]>
Commit | Line | Data |
---|---|---|
b5ff1b31 | 1 | #include "cpu.h" |
022c62cb | 2 | #include "exec/gdbstub.h" |
7b59220e | 3 | #include "helper.h" |
1de7afc9 | 4 | #include "qemu/host-utils.h" |
78027bb6 | 5 | #include "sysemu/arch_init.h" |
9c17d615 | 6 | #include "sysemu/sysemu.h" |
1de7afc9 | 7 | #include "qemu/bitops.h" |
eb0ecd5a WN |
8 | #include "qemu/crc32c.h" |
9 | #include <zlib.h> /* For crc32 */ | |
0b03bdfc | 10 | |
4a501606 PM |
11 | #ifndef CONFIG_USER_ONLY |
12 | static inline int get_phys_addr(CPUARMState *env, uint32_t address, | |
13 | int access_type, int is_user, | |
a8170e5e | 14 | hwaddr *phys_ptr, int *prot, |
4a501606 PM |
15 | target_ulong *page_size); |
16 | #endif | |
17 | ||
0ecb72a5 | 18 | static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) |
56aebc89 PB |
19 | { |
20 | int nregs; | |
21 | ||
22 | /* VFP data registers are always little-endian. */ | |
23 | nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; | |
24 | if (reg < nregs) { | |
25 | stfq_le_p(buf, env->vfp.regs[reg]); | |
26 | return 8; | |
27 | } | |
28 | if (arm_feature(env, ARM_FEATURE_NEON)) { | |
29 | /* Aliases for Q regs. */ | |
30 | nregs += 16; | |
31 | if (reg < nregs) { | |
32 | stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]); | |
33 | stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]); | |
34 | return 16; | |
35 | } | |
36 | } | |
37 | switch (reg - nregs) { | |
38 | case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4; | |
39 | case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4; | |
40 | case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4; | |
41 | } | |
42 | return 0; | |
43 | } | |
44 | ||
0ecb72a5 | 45 | static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) |
56aebc89 PB |
46 | { |
47 | int nregs; | |
48 | ||
49 | nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; | |
50 | if (reg < nregs) { | |
51 | env->vfp.regs[reg] = ldfq_le_p(buf); | |
52 | return 8; | |
53 | } | |
54 | if (arm_feature(env, ARM_FEATURE_NEON)) { | |
55 | nregs += 16; | |
56 | if (reg < nregs) { | |
57 | env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf); | |
58 | env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8); | |
59 | return 16; | |
60 | } | |
61 | } | |
62 | switch (reg - nregs) { | |
63 | case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; | |
64 | case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4; | |
71b3c3de | 65 | case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; |
56aebc89 PB |
66 | } |
67 | return 0; | |
68 | } | |
69 | ||
6a669427 PM |
70 | static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) |
71 | { | |
72 | switch (reg) { | |
73 | case 0 ... 31: | |
74 | /* 128 bit FP register */ | |
75 | stfq_le_p(buf, env->vfp.regs[reg * 2]); | |
76 | stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]); | |
77 | return 16; | |
78 | case 32: | |
79 | /* FPSR */ | |
80 | stl_p(buf, vfp_get_fpsr(env)); | |
81 | return 4; | |
82 | case 33: | |
83 | /* FPCR */ | |
84 | stl_p(buf, vfp_get_fpcr(env)); | |
85 | return 4; | |
86 | default: | |
87 | return 0; | |
88 | } | |
89 | } | |
90 | ||
91 | static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) | |
92 | { | |
93 | switch (reg) { | |
94 | case 0 ... 31: | |
95 | /* 128 bit FP register */ | |
96 | env->vfp.regs[reg * 2] = ldfq_le_p(buf); | |
97 | env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8); | |
98 | return 16; | |
99 | case 32: | |
100 | /* FPSR */ | |
101 | vfp_set_fpsr(env, ldl_p(buf)); | |
102 | return 4; | |
103 | case 33: | |
104 | /* FPCR */ | |
105 | vfp_set_fpcr(env, ldl_p(buf)); | |
106 | return 4; | |
107 | default: | |
108 | return 0; | |
109 | } | |
110 | } | |
111 | ||
c4241c7d | 112 | static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) |
d4e6df63 | 113 | { |
67ed771d | 114 | if (cpreg_field_is_64bit(ri)) { |
c4241c7d | 115 | return CPREG_FIELD64(env, ri); |
22d9e1a9 | 116 | } else { |
c4241c7d | 117 | return CPREG_FIELD32(env, ri); |
22d9e1a9 | 118 | } |
d4e6df63 PM |
119 | } |
120 | ||
c4241c7d PM |
121 | static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, |
122 | uint64_t value) | |
d4e6df63 | 123 | { |
67ed771d | 124 | if (cpreg_field_is_64bit(ri)) { |
22d9e1a9 PM |
125 | CPREG_FIELD64(env, ri) = value; |
126 | } else { | |
127 | CPREG_FIELD32(env, ri) = value; | |
128 | } | |
d4e6df63 PM |
129 | } |
130 | ||
59a1c327 | 131 | static uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) |
721fae12 | 132 | { |
59a1c327 | 133 | /* Raw read of a coprocessor register (as needed for migration, etc). */ |
721fae12 | 134 | if (ri->type & ARM_CP_CONST) { |
59a1c327 | 135 | return ri->resetvalue; |
721fae12 | 136 | } else if (ri->raw_readfn) { |
59a1c327 | 137 | return ri->raw_readfn(env, ri); |
721fae12 | 138 | } else if (ri->readfn) { |
59a1c327 | 139 | return ri->readfn(env, ri); |
721fae12 | 140 | } else { |
59a1c327 | 141 | return raw_read(env, ri); |
721fae12 | 142 | } |
721fae12 PM |
143 | } |
144 | ||
59a1c327 | 145 | static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, |
7900e9f1 | 146 | uint64_t v) |
721fae12 PM |
147 | { |
148 | /* Raw write of a coprocessor register (as needed for migration, etc). | |
721fae12 PM |
149 | * Note that constant registers are treated as write-ignored; the |
150 | * caller should check for success by whether a readback gives the | |
151 | * value written. | |
152 | */ | |
153 | if (ri->type & ARM_CP_CONST) { | |
59a1c327 | 154 | return; |
721fae12 | 155 | } else if (ri->raw_writefn) { |
c4241c7d | 156 | ri->raw_writefn(env, ri, v); |
721fae12 | 157 | } else if (ri->writefn) { |
c4241c7d | 158 | ri->writefn(env, ri, v); |
721fae12 | 159 | } else { |
afb2530f | 160 | raw_write(env, ri, v); |
721fae12 | 161 | } |
721fae12 PM |
162 | } |
163 | ||
164 | bool write_cpustate_to_list(ARMCPU *cpu) | |
165 | { | |
166 | /* Write the coprocessor state from cpu->env to the (index,value) list. */ | |
167 | int i; | |
168 | bool ok = true; | |
169 | ||
170 | for (i = 0; i < cpu->cpreg_array_len; i++) { | |
171 | uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); | |
172 | const ARMCPRegInfo *ri; | |
59a1c327 | 173 | |
60322b39 | 174 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
721fae12 PM |
175 | if (!ri) { |
176 | ok = false; | |
177 | continue; | |
178 | } | |
179 | if (ri->type & ARM_CP_NO_MIGRATE) { | |
180 | continue; | |
181 | } | |
59a1c327 | 182 | cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri); |
721fae12 PM |
183 | } |
184 | return ok; | |
185 | } | |
186 | ||
187 | bool write_list_to_cpustate(ARMCPU *cpu) | |
188 | { | |
189 | int i; | |
190 | bool ok = true; | |
191 | ||
192 | for (i = 0; i < cpu->cpreg_array_len; i++) { | |
193 | uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); | |
194 | uint64_t v = cpu->cpreg_values[i]; | |
721fae12 PM |
195 | const ARMCPRegInfo *ri; |
196 | ||
60322b39 | 197 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
721fae12 PM |
198 | if (!ri) { |
199 | ok = false; | |
200 | continue; | |
201 | } | |
202 | if (ri->type & ARM_CP_NO_MIGRATE) { | |
203 | continue; | |
204 | } | |
205 | /* Write value and confirm it reads back as written | |
206 | * (to catch read-only registers and partially read-only | |
207 | * registers where the incoming migration value doesn't match) | |
208 | */ | |
59a1c327 PM |
209 | write_raw_cp_reg(&cpu->env, ri, v); |
210 | if (read_raw_cp_reg(&cpu->env, ri) != v) { | |
721fae12 PM |
211 | ok = false; |
212 | } | |
213 | } | |
214 | return ok; | |
215 | } | |
216 | ||
217 | static void add_cpreg_to_list(gpointer key, gpointer opaque) | |
218 | { | |
219 | ARMCPU *cpu = opaque; | |
220 | uint64_t regidx; | |
221 | const ARMCPRegInfo *ri; | |
222 | ||
223 | regidx = *(uint32_t *)key; | |
60322b39 | 224 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
721fae12 PM |
225 | |
226 | if (!(ri->type & ARM_CP_NO_MIGRATE)) { | |
227 | cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); | |
228 | /* The value array need not be initialized at this point */ | |
229 | cpu->cpreg_array_len++; | |
230 | } | |
231 | } | |
232 | ||
233 | static void count_cpreg(gpointer key, gpointer opaque) | |
234 | { | |
235 | ARMCPU *cpu = opaque; | |
236 | uint64_t regidx; | |
237 | const ARMCPRegInfo *ri; | |
238 | ||
239 | regidx = *(uint32_t *)key; | |
60322b39 | 240 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
721fae12 PM |
241 | |
242 | if (!(ri->type & ARM_CP_NO_MIGRATE)) { | |
243 | cpu->cpreg_array_len++; | |
244 | } | |
245 | } | |
246 | ||
247 | static gint cpreg_key_compare(gconstpointer a, gconstpointer b) | |
248 | { | |
cbf239b7 AR |
249 | uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); |
250 | uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); | |
721fae12 | 251 | |
cbf239b7 AR |
252 | if (aidx > bidx) { |
253 | return 1; | |
254 | } | |
255 | if (aidx < bidx) { | |
256 | return -1; | |
257 | } | |
258 | return 0; | |
721fae12 PM |
259 | } |
260 | ||
82a3a118 PM |
261 | static void cpreg_make_keylist(gpointer key, gpointer value, gpointer udata) |
262 | { | |
263 | GList **plist = udata; | |
264 | ||
265 | *plist = g_list_prepend(*plist, key); | |
266 | } | |
267 | ||
721fae12 PM |
268 | void init_cpreg_list(ARMCPU *cpu) |
269 | { | |
270 | /* Initialise the cpreg_tuples[] array based on the cp_regs hash. | |
271 | * Note that we require cpreg_tuples[] to be sorted by key ID. | |
272 | */ | |
82a3a118 | 273 | GList *keys = NULL; |
721fae12 PM |
274 | int arraylen; |
275 | ||
82a3a118 PM |
276 | g_hash_table_foreach(cpu->cp_regs, cpreg_make_keylist, &keys); |
277 | ||
721fae12 PM |
278 | keys = g_list_sort(keys, cpreg_key_compare); |
279 | ||
280 | cpu->cpreg_array_len = 0; | |
281 | ||
282 | g_list_foreach(keys, count_cpreg, cpu); | |
283 | ||
284 | arraylen = cpu->cpreg_array_len; | |
285 | cpu->cpreg_indexes = g_new(uint64_t, arraylen); | |
286 | cpu->cpreg_values = g_new(uint64_t, arraylen); | |
287 | cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); | |
288 | cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); | |
289 | cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; | |
290 | cpu->cpreg_array_len = 0; | |
291 | ||
292 | g_list_foreach(keys, add_cpreg_to_list, cpu); | |
293 | ||
294 | assert(cpu->cpreg_array_len == arraylen); | |
295 | ||
296 | g_list_free(keys); | |
297 | } | |
298 | ||
c4241c7d | 299 | static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
c983fe6c PM |
300 | { |
301 | env->cp15.c3 = value; | |
302 | tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */ | |
c983fe6c PM |
303 | } |
304 | ||
c4241c7d | 305 | static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
08de207b PM |
306 | { |
307 | if (env->cp15.c13_fcse != value) { | |
308 | /* Unlike real hardware the qemu TLB uses virtual addresses, | |
309 | * not modified virtual addresses, so this causes a TLB flush. | |
310 | */ | |
311 | tlb_flush(env, 1); | |
312 | env->cp15.c13_fcse = value; | |
313 | } | |
08de207b | 314 | } |
c4241c7d PM |
315 | |
316 | static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
317 | uint64_t value) | |
08de207b PM |
318 | { |
319 | if (env->cp15.c13_context != value && !arm_feature(env, ARM_FEATURE_MPU)) { | |
320 | /* For VMSA (when not using the LPAE long descriptor page table | |
321 | * format) this register includes the ASID, so do a TLB flush. | |
322 | * For PMSA it is purely a process ID and no action is needed. | |
323 | */ | |
324 | tlb_flush(env, 1); | |
325 | } | |
326 | env->cp15.c13_context = value; | |
08de207b PM |
327 | } |
328 | ||
c4241c7d PM |
329 | static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, |
330 | uint64_t value) | |
d929823f PM |
331 | { |
332 | /* Invalidate all (TLBIALL) */ | |
333 | tlb_flush(env, 1); | |
d929823f PM |
334 | } |
335 | ||
c4241c7d PM |
336 | static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, |
337 | uint64_t value) | |
d929823f PM |
338 | { |
339 | /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ | |
340 | tlb_flush_page(env, value & TARGET_PAGE_MASK); | |
d929823f PM |
341 | } |
342 | ||
c4241c7d PM |
343 | static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, |
344 | uint64_t value) | |
d929823f PM |
345 | { |
346 | /* Invalidate by ASID (TLBIASID) */ | |
347 | tlb_flush(env, value == 0); | |
d929823f PM |
348 | } |
349 | ||
c4241c7d PM |
350 | static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, |
351 | uint64_t value) | |
d929823f PM |
352 | { |
353 | /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ | |
354 | tlb_flush_page(env, value & TARGET_PAGE_MASK); | |
d929823f PM |
355 | } |
356 | ||
e9aa6c21 PM |
357 | static const ARMCPRegInfo cp_reginfo[] = { |
358 | /* DBGDIDR: just RAZ. In particular this means the "debug architecture | |
359 | * version" bits will read as a reserved value, which should cause | |
360 | * Linux to not try to use the debug hardware. | |
361 | */ | |
362 | { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, | |
363 | .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
c983fe6c PM |
364 | /* MMU Domain access control / MPU write buffer control */ |
365 | { .name = "DACR", .cp = 15, | |
366 | .crn = 3, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, | |
367 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c3), | |
d4e6df63 | 368 | .resetvalue = 0, .writefn = dacr_write, .raw_writefn = raw_write, }, |
08de207b PM |
369 | { .name = "FCSEIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 0, |
370 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse), | |
d4e6df63 | 371 | .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, |
08de207b | 372 | { .name = "CONTEXTIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 1, |
a4f0cec6 | 373 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_context), |
d4e6df63 | 374 | .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, |
4fdd17dd PM |
375 | /* ??? This covers not just the impdef TLB lockdown registers but also |
376 | * some v7VMSA registers relating to TEX remap, so it is overly broad. | |
377 | */ | |
378 | { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = CP_ANY, | |
379 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, | |
d929823f PM |
380 | /* MMU TLB control. Note that the wildcarding means we cover not just |
381 | * the unified TLB ops but also the dside/iside/inner-shareable variants. | |
382 | */ | |
383 | { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, | |
d4e6df63 PM |
384 | .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, |
385 | .type = ARM_CP_NO_MIGRATE }, | |
d929823f | 386 | { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, |
d4e6df63 PM |
387 | .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, |
388 | .type = ARM_CP_NO_MIGRATE }, | |
d929823f | 389 | { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, |
d4e6df63 PM |
390 | .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, |
391 | .type = ARM_CP_NO_MIGRATE }, | |
d929823f | 392 | { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, |
d4e6df63 PM |
393 | .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, |
394 | .type = ARM_CP_NO_MIGRATE }, | |
c4804214 PM |
395 | /* Cache maintenance ops; some of this space may be overridden later. */ |
396 | { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, | |
397 | .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, | |
398 | .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, | |
e9aa6c21 PM |
399 | REGINFO_SENTINEL |
400 | }; | |
401 | ||
7d57f408 PM |
402 | static const ARMCPRegInfo not_v6_cp_reginfo[] = { |
403 | /* Not all pre-v6 cores implemented this WFI, so this is slightly | |
404 | * over-broad. | |
405 | */ | |
406 | { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, | |
407 | .access = PL1_W, .type = ARM_CP_WFI }, | |
408 | REGINFO_SENTINEL | |
409 | }; | |
410 | ||
411 | static const ARMCPRegInfo not_v7_cp_reginfo[] = { | |
412 | /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which | |
413 | * is UNPREDICTABLE; we choose to NOP as most implementations do). | |
414 | */ | |
415 | { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, | |
416 | .access = PL1_W, .type = ARM_CP_WFI }, | |
34f90529 PM |
417 | /* L1 cache lockdown. Not architectural in v6 and earlier but in practice |
418 | * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and | |
419 | * OMAPCP will override this space. | |
420 | */ | |
421 | { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, | |
422 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), | |
423 | .resetvalue = 0 }, | |
424 | { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, | |
425 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), | |
426 | .resetvalue = 0 }, | |
776d4e5c PM |
427 | /* v6 doesn't have the cache ID registers but Linux reads them anyway */ |
428 | { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, | |
d4e6df63 PM |
429 | .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE, |
430 | .resetvalue = 0 }, | |
7d57f408 PM |
431 | REGINFO_SENTINEL |
432 | }; | |
433 | ||
c4241c7d PM |
434 | static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
435 | uint64_t value) | |
2771db27 PM |
436 | { |
437 | if (env->cp15.c1_coproc != value) { | |
438 | env->cp15.c1_coproc = value; | |
439 | /* ??? Is this safe when called from within a TB? */ | |
440 | tb_flush(env); | |
441 | } | |
2771db27 PM |
442 | } |
443 | ||
7d57f408 PM |
444 | static const ARMCPRegInfo v6_cp_reginfo[] = { |
445 | /* prefetch by MVA in v6, NOP in v7 */ | |
446 | { .name = "MVA_prefetch", | |
447 | .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, | |
448 | .access = PL1_W, .type = ARM_CP_NOP }, | |
449 | { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, | |
450 | .access = PL0_W, .type = ARM_CP_NOP }, | |
091fd17c | 451 | { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, |
7d57f408 | 452 | .access = PL0_W, .type = ARM_CP_NOP }, |
091fd17c | 453 | { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, |
7d57f408 | 454 | .access = PL0_W, .type = ARM_CP_NOP }, |
06d76f31 PM |
455 | { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, |
456 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_insn), | |
457 | .resetvalue = 0, }, | |
458 | /* Watchpoint Fault Address Register : should actually only be present | |
459 | * for 1136, 1176, 11MPCore. | |
460 | */ | |
461 | { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, | |
462 | .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, | |
34222fb8 PM |
463 | { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, |
464 | .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, | |
2771db27 PM |
465 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_coproc), |
466 | .resetvalue = 0, .writefn = cpacr_write }, | |
7d57f408 PM |
467 | REGINFO_SENTINEL |
468 | }; | |
469 | ||
fcd25206 | 470 | static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri) |
200ac0ef | 471 | { |
fcd25206 PM |
472 | /* Perfomance monitor registers user accessibility is controlled |
473 | * by PMUSERENR. | |
200ac0ef PM |
474 | */ |
475 | if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) { | |
fcd25206 | 476 | return CP_ACCESS_TRAP; |
200ac0ef | 477 | } |
fcd25206 | 478 | return CP_ACCESS_OK; |
200ac0ef PM |
479 | } |
480 | ||
c4241c7d PM |
481 | static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
482 | uint64_t value) | |
200ac0ef | 483 | { |
200ac0ef PM |
484 | /* only the DP, X, D and E bits are writable */ |
485 | env->cp15.c9_pmcr &= ~0x39; | |
486 | env->cp15.c9_pmcr |= (value & 0x39); | |
200ac0ef PM |
487 | } |
488 | ||
c4241c7d | 489 | static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, |
200ac0ef PM |
490 | uint64_t value) |
491 | { | |
200ac0ef PM |
492 | value &= (1 << 31); |
493 | env->cp15.c9_pmcnten |= value; | |
200ac0ef PM |
494 | } |
495 | ||
c4241c7d PM |
496 | static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
497 | uint64_t value) | |
200ac0ef | 498 | { |
200ac0ef PM |
499 | value &= (1 << 31); |
500 | env->cp15.c9_pmcnten &= ~value; | |
200ac0ef PM |
501 | } |
502 | ||
c4241c7d PM |
503 | static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
504 | uint64_t value) | |
200ac0ef | 505 | { |
200ac0ef | 506 | env->cp15.c9_pmovsr &= ~value; |
200ac0ef PM |
507 | } |
508 | ||
c4241c7d PM |
509 | static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, |
510 | uint64_t value) | |
200ac0ef | 511 | { |
200ac0ef | 512 | env->cp15.c9_pmxevtyper = value & 0xff; |
200ac0ef PM |
513 | } |
514 | ||
c4241c7d | 515 | static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
200ac0ef PM |
516 | uint64_t value) |
517 | { | |
518 | env->cp15.c9_pmuserenr = value & 1; | |
200ac0ef PM |
519 | } |
520 | ||
c4241c7d PM |
521 | static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, |
522 | uint64_t value) | |
200ac0ef PM |
523 | { |
524 | /* We have no event counters so only the C bit can be changed */ | |
525 | value &= (1 << 31); | |
526 | env->cp15.c9_pminten |= value; | |
200ac0ef PM |
527 | } |
528 | ||
c4241c7d PM |
529 | static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
530 | uint64_t value) | |
200ac0ef PM |
531 | { |
532 | value &= (1 << 31); | |
533 | env->cp15.c9_pminten &= ~value; | |
200ac0ef PM |
534 | } |
535 | ||
c4241c7d PM |
536 | static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, |
537 | uint64_t value) | |
8641136c | 538 | { |
a505d7fe PM |
539 | /* Note that even though the AArch64 view of this register has bits |
540 | * [10:0] all RES0 we can only mask the bottom 5, to comply with the | |
541 | * architectural requirements for bits which are RES0 only in some | |
542 | * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 | |
543 | * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) | |
544 | */ | |
8641136c | 545 | env->cp15.c12_vbar = value & ~0x1Ful; |
8641136c NR |
546 | } |
547 | ||
c4241c7d | 548 | static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
776d4e5c PM |
549 | { |
550 | ARMCPU *cpu = arm_env_get_cpu(env); | |
c4241c7d | 551 | return cpu->ccsidr[env->cp15.c0_cssel]; |
776d4e5c PM |
552 | } |
553 | ||
c4241c7d PM |
554 | static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
555 | uint64_t value) | |
776d4e5c PM |
556 | { |
557 | env->cp15.c0_cssel = value & 0xf; | |
776d4e5c PM |
558 | } |
559 | ||
e9aa6c21 PM |
560 | static const ARMCPRegInfo v7_cp_reginfo[] = { |
561 | /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped | |
562 | * debug components | |
563 | */ | |
564 | { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, | |
565 | .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
091fd17c | 566 | { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, |
e9aa6c21 | 567 | .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, |
7d57f408 PM |
568 | /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ |
569 | { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, | |
570 | .access = PL1_W, .type = ARM_CP_NOP }, | |
200ac0ef PM |
571 | /* Performance monitors are implementation defined in v7, |
572 | * but with an ARM recommended set of registers, which we | |
573 | * follow (although we don't actually implement any counters) | |
574 | * | |
575 | * Performance registers fall into three categories: | |
576 | * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) | |
577 | * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) | |
578 | * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) | |
579 | * For the cases controlled by PMUSERENR we must set .access to PL0_RW | |
580 | * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. | |
581 | */ | |
582 | { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, | |
583 | .access = PL0_RW, .resetvalue = 0, | |
584 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), | |
fcd25206 PM |
585 | .writefn = pmcntenset_write, |
586 | .accessfn = pmreg_access, | |
587 | .raw_writefn = raw_write }, | |
200ac0ef PM |
588 | { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, |
589 | .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), | |
fcd25206 PM |
590 | .accessfn = pmreg_access, |
591 | .writefn = pmcntenclr_write, | |
d4e6df63 | 592 | .type = ARM_CP_NO_MIGRATE }, |
200ac0ef PM |
593 | { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, |
594 | .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), | |
fcd25206 PM |
595 | .accessfn = pmreg_access, |
596 | .writefn = pmovsr_write, | |
597 | .raw_writefn = raw_write }, | |
598 | /* Unimplemented so WI. */ | |
200ac0ef | 599 | { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, |
fcd25206 | 600 | .access = PL0_W, .accessfn = pmreg_access, .type = ARM_CP_NOP }, |
200ac0ef | 601 | /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE. |
fcd25206 | 602 | * We choose to RAZ/WI. |
200ac0ef PM |
603 | */ |
604 | { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, | |
fcd25206 PM |
605 | .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0, |
606 | .accessfn = pmreg_access }, | |
607 | /* Unimplemented, RAZ/WI. */ | |
200ac0ef | 608 | { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, |
fcd25206 PM |
609 | .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0, |
610 | .accessfn = pmreg_access }, | |
200ac0ef PM |
611 | { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, |
612 | .access = PL0_RW, | |
613 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper), | |
fcd25206 PM |
614 | .accessfn = pmreg_access, .writefn = pmxevtyper_write, |
615 | .raw_writefn = raw_write }, | |
616 | /* Unimplemented, RAZ/WI. */ | |
200ac0ef | 617 | { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, |
fcd25206 PM |
618 | .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0, |
619 | .accessfn = pmreg_access }, | |
200ac0ef PM |
620 | { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, |
621 | .access = PL0_R | PL1_RW, | |
622 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), | |
623 | .resetvalue = 0, | |
d4e6df63 | 624 | .writefn = pmuserenr_write, .raw_writefn = raw_write }, |
200ac0ef PM |
625 | { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, |
626 | .access = PL1_RW, | |
627 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), | |
628 | .resetvalue = 0, | |
d4e6df63 | 629 | .writefn = pmintenset_write, .raw_writefn = raw_write }, |
200ac0ef | 630 | { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, |
d4e6df63 | 631 | .access = PL1_RW, .type = ARM_CP_NO_MIGRATE, |
200ac0ef | 632 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), |
d4e6df63 | 633 | .resetvalue = 0, .writefn = pmintenclr_write, }, |
a505d7fe PM |
634 | { .name = "VBAR", .state = ARM_CP_STATE_BOTH, |
635 | .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, | |
8641136c NR |
636 | .access = PL1_RW, .writefn = vbar_write, |
637 | .fieldoffset = offsetof(CPUARMState, cp15.c12_vbar), | |
638 | .resetvalue = 0 }, | |
2771db27 PM |
639 | { .name = "SCR", .cp = 15, .crn = 1, .crm = 1, .opc1 = 0, .opc2 = 0, |
640 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_scr), | |
641 | .resetvalue = 0, }, | |
7da845b0 PM |
642 | { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, |
643 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, | |
d4e6df63 | 644 | .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_MIGRATE }, |
7da845b0 PM |
645 | { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, |
646 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, | |
776d4e5c PM |
647 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c0_cssel), |
648 | .writefn = csselr_write, .resetvalue = 0 }, | |
649 | /* Auxiliary ID register: this actually has an IMPDEF value but for now | |
650 | * just RAZ for all cores: | |
651 | */ | |
652 | { .name = "AIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 7, | |
653 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
b0fe2427 PM |
654 | /* MAIR can just read-as-written because we don't implement caches |
655 | * and so don't need to care about memory attributes. | |
656 | */ | |
657 | { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, | |
658 | .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, | |
659 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el1), | |
660 | .resetvalue = 0 }, | |
661 | /* For non-long-descriptor page tables these are PRRR and NMRR; | |
662 | * regardless they still act as reads-as-written for QEMU. | |
663 | * The override is necessary because of the overly-broad TLB_LOCKDOWN | |
664 | * definition. | |
665 | */ | |
666 | { .name = "MAIR0", .state = ARM_CP_STATE_AA32, .type = ARM_CP_OVERRIDE, | |
667 | .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW, | |
668 | .fieldoffset = offsetoflow32(CPUARMState, cp15.mair_el1), | |
669 | .resetfn = arm_cp_reset_ignore }, | |
670 | { .name = "MAIR1", .state = ARM_CP_STATE_AA32, .type = ARM_CP_OVERRIDE, | |
671 | .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW, | |
672 | .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el1), | |
673 | .resetfn = arm_cp_reset_ignore }, | |
e9aa6c21 PM |
674 | REGINFO_SENTINEL |
675 | }; | |
676 | ||
c4241c7d PM |
677 | static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
678 | uint64_t value) | |
c326b979 PM |
679 | { |
680 | value &= 1; | |
681 | env->teecr = value; | |
c326b979 PM |
682 | } |
683 | ||
c4241c7d | 684 | static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri) |
c326b979 | 685 | { |
c326b979 | 686 | if (arm_current_pl(env) == 0 && (env->teecr & 1)) { |
92611c00 | 687 | return CP_ACCESS_TRAP; |
c326b979 | 688 | } |
92611c00 | 689 | return CP_ACCESS_OK; |
c326b979 PM |
690 | } |
691 | ||
692 | static const ARMCPRegInfo t2ee_cp_reginfo[] = { | |
693 | { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, | |
694 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), | |
695 | .resetvalue = 0, | |
696 | .writefn = teecr_write }, | |
697 | { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, | |
698 | .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), | |
92611c00 | 699 | .accessfn = teehbr_access, .resetvalue = 0 }, |
c326b979 PM |
700 | REGINFO_SENTINEL |
701 | }; | |
702 | ||
4d31c596 | 703 | static const ARMCPRegInfo v6k_cp_reginfo[] = { |
e4fe830b PM |
704 | { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, |
705 | .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, | |
706 | .access = PL0_RW, | |
707 | .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el0), .resetvalue = 0 }, | |
4d31c596 PM |
708 | { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, |
709 | .access = PL0_RW, | |
e4fe830b PM |
710 | .fieldoffset = offsetoflow32(CPUARMState, cp15.tpidr_el0), |
711 | .resetfn = arm_cp_reset_ignore }, | |
712 | { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, | |
713 | .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, | |
714 | .access = PL0_R|PL1_W, | |
715 | .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el0), .resetvalue = 0 }, | |
4d31c596 PM |
716 | { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, |
717 | .access = PL0_R|PL1_W, | |
e4fe830b PM |
718 | .fieldoffset = offsetoflow32(CPUARMState, cp15.tpidrro_el0), |
719 | .resetfn = arm_cp_reset_ignore }, | |
720 | { .name = "TPIDR_EL1", .state = ARM_CP_STATE_BOTH, | |
721 | .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, | |
4d31c596 | 722 | .access = PL1_RW, |
e4fe830b | 723 | .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el1), .resetvalue = 0 }, |
4d31c596 PM |
724 | REGINFO_SENTINEL |
725 | }; | |
726 | ||
55d284af PM |
727 | #ifndef CONFIG_USER_ONLY |
728 | ||
00108f2d PM |
729 | static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri) |
730 | { | |
731 | /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */ | |
732 | if (arm_current_pl(env) == 0 && !extract32(env->cp15.c14_cntkctl, 0, 2)) { | |
733 | return CP_ACCESS_TRAP; | |
734 | } | |
735 | return CP_ACCESS_OK; | |
736 | } | |
737 | ||
738 | static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx) | |
739 | { | |
740 | /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */ | |
741 | if (arm_current_pl(env) == 0 && | |
742 | !extract32(env->cp15.c14_cntkctl, timeridx, 1)) { | |
743 | return CP_ACCESS_TRAP; | |
744 | } | |
745 | return CP_ACCESS_OK; | |
746 | } | |
747 | ||
748 | static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx) | |
749 | { | |
750 | /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if | |
751 | * EL0[PV]TEN is zero. | |
752 | */ | |
753 | if (arm_current_pl(env) == 0 && | |
754 | !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { | |
755 | return CP_ACCESS_TRAP; | |
756 | } | |
757 | return CP_ACCESS_OK; | |
758 | } | |
759 | ||
760 | static CPAccessResult gt_pct_access(CPUARMState *env, | |
761 | const ARMCPRegInfo *ri) | |
762 | { | |
763 | return gt_counter_access(env, GTIMER_PHYS); | |
764 | } | |
765 | ||
766 | static CPAccessResult gt_vct_access(CPUARMState *env, | |
767 | const ARMCPRegInfo *ri) | |
768 | { | |
769 | return gt_counter_access(env, GTIMER_VIRT); | |
770 | } | |
771 | ||
772 | static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri) | |
773 | { | |
774 | return gt_timer_access(env, GTIMER_PHYS); | |
775 | } | |
776 | ||
777 | static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri) | |
778 | { | |
779 | return gt_timer_access(env, GTIMER_VIRT); | |
780 | } | |
781 | ||
55d284af PM |
782 | static uint64_t gt_get_countervalue(CPUARMState *env) |
783 | { | |
bc72ad67 | 784 | return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE; |
55d284af PM |
785 | } |
786 | ||
787 | static void gt_recalc_timer(ARMCPU *cpu, int timeridx) | |
788 | { | |
789 | ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; | |
790 | ||
791 | if (gt->ctl & 1) { | |
792 | /* Timer enabled: calculate and set current ISTATUS, irq, and | |
793 | * reset timer to when ISTATUS next has to change | |
794 | */ | |
795 | uint64_t count = gt_get_countervalue(&cpu->env); | |
796 | /* Note that this must be unsigned 64 bit arithmetic: */ | |
797 | int istatus = count >= gt->cval; | |
798 | uint64_t nexttick; | |
799 | ||
800 | gt->ctl = deposit32(gt->ctl, 2, 1, istatus); | |
801 | qemu_set_irq(cpu->gt_timer_outputs[timeridx], | |
802 | (istatus && !(gt->ctl & 2))); | |
803 | if (istatus) { | |
804 | /* Next transition is when count rolls back over to zero */ | |
805 | nexttick = UINT64_MAX; | |
806 | } else { | |
807 | /* Next transition is when we hit cval */ | |
808 | nexttick = gt->cval; | |
809 | } | |
810 | /* Note that the desired next expiry time might be beyond the | |
811 | * signed-64-bit range of a QEMUTimer -- in this case we just | |
812 | * set the timer for as far in the future as possible. When the | |
813 | * timer expires we will reset the timer for any remaining period. | |
814 | */ | |
815 | if (nexttick > INT64_MAX / GTIMER_SCALE) { | |
816 | nexttick = INT64_MAX / GTIMER_SCALE; | |
817 | } | |
bc72ad67 | 818 | timer_mod(cpu->gt_timer[timeridx], nexttick); |
55d284af PM |
819 | } else { |
820 | /* Timer disabled: ISTATUS and timer output always clear */ | |
821 | gt->ctl &= ~4; | |
822 | qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); | |
bc72ad67 | 823 | timer_del(cpu->gt_timer[timeridx]); |
55d284af PM |
824 | } |
825 | } | |
826 | ||
55d284af PM |
827 | static void gt_cnt_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
828 | { | |
829 | ARMCPU *cpu = arm_env_get_cpu(env); | |
830 | int timeridx = ri->opc1 & 1; | |
831 | ||
bc72ad67 | 832 | timer_del(cpu->gt_timer[timeridx]); |
55d284af PM |
833 | } |
834 | ||
c4241c7d | 835 | static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) |
55d284af | 836 | { |
c4241c7d | 837 | return gt_get_countervalue(env); |
55d284af PM |
838 | } |
839 | ||
c4241c7d PM |
840 | static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, |
841 | uint64_t value) | |
55d284af PM |
842 | { |
843 | int timeridx = ri->opc1 & 1; | |
844 | ||
845 | env->cp15.c14_timer[timeridx].cval = value; | |
846 | gt_recalc_timer(arm_env_get_cpu(env), timeridx); | |
55d284af | 847 | } |
c4241c7d PM |
848 | |
849 | static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
55d284af PM |
850 | { |
851 | int timeridx = ri->crm & 1; | |
852 | ||
c4241c7d PM |
853 | return (uint32_t)(env->cp15.c14_timer[timeridx].cval - |
854 | gt_get_countervalue(env)); | |
55d284af PM |
855 | } |
856 | ||
c4241c7d PM |
857 | static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, |
858 | uint64_t value) | |
55d284af PM |
859 | { |
860 | int timeridx = ri->crm & 1; | |
861 | ||
862 | env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) + | |
863 | + sextract64(value, 0, 32); | |
864 | gt_recalc_timer(arm_env_get_cpu(env), timeridx); | |
55d284af PM |
865 | } |
866 | ||
c4241c7d PM |
867 | static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, |
868 | uint64_t value) | |
55d284af PM |
869 | { |
870 | ARMCPU *cpu = arm_env_get_cpu(env); | |
871 | int timeridx = ri->crm & 1; | |
872 | uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; | |
873 | ||
874 | env->cp15.c14_timer[timeridx].ctl = value & 3; | |
875 | if ((oldval ^ value) & 1) { | |
876 | /* Enable toggled */ | |
877 | gt_recalc_timer(cpu, timeridx); | |
878 | } else if ((oldval & value) & 2) { | |
879 | /* IMASK toggled: don't need to recalculate, | |
880 | * just set the interrupt line based on ISTATUS | |
881 | */ | |
882 | qemu_set_irq(cpu->gt_timer_outputs[timeridx], | |
883 | (oldval & 4) && (value & 2)); | |
884 | } | |
55d284af PM |
885 | } |
886 | ||
887 | void arm_gt_ptimer_cb(void *opaque) | |
888 | { | |
889 | ARMCPU *cpu = opaque; | |
890 | ||
891 | gt_recalc_timer(cpu, GTIMER_PHYS); | |
892 | } | |
893 | ||
894 | void arm_gt_vtimer_cb(void *opaque) | |
895 | { | |
896 | ARMCPU *cpu = opaque; | |
897 | ||
898 | gt_recalc_timer(cpu, GTIMER_VIRT); | |
899 | } | |
900 | ||
901 | static const ARMCPRegInfo generic_timer_cp_reginfo[] = { | |
902 | /* Note that CNTFRQ is purely reads-as-written for the benefit | |
903 | * of software; writing it doesn't actually change the timer frequency. | |
904 | * Our reset value matches the fixed frequency we implement the timer at. | |
905 | */ | |
906 | { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, | |
a7adc4b7 PM |
907 | .type = ARM_CP_NO_MIGRATE, |
908 | .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, | |
909 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), | |
910 | .resetfn = arm_cp_reset_ignore, | |
911 | }, | |
912 | { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, | |
913 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, | |
914 | .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, | |
55d284af PM |
915 | .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), |
916 | .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE, | |
55d284af PM |
917 | }, |
918 | /* overall control: mostly access permissions */ | |
a7adc4b7 PM |
919 | { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, |
920 | .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, | |
55d284af PM |
921 | .access = PL1_RW, |
922 | .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), | |
923 | .resetvalue = 0, | |
924 | }, | |
925 | /* per-timer control */ | |
926 | { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, | |
a7adc4b7 PM |
927 | .type = ARM_CP_IO | ARM_CP_NO_MIGRATE, .access = PL1_RW | PL0_R, |
928 | .accessfn = gt_ptimer_access, | |
929 | .fieldoffset = offsetoflow32(CPUARMState, | |
930 | cp15.c14_timer[GTIMER_PHYS].ctl), | |
931 | .resetfn = arm_cp_reset_ignore, | |
932 | .writefn = gt_ctl_write, .raw_writefn = raw_write, | |
933 | }, | |
934 | { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, | |
935 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, | |
55d284af | 936 | .type = ARM_CP_IO, .access = PL1_RW | PL0_R, |
a7adc4b7 | 937 | .accessfn = gt_ptimer_access, |
55d284af PM |
938 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), |
939 | .resetvalue = 0, | |
00108f2d | 940 | .writefn = gt_ctl_write, .raw_writefn = raw_write, |
55d284af PM |
941 | }, |
942 | { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, | |
a7adc4b7 PM |
943 | .type = ARM_CP_IO | ARM_CP_NO_MIGRATE, .access = PL1_RW | PL0_R, |
944 | .accessfn = gt_vtimer_access, | |
945 | .fieldoffset = offsetoflow32(CPUARMState, | |
946 | cp15.c14_timer[GTIMER_VIRT].ctl), | |
947 | .resetfn = arm_cp_reset_ignore, | |
948 | .writefn = gt_ctl_write, .raw_writefn = raw_write, | |
949 | }, | |
950 | { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, | |
951 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, | |
55d284af | 952 | .type = ARM_CP_IO, .access = PL1_RW | PL0_R, |
a7adc4b7 | 953 | .accessfn = gt_vtimer_access, |
55d284af PM |
954 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), |
955 | .resetvalue = 0, | |
00108f2d | 956 | .writefn = gt_ctl_write, .raw_writefn = raw_write, |
55d284af PM |
957 | }, |
958 | /* TimerValue views: a 32 bit downcounting view of the underlying state */ | |
959 | { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, | |
960 | .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R, | |
00108f2d | 961 | .accessfn = gt_ptimer_access, |
55d284af PM |
962 | .readfn = gt_tval_read, .writefn = gt_tval_write, |
963 | }, | |
a7adc4b7 PM |
964 | { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, |
965 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, | |
966 | .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R, | |
967 | .readfn = gt_tval_read, .writefn = gt_tval_write, | |
968 | }, | |
55d284af PM |
969 | { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, |
970 | .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R, | |
00108f2d | 971 | .accessfn = gt_vtimer_access, |
55d284af PM |
972 | .readfn = gt_tval_read, .writefn = gt_tval_write, |
973 | }, | |
a7adc4b7 PM |
974 | { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, |
975 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, | |
976 | .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R, | |
977 | .readfn = gt_tval_read, .writefn = gt_tval_write, | |
978 | }, | |
55d284af PM |
979 | /* The counter itself */ |
980 | { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, | |
981 | .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE | ARM_CP_IO, | |
00108f2d | 982 | .accessfn = gt_pct_access, |
a7adc4b7 PM |
983 | .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, |
984 | }, | |
985 | { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, | |
986 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, | |
987 | .access = PL0_R, .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, | |
988 | .accessfn = gt_pct_access, | |
55d284af PM |
989 | .readfn = gt_cnt_read, .resetfn = gt_cnt_reset, |
990 | }, | |
991 | { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, | |
992 | .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE | ARM_CP_IO, | |
00108f2d | 993 | .accessfn = gt_vct_access, |
a7adc4b7 PM |
994 | .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, |
995 | }, | |
996 | { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, | |
997 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, | |
998 | .access = PL0_R, .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, | |
999 | .accessfn = gt_vct_access, | |
55d284af PM |
1000 | .readfn = gt_cnt_read, .resetfn = gt_cnt_reset, |
1001 | }, | |
1002 | /* Comparison value, indicating when the timer goes off */ | |
1003 | { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, | |
1004 | .access = PL1_RW | PL0_R, | |
a7adc4b7 | 1005 | .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_MIGRATE, |
55d284af | 1006 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), |
a7adc4b7 PM |
1007 | .accessfn = gt_ptimer_access, .resetfn = arm_cp_reset_ignore, |
1008 | .writefn = gt_cval_write, .raw_writefn = raw_write, | |
1009 | }, | |
1010 | { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, | |
1011 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, | |
1012 | .access = PL1_RW | PL0_R, | |
1013 | .type = ARM_CP_IO, | |
1014 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), | |
1015 | .resetvalue = 0, .accessfn = gt_vtimer_access, | |
00108f2d | 1016 | .writefn = gt_cval_write, .raw_writefn = raw_write, |
55d284af PM |
1017 | }, |
1018 | { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, | |
1019 | .access = PL1_RW | PL0_R, | |
a7adc4b7 | 1020 | .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_MIGRATE, |
55d284af | 1021 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), |
a7adc4b7 PM |
1022 | .accessfn = gt_vtimer_access, .resetfn = arm_cp_reset_ignore, |
1023 | .writefn = gt_cval_write, .raw_writefn = raw_write, | |
1024 | }, | |
1025 | { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, | |
1026 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, | |
1027 | .access = PL1_RW | PL0_R, | |
1028 | .type = ARM_CP_IO, | |
1029 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), | |
1030 | .resetvalue = 0, .accessfn = gt_vtimer_access, | |
00108f2d | 1031 | .writefn = gt_cval_write, .raw_writefn = raw_write, |
55d284af PM |
1032 | }, |
1033 | REGINFO_SENTINEL | |
1034 | }; | |
1035 | ||
1036 | #else | |
1037 | /* In user-mode none of the generic timer registers are accessible, | |
bc72ad67 | 1038 | * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs, |
55d284af PM |
1039 | * so instead just don't register any of them. |
1040 | */ | |
6cc7a3ae | 1041 | static const ARMCPRegInfo generic_timer_cp_reginfo[] = { |
6cc7a3ae PM |
1042 | REGINFO_SENTINEL |
1043 | }; | |
1044 | ||
55d284af PM |
1045 | #endif |
1046 | ||
c4241c7d | 1047 | static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
4a501606 | 1048 | { |
891a2fe7 PM |
1049 | if (arm_feature(env, ARM_FEATURE_LPAE)) { |
1050 | env->cp15.c7_par = value; | |
1051 | } else if (arm_feature(env, ARM_FEATURE_V7)) { | |
4a501606 PM |
1052 | env->cp15.c7_par = value & 0xfffff6ff; |
1053 | } else { | |
1054 | env->cp15.c7_par = value & 0xfffff1ff; | |
1055 | } | |
4a501606 PM |
1056 | } |
1057 | ||
1058 | #ifndef CONFIG_USER_ONLY | |
1059 | /* get_phys_addr() isn't present for user-mode-only targets */ | |
702a9357 PM |
1060 | |
1061 | /* Return true if extended addresses are enabled, ie this is an | |
1062 | * LPAE implementation and we are using the long-descriptor translation | |
1063 | * table format because the TTBCR EAE bit is set. | |
1064 | */ | |
1065 | static inline bool extended_addresses_enabled(CPUARMState *env) | |
1066 | { | |
1067 | return arm_feature(env, ARM_FEATURE_LPAE) | |
78dbbbe4 | 1068 | && (env->cp15.c2_control & (1U << 31)); |
702a9357 PM |
1069 | } |
1070 | ||
92611c00 PM |
1071 | static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri) |
1072 | { | |
1073 | if (ri->opc2 & 4) { | |
1074 | /* Other states are only available with TrustZone; in | |
1075 | * a non-TZ implementation these registers don't exist | |
1076 | * at all, which is an Uncategorized trap. This underdecoding | |
1077 | * is safe because the reginfo is NO_MIGRATE. | |
1078 | */ | |
1079 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
1080 | } | |
1081 | return CP_ACCESS_OK; | |
1082 | } | |
1083 | ||
c4241c7d | 1084 | static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
4a501606 | 1085 | { |
a8170e5e | 1086 | hwaddr phys_addr; |
4a501606 PM |
1087 | target_ulong page_size; |
1088 | int prot; | |
1089 | int ret, is_user = ri->opc2 & 2; | |
1090 | int access_type = ri->opc2 & 1; | |
1091 | ||
4a501606 PM |
1092 | ret = get_phys_addr(env, value, access_type, is_user, |
1093 | &phys_addr, &prot, &page_size); | |
702a9357 PM |
1094 | if (extended_addresses_enabled(env)) { |
1095 | /* ret is a DFSR/IFSR value for the long descriptor | |
1096 | * translation table format, but with WnR always clear. | |
1097 | * Convert it to a 64-bit PAR. | |
1098 | */ | |
1099 | uint64_t par64 = (1 << 11); /* LPAE bit always set */ | |
1100 | if (ret == 0) { | |
1101 | par64 |= phys_addr & ~0xfffULL; | |
1102 | /* We don't set the ATTR or SH fields in the PAR. */ | |
4a501606 | 1103 | } else { |
702a9357 PM |
1104 | par64 |= 1; /* F */ |
1105 | par64 |= (ret & 0x3f) << 1; /* FS */ | |
1106 | /* Note that S2WLK and FSTAGE are always zero, because we don't | |
1107 | * implement virtualization and therefore there can't be a stage 2 | |
1108 | * fault. | |
1109 | */ | |
4a501606 | 1110 | } |
702a9357 PM |
1111 | env->cp15.c7_par = par64; |
1112 | env->cp15.c7_par_hi = par64 >> 32; | |
4a501606 | 1113 | } else { |
702a9357 PM |
1114 | /* ret is a DFSR/IFSR value for the short descriptor |
1115 | * translation table format (with WnR always clear). | |
1116 | * Convert it to a 32-bit PAR. | |
1117 | */ | |
1118 | if (ret == 0) { | |
1119 | /* We do not set any attribute bits in the PAR */ | |
1120 | if (page_size == (1 << 24) | |
1121 | && arm_feature(env, ARM_FEATURE_V7)) { | |
1122 | env->cp15.c7_par = (phys_addr & 0xff000000) | 1 << 1; | |
1123 | } else { | |
1124 | env->cp15.c7_par = phys_addr & 0xfffff000; | |
1125 | } | |
1126 | } else { | |
775fda92 PM |
1127 | env->cp15.c7_par = ((ret & (1 << 10)) >> 5) | |
1128 | ((ret & (1 << 12)) >> 6) | | |
702a9357 PM |
1129 | ((ret & 0xf) << 1) | 1; |
1130 | } | |
1131 | env->cp15.c7_par_hi = 0; | |
4a501606 | 1132 | } |
4a501606 PM |
1133 | } |
1134 | #endif | |
1135 | ||
1136 | static const ARMCPRegInfo vapa_cp_reginfo[] = { | |
1137 | { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, | |
1138 | .access = PL1_RW, .resetvalue = 0, | |
1139 | .fieldoffset = offsetof(CPUARMState, cp15.c7_par), | |
1140 | .writefn = par_write }, | |
1141 | #ifndef CONFIG_USER_ONLY | |
1142 | { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, | |
92611c00 PM |
1143 | .access = PL1_W, .accessfn = ats_access, |
1144 | .writefn = ats_write, .type = ARM_CP_NO_MIGRATE }, | |
4a501606 PM |
1145 | #endif |
1146 | REGINFO_SENTINEL | |
1147 | }; | |
1148 | ||
18032bec PM |
1149 | /* Return basic MPU access permission bits. */ |
1150 | static uint32_t simple_mpu_ap_bits(uint32_t val) | |
1151 | { | |
1152 | uint32_t ret; | |
1153 | uint32_t mask; | |
1154 | int i; | |
1155 | ret = 0; | |
1156 | mask = 3; | |
1157 | for (i = 0; i < 16; i += 2) { | |
1158 | ret |= (val >> i) & mask; | |
1159 | mask <<= 2; | |
1160 | } | |
1161 | return ret; | |
1162 | } | |
1163 | ||
1164 | /* Pad basic MPU access permission bits to extended format. */ | |
1165 | static uint32_t extended_mpu_ap_bits(uint32_t val) | |
1166 | { | |
1167 | uint32_t ret; | |
1168 | uint32_t mask; | |
1169 | int i; | |
1170 | ret = 0; | |
1171 | mask = 3; | |
1172 | for (i = 0; i < 16; i += 2) { | |
1173 | ret |= (val & mask) << i; | |
1174 | mask <<= 2; | |
1175 | } | |
1176 | return ret; | |
1177 | } | |
1178 | ||
c4241c7d PM |
1179 | static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1180 | uint64_t value) | |
18032bec PM |
1181 | { |
1182 | env->cp15.c5_data = extended_mpu_ap_bits(value); | |
18032bec PM |
1183 | } |
1184 | ||
c4241c7d | 1185 | static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) |
18032bec | 1186 | { |
c4241c7d | 1187 | return simple_mpu_ap_bits(env->cp15.c5_data); |
18032bec PM |
1188 | } |
1189 | ||
c4241c7d PM |
1190 | static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1191 | uint64_t value) | |
18032bec PM |
1192 | { |
1193 | env->cp15.c5_insn = extended_mpu_ap_bits(value); | |
18032bec PM |
1194 | } |
1195 | ||
c4241c7d | 1196 | static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) |
18032bec | 1197 | { |
c4241c7d | 1198 | return simple_mpu_ap_bits(env->cp15.c5_insn); |
18032bec PM |
1199 | } |
1200 | ||
1201 | static const ARMCPRegInfo pmsav5_cp_reginfo[] = { | |
1202 | { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, | |
d4e6df63 | 1203 | .access = PL1_RW, .type = ARM_CP_NO_MIGRATE, |
18032bec PM |
1204 | .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, |
1205 | .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, | |
1206 | { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, | |
d4e6df63 | 1207 | .access = PL1_RW, .type = ARM_CP_NO_MIGRATE, |
18032bec PM |
1208 | .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, |
1209 | .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, | |
1210 | { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, | |
1211 | .access = PL1_RW, | |
1212 | .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, }, | |
1213 | { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, | |
1214 | .access = PL1_RW, | |
1215 | .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, }, | |
ecce5c3c PM |
1216 | { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, |
1217 | .access = PL1_RW, | |
1218 | .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, | |
1219 | { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, | |
1220 | .access = PL1_RW, | |
1221 | .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, | |
06d76f31 | 1222 | /* Protection region base and size registers */ |
e508a92b PM |
1223 | { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, |
1224 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
1225 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, | |
1226 | { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, | |
1227 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
1228 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, | |
1229 | { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, | |
1230 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
1231 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, | |
1232 | { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, | |
1233 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
1234 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, | |
1235 | { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, | |
1236 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
1237 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, | |
1238 | { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, | |
1239 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
1240 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, | |
1241 | { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, | |
1242 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
1243 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, | |
1244 | { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, | |
1245 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
1246 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, | |
18032bec PM |
1247 | REGINFO_SENTINEL |
1248 | }; | |
1249 | ||
c4241c7d PM |
1250 | static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1251 | uint64_t value) | |
ecce5c3c | 1252 | { |
2ebcebe2 PM |
1253 | int maskshift = extract32(value, 0, 3); |
1254 | ||
74f1c6dd | 1255 | if (arm_feature(env, ARM_FEATURE_LPAE) && (value & (1 << 31))) { |
e42c4db3 | 1256 | value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); |
e42c4db3 PM |
1257 | } else { |
1258 | value &= 7; | |
1259 | } | |
1260 | /* Note that we always calculate c2_mask and c2_base_mask, but | |
1261 | * they are only used for short-descriptor tables (ie if EAE is 0); | |
1262 | * for long-descriptor tables the TTBCR fields are used differently | |
1263 | * and the c2_mask and c2_base_mask values are meaningless. | |
1264 | */ | |
ecce5c3c | 1265 | env->cp15.c2_control = value; |
2ebcebe2 PM |
1266 | env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> maskshift); |
1267 | env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> maskshift); | |
ecce5c3c PM |
1268 | } |
1269 | ||
c4241c7d PM |
1270 | static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1271 | uint64_t value) | |
d4e6df63 PM |
1272 | { |
1273 | if (arm_feature(env, ARM_FEATURE_LPAE)) { | |
1274 | /* With LPAE the TTBCR could result in a change of ASID | |
1275 | * via the TTBCR.A1 bit, so do a TLB flush. | |
1276 | */ | |
1277 | tlb_flush(env, 1); | |
1278 | } | |
c4241c7d | 1279 | vmsa_ttbcr_raw_write(env, ri, value); |
d4e6df63 PM |
1280 | } |
1281 | ||
ecce5c3c PM |
1282 | static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
1283 | { | |
1284 | env->cp15.c2_base_mask = 0xffffc000u; | |
1285 | env->cp15.c2_control = 0; | |
1286 | env->cp15.c2_mask = 0; | |
1287 | } | |
1288 | ||
cb2e37df PM |
1289 | static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1290 | uint64_t value) | |
1291 | { | |
1292 | /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ | |
1293 | tlb_flush(env, 1); | |
1294 | env->cp15.c2_control = value; | |
1295 | } | |
1296 | ||
327ed10f PM |
1297 | static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1298 | uint64_t value) | |
1299 | { | |
1300 | /* 64 bit accesses to the TTBRs can change the ASID and so we | |
1301 | * must flush the TLB. | |
1302 | */ | |
1303 | if (cpreg_field_is_64bit(ri)) { | |
1304 | tlb_flush(env, 1); | |
1305 | } | |
1306 | raw_write(env, ri, value); | |
1307 | } | |
1308 | ||
18032bec PM |
1309 | static const ARMCPRegInfo vmsa_cp_reginfo[] = { |
1310 | { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, | |
1311 | .access = PL1_RW, | |
1312 | .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, }, | |
1313 | { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, | |
1314 | .access = PL1_RW, | |
1315 | .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, }, | |
327ed10f PM |
1316 | { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, |
1317 | .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, | |
1318 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el1), | |
1319 | .writefn = vmsa_ttbr_write, .resetvalue = 0 }, | |
1320 | { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, | |
1321 | .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, | |
1322 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el1), | |
1323 | .writefn = vmsa_ttbr_write, .resetvalue = 0 }, | |
cb2e37df PM |
1324 | { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, |
1325 | .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, | |
1326 | .access = PL1_RW, .writefn = vmsa_tcr_el1_write, | |
1327 | .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, | |
ecce5c3c | 1328 | .fieldoffset = offsetof(CPUARMState, cp15.c2_control) }, |
cb2e37df PM |
1329 | { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, |
1330 | .access = PL1_RW, .type = ARM_CP_NO_MIGRATE, .writefn = vmsa_ttbcr_write, | |
1331 | .resetfn = arm_cp_reset_ignore, .raw_writefn = vmsa_ttbcr_raw_write, | |
1332 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c2_control) }, | |
06d76f31 PM |
1333 | { .name = "DFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, |
1334 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_data), | |
1335 | .resetvalue = 0, }, | |
18032bec PM |
1336 | REGINFO_SENTINEL |
1337 | }; | |
1338 | ||
c4241c7d PM |
1339 | static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1340 | uint64_t value) | |
1047b9d7 PM |
1341 | { |
1342 | env->cp15.c15_ticonfig = value & 0xe7; | |
1343 | /* The OS_TYPE bit in this register changes the reported CPUID! */ | |
1344 | env->cp15.c0_cpuid = (value & (1 << 5)) ? | |
1345 | ARM_CPUID_TI915T : ARM_CPUID_TI925T; | |
1047b9d7 PM |
1346 | } |
1347 | ||
c4241c7d PM |
1348 | static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1349 | uint64_t value) | |
1047b9d7 PM |
1350 | { |
1351 | env->cp15.c15_threadid = value & 0xffff; | |
1047b9d7 PM |
1352 | } |
1353 | ||
c4241c7d PM |
1354 | static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1355 | uint64_t value) | |
1047b9d7 PM |
1356 | { |
1357 | /* Wait-for-interrupt (deprecated) */ | |
c3affe56 | 1358 | cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT); |
1047b9d7 PM |
1359 | } |
1360 | ||
c4241c7d PM |
1361 | static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1362 | uint64_t value) | |
c4804214 PM |
1363 | { |
1364 | /* On OMAP there are registers indicating the max/min index of dcache lines | |
1365 | * containing a dirty line; cache flush operations have to reset these. | |
1366 | */ | |
1367 | env->cp15.c15_i_max = 0x000; | |
1368 | env->cp15.c15_i_min = 0xff0; | |
c4804214 PM |
1369 | } |
1370 | ||
18032bec PM |
1371 | static const ARMCPRegInfo omap_cp_reginfo[] = { |
1372 | { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, | |
1373 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, | |
1374 | .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, }, | |
1047b9d7 PM |
1375 | { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, |
1376 | .access = PL1_RW, .type = ARM_CP_NOP }, | |
1377 | { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, | |
1378 | .access = PL1_RW, | |
1379 | .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, | |
1380 | .writefn = omap_ticonfig_write }, | |
1381 | { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, | |
1382 | .access = PL1_RW, | |
1383 | .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, | |
1384 | { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, | |
1385 | .access = PL1_RW, .resetvalue = 0xff0, | |
1386 | .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, | |
1387 | { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, | |
1388 | .access = PL1_RW, | |
1389 | .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, | |
1390 | .writefn = omap_threadid_write }, | |
1391 | { .name = "TI925T_STATUS", .cp = 15, .crn = 15, | |
1392 | .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, | |
d4e6df63 | 1393 | .type = ARM_CP_NO_MIGRATE, |
1047b9d7 PM |
1394 | .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, |
1395 | /* TODO: Peripheral port remap register: | |
1396 | * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller | |
1397 | * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), | |
1398 | * when MMU is off. | |
1399 | */ | |
c4804214 | 1400 | { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, |
d4e6df63 PM |
1401 | .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, |
1402 | .type = ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE, | |
c4804214 | 1403 | .writefn = omap_cachemaint_write }, |
34f90529 PM |
1404 | { .name = "C9", .cp = 15, .crn = 9, |
1405 | .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, | |
1406 | .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, | |
1047b9d7 PM |
1407 | REGINFO_SENTINEL |
1408 | }; | |
1409 | ||
c4241c7d PM |
1410 | static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1411 | uint64_t value) | |
1047b9d7 PM |
1412 | { |
1413 | value &= 0x3fff; | |
1414 | if (env->cp15.c15_cpar != value) { | |
1415 | /* Changes cp0 to cp13 behavior, so needs a TB flush. */ | |
1416 | tb_flush(env); | |
1417 | env->cp15.c15_cpar = value; | |
1418 | } | |
1047b9d7 PM |
1419 | } |
1420 | ||
1421 | static const ARMCPRegInfo xscale_cp_reginfo[] = { | |
1422 | { .name = "XSCALE_CPAR", | |
1423 | .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, | |
1424 | .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, | |
1425 | .writefn = xscale_cpar_write, }, | |
2771db27 PM |
1426 | { .name = "XSCALE_AUXCR", |
1427 | .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, | |
1428 | .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), | |
1429 | .resetvalue = 0, }, | |
1047b9d7 PM |
1430 | REGINFO_SENTINEL |
1431 | }; | |
1432 | ||
1433 | static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { | |
1434 | /* RAZ/WI the whole crn=15 space, when we don't have a more specific | |
1435 | * implementation of this implementation-defined space. | |
1436 | * Ideally this should eventually disappear in favour of actually | |
1437 | * implementing the correct behaviour for all cores. | |
1438 | */ | |
1439 | { .name = "C15_IMPDEF", .cp = 15, .crn = 15, | |
1440 | .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, | |
3671cd87 PC |
1441 | .access = PL1_RW, |
1442 | .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE | ARM_CP_OVERRIDE, | |
d4e6df63 | 1443 | .resetvalue = 0 }, |
18032bec PM |
1444 | REGINFO_SENTINEL |
1445 | }; | |
1446 | ||
c4804214 PM |
1447 | static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { |
1448 | /* Cache status: RAZ because we have no cache so it's always clean */ | |
1449 | { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, | |
d4e6df63 PM |
1450 | .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE, |
1451 | .resetvalue = 0 }, | |
c4804214 PM |
1452 | REGINFO_SENTINEL |
1453 | }; | |
1454 | ||
1455 | static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { | |
1456 | /* We never have a a block transfer operation in progress */ | |
1457 | { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, | |
d4e6df63 PM |
1458 | .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE, |
1459 | .resetvalue = 0 }, | |
30b05bba PM |
1460 | /* The cache ops themselves: these all NOP for QEMU */ |
1461 | { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, | |
1462 | .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
1463 | { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, | |
1464 | .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
1465 | { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, | |
1466 | .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
1467 | { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, | |
1468 | .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
1469 | { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, | |
1470 | .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
1471 | { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, | |
1472 | .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
c4804214 PM |
1473 | REGINFO_SENTINEL |
1474 | }; | |
1475 | ||
1476 | static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { | |
1477 | /* The cache test-and-clean instructions always return (1 << 30) | |
1478 | * to indicate that there are no dirty cache lines. | |
1479 | */ | |
1480 | { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, | |
d4e6df63 PM |
1481 | .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE, |
1482 | .resetvalue = (1 << 30) }, | |
c4804214 | 1483 | { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, |
d4e6df63 PM |
1484 | .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE, |
1485 | .resetvalue = (1 << 30) }, | |
c4804214 PM |
1486 | REGINFO_SENTINEL |
1487 | }; | |
1488 | ||
34f90529 PM |
1489 | static const ARMCPRegInfo strongarm_cp_reginfo[] = { |
1490 | /* Ignore ReadBuffer accesses */ | |
1491 | { .name = "C9_READBUFFER", .cp = 15, .crn = 9, | |
1492 | .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, | |
d4e6df63 PM |
1493 | .access = PL1_RW, .resetvalue = 0, |
1494 | .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE }, | |
34f90529 PM |
1495 | REGINFO_SENTINEL |
1496 | }; | |
1497 | ||
c4241c7d | 1498 | static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
81bdde9d | 1499 | { |
55e5c285 AF |
1500 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
1501 | uint32_t mpidr = cs->cpu_index; | |
4b7fff2f PM |
1502 | /* We don't support setting cluster ID ([8..11]) (known as Aff1 |
1503 | * in later ARM ARM versions), or any of the higher affinity level fields, | |
81bdde9d PM |
1504 | * so these bits always RAZ. |
1505 | */ | |
1506 | if (arm_feature(env, ARM_FEATURE_V7MP)) { | |
78dbbbe4 | 1507 | mpidr |= (1U << 31); |
81bdde9d PM |
1508 | /* Cores which are uniprocessor (non-coherent) |
1509 | * but still implement the MP extensions set | |
1510 | * bit 30. (For instance, A9UP.) However we do | |
1511 | * not currently model any of those cores. | |
1512 | */ | |
1513 | } | |
c4241c7d | 1514 | return mpidr; |
81bdde9d PM |
1515 | } |
1516 | ||
1517 | static const ARMCPRegInfo mpidr_cp_reginfo[] = { | |
4b7fff2f PM |
1518 | { .name = "MPIDR", .state = ARM_CP_STATE_BOTH, |
1519 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, | |
d4e6df63 | 1520 | .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_MIGRATE }, |
81bdde9d PM |
1521 | REGINFO_SENTINEL |
1522 | }; | |
1523 | ||
c4241c7d | 1524 | static uint64_t par64_read(CPUARMState *env, const ARMCPRegInfo *ri) |
891a2fe7 | 1525 | { |
c4241c7d | 1526 | return ((uint64_t)env->cp15.c7_par_hi << 32) | env->cp15.c7_par; |
891a2fe7 PM |
1527 | } |
1528 | ||
c4241c7d PM |
1529 | static void par64_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1530 | uint64_t value) | |
891a2fe7 PM |
1531 | { |
1532 | env->cp15.c7_par_hi = value >> 32; | |
1533 | env->cp15.c7_par = value; | |
891a2fe7 PM |
1534 | } |
1535 | ||
1536 | static void par64_reset(CPUARMState *env, const ARMCPRegInfo *ri) | |
1537 | { | |
1538 | env->cp15.c7_par_hi = 0; | |
1539 | env->cp15.c7_par = 0; | |
1540 | } | |
1541 | ||
7ac681cf | 1542 | static const ARMCPRegInfo lpae_cp_reginfo[] = { |
b90372ad | 1543 | /* NOP AMAIR0/1: the override is because these clash with the rather |
7ac681cf PM |
1544 | * broadly specified TLB_LOCKDOWN entry in the generic cp_reginfo. |
1545 | */ | |
b0fe2427 PM |
1546 | { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, |
1547 | .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, | |
7ac681cf PM |
1548 | .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE, |
1549 | .resetvalue = 0 }, | |
b0fe2427 | 1550 | /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ |
7ac681cf PM |
1551 | { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, |
1552 | .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE, | |
1553 | .resetvalue = 0 }, | |
f9fc619a PM |
1554 | /* 64 bit access versions of the (dummy) debug registers */ |
1555 | { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, | |
1556 | .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, | |
1557 | { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, | |
1558 | .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, | |
891a2fe7 PM |
1559 | { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, |
1560 | .access = PL1_RW, .type = ARM_CP_64BIT, | |
1561 | .readfn = par64_read, .writefn = par64_write, .resetfn = par64_reset }, | |
1562 | { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, | |
327ed10f PM |
1563 | .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE, |
1564 | .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el1), | |
1565 | .writefn = vmsa_ttbr_write, .resetfn = arm_cp_reset_ignore }, | |
891a2fe7 | 1566 | { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, |
327ed10f PM |
1567 | .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE, |
1568 | .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el1), | |
1569 | .writefn = vmsa_ttbr_write, .resetfn = arm_cp_reset_ignore }, | |
7ac681cf PM |
1570 | REGINFO_SENTINEL |
1571 | }; | |
1572 | ||
c4241c7d | 1573 | static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
b0d2b7d0 | 1574 | { |
c4241c7d | 1575 | return vfp_get_fpcr(env); |
b0d2b7d0 PM |
1576 | } |
1577 | ||
c4241c7d PM |
1578 | static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1579 | uint64_t value) | |
b0d2b7d0 PM |
1580 | { |
1581 | vfp_set_fpcr(env, value); | |
b0d2b7d0 PM |
1582 | } |
1583 | ||
c4241c7d | 1584 | static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
b0d2b7d0 | 1585 | { |
c4241c7d | 1586 | return vfp_get_fpsr(env); |
b0d2b7d0 PM |
1587 | } |
1588 | ||
c4241c7d PM |
1589 | static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1590 | uint64_t value) | |
b0d2b7d0 PM |
1591 | { |
1592 | vfp_set_fpsr(env, value); | |
b0d2b7d0 PM |
1593 | } |
1594 | ||
8af35c37 PM |
1595 | static CPAccessResult aa64_cacheop_access(CPUARMState *env, |
1596 | const ARMCPRegInfo *ri) | |
1597 | { | |
1598 | /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless | |
1599 | * SCTLR_EL1.UCI is set. | |
1600 | */ | |
1601 | if (arm_current_pl(env) == 0 && !(env->cp15.c1_sys & SCTLR_UCI)) { | |
1602 | return CP_ACCESS_TRAP; | |
1603 | } | |
1604 | return CP_ACCESS_OK; | |
1605 | } | |
1606 | ||
168aa23b PM |
1607 | static void tlbi_aa64_va_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1608 | uint64_t value) | |
1609 | { | |
1610 | /* Invalidate by VA (AArch64 version) */ | |
1611 | uint64_t pageaddr = value << 12; | |
1612 | tlb_flush_page(env, pageaddr); | |
1613 | } | |
1614 | ||
1615 | static void tlbi_aa64_vaa_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1616 | uint64_t value) | |
1617 | { | |
1618 | /* Invalidate by VA, all ASIDs (AArch64 version) */ | |
1619 | uint64_t pageaddr = value << 12; | |
1620 | tlb_flush_page(env, pageaddr); | |
1621 | } | |
1622 | ||
1623 | static void tlbi_aa64_asid_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1624 | uint64_t value) | |
1625 | { | |
1626 | /* Invalidate by ASID (AArch64 version) */ | |
1627 | int asid = extract64(value, 48, 16); | |
1628 | tlb_flush(env, asid == 0); | |
1629 | } | |
1630 | ||
b0d2b7d0 PM |
1631 | static const ARMCPRegInfo v8_cp_reginfo[] = { |
1632 | /* Minimal set of EL0-visible registers. This will need to be expanded | |
1633 | * significantly for system emulation of AArch64 CPUs. | |
1634 | */ | |
1635 | { .name = "NZCV", .state = ARM_CP_STATE_AA64, | |
1636 | .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, | |
1637 | .access = PL0_RW, .type = ARM_CP_NZCV }, | |
1638 | { .name = "FPCR", .state = ARM_CP_STATE_AA64, | |
1639 | .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, | |
1640 | .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, | |
1641 | { .name = "FPSR", .state = ARM_CP_STATE_AA64, | |
1642 | .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, | |
1643 | .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, | |
b0d2b7d0 PM |
1644 | /* Prohibit use of DC ZVA. OPTME: implement DC ZVA and allow its use. |
1645 | * For system mode the DZP bit here will need to be computed, not constant. | |
1646 | */ | |
1647 | { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, | |
1648 | .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, | |
1649 | .access = PL0_R, .type = ARM_CP_CONST, | |
1650 | .resetvalue = 0x10 }, | |
0eef9d98 PM |
1651 | { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, |
1652 | .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, | |
1653 | .access = PL1_R, .type = ARM_CP_CURRENTEL }, | |
8af35c37 PM |
1654 | /* Cache ops: all NOPs since we don't emulate caches */ |
1655 | { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, | |
1656 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, | |
1657 | .access = PL1_W, .type = ARM_CP_NOP }, | |
1658 | { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, | |
1659 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, | |
1660 | .access = PL1_W, .type = ARM_CP_NOP }, | |
1661 | { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, | |
1662 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, | |
1663 | .access = PL0_W, .type = ARM_CP_NOP, | |
1664 | .accessfn = aa64_cacheop_access }, | |
1665 | { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, | |
1666 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, | |
1667 | .access = PL1_W, .type = ARM_CP_NOP }, | |
1668 | { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, | |
1669 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, | |
1670 | .access = PL1_W, .type = ARM_CP_NOP }, | |
1671 | { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, | |
1672 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, | |
1673 | .access = PL0_W, .type = ARM_CP_NOP, | |
1674 | .accessfn = aa64_cacheop_access }, | |
1675 | { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, | |
1676 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, | |
1677 | .access = PL1_W, .type = ARM_CP_NOP }, | |
1678 | { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, | |
1679 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, | |
1680 | .access = PL0_W, .type = ARM_CP_NOP, | |
1681 | .accessfn = aa64_cacheop_access }, | |
1682 | { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, | |
1683 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, | |
1684 | .access = PL0_W, .type = ARM_CP_NOP, | |
1685 | .accessfn = aa64_cacheop_access }, | |
1686 | { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, | |
1687 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, | |
1688 | .access = PL1_W, .type = ARM_CP_NOP }, | |
168aa23b PM |
1689 | /* TLBI operations */ |
1690 | { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, | |
1691 | .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 0, | |
1692 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, | |
1693 | .writefn = tlbiall_write }, | |
1694 | { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, | |
1695 | .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 1, | |
1696 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, | |
1697 | .writefn = tlbi_aa64_va_write }, | |
1698 | { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, | |
1699 | .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 2, | |
1700 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, | |
1701 | .writefn = tlbi_aa64_asid_write }, | |
1702 | { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, | |
1703 | .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 3, | |
1704 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, | |
1705 | .writefn = tlbi_aa64_vaa_write }, | |
1706 | { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, | |
1707 | .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 5, | |
1708 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, | |
1709 | .writefn = tlbi_aa64_va_write }, | |
1710 | { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, | |
1711 | .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 7, | |
1712 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, | |
1713 | .writefn = tlbi_aa64_vaa_write }, | |
1714 | { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, | |
1715 | .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 0, | |
1716 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, | |
1717 | .writefn = tlbiall_write }, | |
1718 | { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, | |
1719 | .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 1, | |
1720 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, | |
1721 | .writefn = tlbi_aa64_va_write }, | |
1722 | { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, | |
1723 | .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 2, | |
1724 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, | |
1725 | .writefn = tlbi_aa64_asid_write }, | |
1726 | { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, | |
1727 | .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 3, | |
1728 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, | |
1729 | .writefn = tlbi_aa64_vaa_write }, | |
1730 | { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, | |
1731 | .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 5, | |
1732 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, | |
1733 | .writefn = tlbi_aa64_va_write }, | |
1734 | { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, | |
1735 | .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 7, | |
1736 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, | |
1737 | .writefn = tlbi_aa64_vaa_write }, | |
91e24069 PM |
1738 | /* Dummy implementation of monitor debug system control register: |
1739 | * we don't support debug. | |
1740 | */ | |
1741 | { .name = "MDSCR_EL1", .state = ARM_CP_STATE_AA64, | |
1742 | .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, | |
1743 | .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
cd5c11b8 PM |
1744 | /* We define a dummy WI OSLAR_EL1, because Linux writes to it. */ |
1745 | { .name = "OSLAR_EL1", .state = ARM_CP_STATE_AA64, | |
1746 | .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, | |
1747 | .access = PL1_W, .type = ARM_CP_NOP }, | |
b0d2b7d0 PM |
1748 | REGINFO_SENTINEL |
1749 | }; | |
1750 | ||
c4241c7d PM |
1751 | static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1752 | uint64_t value) | |
2771db27 PM |
1753 | { |
1754 | env->cp15.c1_sys = value; | |
1755 | /* ??? Lots of these bits are not implemented. */ | |
1756 | /* This may enable/disable the MMU, so do a TLB flush. */ | |
1757 | tlb_flush(env, 1); | |
2771db27 PM |
1758 | } |
1759 | ||
7da845b0 PM |
1760 | static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri) |
1761 | { | |
1762 | /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64, | |
1763 | * but the AArch32 CTR has its own reginfo struct) | |
1764 | */ | |
1765 | if (arm_current_pl(env) == 0 && !(env->cp15.c1_sys & SCTLR_UCT)) { | |
1766 | return CP_ACCESS_TRAP; | |
1767 | } | |
1768 | return CP_ACCESS_OK; | |
1769 | } | |
1770 | ||
0b45451e PM |
1771 | static void define_aarch64_debug_regs(ARMCPU *cpu) |
1772 | { | |
1773 | /* Define breakpoint and watchpoint registers. These do nothing | |
1774 | * but read as written, for now. | |
1775 | */ | |
1776 | int i; | |
1777 | ||
1778 | for (i = 0; i < 16; i++) { | |
1779 | ARMCPRegInfo dbgregs[] = { | |
1780 | { .name = "DBGBVR", .state = ARM_CP_STATE_AA64, | |
1781 | .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, | |
1782 | .access = PL1_RW, | |
1783 | .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]) }, | |
1784 | { .name = "DBGBCR", .state = ARM_CP_STATE_AA64, | |
1785 | .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, | |
1786 | .access = PL1_RW, | |
1787 | .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]) }, | |
1788 | { .name = "DBGWVR", .state = ARM_CP_STATE_AA64, | |
1789 | .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, | |
1790 | .access = PL1_RW, | |
1791 | .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]) }, | |
1792 | { .name = "DBGWCR", .state = ARM_CP_STATE_AA64, | |
1793 | .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, | |
1794 | .access = PL1_RW, | |
1795 | .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]) }, | |
1796 | REGINFO_SENTINEL | |
1797 | }; | |
1798 | define_arm_cp_regs(cpu, dbgregs); | |
1799 | } | |
1800 | } | |
1801 | ||
2ceb98c0 PM |
1802 | void register_cp_regs_for_features(ARMCPU *cpu) |
1803 | { | |
1804 | /* Register all the coprocessor registers based on feature bits */ | |
1805 | CPUARMState *env = &cpu->env; | |
1806 | if (arm_feature(env, ARM_FEATURE_M)) { | |
1807 | /* M profile has no coprocessor registers */ | |
1808 | return; | |
1809 | } | |
1810 | ||
e9aa6c21 | 1811 | define_arm_cp_regs(cpu, cp_reginfo); |
7d57f408 | 1812 | if (arm_feature(env, ARM_FEATURE_V6)) { |
8515a092 PM |
1813 | /* The ID registers all have impdef reset values */ |
1814 | ARMCPRegInfo v6_idregs[] = { | |
1815 | { .name = "ID_PFR0", .cp = 15, .crn = 0, .crm = 1, | |
1816 | .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST, | |
1817 | .resetvalue = cpu->id_pfr0 }, | |
1818 | { .name = "ID_PFR1", .cp = 15, .crn = 0, .crm = 1, | |
1819 | .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST, | |
1820 | .resetvalue = cpu->id_pfr1 }, | |
1821 | { .name = "ID_DFR0", .cp = 15, .crn = 0, .crm = 1, | |
1822 | .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST, | |
1823 | .resetvalue = cpu->id_dfr0 }, | |
1824 | { .name = "ID_AFR0", .cp = 15, .crn = 0, .crm = 1, | |
1825 | .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST, | |
1826 | .resetvalue = cpu->id_afr0 }, | |
1827 | { .name = "ID_MMFR0", .cp = 15, .crn = 0, .crm = 1, | |
1828 | .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST, | |
1829 | .resetvalue = cpu->id_mmfr0 }, | |
1830 | { .name = "ID_MMFR1", .cp = 15, .crn = 0, .crm = 1, | |
1831 | .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST, | |
1832 | .resetvalue = cpu->id_mmfr1 }, | |
1833 | { .name = "ID_MMFR2", .cp = 15, .crn = 0, .crm = 1, | |
1834 | .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST, | |
1835 | .resetvalue = cpu->id_mmfr2 }, | |
1836 | { .name = "ID_MMFR3", .cp = 15, .crn = 0, .crm = 1, | |
1837 | .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST, | |
1838 | .resetvalue = cpu->id_mmfr3 }, | |
1839 | { .name = "ID_ISAR0", .cp = 15, .crn = 0, .crm = 2, | |
1840 | .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST, | |
1841 | .resetvalue = cpu->id_isar0 }, | |
1842 | { .name = "ID_ISAR1", .cp = 15, .crn = 0, .crm = 2, | |
1843 | .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST, | |
1844 | .resetvalue = cpu->id_isar1 }, | |
1845 | { .name = "ID_ISAR2", .cp = 15, .crn = 0, .crm = 2, | |
1846 | .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST, | |
1847 | .resetvalue = cpu->id_isar2 }, | |
1848 | { .name = "ID_ISAR3", .cp = 15, .crn = 0, .crm = 2, | |
1849 | .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST, | |
1850 | .resetvalue = cpu->id_isar3 }, | |
1851 | { .name = "ID_ISAR4", .cp = 15, .crn = 0, .crm = 2, | |
1852 | .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST, | |
1853 | .resetvalue = cpu->id_isar4 }, | |
1854 | { .name = "ID_ISAR5", .cp = 15, .crn = 0, .crm = 2, | |
1855 | .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST, | |
1856 | .resetvalue = cpu->id_isar5 }, | |
1857 | /* 6..7 are as yet unallocated and must RAZ */ | |
1858 | { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2, | |
1859 | .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST, | |
1860 | .resetvalue = 0 }, | |
1861 | { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2, | |
1862 | .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST, | |
1863 | .resetvalue = 0 }, | |
1864 | REGINFO_SENTINEL | |
1865 | }; | |
1866 | define_arm_cp_regs(cpu, v6_idregs); | |
7d57f408 PM |
1867 | define_arm_cp_regs(cpu, v6_cp_reginfo); |
1868 | } else { | |
1869 | define_arm_cp_regs(cpu, not_v6_cp_reginfo); | |
1870 | } | |
4d31c596 PM |
1871 | if (arm_feature(env, ARM_FEATURE_V6K)) { |
1872 | define_arm_cp_regs(cpu, v6k_cp_reginfo); | |
1873 | } | |
e9aa6c21 | 1874 | if (arm_feature(env, ARM_FEATURE_V7)) { |
200ac0ef PM |
1875 | /* v7 performance monitor control register: same implementor |
1876 | * field as main ID register, and we implement no event counters. | |
1877 | */ | |
1878 | ARMCPRegInfo pmcr = { | |
1879 | .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, | |
1880 | .access = PL0_RW, .resetvalue = cpu->midr & 0xff000000, | |
1881 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), | |
fcd25206 PM |
1882 | .accessfn = pmreg_access, .writefn = pmcr_write, |
1883 | .raw_writefn = raw_write, | |
200ac0ef | 1884 | }; |
776d4e5c | 1885 | ARMCPRegInfo clidr = { |
7da845b0 PM |
1886 | .name = "CLIDR", .state = ARM_CP_STATE_BOTH, |
1887 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, | |
776d4e5c PM |
1888 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr |
1889 | }; | |
200ac0ef | 1890 | define_one_arm_cp_reg(cpu, &pmcr); |
776d4e5c | 1891 | define_one_arm_cp_reg(cpu, &clidr); |
e9aa6c21 | 1892 | define_arm_cp_regs(cpu, v7_cp_reginfo); |
7d57f408 PM |
1893 | } else { |
1894 | define_arm_cp_regs(cpu, not_v7_cp_reginfo); | |
e9aa6c21 | 1895 | } |
b0d2b7d0 | 1896 | if (arm_feature(env, ARM_FEATURE_V8)) { |
e60cef86 PM |
1897 | /* AArch64 ID registers, which all have impdef reset values */ |
1898 | ARMCPRegInfo v8_idregs[] = { | |
1899 | { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, | |
1900 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, | |
1901 | .access = PL1_R, .type = ARM_CP_CONST, | |
1902 | .resetvalue = cpu->id_aa64pfr0 }, | |
1903 | { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, | |
1904 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, | |
1905 | .access = PL1_R, .type = ARM_CP_CONST, | |
1906 | .resetvalue = cpu->id_aa64pfr1}, | |
1907 | { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, | |
1908 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, | |
1909 | .access = PL1_R, .type = ARM_CP_CONST, | |
1910 | .resetvalue = cpu->id_aa64dfr0 }, | |
1911 | { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, | |
1912 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, | |
1913 | .access = PL1_R, .type = ARM_CP_CONST, | |
1914 | .resetvalue = cpu->id_aa64dfr1 }, | |
1915 | { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, | |
1916 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, | |
1917 | .access = PL1_R, .type = ARM_CP_CONST, | |
1918 | .resetvalue = cpu->id_aa64afr0 }, | |
1919 | { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, | |
1920 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, | |
1921 | .access = PL1_R, .type = ARM_CP_CONST, | |
1922 | .resetvalue = cpu->id_aa64afr1 }, | |
1923 | { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, | |
1924 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, | |
1925 | .access = PL1_R, .type = ARM_CP_CONST, | |
1926 | .resetvalue = cpu->id_aa64isar0 }, | |
1927 | { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, | |
1928 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, | |
1929 | .access = PL1_R, .type = ARM_CP_CONST, | |
1930 | .resetvalue = cpu->id_aa64isar1 }, | |
1931 | { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, | |
1932 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, | |
1933 | .access = PL1_R, .type = ARM_CP_CONST, | |
1934 | .resetvalue = cpu->id_aa64mmfr0 }, | |
1935 | { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, | |
1936 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, | |
1937 | .access = PL1_R, .type = ARM_CP_CONST, | |
1938 | .resetvalue = cpu->id_aa64mmfr1 }, | |
1939 | REGINFO_SENTINEL | |
1940 | }; | |
1941 | define_arm_cp_regs(cpu, v8_idregs); | |
b0d2b7d0 | 1942 | define_arm_cp_regs(cpu, v8_cp_reginfo); |
0b45451e | 1943 | define_aarch64_debug_regs(cpu); |
b0d2b7d0 | 1944 | } |
18032bec PM |
1945 | if (arm_feature(env, ARM_FEATURE_MPU)) { |
1946 | /* These are the MPU registers prior to PMSAv6. Any new | |
1947 | * PMSA core later than the ARM946 will require that we | |
1948 | * implement the PMSAv6 or PMSAv7 registers, which are | |
1949 | * completely different. | |
1950 | */ | |
1951 | assert(!arm_feature(env, ARM_FEATURE_V6)); | |
1952 | define_arm_cp_regs(cpu, pmsav5_cp_reginfo); | |
1953 | } else { | |
1954 | define_arm_cp_regs(cpu, vmsa_cp_reginfo); | |
1955 | } | |
c326b979 PM |
1956 | if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { |
1957 | define_arm_cp_regs(cpu, t2ee_cp_reginfo); | |
1958 | } | |
6cc7a3ae PM |
1959 | if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { |
1960 | define_arm_cp_regs(cpu, generic_timer_cp_reginfo); | |
1961 | } | |
4a501606 PM |
1962 | if (arm_feature(env, ARM_FEATURE_VAPA)) { |
1963 | define_arm_cp_regs(cpu, vapa_cp_reginfo); | |
1964 | } | |
c4804214 PM |
1965 | if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { |
1966 | define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); | |
1967 | } | |
1968 | if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { | |
1969 | define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); | |
1970 | } | |
1971 | if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { | |
1972 | define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); | |
1973 | } | |
18032bec PM |
1974 | if (arm_feature(env, ARM_FEATURE_OMAPCP)) { |
1975 | define_arm_cp_regs(cpu, omap_cp_reginfo); | |
1976 | } | |
34f90529 PM |
1977 | if (arm_feature(env, ARM_FEATURE_STRONGARM)) { |
1978 | define_arm_cp_regs(cpu, strongarm_cp_reginfo); | |
1979 | } | |
1047b9d7 PM |
1980 | if (arm_feature(env, ARM_FEATURE_XSCALE)) { |
1981 | define_arm_cp_regs(cpu, xscale_cp_reginfo); | |
1982 | } | |
1983 | if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { | |
1984 | define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); | |
1985 | } | |
7ac681cf PM |
1986 | if (arm_feature(env, ARM_FEATURE_LPAE)) { |
1987 | define_arm_cp_regs(cpu, lpae_cp_reginfo); | |
1988 | } | |
7884849c PM |
1989 | /* Slightly awkwardly, the OMAP and StrongARM cores need all of |
1990 | * cp15 crn=0 to be writes-ignored, whereas for other cores they should | |
1991 | * be read-only (ie write causes UNDEF exception). | |
1992 | */ | |
1993 | { | |
1994 | ARMCPRegInfo id_cp_reginfo[] = { | |
1995 | /* Note that the MIDR isn't a simple constant register because | |
1996 | * of the TI925 behaviour where writes to another register can | |
1997 | * cause the MIDR value to change. | |
97ce8d61 PC |
1998 | * |
1999 | * Unimplemented registers in the c15 0 0 0 space default to | |
2000 | * MIDR. Define MIDR first as this entire space, then CTR, TCMTR | |
2001 | * and friends override accordingly. | |
7884849c PM |
2002 | */ |
2003 | { .name = "MIDR", | |
97ce8d61 | 2004 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, |
7884849c | 2005 | .access = PL1_R, .resetvalue = cpu->midr, |
d4e6df63 | 2006 | .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, |
97ce8d61 PC |
2007 | .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), |
2008 | .type = ARM_CP_OVERRIDE }, | |
cd4da631 PM |
2009 | { .name = "MIDR_EL1", .state = ARM_CP_STATE_AA64, |
2010 | .opc0 = 3, .opc1 = 0, .opc2 = 0, .crn = 0, .crm = 0, | |
2011 | .access = PL1_R, .resetvalue = cpu->midr, .type = ARM_CP_CONST }, | |
7884849c PM |
2012 | { .name = "CTR", |
2013 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, | |
2014 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, | |
7da845b0 PM |
2015 | { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, |
2016 | .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, | |
2017 | .access = PL0_R, .accessfn = ctr_el0_access, | |
2018 | .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, | |
7884849c PM |
2019 | { .name = "TCMTR", |
2020 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, | |
2021 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
2022 | { .name = "TLBTR", | |
2023 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, | |
2024 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
2025 | /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ | |
2026 | { .name = "DUMMY", | |
2027 | .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, | |
2028 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
2029 | { .name = "DUMMY", | |
2030 | .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, | |
2031 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
2032 | { .name = "DUMMY", | |
2033 | .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, | |
2034 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
2035 | { .name = "DUMMY", | |
2036 | .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, | |
2037 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
2038 | { .name = "DUMMY", | |
2039 | .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, | |
2040 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
2041 | REGINFO_SENTINEL | |
2042 | }; | |
2043 | ARMCPRegInfo crn0_wi_reginfo = { | |
2044 | .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, | |
2045 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, | |
2046 | .type = ARM_CP_NOP | ARM_CP_OVERRIDE | |
2047 | }; | |
2048 | if (arm_feature(env, ARM_FEATURE_OMAPCP) || | |
2049 | arm_feature(env, ARM_FEATURE_STRONGARM)) { | |
2050 | ARMCPRegInfo *r; | |
2051 | /* Register the blanket "writes ignored" value first to cover the | |
a703eda1 PC |
2052 | * whole space. Then update the specific ID registers to allow write |
2053 | * access, so that they ignore writes rather than causing them to | |
2054 | * UNDEF. | |
7884849c PM |
2055 | */ |
2056 | define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); | |
2057 | for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { | |
2058 | r->access = PL1_RW; | |
7884849c | 2059 | } |
7884849c | 2060 | } |
a703eda1 | 2061 | define_arm_cp_regs(cpu, id_cp_reginfo); |
7884849c PM |
2062 | } |
2063 | ||
97ce8d61 PC |
2064 | if (arm_feature(env, ARM_FEATURE_MPIDR)) { |
2065 | define_arm_cp_regs(cpu, mpidr_cp_reginfo); | |
2066 | } | |
2067 | ||
2771db27 PM |
2068 | if (arm_feature(env, ARM_FEATURE_AUXCR)) { |
2069 | ARMCPRegInfo auxcr = { | |
2070 | .name = "AUXCR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, | |
2071 | .access = PL1_RW, .type = ARM_CP_CONST, | |
2072 | .resetvalue = cpu->reset_auxcr | |
2073 | }; | |
2074 | define_one_arm_cp_reg(cpu, &auxcr); | |
2075 | } | |
2076 | ||
d8ba780b PC |
2077 | if (arm_feature(env, ARM_FEATURE_CBAR)) { |
2078 | ARMCPRegInfo cbar = { | |
2079 | .name = "CBAR", .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, | |
2080 | .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, | |
2081 | .fieldoffset = offsetof(CPUARMState, cp15.c15_config_base_address) | |
2082 | }; | |
2083 | define_one_arm_cp_reg(cpu, &cbar); | |
2084 | } | |
2085 | ||
2771db27 PM |
2086 | /* Generic registers whose values depend on the implementation */ |
2087 | { | |
2088 | ARMCPRegInfo sctlr = { | |
5ebafdf3 PM |
2089 | .name = "SCTLR", .state = ARM_CP_STATE_BOTH, |
2090 | .opc0 = 3, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, | |
2771db27 | 2091 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_sys), |
d4e6df63 PM |
2092 | .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, |
2093 | .raw_writefn = raw_write, | |
2771db27 PM |
2094 | }; |
2095 | if (arm_feature(env, ARM_FEATURE_XSCALE)) { | |
2096 | /* Normally we would always end the TB on an SCTLR write, but Linux | |
2097 | * arch/arm/mach-pxa/sleep.S expects two instructions following | |
2098 | * an MMU enable to execute from cache. Imitate this behaviour. | |
2099 | */ | |
2100 | sctlr.type |= ARM_CP_SUPPRESS_TB_END; | |
2101 | } | |
2102 | define_one_arm_cp_reg(cpu, &sctlr); | |
2103 | } | |
2ceb98c0 PM |
2104 | } |
2105 | ||
778c3a06 | 2106 | ARMCPU *cpu_arm_init(const char *cpu_model) |
40f137e1 | 2107 | { |
dec9c2d4 | 2108 | ARMCPU *cpu; |
5900d6b2 | 2109 | ObjectClass *oc; |
40f137e1 | 2110 | |
5900d6b2 AF |
2111 | oc = cpu_class_by_name(TYPE_ARM_CPU, cpu_model); |
2112 | if (!oc) { | |
aaed909a | 2113 | return NULL; |
777dc784 | 2114 | } |
5900d6b2 | 2115 | cpu = ARM_CPU(object_new(object_class_get_name(oc))); |
14969266 AF |
2116 | |
2117 | /* TODO this should be set centrally, once possible */ | |
2118 | object_property_set_bool(OBJECT(cpu), true, "realized", NULL); | |
777dc784 | 2119 | |
14969266 AF |
2120 | return cpu; |
2121 | } | |
2122 | ||
2123 | void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) | |
2124 | { | |
22169d41 | 2125 | CPUState *cs = CPU(cpu); |
14969266 AF |
2126 | CPUARMState *env = &cpu->env; |
2127 | ||
6a669427 PM |
2128 | if (arm_feature(env, ARM_FEATURE_AARCH64)) { |
2129 | gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, | |
2130 | aarch64_fpu_gdb_set_reg, | |
2131 | 34, "aarch64-fpu.xml", 0); | |
2132 | } else if (arm_feature(env, ARM_FEATURE_NEON)) { | |
22169d41 | 2133 | gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, |
56aebc89 PB |
2134 | 51, "arm-neon.xml", 0); |
2135 | } else if (arm_feature(env, ARM_FEATURE_VFP3)) { | |
22169d41 | 2136 | gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, |
56aebc89 PB |
2137 | 35, "arm-vfp3.xml", 0); |
2138 | } else if (arm_feature(env, ARM_FEATURE_VFP)) { | |
22169d41 | 2139 | gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, |
56aebc89 PB |
2140 | 19, "arm-vfp.xml", 0); |
2141 | } | |
40f137e1 PB |
2142 | } |
2143 | ||
777dc784 PM |
2144 | /* Sort alphabetically by type name, except for "any". */ |
2145 | static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) | |
5adb4839 | 2146 | { |
777dc784 PM |
2147 | ObjectClass *class_a = (ObjectClass *)a; |
2148 | ObjectClass *class_b = (ObjectClass *)b; | |
2149 | const char *name_a, *name_b; | |
5adb4839 | 2150 | |
777dc784 PM |
2151 | name_a = object_class_get_name(class_a); |
2152 | name_b = object_class_get_name(class_b); | |
51492fd1 | 2153 | if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { |
777dc784 | 2154 | return 1; |
51492fd1 | 2155 | } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { |
777dc784 PM |
2156 | return -1; |
2157 | } else { | |
2158 | return strcmp(name_a, name_b); | |
5adb4839 PB |
2159 | } |
2160 | } | |
2161 | ||
777dc784 | 2162 | static void arm_cpu_list_entry(gpointer data, gpointer user_data) |
40f137e1 | 2163 | { |
777dc784 | 2164 | ObjectClass *oc = data; |
92a31361 | 2165 | CPUListState *s = user_data; |
51492fd1 AF |
2166 | const char *typename; |
2167 | char *name; | |
3371d272 | 2168 | |
51492fd1 AF |
2169 | typename = object_class_get_name(oc); |
2170 | name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); | |
777dc784 | 2171 | (*s->cpu_fprintf)(s->file, " %s\n", |
51492fd1 AF |
2172 | name); |
2173 | g_free(name); | |
777dc784 PM |
2174 | } |
2175 | ||
2176 | void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf) | |
2177 | { | |
92a31361 | 2178 | CPUListState s = { |
777dc784 PM |
2179 | .file = f, |
2180 | .cpu_fprintf = cpu_fprintf, | |
2181 | }; | |
2182 | GSList *list; | |
2183 | ||
2184 | list = object_class_get_list(TYPE_ARM_CPU, false); | |
2185 | list = g_slist_sort(list, arm_cpu_list_compare); | |
2186 | (*cpu_fprintf)(f, "Available CPUs:\n"); | |
2187 | g_slist_foreach(list, arm_cpu_list_entry, &s); | |
2188 | g_slist_free(list); | |
a96c0514 PM |
2189 | #ifdef CONFIG_KVM |
2190 | /* The 'host' CPU type is dynamically registered only if KVM is | |
2191 | * enabled, so we have to special-case it here: | |
2192 | */ | |
2193 | (*cpu_fprintf)(f, " host (only available in KVM mode)\n"); | |
2194 | #endif | |
40f137e1 PB |
2195 | } |
2196 | ||
78027bb6 CR |
2197 | static void arm_cpu_add_definition(gpointer data, gpointer user_data) |
2198 | { | |
2199 | ObjectClass *oc = data; | |
2200 | CpuDefinitionInfoList **cpu_list = user_data; | |
2201 | CpuDefinitionInfoList *entry; | |
2202 | CpuDefinitionInfo *info; | |
2203 | const char *typename; | |
2204 | ||
2205 | typename = object_class_get_name(oc); | |
2206 | info = g_malloc0(sizeof(*info)); | |
2207 | info->name = g_strndup(typename, | |
2208 | strlen(typename) - strlen("-" TYPE_ARM_CPU)); | |
2209 | ||
2210 | entry = g_malloc0(sizeof(*entry)); | |
2211 | entry->value = info; | |
2212 | entry->next = *cpu_list; | |
2213 | *cpu_list = entry; | |
2214 | } | |
2215 | ||
2216 | CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp) | |
2217 | { | |
2218 | CpuDefinitionInfoList *cpu_list = NULL; | |
2219 | GSList *list; | |
2220 | ||
2221 | list = object_class_get_list(TYPE_ARM_CPU, false); | |
2222 | g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); | |
2223 | g_slist_free(list); | |
2224 | ||
2225 | return cpu_list; | |
2226 | } | |
2227 | ||
6e6efd61 | 2228 | static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, |
f5a0a5a5 PM |
2229 | void *opaque, int state, |
2230 | int crm, int opc1, int opc2) | |
6e6efd61 PM |
2231 | { |
2232 | /* Private utility function for define_one_arm_cp_reg_with_opaque(): | |
2233 | * add a single reginfo struct to the hash table. | |
2234 | */ | |
2235 | uint32_t *key = g_new(uint32_t, 1); | |
2236 | ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); | |
2237 | int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; | |
f5a0a5a5 PM |
2238 | if (r->state == ARM_CP_STATE_BOTH && state == ARM_CP_STATE_AA32) { |
2239 | /* The AArch32 view of a shared register sees the lower 32 bits | |
2240 | * of a 64 bit backing field. It is not migratable as the AArch64 | |
2241 | * view handles that. AArch64 also handles reset. | |
2242 | * We assume it is a cp15 register. | |
2243 | */ | |
2244 | r2->cp = 15; | |
2245 | r2->type |= ARM_CP_NO_MIGRATE; | |
2246 | r2->resetfn = arm_cp_reset_ignore; | |
2247 | #ifdef HOST_WORDS_BIGENDIAN | |
2248 | if (r2->fieldoffset) { | |
2249 | r2->fieldoffset += sizeof(uint32_t); | |
2250 | } | |
2251 | #endif | |
2252 | } | |
2253 | if (state == ARM_CP_STATE_AA64) { | |
2254 | /* To allow abbreviation of ARMCPRegInfo | |
2255 | * definitions, we treat cp == 0 as equivalent to | |
2256 | * the value for "standard guest-visible sysreg". | |
2257 | */ | |
2258 | if (r->cp == 0) { | |
2259 | r2->cp = CP_REG_ARM64_SYSREG_CP; | |
2260 | } | |
2261 | *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, | |
2262 | r2->opc0, opc1, opc2); | |
2263 | } else { | |
2264 | *key = ENCODE_CP_REG(r2->cp, is64, r2->crn, crm, opc1, opc2); | |
2265 | } | |
6e6efd61 PM |
2266 | if (opaque) { |
2267 | r2->opaque = opaque; | |
2268 | } | |
67ed771d PM |
2269 | /* reginfo passed to helpers is correct for the actual access, |
2270 | * and is never ARM_CP_STATE_BOTH: | |
2271 | */ | |
2272 | r2->state = state; | |
6e6efd61 PM |
2273 | /* Make sure reginfo passed to helpers for wildcarded regs |
2274 | * has the correct crm/opc1/opc2 for this reg, not CP_ANY: | |
2275 | */ | |
2276 | r2->crm = crm; | |
2277 | r2->opc1 = opc1; | |
2278 | r2->opc2 = opc2; | |
2279 | /* By convention, for wildcarded registers only the first | |
2280 | * entry is used for migration; the others are marked as | |
2281 | * NO_MIGRATE so we don't try to transfer the register | |
2282 | * multiple times. Special registers (ie NOP/WFI) are | |
2283 | * never migratable. | |
2284 | */ | |
2285 | if ((r->type & ARM_CP_SPECIAL) || | |
2286 | ((r->crm == CP_ANY) && crm != 0) || | |
2287 | ((r->opc1 == CP_ANY) && opc1 != 0) || | |
2288 | ((r->opc2 == CP_ANY) && opc2 != 0)) { | |
2289 | r2->type |= ARM_CP_NO_MIGRATE; | |
2290 | } | |
2291 | ||
2292 | /* Overriding of an existing definition must be explicitly | |
2293 | * requested. | |
2294 | */ | |
2295 | if (!(r->type & ARM_CP_OVERRIDE)) { | |
2296 | ARMCPRegInfo *oldreg; | |
2297 | oldreg = g_hash_table_lookup(cpu->cp_regs, key); | |
2298 | if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { | |
2299 | fprintf(stderr, "Register redefined: cp=%d %d bit " | |
2300 | "crn=%d crm=%d opc1=%d opc2=%d, " | |
2301 | "was %s, now %s\n", r2->cp, 32 + 32 * is64, | |
2302 | r2->crn, r2->crm, r2->opc1, r2->opc2, | |
2303 | oldreg->name, r2->name); | |
2304 | g_assert_not_reached(); | |
2305 | } | |
2306 | } | |
2307 | g_hash_table_insert(cpu->cp_regs, key, r2); | |
2308 | } | |
2309 | ||
2310 | ||
4b6a83fb PM |
2311 | void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, |
2312 | const ARMCPRegInfo *r, void *opaque) | |
2313 | { | |
2314 | /* Define implementations of coprocessor registers. | |
2315 | * We store these in a hashtable because typically | |
2316 | * there are less than 150 registers in a space which | |
2317 | * is 16*16*16*8*8 = 262144 in size. | |
2318 | * Wildcarding is supported for the crm, opc1 and opc2 fields. | |
2319 | * If a register is defined twice then the second definition is | |
2320 | * used, so this can be used to define some generic registers and | |
2321 | * then override them with implementation specific variations. | |
2322 | * At least one of the original and the second definition should | |
2323 | * include ARM_CP_OVERRIDE in its type bits -- this is just a guard | |
2324 | * against accidental use. | |
f5a0a5a5 PM |
2325 | * |
2326 | * The state field defines whether the register is to be | |
2327 | * visible in the AArch32 or AArch64 execution state. If the | |
2328 | * state is set to ARM_CP_STATE_BOTH then we synthesise a | |
2329 | * reginfo structure for the AArch32 view, which sees the lower | |
2330 | * 32 bits of the 64 bit register. | |
2331 | * | |
2332 | * Only registers visible in AArch64 may set r->opc0; opc0 cannot | |
2333 | * be wildcarded. AArch64 registers are always considered to be 64 | |
2334 | * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of | |
2335 | * the register, if any. | |
4b6a83fb | 2336 | */ |
f5a0a5a5 | 2337 | int crm, opc1, opc2, state; |
4b6a83fb PM |
2338 | int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; |
2339 | int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; | |
2340 | int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; | |
2341 | int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; | |
2342 | int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; | |
2343 | int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; | |
2344 | /* 64 bit registers have only CRm and Opc1 fields */ | |
2345 | assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); | |
f5a0a5a5 PM |
2346 | /* op0 only exists in the AArch64 encodings */ |
2347 | assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); | |
2348 | /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ | |
2349 | assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); | |
2350 | /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 | |
2351 | * encodes a minimum access level for the register. We roll this | |
2352 | * runtime check into our general permission check code, so check | |
2353 | * here that the reginfo's specified permissions are strict enough | |
2354 | * to encompass the generic architectural permission check. | |
2355 | */ | |
2356 | if (r->state != ARM_CP_STATE_AA32) { | |
2357 | int mask = 0; | |
2358 | switch (r->opc1) { | |
2359 | case 0: case 1: case 2: | |
2360 | /* min_EL EL1 */ | |
2361 | mask = PL1_RW; | |
2362 | break; | |
2363 | case 3: | |
2364 | /* min_EL EL0 */ | |
2365 | mask = PL0_RW; | |
2366 | break; | |
2367 | case 4: | |
2368 | /* min_EL EL2 */ | |
2369 | mask = PL2_RW; | |
2370 | break; | |
2371 | case 5: | |
2372 | /* unallocated encoding, so not possible */ | |
2373 | assert(false); | |
2374 | break; | |
2375 | case 6: | |
2376 | /* min_EL EL3 */ | |
2377 | mask = PL3_RW; | |
2378 | break; | |
2379 | case 7: | |
2380 | /* min_EL EL1, secure mode only (we don't check the latter) */ | |
2381 | mask = PL1_RW; | |
2382 | break; | |
2383 | default: | |
2384 | /* broken reginfo with out-of-range opc1 */ | |
2385 | assert(false); | |
2386 | break; | |
2387 | } | |
2388 | /* assert our permissions are not too lax (stricter is fine) */ | |
2389 | assert((r->access & ~mask) == 0); | |
2390 | } | |
2391 | ||
4b6a83fb PM |
2392 | /* Check that the register definition has enough info to handle |
2393 | * reads and writes if they are permitted. | |
2394 | */ | |
2395 | if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { | |
2396 | if (r->access & PL3_R) { | |
2397 | assert(r->fieldoffset || r->readfn); | |
2398 | } | |
2399 | if (r->access & PL3_W) { | |
2400 | assert(r->fieldoffset || r->writefn); | |
2401 | } | |
2402 | } | |
2403 | /* Bad type field probably means missing sentinel at end of reg list */ | |
2404 | assert(cptype_valid(r->type)); | |
2405 | for (crm = crmmin; crm <= crmmax; crm++) { | |
2406 | for (opc1 = opc1min; opc1 <= opc1max; opc1++) { | |
2407 | for (opc2 = opc2min; opc2 <= opc2max; opc2++) { | |
f5a0a5a5 PM |
2408 | for (state = ARM_CP_STATE_AA32; |
2409 | state <= ARM_CP_STATE_AA64; state++) { | |
2410 | if (r->state != state && r->state != ARM_CP_STATE_BOTH) { | |
2411 | continue; | |
2412 | } | |
2413 | add_cpreg_to_hashtable(cpu, r, opaque, state, | |
2414 | crm, opc1, opc2); | |
2415 | } | |
4b6a83fb PM |
2416 | } |
2417 | } | |
2418 | } | |
2419 | } | |
2420 | ||
2421 | void define_arm_cp_regs_with_opaque(ARMCPU *cpu, | |
2422 | const ARMCPRegInfo *regs, void *opaque) | |
2423 | { | |
2424 | /* Define a whole list of registers */ | |
2425 | const ARMCPRegInfo *r; | |
2426 | for (r = regs; r->type != ARM_CP_SENTINEL; r++) { | |
2427 | define_one_arm_cp_reg_with_opaque(cpu, r, opaque); | |
2428 | } | |
2429 | } | |
2430 | ||
60322b39 | 2431 | const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) |
4b6a83fb | 2432 | { |
60322b39 | 2433 | return g_hash_table_lookup(cpregs, &encoded_cp); |
4b6a83fb PM |
2434 | } |
2435 | ||
c4241c7d PM |
2436 | void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, |
2437 | uint64_t value) | |
4b6a83fb PM |
2438 | { |
2439 | /* Helper coprocessor write function for write-ignore registers */ | |
4b6a83fb PM |
2440 | } |
2441 | ||
c4241c7d | 2442 | uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) |
4b6a83fb PM |
2443 | { |
2444 | /* Helper coprocessor write function for read-as-zero registers */ | |
4b6a83fb PM |
2445 | return 0; |
2446 | } | |
2447 | ||
f5a0a5a5 PM |
2448 | void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) |
2449 | { | |
2450 | /* Helper coprocessor reset function for do-nothing-on-reset registers */ | |
2451 | } | |
2452 | ||
0ecb72a5 | 2453 | static int bad_mode_switch(CPUARMState *env, int mode) |
37064a8b PM |
2454 | { |
2455 | /* Return true if it is not valid for us to switch to | |
2456 | * this CPU mode (ie all the UNPREDICTABLE cases in | |
2457 | * the ARM ARM CPSRWriteByInstr pseudocode). | |
2458 | */ | |
2459 | switch (mode) { | |
2460 | case ARM_CPU_MODE_USR: | |
2461 | case ARM_CPU_MODE_SYS: | |
2462 | case ARM_CPU_MODE_SVC: | |
2463 | case ARM_CPU_MODE_ABT: | |
2464 | case ARM_CPU_MODE_UND: | |
2465 | case ARM_CPU_MODE_IRQ: | |
2466 | case ARM_CPU_MODE_FIQ: | |
2467 | return 0; | |
2468 | default: | |
2469 | return 1; | |
2470 | } | |
2471 | } | |
2472 | ||
2f4a40e5 AZ |
2473 | uint32_t cpsr_read(CPUARMState *env) |
2474 | { | |
2475 | int ZF; | |
6fbe23d5 PB |
2476 | ZF = (env->ZF == 0); |
2477 | return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | | |
2f4a40e5 AZ |
2478 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) |
2479 | | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) | |
2480 | | ((env->condexec_bits & 0xfc) << 8) | |
4cc35614 | 2481 | | (env->GE << 16) | env->daif; |
2f4a40e5 AZ |
2482 | } |
2483 | ||
2484 | void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask) | |
2485 | { | |
2f4a40e5 | 2486 | if (mask & CPSR_NZCV) { |
6fbe23d5 PB |
2487 | env->ZF = (~val) & CPSR_Z; |
2488 | env->NF = val; | |
2f4a40e5 AZ |
2489 | env->CF = (val >> 29) & 1; |
2490 | env->VF = (val << 3) & 0x80000000; | |
2491 | } | |
2492 | if (mask & CPSR_Q) | |
2493 | env->QF = ((val & CPSR_Q) != 0); | |
2494 | if (mask & CPSR_T) | |
2495 | env->thumb = ((val & CPSR_T) != 0); | |
2496 | if (mask & CPSR_IT_0_1) { | |
2497 | env->condexec_bits &= ~3; | |
2498 | env->condexec_bits |= (val >> 25) & 3; | |
2499 | } | |
2500 | if (mask & CPSR_IT_2_7) { | |
2501 | env->condexec_bits &= 3; | |
2502 | env->condexec_bits |= (val >> 8) & 0xfc; | |
2503 | } | |
2504 | if (mask & CPSR_GE) { | |
2505 | env->GE = (val >> 16) & 0xf; | |
2506 | } | |
2507 | ||
4cc35614 PM |
2508 | env->daif &= ~(CPSR_AIF & mask); |
2509 | env->daif |= val & CPSR_AIF & mask; | |
2510 | ||
2f4a40e5 | 2511 | if ((env->uncached_cpsr ^ val) & mask & CPSR_M) { |
37064a8b PM |
2512 | if (bad_mode_switch(env, val & CPSR_M)) { |
2513 | /* Attempt to switch to an invalid mode: this is UNPREDICTABLE. | |
2514 | * We choose to ignore the attempt and leave the CPSR M field | |
2515 | * untouched. | |
2516 | */ | |
2517 | mask &= ~CPSR_M; | |
2518 | } else { | |
2519 | switch_mode(env, val & CPSR_M); | |
2520 | } | |
2f4a40e5 AZ |
2521 | } |
2522 | mask &= ~CACHED_CPSR_BITS; | |
2523 | env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); | |
2524 | } | |
2525 | ||
b26eefb6 PB |
2526 | /* Sign/zero extend */ |
2527 | uint32_t HELPER(sxtb16)(uint32_t x) | |
2528 | { | |
2529 | uint32_t res; | |
2530 | res = (uint16_t)(int8_t)x; | |
2531 | res |= (uint32_t)(int8_t)(x >> 16) << 16; | |
2532 | return res; | |
2533 | } | |
2534 | ||
2535 | uint32_t HELPER(uxtb16)(uint32_t x) | |
2536 | { | |
2537 | uint32_t res; | |
2538 | res = (uint16_t)(uint8_t)x; | |
2539 | res |= (uint32_t)(uint8_t)(x >> 16) << 16; | |
2540 | return res; | |
2541 | } | |
2542 | ||
f51bbbfe PB |
2543 | uint32_t HELPER(clz)(uint32_t x) |
2544 | { | |
7bbcb0af | 2545 | return clz32(x); |
f51bbbfe PB |
2546 | } |
2547 | ||
3670669c PB |
2548 | int32_t HELPER(sdiv)(int32_t num, int32_t den) |
2549 | { | |
2550 | if (den == 0) | |
2551 | return 0; | |
686eeb93 AJ |
2552 | if (num == INT_MIN && den == -1) |
2553 | return INT_MIN; | |
3670669c PB |
2554 | return num / den; |
2555 | } | |
2556 | ||
2557 | uint32_t HELPER(udiv)(uint32_t num, uint32_t den) | |
2558 | { | |
2559 | if (den == 0) | |
2560 | return 0; | |
2561 | return num / den; | |
2562 | } | |
2563 | ||
2564 | uint32_t HELPER(rbit)(uint32_t x) | |
2565 | { | |
2566 | x = ((x & 0xff000000) >> 24) | |
2567 | | ((x & 0x00ff0000) >> 8) | |
2568 | | ((x & 0x0000ff00) << 8) | |
2569 | | ((x & 0x000000ff) << 24); | |
2570 | x = ((x & 0xf0f0f0f0) >> 4) | |
2571 | | ((x & 0x0f0f0f0f) << 4); | |
2572 | x = ((x & 0x88888888) >> 3) | |
2573 | | ((x & 0x44444444) >> 1) | |
2574 | | ((x & 0x22222222) << 1) | |
2575 | | ((x & 0x11111111) << 3); | |
2576 | return x; | |
2577 | } | |
2578 | ||
5fafdf24 | 2579 | #if defined(CONFIG_USER_ONLY) |
b5ff1b31 | 2580 | |
97a8ea5a | 2581 | void arm_cpu_do_interrupt(CPUState *cs) |
b5ff1b31 | 2582 | { |
97a8ea5a AF |
2583 | ARMCPU *cpu = ARM_CPU(cs); |
2584 | CPUARMState *env = &cpu->env; | |
2585 | ||
b5ff1b31 FB |
2586 | env->exception_index = -1; |
2587 | } | |
2588 | ||
0ecb72a5 | 2589 | int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw, |
97b348e7 | 2590 | int mmu_idx) |
b5ff1b31 FB |
2591 | { |
2592 | if (rw == 2) { | |
2593 | env->exception_index = EXCP_PREFETCH_ABORT; | |
2594 | env->cp15.c6_insn = address; | |
2595 | } else { | |
2596 | env->exception_index = EXCP_DATA_ABORT; | |
2597 | env->cp15.c6_data = address; | |
2598 | } | |
2599 | return 1; | |
2600 | } | |
2601 | ||
9ee6e8bb | 2602 | /* These should probably raise undefined insn exceptions. */ |
0ecb72a5 | 2603 | void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) |
9ee6e8bb PB |
2604 | { |
2605 | cpu_abort(env, "v7m_mrs %d\n", reg); | |
2606 | } | |
2607 | ||
0ecb72a5 | 2608 | uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) |
9ee6e8bb PB |
2609 | { |
2610 | cpu_abort(env, "v7m_mrs %d\n", reg); | |
2611 | return 0; | |
2612 | } | |
2613 | ||
0ecb72a5 | 2614 | void switch_mode(CPUARMState *env, int mode) |
b5ff1b31 FB |
2615 | { |
2616 | if (mode != ARM_CPU_MODE_USR) | |
2617 | cpu_abort(env, "Tried to switch out of user mode\n"); | |
2618 | } | |
2619 | ||
0ecb72a5 | 2620 | void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val) |
9ee6e8bb PB |
2621 | { |
2622 | cpu_abort(env, "banked r13 write\n"); | |
2623 | } | |
2624 | ||
0ecb72a5 | 2625 | uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode) |
9ee6e8bb PB |
2626 | { |
2627 | cpu_abort(env, "banked r13 read\n"); | |
2628 | return 0; | |
2629 | } | |
2630 | ||
b5ff1b31 FB |
2631 | #else |
2632 | ||
2633 | /* Map CPU modes onto saved register banks. */ | |
494b00c7 | 2634 | int bank_number(int mode) |
b5ff1b31 FB |
2635 | { |
2636 | switch (mode) { | |
2637 | case ARM_CPU_MODE_USR: | |
2638 | case ARM_CPU_MODE_SYS: | |
2639 | return 0; | |
2640 | case ARM_CPU_MODE_SVC: | |
2641 | return 1; | |
2642 | case ARM_CPU_MODE_ABT: | |
2643 | return 2; | |
2644 | case ARM_CPU_MODE_UND: | |
2645 | return 3; | |
2646 | case ARM_CPU_MODE_IRQ: | |
2647 | return 4; | |
2648 | case ARM_CPU_MODE_FIQ: | |
2649 | return 5; | |
2650 | } | |
f5206413 | 2651 | hw_error("bank number requested for bad CPSR mode value 0x%x\n", mode); |
b5ff1b31 FB |
2652 | } |
2653 | ||
0ecb72a5 | 2654 | void switch_mode(CPUARMState *env, int mode) |
b5ff1b31 FB |
2655 | { |
2656 | int old_mode; | |
2657 | int i; | |
2658 | ||
2659 | old_mode = env->uncached_cpsr & CPSR_M; | |
2660 | if (mode == old_mode) | |
2661 | return; | |
2662 | ||
2663 | if (old_mode == ARM_CPU_MODE_FIQ) { | |
2664 | memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); | |
8637c67f | 2665 | memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); |
b5ff1b31 FB |
2666 | } else if (mode == ARM_CPU_MODE_FIQ) { |
2667 | memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); | |
8637c67f | 2668 | memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); |
b5ff1b31 FB |
2669 | } |
2670 | ||
f5206413 | 2671 | i = bank_number(old_mode); |
b5ff1b31 FB |
2672 | env->banked_r13[i] = env->regs[13]; |
2673 | env->banked_r14[i] = env->regs[14]; | |
2674 | env->banked_spsr[i] = env->spsr; | |
2675 | ||
f5206413 | 2676 | i = bank_number(mode); |
b5ff1b31 FB |
2677 | env->regs[13] = env->banked_r13[i]; |
2678 | env->regs[14] = env->banked_r14[i]; | |
2679 | env->spsr = env->banked_spsr[i]; | |
2680 | } | |
2681 | ||
9ee6e8bb PB |
2682 | static void v7m_push(CPUARMState *env, uint32_t val) |
2683 | { | |
ab1da857 | 2684 | CPUState *cs = ENV_GET_CPU(env); |
9ee6e8bb | 2685 | env->regs[13] -= 4; |
ab1da857 | 2686 | stl_phys(cs->as, env->regs[13], val); |
9ee6e8bb PB |
2687 | } |
2688 | ||
2689 | static uint32_t v7m_pop(CPUARMState *env) | |
2690 | { | |
fdfba1a2 | 2691 | CPUState *cs = ENV_GET_CPU(env); |
9ee6e8bb | 2692 | uint32_t val; |
fdfba1a2 | 2693 | val = ldl_phys(cs->as, env->regs[13]); |
9ee6e8bb PB |
2694 | env->regs[13] += 4; |
2695 | return val; | |
2696 | } | |
2697 | ||
2698 | /* Switch to V7M main or process stack pointer. */ | |
2699 | static void switch_v7m_sp(CPUARMState *env, int process) | |
2700 | { | |
2701 | uint32_t tmp; | |
2702 | if (env->v7m.current_sp != process) { | |
2703 | tmp = env->v7m.other_sp; | |
2704 | env->v7m.other_sp = env->regs[13]; | |
2705 | env->regs[13] = tmp; | |
2706 | env->v7m.current_sp = process; | |
2707 | } | |
2708 | } | |
2709 | ||
2710 | static void do_v7m_exception_exit(CPUARMState *env) | |
2711 | { | |
2712 | uint32_t type; | |
2713 | uint32_t xpsr; | |
2714 | ||
2715 | type = env->regs[15]; | |
2716 | if (env->v7m.exception != 0) | |
983fe826 | 2717 | armv7m_nvic_complete_irq(env->nvic, env->v7m.exception); |
9ee6e8bb PB |
2718 | |
2719 | /* Switch to the target stack. */ | |
2720 | switch_v7m_sp(env, (type & 4) != 0); | |
2721 | /* Pop registers. */ | |
2722 | env->regs[0] = v7m_pop(env); | |
2723 | env->regs[1] = v7m_pop(env); | |
2724 | env->regs[2] = v7m_pop(env); | |
2725 | env->regs[3] = v7m_pop(env); | |
2726 | env->regs[12] = v7m_pop(env); | |
2727 | env->regs[14] = v7m_pop(env); | |
2728 | env->regs[15] = v7m_pop(env); | |
2729 | xpsr = v7m_pop(env); | |
2730 | xpsr_write(env, xpsr, 0xfffffdff); | |
2731 | /* Undo stack alignment. */ | |
2732 | if (xpsr & 0x200) | |
2733 | env->regs[13] |= 4; | |
2734 | /* ??? The exception return type specifies Thread/Handler mode. However | |
2735 | this is also implied by the xPSR value. Not sure what to do | |
2736 | if there is a mismatch. */ | |
2737 | /* ??? Likewise for mismatches between the CONTROL register and the stack | |
2738 | pointer. */ | |
2739 | } | |
2740 | ||
3f1beaca PM |
2741 | /* Exception names for debug logging; note that not all of these |
2742 | * precisely correspond to architectural exceptions. | |
2743 | */ | |
2744 | static const char * const excnames[] = { | |
2745 | [EXCP_UDEF] = "Undefined Instruction", | |
2746 | [EXCP_SWI] = "SVC", | |
2747 | [EXCP_PREFETCH_ABORT] = "Prefetch Abort", | |
2748 | [EXCP_DATA_ABORT] = "Data Abort", | |
2749 | [EXCP_IRQ] = "IRQ", | |
2750 | [EXCP_FIQ] = "FIQ", | |
2751 | [EXCP_BKPT] = "Breakpoint", | |
2752 | [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", | |
2753 | [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", | |
2754 | [EXCP_STREX] = "QEMU intercept of STREX", | |
2755 | }; | |
2756 | ||
2757 | static inline void arm_log_exception(int idx) | |
2758 | { | |
2759 | if (qemu_loglevel_mask(CPU_LOG_INT)) { | |
2760 | const char *exc = NULL; | |
2761 | ||
2762 | if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { | |
2763 | exc = excnames[idx]; | |
2764 | } | |
2765 | if (!exc) { | |
2766 | exc = "unknown"; | |
2767 | } | |
2768 | qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc); | |
2769 | } | |
2770 | } | |
2771 | ||
e6f010cc | 2772 | void arm_v7m_cpu_do_interrupt(CPUState *cs) |
9ee6e8bb | 2773 | { |
e6f010cc AF |
2774 | ARMCPU *cpu = ARM_CPU(cs); |
2775 | CPUARMState *env = &cpu->env; | |
9ee6e8bb PB |
2776 | uint32_t xpsr = xpsr_read(env); |
2777 | uint32_t lr; | |
2778 | uint32_t addr; | |
2779 | ||
3f1beaca PM |
2780 | arm_log_exception(env->exception_index); |
2781 | ||
9ee6e8bb PB |
2782 | lr = 0xfffffff1; |
2783 | if (env->v7m.current_sp) | |
2784 | lr |= 4; | |
2785 | if (env->v7m.exception == 0) | |
2786 | lr |= 8; | |
2787 | ||
2788 | /* For exceptions we just mark as pending on the NVIC, and let that | |
2789 | handle it. */ | |
2790 | /* TODO: Need to escalate if the current priority is higher than the | |
2791 | one we're raising. */ | |
2792 | switch (env->exception_index) { | |
2793 | case EXCP_UDEF: | |
983fe826 | 2794 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE); |
9ee6e8bb PB |
2795 | return; |
2796 | case EXCP_SWI: | |
314e2296 | 2797 | /* The PC already points to the next instruction. */ |
983fe826 | 2798 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC); |
9ee6e8bb PB |
2799 | return; |
2800 | case EXCP_PREFETCH_ABORT: | |
2801 | case EXCP_DATA_ABORT: | |
983fe826 | 2802 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM); |
9ee6e8bb PB |
2803 | return; |
2804 | case EXCP_BKPT: | |
2ad207d4 PB |
2805 | if (semihosting_enabled) { |
2806 | int nr; | |
d31dd73e | 2807 | nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff; |
2ad207d4 PB |
2808 | if (nr == 0xab) { |
2809 | env->regs[15] += 2; | |
2810 | env->regs[0] = do_arm_semihosting(env); | |
3f1beaca | 2811 | qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n"); |
2ad207d4 PB |
2812 | return; |
2813 | } | |
2814 | } | |
983fe826 | 2815 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG); |
9ee6e8bb PB |
2816 | return; |
2817 | case EXCP_IRQ: | |
983fe826 | 2818 | env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic); |
9ee6e8bb PB |
2819 | break; |
2820 | case EXCP_EXCEPTION_EXIT: | |
2821 | do_v7m_exception_exit(env); | |
2822 | return; | |
2823 | default: | |
2824 | cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index); | |
2825 | return; /* Never happens. Keep compiler happy. */ | |
2826 | } | |
2827 | ||
2828 | /* Align stack pointer. */ | |
2829 | /* ??? Should only do this if Configuration Control Register | |
2830 | STACKALIGN bit is set. */ | |
2831 | if (env->regs[13] & 4) { | |
ab19b0ec | 2832 | env->regs[13] -= 4; |
9ee6e8bb PB |
2833 | xpsr |= 0x200; |
2834 | } | |
6c95676b | 2835 | /* Switch to the handler mode. */ |
9ee6e8bb PB |
2836 | v7m_push(env, xpsr); |
2837 | v7m_push(env, env->regs[15]); | |
2838 | v7m_push(env, env->regs[14]); | |
2839 | v7m_push(env, env->regs[12]); | |
2840 | v7m_push(env, env->regs[3]); | |
2841 | v7m_push(env, env->regs[2]); | |
2842 | v7m_push(env, env->regs[1]); | |
2843 | v7m_push(env, env->regs[0]); | |
2844 | switch_v7m_sp(env, 0); | |
c98d174c PM |
2845 | /* Clear IT bits */ |
2846 | env->condexec_bits = 0; | |
9ee6e8bb | 2847 | env->regs[14] = lr; |
fdfba1a2 | 2848 | addr = ldl_phys(cs->as, env->v7m.vecbase + env->v7m.exception * 4); |
9ee6e8bb PB |
2849 | env->regs[15] = addr & 0xfffffffe; |
2850 | env->thumb = addr & 1; | |
2851 | } | |
2852 | ||
b5ff1b31 | 2853 | /* Handle a CPU exception. */ |
97a8ea5a | 2854 | void arm_cpu_do_interrupt(CPUState *cs) |
b5ff1b31 | 2855 | { |
97a8ea5a AF |
2856 | ARMCPU *cpu = ARM_CPU(cs); |
2857 | CPUARMState *env = &cpu->env; | |
b5ff1b31 FB |
2858 | uint32_t addr; |
2859 | uint32_t mask; | |
2860 | int new_mode; | |
2861 | uint32_t offset; | |
2862 | ||
e6f010cc AF |
2863 | assert(!IS_M(env)); |
2864 | ||
3f1beaca PM |
2865 | arm_log_exception(env->exception_index); |
2866 | ||
b5ff1b31 FB |
2867 | /* TODO: Vectored interrupt controller. */ |
2868 | switch (env->exception_index) { | |
2869 | case EXCP_UDEF: | |
2870 | new_mode = ARM_CPU_MODE_UND; | |
2871 | addr = 0x04; | |
2872 | mask = CPSR_I; | |
2873 | if (env->thumb) | |
2874 | offset = 2; | |
2875 | else | |
2876 | offset = 4; | |
2877 | break; | |
2878 | case EXCP_SWI: | |
8e71621f PB |
2879 | if (semihosting_enabled) { |
2880 | /* Check for semihosting interrupt. */ | |
2881 | if (env->thumb) { | |
d31dd73e BS |
2882 | mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code) |
2883 | & 0xff; | |
8e71621f | 2884 | } else { |
d31dd73e | 2885 | mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code) |
d8fd2954 | 2886 | & 0xffffff; |
8e71621f PB |
2887 | } |
2888 | /* Only intercept calls from privileged modes, to provide some | |
2889 | semblance of security. */ | |
2890 | if (((mask == 0x123456 && !env->thumb) | |
2891 | || (mask == 0xab && env->thumb)) | |
2892 | && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) { | |
2893 | env->regs[0] = do_arm_semihosting(env); | |
3f1beaca | 2894 | qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n"); |
8e71621f PB |
2895 | return; |
2896 | } | |
2897 | } | |
b5ff1b31 FB |
2898 | new_mode = ARM_CPU_MODE_SVC; |
2899 | addr = 0x08; | |
2900 | mask = CPSR_I; | |
601d70b9 | 2901 | /* The PC already points to the next instruction. */ |
b5ff1b31 FB |
2902 | offset = 0; |
2903 | break; | |
06c949e6 | 2904 | case EXCP_BKPT: |
9ee6e8bb | 2905 | /* See if this is a semihosting syscall. */ |
2ad207d4 | 2906 | if (env->thumb && semihosting_enabled) { |
d31dd73e | 2907 | mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff; |
9ee6e8bb PB |
2908 | if (mask == 0xab |
2909 | && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) { | |
2910 | env->regs[15] += 2; | |
2911 | env->regs[0] = do_arm_semihosting(env); | |
3f1beaca | 2912 | qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n"); |
9ee6e8bb PB |
2913 | return; |
2914 | } | |
2915 | } | |
81c05daf | 2916 | env->cp15.c5_insn = 2; |
9ee6e8bb PB |
2917 | /* Fall through to prefetch abort. */ |
2918 | case EXCP_PREFETCH_ABORT: | |
3f1beaca PM |
2919 | qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", |
2920 | env->cp15.c5_insn, env->cp15.c6_insn); | |
b5ff1b31 FB |
2921 | new_mode = ARM_CPU_MODE_ABT; |
2922 | addr = 0x0c; | |
2923 | mask = CPSR_A | CPSR_I; | |
2924 | offset = 4; | |
2925 | break; | |
2926 | case EXCP_DATA_ABORT: | |
3f1beaca PM |
2927 | qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", |
2928 | env->cp15.c5_data, env->cp15.c6_data); | |
b5ff1b31 FB |
2929 | new_mode = ARM_CPU_MODE_ABT; |
2930 | addr = 0x10; | |
2931 | mask = CPSR_A | CPSR_I; | |
2932 | offset = 8; | |
2933 | break; | |
2934 | case EXCP_IRQ: | |
2935 | new_mode = ARM_CPU_MODE_IRQ; | |
2936 | addr = 0x18; | |
2937 | /* Disable IRQ and imprecise data aborts. */ | |
2938 | mask = CPSR_A | CPSR_I; | |
2939 | offset = 4; | |
2940 | break; | |
2941 | case EXCP_FIQ: | |
2942 | new_mode = ARM_CPU_MODE_FIQ; | |
2943 | addr = 0x1c; | |
2944 | /* Disable FIQ, IRQ and imprecise data aborts. */ | |
2945 | mask = CPSR_A | CPSR_I | CPSR_F; | |
2946 | offset = 4; | |
2947 | break; | |
2948 | default: | |
2949 | cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index); | |
2950 | return; /* Never happens. Keep compiler happy. */ | |
2951 | } | |
2952 | /* High vectors. */ | |
76e3e1bc | 2953 | if (env->cp15.c1_sys & SCTLR_V) { |
8641136c | 2954 | /* when enabled, base address cannot be remapped. */ |
b5ff1b31 | 2955 | addr += 0xffff0000; |
8641136c NR |
2956 | } else { |
2957 | /* ARM v7 architectures provide a vector base address register to remap | |
2958 | * the interrupt vector table. | |
2959 | * This register is only followed in non-monitor mode, and has a secure | |
2960 | * and un-secure copy. Since the cpu is always in a un-secure operation | |
2961 | * and is never in monitor mode this feature is always active. | |
2962 | * Note: only bits 31:5 are valid. | |
2963 | */ | |
2964 | addr += env->cp15.c12_vbar; | |
b5ff1b31 FB |
2965 | } |
2966 | switch_mode (env, new_mode); | |
2967 | env->spsr = cpsr_read(env); | |
9ee6e8bb PB |
2968 | /* Clear IT bits. */ |
2969 | env->condexec_bits = 0; | |
30a8cac1 | 2970 | /* Switch to the new mode, and to the correct instruction set. */ |
6d7e6326 | 2971 | env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; |
4cc35614 | 2972 | env->daif |= mask; |
be5e7a76 DES |
2973 | /* this is a lie, as the was no c1_sys on V4T/V5, but who cares |
2974 | * and we should just guard the thumb mode on V4 */ | |
2975 | if (arm_feature(env, ARM_FEATURE_V4T)) { | |
76e3e1bc | 2976 | env->thumb = (env->cp15.c1_sys & SCTLR_TE) != 0; |
be5e7a76 | 2977 | } |
b5ff1b31 FB |
2978 | env->regs[14] = env->regs[15] + offset; |
2979 | env->regs[15] = addr; | |
259186a7 | 2980 | cs->interrupt_request |= CPU_INTERRUPT_EXITTB; |
b5ff1b31 FB |
2981 | } |
2982 | ||
2983 | /* Check section/page access permissions. | |
2984 | Returns the page protection flags, or zero if the access is not | |
2985 | permitted. */ | |
0ecb72a5 | 2986 | static inline int check_ap(CPUARMState *env, int ap, int domain_prot, |
dd4ebc2e | 2987 | int access_type, int is_user) |
b5ff1b31 | 2988 | { |
9ee6e8bb PB |
2989 | int prot_ro; |
2990 | ||
dd4ebc2e | 2991 | if (domain_prot == 3) { |
b5ff1b31 | 2992 | return PAGE_READ | PAGE_WRITE; |
dd4ebc2e | 2993 | } |
b5ff1b31 | 2994 | |
9ee6e8bb PB |
2995 | if (access_type == 1) |
2996 | prot_ro = 0; | |
2997 | else | |
2998 | prot_ro = PAGE_READ; | |
2999 | ||
b5ff1b31 FB |
3000 | switch (ap) { |
3001 | case 0: | |
99f678a6 PM |
3002 | if (arm_feature(env, ARM_FEATURE_V7)) { |
3003 | return 0; | |
3004 | } | |
78600320 | 3005 | if (access_type == 1) |
b5ff1b31 | 3006 | return 0; |
76e3e1bc PM |
3007 | switch (env->cp15.c1_sys & (SCTLR_S | SCTLR_R)) { |
3008 | case SCTLR_S: | |
b5ff1b31 | 3009 | return is_user ? 0 : PAGE_READ; |
76e3e1bc | 3010 | case SCTLR_R: |
b5ff1b31 FB |
3011 | return PAGE_READ; |
3012 | default: | |
3013 | return 0; | |
3014 | } | |
3015 | case 1: | |
3016 | return is_user ? 0 : PAGE_READ | PAGE_WRITE; | |
3017 | case 2: | |
3018 | if (is_user) | |
9ee6e8bb | 3019 | return prot_ro; |
b5ff1b31 FB |
3020 | else |
3021 | return PAGE_READ | PAGE_WRITE; | |
3022 | case 3: | |
3023 | return PAGE_READ | PAGE_WRITE; | |
d4934d18 | 3024 | case 4: /* Reserved. */ |
9ee6e8bb PB |
3025 | return 0; |
3026 | case 5: | |
3027 | return is_user ? 0 : prot_ro; | |
3028 | case 6: | |
3029 | return prot_ro; | |
d4934d18 | 3030 | case 7: |
0ab06d83 | 3031 | if (!arm_feature (env, ARM_FEATURE_V6K)) |
d4934d18 PB |
3032 | return 0; |
3033 | return prot_ro; | |
b5ff1b31 FB |
3034 | default: |
3035 | abort(); | |
3036 | } | |
3037 | } | |
3038 | ||
0ecb72a5 | 3039 | static uint32_t get_level1_table_address(CPUARMState *env, uint32_t address) |
b2fa1797 PB |
3040 | { |
3041 | uint32_t table; | |
3042 | ||
3043 | if (address & env->cp15.c2_mask) | |
327ed10f | 3044 | table = env->cp15.ttbr1_el1 & 0xffffc000; |
b2fa1797 | 3045 | else |
327ed10f | 3046 | table = env->cp15.ttbr0_el1 & env->cp15.c2_base_mask; |
b2fa1797 PB |
3047 | |
3048 | table |= (address >> 18) & 0x3ffc; | |
3049 | return table; | |
3050 | } | |
3051 | ||
0ecb72a5 | 3052 | static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type, |
a8170e5e | 3053 | int is_user, hwaddr *phys_ptr, |
77a71dd1 | 3054 | int *prot, target_ulong *page_size) |
b5ff1b31 | 3055 | { |
fdfba1a2 | 3056 | CPUState *cs = ENV_GET_CPU(env); |
b5ff1b31 FB |
3057 | int code; |
3058 | uint32_t table; | |
3059 | uint32_t desc; | |
3060 | int type; | |
3061 | int ap; | |
3062 | int domain; | |
dd4ebc2e | 3063 | int domain_prot; |
a8170e5e | 3064 | hwaddr phys_addr; |
b5ff1b31 | 3065 | |
9ee6e8bb PB |
3066 | /* Pagetable walk. */ |
3067 | /* Lookup l1 descriptor. */ | |
b2fa1797 | 3068 | table = get_level1_table_address(env, address); |
fdfba1a2 | 3069 | desc = ldl_phys(cs->as, table); |
9ee6e8bb | 3070 | type = (desc & 3); |
dd4ebc2e JCD |
3071 | domain = (desc >> 5) & 0x0f; |
3072 | domain_prot = (env->cp15.c3 >> (domain * 2)) & 3; | |
9ee6e8bb | 3073 | if (type == 0) { |
601d70b9 | 3074 | /* Section translation fault. */ |
9ee6e8bb PB |
3075 | code = 5; |
3076 | goto do_fault; | |
3077 | } | |
dd4ebc2e | 3078 | if (domain_prot == 0 || domain_prot == 2) { |
9ee6e8bb PB |
3079 | if (type == 2) |
3080 | code = 9; /* Section domain fault. */ | |
3081 | else | |
3082 | code = 11; /* Page domain fault. */ | |
3083 | goto do_fault; | |
3084 | } | |
3085 | if (type == 2) { | |
3086 | /* 1Mb section. */ | |
3087 | phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); | |
3088 | ap = (desc >> 10) & 3; | |
3089 | code = 13; | |
d4c430a8 | 3090 | *page_size = 1024 * 1024; |
9ee6e8bb PB |
3091 | } else { |
3092 | /* Lookup l2 entry. */ | |
3093 | if (type == 1) { | |
3094 | /* Coarse pagetable. */ | |
3095 | table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); | |
3096 | } else { | |
3097 | /* Fine pagetable. */ | |
3098 | table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); | |
3099 | } | |
fdfba1a2 | 3100 | desc = ldl_phys(cs->as, table); |
9ee6e8bb PB |
3101 | switch (desc & 3) { |
3102 | case 0: /* Page translation fault. */ | |
3103 | code = 7; | |
3104 | goto do_fault; | |
3105 | case 1: /* 64k page. */ | |
3106 | phys_addr = (desc & 0xffff0000) | (address & 0xffff); | |
3107 | ap = (desc >> (4 + ((address >> 13) & 6))) & 3; | |
d4c430a8 | 3108 | *page_size = 0x10000; |
ce819861 | 3109 | break; |
9ee6e8bb PB |
3110 | case 2: /* 4k page. */ |
3111 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); | |
c10f7fc3 | 3112 | ap = (desc >> (4 + ((address >> 9) & 6))) & 3; |
d4c430a8 | 3113 | *page_size = 0x1000; |
ce819861 | 3114 | break; |
9ee6e8bb PB |
3115 | case 3: /* 1k page. */ |
3116 | if (type == 1) { | |
3117 | if (arm_feature(env, ARM_FEATURE_XSCALE)) { | |
3118 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); | |
3119 | } else { | |
3120 | /* Page translation fault. */ | |
3121 | code = 7; | |
3122 | goto do_fault; | |
3123 | } | |
3124 | } else { | |
3125 | phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); | |
3126 | } | |
3127 | ap = (desc >> 4) & 3; | |
d4c430a8 | 3128 | *page_size = 0x400; |
ce819861 PB |
3129 | break; |
3130 | default: | |
9ee6e8bb PB |
3131 | /* Never happens, but compiler isn't smart enough to tell. */ |
3132 | abort(); | |
ce819861 | 3133 | } |
9ee6e8bb PB |
3134 | code = 15; |
3135 | } | |
dd4ebc2e | 3136 | *prot = check_ap(env, ap, domain_prot, access_type, is_user); |
9ee6e8bb PB |
3137 | if (!*prot) { |
3138 | /* Access permission fault. */ | |
3139 | goto do_fault; | |
3140 | } | |
3ad493fc | 3141 | *prot |= PAGE_EXEC; |
9ee6e8bb PB |
3142 | *phys_ptr = phys_addr; |
3143 | return 0; | |
3144 | do_fault: | |
3145 | return code | (domain << 4); | |
3146 | } | |
3147 | ||
0ecb72a5 | 3148 | static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type, |
a8170e5e | 3149 | int is_user, hwaddr *phys_ptr, |
77a71dd1 | 3150 | int *prot, target_ulong *page_size) |
9ee6e8bb | 3151 | { |
fdfba1a2 | 3152 | CPUState *cs = ENV_GET_CPU(env); |
9ee6e8bb PB |
3153 | int code; |
3154 | uint32_t table; | |
3155 | uint32_t desc; | |
3156 | uint32_t xn; | |
de9b05b8 | 3157 | uint32_t pxn = 0; |
9ee6e8bb PB |
3158 | int type; |
3159 | int ap; | |
de9b05b8 | 3160 | int domain = 0; |
dd4ebc2e | 3161 | int domain_prot; |
a8170e5e | 3162 | hwaddr phys_addr; |
9ee6e8bb PB |
3163 | |
3164 | /* Pagetable walk. */ | |
3165 | /* Lookup l1 descriptor. */ | |
b2fa1797 | 3166 | table = get_level1_table_address(env, address); |
fdfba1a2 | 3167 | desc = ldl_phys(cs->as, table); |
9ee6e8bb | 3168 | type = (desc & 3); |
de9b05b8 PM |
3169 | if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) { |
3170 | /* Section translation fault, or attempt to use the encoding | |
3171 | * which is Reserved on implementations without PXN. | |
3172 | */ | |
9ee6e8bb | 3173 | code = 5; |
9ee6e8bb | 3174 | goto do_fault; |
de9b05b8 PM |
3175 | } |
3176 | if ((type == 1) || !(desc & (1 << 18))) { | |
3177 | /* Page or Section. */ | |
dd4ebc2e | 3178 | domain = (desc >> 5) & 0x0f; |
9ee6e8bb | 3179 | } |
dd4ebc2e JCD |
3180 | domain_prot = (env->cp15.c3 >> (domain * 2)) & 3; |
3181 | if (domain_prot == 0 || domain_prot == 2) { | |
de9b05b8 | 3182 | if (type != 1) { |
9ee6e8bb | 3183 | code = 9; /* Section domain fault. */ |
de9b05b8 | 3184 | } else { |
9ee6e8bb | 3185 | code = 11; /* Page domain fault. */ |
de9b05b8 | 3186 | } |
9ee6e8bb PB |
3187 | goto do_fault; |
3188 | } | |
de9b05b8 | 3189 | if (type != 1) { |
9ee6e8bb PB |
3190 | if (desc & (1 << 18)) { |
3191 | /* Supersection. */ | |
3192 | phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); | |
d4c430a8 | 3193 | *page_size = 0x1000000; |
b5ff1b31 | 3194 | } else { |
9ee6e8bb PB |
3195 | /* Section. */ |
3196 | phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); | |
d4c430a8 | 3197 | *page_size = 0x100000; |
b5ff1b31 | 3198 | } |
9ee6e8bb PB |
3199 | ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); |
3200 | xn = desc & (1 << 4); | |
de9b05b8 | 3201 | pxn = desc & 1; |
9ee6e8bb PB |
3202 | code = 13; |
3203 | } else { | |
de9b05b8 PM |
3204 | if (arm_feature(env, ARM_FEATURE_PXN)) { |
3205 | pxn = (desc >> 2) & 1; | |
3206 | } | |
9ee6e8bb PB |
3207 | /* Lookup l2 entry. */ |
3208 | table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); | |
fdfba1a2 | 3209 | desc = ldl_phys(cs->as, table); |
9ee6e8bb PB |
3210 | ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); |
3211 | switch (desc & 3) { | |
3212 | case 0: /* Page translation fault. */ | |
3213 | code = 7; | |
b5ff1b31 | 3214 | goto do_fault; |
9ee6e8bb PB |
3215 | case 1: /* 64k page. */ |
3216 | phys_addr = (desc & 0xffff0000) | (address & 0xffff); | |
3217 | xn = desc & (1 << 15); | |
d4c430a8 | 3218 | *page_size = 0x10000; |
9ee6e8bb PB |
3219 | break; |
3220 | case 2: case 3: /* 4k page. */ | |
3221 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); | |
3222 | xn = desc & 1; | |
d4c430a8 | 3223 | *page_size = 0x1000; |
9ee6e8bb PB |
3224 | break; |
3225 | default: | |
3226 | /* Never happens, but compiler isn't smart enough to tell. */ | |
3227 | abort(); | |
b5ff1b31 | 3228 | } |
9ee6e8bb PB |
3229 | code = 15; |
3230 | } | |
dd4ebc2e | 3231 | if (domain_prot == 3) { |
c0034328 JR |
3232 | *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
3233 | } else { | |
de9b05b8 PM |
3234 | if (pxn && !is_user) { |
3235 | xn = 1; | |
3236 | } | |
c0034328 JR |
3237 | if (xn && access_type == 2) |
3238 | goto do_fault; | |
9ee6e8bb | 3239 | |
c0034328 | 3240 | /* The simplified model uses AP[0] as an access control bit. */ |
76e3e1bc | 3241 | if ((env->cp15.c1_sys & SCTLR_AFE) && (ap & 1) == 0) { |
c0034328 JR |
3242 | /* Access flag fault. */ |
3243 | code = (code == 15) ? 6 : 3; | |
3244 | goto do_fault; | |
3245 | } | |
dd4ebc2e | 3246 | *prot = check_ap(env, ap, domain_prot, access_type, is_user); |
c0034328 JR |
3247 | if (!*prot) { |
3248 | /* Access permission fault. */ | |
3249 | goto do_fault; | |
3250 | } | |
3251 | if (!xn) { | |
3252 | *prot |= PAGE_EXEC; | |
3253 | } | |
3ad493fc | 3254 | } |
9ee6e8bb | 3255 | *phys_ptr = phys_addr; |
b5ff1b31 FB |
3256 | return 0; |
3257 | do_fault: | |
3258 | return code | (domain << 4); | |
3259 | } | |
3260 | ||
3dde962f PM |
3261 | /* Fault type for long-descriptor MMU fault reporting; this corresponds |
3262 | * to bits [5..2] in the STATUS field in long-format DFSR/IFSR. | |
3263 | */ | |
3264 | typedef enum { | |
3265 | translation_fault = 1, | |
3266 | access_fault = 2, | |
3267 | permission_fault = 3, | |
3268 | } MMUFaultType; | |
3269 | ||
3270 | static int get_phys_addr_lpae(CPUARMState *env, uint32_t address, | |
3271 | int access_type, int is_user, | |
a8170e5e | 3272 | hwaddr *phys_ptr, int *prot, |
3dde962f PM |
3273 | target_ulong *page_size_ptr) |
3274 | { | |
2c17449b | 3275 | CPUState *cs = ENV_GET_CPU(env); |
3dde962f PM |
3276 | /* Read an LPAE long-descriptor translation table. */ |
3277 | MMUFaultType fault_type = translation_fault; | |
3278 | uint32_t level = 1; | |
3279 | uint32_t epd; | |
3280 | uint32_t tsz; | |
3281 | uint64_t ttbr; | |
3282 | int ttbr_select; | |
3283 | int n; | |
a8170e5e | 3284 | hwaddr descaddr; |
3dde962f PM |
3285 | uint32_t tableattrs; |
3286 | target_ulong page_size; | |
3287 | uint32_t attrs; | |
3288 | ||
3289 | /* Determine whether this address is in the region controlled by | |
3290 | * TTBR0 or TTBR1 (or if it is in neither region and should fault). | |
3291 | * This is a Non-secure PL0/1 stage 1 translation, so controlled by | |
3292 | * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32: | |
3293 | */ | |
3294 | uint32_t t0sz = extract32(env->cp15.c2_control, 0, 3); | |
3295 | uint32_t t1sz = extract32(env->cp15.c2_control, 16, 3); | |
3296 | if (t0sz && !extract32(address, 32 - t0sz, t0sz)) { | |
3297 | /* there is a ttbr0 region and we are in it (high bits all zero) */ | |
3298 | ttbr_select = 0; | |
3299 | } else if (t1sz && !extract32(~address, 32 - t1sz, t1sz)) { | |
3300 | /* there is a ttbr1 region and we are in it (high bits all one) */ | |
3301 | ttbr_select = 1; | |
3302 | } else if (!t0sz) { | |
3303 | /* ttbr0 region is "everything not in the ttbr1 region" */ | |
3304 | ttbr_select = 0; | |
3305 | } else if (!t1sz) { | |
3306 | /* ttbr1 region is "everything not in the ttbr0 region" */ | |
3307 | ttbr_select = 1; | |
3308 | } else { | |
3309 | /* in the gap between the two regions, this is a Translation fault */ | |
3310 | fault_type = translation_fault; | |
3311 | goto do_fault; | |
3312 | } | |
3313 | ||
3314 | /* Note that QEMU ignores shareability and cacheability attributes, | |
3315 | * so we don't need to do anything with the SH, ORGN, IRGN fields | |
3316 | * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the | |
3317 | * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently | |
3318 | * implement any ASID-like capability so we can ignore it (instead | |
3319 | * we will always flush the TLB any time the ASID is changed). | |
3320 | */ | |
3321 | if (ttbr_select == 0) { | |
327ed10f | 3322 | ttbr = env->cp15.ttbr0_el1; |
3dde962f PM |
3323 | epd = extract32(env->cp15.c2_control, 7, 1); |
3324 | tsz = t0sz; | |
3325 | } else { | |
327ed10f | 3326 | ttbr = env->cp15.ttbr1_el1; |
3dde962f PM |
3327 | epd = extract32(env->cp15.c2_control, 23, 1); |
3328 | tsz = t1sz; | |
3329 | } | |
3330 | ||
3331 | if (epd) { | |
3332 | /* Translation table walk disabled => Translation fault on TLB miss */ | |
3333 | goto do_fault; | |
3334 | } | |
3335 | ||
3336 | /* If the region is small enough we will skip straight to a 2nd level | |
3337 | * lookup. This affects the number of bits of the address used in | |
3338 | * combination with the TTBR to find the first descriptor. ('n' here | |
3339 | * matches the usage in the ARM ARM sB3.6.6, where bits [39..n] are | |
3340 | * from the TTBR, [n-1..3] from the vaddr, and [2..0] always zero). | |
3341 | */ | |
3342 | if (tsz > 1) { | |
3343 | level = 2; | |
3344 | n = 14 - tsz; | |
3345 | } else { | |
3346 | n = 5 - tsz; | |
3347 | } | |
3348 | ||
3349 | /* Clear the vaddr bits which aren't part of the within-region address, | |
3350 | * so that we don't have to special case things when calculating the | |
3351 | * first descriptor address. | |
3352 | */ | |
3353 | address &= (0xffffffffU >> tsz); | |
3354 | ||
3355 | /* Now we can extract the actual base address from the TTBR */ | |
3356 | descaddr = extract64(ttbr, 0, 40); | |
3357 | descaddr &= ~((1ULL << n) - 1); | |
3358 | ||
3359 | tableattrs = 0; | |
3360 | for (;;) { | |
3361 | uint64_t descriptor; | |
3362 | ||
3363 | descaddr |= ((address >> (9 * (4 - level))) & 0xff8); | |
2c17449b | 3364 | descriptor = ldq_phys(cs->as, descaddr); |
3dde962f PM |
3365 | if (!(descriptor & 1) || |
3366 | (!(descriptor & 2) && (level == 3))) { | |
3367 | /* Invalid, or the Reserved level 3 encoding */ | |
3368 | goto do_fault; | |
3369 | } | |
3370 | descaddr = descriptor & 0xfffffff000ULL; | |
3371 | ||
3372 | if ((descriptor & 2) && (level < 3)) { | |
3373 | /* Table entry. The top five bits are attributes which may | |
3374 | * propagate down through lower levels of the table (and | |
3375 | * which are all arranged so that 0 means "no effect", so | |
3376 | * we can gather them up by ORing in the bits at each level). | |
3377 | */ | |
3378 | tableattrs |= extract64(descriptor, 59, 5); | |
3379 | level++; | |
3380 | continue; | |
3381 | } | |
3382 | /* Block entry at level 1 or 2, or page entry at level 3. | |
3383 | * These are basically the same thing, although the number | |
3384 | * of bits we pull in from the vaddr varies. | |
3385 | */ | |
3386 | page_size = (1 << (39 - (9 * level))); | |
3387 | descaddr |= (address & (page_size - 1)); | |
3388 | /* Extract attributes from the descriptor and merge with table attrs */ | |
3389 | attrs = extract64(descriptor, 2, 10) | |
3390 | | (extract64(descriptor, 52, 12) << 10); | |
3391 | attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ | |
3392 | attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */ | |
3393 | /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 | |
3394 | * means "force PL1 access only", which means forcing AP[1] to 0. | |
3395 | */ | |
3396 | if (extract32(tableattrs, 2, 1)) { | |
3397 | attrs &= ~(1 << 4); | |
3398 | } | |
3399 | /* Since we're always in the Non-secure state, NSTable is ignored. */ | |
3400 | break; | |
3401 | } | |
3402 | /* Here descaddr is the final physical address, and attributes | |
3403 | * are all in attrs. | |
3404 | */ | |
3405 | fault_type = access_fault; | |
3406 | if ((attrs & (1 << 8)) == 0) { | |
3407 | /* Access flag */ | |
3408 | goto do_fault; | |
3409 | } | |
3410 | fault_type = permission_fault; | |
3411 | if (is_user && !(attrs & (1 << 4))) { | |
3412 | /* Unprivileged access not enabled */ | |
3413 | goto do_fault; | |
3414 | } | |
3415 | *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; | |
3416 | if (attrs & (1 << 12) || (!is_user && (attrs & (1 << 11)))) { | |
3417 | /* XN or PXN */ | |
3418 | if (access_type == 2) { | |
3419 | goto do_fault; | |
3420 | } | |
3421 | *prot &= ~PAGE_EXEC; | |
3422 | } | |
3423 | if (attrs & (1 << 5)) { | |
3424 | /* Write access forbidden */ | |
3425 | if (access_type == 1) { | |
3426 | goto do_fault; | |
3427 | } | |
3428 | *prot &= ~PAGE_WRITE; | |
3429 | } | |
3430 | ||
3431 | *phys_ptr = descaddr; | |
3432 | *page_size_ptr = page_size; | |
3433 | return 0; | |
3434 | ||
3435 | do_fault: | |
3436 | /* Long-descriptor format IFSR/DFSR value */ | |
3437 | return (1 << 9) | (fault_type << 2) | level; | |
3438 | } | |
3439 | ||
77a71dd1 PM |
3440 | static int get_phys_addr_mpu(CPUARMState *env, uint32_t address, |
3441 | int access_type, int is_user, | |
a8170e5e | 3442 | hwaddr *phys_ptr, int *prot) |
9ee6e8bb PB |
3443 | { |
3444 | int n; | |
3445 | uint32_t mask; | |
3446 | uint32_t base; | |
3447 | ||
3448 | *phys_ptr = address; | |
3449 | for (n = 7; n >= 0; n--) { | |
3450 | base = env->cp15.c6_region[n]; | |
3451 | if ((base & 1) == 0) | |
3452 | continue; | |
3453 | mask = 1 << ((base >> 1) & 0x1f); | |
3454 | /* Keep this shift separate from the above to avoid an | |
3455 | (undefined) << 32. */ | |
3456 | mask = (mask << 1) - 1; | |
3457 | if (((base ^ address) & ~mask) == 0) | |
3458 | break; | |
3459 | } | |
3460 | if (n < 0) | |
3461 | return 2; | |
3462 | ||
3463 | if (access_type == 2) { | |
3464 | mask = env->cp15.c5_insn; | |
3465 | } else { | |
3466 | mask = env->cp15.c5_data; | |
3467 | } | |
3468 | mask = (mask >> (n * 4)) & 0xf; | |
3469 | switch (mask) { | |
3470 | case 0: | |
3471 | return 1; | |
3472 | case 1: | |
3473 | if (is_user) | |
3474 | return 1; | |
3475 | *prot = PAGE_READ | PAGE_WRITE; | |
3476 | break; | |
3477 | case 2: | |
3478 | *prot = PAGE_READ; | |
3479 | if (!is_user) | |
3480 | *prot |= PAGE_WRITE; | |
3481 | break; | |
3482 | case 3: | |
3483 | *prot = PAGE_READ | PAGE_WRITE; | |
3484 | break; | |
3485 | case 5: | |
3486 | if (is_user) | |
3487 | return 1; | |
3488 | *prot = PAGE_READ; | |
3489 | break; | |
3490 | case 6: | |
3491 | *prot = PAGE_READ; | |
3492 | break; | |
3493 | default: | |
3494 | /* Bad permission. */ | |
3495 | return 1; | |
3496 | } | |
3ad493fc | 3497 | *prot |= PAGE_EXEC; |
9ee6e8bb PB |
3498 | return 0; |
3499 | } | |
3500 | ||
702a9357 PM |
3501 | /* get_phys_addr - get the physical address for this virtual address |
3502 | * | |
3503 | * Find the physical address corresponding to the given virtual address, | |
3504 | * by doing a translation table walk on MMU based systems or using the | |
3505 | * MPU state on MPU based systems. | |
3506 | * | |
3507 | * Returns 0 if the translation was successful. Otherwise, phys_ptr, | |
3508 | * prot and page_size are not filled in, and the return value provides | |
3509 | * information on why the translation aborted, in the format of a | |
3510 | * DFSR/IFSR fault register, with the following caveats: | |
3511 | * * we honour the short vs long DFSR format differences. | |
3512 | * * the WnR bit is never set (the caller must do this). | |
3513 | * * for MPU based systems we don't bother to return a full FSR format | |
3514 | * value. | |
3515 | * | |
3516 | * @env: CPUARMState | |
3517 | * @address: virtual address to get physical address for | |
3518 | * @access_type: 0 for read, 1 for write, 2 for execute | |
3519 | * @is_user: 0 for privileged access, 1 for user | |
3520 | * @phys_ptr: set to the physical address corresponding to the virtual address | |
3521 | * @prot: set to the permissions for the page containing phys_ptr | |
3522 | * @page_size: set to the size of the page containing phys_ptr | |
3523 | */ | |
0ecb72a5 | 3524 | static inline int get_phys_addr(CPUARMState *env, uint32_t address, |
9ee6e8bb | 3525 | int access_type, int is_user, |
a8170e5e | 3526 | hwaddr *phys_ptr, int *prot, |
d4c430a8 | 3527 | target_ulong *page_size) |
9ee6e8bb PB |
3528 | { |
3529 | /* Fast Context Switch Extension. */ | |
3530 | if (address < 0x02000000) | |
3531 | address += env->cp15.c13_fcse; | |
3532 | ||
76e3e1bc | 3533 | if ((env->cp15.c1_sys & SCTLR_M) == 0) { |
9ee6e8bb PB |
3534 | /* MMU/MPU disabled. */ |
3535 | *phys_ptr = address; | |
3ad493fc | 3536 | *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
d4c430a8 | 3537 | *page_size = TARGET_PAGE_SIZE; |
9ee6e8bb PB |
3538 | return 0; |
3539 | } else if (arm_feature(env, ARM_FEATURE_MPU)) { | |
d4c430a8 | 3540 | *page_size = TARGET_PAGE_SIZE; |
9ee6e8bb PB |
3541 | return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr, |
3542 | prot); | |
3dde962f PM |
3543 | } else if (extended_addresses_enabled(env)) { |
3544 | return get_phys_addr_lpae(env, address, access_type, is_user, phys_ptr, | |
3545 | prot, page_size); | |
76e3e1bc | 3546 | } else if (env->cp15.c1_sys & SCTLR_XP) { |
9ee6e8bb | 3547 | return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr, |
d4c430a8 | 3548 | prot, page_size); |
9ee6e8bb PB |
3549 | } else { |
3550 | return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr, | |
d4c430a8 | 3551 | prot, page_size); |
9ee6e8bb PB |
3552 | } |
3553 | } | |
3554 | ||
0ecb72a5 | 3555 | int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, |
97b348e7 | 3556 | int access_type, int mmu_idx) |
b5ff1b31 | 3557 | { |
a8170e5e | 3558 | hwaddr phys_addr; |
d4c430a8 | 3559 | target_ulong page_size; |
b5ff1b31 | 3560 | int prot; |
6ebbf390 | 3561 | int ret, is_user; |
b5ff1b31 | 3562 | |
6ebbf390 | 3563 | is_user = mmu_idx == MMU_USER_IDX; |
d4c430a8 PB |
3564 | ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot, |
3565 | &page_size); | |
b5ff1b31 FB |
3566 | if (ret == 0) { |
3567 | /* Map a single [sub]page. */ | |
a8170e5e | 3568 | phys_addr &= ~(hwaddr)0x3ff; |
b5ff1b31 | 3569 | address &= ~(uint32_t)0x3ff; |
3ad493fc | 3570 | tlb_set_page (env, address, phys_addr, prot, mmu_idx, page_size); |
d4c430a8 | 3571 | return 0; |
b5ff1b31 FB |
3572 | } |
3573 | ||
3574 | if (access_type == 2) { | |
3575 | env->cp15.c5_insn = ret; | |
3576 | env->cp15.c6_insn = address; | |
3577 | env->exception_index = EXCP_PREFETCH_ABORT; | |
3578 | } else { | |
3579 | env->cp15.c5_data = ret; | |
9ee6e8bb PB |
3580 | if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6)) |
3581 | env->cp15.c5_data |= (1 << 11); | |
b5ff1b31 FB |
3582 | env->cp15.c6_data = address; |
3583 | env->exception_index = EXCP_DATA_ABORT; | |
3584 | } | |
3585 | return 1; | |
3586 | } | |
3587 | ||
00b941e5 | 3588 | hwaddr arm_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) |
b5ff1b31 | 3589 | { |
00b941e5 | 3590 | ARMCPU *cpu = ARM_CPU(cs); |
a8170e5e | 3591 | hwaddr phys_addr; |
d4c430a8 | 3592 | target_ulong page_size; |
b5ff1b31 FB |
3593 | int prot; |
3594 | int ret; | |
3595 | ||
00b941e5 | 3596 | ret = get_phys_addr(&cpu->env, addr, 0, 0, &phys_addr, &prot, &page_size); |
b5ff1b31 | 3597 | |
00b941e5 | 3598 | if (ret != 0) { |
b5ff1b31 | 3599 | return -1; |
00b941e5 | 3600 | } |
b5ff1b31 FB |
3601 | |
3602 | return phys_addr; | |
3603 | } | |
3604 | ||
0ecb72a5 | 3605 | void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val) |
9ee6e8bb | 3606 | { |
39ea3d4e PM |
3607 | if ((env->uncached_cpsr & CPSR_M) == mode) { |
3608 | env->regs[13] = val; | |
3609 | } else { | |
f5206413 | 3610 | env->banked_r13[bank_number(mode)] = val; |
39ea3d4e | 3611 | } |
9ee6e8bb PB |
3612 | } |
3613 | ||
0ecb72a5 | 3614 | uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode) |
9ee6e8bb | 3615 | { |
39ea3d4e PM |
3616 | if ((env->uncached_cpsr & CPSR_M) == mode) { |
3617 | return env->regs[13]; | |
3618 | } else { | |
f5206413 | 3619 | return env->banked_r13[bank_number(mode)]; |
39ea3d4e | 3620 | } |
9ee6e8bb PB |
3621 | } |
3622 | ||
0ecb72a5 | 3623 | uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) |
9ee6e8bb PB |
3624 | { |
3625 | switch (reg) { | |
3626 | case 0: /* APSR */ | |
3627 | return xpsr_read(env) & 0xf8000000; | |
3628 | case 1: /* IAPSR */ | |
3629 | return xpsr_read(env) & 0xf80001ff; | |
3630 | case 2: /* EAPSR */ | |
3631 | return xpsr_read(env) & 0xff00fc00; | |
3632 | case 3: /* xPSR */ | |
3633 | return xpsr_read(env) & 0xff00fdff; | |
3634 | case 5: /* IPSR */ | |
3635 | return xpsr_read(env) & 0x000001ff; | |
3636 | case 6: /* EPSR */ | |
3637 | return xpsr_read(env) & 0x0700fc00; | |
3638 | case 7: /* IEPSR */ | |
3639 | return xpsr_read(env) & 0x0700edff; | |
3640 | case 8: /* MSP */ | |
3641 | return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13]; | |
3642 | case 9: /* PSP */ | |
3643 | return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp; | |
3644 | case 16: /* PRIMASK */ | |
4cc35614 | 3645 | return (env->daif & PSTATE_I) != 0; |
82845826 SH |
3646 | case 17: /* BASEPRI */ |
3647 | case 18: /* BASEPRI_MAX */ | |
9ee6e8bb | 3648 | return env->v7m.basepri; |
82845826 | 3649 | case 19: /* FAULTMASK */ |
4cc35614 | 3650 | return (env->daif & PSTATE_F) != 0; |
9ee6e8bb PB |
3651 | case 20: /* CONTROL */ |
3652 | return env->v7m.control; | |
3653 | default: | |
3654 | /* ??? For debugging only. */ | |
3655 | cpu_abort(env, "Unimplemented system register read (%d)\n", reg); | |
3656 | return 0; | |
3657 | } | |
3658 | } | |
3659 | ||
0ecb72a5 | 3660 | void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) |
9ee6e8bb PB |
3661 | { |
3662 | switch (reg) { | |
3663 | case 0: /* APSR */ | |
3664 | xpsr_write(env, val, 0xf8000000); | |
3665 | break; | |
3666 | case 1: /* IAPSR */ | |
3667 | xpsr_write(env, val, 0xf8000000); | |
3668 | break; | |
3669 | case 2: /* EAPSR */ | |
3670 | xpsr_write(env, val, 0xfe00fc00); | |
3671 | break; | |
3672 | case 3: /* xPSR */ | |
3673 | xpsr_write(env, val, 0xfe00fc00); | |
3674 | break; | |
3675 | case 5: /* IPSR */ | |
3676 | /* IPSR bits are readonly. */ | |
3677 | break; | |
3678 | case 6: /* EPSR */ | |
3679 | xpsr_write(env, val, 0x0600fc00); | |
3680 | break; | |
3681 | case 7: /* IEPSR */ | |
3682 | xpsr_write(env, val, 0x0600fc00); | |
3683 | break; | |
3684 | case 8: /* MSP */ | |
3685 | if (env->v7m.current_sp) | |
3686 | env->v7m.other_sp = val; | |
3687 | else | |
3688 | env->regs[13] = val; | |
3689 | break; | |
3690 | case 9: /* PSP */ | |
3691 | if (env->v7m.current_sp) | |
3692 | env->regs[13] = val; | |
3693 | else | |
3694 | env->v7m.other_sp = val; | |
3695 | break; | |
3696 | case 16: /* PRIMASK */ | |
4cc35614 PM |
3697 | if (val & 1) { |
3698 | env->daif |= PSTATE_I; | |
3699 | } else { | |
3700 | env->daif &= ~PSTATE_I; | |
3701 | } | |
9ee6e8bb | 3702 | break; |
82845826 | 3703 | case 17: /* BASEPRI */ |
9ee6e8bb PB |
3704 | env->v7m.basepri = val & 0xff; |
3705 | break; | |
82845826 | 3706 | case 18: /* BASEPRI_MAX */ |
9ee6e8bb PB |
3707 | val &= 0xff; |
3708 | if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0)) | |
3709 | env->v7m.basepri = val; | |
3710 | break; | |
82845826 | 3711 | case 19: /* FAULTMASK */ |
4cc35614 PM |
3712 | if (val & 1) { |
3713 | env->daif |= PSTATE_F; | |
3714 | } else { | |
3715 | env->daif &= ~PSTATE_F; | |
3716 | } | |
82845826 | 3717 | break; |
9ee6e8bb PB |
3718 | case 20: /* CONTROL */ |
3719 | env->v7m.control = val & 3; | |
3720 | switch_v7m_sp(env, (val & 2) != 0); | |
3721 | break; | |
3722 | default: | |
3723 | /* ??? For debugging only. */ | |
3724 | cpu_abort(env, "Unimplemented system register write (%d)\n", reg); | |
3725 | return; | |
3726 | } | |
3727 | } | |
3728 | ||
b5ff1b31 | 3729 | #endif |
6ddbc6e4 PB |
3730 | |
3731 | /* Note that signed overflow is undefined in C. The following routines are | |
3732 | careful to use unsigned types where modulo arithmetic is required. | |
3733 | Failure to do so _will_ break on newer gcc. */ | |
3734 | ||
3735 | /* Signed saturating arithmetic. */ | |
3736 | ||
1654b2d6 | 3737 | /* Perform 16-bit signed saturating addition. */ |
6ddbc6e4 PB |
3738 | static inline uint16_t add16_sat(uint16_t a, uint16_t b) |
3739 | { | |
3740 | uint16_t res; | |
3741 | ||
3742 | res = a + b; | |
3743 | if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { | |
3744 | if (a & 0x8000) | |
3745 | res = 0x8000; | |
3746 | else | |
3747 | res = 0x7fff; | |
3748 | } | |
3749 | return res; | |
3750 | } | |
3751 | ||
1654b2d6 | 3752 | /* Perform 8-bit signed saturating addition. */ |
6ddbc6e4 PB |
3753 | static inline uint8_t add8_sat(uint8_t a, uint8_t b) |
3754 | { | |
3755 | uint8_t res; | |
3756 | ||
3757 | res = a + b; | |
3758 | if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { | |
3759 | if (a & 0x80) | |
3760 | res = 0x80; | |
3761 | else | |
3762 | res = 0x7f; | |
3763 | } | |
3764 | return res; | |
3765 | } | |
3766 | ||
1654b2d6 | 3767 | /* Perform 16-bit signed saturating subtraction. */ |
6ddbc6e4 PB |
3768 | static inline uint16_t sub16_sat(uint16_t a, uint16_t b) |
3769 | { | |
3770 | uint16_t res; | |
3771 | ||
3772 | res = a - b; | |
3773 | if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { | |
3774 | if (a & 0x8000) | |
3775 | res = 0x8000; | |
3776 | else | |
3777 | res = 0x7fff; | |
3778 | } | |
3779 | return res; | |
3780 | } | |
3781 | ||
1654b2d6 | 3782 | /* Perform 8-bit signed saturating subtraction. */ |
6ddbc6e4 PB |
3783 | static inline uint8_t sub8_sat(uint8_t a, uint8_t b) |
3784 | { | |
3785 | uint8_t res; | |
3786 | ||
3787 | res = a - b; | |
3788 | if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { | |
3789 | if (a & 0x80) | |
3790 | res = 0x80; | |
3791 | else | |
3792 | res = 0x7f; | |
3793 | } | |
3794 | return res; | |
3795 | } | |
3796 | ||
3797 | #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); | |
3798 | #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); | |
3799 | #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); | |
3800 | #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); | |
3801 | #define PFX q | |
3802 | ||
3803 | #include "op_addsub.h" | |
3804 | ||
3805 | /* Unsigned saturating arithmetic. */ | |
460a09c1 | 3806 | static inline uint16_t add16_usat(uint16_t a, uint16_t b) |
6ddbc6e4 PB |
3807 | { |
3808 | uint16_t res; | |
3809 | res = a + b; | |
3810 | if (res < a) | |
3811 | res = 0xffff; | |
3812 | return res; | |
3813 | } | |
3814 | ||
460a09c1 | 3815 | static inline uint16_t sub16_usat(uint16_t a, uint16_t b) |
6ddbc6e4 | 3816 | { |
4c4fd3f8 | 3817 | if (a > b) |
6ddbc6e4 PB |
3818 | return a - b; |
3819 | else | |
3820 | return 0; | |
3821 | } | |
3822 | ||
3823 | static inline uint8_t add8_usat(uint8_t a, uint8_t b) | |
3824 | { | |
3825 | uint8_t res; | |
3826 | res = a + b; | |
3827 | if (res < a) | |
3828 | res = 0xff; | |
3829 | return res; | |
3830 | } | |
3831 | ||
3832 | static inline uint8_t sub8_usat(uint8_t a, uint8_t b) | |
3833 | { | |
4c4fd3f8 | 3834 | if (a > b) |
6ddbc6e4 PB |
3835 | return a - b; |
3836 | else | |
3837 | return 0; | |
3838 | } | |
3839 | ||
3840 | #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); | |
3841 | #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); | |
3842 | #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); | |
3843 | #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); | |
3844 | #define PFX uq | |
3845 | ||
3846 | #include "op_addsub.h" | |
3847 | ||
3848 | /* Signed modulo arithmetic. */ | |
3849 | #define SARITH16(a, b, n, op) do { \ | |
3850 | int32_t sum; \ | |
db6e2e65 | 3851 | sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ |
6ddbc6e4 PB |
3852 | RESULT(sum, n, 16); \ |
3853 | if (sum >= 0) \ | |
3854 | ge |= 3 << (n * 2); \ | |
3855 | } while(0) | |
3856 | ||
3857 | #define SARITH8(a, b, n, op) do { \ | |
3858 | int32_t sum; \ | |
db6e2e65 | 3859 | sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ |
6ddbc6e4 PB |
3860 | RESULT(sum, n, 8); \ |
3861 | if (sum >= 0) \ | |
3862 | ge |= 1 << n; \ | |
3863 | } while(0) | |
3864 | ||
3865 | ||
3866 | #define ADD16(a, b, n) SARITH16(a, b, n, +) | |
3867 | #define SUB16(a, b, n) SARITH16(a, b, n, -) | |
3868 | #define ADD8(a, b, n) SARITH8(a, b, n, +) | |
3869 | #define SUB8(a, b, n) SARITH8(a, b, n, -) | |
3870 | #define PFX s | |
3871 | #define ARITH_GE | |
3872 | ||
3873 | #include "op_addsub.h" | |
3874 | ||
3875 | /* Unsigned modulo arithmetic. */ | |
3876 | #define ADD16(a, b, n) do { \ | |
3877 | uint32_t sum; \ | |
3878 | sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ | |
3879 | RESULT(sum, n, 16); \ | |
a87aa10b | 3880 | if ((sum >> 16) == 1) \ |
6ddbc6e4 PB |
3881 | ge |= 3 << (n * 2); \ |
3882 | } while(0) | |
3883 | ||
3884 | #define ADD8(a, b, n) do { \ | |
3885 | uint32_t sum; \ | |
3886 | sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ | |
3887 | RESULT(sum, n, 8); \ | |
a87aa10b AZ |
3888 | if ((sum >> 8) == 1) \ |
3889 | ge |= 1 << n; \ | |
6ddbc6e4 PB |
3890 | } while(0) |
3891 | ||
3892 | #define SUB16(a, b, n) do { \ | |
3893 | uint32_t sum; \ | |
3894 | sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ | |
3895 | RESULT(sum, n, 16); \ | |
3896 | if ((sum >> 16) == 0) \ | |
3897 | ge |= 3 << (n * 2); \ | |
3898 | } while(0) | |
3899 | ||
3900 | #define SUB8(a, b, n) do { \ | |
3901 | uint32_t sum; \ | |
3902 | sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ | |
3903 | RESULT(sum, n, 8); \ | |
3904 | if ((sum >> 8) == 0) \ | |
a87aa10b | 3905 | ge |= 1 << n; \ |
6ddbc6e4 PB |
3906 | } while(0) |
3907 | ||
3908 | #define PFX u | |
3909 | #define ARITH_GE | |
3910 | ||
3911 | #include "op_addsub.h" | |
3912 | ||
3913 | /* Halved signed arithmetic. */ | |
3914 | #define ADD16(a, b, n) \ | |
3915 | RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) | |
3916 | #define SUB16(a, b, n) \ | |
3917 | RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) | |
3918 | #define ADD8(a, b, n) \ | |
3919 | RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) | |
3920 | #define SUB8(a, b, n) \ | |
3921 | RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) | |
3922 | #define PFX sh | |
3923 | ||
3924 | #include "op_addsub.h" | |
3925 | ||
3926 | /* Halved unsigned arithmetic. */ | |
3927 | #define ADD16(a, b, n) \ | |
3928 | RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) | |
3929 | #define SUB16(a, b, n) \ | |
3930 | RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) | |
3931 | #define ADD8(a, b, n) \ | |
3932 | RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) | |
3933 | #define SUB8(a, b, n) \ | |
3934 | RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) | |
3935 | #define PFX uh | |
3936 | ||
3937 | #include "op_addsub.h" | |
3938 | ||
3939 | static inline uint8_t do_usad(uint8_t a, uint8_t b) | |
3940 | { | |
3941 | if (a > b) | |
3942 | return a - b; | |
3943 | else | |
3944 | return b - a; | |
3945 | } | |
3946 | ||
3947 | /* Unsigned sum of absolute byte differences. */ | |
3948 | uint32_t HELPER(usad8)(uint32_t a, uint32_t b) | |
3949 | { | |
3950 | uint32_t sum; | |
3951 | sum = do_usad(a, b); | |
3952 | sum += do_usad(a >> 8, b >> 8); | |
3953 | sum += do_usad(a >> 16, b >>16); | |
3954 | sum += do_usad(a >> 24, b >> 24); | |
3955 | return sum; | |
3956 | } | |
3957 | ||
3958 | /* For ARMv6 SEL instruction. */ | |
3959 | uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) | |
3960 | { | |
3961 | uint32_t mask; | |
3962 | ||
3963 | mask = 0; | |
3964 | if (flags & 1) | |
3965 | mask |= 0xff; | |
3966 | if (flags & 2) | |
3967 | mask |= 0xff00; | |
3968 | if (flags & 4) | |
3969 | mask |= 0xff0000; | |
3970 | if (flags & 8) | |
3971 | mask |= 0xff000000; | |
3972 | return (a & mask) | (b & ~mask); | |
3973 | } | |
3974 | ||
b90372ad PM |
3975 | /* VFP support. We follow the convention used for VFP instructions: |
3976 | Single precision routines have a "s" suffix, double precision a | |
4373f3ce PB |
3977 | "d" suffix. */ |
3978 | ||
3979 | /* Convert host exception flags to vfp form. */ | |
3980 | static inline int vfp_exceptbits_from_host(int host_bits) | |
3981 | { | |
3982 | int target_bits = 0; | |
3983 | ||
3984 | if (host_bits & float_flag_invalid) | |
3985 | target_bits |= 1; | |
3986 | if (host_bits & float_flag_divbyzero) | |
3987 | target_bits |= 2; | |
3988 | if (host_bits & float_flag_overflow) | |
3989 | target_bits |= 4; | |
36802b6b | 3990 | if (host_bits & (float_flag_underflow | float_flag_output_denormal)) |
4373f3ce PB |
3991 | target_bits |= 8; |
3992 | if (host_bits & float_flag_inexact) | |
3993 | target_bits |= 0x10; | |
cecd8504 PM |
3994 | if (host_bits & float_flag_input_denormal) |
3995 | target_bits |= 0x80; | |
4373f3ce PB |
3996 | return target_bits; |
3997 | } | |
3998 | ||
0ecb72a5 | 3999 | uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env) |
4373f3ce PB |
4000 | { |
4001 | int i; | |
4002 | uint32_t fpscr; | |
4003 | ||
4004 | fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff) | |
4005 | | (env->vfp.vec_len << 16) | |
4006 | | (env->vfp.vec_stride << 20); | |
4007 | i = get_float_exception_flags(&env->vfp.fp_status); | |
3a492f3a | 4008 | i |= get_float_exception_flags(&env->vfp.standard_fp_status); |
4373f3ce PB |
4009 | fpscr |= vfp_exceptbits_from_host(i); |
4010 | return fpscr; | |
4011 | } | |
4012 | ||
0ecb72a5 | 4013 | uint32_t vfp_get_fpscr(CPUARMState *env) |
01653295 PM |
4014 | { |
4015 | return HELPER(vfp_get_fpscr)(env); | |
4016 | } | |
4017 | ||
4373f3ce PB |
4018 | /* Convert vfp exception flags to target form. */ |
4019 | static inline int vfp_exceptbits_to_host(int target_bits) | |
4020 | { | |
4021 | int host_bits = 0; | |
4022 | ||
4023 | if (target_bits & 1) | |
4024 | host_bits |= float_flag_invalid; | |
4025 | if (target_bits & 2) | |
4026 | host_bits |= float_flag_divbyzero; | |
4027 | if (target_bits & 4) | |
4028 | host_bits |= float_flag_overflow; | |
4029 | if (target_bits & 8) | |
4030 | host_bits |= float_flag_underflow; | |
4031 | if (target_bits & 0x10) | |
4032 | host_bits |= float_flag_inexact; | |
cecd8504 PM |
4033 | if (target_bits & 0x80) |
4034 | host_bits |= float_flag_input_denormal; | |
4373f3ce PB |
4035 | return host_bits; |
4036 | } | |
4037 | ||
0ecb72a5 | 4038 | void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val) |
4373f3ce PB |
4039 | { |
4040 | int i; | |
4041 | uint32_t changed; | |
4042 | ||
4043 | changed = env->vfp.xregs[ARM_VFP_FPSCR]; | |
4044 | env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff); | |
4045 | env->vfp.vec_len = (val >> 16) & 7; | |
4046 | env->vfp.vec_stride = (val >> 20) & 3; | |
4047 | ||
4048 | changed ^= val; | |
4049 | if (changed & (3 << 22)) { | |
4050 | i = (val >> 22) & 3; | |
4051 | switch (i) { | |
4d3da0f3 | 4052 | case FPROUNDING_TIEEVEN: |
4373f3ce PB |
4053 | i = float_round_nearest_even; |
4054 | break; | |
4d3da0f3 | 4055 | case FPROUNDING_POSINF: |
4373f3ce PB |
4056 | i = float_round_up; |
4057 | break; | |
4d3da0f3 | 4058 | case FPROUNDING_NEGINF: |
4373f3ce PB |
4059 | i = float_round_down; |
4060 | break; | |
4d3da0f3 | 4061 | case FPROUNDING_ZERO: |
4373f3ce PB |
4062 | i = float_round_to_zero; |
4063 | break; | |
4064 | } | |
4065 | set_float_rounding_mode(i, &env->vfp.fp_status); | |
4066 | } | |
cecd8504 | 4067 | if (changed & (1 << 24)) { |
fe76d976 | 4068 | set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); |
cecd8504 PM |
4069 | set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); |
4070 | } | |
5c7908ed PB |
4071 | if (changed & (1 << 25)) |
4072 | set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status); | |
4373f3ce | 4073 | |
b12c390b | 4074 | i = vfp_exceptbits_to_host(val); |
4373f3ce | 4075 | set_float_exception_flags(i, &env->vfp.fp_status); |
3a492f3a | 4076 | set_float_exception_flags(0, &env->vfp.standard_fp_status); |
4373f3ce PB |
4077 | } |
4078 | ||
0ecb72a5 | 4079 | void vfp_set_fpscr(CPUARMState *env, uint32_t val) |
01653295 PM |
4080 | { |
4081 | HELPER(vfp_set_fpscr)(env, val); | |
4082 | } | |
4083 | ||
4373f3ce PB |
4084 | #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p)) |
4085 | ||
4086 | #define VFP_BINOP(name) \ | |
ae1857ec | 4087 | float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \ |
4373f3ce | 4088 | { \ |
ae1857ec PM |
4089 | float_status *fpst = fpstp; \ |
4090 | return float32_ ## name(a, b, fpst); \ | |
4373f3ce | 4091 | } \ |
ae1857ec | 4092 | float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \ |
4373f3ce | 4093 | { \ |
ae1857ec PM |
4094 | float_status *fpst = fpstp; \ |
4095 | return float64_ ## name(a, b, fpst); \ | |
4373f3ce PB |
4096 | } |
4097 | VFP_BINOP(add) | |
4098 | VFP_BINOP(sub) | |
4099 | VFP_BINOP(mul) | |
4100 | VFP_BINOP(div) | |
f71a2ae5 PM |
4101 | VFP_BINOP(min) |
4102 | VFP_BINOP(max) | |
4103 | VFP_BINOP(minnum) | |
4104 | VFP_BINOP(maxnum) | |
4373f3ce PB |
4105 | #undef VFP_BINOP |
4106 | ||
4107 | float32 VFP_HELPER(neg, s)(float32 a) | |
4108 | { | |
4109 | return float32_chs(a); | |
4110 | } | |
4111 | ||
4112 | float64 VFP_HELPER(neg, d)(float64 a) | |
4113 | { | |
66230e0d | 4114 | return float64_chs(a); |
4373f3ce PB |
4115 | } |
4116 | ||
4117 | float32 VFP_HELPER(abs, s)(float32 a) | |
4118 | { | |
4119 | return float32_abs(a); | |
4120 | } | |
4121 | ||
4122 | float64 VFP_HELPER(abs, d)(float64 a) | |
4123 | { | |
66230e0d | 4124 | return float64_abs(a); |
4373f3ce PB |
4125 | } |
4126 | ||
0ecb72a5 | 4127 | float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env) |
4373f3ce PB |
4128 | { |
4129 | return float32_sqrt(a, &env->vfp.fp_status); | |
4130 | } | |
4131 | ||
0ecb72a5 | 4132 | float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env) |
4373f3ce PB |
4133 | { |
4134 | return float64_sqrt(a, &env->vfp.fp_status); | |
4135 | } | |
4136 | ||
4137 | /* XXX: check quiet/signaling case */ | |
4138 | #define DO_VFP_cmp(p, type) \ | |
0ecb72a5 | 4139 | void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \ |
4373f3ce PB |
4140 | { \ |
4141 | uint32_t flags; \ | |
4142 | switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \ | |
4143 | case 0: flags = 0x6; break; \ | |
4144 | case -1: flags = 0x8; break; \ | |
4145 | case 1: flags = 0x2; break; \ | |
4146 | default: case 2: flags = 0x3; break; \ | |
4147 | } \ | |
4148 | env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ | |
4149 | | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ | |
4150 | } \ | |
0ecb72a5 | 4151 | void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \ |
4373f3ce PB |
4152 | { \ |
4153 | uint32_t flags; \ | |
4154 | switch(type ## _compare(a, b, &env->vfp.fp_status)) { \ | |
4155 | case 0: flags = 0x6; break; \ | |
4156 | case -1: flags = 0x8; break; \ | |
4157 | case 1: flags = 0x2; break; \ | |
4158 | default: case 2: flags = 0x3; break; \ | |
4159 | } \ | |
4160 | env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ | |
4161 | | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ | |
4162 | } | |
4163 | DO_VFP_cmp(s, float32) | |
4164 | DO_VFP_cmp(d, float64) | |
4165 | #undef DO_VFP_cmp | |
4166 | ||
5500b06c | 4167 | /* Integer to float and float to integer conversions */ |
4373f3ce | 4168 | |
5500b06c PM |
4169 | #define CONV_ITOF(name, fsz, sign) \ |
4170 | float##fsz HELPER(name)(uint32_t x, void *fpstp) \ | |
4171 | { \ | |
4172 | float_status *fpst = fpstp; \ | |
85836979 | 4173 | return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \ |
4373f3ce PB |
4174 | } |
4175 | ||
5500b06c PM |
4176 | #define CONV_FTOI(name, fsz, sign, round) \ |
4177 | uint32_t HELPER(name)(float##fsz x, void *fpstp) \ | |
4178 | { \ | |
4179 | float_status *fpst = fpstp; \ | |
4180 | if (float##fsz##_is_any_nan(x)) { \ | |
4181 | float_raise(float_flag_invalid, fpst); \ | |
4182 | return 0; \ | |
4183 | } \ | |
4184 | return float##fsz##_to_##sign##int32##round(x, fpst); \ | |
4373f3ce PB |
4185 | } |
4186 | ||
5500b06c PM |
4187 | #define FLOAT_CONVS(name, p, fsz, sign) \ |
4188 | CONV_ITOF(vfp_##name##to##p, fsz, sign) \ | |
4189 | CONV_FTOI(vfp_to##name##p, fsz, sign, ) \ | |
4190 | CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero) | |
4373f3ce | 4191 | |
5500b06c PM |
4192 | FLOAT_CONVS(si, s, 32, ) |
4193 | FLOAT_CONVS(si, d, 64, ) | |
4194 | FLOAT_CONVS(ui, s, 32, u) | |
4195 | FLOAT_CONVS(ui, d, 64, u) | |
4373f3ce | 4196 | |
5500b06c PM |
4197 | #undef CONV_ITOF |
4198 | #undef CONV_FTOI | |
4199 | #undef FLOAT_CONVS | |
4373f3ce PB |
4200 | |
4201 | /* floating point conversion */ | |
0ecb72a5 | 4202 | float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env) |
4373f3ce | 4203 | { |
2d627737 PM |
4204 | float64 r = float32_to_float64(x, &env->vfp.fp_status); |
4205 | /* ARM requires that S<->D conversion of any kind of NaN generates | |
4206 | * a quiet NaN by forcing the most significant frac bit to 1. | |
4207 | */ | |
4208 | return float64_maybe_silence_nan(r); | |
4373f3ce PB |
4209 | } |
4210 | ||
0ecb72a5 | 4211 | float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env) |
4373f3ce | 4212 | { |
2d627737 PM |
4213 | float32 r = float64_to_float32(x, &env->vfp.fp_status); |
4214 | /* ARM requires that S<->D conversion of any kind of NaN generates | |
4215 | * a quiet NaN by forcing the most significant frac bit to 1. | |
4216 | */ | |
4217 | return float32_maybe_silence_nan(r); | |
4373f3ce PB |
4218 | } |
4219 | ||
4220 | /* VFP3 fixed point conversion. */ | |
16d5b3ca | 4221 | #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ |
8ed697e8 WN |
4222 | float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \ |
4223 | void *fpstp) \ | |
4373f3ce | 4224 | { \ |
5500b06c | 4225 | float_status *fpst = fpstp; \ |
622465e1 | 4226 | float##fsz tmp; \ |
8ed697e8 | 4227 | tmp = itype##_to_##float##fsz(x, fpst); \ |
5500b06c | 4228 | return float##fsz##_scalbn(tmp, -(int)shift, fpst); \ |
16d5b3ca WN |
4229 | } |
4230 | ||
abe66f70 PM |
4231 | /* Notice that we want only input-denormal exception flags from the |
4232 | * scalbn operation: the other possible flags (overflow+inexact if | |
4233 | * we overflow to infinity, output-denormal) aren't correct for the | |
4234 | * complete scale-and-convert operation. | |
4235 | */ | |
16d5b3ca WN |
4236 | #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \ |
4237 | uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \ | |
4238 | uint32_t shift, \ | |
4239 | void *fpstp) \ | |
4373f3ce | 4240 | { \ |
5500b06c | 4241 | float_status *fpst = fpstp; \ |
abe66f70 | 4242 | int old_exc_flags = get_float_exception_flags(fpst); \ |
622465e1 PM |
4243 | float##fsz tmp; \ |
4244 | if (float##fsz##_is_any_nan(x)) { \ | |
5500b06c | 4245 | float_raise(float_flag_invalid, fpst); \ |
622465e1 | 4246 | return 0; \ |
09d9487f | 4247 | } \ |
5500b06c | 4248 | tmp = float##fsz##_scalbn(x, shift, fpst); \ |
abe66f70 PM |
4249 | old_exc_flags |= get_float_exception_flags(fpst) \ |
4250 | & float_flag_input_denormal; \ | |
4251 | set_float_exception_flags(old_exc_flags, fpst); \ | |
16d5b3ca | 4252 | return float##fsz##_to_##itype##round(tmp, fpst); \ |
622465e1 PM |
4253 | } |
4254 | ||
16d5b3ca WN |
4255 | #define VFP_CONV_FIX(name, p, fsz, isz, itype) \ |
4256 | VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ | |
3c6a074a WN |
4257 | VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \ |
4258 | VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) | |
4259 | ||
4260 | #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \ | |
4261 | VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ | |
4262 | VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) | |
16d5b3ca | 4263 | |
8ed697e8 WN |
4264 | VFP_CONV_FIX(sh, d, 64, 64, int16) |
4265 | VFP_CONV_FIX(sl, d, 64, 64, int32) | |
3c6a074a | 4266 | VFP_CONV_FIX_A64(sq, d, 64, 64, int64) |
8ed697e8 WN |
4267 | VFP_CONV_FIX(uh, d, 64, 64, uint16) |
4268 | VFP_CONV_FIX(ul, d, 64, 64, uint32) | |
3c6a074a | 4269 | VFP_CONV_FIX_A64(uq, d, 64, 64, uint64) |
8ed697e8 WN |
4270 | VFP_CONV_FIX(sh, s, 32, 32, int16) |
4271 | VFP_CONV_FIX(sl, s, 32, 32, int32) | |
3c6a074a | 4272 | VFP_CONV_FIX_A64(sq, s, 32, 64, int64) |
8ed697e8 WN |
4273 | VFP_CONV_FIX(uh, s, 32, 32, uint16) |
4274 | VFP_CONV_FIX(ul, s, 32, 32, uint32) | |
3c6a074a | 4275 | VFP_CONV_FIX_A64(uq, s, 32, 64, uint64) |
4373f3ce | 4276 | #undef VFP_CONV_FIX |
16d5b3ca WN |
4277 | #undef VFP_CONV_FIX_FLOAT |
4278 | #undef VFP_CONV_FLOAT_FIX_ROUND | |
4373f3ce | 4279 | |
52a1f6a3 AG |
4280 | /* Set the current fp rounding mode and return the old one. |
4281 | * The argument is a softfloat float_round_ value. | |
4282 | */ | |
4283 | uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env) | |
4284 | { | |
4285 | float_status *fp_status = &env->vfp.fp_status; | |
4286 | ||
4287 | uint32_t prev_rmode = get_float_rounding_mode(fp_status); | |
4288 | set_float_rounding_mode(rmode, fp_status); | |
4289 | ||
4290 | return prev_rmode; | |
4291 | } | |
4292 | ||
43630e58 WN |
4293 | /* Set the current fp rounding mode in the standard fp status and return |
4294 | * the old one. This is for NEON instructions that need to change the | |
4295 | * rounding mode but wish to use the standard FPSCR values for everything | |
4296 | * else. Always set the rounding mode back to the correct value after | |
4297 | * modifying it. | |
4298 | * The argument is a softfloat float_round_ value. | |
4299 | */ | |
4300 | uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env) | |
4301 | { | |
4302 | float_status *fp_status = &env->vfp.standard_fp_status; | |
4303 | ||
4304 | uint32_t prev_rmode = get_float_rounding_mode(fp_status); | |
4305 | set_float_rounding_mode(rmode, fp_status); | |
4306 | ||
4307 | return prev_rmode; | |
4308 | } | |
4309 | ||
60011498 | 4310 | /* Half precision conversions. */ |
0ecb72a5 | 4311 | static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s) |
60011498 | 4312 | { |
60011498 | 4313 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; |
fb91678d PM |
4314 | float32 r = float16_to_float32(make_float16(a), ieee, s); |
4315 | if (ieee) { | |
4316 | return float32_maybe_silence_nan(r); | |
4317 | } | |
4318 | return r; | |
60011498 PB |
4319 | } |
4320 | ||
0ecb72a5 | 4321 | static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s) |
60011498 | 4322 | { |
60011498 | 4323 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; |
fb91678d PM |
4324 | float16 r = float32_to_float16(a, ieee, s); |
4325 | if (ieee) { | |
4326 | r = float16_maybe_silence_nan(r); | |
4327 | } | |
4328 | return float16_val(r); | |
60011498 PB |
4329 | } |
4330 | ||
0ecb72a5 | 4331 | float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) |
2d981da7 PM |
4332 | { |
4333 | return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status); | |
4334 | } | |
4335 | ||
0ecb72a5 | 4336 | uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env) |
2d981da7 PM |
4337 | { |
4338 | return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status); | |
4339 | } | |
4340 | ||
0ecb72a5 | 4341 | float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) |
2d981da7 PM |
4342 | { |
4343 | return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status); | |
4344 | } | |
4345 | ||
0ecb72a5 | 4346 | uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env) |
2d981da7 PM |
4347 | { |
4348 | return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status); | |
4349 | } | |
4350 | ||
8900aad2 PM |
4351 | float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env) |
4352 | { | |
4353 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; | |
4354 | float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status); | |
4355 | if (ieee) { | |
4356 | return float64_maybe_silence_nan(r); | |
4357 | } | |
4358 | return r; | |
4359 | } | |
4360 | ||
4361 | uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env) | |
4362 | { | |
4363 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; | |
4364 | float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status); | |
4365 | if (ieee) { | |
4366 | r = float16_maybe_silence_nan(r); | |
4367 | } | |
4368 | return float16_val(r); | |
4369 | } | |
4370 | ||
dda3ec49 | 4371 | #define float32_two make_float32(0x40000000) |
6aae3df1 PM |
4372 | #define float32_three make_float32(0x40400000) |
4373 | #define float32_one_point_five make_float32(0x3fc00000) | |
dda3ec49 | 4374 | |
0ecb72a5 | 4375 | float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env) |
4373f3ce | 4376 | { |
dda3ec49 PM |
4377 | float_status *s = &env->vfp.standard_fp_status; |
4378 | if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || | |
4379 | (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { | |
43fe9bdb PM |
4380 | if (!(float32_is_zero(a) || float32_is_zero(b))) { |
4381 | float_raise(float_flag_input_denormal, s); | |
4382 | } | |
dda3ec49 PM |
4383 | return float32_two; |
4384 | } | |
4385 | return float32_sub(float32_two, float32_mul(a, b, s), s); | |
4373f3ce PB |
4386 | } |
4387 | ||
0ecb72a5 | 4388 | float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env) |
4373f3ce | 4389 | { |
71826966 | 4390 | float_status *s = &env->vfp.standard_fp_status; |
9ea62f57 PM |
4391 | float32 product; |
4392 | if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || | |
4393 | (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { | |
43fe9bdb PM |
4394 | if (!(float32_is_zero(a) || float32_is_zero(b))) { |
4395 | float_raise(float_flag_input_denormal, s); | |
4396 | } | |
6aae3df1 | 4397 | return float32_one_point_five; |
9ea62f57 | 4398 | } |
6aae3df1 PM |
4399 | product = float32_mul(a, b, s); |
4400 | return float32_div(float32_sub(float32_three, product, s), float32_two, s); | |
4373f3ce PB |
4401 | } |
4402 | ||
8f8e3aa4 PB |
4403 | /* NEON helpers. */ |
4404 | ||
56bf4fe2 CL |
4405 | /* Constants 256 and 512 are used in some helpers; we avoid relying on |
4406 | * int->float conversions at run-time. */ | |
4407 | #define float64_256 make_float64(0x4070000000000000LL) | |
4408 | #define float64_512 make_float64(0x4080000000000000LL) | |
4409 | ||
fe0e4872 CL |
4410 | /* The algorithm that must be used to calculate the estimate |
4411 | * is specified by the ARM ARM. | |
4412 | */ | |
0ecb72a5 | 4413 | static float64 recip_estimate(float64 a, CPUARMState *env) |
fe0e4872 | 4414 | { |
1146a817 PM |
4415 | /* These calculations mustn't set any fp exception flags, |
4416 | * so we use a local copy of the fp_status. | |
4417 | */ | |
4418 | float_status dummy_status = env->vfp.standard_fp_status; | |
4419 | float_status *s = &dummy_status; | |
fe0e4872 CL |
4420 | /* q = (int)(a * 512.0) */ |
4421 | float64 q = float64_mul(float64_512, a, s); | |
4422 | int64_t q_int = float64_to_int64_round_to_zero(q, s); | |
4423 | ||
4424 | /* r = 1.0 / (((double)q + 0.5) / 512.0) */ | |
4425 | q = int64_to_float64(q_int, s); | |
4426 | q = float64_add(q, float64_half, s); | |
4427 | q = float64_div(q, float64_512, s); | |
4428 | q = float64_div(float64_one, q, s); | |
4429 | ||
4430 | /* s = (int)(256.0 * r + 0.5) */ | |
4431 | q = float64_mul(q, float64_256, s); | |
4432 | q = float64_add(q, float64_half, s); | |
4433 | q_int = float64_to_int64_round_to_zero(q, s); | |
4434 | ||
4435 | /* return (double)s / 256.0 */ | |
4436 | return float64_div(int64_to_float64(q_int, s), float64_256, s); | |
4437 | } | |
4438 | ||
0ecb72a5 | 4439 | float32 HELPER(recpe_f32)(float32 a, CPUARMState *env) |
4373f3ce | 4440 | { |
fe0e4872 CL |
4441 | float_status *s = &env->vfp.standard_fp_status; |
4442 | float64 f64; | |
4443 | uint32_t val32 = float32_val(a); | |
4444 | ||
4445 | int result_exp; | |
4446 | int a_exp = (val32 & 0x7f800000) >> 23; | |
4447 | int sign = val32 & 0x80000000; | |
4448 | ||
4449 | if (float32_is_any_nan(a)) { | |
4450 | if (float32_is_signaling_nan(a)) { | |
4451 | float_raise(float_flag_invalid, s); | |
4452 | } | |
4453 | return float32_default_nan; | |
4454 | } else if (float32_is_infinity(a)) { | |
4455 | return float32_set_sign(float32_zero, float32_is_neg(a)); | |
4456 | } else if (float32_is_zero_or_denormal(a)) { | |
43fe9bdb PM |
4457 | if (!float32_is_zero(a)) { |
4458 | float_raise(float_flag_input_denormal, s); | |
4459 | } | |
fe0e4872 CL |
4460 | float_raise(float_flag_divbyzero, s); |
4461 | return float32_set_sign(float32_infinity, float32_is_neg(a)); | |
4462 | } else if (a_exp >= 253) { | |
4463 | float_raise(float_flag_underflow, s); | |
4464 | return float32_set_sign(float32_zero, float32_is_neg(a)); | |
4465 | } | |
4466 | ||
4467 | f64 = make_float64((0x3feULL << 52) | |
4468 | | ((int64_t)(val32 & 0x7fffff) << 29)); | |
4469 | ||
4470 | result_exp = 253 - a_exp; | |
4471 | ||
4472 | f64 = recip_estimate(f64, env); | |
4473 | ||
4474 | val32 = sign | |
4475 | | ((result_exp & 0xff) << 23) | |
4476 | | ((float64_val(f64) >> 29) & 0x7fffff); | |
4477 | return make_float32(val32); | |
4373f3ce PB |
4478 | } |
4479 | ||
e07be5d2 CL |
4480 | /* The algorithm that must be used to calculate the estimate |
4481 | * is specified by the ARM ARM. | |
4482 | */ | |
0ecb72a5 | 4483 | static float64 recip_sqrt_estimate(float64 a, CPUARMState *env) |
e07be5d2 | 4484 | { |
1146a817 PM |
4485 | /* These calculations mustn't set any fp exception flags, |
4486 | * so we use a local copy of the fp_status. | |
4487 | */ | |
4488 | float_status dummy_status = env->vfp.standard_fp_status; | |
4489 | float_status *s = &dummy_status; | |
e07be5d2 CL |
4490 | float64 q; |
4491 | int64_t q_int; | |
4492 | ||
4493 | if (float64_lt(a, float64_half, s)) { | |
4494 | /* range 0.25 <= a < 0.5 */ | |
4495 | ||
4496 | /* a in units of 1/512 rounded down */ | |
4497 | /* q0 = (int)(a * 512.0); */ | |
4498 | q = float64_mul(float64_512, a, s); | |
4499 | q_int = float64_to_int64_round_to_zero(q, s); | |
4500 | ||
4501 | /* reciprocal root r */ | |
4502 | /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */ | |
4503 | q = int64_to_float64(q_int, s); | |
4504 | q = float64_add(q, float64_half, s); | |
4505 | q = float64_div(q, float64_512, s); | |
4506 | q = float64_sqrt(q, s); | |
4507 | q = float64_div(float64_one, q, s); | |
4508 | } else { | |
4509 | /* range 0.5 <= a < 1.0 */ | |
4510 | ||
4511 | /* a in units of 1/256 rounded down */ | |
4512 | /* q1 = (int)(a * 256.0); */ | |
4513 | q = float64_mul(float64_256, a, s); | |
4514 | int64_t q_int = float64_to_int64_round_to_zero(q, s); | |
4515 | ||
4516 | /* reciprocal root r */ | |
4517 | /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */ | |
4518 | q = int64_to_float64(q_int, s); | |
4519 | q = float64_add(q, float64_half, s); | |
4520 | q = float64_div(q, float64_256, s); | |
4521 | q = float64_sqrt(q, s); | |
4522 | q = float64_div(float64_one, q, s); | |
4523 | } | |
4524 | /* r in units of 1/256 rounded to nearest */ | |
4525 | /* s = (int)(256.0 * r + 0.5); */ | |
4526 | ||
4527 | q = float64_mul(q, float64_256,s ); | |
4528 | q = float64_add(q, float64_half, s); | |
4529 | q_int = float64_to_int64_round_to_zero(q, s); | |
4530 | ||
4531 | /* return (double)s / 256.0;*/ | |
4532 | return float64_div(int64_to_float64(q_int, s), float64_256, s); | |
4533 | } | |
4534 | ||
0ecb72a5 | 4535 | float32 HELPER(rsqrte_f32)(float32 a, CPUARMState *env) |
4373f3ce | 4536 | { |
e07be5d2 CL |
4537 | float_status *s = &env->vfp.standard_fp_status; |
4538 | int result_exp; | |
4539 | float64 f64; | |
4540 | uint32_t val; | |
4541 | uint64_t val64; | |
4542 | ||
4543 | val = float32_val(a); | |
4544 | ||
4545 | if (float32_is_any_nan(a)) { | |
4546 | if (float32_is_signaling_nan(a)) { | |
4547 | float_raise(float_flag_invalid, s); | |
4548 | } | |
4549 | return float32_default_nan; | |
4550 | } else if (float32_is_zero_or_denormal(a)) { | |
43fe9bdb PM |
4551 | if (!float32_is_zero(a)) { |
4552 | float_raise(float_flag_input_denormal, s); | |
4553 | } | |
e07be5d2 CL |
4554 | float_raise(float_flag_divbyzero, s); |
4555 | return float32_set_sign(float32_infinity, float32_is_neg(a)); | |
4556 | } else if (float32_is_neg(a)) { | |
4557 | float_raise(float_flag_invalid, s); | |
4558 | return float32_default_nan; | |
4559 | } else if (float32_is_infinity(a)) { | |
4560 | return float32_zero; | |
4561 | } | |
4562 | ||
4563 | /* Normalize to a double-precision value between 0.25 and 1.0, | |
4564 | * preserving the parity of the exponent. */ | |
4565 | if ((val & 0x800000) == 0) { | |
4566 | f64 = make_float64(((uint64_t)(val & 0x80000000) << 32) | |
4567 | | (0x3feULL << 52) | |
4568 | | ((uint64_t)(val & 0x7fffff) << 29)); | |
4569 | } else { | |
4570 | f64 = make_float64(((uint64_t)(val & 0x80000000) << 32) | |
4571 | | (0x3fdULL << 52) | |
4572 | | ((uint64_t)(val & 0x7fffff) << 29)); | |
4573 | } | |
4574 | ||
4575 | result_exp = (380 - ((val & 0x7f800000) >> 23)) / 2; | |
4576 | ||
4577 | f64 = recip_sqrt_estimate(f64, env); | |
4578 | ||
4579 | val64 = float64_val(f64); | |
4580 | ||
26cc6abf | 4581 | val = ((result_exp & 0xff) << 23) |
e07be5d2 CL |
4582 | | ((val64 >> 29) & 0x7fffff); |
4583 | return make_float32(val); | |
4373f3ce PB |
4584 | } |
4585 | ||
0ecb72a5 | 4586 | uint32_t HELPER(recpe_u32)(uint32_t a, CPUARMState *env) |
4373f3ce | 4587 | { |
fe0e4872 CL |
4588 | float64 f64; |
4589 | ||
4590 | if ((a & 0x80000000) == 0) { | |
4591 | return 0xffffffff; | |
4592 | } | |
4593 | ||
4594 | f64 = make_float64((0x3feULL << 52) | |
4595 | | ((int64_t)(a & 0x7fffffff) << 21)); | |
4596 | ||
4597 | f64 = recip_estimate (f64, env); | |
4598 | ||
4599 | return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff); | |
4373f3ce PB |
4600 | } |
4601 | ||
0ecb72a5 | 4602 | uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUARMState *env) |
4373f3ce | 4603 | { |
e07be5d2 CL |
4604 | float64 f64; |
4605 | ||
4606 | if ((a & 0xc0000000) == 0) { | |
4607 | return 0xffffffff; | |
4608 | } | |
4609 | ||
4610 | if (a & 0x80000000) { | |
4611 | f64 = make_float64((0x3feULL << 52) | |
4612 | | ((uint64_t)(a & 0x7fffffff) << 21)); | |
4613 | } else { /* bits 31-30 == '01' */ | |
4614 | f64 = make_float64((0x3fdULL << 52) | |
4615 | | ((uint64_t)(a & 0x3fffffff) << 22)); | |
4616 | } | |
4617 | ||
4618 | f64 = recip_sqrt_estimate(f64, env); | |
4619 | ||
4620 | return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff); | |
4373f3ce | 4621 | } |
fe1479c3 | 4622 | |
da97f52c PM |
4623 | /* VFPv4 fused multiply-accumulate */ |
4624 | float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp) | |
4625 | { | |
4626 | float_status *fpst = fpstp; | |
4627 | return float32_muladd(a, b, c, 0, fpst); | |
4628 | } | |
4629 | ||
4630 | float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp) | |
4631 | { | |
4632 | float_status *fpst = fpstp; | |
4633 | return float64_muladd(a, b, c, 0, fpst); | |
4634 | } | |
d9b0848d PM |
4635 | |
4636 | /* ARMv8 round to integral */ | |
4637 | float32 HELPER(rints_exact)(float32 x, void *fp_status) | |
4638 | { | |
4639 | return float32_round_to_int(x, fp_status); | |
4640 | } | |
4641 | ||
4642 | float64 HELPER(rintd_exact)(float64 x, void *fp_status) | |
4643 | { | |
4644 | return float64_round_to_int(x, fp_status); | |
4645 | } | |
4646 | ||
4647 | float32 HELPER(rints)(float32 x, void *fp_status) | |
4648 | { | |
4649 | int old_flags = get_float_exception_flags(fp_status), new_flags; | |
4650 | float32 ret; | |
4651 | ||
4652 | ret = float32_round_to_int(x, fp_status); | |
4653 | ||
4654 | /* Suppress any inexact exceptions the conversion produced */ | |
4655 | if (!(old_flags & float_flag_inexact)) { | |
4656 | new_flags = get_float_exception_flags(fp_status); | |
4657 | set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); | |
4658 | } | |
4659 | ||
4660 | return ret; | |
4661 | } | |
4662 | ||
4663 | float64 HELPER(rintd)(float64 x, void *fp_status) | |
4664 | { | |
4665 | int old_flags = get_float_exception_flags(fp_status), new_flags; | |
4666 | float64 ret; | |
4667 | ||
4668 | ret = float64_round_to_int(x, fp_status); | |
4669 | ||
4670 | new_flags = get_float_exception_flags(fp_status); | |
4671 | ||
4672 | /* Suppress any inexact exceptions the conversion produced */ | |
4673 | if (!(old_flags & float_flag_inexact)) { | |
4674 | new_flags = get_float_exception_flags(fp_status); | |
4675 | set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); | |
4676 | } | |
4677 | ||
4678 | return ret; | |
4679 | } | |
9972da66 WN |
4680 | |
4681 | /* Convert ARM rounding mode to softfloat */ | |
4682 | int arm_rmode_to_sf(int rmode) | |
4683 | { | |
4684 | switch (rmode) { | |
4685 | case FPROUNDING_TIEAWAY: | |
4686 | rmode = float_round_ties_away; | |
4687 | break; | |
4688 | case FPROUNDING_ODD: | |
4689 | /* FIXME: add support for TIEAWAY and ODD */ | |
4690 | qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n", | |
4691 | rmode); | |
4692 | case FPROUNDING_TIEEVEN: | |
4693 | default: | |
4694 | rmode = float_round_nearest_even; | |
4695 | break; | |
4696 | case FPROUNDING_POSINF: | |
4697 | rmode = float_round_up; | |
4698 | break; | |
4699 | case FPROUNDING_NEGINF: | |
4700 | rmode = float_round_down; | |
4701 | break; | |
4702 | case FPROUNDING_ZERO: | |
4703 | rmode = float_round_to_zero; | |
4704 | break; | |
4705 | } | |
4706 | return rmode; | |
4707 | } | |
eb0ecd5a WN |
4708 | |
4709 | static void crc_init_buffer(uint8_t *buf, uint32_t val, uint32_t bytes) | |
4710 | { | |
4711 | memset(buf, 0, 4); | |
4712 | ||
4713 | if (bytes == 1) { | |
4714 | buf[0] = val & 0xff; | |
4715 | } else if (bytes == 2) { | |
4716 | buf[0] = val & 0xff; | |
4717 | buf[1] = (val >> 8) & 0xff; | |
4718 | } else { | |
4719 | buf[0] = val & 0xff; | |
4720 | buf[1] = (val >> 8) & 0xff; | |
4721 | buf[2] = (val >> 16) & 0xff; | |
4722 | buf[3] = (val >> 24) & 0xff; | |
4723 | } | |
4724 | } | |
4725 | ||
4726 | uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) | |
4727 | { | |
4728 | uint8_t buf[4]; | |
4729 | ||
4730 | crc_init_buffer(buf, val, bytes); | |
4731 | ||
4732 | /* zlib crc32 converts the accumulator and output to one's complement. */ | |
4733 | return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; | |
4734 | } | |
4735 | ||
4736 | uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) | |
4737 | { | |
4738 | uint8_t buf[4]; | |
4739 | ||
4740 | crc_init_buffer(buf, val, bytes); | |
4741 | ||
4742 | /* Linux crc32c converts the output to one's complement. */ | |
4743 | return crc32c(acc, buf, bytes) ^ 0xffffffff; | |
4744 | } |