]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/mm/memory.c | |
3 | * | |
4 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds | |
5 | */ | |
6 | ||
7 | /* | |
8 | * demand-loading started 01.12.91 - seems it is high on the list of | |
9 | * things wanted, and it should be easy to implement. - Linus | |
10 | */ | |
11 | ||
12 | /* | |
13 | * Ok, demand-loading was easy, shared pages a little bit tricker. Shared | |
14 | * pages started 02.12.91, seems to work. - Linus. | |
15 | * | |
16 | * Tested sharing by executing about 30 /bin/sh: under the old kernel it | |
17 | * would have taken more than the 6M I have free, but it worked well as | |
18 | * far as I could see. | |
19 | * | |
20 | * Also corrected some "invalidate()"s - I wasn't doing enough of them. | |
21 | */ | |
22 | ||
23 | /* | |
24 | * Real VM (paging to/from disk) started 18.12.91. Much more work and | |
25 | * thought has to go into this. Oh, well.. | |
26 | * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. | |
27 | * Found it. Everything seems to work now. | |
28 | * 20.12.91 - Ok, making the swap-device changeable like the root. | |
29 | */ | |
30 | ||
31 | /* | |
32 | * 05.04.94 - Multi-page memory management added for v1.1. | |
33 | * Idea by Alex Bligh ([email protected]) | |
34 | * | |
35 | * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG | |
36 | * ([email protected]) | |
37 | * | |
38 | * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) | |
39 | */ | |
40 | ||
41 | #include <linux/kernel_stat.h> | |
42 | #include <linux/mm.h> | |
43 | #include <linux/hugetlb.h> | |
44 | #include <linux/mman.h> | |
45 | #include <linux/swap.h> | |
46 | #include <linux/highmem.h> | |
47 | #include <linux/pagemap.h> | |
48 | #include <linux/rmap.h> | |
49 | #include <linux/module.h> | |
50 | #include <linux/init.h> | |
51 | ||
52 | #include <asm/pgalloc.h> | |
53 | #include <asm/uaccess.h> | |
54 | #include <asm/tlb.h> | |
55 | #include <asm/tlbflush.h> | |
56 | #include <asm/pgtable.h> | |
57 | ||
58 | #include <linux/swapops.h> | |
59 | #include <linux/elf.h> | |
60 | ||
61 | #ifndef CONFIG_DISCONTIGMEM | |
62 | /* use the per-pgdat data instead for discontigmem - mbligh */ | |
63 | unsigned long max_mapnr; | |
64 | struct page *mem_map; | |
65 | ||
66 | EXPORT_SYMBOL(max_mapnr); | |
67 | EXPORT_SYMBOL(mem_map); | |
68 | #endif | |
69 | ||
70 | unsigned long num_physpages; | |
71 | /* | |
72 | * A number of key systems in x86 including ioremap() rely on the assumption | |
73 | * that high_memory defines the upper bound on direct map memory, then end | |
74 | * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and | |
75 | * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL | |
76 | * and ZONE_HIGHMEM. | |
77 | */ | |
78 | void * high_memory; | |
79 | unsigned long vmalloc_earlyreserve; | |
80 | ||
81 | EXPORT_SYMBOL(num_physpages); | |
82 | EXPORT_SYMBOL(high_memory); | |
83 | EXPORT_SYMBOL(vmalloc_earlyreserve); | |
84 | ||
85 | /* | |
86 | * If a p?d_bad entry is found while walking page tables, report | |
87 | * the error, before resetting entry to p?d_none. Usually (but | |
88 | * very seldom) called out from the p?d_none_or_clear_bad macros. | |
89 | */ | |
90 | ||
91 | void pgd_clear_bad(pgd_t *pgd) | |
92 | { | |
93 | pgd_ERROR(*pgd); | |
94 | pgd_clear(pgd); | |
95 | } | |
96 | ||
97 | void pud_clear_bad(pud_t *pud) | |
98 | { | |
99 | pud_ERROR(*pud); | |
100 | pud_clear(pud); | |
101 | } | |
102 | ||
103 | void pmd_clear_bad(pmd_t *pmd) | |
104 | { | |
105 | pmd_ERROR(*pmd); | |
106 | pmd_clear(pmd); | |
107 | } | |
108 | ||
109 | /* | |
110 | * Note: this doesn't free the actual pages themselves. That | |
111 | * has been handled earlier when unmapping all the memory regions. | |
112 | */ | |
e0da382c | 113 | static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd) |
1da177e4 | 114 | { |
e0da382c HD |
115 | struct page *page = pmd_page(*pmd); |
116 | pmd_clear(pmd); | |
117 | pte_free_tlb(tlb, page); | |
118 | dec_page_state(nr_page_table_pages); | |
119 | tlb->mm->nr_ptes--; | |
1da177e4 LT |
120 | } |
121 | ||
e0da382c HD |
122 | static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, |
123 | unsigned long addr, unsigned long end, | |
124 | unsigned long floor, unsigned long ceiling) | |
1da177e4 LT |
125 | { |
126 | pmd_t *pmd; | |
127 | unsigned long next; | |
e0da382c | 128 | unsigned long start; |
1da177e4 | 129 | |
e0da382c | 130 | start = addr; |
1da177e4 | 131 | pmd = pmd_offset(pud, addr); |
1da177e4 LT |
132 | do { |
133 | next = pmd_addr_end(addr, end); | |
134 | if (pmd_none_or_clear_bad(pmd)) | |
135 | continue; | |
e0da382c | 136 | free_pte_range(tlb, pmd); |
1da177e4 LT |
137 | } while (pmd++, addr = next, addr != end); |
138 | ||
e0da382c HD |
139 | start &= PUD_MASK; |
140 | if (start < floor) | |
141 | return; | |
142 | if (ceiling) { | |
143 | ceiling &= PUD_MASK; | |
144 | if (!ceiling) | |
145 | return; | |
1da177e4 | 146 | } |
e0da382c HD |
147 | if (end - 1 > ceiling - 1) |
148 | return; | |
149 | ||
150 | pmd = pmd_offset(pud, start); | |
151 | pud_clear(pud); | |
152 | pmd_free_tlb(tlb, pmd); | |
1da177e4 LT |
153 | } |
154 | ||
e0da382c HD |
155 | static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, |
156 | unsigned long addr, unsigned long end, | |
157 | unsigned long floor, unsigned long ceiling) | |
1da177e4 LT |
158 | { |
159 | pud_t *pud; | |
160 | unsigned long next; | |
e0da382c | 161 | unsigned long start; |
1da177e4 | 162 | |
e0da382c | 163 | start = addr; |
1da177e4 | 164 | pud = pud_offset(pgd, addr); |
1da177e4 LT |
165 | do { |
166 | next = pud_addr_end(addr, end); | |
167 | if (pud_none_or_clear_bad(pud)) | |
168 | continue; | |
e0da382c | 169 | free_pmd_range(tlb, pud, addr, next, floor, ceiling); |
1da177e4 LT |
170 | } while (pud++, addr = next, addr != end); |
171 | ||
e0da382c HD |
172 | start &= PGDIR_MASK; |
173 | if (start < floor) | |
174 | return; | |
175 | if (ceiling) { | |
176 | ceiling &= PGDIR_MASK; | |
177 | if (!ceiling) | |
178 | return; | |
1da177e4 | 179 | } |
e0da382c HD |
180 | if (end - 1 > ceiling - 1) |
181 | return; | |
182 | ||
183 | pud = pud_offset(pgd, start); | |
184 | pgd_clear(pgd); | |
185 | pud_free_tlb(tlb, pud); | |
1da177e4 LT |
186 | } |
187 | ||
188 | /* | |
e0da382c HD |
189 | * This function frees user-level page tables of a process. |
190 | * | |
1da177e4 LT |
191 | * Must be called with pagetable lock held. |
192 | */ | |
e0da382c HD |
193 | static inline void free_pgd_range(struct mmu_gather *tlb, |
194 | unsigned long addr, unsigned long end, | |
195 | unsigned long floor, unsigned long ceiling) | |
1da177e4 LT |
196 | { |
197 | pgd_t *pgd; | |
198 | unsigned long next; | |
e0da382c HD |
199 | unsigned long start; |
200 | ||
201 | /* | |
202 | * The next few lines have given us lots of grief... | |
203 | * | |
204 | * Why are we testing PMD* at this top level? Because often | |
205 | * there will be no work to do at all, and we'd prefer not to | |
206 | * go all the way down to the bottom just to discover that. | |
207 | * | |
208 | * Why all these "- 1"s? Because 0 represents both the bottom | |
209 | * of the address space and the top of it (using -1 for the | |
210 | * top wouldn't help much: the masks would do the wrong thing). | |
211 | * The rule is that addr 0 and floor 0 refer to the bottom of | |
212 | * the address space, but end 0 and ceiling 0 refer to the top | |
213 | * Comparisons need to use "end - 1" and "ceiling - 1" (though | |
214 | * that end 0 case should be mythical). | |
215 | * | |
216 | * Wherever addr is brought up or ceiling brought down, we must | |
217 | * be careful to reject "the opposite 0" before it confuses the | |
218 | * subsequent tests. But what about where end is brought down | |
219 | * by PMD_SIZE below? no, end can't go down to 0 there. | |
220 | * | |
221 | * Whereas we round start (addr) and ceiling down, by different | |
222 | * masks at different levels, in order to test whether a table | |
223 | * now has no other vmas using it, so can be freed, we don't | |
224 | * bother to round floor or end up - the tests don't need that. | |
225 | */ | |
1da177e4 | 226 | |
e0da382c HD |
227 | addr &= PMD_MASK; |
228 | if (addr < floor) { | |
229 | addr += PMD_SIZE; | |
230 | if (!addr) | |
231 | return; | |
232 | } | |
233 | if (ceiling) { | |
234 | ceiling &= PMD_MASK; | |
235 | if (!ceiling) | |
236 | return; | |
237 | } | |
238 | if (end - 1 > ceiling - 1) | |
239 | end -= PMD_SIZE; | |
240 | if (addr > end - 1) | |
241 | return; | |
242 | ||
243 | start = addr; | |
1da177e4 LT |
244 | pgd = pgd_offset(tlb->mm, addr); |
245 | do { | |
246 | next = pgd_addr_end(addr, end); | |
247 | if (pgd_none_or_clear_bad(pgd)) | |
248 | continue; | |
e0da382c | 249 | free_pud_range(tlb, pgd, addr, next, floor, ceiling); |
1da177e4 | 250 | } while (pgd++, addr = next, addr != end); |
e0da382c HD |
251 | |
252 | if (!tlb_is_full_mm(tlb)) | |
253 | flush_tlb_pgtables(tlb->mm, start, end); | |
254 | } | |
255 | ||
256 | void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma, | |
257 | unsigned long floor, unsigned long ceiling) | |
258 | { | |
259 | while (vma) { | |
260 | struct vm_area_struct *next = vma->vm_next; | |
261 | unsigned long addr = vma->vm_start; | |
262 | ||
263 | /* Optimization: gather nearby vmas into a single call down */ | |
264 | while (next && next->vm_start <= vma->vm_end + PMD_SIZE) { | |
265 | vma = next; | |
266 | next = vma->vm_next; | |
267 | } | |
268 | free_pgd_range(*tlb, addr, vma->vm_end, | |
269 | floor, next? next->vm_start: ceiling); | |
270 | vma = next; | |
271 | } | |
1da177e4 LT |
272 | } |
273 | ||
274 | pte_t fastcall * pte_alloc_map(struct mm_struct *mm, pmd_t *pmd, unsigned long address) | |
275 | { | |
276 | if (!pmd_present(*pmd)) { | |
277 | struct page *new; | |
278 | ||
279 | spin_unlock(&mm->page_table_lock); | |
280 | new = pte_alloc_one(mm, address); | |
281 | spin_lock(&mm->page_table_lock); | |
282 | if (!new) | |
283 | return NULL; | |
284 | /* | |
285 | * Because we dropped the lock, we should re-check the | |
286 | * entry, as somebody else could have populated it.. | |
287 | */ | |
288 | if (pmd_present(*pmd)) { | |
289 | pte_free(new); | |
290 | goto out; | |
291 | } | |
292 | mm->nr_ptes++; | |
293 | inc_page_state(nr_page_table_pages); | |
294 | pmd_populate(mm, pmd, new); | |
295 | } | |
296 | out: | |
297 | return pte_offset_map(pmd, address); | |
298 | } | |
299 | ||
300 | pte_t fastcall * pte_alloc_kernel(struct mm_struct *mm, pmd_t *pmd, unsigned long address) | |
301 | { | |
302 | if (!pmd_present(*pmd)) { | |
303 | pte_t *new; | |
304 | ||
305 | spin_unlock(&mm->page_table_lock); | |
306 | new = pte_alloc_one_kernel(mm, address); | |
307 | spin_lock(&mm->page_table_lock); | |
308 | if (!new) | |
309 | return NULL; | |
310 | ||
311 | /* | |
312 | * Because we dropped the lock, we should re-check the | |
313 | * entry, as somebody else could have populated it.. | |
314 | */ | |
315 | if (pmd_present(*pmd)) { | |
316 | pte_free_kernel(new); | |
317 | goto out; | |
318 | } | |
319 | pmd_populate_kernel(mm, pmd, new); | |
320 | } | |
321 | out: | |
322 | return pte_offset_kernel(pmd, address); | |
323 | } | |
324 | ||
325 | /* | |
326 | * copy one vm_area from one task to the other. Assumes the page tables | |
327 | * already present in the new task to be cleared in the whole range | |
328 | * covered by this vma. | |
329 | * | |
330 | * dst->page_table_lock is held on entry and exit, | |
331 | * but may be dropped within p[mg]d_alloc() and pte_alloc_map(). | |
332 | */ | |
333 | ||
334 | static inline void | |
335 | copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, | |
336 | pte_t *dst_pte, pte_t *src_pte, unsigned long vm_flags, | |
337 | unsigned long addr) | |
338 | { | |
339 | pte_t pte = *src_pte; | |
340 | struct page *page; | |
341 | unsigned long pfn; | |
342 | ||
343 | /* pte contains position in swap or file, so copy. */ | |
344 | if (unlikely(!pte_present(pte))) { | |
345 | if (!pte_file(pte)) { | |
346 | swap_duplicate(pte_to_swp_entry(pte)); | |
347 | /* make sure dst_mm is on swapoff's mmlist. */ | |
348 | if (unlikely(list_empty(&dst_mm->mmlist))) { | |
349 | spin_lock(&mmlist_lock); | |
350 | list_add(&dst_mm->mmlist, &src_mm->mmlist); | |
351 | spin_unlock(&mmlist_lock); | |
352 | } | |
353 | } | |
354 | set_pte_at(dst_mm, addr, dst_pte, pte); | |
355 | return; | |
356 | } | |
357 | ||
358 | pfn = pte_pfn(pte); | |
359 | /* the pte points outside of valid memory, the | |
360 | * mapping is assumed to be good, meaningful | |
361 | * and not mapped via rmap - duplicate the | |
362 | * mapping as is. | |
363 | */ | |
364 | page = NULL; | |
365 | if (pfn_valid(pfn)) | |
366 | page = pfn_to_page(pfn); | |
367 | ||
368 | if (!page || PageReserved(page)) { | |
369 | set_pte_at(dst_mm, addr, dst_pte, pte); | |
370 | return; | |
371 | } | |
372 | ||
373 | /* | |
374 | * If it's a COW mapping, write protect it both | |
375 | * in the parent and the child | |
376 | */ | |
377 | if ((vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE) { | |
378 | ptep_set_wrprotect(src_mm, addr, src_pte); | |
379 | pte = *src_pte; | |
380 | } | |
381 | ||
382 | /* | |
383 | * If it's a shared mapping, mark it clean in | |
384 | * the child | |
385 | */ | |
386 | if (vm_flags & VM_SHARED) | |
387 | pte = pte_mkclean(pte); | |
388 | pte = pte_mkold(pte); | |
389 | get_page(page); | |
390 | inc_mm_counter(dst_mm, rss); | |
391 | if (PageAnon(page)) | |
392 | inc_mm_counter(dst_mm, anon_rss); | |
393 | set_pte_at(dst_mm, addr, dst_pte, pte); | |
394 | page_dup_rmap(page); | |
395 | } | |
396 | ||
397 | static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | |
398 | pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, | |
399 | unsigned long addr, unsigned long end) | |
400 | { | |
401 | pte_t *src_pte, *dst_pte; | |
402 | unsigned long vm_flags = vma->vm_flags; | |
403 | int progress; | |
404 | ||
405 | again: | |
406 | dst_pte = pte_alloc_map(dst_mm, dst_pmd, addr); | |
407 | if (!dst_pte) | |
408 | return -ENOMEM; | |
409 | src_pte = pte_offset_map_nested(src_pmd, addr); | |
410 | ||
411 | progress = 0; | |
412 | spin_lock(&src_mm->page_table_lock); | |
413 | do { | |
414 | /* | |
415 | * We are holding two locks at this point - either of them | |
416 | * could generate latencies in another task on another CPU. | |
417 | */ | |
418 | if (progress >= 32 && (need_resched() || | |
419 | need_lockbreak(&src_mm->page_table_lock) || | |
420 | need_lockbreak(&dst_mm->page_table_lock))) | |
421 | break; | |
422 | if (pte_none(*src_pte)) { | |
423 | progress++; | |
424 | continue; | |
425 | } | |
426 | copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vm_flags, addr); | |
427 | progress += 8; | |
428 | } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); | |
429 | spin_unlock(&src_mm->page_table_lock); | |
430 | ||
431 | pte_unmap_nested(src_pte - 1); | |
432 | pte_unmap(dst_pte - 1); | |
433 | cond_resched_lock(&dst_mm->page_table_lock); | |
434 | if (addr != end) | |
435 | goto again; | |
436 | return 0; | |
437 | } | |
438 | ||
439 | static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | |
440 | pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, | |
441 | unsigned long addr, unsigned long end) | |
442 | { | |
443 | pmd_t *src_pmd, *dst_pmd; | |
444 | unsigned long next; | |
445 | ||
446 | dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); | |
447 | if (!dst_pmd) | |
448 | return -ENOMEM; | |
449 | src_pmd = pmd_offset(src_pud, addr); | |
450 | do { | |
451 | next = pmd_addr_end(addr, end); | |
452 | if (pmd_none_or_clear_bad(src_pmd)) | |
453 | continue; | |
454 | if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, | |
455 | vma, addr, next)) | |
456 | return -ENOMEM; | |
457 | } while (dst_pmd++, src_pmd++, addr = next, addr != end); | |
458 | return 0; | |
459 | } | |
460 | ||
461 | static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | |
462 | pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, | |
463 | unsigned long addr, unsigned long end) | |
464 | { | |
465 | pud_t *src_pud, *dst_pud; | |
466 | unsigned long next; | |
467 | ||
468 | dst_pud = pud_alloc(dst_mm, dst_pgd, addr); | |
469 | if (!dst_pud) | |
470 | return -ENOMEM; | |
471 | src_pud = pud_offset(src_pgd, addr); | |
472 | do { | |
473 | next = pud_addr_end(addr, end); | |
474 | if (pud_none_or_clear_bad(src_pud)) | |
475 | continue; | |
476 | if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, | |
477 | vma, addr, next)) | |
478 | return -ENOMEM; | |
479 | } while (dst_pud++, src_pud++, addr = next, addr != end); | |
480 | return 0; | |
481 | } | |
482 | ||
483 | int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | |
484 | struct vm_area_struct *vma) | |
485 | { | |
486 | pgd_t *src_pgd, *dst_pgd; | |
487 | unsigned long next; | |
488 | unsigned long addr = vma->vm_start; | |
489 | unsigned long end = vma->vm_end; | |
490 | ||
491 | if (is_vm_hugetlb_page(vma)) | |
492 | return copy_hugetlb_page_range(dst_mm, src_mm, vma); | |
493 | ||
494 | dst_pgd = pgd_offset(dst_mm, addr); | |
495 | src_pgd = pgd_offset(src_mm, addr); | |
496 | do { | |
497 | next = pgd_addr_end(addr, end); | |
498 | if (pgd_none_or_clear_bad(src_pgd)) | |
499 | continue; | |
500 | if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, | |
501 | vma, addr, next)) | |
502 | return -ENOMEM; | |
503 | } while (dst_pgd++, src_pgd++, addr = next, addr != end); | |
504 | return 0; | |
505 | } | |
506 | ||
507 | static void zap_pte_range(struct mmu_gather *tlb, pmd_t *pmd, | |
508 | unsigned long addr, unsigned long end, | |
509 | struct zap_details *details) | |
510 | { | |
511 | pte_t *pte; | |
512 | ||
513 | pte = pte_offset_map(pmd, addr); | |
514 | do { | |
515 | pte_t ptent = *pte; | |
516 | if (pte_none(ptent)) | |
517 | continue; | |
518 | if (pte_present(ptent)) { | |
519 | struct page *page = NULL; | |
520 | unsigned long pfn = pte_pfn(ptent); | |
521 | if (pfn_valid(pfn)) { | |
522 | page = pfn_to_page(pfn); | |
523 | if (PageReserved(page)) | |
524 | page = NULL; | |
525 | } | |
526 | if (unlikely(details) && page) { | |
527 | /* | |
528 | * unmap_shared_mapping_pages() wants to | |
529 | * invalidate cache without truncating: | |
530 | * unmap shared but keep private pages. | |
531 | */ | |
532 | if (details->check_mapping && | |
533 | details->check_mapping != page->mapping) | |
534 | continue; | |
535 | /* | |
536 | * Each page->index must be checked when | |
537 | * invalidating or truncating nonlinear. | |
538 | */ | |
539 | if (details->nonlinear_vma && | |
540 | (page->index < details->first_index || | |
541 | page->index > details->last_index)) | |
542 | continue; | |
543 | } | |
544 | ptent = ptep_get_and_clear(tlb->mm, addr, pte); | |
545 | tlb_remove_tlb_entry(tlb, pte, addr); | |
546 | if (unlikely(!page)) | |
547 | continue; | |
548 | if (unlikely(details) && details->nonlinear_vma | |
549 | && linear_page_index(details->nonlinear_vma, | |
550 | addr) != page->index) | |
551 | set_pte_at(tlb->mm, addr, pte, | |
552 | pgoff_to_pte(page->index)); | |
553 | if (pte_dirty(ptent)) | |
554 | set_page_dirty(page); | |
555 | if (PageAnon(page)) | |
556 | dec_mm_counter(tlb->mm, anon_rss); | |
557 | else if (pte_young(ptent)) | |
558 | mark_page_accessed(page); | |
559 | tlb->freed++; | |
560 | page_remove_rmap(page); | |
561 | tlb_remove_page(tlb, page); | |
562 | continue; | |
563 | } | |
564 | /* | |
565 | * If details->check_mapping, we leave swap entries; | |
566 | * if details->nonlinear_vma, we leave file entries. | |
567 | */ | |
568 | if (unlikely(details)) | |
569 | continue; | |
570 | if (!pte_file(ptent)) | |
571 | free_swap_and_cache(pte_to_swp_entry(ptent)); | |
572 | pte_clear(tlb->mm, addr, pte); | |
573 | } while (pte++, addr += PAGE_SIZE, addr != end); | |
574 | pte_unmap(pte - 1); | |
575 | } | |
576 | ||
577 | static inline void zap_pmd_range(struct mmu_gather *tlb, pud_t *pud, | |
578 | unsigned long addr, unsigned long end, | |
579 | struct zap_details *details) | |
580 | { | |
581 | pmd_t *pmd; | |
582 | unsigned long next; | |
583 | ||
584 | pmd = pmd_offset(pud, addr); | |
585 | do { | |
586 | next = pmd_addr_end(addr, end); | |
587 | if (pmd_none_or_clear_bad(pmd)) | |
588 | continue; | |
589 | zap_pte_range(tlb, pmd, addr, next, details); | |
590 | } while (pmd++, addr = next, addr != end); | |
591 | } | |
592 | ||
593 | static inline void zap_pud_range(struct mmu_gather *tlb, pgd_t *pgd, | |
594 | unsigned long addr, unsigned long end, | |
595 | struct zap_details *details) | |
596 | { | |
597 | pud_t *pud; | |
598 | unsigned long next; | |
599 | ||
600 | pud = pud_offset(pgd, addr); | |
601 | do { | |
602 | next = pud_addr_end(addr, end); | |
603 | if (pud_none_or_clear_bad(pud)) | |
604 | continue; | |
605 | zap_pmd_range(tlb, pud, addr, next, details); | |
606 | } while (pud++, addr = next, addr != end); | |
607 | } | |
608 | ||
609 | static void unmap_page_range(struct mmu_gather *tlb, struct vm_area_struct *vma, | |
610 | unsigned long addr, unsigned long end, | |
611 | struct zap_details *details) | |
612 | { | |
613 | pgd_t *pgd; | |
614 | unsigned long next; | |
615 | ||
616 | if (details && !details->check_mapping && !details->nonlinear_vma) | |
617 | details = NULL; | |
618 | ||
619 | BUG_ON(addr >= end); | |
620 | tlb_start_vma(tlb, vma); | |
621 | pgd = pgd_offset(vma->vm_mm, addr); | |
622 | do { | |
623 | next = pgd_addr_end(addr, end); | |
624 | if (pgd_none_or_clear_bad(pgd)) | |
625 | continue; | |
626 | zap_pud_range(tlb, pgd, addr, next, details); | |
627 | } while (pgd++, addr = next, addr != end); | |
628 | tlb_end_vma(tlb, vma); | |
629 | } | |
630 | ||
631 | #ifdef CONFIG_PREEMPT | |
632 | # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE) | |
633 | #else | |
634 | /* No preempt: go for improved straight-line efficiency */ | |
635 | # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE) | |
636 | #endif | |
637 | ||
638 | /** | |
639 | * unmap_vmas - unmap a range of memory covered by a list of vma's | |
640 | * @tlbp: address of the caller's struct mmu_gather | |
641 | * @mm: the controlling mm_struct | |
642 | * @vma: the starting vma | |
643 | * @start_addr: virtual address at which to start unmapping | |
644 | * @end_addr: virtual address at which to end unmapping | |
645 | * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here | |
646 | * @details: details of nonlinear truncation or shared cache invalidation | |
647 | * | |
ee39b37b | 648 | * Returns the end address of the unmapping (restart addr if interrupted). |
1da177e4 LT |
649 | * |
650 | * Unmap all pages in the vma list. Called under page_table_lock. | |
651 | * | |
652 | * We aim to not hold page_table_lock for too long (for scheduling latency | |
653 | * reasons). So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to | |
654 | * return the ending mmu_gather to the caller. | |
655 | * | |
656 | * Only addresses between `start' and `end' will be unmapped. | |
657 | * | |
658 | * The VMA list must be sorted in ascending virtual address order. | |
659 | * | |
660 | * unmap_vmas() assumes that the caller will flush the whole unmapped address | |
661 | * range after unmap_vmas() returns. So the only responsibility here is to | |
662 | * ensure that any thus-far unmapped pages are flushed before unmap_vmas() | |
663 | * drops the lock and schedules. | |
664 | */ | |
ee39b37b | 665 | unsigned long unmap_vmas(struct mmu_gather **tlbp, struct mm_struct *mm, |
1da177e4 LT |
666 | struct vm_area_struct *vma, unsigned long start_addr, |
667 | unsigned long end_addr, unsigned long *nr_accounted, | |
668 | struct zap_details *details) | |
669 | { | |
670 | unsigned long zap_bytes = ZAP_BLOCK_SIZE; | |
671 | unsigned long tlb_start = 0; /* For tlb_finish_mmu */ | |
672 | int tlb_start_valid = 0; | |
ee39b37b | 673 | unsigned long start = start_addr; |
1da177e4 LT |
674 | spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL; |
675 | int fullmm = tlb_is_full_mm(*tlbp); | |
676 | ||
677 | for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) { | |
1da177e4 LT |
678 | unsigned long end; |
679 | ||
680 | start = max(vma->vm_start, start_addr); | |
681 | if (start >= vma->vm_end) | |
682 | continue; | |
683 | end = min(vma->vm_end, end_addr); | |
684 | if (end <= vma->vm_start) | |
685 | continue; | |
686 | ||
687 | if (vma->vm_flags & VM_ACCOUNT) | |
688 | *nr_accounted += (end - start) >> PAGE_SHIFT; | |
689 | ||
1da177e4 LT |
690 | while (start != end) { |
691 | unsigned long block; | |
692 | ||
693 | if (!tlb_start_valid) { | |
694 | tlb_start = start; | |
695 | tlb_start_valid = 1; | |
696 | } | |
697 | ||
698 | if (is_vm_hugetlb_page(vma)) { | |
699 | block = end - start; | |
700 | unmap_hugepage_range(vma, start, end); | |
701 | } else { | |
702 | block = min(zap_bytes, end - start); | |
703 | unmap_page_range(*tlbp, vma, start, | |
704 | start + block, details); | |
705 | } | |
706 | ||
707 | start += block; | |
708 | zap_bytes -= block; | |
709 | if ((long)zap_bytes > 0) | |
710 | continue; | |
711 | ||
712 | tlb_finish_mmu(*tlbp, tlb_start, start); | |
713 | ||
714 | if (need_resched() || | |
715 | need_lockbreak(&mm->page_table_lock) || | |
716 | (i_mmap_lock && need_lockbreak(i_mmap_lock))) { | |
717 | if (i_mmap_lock) { | |
718 | /* must reset count of rss freed */ | |
719 | *tlbp = tlb_gather_mmu(mm, fullmm); | |
1da177e4 LT |
720 | goto out; |
721 | } | |
722 | spin_unlock(&mm->page_table_lock); | |
723 | cond_resched(); | |
724 | spin_lock(&mm->page_table_lock); | |
725 | } | |
726 | ||
727 | *tlbp = tlb_gather_mmu(mm, fullmm); | |
728 | tlb_start_valid = 0; | |
729 | zap_bytes = ZAP_BLOCK_SIZE; | |
730 | } | |
731 | } | |
732 | out: | |
ee39b37b | 733 | return start; /* which is now the end (or restart) address */ |
1da177e4 LT |
734 | } |
735 | ||
736 | /** | |
737 | * zap_page_range - remove user pages in a given range | |
738 | * @vma: vm_area_struct holding the applicable pages | |
739 | * @address: starting address of pages to zap | |
740 | * @size: number of bytes to zap | |
741 | * @details: details of nonlinear truncation or shared cache invalidation | |
742 | */ | |
ee39b37b | 743 | unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, |
1da177e4 LT |
744 | unsigned long size, struct zap_details *details) |
745 | { | |
746 | struct mm_struct *mm = vma->vm_mm; | |
747 | struct mmu_gather *tlb; | |
748 | unsigned long end = address + size; | |
749 | unsigned long nr_accounted = 0; | |
750 | ||
751 | if (is_vm_hugetlb_page(vma)) { | |
752 | zap_hugepage_range(vma, address, size); | |
ee39b37b | 753 | return end; |
1da177e4 LT |
754 | } |
755 | ||
756 | lru_add_drain(); | |
757 | spin_lock(&mm->page_table_lock); | |
758 | tlb = tlb_gather_mmu(mm, 0); | |
ee39b37b | 759 | end = unmap_vmas(&tlb, mm, vma, address, end, &nr_accounted, details); |
1da177e4 LT |
760 | tlb_finish_mmu(tlb, address, end); |
761 | spin_unlock(&mm->page_table_lock); | |
ee39b37b | 762 | return end; |
1da177e4 LT |
763 | } |
764 | ||
765 | /* | |
766 | * Do a quick page-table lookup for a single page. | |
767 | * mm->page_table_lock must be held. | |
768 | */ | |
769 | static struct page * | |
770 | __follow_page(struct mm_struct *mm, unsigned long address, int read, int write) | |
771 | { | |
772 | pgd_t *pgd; | |
773 | pud_t *pud; | |
774 | pmd_t *pmd; | |
775 | pte_t *ptep, pte; | |
776 | unsigned long pfn; | |
777 | struct page *page; | |
778 | ||
779 | page = follow_huge_addr(mm, address, write); | |
780 | if (! IS_ERR(page)) | |
781 | return page; | |
782 | ||
783 | pgd = pgd_offset(mm, address); | |
784 | if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) | |
785 | goto out; | |
786 | ||
787 | pud = pud_offset(pgd, address); | |
788 | if (pud_none(*pud) || unlikely(pud_bad(*pud))) | |
789 | goto out; | |
790 | ||
791 | pmd = pmd_offset(pud, address); | |
792 | if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) | |
793 | goto out; | |
794 | if (pmd_huge(*pmd)) | |
795 | return follow_huge_pmd(mm, address, pmd, write); | |
796 | ||
797 | ptep = pte_offset_map(pmd, address); | |
798 | if (!ptep) | |
799 | goto out; | |
800 | ||
801 | pte = *ptep; | |
802 | pte_unmap(ptep); | |
803 | if (pte_present(pte)) { | |
804 | if (write && !pte_write(pte)) | |
805 | goto out; | |
806 | if (read && !pte_read(pte)) | |
807 | goto out; | |
808 | pfn = pte_pfn(pte); | |
809 | if (pfn_valid(pfn)) { | |
810 | page = pfn_to_page(pfn); | |
811 | if (write && !pte_dirty(pte) && !PageDirty(page)) | |
812 | set_page_dirty(page); | |
813 | mark_page_accessed(page); | |
814 | return page; | |
815 | } | |
816 | } | |
817 | ||
818 | out: | |
819 | return NULL; | |
820 | } | |
821 | ||
822 | struct page * | |
823 | follow_page(struct mm_struct *mm, unsigned long address, int write) | |
824 | { | |
825 | return __follow_page(mm, address, /*read*/0, write); | |
826 | } | |
827 | ||
828 | int | |
829 | check_user_page_readable(struct mm_struct *mm, unsigned long address) | |
830 | { | |
831 | return __follow_page(mm, address, /*read*/1, /*write*/0) != NULL; | |
832 | } | |
833 | ||
834 | EXPORT_SYMBOL(check_user_page_readable); | |
835 | ||
836 | /* | |
837 | * Given a physical address, is there a useful struct page pointing to | |
838 | * it? This may become more complex in the future if we start dealing | |
839 | * with IO-aperture pages for direct-IO. | |
840 | */ | |
841 | ||
842 | static inline struct page *get_page_map(struct page *page) | |
843 | { | |
844 | if (!pfn_valid(page_to_pfn(page))) | |
845 | return NULL; | |
846 | return page; | |
847 | } | |
848 | ||
849 | ||
850 | static inline int | |
851 | untouched_anonymous_page(struct mm_struct* mm, struct vm_area_struct *vma, | |
852 | unsigned long address) | |
853 | { | |
854 | pgd_t *pgd; | |
855 | pud_t *pud; | |
856 | pmd_t *pmd; | |
857 | ||
858 | /* Check if the vma is for an anonymous mapping. */ | |
859 | if (vma->vm_ops && vma->vm_ops->nopage) | |
860 | return 0; | |
861 | ||
862 | /* Check if page directory entry exists. */ | |
863 | pgd = pgd_offset(mm, address); | |
864 | if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) | |
865 | return 1; | |
866 | ||
867 | pud = pud_offset(pgd, address); | |
868 | if (pud_none(*pud) || unlikely(pud_bad(*pud))) | |
869 | return 1; | |
870 | ||
871 | /* Check if page middle directory entry exists. */ | |
872 | pmd = pmd_offset(pud, address); | |
873 | if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) | |
874 | return 1; | |
875 | ||
876 | /* There is a pte slot for 'address' in 'mm'. */ | |
877 | return 0; | |
878 | } | |
879 | ||
880 | ||
881 | int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, | |
882 | unsigned long start, int len, int write, int force, | |
883 | struct page **pages, struct vm_area_struct **vmas) | |
884 | { | |
885 | int i; | |
886 | unsigned int flags; | |
887 | ||
888 | /* | |
889 | * Require read or write permissions. | |
890 | * If 'force' is set, we only require the "MAY" flags. | |
891 | */ | |
892 | flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); | |
893 | flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); | |
894 | i = 0; | |
895 | ||
896 | do { | |
897 | struct vm_area_struct * vma; | |
898 | ||
899 | vma = find_extend_vma(mm, start); | |
900 | if (!vma && in_gate_area(tsk, start)) { | |
901 | unsigned long pg = start & PAGE_MASK; | |
902 | struct vm_area_struct *gate_vma = get_gate_vma(tsk); | |
903 | pgd_t *pgd; | |
904 | pud_t *pud; | |
905 | pmd_t *pmd; | |
906 | pte_t *pte; | |
907 | if (write) /* user gate pages are read-only */ | |
908 | return i ? : -EFAULT; | |
909 | if (pg > TASK_SIZE) | |
910 | pgd = pgd_offset_k(pg); | |
911 | else | |
912 | pgd = pgd_offset_gate(mm, pg); | |
913 | BUG_ON(pgd_none(*pgd)); | |
914 | pud = pud_offset(pgd, pg); | |
915 | BUG_ON(pud_none(*pud)); | |
916 | pmd = pmd_offset(pud, pg); | |
917 | BUG_ON(pmd_none(*pmd)); | |
918 | pte = pte_offset_map(pmd, pg); | |
919 | BUG_ON(pte_none(*pte)); | |
920 | if (pages) { | |
921 | pages[i] = pte_page(*pte); | |
922 | get_page(pages[i]); | |
923 | } | |
924 | pte_unmap(pte); | |
925 | if (vmas) | |
926 | vmas[i] = gate_vma; | |
927 | i++; | |
928 | start += PAGE_SIZE; | |
929 | len--; | |
930 | continue; | |
931 | } | |
932 | ||
933 | if (!vma || (vma->vm_flags & VM_IO) | |
934 | || !(flags & vma->vm_flags)) | |
935 | return i ? : -EFAULT; | |
936 | ||
937 | if (is_vm_hugetlb_page(vma)) { | |
938 | i = follow_hugetlb_page(mm, vma, pages, vmas, | |
939 | &start, &len, i); | |
940 | continue; | |
941 | } | |
942 | spin_lock(&mm->page_table_lock); | |
943 | do { | |
944 | struct page *map; | |
945 | int lookup_write = write; | |
946 | ||
947 | cond_resched_lock(&mm->page_table_lock); | |
948 | while (!(map = follow_page(mm, start, lookup_write))) { | |
949 | /* | |
950 | * Shortcut for anonymous pages. We don't want | |
951 | * to force the creation of pages tables for | |
952 | * insanly big anonymously mapped areas that | |
953 | * nobody touched so far. This is important | |
954 | * for doing a core dump for these mappings. | |
955 | */ | |
956 | if (!lookup_write && | |
957 | untouched_anonymous_page(mm,vma,start)) { | |
958 | map = ZERO_PAGE(start); | |
959 | break; | |
960 | } | |
961 | spin_unlock(&mm->page_table_lock); | |
962 | switch (handle_mm_fault(mm,vma,start,write)) { | |
963 | case VM_FAULT_MINOR: | |
964 | tsk->min_flt++; | |
965 | break; | |
966 | case VM_FAULT_MAJOR: | |
967 | tsk->maj_flt++; | |
968 | break; | |
969 | case VM_FAULT_SIGBUS: | |
970 | return i ? i : -EFAULT; | |
971 | case VM_FAULT_OOM: | |
972 | return i ? i : -ENOMEM; | |
973 | default: | |
974 | BUG(); | |
975 | } | |
976 | /* | |
977 | * Now that we have performed a write fault | |
978 | * and surely no longer have a shared page we | |
979 | * shouldn't write, we shouldn't ignore an | |
980 | * unwritable page in the page table if | |
981 | * we are forcing write access. | |
982 | */ | |
983 | lookup_write = write && !force; | |
984 | spin_lock(&mm->page_table_lock); | |
985 | } | |
986 | if (pages) { | |
987 | pages[i] = get_page_map(map); | |
988 | if (!pages[i]) { | |
989 | spin_unlock(&mm->page_table_lock); | |
990 | while (i--) | |
991 | page_cache_release(pages[i]); | |
992 | i = -EFAULT; | |
993 | goto out; | |
994 | } | |
995 | flush_dcache_page(pages[i]); | |
996 | if (!PageReserved(pages[i])) | |
997 | page_cache_get(pages[i]); | |
998 | } | |
999 | if (vmas) | |
1000 | vmas[i] = vma; | |
1001 | i++; | |
1002 | start += PAGE_SIZE; | |
1003 | len--; | |
1004 | } while(len && start < vma->vm_end); | |
1005 | spin_unlock(&mm->page_table_lock); | |
1006 | } while(len); | |
1007 | out: | |
1008 | return i; | |
1009 | } | |
1010 | ||
1011 | EXPORT_SYMBOL(get_user_pages); | |
1012 | ||
1013 | static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd, | |
1014 | unsigned long addr, unsigned long end, pgprot_t prot) | |
1015 | { | |
1016 | pte_t *pte; | |
1017 | ||
1018 | pte = pte_alloc_map(mm, pmd, addr); | |
1019 | if (!pte) | |
1020 | return -ENOMEM; | |
1021 | do { | |
1022 | pte_t zero_pte = pte_wrprotect(mk_pte(ZERO_PAGE(addr), prot)); | |
1023 | BUG_ON(!pte_none(*pte)); | |
1024 | set_pte_at(mm, addr, pte, zero_pte); | |
1025 | } while (pte++, addr += PAGE_SIZE, addr != end); | |
1026 | pte_unmap(pte - 1); | |
1027 | return 0; | |
1028 | } | |
1029 | ||
1030 | static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud, | |
1031 | unsigned long addr, unsigned long end, pgprot_t prot) | |
1032 | { | |
1033 | pmd_t *pmd; | |
1034 | unsigned long next; | |
1035 | ||
1036 | pmd = pmd_alloc(mm, pud, addr); | |
1037 | if (!pmd) | |
1038 | return -ENOMEM; | |
1039 | do { | |
1040 | next = pmd_addr_end(addr, end); | |
1041 | if (zeromap_pte_range(mm, pmd, addr, next, prot)) | |
1042 | return -ENOMEM; | |
1043 | } while (pmd++, addr = next, addr != end); | |
1044 | return 0; | |
1045 | } | |
1046 | ||
1047 | static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd, | |
1048 | unsigned long addr, unsigned long end, pgprot_t prot) | |
1049 | { | |
1050 | pud_t *pud; | |
1051 | unsigned long next; | |
1052 | ||
1053 | pud = pud_alloc(mm, pgd, addr); | |
1054 | if (!pud) | |
1055 | return -ENOMEM; | |
1056 | do { | |
1057 | next = pud_addr_end(addr, end); | |
1058 | if (zeromap_pmd_range(mm, pud, addr, next, prot)) | |
1059 | return -ENOMEM; | |
1060 | } while (pud++, addr = next, addr != end); | |
1061 | return 0; | |
1062 | } | |
1063 | ||
1064 | int zeromap_page_range(struct vm_area_struct *vma, | |
1065 | unsigned long addr, unsigned long size, pgprot_t prot) | |
1066 | { | |
1067 | pgd_t *pgd; | |
1068 | unsigned long next; | |
1069 | unsigned long end = addr + size; | |
1070 | struct mm_struct *mm = vma->vm_mm; | |
1071 | int err; | |
1072 | ||
1073 | BUG_ON(addr >= end); | |
1074 | pgd = pgd_offset(mm, addr); | |
1075 | flush_cache_range(vma, addr, end); | |
1076 | spin_lock(&mm->page_table_lock); | |
1077 | do { | |
1078 | next = pgd_addr_end(addr, end); | |
1079 | err = zeromap_pud_range(mm, pgd, addr, next, prot); | |
1080 | if (err) | |
1081 | break; | |
1082 | } while (pgd++, addr = next, addr != end); | |
1083 | spin_unlock(&mm->page_table_lock); | |
1084 | return err; | |
1085 | } | |
1086 | ||
1087 | /* | |
1088 | * maps a range of physical memory into the requested pages. the old | |
1089 | * mappings are removed. any references to nonexistent pages results | |
1090 | * in null mappings (currently treated as "copy-on-access") | |
1091 | */ | |
1092 | static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, | |
1093 | unsigned long addr, unsigned long end, | |
1094 | unsigned long pfn, pgprot_t prot) | |
1095 | { | |
1096 | pte_t *pte; | |
1097 | ||
1098 | pte = pte_alloc_map(mm, pmd, addr); | |
1099 | if (!pte) | |
1100 | return -ENOMEM; | |
1101 | do { | |
1102 | BUG_ON(!pte_none(*pte)); | |
1103 | if (!pfn_valid(pfn) || PageReserved(pfn_to_page(pfn))) | |
1104 | set_pte_at(mm, addr, pte, pfn_pte(pfn, prot)); | |
1105 | pfn++; | |
1106 | } while (pte++, addr += PAGE_SIZE, addr != end); | |
1107 | pte_unmap(pte - 1); | |
1108 | return 0; | |
1109 | } | |
1110 | ||
1111 | static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, | |
1112 | unsigned long addr, unsigned long end, | |
1113 | unsigned long pfn, pgprot_t prot) | |
1114 | { | |
1115 | pmd_t *pmd; | |
1116 | unsigned long next; | |
1117 | ||
1118 | pfn -= addr >> PAGE_SHIFT; | |
1119 | pmd = pmd_alloc(mm, pud, addr); | |
1120 | if (!pmd) | |
1121 | return -ENOMEM; | |
1122 | do { | |
1123 | next = pmd_addr_end(addr, end); | |
1124 | if (remap_pte_range(mm, pmd, addr, next, | |
1125 | pfn + (addr >> PAGE_SHIFT), prot)) | |
1126 | return -ENOMEM; | |
1127 | } while (pmd++, addr = next, addr != end); | |
1128 | return 0; | |
1129 | } | |
1130 | ||
1131 | static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, | |
1132 | unsigned long addr, unsigned long end, | |
1133 | unsigned long pfn, pgprot_t prot) | |
1134 | { | |
1135 | pud_t *pud; | |
1136 | unsigned long next; | |
1137 | ||
1138 | pfn -= addr >> PAGE_SHIFT; | |
1139 | pud = pud_alloc(mm, pgd, addr); | |
1140 | if (!pud) | |
1141 | return -ENOMEM; | |
1142 | do { | |
1143 | next = pud_addr_end(addr, end); | |
1144 | if (remap_pmd_range(mm, pud, addr, next, | |
1145 | pfn + (addr >> PAGE_SHIFT), prot)) | |
1146 | return -ENOMEM; | |
1147 | } while (pud++, addr = next, addr != end); | |
1148 | return 0; | |
1149 | } | |
1150 | ||
1151 | /* Note: this is only safe if the mm semaphore is held when called. */ | |
1152 | int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, | |
1153 | unsigned long pfn, unsigned long size, pgprot_t prot) | |
1154 | { | |
1155 | pgd_t *pgd; | |
1156 | unsigned long next; | |
1157 | unsigned long end = addr + size; | |
1158 | struct mm_struct *mm = vma->vm_mm; | |
1159 | int err; | |
1160 | ||
1161 | /* | |
1162 | * Physically remapped pages are special. Tell the | |
1163 | * rest of the world about it: | |
1164 | * VM_IO tells people not to look at these pages | |
1165 | * (accesses can have side effects). | |
1166 | * VM_RESERVED tells swapout not to try to touch | |
1167 | * this region. | |
1168 | */ | |
1169 | vma->vm_flags |= VM_IO | VM_RESERVED; | |
1170 | ||
1171 | BUG_ON(addr >= end); | |
1172 | pfn -= addr >> PAGE_SHIFT; | |
1173 | pgd = pgd_offset(mm, addr); | |
1174 | flush_cache_range(vma, addr, end); | |
1175 | spin_lock(&mm->page_table_lock); | |
1176 | do { | |
1177 | next = pgd_addr_end(addr, end); | |
1178 | err = remap_pud_range(mm, pgd, addr, next, | |
1179 | pfn + (addr >> PAGE_SHIFT), prot); | |
1180 | if (err) | |
1181 | break; | |
1182 | } while (pgd++, addr = next, addr != end); | |
1183 | spin_unlock(&mm->page_table_lock); | |
1184 | return err; | |
1185 | } | |
1186 | EXPORT_SYMBOL(remap_pfn_range); | |
1187 | ||
1188 | /* | |
1189 | * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when | |
1190 | * servicing faults for write access. In the normal case, do always want | |
1191 | * pte_mkwrite. But get_user_pages can cause write faults for mappings | |
1192 | * that do not have writing enabled, when used by access_process_vm. | |
1193 | */ | |
1194 | static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) | |
1195 | { | |
1196 | if (likely(vma->vm_flags & VM_WRITE)) | |
1197 | pte = pte_mkwrite(pte); | |
1198 | return pte; | |
1199 | } | |
1200 | ||
1201 | /* | |
1202 | * We hold the mm semaphore for reading and vma->vm_mm->page_table_lock | |
1203 | */ | |
1204 | static inline void break_cow(struct vm_area_struct * vma, struct page * new_page, unsigned long address, | |
1205 | pte_t *page_table) | |
1206 | { | |
1207 | pte_t entry; | |
1208 | ||
1209 | entry = maybe_mkwrite(pte_mkdirty(mk_pte(new_page, vma->vm_page_prot)), | |
1210 | vma); | |
1211 | ptep_establish(vma, address, page_table, entry); | |
1212 | update_mmu_cache(vma, address, entry); | |
1213 | lazy_mmu_prot_update(entry); | |
1214 | } | |
1215 | ||
1216 | /* | |
1217 | * This routine handles present pages, when users try to write | |
1218 | * to a shared page. It is done by copying the page to a new address | |
1219 | * and decrementing the shared-page counter for the old page. | |
1220 | * | |
1221 | * Goto-purists beware: the only reason for goto's here is that it results | |
1222 | * in better assembly code.. The "default" path will see no jumps at all. | |
1223 | * | |
1224 | * Note that this routine assumes that the protection checks have been | |
1225 | * done by the caller (the low-level page fault routine in most cases). | |
1226 | * Thus we can safely just mark it writable once we've done any necessary | |
1227 | * COW. | |
1228 | * | |
1229 | * We also mark the page dirty at this point even though the page will | |
1230 | * change only once the write actually happens. This avoids a few races, | |
1231 | * and potentially makes it more efficient. | |
1232 | * | |
1233 | * We hold the mm semaphore and the page_table_lock on entry and exit | |
1234 | * with the page_table_lock released. | |
1235 | */ | |
1236 | static int do_wp_page(struct mm_struct *mm, struct vm_area_struct * vma, | |
1237 | unsigned long address, pte_t *page_table, pmd_t *pmd, pte_t pte) | |
1238 | { | |
1239 | struct page *old_page, *new_page; | |
1240 | unsigned long pfn = pte_pfn(pte); | |
1241 | pte_t entry; | |
1242 | ||
1243 | if (unlikely(!pfn_valid(pfn))) { | |
1244 | /* | |
1245 | * This should really halt the system so it can be debugged or | |
1246 | * at least the kernel stops what it's doing before it corrupts | |
1247 | * data, but for the moment just pretend this is OOM. | |
1248 | */ | |
1249 | pte_unmap(page_table); | |
1250 | printk(KERN_ERR "do_wp_page: bogus page at address %08lx\n", | |
1251 | address); | |
1252 | spin_unlock(&mm->page_table_lock); | |
1253 | return VM_FAULT_OOM; | |
1254 | } | |
1255 | old_page = pfn_to_page(pfn); | |
1256 | ||
1257 | if (!TestSetPageLocked(old_page)) { | |
1258 | int reuse = can_share_swap_page(old_page); | |
1259 | unlock_page(old_page); | |
1260 | if (reuse) { | |
1261 | flush_cache_page(vma, address, pfn); | |
1262 | entry = maybe_mkwrite(pte_mkyoung(pte_mkdirty(pte)), | |
1263 | vma); | |
1264 | ptep_set_access_flags(vma, address, page_table, entry, 1); | |
1265 | update_mmu_cache(vma, address, entry); | |
1266 | lazy_mmu_prot_update(entry); | |
1267 | pte_unmap(page_table); | |
1268 | spin_unlock(&mm->page_table_lock); | |
1269 | return VM_FAULT_MINOR; | |
1270 | } | |
1271 | } | |
1272 | pte_unmap(page_table); | |
1273 | ||
1274 | /* | |
1275 | * Ok, we need to copy. Oh, well.. | |
1276 | */ | |
1277 | if (!PageReserved(old_page)) | |
1278 | page_cache_get(old_page); | |
1279 | spin_unlock(&mm->page_table_lock); | |
1280 | ||
1281 | if (unlikely(anon_vma_prepare(vma))) | |
1282 | goto no_new_page; | |
1283 | if (old_page == ZERO_PAGE(address)) { | |
1284 | new_page = alloc_zeroed_user_highpage(vma, address); | |
1285 | if (!new_page) | |
1286 | goto no_new_page; | |
1287 | } else { | |
1288 | new_page = alloc_page_vma(GFP_HIGHUSER, vma, address); | |
1289 | if (!new_page) | |
1290 | goto no_new_page; | |
1291 | copy_user_highpage(new_page, old_page, address); | |
1292 | } | |
1293 | /* | |
1294 | * Re-check the pte - we dropped the lock | |
1295 | */ | |
1296 | spin_lock(&mm->page_table_lock); | |
1297 | page_table = pte_offset_map(pmd, address); | |
1298 | if (likely(pte_same(*page_table, pte))) { | |
1299 | if (PageAnon(old_page)) | |
1300 | dec_mm_counter(mm, anon_rss); | |
1301 | if (PageReserved(old_page)) | |
1302 | inc_mm_counter(mm, rss); | |
1303 | else | |
1304 | page_remove_rmap(old_page); | |
1305 | flush_cache_page(vma, address, pfn); | |
1306 | break_cow(vma, new_page, address, page_table); | |
1307 | lru_cache_add_active(new_page); | |
1308 | page_add_anon_rmap(new_page, vma, address); | |
1309 | ||
1310 | /* Free the old page.. */ | |
1311 | new_page = old_page; | |
1312 | } | |
1313 | pte_unmap(page_table); | |
1314 | page_cache_release(new_page); | |
1315 | page_cache_release(old_page); | |
1316 | spin_unlock(&mm->page_table_lock); | |
1317 | return VM_FAULT_MINOR; | |
1318 | ||
1319 | no_new_page: | |
1320 | page_cache_release(old_page); | |
1321 | return VM_FAULT_OOM; | |
1322 | } | |
1323 | ||
1324 | /* | |
1325 | * Helper functions for unmap_mapping_range(). | |
1326 | * | |
1327 | * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __ | |
1328 | * | |
1329 | * We have to restart searching the prio_tree whenever we drop the lock, | |
1330 | * since the iterator is only valid while the lock is held, and anyway | |
1331 | * a later vma might be split and reinserted earlier while lock dropped. | |
1332 | * | |
1333 | * The list of nonlinear vmas could be handled more efficiently, using | |
1334 | * a placeholder, but handle it in the same way until a need is shown. | |
1335 | * It is important to search the prio_tree before nonlinear list: a vma | |
1336 | * may become nonlinear and be shifted from prio_tree to nonlinear list | |
1337 | * while the lock is dropped; but never shifted from list to prio_tree. | |
1338 | * | |
1339 | * In order to make forward progress despite restarting the search, | |
1340 | * vm_truncate_count is used to mark a vma as now dealt with, so we can | |
1341 | * quickly skip it next time around. Since the prio_tree search only | |
1342 | * shows us those vmas affected by unmapping the range in question, we | |
1343 | * can't efficiently keep all vmas in step with mapping->truncate_count: | |
1344 | * so instead reset them all whenever it wraps back to 0 (then go to 1). | |
1345 | * mapping->truncate_count and vma->vm_truncate_count are protected by | |
1346 | * i_mmap_lock. | |
1347 | * | |
1348 | * In order to make forward progress despite repeatedly restarting some | |
ee39b37b | 1349 | * large vma, note the restart_addr from unmap_vmas when it breaks out: |
1da177e4 LT |
1350 | * and restart from that address when we reach that vma again. It might |
1351 | * have been split or merged, shrunk or extended, but never shifted: so | |
1352 | * restart_addr remains valid so long as it remains in the vma's range. | |
1353 | * unmap_mapping_range forces truncate_count to leap over page-aligned | |
1354 | * values so we can save vma's restart_addr in its truncate_count field. | |
1355 | */ | |
1356 | #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK)) | |
1357 | ||
1358 | static void reset_vma_truncate_counts(struct address_space *mapping) | |
1359 | { | |
1360 | struct vm_area_struct *vma; | |
1361 | struct prio_tree_iter iter; | |
1362 | ||
1363 | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX) | |
1364 | vma->vm_truncate_count = 0; | |
1365 | list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) | |
1366 | vma->vm_truncate_count = 0; | |
1367 | } | |
1368 | ||
1369 | static int unmap_mapping_range_vma(struct vm_area_struct *vma, | |
1370 | unsigned long start_addr, unsigned long end_addr, | |
1371 | struct zap_details *details) | |
1372 | { | |
1373 | unsigned long restart_addr; | |
1374 | int need_break; | |
1375 | ||
1376 | again: | |
1377 | restart_addr = vma->vm_truncate_count; | |
1378 | if (is_restart_addr(restart_addr) && start_addr < restart_addr) { | |
1379 | start_addr = restart_addr; | |
1380 | if (start_addr >= end_addr) { | |
1381 | /* Top of vma has been split off since last time */ | |
1382 | vma->vm_truncate_count = details->truncate_count; | |
1383 | return 0; | |
1384 | } | |
1385 | } | |
1386 | ||
ee39b37b HD |
1387 | restart_addr = zap_page_range(vma, start_addr, |
1388 | end_addr - start_addr, details); | |
1da177e4 LT |
1389 | |
1390 | /* | |
1391 | * We cannot rely on the break test in unmap_vmas: | |
1392 | * on the one hand, we don't want to restart our loop | |
1393 | * just because that broke out for the page_table_lock; | |
1394 | * on the other hand, it does no test when vma is small. | |
1395 | */ | |
1396 | need_break = need_resched() || | |
1397 | need_lockbreak(details->i_mmap_lock); | |
1398 | ||
ee39b37b | 1399 | if (restart_addr >= end_addr) { |
1da177e4 LT |
1400 | /* We have now completed this vma: mark it so */ |
1401 | vma->vm_truncate_count = details->truncate_count; | |
1402 | if (!need_break) | |
1403 | return 0; | |
1404 | } else { | |
1405 | /* Note restart_addr in vma's truncate_count field */ | |
ee39b37b | 1406 | vma->vm_truncate_count = restart_addr; |
1da177e4 LT |
1407 | if (!need_break) |
1408 | goto again; | |
1409 | } | |
1410 | ||
1411 | spin_unlock(details->i_mmap_lock); | |
1412 | cond_resched(); | |
1413 | spin_lock(details->i_mmap_lock); | |
1414 | return -EINTR; | |
1415 | } | |
1416 | ||
1417 | static inline void unmap_mapping_range_tree(struct prio_tree_root *root, | |
1418 | struct zap_details *details) | |
1419 | { | |
1420 | struct vm_area_struct *vma; | |
1421 | struct prio_tree_iter iter; | |
1422 | pgoff_t vba, vea, zba, zea; | |
1423 | ||
1424 | restart: | |
1425 | vma_prio_tree_foreach(vma, &iter, root, | |
1426 | details->first_index, details->last_index) { | |
1427 | /* Skip quickly over those we have already dealt with */ | |
1428 | if (vma->vm_truncate_count == details->truncate_count) | |
1429 | continue; | |
1430 | ||
1431 | vba = vma->vm_pgoff; | |
1432 | vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1; | |
1433 | /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ | |
1434 | zba = details->first_index; | |
1435 | if (zba < vba) | |
1436 | zba = vba; | |
1437 | zea = details->last_index; | |
1438 | if (zea > vea) | |
1439 | zea = vea; | |
1440 | ||
1441 | if (unmap_mapping_range_vma(vma, | |
1442 | ((zba - vba) << PAGE_SHIFT) + vma->vm_start, | |
1443 | ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, | |
1444 | details) < 0) | |
1445 | goto restart; | |
1446 | } | |
1447 | } | |
1448 | ||
1449 | static inline void unmap_mapping_range_list(struct list_head *head, | |
1450 | struct zap_details *details) | |
1451 | { | |
1452 | struct vm_area_struct *vma; | |
1453 | ||
1454 | /* | |
1455 | * In nonlinear VMAs there is no correspondence between virtual address | |
1456 | * offset and file offset. So we must perform an exhaustive search | |
1457 | * across *all* the pages in each nonlinear VMA, not just the pages | |
1458 | * whose virtual address lies outside the file truncation point. | |
1459 | */ | |
1460 | restart: | |
1461 | list_for_each_entry(vma, head, shared.vm_set.list) { | |
1462 | /* Skip quickly over those we have already dealt with */ | |
1463 | if (vma->vm_truncate_count == details->truncate_count) | |
1464 | continue; | |
1465 | details->nonlinear_vma = vma; | |
1466 | if (unmap_mapping_range_vma(vma, vma->vm_start, | |
1467 | vma->vm_end, details) < 0) | |
1468 | goto restart; | |
1469 | } | |
1470 | } | |
1471 | ||
1472 | /** | |
1473 | * unmap_mapping_range - unmap the portion of all mmaps | |
1474 | * in the specified address_space corresponding to the specified | |
1475 | * page range in the underlying file. | |
1476 | * @address_space: the address space containing mmaps to be unmapped. | |
1477 | * @holebegin: byte in first page to unmap, relative to the start of | |
1478 | * the underlying file. This will be rounded down to a PAGE_SIZE | |
1479 | * boundary. Note that this is different from vmtruncate(), which | |
1480 | * must keep the partial page. In contrast, we must get rid of | |
1481 | * partial pages. | |
1482 | * @holelen: size of prospective hole in bytes. This will be rounded | |
1483 | * up to a PAGE_SIZE boundary. A holelen of zero truncates to the | |
1484 | * end of the file. | |
1485 | * @even_cows: 1 when truncating a file, unmap even private COWed pages; | |
1486 | * but 0 when invalidating pagecache, don't throw away private data. | |
1487 | */ | |
1488 | void unmap_mapping_range(struct address_space *mapping, | |
1489 | loff_t const holebegin, loff_t const holelen, int even_cows) | |
1490 | { | |
1491 | struct zap_details details; | |
1492 | pgoff_t hba = holebegin >> PAGE_SHIFT; | |
1493 | pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; | |
1494 | ||
1495 | /* Check for overflow. */ | |
1496 | if (sizeof(holelen) > sizeof(hlen)) { | |
1497 | long long holeend = | |
1498 | (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; | |
1499 | if (holeend & ~(long long)ULONG_MAX) | |
1500 | hlen = ULONG_MAX - hba + 1; | |
1501 | } | |
1502 | ||
1503 | details.check_mapping = even_cows? NULL: mapping; | |
1504 | details.nonlinear_vma = NULL; | |
1505 | details.first_index = hba; | |
1506 | details.last_index = hba + hlen - 1; | |
1507 | if (details.last_index < details.first_index) | |
1508 | details.last_index = ULONG_MAX; | |
1509 | details.i_mmap_lock = &mapping->i_mmap_lock; | |
1510 | ||
1511 | spin_lock(&mapping->i_mmap_lock); | |
1512 | ||
1513 | /* serialize i_size write against truncate_count write */ | |
1514 | smp_wmb(); | |
1515 | /* Protect against page faults, and endless unmapping loops */ | |
1516 | mapping->truncate_count++; | |
1517 | /* | |
1518 | * For archs where spin_lock has inclusive semantics like ia64 | |
1519 | * this smp_mb() will prevent to read pagetable contents | |
1520 | * before the truncate_count increment is visible to | |
1521 | * other cpus. | |
1522 | */ | |
1523 | smp_mb(); | |
1524 | if (unlikely(is_restart_addr(mapping->truncate_count))) { | |
1525 | if (mapping->truncate_count == 0) | |
1526 | reset_vma_truncate_counts(mapping); | |
1527 | mapping->truncate_count++; | |
1528 | } | |
1529 | details.truncate_count = mapping->truncate_count; | |
1530 | ||
1531 | if (unlikely(!prio_tree_empty(&mapping->i_mmap))) | |
1532 | unmap_mapping_range_tree(&mapping->i_mmap, &details); | |
1533 | if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) | |
1534 | unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); | |
1535 | spin_unlock(&mapping->i_mmap_lock); | |
1536 | } | |
1537 | EXPORT_SYMBOL(unmap_mapping_range); | |
1538 | ||
1539 | /* | |
1540 | * Handle all mappings that got truncated by a "truncate()" | |
1541 | * system call. | |
1542 | * | |
1543 | * NOTE! We have to be ready to update the memory sharing | |
1544 | * between the file and the memory map for a potential last | |
1545 | * incomplete page. Ugly, but necessary. | |
1546 | */ | |
1547 | int vmtruncate(struct inode * inode, loff_t offset) | |
1548 | { | |
1549 | struct address_space *mapping = inode->i_mapping; | |
1550 | unsigned long limit; | |
1551 | ||
1552 | if (inode->i_size < offset) | |
1553 | goto do_expand; | |
1554 | /* | |
1555 | * truncation of in-use swapfiles is disallowed - it would cause | |
1556 | * subsequent swapout to scribble on the now-freed blocks. | |
1557 | */ | |
1558 | if (IS_SWAPFILE(inode)) | |
1559 | goto out_busy; | |
1560 | i_size_write(inode, offset); | |
1561 | unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1); | |
1562 | truncate_inode_pages(mapping, offset); | |
1563 | goto out_truncate; | |
1564 | ||
1565 | do_expand: | |
1566 | limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; | |
1567 | if (limit != RLIM_INFINITY && offset > limit) | |
1568 | goto out_sig; | |
1569 | if (offset > inode->i_sb->s_maxbytes) | |
1570 | goto out_big; | |
1571 | i_size_write(inode, offset); | |
1572 | ||
1573 | out_truncate: | |
1574 | if (inode->i_op && inode->i_op->truncate) | |
1575 | inode->i_op->truncate(inode); | |
1576 | return 0; | |
1577 | out_sig: | |
1578 | send_sig(SIGXFSZ, current, 0); | |
1579 | out_big: | |
1580 | return -EFBIG; | |
1581 | out_busy: | |
1582 | return -ETXTBSY; | |
1583 | } | |
1584 | ||
1585 | EXPORT_SYMBOL(vmtruncate); | |
1586 | ||
1587 | /* | |
1588 | * Primitive swap readahead code. We simply read an aligned block of | |
1589 | * (1 << page_cluster) entries in the swap area. This method is chosen | |
1590 | * because it doesn't cost us any seek time. We also make sure to queue | |
1591 | * the 'original' request together with the readahead ones... | |
1592 | * | |
1593 | * This has been extended to use the NUMA policies from the mm triggering | |
1594 | * the readahead. | |
1595 | * | |
1596 | * Caller must hold down_read on the vma->vm_mm if vma is not NULL. | |
1597 | */ | |
1598 | void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma) | |
1599 | { | |
1600 | #ifdef CONFIG_NUMA | |
1601 | struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL; | |
1602 | #endif | |
1603 | int i, num; | |
1604 | struct page *new_page; | |
1605 | unsigned long offset; | |
1606 | ||
1607 | /* | |
1608 | * Get the number of handles we should do readahead io to. | |
1609 | */ | |
1610 | num = valid_swaphandles(entry, &offset); | |
1611 | for (i = 0; i < num; offset++, i++) { | |
1612 | /* Ok, do the async read-ahead now */ | |
1613 | new_page = read_swap_cache_async(swp_entry(swp_type(entry), | |
1614 | offset), vma, addr); | |
1615 | if (!new_page) | |
1616 | break; | |
1617 | page_cache_release(new_page); | |
1618 | #ifdef CONFIG_NUMA | |
1619 | /* | |
1620 | * Find the next applicable VMA for the NUMA policy. | |
1621 | */ | |
1622 | addr += PAGE_SIZE; | |
1623 | if (addr == 0) | |
1624 | vma = NULL; | |
1625 | if (vma) { | |
1626 | if (addr >= vma->vm_end) { | |
1627 | vma = next_vma; | |
1628 | next_vma = vma ? vma->vm_next : NULL; | |
1629 | } | |
1630 | if (vma && addr < vma->vm_start) | |
1631 | vma = NULL; | |
1632 | } else { | |
1633 | if (next_vma && addr >= next_vma->vm_start) { | |
1634 | vma = next_vma; | |
1635 | next_vma = vma->vm_next; | |
1636 | } | |
1637 | } | |
1638 | #endif | |
1639 | } | |
1640 | lru_add_drain(); /* Push any new pages onto the LRU now */ | |
1641 | } | |
1642 | ||
1643 | /* | |
1644 | * We hold the mm semaphore and the page_table_lock on entry and | |
1645 | * should release the pagetable lock on exit.. | |
1646 | */ | |
1647 | static int do_swap_page(struct mm_struct * mm, | |
1648 | struct vm_area_struct * vma, unsigned long address, | |
1649 | pte_t *page_table, pmd_t *pmd, pte_t orig_pte, int write_access) | |
1650 | { | |
1651 | struct page *page; | |
1652 | swp_entry_t entry = pte_to_swp_entry(orig_pte); | |
1653 | pte_t pte; | |
1654 | int ret = VM_FAULT_MINOR; | |
1655 | ||
1656 | pte_unmap(page_table); | |
1657 | spin_unlock(&mm->page_table_lock); | |
1658 | page = lookup_swap_cache(entry); | |
1659 | if (!page) { | |
1660 | swapin_readahead(entry, address, vma); | |
1661 | page = read_swap_cache_async(entry, vma, address); | |
1662 | if (!page) { | |
1663 | /* | |
1664 | * Back out if somebody else faulted in this pte while | |
1665 | * we released the page table lock. | |
1666 | */ | |
1667 | spin_lock(&mm->page_table_lock); | |
1668 | page_table = pte_offset_map(pmd, address); | |
1669 | if (likely(pte_same(*page_table, orig_pte))) | |
1670 | ret = VM_FAULT_OOM; | |
1671 | else | |
1672 | ret = VM_FAULT_MINOR; | |
1673 | pte_unmap(page_table); | |
1674 | spin_unlock(&mm->page_table_lock); | |
1675 | goto out; | |
1676 | } | |
1677 | ||
1678 | /* Had to read the page from swap area: Major fault */ | |
1679 | ret = VM_FAULT_MAJOR; | |
1680 | inc_page_state(pgmajfault); | |
1681 | grab_swap_token(); | |
1682 | } | |
1683 | ||
1684 | mark_page_accessed(page); | |
1685 | lock_page(page); | |
1686 | ||
1687 | /* | |
1688 | * Back out if somebody else faulted in this pte while we | |
1689 | * released the page table lock. | |
1690 | */ | |
1691 | spin_lock(&mm->page_table_lock); | |
1692 | page_table = pte_offset_map(pmd, address); | |
1693 | if (unlikely(!pte_same(*page_table, orig_pte))) { | |
1694 | pte_unmap(page_table); | |
1695 | spin_unlock(&mm->page_table_lock); | |
1696 | unlock_page(page); | |
1697 | page_cache_release(page); | |
1698 | ret = VM_FAULT_MINOR; | |
1699 | goto out; | |
1700 | } | |
1701 | ||
1702 | /* The page isn't present yet, go ahead with the fault. */ | |
1703 | ||
1704 | swap_free(entry); | |
1705 | if (vm_swap_full()) | |
1706 | remove_exclusive_swap_page(page); | |
1707 | ||
1708 | inc_mm_counter(mm, rss); | |
1709 | pte = mk_pte(page, vma->vm_page_prot); | |
1710 | if (write_access && can_share_swap_page(page)) { | |
1711 | pte = maybe_mkwrite(pte_mkdirty(pte), vma); | |
1712 | write_access = 0; | |
1713 | } | |
1714 | unlock_page(page); | |
1715 | ||
1716 | flush_icache_page(vma, page); | |
1717 | set_pte_at(mm, address, page_table, pte); | |
1718 | page_add_anon_rmap(page, vma, address); | |
1719 | ||
1720 | if (write_access) { | |
1721 | if (do_wp_page(mm, vma, address, | |
1722 | page_table, pmd, pte) == VM_FAULT_OOM) | |
1723 | ret = VM_FAULT_OOM; | |
1724 | goto out; | |
1725 | } | |
1726 | ||
1727 | /* No need to invalidate - it was non-present before */ | |
1728 | update_mmu_cache(vma, address, pte); | |
1729 | lazy_mmu_prot_update(pte); | |
1730 | pte_unmap(page_table); | |
1731 | spin_unlock(&mm->page_table_lock); | |
1732 | out: | |
1733 | return ret; | |
1734 | } | |
1735 | ||
1736 | /* | |
1737 | * We are called with the MM semaphore and page_table_lock | |
1738 | * spinlock held to protect against concurrent faults in | |
1739 | * multithreaded programs. | |
1740 | */ | |
1741 | static int | |
1742 | do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, | |
1743 | pte_t *page_table, pmd_t *pmd, int write_access, | |
1744 | unsigned long addr) | |
1745 | { | |
1746 | pte_t entry; | |
1747 | struct page * page = ZERO_PAGE(addr); | |
1748 | ||
1749 | /* Read-only mapping of ZERO_PAGE. */ | |
1750 | entry = pte_wrprotect(mk_pte(ZERO_PAGE(addr), vma->vm_page_prot)); | |
1751 | ||
1752 | /* ..except if it's a write access */ | |
1753 | if (write_access) { | |
1754 | /* Allocate our own private page. */ | |
1755 | pte_unmap(page_table); | |
1756 | spin_unlock(&mm->page_table_lock); | |
1757 | ||
1758 | if (unlikely(anon_vma_prepare(vma))) | |
1759 | goto no_mem; | |
1760 | page = alloc_zeroed_user_highpage(vma, addr); | |
1761 | if (!page) | |
1762 | goto no_mem; | |
1763 | ||
1764 | spin_lock(&mm->page_table_lock); | |
1765 | page_table = pte_offset_map(pmd, addr); | |
1766 | ||
1767 | if (!pte_none(*page_table)) { | |
1768 | pte_unmap(page_table); | |
1769 | page_cache_release(page); | |
1770 | spin_unlock(&mm->page_table_lock); | |
1771 | goto out; | |
1772 | } | |
1773 | inc_mm_counter(mm, rss); | |
1774 | entry = maybe_mkwrite(pte_mkdirty(mk_pte(page, | |
1775 | vma->vm_page_prot)), | |
1776 | vma); | |
1777 | lru_cache_add_active(page); | |
1778 | SetPageReferenced(page); | |
1779 | page_add_anon_rmap(page, vma, addr); | |
1780 | } | |
1781 | ||
1782 | set_pte_at(mm, addr, page_table, entry); | |
1783 | pte_unmap(page_table); | |
1784 | ||
1785 | /* No need to invalidate - it was non-present before */ | |
1786 | update_mmu_cache(vma, addr, entry); | |
1787 | lazy_mmu_prot_update(entry); | |
1788 | spin_unlock(&mm->page_table_lock); | |
1789 | out: | |
1790 | return VM_FAULT_MINOR; | |
1791 | no_mem: | |
1792 | return VM_FAULT_OOM; | |
1793 | } | |
1794 | ||
1795 | /* | |
1796 | * do_no_page() tries to create a new page mapping. It aggressively | |
1797 | * tries to share with existing pages, but makes a separate copy if | |
1798 | * the "write_access" parameter is true in order to avoid the next | |
1799 | * page fault. | |
1800 | * | |
1801 | * As this is called only for pages that do not currently exist, we | |
1802 | * do not need to flush old virtual caches or the TLB. | |
1803 | * | |
1804 | * This is called with the MM semaphore held and the page table | |
1805 | * spinlock held. Exit with the spinlock released. | |
1806 | */ | |
1807 | static int | |
1808 | do_no_page(struct mm_struct *mm, struct vm_area_struct *vma, | |
1809 | unsigned long address, int write_access, pte_t *page_table, pmd_t *pmd) | |
1810 | { | |
1811 | struct page * new_page; | |
1812 | struct address_space *mapping = NULL; | |
1813 | pte_t entry; | |
1814 | unsigned int sequence = 0; | |
1815 | int ret = VM_FAULT_MINOR; | |
1816 | int anon = 0; | |
1817 | ||
1818 | if (!vma->vm_ops || !vma->vm_ops->nopage) | |
1819 | return do_anonymous_page(mm, vma, page_table, | |
1820 | pmd, write_access, address); | |
1821 | pte_unmap(page_table); | |
1822 | spin_unlock(&mm->page_table_lock); | |
1823 | ||
1824 | if (vma->vm_file) { | |
1825 | mapping = vma->vm_file->f_mapping; | |
1826 | sequence = mapping->truncate_count; | |
1827 | smp_rmb(); /* serializes i_size against truncate_count */ | |
1828 | } | |
1829 | retry: | |
1830 | cond_resched(); | |
1831 | new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret); | |
1832 | /* | |
1833 | * No smp_rmb is needed here as long as there's a full | |
1834 | * spin_lock/unlock sequence inside the ->nopage callback | |
1835 | * (for the pagecache lookup) that acts as an implicit | |
1836 | * smp_mb() and prevents the i_size read to happen | |
1837 | * after the next truncate_count read. | |
1838 | */ | |
1839 | ||
1840 | /* no page was available -- either SIGBUS or OOM */ | |
1841 | if (new_page == NOPAGE_SIGBUS) | |
1842 | return VM_FAULT_SIGBUS; | |
1843 | if (new_page == NOPAGE_OOM) | |
1844 | return VM_FAULT_OOM; | |
1845 | ||
1846 | /* | |
1847 | * Should we do an early C-O-W break? | |
1848 | */ | |
1849 | if (write_access && !(vma->vm_flags & VM_SHARED)) { | |
1850 | struct page *page; | |
1851 | ||
1852 | if (unlikely(anon_vma_prepare(vma))) | |
1853 | goto oom; | |
1854 | page = alloc_page_vma(GFP_HIGHUSER, vma, address); | |
1855 | if (!page) | |
1856 | goto oom; | |
1857 | copy_user_highpage(page, new_page, address); | |
1858 | page_cache_release(new_page); | |
1859 | new_page = page; | |
1860 | anon = 1; | |
1861 | } | |
1862 | ||
1863 | spin_lock(&mm->page_table_lock); | |
1864 | /* | |
1865 | * For a file-backed vma, someone could have truncated or otherwise | |
1866 | * invalidated this page. If unmap_mapping_range got called, | |
1867 | * retry getting the page. | |
1868 | */ | |
1869 | if (mapping && unlikely(sequence != mapping->truncate_count)) { | |
1870 | sequence = mapping->truncate_count; | |
1871 | spin_unlock(&mm->page_table_lock); | |
1872 | page_cache_release(new_page); | |
1873 | goto retry; | |
1874 | } | |
1875 | page_table = pte_offset_map(pmd, address); | |
1876 | ||
1877 | /* | |
1878 | * This silly early PAGE_DIRTY setting removes a race | |
1879 | * due to the bad i386 page protection. But it's valid | |
1880 | * for other architectures too. | |
1881 | * | |
1882 | * Note that if write_access is true, we either now have | |
1883 | * an exclusive copy of the page, or this is a shared mapping, | |
1884 | * so we can make it writable and dirty to avoid having to | |
1885 | * handle that later. | |
1886 | */ | |
1887 | /* Only go through if we didn't race with anybody else... */ | |
1888 | if (pte_none(*page_table)) { | |
1889 | if (!PageReserved(new_page)) | |
1890 | inc_mm_counter(mm, rss); | |
1891 | ||
1892 | flush_icache_page(vma, new_page); | |
1893 | entry = mk_pte(new_page, vma->vm_page_prot); | |
1894 | if (write_access) | |
1895 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | |
1896 | set_pte_at(mm, address, page_table, entry); | |
1897 | if (anon) { | |
1898 | lru_cache_add_active(new_page); | |
1899 | page_add_anon_rmap(new_page, vma, address); | |
1900 | } else | |
1901 | page_add_file_rmap(new_page); | |
1902 | pte_unmap(page_table); | |
1903 | } else { | |
1904 | /* One of our sibling threads was faster, back out. */ | |
1905 | pte_unmap(page_table); | |
1906 | page_cache_release(new_page); | |
1907 | spin_unlock(&mm->page_table_lock); | |
1908 | goto out; | |
1909 | } | |
1910 | ||
1911 | /* no need to invalidate: a not-present page shouldn't be cached */ | |
1912 | update_mmu_cache(vma, address, entry); | |
1913 | lazy_mmu_prot_update(entry); | |
1914 | spin_unlock(&mm->page_table_lock); | |
1915 | out: | |
1916 | return ret; | |
1917 | oom: | |
1918 | page_cache_release(new_page); | |
1919 | ret = VM_FAULT_OOM; | |
1920 | goto out; | |
1921 | } | |
1922 | ||
1923 | /* | |
1924 | * Fault of a previously existing named mapping. Repopulate the pte | |
1925 | * from the encoded file_pte if possible. This enables swappable | |
1926 | * nonlinear vmas. | |
1927 | */ | |
1928 | static int do_file_page(struct mm_struct * mm, struct vm_area_struct * vma, | |
1929 | unsigned long address, int write_access, pte_t *pte, pmd_t *pmd) | |
1930 | { | |
1931 | unsigned long pgoff; | |
1932 | int err; | |
1933 | ||
1934 | BUG_ON(!vma->vm_ops || !vma->vm_ops->nopage); | |
1935 | /* | |
1936 | * Fall back to the linear mapping if the fs does not support | |
1937 | * ->populate: | |
1938 | */ | |
1939 | if (!vma->vm_ops || !vma->vm_ops->populate || | |
1940 | (write_access && !(vma->vm_flags & VM_SHARED))) { | |
1941 | pte_clear(mm, address, pte); | |
1942 | return do_no_page(mm, vma, address, write_access, pte, pmd); | |
1943 | } | |
1944 | ||
1945 | pgoff = pte_to_pgoff(*pte); | |
1946 | ||
1947 | pte_unmap(pte); | |
1948 | spin_unlock(&mm->page_table_lock); | |
1949 | ||
1950 | err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE, vma->vm_page_prot, pgoff, 0); | |
1951 | if (err == -ENOMEM) | |
1952 | return VM_FAULT_OOM; | |
1953 | if (err) | |
1954 | return VM_FAULT_SIGBUS; | |
1955 | return VM_FAULT_MAJOR; | |
1956 | } | |
1957 | ||
1958 | /* | |
1959 | * These routines also need to handle stuff like marking pages dirty | |
1960 | * and/or accessed for architectures that don't do it in hardware (most | |
1961 | * RISC architectures). The early dirtying is also good on the i386. | |
1962 | * | |
1963 | * There is also a hook called "update_mmu_cache()" that architectures | |
1964 | * with external mmu caches can use to update those (ie the Sparc or | |
1965 | * PowerPC hashed page tables that act as extended TLBs). | |
1966 | * | |
1967 | * Note the "page_table_lock". It is to protect against kswapd removing | |
1968 | * pages from under us. Note that kswapd only ever _removes_ pages, never | |
1969 | * adds them. As such, once we have noticed that the page is not present, | |
1970 | * we can drop the lock early. | |
1971 | * | |
1972 | * The adding of pages is protected by the MM semaphore (which we hold), | |
1973 | * so we don't need to worry about a page being suddenly been added into | |
1974 | * our VM. | |
1975 | * | |
1976 | * We enter with the pagetable spinlock held, we are supposed to | |
1977 | * release it when done. | |
1978 | */ | |
1979 | static inline int handle_pte_fault(struct mm_struct *mm, | |
1980 | struct vm_area_struct * vma, unsigned long address, | |
1981 | int write_access, pte_t *pte, pmd_t *pmd) | |
1982 | { | |
1983 | pte_t entry; | |
1984 | ||
1985 | entry = *pte; | |
1986 | if (!pte_present(entry)) { | |
1987 | /* | |
1988 | * If it truly wasn't present, we know that kswapd | |
1989 | * and the PTE updates will not touch it later. So | |
1990 | * drop the lock. | |
1991 | */ | |
1992 | if (pte_none(entry)) | |
1993 | return do_no_page(mm, vma, address, write_access, pte, pmd); | |
1994 | if (pte_file(entry)) | |
1995 | return do_file_page(mm, vma, address, write_access, pte, pmd); | |
1996 | return do_swap_page(mm, vma, address, pte, pmd, entry, write_access); | |
1997 | } | |
1998 | ||
1999 | if (write_access) { | |
2000 | if (!pte_write(entry)) | |
2001 | return do_wp_page(mm, vma, address, pte, pmd, entry); | |
2002 | ||
2003 | entry = pte_mkdirty(entry); | |
2004 | } | |
2005 | entry = pte_mkyoung(entry); | |
2006 | ptep_set_access_flags(vma, address, pte, entry, write_access); | |
2007 | update_mmu_cache(vma, address, entry); | |
2008 | lazy_mmu_prot_update(entry); | |
2009 | pte_unmap(pte); | |
2010 | spin_unlock(&mm->page_table_lock); | |
2011 | return VM_FAULT_MINOR; | |
2012 | } | |
2013 | ||
2014 | /* | |
2015 | * By the time we get here, we already hold the mm semaphore | |
2016 | */ | |
2017 | int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct * vma, | |
2018 | unsigned long address, int write_access) | |
2019 | { | |
2020 | pgd_t *pgd; | |
2021 | pud_t *pud; | |
2022 | pmd_t *pmd; | |
2023 | pte_t *pte; | |
2024 | ||
2025 | __set_current_state(TASK_RUNNING); | |
2026 | ||
2027 | inc_page_state(pgfault); | |
2028 | ||
2029 | if (is_vm_hugetlb_page(vma)) | |
2030 | return VM_FAULT_SIGBUS; /* mapping truncation does this. */ | |
2031 | ||
2032 | /* | |
2033 | * We need the page table lock to synchronize with kswapd | |
2034 | * and the SMP-safe atomic PTE updates. | |
2035 | */ | |
2036 | pgd = pgd_offset(mm, address); | |
2037 | spin_lock(&mm->page_table_lock); | |
2038 | ||
2039 | pud = pud_alloc(mm, pgd, address); | |
2040 | if (!pud) | |
2041 | goto oom; | |
2042 | ||
2043 | pmd = pmd_alloc(mm, pud, address); | |
2044 | if (!pmd) | |
2045 | goto oom; | |
2046 | ||
2047 | pte = pte_alloc_map(mm, pmd, address); | |
2048 | if (!pte) | |
2049 | goto oom; | |
2050 | ||
2051 | return handle_pte_fault(mm, vma, address, write_access, pte, pmd); | |
2052 | ||
2053 | oom: | |
2054 | spin_unlock(&mm->page_table_lock); | |
2055 | return VM_FAULT_OOM; | |
2056 | } | |
2057 | ||
2058 | #ifndef __PAGETABLE_PUD_FOLDED | |
2059 | /* | |
2060 | * Allocate page upper directory. | |
2061 | * | |
2062 | * We've already handled the fast-path in-line, and we own the | |
2063 | * page table lock. | |
2064 | */ | |
2065 | pud_t fastcall *__pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) | |
2066 | { | |
2067 | pud_t *new; | |
2068 | ||
2069 | spin_unlock(&mm->page_table_lock); | |
2070 | new = pud_alloc_one(mm, address); | |
2071 | spin_lock(&mm->page_table_lock); | |
2072 | if (!new) | |
2073 | return NULL; | |
2074 | ||
2075 | /* | |
2076 | * Because we dropped the lock, we should re-check the | |
2077 | * entry, as somebody else could have populated it.. | |
2078 | */ | |
2079 | if (pgd_present(*pgd)) { | |
2080 | pud_free(new); | |
2081 | goto out; | |
2082 | } | |
2083 | pgd_populate(mm, pgd, new); | |
2084 | out: | |
2085 | return pud_offset(pgd, address); | |
2086 | } | |
2087 | #endif /* __PAGETABLE_PUD_FOLDED */ | |
2088 | ||
2089 | #ifndef __PAGETABLE_PMD_FOLDED | |
2090 | /* | |
2091 | * Allocate page middle directory. | |
2092 | * | |
2093 | * We've already handled the fast-path in-line, and we own the | |
2094 | * page table lock. | |
2095 | */ | |
2096 | pmd_t fastcall *__pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) | |
2097 | { | |
2098 | pmd_t *new; | |
2099 | ||
2100 | spin_unlock(&mm->page_table_lock); | |
2101 | new = pmd_alloc_one(mm, address); | |
2102 | spin_lock(&mm->page_table_lock); | |
2103 | if (!new) | |
2104 | return NULL; | |
2105 | ||
2106 | /* | |
2107 | * Because we dropped the lock, we should re-check the | |
2108 | * entry, as somebody else could have populated it.. | |
2109 | */ | |
2110 | #ifndef __ARCH_HAS_4LEVEL_HACK | |
2111 | if (pud_present(*pud)) { | |
2112 | pmd_free(new); | |
2113 | goto out; | |
2114 | } | |
2115 | pud_populate(mm, pud, new); | |
2116 | #else | |
2117 | if (pgd_present(*pud)) { | |
2118 | pmd_free(new); | |
2119 | goto out; | |
2120 | } | |
2121 | pgd_populate(mm, pud, new); | |
2122 | #endif /* __ARCH_HAS_4LEVEL_HACK */ | |
2123 | ||
2124 | out: | |
2125 | return pmd_offset(pud, address); | |
2126 | } | |
2127 | #endif /* __PAGETABLE_PMD_FOLDED */ | |
2128 | ||
2129 | int make_pages_present(unsigned long addr, unsigned long end) | |
2130 | { | |
2131 | int ret, len, write; | |
2132 | struct vm_area_struct * vma; | |
2133 | ||
2134 | vma = find_vma(current->mm, addr); | |
2135 | if (!vma) | |
2136 | return -1; | |
2137 | write = (vma->vm_flags & VM_WRITE) != 0; | |
2138 | if (addr >= end) | |
2139 | BUG(); | |
2140 | if (end > vma->vm_end) | |
2141 | BUG(); | |
2142 | len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE; | |
2143 | ret = get_user_pages(current, current->mm, addr, | |
2144 | len, write, 0, NULL, NULL); | |
2145 | if (ret < 0) | |
2146 | return ret; | |
2147 | return ret == len ? 0 : -1; | |
2148 | } | |
2149 | ||
2150 | /* | |
2151 | * Map a vmalloc()-space virtual address to the physical page. | |
2152 | */ | |
2153 | struct page * vmalloc_to_page(void * vmalloc_addr) | |
2154 | { | |
2155 | unsigned long addr = (unsigned long) vmalloc_addr; | |
2156 | struct page *page = NULL; | |
2157 | pgd_t *pgd = pgd_offset_k(addr); | |
2158 | pud_t *pud; | |
2159 | pmd_t *pmd; | |
2160 | pte_t *ptep, pte; | |
2161 | ||
2162 | if (!pgd_none(*pgd)) { | |
2163 | pud = pud_offset(pgd, addr); | |
2164 | if (!pud_none(*pud)) { | |
2165 | pmd = pmd_offset(pud, addr); | |
2166 | if (!pmd_none(*pmd)) { | |
2167 | ptep = pte_offset_map(pmd, addr); | |
2168 | pte = *ptep; | |
2169 | if (pte_present(pte)) | |
2170 | page = pte_page(pte); | |
2171 | pte_unmap(ptep); | |
2172 | } | |
2173 | } | |
2174 | } | |
2175 | return page; | |
2176 | } | |
2177 | ||
2178 | EXPORT_SYMBOL(vmalloc_to_page); | |
2179 | ||
2180 | /* | |
2181 | * Map a vmalloc()-space virtual address to the physical page frame number. | |
2182 | */ | |
2183 | unsigned long vmalloc_to_pfn(void * vmalloc_addr) | |
2184 | { | |
2185 | return page_to_pfn(vmalloc_to_page(vmalloc_addr)); | |
2186 | } | |
2187 | ||
2188 | EXPORT_SYMBOL(vmalloc_to_pfn); | |
2189 | ||
2190 | /* | |
2191 | * update_mem_hiwater | |
2192 | * - update per process rss and vm high water data | |
2193 | */ | |
2194 | void update_mem_hiwater(struct task_struct *tsk) | |
2195 | { | |
2196 | if (tsk->mm) { | |
2197 | unsigned long rss = get_mm_counter(tsk->mm, rss); | |
2198 | ||
2199 | if (tsk->mm->hiwater_rss < rss) | |
2200 | tsk->mm->hiwater_rss = rss; | |
2201 | if (tsk->mm->hiwater_vm < tsk->mm->total_vm) | |
2202 | tsk->mm->hiwater_vm = tsk->mm->total_vm; | |
2203 | } | |
2204 | } | |
2205 | ||
2206 | #if !defined(__HAVE_ARCH_GATE_AREA) | |
2207 | ||
2208 | #if defined(AT_SYSINFO_EHDR) | |
2209 | struct vm_area_struct gate_vma; | |
2210 | ||
2211 | static int __init gate_vma_init(void) | |
2212 | { | |
2213 | gate_vma.vm_mm = NULL; | |
2214 | gate_vma.vm_start = FIXADDR_USER_START; | |
2215 | gate_vma.vm_end = FIXADDR_USER_END; | |
2216 | gate_vma.vm_page_prot = PAGE_READONLY; | |
2217 | gate_vma.vm_flags = 0; | |
2218 | return 0; | |
2219 | } | |
2220 | __initcall(gate_vma_init); | |
2221 | #endif | |
2222 | ||
2223 | struct vm_area_struct *get_gate_vma(struct task_struct *tsk) | |
2224 | { | |
2225 | #ifdef AT_SYSINFO_EHDR | |
2226 | return &gate_vma; | |
2227 | #else | |
2228 | return NULL; | |
2229 | #endif | |
2230 | } | |
2231 | ||
2232 | int in_gate_area_no_task(unsigned long addr) | |
2233 | { | |
2234 | #ifdef AT_SYSINFO_EHDR | |
2235 | if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) | |
2236 | return 1; | |
2237 | #endif | |
2238 | return 0; | |
2239 | } | |
2240 | ||
2241 | #endif /* __HAVE_ARCH_GATE_AREA */ |