]> Git Repo - linux.git/blame - mm/memory.c
kasan: fix KASAN_STACK dependency for HW_TAGS
[linux.git] / mm / memory.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13/*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24/*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32/*
33 * 05.04.94 - Multi-page memory management added for v1.1.
166f61b9 34 * Idea by Alex Bligh ([email protected])
1da177e4
LT
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * ([email protected])
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42#include <linux/kernel_stat.h>
43#include <linux/mm.h>
6e84f315 44#include <linux/sched/mm.h>
f7ccbae4 45#include <linux/sched/coredump.h>
6a3827d7 46#include <linux/sched/numa_balancing.h>
29930025 47#include <linux/sched/task.h>
1da177e4
LT
48#include <linux/hugetlb.h>
49#include <linux/mman.h>
50#include <linux/swap.h>
51#include <linux/highmem.h>
52#include <linux/pagemap.h>
5042db43 53#include <linux/memremap.h>
9a840895 54#include <linux/ksm.h>
1da177e4 55#include <linux/rmap.h>
b95f1b31 56#include <linux/export.h>
0ff92245 57#include <linux/delayacct.h>
1da177e4 58#include <linux/init.h>
01c8f1c4 59#include <linux/pfn_t.h>
edc79b2a 60#include <linux/writeback.h>
8a9f3ccd 61#include <linux/memcontrol.h>
cddb8a5c 62#include <linux/mmu_notifier.h>
3dc14741
HD
63#include <linux/swapops.h>
64#include <linux/elf.h>
5a0e3ad6 65#include <linux/gfp.h>
4daae3b4 66#include <linux/migrate.h>
2fbc57c5 67#include <linux/string.h>
1592eef0 68#include <linux/debugfs.h>
6b251fc9 69#include <linux/userfaultfd_k.h>
bc2466e4 70#include <linux/dax.h>
6b31d595 71#include <linux/oom.h>
98fa15f3 72#include <linux/numa.h>
bce617ed
PX
73#include <linux/perf_event.h>
74#include <linux/ptrace.h>
e80d3909 75#include <linux/vmalloc.h>
1da177e4 76
b3d1411b
JFG
77#include <trace/events/kmem.h>
78
6952b61d 79#include <asm/io.h>
33a709b2 80#include <asm/mmu_context.h>
1da177e4 81#include <asm/pgalloc.h>
7c0f6ba6 82#include <linux/uaccess.h>
1da177e4
LT
83#include <asm/tlb.h>
84#include <asm/tlbflush.h>
1da177e4 85
e80d3909 86#include "pgalloc-track.h"
42b77728
JB
87#include "internal.h"
88
af27d940 89#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90572890 90#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
91#endif
92
d41dee36 93#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
94/* use the per-pgdat data instead for discontigmem - mbligh */
95unsigned long max_mapnr;
1da177e4 96EXPORT_SYMBOL(max_mapnr);
166f61b9
TH
97
98struct page *mem_map;
1da177e4
LT
99EXPORT_SYMBOL(mem_map);
100#endif
101
1da177e4
LT
102/*
103 * A number of key systems in x86 including ioremap() rely on the assumption
104 * that high_memory defines the upper bound on direct map memory, then end
105 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
106 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
107 * and ZONE_HIGHMEM.
108 */
166f61b9 109void *high_memory;
1da177e4 110EXPORT_SYMBOL(high_memory);
1da177e4 111
32a93233
IM
112/*
113 * Randomize the address space (stacks, mmaps, brk, etc.).
114 *
115 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
116 * as ancient (libc5 based) binaries can segfault. )
117 */
118int randomize_va_space __read_mostly =
119#ifdef CONFIG_COMPAT_BRK
120 1;
121#else
122 2;
123#endif
a62eaf15 124
83d116c5
JH
125#ifndef arch_faults_on_old_pte
126static inline bool arch_faults_on_old_pte(void)
127{
128 /*
129 * Those arches which don't have hw access flag feature need to
130 * implement their own helper. By default, "true" means pagefault
131 * will be hit on old pte.
132 */
133 return true;
134}
135#endif
136
46bdb427
WD
137#ifndef arch_wants_old_prefaulted_pte
138static inline bool arch_wants_old_prefaulted_pte(void)
139{
140 /*
141 * Transitioning a PTE from 'old' to 'young' can be expensive on
142 * some architectures, even if it's performed in hardware. By
143 * default, "false" means prefaulted entries will be 'young'.
144 */
145 return false;
146}
147#endif
148
a62eaf15
AK
149static int __init disable_randmaps(char *s)
150{
151 randomize_va_space = 0;
9b41046c 152 return 1;
a62eaf15
AK
153}
154__setup("norandmaps", disable_randmaps);
155
62eede62 156unsigned long zero_pfn __read_mostly;
0b70068e
AB
157EXPORT_SYMBOL(zero_pfn);
158
166f61b9
TH
159unsigned long highest_memmap_pfn __read_mostly;
160
a13ea5b7
HD
161/*
162 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
163 */
164static int __init init_zero_pfn(void)
165{
166 zero_pfn = page_to_pfn(ZERO_PAGE(0));
167 return 0;
168}
169core_initcall(init_zero_pfn);
a62eaf15 170
e4dcad20 171void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
b3d1411b 172{
e4dcad20 173 trace_rss_stat(mm, member, count);
b3d1411b 174}
d559db08 175
34e55232
KH
176#if defined(SPLIT_RSS_COUNTING)
177
ea48cf78 178void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
179{
180 int i;
181
182 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
183 if (current->rss_stat.count[i]) {
184 add_mm_counter(mm, i, current->rss_stat.count[i]);
185 current->rss_stat.count[i] = 0;
34e55232
KH
186 }
187 }
05af2e10 188 current->rss_stat.events = 0;
34e55232
KH
189}
190
191static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
192{
193 struct task_struct *task = current;
194
195 if (likely(task->mm == mm))
196 task->rss_stat.count[member] += val;
197 else
198 add_mm_counter(mm, member, val);
199}
200#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
201#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
202
203/* sync counter once per 64 page faults */
204#define TASK_RSS_EVENTS_THRESH (64)
205static void check_sync_rss_stat(struct task_struct *task)
206{
207 if (unlikely(task != current))
208 return;
209 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 210 sync_mm_rss(task->mm);
34e55232 211}
9547d01b 212#else /* SPLIT_RSS_COUNTING */
34e55232
KH
213
214#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
215#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
216
217static void check_sync_rss_stat(struct task_struct *task)
218{
219}
220
9547d01b
PZ
221#endif /* SPLIT_RSS_COUNTING */
222
1da177e4
LT
223/*
224 * Note: this doesn't free the actual pages themselves. That
225 * has been handled earlier when unmapping all the memory regions.
226 */
9e1b32ca
BH
227static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
228 unsigned long addr)
1da177e4 229{
2f569afd 230 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 231 pmd_clear(pmd);
9e1b32ca 232 pte_free_tlb(tlb, token, addr);
c4812909 233 mm_dec_nr_ptes(tlb->mm);
1da177e4
LT
234}
235
e0da382c
HD
236static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
237 unsigned long addr, unsigned long end,
238 unsigned long floor, unsigned long ceiling)
1da177e4
LT
239{
240 pmd_t *pmd;
241 unsigned long next;
e0da382c 242 unsigned long start;
1da177e4 243
e0da382c 244 start = addr;
1da177e4 245 pmd = pmd_offset(pud, addr);
1da177e4
LT
246 do {
247 next = pmd_addr_end(addr, end);
248 if (pmd_none_or_clear_bad(pmd))
249 continue;
9e1b32ca 250 free_pte_range(tlb, pmd, addr);
1da177e4
LT
251 } while (pmd++, addr = next, addr != end);
252
e0da382c
HD
253 start &= PUD_MASK;
254 if (start < floor)
255 return;
256 if (ceiling) {
257 ceiling &= PUD_MASK;
258 if (!ceiling)
259 return;
1da177e4 260 }
e0da382c
HD
261 if (end - 1 > ceiling - 1)
262 return;
263
264 pmd = pmd_offset(pud, start);
265 pud_clear(pud);
9e1b32ca 266 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 267 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
268}
269
c2febafc 270static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
e0da382c
HD
271 unsigned long addr, unsigned long end,
272 unsigned long floor, unsigned long ceiling)
1da177e4
LT
273{
274 pud_t *pud;
275 unsigned long next;
e0da382c 276 unsigned long start;
1da177e4 277
e0da382c 278 start = addr;
c2febafc 279 pud = pud_offset(p4d, addr);
1da177e4
LT
280 do {
281 next = pud_addr_end(addr, end);
282 if (pud_none_or_clear_bad(pud))
283 continue;
e0da382c 284 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
285 } while (pud++, addr = next, addr != end);
286
c2febafc
KS
287 start &= P4D_MASK;
288 if (start < floor)
289 return;
290 if (ceiling) {
291 ceiling &= P4D_MASK;
292 if (!ceiling)
293 return;
294 }
295 if (end - 1 > ceiling - 1)
296 return;
297
298 pud = pud_offset(p4d, start);
299 p4d_clear(p4d);
300 pud_free_tlb(tlb, pud, start);
b4e98d9a 301 mm_dec_nr_puds(tlb->mm);
c2febafc
KS
302}
303
304static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
305 unsigned long addr, unsigned long end,
306 unsigned long floor, unsigned long ceiling)
307{
308 p4d_t *p4d;
309 unsigned long next;
310 unsigned long start;
311
312 start = addr;
313 p4d = p4d_offset(pgd, addr);
314 do {
315 next = p4d_addr_end(addr, end);
316 if (p4d_none_or_clear_bad(p4d))
317 continue;
318 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
319 } while (p4d++, addr = next, addr != end);
320
e0da382c
HD
321 start &= PGDIR_MASK;
322 if (start < floor)
323 return;
324 if (ceiling) {
325 ceiling &= PGDIR_MASK;
326 if (!ceiling)
327 return;
1da177e4 328 }
e0da382c
HD
329 if (end - 1 > ceiling - 1)
330 return;
331
c2febafc 332 p4d = p4d_offset(pgd, start);
e0da382c 333 pgd_clear(pgd);
c2febafc 334 p4d_free_tlb(tlb, p4d, start);
1da177e4
LT
335}
336
337/*
e0da382c 338 * This function frees user-level page tables of a process.
1da177e4 339 */
42b77728 340void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
341 unsigned long addr, unsigned long end,
342 unsigned long floor, unsigned long ceiling)
1da177e4
LT
343{
344 pgd_t *pgd;
345 unsigned long next;
e0da382c
HD
346
347 /*
348 * The next few lines have given us lots of grief...
349 *
350 * Why are we testing PMD* at this top level? Because often
351 * there will be no work to do at all, and we'd prefer not to
352 * go all the way down to the bottom just to discover that.
353 *
354 * Why all these "- 1"s? Because 0 represents both the bottom
355 * of the address space and the top of it (using -1 for the
356 * top wouldn't help much: the masks would do the wrong thing).
357 * The rule is that addr 0 and floor 0 refer to the bottom of
358 * the address space, but end 0 and ceiling 0 refer to the top
359 * Comparisons need to use "end - 1" and "ceiling - 1" (though
360 * that end 0 case should be mythical).
361 *
362 * Wherever addr is brought up or ceiling brought down, we must
363 * be careful to reject "the opposite 0" before it confuses the
364 * subsequent tests. But what about where end is brought down
365 * by PMD_SIZE below? no, end can't go down to 0 there.
366 *
367 * Whereas we round start (addr) and ceiling down, by different
368 * masks at different levels, in order to test whether a table
369 * now has no other vmas using it, so can be freed, we don't
370 * bother to round floor or end up - the tests don't need that.
371 */
1da177e4 372
e0da382c
HD
373 addr &= PMD_MASK;
374 if (addr < floor) {
375 addr += PMD_SIZE;
376 if (!addr)
377 return;
378 }
379 if (ceiling) {
380 ceiling &= PMD_MASK;
381 if (!ceiling)
382 return;
383 }
384 if (end - 1 > ceiling - 1)
385 end -= PMD_SIZE;
386 if (addr > end - 1)
387 return;
07e32661
AK
388 /*
389 * We add page table cache pages with PAGE_SIZE,
390 * (see pte_free_tlb()), flush the tlb if we need
391 */
ed6a7935 392 tlb_change_page_size(tlb, PAGE_SIZE);
42b77728 393 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
394 do {
395 next = pgd_addr_end(addr, end);
396 if (pgd_none_or_clear_bad(pgd))
397 continue;
c2febafc 398 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 399 } while (pgd++, addr = next, addr != end);
e0da382c
HD
400}
401
42b77728 402void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 403 unsigned long floor, unsigned long ceiling)
e0da382c
HD
404{
405 while (vma) {
406 struct vm_area_struct *next = vma->vm_next;
407 unsigned long addr = vma->vm_start;
408
8f4f8c16 409 /*
25d9e2d1
NP
410 * Hide vma from rmap and truncate_pagecache before freeing
411 * pgtables
8f4f8c16 412 */
5beb4930 413 unlink_anon_vmas(vma);
8f4f8c16
HD
414 unlink_file_vma(vma);
415
9da61aef 416 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 417 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 418 floor, next ? next->vm_start : ceiling);
3bf5ee95
HD
419 } else {
420 /*
421 * Optimization: gather nearby vmas into one call down
422 */
423 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 424 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
425 vma = next;
426 next = vma->vm_next;
5beb4930 427 unlink_anon_vmas(vma);
8f4f8c16 428 unlink_file_vma(vma);
3bf5ee95
HD
429 }
430 free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 431 floor, next ? next->vm_start : ceiling);
3bf5ee95 432 }
e0da382c
HD
433 vma = next;
434 }
1da177e4
LT
435}
436
4cf58924 437int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
1da177e4 438{
c4088ebd 439 spinlock_t *ptl;
4cf58924 440 pgtable_t new = pte_alloc_one(mm);
1bb3630e
HD
441 if (!new)
442 return -ENOMEM;
443
362a61ad
NP
444 /*
445 * Ensure all pte setup (eg. pte page lock and page clearing) are
446 * visible before the pte is made visible to other CPUs by being
447 * put into page tables.
448 *
449 * The other side of the story is the pointer chasing in the page
450 * table walking code (when walking the page table without locking;
451 * ie. most of the time). Fortunately, these data accesses consist
452 * of a chain of data-dependent loads, meaning most CPUs (alpha
453 * being the notable exception) will already guarantee loads are
454 * seen in-order. See the alpha page table accessors for the
bb7cdd38 455 * smp_rmb() barriers in page table walking code.
362a61ad
NP
456 */
457 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
458
c4088ebd 459 ptl = pmd_lock(mm, pmd);
8ac1f832 460 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
c4812909 461 mm_inc_nr_ptes(mm);
1da177e4 462 pmd_populate(mm, pmd, new);
2f569afd 463 new = NULL;
4b471e88 464 }
c4088ebd 465 spin_unlock(ptl);
2f569afd
MS
466 if (new)
467 pte_free(mm, new);
1bb3630e 468 return 0;
1da177e4
LT
469}
470
4cf58924 471int __pte_alloc_kernel(pmd_t *pmd)
1da177e4 472{
4cf58924 473 pte_t *new = pte_alloc_one_kernel(&init_mm);
1bb3630e
HD
474 if (!new)
475 return -ENOMEM;
476
362a61ad
NP
477 smp_wmb(); /* See comment in __pte_alloc */
478
1bb3630e 479 spin_lock(&init_mm.page_table_lock);
8ac1f832 480 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1bb3630e 481 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 482 new = NULL;
4b471e88 483 }
1bb3630e 484 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
485 if (new)
486 pte_free_kernel(&init_mm, new);
1bb3630e 487 return 0;
1da177e4
LT
488}
489
d559db08
KH
490static inline void init_rss_vec(int *rss)
491{
492 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
493}
494
495static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 496{
d559db08
KH
497 int i;
498
34e55232 499 if (current->mm == mm)
05af2e10 500 sync_mm_rss(mm);
d559db08
KH
501 for (i = 0; i < NR_MM_COUNTERS; i++)
502 if (rss[i])
503 add_mm_counter(mm, i, rss[i]);
ae859762
HD
504}
505
b5810039 506/*
6aab341e
LT
507 * This function is called to print an error when a bad pte
508 * is found. For example, we might have a PFN-mapped pte in
509 * a region that doesn't allow it.
b5810039
NP
510 *
511 * The calling function must still handle the error.
512 */
3dc14741
HD
513static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
514 pte_t pte, struct page *page)
b5810039 515{
3dc14741 516 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
c2febafc
KS
517 p4d_t *p4d = p4d_offset(pgd, addr);
518 pud_t *pud = pud_offset(p4d, addr);
3dc14741
HD
519 pmd_t *pmd = pmd_offset(pud, addr);
520 struct address_space *mapping;
521 pgoff_t index;
d936cf9b
HD
522 static unsigned long resume;
523 static unsigned long nr_shown;
524 static unsigned long nr_unshown;
525
526 /*
527 * Allow a burst of 60 reports, then keep quiet for that minute;
528 * or allow a steady drip of one report per second.
529 */
530 if (nr_shown == 60) {
531 if (time_before(jiffies, resume)) {
532 nr_unshown++;
533 return;
534 }
535 if (nr_unshown) {
1170532b
JP
536 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
537 nr_unshown);
d936cf9b
HD
538 nr_unshown = 0;
539 }
540 nr_shown = 0;
541 }
542 if (nr_shown++ == 0)
543 resume = jiffies + 60 * HZ;
3dc14741
HD
544
545 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
546 index = linear_page_index(vma, addr);
547
1170532b
JP
548 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
549 current->comm,
550 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 551 if (page)
f0b791a3 552 dump_page(page, "bad pte");
6aa9b8b2 553 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
1170532b 554 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
d75f773c 555 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
2682582a
KK
556 vma->vm_file,
557 vma->vm_ops ? vma->vm_ops->fault : NULL,
558 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
559 mapping ? mapping->a_ops->readpage : NULL);
b5810039 560 dump_stack();
373d4d09 561 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
562}
563
ee498ed7 564/*
7e675137 565 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 566 *
7e675137
NP
567 * "Special" mappings do not wish to be associated with a "struct page" (either
568 * it doesn't exist, or it exists but they don't want to touch it). In this
569 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 570 *
7e675137
NP
571 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
572 * pte bit, in which case this function is trivial. Secondly, an architecture
573 * may not have a spare pte bit, which requires a more complicated scheme,
574 * described below.
575 *
576 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
577 * special mapping (even if there are underlying and valid "struct pages").
578 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 579 *
b379d790
JH
580 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
581 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
582 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
583 * mapping will always honor the rule
6aab341e
LT
584 *
585 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
586 *
7e675137
NP
587 * And for normal mappings this is false.
588 *
589 * This restricts such mappings to be a linear translation from virtual address
590 * to pfn. To get around this restriction, we allow arbitrary mappings so long
591 * as the vma is not a COW mapping; in that case, we know that all ptes are
592 * special (because none can have been COWed).
b379d790 593 *
b379d790 594 *
7e675137 595 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
596 *
597 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
598 * page" backing, however the difference is that _all_ pages with a struct
599 * page (that is, those where pfn_valid is true) are refcounted and considered
600 * normal pages by the VM. The disadvantage is that pages are refcounted
601 * (which can be slower and simply not an option for some PFNMAP users). The
602 * advantage is that we don't have to follow the strict linearity rule of
603 * PFNMAP mappings in order to support COWable mappings.
604 *
ee498ed7 605 */
25b2995a
CH
606struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
607 pte_t pte)
ee498ed7 608{
22b31eec 609 unsigned long pfn = pte_pfn(pte);
7e675137 610
00b3a331 611 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
b38af472 612 if (likely(!pte_special(pte)))
22b31eec 613 goto check_pfn;
667a0a06
DV
614 if (vma->vm_ops && vma->vm_ops->find_special_page)
615 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
616 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
617 return NULL;
df6ad698
JG
618 if (is_zero_pfn(pfn))
619 return NULL;
e1fb4a08
DJ
620 if (pte_devmap(pte))
621 return NULL;
622
df6ad698 623 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
624 return NULL;
625 }
626
00b3a331 627 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
7e675137 628
b379d790
JH
629 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
630 if (vma->vm_flags & VM_MIXEDMAP) {
631 if (!pfn_valid(pfn))
632 return NULL;
633 goto out;
634 } else {
7e675137
NP
635 unsigned long off;
636 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
637 if (pfn == vma->vm_pgoff + off)
638 return NULL;
639 if (!is_cow_mapping(vma->vm_flags))
640 return NULL;
641 }
6aab341e
LT
642 }
643
b38af472
HD
644 if (is_zero_pfn(pfn))
645 return NULL;
00b3a331 646
22b31eec
HD
647check_pfn:
648 if (unlikely(pfn > highest_memmap_pfn)) {
649 print_bad_pte(vma, addr, pte, NULL);
650 return NULL;
651 }
6aab341e
LT
652
653 /*
7e675137 654 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 655 * eg. VDSO mappings can cause them to exist.
6aab341e 656 */
b379d790 657out:
6aab341e 658 return pfn_to_page(pfn);
ee498ed7
HD
659}
660
28093f9f
GS
661#ifdef CONFIG_TRANSPARENT_HUGEPAGE
662struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
663 pmd_t pmd)
664{
665 unsigned long pfn = pmd_pfn(pmd);
666
667 /*
668 * There is no pmd_special() but there may be special pmds, e.g.
669 * in a direct-access (dax) mapping, so let's just replicate the
00b3a331 670 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
28093f9f
GS
671 */
672 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
673 if (vma->vm_flags & VM_MIXEDMAP) {
674 if (!pfn_valid(pfn))
675 return NULL;
676 goto out;
677 } else {
678 unsigned long off;
679 off = (addr - vma->vm_start) >> PAGE_SHIFT;
680 if (pfn == vma->vm_pgoff + off)
681 return NULL;
682 if (!is_cow_mapping(vma->vm_flags))
683 return NULL;
684 }
685 }
686
e1fb4a08
DJ
687 if (pmd_devmap(pmd))
688 return NULL;
3cde287b 689 if (is_huge_zero_pmd(pmd))
28093f9f
GS
690 return NULL;
691 if (unlikely(pfn > highest_memmap_pfn))
692 return NULL;
693
694 /*
695 * NOTE! We still have PageReserved() pages in the page tables.
696 * eg. VDSO mappings can cause them to exist.
697 */
698out:
699 return pfn_to_page(pfn);
700}
701#endif
702
1da177e4
LT
703/*
704 * copy one vm_area from one task to the other. Assumes the page tables
705 * already present in the new task to be cleared in the whole range
706 * covered by this vma.
1da177e4
LT
707 */
708
df3a57d1
LT
709static unsigned long
710copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 711 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 712 unsigned long addr, int *rss)
1da177e4 713{
b5810039 714 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
715 pte_t pte = *src_pte;
716 struct page *page;
df3a57d1
LT
717 swp_entry_t entry = pte_to_swp_entry(pte);
718
719 if (likely(!non_swap_entry(entry))) {
720 if (swap_duplicate(entry) < 0)
721 return entry.val;
722
723 /* make sure dst_mm is on swapoff's mmlist. */
724 if (unlikely(list_empty(&dst_mm->mmlist))) {
725 spin_lock(&mmlist_lock);
726 if (list_empty(&dst_mm->mmlist))
727 list_add(&dst_mm->mmlist,
728 &src_mm->mmlist);
729 spin_unlock(&mmlist_lock);
730 }
731 rss[MM_SWAPENTS]++;
732 } else if (is_migration_entry(entry)) {
733 page = migration_entry_to_page(entry);
1da177e4 734
df3a57d1 735 rss[mm_counter(page)]++;
5042db43 736
df3a57d1
LT
737 if (is_write_migration_entry(entry) &&
738 is_cow_mapping(vm_flags)) {
5042db43 739 /*
df3a57d1
LT
740 * COW mappings require pages in both
741 * parent and child to be set to read.
5042db43 742 */
df3a57d1
LT
743 make_migration_entry_read(&entry);
744 pte = swp_entry_to_pte(entry);
745 if (pte_swp_soft_dirty(*src_pte))
746 pte = pte_swp_mksoft_dirty(pte);
747 if (pte_swp_uffd_wp(*src_pte))
748 pte = pte_swp_mkuffd_wp(pte);
749 set_pte_at(src_mm, addr, src_pte, pte);
750 }
751 } else if (is_device_private_entry(entry)) {
752 page = device_private_entry_to_page(entry);
5042db43 753
df3a57d1
LT
754 /*
755 * Update rss count even for unaddressable pages, as
756 * they should treated just like normal pages in this
757 * respect.
758 *
759 * We will likely want to have some new rss counters
760 * for unaddressable pages, at some point. But for now
761 * keep things as they are.
762 */
763 get_page(page);
764 rss[mm_counter(page)]++;
765 page_dup_rmap(page, false);
766
767 /*
768 * We do not preserve soft-dirty information, because so
769 * far, checkpoint/restore is the only feature that
770 * requires that. And checkpoint/restore does not work
771 * when a device driver is involved (you cannot easily
772 * save and restore device driver state).
773 */
774 if (is_write_device_private_entry(entry) &&
775 is_cow_mapping(vm_flags)) {
776 make_device_private_entry_read(&entry);
777 pte = swp_entry_to_pte(entry);
778 if (pte_swp_uffd_wp(*src_pte))
779 pte = pte_swp_mkuffd_wp(pte);
780 set_pte_at(src_mm, addr, src_pte, pte);
1da177e4 781 }
1da177e4 782 }
df3a57d1
LT
783 set_pte_at(dst_mm, addr, dst_pte, pte);
784 return 0;
785}
786
70e806e4
PX
787/*
788 * Copy a present and normal page if necessary.
789 *
790 * NOTE! The usual case is that this doesn't need to do
791 * anything, and can just return a positive value. That
792 * will let the caller know that it can just increase
793 * the page refcount and re-use the pte the traditional
794 * way.
795 *
796 * But _if_ we need to copy it because it needs to be
797 * pinned in the parent (and the child should get its own
798 * copy rather than just a reference to the same page),
799 * we'll do that here and return zero to let the caller
800 * know we're done.
801 *
802 * And if we need a pre-allocated page but don't yet have
803 * one, return a negative error to let the preallocation
804 * code know so that it can do so outside the page table
805 * lock.
806 */
807static inline int
c78f4636
PX
808copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
809 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
810 struct page **prealloc, pte_t pte, struct page *page)
70e806e4
PX
811{
812 struct page *new_page;
813
70e806e4 814 /*
70e806e4
PX
815 * What we want to do is to check whether this page may
816 * have been pinned by the parent process. If so,
817 * instead of wrprotect the pte on both sides, we copy
818 * the page immediately so that we'll always guarantee
819 * the pinned page won't be randomly replaced in the
820 * future.
821 *
f3c64eda
LT
822 * The page pinning checks are just "has this mm ever
823 * seen pinning", along with the (inexact) check of
824 * the page count. That might give false positives for
825 * for pinning, but it will work correctly.
70e806e4 826 */
97a7e473 827 if (likely(!page_needs_cow_for_dma(src_vma, page)))
70e806e4
PX
828 return 1;
829
70e806e4
PX
830 new_page = *prealloc;
831 if (!new_page)
832 return -EAGAIN;
833
834 /*
835 * We have a prealloc page, all good! Take it
836 * over and copy the page & arm it.
837 */
838 *prealloc = NULL;
c78f4636 839 copy_user_highpage(new_page, page, addr, src_vma);
70e806e4 840 __SetPageUptodate(new_page);
c78f4636
PX
841 page_add_new_anon_rmap(new_page, dst_vma, addr, false);
842 lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
70e806e4
PX
843 rss[mm_counter(new_page)]++;
844
845 /* All done, just insert the new page copy in the child */
c78f4636
PX
846 pte = mk_pte(new_page, dst_vma->vm_page_prot);
847 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
848 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
70e806e4
PX
849 return 0;
850}
851
852/*
853 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
854 * is required to copy this pte.
855 */
856static inline int
c78f4636
PX
857copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
858 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
859 struct page **prealloc)
df3a57d1 860{
c78f4636
PX
861 struct mm_struct *src_mm = src_vma->vm_mm;
862 unsigned long vm_flags = src_vma->vm_flags;
df3a57d1
LT
863 pte_t pte = *src_pte;
864 struct page *page;
865
c78f4636 866 page = vm_normal_page(src_vma, addr, pte);
70e806e4
PX
867 if (page) {
868 int retval;
869
c78f4636
PX
870 retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
871 addr, rss, prealloc, pte, page);
70e806e4
PX
872 if (retval <= 0)
873 return retval;
874
875 get_page(page);
876 page_dup_rmap(page, false);
877 rss[mm_counter(page)]++;
878 }
879
1da177e4
LT
880 /*
881 * If it's a COW mapping, write protect it both
882 * in the parent and the child
883 */
1b2de5d0 884 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
1da177e4 885 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 886 pte = pte_wrprotect(pte);
1da177e4
LT
887 }
888
889 /*
890 * If it's a shared mapping, mark it clean in
891 * the child
892 */
893 if (vm_flags & VM_SHARED)
894 pte = pte_mkclean(pte);
895 pte = pte_mkold(pte);
6aab341e 896
b569a176
PX
897 /*
898 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
899 * does not have the VM_UFFD_WP, which means that the uffd
900 * fork event is not enabled.
901 */
902 if (!(vm_flags & VM_UFFD_WP))
903 pte = pte_clear_uffd_wp(pte);
904
c78f4636 905 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
70e806e4
PX
906 return 0;
907}
908
909static inline struct page *
910page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
911 unsigned long addr)
912{
913 struct page *new_page;
914
915 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
916 if (!new_page)
917 return NULL;
918
919 if (mem_cgroup_charge(new_page, src_mm, GFP_KERNEL)) {
920 put_page(new_page);
921 return NULL;
6aab341e 922 }
70e806e4 923 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
ae859762 924
70e806e4 925 return new_page;
1da177e4
LT
926}
927
c78f4636
PX
928static int
929copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
930 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
931 unsigned long end)
1da177e4 932{
c78f4636
PX
933 struct mm_struct *dst_mm = dst_vma->vm_mm;
934 struct mm_struct *src_mm = src_vma->vm_mm;
c36987e2 935 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 936 pte_t *src_pte, *dst_pte;
c74df32c 937 spinlock_t *src_ptl, *dst_ptl;
70e806e4 938 int progress, ret = 0;
d559db08 939 int rss[NR_MM_COUNTERS];
570a335b 940 swp_entry_t entry = (swp_entry_t){0};
70e806e4 941 struct page *prealloc = NULL;
1da177e4
LT
942
943again:
70e806e4 944 progress = 0;
d559db08
KH
945 init_rss_vec(rss);
946
c74df32c 947 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
70e806e4
PX
948 if (!dst_pte) {
949 ret = -ENOMEM;
950 goto out;
951 }
ece0e2b6 952 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 953 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 954 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
955 orig_src_pte = src_pte;
956 orig_dst_pte = dst_pte;
6606c3e0 957 arch_enter_lazy_mmu_mode();
1da177e4 958
1da177e4
LT
959 do {
960 /*
961 * We are holding two locks at this point - either of them
962 * could generate latencies in another task on another CPU.
963 */
e040f218
HD
964 if (progress >= 32) {
965 progress = 0;
966 if (need_resched() ||
95c354fe 967 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
968 break;
969 }
1da177e4
LT
970 if (pte_none(*src_pte)) {
971 progress++;
972 continue;
973 }
79a1971c
LT
974 if (unlikely(!pte_present(*src_pte))) {
975 entry.val = copy_nonpresent_pte(dst_mm, src_mm,
976 dst_pte, src_pte,
c78f4636 977 src_vma, addr, rss);
79a1971c
LT
978 if (entry.val)
979 break;
980 progress += 8;
981 continue;
982 }
70e806e4 983 /* copy_present_pte() will clear `*prealloc' if consumed */
c78f4636
PX
984 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
985 addr, rss, &prealloc);
70e806e4
PX
986 /*
987 * If we need a pre-allocated page for this pte, drop the
988 * locks, allocate, and try again.
989 */
990 if (unlikely(ret == -EAGAIN))
991 break;
992 if (unlikely(prealloc)) {
993 /*
994 * pre-alloc page cannot be reused by next time so as
995 * to strictly follow mempolicy (e.g., alloc_page_vma()
996 * will allocate page according to address). This
997 * could only happen if one pinned pte changed.
998 */
999 put_page(prealloc);
1000 prealloc = NULL;
1001 }
1da177e4
LT
1002 progress += 8;
1003 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 1004
6606c3e0 1005 arch_leave_lazy_mmu_mode();
c74df32c 1006 spin_unlock(src_ptl);
ece0e2b6 1007 pte_unmap(orig_src_pte);
d559db08 1008 add_mm_rss_vec(dst_mm, rss);
c36987e2 1009 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 1010 cond_resched();
570a335b
HD
1011
1012 if (entry.val) {
70e806e4
PX
1013 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1014 ret = -ENOMEM;
1015 goto out;
1016 }
1017 entry.val = 0;
1018 } else if (ret) {
1019 WARN_ON_ONCE(ret != -EAGAIN);
c78f4636 1020 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
70e806e4 1021 if (!prealloc)
570a335b 1022 return -ENOMEM;
70e806e4
PX
1023 /* We've captured and resolved the error. Reset, try again. */
1024 ret = 0;
570a335b 1025 }
1da177e4
LT
1026 if (addr != end)
1027 goto again;
70e806e4
PX
1028out:
1029 if (unlikely(prealloc))
1030 put_page(prealloc);
1031 return ret;
1da177e4
LT
1032}
1033
c78f4636
PX
1034static inline int
1035copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1036 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1037 unsigned long end)
1da177e4 1038{
c78f4636
PX
1039 struct mm_struct *dst_mm = dst_vma->vm_mm;
1040 struct mm_struct *src_mm = src_vma->vm_mm;
1da177e4
LT
1041 pmd_t *src_pmd, *dst_pmd;
1042 unsigned long next;
1043
1044 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1045 if (!dst_pmd)
1046 return -ENOMEM;
1047 src_pmd = pmd_offset(src_pud, addr);
1048 do {
1049 next = pmd_addr_end(addr, end);
84c3fc4e
ZY
1050 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1051 || pmd_devmap(*src_pmd)) {
71e3aac0 1052 int err;
c78f4636 1053 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
71e3aac0 1054 err = copy_huge_pmd(dst_mm, src_mm,
c78f4636 1055 dst_pmd, src_pmd, addr, src_vma);
71e3aac0
AA
1056 if (err == -ENOMEM)
1057 return -ENOMEM;
1058 if (!err)
1059 continue;
1060 /* fall through */
1061 }
1da177e4
LT
1062 if (pmd_none_or_clear_bad(src_pmd))
1063 continue;
c78f4636
PX
1064 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1065 addr, next))
1da177e4
LT
1066 return -ENOMEM;
1067 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1068 return 0;
1069}
1070
c78f4636
PX
1071static inline int
1072copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1073 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1074 unsigned long end)
1da177e4 1075{
c78f4636
PX
1076 struct mm_struct *dst_mm = dst_vma->vm_mm;
1077 struct mm_struct *src_mm = src_vma->vm_mm;
1da177e4
LT
1078 pud_t *src_pud, *dst_pud;
1079 unsigned long next;
1080
c2febafc 1081 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1da177e4
LT
1082 if (!dst_pud)
1083 return -ENOMEM;
c2febafc 1084 src_pud = pud_offset(src_p4d, addr);
1da177e4
LT
1085 do {
1086 next = pud_addr_end(addr, end);
a00cc7d9
MW
1087 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1088 int err;
1089
c78f4636 1090 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
a00cc7d9 1091 err = copy_huge_pud(dst_mm, src_mm,
c78f4636 1092 dst_pud, src_pud, addr, src_vma);
a00cc7d9
MW
1093 if (err == -ENOMEM)
1094 return -ENOMEM;
1095 if (!err)
1096 continue;
1097 /* fall through */
1098 }
1da177e4
LT
1099 if (pud_none_or_clear_bad(src_pud))
1100 continue;
c78f4636
PX
1101 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1102 addr, next))
1da177e4
LT
1103 return -ENOMEM;
1104 } while (dst_pud++, src_pud++, addr = next, addr != end);
1105 return 0;
1106}
1107
c78f4636
PX
1108static inline int
1109copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1110 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1111 unsigned long end)
c2febafc 1112{
c78f4636 1113 struct mm_struct *dst_mm = dst_vma->vm_mm;
c2febafc
KS
1114 p4d_t *src_p4d, *dst_p4d;
1115 unsigned long next;
1116
1117 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1118 if (!dst_p4d)
1119 return -ENOMEM;
1120 src_p4d = p4d_offset(src_pgd, addr);
1121 do {
1122 next = p4d_addr_end(addr, end);
1123 if (p4d_none_or_clear_bad(src_p4d))
1124 continue;
c78f4636
PX
1125 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1126 addr, next))
c2febafc
KS
1127 return -ENOMEM;
1128 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1129 return 0;
1130}
1131
c78f4636
PX
1132int
1133copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1da177e4
LT
1134{
1135 pgd_t *src_pgd, *dst_pgd;
1136 unsigned long next;
c78f4636
PX
1137 unsigned long addr = src_vma->vm_start;
1138 unsigned long end = src_vma->vm_end;
1139 struct mm_struct *dst_mm = dst_vma->vm_mm;
1140 struct mm_struct *src_mm = src_vma->vm_mm;
ac46d4f3 1141 struct mmu_notifier_range range;
2ec74c3e 1142 bool is_cow;
cddb8a5c 1143 int ret;
1da177e4 1144
d992895b
NP
1145 /*
1146 * Don't copy ptes where a page fault will fill them correctly.
1147 * Fork becomes much lighter when there are big shared or private
1148 * readonly mappings. The tradeoff is that copy_page_range is more
1149 * efficient than faulting.
1150 */
c78f4636
PX
1151 if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1152 !src_vma->anon_vma)
0661a336 1153 return 0;
d992895b 1154
c78f4636
PX
1155 if (is_vm_hugetlb_page(src_vma))
1156 return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1da177e4 1157
c78f4636 1158 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
2ab64037 1159 /*
1160 * We do not free on error cases below as remove_vma
1161 * gets called on error from higher level routine
1162 */
c78f4636 1163 ret = track_pfn_copy(src_vma);
2ab64037 1164 if (ret)
1165 return ret;
1166 }
1167
cddb8a5c
AA
1168 /*
1169 * We need to invalidate the secondary MMU mappings only when
1170 * there could be a permission downgrade on the ptes of the
1171 * parent mm. And a permission downgrade will only happen if
1172 * is_cow_mapping() returns true.
1173 */
c78f4636 1174 is_cow = is_cow_mapping(src_vma->vm_flags);
ac46d4f3
JG
1175
1176 if (is_cow) {
7269f999 1177 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
c78f4636 1178 0, src_vma, src_mm, addr, end);
ac46d4f3 1179 mmu_notifier_invalidate_range_start(&range);
57efa1fe
JG
1180 /*
1181 * Disabling preemption is not needed for the write side, as
1182 * the read side doesn't spin, but goes to the mmap_lock.
1183 *
1184 * Use the raw variant of the seqcount_t write API to avoid
1185 * lockdep complaining about preemptibility.
1186 */
1187 mmap_assert_write_locked(src_mm);
1188 raw_write_seqcount_begin(&src_mm->write_protect_seq);
ac46d4f3 1189 }
cddb8a5c
AA
1190
1191 ret = 0;
1da177e4
LT
1192 dst_pgd = pgd_offset(dst_mm, addr);
1193 src_pgd = pgd_offset(src_mm, addr);
1194 do {
1195 next = pgd_addr_end(addr, end);
1196 if (pgd_none_or_clear_bad(src_pgd))
1197 continue;
c78f4636
PX
1198 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1199 addr, next))) {
cddb8a5c
AA
1200 ret = -ENOMEM;
1201 break;
1202 }
1da177e4 1203 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1204
57efa1fe
JG
1205 if (is_cow) {
1206 raw_write_seqcount_end(&src_mm->write_protect_seq);
ac46d4f3 1207 mmu_notifier_invalidate_range_end(&range);
57efa1fe 1208 }
cddb8a5c 1209 return ret;
1da177e4
LT
1210}
1211
51c6f666 1212static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1213 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1214 unsigned long addr, unsigned long end,
97a89413 1215 struct zap_details *details)
1da177e4 1216{
b5810039 1217 struct mm_struct *mm = tlb->mm;
d16dfc55 1218 int force_flush = 0;
d559db08 1219 int rss[NR_MM_COUNTERS];
97a89413 1220 spinlock_t *ptl;
5f1a1907 1221 pte_t *start_pte;
97a89413 1222 pte_t *pte;
8a5f14a2 1223 swp_entry_t entry;
d559db08 1224
ed6a7935 1225 tlb_change_page_size(tlb, PAGE_SIZE);
d16dfc55 1226again:
e303297e 1227 init_rss_vec(rss);
5f1a1907
SR
1228 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1229 pte = start_pte;
3ea27719 1230 flush_tlb_batched_pending(mm);
6606c3e0 1231 arch_enter_lazy_mmu_mode();
1da177e4
LT
1232 do {
1233 pte_t ptent = *pte;
166f61b9 1234 if (pte_none(ptent))
1da177e4 1235 continue;
6f5e6b9e 1236
7b167b68
MK
1237 if (need_resched())
1238 break;
1239
1da177e4 1240 if (pte_present(ptent)) {
ee498ed7 1241 struct page *page;
51c6f666 1242
25b2995a 1243 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
1244 if (unlikely(details) && page) {
1245 /*
1246 * unmap_shared_mapping_pages() wants to
1247 * invalidate cache without truncating:
1248 * unmap shared but keep private pages.
1249 */
1250 if (details->check_mapping &&
800d8c63 1251 details->check_mapping != page_rmapping(page))
1da177e4 1252 continue;
1da177e4 1253 }
b5810039 1254 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1255 tlb->fullmm);
1da177e4
LT
1256 tlb_remove_tlb_entry(tlb, pte, addr);
1257 if (unlikely(!page))
1258 continue;
eca56ff9
JM
1259
1260 if (!PageAnon(page)) {
1cf35d47
LT
1261 if (pte_dirty(ptent)) {
1262 force_flush = 1;
6237bcd9 1263 set_page_dirty(page);
1cf35d47 1264 }
4917e5d0 1265 if (pte_young(ptent) &&
64363aad 1266 likely(!(vma->vm_flags & VM_SEQ_READ)))
bf3f3bc5 1267 mark_page_accessed(page);
6237bcd9 1268 }
eca56ff9 1269 rss[mm_counter(page)]--;
d281ee61 1270 page_remove_rmap(page, false);
3dc14741
HD
1271 if (unlikely(page_mapcount(page) < 0))
1272 print_bad_pte(vma, addr, ptent, page);
e9d55e15 1273 if (unlikely(__tlb_remove_page(tlb, page))) {
1cf35d47 1274 force_flush = 1;
ce9ec37b 1275 addr += PAGE_SIZE;
d16dfc55 1276 break;
1cf35d47 1277 }
1da177e4
LT
1278 continue;
1279 }
5042db43
JG
1280
1281 entry = pte_to_swp_entry(ptent);
463b7a17 1282 if (is_device_private_entry(entry)) {
5042db43
JG
1283 struct page *page = device_private_entry_to_page(entry);
1284
1285 if (unlikely(details && details->check_mapping)) {
1286 /*
1287 * unmap_shared_mapping_pages() wants to
1288 * invalidate cache without truncating:
1289 * unmap shared but keep private pages.
1290 */
1291 if (details->check_mapping !=
1292 page_rmapping(page))
1293 continue;
1294 }
1295
1296 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1297 rss[mm_counter(page)]--;
1298 page_remove_rmap(page, false);
1299 put_page(page);
1300 continue;
1301 }
1302
3e8715fd
KS
1303 /* If details->check_mapping, we leave swap entries. */
1304 if (unlikely(details))
1da177e4 1305 continue;
b084d435 1306
8a5f14a2
KS
1307 if (!non_swap_entry(entry))
1308 rss[MM_SWAPENTS]--;
1309 else if (is_migration_entry(entry)) {
1310 struct page *page;
9f9f1acd 1311
8a5f14a2 1312 page = migration_entry_to_page(entry);
eca56ff9 1313 rss[mm_counter(page)]--;
b084d435 1314 }
8a5f14a2
KS
1315 if (unlikely(!free_swap_and_cache(entry)))
1316 print_bad_pte(vma, addr, ptent, NULL);
9888a1ca 1317 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1318 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1319
d559db08 1320 add_mm_rss_vec(mm, rss);
6606c3e0 1321 arch_leave_lazy_mmu_mode();
51c6f666 1322
1cf35d47 1323 /* Do the actual TLB flush before dropping ptl */
fb7332a9 1324 if (force_flush)
1cf35d47 1325 tlb_flush_mmu_tlbonly(tlb);
1cf35d47
LT
1326 pte_unmap_unlock(start_pte, ptl);
1327
1328 /*
1329 * If we forced a TLB flush (either due to running out of
1330 * batch buffers or because we needed to flush dirty TLB
1331 * entries before releasing the ptl), free the batched
1332 * memory too. Restart if we didn't do everything.
1333 */
1334 if (force_flush) {
1335 force_flush = 0;
fa0aafb8 1336 tlb_flush_mmu(tlb);
7b167b68
MK
1337 }
1338
1339 if (addr != end) {
1340 cond_resched();
1341 goto again;
d16dfc55
PZ
1342 }
1343
51c6f666 1344 return addr;
1da177e4
LT
1345}
1346
51c6f666 1347static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1348 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1349 unsigned long addr, unsigned long end,
97a89413 1350 struct zap_details *details)
1da177e4
LT
1351{
1352 pmd_t *pmd;
1353 unsigned long next;
1354
1355 pmd = pmd_offset(pud, addr);
1356 do {
1357 next = pmd_addr_end(addr, end);
84c3fc4e 1358 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
53406ed1 1359 if (next - addr != HPAGE_PMD_SIZE)
fd60775a 1360 __split_huge_pmd(vma, pmd, addr, false, NULL);
53406ed1 1361 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1362 goto next;
71e3aac0
AA
1363 /* fall through */
1364 }
1a5a9906
AA
1365 /*
1366 * Here there can be other concurrent MADV_DONTNEED or
1367 * trans huge page faults running, and if the pmd is
1368 * none or trans huge it can change under us. This is
c1e8d7c6 1369 * because MADV_DONTNEED holds the mmap_lock in read
1a5a9906
AA
1370 * mode.
1371 */
1372 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1373 goto next;
97a89413 1374 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1375next:
97a89413
PZ
1376 cond_resched();
1377 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1378
1379 return addr;
1da177e4
LT
1380}
1381
51c6f666 1382static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
c2febafc 1383 struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 1384 unsigned long addr, unsigned long end,
97a89413 1385 struct zap_details *details)
1da177e4
LT
1386{
1387 pud_t *pud;
1388 unsigned long next;
1389
c2febafc 1390 pud = pud_offset(p4d, addr);
1da177e4
LT
1391 do {
1392 next = pud_addr_end(addr, end);
a00cc7d9
MW
1393 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1394 if (next - addr != HPAGE_PUD_SIZE) {
42fc5414 1395 mmap_assert_locked(tlb->mm);
a00cc7d9
MW
1396 split_huge_pud(vma, pud, addr);
1397 } else if (zap_huge_pud(tlb, vma, pud, addr))
1398 goto next;
1399 /* fall through */
1400 }
97a89413 1401 if (pud_none_or_clear_bad(pud))
1da177e4 1402 continue;
97a89413 1403 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
a00cc7d9
MW
1404next:
1405 cond_resched();
97a89413 1406 } while (pud++, addr = next, addr != end);
51c6f666
RH
1407
1408 return addr;
1da177e4
LT
1409}
1410
c2febafc
KS
1411static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1412 struct vm_area_struct *vma, pgd_t *pgd,
1413 unsigned long addr, unsigned long end,
1414 struct zap_details *details)
1415{
1416 p4d_t *p4d;
1417 unsigned long next;
1418
1419 p4d = p4d_offset(pgd, addr);
1420 do {
1421 next = p4d_addr_end(addr, end);
1422 if (p4d_none_or_clear_bad(p4d))
1423 continue;
1424 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1425 } while (p4d++, addr = next, addr != end);
1426
1427 return addr;
1428}
1429
aac45363 1430void unmap_page_range(struct mmu_gather *tlb,
038c7aa1
AV
1431 struct vm_area_struct *vma,
1432 unsigned long addr, unsigned long end,
1433 struct zap_details *details)
1da177e4
LT
1434{
1435 pgd_t *pgd;
1436 unsigned long next;
1437
1da177e4
LT
1438 BUG_ON(addr >= end);
1439 tlb_start_vma(tlb, vma);
1440 pgd = pgd_offset(vma->vm_mm, addr);
1441 do {
1442 next = pgd_addr_end(addr, end);
97a89413 1443 if (pgd_none_or_clear_bad(pgd))
1da177e4 1444 continue;
c2febafc 1445 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
97a89413 1446 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1447 tlb_end_vma(tlb, vma);
1448}
51c6f666 1449
f5cc4eef
AV
1450
1451static void unmap_single_vma(struct mmu_gather *tlb,
1452 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1453 unsigned long end_addr,
f5cc4eef
AV
1454 struct zap_details *details)
1455{
1456 unsigned long start = max(vma->vm_start, start_addr);
1457 unsigned long end;
1458
1459 if (start >= vma->vm_end)
1460 return;
1461 end = min(vma->vm_end, end_addr);
1462 if (end <= vma->vm_start)
1463 return;
1464
cbc91f71
SD
1465 if (vma->vm_file)
1466 uprobe_munmap(vma, start, end);
1467
b3b9c293 1468 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1469 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1470
1471 if (start != end) {
1472 if (unlikely(is_vm_hugetlb_page(vma))) {
1473 /*
1474 * It is undesirable to test vma->vm_file as it
1475 * should be non-null for valid hugetlb area.
1476 * However, vm_file will be NULL in the error
7aa6b4ad 1477 * cleanup path of mmap_region. When
f5cc4eef 1478 * hugetlbfs ->mmap method fails,
7aa6b4ad 1479 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1480 * before calling this function to clean up.
1481 * Since no pte has actually been setup, it is
1482 * safe to do nothing in this case.
1483 */
24669e58 1484 if (vma->vm_file) {
83cde9e8 1485 i_mmap_lock_write(vma->vm_file->f_mapping);
d833352a 1486 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
83cde9e8 1487 i_mmap_unlock_write(vma->vm_file->f_mapping);
24669e58 1488 }
f5cc4eef
AV
1489 } else
1490 unmap_page_range(tlb, vma, start, end, details);
1491 }
1da177e4
LT
1492}
1493
1da177e4
LT
1494/**
1495 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1496 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1497 * @vma: the starting vma
1498 * @start_addr: virtual address at which to start unmapping
1499 * @end_addr: virtual address at which to end unmapping
1da177e4 1500 *
508034a3 1501 * Unmap all pages in the vma list.
1da177e4 1502 *
1da177e4
LT
1503 * Only addresses between `start' and `end' will be unmapped.
1504 *
1505 * The VMA list must be sorted in ascending virtual address order.
1506 *
1507 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1508 * range after unmap_vmas() returns. So the only responsibility here is to
1509 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1510 * drops the lock and schedules.
1511 */
6e8bb019 1512void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1513 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1514 unsigned long end_addr)
1da177e4 1515{
ac46d4f3 1516 struct mmu_notifier_range range;
1da177e4 1517
6f4f13e8
JG
1518 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1519 start_addr, end_addr);
ac46d4f3 1520 mmu_notifier_invalidate_range_start(&range);
f5cc4eef 1521 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
4f74d2c8 1522 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
ac46d4f3 1523 mmu_notifier_invalidate_range_end(&range);
1da177e4
LT
1524}
1525
1526/**
1527 * zap_page_range - remove user pages in a given range
1528 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1529 * @start: starting address of pages to zap
1da177e4 1530 * @size: number of bytes to zap
f5cc4eef
AV
1531 *
1532 * Caller must protect the VMA list
1da177e4 1533 */
7e027b14 1534void zap_page_range(struct vm_area_struct *vma, unsigned long start,
ecf1385d 1535 unsigned long size)
1da177e4 1536{
ac46d4f3 1537 struct mmu_notifier_range range;
d16dfc55 1538 struct mmu_gather tlb;
1da177e4 1539
1da177e4 1540 lru_add_drain();
7269f999 1541 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1542 start, start + size);
a72afd87 1543 tlb_gather_mmu(&tlb, vma->vm_mm);
ac46d4f3
JG
1544 update_hiwater_rss(vma->vm_mm);
1545 mmu_notifier_invalidate_range_start(&range);
1546 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1547 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1548 mmu_notifier_invalidate_range_end(&range);
ae8eba8b 1549 tlb_finish_mmu(&tlb);
1da177e4
LT
1550}
1551
f5cc4eef
AV
1552/**
1553 * zap_page_range_single - remove user pages in a given range
1554 * @vma: vm_area_struct holding the applicable pages
1555 * @address: starting address of pages to zap
1556 * @size: number of bytes to zap
8a5f14a2 1557 * @details: details of shared cache invalidation
f5cc4eef
AV
1558 *
1559 * The range must fit into one VMA.
1da177e4 1560 */
f5cc4eef 1561static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1562 unsigned long size, struct zap_details *details)
1563{
ac46d4f3 1564 struct mmu_notifier_range range;
d16dfc55 1565 struct mmu_gather tlb;
1da177e4 1566
1da177e4 1567 lru_add_drain();
7269f999 1568 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1569 address, address + size);
a72afd87 1570 tlb_gather_mmu(&tlb, vma->vm_mm);
ac46d4f3
JG
1571 update_hiwater_rss(vma->vm_mm);
1572 mmu_notifier_invalidate_range_start(&range);
1573 unmap_single_vma(&tlb, vma, address, range.end, details);
1574 mmu_notifier_invalidate_range_end(&range);
ae8eba8b 1575 tlb_finish_mmu(&tlb);
1da177e4
LT
1576}
1577
c627f9cc
JS
1578/**
1579 * zap_vma_ptes - remove ptes mapping the vma
1580 * @vma: vm_area_struct holding ptes to be zapped
1581 * @address: starting address of pages to zap
1582 * @size: number of bytes to zap
1583 *
1584 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1585 *
1586 * The entire address range must be fully contained within the vma.
1587 *
c627f9cc 1588 */
27d036e3 1589void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
c627f9cc
JS
1590 unsigned long size)
1591{
1592 if (address < vma->vm_start || address + size > vma->vm_end ||
1593 !(vma->vm_flags & VM_PFNMAP))
27d036e3
LR
1594 return;
1595
f5cc4eef 1596 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1597}
1598EXPORT_SYMBOL_GPL(zap_vma_ptes);
1599
8cd3984d 1600static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
c9cfcddf 1601{
c2febafc
KS
1602 pgd_t *pgd;
1603 p4d_t *p4d;
1604 pud_t *pud;
1605 pmd_t *pmd;
1606
1607 pgd = pgd_offset(mm, addr);
1608 p4d = p4d_alloc(mm, pgd, addr);
1609 if (!p4d)
1610 return NULL;
1611 pud = pud_alloc(mm, p4d, addr);
1612 if (!pud)
1613 return NULL;
1614 pmd = pmd_alloc(mm, pud, addr);
1615 if (!pmd)
1616 return NULL;
1617
1618 VM_BUG_ON(pmd_trans_huge(*pmd));
8cd3984d
AR
1619 return pmd;
1620}
1621
1622pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1623 spinlock_t **ptl)
1624{
1625 pmd_t *pmd = walk_to_pmd(mm, addr);
1626
1627 if (!pmd)
1628 return NULL;
c2febafc 1629 return pte_alloc_map_lock(mm, pmd, addr, ptl);
c9cfcddf
LT
1630}
1631
8efd6f5b
AR
1632static int validate_page_before_insert(struct page *page)
1633{
1634 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1635 return -EINVAL;
1636 flush_dcache_page(page);
1637 return 0;
1638}
1639
1640static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1641 unsigned long addr, struct page *page, pgprot_t prot)
1642{
1643 if (!pte_none(*pte))
1644 return -EBUSY;
1645 /* Ok, finally just insert the thing.. */
1646 get_page(page);
1647 inc_mm_counter_fast(mm, mm_counter_file(page));
1648 page_add_file_rmap(page, false);
1649 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1650 return 0;
1651}
1652
238f58d8
LT
1653/*
1654 * This is the old fallback for page remapping.
1655 *
1656 * For historical reasons, it only allows reserved pages. Only
1657 * old drivers should use this, and they needed to mark their
1658 * pages reserved for the old functions anyway.
1659 */
423bad60
NP
1660static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1661 struct page *page, pgprot_t prot)
238f58d8 1662{
423bad60 1663 struct mm_struct *mm = vma->vm_mm;
238f58d8 1664 int retval;
c9cfcddf 1665 pte_t *pte;
8a9f3ccd
BS
1666 spinlock_t *ptl;
1667
8efd6f5b
AR
1668 retval = validate_page_before_insert(page);
1669 if (retval)
5b4e655e 1670 goto out;
238f58d8 1671 retval = -ENOMEM;
c9cfcddf 1672 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1673 if (!pte)
5b4e655e 1674 goto out;
8efd6f5b 1675 retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
238f58d8
LT
1676 pte_unmap_unlock(pte, ptl);
1677out:
1678 return retval;
1679}
1680
8cd3984d 1681#ifdef pte_index
7f70c2a6 1682static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
8cd3984d
AR
1683 unsigned long addr, struct page *page, pgprot_t prot)
1684{
1685 int err;
1686
1687 if (!page_count(page))
1688 return -EINVAL;
1689 err = validate_page_before_insert(page);
7f70c2a6
AR
1690 if (err)
1691 return err;
1692 return insert_page_into_pte_locked(mm, pte, addr, page, prot);
8cd3984d
AR
1693}
1694
1695/* insert_pages() amortizes the cost of spinlock operations
1696 * when inserting pages in a loop. Arch *must* define pte_index.
1697 */
1698static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1699 struct page **pages, unsigned long *num, pgprot_t prot)
1700{
1701 pmd_t *pmd = NULL;
7f70c2a6
AR
1702 pte_t *start_pte, *pte;
1703 spinlock_t *pte_lock;
8cd3984d
AR
1704 struct mm_struct *const mm = vma->vm_mm;
1705 unsigned long curr_page_idx = 0;
1706 unsigned long remaining_pages_total = *num;
1707 unsigned long pages_to_write_in_pmd;
1708 int ret;
1709more:
1710 ret = -EFAULT;
1711 pmd = walk_to_pmd(mm, addr);
1712 if (!pmd)
1713 goto out;
1714
1715 pages_to_write_in_pmd = min_t(unsigned long,
1716 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1717
1718 /* Allocate the PTE if necessary; takes PMD lock once only. */
1719 ret = -ENOMEM;
1720 if (pte_alloc(mm, pmd))
1721 goto out;
8cd3984d
AR
1722
1723 while (pages_to_write_in_pmd) {
1724 int pte_idx = 0;
1725 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1726
7f70c2a6
AR
1727 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1728 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1729 int err = insert_page_in_batch_locked(mm, pte,
8cd3984d
AR
1730 addr, pages[curr_page_idx], prot);
1731 if (unlikely(err)) {
7f70c2a6 1732 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
1733 ret = err;
1734 remaining_pages_total -= pte_idx;
1735 goto out;
1736 }
1737 addr += PAGE_SIZE;
1738 ++curr_page_idx;
1739 }
7f70c2a6 1740 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
1741 pages_to_write_in_pmd -= batch_size;
1742 remaining_pages_total -= batch_size;
1743 }
1744 if (remaining_pages_total)
1745 goto more;
1746 ret = 0;
1747out:
1748 *num = remaining_pages_total;
1749 return ret;
1750}
1751#endif /* ifdef pte_index */
1752
1753/**
1754 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1755 * @vma: user vma to map to
1756 * @addr: target start user address of these pages
1757 * @pages: source kernel pages
1758 * @num: in: number of pages to map. out: number of pages that were *not*
1759 * mapped. (0 means all pages were successfully mapped).
1760 *
1761 * Preferred over vm_insert_page() when inserting multiple pages.
1762 *
1763 * In case of error, we may have mapped a subset of the provided
1764 * pages. It is the caller's responsibility to account for this case.
1765 *
1766 * The same restrictions apply as in vm_insert_page().
1767 */
1768int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1769 struct page **pages, unsigned long *num)
1770{
1771#ifdef pte_index
1772 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1773
1774 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1775 return -EFAULT;
1776 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 1777 BUG_ON(mmap_read_trylock(vma->vm_mm));
8cd3984d
AR
1778 BUG_ON(vma->vm_flags & VM_PFNMAP);
1779 vma->vm_flags |= VM_MIXEDMAP;
1780 }
1781 /* Defer page refcount checking till we're about to map that page. */
1782 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1783#else
1784 unsigned long idx = 0, pgcount = *num;
45779b03 1785 int err = -EINVAL;
8cd3984d
AR
1786
1787 for (; idx < pgcount; ++idx) {
1788 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1789 if (err)
1790 break;
1791 }
1792 *num = pgcount - idx;
1793 return err;
1794#endif /* ifdef pte_index */
1795}
1796EXPORT_SYMBOL(vm_insert_pages);
1797
bfa5bf6d
REB
1798/**
1799 * vm_insert_page - insert single page into user vma
1800 * @vma: user vma to map to
1801 * @addr: target user address of this page
1802 * @page: source kernel page
1803 *
a145dd41
LT
1804 * This allows drivers to insert individual pages they've allocated
1805 * into a user vma.
1806 *
1807 * The page has to be a nice clean _individual_ kernel allocation.
1808 * If you allocate a compound page, you need to have marked it as
1809 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1810 * (see split_page()).
a145dd41
LT
1811 *
1812 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1813 * took an arbitrary page protection parameter. This doesn't allow
1814 * that. Your vma protection will have to be set up correctly, which
1815 * means that if you want a shared writable mapping, you'd better
1816 * ask for a shared writable mapping!
1817 *
1818 * The page does not need to be reserved.
4b6e1e37
KK
1819 *
1820 * Usually this function is called from f_op->mmap() handler
c1e8d7c6 1821 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
4b6e1e37
KK
1822 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1823 * function from other places, for example from page-fault handler.
a862f68a
MR
1824 *
1825 * Return: %0 on success, negative error code otherwise.
a145dd41 1826 */
423bad60
NP
1827int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1828 struct page *page)
a145dd41
LT
1829{
1830 if (addr < vma->vm_start || addr >= vma->vm_end)
1831 return -EFAULT;
1832 if (!page_count(page))
1833 return -EINVAL;
4b6e1e37 1834 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 1835 BUG_ON(mmap_read_trylock(vma->vm_mm));
4b6e1e37
KK
1836 BUG_ON(vma->vm_flags & VM_PFNMAP);
1837 vma->vm_flags |= VM_MIXEDMAP;
1838 }
423bad60 1839 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1840}
e3c3374f 1841EXPORT_SYMBOL(vm_insert_page);
a145dd41 1842
a667d745
SJ
1843/*
1844 * __vm_map_pages - maps range of kernel pages into user vma
1845 * @vma: user vma to map to
1846 * @pages: pointer to array of source kernel pages
1847 * @num: number of pages in page array
1848 * @offset: user's requested vm_pgoff
1849 *
1850 * This allows drivers to map range of kernel pages into a user vma.
1851 *
1852 * Return: 0 on success and error code otherwise.
1853 */
1854static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1855 unsigned long num, unsigned long offset)
1856{
1857 unsigned long count = vma_pages(vma);
1858 unsigned long uaddr = vma->vm_start;
1859 int ret, i;
1860
1861 /* Fail if the user requested offset is beyond the end of the object */
96756fcb 1862 if (offset >= num)
a667d745
SJ
1863 return -ENXIO;
1864
1865 /* Fail if the user requested size exceeds available object size */
1866 if (count > num - offset)
1867 return -ENXIO;
1868
1869 for (i = 0; i < count; i++) {
1870 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1871 if (ret < 0)
1872 return ret;
1873 uaddr += PAGE_SIZE;
1874 }
1875
1876 return 0;
1877}
1878
1879/**
1880 * vm_map_pages - maps range of kernel pages starts with non zero offset
1881 * @vma: user vma to map to
1882 * @pages: pointer to array of source kernel pages
1883 * @num: number of pages in page array
1884 *
1885 * Maps an object consisting of @num pages, catering for the user's
1886 * requested vm_pgoff
1887 *
1888 * If we fail to insert any page into the vma, the function will return
1889 * immediately leaving any previously inserted pages present. Callers
1890 * from the mmap handler may immediately return the error as their caller
1891 * will destroy the vma, removing any successfully inserted pages. Other
1892 * callers should make their own arrangements for calling unmap_region().
1893 *
1894 * Context: Process context. Called by mmap handlers.
1895 * Return: 0 on success and error code otherwise.
1896 */
1897int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1898 unsigned long num)
1899{
1900 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1901}
1902EXPORT_SYMBOL(vm_map_pages);
1903
1904/**
1905 * vm_map_pages_zero - map range of kernel pages starts with zero offset
1906 * @vma: user vma to map to
1907 * @pages: pointer to array of source kernel pages
1908 * @num: number of pages in page array
1909 *
1910 * Similar to vm_map_pages(), except that it explicitly sets the offset
1911 * to 0. This function is intended for the drivers that did not consider
1912 * vm_pgoff.
1913 *
1914 * Context: Process context. Called by mmap handlers.
1915 * Return: 0 on success and error code otherwise.
1916 */
1917int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1918 unsigned long num)
1919{
1920 return __vm_map_pages(vma, pages, num, 0);
1921}
1922EXPORT_SYMBOL(vm_map_pages_zero);
1923
9b5a8e00 1924static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
b2770da6 1925 pfn_t pfn, pgprot_t prot, bool mkwrite)
423bad60
NP
1926{
1927 struct mm_struct *mm = vma->vm_mm;
423bad60
NP
1928 pte_t *pte, entry;
1929 spinlock_t *ptl;
1930
423bad60
NP
1931 pte = get_locked_pte(mm, addr, &ptl);
1932 if (!pte)
9b5a8e00 1933 return VM_FAULT_OOM;
b2770da6
RZ
1934 if (!pte_none(*pte)) {
1935 if (mkwrite) {
1936 /*
1937 * For read faults on private mappings the PFN passed
1938 * in may not match the PFN we have mapped if the
1939 * mapped PFN is a writeable COW page. In the mkwrite
1940 * case we are creating a writable PTE for a shared
f2c57d91
JK
1941 * mapping and we expect the PFNs to match. If they
1942 * don't match, we are likely racing with block
1943 * allocation and mapping invalidation so just skip the
1944 * update.
b2770da6 1945 */
f2c57d91
JK
1946 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1947 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
b2770da6 1948 goto out_unlock;
f2c57d91 1949 }
cae85cb8
JK
1950 entry = pte_mkyoung(*pte);
1951 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1952 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1953 update_mmu_cache(vma, addr, pte);
1954 }
1955 goto out_unlock;
b2770da6 1956 }
423bad60
NP
1957
1958 /* Ok, finally just insert the thing.. */
01c8f1c4
DW
1959 if (pfn_t_devmap(pfn))
1960 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1961 else
1962 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
b2770da6 1963
b2770da6
RZ
1964 if (mkwrite) {
1965 entry = pte_mkyoung(entry);
1966 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1967 }
1968
423bad60 1969 set_pte_at(mm, addr, pte, entry);
4b3073e1 1970 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60 1971
423bad60
NP
1972out_unlock:
1973 pte_unmap_unlock(pte, ptl);
9b5a8e00 1974 return VM_FAULT_NOPAGE;
423bad60
NP
1975}
1976
f5e6d1d5
MW
1977/**
1978 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1979 * @vma: user vma to map to
1980 * @addr: target user address of this page
1981 * @pfn: source kernel pfn
1982 * @pgprot: pgprot flags for the inserted page
1983 *
a1a0aea5 1984 * This is exactly like vmf_insert_pfn(), except that it allows drivers
f5e6d1d5
MW
1985 * to override pgprot on a per-page basis.
1986 *
1987 * This only makes sense for IO mappings, and it makes no sense for
1988 * COW mappings. In general, using multiple vmas is preferable;
ae2b01f3 1989 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
f5e6d1d5
MW
1990 * impractical.
1991 *
574c5b3d
TH
1992 * See vmf_insert_mixed_prot() for a discussion of the implication of using
1993 * a value of @pgprot different from that of @vma->vm_page_prot.
1994 *
ae2b01f3 1995 * Context: Process context. May allocate using %GFP_KERNEL.
f5e6d1d5
MW
1996 * Return: vm_fault_t value.
1997 */
1998vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1999 unsigned long pfn, pgprot_t pgprot)
2000{
6d958546
MW
2001 /*
2002 * Technically, architectures with pte_special can avoid all these
2003 * restrictions (same for remap_pfn_range). However we would like
2004 * consistency in testing and feature parity among all, so we should
2005 * try to keep these invariants in place for everybody.
2006 */
2007 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2008 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2009 (VM_PFNMAP|VM_MIXEDMAP));
2010 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2011 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2012
2013 if (addr < vma->vm_start || addr >= vma->vm_end)
2014 return VM_FAULT_SIGBUS;
2015
2016 if (!pfn_modify_allowed(pfn, pgprot))
2017 return VM_FAULT_SIGBUS;
2018
2019 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2020
9b5a8e00 2021 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
6d958546 2022 false);
f5e6d1d5
MW
2023}
2024EXPORT_SYMBOL(vmf_insert_pfn_prot);
e0dc0d8f 2025
ae2b01f3
MW
2026/**
2027 * vmf_insert_pfn - insert single pfn into user vma
2028 * @vma: user vma to map to
2029 * @addr: target user address of this page
2030 * @pfn: source kernel pfn
2031 *
2032 * Similar to vm_insert_page, this allows drivers to insert individual pages
2033 * they've allocated into a user vma. Same comments apply.
2034 *
2035 * This function should only be called from a vm_ops->fault handler, and
2036 * in that case the handler should return the result of this function.
2037 *
2038 * vma cannot be a COW mapping.
2039 *
2040 * As this is called only for pages that do not currently exist, we
2041 * do not need to flush old virtual caches or the TLB.
2042 *
2043 * Context: Process context. May allocate using %GFP_KERNEL.
2044 * Return: vm_fault_t value.
2045 */
2046vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2047 unsigned long pfn)
2048{
2049 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2050}
2051EXPORT_SYMBOL(vmf_insert_pfn);
2052
785a3fab
DW
2053static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2054{
2055 /* these checks mirror the abort conditions in vm_normal_page */
2056 if (vma->vm_flags & VM_MIXEDMAP)
2057 return true;
2058 if (pfn_t_devmap(pfn))
2059 return true;
2060 if (pfn_t_special(pfn))
2061 return true;
2062 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2063 return true;
2064 return false;
2065}
2066
79f3aa5b 2067static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
574c5b3d
TH
2068 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2069 bool mkwrite)
423bad60 2070{
79f3aa5b 2071 int err;
87744ab3 2072
785a3fab 2073 BUG_ON(!vm_mixed_ok(vma, pfn));
e0dc0d8f 2074
423bad60 2075 if (addr < vma->vm_start || addr >= vma->vm_end)
79f3aa5b 2076 return VM_FAULT_SIGBUS;
308a047c
BP
2077
2078 track_pfn_insert(vma, &pgprot, pfn);
e0dc0d8f 2079
42e4089c 2080 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
79f3aa5b 2081 return VM_FAULT_SIGBUS;
42e4089c 2082
423bad60
NP
2083 /*
2084 * If we don't have pte special, then we have to use the pfn_valid()
2085 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2086 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
2087 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2088 * without pte special, it would there be refcounted as a normal page.
423bad60 2089 */
00b3a331
LD
2090 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2091 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
423bad60
NP
2092 struct page *page;
2093
03fc2da6
DW
2094 /*
2095 * At this point we are committed to insert_page()
2096 * regardless of whether the caller specified flags that
2097 * result in pfn_t_has_page() == false.
2098 */
2099 page = pfn_to_page(pfn_t_to_pfn(pfn));
79f3aa5b
MW
2100 err = insert_page(vma, addr, page, pgprot);
2101 } else {
9b5a8e00 2102 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
423bad60 2103 }
b2770da6 2104
5d747637
MW
2105 if (err == -ENOMEM)
2106 return VM_FAULT_OOM;
2107 if (err < 0 && err != -EBUSY)
2108 return VM_FAULT_SIGBUS;
2109
2110 return VM_FAULT_NOPAGE;
e0dc0d8f 2111}
79f3aa5b 2112
574c5b3d
TH
2113/**
2114 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2115 * @vma: user vma to map to
2116 * @addr: target user address of this page
2117 * @pfn: source kernel pfn
2118 * @pgprot: pgprot flags for the inserted page
2119 *
a1a0aea5 2120 * This is exactly like vmf_insert_mixed(), except that it allows drivers
574c5b3d
TH
2121 * to override pgprot on a per-page basis.
2122 *
2123 * Typically this function should be used by drivers to set caching- and
2124 * encryption bits different than those of @vma->vm_page_prot, because
2125 * the caching- or encryption mode may not be known at mmap() time.
2126 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2127 * to set caching and encryption bits for those vmas (except for COW pages).
2128 * This is ensured by core vm only modifying these page table entries using
2129 * functions that don't touch caching- or encryption bits, using pte_modify()
2130 * if needed. (See for example mprotect()).
2131 * Also when new page-table entries are created, this is only done using the
2132 * fault() callback, and never using the value of vma->vm_page_prot,
2133 * except for page-table entries that point to anonymous pages as the result
2134 * of COW.
2135 *
2136 * Context: Process context. May allocate using %GFP_KERNEL.
2137 * Return: vm_fault_t value.
2138 */
2139vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2140 pfn_t pfn, pgprot_t pgprot)
2141{
2142 return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2143}
5379e4dd 2144EXPORT_SYMBOL(vmf_insert_mixed_prot);
574c5b3d 2145
79f3aa5b
MW
2146vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2147 pfn_t pfn)
2148{
574c5b3d 2149 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
79f3aa5b 2150}
5d747637 2151EXPORT_SYMBOL(vmf_insert_mixed);
e0dc0d8f 2152
ab77dab4
SJ
2153/*
2154 * If the insertion of PTE failed because someone else already added a
2155 * different entry in the mean time, we treat that as success as we assume
2156 * the same entry was actually inserted.
2157 */
ab77dab4
SJ
2158vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2159 unsigned long addr, pfn_t pfn)
b2770da6 2160{
574c5b3d 2161 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
b2770da6 2162}
ab77dab4 2163EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
b2770da6 2164
1da177e4
LT
2165/*
2166 * maps a range of physical memory into the requested pages. the old
2167 * mappings are removed. any references to nonexistent pages results
2168 * in null mappings (currently treated as "copy-on-access")
2169 */
2170static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2171 unsigned long addr, unsigned long end,
2172 unsigned long pfn, pgprot_t prot)
2173{
90a3e375 2174 pte_t *pte, *mapped_pte;
c74df32c 2175 spinlock_t *ptl;
42e4089c 2176 int err = 0;
1da177e4 2177
90a3e375 2178 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
2179 if (!pte)
2180 return -ENOMEM;
6606c3e0 2181 arch_enter_lazy_mmu_mode();
1da177e4
LT
2182 do {
2183 BUG_ON(!pte_none(*pte));
42e4089c
AK
2184 if (!pfn_modify_allowed(pfn, prot)) {
2185 err = -EACCES;
2186 break;
2187 }
7e675137 2188 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
2189 pfn++;
2190 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 2191 arch_leave_lazy_mmu_mode();
90a3e375 2192 pte_unmap_unlock(mapped_pte, ptl);
42e4089c 2193 return err;
1da177e4
LT
2194}
2195
2196static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2197 unsigned long addr, unsigned long end,
2198 unsigned long pfn, pgprot_t prot)
2199{
2200 pmd_t *pmd;
2201 unsigned long next;
42e4089c 2202 int err;
1da177e4
LT
2203
2204 pfn -= addr >> PAGE_SHIFT;
2205 pmd = pmd_alloc(mm, pud, addr);
2206 if (!pmd)
2207 return -ENOMEM;
f66055ab 2208 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
2209 do {
2210 next = pmd_addr_end(addr, end);
42e4089c
AK
2211 err = remap_pte_range(mm, pmd, addr, next,
2212 pfn + (addr >> PAGE_SHIFT), prot);
2213 if (err)
2214 return err;
1da177e4
LT
2215 } while (pmd++, addr = next, addr != end);
2216 return 0;
2217}
2218
c2febafc 2219static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1da177e4
LT
2220 unsigned long addr, unsigned long end,
2221 unsigned long pfn, pgprot_t prot)
2222{
2223 pud_t *pud;
2224 unsigned long next;
42e4089c 2225 int err;
1da177e4
LT
2226
2227 pfn -= addr >> PAGE_SHIFT;
c2febafc 2228 pud = pud_alloc(mm, p4d, addr);
1da177e4
LT
2229 if (!pud)
2230 return -ENOMEM;
2231 do {
2232 next = pud_addr_end(addr, end);
42e4089c
AK
2233 err = remap_pmd_range(mm, pud, addr, next,
2234 pfn + (addr >> PAGE_SHIFT), prot);
2235 if (err)
2236 return err;
1da177e4
LT
2237 } while (pud++, addr = next, addr != end);
2238 return 0;
2239}
2240
c2febafc
KS
2241static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2242 unsigned long addr, unsigned long end,
2243 unsigned long pfn, pgprot_t prot)
2244{
2245 p4d_t *p4d;
2246 unsigned long next;
42e4089c 2247 int err;
c2febafc
KS
2248
2249 pfn -= addr >> PAGE_SHIFT;
2250 p4d = p4d_alloc(mm, pgd, addr);
2251 if (!p4d)
2252 return -ENOMEM;
2253 do {
2254 next = p4d_addr_end(addr, end);
42e4089c
AK
2255 err = remap_pud_range(mm, p4d, addr, next,
2256 pfn + (addr >> PAGE_SHIFT), prot);
2257 if (err)
2258 return err;
c2febafc
KS
2259 } while (p4d++, addr = next, addr != end);
2260 return 0;
2261}
2262
bfa5bf6d
REB
2263/**
2264 * remap_pfn_range - remap kernel memory to userspace
2265 * @vma: user vma to map to
0c4123e3 2266 * @addr: target page aligned user address to start at
86a76331 2267 * @pfn: page frame number of kernel physical memory address
552657b7 2268 * @size: size of mapping area
bfa5bf6d
REB
2269 * @prot: page protection flags for this mapping
2270 *
a862f68a
MR
2271 * Note: this is only safe if the mm semaphore is held when called.
2272 *
2273 * Return: %0 on success, negative error code otherwise.
bfa5bf6d 2274 */
1da177e4
LT
2275int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2276 unsigned long pfn, unsigned long size, pgprot_t prot)
2277{
2278 pgd_t *pgd;
2279 unsigned long next;
2d15cab8 2280 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4 2281 struct mm_struct *mm = vma->vm_mm;
d5957d2f 2282 unsigned long remap_pfn = pfn;
1da177e4
LT
2283 int err;
2284
0c4123e3
AZ
2285 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2286 return -EINVAL;
2287
1da177e4
LT
2288 /*
2289 * Physically remapped pages are special. Tell the
2290 * rest of the world about it:
2291 * VM_IO tells people not to look at these pages
2292 * (accesses can have side effects).
6aab341e
LT
2293 * VM_PFNMAP tells the core MM that the base pages are just
2294 * raw PFN mappings, and do not have a "struct page" associated
2295 * with them.
314e51b9
KK
2296 * VM_DONTEXPAND
2297 * Disable vma merging and expanding with mremap().
2298 * VM_DONTDUMP
2299 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
2300 *
2301 * There's a horrible special case to handle copy-on-write
2302 * behaviour that some programs depend on. We mark the "original"
2303 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 2304 * See vm_normal_page() for details.
1da177e4 2305 */
b3b9c293
KK
2306 if (is_cow_mapping(vma->vm_flags)) {
2307 if (addr != vma->vm_start || end != vma->vm_end)
2308 return -EINVAL;
fb155c16 2309 vma->vm_pgoff = pfn;
b3b9c293
KK
2310 }
2311
d5957d2f 2312 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
b3b9c293 2313 if (err)
3c8bb73a 2314 return -EINVAL;
fb155c16 2315
314e51b9 2316 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
2317
2318 BUG_ON(addr >= end);
2319 pfn -= addr >> PAGE_SHIFT;
2320 pgd = pgd_offset(mm, addr);
2321 flush_cache_range(vma, addr, end);
1da177e4
LT
2322 do {
2323 next = pgd_addr_end(addr, end);
c2febafc 2324 err = remap_p4d_range(mm, pgd, addr, next,
1da177e4
LT
2325 pfn + (addr >> PAGE_SHIFT), prot);
2326 if (err)
2327 break;
2328 } while (pgd++, addr = next, addr != end);
2ab64037 2329
2330 if (err)
d5957d2f 2331 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2ab64037 2332
1da177e4
LT
2333 return err;
2334}
2335EXPORT_SYMBOL(remap_pfn_range);
2336
b4cbb197
LT
2337/**
2338 * vm_iomap_memory - remap memory to userspace
2339 * @vma: user vma to map to
abd69b9e 2340 * @start: start of the physical memory to be mapped
b4cbb197
LT
2341 * @len: size of area
2342 *
2343 * This is a simplified io_remap_pfn_range() for common driver use. The
2344 * driver just needs to give us the physical memory range to be mapped,
2345 * we'll figure out the rest from the vma information.
2346 *
2347 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2348 * whatever write-combining details or similar.
a862f68a
MR
2349 *
2350 * Return: %0 on success, negative error code otherwise.
b4cbb197
LT
2351 */
2352int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2353{
2354 unsigned long vm_len, pfn, pages;
2355
2356 /* Check that the physical memory area passed in looks valid */
2357 if (start + len < start)
2358 return -EINVAL;
2359 /*
2360 * You *really* shouldn't map things that aren't page-aligned,
2361 * but we've historically allowed it because IO memory might
2362 * just have smaller alignment.
2363 */
2364 len += start & ~PAGE_MASK;
2365 pfn = start >> PAGE_SHIFT;
2366 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2367 if (pfn + pages < pfn)
2368 return -EINVAL;
2369
2370 /* We start the mapping 'vm_pgoff' pages into the area */
2371 if (vma->vm_pgoff > pages)
2372 return -EINVAL;
2373 pfn += vma->vm_pgoff;
2374 pages -= vma->vm_pgoff;
2375
2376 /* Can we fit all of the mapping? */
2377 vm_len = vma->vm_end - vma->vm_start;
2378 if (vm_len >> PAGE_SHIFT > pages)
2379 return -EINVAL;
2380
2381 /* Ok, let it rip */
2382 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2383}
2384EXPORT_SYMBOL(vm_iomap_memory);
2385
aee16b3c
JF
2386static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2387 unsigned long addr, unsigned long end,
e80d3909
JR
2388 pte_fn_t fn, void *data, bool create,
2389 pgtbl_mod_mask *mask)
aee16b3c 2390{
8abb50c7 2391 pte_t *pte, *mapped_pte;
be1db475 2392 int err = 0;
3f649ab7 2393 spinlock_t *ptl;
aee16b3c 2394
be1db475 2395 if (create) {
8abb50c7 2396 mapped_pte = pte = (mm == &init_mm) ?
e80d3909 2397 pte_alloc_kernel_track(pmd, addr, mask) :
be1db475
DA
2398 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2399 if (!pte)
2400 return -ENOMEM;
2401 } else {
8abb50c7 2402 mapped_pte = pte = (mm == &init_mm) ?
be1db475
DA
2403 pte_offset_kernel(pmd, addr) :
2404 pte_offset_map_lock(mm, pmd, addr, &ptl);
2405 }
aee16b3c
JF
2406
2407 BUG_ON(pmd_huge(*pmd));
2408
38e0edb1
JF
2409 arch_enter_lazy_mmu_mode();
2410
eeb4a05f
CH
2411 if (fn) {
2412 do {
2413 if (create || !pte_none(*pte)) {
2414 err = fn(pte++, addr, data);
2415 if (err)
2416 break;
2417 }
2418 } while (addr += PAGE_SIZE, addr != end);
2419 }
e80d3909 2420 *mask |= PGTBL_PTE_MODIFIED;
aee16b3c 2421
38e0edb1
JF
2422 arch_leave_lazy_mmu_mode();
2423
aee16b3c 2424 if (mm != &init_mm)
8abb50c7 2425 pte_unmap_unlock(mapped_pte, ptl);
aee16b3c
JF
2426 return err;
2427}
2428
2429static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2430 unsigned long addr, unsigned long end,
e80d3909
JR
2431 pte_fn_t fn, void *data, bool create,
2432 pgtbl_mod_mask *mask)
aee16b3c
JF
2433{
2434 pmd_t *pmd;
2435 unsigned long next;
be1db475 2436 int err = 0;
aee16b3c 2437
ceb86879
AK
2438 BUG_ON(pud_huge(*pud));
2439
be1db475 2440 if (create) {
e80d3909 2441 pmd = pmd_alloc_track(mm, pud, addr, mask);
be1db475
DA
2442 if (!pmd)
2443 return -ENOMEM;
2444 } else {
2445 pmd = pmd_offset(pud, addr);
2446 }
aee16b3c
JF
2447 do {
2448 next = pmd_addr_end(addr, end);
be1db475
DA
2449 if (create || !pmd_none_or_clear_bad(pmd)) {
2450 err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
e80d3909 2451 create, mask);
be1db475
DA
2452 if (err)
2453 break;
2454 }
aee16b3c
JF
2455 } while (pmd++, addr = next, addr != end);
2456 return err;
2457}
2458
c2febafc 2459static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
aee16b3c 2460 unsigned long addr, unsigned long end,
e80d3909
JR
2461 pte_fn_t fn, void *data, bool create,
2462 pgtbl_mod_mask *mask)
aee16b3c
JF
2463{
2464 pud_t *pud;
2465 unsigned long next;
be1db475 2466 int err = 0;
aee16b3c 2467
be1db475 2468 if (create) {
e80d3909 2469 pud = pud_alloc_track(mm, p4d, addr, mask);
be1db475
DA
2470 if (!pud)
2471 return -ENOMEM;
2472 } else {
2473 pud = pud_offset(p4d, addr);
2474 }
aee16b3c
JF
2475 do {
2476 next = pud_addr_end(addr, end);
be1db475
DA
2477 if (create || !pud_none_or_clear_bad(pud)) {
2478 err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
e80d3909 2479 create, mask);
be1db475
DA
2480 if (err)
2481 break;
2482 }
aee16b3c
JF
2483 } while (pud++, addr = next, addr != end);
2484 return err;
2485}
2486
c2febafc
KS
2487static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2488 unsigned long addr, unsigned long end,
e80d3909
JR
2489 pte_fn_t fn, void *data, bool create,
2490 pgtbl_mod_mask *mask)
c2febafc
KS
2491{
2492 p4d_t *p4d;
2493 unsigned long next;
be1db475 2494 int err = 0;
c2febafc 2495
be1db475 2496 if (create) {
e80d3909 2497 p4d = p4d_alloc_track(mm, pgd, addr, mask);
be1db475
DA
2498 if (!p4d)
2499 return -ENOMEM;
2500 } else {
2501 p4d = p4d_offset(pgd, addr);
2502 }
c2febafc
KS
2503 do {
2504 next = p4d_addr_end(addr, end);
be1db475
DA
2505 if (create || !p4d_none_or_clear_bad(p4d)) {
2506 err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
e80d3909 2507 create, mask);
be1db475
DA
2508 if (err)
2509 break;
2510 }
c2febafc
KS
2511 } while (p4d++, addr = next, addr != end);
2512 return err;
2513}
2514
be1db475
DA
2515static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2516 unsigned long size, pte_fn_t fn,
2517 void *data, bool create)
aee16b3c
JF
2518{
2519 pgd_t *pgd;
e80d3909 2520 unsigned long start = addr, next;
57250a5b 2521 unsigned long end = addr + size;
e80d3909 2522 pgtbl_mod_mask mask = 0;
be1db475 2523 int err = 0;
aee16b3c 2524
9cb65bc3
MP
2525 if (WARN_ON(addr >= end))
2526 return -EINVAL;
2527
aee16b3c
JF
2528 pgd = pgd_offset(mm, addr);
2529 do {
2530 next = pgd_addr_end(addr, end);
be1db475
DA
2531 if (!create && pgd_none_or_clear_bad(pgd))
2532 continue;
e80d3909 2533 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create, &mask);
aee16b3c
JF
2534 if (err)
2535 break;
2536 } while (pgd++, addr = next, addr != end);
57250a5b 2537
e80d3909
JR
2538 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2539 arch_sync_kernel_mappings(start, start + size);
2540
aee16b3c
JF
2541 return err;
2542}
be1db475
DA
2543
2544/*
2545 * Scan a region of virtual memory, filling in page tables as necessary
2546 * and calling a provided function on each leaf page table.
2547 */
2548int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2549 unsigned long size, pte_fn_t fn, void *data)
2550{
2551 return __apply_to_page_range(mm, addr, size, fn, data, true);
2552}
aee16b3c
JF
2553EXPORT_SYMBOL_GPL(apply_to_page_range);
2554
be1db475
DA
2555/*
2556 * Scan a region of virtual memory, calling a provided function on
2557 * each leaf page table where it exists.
2558 *
2559 * Unlike apply_to_page_range, this does _not_ fill in page tables
2560 * where they are absent.
2561 */
2562int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2563 unsigned long size, pte_fn_t fn, void *data)
2564{
2565 return __apply_to_page_range(mm, addr, size, fn, data, false);
2566}
2567EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2568
8f4e2101 2569/*
9b4bdd2f
KS
2570 * handle_pte_fault chooses page fault handler according to an entry which was
2571 * read non-atomically. Before making any commitment, on those architectures
2572 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2573 * parts, do_swap_page must check under lock before unmapping the pte and
2574 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 2575 * and do_anonymous_page can safely check later on).
8f4e2101 2576 */
4c21e2f2 2577static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
2578 pte_t *page_table, pte_t orig_pte)
2579{
2580 int same = 1;
923717cb 2581#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
8f4e2101 2582 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
2583 spinlock_t *ptl = pte_lockptr(mm, pmd);
2584 spin_lock(ptl);
8f4e2101 2585 same = pte_same(*page_table, orig_pte);
4c21e2f2 2586 spin_unlock(ptl);
8f4e2101
HD
2587 }
2588#endif
2589 pte_unmap(page_table);
2590 return same;
2591}
2592
83d116c5
JH
2593static inline bool cow_user_page(struct page *dst, struct page *src,
2594 struct vm_fault *vmf)
6aab341e 2595{
83d116c5
JH
2596 bool ret;
2597 void *kaddr;
2598 void __user *uaddr;
c3e5ea6e 2599 bool locked = false;
83d116c5
JH
2600 struct vm_area_struct *vma = vmf->vma;
2601 struct mm_struct *mm = vma->vm_mm;
2602 unsigned long addr = vmf->address;
2603
83d116c5
JH
2604 if (likely(src)) {
2605 copy_user_highpage(dst, src, addr, vma);
2606 return true;
2607 }
2608
6aab341e
LT
2609 /*
2610 * If the source page was a PFN mapping, we don't have
2611 * a "struct page" for it. We do a best-effort copy by
2612 * just copying from the original user address. If that
2613 * fails, we just zero-fill it. Live with it.
2614 */
83d116c5
JH
2615 kaddr = kmap_atomic(dst);
2616 uaddr = (void __user *)(addr & PAGE_MASK);
2617
2618 /*
2619 * On architectures with software "accessed" bits, we would
2620 * take a double page fault, so mark it accessed here.
2621 */
c3e5ea6e 2622 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
83d116c5 2623 pte_t entry;
5d2a2dbb 2624
83d116c5 2625 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
c3e5ea6e 2626 locked = true;
83d116c5
JH
2627 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2628 /*
2629 * Other thread has already handled the fault
7df67697 2630 * and update local tlb only
83d116c5 2631 */
7df67697 2632 update_mmu_tlb(vma, addr, vmf->pte);
83d116c5
JH
2633 ret = false;
2634 goto pte_unlock;
2635 }
2636
2637 entry = pte_mkyoung(vmf->orig_pte);
2638 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2639 update_mmu_cache(vma, addr, vmf->pte);
2640 }
2641
2642 /*
2643 * This really shouldn't fail, because the page is there
2644 * in the page tables. But it might just be unreadable,
2645 * in which case we just give up and fill the result with
2646 * zeroes.
2647 */
2648 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
c3e5ea6e
KS
2649 if (locked)
2650 goto warn;
2651
2652 /* Re-validate under PTL if the page is still mapped */
2653 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2654 locked = true;
2655 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
7df67697
BM
2656 /* The PTE changed under us, update local tlb */
2657 update_mmu_tlb(vma, addr, vmf->pte);
c3e5ea6e
KS
2658 ret = false;
2659 goto pte_unlock;
2660 }
2661
5d2a2dbb 2662 /*
985ba004 2663 * The same page can be mapped back since last copy attempt.
c3e5ea6e 2664 * Try to copy again under PTL.
5d2a2dbb 2665 */
c3e5ea6e
KS
2666 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2667 /*
2668 * Give a warn in case there can be some obscure
2669 * use-case
2670 */
2671warn:
2672 WARN_ON_ONCE(1);
2673 clear_page(kaddr);
2674 }
83d116c5
JH
2675 }
2676
2677 ret = true;
2678
2679pte_unlock:
c3e5ea6e 2680 if (locked)
83d116c5
JH
2681 pte_unmap_unlock(vmf->pte, vmf->ptl);
2682 kunmap_atomic(kaddr);
2683 flush_dcache_page(dst);
2684
2685 return ret;
6aab341e
LT
2686}
2687
c20cd45e
MH
2688static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2689{
2690 struct file *vm_file = vma->vm_file;
2691
2692 if (vm_file)
2693 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2694
2695 /*
2696 * Special mappings (e.g. VDSO) do not have any file so fake
2697 * a default GFP_KERNEL for them.
2698 */
2699 return GFP_KERNEL;
2700}
2701
fb09a464
KS
2702/*
2703 * Notify the address space that the page is about to become writable so that
2704 * it can prohibit this or wait for the page to get into an appropriate state.
2705 *
2706 * We do this without the lock held, so that it can sleep if it needs to.
2707 */
2b740303 2708static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
fb09a464 2709{
2b740303 2710 vm_fault_t ret;
38b8cb7f
JK
2711 struct page *page = vmf->page;
2712 unsigned int old_flags = vmf->flags;
fb09a464 2713
38b8cb7f 2714 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
fb09a464 2715
dc617f29
DW
2716 if (vmf->vma->vm_file &&
2717 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2718 return VM_FAULT_SIGBUS;
2719
11bac800 2720 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
38b8cb7f
JK
2721 /* Restore original flags so that caller is not surprised */
2722 vmf->flags = old_flags;
fb09a464
KS
2723 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2724 return ret;
2725 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2726 lock_page(page);
2727 if (!page->mapping) {
2728 unlock_page(page);
2729 return 0; /* retry */
2730 }
2731 ret |= VM_FAULT_LOCKED;
2732 } else
2733 VM_BUG_ON_PAGE(!PageLocked(page), page);
2734 return ret;
2735}
2736
97ba0c2b
JK
2737/*
2738 * Handle dirtying of a page in shared file mapping on a write fault.
2739 *
2740 * The function expects the page to be locked and unlocks it.
2741 */
89b15332 2742static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
97ba0c2b 2743{
89b15332 2744 struct vm_area_struct *vma = vmf->vma;
97ba0c2b 2745 struct address_space *mapping;
89b15332 2746 struct page *page = vmf->page;
97ba0c2b
JK
2747 bool dirtied;
2748 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2749
2750 dirtied = set_page_dirty(page);
2751 VM_BUG_ON_PAGE(PageAnon(page), page);
2752 /*
2753 * Take a local copy of the address_space - page.mapping may be zeroed
2754 * by truncate after unlock_page(). The address_space itself remains
2755 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2756 * release semantics to prevent the compiler from undoing this copying.
2757 */
2758 mapping = page_rmapping(page);
2759 unlock_page(page);
2760
89b15332
JW
2761 if (!page_mkwrite)
2762 file_update_time(vma->vm_file);
2763
2764 /*
2765 * Throttle page dirtying rate down to writeback speed.
2766 *
2767 * mapping may be NULL here because some device drivers do not
2768 * set page.mapping but still dirty their pages
2769 *
c1e8d7c6 2770 * Drop the mmap_lock before waiting on IO, if we can. The file
89b15332
JW
2771 * is pinning the mapping, as per above.
2772 */
97ba0c2b 2773 if ((dirtied || page_mkwrite) && mapping) {
89b15332
JW
2774 struct file *fpin;
2775
2776 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
97ba0c2b 2777 balance_dirty_pages_ratelimited(mapping);
89b15332
JW
2778 if (fpin) {
2779 fput(fpin);
2780 return VM_FAULT_RETRY;
2781 }
97ba0c2b
JK
2782 }
2783
89b15332 2784 return 0;
97ba0c2b
JK
2785}
2786
4e047f89
SR
2787/*
2788 * Handle write page faults for pages that can be reused in the current vma
2789 *
2790 * This can happen either due to the mapping being with the VM_SHARED flag,
2791 * or due to us being the last reference standing to the page. In either
2792 * case, all we need to do here is to mark the page as writable and update
2793 * any related book-keeping.
2794 */
997dd98d 2795static inline void wp_page_reuse(struct vm_fault *vmf)
82b0f8c3 2796 __releases(vmf->ptl)
4e047f89 2797{
82b0f8c3 2798 struct vm_area_struct *vma = vmf->vma;
a41b70d6 2799 struct page *page = vmf->page;
4e047f89
SR
2800 pte_t entry;
2801 /*
2802 * Clear the pages cpupid information as the existing
2803 * information potentially belongs to a now completely
2804 * unrelated process.
2805 */
2806 if (page)
2807 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2808
2994302b
JK
2809 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2810 entry = pte_mkyoung(vmf->orig_pte);
4e047f89 2811 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
82b0f8c3
JK
2812 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2813 update_mmu_cache(vma, vmf->address, vmf->pte);
2814 pte_unmap_unlock(vmf->pte, vmf->ptl);
798a6b87 2815 count_vm_event(PGREUSE);
4e047f89
SR
2816}
2817
2f38ab2c
SR
2818/*
2819 * Handle the case of a page which we actually need to copy to a new page.
2820 *
c1e8d7c6 2821 * Called with mmap_lock locked and the old page referenced, but
2f38ab2c
SR
2822 * without the ptl held.
2823 *
2824 * High level logic flow:
2825 *
2826 * - Allocate a page, copy the content of the old page to the new one.
2827 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2828 * - Take the PTL. If the pte changed, bail out and release the allocated page
2829 * - If the pte is still the way we remember it, update the page table and all
2830 * relevant references. This includes dropping the reference the page-table
2831 * held to the old page, as well as updating the rmap.
2832 * - In any case, unlock the PTL and drop the reference we took to the old page.
2833 */
2b740303 2834static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2f38ab2c 2835{
82b0f8c3 2836 struct vm_area_struct *vma = vmf->vma;
bae473a4 2837 struct mm_struct *mm = vma->vm_mm;
a41b70d6 2838 struct page *old_page = vmf->page;
2f38ab2c 2839 struct page *new_page = NULL;
2f38ab2c
SR
2840 pte_t entry;
2841 int page_copied = 0;
ac46d4f3 2842 struct mmu_notifier_range range;
2f38ab2c
SR
2843
2844 if (unlikely(anon_vma_prepare(vma)))
2845 goto oom;
2846
2994302b 2847 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
82b0f8c3
JK
2848 new_page = alloc_zeroed_user_highpage_movable(vma,
2849 vmf->address);
2f38ab2c
SR
2850 if (!new_page)
2851 goto oom;
2852 } else {
bae473a4 2853 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 2854 vmf->address);
2f38ab2c
SR
2855 if (!new_page)
2856 goto oom;
83d116c5
JH
2857
2858 if (!cow_user_page(new_page, old_page, vmf)) {
2859 /*
2860 * COW failed, if the fault was solved by other,
2861 * it's fine. If not, userspace would re-fault on
2862 * the same address and we will handle the fault
2863 * from the second attempt.
2864 */
2865 put_page(new_page);
2866 if (old_page)
2867 put_page(old_page);
2868 return 0;
2869 }
2f38ab2c 2870 }
2f38ab2c 2871
d9eb1ea2 2872 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
2f38ab2c 2873 goto oom_free_new;
9d82c694 2874 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2f38ab2c 2875
eb3c24f3
MG
2876 __SetPageUptodate(new_page);
2877
7269f999 2878 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6f4f13e8 2879 vmf->address & PAGE_MASK,
ac46d4f3
JG
2880 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2881 mmu_notifier_invalidate_range_start(&range);
2f38ab2c
SR
2882
2883 /*
2884 * Re-check the pte - we dropped the lock
2885 */
82b0f8c3 2886 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2994302b 2887 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2f38ab2c
SR
2888 if (old_page) {
2889 if (!PageAnon(old_page)) {
eca56ff9
JM
2890 dec_mm_counter_fast(mm,
2891 mm_counter_file(old_page));
2f38ab2c
SR
2892 inc_mm_counter_fast(mm, MM_ANONPAGES);
2893 }
2894 } else {
2895 inc_mm_counter_fast(mm, MM_ANONPAGES);
2896 }
2994302b 2897 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2f38ab2c
SR
2898 entry = mk_pte(new_page, vma->vm_page_prot);
2899 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
111fe718 2900
2f38ab2c
SR
2901 /*
2902 * Clear the pte entry and flush it first, before updating the
111fe718
NP
2903 * pte with the new entry, to keep TLBs on different CPUs in
2904 * sync. This code used to set the new PTE then flush TLBs, but
2905 * that left a window where the new PTE could be loaded into
2906 * some TLBs while the old PTE remains in others.
2f38ab2c 2907 */
82b0f8c3
JK
2908 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2909 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
b518154e 2910 lru_cache_add_inactive_or_unevictable(new_page, vma);
2f38ab2c
SR
2911 /*
2912 * We call the notify macro here because, when using secondary
2913 * mmu page tables (such as kvm shadow page tables), we want the
2914 * new page to be mapped directly into the secondary page table.
2915 */
82b0f8c3
JK
2916 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2917 update_mmu_cache(vma, vmf->address, vmf->pte);
2f38ab2c
SR
2918 if (old_page) {
2919 /*
2920 * Only after switching the pte to the new page may
2921 * we remove the mapcount here. Otherwise another
2922 * process may come and find the rmap count decremented
2923 * before the pte is switched to the new page, and
2924 * "reuse" the old page writing into it while our pte
2925 * here still points into it and can be read by other
2926 * threads.
2927 *
2928 * The critical issue is to order this
2929 * page_remove_rmap with the ptp_clear_flush above.
2930 * Those stores are ordered by (if nothing else,)
2931 * the barrier present in the atomic_add_negative
2932 * in page_remove_rmap.
2933 *
2934 * Then the TLB flush in ptep_clear_flush ensures that
2935 * no process can access the old page before the
2936 * decremented mapcount is visible. And the old page
2937 * cannot be reused until after the decremented
2938 * mapcount is visible. So transitively, TLBs to
2939 * old page will be flushed before it can be reused.
2940 */
d281ee61 2941 page_remove_rmap(old_page, false);
2f38ab2c
SR
2942 }
2943
2944 /* Free the old page.. */
2945 new_page = old_page;
2946 page_copied = 1;
2947 } else {
7df67697 2948 update_mmu_tlb(vma, vmf->address, vmf->pte);
2f38ab2c
SR
2949 }
2950
2951 if (new_page)
09cbfeaf 2952 put_page(new_page);
2f38ab2c 2953
82b0f8c3 2954 pte_unmap_unlock(vmf->pte, vmf->ptl);
4645b9fe
JG
2955 /*
2956 * No need to double call mmu_notifier->invalidate_range() callback as
2957 * the above ptep_clear_flush_notify() did already call it.
2958 */
ac46d4f3 2959 mmu_notifier_invalidate_range_only_end(&range);
2f38ab2c
SR
2960 if (old_page) {
2961 /*
2962 * Don't let another task, with possibly unlocked vma,
2963 * keep the mlocked page.
2964 */
2965 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2966 lock_page(old_page); /* LRU manipulation */
e90309c9
KS
2967 if (PageMlocked(old_page))
2968 munlock_vma_page(old_page);
2f38ab2c
SR
2969 unlock_page(old_page);
2970 }
09cbfeaf 2971 put_page(old_page);
2f38ab2c
SR
2972 }
2973 return page_copied ? VM_FAULT_WRITE : 0;
2974oom_free_new:
09cbfeaf 2975 put_page(new_page);
2f38ab2c
SR
2976oom:
2977 if (old_page)
09cbfeaf 2978 put_page(old_page);
2f38ab2c
SR
2979 return VM_FAULT_OOM;
2980}
2981
66a6197c
JK
2982/**
2983 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2984 * writeable once the page is prepared
2985 *
2986 * @vmf: structure describing the fault
2987 *
2988 * This function handles all that is needed to finish a write page fault in a
2989 * shared mapping due to PTE being read-only once the mapped page is prepared.
a862f68a 2990 * It handles locking of PTE and modifying it.
66a6197c
JK
2991 *
2992 * The function expects the page to be locked or other protection against
2993 * concurrent faults / writeback (such as DAX radix tree locks).
a862f68a
MR
2994 *
2995 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2996 * we acquired PTE lock.
66a6197c 2997 */
2b740303 2998vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
66a6197c
JK
2999{
3000 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3001 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3002 &vmf->ptl);
3003 /*
3004 * We might have raced with another page fault while we released the
3005 * pte_offset_map_lock.
3006 */
3007 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
7df67697 3008 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
66a6197c 3009 pte_unmap_unlock(vmf->pte, vmf->ptl);
a19e2553 3010 return VM_FAULT_NOPAGE;
66a6197c
JK
3011 }
3012 wp_page_reuse(vmf);
a19e2553 3013 return 0;
66a6197c
JK
3014}
3015
dd906184
BH
3016/*
3017 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3018 * mapping
3019 */
2b740303 3020static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
dd906184 3021{
82b0f8c3 3022 struct vm_area_struct *vma = vmf->vma;
bae473a4 3023
dd906184 3024 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2b740303 3025 vm_fault_t ret;
dd906184 3026
82b0f8c3 3027 pte_unmap_unlock(vmf->pte, vmf->ptl);
fe82221f 3028 vmf->flags |= FAULT_FLAG_MKWRITE;
11bac800 3029 ret = vma->vm_ops->pfn_mkwrite(vmf);
2f89dc12 3030 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
dd906184 3031 return ret;
66a6197c 3032 return finish_mkwrite_fault(vmf);
dd906184 3033 }
997dd98d
JK
3034 wp_page_reuse(vmf);
3035 return VM_FAULT_WRITE;
dd906184
BH
3036}
3037
2b740303 3038static vm_fault_t wp_page_shared(struct vm_fault *vmf)
82b0f8c3 3039 __releases(vmf->ptl)
93e478d4 3040{
82b0f8c3 3041 struct vm_area_struct *vma = vmf->vma;
89b15332 3042 vm_fault_t ret = VM_FAULT_WRITE;
93e478d4 3043
a41b70d6 3044 get_page(vmf->page);
93e478d4 3045
93e478d4 3046 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2b740303 3047 vm_fault_t tmp;
93e478d4 3048
82b0f8c3 3049 pte_unmap_unlock(vmf->pte, vmf->ptl);
38b8cb7f 3050 tmp = do_page_mkwrite(vmf);
93e478d4
SR
3051 if (unlikely(!tmp || (tmp &
3052 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
a41b70d6 3053 put_page(vmf->page);
93e478d4
SR
3054 return tmp;
3055 }
66a6197c 3056 tmp = finish_mkwrite_fault(vmf);
a19e2553 3057 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
a41b70d6 3058 unlock_page(vmf->page);
a41b70d6 3059 put_page(vmf->page);
66a6197c 3060 return tmp;
93e478d4 3061 }
66a6197c
JK
3062 } else {
3063 wp_page_reuse(vmf);
997dd98d 3064 lock_page(vmf->page);
93e478d4 3065 }
89b15332 3066 ret |= fault_dirty_shared_page(vmf);
997dd98d 3067 put_page(vmf->page);
93e478d4 3068
89b15332 3069 return ret;
93e478d4
SR
3070}
3071
1da177e4
LT
3072/*
3073 * This routine handles present pages, when users try to write
3074 * to a shared page. It is done by copying the page to a new address
3075 * and decrementing the shared-page counter for the old page.
3076 *
1da177e4
LT
3077 * Note that this routine assumes that the protection checks have been
3078 * done by the caller (the low-level page fault routine in most cases).
3079 * Thus we can safely just mark it writable once we've done any necessary
3080 * COW.
3081 *
3082 * We also mark the page dirty at this point even though the page will
3083 * change only once the write actually happens. This avoids a few races,
3084 * and potentially makes it more efficient.
3085 *
c1e8d7c6 3086 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3087 * but allow concurrent faults), with pte both mapped and locked.
c1e8d7c6 3088 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 3089 */
2b740303 3090static vm_fault_t do_wp_page(struct vm_fault *vmf)
82b0f8c3 3091 __releases(vmf->ptl)
1da177e4 3092{
82b0f8c3 3093 struct vm_area_struct *vma = vmf->vma;
1da177e4 3094
292924b2 3095 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
529b930b
AA
3096 pte_unmap_unlock(vmf->pte, vmf->ptl);
3097 return handle_userfault(vmf, VM_UFFD_WP);
3098 }
3099
a41b70d6
JK
3100 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3101 if (!vmf->page) {
251b97f5 3102 /*
64e45507
PF
3103 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3104 * VM_PFNMAP VMA.
251b97f5
PZ
3105 *
3106 * We should not cow pages in a shared writeable mapping.
dd906184 3107 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5
PZ
3108 */
3109 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3110 (VM_WRITE|VM_SHARED))
2994302b 3111 return wp_pfn_shared(vmf);
2f38ab2c 3112
82b0f8c3 3113 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 3114 return wp_page_copy(vmf);
251b97f5 3115 }
1da177e4 3116
d08b3851 3117 /*
ee6a6457
PZ
3118 * Take out anonymous pages first, anonymous shared vmas are
3119 * not dirty accountable.
d08b3851 3120 */
52d1e606 3121 if (PageAnon(vmf->page)) {
09854ba9
LT
3122 struct page *page = vmf->page;
3123
3124 /* PageKsm() doesn't necessarily raise the page refcount */
3125 if (PageKsm(page) || page_count(page) != 1)
3126 goto copy;
3127 if (!trylock_page(page))
3128 goto copy;
3129 if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
3130 unlock_page(page);
52d1e606 3131 goto copy;
b009c024 3132 }
09854ba9
LT
3133 /*
3134 * Ok, we've got the only map reference, and the only
3135 * page count reference, and the page is locked,
3136 * it's dark out, and we're wearing sunglasses. Hit it.
3137 */
09854ba9 3138 unlock_page(page);
be068f29 3139 wp_page_reuse(vmf);
09854ba9 3140 return VM_FAULT_WRITE;
ee6a6457 3141 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 3142 (VM_WRITE|VM_SHARED))) {
a41b70d6 3143 return wp_page_shared(vmf);
1da177e4 3144 }
52d1e606 3145copy:
1da177e4
LT
3146 /*
3147 * Ok, we need to copy. Oh, well..
3148 */
a41b70d6 3149 get_page(vmf->page);
28766805 3150
82b0f8c3 3151 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 3152 return wp_page_copy(vmf);
1da177e4
LT
3153}
3154
97a89413 3155static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
3156 unsigned long start_addr, unsigned long end_addr,
3157 struct zap_details *details)
3158{
f5cc4eef 3159 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
3160}
3161
f808c13f 3162static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
1da177e4
LT
3163 struct zap_details *details)
3164{
3165 struct vm_area_struct *vma;
1da177e4
LT
3166 pgoff_t vba, vea, zba, zea;
3167
6b2dbba8 3168 vma_interval_tree_foreach(vma, root,
1da177e4 3169 details->first_index, details->last_index) {
1da177e4
LT
3170
3171 vba = vma->vm_pgoff;
d6e93217 3172 vea = vba + vma_pages(vma) - 1;
1da177e4
LT
3173 zba = details->first_index;
3174 if (zba < vba)
3175 zba = vba;
3176 zea = details->last_index;
3177 if (zea > vea)
3178 zea = vea;
3179
97a89413 3180 unmap_mapping_range_vma(vma,
1da177e4
LT
3181 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3182 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 3183 details);
1da177e4
LT
3184 }
3185}
3186
977fbdcd
MW
3187/**
3188 * unmap_mapping_pages() - Unmap pages from processes.
3189 * @mapping: The address space containing pages to be unmapped.
3190 * @start: Index of first page to be unmapped.
3191 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3192 * @even_cows: Whether to unmap even private COWed pages.
3193 *
3194 * Unmap the pages in this address space from any userspace process which
3195 * has them mmaped. Generally, you want to remove COWed pages as well when
3196 * a file is being truncated, but not when invalidating pages from the page
3197 * cache.
3198 */
3199void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3200 pgoff_t nr, bool even_cows)
3201{
3202 struct zap_details details = { };
3203
3204 details.check_mapping = even_cows ? NULL : mapping;
3205 details.first_index = start;
3206 details.last_index = start + nr - 1;
3207 if (details.last_index < details.first_index)
3208 details.last_index = ULONG_MAX;
3209
3210 i_mmap_lock_write(mapping);
3211 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3212 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3213 i_mmap_unlock_write(mapping);
3214}
3215
1da177e4 3216/**
8a5f14a2 3217 * unmap_mapping_range - unmap the portion of all mmaps in the specified
977fbdcd 3218 * address_space corresponding to the specified byte range in the underlying
8a5f14a2
KS
3219 * file.
3220 *
3d41088f 3221 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
3222 * @holebegin: byte in first page to unmap, relative to the start of
3223 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 3224 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
3225 * must keep the partial page. In contrast, we must get rid of
3226 * partial pages.
3227 * @holelen: size of prospective hole in bytes. This will be rounded
3228 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3229 * end of the file.
3230 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3231 * but 0 when invalidating pagecache, don't throw away private data.
3232 */
3233void unmap_mapping_range(struct address_space *mapping,
3234 loff_t const holebegin, loff_t const holelen, int even_cows)
3235{
1da177e4
LT
3236 pgoff_t hba = holebegin >> PAGE_SHIFT;
3237 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3238
3239 /* Check for overflow. */
3240 if (sizeof(holelen) > sizeof(hlen)) {
3241 long long holeend =
3242 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3243 if (holeend & ~(long long)ULONG_MAX)
3244 hlen = ULONG_MAX - hba + 1;
3245 }
3246
977fbdcd 3247 unmap_mapping_pages(mapping, hba, hlen, even_cows);
1da177e4
LT
3248}
3249EXPORT_SYMBOL(unmap_mapping_range);
3250
1da177e4 3251/*
c1e8d7c6 3252 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3253 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
3254 * We return with pte unmapped and unlocked.
3255 *
c1e8d7c6 3256 * We return with the mmap_lock locked or unlocked in the same cases
9a95f3cf 3257 * as does filemap_fault().
1da177e4 3258 */
2b740303 3259vm_fault_t do_swap_page(struct vm_fault *vmf)
1da177e4 3260{
82b0f8c3 3261 struct vm_area_struct *vma = vmf->vma;
eaf649eb 3262 struct page *page = NULL, *swapcache;
65500d23 3263 swp_entry_t entry;
1da177e4 3264 pte_t pte;
d065bd81 3265 int locked;
ad8c2ee8 3266 int exclusive = 0;
2b740303 3267 vm_fault_t ret = 0;
aae466b0 3268 void *shadow = NULL;
1da177e4 3269
eaf649eb 3270 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
8f4e2101 3271 goto out;
65500d23 3272
2994302b 3273 entry = pte_to_swp_entry(vmf->orig_pte);
d1737fdb
AK
3274 if (unlikely(non_swap_entry(entry))) {
3275 if (is_migration_entry(entry)) {
82b0f8c3
JK
3276 migration_entry_wait(vma->vm_mm, vmf->pmd,
3277 vmf->address);
5042db43 3278 } else if (is_device_private_entry(entry)) {
897e6365
CH
3279 vmf->page = device_private_entry_to_page(entry);
3280 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
d1737fdb
AK
3281 } else if (is_hwpoison_entry(entry)) {
3282 ret = VM_FAULT_HWPOISON;
3283 } else {
2994302b 3284 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
d99be1a8 3285 ret = VM_FAULT_SIGBUS;
d1737fdb 3286 }
0697212a
CL
3287 goto out;
3288 }
0bcac06f
MK
3289
3290
0ff92245 3291 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
eaf649eb
MK
3292 page = lookup_swap_cache(entry, vma, vmf->address);
3293 swapcache = page;
f8020772 3294
1da177e4 3295 if (!page) {
0bcac06f
MK
3296 struct swap_info_struct *si = swp_swap_info(entry);
3297
a449bf58
QC
3298 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3299 __swap_count(entry) == 1) {
0bcac06f 3300 /* skip swapcache */
e9e9b7ec
MK
3301 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3302 vmf->address);
0bcac06f 3303 if (page) {
4c6355b2
JW
3304 int err;
3305
0bcac06f
MK
3306 __SetPageLocked(page);
3307 __SetPageSwapBacked(page);
3308 set_page_private(page, entry.val);
4c6355b2
JW
3309
3310 /* Tell memcg to use swap ownership records */
3311 SetPageSwapCache(page);
3312 err = mem_cgroup_charge(page, vma->vm_mm,
d9eb1ea2 3313 GFP_KERNEL);
4c6355b2 3314 ClearPageSwapCache(page);
545b1b07
MH
3315 if (err) {
3316 ret = VM_FAULT_OOM;
4c6355b2 3317 goto out_page;
545b1b07 3318 }
4c6355b2 3319
aae466b0
JK
3320 shadow = get_shadow_from_swap_cache(entry);
3321 if (shadow)
3322 workingset_refault(page, shadow);
0076f029 3323
6058eaec 3324 lru_cache_add(page);
0bcac06f
MK
3325 swap_readpage(page, true);
3326 }
aa8d22a1 3327 } else {
e9e9b7ec
MK
3328 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3329 vmf);
aa8d22a1 3330 swapcache = page;
0bcac06f
MK
3331 }
3332
1da177e4
LT
3333 if (!page) {
3334 /*
8f4e2101
HD
3335 * Back out if somebody else faulted in this pte
3336 * while we released the pte lock.
1da177e4 3337 */
82b0f8c3
JK
3338 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3339 vmf->address, &vmf->ptl);
2994302b 3340 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
1da177e4 3341 ret = VM_FAULT_OOM;
0ff92245 3342 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 3343 goto unlock;
1da177e4
LT
3344 }
3345
3346 /* Had to read the page from swap area: Major fault */
3347 ret = VM_FAULT_MAJOR;
f8891e5e 3348 count_vm_event(PGMAJFAULT);
2262185c 3349 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
d1737fdb 3350 } else if (PageHWPoison(page)) {
71f72525
WF
3351 /*
3352 * hwpoisoned dirty swapcache pages are kept for killing
3353 * owner processes (which may be unknown at hwpoison time)
3354 */
d1737fdb
AK
3355 ret = VM_FAULT_HWPOISON;
3356 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
4779cb31 3357 goto out_release;
1da177e4
LT
3358 }
3359
82b0f8c3 3360 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
e709ffd6 3361
073e587e 3362 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
d065bd81
ML
3363 if (!locked) {
3364 ret |= VM_FAULT_RETRY;
3365 goto out_release;
3366 }
073e587e 3367
4969c119 3368 /*
31c4a3d3
HD
3369 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3370 * release the swapcache from under us. The page pin, and pte_same
3371 * test below, are not enough to exclude that. Even if it is still
3372 * swapcache, we need to check that the page's swap has not changed.
4969c119 3373 */
0bcac06f
MK
3374 if (unlikely((!PageSwapCache(page) ||
3375 page_private(page) != entry.val)) && swapcache)
4969c119
AA
3376 goto out_page;
3377
82b0f8c3 3378 page = ksm_might_need_to_copy(page, vma, vmf->address);
cbf86cfe
HD
3379 if (unlikely(!page)) {
3380 ret = VM_FAULT_OOM;
3381 page = swapcache;
cbf86cfe 3382 goto out_page;
5ad64688
HD
3383 }
3384
9d82c694 3385 cgroup_throttle_swaprate(page, GFP_KERNEL);
8a9f3ccd 3386
1da177e4 3387 /*
8f4e2101 3388 * Back out if somebody else already faulted in this pte.
1da177e4 3389 */
82b0f8c3
JK
3390 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3391 &vmf->ptl);
2994302b 3392 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
b8107480 3393 goto out_nomap;
b8107480
KK
3394
3395 if (unlikely(!PageUptodate(page))) {
3396 ret = VM_FAULT_SIGBUS;
3397 goto out_nomap;
1da177e4
LT
3398 }
3399
8c7c6e34
KH
3400 /*
3401 * The page isn't present yet, go ahead with the fault.
3402 *
3403 * Be careful about the sequence of operations here.
3404 * To get its accounting right, reuse_swap_page() must be called
3405 * while the page is counted on swap but not yet in mapcount i.e.
3406 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3407 * must be called after the swap_free(), or it will never succeed.
8c7c6e34 3408 */
1da177e4 3409
bae473a4
KS
3410 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3411 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
1da177e4 3412 pte = mk_pte(page, vma->vm_page_prot);
82b0f8c3 3413 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
1da177e4 3414 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
82b0f8c3 3415 vmf->flags &= ~FAULT_FLAG_WRITE;
9a5b489b 3416 ret |= VM_FAULT_WRITE;
d281ee61 3417 exclusive = RMAP_EXCLUSIVE;
1da177e4 3418 }
1da177e4 3419 flush_icache_page(vma, page);
2994302b 3420 if (pte_swp_soft_dirty(vmf->orig_pte))
179ef71c 3421 pte = pte_mksoft_dirty(pte);
f45ec5ff
PX
3422 if (pte_swp_uffd_wp(vmf->orig_pte)) {
3423 pte = pte_mkuffd_wp(pte);
3424 pte = pte_wrprotect(pte);
3425 }
82b0f8c3 3426 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
ca827d55 3427 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2994302b 3428 vmf->orig_pte = pte;
0bcac06f
MK
3429
3430 /* ksm created a completely new copy */
3431 if (unlikely(page != swapcache && swapcache)) {
82b0f8c3 3432 page_add_new_anon_rmap(page, vma, vmf->address, false);
b518154e 3433 lru_cache_add_inactive_or_unevictable(page, vma);
0bcac06f
MK
3434 } else {
3435 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
00501b53 3436 }
1da177e4 3437
c475a8ab 3438 swap_free(entry);
5ccc5aba
VD
3439 if (mem_cgroup_swap_full(page) ||
3440 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 3441 try_to_free_swap(page);
c475a8ab 3442 unlock_page(page);
0bcac06f 3443 if (page != swapcache && swapcache) {
4969c119
AA
3444 /*
3445 * Hold the lock to avoid the swap entry to be reused
3446 * until we take the PT lock for the pte_same() check
3447 * (to avoid false positives from pte_same). For
3448 * further safety release the lock after the swap_free
3449 * so that the swap count won't change under a
3450 * parallel locked swapcache.
3451 */
3452 unlock_page(swapcache);
09cbfeaf 3453 put_page(swapcache);
4969c119 3454 }
c475a8ab 3455
82b0f8c3 3456 if (vmf->flags & FAULT_FLAG_WRITE) {
2994302b 3457 ret |= do_wp_page(vmf);
61469f1d
HD
3458 if (ret & VM_FAULT_ERROR)
3459 ret &= VM_FAULT_ERROR;
1da177e4
LT
3460 goto out;
3461 }
3462
3463 /* No need to invalidate - it was non-present before */
82b0f8c3 3464 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3465unlock:
82b0f8c3 3466 pte_unmap_unlock(vmf->pte, vmf->ptl);
1da177e4
LT
3467out:
3468 return ret;
b8107480 3469out_nomap:
82b0f8c3 3470 pte_unmap_unlock(vmf->pte, vmf->ptl);
bc43f75c 3471out_page:
b8107480 3472 unlock_page(page);
4779cb31 3473out_release:
09cbfeaf 3474 put_page(page);
0bcac06f 3475 if (page != swapcache && swapcache) {
4969c119 3476 unlock_page(swapcache);
09cbfeaf 3477 put_page(swapcache);
4969c119 3478 }
65500d23 3479 return ret;
1da177e4
LT
3480}
3481
3482/*
c1e8d7c6 3483 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3484 * but allow concurrent faults), and pte mapped but not yet locked.
c1e8d7c6 3485 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 3486 */
2b740303 3487static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
1da177e4 3488{
82b0f8c3 3489 struct vm_area_struct *vma = vmf->vma;
8f4e2101 3490 struct page *page;
2b740303 3491 vm_fault_t ret = 0;
1da177e4 3492 pte_t entry;
1da177e4 3493
6b7339f4
KS
3494 /* File mapping without ->vm_ops ? */
3495 if (vma->vm_flags & VM_SHARED)
3496 return VM_FAULT_SIGBUS;
3497
7267ec00
KS
3498 /*
3499 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3500 * pte_offset_map() on pmds where a huge pmd might be created
3501 * from a different thread.
3502 *
3e4e28c5 3503 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
7267ec00
KS
3504 * parallel threads are excluded by other means.
3505 *
3e4e28c5 3506 * Here we only have mmap_read_lock(mm).
7267ec00 3507 */
4cf58924 3508 if (pte_alloc(vma->vm_mm, vmf->pmd))
7267ec00
KS
3509 return VM_FAULT_OOM;
3510
f9ce0be7 3511 /* See comment in handle_pte_fault() */
82b0f8c3 3512 if (unlikely(pmd_trans_unstable(vmf->pmd)))
7267ec00
KS
3513 return 0;
3514
11ac5524 3515 /* Use the zero-page for reads */
82b0f8c3 3516 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 3517 !mm_forbids_zeropage(vma->vm_mm)) {
82b0f8c3 3518 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
62eede62 3519 vma->vm_page_prot));
82b0f8c3
JK
3520 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3521 vmf->address, &vmf->ptl);
7df67697
BM
3522 if (!pte_none(*vmf->pte)) {
3523 update_mmu_tlb(vma, vmf->address, vmf->pte);
a13ea5b7 3524 goto unlock;
7df67697 3525 }
6b31d595
MH
3526 ret = check_stable_address_space(vma->vm_mm);
3527 if (ret)
3528 goto unlock;
6b251fc9
AA
3529 /* Deliver the page fault to userland, check inside PT lock */
3530 if (userfaultfd_missing(vma)) {
82b0f8c3
JK
3531 pte_unmap_unlock(vmf->pte, vmf->ptl);
3532 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9 3533 }
a13ea5b7
HD
3534 goto setpte;
3535 }
3536
557ed1fa 3537 /* Allocate our own private page. */
557ed1fa
NP
3538 if (unlikely(anon_vma_prepare(vma)))
3539 goto oom;
82b0f8c3 3540 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
557ed1fa
NP
3541 if (!page)
3542 goto oom;
eb3c24f3 3543
d9eb1ea2 3544 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
eb3c24f3 3545 goto oom_free_page;
9d82c694 3546 cgroup_throttle_swaprate(page, GFP_KERNEL);
eb3c24f3 3547
52f37629
MK
3548 /*
3549 * The memory barrier inside __SetPageUptodate makes sure that
f4f5329d 3550 * preceding stores to the page contents become visible before
52f37629
MK
3551 * the set_pte_at() write.
3552 */
0ed361de 3553 __SetPageUptodate(page);
8f4e2101 3554
557ed1fa 3555 entry = mk_pte(page, vma->vm_page_prot);
1ac0cb5d
HD
3556 if (vma->vm_flags & VM_WRITE)
3557 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 3558
82b0f8c3
JK
3559 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3560 &vmf->ptl);
7df67697
BM
3561 if (!pte_none(*vmf->pte)) {
3562 update_mmu_cache(vma, vmf->address, vmf->pte);
557ed1fa 3563 goto release;
7df67697 3564 }
9ba69294 3565
6b31d595
MH
3566 ret = check_stable_address_space(vma->vm_mm);
3567 if (ret)
3568 goto release;
3569
6b251fc9
AA
3570 /* Deliver the page fault to userland, check inside PT lock */
3571 if (userfaultfd_missing(vma)) {
82b0f8c3 3572 pte_unmap_unlock(vmf->pte, vmf->ptl);
09cbfeaf 3573 put_page(page);
82b0f8c3 3574 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
3575 }
3576
bae473a4 3577 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 3578 page_add_new_anon_rmap(page, vma, vmf->address, false);
b518154e 3579 lru_cache_add_inactive_or_unevictable(page, vma);
a13ea5b7 3580setpte:
82b0f8c3 3581 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
1da177e4
LT
3582
3583 /* No need to invalidate - it was non-present before */
82b0f8c3 3584 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3585unlock:
82b0f8c3 3586 pte_unmap_unlock(vmf->pte, vmf->ptl);
6b31d595 3587 return ret;
8f4e2101 3588release:
09cbfeaf 3589 put_page(page);
8f4e2101 3590 goto unlock;
8a9f3ccd 3591oom_free_page:
09cbfeaf 3592 put_page(page);
65500d23 3593oom:
1da177e4
LT
3594 return VM_FAULT_OOM;
3595}
3596
9a95f3cf 3597/*
c1e8d7c6 3598 * The mmap_lock must have been held on entry, and may have been
9a95f3cf
PC
3599 * released depending on flags and vma->vm_ops->fault() return value.
3600 * See filemap_fault() and __lock_page_retry().
3601 */
2b740303 3602static vm_fault_t __do_fault(struct vm_fault *vmf)
7eae74af 3603{
82b0f8c3 3604 struct vm_area_struct *vma = vmf->vma;
2b740303 3605 vm_fault_t ret;
7eae74af 3606
63f3655f
MH
3607 /*
3608 * Preallocate pte before we take page_lock because this might lead to
3609 * deadlocks for memcg reclaim which waits for pages under writeback:
3610 * lock_page(A)
3611 * SetPageWriteback(A)
3612 * unlock_page(A)
3613 * lock_page(B)
3614 * lock_page(B)
d383807a 3615 * pte_alloc_one
63f3655f
MH
3616 * shrink_page_list
3617 * wait_on_page_writeback(A)
3618 * SetPageWriteback(B)
3619 * unlock_page(B)
3620 * # flush A, B to clear the writeback
3621 */
3622 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
a7069ee3 3623 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
63f3655f
MH
3624 if (!vmf->prealloc_pte)
3625 return VM_FAULT_OOM;
3626 smp_wmb(); /* See comment in __pte_alloc() */
3627 }
3628
11bac800 3629 ret = vma->vm_ops->fault(vmf);
3917048d 3630 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
b1aa812b 3631 VM_FAULT_DONE_COW)))
bc2466e4 3632 return ret;
7eae74af 3633
667240e0 3634 if (unlikely(PageHWPoison(vmf->page))) {
7eae74af 3635 if (ret & VM_FAULT_LOCKED)
667240e0
JK
3636 unlock_page(vmf->page);
3637 put_page(vmf->page);
936ca80d 3638 vmf->page = NULL;
7eae74af
KS
3639 return VM_FAULT_HWPOISON;
3640 }
3641
3642 if (unlikely(!(ret & VM_FAULT_LOCKED)))
667240e0 3643 lock_page(vmf->page);
7eae74af 3644 else
667240e0 3645 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
7eae74af 3646
7eae74af
KS
3647 return ret;
3648}
3649
396bcc52 3650#ifdef CONFIG_TRANSPARENT_HUGEPAGE
82b0f8c3 3651static void deposit_prealloc_pte(struct vm_fault *vmf)
953c66c2 3652{
82b0f8c3 3653 struct vm_area_struct *vma = vmf->vma;
953c66c2 3654
82b0f8c3 3655 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
953c66c2
AK
3656 /*
3657 * We are going to consume the prealloc table,
3658 * count that as nr_ptes.
3659 */
c4812909 3660 mm_inc_nr_ptes(vma->vm_mm);
7f2b6ce8 3661 vmf->prealloc_pte = NULL;
953c66c2
AK
3662}
3663
f9ce0be7 3664vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 3665{
82b0f8c3
JK
3666 struct vm_area_struct *vma = vmf->vma;
3667 bool write = vmf->flags & FAULT_FLAG_WRITE;
3668 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
10102459 3669 pmd_t entry;
2b740303 3670 int i;
d01ac3c3 3671 vm_fault_t ret = VM_FAULT_FALLBACK;
10102459
KS
3672
3673 if (!transhuge_vma_suitable(vma, haddr))
d01ac3c3 3674 return ret;
10102459 3675
10102459 3676 page = compound_head(page);
d01ac3c3
MWO
3677 if (compound_order(page) != HPAGE_PMD_ORDER)
3678 return ret;
10102459 3679
953c66c2
AK
3680 /*
3681 * Archs like ppc64 need additonal space to store information
3682 * related to pte entry. Use the preallocated table for that.
3683 */
82b0f8c3 3684 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4cf58924 3685 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
82b0f8c3 3686 if (!vmf->prealloc_pte)
953c66c2
AK
3687 return VM_FAULT_OOM;
3688 smp_wmb(); /* See comment in __pte_alloc() */
3689 }
3690
82b0f8c3
JK
3691 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3692 if (unlikely(!pmd_none(*vmf->pmd)))
10102459
KS
3693 goto out;
3694
3695 for (i = 0; i < HPAGE_PMD_NR; i++)
3696 flush_icache_page(vma, page + i);
3697
3698 entry = mk_huge_pmd(page, vma->vm_page_prot);
3699 if (write)
f55e1014 3700 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
10102459 3701
fadae295 3702 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
10102459 3703 page_add_file_rmap(page, true);
953c66c2
AK
3704 /*
3705 * deposit and withdraw with pmd lock held
3706 */
3707 if (arch_needs_pgtable_deposit())
82b0f8c3 3708 deposit_prealloc_pte(vmf);
10102459 3709
82b0f8c3 3710 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
10102459 3711
82b0f8c3 3712 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
10102459
KS
3713
3714 /* fault is handled */
3715 ret = 0;
95ecedcd 3716 count_vm_event(THP_FILE_MAPPED);
10102459 3717out:
82b0f8c3 3718 spin_unlock(vmf->ptl);
10102459
KS
3719 return ret;
3720}
3721#else
f9ce0be7 3722vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 3723{
f9ce0be7 3724 return VM_FAULT_FALLBACK;
10102459
KS
3725}
3726#endif
3727
9d3af4b4 3728void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
3bb97794 3729{
82b0f8c3
JK
3730 struct vm_area_struct *vma = vmf->vma;
3731 bool write = vmf->flags & FAULT_FLAG_WRITE;
9d3af4b4 3732 bool prefault = vmf->address != addr;
3bb97794 3733 pte_t entry;
7267ec00 3734
3bb97794
KS
3735 flush_icache_page(vma, page);
3736 entry = mk_pte(page, vma->vm_page_prot);
46bdb427
WD
3737
3738 if (prefault && arch_wants_old_prefaulted_pte())
3739 entry = pte_mkold(entry);
46bdb427 3740
3bb97794
KS
3741 if (write)
3742 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
bae473a4
KS
3743 /* copy-on-write page */
3744 if (write && !(vma->vm_flags & VM_SHARED)) {
3bb97794 3745 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
9d3af4b4 3746 page_add_new_anon_rmap(page, vma, addr, false);
b518154e 3747 lru_cache_add_inactive_or_unevictable(page, vma);
3bb97794 3748 } else {
eca56ff9 3749 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
dd78fedd 3750 page_add_file_rmap(page, false);
3bb97794 3751 }
9d3af4b4 3752 set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
3bb97794
KS
3753}
3754
9118c0cb
JK
3755/**
3756 * finish_fault - finish page fault once we have prepared the page to fault
3757 *
3758 * @vmf: structure describing the fault
3759 *
3760 * This function handles all that is needed to finish a page fault once the
3761 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3762 * given page, adds reverse page mapping, handles memcg charges and LRU
a862f68a 3763 * addition.
9118c0cb
JK
3764 *
3765 * The function expects the page to be locked and on success it consumes a
3766 * reference of a page being mapped (for the PTE which maps it).
a862f68a
MR
3767 *
3768 * Return: %0 on success, %VM_FAULT_ code in case of error.
9118c0cb 3769 */
2b740303 3770vm_fault_t finish_fault(struct vm_fault *vmf)
9118c0cb 3771{
f9ce0be7 3772 struct vm_area_struct *vma = vmf->vma;
9118c0cb 3773 struct page *page;
f9ce0be7 3774 vm_fault_t ret;
9118c0cb
JK
3775
3776 /* Did we COW the page? */
f9ce0be7 3777 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
9118c0cb
JK
3778 page = vmf->cow_page;
3779 else
3780 page = vmf->page;
6b31d595
MH
3781
3782 /*
3783 * check even for read faults because we might have lost our CoWed
3784 * page
3785 */
f9ce0be7
KS
3786 if (!(vma->vm_flags & VM_SHARED)) {
3787 ret = check_stable_address_space(vma->vm_mm);
3788 if (ret)
3789 return ret;
3790 }
3791
3792 if (pmd_none(*vmf->pmd)) {
3793 if (PageTransCompound(page)) {
3794 ret = do_set_pmd(vmf, page);
3795 if (ret != VM_FAULT_FALLBACK)
3796 return ret;
3797 }
3798
3799 if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
3800 return VM_FAULT_OOM;
3801 }
3802
3803 /* See comment in handle_pte_fault() */
3804 if (pmd_devmap_trans_unstable(vmf->pmd))
3805 return 0;
3806
3807 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3808 vmf->address, &vmf->ptl);
3809 ret = 0;
3810 /* Re-check under ptl */
3811 if (likely(pte_none(*vmf->pte)))
9d3af4b4 3812 do_set_pte(vmf, page, vmf->address);
f9ce0be7
KS
3813 else
3814 ret = VM_FAULT_NOPAGE;
3815
3816 update_mmu_tlb(vma, vmf->address, vmf->pte);
3817 pte_unmap_unlock(vmf->pte, vmf->ptl);
9118c0cb
JK
3818 return ret;
3819}
3820
3a91053a
KS
3821static unsigned long fault_around_bytes __read_mostly =
3822 rounddown_pow_of_two(65536);
a9b0f861 3823
a9b0f861
KS
3824#ifdef CONFIG_DEBUG_FS
3825static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 3826{
a9b0f861 3827 *val = fault_around_bytes;
1592eef0
KS
3828 return 0;
3829}
3830
b4903d6e 3831/*
da391d64
WK
3832 * fault_around_bytes must be rounded down to the nearest page order as it's
3833 * what do_fault_around() expects to see.
b4903d6e 3834 */
a9b0f861 3835static int fault_around_bytes_set(void *data, u64 val)
1592eef0 3836{
a9b0f861 3837 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 3838 return -EINVAL;
b4903d6e
AR
3839 if (val > PAGE_SIZE)
3840 fault_around_bytes = rounddown_pow_of_two(val);
3841 else
3842 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
1592eef0
KS
3843 return 0;
3844}
0a1345f8 3845DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
a9b0f861 3846 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
3847
3848static int __init fault_around_debugfs(void)
3849{
d9f7979c
GKH
3850 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3851 &fault_around_bytes_fops);
1592eef0
KS
3852 return 0;
3853}
3854late_initcall(fault_around_debugfs);
1592eef0 3855#endif
8c6e50b0 3856
1fdb412b
KS
3857/*
3858 * do_fault_around() tries to map few pages around the fault address. The hope
3859 * is that the pages will be needed soon and this will lower the number of
3860 * faults to handle.
3861 *
3862 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3863 * not ready to be mapped: not up-to-date, locked, etc.
3864 *
3865 * This function is called with the page table lock taken. In the split ptlock
3866 * case the page table lock only protects only those entries which belong to
3867 * the page table corresponding to the fault address.
3868 *
3869 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3870 * only once.
3871 *
da391d64
WK
3872 * fault_around_bytes defines how many bytes we'll try to map.
3873 * do_fault_around() expects it to be set to a power of two less than or equal
3874 * to PTRS_PER_PTE.
1fdb412b 3875 *
da391d64
WK
3876 * The virtual address of the area that we map is naturally aligned to
3877 * fault_around_bytes rounded down to the machine page size
3878 * (and therefore to page order). This way it's easier to guarantee
3879 * that we don't cross page table boundaries.
1fdb412b 3880 */
2b740303 3881static vm_fault_t do_fault_around(struct vm_fault *vmf)
8c6e50b0 3882{
82b0f8c3 3883 unsigned long address = vmf->address, nr_pages, mask;
0721ec8b 3884 pgoff_t start_pgoff = vmf->pgoff;
bae473a4 3885 pgoff_t end_pgoff;
2b740303 3886 int off;
8c6e50b0 3887
4db0c3c2 3888 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
aecd6f44
KS
3889 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3890
f9ce0be7
KS
3891 address = max(address & mask, vmf->vma->vm_start);
3892 off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
bae473a4 3893 start_pgoff -= off;
8c6e50b0
KS
3894
3895 /*
da391d64
WK
3896 * end_pgoff is either the end of the page table, the end of
3897 * the vma or nr_pages from start_pgoff, depending what is nearest.
8c6e50b0 3898 */
bae473a4 3899 end_pgoff = start_pgoff -
f9ce0be7 3900 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
8c6e50b0 3901 PTRS_PER_PTE - 1;
82b0f8c3 3902 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
bae473a4 3903 start_pgoff + nr_pages - 1);
8c6e50b0 3904
82b0f8c3 3905 if (pmd_none(*vmf->pmd)) {
4cf58924 3906 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
82b0f8c3 3907 if (!vmf->prealloc_pte)
f9ce0be7 3908 return VM_FAULT_OOM;
7267ec00 3909 smp_wmb(); /* See comment in __pte_alloc() */
8c6e50b0
KS
3910 }
3911
f9ce0be7 3912 return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
8c6e50b0
KS
3913}
3914
2b740303 3915static vm_fault_t do_read_fault(struct vm_fault *vmf)
e655fb29 3916{
82b0f8c3 3917 struct vm_area_struct *vma = vmf->vma;
2b740303 3918 vm_fault_t ret = 0;
8c6e50b0
KS
3919
3920 /*
3921 * Let's call ->map_pages() first and use ->fault() as fallback
3922 * if page by the offset is not ready to be mapped (cold cache or
3923 * something).
3924 */
9b4bdd2f 3925 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
0721ec8b 3926 ret = do_fault_around(vmf);
7267ec00
KS
3927 if (ret)
3928 return ret;
8c6e50b0 3929 }
e655fb29 3930
936ca80d 3931 ret = __do_fault(vmf);
e655fb29
KS
3932 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3933 return ret;
3934
9118c0cb 3935 ret |= finish_fault(vmf);
936ca80d 3936 unlock_page(vmf->page);
7267ec00 3937 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
936ca80d 3938 put_page(vmf->page);
e655fb29
KS
3939 return ret;
3940}
3941
2b740303 3942static vm_fault_t do_cow_fault(struct vm_fault *vmf)
ec47c3b9 3943{
82b0f8c3 3944 struct vm_area_struct *vma = vmf->vma;
2b740303 3945 vm_fault_t ret;
ec47c3b9
KS
3946
3947 if (unlikely(anon_vma_prepare(vma)))
3948 return VM_FAULT_OOM;
3949
936ca80d
JK
3950 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3951 if (!vmf->cow_page)
ec47c3b9
KS
3952 return VM_FAULT_OOM;
3953
d9eb1ea2 3954 if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
936ca80d 3955 put_page(vmf->cow_page);
ec47c3b9
KS
3956 return VM_FAULT_OOM;
3957 }
9d82c694 3958 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
ec47c3b9 3959
936ca80d 3960 ret = __do_fault(vmf);
ec47c3b9
KS
3961 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3962 goto uncharge_out;
3917048d
JK
3963 if (ret & VM_FAULT_DONE_COW)
3964 return ret;
ec47c3b9 3965
b1aa812b 3966 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
936ca80d 3967 __SetPageUptodate(vmf->cow_page);
ec47c3b9 3968
9118c0cb 3969 ret |= finish_fault(vmf);
b1aa812b
JK
3970 unlock_page(vmf->page);
3971 put_page(vmf->page);
7267ec00
KS
3972 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3973 goto uncharge_out;
ec47c3b9
KS
3974 return ret;
3975uncharge_out:
936ca80d 3976 put_page(vmf->cow_page);
ec47c3b9
KS
3977 return ret;
3978}
3979
2b740303 3980static vm_fault_t do_shared_fault(struct vm_fault *vmf)
1da177e4 3981{
82b0f8c3 3982 struct vm_area_struct *vma = vmf->vma;
2b740303 3983 vm_fault_t ret, tmp;
1d65f86d 3984
936ca80d 3985 ret = __do_fault(vmf);
7eae74af 3986 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 3987 return ret;
1da177e4
LT
3988
3989 /*
f0c6d4d2
KS
3990 * Check if the backing address space wants to know that the page is
3991 * about to become writable
1da177e4 3992 */
fb09a464 3993 if (vma->vm_ops->page_mkwrite) {
936ca80d 3994 unlock_page(vmf->page);
38b8cb7f 3995 tmp = do_page_mkwrite(vmf);
fb09a464
KS
3996 if (unlikely(!tmp ||
3997 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
936ca80d 3998 put_page(vmf->page);
fb09a464 3999 return tmp;
4294621f 4000 }
fb09a464
KS
4001 }
4002
9118c0cb 4003 ret |= finish_fault(vmf);
7267ec00
KS
4004 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4005 VM_FAULT_RETRY))) {
936ca80d
JK
4006 unlock_page(vmf->page);
4007 put_page(vmf->page);
f0c6d4d2 4008 return ret;
1da177e4 4009 }
b827e496 4010
89b15332 4011 ret |= fault_dirty_shared_page(vmf);
1d65f86d 4012 return ret;
54cb8821 4013}
d00806b1 4014
9a95f3cf 4015/*
c1e8d7c6 4016 * We enter with non-exclusive mmap_lock (to exclude vma changes,
9a95f3cf 4017 * but allow concurrent faults).
c1e8d7c6 4018 * The mmap_lock may have been released depending on flags and our
9a95f3cf 4019 * return value. See filemap_fault() and __lock_page_or_retry().
c1e8d7c6 4020 * If mmap_lock is released, vma may become invalid (for example
fc8efd2d 4021 * by other thread calling munmap()).
9a95f3cf 4022 */
2b740303 4023static vm_fault_t do_fault(struct vm_fault *vmf)
54cb8821 4024{
82b0f8c3 4025 struct vm_area_struct *vma = vmf->vma;
fc8efd2d 4026 struct mm_struct *vm_mm = vma->vm_mm;
2b740303 4027 vm_fault_t ret;
54cb8821 4028
ff09d7ec
AK
4029 /*
4030 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4031 */
4032 if (!vma->vm_ops->fault) {
4033 /*
4034 * If we find a migration pmd entry or a none pmd entry, which
4035 * should never happen, return SIGBUS
4036 */
4037 if (unlikely(!pmd_present(*vmf->pmd)))
4038 ret = VM_FAULT_SIGBUS;
4039 else {
4040 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4041 vmf->pmd,
4042 vmf->address,
4043 &vmf->ptl);
4044 /*
4045 * Make sure this is not a temporary clearing of pte
4046 * by holding ptl and checking again. A R/M/W update
4047 * of pte involves: take ptl, clearing the pte so that
4048 * we don't have concurrent modification by hardware
4049 * followed by an update.
4050 */
4051 if (unlikely(pte_none(*vmf->pte)))
4052 ret = VM_FAULT_SIGBUS;
4053 else
4054 ret = VM_FAULT_NOPAGE;
4055
4056 pte_unmap_unlock(vmf->pte, vmf->ptl);
4057 }
4058 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
b0b9b3df
HD
4059 ret = do_read_fault(vmf);
4060 else if (!(vma->vm_flags & VM_SHARED))
4061 ret = do_cow_fault(vmf);
4062 else
4063 ret = do_shared_fault(vmf);
4064
4065 /* preallocated pagetable is unused: free it */
4066 if (vmf->prealloc_pte) {
fc8efd2d 4067 pte_free(vm_mm, vmf->prealloc_pte);
7f2b6ce8 4068 vmf->prealloc_pte = NULL;
b0b9b3df
HD
4069 }
4070 return ret;
54cb8821
NP
4071}
4072
b19a9939 4073static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
04bb2f94
RR
4074 unsigned long addr, int page_nid,
4075 int *flags)
9532fec1
MG
4076{
4077 get_page(page);
4078
4079 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 4080 if (page_nid == numa_node_id()) {
9532fec1 4081 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
4082 *flags |= TNF_FAULT_LOCAL;
4083 }
9532fec1
MG
4084
4085 return mpol_misplaced(page, vma, addr);
4086}
4087
2b740303 4088static vm_fault_t do_numa_page(struct vm_fault *vmf)
d10e63f2 4089{
82b0f8c3 4090 struct vm_area_struct *vma = vmf->vma;
4daae3b4 4091 struct page *page = NULL;
98fa15f3 4092 int page_nid = NUMA_NO_NODE;
90572890 4093 int last_cpupid;
cbee9f88 4094 int target_nid;
b8593bfd 4095 bool migrated = false;
04a86453 4096 pte_t pte, old_pte;
288bc549 4097 bool was_writable = pte_savedwrite(vmf->orig_pte);
6688cc05 4098 int flags = 0;
d10e63f2
MG
4099
4100 /*
166f61b9
TH
4101 * The "pte" at this point cannot be used safely without
4102 * validation through pte_unmap_same(). It's of NUMA type but
4103 * the pfn may be screwed if the read is non atomic.
166f61b9 4104 */
82b0f8c3
JK
4105 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4106 spin_lock(vmf->ptl);
cee216a6 4107 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
82b0f8c3 4108 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
4109 goto out;
4110 }
4111
cee216a6
AK
4112 /*
4113 * Make it present again, Depending on how arch implementes non
4114 * accessible ptes, some can allow access by kernel mode.
4115 */
04a86453
AK
4116 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4117 pte = pte_modify(old_pte, vma->vm_page_prot);
4d942466 4118 pte = pte_mkyoung(pte);
b191f9b1
MG
4119 if (was_writable)
4120 pte = pte_mkwrite(pte);
04a86453 4121 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
82b0f8c3 4122 update_mmu_cache(vma, vmf->address, vmf->pte);
d10e63f2 4123
82b0f8c3 4124 page = vm_normal_page(vma, vmf->address, pte);
d10e63f2 4125 if (!page) {
82b0f8c3 4126 pte_unmap_unlock(vmf->pte, vmf->ptl);
d10e63f2
MG
4127 return 0;
4128 }
4129
e81c4802
KS
4130 /* TODO: handle PTE-mapped THP */
4131 if (PageCompound(page)) {
82b0f8c3 4132 pte_unmap_unlock(vmf->pte, vmf->ptl);
e81c4802
KS
4133 return 0;
4134 }
4135
6688cc05 4136 /*
bea66fbd
MG
4137 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4138 * much anyway since they can be in shared cache state. This misses
4139 * the case where a mapping is writable but the process never writes
4140 * to it but pte_write gets cleared during protection updates and
4141 * pte_dirty has unpredictable behaviour between PTE scan updates,
4142 * background writeback, dirty balancing and application behaviour.
6688cc05 4143 */
d59dc7bc 4144 if (!pte_write(pte))
6688cc05
PZ
4145 flags |= TNF_NO_GROUP;
4146
dabe1d99
RR
4147 /*
4148 * Flag if the page is shared between multiple address spaces. This
4149 * is later used when determining whether to group tasks together
4150 */
4151 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4152 flags |= TNF_SHARED;
4153
90572890 4154 last_cpupid = page_cpupid_last(page);
8191acbd 4155 page_nid = page_to_nid(page);
82b0f8c3 4156 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
bae473a4 4157 &flags);
82b0f8c3 4158 pte_unmap_unlock(vmf->pte, vmf->ptl);
98fa15f3 4159 if (target_nid == NUMA_NO_NODE) {
4daae3b4
MG
4160 put_page(page);
4161 goto out;
4162 }
4163
4164 /* Migrate to the requested node */
1bc115d8 4165 migrated = migrate_misplaced_page(page, vma, target_nid);
6688cc05 4166 if (migrated) {
8191acbd 4167 page_nid = target_nid;
6688cc05 4168 flags |= TNF_MIGRATED;
074c2381
MG
4169 } else
4170 flags |= TNF_MIGRATE_FAIL;
4daae3b4
MG
4171
4172out:
98fa15f3 4173 if (page_nid != NUMA_NO_NODE)
6688cc05 4174 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2
MG
4175 return 0;
4176}
4177
2b740303 4178static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
b96375f7 4179{
f4200391 4180 if (vma_is_anonymous(vmf->vma))
82b0f8c3 4181 return do_huge_pmd_anonymous_page(vmf);
a2d58167 4182 if (vmf->vma->vm_ops->huge_fault)
c791ace1 4183 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
b96375f7
MW
4184 return VM_FAULT_FALLBACK;
4185}
4186
183f24aa 4187/* `inline' is required to avoid gcc 4.1.2 build error */
2b740303 4188static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
b96375f7 4189{
529b930b 4190 if (vma_is_anonymous(vmf->vma)) {
292924b2 4191 if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
529b930b 4192 return handle_userfault(vmf, VM_UFFD_WP);
82b0f8c3 4193 return do_huge_pmd_wp_page(vmf, orig_pmd);
529b930b 4194 }
327e9fd4
THV
4195 if (vmf->vma->vm_ops->huge_fault) {
4196 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4197
4198 if (!(ret & VM_FAULT_FALLBACK))
4199 return ret;
4200 }
af9e4d5f 4201
327e9fd4 4202 /* COW or write-notify handled on pte level: split pmd. */
82b0f8c3 4203 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
af9e4d5f 4204
b96375f7
MW
4205 return VM_FAULT_FALLBACK;
4206}
4207
2b740303 4208static vm_fault_t create_huge_pud(struct vm_fault *vmf)
a00cc7d9 4209{
327e9fd4
THV
4210#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4211 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
a00cc7d9
MW
4212 /* No support for anonymous transparent PUD pages yet */
4213 if (vma_is_anonymous(vmf->vma))
327e9fd4
THV
4214 goto split;
4215 if (vmf->vma->vm_ops->huge_fault) {
4216 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4217
4218 if (!(ret & VM_FAULT_FALLBACK))
4219 return ret;
4220 }
4221split:
4222 /* COW or write-notify not handled on PUD level: split pud.*/
4223 __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
a00cc7d9
MW
4224#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4225 return VM_FAULT_FALLBACK;
4226}
4227
2b740303 4228static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
a00cc7d9
MW
4229{
4230#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4231 /* No support for anonymous transparent PUD pages yet */
4232 if (vma_is_anonymous(vmf->vma))
4233 return VM_FAULT_FALLBACK;
4234 if (vmf->vma->vm_ops->huge_fault)
c791ace1 4235 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
a00cc7d9
MW
4236#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4237 return VM_FAULT_FALLBACK;
4238}
4239
1da177e4
LT
4240/*
4241 * These routines also need to handle stuff like marking pages dirty
4242 * and/or accessed for architectures that don't do it in hardware (most
4243 * RISC architectures). The early dirtying is also good on the i386.
4244 *
4245 * There is also a hook called "update_mmu_cache()" that architectures
4246 * with external mmu caches can use to update those (ie the Sparc or
4247 * PowerPC hashed page tables that act as extended TLBs).
4248 *
c1e8d7c6 4249 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
7267ec00 4250 * concurrent faults).
9a95f3cf 4251 *
c1e8d7c6 4252 * The mmap_lock may have been released depending on flags and our return value.
7267ec00 4253 * See filemap_fault() and __lock_page_or_retry().
1da177e4 4254 */
2b740303 4255static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
1da177e4
LT
4256{
4257 pte_t entry;
4258
82b0f8c3 4259 if (unlikely(pmd_none(*vmf->pmd))) {
7267ec00
KS
4260 /*
4261 * Leave __pte_alloc() until later: because vm_ops->fault may
4262 * want to allocate huge page, and if we expose page table
4263 * for an instant, it will be difficult to retract from
4264 * concurrent faults and from rmap lookups.
4265 */
82b0f8c3 4266 vmf->pte = NULL;
7267ec00 4267 } else {
f9ce0be7
KS
4268 /*
4269 * If a huge pmd materialized under us just retry later. Use
4270 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4271 * of pmd_trans_huge() to ensure the pmd didn't become
4272 * pmd_trans_huge under us and then back to pmd_none, as a
4273 * result of MADV_DONTNEED running immediately after a huge pmd
4274 * fault in a different thread of this mm, in turn leading to a
4275 * misleading pmd_trans_huge() retval. All we have to ensure is
4276 * that it is a regular pmd that we can walk with
4277 * pte_offset_map() and we can do that through an atomic read
4278 * in C, which is what pmd_trans_unstable() provides.
4279 */
d0f0931d 4280 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
4281 return 0;
4282 /*
4283 * A regular pmd is established and it can't morph into a huge
4284 * pmd from under us anymore at this point because we hold the
c1e8d7c6 4285 * mmap_lock read mode and khugepaged takes it in write mode.
7267ec00
KS
4286 * So now it's safe to run pte_offset_map().
4287 */
82b0f8c3 4288 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
2994302b 4289 vmf->orig_pte = *vmf->pte;
7267ec00
KS
4290
4291 /*
4292 * some architectures can have larger ptes than wordsize,
4293 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
b03a0fe0
PM
4294 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4295 * accesses. The code below just needs a consistent view
4296 * for the ifs and we later double check anyway with the
7267ec00
KS
4297 * ptl lock held. So here a barrier will do.
4298 */
4299 barrier();
2994302b 4300 if (pte_none(vmf->orig_pte)) {
82b0f8c3
JK
4301 pte_unmap(vmf->pte);
4302 vmf->pte = NULL;
65500d23 4303 }
1da177e4
LT
4304 }
4305
82b0f8c3
JK
4306 if (!vmf->pte) {
4307 if (vma_is_anonymous(vmf->vma))
4308 return do_anonymous_page(vmf);
7267ec00 4309 else
82b0f8c3 4310 return do_fault(vmf);
7267ec00
KS
4311 }
4312
2994302b
JK
4313 if (!pte_present(vmf->orig_pte))
4314 return do_swap_page(vmf);
7267ec00 4315
2994302b
JK
4316 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4317 return do_numa_page(vmf);
d10e63f2 4318
82b0f8c3
JK
4319 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4320 spin_lock(vmf->ptl);
2994302b 4321 entry = vmf->orig_pte;
7df67697
BM
4322 if (unlikely(!pte_same(*vmf->pte, entry))) {
4323 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
8f4e2101 4324 goto unlock;
7df67697 4325 }
82b0f8c3 4326 if (vmf->flags & FAULT_FLAG_WRITE) {
f6f37321 4327 if (!pte_write(entry))
2994302b 4328 return do_wp_page(vmf);
1da177e4
LT
4329 entry = pte_mkdirty(entry);
4330 }
4331 entry = pte_mkyoung(entry);
82b0f8c3
JK
4332 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4333 vmf->flags & FAULT_FLAG_WRITE)) {
4334 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
1a44e149 4335 } else {
b7333b58
YS
4336 /* Skip spurious TLB flush for retried page fault */
4337 if (vmf->flags & FAULT_FLAG_TRIED)
4338 goto unlock;
1a44e149
AA
4339 /*
4340 * This is needed only for protection faults but the arch code
4341 * is not yet telling us if this is a protection fault or not.
4342 * This still avoids useless tlb flushes for .text page faults
4343 * with threads.
4344 */
82b0f8c3
JK
4345 if (vmf->flags & FAULT_FLAG_WRITE)
4346 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
1a44e149 4347 }
8f4e2101 4348unlock:
82b0f8c3 4349 pte_unmap_unlock(vmf->pte, vmf->ptl);
83c54070 4350 return 0;
1da177e4
LT
4351}
4352
4353/*
4354 * By the time we get here, we already hold the mm semaphore
9a95f3cf 4355 *
c1e8d7c6 4356 * The mmap_lock may have been released depending on flags and our
9a95f3cf 4357 * return value. See filemap_fault() and __lock_page_or_retry().
1da177e4 4358 */
2b740303
SJ
4359static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4360 unsigned long address, unsigned int flags)
1da177e4 4361{
82b0f8c3 4362 struct vm_fault vmf = {
bae473a4 4363 .vma = vma,
1a29d85e 4364 .address = address & PAGE_MASK,
bae473a4 4365 .flags = flags,
0721ec8b 4366 .pgoff = linear_page_index(vma, address),
667240e0 4367 .gfp_mask = __get_fault_gfp_mask(vma),
bae473a4 4368 };
fde26bed 4369 unsigned int dirty = flags & FAULT_FLAG_WRITE;
dcddffd4 4370 struct mm_struct *mm = vma->vm_mm;
1da177e4 4371 pgd_t *pgd;
c2febafc 4372 p4d_t *p4d;
2b740303 4373 vm_fault_t ret;
1da177e4 4374
1da177e4 4375 pgd = pgd_offset(mm, address);
c2febafc
KS
4376 p4d = p4d_alloc(mm, pgd, address);
4377 if (!p4d)
4378 return VM_FAULT_OOM;
a00cc7d9 4379
c2febafc 4380 vmf.pud = pud_alloc(mm, p4d, address);
a00cc7d9 4381 if (!vmf.pud)
c74df32c 4382 return VM_FAULT_OOM;
625110b5 4383retry_pud:
7635d9cb 4384 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
a00cc7d9
MW
4385 ret = create_huge_pud(&vmf);
4386 if (!(ret & VM_FAULT_FALLBACK))
4387 return ret;
4388 } else {
4389 pud_t orig_pud = *vmf.pud;
4390
4391 barrier();
4392 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
a00cc7d9 4393
a00cc7d9
MW
4394 /* NUMA case for anonymous PUDs would go here */
4395
f6f37321 4396 if (dirty && !pud_write(orig_pud)) {
a00cc7d9
MW
4397 ret = wp_huge_pud(&vmf, orig_pud);
4398 if (!(ret & VM_FAULT_FALLBACK))
4399 return ret;
4400 } else {
4401 huge_pud_set_accessed(&vmf, orig_pud);
4402 return 0;
4403 }
4404 }
4405 }
4406
4407 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
82b0f8c3 4408 if (!vmf.pmd)
c74df32c 4409 return VM_FAULT_OOM;
625110b5
TH
4410
4411 /* Huge pud page fault raced with pmd_alloc? */
4412 if (pud_trans_unstable(vmf.pud))
4413 goto retry_pud;
4414
7635d9cb 4415 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
a2d58167 4416 ret = create_huge_pmd(&vmf);
c0292554
KS
4417 if (!(ret & VM_FAULT_FALLBACK))
4418 return ret;
71e3aac0 4419 } else {
82b0f8c3 4420 pmd_t orig_pmd = *vmf.pmd;
1f1d06c3 4421
71e3aac0 4422 barrier();
84c3fc4e
ZY
4423 if (unlikely(is_swap_pmd(orig_pmd))) {
4424 VM_BUG_ON(thp_migration_supported() &&
4425 !is_pmd_migration_entry(orig_pmd));
4426 if (is_pmd_migration_entry(orig_pmd))
4427 pmd_migration_entry_wait(mm, vmf.pmd);
4428 return 0;
4429 }
5c7fb56e 4430 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
38e08854 4431 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
82b0f8c3 4432 return do_huge_pmd_numa_page(&vmf, orig_pmd);
d10e63f2 4433
f6f37321 4434 if (dirty && !pmd_write(orig_pmd)) {
82b0f8c3 4435 ret = wp_huge_pmd(&vmf, orig_pmd);
9845cbbd
KS
4436 if (!(ret & VM_FAULT_FALLBACK))
4437 return ret;
a1dd450b 4438 } else {
82b0f8c3 4439 huge_pmd_set_accessed(&vmf, orig_pmd);
9845cbbd 4440 return 0;
1f1d06c3 4441 }
71e3aac0
AA
4442 }
4443 }
4444
82b0f8c3 4445 return handle_pte_fault(&vmf);
1da177e4
LT
4446}
4447
bce617ed
PX
4448/**
4449 * mm_account_fault - Do page fault accountings
4450 *
4451 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
4452 * of perf event counters, but we'll still do the per-task accounting to
4453 * the task who triggered this page fault.
4454 * @address: the faulted address.
4455 * @flags: the fault flags.
4456 * @ret: the fault retcode.
4457 *
4458 * This will take care of most of the page fault accountings. Meanwhile, it
4459 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4460 * updates. However note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4461 * still be in per-arch page fault handlers at the entry of page fault.
4462 */
4463static inline void mm_account_fault(struct pt_regs *regs,
4464 unsigned long address, unsigned int flags,
4465 vm_fault_t ret)
4466{
4467 bool major;
4468
4469 /*
4470 * We don't do accounting for some specific faults:
4471 *
4472 * - Unsuccessful faults (e.g. when the address wasn't valid). That
4473 * includes arch_vma_access_permitted() failing before reaching here.
4474 * So this is not a "this many hardware page faults" counter. We
4475 * should use the hw profiling for that.
4476 *
4477 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted
4478 * once they're completed.
4479 */
4480 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4481 return;
4482
4483 /*
4484 * We define the fault as a major fault when the final successful fault
4485 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4486 * handle it immediately previously).
4487 */
4488 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4489
a2beb5f1
PX
4490 if (major)
4491 current->maj_flt++;
4492 else
4493 current->min_flt++;
4494
bce617ed 4495 /*
a2beb5f1
PX
4496 * If the fault is done for GUP, regs will be NULL. We only do the
4497 * accounting for the per thread fault counters who triggered the
4498 * fault, and we skip the perf event updates.
bce617ed
PX
4499 */
4500 if (!regs)
4501 return;
4502
a2beb5f1 4503 if (major)
bce617ed 4504 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
a2beb5f1 4505 else
bce617ed 4506 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
bce617ed
PX
4507}
4508
9a95f3cf
PC
4509/*
4510 * By the time we get here, we already hold the mm semaphore
4511 *
c1e8d7c6 4512 * The mmap_lock may have been released depending on flags and our
9a95f3cf
PC
4513 * return value. See filemap_fault() and __lock_page_or_retry().
4514 */
2b740303 4515vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
bce617ed 4516 unsigned int flags, struct pt_regs *regs)
519e5247 4517{
2b740303 4518 vm_fault_t ret;
519e5247
JW
4519
4520 __set_current_state(TASK_RUNNING);
4521
4522 count_vm_event(PGFAULT);
2262185c 4523 count_memcg_event_mm(vma->vm_mm, PGFAULT);
519e5247
JW
4524
4525 /* do counter updates before entering really critical section. */
4526 check_sync_rss_stat(current);
4527
de0c799b
LD
4528 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4529 flags & FAULT_FLAG_INSTRUCTION,
4530 flags & FAULT_FLAG_REMOTE))
4531 return VM_FAULT_SIGSEGV;
4532
519e5247
JW
4533 /*
4534 * Enable the memcg OOM handling for faults triggered in user
4535 * space. Kernel faults are handled more gracefully.
4536 */
4537 if (flags & FAULT_FLAG_USER)
29ef680a 4538 mem_cgroup_enter_user_fault();
519e5247 4539
bae473a4
KS
4540 if (unlikely(is_vm_hugetlb_page(vma)))
4541 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4542 else
4543 ret = __handle_mm_fault(vma, address, flags);
519e5247 4544
49426420 4545 if (flags & FAULT_FLAG_USER) {
29ef680a 4546 mem_cgroup_exit_user_fault();
166f61b9
TH
4547 /*
4548 * The task may have entered a memcg OOM situation but
4549 * if the allocation error was handled gracefully (no
4550 * VM_FAULT_OOM), there is no need to kill anything.
4551 * Just clean up the OOM state peacefully.
4552 */
4553 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4554 mem_cgroup_oom_synchronize(false);
49426420 4555 }
3812c8c8 4556
bce617ed
PX
4557 mm_account_fault(regs, address, flags, ret);
4558
519e5247
JW
4559 return ret;
4560}
e1d6d01a 4561EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 4562
90eceff1
KS
4563#ifndef __PAGETABLE_P4D_FOLDED
4564/*
4565 * Allocate p4d page table.
4566 * We've already handled the fast-path in-line.
4567 */
4568int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4569{
4570 p4d_t *new = p4d_alloc_one(mm, address);
4571 if (!new)
4572 return -ENOMEM;
4573
4574 smp_wmb(); /* See comment in __pte_alloc */
4575
4576 spin_lock(&mm->page_table_lock);
4577 if (pgd_present(*pgd)) /* Another has populated it */
4578 p4d_free(mm, new);
4579 else
4580 pgd_populate(mm, pgd, new);
4581 spin_unlock(&mm->page_table_lock);
4582 return 0;
4583}
4584#endif /* __PAGETABLE_P4D_FOLDED */
4585
1da177e4
LT
4586#ifndef __PAGETABLE_PUD_FOLDED
4587/*
4588 * Allocate page upper directory.
872fec16 4589 * We've already handled the fast-path in-line.
1da177e4 4590 */
c2febafc 4591int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
1da177e4 4592{
c74df32c
HD
4593 pud_t *new = pud_alloc_one(mm, address);
4594 if (!new)
1bb3630e 4595 return -ENOMEM;
1da177e4 4596
362a61ad
NP
4597 smp_wmb(); /* See comment in __pte_alloc */
4598
872fec16 4599 spin_lock(&mm->page_table_lock);
b4e98d9a
KS
4600 if (!p4d_present(*p4d)) {
4601 mm_inc_nr_puds(mm);
c2febafc 4602 p4d_populate(mm, p4d, new);
b4e98d9a 4603 } else /* Another has populated it */
5e541973 4604 pud_free(mm, new);
c74df32c 4605 spin_unlock(&mm->page_table_lock);
1bb3630e 4606 return 0;
1da177e4
LT
4607}
4608#endif /* __PAGETABLE_PUD_FOLDED */
4609
4610#ifndef __PAGETABLE_PMD_FOLDED
4611/*
4612 * Allocate page middle directory.
872fec16 4613 * We've already handled the fast-path in-line.
1da177e4 4614 */
1bb3630e 4615int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 4616{
a00cc7d9 4617 spinlock_t *ptl;
c74df32c
HD
4618 pmd_t *new = pmd_alloc_one(mm, address);
4619 if (!new)
1bb3630e 4620 return -ENOMEM;
1da177e4 4621
362a61ad
NP
4622 smp_wmb(); /* See comment in __pte_alloc */
4623
a00cc7d9 4624 ptl = pud_lock(mm, pud);
dc6c9a35
KS
4625 if (!pud_present(*pud)) {
4626 mm_inc_nr_pmds(mm);
1bb3630e 4627 pud_populate(mm, pud, new);
dc6c9a35 4628 } else /* Another has populated it */
5e541973 4629 pmd_free(mm, new);
a00cc7d9 4630 spin_unlock(ptl);
1bb3630e 4631 return 0;
e0f39591 4632}
1da177e4
LT
4633#endif /* __PAGETABLE_PMD_FOLDED */
4634
9fd6dad1
PB
4635int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
4636 struct mmu_notifier_range *range, pte_t **ptepp,
4637 pmd_t **pmdpp, spinlock_t **ptlp)
f8ad0f49
JW
4638{
4639 pgd_t *pgd;
c2febafc 4640 p4d_t *p4d;
f8ad0f49
JW
4641 pud_t *pud;
4642 pmd_t *pmd;
4643 pte_t *ptep;
4644
4645 pgd = pgd_offset(mm, address);
4646 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4647 goto out;
4648
c2febafc
KS
4649 p4d = p4d_offset(pgd, address);
4650 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4651 goto out;
4652
4653 pud = pud_offset(p4d, address);
f8ad0f49
JW
4654 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4655 goto out;
4656
4657 pmd = pmd_offset(pud, address);
f66055ab 4658 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49 4659
09796395
RZ
4660 if (pmd_huge(*pmd)) {
4661 if (!pmdpp)
4662 goto out;
4663
ac46d4f3 4664 if (range) {
7269f999 4665 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
6f4f13e8
JG
4666 NULL, mm, address & PMD_MASK,
4667 (address & PMD_MASK) + PMD_SIZE);
ac46d4f3 4668 mmu_notifier_invalidate_range_start(range);
a4d1a885 4669 }
09796395
RZ
4670 *ptlp = pmd_lock(mm, pmd);
4671 if (pmd_huge(*pmd)) {
4672 *pmdpp = pmd;
4673 return 0;
4674 }
4675 spin_unlock(*ptlp);
ac46d4f3
JG
4676 if (range)
4677 mmu_notifier_invalidate_range_end(range);
09796395
RZ
4678 }
4679
4680 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
f8ad0f49
JW
4681 goto out;
4682
ac46d4f3 4683 if (range) {
7269f999 4684 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
6f4f13e8
JG
4685 address & PAGE_MASK,
4686 (address & PAGE_MASK) + PAGE_SIZE);
ac46d4f3 4687 mmu_notifier_invalidate_range_start(range);
a4d1a885 4688 }
f8ad0f49 4689 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
f8ad0f49
JW
4690 if (!pte_present(*ptep))
4691 goto unlock;
4692 *ptepp = ptep;
4693 return 0;
4694unlock:
4695 pte_unmap_unlock(ptep, *ptlp);
ac46d4f3
JG
4696 if (range)
4697 mmu_notifier_invalidate_range_end(range);
f8ad0f49
JW
4698out:
4699 return -EINVAL;
4700}
4701
9fd6dad1
PB
4702/**
4703 * follow_pte - look up PTE at a user virtual address
4704 * @mm: the mm_struct of the target address space
4705 * @address: user virtual address
4706 * @ptepp: location to store found PTE
4707 * @ptlp: location to store the lock for the PTE
4708 *
4709 * On a successful return, the pointer to the PTE is stored in @ptepp;
4710 * the corresponding lock is taken and its location is stored in @ptlp.
4711 * The contents of the PTE are only stable until @ptlp is released;
4712 * any further use, if any, must be protected against invalidation
4713 * with MMU notifiers.
4714 *
4715 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
4716 * should be taken for read.
4717 *
4718 * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
4719 * it is not a good general-purpose API.
4720 *
4721 * Return: zero on success, -ve otherwise.
4722 */
4723int follow_pte(struct mm_struct *mm, unsigned long address,
4724 pte_t **ptepp, spinlock_t **ptlp)
4725{
4726 return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp);
4727}
4728EXPORT_SYMBOL_GPL(follow_pte);
4729
3b6748e2
JW
4730/**
4731 * follow_pfn - look up PFN at a user virtual address
4732 * @vma: memory mapping
4733 * @address: user virtual address
4734 * @pfn: location to store found PFN
4735 *
4736 * Only IO mappings and raw PFN mappings are allowed.
4737 *
9fd6dad1
PB
4738 * This function does not allow the caller to read the permissions
4739 * of the PTE. Do not use it.
4740 *
a862f68a 4741 * Return: zero and the pfn at @pfn on success, -ve otherwise.
3b6748e2
JW
4742 */
4743int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4744 unsigned long *pfn)
4745{
4746 int ret = -EINVAL;
4747 spinlock_t *ptl;
4748 pte_t *ptep;
4749
4750 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4751 return ret;
4752
9fd6dad1 4753 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3b6748e2
JW
4754 if (ret)
4755 return ret;
4756 *pfn = pte_pfn(*ptep);
4757 pte_unmap_unlock(ptep, ptl);
4758 return 0;
4759}
4760EXPORT_SYMBOL(follow_pfn);
4761
28b2ee20 4762#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 4763int follow_phys(struct vm_area_struct *vma,
4764 unsigned long address, unsigned int flags,
4765 unsigned long *prot, resource_size_t *phys)
28b2ee20 4766{
03668a4d 4767 int ret = -EINVAL;
28b2ee20
RR
4768 pte_t *ptep, pte;
4769 spinlock_t *ptl;
28b2ee20 4770
d87fe660 4771 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4772 goto out;
28b2ee20 4773
9fd6dad1 4774 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 4775 goto out;
28b2ee20 4776 pte = *ptep;
03668a4d 4777
f6f37321 4778 if ((flags & FOLL_WRITE) && !pte_write(pte))
28b2ee20 4779 goto unlock;
28b2ee20
RR
4780
4781 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 4782 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 4783
03668a4d 4784 ret = 0;
28b2ee20
RR
4785unlock:
4786 pte_unmap_unlock(ptep, ptl);
4787out:
d87fe660 4788 return ret;
28b2ee20
RR
4789}
4790
96667f8a
SV
4791/**
4792 * generic_access_phys - generic implementation for iomem mmap access
4793 * @vma: the vma to access
4794 * @addr: userspace addres, not relative offset within @vma
4795 * @buf: buffer to read/write
4796 * @len: length of transfer
4797 * @write: set to FOLL_WRITE when writing, otherwise reading
4798 *
4799 * This is a generic implementation for &vm_operations_struct.access for an
4800 * iomem mapping. This callback is used by access_process_vm() when the @vma is
4801 * not page based.
4802 */
28b2ee20
RR
4803int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4804 void *buf, int len, int write)
4805{
4806 resource_size_t phys_addr;
4807 unsigned long prot = 0;
2bc7273b 4808 void __iomem *maddr;
96667f8a
SV
4809 pte_t *ptep, pte;
4810 spinlock_t *ptl;
4811 int offset = offset_in_page(addr);
4812 int ret = -EINVAL;
4813
4814 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4815 return -EINVAL;
4816
4817retry:
e913a8cd 4818 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
96667f8a
SV
4819 return -EINVAL;
4820 pte = *ptep;
4821 pte_unmap_unlock(ptep, ptl);
28b2ee20 4822
96667f8a
SV
4823 prot = pgprot_val(pte_pgprot(pte));
4824 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4825
4826 if ((write & FOLL_WRITE) && !pte_write(pte))
28b2ee20
RR
4827 return -EINVAL;
4828
9cb12d7b 4829 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
24eee1e4 4830 if (!maddr)
4831 return -ENOMEM;
4832
e913a8cd 4833 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
96667f8a
SV
4834 goto out_unmap;
4835
4836 if (!pte_same(pte, *ptep)) {
4837 pte_unmap_unlock(ptep, ptl);
4838 iounmap(maddr);
4839
4840 goto retry;
4841 }
4842
28b2ee20
RR
4843 if (write)
4844 memcpy_toio(maddr + offset, buf, len);
4845 else
4846 memcpy_fromio(buf, maddr + offset, len);
96667f8a
SV
4847 ret = len;
4848 pte_unmap_unlock(ptep, ptl);
4849out_unmap:
28b2ee20
RR
4850 iounmap(maddr);
4851
96667f8a 4852 return ret;
28b2ee20 4853}
5a73633e 4854EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
4855#endif
4856
0ec76a11 4857/*
d3f5ffca 4858 * Access another process' address space as given in mm.
0ec76a11 4859 */
d3f5ffca
JH
4860int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
4861 int len, unsigned int gup_flags)
0ec76a11 4862{
0ec76a11 4863 struct vm_area_struct *vma;
0ec76a11 4864 void *old_buf = buf;
442486ec 4865 int write = gup_flags & FOLL_WRITE;
0ec76a11 4866
d8ed45c5 4867 if (mmap_read_lock_killable(mm))
1e426fe2
KK
4868 return 0;
4869
183ff22b 4870 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
4871 while (len) {
4872 int bytes, ret, offset;
4873 void *maddr;
28b2ee20 4874 struct page *page = NULL;
0ec76a11 4875
64019a2e 4876 ret = get_user_pages_remote(mm, addr, 1,
5b56d49f 4877 gup_flags, &page, &vma, NULL);
28b2ee20 4878 if (ret <= 0) {
dbffcd03
RR
4879#ifndef CONFIG_HAVE_IOREMAP_PROT
4880 break;
4881#else
28b2ee20
RR
4882 /*
4883 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4884 * we can access using slightly different code.
4885 */
28b2ee20 4886 vma = find_vma(mm, addr);
fe936dfc 4887 if (!vma || vma->vm_start > addr)
28b2ee20
RR
4888 break;
4889 if (vma->vm_ops && vma->vm_ops->access)
4890 ret = vma->vm_ops->access(vma, addr, buf,
4891 len, write);
4892 if (ret <= 0)
28b2ee20
RR
4893 break;
4894 bytes = ret;
dbffcd03 4895#endif
0ec76a11 4896 } else {
28b2ee20
RR
4897 bytes = len;
4898 offset = addr & (PAGE_SIZE-1);
4899 if (bytes > PAGE_SIZE-offset)
4900 bytes = PAGE_SIZE-offset;
4901
4902 maddr = kmap(page);
4903 if (write) {
4904 copy_to_user_page(vma, page, addr,
4905 maddr + offset, buf, bytes);
4906 set_page_dirty_lock(page);
4907 } else {
4908 copy_from_user_page(vma, page, addr,
4909 buf, maddr + offset, bytes);
4910 }
4911 kunmap(page);
09cbfeaf 4912 put_page(page);
0ec76a11 4913 }
0ec76a11
DH
4914 len -= bytes;
4915 buf += bytes;
4916 addr += bytes;
4917 }
d8ed45c5 4918 mmap_read_unlock(mm);
0ec76a11
DH
4919
4920 return buf - old_buf;
4921}
03252919 4922
5ddd36b9 4923/**
ae91dbfc 4924 * access_remote_vm - access another process' address space
5ddd36b9
SW
4925 * @mm: the mm_struct of the target address space
4926 * @addr: start address to access
4927 * @buf: source or destination buffer
4928 * @len: number of bytes to transfer
6347e8d5 4929 * @gup_flags: flags modifying lookup behaviour
5ddd36b9
SW
4930 *
4931 * The caller must hold a reference on @mm.
a862f68a
MR
4932 *
4933 * Return: number of bytes copied from source to destination.
5ddd36b9
SW
4934 */
4935int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 4936 void *buf, int len, unsigned int gup_flags)
5ddd36b9 4937{
d3f5ffca 4938 return __access_remote_vm(mm, addr, buf, len, gup_flags);
5ddd36b9
SW
4939}
4940
206cb636
SW
4941/*
4942 * Access another process' address space.
4943 * Source/target buffer must be kernel space,
4944 * Do not walk the page table directly, use get_user_pages
4945 */
4946int access_process_vm(struct task_struct *tsk, unsigned long addr,
f307ab6d 4947 void *buf, int len, unsigned int gup_flags)
206cb636
SW
4948{
4949 struct mm_struct *mm;
4950 int ret;
4951
4952 mm = get_task_mm(tsk);
4953 if (!mm)
4954 return 0;
4955
d3f5ffca 4956 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
442486ec 4957
206cb636
SW
4958 mmput(mm);
4959
4960 return ret;
4961}
fcd35857 4962EXPORT_SYMBOL_GPL(access_process_vm);
206cb636 4963
03252919
AK
4964/*
4965 * Print the name of a VMA.
4966 */
4967void print_vma_addr(char *prefix, unsigned long ip)
4968{
4969 struct mm_struct *mm = current->mm;
4970 struct vm_area_struct *vma;
4971
e8bff74a 4972 /*
0a7f682d 4973 * we might be running from an atomic context so we cannot sleep
e8bff74a 4974 */
d8ed45c5 4975 if (!mmap_read_trylock(mm))
e8bff74a
IM
4976 return;
4977
03252919
AK
4978 vma = find_vma(mm, ip);
4979 if (vma && vma->vm_file) {
4980 struct file *f = vma->vm_file;
0a7f682d 4981 char *buf = (char *)__get_free_page(GFP_NOWAIT);
03252919 4982 if (buf) {
2fbc57c5 4983 char *p;
03252919 4984
9bf39ab2 4985 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
4986 if (IS_ERR(p))
4987 p = "?";
2fbc57c5 4988 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
4989 vma->vm_start,
4990 vma->vm_end - vma->vm_start);
4991 free_page((unsigned long)buf);
4992 }
4993 }
d8ed45c5 4994 mmap_read_unlock(mm);
03252919 4995}
3ee1afa3 4996
662bbcb2 4997#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 4998void __might_fault(const char *file, int line)
3ee1afa3 4999{
95156f00
PZ
5000 /*
5001 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
c1e8d7c6 5002 * holding the mmap_lock, this is safe because kernel memory doesn't
95156f00
PZ
5003 * get paged out, therefore we'll never actually fault, and the
5004 * below annotations will generate false positives.
5005 */
db68ce10 5006 if (uaccess_kernel())
95156f00 5007 return;
9ec23531 5008 if (pagefault_disabled())
662bbcb2 5009 return;
9ec23531
DH
5010 __might_sleep(file, line, 0);
5011#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 5012 if (current->mm)
da1c55f1 5013 might_lock_read(&current->mm->mmap_lock);
9ec23531 5014#endif
3ee1afa3 5015}
9ec23531 5016EXPORT_SYMBOL(__might_fault);
3ee1afa3 5017#endif
47ad8475
AA
5018
5019#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
c6ddfb6c
YH
5020/*
5021 * Process all subpages of the specified huge page with the specified
5022 * operation. The target subpage will be processed last to keep its
5023 * cache lines hot.
5024 */
5025static inline void process_huge_page(
5026 unsigned long addr_hint, unsigned int pages_per_huge_page,
5027 void (*process_subpage)(unsigned long addr, int idx, void *arg),
5028 void *arg)
47ad8475 5029{
c79b57e4
YH
5030 int i, n, base, l;
5031 unsigned long addr = addr_hint &
5032 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
47ad8475 5033
c6ddfb6c 5034 /* Process target subpage last to keep its cache lines hot */
47ad8475 5035 might_sleep();
c79b57e4
YH
5036 n = (addr_hint - addr) / PAGE_SIZE;
5037 if (2 * n <= pages_per_huge_page) {
c6ddfb6c 5038 /* If target subpage in first half of huge page */
c79b57e4
YH
5039 base = 0;
5040 l = n;
c6ddfb6c 5041 /* Process subpages at the end of huge page */
c79b57e4
YH
5042 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5043 cond_resched();
c6ddfb6c 5044 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
YH
5045 }
5046 } else {
c6ddfb6c 5047 /* If target subpage in second half of huge page */
c79b57e4
YH
5048 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5049 l = pages_per_huge_page - n;
c6ddfb6c 5050 /* Process subpages at the begin of huge page */
c79b57e4
YH
5051 for (i = 0; i < base; i++) {
5052 cond_resched();
c6ddfb6c 5053 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
YH
5054 }
5055 }
5056 /*
c6ddfb6c
YH
5057 * Process remaining subpages in left-right-left-right pattern
5058 * towards the target subpage
c79b57e4
YH
5059 */
5060 for (i = 0; i < l; i++) {
5061 int left_idx = base + i;
5062 int right_idx = base + 2 * l - 1 - i;
5063
5064 cond_resched();
c6ddfb6c 5065 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
47ad8475 5066 cond_resched();
c6ddfb6c 5067 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
47ad8475
AA
5068 }
5069}
5070
c6ddfb6c
YH
5071static void clear_gigantic_page(struct page *page,
5072 unsigned long addr,
5073 unsigned int pages_per_huge_page)
5074{
5075 int i;
5076 struct page *p = page;
5077
5078 might_sleep();
5079 for (i = 0; i < pages_per_huge_page;
5080 i++, p = mem_map_next(p, page, i)) {
5081 cond_resched();
5082 clear_user_highpage(p, addr + i * PAGE_SIZE);
5083 }
5084}
5085
5086static void clear_subpage(unsigned long addr, int idx, void *arg)
5087{
5088 struct page *page = arg;
5089
5090 clear_user_highpage(page + idx, addr);
5091}
5092
5093void clear_huge_page(struct page *page,
5094 unsigned long addr_hint, unsigned int pages_per_huge_page)
5095{
5096 unsigned long addr = addr_hint &
5097 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5098
5099 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5100 clear_gigantic_page(page, addr, pages_per_huge_page);
5101 return;
5102 }
5103
5104 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5105}
5106
47ad8475
AA
5107static void copy_user_gigantic_page(struct page *dst, struct page *src,
5108 unsigned long addr,
5109 struct vm_area_struct *vma,
5110 unsigned int pages_per_huge_page)
5111{
5112 int i;
5113 struct page *dst_base = dst;
5114 struct page *src_base = src;
5115
5116 for (i = 0; i < pages_per_huge_page; ) {
5117 cond_resched();
5118 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5119
5120 i++;
5121 dst = mem_map_next(dst, dst_base, i);
5122 src = mem_map_next(src, src_base, i);
5123 }
5124}
5125
c9f4cd71
YH
5126struct copy_subpage_arg {
5127 struct page *dst;
5128 struct page *src;
5129 struct vm_area_struct *vma;
5130};
5131
5132static void copy_subpage(unsigned long addr, int idx, void *arg)
5133{
5134 struct copy_subpage_arg *copy_arg = arg;
5135
5136 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5137 addr, copy_arg->vma);
5138}
5139
47ad8475 5140void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71 5141 unsigned long addr_hint, struct vm_area_struct *vma,
47ad8475
AA
5142 unsigned int pages_per_huge_page)
5143{
c9f4cd71
YH
5144 unsigned long addr = addr_hint &
5145 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5146 struct copy_subpage_arg arg = {
5147 .dst = dst,
5148 .src = src,
5149 .vma = vma,
5150 };
47ad8475
AA
5151
5152 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5153 copy_user_gigantic_page(dst, src, addr, vma,
5154 pages_per_huge_page);
5155 return;
5156 }
5157
c9f4cd71 5158 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
47ad8475 5159}
fa4d75c1
MK
5160
5161long copy_huge_page_from_user(struct page *dst_page,
5162 const void __user *usr_src,
810a56b9
MK
5163 unsigned int pages_per_huge_page,
5164 bool allow_pagefault)
fa4d75c1
MK
5165{
5166 void *src = (void *)usr_src;
5167 void *page_kaddr;
5168 unsigned long i, rc = 0;
5169 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
3272cfc2 5170 struct page *subpage = dst_page;
fa4d75c1 5171
3272cfc2
MK
5172 for (i = 0; i < pages_per_huge_page;
5173 i++, subpage = mem_map_next(subpage, dst_page, i)) {
810a56b9 5174 if (allow_pagefault)
3272cfc2 5175 page_kaddr = kmap(subpage);
810a56b9 5176 else
3272cfc2 5177 page_kaddr = kmap_atomic(subpage);
fa4d75c1
MK
5178 rc = copy_from_user(page_kaddr,
5179 (const void __user *)(src + i * PAGE_SIZE),
5180 PAGE_SIZE);
810a56b9 5181 if (allow_pagefault)
3272cfc2 5182 kunmap(subpage);
810a56b9
MK
5183 else
5184 kunmap_atomic(page_kaddr);
fa4d75c1
MK
5185
5186 ret_val -= (PAGE_SIZE - rc);
5187 if (rc)
5188 break;
5189
5190 cond_resched();
5191 }
5192 return ret_val;
5193}
47ad8475 5194#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 5195
40b64acd 5196#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
5197
5198static struct kmem_cache *page_ptl_cachep;
5199
5200void __init ptlock_cache_init(void)
5201{
5202 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5203 SLAB_PANIC, NULL);
5204}
5205
539edb58 5206bool ptlock_alloc(struct page *page)
49076ec2
KS
5207{
5208 spinlock_t *ptl;
5209
b35f1819 5210 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
5211 if (!ptl)
5212 return false;
539edb58 5213 page->ptl = ptl;
49076ec2
KS
5214 return true;
5215}
5216
539edb58 5217void ptlock_free(struct page *page)
49076ec2 5218{
b35f1819 5219 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
5220}
5221#endif
This page took 2.556758 seconds and 4 git commands to generate.