]>
Commit | Line | Data |
---|---|---|
457c8996 | 1 | // SPDX-License-Identifier: GPL-2.0-only |
1da177e4 LT |
2 | /* |
3 | * linux/mm/memory.c | |
4 | * | |
5 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds | |
6 | */ | |
7 | ||
8 | /* | |
9 | * demand-loading started 01.12.91 - seems it is high on the list of | |
10 | * things wanted, and it should be easy to implement. - Linus | |
11 | */ | |
12 | ||
13 | /* | |
14 | * Ok, demand-loading was easy, shared pages a little bit tricker. Shared | |
15 | * pages started 02.12.91, seems to work. - Linus. | |
16 | * | |
17 | * Tested sharing by executing about 30 /bin/sh: under the old kernel it | |
18 | * would have taken more than the 6M I have free, but it worked well as | |
19 | * far as I could see. | |
20 | * | |
21 | * Also corrected some "invalidate()"s - I wasn't doing enough of them. | |
22 | */ | |
23 | ||
24 | /* | |
25 | * Real VM (paging to/from disk) started 18.12.91. Much more work and | |
26 | * thought has to go into this. Oh, well.. | |
27 | * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. | |
28 | * Found it. Everything seems to work now. | |
29 | * 20.12.91 - Ok, making the swap-device changeable like the root. | |
30 | */ | |
31 | ||
32 | /* | |
33 | * 05.04.94 - Multi-page memory management added for v1.1. | |
166f61b9 | 34 | * Idea by Alex Bligh ([email protected]) |
1da177e4 LT |
35 | * |
36 | * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG | |
37 | * ([email protected]) | |
38 | * | |
39 | * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) | |
40 | */ | |
41 | ||
42 | #include <linux/kernel_stat.h> | |
43 | #include <linux/mm.h> | |
6e84f315 | 44 | #include <linux/sched/mm.h> |
f7ccbae4 | 45 | #include <linux/sched/coredump.h> |
6a3827d7 | 46 | #include <linux/sched/numa_balancing.h> |
29930025 | 47 | #include <linux/sched/task.h> |
1da177e4 LT |
48 | #include <linux/hugetlb.h> |
49 | #include <linux/mman.h> | |
50 | #include <linux/swap.h> | |
51 | #include <linux/highmem.h> | |
52 | #include <linux/pagemap.h> | |
5042db43 | 53 | #include <linux/memremap.h> |
9a840895 | 54 | #include <linux/ksm.h> |
1da177e4 | 55 | #include <linux/rmap.h> |
b95f1b31 | 56 | #include <linux/export.h> |
0ff92245 | 57 | #include <linux/delayacct.h> |
1da177e4 | 58 | #include <linux/init.h> |
01c8f1c4 | 59 | #include <linux/pfn_t.h> |
edc79b2a | 60 | #include <linux/writeback.h> |
8a9f3ccd | 61 | #include <linux/memcontrol.h> |
cddb8a5c | 62 | #include <linux/mmu_notifier.h> |
3dc14741 HD |
63 | #include <linux/swapops.h> |
64 | #include <linux/elf.h> | |
5a0e3ad6 | 65 | #include <linux/gfp.h> |
4daae3b4 | 66 | #include <linux/migrate.h> |
2fbc57c5 | 67 | #include <linux/string.h> |
1592eef0 | 68 | #include <linux/debugfs.h> |
6b251fc9 | 69 | #include <linux/userfaultfd_k.h> |
bc2466e4 | 70 | #include <linux/dax.h> |
6b31d595 | 71 | #include <linux/oom.h> |
98fa15f3 | 72 | #include <linux/numa.h> |
bce617ed PX |
73 | #include <linux/perf_event.h> |
74 | #include <linux/ptrace.h> | |
e80d3909 | 75 | #include <linux/vmalloc.h> |
1da177e4 | 76 | |
b3d1411b JFG |
77 | #include <trace/events/kmem.h> |
78 | ||
6952b61d | 79 | #include <asm/io.h> |
33a709b2 | 80 | #include <asm/mmu_context.h> |
1da177e4 | 81 | #include <asm/pgalloc.h> |
7c0f6ba6 | 82 | #include <linux/uaccess.h> |
1da177e4 LT |
83 | #include <asm/tlb.h> |
84 | #include <asm/tlbflush.h> | |
1da177e4 | 85 | |
e80d3909 | 86 | #include "pgalloc-track.h" |
42b77728 JB |
87 | #include "internal.h" |
88 | ||
af27d940 | 89 | #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) |
90572890 | 90 | #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. |
75980e97 PZ |
91 | #endif |
92 | ||
d41dee36 | 93 | #ifndef CONFIG_NEED_MULTIPLE_NODES |
1da177e4 LT |
94 | /* use the per-pgdat data instead for discontigmem - mbligh */ |
95 | unsigned long max_mapnr; | |
1da177e4 | 96 | EXPORT_SYMBOL(max_mapnr); |
166f61b9 TH |
97 | |
98 | struct page *mem_map; | |
1da177e4 LT |
99 | EXPORT_SYMBOL(mem_map); |
100 | #endif | |
101 | ||
1da177e4 LT |
102 | /* |
103 | * A number of key systems in x86 including ioremap() rely on the assumption | |
104 | * that high_memory defines the upper bound on direct map memory, then end | |
105 | * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and | |
106 | * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL | |
107 | * and ZONE_HIGHMEM. | |
108 | */ | |
166f61b9 | 109 | void *high_memory; |
1da177e4 | 110 | EXPORT_SYMBOL(high_memory); |
1da177e4 | 111 | |
32a93233 IM |
112 | /* |
113 | * Randomize the address space (stacks, mmaps, brk, etc.). | |
114 | * | |
115 | * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, | |
116 | * as ancient (libc5 based) binaries can segfault. ) | |
117 | */ | |
118 | int randomize_va_space __read_mostly = | |
119 | #ifdef CONFIG_COMPAT_BRK | |
120 | 1; | |
121 | #else | |
122 | 2; | |
123 | #endif | |
a62eaf15 | 124 | |
83d116c5 JH |
125 | #ifndef arch_faults_on_old_pte |
126 | static inline bool arch_faults_on_old_pte(void) | |
127 | { | |
128 | /* | |
129 | * Those arches which don't have hw access flag feature need to | |
130 | * implement their own helper. By default, "true" means pagefault | |
131 | * will be hit on old pte. | |
132 | */ | |
133 | return true; | |
134 | } | |
135 | #endif | |
136 | ||
46bdb427 WD |
137 | #ifndef arch_wants_old_prefaulted_pte |
138 | static inline bool arch_wants_old_prefaulted_pte(void) | |
139 | { | |
140 | /* | |
141 | * Transitioning a PTE from 'old' to 'young' can be expensive on | |
142 | * some architectures, even if it's performed in hardware. By | |
143 | * default, "false" means prefaulted entries will be 'young'. | |
144 | */ | |
145 | return false; | |
146 | } | |
147 | #endif | |
148 | ||
a62eaf15 AK |
149 | static int __init disable_randmaps(char *s) |
150 | { | |
151 | randomize_va_space = 0; | |
9b41046c | 152 | return 1; |
a62eaf15 AK |
153 | } |
154 | __setup("norandmaps", disable_randmaps); | |
155 | ||
62eede62 | 156 | unsigned long zero_pfn __read_mostly; |
0b70068e AB |
157 | EXPORT_SYMBOL(zero_pfn); |
158 | ||
166f61b9 TH |
159 | unsigned long highest_memmap_pfn __read_mostly; |
160 | ||
a13ea5b7 HD |
161 | /* |
162 | * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() | |
163 | */ | |
164 | static int __init init_zero_pfn(void) | |
165 | { | |
166 | zero_pfn = page_to_pfn(ZERO_PAGE(0)); | |
167 | return 0; | |
168 | } | |
e720e7d0 | 169 | early_initcall(init_zero_pfn); |
a62eaf15 | 170 | |
e4dcad20 | 171 | void mm_trace_rss_stat(struct mm_struct *mm, int member, long count) |
b3d1411b | 172 | { |
e4dcad20 | 173 | trace_rss_stat(mm, member, count); |
b3d1411b | 174 | } |
d559db08 | 175 | |
34e55232 KH |
176 | #if defined(SPLIT_RSS_COUNTING) |
177 | ||
ea48cf78 | 178 | void sync_mm_rss(struct mm_struct *mm) |
34e55232 KH |
179 | { |
180 | int i; | |
181 | ||
182 | for (i = 0; i < NR_MM_COUNTERS; i++) { | |
05af2e10 DR |
183 | if (current->rss_stat.count[i]) { |
184 | add_mm_counter(mm, i, current->rss_stat.count[i]); | |
185 | current->rss_stat.count[i] = 0; | |
34e55232 KH |
186 | } |
187 | } | |
05af2e10 | 188 | current->rss_stat.events = 0; |
34e55232 KH |
189 | } |
190 | ||
191 | static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) | |
192 | { | |
193 | struct task_struct *task = current; | |
194 | ||
195 | if (likely(task->mm == mm)) | |
196 | task->rss_stat.count[member] += val; | |
197 | else | |
198 | add_mm_counter(mm, member, val); | |
199 | } | |
200 | #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) | |
201 | #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) | |
202 | ||
203 | /* sync counter once per 64 page faults */ | |
204 | #define TASK_RSS_EVENTS_THRESH (64) | |
205 | static void check_sync_rss_stat(struct task_struct *task) | |
206 | { | |
207 | if (unlikely(task != current)) | |
208 | return; | |
209 | if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) | |
ea48cf78 | 210 | sync_mm_rss(task->mm); |
34e55232 | 211 | } |
9547d01b | 212 | #else /* SPLIT_RSS_COUNTING */ |
34e55232 KH |
213 | |
214 | #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) | |
215 | #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) | |
216 | ||
217 | static void check_sync_rss_stat(struct task_struct *task) | |
218 | { | |
219 | } | |
220 | ||
9547d01b PZ |
221 | #endif /* SPLIT_RSS_COUNTING */ |
222 | ||
1da177e4 LT |
223 | /* |
224 | * Note: this doesn't free the actual pages themselves. That | |
225 | * has been handled earlier when unmapping all the memory regions. | |
226 | */ | |
9e1b32ca BH |
227 | static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, |
228 | unsigned long addr) | |
1da177e4 | 229 | { |
2f569afd | 230 | pgtable_t token = pmd_pgtable(*pmd); |
e0da382c | 231 | pmd_clear(pmd); |
9e1b32ca | 232 | pte_free_tlb(tlb, token, addr); |
c4812909 | 233 | mm_dec_nr_ptes(tlb->mm); |
1da177e4 LT |
234 | } |
235 | ||
e0da382c HD |
236 | static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, |
237 | unsigned long addr, unsigned long end, | |
238 | unsigned long floor, unsigned long ceiling) | |
1da177e4 LT |
239 | { |
240 | pmd_t *pmd; | |
241 | unsigned long next; | |
e0da382c | 242 | unsigned long start; |
1da177e4 | 243 | |
e0da382c | 244 | start = addr; |
1da177e4 | 245 | pmd = pmd_offset(pud, addr); |
1da177e4 LT |
246 | do { |
247 | next = pmd_addr_end(addr, end); | |
248 | if (pmd_none_or_clear_bad(pmd)) | |
249 | continue; | |
9e1b32ca | 250 | free_pte_range(tlb, pmd, addr); |
1da177e4 LT |
251 | } while (pmd++, addr = next, addr != end); |
252 | ||
e0da382c HD |
253 | start &= PUD_MASK; |
254 | if (start < floor) | |
255 | return; | |
256 | if (ceiling) { | |
257 | ceiling &= PUD_MASK; | |
258 | if (!ceiling) | |
259 | return; | |
1da177e4 | 260 | } |
e0da382c HD |
261 | if (end - 1 > ceiling - 1) |
262 | return; | |
263 | ||
264 | pmd = pmd_offset(pud, start); | |
265 | pud_clear(pud); | |
9e1b32ca | 266 | pmd_free_tlb(tlb, pmd, start); |
dc6c9a35 | 267 | mm_dec_nr_pmds(tlb->mm); |
1da177e4 LT |
268 | } |
269 | ||
c2febafc | 270 | static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, |
e0da382c HD |
271 | unsigned long addr, unsigned long end, |
272 | unsigned long floor, unsigned long ceiling) | |
1da177e4 LT |
273 | { |
274 | pud_t *pud; | |
275 | unsigned long next; | |
e0da382c | 276 | unsigned long start; |
1da177e4 | 277 | |
e0da382c | 278 | start = addr; |
c2febafc | 279 | pud = pud_offset(p4d, addr); |
1da177e4 LT |
280 | do { |
281 | next = pud_addr_end(addr, end); | |
282 | if (pud_none_or_clear_bad(pud)) | |
283 | continue; | |
e0da382c | 284 | free_pmd_range(tlb, pud, addr, next, floor, ceiling); |
1da177e4 LT |
285 | } while (pud++, addr = next, addr != end); |
286 | ||
c2febafc KS |
287 | start &= P4D_MASK; |
288 | if (start < floor) | |
289 | return; | |
290 | if (ceiling) { | |
291 | ceiling &= P4D_MASK; | |
292 | if (!ceiling) | |
293 | return; | |
294 | } | |
295 | if (end - 1 > ceiling - 1) | |
296 | return; | |
297 | ||
298 | pud = pud_offset(p4d, start); | |
299 | p4d_clear(p4d); | |
300 | pud_free_tlb(tlb, pud, start); | |
b4e98d9a | 301 | mm_dec_nr_puds(tlb->mm); |
c2febafc KS |
302 | } |
303 | ||
304 | static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, | |
305 | unsigned long addr, unsigned long end, | |
306 | unsigned long floor, unsigned long ceiling) | |
307 | { | |
308 | p4d_t *p4d; | |
309 | unsigned long next; | |
310 | unsigned long start; | |
311 | ||
312 | start = addr; | |
313 | p4d = p4d_offset(pgd, addr); | |
314 | do { | |
315 | next = p4d_addr_end(addr, end); | |
316 | if (p4d_none_or_clear_bad(p4d)) | |
317 | continue; | |
318 | free_pud_range(tlb, p4d, addr, next, floor, ceiling); | |
319 | } while (p4d++, addr = next, addr != end); | |
320 | ||
e0da382c HD |
321 | start &= PGDIR_MASK; |
322 | if (start < floor) | |
323 | return; | |
324 | if (ceiling) { | |
325 | ceiling &= PGDIR_MASK; | |
326 | if (!ceiling) | |
327 | return; | |
1da177e4 | 328 | } |
e0da382c HD |
329 | if (end - 1 > ceiling - 1) |
330 | return; | |
331 | ||
c2febafc | 332 | p4d = p4d_offset(pgd, start); |
e0da382c | 333 | pgd_clear(pgd); |
c2febafc | 334 | p4d_free_tlb(tlb, p4d, start); |
1da177e4 LT |
335 | } |
336 | ||
337 | /* | |
e0da382c | 338 | * This function frees user-level page tables of a process. |
1da177e4 | 339 | */ |
42b77728 | 340 | void free_pgd_range(struct mmu_gather *tlb, |
e0da382c HD |
341 | unsigned long addr, unsigned long end, |
342 | unsigned long floor, unsigned long ceiling) | |
1da177e4 LT |
343 | { |
344 | pgd_t *pgd; | |
345 | unsigned long next; | |
e0da382c HD |
346 | |
347 | /* | |
348 | * The next few lines have given us lots of grief... | |
349 | * | |
350 | * Why are we testing PMD* at this top level? Because often | |
351 | * there will be no work to do at all, and we'd prefer not to | |
352 | * go all the way down to the bottom just to discover that. | |
353 | * | |
354 | * Why all these "- 1"s? Because 0 represents both the bottom | |
355 | * of the address space and the top of it (using -1 for the | |
356 | * top wouldn't help much: the masks would do the wrong thing). | |
357 | * The rule is that addr 0 and floor 0 refer to the bottom of | |
358 | * the address space, but end 0 and ceiling 0 refer to the top | |
359 | * Comparisons need to use "end - 1" and "ceiling - 1" (though | |
360 | * that end 0 case should be mythical). | |
361 | * | |
362 | * Wherever addr is brought up or ceiling brought down, we must | |
363 | * be careful to reject "the opposite 0" before it confuses the | |
364 | * subsequent tests. But what about where end is brought down | |
365 | * by PMD_SIZE below? no, end can't go down to 0 there. | |
366 | * | |
367 | * Whereas we round start (addr) and ceiling down, by different | |
368 | * masks at different levels, in order to test whether a table | |
369 | * now has no other vmas using it, so can be freed, we don't | |
370 | * bother to round floor or end up - the tests don't need that. | |
371 | */ | |
1da177e4 | 372 | |
e0da382c HD |
373 | addr &= PMD_MASK; |
374 | if (addr < floor) { | |
375 | addr += PMD_SIZE; | |
376 | if (!addr) | |
377 | return; | |
378 | } | |
379 | if (ceiling) { | |
380 | ceiling &= PMD_MASK; | |
381 | if (!ceiling) | |
382 | return; | |
383 | } | |
384 | if (end - 1 > ceiling - 1) | |
385 | end -= PMD_SIZE; | |
386 | if (addr > end - 1) | |
387 | return; | |
07e32661 AK |
388 | /* |
389 | * We add page table cache pages with PAGE_SIZE, | |
390 | * (see pte_free_tlb()), flush the tlb if we need | |
391 | */ | |
ed6a7935 | 392 | tlb_change_page_size(tlb, PAGE_SIZE); |
42b77728 | 393 | pgd = pgd_offset(tlb->mm, addr); |
1da177e4 LT |
394 | do { |
395 | next = pgd_addr_end(addr, end); | |
396 | if (pgd_none_or_clear_bad(pgd)) | |
397 | continue; | |
c2febafc | 398 | free_p4d_range(tlb, pgd, addr, next, floor, ceiling); |
1da177e4 | 399 | } while (pgd++, addr = next, addr != end); |
e0da382c HD |
400 | } |
401 | ||
42b77728 | 402 | void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, |
3bf5ee95 | 403 | unsigned long floor, unsigned long ceiling) |
e0da382c HD |
404 | { |
405 | while (vma) { | |
406 | struct vm_area_struct *next = vma->vm_next; | |
407 | unsigned long addr = vma->vm_start; | |
408 | ||
8f4f8c16 | 409 | /* |
25d9e2d1 NP |
410 | * Hide vma from rmap and truncate_pagecache before freeing |
411 | * pgtables | |
8f4f8c16 | 412 | */ |
5beb4930 | 413 | unlink_anon_vmas(vma); |
8f4f8c16 HD |
414 | unlink_file_vma(vma); |
415 | ||
9da61aef | 416 | if (is_vm_hugetlb_page(vma)) { |
3bf5ee95 | 417 | hugetlb_free_pgd_range(tlb, addr, vma->vm_end, |
166f61b9 | 418 | floor, next ? next->vm_start : ceiling); |
3bf5ee95 HD |
419 | } else { |
420 | /* | |
421 | * Optimization: gather nearby vmas into one call down | |
422 | */ | |
423 | while (next && next->vm_start <= vma->vm_end + PMD_SIZE | |
4866920b | 424 | && !is_vm_hugetlb_page(next)) { |
3bf5ee95 HD |
425 | vma = next; |
426 | next = vma->vm_next; | |
5beb4930 | 427 | unlink_anon_vmas(vma); |
8f4f8c16 | 428 | unlink_file_vma(vma); |
3bf5ee95 HD |
429 | } |
430 | free_pgd_range(tlb, addr, vma->vm_end, | |
166f61b9 | 431 | floor, next ? next->vm_start : ceiling); |
3bf5ee95 | 432 | } |
e0da382c HD |
433 | vma = next; |
434 | } | |
1da177e4 LT |
435 | } |
436 | ||
4cf58924 | 437 | int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) |
1da177e4 | 438 | { |
c4088ebd | 439 | spinlock_t *ptl; |
4cf58924 | 440 | pgtable_t new = pte_alloc_one(mm); |
1bb3630e HD |
441 | if (!new) |
442 | return -ENOMEM; | |
443 | ||
362a61ad NP |
444 | /* |
445 | * Ensure all pte setup (eg. pte page lock and page clearing) are | |
446 | * visible before the pte is made visible to other CPUs by being | |
447 | * put into page tables. | |
448 | * | |
449 | * The other side of the story is the pointer chasing in the page | |
450 | * table walking code (when walking the page table without locking; | |
451 | * ie. most of the time). Fortunately, these data accesses consist | |
452 | * of a chain of data-dependent loads, meaning most CPUs (alpha | |
453 | * being the notable exception) will already guarantee loads are | |
454 | * seen in-order. See the alpha page table accessors for the | |
bb7cdd38 | 455 | * smp_rmb() barriers in page table walking code. |
362a61ad NP |
456 | */ |
457 | smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ | |
458 | ||
c4088ebd | 459 | ptl = pmd_lock(mm, pmd); |
8ac1f832 | 460 | if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ |
c4812909 | 461 | mm_inc_nr_ptes(mm); |
1da177e4 | 462 | pmd_populate(mm, pmd, new); |
2f569afd | 463 | new = NULL; |
4b471e88 | 464 | } |
c4088ebd | 465 | spin_unlock(ptl); |
2f569afd MS |
466 | if (new) |
467 | pte_free(mm, new); | |
1bb3630e | 468 | return 0; |
1da177e4 LT |
469 | } |
470 | ||
4cf58924 | 471 | int __pte_alloc_kernel(pmd_t *pmd) |
1da177e4 | 472 | { |
4cf58924 | 473 | pte_t *new = pte_alloc_one_kernel(&init_mm); |
1bb3630e HD |
474 | if (!new) |
475 | return -ENOMEM; | |
476 | ||
362a61ad NP |
477 | smp_wmb(); /* See comment in __pte_alloc */ |
478 | ||
1bb3630e | 479 | spin_lock(&init_mm.page_table_lock); |
8ac1f832 | 480 | if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ |
1bb3630e | 481 | pmd_populate_kernel(&init_mm, pmd, new); |
2f569afd | 482 | new = NULL; |
4b471e88 | 483 | } |
1bb3630e | 484 | spin_unlock(&init_mm.page_table_lock); |
2f569afd MS |
485 | if (new) |
486 | pte_free_kernel(&init_mm, new); | |
1bb3630e | 487 | return 0; |
1da177e4 LT |
488 | } |
489 | ||
d559db08 KH |
490 | static inline void init_rss_vec(int *rss) |
491 | { | |
492 | memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); | |
493 | } | |
494 | ||
495 | static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) | |
ae859762 | 496 | { |
d559db08 KH |
497 | int i; |
498 | ||
34e55232 | 499 | if (current->mm == mm) |
05af2e10 | 500 | sync_mm_rss(mm); |
d559db08 KH |
501 | for (i = 0; i < NR_MM_COUNTERS; i++) |
502 | if (rss[i]) | |
503 | add_mm_counter(mm, i, rss[i]); | |
ae859762 HD |
504 | } |
505 | ||
b5810039 | 506 | /* |
6aab341e LT |
507 | * This function is called to print an error when a bad pte |
508 | * is found. For example, we might have a PFN-mapped pte in | |
509 | * a region that doesn't allow it. | |
b5810039 NP |
510 | * |
511 | * The calling function must still handle the error. | |
512 | */ | |
3dc14741 HD |
513 | static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, |
514 | pte_t pte, struct page *page) | |
b5810039 | 515 | { |
3dc14741 | 516 | pgd_t *pgd = pgd_offset(vma->vm_mm, addr); |
c2febafc KS |
517 | p4d_t *p4d = p4d_offset(pgd, addr); |
518 | pud_t *pud = pud_offset(p4d, addr); | |
3dc14741 HD |
519 | pmd_t *pmd = pmd_offset(pud, addr); |
520 | struct address_space *mapping; | |
521 | pgoff_t index; | |
d936cf9b HD |
522 | static unsigned long resume; |
523 | static unsigned long nr_shown; | |
524 | static unsigned long nr_unshown; | |
525 | ||
526 | /* | |
527 | * Allow a burst of 60 reports, then keep quiet for that minute; | |
528 | * or allow a steady drip of one report per second. | |
529 | */ | |
530 | if (nr_shown == 60) { | |
531 | if (time_before(jiffies, resume)) { | |
532 | nr_unshown++; | |
533 | return; | |
534 | } | |
535 | if (nr_unshown) { | |
1170532b JP |
536 | pr_alert("BUG: Bad page map: %lu messages suppressed\n", |
537 | nr_unshown); | |
d936cf9b HD |
538 | nr_unshown = 0; |
539 | } | |
540 | nr_shown = 0; | |
541 | } | |
542 | if (nr_shown++ == 0) | |
543 | resume = jiffies + 60 * HZ; | |
3dc14741 HD |
544 | |
545 | mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; | |
546 | index = linear_page_index(vma, addr); | |
547 | ||
1170532b JP |
548 | pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", |
549 | current->comm, | |
550 | (long long)pte_val(pte), (long long)pmd_val(*pmd)); | |
718a3821 | 551 | if (page) |
f0b791a3 | 552 | dump_page(page, "bad pte"); |
6aa9b8b2 | 553 | pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", |
1170532b | 554 | (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); |
d75f773c | 555 | pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n", |
2682582a KK |
556 | vma->vm_file, |
557 | vma->vm_ops ? vma->vm_ops->fault : NULL, | |
558 | vma->vm_file ? vma->vm_file->f_op->mmap : NULL, | |
559 | mapping ? mapping->a_ops->readpage : NULL); | |
b5810039 | 560 | dump_stack(); |
373d4d09 | 561 | add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); |
b5810039 NP |
562 | } |
563 | ||
ee498ed7 | 564 | /* |
7e675137 | 565 | * vm_normal_page -- This function gets the "struct page" associated with a pte. |
6aab341e | 566 | * |
7e675137 NP |
567 | * "Special" mappings do not wish to be associated with a "struct page" (either |
568 | * it doesn't exist, or it exists but they don't want to touch it). In this | |
569 | * case, NULL is returned here. "Normal" mappings do have a struct page. | |
b379d790 | 570 | * |
7e675137 NP |
571 | * There are 2 broad cases. Firstly, an architecture may define a pte_special() |
572 | * pte bit, in which case this function is trivial. Secondly, an architecture | |
573 | * may not have a spare pte bit, which requires a more complicated scheme, | |
574 | * described below. | |
575 | * | |
576 | * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a | |
577 | * special mapping (even if there are underlying and valid "struct pages"). | |
578 | * COWed pages of a VM_PFNMAP are always normal. | |
6aab341e | 579 | * |
b379d790 JH |
580 | * The way we recognize COWed pages within VM_PFNMAP mappings is through the |
581 | * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit | |
7e675137 NP |
582 | * set, and the vm_pgoff will point to the first PFN mapped: thus every special |
583 | * mapping will always honor the rule | |
6aab341e LT |
584 | * |
585 | * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) | |
586 | * | |
7e675137 NP |
587 | * And for normal mappings this is false. |
588 | * | |
589 | * This restricts such mappings to be a linear translation from virtual address | |
590 | * to pfn. To get around this restriction, we allow arbitrary mappings so long | |
591 | * as the vma is not a COW mapping; in that case, we know that all ptes are | |
592 | * special (because none can have been COWed). | |
b379d790 | 593 | * |
b379d790 | 594 | * |
7e675137 | 595 | * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. |
b379d790 JH |
596 | * |
597 | * VM_MIXEDMAP mappings can likewise contain memory with or without "struct | |
598 | * page" backing, however the difference is that _all_ pages with a struct | |
599 | * page (that is, those where pfn_valid is true) are refcounted and considered | |
600 | * normal pages by the VM. The disadvantage is that pages are refcounted | |
601 | * (which can be slower and simply not an option for some PFNMAP users). The | |
602 | * advantage is that we don't have to follow the strict linearity rule of | |
603 | * PFNMAP mappings in order to support COWable mappings. | |
604 | * | |
ee498ed7 | 605 | */ |
25b2995a CH |
606 | struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, |
607 | pte_t pte) | |
ee498ed7 | 608 | { |
22b31eec | 609 | unsigned long pfn = pte_pfn(pte); |
7e675137 | 610 | |
00b3a331 | 611 | if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { |
b38af472 | 612 | if (likely(!pte_special(pte))) |
22b31eec | 613 | goto check_pfn; |
667a0a06 DV |
614 | if (vma->vm_ops && vma->vm_ops->find_special_page) |
615 | return vma->vm_ops->find_special_page(vma, addr); | |
a13ea5b7 HD |
616 | if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) |
617 | return NULL; | |
df6ad698 JG |
618 | if (is_zero_pfn(pfn)) |
619 | return NULL; | |
e1fb4a08 DJ |
620 | if (pte_devmap(pte)) |
621 | return NULL; | |
622 | ||
df6ad698 | 623 | print_bad_pte(vma, addr, pte, NULL); |
7e675137 NP |
624 | return NULL; |
625 | } | |
626 | ||
00b3a331 | 627 | /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ |
7e675137 | 628 | |
b379d790 JH |
629 | if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { |
630 | if (vma->vm_flags & VM_MIXEDMAP) { | |
631 | if (!pfn_valid(pfn)) | |
632 | return NULL; | |
633 | goto out; | |
634 | } else { | |
7e675137 NP |
635 | unsigned long off; |
636 | off = (addr - vma->vm_start) >> PAGE_SHIFT; | |
b379d790 JH |
637 | if (pfn == vma->vm_pgoff + off) |
638 | return NULL; | |
639 | if (!is_cow_mapping(vma->vm_flags)) | |
640 | return NULL; | |
641 | } | |
6aab341e LT |
642 | } |
643 | ||
b38af472 HD |
644 | if (is_zero_pfn(pfn)) |
645 | return NULL; | |
00b3a331 | 646 | |
22b31eec HD |
647 | check_pfn: |
648 | if (unlikely(pfn > highest_memmap_pfn)) { | |
649 | print_bad_pte(vma, addr, pte, NULL); | |
650 | return NULL; | |
651 | } | |
6aab341e LT |
652 | |
653 | /* | |
7e675137 | 654 | * NOTE! We still have PageReserved() pages in the page tables. |
7e675137 | 655 | * eg. VDSO mappings can cause them to exist. |
6aab341e | 656 | */ |
b379d790 | 657 | out: |
6aab341e | 658 | return pfn_to_page(pfn); |
ee498ed7 HD |
659 | } |
660 | ||
28093f9f GS |
661 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
662 | struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, | |
663 | pmd_t pmd) | |
664 | { | |
665 | unsigned long pfn = pmd_pfn(pmd); | |
666 | ||
667 | /* | |
668 | * There is no pmd_special() but there may be special pmds, e.g. | |
669 | * in a direct-access (dax) mapping, so let's just replicate the | |
00b3a331 | 670 | * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here. |
28093f9f GS |
671 | */ |
672 | if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { | |
673 | if (vma->vm_flags & VM_MIXEDMAP) { | |
674 | if (!pfn_valid(pfn)) | |
675 | return NULL; | |
676 | goto out; | |
677 | } else { | |
678 | unsigned long off; | |
679 | off = (addr - vma->vm_start) >> PAGE_SHIFT; | |
680 | if (pfn == vma->vm_pgoff + off) | |
681 | return NULL; | |
682 | if (!is_cow_mapping(vma->vm_flags)) | |
683 | return NULL; | |
684 | } | |
685 | } | |
686 | ||
e1fb4a08 DJ |
687 | if (pmd_devmap(pmd)) |
688 | return NULL; | |
3cde287b | 689 | if (is_huge_zero_pmd(pmd)) |
28093f9f GS |
690 | return NULL; |
691 | if (unlikely(pfn > highest_memmap_pfn)) | |
692 | return NULL; | |
693 | ||
694 | /* | |
695 | * NOTE! We still have PageReserved() pages in the page tables. | |
696 | * eg. VDSO mappings can cause them to exist. | |
697 | */ | |
698 | out: | |
699 | return pfn_to_page(pfn); | |
700 | } | |
701 | #endif | |
702 | ||
1da177e4 LT |
703 | /* |
704 | * copy one vm_area from one task to the other. Assumes the page tables | |
705 | * already present in the new task to be cleared in the whole range | |
706 | * covered by this vma. | |
1da177e4 LT |
707 | */ |
708 | ||
df3a57d1 LT |
709 | static unsigned long |
710 | copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, | |
b5810039 | 711 | pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, |
8c103762 | 712 | unsigned long addr, int *rss) |
1da177e4 | 713 | { |
b5810039 | 714 | unsigned long vm_flags = vma->vm_flags; |
1da177e4 LT |
715 | pte_t pte = *src_pte; |
716 | struct page *page; | |
df3a57d1 LT |
717 | swp_entry_t entry = pte_to_swp_entry(pte); |
718 | ||
719 | if (likely(!non_swap_entry(entry))) { | |
720 | if (swap_duplicate(entry) < 0) | |
721 | return entry.val; | |
722 | ||
723 | /* make sure dst_mm is on swapoff's mmlist. */ | |
724 | if (unlikely(list_empty(&dst_mm->mmlist))) { | |
725 | spin_lock(&mmlist_lock); | |
726 | if (list_empty(&dst_mm->mmlist)) | |
727 | list_add(&dst_mm->mmlist, | |
728 | &src_mm->mmlist); | |
729 | spin_unlock(&mmlist_lock); | |
730 | } | |
731 | rss[MM_SWAPENTS]++; | |
732 | } else if (is_migration_entry(entry)) { | |
733 | page = migration_entry_to_page(entry); | |
1da177e4 | 734 | |
df3a57d1 | 735 | rss[mm_counter(page)]++; |
5042db43 | 736 | |
df3a57d1 LT |
737 | if (is_write_migration_entry(entry) && |
738 | is_cow_mapping(vm_flags)) { | |
5042db43 | 739 | /* |
df3a57d1 LT |
740 | * COW mappings require pages in both |
741 | * parent and child to be set to read. | |
5042db43 | 742 | */ |
df3a57d1 LT |
743 | make_migration_entry_read(&entry); |
744 | pte = swp_entry_to_pte(entry); | |
745 | if (pte_swp_soft_dirty(*src_pte)) | |
746 | pte = pte_swp_mksoft_dirty(pte); | |
747 | if (pte_swp_uffd_wp(*src_pte)) | |
748 | pte = pte_swp_mkuffd_wp(pte); | |
749 | set_pte_at(src_mm, addr, src_pte, pte); | |
750 | } | |
751 | } else if (is_device_private_entry(entry)) { | |
752 | page = device_private_entry_to_page(entry); | |
5042db43 | 753 | |
df3a57d1 LT |
754 | /* |
755 | * Update rss count even for unaddressable pages, as | |
756 | * they should treated just like normal pages in this | |
757 | * respect. | |
758 | * | |
759 | * We will likely want to have some new rss counters | |
760 | * for unaddressable pages, at some point. But for now | |
761 | * keep things as they are. | |
762 | */ | |
763 | get_page(page); | |
764 | rss[mm_counter(page)]++; | |
765 | page_dup_rmap(page, false); | |
766 | ||
767 | /* | |
768 | * We do not preserve soft-dirty information, because so | |
769 | * far, checkpoint/restore is the only feature that | |
770 | * requires that. And checkpoint/restore does not work | |
771 | * when a device driver is involved (you cannot easily | |
772 | * save and restore device driver state). | |
773 | */ | |
774 | if (is_write_device_private_entry(entry) && | |
775 | is_cow_mapping(vm_flags)) { | |
776 | make_device_private_entry_read(&entry); | |
777 | pte = swp_entry_to_pte(entry); | |
778 | if (pte_swp_uffd_wp(*src_pte)) | |
779 | pte = pte_swp_mkuffd_wp(pte); | |
780 | set_pte_at(src_mm, addr, src_pte, pte); | |
1da177e4 | 781 | } |
1da177e4 | 782 | } |
df3a57d1 LT |
783 | set_pte_at(dst_mm, addr, dst_pte, pte); |
784 | return 0; | |
785 | } | |
786 | ||
70e806e4 PX |
787 | /* |
788 | * Copy a present and normal page if necessary. | |
789 | * | |
790 | * NOTE! The usual case is that this doesn't need to do | |
791 | * anything, and can just return a positive value. That | |
792 | * will let the caller know that it can just increase | |
793 | * the page refcount and re-use the pte the traditional | |
794 | * way. | |
795 | * | |
796 | * But _if_ we need to copy it because it needs to be | |
797 | * pinned in the parent (and the child should get its own | |
798 | * copy rather than just a reference to the same page), | |
799 | * we'll do that here and return zero to let the caller | |
800 | * know we're done. | |
801 | * | |
802 | * And if we need a pre-allocated page but don't yet have | |
803 | * one, return a negative error to let the preallocation | |
804 | * code know so that it can do so outside the page table | |
805 | * lock. | |
806 | */ | |
807 | static inline int | |
c78f4636 PX |
808 | copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, |
809 | pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, | |
810 | struct page **prealloc, pte_t pte, struct page *page) | |
70e806e4 PX |
811 | { |
812 | struct page *new_page; | |
813 | ||
70e806e4 | 814 | /* |
70e806e4 PX |
815 | * What we want to do is to check whether this page may |
816 | * have been pinned by the parent process. If so, | |
817 | * instead of wrprotect the pte on both sides, we copy | |
818 | * the page immediately so that we'll always guarantee | |
819 | * the pinned page won't be randomly replaced in the | |
820 | * future. | |
821 | * | |
f3c64eda LT |
822 | * The page pinning checks are just "has this mm ever |
823 | * seen pinning", along with the (inexact) check of | |
824 | * the page count. That might give false positives for | |
825 | * for pinning, but it will work correctly. | |
70e806e4 | 826 | */ |
97a7e473 | 827 | if (likely(!page_needs_cow_for_dma(src_vma, page))) |
70e806e4 PX |
828 | return 1; |
829 | ||
70e806e4 PX |
830 | new_page = *prealloc; |
831 | if (!new_page) | |
832 | return -EAGAIN; | |
833 | ||
834 | /* | |
835 | * We have a prealloc page, all good! Take it | |
836 | * over and copy the page & arm it. | |
837 | */ | |
838 | *prealloc = NULL; | |
c78f4636 | 839 | copy_user_highpage(new_page, page, addr, src_vma); |
70e806e4 | 840 | __SetPageUptodate(new_page); |
c78f4636 PX |
841 | page_add_new_anon_rmap(new_page, dst_vma, addr, false); |
842 | lru_cache_add_inactive_or_unevictable(new_page, dst_vma); | |
70e806e4 PX |
843 | rss[mm_counter(new_page)]++; |
844 | ||
845 | /* All done, just insert the new page copy in the child */ | |
c78f4636 PX |
846 | pte = mk_pte(new_page, dst_vma->vm_page_prot); |
847 | pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma); | |
848 | set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); | |
70e806e4 PX |
849 | return 0; |
850 | } | |
851 | ||
852 | /* | |
853 | * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page | |
854 | * is required to copy this pte. | |
855 | */ | |
856 | static inline int | |
c78f4636 PX |
857 | copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, |
858 | pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, | |
859 | struct page **prealloc) | |
df3a57d1 | 860 | { |
c78f4636 PX |
861 | struct mm_struct *src_mm = src_vma->vm_mm; |
862 | unsigned long vm_flags = src_vma->vm_flags; | |
df3a57d1 LT |
863 | pte_t pte = *src_pte; |
864 | struct page *page; | |
865 | ||
c78f4636 | 866 | page = vm_normal_page(src_vma, addr, pte); |
70e806e4 PX |
867 | if (page) { |
868 | int retval; | |
869 | ||
c78f4636 PX |
870 | retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte, |
871 | addr, rss, prealloc, pte, page); | |
70e806e4 PX |
872 | if (retval <= 0) |
873 | return retval; | |
874 | ||
875 | get_page(page); | |
876 | page_dup_rmap(page, false); | |
877 | rss[mm_counter(page)]++; | |
878 | } | |
879 | ||
1da177e4 LT |
880 | /* |
881 | * If it's a COW mapping, write protect it both | |
882 | * in the parent and the child | |
883 | */ | |
1b2de5d0 | 884 | if (is_cow_mapping(vm_flags) && pte_write(pte)) { |
1da177e4 | 885 | ptep_set_wrprotect(src_mm, addr, src_pte); |
3dc90795 | 886 | pte = pte_wrprotect(pte); |
1da177e4 LT |
887 | } |
888 | ||
889 | /* | |
890 | * If it's a shared mapping, mark it clean in | |
891 | * the child | |
892 | */ | |
893 | if (vm_flags & VM_SHARED) | |
894 | pte = pte_mkclean(pte); | |
895 | pte = pte_mkold(pte); | |
6aab341e | 896 | |
b569a176 PX |
897 | /* |
898 | * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA | |
899 | * does not have the VM_UFFD_WP, which means that the uffd | |
900 | * fork event is not enabled. | |
901 | */ | |
902 | if (!(vm_flags & VM_UFFD_WP)) | |
903 | pte = pte_clear_uffd_wp(pte); | |
904 | ||
c78f4636 | 905 | set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); |
70e806e4 PX |
906 | return 0; |
907 | } | |
908 | ||
909 | static inline struct page * | |
910 | page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma, | |
911 | unsigned long addr) | |
912 | { | |
913 | struct page *new_page; | |
914 | ||
915 | new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr); | |
916 | if (!new_page) | |
917 | return NULL; | |
918 | ||
919 | if (mem_cgroup_charge(new_page, src_mm, GFP_KERNEL)) { | |
920 | put_page(new_page); | |
921 | return NULL; | |
6aab341e | 922 | } |
70e806e4 | 923 | cgroup_throttle_swaprate(new_page, GFP_KERNEL); |
ae859762 | 924 | |
70e806e4 | 925 | return new_page; |
1da177e4 LT |
926 | } |
927 | ||
c78f4636 PX |
928 | static int |
929 | copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, | |
930 | pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, | |
931 | unsigned long end) | |
1da177e4 | 932 | { |
c78f4636 PX |
933 | struct mm_struct *dst_mm = dst_vma->vm_mm; |
934 | struct mm_struct *src_mm = src_vma->vm_mm; | |
c36987e2 | 935 | pte_t *orig_src_pte, *orig_dst_pte; |
1da177e4 | 936 | pte_t *src_pte, *dst_pte; |
c74df32c | 937 | spinlock_t *src_ptl, *dst_ptl; |
70e806e4 | 938 | int progress, ret = 0; |
d559db08 | 939 | int rss[NR_MM_COUNTERS]; |
570a335b | 940 | swp_entry_t entry = (swp_entry_t){0}; |
70e806e4 | 941 | struct page *prealloc = NULL; |
1da177e4 LT |
942 | |
943 | again: | |
70e806e4 | 944 | progress = 0; |
d559db08 KH |
945 | init_rss_vec(rss); |
946 | ||
c74df32c | 947 | dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); |
70e806e4 PX |
948 | if (!dst_pte) { |
949 | ret = -ENOMEM; | |
950 | goto out; | |
951 | } | |
ece0e2b6 | 952 | src_pte = pte_offset_map(src_pmd, addr); |
4c21e2f2 | 953 | src_ptl = pte_lockptr(src_mm, src_pmd); |
f20dc5f7 | 954 | spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); |
c36987e2 DN |
955 | orig_src_pte = src_pte; |
956 | orig_dst_pte = dst_pte; | |
6606c3e0 | 957 | arch_enter_lazy_mmu_mode(); |
1da177e4 | 958 | |
1da177e4 LT |
959 | do { |
960 | /* | |
961 | * We are holding two locks at this point - either of them | |
962 | * could generate latencies in another task on another CPU. | |
963 | */ | |
e040f218 HD |
964 | if (progress >= 32) { |
965 | progress = 0; | |
966 | if (need_resched() || | |
95c354fe | 967 | spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) |
e040f218 HD |
968 | break; |
969 | } | |
1da177e4 LT |
970 | if (pte_none(*src_pte)) { |
971 | progress++; | |
972 | continue; | |
973 | } | |
79a1971c LT |
974 | if (unlikely(!pte_present(*src_pte))) { |
975 | entry.val = copy_nonpresent_pte(dst_mm, src_mm, | |
976 | dst_pte, src_pte, | |
c78f4636 | 977 | src_vma, addr, rss); |
79a1971c LT |
978 | if (entry.val) |
979 | break; | |
980 | progress += 8; | |
981 | continue; | |
982 | } | |
70e806e4 | 983 | /* copy_present_pte() will clear `*prealloc' if consumed */ |
c78f4636 PX |
984 | ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte, |
985 | addr, rss, &prealloc); | |
70e806e4 PX |
986 | /* |
987 | * If we need a pre-allocated page for this pte, drop the | |
988 | * locks, allocate, and try again. | |
989 | */ | |
990 | if (unlikely(ret == -EAGAIN)) | |
991 | break; | |
992 | if (unlikely(prealloc)) { | |
993 | /* | |
994 | * pre-alloc page cannot be reused by next time so as | |
995 | * to strictly follow mempolicy (e.g., alloc_page_vma() | |
996 | * will allocate page according to address). This | |
997 | * could only happen if one pinned pte changed. | |
998 | */ | |
999 | put_page(prealloc); | |
1000 | prealloc = NULL; | |
1001 | } | |
1da177e4 LT |
1002 | progress += 8; |
1003 | } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); | |
1da177e4 | 1004 | |
6606c3e0 | 1005 | arch_leave_lazy_mmu_mode(); |
c74df32c | 1006 | spin_unlock(src_ptl); |
ece0e2b6 | 1007 | pte_unmap(orig_src_pte); |
d559db08 | 1008 | add_mm_rss_vec(dst_mm, rss); |
c36987e2 | 1009 | pte_unmap_unlock(orig_dst_pte, dst_ptl); |
c74df32c | 1010 | cond_resched(); |
570a335b HD |
1011 | |
1012 | if (entry.val) { | |
70e806e4 PX |
1013 | if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) { |
1014 | ret = -ENOMEM; | |
1015 | goto out; | |
1016 | } | |
1017 | entry.val = 0; | |
1018 | } else if (ret) { | |
1019 | WARN_ON_ONCE(ret != -EAGAIN); | |
c78f4636 | 1020 | prealloc = page_copy_prealloc(src_mm, src_vma, addr); |
70e806e4 | 1021 | if (!prealloc) |
570a335b | 1022 | return -ENOMEM; |
70e806e4 PX |
1023 | /* We've captured and resolved the error. Reset, try again. */ |
1024 | ret = 0; | |
570a335b | 1025 | } |
1da177e4 LT |
1026 | if (addr != end) |
1027 | goto again; | |
70e806e4 PX |
1028 | out: |
1029 | if (unlikely(prealloc)) | |
1030 | put_page(prealloc); | |
1031 | return ret; | |
1da177e4 LT |
1032 | } |
1033 | ||
c78f4636 PX |
1034 | static inline int |
1035 | copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, | |
1036 | pud_t *dst_pud, pud_t *src_pud, unsigned long addr, | |
1037 | unsigned long end) | |
1da177e4 | 1038 | { |
c78f4636 PX |
1039 | struct mm_struct *dst_mm = dst_vma->vm_mm; |
1040 | struct mm_struct *src_mm = src_vma->vm_mm; | |
1da177e4 LT |
1041 | pmd_t *src_pmd, *dst_pmd; |
1042 | unsigned long next; | |
1043 | ||
1044 | dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); | |
1045 | if (!dst_pmd) | |
1046 | return -ENOMEM; | |
1047 | src_pmd = pmd_offset(src_pud, addr); | |
1048 | do { | |
1049 | next = pmd_addr_end(addr, end); | |
84c3fc4e ZY |
1050 | if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) |
1051 | || pmd_devmap(*src_pmd)) { | |
71e3aac0 | 1052 | int err; |
c78f4636 | 1053 | VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma); |
71e3aac0 | 1054 | err = copy_huge_pmd(dst_mm, src_mm, |
c78f4636 | 1055 | dst_pmd, src_pmd, addr, src_vma); |
71e3aac0 AA |
1056 | if (err == -ENOMEM) |
1057 | return -ENOMEM; | |
1058 | if (!err) | |
1059 | continue; | |
1060 | /* fall through */ | |
1061 | } | |
1da177e4 LT |
1062 | if (pmd_none_or_clear_bad(src_pmd)) |
1063 | continue; | |
c78f4636 PX |
1064 | if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd, |
1065 | addr, next)) | |
1da177e4 LT |
1066 | return -ENOMEM; |
1067 | } while (dst_pmd++, src_pmd++, addr = next, addr != end); | |
1068 | return 0; | |
1069 | } | |
1070 | ||
c78f4636 PX |
1071 | static inline int |
1072 | copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, | |
1073 | p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr, | |
1074 | unsigned long end) | |
1da177e4 | 1075 | { |
c78f4636 PX |
1076 | struct mm_struct *dst_mm = dst_vma->vm_mm; |
1077 | struct mm_struct *src_mm = src_vma->vm_mm; | |
1da177e4 LT |
1078 | pud_t *src_pud, *dst_pud; |
1079 | unsigned long next; | |
1080 | ||
c2febafc | 1081 | dst_pud = pud_alloc(dst_mm, dst_p4d, addr); |
1da177e4 LT |
1082 | if (!dst_pud) |
1083 | return -ENOMEM; | |
c2febafc | 1084 | src_pud = pud_offset(src_p4d, addr); |
1da177e4 LT |
1085 | do { |
1086 | next = pud_addr_end(addr, end); | |
a00cc7d9 MW |
1087 | if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { |
1088 | int err; | |
1089 | ||
c78f4636 | 1090 | VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma); |
a00cc7d9 | 1091 | err = copy_huge_pud(dst_mm, src_mm, |
c78f4636 | 1092 | dst_pud, src_pud, addr, src_vma); |
a00cc7d9 MW |
1093 | if (err == -ENOMEM) |
1094 | return -ENOMEM; | |
1095 | if (!err) | |
1096 | continue; | |
1097 | /* fall through */ | |
1098 | } | |
1da177e4 LT |
1099 | if (pud_none_or_clear_bad(src_pud)) |
1100 | continue; | |
c78f4636 PX |
1101 | if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud, |
1102 | addr, next)) | |
1da177e4 LT |
1103 | return -ENOMEM; |
1104 | } while (dst_pud++, src_pud++, addr = next, addr != end); | |
1105 | return 0; | |
1106 | } | |
1107 | ||
c78f4636 PX |
1108 | static inline int |
1109 | copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, | |
1110 | pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr, | |
1111 | unsigned long end) | |
c2febafc | 1112 | { |
c78f4636 | 1113 | struct mm_struct *dst_mm = dst_vma->vm_mm; |
c2febafc KS |
1114 | p4d_t *src_p4d, *dst_p4d; |
1115 | unsigned long next; | |
1116 | ||
1117 | dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); | |
1118 | if (!dst_p4d) | |
1119 | return -ENOMEM; | |
1120 | src_p4d = p4d_offset(src_pgd, addr); | |
1121 | do { | |
1122 | next = p4d_addr_end(addr, end); | |
1123 | if (p4d_none_or_clear_bad(src_p4d)) | |
1124 | continue; | |
c78f4636 PX |
1125 | if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d, |
1126 | addr, next)) | |
c2febafc KS |
1127 | return -ENOMEM; |
1128 | } while (dst_p4d++, src_p4d++, addr = next, addr != end); | |
1129 | return 0; | |
1130 | } | |
1131 | ||
c78f4636 PX |
1132 | int |
1133 | copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) | |
1da177e4 LT |
1134 | { |
1135 | pgd_t *src_pgd, *dst_pgd; | |
1136 | unsigned long next; | |
c78f4636 PX |
1137 | unsigned long addr = src_vma->vm_start; |
1138 | unsigned long end = src_vma->vm_end; | |
1139 | struct mm_struct *dst_mm = dst_vma->vm_mm; | |
1140 | struct mm_struct *src_mm = src_vma->vm_mm; | |
ac46d4f3 | 1141 | struct mmu_notifier_range range; |
2ec74c3e | 1142 | bool is_cow; |
cddb8a5c | 1143 | int ret; |
1da177e4 | 1144 | |
d992895b NP |
1145 | /* |
1146 | * Don't copy ptes where a page fault will fill them correctly. | |
1147 | * Fork becomes much lighter when there are big shared or private | |
1148 | * readonly mappings. The tradeoff is that copy_page_range is more | |
1149 | * efficient than faulting. | |
1150 | */ | |
c78f4636 PX |
1151 | if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) && |
1152 | !src_vma->anon_vma) | |
0661a336 | 1153 | return 0; |
d992895b | 1154 | |
c78f4636 PX |
1155 | if (is_vm_hugetlb_page(src_vma)) |
1156 | return copy_hugetlb_page_range(dst_mm, src_mm, src_vma); | |
1da177e4 | 1157 | |
c78f4636 | 1158 | if (unlikely(src_vma->vm_flags & VM_PFNMAP)) { |
2ab64037 | 1159 | /* |
1160 | * We do not free on error cases below as remove_vma | |
1161 | * gets called on error from higher level routine | |
1162 | */ | |
c78f4636 | 1163 | ret = track_pfn_copy(src_vma); |
2ab64037 | 1164 | if (ret) |
1165 | return ret; | |
1166 | } | |
1167 | ||
cddb8a5c AA |
1168 | /* |
1169 | * We need to invalidate the secondary MMU mappings only when | |
1170 | * there could be a permission downgrade on the ptes of the | |
1171 | * parent mm. And a permission downgrade will only happen if | |
1172 | * is_cow_mapping() returns true. | |
1173 | */ | |
c78f4636 | 1174 | is_cow = is_cow_mapping(src_vma->vm_flags); |
ac46d4f3 JG |
1175 | |
1176 | if (is_cow) { | |
7269f999 | 1177 | mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, |
c78f4636 | 1178 | 0, src_vma, src_mm, addr, end); |
ac46d4f3 | 1179 | mmu_notifier_invalidate_range_start(&range); |
57efa1fe JG |
1180 | /* |
1181 | * Disabling preemption is not needed for the write side, as | |
1182 | * the read side doesn't spin, but goes to the mmap_lock. | |
1183 | * | |
1184 | * Use the raw variant of the seqcount_t write API to avoid | |
1185 | * lockdep complaining about preemptibility. | |
1186 | */ | |
1187 | mmap_assert_write_locked(src_mm); | |
1188 | raw_write_seqcount_begin(&src_mm->write_protect_seq); | |
ac46d4f3 | 1189 | } |
cddb8a5c AA |
1190 | |
1191 | ret = 0; | |
1da177e4 LT |
1192 | dst_pgd = pgd_offset(dst_mm, addr); |
1193 | src_pgd = pgd_offset(src_mm, addr); | |
1194 | do { | |
1195 | next = pgd_addr_end(addr, end); | |
1196 | if (pgd_none_or_clear_bad(src_pgd)) | |
1197 | continue; | |
c78f4636 PX |
1198 | if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd, |
1199 | addr, next))) { | |
cddb8a5c AA |
1200 | ret = -ENOMEM; |
1201 | break; | |
1202 | } | |
1da177e4 | 1203 | } while (dst_pgd++, src_pgd++, addr = next, addr != end); |
cddb8a5c | 1204 | |
57efa1fe JG |
1205 | if (is_cow) { |
1206 | raw_write_seqcount_end(&src_mm->write_protect_seq); | |
ac46d4f3 | 1207 | mmu_notifier_invalidate_range_end(&range); |
57efa1fe | 1208 | } |
cddb8a5c | 1209 | return ret; |
1da177e4 LT |
1210 | } |
1211 | ||
51c6f666 | 1212 | static unsigned long zap_pte_range(struct mmu_gather *tlb, |
b5810039 | 1213 | struct vm_area_struct *vma, pmd_t *pmd, |
1da177e4 | 1214 | unsigned long addr, unsigned long end, |
97a89413 | 1215 | struct zap_details *details) |
1da177e4 | 1216 | { |
b5810039 | 1217 | struct mm_struct *mm = tlb->mm; |
d16dfc55 | 1218 | int force_flush = 0; |
d559db08 | 1219 | int rss[NR_MM_COUNTERS]; |
97a89413 | 1220 | spinlock_t *ptl; |
5f1a1907 | 1221 | pte_t *start_pte; |
97a89413 | 1222 | pte_t *pte; |
8a5f14a2 | 1223 | swp_entry_t entry; |
d559db08 | 1224 | |
ed6a7935 | 1225 | tlb_change_page_size(tlb, PAGE_SIZE); |
d16dfc55 | 1226 | again: |
e303297e | 1227 | init_rss_vec(rss); |
5f1a1907 SR |
1228 | start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); |
1229 | pte = start_pte; | |
3ea27719 | 1230 | flush_tlb_batched_pending(mm); |
6606c3e0 | 1231 | arch_enter_lazy_mmu_mode(); |
1da177e4 LT |
1232 | do { |
1233 | pte_t ptent = *pte; | |
166f61b9 | 1234 | if (pte_none(ptent)) |
1da177e4 | 1235 | continue; |
6f5e6b9e | 1236 | |
7b167b68 MK |
1237 | if (need_resched()) |
1238 | break; | |
1239 | ||
1da177e4 | 1240 | if (pte_present(ptent)) { |
ee498ed7 | 1241 | struct page *page; |
51c6f666 | 1242 | |
25b2995a | 1243 | page = vm_normal_page(vma, addr, ptent); |
1da177e4 LT |
1244 | if (unlikely(details) && page) { |
1245 | /* | |
1246 | * unmap_shared_mapping_pages() wants to | |
1247 | * invalidate cache without truncating: | |
1248 | * unmap shared but keep private pages. | |
1249 | */ | |
1250 | if (details->check_mapping && | |
800d8c63 | 1251 | details->check_mapping != page_rmapping(page)) |
1da177e4 | 1252 | continue; |
1da177e4 | 1253 | } |
b5810039 | 1254 | ptent = ptep_get_and_clear_full(mm, addr, pte, |
a600388d | 1255 | tlb->fullmm); |
1da177e4 LT |
1256 | tlb_remove_tlb_entry(tlb, pte, addr); |
1257 | if (unlikely(!page)) | |
1258 | continue; | |
eca56ff9 JM |
1259 | |
1260 | if (!PageAnon(page)) { | |
1cf35d47 LT |
1261 | if (pte_dirty(ptent)) { |
1262 | force_flush = 1; | |
6237bcd9 | 1263 | set_page_dirty(page); |
1cf35d47 | 1264 | } |
4917e5d0 | 1265 | if (pte_young(ptent) && |
64363aad | 1266 | likely(!(vma->vm_flags & VM_SEQ_READ))) |
bf3f3bc5 | 1267 | mark_page_accessed(page); |
6237bcd9 | 1268 | } |
eca56ff9 | 1269 | rss[mm_counter(page)]--; |
d281ee61 | 1270 | page_remove_rmap(page, false); |
3dc14741 HD |
1271 | if (unlikely(page_mapcount(page) < 0)) |
1272 | print_bad_pte(vma, addr, ptent, page); | |
e9d55e15 | 1273 | if (unlikely(__tlb_remove_page(tlb, page))) { |
1cf35d47 | 1274 | force_flush = 1; |
ce9ec37b | 1275 | addr += PAGE_SIZE; |
d16dfc55 | 1276 | break; |
1cf35d47 | 1277 | } |
1da177e4 LT |
1278 | continue; |
1279 | } | |
5042db43 JG |
1280 | |
1281 | entry = pte_to_swp_entry(ptent); | |
463b7a17 | 1282 | if (is_device_private_entry(entry)) { |
5042db43 JG |
1283 | struct page *page = device_private_entry_to_page(entry); |
1284 | ||
1285 | if (unlikely(details && details->check_mapping)) { | |
1286 | /* | |
1287 | * unmap_shared_mapping_pages() wants to | |
1288 | * invalidate cache without truncating: | |
1289 | * unmap shared but keep private pages. | |
1290 | */ | |
1291 | if (details->check_mapping != | |
1292 | page_rmapping(page)) | |
1293 | continue; | |
1294 | } | |
1295 | ||
1296 | pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); | |
1297 | rss[mm_counter(page)]--; | |
1298 | page_remove_rmap(page, false); | |
1299 | put_page(page); | |
1300 | continue; | |
1301 | } | |
1302 | ||
3e8715fd KS |
1303 | /* If details->check_mapping, we leave swap entries. */ |
1304 | if (unlikely(details)) | |
1da177e4 | 1305 | continue; |
b084d435 | 1306 | |
8a5f14a2 KS |
1307 | if (!non_swap_entry(entry)) |
1308 | rss[MM_SWAPENTS]--; | |
1309 | else if (is_migration_entry(entry)) { | |
1310 | struct page *page; | |
9f9f1acd | 1311 | |
8a5f14a2 | 1312 | page = migration_entry_to_page(entry); |
eca56ff9 | 1313 | rss[mm_counter(page)]--; |
b084d435 | 1314 | } |
8a5f14a2 KS |
1315 | if (unlikely(!free_swap_and_cache(entry))) |
1316 | print_bad_pte(vma, addr, ptent, NULL); | |
9888a1ca | 1317 | pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); |
97a89413 | 1318 | } while (pte++, addr += PAGE_SIZE, addr != end); |
ae859762 | 1319 | |
d559db08 | 1320 | add_mm_rss_vec(mm, rss); |
6606c3e0 | 1321 | arch_leave_lazy_mmu_mode(); |
51c6f666 | 1322 | |
1cf35d47 | 1323 | /* Do the actual TLB flush before dropping ptl */ |
fb7332a9 | 1324 | if (force_flush) |
1cf35d47 | 1325 | tlb_flush_mmu_tlbonly(tlb); |
1cf35d47 LT |
1326 | pte_unmap_unlock(start_pte, ptl); |
1327 | ||
1328 | /* | |
1329 | * If we forced a TLB flush (either due to running out of | |
1330 | * batch buffers or because we needed to flush dirty TLB | |
1331 | * entries before releasing the ptl), free the batched | |
1332 | * memory too. Restart if we didn't do everything. | |
1333 | */ | |
1334 | if (force_flush) { | |
1335 | force_flush = 0; | |
fa0aafb8 | 1336 | tlb_flush_mmu(tlb); |
7b167b68 MK |
1337 | } |
1338 | ||
1339 | if (addr != end) { | |
1340 | cond_resched(); | |
1341 | goto again; | |
d16dfc55 PZ |
1342 | } |
1343 | ||
51c6f666 | 1344 | return addr; |
1da177e4 LT |
1345 | } |
1346 | ||
51c6f666 | 1347 | static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, |
b5810039 | 1348 | struct vm_area_struct *vma, pud_t *pud, |
1da177e4 | 1349 | unsigned long addr, unsigned long end, |
97a89413 | 1350 | struct zap_details *details) |
1da177e4 LT |
1351 | { |
1352 | pmd_t *pmd; | |
1353 | unsigned long next; | |
1354 | ||
1355 | pmd = pmd_offset(pud, addr); | |
1356 | do { | |
1357 | next = pmd_addr_end(addr, end); | |
84c3fc4e | 1358 | if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { |
53406ed1 | 1359 | if (next - addr != HPAGE_PMD_SIZE) |
fd60775a | 1360 | __split_huge_pmd(vma, pmd, addr, false, NULL); |
53406ed1 | 1361 | else if (zap_huge_pmd(tlb, vma, pmd, addr)) |
1a5a9906 | 1362 | goto next; |
71e3aac0 AA |
1363 | /* fall through */ |
1364 | } | |
1a5a9906 AA |
1365 | /* |
1366 | * Here there can be other concurrent MADV_DONTNEED or | |
1367 | * trans huge page faults running, and if the pmd is | |
1368 | * none or trans huge it can change under us. This is | |
c1e8d7c6 | 1369 | * because MADV_DONTNEED holds the mmap_lock in read |
1a5a9906 AA |
1370 | * mode. |
1371 | */ | |
1372 | if (pmd_none_or_trans_huge_or_clear_bad(pmd)) | |
1373 | goto next; | |
97a89413 | 1374 | next = zap_pte_range(tlb, vma, pmd, addr, next, details); |
1a5a9906 | 1375 | next: |
97a89413 PZ |
1376 | cond_resched(); |
1377 | } while (pmd++, addr = next, addr != end); | |
51c6f666 RH |
1378 | |
1379 | return addr; | |
1da177e4 LT |
1380 | } |
1381 | ||
51c6f666 | 1382 | static inline unsigned long zap_pud_range(struct mmu_gather *tlb, |
c2febafc | 1383 | struct vm_area_struct *vma, p4d_t *p4d, |
1da177e4 | 1384 | unsigned long addr, unsigned long end, |
97a89413 | 1385 | struct zap_details *details) |
1da177e4 LT |
1386 | { |
1387 | pud_t *pud; | |
1388 | unsigned long next; | |
1389 | ||
c2febafc | 1390 | pud = pud_offset(p4d, addr); |
1da177e4 LT |
1391 | do { |
1392 | next = pud_addr_end(addr, end); | |
a00cc7d9 MW |
1393 | if (pud_trans_huge(*pud) || pud_devmap(*pud)) { |
1394 | if (next - addr != HPAGE_PUD_SIZE) { | |
42fc5414 | 1395 | mmap_assert_locked(tlb->mm); |
a00cc7d9 MW |
1396 | split_huge_pud(vma, pud, addr); |
1397 | } else if (zap_huge_pud(tlb, vma, pud, addr)) | |
1398 | goto next; | |
1399 | /* fall through */ | |
1400 | } | |
97a89413 | 1401 | if (pud_none_or_clear_bad(pud)) |
1da177e4 | 1402 | continue; |
97a89413 | 1403 | next = zap_pmd_range(tlb, vma, pud, addr, next, details); |
a00cc7d9 MW |
1404 | next: |
1405 | cond_resched(); | |
97a89413 | 1406 | } while (pud++, addr = next, addr != end); |
51c6f666 RH |
1407 | |
1408 | return addr; | |
1da177e4 LT |
1409 | } |
1410 | ||
c2febafc KS |
1411 | static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, |
1412 | struct vm_area_struct *vma, pgd_t *pgd, | |
1413 | unsigned long addr, unsigned long end, | |
1414 | struct zap_details *details) | |
1415 | { | |
1416 | p4d_t *p4d; | |
1417 | unsigned long next; | |
1418 | ||
1419 | p4d = p4d_offset(pgd, addr); | |
1420 | do { | |
1421 | next = p4d_addr_end(addr, end); | |
1422 | if (p4d_none_or_clear_bad(p4d)) | |
1423 | continue; | |
1424 | next = zap_pud_range(tlb, vma, p4d, addr, next, details); | |
1425 | } while (p4d++, addr = next, addr != end); | |
1426 | ||
1427 | return addr; | |
1428 | } | |
1429 | ||
aac45363 | 1430 | void unmap_page_range(struct mmu_gather *tlb, |
038c7aa1 AV |
1431 | struct vm_area_struct *vma, |
1432 | unsigned long addr, unsigned long end, | |
1433 | struct zap_details *details) | |
1da177e4 LT |
1434 | { |
1435 | pgd_t *pgd; | |
1436 | unsigned long next; | |
1437 | ||
1da177e4 LT |
1438 | BUG_ON(addr >= end); |
1439 | tlb_start_vma(tlb, vma); | |
1440 | pgd = pgd_offset(vma->vm_mm, addr); | |
1441 | do { | |
1442 | next = pgd_addr_end(addr, end); | |
97a89413 | 1443 | if (pgd_none_or_clear_bad(pgd)) |
1da177e4 | 1444 | continue; |
c2febafc | 1445 | next = zap_p4d_range(tlb, vma, pgd, addr, next, details); |
97a89413 | 1446 | } while (pgd++, addr = next, addr != end); |
1da177e4 LT |
1447 | tlb_end_vma(tlb, vma); |
1448 | } | |
51c6f666 | 1449 | |
f5cc4eef AV |
1450 | |
1451 | static void unmap_single_vma(struct mmu_gather *tlb, | |
1452 | struct vm_area_struct *vma, unsigned long start_addr, | |
4f74d2c8 | 1453 | unsigned long end_addr, |
f5cc4eef AV |
1454 | struct zap_details *details) |
1455 | { | |
1456 | unsigned long start = max(vma->vm_start, start_addr); | |
1457 | unsigned long end; | |
1458 | ||
1459 | if (start >= vma->vm_end) | |
1460 | return; | |
1461 | end = min(vma->vm_end, end_addr); | |
1462 | if (end <= vma->vm_start) | |
1463 | return; | |
1464 | ||
cbc91f71 SD |
1465 | if (vma->vm_file) |
1466 | uprobe_munmap(vma, start, end); | |
1467 | ||
b3b9c293 | 1468 | if (unlikely(vma->vm_flags & VM_PFNMAP)) |
5180da41 | 1469 | untrack_pfn(vma, 0, 0); |
f5cc4eef AV |
1470 | |
1471 | if (start != end) { | |
1472 | if (unlikely(is_vm_hugetlb_page(vma))) { | |
1473 | /* | |
1474 | * It is undesirable to test vma->vm_file as it | |
1475 | * should be non-null for valid hugetlb area. | |
1476 | * However, vm_file will be NULL in the error | |
7aa6b4ad | 1477 | * cleanup path of mmap_region. When |
f5cc4eef | 1478 | * hugetlbfs ->mmap method fails, |
7aa6b4ad | 1479 | * mmap_region() nullifies vma->vm_file |
f5cc4eef AV |
1480 | * before calling this function to clean up. |
1481 | * Since no pte has actually been setup, it is | |
1482 | * safe to do nothing in this case. | |
1483 | */ | |
24669e58 | 1484 | if (vma->vm_file) { |
83cde9e8 | 1485 | i_mmap_lock_write(vma->vm_file->f_mapping); |
d833352a | 1486 | __unmap_hugepage_range_final(tlb, vma, start, end, NULL); |
83cde9e8 | 1487 | i_mmap_unlock_write(vma->vm_file->f_mapping); |
24669e58 | 1488 | } |
f5cc4eef AV |
1489 | } else |
1490 | unmap_page_range(tlb, vma, start, end, details); | |
1491 | } | |
1da177e4 LT |
1492 | } |
1493 | ||
1da177e4 LT |
1494 | /** |
1495 | * unmap_vmas - unmap a range of memory covered by a list of vma's | |
0164f69d | 1496 | * @tlb: address of the caller's struct mmu_gather |
1da177e4 LT |
1497 | * @vma: the starting vma |
1498 | * @start_addr: virtual address at which to start unmapping | |
1499 | * @end_addr: virtual address at which to end unmapping | |
1da177e4 | 1500 | * |
508034a3 | 1501 | * Unmap all pages in the vma list. |
1da177e4 | 1502 | * |
1da177e4 LT |
1503 | * Only addresses between `start' and `end' will be unmapped. |
1504 | * | |
1505 | * The VMA list must be sorted in ascending virtual address order. | |
1506 | * | |
1507 | * unmap_vmas() assumes that the caller will flush the whole unmapped address | |
1508 | * range after unmap_vmas() returns. So the only responsibility here is to | |
1509 | * ensure that any thus-far unmapped pages are flushed before unmap_vmas() | |
1510 | * drops the lock and schedules. | |
1511 | */ | |
6e8bb019 | 1512 | void unmap_vmas(struct mmu_gather *tlb, |
1da177e4 | 1513 | struct vm_area_struct *vma, unsigned long start_addr, |
4f74d2c8 | 1514 | unsigned long end_addr) |
1da177e4 | 1515 | { |
ac46d4f3 | 1516 | struct mmu_notifier_range range; |
1da177e4 | 1517 | |
6f4f13e8 JG |
1518 | mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm, |
1519 | start_addr, end_addr); | |
ac46d4f3 | 1520 | mmu_notifier_invalidate_range_start(&range); |
f5cc4eef | 1521 | for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) |
4f74d2c8 | 1522 | unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); |
ac46d4f3 | 1523 | mmu_notifier_invalidate_range_end(&range); |
1da177e4 LT |
1524 | } |
1525 | ||
1526 | /** | |
1527 | * zap_page_range - remove user pages in a given range | |
1528 | * @vma: vm_area_struct holding the applicable pages | |
eb4546bb | 1529 | * @start: starting address of pages to zap |
1da177e4 | 1530 | * @size: number of bytes to zap |
f5cc4eef AV |
1531 | * |
1532 | * Caller must protect the VMA list | |
1da177e4 | 1533 | */ |
7e027b14 | 1534 | void zap_page_range(struct vm_area_struct *vma, unsigned long start, |
ecf1385d | 1535 | unsigned long size) |
1da177e4 | 1536 | { |
ac46d4f3 | 1537 | struct mmu_notifier_range range; |
d16dfc55 | 1538 | struct mmu_gather tlb; |
1da177e4 | 1539 | |
1da177e4 | 1540 | lru_add_drain(); |
7269f999 | 1541 | mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, |
6f4f13e8 | 1542 | start, start + size); |
a72afd87 | 1543 | tlb_gather_mmu(&tlb, vma->vm_mm); |
ac46d4f3 JG |
1544 | update_hiwater_rss(vma->vm_mm); |
1545 | mmu_notifier_invalidate_range_start(&range); | |
1546 | for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next) | |
1547 | unmap_single_vma(&tlb, vma, start, range.end, NULL); | |
1548 | mmu_notifier_invalidate_range_end(&range); | |
ae8eba8b | 1549 | tlb_finish_mmu(&tlb); |
1da177e4 LT |
1550 | } |
1551 | ||
f5cc4eef AV |
1552 | /** |
1553 | * zap_page_range_single - remove user pages in a given range | |
1554 | * @vma: vm_area_struct holding the applicable pages | |
1555 | * @address: starting address of pages to zap | |
1556 | * @size: number of bytes to zap | |
8a5f14a2 | 1557 | * @details: details of shared cache invalidation |
f5cc4eef AV |
1558 | * |
1559 | * The range must fit into one VMA. | |
1da177e4 | 1560 | */ |
f5cc4eef | 1561 | static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, |
1da177e4 LT |
1562 | unsigned long size, struct zap_details *details) |
1563 | { | |
ac46d4f3 | 1564 | struct mmu_notifier_range range; |
d16dfc55 | 1565 | struct mmu_gather tlb; |
1da177e4 | 1566 | |
1da177e4 | 1567 | lru_add_drain(); |
7269f999 | 1568 | mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, |
6f4f13e8 | 1569 | address, address + size); |
a72afd87 | 1570 | tlb_gather_mmu(&tlb, vma->vm_mm); |
ac46d4f3 JG |
1571 | update_hiwater_rss(vma->vm_mm); |
1572 | mmu_notifier_invalidate_range_start(&range); | |
1573 | unmap_single_vma(&tlb, vma, address, range.end, details); | |
1574 | mmu_notifier_invalidate_range_end(&range); | |
ae8eba8b | 1575 | tlb_finish_mmu(&tlb); |
1da177e4 LT |
1576 | } |
1577 | ||
c627f9cc JS |
1578 | /** |
1579 | * zap_vma_ptes - remove ptes mapping the vma | |
1580 | * @vma: vm_area_struct holding ptes to be zapped | |
1581 | * @address: starting address of pages to zap | |
1582 | * @size: number of bytes to zap | |
1583 | * | |
1584 | * This function only unmaps ptes assigned to VM_PFNMAP vmas. | |
1585 | * | |
1586 | * The entire address range must be fully contained within the vma. | |
1587 | * | |
c627f9cc | 1588 | */ |
27d036e3 | 1589 | void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, |
c627f9cc JS |
1590 | unsigned long size) |
1591 | { | |
1592 | if (address < vma->vm_start || address + size > vma->vm_end || | |
1593 | !(vma->vm_flags & VM_PFNMAP)) | |
27d036e3 LR |
1594 | return; |
1595 | ||
f5cc4eef | 1596 | zap_page_range_single(vma, address, size, NULL); |
c627f9cc JS |
1597 | } |
1598 | EXPORT_SYMBOL_GPL(zap_vma_ptes); | |
1599 | ||
8cd3984d | 1600 | static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) |
c9cfcddf | 1601 | { |
c2febafc KS |
1602 | pgd_t *pgd; |
1603 | p4d_t *p4d; | |
1604 | pud_t *pud; | |
1605 | pmd_t *pmd; | |
1606 | ||
1607 | pgd = pgd_offset(mm, addr); | |
1608 | p4d = p4d_alloc(mm, pgd, addr); | |
1609 | if (!p4d) | |
1610 | return NULL; | |
1611 | pud = pud_alloc(mm, p4d, addr); | |
1612 | if (!pud) | |
1613 | return NULL; | |
1614 | pmd = pmd_alloc(mm, pud, addr); | |
1615 | if (!pmd) | |
1616 | return NULL; | |
1617 | ||
1618 | VM_BUG_ON(pmd_trans_huge(*pmd)); | |
8cd3984d AR |
1619 | return pmd; |
1620 | } | |
1621 | ||
1622 | pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, | |
1623 | spinlock_t **ptl) | |
1624 | { | |
1625 | pmd_t *pmd = walk_to_pmd(mm, addr); | |
1626 | ||
1627 | if (!pmd) | |
1628 | return NULL; | |
c2febafc | 1629 | return pte_alloc_map_lock(mm, pmd, addr, ptl); |
c9cfcddf LT |
1630 | } |
1631 | ||
8efd6f5b AR |
1632 | static int validate_page_before_insert(struct page *page) |
1633 | { | |
1634 | if (PageAnon(page) || PageSlab(page) || page_has_type(page)) | |
1635 | return -EINVAL; | |
1636 | flush_dcache_page(page); | |
1637 | return 0; | |
1638 | } | |
1639 | ||
1640 | static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte, | |
1641 | unsigned long addr, struct page *page, pgprot_t prot) | |
1642 | { | |
1643 | if (!pte_none(*pte)) | |
1644 | return -EBUSY; | |
1645 | /* Ok, finally just insert the thing.. */ | |
1646 | get_page(page); | |
1647 | inc_mm_counter_fast(mm, mm_counter_file(page)); | |
1648 | page_add_file_rmap(page, false); | |
1649 | set_pte_at(mm, addr, pte, mk_pte(page, prot)); | |
1650 | return 0; | |
1651 | } | |
1652 | ||
238f58d8 LT |
1653 | /* |
1654 | * This is the old fallback for page remapping. | |
1655 | * | |
1656 | * For historical reasons, it only allows reserved pages. Only | |
1657 | * old drivers should use this, and they needed to mark their | |
1658 | * pages reserved for the old functions anyway. | |
1659 | */ | |
423bad60 NP |
1660 | static int insert_page(struct vm_area_struct *vma, unsigned long addr, |
1661 | struct page *page, pgprot_t prot) | |
238f58d8 | 1662 | { |
423bad60 | 1663 | struct mm_struct *mm = vma->vm_mm; |
238f58d8 | 1664 | int retval; |
c9cfcddf | 1665 | pte_t *pte; |
8a9f3ccd BS |
1666 | spinlock_t *ptl; |
1667 | ||
8efd6f5b AR |
1668 | retval = validate_page_before_insert(page); |
1669 | if (retval) | |
5b4e655e | 1670 | goto out; |
238f58d8 | 1671 | retval = -ENOMEM; |
c9cfcddf | 1672 | pte = get_locked_pte(mm, addr, &ptl); |
238f58d8 | 1673 | if (!pte) |
5b4e655e | 1674 | goto out; |
8efd6f5b | 1675 | retval = insert_page_into_pte_locked(mm, pte, addr, page, prot); |
238f58d8 LT |
1676 | pte_unmap_unlock(pte, ptl); |
1677 | out: | |
1678 | return retval; | |
1679 | } | |
1680 | ||
8cd3984d | 1681 | #ifdef pte_index |
7f70c2a6 | 1682 | static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte, |
8cd3984d AR |
1683 | unsigned long addr, struct page *page, pgprot_t prot) |
1684 | { | |
1685 | int err; | |
1686 | ||
1687 | if (!page_count(page)) | |
1688 | return -EINVAL; | |
1689 | err = validate_page_before_insert(page); | |
7f70c2a6 AR |
1690 | if (err) |
1691 | return err; | |
1692 | return insert_page_into_pte_locked(mm, pte, addr, page, prot); | |
8cd3984d AR |
1693 | } |
1694 | ||
1695 | /* insert_pages() amortizes the cost of spinlock operations | |
1696 | * when inserting pages in a loop. Arch *must* define pte_index. | |
1697 | */ | |
1698 | static int insert_pages(struct vm_area_struct *vma, unsigned long addr, | |
1699 | struct page **pages, unsigned long *num, pgprot_t prot) | |
1700 | { | |
1701 | pmd_t *pmd = NULL; | |
7f70c2a6 AR |
1702 | pte_t *start_pte, *pte; |
1703 | spinlock_t *pte_lock; | |
8cd3984d AR |
1704 | struct mm_struct *const mm = vma->vm_mm; |
1705 | unsigned long curr_page_idx = 0; | |
1706 | unsigned long remaining_pages_total = *num; | |
1707 | unsigned long pages_to_write_in_pmd; | |
1708 | int ret; | |
1709 | more: | |
1710 | ret = -EFAULT; | |
1711 | pmd = walk_to_pmd(mm, addr); | |
1712 | if (!pmd) | |
1713 | goto out; | |
1714 | ||
1715 | pages_to_write_in_pmd = min_t(unsigned long, | |
1716 | remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); | |
1717 | ||
1718 | /* Allocate the PTE if necessary; takes PMD lock once only. */ | |
1719 | ret = -ENOMEM; | |
1720 | if (pte_alloc(mm, pmd)) | |
1721 | goto out; | |
8cd3984d AR |
1722 | |
1723 | while (pages_to_write_in_pmd) { | |
1724 | int pte_idx = 0; | |
1725 | const int batch_size = min_t(int, pages_to_write_in_pmd, 8); | |
1726 | ||
7f70c2a6 AR |
1727 | start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); |
1728 | for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { | |
1729 | int err = insert_page_in_batch_locked(mm, pte, | |
8cd3984d AR |
1730 | addr, pages[curr_page_idx], prot); |
1731 | if (unlikely(err)) { | |
7f70c2a6 | 1732 | pte_unmap_unlock(start_pte, pte_lock); |
8cd3984d AR |
1733 | ret = err; |
1734 | remaining_pages_total -= pte_idx; | |
1735 | goto out; | |
1736 | } | |
1737 | addr += PAGE_SIZE; | |
1738 | ++curr_page_idx; | |
1739 | } | |
7f70c2a6 | 1740 | pte_unmap_unlock(start_pte, pte_lock); |
8cd3984d AR |
1741 | pages_to_write_in_pmd -= batch_size; |
1742 | remaining_pages_total -= batch_size; | |
1743 | } | |
1744 | if (remaining_pages_total) | |
1745 | goto more; | |
1746 | ret = 0; | |
1747 | out: | |
1748 | *num = remaining_pages_total; | |
1749 | return ret; | |
1750 | } | |
1751 | #endif /* ifdef pte_index */ | |
1752 | ||
1753 | /** | |
1754 | * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. | |
1755 | * @vma: user vma to map to | |
1756 | * @addr: target start user address of these pages | |
1757 | * @pages: source kernel pages | |
1758 | * @num: in: number of pages to map. out: number of pages that were *not* | |
1759 | * mapped. (0 means all pages were successfully mapped). | |
1760 | * | |
1761 | * Preferred over vm_insert_page() when inserting multiple pages. | |
1762 | * | |
1763 | * In case of error, we may have mapped a subset of the provided | |
1764 | * pages. It is the caller's responsibility to account for this case. | |
1765 | * | |
1766 | * The same restrictions apply as in vm_insert_page(). | |
1767 | */ | |
1768 | int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, | |
1769 | struct page **pages, unsigned long *num) | |
1770 | { | |
1771 | #ifdef pte_index | |
1772 | const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; | |
1773 | ||
1774 | if (addr < vma->vm_start || end_addr >= vma->vm_end) | |
1775 | return -EFAULT; | |
1776 | if (!(vma->vm_flags & VM_MIXEDMAP)) { | |
d8ed45c5 | 1777 | BUG_ON(mmap_read_trylock(vma->vm_mm)); |
8cd3984d AR |
1778 | BUG_ON(vma->vm_flags & VM_PFNMAP); |
1779 | vma->vm_flags |= VM_MIXEDMAP; | |
1780 | } | |
1781 | /* Defer page refcount checking till we're about to map that page. */ | |
1782 | return insert_pages(vma, addr, pages, num, vma->vm_page_prot); | |
1783 | #else | |
1784 | unsigned long idx = 0, pgcount = *num; | |
45779b03 | 1785 | int err = -EINVAL; |
8cd3984d AR |
1786 | |
1787 | for (; idx < pgcount; ++idx) { | |
1788 | err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]); | |
1789 | if (err) | |
1790 | break; | |
1791 | } | |
1792 | *num = pgcount - idx; | |
1793 | return err; | |
1794 | #endif /* ifdef pte_index */ | |
1795 | } | |
1796 | EXPORT_SYMBOL(vm_insert_pages); | |
1797 | ||
bfa5bf6d REB |
1798 | /** |
1799 | * vm_insert_page - insert single page into user vma | |
1800 | * @vma: user vma to map to | |
1801 | * @addr: target user address of this page | |
1802 | * @page: source kernel page | |
1803 | * | |
a145dd41 LT |
1804 | * This allows drivers to insert individual pages they've allocated |
1805 | * into a user vma. | |
1806 | * | |
1807 | * The page has to be a nice clean _individual_ kernel allocation. | |
1808 | * If you allocate a compound page, you need to have marked it as | |
1809 | * such (__GFP_COMP), or manually just split the page up yourself | |
8dfcc9ba | 1810 | * (see split_page()). |
a145dd41 LT |
1811 | * |
1812 | * NOTE! Traditionally this was done with "remap_pfn_range()" which | |
1813 | * took an arbitrary page protection parameter. This doesn't allow | |
1814 | * that. Your vma protection will have to be set up correctly, which | |
1815 | * means that if you want a shared writable mapping, you'd better | |
1816 | * ask for a shared writable mapping! | |
1817 | * | |
1818 | * The page does not need to be reserved. | |
4b6e1e37 KK |
1819 | * |
1820 | * Usually this function is called from f_op->mmap() handler | |
c1e8d7c6 | 1821 | * under mm->mmap_lock write-lock, so it can change vma->vm_flags. |
4b6e1e37 KK |
1822 | * Caller must set VM_MIXEDMAP on vma if it wants to call this |
1823 | * function from other places, for example from page-fault handler. | |
a862f68a MR |
1824 | * |
1825 | * Return: %0 on success, negative error code otherwise. | |
a145dd41 | 1826 | */ |
423bad60 NP |
1827 | int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, |
1828 | struct page *page) | |
a145dd41 LT |
1829 | { |
1830 | if (addr < vma->vm_start || addr >= vma->vm_end) | |
1831 | return -EFAULT; | |
1832 | if (!page_count(page)) | |
1833 | return -EINVAL; | |
4b6e1e37 | 1834 | if (!(vma->vm_flags & VM_MIXEDMAP)) { |
d8ed45c5 | 1835 | BUG_ON(mmap_read_trylock(vma->vm_mm)); |
4b6e1e37 KK |
1836 | BUG_ON(vma->vm_flags & VM_PFNMAP); |
1837 | vma->vm_flags |= VM_MIXEDMAP; | |
1838 | } | |
423bad60 | 1839 | return insert_page(vma, addr, page, vma->vm_page_prot); |
a145dd41 | 1840 | } |
e3c3374f | 1841 | EXPORT_SYMBOL(vm_insert_page); |
a145dd41 | 1842 | |
a667d745 SJ |
1843 | /* |
1844 | * __vm_map_pages - maps range of kernel pages into user vma | |
1845 | * @vma: user vma to map to | |
1846 | * @pages: pointer to array of source kernel pages | |
1847 | * @num: number of pages in page array | |
1848 | * @offset: user's requested vm_pgoff | |
1849 | * | |
1850 | * This allows drivers to map range of kernel pages into a user vma. | |
1851 | * | |
1852 | * Return: 0 on success and error code otherwise. | |
1853 | */ | |
1854 | static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, | |
1855 | unsigned long num, unsigned long offset) | |
1856 | { | |
1857 | unsigned long count = vma_pages(vma); | |
1858 | unsigned long uaddr = vma->vm_start; | |
1859 | int ret, i; | |
1860 | ||
1861 | /* Fail if the user requested offset is beyond the end of the object */ | |
96756fcb | 1862 | if (offset >= num) |
a667d745 SJ |
1863 | return -ENXIO; |
1864 | ||
1865 | /* Fail if the user requested size exceeds available object size */ | |
1866 | if (count > num - offset) | |
1867 | return -ENXIO; | |
1868 | ||
1869 | for (i = 0; i < count; i++) { | |
1870 | ret = vm_insert_page(vma, uaddr, pages[offset + i]); | |
1871 | if (ret < 0) | |
1872 | return ret; | |
1873 | uaddr += PAGE_SIZE; | |
1874 | } | |
1875 | ||
1876 | return 0; | |
1877 | } | |
1878 | ||
1879 | /** | |
1880 | * vm_map_pages - maps range of kernel pages starts with non zero offset | |
1881 | * @vma: user vma to map to | |
1882 | * @pages: pointer to array of source kernel pages | |
1883 | * @num: number of pages in page array | |
1884 | * | |
1885 | * Maps an object consisting of @num pages, catering for the user's | |
1886 | * requested vm_pgoff | |
1887 | * | |
1888 | * If we fail to insert any page into the vma, the function will return | |
1889 | * immediately leaving any previously inserted pages present. Callers | |
1890 | * from the mmap handler may immediately return the error as their caller | |
1891 | * will destroy the vma, removing any successfully inserted pages. Other | |
1892 | * callers should make their own arrangements for calling unmap_region(). | |
1893 | * | |
1894 | * Context: Process context. Called by mmap handlers. | |
1895 | * Return: 0 on success and error code otherwise. | |
1896 | */ | |
1897 | int vm_map_pages(struct vm_area_struct *vma, struct page **pages, | |
1898 | unsigned long num) | |
1899 | { | |
1900 | return __vm_map_pages(vma, pages, num, vma->vm_pgoff); | |
1901 | } | |
1902 | EXPORT_SYMBOL(vm_map_pages); | |
1903 | ||
1904 | /** | |
1905 | * vm_map_pages_zero - map range of kernel pages starts with zero offset | |
1906 | * @vma: user vma to map to | |
1907 | * @pages: pointer to array of source kernel pages | |
1908 | * @num: number of pages in page array | |
1909 | * | |
1910 | * Similar to vm_map_pages(), except that it explicitly sets the offset | |
1911 | * to 0. This function is intended for the drivers that did not consider | |
1912 | * vm_pgoff. | |
1913 | * | |
1914 | * Context: Process context. Called by mmap handlers. | |
1915 | * Return: 0 on success and error code otherwise. | |
1916 | */ | |
1917 | int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, | |
1918 | unsigned long num) | |
1919 | { | |
1920 | return __vm_map_pages(vma, pages, num, 0); | |
1921 | } | |
1922 | EXPORT_SYMBOL(vm_map_pages_zero); | |
1923 | ||
9b5a8e00 | 1924 | static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, |
b2770da6 | 1925 | pfn_t pfn, pgprot_t prot, bool mkwrite) |
423bad60 NP |
1926 | { |
1927 | struct mm_struct *mm = vma->vm_mm; | |
423bad60 NP |
1928 | pte_t *pte, entry; |
1929 | spinlock_t *ptl; | |
1930 | ||
423bad60 NP |
1931 | pte = get_locked_pte(mm, addr, &ptl); |
1932 | if (!pte) | |
9b5a8e00 | 1933 | return VM_FAULT_OOM; |
b2770da6 RZ |
1934 | if (!pte_none(*pte)) { |
1935 | if (mkwrite) { | |
1936 | /* | |
1937 | * For read faults on private mappings the PFN passed | |
1938 | * in may not match the PFN we have mapped if the | |
1939 | * mapped PFN is a writeable COW page. In the mkwrite | |
1940 | * case we are creating a writable PTE for a shared | |
f2c57d91 JK |
1941 | * mapping and we expect the PFNs to match. If they |
1942 | * don't match, we are likely racing with block | |
1943 | * allocation and mapping invalidation so just skip the | |
1944 | * update. | |
b2770da6 | 1945 | */ |
f2c57d91 JK |
1946 | if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) { |
1947 | WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte))); | |
b2770da6 | 1948 | goto out_unlock; |
f2c57d91 | 1949 | } |
cae85cb8 JK |
1950 | entry = pte_mkyoung(*pte); |
1951 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | |
1952 | if (ptep_set_access_flags(vma, addr, pte, entry, 1)) | |
1953 | update_mmu_cache(vma, addr, pte); | |
1954 | } | |
1955 | goto out_unlock; | |
b2770da6 | 1956 | } |
423bad60 NP |
1957 | |
1958 | /* Ok, finally just insert the thing.. */ | |
01c8f1c4 DW |
1959 | if (pfn_t_devmap(pfn)) |
1960 | entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); | |
1961 | else | |
1962 | entry = pte_mkspecial(pfn_t_pte(pfn, prot)); | |
b2770da6 | 1963 | |
b2770da6 RZ |
1964 | if (mkwrite) { |
1965 | entry = pte_mkyoung(entry); | |
1966 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | |
1967 | } | |
1968 | ||
423bad60 | 1969 | set_pte_at(mm, addr, pte, entry); |
4b3073e1 | 1970 | update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ |
423bad60 | 1971 | |
423bad60 NP |
1972 | out_unlock: |
1973 | pte_unmap_unlock(pte, ptl); | |
9b5a8e00 | 1974 | return VM_FAULT_NOPAGE; |
423bad60 NP |
1975 | } |
1976 | ||
f5e6d1d5 MW |
1977 | /** |
1978 | * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot | |
1979 | * @vma: user vma to map to | |
1980 | * @addr: target user address of this page | |
1981 | * @pfn: source kernel pfn | |
1982 | * @pgprot: pgprot flags for the inserted page | |
1983 | * | |
a1a0aea5 | 1984 | * This is exactly like vmf_insert_pfn(), except that it allows drivers |
f5e6d1d5 MW |
1985 | * to override pgprot on a per-page basis. |
1986 | * | |
1987 | * This only makes sense for IO mappings, and it makes no sense for | |
1988 | * COW mappings. In general, using multiple vmas is preferable; | |
ae2b01f3 | 1989 | * vmf_insert_pfn_prot should only be used if using multiple VMAs is |
f5e6d1d5 MW |
1990 | * impractical. |
1991 | * | |
574c5b3d TH |
1992 | * See vmf_insert_mixed_prot() for a discussion of the implication of using |
1993 | * a value of @pgprot different from that of @vma->vm_page_prot. | |
1994 | * | |
ae2b01f3 | 1995 | * Context: Process context. May allocate using %GFP_KERNEL. |
f5e6d1d5 MW |
1996 | * Return: vm_fault_t value. |
1997 | */ | |
1998 | vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, | |
1999 | unsigned long pfn, pgprot_t pgprot) | |
2000 | { | |
6d958546 MW |
2001 | /* |
2002 | * Technically, architectures with pte_special can avoid all these | |
2003 | * restrictions (same for remap_pfn_range). However we would like | |
2004 | * consistency in testing and feature parity among all, so we should | |
2005 | * try to keep these invariants in place for everybody. | |
2006 | */ | |
2007 | BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); | |
2008 | BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == | |
2009 | (VM_PFNMAP|VM_MIXEDMAP)); | |
2010 | BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); | |
2011 | BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); | |
2012 | ||
2013 | if (addr < vma->vm_start || addr >= vma->vm_end) | |
2014 | return VM_FAULT_SIGBUS; | |
2015 | ||
2016 | if (!pfn_modify_allowed(pfn, pgprot)) | |
2017 | return VM_FAULT_SIGBUS; | |
2018 | ||
2019 | track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); | |
2020 | ||
9b5a8e00 | 2021 | return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, |
6d958546 | 2022 | false); |
f5e6d1d5 MW |
2023 | } |
2024 | EXPORT_SYMBOL(vmf_insert_pfn_prot); | |
e0dc0d8f | 2025 | |
ae2b01f3 MW |
2026 | /** |
2027 | * vmf_insert_pfn - insert single pfn into user vma | |
2028 | * @vma: user vma to map to | |
2029 | * @addr: target user address of this page | |
2030 | * @pfn: source kernel pfn | |
2031 | * | |
2032 | * Similar to vm_insert_page, this allows drivers to insert individual pages | |
2033 | * they've allocated into a user vma. Same comments apply. | |
2034 | * | |
2035 | * This function should only be called from a vm_ops->fault handler, and | |
2036 | * in that case the handler should return the result of this function. | |
2037 | * | |
2038 | * vma cannot be a COW mapping. | |
2039 | * | |
2040 | * As this is called only for pages that do not currently exist, we | |
2041 | * do not need to flush old virtual caches or the TLB. | |
2042 | * | |
2043 | * Context: Process context. May allocate using %GFP_KERNEL. | |
2044 | * Return: vm_fault_t value. | |
2045 | */ | |
2046 | vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, | |
2047 | unsigned long pfn) | |
2048 | { | |
2049 | return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); | |
2050 | } | |
2051 | EXPORT_SYMBOL(vmf_insert_pfn); | |
2052 | ||
785a3fab DW |
2053 | static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn) |
2054 | { | |
2055 | /* these checks mirror the abort conditions in vm_normal_page */ | |
2056 | if (vma->vm_flags & VM_MIXEDMAP) | |
2057 | return true; | |
2058 | if (pfn_t_devmap(pfn)) | |
2059 | return true; | |
2060 | if (pfn_t_special(pfn)) | |
2061 | return true; | |
2062 | if (is_zero_pfn(pfn_t_to_pfn(pfn))) | |
2063 | return true; | |
2064 | return false; | |
2065 | } | |
2066 | ||
79f3aa5b | 2067 | static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, |
574c5b3d TH |
2068 | unsigned long addr, pfn_t pfn, pgprot_t pgprot, |
2069 | bool mkwrite) | |
423bad60 | 2070 | { |
79f3aa5b | 2071 | int err; |
87744ab3 | 2072 | |
785a3fab | 2073 | BUG_ON(!vm_mixed_ok(vma, pfn)); |
e0dc0d8f | 2074 | |
423bad60 | 2075 | if (addr < vma->vm_start || addr >= vma->vm_end) |
79f3aa5b | 2076 | return VM_FAULT_SIGBUS; |
308a047c BP |
2077 | |
2078 | track_pfn_insert(vma, &pgprot, pfn); | |
e0dc0d8f | 2079 | |
42e4089c | 2080 | if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) |
79f3aa5b | 2081 | return VM_FAULT_SIGBUS; |
42e4089c | 2082 | |
423bad60 NP |
2083 | /* |
2084 | * If we don't have pte special, then we have to use the pfn_valid() | |
2085 | * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* | |
2086 | * refcount the page if pfn_valid is true (hence insert_page rather | |
62eede62 HD |
2087 | * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP |
2088 | * without pte special, it would there be refcounted as a normal page. | |
423bad60 | 2089 | */ |
00b3a331 LD |
2090 | if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && |
2091 | !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { | |
423bad60 NP |
2092 | struct page *page; |
2093 | ||
03fc2da6 DW |
2094 | /* |
2095 | * At this point we are committed to insert_page() | |
2096 | * regardless of whether the caller specified flags that | |
2097 | * result in pfn_t_has_page() == false. | |
2098 | */ | |
2099 | page = pfn_to_page(pfn_t_to_pfn(pfn)); | |
79f3aa5b MW |
2100 | err = insert_page(vma, addr, page, pgprot); |
2101 | } else { | |
9b5a8e00 | 2102 | return insert_pfn(vma, addr, pfn, pgprot, mkwrite); |
423bad60 | 2103 | } |
b2770da6 | 2104 | |
5d747637 MW |
2105 | if (err == -ENOMEM) |
2106 | return VM_FAULT_OOM; | |
2107 | if (err < 0 && err != -EBUSY) | |
2108 | return VM_FAULT_SIGBUS; | |
2109 | ||
2110 | return VM_FAULT_NOPAGE; | |
e0dc0d8f | 2111 | } |
79f3aa5b | 2112 | |
574c5b3d TH |
2113 | /** |
2114 | * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot | |
2115 | * @vma: user vma to map to | |
2116 | * @addr: target user address of this page | |
2117 | * @pfn: source kernel pfn | |
2118 | * @pgprot: pgprot flags for the inserted page | |
2119 | * | |
a1a0aea5 | 2120 | * This is exactly like vmf_insert_mixed(), except that it allows drivers |
574c5b3d TH |
2121 | * to override pgprot on a per-page basis. |
2122 | * | |
2123 | * Typically this function should be used by drivers to set caching- and | |
2124 | * encryption bits different than those of @vma->vm_page_prot, because | |
2125 | * the caching- or encryption mode may not be known at mmap() time. | |
2126 | * This is ok as long as @vma->vm_page_prot is not used by the core vm | |
2127 | * to set caching and encryption bits for those vmas (except for COW pages). | |
2128 | * This is ensured by core vm only modifying these page table entries using | |
2129 | * functions that don't touch caching- or encryption bits, using pte_modify() | |
2130 | * if needed. (See for example mprotect()). | |
2131 | * Also when new page-table entries are created, this is only done using the | |
2132 | * fault() callback, and never using the value of vma->vm_page_prot, | |
2133 | * except for page-table entries that point to anonymous pages as the result | |
2134 | * of COW. | |
2135 | * | |
2136 | * Context: Process context. May allocate using %GFP_KERNEL. | |
2137 | * Return: vm_fault_t value. | |
2138 | */ | |
2139 | vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, | |
2140 | pfn_t pfn, pgprot_t pgprot) | |
2141 | { | |
2142 | return __vm_insert_mixed(vma, addr, pfn, pgprot, false); | |
2143 | } | |
5379e4dd | 2144 | EXPORT_SYMBOL(vmf_insert_mixed_prot); |
574c5b3d | 2145 | |
79f3aa5b MW |
2146 | vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, |
2147 | pfn_t pfn) | |
2148 | { | |
574c5b3d | 2149 | return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false); |
79f3aa5b | 2150 | } |
5d747637 | 2151 | EXPORT_SYMBOL(vmf_insert_mixed); |
e0dc0d8f | 2152 | |
ab77dab4 SJ |
2153 | /* |
2154 | * If the insertion of PTE failed because someone else already added a | |
2155 | * different entry in the mean time, we treat that as success as we assume | |
2156 | * the same entry was actually inserted. | |
2157 | */ | |
ab77dab4 SJ |
2158 | vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, |
2159 | unsigned long addr, pfn_t pfn) | |
b2770da6 | 2160 | { |
574c5b3d | 2161 | return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true); |
b2770da6 | 2162 | } |
ab77dab4 | 2163 | EXPORT_SYMBOL(vmf_insert_mixed_mkwrite); |
b2770da6 | 2164 | |
1da177e4 LT |
2165 | /* |
2166 | * maps a range of physical memory into the requested pages. the old | |
2167 | * mappings are removed. any references to nonexistent pages results | |
2168 | * in null mappings (currently treated as "copy-on-access") | |
2169 | */ | |
2170 | static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, | |
2171 | unsigned long addr, unsigned long end, | |
2172 | unsigned long pfn, pgprot_t prot) | |
2173 | { | |
90a3e375 | 2174 | pte_t *pte, *mapped_pte; |
c74df32c | 2175 | spinlock_t *ptl; |
42e4089c | 2176 | int err = 0; |
1da177e4 | 2177 | |
90a3e375 | 2178 | mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); |
1da177e4 LT |
2179 | if (!pte) |
2180 | return -ENOMEM; | |
6606c3e0 | 2181 | arch_enter_lazy_mmu_mode(); |
1da177e4 LT |
2182 | do { |
2183 | BUG_ON(!pte_none(*pte)); | |
42e4089c AK |
2184 | if (!pfn_modify_allowed(pfn, prot)) { |
2185 | err = -EACCES; | |
2186 | break; | |
2187 | } | |
7e675137 | 2188 | set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); |
1da177e4 LT |
2189 | pfn++; |
2190 | } while (pte++, addr += PAGE_SIZE, addr != end); | |
6606c3e0 | 2191 | arch_leave_lazy_mmu_mode(); |
90a3e375 | 2192 | pte_unmap_unlock(mapped_pte, ptl); |
42e4089c | 2193 | return err; |
1da177e4 LT |
2194 | } |
2195 | ||
2196 | static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, | |
2197 | unsigned long addr, unsigned long end, | |
2198 | unsigned long pfn, pgprot_t prot) | |
2199 | { | |
2200 | pmd_t *pmd; | |
2201 | unsigned long next; | |
42e4089c | 2202 | int err; |
1da177e4 LT |
2203 | |
2204 | pfn -= addr >> PAGE_SHIFT; | |
2205 | pmd = pmd_alloc(mm, pud, addr); | |
2206 | if (!pmd) | |
2207 | return -ENOMEM; | |
f66055ab | 2208 | VM_BUG_ON(pmd_trans_huge(*pmd)); |
1da177e4 LT |
2209 | do { |
2210 | next = pmd_addr_end(addr, end); | |
42e4089c AK |
2211 | err = remap_pte_range(mm, pmd, addr, next, |
2212 | pfn + (addr >> PAGE_SHIFT), prot); | |
2213 | if (err) | |
2214 | return err; | |
1da177e4 LT |
2215 | } while (pmd++, addr = next, addr != end); |
2216 | return 0; | |
2217 | } | |
2218 | ||
c2febafc | 2219 | static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, |
1da177e4 LT |
2220 | unsigned long addr, unsigned long end, |
2221 | unsigned long pfn, pgprot_t prot) | |
2222 | { | |
2223 | pud_t *pud; | |
2224 | unsigned long next; | |
42e4089c | 2225 | int err; |
1da177e4 LT |
2226 | |
2227 | pfn -= addr >> PAGE_SHIFT; | |
c2febafc | 2228 | pud = pud_alloc(mm, p4d, addr); |
1da177e4 LT |
2229 | if (!pud) |
2230 | return -ENOMEM; | |
2231 | do { | |
2232 | next = pud_addr_end(addr, end); | |
42e4089c AK |
2233 | err = remap_pmd_range(mm, pud, addr, next, |
2234 | pfn + (addr >> PAGE_SHIFT), prot); | |
2235 | if (err) | |
2236 | return err; | |
1da177e4 LT |
2237 | } while (pud++, addr = next, addr != end); |
2238 | return 0; | |
2239 | } | |
2240 | ||
c2febafc KS |
2241 | static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, |
2242 | unsigned long addr, unsigned long end, | |
2243 | unsigned long pfn, pgprot_t prot) | |
2244 | { | |
2245 | p4d_t *p4d; | |
2246 | unsigned long next; | |
42e4089c | 2247 | int err; |
c2febafc KS |
2248 | |
2249 | pfn -= addr >> PAGE_SHIFT; | |
2250 | p4d = p4d_alloc(mm, pgd, addr); | |
2251 | if (!p4d) | |
2252 | return -ENOMEM; | |
2253 | do { | |
2254 | next = p4d_addr_end(addr, end); | |
42e4089c AK |
2255 | err = remap_pud_range(mm, p4d, addr, next, |
2256 | pfn + (addr >> PAGE_SHIFT), prot); | |
2257 | if (err) | |
2258 | return err; | |
c2febafc KS |
2259 | } while (p4d++, addr = next, addr != end); |
2260 | return 0; | |
2261 | } | |
2262 | ||
74ffa5a3 CH |
2263 | /* |
2264 | * Variant of remap_pfn_range that does not call track_pfn_remap. The caller | |
2265 | * must have pre-validated the caching bits of the pgprot_t. | |
bfa5bf6d | 2266 | */ |
74ffa5a3 CH |
2267 | int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, |
2268 | unsigned long pfn, unsigned long size, pgprot_t prot) | |
1da177e4 LT |
2269 | { |
2270 | pgd_t *pgd; | |
2271 | unsigned long next; | |
2d15cab8 | 2272 | unsigned long end = addr + PAGE_ALIGN(size); |
1da177e4 LT |
2273 | struct mm_struct *mm = vma->vm_mm; |
2274 | int err; | |
2275 | ||
0c4123e3 AZ |
2276 | if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) |
2277 | return -EINVAL; | |
2278 | ||
1da177e4 LT |
2279 | /* |
2280 | * Physically remapped pages are special. Tell the | |
2281 | * rest of the world about it: | |
2282 | * VM_IO tells people not to look at these pages | |
2283 | * (accesses can have side effects). | |
6aab341e LT |
2284 | * VM_PFNMAP tells the core MM that the base pages are just |
2285 | * raw PFN mappings, and do not have a "struct page" associated | |
2286 | * with them. | |
314e51b9 KK |
2287 | * VM_DONTEXPAND |
2288 | * Disable vma merging and expanding with mremap(). | |
2289 | * VM_DONTDUMP | |
2290 | * Omit vma from core dump, even when VM_IO turned off. | |
fb155c16 LT |
2291 | * |
2292 | * There's a horrible special case to handle copy-on-write | |
2293 | * behaviour that some programs depend on. We mark the "original" | |
2294 | * un-COW'ed pages by matching them up with "vma->vm_pgoff". | |
b3b9c293 | 2295 | * See vm_normal_page() for details. |
1da177e4 | 2296 | */ |
b3b9c293 KK |
2297 | if (is_cow_mapping(vma->vm_flags)) { |
2298 | if (addr != vma->vm_start || end != vma->vm_end) | |
2299 | return -EINVAL; | |
fb155c16 | 2300 | vma->vm_pgoff = pfn; |
b3b9c293 KK |
2301 | } |
2302 | ||
314e51b9 | 2303 | vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; |
1da177e4 LT |
2304 | |
2305 | BUG_ON(addr >= end); | |
2306 | pfn -= addr >> PAGE_SHIFT; | |
2307 | pgd = pgd_offset(mm, addr); | |
2308 | flush_cache_range(vma, addr, end); | |
1da177e4 LT |
2309 | do { |
2310 | next = pgd_addr_end(addr, end); | |
c2febafc | 2311 | err = remap_p4d_range(mm, pgd, addr, next, |
1da177e4 LT |
2312 | pfn + (addr >> PAGE_SHIFT), prot); |
2313 | if (err) | |
74ffa5a3 | 2314 | return err; |
1da177e4 | 2315 | } while (pgd++, addr = next, addr != end); |
2ab64037 | 2316 | |
74ffa5a3 CH |
2317 | return 0; |
2318 | } | |
2319 | ||
2320 | /** | |
2321 | * remap_pfn_range - remap kernel memory to userspace | |
2322 | * @vma: user vma to map to | |
2323 | * @addr: target page aligned user address to start at | |
2324 | * @pfn: page frame number of kernel physical memory address | |
2325 | * @size: size of mapping area | |
2326 | * @prot: page protection flags for this mapping | |
2327 | * | |
2328 | * Note: this is only safe if the mm semaphore is held when called. | |
2329 | * | |
2330 | * Return: %0 on success, negative error code otherwise. | |
2331 | */ | |
2332 | int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, | |
2333 | unsigned long pfn, unsigned long size, pgprot_t prot) | |
2334 | { | |
2335 | int err; | |
2336 | ||
2337 | err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size)); | |
2ab64037 | 2338 | if (err) |
74ffa5a3 | 2339 | return -EINVAL; |
2ab64037 | 2340 | |
74ffa5a3 CH |
2341 | err = remap_pfn_range_notrack(vma, addr, pfn, size, prot); |
2342 | if (err) | |
2343 | untrack_pfn(vma, pfn, PAGE_ALIGN(size)); | |
1da177e4 LT |
2344 | return err; |
2345 | } | |
2346 | EXPORT_SYMBOL(remap_pfn_range); | |
2347 | ||
b4cbb197 LT |
2348 | /** |
2349 | * vm_iomap_memory - remap memory to userspace | |
2350 | * @vma: user vma to map to | |
abd69b9e | 2351 | * @start: start of the physical memory to be mapped |
b4cbb197 LT |
2352 | * @len: size of area |
2353 | * | |
2354 | * This is a simplified io_remap_pfn_range() for common driver use. The | |
2355 | * driver just needs to give us the physical memory range to be mapped, | |
2356 | * we'll figure out the rest from the vma information. | |
2357 | * | |
2358 | * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get | |
2359 | * whatever write-combining details or similar. | |
a862f68a MR |
2360 | * |
2361 | * Return: %0 on success, negative error code otherwise. | |
b4cbb197 LT |
2362 | */ |
2363 | int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) | |
2364 | { | |
2365 | unsigned long vm_len, pfn, pages; | |
2366 | ||
2367 | /* Check that the physical memory area passed in looks valid */ | |
2368 | if (start + len < start) | |
2369 | return -EINVAL; | |
2370 | /* | |
2371 | * You *really* shouldn't map things that aren't page-aligned, | |
2372 | * but we've historically allowed it because IO memory might | |
2373 | * just have smaller alignment. | |
2374 | */ | |
2375 | len += start & ~PAGE_MASK; | |
2376 | pfn = start >> PAGE_SHIFT; | |
2377 | pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; | |
2378 | if (pfn + pages < pfn) | |
2379 | return -EINVAL; | |
2380 | ||
2381 | /* We start the mapping 'vm_pgoff' pages into the area */ | |
2382 | if (vma->vm_pgoff > pages) | |
2383 | return -EINVAL; | |
2384 | pfn += vma->vm_pgoff; | |
2385 | pages -= vma->vm_pgoff; | |
2386 | ||
2387 | /* Can we fit all of the mapping? */ | |
2388 | vm_len = vma->vm_end - vma->vm_start; | |
2389 | if (vm_len >> PAGE_SHIFT > pages) | |
2390 | return -EINVAL; | |
2391 | ||
2392 | /* Ok, let it rip */ | |
2393 | return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); | |
2394 | } | |
2395 | EXPORT_SYMBOL(vm_iomap_memory); | |
2396 | ||
aee16b3c JF |
2397 | static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, |
2398 | unsigned long addr, unsigned long end, | |
e80d3909 JR |
2399 | pte_fn_t fn, void *data, bool create, |
2400 | pgtbl_mod_mask *mask) | |
aee16b3c | 2401 | { |
8abb50c7 | 2402 | pte_t *pte, *mapped_pte; |
be1db475 | 2403 | int err = 0; |
3f649ab7 | 2404 | spinlock_t *ptl; |
aee16b3c | 2405 | |
be1db475 | 2406 | if (create) { |
8abb50c7 | 2407 | mapped_pte = pte = (mm == &init_mm) ? |
e80d3909 | 2408 | pte_alloc_kernel_track(pmd, addr, mask) : |
be1db475 DA |
2409 | pte_alloc_map_lock(mm, pmd, addr, &ptl); |
2410 | if (!pte) | |
2411 | return -ENOMEM; | |
2412 | } else { | |
8abb50c7 | 2413 | mapped_pte = pte = (mm == &init_mm) ? |
be1db475 DA |
2414 | pte_offset_kernel(pmd, addr) : |
2415 | pte_offset_map_lock(mm, pmd, addr, &ptl); | |
2416 | } | |
aee16b3c JF |
2417 | |
2418 | BUG_ON(pmd_huge(*pmd)); | |
2419 | ||
38e0edb1 JF |
2420 | arch_enter_lazy_mmu_mode(); |
2421 | ||
eeb4a05f CH |
2422 | if (fn) { |
2423 | do { | |
2424 | if (create || !pte_none(*pte)) { | |
2425 | err = fn(pte++, addr, data); | |
2426 | if (err) | |
2427 | break; | |
2428 | } | |
2429 | } while (addr += PAGE_SIZE, addr != end); | |
2430 | } | |
e80d3909 | 2431 | *mask |= PGTBL_PTE_MODIFIED; |
aee16b3c | 2432 | |
38e0edb1 JF |
2433 | arch_leave_lazy_mmu_mode(); |
2434 | ||
aee16b3c | 2435 | if (mm != &init_mm) |
8abb50c7 | 2436 | pte_unmap_unlock(mapped_pte, ptl); |
aee16b3c JF |
2437 | return err; |
2438 | } | |
2439 | ||
2440 | static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, | |
2441 | unsigned long addr, unsigned long end, | |
e80d3909 JR |
2442 | pte_fn_t fn, void *data, bool create, |
2443 | pgtbl_mod_mask *mask) | |
aee16b3c JF |
2444 | { |
2445 | pmd_t *pmd; | |
2446 | unsigned long next; | |
be1db475 | 2447 | int err = 0; |
aee16b3c | 2448 | |
ceb86879 AK |
2449 | BUG_ON(pud_huge(*pud)); |
2450 | ||
be1db475 | 2451 | if (create) { |
e80d3909 | 2452 | pmd = pmd_alloc_track(mm, pud, addr, mask); |
be1db475 DA |
2453 | if (!pmd) |
2454 | return -ENOMEM; | |
2455 | } else { | |
2456 | pmd = pmd_offset(pud, addr); | |
2457 | } | |
aee16b3c JF |
2458 | do { |
2459 | next = pmd_addr_end(addr, end); | |
0c95cba4 NP |
2460 | if (pmd_none(*pmd) && !create) |
2461 | continue; | |
2462 | if (WARN_ON_ONCE(pmd_leaf(*pmd))) | |
2463 | return -EINVAL; | |
2464 | if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) { | |
2465 | if (!create) | |
2466 | continue; | |
2467 | pmd_clear_bad(pmd); | |
be1db475 | 2468 | } |
0c95cba4 NP |
2469 | err = apply_to_pte_range(mm, pmd, addr, next, |
2470 | fn, data, create, mask); | |
2471 | if (err) | |
2472 | break; | |
aee16b3c | 2473 | } while (pmd++, addr = next, addr != end); |
0c95cba4 | 2474 | |
aee16b3c JF |
2475 | return err; |
2476 | } | |
2477 | ||
c2febafc | 2478 | static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, |
aee16b3c | 2479 | unsigned long addr, unsigned long end, |
e80d3909 JR |
2480 | pte_fn_t fn, void *data, bool create, |
2481 | pgtbl_mod_mask *mask) | |
aee16b3c JF |
2482 | { |
2483 | pud_t *pud; | |
2484 | unsigned long next; | |
be1db475 | 2485 | int err = 0; |
aee16b3c | 2486 | |
be1db475 | 2487 | if (create) { |
e80d3909 | 2488 | pud = pud_alloc_track(mm, p4d, addr, mask); |
be1db475 DA |
2489 | if (!pud) |
2490 | return -ENOMEM; | |
2491 | } else { | |
2492 | pud = pud_offset(p4d, addr); | |
2493 | } | |
aee16b3c JF |
2494 | do { |
2495 | next = pud_addr_end(addr, end); | |
0c95cba4 NP |
2496 | if (pud_none(*pud) && !create) |
2497 | continue; | |
2498 | if (WARN_ON_ONCE(pud_leaf(*pud))) | |
2499 | return -EINVAL; | |
2500 | if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) { | |
2501 | if (!create) | |
2502 | continue; | |
2503 | pud_clear_bad(pud); | |
be1db475 | 2504 | } |
0c95cba4 NP |
2505 | err = apply_to_pmd_range(mm, pud, addr, next, |
2506 | fn, data, create, mask); | |
2507 | if (err) | |
2508 | break; | |
aee16b3c | 2509 | } while (pud++, addr = next, addr != end); |
0c95cba4 | 2510 | |
aee16b3c JF |
2511 | return err; |
2512 | } | |
2513 | ||
c2febafc KS |
2514 | static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, |
2515 | unsigned long addr, unsigned long end, | |
e80d3909 JR |
2516 | pte_fn_t fn, void *data, bool create, |
2517 | pgtbl_mod_mask *mask) | |
c2febafc KS |
2518 | { |
2519 | p4d_t *p4d; | |
2520 | unsigned long next; | |
be1db475 | 2521 | int err = 0; |
c2febafc | 2522 | |
be1db475 | 2523 | if (create) { |
e80d3909 | 2524 | p4d = p4d_alloc_track(mm, pgd, addr, mask); |
be1db475 DA |
2525 | if (!p4d) |
2526 | return -ENOMEM; | |
2527 | } else { | |
2528 | p4d = p4d_offset(pgd, addr); | |
2529 | } | |
c2febafc KS |
2530 | do { |
2531 | next = p4d_addr_end(addr, end); | |
0c95cba4 NP |
2532 | if (p4d_none(*p4d) && !create) |
2533 | continue; | |
2534 | if (WARN_ON_ONCE(p4d_leaf(*p4d))) | |
2535 | return -EINVAL; | |
2536 | if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) { | |
2537 | if (!create) | |
2538 | continue; | |
2539 | p4d_clear_bad(p4d); | |
be1db475 | 2540 | } |
0c95cba4 NP |
2541 | err = apply_to_pud_range(mm, p4d, addr, next, |
2542 | fn, data, create, mask); | |
2543 | if (err) | |
2544 | break; | |
c2febafc | 2545 | } while (p4d++, addr = next, addr != end); |
0c95cba4 | 2546 | |
c2febafc KS |
2547 | return err; |
2548 | } | |
2549 | ||
be1db475 DA |
2550 | static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, |
2551 | unsigned long size, pte_fn_t fn, | |
2552 | void *data, bool create) | |
aee16b3c JF |
2553 | { |
2554 | pgd_t *pgd; | |
e80d3909 | 2555 | unsigned long start = addr, next; |
57250a5b | 2556 | unsigned long end = addr + size; |
e80d3909 | 2557 | pgtbl_mod_mask mask = 0; |
be1db475 | 2558 | int err = 0; |
aee16b3c | 2559 | |
9cb65bc3 MP |
2560 | if (WARN_ON(addr >= end)) |
2561 | return -EINVAL; | |
2562 | ||
aee16b3c JF |
2563 | pgd = pgd_offset(mm, addr); |
2564 | do { | |
2565 | next = pgd_addr_end(addr, end); | |
0c95cba4 | 2566 | if (pgd_none(*pgd) && !create) |
be1db475 | 2567 | continue; |
0c95cba4 NP |
2568 | if (WARN_ON_ONCE(pgd_leaf(*pgd))) |
2569 | return -EINVAL; | |
2570 | if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) { | |
2571 | if (!create) | |
2572 | continue; | |
2573 | pgd_clear_bad(pgd); | |
2574 | } | |
2575 | err = apply_to_p4d_range(mm, pgd, addr, next, | |
2576 | fn, data, create, &mask); | |
aee16b3c JF |
2577 | if (err) |
2578 | break; | |
2579 | } while (pgd++, addr = next, addr != end); | |
57250a5b | 2580 | |
e80d3909 JR |
2581 | if (mask & ARCH_PAGE_TABLE_SYNC_MASK) |
2582 | arch_sync_kernel_mappings(start, start + size); | |
2583 | ||
aee16b3c JF |
2584 | return err; |
2585 | } | |
be1db475 DA |
2586 | |
2587 | /* | |
2588 | * Scan a region of virtual memory, filling in page tables as necessary | |
2589 | * and calling a provided function on each leaf page table. | |
2590 | */ | |
2591 | int apply_to_page_range(struct mm_struct *mm, unsigned long addr, | |
2592 | unsigned long size, pte_fn_t fn, void *data) | |
2593 | { | |
2594 | return __apply_to_page_range(mm, addr, size, fn, data, true); | |
2595 | } | |
aee16b3c JF |
2596 | EXPORT_SYMBOL_GPL(apply_to_page_range); |
2597 | ||
be1db475 DA |
2598 | /* |
2599 | * Scan a region of virtual memory, calling a provided function on | |
2600 | * each leaf page table where it exists. | |
2601 | * | |
2602 | * Unlike apply_to_page_range, this does _not_ fill in page tables | |
2603 | * where they are absent. | |
2604 | */ | |
2605 | int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, | |
2606 | unsigned long size, pte_fn_t fn, void *data) | |
2607 | { | |
2608 | return __apply_to_page_range(mm, addr, size, fn, data, false); | |
2609 | } | |
2610 | EXPORT_SYMBOL_GPL(apply_to_existing_page_range); | |
2611 | ||
8f4e2101 | 2612 | /* |
9b4bdd2f KS |
2613 | * handle_pte_fault chooses page fault handler according to an entry which was |
2614 | * read non-atomically. Before making any commitment, on those architectures | |
2615 | * or configurations (e.g. i386 with PAE) which might give a mix of unmatched | |
2616 | * parts, do_swap_page must check under lock before unmapping the pte and | |
2617 | * proceeding (but do_wp_page is only called after already making such a check; | |
a335b2e1 | 2618 | * and do_anonymous_page can safely check later on). |
8f4e2101 | 2619 | */ |
4c21e2f2 | 2620 | static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, |
8f4e2101 HD |
2621 | pte_t *page_table, pte_t orig_pte) |
2622 | { | |
2623 | int same = 1; | |
923717cb | 2624 | #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) |
8f4e2101 | 2625 | if (sizeof(pte_t) > sizeof(unsigned long)) { |
4c21e2f2 HD |
2626 | spinlock_t *ptl = pte_lockptr(mm, pmd); |
2627 | spin_lock(ptl); | |
8f4e2101 | 2628 | same = pte_same(*page_table, orig_pte); |
4c21e2f2 | 2629 | spin_unlock(ptl); |
8f4e2101 HD |
2630 | } |
2631 | #endif | |
2632 | pte_unmap(page_table); | |
2633 | return same; | |
2634 | } | |
2635 | ||
83d116c5 JH |
2636 | static inline bool cow_user_page(struct page *dst, struct page *src, |
2637 | struct vm_fault *vmf) | |
6aab341e | 2638 | { |
83d116c5 JH |
2639 | bool ret; |
2640 | void *kaddr; | |
2641 | void __user *uaddr; | |
c3e5ea6e | 2642 | bool locked = false; |
83d116c5 JH |
2643 | struct vm_area_struct *vma = vmf->vma; |
2644 | struct mm_struct *mm = vma->vm_mm; | |
2645 | unsigned long addr = vmf->address; | |
2646 | ||
83d116c5 JH |
2647 | if (likely(src)) { |
2648 | copy_user_highpage(dst, src, addr, vma); | |
2649 | return true; | |
2650 | } | |
2651 | ||
6aab341e LT |
2652 | /* |
2653 | * If the source page was a PFN mapping, we don't have | |
2654 | * a "struct page" for it. We do a best-effort copy by | |
2655 | * just copying from the original user address. If that | |
2656 | * fails, we just zero-fill it. Live with it. | |
2657 | */ | |
83d116c5 JH |
2658 | kaddr = kmap_atomic(dst); |
2659 | uaddr = (void __user *)(addr & PAGE_MASK); | |
2660 | ||
2661 | /* | |
2662 | * On architectures with software "accessed" bits, we would | |
2663 | * take a double page fault, so mark it accessed here. | |
2664 | */ | |
c3e5ea6e | 2665 | if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) { |
83d116c5 | 2666 | pte_t entry; |
5d2a2dbb | 2667 | |
83d116c5 | 2668 | vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); |
c3e5ea6e | 2669 | locked = true; |
83d116c5 JH |
2670 | if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { |
2671 | /* | |
2672 | * Other thread has already handled the fault | |
7df67697 | 2673 | * and update local tlb only |
83d116c5 | 2674 | */ |
7df67697 | 2675 | update_mmu_tlb(vma, addr, vmf->pte); |
83d116c5 JH |
2676 | ret = false; |
2677 | goto pte_unlock; | |
2678 | } | |
2679 | ||
2680 | entry = pte_mkyoung(vmf->orig_pte); | |
2681 | if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) | |
2682 | update_mmu_cache(vma, addr, vmf->pte); | |
2683 | } | |
2684 | ||
2685 | /* | |
2686 | * This really shouldn't fail, because the page is there | |
2687 | * in the page tables. But it might just be unreadable, | |
2688 | * in which case we just give up and fill the result with | |
2689 | * zeroes. | |
2690 | */ | |
2691 | if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { | |
c3e5ea6e KS |
2692 | if (locked) |
2693 | goto warn; | |
2694 | ||
2695 | /* Re-validate under PTL if the page is still mapped */ | |
2696 | vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); | |
2697 | locked = true; | |
2698 | if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { | |
7df67697 BM |
2699 | /* The PTE changed under us, update local tlb */ |
2700 | update_mmu_tlb(vma, addr, vmf->pte); | |
c3e5ea6e KS |
2701 | ret = false; |
2702 | goto pte_unlock; | |
2703 | } | |
2704 | ||
5d2a2dbb | 2705 | /* |
985ba004 | 2706 | * The same page can be mapped back since last copy attempt. |
c3e5ea6e | 2707 | * Try to copy again under PTL. |
5d2a2dbb | 2708 | */ |
c3e5ea6e KS |
2709 | if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { |
2710 | /* | |
2711 | * Give a warn in case there can be some obscure | |
2712 | * use-case | |
2713 | */ | |
2714 | warn: | |
2715 | WARN_ON_ONCE(1); | |
2716 | clear_page(kaddr); | |
2717 | } | |
83d116c5 JH |
2718 | } |
2719 | ||
2720 | ret = true; | |
2721 | ||
2722 | pte_unlock: | |
c3e5ea6e | 2723 | if (locked) |
83d116c5 JH |
2724 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
2725 | kunmap_atomic(kaddr); | |
2726 | flush_dcache_page(dst); | |
2727 | ||
2728 | return ret; | |
6aab341e LT |
2729 | } |
2730 | ||
c20cd45e MH |
2731 | static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) |
2732 | { | |
2733 | struct file *vm_file = vma->vm_file; | |
2734 | ||
2735 | if (vm_file) | |
2736 | return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; | |
2737 | ||
2738 | /* | |
2739 | * Special mappings (e.g. VDSO) do not have any file so fake | |
2740 | * a default GFP_KERNEL for them. | |
2741 | */ | |
2742 | return GFP_KERNEL; | |
2743 | } | |
2744 | ||
fb09a464 KS |
2745 | /* |
2746 | * Notify the address space that the page is about to become writable so that | |
2747 | * it can prohibit this or wait for the page to get into an appropriate state. | |
2748 | * | |
2749 | * We do this without the lock held, so that it can sleep if it needs to. | |
2750 | */ | |
2b740303 | 2751 | static vm_fault_t do_page_mkwrite(struct vm_fault *vmf) |
fb09a464 | 2752 | { |
2b740303 | 2753 | vm_fault_t ret; |
38b8cb7f JK |
2754 | struct page *page = vmf->page; |
2755 | unsigned int old_flags = vmf->flags; | |
fb09a464 | 2756 | |
38b8cb7f | 2757 | vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; |
fb09a464 | 2758 | |
dc617f29 DW |
2759 | if (vmf->vma->vm_file && |
2760 | IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) | |
2761 | return VM_FAULT_SIGBUS; | |
2762 | ||
11bac800 | 2763 | ret = vmf->vma->vm_ops->page_mkwrite(vmf); |
38b8cb7f JK |
2764 | /* Restore original flags so that caller is not surprised */ |
2765 | vmf->flags = old_flags; | |
fb09a464 KS |
2766 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) |
2767 | return ret; | |
2768 | if (unlikely(!(ret & VM_FAULT_LOCKED))) { | |
2769 | lock_page(page); | |
2770 | if (!page->mapping) { | |
2771 | unlock_page(page); | |
2772 | return 0; /* retry */ | |
2773 | } | |
2774 | ret |= VM_FAULT_LOCKED; | |
2775 | } else | |
2776 | VM_BUG_ON_PAGE(!PageLocked(page), page); | |
2777 | return ret; | |
2778 | } | |
2779 | ||
97ba0c2b JK |
2780 | /* |
2781 | * Handle dirtying of a page in shared file mapping on a write fault. | |
2782 | * | |
2783 | * The function expects the page to be locked and unlocks it. | |
2784 | */ | |
89b15332 | 2785 | static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) |
97ba0c2b | 2786 | { |
89b15332 | 2787 | struct vm_area_struct *vma = vmf->vma; |
97ba0c2b | 2788 | struct address_space *mapping; |
89b15332 | 2789 | struct page *page = vmf->page; |
97ba0c2b JK |
2790 | bool dirtied; |
2791 | bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; | |
2792 | ||
2793 | dirtied = set_page_dirty(page); | |
2794 | VM_BUG_ON_PAGE(PageAnon(page), page); | |
2795 | /* | |
2796 | * Take a local copy of the address_space - page.mapping may be zeroed | |
2797 | * by truncate after unlock_page(). The address_space itself remains | |
2798 | * pinned by vma->vm_file's reference. We rely on unlock_page()'s | |
2799 | * release semantics to prevent the compiler from undoing this copying. | |
2800 | */ | |
2801 | mapping = page_rmapping(page); | |
2802 | unlock_page(page); | |
2803 | ||
89b15332 JW |
2804 | if (!page_mkwrite) |
2805 | file_update_time(vma->vm_file); | |
2806 | ||
2807 | /* | |
2808 | * Throttle page dirtying rate down to writeback speed. | |
2809 | * | |
2810 | * mapping may be NULL here because some device drivers do not | |
2811 | * set page.mapping but still dirty their pages | |
2812 | * | |
c1e8d7c6 | 2813 | * Drop the mmap_lock before waiting on IO, if we can. The file |
89b15332 JW |
2814 | * is pinning the mapping, as per above. |
2815 | */ | |
97ba0c2b | 2816 | if ((dirtied || page_mkwrite) && mapping) { |
89b15332 JW |
2817 | struct file *fpin; |
2818 | ||
2819 | fpin = maybe_unlock_mmap_for_io(vmf, NULL); | |
97ba0c2b | 2820 | balance_dirty_pages_ratelimited(mapping); |
89b15332 JW |
2821 | if (fpin) { |
2822 | fput(fpin); | |
2823 | return VM_FAULT_RETRY; | |
2824 | } | |
97ba0c2b JK |
2825 | } |
2826 | ||
89b15332 | 2827 | return 0; |
97ba0c2b JK |
2828 | } |
2829 | ||
4e047f89 SR |
2830 | /* |
2831 | * Handle write page faults for pages that can be reused in the current vma | |
2832 | * | |
2833 | * This can happen either due to the mapping being with the VM_SHARED flag, | |
2834 | * or due to us being the last reference standing to the page. In either | |
2835 | * case, all we need to do here is to mark the page as writable and update | |
2836 | * any related book-keeping. | |
2837 | */ | |
997dd98d | 2838 | static inline void wp_page_reuse(struct vm_fault *vmf) |
82b0f8c3 | 2839 | __releases(vmf->ptl) |
4e047f89 | 2840 | { |
82b0f8c3 | 2841 | struct vm_area_struct *vma = vmf->vma; |
a41b70d6 | 2842 | struct page *page = vmf->page; |
4e047f89 SR |
2843 | pte_t entry; |
2844 | /* | |
2845 | * Clear the pages cpupid information as the existing | |
2846 | * information potentially belongs to a now completely | |
2847 | * unrelated process. | |
2848 | */ | |
2849 | if (page) | |
2850 | page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); | |
2851 | ||
2994302b JK |
2852 | flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); |
2853 | entry = pte_mkyoung(vmf->orig_pte); | |
4e047f89 | 2854 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); |
82b0f8c3 JK |
2855 | if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) |
2856 | update_mmu_cache(vma, vmf->address, vmf->pte); | |
2857 | pte_unmap_unlock(vmf->pte, vmf->ptl); | |
798a6b87 | 2858 | count_vm_event(PGREUSE); |
4e047f89 SR |
2859 | } |
2860 | ||
2f38ab2c SR |
2861 | /* |
2862 | * Handle the case of a page which we actually need to copy to a new page. | |
2863 | * | |
c1e8d7c6 | 2864 | * Called with mmap_lock locked and the old page referenced, but |
2f38ab2c SR |
2865 | * without the ptl held. |
2866 | * | |
2867 | * High level logic flow: | |
2868 | * | |
2869 | * - Allocate a page, copy the content of the old page to the new one. | |
2870 | * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. | |
2871 | * - Take the PTL. If the pte changed, bail out and release the allocated page | |
2872 | * - If the pte is still the way we remember it, update the page table and all | |
2873 | * relevant references. This includes dropping the reference the page-table | |
2874 | * held to the old page, as well as updating the rmap. | |
2875 | * - In any case, unlock the PTL and drop the reference we took to the old page. | |
2876 | */ | |
2b740303 | 2877 | static vm_fault_t wp_page_copy(struct vm_fault *vmf) |
2f38ab2c | 2878 | { |
82b0f8c3 | 2879 | struct vm_area_struct *vma = vmf->vma; |
bae473a4 | 2880 | struct mm_struct *mm = vma->vm_mm; |
a41b70d6 | 2881 | struct page *old_page = vmf->page; |
2f38ab2c | 2882 | struct page *new_page = NULL; |
2f38ab2c SR |
2883 | pte_t entry; |
2884 | int page_copied = 0; | |
ac46d4f3 | 2885 | struct mmu_notifier_range range; |
2f38ab2c SR |
2886 | |
2887 | if (unlikely(anon_vma_prepare(vma))) | |
2888 | goto oom; | |
2889 | ||
2994302b | 2890 | if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { |
82b0f8c3 JK |
2891 | new_page = alloc_zeroed_user_highpage_movable(vma, |
2892 | vmf->address); | |
2f38ab2c SR |
2893 | if (!new_page) |
2894 | goto oom; | |
2895 | } else { | |
bae473a4 | 2896 | new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, |
82b0f8c3 | 2897 | vmf->address); |
2f38ab2c SR |
2898 | if (!new_page) |
2899 | goto oom; | |
83d116c5 JH |
2900 | |
2901 | if (!cow_user_page(new_page, old_page, vmf)) { | |
2902 | /* | |
2903 | * COW failed, if the fault was solved by other, | |
2904 | * it's fine. If not, userspace would re-fault on | |
2905 | * the same address and we will handle the fault | |
2906 | * from the second attempt. | |
2907 | */ | |
2908 | put_page(new_page); | |
2909 | if (old_page) | |
2910 | put_page(old_page); | |
2911 | return 0; | |
2912 | } | |
2f38ab2c | 2913 | } |
2f38ab2c | 2914 | |
d9eb1ea2 | 2915 | if (mem_cgroup_charge(new_page, mm, GFP_KERNEL)) |
2f38ab2c | 2916 | goto oom_free_new; |
9d82c694 | 2917 | cgroup_throttle_swaprate(new_page, GFP_KERNEL); |
2f38ab2c | 2918 | |
eb3c24f3 MG |
2919 | __SetPageUptodate(new_page); |
2920 | ||
7269f999 | 2921 | mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, |
6f4f13e8 | 2922 | vmf->address & PAGE_MASK, |
ac46d4f3 JG |
2923 | (vmf->address & PAGE_MASK) + PAGE_SIZE); |
2924 | mmu_notifier_invalidate_range_start(&range); | |
2f38ab2c SR |
2925 | |
2926 | /* | |
2927 | * Re-check the pte - we dropped the lock | |
2928 | */ | |
82b0f8c3 | 2929 | vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); |
2994302b | 2930 | if (likely(pte_same(*vmf->pte, vmf->orig_pte))) { |
2f38ab2c SR |
2931 | if (old_page) { |
2932 | if (!PageAnon(old_page)) { | |
eca56ff9 JM |
2933 | dec_mm_counter_fast(mm, |
2934 | mm_counter_file(old_page)); | |
2f38ab2c SR |
2935 | inc_mm_counter_fast(mm, MM_ANONPAGES); |
2936 | } | |
2937 | } else { | |
2938 | inc_mm_counter_fast(mm, MM_ANONPAGES); | |
2939 | } | |
2994302b | 2940 | flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); |
2f38ab2c SR |
2941 | entry = mk_pte(new_page, vma->vm_page_prot); |
2942 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | |
111fe718 | 2943 | |
2f38ab2c SR |
2944 | /* |
2945 | * Clear the pte entry and flush it first, before updating the | |
111fe718 NP |
2946 | * pte with the new entry, to keep TLBs on different CPUs in |
2947 | * sync. This code used to set the new PTE then flush TLBs, but | |
2948 | * that left a window where the new PTE could be loaded into | |
2949 | * some TLBs while the old PTE remains in others. | |
2f38ab2c | 2950 | */ |
82b0f8c3 JK |
2951 | ptep_clear_flush_notify(vma, vmf->address, vmf->pte); |
2952 | page_add_new_anon_rmap(new_page, vma, vmf->address, false); | |
b518154e | 2953 | lru_cache_add_inactive_or_unevictable(new_page, vma); |
2f38ab2c SR |
2954 | /* |
2955 | * We call the notify macro here because, when using secondary | |
2956 | * mmu page tables (such as kvm shadow page tables), we want the | |
2957 | * new page to be mapped directly into the secondary page table. | |
2958 | */ | |
82b0f8c3 JK |
2959 | set_pte_at_notify(mm, vmf->address, vmf->pte, entry); |
2960 | update_mmu_cache(vma, vmf->address, vmf->pte); | |
2f38ab2c SR |
2961 | if (old_page) { |
2962 | /* | |
2963 | * Only after switching the pte to the new page may | |
2964 | * we remove the mapcount here. Otherwise another | |
2965 | * process may come and find the rmap count decremented | |
2966 | * before the pte is switched to the new page, and | |
2967 | * "reuse" the old page writing into it while our pte | |
2968 | * here still points into it and can be read by other | |
2969 | * threads. | |
2970 | * | |
2971 | * The critical issue is to order this | |
2972 | * page_remove_rmap with the ptp_clear_flush above. | |
2973 | * Those stores are ordered by (if nothing else,) | |
2974 | * the barrier present in the atomic_add_negative | |
2975 | * in page_remove_rmap. | |
2976 | * | |
2977 | * Then the TLB flush in ptep_clear_flush ensures that | |
2978 | * no process can access the old page before the | |
2979 | * decremented mapcount is visible. And the old page | |
2980 | * cannot be reused until after the decremented | |
2981 | * mapcount is visible. So transitively, TLBs to | |
2982 | * old page will be flushed before it can be reused. | |
2983 | */ | |
d281ee61 | 2984 | page_remove_rmap(old_page, false); |
2f38ab2c SR |
2985 | } |
2986 | ||
2987 | /* Free the old page.. */ | |
2988 | new_page = old_page; | |
2989 | page_copied = 1; | |
2990 | } else { | |
7df67697 | 2991 | update_mmu_tlb(vma, vmf->address, vmf->pte); |
2f38ab2c SR |
2992 | } |
2993 | ||
2994 | if (new_page) | |
09cbfeaf | 2995 | put_page(new_page); |
2f38ab2c | 2996 | |
82b0f8c3 | 2997 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
4645b9fe JG |
2998 | /* |
2999 | * No need to double call mmu_notifier->invalidate_range() callback as | |
3000 | * the above ptep_clear_flush_notify() did already call it. | |
3001 | */ | |
ac46d4f3 | 3002 | mmu_notifier_invalidate_range_only_end(&range); |
2f38ab2c SR |
3003 | if (old_page) { |
3004 | /* | |
3005 | * Don't let another task, with possibly unlocked vma, | |
3006 | * keep the mlocked page. | |
3007 | */ | |
3008 | if (page_copied && (vma->vm_flags & VM_LOCKED)) { | |
3009 | lock_page(old_page); /* LRU manipulation */ | |
e90309c9 KS |
3010 | if (PageMlocked(old_page)) |
3011 | munlock_vma_page(old_page); | |
2f38ab2c SR |
3012 | unlock_page(old_page); |
3013 | } | |
09cbfeaf | 3014 | put_page(old_page); |
2f38ab2c SR |
3015 | } |
3016 | return page_copied ? VM_FAULT_WRITE : 0; | |
3017 | oom_free_new: | |
09cbfeaf | 3018 | put_page(new_page); |
2f38ab2c SR |
3019 | oom: |
3020 | if (old_page) | |
09cbfeaf | 3021 | put_page(old_page); |
2f38ab2c SR |
3022 | return VM_FAULT_OOM; |
3023 | } | |
3024 | ||
66a6197c JK |
3025 | /** |
3026 | * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE | |
3027 | * writeable once the page is prepared | |
3028 | * | |
3029 | * @vmf: structure describing the fault | |
3030 | * | |
3031 | * This function handles all that is needed to finish a write page fault in a | |
3032 | * shared mapping due to PTE being read-only once the mapped page is prepared. | |
a862f68a | 3033 | * It handles locking of PTE and modifying it. |
66a6197c JK |
3034 | * |
3035 | * The function expects the page to be locked or other protection against | |
3036 | * concurrent faults / writeback (such as DAX radix tree locks). | |
a862f68a MR |
3037 | * |
3038 | * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before | |
3039 | * we acquired PTE lock. | |
66a6197c | 3040 | */ |
2b740303 | 3041 | vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf) |
66a6197c JK |
3042 | { |
3043 | WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); | |
3044 | vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, | |
3045 | &vmf->ptl); | |
3046 | /* | |
3047 | * We might have raced with another page fault while we released the | |
3048 | * pte_offset_map_lock. | |
3049 | */ | |
3050 | if (!pte_same(*vmf->pte, vmf->orig_pte)) { | |
7df67697 | 3051 | update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); |
66a6197c | 3052 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
a19e2553 | 3053 | return VM_FAULT_NOPAGE; |
66a6197c JK |
3054 | } |
3055 | wp_page_reuse(vmf); | |
a19e2553 | 3056 | return 0; |
66a6197c JK |
3057 | } |
3058 | ||
dd906184 BH |
3059 | /* |
3060 | * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED | |
3061 | * mapping | |
3062 | */ | |
2b740303 | 3063 | static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) |
dd906184 | 3064 | { |
82b0f8c3 | 3065 | struct vm_area_struct *vma = vmf->vma; |
bae473a4 | 3066 | |
dd906184 | 3067 | if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { |
2b740303 | 3068 | vm_fault_t ret; |
dd906184 | 3069 | |
82b0f8c3 | 3070 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
fe82221f | 3071 | vmf->flags |= FAULT_FLAG_MKWRITE; |
11bac800 | 3072 | ret = vma->vm_ops->pfn_mkwrite(vmf); |
2f89dc12 | 3073 | if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) |
dd906184 | 3074 | return ret; |
66a6197c | 3075 | return finish_mkwrite_fault(vmf); |
dd906184 | 3076 | } |
997dd98d JK |
3077 | wp_page_reuse(vmf); |
3078 | return VM_FAULT_WRITE; | |
dd906184 BH |
3079 | } |
3080 | ||
2b740303 | 3081 | static vm_fault_t wp_page_shared(struct vm_fault *vmf) |
82b0f8c3 | 3082 | __releases(vmf->ptl) |
93e478d4 | 3083 | { |
82b0f8c3 | 3084 | struct vm_area_struct *vma = vmf->vma; |
89b15332 | 3085 | vm_fault_t ret = VM_FAULT_WRITE; |
93e478d4 | 3086 | |
a41b70d6 | 3087 | get_page(vmf->page); |
93e478d4 | 3088 | |
93e478d4 | 3089 | if (vma->vm_ops && vma->vm_ops->page_mkwrite) { |
2b740303 | 3090 | vm_fault_t tmp; |
93e478d4 | 3091 | |
82b0f8c3 | 3092 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
38b8cb7f | 3093 | tmp = do_page_mkwrite(vmf); |
93e478d4 SR |
3094 | if (unlikely(!tmp || (tmp & |
3095 | (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { | |
a41b70d6 | 3096 | put_page(vmf->page); |
93e478d4 SR |
3097 | return tmp; |
3098 | } | |
66a6197c | 3099 | tmp = finish_mkwrite_fault(vmf); |
a19e2553 | 3100 | if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { |
a41b70d6 | 3101 | unlock_page(vmf->page); |
a41b70d6 | 3102 | put_page(vmf->page); |
66a6197c | 3103 | return tmp; |
93e478d4 | 3104 | } |
66a6197c JK |
3105 | } else { |
3106 | wp_page_reuse(vmf); | |
997dd98d | 3107 | lock_page(vmf->page); |
93e478d4 | 3108 | } |
89b15332 | 3109 | ret |= fault_dirty_shared_page(vmf); |
997dd98d | 3110 | put_page(vmf->page); |
93e478d4 | 3111 | |
89b15332 | 3112 | return ret; |
93e478d4 SR |
3113 | } |
3114 | ||
1da177e4 LT |
3115 | /* |
3116 | * This routine handles present pages, when users try to write | |
3117 | * to a shared page. It is done by copying the page to a new address | |
3118 | * and decrementing the shared-page counter for the old page. | |
3119 | * | |
1da177e4 LT |
3120 | * Note that this routine assumes that the protection checks have been |
3121 | * done by the caller (the low-level page fault routine in most cases). | |
3122 | * Thus we can safely just mark it writable once we've done any necessary | |
3123 | * COW. | |
3124 | * | |
3125 | * We also mark the page dirty at this point even though the page will | |
3126 | * change only once the write actually happens. This avoids a few races, | |
3127 | * and potentially makes it more efficient. | |
3128 | * | |
c1e8d7c6 | 3129 | * We enter with non-exclusive mmap_lock (to exclude vma changes, |
8f4e2101 | 3130 | * but allow concurrent faults), with pte both mapped and locked. |
c1e8d7c6 | 3131 | * We return with mmap_lock still held, but pte unmapped and unlocked. |
1da177e4 | 3132 | */ |
2b740303 | 3133 | static vm_fault_t do_wp_page(struct vm_fault *vmf) |
82b0f8c3 | 3134 | __releases(vmf->ptl) |
1da177e4 | 3135 | { |
82b0f8c3 | 3136 | struct vm_area_struct *vma = vmf->vma; |
1da177e4 | 3137 | |
292924b2 | 3138 | if (userfaultfd_pte_wp(vma, *vmf->pte)) { |
529b930b AA |
3139 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
3140 | return handle_userfault(vmf, VM_UFFD_WP); | |
3141 | } | |
3142 | ||
6ce64428 NA |
3143 | /* |
3144 | * Userfaultfd write-protect can defer flushes. Ensure the TLB | |
3145 | * is flushed in this case before copying. | |
3146 | */ | |
3147 | if (unlikely(userfaultfd_wp(vmf->vma) && | |
3148 | mm_tlb_flush_pending(vmf->vma->vm_mm))) | |
3149 | flush_tlb_page(vmf->vma, vmf->address); | |
3150 | ||
a41b70d6 JK |
3151 | vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); |
3152 | if (!vmf->page) { | |
251b97f5 | 3153 | /* |
64e45507 PF |
3154 | * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a |
3155 | * VM_PFNMAP VMA. | |
251b97f5 PZ |
3156 | * |
3157 | * We should not cow pages in a shared writeable mapping. | |
dd906184 | 3158 | * Just mark the pages writable and/or call ops->pfn_mkwrite. |
251b97f5 PZ |
3159 | */ |
3160 | if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == | |
3161 | (VM_WRITE|VM_SHARED)) | |
2994302b | 3162 | return wp_pfn_shared(vmf); |
2f38ab2c | 3163 | |
82b0f8c3 | 3164 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
a41b70d6 | 3165 | return wp_page_copy(vmf); |
251b97f5 | 3166 | } |
1da177e4 | 3167 | |
d08b3851 | 3168 | /* |
ee6a6457 PZ |
3169 | * Take out anonymous pages first, anonymous shared vmas are |
3170 | * not dirty accountable. | |
d08b3851 | 3171 | */ |
52d1e606 | 3172 | if (PageAnon(vmf->page)) { |
09854ba9 LT |
3173 | struct page *page = vmf->page; |
3174 | ||
3175 | /* PageKsm() doesn't necessarily raise the page refcount */ | |
3176 | if (PageKsm(page) || page_count(page) != 1) | |
3177 | goto copy; | |
3178 | if (!trylock_page(page)) | |
3179 | goto copy; | |
3180 | if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) { | |
3181 | unlock_page(page); | |
52d1e606 | 3182 | goto copy; |
b009c024 | 3183 | } |
09854ba9 LT |
3184 | /* |
3185 | * Ok, we've got the only map reference, and the only | |
3186 | * page count reference, and the page is locked, | |
3187 | * it's dark out, and we're wearing sunglasses. Hit it. | |
3188 | */ | |
09854ba9 | 3189 | unlock_page(page); |
be068f29 | 3190 | wp_page_reuse(vmf); |
09854ba9 | 3191 | return VM_FAULT_WRITE; |
ee6a6457 | 3192 | } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == |
d08b3851 | 3193 | (VM_WRITE|VM_SHARED))) { |
a41b70d6 | 3194 | return wp_page_shared(vmf); |
1da177e4 | 3195 | } |
52d1e606 | 3196 | copy: |
1da177e4 LT |
3197 | /* |
3198 | * Ok, we need to copy. Oh, well.. | |
3199 | */ | |
a41b70d6 | 3200 | get_page(vmf->page); |
28766805 | 3201 | |
82b0f8c3 | 3202 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
a41b70d6 | 3203 | return wp_page_copy(vmf); |
1da177e4 LT |
3204 | } |
3205 | ||
97a89413 | 3206 | static void unmap_mapping_range_vma(struct vm_area_struct *vma, |
1da177e4 LT |
3207 | unsigned long start_addr, unsigned long end_addr, |
3208 | struct zap_details *details) | |
3209 | { | |
f5cc4eef | 3210 | zap_page_range_single(vma, start_addr, end_addr - start_addr, details); |
1da177e4 LT |
3211 | } |
3212 | ||
f808c13f | 3213 | static inline void unmap_mapping_range_tree(struct rb_root_cached *root, |
1da177e4 LT |
3214 | struct zap_details *details) |
3215 | { | |
3216 | struct vm_area_struct *vma; | |
1da177e4 LT |
3217 | pgoff_t vba, vea, zba, zea; |
3218 | ||
6b2dbba8 | 3219 | vma_interval_tree_foreach(vma, root, |
1da177e4 | 3220 | details->first_index, details->last_index) { |
1da177e4 LT |
3221 | |
3222 | vba = vma->vm_pgoff; | |
d6e93217 | 3223 | vea = vba + vma_pages(vma) - 1; |
1da177e4 LT |
3224 | zba = details->first_index; |
3225 | if (zba < vba) | |
3226 | zba = vba; | |
3227 | zea = details->last_index; | |
3228 | if (zea > vea) | |
3229 | zea = vea; | |
3230 | ||
97a89413 | 3231 | unmap_mapping_range_vma(vma, |
1da177e4 LT |
3232 | ((zba - vba) << PAGE_SHIFT) + vma->vm_start, |
3233 | ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, | |
97a89413 | 3234 | details); |
1da177e4 LT |
3235 | } |
3236 | } | |
3237 | ||
977fbdcd MW |
3238 | /** |
3239 | * unmap_mapping_pages() - Unmap pages from processes. | |
3240 | * @mapping: The address space containing pages to be unmapped. | |
3241 | * @start: Index of first page to be unmapped. | |
3242 | * @nr: Number of pages to be unmapped. 0 to unmap to end of file. | |
3243 | * @even_cows: Whether to unmap even private COWed pages. | |
3244 | * | |
3245 | * Unmap the pages in this address space from any userspace process which | |
3246 | * has them mmaped. Generally, you want to remove COWed pages as well when | |
3247 | * a file is being truncated, but not when invalidating pages from the page | |
3248 | * cache. | |
3249 | */ | |
3250 | void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, | |
3251 | pgoff_t nr, bool even_cows) | |
3252 | { | |
3253 | struct zap_details details = { }; | |
3254 | ||
3255 | details.check_mapping = even_cows ? NULL : mapping; | |
3256 | details.first_index = start; | |
3257 | details.last_index = start + nr - 1; | |
3258 | if (details.last_index < details.first_index) | |
3259 | details.last_index = ULONG_MAX; | |
3260 | ||
3261 | i_mmap_lock_write(mapping); | |
3262 | if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) | |
3263 | unmap_mapping_range_tree(&mapping->i_mmap, &details); | |
3264 | i_mmap_unlock_write(mapping); | |
3265 | } | |
3266 | ||
1da177e4 | 3267 | /** |
8a5f14a2 | 3268 | * unmap_mapping_range - unmap the portion of all mmaps in the specified |
977fbdcd | 3269 | * address_space corresponding to the specified byte range in the underlying |
8a5f14a2 KS |
3270 | * file. |
3271 | * | |
3d41088f | 3272 | * @mapping: the address space containing mmaps to be unmapped. |
1da177e4 LT |
3273 | * @holebegin: byte in first page to unmap, relative to the start of |
3274 | * the underlying file. This will be rounded down to a PAGE_SIZE | |
25d9e2d1 | 3275 | * boundary. Note that this is different from truncate_pagecache(), which |
1da177e4 LT |
3276 | * must keep the partial page. In contrast, we must get rid of |
3277 | * partial pages. | |
3278 | * @holelen: size of prospective hole in bytes. This will be rounded | |
3279 | * up to a PAGE_SIZE boundary. A holelen of zero truncates to the | |
3280 | * end of the file. | |
3281 | * @even_cows: 1 when truncating a file, unmap even private COWed pages; | |
3282 | * but 0 when invalidating pagecache, don't throw away private data. | |
3283 | */ | |
3284 | void unmap_mapping_range(struct address_space *mapping, | |
3285 | loff_t const holebegin, loff_t const holelen, int even_cows) | |
3286 | { | |
1da177e4 LT |
3287 | pgoff_t hba = holebegin >> PAGE_SHIFT; |
3288 | pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; | |
3289 | ||
3290 | /* Check for overflow. */ | |
3291 | if (sizeof(holelen) > sizeof(hlen)) { | |
3292 | long long holeend = | |
3293 | (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; | |
3294 | if (holeend & ~(long long)ULONG_MAX) | |
3295 | hlen = ULONG_MAX - hba + 1; | |
3296 | } | |
3297 | ||
977fbdcd | 3298 | unmap_mapping_pages(mapping, hba, hlen, even_cows); |
1da177e4 LT |
3299 | } |
3300 | EXPORT_SYMBOL(unmap_mapping_range); | |
3301 | ||
1da177e4 | 3302 | /* |
c1e8d7c6 | 3303 | * We enter with non-exclusive mmap_lock (to exclude vma changes, |
8f4e2101 | 3304 | * but allow concurrent faults), and pte mapped but not yet locked. |
9a95f3cf PC |
3305 | * We return with pte unmapped and unlocked. |
3306 | * | |
c1e8d7c6 | 3307 | * We return with the mmap_lock locked or unlocked in the same cases |
9a95f3cf | 3308 | * as does filemap_fault(). |
1da177e4 | 3309 | */ |
2b740303 | 3310 | vm_fault_t do_swap_page(struct vm_fault *vmf) |
1da177e4 | 3311 | { |
82b0f8c3 | 3312 | struct vm_area_struct *vma = vmf->vma; |
eaf649eb | 3313 | struct page *page = NULL, *swapcache; |
65500d23 | 3314 | swp_entry_t entry; |
1da177e4 | 3315 | pte_t pte; |
d065bd81 | 3316 | int locked; |
ad8c2ee8 | 3317 | int exclusive = 0; |
2b740303 | 3318 | vm_fault_t ret = 0; |
aae466b0 | 3319 | void *shadow = NULL; |
1da177e4 | 3320 | |
eaf649eb | 3321 | if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte)) |
8f4e2101 | 3322 | goto out; |
65500d23 | 3323 | |
2994302b | 3324 | entry = pte_to_swp_entry(vmf->orig_pte); |
d1737fdb AK |
3325 | if (unlikely(non_swap_entry(entry))) { |
3326 | if (is_migration_entry(entry)) { | |
82b0f8c3 JK |
3327 | migration_entry_wait(vma->vm_mm, vmf->pmd, |
3328 | vmf->address); | |
5042db43 | 3329 | } else if (is_device_private_entry(entry)) { |
897e6365 CH |
3330 | vmf->page = device_private_entry_to_page(entry); |
3331 | ret = vmf->page->pgmap->ops->migrate_to_ram(vmf); | |
d1737fdb AK |
3332 | } else if (is_hwpoison_entry(entry)) { |
3333 | ret = VM_FAULT_HWPOISON; | |
3334 | } else { | |
2994302b | 3335 | print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); |
d99be1a8 | 3336 | ret = VM_FAULT_SIGBUS; |
d1737fdb | 3337 | } |
0697212a CL |
3338 | goto out; |
3339 | } | |
0bcac06f MK |
3340 | |
3341 | ||
0ff92245 | 3342 | delayacct_set_flag(DELAYACCT_PF_SWAPIN); |
eaf649eb MK |
3343 | page = lookup_swap_cache(entry, vma, vmf->address); |
3344 | swapcache = page; | |
f8020772 | 3345 | |
1da177e4 | 3346 | if (!page) { |
0bcac06f MK |
3347 | struct swap_info_struct *si = swp_swap_info(entry); |
3348 | ||
a449bf58 QC |
3349 | if (data_race(si->flags & SWP_SYNCHRONOUS_IO) && |
3350 | __swap_count(entry) == 1) { | |
0bcac06f | 3351 | /* skip swapcache */ |
e9e9b7ec MK |
3352 | page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, |
3353 | vmf->address); | |
0bcac06f MK |
3354 | if (page) { |
3355 | __SetPageLocked(page); | |
3356 | __SetPageSwapBacked(page); | |
4c6355b2 | 3357 | |
0add0c77 SB |
3358 | if (mem_cgroup_swapin_charge_page(page, |
3359 | vma->vm_mm, GFP_KERNEL, entry)) { | |
545b1b07 | 3360 | ret = VM_FAULT_OOM; |
4c6355b2 | 3361 | goto out_page; |
545b1b07 | 3362 | } |
0add0c77 | 3363 | mem_cgroup_swapin_uncharge_swap(entry); |
4c6355b2 | 3364 | |
aae466b0 JK |
3365 | shadow = get_shadow_from_swap_cache(entry); |
3366 | if (shadow) | |
3367 | workingset_refault(page, shadow); | |
0076f029 | 3368 | |
6058eaec | 3369 | lru_cache_add(page); |
0add0c77 SB |
3370 | |
3371 | /* To provide entry to swap_readpage() */ | |
3372 | set_page_private(page, entry.val); | |
0bcac06f | 3373 | swap_readpage(page, true); |
0add0c77 | 3374 | set_page_private(page, 0); |
0bcac06f | 3375 | } |
aa8d22a1 | 3376 | } else { |
e9e9b7ec MK |
3377 | page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, |
3378 | vmf); | |
aa8d22a1 | 3379 | swapcache = page; |
0bcac06f MK |
3380 | } |
3381 | ||
1da177e4 LT |
3382 | if (!page) { |
3383 | /* | |
8f4e2101 HD |
3384 | * Back out if somebody else faulted in this pte |
3385 | * while we released the pte lock. | |
1da177e4 | 3386 | */ |
82b0f8c3 JK |
3387 | vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, |
3388 | vmf->address, &vmf->ptl); | |
2994302b | 3389 | if (likely(pte_same(*vmf->pte, vmf->orig_pte))) |
1da177e4 | 3390 | ret = VM_FAULT_OOM; |
0ff92245 | 3391 | delayacct_clear_flag(DELAYACCT_PF_SWAPIN); |
65500d23 | 3392 | goto unlock; |
1da177e4 LT |
3393 | } |
3394 | ||
3395 | /* Had to read the page from swap area: Major fault */ | |
3396 | ret = VM_FAULT_MAJOR; | |
f8891e5e | 3397 | count_vm_event(PGMAJFAULT); |
2262185c | 3398 | count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); |
d1737fdb | 3399 | } else if (PageHWPoison(page)) { |
71f72525 WF |
3400 | /* |
3401 | * hwpoisoned dirty swapcache pages are kept for killing | |
3402 | * owner processes (which may be unknown at hwpoison time) | |
3403 | */ | |
d1737fdb AK |
3404 | ret = VM_FAULT_HWPOISON; |
3405 | delayacct_clear_flag(DELAYACCT_PF_SWAPIN); | |
4779cb31 | 3406 | goto out_release; |
1da177e4 LT |
3407 | } |
3408 | ||
82b0f8c3 | 3409 | locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags); |
e709ffd6 | 3410 | |
073e587e | 3411 | delayacct_clear_flag(DELAYACCT_PF_SWAPIN); |
d065bd81 ML |
3412 | if (!locked) { |
3413 | ret |= VM_FAULT_RETRY; | |
3414 | goto out_release; | |
3415 | } | |
073e587e | 3416 | |
4969c119 | 3417 | /* |
31c4a3d3 HD |
3418 | * Make sure try_to_free_swap or reuse_swap_page or swapoff did not |
3419 | * release the swapcache from under us. The page pin, and pte_same | |
3420 | * test below, are not enough to exclude that. Even if it is still | |
3421 | * swapcache, we need to check that the page's swap has not changed. | |
4969c119 | 3422 | */ |
0bcac06f MK |
3423 | if (unlikely((!PageSwapCache(page) || |
3424 | page_private(page) != entry.val)) && swapcache) | |
4969c119 AA |
3425 | goto out_page; |
3426 | ||
82b0f8c3 | 3427 | page = ksm_might_need_to_copy(page, vma, vmf->address); |
cbf86cfe HD |
3428 | if (unlikely(!page)) { |
3429 | ret = VM_FAULT_OOM; | |
3430 | page = swapcache; | |
cbf86cfe | 3431 | goto out_page; |
5ad64688 HD |
3432 | } |
3433 | ||
9d82c694 | 3434 | cgroup_throttle_swaprate(page, GFP_KERNEL); |
8a9f3ccd | 3435 | |
1da177e4 | 3436 | /* |
8f4e2101 | 3437 | * Back out if somebody else already faulted in this pte. |
1da177e4 | 3438 | */ |
82b0f8c3 JK |
3439 | vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, |
3440 | &vmf->ptl); | |
2994302b | 3441 | if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) |
b8107480 | 3442 | goto out_nomap; |
b8107480 KK |
3443 | |
3444 | if (unlikely(!PageUptodate(page))) { | |
3445 | ret = VM_FAULT_SIGBUS; | |
3446 | goto out_nomap; | |
1da177e4 LT |
3447 | } |
3448 | ||
8c7c6e34 KH |
3449 | /* |
3450 | * The page isn't present yet, go ahead with the fault. | |
3451 | * | |
3452 | * Be careful about the sequence of operations here. | |
3453 | * To get its accounting right, reuse_swap_page() must be called | |
3454 | * while the page is counted on swap but not yet in mapcount i.e. | |
3455 | * before page_add_anon_rmap() and swap_free(); try_to_free_swap() | |
3456 | * must be called after the swap_free(), or it will never succeed. | |
8c7c6e34 | 3457 | */ |
1da177e4 | 3458 | |
bae473a4 KS |
3459 | inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); |
3460 | dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS); | |
1da177e4 | 3461 | pte = mk_pte(page, vma->vm_page_prot); |
82b0f8c3 | 3462 | if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) { |
1da177e4 | 3463 | pte = maybe_mkwrite(pte_mkdirty(pte), vma); |
82b0f8c3 | 3464 | vmf->flags &= ~FAULT_FLAG_WRITE; |
9a5b489b | 3465 | ret |= VM_FAULT_WRITE; |
d281ee61 | 3466 | exclusive = RMAP_EXCLUSIVE; |
1da177e4 | 3467 | } |
1da177e4 | 3468 | flush_icache_page(vma, page); |
2994302b | 3469 | if (pte_swp_soft_dirty(vmf->orig_pte)) |
179ef71c | 3470 | pte = pte_mksoft_dirty(pte); |
f45ec5ff PX |
3471 | if (pte_swp_uffd_wp(vmf->orig_pte)) { |
3472 | pte = pte_mkuffd_wp(pte); | |
3473 | pte = pte_wrprotect(pte); | |
3474 | } | |
82b0f8c3 | 3475 | set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); |
ca827d55 | 3476 | arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte); |
2994302b | 3477 | vmf->orig_pte = pte; |
0bcac06f MK |
3478 | |
3479 | /* ksm created a completely new copy */ | |
3480 | if (unlikely(page != swapcache && swapcache)) { | |
82b0f8c3 | 3481 | page_add_new_anon_rmap(page, vma, vmf->address, false); |
b518154e | 3482 | lru_cache_add_inactive_or_unevictable(page, vma); |
0bcac06f MK |
3483 | } else { |
3484 | do_page_add_anon_rmap(page, vma, vmf->address, exclusive); | |
00501b53 | 3485 | } |
1da177e4 | 3486 | |
c475a8ab | 3487 | swap_free(entry); |
5ccc5aba VD |
3488 | if (mem_cgroup_swap_full(page) || |
3489 | (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) | |
a2c43eed | 3490 | try_to_free_swap(page); |
c475a8ab | 3491 | unlock_page(page); |
0bcac06f | 3492 | if (page != swapcache && swapcache) { |
4969c119 AA |
3493 | /* |
3494 | * Hold the lock to avoid the swap entry to be reused | |
3495 | * until we take the PT lock for the pte_same() check | |
3496 | * (to avoid false positives from pte_same). For | |
3497 | * further safety release the lock after the swap_free | |
3498 | * so that the swap count won't change under a | |
3499 | * parallel locked swapcache. | |
3500 | */ | |
3501 | unlock_page(swapcache); | |
09cbfeaf | 3502 | put_page(swapcache); |
4969c119 | 3503 | } |
c475a8ab | 3504 | |
82b0f8c3 | 3505 | if (vmf->flags & FAULT_FLAG_WRITE) { |
2994302b | 3506 | ret |= do_wp_page(vmf); |
61469f1d HD |
3507 | if (ret & VM_FAULT_ERROR) |
3508 | ret &= VM_FAULT_ERROR; | |
1da177e4 LT |
3509 | goto out; |
3510 | } | |
3511 | ||
3512 | /* No need to invalidate - it was non-present before */ | |
82b0f8c3 | 3513 | update_mmu_cache(vma, vmf->address, vmf->pte); |
65500d23 | 3514 | unlock: |
82b0f8c3 | 3515 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
1da177e4 LT |
3516 | out: |
3517 | return ret; | |
b8107480 | 3518 | out_nomap: |
82b0f8c3 | 3519 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
bc43f75c | 3520 | out_page: |
b8107480 | 3521 | unlock_page(page); |
4779cb31 | 3522 | out_release: |
09cbfeaf | 3523 | put_page(page); |
0bcac06f | 3524 | if (page != swapcache && swapcache) { |
4969c119 | 3525 | unlock_page(swapcache); |
09cbfeaf | 3526 | put_page(swapcache); |
4969c119 | 3527 | } |
65500d23 | 3528 | return ret; |
1da177e4 LT |
3529 | } |
3530 | ||
3531 | /* | |
c1e8d7c6 | 3532 | * We enter with non-exclusive mmap_lock (to exclude vma changes, |
8f4e2101 | 3533 | * but allow concurrent faults), and pte mapped but not yet locked. |
c1e8d7c6 | 3534 | * We return with mmap_lock still held, but pte unmapped and unlocked. |
1da177e4 | 3535 | */ |
2b740303 | 3536 | static vm_fault_t do_anonymous_page(struct vm_fault *vmf) |
1da177e4 | 3537 | { |
82b0f8c3 | 3538 | struct vm_area_struct *vma = vmf->vma; |
8f4e2101 | 3539 | struct page *page; |
2b740303 | 3540 | vm_fault_t ret = 0; |
1da177e4 | 3541 | pte_t entry; |
1da177e4 | 3542 | |
6b7339f4 KS |
3543 | /* File mapping without ->vm_ops ? */ |
3544 | if (vma->vm_flags & VM_SHARED) | |
3545 | return VM_FAULT_SIGBUS; | |
3546 | ||
7267ec00 KS |
3547 | /* |
3548 | * Use pte_alloc() instead of pte_alloc_map(). We can't run | |
3549 | * pte_offset_map() on pmds where a huge pmd might be created | |
3550 | * from a different thread. | |
3551 | * | |
3e4e28c5 | 3552 | * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when |
7267ec00 KS |
3553 | * parallel threads are excluded by other means. |
3554 | * | |
3e4e28c5 | 3555 | * Here we only have mmap_read_lock(mm). |
7267ec00 | 3556 | */ |
4cf58924 | 3557 | if (pte_alloc(vma->vm_mm, vmf->pmd)) |
7267ec00 KS |
3558 | return VM_FAULT_OOM; |
3559 | ||
f9ce0be7 | 3560 | /* See comment in handle_pte_fault() */ |
82b0f8c3 | 3561 | if (unlikely(pmd_trans_unstable(vmf->pmd))) |
7267ec00 KS |
3562 | return 0; |
3563 | ||
11ac5524 | 3564 | /* Use the zero-page for reads */ |
82b0f8c3 | 3565 | if (!(vmf->flags & FAULT_FLAG_WRITE) && |
bae473a4 | 3566 | !mm_forbids_zeropage(vma->vm_mm)) { |
82b0f8c3 | 3567 | entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), |
62eede62 | 3568 | vma->vm_page_prot)); |
82b0f8c3 JK |
3569 | vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, |
3570 | vmf->address, &vmf->ptl); | |
7df67697 BM |
3571 | if (!pte_none(*vmf->pte)) { |
3572 | update_mmu_tlb(vma, vmf->address, vmf->pte); | |
a13ea5b7 | 3573 | goto unlock; |
7df67697 | 3574 | } |
6b31d595 MH |
3575 | ret = check_stable_address_space(vma->vm_mm); |
3576 | if (ret) | |
3577 | goto unlock; | |
6b251fc9 AA |
3578 | /* Deliver the page fault to userland, check inside PT lock */ |
3579 | if (userfaultfd_missing(vma)) { | |
82b0f8c3 JK |
3580 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
3581 | return handle_userfault(vmf, VM_UFFD_MISSING); | |
6b251fc9 | 3582 | } |
a13ea5b7 HD |
3583 | goto setpte; |
3584 | } | |
3585 | ||
557ed1fa | 3586 | /* Allocate our own private page. */ |
557ed1fa NP |
3587 | if (unlikely(anon_vma_prepare(vma))) |
3588 | goto oom; | |
82b0f8c3 | 3589 | page = alloc_zeroed_user_highpage_movable(vma, vmf->address); |
557ed1fa NP |
3590 | if (!page) |
3591 | goto oom; | |
eb3c24f3 | 3592 | |
d9eb1ea2 | 3593 | if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL)) |
eb3c24f3 | 3594 | goto oom_free_page; |
9d82c694 | 3595 | cgroup_throttle_swaprate(page, GFP_KERNEL); |
eb3c24f3 | 3596 | |
52f37629 MK |
3597 | /* |
3598 | * The memory barrier inside __SetPageUptodate makes sure that | |
f4f5329d | 3599 | * preceding stores to the page contents become visible before |
52f37629 MK |
3600 | * the set_pte_at() write. |
3601 | */ | |
0ed361de | 3602 | __SetPageUptodate(page); |
8f4e2101 | 3603 | |
557ed1fa | 3604 | entry = mk_pte(page, vma->vm_page_prot); |
1ac0cb5d HD |
3605 | if (vma->vm_flags & VM_WRITE) |
3606 | entry = pte_mkwrite(pte_mkdirty(entry)); | |
1da177e4 | 3607 | |
82b0f8c3 JK |
3608 | vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, |
3609 | &vmf->ptl); | |
7df67697 BM |
3610 | if (!pte_none(*vmf->pte)) { |
3611 | update_mmu_cache(vma, vmf->address, vmf->pte); | |
557ed1fa | 3612 | goto release; |
7df67697 | 3613 | } |
9ba69294 | 3614 | |
6b31d595 MH |
3615 | ret = check_stable_address_space(vma->vm_mm); |
3616 | if (ret) | |
3617 | goto release; | |
3618 | ||
6b251fc9 AA |
3619 | /* Deliver the page fault to userland, check inside PT lock */ |
3620 | if (userfaultfd_missing(vma)) { | |
82b0f8c3 | 3621 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
09cbfeaf | 3622 | put_page(page); |
82b0f8c3 | 3623 | return handle_userfault(vmf, VM_UFFD_MISSING); |
6b251fc9 AA |
3624 | } |
3625 | ||
bae473a4 | 3626 | inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); |
82b0f8c3 | 3627 | page_add_new_anon_rmap(page, vma, vmf->address, false); |
b518154e | 3628 | lru_cache_add_inactive_or_unevictable(page, vma); |
a13ea5b7 | 3629 | setpte: |
82b0f8c3 | 3630 | set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); |
1da177e4 LT |
3631 | |
3632 | /* No need to invalidate - it was non-present before */ | |
82b0f8c3 | 3633 | update_mmu_cache(vma, vmf->address, vmf->pte); |
65500d23 | 3634 | unlock: |
82b0f8c3 | 3635 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
6b31d595 | 3636 | return ret; |
8f4e2101 | 3637 | release: |
09cbfeaf | 3638 | put_page(page); |
8f4e2101 | 3639 | goto unlock; |
8a9f3ccd | 3640 | oom_free_page: |
09cbfeaf | 3641 | put_page(page); |
65500d23 | 3642 | oom: |
1da177e4 LT |
3643 | return VM_FAULT_OOM; |
3644 | } | |
3645 | ||
9a95f3cf | 3646 | /* |
c1e8d7c6 | 3647 | * The mmap_lock must have been held on entry, and may have been |
9a95f3cf PC |
3648 | * released depending on flags and vma->vm_ops->fault() return value. |
3649 | * See filemap_fault() and __lock_page_retry(). | |
3650 | */ | |
2b740303 | 3651 | static vm_fault_t __do_fault(struct vm_fault *vmf) |
7eae74af | 3652 | { |
82b0f8c3 | 3653 | struct vm_area_struct *vma = vmf->vma; |
2b740303 | 3654 | vm_fault_t ret; |
7eae74af | 3655 | |
63f3655f MH |
3656 | /* |
3657 | * Preallocate pte before we take page_lock because this might lead to | |
3658 | * deadlocks for memcg reclaim which waits for pages under writeback: | |
3659 | * lock_page(A) | |
3660 | * SetPageWriteback(A) | |
3661 | * unlock_page(A) | |
3662 | * lock_page(B) | |
3663 | * lock_page(B) | |
d383807a | 3664 | * pte_alloc_one |
63f3655f MH |
3665 | * shrink_page_list |
3666 | * wait_on_page_writeback(A) | |
3667 | * SetPageWriteback(B) | |
3668 | * unlock_page(B) | |
3669 | * # flush A, B to clear the writeback | |
3670 | */ | |
3671 | if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { | |
a7069ee3 | 3672 | vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); |
63f3655f MH |
3673 | if (!vmf->prealloc_pte) |
3674 | return VM_FAULT_OOM; | |
3675 | smp_wmb(); /* See comment in __pte_alloc() */ | |
3676 | } | |
3677 | ||
11bac800 | 3678 | ret = vma->vm_ops->fault(vmf); |
3917048d | 3679 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | |
b1aa812b | 3680 | VM_FAULT_DONE_COW))) |
bc2466e4 | 3681 | return ret; |
7eae74af | 3682 | |
667240e0 | 3683 | if (unlikely(PageHWPoison(vmf->page))) { |
7eae74af | 3684 | if (ret & VM_FAULT_LOCKED) |
667240e0 JK |
3685 | unlock_page(vmf->page); |
3686 | put_page(vmf->page); | |
936ca80d | 3687 | vmf->page = NULL; |
7eae74af KS |
3688 | return VM_FAULT_HWPOISON; |
3689 | } | |
3690 | ||
3691 | if (unlikely(!(ret & VM_FAULT_LOCKED))) | |
667240e0 | 3692 | lock_page(vmf->page); |
7eae74af | 3693 | else |
667240e0 | 3694 | VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); |
7eae74af | 3695 | |
7eae74af KS |
3696 | return ret; |
3697 | } | |
3698 | ||
396bcc52 | 3699 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
82b0f8c3 | 3700 | static void deposit_prealloc_pte(struct vm_fault *vmf) |
953c66c2 | 3701 | { |
82b0f8c3 | 3702 | struct vm_area_struct *vma = vmf->vma; |
953c66c2 | 3703 | |
82b0f8c3 | 3704 | pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); |
953c66c2 AK |
3705 | /* |
3706 | * We are going to consume the prealloc table, | |
3707 | * count that as nr_ptes. | |
3708 | */ | |
c4812909 | 3709 | mm_inc_nr_ptes(vma->vm_mm); |
7f2b6ce8 | 3710 | vmf->prealloc_pte = NULL; |
953c66c2 AK |
3711 | } |
3712 | ||
f9ce0be7 | 3713 | vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) |
10102459 | 3714 | { |
82b0f8c3 JK |
3715 | struct vm_area_struct *vma = vmf->vma; |
3716 | bool write = vmf->flags & FAULT_FLAG_WRITE; | |
3717 | unsigned long haddr = vmf->address & HPAGE_PMD_MASK; | |
10102459 | 3718 | pmd_t entry; |
2b740303 | 3719 | int i; |
d01ac3c3 | 3720 | vm_fault_t ret = VM_FAULT_FALLBACK; |
10102459 KS |
3721 | |
3722 | if (!transhuge_vma_suitable(vma, haddr)) | |
d01ac3c3 | 3723 | return ret; |
10102459 | 3724 | |
10102459 | 3725 | page = compound_head(page); |
d01ac3c3 MWO |
3726 | if (compound_order(page) != HPAGE_PMD_ORDER) |
3727 | return ret; | |
10102459 | 3728 | |
953c66c2 AK |
3729 | /* |
3730 | * Archs like ppc64 need additonal space to store information | |
3731 | * related to pte entry. Use the preallocated table for that. | |
3732 | */ | |
82b0f8c3 | 3733 | if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { |
4cf58924 | 3734 | vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); |
82b0f8c3 | 3735 | if (!vmf->prealloc_pte) |
953c66c2 AK |
3736 | return VM_FAULT_OOM; |
3737 | smp_wmb(); /* See comment in __pte_alloc() */ | |
3738 | } | |
3739 | ||
82b0f8c3 JK |
3740 | vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); |
3741 | if (unlikely(!pmd_none(*vmf->pmd))) | |
10102459 KS |
3742 | goto out; |
3743 | ||
3744 | for (i = 0; i < HPAGE_PMD_NR; i++) | |
3745 | flush_icache_page(vma, page + i); | |
3746 | ||
3747 | entry = mk_huge_pmd(page, vma->vm_page_prot); | |
3748 | if (write) | |
f55e1014 | 3749 | entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); |
10102459 | 3750 | |
fadae295 | 3751 | add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR); |
10102459 | 3752 | page_add_file_rmap(page, true); |
953c66c2 AK |
3753 | /* |
3754 | * deposit and withdraw with pmd lock held | |
3755 | */ | |
3756 | if (arch_needs_pgtable_deposit()) | |
82b0f8c3 | 3757 | deposit_prealloc_pte(vmf); |
10102459 | 3758 | |
82b0f8c3 | 3759 | set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); |
10102459 | 3760 | |
82b0f8c3 | 3761 | update_mmu_cache_pmd(vma, haddr, vmf->pmd); |
10102459 KS |
3762 | |
3763 | /* fault is handled */ | |
3764 | ret = 0; | |
95ecedcd | 3765 | count_vm_event(THP_FILE_MAPPED); |
10102459 | 3766 | out: |
82b0f8c3 | 3767 | spin_unlock(vmf->ptl); |
10102459 KS |
3768 | return ret; |
3769 | } | |
3770 | #else | |
f9ce0be7 | 3771 | vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) |
10102459 | 3772 | { |
f9ce0be7 | 3773 | return VM_FAULT_FALLBACK; |
10102459 KS |
3774 | } |
3775 | #endif | |
3776 | ||
9d3af4b4 | 3777 | void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr) |
3bb97794 | 3778 | { |
82b0f8c3 JK |
3779 | struct vm_area_struct *vma = vmf->vma; |
3780 | bool write = vmf->flags & FAULT_FLAG_WRITE; | |
9d3af4b4 | 3781 | bool prefault = vmf->address != addr; |
3bb97794 | 3782 | pte_t entry; |
7267ec00 | 3783 | |
3bb97794 KS |
3784 | flush_icache_page(vma, page); |
3785 | entry = mk_pte(page, vma->vm_page_prot); | |
46bdb427 WD |
3786 | |
3787 | if (prefault && arch_wants_old_prefaulted_pte()) | |
3788 | entry = pte_mkold(entry); | |
46bdb427 | 3789 | |
3bb97794 KS |
3790 | if (write) |
3791 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | |
bae473a4 KS |
3792 | /* copy-on-write page */ |
3793 | if (write && !(vma->vm_flags & VM_SHARED)) { | |
3bb97794 | 3794 | inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); |
9d3af4b4 | 3795 | page_add_new_anon_rmap(page, vma, addr, false); |
b518154e | 3796 | lru_cache_add_inactive_or_unevictable(page, vma); |
3bb97794 | 3797 | } else { |
eca56ff9 | 3798 | inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page)); |
dd78fedd | 3799 | page_add_file_rmap(page, false); |
3bb97794 | 3800 | } |
9d3af4b4 | 3801 | set_pte_at(vma->vm_mm, addr, vmf->pte, entry); |
3bb97794 KS |
3802 | } |
3803 | ||
9118c0cb JK |
3804 | /** |
3805 | * finish_fault - finish page fault once we have prepared the page to fault | |
3806 | * | |
3807 | * @vmf: structure describing the fault | |
3808 | * | |
3809 | * This function handles all that is needed to finish a page fault once the | |
3810 | * page to fault in is prepared. It handles locking of PTEs, inserts PTE for | |
3811 | * given page, adds reverse page mapping, handles memcg charges and LRU | |
a862f68a | 3812 | * addition. |
9118c0cb JK |
3813 | * |
3814 | * The function expects the page to be locked and on success it consumes a | |
3815 | * reference of a page being mapped (for the PTE which maps it). | |
a862f68a MR |
3816 | * |
3817 | * Return: %0 on success, %VM_FAULT_ code in case of error. | |
9118c0cb | 3818 | */ |
2b740303 | 3819 | vm_fault_t finish_fault(struct vm_fault *vmf) |
9118c0cb | 3820 | { |
f9ce0be7 | 3821 | struct vm_area_struct *vma = vmf->vma; |
9118c0cb | 3822 | struct page *page; |
f9ce0be7 | 3823 | vm_fault_t ret; |
9118c0cb JK |
3824 | |
3825 | /* Did we COW the page? */ | |
f9ce0be7 | 3826 | if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) |
9118c0cb JK |
3827 | page = vmf->cow_page; |
3828 | else | |
3829 | page = vmf->page; | |
6b31d595 MH |
3830 | |
3831 | /* | |
3832 | * check even for read faults because we might have lost our CoWed | |
3833 | * page | |
3834 | */ | |
f9ce0be7 KS |
3835 | if (!(vma->vm_flags & VM_SHARED)) { |
3836 | ret = check_stable_address_space(vma->vm_mm); | |
3837 | if (ret) | |
3838 | return ret; | |
3839 | } | |
3840 | ||
3841 | if (pmd_none(*vmf->pmd)) { | |
3842 | if (PageTransCompound(page)) { | |
3843 | ret = do_set_pmd(vmf, page); | |
3844 | if (ret != VM_FAULT_FALLBACK) | |
3845 | return ret; | |
3846 | } | |
3847 | ||
3848 | if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) | |
3849 | return VM_FAULT_OOM; | |
3850 | } | |
3851 | ||
3852 | /* See comment in handle_pte_fault() */ | |
3853 | if (pmd_devmap_trans_unstable(vmf->pmd)) | |
3854 | return 0; | |
3855 | ||
3856 | vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, | |
3857 | vmf->address, &vmf->ptl); | |
3858 | ret = 0; | |
3859 | /* Re-check under ptl */ | |
3860 | if (likely(pte_none(*vmf->pte))) | |
9d3af4b4 | 3861 | do_set_pte(vmf, page, vmf->address); |
f9ce0be7 KS |
3862 | else |
3863 | ret = VM_FAULT_NOPAGE; | |
3864 | ||
3865 | update_mmu_tlb(vma, vmf->address, vmf->pte); | |
3866 | pte_unmap_unlock(vmf->pte, vmf->ptl); | |
9118c0cb JK |
3867 | return ret; |
3868 | } | |
3869 | ||
3a91053a KS |
3870 | static unsigned long fault_around_bytes __read_mostly = |
3871 | rounddown_pow_of_two(65536); | |
a9b0f861 | 3872 | |
a9b0f861 KS |
3873 | #ifdef CONFIG_DEBUG_FS |
3874 | static int fault_around_bytes_get(void *data, u64 *val) | |
1592eef0 | 3875 | { |
a9b0f861 | 3876 | *val = fault_around_bytes; |
1592eef0 KS |
3877 | return 0; |
3878 | } | |
3879 | ||
b4903d6e | 3880 | /* |
da391d64 WK |
3881 | * fault_around_bytes must be rounded down to the nearest page order as it's |
3882 | * what do_fault_around() expects to see. | |
b4903d6e | 3883 | */ |
a9b0f861 | 3884 | static int fault_around_bytes_set(void *data, u64 val) |
1592eef0 | 3885 | { |
a9b0f861 | 3886 | if (val / PAGE_SIZE > PTRS_PER_PTE) |
1592eef0 | 3887 | return -EINVAL; |
b4903d6e AR |
3888 | if (val > PAGE_SIZE) |
3889 | fault_around_bytes = rounddown_pow_of_two(val); | |
3890 | else | |
3891 | fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ | |
1592eef0 KS |
3892 | return 0; |
3893 | } | |
0a1345f8 | 3894 | DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, |
a9b0f861 | 3895 | fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); |
1592eef0 KS |
3896 | |
3897 | static int __init fault_around_debugfs(void) | |
3898 | { | |
d9f7979c GKH |
3899 | debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, |
3900 | &fault_around_bytes_fops); | |
1592eef0 KS |
3901 | return 0; |
3902 | } | |
3903 | late_initcall(fault_around_debugfs); | |
1592eef0 | 3904 | #endif |
8c6e50b0 | 3905 | |
1fdb412b KS |
3906 | /* |
3907 | * do_fault_around() tries to map few pages around the fault address. The hope | |
3908 | * is that the pages will be needed soon and this will lower the number of | |
3909 | * faults to handle. | |
3910 | * | |
3911 | * It uses vm_ops->map_pages() to map the pages, which skips the page if it's | |
3912 | * not ready to be mapped: not up-to-date, locked, etc. | |
3913 | * | |
3914 | * This function is called with the page table lock taken. In the split ptlock | |
3915 | * case the page table lock only protects only those entries which belong to | |
3916 | * the page table corresponding to the fault address. | |
3917 | * | |
3918 | * This function doesn't cross the VMA boundaries, in order to call map_pages() | |
3919 | * only once. | |
3920 | * | |
da391d64 WK |
3921 | * fault_around_bytes defines how many bytes we'll try to map. |
3922 | * do_fault_around() expects it to be set to a power of two less than or equal | |
3923 | * to PTRS_PER_PTE. | |
1fdb412b | 3924 | * |
da391d64 WK |
3925 | * The virtual address of the area that we map is naturally aligned to |
3926 | * fault_around_bytes rounded down to the machine page size | |
3927 | * (and therefore to page order). This way it's easier to guarantee | |
3928 | * that we don't cross page table boundaries. | |
1fdb412b | 3929 | */ |
2b740303 | 3930 | static vm_fault_t do_fault_around(struct vm_fault *vmf) |
8c6e50b0 | 3931 | { |
82b0f8c3 | 3932 | unsigned long address = vmf->address, nr_pages, mask; |
0721ec8b | 3933 | pgoff_t start_pgoff = vmf->pgoff; |
bae473a4 | 3934 | pgoff_t end_pgoff; |
2b740303 | 3935 | int off; |
8c6e50b0 | 3936 | |
4db0c3c2 | 3937 | nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT; |
aecd6f44 KS |
3938 | mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; |
3939 | ||
f9ce0be7 KS |
3940 | address = max(address & mask, vmf->vma->vm_start); |
3941 | off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); | |
bae473a4 | 3942 | start_pgoff -= off; |
8c6e50b0 KS |
3943 | |
3944 | /* | |
da391d64 WK |
3945 | * end_pgoff is either the end of the page table, the end of |
3946 | * the vma or nr_pages from start_pgoff, depending what is nearest. | |
8c6e50b0 | 3947 | */ |
bae473a4 | 3948 | end_pgoff = start_pgoff - |
f9ce0be7 | 3949 | ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + |
8c6e50b0 | 3950 | PTRS_PER_PTE - 1; |
82b0f8c3 | 3951 | end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1, |
bae473a4 | 3952 | start_pgoff + nr_pages - 1); |
8c6e50b0 | 3953 | |
82b0f8c3 | 3954 | if (pmd_none(*vmf->pmd)) { |
4cf58924 | 3955 | vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); |
82b0f8c3 | 3956 | if (!vmf->prealloc_pte) |
f9ce0be7 | 3957 | return VM_FAULT_OOM; |
7267ec00 | 3958 | smp_wmb(); /* See comment in __pte_alloc() */ |
8c6e50b0 KS |
3959 | } |
3960 | ||
f9ce0be7 | 3961 | return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff); |
8c6e50b0 KS |
3962 | } |
3963 | ||
2b740303 | 3964 | static vm_fault_t do_read_fault(struct vm_fault *vmf) |
e655fb29 | 3965 | { |
82b0f8c3 | 3966 | struct vm_area_struct *vma = vmf->vma; |
2b740303 | 3967 | vm_fault_t ret = 0; |
8c6e50b0 KS |
3968 | |
3969 | /* | |
3970 | * Let's call ->map_pages() first and use ->fault() as fallback | |
3971 | * if page by the offset is not ready to be mapped (cold cache or | |
3972 | * something). | |
3973 | */ | |
9b4bdd2f | 3974 | if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) { |
0721ec8b | 3975 | ret = do_fault_around(vmf); |
7267ec00 KS |
3976 | if (ret) |
3977 | return ret; | |
8c6e50b0 | 3978 | } |
e655fb29 | 3979 | |
936ca80d | 3980 | ret = __do_fault(vmf); |
e655fb29 KS |
3981 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) |
3982 | return ret; | |
3983 | ||
9118c0cb | 3984 | ret |= finish_fault(vmf); |
936ca80d | 3985 | unlock_page(vmf->page); |
7267ec00 | 3986 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) |
936ca80d | 3987 | put_page(vmf->page); |
e655fb29 KS |
3988 | return ret; |
3989 | } | |
3990 | ||
2b740303 | 3991 | static vm_fault_t do_cow_fault(struct vm_fault *vmf) |
ec47c3b9 | 3992 | { |
82b0f8c3 | 3993 | struct vm_area_struct *vma = vmf->vma; |
2b740303 | 3994 | vm_fault_t ret; |
ec47c3b9 KS |
3995 | |
3996 | if (unlikely(anon_vma_prepare(vma))) | |
3997 | return VM_FAULT_OOM; | |
3998 | ||
936ca80d JK |
3999 | vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); |
4000 | if (!vmf->cow_page) | |
ec47c3b9 KS |
4001 | return VM_FAULT_OOM; |
4002 | ||
d9eb1ea2 | 4003 | if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) { |
936ca80d | 4004 | put_page(vmf->cow_page); |
ec47c3b9 KS |
4005 | return VM_FAULT_OOM; |
4006 | } | |
9d82c694 | 4007 | cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL); |
ec47c3b9 | 4008 | |
936ca80d | 4009 | ret = __do_fault(vmf); |
ec47c3b9 KS |
4010 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) |
4011 | goto uncharge_out; | |
3917048d JK |
4012 | if (ret & VM_FAULT_DONE_COW) |
4013 | return ret; | |
ec47c3b9 | 4014 | |
b1aa812b | 4015 | copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); |
936ca80d | 4016 | __SetPageUptodate(vmf->cow_page); |
ec47c3b9 | 4017 | |
9118c0cb | 4018 | ret |= finish_fault(vmf); |
b1aa812b JK |
4019 | unlock_page(vmf->page); |
4020 | put_page(vmf->page); | |
7267ec00 KS |
4021 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) |
4022 | goto uncharge_out; | |
ec47c3b9 KS |
4023 | return ret; |
4024 | uncharge_out: | |
936ca80d | 4025 | put_page(vmf->cow_page); |
ec47c3b9 KS |
4026 | return ret; |
4027 | } | |
4028 | ||
2b740303 | 4029 | static vm_fault_t do_shared_fault(struct vm_fault *vmf) |
1da177e4 | 4030 | { |
82b0f8c3 | 4031 | struct vm_area_struct *vma = vmf->vma; |
2b740303 | 4032 | vm_fault_t ret, tmp; |
1d65f86d | 4033 | |
936ca80d | 4034 | ret = __do_fault(vmf); |
7eae74af | 4035 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) |
f0c6d4d2 | 4036 | return ret; |
1da177e4 LT |
4037 | |
4038 | /* | |
f0c6d4d2 KS |
4039 | * Check if the backing address space wants to know that the page is |
4040 | * about to become writable | |
1da177e4 | 4041 | */ |
fb09a464 | 4042 | if (vma->vm_ops->page_mkwrite) { |
936ca80d | 4043 | unlock_page(vmf->page); |
38b8cb7f | 4044 | tmp = do_page_mkwrite(vmf); |
fb09a464 KS |
4045 | if (unlikely(!tmp || |
4046 | (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { | |
936ca80d | 4047 | put_page(vmf->page); |
fb09a464 | 4048 | return tmp; |
4294621f | 4049 | } |
fb09a464 KS |
4050 | } |
4051 | ||
9118c0cb | 4052 | ret |= finish_fault(vmf); |
7267ec00 KS |
4053 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | |
4054 | VM_FAULT_RETRY))) { | |
936ca80d JK |
4055 | unlock_page(vmf->page); |
4056 | put_page(vmf->page); | |
f0c6d4d2 | 4057 | return ret; |
1da177e4 | 4058 | } |
b827e496 | 4059 | |
89b15332 | 4060 | ret |= fault_dirty_shared_page(vmf); |
1d65f86d | 4061 | return ret; |
54cb8821 | 4062 | } |
d00806b1 | 4063 | |
9a95f3cf | 4064 | /* |
c1e8d7c6 | 4065 | * We enter with non-exclusive mmap_lock (to exclude vma changes, |
9a95f3cf | 4066 | * but allow concurrent faults). |
c1e8d7c6 | 4067 | * The mmap_lock may have been released depending on flags and our |
9a95f3cf | 4068 | * return value. See filemap_fault() and __lock_page_or_retry(). |
c1e8d7c6 | 4069 | * If mmap_lock is released, vma may become invalid (for example |
fc8efd2d | 4070 | * by other thread calling munmap()). |
9a95f3cf | 4071 | */ |
2b740303 | 4072 | static vm_fault_t do_fault(struct vm_fault *vmf) |
54cb8821 | 4073 | { |
82b0f8c3 | 4074 | struct vm_area_struct *vma = vmf->vma; |
fc8efd2d | 4075 | struct mm_struct *vm_mm = vma->vm_mm; |
2b740303 | 4076 | vm_fault_t ret; |
54cb8821 | 4077 | |
ff09d7ec AK |
4078 | /* |
4079 | * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND | |
4080 | */ | |
4081 | if (!vma->vm_ops->fault) { | |
4082 | /* | |
4083 | * If we find a migration pmd entry or a none pmd entry, which | |
4084 | * should never happen, return SIGBUS | |
4085 | */ | |
4086 | if (unlikely(!pmd_present(*vmf->pmd))) | |
4087 | ret = VM_FAULT_SIGBUS; | |
4088 | else { | |
4089 | vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, | |
4090 | vmf->pmd, | |
4091 | vmf->address, | |
4092 | &vmf->ptl); | |
4093 | /* | |
4094 | * Make sure this is not a temporary clearing of pte | |
4095 | * by holding ptl and checking again. A R/M/W update | |
4096 | * of pte involves: take ptl, clearing the pte so that | |
4097 | * we don't have concurrent modification by hardware | |
4098 | * followed by an update. | |
4099 | */ | |
4100 | if (unlikely(pte_none(*vmf->pte))) | |
4101 | ret = VM_FAULT_SIGBUS; | |
4102 | else | |
4103 | ret = VM_FAULT_NOPAGE; | |
4104 | ||
4105 | pte_unmap_unlock(vmf->pte, vmf->ptl); | |
4106 | } | |
4107 | } else if (!(vmf->flags & FAULT_FLAG_WRITE)) | |
b0b9b3df HD |
4108 | ret = do_read_fault(vmf); |
4109 | else if (!(vma->vm_flags & VM_SHARED)) | |
4110 | ret = do_cow_fault(vmf); | |
4111 | else | |
4112 | ret = do_shared_fault(vmf); | |
4113 | ||
4114 | /* preallocated pagetable is unused: free it */ | |
4115 | if (vmf->prealloc_pte) { | |
fc8efd2d | 4116 | pte_free(vm_mm, vmf->prealloc_pte); |
7f2b6ce8 | 4117 | vmf->prealloc_pte = NULL; |
b0b9b3df HD |
4118 | } |
4119 | return ret; | |
54cb8821 NP |
4120 | } |
4121 | ||
b19a9939 | 4122 | static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, |
04bb2f94 RR |
4123 | unsigned long addr, int page_nid, |
4124 | int *flags) | |
9532fec1 MG |
4125 | { |
4126 | get_page(page); | |
4127 | ||
4128 | count_vm_numa_event(NUMA_HINT_FAULTS); | |
04bb2f94 | 4129 | if (page_nid == numa_node_id()) { |
9532fec1 | 4130 | count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); |
04bb2f94 RR |
4131 | *flags |= TNF_FAULT_LOCAL; |
4132 | } | |
9532fec1 MG |
4133 | |
4134 | return mpol_misplaced(page, vma, addr); | |
4135 | } | |
4136 | ||
2b740303 | 4137 | static vm_fault_t do_numa_page(struct vm_fault *vmf) |
d10e63f2 | 4138 | { |
82b0f8c3 | 4139 | struct vm_area_struct *vma = vmf->vma; |
4daae3b4 | 4140 | struct page *page = NULL; |
98fa15f3 | 4141 | int page_nid = NUMA_NO_NODE; |
90572890 | 4142 | int last_cpupid; |
cbee9f88 | 4143 | int target_nid; |
04a86453 | 4144 | pte_t pte, old_pte; |
288bc549 | 4145 | bool was_writable = pte_savedwrite(vmf->orig_pte); |
6688cc05 | 4146 | int flags = 0; |
d10e63f2 MG |
4147 | |
4148 | /* | |
166f61b9 TH |
4149 | * The "pte" at this point cannot be used safely without |
4150 | * validation through pte_unmap_same(). It's of NUMA type but | |
4151 | * the pfn may be screwed if the read is non atomic. | |
166f61b9 | 4152 | */ |
82b0f8c3 JK |
4153 | vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd); |
4154 | spin_lock(vmf->ptl); | |
cee216a6 | 4155 | if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { |
82b0f8c3 | 4156 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
4daae3b4 MG |
4157 | goto out; |
4158 | } | |
4159 | ||
b99a342d YH |
4160 | /* Get the normal PTE */ |
4161 | old_pte = ptep_get(vmf->pte); | |
04a86453 | 4162 | pte = pte_modify(old_pte, vma->vm_page_prot); |
d10e63f2 | 4163 | |
82b0f8c3 | 4164 | page = vm_normal_page(vma, vmf->address, pte); |
b99a342d YH |
4165 | if (!page) |
4166 | goto out_map; | |
d10e63f2 | 4167 | |
e81c4802 | 4168 | /* TODO: handle PTE-mapped THP */ |
b99a342d YH |
4169 | if (PageCompound(page)) |
4170 | goto out_map; | |
e81c4802 | 4171 | |
6688cc05 | 4172 | /* |
bea66fbd MG |
4173 | * Avoid grouping on RO pages in general. RO pages shouldn't hurt as |
4174 | * much anyway since they can be in shared cache state. This misses | |
4175 | * the case where a mapping is writable but the process never writes | |
4176 | * to it but pte_write gets cleared during protection updates and | |
4177 | * pte_dirty has unpredictable behaviour between PTE scan updates, | |
4178 | * background writeback, dirty balancing and application behaviour. | |
6688cc05 | 4179 | */ |
b99a342d | 4180 | if (!was_writable) |
6688cc05 PZ |
4181 | flags |= TNF_NO_GROUP; |
4182 | ||
dabe1d99 RR |
4183 | /* |
4184 | * Flag if the page is shared between multiple address spaces. This | |
4185 | * is later used when determining whether to group tasks together | |
4186 | */ | |
4187 | if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) | |
4188 | flags |= TNF_SHARED; | |
4189 | ||
90572890 | 4190 | last_cpupid = page_cpupid_last(page); |
8191acbd | 4191 | page_nid = page_to_nid(page); |
82b0f8c3 | 4192 | target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid, |
bae473a4 | 4193 | &flags); |
98fa15f3 | 4194 | if (target_nid == NUMA_NO_NODE) { |
4daae3b4 | 4195 | put_page(page); |
b99a342d | 4196 | goto out_map; |
4daae3b4 | 4197 | } |
b99a342d | 4198 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
4daae3b4 MG |
4199 | |
4200 | /* Migrate to the requested node */ | |
bf90ac19 | 4201 | if (migrate_misplaced_page(page, vma, target_nid)) { |
8191acbd | 4202 | page_nid = target_nid; |
6688cc05 | 4203 | flags |= TNF_MIGRATED; |
b99a342d | 4204 | } else { |
074c2381 | 4205 | flags |= TNF_MIGRATE_FAIL; |
b99a342d YH |
4206 | vmf->pte = pte_offset_map(vmf->pmd, vmf->address); |
4207 | spin_lock(vmf->ptl); | |
4208 | if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { | |
4209 | pte_unmap_unlock(vmf->pte, vmf->ptl); | |
4210 | goto out; | |
4211 | } | |
4212 | goto out_map; | |
4213 | } | |
4daae3b4 MG |
4214 | |
4215 | out: | |
98fa15f3 | 4216 | if (page_nid != NUMA_NO_NODE) |
6688cc05 | 4217 | task_numa_fault(last_cpupid, page_nid, 1, flags); |
d10e63f2 | 4218 | return 0; |
b99a342d YH |
4219 | out_map: |
4220 | /* | |
4221 | * Make it present again, depending on how arch implements | |
4222 | * non-accessible ptes, some can allow access by kernel mode. | |
4223 | */ | |
4224 | old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte); | |
4225 | pte = pte_modify(old_pte, vma->vm_page_prot); | |
4226 | pte = pte_mkyoung(pte); | |
4227 | if (was_writable) | |
4228 | pte = pte_mkwrite(pte); | |
4229 | ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte); | |
4230 | update_mmu_cache(vma, vmf->address, vmf->pte); | |
4231 | pte_unmap_unlock(vmf->pte, vmf->ptl); | |
4232 | goto out; | |
d10e63f2 MG |
4233 | } |
4234 | ||
2b740303 | 4235 | static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) |
b96375f7 | 4236 | { |
f4200391 | 4237 | if (vma_is_anonymous(vmf->vma)) |
82b0f8c3 | 4238 | return do_huge_pmd_anonymous_page(vmf); |
a2d58167 | 4239 | if (vmf->vma->vm_ops->huge_fault) |
c791ace1 | 4240 | return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); |
b96375f7 MW |
4241 | return VM_FAULT_FALLBACK; |
4242 | } | |
4243 | ||
183f24aa | 4244 | /* `inline' is required to avoid gcc 4.1.2 build error */ |
2b740303 | 4245 | static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd) |
b96375f7 | 4246 | { |
529b930b | 4247 | if (vma_is_anonymous(vmf->vma)) { |
292924b2 | 4248 | if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd)) |
529b930b | 4249 | return handle_userfault(vmf, VM_UFFD_WP); |
82b0f8c3 | 4250 | return do_huge_pmd_wp_page(vmf, orig_pmd); |
529b930b | 4251 | } |
327e9fd4 THV |
4252 | if (vmf->vma->vm_ops->huge_fault) { |
4253 | vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); | |
4254 | ||
4255 | if (!(ret & VM_FAULT_FALLBACK)) | |
4256 | return ret; | |
4257 | } | |
af9e4d5f | 4258 | |
327e9fd4 | 4259 | /* COW or write-notify handled on pte level: split pmd. */ |
82b0f8c3 | 4260 | __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL); |
af9e4d5f | 4261 | |
b96375f7 MW |
4262 | return VM_FAULT_FALLBACK; |
4263 | } | |
4264 | ||
2b740303 | 4265 | static vm_fault_t create_huge_pud(struct vm_fault *vmf) |
a00cc7d9 | 4266 | { |
327e9fd4 THV |
4267 | #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ |
4268 | defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) | |
a00cc7d9 MW |
4269 | /* No support for anonymous transparent PUD pages yet */ |
4270 | if (vma_is_anonymous(vmf->vma)) | |
327e9fd4 THV |
4271 | goto split; |
4272 | if (vmf->vma->vm_ops->huge_fault) { | |
4273 | vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); | |
4274 | ||
4275 | if (!(ret & VM_FAULT_FALLBACK)) | |
4276 | return ret; | |
4277 | } | |
4278 | split: | |
4279 | /* COW or write-notify not handled on PUD level: split pud.*/ | |
4280 | __split_huge_pud(vmf->vma, vmf->pud, vmf->address); | |
a00cc7d9 MW |
4281 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ |
4282 | return VM_FAULT_FALLBACK; | |
4283 | } | |
4284 | ||
2b740303 | 4285 | static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) |
a00cc7d9 MW |
4286 | { |
4287 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | |
4288 | /* No support for anonymous transparent PUD pages yet */ | |
4289 | if (vma_is_anonymous(vmf->vma)) | |
4290 | return VM_FAULT_FALLBACK; | |
4291 | if (vmf->vma->vm_ops->huge_fault) | |
c791ace1 | 4292 | return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); |
a00cc7d9 MW |
4293 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ |
4294 | return VM_FAULT_FALLBACK; | |
4295 | } | |
4296 | ||
1da177e4 LT |
4297 | /* |
4298 | * These routines also need to handle stuff like marking pages dirty | |
4299 | * and/or accessed for architectures that don't do it in hardware (most | |
4300 | * RISC architectures). The early dirtying is also good on the i386. | |
4301 | * | |
4302 | * There is also a hook called "update_mmu_cache()" that architectures | |
4303 | * with external mmu caches can use to update those (ie the Sparc or | |
4304 | * PowerPC hashed page tables that act as extended TLBs). | |
4305 | * | |
c1e8d7c6 | 4306 | * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow |
7267ec00 | 4307 | * concurrent faults). |
9a95f3cf | 4308 | * |
c1e8d7c6 | 4309 | * The mmap_lock may have been released depending on flags and our return value. |
7267ec00 | 4310 | * See filemap_fault() and __lock_page_or_retry(). |
1da177e4 | 4311 | */ |
2b740303 | 4312 | static vm_fault_t handle_pte_fault(struct vm_fault *vmf) |
1da177e4 LT |
4313 | { |
4314 | pte_t entry; | |
4315 | ||
82b0f8c3 | 4316 | if (unlikely(pmd_none(*vmf->pmd))) { |
7267ec00 KS |
4317 | /* |
4318 | * Leave __pte_alloc() until later: because vm_ops->fault may | |
4319 | * want to allocate huge page, and if we expose page table | |
4320 | * for an instant, it will be difficult to retract from | |
4321 | * concurrent faults and from rmap lookups. | |
4322 | */ | |
82b0f8c3 | 4323 | vmf->pte = NULL; |
7267ec00 | 4324 | } else { |
f9ce0be7 KS |
4325 | /* |
4326 | * If a huge pmd materialized under us just retry later. Use | |
4327 | * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead | |
4328 | * of pmd_trans_huge() to ensure the pmd didn't become | |
4329 | * pmd_trans_huge under us and then back to pmd_none, as a | |
4330 | * result of MADV_DONTNEED running immediately after a huge pmd | |
4331 | * fault in a different thread of this mm, in turn leading to a | |
4332 | * misleading pmd_trans_huge() retval. All we have to ensure is | |
4333 | * that it is a regular pmd that we can walk with | |
4334 | * pte_offset_map() and we can do that through an atomic read | |
4335 | * in C, which is what pmd_trans_unstable() provides. | |
4336 | */ | |
d0f0931d | 4337 | if (pmd_devmap_trans_unstable(vmf->pmd)) |
7267ec00 KS |
4338 | return 0; |
4339 | /* | |
4340 | * A regular pmd is established and it can't morph into a huge | |
4341 | * pmd from under us anymore at this point because we hold the | |
c1e8d7c6 | 4342 | * mmap_lock read mode and khugepaged takes it in write mode. |
7267ec00 KS |
4343 | * So now it's safe to run pte_offset_map(). |
4344 | */ | |
82b0f8c3 | 4345 | vmf->pte = pte_offset_map(vmf->pmd, vmf->address); |
2994302b | 4346 | vmf->orig_pte = *vmf->pte; |
7267ec00 KS |
4347 | |
4348 | /* | |
4349 | * some architectures can have larger ptes than wordsize, | |
4350 | * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and | |
b03a0fe0 PM |
4351 | * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic |
4352 | * accesses. The code below just needs a consistent view | |
4353 | * for the ifs and we later double check anyway with the | |
7267ec00 KS |
4354 | * ptl lock held. So here a barrier will do. |
4355 | */ | |
4356 | barrier(); | |
2994302b | 4357 | if (pte_none(vmf->orig_pte)) { |
82b0f8c3 JK |
4358 | pte_unmap(vmf->pte); |
4359 | vmf->pte = NULL; | |
65500d23 | 4360 | } |
1da177e4 LT |
4361 | } |
4362 | ||
82b0f8c3 JK |
4363 | if (!vmf->pte) { |
4364 | if (vma_is_anonymous(vmf->vma)) | |
4365 | return do_anonymous_page(vmf); | |
7267ec00 | 4366 | else |
82b0f8c3 | 4367 | return do_fault(vmf); |
7267ec00 KS |
4368 | } |
4369 | ||
2994302b JK |
4370 | if (!pte_present(vmf->orig_pte)) |
4371 | return do_swap_page(vmf); | |
7267ec00 | 4372 | |
2994302b JK |
4373 | if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) |
4374 | return do_numa_page(vmf); | |
d10e63f2 | 4375 | |
82b0f8c3 JK |
4376 | vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); |
4377 | spin_lock(vmf->ptl); | |
2994302b | 4378 | entry = vmf->orig_pte; |
7df67697 BM |
4379 | if (unlikely(!pte_same(*vmf->pte, entry))) { |
4380 | update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); | |
8f4e2101 | 4381 | goto unlock; |
7df67697 | 4382 | } |
82b0f8c3 | 4383 | if (vmf->flags & FAULT_FLAG_WRITE) { |
f6f37321 | 4384 | if (!pte_write(entry)) |
2994302b | 4385 | return do_wp_page(vmf); |
1da177e4 LT |
4386 | entry = pte_mkdirty(entry); |
4387 | } | |
4388 | entry = pte_mkyoung(entry); | |
82b0f8c3 JK |
4389 | if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, |
4390 | vmf->flags & FAULT_FLAG_WRITE)) { | |
4391 | update_mmu_cache(vmf->vma, vmf->address, vmf->pte); | |
1a44e149 | 4392 | } else { |
b7333b58 YS |
4393 | /* Skip spurious TLB flush for retried page fault */ |
4394 | if (vmf->flags & FAULT_FLAG_TRIED) | |
4395 | goto unlock; | |
1a44e149 AA |
4396 | /* |
4397 | * This is needed only for protection faults but the arch code | |
4398 | * is not yet telling us if this is a protection fault or not. | |
4399 | * This still avoids useless tlb flushes for .text page faults | |
4400 | * with threads. | |
4401 | */ | |
82b0f8c3 JK |
4402 | if (vmf->flags & FAULT_FLAG_WRITE) |
4403 | flush_tlb_fix_spurious_fault(vmf->vma, vmf->address); | |
1a44e149 | 4404 | } |
8f4e2101 | 4405 | unlock: |
82b0f8c3 | 4406 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
83c54070 | 4407 | return 0; |
1da177e4 LT |
4408 | } |
4409 | ||
4410 | /* | |
4411 | * By the time we get here, we already hold the mm semaphore | |
9a95f3cf | 4412 | * |
c1e8d7c6 | 4413 | * The mmap_lock may have been released depending on flags and our |
9a95f3cf | 4414 | * return value. See filemap_fault() and __lock_page_or_retry(). |
1da177e4 | 4415 | */ |
2b740303 SJ |
4416 | static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, |
4417 | unsigned long address, unsigned int flags) | |
1da177e4 | 4418 | { |
82b0f8c3 | 4419 | struct vm_fault vmf = { |
bae473a4 | 4420 | .vma = vma, |
1a29d85e | 4421 | .address = address & PAGE_MASK, |
bae473a4 | 4422 | .flags = flags, |
0721ec8b | 4423 | .pgoff = linear_page_index(vma, address), |
667240e0 | 4424 | .gfp_mask = __get_fault_gfp_mask(vma), |
bae473a4 | 4425 | }; |
fde26bed | 4426 | unsigned int dirty = flags & FAULT_FLAG_WRITE; |
dcddffd4 | 4427 | struct mm_struct *mm = vma->vm_mm; |
1da177e4 | 4428 | pgd_t *pgd; |
c2febafc | 4429 | p4d_t *p4d; |
2b740303 | 4430 | vm_fault_t ret; |
1da177e4 | 4431 | |
1da177e4 | 4432 | pgd = pgd_offset(mm, address); |
c2febafc KS |
4433 | p4d = p4d_alloc(mm, pgd, address); |
4434 | if (!p4d) | |
4435 | return VM_FAULT_OOM; | |
a00cc7d9 | 4436 | |
c2febafc | 4437 | vmf.pud = pud_alloc(mm, p4d, address); |
a00cc7d9 | 4438 | if (!vmf.pud) |
c74df32c | 4439 | return VM_FAULT_OOM; |
625110b5 | 4440 | retry_pud: |
7635d9cb | 4441 | if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) { |
a00cc7d9 MW |
4442 | ret = create_huge_pud(&vmf); |
4443 | if (!(ret & VM_FAULT_FALLBACK)) | |
4444 | return ret; | |
4445 | } else { | |
4446 | pud_t orig_pud = *vmf.pud; | |
4447 | ||
4448 | barrier(); | |
4449 | if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { | |
a00cc7d9 | 4450 | |
a00cc7d9 MW |
4451 | /* NUMA case for anonymous PUDs would go here */ |
4452 | ||
f6f37321 | 4453 | if (dirty && !pud_write(orig_pud)) { |
a00cc7d9 MW |
4454 | ret = wp_huge_pud(&vmf, orig_pud); |
4455 | if (!(ret & VM_FAULT_FALLBACK)) | |
4456 | return ret; | |
4457 | } else { | |
4458 | huge_pud_set_accessed(&vmf, orig_pud); | |
4459 | return 0; | |
4460 | } | |
4461 | } | |
4462 | } | |
4463 | ||
4464 | vmf.pmd = pmd_alloc(mm, vmf.pud, address); | |
82b0f8c3 | 4465 | if (!vmf.pmd) |
c74df32c | 4466 | return VM_FAULT_OOM; |
625110b5 TH |
4467 | |
4468 | /* Huge pud page fault raced with pmd_alloc? */ | |
4469 | if (pud_trans_unstable(vmf.pud)) | |
4470 | goto retry_pud; | |
4471 | ||
7635d9cb | 4472 | if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) { |
a2d58167 | 4473 | ret = create_huge_pmd(&vmf); |
c0292554 KS |
4474 | if (!(ret & VM_FAULT_FALLBACK)) |
4475 | return ret; | |
71e3aac0 | 4476 | } else { |
82b0f8c3 | 4477 | pmd_t orig_pmd = *vmf.pmd; |
1f1d06c3 | 4478 | |
71e3aac0 | 4479 | barrier(); |
84c3fc4e ZY |
4480 | if (unlikely(is_swap_pmd(orig_pmd))) { |
4481 | VM_BUG_ON(thp_migration_supported() && | |
4482 | !is_pmd_migration_entry(orig_pmd)); | |
4483 | if (is_pmd_migration_entry(orig_pmd)) | |
4484 | pmd_migration_entry_wait(mm, vmf.pmd); | |
4485 | return 0; | |
4486 | } | |
5c7fb56e | 4487 | if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) { |
38e08854 | 4488 | if (pmd_protnone(orig_pmd) && vma_is_accessible(vma)) |
82b0f8c3 | 4489 | return do_huge_pmd_numa_page(&vmf, orig_pmd); |
d10e63f2 | 4490 | |
f6f37321 | 4491 | if (dirty && !pmd_write(orig_pmd)) { |
82b0f8c3 | 4492 | ret = wp_huge_pmd(&vmf, orig_pmd); |
9845cbbd KS |
4493 | if (!(ret & VM_FAULT_FALLBACK)) |
4494 | return ret; | |
a1dd450b | 4495 | } else { |
82b0f8c3 | 4496 | huge_pmd_set_accessed(&vmf, orig_pmd); |
9845cbbd | 4497 | return 0; |
1f1d06c3 | 4498 | } |
71e3aac0 AA |
4499 | } |
4500 | } | |
4501 | ||
82b0f8c3 | 4502 | return handle_pte_fault(&vmf); |
1da177e4 LT |
4503 | } |
4504 | ||
bce617ed PX |
4505 | /** |
4506 | * mm_account_fault - Do page fault accountings | |
4507 | * | |
4508 | * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting | |
4509 | * of perf event counters, but we'll still do the per-task accounting to | |
4510 | * the task who triggered this page fault. | |
4511 | * @address: the faulted address. | |
4512 | * @flags: the fault flags. | |
4513 | * @ret: the fault retcode. | |
4514 | * | |
4515 | * This will take care of most of the page fault accountings. Meanwhile, it | |
4516 | * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter | |
4517 | * updates. However note that the handling of PERF_COUNT_SW_PAGE_FAULTS should | |
4518 | * still be in per-arch page fault handlers at the entry of page fault. | |
4519 | */ | |
4520 | static inline void mm_account_fault(struct pt_regs *regs, | |
4521 | unsigned long address, unsigned int flags, | |
4522 | vm_fault_t ret) | |
4523 | { | |
4524 | bool major; | |
4525 | ||
4526 | /* | |
4527 | * We don't do accounting for some specific faults: | |
4528 | * | |
4529 | * - Unsuccessful faults (e.g. when the address wasn't valid). That | |
4530 | * includes arch_vma_access_permitted() failing before reaching here. | |
4531 | * So this is not a "this many hardware page faults" counter. We | |
4532 | * should use the hw profiling for that. | |
4533 | * | |
4534 | * - Incomplete faults (VM_FAULT_RETRY). They will only be counted | |
4535 | * once they're completed. | |
4536 | */ | |
4537 | if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY)) | |
4538 | return; | |
4539 | ||
4540 | /* | |
4541 | * We define the fault as a major fault when the final successful fault | |
4542 | * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't | |
4543 | * handle it immediately previously). | |
4544 | */ | |
4545 | major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED); | |
4546 | ||
a2beb5f1 PX |
4547 | if (major) |
4548 | current->maj_flt++; | |
4549 | else | |
4550 | current->min_flt++; | |
4551 | ||
bce617ed | 4552 | /* |
a2beb5f1 PX |
4553 | * If the fault is done for GUP, regs will be NULL. We only do the |
4554 | * accounting for the per thread fault counters who triggered the | |
4555 | * fault, and we skip the perf event updates. | |
bce617ed PX |
4556 | */ |
4557 | if (!regs) | |
4558 | return; | |
4559 | ||
a2beb5f1 | 4560 | if (major) |
bce617ed | 4561 | perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); |
a2beb5f1 | 4562 | else |
bce617ed | 4563 | perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); |
bce617ed PX |
4564 | } |
4565 | ||
9a95f3cf PC |
4566 | /* |
4567 | * By the time we get here, we already hold the mm semaphore | |
4568 | * | |
c1e8d7c6 | 4569 | * The mmap_lock may have been released depending on flags and our |
9a95f3cf PC |
4570 | * return value. See filemap_fault() and __lock_page_or_retry(). |
4571 | */ | |
2b740303 | 4572 | vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, |
bce617ed | 4573 | unsigned int flags, struct pt_regs *regs) |
519e5247 | 4574 | { |
2b740303 | 4575 | vm_fault_t ret; |
519e5247 JW |
4576 | |
4577 | __set_current_state(TASK_RUNNING); | |
4578 | ||
4579 | count_vm_event(PGFAULT); | |
2262185c | 4580 | count_memcg_event_mm(vma->vm_mm, PGFAULT); |
519e5247 JW |
4581 | |
4582 | /* do counter updates before entering really critical section. */ | |
4583 | check_sync_rss_stat(current); | |
4584 | ||
de0c799b LD |
4585 | if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, |
4586 | flags & FAULT_FLAG_INSTRUCTION, | |
4587 | flags & FAULT_FLAG_REMOTE)) | |
4588 | return VM_FAULT_SIGSEGV; | |
4589 | ||
519e5247 JW |
4590 | /* |
4591 | * Enable the memcg OOM handling for faults triggered in user | |
4592 | * space. Kernel faults are handled more gracefully. | |
4593 | */ | |
4594 | if (flags & FAULT_FLAG_USER) | |
29ef680a | 4595 | mem_cgroup_enter_user_fault(); |
519e5247 | 4596 | |
bae473a4 KS |
4597 | if (unlikely(is_vm_hugetlb_page(vma))) |
4598 | ret = hugetlb_fault(vma->vm_mm, vma, address, flags); | |
4599 | else | |
4600 | ret = __handle_mm_fault(vma, address, flags); | |
519e5247 | 4601 | |
49426420 | 4602 | if (flags & FAULT_FLAG_USER) { |
29ef680a | 4603 | mem_cgroup_exit_user_fault(); |
166f61b9 TH |
4604 | /* |
4605 | * The task may have entered a memcg OOM situation but | |
4606 | * if the allocation error was handled gracefully (no | |
4607 | * VM_FAULT_OOM), there is no need to kill anything. | |
4608 | * Just clean up the OOM state peacefully. | |
4609 | */ | |
4610 | if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) | |
4611 | mem_cgroup_oom_synchronize(false); | |
49426420 | 4612 | } |
3812c8c8 | 4613 | |
bce617ed PX |
4614 | mm_account_fault(regs, address, flags, ret); |
4615 | ||
519e5247 JW |
4616 | return ret; |
4617 | } | |
e1d6d01a | 4618 | EXPORT_SYMBOL_GPL(handle_mm_fault); |
519e5247 | 4619 | |
90eceff1 KS |
4620 | #ifndef __PAGETABLE_P4D_FOLDED |
4621 | /* | |
4622 | * Allocate p4d page table. | |
4623 | * We've already handled the fast-path in-line. | |
4624 | */ | |
4625 | int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) | |
4626 | { | |
4627 | p4d_t *new = p4d_alloc_one(mm, address); | |
4628 | if (!new) | |
4629 | return -ENOMEM; | |
4630 | ||
4631 | smp_wmb(); /* See comment in __pte_alloc */ | |
4632 | ||
4633 | spin_lock(&mm->page_table_lock); | |
4634 | if (pgd_present(*pgd)) /* Another has populated it */ | |
4635 | p4d_free(mm, new); | |
4636 | else | |
4637 | pgd_populate(mm, pgd, new); | |
4638 | spin_unlock(&mm->page_table_lock); | |
4639 | return 0; | |
4640 | } | |
4641 | #endif /* __PAGETABLE_P4D_FOLDED */ | |
4642 | ||
1da177e4 LT |
4643 | #ifndef __PAGETABLE_PUD_FOLDED |
4644 | /* | |
4645 | * Allocate page upper directory. | |
872fec16 | 4646 | * We've already handled the fast-path in-line. |
1da177e4 | 4647 | */ |
c2febafc | 4648 | int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) |
1da177e4 | 4649 | { |
c74df32c HD |
4650 | pud_t *new = pud_alloc_one(mm, address); |
4651 | if (!new) | |
1bb3630e | 4652 | return -ENOMEM; |
1da177e4 | 4653 | |
362a61ad NP |
4654 | smp_wmb(); /* See comment in __pte_alloc */ |
4655 | ||
872fec16 | 4656 | spin_lock(&mm->page_table_lock); |
b4e98d9a KS |
4657 | if (!p4d_present(*p4d)) { |
4658 | mm_inc_nr_puds(mm); | |
c2febafc | 4659 | p4d_populate(mm, p4d, new); |
b4e98d9a | 4660 | } else /* Another has populated it */ |
5e541973 | 4661 | pud_free(mm, new); |
c74df32c | 4662 | spin_unlock(&mm->page_table_lock); |
1bb3630e | 4663 | return 0; |
1da177e4 LT |
4664 | } |
4665 | #endif /* __PAGETABLE_PUD_FOLDED */ | |
4666 | ||
4667 | #ifndef __PAGETABLE_PMD_FOLDED | |
4668 | /* | |
4669 | * Allocate page middle directory. | |
872fec16 | 4670 | * We've already handled the fast-path in-line. |
1da177e4 | 4671 | */ |
1bb3630e | 4672 | int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) |
1da177e4 | 4673 | { |
a00cc7d9 | 4674 | spinlock_t *ptl; |
c74df32c HD |
4675 | pmd_t *new = pmd_alloc_one(mm, address); |
4676 | if (!new) | |
1bb3630e | 4677 | return -ENOMEM; |
1da177e4 | 4678 | |
362a61ad NP |
4679 | smp_wmb(); /* See comment in __pte_alloc */ |
4680 | ||
a00cc7d9 | 4681 | ptl = pud_lock(mm, pud); |
dc6c9a35 KS |
4682 | if (!pud_present(*pud)) { |
4683 | mm_inc_nr_pmds(mm); | |
1bb3630e | 4684 | pud_populate(mm, pud, new); |
dc6c9a35 | 4685 | } else /* Another has populated it */ |
5e541973 | 4686 | pmd_free(mm, new); |
a00cc7d9 | 4687 | spin_unlock(ptl); |
1bb3630e | 4688 | return 0; |
e0f39591 | 4689 | } |
1da177e4 LT |
4690 | #endif /* __PAGETABLE_PMD_FOLDED */ |
4691 | ||
9fd6dad1 PB |
4692 | int follow_invalidate_pte(struct mm_struct *mm, unsigned long address, |
4693 | struct mmu_notifier_range *range, pte_t **ptepp, | |
4694 | pmd_t **pmdpp, spinlock_t **ptlp) | |
f8ad0f49 JW |
4695 | { |
4696 | pgd_t *pgd; | |
c2febafc | 4697 | p4d_t *p4d; |
f8ad0f49 JW |
4698 | pud_t *pud; |
4699 | pmd_t *pmd; | |
4700 | pte_t *ptep; | |
4701 | ||
4702 | pgd = pgd_offset(mm, address); | |
4703 | if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) | |
4704 | goto out; | |
4705 | ||
c2febafc KS |
4706 | p4d = p4d_offset(pgd, address); |
4707 | if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) | |
4708 | goto out; | |
4709 | ||
4710 | pud = pud_offset(p4d, address); | |
f8ad0f49 JW |
4711 | if (pud_none(*pud) || unlikely(pud_bad(*pud))) |
4712 | goto out; | |
4713 | ||
4714 | pmd = pmd_offset(pud, address); | |
f66055ab | 4715 | VM_BUG_ON(pmd_trans_huge(*pmd)); |
f8ad0f49 | 4716 | |
09796395 RZ |
4717 | if (pmd_huge(*pmd)) { |
4718 | if (!pmdpp) | |
4719 | goto out; | |
4720 | ||
ac46d4f3 | 4721 | if (range) { |
7269f999 | 4722 | mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, |
6f4f13e8 JG |
4723 | NULL, mm, address & PMD_MASK, |
4724 | (address & PMD_MASK) + PMD_SIZE); | |
ac46d4f3 | 4725 | mmu_notifier_invalidate_range_start(range); |
a4d1a885 | 4726 | } |
09796395 RZ |
4727 | *ptlp = pmd_lock(mm, pmd); |
4728 | if (pmd_huge(*pmd)) { | |
4729 | *pmdpp = pmd; | |
4730 | return 0; | |
4731 | } | |
4732 | spin_unlock(*ptlp); | |
ac46d4f3 JG |
4733 | if (range) |
4734 | mmu_notifier_invalidate_range_end(range); | |
09796395 RZ |
4735 | } |
4736 | ||
4737 | if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) | |
f8ad0f49 JW |
4738 | goto out; |
4739 | ||
ac46d4f3 | 4740 | if (range) { |
7269f999 | 4741 | mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm, |
6f4f13e8 JG |
4742 | address & PAGE_MASK, |
4743 | (address & PAGE_MASK) + PAGE_SIZE); | |
ac46d4f3 | 4744 | mmu_notifier_invalidate_range_start(range); |
a4d1a885 | 4745 | } |
f8ad0f49 | 4746 | ptep = pte_offset_map_lock(mm, pmd, address, ptlp); |
f8ad0f49 JW |
4747 | if (!pte_present(*ptep)) |
4748 | goto unlock; | |
4749 | *ptepp = ptep; | |
4750 | return 0; | |
4751 | unlock: | |
4752 | pte_unmap_unlock(ptep, *ptlp); | |
ac46d4f3 JG |
4753 | if (range) |
4754 | mmu_notifier_invalidate_range_end(range); | |
f8ad0f49 JW |
4755 | out: |
4756 | return -EINVAL; | |
4757 | } | |
4758 | ||
9fd6dad1 PB |
4759 | /** |
4760 | * follow_pte - look up PTE at a user virtual address | |
4761 | * @mm: the mm_struct of the target address space | |
4762 | * @address: user virtual address | |
4763 | * @ptepp: location to store found PTE | |
4764 | * @ptlp: location to store the lock for the PTE | |
4765 | * | |
4766 | * On a successful return, the pointer to the PTE is stored in @ptepp; | |
4767 | * the corresponding lock is taken and its location is stored in @ptlp. | |
4768 | * The contents of the PTE are only stable until @ptlp is released; | |
4769 | * any further use, if any, must be protected against invalidation | |
4770 | * with MMU notifiers. | |
4771 | * | |
4772 | * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore | |
4773 | * should be taken for read. | |
4774 | * | |
4775 | * KVM uses this function. While it is arguably less bad than ``follow_pfn``, | |
4776 | * it is not a good general-purpose API. | |
4777 | * | |
4778 | * Return: zero on success, -ve otherwise. | |
4779 | */ | |
4780 | int follow_pte(struct mm_struct *mm, unsigned long address, | |
4781 | pte_t **ptepp, spinlock_t **ptlp) | |
4782 | { | |
4783 | return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp); | |
4784 | } | |
4785 | EXPORT_SYMBOL_GPL(follow_pte); | |
4786 | ||
3b6748e2 JW |
4787 | /** |
4788 | * follow_pfn - look up PFN at a user virtual address | |
4789 | * @vma: memory mapping | |
4790 | * @address: user virtual address | |
4791 | * @pfn: location to store found PFN | |
4792 | * | |
4793 | * Only IO mappings and raw PFN mappings are allowed. | |
4794 | * | |
9fd6dad1 PB |
4795 | * This function does not allow the caller to read the permissions |
4796 | * of the PTE. Do not use it. | |
4797 | * | |
a862f68a | 4798 | * Return: zero and the pfn at @pfn on success, -ve otherwise. |
3b6748e2 JW |
4799 | */ |
4800 | int follow_pfn(struct vm_area_struct *vma, unsigned long address, | |
4801 | unsigned long *pfn) | |
4802 | { | |
4803 | int ret = -EINVAL; | |
4804 | spinlock_t *ptl; | |
4805 | pte_t *ptep; | |
4806 | ||
4807 | if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) | |
4808 | return ret; | |
4809 | ||
9fd6dad1 | 4810 | ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); |
3b6748e2 JW |
4811 | if (ret) |
4812 | return ret; | |
4813 | *pfn = pte_pfn(*ptep); | |
4814 | pte_unmap_unlock(ptep, ptl); | |
4815 | return 0; | |
4816 | } | |
4817 | EXPORT_SYMBOL(follow_pfn); | |
4818 | ||
28b2ee20 | 4819 | #ifdef CONFIG_HAVE_IOREMAP_PROT |
d87fe660 | 4820 | int follow_phys(struct vm_area_struct *vma, |
4821 | unsigned long address, unsigned int flags, | |
4822 | unsigned long *prot, resource_size_t *phys) | |
28b2ee20 | 4823 | { |
03668a4d | 4824 | int ret = -EINVAL; |
28b2ee20 RR |
4825 | pte_t *ptep, pte; |
4826 | spinlock_t *ptl; | |
28b2ee20 | 4827 | |
d87fe660 | 4828 | if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) |
4829 | goto out; | |
28b2ee20 | 4830 | |
9fd6dad1 | 4831 | if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) |
d87fe660 | 4832 | goto out; |
28b2ee20 | 4833 | pte = *ptep; |
03668a4d | 4834 | |
f6f37321 | 4835 | if ((flags & FOLL_WRITE) && !pte_write(pte)) |
28b2ee20 | 4836 | goto unlock; |
28b2ee20 RR |
4837 | |
4838 | *prot = pgprot_val(pte_pgprot(pte)); | |
03668a4d | 4839 | *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; |
28b2ee20 | 4840 | |
03668a4d | 4841 | ret = 0; |
28b2ee20 RR |
4842 | unlock: |
4843 | pte_unmap_unlock(ptep, ptl); | |
4844 | out: | |
d87fe660 | 4845 | return ret; |
28b2ee20 RR |
4846 | } |
4847 | ||
96667f8a SV |
4848 | /** |
4849 | * generic_access_phys - generic implementation for iomem mmap access | |
4850 | * @vma: the vma to access | |
4851 | * @addr: userspace addres, not relative offset within @vma | |
4852 | * @buf: buffer to read/write | |
4853 | * @len: length of transfer | |
4854 | * @write: set to FOLL_WRITE when writing, otherwise reading | |
4855 | * | |
4856 | * This is a generic implementation for &vm_operations_struct.access for an | |
4857 | * iomem mapping. This callback is used by access_process_vm() when the @vma is | |
4858 | * not page based. | |
4859 | */ | |
28b2ee20 RR |
4860 | int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, |
4861 | void *buf, int len, int write) | |
4862 | { | |
4863 | resource_size_t phys_addr; | |
4864 | unsigned long prot = 0; | |
2bc7273b | 4865 | void __iomem *maddr; |
96667f8a SV |
4866 | pte_t *ptep, pte; |
4867 | spinlock_t *ptl; | |
4868 | int offset = offset_in_page(addr); | |
4869 | int ret = -EINVAL; | |
4870 | ||
4871 | if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) | |
4872 | return -EINVAL; | |
4873 | ||
4874 | retry: | |
e913a8cd | 4875 | if (follow_pte(vma->vm_mm, addr, &ptep, &ptl)) |
96667f8a SV |
4876 | return -EINVAL; |
4877 | pte = *ptep; | |
4878 | pte_unmap_unlock(ptep, ptl); | |
28b2ee20 | 4879 | |
96667f8a SV |
4880 | prot = pgprot_val(pte_pgprot(pte)); |
4881 | phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; | |
4882 | ||
4883 | if ((write & FOLL_WRITE) && !pte_write(pte)) | |
28b2ee20 RR |
4884 | return -EINVAL; |
4885 | ||
9cb12d7b | 4886 | maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); |
24eee1e4 | 4887 | if (!maddr) |
4888 | return -ENOMEM; | |
4889 | ||
e913a8cd | 4890 | if (follow_pte(vma->vm_mm, addr, &ptep, &ptl)) |
96667f8a SV |
4891 | goto out_unmap; |
4892 | ||
4893 | if (!pte_same(pte, *ptep)) { | |
4894 | pte_unmap_unlock(ptep, ptl); | |
4895 | iounmap(maddr); | |
4896 | ||
4897 | goto retry; | |
4898 | } | |
4899 | ||
28b2ee20 RR |
4900 | if (write) |
4901 | memcpy_toio(maddr + offset, buf, len); | |
4902 | else | |
4903 | memcpy_fromio(buf, maddr + offset, len); | |
96667f8a SV |
4904 | ret = len; |
4905 | pte_unmap_unlock(ptep, ptl); | |
4906 | out_unmap: | |
28b2ee20 RR |
4907 | iounmap(maddr); |
4908 | ||
96667f8a | 4909 | return ret; |
28b2ee20 | 4910 | } |
5a73633e | 4911 | EXPORT_SYMBOL_GPL(generic_access_phys); |
28b2ee20 RR |
4912 | #endif |
4913 | ||
0ec76a11 | 4914 | /* |
d3f5ffca | 4915 | * Access another process' address space as given in mm. |
0ec76a11 | 4916 | */ |
d3f5ffca JH |
4917 | int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf, |
4918 | int len, unsigned int gup_flags) | |
0ec76a11 | 4919 | { |
0ec76a11 | 4920 | struct vm_area_struct *vma; |
0ec76a11 | 4921 | void *old_buf = buf; |
442486ec | 4922 | int write = gup_flags & FOLL_WRITE; |
0ec76a11 | 4923 | |
d8ed45c5 | 4924 | if (mmap_read_lock_killable(mm)) |
1e426fe2 KK |
4925 | return 0; |
4926 | ||
183ff22b | 4927 | /* ignore errors, just check how much was successfully transferred */ |
0ec76a11 DH |
4928 | while (len) { |
4929 | int bytes, ret, offset; | |
4930 | void *maddr; | |
28b2ee20 | 4931 | struct page *page = NULL; |
0ec76a11 | 4932 | |
64019a2e | 4933 | ret = get_user_pages_remote(mm, addr, 1, |
5b56d49f | 4934 | gup_flags, &page, &vma, NULL); |
28b2ee20 | 4935 | if (ret <= 0) { |
dbffcd03 RR |
4936 | #ifndef CONFIG_HAVE_IOREMAP_PROT |
4937 | break; | |
4938 | #else | |
28b2ee20 RR |
4939 | /* |
4940 | * Check if this is a VM_IO | VM_PFNMAP VMA, which | |
4941 | * we can access using slightly different code. | |
4942 | */ | |
28b2ee20 | 4943 | vma = find_vma(mm, addr); |
fe936dfc | 4944 | if (!vma || vma->vm_start > addr) |
28b2ee20 RR |
4945 | break; |
4946 | if (vma->vm_ops && vma->vm_ops->access) | |
4947 | ret = vma->vm_ops->access(vma, addr, buf, | |
4948 | len, write); | |
4949 | if (ret <= 0) | |
28b2ee20 RR |
4950 | break; |
4951 | bytes = ret; | |
dbffcd03 | 4952 | #endif |
0ec76a11 | 4953 | } else { |
28b2ee20 RR |
4954 | bytes = len; |
4955 | offset = addr & (PAGE_SIZE-1); | |
4956 | if (bytes > PAGE_SIZE-offset) | |
4957 | bytes = PAGE_SIZE-offset; | |
4958 | ||
4959 | maddr = kmap(page); | |
4960 | if (write) { | |
4961 | copy_to_user_page(vma, page, addr, | |
4962 | maddr + offset, buf, bytes); | |
4963 | set_page_dirty_lock(page); | |
4964 | } else { | |
4965 | copy_from_user_page(vma, page, addr, | |
4966 | buf, maddr + offset, bytes); | |
4967 | } | |
4968 | kunmap(page); | |
09cbfeaf | 4969 | put_page(page); |
0ec76a11 | 4970 | } |
0ec76a11 DH |
4971 | len -= bytes; |
4972 | buf += bytes; | |
4973 | addr += bytes; | |
4974 | } | |
d8ed45c5 | 4975 | mmap_read_unlock(mm); |
0ec76a11 DH |
4976 | |
4977 | return buf - old_buf; | |
4978 | } | |
03252919 | 4979 | |
5ddd36b9 | 4980 | /** |
ae91dbfc | 4981 | * access_remote_vm - access another process' address space |
5ddd36b9 SW |
4982 | * @mm: the mm_struct of the target address space |
4983 | * @addr: start address to access | |
4984 | * @buf: source or destination buffer | |
4985 | * @len: number of bytes to transfer | |
6347e8d5 | 4986 | * @gup_flags: flags modifying lookup behaviour |
5ddd36b9 SW |
4987 | * |
4988 | * The caller must hold a reference on @mm. | |
a862f68a MR |
4989 | * |
4990 | * Return: number of bytes copied from source to destination. | |
5ddd36b9 SW |
4991 | */ |
4992 | int access_remote_vm(struct mm_struct *mm, unsigned long addr, | |
6347e8d5 | 4993 | void *buf, int len, unsigned int gup_flags) |
5ddd36b9 | 4994 | { |
d3f5ffca | 4995 | return __access_remote_vm(mm, addr, buf, len, gup_flags); |
5ddd36b9 SW |
4996 | } |
4997 | ||
206cb636 SW |
4998 | /* |
4999 | * Access another process' address space. | |
5000 | * Source/target buffer must be kernel space, | |
5001 | * Do not walk the page table directly, use get_user_pages | |
5002 | */ | |
5003 | int access_process_vm(struct task_struct *tsk, unsigned long addr, | |
f307ab6d | 5004 | void *buf, int len, unsigned int gup_flags) |
206cb636 SW |
5005 | { |
5006 | struct mm_struct *mm; | |
5007 | int ret; | |
5008 | ||
5009 | mm = get_task_mm(tsk); | |
5010 | if (!mm) | |
5011 | return 0; | |
5012 | ||
d3f5ffca | 5013 | ret = __access_remote_vm(mm, addr, buf, len, gup_flags); |
442486ec | 5014 | |
206cb636 SW |
5015 | mmput(mm); |
5016 | ||
5017 | return ret; | |
5018 | } | |
fcd35857 | 5019 | EXPORT_SYMBOL_GPL(access_process_vm); |
206cb636 | 5020 | |
03252919 AK |
5021 | /* |
5022 | * Print the name of a VMA. | |
5023 | */ | |
5024 | void print_vma_addr(char *prefix, unsigned long ip) | |
5025 | { | |
5026 | struct mm_struct *mm = current->mm; | |
5027 | struct vm_area_struct *vma; | |
5028 | ||
e8bff74a | 5029 | /* |
0a7f682d | 5030 | * we might be running from an atomic context so we cannot sleep |
e8bff74a | 5031 | */ |
d8ed45c5 | 5032 | if (!mmap_read_trylock(mm)) |
e8bff74a IM |
5033 | return; |
5034 | ||
03252919 AK |
5035 | vma = find_vma(mm, ip); |
5036 | if (vma && vma->vm_file) { | |
5037 | struct file *f = vma->vm_file; | |
0a7f682d | 5038 | char *buf = (char *)__get_free_page(GFP_NOWAIT); |
03252919 | 5039 | if (buf) { |
2fbc57c5 | 5040 | char *p; |
03252919 | 5041 | |
9bf39ab2 | 5042 | p = file_path(f, buf, PAGE_SIZE); |
03252919 AK |
5043 | if (IS_ERR(p)) |
5044 | p = "?"; | |
2fbc57c5 | 5045 | printk("%s%s[%lx+%lx]", prefix, kbasename(p), |
03252919 AK |
5046 | vma->vm_start, |
5047 | vma->vm_end - vma->vm_start); | |
5048 | free_page((unsigned long)buf); | |
5049 | } | |
5050 | } | |
d8ed45c5 | 5051 | mmap_read_unlock(mm); |
03252919 | 5052 | } |
3ee1afa3 | 5053 | |
662bbcb2 | 5054 | #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) |
9ec23531 | 5055 | void __might_fault(const char *file, int line) |
3ee1afa3 | 5056 | { |
95156f00 PZ |
5057 | /* |
5058 | * Some code (nfs/sunrpc) uses socket ops on kernel memory while | |
c1e8d7c6 | 5059 | * holding the mmap_lock, this is safe because kernel memory doesn't |
95156f00 PZ |
5060 | * get paged out, therefore we'll never actually fault, and the |
5061 | * below annotations will generate false positives. | |
5062 | */ | |
db68ce10 | 5063 | if (uaccess_kernel()) |
95156f00 | 5064 | return; |
9ec23531 | 5065 | if (pagefault_disabled()) |
662bbcb2 | 5066 | return; |
9ec23531 DH |
5067 | __might_sleep(file, line, 0); |
5068 | #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) | |
662bbcb2 | 5069 | if (current->mm) |
da1c55f1 | 5070 | might_lock_read(¤t->mm->mmap_lock); |
9ec23531 | 5071 | #endif |
3ee1afa3 | 5072 | } |
9ec23531 | 5073 | EXPORT_SYMBOL(__might_fault); |
3ee1afa3 | 5074 | #endif |
47ad8475 AA |
5075 | |
5076 | #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) | |
c6ddfb6c YH |
5077 | /* |
5078 | * Process all subpages of the specified huge page with the specified | |
5079 | * operation. The target subpage will be processed last to keep its | |
5080 | * cache lines hot. | |
5081 | */ | |
5082 | static inline void process_huge_page( | |
5083 | unsigned long addr_hint, unsigned int pages_per_huge_page, | |
5084 | void (*process_subpage)(unsigned long addr, int idx, void *arg), | |
5085 | void *arg) | |
47ad8475 | 5086 | { |
c79b57e4 YH |
5087 | int i, n, base, l; |
5088 | unsigned long addr = addr_hint & | |
5089 | ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); | |
47ad8475 | 5090 | |
c6ddfb6c | 5091 | /* Process target subpage last to keep its cache lines hot */ |
47ad8475 | 5092 | might_sleep(); |
c79b57e4 YH |
5093 | n = (addr_hint - addr) / PAGE_SIZE; |
5094 | if (2 * n <= pages_per_huge_page) { | |
c6ddfb6c | 5095 | /* If target subpage in first half of huge page */ |
c79b57e4 YH |
5096 | base = 0; |
5097 | l = n; | |
c6ddfb6c | 5098 | /* Process subpages at the end of huge page */ |
c79b57e4 YH |
5099 | for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { |
5100 | cond_resched(); | |
c6ddfb6c | 5101 | process_subpage(addr + i * PAGE_SIZE, i, arg); |
c79b57e4 YH |
5102 | } |
5103 | } else { | |
c6ddfb6c | 5104 | /* If target subpage in second half of huge page */ |
c79b57e4 YH |
5105 | base = pages_per_huge_page - 2 * (pages_per_huge_page - n); |
5106 | l = pages_per_huge_page - n; | |
c6ddfb6c | 5107 | /* Process subpages at the begin of huge page */ |
c79b57e4 YH |
5108 | for (i = 0; i < base; i++) { |
5109 | cond_resched(); | |
c6ddfb6c | 5110 | process_subpage(addr + i * PAGE_SIZE, i, arg); |
c79b57e4 YH |
5111 | } |
5112 | } | |
5113 | /* | |
c6ddfb6c YH |
5114 | * Process remaining subpages in left-right-left-right pattern |
5115 | * towards the target subpage | |
c79b57e4 YH |
5116 | */ |
5117 | for (i = 0; i < l; i++) { | |
5118 | int left_idx = base + i; | |
5119 | int right_idx = base + 2 * l - 1 - i; | |
5120 | ||
5121 | cond_resched(); | |
c6ddfb6c | 5122 | process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); |
47ad8475 | 5123 | cond_resched(); |
c6ddfb6c | 5124 | process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); |
47ad8475 AA |
5125 | } |
5126 | } | |
5127 | ||
c6ddfb6c YH |
5128 | static void clear_gigantic_page(struct page *page, |
5129 | unsigned long addr, | |
5130 | unsigned int pages_per_huge_page) | |
5131 | { | |
5132 | int i; | |
5133 | struct page *p = page; | |
5134 | ||
5135 | might_sleep(); | |
5136 | for (i = 0; i < pages_per_huge_page; | |
5137 | i++, p = mem_map_next(p, page, i)) { | |
5138 | cond_resched(); | |
5139 | clear_user_highpage(p, addr + i * PAGE_SIZE); | |
5140 | } | |
5141 | } | |
5142 | ||
5143 | static void clear_subpage(unsigned long addr, int idx, void *arg) | |
5144 | { | |
5145 | struct page *page = arg; | |
5146 | ||
5147 | clear_user_highpage(page + idx, addr); | |
5148 | } | |
5149 | ||
5150 | void clear_huge_page(struct page *page, | |
5151 | unsigned long addr_hint, unsigned int pages_per_huge_page) | |
5152 | { | |
5153 | unsigned long addr = addr_hint & | |
5154 | ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); | |
5155 | ||
5156 | if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { | |
5157 | clear_gigantic_page(page, addr, pages_per_huge_page); | |
5158 | return; | |
5159 | } | |
5160 | ||
5161 | process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page); | |
5162 | } | |
5163 | ||
47ad8475 AA |
5164 | static void copy_user_gigantic_page(struct page *dst, struct page *src, |
5165 | unsigned long addr, | |
5166 | struct vm_area_struct *vma, | |
5167 | unsigned int pages_per_huge_page) | |
5168 | { | |
5169 | int i; | |
5170 | struct page *dst_base = dst; | |
5171 | struct page *src_base = src; | |
5172 | ||
5173 | for (i = 0; i < pages_per_huge_page; ) { | |
5174 | cond_resched(); | |
5175 | copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); | |
5176 | ||
5177 | i++; | |
5178 | dst = mem_map_next(dst, dst_base, i); | |
5179 | src = mem_map_next(src, src_base, i); | |
5180 | } | |
5181 | } | |
5182 | ||
c9f4cd71 YH |
5183 | struct copy_subpage_arg { |
5184 | struct page *dst; | |
5185 | struct page *src; | |
5186 | struct vm_area_struct *vma; | |
5187 | }; | |
5188 | ||
5189 | static void copy_subpage(unsigned long addr, int idx, void *arg) | |
5190 | { | |
5191 | struct copy_subpage_arg *copy_arg = arg; | |
5192 | ||
5193 | copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx, | |
5194 | addr, copy_arg->vma); | |
5195 | } | |
5196 | ||
47ad8475 | 5197 | void copy_user_huge_page(struct page *dst, struct page *src, |
c9f4cd71 | 5198 | unsigned long addr_hint, struct vm_area_struct *vma, |
47ad8475 AA |
5199 | unsigned int pages_per_huge_page) |
5200 | { | |
c9f4cd71 YH |
5201 | unsigned long addr = addr_hint & |
5202 | ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); | |
5203 | struct copy_subpage_arg arg = { | |
5204 | .dst = dst, | |
5205 | .src = src, | |
5206 | .vma = vma, | |
5207 | }; | |
47ad8475 AA |
5208 | |
5209 | if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { | |
5210 | copy_user_gigantic_page(dst, src, addr, vma, | |
5211 | pages_per_huge_page); | |
5212 | return; | |
5213 | } | |
5214 | ||
c9f4cd71 | 5215 | process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg); |
47ad8475 | 5216 | } |
fa4d75c1 MK |
5217 | |
5218 | long copy_huge_page_from_user(struct page *dst_page, | |
5219 | const void __user *usr_src, | |
810a56b9 MK |
5220 | unsigned int pages_per_huge_page, |
5221 | bool allow_pagefault) | |
fa4d75c1 MK |
5222 | { |
5223 | void *src = (void *)usr_src; | |
5224 | void *page_kaddr; | |
5225 | unsigned long i, rc = 0; | |
5226 | unsigned long ret_val = pages_per_huge_page * PAGE_SIZE; | |
3272cfc2 | 5227 | struct page *subpage = dst_page; |
fa4d75c1 | 5228 | |
3272cfc2 MK |
5229 | for (i = 0; i < pages_per_huge_page; |
5230 | i++, subpage = mem_map_next(subpage, dst_page, i)) { | |
810a56b9 | 5231 | if (allow_pagefault) |
3272cfc2 | 5232 | page_kaddr = kmap(subpage); |
810a56b9 | 5233 | else |
3272cfc2 | 5234 | page_kaddr = kmap_atomic(subpage); |
fa4d75c1 MK |
5235 | rc = copy_from_user(page_kaddr, |
5236 | (const void __user *)(src + i * PAGE_SIZE), | |
5237 | PAGE_SIZE); | |
810a56b9 | 5238 | if (allow_pagefault) |
3272cfc2 | 5239 | kunmap(subpage); |
810a56b9 MK |
5240 | else |
5241 | kunmap_atomic(page_kaddr); | |
fa4d75c1 MK |
5242 | |
5243 | ret_val -= (PAGE_SIZE - rc); | |
5244 | if (rc) | |
5245 | break; | |
5246 | ||
5247 | cond_resched(); | |
5248 | } | |
5249 | return ret_val; | |
5250 | } | |
47ad8475 | 5251 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ |
49076ec2 | 5252 | |
40b64acd | 5253 | #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS |
b35f1819 KS |
5254 | |
5255 | static struct kmem_cache *page_ptl_cachep; | |
5256 | ||
5257 | void __init ptlock_cache_init(void) | |
5258 | { | |
5259 | page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, | |
5260 | SLAB_PANIC, NULL); | |
5261 | } | |
5262 | ||
539edb58 | 5263 | bool ptlock_alloc(struct page *page) |
49076ec2 KS |
5264 | { |
5265 | spinlock_t *ptl; | |
5266 | ||
b35f1819 | 5267 | ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); |
49076ec2 KS |
5268 | if (!ptl) |
5269 | return false; | |
539edb58 | 5270 | page->ptl = ptl; |
49076ec2 KS |
5271 | return true; |
5272 | } | |
5273 | ||
539edb58 | 5274 | void ptlock_free(struct page *page) |
49076ec2 | 5275 | { |
b35f1819 | 5276 | kmem_cache_free(page_ptl_cachep, page->ptl); |
49076ec2 KS |
5277 | } |
5278 | #endif |