]>
Commit | Line | Data |
---|---|---|
b5ff1b31 | 1 | #include "cpu.h" |
ccd38087 | 2 | #include "internals.h" |
022c62cb | 3 | #include "exec/gdbstub.h" |
2ef6175a | 4 | #include "exec/helper-proto.h" |
1de7afc9 | 5 | #include "qemu/host-utils.h" |
78027bb6 | 6 | #include "sysemu/arch_init.h" |
9c17d615 | 7 | #include "sysemu/sysemu.h" |
1de7afc9 | 8 | #include "qemu/bitops.h" |
eb0ecd5a | 9 | #include "qemu/crc32c.h" |
f08b6170 | 10 | #include "exec/cpu_ldst.h" |
1d854765 | 11 | #include "arm_ldst.h" |
eb0ecd5a | 12 | #include <zlib.h> /* For crc32 */ |
0b03bdfc | 13 | |
4a501606 | 14 | #ifndef CONFIG_USER_ONLY |
2c8dd318 | 15 | static inline int get_phys_addr(CPUARMState *env, target_ulong address, |
4a501606 | 16 | int access_type, int is_user, |
a8170e5e | 17 | hwaddr *phys_ptr, int *prot, |
4a501606 | 18 | target_ulong *page_size); |
7c2cb42b AF |
19 | |
20 | /* Definitions for the PMCCNTR and PMCR registers */ | |
21 | #define PMCRD 0x8 | |
22 | #define PMCRC 0x4 | |
23 | #define PMCRE 0x1 | |
4a501606 PM |
24 | #endif |
25 | ||
0ecb72a5 | 26 | static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) |
56aebc89 PB |
27 | { |
28 | int nregs; | |
29 | ||
30 | /* VFP data registers are always little-endian. */ | |
31 | nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; | |
32 | if (reg < nregs) { | |
33 | stfq_le_p(buf, env->vfp.regs[reg]); | |
34 | return 8; | |
35 | } | |
36 | if (arm_feature(env, ARM_FEATURE_NEON)) { | |
37 | /* Aliases for Q regs. */ | |
38 | nregs += 16; | |
39 | if (reg < nregs) { | |
40 | stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]); | |
41 | stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]); | |
42 | return 16; | |
43 | } | |
44 | } | |
45 | switch (reg - nregs) { | |
46 | case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4; | |
47 | case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4; | |
48 | case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4; | |
49 | } | |
50 | return 0; | |
51 | } | |
52 | ||
0ecb72a5 | 53 | static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) |
56aebc89 PB |
54 | { |
55 | int nregs; | |
56 | ||
57 | nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; | |
58 | if (reg < nregs) { | |
59 | env->vfp.regs[reg] = ldfq_le_p(buf); | |
60 | return 8; | |
61 | } | |
62 | if (arm_feature(env, ARM_FEATURE_NEON)) { | |
63 | nregs += 16; | |
64 | if (reg < nregs) { | |
65 | env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf); | |
66 | env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8); | |
67 | return 16; | |
68 | } | |
69 | } | |
70 | switch (reg - nregs) { | |
71 | case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; | |
72 | case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4; | |
71b3c3de | 73 | case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; |
56aebc89 PB |
74 | } |
75 | return 0; | |
76 | } | |
77 | ||
6a669427 PM |
78 | static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) |
79 | { | |
80 | switch (reg) { | |
81 | case 0 ... 31: | |
82 | /* 128 bit FP register */ | |
83 | stfq_le_p(buf, env->vfp.regs[reg * 2]); | |
84 | stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]); | |
85 | return 16; | |
86 | case 32: | |
87 | /* FPSR */ | |
88 | stl_p(buf, vfp_get_fpsr(env)); | |
89 | return 4; | |
90 | case 33: | |
91 | /* FPCR */ | |
92 | stl_p(buf, vfp_get_fpcr(env)); | |
93 | return 4; | |
94 | default: | |
95 | return 0; | |
96 | } | |
97 | } | |
98 | ||
99 | static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) | |
100 | { | |
101 | switch (reg) { | |
102 | case 0 ... 31: | |
103 | /* 128 bit FP register */ | |
104 | env->vfp.regs[reg * 2] = ldfq_le_p(buf); | |
105 | env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8); | |
106 | return 16; | |
107 | case 32: | |
108 | /* FPSR */ | |
109 | vfp_set_fpsr(env, ldl_p(buf)); | |
110 | return 4; | |
111 | case 33: | |
112 | /* FPCR */ | |
113 | vfp_set_fpcr(env, ldl_p(buf)); | |
114 | return 4; | |
115 | default: | |
116 | return 0; | |
117 | } | |
118 | } | |
119 | ||
c4241c7d | 120 | static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) |
d4e6df63 | 121 | { |
67ed771d | 122 | if (cpreg_field_is_64bit(ri)) { |
c4241c7d | 123 | return CPREG_FIELD64(env, ri); |
22d9e1a9 | 124 | } else { |
c4241c7d | 125 | return CPREG_FIELD32(env, ri); |
22d9e1a9 | 126 | } |
d4e6df63 PM |
127 | } |
128 | ||
c4241c7d PM |
129 | static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, |
130 | uint64_t value) | |
d4e6df63 | 131 | { |
67ed771d | 132 | if (cpreg_field_is_64bit(ri)) { |
22d9e1a9 PM |
133 | CPREG_FIELD64(env, ri) = value; |
134 | } else { | |
135 | CPREG_FIELD32(env, ri) = value; | |
136 | } | |
d4e6df63 PM |
137 | } |
138 | ||
59a1c327 | 139 | static uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) |
721fae12 | 140 | { |
59a1c327 | 141 | /* Raw read of a coprocessor register (as needed for migration, etc). */ |
721fae12 | 142 | if (ri->type & ARM_CP_CONST) { |
59a1c327 | 143 | return ri->resetvalue; |
721fae12 | 144 | } else if (ri->raw_readfn) { |
59a1c327 | 145 | return ri->raw_readfn(env, ri); |
721fae12 | 146 | } else if (ri->readfn) { |
59a1c327 | 147 | return ri->readfn(env, ri); |
721fae12 | 148 | } else { |
59a1c327 | 149 | return raw_read(env, ri); |
721fae12 | 150 | } |
721fae12 PM |
151 | } |
152 | ||
59a1c327 | 153 | static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, |
7900e9f1 | 154 | uint64_t v) |
721fae12 PM |
155 | { |
156 | /* Raw write of a coprocessor register (as needed for migration, etc). | |
721fae12 PM |
157 | * Note that constant registers are treated as write-ignored; the |
158 | * caller should check for success by whether a readback gives the | |
159 | * value written. | |
160 | */ | |
161 | if (ri->type & ARM_CP_CONST) { | |
59a1c327 | 162 | return; |
721fae12 | 163 | } else if (ri->raw_writefn) { |
c4241c7d | 164 | ri->raw_writefn(env, ri, v); |
721fae12 | 165 | } else if (ri->writefn) { |
c4241c7d | 166 | ri->writefn(env, ri, v); |
721fae12 | 167 | } else { |
afb2530f | 168 | raw_write(env, ri, v); |
721fae12 | 169 | } |
721fae12 PM |
170 | } |
171 | ||
172 | bool write_cpustate_to_list(ARMCPU *cpu) | |
173 | { | |
174 | /* Write the coprocessor state from cpu->env to the (index,value) list. */ | |
175 | int i; | |
176 | bool ok = true; | |
177 | ||
178 | for (i = 0; i < cpu->cpreg_array_len; i++) { | |
179 | uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); | |
180 | const ARMCPRegInfo *ri; | |
59a1c327 | 181 | |
60322b39 | 182 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
721fae12 PM |
183 | if (!ri) { |
184 | ok = false; | |
185 | continue; | |
186 | } | |
187 | if (ri->type & ARM_CP_NO_MIGRATE) { | |
188 | continue; | |
189 | } | |
59a1c327 | 190 | cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri); |
721fae12 PM |
191 | } |
192 | return ok; | |
193 | } | |
194 | ||
195 | bool write_list_to_cpustate(ARMCPU *cpu) | |
196 | { | |
197 | int i; | |
198 | bool ok = true; | |
199 | ||
200 | for (i = 0; i < cpu->cpreg_array_len; i++) { | |
201 | uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); | |
202 | uint64_t v = cpu->cpreg_values[i]; | |
721fae12 PM |
203 | const ARMCPRegInfo *ri; |
204 | ||
60322b39 | 205 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
721fae12 PM |
206 | if (!ri) { |
207 | ok = false; | |
208 | continue; | |
209 | } | |
210 | if (ri->type & ARM_CP_NO_MIGRATE) { | |
211 | continue; | |
212 | } | |
213 | /* Write value and confirm it reads back as written | |
214 | * (to catch read-only registers and partially read-only | |
215 | * registers where the incoming migration value doesn't match) | |
216 | */ | |
59a1c327 PM |
217 | write_raw_cp_reg(&cpu->env, ri, v); |
218 | if (read_raw_cp_reg(&cpu->env, ri) != v) { | |
721fae12 PM |
219 | ok = false; |
220 | } | |
221 | } | |
222 | return ok; | |
223 | } | |
224 | ||
225 | static void add_cpreg_to_list(gpointer key, gpointer opaque) | |
226 | { | |
227 | ARMCPU *cpu = opaque; | |
228 | uint64_t regidx; | |
229 | const ARMCPRegInfo *ri; | |
230 | ||
231 | regidx = *(uint32_t *)key; | |
60322b39 | 232 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
721fae12 PM |
233 | |
234 | if (!(ri->type & ARM_CP_NO_MIGRATE)) { | |
235 | cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); | |
236 | /* The value array need not be initialized at this point */ | |
237 | cpu->cpreg_array_len++; | |
238 | } | |
239 | } | |
240 | ||
241 | static void count_cpreg(gpointer key, gpointer opaque) | |
242 | { | |
243 | ARMCPU *cpu = opaque; | |
244 | uint64_t regidx; | |
245 | const ARMCPRegInfo *ri; | |
246 | ||
247 | regidx = *(uint32_t *)key; | |
60322b39 | 248 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
721fae12 PM |
249 | |
250 | if (!(ri->type & ARM_CP_NO_MIGRATE)) { | |
251 | cpu->cpreg_array_len++; | |
252 | } | |
253 | } | |
254 | ||
255 | static gint cpreg_key_compare(gconstpointer a, gconstpointer b) | |
256 | { | |
cbf239b7 AR |
257 | uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); |
258 | uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); | |
721fae12 | 259 | |
cbf239b7 AR |
260 | if (aidx > bidx) { |
261 | return 1; | |
262 | } | |
263 | if (aidx < bidx) { | |
264 | return -1; | |
265 | } | |
266 | return 0; | |
721fae12 PM |
267 | } |
268 | ||
82a3a118 PM |
269 | static void cpreg_make_keylist(gpointer key, gpointer value, gpointer udata) |
270 | { | |
271 | GList **plist = udata; | |
272 | ||
273 | *plist = g_list_prepend(*plist, key); | |
274 | } | |
275 | ||
721fae12 PM |
276 | void init_cpreg_list(ARMCPU *cpu) |
277 | { | |
278 | /* Initialise the cpreg_tuples[] array based on the cp_regs hash. | |
279 | * Note that we require cpreg_tuples[] to be sorted by key ID. | |
280 | */ | |
82a3a118 | 281 | GList *keys = NULL; |
721fae12 PM |
282 | int arraylen; |
283 | ||
82a3a118 PM |
284 | g_hash_table_foreach(cpu->cp_regs, cpreg_make_keylist, &keys); |
285 | ||
721fae12 PM |
286 | keys = g_list_sort(keys, cpreg_key_compare); |
287 | ||
288 | cpu->cpreg_array_len = 0; | |
289 | ||
290 | g_list_foreach(keys, count_cpreg, cpu); | |
291 | ||
292 | arraylen = cpu->cpreg_array_len; | |
293 | cpu->cpreg_indexes = g_new(uint64_t, arraylen); | |
294 | cpu->cpreg_values = g_new(uint64_t, arraylen); | |
295 | cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); | |
296 | cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); | |
297 | cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; | |
298 | cpu->cpreg_array_len = 0; | |
299 | ||
300 | g_list_foreach(keys, add_cpreg_to_list, cpu); | |
301 | ||
302 | assert(cpu->cpreg_array_len == arraylen); | |
303 | ||
304 | g_list_free(keys); | |
305 | } | |
306 | ||
c4241c7d | 307 | static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
c983fe6c | 308 | { |
00c8cb0a AF |
309 | ARMCPU *cpu = arm_env_get_cpu(env); |
310 | ||
8d5c773e | 311 | raw_write(env, ri, value); |
00c8cb0a | 312 | tlb_flush(CPU(cpu), 1); /* Flush TLB as domain not tracked in TLB */ |
c983fe6c PM |
313 | } |
314 | ||
c4241c7d | 315 | static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
08de207b | 316 | { |
00c8cb0a AF |
317 | ARMCPU *cpu = arm_env_get_cpu(env); |
318 | ||
8d5c773e | 319 | if (raw_read(env, ri) != value) { |
08de207b PM |
320 | /* Unlike real hardware the qemu TLB uses virtual addresses, |
321 | * not modified virtual addresses, so this causes a TLB flush. | |
322 | */ | |
00c8cb0a | 323 | tlb_flush(CPU(cpu), 1); |
8d5c773e | 324 | raw_write(env, ri, value); |
08de207b | 325 | } |
08de207b | 326 | } |
c4241c7d PM |
327 | |
328 | static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
329 | uint64_t value) | |
08de207b | 330 | { |
00c8cb0a AF |
331 | ARMCPU *cpu = arm_env_get_cpu(env); |
332 | ||
8d5c773e | 333 | if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_MPU) |
014406b5 | 334 | && !extended_addresses_enabled(env)) { |
08de207b PM |
335 | /* For VMSA (when not using the LPAE long descriptor page table |
336 | * format) this register includes the ASID, so do a TLB flush. | |
337 | * For PMSA it is purely a process ID and no action is needed. | |
338 | */ | |
00c8cb0a | 339 | tlb_flush(CPU(cpu), 1); |
08de207b | 340 | } |
8d5c773e | 341 | raw_write(env, ri, value); |
08de207b PM |
342 | } |
343 | ||
c4241c7d PM |
344 | static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, |
345 | uint64_t value) | |
d929823f PM |
346 | { |
347 | /* Invalidate all (TLBIALL) */ | |
00c8cb0a AF |
348 | ARMCPU *cpu = arm_env_get_cpu(env); |
349 | ||
350 | tlb_flush(CPU(cpu), 1); | |
d929823f PM |
351 | } |
352 | ||
c4241c7d PM |
353 | static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, |
354 | uint64_t value) | |
d929823f PM |
355 | { |
356 | /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ | |
31b030d4 AF |
357 | ARMCPU *cpu = arm_env_get_cpu(env); |
358 | ||
359 | tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); | |
d929823f PM |
360 | } |
361 | ||
c4241c7d PM |
362 | static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, |
363 | uint64_t value) | |
d929823f PM |
364 | { |
365 | /* Invalidate by ASID (TLBIASID) */ | |
00c8cb0a AF |
366 | ARMCPU *cpu = arm_env_get_cpu(env); |
367 | ||
368 | tlb_flush(CPU(cpu), value == 0); | |
d929823f PM |
369 | } |
370 | ||
c4241c7d PM |
371 | static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, |
372 | uint64_t value) | |
d929823f PM |
373 | { |
374 | /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ | |
31b030d4 AF |
375 | ARMCPU *cpu = arm_env_get_cpu(env); |
376 | ||
377 | tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); | |
d929823f PM |
378 | } |
379 | ||
fa439fc5 PM |
380 | /* IS variants of TLB operations must affect all cores */ |
381 | static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
382 | uint64_t value) | |
383 | { | |
384 | CPUState *other_cs; | |
385 | ||
386 | CPU_FOREACH(other_cs) { | |
387 | tlb_flush(other_cs, 1); | |
388 | } | |
389 | } | |
390 | ||
391 | static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
392 | uint64_t value) | |
393 | { | |
394 | CPUState *other_cs; | |
395 | ||
396 | CPU_FOREACH(other_cs) { | |
397 | tlb_flush(other_cs, value == 0); | |
398 | } | |
399 | } | |
400 | ||
401 | static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
402 | uint64_t value) | |
403 | { | |
404 | CPUState *other_cs; | |
405 | ||
406 | CPU_FOREACH(other_cs) { | |
407 | tlb_flush_page(other_cs, value & TARGET_PAGE_MASK); | |
408 | } | |
409 | } | |
410 | ||
411 | static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
412 | uint64_t value) | |
413 | { | |
414 | CPUState *other_cs; | |
415 | ||
416 | CPU_FOREACH(other_cs) { | |
417 | tlb_flush_page(other_cs, value & TARGET_PAGE_MASK); | |
418 | } | |
419 | } | |
420 | ||
e9aa6c21 | 421 | static const ARMCPRegInfo cp_reginfo[] = { |
08de207b PM |
422 | { .name = "FCSEIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 0, |
423 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse), | |
d4e6df63 | 424 | .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, |
014406b5 PM |
425 | { .name = "CONTEXTIDR", .state = ARM_CP_STATE_BOTH, |
426 | .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, | |
427 | .access = PL1_RW, | |
428 | .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el1), | |
d4e6df63 | 429 | .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, |
9449fdf6 PM |
430 | REGINFO_SENTINEL |
431 | }; | |
432 | ||
433 | static const ARMCPRegInfo not_v8_cp_reginfo[] = { | |
434 | /* NB: Some of these registers exist in v8 but with more precise | |
435 | * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). | |
436 | */ | |
437 | /* MMU Domain access control / MPU write buffer control */ | |
438 | { .name = "DACR", .cp = 15, | |
439 | .crn = 3, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, | |
440 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c3), | |
441 | .resetvalue = 0, .writefn = dacr_write, .raw_writefn = raw_write, }, | |
4fdd17dd PM |
442 | /* ??? This covers not just the impdef TLB lockdown registers but also |
443 | * some v7VMSA registers relating to TEX remap, so it is overly broad. | |
444 | */ | |
445 | { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = CP_ANY, | |
446 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, | |
c4804214 PM |
447 | /* Cache maintenance ops; some of this space may be overridden later. */ |
448 | { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, | |
449 | .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, | |
450 | .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, | |
e9aa6c21 PM |
451 | REGINFO_SENTINEL |
452 | }; | |
453 | ||
7d57f408 PM |
454 | static const ARMCPRegInfo not_v6_cp_reginfo[] = { |
455 | /* Not all pre-v6 cores implemented this WFI, so this is slightly | |
456 | * over-broad. | |
457 | */ | |
458 | { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, | |
459 | .access = PL1_W, .type = ARM_CP_WFI }, | |
460 | REGINFO_SENTINEL | |
461 | }; | |
462 | ||
463 | static const ARMCPRegInfo not_v7_cp_reginfo[] = { | |
464 | /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which | |
465 | * is UNPREDICTABLE; we choose to NOP as most implementations do). | |
466 | */ | |
467 | { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, | |
468 | .access = PL1_W, .type = ARM_CP_WFI }, | |
34f90529 PM |
469 | /* L1 cache lockdown. Not architectural in v6 and earlier but in practice |
470 | * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and | |
471 | * OMAPCP will override this space. | |
472 | */ | |
473 | { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, | |
474 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), | |
475 | .resetvalue = 0 }, | |
476 | { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, | |
477 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), | |
478 | .resetvalue = 0 }, | |
776d4e5c PM |
479 | /* v6 doesn't have the cache ID registers but Linux reads them anyway */ |
480 | { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, | |
d4e6df63 PM |
481 | .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE, |
482 | .resetvalue = 0 }, | |
50300698 PM |
483 | /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; |
484 | * implementing it as RAZ means the "debug architecture version" bits | |
485 | * will read as a reserved value, which should cause Linux to not try | |
486 | * to use the debug hardware. | |
487 | */ | |
488 | { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, | |
489 | .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
995939a6 PM |
490 | /* MMU TLB control. Note that the wildcarding means we cover not just |
491 | * the unified TLB ops but also the dside/iside/inner-shareable variants. | |
492 | */ | |
493 | { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, | |
494 | .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, | |
495 | .type = ARM_CP_NO_MIGRATE }, | |
496 | { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, | |
497 | .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, | |
498 | .type = ARM_CP_NO_MIGRATE }, | |
499 | { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, | |
500 | .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, | |
501 | .type = ARM_CP_NO_MIGRATE }, | |
502 | { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, | |
503 | .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, | |
504 | .type = ARM_CP_NO_MIGRATE }, | |
7d57f408 PM |
505 | REGINFO_SENTINEL |
506 | }; | |
507 | ||
c4241c7d PM |
508 | static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
509 | uint64_t value) | |
2771db27 | 510 | { |
f0aff255 FA |
511 | uint32_t mask = 0; |
512 | ||
513 | /* In ARMv8 most bits of CPACR_EL1 are RES0. */ | |
514 | if (!arm_feature(env, ARM_FEATURE_V8)) { | |
515 | /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. | |
516 | * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. | |
517 | * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. | |
518 | */ | |
519 | if (arm_feature(env, ARM_FEATURE_VFP)) { | |
520 | /* VFP coprocessor: cp10 & cp11 [23:20] */ | |
521 | mask |= (1 << 31) | (1 << 30) | (0xf << 20); | |
522 | ||
523 | if (!arm_feature(env, ARM_FEATURE_NEON)) { | |
524 | /* ASEDIS [31] bit is RAO/WI */ | |
525 | value |= (1 << 31); | |
526 | } | |
527 | ||
528 | /* VFPv3 and upwards with NEON implement 32 double precision | |
529 | * registers (D0-D31). | |
530 | */ | |
531 | if (!arm_feature(env, ARM_FEATURE_NEON) || | |
532 | !arm_feature(env, ARM_FEATURE_VFP3)) { | |
533 | /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ | |
534 | value |= (1 << 30); | |
535 | } | |
536 | } | |
537 | value &= mask; | |
2771db27 | 538 | } |
f0aff255 | 539 | env->cp15.c1_coproc = value; |
2771db27 PM |
540 | } |
541 | ||
7d57f408 PM |
542 | static const ARMCPRegInfo v6_cp_reginfo[] = { |
543 | /* prefetch by MVA in v6, NOP in v7 */ | |
544 | { .name = "MVA_prefetch", | |
545 | .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, | |
546 | .access = PL1_W, .type = ARM_CP_NOP }, | |
547 | { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, | |
548 | .access = PL0_W, .type = ARM_CP_NOP }, | |
091fd17c | 549 | { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, |
7d57f408 | 550 | .access = PL0_W, .type = ARM_CP_NOP }, |
091fd17c | 551 | { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, |
7d57f408 | 552 | .access = PL0_W, .type = ARM_CP_NOP }, |
06d76f31 | 553 | { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, |
6cd8a264 | 554 | .access = PL1_RW, |
2f0180c5 | 555 | .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[1]), |
06d76f31 PM |
556 | .resetvalue = 0, }, |
557 | /* Watchpoint Fault Address Register : should actually only be present | |
558 | * for 1136, 1176, 11MPCore. | |
559 | */ | |
560 | { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, | |
561 | .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, | |
34222fb8 PM |
562 | { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, |
563 | .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, | |
2771db27 PM |
564 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_coproc), |
565 | .resetvalue = 0, .writefn = cpacr_write }, | |
7d57f408 PM |
566 | REGINFO_SENTINEL |
567 | }; | |
568 | ||
fcd25206 | 569 | static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri) |
200ac0ef | 570 | { |
3b163b01 | 571 | /* Performance monitor registers user accessibility is controlled |
fcd25206 | 572 | * by PMUSERENR. |
200ac0ef | 573 | */ |
dcbff19b | 574 | if (arm_current_el(env) == 0 && !env->cp15.c9_pmuserenr) { |
fcd25206 | 575 | return CP_ACCESS_TRAP; |
200ac0ef | 576 | } |
fcd25206 | 577 | return CP_ACCESS_OK; |
200ac0ef PM |
578 | } |
579 | ||
7c2cb42b | 580 | #ifndef CONFIG_USER_ONLY |
87124fde AF |
581 | |
582 | static inline bool arm_ccnt_enabled(CPUARMState *env) | |
583 | { | |
584 | /* This does not support checking PMCCFILTR_EL0 register */ | |
585 | ||
586 | if (!(env->cp15.c9_pmcr & PMCRE)) { | |
587 | return false; | |
588 | } | |
589 | ||
590 | return true; | |
591 | } | |
592 | ||
ec7b4ce4 AF |
593 | void pmccntr_sync(CPUARMState *env) |
594 | { | |
595 | uint64_t temp_ticks; | |
596 | ||
597 | temp_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL), | |
598 | get_ticks_per_sec(), 1000000); | |
599 | ||
600 | if (env->cp15.c9_pmcr & PMCRD) { | |
601 | /* Increment once every 64 processor clock cycles */ | |
602 | temp_ticks /= 64; | |
603 | } | |
604 | ||
605 | if (arm_ccnt_enabled(env)) { | |
606 | env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt; | |
607 | } | |
608 | } | |
609 | ||
c4241c7d PM |
610 | static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
611 | uint64_t value) | |
200ac0ef | 612 | { |
942a155b | 613 | pmccntr_sync(env); |
7c2cb42b AF |
614 | |
615 | if (value & PMCRC) { | |
616 | /* The counter has been reset */ | |
617 | env->cp15.c15_ccnt = 0; | |
618 | } | |
619 | ||
200ac0ef PM |
620 | /* only the DP, X, D and E bits are writable */ |
621 | env->cp15.c9_pmcr &= ~0x39; | |
622 | env->cp15.c9_pmcr |= (value & 0x39); | |
7c2cb42b | 623 | |
942a155b | 624 | pmccntr_sync(env); |
7c2cb42b AF |
625 | } |
626 | ||
627 | static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
628 | { | |
c92c0687 | 629 | uint64_t total_ticks; |
7c2cb42b | 630 | |
942a155b | 631 | if (!arm_ccnt_enabled(env)) { |
7c2cb42b AF |
632 | /* Counter is disabled, do not change value */ |
633 | return env->cp15.c15_ccnt; | |
634 | } | |
635 | ||
c92c0687 AF |
636 | total_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL), |
637 | get_ticks_per_sec(), 1000000); | |
7c2cb42b AF |
638 | |
639 | if (env->cp15.c9_pmcr & PMCRD) { | |
640 | /* Increment once every 64 processor clock cycles */ | |
641 | total_ticks /= 64; | |
642 | } | |
643 | return total_ticks - env->cp15.c15_ccnt; | |
644 | } | |
645 | ||
646 | static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
647 | uint64_t value) | |
648 | { | |
c92c0687 | 649 | uint64_t total_ticks; |
7c2cb42b | 650 | |
942a155b | 651 | if (!arm_ccnt_enabled(env)) { |
7c2cb42b AF |
652 | /* Counter is disabled, set the absolute value */ |
653 | env->cp15.c15_ccnt = value; | |
654 | return; | |
655 | } | |
656 | ||
c92c0687 AF |
657 | total_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL), |
658 | get_ticks_per_sec(), 1000000); | |
7c2cb42b AF |
659 | |
660 | if (env->cp15.c9_pmcr & PMCRD) { | |
661 | /* Increment once every 64 processor clock cycles */ | |
662 | total_ticks /= 64; | |
663 | } | |
664 | env->cp15.c15_ccnt = total_ticks - value; | |
200ac0ef | 665 | } |
421c7ebd PC |
666 | |
667 | static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, | |
668 | uint64_t value) | |
669 | { | |
670 | uint64_t cur_val = pmccntr_read(env, NULL); | |
671 | ||
672 | pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); | |
673 | } | |
674 | ||
ec7b4ce4 AF |
675 | #else /* CONFIG_USER_ONLY */ |
676 | ||
677 | void pmccntr_sync(CPUARMState *env) | |
678 | { | |
679 | } | |
680 | ||
7c2cb42b | 681 | #endif |
200ac0ef | 682 | |
0614601c AF |
683 | static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
684 | uint64_t value) | |
685 | { | |
686 | pmccntr_sync(env); | |
687 | env->cp15.pmccfiltr_el0 = value & 0x7E000000; | |
688 | pmccntr_sync(env); | |
689 | } | |
690 | ||
c4241c7d | 691 | static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, |
200ac0ef PM |
692 | uint64_t value) |
693 | { | |
200ac0ef PM |
694 | value &= (1 << 31); |
695 | env->cp15.c9_pmcnten |= value; | |
200ac0ef PM |
696 | } |
697 | ||
c4241c7d PM |
698 | static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
699 | uint64_t value) | |
200ac0ef | 700 | { |
200ac0ef PM |
701 | value &= (1 << 31); |
702 | env->cp15.c9_pmcnten &= ~value; | |
200ac0ef PM |
703 | } |
704 | ||
c4241c7d PM |
705 | static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
706 | uint64_t value) | |
200ac0ef | 707 | { |
200ac0ef | 708 | env->cp15.c9_pmovsr &= ~value; |
200ac0ef PM |
709 | } |
710 | ||
c4241c7d PM |
711 | static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, |
712 | uint64_t value) | |
200ac0ef | 713 | { |
200ac0ef | 714 | env->cp15.c9_pmxevtyper = value & 0xff; |
200ac0ef PM |
715 | } |
716 | ||
c4241c7d | 717 | static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
200ac0ef PM |
718 | uint64_t value) |
719 | { | |
720 | env->cp15.c9_pmuserenr = value & 1; | |
200ac0ef PM |
721 | } |
722 | ||
c4241c7d PM |
723 | static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, |
724 | uint64_t value) | |
200ac0ef PM |
725 | { |
726 | /* We have no event counters so only the C bit can be changed */ | |
727 | value &= (1 << 31); | |
728 | env->cp15.c9_pminten |= value; | |
200ac0ef PM |
729 | } |
730 | ||
c4241c7d PM |
731 | static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
732 | uint64_t value) | |
200ac0ef PM |
733 | { |
734 | value &= (1 << 31); | |
735 | env->cp15.c9_pminten &= ~value; | |
200ac0ef PM |
736 | } |
737 | ||
c4241c7d PM |
738 | static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, |
739 | uint64_t value) | |
8641136c | 740 | { |
a505d7fe PM |
741 | /* Note that even though the AArch64 view of this register has bits |
742 | * [10:0] all RES0 we can only mask the bottom 5, to comply with the | |
743 | * architectural requirements for bits which are RES0 only in some | |
744 | * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 | |
745 | * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) | |
746 | */ | |
855ea66d | 747 | raw_write(env, ri, value & ~0x1FULL); |
8641136c NR |
748 | } |
749 | ||
64e0e2de EI |
750 | static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
751 | { | |
752 | /* We only mask off bits that are RES0 both for AArch64 and AArch32. | |
753 | * For bits that vary between AArch32/64, code needs to check the | |
754 | * current execution mode before directly using the feature bit. | |
755 | */ | |
756 | uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK; | |
757 | ||
758 | if (!arm_feature(env, ARM_FEATURE_EL2)) { | |
759 | valid_mask &= ~SCR_HCE; | |
760 | ||
761 | /* On ARMv7, SMD (or SCD as it is called in v7) is only | |
762 | * supported if EL2 exists. The bit is UNK/SBZP when | |
763 | * EL2 is unavailable. In QEMU ARMv7, we force it to always zero | |
764 | * when EL2 is unavailable. | |
765 | */ | |
766 | if (arm_feature(env, ARM_FEATURE_V7)) { | |
767 | valid_mask &= ~SCR_SMD; | |
768 | } | |
769 | } | |
770 | ||
771 | /* Clear all-context RES0 bits. */ | |
772 | value &= valid_mask; | |
773 | raw_write(env, ri, value); | |
774 | } | |
775 | ||
c4241c7d | 776 | static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
776d4e5c PM |
777 | { |
778 | ARMCPU *cpu = arm_env_get_cpu(env); | |
c4241c7d | 779 | return cpu->ccsidr[env->cp15.c0_cssel]; |
776d4e5c PM |
780 | } |
781 | ||
c4241c7d PM |
782 | static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
783 | uint64_t value) | |
776d4e5c | 784 | { |
8d5c773e | 785 | raw_write(env, ri, value & 0xf); |
776d4e5c PM |
786 | } |
787 | ||
1090b9c6 PM |
788 | static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
789 | { | |
790 | CPUState *cs = ENV_GET_CPU(env); | |
791 | uint64_t ret = 0; | |
792 | ||
793 | if (cs->interrupt_request & CPU_INTERRUPT_HARD) { | |
794 | ret |= CPSR_I; | |
795 | } | |
796 | if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { | |
797 | ret |= CPSR_F; | |
798 | } | |
799 | /* External aborts are not possible in QEMU so A bit is always clear */ | |
800 | return ret; | |
801 | } | |
802 | ||
e9aa6c21 | 803 | static const ARMCPRegInfo v7_cp_reginfo[] = { |
7d57f408 PM |
804 | /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ |
805 | { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, | |
806 | .access = PL1_W, .type = ARM_CP_NOP }, | |
200ac0ef PM |
807 | /* Performance monitors are implementation defined in v7, |
808 | * but with an ARM recommended set of registers, which we | |
809 | * follow (although we don't actually implement any counters) | |
810 | * | |
811 | * Performance registers fall into three categories: | |
812 | * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) | |
813 | * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) | |
814 | * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) | |
815 | * For the cases controlled by PMUSERENR we must set .access to PL0_RW | |
816 | * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. | |
817 | */ | |
818 | { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, | |
8521466b AF |
819 | .access = PL0_RW, .type = ARM_CP_NO_MIGRATE, |
820 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), | |
fcd25206 PM |
821 | .writefn = pmcntenset_write, |
822 | .accessfn = pmreg_access, | |
823 | .raw_writefn = raw_write }, | |
8521466b AF |
824 | { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, |
825 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, | |
826 | .access = PL0_RW, .accessfn = pmreg_access, | |
827 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, | |
828 | .writefn = pmcntenset_write, .raw_writefn = raw_write }, | |
200ac0ef | 829 | { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, |
8521466b AF |
830 | .access = PL0_RW, |
831 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), | |
fcd25206 PM |
832 | .accessfn = pmreg_access, |
833 | .writefn = pmcntenclr_write, | |
d4e6df63 | 834 | .type = ARM_CP_NO_MIGRATE }, |
8521466b AF |
835 | { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, |
836 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, | |
837 | .access = PL0_RW, .accessfn = pmreg_access, | |
838 | .type = ARM_CP_NO_MIGRATE, | |
839 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), | |
840 | .writefn = pmcntenclr_write }, | |
200ac0ef PM |
841 | { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, |
842 | .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), | |
fcd25206 PM |
843 | .accessfn = pmreg_access, |
844 | .writefn = pmovsr_write, | |
845 | .raw_writefn = raw_write }, | |
846 | /* Unimplemented so WI. */ | |
200ac0ef | 847 | { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, |
fcd25206 | 848 | .access = PL0_W, .accessfn = pmreg_access, .type = ARM_CP_NOP }, |
200ac0ef | 849 | /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE. |
fcd25206 | 850 | * We choose to RAZ/WI. |
200ac0ef PM |
851 | */ |
852 | { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, | |
fcd25206 PM |
853 | .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0, |
854 | .accessfn = pmreg_access }, | |
7c2cb42b | 855 | #ifndef CONFIG_USER_ONLY |
200ac0ef | 856 | { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, |
7c2cb42b | 857 | .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO, |
421c7ebd | 858 | .readfn = pmccntr_read, .writefn = pmccntr_write32, |
fcd25206 | 859 | .accessfn = pmreg_access }, |
8521466b AF |
860 | { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, |
861 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, | |
862 | .access = PL0_RW, .accessfn = pmreg_access, | |
863 | .type = ARM_CP_IO, | |
864 | .readfn = pmccntr_read, .writefn = pmccntr_write, }, | |
7c2cb42b | 865 | #endif |
8521466b AF |
866 | { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, |
867 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, | |
0614601c | 868 | .writefn = pmccfiltr_write, |
8521466b AF |
869 | .access = PL0_RW, .accessfn = pmreg_access, |
870 | .type = ARM_CP_IO, | |
871 | .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), | |
872 | .resetvalue = 0, }, | |
200ac0ef PM |
873 | { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, |
874 | .access = PL0_RW, | |
875 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper), | |
fcd25206 PM |
876 | .accessfn = pmreg_access, .writefn = pmxevtyper_write, |
877 | .raw_writefn = raw_write }, | |
878 | /* Unimplemented, RAZ/WI. */ | |
200ac0ef | 879 | { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, |
fcd25206 PM |
880 | .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0, |
881 | .accessfn = pmreg_access }, | |
200ac0ef PM |
882 | { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, |
883 | .access = PL0_R | PL1_RW, | |
884 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), | |
885 | .resetvalue = 0, | |
d4e6df63 | 886 | .writefn = pmuserenr_write, .raw_writefn = raw_write }, |
200ac0ef PM |
887 | { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, |
888 | .access = PL1_RW, | |
889 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), | |
890 | .resetvalue = 0, | |
d4e6df63 | 891 | .writefn = pmintenset_write, .raw_writefn = raw_write }, |
200ac0ef | 892 | { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, |
d4e6df63 | 893 | .access = PL1_RW, .type = ARM_CP_NO_MIGRATE, |
200ac0ef | 894 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), |
d4e6df63 | 895 | .resetvalue = 0, .writefn = pmintenclr_write, }, |
a505d7fe PM |
896 | { .name = "VBAR", .state = ARM_CP_STATE_BOTH, |
897 | .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, | |
8641136c | 898 | .access = PL1_RW, .writefn = vbar_write, |
68fdb6c5 | 899 | .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[1]), |
8641136c | 900 | .resetvalue = 0 }, |
2771db27 | 901 | { .name = "SCR", .cp = 15, .crn = 1, .crm = 1, .opc1 = 0, .opc2 = 0, |
64e0e2de EI |
902 | .access = PL1_RW, .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), |
903 | .resetvalue = 0, .writefn = scr_write }, | |
7da845b0 PM |
904 | { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, |
905 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, | |
d4e6df63 | 906 | .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_MIGRATE }, |
7da845b0 PM |
907 | { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, |
908 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, | |
776d4e5c PM |
909 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c0_cssel), |
910 | .writefn = csselr_write, .resetvalue = 0 }, | |
911 | /* Auxiliary ID register: this actually has an IMPDEF value but for now | |
912 | * just RAZ for all cores: | |
913 | */ | |
0ff644a7 PM |
914 | { .name = "AIDR", .state = ARM_CP_STATE_BOTH, |
915 | .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, | |
776d4e5c | 916 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, |
f32cdad5 PM |
917 | /* Auxiliary fault status registers: these also are IMPDEF, and we |
918 | * choose to RAZ/WI for all cores. | |
919 | */ | |
920 | { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, | |
921 | .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, | |
922 | .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
923 | { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, | |
924 | .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, | |
925 | .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
b0fe2427 PM |
926 | /* MAIR can just read-as-written because we don't implement caches |
927 | * and so don't need to care about memory attributes. | |
928 | */ | |
929 | { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, | |
930 | .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, | |
931 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el1), | |
932 | .resetvalue = 0 }, | |
933 | /* For non-long-descriptor page tables these are PRRR and NMRR; | |
934 | * regardless they still act as reads-as-written for QEMU. | |
935 | * The override is necessary because of the overly-broad TLB_LOCKDOWN | |
936 | * definition. | |
937 | */ | |
938 | { .name = "MAIR0", .state = ARM_CP_STATE_AA32, .type = ARM_CP_OVERRIDE, | |
939 | .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW, | |
940 | .fieldoffset = offsetoflow32(CPUARMState, cp15.mair_el1), | |
941 | .resetfn = arm_cp_reset_ignore }, | |
942 | { .name = "MAIR1", .state = ARM_CP_STATE_AA32, .type = ARM_CP_OVERRIDE, | |
943 | .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW, | |
944 | .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el1), | |
945 | .resetfn = arm_cp_reset_ignore }, | |
1090b9c6 PM |
946 | { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, |
947 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, | |
948 | .type = ARM_CP_NO_MIGRATE, .access = PL1_R, .readfn = isr_read }, | |
995939a6 PM |
949 | /* 32 bit ITLB invalidates */ |
950 | { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, | |
951 | .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbiall_write }, | |
952 | { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, | |
953 | .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbimva_write }, | |
954 | { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, | |
955 | .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbiasid_write }, | |
956 | /* 32 bit DTLB invalidates */ | |
957 | { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, | |
958 | .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbiall_write }, | |
959 | { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, | |
960 | .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbimva_write }, | |
961 | { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, | |
962 | .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbiasid_write }, | |
963 | /* 32 bit TLB invalidates */ | |
964 | { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, | |
965 | .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbiall_write }, | |
966 | { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, | |
967 | .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbimva_write }, | |
968 | { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, | |
969 | .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbiasid_write }, | |
970 | { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, | |
971 | .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbimvaa_write }, | |
972 | REGINFO_SENTINEL | |
973 | }; | |
974 | ||
975 | static const ARMCPRegInfo v7mp_cp_reginfo[] = { | |
976 | /* 32 bit TLB invalidates, Inner Shareable */ | |
977 | { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, | |
fa439fc5 | 978 | .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbiall_is_write }, |
995939a6 | 979 | { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, |
fa439fc5 | 980 | .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbimva_is_write }, |
995939a6 | 981 | { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, |
fa439fc5 PM |
982 | .type = ARM_CP_NO_MIGRATE, .access = PL1_W, |
983 | .writefn = tlbiasid_is_write }, | |
995939a6 | 984 | { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, |
fa439fc5 PM |
985 | .type = ARM_CP_NO_MIGRATE, .access = PL1_W, |
986 | .writefn = tlbimvaa_is_write }, | |
e9aa6c21 PM |
987 | REGINFO_SENTINEL |
988 | }; | |
989 | ||
c4241c7d PM |
990 | static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
991 | uint64_t value) | |
c326b979 PM |
992 | { |
993 | value &= 1; | |
994 | env->teecr = value; | |
c326b979 PM |
995 | } |
996 | ||
c4241c7d | 997 | static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri) |
c326b979 | 998 | { |
dcbff19b | 999 | if (arm_current_el(env) == 0 && (env->teecr & 1)) { |
92611c00 | 1000 | return CP_ACCESS_TRAP; |
c326b979 | 1001 | } |
92611c00 | 1002 | return CP_ACCESS_OK; |
c326b979 PM |
1003 | } |
1004 | ||
1005 | static const ARMCPRegInfo t2ee_cp_reginfo[] = { | |
1006 | { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, | |
1007 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), | |
1008 | .resetvalue = 0, | |
1009 | .writefn = teecr_write }, | |
1010 | { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, | |
1011 | .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), | |
92611c00 | 1012 | .accessfn = teehbr_access, .resetvalue = 0 }, |
c326b979 PM |
1013 | REGINFO_SENTINEL |
1014 | }; | |
1015 | ||
4d31c596 | 1016 | static const ARMCPRegInfo v6k_cp_reginfo[] = { |
e4fe830b PM |
1017 | { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, |
1018 | .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, | |
1019 | .access = PL0_RW, | |
1020 | .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el0), .resetvalue = 0 }, | |
4d31c596 PM |
1021 | { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, |
1022 | .access = PL0_RW, | |
e4fe830b PM |
1023 | .fieldoffset = offsetoflow32(CPUARMState, cp15.tpidr_el0), |
1024 | .resetfn = arm_cp_reset_ignore }, | |
1025 | { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, | |
1026 | .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, | |
1027 | .access = PL0_R|PL1_W, | |
1028 | .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el0), .resetvalue = 0 }, | |
4d31c596 PM |
1029 | { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, |
1030 | .access = PL0_R|PL1_W, | |
e4fe830b PM |
1031 | .fieldoffset = offsetoflow32(CPUARMState, cp15.tpidrro_el0), |
1032 | .resetfn = arm_cp_reset_ignore }, | |
1033 | { .name = "TPIDR_EL1", .state = ARM_CP_STATE_BOTH, | |
1034 | .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, | |
4d31c596 | 1035 | .access = PL1_RW, |
e4fe830b | 1036 | .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el1), .resetvalue = 0 }, |
4d31c596 PM |
1037 | REGINFO_SENTINEL |
1038 | }; | |
1039 | ||
55d284af PM |
1040 | #ifndef CONFIG_USER_ONLY |
1041 | ||
00108f2d PM |
1042 | static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri) |
1043 | { | |
1044 | /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */ | |
dcbff19b | 1045 | if (arm_current_el(env) == 0 && !extract32(env->cp15.c14_cntkctl, 0, 2)) { |
00108f2d PM |
1046 | return CP_ACCESS_TRAP; |
1047 | } | |
1048 | return CP_ACCESS_OK; | |
1049 | } | |
1050 | ||
1051 | static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx) | |
1052 | { | |
1053 | /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */ | |
dcbff19b | 1054 | if (arm_current_el(env) == 0 && |
00108f2d PM |
1055 | !extract32(env->cp15.c14_cntkctl, timeridx, 1)) { |
1056 | return CP_ACCESS_TRAP; | |
1057 | } | |
1058 | return CP_ACCESS_OK; | |
1059 | } | |
1060 | ||
1061 | static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx) | |
1062 | { | |
1063 | /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if | |
1064 | * EL0[PV]TEN is zero. | |
1065 | */ | |
dcbff19b | 1066 | if (arm_current_el(env) == 0 && |
00108f2d PM |
1067 | !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { |
1068 | return CP_ACCESS_TRAP; | |
1069 | } | |
1070 | return CP_ACCESS_OK; | |
1071 | } | |
1072 | ||
1073 | static CPAccessResult gt_pct_access(CPUARMState *env, | |
1074 | const ARMCPRegInfo *ri) | |
1075 | { | |
1076 | return gt_counter_access(env, GTIMER_PHYS); | |
1077 | } | |
1078 | ||
1079 | static CPAccessResult gt_vct_access(CPUARMState *env, | |
1080 | const ARMCPRegInfo *ri) | |
1081 | { | |
1082 | return gt_counter_access(env, GTIMER_VIRT); | |
1083 | } | |
1084 | ||
1085 | static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri) | |
1086 | { | |
1087 | return gt_timer_access(env, GTIMER_PHYS); | |
1088 | } | |
1089 | ||
1090 | static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri) | |
1091 | { | |
1092 | return gt_timer_access(env, GTIMER_VIRT); | |
1093 | } | |
1094 | ||
55d284af PM |
1095 | static uint64_t gt_get_countervalue(CPUARMState *env) |
1096 | { | |
bc72ad67 | 1097 | return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE; |
55d284af PM |
1098 | } |
1099 | ||
1100 | static void gt_recalc_timer(ARMCPU *cpu, int timeridx) | |
1101 | { | |
1102 | ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; | |
1103 | ||
1104 | if (gt->ctl & 1) { | |
1105 | /* Timer enabled: calculate and set current ISTATUS, irq, and | |
1106 | * reset timer to when ISTATUS next has to change | |
1107 | */ | |
1108 | uint64_t count = gt_get_countervalue(&cpu->env); | |
1109 | /* Note that this must be unsigned 64 bit arithmetic: */ | |
1110 | int istatus = count >= gt->cval; | |
1111 | uint64_t nexttick; | |
1112 | ||
1113 | gt->ctl = deposit32(gt->ctl, 2, 1, istatus); | |
1114 | qemu_set_irq(cpu->gt_timer_outputs[timeridx], | |
1115 | (istatus && !(gt->ctl & 2))); | |
1116 | if (istatus) { | |
1117 | /* Next transition is when count rolls back over to zero */ | |
1118 | nexttick = UINT64_MAX; | |
1119 | } else { | |
1120 | /* Next transition is when we hit cval */ | |
1121 | nexttick = gt->cval; | |
1122 | } | |
1123 | /* Note that the desired next expiry time might be beyond the | |
1124 | * signed-64-bit range of a QEMUTimer -- in this case we just | |
1125 | * set the timer for as far in the future as possible. When the | |
1126 | * timer expires we will reset the timer for any remaining period. | |
1127 | */ | |
1128 | if (nexttick > INT64_MAX / GTIMER_SCALE) { | |
1129 | nexttick = INT64_MAX / GTIMER_SCALE; | |
1130 | } | |
bc72ad67 | 1131 | timer_mod(cpu->gt_timer[timeridx], nexttick); |
55d284af PM |
1132 | } else { |
1133 | /* Timer disabled: ISTATUS and timer output always clear */ | |
1134 | gt->ctl &= ~4; | |
1135 | qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); | |
bc72ad67 | 1136 | timer_del(cpu->gt_timer[timeridx]); |
55d284af PM |
1137 | } |
1138 | } | |
1139 | ||
55d284af PM |
1140 | static void gt_cnt_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
1141 | { | |
1142 | ARMCPU *cpu = arm_env_get_cpu(env); | |
1143 | int timeridx = ri->opc1 & 1; | |
1144 | ||
bc72ad67 | 1145 | timer_del(cpu->gt_timer[timeridx]); |
55d284af PM |
1146 | } |
1147 | ||
c4241c7d | 1148 | static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) |
55d284af | 1149 | { |
c4241c7d | 1150 | return gt_get_countervalue(env); |
55d284af PM |
1151 | } |
1152 | ||
c4241c7d PM |
1153 | static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1154 | uint64_t value) | |
55d284af PM |
1155 | { |
1156 | int timeridx = ri->opc1 & 1; | |
1157 | ||
1158 | env->cp15.c14_timer[timeridx].cval = value; | |
1159 | gt_recalc_timer(arm_env_get_cpu(env), timeridx); | |
55d284af | 1160 | } |
c4241c7d PM |
1161 | |
1162 | static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
55d284af PM |
1163 | { |
1164 | int timeridx = ri->crm & 1; | |
1165 | ||
c4241c7d PM |
1166 | return (uint32_t)(env->cp15.c14_timer[timeridx].cval - |
1167 | gt_get_countervalue(env)); | |
55d284af PM |
1168 | } |
1169 | ||
c4241c7d PM |
1170 | static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1171 | uint64_t value) | |
55d284af PM |
1172 | { |
1173 | int timeridx = ri->crm & 1; | |
1174 | ||
1175 | env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) + | |
1176 | + sextract64(value, 0, 32); | |
1177 | gt_recalc_timer(arm_env_get_cpu(env), timeridx); | |
55d284af PM |
1178 | } |
1179 | ||
c4241c7d PM |
1180 | static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1181 | uint64_t value) | |
55d284af PM |
1182 | { |
1183 | ARMCPU *cpu = arm_env_get_cpu(env); | |
1184 | int timeridx = ri->crm & 1; | |
1185 | uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; | |
1186 | ||
d3afacc7 | 1187 | env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); |
55d284af PM |
1188 | if ((oldval ^ value) & 1) { |
1189 | /* Enable toggled */ | |
1190 | gt_recalc_timer(cpu, timeridx); | |
d3afacc7 | 1191 | } else if ((oldval ^ value) & 2) { |
55d284af PM |
1192 | /* IMASK toggled: don't need to recalculate, |
1193 | * just set the interrupt line based on ISTATUS | |
1194 | */ | |
1195 | qemu_set_irq(cpu->gt_timer_outputs[timeridx], | |
d3afacc7 | 1196 | (oldval & 4) && !(value & 2)); |
55d284af | 1197 | } |
55d284af PM |
1198 | } |
1199 | ||
1200 | void arm_gt_ptimer_cb(void *opaque) | |
1201 | { | |
1202 | ARMCPU *cpu = opaque; | |
1203 | ||
1204 | gt_recalc_timer(cpu, GTIMER_PHYS); | |
1205 | } | |
1206 | ||
1207 | void arm_gt_vtimer_cb(void *opaque) | |
1208 | { | |
1209 | ARMCPU *cpu = opaque; | |
1210 | ||
1211 | gt_recalc_timer(cpu, GTIMER_VIRT); | |
1212 | } | |
1213 | ||
1214 | static const ARMCPRegInfo generic_timer_cp_reginfo[] = { | |
1215 | /* Note that CNTFRQ is purely reads-as-written for the benefit | |
1216 | * of software; writing it doesn't actually change the timer frequency. | |
1217 | * Our reset value matches the fixed frequency we implement the timer at. | |
1218 | */ | |
1219 | { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, | |
a7adc4b7 PM |
1220 | .type = ARM_CP_NO_MIGRATE, |
1221 | .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, | |
1222 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), | |
1223 | .resetfn = arm_cp_reset_ignore, | |
1224 | }, | |
1225 | { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, | |
1226 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, | |
1227 | .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, | |
55d284af PM |
1228 | .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), |
1229 | .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE, | |
55d284af PM |
1230 | }, |
1231 | /* overall control: mostly access permissions */ | |
a7adc4b7 PM |
1232 | { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, |
1233 | .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, | |
55d284af PM |
1234 | .access = PL1_RW, |
1235 | .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), | |
1236 | .resetvalue = 0, | |
1237 | }, | |
1238 | /* per-timer control */ | |
1239 | { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, | |
a7adc4b7 PM |
1240 | .type = ARM_CP_IO | ARM_CP_NO_MIGRATE, .access = PL1_RW | PL0_R, |
1241 | .accessfn = gt_ptimer_access, | |
1242 | .fieldoffset = offsetoflow32(CPUARMState, | |
1243 | cp15.c14_timer[GTIMER_PHYS].ctl), | |
1244 | .resetfn = arm_cp_reset_ignore, | |
1245 | .writefn = gt_ctl_write, .raw_writefn = raw_write, | |
1246 | }, | |
1247 | { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, | |
1248 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, | |
55d284af | 1249 | .type = ARM_CP_IO, .access = PL1_RW | PL0_R, |
a7adc4b7 | 1250 | .accessfn = gt_ptimer_access, |
55d284af PM |
1251 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), |
1252 | .resetvalue = 0, | |
00108f2d | 1253 | .writefn = gt_ctl_write, .raw_writefn = raw_write, |
55d284af PM |
1254 | }, |
1255 | { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, | |
a7adc4b7 PM |
1256 | .type = ARM_CP_IO | ARM_CP_NO_MIGRATE, .access = PL1_RW | PL0_R, |
1257 | .accessfn = gt_vtimer_access, | |
1258 | .fieldoffset = offsetoflow32(CPUARMState, | |
1259 | cp15.c14_timer[GTIMER_VIRT].ctl), | |
1260 | .resetfn = arm_cp_reset_ignore, | |
1261 | .writefn = gt_ctl_write, .raw_writefn = raw_write, | |
1262 | }, | |
1263 | { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, | |
1264 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, | |
55d284af | 1265 | .type = ARM_CP_IO, .access = PL1_RW | PL0_R, |
a7adc4b7 | 1266 | .accessfn = gt_vtimer_access, |
55d284af PM |
1267 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), |
1268 | .resetvalue = 0, | |
00108f2d | 1269 | .writefn = gt_ctl_write, .raw_writefn = raw_write, |
55d284af PM |
1270 | }, |
1271 | /* TimerValue views: a 32 bit downcounting view of the underlying state */ | |
1272 | { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, | |
1273 | .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R, | |
00108f2d | 1274 | .accessfn = gt_ptimer_access, |
55d284af PM |
1275 | .readfn = gt_tval_read, .writefn = gt_tval_write, |
1276 | }, | |
a7adc4b7 PM |
1277 | { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, |
1278 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, | |
1279 | .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R, | |
1280 | .readfn = gt_tval_read, .writefn = gt_tval_write, | |
1281 | }, | |
55d284af PM |
1282 | { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, |
1283 | .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R, | |
00108f2d | 1284 | .accessfn = gt_vtimer_access, |
55d284af PM |
1285 | .readfn = gt_tval_read, .writefn = gt_tval_write, |
1286 | }, | |
a7adc4b7 PM |
1287 | { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, |
1288 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, | |
1289 | .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R, | |
1290 | .readfn = gt_tval_read, .writefn = gt_tval_write, | |
1291 | }, | |
55d284af PM |
1292 | /* The counter itself */ |
1293 | { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, | |
1294 | .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE | ARM_CP_IO, | |
00108f2d | 1295 | .accessfn = gt_pct_access, |
a7adc4b7 PM |
1296 | .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, |
1297 | }, | |
1298 | { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, | |
1299 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, | |
1300 | .access = PL0_R, .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, | |
1301 | .accessfn = gt_pct_access, | |
55d284af PM |
1302 | .readfn = gt_cnt_read, .resetfn = gt_cnt_reset, |
1303 | }, | |
1304 | { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, | |
1305 | .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE | ARM_CP_IO, | |
00108f2d | 1306 | .accessfn = gt_vct_access, |
a7adc4b7 PM |
1307 | .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, |
1308 | }, | |
1309 | { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, | |
1310 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, | |
1311 | .access = PL0_R, .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, | |
1312 | .accessfn = gt_vct_access, | |
55d284af PM |
1313 | .readfn = gt_cnt_read, .resetfn = gt_cnt_reset, |
1314 | }, | |
1315 | /* Comparison value, indicating when the timer goes off */ | |
1316 | { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, | |
1317 | .access = PL1_RW | PL0_R, | |
a7adc4b7 | 1318 | .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_MIGRATE, |
55d284af | 1319 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), |
a7adc4b7 PM |
1320 | .accessfn = gt_ptimer_access, .resetfn = arm_cp_reset_ignore, |
1321 | .writefn = gt_cval_write, .raw_writefn = raw_write, | |
1322 | }, | |
1323 | { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, | |
1324 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, | |
1325 | .access = PL1_RW | PL0_R, | |
1326 | .type = ARM_CP_IO, | |
1327 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), | |
1328 | .resetvalue = 0, .accessfn = gt_vtimer_access, | |
00108f2d | 1329 | .writefn = gt_cval_write, .raw_writefn = raw_write, |
55d284af PM |
1330 | }, |
1331 | { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, | |
1332 | .access = PL1_RW | PL0_R, | |
a7adc4b7 | 1333 | .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_MIGRATE, |
55d284af | 1334 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), |
a7adc4b7 PM |
1335 | .accessfn = gt_vtimer_access, .resetfn = arm_cp_reset_ignore, |
1336 | .writefn = gt_cval_write, .raw_writefn = raw_write, | |
1337 | }, | |
1338 | { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, | |
1339 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, | |
1340 | .access = PL1_RW | PL0_R, | |
1341 | .type = ARM_CP_IO, | |
1342 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), | |
1343 | .resetvalue = 0, .accessfn = gt_vtimer_access, | |
00108f2d | 1344 | .writefn = gt_cval_write, .raw_writefn = raw_write, |
55d284af PM |
1345 | }, |
1346 | REGINFO_SENTINEL | |
1347 | }; | |
1348 | ||
1349 | #else | |
1350 | /* In user-mode none of the generic timer registers are accessible, | |
bc72ad67 | 1351 | * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs, |
55d284af PM |
1352 | * so instead just don't register any of them. |
1353 | */ | |
6cc7a3ae | 1354 | static const ARMCPRegInfo generic_timer_cp_reginfo[] = { |
6cc7a3ae PM |
1355 | REGINFO_SENTINEL |
1356 | }; | |
1357 | ||
55d284af PM |
1358 | #endif |
1359 | ||
c4241c7d | 1360 | static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
4a501606 | 1361 | { |
891a2fe7 | 1362 | if (arm_feature(env, ARM_FEATURE_LPAE)) { |
8d5c773e | 1363 | raw_write(env, ri, value); |
891a2fe7 | 1364 | } else if (arm_feature(env, ARM_FEATURE_V7)) { |
8d5c773e | 1365 | raw_write(env, ri, value & 0xfffff6ff); |
4a501606 | 1366 | } else { |
8d5c773e | 1367 | raw_write(env, ri, value & 0xfffff1ff); |
4a501606 | 1368 | } |
4a501606 PM |
1369 | } |
1370 | ||
1371 | #ifndef CONFIG_USER_ONLY | |
1372 | /* get_phys_addr() isn't present for user-mode-only targets */ | |
702a9357 | 1373 | |
92611c00 PM |
1374 | static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri) |
1375 | { | |
1376 | if (ri->opc2 & 4) { | |
1377 | /* Other states are only available with TrustZone; in | |
1378 | * a non-TZ implementation these registers don't exist | |
1379 | * at all, which is an Uncategorized trap. This underdecoding | |
1380 | * is safe because the reginfo is NO_MIGRATE. | |
1381 | */ | |
1382 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
1383 | } | |
1384 | return CP_ACCESS_OK; | |
1385 | } | |
1386 | ||
c4241c7d | 1387 | static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
4a501606 | 1388 | { |
a8170e5e | 1389 | hwaddr phys_addr; |
4a501606 PM |
1390 | target_ulong page_size; |
1391 | int prot; | |
1392 | int ret, is_user = ri->opc2 & 2; | |
1393 | int access_type = ri->opc2 & 1; | |
1394 | ||
4a501606 PM |
1395 | ret = get_phys_addr(env, value, access_type, is_user, |
1396 | &phys_addr, &prot, &page_size); | |
702a9357 PM |
1397 | if (extended_addresses_enabled(env)) { |
1398 | /* ret is a DFSR/IFSR value for the long descriptor | |
1399 | * translation table format, but with WnR always clear. | |
1400 | * Convert it to a 64-bit PAR. | |
1401 | */ | |
1402 | uint64_t par64 = (1 << 11); /* LPAE bit always set */ | |
1403 | if (ret == 0) { | |
1404 | par64 |= phys_addr & ~0xfffULL; | |
1405 | /* We don't set the ATTR or SH fields in the PAR. */ | |
4a501606 | 1406 | } else { |
702a9357 PM |
1407 | par64 |= 1; /* F */ |
1408 | par64 |= (ret & 0x3f) << 1; /* FS */ | |
1409 | /* Note that S2WLK and FSTAGE are always zero, because we don't | |
1410 | * implement virtualization and therefore there can't be a stage 2 | |
1411 | * fault. | |
1412 | */ | |
4a501606 | 1413 | } |
19525524 | 1414 | env->cp15.par_el1 = par64; |
4a501606 | 1415 | } else { |
702a9357 PM |
1416 | /* ret is a DFSR/IFSR value for the short descriptor |
1417 | * translation table format (with WnR always clear). | |
1418 | * Convert it to a 32-bit PAR. | |
1419 | */ | |
1420 | if (ret == 0) { | |
1421 | /* We do not set any attribute bits in the PAR */ | |
1422 | if (page_size == (1 << 24) | |
1423 | && arm_feature(env, ARM_FEATURE_V7)) { | |
19525524 | 1424 | env->cp15.par_el1 = (phys_addr & 0xff000000) | 1 << 1; |
702a9357 | 1425 | } else { |
19525524 | 1426 | env->cp15.par_el1 = phys_addr & 0xfffff000; |
702a9357 PM |
1427 | } |
1428 | } else { | |
19525524 | 1429 | env->cp15.par_el1 = ((ret & (1 << 10)) >> 5) | |
775fda92 | 1430 | ((ret & (1 << 12)) >> 6) | |
702a9357 PM |
1431 | ((ret & 0xf) << 1) | 1; |
1432 | } | |
4a501606 | 1433 | } |
4a501606 PM |
1434 | } |
1435 | #endif | |
1436 | ||
1437 | static const ARMCPRegInfo vapa_cp_reginfo[] = { | |
1438 | { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, | |
1439 | .access = PL1_RW, .resetvalue = 0, | |
19525524 | 1440 | .fieldoffset = offsetoflow32(CPUARMState, cp15.par_el1), |
4a501606 PM |
1441 | .writefn = par_write }, |
1442 | #ifndef CONFIG_USER_ONLY | |
1443 | { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, | |
92611c00 PM |
1444 | .access = PL1_W, .accessfn = ats_access, |
1445 | .writefn = ats_write, .type = ARM_CP_NO_MIGRATE }, | |
4a501606 PM |
1446 | #endif |
1447 | REGINFO_SENTINEL | |
1448 | }; | |
1449 | ||
18032bec PM |
1450 | /* Return basic MPU access permission bits. */ |
1451 | static uint32_t simple_mpu_ap_bits(uint32_t val) | |
1452 | { | |
1453 | uint32_t ret; | |
1454 | uint32_t mask; | |
1455 | int i; | |
1456 | ret = 0; | |
1457 | mask = 3; | |
1458 | for (i = 0; i < 16; i += 2) { | |
1459 | ret |= (val >> i) & mask; | |
1460 | mask <<= 2; | |
1461 | } | |
1462 | return ret; | |
1463 | } | |
1464 | ||
1465 | /* Pad basic MPU access permission bits to extended format. */ | |
1466 | static uint32_t extended_mpu_ap_bits(uint32_t val) | |
1467 | { | |
1468 | uint32_t ret; | |
1469 | uint32_t mask; | |
1470 | int i; | |
1471 | ret = 0; | |
1472 | mask = 3; | |
1473 | for (i = 0; i < 16; i += 2) { | |
1474 | ret |= (val & mask) << i; | |
1475 | mask <<= 2; | |
1476 | } | |
1477 | return ret; | |
1478 | } | |
1479 | ||
c4241c7d PM |
1480 | static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1481 | uint64_t value) | |
18032bec | 1482 | { |
7e09797c | 1483 | env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); |
18032bec PM |
1484 | } |
1485 | ||
c4241c7d | 1486 | static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) |
18032bec | 1487 | { |
7e09797c | 1488 | return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); |
18032bec PM |
1489 | } |
1490 | ||
c4241c7d PM |
1491 | static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1492 | uint64_t value) | |
18032bec | 1493 | { |
7e09797c | 1494 | env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); |
18032bec PM |
1495 | } |
1496 | ||
c4241c7d | 1497 | static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) |
18032bec | 1498 | { |
7e09797c | 1499 | return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); |
18032bec PM |
1500 | } |
1501 | ||
1502 | static const ARMCPRegInfo pmsav5_cp_reginfo[] = { | |
1503 | { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, | |
d4e6df63 | 1504 | .access = PL1_RW, .type = ARM_CP_NO_MIGRATE, |
7e09797c PM |
1505 | .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), |
1506 | .resetvalue = 0, | |
18032bec PM |
1507 | .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, |
1508 | { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, | |
d4e6df63 | 1509 | .access = PL1_RW, .type = ARM_CP_NO_MIGRATE, |
7e09797c PM |
1510 | .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), |
1511 | .resetvalue = 0, | |
18032bec PM |
1512 | .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, |
1513 | { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, | |
1514 | .access = PL1_RW, | |
7e09797c PM |
1515 | .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), |
1516 | .resetvalue = 0, }, | |
18032bec PM |
1517 | { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, |
1518 | .access = PL1_RW, | |
7e09797c PM |
1519 | .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), |
1520 | .resetvalue = 0, }, | |
ecce5c3c PM |
1521 | { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, |
1522 | .access = PL1_RW, | |
1523 | .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, | |
1524 | { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, | |
1525 | .access = PL1_RW, | |
1526 | .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, | |
06d76f31 | 1527 | /* Protection region base and size registers */ |
e508a92b PM |
1528 | { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, |
1529 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
1530 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, | |
1531 | { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, | |
1532 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
1533 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, | |
1534 | { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, | |
1535 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
1536 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, | |
1537 | { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, | |
1538 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
1539 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, | |
1540 | { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, | |
1541 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
1542 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, | |
1543 | { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, | |
1544 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
1545 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, | |
1546 | { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, | |
1547 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
1548 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, | |
1549 | { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, | |
1550 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
1551 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, | |
18032bec PM |
1552 | REGINFO_SENTINEL |
1553 | }; | |
1554 | ||
c4241c7d PM |
1555 | static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1556 | uint64_t value) | |
ecce5c3c | 1557 | { |
2ebcebe2 PM |
1558 | int maskshift = extract32(value, 0, 3); |
1559 | ||
e389be16 FA |
1560 | if (!arm_feature(env, ARM_FEATURE_V8)) { |
1561 | if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { | |
1562 | /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when | |
1563 | * using Long-desciptor translation table format */ | |
1564 | value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); | |
1565 | } else if (arm_feature(env, ARM_FEATURE_EL3)) { | |
1566 | /* In an implementation that includes the Security Extensions | |
1567 | * TTBCR has additional fields PD0 [4] and PD1 [5] for | |
1568 | * Short-descriptor translation table format. | |
1569 | */ | |
1570 | value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; | |
1571 | } else { | |
1572 | value &= TTBCR_N; | |
1573 | } | |
e42c4db3 | 1574 | } |
e389be16 | 1575 | |
e42c4db3 PM |
1576 | /* Note that we always calculate c2_mask and c2_base_mask, but |
1577 | * they are only used for short-descriptor tables (ie if EAE is 0); | |
1578 | * for long-descriptor tables the TTBCR fields are used differently | |
1579 | * and the c2_mask and c2_base_mask values are meaningless. | |
1580 | */ | |
8d5c773e | 1581 | raw_write(env, ri, value); |
2ebcebe2 PM |
1582 | env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> maskshift); |
1583 | env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> maskshift); | |
ecce5c3c PM |
1584 | } |
1585 | ||
c4241c7d PM |
1586 | static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1587 | uint64_t value) | |
d4e6df63 | 1588 | { |
00c8cb0a AF |
1589 | ARMCPU *cpu = arm_env_get_cpu(env); |
1590 | ||
d4e6df63 PM |
1591 | if (arm_feature(env, ARM_FEATURE_LPAE)) { |
1592 | /* With LPAE the TTBCR could result in a change of ASID | |
1593 | * via the TTBCR.A1 bit, so do a TLB flush. | |
1594 | */ | |
00c8cb0a | 1595 | tlb_flush(CPU(cpu), 1); |
d4e6df63 | 1596 | } |
c4241c7d | 1597 | vmsa_ttbcr_raw_write(env, ri, value); |
d4e6df63 PM |
1598 | } |
1599 | ||
ecce5c3c PM |
1600 | static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
1601 | { | |
1602 | env->cp15.c2_base_mask = 0xffffc000u; | |
8d5c773e | 1603 | raw_write(env, ri, 0); |
ecce5c3c PM |
1604 | env->cp15.c2_mask = 0; |
1605 | } | |
1606 | ||
cb2e37df PM |
1607 | static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1608 | uint64_t value) | |
1609 | { | |
00c8cb0a AF |
1610 | ARMCPU *cpu = arm_env_get_cpu(env); |
1611 | ||
cb2e37df | 1612 | /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ |
00c8cb0a | 1613 | tlb_flush(CPU(cpu), 1); |
8d5c773e | 1614 | raw_write(env, ri, value); |
cb2e37df PM |
1615 | } |
1616 | ||
327ed10f PM |
1617 | static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1618 | uint64_t value) | |
1619 | { | |
1620 | /* 64 bit accesses to the TTBRs can change the ASID and so we | |
1621 | * must flush the TLB. | |
1622 | */ | |
1623 | if (cpreg_field_is_64bit(ri)) { | |
00c8cb0a AF |
1624 | ARMCPU *cpu = arm_env_get_cpu(env); |
1625 | ||
1626 | tlb_flush(CPU(cpu), 1); | |
327ed10f PM |
1627 | } |
1628 | raw_write(env, ri, value); | |
1629 | } | |
1630 | ||
18032bec PM |
1631 | static const ARMCPRegInfo vmsa_cp_reginfo[] = { |
1632 | { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, | |
6cd8a264 | 1633 | .access = PL1_RW, .type = ARM_CP_NO_MIGRATE, |
d81c519c | 1634 | .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), |
6cd8a264 | 1635 | .resetfn = arm_cp_reset_ignore, }, |
18032bec PM |
1636 | { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, |
1637 | .access = PL1_RW, | |
6cd8a264 RH |
1638 | .fieldoffset = offsetof(CPUARMState, cp15.ifsr_el2), .resetvalue = 0, }, |
1639 | { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, | |
1640 | .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, | |
1641 | .access = PL1_RW, | |
d81c519c | 1642 | .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, |
327ed10f PM |
1643 | { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, |
1644 | .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, | |
1645 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el1), | |
1646 | .writefn = vmsa_ttbr_write, .resetvalue = 0 }, | |
1647 | { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, | |
1648 | .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, | |
1649 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el1), | |
1650 | .writefn = vmsa_ttbr_write, .resetvalue = 0 }, | |
cb2e37df PM |
1651 | { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, |
1652 | .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, | |
1653 | .access = PL1_RW, .writefn = vmsa_tcr_el1_write, | |
1654 | .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, | |
ecce5c3c | 1655 | .fieldoffset = offsetof(CPUARMState, cp15.c2_control) }, |
cb2e37df PM |
1656 | { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, |
1657 | .access = PL1_RW, .type = ARM_CP_NO_MIGRATE, .writefn = vmsa_ttbcr_write, | |
1658 | .resetfn = arm_cp_reset_ignore, .raw_writefn = vmsa_ttbcr_raw_write, | |
1659 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c2_control) }, | |
6cd8a264 RH |
1660 | /* 64-bit FAR; this entry also gives us the AArch32 DFAR */ |
1661 | { .name = "FAR_EL1", .state = ARM_CP_STATE_BOTH, | |
1662 | .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, | |
2f0180c5 | 1663 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), |
06d76f31 | 1664 | .resetvalue = 0, }, |
18032bec PM |
1665 | REGINFO_SENTINEL |
1666 | }; | |
1667 | ||
c4241c7d PM |
1668 | static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1669 | uint64_t value) | |
1047b9d7 PM |
1670 | { |
1671 | env->cp15.c15_ticonfig = value & 0xe7; | |
1672 | /* The OS_TYPE bit in this register changes the reported CPUID! */ | |
1673 | env->cp15.c0_cpuid = (value & (1 << 5)) ? | |
1674 | ARM_CPUID_TI915T : ARM_CPUID_TI925T; | |
1047b9d7 PM |
1675 | } |
1676 | ||
c4241c7d PM |
1677 | static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1678 | uint64_t value) | |
1047b9d7 PM |
1679 | { |
1680 | env->cp15.c15_threadid = value & 0xffff; | |
1047b9d7 PM |
1681 | } |
1682 | ||
c4241c7d PM |
1683 | static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1684 | uint64_t value) | |
1047b9d7 PM |
1685 | { |
1686 | /* Wait-for-interrupt (deprecated) */ | |
c3affe56 | 1687 | cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT); |
1047b9d7 PM |
1688 | } |
1689 | ||
c4241c7d PM |
1690 | static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1691 | uint64_t value) | |
c4804214 PM |
1692 | { |
1693 | /* On OMAP there are registers indicating the max/min index of dcache lines | |
1694 | * containing a dirty line; cache flush operations have to reset these. | |
1695 | */ | |
1696 | env->cp15.c15_i_max = 0x000; | |
1697 | env->cp15.c15_i_min = 0xff0; | |
c4804214 PM |
1698 | } |
1699 | ||
18032bec PM |
1700 | static const ARMCPRegInfo omap_cp_reginfo[] = { |
1701 | { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, | |
1702 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, | |
d81c519c | 1703 | .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), |
6cd8a264 | 1704 | .resetvalue = 0, }, |
1047b9d7 PM |
1705 | { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, |
1706 | .access = PL1_RW, .type = ARM_CP_NOP }, | |
1707 | { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, | |
1708 | .access = PL1_RW, | |
1709 | .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, | |
1710 | .writefn = omap_ticonfig_write }, | |
1711 | { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, | |
1712 | .access = PL1_RW, | |
1713 | .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, | |
1714 | { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, | |
1715 | .access = PL1_RW, .resetvalue = 0xff0, | |
1716 | .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, | |
1717 | { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, | |
1718 | .access = PL1_RW, | |
1719 | .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, | |
1720 | .writefn = omap_threadid_write }, | |
1721 | { .name = "TI925T_STATUS", .cp = 15, .crn = 15, | |
1722 | .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, | |
d4e6df63 | 1723 | .type = ARM_CP_NO_MIGRATE, |
1047b9d7 PM |
1724 | .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, |
1725 | /* TODO: Peripheral port remap register: | |
1726 | * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller | |
1727 | * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), | |
1728 | * when MMU is off. | |
1729 | */ | |
c4804214 | 1730 | { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, |
d4e6df63 PM |
1731 | .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, |
1732 | .type = ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE, | |
c4804214 | 1733 | .writefn = omap_cachemaint_write }, |
34f90529 PM |
1734 | { .name = "C9", .cp = 15, .crn = 9, |
1735 | .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, | |
1736 | .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, | |
1047b9d7 PM |
1737 | REGINFO_SENTINEL |
1738 | }; | |
1739 | ||
c4241c7d PM |
1740 | static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1741 | uint64_t value) | |
1047b9d7 | 1742 | { |
c0f4af17 | 1743 | env->cp15.c15_cpar = value & 0x3fff; |
1047b9d7 PM |
1744 | } |
1745 | ||
1746 | static const ARMCPRegInfo xscale_cp_reginfo[] = { | |
1747 | { .name = "XSCALE_CPAR", | |
1748 | .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, | |
1749 | .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, | |
1750 | .writefn = xscale_cpar_write, }, | |
2771db27 PM |
1751 | { .name = "XSCALE_AUXCR", |
1752 | .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, | |
1753 | .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), | |
1754 | .resetvalue = 0, }, | |
3b771579 PM |
1755 | /* XScale specific cache-lockdown: since we have no cache we NOP these |
1756 | * and hope the guest does not really rely on cache behaviour. | |
1757 | */ | |
1758 | { .name = "XSCALE_LOCK_ICACHE_LINE", | |
1759 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, | |
1760 | .access = PL1_W, .type = ARM_CP_NOP }, | |
1761 | { .name = "XSCALE_UNLOCK_ICACHE", | |
1762 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, | |
1763 | .access = PL1_W, .type = ARM_CP_NOP }, | |
1764 | { .name = "XSCALE_DCACHE_LOCK", | |
1765 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, | |
1766 | .access = PL1_RW, .type = ARM_CP_NOP }, | |
1767 | { .name = "XSCALE_UNLOCK_DCACHE", | |
1768 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, | |
1769 | .access = PL1_W, .type = ARM_CP_NOP }, | |
1047b9d7 PM |
1770 | REGINFO_SENTINEL |
1771 | }; | |
1772 | ||
1773 | static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { | |
1774 | /* RAZ/WI the whole crn=15 space, when we don't have a more specific | |
1775 | * implementation of this implementation-defined space. | |
1776 | * Ideally this should eventually disappear in favour of actually | |
1777 | * implementing the correct behaviour for all cores. | |
1778 | */ | |
1779 | { .name = "C15_IMPDEF", .cp = 15, .crn = 15, | |
1780 | .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, | |
3671cd87 PC |
1781 | .access = PL1_RW, |
1782 | .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE | ARM_CP_OVERRIDE, | |
d4e6df63 | 1783 | .resetvalue = 0 }, |
18032bec PM |
1784 | REGINFO_SENTINEL |
1785 | }; | |
1786 | ||
c4804214 PM |
1787 | static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { |
1788 | /* Cache status: RAZ because we have no cache so it's always clean */ | |
1789 | { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, | |
d4e6df63 PM |
1790 | .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE, |
1791 | .resetvalue = 0 }, | |
c4804214 PM |
1792 | REGINFO_SENTINEL |
1793 | }; | |
1794 | ||
1795 | static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { | |
1796 | /* We never have a a block transfer operation in progress */ | |
1797 | { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, | |
d4e6df63 PM |
1798 | .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE, |
1799 | .resetvalue = 0 }, | |
30b05bba PM |
1800 | /* The cache ops themselves: these all NOP for QEMU */ |
1801 | { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, | |
1802 | .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
1803 | { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, | |
1804 | .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
1805 | { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, | |
1806 | .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
1807 | { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, | |
1808 | .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
1809 | { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, | |
1810 | .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
1811 | { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, | |
1812 | .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
c4804214 PM |
1813 | REGINFO_SENTINEL |
1814 | }; | |
1815 | ||
1816 | static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { | |
1817 | /* The cache test-and-clean instructions always return (1 << 30) | |
1818 | * to indicate that there are no dirty cache lines. | |
1819 | */ | |
1820 | { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, | |
d4e6df63 PM |
1821 | .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE, |
1822 | .resetvalue = (1 << 30) }, | |
c4804214 | 1823 | { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, |
d4e6df63 PM |
1824 | .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE, |
1825 | .resetvalue = (1 << 30) }, | |
c4804214 PM |
1826 | REGINFO_SENTINEL |
1827 | }; | |
1828 | ||
34f90529 PM |
1829 | static const ARMCPRegInfo strongarm_cp_reginfo[] = { |
1830 | /* Ignore ReadBuffer accesses */ | |
1831 | { .name = "C9_READBUFFER", .cp = 15, .crn = 9, | |
1832 | .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, | |
d4e6df63 PM |
1833 | .access = PL1_RW, .resetvalue = 0, |
1834 | .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE }, | |
34f90529 PM |
1835 | REGINFO_SENTINEL |
1836 | }; | |
1837 | ||
c4241c7d | 1838 | static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
81bdde9d | 1839 | { |
55e5c285 AF |
1840 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
1841 | uint32_t mpidr = cs->cpu_index; | |
4b7fff2f PM |
1842 | /* We don't support setting cluster ID ([8..11]) (known as Aff1 |
1843 | * in later ARM ARM versions), or any of the higher affinity level fields, | |
81bdde9d PM |
1844 | * so these bits always RAZ. |
1845 | */ | |
1846 | if (arm_feature(env, ARM_FEATURE_V7MP)) { | |
78dbbbe4 | 1847 | mpidr |= (1U << 31); |
81bdde9d PM |
1848 | /* Cores which are uniprocessor (non-coherent) |
1849 | * but still implement the MP extensions set | |
1850 | * bit 30. (For instance, A9UP.) However we do | |
1851 | * not currently model any of those cores. | |
1852 | */ | |
1853 | } | |
c4241c7d | 1854 | return mpidr; |
81bdde9d PM |
1855 | } |
1856 | ||
1857 | static const ARMCPRegInfo mpidr_cp_reginfo[] = { | |
4b7fff2f PM |
1858 | { .name = "MPIDR", .state = ARM_CP_STATE_BOTH, |
1859 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, | |
d4e6df63 | 1860 | .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_MIGRATE }, |
81bdde9d PM |
1861 | REGINFO_SENTINEL |
1862 | }; | |
1863 | ||
7ac681cf | 1864 | static const ARMCPRegInfo lpae_cp_reginfo[] = { |
b90372ad | 1865 | /* NOP AMAIR0/1: the override is because these clash with the rather |
7ac681cf PM |
1866 | * broadly specified TLB_LOCKDOWN entry in the generic cp_reginfo. |
1867 | */ | |
b0fe2427 PM |
1868 | { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, |
1869 | .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, | |
7ac681cf PM |
1870 | .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE, |
1871 | .resetvalue = 0 }, | |
b0fe2427 | 1872 | /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ |
7ac681cf PM |
1873 | { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, |
1874 | .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE, | |
1875 | .resetvalue = 0 }, | |
891a2fe7 PM |
1876 | { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, |
1877 | .access = PL1_RW, .type = ARM_CP_64BIT, | |
19525524 | 1878 | .fieldoffset = offsetof(CPUARMState, cp15.par_el1), .resetvalue = 0 }, |
891a2fe7 | 1879 | { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, |
327ed10f PM |
1880 | .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE, |
1881 | .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el1), | |
1882 | .writefn = vmsa_ttbr_write, .resetfn = arm_cp_reset_ignore }, | |
891a2fe7 | 1883 | { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, |
327ed10f PM |
1884 | .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE, |
1885 | .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el1), | |
1886 | .writefn = vmsa_ttbr_write, .resetfn = arm_cp_reset_ignore }, | |
7ac681cf PM |
1887 | REGINFO_SENTINEL |
1888 | }; | |
1889 | ||
c4241c7d | 1890 | static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
b0d2b7d0 | 1891 | { |
c4241c7d | 1892 | return vfp_get_fpcr(env); |
b0d2b7d0 PM |
1893 | } |
1894 | ||
c4241c7d PM |
1895 | static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1896 | uint64_t value) | |
b0d2b7d0 PM |
1897 | { |
1898 | vfp_set_fpcr(env, value); | |
b0d2b7d0 PM |
1899 | } |
1900 | ||
c4241c7d | 1901 | static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
b0d2b7d0 | 1902 | { |
c4241c7d | 1903 | return vfp_get_fpsr(env); |
b0d2b7d0 PM |
1904 | } |
1905 | ||
c4241c7d PM |
1906 | static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1907 | uint64_t value) | |
b0d2b7d0 PM |
1908 | { |
1909 | vfp_set_fpsr(env, value); | |
b0d2b7d0 PM |
1910 | } |
1911 | ||
c2b820fe PM |
1912 | static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri) |
1913 | { | |
dcbff19b | 1914 | if (arm_current_el(env) == 0 && !(env->cp15.c1_sys & SCTLR_UMA)) { |
c2b820fe PM |
1915 | return CP_ACCESS_TRAP; |
1916 | } | |
1917 | return CP_ACCESS_OK; | |
1918 | } | |
1919 | ||
1920 | static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1921 | uint64_t value) | |
1922 | { | |
1923 | env->daif = value & PSTATE_DAIF; | |
1924 | } | |
1925 | ||
8af35c37 PM |
1926 | static CPAccessResult aa64_cacheop_access(CPUARMState *env, |
1927 | const ARMCPRegInfo *ri) | |
1928 | { | |
1929 | /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless | |
1930 | * SCTLR_EL1.UCI is set. | |
1931 | */ | |
dcbff19b | 1932 | if (arm_current_el(env) == 0 && !(env->cp15.c1_sys & SCTLR_UCI)) { |
8af35c37 PM |
1933 | return CP_ACCESS_TRAP; |
1934 | } | |
1935 | return CP_ACCESS_OK; | |
1936 | } | |
1937 | ||
dbb1fb27 AB |
1938 | /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions |
1939 | * Page D4-1736 (DDI0487A.b) | |
1940 | */ | |
1941 | ||
168aa23b PM |
1942 | static void tlbi_aa64_va_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1943 | uint64_t value) | |
1944 | { | |
1945 | /* Invalidate by VA (AArch64 version) */ | |
31b030d4 | 1946 | ARMCPU *cpu = arm_env_get_cpu(env); |
dbb1fb27 AB |
1947 | uint64_t pageaddr = sextract64(value << 12, 0, 56); |
1948 | ||
31b030d4 | 1949 | tlb_flush_page(CPU(cpu), pageaddr); |
168aa23b PM |
1950 | } |
1951 | ||
1952 | static void tlbi_aa64_vaa_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1953 | uint64_t value) | |
1954 | { | |
1955 | /* Invalidate by VA, all ASIDs (AArch64 version) */ | |
31b030d4 | 1956 | ARMCPU *cpu = arm_env_get_cpu(env); |
dbb1fb27 AB |
1957 | uint64_t pageaddr = sextract64(value << 12, 0, 56); |
1958 | ||
31b030d4 | 1959 | tlb_flush_page(CPU(cpu), pageaddr); |
168aa23b PM |
1960 | } |
1961 | ||
1962 | static void tlbi_aa64_asid_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1963 | uint64_t value) | |
1964 | { | |
1965 | /* Invalidate by ASID (AArch64 version) */ | |
00c8cb0a | 1966 | ARMCPU *cpu = arm_env_get_cpu(env); |
168aa23b | 1967 | int asid = extract64(value, 48, 16); |
00c8cb0a | 1968 | tlb_flush(CPU(cpu), asid == 0); |
168aa23b PM |
1969 | } |
1970 | ||
fa439fc5 PM |
1971 | static void tlbi_aa64_va_is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1972 | uint64_t value) | |
1973 | { | |
1974 | CPUState *other_cs; | |
1975 | uint64_t pageaddr = sextract64(value << 12, 0, 56); | |
1976 | ||
1977 | CPU_FOREACH(other_cs) { | |
1978 | tlb_flush_page(other_cs, pageaddr); | |
1979 | } | |
1980 | } | |
1981 | ||
1982 | static void tlbi_aa64_vaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1983 | uint64_t value) | |
1984 | { | |
1985 | CPUState *other_cs; | |
1986 | uint64_t pageaddr = sextract64(value << 12, 0, 56); | |
1987 | ||
1988 | CPU_FOREACH(other_cs) { | |
1989 | tlb_flush_page(other_cs, pageaddr); | |
1990 | } | |
1991 | } | |
1992 | ||
1993 | static void tlbi_aa64_asid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1994 | uint64_t value) | |
1995 | { | |
1996 | CPUState *other_cs; | |
1997 | int asid = extract64(value, 48, 16); | |
1998 | ||
1999 | CPU_FOREACH(other_cs) { | |
2000 | tlb_flush(other_cs, asid == 0); | |
2001 | } | |
2002 | } | |
2003 | ||
aca3f40b PM |
2004 | static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri) |
2005 | { | |
2006 | /* We don't implement EL2, so the only control on DC ZVA is the | |
2007 | * bit in the SCTLR which can prohibit access for EL0. | |
2008 | */ | |
dcbff19b | 2009 | if (arm_current_el(env) == 0 && !(env->cp15.c1_sys & SCTLR_DZE)) { |
aca3f40b PM |
2010 | return CP_ACCESS_TRAP; |
2011 | } | |
2012 | return CP_ACCESS_OK; | |
2013 | } | |
2014 | ||
2015 | static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
2016 | { | |
2017 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2018 | int dzp_bit = 1 << 4; | |
2019 | ||
2020 | /* DZP indicates whether DC ZVA access is allowed */ | |
14e5f106 | 2021 | if (aa64_zva_access(env, NULL) == CP_ACCESS_OK) { |
aca3f40b PM |
2022 | dzp_bit = 0; |
2023 | } | |
2024 | return cpu->dcz_blocksize | dzp_bit; | |
2025 | } | |
2026 | ||
f502cfc2 PM |
2027 | static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri) |
2028 | { | |
cdcf1405 | 2029 | if (!(env->pstate & PSTATE_SP)) { |
f502cfc2 PM |
2030 | /* Access to SP_EL0 is undefined if it's being used as |
2031 | * the stack pointer. | |
2032 | */ | |
2033 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
2034 | } | |
2035 | return CP_ACCESS_OK; | |
2036 | } | |
2037 | ||
2038 | static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
2039 | { | |
2040 | return env->pstate & PSTATE_SP; | |
2041 | } | |
2042 | ||
2043 | static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) | |
2044 | { | |
2045 | update_spsel(env, val); | |
2046 | } | |
2047 | ||
b0d2b7d0 PM |
2048 | static const ARMCPRegInfo v8_cp_reginfo[] = { |
2049 | /* Minimal set of EL0-visible registers. This will need to be expanded | |
2050 | * significantly for system emulation of AArch64 CPUs. | |
2051 | */ | |
2052 | { .name = "NZCV", .state = ARM_CP_STATE_AA64, | |
2053 | .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, | |
2054 | .access = PL0_RW, .type = ARM_CP_NZCV }, | |
c2b820fe PM |
2055 | { .name = "DAIF", .state = ARM_CP_STATE_AA64, |
2056 | .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, | |
2057 | .type = ARM_CP_NO_MIGRATE, | |
2058 | .access = PL0_RW, .accessfn = aa64_daif_access, | |
2059 | .fieldoffset = offsetof(CPUARMState, daif), | |
2060 | .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, | |
b0d2b7d0 PM |
2061 | { .name = "FPCR", .state = ARM_CP_STATE_AA64, |
2062 | .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, | |
2063 | .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, | |
2064 | { .name = "FPSR", .state = ARM_CP_STATE_AA64, | |
2065 | .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, | |
2066 | .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, | |
b0d2b7d0 PM |
2067 | { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, |
2068 | .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, | |
aca3f40b PM |
2069 | .access = PL0_R, .type = ARM_CP_NO_MIGRATE, |
2070 | .readfn = aa64_dczid_read }, | |
2071 | { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, | |
2072 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, | |
2073 | .access = PL0_W, .type = ARM_CP_DC_ZVA, | |
2074 | #ifndef CONFIG_USER_ONLY | |
2075 | /* Avoid overhead of an access check that always passes in user-mode */ | |
2076 | .accessfn = aa64_zva_access, | |
2077 | #endif | |
2078 | }, | |
0eef9d98 PM |
2079 | { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, |
2080 | .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, | |
2081 | .access = PL1_R, .type = ARM_CP_CURRENTEL }, | |
8af35c37 PM |
2082 | /* Cache ops: all NOPs since we don't emulate caches */ |
2083 | { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, | |
2084 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, | |
2085 | .access = PL1_W, .type = ARM_CP_NOP }, | |
2086 | { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, | |
2087 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, | |
2088 | .access = PL1_W, .type = ARM_CP_NOP }, | |
2089 | { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, | |
2090 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, | |
2091 | .access = PL0_W, .type = ARM_CP_NOP, | |
2092 | .accessfn = aa64_cacheop_access }, | |
2093 | { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, | |
2094 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, | |
2095 | .access = PL1_W, .type = ARM_CP_NOP }, | |
2096 | { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, | |
2097 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, | |
2098 | .access = PL1_W, .type = ARM_CP_NOP }, | |
2099 | { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, | |
2100 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, | |
2101 | .access = PL0_W, .type = ARM_CP_NOP, | |
2102 | .accessfn = aa64_cacheop_access }, | |
2103 | { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, | |
2104 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, | |
2105 | .access = PL1_W, .type = ARM_CP_NOP }, | |
2106 | { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, | |
2107 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, | |
2108 | .access = PL0_W, .type = ARM_CP_NOP, | |
2109 | .accessfn = aa64_cacheop_access }, | |
2110 | { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, | |
2111 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, | |
2112 | .access = PL0_W, .type = ARM_CP_NOP, | |
2113 | .accessfn = aa64_cacheop_access }, | |
2114 | { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, | |
2115 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, | |
2116 | .access = PL1_W, .type = ARM_CP_NOP }, | |
168aa23b PM |
2117 | /* TLBI operations */ |
2118 | { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, | |
6ab9f499 | 2119 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, |
168aa23b | 2120 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, |
fa439fc5 | 2121 | .writefn = tlbiall_is_write }, |
168aa23b | 2122 | { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 2123 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, |
168aa23b | 2124 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, |
fa439fc5 | 2125 | .writefn = tlbi_aa64_va_is_write }, |
168aa23b | 2126 | { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 2127 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, |
168aa23b | 2128 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, |
fa439fc5 | 2129 | .writefn = tlbi_aa64_asid_is_write }, |
168aa23b | 2130 | { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 2131 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, |
168aa23b | 2132 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, |
fa439fc5 | 2133 | .writefn = tlbi_aa64_vaa_is_write }, |
168aa23b | 2134 | { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 2135 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, |
168aa23b | 2136 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, |
fa439fc5 | 2137 | .writefn = tlbi_aa64_va_is_write }, |
168aa23b | 2138 | { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 2139 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, |
168aa23b | 2140 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, |
fa439fc5 | 2141 | .writefn = tlbi_aa64_vaa_is_write }, |
168aa23b | 2142 | { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 2143 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, |
168aa23b PM |
2144 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, |
2145 | .writefn = tlbiall_write }, | |
2146 | { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, | |
6ab9f499 | 2147 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, |
168aa23b PM |
2148 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, |
2149 | .writefn = tlbi_aa64_va_write }, | |
2150 | { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, | |
6ab9f499 | 2151 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, |
168aa23b PM |
2152 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, |
2153 | .writefn = tlbi_aa64_asid_write }, | |
2154 | { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, | |
6ab9f499 | 2155 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, |
168aa23b PM |
2156 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, |
2157 | .writefn = tlbi_aa64_vaa_write }, | |
2158 | { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, | |
6ab9f499 | 2159 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, |
168aa23b PM |
2160 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, |
2161 | .writefn = tlbi_aa64_va_write }, | |
2162 | { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, | |
6ab9f499 | 2163 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, |
168aa23b PM |
2164 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, |
2165 | .writefn = tlbi_aa64_vaa_write }, | |
19525524 PM |
2166 | #ifndef CONFIG_USER_ONLY |
2167 | /* 64 bit address translation operations */ | |
2168 | { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, | |
2169 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, | |
2170 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, .writefn = ats_write }, | |
2171 | { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, | |
2172 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, | |
2173 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, .writefn = ats_write }, | |
2174 | { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, | |
2175 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, | |
2176 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, .writefn = ats_write }, | |
2177 | { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, | |
2178 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, | |
2179 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, .writefn = ats_write }, | |
2180 | #endif | |
995939a6 | 2181 | /* TLB invalidate last level of translation table walk */ |
9449fdf6 | 2182 | { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, |
fa439fc5 | 2183 | .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbimva_is_write }, |
9449fdf6 | 2184 | { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, |
fa439fc5 PM |
2185 | .type = ARM_CP_NO_MIGRATE, .access = PL1_W, |
2186 | .writefn = tlbimvaa_is_write }, | |
9449fdf6 PM |
2187 | { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, |
2188 | .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbimva_write }, | |
2189 | { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, | |
2190 | .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbimvaa_write }, | |
2191 | /* 32 bit cache operations */ | |
2192 | { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, | |
2193 | .type = ARM_CP_NOP, .access = PL1_W }, | |
2194 | { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, | |
2195 | .type = ARM_CP_NOP, .access = PL1_W }, | |
2196 | { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, | |
2197 | .type = ARM_CP_NOP, .access = PL1_W }, | |
2198 | { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, | |
2199 | .type = ARM_CP_NOP, .access = PL1_W }, | |
2200 | { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, | |
2201 | .type = ARM_CP_NOP, .access = PL1_W }, | |
2202 | { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, | |
2203 | .type = ARM_CP_NOP, .access = PL1_W }, | |
2204 | { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, | |
2205 | .type = ARM_CP_NOP, .access = PL1_W }, | |
2206 | { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, | |
2207 | .type = ARM_CP_NOP, .access = PL1_W }, | |
2208 | { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, | |
2209 | .type = ARM_CP_NOP, .access = PL1_W }, | |
2210 | { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, | |
2211 | .type = ARM_CP_NOP, .access = PL1_W }, | |
2212 | { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, | |
2213 | .type = ARM_CP_NOP, .access = PL1_W }, | |
2214 | { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, | |
2215 | .type = ARM_CP_NOP, .access = PL1_W }, | |
2216 | { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, | |
2217 | .type = ARM_CP_NOP, .access = PL1_W }, | |
2218 | /* MMU Domain access control / MPU write buffer control */ | |
2219 | { .name = "DACR", .cp = 15, | |
2220 | .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, | |
2221 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c3), | |
2222 | .resetvalue = 0, .writefn = dacr_write, .raw_writefn = raw_write, }, | |
a0618a19 PM |
2223 | { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, |
2224 | .type = ARM_CP_NO_MIGRATE, | |
2225 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, | |
6947f059 EI |
2226 | .access = PL1_RW, |
2227 | .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, | |
a65f1de9 PM |
2228 | { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, |
2229 | .type = ARM_CP_NO_MIGRATE, | |
2230 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, | |
2231 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[0]) }, | |
f502cfc2 PM |
2232 | /* We rely on the access checks not allowing the guest to write to the |
2233 | * state field when SPSel indicates that it's being used as the stack | |
2234 | * pointer. | |
2235 | */ | |
2236 | { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, | |
2237 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, | |
2238 | .access = PL1_RW, .accessfn = sp_el0_access, | |
2239 | .type = ARM_CP_NO_MIGRATE, | |
2240 | .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, | |
2241 | { .name = "SPSel", .state = ARM_CP_STATE_AA64, | |
2242 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, | |
2243 | .type = ARM_CP_NO_MIGRATE, | |
2244 | .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, | |
b0d2b7d0 PM |
2245 | REGINFO_SENTINEL |
2246 | }; | |
2247 | ||
d42e3c26 EI |
2248 | /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ |
2249 | static const ARMCPRegInfo v8_el3_no_el2_cp_reginfo[] = { | |
2250 | { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64, | |
2251 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, | |
2252 | .access = PL2_RW, | |
2253 | .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, | |
f149e3e8 EI |
2254 | { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, |
2255 | .type = ARM_CP_NO_MIGRATE, | |
2256 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, | |
2257 | .access = PL2_RW, | |
2258 | .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, | |
d42e3c26 EI |
2259 | REGINFO_SENTINEL |
2260 | }; | |
2261 | ||
f149e3e8 EI |
2262 | static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
2263 | { | |
2264 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2265 | uint64_t valid_mask = HCR_MASK; | |
2266 | ||
2267 | if (arm_feature(env, ARM_FEATURE_EL3)) { | |
2268 | valid_mask &= ~HCR_HCD; | |
2269 | } else { | |
2270 | valid_mask &= ~HCR_TSC; | |
2271 | } | |
2272 | ||
2273 | /* Clear RES0 bits. */ | |
2274 | value &= valid_mask; | |
2275 | ||
2276 | /* These bits change the MMU setup: | |
2277 | * HCR_VM enables stage 2 translation | |
2278 | * HCR_PTW forbids certain page-table setups | |
2279 | * HCR_DC Disables stage1 and enables stage2 translation | |
2280 | */ | |
2281 | if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) { | |
2282 | tlb_flush(CPU(cpu), 1); | |
2283 | } | |
2284 | raw_write(env, ri, value); | |
2285 | } | |
2286 | ||
3b685ba7 | 2287 | static const ARMCPRegInfo v8_el2_cp_reginfo[] = { |
f149e3e8 EI |
2288 | { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, |
2289 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, | |
2290 | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), | |
2291 | .writefn = hcr_write }, | |
3b685ba7 EI |
2292 | { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, |
2293 | .type = ARM_CP_NO_MIGRATE, | |
2294 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, | |
2295 | .access = PL2_RW, | |
2296 | .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, | |
f2c30f42 EI |
2297 | { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64, |
2298 | .type = ARM_CP_NO_MIGRATE, | |
2299 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, | |
2300 | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, | |
63b60551 EI |
2301 | { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64, |
2302 | .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, | |
2303 | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, | |
3b685ba7 EI |
2304 | { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, |
2305 | .type = ARM_CP_NO_MIGRATE, | |
2306 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, | |
2307 | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[6]) }, | |
d42e3c26 EI |
2308 | { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64, |
2309 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, | |
2310 | .access = PL2_RW, .writefn = vbar_write, | |
2311 | .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), | |
2312 | .resetvalue = 0 }, | |
3b685ba7 EI |
2313 | REGINFO_SENTINEL |
2314 | }; | |
2315 | ||
81547d66 EI |
2316 | static const ARMCPRegInfo v8_el3_cp_reginfo[] = { |
2317 | { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, | |
2318 | .type = ARM_CP_NO_MIGRATE, | |
2319 | .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, | |
2320 | .access = PL3_RW, | |
2321 | .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, | |
f2c30f42 EI |
2322 | { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, |
2323 | .type = ARM_CP_NO_MIGRATE, | |
2324 | .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, | |
2325 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, | |
63b60551 EI |
2326 | { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, |
2327 | .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, | |
2328 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, | |
81547d66 EI |
2329 | { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, |
2330 | .type = ARM_CP_NO_MIGRATE, | |
2331 | .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, | |
2332 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[7]) }, | |
a1ba125c EI |
2333 | { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, |
2334 | .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, | |
2335 | .access = PL3_RW, .writefn = vbar_write, | |
2336 | .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), | |
2337 | .resetvalue = 0 }, | |
64e0e2de EI |
2338 | { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, |
2339 | .type = ARM_CP_NO_MIGRATE, | |
2340 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, | |
2341 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), | |
2342 | .writefn = scr_write }, | |
81547d66 EI |
2343 | REGINFO_SENTINEL |
2344 | }; | |
2345 | ||
c4241c7d PM |
2346 | static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2347 | uint64_t value) | |
2771db27 | 2348 | { |
00c8cb0a AF |
2349 | ARMCPU *cpu = arm_env_get_cpu(env); |
2350 | ||
8d5c773e | 2351 | if (raw_read(env, ri) == value) { |
2f0d8631 PM |
2352 | /* Skip the TLB flush if nothing actually changed; Linux likes |
2353 | * to do a lot of pointless SCTLR writes. | |
2354 | */ | |
2355 | return; | |
2356 | } | |
2357 | ||
8d5c773e | 2358 | raw_write(env, ri, value); |
2771db27 PM |
2359 | /* ??? Lots of these bits are not implemented. */ |
2360 | /* This may enable/disable the MMU, so do a TLB flush. */ | |
00c8cb0a | 2361 | tlb_flush(CPU(cpu), 1); |
2771db27 PM |
2362 | } |
2363 | ||
7da845b0 PM |
2364 | static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri) |
2365 | { | |
2366 | /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64, | |
2367 | * but the AArch32 CTR has its own reginfo struct) | |
2368 | */ | |
dcbff19b | 2369 | if (arm_current_el(env) == 0 && !(env->cp15.c1_sys & SCTLR_UCT)) { |
7da845b0 PM |
2370 | return CP_ACCESS_TRAP; |
2371 | } | |
2372 | return CP_ACCESS_OK; | |
2373 | } | |
2374 | ||
50300698 | 2375 | static const ARMCPRegInfo debug_cp_reginfo[] = { |
50300698 | 2376 | /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped |
10aae104 PM |
2377 | * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; |
2378 | * unlike DBGDRAR it is never accessible from EL0. | |
2379 | * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 | |
2380 | * accessor. | |
50300698 PM |
2381 | */ |
2382 | { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, | |
2383 | .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
10aae104 PM |
2384 | { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, |
2385 | .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, | |
2386 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
50300698 PM |
2387 | { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, |
2388 | .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
17a9eb53 | 2389 | /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ |
10aae104 PM |
2390 | { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, |
2391 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, | |
0e5e8935 PM |
2392 | .access = PL1_RW, |
2393 | .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), | |
2394 | .resetvalue = 0 }, | |
5e8b12ff PM |
2395 | /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1. |
2396 | * We don't implement the configurable EL0 access. | |
2397 | */ | |
2398 | { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH, | |
2399 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, | |
2400 | .type = ARM_CP_NO_MIGRATE, | |
2401 | .access = PL1_R, | |
2402 | .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), | |
2403 | .resetfn = arm_cp_reset_ignore }, | |
50300698 | 2404 | /* We define a dummy WI OSLAR_EL1, because Linux writes to it. */ |
10aae104 PM |
2405 | { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, |
2406 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, | |
50300698 | 2407 | .access = PL1_W, .type = ARM_CP_NOP }, |
5e8b12ff PM |
2408 | /* Dummy OSDLR_EL1: 32-bit Linux will read this */ |
2409 | { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, | |
2410 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, | |
2411 | .access = PL1_RW, .type = ARM_CP_NOP }, | |
2412 | /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't | |
2413 | * implement vector catch debug events yet. | |
2414 | */ | |
2415 | { .name = "DBGVCR", | |
2416 | .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, | |
2417 | .access = PL1_RW, .type = ARM_CP_NOP }, | |
50300698 PM |
2418 | REGINFO_SENTINEL |
2419 | }; | |
2420 | ||
2421 | static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { | |
2422 | /* 64 bit access versions of the (dummy) debug registers */ | |
2423 | { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, | |
2424 | .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, | |
2425 | { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, | |
2426 | .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, | |
2427 | REGINFO_SENTINEL | |
2428 | }; | |
2429 | ||
9ee98ce8 PM |
2430 | void hw_watchpoint_update(ARMCPU *cpu, int n) |
2431 | { | |
2432 | CPUARMState *env = &cpu->env; | |
2433 | vaddr len = 0; | |
2434 | vaddr wvr = env->cp15.dbgwvr[n]; | |
2435 | uint64_t wcr = env->cp15.dbgwcr[n]; | |
2436 | int mask; | |
2437 | int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; | |
2438 | ||
2439 | if (env->cpu_watchpoint[n]) { | |
2440 | cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); | |
2441 | env->cpu_watchpoint[n] = NULL; | |
2442 | } | |
2443 | ||
2444 | if (!extract64(wcr, 0, 1)) { | |
2445 | /* E bit clear : watchpoint disabled */ | |
2446 | return; | |
2447 | } | |
2448 | ||
2449 | switch (extract64(wcr, 3, 2)) { | |
2450 | case 0: | |
2451 | /* LSC 00 is reserved and must behave as if the wp is disabled */ | |
2452 | return; | |
2453 | case 1: | |
2454 | flags |= BP_MEM_READ; | |
2455 | break; | |
2456 | case 2: | |
2457 | flags |= BP_MEM_WRITE; | |
2458 | break; | |
2459 | case 3: | |
2460 | flags |= BP_MEM_ACCESS; | |
2461 | break; | |
2462 | } | |
2463 | ||
2464 | /* Attempts to use both MASK and BAS fields simultaneously are | |
2465 | * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, | |
2466 | * thus generating a watchpoint for every byte in the masked region. | |
2467 | */ | |
2468 | mask = extract64(wcr, 24, 4); | |
2469 | if (mask == 1 || mask == 2) { | |
2470 | /* Reserved values of MASK; we must act as if the mask value was | |
2471 | * some non-reserved value, or as if the watchpoint were disabled. | |
2472 | * We choose the latter. | |
2473 | */ | |
2474 | return; | |
2475 | } else if (mask) { | |
2476 | /* Watchpoint covers an aligned area up to 2GB in size */ | |
2477 | len = 1ULL << mask; | |
2478 | /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE | |
2479 | * whether the watchpoint fires when the unmasked bits match; we opt | |
2480 | * to generate the exceptions. | |
2481 | */ | |
2482 | wvr &= ~(len - 1); | |
2483 | } else { | |
2484 | /* Watchpoint covers bytes defined by the byte address select bits */ | |
2485 | int bas = extract64(wcr, 5, 8); | |
2486 | int basstart; | |
2487 | ||
2488 | if (bas == 0) { | |
2489 | /* This must act as if the watchpoint is disabled */ | |
2490 | return; | |
2491 | } | |
2492 | ||
2493 | if (extract64(wvr, 2, 1)) { | |
2494 | /* Deprecated case of an only 4-aligned address. BAS[7:4] are | |
2495 | * ignored, and BAS[3:0] define which bytes to watch. | |
2496 | */ | |
2497 | bas &= 0xf; | |
2498 | } | |
2499 | /* The BAS bits are supposed to be programmed to indicate a contiguous | |
2500 | * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether | |
2501 | * we fire for each byte in the word/doubleword addressed by the WVR. | |
2502 | * We choose to ignore any non-zero bits after the first range of 1s. | |
2503 | */ | |
2504 | basstart = ctz32(bas); | |
2505 | len = cto32(bas >> basstart); | |
2506 | wvr += basstart; | |
2507 | } | |
2508 | ||
2509 | cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, | |
2510 | &env->cpu_watchpoint[n]); | |
2511 | } | |
2512 | ||
2513 | void hw_watchpoint_update_all(ARMCPU *cpu) | |
2514 | { | |
2515 | int i; | |
2516 | CPUARMState *env = &cpu->env; | |
2517 | ||
2518 | /* Completely clear out existing QEMU watchpoints and our array, to | |
2519 | * avoid possible stale entries following migration load. | |
2520 | */ | |
2521 | cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); | |
2522 | memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); | |
2523 | ||
2524 | for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { | |
2525 | hw_watchpoint_update(cpu, i); | |
2526 | } | |
2527 | } | |
2528 | ||
2529 | static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2530 | uint64_t value) | |
2531 | { | |
2532 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2533 | int i = ri->crm; | |
2534 | ||
2535 | /* Bits [63:49] are hardwired to the value of bit [48]; that is, the | |
2536 | * register reads and behaves as if values written are sign extended. | |
2537 | * Bits [1:0] are RES0. | |
2538 | */ | |
2539 | value = sextract64(value, 0, 49) & ~3ULL; | |
2540 | ||
2541 | raw_write(env, ri, value); | |
2542 | hw_watchpoint_update(cpu, i); | |
2543 | } | |
2544 | ||
2545 | static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2546 | uint64_t value) | |
2547 | { | |
2548 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2549 | int i = ri->crm; | |
2550 | ||
2551 | raw_write(env, ri, value); | |
2552 | hw_watchpoint_update(cpu, i); | |
2553 | } | |
2554 | ||
46747d15 PM |
2555 | void hw_breakpoint_update(ARMCPU *cpu, int n) |
2556 | { | |
2557 | CPUARMState *env = &cpu->env; | |
2558 | uint64_t bvr = env->cp15.dbgbvr[n]; | |
2559 | uint64_t bcr = env->cp15.dbgbcr[n]; | |
2560 | vaddr addr; | |
2561 | int bt; | |
2562 | int flags = BP_CPU; | |
2563 | ||
2564 | if (env->cpu_breakpoint[n]) { | |
2565 | cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); | |
2566 | env->cpu_breakpoint[n] = NULL; | |
2567 | } | |
2568 | ||
2569 | if (!extract64(bcr, 0, 1)) { | |
2570 | /* E bit clear : watchpoint disabled */ | |
2571 | return; | |
2572 | } | |
2573 | ||
2574 | bt = extract64(bcr, 20, 4); | |
2575 | ||
2576 | switch (bt) { | |
2577 | case 4: /* unlinked address mismatch (reserved if AArch64) */ | |
2578 | case 5: /* linked address mismatch (reserved if AArch64) */ | |
2579 | qemu_log_mask(LOG_UNIMP, | |
2580 | "arm: address mismatch breakpoint types not implemented"); | |
2581 | return; | |
2582 | case 0: /* unlinked address match */ | |
2583 | case 1: /* linked address match */ | |
2584 | { | |
2585 | /* Bits [63:49] are hardwired to the value of bit [48]; that is, | |
2586 | * we behave as if the register was sign extended. Bits [1:0] are | |
2587 | * RES0. The BAS field is used to allow setting breakpoints on 16 | |
2588 | * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether | |
2589 | * a bp will fire if the addresses covered by the bp and the addresses | |
2590 | * covered by the insn overlap but the insn doesn't start at the | |
2591 | * start of the bp address range. We choose to require the insn and | |
2592 | * the bp to have the same address. The constraints on writing to | |
2593 | * BAS enforced in dbgbcr_write mean we have only four cases: | |
2594 | * 0b0000 => no breakpoint | |
2595 | * 0b0011 => breakpoint on addr | |
2596 | * 0b1100 => breakpoint on addr + 2 | |
2597 | * 0b1111 => breakpoint on addr | |
2598 | * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). | |
2599 | */ | |
2600 | int bas = extract64(bcr, 5, 4); | |
2601 | addr = sextract64(bvr, 0, 49) & ~3ULL; | |
2602 | if (bas == 0) { | |
2603 | return; | |
2604 | } | |
2605 | if (bas == 0xc) { | |
2606 | addr += 2; | |
2607 | } | |
2608 | break; | |
2609 | } | |
2610 | case 2: /* unlinked context ID match */ | |
2611 | case 8: /* unlinked VMID match (reserved if no EL2) */ | |
2612 | case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ | |
2613 | qemu_log_mask(LOG_UNIMP, | |
2614 | "arm: unlinked context breakpoint types not implemented"); | |
2615 | return; | |
2616 | case 9: /* linked VMID match (reserved if no EL2) */ | |
2617 | case 11: /* linked context ID and VMID match (reserved if no EL2) */ | |
2618 | case 3: /* linked context ID match */ | |
2619 | default: | |
2620 | /* We must generate no events for Linked context matches (unless | |
2621 | * they are linked to by some other bp/wp, which is handled in | |
2622 | * updates for the linking bp/wp). We choose to also generate no events | |
2623 | * for reserved values. | |
2624 | */ | |
2625 | return; | |
2626 | } | |
2627 | ||
2628 | cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); | |
2629 | } | |
2630 | ||
2631 | void hw_breakpoint_update_all(ARMCPU *cpu) | |
2632 | { | |
2633 | int i; | |
2634 | CPUARMState *env = &cpu->env; | |
2635 | ||
2636 | /* Completely clear out existing QEMU breakpoints and our array, to | |
2637 | * avoid possible stale entries following migration load. | |
2638 | */ | |
2639 | cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); | |
2640 | memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); | |
2641 | ||
2642 | for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { | |
2643 | hw_breakpoint_update(cpu, i); | |
2644 | } | |
2645 | } | |
2646 | ||
2647 | static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2648 | uint64_t value) | |
2649 | { | |
2650 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2651 | int i = ri->crm; | |
2652 | ||
2653 | raw_write(env, ri, value); | |
2654 | hw_breakpoint_update(cpu, i); | |
2655 | } | |
2656 | ||
2657 | static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2658 | uint64_t value) | |
2659 | { | |
2660 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2661 | int i = ri->crm; | |
2662 | ||
2663 | /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only | |
2664 | * copy of BAS[0]. | |
2665 | */ | |
2666 | value = deposit64(value, 6, 1, extract64(value, 5, 1)); | |
2667 | value = deposit64(value, 8, 1, extract64(value, 7, 1)); | |
2668 | ||
2669 | raw_write(env, ri, value); | |
2670 | hw_breakpoint_update(cpu, i); | |
2671 | } | |
2672 | ||
50300698 | 2673 | static void define_debug_regs(ARMCPU *cpu) |
0b45451e | 2674 | { |
50300698 PM |
2675 | /* Define v7 and v8 architectural debug registers. |
2676 | * These are just dummy implementations for now. | |
0b45451e PM |
2677 | */ |
2678 | int i; | |
3ff6fc91 | 2679 | int wrps, brps, ctx_cmps; |
48eb3ae6 PM |
2680 | ARMCPRegInfo dbgdidr = { |
2681 | .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, | |
2682 | .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr, | |
2683 | }; | |
2684 | ||
3ff6fc91 | 2685 | /* Note that all these register fields hold "number of Xs minus 1". */ |
48eb3ae6 PM |
2686 | brps = extract32(cpu->dbgdidr, 24, 4); |
2687 | wrps = extract32(cpu->dbgdidr, 28, 4); | |
3ff6fc91 PM |
2688 | ctx_cmps = extract32(cpu->dbgdidr, 20, 4); |
2689 | ||
2690 | assert(ctx_cmps <= brps); | |
48eb3ae6 PM |
2691 | |
2692 | /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties | |
2693 | * of the debug registers such as number of breakpoints; | |
2694 | * check that if they both exist then they agree. | |
2695 | */ | |
2696 | if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { | |
2697 | assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps); | |
2698 | assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps); | |
3ff6fc91 | 2699 | assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps); |
48eb3ae6 | 2700 | } |
0b45451e | 2701 | |
48eb3ae6 | 2702 | define_one_arm_cp_reg(cpu, &dbgdidr); |
50300698 PM |
2703 | define_arm_cp_regs(cpu, debug_cp_reginfo); |
2704 | ||
2705 | if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { | |
2706 | define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); | |
2707 | } | |
2708 | ||
48eb3ae6 | 2709 | for (i = 0; i < brps + 1; i++) { |
0b45451e | 2710 | ARMCPRegInfo dbgregs[] = { |
10aae104 PM |
2711 | { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, |
2712 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, | |
0b45451e | 2713 | .access = PL1_RW, |
46747d15 PM |
2714 | .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), |
2715 | .writefn = dbgbvr_write, .raw_writefn = raw_write | |
2716 | }, | |
10aae104 PM |
2717 | { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, |
2718 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, | |
0b45451e | 2719 | .access = PL1_RW, |
46747d15 PM |
2720 | .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), |
2721 | .writefn = dbgbcr_write, .raw_writefn = raw_write | |
2722 | }, | |
48eb3ae6 PM |
2723 | REGINFO_SENTINEL |
2724 | }; | |
2725 | define_arm_cp_regs(cpu, dbgregs); | |
2726 | } | |
2727 | ||
2728 | for (i = 0; i < wrps + 1; i++) { | |
2729 | ARMCPRegInfo dbgregs[] = { | |
10aae104 PM |
2730 | { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, |
2731 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, | |
0b45451e | 2732 | .access = PL1_RW, |
9ee98ce8 PM |
2733 | .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), |
2734 | .writefn = dbgwvr_write, .raw_writefn = raw_write | |
2735 | }, | |
10aae104 PM |
2736 | { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, |
2737 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, | |
0b45451e | 2738 | .access = PL1_RW, |
9ee98ce8 PM |
2739 | .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), |
2740 | .writefn = dbgwcr_write, .raw_writefn = raw_write | |
2741 | }, | |
2742 | REGINFO_SENTINEL | |
0b45451e PM |
2743 | }; |
2744 | define_arm_cp_regs(cpu, dbgregs); | |
2745 | } | |
2746 | } | |
2747 | ||
2ceb98c0 PM |
2748 | void register_cp_regs_for_features(ARMCPU *cpu) |
2749 | { | |
2750 | /* Register all the coprocessor registers based on feature bits */ | |
2751 | CPUARMState *env = &cpu->env; | |
2752 | if (arm_feature(env, ARM_FEATURE_M)) { | |
2753 | /* M profile has no coprocessor registers */ | |
2754 | return; | |
2755 | } | |
2756 | ||
e9aa6c21 | 2757 | define_arm_cp_regs(cpu, cp_reginfo); |
9449fdf6 PM |
2758 | if (!arm_feature(env, ARM_FEATURE_V8)) { |
2759 | /* Must go early as it is full of wildcards that may be | |
2760 | * overridden by later definitions. | |
2761 | */ | |
2762 | define_arm_cp_regs(cpu, not_v8_cp_reginfo); | |
2763 | } | |
2764 | ||
7d57f408 | 2765 | if (arm_feature(env, ARM_FEATURE_V6)) { |
8515a092 PM |
2766 | /* The ID registers all have impdef reset values */ |
2767 | ARMCPRegInfo v6_idregs[] = { | |
0ff644a7 PM |
2768 | { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, |
2769 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, | |
2770 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 2771 | .resetvalue = cpu->id_pfr0 }, |
0ff644a7 PM |
2772 | { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, |
2773 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, | |
2774 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 2775 | .resetvalue = cpu->id_pfr1 }, |
0ff644a7 PM |
2776 | { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, |
2777 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, | |
2778 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 2779 | .resetvalue = cpu->id_dfr0 }, |
0ff644a7 PM |
2780 | { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, |
2781 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, | |
2782 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 2783 | .resetvalue = cpu->id_afr0 }, |
0ff644a7 PM |
2784 | { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, |
2785 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, | |
2786 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 2787 | .resetvalue = cpu->id_mmfr0 }, |
0ff644a7 PM |
2788 | { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, |
2789 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, | |
2790 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 2791 | .resetvalue = cpu->id_mmfr1 }, |
0ff644a7 PM |
2792 | { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, |
2793 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, | |
2794 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 2795 | .resetvalue = cpu->id_mmfr2 }, |
0ff644a7 PM |
2796 | { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, |
2797 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, | |
2798 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 2799 | .resetvalue = cpu->id_mmfr3 }, |
0ff644a7 PM |
2800 | { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, |
2801 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, | |
2802 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 2803 | .resetvalue = cpu->id_isar0 }, |
0ff644a7 PM |
2804 | { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, |
2805 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, | |
2806 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 2807 | .resetvalue = cpu->id_isar1 }, |
0ff644a7 PM |
2808 | { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, |
2809 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, | |
2810 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 2811 | .resetvalue = cpu->id_isar2 }, |
0ff644a7 PM |
2812 | { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, |
2813 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, | |
2814 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 2815 | .resetvalue = cpu->id_isar3 }, |
0ff644a7 PM |
2816 | { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, |
2817 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, | |
2818 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 2819 | .resetvalue = cpu->id_isar4 }, |
0ff644a7 PM |
2820 | { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, |
2821 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, | |
2822 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 PM |
2823 | .resetvalue = cpu->id_isar5 }, |
2824 | /* 6..7 are as yet unallocated and must RAZ */ | |
2825 | { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2, | |
2826 | .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST, | |
2827 | .resetvalue = 0 }, | |
2828 | { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2, | |
2829 | .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST, | |
2830 | .resetvalue = 0 }, | |
2831 | REGINFO_SENTINEL | |
2832 | }; | |
2833 | define_arm_cp_regs(cpu, v6_idregs); | |
7d57f408 PM |
2834 | define_arm_cp_regs(cpu, v6_cp_reginfo); |
2835 | } else { | |
2836 | define_arm_cp_regs(cpu, not_v6_cp_reginfo); | |
2837 | } | |
4d31c596 PM |
2838 | if (arm_feature(env, ARM_FEATURE_V6K)) { |
2839 | define_arm_cp_regs(cpu, v6k_cp_reginfo); | |
2840 | } | |
995939a6 PM |
2841 | if (arm_feature(env, ARM_FEATURE_V7MP)) { |
2842 | define_arm_cp_regs(cpu, v7mp_cp_reginfo); | |
2843 | } | |
e9aa6c21 | 2844 | if (arm_feature(env, ARM_FEATURE_V7)) { |
200ac0ef | 2845 | /* v7 performance monitor control register: same implementor |
7c2cb42b AF |
2846 | * field as main ID register, and we implement only the cycle |
2847 | * count register. | |
200ac0ef | 2848 | */ |
7c2cb42b | 2849 | #ifndef CONFIG_USER_ONLY |
200ac0ef PM |
2850 | ARMCPRegInfo pmcr = { |
2851 | .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, | |
8521466b AF |
2852 | .access = PL0_RW, |
2853 | .type = ARM_CP_IO | ARM_CP_NO_MIGRATE, | |
2854 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), | |
fcd25206 PM |
2855 | .accessfn = pmreg_access, .writefn = pmcr_write, |
2856 | .raw_writefn = raw_write, | |
200ac0ef | 2857 | }; |
8521466b AF |
2858 | ARMCPRegInfo pmcr64 = { |
2859 | .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, | |
2860 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, | |
2861 | .access = PL0_RW, .accessfn = pmreg_access, | |
2862 | .type = ARM_CP_IO, | |
2863 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), | |
2864 | .resetvalue = cpu->midr & 0xff000000, | |
2865 | .writefn = pmcr_write, .raw_writefn = raw_write, | |
2866 | }; | |
7c2cb42b | 2867 | define_one_arm_cp_reg(cpu, &pmcr); |
8521466b | 2868 | define_one_arm_cp_reg(cpu, &pmcr64); |
7c2cb42b | 2869 | #endif |
776d4e5c | 2870 | ARMCPRegInfo clidr = { |
7da845b0 PM |
2871 | .name = "CLIDR", .state = ARM_CP_STATE_BOTH, |
2872 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, | |
776d4e5c PM |
2873 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr |
2874 | }; | |
776d4e5c | 2875 | define_one_arm_cp_reg(cpu, &clidr); |
e9aa6c21 | 2876 | define_arm_cp_regs(cpu, v7_cp_reginfo); |
50300698 | 2877 | define_debug_regs(cpu); |
7d57f408 PM |
2878 | } else { |
2879 | define_arm_cp_regs(cpu, not_v7_cp_reginfo); | |
e9aa6c21 | 2880 | } |
b0d2b7d0 | 2881 | if (arm_feature(env, ARM_FEATURE_V8)) { |
e60cef86 PM |
2882 | /* AArch64 ID registers, which all have impdef reset values */ |
2883 | ARMCPRegInfo v8_idregs[] = { | |
2884 | { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, | |
2885 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, | |
2886 | .access = PL1_R, .type = ARM_CP_CONST, | |
2887 | .resetvalue = cpu->id_aa64pfr0 }, | |
2888 | { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, | |
2889 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, | |
2890 | .access = PL1_R, .type = ARM_CP_CONST, | |
2891 | .resetvalue = cpu->id_aa64pfr1}, | |
2892 | { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, | |
2893 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, | |
2894 | .access = PL1_R, .type = ARM_CP_CONST, | |
5d831be2 | 2895 | /* We mask out the PMUVer field, because we don't currently |
9225d739 PM |
2896 | * implement the PMU. Not advertising it prevents the guest |
2897 | * from trying to use it and getting UNDEFs on registers we | |
2898 | * don't implement. | |
2899 | */ | |
2900 | .resetvalue = cpu->id_aa64dfr0 & ~0xf00 }, | |
e60cef86 PM |
2901 | { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, |
2902 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, | |
2903 | .access = PL1_R, .type = ARM_CP_CONST, | |
2904 | .resetvalue = cpu->id_aa64dfr1 }, | |
2905 | { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, | |
2906 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, | |
2907 | .access = PL1_R, .type = ARM_CP_CONST, | |
2908 | .resetvalue = cpu->id_aa64afr0 }, | |
2909 | { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, | |
2910 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, | |
2911 | .access = PL1_R, .type = ARM_CP_CONST, | |
2912 | .resetvalue = cpu->id_aa64afr1 }, | |
2913 | { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, | |
2914 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, | |
2915 | .access = PL1_R, .type = ARM_CP_CONST, | |
2916 | .resetvalue = cpu->id_aa64isar0 }, | |
2917 | { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, | |
2918 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, | |
2919 | .access = PL1_R, .type = ARM_CP_CONST, | |
2920 | .resetvalue = cpu->id_aa64isar1 }, | |
2921 | { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, | |
2922 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, | |
2923 | .access = PL1_R, .type = ARM_CP_CONST, | |
2924 | .resetvalue = cpu->id_aa64mmfr0 }, | |
2925 | { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, | |
2926 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, | |
2927 | .access = PL1_R, .type = ARM_CP_CONST, | |
2928 | .resetvalue = cpu->id_aa64mmfr1 }, | |
a50c0f51 PM |
2929 | { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, |
2930 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, | |
2931 | .access = PL1_R, .type = ARM_CP_CONST, | |
2932 | .resetvalue = cpu->mvfr0 }, | |
2933 | { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, | |
2934 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, | |
2935 | .access = PL1_R, .type = ARM_CP_CONST, | |
2936 | .resetvalue = cpu->mvfr1 }, | |
2937 | { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, | |
2938 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, | |
2939 | .access = PL1_R, .type = ARM_CP_CONST, | |
2940 | .resetvalue = cpu->mvfr2 }, | |
e60cef86 PM |
2941 | REGINFO_SENTINEL |
2942 | }; | |
3933443e PM |
2943 | ARMCPRegInfo rvbar = { |
2944 | .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, | |
2945 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2, | |
2946 | .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar | |
2947 | }; | |
2948 | define_one_arm_cp_reg(cpu, &rvbar); | |
e60cef86 | 2949 | define_arm_cp_regs(cpu, v8_idregs); |
b0d2b7d0 PM |
2950 | define_arm_cp_regs(cpu, v8_cp_reginfo); |
2951 | } | |
3b685ba7 EI |
2952 | if (arm_feature(env, ARM_FEATURE_EL2)) { |
2953 | define_arm_cp_regs(cpu, v8_el2_cp_reginfo); | |
d42e3c26 EI |
2954 | } else { |
2955 | /* If EL2 is missing but higher ELs are enabled, we need to | |
2956 | * register the no_el2 reginfos. | |
2957 | */ | |
2958 | if (arm_feature(env, ARM_FEATURE_EL3)) { | |
2959 | define_arm_cp_regs(cpu, v8_el3_no_el2_cp_reginfo); | |
2960 | } | |
3b685ba7 | 2961 | } |
81547d66 EI |
2962 | if (arm_feature(env, ARM_FEATURE_EL3)) { |
2963 | define_arm_cp_regs(cpu, v8_el3_cp_reginfo); | |
2964 | } | |
18032bec PM |
2965 | if (arm_feature(env, ARM_FEATURE_MPU)) { |
2966 | /* These are the MPU registers prior to PMSAv6. Any new | |
2967 | * PMSA core later than the ARM946 will require that we | |
2968 | * implement the PMSAv6 or PMSAv7 registers, which are | |
2969 | * completely different. | |
2970 | */ | |
2971 | assert(!arm_feature(env, ARM_FEATURE_V6)); | |
2972 | define_arm_cp_regs(cpu, pmsav5_cp_reginfo); | |
2973 | } else { | |
2974 | define_arm_cp_regs(cpu, vmsa_cp_reginfo); | |
2975 | } | |
c326b979 PM |
2976 | if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { |
2977 | define_arm_cp_regs(cpu, t2ee_cp_reginfo); | |
2978 | } | |
6cc7a3ae PM |
2979 | if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { |
2980 | define_arm_cp_regs(cpu, generic_timer_cp_reginfo); | |
2981 | } | |
4a501606 PM |
2982 | if (arm_feature(env, ARM_FEATURE_VAPA)) { |
2983 | define_arm_cp_regs(cpu, vapa_cp_reginfo); | |
2984 | } | |
c4804214 PM |
2985 | if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { |
2986 | define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); | |
2987 | } | |
2988 | if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { | |
2989 | define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); | |
2990 | } | |
2991 | if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { | |
2992 | define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); | |
2993 | } | |
18032bec PM |
2994 | if (arm_feature(env, ARM_FEATURE_OMAPCP)) { |
2995 | define_arm_cp_regs(cpu, omap_cp_reginfo); | |
2996 | } | |
34f90529 PM |
2997 | if (arm_feature(env, ARM_FEATURE_STRONGARM)) { |
2998 | define_arm_cp_regs(cpu, strongarm_cp_reginfo); | |
2999 | } | |
1047b9d7 PM |
3000 | if (arm_feature(env, ARM_FEATURE_XSCALE)) { |
3001 | define_arm_cp_regs(cpu, xscale_cp_reginfo); | |
3002 | } | |
3003 | if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { | |
3004 | define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); | |
3005 | } | |
7ac681cf PM |
3006 | if (arm_feature(env, ARM_FEATURE_LPAE)) { |
3007 | define_arm_cp_regs(cpu, lpae_cp_reginfo); | |
3008 | } | |
7884849c PM |
3009 | /* Slightly awkwardly, the OMAP and StrongARM cores need all of |
3010 | * cp15 crn=0 to be writes-ignored, whereas for other cores they should | |
3011 | * be read-only (ie write causes UNDEF exception). | |
3012 | */ | |
3013 | { | |
00a29f3d PM |
3014 | ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { |
3015 | /* Pre-v8 MIDR space. | |
3016 | * Note that the MIDR isn't a simple constant register because | |
7884849c PM |
3017 | * of the TI925 behaviour where writes to another register can |
3018 | * cause the MIDR value to change. | |
97ce8d61 PC |
3019 | * |
3020 | * Unimplemented registers in the c15 0 0 0 space default to | |
3021 | * MIDR. Define MIDR first as this entire space, then CTR, TCMTR | |
3022 | * and friends override accordingly. | |
7884849c PM |
3023 | */ |
3024 | { .name = "MIDR", | |
97ce8d61 | 3025 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, |
7884849c | 3026 | .access = PL1_R, .resetvalue = cpu->midr, |
d4e6df63 | 3027 | .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, |
97ce8d61 PC |
3028 | .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), |
3029 | .type = ARM_CP_OVERRIDE }, | |
7884849c PM |
3030 | /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ |
3031 | { .name = "DUMMY", | |
3032 | .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, | |
3033 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
3034 | { .name = "DUMMY", | |
3035 | .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, | |
3036 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
3037 | { .name = "DUMMY", | |
3038 | .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, | |
3039 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
3040 | { .name = "DUMMY", | |
3041 | .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, | |
3042 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
3043 | { .name = "DUMMY", | |
3044 | .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, | |
3045 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
3046 | REGINFO_SENTINEL | |
3047 | }; | |
00a29f3d PM |
3048 | ARMCPRegInfo id_v8_midr_cp_reginfo[] = { |
3049 | /* v8 MIDR -- the wildcard isn't necessary, and nor is the | |
3050 | * variable-MIDR TI925 behaviour. Instead we have a single | |
3051 | * (strictly speaking IMPDEF) alias of the MIDR, REVIDR. | |
3052 | */ | |
3053 | { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, | |
3054 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, | |
3055 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->midr }, | |
3056 | { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, | |
3057 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, | |
3058 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->midr }, | |
3059 | REGINFO_SENTINEL | |
3060 | }; | |
3061 | ARMCPRegInfo id_cp_reginfo[] = { | |
3062 | /* These are common to v8 and pre-v8 */ | |
3063 | { .name = "CTR", | |
3064 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, | |
3065 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, | |
3066 | { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, | |
3067 | .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, | |
3068 | .access = PL0_R, .accessfn = ctr_el0_access, | |
3069 | .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, | |
3070 | /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ | |
3071 | { .name = "TCMTR", | |
3072 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, | |
3073 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
3074 | { .name = "TLBTR", | |
3075 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, | |
3076 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
3077 | REGINFO_SENTINEL | |
3078 | }; | |
7884849c PM |
3079 | ARMCPRegInfo crn0_wi_reginfo = { |
3080 | .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, | |
3081 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, | |
3082 | .type = ARM_CP_NOP | ARM_CP_OVERRIDE | |
3083 | }; | |
3084 | if (arm_feature(env, ARM_FEATURE_OMAPCP) || | |
3085 | arm_feature(env, ARM_FEATURE_STRONGARM)) { | |
3086 | ARMCPRegInfo *r; | |
3087 | /* Register the blanket "writes ignored" value first to cover the | |
a703eda1 PC |
3088 | * whole space. Then update the specific ID registers to allow write |
3089 | * access, so that they ignore writes rather than causing them to | |
3090 | * UNDEF. | |
7884849c PM |
3091 | */ |
3092 | define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); | |
00a29f3d PM |
3093 | for (r = id_pre_v8_midr_cp_reginfo; |
3094 | r->type != ARM_CP_SENTINEL; r++) { | |
3095 | r->access = PL1_RW; | |
3096 | } | |
7884849c PM |
3097 | for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { |
3098 | r->access = PL1_RW; | |
7884849c | 3099 | } |
7884849c | 3100 | } |
00a29f3d PM |
3101 | if (arm_feature(env, ARM_FEATURE_V8)) { |
3102 | define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); | |
3103 | } else { | |
3104 | define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); | |
3105 | } | |
a703eda1 | 3106 | define_arm_cp_regs(cpu, id_cp_reginfo); |
7884849c PM |
3107 | } |
3108 | ||
97ce8d61 PC |
3109 | if (arm_feature(env, ARM_FEATURE_MPIDR)) { |
3110 | define_arm_cp_regs(cpu, mpidr_cp_reginfo); | |
3111 | } | |
3112 | ||
2771db27 PM |
3113 | if (arm_feature(env, ARM_FEATURE_AUXCR)) { |
3114 | ARMCPRegInfo auxcr = { | |
2eef0bf8 PM |
3115 | .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, |
3116 | .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, | |
2771db27 PM |
3117 | .access = PL1_RW, .type = ARM_CP_CONST, |
3118 | .resetvalue = cpu->reset_auxcr | |
3119 | }; | |
3120 | define_one_arm_cp_reg(cpu, &auxcr); | |
3121 | } | |
3122 | ||
d8ba780b | 3123 | if (arm_feature(env, ARM_FEATURE_CBAR)) { |
f318cec6 PM |
3124 | if (arm_feature(env, ARM_FEATURE_AARCH64)) { |
3125 | /* 32 bit view is [31:18] 0...0 [43:32]. */ | |
3126 | uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) | |
3127 | | extract64(cpu->reset_cbar, 32, 12); | |
3128 | ARMCPRegInfo cbar_reginfo[] = { | |
3129 | { .name = "CBAR", | |
3130 | .type = ARM_CP_CONST, | |
3131 | .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, | |
3132 | .access = PL1_R, .resetvalue = cpu->reset_cbar }, | |
3133 | { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, | |
3134 | .type = ARM_CP_CONST, | |
3135 | .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, | |
3136 | .access = PL1_R, .resetvalue = cbar32 }, | |
3137 | REGINFO_SENTINEL | |
3138 | }; | |
3139 | /* We don't implement a r/w 64 bit CBAR currently */ | |
3140 | assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); | |
3141 | define_arm_cp_regs(cpu, cbar_reginfo); | |
3142 | } else { | |
3143 | ARMCPRegInfo cbar = { | |
3144 | .name = "CBAR", | |
3145 | .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, | |
3146 | .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, | |
3147 | .fieldoffset = offsetof(CPUARMState, | |
3148 | cp15.c15_config_base_address) | |
3149 | }; | |
3150 | if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { | |
3151 | cbar.access = PL1_R; | |
3152 | cbar.fieldoffset = 0; | |
3153 | cbar.type = ARM_CP_CONST; | |
3154 | } | |
3155 | define_one_arm_cp_reg(cpu, &cbar); | |
3156 | } | |
d8ba780b PC |
3157 | } |
3158 | ||
2771db27 PM |
3159 | /* Generic registers whose values depend on the implementation */ |
3160 | { | |
3161 | ARMCPRegInfo sctlr = { | |
5ebafdf3 PM |
3162 | .name = "SCTLR", .state = ARM_CP_STATE_BOTH, |
3163 | .opc0 = 3, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, | |
2771db27 | 3164 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_sys), |
d4e6df63 PM |
3165 | .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, |
3166 | .raw_writefn = raw_write, | |
2771db27 PM |
3167 | }; |
3168 | if (arm_feature(env, ARM_FEATURE_XSCALE)) { | |
3169 | /* Normally we would always end the TB on an SCTLR write, but Linux | |
3170 | * arch/arm/mach-pxa/sleep.S expects two instructions following | |
3171 | * an MMU enable to execute from cache. Imitate this behaviour. | |
3172 | */ | |
3173 | sctlr.type |= ARM_CP_SUPPRESS_TB_END; | |
3174 | } | |
3175 | define_one_arm_cp_reg(cpu, &sctlr); | |
3176 | } | |
2ceb98c0 PM |
3177 | } |
3178 | ||
778c3a06 | 3179 | ARMCPU *cpu_arm_init(const char *cpu_model) |
40f137e1 | 3180 | { |
9262685b | 3181 | return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU, cpu_model)); |
14969266 AF |
3182 | } |
3183 | ||
3184 | void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) | |
3185 | { | |
22169d41 | 3186 | CPUState *cs = CPU(cpu); |
14969266 AF |
3187 | CPUARMState *env = &cpu->env; |
3188 | ||
6a669427 PM |
3189 | if (arm_feature(env, ARM_FEATURE_AARCH64)) { |
3190 | gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, | |
3191 | aarch64_fpu_gdb_set_reg, | |
3192 | 34, "aarch64-fpu.xml", 0); | |
3193 | } else if (arm_feature(env, ARM_FEATURE_NEON)) { | |
22169d41 | 3194 | gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, |
56aebc89 PB |
3195 | 51, "arm-neon.xml", 0); |
3196 | } else if (arm_feature(env, ARM_FEATURE_VFP3)) { | |
22169d41 | 3197 | gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, |
56aebc89 PB |
3198 | 35, "arm-vfp3.xml", 0); |
3199 | } else if (arm_feature(env, ARM_FEATURE_VFP)) { | |
22169d41 | 3200 | gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, |
56aebc89 PB |
3201 | 19, "arm-vfp.xml", 0); |
3202 | } | |
40f137e1 PB |
3203 | } |
3204 | ||
777dc784 PM |
3205 | /* Sort alphabetically by type name, except for "any". */ |
3206 | static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) | |
5adb4839 | 3207 | { |
777dc784 PM |
3208 | ObjectClass *class_a = (ObjectClass *)a; |
3209 | ObjectClass *class_b = (ObjectClass *)b; | |
3210 | const char *name_a, *name_b; | |
5adb4839 | 3211 | |
777dc784 PM |
3212 | name_a = object_class_get_name(class_a); |
3213 | name_b = object_class_get_name(class_b); | |
51492fd1 | 3214 | if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { |
777dc784 | 3215 | return 1; |
51492fd1 | 3216 | } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { |
777dc784 PM |
3217 | return -1; |
3218 | } else { | |
3219 | return strcmp(name_a, name_b); | |
5adb4839 PB |
3220 | } |
3221 | } | |
3222 | ||
777dc784 | 3223 | static void arm_cpu_list_entry(gpointer data, gpointer user_data) |
40f137e1 | 3224 | { |
777dc784 | 3225 | ObjectClass *oc = data; |
92a31361 | 3226 | CPUListState *s = user_data; |
51492fd1 AF |
3227 | const char *typename; |
3228 | char *name; | |
3371d272 | 3229 | |
51492fd1 AF |
3230 | typename = object_class_get_name(oc); |
3231 | name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); | |
777dc784 | 3232 | (*s->cpu_fprintf)(s->file, " %s\n", |
51492fd1 AF |
3233 | name); |
3234 | g_free(name); | |
777dc784 PM |
3235 | } |
3236 | ||
3237 | void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf) | |
3238 | { | |
92a31361 | 3239 | CPUListState s = { |
777dc784 PM |
3240 | .file = f, |
3241 | .cpu_fprintf = cpu_fprintf, | |
3242 | }; | |
3243 | GSList *list; | |
3244 | ||
3245 | list = object_class_get_list(TYPE_ARM_CPU, false); | |
3246 | list = g_slist_sort(list, arm_cpu_list_compare); | |
3247 | (*cpu_fprintf)(f, "Available CPUs:\n"); | |
3248 | g_slist_foreach(list, arm_cpu_list_entry, &s); | |
3249 | g_slist_free(list); | |
a96c0514 PM |
3250 | #ifdef CONFIG_KVM |
3251 | /* The 'host' CPU type is dynamically registered only if KVM is | |
3252 | * enabled, so we have to special-case it here: | |
3253 | */ | |
3254 | (*cpu_fprintf)(f, " host (only available in KVM mode)\n"); | |
3255 | #endif | |
40f137e1 PB |
3256 | } |
3257 | ||
78027bb6 CR |
3258 | static void arm_cpu_add_definition(gpointer data, gpointer user_data) |
3259 | { | |
3260 | ObjectClass *oc = data; | |
3261 | CpuDefinitionInfoList **cpu_list = user_data; | |
3262 | CpuDefinitionInfoList *entry; | |
3263 | CpuDefinitionInfo *info; | |
3264 | const char *typename; | |
3265 | ||
3266 | typename = object_class_get_name(oc); | |
3267 | info = g_malloc0(sizeof(*info)); | |
3268 | info->name = g_strndup(typename, | |
3269 | strlen(typename) - strlen("-" TYPE_ARM_CPU)); | |
3270 | ||
3271 | entry = g_malloc0(sizeof(*entry)); | |
3272 | entry->value = info; | |
3273 | entry->next = *cpu_list; | |
3274 | *cpu_list = entry; | |
3275 | } | |
3276 | ||
3277 | CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp) | |
3278 | { | |
3279 | CpuDefinitionInfoList *cpu_list = NULL; | |
3280 | GSList *list; | |
3281 | ||
3282 | list = object_class_get_list(TYPE_ARM_CPU, false); | |
3283 | g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); | |
3284 | g_slist_free(list); | |
3285 | ||
3286 | return cpu_list; | |
3287 | } | |
3288 | ||
6e6efd61 | 3289 | static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, |
f5a0a5a5 PM |
3290 | void *opaque, int state, |
3291 | int crm, int opc1, int opc2) | |
6e6efd61 PM |
3292 | { |
3293 | /* Private utility function for define_one_arm_cp_reg_with_opaque(): | |
3294 | * add a single reginfo struct to the hash table. | |
3295 | */ | |
3296 | uint32_t *key = g_new(uint32_t, 1); | |
3297 | ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); | |
3298 | int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; | |
f5a0a5a5 PM |
3299 | if (r->state == ARM_CP_STATE_BOTH && state == ARM_CP_STATE_AA32) { |
3300 | /* The AArch32 view of a shared register sees the lower 32 bits | |
3301 | * of a 64 bit backing field. It is not migratable as the AArch64 | |
3302 | * view handles that. AArch64 also handles reset. | |
58a1d8ce | 3303 | * We assume it is a cp15 register if the .cp field is left unset. |
f5a0a5a5 | 3304 | */ |
58a1d8ce PM |
3305 | if (r2->cp == 0) { |
3306 | r2->cp = 15; | |
3307 | } | |
f5a0a5a5 PM |
3308 | r2->type |= ARM_CP_NO_MIGRATE; |
3309 | r2->resetfn = arm_cp_reset_ignore; | |
3310 | #ifdef HOST_WORDS_BIGENDIAN | |
3311 | if (r2->fieldoffset) { | |
3312 | r2->fieldoffset += sizeof(uint32_t); | |
3313 | } | |
3314 | #endif | |
3315 | } | |
3316 | if (state == ARM_CP_STATE_AA64) { | |
3317 | /* To allow abbreviation of ARMCPRegInfo | |
3318 | * definitions, we treat cp == 0 as equivalent to | |
3319 | * the value for "standard guest-visible sysreg". | |
58a1d8ce PM |
3320 | * STATE_BOTH definitions are also always "standard |
3321 | * sysreg" in their AArch64 view (the .cp value may | |
3322 | * be non-zero for the benefit of the AArch32 view). | |
f5a0a5a5 | 3323 | */ |
58a1d8ce | 3324 | if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { |
f5a0a5a5 PM |
3325 | r2->cp = CP_REG_ARM64_SYSREG_CP; |
3326 | } | |
3327 | *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, | |
3328 | r2->opc0, opc1, opc2); | |
3329 | } else { | |
3330 | *key = ENCODE_CP_REG(r2->cp, is64, r2->crn, crm, opc1, opc2); | |
3331 | } | |
6e6efd61 PM |
3332 | if (opaque) { |
3333 | r2->opaque = opaque; | |
3334 | } | |
67ed771d PM |
3335 | /* reginfo passed to helpers is correct for the actual access, |
3336 | * and is never ARM_CP_STATE_BOTH: | |
3337 | */ | |
3338 | r2->state = state; | |
6e6efd61 PM |
3339 | /* Make sure reginfo passed to helpers for wildcarded regs |
3340 | * has the correct crm/opc1/opc2 for this reg, not CP_ANY: | |
3341 | */ | |
3342 | r2->crm = crm; | |
3343 | r2->opc1 = opc1; | |
3344 | r2->opc2 = opc2; | |
3345 | /* By convention, for wildcarded registers only the first | |
3346 | * entry is used for migration; the others are marked as | |
3347 | * NO_MIGRATE so we don't try to transfer the register | |
3348 | * multiple times. Special registers (ie NOP/WFI) are | |
3349 | * never migratable. | |
3350 | */ | |
3351 | if ((r->type & ARM_CP_SPECIAL) || | |
3352 | ((r->crm == CP_ANY) && crm != 0) || | |
3353 | ((r->opc1 == CP_ANY) && opc1 != 0) || | |
3354 | ((r->opc2 == CP_ANY) && opc2 != 0)) { | |
3355 | r2->type |= ARM_CP_NO_MIGRATE; | |
3356 | } | |
3357 | ||
3358 | /* Overriding of an existing definition must be explicitly | |
3359 | * requested. | |
3360 | */ | |
3361 | if (!(r->type & ARM_CP_OVERRIDE)) { | |
3362 | ARMCPRegInfo *oldreg; | |
3363 | oldreg = g_hash_table_lookup(cpu->cp_regs, key); | |
3364 | if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { | |
3365 | fprintf(stderr, "Register redefined: cp=%d %d bit " | |
3366 | "crn=%d crm=%d opc1=%d opc2=%d, " | |
3367 | "was %s, now %s\n", r2->cp, 32 + 32 * is64, | |
3368 | r2->crn, r2->crm, r2->opc1, r2->opc2, | |
3369 | oldreg->name, r2->name); | |
3370 | g_assert_not_reached(); | |
3371 | } | |
3372 | } | |
3373 | g_hash_table_insert(cpu->cp_regs, key, r2); | |
3374 | } | |
3375 | ||
3376 | ||
4b6a83fb PM |
3377 | void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, |
3378 | const ARMCPRegInfo *r, void *opaque) | |
3379 | { | |
3380 | /* Define implementations of coprocessor registers. | |
3381 | * We store these in a hashtable because typically | |
3382 | * there are less than 150 registers in a space which | |
3383 | * is 16*16*16*8*8 = 262144 in size. | |
3384 | * Wildcarding is supported for the crm, opc1 and opc2 fields. | |
3385 | * If a register is defined twice then the second definition is | |
3386 | * used, so this can be used to define some generic registers and | |
3387 | * then override them with implementation specific variations. | |
3388 | * At least one of the original and the second definition should | |
3389 | * include ARM_CP_OVERRIDE in its type bits -- this is just a guard | |
3390 | * against accidental use. | |
f5a0a5a5 PM |
3391 | * |
3392 | * The state field defines whether the register is to be | |
3393 | * visible in the AArch32 or AArch64 execution state. If the | |
3394 | * state is set to ARM_CP_STATE_BOTH then we synthesise a | |
3395 | * reginfo structure for the AArch32 view, which sees the lower | |
3396 | * 32 bits of the 64 bit register. | |
3397 | * | |
3398 | * Only registers visible in AArch64 may set r->opc0; opc0 cannot | |
3399 | * be wildcarded. AArch64 registers are always considered to be 64 | |
3400 | * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of | |
3401 | * the register, if any. | |
4b6a83fb | 3402 | */ |
f5a0a5a5 | 3403 | int crm, opc1, opc2, state; |
4b6a83fb PM |
3404 | int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; |
3405 | int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; | |
3406 | int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; | |
3407 | int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; | |
3408 | int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; | |
3409 | int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; | |
3410 | /* 64 bit registers have only CRm and Opc1 fields */ | |
3411 | assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); | |
f5a0a5a5 PM |
3412 | /* op0 only exists in the AArch64 encodings */ |
3413 | assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); | |
3414 | /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ | |
3415 | assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); | |
3416 | /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 | |
3417 | * encodes a minimum access level for the register. We roll this | |
3418 | * runtime check into our general permission check code, so check | |
3419 | * here that the reginfo's specified permissions are strict enough | |
3420 | * to encompass the generic architectural permission check. | |
3421 | */ | |
3422 | if (r->state != ARM_CP_STATE_AA32) { | |
3423 | int mask = 0; | |
3424 | switch (r->opc1) { | |
3425 | case 0: case 1: case 2: | |
3426 | /* min_EL EL1 */ | |
3427 | mask = PL1_RW; | |
3428 | break; | |
3429 | case 3: | |
3430 | /* min_EL EL0 */ | |
3431 | mask = PL0_RW; | |
3432 | break; | |
3433 | case 4: | |
3434 | /* min_EL EL2 */ | |
3435 | mask = PL2_RW; | |
3436 | break; | |
3437 | case 5: | |
3438 | /* unallocated encoding, so not possible */ | |
3439 | assert(false); | |
3440 | break; | |
3441 | case 6: | |
3442 | /* min_EL EL3 */ | |
3443 | mask = PL3_RW; | |
3444 | break; | |
3445 | case 7: | |
3446 | /* min_EL EL1, secure mode only (we don't check the latter) */ | |
3447 | mask = PL1_RW; | |
3448 | break; | |
3449 | default: | |
3450 | /* broken reginfo with out-of-range opc1 */ | |
3451 | assert(false); | |
3452 | break; | |
3453 | } | |
3454 | /* assert our permissions are not too lax (stricter is fine) */ | |
3455 | assert((r->access & ~mask) == 0); | |
3456 | } | |
3457 | ||
4b6a83fb PM |
3458 | /* Check that the register definition has enough info to handle |
3459 | * reads and writes if they are permitted. | |
3460 | */ | |
3461 | if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { | |
3462 | if (r->access & PL3_R) { | |
3463 | assert(r->fieldoffset || r->readfn); | |
3464 | } | |
3465 | if (r->access & PL3_W) { | |
3466 | assert(r->fieldoffset || r->writefn); | |
3467 | } | |
3468 | } | |
3469 | /* Bad type field probably means missing sentinel at end of reg list */ | |
3470 | assert(cptype_valid(r->type)); | |
3471 | for (crm = crmmin; crm <= crmmax; crm++) { | |
3472 | for (opc1 = opc1min; opc1 <= opc1max; opc1++) { | |
3473 | for (opc2 = opc2min; opc2 <= opc2max; opc2++) { | |
f5a0a5a5 PM |
3474 | for (state = ARM_CP_STATE_AA32; |
3475 | state <= ARM_CP_STATE_AA64; state++) { | |
3476 | if (r->state != state && r->state != ARM_CP_STATE_BOTH) { | |
3477 | continue; | |
3478 | } | |
3479 | add_cpreg_to_hashtable(cpu, r, opaque, state, | |
3480 | crm, opc1, opc2); | |
3481 | } | |
4b6a83fb PM |
3482 | } |
3483 | } | |
3484 | } | |
3485 | } | |
3486 | ||
3487 | void define_arm_cp_regs_with_opaque(ARMCPU *cpu, | |
3488 | const ARMCPRegInfo *regs, void *opaque) | |
3489 | { | |
3490 | /* Define a whole list of registers */ | |
3491 | const ARMCPRegInfo *r; | |
3492 | for (r = regs; r->type != ARM_CP_SENTINEL; r++) { | |
3493 | define_one_arm_cp_reg_with_opaque(cpu, r, opaque); | |
3494 | } | |
3495 | } | |
3496 | ||
60322b39 | 3497 | const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) |
4b6a83fb | 3498 | { |
60322b39 | 3499 | return g_hash_table_lookup(cpregs, &encoded_cp); |
4b6a83fb PM |
3500 | } |
3501 | ||
c4241c7d PM |
3502 | void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, |
3503 | uint64_t value) | |
4b6a83fb PM |
3504 | { |
3505 | /* Helper coprocessor write function for write-ignore registers */ | |
4b6a83fb PM |
3506 | } |
3507 | ||
c4241c7d | 3508 | uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) |
4b6a83fb PM |
3509 | { |
3510 | /* Helper coprocessor write function for read-as-zero registers */ | |
4b6a83fb PM |
3511 | return 0; |
3512 | } | |
3513 | ||
f5a0a5a5 PM |
3514 | void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) |
3515 | { | |
3516 | /* Helper coprocessor reset function for do-nothing-on-reset registers */ | |
3517 | } | |
3518 | ||
0ecb72a5 | 3519 | static int bad_mode_switch(CPUARMState *env, int mode) |
37064a8b PM |
3520 | { |
3521 | /* Return true if it is not valid for us to switch to | |
3522 | * this CPU mode (ie all the UNPREDICTABLE cases in | |
3523 | * the ARM ARM CPSRWriteByInstr pseudocode). | |
3524 | */ | |
3525 | switch (mode) { | |
3526 | case ARM_CPU_MODE_USR: | |
3527 | case ARM_CPU_MODE_SYS: | |
3528 | case ARM_CPU_MODE_SVC: | |
3529 | case ARM_CPU_MODE_ABT: | |
3530 | case ARM_CPU_MODE_UND: | |
3531 | case ARM_CPU_MODE_IRQ: | |
3532 | case ARM_CPU_MODE_FIQ: | |
3533 | return 0; | |
027fc527 SF |
3534 | case ARM_CPU_MODE_MON: |
3535 | return !arm_is_secure(env); | |
37064a8b PM |
3536 | default: |
3537 | return 1; | |
3538 | } | |
3539 | } | |
3540 | ||
2f4a40e5 AZ |
3541 | uint32_t cpsr_read(CPUARMState *env) |
3542 | { | |
3543 | int ZF; | |
6fbe23d5 PB |
3544 | ZF = (env->ZF == 0); |
3545 | return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | | |
2f4a40e5 AZ |
3546 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) |
3547 | | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) | |
3548 | | ((env->condexec_bits & 0xfc) << 8) | |
af519934 | 3549 | | (env->GE << 16) | (env->daif & CPSR_AIF); |
2f4a40e5 AZ |
3550 | } |
3551 | ||
3552 | void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask) | |
3553 | { | |
2f4a40e5 | 3554 | if (mask & CPSR_NZCV) { |
6fbe23d5 PB |
3555 | env->ZF = (~val) & CPSR_Z; |
3556 | env->NF = val; | |
2f4a40e5 AZ |
3557 | env->CF = (val >> 29) & 1; |
3558 | env->VF = (val << 3) & 0x80000000; | |
3559 | } | |
3560 | if (mask & CPSR_Q) | |
3561 | env->QF = ((val & CPSR_Q) != 0); | |
3562 | if (mask & CPSR_T) | |
3563 | env->thumb = ((val & CPSR_T) != 0); | |
3564 | if (mask & CPSR_IT_0_1) { | |
3565 | env->condexec_bits &= ~3; | |
3566 | env->condexec_bits |= (val >> 25) & 3; | |
3567 | } | |
3568 | if (mask & CPSR_IT_2_7) { | |
3569 | env->condexec_bits &= 3; | |
3570 | env->condexec_bits |= (val >> 8) & 0xfc; | |
3571 | } | |
3572 | if (mask & CPSR_GE) { | |
3573 | env->GE = (val >> 16) & 0xf; | |
3574 | } | |
3575 | ||
4cc35614 PM |
3576 | env->daif &= ~(CPSR_AIF & mask); |
3577 | env->daif |= val & CPSR_AIF & mask; | |
3578 | ||
2f4a40e5 | 3579 | if ((env->uncached_cpsr ^ val) & mask & CPSR_M) { |
37064a8b PM |
3580 | if (bad_mode_switch(env, val & CPSR_M)) { |
3581 | /* Attempt to switch to an invalid mode: this is UNPREDICTABLE. | |
3582 | * We choose to ignore the attempt and leave the CPSR M field | |
3583 | * untouched. | |
3584 | */ | |
3585 | mask &= ~CPSR_M; | |
3586 | } else { | |
3587 | switch_mode(env, val & CPSR_M); | |
3588 | } | |
2f4a40e5 AZ |
3589 | } |
3590 | mask &= ~CACHED_CPSR_BITS; | |
3591 | env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); | |
3592 | } | |
3593 | ||
b26eefb6 PB |
3594 | /* Sign/zero extend */ |
3595 | uint32_t HELPER(sxtb16)(uint32_t x) | |
3596 | { | |
3597 | uint32_t res; | |
3598 | res = (uint16_t)(int8_t)x; | |
3599 | res |= (uint32_t)(int8_t)(x >> 16) << 16; | |
3600 | return res; | |
3601 | } | |
3602 | ||
3603 | uint32_t HELPER(uxtb16)(uint32_t x) | |
3604 | { | |
3605 | uint32_t res; | |
3606 | res = (uint16_t)(uint8_t)x; | |
3607 | res |= (uint32_t)(uint8_t)(x >> 16) << 16; | |
3608 | return res; | |
3609 | } | |
3610 | ||
f51bbbfe PB |
3611 | uint32_t HELPER(clz)(uint32_t x) |
3612 | { | |
7bbcb0af | 3613 | return clz32(x); |
f51bbbfe PB |
3614 | } |
3615 | ||
3670669c PB |
3616 | int32_t HELPER(sdiv)(int32_t num, int32_t den) |
3617 | { | |
3618 | if (den == 0) | |
3619 | return 0; | |
686eeb93 AJ |
3620 | if (num == INT_MIN && den == -1) |
3621 | return INT_MIN; | |
3670669c PB |
3622 | return num / den; |
3623 | } | |
3624 | ||
3625 | uint32_t HELPER(udiv)(uint32_t num, uint32_t den) | |
3626 | { | |
3627 | if (den == 0) | |
3628 | return 0; | |
3629 | return num / den; | |
3630 | } | |
3631 | ||
3632 | uint32_t HELPER(rbit)(uint32_t x) | |
3633 | { | |
3634 | x = ((x & 0xff000000) >> 24) | |
3635 | | ((x & 0x00ff0000) >> 8) | |
3636 | | ((x & 0x0000ff00) << 8) | |
3637 | | ((x & 0x000000ff) << 24); | |
3638 | x = ((x & 0xf0f0f0f0) >> 4) | |
3639 | | ((x & 0x0f0f0f0f) << 4); | |
3640 | x = ((x & 0x88888888) >> 3) | |
3641 | | ((x & 0x44444444) >> 1) | |
3642 | | ((x & 0x22222222) << 1) | |
3643 | | ((x & 0x11111111) << 3); | |
3644 | return x; | |
3645 | } | |
3646 | ||
5fafdf24 | 3647 | #if defined(CONFIG_USER_ONLY) |
b5ff1b31 | 3648 | |
7510454e AF |
3649 | int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int rw, |
3650 | int mmu_idx) | |
b5ff1b31 | 3651 | { |
7510454e AF |
3652 | ARMCPU *cpu = ARM_CPU(cs); |
3653 | CPUARMState *env = &cpu->env; | |
3654 | ||
abf1172f | 3655 | env->exception.vaddress = address; |
b5ff1b31 | 3656 | if (rw == 2) { |
27103424 | 3657 | cs->exception_index = EXCP_PREFETCH_ABORT; |
b5ff1b31 | 3658 | } else { |
27103424 | 3659 | cs->exception_index = EXCP_DATA_ABORT; |
b5ff1b31 FB |
3660 | } |
3661 | return 1; | |
3662 | } | |
3663 | ||
9ee6e8bb | 3664 | /* These should probably raise undefined insn exceptions. */ |
0ecb72a5 | 3665 | void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) |
9ee6e8bb | 3666 | { |
a47dddd7 AF |
3667 | ARMCPU *cpu = arm_env_get_cpu(env); |
3668 | ||
3669 | cpu_abort(CPU(cpu), "v7m_msr %d\n", reg); | |
9ee6e8bb PB |
3670 | } |
3671 | ||
0ecb72a5 | 3672 | uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) |
9ee6e8bb | 3673 | { |
a47dddd7 AF |
3674 | ARMCPU *cpu = arm_env_get_cpu(env); |
3675 | ||
3676 | cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg); | |
9ee6e8bb PB |
3677 | return 0; |
3678 | } | |
3679 | ||
0ecb72a5 | 3680 | void switch_mode(CPUARMState *env, int mode) |
b5ff1b31 | 3681 | { |
a47dddd7 AF |
3682 | ARMCPU *cpu = arm_env_get_cpu(env); |
3683 | ||
3684 | if (mode != ARM_CPU_MODE_USR) { | |
3685 | cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); | |
3686 | } | |
b5ff1b31 FB |
3687 | } |
3688 | ||
0ecb72a5 | 3689 | void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val) |
9ee6e8bb | 3690 | { |
a47dddd7 AF |
3691 | ARMCPU *cpu = arm_env_get_cpu(env); |
3692 | ||
3693 | cpu_abort(CPU(cpu), "banked r13 write\n"); | |
9ee6e8bb PB |
3694 | } |
3695 | ||
0ecb72a5 | 3696 | uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode) |
9ee6e8bb | 3697 | { |
a47dddd7 AF |
3698 | ARMCPU *cpu = arm_env_get_cpu(env); |
3699 | ||
3700 | cpu_abort(CPU(cpu), "banked r13 read\n"); | |
9ee6e8bb PB |
3701 | return 0; |
3702 | } | |
3703 | ||
9e729b57 EI |
3704 | unsigned int arm_excp_target_el(CPUState *cs, unsigned int excp_idx) |
3705 | { | |
3706 | return 1; | |
3707 | } | |
3708 | ||
b5ff1b31 FB |
3709 | #else |
3710 | ||
3711 | /* Map CPU modes onto saved register banks. */ | |
494b00c7 | 3712 | int bank_number(int mode) |
b5ff1b31 FB |
3713 | { |
3714 | switch (mode) { | |
3715 | case ARM_CPU_MODE_USR: | |
3716 | case ARM_CPU_MODE_SYS: | |
3717 | return 0; | |
3718 | case ARM_CPU_MODE_SVC: | |
3719 | return 1; | |
3720 | case ARM_CPU_MODE_ABT: | |
3721 | return 2; | |
3722 | case ARM_CPU_MODE_UND: | |
3723 | return 3; | |
3724 | case ARM_CPU_MODE_IRQ: | |
3725 | return 4; | |
3726 | case ARM_CPU_MODE_FIQ: | |
3727 | return 5; | |
28c9457d EI |
3728 | case ARM_CPU_MODE_HYP: |
3729 | return 6; | |
3730 | case ARM_CPU_MODE_MON: | |
3731 | return 7; | |
b5ff1b31 | 3732 | } |
f5206413 | 3733 | hw_error("bank number requested for bad CPSR mode value 0x%x\n", mode); |
b5ff1b31 FB |
3734 | } |
3735 | ||
0ecb72a5 | 3736 | void switch_mode(CPUARMState *env, int mode) |
b5ff1b31 FB |
3737 | { |
3738 | int old_mode; | |
3739 | int i; | |
3740 | ||
3741 | old_mode = env->uncached_cpsr & CPSR_M; | |
3742 | if (mode == old_mode) | |
3743 | return; | |
3744 | ||
3745 | if (old_mode == ARM_CPU_MODE_FIQ) { | |
3746 | memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); | |
8637c67f | 3747 | memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); |
b5ff1b31 FB |
3748 | } else if (mode == ARM_CPU_MODE_FIQ) { |
3749 | memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); | |
8637c67f | 3750 | memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); |
b5ff1b31 FB |
3751 | } |
3752 | ||
f5206413 | 3753 | i = bank_number(old_mode); |
b5ff1b31 FB |
3754 | env->banked_r13[i] = env->regs[13]; |
3755 | env->banked_r14[i] = env->regs[14]; | |
3756 | env->banked_spsr[i] = env->spsr; | |
3757 | ||
f5206413 | 3758 | i = bank_number(mode); |
b5ff1b31 FB |
3759 | env->regs[13] = env->banked_r13[i]; |
3760 | env->regs[14] = env->banked_r14[i]; | |
3761 | env->spsr = env->banked_spsr[i]; | |
3762 | } | |
3763 | ||
0eeb17d6 GB |
3764 | /* Physical Interrupt Target EL Lookup Table |
3765 | * | |
3766 | * [ From ARM ARM section G1.13.4 (Table G1-15) ] | |
3767 | * | |
3768 | * The below multi-dimensional table is used for looking up the target | |
3769 | * exception level given numerous condition criteria. Specifically, the | |
3770 | * target EL is based on SCR and HCR routing controls as well as the | |
3771 | * currently executing EL and secure state. | |
3772 | * | |
3773 | * Dimensions: | |
3774 | * target_el_table[2][2][2][2][2][4] | |
3775 | * | | | | | +--- Current EL | |
3776 | * | | | | +------ Non-secure(0)/Secure(1) | |
3777 | * | | | +--------- HCR mask override | |
3778 | * | | +------------ SCR exec state control | |
3779 | * | +--------------- SCR mask override | |
3780 | * +------------------ 32-bit(0)/64-bit(1) EL3 | |
3781 | * | |
3782 | * The table values are as such: | |
3783 | * 0-3 = EL0-EL3 | |
3784 | * -1 = Cannot occur | |
3785 | * | |
3786 | * The ARM ARM target EL table includes entries indicating that an "exception | |
3787 | * is not taken". The two cases where this is applicable are: | |
3788 | * 1) An exception is taken from EL3 but the SCR does not have the exception | |
3789 | * routed to EL3. | |
3790 | * 2) An exception is taken from EL2 but the HCR does not have the exception | |
3791 | * routed to EL2. | |
3792 | * In these two cases, the below table contain a target of EL1. This value is | |
3793 | * returned as it is expected that the consumer of the table data will check | |
3794 | * for "target EL >= current EL" to ensure the exception is not taken. | |
3795 | * | |
3796 | * SCR HCR | |
3797 | * 64 EA AMO From | |
3798 | * BIT IRQ IMO Non-secure Secure | |
3799 | * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 | |
3800 | */ | |
3801 | const int8_t target_el_table[2][2][2][2][2][4] = { | |
3802 | {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, | |
3803 | {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, | |
3804 | {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, | |
3805 | {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, | |
3806 | {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, | |
3807 | {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, | |
3808 | {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, | |
3809 | {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, | |
3810 | {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, | |
3811 | {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},}, | |
3812 | {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },}, | |
3813 | {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},}, | |
3814 | {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, | |
3815 | {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, | |
3816 | {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, | |
3817 | {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},}, | |
3818 | }; | |
3819 | ||
3820 | /* | |
3821 | * Determine the target EL for physical exceptions | |
3822 | */ | |
3823 | static inline uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, | |
3824 | uint32_t cur_el, bool secure) | |
3825 | { | |
3826 | CPUARMState *env = cs->env_ptr; | |
3827 | int rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); | |
3828 | int scr; | |
3829 | int hcr; | |
3830 | int target_el; | |
3831 | int is64 = arm_el_is_aa64(env, 3); | |
3832 | ||
3833 | switch (excp_idx) { | |
3834 | case EXCP_IRQ: | |
3835 | scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); | |
3836 | hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO); | |
3837 | break; | |
3838 | case EXCP_FIQ: | |
3839 | scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); | |
3840 | hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO); | |
3841 | break; | |
3842 | default: | |
3843 | scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); | |
3844 | hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO); | |
3845 | break; | |
3846 | }; | |
3847 | ||
3848 | /* If HCR.TGE is set then HCR is treated as being 1 */ | |
3849 | hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE); | |
3850 | ||
3851 | /* Perform a table-lookup for the target EL given the current state */ | |
3852 | target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; | |
3853 | ||
3854 | assert(target_el > 0); | |
3855 | ||
3856 | return target_el; | |
3857 | } | |
3858 | ||
9e729b57 EI |
3859 | /* |
3860 | * Determine the target EL for a given exception type. | |
3861 | */ | |
3862 | unsigned int arm_excp_target_el(CPUState *cs, unsigned int excp_idx) | |
3863 | { | |
35979d71 EI |
3864 | ARMCPU *cpu = ARM_CPU(cs); |
3865 | CPUARMState *env = &cpu->env; | |
dcbff19b | 3866 | unsigned int cur_el = arm_current_el(env); |
35979d71 | 3867 | unsigned int target_el; |
0eeb17d6 | 3868 | bool secure = arm_is_secure(env); |
35979d71 EI |
3869 | |
3870 | switch (excp_idx) { | |
3871 | case EXCP_HVC: | |
607d98b8 | 3872 | case EXCP_HYP_TRAP: |
35979d71 EI |
3873 | target_el = 2; |
3874 | break; | |
e0d6e6a5 EI |
3875 | case EXCP_SMC: |
3876 | target_el = 3; | |
3877 | break; | |
041c9666 EI |
3878 | case EXCP_FIQ: |
3879 | case EXCP_IRQ: | |
0eeb17d6 | 3880 | target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure); |
041c9666 | 3881 | break; |
136e67e9 EI |
3882 | case EXCP_VIRQ: |
3883 | case EXCP_VFIQ: | |
3884 | target_el = 1; | |
3885 | break; | |
35979d71 EI |
3886 | default: |
3887 | target_el = MAX(cur_el, 1); | |
3888 | break; | |
3889 | } | |
3890 | return target_el; | |
9e729b57 EI |
3891 | } |
3892 | ||
9ee6e8bb PB |
3893 | static void v7m_push(CPUARMState *env, uint32_t val) |
3894 | { | |
70d74660 AF |
3895 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
3896 | ||
9ee6e8bb | 3897 | env->regs[13] -= 4; |
ab1da857 | 3898 | stl_phys(cs->as, env->regs[13], val); |
9ee6e8bb PB |
3899 | } |
3900 | ||
3901 | static uint32_t v7m_pop(CPUARMState *env) | |
3902 | { | |
70d74660 | 3903 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
9ee6e8bb | 3904 | uint32_t val; |
70d74660 | 3905 | |
fdfba1a2 | 3906 | val = ldl_phys(cs->as, env->regs[13]); |
9ee6e8bb PB |
3907 | env->regs[13] += 4; |
3908 | return val; | |
3909 | } | |
3910 | ||
3911 | /* Switch to V7M main or process stack pointer. */ | |
3912 | static void switch_v7m_sp(CPUARMState *env, int process) | |
3913 | { | |
3914 | uint32_t tmp; | |
3915 | if (env->v7m.current_sp != process) { | |
3916 | tmp = env->v7m.other_sp; | |
3917 | env->v7m.other_sp = env->regs[13]; | |
3918 | env->regs[13] = tmp; | |
3919 | env->v7m.current_sp = process; | |
3920 | } | |
3921 | } | |
3922 | ||
3923 | static void do_v7m_exception_exit(CPUARMState *env) | |
3924 | { | |
3925 | uint32_t type; | |
3926 | uint32_t xpsr; | |
3927 | ||
3928 | type = env->regs[15]; | |
3929 | if (env->v7m.exception != 0) | |
983fe826 | 3930 | armv7m_nvic_complete_irq(env->nvic, env->v7m.exception); |
9ee6e8bb PB |
3931 | |
3932 | /* Switch to the target stack. */ | |
3933 | switch_v7m_sp(env, (type & 4) != 0); | |
3934 | /* Pop registers. */ | |
3935 | env->regs[0] = v7m_pop(env); | |
3936 | env->regs[1] = v7m_pop(env); | |
3937 | env->regs[2] = v7m_pop(env); | |
3938 | env->regs[3] = v7m_pop(env); | |
3939 | env->regs[12] = v7m_pop(env); | |
3940 | env->regs[14] = v7m_pop(env); | |
3941 | env->regs[15] = v7m_pop(env); | |
3942 | xpsr = v7m_pop(env); | |
3943 | xpsr_write(env, xpsr, 0xfffffdff); | |
3944 | /* Undo stack alignment. */ | |
3945 | if (xpsr & 0x200) | |
3946 | env->regs[13] |= 4; | |
3947 | /* ??? The exception return type specifies Thread/Handler mode. However | |
3948 | this is also implied by the xPSR value. Not sure what to do | |
3949 | if there is a mismatch. */ | |
3950 | /* ??? Likewise for mismatches between the CONTROL register and the stack | |
3951 | pointer. */ | |
3952 | } | |
3953 | ||
e6f010cc | 3954 | void arm_v7m_cpu_do_interrupt(CPUState *cs) |
9ee6e8bb | 3955 | { |
e6f010cc AF |
3956 | ARMCPU *cpu = ARM_CPU(cs); |
3957 | CPUARMState *env = &cpu->env; | |
9ee6e8bb PB |
3958 | uint32_t xpsr = xpsr_read(env); |
3959 | uint32_t lr; | |
3960 | uint32_t addr; | |
3961 | ||
27103424 | 3962 | arm_log_exception(cs->exception_index); |
3f1beaca | 3963 | |
9ee6e8bb PB |
3964 | lr = 0xfffffff1; |
3965 | if (env->v7m.current_sp) | |
3966 | lr |= 4; | |
3967 | if (env->v7m.exception == 0) | |
3968 | lr |= 8; | |
3969 | ||
3970 | /* For exceptions we just mark as pending on the NVIC, and let that | |
3971 | handle it. */ | |
3972 | /* TODO: Need to escalate if the current priority is higher than the | |
3973 | one we're raising. */ | |
27103424 | 3974 | switch (cs->exception_index) { |
9ee6e8bb | 3975 | case EXCP_UDEF: |
983fe826 | 3976 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE); |
9ee6e8bb PB |
3977 | return; |
3978 | case EXCP_SWI: | |
314e2296 | 3979 | /* The PC already points to the next instruction. */ |
983fe826 | 3980 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC); |
9ee6e8bb PB |
3981 | return; |
3982 | case EXCP_PREFETCH_ABORT: | |
3983 | case EXCP_DATA_ABORT: | |
abf1172f PM |
3984 | /* TODO: if we implemented the MPU registers, this is where we |
3985 | * should set the MMFAR, etc from exception.fsr and exception.vaddress. | |
3986 | */ | |
983fe826 | 3987 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM); |
9ee6e8bb PB |
3988 | return; |
3989 | case EXCP_BKPT: | |
2ad207d4 PB |
3990 | if (semihosting_enabled) { |
3991 | int nr; | |
d31dd73e | 3992 | nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff; |
2ad207d4 PB |
3993 | if (nr == 0xab) { |
3994 | env->regs[15] += 2; | |
3995 | env->regs[0] = do_arm_semihosting(env); | |
3f1beaca | 3996 | qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n"); |
2ad207d4 PB |
3997 | return; |
3998 | } | |
3999 | } | |
983fe826 | 4000 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG); |
9ee6e8bb PB |
4001 | return; |
4002 | case EXCP_IRQ: | |
983fe826 | 4003 | env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic); |
9ee6e8bb PB |
4004 | break; |
4005 | case EXCP_EXCEPTION_EXIT: | |
4006 | do_v7m_exception_exit(env); | |
4007 | return; | |
4008 | default: | |
a47dddd7 | 4009 | cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); |
9ee6e8bb PB |
4010 | return; /* Never happens. Keep compiler happy. */ |
4011 | } | |
4012 | ||
4013 | /* Align stack pointer. */ | |
4014 | /* ??? Should only do this if Configuration Control Register | |
4015 | STACKALIGN bit is set. */ | |
4016 | if (env->regs[13] & 4) { | |
ab19b0ec | 4017 | env->regs[13] -= 4; |
9ee6e8bb PB |
4018 | xpsr |= 0x200; |
4019 | } | |
6c95676b | 4020 | /* Switch to the handler mode. */ |
9ee6e8bb PB |
4021 | v7m_push(env, xpsr); |
4022 | v7m_push(env, env->regs[15]); | |
4023 | v7m_push(env, env->regs[14]); | |
4024 | v7m_push(env, env->regs[12]); | |
4025 | v7m_push(env, env->regs[3]); | |
4026 | v7m_push(env, env->regs[2]); | |
4027 | v7m_push(env, env->regs[1]); | |
4028 | v7m_push(env, env->regs[0]); | |
4029 | switch_v7m_sp(env, 0); | |
c98d174c PM |
4030 | /* Clear IT bits */ |
4031 | env->condexec_bits = 0; | |
9ee6e8bb | 4032 | env->regs[14] = lr; |
fdfba1a2 | 4033 | addr = ldl_phys(cs->as, env->v7m.vecbase + env->v7m.exception * 4); |
9ee6e8bb PB |
4034 | env->regs[15] = addr & 0xfffffffe; |
4035 | env->thumb = addr & 1; | |
4036 | } | |
4037 | ||
b5ff1b31 | 4038 | /* Handle a CPU exception. */ |
97a8ea5a | 4039 | void arm_cpu_do_interrupt(CPUState *cs) |
b5ff1b31 | 4040 | { |
97a8ea5a AF |
4041 | ARMCPU *cpu = ARM_CPU(cs); |
4042 | CPUARMState *env = &cpu->env; | |
b5ff1b31 FB |
4043 | uint32_t addr; |
4044 | uint32_t mask; | |
4045 | int new_mode; | |
4046 | uint32_t offset; | |
16a906fd | 4047 | uint32_t moe; |
b5ff1b31 | 4048 | |
e6f010cc AF |
4049 | assert(!IS_M(env)); |
4050 | ||
27103424 | 4051 | arm_log_exception(cs->exception_index); |
3f1beaca | 4052 | |
98128601 RH |
4053 | if (arm_is_psci_call(cpu, cs->exception_index)) { |
4054 | arm_handle_psci_call(cpu); | |
4055 | qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); | |
4056 | return; | |
4057 | } | |
4058 | ||
16a906fd PM |
4059 | /* If this is a debug exception we must update the DBGDSCR.MOE bits */ |
4060 | switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) { | |
4061 | case EC_BREAKPOINT: | |
4062 | case EC_BREAKPOINT_SAME_EL: | |
4063 | moe = 1; | |
4064 | break; | |
4065 | case EC_WATCHPOINT: | |
4066 | case EC_WATCHPOINT_SAME_EL: | |
4067 | moe = 10; | |
4068 | break; | |
4069 | case EC_AA32_BKPT: | |
4070 | moe = 3; | |
4071 | break; | |
4072 | case EC_VECTORCATCH: | |
4073 | moe = 5; | |
4074 | break; | |
4075 | default: | |
4076 | moe = 0; | |
4077 | break; | |
4078 | } | |
4079 | ||
4080 | if (moe) { | |
4081 | env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); | |
4082 | } | |
4083 | ||
b5ff1b31 | 4084 | /* TODO: Vectored interrupt controller. */ |
27103424 | 4085 | switch (cs->exception_index) { |
b5ff1b31 FB |
4086 | case EXCP_UDEF: |
4087 | new_mode = ARM_CPU_MODE_UND; | |
4088 | addr = 0x04; | |
4089 | mask = CPSR_I; | |
4090 | if (env->thumb) | |
4091 | offset = 2; | |
4092 | else | |
4093 | offset = 4; | |
4094 | break; | |
4095 | case EXCP_SWI: | |
8e71621f PB |
4096 | if (semihosting_enabled) { |
4097 | /* Check for semihosting interrupt. */ | |
4098 | if (env->thumb) { | |
d31dd73e BS |
4099 | mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code) |
4100 | & 0xff; | |
8e71621f | 4101 | } else { |
d31dd73e | 4102 | mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code) |
d8fd2954 | 4103 | & 0xffffff; |
8e71621f PB |
4104 | } |
4105 | /* Only intercept calls from privileged modes, to provide some | |
4106 | semblance of security. */ | |
4107 | if (((mask == 0x123456 && !env->thumb) | |
4108 | || (mask == 0xab && env->thumb)) | |
4109 | && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) { | |
4110 | env->regs[0] = do_arm_semihosting(env); | |
3f1beaca | 4111 | qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n"); |
8e71621f PB |
4112 | return; |
4113 | } | |
4114 | } | |
b5ff1b31 FB |
4115 | new_mode = ARM_CPU_MODE_SVC; |
4116 | addr = 0x08; | |
4117 | mask = CPSR_I; | |
601d70b9 | 4118 | /* The PC already points to the next instruction. */ |
b5ff1b31 FB |
4119 | offset = 0; |
4120 | break; | |
06c949e6 | 4121 | case EXCP_BKPT: |
9ee6e8bb | 4122 | /* See if this is a semihosting syscall. */ |
2ad207d4 | 4123 | if (env->thumb && semihosting_enabled) { |
d31dd73e | 4124 | mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff; |
9ee6e8bb PB |
4125 | if (mask == 0xab |
4126 | && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) { | |
4127 | env->regs[15] += 2; | |
4128 | env->regs[0] = do_arm_semihosting(env); | |
3f1beaca | 4129 | qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n"); |
9ee6e8bb PB |
4130 | return; |
4131 | } | |
4132 | } | |
abf1172f | 4133 | env->exception.fsr = 2; |
9ee6e8bb PB |
4134 | /* Fall through to prefetch abort. */ |
4135 | case EXCP_PREFETCH_ABORT: | |
6cd8a264 | 4136 | env->cp15.ifsr_el2 = env->exception.fsr; |
2f0180c5 EI |
4137 | env->cp15.far_el[1] = deposit64(env->cp15.far_el[1], 32, 32, |
4138 | env->exception.vaddress); | |
3f1beaca | 4139 | qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", |
6cd8a264 | 4140 | env->cp15.ifsr_el2, (uint32_t)env->exception.vaddress); |
b5ff1b31 FB |
4141 | new_mode = ARM_CPU_MODE_ABT; |
4142 | addr = 0x0c; | |
4143 | mask = CPSR_A | CPSR_I; | |
4144 | offset = 4; | |
4145 | break; | |
4146 | case EXCP_DATA_ABORT: | |
d81c519c | 4147 | env->cp15.esr_el[1] = env->exception.fsr; |
2f0180c5 EI |
4148 | env->cp15.far_el[1] = deposit64(env->cp15.far_el[1], 0, 32, |
4149 | env->exception.vaddress); | |
3f1beaca | 4150 | qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", |
d81c519c | 4151 | (uint32_t)env->cp15.esr_el[1], |
6cd8a264 | 4152 | (uint32_t)env->exception.vaddress); |
b5ff1b31 FB |
4153 | new_mode = ARM_CPU_MODE_ABT; |
4154 | addr = 0x10; | |
4155 | mask = CPSR_A | CPSR_I; | |
4156 | offset = 8; | |
4157 | break; | |
4158 | case EXCP_IRQ: | |
4159 | new_mode = ARM_CPU_MODE_IRQ; | |
4160 | addr = 0x18; | |
4161 | /* Disable IRQ and imprecise data aborts. */ | |
4162 | mask = CPSR_A | CPSR_I; | |
4163 | offset = 4; | |
4164 | break; | |
4165 | case EXCP_FIQ: | |
4166 | new_mode = ARM_CPU_MODE_FIQ; | |
4167 | addr = 0x1c; | |
4168 | /* Disable FIQ, IRQ and imprecise data aborts. */ | |
4169 | mask = CPSR_A | CPSR_I | CPSR_F; | |
4170 | offset = 4; | |
4171 | break; | |
dbe9d163 FA |
4172 | case EXCP_SMC: |
4173 | new_mode = ARM_CPU_MODE_MON; | |
4174 | addr = 0x08; | |
4175 | mask = CPSR_A | CPSR_I | CPSR_F; | |
4176 | offset = 0; | |
4177 | break; | |
b5ff1b31 | 4178 | default: |
a47dddd7 | 4179 | cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); |
b5ff1b31 FB |
4180 | return; /* Never happens. Keep compiler happy. */ |
4181 | } | |
4182 | /* High vectors. */ | |
76e3e1bc | 4183 | if (env->cp15.c1_sys & SCTLR_V) { |
8641136c | 4184 | /* when enabled, base address cannot be remapped. */ |
b5ff1b31 | 4185 | addr += 0xffff0000; |
8641136c NR |
4186 | } else { |
4187 | /* ARM v7 architectures provide a vector base address register to remap | |
4188 | * the interrupt vector table. | |
4189 | * This register is only followed in non-monitor mode, and has a secure | |
4190 | * and un-secure copy. Since the cpu is always in a un-secure operation | |
4191 | * and is never in monitor mode this feature is always active. | |
4192 | * Note: only bits 31:5 are valid. | |
4193 | */ | |
68fdb6c5 | 4194 | addr += env->cp15.vbar_el[1]; |
b5ff1b31 | 4195 | } |
dbe9d163 FA |
4196 | |
4197 | if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { | |
4198 | env->cp15.scr_el3 &= ~SCR_NS; | |
4199 | } | |
4200 | ||
b5ff1b31 | 4201 | switch_mode (env, new_mode); |
662cefb7 PM |
4202 | /* For exceptions taken to AArch32 we must clear the SS bit in both |
4203 | * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. | |
4204 | */ | |
4205 | env->uncached_cpsr &= ~PSTATE_SS; | |
b5ff1b31 | 4206 | env->spsr = cpsr_read(env); |
9ee6e8bb PB |
4207 | /* Clear IT bits. */ |
4208 | env->condexec_bits = 0; | |
30a8cac1 | 4209 | /* Switch to the new mode, and to the correct instruction set. */ |
6d7e6326 | 4210 | env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; |
4cc35614 | 4211 | env->daif |= mask; |
be5e7a76 DES |
4212 | /* this is a lie, as the was no c1_sys on V4T/V5, but who cares |
4213 | * and we should just guard the thumb mode on V4 */ | |
4214 | if (arm_feature(env, ARM_FEATURE_V4T)) { | |
76e3e1bc | 4215 | env->thumb = (env->cp15.c1_sys & SCTLR_TE) != 0; |
be5e7a76 | 4216 | } |
b5ff1b31 FB |
4217 | env->regs[14] = env->regs[15] + offset; |
4218 | env->regs[15] = addr; | |
259186a7 | 4219 | cs->interrupt_request |= CPU_INTERRUPT_EXITTB; |
b5ff1b31 FB |
4220 | } |
4221 | ||
4222 | /* Check section/page access permissions. | |
4223 | Returns the page protection flags, or zero if the access is not | |
4224 | permitted. */ | |
0ecb72a5 | 4225 | static inline int check_ap(CPUARMState *env, int ap, int domain_prot, |
dd4ebc2e | 4226 | int access_type, int is_user) |
b5ff1b31 | 4227 | { |
9ee6e8bb PB |
4228 | int prot_ro; |
4229 | ||
dd4ebc2e | 4230 | if (domain_prot == 3) { |
b5ff1b31 | 4231 | return PAGE_READ | PAGE_WRITE; |
dd4ebc2e | 4232 | } |
b5ff1b31 | 4233 | |
9ee6e8bb PB |
4234 | if (access_type == 1) |
4235 | prot_ro = 0; | |
4236 | else | |
4237 | prot_ro = PAGE_READ; | |
4238 | ||
b5ff1b31 FB |
4239 | switch (ap) { |
4240 | case 0: | |
99f678a6 PM |
4241 | if (arm_feature(env, ARM_FEATURE_V7)) { |
4242 | return 0; | |
4243 | } | |
78600320 | 4244 | if (access_type == 1) |
b5ff1b31 | 4245 | return 0; |
76e3e1bc PM |
4246 | switch (env->cp15.c1_sys & (SCTLR_S | SCTLR_R)) { |
4247 | case SCTLR_S: | |
b5ff1b31 | 4248 | return is_user ? 0 : PAGE_READ; |
76e3e1bc | 4249 | case SCTLR_R: |
b5ff1b31 FB |
4250 | return PAGE_READ; |
4251 | default: | |
4252 | return 0; | |
4253 | } | |
4254 | case 1: | |
4255 | return is_user ? 0 : PAGE_READ | PAGE_WRITE; | |
4256 | case 2: | |
4257 | if (is_user) | |
9ee6e8bb | 4258 | return prot_ro; |
b5ff1b31 FB |
4259 | else |
4260 | return PAGE_READ | PAGE_WRITE; | |
4261 | case 3: | |
4262 | return PAGE_READ | PAGE_WRITE; | |
d4934d18 | 4263 | case 4: /* Reserved. */ |
9ee6e8bb PB |
4264 | return 0; |
4265 | case 5: | |
4266 | return is_user ? 0 : prot_ro; | |
4267 | case 6: | |
4268 | return prot_ro; | |
d4934d18 | 4269 | case 7: |
0ab06d83 | 4270 | if (!arm_feature (env, ARM_FEATURE_V6K)) |
d4934d18 PB |
4271 | return 0; |
4272 | return prot_ro; | |
b5ff1b31 FB |
4273 | default: |
4274 | abort(); | |
4275 | } | |
4276 | } | |
4277 | ||
e389be16 FA |
4278 | static bool get_level1_table_address(CPUARMState *env, uint32_t *table, |
4279 | uint32_t address) | |
b2fa1797 | 4280 | { |
e389be16 FA |
4281 | if (address & env->cp15.c2_mask) { |
4282 | if ((env->cp15.c2_control & TTBCR_PD1)) { | |
4283 | /* Translation table walk disabled for TTBR1 */ | |
4284 | return false; | |
4285 | } | |
4286 | *table = env->cp15.ttbr1_el1 & 0xffffc000; | |
4287 | } else { | |
4288 | if ((env->cp15.c2_control & TTBCR_PD0)) { | |
4289 | /* Translation table walk disabled for TTBR0 */ | |
4290 | return false; | |
4291 | } | |
4292 | *table = env->cp15.ttbr0_el1 & env->cp15.c2_base_mask; | |
4293 | } | |
4294 | *table |= (address >> 18) & 0x3ffc; | |
4295 | return true; | |
b2fa1797 PB |
4296 | } |
4297 | ||
0ecb72a5 | 4298 | static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type, |
a8170e5e | 4299 | int is_user, hwaddr *phys_ptr, |
77a71dd1 | 4300 | int *prot, target_ulong *page_size) |
b5ff1b31 | 4301 | { |
70d74660 | 4302 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
b5ff1b31 FB |
4303 | int code; |
4304 | uint32_t table; | |
4305 | uint32_t desc; | |
4306 | int type; | |
4307 | int ap; | |
e389be16 | 4308 | int domain = 0; |
dd4ebc2e | 4309 | int domain_prot; |
a8170e5e | 4310 | hwaddr phys_addr; |
b5ff1b31 | 4311 | |
9ee6e8bb PB |
4312 | /* Pagetable walk. */ |
4313 | /* Lookup l1 descriptor. */ | |
e389be16 FA |
4314 | if (!get_level1_table_address(env, &table, address)) { |
4315 | /* Section translation fault if page walk is disabled by PD0 or PD1 */ | |
4316 | code = 5; | |
4317 | goto do_fault; | |
4318 | } | |
fdfba1a2 | 4319 | desc = ldl_phys(cs->as, table); |
9ee6e8bb | 4320 | type = (desc & 3); |
dd4ebc2e JCD |
4321 | domain = (desc >> 5) & 0x0f; |
4322 | domain_prot = (env->cp15.c3 >> (domain * 2)) & 3; | |
9ee6e8bb | 4323 | if (type == 0) { |
601d70b9 | 4324 | /* Section translation fault. */ |
9ee6e8bb PB |
4325 | code = 5; |
4326 | goto do_fault; | |
4327 | } | |
dd4ebc2e | 4328 | if (domain_prot == 0 || domain_prot == 2) { |
9ee6e8bb PB |
4329 | if (type == 2) |
4330 | code = 9; /* Section domain fault. */ | |
4331 | else | |
4332 | code = 11; /* Page domain fault. */ | |
4333 | goto do_fault; | |
4334 | } | |
4335 | if (type == 2) { | |
4336 | /* 1Mb section. */ | |
4337 | phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); | |
4338 | ap = (desc >> 10) & 3; | |
4339 | code = 13; | |
d4c430a8 | 4340 | *page_size = 1024 * 1024; |
9ee6e8bb PB |
4341 | } else { |
4342 | /* Lookup l2 entry. */ | |
4343 | if (type == 1) { | |
4344 | /* Coarse pagetable. */ | |
4345 | table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); | |
4346 | } else { | |
4347 | /* Fine pagetable. */ | |
4348 | table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); | |
4349 | } | |
fdfba1a2 | 4350 | desc = ldl_phys(cs->as, table); |
9ee6e8bb PB |
4351 | switch (desc & 3) { |
4352 | case 0: /* Page translation fault. */ | |
4353 | code = 7; | |
4354 | goto do_fault; | |
4355 | case 1: /* 64k page. */ | |
4356 | phys_addr = (desc & 0xffff0000) | (address & 0xffff); | |
4357 | ap = (desc >> (4 + ((address >> 13) & 6))) & 3; | |
d4c430a8 | 4358 | *page_size = 0x10000; |
ce819861 | 4359 | break; |
9ee6e8bb PB |
4360 | case 2: /* 4k page. */ |
4361 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); | |
c10f7fc3 | 4362 | ap = (desc >> (4 + ((address >> 9) & 6))) & 3; |
d4c430a8 | 4363 | *page_size = 0x1000; |
ce819861 | 4364 | break; |
9ee6e8bb PB |
4365 | case 3: /* 1k page. */ |
4366 | if (type == 1) { | |
4367 | if (arm_feature(env, ARM_FEATURE_XSCALE)) { | |
4368 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); | |
4369 | } else { | |
4370 | /* Page translation fault. */ | |
4371 | code = 7; | |
4372 | goto do_fault; | |
4373 | } | |
4374 | } else { | |
4375 | phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); | |
4376 | } | |
4377 | ap = (desc >> 4) & 3; | |
d4c430a8 | 4378 | *page_size = 0x400; |
ce819861 PB |
4379 | break; |
4380 | default: | |
9ee6e8bb PB |
4381 | /* Never happens, but compiler isn't smart enough to tell. */ |
4382 | abort(); | |
ce819861 | 4383 | } |
9ee6e8bb PB |
4384 | code = 15; |
4385 | } | |
dd4ebc2e | 4386 | *prot = check_ap(env, ap, domain_prot, access_type, is_user); |
9ee6e8bb PB |
4387 | if (!*prot) { |
4388 | /* Access permission fault. */ | |
4389 | goto do_fault; | |
4390 | } | |
3ad493fc | 4391 | *prot |= PAGE_EXEC; |
9ee6e8bb PB |
4392 | *phys_ptr = phys_addr; |
4393 | return 0; | |
4394 | do_fault: | |
4395 | return code | (domain << 4); | |
4396 | } | |
4397 | ||
0ecb72a5 | 4398 | static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type, |
a8170e5e | 4399 | int is_user, hwaddr *phys_ptr, |
77a71dd1 | 4400 | int *prot, target_ulong *page_size) |
9ee6e8bb | 4401 | { |
70d74660 | 4402 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
9ee6e8bb PB |
4403 | int code; |
4404 | uint32_t table; | |
4405 | uint32_t desc; | |
4406 | uint32_t xn; | |
de9b05b8 | 4407 | uint32_t pxn = 0; |
9ee6e8bb PB |
4408 | int type; |
4409 | int ap; | |
de9b05b8 | 4410 | int domain = 0; |
dd4ebc2e | 4411 | int domain_prot; |
a8170e5e | 4412 | hwaddr phys_addr; |
9ee6e8bb PB |
4413 | |
4414 | /* Pagetable walk. */ | |
4415 | /* Lookup l1 descriptor. */ | |
e389be16 FA |
4416 | if (!get_level1_table_address(env, &table, address)) { |
4417 | /* Section translation fault if page walk is disabled by PD0 or PD1 */ | |
4418 | code = 5; | |
4419 | goto do_fault; | |
4420 | } | |
fdfba1a2 | 4421 | desc = ldl_phys(cs->as, table); |
9ee6e8bb | 4422 | type = (desc & 3); |
de9b05b8 PM |
4423 | if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) { |
4424 | /* Section translation fault, or attempt to use the encoding | |
4425 | * which is Reserved on implementations without PXN. | |
4426 | */ | |
9ee6e8bb | 4427 | code = 5; |
9ee6e8bb | 4428 | goto do_fault; |
de9b05b8 PM |
4429 | } |
4430 | if ((type == 1) || !(desc & (1 << 18))) { | |
4431 | /* Page or Section. */ | |
dd4ebc2e | 4432 | domain = (desc >> 5) & 0x0f; |
9ee6e8bb | 4433 | } |
dd4ebc2e JCD |
4434 | domain_prot = (env->cp15.c3 >> (domain * 2)) & 3; |
4435 | if (domain_prot == 0 || domain_prot == 2) { | |
de9b05b8 | 4436 | if (type != 1) { |
9ee6e8bb | 4437 | code = 9; /* Section domain fault. */ |
de9b05b8 | 4438 | } else { |
9ee6e8bb | 4439 | code = 11; /* Page domain fault. */ |
de9b05b8 | 4440 | } |
9ee6e8bb PB |
4441 | goto do_fault; |
4442 | } | |
de9b05b8 | 4443 | if (type != 1) { |
9ee6e8bb PB |
4444 | if (desc & (1 << 18)) { |
4445 | /* Supersection. */ | |
4446 | phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); | |
d4c430a8 | 4447 | *page_size = 0x1000000; |
b5ff1b31 | 4448 | } else { |
9ee6e8bb PB |
4449 | /* Section. */ |
4450 | phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); | |
d4c430a8 | 4451 | *page_size = 0x100000; |
b5ff1b31 | 4452 | } |
9ee6e8bb PB |
4453 | ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); |
4454 | xn = desc & (1 << 4); | |
de9b05b8 | 4455 | pxn = desc & 1; |
9ee6e8bb PB |
4456 | code = 13; |
4457 | } else { | |
de9b05b8 PM |
4458 | if (arm_feature(env, ARM_FEATURE_PXN)) { |
4459 | pxn = (desc >> 2) & 1; | |
4460 | } | |
9ee6e8bb PB |
4461 | /* Lookup l2 entry. */ |
4462 | table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); | |
fdfba1a2 | 4463 | desc = ldl_phys(cs->as, table); |
9ee6e8bb PB |
4464 | ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); |
4465 | switch (desc & 3) { | |
4466 | case 0: /* Page translation fault. */ | |
4467 | code = 7; | |
b5ff1b31 | 4468 | goto do_fault; |
9ee6e8bb PB |
4469 | case 1: /* 64k page. */ |
4470 | phys_addr = (desc & 0xffff0000) | (address & 0xffff); | |
4471 | xn = desc & (1 << 15); | |
d4c430a8 | 4472 | *page_size = 0x10000; |
9ee6e8bb PB |
4473 | break; |
4474 | case 2: case 3: /* 4k page. */ | |
4475 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); | |
4476 | xn = desc & 1; | |
d4c430a8 | 4477 | *page_size = 0x1000; |
9ee6e8bb PB |
4478 | break; |
4479 | default: | |
4480 | /* Never happens, but compiler isn't smart enough to tell. */ | |
4481 | abort(); | |
b5ff1b31 | 4482 | } |
9ee6e8bb PB |
4483 | code = 15; |
4484 | } | |
dd4ebc2e | 4485 | if (domain_prot == 3) { |
c0034328 JR |
4486 | *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
4487 | } else { | |
de9b05b8 PM |
4488 | if (pxn && !is_user) { |
4489 | xn = 1; | |
4490 | } | |
c0034328 JR |
4491 | if (xn && access_type == 2) |
4492 | goto do_fault; | |
9ee6e8bb | 4493 | |
c0034328 | 4494 | /* The simplified model uses AP[0] as an access control bit. */ |
76e3e1bc | 4495 | if ((env->cp15.c1_sys & SCTLR_AFE) && (ap & 1) == 0) { |
c0034328 JR |
4496 | /* Access flag fault. */ |
4497 | code = (code == 15) ? 6 : 3; | |
4498 | goto do_fault; | |
4499 | } | |
dd4ebc2e | 4500 | *prot = check_ap(env, ap, domain_prot, access_type, is_user); |
c0034328 JR |
4501 | if (!*prot) { |
4502 | /* Access permission fault. */ | |
4503 | goto do_fault; | |
4504 | } | |
4505 | if (!xn) { | |
4506 | *prot |= PAGE_EXEC; | |
4507 | } | |
3ad493fc | 4508 | } |
9ee6e8bb | 4509 | *phys_ptr = phys_addr; |
b5ff1b31 FB |
4510 | return 0; |
4511 | do_fault: | |
4512 | return code | (domain << 4); | |
4513 | } | |
4514 | ||
3dde962f PM |
4515 | /* Fault type for long-descriptor MMU fault reporting; this corresponds |
4516 | * to bits [5..2] in the STATUS field in long-format DFSR/IFSR. | |
4517 | */ | |
4518 | typedef enum { | |
4519 | translation_fault = 1, | |
4520 | access_fault = 2, | |
4521 | permission_fault = 3, | |
4522 | } MMUFaultType; | |
4523 | ||
2c8dd318 | 4524 | static int get_phys_addr_lpae(CPUARMState *env, target_ulong address, |
3dde962f | 4525 | int access_type, int is_user, |
a8170e5e | 4526 | hwaddr *phys_ptr, int *prot, |
3dde962f PM |
4527 | target_ulong *page_size_ptr) |
4528 | { | |
70d74660 | 4529 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
3dde962f PM |
4530 | /* Read an LPAE long-descriptor translation table. */ |
4531 | MMUFaultType fault_type = translation_fault; | |
4532 | uint32_t level = 1; | |
4533 | uint32_t epd; | |
2c8dd318 RH |
4534 | int32_t tsz; |
4535 | uint32_t tg; | |
3dde962f PM |
4536 | uint64_t ttbr; |
4537 | int ttbr_select; | |
2c8dd318 | 4538 | hwaddr descaddr, descmask; |
3dde962f PM |
4539 | uint32_t tableattrs; |
4540 | target_ulong page_size; | |
4541 | uint32_t attrs; | |
2c8dd318 RH |
4542 | int32_t granule_sz = 9; |
4543 | int32_t va_size = 32; | |
4544 | int32_t tbi = 0; | |
4545 | ||
4546 | if (arm_el_is_aa64(env, 1)) { | |
4547 | va_size = 64; | |
4548 | if (extract64(address, 55, 1)) | |
4549 | tbi = extract64(env->cp15.c2_control, 38, 1); | |
4550 | else | |
4551 | tbi = extract64(env->cp15.c2_control, 37, 1); | |
4552 | tbi *= 8; | |
4553 | } | |
3dde962f PM |
4554 | |
4555 | /* Determine whether this address is in the region controlled by | |
4556 | * TTBR0 or TTBR1 (or if it is in neither region and should fault). | |
4557 | * This is a Non-secure PL0/1 stage 1 translation, so controlled by | |
4558 | * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32: | |
4559 | */ | |
2c8dd318 RH |
4560 | uint32_t t0sz = extract32(env->cp15.c2_control, 0, 6); |
4561 | if (arm_el_is_aa64(env, 1)) { | |
4562 | t0sz = MIN(t0sz, 39); | |
4563 | t0sz = MAX(t0sz, 16); | |
4564 | } | |
4565 | uint32_t t1sz = extract32(env->cp15.c2_control, 16, 6); | |
4566 | if (arm_el_is_aa64(env, 1)) { | |
4567 | t1sz = MIN(t1sz, 39); | |
4568 | t1sz = MAX(t1sz, 16); | |
4569 | } | |
4570 | if (t0sz && !extract64(address, va_size - t0sz, t0sz - tbi)) { | |
3dde962f PM |
4571 | /* there is a ttbr0 region and we are in it (high bits all zero) */ |
4572 | ttbr_select = 0; | |
2c8dd318 | 4573 | } else if (t1sz && !extract64(~address, va_size - t1sz, t1sz - tbi)) { |
3dde962f PM |
4574 | /* there is a ttbr1 region and we are in it (high bits all one) */ |
4575 | ttbr_select = 1; | |
4576 | } else if (!t0sz) { | |
4577 | /* ttbr0 region is "everything not in the ttbr1 region" */ | |
4578 | ttbr_select = 0; | |
4579 | } else if (!t1sz) { | |
4580 | /* ttbr1 region is "everything not in the ttbr0 region" */ | |
4581 | ttbr_select = 1; | |
4582 | } else { | |
4583 | /* in the gap between the two regions, this is a Translation fault */ | |
4584 | fault_type = translation_fault; | |
4585 | goto do_fault; | |
4586 | } | |
4587 | ||
4588 | /* Note that QEMU ignores shareability and cacheability attributes, | |
4589 | * so we don't need to do anything with the SH, ORGN, IRGN fields | |
4590 | * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the | |
4591 | * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently | |
4592 | * implement any ASID-like capability so we can ignore it (instead | |
4593 | * we will always flush the TLB any time the ASID is changed). | |
4594 | */ | |
4595 | if (ttbr_select == 0) { | |
327ed10f | 4596 | ttbr = env->cp15.ttbr0_el1; |
3dde962f PM |
4597 | epd = extract32(env->cp15.c2_control, 7, 1); |
4598 | tsz = t0sz; | |
2c8dd318 RH |
4599 | |
4600 | tg = extract32(env->cp15.c2_control, 14, 2); | |
4601 | if (tg == 1) { /* 64KB pages */ | |
4602 | granule_sz = 13; | |
4603 | } | |
4604 | if (tg == 2) { /* 16KB pages */ | |
4605 | granule_sz = 11; | |
4606 | } | |
3dde962f | 4607 | } else { |
327ed10f | 4608 | ttbr = env->cp15.ttbr1_el1; |
3dde962f PM |
4609 | epd = extract32(env->cp15.c2_control, 23, 1); |
4610 | tsz = t1sz; | |
2c8dd318 RH |
4611 | |
4612 | tg = extract32(env->cp15.c2_control, 30, 2); | |
4613 | if (tg == 3) { /* 64KB pages */ | |
4614 | granule_sz = 13; | |
4615 | } | |
4616 | if (tg == 1) { /* 16KB pages */ | |
4617 | granule_sz = 11; | |
4618 | } | |
3dde962f PM |
4619 | } |
4620 | ||
4621 | if (epd) { | |
4622 | /* Translation table walk disabled => Translation fault on TLB miss */ | |
4623 | goto do_fault; | |
4624 | } | |
4625 | ||
d6be29e3 PM |
4626 | /* The starting level depends on the virtual address size (which can be |
4627 | * up to 48 bits) and the translation granule size. It indicates the number | |
4628 | * of strides (granule_sz bits at a time) needed to consume the bits | |
4629 | * of the input address. In the pseudocode this is: | |
4630 | * level = 4 - RoundUp((inputsize - grainsize) / stride) | |
4631 | * where their 'inputsize' is our 'va_size - tsz', 'grainsize' is | |
4632 | * our 'granule_sz + 3' and 'stride' is our 'granule_sz'. | |
4633 | * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: | |
4634 | * = 4 - (va_size - tsz - granule_sz - 3 + granule_sz - 1) / granule_sz | |
4635 | * = 4 - (va_size - tsz - 4) / granule_sz; | |
3dde962f | 4636 | */ |
d6be29e3 | 4637 | level = 4 - (va_size - tsz - 4) / granule_sz; |
3dde962f PM |
4638 | |
4639 | /* Clear the vaddr bits which aren't part of the within-region address, | |
4640 | * so that we don't have to special case things when calculating the | |
4641 | * first descriptor address. | |
4642 | */ | |
2c8dd318 RH |
4643 | if (tsz) { |
4644 | address &= (1ULL << (va_size - tsz)) - 1; | |
4645 | } | |
4646 | ||
4647 | descmask = (1ULL << (granule_sz + 3)) - 1; | |
3dde962f PM |
4648 | |
4649 | /* Now we can extract the actual base address from the TTBR */ | |
2c8dd318 RH |
4650 | descaddr = extract64(ttbr, 0, 48); |
4651 | descaddr &= ~((1ULL << (va_size - tsz - (granule_sz * (4 - level)))) - 1); | |
3dde962f PM |
4652 | |
4653 | tableattrs = 0; | |
4654 | for (;;) { | |
4655 | uint64_t descriptor; | |
4656 | ||
2c8dd318 RH |
4657 | descaddr |= (address >> (granule_sz * (4 - level))) & descmask; |
4658 | descaddr &= ~7ULL; | |
2c17449b | 4659 | descriptor = ldq_phys(cs->as, descaddr); |
3dde962f PM |
4660 | if (!(descriptor & 1) || |
4661 | (!(descriptor & 2) && (level == 3))) { | |
4662 | /* Invalid, or the Reserved level 3 encoding */ | |
4663 | goto do_fault; | |
4664 | } | |
4665 | descaddr = descriptor & 0xfffffff000ULL; | |
4666 | ||
4667 | if ((descriptor & 2) && (level < 3)) { | |
4668 | /* Table entry. The top five bits are attributes which may | |
4669 | * propagate down through lower levels of the table (and | |
4670 | * which are all arranged so that 0 means "no effect", so | |
4671 | * we can gather them up by ORing in the bits at each level). | |
4672 | */ | |
4673 | tableattrs |= extract64(descriptor, 59, 5); | |
4674 | level++; | |
4675 | continue; | |
4676 | } | |
4677 | /* Block entry at level 1 or 2, or page entry at level 3. | |
4678 | * These are basically the same thing, although the number | |
4679 | * of bits we pull in from the vaddr varies. | |
4680 | */ | |
5661ae6b | 4681 | page_size = (1ULL << ((granule_sz * (4 - level)) + 3)); |
3dde962f PM |
4682 | descaddr |= (address & (page_size - 1)); |
4683 | /* Extract attributes from the descriptor and merge with table attrs */ | |
d615efac IC |
4684 | attrs = extract64(descriptor, 2, 10) |
4685 | | (extract64(descriptor, 52, 12) << 10); | |
3dde962f PM |
4686 | attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ |
4687 | attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */ | |
4688 | /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 | |
4689 | * means "force PL1 access only", which means forcing AP[1] to 0. | |
4690 | */ | |
4691 | if (extract32(tableattrs, 2, 1)) { | |
4692 | attrs &= ~(1 << 4); | |
4693 | } | |
4694 | /* Since we're always in the Non-secure state, NSTable is ignored. */ | |
4695 | break; | |
4696 | } | |
4697 | /* Here descaddr is the final physical address, and attributes | |
4698 | * are all in attrs. | |
4699 | */ | |
4700 | fault_type = access_fault; | |
4701 | if ((attrs & (1 << 8)) == 0) { | |
4702 | /* Access flag */ | |
4703 | goto do_fault; | |
4704 | } | |
4705 | fault_type = permission_fault; | |
4706 | if (is_user && !(attrs & (1 << 4))) { | |
4707 | /* Unprivileged access not enabled */ | |
4708 | goto do_fault; | |
4709 | } | |
4710 | *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; | |
d615efac IC |
4711 | if ((arm_feature(env, ARM_FEATURE_V8) && is_user && (attrs & (1 << 12))) || |
4712 | (!arm_feature(env, ARM_FEATURE_V8) && (attrs & (1 << 12))) || | |
4713 | (!is_user && (attrs & (1 << 11)))) { | |
4714 | /* XN/UXN or PXN. Since we only implement EL0/EL1 we unconditionally | |
4715 | * treat XN/UXN as UXN for v8. | |
4716 | */ | |
3dde962f PM |
4717 | if (access_type == 2) { |
4718 | goto do_fault; | |
4719 | } | |
4720 | *prot &= ~PAGE_EXEC; | |
4721 | } | |
4722 | if (attrs & (1 << 5)) { | |
4723 | /* Write access forbidden */ | |
4724 | if (access_type == 1) { | |
4725 | goto do_fault; | |
4726 | } | |
4727 | *prot &= ~PAGE_WRITE; | |
4728 | } | |
4729 | ||
4730 | *phys_ptr = descaddr; | |
4731 | *page_size_ptr = page_size; | |
4732 | return 0; | |
4733 | ||
4734 | do_fault: | |
4735 | /* Long-descriptor format IFSR/DFSR value */ | |
4736 | return (1 << 9) | (fault_type << 2) | level; | |
4737 | } | |
4738 | ||
77a71dd1 PM |
4739 | static int get_phys_addr_mpu(CPUARMState *env, uint32_t address, |
4740 | int access_type, int is_user, | |
a8170e5e | 4741 | hwaddr *phys_ptr, int *prot) |
9ee6e8bb PB |
4742 | { |
4743 | int n; | |
4744 | uint32_t mask; | |
4745 | uint32_t base; | |
4746 | ||
4747 | *phys_ptr = address; | |
4748 | for (n = 7; n >= 0; n--) { | |
4749 | base = env->cp15.c6_region[n]; | |
4750 | if ((base & 1) == 0) | |
4751 | continue; | |
4752 | mask = 1 << ((base >> 1) & 0x1f); | |
4753 | /* Keep this shift separate from the above to avoid an | |
4754 | (undefined) << 32. */ | |
4755 | mask = (mask << 1) - 1; | |
4756 | if (((base ^ address) & ~mask) == 0) | |
4757 | break; | |
4758 | } | |
4759 | if (n < 0) | |
4760 | return 2; | |
4761 | ||
4762 | if (access_type == 2) { | |
7e09797c | 4763 | mask = env->cp15.pmsav5_insn_ap; |
9ee6e8bb | 4764 | } else { |
7e09797c | 4765 | mask = env->cp15.pmsav5_data_ap; |
9ee6e8bb PB |
4766 | } |
4767 | mask = (mask >> (n * 4)) & 0xf; | |
4768 | switch (mask) { | |
4769 | case 0: | |
4770 | return 1; | |
4771 | case 1: | |
4772 | if (is_user) | |
4773 | return 1; | |
4774 | *prot = PAGE_READ | PAGE_WRITE; | |
4775 | break; | |
4776 | case 2: | |
4777 | *prot = PAGE_READ; | |
4778 | if (!is_user) | |
4779 | *prot |= PAGE_WRITE; | |
4780 | break; | |
4781 | case 3: | |
4782 | *prot = PAGE_READ | PAGE_WRITE; | |
4783 | break; | |
4784 | case 5: | |
4785 | if (is_user) | |
4786 | return 1; | |
4787 | *prot = PAGE_READ; | |
4788 | break; | |
4789 | case 6: | |
4790 | *prot = PAGE_READ; | |
4791 | break; | |
4792 | default: | |
4793 | /* Bad permission. */ | |
4794 | return 1; | |
4795 | } | |
3ad493fc | 4796 | *prot |= PAGE_EXEC; |
9ee6e8bb PB |
4797 | return 0; |
4798 | } | |
4799 | ||
702a9357 PM |
4800 | /* get_phys_addr - get the physical address for this virtual address |
4801 | * | |
4802 | * Find the physical address corresponding to the given virtual address, | |
4803 | * by doing a translation table walk on MMU based systems or using the | |
4804 | * MPU state on MPU based systems. | |
4805 | * | |
4806 | * Returns 0 if the translation was successful. Otherwise, phys_ptr, | |
4807 | * prot and page_size are not filled in, and the return value provides | |
4808 | * information on why the translation aborted, in the format of a | |
4809 | * DFSR/IFSR fault register, with the following caveats: | |
4810 | * * we honour the short vs long DFSR format differences. | |
4811 | * * the WnR bit is never set (the caller must do this). | |
4812 | * * for MPU based systems we don't bother to return a full FSR format | |
4813 | * value. | |
4814 | * | |
4815 | * @env: CPUARMState | |
4816 | * @address: virtual address to get physical address for | |
4817 | * @access_type: 0 for read, 1 for write, 2 for execute | |
4818 | * @is_user: 0 for privileged access, 1 for user | |
4819 | * @phys_ptr: set to the physical address corresponding to the virtual address | |
4820 | * @prot: set to the permissions for the page containing phys_ptr | |
4821 | * @page_size: set to the size of the page containing phys_ptr | |
4822 | */ | |
2c8dd318 | 4823 | static inline int get_phys_addr(CPUARMState *env, target_ulong address, |
9ee6e8bb | 4824 | int access_type, int is_user, |
a8170e5e | 4825 | hwaddr *phys_ptr, int *prot, |
d4c430a8 | 4826 | target_ulong *page_size) |
9ee6e8bb PB |
4827 | { |
4828 | /* Fast Context Switch Extension. */ | |
4829 | if (address < 0x02000000) | |
4830 | address += env->cp15.c13_fcse; | |
4831 | ||
76e3e1bc | 4832 | if ((env->cp15.c1_sys & SCTLR_M) == 0) { |
9ee6e8bb PB |
4833 | /* MMU/MPU disabled. */ |
4834 | *phys_ptr = address; | |
3ad493fc | 4835 | *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
d4c430a8 | 4836 | *page_size = TARGET_PAGE_SIZE; |
9ee6e8bb PB |
4837 | return 0; |
4838 | } else if (arm_feature(env, ARM_FEATURE_MPU)) { | |
d4c430a8 | 4839 | *page_size = TARGET_PAGE_SIZE; |
9ee6e8bb PB |
4840 | return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr, |
4841 | prot); | |
3dde962f PM |
4842 | } else if (extended_addresses_enabled(env)) { |
4843 | return get_phys_addr_lpae(env, address, access_type, is_user, phys_ptr, | |
4844 | prot, page_size); | |
76e3e1bc | 4845 | } else if (env->cp15.c1_sys & SCTLR_XP) { |
9ee6e8bb | 4846 | return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr, |
d4c430a8 | 4847 | prot, page_size); |
9ee6e8bb PB |
4848 | } else { |
4849 | return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr, | |
d4c430a8 | 4850 | prot, page_size); |
9ee6e8bb PB |
4851 | } |
4852 | } | |
4853 | ||
7510454e AF |
4854 | int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, |
4855 | int access_type, int mmu_idx) | |
b5ff1b31 | 4856 | { |
7510454e AF |
4857 | ARMCPU *cpu = ARM_CPU(cs); |
4858 | CPUARMState *env = &cpu->env; | |
a8170e5e | 4859 | hwaddr phys_addr; |
d4c430a8 | 4860 | target_ulong page_size; |
b5ff1b31 | 4861 | int prot; |
6ebbf390 | 4862 | int ret, is_user; |
00892383 | 4863 | uint32_t syn; |
dcbff19b | 4864 | bool same_el = (arm_current_el(env) != 0); |
b5ff1b31 | 4865 | |
6ebbf390 | 4866 | is_user = mmu_idx == MMU_USER_IDX; |
d4c430a8 PB |
4867 | ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot, |
4868 | &page_size); | |
b5ff1b31 FB |
4869 | if (ret == 0) { |
4870 | /* Map a single [sub]page. */ | |
dcd82c11 AB |
4871 | phys_addr &= TARGET_PAGE_MASK; |
4872 | address &= TARGET_PAGE_MASK; | |
0c591eb0 | 4873 | tlb_set_page(cs, address, phys_addr, prot, mmu_idx, page_size); |
d4c430a8 | 4874 | return 0; |
b5ff1b31 FB |
4875 | } |
4876 | ||
00892383 RH |
4877 | /* AArch64 syndrome does not have an LPAE bit */ |
4878 | syn = ret & ~(1 << 9); | |
4879 | ||
4880 | /* For insn and data aborts we assume there is no instruction syndrome | |
4881 | * information; this is always true for exceptions reported to EL1. | |
4882 | */ | |
b5ff1b31 | 4883 | if (access_type == 2) { |
00892383 | 4884 | syn = syn_insn_abort(same_el, 0, 0, syn); |
27103424 | 4885 | cs->exception_index = EXCP_PREFETCH_ABORT; |
b5ff1b31 | 4886 | } else { |
00892383 | 4887 | syn = syn_data_abort(same_el, 0, 0, 0, access_type == 1, syn); |
abf1172f PM |
4888 | if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6)) { |
4889 | ret |= (1 << 11); | |
4890 | } | |
27103424 | 4891 | cs->exception_index = EXCP_DATA_ABORT; |
b5ff1b31 | 4892 | } |
00892383 RH |
4893 | |
4894 | env->exception.syndrome = syn; | |
abf1172f PM |
4895 | env->exception.vaddress = address; |
4896 | env->exception.fsr = ret; | |
b5ff1b31 FB |
4897 | return 1; |
4898 | } | |
4899 | ||
00b941e5 | 4900 | hwaddr arm_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) |
b5ff1b31 | 4901 | { |
00b941e5 | 4902 | ARMCPU *cpu = ARM_CPU(cs); |
a8170e5e | 4903 | hwaddr phys_addr; |
d4c430a8 | 4904 | target_ulong page_size; |
b5ff1b31 FB |
4905 | int prot; |
4906 | int ret; | |
4907 | ||
00b941e5 | 4908 | ret = get_phys_addr(&cpu->env, addr, 0, 0, &phys_addr, &prot, &page_size); |
b5ff1b31 | 4909 | |
00b941e5 | 4910 | if (ret != 0) { |
b5ff1b31 | 4911 | return -1; |
00b941e5 | 4912 | } |
b5ff1b31 FB |
4913 | |
4914 | return phys_addr; | |
4915 | } | |
4916 | ||
0ecb72a5 | 4917 | void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val) |
9ee6e8bb | 4918 | { |
39ea3d4e PM |
4919 | if ((env->uncached_cpsr & CPSR_M) == mode) { |
4920 | env->regs[13] = val; | |
4921 | } else { | |
f5206413 | 4922 | env->banked_r13[bank_number(mode)] = val; |
39ea3d4e | 4923 | } |
9ee6e8bb PB |
4924 | } |
4925 | ||
0ecb72a5 | 4926 | uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode) |
9ee6e8bb | 4927 | { |
39ea3d4e PM |
4928 | if ((env->uncached_cpsr & CPSR_M) == mode) { |
4929 | return env->regs[13]; | |
4930 | } else { | |
f5206413 | 4931 | return env->banked_r13[bank_number(mode)]; |
39ea3d4e | 4932 | } |
9ee6e8bb PB |
4933 | } |
4934 | ||
0ecb72a5 | 4935 | uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) |
9ee6e8bb | 4936 | { |
a47dddd7 AF |
4937 | ARMCPU *cpu = arm_env_get_cpu(env); |
4938 | ||
9ee6e8bb PB |
4939 | switch (reg) { |
4940 | case 0: /* APSR */ | |
4941 | return xpsr_read(env) & 0xf8000000; | |
4942 | case 1: /* IAPSR */ | |
4943 | return xpsr_read(env) & 0xf80001ff; | |
4944 | case 2: /* EAPSR */ | |
4945 | return xpsr_read(env) & 0xff00fc00; | |
4946 | case 3: /* xPSR */ | |
4947 | return xpsr_read(env) & 0xff00fdff; | |
4948 | case 5: /* IPSR */ | |
4949 | return xpsr_read(env) & 0x000001ff; | |
4950 | case 6: /* EPSR */ | |
4951 | return xpsr_read(env) & 0x0700fc00; | |
4952 | case 7: /* IEPSR */ | |
4953 | return xpsr_read(env) & 0x0700edff; | |
4954 | case 8: /* MSP */ | |
4955 | return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13]; | |
4956 | case 9: /* PSP */ | |
4957 | return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp; | |
4958 | case 16: /* PRIMASK */ | |
4cc35614 | 4959 | return (env->daif & PSTATE_I) != 0; |
82845826 SH |
4960 | case 17: /* BASEPRI */ |
4961 | case 18: /* BASEPRI_MAX */ | |
9ee6e8bb | 4962 | return env->v7m.basepri; |
82845826 | 4963 | case 19: /* FAULTMASK */ |
4cc35614 | 4964 | return (env->daif & PSTATE_F) != 0; |
9ee6e8bb PB |
4965 | case 20: /* CONTROL */ |
4966 | return env->v7m.control; | |
4967 | default: | |
4968 | /* ??? For debugging only. */ | |
a47dddd7 | 4969 | cpu_abort(CPU(cpu), "Unimplemented system register read (%d)\n", reg); |
9ee6e8bb PB |
4970 | return 0; |
4971 | } | |
4972 | } | |
4973 | ||
0ecb72a5 | 4974 | void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) |
9ee6e8bb | 4975 | { |
a47dddd7 AF |
4976 | ARMCPU *cpu = arm_env_get_cpu(env); |
4977 | ||
9ee6e8bb PB |
4978 | switch (reg) { |
4979 | case 0: /* APSR */ | |
4980 | xpsr_write(env, val, 0xf8000000); | |
4981 | break; | |
4982 | case 1: /* IAPSR */ | |
4983 | xpsr_write(env, val, 0xf8000000); | |
4984 | break; | |
4985 | case 2: /* EAPSR */ | |
4986 | xpsr_write(env, val, 0xfe00fc00); | |
4987 | break; | |
4988 | case 3: /* xPSR */ | |
4989 | xpsr_write(env, val, 0xfe00fc00); | |
4990 | break; | |
4991 | case 5: /* IPSR */ | |
4992 | /* IPSR bits are readonly. */ | |
4993 | break; | |
4994 | case 6: /* EPSR */ | |
4995 | xpsr_write(env, val, 0x0600fc00); | |
4996 | break; | |
4997 | case 7: /* IEPSR */ | |
4998 | xpsr_write(env, val, 0x0600fc00); | |
4999 | break; | |
5000 | case 8: /* MSP */ | |
5001 | if (env->v7m.current_sp) | |
5002 | env->v7m.other_sp = val; | |
5003 | else | |
5004 | env->regs[13] = val; | |
5005 | break; | |
5006 | case 9: /* PSP */ | |
5007 | if (env->v7m.current_sp) | |
5008 | env->regs[13] = val; | |
5009 | else | |
5010 | env->v7m.other_sp = val; | |
5011 | break; | |
5012 | case 16: /* PRIMASK */ | |
4cc35614 PM |
5013 | if (val & 1) { |
5014 | env->daif |= PSTATE_I; | |
5015 | } else { | |
5016 | env->daif &= ~PSTATE_I; | |
5017 | } | |
9ee6e8bb | 5018 | break; |
82845826 | 5019 | case 17: /* BASEPRI */ |
9ee6e8bb PB |
5020 | env->v7m.basepri = val & 0xff; |
5021 | break; | |
82845826 | 5022 | case 18: /* BASEPRI_MAX */ |
9ee6e8bb PB |
5023 | val &= 0xff; |
5024 | if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0)) | |
5025 | env->v7m.basepri = val; | |
5026 | break; | |
82845826 | 5027 | case 19: /* FAULTMASK */ |
4cc35614 PM |
5028 | if (val & 1) { |
5029 | env->daif |= PSTATE_F; | |
5030 | } else { | |
5031 | env->daif &= ~PSTATE_F; | |
5032 | } | |
82845826 | 5033 | break; |
9ee6e8bb PB |
5034 | case 20: /* CONTROL */ |
5035 | env->v7m.control = val & 3; | |
5036 | switch_v7m_sp(env, (val & 2) != 0); | |
5037 | break; | |
5038 | default: | |
5039 | /* ??? For debugging only. */ | |
a47dddd7 | 5040 | cpu_abort(CPU(cpu), "Unimplemented system register write (%d)\n", reg); |
9ee6e8bb PB |
5041 | return; |
5042 | } | |
5043 | } | |
5044 | ||
b5ff1b31 | 5045 | #endif |
6ddbc6e4 | 5046 | |
aca3f40b PM |
5047 | void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in) |
5048 | { | |
5049 | /* Implement DC ZVA, which zeroes a fixed-length block of memory. | |
5050 | * Note that we do not implement the (architecturally mandated) | |
5051 | * alignment fault for attempts to use this on Device memory | |
5052 | * (which matches the usual QEMU behaviour of not implementing either | |
5053 | * alignment faults or any memory attribute handling). | |
5054 | */ | |
5055 | ||
5056 | ARMCPU *cpu = arm_env_get_cpu(env); | |
5057 | uint64_t blocklen = 4 << cpu->dcz_blocksize; | |
5058 | uint64_t vaddr = vaddr_in & ~(blocklen - 1); | |
5059 | ||
5060 | #ifndef CONFIG_USER_ONLY | |
5061 | { | |
5062 | /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than | |
5063 | * the block size so we might have to do more than one TLB lookup. | |
5064 | * We know that in fact for any v8 CPU the page size is at least 4K | |
5065 | * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only | |
5066 | * 1K as an artefact of legacy v5 subpage support being present in the | |
5067 | * same QEMU executable. | |
5068 | */ | |
5069 | int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE); | |
5070 | void *hostaddr[maxidx]; | |
5071 | int try, i; | |
5072 | ||
5073 | for (try = 0; try < 2; try++) { | |
5074 | ||
5075 | for (i = 0; i < maxidx; i++) { | |
5076 | hostaddr[i] = tlb_vaddr_to_host(env, | |
5077 | vaddr + TARGET_PAGE_SIZE * i, | |
5078 | 1, cpu_mmu_index(env)); | |
5079 | if (!hostaddr[i]) { | |
5080 | break; | |
5081 | } | |
5082 | } | |
5083 | if (i == maxidx) { | |
5084 | /* If it's all in the TLB it's fair game for just writing to; | |
5085 | * we know we don't need to update dirty status, etc. | |
5086 | */ | |
5087 | for (i = 0; i < maxidx - 1; i++) { | |
5088 | memset(hostaddr[i], 0, TARGET_PAGE_SIZE); | |
5089 | } | |
5090 | memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE)); | |
5091 | return; | |
5092 | } | |
5093 | /* OK, try a store and see if we can populate the tlb. This | |
5094 | * might cause an exception if the memory isn't writable, | |
5095 | * in which case we will longjmp out of here. We must for | |
5096 | * this purpose use the actual register value passed to us | |
5097 | * so that we get the fault address right. | |
5098 | */ | |
5099 | helper_ret_stb_mmu(env, vaddr_in, 0, cpu_mmu_index(env), GETRA()); | |
5100 | /* Now we can populate the other TLB entries, if any */ | |
5101 | for (i = 0; i < maxidx; i++) { | |
5102 | uint64_t va = vaddr + TARGET_PAGE_SIZE * i; | |
5103 | if (va != (vaddr_in & TARGET_PAGE_MASK)) { | |
5104 | helper_ret_stb_mmu(env, va, 0, cpu_mmu_index(env), GETRA()); | |
5105 | } | |
5106 | } | |
5107 | } | |
5108 | ||
5109 | /* Slow path (probably attempt to do this to an I/O device or | |
5110 | * similar, or clearing of a block of code we have translations | |
5111 | * cached for). Just do a series of byte writes as the architecture | |
5112 | * demands. It's not worth trying to use a cpu_physical_memory_map(), | |
5113 | * memset(), unmap() sequence here because: | |
5114 | * + we'd need to account for the blocksize being larger than a page | |
5115 | * + the direct-RAM access case is almost always going to be dealt | |
5116 | * with in the fastpath code above, so there's no speed benefit | |
5117 | * + we would have to deal with the map returning NULL because the | |
5118 | * bounce buffer was in use | |
5119 | */ | |
5120 | for (i = 0; i < blocklen; i++) { | |
5121 | helper_ret_stb_mmu(env, vaddr + i, 0, cpu_mmu_index(env), GETRA()); | |
5122 | } | |
5123 | } | |
5124 | #else | |
5125 | memset(g2h(vaddr), 0, blocklen); | |
5126 | #endif | |
5127 | } | |
5128 | ||
6ddbc6e4 PB |
5129 | /* Note that signed overflow is undefined in C. The following routines are |
5130 | careful to use unsigned types where modulo arithmetic is required. | |
5131 | Failure to do so _will_ break on newer gcc. */ | |
5132 | ||
5133 | /* Signed saturating arithmetic. */ | |
5134 | ||
1654b2d6 | 5135 | /* Perform 16-bit signed saturating addition. */ |
6ddbc6e4 PB |
5136 | static inline uint16_t add16_sat(uint16_t a, uint16_t b) |
5137 | { | |
5138 | uint16_t res; | |
5139 | ||
5140 | res = a + b; | |
5141 | if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { | |
5142 | if (a & 0x8000) | |
5143 | res = 0x8000; | |
5144 | else | |
5145 | res = 0x7fff; | |
5146 | } | |
5147 | return res; | |
5148 | } | |
5149 | ||
1654b2d6 | 5150 | /* Perform 8-bit signed saturating addition. */ |
6ddbc6e4 PB |
5151 | static inline uint8_t add8_sat(uint8_t a, uint8_t b) |
5152 | { | |
5153 | uint8_t res; | |
5154 | ||
5155 | res = a + b; | |
5156 | if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { | |
5157 | if (a & 0x80) | |
5158 | res = 0x80; | |
5159 | else | |
5160 | res = 0x7f; | |
5161 | } | |
5162 | return res; | |
5163 | } | |
5164 | ||
1654b2d6 | 5165 | /* Perform 16-bit signed saturating subtraction. */ |
6ddbc6e4 PB |
5166 | static inline uint16_t sub16_sat(uint16_t a, uint16_t b) |
5167 | { | |
5168 | uint16_t res; | |
5169 | ||
5170 | res = a - b; | |
5171 | if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { | |
5172 | if (a & 0x8000) | |
5173 | res = 0x8000; | |
5174 | else | |
5175 | res = 0x7fff; | |
5176 | } | |
5177 | return res; | |
5178 | } | |
5179 | ||
1654b2d6 | 5180 | /* Perform 8-bit signed saturating subtraction. */ |
6ddbc6e4 PB |
5181 | static inline uint8_t sub8_sat(uint8_t a, uint8_t b) |
5182 | { | |
5183 | uint8_t res; | |
5184 | ||
5185 | res = a - b; | |
5186 | if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { | |
5187 | if (a & 0x80) | |
5188 | res = 0x80; | |
5189 | else | |
5190 | res = 0x7f; | |
5191 | } | |
5192 | return res; | |
5193 | } | |
5194 | ||
5195 | #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); | |
5196 | #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); | |
5197 | #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); | |
5198 | #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); | |
5199 | #define PFX q | |
5200 | ||
5201 | #include "op_addsub.h" | |
5202 | ||
5203 | /* Unsigned saturating arithmetic. */ | |
460a09c1 | 5204 | static inline uint16_t add16_usat(uint16_t a, uint16_t b) |
6ddbc6e4 PB |
5205 | { |
5206 | uint16_t res; | |
5207 | res = a + b; | |
5208 | if (res < a) | |
5209 | res = 0xffff; | |
5210 | return res; | |
5211 | } | |
5212 | ||
460a09c1 | 5213 | static inline uint16_t sub16_usat(uint16_t a, uint16_t b) |
6ddbc6e4 | 5214 | { |
4c4fd3f8 | 5215 | if (a > b) |
6ddbc6e4 PB |
5216 | return a - b; |
5217 | else | |
5218 | return 0; | |
5219 | } | |
5220 | ||
5221 | static inline uint8_t add8_usat(uint8_t a, uint8_t b) | |
5222 | { | |
5223 | uint8_t res; | |
5224 | res = a + b; | |
5225 | if (res < a) | |
5226 | res = 0xff; | |
5227 | return res; | |
5228 | } | |
5229 | ||
5230 | static inline uint8_t sub8_usat(uint8_t a, uint8_t b) | |
5231 | { | |
4c4fd3f8 | 5232 | if (a > b) |
6ddbc6e4 PB |
5233 | return a - b; |
5234 | else | |
5235 | return 0; | |
5236 | } | |
5237 | ||
5238 | #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); | |
5239 | #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); | |
5240 | #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); | |
5241 | #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); | |
5242 | #define PFX uq | |
5243 | ||
5244 | #include "op_addsub.h" | |
5245 | ||
5246 | /* Signed modulo arithmetic. */ | |
5247 | #define SARITH16(a, b, n, op) do { \ | |
5248 | int32_t sum; \ | |
db6e2e65 | 5249 | sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ |
6ddbc6e4 PB |
5250 | RESULT(sum, n, 16); \ |
5251 | if (sum >= 0) \ | |
5252 | ge |= 3 << (n * 2); \ | |
5253 | } while(0) | |
5254 | ||
5255 | #define SARITH8(a, b, n, op) do { \ | |
5256 | int32_t sum; \ | |
db6e2e65 | 5257 | sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ |
6ddbc6e4 PB |
5258 | RESULT(sum, n, 8); \ |
5259 | if (sum >= 0) \ | |
5260 | ge |= 1 << n; \ | |
5261 | } while(0) | |
5262 | ||
5263 | ||
5264 | #define ADD16(a, b, n) SARITH16(a, b, n, +) | |
5265 | #define SUB16(a, b, n) SARITH16(a, b, n, -) | |
5266 | #define ADD8(a, b, n) SARITH8(a, b, n, +) | |
5267 | #define SUB8(a, b, n) SARITH8(a, b, n, -) | |
5268 | #define PFX s | |
5269 | #define ARITH_GE | |
5270 | ||
5271 | #include "op_addsub.h" | |
5272 | ||
5273 | /* Unsigned modulo arithmetic. */ | |
5274 | #define ADD16(a, b, n) do { \ | |
5275 | uint32_t sum; \ | |
5276 | sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ | |
5277 | RESULT(sum, n, 16); \ | |
a87aa10b | 5278 | if ((sum >> 16) == 1) \ |
6ddbc6e4 PB |
5279 | ge |= 3 << (n * 2); \ |
5280 | } while(0) | |
5281 | ||
5282 | #define ADD8(a, b, n) do { \ | |
5283 | uint32_t sum; \ | |
5284 | sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ | |
5285 | RESULT(sum, n, 8); \ | |
a87aa10b AZ |
5286 | if ((sum >> 8) == 1) \ |
5287 | ge |= 1 << n; \ | |
6ddbc6e4 PB |
5288 | } while(0) |
5289 | ||
5290 | #define SUB16(a, b, n) do { \ | |
5291 | uint32_t sum; \ | |
5292 | sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ | |
5293 | RESULT(sum, n, 16); \ | |
5294 | if ((sum >> 16) == 0) \ | |
5295 | ge |= 3 << (n * 2); \ | |
5296 | } while(0) | |
5297 | ||
5298 | #define SUB8(a, b, n) do { \ | |
5299 | uint32_t sum; \ | |
5300 | sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ | |
5301 | RESULT(sum, n, 8); \ | |
5302 | if ((sum >> 8) == 0) \ | |
a87aa10b | 5303 | ge |= 1 << n; \ |
6ddbc6e4 PB |
5304 | } while(0) |
5305 | ||
5306 | #define PFX u | |
5307 | #define ARITH_GE | |
5308 | ||
5309 | #include "op_addsub.h" | |
5310 | ||
5311 | /* Halved signed arithmetic. */ | |
5312 | #define ADD16(a, b, n) \ | |
5313 | RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) | |
5314 | #define SUB16(a, b, n) \ | |
5315 | RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) | |
5316 | #define ADD8(a, b, n) \ | |
5317 | RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) | |
5318 | #define SUB8(a, b, n) \ | |
5319 | RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) | |
5320 | #define PFX sh | |
5321 | ||
5322 | #include "op_addsub.h" | |
5323 | ||
5324 | /* Halved unsigned arithmetic. */ | |
5325 | #define ADD16(a, b, n) \ | |
5326 | RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) | |
5327 | #define SUB16(a, b, n) \ | |
5328 | RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) | |
5329 | #define ADD8(a, b, n) \ | |
5330 | RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) | |
5331 | #define SUB8(a, b, n) \ | |
5332 | RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) | |
5333 | #define PFX uh | |
5334 | ||
5335 | #include "op_addsub.h" | |
5336 | ||
5337 | static inline uint8_t do_usad(uint8_t a, uint8_t b) | |
5338 | { | |
5339 | if (a > b) | |
5340 | return a - b; | |
5341 | else | |
5342 | return b - a; | |
5343 | } | |
5344 | ||
5345 | /* Unsigned sum of absolute byte differences. */ | |
5346 | uint32_t HELPER(usad8)(uint32_t a, uint32_t b) | |
5347 | { | |
5348 | uint32_t sum; | |
5349 | sum = do_usad(a, b); | |
5350 | sum += do_usad(a >> 8, b >> 8); | |
5351 | sum += do_usad(a >> 16, b >>16); | |
5352 | sum += do_usad(a >> 24, b >> 24); | |
5353 | return sum; | |
5354 | } | |
5355 | ||
5356 | /* For ARMv6 SEL instruction. */ | |
5357 | uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) | |
5358 | { | |
5359 | uint32_t mask; | |
5360 | ||
5361 | mask = 0; | |
5362 | if (flags & 1) | |
5363 | mask |= 0xff; | |
5364 | if (flags & 2) | |
5365 | mask |= 0xff00; | |
5366 | if (flags & 4) | |
5367 | mask |= 0xff0000; | |
5368 | if (flags & 8) | |
5369 | mask |= 0xff000000; | |
5370 | return (a & mask) | (b & ~mask); | |
5371 | } | |
5372 | ||
b90372ad PM |
5373 | /* VFP support. We follow the convention used for VFP instructions: |
5374 | Single precision routines have a "s" suffix, double precision a | |
4373f3ce PB |
5375 | "d" suffix. */ |
5376 | ||
5377 | /* Convert host exception flags to vfp form. */ | |
5378 | static inline int vfp_exceptbits_from_host(int host_bits) | |
5379 | { | |
5380 | int target_bits = 0; | |
5381 | ||
5382 | if (host_bits & float_flag_invalid) | |
5383 | target_bits |= 1; | |
5384 | if (host_bits & float_flag_divbyzero) | |
5385 | target_bits |= 2; | |
5386 | if (host_bits & float_flag_overflow) | |
5387 | target_bits |= 4; | |
36802b6b | 5388 | if (host_bits & (float_flag_underflow | float_flag_output_denormal)) |
4373f3ce PB |
5389 | target_bits |= 8; |
5390 | if (host_bits & float_flag_inexact) | |
5391 | target_bits |= 0x10; | |
cecd8504 PM |
5392 | if (host_bits & float_flag_input_denormal) |
5393 | target_bits |= 0x80; | |
4373f3ce PB |
5394 | return target_bits; |
5395 | } | |
5396 | ||
0ecb72a5 | 5397 | uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env) |
4373f3ce PB |
5398 | { |
5399 | int i; | |
5400 | uint32_t fpscr; | |
5401 | ||
5402 | fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff) | |
5403 | | (env->vfp.vec_len << 16) | |
5404 | | (env->vfp.vec_stride << 20); | |
5405 | i = get_float_exception_flags(&env->vfp.fp_status); | |
3a492f3a | 5406 | i |= get_float_exception_flags(&env->vfp.standard_fp_status); |
4373f3ce PB |
5407 | fpscr |= vfp_exceptbits_from_host(i); |
5408 | return fpscr; | |
5409 | } | |
5410 | ||
0ecb72a5 | 5411 | uint32_t vfp_get_fpscr(CPUARMState *env) |
01653295 PM |
5412 | { |
5413 | return HELPER(vfp_get_fpscr)(env); | |
5414 | } | |
5415 | ||
4373f3ce PB |
5416 | /* Convert vfp exception flags to target form. */ |
5417 | static inline int vfp_exceptbits_to_host(int target_bits) | |
5418 | { | |
5419 | int host_bits = 0; | |
5420 | ||
5421 | if (target_bits & 1) | |
5422 | host_bits |= float_flag_invalid; | |
5423 | if (target_bits & 2) | |
5424 | host_bits |= float_flag_divbyzero; | |
5425 | if (target_bits & 4) | |
5426 | host_bits |= float_flag_overflow; | |
5427 | if (target_bits & 8) | |
5428 | host_bits |= float_flag_underflow; | |
5429 | if (target_bits & 0x10) | |
5430 | host_bits |= float_flag_inexact; | |
cecd8504 PM |
5431 | if (target_bits & 0x80) |
5432 | host_bits |= float_flag_input_denormal; | |
4373f3ce PB |
5433 | return host_bits; |
5434 | } | |
5435 | ||
0ecb72a5 | 5436 | void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val) |
4373f3ce PB |
5437 | { |
5438 | int i; | |
5439 | uint32_t changed; | |
5440 | ||
5441 | changed = env->vfp.xregs[ARM_VFP_FPSCR]; | |
5442 | env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff); | |
5443 | env->vfp.vec_len = (val >> 16) & 7; | |
5444 | env->vfp.vec_stride = (val >> 20) & 3; | |
5445 | ||
5446 | changed ^= val; | |
5447 | if (changed & (3 << 22)) { | |
5448 | i = (val >> 22) & 3; | |
5449 | switch (i) { | |
4d3da0f3 | 5450 | case FPROUNDING_TIEEVEN: |
4373f3ce PB |
5451 | i = float_round_nearest_even; |
5452 | break; | |
4d3da0f3 | 5453 | case FPROUNDING_POSINF: |
4373f3ce PB |
5454 | i = float_round_up; |
5455 | break; | |
4d3da0f3 | 5456 | case FPROUNDING_NEGINF: |
4373f3ce PB |
5457 | i = float_round_down; |
5458 | break; | |
4d3da0f3 | 5459 | case FPROUNDING_ZERO: |
4373f3ce PB |
5460 | i = float_round_to_zero; |
5461 | break; | |
5462 | } | |
5463 | set_float_rounding_mode(i, &env->vfp.fp_status); | |
5464 | } | |
cecd8504 | 5465 | if (changed & (1 << 24)) { |
fe76d976 | 5466 | set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); |
cecd8504 PM |
5467 | set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); |
5468 | } | |
5c7908ed PB |
5469 | if (changed & (1 << 25)) |
5470 | set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status); | |
4373f3ce | 5471 | |
b12c390b | 5472 | i = vfp_exceptbits_to_host(val); |
4373f3ce | 5473 | set_float_exception_flags(i, &env->vfp.fp_status); |
3a492f3a | 5474 | set_float_exception_flags(0, &env->vfp.standard_fp_status); |
4373f3ce PB |
5475 | } |
5476 | ||
0ecb72a5 | 5477 | void vfp_set_fpscr(CPUARMState *env, uint32_t val) |
01653295 PM |
5478 | { |
5479 | HELPER(vfp_set_fpscr)(env, val); | |
5480 | } | |
5481 | ||
4373f3ce PB |
5482 | #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p)) |
5483 | ||
5484 | #define VFP_BINOP(name) \ | |
ae1857ec | 5485 | float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \ |
4373f3ce | 5486 | { \ |
ae1857ec PM |
5487 | float_status *fpst = fpstp; \ |
5488 | return float32_ ## name(a, b, fpst); \ | |
4373f3ce | 5489 | } \ |
ae1857ec | 5490 | float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \ |
4373f3ce | 5491 | { \ |
ae1857ec PM |
5492 | float_status *fpst = fpstp; \ |
5493 | return float64_ ## name(a, b, fpst); \ | |
4373f3ce PB |
5494 | } |
5495 | VFP_BINOP(add) | |
5496 | VFP_BINOP(sub) | |
5497 | VFP_BINOP(mul) | |
5498 | VFP_BINOP(div) | |
f71a2ae5 PM |
5499 | VFP_BINOP(min) |
5500 | VFP_BINOP(max) | |
5501 | VFP_BINOP(minnum) | |
5502 | VFP_BINOP(maxnum) | |
4373f3ce PB |
5503 | #undef VFP_BINOP |
5504 | ||
5505 | float32 VFP_HELPER(neg, s)(float32 a) | |
5506 | { | |
5507 | return float32_chs(a); | |
5508 | } | |
5509 | ||
5510 | float64 VFP_HELPER(neg, d)(float64 a) | |
5511 | { | |
66230e0d | 5512 | return float64_chs(a); |
4373f3ce PB |
5513 | } |
5514 | ||
5515 | float32 VFP_HELPER(abs, s)(float32 a) | |
5516 | { | |
5517 | return float32_abs(a); | |
5518 | } | |
5519 | ||
5520 | float64 VFP_HELPER(abs, d)(float64 a) | |
5521 | { | |
66230e0d | 5522 | return float64_abs(a); |
4373f3ce PB |
5523 | } |
5524 | ||
0ecb72a5 | 5525 | float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env) |
4373f3ce PB |
5526 | { |
5527 | return float32_sqrt(a, &env->vfp.fp_status); | |
5528 | } | |
5529 | ||
0ecb72a5 | 5530 | float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env) |
4373f3ce PB |
5531 | { |
5532 | return float64_sqrt(a, &env->vfp.fp_status); | |
5533 | } | |
5534 | ||
5535 | /* XXX: check quiet/signaling case */ | |
5536 | #define DO_VFP_cmp(p, type) \ | |
0ecb72a5 | 5537 | void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \ |
4373f3ce PB |
5538 | { \ |
5539 | uint32_t flags; \ | |
5540 | switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \ | |
5541 | case 0: flags = 0x6; break; \ | |
5542 | case -1: flags = 0x8; break; \ | |
5543 | case 1: flags = 0x2; break; \ | |
5544 | default: case 2: flags = 0x3; break; \ | |
5545 | } \ | |
5546 | env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ | |
5547 | | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ | |
5548 | } \ | |
0ecb72a5 | 5549 | void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \ |
4373f3ce PB |
5550 | { \ |
5551 | uint32_t flags; \ | |
5552 | switch(type ## _compare(a, b, &env->vfp.fp_status)) { \ | |
5553 | case 0: flags = 0x6; break; \ | |
5554 | case -1: flags = 0x8; break; \ | |
5555 | case 1: flags = 0x2; break; \ | |
5556 | default: case 2: flags = 0x3; break; \ | |
5557 | } \ | |
5558 | env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ | |
5559 | | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ | |
5560 | } | |
5561 | DO_VFP_cmp(s, float32) | |
5562 | DO_VFP_cmp(d, float64) | |
5563 | #undef DO_VFP_cmp | |
5564 | ||
5500b06c | 5565 | /* Integer to float and float to integer conversions */ |
4373f3ce | 5566 | |
5500b06c PM |
5567 | #define CONV_ITOF(name, fsz, sign) \ |
5568 | float##fsz HELPER(name)(uint32_t x, void *fpstp) \ | |
5569 | { \ | |
5570 | float_status *fpst = fpstp; \ | |
85836979 | 5571 | return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \ |
4373f3ce PB |
5572 | } |
5573 | ||
5500b06c PM |
5574 | #define CONV_FTOI(name, fsz, sign, round) \ |
5575 | uint32_t HELPER(name)(float##fsz x, void *fpstp) \ | |
5576 | { \ | |
5577 | float_status *fpst = fpstp; \ | |
5578 | if (float##fsz##_is_any_nan(x)) { \ | |
5579 | float_raise(float_flag_invalid, fpst); \ | |
5580 | return 0; \ | |
5581 | } \ | |
5582 | return float##fsz##_to_##sign##int32##round(x, fpst); \ | |
4373f3ce PB |
5583 | } |
5584 | ||
5500b06c PM |
5585 | #define FLOAT_CONVS(name, p, fsz, sign) \ |
5586 | CONV_ITOF(vfp_##name##to##p, fsz, sign) \ | |
5587 | CONV_FTOI(vfp_to##name##p, fsz, sign, ) \ | |
5588 | CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero) | |
4373f3ce | 5589 | |
5500b06c PM |
5590 | FLOAT_CONVS(si, s, 32, ) |
5591 | FLOAT_CONVS(si, d, 64, ) | |
5592 | FLOAT_CONVS(ui, s, 32, u) | |
5593 | FLOAT_CONVS(ui, d, 64, u) | |
4373f3ce | 5594 | |
5500b06c PM |
5595 | #undef CONV_ITOF |
5596 | #undef CONV_FTOI | |
5597 | #undef FLOAT_CONVS | |
4373f3ce PB |
5598 | |
5599 | /* floating point conversion */ | |
0ecb72a5 | 5600 | float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env) |
4373f3ce | 5601 | { |
2d627737 PM |
5602 | float64 r = float32_to_float64(x, &env->vfp.fp_status); |
5603 | /* ARM requires that S<->D conversion of any kind of NaN generates | |
5604 | * a quiet NaN by forcing the most significant frac bit to 1. | |
5605 | */ | |
5606 | return float64_maybe_silence_nan(r); | |
4373f3ce PB |
5607 | } |
5608 | ||
0ecb72a5 | 5609 | float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env) |
4373f3ce | 5610 | { |
2d627737 PM |
5611 | float32 r = float64_to_float32(x, &env->vfp.fp_status); |
5612 | /* ARM requires that S<->D conversion of any kind of NaN generates | |
5613 | * a quiet NaN by forcing the most significant frac bit to 1. | |
5614 | */ | |
5615 | return float32_maybe_silence_nan(r); | |
4373f3ce PB |
5616 | } |
5617 | ||
5618 | /* VFP3 fixed point conversion. */ | |
16d5b3ca | 5619 | #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ |
8ed697e8 WN |
5620 | float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \ |
5621 | void *fpstp) \ | |
4373f3ce | 5622 | { \ |
5500b06c | 5623 | float_status *fpst = fpstp; \ |
622465e1 | 5624 | float##fsz tmp; \ |
8ed697e8 | 5625 | tmp = itype##_to_##float##fsz(x, fpst); \ |
5500b06c | 5626 | return float##fsz##_scalbn(tmp, -(int)shift, fpst); \ |
16d5b3ca WN |
5627 | } |
5628 | ||
abe66f70 PM |
5629 | /* Notice that we want only input-denormal exception flags from the |
5630 | * scalbn operation: the other possible flags (overflow+inexact if | |
5631 | * we overflow to infinity, output-denormal) aren't correct for the | |
5632 | * complete scale-and-convert operation. | |
5633 | */ | |
16d5b3ca WN |
5634 | #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \ |
5635 | uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \ | |
5636 | uint32_t shift, \ | |
5637 | void *fpstp) \ | |
4373f3ce | 5638 | { \ |
5500b06c | 5639 | float_status *fpst = fpstp; \ |
abe66f70 | 5640 | int old_exc_flags = get_float_exception_flags(fpst); \ |
622465e1 PM |
5641 | float##fsz tmp; \ |
5642 | if (float##fsz##_is_any_nan(x)) { \ | |
5500b06c | 5643 | float_raise(float_flag_invalid, fpst); \ |
622465e1 | 5644 | return 0; \ |
09d9487f | 5645 | } \ |
5500b06c | 5646 | tmp = float##fsz##_scalbn(x, shift, fpst); \ |
abe66f70 PM |
5647 | old_exc_flags |= get_float_exception_flags(fpst) \ |
5648 | & float_flag_input_denormal; \ | |
5649 | set_float_exception_flags(old_exc_flags, fpst); \ | |
16d5b3ca | 5650 | return float##fsz##_to_##itype##round(tmp, fpst); \ |
622465e1 PM |
5651 | } |
5652 | ||
16d5b3ca WN |
5653 | #define VFP_CONV_FIX(name, p, fsz, isz, itype) \ |
5654 | VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ | |
3c6a074a WN |
5655 | VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \ |
5656 | VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) | |
5657 | ||
5658 | #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \ | |
5659 | VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ | |
5660 | VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) | |
16d5b3ca | 5661 | |
8ed697e8 WN |
5662 | VFP_CONV_FIX(sh, d, 64, 64, int16) |
5663 | VFP_CONV_FIX(sl, d, 64, 64, int32) | |
3c6a074a | 5664 | VFP_CONV_FIX_A64(sq, d, 64, 64, int64) |
8ed697e8 WN |
5665 | VFP_CONV_FIX(uh, d, 64, 64, uint16) |
5666 | VFP_CONV_FIX(ul, d, 64, 64, uint32) | |
3c6a074a | 5667 | VFP_CONV_FIX_A64(uq, d, 64, 64, uint64) |
8ed697e8 WN |
5668 | VFP_CONV_FIX(sh, s, 32, 32, int16) |
5669 | VFP_CONV_FIX(sl, s, 32, 32, int32) | |
3c6a074a | 5670 | VFP_CONV_FIX_A64(sq, s, 32, 64, int64) |
8ed697e8 WN |
5671 | VFP_CONV_FIX(uh, s, 32, 32, uint16) |
5672 | VFP_CONV_FIX(ul, s, 32, 32, uint32) | |
3c6a074a | 5673 | VFP_CONV_FIX_A64(uq, s, 32, 64, uint64) |
4373f3ce | 5674 | #undef VFP_CONV_FIX |
16d5b3ca WN |
5675 | #undef VFP_CONV_FIX_FLOAT |
5676 | #undef VFP_CONV_FLOAT_FIX_ROUND | |
4373f3ce | 5677 | |
52a1f6a3 AG |
5678 | /* Set the current fp rounding mode and return the old one. |
5679 | * The argument is a softfloat float_round_ value. | |
5680 | */ | |
5681 | uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env) | |
5682 | { | |
5683 | float_status *fp_status = &env->vfp.fp_status; | |
5684 | ||
5685 | uint32_t prev_rmode = get_float_rounding_mode(fp_status); | |
5686 | set_float_rounding_mode(rmode, fp_status); | |
5687 | ||
5688 | return prev_rmode; | |
5689 | } | |
5690 | ||
43630e58 WN |
5691 | /* Set the current fp rounding mode in the standard fp status and return |
5692 | * the old one. This is for NEON instructions that need to change the | |
5693 | * rounding mode but wish to use the standard FPSCR values for everything | |
5694 | * else. Always set the rounding mode back to the correct value after | |
5695 | * modifying it. | |
5696 | * The argument is a softfloat float_round_ value. | |
5697 | */ | |
5698 | uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env) | |
5699 | { | |
5700 | float_status *fp_status = &env->vfp.standard_fp_status; | |
5701 | ||
5702 | uint32_t prev_rmode = get_float_rounding_mode(fp_status); | |
5703 | set_float_rounding_mode(rmode, fp_status); | |
5704 | ||
5705 | return prev_rmode; | |
5706 | } | |
5707 | ||
60011498 | 5708 | /* Half precision conversions. */ |
0ecb72a5 | 5709 | static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s) |
60011498 | 5710 | { |
60011498 | 5711 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; |
fb91678d PM |
5712 | float32 r = float16_to_float32(make_float16(a), ieee, s); |
5713 | if (ieee) { | |
5714 | return float32_maybe_silence_nan(r); | |
5715 | } | |
5716 | return r; | |
60011498 PB |
5717 | } |
5718 | ||
0ecb72a5 | 5719 | static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s) |
60011498 | 5720 | { |
60011498 | 5721 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; |
fb91678d PM |
5722 | float16 r = float32_to_float16(a, ieee, s); |
5723 | if (ieee) { | |
5724 | r = float16_maybe_silence_nan(r); | |
5725 | } | |
5726 | return float16_val(r); | |
60011498 PB |
5727 | } |
5728 | ||
0ecb72a5 | 5729 | float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) |
2d981da7 PM |
5730 | { |
5731 | return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status); | |
5732 | } | |
5733 | ||
0ecb72a5 | 5734 | uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env) |
2d981da7 PM |
5735 | { |
5736 | return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status); | |
5737 | } | |
5738 | ||
0ecb72a5 | 5739 | float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) |
2d981da7 PM |
5740 | { |
5741 | return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status); | |
5742 | } | |
5743 | ||
0ecb72a5 | 5744 | uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env) |
2d981da7 PM |
5745 | { |
5746 | return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status); | |
5747 | } | |
5748 | ||
8900aad2 PM |
5749 | float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env) |
5750 | { | |
5751 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; | |
5752 | float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status); | |
5753 | if (ieee) { | |
5754 | return float64_maybe_silence_nan(r); | |
5755 | } | |
5756 | return r; | |
5757 | } | |
5758 | ||
5759 | uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env) | |
5760 | { | |
5761 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; | |
5762 | float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status); | |
5763 | if (ieee) { | |
5764 | r = float16_maybe_silence_nan(r); | |
5765 | } | |
5766 | return float16_val(r); | |
5767 | } | |
5768 | ||
dda3ec49 | 5769 | #define float32_two make_float32(0x40000000) |
6aae3df1 PM |
5770 | #define float32_three make_float32(0x40400000) |
5771 | #define float32_one_point_five make_float32(0x3fc00000) | |
dda3ec49 | 5772 | |
0ecb72a5 | 5773 | float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env) |
4373f3ce | 5774 | { |
dda3ec49 PM |
5775 | float_status *s = &env->vfp.standard_fp_status; |
5776 | if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || | |
5777 | (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { | |
43fe9bdb PM |
5778 | if (!(float32_is_zero(a) || float32_is_zero(b))) { |
5779 | float_raise(float_flag_input_denormal, s); | |
5780 | } | |
dda3ec49 PM |
5781 | return float32_two; |
5782 | } | |
5783 | return float32_sub(float32_two, float32_mul(a, b, s), s); | |
4373f3ce PB |
5784 | } |
5785 | ||
0ecb72a5 | 5786 | float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env) |
4373f3ce | 5787 | { |
71826966 | 5788 | float_status *s = &env->vfp.standard_fp_status; |
9ea62f57 PM |
5789 | float32 product; |
5790 | if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || | |
5791 | (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { | |
43fe9bdb PM |
5792 | if (!(float32_is_zero(a) || float32_is_zero(b))) { |
5793 | float_raise(float_flag_input_denormal, s); | |
5794 | } | |
6aae3df1 | 5795 | return float32_one_point_five; |
9ea62f57 | 5796 | } |
6aae3df1 PM |
5797 | product = float32_mul(a, b, s); |
5798 | return float32_div(float32_sub(float32_three, product, s), float32_two, s); | |
4373f3ce PB |
5799 | } |
5800 | ||
8f8e3aa4 PB |
5801 | /* NEON helpers. */ |
5802 | ||
56bf4fe2 CL |
5803 | /* Constants 256 and 512 are used in some helpers; we avoid relying on |
5804 | * int->float conversions at run-time. */ | |
5805 | #define float64_256 make_float64(0x4070000000000000LL) | |
5806 | #define float64_512 make_float64(0x4080000000000000LL) | |
b6d4443a AB |
5807 | #define float32_maxnorm make_float32(0x7f7fffff) |
5808 | #define float64_maxnorm make_float64(0x7fefffffffffffffLL) | |
56bf4fe2 | 5809 | |
b6d4443a AB |
5810 | /* Reciprocal functions |
5811 | * | |
5812 | * The algorithm that must be used to calculate the estimate | |
5813 | * is specified by the ARM ARM, see FPRecipEstimate() | |
fe0e4872 | 5814 | */ |
b6d4443a AB |
5815 | |
5816 | static float64 recip_estimate(float64 a, float_status *real_fp_status) | |
fe0e4872 | 5817 | { |
1146a817 PM |
5818 | /* These calculations mustn't set any fp exception flags, |
5819 | * so we use a local copy of the fp_status. | |
5820 | */ | |
b6d4443a | 5821 | float_status dummy_status = *real_fp_status; |
1146a817 | 5822 | float_status *s = &dummy_status; |
fe0e4872 CL |
5823 | /* q = (int)(a * 512.0) */ |
5824 | float64 q = float64_mul(float64_512, a, s); | |
5825 | int64_t q_int = float64_to_int64_round_to_zero(q, s); | |
5826 | ||
5827 | /* r = 1.0 / (((double)q + 0.5) / 512.0) */ | |
5828 | q = int64_to_float64(q_int, s); | |
5829 | q = float64_add(q, float64_half, s); | |
5830 | q = float64_div(q, float64_512, s); | |
5831 | q = float64_div(float64_one, q, s); | |
5832 | ||
5833 | /* s = (int)(256.0 * r + 0.5) */ | |
5834 | q = float64_mul(q, float64_256, s); | |
5835 | q = float64_add(q, float64_half, s); | |
5836 | q_int = float64_to_int64_round_to_zero(q, s); | |
5837 | ||
5838 | /* return (double)s / 256.0 */ | |
5839 | return float64_div(int64_to_float64(q_int, s), float64_256, s); | |
5840 | } | |
5841 | ||
b6d4443a AB |
5842 | /* Common wrapper to call recip_estimate */ |
5843 | static float64 call_recip_estimate(float64 num, int off, float_status *fpst) | |
4373f3ce | 5844 | { |
b6d4443a AB |
5845 | uint64_t val64 = float64_val(num); |
5846 | uint64_t frac = extract64(val64, 0, 52); | |
5847 | int64_t exp = extract64(val64, 52, 11); | |
5848 | uint64_t sbit; | |
5849 | float64 scaled, estimate; | |
fe0e4872 | 5850 | |
b6d4443a AB |
5851 | /* Generate the scaled number for the estimate function */ |
5852 | if (exp == 0) { | |
5853 | if (extract64(frac, 51, 1) == 0) { | |
5854 | exp = -1; | |
5855 | frac = extract64(frac, 0, 50) << 2; | |
5856 | } else { | |
5857 | frac = extract64(frac, 0, 51) << 1; | |
5858 | } | |
5859 | } | |
fe0e4872 | 5860 | |
b6d4443a AB |
5861 | /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */ |
5862 | scaled = make_float64((0x3feULL << 52) | |
5863 | | extract64(frac, 44, 8) << 44); | |
5864 | ||
5865 | estimate = recip_estimate(scaled, fpst); | |
5866 | ||
5867 | /* Build new result */ | |
5868 | val64 = float64_val(estimate); | |
5869 | sbit = 0x8000000000000000ULL & val64; | |
5870 | exp = off - exp; | |
5871 | frac = extract64(val64, 0, 52); | |
5872 | ||
5873 | if (exp == 0) { | |
5874 | frac = 1ULL << 51 | extract64(frac, 1, 51); | |
5875 | } else if (exp == -1) { | |
5876 | frac = 1ULL << 50 | extract64(frac, 2, 50); | |
5877 | exp = 0; | |
5878 | } | |
5879 | ||
5880 | return make_float64(sbit | (exp << 52) | frac); | |
5881 | } | |
5882 | ||
5883 | static bool round_to_inf(float_status *fpst, bool sign_bit) | |
5884 | { | |
5885 | switch (fpst->float_rounding_mode) { | |
5886 | case float_round_nearest_even: /* Round to Nearest */ | |
5887 | return true; | |
5888 | case float_round_up: /* Round to +Inf */ | |
5889 | return !sign_bit; | |
5890 | case float_round_down: /* Round to -Inf */ | |
5891 | return sign_bit; | |
5892 | case float_round_to_zero: /* Round to Zero */ | |
5893 | return false; | |
5894 | } | |
5895 | ||
5896 | g_assert_not_reached(); | |
5897 | } | |
5898 | ||
5899 | float32 HELPER(recpe_f32)(float32 input, void *fpstp) | |
5900 | { | |
5901 | float_status *fpst = fpstp; | |
5902 | float32 f32 = float32_squash_input_denormal(input, fpst); | |
5903 | uint32_t f32_val = float32_val(f32); | |
5904 | uint32_t f32_sbit = 0x80000000ULL & f32_val; | |
5905 | int32_t f32_exp = extract32(f32_val, 23, 8); | |
5906 | uint32_t f32_frac = extract32(f32_val, 0, 23); | |
5907 | float64 f64, r64; | |
5908 | uint64_t r64_val; | |
5909 | int64_t r64_exp; | |
5910 | uint64_t r64_frac; | |
5911 | ||
5912 | if (float32_is_any_nan(f32)) { | |
5913 | float32 nan = f32; | |
5914 | if (float32_is_signaling_nan(f32)) { | |
5915 | float_raise(float_flag_invalid, fpst); | |
5916 | nan = float32_maybe_silence_nan(f32); | |
fe0e4872 | 5917 | } |
b6d4443a AB |
5918 | if (fpst->default_nan_mode) { |
5919 | nan = float32_default_nan; | |
43fe9bdb | 5920 | } |
b6d4443a AB |
5921 | return nan; |
5922 | } else if (float32_is_infinity(f32)) { | |
5923 | return float32_set_sign(float32_zero, float32_is_neg(f32)); | |
5924 | } else if (float32_is_zero(f32)) { | |
5925 | float_raise(float_flag_divbyzero, fpst); | |
5926 | return float32_set_sign(float32_infinity, float32_is_neg(f32)); | |
5927 | } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) { | |
5928 | /* Abs(value) < 2.0^-128 */ | |
5929 | float_raise(float_flag_overflow | float_flag_inexact, fpst); | |
5930 | if (round_to_inf(fpst, f32_sbit)) { | |
5931 | return float32_set_sign(float32_infinity, float32_is_neg(f32)); | |
5932 | } else { | |
5933 | return float32_set_sign(float32_maxnorm, float32_is_neg(f32)); | |
5934 | } | |
5935 | } else if (f32_exp >= 253 && fpst->flush_to_zero) { | |
5936 | float_raise(float_flag_underflow, fpst); | |
5937 | return float32_set_sign(float32_zero, float32_is_neg(f32)); | |
fe0e4872 CL |
5938 | } |
5939 | ||
fe0e4872 | 5940 | |
b6d4443a AB |
5941 | f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29); |
5942 | r64 = call_recip_estimate(f64, 253, fpst); | |
5943 | r64_val = float64_val(r64); | |
5944 | r64_exp = extract64(r64_val, 52, 11); | |
5945 | r64_frac = extract64(r64_val, 0, 52); | |
5946 | ||
5947 | /* result = sign : result_exp<7:0> : fraction<51:29>; */ | |
5948 | return make_float32(f32_sbit | | |
5949 | (r64_exp & 0xff) << 23 | | |
5950 | extract64(r64_frac, 29, 24)); | |
5951 | } | |
5952 | ||
5953 | float64 HELPER(recpe_f64)(float64 input, void *fpstp) | |
5954 | { | |
5955 | float_status *fpst = fpstp; | |
5956 | float64 f64 = float64_squash_input_denormal(input, fpst); | |
5957 | uint64_t f64_val = float64_val(f64); | |
5958 | uint64_t f64_sbit = 0x8000000000000000ULL & f64_val; | |
5959 | int64_t f64_exp = extract64(f64_val, 52, 11); | |
5960 | float64 r64; | |
5961 | uint64_t r64_val; | |
5962 | int64_t r64_exp; | |
5963 | uint64_t r64_frac; | |
5964 | ||
5965 | /* Deal with any special cases */ | |
5966 | if (float64_is_any_nan(f64)) { | |
5967 | float64 nan = f64; | |
5968 | if (float64_is_signaling_nan(f64)) { | |
5969 | float_raise(float_flag_invalid, fpst); | |
5970 | nan = float64_maybe_silence_nan(f64); | |
5971 | } | |
5972 | if (fpst->default_nan_mode) { | |
5973 | nan = float64_default_nan; | |
5974 | } | |
5975 | return nan; | |
5976 | } else if (float64_is_infinity(f64)) { | |
5977 | return float64_set_sign(float64_zero, float64_is_neg(f64)); | |
5978 | } else if (float64_is_zero(f64)) { | |
5979 | float_raise(float_flag_divbyzero, fpst); | |
5980 | return float64_set_sign(float64_infinity, float64_is_neg(f64)); | |
5981 | } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) { | |
5982 | /* Abs(value) < 2.0^-1024 */ | |
5983 | float_raise(float_flag_overflow | float_flag_inexact, fpst); | |
5984 | if (round_to_inf(fpst, f64_sbit)) { | |
5985 | return float64_set_sign(float64_infinity, float64_is_neg(f64)); | |
5986 | } else { | |
5987 | return float64_set_sign(float64_maxnorm, float64_is_neg(f64)); | |
5988 | } | |
5989 | } else if (f64_exp >= 1023 && fpst->flush_to_zero) { | |
5990 | float_raise(float_flag_underflow, fpst); | |
5991 | return float64_set_sign(float64_zero, float64_is_neg(f64)); | |
5992 | } | |
fe0e4872 | 5993 | |
b6d4443a AB |
5994 | r64 = call_recip_estimate(f64, 2045, fpst); |
5995 | r64_val = float64_val(r64); | |
5996 | r64_exp = extract64(r64_val, 52, 11); | |
5997 | r64_frac = extract64(r64_val, 0, 52); | |
fe0e4872 | 5998 | |
b6d4443a AB |
5999 | /* result = sign : result_exp<10:0> : fraction<51:0> */ |
6000 | return make_float64(f64_sbit | | |
6001 | ((r64_exp & 0x7ff) << 52) | | |
6002 | r64_frac); | |
4373f3ce PB |
6003 | } |
6004 | ||
e07be5d2 CL |
6005 | /* The algorithm that must be used to calculate the estimate |
6006 | * is specified by the ARM ARM. | |
6007 | */ | |
c2fb418e | 6008 | static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status) |
e07be5d2 | 6009 | { |
1146a817 PM |
6010 | /* These calculations mustn't set any fp exception flags, |
6011 | * so we use a local copy of the fp_status. | |
6012 | */ | |
c2fb418e | 6013 | float_status dummy_status = *real_fp_status; |
1146a817 | 6014 | float_status *s = &dummy_status; |
e07be5d2 CL |
6015 | float64 q; |
6016 | int64_t q_int; | |
6017 | ||
6018 | if (float64_lt(a, float64_half, s)) { | |
6019 | /* range 0.25 <= a < 0.5 */ | |
6020 | ||
6021 | /* a in units of 1/512 rounded down */ | |
6022 | /* q0 = (int)(a * 512.0); */ | |
6023 | q = float64_mul(float64_512, a, s); | |
6024 | q_int = float64_to_int64_round_to_zero(q, s); | |
6025 | ||
6026 | /* reciprocal root r */ | |
6027 | /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */ | |
6028 | q = int64_to_float64(q_int, s); | |
6029 | q = float64_add(q, float64_half, s); | |
6030 | q = float64_div(q, float64_512, s); | |
6031 | q = float64_sqrt(q, s); | |
6032 | q = float64_div(float64_one, q, s); | |
6033 | } else { | |
6034 | /* range 0.5 <= a < 1.0 */ | |
6035 | ||
6036 | /* a in units of 1/256 rounded down */ | |
6037 | /* q1 = (int)(a * 256.0); */ | |
6038 | q = float64_mul(float64_256, a, s); | |
6039 | int64_t q_int = float64_to_int64_round_to_zero(q, s); | |
6040 | ||
6041 | /* reciprocal root r */ | |
6042 | /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */ | |
6043 | q = int64_to_float64(q_int, s); | |
6044 | q = float64_add(q, float64_half, s); | |
6045 | q = float64_div(q, float64_256, s); | |
6046 | q = float64_sqrt(q, s); | |
6047 | q = float64_div(float64_one, q, s); | |
6048 | } | |
6049 | /* r in units of 1/256 rounded to nearest */ | |
6050 | /* s = (int)(256.0 * r + 0.5); */ | |
6051 | ||
6052 | q = float64_mul(q, float64_256,s ); | |
6053 | q = float64_add(q, float64_half, s); | |
6054 | q_int = float64_to_int64_round_to_zero(q, s); | |
6055 | ||
6056 | /* return (double)s / 256.0;*/ | |
6057 | return float64_div(int64_to_float64(q_int, s), float64_256, s); | |
6058 | } | |
6059 | ||
c2fb418e | 6060 | float32 HELPER(rsqrte_f32)(float32 input, void *fpstp) |
4373f3ce | 6061 | { |
c2fb418e AB |
6062 | float_status *s = fpstp; |
6063 | float32 f32 = float32_squash_input_denormal(input, s); | |
6064 | uint32_t val = float32_val(f32); | |
6065 | uint32_t f32_sbit = 0x80000000 & val; | |
6066 | int32_t f32_exp = extract32(val, 23, 8); | |
6067 | uint32_t f32_frac = extract32(val, 0, 23); | |
6068 | uint64_t f64_frac; | |
6069 | uint64_t val64; | |
e07be5d2 CL |
6070 | int result_exp; |
6071 | float64 f64; | |
e07be5d2 | 6072 | |
c2fb418e AB |
6073 | if (float32_is_any_nan(f32)) { |
6074 | float32 nan = f32; | |
6075 | if (float32_is_signaling_nan(f32)) { | |
e07be5d2 | 6076 | float_raise(float_flag_invalid, s); |
c2fb418e | 6077 | nan = float32_maybe_silence_nan(f32); |
e07be5d2 | 6078 | } |
c2fb418e AB |
6079 | if (s->default_nan_mode) { |
6080 | nan = float32_default_nan; | |
43fe9bdb | 6081 | } |
c2fb418e AB |
6082 | return nan; |
6083 | } else if (float32_is_zero(f32)) { | |
e07be5d2 | 6084 | float_raise(float_flag_divbyzero, s); |
c2fb418e AB |
6085 | return float32_set_sign(float32_infinity, float32_is_neg(f32)); |
6086 | } else if (float32_is_neg(f32)) { | |
e07be5d2 CL |
6087 | float_raise(float_flag_invalid, s); |
6088 | return float32_default_nan; | |
c2fb418e | 6089 | } else if (float32_is_infinity(f32)) { |
e07be5d2 CL |
6090 | return float32_zero; |
6091 | } | |
6092 | ||
c2fb418e | 6093 | /* Scale and normalize to a double-precision value between 0.25 and 1.0, |
e07be5d2 | 6094 | * preserving the parity of the exponent. */ |
c2fb418e AB |
6095 | |
6096 | f64_frac = ((uint64_t) f32_frac) << 29; | |
6097 | if (f32_exp == 0) { | |
6098 | while (extract64(f64_frac, 51, 1) == 0) { | |
6099 | f64_frac = f64_frac << 1; | |
6100 | f32_exp = f32_exp-1; | |
6101 | } | |
6102 | f64_frac = extract64(f64_frac, 0, 51) << 1; | |
6103 | } | |
6104 | ||
6105 | if (extract64(f32_exp, 0, 1) == 0) { | |
6106 | f64 = make_float64(((uint64_t) f32_sbit) << 32 | |
e07be5d2 | 6107 | | (0x3feULL << 52) |
c2fb418e | 6108 | | f64_frac); |
e07be5d2 | 6109 | } else { |
c2fb418e | 6110 | f64 = make_float64(((uint64_t) f32_sbit) << 32 |
e07be5d2 | 6111 | | (0x3fdULL << 52) |
c2fb418e | 6112 | | f64_frac); |
e07be5d2 CL |
6113 | } |
6114 | ||
c2fb418e | 6115 | result_exp = (380 - f32_exp) / 2; |
e07be5d2 | 6116 | |
c2fb418e | 6117 | f64 = recip_sqrt_estimate(f64, s); |
e07be5d2 CL |
6118 | |
6119 | val64 = float64_val(f64); | |
6120 | ||
26cc6abf | 6121 | val = ((result_exp & 0xff) << 23) |
e07be5d2 CL |
6122 | | ((val64 >> 29) & 0x7fffff); |
6123 | return make_float32(val); | |
4373f3ce PB |
6124 | } |
6125 | ||
c2fb418e AB |
6126 | float64 HELPER(rsqrte_f64)(float64 input, void *fpstp) |
6127 | { | |
6128 | float_status *s = fpstp; | |
6129 | float64 f64 = float64_squash_input_denormal(input, s); | |
6130 | uint64_t val = float64_val(f64); | |
6131 | uint64_t f64_sbit = 0x8000000000000000ULL & val; | |
6132 | int64_t f64_exp = extract64(val, 52, 11); | |
6133 | uint64_t f64_frac = extract64(val, 0, 52); | |
6134 | int64_t result_exp; | |
6135 | uint64_t result_frac; | |
6136 | ||
6137 | if (float64_is_any_nan(f64)) { | |
6138 | float64 nan = f64; | |
6139 | if (float64_is_signaling_nan(f64)) { | |
6140 | float_raise(float_flag_invalid, s); | |
6141 | nan = float64_maybe_silence_nan(f64); | |
6142 | } | |
6143 | if (s->default_nan_mode) { | |
6144 | nan = float64_default_nan; | |
6145 | } | |
6146 | return nan; | |
6147 | } else if (float64_is_zero(f64)) { | |
6148 | float_raise(float_flag_divbyzero, s); | |
6149 | return float64_set_sign(float64_infinity, float64_is_neg(f64)); | |
6150 | } else if (float64_is_neg(f64)) { | |
6151 | float_raise(float_flag_invalid, s); | |
6152 | return float64_default_nan; | |
6153 | } else if (float64_is_infinity(f64)) { | |
6154 | return float64_zero; | |
6155 | } | |
6156 | ||
6157 | /* Scale and normalize to a double-precision value between 0.25 and 1.0, | |
6158 | * preserving the parity of the exponent. */ | |
6159 | ||
6160 | if (f64_exp == 0) { | |
6161 | while (extract64(f64_frac, 51, 1) == 0) { | |
6162 | f64_frac = f64_frac << 1; | |
6163 | f64_exp = f64_exp - 1; | |
6164 | } | |
6165 | f64_frac = extract64(f64_frac, 0, 51) << 1; | |
6166 | } | |
6167 | ||
6168 | if (extract64(f64_exp, 0, 1) == 0) { | |
6169 | f64 = make_float64(f64_sbit | |
6170 | | (0x3feULL << 52) | |
6171 | | f64_frac); | |
6172 | } else { | |
6173 | f64 = make_float64(f64_sbit | |
6174 | | (0x3fdULL << 52) | |
6175 | | f64_frac); | |
6176 | } | |
6177 | ||
6178 | result_exp = (3068 - f64_exp) / 2; | |
6179 | ||
6180 | f64 = recip_sqrt_estimate(f64, s); | |
6181 | ||
6182 | result_frac = extract64(float64_val(f64), 0, 52); | |
6183 | ||
6184 | return make_float64(f64_sbit | | |
6185 | ((result_exp & 0x7ff) << 52) | | |
6186 | result_frac); | |
6187 | } | |
6188 | ||
b6d4443a | 6189 | uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp) |
4373f3ce | 6190 | { |
b6d4443a | 6191 | float_status *s = fpstp; |
fe0e4872 CL |
6192 | float64 f64; |
6193 | ||
6194 | if ((a & 0x80000000) == 0) { | |
6195 | return 0xffffffff; | |
6196 | } | |
6197 | ||
6198 | f64 = make_float64((0x3feULL << 52) | |
6199 | | ((int64_t)(a & 0x7fffffff) << 21)); | |
6200 | ||
b6d4443a | 6201 | f64 = recip_estimate(f64, s); |
fe0e4872 CL |
6202 | |
6203 | return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff); | |
4373f3ce PB |
6204 | } |
6205 | ||
c2fb418e | 6206 | uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp) |
4373f3ce | 6207 | { |
c2fb418e | 6208 | float_status *fpst = fpstp; |
e07be5d2 CL |
6209 | float64 f64; |
6210 | ||
6211 | if ((a & 0xc0000000) == 0) { | |
6212 | return 0xffffffff; | |
6213 | } | |
6214 | ||
6215 | if (a & 0x80000000) { | |
6216 | f64 = make_float64((0x3feULL << 52) | |
6217 | | ((uint64_t)(a & 0x7fffffff) << 21)); | |
6218 | } else { /* bits 31-30 == '01' */ | |
6219 | f64 = make_float64((0x3fdULL << 52) | |
6220 | | ((uint64_t)(a & 0x3fffffff) << 22)); | |
6221 | } | |
6222 | ||
c2fb418e | 6223 | f64 = recip_sqrt_estimate(f64, fpst); |
e07be5d2 CL |
6224 | |
6225 | return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff); | |
4373f3ce | 6226 | } |
fe1479c3 | 6227 | |
da97f52c PM |
6228 | /* VFPv4 fused multiply-accumulate */ |
6229 | float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp) | |
6230 | { | |
6231 | float_status *fpst = fpstp; | |
6232 | return float32_muladd(a, b, c, 0, fpst); | |
6233 | } | |
6234 | ||
6235 | float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp) | |
6236 | { | |
6237 | float_status *fpst = fpstp; | |
6238 | return float64_muladd(a, b, c, 0, fpst); | |
6239 | } | |
d9b0848d PM |
6240 | |
6241 | /* ARMv8 round to integral */ | |
6242 | float32 HELPER(rints_exact)(float32 x, void *fp_status) | |
6243 | { | |
6244 | return float32_round_to_int(x, fp_status); | |
6245 | } | |
6246 | ||
6247 | float64 HELPER(rintd_exact)(float64 x, void *fp_status) | |
6248 | { | |
6249 | return float64_round_to_int(x, fp_status); | |
6250 | } | |
6251 | ||
6252 | float32 HELPER(rints)(float32 x, void *fp_status) | |
6253 | { | |
6254 | int old_flags = get_float_exception_flags(fp_status), new_flags; | |
6255 | float32 ret; | |
6256 | ||
6257 | ret = float32_round_to_int(x, fp_status); | |
6258 | ||
6259 | /* Suppress any inexact exceptions the conversion produced */ | |
6260 | if (!(old_flags & float_flag_inexact)) { | |
6261 | new_flags = get_float_exception_flags(fp_status); | |
6262 | set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); | |
6263 | } | |
6264 | ||
6265 | return ret; | |
6266 | } | |
6267 | ||
6268 | float64 HELPER(rintd)(float64 x, void *fp_status) | |
6269 | { | |
6270 | int old_flags = get_float_exception_flags(fp_status), new_flags; | |
6271 | float64 ret; | |
6272 | ||
6273 | ret = float64_round_to_int(x, fp_status); | |
6274 | ||
6275 | new_flags = get_float_exception_flags(fp_status); | |
6276 | ||
6277 | /* Suppress any inexact exceptions the conversion produced */ | |
6278 | if (!(old_flags & float_flag_inexact)) { | |
6279 | new_flags = get_float_exception_flags(fp_status); | |
6280 | set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); | |
6281 | } | |
6282 | ||
6283 | return ret; | |
6284 | } | |
9972da66 WN |
6285 | |
6286 | /* Convert ARM rounding mode to softfloat */ | |
6287 | int arm_rmode_to_sf(int rmode) | |
6288 | { | |
6289 | switch (rmode) { | |
6290 | case FPROUNDING_TIEAWAY: | |
6291 | rmode = float_round_ties_away; | |
6292 | break; | |
6293 | case FPROUNDING_ODD: | |
6294 | /* FIXME: add support for TIEAWAY and ODD */ | |
6295 | qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n", | |
6296 | rmode); | |
6297 | case FPROUNDING_TIEEVEN: | |
6298 | default: | |
6299 | rmode = float_round_nearest_even; | |
6300 | break; | |
6301 | case FPROUNDING_POSINF: | |
6302 | rmode = float_round_up; | |
6303 | break; | |
6304 | case FPROUNDING_NEGINF: | |
6305 | rmode = float_round_down; | |
6306 | break; | |
6307 | case FPROUNDING_ZERO: | |
6308 | rmode = float_round_to_zero; | |
6309 | break; | |
6310 | } | |
6311 | return rmode; | |
6312 | } | |
eb0ecd5a | 6313 | |
aa633469 PM |
6314 | /* CRC helpers. |
6315 | * The upper bytes of val (above the number specified by 'bytes') must have | |
6316 | * been zeroed out by the caller. | |
6317 | */ | |
eb0ecd5a WN |
6318 | uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) |
6319 | { | |
6320 | uint8_t buf[4]; | |
6321 | ||
aa633469 | 6322 | stl_le_p(buf, val); |
eb0ecd5a WN |
6323 | |
6324 | /* zlib crc32 converts the accumulator and output to one's complement. */ | |
6325 | return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; | |
6326 | } | |
6327 | ||
6328 | uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) | |
6329 | { | |
6330 | uint8_t buf[4]; | |
6331 | ||
aa633469 | 6332 | stl_le_p(buf, val); |
eb0ecd5a WN |
6333 | |
6334 | /* Linux crc32c converts the output to one's complement. */ | |
6335 | return crc32c(acc, buf, bytes) ^ 0xffffffff; | |
6336 | } |