]> Git Repo - qemu.git/blame - hw/ppc/spapr.c
spapr: move spapr_populate_pa_features()
[qemu.git] / hw / ppc / spapr.c
CommitLineData
9fdf0c29
DG
1/*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 *
26 */
0d75590d 27#include "qemu/osdep.h"
da34e65c 28#include "qapi/error.h"
9c17d615 29#include "sysemu/sysemu.h"
e35704ba 30#include "sysemu/numa.h"
83c9f4ca 31#include "hw/hw.h"
03dd024f 32#include "qemu/log.h"
71461b0f 33#include "hw/fw-path-provider.h"
9fdf0c29 34#include "elf.h"
1422e32d 35#include "net/net.h"
ad440b4a 36#include "sysemu/device_tree.h"
fa1d36df 37#include "sysemu/block-backend.h"
9c17d615 38#include "sysemu/cpus.h"
b3946626 39#include "sysemu/hw_accel.h"
e97c3636 40#include "kvm_ppc.h"
ff14e817 41#include "migration/migration.h"
4be21d56 42#include "mmu-hash64.h"
b4db5413 43#include "mmu-book3s-v3.h"
3794d548 44#include "qom/cpu.h"
9fdf0c29
DG
45
46#include "hw/boards.h"
0d09e41a 47#include "hw/ppc/ppc.h"
9fdf0c29
DG
48#include "hw/loader.h"
49
7804c353 50#include "hw/ppc/fdt.h"
0d09e41a
PB
51#include "hw/ppc/spapr.h"
52#include "hw/ppc/spapr_vio.h"
53#include "hw/pci-host/spapr.h"
54#include "hw/ppc/xics.h"
a2cb15b0 55#include "hw/pci/msi.h"
9fdf0c29 56
83c9f4ca 57#include "hw/pci/pci.h"
71461b0f
AK
58#include "hw/scsi/scsi.h"
59#include "hw/virtio/virtio-scsi.h"
f61b4bed 60
022c62cb 61#include "exec/address-spaces.h"
35139a59 62#include "hw/usb.h"
1de7afc9 63#include "qemu/config-file.h"
135a129a 64#include "qemu/error-report.h"
2a6593cb 65#include "trace.h"
34316482 66#include "hw/nmi.h"
6449da45 67#include "hw/intc/intc.h"
890c2b77 68
68a27b20 69#include "hw/compat.h"
f348b6d1 70#include "qemu/cutils.h"
94a94e4c 71#include "hw/ppc/spapr_cpu_core.h"
2474bfd4 72#include "qmp-commands.h"
68a27b20 73
9fdf0c29
DG
74#include <libfdt.h>
75
4d8d5467
BH
76/* SLOF memory layout:
77 *
78 * SLOF raw image loaded at 0, copies its romfs right below the flat
79 * device-tree, then position SLOF itself 31M below that
80 *
81 * So we set FW_OVERHEAD to 40MB which should account for all of that
82 * and more
83 *
84 * We load our kernel at 4M, leaving space for SLOF initial image
85 */
38b02bd8 86#define FDT_MAX_SIZE 0x100000
39ac8455 87#define RTAS_MAX_SIZE 0x10000
b7d1f77a 88#define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
a9f8ad8f
DG
89#define FW_MAX_SIZE 0x400000
90#define FW_FILE_NAME "slof.bin"
4d8d5467
BH
91#define FW_OVERHEAD 0x2800000
92#define KERNEL_LOAD_ADDR FW_MAX_SIZE
a9f8ad8f 93
4d8d5467 94#define MIN_RMA_SLOF 128UL
9fdf0c29 95
0c103f8e
DG
96#define PHANDLE_XICP 0x00001111
97
7f763a5d
DG
98#define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift))
99
e6f7e110
CLG
100static int try_create_xics(sPAPRMachineState *spapr, const char *type_ics,
101 const char *type_icp, int nr_servers,
102 int nr_irqs, Error **errp)
c04d6cfa 103{
2cd908d0 104 XICSFabric *xi = XICS_FABRIC(spapr);
4e4169f7 105 Error *err = NULL, *local_err = NULL;
4e4169f7 106 ICSState *ics = NULL;
817bb6a4 107 int i;
4e4169f7 108
4e4169f7 109 ics = ICS_SIMPLE(object_new(type_ics));
681bfade 110 object_property_add_child(OBJECT(spapr), "ics", OBJECT(ics), NULL);
4e4169f7 111 object_property_set_int(OBJECT(ics), nr_irqs, "nr-irqs", &err);
b4f27d71 112 object_property_add_const_link(OBJECT(ics), "xics", OBJECT(xi), NULL);
4e4169f7
CLG
113 object_property_set_bool(OBJECT(ics), true, "realized", &local_err);
114 error_propagate(&err, local_err);
115 if (err) {
116 goto error;
117 }
4e4169f7 118
852ad27e
CLG
119 spapr->icps = g_malloc0(nr_servers * sizeof(ICPState));
120 spapr->nr_servers = nr_servers;
817bb6a4
CLG
121
122 for (i = 0; i < nr_servers; i++) {
852ad27e 123 ICPState *icp = &spapr->icps[i];
817bb6a4
CLG
124
125 object_initialize(icp, sizeof(*icp), type_icp);
852ad27e 126 object_property_add_child(OBJECT(spapr), "icp[*]", OBJECT(icp), NULL);
2cd908d0 127 object_property_add_const_link(OBJECT(icp), "xics", OBJECT(xi), NULL);
817bb6a4
CLG
128 object_property_set_bool(OBJECT(icp), true, "realized", &err);
129 if (err) {
130 goto error;
131 }
132 object_unref(OBJECT(icp));
133 }
134
681bfade 135 spapr->ics = ics;
e6f7e110 136 return 0;
4e4169f7
CLG
137
138error:
139 error_propagate(errp, err);
140 if (ics) {
141 object_unparent(OBJECT(ics));
142 }
e6f7e110 143 return -1;
c04d6cfa
AL
144}
145
e6f7e110
CLG
146static int xics_system_init(MachineState *machine,
147 int nr_servers, int nr_irqs, Error **errp)
c04d6cfa 148{
e6f7e110 149 int rc = -1;
c04d6cfa 150
11ad93f6 151 if (kvm_enabled()) {
34f2af3d
MA
152 Error *err = NULL;
153
2192a930
CLG
154 if (machine_kernel_irqchip_allowed(machine) &&
155 !xics_kvm_init(SPAPR_MACHINE(machine), errp)) {
e6f7e110
CLG
156 rc = try_create_xics(SPAPR_MACHINE(machine), TYPE_ICS_KVM,
157 TYPE_KVM_ICP, nr_servers, nr_irqs, &err);
11ad93f6 158 }
e6f7e110 159 if (machine_kernel_irqchip_required(machine) && rc < 0) {
b83baa60
MA
160 error_reportf_err(err,
161 "kernel_irqchip requested but unavailable: ");
162 } else {
163 error_free(err);
11ad93f6
DG
164 }
165 }
166
e6f7e110 167 if (rc < 0) {
2192a930 168 xics_spapr_init(SPAPR_MACHINE(machine), errp);
e6f7e110 169 rc = try_create_xics(SPAPR_MACHINE(machine), TYPE_ICS_SIMPLE,
681bfade 170 TYPE_ICP, nr_servers, nr_irqs, errp);
c04d6cfa
AL
171 }
172
e6f7e110 173 return rc;
c04d6cfa
AL
174}
175
833d4668
AK
176static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
177 int smt_threads)
178{
179 int i, ret = 0;
180 uint32_t servers_prop[smt_threads];
181 uint32_t gservers_prop[smt_threads * 2];
182 int index = ppc_get_vcpu_dt_id(cpu);
183
d6e166c0
DG
184 if (cpu->compat_pvr) {
185 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
6d9412ea
AK
186 if (ret < 0) {
187 return ret;
188 }
189 }
190
833d4668
AK
191 /* Build interrupt servers and gservers properties */
192 for (i = 0; i < smt_threads; i++) {
193 servers_prop[i] = cpu_to_be32(index + i);
194 /* Hack, direct the group queues back to cpu 0 */
195 gservers_prop[i*2] = cpu_to_be32(index + i);
196 gservers_prop[i*2 + 1] = 0;
197 }
198 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
199 servers_prop, sizeof(servers_prop));
200 if (ret < 0) {
201 return ret;
202 }
203 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
204 gservers_prop, sizeof(gservers_prop));
205
206 return ret;
207}
208
0da6f3fe
BR
209static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, CPUState *cs)
210{
211 int ret = 0;
212 PowerPCCPU *cpu = POWERPC_CPU(cs);
213 int index = ppc_get_vcpu_dt_id(cpu);
214 uint32_t associativity[] = {cpu_to_be32(0x5),
215 cpu_to_be32(0x0),
216 cpu_to_be32(0x0),
217 cpu_to_be32(0x0),
218 cpu_to_be32(cs->numa_node),
219 cpu_to_be32(index)};
220
221 /* Advertise NUMA via ibm,associativity */
222 if (nb_numa_nodes > 1) {
223 ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
224 sizeof(associativity));
225 }
226
227 return ret;
228}
229
86d5771a
SB
230/* Populate the "ibm,pa-features" property */
231static void spapr_populate_pa_features(CPUPPCState *env, void *fdt, int offset)
232{
233 uint8_t pa_features_206[] = { 6, 0,
234 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
235 uint8_t pa_features_207[] = { 24, 0,
236 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
237 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
238 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
239 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
240 /* Currently we don't advertise any of the "new" ISAv3.00 functionality */
241 uint8_t pa_features_300[] = { 64, 0,
242 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
243 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
244 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
245 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
246 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 24 - 29 */
247 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 30 - 35 */
248 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 36 - 41 */
249 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 42 - 47 */
250 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 48 - 53 */
251 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 54 - 59 */
252 0x00, 0x00, 0x00, 0x00 }; /* 60 - 63 */
253
254 uint8_t *pa_features;
255 size_t pa_size;
256
257 switch (POWERPC_MMU_VER(env->mmu_model)) {
258 case POWERPC_MMU_VER_2_06:
259 pa_features = pa_features_206;
260 pa_size = sizeof(pa_features_206);
261 break;
262 case POWERPC_MMU_VER_2_07:
263 pa_features = pa_features_207;
264 pa_size = sizeof(pa_features_207);
265 break;
266 case POWERPC_MMU_VER_3_00:
267 pa_features = pa_features_300;
268 pa_size = sizeof(pa_features_300);
269 break;
270 default:
271 return;
272 }
273
274 if (env->ci_large_pages) {
275 /*
276 * Note: we keep CI large pages off by default because a 64K capable
277 * guest provisioned with large pages might otherwise try to map a qemu
278 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
279 * even if that qemu runs on a 4k host.
280 * We dd this bit back here if we are confident this is not an issue
281 */
282 pa_features[3] |= 0x20;
283 }
284 if (kvmppc_has_cap_htm() && pa_size > 24) {
285 pa_features[24] |= 0x80; /* Transactional memory support */
286 }
287
288 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
289}
290
28e02042 291static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
6e806cc3 292{
82677ed2
AK
293 int ret = 0, offset, cpus_offset;
294 CPUState *cs;
6e806cc3
BR
295 char cpu_model[32];
296 int smt = kvmppc_smt_threads();
7f763a5d 297 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
6e806cc3 298
82677ed2
AK
299 CPU_FOREACH(cs) {
300 PowerPCCPU *cpu = POWERPC_CPU(cs);
301 DeviceClass *dc = DEVICE_GET_CLASS(cs);
302 int index = ppc_get_vcpu_dt_id(cpu);
12dbeb16 303 int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
6e806cc3 304
0f20ba62 305 if ((index % smt) != 0) {
6e806cc3
BR
306 continue;
307 }
308
82677ed2 309 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
6e806cc3 310
82677ed2
AK
311 cpus_offset = fdt_path_offset(fdt, "/cpus");
312 if (cpus_offset < 0) {
313 cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
314 "cpus");
315 if (cpus_offset < 0) {
316 return cpus_offset;
317 }
318 }
319 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
6e806cc3 320 if (offset < 0) {
82677ed2
AK
321 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
322 if (offset < 0) {
323 return offset;
324 }
6e806cc3
BR
325 }
326
7f763a5d
DG
327 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
328 pft_size_prop, sizeof(pft_size_prop));
6e806cc3
BR
329 if (ret < 0) {
330 return ret;
331 }
833d4668 332
0da6f3fe
BR
333 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cs);
334 if (ret < 0) {
335 return ret;
336 }
337
12dbeb16 338 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
833d4668
AK
339 if (ret < 0) {
340 return ret;
341 }
6e806cc3
BR
342 }
343 return ret;
344}
345
b082d65a
AK
346static hwaddr spapr_node0_size(void)
347{
fb164994
DG
348 MachineState *machine = MACHINE(qdev_get_machine());
349
b082d65a
AK
350 if (nb_numa_nodes) {
351 int i;
352 for (i = 0; i < nb_numa_nodes; ++i) {
353 if (numa_info[i].node_mem) {
fb164994
DG
354 return MIN(pow2floor(numa_info[i].node_mem),
355 machine->ram_size);
b082d65a
AK
356 }
357 }
358 }
fb164994 359 return machine->ram_size;
b082d65a
AK
360}
361
a1d59c0f
AK
362static void add_str(GString *s, const gchar *s1)
363{
364 g_string_append_len(s, s1, strlen(s1) + 1);
365}
7f763a5d 366
03d196b7 367static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
26a8c353
AK
368 hwaddr size)
369{
370 uint32_t associativity[] = {
371 cpu_to_be32(0x4), /* length */
372 cpu_to_be32(0x0), cpu_to_be32(0x0),
c3b4f589 373 cpu_to_be32(0x0), cpu_to_be32(nodeid)
26a8c353
AK
374 };
375 char mem_name[32];
376 uint64_t mem_reg_property[2];
377 int off;
378
379 mem_reg_property[0] = cpu_to_be64(start);
380 mem_reg_property[1] = cpu_to_be64(size);
381
382 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
383 off = fdt_add_subnode(fdt, 0, mem_name);
384 _FDT(off);
385 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
386 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
387 sizeof(mem_reg_property))));
388 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
389 sizeof(associativity))));
03d196b7 390 return off;
26a8c353
AK
391}
392
28e02042 393static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
7f763a5d 394{
fb164994 395 MachineState *machine = MACHINE(spapr);
7db8a127
AK
396 hwaddr mem_start, node_size;
397 int i, nb_nodes = nb_numa_nodes;
398 NodeInfo *nodes = numa_info;
399 NodeInfo ramnode;
400
401 /* No NUMA nodes, assume there is just one node with whole RAM */
402 if (!nb_numa_nodes) {
403 nb_nodes = 1;
fb164994 404 ramnode.node_mem = machine->ram_size;
7db8a127 405 nodes = &ramnode;
5fe269b1 406 }
7f763a5d 407
7db8a127
AK
408 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
409 if (!nodes[i].node_mem) {
410 continue;
411 }
fb164994 412 if (mem_start >= machine->ram_size) {
5fe269b1
PM
413 node_size = 0;
414 } else {
7db8a127 415 node_size = nodes[i].node_mem;
fb164994
DG
416 if (node_size > machine->ram_size - mem_start) {
417 node_size = machine->ram_size - mem_start;
5fe269b1
PM
418 }
419 }
7db8a127
AK
420 if (!mem_start) {
421 /* ppc_spapr_init() checks for rma_size <= node0_size already */
e8f986fc 422 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
7db8a127
AK
423 mem_start += spapr->rma_size;
424 node_size -= spapr->rma_size;
425 }
6010818c
AK
426 for ( ; node_size; ) {
427 hwaddr sizetmp = pow2floor(node_size);
428
429 /* mem_start != 0 here */
430 if (ctzl(mem_start) < ctzl(sizetmp)) {
431 sizetmp = 1ULL << ctzl(mem_start);
432 }
433
434 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
435 node_size -= sizetmp;
436 mem_start += sizetmp;
437 }
7f763a5d
DG
438 }
439
440 return 0;
441}
442
0da6f3fe
BR
443static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
444 sPAPRMachineState *spapr)
445{
446 PowerPCCPU *cpu = POWERPC_CPU(cs);
447 CPUPPCState *env = &cpu->env;
448 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
449 int index = ppc_get_vcpu_dt_id(cpu);
450 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
451 0xffffffff, 0xffffffff};
afd10a0f
BR
452 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
453 : SPAPR_TIMEBASE_FREQ;
0da6f3fe
BR
454 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
455 uint32_t page_sizes_prop[64];
456 size_t page_sizes_prop_size;
22419c2a 457 uint32_t vcpus_per_socket = smp_threads * smp_cores;
0da6f3fe 458 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
12dbeb16 459 int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
af81cf32
BR
460 sPAPRDRConnector *drc;
461 sPAPRDRConnectorClass *drck;
462 int drc_index;
c64abd1f
SB
463 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
464 int i;
af81cf32
BR
465
466 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index);
467 if (drc) {
468 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
469 drc_index = drck->get_index(drc);
470 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
471 }
0da6f3fe
BR
472
473 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
474 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
475
476 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
477 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
478 env->dcache_line_size)));
479 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
480 env->dcache_line_size)));
481 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
482 env->icache_line_size)));
483 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
484 env->icache_line_size)));
485
486 if (pcc->l1_dcache_size) {
487 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
488 pcc->l1_dcache_size)));
489 } else {
ce9863b7 490 error_report("Warning: Unknown L1 dcache size for cpu");
0da6f3fe
BR
491 }
492 if (pcc->l1_icache_size) {
493 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
494 pcc->l1_icache_size)));
495 } else {
ce9863b7 496 error_report("Warning: Unknown L1 icache size for cpu");
0da6f3fe
BR
497 }
498
499 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
500 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
fd5da5c4 501 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
0da6f3fe
BR
502 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
503 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
504 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
505
506 if (env->spr_cb[SPR_PURR].oea_read) {
507 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
508 }
509
510 if (env->mmu_model & POWERPC_MMU_1TSEG) {
511 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
512 segs, sizeof(segs))));
513 }
514
515 /* Advertise VMX/VSX (vector extensions) if available
516 * 0 / no property == no vector extensions
517 * 1 == VMX / Altivec available
518 * 2 == VSX available */
519 if (env->insns_flags & PPC_ALTIVEC) {
520 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
521
522 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
523 }
524
525 /* Advertise DFP (Decimal Floating Point) if available
526 * 0 / no property == no DFP
527 * 1 == DFP available */
528 if (env->insns_flags2 & PPC2_DFP) {
529 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
530 }
531
3654fa95 532 page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop,
0da6f3fe
BR
533 sizeof(page_sizes_prop));
534 if (page_sizes_prop_size) {
535 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
536 page_sizes_prop, page_sizes_prop_size)));
537 }
538
230bf719 539 spapr_populate_pa_features(env, fdt, offset);
90da0d5a 540
0da6f3fe 541 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
22419c2a 542 cs->cpu_index / vcpus_per_socket)));
0da6f3fe
BR
543
544 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
545 pft_size_prop, sizeof(pft_size_prop))));
546
547 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cs));
548
12dbeb16 549 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
c64abd1f
SB
550
551 if (pcc->radix_page_info) {
552 for (i = 0; i < pcc->radix_page_info->count; i++) {
553 radix_AP_encodings[i] =
554 cpu_to_be32(pcc->radix_page_info->entries[i]);
555 }
556 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
557 radix_AP_encodings,
558 pcc->radix_page_info->count *
559 sizeof(radix_AP_encodings[0]))));
560 }
0da6f3fe
BR
561}
562
563static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
564{
565 CPUState *cs;
566 int cpus_offset;
567 char *nodename;
568 int smt = kvmppc_smt_threads();
569
570 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
571 _FDT(cpus_offset);
572 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
573 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
574
575 /*
576 * We walk the CPUs in reverse order to ensure that CPU DT nodes
577 * created by fdt_add_subnode() end up in the right order in FDT
578 * for the guest kernel the enumerate the CPUs correctly.
579 */
580 CPU_FOREACH_REVERSE(cs) {
581 PowerPCCPU *cpu = POWERPC_CPU(cs);
582 int index = ppc_get_vcpu_dt_id(cpu);
583 DeviceClass *dc = DEVICE_GET_CLASS(cs);
584 int offset;
585
586 if ((index % smt) != 0) {
587 continue;
588 }
589
590 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
591 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
592 g_free(nodename);
593 _FDT(offset);
594 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
595 }
596
597}
598
03d196b7
BR
599/*
600 * Adds ibm,dynamic-reconfiguration-memory node.
601 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
602 * of this device tree node.
603 */
604static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
605{
606 MachineState *machine = MACHINE(spapr);
607 int ret, i, offset;
608 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
609 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
d0e5a8f2
BR
610 uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size;
611 uint32_t nr_lmbs = (spapr->hotplug_memory.base +
612 memory_region_size(&spapr->hotplug_memory.mr)) /
613 lmb_size;
03d196b7 614 uint32_t *int_buf, *cur_index, buf_len;
6663864e 615 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
03d196b7 616
16c25aef 617 /*
d0e5a8f2 618 * Don't create the node if there is no hotpluggable memory
16c25aef 619 */
d0e5a8f2 620 if (machine->ram_size == machine->maxram_size) {
16c25aef
BR
621 return 0;
622 }
623
ef001f06
TH
624 /*
625 * Allocate enough buffer size to fit in ibm,dynamic-memory
626 * or ibm,associativity-lookup-arrays
627 */
628 buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
629 * sizeof(uint32_t);
03d196b7
BR
630 cur_index = int_buf = g_malloc0(buf_len);
631
632 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
633
634 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
635 sizeof(prop_lmb_size));
636 if (ret < 0) {
637 goto out;
638 }
639
640 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
641 if (ret < 0) {
642 goto out;
643 }
644
645 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
646 if (ret < 0) {
647 goto out;
648 }
649
650 /* ibm,dynamic-memory */
651 int_buf[0] = cpu_to_be32(nr_lmbs);
652 cur_index++;
653 for (i = 0; i < nr_lmbs; i++) {
d0e5a8f2 654 uint64_t addr = i * lmb_size;
03d196b7
BR
655 uint32_t *dynamic_memory = cur_index;
656
d0e5a8f2
BR
657 if (i >= hotplug_lmb_start) {
658 sPAPRDRConnector *drc;
659 sPAPRDRConnectorClass *drck;
660
661 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB, i);
662 g_assert(drc);
663 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
664
665 dynamic_memory[0] = cpu_to_be32(addr >> 32);
666 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
667 dynamic_memory[2] = cpu_to_be32(drck->get_index(drc));
668 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
669 dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL));
670 if (memory_region_present(get_system_memory(), addr)) {
671 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
672 } else {
673 dynamic_memory[5] = cpu_to_be32(0);
674 }
03d196b7 675 } else {
d0e5a8f2
BR
676 /*
677 * LMB information for RMA, boot time RAM and gap b/n RAM and
678 * hotplug memory region -- all these are marked as reserved
679 * and as having no valid DRC.
680 */
681 dynamic_memory[0] = cpu_to_be32(addr >> 32);
682 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
683 dynamic_memory[2] = cpu_to_be32(0);
684 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
685 dynamic_memory[4] = cpu_to_be32(-1);
686 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
687 SPAPR_LMB_FLAGS_DRC_INVALID);
03d196b7
BR
688 }
689
690 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
691 }
692 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
693 if (ret < 0) {
694 goto out;
695 }
696
697 /* ibm,associativity-lookup-arrays */
698 cur_index = int_buf;
6663864e 699 int_buf[0] = cpu_to_be32(nr_nodes);
03d196b7
BR
700 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
701 cur_index += 2;
6663864e 702 for (i = 0; i < nr_nodes; i++) {
03d196b7
BR
703 uint32_t associativity[] = {
704 cpu_to_be32(0x0),
705 cpu_to_be32(0x0),
706 cpu_to_be32(0x0),
707 cpu_to_be32(i)
708 };
709 memcpy(cur_index, associativity, sizeof(associativity));
710 cur_index += 4;
711 }
712 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
713 (cur_index - int_buf) * sizeof(uint32_t));
714out:
715 g_free(int_buf);
716 return ret;
717}
718
6787d27b
MR
719static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
720 sPAPROptionVector *ov5_updates)
721{
722 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
417ece33 723 int ret = 0, offset;
6787d27b
MR
724
725 /* Generate ibm,dynamic-reconfiguration-memory node if required */
726 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
727 g_assert(smc->dr_lmb_enabled);
728 ret = spapr_populate_drconf_memory(spapr, fdt);
417ece33
MR
729 if (ret) {
730 goto out;
731 }
6787d27b
MR
732 }
733
417ece33
MR
734 offset = fdt_path_offset(fdt, "/chosen");
735 if (offset < 0) {
736 offset = fdt_add_subnode(fdt, 0, "chosen");
737 if (offset < 0) {
738 return offset;
739 }
740 }
741 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
742 "ibm,architecture-vec-5");
743
744out:
6787d27b
MR
745 return ret;
746}
747
03d196b7
BR
748int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
749 target_ulong addr, target_ulong size,
6787d27b 750 sPAPROptionVector *ov5_updates)
03d196b7
BR
751{
752 void *fdt, *fdt_skel;
753 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
03d196b7
BR
754
755 size -= sizeof(hdr);
756
757 /* Create sceleton */
758 fdt_skel = g_malloc0(size);
759 _FDT((fdt_create(fdt_skel, size)));
760 _FDT((fdt_begin_node(fdt_skel, "")));
761 _FDT((fdt_end_node(fdt_skel)));
762 _FDT((fdt_finish(fdt_skel)));
763 fdt = g_malloc0(size);
764 _FDT((fdt_open_into(fdt_skel, fdt, size)));
765 g_free(fdt_skel);
766
767 /* Fixup cpu nodes */
5b120785 768 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
03d196b7 769
6787d27b
MR
770 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
771 return -1;
03d196b7
BR
772 }
773
774 /* Pack resulting tree */
775 _FDT((fdt_pack(fdt)));
776
777 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
778 trace_spapr_cas_failed(size);
779 return -1;
780 }
781
782 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
783 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
784 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
785 g_free(fdt);
786
787 return 0;
788}
789
3f5dabce
DG
790static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
791{
792 int rtas;
793 GString *hypertas = g_string_sized_new(256);
794 GString *qemu_hypertas = g_string_sized_new(256);
795 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
796 uint64_t max_hotplug_addr = spapr->hotplug_memory.base +
797 memory_region_size(&spapr->hotplug_memory.mr);
798 uint32_t lrdr_capacity[] = {
799 cpu_to_be32(max_hotplug_addr >> 32),
800 cpu_to_be32(max_hotplug_addr & 0xffffffff),
801 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
802 cpu_to_be32(max_cpus / smp_threads),
803 };
804
805 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
806
807 /* hypertas */
808 add_str(hypertas, "hcall-pft");
809 add_str(hypertas, "hcall-term");
810 add_str(hypertas, "hcall-dabr");
811 add_str(hypertas, "hcall-interrupt");
812 add_str(hypertas, "hcall-tce");
813 add_str(hypertas, "hcall-vio");
814 add_str(hypertas, "hcall-splpar");
815 add_str(hypertas, "hcall-bulk");
816 add_str(hypertas, "hcall-set-mode");
817 add_str(hypertas, "hcall-sprg0");
818 add_str(hypertas, "hcall-copy");
819 add_str(hypertas, "hcall-debug");
820 add_str(qemu_hypertas, "hcall-memop1");
821
822 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
823 add_str(hypertas, "hcall-multi-tce");
824 }
825 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
826 hypertas->str, hypertas->len));
827 g_string_free(hypertas, TRUE);
828 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
829 qemu_hypertas->str, qemu_hypertas->len));
830 g_string_free(qemu_hypertas, TRUE);
831
832 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
833 refpoints, sizeof(refpoints)));
834
835 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
836 RTAS_ERROR_LOG_MAX));
837 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
838 RTAS_EVENT_SCAN_RATE));
839
840 if (msi_nonbroken) {
841 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
842 }
843
844 /*
845 * According to PAPR, rtas ibm,os-term does not guarantee a return
846 * back to the guest cpu.
847 *
848 * While an additional ibm,extended-os-term property indicates
849 * that rtas call return will always occur. Set this property.
850 */
851 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
852
853 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
854 lrdr_capacity, sizeof(lrdr_capacity)));
855
856 spapr_dt_rtas_tokens(fdt, rtas);
857}
858
7c866c6a
DG
859static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
860{
861 MachineState *machine = MACHINE(spapr);
862 int chosen;
863 const char *boot_device = machine->boot_order;
864 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
865 size_t cb = 0;
866 char *bootlist = get_boot_devices_list(&cb, true);
7c866c6a
DG
867
868 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
869
7c866c6a
DG
870 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
871 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
872 spapr->initrd_base));
873 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
874 spapr->initrd_base + spapr->initrd_size));
875
876 if (spapr->kernel_size) {
877 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
878 cpu_to_be64(spapr->kernel_size) };
879
880 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
881 &kprop, sizeof(kprop)));
882 if (spapr->kernel_le) {
883 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
884 }
885 }
886 if (boot_menu) {
887 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
888 }
889 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
890 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
891 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
892
893 if (cb && bootlist) {
894 int i;
895
896 for (i = 0; i < cb; i++) {
897 if (bootlist[i] == '\n') {
898 bootlist[i] = ' ';
899 }
900 }
901 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
902 }
903
904 if (boot_device && strlen(boot_device)) {
905 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
906 }
907
908 if (!spapr->has_graphics && stdout_path) {
909 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
910 }
911
912 g_free(stdout_path);
913 g_free(bootlist);
914}
915
fca5f2dc
DG
916static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
917{
918 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
919 * KVM to work under pHyp with some guest co-operation */
920 int hypervisor;
921 uint8_t hypercall[16];
922
923 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
924 /* indicate KVM hypercall interface */
925 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
926 if (kvmppc_has_cap_fixup_hcalls()) {
927 /*
928 * Older KVM versions with older guest kernels were broken
929 * with the magic page, don't allow the guest to map it.
930 */
931 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
932 sizeof(hypercall))) {
933 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
934 hypercall, sizeof(hypercall)));
935 }
936 }
937}
938
997b6cfc
DG
939static void *spapr_build_fdt(sPAPRMachineState *spapr,
940 hwaddr rtas_addr,
941 hwaddr rtas_size)
a3467baa 942{
5b2128d2 943 MachineState *machine = MACHINE(qdev_get_machine());
3c0c47e3 944 MachineClass *mc = MACHINE_GET_CLASS(machine);
c20d332a 945 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
7c866c6a 946 int ret;
a3467baa 947 void *fdt;
3384f95c 948 sPAPRPHBState *phb;
398a0bd5 949 char *buf;
a3467baa 950
398a0bd5
DG
951 fdt = g_malloc0(FDT_MAX_SIZE);
952 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
a3467baa 953
398a0bd5
DG
954 /* Root node */
955 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
956 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
957 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
958
959 /*
960 * Add info to guest to indentify which host is it being run on
961 * and what is the uuid of the guest
962 */
963 if (kvmppc_get_host_model(&buf)) {
964 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
965 g_free(buf);
966 }
967 if (kvmppc_get_host_serial(&buf)) {
968 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
969 g_free(buf);
970 }
971
972 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
973
974 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
975 if (qemu_uuid_set) {
976 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
977 }
978 g_free(buf);
979
980 if (qemu_get_vm_name()) {
981 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
982 qemu_get_vm_name()));
983 }
984
985 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
986 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
4040ab72 987
9b9a1908 988 /* /interrupt controller */
852ad27e 989 spapr_dt_xics(spapr->nr_servers, fdt, PHANDLE_XICP);
9b9a1908 990
e8f986fc
BR
991 ret = spapr_populate_memory(spapr, fdt);
992 if (ret < 0) {
ce9863b7 993 error_report("couldn't setup memory nodes in fdt");
e8f986fc 994 exit(1);
7f763a5d
DG
995 }
996
bf5a6696
DG
997 /* /vdevice */
998 spapr_dt_vdevice(spapr->vio_bus, fdt);
4040ab72 999
4d9392be
TH
1000 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1001 ret = spapr_rng_populate_dt(fdt);
1002 if (ret < 0) {
ce9863b7 1003 error_report("could not set up rng device in the fdt");
4d9392be
TH
1004 exit(1);
1005 }
1006 }
1007
3384f95c 1008 QLIST_FOREACH(phb, &spapr->phbs, list) {
e0fdbd7c 1009 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
da34fed7
TH
1010 if (ret < 0) {
1011 error_report("couldn't setup PCI devices in fdt");
1012 exit(1);
1013 }
3384f95c
DG
1014 }
1015
0da6f3fe
BR
1016 /* cpus */
1017 spapr_populate_cpus_dt_node(fdt, spapr);
6e806cc3 1018
c20d332a
BR
1019 if (smc->dr_lmb_enabled) {
1020 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1021 }
1022
c5514d0e 1023 if (mc->has_hotpluggable_cpus) {
af81cf32
BR
1024 int offset = fdt_path_offset(fdt, "/cpus");
1025 ret = spapr_drc_populate_dt(fdt, offset, NULL,
1026 SPAPR_DR_CONNECTOR_TYPE_CPU);
1027 if (ret < 0) {
1028 error_report("Couldn't set up CPU DR device tree properties");
1029 exit(1);
1030 }
1031 }
1032
ffb1e275 1033 /* /event-sources */
ffbb1705 1034 spapr_dt_events(spapr, fdt);
ffb1e275 1035
3f5dabce
DG
1036 /* /rtas */
1037 spapr_dt_rtas(spapr, fdt);
1038
7c866c6a
DG
1039 /* /chosen */
1040 spapr_dt_chosen(spapr, fdt);
cf6e5223 1041
fca5f2dc
DG
1042 /* /hypervisor */
1043 if (kvm_enabled()) {
1044 spapr_dt_hypervisor(spapr, fdt);
1045 }
1046
cf6e5223
DG
1047 /* Build memory reserve map */
1048 if (spapr->kernel_size) {
1049 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1050 }
1051 if (spapr->initrd_size) {
1052 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1053 }
1054
6787d27b
MR
1055 /* ibm,client-architecture-support updates */
1056 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1057 if (ret < 0) {
1058 error_report("couldn't setup CAS properties fdt");
1059 exit(1);
1060 }
1061
997b6cfc 1062 return fdt;
9fdf0c29
DG
1063}
1064
1065static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1066{
1067 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1068}
1069
1d1be34d
DG
1070static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1071 PowerPCCPU *cpu)
9fdf0c29 1072{
1b14670a
AF
1073 CPUPPCState *env = &cpu->env;
1074
8d04fb55
JK
1075 /* The TCG path should also be holding the BQL at this point */
1076 g_assert(qemu_mutex_iothread_locked());
1077
efcb9383
DG
1078 if (msr_pr) {
1079 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1080 env->gpr[3] = H_PRIVILEGE;
1081 } else {
aa100fa4 1082 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
efcb9383 1083 }
9fdf0c29
DG
1084}
1085
9861bb3e
SJS
1086static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp)
1087{
1088 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1089
1090 return spapr->patb_entry;
1091}
1092
e6b8fd24
SMJ
1093#define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1094#define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1095#define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1096#define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1097#define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1098
715c5407
DG
1099/*
1100 * Get the fd to access the kernel htab, re-opening it if necessary
1101 */
1102static int get_htab_fd(sPAPRMachineState *spapr)
1103{
1104 if (spapr->htab_fd >= 0) {
1105 return spapr->htab_fd;
1106 }
1107
1108 spapr->htab_fd = kvmppc_get_htab_fd(false);
1109 if (spapr->htab_fd < 0) {
1110 error_report("Unable to open fd for reading hash table from KVM: %s",
1111 strerror(errno));
1112 }
1113
1114 return spapr->htab_fd;
1115}
1116
b4db5413 1117void close_htab_fd(sPAPRMachineState *spapr)
715c5407
DG
1118{
1119 if (spapr->htab_fd >= 0) {
1120 close(spapr->htab_fd);
1121 }
1122 spapr->htab_fd = -1;
1123}
1124
e57ca75c
DG
1125static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1126{
1127 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1128
1129 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1130}
1131
1132static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1133 hwaddr ptex, int n)
1134{
1135 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1136 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1137
1138 if (!spapr->htab) {
1139 /*
1140 * HTAB is controlled by KVM. Fetch into temporary buffer
1141 */
1142 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1143 kvmppc_read_hptes(hptes, ptex, n);
1144 return hptes;
1145 }
1146
1147 /*
1148 * HTAB is controlled by QEMU. Just point to the internally
1149 * accessible PTEG.
1150 */
1151 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1152}
1153
1154static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1155 const ppc_hash_pte64_t *hptes,
1156 hwaddr ptex, int n)
1157{
1158 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1159
1160 if (!spapr->htab) {
1161 g_free((void *)hptes);
1162 }
1163
1164 /* Nothing to do for qemu managed HPT */
1165}
1166
1167static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1168 uint64_t pte0, uint64_t pte1)
1169{
1170 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1171 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1172
1173 if (!spapr->htab) {
1174 kvmppc_write_hpte(ptex, pte0, pte1);
1175 } else {
1176 stq_p(spapr->htab + offset, pte0);
1177 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1178 }
1179}
1180
8dfe8e7f
DG
1181static int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1182{
1183 int shift;
1184
1185 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1186 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1187 * that's much more than is needed for Linux guests */
1188 shift = ctz64(pow2ceil(ramsize)) - 7;
1189 shift = MAX(shift, 18); /* Minimum architected size */
1190 shift = MIN(shift, 46); /* Maximum architected size */
1191 return shift;
1192}
1193
c5f54f3e
DG
1194static void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1195 Error **errp)
7f763a5d 1196{
c5f54f3e
DG
1197 long rc;
1198
1199 /* Clean up any HPT info from a previous boot */
1200 g_free(spapr->htab);
1201 spapr->htab = NULL;
1202 spapr->htab_shift = 0;
1203 close_htab_fd(spapr);
1204
1205 rc = kvmppc_reset_htab(shift);
1206 if (rc < 0) {
1207 /* kernel-side HPT needed, but couldn't allocate one */
1208 error_setg_errno(errp, errno,
1209 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1210 shift);
1211 /* This is almost certainly fatal, but if the caller really
1212 * wants to carry on with shift == 0, it's welcome to try */
1213 } else if (rc > 0) {
1214 /* kernel-side HPT allocated */
1215 if (rc != shift) {
1216 error_setg(errp,
1217 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1218 shift, rc);
7735feda
BR
1219 }
1220
7f763a5d 1221 spapr->htab_shift = shift;
c18ad9a5 1222 spapr->htab = NULL;
b817772a 1223 } else {
c5f54f3e
DG
1224 /* kernel-side HPT not needed, allocate in userspace instead */
1225 size_t size = 1ULL << shift;
1226 int i;
b817772a 1227
c5f54f3e
DG
1228 spapr->htab = qemu_memalign(size, size);
1229 if (!spapr->htab) {
1230 error_setg_errno(errp, errno,
1231 "Could not allocate HPT of order %d", shift);
1232 return;
7735feda
BR
1233 }
1234
c5f54f3e
DG
1235 memset(spapr->htab, 0, size);
1236 spapr->htab_shift = shift;
e6b8fd24 1237
c5f54f3e
DG
1238 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1239 DIRTY_HPTE(HPTE(spapr->htab, i));
e6b8fd24 1240 }
7f763a5d 1241 }
9fdf0c29
DG
1242}
1243
b4db5413
SJS
1244void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr)
1245{
1246 spapr_reallocate_hpt(spapr,
1247 spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size),
1248 &error_fatal);
1249 if (spapr->vrma_adjust) {
1250 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
1251 spapr->htab_shift);
1252 }
1253 /* We're setting up a hash table, so that means we're not radix */
1254 spapr->patb_entry = 0;
1255}
1256
4f01a637 1257static void find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
9e3f9733
AG
1258{
1259 bool matched = false;
1260
1261 if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
1262 matched = true;
1263 }
1264
1265 if (!matched) {
1266 error_report("Device %s is not supported by this machine yet.",
1267 qdev_fw_name(DEVICE(sbdev)));
1268 exit(1);
1269 }
9e3f9733
AG
1270}
1271
c8787ad4 1272static void ppc_spapr_reset(void)
a3467baa 1273{
c5f54f3e
DG
1274 MachineState *machine = MACHINE(qdev_get_machine());
1275 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
182735ef 1276 PowerPCCPU *first_ppc_cpu;
b7d1f77a 1277 uint32_t rtas_limit;
cae172ab 1278 hwaddr rtas_addr, fdt_addr;
997b6cfc
DG
1279 void *fdt;
1280 int rc;
259186a7 1281
9e3f9733
AG
1282 /* Check for unknown sysbus devices */
1283 foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
1284
b4db5413
SJS
1285 if (kvm_enabled() && kvmppc_has_cap_mmu_radix()) {
1286 /* If using KVM with radix mode available, VCPUs can be started
1287 * without a HPT because KVM will start them in radix mode.
1288 * Set the GR bit in PATB so that we know there is no HPT. */
1289 spapr->patb_entry = PATBE1_GR;
1290 } else {
1291 spapr->patb_entry = 0;
1292 spapr_setup_hpt_and_vrma(spapr);
c5f54f3e 1293 }
a3467baa 1294
c8787ad4 1295 qemu_devices_reset();
a3467baa 1296
b7d1f77a
BH
1297 /*
1298 * We place the device tree and RTAS just below either the top of the RMA,
1299 * or just below 2GB, whichever is lowere, so that it can be
1300 * processed with 32-bit real mode code if necessary
1301 */
1302 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
cae172ab
DG
1303 rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1304 fdt_addr = rtas_addr - FDT_MAX_SIZE;
b7d1f77a 1305
6787d27b
MR
1306 /* if this reset wasn't generated by CAS, we should reset our
1307 * negotiated options and start from scratch */
1308 if (!spapr->cas_reboot) {
1309 spapr_ovec_cleanup(spapr->ov5_cas);
1310 spapr->ov5_cas = spapr_ovec_new();
1311 }
1312
cae172ab 1313 fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size);
a3467baa 1314
2cac78c1 1315 spapr_load_rtas(spapr, fdt, rtas_addr);
b7d1f77a 1316
997b6cfc
DG
1317 rc = fdt_pack(fdt);
1318
1319 /* Should only fail if we've built a corrupted tree */
1320 assert(rc == 0);
1321
1322 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1323 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1324 fdt_totalsize(fdt), FDT_MAX_SIZE);
1325 exit(1);
1326 }
1327
1328 /* Load the fdt */
1329 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
cae172ab 1330 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
997b6cfc
DG
1331 g_free(fdt);
1332
a3467baa 1333 /* Set up the entry state */
182735ef 1334 first_ppc_cpu = POWERPC_CPU(first_cpu);
cae172ab 1335 first_ppc_cpu->env.gpr[3] = fdt_addr;
182735ef
AF
1336 first_ppc_cpu->env.gpr[5] = 0;
1337 first_cpu->halted = 0;
1b718907 1338 first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
a3467baa 1339
6787d27b 1340 spapr->cas_reboot = false;
a3467baa
DG
1341}
1342
28e02042 1343static void spapr_create_nvram(sPAPRMachineState *spapr)
639e8102 1344{
2ff3de68 1345 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
3978b863 1346 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
639e8102 1347
3978b863 1348 if (dinfo) {
6231a6da
MA
1349 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1350 &error_fatal);
639e8102
DG
1351 }
1352
1353 qdev_init_nofail(dev);
1354
1355 spapr->nvram = (struct sPAPRNVRAM *)dev;
1356}
1357
28e02042 1358static void spapr_rtc_create(sPAPRMachineState *spapr)
28df36a1 1359{
147ff807
CLG
1360 object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC);
1361 object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc),
1362 &error_fatal);
1363 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1364 &error_fatal);
1365 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1366 "date", &error_fatal);
28df36a1
DG
1367}
1368
8c57b867 1369/* Returns whether we want to use VGA or not */
14c6a894 1370static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
f28359d8 1371{
8c57b867 1372 switch (vga_interface_type) {
8c57b867 1373 case VGA_NONE:
7effdaa3
MW
1374 return false;
1375 case VGA_DEVICE:
1376 return true;
1ddcae82 1377 case VGA_STD:
b798c190 1378 case VGA_VIRTIO:
1ddcae82 1379 return pci_vga_init(pci_bus) != NULL;
8c57b867 1380 default:
14c6a894
DG
1381 error_setg(errp,
1382 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1383 return false;
f28359d8 1384 }
f28359d8
LZ
1385}
1386
880ae7de
DG
1387static int spapr_post_load(void *opaque, int version_id)
1388{
28e02042 1389 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
880ae7de
DG
1390 int err = 0;
1391
a7ff1212
CLG
1392 if (!object_dynamic_cast(OBJECT(spapr->ics), TYPE_ICS_KVM)) {
1393 int i;
1394 for (i = 0; i < spapr->nr_servers; i++) {
1395 icp_resend(&spapr->icps[i]);
1396 }
1397 }
1398
631b22ea 1399 /* In earlier versions, there was no separate qdev for the PAPR
880ae7de
DG
1400 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1401 * So when migrating from those versions, poke the incoming offset
1402 * value into the RTC device */
1403 if (version_id < 3) {
147ff807 1404 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
880ae7de
DG
1405 }
1406
1407 return err;
1408}
1409
1410static bool version_before_3(void *opaque, int version_id)
1411{
1412 return version_id < 3;
1413}
1414
62ef3760
MR
1415static bool spapr_ov5_cas_needed(void *opaque)
1416{
1417 sPAPRMachineState *spapr = opaque;
1418 sPAPROptionVector *ov5_mask = spapr_ovec_new();
1419 sPAPROptionVector *ov5_legacy = spapr_ovec_new();
1420 sPAPROptionVector *ov5_removed = spapr_ovec_new();
1421 bool cas_needed;
1422
1423 /* Prior to the introduction of sPAPROptionVector, we had two option
1424 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1425 * Both of these options encode machine topology into the device-tree
1426 * in such a way that the now-booted OS should still be able to interact
1427 * appropriately with QEMU regardless of what options were actually
1428 * negotiatied on the source side.
1429 *
1430 * As such, we can avoid migrating the CAS-negotiated options if these
1431 * are the only options available on the current machine/platform.
1432 * Since these are the only options available for pseries-2.7 and
1433 * earlier, this allows us to maintain old->new/new->old migration
1434 * compatibility.
1435 *
1436 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1437 * via default pseries-2.8 machines and explicit command-line parameters.
1438 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1439 * of the actual CAS-negotiated values to continue working properly. For
1440 * example, availability of memory unplug depends on knowing whether
1441 * OV5_HP_EVT was negotiated via CAS.
1442 *
1443 * Thus, for any cases where the set of available CAS-negotiatable
1444 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1445 * include the CAS-negotiated options in the migration stream.
1446 */
1447 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1448 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1449
1450 /* spapr_ovec_diff returns true if bits were removed. we avoid using
1451 * the mask itself since in the future it's possible "legacy" bits may be
1452 * removed via machine options, which could generate a false positive
1453 * that breaks migration.
1454 */
1455 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1456 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1457
1458 spapr_ovec_cleanup(ov5_mask);
1459 spapr_ovec_cleanup(ov5_legacy);
1460 spapr_ovec_cleanup(ov5_removed);
1461
1462 return cas_needed;
1463}
1464
1465static const VMStateDescription vmstate_spapr_ov5_cas = {
1466 .name = "spapr_option_vector_ov5_cas",
1467 .version_id = 1,
1468 .minimum_version_id = 1,
1469 .needed = spapr_ov5_cas_needed,
1470 .fields = (VMStateField[]) {
1471 VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
1472 vmstate_spapr_ovec, sPAPROptionVector),
1473 VMSTATE_END_OF_LIST()
1474 },
1475};
1476
9861bb3e
SJS
1477static bool spapr_patb_entry_needed(void *opaque)
1478{
1479 sPAPRMachineState *spapr = opaque;
1480
1481 return !!spapr->patb_entry;
1482}
1483
1484static const VMStateDescription vmstate_spapr_patb_entry = {
1485 .name = "spapr_patb_entry",
1486 .version_id = 1,
1487 .minimum_version_id = 1,
1488 .needed = spapr_patb_entry_needed,
1489 .fields = (VMStateField[]) {
1490 VMSTATE_UINT64(patb_entry, sPAPRMachineState),
1491 VMSTATE_END_OF_LIST()
1492 },
1493};
1494
4be21d56
DG
1495static const VMStateDescription vmstate_spapr = {
1496 .name = "spapr",
880ae7de 1497 .version_id = 3,
4be21d56 1498 .minimum_version_id = 1,
880ae7de 1499 .post_load = spapr_post_load,
3aff6c2f 1500 .fields = (VMStateField[]) {
880ae7de
DG
1501 /* used to be @next_irq */
1502 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
4be21d56
DG
1503
1504 /* RTC offset */
28e02042 1505 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
880ae7de 1506
28e02042 1507 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
4be21d56
DG
1508 VMSTATE_END_OF_LIST()
1509 },
62ef3760
MR
1510 .subsections = (const VMStateDescription*[]) {
1511 &vmstate_spapr_ov5_cas,
9861bb3e 1512 &vmstate_spapr_patb_entry,
62ef3760
MR
1513 NULL
1514 }
4be21d56
DG
1515};
1516
4be21d56
DG
1517static int htab_save_setup(QEMUFile *f, void *opaque)
1518{
28e02042 1519 sPAPRMachineState *spapr = opaque;
4be21d56 1520
4be21d56
DG
1521 /* "Iteration" header */
1522 qemu_put_be32(f, spapr->htab_shift);
1523
e68cb8b4
AK
1524 if (spapr->htab) {
1525 spapr->htab_save_index = 0;
1526 spapr->htab_first_pass = true;
1527 } else {
1528 assert(kvm_enabled());
e68cb8b4
AK
1529 }
1530
1531
4be21d56
DG
1532 return 0;
1533}
1534
28e02042 1535static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
4be21d56
DG
1536 int64_t max_ns)
1537{
378bc217 1538 bool has_timeout = max_ns != -1;
4be21d56
DG
1539 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1540 int index = spapr->htab_save_index;
bc72ad67 1541 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
4be21d56
DG
1542
1543 assert(spapr->htab_first_pass);
1544
1545 do {
1546 int chunkstart;
1547
1548 /* Consume invalid HPTEs */
1549 while ((index < htabslots)
1550 && !HPTE_VALID(HPTE(spapr->htab, index))) {
4be21d56 1551 CLEAN_HPTE(HPTE(spapr->htab, index));
24ec2863 1552 index++;
4be21d56
DG
1553 }
1554
1555 /* Consume valid HPTEs */
1556 chunkstart = index;
338c25b6 1557 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
4be21d56 1558 && HPTE_VALID(HPTE(spapr->htab, index))) {
4be21d56 1559 CLEAN_HPTE(HPTE(spapr->htab, index));
24ec2863 1560 index++;
4be21d56
DG
1561 }
1562
1563 if (index > chunkstart) {
1564 int n_valid = index - chunkstart;
1565
1566 qemu_put_be32(f, chunkstart);
1567 qemu_put_be16(f, n_valid);
1568 qemu_put_be16(f, 0);
1569 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1570 HASH_PTE_SIZE_64 * n_valid);
1571
378bc217
DG
1572 if (has_timeout &&
1573 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
4be21d56
DG
1574 break;
1575 }
1576 }
1577 } while ((index < htabslots) && !qemu_file_rate_limit(f));
1578
1579 if (index >= htabslots) {
1580 assert(index == htabslots);
1581 index = 0;
1582 spapr->htab_first_pass = false;
1583 }
1584 spapr->htab_save_index = index;
1585}
1586
28e02042 1587static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
e68cb8b4 1588 int64_t max_ns)
4be21d56
DG
1589{
1590 bool final = max_ns < 0;
1591 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1592 int examined = 0, sent = 0;
1593 int index = spapr->htab_save_index;
bc72ad67 1594 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
4be21d56
DG
1595
1596 assert(!spapr->htab_first_pass);
1597
1598 do {
1599 int chunkstart, invalidstart;
1600
1601 /* Consume non-dirty HPTEs */
1602 while ((index < htabslots)
1603 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1604 index++;
1605 examined++;
1606 }
1607
1608 chunkstart = index;
1609 /* Consume valid dirty HPTEs */
338c25b6 1610 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
4be21d56
DG
1611 && HPTE_DIRTY(HPTE(spapr->htab, index))
1612 && HPTE_VALID(HPTE(spapr->htab, index))) {
1613 CLEAN_HPTE(HPTE(spapr->htab, index));
1614 index++;
1615 examined++;
1616 }
1617
1618 invalidstart = index;
1619 /* Consume invalid dirty HPTEs */
338c25b6 1620 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
4be21d56
DG
1621 && HPTE_DIRTY(HPTE(spapr->htab, index))
1622 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1623 CLEAN_HPTE(HPTE(spapr->htab, index));
1624 index++;
1625 examined++;
1626 }
1627
1628 if (index > chunkstart) {
1629 int n_valid = invalidstart - chunkstart;
1630 int n_invalid = index - invalidstart;
1631
1632 qemu_put_be32(f, chunkstart);
1633 qemu_put_be16(f, n_valid);
1634 qemu_put_be16(f, n_invalid);
1635 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1636 HASH_PTE_SIZE_64 * n_valid);
1637 sent += index - chunkstart;
1638
bc72ad67 1639 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
4be21d56
DG
1640 break;
1641 }
1642 }
1643
1644 if (examined >= htabslots) {
1645 break;
1646 }
1647
1648 if (index >= htabslots) {
1649 assert(index == htabslots);
1650 index = 0;
1651 }
1652 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1653
1654 if (index >= htabslots) {
1655 assert(index == htabslots);
1656 index = 0;
1657 }
1658
1659 spapr->htab_save_index = index;
1660
e68cb8b4 1661 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
4be21d56
DG
1662}
1663
e68cb8b4
AK
1664#define MAX_ITERATION_NS 5000000 /* 5 ms */
1665#define MAX_KVM_BUF_SIZE 2048
1666
4be21d56
DG
1667static int htab_save_iterate(QEMUFile *f, void *opaque)
1668{
28e02042 1669 sPAPRMachineState *spapr = opaque;
715c5407 1670 int fd;
e68cb8b4 1671 int rc = 0;
4be21d56
DG
1672
1673 /* Iteration header */
1674 qemu_put_be32(f, 0);
1675
e68cb8b4
AK
1676 if (!spapr->htab) {
1677 assert(kvm_enabled());
1678
715c5407
DG
1679 fd = get_htab_fd(spapr);
1680 if (fd < 0) {
1681 return fd;
01a57972
SMJ
1682 }
1683
715c5407 1684 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
e68cb8b4
AK
1685 if (rc < 0) {
1686 return rc;
1687 }
1688 } else if (spapr->htab_first_pass) {
4be21d56
DG
1689 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1690 } else {
e68cb8b4 1691 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
4be21d56
DG
1692 }
1693
1694 /* End marker */
1695 qemu_put_be32(f, 0);
1696 qemu_put_be16(f, 0);
1697 qemu_put_be16(f, 0);
1698
e68cb8b4 1699 return rc;
4be21d56
DG
1700}
1701
1702static int htab_save_complete(QEMUFile *f, void *opaque)
1703{
28e02042 1704 sPAPRMachineState *spapr = opaque;
715c5407 1705 int fd;
4be21d56
DG
1706
1707 /* Iteration header */
1708 qemu_put_be32(f, 0);
1709
e68cb8b4
AK
1710 if (!spapr->htab) {
1711 int rc;
1712
1713 assert(kvm_enabled());
1714
715c5407
DG
1715 fd = get_htab_fd(spapr);
1716 if (fd < 0) {
1717 return fd;
01a57972
SMJ
1718 }
1719
715c5407 1720 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
e68cb8b4
AK
1721 if (rc < 0) {
1722 return rc;
1723 }
e68cb8b4 1724 } else {
378bc217
DG
1725 if (spapr->htab_first_pass) {
1726 htab_save_first_pass(f, spapr, -1);
1727 }
e68cb8b4
AK
1728 htab_save_later_pass(f, spapr, -1);
1729 }
4be21d56
DG
1730
1731 /* End marker */
1732 qemu_put_be32(f, 0);
1733 qemu_put_be16(f, 0);
1734 qemu_put_be16(f, 0);
1735
1736 return 0;
1737}
1738
1739static int htab_load(QEMUFile *f, void *opaque, int version_id)
1740{
28e02042 1741 sPAPRMachineState *spapr = opaque;
4be21d56 1742 uint32_t section_hdr;
e68cb8b4 1743 int fd = -1;
4be21d56
DG
1744
1745 if (version_id < 1 || version_id > 1) {
98a5d100 1746 error_report("htab_load() bad version");
4be21d56
DG
1747 return -EINVAL;
1748 }
1749
1750 section_hdr = qemu_get_be32(f);
1751
1752 if (section_hdr) {
9897e462 1753 Error *local_err = NULL;
c5f54f3e
DG
1754
1755 /* First section gives the htab size */
1756 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
1757 if (local_err) {
1758 error_report_err(local_err);
4be21d56
DG
1759 return -EINVAL;
1760 }
1761 return 0;
1762 }
1763
e68cb8b4
AK
1764 if (!spapr->htab) {
1765 assert(kvm_enabled());
1766
1767 fd = kvmppc_get_htab_fd(true);
1768 if (fd < 0) {
98a5d100
DG
1769 error_report("Unable to open fd to restore KVM hash table: %s",
1770 strerror(errno));
e68cb8b4
AK
1771 }
1772 }
1773
4be21d56
DG
1774 while (true) {
1775 uint32_t index;
1776 uint16_t n_valid, n_invalid;
1777
1778 index = qemu_get_be32(f);
1779 n_valid = qemu_get_be16(f);
1780 n_invalid = qemu_get_be16(f);
1781
1782 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1783 /* End of Stream */
1784 break;
1785 }
1786
e68cb8b4 1787 if ((index + n_valid + n_invalid) >
4be21d56
DG
1788 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1789 /* Bad index in stream */
98a5d100
DG
1790 error_report(
1791 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
1792 index, n_valid, n_invalid, spapr->htab_shift);
4be21d56
DG
1793 return -EINVAL;
1794 }
1795
e68cb8b4
AK
1796 if (spapr->htab) {
1797 if (n_valid) {
1798 qemu_get_buffer(f, HPTE(spapr->htab, index),
1799 HASH_PTE_SIZE_64 * n_valid);
1800 }
1801 if (n_invalid) {
1802 memset(HPTE(spapr->htab, index + n_valid), 0,
1803 HASH_PTE_SIZE_64 * n_invalid);
1804 }
1805 } else {
1806 int rc;
1807
1808 assert(fd >= 0);
1809
1810 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1811 if (rc < 0) {
1812 return rc;
1813 }
4be21d56
DG
1814 }
1815 }
1816
e68cb8b4
AK
1817 if (!spapr->htab) {
1818 assert(fd >= 0);
1819 close(fd);
1820 }
1821
4be21d56
DG
1822 return 0;
1823}
1824
c573fc03
TH
1825static void htab_cleanup(void *opaque)
1826{
1827 sPAPRMachineState *spapr = opaque;
1828
1829 close_htab_fd(spapr);
1830}
1831
4be21d56
DG
1832static SaveVMHandlers savevm_htab_handlers = {
1833 .save_live_setup = htab_save_setup,
1834 .save_live_iterate = htab_save_iterate,
a3e06c3d 1835 .save_live_complete_precopy = htab_save_complete,
c573fc03 1836 .cleanup = htab_cleanup,
4be21d56
DG
1837 .load_state = htab_load,
1838};
1839
5b2128d2
AG
1840static void spapr_boot_set(void *opaque, const char *boot_device,
1841 Error **errp)
1842{
1843 MachineState *machine = MACHINE(qdev_get_machine());
1844 machine->boot_order = g_strdup(boot_device);
1845}
1846
224245bf
DG
1847/*
1848 * Reset routine for LMB DR devices.
1849 *
1850 * Unlike PCI DR devices, LMB DR devices explicitly register this reset
1851 * routine. Reset for PCI DR devices will be handled by PHB reset routine
1852 * when it walks all its children devices. LMB devices reset occurs
1853 * as part of spapr_ppc_reset().
1854 */
1855static void spapr_drc_reset(void *opaque)
1856{
1857 sPAPRDRConnector *drc = opaque;
1858 DeviceState *d = DEVICE(drc);
1859
1860 if (d) {
1861 device_reset(d);
1862 }
1863}
1864
1865static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
1866{
1867 MachineState *machine = MACHINE(spapr);
1868 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
e8f986fc 1869 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
224245bf
DG
1870 int i;
1871
1872 for (i = 0; i < nr_lmbs; i++) {
1873 sPAPRDRConnector *drc;
1874 uint64_t addr;
1875
e8f986fc 1876 addr = i * lmb_size + spapr->hotplug_memory.base;
224245bf
DG
1877 drc = spapr_dr_connector_new(OBJECT(spapr), SPAPR_DR_CONNECTOR_TYPE_LMB,
1878 addr/lmb_size);
1879 qemu_register_reset(spapr_drc_reset, drc);
1880 }
1881}
1882
1883/*
1884 * If RAM size, maxmem size and individual node mem sizes aren't aligned
1885 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
1886 * since we can't support such unaligned sizes with DRCONF_MEMORY.
1887 */
7c150d6f 1888static void spapr_validate_node_memory(MachineState *machine, Error **errp)
224245bf
DG
1889{
1890 int i;
1891
7c150d6f
DG
1892 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1893 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
1894 " is not aligned to %llu MiB",
1895 machine->ram_size,
1896 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1897 return;
1898 }
1899
1900 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1901 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
1902 " is not aligned to %llu MiB",
1903 machine->ram_size,
1904 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1905 return;
224245bf
DG
1906 }
1907
1908 for (i = 0; i < nb_numa_nodes; i++) {
1909 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
7c150d6f
DG
1910 error_setg(errp,
1911 "Node %d memory size 0x%" PRIx64
1912 " is not aligned to %llu MiB",
1913 i, numa_info[i].node_mem,
1914 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1915 return;
224245bf
DG
1916 }
1917 }
1918}
1919
535455fd
IM
1920/* find cpu slot in machine->possible_cpus by core_id */
1921static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
1922{
1923 int index = id / smp_threads;
1924
1925 if (index >= ms->possible_cpus->len) {
1926 return NULL;
1927 }
1928 if (idx) {
1929 *idx = index;
1930 }
1931 return &ms->possible_cpus->cpus[index];
1932}
1933
0c86d0fd
DG
1934static void spapr_init_cpus(sPAPRMachineState *spapr)
1935{
1936 MachineState *machine = MACHINE(spapr);
1937 MachineClass *mc = MACHINE_GET_CLASS(machine);
1938 char *type = spapr_get_cpu_core_type(machine->cpu_model);
1939 int smt = kvmppc_smt_threads();
535455fd
IM
1940 const CPUArchIdList *possible_cpus;
1941 int boot_cores_nr = smp_cpus / smp_threads;
0c86d0fd
DG
1942 int i;
1943
1944 if (!type) {
1945 error_report("Unable to find sPAPR CPU Core definition");
1946 exit(1);
1947 }
1948
535455fd 1949 possible_cpus = mc->possible_cpu_arch_ids(machine);
c5514d0e 1950 if (mc->has_hotpluggable_cpus) {
0c86d0fd
DG
1951 if (smp_cpus % smp_threads) {
1952 error_report("smp_cpus (%u) must be multiple of threads (%u)",
1953 smp_cpus, smp_threads);
1954 exit(1);
1955 }
1956 if (max_cpus % smp_threads) {
1957 error_report("max_cpus (%u) must be multiple of threads (%u)",
1958 max_cpus, smp_threads);
1959 exit(1);
1960 }
0c86d0fd
DG
1961 } else {
1962 if (max_cpus != smp_cpus) {
1963 error_report("This machine version does not support CPU hotplug");
1964 exit(1);
1965 }
535455fd 1966 boot_cores_nr = possible_cpus->len;
0c86d0fd
DG
1967 }
1968
535455fd 1969 for (i = 0; i < possible_cpus->len; i++) {
0c86d0fd
DG
1970 int core_id = i * smp_threads;
1971
c5514d0e 1972 if (mc->has_hotpluggable_cpus) {
0c86d0fd
DG
1973 sPAPRDRConnector *drc =
1974 spapr_dr_connector_new(OBJECT(spapr),
1975 SPAPR_DR_CONNECTOR_TYPE_CPU,
1976 (core_id / smp_threads) * smt);
1977
1978 qemu_register_reset(spapr_drc_reset, drc);
1979 }
1980
535455fd 1981 if (i < boot_cores_nr) {
0c86d0fd
DG
1982 Object *core = object_new(type);
1983 int nr_threads = smp_threads;
1984
1985 /* Handle the partially filled core for older machine types */
1986 if ((i + 1) * smp_threads >= smp_cpus) {
1987 nr_threads = smp_cpus - i * smp_threads;
1988 }
1989
1990 object_property_set_int(core, nr_threads, "nr-threads",
1991 &error_fatal);
1992 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
1993 &error_fatal);
1994 object_property_set_bool(core, true, "realized", &error_fatal);
1995 }
1996 }
1997 g_free(type);
1998}
1999
9fdf0c29 2000/* pSeries LPAR / sPAPR hardware init */
3ef96221 2001static void ppc_spapr_init(MachineState *machine)
9fdf0c29 2002{
28e02042 2003 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
224245bf 2004 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
3ef96221 2005 const char *kernel_filename = machine->kernel_filename;
3ef96221 2006 const char *initrd_filename = machine->initrd_filename;
8c9f64df 2007 PCIHostState *phb;
9fdf0c29 2008 int i;
890c2b77
AK
2009 MemoryRegion *sysmem = get_system_memory();
2010 MemoryRegion *ram = g_new(MemoryRegion, 1);
658fa66b
AK
2011 MemoryRegion *rma_region;
2012 void *rma = NULL;
a8170e5e 2013 hwaddr rma_alloc_size;
b082d65a 2014 hwaddr node0_size = spapr_node0_size();
b7d1f77a 2015 long load_limit, fw_size;
39ac8455 2016 char *filename;
94a94e4c 2017 int smt = kvmppc_smt_threads();
9fdf0c29 2018
226419d6 2019 msi_nonbroken = true;
0ee2c058 2020
d43b45e2
DG
2021 QLIST_INIT(&spapr->phbs);
2022
354ac20a 2023 /* Allocate RMA if necessary */
658fa66b 2024 rma_alloc_size = kvmppc_alloc_rma(&rma);
354ac20a
DG
2025
2026 if (rma_alloc_size == -1) {
730fce59 2027 error_report("Unable to create RMA");
354ac20a
DG
2028 exit(1);
2029 }
7f763a5d 2030
c4177479 2031 if (rma_alloc_size && (rma_alloc_size < node0_size)) {
7f763a5d 2032 spapr->rma_size = rma_alloc_size;
354ac20a 2033 } else {
c4177479 2034 spapr->rma_size = node0_size;
7f763a5d
DG
2035
2036 /* With KVM, we don't actually know whether KVM supports an
2037 * unbounded RMA (PR KVM) or is limited by the hash table size
2038 * (HV KVM using VRMA), so we always assume the latter
2039 *
2040 * In that case, we also limit the initial allocations for RTAS
2041 * etc... to 256M since we have no way to know what the VRMA size
2042 * is going to be as it depends on the size of the hash table
2043 * isn't determined yet.
2044 */
2045 if (kvm_enabled()) {
2046 spapr->vrma_adjust = 1;
2047 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2048 }
912acdf4
BH
2049
2050 /* Actually we don't support unbounded RMA anymore since we
2051 * added proper emulation of HV mode. The max we can get is
2052 * 16G which also happens to be what we configure for PAPR
2053 * mode so make sure we don't do anything bigger than that
2054 */
2055 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
354ac20a
DG
2056 }
2057
c4177479 2058 if (spapr->rma_size > node0_size) {
d54e4d76
DG
2059 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2060 spapr->rma_size);
c4177479
AK
2061 exit(1);
2062 }
2063
b7d1f77a
BH
2064 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2065 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
9fdf0c29 2066
7b565160 2067 /* Set up Interrupt Controller before we create the VCPUs */
e6f7e110
CLG
2068 xics_system_init(machine, DIV_ROUND_UP(max_cpus * smt, smp_threads),
2069 XICS_IRQS_SPAPR, &error_fatal);
7b565160 2070
facdb8b6
MR
2071 /* Set up containers for ibm,client-set-architecture negotiated options */
2072 spapr->ov5 = spapr_ovec_new();
2073 spapr->ov5_cas = spapr_ovec_new();
2074
224245bf 2075 if (smc->dr_lmb_enabled) {
facdb8b6 2076 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
7c150d6f 2077 spapr_validate_node_memory(machine, &error_fatal);
224245bf
DG
2078 }
2079
417ece33
MR
2080 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2081
ffbb1705
MR
2082 /* advertise support for dedicated HP event source to guests */
2083 if (spapr->use_hotplug_event_source) {
2084 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2085 }
2086
9fdf0c29 2087 /* init CPUs */
19fb2c36 2088 if (machine->cpu_model == NULL) {
3daa4a9f 2089 machine->cpu_model = kvm_enabled() ? "host" : smc->tcg_default_cpu;
9fdf0c29 2090 }
94a94e4c 2091
e703d2f7
GK
2092 ppc_cpu_parse_features(machine->cpu_model);
2093
0c86d0fd 2094 spapr_init_cpus(spapr);
9fdf0c29 2095
026bfd89
DG
2096 if (kvm_enabled()) {
2097 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2098 kvmppc_enable_logical_ci_hcalls();
ef9971dd 2099 kvmppc_enable_set_mode_hcall();
5145ad4f
NW
2100
2101 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2102 kvmppc_enable_clear_ref_mod_hcalls();
026bfd89
DG
2103 }
2104
9fdf0c29 2105 /* allocate RAM */
f92f5da1 2106 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
fb164994 2107 machine->ram_size);
f92f5da1 2108 memory_region_add_subregion(sysmem, 0, ram);
9fdf0c29 2109
658fa66b
AK
2110 if (rma_alloc_size && rma) {
2111 rma_region = g_new(MemoryRegion, 1);
2112 memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
2113 rma_alloc_size, rma);
2114 vmstate_register_ram_global(rma_region);
2115 memory_region_add_subregion(sysmem, 0, rma_region);
2116 }
2117
4a1c9cf0
BR
2118 /* initialize hotplug memory address space */
2119 if (machine->ram_size < machine->maxram_size) {
2120 ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
71c9a3dd
BR
2121 /*
2122 * Limit the number of hotpluggable memory slots to half the number
2123 * slots that KVM supports, leaving the other half for PCI and other
2124 * devices. However ensure that number of slots doesn't drop below 32.
2125 */
2126 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2127 SPAPR_MAX_RAM_SLOTS;
4a1c9cf0 2128
71c9a3dd
BR
2129 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2130 max_memslots = SPAPR_MAX_RAM_SLOTS;
2131 }
2132 if (machine->ram_slots > max_memslots) {
d54e4d76
DG
2133 error_report("Specified number of memory slots %"
2134 PRIu64" exceeds max supported %d",
71c9a3dd 2135 machine->ram_slots, max_memslots);
d54e4d76 2136 exit(1);
4a1c9cf0
BR
2137 }
2138
2139 spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
2140 SPAPR_HOTPLUG_MEM_ALIGN);
2141 memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
2142 "hotplug-memory", hotplug_mem_size);
2143 memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
2144 &spapr->hotplug_memory.mr);
2145 }
2146
224245bf
DG
2147 if (smc->dr_lmb_enabled) {
2148 spapr_create_lmb_dr_connectors(spapr);
2149 }
2150
39ac8455 2151 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
4c56440d 2152 if (!filename) {
730fce59 2153 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
4c56440d
SW
2154 exit(1);
2155 }
b7d1f77a 2156 spapr->rtas_size = get_image_size(filename);
8afc22a2
ZJ
2157 if (spapr->rtas_size < 0) {
2158 error_report("Could not get size of LPAR rtas '%s'", filename);
2159 exit(1);
2160 }
b7d1f77a
BH
2161 spapr->rtas_blob = g_malloc(spapr->rtas_size);
2162 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
730fce59 2163 error_report("Could not load LPAR rtas '%s'", filename);
39ac8455
DG
2164 exit(1);
2165 }
4d8d5467 2166 if (spapr->rtas_size > RTAS_MAX_SIZE) {
730fce59
TH
2167 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2168 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
4d8d5467
BH
2169 exit(1);
2170 }
7267c094 2171 g_free(filename);
39ac8455 2172
ffbb1705 2173 /* Set up RTAS event infrastructure */
74d042e5
DG
2174 spapr_events_init(spapr);
2175
12f42174 2176 /* Set up the RTC RTAS interfaces */
28df36a1 2177 spapr_rtc_create(spapr);
12f42174 2178
b5cec4c5 2179 /* Set up VIO bus */
4040ab72
DG
2180 spapr->vio_bus = spapr_vio_bus_init();
2181
277f9acf 2182 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
4040ab72 2183 if (serial_hds[i]) {
d601fac4 2184 spapr_vty_create(spapr->vio_bus, serial_hds[i]);
4040ab72
DG
2185 }
2186 }
9fdf0c29 2187
639e8102
DG
2188 /* We always have at least the nvram device on VIO */
2189 spapr_create_nvram(spapr);
2190
3384f95c 2191 /* Set up PCI */
fa28f71b
AK
2192 spapr_pci_rtas_init();
2193
89dfd6e1 2194 phb = spapr_create_phb(spapr, 0);
3384f95c 2195
277f9acf 2196 for (i = 0; i < nb_nics; i++) {
8d90ad90
DG
2197 NICInfo *nd = &nd_table[i];
2198
2199 if (!nd->model) {
7267c094 2200 nd->model = g_strdup("ibmveth");
8d90ad90
DG
2201 }
2202
2203 if (strcmp(nd->model, "ibmveth") == 0) {
d601fac4 2204 spapr_vlan_create(spapr->vio_bus, nd);
8d90ad90 2205 } else {
29b358f9 2206 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
8d90ad90
DG
2207 }
2208 }
2209
6e270446 2210 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
d601fac4 2211 spapr_vscsi_create(spapr->vio_bus);
6e270446
BH
2212 }
2213
f28359d8 2214 /* Graphics */
14c6a894 2215 if (spapr_vga_init(phb->bus, &error_fatal)) {
3fc5acde 2216 spapr->has_graphics = true;
c6e76503 2217 machine->usb |= defaults_enabled() && !machine->usb_disabled;
f28359d8
LZ
2218 }
2219
4ee9ced9 2220 if (machine->usb) {
57040d45
TH
2221 if (smc->use_ohci_by_default) {
2222 pci_create_simple(phb->bus, -1, "pci-ohci");
2223 } else {
2224 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2225 }
c86580b8 2226
35139a59 2227 if (spapr->has_graphics) {
c86580b8
MA
2228 USBBus *usb_bus = usb_bus_find(-1);
2229
2230 usb_create_simple(usb_bus, "usb-kbd");
2231 usb_create_simple(usb_bus, "usb-mouse");
35139a59
DG
2232 }
2233 }
2234
7f763a5d 2235 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
d54e4d76
DG
2236 error_report(
2237 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2238 MIN_RMA_SLOF);
4d8d5467
BH
2239 exit(1);
2240 }
2241
9fdf0c29
DG
2242 if (kernel_filename) {
2243 uint64_t lowaddr = 0;
2244
a19f7fb0
DG
2245 spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address,
2246 NULL, NULL, &lowaddr, NULL, 1,
2247 PPC_ELF_MACHINE, 0, 0);
2248 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2249 spapr->kernel_size = load_elf(kernel_filename,
2250 translate_kernel_address, NULL, NULL,
2251 &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2252 0, 0);
2253 spapr->kernel_le = spapr->kernel_size > 0;
16457e7f 2254 }
a19f7fb0
DG
2255 if (spapr->kernel_size < 0) {
2256 error_report("error loading %s: %s", kernel_filename,
2257 load_elf_strerror(spapr->kernel_size));
9fdf0c29
DG
2258 exit(1);
2259 }
2260
2261 /* load initrd */
2262 if (initrd_filename) {
4d8d5467
BH
2263 /* Try to locate the initrd in the gap between the kernel
2264 * and the firmware. Add a bit of space just in case
2265 */
a19f7fb0
DG
2266 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2267 + 0x1ffff) & ~0xffff;
2268 spapr->initrd_size = load_image_targphys(initrd_filename,
2269 spapr->initrd_base,
2270 load_limit
2271 - spapr->initrd_base);
2272 if (spapr->initrd_size < 0) {
d54e4d76
DG
2273 error_report("could not load initial ram disk '%s'",
2274 initrd_filename);
9fdf0c29
DG
2275 exit(1);
2276 }
9fdf0c29 2277 }
4d8d5467 2278 }
a3467baa 2279
8e7ea787
AF
2280 if (bios_name == NULL) {
2281 bios_name = FW_FILE_NAME;
2282 }
2283 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
4c56440d 2284 if (!filename) {
68fea5a0 2285 error_report("Could not find LPAR firmware '%s'", bios_name);
4c56440d
SW
2286 exit(1);
2287 }
4d8d5467 2288 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
68fea5a0
TH
2289 if (fw_size <= 0) {
2290 error_report("Could not load LPAR firmware '%s'", filename);
4d8d5467
BH
2291 exit(1);
2292 }
2293 g_free(filename);
4d8d5467 2294
28e02042
DG
2295 /* FIXME: Should register things through the MachineState's qdev
2296 * interface, this is a legacy from the sPAPREnvironment structure
2297 * which predated MachineState but had a similar function */
4be21d56
DG
2298 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2299 register_savevm_live(NULL, "spapr/htab", -1, 1,
2300 &savevm_htab_handlers, spapr);
2301
46503c2b
MR
2302 /* used by RTAS */
2303 QTAILQ_INIT(&spapr->ccs_list);
2304 qemu_register_reset(spapr_ccs_reset_hook, spapr);
2305
5b2128d2 2306 qemu_register_boot_set(spapr_boot_set, spapr);
42043e4f
LV
2307
2308 /* to stop and start vmclock */
2309 if (kvm_enabled()) {
2310 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2311 &spapr->tb);
2312 }
9fdf0c29
DG
2313}
2314
135a129a
AK
2315static int spapr_kvm_type(const char *vm_type)
2316{
2317 if (!vm_type) {
2318 return 0;
2319 }
2320
2321 if (!strcmp(vm_type, "HV")) {
2322 return 1;
2323 }
2324
2325 if (!strcmp(vm_type, "PR")) {
2326 return 2;
2327 }
2328
2329 error_report("Unknown kvm-type specified '%s'", vm_type);
2330 exit(1);
2331}
2332
71461b0f 2333/*
627b84f4 2334 * Implementation of an interface to adjust firmware path
71461b0f
AK
2335 * for the bootindex property handling.
2336 */
2337static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2338 DeviceState *dev)
2339{
2340#define CAST(type, obj, name) \
2341 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2342 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
2343 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2344
2345 if (d) {
2346 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2347 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2348 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2349
2350 if (spapr) {
2351 /*
2352 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2353 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2354 * in the top 16 bits of the 64-bit LUN
2355 */
2356 unsigned id = 0x8000 | (d->id << 8) | d->lun;
2357 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2358 (uint64_t)id << 48);
2359 } else if (virtio) {
2360 /*
2361 * We use SRP luns of the form 01000000 | (target << 8) | lun
2362 * in the top 32 bits of the 64-bit LUN
2363 * Note: the quote above is from SLOF and it is wrong,
2364 * the actual binding is:
2365 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2366 */
2367 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2368 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2369 (uint64_t)id << 32);
2370 } else if (usb) {
2371 /*
2372 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2373 * in the top 32 bits of the 64-bit LUN
2374 */
2375 unsigned usb_port = atoi(usb->port->path);
2376 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2377 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2378 (uint64_t)id << 32);
2379 }
2380 }
2381
b99260eb
TH
2382 /*
2383 * SLOF probes the USB devices, and if it recognizes that the device is a
2384 * storage device, it changes its name to "storage" instead of "usb-host",
2385 * and additionally adds a child node for the SCSI LUN, so the correct
2386 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
2387 */
2388 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
2389 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
2390 if (usb_host_dev_is_scsi_storage(usbdev)) {
2391 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
2392 }
2393 }
2394
71461b0f
AK
2395 if (phb) {
2396 /* Replace "pci" with "pci@800000020000000" */
2397 return g_strdup_printf("pci@%"PRIX64, phb->buid);
2398 }
2399
2400 return NULL;
2401}
2402
23825581
EH
2403static char *spapr_get_kvm_type(Object *obj, Error **errp)
2404{
28e02042 2405 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
23825581 2406
28e02042 2407 return g_strdup(spapr->kvm_type);
23825581
EH
2408}
2409
2410static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2411{
28e02042 2412 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
23825581 2413
28e02042
DG
2414 g_free(spapr->kvm_type);
2415 spapr->kvm_type = g_strdup(value);
23825581
EH
2416}
2417
f6229214
MR
2418static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
2419{
2420 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2421
2422 return spapr->use_hotplug_event_source;
2423}
2424
2425static void spapr_set_modern_hotplug_events(Object *obj, bool value,
2426 Error **errp)
2427{
2428 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2429
2430 spapr->use_hotplug_event_source = value;
2431}
2432
23825581
EH
2433static void spapr_machine_initfn(Object *obj)
2434{
715c5407
DG
2435 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2436
2437 spapr->htab_fd = -1;
f6229214 2438 spapr->use_hotplug_event_source = true;
23825581
EH
2439 object_property_add_str(obj, "kvm-type",
2440 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
49d2e648
MA
2441 object_property_set_description(obj, "kvm-type",
2442 "Specifies the KVM virtualization mode (HV, PR)",
2443 NULL);
f6229214
MR
2444 object_property_add_bool(obj, "modern-hotplug-events",
2445 spapr_get_modern_hotplug_events,
2446 spapr_set_modern_hotplug_events,
2447 NULL);
2448 object_property_set_description(obj, "modern-hotplug-events",
2449 "Use dedicated hotplug event mechanism in"
2450 " place of standard EPOW events when possible"
2451 " (required for memory hot-unplug support)",
2452 NULL);
23825581
EH
2453}
2454
87bbdd9c
DG
2455static void spapr_machine_finalizefn(Object *obj)
2456{
2457 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2458
2459 g_free(spapr->kvm_type);
2460}
2461
1c7ad77e 2462void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
34316482 2463{
34316482
AK
2464 cpu_synchronize_state(cs);
2465 ppc_cpu_do_system_reset(cs);
2466}
2467
2468static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
2469{
2470 CPUState *cs;
2471
2472 CPU_FOREACH(cs) {
1c7ad77e 2473 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
34316482
AK
2474 }
2475}
2476
79b78a6b
MR
2477static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
2478 uint32_t node, bool dedicated_hp_event_source,
2479 Error **errp)
c20d332a
BR
2480{
2481 sPAPRDRConnector *drc;
2482 sPAPRDRConnectorClass *drck;
2483 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
2484 int i, fdt_offset, fdt_size;
2485 void *fdt;
79b78a6b 2486 uint64_t addr = addr_start;
c20d332a 2487
c20d332a
BR
2488 for (i = 0; i < nr_lmbs; i++) {
2489 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2490 addr/SPAPR_MEMORY_BLOCK_SIZE);
2491 g_assert(drc);
2492
2493 fdt = create_device_tree(&fdt_size);
2494 fdt_offset = spapr_populate_memory_node(fdt, node, addr,
2495 SPAPR_MEMORY_BLOCK_SIZE);
2496
2497 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2498 drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, errp);
c20d332a 2499 addr += SPAPR_MEMORY_BLOCK_SIZE;
5c0139a8
MR
2500 if (!dev->hotplugged) {
2501 /* guests expect coldplugged LMBs to be pre-allocated */
2502 drck->set_allocation_state(drc, SPAPR_DR_ALLOCATION_STATE_USABLE);
2503 drck->set_isolation_state(drc, SPAPR_DR_ISOLATION_STATE_UNISOLATED);
2504 }
c20d332a 2505 }
5dd5238c
JD
2506 /* send hotplug notification to the
2507 * guest only in case of hotplugged memory
2508 */
2509 if (dev->hotplugged) {
79b78a6b
MR
2510 if (dedicated_hp_event_source) {
2511 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2512 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
2513 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2514 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
2515 nr_lmbs,
2516 drck->get_index(drc));
2517 } else {
2518 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
2519 nr_lmbs);
2520 }
5dd5238c 2521 }
c20d332a
BR
2522}
2523
2524static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2525 uint32_t node, Error **errp)
2526{
2527 Error *local_err = NULL;
2528 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2529 PCDIMMDevice *dimm = PC_DIMM(dev);
2530 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2531 MemoryRegion *mr = ddc->get_memory_region(dimm);
2532 uint64_t align = memory_region_get_alignment(mr);
2533 uint64_t size = memory_region_size(mr);
2534 uint64_t addr;
df587133 2535 char *mem_dev;
c20d332a
BR
2536
2537 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
2538 error_setg(&local_err, "Hotplugged memory size must be a multiple of "
2539 "%lld MB", SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
2540 goto out;
2541 }
2542
df587133
TH
2543 mem_dev = object_property_get_str(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, NULL);
2544 if (mem_dev && !kvmppc_is_mem_backend_page_size_ok(mem_dev)) {
2545 error_setg(&local_err, "Memory backend has bad page size. "
2546 "Use 'memory-backend-file' with correct mem-path.");
2547 goto out;
2548 }
2549
d6a9b0b8 2550 pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
c20d332a
BR
2551 if (local_err) {
2552 goto out;
2553 }
2554
2555 addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
2556 if (local_err) {
2557 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2558 goto out;
2559 }
2560
79b78a6b
MR
2561 spapr_add_lmbs(dev, addr, size, node,
2562 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
2563 &error_abort);
c20d332a
BR
2564
2565out:
2566 error_propagate(errp, local_err);
2567}
2568
cf632463
BR
2569typedef struct sPAPRDIMMState {
2570 uint32_t nr_lmbs;
2571} sPAPRDIMMState;
2572
2573static void spapr_lmb_release(DeviceState *dev, void *opaque)
2574{
2575 sPAPRDIMMState *ds = (sPAPRDIMMState *)opaque;
2576 HotplugHandler *hotplug_ctrl;
2577
2578 if (--ds->nr_lmbs) {
2579 return;
2580 }
2581
2582 g_free(ds);
2583
2584 /*
2585 * Now that all the LMBs have been removed by the guest, call the
2586 * pc-dimm unplug handler to cleanup up the pc-dimm device.
2587 */
2588 hotplug_ctrl = qdev_get_hotplug_handler(dev);
2589 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
2590}
2591
2592static void spapr_del_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
2593 Error **errp)
2594{
2595 sPAPRDRConnector *drc;
2596 sPAPRDRConnectorClass *drck;
2597 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
2598 int i;
2599 sPAPRDIMMState *ds = g_malloc0(sizeof(sPAPRDIMMState));
2600 uint64_t addr = addr_start;
2601
2602 ds->nr_lmbs = nr_lmbs;
2603 for (i = 0; i < nr_lmbs; i++) {
2604 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2605 addr / SPAPR_MEMORY_BLOCK_SIZE);
2606 g_assert(drc);
2607
2608 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2609 drck->detach(drc, dev, spapr_lmb_release, ds, errp);
2610 addr += SPAPR_MEMORY_BLOCK_SIZE;
2611 }
2612
2613 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2614 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
2615 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2616 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
2617 nr_lmbs,
2618 drck->get_index(drc));
2619}
2620
2621static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev,
2622 Error **errp)
2623{
2624 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2625 PCDIMMDevice *dimm = PC_DIMM(dev);
2626 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2627 MemoryRegion *mr = ddc->get_memory_region(dimm);
2628
2629 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2630 object_unparent(OBJECT(dev));
2631}
2632
2633static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
2634 DeviceState *dev, Error **errp)
2635{
2636 Error *local_err = NULL;
2637 PCDIMMDevice *dimm = PC_DIMM(dev);
2638 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2639 MemoryRegion *mr = ddc->get_memory_region(dimm);
2640 uint64_t size = memory_region_size(mr);
2641 uint64_t addr;
2642
2643 addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
2644 if (local_err) {
2645 goto out;
2646 }
2647
2648 spapr_del_lmbs(dev, addr, size, &error_abort);
2649out:
2650 error_propagate(errp, local_err);
2651}
2652
af81cf32
BR
2653void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
2654 sPAPRMachineState *spapr)
2655{
2656 PowerPCCPU *cpu = POWERPC_CPU(cs);
2657 DeviceClass *dc = DEVICE_GET_CLASS(cs);
2658 int id = ppc_get_vcpu_dt_id(cpu);
2659 void *fdt;
2660 int offset, fdt_size;
2661 char *nodename;
2662
2663 fdt = create_device_tree(&fdt_size);
2664 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
2665 offset = fdt_add_subnode(fdt, 0, nodename);
2666
2667 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
2668 g_free(nodename);
2669
2670 *fdt_offset = offset;
2671 return fdt;
2672}
2673
115debf2
IM
2674static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev,
2675 Error **errp)
ff9006dd 2676{
535455fd 2677 MachineState *ms = MACHINE(qdev_get_machine());
ff9006dd 2678 CPUCore *cc = CPU_CORE(dev);
535455fd 2679 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
ff9006dd 2680
535455fd 2681 core_slot->cpu = NULL;
ff9006dd
IM
2682 object_unparent(OBJECT(dev));
2683}
2684
115debf2
IM
2685static void spapr_core_release(DeviceState *dev, void *opaque)
2686{
2687 HotplugHandler *hotplug_ctrl;
2688
2689 hotplug_ctrl = qdev_get_hotplug_handler(dev);
2690 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
2691}
2692
2693static
2694void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
2695 Error **errp)
ff9006dd 2696{
535455fd
IM
2697 int index;
2698 sPAPRDRConnector *drc;
ff9006dd
IM
2699 sPAPRDRConnectorClass *drck;
2700 Error *local_err = NULL;
535455fd
IM
2701 CPUCore *cc = CPU_CORE(dev);
2702 int smt = kvmppc_smt_threads();
ff9006dd 2703
535455fd
IM
2704 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
2705 error_setg(errp, "Unable to find CPU core with core-id: %d",
2706 cc->core_id);
2707 return;
2708 }
ff9006dd
IM
2709 if (index == 0) {
2710 error_setg(errp, "Boot CPU core may not be unplugged");
2711 return;
2712 }
2713
535455fd 2714 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index * smt);
ff9006dd
IM
2715 g_assert(drc);
2716
2717 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2718 drck->detach(drc, dev, spapr_core_release, NULL, &local_err);
2719 if (local_err) {
2720 error_propagate(errp, local_err);
2721 return;
2722 }
2723
2724 spapr_hotplug_req_remove_by_index(drc);
2725}
2726
2727static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2728 Error **errp)
2729{
2730 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
2731 MachineClass *mc = MACHINE_GET_CLASS(spapr);
2732 sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
2733 CPUCore *cc = CPU_CORE(dev);
2734 CPUState *cs = CPU(core->threads);
2735 sPAPRDRConnector *drc;
2736 Error *local_err = NULL;
2737 void *fdt = NULL;
2738 int fdt_offset = 0;
ff9006dd 2739 int smt = kvmppc_smt_threads();
535455fd
IM
2740 CPUArchId *core_slot;
2741 int index;
ff9006dd 2742
535455fd
IM
2743 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
2744 if (!core_slot) {
2745 error_setg(errp, "Unable to find CPU core with core-id: %d",
2746 cc->core_id);
2747 return;
2748 }
ff9006dd 2749 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index * smt);
ff9006dd 2750
c5514d0e 2751 g_assert(drc || !mc->has_hotpluggable_cpus);
ff9006dd
IM
2752
2753 /*
2754 * Setup CPU DT entries only for hotplugged CPUs. For boot time or
2755 * coldplugged CPUs DT entries are setup in spapr_build_fdt().
2756 */
2757 if (dev->hotplugged) {
2758 fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr);
2759 }
2760
2761 if (drc) {
2762 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2763 drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, &local_err);
2764 if (local_err) {
2765 g_free(fdt);
ff9006dd
IM
2766 error_propagate(errp, local_err);
2767 return;
2768 }
2769 }
2770
2771 if (dev->hotplugged) {
2772 /*
2773 * Send hotplug notification interrupt to the guest only in case
2774 * of hotplugged CPUs.
2775 */
2776 spapr_hotplug_req_add_by_index(drc);
2777 } else {
2778 /*
2779 * Set the right DRC states for cold plugged CPU.
2780 */
2781 if (drc) {
2782 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2783 drck->set_allocation_state(drc, SPAPR_DR_ALLOCATION_STATE_USABLE);
2784 drck->set_isolation_state(drc, SPAPR_DR_ISOLATION_STATE_UNISOLATED);
2785 }
2786 }
535455fd 2787 core_slot->cpu = OBJECT(dev);
ff9006dd
IM
2788}
2789
2790static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2791 Error **errp)
2792{
2793 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
2794 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
ff9006dd
IM
2795 Error *local_err = NULL;
2796 CPUCore *cc = CPU_CORE(dev);
2797 char *base_core_type = spapr_get_cpu_core_type(machine->cpu_model);
2798 const char *type = object_get_typename(OBJECT(dev));
535455fd
IM
2799 CPUArchId *core_slot;
2800 int index;
ff9006dd 2801
c5514d0e 2802 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
ff9006dd
IM
2803 error_setg(&local_err, "CPU hotplug not supported for this machine");
2804 goto out;
2805 }
2806
2807 if (strcmp(base_core_type, type)) {
2808 error_setg(&local_err, "CPU core type should be %s", base_core_type);
2809 goto out;
2810 }
2811
2812 if (cc->core_id % smp_threads) {
2813 error_setg(&local_err, "invalid core id %d", cc->core_id);
2814 goto out;
2815 }
2816
8149e299
DG
2817 if (cc->nr_threads != smp_threads) {
2818 error_setg(errp, "invalid nr-threads %d, must be %d",
2819 cc->nr_threads, smp_threads);
2820 return;
2821 }
2822
535455fd
IM
2823 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
2824 if (!core_slot) {
ff9006dd
IM
2825 error_setg(&local_err, "core id %d out of range", cc->core_id);
2826 goto out;
2827 }
2828
535455fd 2829 if (core_slot->cpu) {
ff9006dd
IM
2830 error_setg(&local_err, "core %d already populated", cc->core_id);
2831 goto out;
2832 }
2833
2834out:
2835 g_free(base_core_type);
2836 error_propagate(errp, local_err);
2837}
2838
c20d332a
BR
2839static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
2840 DeviceState *dev, Error **errp)
2841{
2842 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
2843
2844 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
b556854b 2845 int node;
c20d332a
BR
2846
2847 if (!smc->dr_lmb_enabled) {
2848 error_setg(errp, "Memory hotplug not supported for this machine");
2849 return;
2850 }
2851 node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
2852 if (*errp) {
2853 return;
2854 }
1a5512bb
GA
2855 if (node < 0 || node >= MAX_NODES) {
2856 error_setg(errp, "Invaild node %d", node);
2857 return;
2858 }
c20d332a 2859
b556854b
BR
2860 /*
2861 * Currently PowerPC kernel doesn't allow hot-adding memory to
2862 * memory-less node, but instead will silently add the memory
2863 * to the first node that has some memory. This causes two
2864 * unexpected behaviours for the user.
2865 *
2866 * - Memory gets hotplugged to a different node than what the user
2867 * specified.
2868 * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
2869 * to memory-less node, a reboot will set things accordingly
2870 * and the previously hotplugged memory now ends in the right node.
2871 * This appears as if some memory moved from one node to another.
2872 *
2873 * So until kernel starts supporting memory hotplug to memory-less
2874 * nodes, just prevent such attempts upfront in QEMU.
2875 */
2876 if (nb_numa_nodes && !numa_info[node].node_mem) {
2877 error_setg(errp, "Can't hotplug memory to memory-less node %d",
2878 node);
2879 return;
2880 }
2881
c20d332a 2882 spapr_memory_plug(hotplug_dev, dev, node, errp);
af81cf32
BR
2883 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2884 spapr_core_plug(hotplug_dev, dev, errp);
c20d332a
BR
2885 }
2886}
2887
2888static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
2889 DeviceState *dev, Error **errp)
2890{
cf632463 2891 sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine());
3c0c47e3 2892 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
6f4b5c3e 2893
c20d332a 2894 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
cf632463
BR
2895 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
2896 spapr_memory_unplug(hotplug_dev, dev, errp);
2897 } else {
2898 error_setg(errp, "Memory hot unplug not supported for this guest");
2899 }
2900 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
c5514d0e 2901 if (!mc->has_hotpluggable_cpus) {
cf632463
BR
2902 error_setg(errp, "CPU hot unplug not supported on this machine");
2903 return;
2904 }
2905 spapr_core_unplug(hotplug_dev, dev, errp);
2906 }
2907}
2908
2909static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
2910 DeviceState *dev, Error **errp)
2911{
2912 sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine());
2913 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
2914
2915 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2916 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
2917 spapr_memory_unplug_request(hotplug_dev, dev, errp);
2918 } else {
2919 /* NOTE: this means there is a window after guest reset, prior to
2920 * CAS negotiation, where unplug requests will fail due to the
2921 * capability not being detected yet. This is a bit different than
2922 * the case with PCI unplug, where the events will be queued and
2923 * eventually handled by the guest after boot
2924 */
2925 error_setg(errp, "Memory hot unplug not supported for this guest");
2926 }
6f4b5c3e 2927 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
c5514d0e 2928 if (!mc->has_hotpluggable_cpus) {
6f4b5c3e
BR
2929 error_setg(errp, "CPU hot unplug not supported on this machine");
2930 return;
2931 }
115debf2 2932 spapr_core_unplug_request(hotplug_dev, dev, errp);
c20d332a
BR
2933 }
2934}
2935
94a94e4c
BR
2936static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
2937 DeviceState *dev, Error **errp)
2938{
2939 if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2940 spapr_core_pre_plug(hotplug_dev, dev, errp);
2941 }
2942}
2943
7ebaf795
BR
2944static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
2945 DeviceState *dev)
c20d332a 2946{
94a94e4c
BR
2947 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2948 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
c20d332a
BR
2949 return HOTPLUG_HANDLER(machine);
2950 }
2951 return NULL;
2952}
2953
20bb648d
DG
2954static unsigned spapr_cpu_index_to_socket_id(unsigned cpu_index)
2955{
2956 /* Allocate to NUMA nodes on a "socket" basis (not that concept of
2957 * socket means much for the paravirtualized PAPR platform) */
2958 return cpu_index / smp_threads / smp_cores;
2959}
2960
535455fd
IM
2961static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
2962{
2963 int i;
2964 int spapr_max_cores = max_cpus / smp_threads;
2965 MachineClass *mc = MACHINE_GET_CLASS(machine);
2966
c5514d0e 2967 if (!mc->has_hotpluggable_cpus) {
535455fd
IM
2968 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
2969 }
2970 if (machine->possible_cpus) {
2971 assert(machine->possible_cpus->len == spapr_max_cores);
2972 return machine->possible_cpus;
2973 }
2974
2975 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2976 sizeof(CPUArchId) * spapr_max_cores);
2977 machine->possible_cpus->len = spapr_max_cores;
2978 for (i = 0; i < machine->possible_cpus->len; i++) {
2979 int core_id = i * smp_threads;
2980
f2d672c2 2981 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
535455fd
IM
2982 machine->possible_cpus->cpus[i].arch_id = core_id;
2983 machine->possible_cpus->cpus[i].props.has_core_id = true;
2984 machine->possible_cpus->cpus[i].props.core_id = core_id;
2985 /* TODO: add 'has_node/node' here to describe
2986 to which node core belongs */
2987 }
2988 return machine->possible_cpus;
2989}
2990
6737d9ad 2991static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
daa23699
DG
2992 uint64_t *buid, hwaddr *pio,
2993 hwaddr *mmio32, hwaddr *mmio64,
6737d9ad
DG
2994 unsigned n_dma, uint32_t *liobns, Error **errp)
2995{
357d1e3b
DG
2996 /*
2997 * New-style PHB window placement.
2998 *
2999 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
3000 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
3001 * windows.
3002 *
3003 * Some guest kernels can't work with MMIO windows above 1<<46
3004 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
3005 *
3006 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
3007 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
3008 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
3009 * 1TiB 64-bit MMIO windows for each PHB.
3010 */
6737d9ad 3011 const uint64_t base_buid = 0x800000020000000ULL;
25e6a118
MT
3012#define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \
3013 SPAPR_PCI_MEM64_WIN_SIZE - 1)
6737d9ad
DG
3014 int i;
3015
357d1e3b
DG
3016 /* Sanity check natural alignments */
3017 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3018 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3019 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
3020 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
3021 /* Sanity check bounds */
25e6a118
MT
3022 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
3023 SPAPR_PCI_MEM32_WIN_SIZE);
3024 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
3025 SPAPR_PCI_MEM64_WIN_SIZE);
3026
3027 if (index >= SPAPR_MAX_PHBS) {
3028 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
3029 SPAPR_MAX_PHBS - 1);
6737d9ad
DG
3030 return;
3031 }
3032
3033 *buid = base_buid + index;
3034 for (i = 0; i < n_dma; ++i) {
3035 liobns[i] = SPAPR_PCI_LIOBN(index, i);
3036 }
3037
357d1e3b
DG
3038 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
3039 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
3040 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
6737d9ad
DG
3041}
3042
7844e12b
CLG
3043static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
3044{
3045 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3046
3047 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
3048}
3049
3050static void spapr_ics_resend(XICSFabric *dev)
3051{
3052 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3053
3054 ics_resend(spapr->ics);
3055}
3056
b2fc59aa
CLG
3057static ICPState *spapr_icp_get(XICSFabric *xi, int server)
3058{
3059 sPAPRMachineState *spapr = SPAPR_MACHINE(xi);
3060
852ad27e 3061 return (server < spapr->nr_servers) ? &spapr->icps[server] : NULL;
b2fc59aa
CLG
3062}
3063
6449da45
CLG
3064static void spapr_pic_print_info(InterruptStatsProvider *obj,
3065 Monitor *mon)
3066{
3067 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3068 int i;
3069
3070 for (i = 0; i < spapr->nr_servers; i++) {
3071 icp_pic_print_info(&spapr->icps[i], mon);
3072 }
3073
3074 ics_pic_print_info(spapr->ics, mon);
3075}
3076
29ee3247
AK
3077static void spapr_machine_class_init(ObjectClass *oc, void *data)
3078{
3079 MachineClass *mc = MACHINE_CLASS(oc);
224245bf 3080 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
71461b0f 3081 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
34316482 3082 NMIClass *nc = NMI_CLASS(oc);
c20d332a 3083 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
1d1be34d 3084 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
7844e12b 3085 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
6449da45 3086 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
958db90c 3087
0eb9054c 3088 mc->desc = "pSeries Logical Partition (PAPR compliant)";
fc9f38c3
DG
3089
3090 /*
3091 * We set up the default / latest behaviour here. The class_init
3092 * functions for the specific versioned machine types can override
3093 * these details for backwards compatibility
3094 */
958db90c
MA
3095 mc->init = ppc_spapr_init;
3096 mc->reset = ppc_spapr_reset;
3097 mc->block_default_type = IF_SCSI;
6244bb7e 3098 mc->max_cpus = 1024;
958db90c 3099 mc->no_parallel = 1;
5b2128d2 3100 mc->default_boot_order = "";
a34944fe 3101 mc->default_ram_size = 512 * M_BYTE;
958db90c 3102 mc->kvm_type = spapr_kvm_type;
9e3f9733 3103 mc->has_dynamic_sysbus = true;
e4024630 3104 mc->pci_allow_0_address = true;
7ebaf795 3105 mc->get_hotplug_handler = spapr_get_hotplug_handler;
94a94e4c 3106 hc->pre_plug = spapr_machine_device_pre_plug;
c20d332a
BR
3107 hc->plug = spapr_machine_device_plug;
3108 hc->unplug = spapr_machine_device_unplug;
20bb648d 3109 mc->cpu_index_to_socket_id = spapr_cpu_index_to_socket_id;
535455fd 3110 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
cf632463 3111 hc->unplug_request = spapr_machine_device_unplug_request;
00b4fbe2 3112
fc9f38c3 3113 smc->dr_lmb_enabled = true;
3daa4a9f 3114 smc->tcg_default_cpu = "POWER8";
c5514d0e 3115 mc->has_hotpluggable_cpus = true;
71461b0f 3116 fwc->get_dev_path = spapr_get_fw_dev_path;
34316482 3117 nc->nmi_monitor_handler = spapr_nmi;
6737d9ad 3118 smc->phb_placement = spapr_phb_placement;
1d1be34d 3119 vhc->hypercall = emulate_spapr_hypercall;
e57ca75c
DG
3120 vhc->hpt_mask = spapr_hpt_mask;
3121 vhc->map_hptes = spapr_map_hptes;
3122 vhc->unmap_hptes = spapr_unmap_hptes;
3123 vhc->store_hpte = spapr_store_hpte;
9861bb3e 3124 vhc->get_patbe = spapr_get_patbe;
7844e12b
CLG
3125 xic->ics_get = spapr_ics_get;
3126 xic->ics_resend = spapr_ics_resend;
b2fc59aa 3127 xic->icp_get = spapr_icp_get;
6449da45 3128 ispc->print_info = spapr_pic_print_info;
55641213
LV
3129 /* Force NUMA node memory size to be a multiple of
3130 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
3131 * in which LMBs are represented and hot-added
3132 */
3133 mc->numa_mem_align_shift = 28;
29ee3247
AK
3134}
3135
3136static const TypeInfo spapr_machine_info = {
3137 .name = TYPE_SPAPR_MACHINE,
3138 .parent = TYPE_MACHINE,
4aee7362 3139 .abstract = true,
6ca1502e 3140 .instance_size = sizeof(sPAPRMachineState),
23825581 3141 .instance_init = spapr_machine_initfn,
87bbdd9c 3142 .instance_finalize = spapr_machine_finalizefn,
183930c0 3143 .class_size = sizeof(sPAPRMachineClass),
29ee3247 3144 .class_init = spapr_machine_class_init,
71461b0f
AK
3145 .interfaces = (InterfaceInfo[]) {
3146 { TYPE_FW_PATH_PROVIDER },
34316482 3147 { TYPE_NMI },
c20d332a 3148 { TYPE_HOTPLUG_HANDLER },
1d1be34d 3149 { TYPE_PPC_VIRTUAL_HYPERVISOR },
7844e12b 3150 { TYPE_XICS_FABRIC },
6449da45 3151 { TYPE_INTERRUPT_STATS_PROVIDER },
71461b0f
AK
3152 { }
3153 },
29ee3247
AK
3154};
3155
fccbc785 3156#define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
5013c547
DG
3157 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
3158 void *data) \
3159 { \
3160 MachineClass *mc = MACHINE_CLASS(oc); \
3161 spapr_machine_##suffix##_class_options(mc); \
fccbc785
DG
3162 if (latest) { \
3163 mc->alias = "pseries"; \
3164 mc->is_default = 1; \
3165 } \
5013c547
DG
3166 } \
3167 static void spapr_machine_##suffix##_instance_init(Object *obj) \
3168 { \
3169 MachineState *machine = MACHINE(obj); \
3170 spapr_machine_##suffix##_instance_options(machine); \
3171 } \
3172 static const TypeInfo spapr_machine_##suffix##_info = { \
3173 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
3174 .parent = TYPE_SPAPR_MACHINE, \
3175 .class_init = spapr_machine_##suffix##_class_init, \
3176 .instance_init = spapr_machine_##suffix##_instance_init, \
3177 }; \
3178 static void spapr_machine_register_##suffix(void) \
3179 { \
3180 type_register(&spapr_machine_##suffix##_info); \
3181 } \
0e6aac87 3182 type_init(spapr_machine_register_##suffix)
5013c547 3183
3fa14fbe
DG
3184/*
3185 * pseries-2.10
3186 */
3187static void spapr_machine_2_10_instance_options(MachineState *machine)
3188{
3189}
3190
3191static void spapr_machine_2_10_class_options(MachineClass *mc)
3192{
3193 /* Defaults for the latest behaviour inherited from the base class */
3194}
3195
3196DEFINE_SPAPR_MACHINE(2_10, "2.10", true);
3197
fa325e6c
DG
3198/*
3199 * pseries-2.9
3200 */
3fa14fbe
DG
3201#define SPAPR_COMPAT_2_9 \
3202 HW_COMPAT_2_9
3203
fa325e6c
DG
3204static void spapr_machine_2_9_instance_options(MachineState *machine)
3205{
3fa14fbe 3206 spapr_machine_2_10_instance_options(machine);
fa325e6c
DG
3207}
3208
3209static void spapr_machine_2_9_class_options(MachineClass *mc)
3210{
3fa14fbe
DG
3211 spapr_machine_2_10_class_options(mc);
3212 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_9);
fa325e6c
DG
3213}
3214
3fa14fbe 3215DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
fa325e6c 3216
db800b21
DG
3217/*
3218 * pseries-2.8
3219 */
82516263
DG
3220#define SPAPR_COMPAT_2_8 \
3221 HW_COMPAT_2_8 \
3222 { \
3223 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3224 .property = "pcie-extended-configuration-space", \
3225 .value = "off", \
3226 },
fa325e6c 3227
db800b21
DG
3228static void spapr_machine_2_8_instance_options(MachineState *machine)
3229{
fa325e6c 3230 spapr_machine_2_9_instance_options(machine);
db800b21
DG
3231}
3232
3233static void spapr_machine_2_8_class_options(MachineClass *mc)
3234{
fa325e6c
DG
3235 spapr_machine_2_9_class_options(mc);
3236 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8);
55641213 3237 mc->numa_mem_align_shift = 23;
db800b21
DG
3238}
3239
fa325e6c 3240DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
db800b21 3241
1ea1eefc
BR
3242/*
3243 * pseries-2.7
3244 */
357d1e3b
DG
3245#define SPAPR_COMPAT_2_7 \
3246 HW_COMPAT_2_7 \
3247 { \
3248 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3249 .property = "mem_win_size", \
3250 .value = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
3251 }, \
3252 { \
3253 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3254 .property = "mem64_win_size", \
3255 .value = "0", \
146c11f1
DG
3256 }, \
3257 { \
3258 .driver = TYPE_POWERPC_CPU, \
3259 .property = "pre-2.8-migration", \
3260 .value = "on", \
5c4537bd
DG
3261 }, \
3262 { \
3263 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3264 .property = "pre-2.8-migration", \
3265 .value = "on", \
357d1e3b
DG
3266 },
3267
3268static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
3269 uint64_t *buid, hwaddr *pio,
3270 hwaddr *mmio32, hwaddr *mmio64,
3271 unsigned n_dma, uint32_t *liobns, Error **errp)
3272{
3273 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
3274 const uint64_t base_buid = 0x800000020000000ULL;
3275 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
3276 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
3277 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
3278 const uint32_t max_index = 255;
3279 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
3280
3281 uint64_t ram_top = MACHINE(spapr)->ram_size;
3282 hwaddr phb0_base, phb_base;
3283 int i;
3284
3285 /* Do we have hotpluggable memory? */
3286 if (MACHINE(spapr)->maxram_size > ram_top) {
3287 /* Can't just use maxram_size, because there may be an
3288 * alignment gap between normal and hotpluggable memory
3289 * regions */
3290 ram_top = spapr->hotplug_memory.base +
3291 memory_region_size(&spapr->hotplug_memory.mr);
3292 }
3293
3294 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
3295
3296 if (index > max_index) {
3297 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
3298 max_index);
3299 return;
3300 }
3301
3302 *buid = base_buid + index;
3303 for (i = 0; i < n_dma; ++i) {
3304 liobns[i] = SPAPR_PCI_LIOBN(index, i);
3305 }
3306
3307 phb_base = phb0_base + index * phb_spacing;
3308 *pio = phb_base + pio_offset;
3309 *mmio32 = phb_base + mmio_offset;
3310 /*
3311 * We don't set the 64-bit MMIO window, relying on the PHB's
3312 * fallback behaviour of automatically splitting a large "32-bit"
3313 * window into contiguous 32-bit and 64-bit windows
3314 */
3315}
db800b21 3316
1ea1eefc
BR
3317static void spapr_machine_2_7_instance_options(MachineState *machine)
3318{
f6229214
MR
3319 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
3320
672de881 3321 spapr_machine_2_8_instance_options(machine);
f6229214 3322 spapr->use_hotplug_event_source = false;
1ea1eefc
BR
3323}
3324
3325static void spapr_machine_2_7_class_options(MachineClass *mc)
3326{
3daa4a9f
TH
3327 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3328
db800b21 3329 spapr_machine_2_8_class_options(mc);
3daa4a9f 3330 smc->tcg_default_cpu = "POWER7";
db800b21 3331 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7);
357d1e3b 3332 smc->phb_placement = phb_placement_2_7;
1ea1eefc
BR
3333}
3334
db800b21 3335DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
1ea1eefc 3336
4b23699c
DG
3337/*
3338 * pseries-2.6
3339 */
1ea1eefc 3340#define SPAPR_COMPAT_2_6 \
ae4de14c
AK
3341 HW_COMPAT_2_6 \
3342 { \
3343 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3344 .property = "ddw",\
3345 .value = stringify(off),\
3346 },
1ea1eefc 3347
4b23699c
DG
3348static void spapr_machine_2_6_instance_options(MachineState *machine)
3349{
672de881 3350 spapr_machine_2_7_instance_options(machine);
4b23699c
DG
3351}
3352
3353static void spapr_machine_2_6_class_options(MachineClass *mc)
3354{
1ea1eefc 3355 spapr_machine_2_7_class_options(mc);
c5514d0e 3356 mc->has_hotpluggable_cpus = false;
1ea1eefc 3357 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
4b23699c
DG
3358}
3359
1ea1eefc 3360DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4b23699c 3361
1c5f29bb
DG
3362/*
3363 * pseries-2.5
3364 */
4b23699c 3365#define SPAPR_COMPAT_2_5 \
57c522f4
TH
3366 HW_COMPAT_2_5 \
3367 { \
3368 .driver = "spapr-vlan", \
3369 .property = "use-rx-buffer-pools", \
3370 .value = "off", \
3371 },
4b23699c 3372
5013c547 3373static void spapr_machine_2_5_instance_options(MachineState *machine)
1c5f29bb 3374{
672de881 3375 spapr_machine_2_6_instance_options(machine);
5013c547
DG
3376}
3377
3378static void spapr_machine_2_5_class_options(MachineClass *mc)
3379{
57040d45
TH
3380 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3381
4b23699c 3382 spapr_machine_2_6_class_options(mc);
57040d45 3383 smc->use_ohci_by_default = true;
4b23699c 3384 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
1c5f29bb
DG
3385}
3386
4b23699c 3387DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
1c5f29bb
DG
3388
3389/*
3390 * pseries-2.4
3391 */
80fd50f9
CH
3392#define SPAPR_COMPAT_2_4 \
3393 HW_COMPAT_2_4
3394
5013c547 3395static void spapr_machine_2_4_instance_options(MachineState *machine)
1c5f29bb 3396{
5013c547
DG
3397 spapr_machine_2_5_instance_options(machine);
3398}
1c5f29bb 3399
5013c547
DG
3400static void spapr_machine_2_4_class_options(MachineClass *mc)
3401{
fc9f38c3
DG
3402 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3403
3404 spapr_machine_2_5_class_options(mc);
fc9f38c3 3405 smc->dr_lmb_enabled = false;
f949b4e5 3406 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
1c5f29bb
DG
3407}
3408
fccbc785 3409DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
1c5f29bb
DG
3410
3411/*
3412 * pseries-2.3
3413 */
38ff32c6 3414#define SPAPR_COMPAT_2_3 \
7619c7b0
MR
3415 HW_COMPAT_2_3 \
3416 {\
3417 .driver = "spapr-pci-host-bridge",\
3418 .property = "dynamic-reconfiguration",\
3419 .value = "off",\
3420 },
38ff32c6 3421
5013c547 3422static void spapr_machine_2_3_instance_options(MachineState *machine)
d25228e7 3423{
5013c547 3424 spapr_machine_2_4_instance_options(machine);
ff14e817 3425 savevm_skip_section_footers();
13d16814 3426 global_state_set_optional();
09b5e30d 3427 savevm_skip_configuration();
d25228e7
JW
3428}
3429
5013c547 3430static void spapr_machine_2_3_class_options(MachineClass *mc)
6026db45 3431{
fc9f38c3 3432 spapr_machine_2_4_class_options(mc);
f949b4e5 3433 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
6026db45 3434}
fccbc785 3435DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
6026db45 3436
1c5f29bb
DG
3437/*
3438 * pseries-2.2
3439 */
3440
3441#define SPAPR_COMPAT_2_2 \
1c5f29bb
DG
3442 HW_COMPAT_2_2 \
3443 {\
3444 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3445 .property = "mem_win_size",\
3446 .value = "0x20000000",\
3447 },
3448
5013c547 3449static void spapr_machine_2_2_instance_options(MachineState *machine)
1c5f29bb 3450{
5013c547 3451 spapr_machine_2_3_instance_options(machine);
cba0e779 3452 machine->suppress_vmdesc = true;
1c5f29bb
DG
3453}
3454
5013c547 3455static void spapr_machine_2_2_class_options(MachineClass *mc)
4aee7362 3456{
fc9f38c3 3457 spapr_machine_2_3_class_options(mc);
f949b4e5 3458 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
4aee7362 3459}
fccbc785 3460DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4aee7362 3461
1c5f29bb
DG
3462/*
3463 * pseries-2.1
3464 */
3465#define SPAPR_COMPAT_2_1 \
1c5f29bb 3466 HW_COMPAT_2_1
3dab0244 3467
5013c547 3468static void spapr_machine_2_1_instance_options(MachineState *machine)
1c5f29bb 3469{
5013c547 3470 spapr_machine_2_2_instance_options(machine);
1c5f29bb 3471}
d25228e7 3472
5013c547 3473static void spapr_machine_2_1_class_options(MachineClass *mc)
d25228e7 3474{
fc9f38c3 3475 spapr_machine_2_2_class_options(mc);
f949b4e5 3476 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
d25228e7 3477}
fccbc785 3478DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
fb0fc8f6 3479
29ee3247 3480static void spapr_machine_register_types(void)
9fdf0c29 3481{
29ee3247 3482 type_register_static(&spapr_machine_info);
9fdf0c29
DG
3483}
3484
29ee3247 3485type_init(spapr_machine_register_types)
This page took 1.189032 seconds and 4 git commands to generate.