAPRMachineState *spapr,
a8170e5e
AK
892 hwaddr fdt_addr,
893 hwaddr rtas_addr,
894 hwaddr rtas_size)
a3467baa 895{
5b2128d2 896 MachineState *machine = MACHINE(qdev_get_machine());
c20d332a 897 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
5b2128d2 898 const char *boot_device = machine->boot_order;
71461b0f
AK
899 int ret, i;
900 size_t cb = 0;
901 char *bootlist;
a3467baa 902 void *fdt;
3384f95c 903 sPAPRPHBState *phb;
a3467baa 904
7267c094 905 fdt = g_malloc(FDT_MAX_SIZE);
a3467baa
DG
906
907 /* open out the base tree into a temp buffer for the final tweaks */
908 _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
4040ab72 909
e8f986fc
BR
910 ret = spapr_populate_memory(spapr, fdt);
911 if (ret < 0) {
912 fprintf(stderr, "couldn't setup memory nodes in fdt\n");
913 exit(1);
7f763a5d
DG
914 }
915
4040ab72
DG
916 ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
917 if (ret < 0) {
918 fprintf(stderr, "couldn't setup vio devices in fdt\n");
919 exit(1);
920 }
921
4d9392be
TH
922 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
923 ret = spapr_rng_populate_dt(fdt);
924 if (ret < 0) {
925 fprintf(stderr, "could not set up rng device in the fdt\n");
926 exit(1);
927 }
928 }
929
3384f95c 930 QLIST_FOREACH(phb, &spapr->phbs, list) {
e0fdbd7c 931 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
3384f95c
DG
932 }
933
934 if (ret < 0) {
935 fprintf(stderr, "couldn't setup PCI devices in fdt\n");
936 exit(1);
937 }
938
39ac8455
DG
939 /* RTAS */
940 ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
941 if (ret < 0) {
942 fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
943 }
944
0da6f3fe
BR
945 /* cpus */
946 spapr_populate_cpus_dt_node(fdt, spapr);
6e806cc3 947
71461b0f
AK
948 bootlist = get_boot_devices_list(&cb, true);
949 if (cb && bootlist) {
950 int offset = fdt_path_offset(fdt, "/chosen");
951 if (offset < 0) {
952 exit(1);
953 }
954 for (i = 0; i < cb; i++) {
955 if (bootlist[i] == '\n') {
956 bootlist[i] = ' ';
957 }
958
959 }
960 ret = fdt_setprop_string(fdt, offset, "qemu,boot-list", bootlist);
961 }
962
5b2128d2
AG
963 if (boot_device && strlen(boot_device)) {
964 int offset = fdt_path_offset(fdt, "/chosen");
965
966 if (offset < 0) {
967 exit(1);
968 }
969 fdt_setprop_string(fdt, offset, "qemu,boot-device", boot_device);
970 }
971
3fc5acde 972 if (!spapr->has_graphics) {
f28359d8
LZ
973 spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
974 }
68f3a94c 975
c20d332a
BR
976 if (smc->dr_lmb_enabled) {
977 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
978 }
979
4040ab72
DG
980 _FDT((fdt_pack(fdt)));
981
4d8d5467 982 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
730fce59
TH
983 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
984 fdt_totalsize(fdt), FDT_MAX_SIZE);
4d8d5467
BH
985 exit(1);
986 }
987
ad440b4a 988 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
a3467baa 989 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
9fdf0c29 990
a21a7a70 991 g_free(bootlist);
7267c094 992 g_free(fdt);
9fdf0c29
DG
993}
994
995static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
996{
997 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
998}
999
1b14670a 1000static void emulate_spapr_hypercall(PowerPCCPU *cpu)
9fdf0c29 1001{
1b14670a
AF
1002 CPUPPCState *env = &cpu->env;
1003
efcb9383
DG
1004 if (msr_pr) {
1005 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1006 env->gpr[3] = H_PRIVILEGE;
1007 } else {
aa100fa4 1008 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
efcb9383 1009 }
9fdf0c29
DG
1010}
1011
e6b8fd24
SMJ
1012#define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1013#define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1014#define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1015#define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1016#define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1017
b817772a 1018static void spapr_alloc_htab(sPAPRMachineState *spapr)
7f763a5d
DG
1019{
1020 long shift;
e6b8fd24 1021 int index;
7f763a5d
DG
1022
1023 /* allocate hash page table. For now we always make this 16mb,
1024 * later we should probably make it scale to the size of guest
1025 * RAM */
1026
1027 shift = kvmppc_reset_htab(spapr->htab_shift);
b41d320f
BR
1028 if (shift < 0) {
1029 /*
1030 * For HV KVM, host kernel will return -ENOMEM when requested
1031 * HTAB size can't be allocated.
1032 */
1033 error_setg(&error_abort, "Failed to allocate HTAB of requested size, try with smaller maxmem");
1034 } else if (shift > 0) {
1035 /*
1036 * Kernel handles htab, we don't need to allocate one
1037 *
1038 * Older kernels can fall back to lower HTAB shift values,
1039 * but we don't allow booting of such guests.
1040 */
7735feda
BR
1041 if (shift != spapr->htab_shift) {
1042 error_setg(&error_abort, "Failed to allocate HTAB of requested size, try with smaller maxmem");
1043 }
1044
7f763a5d 1045 spapr->htab_shift = shift;
7c43bca0 1046 kvmppc_kern_htab = true;
b817772a
BR
1047 } else {
1048 /* Allocate htab */
1049 spapr->htab = qemu_memalign(HTAB_SIZE(spapr), HTAB_SIZE(spapr));
1050
1051 /* And clear it */
1052 memset(spapr->htab, 0, HTAB_SIZE(spapr));
1053
1054 for (index = 0; index < HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; index++) {
1055 DIRTY_HPTE(HPTE(spapr->htab, index));
1056 }
1057 }
1058}
1059
1060/*
1061 * Clear HTAB entries during reset.
1062 *
1063 * If host kernel has allocated HTAB, KVM_PPC_ALLOCATE_HTAB ioctl is
1064 * used to clear HTAB. Otherwise QEMU-allocated HTAB is cleared manually.
1065 */
1066static void spapr_reset_htab(sPAPRMachineState *spapr)
1067{
1068 long shift;
1069 int index;
01a57972 1070
b817772a 1071 shift = kvmppc_reset_htab(spapr->htab_shift);
b41d320f
BR
1072 if (shift < 0) {
1073 error_setg(&error_abort, "Failed to reset HTAB");
1074 } else if (shift > 0) {
7735feda
BR
1075 if (shift != spapr->htab_shift) {
1076 error_setg(&error_abort, "Requested HTAB allocation failed during reset");
1077 }
1078
01a57972
SMJ
1079 /* Tell readers to update their file descriptor */
1080 if (spapr->htab_fd >= 0) {
1081 spapr->htab_fd_stale = true;
1082 }
7f763a5d 1083 } else {
7f763a5d 1084 memset(spapr->htab, 0, HTAB_SIZE(spapr));
e6b8fd24
SMJ
1085
1086 for (index = 0; index < HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; index++) {
1087 DIRTY_HPTE(HPTE(spapr->htab, index));
1088 }
7f763a5d
DG
1089 }
1090
1091 /* Update the RMA size if necessary */
1092 if (spapr->vrma_adjust) {
b082d65a
AK
1093 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
1094 spapr->htab_shift);
7f763a5d 1095 }
9fdf0c29
DG
1096}
1097
9e3f9733
AG
1098static int find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
1099{
1100 bool matched = false;
1101
1102 if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
1103 matched = true;
1104 }
1105
1106 if (!matched) {
1107 error_report("Device %s is not supported by this machine yet.",
1108 qdev_fw_name(DEVICE(sbdev)));
1109 exit(1);
1110 }
1111
1112 return 0;
1113}
1114
01a57972
SMJ
1115/*
1116 * A guest reset will cause spapr->htab_fd to become stale if being used.
1117 * Reopen the file descriptor to make sure the whole HTAB is properly read.
1118 */
28e02042 1119static int spapr_check_htab_fd(sPAPRMachineState *spapr)
01a57972
SMJ
1120{
1121 int rc = 0;
1122
1123 if (spapr->htab_fd_stale) {
1124 close(spapr->htab_fd);
1125 spapr->htab_fd = kvmppc_get_htab_fd(false);
1126 if (spapr->htab_fd < 0) {
1127 error_report("Unable to open fd for reading hash table from KVM: "
730fce59 1128 "%s", strerror(errno));
01a57972
SMJ
1129 rc = -1;
1130 }
1131 spapr->htab_fd_stale = false;
1132 }
1133
1134 return rc;
1135}
1136
c8787ad4 1137static void ppc_spapr_reset(void)
a3467baa 1138{
28e02042 1139 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
182735ef 1140 PowerPCCPU *first_ppc_cpu;
b7d1f77a 1141 uint32_t rtas_limit;
259186a7 1142
9e3f9733
AG
1143 /* Check for unknown sysbus devices */
1144 foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
1145
7f763a5d
DG
1146 /* Reset the hash table & recalc the RMA */
1147 spapr_reset_htab(spapr);
a3467baa 1148
c8787ad4 1149 qemu_devices_reset();
a3467baa 1150
b7d1f77a
BH
1151 /*
1152 * We place the device tree and RTAS just below either the top of the RMA,
1153 * or just below 2GB, whichever is lowere, so that it can be
1154 * processed with 32-bit real mode code if necessary
1155 */
1156 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1157 spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1158 spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
1159
a3467baa
DG
1160 /* Load the fdt */
1161 spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
1162 spapr->rtas_size);
1163
b7d1f77a
BH
1164 /* Copy RTAS over */
1165 cpu_physical_memory_write(spapr->rtas_addr, spapr->rtas_blob,
1166 spapr->rtas_size);
1167
a3467baa 1168 /* Set up the entry state */
182735ef
AF
1169 first_ppc_cpu = POWERPC_CPU(first_cpu);
1170 first_ppc_cpu->env.gpr[3] = spapr->fdt_addr;
1171 first_ppc_cpu->env.gpr[5] = 0;
1172 first_cpu->halted = 0;
1b718907 1173 first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
a3467baa
DG
1174
1175}
1176
1bba0dc9
AF
1177static void spapr_cpu_reset(void *opaque)
1178{
28e02042 1179 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
5b2038e0 1180 PowerPCCPU *cpu = opaque;
259186a7 1181 CPUState *cs = CPU(cpu);
048706d9 1182 CPUPPCState *env = &cpu->env;
1bba0dc9 1183
259186a7 1184 cpu_reset(cs);
048706d9
DG
1185
1186 /* All CPUs start halted. CPU0 is unhalted from the machine level
1187 * reset code and the rest are explicitly started up by the guest
1188 * using an RTAS call */
259186a7 1189 cs->halted = 1;
048706d9
DG
1190
1191 env->spr[SPR_HIOR] = 0;
7f763a5d 1192
4be21d56 1193 env->external_htab = (uint8_t *)spapr->htab;
5736245c
AK
1194 if (kvm_enabled() && !env->external_htab) {
1195 /*
1196 * HV KVM, set external_htab to 1 so our ppc_hash64_load_hpte*
1197 * functions do the right thing.
1198 */
1199 env->external_htab = (void *)1;
1200 }
7f763a5d 1201 env->htab_base = -1;
f3c75d42
AK
1202 /*
1203 * htab_mask is the mask used to normalize hash value to PTEG index.
1204 * htab_shift is log2 of hash table size.
1205 * We have 8 hpte per group, and each hpte is 16 bytes.
1206 * ie have 128 bytes per hpte entry.
1207 */
28e02042 1208 env->htab_mask = (1ULL << (spapr->htab_shift - 7)) - 1;
ec4936e1 1209 env->spr[SPR_SDR1] = (target_ulong)(uintptr_t)spapr->htab |
7f763a5d 1210 (spapr->htab_shift - 18);
1bba0dc9
AF
1211}
1212
28e02042 1213static void spapr_create_nvram(sPAPRMachineState *spapr)
639e8102 1214{
2ff3de68 1215 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
3978b863 1216 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
639e8102 1217
3978b863 1218 if (dinfo) {
4be74634 1219 qdev_prop_set_drive_nofail(dev, "drive", blk_by_legacy_dinfo(dinfo));
639e8102
DG
1220 }
1221
1222 qdev_init_nofail(dev);
1223
1224 spapr->nvram = (struct sPAPRNVRAM *)dev;
1225}
1226
28e02042 1227static void spapr_rtc_create(sPAPRMachineState *spapr)
28df36a1
DG
1228{
1229 DeviceState *dev = qdev_create(NULL, TYPE_SPAPR_RTC);
1230
1231 qdev_init_nofail(dev);
1232 spapr->rtc = dev;
74e5ae28
DG
1233
1234 object_property_add_alias(qdev_get_machine(), "rtc-time",
1235 OBJECT(spapr->rtc), "date", NULL);
28df36a1
DG
1236}
1237
8c57b867 1238/* Returns whether we want to use VGA or not */
f28359d8
LZ
1239static int spapr_vga_init(PCIBus *pci_bus)
1240{
8c57b867 1241 switch (vga_interface_type) {
8c57b867 1242 case VGA_NONE:
7effdaa3
MW
1243 return false;
1244 case VGA_DEVICE:
1245 return true;
1ddcae82 1246 case VGA_STD:
b798c190 1247 case VGA_VIRTIO:
1ddcae82 1248 return pci_vga_init(pci_bus) != NULL;
8c57b867 1249 default:
f28359d8
LZ
1250 fprintf(stderr, "This vga model is not supported,"
1251 "currently it only supports -vga std\n");
8c57b867 1252 exit(0);
f28359d8 1253 }
f28359d8
LZ
1254}
1255
880ae7de
DG
1256static int spapr_post_load(void *opaque, int version_id)
1257{
28e02042 1258 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
880ae7de
DG
1259 int err = 0;
1260
631b22ea 1261 /* In earlier versions, there was no separate qdev for the PAPR
880ae7de
DG
1262 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1263 * So when migrating from those versions, poke the incoming offset
1264 * value into the RTC device */
1265 if (version_id < 3) {
1266 err = spapr_rtc_import_offset(spapr->rtc, spapr->rtc_offset);
1267 }
1268
1269 return err;
1270}
1271
1272static bool version_before_3(void *opaque, int version_id)
1273{
1274 return version_id < 3;
1275}
1276
4be21d56
DG
1277static const VMStateDescription vmstate_spapr = {
1278 .name = "spapr",
880ae7de 1279 .version_id = 3,
4be21d56 1280 .minimum_version_id = 1,
880ae7de 1281 .post_load = spapr_post_load,
3aff6c2f 1282 .fields = (VMStateField[]) {
880ae7de
DG
1283 /* used to be @next_irq */
1284 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
4be21d56
DG
1285
1286 /* RTC offset */
28e02042 1287 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
880ae7de 1288
28e02042 1289 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
4be21d56
DG
1290 VMSTATE_END_OF_LIST()
1291 },
1292};
1293
4be21d56
DG
1294static int htab_save_setup(QEMUFile *f, void *opaque)
1295{
28e02042 1296 sPAPRMachineState *spapr = opaque;
4be21d56 1297
4be21d56
DG
1298 /* "Iteration" header */
1299 qemu_put_be32(f, spapr->htab_shift);
1300
e68cb8b4
AK
1301 if (spapr->htab) {
1302 spapr->htab_save_index = 0;
1303 spapr->htab_first_pass = true;
1304 } else {
1305 assert(kvm_enabled());
1306
1307 spapr->htab_fd = kvmppc_get_htab_fd(false);
01a57972 1308 spapr->htab_fd_stale = false;
e68cb8b4
AK
1309 if (spapr->htab_fd < 0) {
1310 fprintf(stderr, "Unable to open fd for reading hash table from KVM: %s\n",
1311 strerror(errno));
1312 return -1;
1313 }
1314 }
1315
1316
4be21d56
DG
1317 return 0;
1318}
1319
28e02042 1320static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
4be21d56
DG
1321 int64_t max_ns)
1322{
1323 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1324 int index = spapr->htab_save_index;
bc72ad67 1325 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
4be21d56
DG
1326
1327 assert(spapr->htab_first_pass);
1328
1329 do {
1330 int chunkstart;
1331
1332 /* Consume invalid HPTEs */
1333 while ((index < htabslots)
1334 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1335 index++;
1336 CLEAN_HPTE(HPTE(spapr->htab, index));
1337 }
1338
1339 /* Consume valid HPTEs */
1340 chunkstart = index;
338c25b6 1341 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
4be21d56
DG
1342 && HPTE_VALID(HPTE(spapr->htab, index))) {
1343 index++;
1344 CLEAN_HPTE(HPTE(spapr->htab, index));
1345 }
1346
1347 if (index > chunkstart) {
1348 int n_valid = index - chunkstart;
1349
1350 qemu_put_be32(f, chunkstart);
1351 qemu_put_be16(f, n_valid);
1352 qemu_put_be16(f, 0);
1353 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1354 HASH_PTE_SIZE_64 * n_valid);
1355
bc72ad67 1356 if ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
4be21d56
DG
1357 break;
1358 }
1359 }
1360 } while ((index < htabslots) && !qemu_file_rate_limit(f));
1361
1362 if (index >= htabslots) {
1363 assert(index == htabslots);
1364 index = 0;
1365 spapr->htab_first_pass = false;
1366 }
1367 spapr->htab_save_index = index;
1368}
1369
28e02042 1370static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
e68cb8b4 1371 int64_t max_ns)
4be21d56
DG
1372{
1373 bool final = max_ns < 0;
1374 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1375 int examined = 0, sent = 0;
1376 int index = spapr->htab_save_index;
bc72ad67 1377 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
4be21d56
DG
1378
1379 assert(!spapr->htab_first_pass);
1380
1381 do {
1382 int chunkstart, invalidstart;
1383
1384 /* Consume non-dirty HPTEs */
1385 while ((index < htabslots)
1386 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1387 index++;
1388 examined++;
1389 }
1390
1391 chunkstart = index;
1392 /* Consume valid dirty HPTEs */
338c25b6 1393 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
4be21d56
DG
1394 && HPTE_DIRTY(HPTE(spapr->htab, index))
1395 && HPTE_VALID(HPTE(spapr->htab, index))) {
1396 CLEAN_HPTE(HPTE(spapr->htab, index));
1397 index++;
1398 examined++;
1399 }
1400
1401 invalidstart = index;
1402 /* Consume invalid dirty HPTEs */
338c25b6 1403 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
4be21d56
DG
1404 && HPTE_DIRTY(HPTE(spapr->htab, index))
1405 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1406 CLEAN_HPTE(HPTE(spapr->htab, index));
1407 index++;
1408 examined++;
1409 }
1410
1411 if (index > chunkstart) {
1412 int n_valid = invalidstart - chunkstart;
1413 int n_invalid = index - invalidstart;
1414
1415 qemu_put_be32(f, chunkstart);
1416 qemu_put_be16(f, n_valid);
1417 qemu_put_be16(f, n_invalid);
1418 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1419 HASH_PTE_SIZE_64 * n_valid);
1420 sent += index - chunkstart;
1421
bc72ad67 1422 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
4be21d56
DG
1423 break;
1424 }
1425 }
1426
1427 if (examined >= htabslots) {
1428 break;
1429 }
1430
1431 if (index >= htabslots) {
1432 assert(index == htabslots);
1433 index = 0;
1434 }
1435 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1436
1437 if (index >= htabslots) {
1438 assert(index == htabslots);
1439 index = 0;
1440 }
1441
1442 spapr->htab_save_index = index;
1443
e68cb8b4 1444 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
4be21d56
DG
1445}
1446
e68cb8b4
AK
1447#define MAX_ITERATION_NS 5000000 /* 5 ms */
1448#define MAX_KVM_BUF_SIZE 2048
1449
4be21d56
DG
1450static int htab_save_iterate(QEMUFile *f, void *opaque)
1451{
28e02042 1452 sPAPRMachineState *spapr = opaque;
e68cb8b4 1453 int rc = 0;
4be21d56
DG
1454
1455 /* Iteration header */
1456 qemu_put_be32(f, 0);
1457
e68cb8b4
AK
1458 if (!spapr->htab) {
1459 assert(kvm_enabled());
1460
01a57972
SMJ
1461 rc = spapr_check_htab_fd(spapr);
1462 if (rc < 0) {
1463 return rc;
1464 }
1465
e68cb8b4
AK
1466 rc = kvmppc_save_htab(f, spapr->htab_fd,
1467 MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1468 if (rc < 0) {
1469 return rc;
1470 }
1471 } else if (spapr->htab_first_pass) {
4be21d56
DG
1472 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1473 } else {
e68cb8b4 1474 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
4be21d56
DG
1475 }
1476
1477 /* End marker */
1478 qemu_put_be32(f, 0);
1479 qemu_put_be16(f, 0);
1480 qemu_put_be16(f, 0);
1481
e68cb8b4 1482 return rc;
4be21d56
DG
1483}
1484
1485static int htab_save_complete(QEMUFile *f, void *opaque)
1486{
28e02042 1487 sPAPRMachineState *spapr = opaque;
4be21d56
DG
1488
1489 /* Iteration header */
1490 qemu_put_be32(f, 0);
1491
e68cb8b4
AK
1492 if (!spapr->htab) {
1493 int rc;
1494
1495 assert(kvm_enabled());
1496
01a57972
SMJ
1497 rc = spapr_check_htab_fd(spapr);
1498 if (rc < 0) {
1499 return rc;
1500 }
1501
e68cb8b4
AK
1502 rc = kvmppc_save_htab(f, spapr->htab_fd, MAX_KVM_BUF_SIZE, -1);
1503 if (rc < 0) {
1504 return rc;
1505 }
1506 close(spapr->htab_fd);
1507 spapr->htab_fd = -1;
1508 } else {
1509 htab_save_later_pass(f, spapr, -1);
1510 }
4be21d56
DG
1511
1512 /* End marker */
1513 qemu_put_be32(f, 0);
1514 qemu_put_be16(f, 0);
1515 qemu_put_be16(f, 0);
1516
1517 return 0;
1518}
1519
1520static int htab_load(QEMUFile *f, void *opaque, int version_id)
1521{
28e02042 1522 sPAPRMachineState *spapr = opaque;
4be21d56 1523 uint32_t section_hdr;
e68cb8b4 1524 int fd = -1;
4be21d56
DG
1525
1526 if (version_id < 1 || version_id > 1) {
1527 fprintf(stderr, "htab_load() bad version\n");
1528 return -EINVAL;
1529 }
1530
1531 section_hdr = qemu_get_be32(f);
1532
1533 if (section_hdr) {
1534 /* First section, just the hash shift */
1535 if (spapr->htab_shift != section_hdr) {
613e7a76
BR
1536 error_report("htab_shift mismatch: source %d target %d",
1537 section_hdr, spapr->htab_shift);
4be21d56
DG
1538 return -EINVAL;
1539 }
1540 return 0;
1541 }
1542
e68cb8b4
AK
1543 if (!spapr->htab) {
1544 assert(kvm_enabled());
1545
1546 fd = kvmppc_get_htab_fd(true);
1547 if (fd < 0) {
1548 fprintf(stderr, "Unable to open fd to restore KVM hash table: %s\n",
1549 strerror(errno));
1550 }
1551 }
1552
4be21d56
DG
1553 while (true) {
1554 uint32_t index;
1555 uint16_t n_valid, n_invalid;
1556
1557 index = qemu_get_be32(f);
1558 n_valid = qemu_get_be16(f);
1559 n_invalid = qemu_get_be16(f);
1560
1561 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1562 /* End of Stream */
1563 break;
1564 }
1565
e68cb8b4 1566 if ((index + n_valid + n_invalid) >
4be21d56
DG
1567 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1568 /* Bad index in stream */
1569 fprintf(stderr, "htab_load() bad index %d (%hd+%hd entries) "
e68cb8b4
AK
1570 "in htab stream (htab_shift=%d)\n", index, n_valid, n_invalid,
1571 spapr->htab_shift);
4be21d56
DG
1572 return -EINVAL;
1573 }
1574
e68cb8b4
AK
1575 if (spapr->htab) {
1576 if (n_valid) {
1577 qemu_get_buffer(f, HPTE(spapr->htab, index),
1578 HASH_PTE_SIZE_64 * n_valid);
1579 }
1580 if (n_invalid) {
1581 memset(HPTE(spapr->htab, index + n_valid), 0,
1582 HASH_PTE_SIZE_64 * n_invalid);
1583 }
1584 } else {
1585 int rc;
1586
1587 assert(fd >= 0);
1588
1589 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1590 if (rc < 0) {
1591 return rc;
1592 }
4be21d56
DG
1593 }
1594 }
1595
e68cb8b4
AK
1596 if (!spapr->htab) {
1597 assert(fd >= 0);
1598 close(fd);
1599 }
1600
4be21d56
DG
1601 return 0;
1602}
1603
1604static SaveVMHandlers savevm_htab_handlers = {
1605 .save_live_setup = htab_save_setup,
1606 .save_live_iterate = htab_save_iterate,
a3e06c3d 1607 .save_live_complete_precopy = htab_save_complete,
4be21d56
DG
1608 .load_state = htab_load,
1609};
1610
5b2128d2
AG
1611static void spapr_boot_set(void *opaque, const char *boot_device,
1612 Error **errp)
1613{
1614 MachineState *machine = MACHINE(qdev_get_machine());
1615 machine->boot_order = g_strdup(boot_device);
1616}
1617
bab99ea0
BR
1618static void spapr_cpu_init(sPAPRMachineState *spapr, PowerPCCPU *cpu)
1619{
1620 CPUPPCState *env = &cpu->env;
1621
1622 /* Set time-base frequency to 512 MHz */
1623 cpu_ppc_tb_init(env, TIMEBASE_FREQ);
1624
1625 /* PAPR always has exception vectors in RAM not ROM. To ensure this,
1626 * MSR[IP] should never be set.
1627 */
1628 env->msr_mask &= ~(1 << 6);
1629
1630 /* Tell KVM that we're in PAPR mode */
1631 if (kvm_enabled()) {
1632 kvmppc_set_papr(cpu);
1633 }
1634
1635 if (cpu->max_compat) {
1636 if (ppc_set_compat(cpu, cpu->max_compat) < 0) {
1637 exit(1);
1638 }
1639 }
1640
1641 xics_cpu_setup(spapr->icp, cpu);
1642
1643 qemu_register_reset(spapr_cpu_reset, cpu);
1644}
1645
224245bf
DG
1646/*
1647 * Reset routine for LMB DR devices.
1648 *
1649 * Unlike PCI DR devices, LMB DR devices explicitly register this reset
1650 * routine. Reset for PCI DR devices will be handled by PHB reset routine
1651 * when it walks all its children devices. LMB devices reset occurs
1652 * as part of spapr_ppc_reset().
1653 */
1654static void spapr_drc_reset(void *opaque)
1655{
1656 sPAPRDRConnector *drc = opaque;
1657 DeviceState *d = DEVICE(drc);
1658
1659 if (d) {
1660 device_reset(d);
1661 }
1662}
1663
1664static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
1665{
1666 MachineState *machine = MACHINE(spapr);
1667 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
e8f986fc 1668 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
224245bf
DG
1669 int i;
1670
1671 for (i = 0; i < nr_lmbs; i++) {
1672 sPAPRDRConnector *drc;
1673 uint64_t addr;
1674
e8f986fc 1675 addr = i * lmb_size + spapr->hotplug_memory.base;
224245bf
DG
1676 drc = spapr_dr_connector_new(OBJECT(spapr), SPAPR_DR_CONNECTOR_TYPE_LMB,
1677 addr/lmb_size);
1678 qemu_register_reset(spapr_drc_reset, drc);
1679 }
1680}
1681
1682/*
1683 * If RAM size, maxmem size and individual node mem sizes aren't aligned
1684 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
1685 * since we can't support such unaligned sizes with DRCONF_MEMORY.
1686 */
1687static void spapr_validate_node_memory(MachineState *machine)
1688{
1689 int i;
1690
1691 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE ||
1692 machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1693 error_report("Can't support memory configuration where RAM size "
1694 "0x" RAM_ADDR_FMT " or maxmem size "
1695 "0x" RAM_ADDR_FMT " isn't aligned to %llu MB",
1696 machine->ram_size, machine->maxram_size,
1697 SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
1698 exit(EXIT_FAILURE);
1699 }
1700
1701 for (i = 0; i < nb_numa_nodes; i++) {
1702 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
1703 error_report("Can't support memory configuration where memory size"
1704 " %" PRIx64 " of node %d isn't aligned to %llu MB",
1705 numa_info[i].node_mem, i,
1706 SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
1707 exit(EXIT_FAILURE);
1708 }
1709 }
1710}
1711
9fdf0c29 1712/* pSeries LPAR / sPAPR hardware init */
3ef96221 1713static void ppc_spapr_init(MachineState *machine)
9fdf0c29 1714{
28e02042 1715 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
224245bf 1716 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
3ef96221
MA
1717 const char *kernel_filename = machine->kernel_filename;
1718 const char *kernel_cmdline = machine->kernel_cmdline;
1719 const char *initrd_filename = machine->initrd_filename;
05769733 1720 PowerPCCPU *cpu;
8c9f64df 1721 PCIHostState *phb;
9fdf0c29 1722 int i;
890c2b77
AK
1723 MemoryRegion *sysmem = get_system_memory();
1724 MemoryRegion *ram = g_new(MemoryRegion, 1);
658fa66b
AK
1725 MemoryRegion *rma_region;
1726 void *rma = NULL;
a8170e5e 1727 hwaddr rma_alloc_size;
b082d65a 1728 hwaddr node0_size = spapr_node0_size();
4d8d5467
BH
1729 uint32_t initrd_base = 0;
1730 long kernel_size = 0, initrd_size = 0;
b7d1f77a 1731 long load_limit, fw_size;
16457e7f 1732 bool kernel_le = false;
39ac8455 1733 char *filename;
9fdf0c29 1734
0ee2c058
AK
1735 msi_supported = true;
1736
d43b45e2
DG
1737 QLIST_INIT(&spapr->phbs);
1738
9fdf0c29
DG
1739 cpu_ppc_hypercall = emulate_spapr_hypercall;
1740
354ac20a 1741 /* Allocate RMA if necessary */
658fa66b 1742 rma_alloc_size = kvmppc_alloc_rma(&rma);
354ac20a
DG
1743
1744 if (rma_alloc_size == -1) {
730fce59 1745 error_report("Unable to create RMA");
354ac20a
DG
1746 exit(1);
1747 }
7f763a5d 1748
c4177479 1749 if (rma_alloc_size && (rma_alloc_size < node0_size)) {
7f763a5d 1750 spapr->rma_size = rma_alloc_size;
354ac20a 1751 } else {
c4177479 1752 spapr->rma_size = node0_size;
7f763a5d
DG
1753
1754 /* With KVM, we don't actually know whether KVM supports an
1755 * unbounded RMA (PR KVM) or is limited by the hash table size
1756 * (HV KVM using VRMA), so we always assume the latter
1757 *
1758 * In that case, we also limit the initial allocations for RTAS
1759 * etc... to 256M since we have no way to know what the VRMA size
1760 * is going to be as it depends on the size of the hash table
1761 * isn't determined yet.
1762 */
1763 if (kvm_enabled()) {
1764 spapr->vrma_adjust = 1;
1765 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
1766 }
354ac20a
DG
1767 }
1768
c4177479
AK
1769 if (spapr->rma_size > node0_size) {
1770 fprintf(stderr, "Error: Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")\n",
1771 spapr->rma_size);
1772 exit(1);
1773 }
1774
b7d1f77a
BH
1775 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
1776 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
9fdf0c29 1777
382be75d
DG
1778 /* We aim for a hash table of size 1/128 the size of RAM. The
1779 * normal rule of thumb is 1/64 the size of RAM, but that's much
1780 * more than needed for the Linux guests we support. */
1781 spapr->htab_shift = 18; /* Minimum architected size */
1782 while (spapr->htab_shift <= 46) {
ce881f77 1783 if ((1ULL << (spapr->htab_shift + 7)) >= machine->maxram_size) {
382be75d
DG
1784 break;
1785 }
1786 spapr->htab_shift++;
1787 }
b817772a 1788 spapr_alloc_htab(spapr);
7f763a5d 1789
7b565160 1790 /* Set up Interrupt Controller before we create the VCPUs */
446f16a6 1791 spapr->icp = xics_system_init(machine,
9e734e3d 1792 DIV_ROUND_UP(max_cpus * kvmppc_smt_threads(),
f303f117 1793 smp_threads),
7b565160 1794 XICS_IRQS);
7b565160 1795
224245bf
DG
1796 if (smc->dr_lmb_enabled) {
1797 spapr_validate_node_memory(machine);
1798 }
1799
9fdf0c29 1800 /* init CPUs */
19fb2c36
BR
1801 if (machine->cpu_model == NULL) {
1802 machine->cpu_model = kvm_enabled() ? "host" : "POWER7";
9fdf0c29
DG
1803 }
1804 for (i = 0; i < smp_cpus; i++) {
19fb2c36 1805 cpu = cpu_ppc_init(machine->cpu_model);
05769733 1806 if (cpu == NULL) {
9fdf0c29
DG
1807 fprintf(stderr, "Unable to find PowerPC CPU definition\n");
1808 exit(1);
1809 }
bab99ea0 1810 spapr_cpu_init(spapr, cpu);
9fdf0c29
DG
1811 }
1812
026bfd89
DG
1813 if (kvm_enabled()) {
1814 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
1815 kvmppc_enable_logical_ci_hcalls();
ef9971dd 1816 kvmppc_enable_set_mode_hcall();
026bfd89
DG
1817 }
1818
9fdf0c29 1819 /* allocate RAM */
f92f5da1 1820 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
fb164994 1821 machine->ram_size);
f92f5da1 1822 memory_region_add_subregion(sysmem, 0, ram);
9fdf0c29 1823
658fa66b
AK
1824 if (rma_alloc_size && rma) {
1825 rma_region = g_new(MemoryRegion, 1);
1826 memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
1827 rma_alloc_size, rma);
1828 vmstate_register_ram_global(rma_region);
1829 memory_region_add_subregion(sysmem, 0, rma_region);
1830 }
1831
4a1c9cf0
BR
1832 /* initialize hotplug memory address space */
1833 if (machine->ram_size < machine->maxram_size) {
1834 ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
1835
1836 if (machine->ram_slots > SPAPR_MAX_RAM_SLOTS) {
19a35c9e
BR
1837 error_report("Specified number of memory slots %"PRIu64" exceeds max supported %d\n",
1838 machine->ram_slots, SPAPR_MAX_RAM_SLOTS);
4a1c9cf0
BR
1839 exit(EXIT_FAILURE);
1840 }
1841
1842 spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
1843 SPAPR_HOTPLUG_MEM_ALIGN);
1844 memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
1845 "hotplug-memory", hotplug_mem_size);
1846 memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
1847 &spapr->hotplug_memory.mr);
1848 }
1849
224245bf
DG
1850 if (smc->dr_lmb_enabled) {
1851 spapr_create_lmb_dr_connectors(spapr);
1852 }
1853
39ac8455 1854 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
4c56440d 1855 if (!filename) {
730fce59 1856 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
4c56440d
SW
1857 exit(1);
1858 }
b7d1f77a
BH
1859 spapr->rtas_size = get_image_size(filename);
1860 spapr->rtas_blob = g_malloc(spapr->rtas_size);
1861 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
730fce59 1862 error_report("Could not load LPAR rtas '%s'", filename);
39ac8455
DG
1863 exit(1);
1864 }
4d8d5467 1865 if (spapr->rtas_size > RTAS_MAX_SIZE) {
730fce59
TH
1866 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
1867 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
4d8d5467
BH
1868 exit(1);
1869 }
7267c094 1870 g_free(filename);
39ac8455 1871
74d042e5
DG
1872 /* Set up EPOW events infrastructure */
1873 spapr_events_init(spapr);
1874
12f42174 1875 /* Set up the RTC RTAS interfaces */
28df36a1 1876 spapr_rtc_create(spapr);
12f42174 1877
b5cec4c5 1878 /* Set up VIO bus */
4040ab72
DG
1879 spapr->vio_bus = spapr_vio_bus_init();
1880
277f9acf 1881 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
4040ab72 1882 if (serial_hds[i]) {
d601fac4 1883 spapr_vty_create(spapr->vio_bus, serial_hds[i]);
4040ab72
DG
1884 }
1885 }
9fdf0c29 1886
639e8102
DG
1887 /* We always have at least the nvram device on VIO */
1888 spapr_create_nvram(spapr);
1889
3384f95c 1890 /* Set up PCI */
fa28f71b
AK
1891 spapr_pci_rtas_init();
1892
89dfd6e1 1893 phb = spapr_create_phb(spapr, 0);
3384f95c 1894
277f9acf 1895 for (i = 0; i < nb_nics; i++) {
8d90ad90
DG
1896 NICInfo *nd = &nd_table[i];
1897
1898 if (!nd->model) {
7267c094 1899 nd->model = g_strdup("ibmveth");
8d90ad90
DG
1900 }
1901
1902 if (strcmp(nd->model, "ibmveth") == 0) {
d601fac4 1903 spapr_vlan_create(spapr->vio_bus, nd);
8d90ad90 1904 } else {
29b358f9 1905 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
8d90ad90
DG
1906 }
1907 }
1908
6e270446 1909 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
d601fac4 1910 spapr_vscsi_create(spapr->vio_bus);
6e270446
BH
1911 }
1912
f28359d8 1913 /* Graphics */
8c9f64df 1914 if (spapr_vga_init(phb->bus)) {
3fc5acde 1915 spapr->has_graphics = true;
c6e76503 1916 machine->usb |= defaults_enabled() && !machine->usb_disabled;
f28359d8
LZ
1917 }
1918
4ee9ced9 1919 if (machine->usb) {
8c9f64df 1920 pci_create_simple(phb->bus, -1, "pci-ohci");
c86580b8 1921
35139a59 1922 if (spapr->has_graphics) {
c86580b8
MA
1923 USBBus *usb_bus = usb_bus_find(-1);
1924
1925 usb_create_simple(usb_bus, "usb-kbd");
1926 usb_create_simple(usb_bus, "usb-mouse");
35139a59
DG
1927 }
1928 }
1929
7f763a5d 1930 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
4d8d5467
BH
1931 fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
1932 "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF);
1933 exit(1);
1934 }
1935
9fdf0c29
DG
1936 if (kernel_filename) {
1937 uint64_t lowaddr = 0;
1938
9fdf0c29 1939 kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
4ecd4d16 1940 NULL, &lowaddr, NULL, 1, PPC_ELF_MACHINE, 0);
3b66da82 1941 if (kernel_size == ELF_LOAD_WRONG_ENDIAN) {
16457e7f
BH
1942 kernel_size = load_elf(kernel_filename,
1943 translate_kernel_address, NULL,
4ecd4d16 1944 NULL, &lowaddr, NULL, 0, PPC_ELF_MACHINE, 0);
16457e7f
BH
1945 kernel_le = kernel_size > 0;
1946 }
9fdf0c29 1947 if (kernel_size < 0) {
3b66da82
AK
1948 fprintf(stderr, "qemu: error loading %s: %s\n",
1949 kernel_filename, load_elf_strerror(kernel_size));
9fdf0c29
DG
1950 exit(1);
1951 }
1952
1953 /* load initrd */
1954 if (initrd_filename) {
4d8d5467
BH
1955 /* Try to locate the initrd in the gap between the kernel
1956 * and the firmware. Add a bit of space just in case
1957 */
1958 initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
9fdf0c29 1959 initrd_size = load_image_targphys(initrd_filename, initrd_base,
4d8d5467 1960 load_limit - initrd_base);
9fdf0c29
DG
1961 if (initrd_size < 0) {
1962 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
1963 initrd_filename);
1964 exit(1);
1965 }
1966 } else {
1967 initrd_base = 0;
1968 initrd_size = 0;
1969 }
4d8d5467 1970 }
a3467baa 1971
8e7ea787
AF
1972 if (bios_name == NULL) {
1973 bios_name = FW_FILE_NAME;
1974 }
1975 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
4c56440d 1976 if (!filename) {
68fea5a0 1977 error_report("Could not find LPAR firmware '%s'", bios_name);
4c56440d
SW
1978 exit(1);
1979 }
4d8d5467 1980 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
68fea5a0
TH
1981 if (fw_size <= 0) {
1982 error_report("Could not load LPAR firmware '%s'", filename);
4d8d5467
BH
1983 exit(1);
1984 }
1985 g_free(filename);
4d8d5467 1986
28e02042
DG
1987 /* FIXME: Should register things through the MachineState's qdev
1988 * interface, this is a legacy from the sPAPREnvironment structure
1989 * which predated MachineState but had a similar function */
4be21d56
DG
1990 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
1991 register_savevm_live(NULL, "spapr/htab", -1, 1,
1992 &savevm_htab_handlers, spapr);
1993
9fdf0c29 1994 /* Prepare the device tree */
3bbf37f2 1995 spapr->fdt_skel = spapr_create_fdt_skel(initrd_base, initrd_size,
16457e7f 1996 kernel_size, kernel_le,
31fe14d1
NF
1997 kernel_cmdline,
1998 spapr->check_exception_irq);
a3467baa 1999 assert(spapr->fdt_skel != NULL);
5b2128d2 2000
46503c2b
MR
2001 /* used by RTAS */
2002 QTAILQ_INIT(&spapr->ccs_list);
2003 qemu_register_reset(spapr_ccs_reset_hook, spapr);
2004
5b2128d2 2005 qemu_register_boot_set(spapr_boot_set, spapr);
9fdf0c29
DG
2006}
2007
135a129a
AK
2008static int spapr_kvm_type(const char *vm_type)
2009{
2010 if (!vm_type) {
2011 return 0;
2012 }
2013
2014 if (!strcmp(vm_type, "HV")) {
2015 return 1;
2016 }
2017
2018 if (!strcmp(vm_type, "PR")) {
2019 return 2;
2020 }
2021
2022 error_report("Unknown kvm-type specified '%s'", vm_type);
2023 exit(1);
2024}
2025
71461b0f 2026/*
627b84f4 2027 * Implementation of an interface to adjust firmware path
71461b0f
AK
2028 * for the bootindex property handling.
2029 */
2030static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2031 DeviceState *dev)
2032{
2033#define CAST(type, obj, name) \
2034 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2035 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
2036 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2037
2038 if (d) {
2039 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2040 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2041 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2042
2043 if (spapr) {
2044 /*
2045 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2046 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2047 * in the top 16 bits of the 64-bit LUN
2048 */
2049 unsigned id = 0x8000 | (d->id << 8) | d->lun;
2050 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2051 (uint64_t)id << 48);
2052 } else if (virtio) {
2053 /*
2054 * We use SRP luns of the form 01000000 | (target << 8) | lun
2055 * in the top 32 bits of the 64-bit LUN
2056 * Note: the quote above is from SLOF and it is wrong,
2057 * the actual binding is:
2058 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2059 */
2060 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2061 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2062 (uint64_t)id << 32);
2063 } else if (usb) {
2064 /*
2065 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2066 * in the top 32 bits of the 64-bit LUN
2067 */
2068 unsigned usb_port = atoi(usb->port->path);
2069 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2070 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2071 (uint64_t)id << 32);
2072 }
2073 }
2074
2075 if (phb) {
2076 /* Replace "pci" with "pci@800000020000000" */
2077 return g_strdup_printf("pci@%"PRIX64, phb->buid);
2078 }
2079
2080 return NULL;
2081}
2082
23825581
EH
2083static char *spapr_get_kvm_type(Object *obj, Error **errp)
2084{
28e02042 2085 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
23825581 2086
28e02042 2087 return g_strdup(spapr->kvm_type);
23825581
EH
2088}
2089
2090static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2091{
28e02042 2092 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
23825581 2093
28e02042
DG
2094 g_free(spapr->kvm_type);
2095 spapr->kvm_type = g_strdup(value);
23825581
EH
2096}
2097
2098static void spapr_machine_initfn(Object *obj)
2099{
2100 object_property_add_str(obj, "kvm-type",
2101 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
49d2e648
MA
2102 object_property_set_description(obj, "kvm-type",
2103 "Specifies the KVM virtualization mode (HV, PR)",
2104 NULL);
23825581
EH
2105}
2106
34316482
AK
2107static void ppc_cpu_do_nmi_on_cpu(void *arg)
2108{
2109 CPUState *cs = arg;
2110
2111 cpu_synchronize_state(cs);
2112 ppc_cpu_do_system_reset(cs);
2113}
2114
2115static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
2116{
2117 CPUState *cs;
2118
2119 CPU_FOREACH(cs) {
2120 async_run_on_cpu(cs, ppc_cpu_do_nmi_on_cpu, cs);
2121 }
2122}
2123
c20d332a
BR
2124static void spapr_add_lmbs(DeviceState *dev, uint64_t addr, uint64_t size,
2125 uint32_t node, Error **errp)
2126{
2127 sPAPRDRConnector *drc;
2128 sPAPRDRConnectorClass *drck;
2129 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
2130 int i, fdt_offset, fdt_size;
2131 void *fdt;
2132
2133 /*
2134 * Check for DRC connectors and send hotplug notification to the
2135 * guest only in case of hotplugged memory. This allows cold plugged
2136 * memory to be specified at boot time.
2137 */
2138 if (!dev->hotplugged) {
2139 return;
2140 }
2141
2142 for (i = 0; i < nr_lmbs; i++) {
2143 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2144 addr/SPAPR_MEMORY_BLOCK_SIZE);
2145 g_assert(drc);
2146
2147 fdt = create_device_tree(&fdt_size);
2148 fdt_offset = spapr_populate_memory_node(fdt, node, addr,
2149 SPAPR_MEMORY_BLOCK_SIZE);
2150
2151 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2152 drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, errp);
c20d332a
BR
2153 addr += SPAPR_MEMORY_BLOCK_SIZE;
2154 }
0a417869 2155 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, nr_lmbs);
c20d332a
BR
2156}
2157
2158static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2159 uint32_t node, Error **errp)
2160{
2161 Error *local_err = NULL;
2162 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2163 PCDIMMDevice *dimm = PC_DIMM(dev);
2164 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2165 MemoryRegion *mr = ddc->get_memory_region(dimm);
2166 uint64_t align = memory_region_get_alignment(mr);
2167 uint64_t size = memory_region_size(mr);
2168 uint64_t addr;
2169
2170 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
2171 error_setg(&local_err, "Hotplugged memory size must be a multiple of "
2172 "%lld MB", SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
2173 goto out;
2174 }
2175
d6a9b0b8 2176 pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
c20d332a
BR
2177 if (local_err) {
2178 goto out;
2179 }
2180
2181 addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
2182 if (local_err) {
2183 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2184 goto out;
2185 }
2186
2187 spapr_add_lmbs(dev, addr, size, node, &error_abort);
2188
2189out:
2190 error_propagate(errp, local_err);
2191}
2192
2193static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
2194 DeviceState *dev, Error **errp)
2195{
2196 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
2197
2198 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
b556854b 2199 int node;
c20d332a
BR
2200
2201 if (!smc->dr_lmb_enabled) {
2202 error_setg(errp, "Memory hotplug not supported for this machine");
2203 return;
2204 }
2205 node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
2206 if (*errp) {
2207 return;
2208 }
2209
b556854b
BR
2210 /*
2211 * Currently PowerPC kernel doesn't allow hot-adding memory to
2212 * memory-less node, but instead will silently add the memory
2213 * to the first node that has some memory. This causes two
2214 * unexpected behaviours for the user.
2215 *
2216 * - Memory gets hotplugged to a different node than what the user
2217 * specified.
2218 * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
2219 * to memory-less node, a reboot will set things accordingly
2220 * and the previously hotplugged memory now ends in the right node.
2221 * This appears as if some memory moved from one node to another.
2222 *
2223 * So until kernel starts supporting memory hotplug to memory-less
2224 * nodes, just prevent such attempts upfront in QEMU.
2225 */
2226 if (nb_numa_nodes && !numa_info[node].node_mem) {
2227 error_setg(errp, "Can't hotplug memory to memory-less node %d",
2228 node);
2229 return;
2230 }
2231
c20d332a
BR
2232 spapr_memory_plug(hotplug_dev, dev, node, errp);
2233 }
2234}
2235
2236static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
2237 DeviceState *dev, Error **errp)
2238{
2239 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2240 error_setg(errp, "Memory hot unplug not supported by sPAPR");
2241 }
2242}
2243
2244static HotplugHandler *spapr_get_hotpug_handler(MachineState *machine,
2245 DeviceState *dev)
2246{
2247 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2248 return HOTPLUG_HANDLER(machine);
2249 }
2250 return NULL;
2251}
2252
20bb648d
DG
2253static unsigned spapr_cpu_index_to_socket_id(unsigned cpu_index)
2254{
2255 /* Allocate to NUMA nodes on a "socket" basis (not that concept of
2256 * socket means much for the paravirtualized PAPR platform) */
2257 return cpu_index / smp_threads / smp_cores;
2258}
2259
29ee3247
AK
2260static void spapr_machine_class_init(ObjectClass *oc, void *data)
2261{
2262 MachineClass *mc = MACHINE_CLASS(oc);
224245bf 2263 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
71461b0f 2264 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
34316482 2265 NMIClass *nc = NMI_CLASS(oc);
c20d332a 2266 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
958db90c 2267
958db90c
MA
2268 mc->init = ppc_spapr_init;
2269 mc->reset = ppc_spapr_reset;
2270 mc->block_default_type = IF_SCSI;
38b02bd8 2271 mc->max_cpus = MAX_CPUMASK_BITS;
958db90c 2272 mc->no_parallel = 1;
5b2128d2 2273 mc->default_boot_order = "";
a34944fe 2274 mc->default_ram_size = 512 * M_BYTE;
958db90c 2275 mc->kvm_type = spapr_kvm_type;
9e3f9733 2276 mc->has_dynamic_sysbus = true;
e4024630 2277 mc->pci_allow_0_address = true;
c20d332a
BR
2278 mc->get_hotplug_handler = spapr_get_hotpug_handler;
2279 hc->plug = spapr_machine_device_plug;
2280 hc->unplug = spapr_machine_device_unplug;
20bb648d 2281 mc->cpu_index_to_socket_id = spapr_cpu_index_to_socket_id;
00b4fbe2 2282
224245bf 2283 smc->dr_lmb_enabled = false;
71461b0f 2284 fwc->get_dev_path = spapr_get_fw_dev_path;
34316482 2285 nc->nmi_monitor_handler = spapr_nmi;
29ee3247
AK
2286}
2287
2288static const TypeInfo spapr_machine_info = {
2289 .name = TYPE_SPAPR_MACHINE,
2290 .parent = TYPE_MACHINE,
4aee7362 2291 .abstract = true,
6ca1502e 2292 .instance_size = sizeof(sPAPRMachineState),
23825581 2293 .instance_init = spapr_machine_initfn,
183930c0 2294 .class_size = sizeof(sPAPRMachineClass),
29ee3247 2295 .class_init = spapr_machine_class_init,
71461b0f
AK
2296 .interfaces = (InterfaceInfo[]) {
2297 { TYPE_FW_PATH_PROVIDER },
34316482 2298 { TYPE_NMI },
c20d332a 2299 { TYPE_HOTPLUG_HANDLER },
71461b0f
AK
2300 { }
2301 },
29ee3247
AK
2302};
2303
1c5f29bb
DG
2304/*
2305 * pseries-2.5
2306 */
2307static void spapr_machine_2_5_class_init(ObjectClass *oc, void *data)
2308{
2309 MachineClass *mc = MACHINE_CLASS(oc);
2310 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
2311
2312 mc->desc = "pSeries Logical Partition (PAPR compliant) v2.5";
2313 mc->alias = "pseries";
2314 mc->is_default = 1;
2315 smc->dr_lmb_enabled = true;
2316}
2317
2318static const TypeInfo spapr_machine_2_5_info = {
2319 .name = MACHINE_TYPE_NAME("pseries-2.5"),
2320 .parent = TYPE_SPAPR_MACHINE,
2321 .class_init = spapr_machine_2_5_class_init,
2322};
2323
2324/*
2325 * pseries-2.4
2326 */
80fd50f9
CH
2327#define SPAPR_COMPAT_2_4 \
2328 HW_COMPAT_2_4
2329
1c5f29bb
DG
2330static void spapr_machine_2_4_class_init(ObjectClass *oc, void *data)
2331{
2332 static GlobalProperty compat_props[] = {
2333 SPAPR_COMPAT_2_4
2334 { /* end of list */ }
2335 };
2336 MachineClass *mc = MACHINE_CLASS(oc);
2337
2338 mc->desc = "pSeries Logical Partition (PAPR compliant) v2.4";
2339 mc->compat_props = compat_props;
2340}
2341
2342static const TypeInfo spapr_machine_2_4_info = {
2343 .name = MACHINE_TYPE_NAME("pseries-2.4"),
2344 .parent = TYPE_SPAPR_MACHINE,
2345 .class_init = spapr_machine_2_4_class_init,
2346};
2347
2348/*
2349 * pseries-2.3
2350 */
38ff32c6 2351#define SPAPR_COMPAT_2_3 \
80fd50f9 2352 SPAPR_COMPAT_2_4 \
7619c7b0
MR
2353 HW_COMPAT_2_3 \
2354 {\
2355 .driver = "spapr-pci-host-bridge",\
2356 .property = "dynamic-reconfiguration",\
2357 .value = "off",\
2358 },
38ff32c6 2359
d25228e7
JW
2360static void spapr_compat_2_3(Object *obj)
2361{
ff14e817 2362 savevm_skip_section_footers();
13d16814 2363 global_state_set_optional();
d25228e7
JW
2364}
2365
d25228e7
JW
2366static void spapr_machine_2_3_instance_init(Object *obj)
2367{
2368 spapr_compat_2_3(obj);
d25228e7
JW
2369}
2370
1c5f29bb 2371static void spapr_machine_2_3_class_init(ObjectClass *oc, void *data)
6026db45 2372{
68a27b20 2373 static GlobalProperty compat_props[] = {
1c5f29bb 2374 SPAPR_COMPAT_2_3
68a27b20
MT
2375 { /* end of list */ }
2376 };
1c5f29bb 2377 MachineClass *mc = MACHINE_CLASS(oc);
6026db45 2378
1c5f29bb 2379 mc->desc = "pSeries Logical Partition (PAPR compliant) v2.3";
68a27b20 2380 mc->compat_props = compat_props;
6026db45
AK
2381}
2382
1c5f29bb
DG
2383static const TypeInfo spapr_machine_2_3_info = {
2384 .name = MACHINE_TYPE_NAME("pseries-2.3"),
6026db45 2385 .parent = TYPE_SPAPR_MACHINE,
1c5f29bb
DG
2386 .class_init = spapr_machine_2_3_class_init,
2387 .instance_init = spapr_machine_2_3_instance_init,
6026db45
AK
2388};
2389
1c5f29bb
DG
2390/*
2391 * pseries-2.2
2392 */
2393
2394#define SPAPR_COMPAT_2_2 \
2395 SPAPR_COMPAT_2_3 \
2396 HW_COMPAT_2_2 \
2397 {\
2398 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
2399 .property = "mem_win_size",\
2400 .value = "0x20000000",\
2401 },
2402
2403static void spapr_compat_2_2(Object *obj)
2404{
2405 spapr_compat_2_3(obj);
2406}
2407
2408static void spapr_machine_2_2_instance_init(Object *obj)
2409{
2410 spapr_compat_2_2(obj);
1c5f29bb
DG
2411}
2412
4aee7362
DG
2413static void spapr_machine_2_2_class_init(ObjectClass *oc, void *data)
2414{
b194df47 2415 static GlobalProperty compat_props[] = {
dd754baf 2416 SPAPR_COMPAT_2_2
b194df47
AK
2417 { /* end of list */ }
2418 };
4aee7362
DG
2419 MachineClass *mc = MACHINE_CLASS(oc);
2420
4aee7362 2421 mc->desc = "pSeries Logical Partition (PAPR compliant) v2.2";
b194df47 2422 mc->compat_props = compat_props;
4aee7362
DG
2423}
2424
2425static const TypeInfo spapr_machine_2_2_info = {
b9f072d0 2426 .name = MACHINE_TYPE_NAME("pseries-2.2"),
4aee7362
DG
2427 .parent = TYPE_SPAPR_MACHINE,
2428 .class_init = spapr_machine_2_2_class_init,
b0e966d0 2429 .instance_init = spapr_machine_2_2_instance_init,
4aee7362
DG
2430};
2431
1c5f29bb
DG
2432/*
2433 * pseries-2.1
2434 */
2435#define SPAPR_COMPAT_2_1 \
2436 SPAPR_COMPAT_2_2 \
2437 HW_COMPAT_2_1
3dab0244 2438
1c5f29bb
DG
2439static void spapr_compat_2_1(Object *obj)
2440{
2441 spapr_compat_2_2(obj);
3dab0244
AK
2442}
2443
1c5f29bb
DG
2444static void spapr_machine_2_1_instance_init(Object *obj)
2445{
2446 spapr_compat_2_1(obj);
1c5f29bb 2447}
d25228e7 2448
1c5f29bb 2449static void spapr_machine_2_1_class_init(ObjectClass *oc, void *data)
d25228e7 2450{
1c5f29bb 2451 MachineClass *mc = MACHINE_CLASS(oc);
80fd50f9 2452 static GlobalProperty compat_props[] = {
1c5f29bb 2453 SPAPR_COMPAT_2_1
80fd50f9
CH
2454 { /* end of list */ }
2455 };
d25228e7 2456
1c5f29bb 2457 mc->desc = "pSeries Logical Partition (PAPR compliant) v2.1";
80fd50f9 2458 mc->compat_props = compat_props;
d25228e7
JW
2459}
2460
1c5f29bb
DG
2461static const TypeInfo spapr_machine_2_1_info = {
2462 .name = MACHINE_TYPE_NAME("pseries-2.1"),
fb0fc8f6 2463 .parent = TYPE_SPAPR_MACHINE,
1c5f29bb
DG
2464 .class_init = spapr_machine_2_1_class_init,
2465 .instance_init = spapr_machine_2_1_instance_init,
fb0fc8f6
DG
2466};
2467
29ee3247 2468static void spapr_machine_register_types(void)
9fdf0c29 2469{
29ee3247 2470 type_register_static(&spapr_machine_info);
6026db45 2471 type_register_static(&spapr_machine_2_1_info);
4aee7362 2472 type_register_static(&spapr_machine_2_2_info);
3dab0244 2473 type_register_static(&spapr_machine_2_3_info);
d25228e7 2474 type_register_static(&spapr_machine_2_4_info);
fb0fc8f6 2475 type_register_static(&spapr_machine_2_5_info);
9fdf0c29
DG
2476}
2477
29ee3247 2478type_init(spapr_machine_register_types)
This page took 0.960054 seconds and 4 git commands to generate.