]> Git Repo - linux.git/blame - mm/memory.c
mm/page_isolation: unset migratetype directly for non Buddy page
[linux.git] / mm / memory.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13/*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24/*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32/*
33 * 05.04.94 - Multi-page memory management added for v1.1.
166f61b9 34 * Idea by Alex Bligh ([email protected])
1da177e4
LT
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * ([email protected])
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42#include <linux/kernel_stat.h>
43#include <linux/mm.h>
36090def 44#include <linux/mm_inline.h>
6e84f315 45#include <linux/sched/mm.h>
f7ccbae4 46#include <linux/sched/coredump.h>
6a3827d7 47#include <linux/sched/numa_balancing.h>
29930025 48#include <linux/sched/task.h>
1da177e4
LT
49#include <linux/hugetlb.h>
50#include <linux/mman.h>
51#include <linux/swap.h>
52#include <linux/highmem.h>
53#include <linux/pagemap.h>
5042db43 54#include <linux/memremap.h>
9a840895 55#include <linux/ksm.h>
1da177e4 56#include <linux/rmap.h>
b95f1b31 57#include <linux/export.h>
0ff92245 58#include <linux/delayacct.h>
1da177e4 59#include <linux/init.h>
01c8f1c4 60#include <linux/pfn_t.h>
edc79b2a 61#include <linux/writeback.h>
8a9f3ccd 62#include <linux/memcontrol.h>
cddb8a5c 63#include <linux/mmu_notifier.h>
3dc14741
HD
64#include <linux/swapops.h>
65#include <linux/elf.h>
5a0e3ad6 66#include <linux/gfp.h>
4daae3b4 67#include <linux/migrate.h>
2fbc57c5 68#include <linux/string.h>
1592eef0 69#include <linux/debugfs.h>
6b251fc9 70#include <linux/userfaultfd_k.h>
bc2466e4 71#include <linux/dax.h>
6b31d595 72#include <linux/oom.h>
98fa15f3 73#include <linux/numa.h>
bce617ed
PX
74#include <linux/perf_event.h>
75#include <linux/ptrace.h>
e80d3909 76#include <linux/vmalloc.h>
1da177e4 77
b3d1411b
JFG
78#include <trace/events/kmem.h>
79
6952b61d 80#include <asm/io.h>
33a709b2 81#include <asm/mmu_context.h>
1da177e4 82#include <asm/pgalloc.h>
7c0f6ba6 83#include <linux/uaccess.h>
1da177e4
LT
84#include <asm/tlb.h>
85#include <asm/tlbflush.h>
1da177e4 86
e80d3909 87#include "pgalloc-track.h"
42b77728
JB
88#include "internal.h"
89
af27d940 90#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90572890 91#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
92#endif
93
a9ee6cf5 94#ifndef CONFIG_NUMA
1da177e4 95unsigned long max_mapnr;
1da177e4 96EXPORT_SYMBOL(max_mapnr);
166f61b9
TH
97
98struct page *mem_map;
1da177e4
LT
99EXPORT_SYMBOL(mem_map);
100#endif
101
1da177e4
LT
102/*
103 * A number of key systems in x86 including ioremap() rely on the assumption
104 * that high_memory defines the upper bound on direct map memory, then end
105 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
106 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
107 * and ZONE_HIGHMEM.
108 */
166f61b9 109void *high_memory;
1da177e4 110EXPORT_SYMBOL(high_memory);
1da177e4 111
32a93233
IM
112/*
113 * Randomize the address space (stacks, mmaps, brk, etc.).
114 *
115 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
116 * as ancient (libc5 based) binaries can segfault. )
117 */
118int randomize_va_space __read_mostly =
119#ifdef CONFIG_COMPAT_BRK
120 1;
121#else
122 2;
123#endif
a62eaf15 124
83d116c5
JH
125#ifndef arch_faults_on_old_pte
126static inline bool arch_faults_on_old_pte(void)
127{
128 /*
129 * Those arches which don't have hw access flag feature need to
130 * implement their own helper. By default, "true" means pagefault
131 * will be hit on old pte.
132 */
133 return true;
134}
135#endif
136
46bdb427
WD
137#ifndef arch_wants_old_prefaulted_pte
138static inline bool arch_wants_old_prefaulted_pte(void)
139{
140 /*
141 * Transitioning a PTE from 'old' to 'young' can be expensive on
142 * some architectures, even if it's performed in hardware. By
143 * default, "false" means prefaulted entries will be 'young'.
144 */
145 return false;
146}
147#endif
148
a62eaf15
AK
149static int __init disable_randmaps(char *s)
150{
151 randomize_va_space = 0;
9b41046c 152 return 1;
a62eaf15
AK
153}
154__setup("norandmaps", disable_randmaps);
155
62eede62 156unsigned long zero_pfn __read_mostly;
0b70068e
AB
157EXPORT_SYMBOL(zero_pfn);
158
166f61b9
TH
159unsigned long highest_memmap_pfn __read_mostly;
160
a13ea5b7
HD
161/*
162 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
163 */
164static int __init init_zero_pfn(void)
165{
166 zero_pfn = page_to_pfn(ZERO_PAGE(0));
167 return 0;
168}
e720e7d0 169early_initcall(init_zero_pfn);
a62eaf15 170
e4dcad20 171void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
b3d1411b 172{
e4dcad20 173 trace_rss_stat(mm, member, count);
b3d1411b 174}
d559db08 175
34e55232
KH
176#if defined(SPLIT_RSS_COUNTING)
177
ea48cf78 178void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
179{
180 int i;
181
182 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
183 if (current->rss_stat.count[i]) {
184 add_mm_counter(mm, i, current->rss_stat.count[i]);
185 current->rss_stat.count[i] = 0;
34e55232
KH
186 }
187 }
05af2e10 188 current->rss_stat.events = 0;
34e55232
KH
189}
190
191static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
192{
193 struct task_struct *task = current;
194
195 if (likely(task->mm == mm))
196 task->rss_stat.count[member] += val;
197 else
198 add_mm_counter(mm, member, val);
199}
200#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
201#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
202
203/* sync counter once per 64 page faults */
204#define TASK_RSS_EVENTS_THRESH (64)
205static void check_sync_rss_stat(struct task_struct *task)
206{
207 if (unlikely(task != current))
208 return;
209 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 210 sync_mm_rss(task->mm);
34e55232 211}
9547d01b 212#else /* SPLIT_RSS_COUNTING */
34e55232
KH
213
214#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
215#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
216
217static void check_sync_rss_stat(struct task_struct *task)
218{
219}
220
9547d01b
PZ
221#endif /* SPLIT_RSS_COUNTING */
222
1da177e4
LT
223/*
224 * Note: this doesn't free the actual pages themselves. That
225 * has been handled earlier when unmapping all the memory regions.
226 */
9e1b32ca
BH
227static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
228 unsigned long addr)
1da177e4 229{
2f569afd 230 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 231 pmd_clear(pmd);
9e1b32ca 232 pte_free_tlb(tlb, token, addr);
c4812909 233 mm_dec_nr_ptes(tlb->mm);
1da177e4
LT
234}
235
e0da382c
HD
236static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
237 unsigned long addr, unsigned long end,
238 unsigned long floor, unsigned long ceiling)
1da177e4
LT
239{
240 pmd_t *pmd;
241 unsigned long next;
e0da382c 242 unsigned long start;
1da177e4 243
e0da382c 244 start = addr;
1da177e4 245 pmd = pmd_offset(pud, addr);
1da177e4
LT
246 do {
247 next = pmd_addr_end(addr, end);
248 if (pmd_none_or_clear_bad(pmd))
249 continue;
9e1b32ca 250 free_pte_range(tlb, pmd, addr);
1da177e4
LT
251 } while (pmd++, addr = next, addr != end);
252
e0da382c
HD
253 start &= PUD_MASK;
254 if (start < floor)
255 return;
256 if (ceiling) {
257 ceiling &= PUD_MASK;
258 if (!ceiling)
259 return;
1da177e4 260 }
e0da382c
HD
261 if (end - 1 > ceiling - 1)
262 return;
263
264 pmd = pmd_offset(pud, start);
265 pud_clear(pud);
9e1b32ca 266 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 267 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
268}
269
c2febafc 270static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
e0da382c
HD
271 unsigned long addr, unsigned long end,
272 unsigned long floor, unsigned long ceiling)
1da177e4
LT
273{
274 pud_t *pud;
275 unsigned long next;
e0da382c 276 unsigned long start;
1da177e4 277
e0da382c 278 start = addr;
c2febafc 279 pud = pud_offset(p4d, addr);
1da177e4
LT
280 do {
281 next = pud_addr_end(addr, end);
282 if (pud_none_or_clear_bad(pud))
283 continue;
e0da382c 284 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
285 } while (pud++, addr = next, addr != end);
286
c2febafc
KS
287 start &= P4D_MASK;
288 if (start < floor)
289 return;
290 if (ceiling) {
291 ceiling &= P4D_MASK;
292 if (!ceiling)
293 return;
294 }
295 if (end - 1 > ceiling - 1)
296 return;
297
298 pud = pud_offset(p4d, start);
299 p4d_clear(p4d);
300 pud_free_tlb(tlb, pud, start);
b4e98d9a 301 mm_dec_nr_puds(tlb->mm);
c2febafc
KS
302}
303
304static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
305 unsigned long addr, unsigned long end,
306 unsigned long floor, unsigned long ceiling)
307{
308 p4d_t *p4d;
309 unsigned long next;
310 unsigned long start;
311
312 start = addr;
313 p4d = p4d_offset(pgd, addr);
314 do {
315 next = p4d_addr_end(addr, end);
316 if (p4d_none_or_clear_bad(p4d))
317 continue;
318 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
319 } while (p4d++, addr = next, addr != end);
320
e0da382c
HD
321 start &= PGDIR_MASK;
322 if (start < floor)
323 return;
324 if (ceiling) {
325 ceiling &= PGDIR_MASK;
326 if (!ceiling)
327 return;
1da177e4 328 }
e0da382c
HD
329 if (end - 1 > ceiling - 1)
330 return;
331
c2febafc 332 p4d = p4d_offset(pgd, start);
e0da382c 333 pgd_clear(pgd);
c2febafc 334 p4d_free_tlb(tlb, p4d, start);
1da177e4
LT
335}
336
337/*
e0da382c 338 * This function frees user-level page tables of a process.
1da177e4 339 */
42b77728 340void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
341 unsigned long addr, unsigned long end,
342 unsigned long floor, unsigned long ceiling)
1da177e4
LT
343{
344 pgd_t *pgd;
345 unsigned long next;
e0da382c
HD
346
347 /*
348 * The next few lines have given us lots of grief...
349 *
350 * Why are we testing PMD* at this top level? Because often
351 * there will be no work to do at all, and we'd prefer not to
352 * go all the way down to the bottom just to discover that.
353 *
354 * Why all these "- 1"s? Because 0 represents both the bottom
355 * of the address space and the top of it (using -1 for the
356 * top wouldn't help much: the masks would do the wrong thing).
357 * The rule is that addr 0 and floor 0 refer to the bottom of
358 * the address space, but end 0 and ceiling 0 refer to the top
359 * Comparisons need to use "end - 1" and "ceiling - 1" (though
360 * that end 0 case should be mythical).
361 *
362 * Wherever addr is brought up or ceiling brought down, we must
363 * be careful to reject "the opposite 0" before it confuses the
364 * subsequent tests. But what about where end is brought down
365 * by PMD_SIZE below? no, end can't go down to 0 there.
366 *
367 * Whereas we round start (addr) and ceiling down, by different
368 * masks at different levels, in order to test whether a table
369 * now has no other vmas using it, so can be freed, we don't
370 * bother to round floor or end up - the tests don't need that.
371 */
1da177e4 372
e0da382c
HD
373 addr &= PMD_MASK;
374 if (addr < floor) {
375 addr += PMD_SIZE;
376 if (!addr)
377 return;
378 }
379 if (ceiling) {
380 ceiling &= PMD_MASK;
381 if (!ceiling)
382 return;
383 }
384 if (end - 1 > ceiling - 1)
385 end -= PMD_SIZE;
386 if (addr > end - 1)
387 return;
07e32661
AK
388 /*
389 * We add page table cache pages with PAGE_SIZE,
390 * (see pte_free_tlb()), flush the tlb if we need
391 */
ed6a7935 392 tlb_change_page_size(tlb, PAGE_SIZE);
42b77728 393 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
394 do {
395 next = pgd_addr_end(addr, end);
396 if (pgd_none_or_clear_bad(pgd))
397 continue;
c2febafc 398 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 399 } while (pgd++, addr = next, addr != end);
e0da382c
HD
400}
401
42b77728 402void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 403 unsigned long floor, unsigned long ceiling)
e0da382c
HD
404{
405 while (vma) {
406 struct vm_area_struct *next = vma->vm_next;
407 unsigned long addr = vma->vm_start;
408
8f4f8c16 409 /*
25d9e2d1
NP
410 * Hide vma from rmap and truncate_pagecache before freeing
411 * pgtables
8f4f8c16 412 */
5beb4930 413 unlink_anon_vmas(vma);
8f4f8c16
HD
414 unlink_file_vma(vma);
415
9da61aef 416 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 417 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 418 floor, next ? next->vm_start : ceiling);
3bf5ee95
HD
419 } else {
420 /*
421 * Optimization: gather nearby vmas into one call down
422 */
423 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 424 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
425 vma = next;
426 next = vma->vm_next;
5beb4930 427 unlink_anon_vmas(vma);
8f4f8c16 428 unlink_file_vma(vma);
3bf5ee95
HD
429 }
430 free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 431 floor, next ? next->vm_start : ceiling);
3bf5ee95 432 }
e0da382c
HD
433 vma = next;
434 }
1da177e4
LT
435}
436
03c4f204 437void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
1da177e4 438{
03c4f204 439 spinlock_t *ptl = pmd_lock(mm, pmd);
1bb3630e 440
8ac1f832 441 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
c4812909 442 mm_inc_nr_ptes(mm);
ed33b5a6
QZ
443 /*
444 * Ensure all pte setup (eg. pte page lock and page clearing) are
445 * visible before the pte is made visible to other CPUs by being
446 * put into page tables.
447 *
448 * The other side of the story is the pointer chasing in the page
449 * table walking code (when walking the page table without locking;
450 * ie. most of the time). Fortunately, these data accesses consist
451 * of a chain of data-dependent loads, meaning most CPUs (alpha
452 * being the notable exception) will already guarantee loads are
453 * seen in-order. See the alpha page table accessors for the
454 * smp_rmb() barriers in page table walking code.
455 */
456 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
03c4f204
QZ
457 pmd_populate(mm, pmd, *pte);
458 *pte = NULL;
4b471e88 459 }
c4088ebd 460 spin_unlock(ptl);
03c4f204
QZ
461}
462
4cf58924 463int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
1da177e4 464{
4cf58924 465 pgtable_t new = pte_alloc_one(mm);
1bb3630e
HD
466 if (!new)
467 return -ENOMEM;
468
03c4f204 469 pmd_install(mm, pmd, &new);
2f569afd
MS
470 if (new)
471 pte_free(mm, new);
1bb3630e 472 return 0;
1da177e4
LT
473}
474
4cf58924 475int __pte_alloc_kernel(pmd_t *pmd)
1da177e4 476{
4cf58924 477 pte_t *new = pte_alloc_one_kernel(&init_mm);
1bb3630e
HD
478 if (!new)
479 return -ENOMEM;
480
481 spin_lock(&init_mm.page_table_lock);
8ac1f832 482 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
ed33b5a6 483 smp_wmb(); /* See comment in pmd_install() */
1bb3630e 484 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 485 new = NULL;
4b471e88 486 }
1bb3630e 487 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
488 if (new)
489 pte_free_kernel(&init_mm, new);
1bb3630e 490 return 0;
1da177e4
LT
491}
492
d559db08
KH
493static inline void init_rss_vec(int *rss)
494{
495 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
496}
497
498static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 499{
d559db08
KH
500 int i;
501
34e55232 502 if (current->mm == mm)
05af2e10 503 sync_mm_rss(mm);
d559db08
KH
504 for (i = 0; i < NR_MM_COUNTERS; i++)
505 if (rss[i])
506 add_mm_counter(mm, i, rss[i]);
ae859762
HD
507}
508
b5810039 509/*
6aab341e
LT
510 * This function is called to print an error when a bad pte
511 * is found. For example, we might have a PFN-mapped pte in
512 * a region that doesn't allow it.
b5810039
NP
513 *
514 * The calling function must still handle the error.
515 */
3dc14741
HD
516static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
517 pte_t pte, struct page *page)
b5810039 518{
3dc14741 519 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
c2febafc
KS
520 p4d_t *p4d = p4d_offset(pgd, addr);
521 pud_t *pud = pud_offset(p4d, addr);
3dc14741
HD
522 pmd_t *pmd = pmd_offset(pud, addr);
523 struct address_space *mapping;
524 pgoff_t index;
d936cf9b
HD
525 static unsigned long resume;
526 static unsigned long nr_shown;
527 static unsigned long nr_unshown;
528
529 /*
530 * Allow a burst of 60 reports, then keep quiet for that minute;
531 * or allow a steady drip of one report per second.
532 */
533 if (nr_shown == 60) {
534 if (time_before(jiffies, resume)) {
535 nr_unshown++;
536 return;
537 }
538 if (nr_unshown) {
1170532b
JP
539 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
540 nr_unshown);
d936cf9b
HD
541 nr_unshown = 0;
542 }
543 nr_shown = 0;
544 }
545 if (nr_shown++ == 0)
546 resume = jiffies + 60 * HZ;
3dc14741
HD
547
548 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
549 index = linear_page_index(vma, addr);
550
1170532b
JP
551 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
552 current->comm,
553 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 554 if (page)
f0b791a3 555 dump_page(page, "bad pte");
6aa9b8b2 556 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
1170532b 557 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
d75f773c 558 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
2682582a
KK
559 vma->vm_file,
560 vma->vm_ops ? vma->vm_ops->fault : NULL,
561 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
562 mapping ? mapping->a_ops->readpage : NULL);
b5810039 563 dump_stack();
373d4d09 564 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
565}
566
ee498ed7 567/*
7e675137 568 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 569 *
7e675137
NP
570 * "Special" mappings do not wish to be associated with a "struct page" (either
571 * it doesn't exist, or it exists but they don't want to touch it). In this
572 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 573 *
7e675137
NP
574 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
575 * pte bit, in which case this function is trivial. Secondly, an architecture
576 * may not have a spare pte bit, which requires a more complicated scheme,
577 * described below.
578 *
579 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
580 * special mapping (even if there are underlying and valid "struct pages").
581 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 582 *
b379d790
JH
583 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
584 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
585 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
586 * mapping will always honor the rule
6aab341e
LT
587 *
588 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
589 *
7e675137
NP
590 * And for normal mappings this is false.
591 *
592 * This restricts such mappings to be a linear translation from virtual address
593 * to pfn. To get around this restriction, we allow arbitrary mappings so long
594 * as the vma is not a COW mapping; in that case, we know that all ptes are
595 * special (because none can have been COWed).
b379d790 596 *
b379d790 597 *
7e675137 598 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
599 *
600 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
601 * page" backing, however the difference is that _all_ pages with a struct
602 * page (that is, those where pfn_valid is true) are refcounted and considered
603 * normal pages by the VM. The disadvantage is that pages are refcounted
604 * (which can be slower and simply not an option for some PFNMAP users). The
605 * advantage is that we don't have to follow the strict linearity rule of
606 * PFNMAP mappings in order to support COWable mappings.
607 *
ee498ed7 608 */
25b2995a
CH
609struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
610 pte_t pte)
ee498ed7 611{
22b31eec 612 unsigned long pfn = pte_pfn(pte);
7e675137 613
00b3a331 614 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
b38af472 615 if (likely(!pte_special(pte)))
22b31eec 616 goto check_pfn;
667a0a06
DV
617 if (vma->vm_ops && vma->vm_ops->find_special_page)
618 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
619 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
620 return NULL;
df6ad698
JG
621 if (is_zero_pfn(pfn))
622 return NULL;
e1fb4a08
DJ
623 if (pte_devmap(pte))
624 return NULL;
625
df6ad698 626 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
627 return NULL;
628 }
629
00b3a331 630 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
7e675137 631
b379d790
JH
632 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
633 if (vma->vm_flags & VM_MIXEDMAP) {
634 if (!pfn_valid(pfn))
635 return NULL;
636 goto out;
637 } else {
7e675137
NP
638 unsigned long off;
639 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
640 if (pfn == vma->vm_pgoff + off)
641 return NULL;
642 if (!is_cow_mapping(vma->vm_flags))
643 return NULL;
644 }
6aab341e
LT
645 }
646
b38af472
HD
647 if (is_zero_pfn(pfn))
648 return NULL;
00b3a331 649
22b31eec
HD
650check_pfn:
651 if (unlikely(pfn > highest_memmap_pfn)) {
652 print_bad_pte(vma, addr, pte, NULL);
653 return NULL;
654 }
6aab341e
LT
655
656 /*
7e675137 657 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 658 * eg. VDSO mappings can cause them to exist.
6aab341e 659 */
b379d790 660out:
6aab341e 661 return pfn_to_page(pfn);
ee498ed7
HD
662}
663
28093f9f
GS
664#ifdef CONFIG_TRANSPARENT_HUGEPAGE
665struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
666 pmd_t pmd)
667{
668 unsigned long pfn = pmd_pfn(pmd);
669
670 /*
671 * There is no pmd_special() but there may be special pmds, e.g.
672 * in a direct-access (dax) mapping, so let's just replicate the
00b3a331 673 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
28093f9f
GS
674 */
675 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
676 if (vma->vm_flags & VM_MIXEDMAP) {
677 if (!pfn_valid(pfn))
678 return NULL;
679 goto out;
680 } else {
681 unsigned long off;
682 off = (addr - vma->vm_start) >> PAGE_SHIFT;
683 if (pfn == vma->vm_pgoff + off)
684 return NULL;
685 if (!is_cow_mapping(vma->vm_flags))
686 return NULL;
687 }
688 }
689
e1fb4a08
DJ
690 if (pmd_devmap(pmd))
691 return NULL;
3cde287b 692 if (is_huge_zero_pmd(pmd))
28093f9f
GS
693 return NULL;
694 if (unlikely(pfn > highest_memmap_pfn))
695 return NULL;
696
697 /*
698 * NOTE! We still have PageReserved() pages in the page tables.
699 * eg. VDSO mappings can cause them to exist.
700 */
701out:
702 return pfn_to_page(pfn);
703}
704#endif
705
b756a3b5
AP
706static void restore_exclusive_pte(struct vm_area_struct *vma,
707 struct page *page, unsigned long address,
708 pte_t *ptep)
709{
710 pte_t pte;
711 swp_entry_t entry;
712
713 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
714 if (pte_swp_soft_dirty(*ptep))
715 pte = pte_mksoft_dirty(pte);
716
717 entry = pte_to_swp_entry(*ptep);
718 if (pte_swp_uffd_wp(*ptep))
719 pte = pte_mkuffd_wp(pte);
720 else if (is_writable_device_exclusive_entry(entry))
721 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
722
b756a3b5
AP
723 /*
724 * No need to take a page reference as one was already
725 * created when the swap entry was made.
726 */
727 if (PageAnon(page))
728 page_add_anon_rmap(page, vma, address, false);
729 else
730 /*
731 * Currently device exclusive access only supports anonymous
732 * memory so the entry shouldn't point to a filebacked page.
733 */
734 WARN_ON_ONCE(!PageAnon(page));
735
1eba86c0
PT
736 set_pte_at(vma->vm_mm, address, ptep, pte);
737
b756a3b5
AP
738 if (vma->vm_flags & VM_LOCKED)
739 mlock_vma_page(page);
740
741 /*
742 * No need to invalidate - it was non-present before. However
743 * secondary CPUs may have mappings that need invalidating.
744 */
745 update_mmu_cache(vma, address, ptep);
746}
747
748/*
749 * Tries to restore an exclusive pte if the page lock can be acquired without
750 * sleeping.
751 */
752static int
753try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
754 unsigned long addr)
755{
756 swp_entry_t entry = pte_to_swp_entry(*src_pte);
757 struct page *page = pfn_swap_entry_to_page(entry);
758
759 if (trylock_page(page)) {
760 restore_exclusive_pte(vma, page, addr, src_pte);
761 unlock_page(page);
762 return 0;
763 }
764
765 return -EBUSY;
766}
767
1da177e4
LT
768/*
769 * copy one vm_area from one task to the other. Assumes the page tables
770 * already present in the new task to be cleared in the whole range
771 * covered by this vma.
1da177e4
LT
772 */
773
df3a57d1
LT
774static unsigned long
775copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
8f34f1ea
PX
776 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
777 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
1da177e4 778{
8f34f1ea 779 unsigned long vm_flags = dst_vma->vm_flags;
1da177e4
LT
780 pte_t pte = *src_pte;
781 struct page *page;
df3a57d1
LT
782 swp_entry_t entry = pte_to_swp_entry(pte);
783
784 if (likely(!non_swap_entry(entry))) {
785 if (swap_duplicate(entry) < 0)
9a5cc85c 786 return -EIO;
df3a57d1
LT
787
788 /* make sure dst_mm is on swapoff's mmlist. */
789 if (unlikely(list_empty(&dst_mm->mmlist))) {
790 spin_lock(&mmlist_lock);
791 if (list_empty(&dst_mm->mmlist))
792 list_add(&dst_mm->mmlist,
793 &src_mm->mmlist);
794 spin_unlock(&mmlist_lock);
795 }
796 rss[MM_SWAPENTS]++;
797 } else if (is_migration_entry(entry)) {
af5cdaf8 798 page = pfn_swap_entry_to_page(entry);
1da177e4 799
df3a57d1 800 rss[mm_counter(page)]++;
5042db43 801
4dd845b5 802 if (is_writable_migration_entry(entry) &&
df3a57d1 803 is_cow_mapping(vm_flags)) {
5042db43 804 /*
df3a57d1
LT
805 * COW mappings require pages in both
806 * parent and child to be set to read.
5042db43 807 */
4dd845b5
AP
808 entry = make_readable_migration_entry(
809 swp_offset(entry));
df3a57d1
LT
810 pte = swp_entry_to_pte(entry);
811 if (pte_swp_soft_dirty(*src_pte))
812 pte = pte_swp_mksoft_dirty(pte);
813 if (pte_swp_uffd_wp(*src_pte))
814 pte = pte_swp_mkuffd_wp(pte);
815 set_pte_at(src_mm, addr, src_pte, pte);
816 }
817 } else if (is_device_private_entry(entry)) {
af5cdaf8 818 page = pfn_swap_entry_to_page(entry);
5042db43 819
df3a57d1
LT
820 /*
821 * Update rss count even for unaddressable pages, as
822 * they should treated just like normal pages in this
823 * respect.
824 *
825 * We will likely want to have some new rss counters
826 * for unaddressable pages, at some point. But for now
827 * keep things as they are.
828 */
829 get_page(page);
830 rss[mm_counter(page)]++;
831 page_dup_rmap(page, false);
832
833 /*
834 * We do not preserve soft-dirty information, because so
835 * far, checkpoint/restore is the only feature that
836 * requires that. And checkpoint/restore does not work
837 * when a device driver is involved (you cannot easily
838 * save and restore device driver state).
839 */
4dd845b5 840 if (is_writable_device_private_entry(entry) &&
df3a57d1 841 is_cow_mapping(vm_flags)) {
4dd845b5
AP
842 entry = make_readable_device_private_entry(
843 swp_offset(entry));
df3a57d1
LT
844 pte = swp_entry_to_pte(entry);
845 if (pte_swp_uffd_wp(*src_pte))
846 pte = pte_swp_mkuffd_wp(pte);
847 set_pte_at(src_mm, addr, src_pte, pte);
1da177e4 848 }
b756a3b5
AP
849 } else if (is_device_exclusive_entry(entry)) {
850 /*
851 * Make device exclusive entries present by restoring the
852 * original entry then copying as for a present pte. Device
853 * exclusive entries currently only support private writable
854 * (ie. COW) mappings.
855 */
856 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
857 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
858 return -EBUSY;
859 return -ENOENT;
1da177e4 860 }
8f34f1ea
PX
861 if (!userfaultfd_wp(dst_vma))
862 pte = pte_swp_clear_uffd_wp(pte);
df3a57d1
LT
863 set_pte_at(dst_mm, addr, dst_pte, pte);
864 return 0;
865}
866
70e806e4
PX
867/*
868 * Copy a present and normal page if necessary.
869 *
870 * NOTE! The usual case is that this doesn't need to do
871 * anything, and can just return a positive value. That
872 * will let the caller know that it can just increase
873 * the page refcount and re-use the pte the traditional
874 * way.
875 *
876 * But _if_ we need to copy it because it needs to be
877 * pinned in the parent (and the child should get its own
878 * copy rather than just a reference to the same page),
879 * we'll do that here and return zero to let the caller
880 * know we're done.
881 *
882 * And if we need a pre-allocated page but don't yet have
883 * one, return a negative error to let the preallocation
884 * code know so that it can do so outside the page table
885 * lock.
886 */
887static inline int
c78f4636
PX
888copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
889 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
890 struct page **prealloc, pte_t pte, struct page *page)
70e806e4
PX
891{
892 struct page *new_page;
893
70e806e4 894 /*
70e806e4
PX
895 * What we want to do is to check whether this page may
896 * have been pinned by the parent process. If so,
897 * instead of wrprotect the pte on both sides, we copy
898 * the page immediately so that we'll always guarantee
899 * the pinned page won't be randomly replaced in the
900 * future.
901 *
f3c64eda
LT
902 * The page pinning checks are just "has this mm ever
903 * seen pinning", along with the (inexact) check of
904 * the page count. That might give false positives for
905 * for pinning, but it will work correctly.
70e806e4 906 */
97a7e473 907 if (likely(!page_needs_cow_for_dma(src_vma, page)))
70e806e4
PX
908 return 1;
909
70e806e4
PX
910 new_page = *prealloc;
911 if (!new_page)
912 return -EAGAIN;
913
914 /*
915 * We have a prealloc page, all good! Take it
916 * over and copy the page & arm it.
917 */
918 *prealloc = NULL;
c78f4636 919 copy_user_highpage(new_page, page, addr, src_vma);
70e806e4 920 __SetPageUptodate(new_page);
c78f4636
PX
921 page_add_new_anon_rmap(new_page, dst_vma, addr, false);
922 lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
70e806e4
PX
923 rss[mm_counter(new_page)]++;
924
925 /* All done, just insert the new page copy in the child */
c78f4636
PX
926 pte = mk_pte(new_page, dst_vma->vm_page_prot);
927 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
8f34f1ea
PX
928 if (userfaultfd_pte_wp(dst_vma, *src_pte))
929 /* Uffd-wp needs to be delivered to dest pte as well */
930 pte = pte_wrprotect(pte_mkuffd_wp(pte));
c78f4636 931 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
70e806e4
PX
932 return 0;
933}
934
935/*
936 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
937 * is required to copy this pte.
938 */
939static inline int
c78f4636
PX
940copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
941 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
942 struct page **prealloc)
df3a57d1 943{
c78f4636
PX
944 struct mm_struct *src_mm = src_vma->vm_mm;
945 unsigned long vm_flags = src_vma->vm_flags;
df3a57d1
LT
946 pte_t pte = *src_pte;
947 struct page *page;
948
c78f4636 949 page = vm_normal_page(src_vma, addr, pte);
70e806e4
PX
950 if (page) {
951 int retval;
952
c78f4636
PX
953 retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
954 addr, rss, prealloc, pte, page);
70e806e4
PX
955 if (retval <= 0)
956 return retval;
957
958 get_page(page);
959 page_dup_rmap(page, false);
960 rss[mm_counter(page)]++;
961 }
962
1da177e4
LT
963 /*
964 * If it's a COW mapping, write protect it both
965 * in the parent and the child
966 */
1b2de5d0 967 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
1da177e4 968 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 969 pte = pte_wrprotect(pte);
1da177e4
LT
970 }
971
972 /*
973 * If it's a shared mapping, mark it clean in
974 * the child
975 */
976 if (vm_flags & VM_SHARED)
977 pte = pte_mkclean(pte);
978 pte = pte_mkold(pte);
6aab341e 979
8f34f1ea 980 if (!userfaultfd_wp(dst_vma))
b569a176
PX
981 pte = pte_clear_uffd_wp(pte);
982
c78f4636 983 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
70e806e4
PX
984 return 0;
985}
986
987static inline struct page *
988page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
989 unsigned long addr)
990{
991 struct page *new_page;
992
993 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
994 if (!new_page)
995 return NULL;
996
8f425e4e 997 if (mem_cgroup_charge(page_folio(new_page), src_mm, GFP_KERNEL)) {
70e806e4
PX
998 put_page(new_page);
999 return NULL;
6aab341e 1000 }
70e806e4 1001 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
ae859762 1002
70e806e4 1003 return new_page;
1da177e4
LT
1004}
1005
c78f4636
PX
1006static int
1007copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1008 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1009 unsigned long end)
1da177e4 1010{
c78f4636
PX
1011 struct mm_struct *dst_mm = dst_vma->vm_mm;
1012 struct mm_struct *src_mm = src_vma->vm_mm;
c36987e2 1013 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 1014 pte_t *src_pte, *dst_pte;
c74df32c 1015 spinlock_t *src_ptl, *dst_ptl;
70e806e4 1016 int progress, ret = 0;
d559db08 1017 int rss[NR_MM_COUNTERS];
570a335b 1018 swp_entry_t entry = (swp_entry_t){0};
70e806e4 1019 struct page *prealloc = NULL;
1da177e4
LT
1020
1021again:
70e806e4 1022 progress = 0;
d559db08
KH
1023 init_rss_vec(rss);
1024
c74df32c 1025 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
70e806e4
PX
1026 if (!dst_pte) {
1027 ret = -ENOMEM;
1028 goto out;
1029 }
ece0e2b6 1030 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 1031 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 1032 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
1033 orig_src_pte = src_pte;
1034 orig_dst_pte = dst_pte;
6606c3e0 1035 arch_enter_lazy_mmu_mode();
1da177e4 1036
1da177e4
LT
1037 do {
1038 /*
1039 * We are holding two locks at this point - either of them
1040 * could generate latencies in another task on another CPU.
1041 */
e040f218
HD
1042 if (progress >= 32) {
1043 progress = 0;
1044 if (need_resched() ||
95c354fe 1045 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
1046 break;
1047 }
1da177e4
LT
1048 if (pte_none(*src_pte)) {
1049 progress++;
1050 continue;
1051 }
79a1971c 1052 if (unlikely(!pte_present(*src_pte))) {
9a5cc85c
AP
1053 ret = copy_nonpresent_pte(dst_mm, src_mm,
1054 dst_pte, src_pte,
1055 dst_vma, src_vma,
1056 addr, rss);
1057 if (ret == -EIO) {
1058 entry = pte_to_swp_entry(*src_pte);
79a1971c 1059 break;
b756a3b5
AP
1060 } else if (ret == -EBUSY) {
1061 break;
1062 } else if (!ret) {
1063 progress += 8;
1064 continue;
9a5cc85c 1065 }
b756a3b5
AP
1066
1067 /*
1068 * Device exclusive entry restored, continue by copying
1069 * the now present pte.
1070 */
1071 WARN_ON_ONCE(ret != -ENOENT);
79a1971c 1072 }
70e806e4 1073 /* copy_present_pte() will clear `*prealloc' if consumed */
c78f4636
PX
1074 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1075 addr, rss, &prealloc);
70e806e4
PX
1076 /*
1077 * If we need a pre-allocated page for this pte, drop the
1078 * locks, allocate, and try again.
1079 */
1080 if (unlikely(ret == -EAGAIN))
1081 break;
1082 if (unlikely(prealloc)) {
1083 /*
1084 * pre-alloc page cannot be reused by next time so as
1085 * to strictly follow mempolicy (e.g., alloc_page_vma()
1086 * will allocate page according to address). This
1087 * could only happen if one pinned pte changed.
1088 */
1089 put_page(prealloc);
1090 prealloc = NULL;
1091 }
1da177e4
LT
1092 progress += 8;
1093 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 1094
6606c3e0 1095 arch_leave_lazy_mmu_mode();
c74df32c 1096 spin_unlock(src_ptl);
ece0e2b6 1097 pte_unmap(orig_src_pte);
d559db08 1098 add_mm_rss_vec(dst_mm, rss);
c36987e2 1099 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 1100 cond_resched();
570a335b 1101
9a5cc85c
AP
1102 if (ret == -EIO) {
1103 VM_WARN_ON_ONCE(!entry.val);
70e806e4
PX
1104 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1105 ret = -ENOMEM;
1106 goto out;
1107 }
1108 entry.val = 0;
b756a3b5
AP
1109 } else if (ret == -EBUSY) {
1110 goto out;
9a5cc85c 1111 } else if (ret == -EAGAIN) {
c78f4636 1112 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
70e806e4 1113 if (!prealloc)
570a335b 1114 return -ENOMEM;
9a5cc85c
AP
1115 } else if (ret) {
1116 VM_WARN_ON_ONCE(1);
570a335b 1117 }
9a5cc85c
AP
1118
1119 /* We've captured and resolved the error. Reset, try again. */
1120 ret = 0;
1121
1da177e4
LT
1122 if (addr != end)
1123 goto again;
70e806e4
PX
1124out:
1125 if (unlikely(prealloc))
1126 put_page(prealloc);
1127 return ret;
1da177e4
LT
1128}
1129
c78f4636
PX
1130static inline int
1131copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1132 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1133 unsigned long end)
1da177e4 1134{
c78f4636
PX
1135 struct mm_struct *dst_mm = dst_vma->vm_mm;
1136 struct mm_struct *src_mm = src_vma->vm_mm;
1da177e4
LT
1137 pmd_t *src_pmd, *dst_pmd;
1138 unsigned long next;
1139
1140 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1141 if (!dst_pmd)
1142 return -ENOMEM;
1143 src_pmd = pmd_offset(src_pud, addr);
1144 do {
1145 next = pmd_addr_end(addr, end);
84c3fc4e
ZY
1146 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1147 || pmd_devmap(*src_pmd)) {
71e3aac0 1148 int err;
c78f4636 1149 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
8f34f1ea
PX
1150 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1151 addr, dst_vma, src_vma);
71e3aac0
AA
1152 if (err == -ENOMEM)
1153 return -ENOMEM;
1154 if (!err)
1155 continue;
1156 /* fall through */
1157 }
1da177e4
LT
1158 if (pmd_none_or_clear_bad(src_pmd))
1159 continue;
c78f4636
PX
1160 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1161 addr, next))
1da177e4
LT
1162 return -ENOMEM;
1163 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1164 return 0;
1165}
1166
c78f4636
PX
1167static inline int
1168copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1169 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1170 unsigned long end)
1da177e4 1171{
c78f4636
PX
1172 struct mm_struct *dst_mm = dst_vma->vm_mm;
1173 struct mm_struct *src_mm = src_vma->vm_mm;
1da177e4
LT
1174 pud_t *src_pud, *dst_pud;
1175 unsigned long next;
1176
c2febafc 1177 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1da177e4
LT
1178 if (!dst_pud)
1179 return -ENOMEM;
c2febafc 1180 src_pud = pud_offset(src_p4d, addr);
1da177e4
LT
1181 do {
1182 next = pud_addr_end(addr, end);
a00cc7d9
MW
1183 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1184 int err;
1185
c78f4636 1186 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
a00cc7d9 1187 err = copy_huge_pud(dst_mm, src_mm,
c78f4636 1188 dst_pud, src_pud, addr, src_vma);
a00cc7d9
MW
1189 if (err == -ENOMEM)
1190 return -ENOMEM;
1191 if (!err)
1192 continue;
1193 /* fall through */
1194 }
1da177e4
LT
1195 if (pud_none_or_clear_bad(src_pud))
1196 continue;
c78f4636
PX
1197 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1198 addr, next))
1da177e4
LT
1199 return -ENOMEM;
1200 } while (dst_pud++, src_pud++, addr = next, addr != end);
1201 return 0;
1202}
1203
c78f4636
PX
1204static inline int
1205copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1206 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1207 unsigned long end)
c2febafc 1208{
c78f4636 1209 struct mm_struct *dst_mm = dst_vma->vm_mm;
c2febafc
KS
1210 p4d_t *src_p4d, *dst_p4d;
1211 unsigned long next;
1212
1213 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1214 if (!dst_p4d)
1215 return -ENOMEM;
1216 src_p4d = p4d_offset(src_pgd, addr);
1217 do {
1218 next = p4d_addr_end(addr, end);
1219 if (p4d_none_or_clear_bad(src_p4d))
1220 continue;
c78f4636
PX
1221 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1222 addr, next))
c2febafc
KS
1223 return -ENOMEM;
1224 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1225 return 0;
1226}
1227
c78f4636
PX
1228int
1229copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1da177e4
LT
1230{
1231 pgd_t *src_pgd, *dst_pgd;
1232 unsigned long next;
c78f4636
PX
1233 unsigned long addr = src_vma->vm_start;
1234 unsigned long end = src_vma->vm_end;
1235 struct mm_struct *dst_mm = dst_vma->vm_mm;
1236 struct mm_struct *src_mm = src_vma->vm_mm;
ac46d4f3 1237 struct mmu_notifier_range range;
2ec74c3e 1238 bool is_cow;
cddb8a5c 1239 int ret;
1da177e4 1240
d992895b
NP
1241 /*
1242 * Don't copy ptes where a page fault will fill them correctly.
1243 * Fork becomes much lighter when there are big shared or private
1244 * readonly mappings. The tradeoff is that copy_page_range is more
1245 * efficient than faulting.
1246 */
c78f4636
PX
1247 if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1248 !src_vma->anon_vma)
0661a336 1249 return 0;
d992895b 1250
c78f4636
PX
1251 if (is_vm_hugetlb_page(src_vma))
1252 return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1da177e4 1253
c78f4636 1254 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
2ab64037 1255 /*
1256 * We do not free on error cases below as remove_vma
1257 * gets called on error from higher level routine
1258 */
c78f4636 1259 ret = track_pfn_copy(src_vma);
2ab64037 1260 if (ret)
1261 return ret;
1262 }
1263
cddb8a5c
AA
1264 /*
1265 * We need to invalidate the secondary MMU mappings only when
1266 * there could be a permission downgrade on the ptes of the
1267 * parent mm. And a permission downgrade will only happen if
1268 * is_cow_mapping() returns true.
1269 */
c78f4636 1270 is_cow = is_cow_mapping(src_vma->vm_flags);
ac46d4f3
JG
1271
1272 if (is_cow) {
7269f999 1273 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
c78f4636 1274 0, src_vma, src_mm, addr, end);
ac46d4f3 1275 mmu_notifier_invalidate_range_start(&range);
57efa1fe
JG
1276 /*
1277 * Disabling preemption is not needed for the write side, as
1278 * the read side doesn't spin, but goes to the mmap_lock.
1279 *
1280 * Use the raw variant of the seqcount_t write API to avoid
1281 * lockdep complaining about preemptibility.
1282 */
1283 mmap_assert_write_locked(src_mm);
1284 raw_write_seqcount_begin(&src_mm->write_protect_seq);
ac46d4f3 1285 }
cddb8a5c
AA
1286
1287 ret = 0;
1da177e4
LT
1288 dst_pgd = pgd_offset(dst_mm, addr);
1289 src_pgd = pgd_offset(src_mm, addr);
1290 do {
1291 next = pgd_addr_end(addr, end);
1292 if (pgd_none_or_clear_bad(src_pgd))
1293 continue;
c78f4636
PX
1294 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1295 addr, next))) {
cddb8a5c
AA
1296 ret = -ENOMEM;
1297 break;
1298 }
1da177e4 1299 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1300
57efa1fe
JG
1301 if (is_cow) {
1302 raw_write_seqcount_end(&src_mm->write_protect_seq);
ac46d4f3 1303 mmu_notifier_invalidate_range_end(&range);
57efa1fe 1304 }
cddb8a5c 1305 return ret;
1da177e4
LT
1306}
1307
51c6f666 1308static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1309 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1310 unsigned long addr, unsigned long end,
97a89413 1311 struct zap_details *details)
1da177e4 1312{
b5810039 1313 struct mm_struct *mm = tlb->mm;
d16dfc55 1314 int force_flush = 0;
d559db08 1315 int rss[NR_MM_COUNTERS];
97a89413 1316 spinlock_t *ptl;
5f1a1907 1317 pte_t *start_pte;
97a89413 1318 pte_t *pte;
8a5f14a2 1319 swp_entry_t entry;
d559db08 1320
ed6a7935 1321 tlb_change_page_size(tlb, PAGE_SIZE);
d16dfc55 1322again:
e303297e 1323 init_rss_vec(rss);
5f1a1907
SR
1324 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1325 pte = start_pte;
3ea27719 1326 flush_tlb_batched_pending(mm);
6606c3e0 1327 arch_enter_lazy_mmu_mode();
1da177e4
LT
1328 do {
1329 pte_t ptent = *pte;
166f61b9 1330 if (pte_none(ptent))
1da177e4 1331 continue;
6f5e6b9e 1332
7b167b68
MK
1333 if (need_resched())
1334 break;
1335
1da177e4 1336 if (pte_present(ptent)) {
ee498ed7 1337 struct page *page;
51c6f666 1338
25b2995a 1339 page = vm_normal_page(vma, addr, ptent);
91b61ef3
PX
1340 if (unlikely(zap_skip_check_mapping(details, page)))
1341 continue;
b5810039 1342 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1343 tlb->fullmm);
1da177e4
LT
1344 tlb_remove_tlb_entry(tlb, pte, addr);
1345 if (unlikely(!page))
1346 continue;
eca56ff9
JM
1347
1348 if (!PageAnon(page)) {
1cf35d47
LT
1349 if (pte_dirty(ptent)) {
1350 force_flush = 1;
6237bcd9 1351 set_page_dirty(page);
1cf35d47 1352 }
4917e5d0 1353 if (pte_young(ptent) &&
64363aad 1354 likely(!(vma->vm_flags & VM_SEQ_READ)))
bf3f3bc5 1355 mark_page_accessed(page);
6237bcd9 1356 }
eca56ff9 1357 rss[mm_counter(page)]--;
d281ee61 1358 page_remove_rmap(page, false);
3dc14741
HD
1359 if (unlikely(page_mapcount(page) < 0))
1360 print_bad_pte(vma, addr, ptent, page);
e9d55e15 1361 if (unlikely(__tlb_remove_page(tlb, page))) {
1cf35d47 1362 force_flush = 1;
ce9ec37b 1363 addr += PAGE_SIZE;
d16dfc55 1364 break;
1cf35d47 1365 }
1da177e4
LT
1366 continue;
1367 }
5042db43
JG
1368
1369 entry = pte_to_swp_entry(ptent);
b756a3b5
AP
1370 if (is_device_private_entry(entry) ||
1371 is_device_exclusive_entry(entry)) {
af5cdaf8 1372 struct page *page = pfn_swap_entry_to_page(entry);
5042db43 1373
91b61ef3
PX
1374 if (unlikely(zap_skip_check_mapping(details, page)))
1375 continue;
5042db43
JG
1376 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1377 rss[mm_counter(page)]--;
b756a3b5
AP
1378
1379 if (is_device_private_entry(entry))
1380 page_remove_rmap(page, false);
1381
5042db43
JG
1382 put_page(page);
1383 continue;
1384 }
1385
3e8715fd
KS
1386 /* If details->check_mapping, we leave swap entries. */
1387 if (unlikely(details))
1da177e4 1388 continue;
b084d435 1389
8a5f14a2
KS
1390 if (!non_swap_entry(entry))
1391 rss[MM_SWAPENTS]--;
1392 else if (is_migration_entry(entry)) {
1393 struct page *page;
9f9f1acd 1394
af5cdaf8 1395 page = pfn_swap_entry_to_page(entry);
eca56ff9 1396 rss[mm_counter(page)]--;
b084d435 1397 }
8a5f14a2
KS
1398 if (unlikely(!free_swap_and_cache(entry)))
1399 print_bad_pte(vma, addr, ptent, NULL);
9888a1ca 1400 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1401 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1402
d559db08 1403 add_mm_rss_vec(mm, rss);
6606c3e0 1404 arch_leave_lazy_mmu_mode();
51c6f666 1405
1cf35d47 1406 /* Do the actual TLB flush before dropping ptl */
fb7332a9 1407 if (force_flush)
1cf35d47 1408 tlb_flush_mmu_tlbonly(tlb);
1cf35d47
LT
1409 pte_unmap_unlock(start_pte, ptl);
1410
1411 /*
1412 * If we forced a TLB flush (either due to running out of
1413 * batch buffers or because we needed to flush dirty TLB
1414 * entries before releasing the ptl), free the batched
1415 * memory too. Restart if we didn't do everything.
1416 */
1417 if (force_flush) {
1418 force_flush = 0;
fa0aafb8 1419 tlb_flush_mmu(tlb);
7b167b68
MK
1420 }
1421
1422 if (addr != end) {
1423 cond_resched();
1424 goto again;
d16dfc55
PZ
1425 }
1426
51c6f666 1427 return addr;
1da177e4
LT
1428}
1429
51c6f666 1430static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1431 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1432 unsigned long addr, unsigned long end,
97a89413 1433 struct zap_details *details)
1da177e4
LT
1434{
1435 pmd_t *pmd;
1436 unsigned long next;
1437
1438 pmd = pmd_offset(pud, addr);
1439 do {
1440 next = pmd_addr_end(addr, end);
84c3fc4e 1441 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
53406ed1 1442 if (next - addr != HPAGE_PMD_SIZE)
fd60775a 1443 __split_huge_pmd(vma, pmd, addr, false, NULL);
53406ed1 1444 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1445 goto next;
71e3aac0 1446 /* fall through */
22061a1f
HD
1447 } else if (details && details->single_page &&
1448 PageTransCompound(details->single_page) &&
1449 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1450 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1451 /*
1452 * Take and drop THP pmd lock so that we cannot return
1453 * prematurely, while zap_huge_pmd() has cleared *pmd,
1454 * but not yet decremented compound_mapcount().
1455 */
1456 spin_unlock(ptl);
71e3aac0 1457 }
22061a1f 1458
1a5a9906
AA
1459 /*
1460 * Here there can be other concurrent MADV_DONTNEED or
1461 * trans huge page faults running, and if the pmd is
1462 * none or trans huge it can change under us. This is
c1e8d7c6 1463 * because MADV_DONTNEED holds the mmap_lock in read
1a5a9906
AA
1464 * mode.
1465 */
1466 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1467 goto next;
97a89413 1468 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1469next:
97a89413
PZ
1470 cond_resched();
1471 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1472
1473 return addr;
1da177e4
LT
1474}
1475
51c6f666 1476static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
c2febafc 1477 struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 1478 unsigned long addr, unsigned long end,
97a89413 1479 struct zap_details *details)
1da177e4
LT
1480{
1481 pud_t *pud;
1482 unsigned long next;
1483
c2febafc 1484 pud = pud_offset(p4d, addr);
1da177e4
LT
1485 do {
1486 next = pud_addr_end(addr, end);
a00cc7d9
MW
1487 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1488 if (next - addr != HPAGE_PUD_SIZE) {
42fc5414 1489 mmap_assert_locked(tlb->mm);
a00cc7d9
MW
1490 split_huge_pud(vma, pud, addr);
1491 } else if (zap_huge_pud(tlb, vma, pud, addr))
1492 goto next;
1493 /* fall through */
1494 }
97a89413 1495 if (pud_none_or_clear_bad(pud))
1da177e4 1496 continue;
97a89413 1497 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
a00cc7d9
MW
1498next:
1499 cond_resched();
97a89413 1500 } while (pud++, addr = next, addr != end);
51c6f666
RH
1501
1502 return addr;
1da177e4
LT
1503}
1504
c2febafc
KS
1505static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1506 struct vm_area_struct *vma, pgd_t *pgd,
1507 unsigned long addr, unsigned long end,
1508 struct zap_details *details)
1509{
1510 p4d_t *p4d;
1511 unsigned long next;
1512
1513 p4d = p4d_offset(pgd, addr);
1514 do {
1515 next = p4d_addr_end(addr, end);
1516 if (p4d_none_or_clear_bad(p4d))
1517 continue;
1518 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1519 } while (p4d++, addr = next, addr != end);
1520
1521 return addr;
1522}
1523
aac45363 1524void unmap_page_range(struct mmu_gather *tlb,
038c7aa1
AV
1525 struct vm_area_struct *vma,
1526 unsigned long addr, unsigned long end,
1527 struct zap_details *details)
1da177e4
LT
1528{
1529 pgd_t *pgd;
1530 unsigned long next;
1531
1da177e4
LT
1532 BUG_ON(addr >= end);
1533 tlb_start_vma(tlb, vma);
1534 pgd = pgd_offset(vma->vm_mm, addr);
1535 do {
1536 next = pgd_addr_end(addr, end);
97a89413 1537 if (pgd_none_or_clear_bad(pgd))
1da177e4 1538 continue;
c2febafc 1539 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
97a89413 1540 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1541 tlb_end_vma(tlb, vma);
1542}
51c6f666 1543
f5cc4eef
AV
1544
1545static void unmap_single_vma(struct mmu_gather *tlb,
1546 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1547 unsigned long end_addr,
f5cc4eef
AV
1548 struct zap_details *details)
1549{
1550 unsigned long start = max(vma->vm_start, start_addr);
1551 unsigned long end;
1552
1553 if (start >= vma->vm_end)
1554 return;
1555 end = min(vma->vm_end, end_addr);
1556 if (end <= vma->vm_start)
1557 return;
1558
cbc91f71
SD
1559 if (vma->vm_file)
1560 uprobe_munmap(vma, start, end);
1561
b3b9c293 1562 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1563 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1564
1565 if (start != end) {
1566 if (unlikely(is_vm_hugetlb_page(vma))) {
1567 /*
1568 * It is undesirable to test vma->vm_file as it
1569 * should be non-null for valid hugetlb area.
1570 * However, vm_file will be NULL in the error
7aa6b4ad 1571 * cleanup path of mmap_region. When
f5cc4eef 1572 * hugetlbfs ->mmap method fails,
7aa6b4ad 1573 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1574 * before calling this function to clean up.
1575 * Since no pte has actually been setup, it is
1576 * safe to do nothing in this case.
1577 */
24669e58 1578 if (vma->vm_file) {
83cde9e8 1579 i_mmap_lock_write(vma->vm_file->f_mapping);
d833352a 1580 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
83cde9e8 1581 i_mmap_unlock_write(vma->vm_file->f_mapping);
24669e58 1582 }
f5cc4eef
AV
1583 } else
1584 unmap_page_range(tlb, vma, start, end, details);
1585 }
1da177e4
LT
1586}
1587
1da177e4
LT
1588/**
1589 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1590 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1591 * @vma: the starting vma
1592 * @start_addr: virtual address at which to start unmapping
1593 * @end_addr: virtual address at which to end unmapping
1da177e4 1594 *
508034a3 1595 * Unmap all pages in the vma list.
1da177e4 1596 *
1da177e4
LT
1597 * Only addresses between `start' and `end' will be unmapped.
1598 *
1599 * The VMA list must be sorted in ascending virtual address order.
1600 *
1601 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1602 * range after unmap_vmas() returns. So the only responsibility here is to
1603 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1604 * drops the lock and schedules.
1605 */
6e8bb019 1606void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1607 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1608 unsigned long end_addr)
1da177e4 1609{
ac46d4f3 1610 struct mmu_notifier_range range;
1da177e4 1611
6f4f13e8
JG
1612 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1613 start_addr, end_addr);
ac46d4f3 1614 mmu_notifier_invalidate_range_start(&range);
f5cc4eef 1615 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
4f74d2c8 1616 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
ac46d4f3 1617 mmu_notifier_invalidate_range_end(&range);
1da177e4
LT
1618}
1619
1620/**
1621 * zap_page_range - remove user pages in a given range
1622 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1623 * @start: starting address of pages to zap
1da177e4 1624 * @size: number of bytes to zap
f5cc4eef
AV
1625 *
1626 * Caller must protect the VMA list
1da177e4 1627 */
7e027b14 1628void zap_page_range(struct vm_area_struct *vma, unsigned long start,
ecf1385d 1629 unsigned long size)
1da177e4 1630{
ac46d4f3 1631 struct mmu_notifier_range range;
d16dfc55 1632 struct mmu_gather tlb;
1da177e4 1633
1da177e4 1634 lru_add_drain();
7269f999 1635 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1636 start, start + size);
a72afd87 1637 tlb_gather_mmu(&tlb, vma->vm_mm);
ac46d4f3
JG
1638 update_hiwater_rss(vma->vm_mm);
1639 mmu_notifier_invalidate_range_start(&range);
1640 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1641 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1642 mmu_notifier_invalidate_range_end(&range);
ae8eba8b 1643 tlb_finish_mmu(&tlb);
1da177e4
LT
1644}
1645
f5cc4eef
AV
1646/**
1647 * zap_page_range_single - remove user pages in a given range
1648 * @vma: vm_area_struct holding the applicable pages
1649 * @address: starting address of pages to zap
1650 * @size: number of bytes to zap
8a5f14a2 1651 * @details: details of shared cache invalidation
f5cc4eef
AV
1652 *
1653 * The range must fit into one VMA.
1da177e4 1654 */
f5cc4eef 1655static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1656 unsigned long size, struct zap_details *details)
1657{
ac46d4f3 1658 struct mmu_notifier_range range;
d16dfc55 1659 struct mmu_gather tlb;
1da177e4 1660
1da177e4 1661 lru_add_drain();
7269f999 1662 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1663 address, address + size);
a72afd87 1664 tlb_gather_mmu(&tlb, vma->vm_mm);
ac46d4f3
JG
1665 update_hiwater_rss(vma->vm_mm);
1666 mmu_notifier_invalidate_range_start(&range);
1667 unmap_single_vma(&tlb, vma, address, range.end, details);
1668 mmu_notifier_invalidate_range_end(&range);
ae8eba8b 1669 tlb_finish_mmu(&tlb);
1da177e4
LT
1670}
1671
c627f9cc
JS
1672/**
1673 * zap_vma_ptes - remove ptes mapping the vma
1674 * @vma: vm_area_struct holding ptes to be zapped
1675 * @address: starting address of pages to zap
1676 * @size: number of bytes to zap
1677 *
1678 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1679 *
1680 * The entire address range must be fully contained within the vma.
1681 *
c627f9cc 1682 */
27d036e3 1683void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
c627f9cc
JS
1684 unsigned long size)
1685{
1686 if (address < vma->vm_start || address + size > vma->vm_end ||
1687 !(vma->vm_flags & VM_PFNMAP))
27d036e3
LR
1688 return;
1689
f5cc4eef 1690 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1691}
1692EXPORT_SYMBOL_GPL(zap_vma_ptes);
1693
8cd3984d 1694static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
c9cfcddf 1695{
c2febafc
KS
1696 pgd_t *pgd;
1697 p4d_t *p4d;
1698 pud_t *pud;
1699 pmd_t *pmd;
1700
1701 pgd = pgd_offset(mm, addr);
1702 p4d = p4d_alloc(mm, pgd, addr);
1703 if (!p4d)
1704 return NULL;
1705 pud = pud_alloc(mm, p4d, addr);
1706 if (!pud)
1707 return NULL;
1708 pmd = pmd_alloc(mm, pud, addr);
1709 if (!pmd)
1710 return NULL;
1711
1712 VM_BUG_ON(pmd_trans_huge(*pmd));
8cd3984d
AR
1713 return pmd;
1714}
1715
1716pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1717 spinlock_t **ptl)
1718{
1719 pmd_t *pmd = walk_to_pmd(mm, addr);
1720
1721 if (!pmd)
1722 return NULL;
c2febafc 1723 return pte_alloc_map_lock(mm, pmd, addr, ptl);
c9cfcddf
LT
1724}
1725
8efd6f5b
AR
1726static int validate_page_before_insert(struct page *page)
1727{
1728 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1729 return -EINVAL;
1730 flush_dcache_page(page);
1731 return 0;
1732}
1733
1734static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1735 unsigned long addr, struct page *page, pgprot_t prot)
1736{
1737 if (!pte_none(*pte))
1738 return -EBUSY;
1739 /* Ok, finally just insert the thing.. */
1740 get_page(page);
1741 inc_mm_counter_fast(mm, mm_counter_file(page));
1742 page_add_file_rmap(page, false);
1743 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1744 return 0;
1745}
1746
238f58d8
LT
1747/*
1748 * This is the old fallback for page remapping.
1749 *
1750 * For historical reasons, it only allows reserved pages. Only
1751 * old drivers should use this, and they needed to mark their
1752 * pages reserved for the old functions anyway.
1753 */
423bad60
NP
1754static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1755 struct page *page, pgprot_t prot)
238f58d8 1756{
423bad60 1757 struct mm_struct *mm = vma->vm_mm;
238f58d8 1758 int retval;
c9cfcddf 1759 pte_t *pte;
8a9f3ccd
BS
1760 spinlock_t *ptl;
1761
8efd6f5b
AR
1762 retval = validate_page_before_insert(page);
1763 if (retval)
5b4e655e 1764 goto out;
238f58d8 1765 retval = -ENOMEM;
c9cfcddf 1766 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1767 if (!pte)
5b4e655e 1768 goto out;
8efd6f5b 1769 retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
238f58d8
LT
1770 pte_unmap_unlock(pte, ptl);
1771out:
1772 return retval;
1773}
1774
8cd3984d 1775#ifdef pte_index
7f70c2a6 1776static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
8cd3984d
AR
1777 unsigned long addr, struct page *page, pgprot_t prot)
1778{
1779 int err;
1780
1781 if (!page_count(page))
1782 return -EINVAL;
1783 err = validate_page_before_insert(page);
7f70c2a6
AR
1784 if (err)
1785 return err;
1786 return insert_page_into_pte_locked(mm, pte, addr, page, prot);
8cd3984d
AR
1787}
1788
1789/* insert_pages() amortizes the cost of spinlock operations
1790 * when inserting pages in a loop. Arch *must* define pte_index.
1791 */
1792static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1793 struct page **pages, unsigned long *num, pgprot_t prot)
1794{
1795 pmd_t *pmd = NULL;
7f70c2a6
AR
1796 pte_t *start_pte, *pte;
1797 spinlock_t *pte_lock;
8cd3984d
AR
1798 struct mm_struct *const mm = vma->vm_mm;
1799 unsigned long curr_page_idx = 0;
1800 unsigned long remaining_pages_total = *num;
1801 unsigned long pages_to_write_in_pmd;
1802 int ret;
1803more:
1804 ret = -EFAULT;
1805 pmd = walk_to_pmd(mm, addr);
1806 if (!pmd)
1807 goto out;
1808
1809 pages_to_write_in_pmd = min_t(unsigned long,
1810 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1811
1812 /* Allocate the PTE if necessary; takes PMD lock once only. */
1813 ret = -ENOMEM;
1814 if (pte_alloc(mm, pmd))
1815 goto out;
8cd3984d
AR
1816
1817 while (pages_to_write_in_pmd) {
1818 int pte_idx = 0;
1819 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1820
7f70c2a6
AR
1821 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1822 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1823 int err = insert_page_in_batch_locked(mm, pte,
8cd3984d
AR
1824 addr, pages[curr_page_idx], prot);
1825 if (unlikely(err)) {
7f70c2a6 1826 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
1827 ret = err;
1828 remaining_pages_total -= pte_idx;
1829 goto out;
1830 }
1831 addr += PAGE_SIZE;
1832 ++curr_page_idx;
1833 }
7f70c2a6 1834 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
1835 pages_to_write_in_pmd -= batch_size;
1836 remaining_pages_total -= batch_size;
1837 }
1838 if (remaining_pages_total)
1839 goto more;
1840 ret = 0;
1841out:
1842 *num = remaining_pages_total;
1843 return ret;
1844}
1845#endif /* ifdef pte_index */
1846
1847/**
1848 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1849 * @vma: user vma to map to
1850 * @addr: target start user address of these pages
1851 * @pages: source kernel pages
1852 * @num: in: number of pages to map. out: number of pages that were *not*
1853 * mapped. (0 means all pages were successfully mapped).
1854 *
1855 * Preferred over vm_insert_page() when inserting multiple pages.
1856 *
1857 * In case of error, we may have mapped a subset of the provided
1858 * pages. It is the caller's responsibility to account for this case.
1859 *
1860 * The same restrictions apply as in vm_insert_page().
1861 */
1862int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1863 struct page **pages, unsigned long *num)
1864{
1865#ifdef pte_index
1866 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1867
1868 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1869 return -EFAULT;
1870 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 1871 BUG_ON(mmap_read_trylock(vma->vm_mm));
8cd3984d
AR
1872 BUG_ON(vma->vm_flags & VM_PFNMAP);
1873 vma->vm_flags |= VM_MIXEDMAP;
1874 }
1875 /* Defer page refcount checking till we're about to map that page. */
1876 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1877#else
1878 unsigned long idx = 0, pgcount = *num;
45779b03 1879 int err = -EINVAL;
8cd3984d
AR
1880
1881 for (; idx < pgcount; ++idx) {
1882 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1883 if (err)
1884 break;
1885 }
1886 *num = pgcount - idx;
1887 return err;
1888#endif /* ifdef pte_index */
1889}
1890EXPORT_SYMBOL(vm_insert_pages);
1891
bfa5bf6d
REB
1892/**
1893 * vm_insert_page - insert single page into user vma
1894 * @vma: user vma to map to
1895 * @addr: target user address of this page
1896 * @page: source kernel page
1897 *
a145dd41
LT
1898 * This allows drivers to insert individual pages they've allocated
1899 * into a user vma.
1900 *
1901 * The page has to be a nice clean _individual_ kernel allocation.
1902 * If you allocate a compound page, you need to have marked it as
1903 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1904 * (see split_page()).
a145dd41
LT
1905 *
1906 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1907 * took an arbitrary page protection parameter. This doesn't allow
1908 * that. Your vma protection will have to be set up correctly, which
1909 * means that if you want a shared writable mapping, you'd better
1910 * ask for a shared writable mapping!
1911 *
1912 * The page does not need to be reserved.
4b6e1e37
KK
1913 *
1914 * Usually this function is called from f_op->mmap() handler
c1e8d7c6 1915 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
4b6e1e37
KK
1916 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1917 * function from other places, for example from page-fault handler.
a862f68a
MR
1918 *
1919 * Return: %0 on success, negative error code otherwise.
a145dd41 1920 */
423bad60
NP
1921int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1922 struct page *page)
a145dd41
LT
1923{
1924 if (addr < vma->vm_start || addr >= vma->vm_end)
1925 return -EFAULT;
1926 if (!page_count(page))
1927 return -EINVAL;
4b6e1e37 1928 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 1929 BUG_ON(mmap_read_trylock(vma->vm_mm));
4b6e1e37
KK
1930 BUG_ON(vma->vm_flags & VM_PFNMAP);
1931 vma->vm_flags |= VM_MIXEDMAP;
1932 }
423bad60 1933 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1934}
e3c3374f 1935EXPORT_SYMBOL(vm_insert_page);
a145dd41 1936
a667d745
SJ
1937/*
1938 * __vm_map_pages - maps range of kernel pages into user vma
1939 * @vma: user vma to map to
1940 * @pages: pointer to array of source kernel pages
1941 * @num: number of pages in page array
1942 * @offset: user's requested vm_pgoff
1943 *
1944 * This allows drivers to map range of kernel pages into a user vma.
1945 *
1946 * Return: 0 on success and error code otherwise.
1947 */
1948static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1949 unsigned long num, unsigned long offset)
1950{
1951 unsigned long count = vma_pages(vma);
1952 unsigned long uaddr = vma->vm_start;
1953 int ret, i;
1954
1955 /* Fail if the user requested offset is beyond the end of the object */
96756fcb 1956 if (offset >= num)
a667d745
SJ
1957 return -ENXIO;
1958
1959 /* Fail if the user requested size exceeds available object size */
1960 if (count > num - offset)
1961 return -ENXIO;
1962
1963 for (i = 0; i < count; i++) {
1964 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1965 if (ret < 0)
1966 return ret;
1967 uaddr += PAGE_SIZE;
1968 }
1969
1970 return 0;
1971}
1972
1973/**
1974 * vm_map_pages - maps range of kernel pages starts with non zero offset
1975 * @vma: user vma to map to
1976 * @pages: pointer to array of source kernel pages
1977 * @num: number of pages in page array
1978 *
1979 * Maps an object consisting of @num pages, catering for the user's
1980 * requested vm_pgoff
1981 *
1982 * If we fail to insert any page into the vma, the function will return
1983 * immediately leaving any previously inserted pages present. Callers
1984 * from the mmap handler may immediately return the error as their caller
1985 * will destroy the vma, removing any successfully inserted pages. Other
1986 * callers should make their own arrangements for calling unmap_region().
1987 *
1988 * Context: Process context. Called by mmap handlers.
1989 * Return: 0 on success and error code otherwise.
1990 */
1991int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1992 unsigned long num)
1993{
1994 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1995}
1996EXPORT_SYMBOL(vm_map_pages);
1997
1998/**
1999 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2000 * @vma: user vma to map to
2001 * @pages: pointer to array of source kernel pages
2002 * @num: number of pages in page array
2003 *
2004 * Similar to vm_map_pages(), except that it explicitly sets the offset
2005 * to 0. This function is intended for the drivers that did not consider
2006 * vm_pgoff.
2007 *
2008 * Context: Process context. Called by mmap handlers.
2009 * Return: 0 on success and error code otherwise.
2010 */
2011int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2012 unsigned long num)
2013{
2014 return __vm_map_pages(vma, pages, num, 0);
2015}
2016EXPORT_SYMBOL(vm_map_pages_zero);
2017
9b5a8e00 2018static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
b2770da6 2019 pfn_t pfn, pgprot_t prot, bool mkwrite)
423bad60
NP
2020{
2021 struct mm_struct *mm = vma->vm_mm;
423bad60
NP
2022 pte_t *pte, entry;
2023 spinlock_t *ptl;
2024
423bad60
NP
2025 pte = get_locked_pte(mm, addr, &ptl);
2026 if (!pte)
9b5a8e00 2027 return VM_FAULT_OOM;
b2770da6
RZ
2028 if (!pte_none(*pte)) {
2029 if (mkwrite) {
2030 /*
2031 * For read faults on private mappings the PFN passed
2032 * in may not match the PFN we have mapped if the
2033 * mapped PFN is a writeable COW page. In the mkwrite
2034 * case we are creating a writable PTE for a shared
f2c57d91
JK
2035 * mapping and we expect the PFNs to match. If they
2036 * don't match, we are likely racing with block
2037 * allocation and mapping invalidation so just skip the
2038 * update.
b2770da6 2039 */
f2c57d91
JK
2040 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2041 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
b2770da6 2042 goto out_unlock;
f2c57d91 2043 }
cae85cb8
JK
2044 entry = pte_mkyoung(*pte);
2045 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2046 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2047 update_mmu_cache(vma, addr, pte);
2048 }
2049 goto out_unlock;
b2770da6 2050 }
423bad60
NP
2051
2052 /* Ok, finally just insert the thing.. */
01c8f1c4
DW
2053 if (pfn_t_devmap(pfn))
2054 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2055 else
2056 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
b2770da6 2057
b2770da6
RZ
2058 if (mkwrite) {
2059 entry = pte_mkyoung(entry);
2060 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2061 }
2062
423bad60 2063 set_pte_at(mm, addr, pte, entry);
4b3073e1 2064 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60 2065
423bad60
NP
2066out_unlock:
2067 pte_unmap_unlock(pte, ptl);
9b5a8e00 2068 return VM_FAULT_NOPAGE;
423bad60
NP
2069}
2070
f5e6d1d5
MW
2071/**
2072 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2073 * @vma: user vma to map to
2074 * @addr: target user address of this page
2075 * @pfn: source kernel pfn
2076 * @pgprot: pgprot flags for the inserted page
2077 *
a1a0aea5 2078 * This is exactly like vmf_insert_pfn(), except that it allows drivers
f5e6d1d5
MW
2079 * to override pgprot on a per-page basis.
2080 *
2081 * This only makes sense for IO mappings, and it makes no sense for
2082 * COW mappings. In general, using multiple vmas is preferable;
ae2b01f3 2083 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
f5e6d1d5
MW
2084 * impractical.
2085 *
574c5b3d
TH
2086 * See vmf_insert_mixed_prot() for a discussion of the implication of using
2087 * a value of @pgprot different from that of @vma->vm_page_prot.
2088 *
ae2b01f3 2089 * Context: Process context. May allocate using %GFP_KERNEL.
f5e6d1d5
MW
2090 * Return: vm_fault_t value.
2091 */
2092vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2093 unsigned long pfn, pgprot_t pgprot)
2094{
6d958546
MW
2095 /*
2096 * Technically, architectures with pte_special can avoid all these
2097 * restrictions (same for remap_pfn_range). However we would like
2098 * consistency in testing and feature parity among all, so we should
2099 * try to keep these invariants in place for everybody.
2100 */
2101 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2102 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2103 (VM_PFNMAP|VM_MIXEDMAP));
2104 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2105 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2106
2107 if (addr < vma->vm_start || addr >= vma->vm_end)
2108 return VM_FAULT_SIGBUS;
2109
2110 if (!pfn_modify_allowed(pfn, pgprot))
2111 return VM_FAULT_SIGBUS;
2112
2113 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2114
9b5a8e00 2115 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
6d958546 2116 false);
f5e6d1d5
MW
2117}
2118EXPORT_SYMBOL(vmf_insert_pfn_prot);
e0dc0d8f 2119
ae2b01f3
MW
2120/**
2121 * vmf_insert_pfn - insert single pfn into user vma
2122 * @vma: user vma to map to
2123 * @addr: target user address of this page
2124 * @pfn: source kernel pfn
2125 *
2126 * Similar to vm_insert_page, this allows drivers to insert individual pages
2127 * they've allocated into a user vma. Same comments apply.
2128 *
2129 * This function should only be called from a vm_ops->fault handler, and
2130 * in that case the handler should return the result of this function.
2131 *
2132 * vma cannot be a COW mapping.
2133 *
2134 * As this is called only for pages that do not currently exist, we
2135 * do not need to flush old virtual caches or the TLB.
2136 *
2137 * Context: Process context. May allocate using %GFP_KERNEL.
2138 * Return: vm_fault_t value.
2139 */
2140vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2141 unsigned long pfn)
2142{
2143 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2144}
2145EXPORT_SYMBOL(vmf_insert_pfn);
2146
785a3fab
DW
2147static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2148{
2149 /* these checks mirror the abort conditions in vm_normal_page */
2150 if (vma->vm_flags & VM_MIXEDMAP)
2151 return true;
2152 if (pfn_t_devmap(pfn))
2153 return true;
2154 if (pfn_t_special(pfn))
2155 return true;
2156 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2157 return true;
2158 return false;
2159}
2160
79f3aa5b 2161static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
574c5b3d
TH
2162 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2163 bool mkwrite)
423bad60 2164{
79f3aa5b 2165 int err;
87744ab3 2166
785a3fab 2167 BUG_ON(!vm_mixed_ok(vma, pfn));
e0dc0d8f 2168
423bad60 2169 if (addr < vma->vm_start || addr >= vma->vm_end)
79f3aa5b 2170 return VM_FAULT_SIGBUS;
308a047c
BP
2171
2172 track_pfn_insert(vma, &pgprot, pfn);
e0dc0d8f 2173
42e4089c 2174 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
79f3aa5b 2175 return VM_FAULT_SIGBUS;
42e4089c 2176
423bad60
NP
2177 /*
2178 * If we don't have pte special, then we have to use the pfn_valid()
2179 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2180 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
2181 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2182 * without pte special, it would there be refcounted as a normal page.
423bad60 2183 */
00b3a331
LD
2184 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2185 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
423bad60
NP
2186 struct page *page;
2187
03fc2da6
DW
2188 /*
2189 * At this point we are committed to insert_page()
2190 * regardless of whether the caller specified flags that
2191 * result in pfn_t_has_page() == false.
2192 */
2193 page = pfn_to_page(pfn_t_to_pfn(pfn));
79f3aa5b
MW
2194 err = insert_page(vma, addr, page, pgprot);
2195 } else {
9b5a8e00 2196 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
423bad60 2197 }
b2770da6 2198
5d747637
MW
2199 if (err == -ENOMEM)
2200 return VM_FAULT_OOM;
2201 if (err < 0 && err != -EBUSY)
2202 return VM_FAULT_SIGBUS;
2203
2204 return VM_FAULT_NOPAGE;
e0dc0d8f 2205}
79f3aa5b 2206
574c5b3d
TH
2207/**
2208 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2209 * @vma: user vma to map to
2210 * @addr: target user address of this page
2211 * @pfn: source kernel pfn
2212 * @pgprot: pgprot flags for the inserted page
2213 *
a1a0aea5 2214 * This is exactly like vmf_insert_mixed(), except that it allows drivers
574c5b3d
TH
2215 * to override pgprot on a per-page basis.
2216 *
2217 * Typically this function should be used by drivers to set caching- and
2218 * encryption bits different than those of @vma->vm_page_prot, because
2219 * the caching- or encryption mode may not be known at mmap() time.
2220 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2221 * to set caching and encryption bits for those vmas (except for COW pages).
2222 * This is ensured by core vm only modifying these page table entries using
2223 * functions that don't touch caching- or encryption bits, using pte_modify()
2224 * if needed. (See for example mprotect()).
2225 * Also when new page-table entries are created, this is only done using the
2226 * fault() callback, and never using the value of vma->vm_page_prot,
2227 * except for page-table entries that point to anonymous pages as the result
2228 * of COW.
2229 *
2230 * Context: Process context. May allocate using %GFP_KERNEL.
2231 * Return: vm_fault_t value.
2232 */
2233vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2234 pfn_t pfn, pgprot_t pgprot)
2235{
2236 return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2237}
5379e4dd 2238EXPORT_SYMBOL(vmf_insert_mixed_prot);
574c5b3d 2239
79f3aa5b
MW
2240vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2241 pfn_t pfn)
2242{
574c5b3d 2243 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
79f3aa5b 2244}
5d747637 2245EXPORT_SYMBOL(vmf_insert_mixed);
e0dc0d8f 2246
ab77dab4
SJ
2247/*
2248 * If the insertion of PTE failed because someone else already added a
2249 * different entry in the mean time, we treat that as success as we assume
2250 * the same entry was actually inserted.
2251 */
ab77dab4
SJ
2252vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2253 unsigned long addr, pfn_t pfn)
b2770da6 2254{
574c5b3d 2255 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
b2770da6 2256}
ab77dab4 2257EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
b2770da6 2258
1da177e4
LT
2259/*
2260 * maps a range of physical memory into the requested pages. the old
2261 * mappings are removed. any references to nonexistent pages results
2262 * in null mappings (currently treated as "copy-on-access")
2263 */
2264static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2265 unsigned long addr, unsigned long end,
2266 unsigned long pfn, pgprot_t prot)
2267{
90a3e375 2268 pte_t *pte, *mapped_pte;
c74df32c 2269 spinlock_t *ptl;
42e4089c 2270 int err = 0;
1da177e4 2271
90a3e375 2272 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
2273 if (!pte)
2274 return -ENOMEM;
6606c3e0 2275 arch_enter_lazy_mmu_mode();
1da177e4
LT
2276 do {
2277 BUG_ON(!pte_none(*pte));
42e4089c
AK
2278 if (!pfn_modify_allowed(pfn, prot)) {
2279 err = -EACCES;
2280 break;
2281 }
7e675137 2282 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
2283 pfn++;
2284 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 2285 arch_leave_lazy_mmu_mode();
90a3e375 2286 pte_unmap_unlock(mapped_pte, ptl);
42e4089c 2287 return err;
1da177e4
LT
2288}
2289
2290static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2291 unsigned long addr, unsigned long end,
2292 unsigned long pfn, pgprot_t prot)
2293{
2294 pmd_t *pmd;
2295 unsigned long next;
42e4089c 2296 int err;
1da177e4
LT
2297
2298 pfn -= addr >> PAGE_SHIFT;
2299 pmd = pmd_alloc(mm, pud, addr);
2300 if (!pmd)
2301 return -ENOMEM;
f66055ab 2302 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
2303 do {
2304 next = pmd_addr_end(addr, end);
42e4089c
AK
2305 err = remap_pte_range(mm, pmd, addr, next,
2306 pfn + (addr >> PAGE_SHIFT), prot);
2307 if (err)
2308 return err;
1da177e4
LT
2309 } while (pmd++, addr = next, addr != end);
2310 return 0;
2311}
2312
c2febafc 2313static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1da177e4
LT
2314 unsigned long addr, unsigned long end,
2315 unsigned long pfn, pgprot_t prot)
2316{
2317 pud_t *pud;
2318 unsigned long next;
42e4089c 2319 int err;
1da177e4
LT
2320
2321 pfn -= addr >> PAGE_SHIFT;
c2febafc 2322 pud = pud_alloc(mm, p4d, addr);
1da177e4
LT
2323 if (!pud)
2324 return -ENOMEM;
2325 do {
2326 next = pud_addr_end(addr, end);
42e4089c
AK
2327 err = remap_pmd_range(mm, pud, addr, next,
2328 pfn + (addr >> PAGE_SHIFT), prot);
2329 if (err)
2330 return err;
1da177e4
LT
2331 } while (pud++, addr = next, addr != end);
2332 return 0;
2333}
2334
c2febafc
KS
2335static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2336 unsigned long addr, unsigned long end,
2337 unsigned long pfn, pgprot_t prot)
2338{
2339 p4d_t *p4d;
2340 unsigned long next;
42e4089c 2341 int err;
c2febafc
KS
2342
2343 pfn -= addr >> PAGE_SHIFT;
2344 p4d = p4d_alloc(mm, pgd, addr);
2345 if (!p4d)
2346 return -ENOMEM;
2347 do {
2348 next = p4d_addr_end(addr, end);
42e4089c
AK
2349 err = remap_pud_range(mm, p4d, addr, next,
2350 pfn + (addr >> PAGE_SHIFT), prot);
2351 if (err)
2352 return err;
c2febafc
KS
2353 } while (p4d++, addr = next, addr != end);
2354 return 0;
2355}
2356
74ffa5a3
CH
2357/*
2358 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2359 * must have pre-validated the caching bits of the pgprot_t.
bfa5bf6d 2360 */
74ffa5a3
CH
2361int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2362 unsigned long pfn, unsigned long size, pgprot_t prot)
1da177e4
LT
2363{
2364 pgd_t *pgd;
2365 unsigned long next;
2d15cab8 2366 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
2367 struct mm_struct *mm = vma->vm_mm;
2368 int err;
2369
0c4123e3
AZ
2370 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2371 return -EINVAL;
2372
1da177e4
LT
2373 /*
2374 * Physically remapped pages are special. Tell the
2375 * rest of the world about it:
2376 * VM_IO tells people not to look at these pages
2377 * (accesses can have side effects).
6aab341e
LT
2378 * VM_PFNMAP tells the core MM that the base pages are just
2379 * raw PFN mappings, and do not have a "struct page" associated
2380 * with them.
314e51b9
KK
2381 * VM_DONTEXPAND
2382 * Disable vma merging and expanding with mremap().
2383 * VM_DONTDUMP
2384 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
2385 *
2386 * There's a horrible special case to handle copy-on-write
2387 * behaviour that some programs depend on. We mark the "original"
2388 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 2389 * See vm_normal_page() for details.
1da177e4 2390 */
b3b9c293
KK
2391 if (is_cow_mapping(vma->vm_flags)) {
2392 if (addr != vma->vm_start || end != vma->vm_end)
2393 return -EINVAL;
fb155c16 2394 vma->vm_pgoff = pfn;
b3b9c293
KK
2395 }
2396
314e51b9 2397 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
2398
2399 BUG_ON(addr >= end);
2400 pfn -= addr >> PAGE_SHIFT;
2401 pgd = pgd_offset(mm, addr);
2402 flush_cache_range(vma, addr, end);
1da177e4
LT
2403 do {
2404 next = pgd_addr_end(addr, end);
c2febafc 2405 err = remap_p4d_range(mm, pgd, addr, next,
1da177e4
LT
2406 pfn + (addr >> PAGE_SHIFT), prot);
2407 if (err)
74ffa5a3 2408 return err;
1da177e4 2409 } while (pgd++, addr = next, addr != end);
2ab64037 2410
74ffa5a3
CH
2411 return 0;
2412}
2413
2414/**
2415 * remap_pfn_range - remap kernel memory to userspace
2416 * @vma: user vma to map to
2417 * @addr: target page aligned user address to start at
2418 * @pfn: page frame number of kernel physical memory address
2419 * @size: size of mapping area
2420 * @prot: page protection flags for this mapping
2421 *
2422 * Note: this is only safe if the mm semaphore is held when called.
2423 *
2424 * Return: %0 on success, negative error code otherwise.
2425 */
2426int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2427 unsigned long pfn, unsigned long size, pgprot_t prot)
2428{
2429 int err;
2430
2431 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2ab64037 2432 if (err)
74ffa5a3 2433 return -EINVAL;
2ab64037 2434
74ffa5a3
CH
2435 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2436 if (err)
2437 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1da177e4
LT
2438 return err;
2439}
2440EXPORT_SYMBOL(remap_pfn_range);
2441
b4cbb197
LT
2442/**
2443 * vm_iomap_memory - remap memory to userspace
2444 * @vma: user vma to map to
abd69b9e 2445 * @start: start of the physical memory to be mapped
b4cbb197
LT
2446 * @len: size of area
2447 *
2448 * This is a simplified io_remap_pfn_range() for common driver use. The
2449 * driver just needs to give us the physical memory range to be mapped,
2450 * we'll figure out the rest from the vma information.
2451 *
2452 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2453 * whatever write-combining details or similar.
a862f68a
MR
2454 *
2455 * Return: %0 on success, negative error code otherwise.
b4cbb197
LT
2456 */
2457int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2458{
2459 unsigned long vm_len, pfn, pages;
2460
2461 /* Check that the physical memory area passed in looks valid */
2462 if (start + len < start)
2463 return -EINVAL;
2464 /*
2465 * You *really* shouldn't map things that aren't page-aligned,
2466 * but we've historically allowed it because IO memory might
2467 * just have smaller alignment.
2468 */
2469 len += start & ~PAGE_MASK;
2470 pfn = start >> PAGE_SHIFT;
2471 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2472 if (pfn + pages < pfn)
2473 return -EINVAL;
2474
2475 /* We start the mapping 'vm_pgoff' pages into the area */
2476 if (vma->vm_pgoff > pages)
2477 return -EINVAL;
2478 pfn += vma->vm_pgoff;
2479 pages -= vma->vm_pgoff;
2480
2481 /* Can we fit all of the mapping? */
2482 vm_len = vma->vm_end - vma->vm_start;
2483 if (vm_len >> PAGE_SHIFT > pages)
2484 return -EINVAL;
2485
2486 /* Ok, let it rip */
2487 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2488}
2489EXPORT_SYMBOL(vm_iomap_memory);
2490
aee16b3c
JF
2491static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2492 unsigned long addr, unsigned long end,
e80d3909
JR
2493 pte_fn_t fn, void *data, bool create,
2494 pgtbl_mod_mask *mask)
aee16b3c 2495{
8abb50c7 2496 pte_t *pte, *mapped_pte;
be1db475 2497 int err = 0;
3f649ab7 2498 spinlock_t *ptl;
aee16b3c 2499
be1db475 2500 if (create) {
8abb50c7 2501 mapped_pte = pte = (mm == &init_mm) ?
e80d3909 2502 pte_alloc_kernel_track(pmd, addr, mask) :
be1db475
DA
2503 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2504 if (!pte)
2505 return -ENOMEM;
2506 } else {
8abb50c7 2507 mapped_pte = pte = (mm == &init_mm) ?
be1db475
DA
2508 pte_offset_kernel(pmd, addr) :
2509 pte_offset_map_lock(mm, pmd, addr, &ptl);
2510 }
aee16b3c
JF
2511
2512 BUG_ON(pmd_huge(*pmd));
2513
38e0edb1
JF
2514 arch_enter_lazy_mmu_mode();
2515
eeb4a05f
CH
2516 if (fn) {
2517 do {
2518 if (create || !pte_none(*pte)) {
2519 err = fn(pte++, addr, data);
2520 if (err)
2521 break;
2522 }
2523 } while (addr += PAGE_SIZE, addr != end);
2524 }
e80d3909 2525 *mask |= PGTBL_PTE_MODIFIED;
aee16b3c 2526
38e0edb1
JF
2527 arch_leave_lazy_mmu_mode();
2528
aee16b3c 2529 if (mm != &init_mm)
8abb50c7 2530 pte_unmap_unlock(mapped_pte, ptl);
aee16b3c
JF
2531 return err;
2532}
2533
2534static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2535 unsigned long addr, unsigned long end,
e80d3909
JR
2536 pte_fn_t fn, void *data, bool create,
2537 pgtbl_mod_mask *mask)
aee16b3c
JF
2538{
2539 pmd_t *pmd;
2540 unsigned long next;
be1db475 2541 int err = 0;
aee16b3c 2542
ceb86879
AK
2543 BUG_ON(pud_huge(*pud));
2544
be1db475 2545 if (create) {
e80d3909 2546 pmd = pmd_alloc_track(mm, pud, addr, mask);
be1db475
DA
2547 if (!pmd)
2548 return -ENOMEM;
2549 } else {
2550 pmd = pmd_offset(pud, addr);
2551 }
aee16b3c
JF
2552 do {
2553 next = pmd_addr_end(addr, end);
0c95cba4
NP
2554 if (pmd_none(*pmd) && !create)
2555 continue;
2556 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2557 return -EINVAL;
2558 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2559 if (!create)
2560 continue;
2561 pmd_clear_bad(pmd);
be1db475 2562 }
0c95cba4
NP
2563 err = apply_to_pte_range(mm, pmd, addr, next,
2564 fn, data, create, mask);
2565 if (err)
2566 break;
aee16b3c 2567 } while (pmd++, addr = next, addr != end);
0c95cba4 2568
aee16b3c
JF
2569 return err;
2570}
2571
c2febafc 2572static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
aee16b3c 2573 unsigned long addr, unsigned long end,
e80d3909
JR
2574 pte_fn_t fn, void *data, bool create,
2575 pgtbl_mod_mask *mask)
aee16b3c
JF
2576{
2577 pud_t *pud;
2578 unsigned long next;
be1db475 2579 int err = 0;
aee16b3c 2580
be1db475 2581 if (create) {
e80d3909 2582 pud = pud_alloc_track(mm, p4d, addr, mask);
be1db475
DA
2583 if (!pud)
2584 return -ENOMEM;
2585 } else {
2586 pud = pud_offset(p4d, addr);
2587 }
aee16b3c
JF
2588 do {
2589 next = pud_addr_end(addr, end);
0c95cba4
NP
2590 if (pud_none(*pud) && !create)
2591 continue;
2592 if (WARN_ON_ONCE(pud_leaf(*pud)))
2593 return -EINVAL;
2594 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2595 if (!create)
2596 continue;
2597 pud_clear_bad(pud);
be1db475 2598 }
0c95cba4
NP
2599 err = apply_to_pmd_range(mm, pud, addr, next,
2600 fn, data, create, mask);
2601 if (err)
2602 break;
aee16b3c 2603 } while (pud++, addr = next, addr != end);
0c95cba4 2604
aee16b3c
JF
2605 return err;
2606}
2607
c2febafc
KS
2608static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2609 unsigned long addr, unsigned long end,
e80d3909
JR
2610 pte_fn_t fn, void *data, bool create,
2611 pgtbl_mod_mask *mask)
c2febafc
KS
2612{
2613 p4d_t *p4d;
2614 unsigned long next;
be1db475 2615 int err = 0;
c2febafc 2616
be1db475 2617 if (create) {
e80d3909 2618 p4d = p4d_alloc_track(mm, pgd, addr, mask);
be1db475
DA
2619 if (!p4d)
2620 return -ENOMEM;
2621 } else {
2622 p4d = p4d_offset(pgd, addr);
2623 }
c2febafc
KS
2624 do {
2625 next = p4d_addr_end(addr, end);
0c95cba4
NP
2626 if (p4d_none(*p4d) && !create)
2627 continue;
2628 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2629 return -EINVAL;
2630 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2631 if (!create)
2632 continue;
2633 p4d_clear_bad(p4d);
be1db475 2634 }
0c95cba4
NP
2635 err = apply_to_pud_range(mm, p4d, addr, next,
2636 fn, data, create, mask);
2637 if (err)
2638 break;
c2febafc 2639 } while (p4d++, addr = next, addr != end);
0c95cba4 2640
c2febafc
KS
2641 return err;
2642}
2643
be1db475
DA
2644static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2645 unsigned long size, pte_fn_t fn,
2646 void *data, bool create)
aee16b3c
JF
2647{
2648 pgd_t *pgd;
e80d3909 2649 unsigned long start = addr, next;
57250a5b 2650 unsigned long end = addr + size;
e80d3909 2651 pgtbl_mod_mask mask = 0;
be1db475 2652 int err = 0;
aee16b3c 2653
9cb65bc3
MP
2654 if (WARN_ON(addr >= end))
2655 return -EINVAL;
2656
aee16b3c
JF
2657 pgd = pgd_offset(mm, addr);
2658 do {
2659 next = pgd_addr_end(addr, end);
0c95cba4 2660 if (pgd_none(*pgd) && !create)
be1db475 2661 continue;
0c95cba4
NP
2662 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2663 return -EINVAL;
2664 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2665 if (!create)
2666 continue;
2667 pgd_clear_bad(pgd);
2668 }
2669 err = apply_to_p4d_range(mm, pgd, addr, next,
2670 fn, data, create, &mask);
aee16b3c
JF
2671 if (err)
2672 break;
2673 } while (pgd++, addr = next, addr != end);
57250a5b 2674
e80d3909
JR
2675 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2676 arch_sync_kernel_mappings(start, start + size);
2677
aee16b3c
JF
2678 return err;
2679}
be1db475
DA
2680
2681/*
2682 * Scan a region of virtual memory, filling in page tables as necessary
2683 * and calling a provided function on each leaf page table.
2684 */
2685int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2686 unsigned long size, pte_fn_t fn, void *data)
2687{
2688 return __apply_to_page_range(mm, addr, size, fn, data, true);
2689}
aee16b3c
JF
2690EXPORT_SYMBOL_GPL(apply_to_page_range);
2691
be1db475
DA
2692/*
2693 * Scan a region of virtual memory, calling a provided function on
2694 * each leaf page table where it exists.
2695 *
2696 * Unlike apply_to_page_range, this does _not_ fill in page tables
2697 * where they are absent.
2698 */
2699int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2700 unsigned long size, pte_fn_t fn, void *data)
2701{
2702 return __apply_to_page_range(mm, addr, size, fn, data, false);
2703}
2704EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2705
8f4e2101 2706/*
9b4bdd2f
KS
2707 * handle_pte_fault chooses page fault handler according to an entry which was
2708 * read non-atomically. Before making any commitment, on those architectures
2709 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2710 * parts, do_swap_page must check under lock before unmapping the pte and
2711 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 2712 * and do_anonymous_page can safely check later on).
8f4e2101 2713 */
2ca99358 2714static inline int pte_unmap_same(struct vm_fault *vmf)
8f4e2101
HD
2715{
2716 int same = 1;
923717cb 2717#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
8f4e2101 2718 if (sizeof(pte_t) > sizeof(unsigned long)) {
2ca99358 2719 spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4c21e2f2 2720 spin_lock(ptl);
2ca99358 2721 same = pte_same(*vmf->pte, vmf->orig_pte);
4c21e2f2 2722 spin_unlock(ptl);
8f4e2101
HD
2723 }
2724#endif
2ca99358
PX
2725 pte_unmap(vmf->pte);
2726 vmf->pte = NULL;
8f4e2101
HD
2727 return same;
2728}
2729
83d116c5
JH
2730static inline bool cow_user_page(struct page *dst, struct page *src,
2731 struct vm_fault *vmf)
6aab341e 2732{
83d116c5
JH
2733 bool ret;
2734 void *kaddr;
2735 void __user *uaddr;
c3e5ea6e 2736 bool locked = false;
83d116c5
JH
2737 struct vm_area_struct *vma = vmf->vma;
2738 struct mm_struct *mm = vma->vm_mm;
2739 unsigned long addr = vmf->address;
2740
83d116c5
JH
2741 if (likely(src)) {
2742 copy_user_highpage(dst, src, addr, vma);
2743 return true;
2744 }
2745
6aab341e
LT
2746 /*
2747 * If the source page was a PFN mapping, we don't have
2748 * a "struct page" for it. We do a best-effort copy by
2749 * just copying from the original user address. If that
2750 * fails, we just zero-fill it. Live with it.
2751 */
83d116c5
JH
2752 kaddr = kmap_atomic(dst);
2753 uaddr = (void __user *)(addr & PAGE_MASK);
2754
2755 /*
2756 * On architectures with software "accessed" bits, we would
2757 * take a double page fault, so mark it accessed here.
2758 */
c3e5ea6e 2759 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
83d116c5 2760 pte_t entry;
5d2a2dbb 2761
83d116c5 2762 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
c3e5ea6e 2763 locked = true;
83d116c5
JH
2764 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2765 /*
2766 * Other thread has already handled the fault
7df67697 2767 * and update local tlb only
83d116c5 2768 */
7df67697 2769 update_mmu_tlb(vma, addr, vmf->pte);
83d116c5
JH
2770 ret = false;
2771 goto pte_unlock;
2772 }
2773
2774 entry = pte_mkyoung(vmf->orig_pte);
2775 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2776 update_mmu_cache(vma, addr, vmf->pte);
2777 }
2778
2779 /*
2780 * This really shouldn't fail, because the page is there
2781 * in the page tables. But it might just be unreadable,
2782 * in which case we just give up and fill the result with
2783 * zeroes.
2784 */
2785 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
c3e5ea6e
KS
2786 if (locked)
2787 goto warn;
2788
2789 /* Re-validate under PTL if the page is still mapped */
2790 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2791 locked = true;
2792 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
7df67697
BM
2793 /* The PTE changed under us, update local tlb */
2794 update_mmu_tlb(vma, addr, vmf->pte);
c3e5ea6e
KS
2795 ret = false;
2796 goto pte_unlock;
2797 }
2798
5d2a2dbb 2799 /*
985ba004 2800 * The same page can be mapped back since last copy attempt.
c3e5ea6e 2801 * Try to copy again under PTL.
5d2a2dbb 2802 */
c3e5ea6e
KS
2803 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2804 /*
2805 * Give a warn in case there can be some obscure
2806 * use-case
2807 */
2808warn:
2809 WARN_ON_ONCE(1);
2810 clear_page(kaddr);
2811 }
83d116c5
JH
2812 }
2813
2814 ret = true;
2815
2816pte_unlock:
c3e5ea6e 2817 if (locked)
83d116c5
JH
2818 pte_unmap_unlock(vmf->pte, vmf->ptl);
2819 kunmap_atomic(kaddr);
2820 flush_dcache_page(dst);
2821
2822 return ret;
6aab341e
LT
2823}
2824
c20cd45e
MH
2825static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2826{
2827 struct file *vm_file = vma->vm_file;
2828
2829 if (vm_file)
2830 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2831
2832 /*
2833 * Special mappings (e.g. VDSO) do not have any file so fake
2834 * a default GFP_KERNEL for them.
2835 */
2836 return GFP_KERNEL;
2837}
2838
fb09a464
KS
2839/*
2840 * Notify the address space that the page is about to become writable so that
2841 * it can prohibit this or wait for the page to get into an appropriate state.
2842 *
2843 * We do this without the lock held, so that it can sleep if it needs to.
2844 */
2b740303 2845static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
fb09a464 2846{
2b740303 2847 vm_fault_t ret;
38b8cb7f
JK
2848 struct page *page = vmf->page;
2849 unsigned int old_flags = vmf->flags;
fb09a464 2850
38b8cb7f 2851 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
fb09a464 2852
dc617f29
DW
2853 if (vmf->vma->vm_file &&
2854 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2855 return VM_FAULT_SIGBUS;
2856
11bac800 2857 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
38b8cb7f
JK
2858 /* Restore original flags so that caller is not surprised */
2859 vmf->flags = old_flags;
fb09a464
KS
2860 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2861 return ret;
2862 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2863 lock_page(page);
2864 if (!page->mapping) {
2865 unlock_page(page);
2866 return 0; /* retry */
2867 }
2868 ret |= VM_FAULT_LOCKED;
2869 } else
2870 VM_BUG_ON_PAGE(!PageLocked(page), page);
2871 return ret;
2872}
2873
97ba0c2b
JK
2874/*
2875 * Handle dirtying of a page in shared file mapping on a write fault.
2876 *
2877 * The function expects the page to be locked and unlocks it.
2878 */
89b15332 2879static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
97ba0c2b 2880{
89b15332 2881 struct vm_area_struct *vma = vmf->vma;
97ba0c2b 2882 struct address_space *mapping;
89b15332 2883 struct page *page = vmf->page;
97ba0c2b
JK
2884 bool dirtied;
2885 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2886
2887 dirtied = set_page_dirty(page);
2888 VM_BUG_ON_PAGE(PageAnon(page), page);
2889 /*
2890 * Take a local copy of the address_space - page.mapping may be zeroed
2891 * by truncate after unlock_page(). The address_space itself remains
2892 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2893 * release semantics to prevent the compiler from undoing this copying.
2894 */
2895 mapping = page_rmapping(page);
2896 unlock_page(page);
2897
89b15332
JW
2898 if (!page_mkwrite)
2899 file_update_time(vma->vm_file);
2900
2901 /*
2902 * Throttle page dirtying rate down to writeback speed.
2903 *
2904 * mapping may be NULL here because some device drivers do not
2905 * set page.mapping but still dirty their pages
2906 *
c1e8d7c6 2907 * Drop the mmap_lock before waiting on IO, if we can. The file
89b15332
JW
2908 * is pinning the mapping, as per above.
2909 */
97ba0c2b 2910 if ((dirtied || page_mkwrite) && mapping) {
89b15332
JW
2911 struct file *fpin;
2912
2913 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
97ba0c2b 2914 balance_dirty_pages_ratelimited(mapping);
89b15332
JW
2915 if (fpin) {
2916 fput(fpin);
2917 return VM_FAULT_RETRY;
2918 }
97ba0c2b
JK
2919 }
2920
89b15332 2921 return 0;
97ba0c2b
JK
2922}
2923
4e047f89
SR
2924/*
2925 * Handle write page faults for pages that can be reused in the current vma
2926 *
2927 * This can happen either due to the mapping being with the VM_SHARED flag,
2928 * or due to us being the last reference standing to the page. In either
2929 * case, all we need to do here is to mark the page as writable and update
2930 * any related book-keeping.
2931 */
997dd98d 2932static inline void wp_page_reuse(struct vm_fault *vmf)
82b0f8c3 2933 __releases(vmf->ptl)
4e047f89 2934{
82b0f8c3 2935 struct vm_area_struct *vma = vmf->vma;
a41b70d6 2936 struct page *page = vmf->page;
4e047f89
SR
2937 pte_t entry;
2938 /*
2939 * Clear the pages cpupid information as the existing
2940 * information potentially belongs to a now completely
2941 * unrelated process.
2942 */
2943 if (page)
2944 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2945
2994302b
JK
2946 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2947 entry = pte_mkyoung(vmf->orig_pte);
4e047f89 2948 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
82b0f8c3
JK
2949 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2950 update_mmu_cache(vma, vmf->address, vmf->pte);
2951 pte_unmap_unlock(vmf->pte, vmf->ptl);
798a6b87 2952 count_vm_event(PGREUSE);
4e047f89
SR
2953}
2954
2f38ab2c
SR
2955/*
2956 * Handle the case of a page which we actually need to copy to a new page.
2957 *
c1e8d7c6 2958 * Called with mmap_lock locked and the old page referenced, but
2f38ab2c
SR
2959 * without the ptl held.
2960 *
2961 * High level logic flow:
2962 *
2963 * - Allocate a page, copy the content of the old page to the new one.
2964 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2965 * - Take the PTL. If the pte changed, bail out and release the allocated page
2966 * - If the pte is still the way we remember it, update the page table and all
2967 * relevant references. This includes dropping the reference the page-table
2968 * held to the old page, as well as updating the rmap.
2969 * - In any case, unlock the PTL and drop the reference we took to the old page.
2970 */
2b740303 2971static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2f38ab2c 2972{
82b0f8c3 2973 struct vm_area_struct *vma = vmf->vma;
bae473a4 2974 struct mm_struct *mm = vma->vm_mm;
a41b70d6 2975 struct page *old_page = vmf->page;
2f38ab2c 2976 struct page *new_page = NULL;
2f38ab2c
SR
2977 pte_t entry;
2978 int page_copied = 0;
ac46d4f3 2979 struct mmu_notifier_range range;
2f38ab2c
SR
2980
2981 if (unlikely(anon_vma_prepare(vma)))
2982 goto oom;
2983
2994302b 2984 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
82b0f8c3
JK
2985 new_page = alloc_zeroed_user_highpage_movable(vma,
2986 vmf->address);
2f38ab2c
SR
2987 if (!new_page)
2988 goto oom;
2989 } else {
bae473a4 2990 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 2991 vmf->address);
2f38ab2c
SR
2992 if (!new_page)
2993 goto oom;
83d116c5
JH
2994
2995 if (!cow_user_page(new_page, old_page, vmf)) {
2996 /*
2997 * COW failed, if the fault was solved by other,
2998 * it's fine. If not, userspace would re-fault on
2999 * the same address and we will handle the fault
3000 * from the second attempt.
3001 */
3002 put_page(new_page);
3003 if (old_page)
3004 put_page(old_page);
3005 return 0;
3006 }
2f38ab2c 3007 }
2f38ab2c 3008
8f425e4e 3009 if (mem_cgroup_charge(page_folio(new_page), mm, GFP_KERNEL))
2f38ab2c 3010 goto oom_free_new;
9d82c694 3011 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2f38ab2c 3012
eb3c24f3
MG
3013 __SetPageUptodate(new_page);
3014
7269f999 3015 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6f4f13e8 3016 vmf->address & PAGE_MASK,
ac46d4f3
JG
3017 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3018 mmu_notifier_invalidate_range_start(&range);
2f38ab2c
SR
3019
3020 /*
3021 * Re-check the pte - we dropped the lock
3022 */
82b0f8c3 3023 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2994302b 3024 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2f38ab2c
SR
3025 if (old_page) {
3026 if (!PageAnon(old_page)) {
eca56ff9
JM
3027 dec_mm_counter_fast(mm,
3028 mm_counter_file(old_page));
2f38ab2c
SR
3029 inc_mm_counter_fast(mm, MM_ANONPAGES);
3030 }
3031 } else {
3032 inc_mm_counter_fast(mm, MM_ANONPAGES);
3033 }
2994302b 3034 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2f38ab2c 3035 entry = mk_pte(new_page, vma->vm_page_prot);
50c25ee9 3036 entry = pte_sw_mkyoung(entry);
2f38ab2c 3037 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
111fe718 3038
2f38ab2c
SR
3039 /*
3040 * Clear the pte entry and flush it first, before updating the
111fe718
NP
3041 * pte with the new entry, to keep TLBs on different CPUs in
3042 * sync. This code used to set the new PTE then flush TLBs, but
3043 * that left a window where the new PTE could be loaded into
3044 * some TLBs while the old PTE remains in others.
2f38ab2c 3045 */
82b0f8c3
JK
3046 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3047 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
b518154e 3048 lru_cache_add_inactive_or_unevictable(new_page, vma);
2f38ab2c
SR
3049 /*
3050 * We call the notify macro here because, when using secondary
3051 * mmu page tables (such as kvm shadow page tables), we want the
3052 * new page to be mapped directly into the secondary page table.
3053 */
82b0f8c3
JK
3054 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3055 update_mmu_cache(vma, vmf->address, vmf->pte);
2f38ab2c
SR
3056 if (old_page) {
3057 /*
3058 * Only after switching the pte to the new page may
3059 * we remove the mapcount here. Otherwise another
3060 * process may come and find the rmap count decremented
3061 * before the pte is switched to the new page, and
3062 * "reuse" the old page writing into it while our pte
3063 * here still points into it and can be read by other
3064 * threads.
3065 *
3066 * The critical issue is to order this
3067 * page_remove_rmap with the ptp_clear_flush above.
3068 * Those stores are ordered by (if nothing else,)
3069 * the barrier present in the atomic_add_negative
3070 * in page_remove_rmap.
3071 *
3072 * Then the TLB flush in ptep_clear_flush ensures that
3073 * no process can access the old page before the
3074 * decremented mapcount is visible. And the old page
3075 * cannot be reused until after the decremented
3076 * mapcount is visible. So transitively, TLBs to
3077 * old page will be flushed before it can be reused.
3078 */
d281ee61 3079 page_remove_rmap(old_page, false);
2f38ab2c
SR
3080 }
3081
3082 /* Free the old page.. */
3083 new_page = old_page;
3084 page_copied = 1;
3085 } else {
7df67697 3086 update_mmu_tlb(vma, vmf->address, vmf->pte);
2f38ab2c
SR
3087 }
3088
3089 if (new_page)
09cbfeaf 3090 put_page(new_page);
2f38ab2c 3091
82b0f8c3 3092 pte_unmap_unlock(vmf->pte, vmf->ptl);
4645b9fe
JG
3093 /*
3094 * No need to double call mmu_notifier->invalidate_range() callback as
3095 * the above ptep_clear_flush_notify() did already call it.
3096 */
ac46d4f3 3097 mmu_notifier_invalidate_range_only_end(&range);
2f38ab2c
SR
3098 if (old_page) {
3099 /*
3100 * Don't let another task, with possibly unlocked vma,
3101 * keep the mlocked page.
3102 */
3103 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
3104 lock_page(old_page); /* LRU manipulation */
e90309c9
KS
3105 if (PageMlocked(old_page))
3106 munlock_vma_page(old_page);
2f38ab2c
SR
3107 unlock_page(old_page);
3108 }
f4c4a3f4
YH
3109 if (page_copied)
3110 free_swap_cache(old_page);
09cbfeaf 3111 put_page(old_page);
2f38ab2c
SR
3112 }
3113 return page_copied ? VM_FAULT_WRITE : 0;
3114oom_free_new:
09cbfeaf 3115 put_page(new_page);
2f38ab2c
SR
3116oom:
3117 if (old_page)
09cbfeaf 3118 put_page(old_page);
2f38ab2c
SR
3119 return VM_FAULT_OOM;
3120}
3121
66a6197c
JK
3122/**
3123 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3124 * writeable once the page is prepared
3125 *
3126 * @vmf: structure describing the fault
3127 *
3128 * This function handles all that is needed to finish a write page fault in a
3129 * shared mapping due to PTE being read-only once the mapped page is prepared.
a862f68a 3130 * It handles locking of PTE and modifying it.
66a6197c
JK
3131 *
3132 * The function expects the page to be locked or other protection against
3133 * concurrent faults / writeback (such as DAX radix tree locks).
a862f68a 3134 *
2797e79f 3135 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
a862f68a 3136 * we acquired PTE lock.
66a6197c 3137 */
2b740303 3138vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
66a6197c
JK
3139{
3140 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3141 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3142 &vmf->ptl);
3143 /*
3144 * We might have raced with another page fault while we released the
3145 * pte_offset_map_lock.
3146 */
3147 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
7df67697 3148 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
66a6197c 3149 pte_unmap_unlock(vmf->pte, vmf->ptl);
a19e2553 3150 return VM_FAULT_NOPAGE;
66a6197c
JK
3151 }
3152 wp_page_reuse(vmf);
a19e2553 3153 return 0;
66a6197c
JK
3154}
3155
dd906184
BH
3156/*
3157 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3158 * mapping
3159 */
2b740303 3160static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
dd906184 3161{
82b0f8c3 3162 struct vm_area_struct *vma = vmf->vma;
bae473a4 3163
dd906184 3164 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2b740303 3165 vm_fault_t ret;
dd906184 3166
82b0f8c3 3167 pte_unmap_unlock(vmf->pte, vmf->ptl);
fe82221f 3168 vmf->flags |= FAULT_FLAG_MKWRITE;
11bac800 3169 ret = vma->vm_ops->pfn_mkwrite(vmf);
2f89dc12 3170 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
dd906184 3171 return ret;
66a6197c 3172 return finish_mkwrite_fault(vmf);
dd906184 3173 }
997dd98d
JK
3174 wp_page_reuse(vmf);
3175 return VM_FAULT_WRITE;
dd906184
BH
3176}
3177
2b740303 3178static vm_fault_t wp_page_shared(struct vm_fault *vmf)
82b0f8c3 3179 __releases(vmf->ptl)
93e478d4 3180{
82b0f8c3 3181 struct vm_area_struct *vma = vmf->vma;
89b15332 3182 vm_fault_t ret = VM_FAULT_WRITE;
93e478d4 3183
a41b70d6 3184 get_page(vmf->page);
93e478d4 3185
93e478d4 3186 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2b740303 3187 vm_fault_t tmp;
93e478d4 3188
82b0f8c3 3189 pte_unmap_unlock(vmf->pte, vmf->ptl);
38b8cb7f 3190 tmp = do_page_mkwrite(vmf);
93e478d4
SR
3191 if (unlikely(!tmp || (tmp &
3192 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
a41b70d6 3193 put_page(vmf->page);
93e478d4
SR
3194 return tmp;
3195 }
66a6197c 3196 tmp = finish_mkwrite_fault(vmf);
a19e2553 3197 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
a41b70d6 3198 unlock_page(vmf->page);
a41b70d6 3199 put_page(vmf->page);
66a6197c 3200 return tmp;
93e478d4 3201 }
66a6197c
JK
3202 } else {
3203 wp_page_reuse(vmf);
997dd98d 3204 lock_page(vmf->page);
93e478d4 3205 }
89b15332 3206 ret |= fault_dirty_shared_page(vmf);
997dd98d 3207 put_page(vmf->page);
93e478d4 3208
89b15332 3209 return ret;
93e478d4
SR
3210}
3211
1da177e4
LT
3212/*
3213 * This routine handles present pages, when users try to write
3214 * to a shared page. It is done by copying the page to a new address
3215 * and decrementing the shared-page counter for the old page.
3216 *
1da177e4
LT
3217 * Note that this routine assumes that the protection checks have been
3218 * done by the caller (the low-level page fault routine in most cases).
3219 * Thus we can safely just mark it writable once we've done any necessary
3220 * COW.
3221 *
3222 * We also mark the page dirty at this point even though the page will
3223 * change only once the write actually happens. This avoids a few races,
3224 * and potentially makes it more efficient.
3225 *
c1e8d7c6 3226 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3227 * but allow concurrent faults), with pte both mapped and locked.
c1e8d7c6 3228 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 3229 */
2b740303 3230static vm_fault_t do_wp_page(struct vm_fault *vmf)
82b0f8c3 3231 __releases(vmf->ptl)
1da177e4 3232{
82b0f8c3 3233 struct vm_area_struct *vma = vmf->vma;
1da177e4 3234
292924b2 3235 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
529b930b
AA
3236 pte_unmap_unlock(vmf->pte, vmf->ptl);
3237 return handle_userfault(vmf, VM_UFFD_WP);
3238 }
3239
6ce64428
NA
3240 /*
3241 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3242 * is flushed in this case before copying.
3243 */
3244 if (unlikely(userfaultfd_wp(vmf->vma) &&
3245 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3246 flush_tlb_page(vmf->vma, vmf->address);
3247
a41b70d6
JK
3248 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3249 if (!vmf->page) {
251b97f5 3250 /*
64e45507
PF
3251 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3252 * VM_PFNMAP VMA.
251b97f5
PZ
3253 *
3254 * We should not cow pages in a shared writeable mapping.
dd906184 3255 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5
PZ
3256 */
3257 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3258 (VM_WRITE|VM_SHARED))
2994302b 3259 return wp_pfn_shared(vmf);
2f38ab2c 3260
82b0f8c3 3261 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 3262 return wp_page_copy(vmf);
251b97f5 3263 }
1da177e4 3264
d08b3851 3265 /*
ee6a6457
PZ
3266 * Take out anonymous pages first, anonymous shared vmas are
3267 * not dirty accountable.
d08b3851 3268 */
52d1e606 3269 if (PageAnon(vmf->page)) {
09854ba9
LT
3270 struct page *page = vmf->page;
3271
3272 /* PageKsm() doesn't necessarily raise the page refcount */
3273 if (PageKsm(page) || page_count(page) != 1)
3274 goto copy;
3275 if (!trylock_page(page))
3276 goto copy;
3277 if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
3278 unlock_page(page);
52d1e606 3279 goto copy;
b009c024 3280 }
09854ba9
LT
3281 /*
3282 * Ok, we've got the only map reference, and the only
3283 * page count reference, and the page is locked,
3284 * it's dark out, and we're wearing sunglasses. Hit it.
3285 */
09854ba9 3286 unlock_page(page);
be068f29 3287 wp_page_reuse(vmf);
09854ba9 3288 return VM_FAULT_WRITE;
ee6a6457 3289 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 3290 (VM_WRITE|VM_SHARED))) {
a41b70d6 3291 return wp_page_shared(vmf);
1da177e4 3292 }
52d1e606 3293copy:
1da177e4
LT
3294 /*
3295 * Ok, we need to copy. Oh, well..
3296 */
a41b70d6 3297 get_page(vmf->page);
28766805 3298
82b0f8c3 3299 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 3300 return wp_page_copy(vmf);
1da177e4
LT
3301}
3302
97a89413 3303static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
3304 unsigned long start_addr, unsigned long end_addr,
3305 struct zap_details *details)
3306{
f5cc4eef 3307 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
3308}
3309
f808c13f 3310static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
232a6a1c
PX
3311 pgoff_t first_index,
3312 pgoff_t last_index,
1da177e4
LT
3313 struct zap_details *details)
3314{
3315 struct vm_area_struct *vma;
1da177e4
LT
3316 pgoff_t vba, vea, zba, zea;
3317
232a6a1c 3318 vma_interval_tree_foreach(vma, root, first_index, last_index) {
1da177e4 3319 vba = vma->vm_pgoff;
d6e93217 3320 vea = vba + vma_pages(vma) - 1;
232a6a1c 3321 zba = first_index;
1da177e4
LT
3322 if (zba < vba)
3323 zba = vba;
232a6a1c 3324 zea = last_index;
1da177e4
LT
3325 if (zea > vea)
3326 zea = vea;
3327
97a89413 3328 unmap_mapping_range_vma(vma,
1da177e4
LT
3329 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3330 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 3331 details);
1da177e4
LT
3332 }
3333}
3334
22061a1f
HD
3335/**
3336 * unmap_mapping_page() - Unmap single page from processes.
3337 * @page: The locked page to be unmapped.
3338 *
3339 * Unmap this page from any userspace process which still has it mmaped.
3340 * Typically, for efficiency, the range of nearby pages has already been
3341 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3342 * truncation or invalidation holds the lock on a page, it may find that
3343 * the page has been remapped again: and then uses unmap_mapping_page()
3344 * to unmap it finally.
3345 */
3346void unmap_mapping_page(struct page *page)
3347{
3348 struct address_space *mapping = page->mapping;
3349 struct zap_details details = { };
232a6a1c
PX
3350 pgoff_t first_index;
3351 pgoff_t last_index;
22061a1f
HD
3352
3353 VM_BUG_ON(!PageLocked(page));
3354 VM_BUG_ON(PageTail(page));
3355
232a6a1c
PX
3356 first_index = page->index;
3357 last_index = page->index + thp_nr_pages(page) - 1;
3358
91b61ef3 3359 details.zap_mapping = mapping;
22061a1f
HD
3360 details.single_page = page;
3361
3362 i_mmap_lock_write(mapping);
3363 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
232a6a1c
PX
3364 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3365 last_index, &details);
22061a1f
HD
3366 i_mmap_unlock_write(mapping);
3367}
3368
977fbdcd
MW
3369/**
3370 * unmap_mapping_pages() - Unmap pages from processes.
3371 * @mapping: The address space containing pages to be unmapped.
3372 * @start: Index of first page to be unmapped.
3373 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3374 * @even_cows: Whether to unmap even private COWed pages.
3375 *
3376 * Unmap the pages in this address space from any userspace process which
3377 * has them mmaped. Generally, you want to remove COWed pages as well when
3378 * a file is being truncated, but not when invalidating pages from the page
3379 * cache.
3380 */
3381void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3382 pgoff_t nr, bool even_cows)
3383{
3384 struct zap_details details = { };
232a6a1c
PX
3385 pgoff_t first_index = start;
3386 pgoff_t last_index = start + nr - 1;
977fbdcd 3387
91b61ef3 3388 details.zap_mapping = even_cows ? NULL : mapping;
232a6a1c
PX
3389 if (last_index < first_index)
3390 last_index = ULONG_MAX;
977fbdcd
MW
3391
3392 i_mmap_lock_write(mapping);
3393 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
232a6a1c
PX
3394 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3395 last_index, &details);
977fbdcd
MW
3396 i_mmap_unlock_write(mapping);
3397}
6e0e99d5 3398EXPORT_SYMBOL_GPL(unmap_mapping_pages);
977fbdcd 3399
1da177e4 3400/**
8a5f14a2 3401 * unmap_mapping_range - unmap the portion of all mmaps in the specified
977fbdcd 3402 * address_space corresponding to the specified byte range in the underlying
8a5f14a2
KS
3403 * file.
3404 *
3d41088f 3405 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
3406 * @holebegin: byte in first page to unmap, relative to the start of
3407 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 3408 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
3409 * must keep the partial page. In contrast, we must get rid of
3410 * partial pages.
3411 * @holelen: size of prospective hole in bytes. This will be rounded
3412 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3413 * end of the file.
3414 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3415 * but 0 when invalidating pagecache, don't throw away private data.
3416 */
3417void unmap_mapping_range(struct address_space *mapping,
3418 loff_t const holebegin, loff_t const holelen, int even_cows)
3419{
1da177e4
LT
3420 pgoff_t hba = holebegin >> PAGE_SHIFT;
3421 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3422
3423 /* Check for overflow. */
3424 if (sizeof(holelen) > sizeof(hlen)) {
3425 long long holeend =
3426 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3427 if (holeend & ~(long long)ULONG_MAX)
3428 hlen = ULONG_MAX - hba + 1;
3429 }
3430
977fbdcd 3431 unmap_mapping_pages(mapping, hba, hlen, even_cows);
1da177e4
LT
3432}
3433EXPORT_SYMBOL(unmap_mapping_range);
3434
b756a3b5
AP
3435/*
3436 * Restore a potential device exclusive pte to a working pte entry
3437 */
3438static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3439{
3440 struct page *page = vmf->page;
3441 struct vm_area_struct *vma = vmf->vma;
3442 struct mmu_notifier_range range;
3443
3444 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags))
3445 return VM_FAULT_RETRY;
3446 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
3447 vma->vm_mm, vmf->address & PAGE_MASK,
3448 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3449 mmu_notifier_invalidate_range_start(&range);
3450
3451 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3452 &vmf->ptl);
3453 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3454 restore_exclusive_pte(vma, page, vmf->address, vmf->pte);
3455
3456 pte_unmap_unlock(vmf->pte, vmf->ptl);
3457 unlock_page(page);
3458
3459 mmu_notifier_invalidate_range_end(&range);
3460 return 0;
3461}
3462
1da177e4 3463/*
c1e8d7c6 3464 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3465 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
3466 * We return with pte unmapped and unlocked.
3467 *
c1e8d7c6 3468 * We return with the mmap_lock locked or unlocked in the same cases
9a95f3cf 3469 * as does filemap_fault().
1da177e4 3470 */
2b740303 3471vm_fault_t do_swap_page(struct vm_fault *vmf)
1da177e4 3472{
82b0f8c3 3473 struct vm_area_struct *vma = vmf->vma;
eaf649eb 3474 struct page *page = NULL, *swapcache;
2799e775 3475 struct swap_info_struct *si = NULL;
65500d23 3476 swp_entry_t entry;
1da177e4 3477 pte_t pte;
d065bd81 3478 int locked;
ad8c2ee8 3479 int exclusive = 0;
2b740303 3480 vm_fault_t ret = 0;
aae466b0 3481 void *shadow = NULL;
1da177e4 3482
2ca99358 3483 if (!pte_unmap_same(vmf))
8f4e2101 3484 goto out;
65500d23 3485
2994302b 3486 entry = pte_to_swp_entry(vmf->orig_pte);
d1737fdb
AK
3487 if (unlikely(non_swap_entry(entry))) {
3488 if (is_migration_entry(entry)) {
82b0f8c3
JK
3489 migration_entry_wait(vma->vm_mm, vmf->pmd,
3490 vmf->address);
b756a3b5
AP
3491 } else if (is_device_exclusive_entry(entry)) {
3492 vmf->page = pfn_swap_entry_to_page(entry);
3493 ret = remove_device_exclusive_entry(vmf);
5042db43 3494 } else if (is_device_private_entry(entry)) {
af5cdaf8 3495 vmf->page = pfn_swap_entry_to_page(entry);
897e6365 3496 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
d1737fdb
AK
3497 } else if (is_hwpoison_entry(entry)) {
3498 ret = VM_FAULT_HWPOISON;
3499 } else {
2994302b 3500 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
d99be1a8 3501 ret = VM_FAULT_SIGBUS;
d1737fdb 3502 }
0697212a
CL
3503 goto out;
3504 }
0bcac06f 3505
2799e775
ML
3506 /* Prevent swapoff from happening to us. */
3507 si = get_swap_device(entry);
3508 if (unlikely(!si))
3509 goto out;
0bcac06f 3510
3d1c7fd9 3511 delayacct_set_flag(current, DELAYACCT_PF_SWAPIN);
eaf649eb
MK
3512 page = lookup_swap_cache(entry, vma, vmf->address);
3513 swapcache = page;
f8020772 3514
1da177e4 3515 if (!page) {
a449bf58
QC
3516 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3517 __swap_count(entry) == 1) {
0bcac06f 3518 /* skip swapcache */
e9e9b7ec
MK
3519 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3520 vmf->address);
0bcac06f
MK
3521 if (page) {
3522 __SetPageLocked(page);
3523 __SetPageSwapBacked(page);
4c6355b2 3524
0add0c77
SB
3525 if (mem_cgroup_swapin_charge_page(page,
3526 vma->vm_mm, GFP_KERNEL, entry)) {
545b1b07 3527 ret = VM_FAULT_OOM;
4c6355b2 3528 goto out_page;
545b1b07 3529 }
0add0c77 3530 mem_cgroup_swapin_uncharge_swap(entry);
4c6355b2 3531
aae466b0
JK
3532 shadow = get_shadow_from_swap_cache(entry);
3533 if (shadow)
0995d7e5
MWO
3534 workingset_refault(page_folio(page),
3535 shadow);
0076f029 3536
6058eaec 3537 lru_cache_add(page);
0add0c77
SB
3538
3539 /* To provide entry to swap_readpage() */
3540 set_page_private(page, entry.val);
0bcac06f 3541 swap_readpage(page, true);
0add0c77 3542 set_page_private(page, 0);
0bcac06f 3543 }
aa8d22a1 3544 } else {
e9e9b7ec
MK
3545 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3546 vmf);
aa8d22a1 3547 swapcache = page;
0bcac06f
MK
3548 }
3549
1da177e4
LT
3550 if (!page) {
3551 /*
8f4e2101
HD
3552 * Back out if somebody else faulted in this pte
3553 * while we released the pte lock.
1da177e4 3554 */
82b0f8c3
JK
3555 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3556 vmf->address, &vmf->ptl);
2994302b 3557 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
1da177e4 3558 ret = VM_FAULT_OOM;
3d1c7fd9 3559 delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
65500d23 3560 goto unlock;
1da177e4
LT
3561 }
3562
3563 /* Had to read the page from swap area: Major fault */
3564 ret = VM_FAULT_MAJOR;
f8891e5e 3565 count_vm_event(PGMAJFAULT);
2262185c 3566 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
d1737fdb 3567 } else if (PageHWPoison(page)) {
71f72525
WF
3568 /*
3569 * hwpoisoned dirty swapcache pages are kept for killing
3570 * owner processes (which may be unknown at hwpoison time)
3571 */
d1737fdb 3572 ret = VM_FAULT_HWPOISON;
3d1c7fd9 3573 delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
4779cb31 3574 goto out_release;
1da177e4
LT
3575 }
3576
82b0f8c3 3577 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
e709ffd6 3578
3d1c7fd9 3579 delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
d065bd81
ML
3580 if (!locked) {
3581 ret |= VM_FAULT_RETRY;
3582 goto out_release;
3583 }
073e587e 3584
4969c119 3585 /*
31c4a3d3
HD
3586 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3587 * release the swapcache from under us. The page pin, and pte_same
3588 * test below, are not enough to exclude that. Even if it is still
3589 * swapcache, we need to check that the page's swap has not changed.
4969c119 3590 */
0bcac06f
MK
3591 if (unlikely((!PageSwapCache(page) ||
3592 page_private(page) != entry.val)) && swapcache)
4969c119
AA
3593 goto out_page;
3594
82b0f8c3 3595 page = ksm_might_need_to_copy(page, vma, vmf->address);
cbf86cfe
HD
3596 if (unlikely(!page)) {
3597 ret = VM_FAULT_OOM;
3598 page = swapcache;
cbf86cfe 3599 goto out_page;
5ad64688
HD
3600 }
3601
9d82c694 3602 cgroup_throttle_swaprate(page, GFP_KERNEL);
8a9f3ccd 3603
1da177e4 3604 /*
8f4e2101 3605 * Back out if somebody else already faulted in this pte.
1da177e4 3606 */
82b0f8c3
JK
3607 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3608 &vmf->ptl);
2994302b 3609 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
b8107480 3610 goto out_nomap;
b8107480
KK
3611
3612 if (unlikely(!PageUptodate(page))) {
3613 ret = VM_FAULT_SIGBUS;
3614 goto out_nomap;
1da177e4
LT
3615 }
3616
8c7c6e34
KH
3617 /*
3618 * The page isn't present yet, go ahead with the fault.
3619 *
3620 * Be careful about the sequence of operations here.
3621 * To get its accounting right, reuse_swap_page() must be called
3622 * while the page is counted on swap but not yet in mapcount i.e.
3623 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3624 * must be called after the swap_free(), or it will never succeed.
8c7c6e34 3625 */
1da177e4 3626
bae473a4
KS
3627 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3628 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
1da177e4 3629 pte = mk_pte(page, vma->vm_page_prot);
020e8765 3630 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
1da177e4 3631 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
82b0f8c3 3632 vmf->flags &= ~FAULT_FLAG_WRITE;
9a5b489b 3633 ret |= VM_FAULT_WRITE;
d281ee61 3634 exclusive = RMAP_EXCLUSIVE;
1da177e4 3635 }
1da177e4 3636 flush_icache_page(vma, page);
2994302b 3637 if (pte_swp_soft_dirty(vmf->orig_pte))
179ef71c 3638 pte = pte_mksoft_dirty(pte);
f45ec5ff
PX
3639 if (pte_swp_uffd_wp(vmf->orig_pte)) {
3640 pte = pte_mkuffd_wp(pte);
3641 pte = pte_wrprotect(pte);
3642 }
2994302b 3643 vmf->orig_pte = pte;
0bcac06f
MK
3644
3645 /* ksm created a completely new copy */
3646 if (unlikely(page != swapcache && swapcache)) {
82b0f8c3 3647 page_add_new_anon_rmap(page, vma, vmf->address, false);
b518154e 3648 lru_cache_add_inactive_or_unevictable(page, vma);
0bcac06f
MK
3649 } else {
3650 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
00501b53 3651 }
1da177e4 3652
1eba86c0
PT
3653 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3654 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3655
c475a8ab 3656 swap_free(entry);
5ccc5aba
VD
3657 if (mem_cgroup_swap_full(page) ||
3658 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 3659 try_to_free_swap(page);
c475a8ab 3660 unlock_page(page);
0bcac06f 3661 if (page != swapcache && swapcache) {
4969c119
AA
3662 /*
3663 * Hold the lock to avoid the swap entry to be reused
3664 * until we take the PT lock for the pte_same() check
3665 * (to avoid false positives from pte_same). For
3666 * further safety release the lock after the swap_free
3667 * so that the swap count won't change under a
3668 * parallel locked swapcache.
3669 */
3670 unlock_page(swapcache);
09cbfeaf 3671 put_page(swapcache);
4969c119 3672 }
c475a8ab 3673
82b0f8c3 3674 if (vmf->flags & FAULT_FLAG_WRITE) {
2994302b 3675 ret |= do_wp_page(vmf);
61469f1d
HD
3676 if (ret & VM_FAULT_ERROR)
3677 ret &= VM_FAULT_ERROR;
1da177e4
LT
3678 goto out;
3679 }
3680
3681 /* No need to invalidate - it was non-present before */
82b0f8c3 3682 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3683unlock:
82b0f8c3 3684 pte_unmap_unlock(vmf->pte, vmf->ptl);
1da177e4 3685out:
2799e775
ML
3686 if (si)
3687 put_swap_device(si);
1da177e4 3688 return ret;
b8107480 3689out_nomap:
82b0f8c3 3690 pte_unmap_unlock(vmf->pte, vmf->ptl);
bc43f75c 3691out_page:
b8107480 3692 unlock_page(page);
4779cb31 3693out_release:
09cbfeaf 3694 put_page(page);
0bcac06f 3695 if (page != swapcache && swapcache) {
4969c119 3696 unlock_page(swapcache);
09cbfeaf 3697 put_page(swapcache);
4969c119 3698 }
2799e775
ML
3699 if (si)
3700 put_swap_device(si);
65500d23 3701 return ret;
1da177e4
LT
3702}
3703
3704/*
c1e8d7c6 3705 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3706 * but allow concurrent faults), and pte mapped but not yet locked.
c1e8d7c6 3707 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 3708 */
2b740303 3709static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
1da177e4 3710{
82b0f8c3 3711 struct vm_area_struct *vma = vmf->vma;
8f4e2101 3712 struct page *page;
2b740303 3713 vm_fault_t ret = 0;
1da177e4 3714 pte_t entry;
1da177e4 3715
6b7339f4
KS
3716 /* File mapping without ->vm_ops ? */
3717 if (vma->vm_flags & VM_SHARED)
3718 return VM_FAULT_SIGBUS;
3719
7267ec00
KS
3720 /*
3721 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3722 * pte_offset_map() on pmds where a huge pmd might be created
3723 * from a different thread.
3724 *
3e4e28c5 3725 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
7267ec00
KS
3726 * parallel threads are excluded by other means.
3727 *
3e4e28c5 3728 * Here we only have mmap_read_lock(mm).
7267ec00 3729 */
4cf58924 3730 if (pte_alloc(vma->vm_mm, vmf->pmd))
7267ec00
KS
3731 return VM_FAULT_OOM;
3732
f9ce0be7 3733 /* See comment in handle_pte_fault() */
82b0f8c3 3734 if (unlikely(pmd_trans_unstable(vmf->pmd)))
7267ec00
KS
3735 return 0;
3736
11ac5524 3737 /* Use the zero-page for reads */
82b0f8c3 3738 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 3739 !mm_forbids_zeropage(vma->vm_mm)) {
82b0f8c3 3740 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
62eede62 3741 vma->vm_page_prot));
82b0f8c3
JK
3742 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3743 vmf->address, &vmf->ptl);
7df67697
BM
3744 if (!pte_none(*vmf->pte)) {
3745 update_mmu_tlb(vma, vmf->address, vmf->pte);
a13ea5b7 3746 goto unlock;
7df67697 3747 }
6b31d595
MH
3748 ret = check_stable_address_space(vma->vm_mm);
3749 if (ret)
3750 goto unlock;
6b251fc9
AA
3751 /* Deliver the page fault to userland, check inside PT lock */
3752 if (userfaultfd_missing(vma)) {
82b0f8c3
JK
3753 pte_unmap_unlock(vmf->pte, vmf->ptl);
3754 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9 3755 }
a13ea5b7
HD
3756 goto setpte;
3757 }
3758
557ed1fa 3759 /* Allocate our own private page. */
557ed1fa
NP
3760 if (unlikely(anon_vma_prepare(vma)))
3761 goto oom;
82b0f8c3 3762 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
557ed1fa
NP
3763 if (!page)
3764 goto oom;
eb3c24f3 3765
8f425e4e 3766 if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
eb3c24f3 3767 goto oom_free_page;
9d82c694 3768 cgroup_throttle_swaprate(page, GFP_KERNEL);
eb3c24f3 3769
52f37629
MK
3770 /*
3771 * The memory barrier inside __SetPageUptodate makes sure that
f4f5329d 3772 * preceding stores to the page contents become visible before
52f37629
MK
3773 * the set_pte_at() write.
3774 */
0ed361de 3775 __SetPageUptodate(page);
8f4e2101 3776
557ed1fa 3777 entry = mk_pte(page, vma->vm_page_prot);
50c25ee9 3778 entry = pte_sw_mkyoung(entry);
1ac0cb5d
HD
3779 if (vma->vm_flags & VM_WRITE)
3780 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 3781
82b0f8c3
JK
3782 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3783 &vmf->ptl);
7df67697
BM
3784 if (!pte_none(*vmf->pte)) {
3785 update_mmu_cache(vma, vmf->address, vmf->pte);
557ed1fa 3786 goto release;
7df67697 3787 }
9ba69294 3788
6b31d595
MH
3789 ret = check_stable_address_space(vma->vm_mm);
3790 if (ret)
3791 goto release;
3792
6b251fc9
AA
3793 /* Deliver the page fault to userland, check inside PT lock */
3794 if (userfaultfd_missing(vma)) {
82b0f8c3 3795 pte_unmap_unlock(vmf->pte, vmf->ptl);
09cbfeaf 3796 put_page(page);
82b0f8c3 3797 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
3798 }
3799
bae473a4 3800 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 3801 page_add_new_anon_rmap(page, vma, vmf->address, false);
b518154e 3802 lru_cache_add_inactive_or_unevictable(page, vma);
a13ea5b7 3803setpte:
82b0f8c3 3804 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
1da177e4
LT
3805
3806 /* No need to invalidate - it was non-present before */
82b0f8c3 3807 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3808unlock:
82b0f8c3 3809 pte_unmap_unlock(vmf->pte, vmf->ptl);
6b31d595 3810 return ret;
8f4e2101 3811release:
09cbfeaf 3812 put_page(page);
8f4e2101 3813 goto unlock;
8a9f3ccd 3814oom_free_page:
09cbfeaf 3815 put_page(page);
65500d23 3816oom:
1da177e4
LT
3817 return VM_FAULT_OOM;
3818}
3819
9a95f3cf 3820/*
c1e8d7c6 3821 * The mmap_lock must have been held on entry, and may have been
9a95f3cf
PC
3822 * released depending on flags and vma->vm_ops->fault() return value.
3823 * See filemap_fault() and __lock_page_retry().
3824 */
2b740303 3825static vm_fault_t __do_fault(struct vm_fault *vmf)
7eae74af 3826{
82b0f8c3 3827 struct vm_area_struct *vma = vmf->vma;
2b740303 3828 vm_fault_t ret;
7eae74af 3829
63f3655f
MH
3830 /*
3831 * Preallocate pte before we take page_lock because this might lead to
3832 * deadlocks for memcg reclaim which waits for pages under writeback:
3833 * lock_page(A)
3834 * SetPageWriteback(A)
3835 * unlock_page(A)
3836 * lock_page(B)
3837 * lock_page(B)
d383807a 3838 * pte_alloc_one
63f3655f
MH
3839 * shrink_page_list
3840 * wait_on_page_writeback(A)
3841 * SetPageWriteback(B)
3842 * unlock_page(B)
3843 * # flush A, B to clear the writeback
3844 */
3845 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
a7069ee3 3846 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
63f3655f
MH
3847 if (!vmf->prealloc_pte)
3848 return VM_FAULT_OOM;
63f3655f
MH
3849 }
3850
11bac800 3851 ret = vma->vm_ops->fault(vmf);
3917048d 3852 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
b1aa812b 3853 VM_FAULT_DONE_COW)))
bc2466e4 3854 return ret;
7eae74af 3855
667240e0 3856 if (unlikely(PageHWPoison(vmf->page))) {
7eae74af 3857 if (ret & VM_FAULT_LOCKED)
667240e0
JK
3858 unlock_page(vmf->page);
3859 put_page(vmf->page);
936ca80d 3860 vmf->page = NULL;
7eae74af
KS
3861 return VM_FAULT_HWPOISON;
3862 }
3863
3864 if (unlikely(!(ret & VM_FAULT_LOCKED)))
667240e0 3865 lock_page(vmf->page);
7eae74af 3866 else
667240e0 3867 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
7eae74af 3868
7eae74af
KS
3869 return ret;
3870}
3871
396bcc52 3872#ifdef CONFIG_TRANSPARENT_HUGEPAGE
82b0f8c3 3873static void deposit_prealloc_pte(struct vm_fault *vmf)
953c66c2 3874{
82b0f8c3 3875 struct vm_area_struct *vma = vmf->vma;
953c66c2 3876
82b0f8c3 3877 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
953c66c2
AK
3878 /*
3879 * We are going to consume the prealloc table,
3880 * count that as nr_ptes.
3881 */
c4812909 3882 mm_inc_nr_ptes(vma->vm_mm);
7f2b6ce8 3883 vmf->prealloc_pte = NULL;
953c66c2
AK
3884}
3885
f9ce0be7 3886vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 3887{
82b0f8c3
JK
3888 struct vm_area_struct *vma = vmf->vma;
3889 bool write = vmf->flags & FAULT_FLAG_WRITE;
3890 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
10102459 3891 pmd_t entry;
2b740303 3892 int i;
d01ac3c3 3893 vm_fault_t ret = VM_FAULT_FALLBACK;
10102459
KS
3894
3895 if (!transhuge_vma_suitable(vma, haddr))
d01ac3c3 3896 return ret;
10102459 3897
10102459 3898 page = compound_head(page);
d01ac3c3
MWO
3899 if (compound_order(page) != HPAGE_PMD_ORDER)
3900 return ret;
10102459 3901
eac96c3e
YS
3902 /*
3903 * Just backoff if any subpage of a THP is corrupted otherwise
3904 * the corrupted page may mapped by PMD silently to escape the
3905 * check. This kind of THP just can be PTE mapped. Access to
3906 * the corrupted subpage should trigger SIGBUS as expected.
3907 */
3908 if (unlikely(PageHasHWPoisoned(page)))
3909 return ret;
3910
953c66c2 3911 /*
f0953a1b 3912 * Archs like ppc64 need additional space to store information
953c66c2
AK
3913 * related to pte entry. Use the preallocated table for that.
3914 */
82b0f8c3 3915 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4cf58924 3916 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
82b0f8c3 3917 if (!vmf->prealloc_pte)
953c66c2 3918 return VM_FAULT_OOM;
953c66c2
AK
3919 }
3920
82b0f8c3
JK
3921 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3922 if (unlikely(!pmd_none(*vmf->pmd)))
10102459
KS
3923 goto out;
3924
3925 for (i = 0; i < HPAGE_PMD_NR; i++)
3926 flush_icache_page(vma, page + i);
3927
3928 entry = mk_huge_pmd(page, vma->vm_page_prot);
3929 if (write)
f55e1014 3930 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
10102459 3931
fadae295 3932 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
10102459 3933 page_add_file_rmap(page, true);
953c66c2
AK
3934 /*
3935 * deposit and withdraw with pmd lock held
3936 */
3937 if (arch_needs_pgtable_deposit())
82b0f8c3 3938 deposit_prealloc_pte(vmf);
10102459 3939
82b0f8c3 3940 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
10102459 3941
82b0f8c3 3942 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
10102459
KS
3943
3944 /* fault is handled */
3945 ret = 0;
95ecedcd 3946 count_vm_event(THP_FILE_MAPPED);
10102459 3947out:
82b0f8c3 3948 spin_unlock(vmf->ptl);
10102459
KS
3949 return ret;
3950}
3951#else
f9ce0be7 3952vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 3953{
f9ce0be7 3954 return VM_FAULT_FALLBACK;
10102459
KS
3955}
3956#endif
3957
9d3af4b4 3958void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
3bb97794 3959{
82b0f8c3
JK
3960 struct vm_area_struct *vma = vmf->vma;
3961 bool write = vmf->flags & FAULT_FLAG_WRITE;
9d3af4b4 3962 bool prefault = vmf->address != addr;
3bb97794 3963 pte_t entry;
7267ec00 3964
3bb97794
KS
3965 flush_icache_page(vma, page);
3966 entry = mk_pte(page, vma->vm_page_prot);
46bdb427
WD
3967
3968 if (prefault && arch_wants_old_prefaulted_pte())
3969 entry = pte_mkold(entry);
50c25ee9
TB
3970 else
3971 entry = pte_sw_mkyoung(entry);
46bdb427 3972
3bb97794
KS
3973 if (write)
3974 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
bae473a4
KS
3975 /* copy-on-write page */
3976 if (write && !(vma->vm_flags & VM_SHARED)) {
3bb97794 3977 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
9d3af4b4 3978 page_add_new_anon_rmap(page, vma, addr, false);
b518154e 3979 lru_cache_add_inactive_or_unevictable(page, vma);
3bb97794 3980 } else {
eca56ff9 3981 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
dd78fedd 3982 page_add_file_rmap(page, false);
3bb97794 3983 }
9d3af4b4 3984 set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
3bb97794
KS
3985}
3986
9118c0cb
JK
3987/**
3988 * finish_fault - finish page fault once we have prepared the page to fault
3989 *
3990 * @vmf: structure describing the fault
3991 *
3992 * This function handles all that is needed to finish a page fault once the
3993 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3994 * given page, adds reverse page mapping, handles memcg charges and LRU
a862f68a 3995 * addition.
9118c0cb
JK
3996 *
3997 * The function expects the page to be locked and on success it consumes a
3998 * reference of a page being mapped (for the PTE which maps it).
a862f68a
MR
3999 *
4000 * Return: %0 on success, %VM_FAULT_ code in case of error.
9118c0cb 4001 */
2b740303 4002vm_fault_t finish_fault(struct vm_fault *vmf)
9118c0cb 4003{
f9ce0be7 4004 struct vm_area_struct *vma = vmf->vma;
9118c0cb 4005 struct page *page;
f9ce0be7 4006 vm_fault_t ret;
9118c0cb
JK
4007
4008 /* Did we COW the page? */
f9ce0be7 4009 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
9118c0cb
JK
4010 page = vmf->cow_page;
4011 else
4012 page = vmf->page;
6b31d595
MH
4013
4014 /*
4015 * check even for read faults because we might have lost our CoWed
4016 * page
4017 */
f9ce0be7
KS
4018 if (!(vma->vm_flags & VM_SHARED)) {
4019 ret = check_stable_address_space(vma->vm_mm);
4020 if (ret)
4021 return ret;
4022 }
4023
4024 if (pmd_none(*vmf->pmd)) {
4025 if (PageTransCompound(page)) {
4026 ret = do_set_pmd(vmf, page);
4027 if (ret != VM_FAULT_FALLBACK)
4028 return ret;
4029 }
4030
03c4f204
QZ
4031 if (vmf->prealloc_pte)
4032 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4033 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
f9ce0be7
KS
4034 return VM_FAULT_OOM;
4035 }
4036
4037 /* See comment in handle_pte_fault() */
4038 if (pmd_devmap_trans_unstable(vmf->pmd))
4039 return 0;
4040
4041 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4042 vmf->address, &vmf->ptl);
4043 ret = 0;
4044 /* Re-check under ptl */
4045 if (likely(pte_none(*vmf->pte)))
9d3af4b4 4046 do_set_pte(vmf, page, vmf->address);
f9ce0be7
KS
4047 else
4048 ret = VM_FAULT_NOPAGE;
4049
4050 update_mmu_tlb(vma, vmf->address, vmf->pte);
4051 pte_unmap_unlock(vmf->pte, vmf->ptl);
9118c0cb
JK
4052 return ret;
4053}
4054
3a91053a
KS
4055static unsigned long fault_around_bytes __read_mostly =
4056 rounddown_pow_of_two(65536);
a9b0f861 4057
a9b0f861
KS
4058#ifdef CONFIG_DEBUG_FS
4059static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 4060{
a9b0f861 4061 *val = fault_around_bytes;
1592eef0
KS
4062 return 0;
4063}
4064
b4903d6e 4065/*
da391d64
WK
4066 * fault_around_bytes must be rounded down to the nearest page order as it's
4067 * what do_fault_around() expects to see.
b4903d6e 4068 */
a9b0f861 4069static int fault_around_bytes_set(void *data, u64 val)
1592eef0 4070{
a9b0f861 4071 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 4072 return -EINVAL;
b4903d6e
AR
4073 if (val > PAGE_SIZE)
4074 fault_around_bytes = rounddown_pow_of_two(val);
4075 else
4076 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
1592eef0
KS
4077 return 0;
4078}
0a1345f8 4079DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
a9b0f861 4080 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
4081
4082static int __init fault_around_debugfs(void)
4083{
d9f7979c
GKH
4084 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4085 &fault_around_bytes_fops);
1592eef0
KS
4086 return 0;
4087}
4088late_initcall(fault_around_debugfs);
1592eef0 4089#endif
8c6e50b0 4090
1fdb412b
KS
4091/*
4092 * do_fault_around() tries to map few pages around the fault address. The hope
4093 * is that the pages will be needed soon and this will lower the number of
4094 * faults to handle.
4095 *
4096 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4097 * not ready to be mapped: not up-to-date, locked, etc.
4098 *
4099 * This function is called with the page table lock taken. In the split ptlock
4100 * case the page table lock only protects only those entries which belong to
4101 * the page table corresponding to the fault address.
4102 *
4103 * This function doesn't cross the VMA boundaries, in order to call map_pages()
4104 * only once.
4105 *
da391d64
WK
4106 * fault_around_bytes defines how many bytes we'll try to map.
4107 * do_fault_around() expects it to be set to a power of two less than or equal
4108 * to PTRS_PER_PTE.
1fdb412b 4109 *
da391d64
WK
4110 * The virtual address of the area that we map is naturally aligned to
4111 * fault_around_bytes rounded down to the machine page size
4112 * (and therefore to page order). This way it's easier to guarantee
4113 * that we don't cross page table boundaries.
1fdb412b 4114 */
2b740303 4115static vm_fault_t do_fault_around(struct vm_fault *vmf)
8c6e50b0 4116{
82b0f8c3 4117 unsigned long address = vmf->address, nr_pages, mask;
0721ec8b 4118 pgoff_t start_pgoff = vmf->pgoff;
bae473a4 4119 pgoff_t end_pgoff;
2b740303 4120 int off;
8c6e50b0 4121
4db0c3c2 4122 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
aecd6f44
KS
4123 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4124
f9ce0be7
KS
4125 address = max(address & mask, vmf->vma->vm_start);
4126 off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
bae473a4 4127 start_pgoff -= off;
8c6e50b0
KS
4128
4129 /*
da391d64
WK
4130 * end_pgoff is either the end of the page table, the end of
4131 * the vma or nr_pages from start_pgoff, depending what is nearest.
8c6e50b0 4132 */
bae473a4 4133 end_pgoff = start_pgoff -
f9ce0be7 4134 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
8c6e50b0 4135 PTRS_PER_PTE - 1;
82b0f8c3 4136 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
bae473a4 4137 start_pgoff + nr_pages - 1);
8c6e50b0 4138
82b0f8c3 4139 if (pmd_none(*vmf->pmd)) {
4cf58924 4140 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
82b0f8c3 4141 if (!vmf->prealloc_pte)
f9ce0be7 4142 return VM_FAULT_OOM;
8c6e50b0
KS
4143 }
4144
f9ce0be7 4145 return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
8c6e50b0
KS
4146}
4147
2b740303 4148static vm_fault_t do_read_fault(struct vm_fault *vmf)
e655fb29 4149{
82b0f8c3 4150 struct vm_area_struct *vma = vmf->vma;
2b740303 4151 vm_fault_t ret = 0;
8c6e50b0
KS
4152
4153 /*
4154 * Let's call ->map_pages() first and use ->fault() as fallback
4155 * if page by the offset is not ready to be mapped (cold cache or
4156 * something).
4157 */
9b4bdd2f 4158 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
c949b097
AR
4159 if (likely(!userfaultfd_minor(vmf->vma))) {
4160 ret = do_fault_around(vmf);
4161 if (ret)
4162 return ret;
4163 }
8c6e50b0 4164 }
e655fb29 4165
936ca80d 4166 ret = __do_fault(vmf);
e655fb29
KS
4167 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4168 return ret;
4169
9118c0cb 4170 ret |= finish_fault(vmf);
936ca80d 4171 unlock_page(vmf->page);
7267ec00 4172 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
936ca80d 4173 put_page(vmf->page);
e655fb29
KS
4174 return ret;
4175}
4176
2b740303 4177static vm_fault_t do_cow_fault(struct vm_fault *vmf)
ec47c3b9 4178{
82b0f8c3 4179 struct vm_area_struct *vma = vmf->vma;
2b740303 4180 vm_fault_t ret;
ec47c3b9
KS
4181
4182 if (unlikely(anon_vma_prepare(vma)))
4183 return VM_FAULT_OOM;
4184
936ca80d
JK
4185 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4186 if (!vmf->cow_page)
ec47c3b9
KS
4187 return VM_FAULT_OOM;
4188
8f425e4e
MWO
4189 if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4190 GFP_KERNEL)) {
936ca80d 4191 put_page(vmf->cow_page);
ec47c3b9
KS
4192 return VM_FAULT_OOM;
4193 }
9d82c694 4194 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
ec47c3b9 4195
936ca80d 4196 ret = __do_fault(vmf);
ec47c3b9
KS
4197 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4198 goto uncharge_out;
3917048d
JK
4199 if (ret & VM_FAULT_DONE_COW)
4200 return ret;
ec47c3b9 4201
b1aa812b 4202 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
936ca80d 4203 __SetPageUptodate(vmf->cow_page);
ec47c3b9 4204
9118c0cb 4205 ret |= finish_fault(vmf);
b1aa812b
JK
4206 unlock_page(vmf->page);
4207 put_page(vmf->page);
7267ec00
KS
4208 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4209 goto uncharge_out;
ec47c3b9
KS
4210 return ret;
4211uncharge_out:
936ca80d 4212 put_page(vmf->cow_page);
ec47c3b9
KS
4213 return ret;
4214}
4215
2b740303 4216static vm_fault_t do_shared_fault(struct vm_fault *vmf)
1da177e4 4217{
82b0f8c3 4218 struct vm_area_struct *vma = vmf->vma;
2b740303 4219 vm_fault_t ret, tmp;
1d65f86d 4220
936ca80d 4221 ret = __do_fault(vmf);
7eae74af 4222 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 4223 return ret;
1da177e4
LT
4224
4225 /*
f0c6d4d2
KS
4226 * Check if the backing address space wants to know that the page is
4227 * about to become writable
1da177e4 4228 */
fb09a464 4229 if (vma->vm_ops->page_mkwrite) {
936ca80d 4230 unlock_page(vmf->page);
38b8cb7f 4231 tmp = do_page_mkwrite(vmf);
fb09a464
KS
4232 if (unlikely(!tmp ||
4233 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
936ca80d 4234 put_page(vmf->page);
fb09a464 4235 return tmp;
4294621f 4236 }
fb09a464
KS
4237 }
4238
9118c0cb 4239 ret |= finish_fault(vmf);
7267ec00
KS
4240 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4241 VM_FAULT_RETRY))) {
936ca80d
JK
4242 unlock_page(vmf->page);
4243 put_page(vmf->page);
f0c6d4d2 4244 return ret;
1da177e4 4245 }
b827e496 4246
89b15332 4247 ret |= fault_dirty_shared_page(vmf);
1d65f86d 4248 return ret;
54cb8821 4249}
d00806b1 4250
9a95f3cf 4251/*
c1e8d7c6 4252 * We enter with non-exclusive mmap_lock (to exclude vma changes,
9a95f3cf 4253 * but allow concurrent faults).
c1e8d7c6 4254 * The mmap_lock may have been released depending on flags and our
9138e47e 4255 * return value. See filemap_fault() and __folio_lock_or_retry().
c1e8d7c6 4256 * If mmap_lock is released, vma may become invalid (for example
fc8efd2d 4257 * by other thread calling munmap()).
9a95f3cf 4258 */
2b740303 4259static vm_fault_t do_fault(struct vm_fault *vmf)
54cb8821 4260{
82b0f8c3 4261 struct vm_area_struct *vma = vmf->vma;
fc8efd2d 4262 struct mm_struct *vm_mm = vma->vm_mm;
2b740303 4263 vm_fault_t ret;
54cb8821 4264
ff09d7ec
AK
4265 /*
4266 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4267 */
4268 if (!vma->vm_ops->fault) {
4269 /*
4270 * If we find a migration pmd entry or a none pmd entry, which
4271 * should never happen, return SIGBUS
4272 */
4273 if (unlikely(!pmd_present(*vmf->pmd)))
4274 ret = VM_FAULT_SIGBUS;
4275 else {
4276 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4277 vmf->pmd,
4278 vmf->address,
4279 &vmf->ptl);
4280 /*
4281 * Make sure this is not a temporary clearing of pte
4282 * by holding ptl and checking again. A R/M/W update
4283 * of pte involves: take ptl, clearing the pte so that
4284 * we don't have concurrent modification by hardware
4285 * followed by an update.
4286 */
4287 if (unlikely(pte_none(*vmf->pte)))
4288 ret = VM_FAULT_SIGBUS;
4289 else
4290 ret = VM_FAULT_NOPAGE;
4291
4292 pte_unmap_unlock(vmf->pte, vmf->ptl);
4293 }
4294 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
b0b9b3df
HD
4295 ret = do_read_fault(vmf);
4296 else if (!(vma->vm_flags & VM_SHARED))
4297 ret = do_cow_fault(vmf);
4298 else
4299 ret = do_shared_fault(vmf);
4300
4301 /* preallocated pagetable is unused: free it */
4302 if (vmf->prealloc_pte) {
fc8efd2d 4303 pte_free(vm_mm, vmf->prealloc_pte);
7f2b6ce8 4304 vmf->prealloc_pte = NULL;
b0b9b3df
HD
4305 }
4306 return ret;
54cb8821
NP
4307}
4308
f4c0d836
YS
4309int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4310 unsigned long addr, int page_nid, int *flags)
9532fec1
MG
4311{
4312 get_page(page);
4313
4314 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 4315 if (page_nid == numa_node_id()) {
9532fec1 4316 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
4317 *flags |= TNF_FAULT_LOCAL;
4318 }
9532fec1
MG
4319
4320 return mpol_misplaced(page, vma, addr);
4321}
4322
2b740303 4323static vm_fault_t do_numa_page(struct vm_fault *vmf)
d10e63f2 4324{
82b0f8c3 4325 struct vm_area_struct *vma = vmf->vma;
4daae3b4 4326 struct page *page = NULL;
98fa15f3 4327 int page_nid = NUMA_NO_NODE;
90572890 4328 int last_cpupid;
cbee9f88 4329 int target_nid;
04a86453 4330 pte_t pte, old_pte;
288bc549 4331 bool was_writable = pte_savedwrite(vmf->orig_pte);
6688cc05 4332 int flags = 0;
d10e63f2
MG
4333
4334 /*
166f61b9
TH
4335 * The "pte" at this point cannot be used safely without
4336 * validation through pte_unmap_same(). It's of NUMA type but
4337 * the pfn may be screwed if the read is non atomic.
166f61b9 4338 */
82b0f8c3
JK
4339 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4340 spin_lock(vmf->ptl);
cee216a6 4341 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
82b0f8c3 4342 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
4343 goto out;
4344 }
4345
b99a342d
YH
4346 /* Get the normal PTE */
4347 old_pte = ptep_get(vmf->pte);
04a86453 4348 pte = pte_modify(old_pte, vma->vm_page_prot);
d10e63f2 4349
82b0f8c3 4350 page = vm_normal_page(vma, vmf->address, pte);
b99a342d
YH
4351 if (!page)
4352 goto out_map;
d10e63f2 4353
e81c4802 4354 /* TODO: handle PTE-mapped THP */
b99a342d
YH
4355 if (PageCompound(page))
4356 goto out_map;
e81c4802 4357
6688cc05 4358 /*
bea66fbd
MG
4359 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4360 * much anyway since they can be in shared cache state. This misses
4361 * the case where a mapping is writable but the process never writes
4362 * to it but pte_write gets cleared during protection updates and
4363 * pte_dirty has unpredictable behaviour between PTE scan updates,
4364 * background writeback, dirty balancing and application behaviour.
6688cc05 4365 */
b99a342d 4366 if (!was_writable)
6688cc05
PZ
4367 flags |= TNF_NO_GROUP;
4368
dabe1d99
RR
4369 /*
4370 * Flag if the page is shared between multiple address spaces. This
4371 * is later used when determining whether to group tasks together
4372 */
4373 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4374 flags |= TNF_SHARED;
4375
90572890 4376 last_cpupid = page_cpupid_last(page);
8191acbd 4377 page_nid = page_to_nid(page);
82b0f8c3 4378 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
bae473a4 4379 &flags);
98fa15f3 4380 if (target_nid == NUMA_NO_NODE) {
4daae3b4 4381 put_page(page);
b99a342d 4382 goto out_map;
4daae3b4 4383 }
b99a342d 4384 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
4385
4386 /* Migrate to the requested node */
bf90ac19 4387 if (migrate_misplaced_page(page, vma, target_nid)) {
8191acbd 4388 page_nid = target_nid;
6688cc05 4389 flags |= TNF_MIGRATED;
b99a342d 4390 } else {
074c2381 4391 flags |= TNF_MIGRATE_FAIL;
b99a342d
YH
4392 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4393 spin_lock(vmf->ptl);
4394 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4395 pte_unmap_unlock(vmf->pte, vmf->ptl);
4396 goto out;
4397 }
4398 goto out_map;
4399 }
4daae3b4
MG
4400
4401out:
98fa15f3 4402 if (page_nid != NUMA_NO_NODE)
6688cc05 4403 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2 4404 return 0;
b99a342d
YH
4405out_map:
4406 /*
4407 * Make it present again, depending on how arch implements
4408 * non-accessible ptes, some can allow access by kernel mode.
4409 */
4410 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4411 pte = pte_modify(old_pte, vma->vm_page_prot);
4412 pte = pte_mkyoung(pte);
4413 if (was_writable)
4414 pte = pte_mkwrite(pte);
4415 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4416 update_mmu_cache(vma, vmf->address, vmf->pte);
4417 pte_unmap_unlock(vmf->pte, vmf->ptl);
4418 goto out;
d10e63f2
MG
4419}
4420
2b740303 4421static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
b96375f7 4422{
f4200391 4423 if (vma_is_anonymous(vmf->vma))
82b0f8c3 4424 return do_huge_pmd_anonymous_page(vmf);
a2d58167 4425 if (vmf->vma->vm_ops->huge_fault)
c791ace1 4426 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
b96375f7
MW
4427 return VM_FAULT_FALLBACK;
4428}
4429
183f24aa 4430/* `inline' is required to avoid gcc 4.1.2 build error */
5db4f15c 4431static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
b96375f7 4432{
529b930b 4433 if (vma_is_anonymous(vmf->vma)) {
5db4f15c 4434 if (userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
529b930b 4435 return handle_userfault(vmf, VM_UFFD_WP);
5db4f15c 4436 return do_huge_pmd_wp_page(vmf);
529b930b 4437 }
327e9fd4
THV
4438 if (vmf->vma->vm_ops->huge_fault) {
4439 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4440
4441 if (!(ret & VM_FAULT_FALLBACK))
4442 return ret;
4443 }
af9e4d5f 4444
327e9fd4 4445 /* COW or write-notify handled on pte level: split pmd. */
82b0f8c3 4446 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
af9e4d5f 4447
b96375f7
MW
4448 return VM_FAULT_FALLBACK;
4449}
4450
2b740303 4451static vm_fault_t create_huge_pud(struct vm_fault *vmf)
a00cc7d9 4452{
327e9fd4
THV
4453#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4454 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
a00cc7d9
MW
4455 /* No support for anonymous transparent PUD pages yet */
4456 if (vma_is_anonymous(vmf->vma))
327e9fd4
THV
4457 goto split;
4458 if (vmf->vma->vm_ops->huge_fault) {
4459 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4460
4461 if (!(ret & VM_FAULT_FALLBACK))
4462 return ret;
4463 }
4464split:
4465 /* COW or write-notify not handled on PUD level: split pud.*/
4466 __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
a00cc7d9
MW
4467#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4468 return VM_FAULT_FALLBACK;
4469}
4470
2b740303 4471static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
a00cc7d9
MW
4472{
4473#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4474 /* No support for anonymous transparent PUD pages yet */
4475 if (vma_is_anonymous(vmf->vma))
4476 return VM_FAULT_FALLBACK;
4477 if (vmf->vma->vm_ops->huge_fault)
c791ace1 4478 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
a00cc7d9
MW
4479#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4480 return VM_FAULT_FALLBACK;
4481}
4482
1da177e4
LT
4483/*
4484 * These routines also need to handle stuff like marking pages dirty
4485 * and/or accessed for architectures that don't do it in hardware (most
4486 * RISC architectures). The early dirtying is also good on the i386.
4487 *
4488 * There is also a hook called "update_mmu_cache()" that architectures
4489 * with external mmu caches can use to update those (ie the Sparc or
4490 * PowerPC hashed page tables that act as extended TLBs).
4491 *
c1e8d7c6 4492 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
7267ec00 4493 * concurrent faults).
9a95f3cf 4494 *
c1e8d7c6 4495 * The mmap_lock may have been released depending on flags and our return value.
9138e47e 4496 * See filemap_fault() and __folio_lock_or_retry().
1da177e4 4497 */
2b740303 4498static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
1da177e4
LT
4499{
4500 pte_t entry;
4501
82b0f8c3 4502 if (unlikely(pmd_none(*vmf->pmd))) {
7267ec00
KS
4503 /*
4504 * Leave __pte_alloc() until later: because vm_ops->fault may
4505 * want to allocate huge page, and if we expose page table
4506 * for an instant, it will be difficult to retract from
4507 * concurrent faults and from rmap lookups.
4508 */
82b0f8c3 4509 vmf->pte = NULL;
7267ec00 4510 } else {
f9ce0be7
KS
4511 /*
4512 * If a huge pmd materialized under us just retry later. Use
4513 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4514 * of pmd_trans_huge() to ensure the pmd didn't become
4515 * pmd_trans_huge under us and then back to pmd_none, as a
4516 * result of MADV_DONTNEED running immediately after a huge pmd
4517 * fault in a different thread of this mm, in turn leading to a
4518 * misleading pmd_trans_huge() retval. All we have to ensure is
4519 * that it is a regular pmd that we can walk with
4520 * pte_offset_map() and we can do that through an atomic read
4521 * in C, which is what pmd_trans_unstable() provides.
4522 */
d0f0931d 4523 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
4524 return 0;
4525 /*
4526 * A regular pmd is established and it can't morph into a huge
4527 * pmd from under us anymore at this point because we hold the
c1e8d7c6 4528 * mmap_lock read mode and khugepaged takes it in write mode.
7267ec00
KS
4529 * So now it's safe to run pte_offset_map().
4530 */
82b0f8c3 4531 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
2994302b 4532 vmf->orig_pte = *vmf->pte;
7267ec00
KS
4533
4534 /*
4535 * some architectures can have larger ptes than wordsize,
4536 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
b03a0fe0
PM
4537 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4538 * accesses. The code below just needs a consistent view
4539 * for the ifs and we later double check anyway with the
7267ec00
KS
4540 * ptl lock held. So here a barrier will do.
4541 */
4542 barrier();
2994302b 4543 if (pte_none(vmf->orig_pte)) {
82b0f8c3
JK
4544 pte_unmap(vmf->pte);
4545 vmf->pte = NULL;
65500d23 4546 }
1da177e4
LT
4547 }
4548
82b0f8c3
JK
4549 if (!vmf->pte) {
4550 if (vma_is_anonymous(vmf->vma))
4551 return do_anonymous_page(vmf);
7267ec00 4552 else
82b0f8c3 4553 return do_fault(vmf);
7267ec00
KS
4554 }
4555
2994302b
JK
4556 if (!pte_present(vmf->orig_pte))
4557 return do_swap_page(vmf);
7267ec00 4558
2994302b
JK
4559 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4560 return do_numa_page(vmf);
d10e63f2 4561
82b0f8c3
JK
4562 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4563 spin_lock(vmf->ptl);
2994302b 4564 entry = vmf->orig_pte;
7df67697
BM
4565 if (unlikely(!pte_same(*vmf->pte, entry))) {
4566 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
8f4e2101 4567 goto unlock;
7df67697 4568 }
82b0f8c3 4569 if (vmf->flags & FAULT_FLAG_WRITE) {
f6f37321 4570 if (!pte_write(entry))
2994302b 4571 return do_wp_page(vmf);
1da177e4
LT
4572 entry = pte_mkdirty(entry);
4573 }
4574 entry = pte_mkyoung(entry);
82b0f8c3
JK
4575 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4576 vmf->flags & FAULT_FLAG_WRITE)) {
4577 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
1a44e149 4578 } else {
b7333b58
YS
4579 /* Skip spurious TLB flush for retried page fault */
4580 if (vmf->flags & FAULT_FLAG_TRIED)
4581 goto unlock;
1a44e149
AA
4582 /*
4583 * This is needed only for protection faults but the arch code
4584 * is not yet telling us if this is a protection fault or not.
4585 * This still avoids useless tlb flushes for .text page faults
4586 * with threads.
4587 */
82b0f8c3
JK
4588 if (vmf->flags & FAULT_FLAG_WRITE)
4589 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
1a44e149 4590 }
8f4e2101 4591unlock:
82b0f8c3 4592 pte_unmap_unlock(vmf->pte, vmf->ptl);
83c54070 4593 return 0;
1da177e4
LT
4594}
4595
4596/*
4597 * By the time we get here, we already hold the mm semaphore
9a95f3cf 4598 *
c1e8d7c6 4599 * The mmap_lock may have been released depending on flags and our
9138e47e 4600 * return value. See filemap_fault() and __folio_lock_or_retry().
1da177e4 4601 */
2b740303
SJ
4602static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4603 unsigned long address, unsigned int flags)
1da177e4 4604{
82b0f8c3 4605 struct vm_fault vmf = {
bae473a4 4606 .vma = vma,
1a29d85e 4607 .address = address & PAGE_MASK,
bae473a4 4608 .flags = flags,
0721ec8b 4609 .pgoff = linear_page_index(vma, address),
667240e0 4610 .gfp_mask = __get_fault_gfp_mask(vma),
bae473a4 4611 };
fde26bed 4612 unsigned int dirty = flags & FAULT_FLAG_WRITE;
dcddffd4 4613 struct mm_struct *mm = vma->vm_mm;
1da177e4 4614 pgd_t *pgd;
c2febafc 4615 p4d_t *p4d;
2b740303 4616 vm_fault_t ret;
1da177e4 4617
1da177e4 4618 pgd = pgd_offset(mm, address);
c2febafc
KS
4619 p4d = p4d_alloc(mm, pgd, address);
4620 if (!p4d)
4621 return VM_FAULT_OOM;
a00cc7d9 4622
c2febafc 4623 vmf.pud = pud_alloc(mm, p4d, address);
a00cc7d9 4624 if (!vmf.pud)
c74df32c 4625 return VM_FAULT_OOM;
625110b5 4626retry_pud:
7635d9cb 4627 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
a00cc7d9
MW
4628 ret = create_huge_pud(&vmf);
4629 if (!(ret & VM_FAULT_FALLBACK))
4630 return ret;
4631 } else {
4632 pud_t orig_pud = *vmf.pud;
4633
4634 barrier();
4635 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
a00cc7d9 4636
a00cc7d9
MW
4637 /* NUMA case for anonymous PUDs would go here */
4638
f6f37321 4639 if (dirty && !pud_write(orig_pud)) {
a00cc7d9
MW
4640 ret = wp_huge_pud(&vmf, orig_pud);
4641 if (!(ret & VM_FAULT_FALLBACK))
4642 return ret;
4643 } else {
4644 huge_pud_set_accessed(&vmf, orig_pud);
4645 return 0;
4646 }
4647 }
4648 }
4649
4650 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
82b0f8c3 4651 if (!vmf.pmd)
c74df32c 4652 return VM_FAULT_OOM;
625110b5
TH
4653
4654 /* Huge pud page fault raced with pmd_alloc? */
4655 if (pud_trans_unstable(vmf.pud))
4656 goto retry_pud;
4657
7635d9cb 4658 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
a2d58167 4659 ret = create_huge_pmd(&vmf);
c0292554
KS
4660 if (!(ret & VM_FAULT_FALLBACK))
4661 return ret;
71e3aac0 4662 } else {
5db4f15c 4663 vmf.orig_pmd = *vmf.pmd;
1f1d06c3 4664
71e3aac0 4665 barrier();
5db4f15c 4666 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
84c3fc4e 4667 VM_BUG_ON(thp_migration_supported() &&
5db4f15c
YS
4668 !is_pmd_migration_entry(vmf.orig_pmd));
4669 if (is_pmd_migration_entry(vmf.orig_pmd))
84c3fc4e
ZY
4670 pmd_migration_entry_wait(mm, vmf.pmd);
4671 return 0;
4672 }
5db4f15c
YS
4673 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
4674 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
4675 return do_huge_pmd_numa_page(&vmf);
d10e63f2 4676
5db4f15c
YS
4677 if (dirty && !pmd_write(vmf.orig_pmd)) {
4678 ret = wp_huge_pmd(&vmf);
9845cbbd
KS
4679 if (!(ret & VM_FAULT_FALLBACK))
4680 return ret;
a1dd450b 4681 } else {
5db4f15c 4682 huge_pmd_set_accessed(&vmf);
9845cbbd 4683 return 0;
1f1d06c3 4684 }
71e3aac0
AA
4685 }
4686 }
4687
82b0f8c3 4688 return handle_pte_fault(&vmf);
1da177e4
LT
4689}
4690
bce617ed 4691/**
f0953a1b 4692 * mm_account_fault - Do page fault accounting
bce617ed
PX
4693 *
4694 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
4695 * of perf event counters, but we'll still do the per-task accounting to
4696 * the task who triggered this page fault.
4697 * @address: the faulted address.
4698 * @flags: the fault flags.
4699 * @ret: the fault retcode.
4700 *
f0953a1b 4701 * This will take care of most of the page fault accounting. Meanwhile, it
bce617ed 4702 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
f0953a1b 4703 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
bce617ed
PX
4704 * still be in per-arch page fault handlers at the entry of page fault.
4705 */
4706static inline void mm_account_fault(struct pt_regs *regs,
4707 unsigned long address, unsigned int flags,
4708 vm_fault_t ret)
4709{
4710 bool major;
4711
4712 /*
4713 * We don't do accounting for some specific faults:
4714 *
4715 * - Unsuccessful faults (e.g. when the address wasn't valid). That
4716 * includes arch_vma_access_permitted() failing before reaching here.
4717 * So this is not a "this many hardware page faults" counter. We
4718 * should use the hw profiling for that.
4719 *
4720 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted
4721 * once they're completed.
4722 */
4723 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4724 return;
4725
4726 /*
4727 * We define the fault as a major fault when the final successful fault
4728 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4729 * handle it immediately previously).
4730 */
4731 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4732
a2beb5f1
PX
4733 if (major)
4734 current->maj_flt++;
4735 else
4736 current->min_flt++;
4737
bce617ed 4738 /*
a2beb5f1
PX
4739 * If the fault is done for GUP, regs will be NULL. We only do the
4740 * accounting for the per thread fault counters who triggered the
4741 * fault, and we skip the perf event updates.
bce617ed
PX
4742 */
4743 if (!regs)
4744 return;
4745
a2beb5f1 4746 if (major)
bce617ed 4747 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
a2beb5f1 4748 else
bce617ed 4749 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
bce617ed
PX
4750}
4751
9a95f3cf
PC
4752/*
4753 * By the time we get here, we already hold the mm semaphore
4754 *
c1e8d7c6 4755 * The mmap_lock may have been released depending on flags and our
9138e47e 4756 * return value. See filemap_fault() and __folio_lock_or_retry().
9a95f3cf 4757 */
2b740303 4758vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
bce617ed 4759 unsigned int flags, struct pt_regs *regs)
519e5247 4760{
2b740303 4761 vm_fault_t ret;
519e5247
JW
4762
4763 __set_current_state(TASK_RUNNING);
4764
4765 count_vm_event(PGFAULT);
2262185c 4766 count_memcg_event_mm(vma->vm_mm, PGFAULT);
519e5247
JW
4767
4768 /* do counter updates before entering really critical section. */
4769 check_sync_rss_stat(current);
4770
de0c799b
LD
4771 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4772 flags & FAULT_FLAG_INSTRUCTION,
4773 flags & FAULT_FLAG_REMOTE))
4774 return VM_FAULT_SIGSEGV;
4775
519e5247
JW
4776 /*
4777 * Enable the memcg OOM handling for faults triggered in user
4778 * space. Kernel faults are handled more gracefully.
4779 */
4780 if (flags & FAULT_FLAG_USER)
29ef680a 4781 mem_cgroup_enter_user_fault();
519e5247 4782
bae473a4
KS
4783 if (unlikely(is_vm_hugetlb_page(vma)))
4784 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4785 else
4786 ret = __handle_mm_fault(vma, address, flags);
519e5247 4787
49426420 4788 if (flags & FAULT_FLAG_USER) {
29ef680a 4789 mem_cgroup_exit_user_fault();
166f61b9
TH
4790 /*
4791 * The task may have entered a memcg OOM situation but
4792 * if the allocation error was handled gracefully (no
4793 * VM_FAULT_OOM), there is no need to kill anything.
4794 * Just clean up the OOM state peacefully.
4795 */
4796 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4797 mem_cgroup_oom_synchronize(false);
49426420 4798 }
3812c8c8 4799
bce617ed
PX
4800 mm_account_fault(regs, address, flags, ret);
4801
519e5247
JW
4802 return ret;
4803}
e1d6d01a 4804EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 4805
90eceff1
KS
4806#ifndef __PAGETABLE_P4D_FOLDED
4807/*
4808 * Allocate p4d page table.
4809 * We've already handled the fast-path in-line.
4810 */
4811int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4812{
4813 p4d_t *new = p4d_alloc_one(mm, address);
4814 if (!new)
4815 return -ENOMEM;
4816
90eceff1 4817 spin_lock(&mm->page_table_lock);
ed33b5a6 4818 if (pgd_present(*pgd)) { /* Another has populated it */
90eceff1 4819 p4d_free(mm, new);
ed33b5a6
QZ
4820 } else {
4821 smp_wmb(); /* See comment in pmd_install() */
90eceff1 4822 pgd_populate(mm, pgd, new);
ed33b5a6 4823 }
90eceff1
KS
4824 spin_unlock(&mm->page_table_lock);
4825 return 0;
4826}
4827#endif /* __PAGETABLE_P4D_FOLDED */
4828
1da177e4
LT
4829#ifndef __PAGETABLE_PUD_FOLDED
4830/*
4831 * Allocate page upper directory.
872fec16 4832 * We've already handled the fast-path in-line.
1da177e4 4833 */
c2febafc 4834int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
1da177e4 4835{
c74df32c
HD
4836 pud_t *new = pud_alloc_one(mm, address);
4837 if (!new)
1bb3630e 4838 return -ENOMEM;
1da177e4 4839
872fec16 4840 spin_lock(&mm->page_table_lock);
b4e98d9a
KS
4841 if (!p4d_present(*p4d)) {
4842 mm_inc_nr_puds(mm);
ed33b5a6 4843 smp_wmb(); /* See comment in pmd_install() */
c2febafc 4844 p4d_populate(mm, p4d, new);
b4e98d9a 4845 } else /* Another has populated it */
5e541973 4846 pud_free(mm, new);
c74df32c 4847 spin_unlock(&mm->page_table_lock);
1bb3630e 4848 return 0;
1da177e4
LT
4849}
4850#endif /* __PAGETABLE_PUD_FOLDED */
4851
4852#ifndef __PAGETABLE_PMD_FOLDED
4853/*
4854 * Allocate page middle directory.
872fec16 4855 * We've already handled the fast-path in-line.
1da177e4 4856 */
1bb3630e 4857int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 4858{
a00cc7d9 4859 spinlock_t *ptl;
c74df32c
HD
4860 pmd_t *new = pmd_alloc_one(mm, address);
4861 if (!new)
1bb3630e 4862 return -ENOMEM;
1da177e4 4863
a00cc7d9 4864 ptl = pud_lock(mm, pud);
dc6c9a35
KS
4865 if (!pud_present(*pud)) {
4866 mm_inc_nr_pmds(mm);
ed33b5a6 4867 smp_wmb(); /* See comment in pmd_install() */
1bb3630e 4868 pud_populate(mm, pud, new);
ed33b5a6 4869 } else { /* Another has populated it */
5e541973 4870 pmd_free(mm, new);
ed33b5a6 4871 }
a00cc7d9 4872 spin_unlock(ptl);
1bb3630e 4873 return 0;
e0f39591 4874}
1da177e4
LT
4875#endif /* __PAGETABLE_PMD_FOLDED */
4876
9fd6dad1
PB
4877int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
4878 struct mmu_notifier_range *range, pte_t **ptepp,
4879 pmd_t **pmdpp, spinlock_t **ptlp)
f8ad0f49
JW
4880{
4881 pgd_t *pgd;
c2febafc 4882 p4d_t *p4d;
f8ad0f49
JW
4883 pud_t *pud;
4884 pmd_t *pmd;
4885 pte_t *ptep;
4886
4887 pgd = pgd_offset(mm, address);
4888 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4889 goto out;
4890
c2febafc
KS
4891 p4d = p4d_offset(pgd, address);
4892 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4893 goto out;
4894
4895 pud = pud_offset(p4d, address);
f8ad0f49
JW
4896 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4897 goto out;
4898
4899 pmd = pmd_offset(pud, address);
f66055ab 4900 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49 4901
09796395
RZ
4902 if (pmd_huge(*pmd)) {
4903 if (!pmdpp)
4904 goto out;
4905
ac46d4f3 4906 if (range) {
7269f999 4907 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
6f4f13e8
JG
4908 NULL, mm, address & PMD_MASK,
4909 (address & PMD_MASK) + PMD_SIZE);
ac46d4f3 4910 mmu_notifier_invalidate_range_start(range);
a4d1a885 4911 }
09796395
RZ
4912 *ptlp = pmd_lock(mm, pmd);
4913 if (pmd_huge(*pmd)) {
4914 *pmdpp = pmd;
4915 return 0;
4916 }
4917 spin_unlock(*ptlp);
ac46d4f3
JG
4918 if (range)
4919 mmu_notifier_invalidate_range_end(range);
09796395
RZ
4920 }
4921
4922 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
f8ad0f49
JW
4923 goto out;
4924
ac46d4f3 4925 if (range) {
7269f999 4926 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
6f4f13e8
JG
4927 address & PAGE_MASK,
4928 (address & PAGE_MASK) + PAGE_SIZE);
ac46d4f3 4929 mmu_notifier_invalidate_range_start(range);
a4d1a885 4930 }
f8ad0f49 4931 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
f8ad0f49
JW
4932 if (!pte_present(*ptep))
4933 goto unlock;
4934 *ptepp = ptep;
4935 return 0;
4936unlock:
4937 pte_unmap_unlock(ptep, *ptlp);
ac46d4f3
JG
4938 if (range)
4939 mmu_notifier_invalidate_range_end(range);
f8ad0f49
JW
4940out:
4941 return -EINVAL;
4942}
4943
9fd6dad1
PB
4944/**
4945 * follow_pte - look up PTE at a user virtual address
4946 * @mm: the mm_struct of the target address space
4947 * @address: user virtual address
4948 * @ptepp: location to store found PTE
4949 * @ptlp: location to store the lock for the PTE
4950 *
4951 * On a successful return, the pointer to the PTE is stored in @ptepp;
4952 * the corresponding lock is taken and its location is stored in @ptlp.
4953 * The contents of the PTE are only stable until @ptlp is released;
4954 * any further use, if any, must be protected against invalidation
4955 * with MMU notifiers.
4956 *
4957 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
4958 * should be taken for read.
4959 *
4960 * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
4961 * it is not a good general-purpose API.
4962 *
4963 * Return: zero on success, -ve otherwise.
4964 */
4965int follow_pte(struct mm_struct *mm, unsigned long address,
4966 pte_t **ptepp, spinlock_t **ptlp)
4967{
4968 return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp);
4969}
4970EXPORT_SYMBOL_GPL(follow_pte);
4971
3b6748e2
JW
4972/**
4973 * follow_pfn - look up PFN at a user virtual address
4974 * @vma: memory mapping
4975 * @address: user virtual address
4976 * @pfn: location to store found PFN
4977 *
4978 * Only IO mappings and raw PFN mappings are allowed.
4979 *
9fd6dad1
PB
4980 * This function does not allow the caller to read the permissions
4981 * of the PTE. Do not use it.
4982 *
a862f68a 4983 * Return: zero and the pfn at @pfn on success, -ve otherwise.
3b6748e2
JW
4984 */
4985int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4986 unsigned long *pfn)
4987{
4988 int ret = -EINVAL;
4989 spinlock_t *ptl;
4990 pte_t *ptep;
4991
4992 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4993 return ret;
4994
9fd6dad1 4995 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3b6748e2
JW
4996 if (ret)
4997 return ret;
4998 *pfn = pte_pfn(*ptep);
4999 pte_unmap_unlock(ptep, ptl);
5000 return 0;
5001}
5002EXPORT_SYMBOL(follow_pfn);
5003
28b2ee20 5004#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 5005int follow_phys(struct vm_area_struct *vma,
5006 unsigned long address, unsigned int flags,
5007 unsigned long *prot, resource_size_t *phys)
28b2ee20 5008{
03668a4d 5009 int ret = -EINVAL;
28b2ee20
RR
5010 pte_t *ptep, pte;
5011 spinlock_t *ptl;
28b2ee20 5012
d87fe660 5013 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5014 goto out;
28b2ee20 5015
9fd6dad1 5016 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 5017 goto out;
28b2ee20 5018 pte = *ptep;
03668a4d 5019
f6f37321 5020 if ((flags & FOLL_WRITE) && !pte_write(pte))
28b2ee20 5021 goto unlock;
28b2ee20
RR
5022
5023 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 5024 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 5025
03668a4d 5026 ret = 0;
28b2ee20
RR
5027unlock:
5028 pte_unmap_unlock(ptep, ptl);
5029out:
d87fe660 5030 return ret;
28b2ee20
RR
5031}
5032
96667f8a
SV
5033/**
5034 * generic_access_phys - generic implementation for iomem mmap access
5035 * @vma: the vma to access
f0953a1b 5036 * @addr: userspace address, not relative offset within @vma
96667f8a
SV
5037 * @buf: buffer to read/write
5038 * @len: length of transfer
5039 * @write: set to FOLL_WRITE when writing, otherwise reading
5040 *
5041 * This is a generic implementation for &vm_operations_struct.access for an
5042 * iomem mapping. This callback is used by access_process_vm() when the @vma is
5043 * not page based.
5044 */
28b2ee20
RR
5045int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5046 void *buf, int len, int write)
5047{
5048 resource_size_t phys_addr;
5049 unsigned long prot = 0;
2bc7273b 5050 void __iomem *maddr;
96667f8a
SV
5051 pte_t *ptep, pte;
5052 spinlock_t *ptl;
5053 int offset = offset_in_page(addr);
5054 int ret = -EINVAL;
5055
5056 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5057 return -EINVAL;
5058
5059retry:
e913a8cd 5060 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
96667f8a
SV
5061 return -EINVAL;
5062 pte = *ptep;
5063 pte_unmap_unlock(ptep, ptl);
28b2ee20 5064
96667f8a
SV
5065 prot = pgprot_val(pte_pgprot(pte));
5066 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5067
5068 if ((write & FOLL_WRITE) && !pte_write(pte))
28b2ee20
RR
5069 return -EINVAL;
5070
9cb12d7b 5071 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
24eee1e4 5072 if (!maddr)
5073 return -ENOMEM;
5074
e913a8cd 5075 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
96667f8a
SV
5076 goto out_unmap;
5077
5078 if (!pte_same(pte, *ptep)) {
5079 pte_unmap_unlock(ptep, ptl);
5080 iounmap(maddr);
5081
5082 goto retry;
5083 }
5084
28b2ee20
RR
5085 if (write)
5086 memcpy_toio(maddr + offset, buf, len);
5087 else
5088 memcpy_fromio(buf, maddr + offset, len);
96667f8a
SV
5089 ret = len;
5090 pte_unmap_unlock(ptep, ptl);
5091out_unmap:
28b2ee20
RR
5092 iounmap(maddr);
5093
96667f8a 5094 return ret;
28b2ee20 5095}
5a73633e 5096EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
5097#endif
5098
0ec76a11 5099/*
d3f5ffca 5100 * Access another process' address space as given in mm.
0ec76a11 5101 */
d3f5ffca
JH
5102int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5103 int len, unsigned int gup_flags)
0ec76a11 5104{
0ec76a11 5105 struct vm_area_struct *vma;
0ec76a11 5106 void *old_buf = buf;
442486ec 5107 int write = gup_flags & FOLL_WRITE;
0ec76a11 5108
d8ed45c5 5109 if (mmap_read_lock_killable(mm))
1e426fe2
KK
5110 return 0;
5111
183ff22b 5112 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
5113 while (len) {
5114 int bytes, ret, offset;
5115 void *maddr;
28b2ee20 5116 struct page *page = NULL;
0ec76a11 5117
64019a2e 5118 ret = get_user_pages_remote(mm, addr, 1,
5b56d49f 5119 gup_flags, &page, &vma, NULL);
28b2ee20 5120 if (ret <= 0) {
dbffcd03
RR
5121#ifndef CONFIG_HAVE_IOREMAP_PROT
5122 break;
5123#else
28b2ee20
RR
5124 /*
5125 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5126 * we can access using slightly different code.
5127 */
3e418f98
LH
5128 vma = vma_lookup(mm, addr);
5129 if (!vma)
28b2ee20
RR
5130 break;
5131 if (vma->vm_ops && vma->vm_ops->access)
5132 ret = vma->vm_ops->access(vma, addr, buf,
5133 len, write);
5134 if (ret <= 0)
28b2ee20
RR
5135 break;
5136 bytes = ret;
dbffcd03 5137#endif
0ec76a11 5138 } else {
28b2ee20
RR
5139 bytes = len;
5140 offset = addr & (PAGE_SIZE-1);
5141 if (bytes > PAGE_SIZE-offset)
5142 bytes = PAGE_SIZE-offset;
5143
5144 maddr = kmap(page);
5145 if (write) {
5146 copy_to_user_page(vma, page, addr,
5147 maddr + offset, buf, bytes);
5148 set_page_dirty_lock(page);
5149 } else {
5150 copy_from_user_page(vma, page, addr,
5151 buf, maddr + offset, bytes);
5152 }
5153 kunmap(page);
09cbfeaf 5154 put_page(page);
0ec76a11 5155 }
0ec76a11
DH
5156 len -= bytes;
5157 buf += bytes;
5158 addr += bytes;
5159 }
d8ed45c5 5160 mmap_read_unlock(mm);
0ec76a11
DH
5161
5162 return buf - old_buf;
5163}
03252919 5164
5ddd36b9 5165/**
ae91dbfc 5166 * access_remote_vm - access another process' address space
5ddd36b9
SW
5167 * @mm: the mm_struct of the target address space
5168 * @addr: start address to access
5169 * @buf: source or destination buffer
5170 * @len: number of bytes to transfer
6347e8d5 5171 * @gup_flags: flags modifying lookup behaviour
5ddd36b9
SW
5172 *
5173 * The caller must hold a reference on @mm.
a862f68a
MR
5174 *
5175 * Return: number of bytes copied from source to destination.
5ddd36b9
SW
5176 */
5177int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 5178 void *buf, int len, unsigned int gup_flags)
5ddd36b9 5179{
d3f5ffca 5180 return __access_remote_vm(mm, addr, buf, len, gup_flags);
5ddd36b9
SW
5181}
5182
206cb636
SW
5183/*
5184 * Access another process' address space.
5185 * Source/target buffer must be kernel space,
5186 * Do not walk the page table directly, use get_user_pages
5187 */
5188int access_process_vm(struct task_struct *tsk, unsigned long addr,
f307ab6d 5189 void *buf, int len, unsigned int gup_flags)
206cb636
SW
5190{
5191 struct mm_struct *mm;
5192 int ret;
5193
5194 mm = get_task_mm(tsk);
5195 if (!mm)
5196 return 0;
5197
d3f5ffca 5198 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
442486ec 5199
206cb636
SW
5200 mmput(mm);
5201
5202 return ret;
5203}
fcd35857 5204EXPORT_SYMBOL_GPL(access_process_vm);
206cb636 5205
03252919
AK
5206/*
5207 * Print the name of a VMA.
5208 */
5209void print_vma_addr(char *prefix, unsigned long ip)
5210{
5211 struct mm_struct *mm = current->mm;
5212 struct vm_area_struct *vma;
5213
e8bff74a 5214 /*
0a7f682d 5215 * we might be running from an atomic context so we cannot sleep
e8bff74a 5216 */
d8ed45c5 5217 if (!mmap_read_trylock(mm))
e8bff74a
IM
5218 return;
5219
03252919
AK
5220 vma = find_vma(mm, ip);
5221 if (vma && vma->vm_file) {
5222 struct file *f = vma->vm_file;
0a7f682d 5223 char *buf = (char *)__get_free_page(GFP_NOWAIT);
03252919 5224 if (buf) {
2fbc57c5 5225 char *p;
03252919 5226
9bf39ab2 5227 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
5228 if (IS_ERR(p))
5229 p = "?";
2fbc57c5 5230 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
5231 vma->vm_start,
5232 vma->vm_end - vma->vm_start);
5233 free_page((unsigned long)buf);
5234 }
5235 }
d8ed45c5 5236 mmap_read_unlock(mm);
03252919 5237}
3ee1afa3 5238
662bbcb2 5239#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 5240void __might_fault(const char *file, int line)
3ee1afa3 5241{
95156f00
PZ
5242 /*
5243 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
c1e8d7c6 5244 * holding the mmap_lock, this is safe because kernel memory doesn't
95156f00
PZ
5245 * get paged out, therefore we'll never actually fault, and the
5246 * below annotations will generate false positives.
5247 */
db68ce10 5248 if (uaccess_kernel())
95156f00 5249 return;
9ec23531 5250 if (pagefault_disabled())
662bbcb2 5251 return;
42a38756 5252 __might_sleep(file, line);
9ec23531 5253#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 5254 if (current->mm)
da1c55f1 5255 might_lock_read(&current->mm->mmap_lock);
9ec23531 5256#endif
3ee1afa3 5257}
9ec23531 5258EXPORT_SYMBOL(__might_fault);
3ee1afa3 5259#endif
47ad8475
AA
5260
5261#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
c6ddfb6c
YH
5262/*
5263 * Process all subpages of the specified huge page with the specified
5264 * operation. The target subpage will be processed last to keep its
5265 * cache lines hot.
5266 */
5267static inline void process_huge_page(
5268 unsigned long addr_hint, unsigned int pages_per_huge_page,
5269 void (*process_subpage)(unsigned long addr, int idx, void *arg),
5270 void *arg)
47ad8475 5271{
c79b57e4
YH
5272 int i, n, base, l;
5273 unsigned long addr = addr_hint &
5274 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
47ad8475 5275
c6ddfb6c 5276 /* Process target subpage last to keep its cache lines hot */
47ad8475 5277 might_sleep();
c79b57e4
YH
5278 n = (addr_hint - addr) / PAGE_SIZE;
5279 if (2 * n <= pages_per_huge_page) {
c6ddfb6c 5280 /* If target subpage in first half of huge page */
c79b57e4
YH
5281 base = 0;
5282 l = n;
c6ddfb6c 5283 /* Process subpages at the end of huge page */
c79b57e4
YH
5284 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5285 cond_resched();
c6ddfb6c 5286 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
YH
5287 }
5288 } else {
c6ddfb6c 5289 /* If target subpage in second half of huge page */
c79b57e4
YH
5290 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5291 l = pages_per_huge_page - n;
c6ddfb6c 5292 /* Process subpages at the begin of huge page */
c79b57e4
YH
5293 for (i = 0; i < base; i++) {
5294 cond_resched();
c6ddfb6c 5295 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
YH
5296 }
5297 }
5298 /*
c6ddfb6c
YH
5299 * Process remaining subpages in left-right-left-right pattern
5300 * towards the target subpage
c79b57e4
YH
5301 */
5302 for (i = 0; i < l; i++) {
5303 int left_idx = base + i;
5304 int right_idx = base + 2 * l - 1 - i;
5305
5306 cond_resched();
c6ddfb6c 5307 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
47ad8475 5308 cond_resched();
c6ddfb6c 5309 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
47ad8475
AA
5310 }
5311}
5312
c6ddfb6c
YH
5313static void clear_gigantic_page(struct page *page,
5314 unsigned long addr,
5315 unsigned int pages_per_huge_page)
5316{
5317 int i;
5318 struct page *p = page;
5319
5320 might_sleep();
5321 for (i = 0; i < pages_per_huge_page;
5322 i++, p = mem_map_next(p, page, i)) {
5323 cond_resched();
5324 clear_user_highpage(p, addr + i * PAGE_SIZE);
5325 }
5326}
5327
5328static void clear_subpage(unsigned long addr, int idx, void *arg)
5329{
5330 struct page *page = arg;
5331
5332 clear_user_highpage(page + idx, addr);
5333}
5334
5335void clear_huge_page(struct page *page,
5336 unsigned long addr_hint, unsigned int pages_per_huge_page)
5337{
5338 unsigned long addr = addr_hint &
5339 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5340
5341 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5342 clear_gigantic_page(page, addr, pages_per_huge_page);
5343 return;
5344 }
5345
5346 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5347}
5348
47ad8475
AA
5349static void copy_user_gigantic_page(struct page *dst, struct page *src,
5350 unsigned long addr,
5351 struct vm_area_struct *vma,
5352 unsigned int pages_per_huge_page)
5353{
5354 int i;
5355 struct page *dst_base = dst;
5356 struct page *src_base = src;
5357
5358 for (i = 0; i < pages_per_huge_page; ) {
5359 cond_resched();
5360 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5361
5362 i++;
5363 dst = mem_map_next(dst, dst_base, i);
5364 src = mem_map_next(src, src_base, i);
5365 }
5366}
5367
c9f4cd71
YH
5368struct copy_subpage_arg {
5369 struct page *dst;
5370 struct page *src;
5371 struct vm_area_struct *vma;
5372};
5373
5374static void copy_subpage(unsigned long addr, int idx, void *arg)
5375{
5376 struct copy_subpage_arg *copy_arg = arg;
5377
5378 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5379 addr, copy_arg->vma);
5380}
5381
47ad8475 5382void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71 5383 unsigned long addr_hint, struct vm_area_struct *vma,
47ad8475
AA
5384 unsigned int pages_per_huge_page)
5385{
c9f4cd71
YH
5386 unsigned long addr = addr_hint &
5387 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5388 struct copy_subpage_arg arg = {
5389 .dst = dst,
5390 .src = src,
5391 .vma = vma,
5392 };
47ad8475
AA
5393
5394 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5395 copy_user_gigantic_page(dst, src, addr, vma,
5396 pages_per_huge_page);
5397 return;
5398 }
5399
c9f4cd71 5400 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
47ad8475 5401}
fa4d75c1
MK
5402
5403long copy_huge_page_from_user(struct page *dst_page,
5404 const void __user *usr_src,
810a56b9
MK
5405 unsigned int pages_per_huge_page,
5406 bool allow_pagefault)
fa4d75c1 5407{
fa4d75c1
MK
5408 void *page_kaddr;
5409 unsigned long i, rc = 0;
5410 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
3272cfc2 5411 struct page *subpage = dst_page;
fa4d75c1 5412
3272cfc2
MK
5413 for (i = 0; i < pages_per_huge_page;
5414 i++, subpage = mem_map_next(subpage, dst_page, i)) {
810a56b9 5415 if (allow_pagefault)
3272cfc2 5416 page_kaddr = kmap(subpage);
810a56b9 5417 else
3272cfc2 5418 page_kaddr = kmap_atomic(subpage);
fa4d75c1 5419 rc = copy_from_user(page_kaddr,
b063e374 5420 usr_src + i * PAGE_SIZE, PAGE_SIZE);
810a56b9 5421 if (allow_pagefault)
3272cfc2 5422 kunmap(subpage);
810a56b9
MK
5423 else
5424 kunmap_atomic(page_kaddr);
fa4d75c1
MK
5425
5426 ret_val -= (PAGE_SIZE - rc);
5427 if (rc)
5428 break;
5429
5430 cond_resched();
5431 }
5432 return ret_val;
5433}
47ad8475 5434#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 5435
40b64acd 5436#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
5437
5438static struct kmem_cache *page_ptl_cachep;
5439
5440void __init ptlock_cache_init(void)
5441{
5442 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5443 SLAB_PANIC, NULL);
5444}
5445
539edb58 5446bool ptlock_alloc(struct page *page)
49076ec2
KS
5447{
5448 spinlock_t *ptl;
5449
b35f1819 5450 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
5451 if (!ptl)
5452 return false;
539edb58 5453 page->ptl = ptl;
49076ec2
KS
5454 return true;
5455}
5456
539edb58 5457void ptlock_free(struct page *page)
49076ec2 5458{
b35f1819 5459 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
5460}
5461#endif
This page took 2.726357 seconds and 4 git commands to generate.