]> Git Repo - qemu.git/blame - target-arm/helper.c
target-i386: add Ivy Bridge CPU model
[qemu.git] / target-arm / helper.c
CommitLineData
b5ff1b31 1#include "cpu.h"
ccd38087 2#include "internals.h"
022c62cb 3#include "exec/gdbstub.h"
2ef6175a 4#include "exec/helper-proto.h"
1de7afc9 5#include "qemu/host-utils.h"
78027bb6 6#include "sysemu/arch_init.h"
9c17d615 7#include "sysemu/sysemu.h"
1de7afc9 8#include "qemu/bitops.h"
eb0ecd5a 9#include "qemu/crc32c.h"
f08b6170 10#include "exec/cpu_ldst.h"
1d854765 11#include "arm_ldst.h"
eb0ecd5a 12#include <zlib.h> /* For crc32 */
0b03bdfc 13
4a501606 14#ifndef CONFIG_USER_ONLY
2c8dd318 15static inline int get_phys_addr(CPUARMState *env, target_ulong address,
4a501606 16 int access_type, int is_user,
a8170e5e 17 hwaddr *phys_ptr, int *prot,
4a501606 18 target_ulong *page_size);
7c2cb42b
AF
19
20/* Definitions for the PMCCNTR and PMCR registers */
21#define PMCRD 0x8
22#define PMCRC 0x4
23#define PMCRE 0x1
4a501606
PM
24#endif
25
0ecb72a5 26static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
56aebc89
PB
27{
28 int nregs;
29
30 /* VFP data registers are always little-endian. */
31 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
32 if (reg < nregs) {
33 stfq_le_p(buf, env->vfp.regs[reg]);
34 return 8;
35 }
36 if (arm_feature(env, ARM_FEATURE_NEON)) {
37 /* Aliases for Q regs. */
38 nregs += 16;
39 if (reg < nregs) {
40 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
41 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
42 return 16;
43 }
44 }
45 switch (reg - nregs) {
46 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
47 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
48 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
49 }
50 return 0;
51}
52
0ecb72a5 53static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
56aebc89
PB
54{
55 int nregs;
56
57 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
58 if (reg < nregs) {
59 env->vfp.regs[reg] = ldfq_le_p(buf);
60 return 8;
61 }
62 if (arm_feature(env, ARM_FEATURE_NEON)) {
63 nregs += 16;
64 if (reg < nregs) {
65 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
66 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
67 return 16;
68 }
69 }
70 switch (reg - nregs) {
71 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
72 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
71b3c3de 73 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
56aebc89
PB
74 }
75 return 0;
76}
77
6a669427
PM
78static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
79{
80 switch (reg) {
81 case 0 ... 31:
82 /* 128 bit FP register */
83 stfq_le_p(buf, env->vfp.regs[reg * 2]);
84 stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]);
85 return 16;
86 case 32:
87 /* FPSR */
88 stl_p(buf, vfp_get_fpsr(env));
89 return 4;
90 case 33:
91 /* FPCR */
92 stl_p(buf, vfp_get_fpcr(env));
93 return 4;
94 default:
95 return 0;
96 }
97}
98
99static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
100{
101 switch (reg) {
102 case 0 ... 31:
103 /* 128 bit FP register */
104 env->vfp.regs[reg * 2] = ldfq_le_p(buf);
105 env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8);
106 return 16;
107 case 32:
108 /* FPSR */
109 vfp_set_fpsr(env, ldl_p(buf));
110 return 4;
111 case 33:
112 /* FPCR */
113 vfp_set_fpcr(env, ldl_p(buf));
114 return 4;
115 default:
116 return 0;
117 }
118}
119
c4241c7d 120static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
d4e6df63 121{
67ed771d 122 if (cpreg_field_is_64bit(ri)) {
c4241c7d 123 return CPREG_FIELD64(env, ri);
22d9e1a9 124 } else {
c4241c7d 125 return CPREG_FIELD32(env, ri);
22d9e1a9 126 }
d4e6df63
PM
127}
128
c4241c7d
PM
129static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
130 uint64_t value)
d4e6df63 131{
67ed771d 132 if (cpreg_field_is_64bit(ri)) {
22d9e1a9
PM
133 CPREG_FIELD64(env, ri) = value;
134 } else {
135 CPREG_FIELD32(env, ri) = value;
136 }
d4e6df63
PM
137}
138
59a1c327 139static uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
721fae12 140{
59a1c327 141 /* Raw read of a coprocessor register (as needed for migration, etc). */
721fae12 142 if (ri->type & ARM_CP_CONST) {
59a1c327 143 return ri->resetvalue;
721fae12 144 } else if (ri->raw_readfn) {
59a1c327 145 return ri->raw_readfn(env, ri);
721fae12 146 } else if (ri->readfn) {
59a1c327 147 return ri->readfn(env, ri);
721fae12 148 } else {
59a1c327 149 return raw_read(env, ri);
721fae12 150 }
721fae12
PM
151}
152
59a1c327 153static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
7900e9f1 154 uint64_t v)
721fae12
PM
155{
156 /* Raw write of a coprocessor register (as needed for migration, etc).
721fae12
PM
157 * Note that constant registers are treated as write-ignored; the
158 * caller should check for success by whether a readback gives the
159 * value written.
160 */
161 if (ri->type & ARM_CP_CONST) {
59a1c327 162 return;
721fae12 163 } else if (ri->raw_writefn) {
c4241c7d 164 ri->raw_writefn(env, ri, v);
721fae12 165 } else if (ri->writefn) {
c4241c7d 166 ri->writefn(env, ri, v);
721fae12 167 } else {
afb2530f 168 raw_write(env, ri, v);
721fae12 169 }
721fae12
PM
170}
171
172bool write_cpustate_to_list(ARMCPU *cpu)
173{
174 /* Write the coprocessor state from cpu->env to the (index,value) list. */
175 int i;
176 bool ok = true;
177
178 for (i = 0; i < cpu->cpreg_array_len; i++) {
179 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
180 const ARMCPRegInfo *ri;
59a1c327 181
60322b39 182 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
721fae12
PM
183 if (!ri) {
184 ok = false;
185 continue;
186 }
187 if (ri->type & ARM_CP_NO_MIGRATE) {
188 continue;
189 }
59a1c327 190 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
721fae12
PM
191 }
192 return ok;
193}
194
195bool write_list_to_cpustate(ARMCPU *cpu)
196{
197 int i;
198 bool ok = true;
199
200 for (i = 0; i < cpu->cpreg_array_len; i++) {
201 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
202 uint64_t v = cpu->cpreg_values[i];
721fae12
PM
203 const ARMCPRegInfo *ri;
204
60322b39 205 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
721fae12
PM
206 if (!ri) {
207 ok = false;
208 continue;
209 }
210 if (ri->type & ARM_CP_NO_MIGRATE) {
211 continue;
212 }
213 /* Write value and confirm it reads back as written
214 * (to catch read-only registers and partially read-only
215 * registers where the incoming migration value doesn't match)
216 */
59a1c327
PM
217 write_raw_cp_reg(&cpu->env, ri, v);
218 if (read_raw_cp_reg(&cpu->env, ri) != v) {
721fae12
PM
219 ok = false;
220 }
221 }
222 return ok;
223}
224
225static void add_cpreg_to_list(gpointer key, gpointer opaque)
226{
227 ARMCPU *cpu = opaque;
228 uint64_t regidx;
229 const ARMCPRegInfo *ri;
230
231 regidx = *(uint32_t *)key;
60322b39 232 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
721fae12
PM
233
234 if (!(ri->type & ARM_CP_NO_MIGRATE)) {
235 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
236 /* The value array need not be initialized at this point */
237 cpu->cpreg_array_len++;
238 }
239}
240
241static void count_cpreg(gpointer key, gpointer opaque)
242{
243 ARMCPU *cpu = opaque;
244 uint64_t regidx;
245 const ARMCPRegInfo *ri;
246
247 regidx = *(uint32_t *)key;
60322b39 248 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
721fae12
PM
249
250 if (!(ri->type & ARM_CP_NO_MIGRATE)) {
251 cpu->cpreg_array_len++;
252 }
253}
254
255static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
256{
cbf239b7
AR
257 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
258 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
721fae12 259
cbf239b7
AR
260 if (aidx > bidx) {
261 return 1;
262 }
263 if (aidx < bidx) {
264 return -1;
265 }
266 return 0;
721fae12
PM
267}
268
82a3a118
PM
269static void cpreg_make_keylist(gpointer key, gpointer value, gpointer udata)
270{
271 GList **plist = udata;
272
273 *plist = g_list_prepend(*plist, key);
274}
275
721fae12
PM
276void init_cpreg_list(ARMCPU *cpu)
277{
278 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
279 * Note that we require cpreg_tuples[] to be sorted by key ID.
280 */
82a3a118 281 GList *keys = NULL;
721fae12
PM
282 int arraylen;
283
82a3a118
PM
284 g_hash_table_foreach(cpu->cp_regs, cpreg_make_keylist, &keys);
285
721fae12
PM
286 keys = g_list_sort(keys, cpreg_key_compare);
287
288 cpu->cpreg_array_len = 0;
289
290 g_list_foreach(keys, count_cpreg, cpu);
291
292 arraylen = cpu->cpreg_array_len;
293 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
294 cpu->cpreg_values = g_new(uint64_t, arraylen);
295 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
296 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
297 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
298 cpu->cpreg_array_len = 0;
299
300 g_list_foreach(keys, add_cpreg_to_list, cpu);
301
302 assert(cpu->cpreg_array_len == arraylen);
303
304 g_list_free(keys);
305}
306
c4241c7d 307static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
c983fe6c 308{
00c8cb0a
AF
309 ARMCPU *cpu = arm_env_get_cpu(env);
310
8d5c773e 311 raw_write(env, ri, value);
00c8cb0a 312 tlb_flush(CPU(cpu), 1); /* Flush TLB as domain not tracked in TLB */
c983fe6c
PM
313}
314
c4241c7d 315static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
08de207b 316{
00c8cb0a
AF
317 ARMCPU *cpu = arm_env_get_cpu(env);
318
8d5c773e 319 if (raw_read(env, ri) != value) {
08de207b
PM
320 /* Unlike real hardware the qemu TLB uses virtual addresses,
321 * not modified virtual addresses, so this causes a TLB flush.
322 */
00c8cb0a 323 tlb_flush(CPU(cpu), 1);
8d5c773e 324 raw_write(env, ri, value);
08de207b 325 }
08de207b 326}
c4241c7d
PM
327
328static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
329 uint64_t value)
08de207b 330{
00c8cb0a
AF
331 ARMCPU *cpu = arm_env_get_cpu(env);
332
8d5c773e 333 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_MPU)
014406b5 334 && !extended_addresses_enabled(env)) {
08de207b
PM
335 /* For VMSA (when not using the LPAE long descriptor page table
336 * format) this register includes the ASID, so do a TLB flush.
337 * For PMSA it is purely a process ID and no action is needed.
338 */
00c8cb0a 339 tlb_flush(CPU(cpu), 1);
08de207b 340 }
8d5c773e 341 raw_write(env, ri, value);
08de207b
PM
342}
343
c4241c7d
PM
344static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
345 uint64_t value)
d929823f
PM
346{
347 /* Invalidate all (TLBIALL) */
00c8cb0a
AF
348 ARMCPU *cpu = arm_env_get_cpu(env);
349
350 tlb_flush(CPU(cpu), 1);
d929823f
PM
351}
352
c4241c7d
PM
353static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
354 uint64_t value)
d929823f
PM
355{
356 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
31b030d4
AF
357 ARMCPU *cpu = arm_env_get_cpu(env);
358
359 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
d929823f
PM
360}
361
c4241c7d
PM
362static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
363 uint64_t value)
d929823f
PM
364{
365 /* Invalidate by ASID (TLBIASID) */
00c8cb0a
AF
366 ARMCPU *cpu = arm_env_get_cpu(env);
367
368 tlb_flush(CPU(cpu), value == 0);
d929823f
PM
369}
370
c4241c7d
PM
371static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
372 uint64_t value)
d929823f
PM
373{
374 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
31b030d4
AF
375 ARMCPU *cpu = arm_env_get_cpu(env);
376
377 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
d929823f
PM
378}
379
fa439fc5
PM
380/* IS variants of TLB operations must affect all cores */
381static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
382 uint64_t value)
383{
384 CPUState *other_cs;
385
386 CPU_FOREACH(other_cs) {
387 tlb_flush(other_cs, 1);
388 }
389}
390
391static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
392 uint64_t value)
393{
394 CPUState *other_cs;
395
396 CPU_FOREACH(other_cs) {
397 tlb_flush(other_cs, value == 0);
398 }
399}
400
401static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
402 uint64_t value)
403{
404 CPUState *other_cs;
405
406 CPU_FOREACH(other_cs) {
407 tlb_flush_page(other_cs, value & TARGET_PAGE_MASK);
408 }
409}
410
411static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
412 uint64_t value)
413{
414 CPUState *other_cs;
415
416 CPU_FOREACH(other_cs) {
417 tlb_flush_page(other_cs, value & TARGET_PAGE_MASK);
418 }
419}
420
e9aa6c21 421static const ARMCPRegInfo cp_reginfo[] = {
08de207b
PM
422 { .name = "FCSEIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 0,
423 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse),
d4e6df63 424 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
014406b5
PM
425 { .name = "CONTEXTIDR", .state = ARM_CP_STATE_BOTH,
426 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
427 .access = PL1_RW,
428 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el1),
d4e6df63 429 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
9449fdf6
PM
430 REGINFO_SENTINEL
431};
432
433static const ARMCPRegInfo not_v8_cp_reginfo[] = {
434 /* NB: Some of these registers exist in v8 but with more precise
435 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
436 */
437 /* MMU Domain access control / MPU write buffer control */
438 { .name = "DACR", .cp = 15,
439 .crn = 3, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
440 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c3),
441 .resetvalue = 0, .writefn = dacr_write, .raw_writefn = raw_write, },
4fdd17dd
PM
442 /* ??? This covers not just the impdef TLB lockdown registers but also
443 * some v7VMSA registers relating to TEX remap, so it is overly broad.
444 */
445 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = CP_ANY,
446 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
c4804214
PM
447 /* Cache maintenance ops; some of this space may be overridden later. */
448 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
449 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
450 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
e9aa6c21
PM
451 REGINFO_SENTINEL
452};
453
7d57f408
PM
454static const ARMCPRegInfo not_v6_cp_reginfo[] = {
455 /* Not all pre-v6 cores implemented this WFI, so this is slightly
456 * over-broad.
457 */
458 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
459 .access = PL1_W, .type = ARM_CP_WFI },
460 REGINFO_SENTINEL
461};
462
463static const ARMCPRegInfo not_v7_cp_reginfo[] = {
464 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
465 * is UNPREDICTABLE; we choose to NOP as most implementations do).
466 */
467 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
468 .access = PL1_W, .type = ARM_CP_WFI },
34f90529
PM
469 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
470 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
471 * OMAPCP will override this space.
472 */
473 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
474 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
475 .resetvalue = 0 },
476 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
477 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
478 .resetvalue = 0 },
776d4e5c
PM
479 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
480 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
d4e6df63
PM
481 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
482 .resetvalue = 0 },
50300698
PM
483 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
484 * implementing it as RAZ means the "debug architecture version" bits
485 * will read as a reserved value, which should cause Linux to not try
486 * to use the debug hardware.
487 */
488 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
489 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
995939a6
PM
490 /* MMU TLB control. Note that the wildcarding means we cover not just
491 * the unified TLB ops but also the dside/iside/inner-shareable variants.
492 */
493 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
494 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
495 .type = ARM_CP_NO_MIGRATE },
496 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
497 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
498 .type = ARM_CP_NO_MIGRATE },
499 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
500 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
501 .type = ARM_CP_NO_MIGRATE },
502 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
503 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
504 .type = ARM_CP_NO_MIGRATE },
7d57f408
PM
505 REGINFO_SENTINEL
506};
507
c4241c7d
PM
508static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
509 uint64_t value)
2771db27 510{
f0aff255
FA
511 uint32_t mask = 0;
512
513 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
514 if (!arm_feature(env, ARM_FEATURE_V8)) {
515 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
516 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
517 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
518 */
519 if (arm_feature(env, ARM_FEATURE_VFP)) {
520 /* VFP coprocessor: cp10 & cp11 [23:20] */
521 mask |= (1 << 31) | (1 << 30) | (0xf << 20);
522
523 if (!arm_feature(env, ARM_FEATURE_NEON)) {
524 /* ASEDIS [31] bit is RAO/WI */
525 value |= (1 << 31);
526 }
527
528 /* VFPv3 and upwards with NEON implement 32 double precision
529 * registers (D0-D31).
530 */
531 if (!arm_feature(env, ARM_FEATURE_NEON) ||
532 !arm_feature(env, ARM_FEATURE_VFP3)) {
533 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
534 value |= (1 << 30);
535 }
536 }
537 value &= mask;
2771db27 538 }
f0aff255 539 env->cp15.c1_coproc = value;
2771db27
PM
540}
541
7d57f408
PM
542static const ARMCPRegInfo v6_cp_reginfo[] = {
543 /* prefetch by MVA in v6, NOP in v7 */
544 { .name = "MVA_prefetch",
545 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
546 .access = PL1_W, .type = ARM_CP_NOP },
547 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
548 .access = PL0_W, .type = ARM_CP_NOP },
091fd17c 549 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
7d57f408 550 .access = PL0_W, .type = ARM_CP_NOP },
091fd17c 551 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
7d57f408 552 .access = PL0_W, .type = ARM_CP_NOP },
06d76f31 553 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
6cd8a264 554 .access = PL1_RW,
2f0180c5 555 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[1]),
06d76f31
PM
556 .resetvalue = 0, },
557 /* Watchpoint Fault Address Register : should actually only be present
558 * for 1136, 1176, 11MPCore.
559 */
560 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
561 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
34222fb8
PM
562 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
563 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2,
2771db27
PM
564 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_coproc),
565 .resetvalue = 0, .writefn = cpacr_write },
7d57f408
PM
566 REGINFO_SENTINEL
567};
568
fcd25206 569static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri)
200ac0ef 570{
3b163b01 571 /* Performance monitor registers user accessibility is controlled
fcd25206 572 * by PMUSERENR.
200ac0ef 573 */
dcbff19b 574 if (arm_current_el(env) == 0 && !env->cp15.c9_pmuserenr) {
fcd25206 575 return CP_ACCESS_TRAP;
200ac0ef 576 }
fcd25206 577 return CP_ACCESS_OK;
200ac0ef
PM
578}
579
7c2cb42b 580#ifndef CONFIG_USER_ONLY
87124fde
AF
581
582static inline bool arm_ccnt_enabled(CPUARMState *env)
583{
584 /* This does not support checking PMCCFILTR_EL0 register */
585
586 if (!(env->cp15.c9_pmcr & PMCRE)) {
587 return false;
588 }
589
590 return true;
591}
592
ec7b4ce4
AF
593void pmccntr_sync(CPUARMState *env)
594{
595 uint64_t temp_ticks;
596
597 temp_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL),
598 get_ticks_per_sec(), 1000000);
599
600 if (env->cp15.c9_pmcr & PMCRD) {
601 /* Increment once every 64 processor clock cycles */
602 temp_ticks /= 64;
603 }
604
605 if (arm_ccnt_enabled(env)) {
606 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
607 }
608}
609
c4241c7d
PM
610static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
611 uint64_t value)
200ac0ef 612{
942a155b 613 pmccntr_sync(env);
7c2cb42b
AF
614
615 if (value & PMCRC) {
616 /* The counter has been reset */
617 env->cp15.c15_ccnt = 0;
618 }
619
200ac0ef
PM
620 /* only the DP, X, D and E bits are writable */
621 env->cp15.c9_pmcr &= ~0x39;
622 env->cp15.c9_pmcr |= (value & 0x39);
7c2cb42b 623
942a155b 624 pmccntr_sync(env);
7c2cb42b
AF
625}
626
627static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
628{
c92c0687 629 uint64_t total_ticks;
7c2cb42b 630
942a155b 631 if (!arm_ccnt_enabled(env)) {
7c2cb42b
AF
632 /* Counter is disabled, do not change value */
633 return env->cp15.c15_ccnt;
634 }
635
c92c0687
AF
636 total_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL),
637 get_ticks_per_sec(), 1000000);
7c2cb42b
AF
638
639 if (env->cp15.c9_pmcr & PMCRD) {
640 /* Increment once every 64 processor clock cycles */
641 total_ticks /= 64;
642 }
643 return total_ticks - env->cp15.c15_ccnt;
644}
645
646static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
647 uint64_t value)
648{
c92c0687 649 uint64_t total_ticks;
7c2cb42b 650
942a155b 651 if (!arm_ccnt_enabled(env)) {
7c2cb42b
AF
652 /* Counter is disabled, set the absolute value */
653 env->cp15.c15_ccnt = value;
654 return;
655 }
656
c92c0687
AF
657 total_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL),
658 get_ticks_per_sec(), 1000000);
7c2cb42b
AF
659
660 if (env->cp15.c9_pmcr & PMCRD) {
661 /* Increment once every 64 processor clock cycles */
662 total_ticks /= 64;
663 }
664 env->cp15.c15_ccnt = total_ticks - value;
200ac0ef 665}
421c7ebd
PC
666
667static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
668 uint64_t value)
669{
670 uint64_t cur_val = pmccntr_read(env, NULL);
671
672 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
673}
674
ec7b4ce4
AF
675#else /* CONFIG_USER_ONLY */
676
677void pmccntr_sync(CPUARMState *env)
678{
679}
680
7c2cb42b 681#endif
200ac0ef 682
0614601c
AF
683static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
684 uint64_t value)
685{
686 pmccntr_sync(env);
687 env->cp15.pmccfiltr_el0 = value & 0x7E000000;
688 pmccntr_sync(env);
689}
690
c4241c7d 691static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
200ac0ef
PM
692 uint64_t value)
693{
200ac0ef
PM
694 value &= (1 << 31);
695 env->cp15.c9_pmcnten |= value;
200ac0ef
PM
696}
697
c4241c7d
PM
698static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
699 uint64_t value)
200ac0ef 700{
200ac0ef
PM
701 value &= (1 << 31);
702 env->cp15.c9_pmcnten &= ~value;
200ac0ef
PM
703}
704
c4241c7d
PM
705static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
706 uint64_t value)
200ac0ef 707{
200ac0ef 708 env->cp15.c9_pmovsr &= ~value;
200ac0ef
PM
709}
710
c4241c7d
PM
711static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
712 uint64_t value)
200ac0ef 713{
200ac0ef 714 env->cp15.c9_pmxevtyper = value & 0xff;
200ac0ef
PM
715}
716
c4241c7d 717static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
200ac0ef
PM
718 uint64_t value)
719{
720 env->cp15.c9_pmuserenr = value & 1;
200ac0ef
PM
721}
722
c4241c7d
PM
723static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
724 uint64_t value)
200ac0ef
PM
725{
726 /* We have no event counters so only the C bit can be changed */
727 value &= (1 << 31);
728 env->cp15.c9_pminten |= value;
200ac0ef
PM
729}
730
c4241c7d
PM
731static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
732 uint64_t value)
200ac0ef
PM
733{
734 value &= (1 << 31);
735 env->cp15.c9_pminten &= ~value;
200ac0ef
PM
736}
737
c4241c7d
PM
738static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
739 uint64_t value)
8641136c 740{
a505d7fe
PM
741 /* Note that even though the AArch64 view of this register has bits
742 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
743 * architectural requirements for bits which are RES0 only in some
744 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
745 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
746 */
855ea66d 747 raw_write(env, ri, value & ~0x1FULL);
8641136c
NR
748}
749
64e0e2de
EI
750static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
751{
752 /* We only mask off bits that are RES0 both for AArch64 and AArch32.
753 * For bits that vary between AArch32/64, code needs to check the
754 * current execution mode before directly using the feature bit.
755 */
756 uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK;
757
758 if (!arm_feature(env, ARM_FEATURE_EL2)) {
759 valid_mask &= ~SCR_HCE;
760
761 /* On ARMv7, SMD (or SCD as it is called in v7) is only
762 * supported if EL2 exists. The bit is UNK/SBZP when
763 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
764 * when EL2 is unavailable.
765 */
766 if (arm_feature(env, ARM_FEATURE_V7)) {
767 valid_mask &= ~SCR_SMD;
768 }
769 }
770
771 /* Clear all-context RES0 bits. */
772 value &= valid_mask;
773 raw_write(env, ri, value);
774}
775
c4241c7d 776static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
776d4e5c
PM
777{
778 ARMCPU *cpu = arm_env_get_cpu(env);
c4241c7d 779 return cpu->ccsidr[env->cp15.c0_cssel];
776d4e5c
PM
780}
781
c4241c7d
PM
782static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
783 uint64_t value)
776d4e5c 784{
8d5c773e 785 raw_write(env, ri, value & 0xf);
776d4e5c
PM
786}
787
1090b9c6
PM
788static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
789{
790 CPUState *cs = ENV_GET_CPU(env);
791 uint64_t ret = 0;
792
793 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
794 ret |= CPSR_I;
795 }
796 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
797 ret |= CPSR_F;
798 }
799 /* External aborts are not possible in QEMU so A bit is always clear */
800 return ret;
801}
802
e9aa6c21 803static const ARMCPRegInfo v7_cp_reginfo[] = {
7d57f408
PM
804 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
805 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
806 .access = PL1_W, .type = ARM_CP_NOP },
200ac0ef
PM
807 /* Performance monitors are implementation defined in v7,
808 * but with an ARM recommended set of registers, which we
809 * follow (although we don't actually implement any counters)
810 *
811 * Performance registers fall into three categories:
812 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
813 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
814 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
815 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
816 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
817 */
818 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
8521466b
AF
819 .access = PL0_RW, .type = ARM_CP_NO_MIGRATE,
820 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
fcd25206
PM
821 .writefn = pmcntenset_write,
822 .accessfn = pmreg_access,
823 .raw_writefn = raw_write },
8521466b
AF
824 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
825 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
826 .access = PL0_RW, .accessfn = pmreg_access,
827 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
828 .writefn = pmcntenset_write, .raw_writefn = raw_write },
200ac0ef 829 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
8521466b
AF
830 .access = PL0_RW,
831 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
fcd25206
PM
832 .accessfn = pmreg_access,
833 .writefn = pmcntenclr_write,
d4e6df63 834 .type = ARM_CP_NO_MIGRATE },
8521466b
AF
835 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
836 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
837 .access = PL0_RW, .accessfn = pmreg_access,
838 .type = ARM_CP_NO_MIGRATE,
839 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
840 .writefn = pmcntenclr_write },
200ac0ef
PM
841 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
842 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
fcd25206
PM
843 .accessfn = pmreg_access,
844 .writefn = pmovsr_write,
845 .raw_writefn = raw_write },
846 /* Unimplemented so WI. */
200ac0ef 847 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
fcd25206 848 .access = PL0_W, .accessfn = pmreg_access, .type = ARM_CP_NOP },
200ac0ef 849 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
fcd25206 850 * We choose to RAZ/WI.
200ac0ef
PM
851 */
852 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
fcd25206
PM
853 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
854 .accessfn = pmreg_access },
7c2cb42b 855#ifndef CONFIG_USER_ONLY
200ac0ef 856 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
7c2cb42b 857 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO,
421c7ebd 858 .readfn = pmccntr_read, .writefn = pmccntr_write32,
fcd25206 859 .accessfn = pmreg_access },
8521466b
AF
860 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
861 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
862 .access = PL0_RW, .accessfn = pmreg_access,
863 .type = ARM_CP_IO,
864 .readfn = pmccntr_read, .writefn = pmccntr_write, },
7c2cb42b 865#endif
8521466b
AF
866 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
867 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
0614601c 868 .writefn = pmccfiltr_write,
8521466b
AF
869 .access = PL0_RW, .accessfn = pmreg_access,
870 .type = ARM_CP_IO,
871 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
872 .resetvalue = 0, },
200ac0ef
PM
873 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
874 .access = PL0_RW,
875 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper),
fcd25206
PM
876 .accessfn = pmreg_access, .writefn = pmxevtyper_write,
877 .raw_writefn = raw_write },
878 /* Unimplemented, RAZ/WI. */
200ac0ef 879 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
fcd25206
PM
880 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
881 .accessfn = pmreg_access },
200ac0ef
PM
882 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
883 .access = PL0_R | PL1_RW,
884 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
885 .resetvalue = 0,
d4e6df63 886 .writefn = pmuserenr_write, .raw_writefn = raw_write },
200ac0ef
PM
887 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
888 .access = PL1_RW,
889 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
890 .resetvalue = 0,
d4e6df63 891 .writefn = pmintenset_write, .raw_writefn = raw_write },
200ac0ef 892 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
d4e6df63 893 .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
200ac0ef 894 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
d4e6df63 895 .resetvalue = 0, .writefn = pmintenclr_write, },
a505d7fe
PM
896 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
897 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
8641136c 898 .access = PL1_RW, .writefn = vbar_write,
68fdb6c5 899 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[1]),
8641136c 900 .resetvalue = 0 },
2771db27 901 { .name = "SCR", .cp = 15, .crn = 1, .crm = 1, .opc1 = 0, .opc2 = 0,
64e0e2de
EI
902 .access = PL1_RW, .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
903 .resetvalue = 0, .writefn = scr_write },
7da845b0
PM
904 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
905 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
d4e6df63 906 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_MIGRATE },
7da845b0
PM
907 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
908 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
776d4e5c
PM
909 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c0_cssel),
910 .writefn = csselr_write, .resetvalue = 0 },
911 /* Auxiliary ID register: this actually has an IMPDEF value but for now
912 * just RAZ for all cores:
913 */
0ff644a7
PM
914 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
915 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
776d4e5c 916 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
f32cdad5
PM
917 /* Auxiliary fault status registers: these also are IMPDEF, and we
918 * choose to RAZ/WI for all cores.
919 */
920 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
921 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
922 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
923 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
924 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
925 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
b0fe2427
PM
926 /* MAIR can just read-as-written because we don't implement caches
927 * and so don't need to care about memory attributes.
928 */
929 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
930 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
931 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el1),
932 .resetvalue = 0 },
933 /* For non-long-descriptor page tables these are PRRR and NMRR;
934 * regardless they still act as reads-as-written for QEMU.
935 * The override is necessary because of the overly-broad TLB_LOCKDOWN
936 * definition.
937 */
938 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, .type = ARM_CP_OVERRIDE,
939 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
940 .fieldoffset = offsetoflow32(CPUARMState, cp15.mair_el1),
941 .resetfn = arm_cp_reset_ignore },
942 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, .type = ARM_CP_OVERRIDE,
943 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
944 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el1),
945 .resetfn = arm_cp_reset_ignore },
1090b9c6
PM
946 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
947 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
948 .type = ARM_CP_NO_MIGRATE, .access = PL1_R, .readfn = isr_read },
995939a6
PM
949 /* 32 bit ITLB invalidates */
950 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
951 .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbiall_write },
952 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
953 .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbimva_write },
954 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
955 .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbiasid_write },
956 /* 32 bit DTLB invalidates */
957 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
958 .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbiall_write },
959 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
960 .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbimva_write },
961 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
962 .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbiasid_write },
963 /* 32 bit TLB invalidates */
964 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
965 .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbiall_write },
966 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
967 .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbimva_write },
968 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
969 .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbiasid_write },
970 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
971 .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbimvaa_write },
972 REGINFO_SENTINEL
973};
974
975static const ARMCPRegInfo v7mp_cp_reginfo[] = {
976 /* 32 bit TLB invalidates, Inner Shareable */
977 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
fa439fc5 978 .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbiall_is_write },
995939a6 979 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
fa439fc5 980 .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbimva_is_write },
995939a6 981 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
fa439fc5
PM
982 .type = ARM_CP_NO_MIGRATE, .access = PL1_W,
983 .writefn = tlbiasid_is_write },
995939a6 984 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
fa439fc5
PM
985 .type = ARM_CP_NO_MIGRATE, .access = PL1_W,
986 .writefn = tlbimvaa_is_write },
e9aa6c21
PM
987 REGINFO_SENTINEL
988};
989
c4241c7d
PM
990static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
991 uint64_t value)
c326b979
PM
992{
993 value &= 1;
994 env->teecr = value;
c326b979
PM
995}
996
c4241c7d 997static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri)
c326b979 998{
dcbff19b 999 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
92611c00 1000 return CP_ACCESS_TRAP;
c326b979 1001 }
92611c00 1002 return CP_ACCESS_OK;
c326b979
PM
1003}
1004
1005static const ARMCPRegInfo t2ee_cp_reginfo[] = {
1006 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
1007 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
1008 .resetvalue = 0,
1009 .writefn = teecr_write },
1010 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
1011 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
92611c00 1012 .accessfn = teehbr_access, .resetvalue = 0 },
c326b979
PM
1013 REGINFO_SENTINEL
1014};
1015
4d31c596 1016static const ARMCPRegInfo v6k_cp_reginfo[] = {
e4fe830b
PM
1017 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
1018 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
1019 .access = PL0_RW,
1020 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el0), .resetvalue = 0 },
4d31c596
PM
1021 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
1022 .access = PL0_RW,
e4fe830b
PM
1023 .fieldoffset = offsetoflow32(CPUARMState, cp15.tpidr_el0),
1024 .resetfn = arm_cp_reset_ignore },
1025 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
1026 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
1027 .access = PL0_R|PL1_W,
1028 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el0), .resetvalue = 0 },
4d31c596
PM
1029 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
1030 .access = PL0_R|PL1_W,
e4fe830b
PM
1031 .fieldoffset = offsetoflow32(CPUARMState, cp15.tpidrro_el0),
1032 .resetfn = arm_cp_reset_ignore },
1033 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_BOTH,
1034 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
4d31c596 1035 .access = PL1_RW,
e4fe830b 1036 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el1), .resetvalue = 0 },
4d31c596
PM
1037 REGINFO_SENTINEL
1038};
1039
55d284af
PM
1040#ifndef CONFIG_USER_ONLY
1041
00108f2d
PM
1042static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri)
1043{
1044 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */
dcbff19b 1045 if (arm_current_el(env) == 0 && !extract32(env->cp15.c14_cntkctl, 0, 2)) {
00108f2d
PM
1046 return CP_ACCESS_TRAP;
1047 }
1048 return CP_ACCESS_OK;
1049}
1050
1051static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx)
1052{
1053 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
dcbff19b 1054 if (arm_current_el(env) == 0 &&
00108f2d
PM
1055 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
1056 return CP_ACCESS_TRAP;
1057 }
1058 return CP_ACCESS_OK;
1059}
1060
1061static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx)
1062{
1063 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1064 * EL0[PV]TEN is zero.
1065 */
dcbff19b 1066 if (arm_current_el(env) == 0 &&
00108f2d
PM
1067 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
1068 return CP_ACCESS_TRAP;
1069 }
1070 return CP_ACCESS_OK;
1071}
1072
1073static CPAccessResult gt_pct_access(CPUARMState *env,
1074 const ARMCPRegInfo *ri)
1075{
1076 return gt_counter_access(env, GTIMER_PHYS);
1077}
1078
1079static CPAccessResult gt_vct_access(CPUARMState *env,
1080 const ARMCPRegInfo *ri)
1081{
1082 return gt_counter_access(env, GTIMER_VIRT);
1083}
1084
1085static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri)
1086{
1087 return gt_timer_access(env, GTIMER_PHYS);
1088}
1089
1090static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri)
1091{
1092 return gt_timer_access(env, GTIMER_VIRT);
1093}
1094
55d284af
PM
1095static uint64_t gt_get_countervalue(CPUARMState *env)
1096{
bc72ad67 1097 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
55d284af
PM
1098}
1099
1100static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
1101{
1102 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
1103
1104 if (gt->ctl & 1) {
1105 /* Timer enabled: calculate and set current ISTATUS, irq, and
1106 * reset timer to when ISTATUS next has to change
1107 */
1108 uint64_t count = gt_get_countervalue(&cpu->env);
1109 /* Note that this must be unsigned 64 bit arithmetic: */
1110 int istatus = count >= gt->cval;
1111 uint64_t nexttick;
1112
1113 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
1114 qemu_set_irq(cpu->gt_timer_outputs[timeridx],
1115 (istatus && !(gt->ctl & 2)));
1116 if (istatus) {
1117 /* Next transition is when count rolls back over to zero */
1118 nexttick = UINT64_MAX;
1119 } else {
1120 /* Next transition is when we hit cval */
1121 nexttick = gt->cval;
1122 }
1123 /* Note that the desired next expiry time might be beyond the
1124 * signed-64-bit range of a QEMUTimer -- in this case we just
1125 * set the timer for as far in the future as possible. When the
1126 * timer expires we will reset the timer for any remaining period.
1127 */
1128 if (nexttick > INT64_MAX / GTIMER_SCALE) {
1129 nexttick = INT64_MAX / GTIMER_SCALE;
1130 }
bc72ad67 1131 timer_mod(cpu->gt_timer[timeridx], nexttick);
55d284af
PM
1132 } else {
1133 /* Timer disabled: ISTATUS and timer output always clear */
1134 gt->ctl &= ~4;
1135 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
bc72ad67 1136 timer_del(cpu->gt_timer[timeridx]);
55d284af
PM
1137 }
1138}
1139
55d284af
PM
1140static void gt_cnt_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1141{
1142 ARMCPU *cpu = arm_env_get_cpu(env);
1143 int timeridx = ri->opc1 & 1;
1144
bc72ad67 1145 timer_del(cpu->gt_timer[timeridx]);
55d284af
PM
1146}
1147
c4241c7d 1148static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
55d284af 1149{
c4241c7d 1150 return gt_get_countervalue(env);
55d284af
PM
1151}
1152
c4241c7d
PM
1153static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1154 uint64_t value)
55d284af
PM
1155{
1156 int timeridx = ri->opc1 & 1;
1157
1158 env->cp15.c14_timer[timeridx].cval = value;
1159 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
55d284af 1160}
c4241c7d
PM
1161
1162static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
55d284af
PM
1163{
1164 int timeridx = ri->crm & 1;
1165
c4241c7d
PM
1166 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
1167 gt_get_countervalue(env));
55d284af
PM
1168}
1169
c4241c7d
PM
1170static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1171 uint64_t value)
55d284af
PM
1172{
1173 int timeridx = ri->crm & 1;
1174
1175 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) +
1176 + sextract64(value, 0, 32);
1177 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
55d284af
PM
1178}
1179
c4241c7d
PM
1180static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1181 uint64_t value)
55d284af
PM
1182{
1183 ARMCPU *cpu = arm_env_get_cpu(env);
1184 int timeridx = ri->crm & 1;
1185 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
1186
d3afacc7 1187 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
55d284af
PM
1188 if ((oldval ^ value) & 1) {
1189 /* Enable toggled */
1190 gt_recalc_timer(cpu, timeridx);
d3afacc7 1191 } else if ((oldval ^ value) & 2) {
55d284af
PM
1192 /* IMASK toggled: don't need to recalculate,
1193 * just set the interrupt line based on ISTATUS
1194 */
1195 qemu_set_irq(cpu->gt_timer_outputs[timeridx],
d3afacc7 1196 (oldval & 4) && !(value & 2));
55d284af 1197 }
55d284af
PM
1198}
1199
1200void arm_gt_ptimer_cb(void *opaque)
1201{
1202 ARMCPU *cpu = opaque;
1203
1204 gt_recalc_timer(cpu, GTIMER_PHYS);
1205}
1206
1207void arm_gt_vtimer_cb(void *opaque)
1208{
1209 ARMCPU *cpu = opaque;
1210
1211 gt_recalc_timer(cpu, GTIMER_VIRT);
1212}
1213
1214static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1215 /* Note that CNTFRQ is purely reads-as-written for the benefit
1216 * of software; writing it doesn't actually change the timer frequency.
1217 * Our reset value matches the fixed frequency we implement the timer at.
1218 */
1219 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
a7adc4b7
PM
1220 .type = ARM_CP_NO_MIGRATE,
1221 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1222 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
1223 .resetfn = arm_cp_reset_ignore,
1224 },
1225 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
1226 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
1227 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
55d284af
PM
1228 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
1229 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
55d284af
PM
1230 },
1231 /* overall control: mostly access permissions */
a7adc4b7
PM
1232 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
1233 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
55d284af
PM
1234 .access = PL1_RW,
1235 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
1236 .resetvalue = 0,
1237 },
1238 /* per-timer control */
1239 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
a7adc4b7
PM
1240 .type = ARM_CP_IO | ARM_CP_NO_MIGRATE, .access = PL1_RW | PL0_R,
1241 .accessfn = gt_ptimer_access,
1242 .fieldoffset = offsetoflow32(CPUARMState,
1243 cp15.c14_timer[GTIMER_PHYS].ctl),
1244 .resetfn = arm_cp_reset_ignore,
1245 .writefn = gt_ctl_write, .raw_writefn = raw_write,
1246 },
1247 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
1248 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
55d284af 1249 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
a7adc4b7 1250 .accessfn = gt_ptimer_access,
55d284af
PM
1251 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
1252 .resetvalue = 0,
00108f2d 1253 .writefn = gt_ctl_write, .raw_writefn = raw_write,
55d284af
PM
1254 },
1255 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
a7adc4b7
PM
1256 .type = ARM_CP_IO | ARM_CP_NO_MIGRATE, .access = PL1_RW | PL0_R,
1257 .accessfn = gt_vtimer_access,
1258 .fieldoffset = offsetoflow32(CPUARMState,
1259 cp15.c14_timer[GTIMER_VIRT].ctl),
1260 .resetfn = arm_cp_reset_ignore,
1261 .writefn = gt_ctl_write, .raw_writefn = raw_write,
1262 },
1263 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
1264 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
55d284af 1265 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
a7adc4b7 1266 .accessfn = gt_vtimer_access,
55d284af
PM
1267 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
1268 .resetvalue = 0,
00108f2d 1269 .writefn = gt_ctl_write, .raw_writefn = raw_write,
55d284af
PM
1270 },
1271 /* TimerValue views: a 32 bit downcounting view of the underlying state */
1272 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1273 .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R,
00108f2d 1274 .accessfn = gt_ptimer_access,
55d284af
PM
1275 .readfn = gt_tval_read, .writefn = gt_tval_write,
1276 },
a7adc4b7
PM
1277 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1278 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
1279 .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R,
1280 .readfn = gt_tval_read, .writefn = gt_tval_write,
1281 },
55d284af
PM
1282 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
1283 .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R,
00108f2d 1284 .accessfn = gt_vtimer_access,
55d284af
PM
1285 .readfn = gt_tval_read, .writefn = gt_tval_write,
1286 },
a7adc4b7
PM
1287 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1288 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
1289 .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R,
1290 .readfn = gt_tval_read, .writefn = gt_tval_write,
1291 },
55d284af
PM
1292 /* The counter itself */
1293 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
1294 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE | ARM_CP_IO,
00108f2d 1295 .accessfn = gt_pct_access,
a7adc4b7
PM
1296 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
1297 },
1298 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
1299 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
1300 .access = PL0_R, .type = ARM_CP_NO_MIGRATE | ARM_CP_IO,
1301 .accessfn = gt_pct_access,
55d284af
PM
1302 .readfn = gt_cnt_read, .resetfn = gt_cnt_reset,
1303 },
1304 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
1305 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE | ARM_CP_IO,
00108f2d 1306 .accessfn = gt_vct_access,
a7adc4b7
PM
1307 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
1308 },
1309 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
1310 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
1311 .access = PL0_R, .type = ARM_CP_NO_MIGRATE | ARM_CP_IO,
1312 .accessfn = gt_vct_access,
55d284af
PM
1313 .readfn = gt_cnt_read, .resetfn = gt_cnt_reset,
1314 },
1315 /* Comparison value, indicating when the timer goes off */
1316 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
1317 .access = PL1_RW | PL0_R,
a7adc4b7 1318 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_MIGRATE,
55d284af 1319 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
a7adc4b7
PM
1320 .accessfn = gt_ptimer_access, .resetfn = arm_cp_reset_ignore,
1321 .writefn = gt_cval_write, .raw_writefn = raw_write,
1322 },
1323 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
1324 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
1325 .access = PL1_RW | PL0_R,
1326 .type = ARM_CP_IO,
1327 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
1328 .resetvalue = 0, .accessfn = gt_vtimer_access,
00108f2d 1329 .writefn = gt_cval_write, .raw_writefn = raw_write,
55d284af
PM
1330 },
1331 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
1332 .access = PL1_RW | PL0_R,
a7adc4b7 1333 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_MIGRATE,
55d284af 1334 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
a7adc4b7
PM
1335 .accessfn = gt_vtimer_access, .resetfn = arm_cp_reset_ignore,
1336 .writefn = gt_cval_write, .raw_writefn = raw_write,
1337 },
1338 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
1339 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
1340 .access = PL1_RW | PL0_R,
1341 .type = ARM_CP_IO,
1342 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
1343 .resetvalue = 0, .accessfn = gt_vtimer_access,
00108f2d 1344 .writefn = gt_cval_write, .raw_writefn = raw_write,
55d284af
PM
1345 },
1346 REGINFO_SENTINEL
1347};
1348
1349#else
1350/* In user-mode none of the generic timer registers are accessible,
bc72ad67 1351 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
55d284af
PM
1352 * so instead just don't register any of them.
1353 */
6cc7a3ae 1354static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
6cc7a3ae
PM
1355 REGINFO_SENTINEL
1356};
1357
55d284af
PM
1358#endif
1359
c4241c7d 1360static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
4a501606 1361{
891a2fe7 1362 if (arm_feature(env, ARM_FEATURE_LPAE)) {
8d5c773e 1363 raw_write(env, ri, value);
891a2fe7 1364 } else if (arm_feature(env, ARM_FEATURE_V7)) {
8d5c773e 1365 raw_write(env, ri, value & 0xfffff6ff);
4a501606 1366 } else {
8d5c773e 1367 raw_write(env, ri, value & 0xfffff1ff);
4a501606 1368 }
4a501606
PM
1369}
1370
1371#ifndef CONFIG_USER_ONLY
1372/* get_phys_addr() isn't present for user-mode-only targets */
702a9357 1373
92611c00
PM
1374static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri)
1375{
1376 if (ri->opc2 & 4) {
1377 /* Other states are only available with TrustZone; in
1378 * a non-TZ implementation these registers don't exist
1379 * at all, which is an Uncategorized trap. This underdecoding
1380 * is safe because the reginfo is NO_MIGRATE.
1381 */
1382 return CP_ACCESS_TRAP_UNCATEGORIZED;
1383 }
1384 return CP_ACCESS_OK;
1385}
1386
c4241c7d 1387static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
4a501606 1388{
a8170e5e 1389 hwaddr phys_addr;
4a501606
PM
1390 target_ulong page_size;
1391 int prot;
1392 int ret, is_user = ri->opc2 & 2;
1393 int access_type = ri->opc2 & 1;
1394
4a501606
PM
1395 ret = get_phys_addr(env, value, access_type, is_user,
1396 &phys_addr, &prot, &page_size);
702a9357
PM
1397 if (extended_addresses_enabled(env)) {
1398 /* ret is a DFSR/IFSR value for the long descriptor
1399 * translation table format, but with WnR always clear.
1400 * Convert it to a 64-bit PAR.
1401 */
1402 uint64_t par64 = (1 << 11); /* LPAE bit always set */
1403 if (ret == 0) {
1404 par64 |= phys_addr & ~0xfffULL;
1405 /* We don't set the ATTR or SH fields in the PAR. */
4a501606 1406 } else {
702a9357
PM
1407 par64 |= 1; /* F */
1408 par64 |= (ret & 0x3f) << 1; /* FS */
1409 /* Note that S2WLK and FSTAGE are always zero, because we don't
1410 * implement virtualization and therefore there can't be a stage 2
1411 * fault.
1412 */
4a501606 1413 }
19525524 1414 env->cp15.par_el1 = par64;
4a501606 1415 } else {
702a9357
PM
1416 /* ret is a DFSR/IFSR value for the short descriptor
1417 * translation table format (with WnR always clear).
1418 * Convert it to a 32-bit PAR.
1419 */
1420 if (ret == 0) {
1421 /* We do not set any attribute bits in the PAR */
1422 if (page_size == (1 << 24)
1423 && arm_feature(env, ARM_FEATURE_V7)) {
19525524 1424 env->cp15.par_el1 = (phys_addr & 0xff000000) | 1 << 1;
702a9357 1425 } else {
19525524 1426 env->cp15.par_el1 = phys_addr & 0xfffff000;
702a9357
PM
1427 }
1428 } else {
19525524 1429 env->cp15.par_el1 = ((ret & (1 << 10)) >> 5) |
775fda92 1430 ((ret & (1 << 12)) >> 6) |
702a9357
PM
1431 ((ret & 0xf) << 1) | 1;
1432 }
4a501606 1433 }
4a501606
PM
1434}
1435#endif
1436
1437static const ARMCPRegInfo vapa_cp_reginfo[] = {
1438 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
1439 .access = PL1_RW, .resetvalue = 0,
19525524 1440 .fieldoffset = offsetoflow32(CPUARMState, cp15.par_el1),
4a501606
PM
1441 .writefn = par_write },
1442#ifndef CONFIG_USER_ONLY
1443 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
92611c00
PM
1444 .access = PL1_W, .accessfn = ats_access,
1445 .writefn = ats_write, .type = ARM_CP_NO_MIGRATE },
4a501606
PM
1446#endif
1447 REGINFO_SENTINEL
1448};
1449
18032bec
PM
1450/* Return basic MPU access permission bits. */
1451static uint32_t simple_mpu_ap_bits(uint32_t val)
1452{
1453 uint32_t ret;
1454 uint32_t mask;
1455 int i;
1456 ret = 0;
1457 mask = 3;
1458 for (i = 0; i < 16; i += 2) {
1459 ret |= (val >> i) & mask;
1460 mask <<= 2;
1461 }
1462 return ret;
1463}
1464
1465/* Pad basic MPU access permission bits to extended format. */
1466static uint32_t extended_mpu_ap_bits(uint32_t val)
1467{
1468 uint32_t ret;
1469 uint32_t mask;
1470 int i;
1471 ret = 0;
1472 mask = 3;
1473 for (i = 0; i < 16; i += 2) {
1474 ret |= (val & mask) << i;
1475 mask <<= 2;
1476 }
1477 return ret;
1478}
1479
c4241c7d
PM
1480static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1481 uint64_t value)
18032bec 1482{
7e09797c 1483 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
18032bec
PM
1484}
1485
c4241c7d 1486static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
18032bec 1487{
7e09797c 1488 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
18032bec
PM
1489}
1490
c4241c7d
PM
1491static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1492 uint64_t value)
18032bec 1493{
7e09797c 1494 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
18032bec
PM
1495}
1496
c4241c7d 1497static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
18032bec 1498{
7e09797c 1499 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
18032bec
PM
1500}
1501
1502static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
1503 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
d4e6df63 1504 .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
7e09797c
PM
1505 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
1506 .resetvalue = 0,
18032bec
PM
1507 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
1508 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
d4e6df63 1509 .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
7e09797c
PM
1510 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
1511 .resetvalue = 0,
18032bec
PM
1512 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
1513 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
1514 .access = PL1_RW,
7e09797c
PM
1515 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
1516 .resetvalue = 0, },
18032bec
PM
1517 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
1518 .access = PL1_RW,
7e09797c
PM
1519 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
1520 .resetvalue = 0, },
ecce5c3c
PM
1521 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
1522 .access = PL1_RW,
1523 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
1524 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
1525 .access = PL1_RW,
1526 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
06d76f31 1527 /* Protection region base and size registers */
e508a92b
PM
1528 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
1529 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1530 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
1531 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
1532 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1533 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
1534 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
1535 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1536 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
1537 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
1538 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1539 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
1540 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
1541 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1542 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
1543 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
1544 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1545 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
1546 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
1547 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1548 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
1549 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
1550 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1551 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
18032bec
PM
1552 REGINFO_SENTINEL
1553};
1554
c4241c7d
PM
1555static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
1556 uint64_t value)
ecce5c3c 1557{
2ebcebe2
PM
1558 int maskshift = extract32(value, 0, 3);
1559
e389be16
FA
1560 if (!arm_feature(env, ARM_FEATURE_V8)) {
1561 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
1562 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
1563 * using Long-desciptor translation table format */
1564 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
1565 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
1566 /* In an implementation that includes the Security Extensions
1567 * TTBCR has additional fields PD0 [4] and PD1 [5] for
1568 * Short-descriptor translation table format.
1569 */
1570 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
1571 } else {
1572 value &= TTBCR_N;
1573 }
e42c4db3 1574 }
e389be16 1575
e42c4db3
PM
1576 /* Note that we always calculate c2_mask and c2_base_mask, but
1577 * they are only used for short-descriptor tables (ie if EAE is 0);
1578 * for long-descriptor tables the TTBCR fields are used differently
1579 * and the c2_mask and c2_base_mask values are meaningless.
1580 */
8d5c773e 1581 raw_write(env, ri, value);
2ebcebe2
PM
1582 env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> maskshift);
1583 env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> maskshift);
ecce5c3c
PM
1584}
1585
c4241c7d
PM
1586static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1587 uint64_t value)
d4e6df63 1588{
00c8cb0a
AF
1589 ARMCPU *cpu = arm_env_get_cpu(env);
1590
d4e6df63
PM
1591 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1592 /* With LPAE the TTBCR could result in a change of ASID
1593 * via the TTBCR.A1 bit, so do a TLB flush.
1594 */
00c8cb0a 1595 tlb_flush(CPU(cpu), 1);
d4e6df63 1596 }
c4241c7d 1597 vmsa_ttbcr_raw_write(env, ri, value);
d4e6df63
PM
1598}
1599
ecce5c3c
PM
1600static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1601{
1602 env->cp15.c2_base_mask = 0xffffc000u;
8d5c773e 1603 raw_write(env, ri, 0);
ecce5c3c
PM
1604 env->cp15.c2_mask = 0;
1605}
1606
cb2e37df
PM
1607static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
1608 uint64_t value)
1609{
00c8cb0a
AF
1610 ARMCPU *cpu = arm_env_get_cpu(env);
1611
cb2e37df 1612 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
00c8cb0a 1613 tlb_flush(CPU(cpu), 1);
8d5c773e 1614 raw_write(env, ri, value);
cb2e37df
PM
1615}
1616
327ed10f
PM
1617static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1618 uint64_t value)
1619{
1620 /* 64 bit accesses to the TTBRs can change the ASID and so we
1621 * must flush the TLB.
1622 */
1623 if (cpreg_field_is_64bit(ri)) {
00c8cb0a
AF
1624 ARMCPU *cpu = arm_env_get_cpu(env);
1625
1626 tlb_flush(CPU(cpu), 1);
327ed10f
PM
1627 }
1628 raw_write(env, ri, value);
1629}
1630
18032bec
PM
1631static const ARMCPRegInfo vmsa_cp_reginfo[] = {
1632 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
6cd8a264 1633 .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
d81c519c 1634 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
6cd8a264 1635 .resetfn = arm_cp_reset_ignore, },
18032bec
PM
1636 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
1637 .access = PL1_RW,
6cd8a264
RH
1638 .fieldoffset = offsetof(CPUARMState, cp15.ifsr_el2), .resetvalue = 0, },
1639 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
1640 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
1641 .access = PL1_RW,
d81c519c 1642 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
327ed10f
PM
1643 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
1644 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
1645 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el1),
1646 .writefn = vmsa_ttbr_write, .resetvalue = 0 },
1647 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
1648 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
1649 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el1),
1650 .writefn = vmsa_ttbr_write, .resetvalue = 0 },
cb2e37df
PM
1651 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
1652 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
1653 .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
1654 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
ecce5c3c 1655 .fieldoffset = offsetof(CPUARMState, cp15.c2_control) },
cb2e37df
PM
1656 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
1657 .access = PL1_RW, .type = ARM_CP_NO_MIGRATE, .writefn = vmsa_ttbcr_write,
1658 .resetfn = arm_cp_reset_ignore, .raw_writefn = vmsa_ttbcr_raw_write,
1659 .fieldoffset = offsetoflow32(CPUARMState, cp15.c2_control) },
6cd8a264
RH
1660 /* 64-bit FAR; this entry also gives us the AArch32 DFAR */
1661 { .name = "FAR_EL1", .state = ARM_CP_STATE_BOTH,
1662 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
2f0180c5 1663 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
06d76f31 1664 .resetvalue = 0, },
18032bec
PM
1665 REGINFO_SENTINEL
1666};
1667
c4241c7d
PM
1668static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
1669 uint64_t value)
1047b9d7
PM
1670{
1671 env->cp15.c15_ticonfig = value & 0xe7;
1672 /* The OS_TYPE bit in this register changes the reported CPUID! */
1673 env->cp15.c0_cpuid = (value & (1 << 5)) ?
1674 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1047b9d7
PM
1675}
1676
c4241c7d
PM
1677static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
1678 uint64_t value)
1047b9d7
PM
1679{
1680 env->cp15.c15_threadid = value & 0xffff;
1047b9d7
PM
1681}
1682
c4241c7d
PM
1683static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
1684 uint64_t value)
1047b9d7
PM
1685{
1686 /* Wait-for-interrupt (deprecated) */
c3affe56 1687 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
1047b9d7
PM
1688}
1689
c4241c7d
PM
1690static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
1691 uint64_t value)
c4804214
PM
1692{
1693 /* On OMAP there are registers indicating the max/min index of dcache lines
1694 * containing a dirty line; cache flush operations have to reset these.
1695 */
1696 env->cp15.c15_i_max = 0x000;
1697 env->cp15.c15_i_min = 0xff0;
c4804214
PM
1698}
1699
18032bec
PM
1700static const ARMCPRegInfo omap_cp_reginfo[] = {
1701 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
1702 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
d81c519c 1703 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
6cd8a264 1704 .resetvalue = 0, },
1047b9d7
PM
1705 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1706 .access = PL1_RW, .type = ARM_CP_NOP },
1707 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1708 .access = PL1_RW,
1709 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
1710 .writefn = omap_ticonfig_write },
1711 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
1712 .access = PL1_RW,
1713 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
1714 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
1715 .access = PL1_RW, .resetvalue = 0xff0,
1716 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
1717 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
1718 .access = PL1_RW,
1719 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
1720 .writefn = omap_threadid_write },
1721 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
1722 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
d4e6df63 1723 .type = ARM_CP_NO_MIGRATE,
1047b9d7
PM
1724 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
1725 /* TODO: Peripheral port remap register:
1726 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
1727 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
1728 * when MMU is off.
1729 */
c4804214 1730 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
d4e6df63
PM
1731 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
1732 .type = ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE,
c4804214 1733 .writefn = omap_cachemaint_write },
34f90529
PM
1734 { .name = "C9", .cp = 15, .crn = 9,
1735 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
1736 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
1047b9d7
PM
1737 REGINFO_SENTINEL
1738};
1739
c4241c7d
PM
1740static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1741 uint64_t value)
1047b9d7 1742{
c0f4af17 1743 env->cp15.c15_cpar = value & 0x3fff;
1047b9d7
PM
1744}
1745
1746static const ARMCPRegInfo xscale_cp_reginfo[] = {
1747 { .name = "XSCALE_CPAR",
1748 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
1749 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
1750 .writefn = xscale_cpar_write, },
2771db27
PM
1751 { .name = "XSCALE_AUXCR",
1752 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
1753 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
1754 .resetvalue = 0, },
3b771579
PM
1755 /* XScale specific cache-lockdown: since we have no cache we NOP these
1756 * and hope the guest does not really rely on cache behaviour.
1757 */
1758 { .name = "XSCALE_LOCK_ICACHE_LINE",
1759 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
1760 .access = PL1_W, .type = ARM_CP_NOP },
1761 { .name = "XSCALE_UNLOCK_ICACHE",
1762 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
1763 .access = PL1_W, .type = ARM_CP_NOP },
1764 { .name = "XSCALE_DCACHE_LOCK",
1765 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
1766 .access = PL1_RW, .type = ARM_CP_NOP },
1767 { .name = "XSCALE_UNLOCK_DCACHE",
1768 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
1769 .access = PL1_W, .type = ARM_CP_NOP },
1047b9d7
PM
1770 REGINFO_SENTINEL
1771};
1772
1773static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
1774 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
1775 * implementation of this implementation-defined space.
1776 * Ideally this should eventually disappear in favour of actually
1777 * implementing the correct behaviour for all cores.
1778 */
1779 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
1780 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3671cd87
PC
1781 .access = PL1_RW,
1782 .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE | ARM_CP_OVERRIDE,
d4e6df63 1783 .resetvalue = 0 },
18032bec
PM
1784 REGINFO_SENTINEL
1785};
1786
c4804214
PM
1787static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
1788 /* Cache status: RAZ because we have no cache so it's always clean */
1789 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
d4e6df63
PM
1790 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1791 .resetvalue = 0 },
c4804214
PM
1792 REGINFO_SENTINEL
1793};
1794
1795static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
1796 /* We never have a a block transfer operation in progress */
1797 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
d4e6df63
PM
1798 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1799 .resetvalue = 0 },
30b05bba
PM
1800 /* The cache ops themselves: these all NOP for QEMU */
1801 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
1802 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1803 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
1804 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1805 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
1806 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1807 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
1808 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1809 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
1810 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1811 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
1812 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
c4804214
PM
1813 REGINFO_SENTINEL
1814};
1815
1816static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
1817 /* The cache test-and-clean instructions always return (1 << 30)
1818 * to indicate that there are no dirty cache lines.
1819 */
1820 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
d4e6df63
PM
1821 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1822 .resetvalue = (1 << 30) },
c4804214 1823 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
d4e6df63
PM
1824 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1825 .resetvalue = (1 << 30) },
c4804214
PM
1826 REGINFO_SENTINEL
1827};
1828
34f90529
PM
1829static const ARMCPRegInfo strongarm_cp_reginfo[] = {
1830 /* Ignore ReadBuffer accesses */
1831 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
1832 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
d4e6df63
PM
1833 .access = PL1_RW, .resetvalue = 0,
1834 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE },
34f90529
PM
1835 REGINFO_SENTINEL
1836};
1837
c4241c7d 1838static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
81bdde9d 1839{
55e5c285
AF
1840 CPUState *cs = CPU(arm_env_get_cpu(env));
1841 uint32_t mpidr = cs->cpu_index;
4b7fff2f
PM
1842 /* We don't support setting cluster ID ([8..11]) (known as Aff1
1843 * in later ARM ARM versions), or any of the higher affinity level fields,
81bdde9d
PM
1844 * so these bits always RAZ.
1845 */
1846 if (arm_feature(env, ARM_FEATURE_V7MP)) {
78dbbbe4 1847 mpidr |= (1U << 31);
81bdde9d
PM
1848 /* Cores which are uniprocessor (non-coherent)
1849 * but still implement the MP extensions set
1850 * bit 30. (For instance, A9UP.) However we do
1851 * not currently model any of those cores.
1852 */
1853 }
c4241c7d 1854 return mpidr;
81bdde9d
PM
1855}
1856
1857static const ARMCPRegInfo mpidr_cp_reginfo[] = {
4b7fff2f
PM
1858 { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
1859 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
d4e6df63 1860 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_MIGRATE },
81bdde9d
PM
1861 REGINFO_SENTINEL
1862};
1863
7ac681cf 1864static const ARMCPRegInfo lpae_cp_reginfo[] = {
b90372ad 1865 /* NOP AMAIR0/1: the override is because these clash with the rather
7ac681cf
PM
1866 * broadly specified TLB_LOCKDOWN entry in the generic cp_reginfo.
1867 */
b0fe2427
PM
1868 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
1869 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
7ac681cf
PM
1870 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
1871 .resetvalue = 0 },
b0fe2427 1872 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
7ac681cf
PM
1873 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
1874 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
1875 .resetvalue = 0 },
891a2fe7
PM
1876 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
1877 .access = PL1_RW, .type = ARM_CP_64BIT,
19525524 1878 .fieldoffset = offsetof(CPUARMState, cp15.par_el1), .resetvalue = 0 },
891a2fe7 1879 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
327ed10f
PM
1880 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE,
1881 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el1),
1882 .writefn = vmsa_ttbr_write, .resetfn = arm_cp_reset_ignore },
891a2fe7 1883 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
327ed10f
PM
1884 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE,
1885 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el1),
1886 .writefn = vmsa_ttbr_write, .resetfn = arm_cp_reset_ignore },
7ac681cf
PM
1887 REGINFO_SENTINEL
1888};
1889
c4241c7d 1890static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
b0d2b7d0 1891{
c4241c7d 1892 return vfp_get_fpcr(env);
b0d2b7d0
PM
1893}
1894
c4241c7d
PM
1895static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1896 uint64_t value)
b0d2b7d0
PM
1897{
1898 vfp_set_fpcr(env, value);
b0d2b7d0
PM
1899}
1900
c4241c7d 1901static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
b0d2b7d0 1902{
c4241c7d 1903 return vfp_get_fpsr(env);
b0d2b7d0
PM
1904}
1905
c4241c7d
PM
1906static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1907 uint64_t value)
b0d2b7d0
PM
1908{
1909 vfp_set_fpsr(env, value);
b0d2b7d0
PM
1910}
1911
c2b820fe
PM
1912static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri)
1913{
dcbff19b 1914 if (arm_current_el(env) == 0 && !(env->cp15.c1_sys & SCTLR_UMA)) {
c2b820fe
PM
1915 return CP_ACCESS_TRAP;
1916 }
1917 return CP_ACCESS_OK;
1918}
1919
1920static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
1921 uint64_t value)
1922{
1923 env->daif = value & PSTATE_DAIF;
1924}
1925
8af35c37
PM
1926static CPAccessResult aa64_cacheop_access(CPUARMState *env,
1927 const ARMCPRegInfo *ri)
1928{
1929 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
1930 * SCTLR_EL1.UCI is set.
1931 */
dcbff19b 1932 if (arm_current_el(env) == 0 && !(env->cp15.c1_sys & SCTLR_UCI)) {
8af35c37
PM
1933 return CP_ACCESS_TRAP;
1934 }
1935 return CP_ACCESS_OK;
1936}
1937
dbb1fb27
AB
1938/* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
1939 * Page D4-1736 (DDI0487A.b)
1940 */
1941
168aa23b
PM
1942static void tlbi_aa64_va_write(CPUARMState *env, const ARMCPRegInfo *ri,
1943 uint64_t value)
1944{
1945 /* Invalidate by VA (AArch64 version) */
31b030d4 1946 ARMCPU *cpu = arm_env_get_cpu(env);
dbb1fb27
AB
1947 uint64_t pageaddr = sextract64(value << 12, 0, 56);
1948
31b030d4 1949 tlb_flush_page(CPU(cpu), pageaddr);
168aa23b
PM
1950}
1951
1952static void tlbi_aa64_vaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
1953 uint64_t value)
1954{
1955 /* Invalidate by VA, all ASIDs (AArch64 version) */
31b030d4 1956 ARMCPU *cpu = arm_env_get_cpu(env);
dbb1fb27
AB
1957 uint64_t pageaddr = sextract64(value << 12, 0, 56);
1958
31b030d4 1959 tlb_flush_page(CPU(cpu), pageaddr);
168aa23b
PM
1960}
1961
1962static void tlbi_aa64_asid_write(CPUARMState *env, const ARMCPRegInfo *ri,
1963 uint64_t value)
1964{
1965 /* Invalidate by ASID (AArch64 version) */
00c8cb0a 1966 ARMCPU *cpu = arm_env_get_cpu(env);
168aa23b 1967 int asid = extract64(value, 48, 16);
00c8cb0a 1968 tlb_flush(CPU(cpu), asid == 0);
168aa23b
PM
1969}
1970
fa439fc5
PM
1971static void tlbi_aa64_va_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
1972 uint64_t value)
1973{
1974 CPUState *other_cs;
1975 uint64_t pageaddr = sextract64(value << 12, 0, 56);
1976
1977 CPU_FOREACH(other_cs) {
1978 tlb_flush_page(other_cs, pageaddr);
1979 }
1980}
1981
1982static void tlbi_aa64_vaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
1983 uint64_t value)
1984{
1985 CPUState *other_cs;
1986 uint64_t pageaddr = sextract64(value << 12, 0, 56);
1987
1988 CPU_FOREACH(other_cs) {
1989 tlb_flush_page(other_cs, pageaddr);
1990 }
1991}
1992
1993static void tlbi_aa64_asid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
1994 uint64_t value)
1995{
1996 CPUState *other_cs;
1997 int asid = extract64(value, 48, 16);
1998
1999 CPU_FOREACH(other_cs) {
2000 tlb_flush(other_cs, asid == 0);
2001 }
2002}
2003
aca3f40b
PM
2004static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri)
2005{
2006 /* We don't implement EL2, so the only control on DC ZVA is the
2007 * bit in the SCTLR which can prohibit access for EL0.
2008 */
dcbff19b 2009 if (arm_current_el(env) == 0 && !(env->cp15.c1_sys & SCTLR_DZE)) {
aca3f40b
PM
2010 return CP_ACCESS_TRAP;
2011 }
2012 return CP_ACCESS_OK;
2013}
2014
2015static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
2016{
2017 ARMCPU *cpu = arm_env_get_cpu(env);
2018 int dzp_bit = 1 << 4;
2019
2020 /* DZP indicates whether DC ZVA access is allowed */
14e5f106 2021 if (aa64_zva_access(env, NULL) == CP_ACCESS_OK) {
aca3f40b
PM
2022 dzp_bit = 0;
2023 }
2024 return cpu->dcz_blocksize | dzp_bit;
2025}
2026
f502cfc2
PM
2027static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri)
2028{
cdcf1405 2029 if (!(env->pstate & PSTATE_SP)) {
f502cfc2
PM
2030 /* Access to SP_EL0 is undefined if it's being used as
2031 * the stack pointer.
2032 */
2033 return CP_ACCESS_TRAP_UNCATEGORIZED;
2034 }
2035 return CP_ACCESS_OK;
2036}
2037
2038static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
2039{
2040 return env->pstate & PSTATE_SP;
2041}
2042
2043static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
2044{
2045 update_spsel(env, val);
2046}
2047
b0d2b7d0
PM
2048static const ARMCPRegInfo v8_cp_reginfo[] = {
2049 /* Minimal set of EL0-visible registers. This will need to be expanded
2050 * significantly for system emulation of AArch64 CPUs.
2051 */
2052 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
2053 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
2054 .access = PL0_RW, .type = ARM_CP_NZCV },
c2b820fe
PM
2055 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
2056 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
2057 .type = ARM_CP_NO_MIGRATE,
2058 .access = PL0_RW, .accessfn = aa64_daif_access,
2059 .fieldoffset = offsetof(CPUARMState, daif),
2060 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
b0d2b7d0
PM
2061 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
2062 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
2063 .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
2064 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
2065 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
2066 .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
b0d2b7d0
PM
2067 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
2068 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
aca3f40b
PM
2069 .access = PL0_R, .type = ARM_CP_NO_MIGRATE,
2070 .readfn = aa64_dczid_read },
2071 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
2072 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
2073 .access = PL0_W, .type = ARM_CP_DC_ZVA,
2074#ifndef CONFIG_USER_ONLY
2075 /* Avoid overhead of an access check that always passes in user-mode */
2076 .accessfn = aa64_zva_access,
2077#endif
2078 },
0eef9d98
PM
2079 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
2080 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
2081 .access = PL1_R, .type = ARM_CP_CURRENTEL },
8af35c37
PM
2082 /* Cache ops: all NOPs since we don't emulate caches */
2083 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
2084 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
2085 .access = PL1_W, .type = ARM_CP_NOP },
2086 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
2087 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
2088 .access = PL1_W, .type = ARM_CP_NOP },
2089 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
2090 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
2091 .access = PL0_W, .type = ARM_CP_NOP,
2092 .accessfn = aa64_cacheop_access },
2093 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
2094 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
2095 .access = PL1_W, .type = ARM_CP_NOP },
2096 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
2097 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
2098 .access = PL1_W, .type = ARM_CP_NOP },
2099 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
2100 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
2101 .access = PL0_W, .type = ARM_CP_NOP,
2102 .accessfn = aa64_cacheop_access },
2103 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
2104 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
2105 .access = PL1_W, .type = ARM_CP_NOP },
2106 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
2107 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
2108 .access = PL0_W, .type = ARM_CP_NOP,
2109 .accessfn = aa64_cacheop_access },
2110 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
2111 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
2112 .access = PL0_W, .type = ARM_CP_NOP,
2113 .accessfn = aa64_cacheop_access },
2114 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
2115 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
2116 .access = PL1_W, .type = ARM_CP_NOP },
168aa23b
PM
2117 /* TLBI operations */
2118 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 2119 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
168aa23b 2120 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
fa439fc5 2121 .writefn = tlbiall_is_write },
168aa23b 2122 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 2123 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
168aa23b 2124 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
fa439fc5 2125 .writefn = tlbi_aa64_va_is_write },
168aa23b 2126 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 2127 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
168aa23b 2128 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
fa439fc5 2129 .writefn = tlbi_aa64_asid_is_write },
168aa23b 2130 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 2131 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
168aa23b 2132 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
fa439fc5 2133 .writefn = tlbi_aa64_vaa_is_write },
168aa23b 2134 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 2135 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
168aa23b 2136 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
fa439fc5 2137 .writefn = tlbi_aa64_va_is_write },
168aa23b 2138 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 2139 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
168aa23b 2140 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
fa439fc5 2141 .writefn = tlbi_aa64_vaa_is_write },
168aa23b 2142 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
6ab9f499 2143 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
168aa23b
PM
2144 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
2145 .writefn = tlbiall_write },
2146 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
6ab9f499 2147 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
168aa23b
PM
2148 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
2149 .writefn = tlbi_aa64_va_write },
2150 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
6ab9f499 2151 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
168aa23b
PM
2152 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
2153 .writefn = tlbi_aa64_asid_write },
2154 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
6ab9f499 2155 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
168aa23b
PM
2156 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
2157 .writefn = tlbi_aa64_vaa_write },
2158 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
6ab9f499 2159 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
168aa23b
PM
2160 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
2161 .writefn = tlbi_aa64_va_write },
2162 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
6ab9f499 2163 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
168aa23b
PM
2164 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
2165 .writefn = tlbi_aa64_vaa_write },
19525524
PM
2166#ifndef CONFIG_USER_ONLY
2167 /* 64 bit address translation operations */
2168 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
2169 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
2170 .access = PL1_W, .type = ARM_CP_NO_MIGRATE, .writefn = ats_write },
2171 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
2172 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
2173 .access = PL1_W, .type = ARM_CP_NO_MIGRATE, .writefn = ats_write },
2174 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
2175 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
2176 .access = PL1_W, .type = ARM_CP_NO_MIGRATE, .writefn = ats_write },
2177 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
2178 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
2179 .access = PL1_W, .type = ARM_CP_NO_MIGRATE, .writefn = ats_write },
2180#endif
995939a6 2181 /* TLB invalidate last level of translation table walk */
9449fdf6 2182 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
fa439fc5 2183 .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbimva_is_write },
9449fdf6 2184 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
fa439fc5
PM
2185 .type = ARM_CP_NO_MIGRATE, .access = PL1_W,
2186 .writefn = tlbimvaa_is_write },
9449fdf6
PM
2187 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
2188 .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbimva_write },
2189 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
2190 .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbimvaa_write },
2191 /* 32 bit cache operations */
2192 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
2193 .type = ARM_CP_NOP, .access = PL1_W },
2194 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
2195 .type = ARM_CP_NOP, .access = PL1_W },
2196 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
2197 .type = ARM_CP_NOP, .access = PL1_W },
2198 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
2199 .type = ARM_CP_NOP, .access = PL1_W },
2200 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
2201 .type = ARM_CP_NOP, .access = PL1_W },
2202 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
2203 .type = ARM_CP_NOP, .access = PL1_W },
2204 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
2205 .type = ARM_CP_NOP, .access = PL1_W },
2206 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
2207 .type = ARM_CP_NOP, .access = PL1_W },
2208 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
2209 .type = ARM_CP_NOP, .access = PL1_W },
2210 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
2211 .type = ARM_CP_NOP, .access = PL1_W },
2212 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
2213 .type = ARM_CP_NOP, .access = PL1_W },
2214 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
2215 .type = ARM_CP_NOP, .access = PL1_W },
2216 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
2217 .type = ARM_CP_NOP, .access = PL1_W },
2218 /* MMU Domain access control / MPU write buffer control */
2219 { .name = "DACR", .cp = 15,
2220 .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
2221 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c3),
2222 .resetvalue = 0, .writefn = dacr_write, .raw_writefn = raw_write, },
a0618a19
PM
2223 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
2224 .type = ARM_CP_NO_MIGRATE,
2225 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
6947f059
EI
2226 .access = PL1_RW,
2227 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
a65f1de9
PM
2228 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
2229 .type = ARM_CP_NO_MIGRATE,
2230 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
2231 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[0]) },
f502cfc2
PM
2232 /* We rely on the access checks not allowing the guest to write to the
2233 * state field when SPSel indicates that it's being used as the stack
2234 * pointer.
2235 */
2236 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
2237 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
2238 .access = PL1_RW, .accessfn = sp_el0_access,
2239 .type = ARM_CP_NO_MIGRATE,
2240 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
2241 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
2242 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
2243 .type = ARM_CP_NO_MIGRATE,
2244 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
b0d2b7d0
PM
2245 REGINFO_SENTINEL
2246};
2247
d42e3c26
EI
2248/* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
2249static const ARMCPRegInfo v8_el3_no_el2_cp_reginfo[] = {
2250 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
2251 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
2252 .access = PL2_RW,
2253 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
f149e3e8
EI
2254 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
2255 .type = ARM_CP_NO_MIGRATE,
2256 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
2257 .access = PL2_RW,
2258 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
d42e3c26
EI
2259 REGINFO_SENTINEL
2260};
2261
f149e3e8
EI
2262static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2263{
2264 ARMCPU *cpu = arm_env_get_cpu(env);
2265 uint64_t valid_mask = HCR_MASK;
2266
2267 if (arm_feature(env, ARM_FEATURE_EL3)) {
2268 valid_mask &= ~HCR_HCD;
2269 } else {
2270 valid_mask &= ~HCR_TSC;
2271 }
2272
2273 /* Clear RES0 bits. */
2274 value &= valid_mask;
2275
2276 /* These bits change the MMU setup:
2277 * HCR_VM enables stage 2 translation
2278 * HCR_PTW forbids certain page-table setups
2279 * HCR_DC Disables stage1 and enables stage2 translation
2280 */
2281 if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
2282 tlb_flush(CPU(cpu), 1);
2283 }
2284 raw_write(env, ri, value);
2285}
2286
3b685ba7 2287static const ARMCPRegInfo v8_el2_cp_reginfo[] = {
f149e3e8
EI
2288 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
2289 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
2290 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
2291 .writefn = hcr_write },
3b685ba7
EI
2292 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
2293 .type = ARM_CP_NO_MIGRATE,
2294 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
2295 .access = PL2_RW,
2296 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
f2c30f42
EI
2297 { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64,
2298 .type = ARM_CP_NO_MIGRATE,
2299 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
2300 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
63b60551
EI
2301 { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64,
2302 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
2303 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
3b685ba7
EI
2304 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
2305 .type = ARM_CP_NO_MIGRATE,
2306 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
2307 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[6]) },
d42e3c26
EI
2308 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
2309 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
2310 .access = PL2_RW, .writefn = vbar_write,
2311 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
2312 .resetvalue = 0 },
3b685ba7
EI
2313 REGINFO_SENTINEL
2314};
2315
81547d66
EI
2316static const ARMCPRegInfo v8_el3_cp_reginfo[] = {
2317 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
2318 .type = ARM_CP_NO_MIGRATE,
2319 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
2320 .access = PL3_RW,
2321 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
f2c30f42
EI
2322 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
2323 .type = ARM_CP_NO_MIGRATE,
2324 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
2325 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
63b60551
EI
2326 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
2327 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
2328 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
81547d66
EI
2329 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
2330 .type = ARM_CP_NO_MIGRATE,
2331 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
2332 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[7]) },
a1ba125c
EI
2333 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
2334 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
2335 .access = PL3_RW, .writefn = vbar_write,
2336 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
2337 .resetvalue = 0 },
64e0e2de
EI
2338 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
2339 .type = ARM_CP_NO_MIGRATE,
2340 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
2341 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
2342 .writefn = scr_write },
81547d66
EI
2343 REGINFO_SENTINEL
2344};
2345
c4241c7d
PM
2346static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2347 uint64_t value)
2771db27 2348{
00c8cb0a
AF
2349 ARMCPU *cpu = arm_env_get_cpu(env);
2350
8d5c773e 2351 if (raw_read(env, ri) == value) {
2f0d8631
PM
2352 /* Skip the TLB flush if nothing actually changed; Linux likes
2353 * to do a lot of pointless SCTLR writes.
2354 */
2355 return;
2356 }
2357
8d5c773e 2358 raw_write(env, ri, value);
2771db27
PM
2359 /* ??? Lots of these bits are not implemented. */
2360 /* This may enable/disable the MMU, so do a TLB flush. */
00c8cb0a 2361 tlb_flush(CPU(cpu), 1);
2771db27
PM
2362}
2363
7da845b0
PM
2364static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri)
2365{
2366 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
2367 * but the AArch32 CTR has its own reginfo struct)
2368 */
dcbff19b 2369 if (arm_current_el(env) == 0 && !(env->cp15.c1_sys & SCTLR_UCT)) {
7da845b0
PM
2370 return CP_ACCESS_TRAP;
2371 }
2372 return CP_ACCESS_OK;
2373}
2374
50300698 2375static const ARMCPRegInfo debug_cp_reginfo[] = {
50300698 2376 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
10aae104
PM
2377 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
2378 * unlike DBGDRAR it is never accessible from EL0.
2379 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
2380 * accessor.
50300698
PM
2381 */
2382 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
2383 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
10aae104
PM
2384 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
2385 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
2386 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
50300698
PM
2387 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
2388 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
17a9eb53 2389 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
10aae104
PM
2390 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
2391 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
0e5e8935
PM
2392 .access = PL1_RW,
2393 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
2394 .resetvalue = 0 },
5e8b12ff
PM
2395 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
2396 * We don't implement the configurable EL0 access.
2397 */
2398 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
2399 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
2400 .type = ARM_CP_NO_MIGRATE,
2401 .access = PL1_R,
2402 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
2403 .resetfn = arm_cp_reset_ignore },
50300698 2404 /* We define a dummy WI OSLAR_EL1, because Linux writes to it. */
10aae104
PM
2405 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
2406 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
50300698 2407 .access = PL1_W, .type = ARM_CP_NOP },
5e8b12ff
PM
2408 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
2409 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
2410 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
2411 .access = PL1_RW, .type = ARM_CP_NOP },
2412 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
2413 * implement vector catch debug events yet.
2414 */
2415 { .name = "DBGVCR",
2416 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
2417 .access = PL1_RW, .type = ARM_CP_NOP },
50300698
PM
2418 REGINFO_SENTINEL
2419};
2420
2421static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
2422 /* 64 bit access versions of the (dummy) debug registers */
2423 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
2424 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
2425 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
2426 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
2427 REGINFO_SENTINEL
2428};
2429
9ee98ce8
PM
2430void hw_watchpoint_update(ARMCPU *cpu, int n)
2431{
2432 CPUARMState *env = &cpu->env;
2433 vaddr len = 0;
2434 vaddr wvr = env->cp15.dbgwvr[n];
2435 uint64_t wcr = env->cp15.dbgwcr[n];
2436 int mask;
2437 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
2438
2439 if (env->cpu_watchpoint[n]) {
2440 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
2441 env->cpu_watchpoint[n] = NULL;
2442 }
2443
2444 if (!extract64(wcr, 0, 1)) {
2445 /* E bit clear : watchpoint disabled */
2446 return;
2447 }
2448
2449 switch (extract64(wcr, 3, 2)) {
2450 case 0:
2451 /* LSC 00 is reserved and must behave as if the wp is disabled */
2452 return;
2453 case 1:
2454 flags |= BP_MEM_READ;
2455 break;
2456 case 2:
2457 flags |= BP_MEM_WRITE;
2458 break;
2459 case 3:
2460 flags |= BP_MEM_ACCESS;
2461 break;
2462 }
2463
2464 /* Attempts to use both MASK and BAS fields simultaneously are
2465 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
2466 * thus generating a watchpoint for every byte in the masked region.
2467 */
2468 mask = extract64(wcr, 24, 4);
2469 if (mask == 1 || mask == 2) {
2470 /* Reserved values of MASK; we must act as if the mask value was
2471 * some non-reserved value, or as if the watchpoint were disabled.
2472 * We choose the latter.
2473 */
2474 return;
2475 } else if (mask) {
2476 /* Watchpoint covers an aligned area up to 2GB in size */
2477 len = 1ULL << mask;
2478 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
2479 * whether the watchpoint fires when the unmasked bits match; we opt
2480 * to generate the exceptions.
2481 */
2482 wvr &= ~(len - 1);
2483 } else {
2484 /* Watchpoint covers bytes defined by the byte address select bits */
2485 int bas = extract64(wcr, 5, 8);
2486 int basstart;
2487
2488 if (bas == 0) {
2489 /* This must act as if the watchpoint is disabled */
2490 return;
2491 }
2492
2493 if (extract64(wvr, 2, 1)) {
2494 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
2495 * ignored, and BAS[3:0] define which bytes to watch.
2496 */
2497 bas &= 0xf;
2498 }
2499 /* The BAS bits are supposed to be programmed to indicate a contiguous
2500 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
2501 * we fire for each byte in the word/doubleword addressed by the WVR.
2502 * We choose to ignore any non-zero bits after the first range of 1s.
2503 */
2504 basstart = ctz32(bas);
2505 len = cto32(bas >> basstart);
2506 wvr += basstart;
2507 }
2508
2509 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
2510 &env->cpu_watchpoint[n]);
2511}
2512
2513void hw_watchpoint_update_all(ARMCPU *cpu)
2514{
2515 int i;
2516 CPUARMState *env = &cpu->env;
2517
2518 /* Completely clear out existing QEMU watchpoints and our array, to
2519 * avoid possible stale entries following migration load.
2520 */
2521 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
2522 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
2523
2524 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
2525 hw_watchpoint_update(cpu, i);
2526 }
2527}
2528
2529static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2530 uint64_t value)
2531{
2532 ARMCPU *cpu = arm_env_get_cpu(env);
2533 int i = ri->crm;
2534
2535 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
2536 * register reads and behaves as if values written are sign extended.
2537 * Bits [1:0] are RES0.
2538 */
2539 value = sextract64(value, 0, 49) & ~3ULL;
2540
2541 raw_write(env, ri, value);
2542 hw_watchpoint_update(cpu, i);
2543}
2544
2545static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2546 uint64_t value)
2547{
2548 ARMCPU *cpu = arm_env_get_cpu(env);
2549 int i = ri->crm;
2550
2551 raw_write(env, ri, value);
2552 hw_watchpoint_update(cpu, i);
2553}
2554
46747d15
PM
2555void hw_breakpoint_update(ARMCPU *cpu, int n)
2556{
2557 CPUARMState *env = &cpu->env;
2558 uint64_t bvr = env->cp15.dbgbvr[n];
2559 uint64_t bcr = env->cp15.dbgbcr[n];
2560 vaddr addr;
2561 int bt;
2562 int flags = BP_CPU;
2563
2564 if (env->cpu_breakpoint[n]) {
2565 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
2566 env->cpu_breakpoint[n] = NULL;
2567 }
2568
2569 if (!extract64(bcr, 0, 1)) {
2570 /* E bit clear : watchpoint disabled */
2571 return;
2572 }
2573
2574 bt = extract64(bcr, 20, 4);
2575
2576 switch (bt) {
2577 case 4: /* unlinked address mismatch (reserved if AArch64) */
2578 case 5: /* linked address mismatch (reserved if AArch64) */
2579 qemu_log_mask(LOG_UNIMP,
2580 "arm: address mismatch breakpoint types not implemented");
2581 return;
2582 case 0: /* unlinked address match */
2583 case 1: /* linked address match */
2584 {
2585 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
2586 * we behave as if the register was sign extended. Bits [1:0] are
2587 * RES0. The BAS field is used to allow setting breakpoints on 16
2588 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
2589 * a bp will fire if the addresses covered by the bp and the addresses
2590 * covered by the insn overlap but the insn doesn't start at the
2591 * start of the bp address range. We choose to require the insn and
2592 * the bp to have the same address. The constraints on writing to
2593 * BAS enforced in dbgbcr_write mean we have only four cases:
2594 * 0b0000 => no breakpoint
2595 * 0b0011 => breakpoint on addr
2596 * 0b1100 => breakpoint on addr + 2
2597 * 0b1111 => breakpoint on addr
2598 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
2599 */
2600 int bas = extract64(bcr, 5, 4);
2601 addr = sextract64(bvr, 0, 49) & ~3ULL;
2602 if (bas == 0) {
2603 return;
2604 }
2605 if (bas == 0xc) {
2606 addr += 2;
2607 }
2608 break;
2609 }
2610 case 2: /* unlinked context ID match */
2611 case 8: /* unlinked VMID match (reserved if no EL2) */
2612 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
2613 qemu_log_mask(LOG_UNIMP,
2614 "arm: unlinked context breakpoint types not implemented");
2615 return;
2616 case 9: /* linked VMID match (reserved if no EL2) */
2617 case 11: /* linked context ID and VMID match (reserved if no EL2) */
2618 case 3: /* linked context ID match */
2619 default:
2620 /* We must generate no events for Linked context matches (unless
2621 * they are linked to by some other bp/wp, which is handled in
2622 * updates for the linking bp/wp). We choose to also generate no events
2623 * for reserved values.
2624 */
2625 return;
2626 }
2627
2628 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
2629}
2630
2631void hw_breakpoint_update_all(ARMCPU *cpu)
2632{
2633 int i;
2634 CPUARMState *env = &cpu->env;
2635
2636 /* Completely clear out existing QEMU breakpoints and our array, to
2637 * avoid possible stale entries following migration load.
2638 */
2639 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
2640 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
2641
2642 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
2643 hw_breakpoint_update(cpu, i);
2644 }
2645}
2646
2647static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2648 uint64_t value)
2649{
2650 ARMCPU *cpu = arm_env_get_cpu(env);
2651 int i = ri->crm;
2652
2653 raw_write(env, ri, value);
2654 hw_breakpoint_update(cpu, i);
2655}
2656
2657static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2658 uint64_t value)
2659{
2660 ARMCPU *cpu = arm_env_get_cpu(env);
2661 int i = ri->crm;
2662
2663 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
2664 * copy of BAS[0].
2665 */
2666 value = deposit64(value, 6, 1, extract64(value, 5, 1));
2667 value = deposit64(value, 8, 1, extract64(value, 7, 1));
2668
2669 raw_write(env, ri, value);
2670 hw_breakpoint_update(cpu, i);
2671}
2672
50300698 2673static void define_debug_regs(ARMCPU *cpu)
0b45451e 2674{
50300698
PM
2675 /* Define v7 and v8 architectural debug registers.
2676 * These are just dummy implementations for now.
0b45451e
PM
2677 */
2678 int i;
3ff6fc91 2679 int wrps, brps, ctx_cmps;
48eb3ae6
PM
2680 ARMCPRegInfo dbgdidr = {
2681 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
2682 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
2683 };
2684
3ff6fc91 2685 /* Note that all these register fields hold "number of Xs minus 1". */
48eb3ae6
PM
2686 brps = extract32(cpu->dbgdidr, 24, 4);
2687 wrps = extract32(cpu->dbgdidr, 28, 4);
3ff6fc91
PM
2688 ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
2689
2690 assert(ctx_cmps <= brps);
48eb3ae6
PM
2691
2692 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
2693 * of the debug registers such as number of breakpoints;
2694 * check that if they both exist then they agree.
2695 */
2696 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
2697 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
2698 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
3ff6fc91 2699 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
48eb3ae6 2700 }
0b45451e 2701
48eb3ae6 2702 define_one_arm_cp_reg(cpu, &dbgdidr);
50300698
PM
2703 define_arm_cp_regs(cpu, debug_cp_reginfo);
2704
2705 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
2706 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
2707 }
2708
48eb3ae6 2709 for (i = 0; i < brps + 1; i++) {
0b45451e 2710 ARMCPRegInfo dbgregs[] = {
10aae104
PM
2711 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
2712 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
0b45451e 2713 .access = PL1_RW,
46747d15
PM
2714 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
2715 .writefn = dbgbvr_write, .raw_writefn = raw_write
2716 },
10aae104
PM
2717 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
2718 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
0b45451e 2719 .access = PL1_RW,
46747d15
PM
2720 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
2721 .writefn = dbgbcr_write, .raw_writefn = raw_write
2722 },
48eb3ae6
PM
2723 REGINFO_SENTINEL
2724 };
2725 define_arm_cp_regs(cpu, dbgregs);
2726 }
2727
2728 for (i = 0; i < wrps + 1; i++) {
2729 ARMCPRegInfo dbgregs[] = {
10aae104
PM
2730 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
2731 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
0b45451e 2732 .access = PL1_RW,
9ee98ce8
PM
2733 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
2734 .writefn = dbgwvr_write, .raw_writefn = raw_write
2735 },
10aae104
PM
2736 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
2737 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
0b45451e 2738 .access = PL1_RW,
9ee98ce8
PM
2739 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
2740 .writefn = dbgwcr_write, .raw_writefn = raw_write
2741 },
2742 REGINFO_SENTINEL
0b45451e
PM
2743 };
2744 define_arm_cp_regs(cpu, dbgregs);
2745 }
2746}
2747
2ceb98c0
PM
2748void register_cp_regs_for_features(ARMCPU *cpu)
2749{
2750 /* Register all the coprocessor registers based on feature bits */
2751 CPUARMState *env = &cpu->env;
2752 if (arm_feature(env, ARM_FEATURE_M)) {
2753 /* M profile has no coprocessor registers */
2754 return;
2755 }
2756
e9aa6c21 2757 define_arm_cp_regs(cpu, cp_reginfo);
9449fdf6
PM
2758 if (!arm_feature(env, ARM_FEATURE_V8)) {
2759 /* Must go early as it is full of wildcards that may be
2760 * overridden by later definitions.
2761 */
2762 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
2763 }
2764
7d57f408 2765 if (arm_feature(env, ARM_FEATURE_V6)) {
8515a092
PM
2766 /* The ID registers all have impdef reset values */
2767 ARMCPRegInfo v6_idregs[] = {
0ff644a7
PM
2768 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
2769 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
2770 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 2771 .resetvalue = cpu->id_pfr0 },
0ff644a7
PM
2772 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
2773 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
2774 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 2775 .resetvalue = cpu->id_pfr1 },
0ff644a7
PM
2776 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
2777 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
2778 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 2779 .resetvalue = cpu->id_dfr0 },
0ff644a7
PM
2780 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
2781 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
2782 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 2783 .resetvalue = cpu->id_afr0 },
0ff644a7
PM
2784 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
2785 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
2786 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 2787 .resetvalue = cpu->id_mmfr0 },
0ff644a7
PM
2788 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
2789 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
2790 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 2791 .resetvalue = cpu->id_mmfr1 },
0ff644a7
PM
2792 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
2793 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
2794 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 2795 .resetvalue = cpu->id_mmfr2 },
0ff644a7
PM
2796 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
2797 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
2798 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 2799 .resetvalue = cpu->id_mmfr3 },
0ff644a7
PM
2800 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
2801 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
2802 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 2803 .resetvalue = cpu->id_isar0 },
0ff644a7
PM
2804 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
2805 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
2806 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 2807 .resetvalue = cpu->id_isar1 },
0ff644a7
PM
2808 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
2809 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
2810 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 2811 .resetvalue = cpu->id_isar2 },
0ff644a7
PM
2812 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
2813 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
2814 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 2815 .resetvalue = cpu->id_isar3 },
0ff644a7
PM
2816 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
2817 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
2818 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 2819 .resetvalue = cpu->id_isar4 },
0ff644a7
PM
2820 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
2821 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
2822 .access = PL1_R, .type = ARM_CP_CONST,
8515a092
PM
2823 .resetvalue = cpu->id_isar5 },
2824 /* 6..7 are as yet unallocated and must RAZ */
2825 { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2,
2826 .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
2827 .resetvalue = 0 },
2828 { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2,
2829 .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
2830 .resetvalue = 0 },
2831 REGINFO_SENTINEL
2832 };
2833 define_arm_cp_regs(cpu, v6_idregs);
7d57f408
PM
2834 define_arm_cp_regs(cpu, v6_cp_reginfo);
2835 } else {
2836 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
2837 }
4d31c596
PM
2838 if (arm_feature(env, ARM_FEATURE_V6K)) {
2839 define_arm_cp_regs(cpu, v6k_cp_reginfo);
2840 }
995939a6
PM
2841 if (arm_feature(env, ARM_FEATURE_V7MP)) {
2842 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
2843 }
e9aa6c21 2844 if (arm_feature(env, ARM_FEATURE_V7)) {
200ac0ef 2845 /* v7 performance monitor control register: same implementor
7c2cb42b
AF
2846 * field as main ID register, and we implement only the cycle
2847 * count register.
200ac0ef 2848 */
7c2cb42b 2849#ifndef CONFIG_USER_ONLY
200ac0ef
PM
2850 ARMCPRegInfo pmcr = {
2851 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
8521466b
AF
2852 .access = PL0_RW,
2853 .type = ARM_CP_IO | ARM_CP_NO_MIGRATE,
2854 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
fcd25206
PM
2855 .accessfn = pmreg_access, .writefn = pmcr_write,
2856 .raw_writefn = raw_write,
200ac0ef 2857 };
8521466b
AF
2858 ARMCPRegInfo pmcr64 = {
2859 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
2860 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
2861 .access = PL0_RW, .accessfn = pmreg_access,
2862 .type = ARM_CP_IO,
2863 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
2864 .resetvalue = cpu->midr & 0xff000000,
2865 .writefn = pmcr_write, .raw_writefn = raw_write,
2866 };
7c2cb42b 2867 define_one_arm_cp_reg(cpu, &pmcr);
8521466b 2868 define_one_arm_cp_reg(cpu, &pmcr64);
7c2cb42b 2869#endif
776d4e5c 2870 ARMCPRegInfo clidr = {
7da845b0
PM
2871 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
2872 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
776d4e5c
PM
2873 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
2874 };
776d4e5c 2875 define_one_arm_cp_reg(cpu, &clidr);
e9aa6c21 2876 define_arm_cp_regs(cpu, v7_cp_reginfo);
50300698 2877 define_debug_regs(cpu);
7d57f408
PM
2878 } else {
2879 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
e9aa6c21 2880 }
b0d2b7d0 2881 if (arm_feature(env, ARM_FEATURE_V8)) {
e60cef86
PM
2882 /* AArch64 ID registers, which all have impdef reset values */
2883 ARMCPRegInfo v8_idregs[] = {
2884 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
2885 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
2886 .access = PL1_R, .type = ARM_CP_CONST,
2887 .resetvalue = cpu->id_aa64pfr0 },
2888 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
2889 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
2890 .access = PL1_R, .type = ARM_CP_CONST,
2891 .resetvalue = cpu->id_aa64pfr1},
2892 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
2893 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
2894 .access = PL1_R, .type = ARM_CP_CONST,
5d831be2 2895 /* We mask out the PMUVer field, because we don't currently
9225d739
PM
2896 * implement the PMU. Not advertising it prevents the guest
2897 * from trying to use it and getting UNDEFs on registers we
2898 * don't implement.
2899 */
2900 .resetvalue = cpu->id_aa64dfr0 & ~0xf00 },
e60cef86
PM
2901 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
2902 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
2903 .access = PL1_R, .type = ARM_CP_CONST,
2904 .resetvalue = cpu->id_aa64dfr1 },
2905 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
2906 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
2907 .access = PL1_R, .type = ARM_CP_CONST,
2908 .resetvalue = cpu->id_aa64afr0 },
2909 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
2910 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
2911 .access = PL1_R, .type = ARM_CP_CONST,
2912 .resetvalue = cpu->id_aa64afr1 },
2913 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
2914 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
2915 .access = PL1_R, .type = ARM_CP_CONST,
2916 .resetvalue = cpu->id_aa64isar0 },
2917 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
2918 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
2919 .access = PL1_R, .type = ARM_CP_CONST,
2920 .resetvalue = cpu->id_aa64isar1 },
2921 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
2922 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
2923 .access = PL1_R, .type = ARM_CP_CONST,
2924 .resetvalue = cpu->id_aa64mmfr0 },
2925 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
2926 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
2927 .access = PL1_R, .type = ARM_CP_CONST,
2928 .resetvalue = cpu->id_aa64mmfr1 },
a50c0f51
PM
2929 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
2930 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
2931 .access = PL1_R, .type = ARM_CP_CONST,
2932 .resetvalue = cpu->mvfr0 },
2933 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
2934 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
2935 .access = PL1_R, .type = ARM_CP_CONST,
2936 .resetvalue = cpu->mvfr1 },
2937 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
2938 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
2939 .access = PL1_R, .type = ARM_CP_CONST,
2940 .resetvalue = cpu->mvfr2 },
e60cef86
PM
2941 REGINFO_SENTINEL
2942 };
3933443e
PM
2943 ARMCPRegInfo rvbar = {
2944 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
2945 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2,
2946 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
2947 };
2948 define_one_arm_cp_reg(cpu, &rvbar);
e60cef86 2949 define_arm_cp_regs(cpu, v8_idregs);
b0d2b7d0
PM
2950 define_arm_cp_regs(cpu, v8_cp_reginfo);
2951 }
3b685ba7
EI
2952 if (arm_feature(env, ARM_FEATURE_EL2)) {
2953 define_arm_cp_regs(cpu, v8_el2_cp_reginfo);
d42e3c26
EI
2954 } else {
2955 /* If EL2 is missing but higher ELs are enabled, we need to
2956 * register the no_el2 reginfos.
2957 */
2958 if (arm_feature(env, ARM_FEATURE_EL3)) {
2959 define_arm_cp_regs(cpu, v8_el3_no_el2_cp_reginfo);
2960 }
3b685ba7 2961 }
81547d66
EI
2962 if (arm_feature(env, ARM_FEATURE_EL3)) {
2963 define_arm_cp_regs(cpu, v8_el3_cp_reginfo);
2964 }
18032bec
PM
2965 if (arm_feature(env, ARM_FEATURE_MPU)) {
2966 /* These are the MPU registers prior to PMSAv6. Any new
2967 * PMSA core later than the ARM946 will require that we
2968 * implement the PMSAv6 or PMSAv7 registers, which are
2969 * completely different.
2970 */
2971 assert(!arm_feature(env, ARM_FEATURE_V6));
2972 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
2973 } else {
2974 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
2975 }
c326b979
PM
2976 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
2977 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
2978 }
6cc7a3ae
PM
2979 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
2980 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
2981 }
4a501606
PM
2982 if (arm_feature(env, ARM_FEATURE_VAPA)) {
2983 define_arm_cp_regs(cpu, vapa_cp_reginfo);
2984 }
c4804214
PM
2985 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
2986 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
2987 }
2988 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
2989 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
2990 }
2991 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
2992 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
2993 }
18032bec
PM
2994 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
2995 define_arm_cp_regs(cpu, omap_cp_reginfo);
2996 }
34f90529
PM
2997 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
2998 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
2999 }
1047b9d7
PM
3000 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
3001 define_arm_cp_regs(cpu, xscale_cp_reginfo);
3002 }
3003 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
3004 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
3005 }
7ac681cf
PM
3006 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3007 define_arm_cp_regs(cpu, lpae_cp_reginfo);
3008 }
7884849c
PM
3009 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
3010 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
3011 * be read-only (ie write causes UNDEF exception).
3012 */
3013 {
00a29f3d
PM
3014 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
3015 /* Pre-v8 MIDR space.
3016 * Note that the MIDR isn't a simple constant register because
7884849c
PM
3017 * of the TI925 behaviour where writes to another register can
3018 * cause the MIDR value to change.
97ce8d61
PC
3019 *
3020 * Unimplemented registers in the c15 0 0 0 space default to
3021 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
3022 * and friends override accordingly.
7884849c
PM
3023 */
3024 { .name = "MIDR",
97ce8d61 3025 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
7884849c 3026 .access = PL1_R, .resetvalue = cpu->midr,
d4e6df63 3027 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
97ce8d61
PC
3028 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
3029 .type = ARM_CP_OVERRIDE },
7884849c
PM
3030 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
3031 { .name = "DUMMY",
3032 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
3033 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3034 { .name = "DUMMY",
3035 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
3036 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3037 { .name = "DUMMY",
3038 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
3039 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3040 { .name = "DUMMY",
3041 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
3042 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3043 { .name = "DUMMY",
3044 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
3045 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3046 REGINFO_SENTINEL
3047 };
00a29f3d
PM
3048 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
3049 /* v8 MIDR -- the wildcard isn't necessary, and nor is the
3050 * variable-MIDR TI925 behaviour. Instead we have a single
3051 * (strictly speaking IMPDEF) alias of the MIDR, REVIDR.
3052 */
3053 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
3054 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
3055 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->midr },
3056 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
3057 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
3058 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->midr },
3059 REGINFO_SENTINEL
3060 };
3061 ARMCPRegInfo id_cp_reginfo[] = {
3062 /* These are common to v8 and pre-v8 */
3063 { .name = "CTR",
3064 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
3065 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
3066 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
3067 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
3068 .access = PL0_R, .accessfn = ctr_el0_access,
3069 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
3070 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
3071 { .name = "TCMTR",
3072 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
3073 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3074 { .name = "TLBTR",
3075 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
3076 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3077 REGINFO_SENTINEL
3078 };
7884849c
PM
3079 ARMCPRegInfo crn0_wi_reginfo = {
3080 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
3081 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
3082 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
3083 };
3084 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
3085 arm_feature(env, ARM_FEATURE_STRONGARM)) {
3086 ARMCPRegInfo *r;
3087 /* Register the blanket "writes ignored" value first to cover the
a703eda1
PC
3088 * whole space. Then update the specific ID registers to allow write
3089 * access, so that they ignore writes rather than causing them to
3090 * UNDEF.
7884849c
PM
3091 */
3092 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
00a29f3d
PM
3093 for (r = id_pre_v8_midr_cp_reginfo;
3094 r->type != ARM_CP_SENTINEL; r++) {
3095 r->access = PL1_RW;
3096 }
7884849c
PM
3097 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
3098 r->access = PL1_RW;
7884849c 3099 }
7884849c 3100 }
00a29f3d
PM
3101 if (arm_feature(env, ARM_FEATURE_V8)) {
3102 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
3103 } else {
3104 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
3105 }
a703eda1 3106 define_arm_cp_regs(cpu, id_cp_reginfo);
7884849c
PM
3107 }
3108
97ce8d61
PC
3109 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
3110 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
3111 }
3112
2771db27
PM
3113 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
3114 ARMCPRegInfo auxcr = {
2eef0bf8
PM
3115 .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
3116 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
2771db27
PM
3117 .access = PL1_RW, .type = ARM_CP_CONST,
3118 .resetvalue = cpu->reset_auxcr
3119 };
3120 define_one_arm_cp_reg(cpu, &auxcr);
3121 }
3122
d8ba780b 3123 if (arm_feature(env, ARM_FEATURE_CBAR)) {
f318cec6
PM
3124 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
3125 /* 32 bit view is [31:18] 0...0 [43:32]. */
3126 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
3127 | extract64(cpu->reset_cbar, 32, 12);
3128 ARMCPRegInfo cbar_reginfo[] = {
3129 { .name = "CBAR",
3130 .type = ARM_CP_CONST,
3131 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
3132 .access = PL1_R, .resetvalue = cpu->reset_cbar },
3133 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
3134 .type = ARM_CP_CONST,
3135 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
3136 .access = PL1_R, .resetvalue = cbar32 },
3137 REGINFO_SENTINEL
3138 };
3139 /* We don't implement a r/w 64 bit CBAR currently */
3140 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
3141 define_arm_cp_regs(cpu, cbar_reginfo);
3142 } else {
3143 ARMCPRegInfo cbar = {
3144 .name = "CBAR",
3145 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
3146 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
3147 .fieldoffset = offsetof(CPUARMState,
3148 cp15.c15_config_base_address)
3149 };
3150 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
3151 cbar.access = PL1_R;
3152 cbar.fieldoffset = 0;
3153 cbar.type = ARM_CP_CONST;
3154 }
3155 define_one_arm_cp_reg(cpu, &cbar);
3156 }
d8ba780b
PC
3157 }
3158
2771db27
PM
3159 /* Generic registers whose values depend on the implementation */
3160 {
3161 ARMCPRegInfo sctlr = {
5ebafdf3
PM
3162 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
3163 .opc0 = 3, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
2771db27 3164 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_sys),
d4e6df63
PM
3165 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
3166 .raw_writefn = raw_write,
2771db27
PM
3167 };
3168 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
3169 /* Normally we would always end the TB on an SCTLR write, but Linux
3170 * arch/arm/mach-pxa/sleep.S expects two instructions following
3171 * an MMU enable to execute from cache. Imitate this behaviour.
3172 */
3173 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
3174 }
3175 define_one_arm_cp_reg(cpu, &sctlr);
3176 }
2ceb98c0
PM
3177}
3178
778c3a06 3179ARMCPU *cpu_arm_init(const char *cpu_model)
40f137e1 3180{
9262685b 3181 return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU, cpu_model));
14969266
AF
3182}
3183
3184void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
3185{
22169d41 3186 CPUState *cs = CPU(cpu);
14969266
AF
3187 CPUARMState *env = &cpu->env;
3188
6a669427
PM
3189 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
3190 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
3191 aarch64_fpu_gdb_set_reg,
3192 34, "aarch64-fpu.xml", 0);
3193 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
22169d41 3194 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
56aebc89
PB
3195 51, "arm-neon.xml", 0);
3196 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
22169d41 3197 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
56aebc89
PB
3198 35, "arm-vfp3.xml", 0);
3199 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
22169d41 3200 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
56aebc89
PB
3201 19, "arm-vfp.xml", 0);
3202 }
40f137e1
PB
3203}
3204
777dc784
PM
3205/* Sort alphabetically by type name, except for "any". */
3206static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
5adb4839 3207{
777dc784
PM
3208 ObjectClass *class_a = (ObjectClass *)a;
3209 ObjectClass *class_b = (ObjectClass *)b;
3210 const char *name_a, *name_b;
5adb4839 3211
777dc784
PM
3212 name_a = object_class_get_name(class_a);
3213 name_b = object_class_get_name(class_b);
51492fd1 3214 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
777dc784 3215 return 1;
51492fd1 3216 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
777dc784
PM
3217 return -1;
3218 } else {
3219 return strcmp(name_a, name_b);
5adb4839
PB
3220 }
3221}
3222
777dc784 3223static void arm_cpu_list_entry(gpointer data, gpointer user_data)
40f137e1 3224{
777dc784 3225 ObjectClass *oc = data;
92a31361 3226 CPUListState *s = user_data;
51492fd1
AF
3227 const char *typename;
3228 char *name;
3371d272 3229
51492fd1
AF
3230 typename = object_class_get_name(oc);
3231 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
777dc784 3232 (*s->cpu_fprintf)(s->file, " %s\n",
51492fd1
AF
3233 name);
3234 g_free(name);
777dc784
PM
3235}
3236
3237void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
3238{
92a31361 3239 CPUListState s = {
777dc784
PM
3240 .file = f,
3241 .cpu_fprintf = cpu_fprintf,
3242 };
3243 GSList *list;
3244
3245 list = object_class_get_list(TYPE_ARM_CPU, false);
3246 list = g_slist_sort(list, arm_cpu_list_compare);
3247 (*cpu_fprintf)(f, "Available CPUs:\n");
3248 g_slist_foreach(list, arm_cpu_list_entry, &s);
3249 g_slist_free(list);
a96c0514
PM
3250#ifdef CONFIG_KVM
3251 /* The 'host' CPU type is dynamically registered only if KVM is
3252 * enabled, so we have to special-case it here:
3253 */
3254 (*cpu_fprintf)(f, " host (only available in KVM mode)\n");
3255#endif
40f137e1
PB
3256}
3257
78027bb6
CR
3258static void arm_cpu_add_definition(gpointer data, gpointer user_data)
3259{
3260 ObjectClass *oc = data;
3261 CpuDefinitionInfoList **cpu_list = user_data;
3262 CpuDefinitionInfoList *entry;
3263 CpuDefinitionInfo *info;
3264 const char *typename;
3265
3266 typename = object_class_get_name(oc);
3267 info = g_malloc0(sizeof(*info));
3268 info->name = g_strndup(typename,
3269 strlen(typename) - strlen("-" TYPE_ARM_CPU));
3270
3271 entry = g_malloc0(sizeof(*entry));
3272 entry->value = info;
3273 entry->next = *cpu_list;
3274 *cpu_list = entry;
3275}
3276
3277CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
3278{
3279 CpuDefinitionInfoList *cpu_list = NULL;
3280 GSList *list;
3281
3282 list = object_class_get_list(TYPE_ARM_CPU, false);
3283 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
3284 g_slist_free(list);
3285
3286 return cpu_list;
3287}
3288
6e6efd61 3289static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
f5a0a5a5
PM
3290 void *opaque, int state,
3291 int crm, int opc1, int opc2)
6e6efd61
PM
3292{
3293 /* Private utility function for define_one_arm_cp_reg_with_opaque():
3294 * add a single reginfo struct to the hash table.
3295 */
3296 uint32_t *key = g_new(uint32_t, 1);
3297 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
3298 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
f5a0a5a5
PM
3299 if (r->state == ARM_CP_STATE_BOTH && state == ARM_CP_STATE_AA32) {
3300 /* The AArch32 view of a shared register sees the lower 32 bits
3301 * of a 64 bit backing field. It is not migratable as the AArch64
3302 * view handles that. AArch64 also handles reset.
58a1d8ce 3303 * We assume it is a cp15 register if the .cp field is left unset.
f5a0a5a5 3304 */
58a1d8ce
PM
3305 if (r2->cp == 0) {
3306 r2->cp = 15;
3307 }
f5a0a5a5
PM
3308 r2->type |= ARM_CP_NO_MIGRATE;
3309 r2->resetfn = arm_cp_reset_ignore;
3310#ifdef HOST_WORDS_BIGENDIAN
3311 if (r2->fieldoffset) {
3312 r2->fieldoffset += sizeof(uint32_t);
3313 }
3314#endif
3315 }
3316 if (state == ARM_CP_STATE_AA64) {
3317 /* To allow abbreviation of ARMCPRegInfo
3318 * definitions, we treat cp == 0 as equivalent to
3319 * the value for "standard guest-visible sysreg".
58a1d8ce
PM
3320 * STATE_BOTH definitions are also always "standard
3321 * sysreg" in their AArch64 view (the .cp value may
3322 * be non-zero for the benefit of the AArch32 view).
f5a0a5a5 3323 */
58a1d8ce 3324 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
f5a0a5a5
PM
3325 r2->cp = CP_REG_ARM64_SYSREG_CP;
3326 }
3327 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
3328 r2->opc0, opc1, opc2);
3329 } else {
3330 *key = ENCODE_CP_REG(r2->cp, is64, r2->crn, crm, opc1, opc2);
3331 }
6e6efd61
PM
3332 if (opaque) {
3333 r2->opaque = opaque;
3334 }
67ed771d
PM
3335 /* reginfo passed to helpers is correct for the actual access,
3336 * and is never ARM_CP_STATE_BOTH:
3337 */
3338 r2->state = state;
6e6efd61
PM
3339 /* Make sure reginfo passed to helpers for wildcarded regs
3340 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
3341 */
3342 r2->crm = crm;
3343 r2->opc1 = opc1;
3344 r2->opc2 = opc2;
3345 /* By convention, for wildcarded registers only the first
3346 * entry is used for migration; the others are marked as
3347 * NO_MIGRATE so we don't try to transfer the register
3348 * multiple times. Special registers (ie NOP/WFI) are
3349 * never migratable.
3350 */
3351 if ((r->type & ARM_CP_SPECIAL) ||
3352 ((r->crm == CP_ANY) && crm != 0) ||
3353 ((r->opc1 == CP_ANY) && opc1 != 0) ||
3354 ((r->opc2 == CP_ANY) && opc2 != 0)) {
3355 r2->type |= ARM_CP_NO_MIGRATE;
3356 }
3357
3358 /* Overriding of an existing definition must be explicitly
3359 * requested.
3360 */
3361 if (!(r->type & ARM_CP_OVERRIDE)) {
3362 ARMCPRegInfo *oldreg;
3363 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
3364 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
3365 fprintf(stderr, "Register redefined: cp=%d %d bit "
3366 "crn=%d crm=%d opc1=%d opc2=%d, "
3367 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
3368 r2->crn, r2->crm, r2->opc1, r2->opc2,
3369 oldreg->name, r2->name);
3370 g_assert_not_reached();
3371 }
3372 }
3373 g_hash_table_insert(cpu->cp_regs, key, r2);
3374}
3375
3376
4b6a83fb
PM
3377void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
3378 const ARMCPRegInfo *r, void *opaque)
3379{
3380 /* Define implementations of coprocessor registers.
3381 * We store these in a hashtable because typically
3382 * there are less than 150 registers in a space which
3383 * is 16*16*16*8*8 = 262144 in size.
3384 * Wildcarding is supported for the crm, opc1 and opc2 fields.
3385 * If a register is defined twice then the second definition is
3386 * used, so this can be used to define some generic registers and
3387 * then override them with implementation specific variations.
3388 * At least one of the original and the second definition should
3389 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
3390 * against accidental use.
f5a0a5a5
PM
3391 *
3392 * The state field defines whether the register is to be
3393 * visible in the AArch32 or AArch64 execution state. If the
3394 * state is set to ARM_CP_STATE_BOTH then we synthesise a
3395 * reginfo structure for the AArch32 view, which sees the lower
3396 * 32 bits of the 64 bit register.
3397 *
3398 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
3399 * be wildcarded. AArch64 registers are always considered to be 64
3400 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
3401 * the register, if any.
4b6a83fb 3402 */
f5a0a5a5 3403 int crm, opc1, opc2, state;
4b6a83fb
PM
3404 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
3405 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
3406 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
3407 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
3408 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
3409 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
3410 /* 64 bit registers have only CRm and Opc1 fields */
3411 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
f5a0a5a5
PM
3412 /* op0 only exists in the AArch64 encodings */
3413 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
3414 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
3415 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
3416 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
3417 * encodes a minimum access level for the register. We roll this
3418 * runtime check into our general permission check code, so check
3419 * here that the reginfo's specified permissions are strict enough
3420 * to encompass the generic architectural permission check.
3421 */
3422 if (r->state != ARM_CP_STATE_AA32) {
3423 int mask = 0;
3424 switch (r->opc1) {
3425 case 0: case 1: case 2:
3426 /* min_EL EL1 */
3427 mask = PL1_RW;
3428 break;
3429 case 3:
3430 /* min_EL EL0 */
3431 mask = PL0_RW;
3432 break;
3433 case 4:
3434 /* min_EL EL2 */
3435 mask = PL2_RW;
3436 break;
3437 case 5:
3438 /* unallocated encoding, so not possible */
3439 assert(false);
3440 break;
3441 case 6:
3442 /* min_EL EL3 */
3443 mask = PL3_RW;
3444 break;
3445 case 7:
3446 /* min_EL EL1, secure mode only (we don't check the latter) */
3447 mask = PL1_RW;
3448 break;
3449 default:
3450 /* broken reginfo with out-of-range opc1 */
3451 assert(false);
3452 break;
3453 }
3454 /* assert our permissions are not too lax (stricter is fine) */
3455 assert((r->access & ~mask) == 0);
3456 }
3457
4b6a83fb
PM
3458 /* Check that the register definition has enough info to handle
3459 * reads and writes if they are permitted.
3460 */
3461 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
3462 if (r->access & PL3_R) {
3463 assert(r->fieldoffset || r->readfn);
3464 }
3465 if (r->access & PL3_W) {
3466 assert(r->fieldoffset || r->writefn);
3467 }
3468 }
3469 /* Bad type field probably means missing sentinel at end of reg list */
3470 assert(cptype_valid(r->type));
3471 for (crm = crmmin; crm <= crmmax; crm++) {
3472 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
3473 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
f5a0a5a5
PM
3474 for (state = ARM_CP_STATE_AA32;
3475 state <= ARM_CP_STATE_AA64; state++) {
3476 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
3477 continue;
3478 }
3479 add_cpreg_to_hashtable(cpu, r, opaque, state,
3480 crm, opc1, opc2);
3481 }
4b6a83fb
PM
3482 }
3483 }
3484 }
3485}
3486
3487void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
3488 const ARMCPRegInfo *regs, void *opaque)
3489{
3490 /* Define a whole list of registers */
3491 const ARMCPRegInfo *r;
3492 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
3493 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
3494 }
3495}
3496
60322b39 3497const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
4b6a83fb 3498{
60322b39 3499 return g_hash_table_lookup(cpregs, &encoded_cp);
4b6a83fb
PM
3500}
3501
c4241c7d
PM
3502void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
3503 uint64_t value)
4b6a83fb
PM
3504{
3505 /* Helper coprocessor write function for write-ignore registers */
4b6a83fb
PM
3506}
3507
c4241c7d 3508uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
4b6a83fb
PM
3509{
3510 /* Helper coprocessor write function for read-as-zero registers */
4b6a83fb
PM
3511 return 0;
3512}
3513
f5a0a5a5
PM
3514void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
3515{
3516 /* Helper coprocessor reset function for do-nothing-on-reset registers */
3517}
3518
0ecb72a5 3519static int bad_mode_switch(CPUARMState *env, int mode)
37064a8b
PM
3520{
3521 /* Return true if it is not valid for us to switch to
3522 * this CPU mode (ie all the UNPREDICTABLE cases in
3523 * the ARM ARM CPSRWriteByInstr pseudocode).
3524 */
3525 switch (mode) {
3526 case ARM_CPU_MODE_USR:
3527 case ARM_CPU_MODE_SYS:
3528 case ARM_CPU_MODE_SVC:
3529 case ARM_CPU_MODE_ABT:
3530 case ARM_CPU_MODE_UND:
3531 case ARM_CPU_MODE_IRQ:
3532 case ARM_CPU_MODE_FIQ:
3533 return 0;
027fc527
SF
3534 case ARM_CPU_MODE_MON:
3535 return !arm_is_secure(env);
37064a8b
PM
3536 default:
3537 return 1;
3538 }
3539}
3540
2f4a40e5
AZ
3541uint32_t cpsr_read(CPUARMState *env)
3542{
3543 int ZF;
6fbe23d5
PB
3544 ZF = (env->ZF == 0);
3545 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
2f4a40e5
AZ
3546 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
3547 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
3548 | ((env->condexec_bits & 0xfc) << 8)
af519934 3549 | (env->GE << 16) | (env->daif & CPSR_AIF);
2f4a40e5
AZ
3550}
3551
3552void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
3553{
2f4a40e5 3554 if (mask & CPSR_NZCV) {
6fbe23d5
PB
3555 env->ZF = (~val) & CPSR_Z;
3556 env->NF = val;
2f4a40e5
AZ
3557 env->CF = (val >> 29) & 1;
3558 env->VF = (val << 3) & 0x80000000;
3559 }
3560 if (mask & CPSR_Q)
3561 env->QF = ((val & CPSR_Q) != 0);
3562 if (mask & CPSR_T)
3563 env->thumb = ((val & CPSR_T) != 0);
3564 if (mask & CPSR_IT_0_1) {
3565 env->condexec_bits &= ~3;
3566 env->condexec_bits |= (val >> 25) & 3;
3567 }
3568 if (mask & CPSR_IT_2_7) {
3569 env->condexec_bits &= 3;
3570 env->condexec_bits |= (val >> 8) & 0xfc;
3571 }
3572 if (mask & CPSR_GE) {
3573 env->GE = (val >> 16) & 0xf;
3574 }
3575
4cc35614
PM
3576 env->daif &= ~(CPSR_AIF & mask);
3577 env->daif |= val & CPSR_AIF & mask;
3578
2f4a40e5 3579 if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
37064a8b
PM
3580 if (bad_mode_switch(env, val & CPSR_M)) {
3581 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
3582 * We choose to ignore the attempt and leave the CPSR M field
3583 * untouched.
3584 */
3585 mask &= ~CPSR_M;
3586 } else {
3587 switch_mode(env, val & CPSR_M);
3588 }
2f4a40e5
AZ
3589 }
3590 mask &= ~CACHED_CPSR_BITS;
3591 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
3592}
3593
b26eefb6
PB
3594/* Sign/zero extend */
3595uint32_t HELPER(sxtb16)(uint32_t x)
3596{
3597 uint32_t res;
3598 res = (uint16_t)(int8_t)x;
3599 res |= (uint32_t)(int8_t)(x >> 16) << 16;
3600 return res;
3601}
3602
3603uint32_t HELPER(uxtb16)(uint32_t x)
3604{
3605 uint32_t res;
3606 res = (uint16_t)(uint8_t)x;
3607 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
3608 return res;
3609}
3610
f51bbbfe
PB
3611uint32_t HELPER(clz)(uint32_t x)
3612{
7bbcb0af 3613 return clz32(x);
f51bbbfe
PB
3614}
3615
3670669c
PB
3616int32_t HELPER(sdiv)(int32_t num, int32_t den)
3617{
3618 if (den == 0)
3619 return 0;
686eeb93
AJ
3620 if (num == INT_MIN && den == -1)
3621 return INT_MIN;
3670669c
PB
3622 return num / den;
3623}
3624
3625uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
3626{
3627 if (den == 0)
3628 return 0;
3629 return num / den;
3630}
3631
3632uint32_t HELPER(rbit)(uint32_t x)
3633{
3634 x = ((x & 0xff000000) >> 24)
3635 | ((x & 0x00ff0000) >> 8)
3636 | ((x & 0x0000ff00) << 8)
3637 | ((x & 0x000000ff) << 24);
3638 x = ((x & 0xf0f0f0f0) >> 4)
3639 | ((x & 0x0f0f0f0f) << 4);
3640 x = ((x & 0x88888888) >> 3)
3641 | ((x & 0x44444444) >> 1)
3642 | ((x & 0x22222222) << 1)
3643 | ((x & 0x11111111) << 3);
3644 return x;
3645}
3646
5fafdf24 3647#if defined(CONFIG_USER_ONLY)
b5ff1b31 3648
7510454e
AF
3649int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int rw,
3650 int mmu_idx)
b5ff1b31 3651{
7510454e
AF
3652 ARMCPU *cpu = ARM_CPU(cs);
3653 CPUARMState *env = &cpu->env;
3654
abf1172f 3655 env->exception.vaddress = address;
b5ff1b31 3656 if (rw == 2) {
27103424 3657 cs->exception_index = EXCP_PREFETCH_ABORT;
b5ff1b31 3658 } else {
27103424 3659 cs->exception_index = EXCP_DATA_ABORT;
b5ff1b31
FB
3660 }
3661 return 1;
3662}
3663
9ee6e8bb 3664/* These should probably raise undefined insn exceptions. */
0ecb72a5 3665void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
9ee6e8bb 3666{
a47dddd7
AF
3667 ARMCPU *cpu = arm_env_get_cpu(env);
3668
3669 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
9ee6e8bb
PB
3670}
3671
0ecb72a5 3672uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
9ee6e8bb 3673{
a47dddd7
AF
3674 ARMCPU *cpu = arm_env_get_cpu(env);
3675
3676 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
9ee6e8bb
PB
3677 return 0;
3678}
3679
0ecb72a5 3680void switch_mode(CPUARMState *env, int mode)
b5ff1b31 3681{
a47dddd7
AF
3682 ARMCPU *cpu = arm_env_get_cpu(env);
3683
3684 if (mode != ARM_CPU_MODE_USR) {
3685 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
3686 }
b5ff1b31
FB
3687}
3688
0ecb72a5 3689void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
9ee6e8bb 3690{
a47dddd7
AF
3691 ARMCPU *cpu = arm_env_get_cpu(env);
3692
3693 cpu_abort(CPU(cpu), "banked r13 write\n");
9ee6e8bb
PB
3694}
3695
0ecb72a5 3696uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
9ee6e8bb 3697{
a47dddd7
AF
3698 ARMCPU *cpu = arm_env_get_cpu(env);
3699
3700 cpu_abort(CPU(cpu), "banked r13 read\n");
9ee6e8bb
PB
3701 return 0;
3702}
3703
9e729b57
EI
3704unsigned int arm_excp_target_el(CPUState *cs, unsigned int excp_idx)
3705{
3706 return 1;
3707}
3708
b5ff1b31
FB
3709#else
3710
3711/* Map CPU modes onto saved register banks. */
494b00c7 3712int bank_number(int mode)
b5ff1b31
FB
3713{
3714 switch (mode) {
3715 case ARM_CPU_MODE_USR:
3716 case ARM_CPU_MODE_SYS:
3717 return 0;
3718 case ARM_CPU_MODE_SVC:
3719 return 1;
3720 case ARM_CPU_MODE_ABT:
3721 return 2;
3722 case ARM_CPU_MODE_UND:
3723 return 3;
3724 case ARM_CPU_MODE_IRQ:
3725 return 4;
3726 case ARM_CPU_MODE_FIQ:
3727 return 5;
28c9457d
EI
3728 case ARM_CPU_MODE_HYP:
3729 return 6;
3730 case ARM_CPU_MODE_MON:
3731 return 7;
b5ff1b31 3732 }
f5206413 3733 hw_error("bank number requested for bad CPSR mode value 0x%x\n", mode);
b5ff1b31
FB
3734}
3735
0ecb72a5 3736void switch_mode(CPUARMState *env, int mode)
b5ff1b31
FB
3737{
3738 int old_mode;
3739 int i;
3740
3741 old_mode = env->uncached_cpsr & CPSR_M;
3742 if (mode == old_mode)
3743 return;
3744
3745 if (old_mode == ARM_CPU_MODE_FIQ) {
3746 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
8637c67f 3747 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
b5ff1b31
FB
3748 } else if (mode == ARM_CPU_MODE_FIQ) {
3749 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
8637c67f 3750 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
b5ff1b31
FB
3751 }
3752
f5206413 3753 i = bank_number(old_mode);
b5ff1b31
FB
3754 env->banked_r13[i] = env->regs[13];
3755 env->banked_r14[i] = env->regs[14];
3756 env->banked_spsr[i] = env->spsr;
3757
f5206413 3758 i = bank_number(mode);
b5ff1b31
FB
3759 env->regs[13] = env->banked_r13[i];
3760 env->regs[14] = env->banked_r14[i];
3761 env->spsr = env->banked_spsr[i];
3762}
3763
9e729b57
EI
3764/*
3765 * Determine the target EL for a given exception type.
3766 */
3767unsigned int arm_excp_target_el(CPUState *cs, unsigned int excp_idx)
3768{
35979d71
EI
3769 ARMCPU *cpu = ARM_CPU(cs);
3770 CPUARMState *env = &cpu->env;
dcbff19b 3771 unsigned int cur_el = arm_current_el(env);
35979d71 3772 unsigned int target_el;
041c9666
EI
3773 /* FIXME: Use actual secure state. */
3774 bool secure = false;
35979d71
EI
3775
3776 if (!env->aarch64) {
3777 /* TODO: Add EL2 and 3 exception handling for AArch32. */
3778 return 1;
3779 }
3780
3781 switch (excp_idx) {
3782 case EXCP_HVC:
607d98b8 3783 case EXCP_HYP_TRAP:
35979d71
EI
3784 target_el = 2;
3785 break;
e0d6e6a5
EI
3786 case EXCP_SMC:
3787 target_el = 3;
3788 break;
041c9666
EI
3789 case EXCP_FIQ:
3790 case EXCP_IRQ:
3791 {
3792 const uint64_t hcr_mask = excp_idx == EXCP_FIQ ? HCR_FMO : HCR_IMO;
3793 const uint32_t scr_mask = excp_idx == EXCP_FIQ ? SCR_FIQ : SCR_IRQ;
3794
3795 target_el = 1;
3796 if (!secure && (env->cp15.hcr_el2 & hcr_mask)) {
3797 target_el = 2;
3798 }
3799 if (env->cp15.scr_el3 & scr_mask) {
3800 target_el = 3;
3801 }
3802 break;
3803 }
136e67e9
EI
3804 case EXCP_VIRQ:
3805 case EXCP_VFIQ:
3806 target_el = 1;
3807 break;
35979d71
EI
3808 default:
3809 target_el = MAX(cur_el, 1);
3810 break;
3811 }
3812 return target_el;
9e729b57
EI
3813}
3814
9ee6e8bb
PB
3815static void v7m_push(CPUARMState *env, uint32_t val)
3816{
70d74660
AF
3817 CPUState *cs = CPU(arm_env_get_cpu(env));
3818
9ee6e8bb 3819 env->regs[13] -= 4;
ab1da857 3820 stl_phys(cs->as, env->regs[13], val);
9ee6e8bb
PB
3821}
3822
3823static uint32_t v7m_pop(CPUARMState *env)
3824{
70d74660 3825 CPUState *cs = CPU(arm_env_get_cpu(env));
9ee6e8bb 3826 uint32_t val;
70d74660 3827
fdfba1a2 3828 val = ldl_phys(cs->as, env->regs[13]);
9ee6e8bb
PB
3829 env->regs[13] += 4;
3830 return val;
3831}
3832
3833/* Switch to V7M main or process stack pointer. */
3834static void switch_v7m_sp(CPUARMState *env, int process)
3835{
3836 uint32_t tmp;
3837 if (env->v7m.current_sp != process) {
3838 tmp = env->v7m.other_sp;
3839 env->v7m.other_sp = env->regs[13];
3840 env->regs[13] = tmp;
3841 env->v7m.current_sp = process;
3842 }
3843}
3844
3845static void do_v7m_exception_exit(CPUARMState *env)
3846{
3847 uint32_t type;
3848 uint32_t xpsr;
3849
3850 type = env->regs[15];
3851 if (env->v7m.exception != 0)
983fe826 3852 armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
9ee6e8bb
PB
3853
3854 /* Switch to the target stack. */
3855 switch_v7m_sp(env, (type & 4) != 0);
3856 /* Pop registers. */
3857 env->regs[0] = v7m_pop(env);
3858 env->regs[1] = v7m_pop(env);
3859 env->regs[2] = v7m_pop(env);
3860 env->regs[3] = v7m_pop(env);
3861 env->regs[12] = v7m_pop(env);
3862 env->regs[14] = v7m_pop(env);
3863 env->regs[15] = v7m_pop(env);
3864 xpsr = v7m_pop(env);
3865 xpsr_write(env, xpsr, 0xfffffdff);
3866 /* Undo stack alignment. */
3867 if (xpsr & 0x200)
3868 env->regs[13] |= 4;
3869 /* ??? The exception return type specifies Thread/Handler mode. However
3870 this is also implied by the xPSR value. Not sure what to do
3871 if there is a mismatch. */
3872 /* ??? Likewise for mismatches between the CONTROL register and the stack
3873 pointer. */
3874}
3875
e6f010cc 3876void arm_v7m_cpu_do_interrupt(CPUState *cs)
9ee6e8bb 3877{
e6f010cc
AF
3878 ARMCPU *cpu = ARM_CPU(cs);
3879 CPUARMState *env = &cpu->env;
9ee6e8bb
PB
3880 uint32_t xpsr = xpsr_read(env);
3881 uint32_t lr;
3882 uint32_t addr;
3883
27103424 3884 arm_log_exception(cs->exception_index);
3f1beaca 3885
9ee6e8bb
PB
3886 lr = 0xfffffff1;
3887 if (env->v7m.current_sp)
3888 lr |= 4;
3889 if (env->v7m.exception == 0)
3890 lr |= 8;
3891
3892 /* For exceptions we just mark as pending on the NVIC, and let that
3893 handle it. */
3894 /* TODO: Need to escalate if the current priority is higher than the
3895 one we're raising. */
27103424 3896 switch (cs->exception_index) {
9ee6e8bb 3897 case EXCP_UDEF:
983fe826 3898 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
9ee6e8bb
PB
3899 return;
3900 case EXCP_SWI:
314e2296 3901 /* The PC already points to the next instruction. */
983fe826 3902 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
9ee6e8bb
PB
3903 return;
3904 case EXCP_PREFETCH_ABORT:
3905 case EXCP_DATA_ABORT:
abf1172f
PM
3906 /* TODO: if we implemented the MPU registers, this is where we
3907 * should set the MMFAR, etc from exception.fsr and exception.vaddress.
3908 */
983fe826 3909 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
9ee6e8bb
PB
3910 return;
3911 case EXCP_BKPT:
2ad207d4
PB
3912 if (semihosting_enabled) {
3913 int nr;
d31dd73e 3914 nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
2ad207d4
PB
3915 if (nr == 0xab) {
3916 env->regs[15] += 2;
3917 env->regs[0] = do_arm_semihosting(env);
3f1beaca 3918 qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
2ad207d4
PB
3919 return;
3920 }
3921 }
983fe826 3922 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
9ee6e8bb
PB
3923 return;
3924 case EXCP_IRQ:
983fe826 3925 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
9ee6e8bb
PB
3926 break;
3927 case EXCP_EXCEPTION_EXIT:
3928 do_v7m_exception_exit(env);
3929 return;
3930 default:
a47dddd7 3931 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9ee6e8bb
PB
3932 return; /* Never happens. Keep compiler happy. */
3933 }
3934
3935 /* Align stack pointer. */
3936 /* ??? Should only do this if Configuration Control Register
3937 STACKALIGN bit is set. */
3938 if (env->regs[13] & 4) {
ab19b0ec 3939 env->regs[13] -= 4;
9ee6e8bb
PB
3940 xpsr |= 0x200;
3941 }
6c95676b 3942 /* Switch to the handler mode. */
9ee6e8bb
PB
3943 v7m_push(env, xpsr);
3944 v7m_push(env, env->regs[15]);
3945 v7m_push(env, env->regs[14]);
3946 v7m_push(env, env->regs[12]);
3947 v7m_push(env, env->regs[3]);
3948 v7m_push(env, env->regs[2]);
3949 v7m_push(env, env->regs[1]);
3950 v7m_push(env, env->regs[0]);
3951 switch_v7m_sp(env, 0);
c98d174c
PM
3952 /* Clear IT bits */
3953 env->condexec_bits = 0;
9ee6e8bb 3954 env->regs[14] = lr;
fdfba1a2 3955 addr = ldl_phys(cs->as, env->v7m.vecbase + env->v7m.exception * 4);
9ee6e8bb
PB
3956 env->regs[15] = addr & 0xfffffffe;
3957 env->thumb = addr & 1;
3958}
3959
b5ff1b31 3960/* Handle a CPU exception. */
97a8ea5a 3961void arm_cpu_do_interrupt(CPUState *cs)
b5ff1b31 3962{
97a8ea5a
AF
3963 ARMCPU *cpu = ARM_CPU(cs);
3964 CPUARMState *env = &cpu->env;
b5ff1b31
FB
3965 uint32_t addr;
3966 uint32_t mask;
3967 int new_mode;
3968 uint32_t offset;
16a906fd 3969 uint32_t moe;
b5ff1b31 3970
e6f010cc
AF
3971 assert(!IS_M(env));
3972
27103424 3973 arm_log_exception(cs->exception_index);
3f1beaca 3974
98128601
RH
3975 if (arm_is_psci_call(cpu, cs->exception_index)) {
3976 arm_handle_psci_call(cpu);
3977 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
3978 return;
3979 }
3980
16a906fd
PM
3981 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
3982 switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) {
3983 case EC_BREAKPOINT:
3984 case EC_BREAKPOINT_SAME_EL:
3985 moe = 1;
3986 break;
3987 case EC_WATCHPOINT:
3988 case EC_WATCHPOINT_SAME_EL:
3989 moe = 10;
3990 break;
3991 case EC_AA32_BKPT:
3992 moe = 3;
3993 break;
3994 case EC_VECTORCATCH:
3995 moe = 5;
3996 break;
3997 default:
3998 moe = 0;
3999 break;
4000 }
4001
4002 if (moe) {
4003 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
4004 }
4005
b5ff1b31 4006 /* TODO: Vectored interrupt controller. */
27103424 4007 switch (cs->exception_index) {
b5ff1b31
FB
4008 case EXCP_UDEF:
4009 new_mode = ARM_CPU_MODE_UND;
4010 addr = 0x04;
4011 mask = CPSR_I;
4012 if (env->thumb)
4013 offset = 2;
4014 else
4015 offset = 4;
4016 break;
4017 case EXCP_SWI:
8e71621f
PB
4018 if (semihosting_enabled) {
4019 /* Check for semihosting interrupt. */
4020 if (env->thumb) {
d31dd73e
BS
4021 mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code)
4022 & 0xff;
8e71621f 4023 } else {
d31dd73e 4024 mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code)
d8fd2954 4025 & 0xffffff;
8e71621f
PB
4026 }
4027 /* Only intercept calls from privileged modes, to provide some
4028 semblance of security. */
4029 if (((mask == 0x123456 && !env->thumb)
4030 || (mask == 0xab && env->thumb))
4031 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
4032 env->regs[0] = do_arm_semihosting(env);
3f1beaca 4033 qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
8e71621f
PB
4034 return;
4035 }
4036 }
b5ff1b31
FB
4037 new_mode = ARM_CPU_MODE_SVC;
4038 addr = 0x08;
4039 mask = CPSR_I;
601d70b9 4040 /* The PC already points to the next instruction. */
b5ff1b31
FB
4041 offset = 0;
4042 break;
06c949e6 4043 case EXCP_BKPT:
9ee6e8bb 4044 /* See if this is a semihosting syscall. */
2ad207d4 4045 if (env->thumb && semihosting_enabled) {
d31dd73e 4046 mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
9ee6e8bb
PB
4047 if (mask == 0xab
4048 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
4049 env->regs[15] += 2;
4050 env->regs[0] = do_arm_semihosting(env);
3f1beaca 4051 qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
9ee6e8bb
PB
4052 return;
4053 }
4054 }
abf1172f 4055 env->exception.fsr = 2;
9ee6e8bb
PB
4056 /* Fall through to prefetch abort. */
4057 case EXCP_PREFETCH_ABORT:
6cd8a264 4058 env->cp15.ifsr_el2 = env->exception.fsr;
2f0180c5
EI
4059 env->cp15.far_el[1] = deposit64(env->cp15.far_el[1], 32, 32,
4060 env->exception.vaddress);
3f1beaca 4061 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
6cd8a264 4062 env->cp15.ifsr_el2, (uint32_t)env->exception.vaddress);
b5ff1b31
FB
4063 new_mode = ARM_CPU_MODE_ABT;
4064 addr = 0x0c;
4065 mask = CPSR_A | CPSR_I;
4066 offset = 4;
4067 break;
4068 case EXCP_DATA_ABORT:
d81c519c 4069 env->cp15.esr_el[1] = env->exception.fsr;
2f0180c5
EI
4070 env->cp15.far_el[1] = deposit64(env->cp15.far_el[1], 0, 32,
4071 env->exception.vaddress);
3f1beaca 4072 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
d81c519c 4073 (uint32_t)env->cp15.esr_el[1],
6cd8a264 4074 (uint32_t)env->exception.vaddress);
b5ff1b31
FB
4075 new_mode = ARM_CPU_MODE_ABT;
4076 addr = 0x10;
4077 mask = CPSR_A | CPSR_I;
4078 offset = 8;
4079 break;
4080 case EXCP_IRQ:
4081 new_mode = ARM_CPU_MODE_IRQ;
4082 addr = 0x18;
4083 /* Disable IRQ and imprecise data aborts. */
4084 mask = CPSR_A | CPSR_I;
4085 offset = 4;
4086 break;
4087 case EXCP_FIQ:
4088 new_mode = ARM_CPU_MODE_FIQ;
4089 addr = 0x1c;
4090 /* Disable FIQ, IRQ and imprecise data aborts. */
4091 mask = CPSR_A | CPSR_I | CPSR_F;
4092 offset = 4;
4093 break;
dbe9d163
FA
4094 case EXCP_SMC:
4095 new_mode = ARM_CPU_MODE_MON;
4096 addr = 0x08;
4097 mask = CPSR_A | CPSR_I | CPSR_F;
4098 offset = 0;
4099 break;
b5ff1b31 4100 default:
a47dddd7 4101 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
b5ff1b31
FB
4102 return; /* Never happens. Keep compiler happy. */
4103 }
4104 /* High vectors. */
76e3e1bc 4105 if (env->cp15.c1_sys & SCTLR_V) {
8641136c 4106 /* when enabled, base address cannot be remapped. */
b5ff1b31 4107 addr += 0xffff0000;
8641136c
NR
4108 } else {
4109 /* ARM v7 architectures provide a vector base address register to remap
4110 * the interrupt vector table.
4111 * This register is only followed in non-monitor mode, and has a secure
4112 * and un-secure copy. Since the cpu is always in a un-secure operation
4113 * and is never in monitor mode this feature is always active.
4114 * Note: only bits 31:5 are valid.
4115 */
68fdb6c5 4116 addr += env->cp15.vbar_el[1];
b5ff1b31 4117 }
dbe9d163
FA
4118
4119 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
4120 env->cp15.scr_el3 &= ~SCR_NS;
4121 }
4122
b5ff1b31 4123 switch_mode (env, new_mode);
662cefb7
PM
4124 /* For exceptions taken to AArch32 we must clear the SS bit in both
4125 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
4126 */
4127 env->uncached_cpsr &= ~PSTATE_SS;
b5ff1b31 4128 env->spsr = cpsr_read(env);
9ee6e8bb
PB
4129 /* Clear IT bits. */
4130 env->condexec_bits = 0;
30a8cac1 4131 /* Switch to the new mode, and to the correct instruction set. */
6d7e6326 4132 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
4cc35614 4133 env->daif |= mask;
be5e7a76
DES
4134 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
4135 * and we should just guard the thumb mode on V4 */
4136 if (arm_feature(env, ARM_FEATURE_V4T)) {
76e3e1bc 4137 env->thumb = (env->cp15.c1_sys & SCTLR_TE) != 0;
be5e7a76 4138 }
b5ff1b31
FB
4139 env->regs[14] = env->regs[15] + offset;
4140 env->regs[15] = addr;
259186a7 4141 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
b5ff1b31
FB
4142}
4143
4144/* Check section/page access permissions.
4145 Returns the page protection flags, or zero if the access is not
4146 permitted. */
0ecb72a5 4147static inline int check_ap(CPUARMState *env, int ap, int domain_prot,
dd4ebc2e 4148 int access_type, int is_user)
b5ff1b31 4149{
9ee6e8bb
PB
4150 int prot_ro;
4151
dd4ebc2e 4152 if (domain_prot == 3) {
b5ff1b31 4153 return PAGE_READ | PAGE_WRITE;
dd4ebc2e 4154 }
b5ff1b31 4155
9ee6e8bb
PB
4156 if (access_type == 1)
4157 prot_ro = 0;
4158 else
4159 prot_ro = PAGE_READ;
4160
b5ff1b31
FB
4161 switch (ap) {
4162 case 0:
99f678a6
PM
4163 if (arm_feature(env, ARM_FEATURE_V7)) {
4164 return 0;
4165 }
78600320 4166 if (access_type == 1)
b5ff1b31 4167 return 0;
76e3e1bc
PM
4168 switch (env->cp15.c1_sys & (SCTLR_S | SCTLR_R)) {
4169 case SCTLR_S:
b5ff1b31 4170 return is_user ? 0 : PAGE_READ;
76e3e1bc 4171 case SCTLR_R:
b5ff1b31
FB
4172 return PAGE_READ;
4173 default:
4174 return 0;
4175 }
4176 case 1:
4177 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
4178 case 2:
4179 if (is_user)
9ee6e8bb 4180 return prot_ro;
b5ff1b31
FB
4181 else
4182 return PAGE_READ | PAGE_WRITE;
4183 case 3:
4184 return PAGE_READ | PAGE_WRITE;
d4934d18 4185 case 4: /* Reserved. */
9ee6e8bb
PB
4186 return 0;
4187 case 5:
4188 return is_user ? 0 : prot_ro;
4189 case 6:
4190 return prot_ro;
d4934d18 4191 case 7:
0ab06d83 4192 if (!arm_feature (env, ARM_FEATURE_V6K))
d4934d18
PB
4193 return 0;
4194 return prot_ro;
b5ff1b31
FB
4195 default:
4196 abort();
4197 }
4198}
4199
e389be16
FA
4200static bool get_level1_table_address(CPUARMState *env, uint32_t *table,
4201 uint32_t address)
b2fa1797 4202{
e389be16
FA
4203 if (address & env->cp15.c2_mask) {
4204 if ((env->cp15.c2_control & TTBCR_PD1)) {
4205 /* Translation table walk disabled for TTBR1 */
4206 return false;
4207 }
4208 *table = env->cp15.ttbr1_el1 & 0xffffc000;
4209 } else {
4210 if ((env->cp15.c2_control & TTBCR_PD0)) {
4211 /* Translation table walk disabled for TTBR0 */
4212 return false;
4213 }
4214 *table = env->cp15.ttbr0_el1 & env->cp15.c2_base_mask;
4215 }
4216 *table |= (address >> 18) & 0x3ffc;
4217 return true;
b2fa1797
PB
4218}
4219
0ecb72a5 4220static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type,
a8170e5e 4221 int is_user, hwaddr *phys_ptr,
77a71dd1 4222 int *prot, target_ulong *page_size)
b5ff1b31 4223{
70d74660 4224 CPUState *cs = CPU(arm_env_get_cpu(env));
b5ff1b31
FB
4225 int code;
4226 uint32_t table;
4227 uint32_t desc;
4228 int type;
4229 int ap;
e389be16 4230 int domain = 0;
dd4ebc2e 4231 int domain_prot;
a8170e5e 4232 hwaddr phys_addr;
b5ff1b31 4233
9ee6e8bb
PB
4234 /* Pagetable walk. */
4235 /* Lookup l1 descriptor. */
e389be16
FA
4236 if (!get_level1_table_address(env, &table, address)) {
4237 /* Section translation fault if page walk is disabled by PD0 or PD1 */
4238 code = 5;
4239 goto do_fault;
4240 }
fdfba1a2 4241 desc = ldl_phys(cs->as, table);
9ee6e8bb 4242 type = (desc & 3);
dd4ebc2e
JCD
4243 domain = (desc >> 5) & 0x0f;
4244 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
9ee6e8bb 4245 if (type == 0) {
601d70b9 4246 /* Section translation fault. */
9ee6e8bb
PB
4247 code = 5;
4248 goto do_fault;
4249 }
dd4ebc2e 4250 if (domain_prot == 0 || domain_prot == 2) {
9ee6e8bb
PB
4251 if (type == 2)
4252 code = 9; /* Section domain fault. */
4253 else
4254 code = 11; /* Page domain fault. */
4255 goto do_fault;
4256 }
4257 if (type == 2) {
4258 /* 1Mb section. */
4259 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
4260 ap = (desc >> 10) & 3;
4261 code = 13;
d4c430a8 4262 *page_size = 1024 * 1024;
9ee6e8bb
PB
4263 } else {
4264 /* Lookup l2 entry. */
4265 if (type == 1) {
4266 /* Coarse pagetable. */
4267 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
4268 } else {
4269 /* Fine pagetable. */
4270 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
4271 }
fdfba1a2 4272 desc = ldl_phys(cs->as, table);
9ee6e8bb
PB
4273 switch (desc & 3) {
4274 case 0: /* Page translation fault. */
4275 code = 7;
4276 goto do_fault;
4277 case 1: /* 64k page. */
4278 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
4279 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
d4c430a8 4280 *page_size = 0x10000;
ce819861 4281 break;
9ee6e8bb
PB
4282 case 2: /* 4k page. */
4283 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
c10f7fc3 4284 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
d4c430a8 4285 *page_size = 0x1000;
ce819861 4286 break;
9ee6e8bb
PB
4287 case 3: /* 1k page. */
4288 if (type == 1) {
4289 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
4290 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
4291 } else {
4292 /* Page translation fault. */
4293 code = 7;
4294 goto do_fault;
4295 }
4296 } else {
4297 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
4298 }
4299 ap = (desc >> 4) & 3;
d4c430a8 4300 *page_size = 0x400;
ce819861
PB
4301 break;
4302 default:
9ee6e8bb
PB
4303 /* Never happens, but compiler isn't smart enough to tell. */
4304 abort();
ce819861 4305 }
9ee6e8bb
PB
4306 code = 15;
4307 }
dd4ebc2e 4308 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
9ee6e8bb
PB
4309 if (!*prot) {
4310 /* Access permission fault. */
4311 goto do_fault;
4312 }
3ad493fc 4313 *prot |= PAGE_EXEC;
9ee6e8bb
PB
4314 *phys_ptr = phys_addr;
4315 return 0;
4316do_fault:
4317 return code | (domain << 4);
4318}
4319
0ecb72a5 4320static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type,
a8170e5e 4321 int is_user, hwaddr *phys_ptr,
77a71dd1 4322 int *prot, target_ulong *page_size)
9ee6e8bb 4323{
70d74660 4324 CPUState *cs = CPU(arm_env_get_cpu(env));
9ee6e8bb
PB
4325 int code;
4326 uint32_t table;
4327 uint32_t desc;
4328 uint32_t xn;
de9b05b8 4329 uint32_t pxn = 0;
9ee6e8bb
PB
4330 int type;
4331 int ap;
de9b05b8 4332 int domain = 0;
dd4ebc2e 4333 int domain_prot;
a8170e5e 4334 hwaddr phys_addr;
9ee6e8bb
PB
4335
4336 /* Pagetable walk. */
4337 /* Lookup l1 descriptor. */
e389be16
FA
4338 if (!get_level1_table_address(env, &table, address)) {
4339 /* Section translation fault if page walk is disabled by PD0 or PD1 */
4340 code = 5;
4341 goto do_fault;
4342 }
fdfba1a2 4343 desc = ldl_phys(cs->as, table);
9ee6e8bb 4344 type = (desc & 3);
de9b05b8
PM
4345 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
4346 /* Section translation fault, or attempt to use the encoding
4347 * which is Reserved on implementations without PXN.
4348 */
9ee6e8bb 4349 code = 5;
9ee6e8bb 4350 goto do_fault;
de9b05b8
PM
4351 }
4352 if ((type == 1) || !(desc & (1 << 18))) {
4353 /* Page or Section. */
dd4ebc2e 4354 domain = (desc >> 5) & 0x0f;
9ee6e8bb 4355 }
dd4ebc2e
JCD
4356 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
4357 if (domain_prot == 0 || domain_prot == 2) {
de9b05b8 4358 if (type != 1) {
9ee6e8bb 4359 code = 9; /* Section domain fault. */
de9b05b8 4360 } else {
9ee6e8bb 4361 code = 11; /* Page domain fault. */
de9b05b8 4362 }
9ee6e8bb
PB
4363 goto do_fault;
4364 }
de9b05b8 4365 if (type != 1) {
9ee6e8bb
PB
4366 if (desc & (1 << 18)) {
4367 /* Supersection. */
4368 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
d4c430a8 4369 *page_size = 0x1000000;
b5ff1b31 4370 } else {
9ee6e8bb
PB
4371 /* Section. */
4372 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
d4c430a8 4373 *page_size = 0x100000;
b5ff1b31 4374 }
9ee6e8bb
PB
4375 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
4376 xn = desc & (1 << 4);
de9b05b8 4377 pxn = desc & 1;
9ee6e8bb
PB
4378 code = 13;
4379 } else {
de9b05b8
PM
4380 if (arm_feature(env, ARM_FEATURE_PXN)) {
4381 pxn = (desc >> 2) & 1;
4382 }
9ee6e8bb
PB
4383 /* Lookup l2 entry. */
4384 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
fdfba1a2 4385 desc = ldl_phys(cs->as, table);
9ee6e8bb
PB
4386 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
4387 switch (desc & 3) {
4388 case 0: /* Page translation fault. */
4389 code = 7;
b5ff1b31 4390 goto do_fault;
9ee6e8bb
PB
4391 case 1: /* 64k page. */
4392 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
4393 xn = desc & (1 << 15);
d4c430a8 4394 *page_size = 0x10000;
9ee6e8bb
PB
4395 break;
4396 case 2: case 3: /* 4k page. */
4397 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
4398 xn = desc & 1;
d4c430a8 4399 *page_size = 0x1000;
9ee6e8bb
PB
4400 break;
4401 default:
4402 /* Never happens, but compiler isn't smart enough to tell. */
4403 abort();
b5ff1b31 4404 }
9ee6e8bb
PB
4405 code = 15;
4406 }
dd4ebc2e 4407 if (domain_prot == 3) {
c0034328
JR
4408 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
4409 } else {
de9b05b8
PM
4410 if (pxn && !is_user) {
4411 xn = 1;
4412 }
c0034328
JR
4413 if (xn && access_type == 2)
4414 goto do_fault;
9ee6e8bb 4415
c0034328 4416 /* The simplified model uses AP[0] as an access control bit. */
76e3e1bc 4417 if ((env->cp15.c1_sys & SCTLR_AFE) && (ap & 1) == 0) {
c0034328
JR
4418 /* Access flag fault. */
4419 code = (code == 15) ? 6 : 3;
4420 goto do_fault;
4421 }
dd4ebc2e 4422 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
c0034328
JR
4423 if (!*prot) {
4424 /* Access permission fault. */
4425 goto do_fault;
4426 }
4427 if (!xn) {
4428 *prot |= PAGE_EXEC;
4429 }
3ad493fc 4430 }
9ee6e8bb 4431 *phys_ptr = phys_addr;
b5ff1b31
FB
4432 return 0;
4433do_fault:
4434 return code | (domain << 4);
4435}
4436
3dde962f
PM
4437/* Fault type for long-descriptor MMU fault reporting; this corresponds
4438 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
4439 */
4440typedef enum {
4441 translation_fault = 1,
4442 access_fault = 2,
4443 permission_fault = 3,
4444} MMUFaultType;
4445
2c8dd318 4446static int get_phys_addr_lpae(CPUARMState *env, target_ulong address,
3dde962f 4447 int access_type, int is_user,
a8170e5e 4448 hwaddr *phys_ptr, int *prot,
3dde962f
PM
4449 target_ulong *page_size_ptr)
4450{
70d74660 4451 CPUState *cs = CPU(arm_env_get_cpu(env));
3dde962f
PM
4452 /* Read an LPAE long-descriptor translation table. */
4453 MMUFaultType fault_type = translation_fault;
4454 uint32_t level = 1;
4455 uint32_t epd;
2c8dd318
RH
4456 int32_t tsz;
4457 uint32_t tg;
3dde962f
PM
4458 uint64_t ttbr;
4459 int ttbr_select;
2c8dd318 4460 hwaddr descaddr, descmask;
3dde962f
PM
4461 uint32_t tableattrs;
4462 target_ulong page_size;
4463 uint32_t attrs;
2c8dd318
RH
4464 int32_t granule_sz = 9;
4465 int32_t va_size = 32;
4466 int32_t tbi = 0;
4467
4468 if (arm_el_is_aa64(env, 1)) {
4469 va_size = 64;
4470 if (extract64(address, 55, 1))
4471 tbi = extract64(env->cp15.c2_control, 38, 1);
4472 else
4473 tbi = extract64(env->cp15.c2_control, 37, 1);
4474 tbi *= 8;
4475 }
3dde962f
PM
4476
4477 /* Determine whether this address is in the region controlled by
4478 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
4479 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
4480 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
4481 */
2c8dd318
RH
4482 uint32_t t0sz = extract32(env->cp15.c2_control, 0, 6);
4483 if (arm_el_is_aa64(env, 1)) {
4484 t0sz = MIN(t0sz, 39);
4485 t0sz = MAX(t0sz, 16);
4486 }
4487 uint32_t t1sz = extract32(env->cp15.c2_control, 16, 6);
4488 if (arm_el_is_aa64(env, 1)) {
4489 t1sz = MIN(t1sz, 39);
4490 t1sz = MAX(t1sz, 16);
4491 }
4492 if (t0sz && !extract64(address, va_size - t0sz, t0sz - tbi)) {
3dde962f
PM
4493 /* there is a ttbr0 region and we are in it (high bits all zero) */
4494 ttbr_select = 0;
2c8dd318 4495 } else if (t1sz && !extract64(~address, va_size - t1sz, t1sz - tbi)) {
3dde962f
PM
4496 /* there is a ttbr1 region and we are in it (high bits all one) */
4497 ttbr_select = 1;
4498 } else if (!t0sz) {
4499 /* ttbr0 region is "everything not in the ttbr1 region" */
4500 ttbr_select = 0;
4501 } else if (!t1sz) {
4502 /* ttbr1 region is "everything not in the ttbr0 region" */
4503 ttbr_select = 1;
4504 } else {
4505 /* in the gap between the two regions, this is a Translation fault */
4506 fault_type = translation_fault;
4507 goto do_fault;
4508 }
4509
4510 /* Note that QEMU ignores shareability and cacheability attributes,
4511 * so we don't need to do anything with the SH, ORGN, IRGN fields
4512 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
4513 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
4514 * implement any ASID-like capability so we can ignore it (instead
4515 * we will always flush the TLB any time the ASID is changed).
4516 */
4517 if (ttbr_select == 0) {
327ed10f 4518 ttbr = env->cp15.ttbr0_el1;
3dde962f
PM
4519 epd = extract32(env->cp15.c2_control, 7, 1);
4520 tsz = t0sz;
2c8dd318
RH
4521
4522 tg = extract32(env->cp15.c2_control, 14, 2);
4523 if (tg == 1) { /* 64KB pages */
4524 granule_sz = 13;
4525 }
4526 if (tg == 2) { /* 16KB pages */
4527 granule_sz = 11;
4528 }
3dde962f 4529 } else {
327ed10f 4530 ttbr = env->cp15.ttbr1_el1;
3dde962f
PM
4531 epd = extract32(env->cp15.c2_control, 23, 1);
4532 tsz = t1sz;
2c8dd318
RH
4533
4534 tg = extract32(env->cp15.c2_control, 30, 2);
4535 if (tg == 3) { /* 64KB pages */
4536 granule_sz = 13;
4537 }
4538 if (tg == 1) { /* 16KB pages */
4539 granule_sz = 11;
4540 }
3dde962f
PM
4541 }
4542
4543 if (epd) {
4544 /* Translation table walk disabled => Translation fault on TLB miss */
4545 goto do_fault;
4546 }
4547
d6be29e3
PM
4548 /* The starting level depends on the virtual address size (which can be
4549 * up to 48 bits) and the translation granule size. It indicates the number
4550 * of strides (granule_sz bits at a time) needed to consume the bits
4551 * of the input address. In the pseudocode this is:
4552 * level = 4 - RoundUp((inputsize - grainsize) / stride)
4553 * where their 'inputsize' is our 'va_size - tsz', 'grainsize' is
4554 * our 'granule_sz + 3' and 'stride' is our 'granule_sz'.
4555 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
4556 * = 4 - (va_size - tsz - granule_sz - 3 + granule_sz - 1) / granule_sz
4557 * = 4 - (va_size - tsz - 4) / granule_sz;
3dde962f 4558 */
d6be29e3 4559 level = 4 - (va_size - tsz - 4) / granule_sz;
3dde962f
PM
4560
4561 /* Clear the vaddr bits which aren't part of the within-region address,
4562 * so that we don't have to special case things when calculating the
4563 * first descriptor address.
4564 */
2c8dd318
RH
4565 if (tsz) {
4566 address &= (1ULL << (va_size - tsz)) - 1;
4567 }
4568
4569 descmask = (1ULL << (granule_sz + 3)) - 1;
3dde962f
PM
4570
4571 /* Now we can extract the actual base address from the TTBR */
2c8dd318
RH
4572 descaddr = extract64(ttbr, 0, 48);
4573 descaddr &= ~((1ULL << (va_size - tsz - (granule_sz * (4 - level)))) - 1);
3dde962f
PM
4574
4575 tableattrs = 0;
4576 for (;;) {
4577 uint64_t descriptor;
4578
2c8dd318
RH
4579 descaddr |= (address >> (granule_sz * (4 - level))) & descmask;
4580 descaddr &= ~7ULL;
2c17449b 4581 descriptor = ldq_phys(cs->as, descaddr);
3dde962f
PM
4582 if (!(descriptor & 1) ||
4583 (!(descriptor & 2) && (level == 3))) {
4584 /* Invalid, or the Reserved level 3 encoding */
4585 goto do_fault;
4586 }
4587 descaddr = descriptor & 0xfffffff000ULL;
4588
4589 if ((descriptor & 2) && (level < 3)) {
4590 /* Table entry. The top five bits are attributes which may
4591 * propagate down through lower levels of the table (and
4592 * which are all arranged so that 0 means "no effect", so
4593 * we can gather them up by ORing in the bits at each level).
4594 */
4595 tableattrs |= extract64(descriptor, 59, 5);
4596 level++;
4597 continue;
4598 }
4599 /* Block entry at level 1 or 2, or page entry at level 3.
4600 * These are basically the same thing, although the number
4601 * of bits we pull in from the vaddr varies.
4602 */
5661ae6b 4603 page_size = (1ULL << ((granule_sz * (4 - level)) + 3));
3dde962f
PM
4604 descaddr |= (address & (page_size - 1));
4605 /* Extract attributes from the descriptor and merge with table attrs */
d615efac
IC
4606 attrs = extract64(descriptor, 2, 10)
4607 | (extract64(descriptor, 52, 12) << 10);
3dde962f
PM
4608 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
4609 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
4610 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
4611 * means "force PL1 access only", which means forcing AP[1] to 0.
4612 */
4613 if (extract32(tableattrs, 2, 1)) {
4614 attrs &= ~(1 << 4);
4615 }
4616 /* Since we're always in the Non-secure state, NSTable is ignored. */
4617 break;
4618 }
4619 /* Here descaddr is the final physical address, and attributes
4620 * are all in attrs.
4621 */
4622 fault_type = access_fault;
4623 if ((attrs & (1 << 8)) == 0) {
4624 /* Access flag */
4625 goto do_fault;
4626 }
4627 fault_type = permission_fault;
4628 if (is_user && !(attrs & (1 << 4))) {
4629 /* Unprivileged access not enabled */
4630 goto do_fault;
4631 }
4632 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
d615efac
IC
4633 if ((arm_feature(env, ARM_FEATURE_V8) && is_user && (attrs & (1 << 12))) ||
4634 (!arm_feature(env, ARM_FEATURE_V8) && (attrs & (1 << 12))) ||
4635 (!is_user && (attrs & (1 << 11)))) {
4636 /* XN/UXN or PXN. Since we only implement EL0/EL1 we unconditionally
4637 * treat XN/UXN as UXN for v8.
4638 */
3dde962f
PM
4639 if (access_type == 2) {
4640 goto do_fault;
4641 }
4642 *prot &= ~PAGE_EXEC;
4643 }
4644 if (attrs & (1 << 5)) {
4645 /* Write access forbidden */
4646 if (access_type == 1) {
4647 goto do_fault;
4648 }
4649 *prot &= ~PAGE_WRITE;
4650 }
4651
4652 *phys_ptr = descaddr;
4653 *page_size_ptr = page_size;
4654 return 0;
4655
4656do_fault:
4657 /* Long-descriptor format IFSR/DFSR value */
4658 return (1 << 9) | (fault_type << 2) | level;
4659}
4660
77a71dd1
PM
4661static int get_phys_addr_mpu(CPUARMState *env, uint32_t address,
4662 int access_type, int is_user,
a8170e5e 4663 hwaddr *phys_ptr, int *prot)
9ee6e8bb
PB
4664{
4665 int n;
4666 uint32_t mask;
4667 uint32_t base;
4668
4669 *phys_ptr = address;
4670 for (n = 7; n >= 0; n--) {
4671 base = env->cp15.c6_region[n];
4672 if ((base & 1) == 0)
4673 continue;
4674 mask = 1 << ((base >> 1) & 0x1f);
4675 /* Keep this shift separate from the above to avoid an
4676 (undefined) << 32. */
4677 mask = (mask << 1) - 1;
4678 if (((base ^ address) & ~mask) == 0)
4679 break;
4680 }
4681 if (n < 0)
4682 return 2;
4683
4684 if (access_type == 2) {
7e09797c 4685 mask = env->cp15.pmsav5_insn_ap;
9ee6e8bb 4686 } else {
7e09797c 4687 mask = env->cp15.pmsav5_data_ap;
9ee6e8bb
PB
4688 }
4689 mask = (mask >> (n * 4)) & 0xf;
4690 switch (mask) {
4691 case 0:
4692 return 1;
4693 case 1:
4694 if (is_user)
4695 return 1;
4696 *prot = PAGE_READ | PAGE_WRITE;
4697 break;
4698 case 2:
4699 *prot = PAGE_READ;
4700 if (!is_user)
4701 *prot |= PAGE_WRITE;
4702 break;
4703 case 3:
4704 *prot = PAGE_READ | PAGE_WRITE;
4705 break;
4706 case 5:
4707 if (is_user)
4708 return 1;
4709 *prot = PAGE_READ;
4710 break;
4711 case 6:
4712 *prot = PAGE_READ;
4713 break;
4714 default:
4715 /* Bad permission. */
4716 return 1;
4717 }
3ad493fc 4718 *prot |= PAGE_EXEC;
9ee6e8bb
PB
4719 return 0;
4720}
4721
702a9357
PM
4722/* get_phys_addr - get the physical address for this virtual address
4723 *
4724 * Find the physical address corresponding to the given virtual address,
4725 * by doing a translation table walk on MMU based systems or using the
4726 * MPU state on MPU based systems.
4727 *
4728 * Returns 0 if the translation was successful. Otherwise, phys_ptr,
4729 * prot and page_size are not filled in, and the return value provides
4730 * information on why the translation aborted, in the format of a
4731 * DFSR/IFSR fault register, with the following caveats:
4732 * * we honour the short vs long DFSR format differences.
4733 * * the WnR bit is never set (the caller must do this).
4734 * * for MPU based systems we don't bother to return a full FSR format
4735 * value.
4736 *
4737 * @env: CPUARMState
4738 * @address: virtual address to get physical address for
4739 * @access_type: 0 for read, 1 for write, 2 for execute
4740 * @is_user: 0 for privileged access, 1 for user
4741 * @phys_ptr: set to the physical address corresponding to the virtual address
4742 * @prot: set to the permissions for the page containing phys_ptr
4743 * @page_size: set to the size of the page containing phys_ptr
4744 */
2c8dd318 4745static inline int get_phys_addr(CPUARMState *env, target_ulong address,
9ee6e8bb 4746 int access_type, int is_user,
a8170e5e 4747 hwaddr *phys_ptr, int *prot,
d4c430a8 4748 target_ulong *page_size)
9ee6e8bb
PB
4749{
4750 /* Fast Context Switch Extension. */
4751 if (address < 0x02000000)
4752 address += env->cp15.c13_fcse;
4753
76e3e1bc 4754 if ((env->cp15.c1_sys & SCTLR_M) == 0) {
9ee6e8bb
PB
4755 /* MMU/MPU disabled. */
4756 *phys_ptr = address;
3ad493fc 4757 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
d4c430a8 4758 *page_size = TARGET_PAGE_SIZE;
9ee6e8bb
PB
4759 return 0;
4760 } else if (arm_feature(env, ARM_FEATURE_MPU)) {
d4c430a8 4761 *page_size = TARGET_PAGE_SIZE;
9ee6e8bb
PB
4762 return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
4763 prot);
3dde962f
PM
4764 } else if (extended_addresses_enabled(env)) {
4765 return get_phys_addr_lpae(env, address, access_type, is_user, phys_ptr,
4766 prot, page_size);
76e3e1bc 4767 } else if (env->cp15.c1_sys & SCTLR_XP) {
9ee6e8bb 4768 return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
d4c430a8 4769 prot, page_size);
9ee6e8bb
PB
4770 } else {
4771 return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
d4c430a8 4772 prot, page_size);
9ee6e8bb
PB
4773 }
4774}
4775
7510454e
AF
4776int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address,
4777 int access_type, int mmu_idx)
b5ff1b31 4778{
7510454e
AF
4779 ARMCPU *cpu = ARM_CPU(cs);
4780 CPUARMState *env = &cpu->env;
a8170e5e 4781 hwaddr phys_addr;
d4c430a8 4782 target_ulong page_size;
b5ff1b31 4783 int prot;
6ebbf390 4784 int ret, is_user;
00892383 4785 uint32_t syn;
dcbff19b 4786 bool same_el = (arm_current_el(env) != 0);
b5ff1b31 4787
6ebbf390 4788 is_user = mmu_idx == MMU_USER_IDX;
d4c430a8
PB
4789 ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot,
4790 &page_size);
b5ff1b31
FB
4791 if (ret == 0) {
4792 /* Map a single [sub]page. */
dcd82c11
AB
4793 phys_addr &= TARGET_PAGE_MASK;
4794 address &= TARGET_PAGE_MASK;
0c591eb0 4795 tlb_set_page(cs, address, phys_addr, prot, mmu_idx, page_size);
d4c430a8 4796 return 0;
b5ff1b31
FB
4797 }
4798
00892383
RH
4799 /* AArch64 syndrome does not have an LPAE bit */
4800 syn = ret & ~(1 << 9);
4801
4802 /* For insn and data aborts we assume there is no instruction syndrome
4803 * information; this is always true for exceptions reported to EL1.
4804 */
b5ff1b31 4805 if (access_type == 2) {
00892383 4806 syn = syn_insn_abort(same_el, 0, 0, syn);
27103424 4807 cs->exception_index = EXCP_PREFETCH_ABORT;
b5ff1b31 4808 } else {
00892383 4809 syn = syn_data_abort(same_el, 0, 0, 0, access_type == 1, syn);
abf1172f
PM
4810 if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6)) {
4811 ret |= (1 << 11);
4812 }
27103424 4813 cs->exception_index = EXCP_DATA_ABORT;
b5ff1b31 4814 }
00892383
RH
4815
4816 env->exception.syndrome = syn;
abf1172f
PM
4817 env->exception.vaddress = address;
4818 env->exception.fsr = ret;
b5ff1b31
FB
4819 return 1;
4820}
4821
00b941e5 4822hwaddr arm_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
b5ff1b31 4823{
00b941e5 4824 ARMCPU *cpu = ARM_CPU(cs);
a8170e5e 4825 hwaddr phys_addr;
d4c430a8 4826 target_ulong page_size;
b5ff1b31
FB
4827 int prot;
4828 int ret;
4829
00b941e5 4830 ret = get_phys_addr(&cpu->env, addr, 0, 0, &phys_addr, &prot, &page_size);
b5ff1b31 4831
00b941e5 4832 if (ret != 0) {
b5ff1b31 4833 return -1;
00b941e5 4834 }
b5ff1b31
FB
4835
4836 return phys_addr;
4837}
4838
0ecb72a5 4839void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
9ee6e8bb 4840{
39ea3d4e
PM
4841 if ((env->uncached_cpsr & CPSR_M) == mode) {
4842 env->regs[13] = val;
4843 } else {
f5206413 4844 env->banked_r13[bank_number(mode)] = val;
39ea3d4e 4845 }
9ee6e8bb
PB
4846}
4847
0ecb72a5 4848uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
9ee6e8bb 4849{
39ea3d4e
PM
4850 if ((env->uncached_cpsr & CPSR_M) == mode) {
4851 return env->regs[13];
4852 } else {
f5206413 4853 return env->banked_r13[bank_number(mode)];
39ea3d4e 4854 }
9ee6e8bb
PB
4855}
4856
0ecb72a5 4857uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
9ee6e8bb 4858{
a47dddd7
AF
4859 ARMCPU *cpu = arm_env_get_cpu(env);
4860
9ee6e8bb
PB
4861 switch (reg) {
4862 case 0: /* APSR */
4863 return xpsr_read(env) & 0xf8000000;
4864 case 1: /* IAPSR */
4865 return xpsr_read(env) & 0xf80001ff;
4866 case 2: /* EAPSR */
4867 return xpsr_read(env) & 0xff00fc00;
4868 case 3: /* xPSR */
4869 return xpsr_read(env) & 0xff00fdff;
4870 case 5: /* IPSR */
4871 return xpsr_read(env) & 0x000001ff;
4872 case 6: /* EPSR */
4873 return xpsr_read(env) & 0x0700fc00;
4874 case 7: /* IEPSR */
4875 return xpsr_read(env) & 0x0700edff;
4876 case 8: /* MSP */
4877 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
4878 case 9: /* PSP */
4879 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
4880 case 16: /* PRIMASK */
4cc35614 4881 return (env->daif & PSTATE_I) != 0;
82845826
SH
4882 case 17: /* BASEPRI */
4883 case 18: /* BASEPRI_MAX */
9ee6e8bb 4884 return env->v7m.basepri;
82845826 4885 case 19: /* FAULTMASK */
4cc35614 4886 return (env->daif & PSTATE_F) != 0;
9ee6e8bb
PB
4887 case 20: /* CONTROL */
4888 return env->v7m.control;
4889 default:
4890 /* ??? For debugging only. */
a47dddd7 4891 cpu_abort(CPU(cpu), "Unimplemented system register read (%d)\n", reg);
9ee6e8bb
PB
4892 return 0;
4893 }
4894}
4895
0ecb72a5 4896void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
9ee6e8bb 4897{
a47dddd7
AF
4898 ARMCPU *cpu = arm_env_get_cpu(env);
4899
9ee6e8bb
PB
4900 switch (reg) {
4901 case 0: /* APSR */
4902 xpsr_write(env, val, 0xf8000000);
4903 break;
4904 case 1: /* IAPSR */
4905 xpsr_write(env, val, 0xf8000000);
4906 break;
4907 case 2: /* EAPSR */
4908 xpsr_write(env, val, 0xfe00fc00);
4909 break;
4910 case 3: /* xPSR */
4911 xpsr_write(env, val, 0xfe00fc00);
4912 break;
4913 case 5: /* IPSR */
4914 /* IPSR bits are readonly. */
4915 break;
4916 case 6: /* EPSR */
4917 xpsr_write(env, val, 0x0600fc00);
4918 break;
4919 case 7: /* IEPSR */
4920 xpsr_write(env, val, 0x0600fc00);
4921 break;
4922 case 8: /* MSP */
4923 if (env->v7m.current_sp)
4924 env->v7m.other_sp = val;
4925 else
4926 env->regs[13] = val;
4927 break;
4928 case 9: /* PSP */
4929 if (env->v7m.current_sp)
4930 env->regs[13] = val;
4931 else
4932 env->v7m.other_sp = val;
4933 break;
4934 case 16: /* PRIMASK */
4cc35614
PM
4935 if (val & 1) {
4936 env->daif |= PSTATE_I;
4937 } else {
4938 env->daif &= ~PSTATE_I;
4939 }
9ee6e8bb 4940 break;
82845826 4941 case 17: /* BASEPRI */
9ee6e8bb
PB
4942 env->v7m.basepri = val & 0xff;
4943 break;
82845826 4944 case 18: /* BASEPRI_MAX */
9ee6e8bb
PB
4945 val &= 0xff;
4946 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
4947 env->v7m.basepri = val;
4948 break;
82845826 4949 case 19: /* FAULTMASK */
4cc35614
PM
4950 if (val & 1) {
4951 env->daif |= PSTATE_F;
4952 } else {
4953 env->daif &= ~PSTATE_F;
4954 }
82845826 4955 break;
9ee6e8bb
PB
4956 case 20: /* CONTROL */
4957 env->v7m.control = val & 3;
4958 switch_v7m_sp(env, (val & 2) != 0);
4959 break;
4960 default:
4961 /* ??? For debugging only. */
a47dddd7 4962 cpu_abort(CPU(cpu), "Unimplemented system register write (%d)\n", reg);
9ee6e8bb
PB
4963 return;
4964 }
4965}
4966
b5ff1b31 4967#endif
6ddbc6e4 4968
aca3f40b
PM
4969void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
4970{
4971 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
4972 * Note that we do not implement the (architecturally mandated)
4973 * alignment fault for attempts to use this on Device memory
4974 * (which matches the usual QEMU behaviour of not implementing either
4975 * alignment faults or any memory attribute handling).
4976 */
4977
4978 ARMCPU *cpu = arm_env_get_cpu(env);
4979 uint64_t blocklen = 4 << cpu->dcz_blocksize;
4980 uint64_t vaddr = vaddr_in & ~(blocklen - 1);
4981
4982#ifndef CONFIG_USER_ONLY
4983 {
4984 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
4985 * the block size so we might have to do more than one TLB lookup.
4986 * We know that in fact for any v8 CPU the page size is at least 4K
4987 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
4988 * 1K as an artefact of legacy v5 subpage support being present in the
4989 * same QEMU executable.
4990 */
4991 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
4992 void *hostaddr[maxidx];
4993 int try, i;
4994
4995 for (try = 0; try < 2; try++) {
4996
4997 for (i = 0; i < maxidx; i++) {
4998 hostaddr[i] = tlb_vaddr_to_host(env,
4999 vaddr + TARGET_PAGE_SIZE * i,
5000 1, cpu_mmu_index(env));
5001 if (!hostaddr[i]) {
5002 break;
5003 }
5004 }
5005 if (i == maxidx) {
5006 /* If it's all in the TLB it's fair game for just writing to;
5007 * we know we don't need to update dirty status, etc.
5008 */
5009 for (i = 0; i < maxidx - 1; i++) {
5010 memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
5011 }
5012 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
5013 return;
5014 }
5015 /* OK, try a store and see if we can populate the tlb. This
5016 * might cause an exception if the memory isn't writable,
5017 * in which case we will longjmp out of here. We must for
5018 * this purpose use the actual register value passed to us
5019 * so that we get the fault address right.
5020 */
5021 helper_ret_stb_mmu(env, vaddr_in, 0, cpu_mmu_index(env), GETRA());
5022 /* Now we can populate the other TLB entries, if any */
5023 for (i = 0; i < maxidx; i++) {
5024 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
5025 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
5026 helper_ret_stb_mmu(env, va, 0, cpu_mmu_index(env), GETRA());
5027 }
5028 }
5029 }
5030
5031 /* Slow path (probably attempt to do this to an I/O device or
5032 * similar, or clearing of a block of code we have translations
5033 * cached for). Just do a series of byte writes as the architecture
5034 * demands. It's not worth trying to use a cpu_physical_memory_map(),
5035 * memset(), unmap() sequence here because:
5036 * + we'd need to account for the blocksize being larger than a page
5037 * + the direct-RAM access case is almost always going to be dealt
5038 * with in the fastpath code above, so there's no speed benefit
5039 * + we would have to deal with the map returning NULL because the
5040 * bounce buffer was in use
5041 */
5042 for (i = 0; i < blocklen; i++) {
5043 helper_ret_stb_mmu(env, vaddr + i, 0, cpu_mmu_index(env), GETRA());
5044 }
5045 }
5046#else
5047 memset(g2h(vaddr), 0, blocklen);
5048#endif
5049}
5050
6ddbc6e4
PB
5051/* Note that signed overflow is undefined in C. The following routines are
5052 careful to use unsigned types where modulo arithmetic is required.
5053 Failure to do so _will_ break on newer gcc. */
5054
5055/* Signed saturating arithmetic. */
5056
1654b2d6 5057/* Perform 16-bit signed saturating addition. */
6ddbc6e4
PB
5058static inline uint16_t add16_sat(uint16_t a, uint16_t b)
5059{
5060 uint16_t res;
5061
5062 res = a + b;
5063 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
5064 if (a & 0x8000)
5065 res = 0x8000;
5066 else
5067 res = 0x7fff;
5068 }
5069 return res;
5070}
5071
1654b2d6 5072/* Perform 8-bit signed saturating addition. */
6ddbc6e4
PB
5073static inline uint8_t add8_sat(uint8_t a, uint8_t b)
5074{
5075 uint8_t res;
5076
5077 res = a + b;
5078 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
5079 if (a & 0x80)
5080 res = 0x80;
5081 else
5082 res = 0x7f;
5083 }
5084 return res;
5085}
5086
1654b2d6 5087/* Perform 16-bit signed saturating subtraction. */
6ddbc6e4
PB
5088static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
5089{
5090 uint16_t res;
5091
5092 res = a - b;
5093 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
5094 if (a & 0x8000)
5095 res = 0x8000;
5096 else
5097 res = 0x7fff;
5098 }
5099 return res;
5100}
5101
1654b2d6 5102/* Perform 8-bit signed saturating subtraction. */
6ddbc6e4
PB
5103static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
5104{
5105 uint8_t res;
5106
5107 res = a - b;
5108 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
5109 if (a & 0x80)
5110 res = 0x80;
5111 else
5112 res = 0x7f;
5113 }
5114 return res;
5115}
5116
5117#define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
5118#define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
5119#define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
5120#define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
5121#define PFX q
5122
5123#include "op_addsub.h"
5124
5125/* Unsigned saturating arithmetic. */
460a09c1 5126static inline uint16_t add16_usat(uint16_t a, uint16_t b)
6ddbc6e4
PB
5127{
5128 uint16_t res;
5129 res = a + b;
5130 if (res < a)
5131 res = 0xffff;
5132 return res;
5133}
5134
460a09c1 5135static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
6ddbc6e4 5136{
4c4fd3f8 5137 if (a > b)
6ddbc6e4
PB
5138 return a - b;
5139 else
5140 return 0;
5141}
5142
5143static inline uint8_t add8_usat(uint8_t a, uint8_t b)
5144{
5145 uint8_t res;
5146 res = a + b;
5147 if (res < a)
5148 res = 0xff;
5149 return res;
5150}
5151
5152static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
5153{
4c4fd3f8 5154 if (a > b)
6ddbc6e4
PB
5155 return a - b;
5156 else
5157 return 0;
5158}
5159
5160#define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
5161#define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
5162#define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
5163#define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
5164#define PFX uq
5165
5166#include "op_addsub.h"
5167
5168/* Signed modulo arithmetic. */
5169#define SARITH16(a, b, n, op) do { \
5170 int32_t sum; \
db6e2e65 5171 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
6ddbc6e4
PB
5172 RESULT(sum, n, 16); \
5173 if (sum >= 0) \
5174 ge |= 3 << (n * 2); \
5175 } while(0)
5176
5177#define SARITH8(a, b, n, op) do { \
5178 int32_t sum; \
db6e2e65 5179 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
6ddbc6e4
PB
5180 RESULT(sum, n, 8); \
5181 if (sum >= 0) \
5182 ge |= 1 << n; \
5183 } while(0)
5184
5185
5186#define ADD16(a, b, n) SARITH16(a, b, n, +)
5187#define SUB16(a, b, n) SARITH16(a, b, n, -)
5188#define ADD8(a, b, n) SARITH8(a, b, n, +)
5189#define SUB8(a, b, n) SARITH8(a, b, n, -)
5190#define PFX s
5191#define ARITH_GE
5192
5193#include "op_addsub.h"
5194
5195/* Unsigned modulo arithmetic. */
5196#define ADD16(a, b, n) do { \
5197 uint32_t sum; \
5198 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
5199 RESULT(sum, n, 16); \
a87aa10b 5200 if ((sum >> 16) == 1) \
6ddbc6e4
PB
5201 ge |= 3 << (n * 2); \
5202 } while(0)
5203
5204#define ADD8(a, b, n) do { \
5205 uint32_t sum; \
5206 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
5207 RESULT(sum, n, 8); \
a87aa10b
AZ
5208 if ((sum >> 8) == 1) \
5209 ge |= 1 << n; \
6ddbc6e4
PB
5210 } while(0)
5211
5212#define SUB16(a, b, n) do { \
5213 uint32_t sum; \
5214 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
5215 RESULT(sum, n, 16); \
5216 if ((sum >> 16) == 0) \
5217 ge |= 3 << (n * 2); \
5218 } while(0)
5219
5220#define SUB8(a, b, n) do { \
5221 uint32_t sum; \
5222 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
5223 RESULT(sum, n, 8); \
5224 if ((sum >> 8) == 0) \
a87aa10b 5225 ge |= 1 << n; \
6ddbc6e4
PB
5226 } while(0)
5227
5228#define PFX u
5229#define ARITH_GE
5230
5231#include "op_addsub.h"
5232
5233/* Halved signed arithmetic. */
5234#define ADD16(a, b, n) \
5235 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
5236#define SUB16(a, b, n) \
5237 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
5238#define ADD8(a, b, n) \
5239 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
5240#define SUB8(a, b, n) \
5241 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
5242#define PFX sh
5243
5244#include "op_addsub.h"
5245
5246/* Halved unsigned arithmetic. */
5247#define ADD16(a, b, n) \
5248 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
5249#define SUB16(a, b, n) \
5250 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
5251#define ADD8(a, b, n) \
5252 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
5253#define SUB8(a, b, n) \
5254 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
5255#define PFX uh
5256
5257#include "op_addsub.h"
5258
5259static inline uint8_t do_usad(uint8_t a, uint8_t b)
5260{
5261 if (a > b)
5262 return a - b;
5263 else
5264 return b - a;
5265}
5266
5267/* Unsigned sum of absolute byte differences. */
5268uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
5269{
5270 uint32_t sum;
5271 sum = do_usad(a, b);
5272 sum += do_usad(a >> 8, b >> 8);
5273 sum += do_usad(a >> 16, b >>16);
5274 sum += do_usad(a >> 24, b >> 24);
5275 return sum;
5276}
5277
5278/* For ARMv6 SEL instruction. */
5279uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
5280{
5281 uint32_t mask;
5282
5283 mask = 0;
5284 if (flags & 1)
5285 mask |= 0xff;
5286 if (flags & 2)
5287 mask |= 0xff00;
5288 if (flags & 4)
5289 mask |= 0xff0000;
5290 if (flags & 8)
5291 mask |= 0xff000000;
5292 return (a & mask) | (b & ~mask);
5293}
5294
b90372ad
PM
5295/* VFP support. We follow the convention used for VFP instructions:
5296 Single precision routines have a "s" suffix, double precision a
4373f3ce
PB
5297 "d" suffix. */
5298
5299/* Convert host exception flags to vfp form. */
5300static inline int vfp_exceptbits_from_host(int host_bits)
5301{
5302 int target_bits = 0;
5303
5304 if (host_bits & float_flag_invalid)
5305 target_bits |= 1;
5306 if (host_bits & float_flag_divbyzero)
5307 target_bits |= 2;
5308 if (host_bits & float_flag_overflow)
5309 target_bits |= 4;
36802b6b 5310 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
4373f3ce
PB
5311 target_bits |= 8;
5312 if (host_bits & float_flag_inexact)
5313 target_bits |= 0x10;
cecd8504
PM
5314 if (host_bits & float_flag_input_denormal)
5315 target_bits |= 0x80;
4373f3ce
PB
5316 return target_bits;
5317}
5318
0ecb72a5 5319uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
4373f3ce
PB
5320{
5321 int i;
5322 uint32_t fpscr;
5323
5324 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
5325 | (env->vfp.vec_len << 16)
5326 | (env->vfp.vec_stride << 20);
5327 i = get_float_exception_flags(&env->vfp.fp_status);
3a492f3a 5328 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
4373f3ce
PB
5329 fpscr |= vfp_exceptbits_from_host(i);
5330 return fpscr;
5331}
5332
0ecb72a5 5333uint32_t vfp_get_fpscr(CPUARMState *env)
01653295
PM
5334{
5335 return HELPER(vfp_get_fpscr)(env);
5336}
5337
4373f3ce
PB
5338/* Convert vfp exception flags to target form. */
5339static inline int vfp_exceptbits_to_host(int target_bits)
5340{
5341 int host_bits = 0;
5342
5343 if (target_bits & 1)
5344 host_bits |= float_flag_invalid;
5345 if (target_bits & 2)
5346 host_bits |= float_flag_divbyzero;
5347 if (target_bits & 4)
5348 host_bits |= float_flag_overflow;
5349 if (target_bits & 8)
5350 host_bits |= float_flag_underflow;
5351 if (target_bits & 0x10)
5352 host_bits |= float_flag_inexact;
cecd8504
PM
5353 if (target_bits & 0x80)
5354 host_bits |= float_flag_input_denormal;
4373f3ce
PB
5355 return host_bits;
5356}
5357
0ecb72a5 5358void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
4373f3ce
PB
5359{
5360 int i;
5361 uint32_t changed;
5362
5363 changed = env->vfp.xregs[ARM_VFP_FPSCR];
5364 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
5365 env->vfp.vec_len = (val >> 16) & 7;
5366 env->vfp.vec_stride = (val >> 20) & 3;
5367
5368 changed ^= val;
5369 if (changed & (3 << 22)) {
5370 i = (val >> 22) & 3;
5371 switch (i) {
4d3da0f3 5372 case FPROUNDING_TIEEVEN:
4373f3ce
PB
5373 i = float_round_nearest_even;
5374 break;
4d3da0f3 5375 case FPROUNDING_POSINF:
4373f3ce
PB
5376 i = float_round_up;
5377 break;
4d3da0f3 5378 case FPROUNDING_NEGINF:
4373f3ce
PB
5379 i = float_round_down;
5380 break;
4d3da0f3 5381 case FPROUNDING_ZERO:
4373f3ce
PB
5382 i = float_round_to_zero;
5383 break;
5384 }
5385 set_float_rounding_mode(i, &env->vfp.fp_status);
5386 }
cecd8504 5387 if (changed & (1 << 24)) {
fe76d976 5388 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
cecd8504
PM
5389 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
5390 }
5c7908ed
PB
5391 if (changed & (1 << 25))
5392 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
4373f3ce 5393
b12c390b 5394 i = vfp_exceptbits_to_host(val);
4373f3ce 5395 set_float_exception_flags(i, &env->vfp.fp_status);
3a492f3a 5396 set_float_exception_flags(0, &env->vfp.standard_fp_status);
4373f3ce
PB
5397}
5398
0ecb72a5 5399void vfp_set_fpscr(CPUARMState *env, uint32_t val)
01653295
PM
5400{
5401 HELPER(vfp_set_fpscr)(env, val);
5402}
5403
4373f3ce
PB
5404#define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
5405
5406#define VFP_BINOP(name) \
ae1857ec 5407float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
4373f3ce 5408{ \
ae1857ec
PM
5409 float_status *fpst = fpstp; \
5410 return float32_ ## name(a, b, fpst); \
4373f3ce 5411} \
ae1857ec 5412float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
4373f3ce 5413{ \
ae1857ec
PM
5414 float_status *fpst = fpstp; \
5415 return float64_ ## name(a, b, fpst); \
4373f3ce
PB
5416}
5417VFP_BINOP(add)
5418VFP_BINOP(sub)
5419VFP_BINOP(mul)
5420VFP_BINOP(div)
f71a2ae5
PM
5421VFP_BINOP(min)
5422VFP_BINOP(max)
5423VFP_BINOP(minnum)
5424VFP_BINOP(maxnum)
4373f3ce
PB
5425#undef VFP_BINOP
5426
5427float32 VFP_HELPER(neg, s)(float32 a)
5428{
5429 return float32_chs(a);
5430}
5431
5432float64 VFP_HELPER(neg, d)(float64 a)
5433{
66230e0d 5434 return float64_chs(a);
4373f3ce
PB
5435}
5436
5437float32 VFP_HELPER(abs, s)(float32 a)
5438{
5439 return float32_abs(a);
5440}
5441
5442float64 VFP_HELPER(abs, d)(float64 a)
5443{
66230e0d 5444 return float64_abs(a);
4373f3ce
PB
5445}
5446
0ecb72a5 5447float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
4373f3ce
PB
5448{
5449 return float32_sqrt(a, &env->vfp.fp_status);
5450}
5451
0ecb72a5 5452float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
4373f3ce
PB
5453{
5454 return float64_sqrt(a, &env->vfp.fp_status);
5455}
5456
5457/* XXX: check quiet/signaling case */
5458#define DO_VFP_cmp(p, type) \
0ecb72a5 5459void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
4373f3ce
PB
5460{ \
5461 uint32_t flags; \
5462 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
5463 case 0: flags = 0x6; break; \
5464 case -1: flags = 0x8; break; \
5465 case 1: flags = 0x2; break; \
5466 default: case 2: flags = 0x3; break; \
5467 } \
5468 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
5469 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
5470} \
0ecb72a5 5471void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
4373f3ce
PB
5472{ \
5473 uint32_t flags; \
5474 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
5475 case 0: flags = 0x6; break; \
5476 case -1: flags = 0x8; break; \
5477 case 1: flags = 0x2; break; \
5478 default: case 2: flags = 0x3; break; \
5479 } \
5480 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
5481 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
5482}
5483DO_VFP_cmp(s, float32)
5484DO_VFP_cmp(d, float64)
5485#undef DO_VFP_cmp
5486
5500b06c 5487/* Integer to float and float to integer conversions */
4373f3ce 5488
5500b06c
PM
5489#define CONV_ITOF(name, fsz, sign) \
5490 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
5491{ \
5492 float_status *fpst = fpstp; \
85836979 5493 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
4373f3ce
PB
5494}
5495
5500b06c
PM
5496#define CONV_FTOI(name, fsz, sign, round) \
5497uint32_t HELPER(name)(float##fsz x, void *fpstp) \
5498{ \
5499 float_status *fpst = fpstp; \
5500 if (float##fsz##_is_any_nan(x)) { \
5501 float_raise(float_flag_invalid, fpst); \
5502 return 0; \
5503 } \
5504 return float##fsz##_to_##sign##int32##round(x, fpst); \
4373f3ce
PB
5505}
5506
5500b06c
PM
5507#define FLOAT_CONVS(name, p, fsz, sign) \
5508CONV_ITOF(vfp_##name##to##p, fsz, sign) \
5509CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
5510CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
4373f3ce 5511
5500b06c
PM
5512FLOAT_CONVS(si, s, 32, )
5513FLOAT_CONVS(si, d, 64, )
5514FLOAT_CONVS(ui, s, 32, u)
5515FLOAT_CONVS(ui, d, 64, u)
4373f3ce 5516
5500b06c
PM
5517#undef CONV_ITOF
5518#undef CONV_FTOI
5519#undef FLOAT_CONVS
4373f3ce
PB
5520
5521/* floating point conversion */
0ecb72a5 5522float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
4373f3ce 5523{
2d627737
PM
5524 float64 r = float32_to_float64(x, &env->vfp.fp_status);
5525 /* ARM requires that S<->D conversion of any kind of NaN generates
5526 * a quiet NaN by forcing the most significant frac bit to 1.
5527 */
5528 return float64_maybe_silence_nan(r);
4373f3ce
PB
5529}
5530
0ecb72a5 5531float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
4373f3ce 5532{
2d627737
PM
5533 float32 r = float64_to_float32(x, &env->vfp.fp_status);
5534 /* ARM requires that S<->D conversion of any kind of NaN generates
5535 * a quiet NaN by forcing the most significant frac bit to 1.
5536 */
5537 return float32_maybe_silence_nan(r);
4373f3ce
PB
5538}
5539
5540/* VFP3 fixed point conversion. */
16d5b3ca 5541#define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
8ed697e8
WN
5542float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
5543 void *fpstp) \
4373f3ce 5544{ \
5500b06c 5545 float_status *fpst = fpstp; \
622465e1 5546 float##fsz tmp; \
8ed697e8 5547 tmp = itype##_to_##float##fsz(x, fpst); \
5500b06c 5548 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
16d5b3ca
WN
5549}
5550
abe66f70
PM
5551/* Notice that we want only input-denormal exception flags from the
5552 * scalbn operation: the other possible flags (overflow+inexact if
5553 * we overflow to infinity, output-denormal) aren't correct for the
5554 * complete scale-and-convert operation.
5555 */
16d5b3ca
WN
5556#define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
5557uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
5558 uint32_t shift, \
5559 void *fpstp) \
4373f3ce 5560{ \
5500b06c 5561 float_status *fpst = fpstp; \
abe66f70 5562 int old_exc_flags = get_float_exception_flags(fpst); \
622465e1
PM
5563 float##fsz tmp; \
5564 if (float##fsz##_is_any_nan(x)) { \
5500b06c 5565 float_raise(float_flag_invalid, fpst); \
622465e1 5566 return 0; \
09d9487f 5567 } \
5500b06c 5568 tmp = float##fsz##_scalbn(x, shift, fpst); \
abe66f70
PM
5569 old_exc_flags |= get_float_exception_flags(fpst) \
5570 & float_flag_input_denormal; \
5571 set_float_exception_flags(old_exc_flags, fpst); \
16d5b3ca 5572 return float##fsz##_to_##itype##round(tmp, fpst); \
622465e1
PM
5573}
5574
16d5b3ca
WN
5575#define VFP_CONV_FIX(name, p, fsz, isz, itype) \
5576VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
3c6a074a
WN
5577VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
5578VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
5579
5580#define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
5581VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
5582VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
16d5b3ca 5583
8ed697e8
WN
5584VFP_CONV_FIX(sh, d, 64, 64, int16)
5585VFP_CONV_FIX(sl, d, 64, 64, int32)
3c6a074a 5586VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
8ed697e8
WN
5587VFP_CONV_FIX(uh, d, 64, 64, uint16)
5588VFP_CONV_FIX(ul, d, 64, 64, uint32)
3c6a074a 5589VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
8ed697e8
WN
5590VFP_CONV_FIX(sh, s, 32, 32, int16)
5591VFP_CONV_FIX(sl, s, 32, 32, int32)
3c6a074a 5592VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
8ed697e8
WN
5593VFP_CONV_FIX(uh, s, 32, 32, uint16)
5594VFP_CONV_FIX(ul, s, 32, 32, uint32)
3c6a074a 5595VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
4373f3ce 5596#undef VFP_CONV_FIX
16d5b3ca
WN
5597#undef VFP_CONV_FIX_FLOAT
5598#undef VFP_CONV_FLOAT_FIX_ROUND
4373f3ce 5599
52a1f6a3
AG
5600/* Set the current fp rounding mode and return the old one.
5601 * The argument is a softfloat float_round_ value.
5602 */
5603uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
5604{
5605 float_status *fp_status = &env->vfp.fp_status;
5606
5607 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
5608 set_float_rounding_mode(rmode, fp_status);
5609
5610 return prev_rmode;
5611}
5612
43630e58
WN
5613/* Set the current fp rounding mode in the standard fp status and return
5614 * the old one. This is for NEON instructions that need to change the
5615 * rounding mode but wish to use the standard FPSCR values for everything
5616 * else. Always set the rounding mode back to the correct value after
5617 * modifying it.
5618 * The argument is a softfloat float_round_ value.
5619 */
5620uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
5621{
5622 float_status *fp_status = &env->vfp.standard_fp_status;
5623
5624 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
5625 set_float_rounding_mode(rmode, fp_status);
5626
5627 return prev_rmode;
5628}
5629
60011498 5630/* Half precision conversions. */
0ecb72a5 5631static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
60011498 5632{
60011498 5633 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
fb91678d
PM
5634 float32 r = float16_to_float32(make_float16(a), ieee, s);
5635 if (ieee) {
5636 return float32_maybe_silence_nan(r);
5637 }
5638 return r;
60011498
PB
5639}
5640
0ecb72a5 5641static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
60011498 5642{
60011498 5643 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
fb91678d
PM
5644 float16 r = float32_to_float16(a, ieee, s);
5645 if (ieee) {
5646 r = float16_maybe_silence_nan(r);
5647 }
5648 return float16_val(r);
60011498
PB
5649}
5650
0ecb72a5 5651float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
2d981da7
PM
5652{
5653 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
5654}
5655
0ecb72a5 5656uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
2d981da7
PM
5657{
5658 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
5659}
5660
0ecb72a5 5661float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
2d981da7
PM
5662{
5663 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
5664}
5665
0ecb72a5 5666uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
2d981da7
PM
5667{
5668 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
5669}
5670
8900aad2
PM
5671float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
5672{
5673 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
5674 float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
5675 if (ieee) {
5676 return float64_maybe_silence_nan(r);
5677 }
5678 return r;
5679}
5680
5681uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
5682{
5683 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
5684 float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
5685 if (ieee) {
5686 r = float16_maybe_silence_nan(r);
5687 }
5688 return float16_val(r);
5689}
5690
dda3ec49 5691#define float32_two make_float32(0x40000000)
6aae3df1
PM
5692#define float32_three make_float32(0x40400000)
5693#define float32_one_point_five make_float32(0x3fc00000)
dda3ec49 5694
0ecb72a5 5695float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
4373f3ce 5696{
dda3ec49
PM
5697 float_status *s = &env->vfp.standard_fp_status;
5698 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
5699 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
43fe9bdb
PM
5700 if (!(float32_is_zero(a) || float32_is_zero(b))) {
5701 float_raise(float_flag_input_denormal, s);
5702 }
dda3ec49
PM
5703 return float32_two;
5704 }
5705 return float32_sub(float32_two, float32_mul(a, b, s), s);
4373f3ce
PB
5706}
5707
0ecb72a5 5708float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
4373f3ce 5709{
71826966 5710 float_status *s = &env->vfp.standard_fp_status;
9ea62f57
PM
5711 float32 product;
5712 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
5713 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
43fe9bdb
PM
5714 if (!(float32_is_zero(a) || float32_is_zero(b))) {
5715 float_raise(float_flag_input_denormal, s);
5716 }
6aae3df1 5717 return float32_one_point_five;
9ea62f57 5718 }
6aae3df1
PM
5719 product = float32_mul(a, b, s);
5720 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
4373f3ce
PB
5721}
5722
8f8e3aa4
PB
5723/* NEON helpers. */
5724
56bf4fe2
CL
5725/* Constants 256 and 512 are used in some helpers; we avoid relying on
5726 * int->float conversions at run-time. */
5727#define float64_256 make_float64(0x4070000000000000LL)
5728#define float64_512 make_float64(0x4080000000000000LL)
b6d4443a
AB
5729#define float32_maxnorm make_float32(0x7f7fffff)
5730#define float64_maxnorm make_float64(0x7fefffffffffffffLL)
56bf4fe2 5731
b6d4443a
AB
5732/* Reciprocal functions
5733 *
5734 * The algorithm that must be used to calculate the estimate
5735 * is specified by the ARM ARM, see FPRecipEstimate()
fe0e4872 5736 */
b6d4443a
AB
5737
5738static float64 recip_estimate(float64 a, float_status *real_fp_status)
fe0e4872 5739{
1146a817
PM
5740 /* These calculations mustn't set any fp exception flags,
5741 * so we use a local copy of the fp_status.
5742 */
b6d4443a 5743 float_status dummy_status = *real_fp_status;
1146a817 5744 float_status *s = &dummy_status;
fe0e4872
CL
5745 /* q = (int)(a * 512.0) */
5746 float64 q = float64_mul(float64_512, a, s);
5747 int64_t q_int = float64_to_int64_round_to_zero(q, s);
5748
5749 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
5750 q = int64_to_float64(q_int, s);
5751 q = float64_add(q, float64_half, s);
5752 q = float64_div(q, float64_512, s);
5753 q = float64_div(float64_one, q, s);
5754
5755 /* s = (int)(256.0 * r + 0.5) */
5756 q = float64_mul(q, float64_256, s);
5757 q = float64_add(q, float64_half, s);
5758 q_int = float64_to_int64_round_to_zero(q, s);
5759
5760 /* return (double)s / 256.0 */
5761 return float64_div(int64_to_float64(q_int, s), float64_256, s);
5762}
5763
b6d4443a
AB
5764/* Common wrapper to call recip_estimate */
5765static float64 call_recip_estimate(float64 num, int off, float_status *fpst)
4373f3ce 5766{
b6d4443a
AB
5767 uint64_t val64 = float64_val(num);
5768 uint64_t frac = extract64(val64, 0, 52);
5769 int64_t exp = extract64(val64, 52, 11);
5770 uint64_t sbit;
5771 float64 scaled, estimate;
fe0e4872 5772
b6d4443a
AB
5773 /* Generate the scaled number for the estimate function */
5774 if (exp == 0) {
5775 if (extract64(frac, 51, 1) == 0) {
5776 exp = -1;
5777 frac = extract64(frac, 0, 50) << 2;
5778 } else {
5779 frac = extract64(frac, 0, 51) << 1;
5780 }
5781 }
fe0e4872 5782
b6d4443a
AB
5783 /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
5784 scaled = make_float64((0x3feULL << 52)
5785 | extract64(frac, 44, 8) << 44);
5786
5787 estimate = recip_estimate(scaled, fpst);
5788
5789 /* Build new result */
5790 val64 = float64_val(estimate);
5791 sbit = 0x8000000000000000ULL & val64;
5792 exp = off - exp;
5793 frac = extract64(val64, 0, 52);
5794
5795 if (exp == 0) {
5796 frac = 1ULL << 51 | extract64(frac, 1, 51);
5797 } else if (exp == -1) {
5798 frac = 1ULL << 50 | extract64(frac, 2, 50);
5799 exp = 0;
5800 }
5801
5802 return make_float64(sbit | (exp << 52) | frac);
5803}
5804
5805static bool round_to_inf(float_status *fpst, bool sign_bit)
5806{
5807 switch (fpst->float_rounding_mode) {
5808 case float_round_nearest_even: /* Round to Nearest */
5809 return true;
5810 case float_round_up: /* Round to +Inf */
5811 return !sign_bit;
5812 case float_round_down: /* Round to -Inf */
5813 return sign_bit;
5814 case float_round_to_zero: /* Round to Zero */
5815 return false;
5816 }
5817
5818 g_assert_not_reached();
5819}
5820
5821float32 HELPER(recpe_f32)(float32 input, void *fpstp)
5822{
5823 float_status *fpst = fpstp;
5824 float32 f32 = float32_squash_input_denormal(input, fpst);
5825 uint32_t f32_val = float32_val(f32);
5826 uint32_t f32_sbit = 0x80000000ULL & f32_val;
5827 int32_t f32_exp = extract32(f32_val, 23, 8);
5828 uint32_t f32_frac = extract32(f32_val, 0, 23);
5829 float64 f64, r64;
5830 uint64_t r64_val;
5831 int64_t r64_exp;
5832 uint64_t r64_frac;
5833
5834 if (float32_is_any_nan(f32)) {
5835 float32 nan = f32;
5836 if (float32_is_signaling_nan(f32)) {
5837 float_raise(float_flag_invalid, fpst);
5838 nan = float32_maybe_silence_nan(f32);
fe0e4872 5839 }
b6d4443a
AB
5840 if (fpst->default_nan_mode) {
5841 nan = float32_default_nan;
43fe9bdb 5842 }
b6d4443a
AB
5843 return nan;
5844 } else if (float32_is_infinity(f32)) {
5845 return float32_set_sign(float32_zero, float32_is_neg(f32));
5846 } else if (float32_is_zero(f32)) {
5847 float_raise(float_flag_divbyzero, fpst);
5848 return float32_set_sign(float32_infinity, float32_is_neg(f32));
5849 } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) {
5850 /* Abs(value) < 2.0^-128 */
5851 float_raise(float_flag_overflow | float_flag_inexact, fpst);
5852 if (round_to_inf(fpst, f32_sbit)) {
5853 return float32_set_sign(float32_infinity, float32_is_neg(f32));
5854 } else {
5855 return float32_set_sign(float32_maxnorm, float32_is_neg(f32));
5856 }
5857 } else if (f32_exp >= 253 && fpst->flush_to_zero) {
5858 float_raise(float_flag_underflow, fpst);
5859 return float32_set_sign(float32_zero, float32_is_neg(f32));
fe0e4872
CL
5860 }
5861
fe0e4872 5862
b6d4443a
AB
5863 f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29);
5864 r64 = call_recip_estimate(f64, 253, fpst);
5865 r64_val = float64_val(r64);
5866 r64_exp = extract64(r64_val, 52, 11);
5867 r64_frac = extract64(r64_val, 0, 52);
5868
5869 /* result = sign : result_exp<7:0> : fraction<51:29>; */
5870 return make_float32(f32_sbit |
5871 (r64_exp & 0xff) << 23 |
5872 extract64(r64_frac, 29, 24));
5873}
5874
5875float64 HELPER(recpe_f64)(float64 input, void *fpstp)
5876{
5877 float_status *fpst = fpstp;
5878 float64 f64 = float64_squash_input_denormal(input, fpst);
5879 uint64_t f64_val = float64_val(f64);
5880 uint64_t f64_sbit = 0x8000000000000000ULL & f64_val;
5881 int64_t f64_exp = extract64(f64_val, 52, 11);
5882 float64 r64;
5883 uint64_t r64_val;
5884 int64_t r64_exp;
5885 uint64_t r64_frac;
5886
5887 /* Deal with any special cases */
5888 if (float64_is_any_nan(f64)) {
5889 float64 nan = f64;
5890 if (float64_is_signaling_nan(f64)) {
5891 float_raise(float_flag_invalid, fpst);
5892 nan = float64_maybe_silence_nan(f64);
5893 }
5894 if (fpst->default_nan_mode) {
5895 nan = float64_default_nan;
5896 }
5897 return nan;
5898 } else if (float64_is_infinity(f64)) {
5899 return float64_set_sign(float64_zero, float64_is_neg(f64));
5900 } else if (float64_is_zero(f64)) {
5901 float_raise(float_flag_divbyzero, fpst);
5902 return float64_set_sign(float64_infinity, float64_is_neg(f64));
5903 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
5904 /* Abs(value) < 2.0^-1024 */
5905 float_raise(float_flag_overflow | float_flag_inexact, fpst);
5906 if (round_to_inf(fpst, f64_sbit)) {
5907 return float64_set_sign(float64_infinity, float64_is_neg(f64));
5908 } else {
5909 return float64_set_sign(float64_maxnorm, float64_is_neg(f64));
5910 }
5911 } else if (f64_exp >= 1023 && fpst->flush_to_zero) {
5912 float_raise(float_flag_underflow, fpst);
5913 return float64_set_sign(float64_zero, float64_is_neg(f64));
5914 }
fe0e4872 5915
b6d4443a
AB
5916 r64 = call_recip_estimate(f64, 2045, fpst);
5917 r64_val = float64_val(r64);
5918 r64_exp = extract64(r64_val, 52, 11);
5919 r64_frac = extract64(r64_val, 0, 52);
fe0e4872 5920
b6d4443a
AB
5921 /* result = sign : result_exp<10:0> : fraction<51:0> */
5922 return make_float64(f64_sbit |
5923 ((r64_exp & 0x7ff) << 52) |
5924 r64_frac);
4373f3ce
PB
5925}
5926
e07be5d2
CL
5927/* The algorithm that must be used to calculate the estimate
5928 * is specified by the ARM ARM.
5929 */
c2fb418e 5930static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status)
e07be5d2 5931{
1146a817
PM
5932 /* These calculations mustn't set any fp exception flags,
5933 * so we use a local copy of the fp_status.
5934 */
c2fb418e 5935 float_status dummy_status = *real_fp_status;
1146a817 5936 float_status *s = &dummy_status;
e07be5d2
CL
5937 float64 q;
5938 int64_t q_int;
5939
5940 if (float64_lt(a, float64_half, s)) {
5941 /* range 0.25 <= a < 0.5 */
5942
5943 /* a in units of 1/512 rounded down */
5944 /* q0 = (int)(a * 512.0); */
5945 q = float64_mul(float64_512, a, s);
5946 q_int = float64_to_int64_round_to_zero(q, s);
5947
5948 /* reciprocal root r */
5949 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
5950 q = int64_to_float64(q_int, s);
5951 q = float64_add(q, float64_half, s);
5952 q = float64_div(q, float64_512, s);
5953 q = float64_sqrt(q, s);
5954 q = float64_div(float64_one, q, s);
5955 } else {
5956 /* range 0.5 <= a < 1.0 */
5957
5958 /* a in units of 1/256 rounded down */
5959 /* q1 = (int)(a * 256.0); */
5960 q = float64_mul(float64_256, a, s);
5961 int64_t q_int = float64_to_int64_round_to_zero(q, s);
5962
5963 /* reciprocal root r */
5964 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
5965 q = int64_to_float64(q_int, s);
5966 q = float64_add(q, float64_half, s);
5967 q = float64_div(q, float64_256, s);
5968 q = float64_sqrt(q, s);
5969 q = float64_div(float64_one, q, s);
5970 }
5971 /* r in units of 1/256 rounded to nearest */
5972 /* s = (int)(256.0 * r + 0.5); */
5973
5974 q = float64_mul(q, float64_256,s );
5975 q = float64_add(q, float64_half, s);
5976 q_int = float64_to_int64_round_to_zero(q, s);
5977
5978 /* return (double)s / 256.0;*/
5979 return float64_div(int64_to_float64(q_int, s), float64_256, s);
5980}
5981
c2fb418e 5982float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
4373f3ce 5983{
c2fb418e
AB
5984 float_status *s = fpstp;
5985 float32 f32 = float32_squash_input_denormal(input, s);
5986 uint32_t val = float32_val(f32);
5987 uint32_t f32_sbit = 0x80000000 & val;
5988 int32_t f32_exp = extract32(val, 23, 8);
5989 uint32_t f32_frac = extract32(val, 0, 23);
5990 uint64_t f64_frac;
5991 uint64_t val64;
e07be5d2
CL
5992 int result_exp;
5993 float64 f64;
e07be5d2 5994
c2fb418e
AB
5995 if (float32_is_any_nan(f32)) {
5996 float32 nan = f32;
5997 if (float32_is_signaling_nan(f32)) {
e07be5d2 5998 float_raise(float_flag_invalid, s);
c2fb418e 5999 nan = float32_maybe_silence_nan(f32);
e07be5d2 6000 }
c2fb418e
AB
6001 if (s->default_nan_mode) {
6002 nan = float32_default_nan;
43fe9bdb 6003 }
c2fb418e
AB
6004 return nan;
6005 } else if (float32_is_zero(f32)) {
e07be5d2 6006 float_raise(float_flag_divbyzero, s);
c2fb418e
AB
6007 return float32_set_sign(float32_infinity, float32_is_neg(f32));
6008 } else if (float32_is_neg(f32)) {
e07be5d2
CL
6009 float_raise(float_flag_invalid, s);
6010 return float32_default_nan;
c2fb418e 6011 } else if (float32_is_infinity(f32)) {
e07be5d2
CL
6012 return float32_zero;
6013 }
6014
c2fb418e 6015 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
e07be5d2 6016 * preserving the parity of the exponent. */
c2fb418e
AB
6017
6018 f64_frac = ((uint64_t) f32_frac) << 29;
6019 if (f32_exp == 0) {
6020 while (extract64(f64_frac, 51, 1) == 0) {
6021 f64_frac = f64_frac << 1;
6022 f32_exp = f32_exp-1;
6023 }
6024 f64_frac = extract64(f64_frac, 0, 51) << 1;
6025 }
6026
6027 if (extract64(f32_exp, 0, 1) == 0) {
6028 f64 = make_float64(((uint64_t) f32_sbit) << 32
e07be5d2 6029 | (0x3feULL << 52)
c2fb418e 6030 | f64_frac);
e07be5d2 6031 } else {
c2fb418e 6032 f64 = make_float64(((uint64_t) f32_sbit) << 32
e07be5d2 6033 | (0x3fdULL << 52)
c2fb418e 6034 | f64_frac);
e07be5d2
CL
6035 }
6036
c2fb418e 6037 result_exp = (380 - f32_exp) / 2;
e07be5d2 6038
c2fb418e 6039 f64 = recip_sqrt_estimate(f64, s);
e07be5d2
CL
6040
6041 val64 = float64_val(f64);
6042
26cc6abf 6043 val = ((result_exp & 0xff) << 23)
e07be5d2
CL
6044 | ((val64 >> 29) & 0x7fffff);
6045 return make_float32(val);
4373f3ce
PB
6046}
6047
c2fb418e
AB
6048float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
6049{
6050 float_status *s = fpstp;
6051 float64 f64 = float64_squash_input_denormal(input, s);
6052 uint64_t val = float64_val(f64);
6053 uint64_t f64_sbit = 0x8000000000000000ULL & val;
6054 int64_t f64_exp = extract64(val, 52, 11);
6055 uint64_t f64_frac = extract64(val, 0, 52);
6056 int64_t result_exp;
6057 uint64_t result_frac;
6058
6059 if (float64_is_any_nan(f64)) {
6060 float64 nan = f64;
6061 if (float64_is_signaling_nan(f64)) {
6062 float_raise(float_flag_invalid, s);
6063 nan = float64_maybe_silence_nan(f64);
6064 }
6065 if (s->default_nan_mode) {
6066 nan = float64_default_nan;
6067 }
6068 return nan;
6069 } else if (float64_is_zero(f64)) {
6070 float_raise(float_flag_divbyzero, s);
6071 return float64_set_sign(float64_infinity, float64_is_neg(f64));
6072 } else if (float64_is_neg(f64)) {
6073 float_raise(float_flag_invalid, s);
6074 return float64_default_nan;
6075 } else if (float64_is_infinity(f64)) {
6076 return float64_zero;
6077 }
6078
6079 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
6080 * preserving the parity of the exponent. */
6081
6082 if (f64_exp == 0) {
6083 while (extract64(f64_frac, 51, 1) == 0) {
6084 f64_frac = f64_frac << 1;
6085 f64_exp = f64_exp - 1;
6086 }
6087 f64_frac = extract64(f64_frac, 0, 51) << 1;
6088 }
6089
6090 if (extract64(f64_exp, 0, 1) == 0) {
6091 f64 = make_float64(f64_sbit
6092 | (0x3feULL << 52)
6093 | f64_frac);
6094 } else {
6095 f64 = make_float64(f64_sbit
6096 | (0x3fdULL << 52)
6097 | f64_frac);
6098 }
6099
6100 result_exp = (3068 - f64_exp) / 2;
6101
6102 f64 = recip_sqrt_estimate(f64, s);
6103
6104 result_frac = extract64(float64_val(f64), 0, 52);
6105
6106 return make_float64(f64_sbit |
6107 ((result_exp & 0x7ff) << 52) |
6108 result_frac);
6109}
6110
b6d4443a 6111uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
4373f3ce 6112{
b6d4443a 6113 float_status *s = fpstp;
fe0e4872
CL
6114 float64 f64;
6115
6116 if ((a & 0x80000000) == 0) {
6117 return 0xffffffff;
6118 }
6119
6120 f64 = make_float64((0x3feULL << 52)
6121 | ((int64_t)(a & 0x7fffffff) << 21));
6122
b6d4443a 6123 f64 = recip_estimate(f64, s);
fe0e4872
CL
6124
6125 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
4373f3ce
PB
6126}
6127
c2fb418e 6128uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
4373f3ce 6129{
c2fb418e 6130 float_status *fpst = fpstp;
e07be5d2
CL
6131 float64 f64;
6132
6133 if ((a & 0xc0000000) == 0) {
6134 return 0xffffffff;
6135 }
6136
6137 if (a & 0x80000000) {
6138 f64 = make_float64((0x3feULL << 52)
6139 | ((uint64_t)(a & 0x7fffffff) << 21));
6140 } else { /* bits 31-30 == '01' */
6141 f64 = make_float64((0x3fdULL << 52)
6142 | ((uint64_t)(a & 0x3fffffff) << 22));
6143 }
6144
c2fb418e 6145 f64 = recip_sqrt_estimate(f64, fpst);
e07be5d2
CL
6146
6147 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
4373f3ce 6148}
fe1479c3 6149
da97f52c
PM
6150/* VFPv4 fused multiply-accumulate */
6151float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
6152{
6153 float_status *fpst = fpstp;
6154 return float32_muladd(a, b, c, 0, fpst);
6155}
6156
6157float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
6158{
6159 float_status *fpst = fpstp;
6160 return float64_muladd(a, b, c, 0, fpst);
6161}
d9b0848d
PM
6162
6163/* ARMv8 round to integral */
6164float32 HELPER(rints_exact)(float32 x, void *fp_status)
6165{
6166 return float32_round_to_int(x, fp_status);
6167}
6168
6169float64 HELPER(rintd_exact)(float64 x, void *fp_status)
6170{
6171 return float64_round_to_int(x, fp_status);
6172}
6173
6174float32 HELPER(rints)(float32 x, void *fp_status)
6175{
6176 int old_flags = get_float_exception_flags(fp_status), new_flags;
6177 float32 ret;
6178
6179 ret = float32_round_to_int(x, fp_status);
6180
6181 /* Suppress any inexact exceptions the conversion produced */
6182 if (!(old_flags & float_flag_inexact)) {
6183 new_flags = get_float_exception_flags(fp_status);
6184 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
6185 }
6186
6187 return ret;
6188}
6189
6190float64 HELPER(rintd)(float64 x, void *fp_status)
6191{
6192 int old_flags = get_float_exception_flags(fp_status), new_flags;
6193 float64 ret;
6194
6195 ret = float64_round_to_int(x, fp_status);
6196
6197 new_flags = get_float_exception_flags(fp_status);
6198
6199 /* Suppress any inexact exceptions the conversion produced */
6200 if (!(old_flags & float_flag_inexact)) {
6201 new_flags = get_float_exception_flags(fp_status);
6202 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
6203 }
6204
6205 return ret;
6206}
9972da66
WN
6207
6208/* Convert ARM rounding mode to softfloat */
6209int arm_rmode_to_sf(int rmode)
6210{
6211 switch (rmode) {
6212 case FPROUNDING_TIEAWAY:
6213 rmode = float_round_ties_away;
6214 break;
6215 case FPROUNDING_ODD:
6216 /* FIXME: add support for TIEAWAY and ODD */
6217 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
6218 rmode);
6219 case FPROUNDING_TIEEVEN:
6220 default:
6221 rmode = float_round_nearest_even;
6222 break;
6223 case FPROUNDING_POSINF:
6224 rmode = float_round_up;
6225 break;
6226 case FPROUNDING_NEGINF:
6227 rmode = float_round_down;
6228 break;
6229 case FPROUNDING_ZERO:
6230 rmode = float_round_to_zero;
6231 break;
6232 }
6233 return rmode;
6234}
eb0ecd5a 6235
aa633469
PM
6236/* CRC helpers.
6237 * The upper bytes of val (above the number specified by 'bytes') must have
6238 * been zeroed out by the caller.
6239 */
eb0ecd5a
WN
6240uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
6241{
6242 uint8_t buf[4];
6243
aa633469 6244 stl_le_p(buf, val);
eb0ecd5a
WN
6245
6246 /* zlib crc32 converts the accumulator and output to one's complement. */
6247 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
6248}
6249
6250uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
6251{
6252 uint8_t buf[4];
6253
aa633469 6254 stl_le_p(buf, val);
eb0ecd5a
WN
6255
6256 /* Linux crc32c converts the output to one's complement. */
6257 return crc32c(acc, buf, bytes) ^ 0xffffffff;
6258}
This page took 1.804107 seconds and 4 git commands to generate.