]>
Commit | Line | Data |
---|---|---|
05330448 AL |
1 | /* |
2 | * QEMU KVM support | |
3 | * | |
4 | * Copyright IBM, Corp. 2008 | |
5832d1f2 | 5 | * Red Hat, Inc. 2008 |
05330448 AL |
6 | * |
7 | * Authors: | |
8 | * Anthony Liguori <[email protected]> | |
5832d1f2 | 9 | * Glauber Costa <[email protected]> |
05330448 AL |
10 | * |
11 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
12 | * See the COPYING file in the top-level directory. | |
13 | * | |
14 | */ | |
15 | ||
16 | #include <sys/types.h> | |
17 | #include <sys/ioctl.h> | |
18 | #include <sys/mman.h> | |
984b5181 | 19 | #include <stdarg.h> |
05330448 AL |
20 | |
21 | #include <linux/kvm.h> | |
22 | ||
23 | #include "qemu-common.h" | |
85199474 | 24 | #include "qemu-barrier.h" |
ebd063d1 PB |
25 | #include "qemu-option.h" |
26 | #include "qemu-config.h" | |
05330448 | 27 | #include "sysemu.h" |
d33a1810 | 28 | #include "hw/hw.h" |
04fa27f5 | 29 | #include "hw/msi.h" |
e22a25c9 | 30 | #include "gdbstub.h" |
05330448 | 31 | #include "kvm.h" |
8369e01c | 32 | #include "bswap.h" |
a01672d3 | 33 | #include "memory.h" |
80a1ea37 | 34 | #include "exec-memory.h" |
753d5e14 | 35 | #include "event_notifier.h" |
05330448 | 36 | |
d2f2b8a7 SH |
37 | /* This check must be after config-host.h is included */ |
38 | #ifdef CONFIG_EVENTFD | |
39 | #include <sys/eventfd.h> | |
40 | #endif | |
41 | ||
62fe8331 CB |
42 | #ifdef CONFIG_VALGRIND_H |
43 | #include <valgrind/memcheck.h> | |
44 | #endif | |
45 | ||
93148aa5 | 46 | /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */ |
f65ed4c1 AL |
47 | #define PAGE_SIZE TARGET_PAGE_SIZE |
48 | ||
05330448 AL |
49 | //#define DEBUG_KVM |
50 | ||
51 | #ifdef DEBUG_KVM | |
8c0d577e | 52 | #define DPRINTF(fmt, ...) \ |
05330448 AL |
53 | do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) |
54 | #else | |
8c0d577e | 55 | #define DPRINTF(fmt, ...) \ |
05330448 AL |
56 | do { } while (0) |
57 | #endif | |
58 | ||
04fa27f5 JK |
59 | #define KVM_MSI_HASHTAB_SIZE 256 |
60 | ||
34fc643f AL |
61 | typedef struct KVMSlot |
62 | { | |
c227f099 AL |
63 | target_phys_addr_t start_addr; |
64 | ram_addr_t memory_size; | |
9f213ed9 | 65 | void *ram; |
34fc643f AL |
66 | int slot; |
67 | int flags; | |
68 | } KVMSlot; | |
05330448 | 69 | |
5832d1f2 AL |
70 | typedef struct kvm_dirty_log KVMDirtyLog; |
71 | ||
05330448 AL |
72 | struct KVMState |
73 | { | |
74 | KVMSlot slots[32]; | |
75 | int fd; | |
76 | int vmfd; | |
f65ed4c1 | 77 | int coalesced_mmio; |
62a2744c | 78 | struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; |
1cae88b9 | 79 | bool coalesced_flush_in_progress; |
e69917e2 | 80 | int broken_set_mem_region; |
4495d6a7 | 81 | int migration_log; |
a0fb002c | 82 | int vcpu_events; |
b0b1d690 | 83 | int robust_singlestep; |
ff44f1a3 | 84 | int debugregs; |
e22a25c9 AL |
85 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
86 | struct kvm_sw_breakpoint_head kvm_sw_breakpoints; | |
87 | #endif | |
8a7c7393 | 88 | int pit_state2; |
f1665b21 | 89 | int xsave, xcrs; |
d2f2b8a7 | 90 | int many_ioeventfds; |
3ab73842 | 91 | int intx_set_mask; |
92e4b519 DG |
92 | /* The man page (and posix) say ioctl numbers are signed int, but |
93 | * they're not. Linux, glibc and *BSD all treat ioctl numbers as | |
94 | * unsigned, and treating them as signed here can break things */ | |
e333cd69 | 95 | unsigned irq_set_ioctl; |
84b058d7 JK |
96 | #ifdef KVM_CAP_IRQ_ROUTING |
97 | struct kvm_irq_routing *irq_routes; | |
98 | int nr_allocated_irq_routes; | |
99 | uint32_t *used_gsi_bitmap; | |
4e2e4e63 | 100 | unsigned int gsi_count; |
04fa27f5 | 101 | QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE]; |
4a3adebb | 102 | bool direct_msi; |
84b058d7 | 103 | #endif |
05330448 AL |
104 | }; |
105 | ||
6a7af8cb | 106 | KVMState *kvm_state; |
3d4b2649 | 107 | bool kvm_kernel_irqchip; |
7ae26bd4 | 108 | bool kvm_async_interrupts_allowed; |
cc7e0ddf | 109 | bool kvm_irqfds_allowed; |
614e41bc | 110 | bool kvm_msi_via_irqfd_allowed; |
f3e1bed8 | 111 | bool kvm_gsi_routing_allowed; |
05330448 | 112 | |
94a8d39a JK |
113 | static const KVMCapabilityInfo kvm_required_capabilites[] = { |
114 | KVM_CAP_INFO(USER_MEMORY), | |
115 | KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), | |
116 | KVM_CAP_LAST_INFO | |
117 | }; | |
118 | ||
05330448 AL |
119 | static KVMSlot *kvm_alloc_slot(KVMState *s) |
120 | { | |
121 | int i; | |
122 | ||
123 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
a426e122 | 124 | if (s->slots[i].memory_size == 0) { |
05330448 | 125 | return &s->slots[i]; |
a426e122 | 126 | } |
05330448 AL |
127 | } |
128 | ||
d3f8d37f AL |
129 | fprintf(stderr, "%s: no free slot available\n", __func__); |
130 | abort(); | |
131 | } | |
132 | ||
133 | static KVMSlot *kvm_lookup_matching_slot(KVMState *s, | |
c227f099 AL |
134 | target_phys_addr_t start_addr, |
135 | target_phys_addr_t end_addr) | |
d3f8d37f AL |
136 | { |
137 | int i; | |
138 | ||
139 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
140 | KVMSlot *mem = &s->slots[i]; | |
141 | ||
142 | if (start_addr == mem->start_addr && | |
143 | end_addr == mem->start_addr + mem->memory_size) { | |
144 | return mem; | |
145 | } | |
146 | } | |
147 | ||
05330448 AL |
148 | return NULL; |
149 | } | |
150 | ||
6152e2ae AL |
151 | /* |
152 | * Find overlapping slot with lowest start address | |
153 | */ | |
154 | static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s, | |
c227f099 AL |
155 | target_phys_addr_t start_addr, |
156 | target_phys_addr_t end_addr) | |
05330448 | 157 | { |
6152e2ae | 158 | KVMSlot *found = NULL; |
05330448 AL |
159 | int i; |
160 | ||
161 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
162 | KVMSlot *mem = &s->slots[i]; | |
163 | ||
6152e2ae AL |
164 | if (mem->memory_size == 0 || |
165 | (found && found->start_addr < mem->start_addr)) { | |
166 | continue; | |
167 | } | |
168 | ||
169 | if (end_addr > mem->start_addr && | |
170 | start_addr < mem->start_addr + mem->memory_size) { | |
171 | found = mem; | |
172 | } | |
05330448 AL |
173 | } |
174 | ||
6152e2ae | 175 | return found; |
05330448 AL |
176 | } |
177 | ||
9f213ed9 AK |
178 | int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, |
179 | target_phys_addr_t *phys_addr) | |
983dfc3b HY |
180 | { |
181 | int i; | |
182 | ||
183 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
184 | KVMSlot *mem = &s->slots[i]; | |
185 | ||
9f213ed9 AK |
186 | if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { |
187 | *phys_addr = mem->start_addr + (ram - mem->ram); | |
983dfc3b HY |
188 | return 1; |
189 | } | |
190 | } | |
191 | ||
192 | return 0; | |
193 | } | |
194 | ||
5832d1f2 AL |
195 | static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot) |
196 | { | |
197 | struct kvm_userspace_memory_region mem; | |
198 | ||
199 | mem.slot = slot->slot; | |
200 | mem.guest_phys_addr = slot->start_addr; | |
201 | mem.memory_size = slot->memory_size; | |
9f213ed9 | 202 | mem.userspace_addr = (unsigned long)slot->ram; |
5832d1f2 | 203 | mem.flags = slot->flags; |
4495d6a7 JK |
204 | if (s->migration_log) { |
205 | mem.flags |= KVM_MEM_LOG_DIRTY_PAGES; | |
206 | } | |
5832d1f2 AL |
207 | return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); |
208 | } | |
209 | ||
8d2ba1fb JK |
210 | static void kvm_reset_vcpu(void *opaque) |
211 | { | |
9349b4f9 | 212 | CPUArchState *env = opaque; |
8d2ba1fb | 213 | |
caa5af0f | 214 | kvm_arch_reset_vcpu(env); |
8d2ba1fb | 215 | } |
5832d1f2 | 216 | |
9349b4f9 | 217 | int kvm_init_vcpu(CPUArchState *env) |
05330448 AL |
218 | { |
219 | KVMState *s = kvm_state; | |
220 | long mmap_size; | |
221 | int ret; | |
222 | ||
8c0d577e | 223 | DPRINTF("kvm_init_vcpu\n"); |
05330448 | 224 | |
984b5181 | 225 | ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index); |
05330448 | 226 | if (ret < 0) { |
8c0d577e | 227 | DPRINTF("kvm_create_vcpu failed\n"); |
05330448 AL |
228 | goto err; |
229 | } | |
230 | ||
231 | env->kvm_fd = ret; | |
232 | env->kvm_state = s; | |
d841b6c4 | 233 | env->kvm_vcpu_dirty = 1; |
05330448 AL |
234 | |
235 | mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); | |
236 | if (mmap_size < 0) { | |
748a680b | 237 | ret = mmap_size; |
8c0d577e | 238 | DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); |
05330448 AL |
239 | goto err; |
240 | } | |
241 | ||
242 | env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, | |
243 | env->kvm_fd, 0); | |
244 | if (env->kvm_run == MAP_FAILED) { | |
245 | ret = -errno; | |
8c0d577e | 246 | DPRINTF("mmap'ing vcpu state failed\n"); |
05330448 AL |
247 | goto err; |
248 | } | |
249 | ||
a426e122 JK |
250 | if (s->coalesced_mmio && !s->coalesced_mmio_ring) { |
251 | s->coalesced_mmio_ring = | |
252 | (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE; | |
253 | } | |
62a2744c | 254 | |
05330448 | 255 | ret = kvm_arch_init_vcpu(env); |
8d2ba1fb | 256 | if (ret == 0) { |
a08d4367 | 257 | qemu_register_reset(kvm_reset_vcpu, env); |
caa5af0f | 258 | kvm_arch_reset_vcpu(env); |
8d2ba1fb | 259 | } |
05330448 AL |
260 | err: |
261 | return ret; | |
262 | } | |
263 | ||
5832d1f2 AL |
264 | /* |
265 | * dirty pages logging control | |
266 | */ | |
25254bbc MT |
267 | |
268 | static int kvm_mem_flags(KVMState *s, bool log_dirty) | |
269 | { | |
270 | return log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0; | |
271 | } | |
272 | ||
273 | static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty) | |
5832d1f2 AL |
274 | { |
275 | KVMState *s = kvm_state; | |
25254bbc | 276 | int flags, mask = KVM_MEM_LOG_DIRTY_PAGES; |
4495d6a7 JK |
277 | int old_flags; |
278 | ||
4495d6a7 | 279 | old_flags = mem->flags; |
5832d1f2 | 280 | |
25254bbc | 281 | flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty); |
5832d1f2 AL |
282 | mem->flags = flags; |
283 | ||
4495d6a7 JK |
284 | /* If nothing changed effectively, no need to issue ioctl */ |
285 | if (s->migration_log) { | |
286 | flags |= KVM_MEM_LOG_DIRTY_PAGES; | |
287 | } | |
25254bbc | 288 | |
4495d6a7 | 289 | if (flags == old_flags) { |
25254bbc | 290 | return 0; |
4495d6a7 JK |
291 | } |
292 | ||
5832d1f2 AL |
293 | return kvm_set_user_memory_region(s, mem); |
294 | } | |
295 | ||
25254bbc MT |
296 | static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr, |
297 | ram_addr_t size, bool log_dirty) | |
298 | { | |
299 | KVMState *s = kvm_state; | |
300 | KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size); | |
301 | ||
302 | if (mem == NULL) { | |
303 | fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-" | |
304 | TARGET_FMT_plx "\n", __func__, phys_addr, | |
305 | (target_phys_addr_t)(phys_addr + size - 1)); | |
306 | return -EINVAL; | |
307 | } | |
308 | return kvm_slot_dirty_pages_log_change(mem, log_dirty); | |
309 | } | |
310 | ||
a01672d3 AK |
311 | static void kvm_log_start(MemoryListener *listener, |
312 | MemoryRegionSection *section) | |
5832d1f2 | 313 | { |
a01672d3 AK |
314 | int r; |
315 | ||
316 | r = kvm_dirty_pages_log_change(section->offset_within_address_space, | |
317 | section->size, true); | |
318 | if (r < 0) { | |
319 | abort(); | |
320 | } | |
5832d1f2 AL |
321 | } |
322 | ||
a01672d3 AK |
323 | static void kvm_log_stop(MemoryListener *listener, |
324 | MemoryRegionSection *section) | |
5832d1f2 | 325 | { |
a01672d3 AK |
326 | int r; |
327 | ||
328 | r = kvm_dirty_pages_log_change(section->offset_within_address_space, | |
329 | section->size, false); | |
330 | if (r < 0) { | |
331 | abort(); | |
332 | } | |
5832d1f2 AL |
333 | } |
334 | ||
7b8f3b78 | 335 | static int kvm_set_migration_log(int enable) |
4495d6a7 JK |
336 | { |
337 | KVMState *s = kvm_state; | |
338 | KVMSlot *mem; | |
339 | int i, err; | |
340 | ||
341 | s->migration_log = enable; | |
342 | ||
343 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
344 | mem = &s->slots[i]; | |
345 | ||
70fedd76 AW |
346 | if (!mem->memory_size) { |
347 | continue; | |
348 | } | |
4495d6a7 JK |
349 | if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) { |
350 | continue; | |
351 | } | |
352 | err = kvm_set_user_memory_region(s, mem); | |
353 | if (err) { | |
354 | return err; | |
355 | } | |
356 | } | |
357 | return 0; | |
358 | } | |
359 | ||
8369e01c | 360 | /* get kvm's dirty pages bitmap and update qemu's */ |
ffcde12f AK |
361 | static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section, |
362 | unsigned long *bitmap) | |
96c1606b | 363 | { |
8369e01c | 364 | unsigned int i, j; |
aa90fec7 BH |
365 | unsigned long page_number, c; |
366 | target_phys_addr_t addr, addr1; | |
ffcde12f | 367 | unsigned int len = ((section->size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) / HOST_LONG_BITS; |
3145fcb6 | 368 | unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE; |
8369e01c MT |
369 | |
370 | /* | |
371 | * bitmap-traveling is faster than memory-traveling (for addr...) | |
372 | * especially when most of the memory is not dirty. | |
373 | */ | |
374 | for (i = 0; i < len; i++) { | |
375 | if (bitmap[i] != 0) { | |
376 | c = leul_to_cpu(bitmap[i]); | |
377 | do { | |
378 | j = ffsl(c) - 1; | |
379 | c &= ~(1ul << j); | |
3145fcb6 | 380 | page_number = (i * HOST_LONG_BITS + j) * hpratio; |
8369e01c | 381 | addr1 = page_number * TARGET_PAGE_SIZE; |
ffcde12f | 382 | addr = section->offset_within_region + addr1; |
3145fcb6 DG |
383 | memory_region_set_dirty(section->mr, addr, |
384 | TARGET_PAGE_SIZE * hpratio); | |
8369e01c MT |
385 | } while (c != 0); |
386 | } | |
387 | } | |
388 | return 0; | |
96c1606b AG |
389 | } |
390 | ||
8369e01c MT |
391 | #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) |
392 | ||
5832d1f2 AL |
393 | /** |
394 | * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space | |
fd4aa979 BS |
395 | * This function updates qemu's dirty bitmap using |
396 | * memory_region_set_dirty(). This means all bits are set | |
397 | * to dirty. | |
5832d1f2 | 398 | * |
d3f8d37f | 399 | * @start_add: start of logged region. |
5832d1f2 AL |
400 | * @end_addr: end of logged region. |
401 | */ | |
ffcde12f | 402 | static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section) |
5832d1f2 AL |
403 | { |
404 | KVMState *s = kvm_state; | |
151f7749 | 405 | unsigned long size, allocated_size = 0; |
151f7749 JK |
406 | KVMDirtyLog d; |
407 | KVMSlot *mem; | |
408 | int ret = 0; | |
ffcde12f AK |
409 | target_phys_addr_t start_addr = section->offset_within_address_space; |
410 | target_phys_addr_t end_addr = start_addr + section->size; | |
5832d1f2 | 411 | |
151f7749 JK |
412 | d.dirty_bitmap = NULL; |
413 | while (start_addr < end_addr) { | |
414 | mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr); | |
415 | if (mem == NULL) { | |
416 | break; | |
417 | } | |
5832d1f2 | 418 | |
51b0c606 MT |
419 | /* XXX bad kernel interface alert |
420 | * For dirty bitmap, kernel allocates array of size aligned to | |
421 | * bits-per-long. But for case when the kernel is 64bits and | |
422 | * the userspace is 32bits, userspace can't align to the same | |
423 | * bits-per-long, since sizeof(long) is different between kernel | |
424 | * and user space. This way, userspace will provide buffer which | |
425 | * may be 4 bytes less than the kernel will use, resulting in | |
426 | * userspace memory corruption (which is not detectable by valgrind | |
427 | * too, in most cases). | |
428 | * So for now, let's align to 64 instead of HOST_LONG_BITS here, in | |
429 | * a hope that sizeof(long) wont become >8 any time soon. | |
430 | */ | |
431 | size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), | |
432 | /*HOST_LONG_BITS*/ 64) / 8; | |
151f7749 | 433 | if (!d.dirty_bitmap) { |
7267c094 | 434 | d.dirty_bitmap = g_malloc(size); |
151f7749 | 435 | } else if (size > allocated_size) { |
7267c094 | 436 | d.dirty_bitmap = g_realloc(d.dirty_bitmap, size); |
151f7749 JK |
437 | } |
438 | allocated_size = size; | |
439 | memset(d.dirty_bitmap, 0, allocated_size); | |
5832d1f2 | 440 | |
151f7749 | 441 | d.slot = mem->slot; |
5832d1f2 | 442 | |
6e489f3f | 443 | if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) { |
8c0d577e | 444 | DPRINTF("ioctl failed %d\n", errno); |
151f7749 JK |
445 | ret = -1; |
446 | break; | |
447 | } | |
5832d1f2 | 448 | |
ffcde12f | 449 | kvm_get_dirty_pages_log_range(section, d.dirty_bitmap); |
8369e01c | 450 | start_addr = mem->start_addr + mem->memory_size; |
5832d1f2 | 451 | } |
7267c094 | 452 | g_free(d.dirty_bitmap); |
151f7749 JK |
453 | |
454 | return ret; | |
5832d1f2 AL |
455 | } |
456 | ||
c227f099 | 457 | int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size) |
f65ed4c1 AL |
458 | { |
459 | int ret = -ENOSYS; | |
f65ed4c1 AL |
460 | KVMState *s = kvm_state; |
461 | ||
462 | if (s->coalesced_mmio) { | |
463 | struct kvm_coalesced_mmio_zone zone; | |
464 | ||
465 | zone.addr = start; | |
466 | zone.size = size; | |
7e680753 | 467 | zone.pad = 0; |
f65ed4c1 AL |
468 | |
469 | ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); | |
470 | } | |
f65ed4c1 AL |
471 | |
472 | return ret; | |
473 | } | |
474 | ||
c227f099 | 475 | int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size) |
f65ed4c1 AL |
476 | { |
477 | int ret = -ENOSYS; | |
f65ed4c1 AL |
478 | KVMState *s = kvm_state; |
479 | ||
480 | if (s->coalesced_mmio) { | |
481 | struct kvm_coalesced_mmio_zone zone; | |
482 | ||
483 | zone.addr = start; | |
484 | zone.size = size; | |
7e680753 | 485 | zone.pad = 0; |
f65ed4c1 AL |
486 | |
487 | ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); | |
488 | } | |
f65ed4c1 AL |
489 | |
490 | return ret; | |
491 | } | |
492 | ||
ad7b8b33 AL |
493 | int kvm_check_extension(KVMState *s, unsigned int extension) |
494 | { | |
495 | int ret; | |
496 | ||
497 | ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); | |
498 | if (ret < 0) { | |
499 | ret = 0; | |
500 | } | |
501 | ||
502 | return ret; | |
503 | } | |
504 | ||
d2f2b8a7 SH |
505 | static int kvm_check_many_ioeventfds(void) |
506 | { | |
d0dcac83 SH |
507 | /* Userspace can use ioeventfd for io notification. This requires a host |
508 | * that supports eventfd(2) and an I/O thread; since eventfd does not | |
509 | * support SIGIO it cannot interrupt the vcpu. | |
510 | * | |
511 | * Older kernels have a 6 device limit on the KVM io bus. Find out so we | |
d2f2b8a7 SH |
512 | * can avoid creating too many ioeventfds. |
513 | */ | |
12d4536f | 514 | #if defined(CONFIG_EVENTFD) |
d2f2b8a7 SH |
515 | int ioeventfds[7]; |
516 | int i, ret = 0; | |
517 | for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { | |
518 | ioeventfds[i] = eventfd(0, EFD_CLOEXEC); | |
519 | if (ioeventfds[i] < 0) { | |
520 | break; | |
521 | } | |
522 | ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true); | |
523 | if (ret < 0) { | |
524 | close(ioeventfds[i]); | |
525 | break; | |
526 | } | |
527 | } | |
528 | ||
529 | /* Decide whether many devices are supported or not */ | |
530 | ret = i == ARRAY_SIZE(ioeventfds); | |
531 | ||
532 | while (i-- > 0) { | |
533 | kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false); | |
534 | close(ioeventfds[i]); | |
535 | } | |
536 | return ret; | |
537 | #else | |
538 | return 0; | |
539 | #endif | |
540 | } | |
541 | ||
94a8d39a JK |
542 | static const KVMCapabilityInfo * |
543 | kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) | |
544 | { | |
545 | while (list->name) { | |
546 | if (!kvm_check_extension(s, list->value)) { | |
547 | return list; | |
548 | } | |
549 | list++; | |
550 | } | |
551 | return NULL; | |
552 | } | |
553 | ||
a01672d3 | 554 | static void kvm_set_phys_mem(MemoryRegionSection *section, bool add) |
46dbef6a MT |
555 | { |
556 | KVMState *s = kvm_state; | |
46dbef6a MT |
557 | KVMSlot *mem, old; |
558 | int err; | |
a01672d3 AK |
559 | MemoryRegion *mr = section->mr; |
560 | bool log_dirty = memory_region_is_logging(mr); | |
561 | target_phys_addr_t start_addr = section->offset_within_address_space; | |
562 | ram_addr_t size = section->size; | |
9f213ed9 | 563 | void *ram = NULL; |
8f6f962b | 564 | unsigned delta; |
46dbef6a | 565 | |
14542fea GN |
566 | /* kvm works in page size chunks, but the function may be called |
567 | with sub-page size and unaligned start address. */ | |
8f6f962b AK |
568 | delta = TARGET_PAGE_ALIGN(size) - size; |
569 | if (delta > size) { | |
570 | return; | |
571 | } | |
572 | start_addr += delta; | |
573 | size -= delta; | |
574 | size &= TARGET_PAGE_MASK; | |
575 | if (!size || (start_addr & ~TARGET_PAGE_MASK)) { | |
576 | return; | |
577 | } | |
46dbef6a | 578 | |
a01672d3 AK |
579 | if (!memory_region_is_ram(mr)) { |
580 | return; | |
9f213ed9 AK |
581 | } |
582 | ||
8f6f962b | 583 | ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta; |
a01672d3 | 584 | |
46dbef6a MT |
585 | while (1) { |
586 | mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size); | |
587 | if (!mem) { | |
588 | break; | |
589 | } | |
590 | ||
a01672d3 | 591 | if (add && start_addr >= mem->start_addr && |
46dbef6a | 592 | (start_addr + size <= mem->start_addr + mem->memory_size) && |
9f213ed9 | 593 | (ram - start_addr == mem->ram - mem->start_addr)) { |
46dbef6a | 594 | /* The new slot fits into the existing one and comes with |
25254bbc MT |
595 | * identical parameters - update flags and done. */ |
596 | kvm_slot_dirty_pages_log_change(mem, log_dirty); | |
46dbef6a MT |
597 | return; |
598 | } | |
599 | ||
600 | old = *mem; | |
601 | ||
3fbffb62 AK |
602 | if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { |
603 | kvm_physical_sync_dirty_bitmap(section); | |
604 | } | |
605 | ||
46dbef6a MT |
606 | /* unregister the overlapping slot */ |
607 | mem->memory_size = 0; | |
608 | err = kvm_set_user_memory_region(s, mem); | |
609 | if (err) { | |
610 | fprintf(stderr, "%s: error unregistering overlapping slot: %s\n", | |
611 | __func__, strerror(-err)); | |
612 | abort(); | |
613 | } | |
614 | ||
615 | /* Workaround for older KVM versions: we can't join slots, even not by | |
616 | * unregistering the previous ones and then registering the larger | |
617 | * slot. We have to maintain the existing fragmentation. Sigh. | |
618 | * | |
619 | * This workaround assumes that the new slot starts at the same | |
620 | * address as the first existing one. If not or if some overlapping | |
621 | * slot comes around later, we will fail (not seen in practice so far) | |
622 | * - and actually require a recent KVM version. */ | |
623 | if (s->broken_set_mem_region && | |
a01672d3 | 624 | old.start_addr == start_addr && old.memory_size < size && add) { |
46dbef6a MT |
625 | mem = kvm_alloc_slot(s); |
626 | mem->memory_size = old.memory_size; | |
627 | mem->start_addr = old.start_addr; | |
9f213ed9 | 628 | mem->ram = old.ram; |
25254bbc | 629 | mem->flags = kvm_mem_flags(s, log_dirty); |
46dbef6a MT |
630 | |
631 | err = kvm_set_user_memory_region(s, mem); | |
632 | if (err) { | |
633 | fprintf(stderr, "%s: error updating slot: %s\n", __func__, | |
634 | strerror(-err)); | |
635 | abort(); | |
636 | } | |
637 | ||
638 | start_addr += old.memory_size; | |
9f213ed9 | 639 | ram += old.memory_size; |
46dbef6a MT |
640 | size -= old.memory_size; |
641 | continue; | |
642 | } | |
643 | ||
644 | /* register prefix slot */ | |
645 | if (old.start_addr < start_addr) { | |
646 | mem = kvm_alloc_slot(s); | |
647 | mem->memory_size = start_addr - old.start_addr; | |
648 | mem->start_addr = old.start_addr; | |
9f213ed9 | 649 | mem->ram = old.ram; |
25254bbc | 650 | mem->flags = kvm_mem_flags(s, log_dirty); |
46dbef6a MT |
651 | |
652 | err = kvm_set_user_memory_region(s, mem); | |
653 | if (err) { | |
654 | fprintf(stderr, "%s: error registering prefix slot: %s\n", | |
655 | __func__, strerror(-err)); | |
d4d6868f AG |
656 | #ifdef TARGET_PPC |
657 | fprintf(stderr, "%s: This is probably because your kernel's " \ | |
658 | "PAGE_SIZE is too big. Please try to use 4k " \ | |
659 | "PAGE_SIZE!\n", __func__); | |
660 | #endif | |
46dbef6a MT |
661 | abort(); |
662 | } | |
663 | } | |
664 | ||
665 | /* register suffix slot */ | |
666 | if (old.start_addr + old.memory_size > start_addr + size) { | |
667 | ram_addr_t size_delta; | |
668 | ||
669 | mem = kvm_alloc_slot(s); | |
670 | mem->start_addr = start_addr + size; | |
671 | size_delta = mem->start_addr - old.start_addr; | |
672 | mem->memory_size = old.memory_size - size_delta; | |
9f213ed9 | 673 | mem->ram = old.ram + size_delta; |
25254bbc | 674 | mem->flags = kvm_mem_flags(s, log_dirty); |
46dbef6a MT |
675 | |
676 | err = kvm_set_user_memory_region(s, mem); | |
677 | if (err) { | |
678 | fprintf(stderr, "%s: error registering suffix slot: %s\n", | |
679 | __func__, strerror(-err)); | |
680 | abort(); | |
681 | } | |
682 | } | |
683 | } | |
684 | ||
685 | /* in case the KVM bug workaround already "consumed" the new slot */ | |
a426e122 | 686 | if (!size) { |
46dbef6a | 687 | return; |
a426e122 | 688 | } |
a01672d3 | 689 | if (!add) { |
46dbef6a | 690 | return; |
a426e122 | 691 | } |
46dbef6a MT |
692 | mem = kvm_alloc_slot(s); |
693 | mem->memory_size = size; | |
694 | mem->start_addr = start_addr; | |
9f213ed9 | 695 | mem->ram = ram; |
25254bbc | 696 | mem->flags = kvm_mem_flags(s, log_dirty); |
46dbef6a MT |
697 | |
698 | err = kvm_set_user_memory_region(s, mem); | |
699 | if (err) { | |
700 | fprintf(stderr, "%s: error registering slot: %s\n", __func__, | |
701 | strerror(-err)); | |
702 | abort(); | |
703 | } | |
704 | } | |
705 | ||
50c1e149 AK |
706 | static void kvm_begin(MemoryListener *listener) |
707 | { | |
708 | } | |
709 | ||
710 | static void kvm_commit(MemoryListener *listener) | |
711 | { | |
712 | } | |
713 | ||
a01672d3 AK |
714 | static void kvm_region_add(MemoryListener *listener, |
715 | MemoryRegionSection *section) | |
716 | { | |
717 | kvm_set_phys_mem(section, true); | |
718 | } | |
719 | ||
720 | static void kvm_region_del(MemoryListener *listener, | |
721 | MemoryRegionSection *section) | |
722 | { | |
723 | kvm_set_phys_mem(section, false); | |
724 | } | |
725 | ||
50c1e149 AK |
726 | static void kvm_region_nop(MemoryListener *listener, |
727 | MemoryRegionSection *section) | |
728 | { | |
729 | } | |
730 | ||
a01672d3 AK |
731 | static void kvm_log_sync(MemoryListener *listener, |
732 | MemoryRegionSection *section) | |
7b8f3b78 | 733 | { |
a01672d3 AK |
734 | int r; |
735 | ||
ffcde12f | 736 | r = kvm_physical_sync_dirty_bitmap(section); |
a01672d3 AK |
737 | if (r < 0) { |
738 | abort(); | |
739 | } | |
7b8f3b78 MT |
740 | } |
741 | ||
a01672d3 | 742 | static void kvm_log_global_start(struct MemoryListener *listener) |
7b8f3b78 | 743 | { |
a01672d3 AK |
744 | int r; |
745 | ||
746 | r = kvm_set_migration_log(1); | |
747 | assert(r >= 0); | |
7b8f3b78 MT |
748 | } |
749 | ||
a01672d3 | 750 | static void kvm_log_global_stop(struct MemoryListener *listener) |
7b8f3b78 | 751 | { |
a01672d3 AK |
752 | int r; |
753 | ||
754 | r = kvm_set_migration_log(0); | |
755 | assert(r >= 0); | |
7b8f3b78 MT |
756 | } |
757 | ||
80a1ea37 AK |
758 | static void kvm_mem_ioeventfd_add(MemoryRegionSection *section, |
759 | bool match_data, uint64_t data, int fd) | |
760 | { | |
761 | int r; | |
762 | ||
4b8f1c88 | 763 | assert(match_data && section->size <= 8); |
80a1ea37 | 764 | |
4b8f1c88 MT |
765 | r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, |
766 | data, true, section->size); | |
80a1ea37 AK |
767 | if (r < 0) { |
768 | abort(); | |
769 | } | |
770 | } | |
771 | ||
772 | static void kvm_mem_ioeventfd_del(MemoryRegionSection *section, | |
773 | bool match_data, uint64_t data, int fd) | |
774 | { | |
775 | int r; | |
776 | ||
4b8f1c88 MT |
777 | r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, |
778 | data, false, section->size); | |
80a1ea37 AK |
779 | if (r < 0) { |
780 | abort(); | |
781 | } | |
782 | } | |
783 | ||
784 | static void kvm_io_ioeventfd_add(MemoryRegionSection *section, | |
785 | bool match_data, uint64_t data, int fd) | |
786 | { | |
787 | int r; | |
788 | ||
789 | assert(match_data && section->size == 2); | |
790 | ||
791 | r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space, | |
792 | data, true); | |
793 | if (r < 0) { | |
794 | abort(); | |
795 | } | |
796 | } | |
797 | ||
798 | static void kvm_io_ioeventfd_del(MemoryRegionSection *section, | |
799 | bool match_data, uint64_t data, int fd) | |
800 | ||
801 | { | |
802 | int r; | |
803 | ||
804 | r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space, | |
805 | data, false); | |
806 | if (r < 0) { | |
807 | abort(); | |
808 | } | |
809 | } | |
810 | ||
811 | static void kvm_eventfd_add(MemoryListener *listener, | |
812 | MemoryRegionSection *section, | |
753d5e14 PB |
813 | bool match_data, uint64_t data, |
814 | EventNotifier *e) | |
80a1ea37 AK |
815 | { |
816 | if (section->address_space == get_system_memory()) { | |
753d5e14 PB |
817 | kvm_mem_ioeventfd_add(section, match_data, data, |
818 | event_notifier_get_fd(e)); | |
80a1ea37 | 819 | } else { |
753d5e14 PB |
820 | kvm_io_ioeventfd_add(section, match_data, data, |
821 | event_notifier_get_fd(e)); | |
80a1ea37 AK |
822 | } |
823 | } | |
824 | ||
825 | static void kvm_eventfd_del(MemoryListener *listener, | |
826 | MemoryRegionSection *section, | |
753d5e14 PB |
827 | bool match_data, uint64_t data, |
828 | EventNotifier *e) | |
80a1ea37 AK |
829 | { |
830 | if (section->address_space == get_system_memory()) { | |
753d5e14 PB |
831 | kvm_mem_ioeventfd_del(section, match_data, data, |
832 | event_notifier_get_fd(e)); | |
80a1ea37 | 833 | } else { |
753d5e14 PB |
834 | kvm_io_ioeventfd_del(section, match_data, data, |
835 | event_notifier_get_fd(e)); | |
80a1ea37 AK |
836 | } |
837 | } | |
838 | ||
a01672d3 | 839 | static MemoryListener kvm_memory_listener = { |
50c1e149 AK |
840 | .begin = kvm_begin, |
841 | .commit = kvm_commit, | |
a01672d3 AK |
842 | .region_add = kvm_region_add, |
843 | .region_del = kvm_region_del, | |
50c1e149 | 844 | .region_nop = kvm_region_nop, |
e5896b12 AP |
845 | .log_start = kvm_log_start, |
846 | .log_stop = kvm_log_stop, | |
a01672d3 AK |
847 | .log_sync = kvm_log_sync, |
848 | .log_global_start = kvm_log_global_start, | |
849 | .log_global_stop = kvm_log_global_stop, | |
80a1ea37 AK |
850 | .eventfd_add = kvm_eventfd_add, |
851 | .eventfd_del = kvm_eventfd_del, | |
72e22d2f | 852 | .priority = 10, |
7b8f3b78 MT |
853 | }; |
854 | ||
9349b4f9 | 855 | static void kvm_handle_interrupt(CPUArchState *env, int mask) |
aa7f74d1 JK |
856 | { |
857 | env->interrupt_request |= mask; | |
858 | ||
859 | if (!qemu_cpu_is_self(env)) { | |
860 | qemu_cpu_kick(env); | |
861 | } | |
862 | } | |
863 | ||
3889c3fa | 864 | int kvm_set_irq(KVMState *s, int irq, int level) |
84b058d7 JK |
865 | { |
866 | struct kvm_irq_level event; | |
867 | int ret; | |
868 | ||
7ae26bd4 | 869 | assert(kvm_async_interrupts_enabled()); |
84b058d7 JK |
870 | |
871 | event.level = level; | |
872 | event.irq = irq; | |
e333cd69 | 873 | ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); |
84b058d7 | 874 | if (ret < 0) { |
3889c3fa | 875 | perror("kvm_set_irq"); |
84b058d7 JK |
876 | abort(); |
877 | } | |
878 | ||
e333cd69 | 879 | return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; |
84b058d7 JK |
880 | } |
881 | ||
882 | #ifdef KVM_CAP_IRQ_ROUTING | |
d3d3bef0 JK |
883 | typedef struct KVMMSIRoute { |
884 | struct kvm_irq_routing_entry kroute; | |
885 | QTAILQ_ENTRY(KVMMSIRoute) entry; | |
886 | } KVMMSIRoute; | |
887 | ||
84b058d7 JK |
888 | static void set_gsi(KVMState *s, unsigned int gsi) |
889 | { | |
84b058d7 JK |
890 | s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32); |
891 | } | |
892 | ||
04fa27f5 JK |
893 | static void clear_gsi(KVMState *s, unsigned int gsi) |
894 | { | |
895 | s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32)); | |
896 | } | |
897 | ||
84b058d7 JK |
898 | static void kvm_init_irq_routing(KVMState *s) |
899 | { | |
04fa27f5 | 900 | int gsi_count, i; |
84b058d7 JK |
901 | |
902 | gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING); | |
903 | if (gsi_count > 0) { | |
904 | unsigned int gsi_bits, i; | |
905 | ||
906 | /* Round up so we can search ints using ffs */ | |
bc8c6788 | 907 | gsi_bits = ALIGN(gsi_count, 32); |
84b058d7 | 908 | s->used_gsi_bitmap = g_malloc0(gsi_bits / 8); |
4e2e4e63 | 909 | s->gsi_count = gsi_count; |
84b058d7 JK |
910 | |
911 | /* Mark any over-allocated bits as already in use */ | |
912 | for (i = gsi_count; i < gsi_bits; i++) { | |
913 | set_gsi(s, i); | |
914 | } | |
915 | } | |
916 | ||
917 | s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); | |
918 | s->nr_allocated_irq_routes = 0; | |
919 | ||
4a3adebb JK |
920 | if (!s->direct_msi) { |
921 | for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) { | |
922 | QTAILQ_INIT(&s->msi_hashtab[i]); | |
923 | } | |
04fa27f5 JK |
924 | } |
925 | ||
84b058d7 JK |
926 | kvm_arch_init_irq_routing(s); |
927 | } | |
928 | ||
e7b20308 JK |
929 | static void kvm_irqchip_commit_routes(KVMState *s) |
930 | { | |
931 | int ret; | |
932 | ||
933 | s->irq_routes->flags = 0; | |
934 | ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); | |
935 | assert(ret == 0); | |
936 | } | |
937 | ||
84b058d7 JK |
938 | static void kvm_add_routing_entry(KVMState *s, |
939 | struct kvm_irq_routing_entry *entry) | |
940 | { | |
941 | struct kvm_irq_routing_entry *new; | |
942 | int n, size; | |
943 | ||
944 | if (s->irq_routes->nr == s->nr_allocated_irq_routes) { | |
945 | n = s->nr_allocated_irq_routes * 2; | |
946 | if (n < 64) { | |
947 | n = 64; | |
948 | } | |
949 | size = sizeof(struct kvm_irq_routing); | |
950 | size += n * sizeof(*new); | |
951 | s->irq_routes = g_realloc(s->irq_routes, size); | |
952 | s->nr_allocated_irq_routes = n; | |
953 | } | |
954 | n = s->irq_routes->nr++; | |
955 | new = &s->irq_routes->entries[n]; | |
956 | memset(new, 0, sizeof(*new)); | |
957 | new->gsi = entry->gsi; | |
958 | new->type = entry->type; | |
959 | new->flags = entry->flags; | |
960 | new->u = entry->u; | |
961 | ||
962 | set_gsi(s, entry->gsi); | |
e7b20308 JK |
963 | |
964 | kvm_irqchip_commit_routes(s); | |
84b058d7 JK |
965 | } |
966 | ||
cc57407e JK |
967 | static int kvm_update_routing_entry(KVMState *s, |
968 | struct kvm_irq_routing_entry *new_entry) | |
969 | { | |
970 | struct kvm_irq_routing_entry *entry; | |
971 | int n; | |
972 | ||
973 | for (n = 0; n < s->irq_routes->nr; n++) { | |
974 | entry = &s->irq_routes->entries[n]; | |
975 | if (entry->gsi != new_entry->gsi) { | |
976 | continue; | |
977 | } | |
978 | ||
979 | entry->type = new_entry->type; | |
980 | entry->flags = new_entry->flags; | |
981 | entry->u = new_entry->u; | |
982 | ||
983 | kvm_irqchip_commit_routes(s); | |
984 | ||
985 | return 0; | |
986 | } | |
987 | ||
988 | return -ESRCH; | |
989 | } | |
990 | ||
1df186df | 991 | void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) |
84b058d7 JK |
992 | { |
993 | struct kvm_irq_routing_entry e; | |
994 | ||
4e2e4e63 JK |
995 | assert(pin < s->gsi_count); |
996 | ||
84b058d7 JK |
997 | e.gsi = irq; |
998 | e.type = KVM_IRQ_ROUTING_IRQCHIP; | |
999 | e.flags = 0; | |
1000 | e.u.irqchip.irqchip = irqchip; | |
1001 | e.u.irqchip.pin = pin; | |
1002 | kvm_add_routing_entry(s, &e); | |
1003 | } | |
1004 | ||
1e2aa8be | 1005 | void kvm_irqchip_release_virq(KVMState *s, int virq) |
04fa27f5 JK |
1006 | { |
1007 | struct kvm_irq_routing_entry *e; | |
1008 | int i; | |
1009 | ||
1010 | for (i = 0; i < s->irq_routes->nr; i++) { | |
1011 | e = &s->irq_routes->entries[i]; | |
1012 | if (e->gsi == virq) { | |
1013 | s->irq_routes->nr--; | |
1014 | *e = s->irq_routes->entries[s->irq_routes->nr]; | |
1015 | } | |
1016 | } | |
1017 | clear_gsi(s, virq); | |
e7b20308 JK |
1018 | |
1019 | kvm_irqchip_commit_routes(s); | |
04fa27f5 JK |
1020 | } |
1021 | ||
1022 | static unsigned int kvm_hash_msi(uint32_t data) | |
1023 | { | |
1024 | /* This is optimized for IA32 MSI layout. However, no other arch shall | |
1025 | * repeat the mistake of not providing a direct MSI injection API. */ | |
1026 | return data & 0xff; | |
1027 | } | |
1028 | ||
1029 | static void kvm_flush_dynamic_msi_routes(KVMState *s) | |
1030 | { | |
1031 | KVMMSIRoute *route, *next; | |
1032 | unsigned int hash; | |
1033 | ||
1034 | for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) { | |
1035 | QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) { | |
1036 | kvm_irqchip_release_virq(s, route->kroute.gsi); | |
1037 | QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry); | |
1038 | g_free(route); | |
1039 | } | |
1040 | } | |
1041 | } | |
1042 | ||
1043 | static int kvm_irqchip_get_virq(KVMState *s) | |
1044 | { | |
1045 | uint32_t *word = s->used_gsi_bitmap; | |
1046 | int max_words = ALIGN(s->gsi_count, 32) / 32; | |
1047 | int i, bit; | |
1048 | bool retry = true; | |
1049 | ||
1050 | again: | |
1051 | /* Return the lowest unused GSI in the bitmap */ | |
1052 | for (i = 0; i < max_words; i++) { | |
1053 | bit = ffs(~word[i]); | |
1054 | if (!bit) { | |
1055 | continue; | |
1056 | } | |
1057 | ||
1058 | return bit - 1 + i * 32; | |
1059 | } | |
4a3adebb | 1060 | if (!s->direct_msi && retry) { |
04fa27f5 JK |
1061 | retry = false; |
1062 | kvm_flush_dynamic_msi_routes(s); | |
1063 | goto again; | |
1064 | } | |
1065 | return -ENOSPC; | |
1066 | ||
1067 | } | |
1068 | ||
1069 | static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg) | |
1070 | { | |
1071 | unsigned int hash = kvm_hash_msi(msg.data); | |
1072 | KVMMSIRoute *route; | |
1073 | ||
1074 | QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) { | |
1075 | if (route->kroute.u.msi.address_lo == (uint32_t)msg.address && | |
1076 | route->kroute.u.msi.address_hi == (msg.address >> 32) && | |
1077 | route->kroute.u.msi.data == msg.data) { | |
1078 | return route; | |
1079 | } | |
1080 | } | |
1081 | return NULL; | |
1082 | } | |
1083 | ||
1084 | int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) | |
1085 | { | |
4a3adebb | 1086 | struct kvm_msi msi; |
04fa27f5 JK |
1087 | KVMMSIRoute *route; |
1088 | ||
4a3adebb JK |
1089 | if (s->direct_msi) { |
1090 | msi.address_lo = (uint32_t)msg.address; | |
1091 | msi.address_hi = msg.address >> 32; | |
1092 | msi.data = msg.data; | |
1093 | msi.flags = 0; | |
1094 | memset(msi.pad, 0, sizeof(msi.pad)); | |
1095 | ||
1096 | return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); | |
1097 | } | |
1098 | ||
04fa27f5 JK |
1099 | route = kvm_lookup_msi_route(s, msg); |
1100 | if (!route) { | |
e7b20308 | 1101 | int virq; |
04fa27f5 JK |
1102 | |
1103 | virq = kvm_irqchip_get_virq(s); | |
1104 | if (virq < 0) { | |
1105 | return virq; | |
1106 | } | |
1107 | ||
1108 | route = g_malloc(sizeof(KVMMSIRoute)); | |
1109 | route->kroute.gsi = virq; | |
1110 | route->kroute.type = KVM_IRQ_ROUTING_MSI; | |
1111 | route->kroute.flags = 0; | |
1112 | route->kroute.u.msi.address_lo = (uint32_t)msg.address; | |
1113 | route->kroute.u.msi.address_hi = msg.address >> 32; | |
1114 | route->kroute.u.msi.data = msg.data; | |
1115 | ||
1116 | kvm_add_routing_entry(s, &route->kroute); | |
1117 | ||
1118 | QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route, | |
1119 | entry); | |
04fa27f5 JK |
1120 | } |
1121 | ||
1122 | assert(route->kroute.type == KVM_IRQ_ROUTING_MSI); | |
1123 | ||
3889c3fa | 1124 | return kvm_set_irq(s, route->kroute.gsi, 1); |
04fa27f5 JK |
1125 | } |
1126 | ||
92b4e489 JK |
1127 | int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg) |
1128 | { | |
1129 | struct kvm_irq_routing_entry kroute; | |
1130 | int virq; | |
1131 | ||
f3e1bed8 | 1132 | if (!kvm_gsi_routing_enabled()) { |
92b4e489 JK |
1133 | return -ENOSYS; |
1134 | } | |
1135 | ||
1136 | virq = kvm_irqchip_get_virq(s); | |
1137 | if (virq < 0) { | |
1138 | return virq; | |
1139 | } | |
1140 | ||
1141 | kroute.gsi = virq; | |
1142 | kroute.type = KVM_IRQ_ROUTING_MSI; | |
1143 | kroute.flags = 0; | |
1144 | kroute.u.msi.address_lo = (uint32_t)msg.address; | |
1145 | kroute.u.msi.address_hi = msg.address >> 32; | |
1146 | kroute.u.msi.data = msg.data; | |
1147 | ||
1148 | kvm_add_routing_entry(s, &kroute); | |
1149 | ||
1150 | return virq; | |
1151 | } | |
1152 | ||
cc57407e JK |
1153 | int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) |
1154 | { | |
1155 | struct kvm_irq_routing_entry kroute; | |
1156 | ||
1157 | if (!kvm_irqchip_in_kernel()) { | |
1158 | return -ENOSYS; | |
1159 | } | |
1160 | ||
1161 | kroute.gsi = virq; | |
1162 | kroute.type = KVM_IRQ_ROUTING_MSI; | |
1163 | kroute.flags = 0; | |
1164 | kroute.u.msi.address_lo = (uint32_t)msg.address; | |
1165 | kroute.u.msi.address_hi = msg.address >> 32; | |
1166 | kroute.u.msi.data = msg.data; | |
1167 | ||
1168 | return kvm_update_routing_entry(s, &kroute); | |
1169 | } | |
1170 | ||
39853bbc JK |
1171 | static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign) |
1172 | { | |
1173 | struct kvm_irqfd irqfd = { | |
1174 | .fd = fd, | |
1175 | .gsi = virq, | |
1176 | .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, | |
1177 | }; | |
1178 | ||
cc7e0ddf | 1179 | if (!kvm_irqfds_enabled()) { |
39853bbc JK |
1180 | return -ENOSYS; |
1181 | } | |
1182 | ||
1183 | return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); | |
1184 | } | |
1185 | ||
84b058d7 JK |
1186 | #else /* !KVM_CAP_IRQ_ROUTING */ |
1187 | ||
1188 | static void kvm_init_irq_routing(KVMState *s) | |
1189 | { | |
1190 | } | |
04fa27f5 | 1191 | |
d3d3bef0 JK |
1192 | void kvm_irqchip_release_virq(KVMState *s, int virq) |
1193 | { | |
1194 | } | |
1195 | ||
04fa27f5 JK |
1196 | int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) |
1197 | { | |
1198 | abort(); | |
1199 | } | |
92b4e489 JK |
1200 | |
1201 | int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg) | |
1202 | { | |
df410675 | 1203 | return -ENOSYS; |
92b4e489 | 1204 | } |
39853bbc JK |
1205 | |
1206 | static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign) | |
1207 | { | |
1208 | abort(); | |
1209 | } | |
84b058d7 JK |
1210 | #endif /* !KVM_CAP_IRQ_ROUTING */ |
1211 | ||
b131c74a | 1212 | int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, int virq) |
39853bbc | 1213 | { |
b131c74a | 1214 | return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), virq, true); |
39853bbc JK |
1215 | } |
1216 | ||
b131c74a | 1217 | int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, int virq) |
15b2bd18 | 1218 | { |
b131c74a | 1219 | return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), virq, false); |
15b2bd18 PB |
1220 | } |
1221 | ||
84b058d7 JK |
1222 | static int kvm_irqchip_create(KVMState *s) |
1223 | { | |
1224 | QemuOptsList *list = qemu_find_opts("machine"); | |
1225 | int ret; | |
1226 | ||
1227 | if (QTAILQ_EMPTY(&list->head) || | |
1228 | !qemu_opt_get_bool(QTAILQ_FIRST(&list->head), | |
a24b9106 | 1229 | "kernel_irqchip", true) || |
84b058d7 JK |
1230 | !kvm_check_extension(s, KVM_CAP_IRQCHIP)) { |
1231 | return 0; | |
1232 | } | |
1233 | ||
1234 | ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); | |
1235 | if (ret < 0) { | |
1236 | fprintf(stderr, "Create kernel irqchip failed\n"); | |
1237 | return ret; | |
1238 | } | |
1239 | ||
3d4b2649 | 1240 | kvm_kernel_irqchip = true; |
7ae26bd4 PM |
1241 | /* If we have an in-kernel IRQ chip then we must have asynchronous |
1242 | * interrupt delivery (though the reverse is not necessarily true) | |
1243 | */ | |
1244 | kvm_async_interrupts_allowed = true; | |
84b058d7 JK |
1245 | |
1246 | kvm_init_irq_routing(s); | |
1247 | ||
1248 | return 0; | |
1249 | } | |
1250 | ||
3ed444e9 DH |
1251 | static int kvm_max_vcpus(KVMState *s) |
1252 | { | |
1253 | int ret; | |
1254 | ||
1255 | /* Find number of supported CPUs using the recommended | |
1256 | * procedure from the kernel API documentation to cope with | |
1257 | * older kernels that may be missing capabilities. | |
1258 | */ | |
1259 | ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); | |
1260 | if (ret) { | |
1261 | return ret; | |
1262 | } | |
1263 | ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS); | |
1264 | if (ret) { | |
1265 | return ret; | |
1266 | } | |
1267 | ||
1268 | return 4; | |
1269 | } | |
1270 | ||
cad1e282 | 1271 | int kvm_init(void) |
05330448 | 1272 | { |
168ccc11 JK |
1273 | static const char upgrade_note[] = |
1274 | "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" | |
1275 | "(see http://sourceforge.net/projects/kvm).\n"; | |
05330448 | 1276 | KVMState *s; |
94a8d39a | 1277 | const KVMCapabilityInfo *missing_cap; |
05330448 AL |
1278 | int ret; |
1279 | int i; | |
3ed444e9 | 1280 | int max_vcpus; |
05330448 | 1281 | |
7267c094 | 1282 | s = g_malloc0(sizeof(KVMState)); |
05330448 | 1283 | |
3145fcb6 DG |
1284 | /* |
1285 | * On systems where the kernel can support different base page | |
1286 | * sizes, host page size may be different from TARGET_PAGE_SIZE, | |
1287 | * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum | |
1288 | * page size for the system though. | |
1289 | */ | |
1290 | assert(TARGET_PAGE_SIZE <= getpagesize()); | |
1291 | ||
e22a25c9 | 1292 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
72cf2d4f | 1293 | QTAILQ_INIT(&s->kvm_sw_breakpoints); |
e22a25c9 | 1294 | #endif |
a426e122 | 1295 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { |
05330448 | 1296 | s->slots[i].slot = i; |
a426e122 | 1297 | } |
05330448 | 1298 | s->vmfd = -1; |
40ff6d7e | 1299 | s->fd = qemu_open("/dev/kvm", O_RDWR); |
05330448 AL |
1300 | if (s->fd == -1) { |
1301 | fprintf(stderr, "Could not access KVM kernel module: %m\n"); | |
1302 | ret = -errno; | |
1303 | goto err; | |
1304 | } | |
1305 | ||
1306 | ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); | |
1307 | if (ret < KVM_API_VERSION) { | |
a426e122 | 1308 | if (ret > 0) { |
05330448 | 1309 | ret = -EINVAL; |
a426e122 | 1310 | } |
05330448 AL |
1311 | fprintf(stderr, "kvm version too old\n"); |
1312 | goto err; | |
1313 | } | |
1314 | ||
1315 | if (ret > KVM_API_VERSION) { | |
1316 | ret = -EINVAL; | |
1317 | fprintf(stderr, "kvm version not supported\n"); | |
1318 | goto err; | |
1319 | } | |
1320 | ||
3ed444e9 DH |
1321 | max_vcpus = kvm_max_vcpus(s); |
1322 | if (smp_cpus > max_vcpus) { | |
1323 | ret = -EINVAL; | |
1324 | fprintf(stderr, "Number of SMP cpus requested (%d) exceeds max cpus " | |
1325 | "supported by KVM (%d)\n", smp_cpus, max_vcpus); | |
1326 | goto err; | |
1327 | } | |
1328 | ||
05330448 | 1329 | s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0); |
0104dcac AG |
1330 | if (s->vmfd < 0) { |
1331 | #ifdef TARGET_S390X | |
1332 | fprintf(stderr, "Please add the 'switch_amode' kernel parameter to " | |
1333 | "your host kernel command line\n"); | |
1334 | #endif | |
db9eae1c | 1335 | ret = s->vmfd; |
05330448 | 1336 | goto err; |
0104dcac | 1337 | } |
05330448 | 1338 | |
94a8d39a JK |
1339 | missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); |
1340 | if (!missing_cap) { | |
1341 | missing_cap = | |
1342 | kvm_check_extension_list(s, kvm_arch_required_capabilities); | |
05330448 | 1343 | } |
94a8d39a | 1344 | if (missing_cap) { |
ad7b8b33 | 1345 | ret = -EINVAL; |
94a8d39a JK |
1346 | fprintf(stderr, "kvm does not support %s\n%s", |
1347 | missing_cap->name, upgrade_note); | |
d85dc283 AL |
1348 | goto err; |
1349 | } | |
1350 | ||
ad7b8b33 | 1351 | s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); |
f65ed4c1 | 1352 | |
e69917e2 | 1353 | s->broken_set_mem_region = 1; |
14a09518 | 1354 | ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS); |
e69917e2 JK |
1355 | if (ret > 0) { |
1356 | s->broken_set_mem_region = 0; | |
1357 | } | |
e69917e2 | 1358 | |
a0fb002c JK |
1359 | #ifdef KVM_CAP_VCPU_EVENTS |
1360 | s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); | |
1361 | #endif | |
1362 | ||
b0b1d690 JK |
1363 | s->robust_singlestep = |
1364 | kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); | |
b0b1d690 | 1365 | |
ff44f1a3 JK |
1366 | #ifdef KVM_CAP_DEBUGREGS |
1367 | s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); | |
1368 | #endif | |
1369 | ||
f1665b21 SY |
1370 | #ifdef KVM_CAP_XSAVE |
1371 | s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE); | |
1372 | #endif | |
1373 | ||
f1665b21 SY |
1374 | #ifdef KVM_CAP_XCRS |
1375 | s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS); | |
1376 | #endif | |
1377 | ||
8a7c7393 JK |
1378 | #ifdef KVM_CAP_PIT_STATE2 |
1379 | s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2); | |
1380 | #endif | |
1381 | ||
d3d3bef0 | 1382 | #ifdef KVM_CAP_IRQ_ROUTING |
4a3adebb | 1383 | s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0); |
d3d3bef0 | 1384 | #endif |
4a3adebb | 1385 | |
3ab73842 JK |
1386 | s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3); |
1387 | ||
e333cd69 | 1388 | s->irq_set_ioctl = KVM_IRQ_LINE; |
8732fbd2 | 1389 | if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { |
e333cd69 | 1390 | s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; |
8732fbd2 PM |
1391 | } |
1392 | ||
cad1e282 | 1393 | ret = kvm_arch_init(s); |
a426e122 | 1394 | if (ret < 0) { |
05330448 | 1395 | goto err; |
a426e122 | 1396 | } |
05330448 | 1397 | |
84b058d7 JK |
1398 | ret = kvm_irqchip_create(s); |
1399 | if (ret < 0) { | |
1400 | goto err; | |
1401 | } | |
1402 | ||
05330448 | 1403 | kvm_state = s; |
7376e582 | 1404 | memory_listener_register(&kvm_memory_listener, NULL); |
05330448 | 1405 | |
d2f2b8a7 SH |
1406 | s->many_ioeventfds = kvm_check_many_ioeventfds(); |
1407 | ||
aa7f74d1 JK |
1408 | cpu_interrupt_handler = kvm_handle_interrupt; |
1409 | ||
05330448 AL |
1410 | return 0; |
1411 | ||
1412 | err: | |
6d1cc321 SW |
1413 | if (s->vmfd >= 0) { |
1414 | close(s->vmfd); | |
1415 | } | |
1416 | if (s->fd != -1) { | |
1417 | close(s->fd); | |
05330448 | 1418 | } |
7267c094 | 1419 | g_free(s); |
05330448 AL |
1420 | |
1421 | return ret; | |
1422 | } | |
1423 | ||
b30e93e9 JK |
1424 | static void kvm_handle_io(uint16_t port, void *data, int direction, int size, |
1425 | uint32_t count) | |
05330448 AL |
1426 | { |
1427 | int i; | |
1428 | uint8_t *ptr = data; | |
1429 | ||
1430 | for (i = 0; i < count; i++) { | |
1431 | if (direction == KVM_EXIT_IO_IN) { | |
1432 | switch (size) { | |
1433 | case 1: | |
afcea8cb | 1434 | stb_p(ptr, cpu_inb(port)); |
05330448 AL |
1435 | break; |
1436 | case 2: | |
afcea8cb | 1437 | stw_p(ptr, cpu_inw(port)); |
05330448 AL |
1438 | break; |
1439 | case 4: | |
afcea8cb | 1440 | stl_p(ptr, cpu_inl(port)); |
05330448 AL |
1441 | break; |
1442 | } | |
1443 | } else { | |
1444 | switch (size) { | |
1445 | case 1: | |
afcea8cb | 1446 | cpu_outb(port, ldub_p(ptr)); |
05330448 AL |
1447 | break; |
1448 | case 2: | |
afcea8cb | 1449 | cpu_outw(port, lduw_p(ptr)); |
05330448 AL |
1450 | break; |
1451 | case 4: | |
afcea8cb | 1452 | cpu_outl(port, ldl_p(ptr)); |
05330448 AL |
1453 | break; |
1454 | } | |
1455 | } | |
1456 | ||
1457 | ptr += size; | |
1458 | } | |
05330448 AL |
1459 | } |
1460 | ||
9349b4f9 | 1461 | static int kvm_handle_internal_error(CPUArchState *env, struct kvm_run *run) |
7c80eef8 | 1462 | { |
bb44e0d1 | 1463 | fprintf(stderr, "KVM internal error."); |
7c80eef8 MT |
1464 | if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { |
1465 | int i; | |
1466 | ||
bb44e0d1 | 1467 | fprintf(stderr, " Suberror: %d\n", run->internal.suberror); |
7c80eef8 MT |
1468 | for (i = 0; i < run->internal.ndata; ++i) { |
1469 | fprintf(stderr, "extra data[%d]: %"PRIx64"\n", | |
1470 | i, (uint64_t)run->internal.data[i]); | |
1471 | } | |
bb44e0d1 JK |
1472 | } else { |
1473 | fprintf(stderr, "\n"); | |
7c80eef8 | 1474 | } |
7c80eef8 MT |
1475 | if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { |
1476 | fprintf(stderr, "emulation failure\n"); | |
a426e122 | 1477 | if (!kvm_arch_stop_on_emulation_error(env)) { |
f5c848ee | 1478 | cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE); |
d73cd8f4 | 1479 | return EXCP_INTERRUPT; |
a426e122 | 1480 | } |
7c80eef8 MT |
1481 | } |
1482 | /* FIXME: Should trigger a qmp message to let management know | |
1483 | * something went wrong. | |
1484 | */ | |
73aaec4a | 1485 | return -1; |
7c80eef8 | 1486 | } |
7c80eef8 | 1487 | |
62a2744c | 1488 | void kvm_flush_coalesced_mmio_buffer(void) |
f65ed4c1 | 1489 | { |
f65ed4c1 | 1490 | KVMState *s = kvm_state; |
1cae88b9 AK |
1491 | |
1492 | if (s->coalesced_flush_in_progress) { | |
1493 | return; | |
1494 | } | |
1495 | ||
1496 | s->coalesced_flush_in_progress = true; | |
1497 | ||
62a2744c SY |
1498 | if (s->coalesced_mmio_ring) { |
1499 | struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; | |
f65ed4c1 AL |
1500 | while (ring->first != ring->last) { |
1501 | struct kvm_coalesced_mmio *ent; | |
1502 | ||
1503 | ent = &ring->coalesced_mmio[ring->first]; | |
1504 | ||
1505 | cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); | |
85199474 | 1506 | smp_wmb(); |
f65ed4c1 AL |
1507 | ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; |
1508 | } | |
1509 | } | |
1cae88b9 AK |
1510 | |
1511 | s->coalesced_flush_in_progress = false; | |
f65ed4c1 AL |
1512 | } |
1513 | ||
2705d56a | 1514 | static void do_kvm_cpu_synchronize_state(void *_env) |
4c0960c0 | 1515 | { |
9349b4f9 | 1516 | CPUArchState *env = _env; |
2705d56a | 1517 | |
9ded2744 | 1518 | if (!env->kvm_vcpu_dirty) { |
4c0960c0 | 1519 | kvm_arch_get_registers(env); |
9ded2744 | 1520 | env->kvm_vcpu_dirty = 1; |
4c0960c0 AK |
1521 | } |
1522 | } | |
1523 | ||
9349b4f9 | 1524 | void kvm_cpu_synchronize_state(CPUArchState *env) |
2705d56a | 1525 | { |
a426e122 | 1526 | if (!env->kvm_vcpu_dirty) { |
2705d56a | 1527 | run_on_cpu(env, do_kvm_cpu_synchronize_state, env); |
a426e122 | 1528 | } |
2705d56a JK |
1529 | } |
1530 | ||
9349b4f9 | 1531 | void kvm_cpu_synchronize_post_reset(CPUArchState *env) |
ea375f9a JK |
1532 | { |
1533 | kvm_arch_put_registers(env, KVM_PUT_RESET_STATE); | |
1534 | env->kvm_vcpu_dirty = 0; | |
1535 | } | |
1536 | ||
9349b4f9 | 1537 | void kvm_cpu_synchronize_post_init(CPUArchState *env) |
ea375f9a JK |
1538 | { |
1539 | kvm_arch_put_registers(env, KVM_PUT_FULL_STATE); | |
1540 | env->kvm_vcpu_dirty = 0; | |
1541 | } | |
1542 | ||
9349b4f9 | 1543 | int kvm_cpu_exec(CPUArchState *env) |
05330448 AL |
1544 | { |
1545 | struct kvm_run *run = env->kvm_run; | |
7cbb533f | 1546 | int ret, run_ret; |
05330448 | 1547 | |
8c0d577e | 1548 | DPRINTF("kvm_cpu_exec()\n"); |
05330448 | 1549 | |
99036865 | 1550 | if (kvm_arch_process_async_events(env)) { |
9ccfac9e | 1551 | env->exit_request = 0; |
6792a57b | 1552 | return EXCP_HLT; |
9ccfac9e | 1553 | } |
0af691d7 | 1554 | |
9ccfac9e | 1555 | do { |
9ded2744 | 1556 | if (env->kvm_vcpu_dirty) { |
ea375f9a | 1557 | kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE); |
9ded2744 | 1558 | env->kvm_vcpu_dirty = 0; |
4c0960c0 AK |
1559 | } |
1560 | ||
8c14c173 | 1561 | kvm_arch_pre_run(env, run); |
9ccfac9e JK |
1562 | if (env->exit_request) { |
1563 | DPRINTF("interrupt exit requested\n"); | |
1564 | /* | |
1565 | * KVM requires us to reenter the kernel after IO exits to complete | |
1566 | * instruction emulation. This self-signal will ensure that we | |
1567 | * leave ASAP again. | |
1568 | */ | |
1569 | qemu_cpu_kick_self(); | |
1570 | } | |
d549db5a | 1571 | qemu_mutex_unlock_iothread(); |
9ccfac9e | 1572 | |
7cbb533f | 1573 | run_ret = kvm_vcpu_ioctl(env, KVM_RUN, 0); |
9ccfac9e | 1574 | |
d549db5a | 1575 | qemu_mutex_lock_iothread(); |
05330448 AL |
1576 | kvm_arch_post_run(env, run); |
1577 | ||
7cbb533f | 1578 | if (run_ret < 0) { |
dc77d341 JK |
1579 | if (run_ret == -EINTR || run_ret == -EAGAIN) { |
1580 | DPRINTF("io window exit\n"); | |
d73cd8f4 | 1581 | ret = EXCP_INTERRUPT; |
dc77d341 JK |
1582 | break; |
1583 | } | |
7b011fbc ME |
1584 | fprintf(stderr, "error: kvm run failed %s\n", |
1585 | strerror(-run_ret)); | |
05330448 AL |
1586 | abort(); |
1587 | } | |
1588 | ||
05330448 AL |
1589 | switch (run->exit_reason) { |
1590 | case KVM_EXIT_IO: | |
8c0d577e | 1591 | DPRINTF("handle_io\n"); |
b30e93e9 JK |
1592 | kvm_handle_io(run->io.port, |
1593 | (uint8_t *)run + run->io.data_offset, | |
1594 | run->io.direction, | |
1595 | run->io.size, | |
1596 | run->io.count); | |
d73cd8f4 | 1597 | ret = 0; |
05330448 AL |
1598 | break; |
1599 | case KVM_EXIT_MMIO: | |
8c0d577e | 1600 | DPRINTF("handle_mmio\n"); |
05330448 AL |
1601 | cpu_physical_memory_rw(run->mmio.phys_addr, |
1602 | run->mmio.data, | |
1603 | run->mmio.len, | |
1604 | run->mmio.is_write); | |
d73cd8f4 | 1605 | ret = 0; |
05330448 AL |
1606 | break; |
1607 | case KVM_EXIT_IRQ_WINDOW_OPEN: | |
8c0d577e | 1608 | DPRINTF("irq_window_open\n"); |
d73cd8f4 | 1609 | ret = EXCP_INTERRUPT; |
05330448 AL |
1610 | break; |
1611 | case KVM_EXIT_SHUTDOWN: | |
8c0d577e | 1612 | DPRINTF("shutdown\n"); |
05330448 | 1613 | qemu_system_reset_request(); |
d73cd8f4 | 1614 | ret = EXCP_INTERRUPT; |
05330448 AL |
1615 | break; |
1616 | case KVM_EXIT_UNKNOWN: | |
bb44e0d1 JK |
1617 | fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", |
1618 | (uint64_t)run->hw.hardware_exit_reason); | |
73aaec4a | 1619 | ret = -1; |
05330448 | 1620 | break; |
7c80eef8 | 1621 | case KVM_EXIT_INTERNAL_ERROR: |
73aaec4a | 1622 | ret = kvm_handle_internal_error(env, run); |
7c80eef8 | 1623 | break; |
05330448 | 1624 | default: |
8c0d577e | 1625 | DPRINTF("kvm_arch_handle_exit\n"); |
05330448 AL |
1626 | ret = kvm_arch_handle_exit(env, run); |
1627 | break; | |
1628 | } | |
d73cd8f4 | 1629 | } while (ret == 0); |
05330448 | 1630 | |
73aaec4a | 1631 | if (ret < 0) { |
f5c848ee | 1632 | cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE); |
0461d5a6 | 1633 | vm_stop(RUN_STATE_INTERNAL_ERROR); |
becfc390 AL |
1634 | } |
1635 | ||
6792a57b | 1636 | env->exit_request = 0; |
05330448 AL |
1637 | return ret; |
1638 | } | |
1639 | ||
984b5181 | 1640 | int kvm_ioctl(KVMState *s, int type, ...) |
05330448 AL |
1641 | { |
1642 | int ret; | |
984b5181 AL |
1643 | void *arg; |
1644 | va_list ap; | |
05330448 | 1645 | |
984b5181 AL |
1646 | va_start(ap, type); |
1647 | arg = va_arg(ap, void *); | |
1648 | va_end(ap); | |
1649 | ||
1650 | ret = ioctl(s->fd, type, arg); | |
a426e122 | 1651 | if (ret == -1) { |
05330448 | 1652 | ret = -errno; |
a426e122 | 1653 | } |
05330448 AL |
1654 | return ret; |
1655 | } | |
1656 | ||
984b5181 | 1657 | int kvm_vm_ioctl(KVMState *s, int type, ...) |
05330448 AL |
1658 | { |
1659 | int ret; | |
984b5181 AL |
1660 | void *arg; |
1661 | va_list ap; | |
1662 | ||
1663 | va_start(ap, type); | |
1664 | arg = va_arg(ap, void *); | |
1665 | va_end(ap); | |
05330448 | 1666 | |
984b5181 | 1667 | ret = ioctl(s->vmfd, type, arg); |
a426e122 | 1668 | if (ret == -1) { |
05330448 | 1669 | ret = -errno; |
a426e122 | 1670 | } |
05330448 AL |
1671 | return ret; |
1672 | } | |
1673 | ||
9349b4f9 | 1674 | int kvm_vcpu_ioctl(CPUArchState *env, int type, ...) |
05330448 AL |
1675 | { |
1676 | int ret; | |
984b5181 AL |
1677 | void *arg; |
1678 | va_list ap; | |
1679 | ||
1680 | va_start(ap, type); | |
1681 | arg = va_arg(ap, void *); | |
1682 | va_end(ap); | |
05330448 | 1683 | |
984b5181 | 1684 | ret = ioctl(env->kvm_fd, type, arg); |
a426e122 | 1685 | if (ret == -1) { |
05330448 | 1686 | ret = -errno; |
a426e122 | 1687 | } |
05330448 AL |
1688 | return ret; |
1689 | } | |
bd322087 AL |
1690 | |
1691 | int kvm_has_sync_mmu(void) | |
1692 | { | |
94a8d39a | 1693 | return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); |
bd322087 | 1694 | } |
e22a25c9 | 1695 | |
a0fb002c JK |
1696 | int kvm_has_vcpu_events(void) |
1697 | { | |
1698 | return kvm_state->vcpu_events; | |
1699 | } | |
1700 | ||
b0b1d690 JK |
1701 | int kvm_has_robust_singlestep(void) |
1702 | { | |
1703 | return kvm_state->robust_singlestep; | |
1704 | } | |
1705 | ||
ff44f1a3 JK |
1706 | int kvm_has_debugregs(void) |
1707 | { | |
1708 | return kvm_state->debugregs; | |
1709 | } | |
1710 | ||
f1665b21 SY |
1711 | int kvm_has_xsave(void) |
1712 | { | |
1713 | return kvm_state->xsave; | |
1714 | } | |
1715 | ||
1716 | int kvm_has_xcrs(void) | |
1717 | { | |
1718 | return kvm_state->xcrs; | |
1719 | } | |
1720 | ||
8a7c7393 JK |
1721 | int kvm_has_pit_state2(void) |
1722 | { | |
1723 | return kvm_state->pit_state2; | |
1724 | } | |
1725 | ||
d2f2b8a7 SH |
1726 | int kvm_has_many_ioeventfds(void) |
1727 | { | |
1728 | if (!kvm_enabled()) { | |
1729 | return 0; | |
1730 | } | |
1731 | return kvm_state->many_ioeventfds; | |
1732 | } | |
1733 | ||
84b058d7 JK |
1734 | int kvm_has_gsi_routing(void) |
1735 | { | |
a9c5eb0d | 1736 | #ifdef KVM_CAP_IRQ_ROUTING |
84b058d7 | 1737 | return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); |
a9c5eb0d AG |
1738 | #else |
1739 | return false; | |
1740 | #endif | |
84b058d7 JK |
1741 | } |
1742 | ||
3ab73842 JK |
1743 | int kvm_has_intx_set_mask(void) |
1744 | { | |
1745 | return kvm_state->intx_set_mask; | |
1746 | } | |
1747 | ||
fdec9918 CB |
1748 | void *kvm_vmalloc(ram_addr_t size) |
1749 | { | |
1750 | #ifdef TARGET_S390X | |
1751 | void *mem; | |
1752 | ||
1753 | mem = kvm_arch_vmalloc(size); | |
1754 | if (mem) { | |
1755 | return mem; | |
1756 | } | |
1757 | #endif | |
1758 | return qemu_vmalloc(size); | |
1759 | } | |
1760 | ||
6f0437e8 JK |
1761 | void kvm_setup_guest_memory(void *start, size_t size) |
1762 | { | |
62fe8331 CB |
1763 | #ifdef CONFIG_VALGRIND_H |
1764 | VALGRIND_MAKE_MEM_DEFINED(start, size); | |
1765 | #endif | |
6f0437e8 | 1766 | if (!kvm_has_sync_mmu()) { |
e78815a5 | 1767 | int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK); |
6f0437e8 JK |
1768 | |
1769 | if (ret) { | |
e78815a5 AF |
1770 | perror("qemu_madvise"); |
1771 | fprintf(stderr, | |
1772 | "Need MADV_DONTFORK in absence of synchronous KVM MMU\n"); | |
6f0437e8 JK |
1773 | exit(1); |
1774 | } | |
6f0437e8 JK |
1775 | } |
1776 | } | |
1777 | ||
e22a25c9 | 1778 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
9349b4f9 | 1779 | struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUArchState *env, |
e22a25c9 AL |
1780 | target_ulong pc) |
1781 | { | |
1782 | struct kvm_sw_breakpoint *bp; | |
1783 | ||
72cf2d4f | 1784 | QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) { |
a426e122 | 1785 | if (bp->pc == pc) { |
e22a25c9 | 1786 | return bp; |
a426e122 | 1787 | } |
e22a25c9 AL |
1788 | } |
1789 | return NULL; | |
1790 | } | |
1791 | ||
9349b4f9 | 1792 | int kvm_sw_breakpoints_active(CPUArchState *env) |
e22a25c9 | 1793 | { |
72cf2d4f | 1794 | return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints); |
e22a25c9 AL |
1795 | } |
1796 | ||
452e4751 GC |
1797 | struct kvm_set_guest_debug_data { |
1798 | struct kvm_guest_debug dbg; | |
9349b4f9 | 1799 | CPUArchState *env; |
452e4751 GC |
1800 | int err; |
1801 | }; | |
1802 | ||
1803 | static void kvm_invoke_set_guest_debug(void *data) | |
1804 | { | |
1805 | struct kvm_set_guest_debug_data *dbg_data = data; | |
9349b4f9 | 1806 | CPUArchState *env = dbg_data->env; |
b3807725 | 1807 | |
b3807725 | 1808 | dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg); |
452e4751 GC |
1809 | } |
1810 | ||
9349b4f9 | 1811 | int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap) |
e22a25c9 | 1812 | { |
452e4751 | 1813 | struct kvm_set_guest_debug_data data; |
e22a25c9 | 1814 | |
b0b1d690 | 1815 | data.dbg.control = reinject_trap; |
e22a25c9 | 1816 | |
b0b1d690 JK |
1817 | if (env->singlestep_enabled) { |
1818 | data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; | |
1819 | } | |
452e4751 | 1820 | kvm_arch_update_guest_debug(env, &data.dbg); |
452e4751 | 1821 | data.env = env; |
e22a25c9 | 1822 | |
be41cbe0 | 1823 | run_on_cpu(env, kvm_invoke_set_guest_debug, &data); |
452e4751 | 1824 | return data.err; |
e22a25c9 AL |
1825 | } |
1826 | ||
9349b4f9 | 1827 | int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr, |
e22a25c9 AL |
1828 | target_ulong len, int type) |
1829 | { | |
1830 | struct kvm_sw_breakpoint *bp; | |
9349b4f9 | 1831 | CPUArchState *env; |
e22a25c9 AL |
1832 | int err; |
1833 | ||
1834 | if (type == GDB_BREAKPOINT_SW) { | |
1835 | bp = kvm_find_sw_breakpoint(current_env, addr); | |
1836 | if (bp) { | |
1837 | bp->use_count++; | |
1838 | return 0; | |
1839 | } | |
1840 | ||
7267c094 | 1841 | bp = g_malloc(sizeof(struct kvm_sw_breakpoint)); |
a426e122 | 1842 | if (!bp) { |
e22a25c9 | 1843 | return -ENOMEM; |
a426e122 | 1844 | } |
e22a25c9 AL |
1845 | |
1846 | bp->pc = addr; | |
1847 | bp->use_count = 1; | |
1848 | err = kvm_arch_insert_sw_breakpoint(current_env, bp); | |
1849 | if (err) { | |
7267c094 | 1850 | g_free(bp); |
e22a25c9 AL |
1851 | return err; |
1852 | } | |
1853 | ||
72cf2d4f | 1854 | QTAILQ_INSERT_HEAD(¤t_env->kvm_state->kvm_sw_breakpoints, |
e22a25c9 AL |
1855 | bp, entry); |
1856 | } else { | |
1857 | err = kvm_arch_insert_hw_breakpoint(addr, len, type); | |
a426e122 | 1858 | if (err) { |
e22a25c9 | 1859 | return err; |
a426e122 | 1860 | } |
e22a25c9 AL |
1861 | } |
1862 | ||
1863 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
1864 | err = kvm_update_guest_debug(env, 0); | |
a426e122 | 1865 | if (err) { |
e22a25c9 | 1866 | return err; |
a426e122 | 1867 | } |
e22a25c9 AL |
1868 | } |
1869 | return 0; | |
1870 | } | |
1871 | ||
9349b4f9 | 1872 | int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr, |
e22a25c9 AL |
1873 | target_ulong len, int type) |
1874 | { | |
1875 | struct kvm_sw_breakpoint *bp; | |
9349b4f9 | 1876 | CPUArchState *env; |
e22a25c9 AL |
1877 | int err; |
1878 | ||
1879 | if (type == GDB_BREAKPOINT_SW) { | |
1880 | bp = kvm_find_sw_breakpoint(current_env, addr); | |
a426e122 | 1881 | if (!bp) { |
e22a25c9 | 1882 | return -ENOENT; |
a426e122 | 1883 | } |
e22a25c9 AL |
1884 | |
1885 | if (bp->use_count > 1) { | |
1886 | bp->use_count--; | |
1887 | return 0; | |
1888 | } | |
1889 | ||
1890 | err = kvm_arch_remove_sw_breakpoint(current_env, bp); | |
a426e122 | 1891 | if (err) { |
e22a25c9 | 1892 | return err; |
a426e122 | 1893 | } |
e22a25c9 | 1894 | |
72cf2d4f | 1895 | QTAILQ_REMOVE(¤t_env->kvm_state->kvm_sw_breakpoints, bp, entry); |
7267c094 | 1896 | g_free(bp); |
e22a25c9 AL |
1897 | } else { |
1898 | err = kvm_arch_remove_hw_breakpoint(addr, len, type); | |
a426e122 | 1899 | if (err) { |
e22a25c9 | 1900 | return err; |
a426e122 | 1901 | } |
e22a25c9 AL |
1902 | } |
1903 | ||
1904 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
1905 | err = kvm_update_guest_debug(env, 0); | |
a426e122 | 1906 | if (err) { |
e22a25c9 | 1907 | return err; |
a426e122 | 1908 | } |
e22a25c9 AL |
1909 | } |
1910 | return 0; | |
1911 | } | |
1912 | ||
9349b4f9 | 1913 | void kvm_remove_all_breakpoints(CPUArchState *current_env) |
e22a25c9 AL |
1914 | { |
1915 | struct kvm_sw_breakpoint *bp, *next; | |
1916 | KVMState *s = current_env->kvm_state; | |
9349b4f9 | 1917 | CPUArchState *env; |
e22a25c9 | 1918 | |
72cf2d4f | 1919 | QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { |
e22a25c9 AL |
1920 | if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) { |
1921 | /* Try harder to find a CPU that currently sees the breakpoint. */ | |
1922 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
a426e122 | 1923 | if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) { |
e22a25c9 | 1924 | break; |
a426e122 | 1925 | } |
e22a25c9 AL |
1926 | } |
1927 | } | |
1928 | } | |
1929 | kvm_arch_remove_all_hw_breakpoints(); | |
1930 | ||
a426e122 | 1931 | for (env = first_cpu; env != NULL; env = env->next_cpu) { |
e22a25c9 | 1932 | kvm_update_guest_debug(env, 0); |
a426e122 | 1933 | } |
e22a25c9 AL |
1934 | } |
1935 | ||
1936 | #else /* !KVM_CAP_SET_GUEST_DEBUG */ | |
1937 | ||
9349b4f9 | 1938 | int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap) |
e22a25c9 AL |
1939 | { |
1940 | return -EINVAL; | |
1941 | } | |
1942 | ||
9349b4f9 | 1943 | int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr, |
e22a25c9 AL |
1944 | target_ulong len, int type) |
1945 | { | |
1946 | return -EINVAL; | |
1947 | } | |
1948 | ||
9349b4f9 | 1949 | int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr, |
e22a25c9 AL |
1950 | target_ulong len, int type) |
1951 | { | |
1952 | return -EINVAL; | |
1953 | } | |
1954 | ||
9349b4f9 | 1955 | void kvm_remove_all_breakpoints(CPUArchState *current_env) |
e22a25c9 AL |
1956 | { |
1957 | } | |
1958 | #endif /* !KVM_CAP_SET_GUEST_DEBUG */ | |
cc84de95 | 1959 | |
9349b4f9 | 1960 | int kvm_set_signal_mask(CPUArchState *env, const sigset_t *sigset) |
cc84de95 MT |
1961 | { |
1962 | struct kvm_signal_mask *sigmask; | |
1963 | int r; | |
1964 | ||
a426e122 | 1965 | if (!sigset) { |
cc84de95 | 1966 | return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL); |
a426e122 | 1967 | } |
cc84de95 | 1968 | |
7267c094 | 1969 | sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); |
cc84de95 MT |
1970 | |
1971 | sigmask->len = 8; | |
1972 | memcpy(sigmask->sigset, sigset, sizeof(*sigset)); | |
1973 | r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask); | |
7267c094 | 1974 | g_free(sigmask); |
cc84de95 MT |
1975 | |
1976 | return r; | |
1977 | } | |
ca821806 | 1978 | |
4b8f1c88 MT |
1979 | int kvm_set_ioeventfd_mmio(int fd, uint32_t addr, uint32_t val, bool assign, |
1980 | uint32_t size) | |
44f1a3d8 | 1981 | { |
44f1a3d8 CM |
1982 | int ret; |
1983 | struct kvm_ioeventfd iofd; | |
1984 | ||
1985 | iofd.datamatch = val; | |
1986 | iofd.addr = addr; | |
4b8f1c88 | 1987 | iofd.len = size; |
44f1a3d8 CM |
1988 | iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH; |
1989 | iofd.fd = fd; | |
1990 | ||
1991 | if (!kvm_enabled()) { | |
1992 | return -ENOSYS; | |
1993 | } | |
1994 | ||
1995 | if (!assign) { | |
1996 | iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; | |
1997 | } | |
1998 | ||
1999 | ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); | |
2000 | ||
2001 | if (ret < 0) { | |
2002 | return -errno; | |
2003 | } | |
2004 | ||
2005 | return 0; | |
44f1a3d8 CM |
2006 | } |
2007 | ||
ca821806 MT |
2008 | int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign) |
2009 | { | |
2010 | struct kvm_ioeventfd kick = { | |
2011 | .datamatch = val, | |
2012 | .addr = addr, | |
2013 | .len = 2, | |
2014 | .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO, | |
2015 | .fd = fd, | |
2016 | }; | |
2017 | int r; | |
a426e122 | 2018 | if (!kvm_enabled()) { |
ca821806 | 2019 | return -ENOSYS; |
a426e122 JK |
2020 | } |
2021 | if (!assign) { | |
ca821806 | 2022 | kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; |
a426e122 | 2023 | } |
ca821806 | 2024 | r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); |
a426e122 | 2025 | if (r < 0) { |
ca821806 | 2026 | return r; |
a426e122 | 2027 | } |
ca821806 | 2028 | return 0; |
98c8573e | 2029 | } |
a1b87fe0 | 2030 | |
9349b4f9 | 2031 | int kvm_on_sigbus_vcpu(CPUArchState *env, int code, void *addr) |
a1b87fe0 JK |
2032 | { |
2033 | return kvm_arch_on_sigbus_vcpu(env, code, addr); | |
2034 | } | |
2035 | ||
2036 | int kvm_on_sigbus(int code, void *addr) | |
2037 | { | |
2038 | return kvm_arch_on_sigbus(code, addr); | |
2039 | } |