]>
Commit | Line | Data |
---|---|---|
457c8996 | 1 | // SPDX-License-Identifier: GPL-2.0-only |
1da177e4 LT |
2 | /* |
3 | * linux/mm/memory.c | |
4 | * | |
5 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds | |
6 | */ | |
7 | ||
8 | /* | |
9 | * demand-loading started 01.12.91 - seems it is high on the list of | |
10 | * things wanted, and it should be easy to implement. - Linus | |
11 | */ | |
12 | ||
13 | /* | |
14 | * Ok, demand-loading was easy, shared pages a little bit tricker. Shared | |
15 | * pages started 02.12.91, seems to work. - Linus. | |
16 | * | |
17 | * Tested sharing by executing about 30 /bin/sh: under the old kernel it | |
18 | * would have taken more than the 6M I have free, but it worked well as | |
19 | * far as I could see. | |
20 | * | |
21 | * Also corrected some "invalidate()"s - I wasn't doing enough of them. | |
22 | */ | |
23 | ||
24 | /* | |
25 | * Real VM (paging to/from disk) started 18.12.91. Much more work and | |
26 | * thought has to go into this. Oh, well.. | |
27 | * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. | |
28 | * Found it. Everything seems to work now. | |
29 | * 20.12.91 - Ok, making the swap-device changeable like the root. | |
30 | */ | |
31 | ||
32 | /* | |
33 | * 05.04.94 - Multi-page memory management added for v1.1. | |
166f61b9 | 34 | * Idea by Alex Bligh ([email protected]) |
1da177e4 LT |
35 | * |
36 | * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG | |
37 | * ([email protected]) | |
38 | * | |
39 | * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) | |
40 | */ | |
41 | ||
42 | #include <linux/kernel_stat.h> | |
43 | #include <linux/mm.h> | |
6e84f315 | 44 | #include <linux/sched/mm.h> |
f7ccbae4 | 45 | #include <linux/sched/coredump.h> |
6a3827d7 | 46 | #include <linux/sched/numa_balancing.h> |
29930025 | 47 | #include <linux/sched/task.h> |
1da177e4 LT |
48 | #include <linux/hugetlb.h> |
49 | #include <linux/mman.h> | |
50 | #include <linux/swap.h> | |
51 | #include <linux/highmem.h> | |
52 | #include <linux/pagemap.h> | |
5042db43 | 53 | #include <linux/memremap.h> |
9a840895 | 54 | #include <linux/ksm.h> |
1da177e4 | 55 | #include <linux/rmap.h> |
b95f1b31 | 56 | #include <linux/export.h> |
0ff92245 | 57 | #include <linux/delayacct.h> |
1da177e4 | 58 | #include <linux/init.h> |
01c8f1c4 | 59 | #include <linux/pfn_t.h> |
edc79b2a | 60 | #include <linux/writeback.h> |
8a9f3ccd | 61 | #include <linux/memcontrol.h> |
cddb8a5c | 62 | #include <linux/mmu_notifier.h> |
3dc14741 HD |
63 | #include <linux/swapops.h> |
64 | #include <linux/elf.h> | |
5a0e3ad6 | 65 | #include <linux/gfp.h> |
4daae3b4 | 66 | #include <linux/migrate.h> |
2fbc57c5 | 67 | #include <linux/string.h> |
0abdd7a8 | 68 | #include <linux/dma-debug.h> |
1592eef0 | 69 | #include <linux/debugfs.h> |
6b251fc9 | 70 | #include <linux/userfaultfd_k.h> |
bc2466e4 | 71 | #include <linux/dax.h> |
6b31d595 | 72 | #include <linux/oom.h> |
98fa15f3 | 73 | #include <linux/numa.h> |
1da177e4 | 74 | |
b3d1411b JFG |
75 | #include <trace/events/kmem.h> |
76 | ||
6952b61d | 77 | #include <asm/io.h> |
33a709b2 | 78 | #include <asm/mmu_context.h> |
1da177e4 | 79 | #include <asm/pgalloc.h> |
7c0f6ba6 | 80 | #include <linux/uaccess.h> |
1da177e4 LT |
81 | #include <asm/tlb.h> |
82 | #include <asm/tlbflush.h> | |
83 | #include <asm/pgtable.h> | |
84 | ||
42b77728 JB |
85 | #include "internal.h" |
86 | ||
af27d940 | 87 | #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) |
90572890 | 88 | #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. |
75980e97 PZ |
89 | #endif |
90 | ||
d41dee36 | 91 | #ifndef CONFIG_NEED_MULTIPLE_NODES |
1da177e4 LT |
92 | /* use the per-pgdat data instead for discontigmem - mbligh */ |
93 | unsigned long max_mapnr; | |
1da177e4 | 94 | EXPORT_SYMBOL(max_mapnr); |
166f61b9 TH |
95 | |
96 | struct page *mem_map; | |
1da177e4 LT |
97 | EXPORT_SYMBOL(mem_map); |
98 | #endif | |
99 | ||
1da177e4 LT |
100 | /* |
101 | * A number of key systems in x86 including ioremap() rely on the assumption | |
102 | * that high_memory defines the upper bound on direct map memory, then end | |
103 | * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and | |
104 | * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL | |
105 | * and ZONE_HIGHMEM. | |
106 | */ | |
166f61b9 | 107 | void *high_memory; |
1da177e4 | 108 | EXPORT_SYMBOL(high_memory); |
1da177e4 | 109 | |
32a93233 IM |
110 | /* |
111 | * Randomize the address space (stacks, mmaps, brk, etc.). | |
112 | * | |
113 | * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, | |
114 | * as ancient (libc5 based) binaries can segfault. ) | |
115 | */ | |
116 | int randomize_va_space __read_mostly = | |
117 | #ifdef CONFIG_COMPAT_BRK | |
118 | 1; | |
119 | #else | |
120 | 2; | |
121 | #endif | |
a62eaf15 | 122 | |
83d116c5 JH |
123 | #ifndef arch_faults_on_old_pte |
124 | static inline bool arch_faults_on_old_pte(void) | |
125 | { | |
126 | /* | |
127 | * Those arches which don't have hw access flag feature need to | |
128 | * implement their own helper. By default, "true" means pagefault | |
129 | * will be hit on old pte. | |
130 | */ | |
131 | return true; | |
132 | } | |
133 | #endif | |
134 | ||
a62eaf15 AK |
135 | static int __init disable_randmaps(char *s) |
136 | { | |
137 | randomize_va_space = 0; | |
9b41046c | 138 | return 1; |
a62eaf15 AK |
139 | } |
140 | __setup("norandmaps", disable_randmaps); | |
141 | ||
62eede62 | 142 | unsigned long zero_pfn __read_mostly; |
0b70068e AB |
143 | EXPORT_SYMBOL(zero_pfn); |
144 | ||
166f61b9 TH |
145 | unsigned long highest_memmap_pfn __read_mostly; |
146 | ||
a13ea5b7 HD |
147 | /* |
148 | * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() | |
149 | */ | |
150 | static int __init init_zero_pfn(void) | |
151 | { | |
152 | zero_pfn = page_to_pfn(ZERO_PAGE(0)); | |
153 | return 0; | |
154 | } | |
155 | core_initcall(init_zero_pfn); | |
a62eaf15 | 156 | |
e4dcad20 | 157 | void mm_trace_rss_stat(struct mm_struct *mm, int member, long count) |
b3d1411b | 158 | { |
e4dcad20 | 159 | trace_rss_stat(mm, member, count); |
b3d1411b | 160 | } |
d559db08 | 161 | |
34e55232 KH |
162 | #if defined(SPLIT_RSS_COUNTING) |
163 | ||
ea48cf78 | 164 | void sync_mm_rss(struct mm_struct *mm) |
34e55232 KH |
165 | { |
166 | int i; | |
167 | ||
168 | for (i = 0; i < NR_MM_COUNTERS; i++) { | |
05af2e10 DR |
169 | if (current->rss_stat.count[i]) { |
170 | add_mm_counter(mm, i, current->rss_stat.count[i]); | |
171 | current->rss_stat.count[i] = 0; | |
34e55232 KH |
172 | } |
173 | } | |
05af2e10 | 174 | current->rss_stat.events = 0; |
34e55232 KH |
175 | } |
176 | ||
177 | static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) | |
178 | { | |
179 | struct task_struct *task = current; | |
180 | ||
181 | if (likely(task->mm == mm)) | |
182 | task->rss_stat.count[member] += val; | |
183 | else | |
184 | add_mm_counter(mm, member, val); | |
185 | } | |
186 | #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) | |
187 | #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) | |
188 | ||
189 | /* sync counter once per 64 page faults */ | |
190 | #define TASK_RSS_EVENTS_THRESH (64) | |
191 | static void check_sync_rss_stat(struct task_struct *task) | |
192 | { | |
193 | if (unlikely(task != current)) | |
194 | return; | |
195 | if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) | |
ea48cf78 | 196 | sync_mm_rss(task->mm); |
34e55232 | 197 | } |
9547d01b | 198 | #else /* SPLIT_RSS_COUNTING */ |
34e55232 KH |
199 | |
200 | #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) | |
201 | #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) | |
202 | ||
203 | static void check_sync_rss_stat(struct task_struct *task) | |
204 | { | |
205 | } | |
206 | ||
9547d01b PZ |
207 | #endif /* SPLIT_RSS_COUNTING */ |
208 | ||
1da177e4 LT |
209 | /* |
210 | * Note: this doesn't free the actual pages themselves. That | |
211 | * has been handled earlier when unmapping all the memory regions. | |
212 | */ | |
9e1b32ca BH |
213 | static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, |
214 | unsigned long addr) | |
1da177e4 | 215 | { |
2f569afd | 216 | pgtable_t token = pmd_pgtable(*pmd); |
e0da382c | 217 | pmd_clear(pmd); |
9e1b32ca | 218 | pte_free_tlb(tlb, token, addr); |
c4812909 | 219 | mm_dec_nr_ptes(tlb->mm); |
1da177e4 LT |
220 | } |
221 | ||
e0da382c HD |
222 | static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, |
223 | unsigned long addr, unsigned long end, | |
224 | unsigned long floor, unsigned long ceiling) | |
1da177e4 LT |
225 | { |
226 | pmd_t *pmd; | |
227 | unsigned long next; | |
e0da382c | 228 | unsigned long start; |
1da177e4 | 229 | |
e0da382c | 230 | start = addr; |
1da177e4 | 231 | pmd = pmd_offset(pud, addr); |
1da177e4 LT |
232 | do { |
233 | next = pmd_addr_end(addr, end); | |
234 | if (pmd_none_or_clear_bad(pmd)) | |
235 | continue; | |
9e1b32ca | 236 | free_pte_range(tlb, pmd, addr); |
1da177e4 LT |
237 | } while (pmd++, addr = next, addr != end); |
238 | ||
e0da382c HD |
239 | start &= PUD_MASK; |
240 | if (start < floor) | |
241 | return; | |
242 | if (ceiling) { | |
243 | ceiling &= PUD_MASK; | |
244 | if (!ceiling) | |
245 | return; | |
1da177e4 | 246 | } |
e0da382c HD |
247 | if (end - 1 > ceiling - 1) |
248 | return; | |
249 | ||
250 | pmd = pmd_offset(pud, start); | |
251 | pud_clear(pud); | |
9e1b32ca | 252 | pmd_free_tlb(tlb, pmd, start); |
dc6c9a35 | 253 | mm_dec_nr_pmds(tlb->mm); |
1da177e4 LT |
254 | } |
255 | ||
c2febafc | 256 | static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, |
e0da382c HD |
257 | unsigned long addr, unsigned long end, |
258 | unsigned long floor, unsigned long ceiling) | |
1da177e4 LT |
259 | { |
260 | pud_t *pud; | |
261 | unsigned long next; | |
e0da382c | 262 | unsigned long start; |
1da177e4 | 263 | |
e0da382c | 264 | start = addr; |
c2febafc | 265 | pud = pud_offset(p4d, addr); |
1da177e4 LT |
266 | do { |
267 | next = pud_addr_end(addr, end); | |
268 | if (pud_none_or_clear_bad(pud)) | |
269 | continue; | |
e0da382c | 270 | free_pmd_range(tlb, pud, addr, next, floor, ceiling); |
1da177e4 LT |
271 | } while (pud++, addr = next, addr != end); |
272 | ||
c2febafc KS |
273 | start &= P4D_MASK; |
274 | if (start < floor) | |
275 | return; | |
276 | if (ceiling) { | |
277 | ceiling &= P4D_MASK; | |
278 | if (!ceiling) | |
279 | return; | |
280 | } | |
281 | if (end - 1 > ceiling - 1) | |
282 | return; | |
283 | ||
284 | pud = pud_offset(p4d, start); | |
285 | p4d_clear(p4d); | |
286 | pud_free_tlb(tlb, pud, start); | |
b4e98d9a | 287 | mm_dec_nr_puds(tlb->mm); |
c2febafc KS |
288 | } |
289 | ||
290 | static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, | |
291 | unsigned long addr, unsigned long end, | |
292 | unsigned long floor, unsigned long ceiling) | |
293 | { | |
294 | p4d_t *p4d; | |
295 | unsigned long next; | |
296 | unsigned long start; | |
297 | ||
298 | start = addr; | |
299 | p4d = p4d_offset(pgd, addr); | |
300 | do { | |
301 | next = p4d_addr_end(addr, end); | |
302 | if (p4d_none_or_clear_bad(p4d)) | |
303 | continue; | |
304 | free_pud_range(tlb, p4d, addr, next, floor, ceiling); | |
305 | } while (p4d++, addr = next, addr != end); | |
306 | ||
e0da382c HD |
307 | start &= PGDIR_MASK; |
308 | if (start < floor) | |
309 | return; | |
310 | if (ceiling) { | |
311 | ceiling &= PGDIR_MASK; | |
312 | if (!ceiling) | |
313 | return; | |
1da177e4 | 314 | } |
e0da382c HD |
315 | if (end - 1 > ceiling - 1) |
316 | return; | |
317 | ||
c2febafc | 318 | p4d = p4d_offset(pgd, start); |
e0da382c | 319 | pgd_clear(pgd); |
c2febafc | 320 | p4d_free_tlb(tlb, p4d, start); |
1da177e4 LT |
321 | } |
322 | ||
323 | /* | |
e0da382c | 324 | * This function frees user-level page tables of a process. |
1da177e4 | 325 | */ |
42b77728 | 326 | void free_pgd_range(struct mmu_gather *tlb, |
e0da382c HD |
327 | unsigned long addr, unsigned long end, |
328 | unsigned long floor, unsigned long ceiling) | |
1da177e4 LT |
329 | { |
330 | pgd_t *pgd; | |
331 | unsigned long next; | |
e0da382c HD |
332 | |
333 | /* | |
334 | * The next few lines have given us lots of grief... | |
335 | * | |
336 | * Why are we testing PMD* at this top level? Because often | |
337 | * there will be no work to do at all, and we'd prefer not to | |
338 | * go all the way down to the bottom just to discover that. | |
339 | * | |
340 | * Why all these "- 1"s? Because 0 represents both the bottom | |
341 | * of the address space and the top of it (using -1 for the | |
342 | * top wouldn't help much: the masks would do the wrong thing). | |
343 | * The rule is that addr 0 and floor 0 refer to the bottom of | |
344 | * the address space, but end 0 and ceiling 0 refer to the top | |
345 | * Comparisons need to use "end - 1" and "ceiling - 1" (though | |
346 | * that end 0 case should be mythical). | |
347 | * | |
348 | * Wherever addr is brought up or ceiling brought down, we must | |
349 | * be careful to reject "the opposite 0" before it confuses the | |
350 | * subsequent tests. But what about where end is brought down | |
351 | * by PMD_SIZE below? no, end can't go down to 0 there. | |
352 | * | |
353 | * Whereas we round start (addr) and ceiling down, by different | |
354 | * masks at different levels, in order to test whether a table | |
355 | * now has no other vmas using it, so can be freed, we don't | |
356 | * bother to round floor or end up - the tests don't need that. | |
357 | */ | |
1da177e4 | 358 | |
e0da382c HD |
359 | addr &= PMD_MASK; |
360 | if (addr < floor) { | |
361 | addr += PMD_SIZE; | |
362 | if (!addr) | |
363 | return; | |
364 | } | |
365 | if (ceiling) { | |
366 | ceiling &= PMD_MASK; | |
367 | if (!ceiling) | |
368 | return; | |
369 | } | |
370 | if (end - 1 > ceiling - 1) | |
371 | end -= PMD_SIZE; | |
372 | if (addr > end - 1) | |
373 | return; | |
07e32661 AK |
374 | /* |
375 | * We add page table cache pages with PAGE_SIZE, | |
376 | * (see pte_free_tlb()), flush the tlb if we need | |
377 | */ | |
ed6a7935 | 378 | tlb_change_page_size(tlb, PAGE_SIZE); |
42b77728 | 379 | pgd = pgd_offset(tlb->mm, addr); |
1da177e4 LT |
380 | do { |
381 | next = pgd_addr_end(addr, end); | |
382 | if (pgd_none_or_clear_bad(pgd)) | |
383 | continue; | |
c2febafc | 384 | free_p4d_range(tlb, pgd, addr, next, floor, ceiling); |
1da177e4 | 385 | } while (pgd++, addr = next, addr != end); |
e0da382c HD |
386 | } |
387 | ||
42b77728 | 388 | void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, |
3bf5ee95 | 389 | unsigned long floor, unsigned long ceiling) |
e0da382c HD |
390 | { |
391 | while (vma) { | |
392 | struct vm_area_struct *next = vma->vm_next; | |
393 | unsigned long addr = vma->vm_start; | |
394 | ||
8f4f8c16 | 395 | /* |
25d9e2d1 NP |
396 | * Hide vma from rmap and truncate_pagecache before freeing |
397 | * pgtables | |
8f4f8c16 | 398 | */ |
5beb4930 | 399 | unlink_anon_vmas(vma); |
8f4f8c16 HD |
400 | unlink_file_vma(vma); |
401 | ||
9da61aef | 402 | if (is_vm_hugetlb_page(vma)) { |
3bf5ee95 | 403 | hugetlb_free_pgd_range(tlb, addr, vma->vm_end, |
166f61b9 | 404 | floor, next ? next->vm_start : ceiling); |
3bf5ee95 HD |
405 | } else { |
406 | /* | |
407 | * Optimization: gather nearby vmas into one call down | |
408 | */ | |
409 | while (next && next->vm_start <= vma->vm_end + PMD_SIZE | |
4866920b | 410 | && !is_vm_hugetlb_page(next)) { |
3bf5ee95 HD |
411 | vma = next; |
412 | next = vma->vm_next; | |
5beb4930 | 413 | unlink_anon_vmas(vma); |
8f4f8c16 | 414 | unlink_file_vma(vma); |
3bf5ee95 HD |
415 | } |
416 | free_pgd_range(tlb, addr, vma->vm_end, | |
166f61b9 | 417 | floor, next ? next->vm_start : ceiling); |
3bf5ee95 | 418 | } |
e0da382c HD |
419 | vma = next; |
420 | } | |
1da177e4 LT |
421 | } |
422 | ||
4cf58924 | 423 | int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) |
1da177e4 | 424 | { |
c4088ebd | 425 | spinlock_t *ptl; |
4cf58924 | 426 | pgtable_t new = pte_alloc_one(mm); |
1bb3630e HD |
427 | if (!new) |
428 | return -ENOMEM; | |
429 | ||
362a61ad NP |
430 | /* |
431 | * Ensure all pte setup (eg. pte page lock and page clearing) are | |
432 | * visible before the pte is made visible to other CPUs by being | |
433 | * put into page tables. | |
434 | * | |
435 | * The other side of the story is the pointer chasing in the page | |
436 | * table walking code (when walking the page table without locking; | |
437 | * ie. most of the time). Fortunately, these data accesses consist | |
438 | * of a chain of data-dependent loads, meaning most CPUs (alpha | |
439 | * being the notable exception) will already guarantee loads are | |
440 | * seen in-order. See the alpha page table accessors for the | |
441 | * smp_read_barrier_depends() barriers in page table walking code. | |
442 | */ | |
443 | smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ | |
444 | ||
c4088ebd | 445 | ptl = pmd_lock(mm, pmd); |
8ac1f832 | 446 | if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ |
c4812909 | 447 | mm_inc_nr_ptes(mm); |
1da177e4 | 448 | pmd_populate(mm, pmd, new); |
2f569afd | 449 | new = NULL; |
4b471e88 | 450 | } |
c4088ebd | 451 | spin_unlock(ptl); |
2f569afd MS |
452 | if (new) |
453 | pte_free(mm, new); | |
1bb3630e | 454 | return 0; |
1da177e4 LT |
455 | } |
456 | ||
4cf58924 | 457 | int __pte_alloc_kernel(pmd_t *pmd) |
1da177e4 | 458 | { |
4cf58924 | 459 | pte_t *new = pte_alloc_one_kernel(&init_mm); |
1bb3630e HD |
460 | if (!new) |
461 | return -ENOMEM; | |
462 | ||
362a61ad NP |
463 | smp_wmb(); /* See comment in __pte_alloc */ |
464 | ||
1bb3630e | 465 | spin_lock(&init_mm.page_table_lock); |
8ac1f832 | 466 | if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ |
1bb3630e | 467 | pmd_populate_kernel(&init_mm, pmd, new); |
2f569afd | 468 | new = NULL; |
4b471e88 | 469 | } |
1bb3630e | 470 | spin_unlock(&init_mm.page_table_lock); |
2f569afd MS |
471 | if (new) |
472 | pte_free_kernel(&init_mm, new); | |
1bb3630e | 473 | return 0; |
1da177e4 LT |
474 | } |
475 | ||
d559db08 KH |
476 | static inline void init_rss_vec(int *rss) |
477 | { | |
478 | memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); | |
479 | } | |
480 | ||
481 | static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) | |
ae859762 | 482 | { |
d559db08 KH |
483 | int i; |
484 | ||
34e55232 | 485 | if (current->mm == mm) |
05af2e10 | 486 | sync_mm_rss(mm); |
d559db08 KH |
487 | for (i = 0; i < NR_MM_COUNTERS; i++) |
488 | if (rss[i]) | |
489 | add_mm_counter(mm, i, rss[i]); | |
ae859762 HD |
490 | } |
491 | ||
b5810039 | 492 | /* |
6aab341e LT |
493 | * This function is called to print an error when a bad pte |
494 | * is found. For example, we might have a PFN-mapped pte in | |
495 | * a region that doesn't allow it. | |
b5810039 NP |
496 | * |
497 | * The calling function must still handle the error. | |
498 | */ | |
3dc14741 HD |
499 | static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, |
500 | pte_t pte, struct page *page) | |
b5810039 | 501 | { |
3dc14741 | 502 | pgd_t *pgd = pgd_offset(vma->vm_mm, addr); |
c2febafc KS |
503 | p4d_t *p4d = p4d_offset(pgd, addr); |
504 | pud_t *pud = pud_offset(p4d, addr); | |
3dc14741 HD |
505 | pmd_t *pmd = pmd_offset(pud, addr); |
506 | struct address_space *mapping; | |
507 | pgoff_t index; | |
d936cf9b HD |
508 | static unsigned long resume; |
509 | static unsigned long nr_shown; | |
510 | static unsigned long nr_unshown; | |
511 | ||
512 | /* | |
513 | * Allow a burst of 60 reports, then keep quiet for that minute; | |
514 | * or allow a steady drip of one report per second. | |
515 | */ | |
516 | if (nr_shown == 60) { | |
517 | if (time_before(jiffies, resume)) { | |
518 | nr_unshown++; | |
519 | return; | |
520 | } | |
521 | if (nr_unshown) { | |
1170532b JP |
522 | pr_alert("BUG: Bad page map: %lu messages suppressed\n", |
523 | nr_unshown); | |
d936cf9b HD |
524 | nr_unshown = 0; |
525 | } | |
526 | nr_shown = 0; | |
527 | } | |
528 | if (nr_shown++ == 0) | |
529 | resume = jiffies + 60 * HZ; | |
3dc14741 HD |
530 | |
531 | mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; | |
532 | index = linear_page_index(vma, addr); | |
533 | ||
1170532b JP |
534 | pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", |
535 | current->comm, | |
536 | (long long)pte_val(pte), (long long)pmd_val(*pmd)); | |
718a3821 | 537 | if (page) |
f0b791a3 | 538 | dump_page(page, "bad pte"); |
6aa9b8b2 | 539 | pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", |
1170532b | 540 | (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); |
d75f773c | 541 | pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n", |
2682582a KK |
542 | vma->vm_file, |
543 | vma->vm_ops ? vma->vm_ops->fault : NULL, | |
544 | vma->vm_file ? vma->vm_file->f_op->mmap : NULL, | |
545 | mapping ? mapping->a_ops->readpage : NULL); | |
b5810039 | 546 | dump_stack(); |
373d4d09 | 547 | add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); |
b5810039 NP |
548 | } |
549 | ||
ee498ed7 | 550 | /* |
7e675137 | 551 | * vm_normal_page -- This function gets the "struct page" associated with a pte. |
6aab341e | 552 | * |
7e675137 NP |
553 | * "Special" mappings do not wish to be associated with a "struct page" (either |
554 | * it doesn't exist, or it exists but they don't want to touch it). In this | |
555 | * case, NULL is returned here. "Normal" mappings do have a struct page. | |
b379d790 | 556 | * |
7e675137 NP |
557 | * There are 2 broad cases. Firstly, an architecture may define a pte_special() |
558 | * pte bit, in which case this function is trivial. Secondly, an architecture | |
559 | * may not have a spare pte bit, which requires a more complicated scheme, | |
560 | * described below. | |
561 | * | |
562 | * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a | |
563 | * special mapping (even if there are underlying and valid "struct pages"). | |
564 | * COWed pages of a VM_PFNMAP are always normal. | |
6aab341e | 565 | * |
b379d790 JH |
566 | * The way we recognize COWed pages within VM_PFNMAP mappings is through the |
567 | * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit | |
7e675137 NP |
568 | * set, and the vm_pgoff will point to the first PFN mapped: thus every special |
569 | * mapping will always honor the rule | |
6aab341e LT |
570 | * |
571 | * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) | |
572 | * | |
7e675137 NP |
573 | * And for normal mappings this is false. |
574 | * | |
575 | * This restricts such mappings to be a linear translation from virtual address | |
576 | * to pfn. To get around this restriction, we allow arbitrary mappings so long | |
577 | * as the vma is not a COW mapping; in that case, we know that all ptes are | |
578 | * special (because none can have been COWed). | |
b379d790 | 579 | * |
b379d790 | 580 | * |
7e675137 | 581 | * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. |
b379d790 JH |
582 | * |
583 | * VM_MIXEDMAP mappings can likewise contain memory with or without "struct | |
584 | * page" backing, however the difference is that _all_ pages with a struct | |
585 | * page (that is, those where pfn_valid is true) are refcounted and considered | |
586 | * normal pages by the VM. The disadvantage is that pages are refcounted | |
587 | * (which can be slower and simply not an option for some PFNMAP users). The | |
588 | * advantage is that we don't have to follow the strict linearity rule of | |
589 | * PFNMAP mappings in order to support COWable mappings. | |
590 | * | |
ee498ed7 | 591 | */ |
25b2995a CH |
592 | struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, |
593 | pte_t pte) | |
ee498ed7 | 594 | { |
22b31eec | 595 | unsigned long pfn = pte_pfn(pte); |
7e675137 | 596 | |
00b3a331 | 597 | if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { |
b38af472 | 598 | if (likely(!pte_special(pte))) |
22b31eec | 599 | goto check_pfn; |
667a0a06 DV |
600 | if (vma->vm_ops && vma->vm_ops->find_special_page) |
601 | return vma->vm_ops->find_special_page(vma, addr); | |
a13ea5b7 HD |
602 | if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) |
603 | return NULL; | |
df6ad698 JG |
604 | if (is_zero_pfn(pfn)) |
605 | return NULL; | |
e1fb4a08 DJ |
606 | if (pte_devmap(pte)) |
607 | return NULL; | |
608 | ||
df6ad698 | 609 | print_bad_pte(vma, addr, pte, NULL); |
7e675137 NP |
610 | return NULL; |
611 | } | |
612 | ||
00b3a331 | 613 | /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ |
7e675137 | 614 | |
b379d790 JH |
615 | if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { |
616 | if (vma->vm_flags & VM_MIXEDMAP) { | |
617 | if (!pfn_valid(pfn)) | |
618 | return NULL; | |
619 | goto out; | |
620 | } else { | |
7e675137 NP |
621 | unsigned long off; |
622 | off = (addr - vma->vm_start) >> PAGE_SHIFT; | |
b379d790 JH |
623 | if (pfn == vma->vm_pgoff + off) |
624 | return NULL; | |
625 | if (!is_cow_mapping(vma->vm_flags)) | |
626 | return NULL; | |
627 | } | |
6aab341e LT |
628 | } |
629 | ||
b38af472 HD |
630 | if (is_zero_pfn(pfn)) |
631 | return NULL; | |
00b3a331 | 632 | |
22b31eec HD |
633 | check_pfn: |
634 | if (unlikely(pfn > highest_memmap_pfn)) { | |
635 | print_bad_pte(vma, addr, pte, NULL); | |
636 | return NULL; | |
637 | } | |
6aab341e LT |
638 | |
639 | /* | |
7e675137 | 640 | * NOTE! We still have PageReserved() pages in the page tables. |
7e675137 | 641 | * eg. VDSO mappings can cause them to exist. |
6aab341e | 642 | */ |
b379d790 | 643 | out: |
6aab341e | 644 | return pfn_to_page(pfn); |
ee498ed7 HD |
645 | } |
646 | ||
28093f9f GS |
647 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
648 | struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, | |
649 | pmd_t pmd) | |
650 | { | |
651 | unsigned long pfn = pmd_pfn(pmd); | |
652 | ||
653 | /* | |
654 | * There is no pmd_special() but there may be special pmds, e.g. | |
655 | * in a direct-access (dax) mapping, so let's just replicate the | |
00b3a331 | 656 | * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here. |
28093f9f GS |
657 | */ |
658 | if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { | |
659 | if (vma->vm_flags & VM_MIXEDMAP) { | |
660 | if (!pfn_valid(pfn)) | |
661 | return NULL; | |
662 | goto out; | |
663 | } else { | |
664 | unsigned long off; | |
665 | off = (addr - vma->vm_start) >> PAGE_SHIFT; | |
666 | if (pfn == vma->vm_pgoff + off) | |
667 | return NULL; | |
668 | if (!is_cow_mapping(vma->vm_flags)) | |
669 | return NULL; | |
670 | } | |
671 | } | |
672 | ||
e1fb4a08 DJ |
673 | if (pmd_devmap(pmd)) |
674 | return NULL; | |
3cde287b | 675 | if (is_huge_zero_pmd(pmd)) |
28093f9f GS |
676 | return NULL; |
677 | if (unlikely(pfn > highest_memmap_pfn)) | |
678 | return NULL; | |
679 | ||
680 | /* | |
681 | * NOTE! We still have PageReserved() pages in the page tables. | |
682 | * eg. VDSO mappings can cause them to exist. | |
683 | */ | |
684 | out: | |
685 | return pfn_to_page(pfn); | |
686 | } | |
687 | #endif | |
688 | ||
1da177e4 LT |
689 | /* |
690 | * copy one vm_area from one task to the other. Assumes the page tables | |
691 | * already present in the new task to be cleared in the whole range | |
692 | * covered by this vma. | |
1da177e4 LT |
693 | */ |
694 | ||
570a335b | 695 | static inline unsigned long |
1da177e4 | 696 | copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, |
b5810039 | 697 | pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, |
8c103762 | 698 | unsigned long addr, int *rss) |
1da177e4 | 699 | { |
b5810039 | 700 | unsigned long vm_flags = vma->vm_flags; |
1da177e4 LT |
701 | pte_t pte = *src_pte; |
702 | struct page *page; | |
1da177e4 LT |
703 | |
704 | /* pte contains position in swap or file, so copy. */ | |
705 | if (unlikely(!pte_present(pte))) { | |
0661a336 KS |
706 | swp_entry_t entry = pte_to_swp_entry(pte); |
707 | ||
708 | if (likely(!non_swap_entry(entry))) { | |
709 | if (swap_duplicate(entry) < 0) | |
710 | return entry.val; | |
711 | ||
712 | /* make sure dst_mm is on swapoff's mmlist. */ | |
713 | if (unlikely(list_empty(&dst_mm->mmlist))) { | |
714 | spin_lock(&mmlist_lock); | |
715 | if (list_empty(&dst_mm->mmlist)) | |
716 | list_add(&dst_mm->mmlist, | |
717 | &src_mm->mmlist); | |
718 | spin_unlock(&mmlist_lock); | |
719 | } | |
720 | rss[MM_SWAPENTS]++; | |
721 | } else if (is_migration_entry(entry)) { | |
722 | page = migration_entry_to_page(entry); | |
723 | ||
eca56ff9 | 724 | rss[mm_counter(page)]++; |
0661a336 KS |
725 | |
726 | if (is_write_migration_entry(entry) && | |
727 | is_cow_mapping(vm_flags)) { | |
728 | /* | |
729 | * COW mappings require pages in both | |
730 | * parent and child to be set to read. | |
731 | */ | |
732 | make_migration_entry_read(&entry); | |
733 | pte = swp_entry_to_pte(entry); | |
734 | if (pte_swp_soft_dirty(*src_pte)) | |
735 | pte = pte_swp_mksoft_dirty(pte); | |
f45ec5ff PX |
736 | if (pte_swp_uffd_wp(*src_pte)) |
737 | pte = pte_swp_mkuffd_wp(pte); | |
0661a336 | 738 | set_pte_at(src_mm, addr, src_pte, pte); |
0697212a | 739 | } |
5042db43 JG |
740 | } else if (is_device_private_entry(entry)) { |
741 | page = device_private_entry_to_page(entry); | |
742 | ||
743 | /* | |
744 | * Update rss count even for unaddressable pages, as | |
745 | * they should treated just like normal pages in this | |
746 | * respect. | |
747 | * | |
748 | * We will likely want to have some new rss counters | |
749 | * for unaddressable pages, at some point. But for now | |
750 | * keep things as they are. | |
751 | */ | |
752 | get_page(page); | |
753 | rss[mm_counter(page)]++; | |
754 | page_dup_rmap(page, false); | |
755 | ||
756 | /* | |
757 | * We do not preserve soft-dirty information, because so | |
758 | * far, checkpoint/restore is the only feature that | |
759 | * requires that. And checkpoint/restore does not work | |
760 | * when a device driver is involved (you cannot easily | |
761 | * save and restore device driver state). | |
762 | */ | |
763 | if (is_write_device_private_entry(entry) && | |
764 | is_cow_mapping(vm_flags)) { | |
765 | make_device_private_entry_read(&entry); | |
766 | pte = swp_entry_to_pte(entry); | |
f45ec5ff PX |
767 | if (pte_swp_uffd_wp(*src_pte)) |
768 | pte = pte_swp_mkuffd_wp(pte); | |
5042db43 JG |
769 | set_pte_at(src_mm, addr, src_pte, pte); |
770 | } | |
1da177e4 | 771 | } |
ae859762 | 772 | goto out_set_pte; |
1da177e4 LT |
773 | } |
774 | ||
1da177e4 LT |
775 | /* |
776 | * If it's a COW mapping, write protect it both | |
777 | * in the parent and the child | |
778 | */ | |
1b2de5d0 | 779 | if (is_cow_mapping(vm_flags) && pte_write(pte)) { |
1da177e4 | 780 | ptep_set_wrprotect(src_mm, addr, src_pte); |
3dc90795 | 781 | pte = pte_wrprotect(pte); |
1da177e4 LT |
782 | } |
783 | ||
784 | /* | |
785 | * If it's a shared mapping, mark it clean in | |
786 | * the child | |
787 | */ | |
788 | if (vm_flags & VM_SHARED) | |
789 | pte = pte_mkclean(pte); | |
790 | pte = pte_mkold(pte); | |
6aab341e | 791 | |
b569a176 PX |
792 | /* |
793 | * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA | |
794 | * does not have the VM_UFFD_WP, which means that the uffd | |
795 | * fork event is not enabled. | |
796 | */ | |
797 | if (!(vm_flags & VM_UFFD_WP)) | |
798 | pte = pte_clear_uffd_wp(pte); | |
799 | ||
6aab341e LT |
800 | page = vm_normal_page(vma, addr, pte); |
801 | if (page) { | |
802 | get_page(page); | |
53f9263b | 803 | page_dup_rmap(page, false); |
eca56ff9 | 804 | rss[mm_counter(page)]++; |
6aab341e | 805 | } |
ae859762 HD |
806 | |
807 | out_set_pte: | |
808 | set_pte_at(dst_mm, addr, dst_pte, pte); | |
570a335b | 809 | return 0; |
1da177e4 LT |
810 | } |
811 | ||
21bda264 | 812 | static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, |
71e3aac0 AA |
813 | pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, |
814 | unsigned long addr, unsigned long end) | |
1da177e4 | 815 | { |
c36987e2 | 816 | pte_t *orig_src_pte, *orig_dst_pte; |
1da177e4 | 817 | pte_t *src_pte, *dst_pte; |
c74df32c | 818 | spinlock_t *src_ptl, *dst_ptl; |
e040f218 | 819 | int progress = 0; |
d559db08 | 820 | int rss[NR_MM_COUNTERS]; |
570a335b | 821 | swp_entry_t entry = (swp_entry_t){0}; |
1da177e4 LT |
822 | |
823 | again: | |
d559db08 KH |
824 | init_rss_vec(rss); |
825 | ||
c74df32c | 826 | dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); |
1da177e4 LT |
827 | if (!dst_pte) |
828 | return -ENOMEM; | |
ece0e2b6 | 829 | src_pte = pte_offset_map(src_pmd, addr); |
4c21e2f2 | 830 | src_ptl = pte_lockptr(src_mm, src_pmd); |
f20dc5f7 | 831 | spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); |
c36987e2 DN |
832 | orig_src_pte = src_pte; |
833 | orig_dst_pte = dst_pte; | |
6606c3e0 | 834 | arch_enter_lazy_mmu_mode(); |
1da177e4 | 835 | |
1da177e4 LT |
836 | do { |
837 | /* | |
838 | * We are holding two locks at this point - either of them | |
839 | * could generate latencies in another task on another CPU. | |
840 | */ | |
e040f218 HD |
841 | if (progress >= 32) { |
842 | progress = 0; | |
843 | if (need_resched() || | |
95c354fe | 844 | spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) |
e040f218 HD |
845 | break; |
846 | } | |
1da177e4 LT |
847 | if (pte_none(*src_pte)) { |
848 | progress++; | |
849 | continue; | |
850 | } | |
570a335b HD |
851 | entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, |
852 | vma, addr, rss); | |
853 | if (entry.val) | |
854 | break; | |
1da177e4 LT |
855 | progress += 8; |
856 | } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); | |
1da177e4 | 857 | |
6606c3e0 | 858 | arch_leave_lazy_mmu_mode(); |
c74df32c | 859 | spin_unlock(src_ptl); |
ece0e2b6 | 860 | pte_unmap(orig_src_pte); |
d559db08 | 861 | add_mm_rss_vec(dst_mm, rss); |
c36987e2 | 862 | pte_unmap_unlock(orig_dst_pte, dst_ptl); |
c74df32c | 863 | cond_resched(); |
570a335b HD |
864 | |
865 | if (entry.val) { | |
866 | if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) | |
867 | return -ENOMEM; | |
868 | progress = 0; | |
869 | } | |
1da177e4 LT |
870 | if (addr != end) |
871 | goto again; | |
872 | return 0; | |
873 | } | |
874 | ||
875 | static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | |
876 | pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, | |
877 | unsigned long addr, unsigned long end) | |
878 | { | |
879 | pmd_t *src_pmd, *dst_pmd; | |
880 | unsigned long next; | |
881 | ||
882 | dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); | |
883 | if (!dst_pmd) | |
884 | return -ENOMEM; | |
885 | src_pmd = pmd_offset(src_pud, addr); | |
886 | do { | |
887 | next = pmd_addr_end(addr, end); | |
84c3fc4e ZY |
888 | if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) |
889 | || pmd_devmap(*src_pmd)) { | |
71e3aac0 | 890 | int err; |
a00cc7d9 | 891 | VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma); |
71e3aac0 AA |
892 | err = copy_huge_pmd(dst_mm, src_mm, |
893 | dst_pmd, src_pmd, addr, vma); | |
894 | if (err == -ENOMEM) | |
895 | return -ENOMEM; | |
896 | if (!err) | |
897 | continue; | |
898 | /* fall through */ | |
899 | } | |
1da177e4 LT |
900 | if (pmd_none_or_clear_bad(src_pmd)) |
901 | continue; | |
902 | if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, | |
903 | vma, addr, next)) | |
904 | return -ENOMEM; | |
905 | } while (dst_pmd++, src_pmd++, addr = next, addr != end); | |
906 | return 0; | |
907 | } | |
908 | ||
909 | static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | |
c2febafc | 910 | p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma, |
1da177e4 LT |
911 | unsigned long addr, unsigned long end) |
912 | { | |
913 | pud_t *src_pud, *dst_pud; | |
914 | unsigned long next; | |
915 | ||
c2febafc | 916 | dst_pud = pud_alloc(dst_mm, dst_p4d, addr); |
1da177e4 LT |
917 | if (!dst_pud) |
918 | return -ENOMEM; | |
c2febafc | 919 | src_pud = pud_offset(src_p4d, addr); |
1da177e4 LT |
920 | do { |
921 | next = pud_addr_end(addr, end); | |
a00cc7d9 MW |
922 | if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { |
923 | int err; | |
924 | ||
925 | VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma); | |
926 | err = copy_huge_pud(dst_mm, src_mm, | |
927 | dst_pud, src_pud, addr, vma); | |
928 | if (err == -ENOMEM) | |
929 | return -ENOMEM; | |
930 | if (!err) | |
931 | continue; | |
932 | /* fall through */ | |
933 | } | |
1da177e4 LT |
934 | if (pud_none_or_clear_bad(src_pud)) |
935 | continue; | |
936 | if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, | |
937 | vma, addr, next)) | |
938 | return -ENOMEM; | |
939 | } while (dst_pud++, src_pud++, addr = next, addr != end); | |
940 | return 0; | |
941 | } | |
942 | ||
c2febafc KS |
943 | static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, |
944 | pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, | |
945 | unsigned long addr, unsigned long end) | |
946 | { | |
947 | p4d_t *src_p4d, *dst_p4d; | |
948 | unsigned long next; | |
949 | ||
950 | dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); | |
951 | if (!dst_p4d) | |
952 | return -ENOMEM; | |
953 | src_p4d = p4d_offset(src_pgd, addr); | |
954 | do { | |
955 | next = p4d_addr_end(addr, end); | |
956 | if (p4d_none_or_clear_bad(src_p4d)) | |
957 | continue; | |
958 | if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d, | |
959 | vma, addr, next)) | |
960 | return -ENOMEM; | |
961 | } while (dst_p4d++, src_p4d++, addr = next, addr != end); | |
962 | return 0; | |
963 | } | |
964 | ||
1da177e4 LT |
965 | int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, |
966 | struct vm_area_struct *vma) | |
967 | { | |
968 | pgd_t *src_pgd, *dst_pgd; | |
969 | unsigned long next; | |
970 | unsigned long addr = vma->vm_start; | |
971 | unsigned long end = vma->vm_end; | |
ac46d4f3 | 972 | struct mmu_notifier_range range; |
2ec74c3e | 973 | bool is_cow; |
cddb8a5c | 974 | int ret; |
1da177e4 | 975 | |
d992895b NP |
976 | /* |
977 | * Don't copy ptes where a page fault will fill them correctly. | |
978 | * Fork becomes much lighter when there are big shared or private | |
979 | * readonly mappings. The tradeoff is that copy_page_range is more | |
980 | * efficient than faulting. | |
981 | */ | |
0661a336 KS |
982 | if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) && |
983 | !vma->anon_vma) | |
984 | return 0; | |
d992895b | 985 | |
1da177e4 LT |
986 | if (is_vm_hugetlb_page(vma)) |
987 | return copy_hugetlb_page_range(dst_mm, src_mm, vma); | |
988 | ||
b3b9c293 | 989 | if (unlikely(vma->vm_flags & VM_PFNMAP)) { |
2ab64037 | 990 | /* |
991 | * We do not free on error cases below as remove_vma | |
992 | * gets called on error from higher level routine | |
993 | */ | |
5180da41 | 994 | ret = track_pfn_copy(vma); |
2ab64037 | 995 | if (ret) |
996 | return ret; | |
997 | } | |
998 | ||
cddb8a5c AA |
999 | /* |
1000 | * We need to invalidate the secondary MMU mappings only when | |
1001 | * there could be a permission downgrade on the ptes of the | |
1002 | * parent mm. And a permission downgrade will only happen if | |
1003 | * is_cow_mapping() returns true. | |
1004 | */ | |
2ec74c3e | 1005 | is_cow = is_cow_mapping(vma->vm_flags); |
ac46d4f3 JG |
1006 | |
1007 | if (is_cow) { | |
7269f999 JG |
1008 | mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, |
1009 | 0, vma, src_mm, addr, end); | |
ac46d4f3 JG |
1010 | mmu_notifier_invalidate_range_start(&range); |
1011 | } | |
cddb8a5c AA |
1012 | |
1013 | ret = 0; | |
1da177e4 LT |
1014 | dst_pgd = pgd_offset(dst_mm, addr); |
1015 | src_pgd = pgd_offset(src_mm, addr); | |
1016 | do { | |
1017 | next = pgd_addr_end(addr, end); | |
1018 | if (pgd_none_or_clear_bad(src_pgd)) | |
1019 | continue; | |
c2febafc | 1020 | if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd, |
cddb8a5c AA |
1021 | vma, addr, next))) { |
1022 | ret = -ENOMEM; | |
1023 | break; | |
1024 | } | |
1da177e4 | 1025 | } while (dst_pgd++, src_pgd++, addr = next, addr != end); |
cddb8a5c | 1026 | |
2ec74c3e | 1027 | if (is_cow) |
ac46d4f3 | 1028 | mmu_notifier_invalidate_range_end(&range); |
cddb8a5c | 1029 | return ret; |
1da177e4 LT |
1030 | } |
1031 | ||
51c6f666 | 1032 | static unsigned long zap_pte_range(struct mmu_gather *tlb, |
b5810039 | 1033 | struct vm_area_struct *vma, pmd_t *pmd, |
1da177e4 | 1034 | unsigned long addr, unsigned long end, |
97a89413 | 1035 | struct zap_details *details) |
1da177e4 | 1036 | { |
b5810039 | 1037 | struct mm_struct *mm = tlb->mm; |
d16dfc55 | 1038 | int force_flush = 0; |
d559db08 | 1039 | int rss[NR_MM_COUNTERS]; |
97a89413 | 1040 | spinlock_t *ptl; |
5f1a1907 | 1041 | pte_t *start_pte; |
97a89413 | 1042 | pte_t *pte; |
8a5f14a2 | 1043 | swp_entry_t entry; |
d559db08 | 1044 | |
ed6a7935 | 1045 | tlb_change_page_size(tlb, PAGE_SIZE); |
d16dfc55 | 1046 | again: |
e303297e | 1047 | init_rss_vec(rss); |
5f1a1907 SR |
1048 | start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); |
1049 | pte = start_pte; | |
3ea27719 | 1050 | flush_tlb_batched_pending(mm); |
6606c3e0 | 1051 | arch_enter_lazy_mmu_mode(); |
1da177e4 LT |
1052 | do { |
1053 | pte_t ptent = *pte; | |
166f61b9 | 1054 | if (pte_none(ptent)) |
1da177e4 | 1055 | continue; |
6f5e6b9e | 1056 | |
7b167b68 MK |
1057 | if (need_resched()) |
1058 | break; | |
1059 | ||
1da177e4 | 1060 | if (pte_present(ptent)) { |
ee498ed7 | 1061 | struct page *page; |
51c6f666 | 1062 | |
25b2995a | 1063 | page = vm_normal_page(vma, addr, ptent); |
1da177e4 LT |
1064 | if (unlikely(details) && page) { |
1065 | /* | |
1066 | * unmap_shared_mapping_pages() wants to | |
1067 | * invalidate cache without truncating: | |
1068 | * unmap shared but keep private pages. | |
1069 | */ | |
1070 | if (details->check_mapping && | |
800d8c63 | 1071 | details->check_mapping != page_rmapping(page)) |
1da177e4 | 1072 | continue; |
1da177e4 | 1073 | } |
b5810039 | 1074 | ptent = ptep_get_and_clear_full(mm, addr, pte, |
a600388d | 1075 | tlb->fullmm); |
1da177e4 LT |
1076 | tlb_remove_tlb_entry(tlb, pte, addr); |
1077 | if (unlikely(!page)) | |
1078 | continue; | |
eca56ff9 JM |
1079 | |
1080 | if (!PageAnon(page)) { | |
1cf35d47 LT |
1081 | if (pte_dirty(ptent)) { |
1082 | force_flush = 1; | |
6237bcd9 | 1083 | set_page_dirty(page); |
1cf35d47 | 1084 | } |
4917e5d0 | 1085 | if (pte_young(ptent) && |
64363aad | 1086 | likely(!(vma->vm_flags & VM_SEQ_READ))) |
bf3f3bc5 | 1087 | mark_page_accessed(page); |
6237bcd9 | 1088 | } |
eca56ff9 | 1089 | rss[mm_counter(page)]--; |
d281ee61 | 1090 | page_remove_rmap(page, false); |
3dc14741 HD |
1091 | if (unlikely(page_mapcount(page) < 0)) |
1092 | print_bad_pte(vma, addr, ptent, page); | |
e9d55e15 | 1093 | if (unlikely(__tlb_remove_page(tlb, page))) { |
1cf35d47 | 1094 | force_flush = 1; |
ce9ec37b | 1095 | addr += PAGE_SIZE; |
d16dfc55 | 1096 | break; |
1cf35d47 | 1097 | } |
1da177e4 LT |
1098 | continue; |
1099 | } | |
5042db43 JG |
1100 | |
1101 | entry = pte_to_swp_entry(ptent); | |
1102 | if (non_swap_entry(entry) && is_device_private_entry(entry)) { | |
1103 | struct page *page = device_private_entry_to_page(entry); | |
1104 | ||
1105 | if (unlikely(details && details->check_mapping)) { | |
1106 | /* | |
1107 | * unmap_shared_mapping_pages() wants to | |
1108 | * invalidate cache without truncating: | |
1109 | * unmap shared but keep private pages. | |
1110 | */ | |
1111 | if (details->check_mapping != | |
1112 | page_rmapping(page)) | |
1113 | continue; | |
1114 | } | |
1115 | ||
1116 | pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); | |
1117 | rss[mm_counter(page)]--; | |
1118 | page_remove_rmap(page, false); | |
1119 | put_page(page); | |
1120 | continue; | |
1121 | } | |
1122 | ||
3e8715fd KS |
1123 | /* If details->check_mapping, we leave swap entries. */ |
1124 | if (unlikely(details)) | |
1da177e4 | 1125 | continue; |
b084d435 | 1126 | |
8a5f14a2 KS |
1127 | if (!non_swap_entry(entry)) |
1128 | rss[MM_SWAPENTS]--; | |
1129 | else if (is_migration_entry(entry)) { | |
1130 | struct page *page; | |
9f9f1acd | 1131 | |
8a5f14a2 | 1132 | page = migration_entry_to_page(entry); |
eca56ff9 | 1133 | rss[mm_counter(page)]--; |
b084d435 | 1134 | } |
8a5f14a2 KS |
1135 | if (unlikely(!free_swap_and_cache(entry))) |
1136 | print_bad_pte(vma, addr, ptent, NULL); | |
9888a1ca | 1137 | pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); |
97a89413 | 1138 | } while (pte++, addr += PAGE_SIZE, addr != end); |
ae859762 | 1139 | |
d559db08 | 1140 | add_mm_rss_vec(mm, rss); |
6606c3e0 | 1141 | arch_leave_lazy_mmu_mode(); |
51c6f666 | 1142 | |
1cf35d47 | 1143 | /* Do the actual TLB flush before dropping ptl */ |
fb7332a9 | 1144 | if (force_flush) |
1cf35d47 | 1145 | tlb_flush_mmu_tlbonly(tlb); |
1cf35d47 LT |
1146 | pte_unmap_unlock(start_pte, ptl); |
1147 | ||
1148 | /* | |
1149 | * If we forced a TLB flush (either due to running out of | |
1150 | * batch buffers or because we needed to flush dirty TLB | |
1151 | * entries before releasing the ptl), free the batched | |
1152 | * memory too. Restart if we didn't do everything. | |
1153 | */ | |
1154 | if (force_flush) { | |
1155 | force_flush = 0; | |
fa0aafb8 | 1156 | tlb_flush_mmu(tlb); |
7b167b68 MK |
1157 | } |
1158 | ||
1159 | if (addr != end) { | |
1160 | cond_resched(); | |
1161 | goto again; | |
d16dfc55 PZ |
1162 | } |
1163 | ||
51c6f666 | 1164 | return addr; |
1da177e4 LT |
1165 | } |
1166 | ||
51c6f666 | 1167 | static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, |
b5810039 | 1168 | struct vm_area_struct *vma, pud_t *pud, |
1da177e4 | 1169 | unsigned long addr, unsigned long end, |
97a89413 | 1170 | struct zap_details *details) |
1da177e4 LT |
1171 | { |
1172 | pmd_t *pmd; | |
1173 | unsigned long next; | |
1174 | ||
1175 | pmd = pmd_offset(pud, addr); | |
1176 | do { | |
1177 | next = pmd_addr_end(addr, end); | |
84c3fc4e | 1178 | if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { |
53406ed1 | 1179 | if (next - addr != HPAGE_PMD_SIZE) |
fd60775a | 1180 | __split_huge_pmd(vma, pmd, addr, false, NULL); |
53406ed1 | 1181 | else if (zap_huge_pmd(tlb, vma, pmd, addr)) |
1a5a9906 | 1182 | goto next; |
71e3aac0 AA |
1183 | /* fall through */ |
1184 | } | |
1a5a9906 AA |
1185 | /* |
1186 | * Here there can be other concurrent MADV_DONTNEED or | |
1187 | * trans huge page faults running, and if the pmd is | |
1188 | * none or trans huge it can change under us. This is | |
1189 | * because MADV_DONTNEED holds the mmap_sem in read | |
1190 | * mode. | |
1191 | */ | |
1192 | if (pmd_none_or_trans_huge_or_clear_bad(pmd)) | |
1193 | goto next; | |
97a89413 | 1194 | next = zap_pte_range(tlb, vma, pmd, addr, next, details); |
1a5a9906 | 1195 | next: |
97a89413 PZ |
1196 | cond_resched(); |
1197 | } while (pmd++, addr = next, addr != end); | |
51c6f666 RH |
1198 | |
1199 | return addr; | |
1da177e4 LT |
1200 | } |
1201 | ||
51c6f666 | 1202 | static inline unsigned long zap_pud_range(struct mmu_gather *tlb, |
c2febafc | 1203 | struct vm_area_struct *vma, p4d_t *p4d, |
1da177e4 | 1204 | unsigned long addr, unsigned long end, |
97a89413 | 1205 | struct zap_details *details) |
1da177e4 LT |
1206 | { |
1207 | pud_t *pud; | |
1208 | unsigned long next; | |
1209 | ||
c2febafc | 1210 | pud = pud_offset(p4d, addr); |
1da177e4 LT |
1211 | do { |
1212 | next = pud_addr_end(addr, end); | |
a00cc7d9 MW |
1213 | if (pud_trans_huge(*pud) || pud_devmap(*pud)) { |
1214 | if (next - addr != HPAGE_PUD_SIZE) { | |
1215 | VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma); | |
1216 | split_huge_pud(vma, pud, addr); | |
1217 | } else if (zap_huge_pud(tlb, vma, pud, addr)) | |
1218 | goto next; | |
1219 | /* fall through */ | |
1220 | } | |
97a89413 | 1221 | if (pud_none_or_clear_bad(pud)) |
1da177e4 | 1222 | continue; |
97a89413 | 1223 | next = zap_pmd_range(tlb, vma, pud, addr, next, details); |
a00cc7d9 MW |
1224 | next: |
1225 | cond_resched(); | |
97a89413 | 1226 | } while (pud++, addr = next, addr != end); |
51c6f666 RH |
1227 | |
1228 | return addr; | |
1da177e4 LT |
1229 | } |
1230 | ||
c2febafc KS |
1231 | static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, |
1232 | struct vm_area_struct *vma, pgd_t *pgd, | |
1233 | unsigned long addr, unsigned long end, | |
1234 | struct zap_details *details) | |
1235 | { | |
1236 | p4d_t *p4d; | |
1237 | unsigned long next; | |
1238 | ||
1239 | p4d = p4d_offset(pgd, addr); | |
1240 | do { | |
1241 | next = p4d_addr_end(addr, end); | |
1242 | if (p4d_none_or_clear_bad(p4d)) | |
1243 | continue; | |
1244 | next = zap_pud_range(tlb, vma, p4d, addr, next, details); | |
1245 | } while (p4d++, addr = next, addr != end); | |
1246 | ||
1247 | return addr; | |
1248 | } | |
1249 | ||
aac45363 | 1250 | void unmap_page_range(struct mmu_gather *tlb, |
038c7aa1 AV |
1251 | struct vm_area_struct *vma, |
1252 | unsigned long addr, unsigned long end, | |
1253 | struct zap_details *details) | |
1da177e4 LT |
1254 | { |
1255 | pgd_t *pgd; | |
1256 | unsigned long next; | |
1257 | ||
1da177e4 LT |
1258 | BUG_ON(addr >= end); |
1259 | tlb_start_vma(tlb, vma); | |
1260 | pgd = pgd_offset(vma->vm_mm, addr); | |
1261 | do { | |
1262 | next = pgd_addr_end(addr, end); | |
97a89413 | 1263 | if (pgd_none_or_clear_bad(pgd)) |
1da177e4 | 1264 | continue; |
c2febafc | 1265 | next = zap_p4d_range(tlb, vma, pgd, addr, next, details); |
97a89413 | 1266 | } while (pgd++, addr = next, addr != end); |
1da177e4 LT |
1267 | tlb_end_vma(tlb, vma); |
1268 | } | |
51c6f666 | 1269 | |
f5cc4eef AV |
1270 | |
1271 | static void unmap_single_vma(struct mmu_gather *tlb, | |
1272 | struct vm_area_struct *vma, unsigned long start_addr, | |
4f74d2c8 | 1273 | unsigned long end_addr, |
f5cc4eef AV |
1274 | struct zap_details *details) |
1275 | { | |
1276 | unsigned long start = max(vma->vm_start, start_addr); | |
1277 | unsigned long end; | |
1278 | ||
1279 | if (start >= vma->vm_end) | |
1280 | return; | |
1281 | end = min(vma->vm_end, end_addr); | |
1282 | if (end <= vma->vm_start) | |
1283 | return; | |
1284 | ||
cbc91f71 SD |
1285 | if (vma->vm_file) |
1286 | uprobe_munmap(vma, start, end); | |
1287 | ||
b3b9c293 | 1288 | if (unlikely(vma->vm_flags & VM_PFNMAP)) |
5180da41 | 1289 | untrack_pfn(vma, 0, 0); |
f5cc4eef AV |
1290 | |
1291 | if (start != end) { | |
1292 | if (unlikely(is_vm_hugetlb_page(vma))) { | |
1293 | /* | |
1294 | * It is undesirable to test vma->vm_file as it | |
1295 | * should be non-null for valid hugetlb area. | |
1296 | * However, vm_file will be NULL in the error | |
7aa6b4ad | 1297 | * cleanup path of mmap_region. When |
f5cc4eef | 1298 | * hugetlbfs ->mmap method fails, |
7aa6b4ad | 1299 | * mmap_region() nullifies vma->vm_file |
f5cc4eef AV |
1300 | * before calling this function to clean up. |
1301 | * Since no pte has actually been setup, it is | |
1302 | * safe to do nothing in this case. | |
1303 | */ | |
24669e58 | 1304 | if (vma->vm_file) { |
83cde9e8 | 1305 | i_mmap_lock_write(vma->vm_file->f_mapping); |
d833352a | 1306 | __unmap_hugepage_range_final(tlb, vma, start, end, NULL); |
83cde9e8 | 1307 | i_mmap_unlock_write(vma->vm_file->f_mapping); |
24669e58 | 1308 | } |
f5cc4eef AV |
1309 | } else |
1310 | unmap_page_range(tlb, vma, start, end, details); | |
1311 | } | |
1da177e4 LT |
1312 | } |
1313 | ||
1da177e4 LT |
1314 | /** |
1315 | * unmap_vmas - unmap a range of memory covered by a list of vma's | |
0164f69d | 1316 | * @tlb: address of the caller's struct mmu_gather |
1da177e4 LT |
1317 | * @vma: the starting vma |
1318 | * @start_addr: virtual address at which to start unmapping | |
1319 | * @end_addr: virtual address at which to end unmapping | |
1da177e4 | 1320 | * |
508034a3 | 1321 | * Unmap all pages in the vma list. |
1da177e4 | 1322 | * |
1da177e4 LT |
1323 | * Only addresses between `start' and `end' will be unmapped. |
1324 | * | |
1325 | * The VMA list must be sorted in ascending virtual address order. | |
1326 | * | |
1327 | * unmap_vmas() assumes that the caller will flush the whole unmapped address | |
1328 | * range after unmap_vmas() returns. So the only responsibility here is to | |
1329 | * ensure that any thus-far unmapped pages are flushed before unmap_vmas() | |
1330 | * drops the lock and schedules. | |
1331 | */ | |
6e8bb019 | 1332 | void unmap_vmas(struct mmu_gather *tlb, |
1da177e4 | 1333 | struct vm_area_struct *vma, unsigned long start_addr, |
4f74d2c8 | 1334 | unsigned long end_addr) |
1da177e4 | 1335 | { |
ac46d4f3 | 1336 | struct mmu_notifier_range range; |
1da177e4 | 1337 | |
6f4f13e8 JG |
1338 | mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm, |
1339 | start_addr, end_addr); | |
ac46d4f3 | 1340 | mmu_notifier_invalidate_range_start(&range); |
f5cc4eef | 1341 | for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) |
4f74d2c8 | 1342 | unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); |
ac46d4f3 | 1343 | mmu_notifier_invalidate_range_end(&range); |
1da177e4 LT |
1344 | } |
1345 | ||
1346 | /** | |
1347 | * zap_page_range - remove user pages in a given range | |
1348 | * @vma: vm_area_struct holding the applicable pages | |
eb4546bb | 1349 | * @start: starting address of pages to zap |
1da177e4 | 1350 | * @size: number of bytes to zap |
f5cc4eef AV |
1351 | * |
1352 | * Caller must protect the VMA list | |
1da177e4 | 1353 | */ |
7e027b14 | 1354 | void zap_page_range(struct vm_area_struct *vma, unsigned long start, |
ecf1385d | 1355 | unsigned long size) |
1da177e4 | 1356 | { |
ac46d4f3 | 1357 | struct mmu_notifier_range range; |
d16dfc55 | 1358 | struct mmu_gather tlb; |
1da177e4 | 1359 | |
1da177e4 | 1360 | lru_add_drain(); |
7269f999 | 1361 | mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, |
6f4f13e8 | 1362 | start, start + size); |
ac46d4f3 JG |
1363 | tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end); |
1364 | update_hiwater_rss(vma->vm_mm); | |
1365 | mmu_notifier_invalidate_range_start(&range); | |
1366 | for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next) | |
1367 | unmap_single_vma(&tlb, vma, start, range.end, NULL); | |
1368 | mmu_notifier_invalidate_range_end(&range); | |
1369 | tlb_finish_mmu(&tlb, start, range.end); | |
1da177e4 LT |
1370 | } |
1371 | ||
f5cc4eef AV |
1372 | /** |
1373 | * zap_page_range_single - remove user pages in a given range | |
1374 | * @vma: vm_area_struct holding the applicable pages | |
1375 | * @address: starting address of pages to zap | |
1376 | * @size: number of bytes to zap | |
8a5f14a2 | 1377 | * @details: details of shared cache invalidation |
f5cc4eef AV |
1378 | * |
1379 | * The range must fit into one VMA. | |
1da177e4 | 1380 | */ |
f5cc4eef | 1381 | static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, |
1da177e4 LT |
1382 | unsigned long size, struct zap_details *details) |
1383 | { | |
ac46d4f3 | 1384 | struct mmu_notifier_range range; |
d16dfc55 | 1385 | struct mmu_gather tlb; |
1da177e4 | 1386 | |
1da177e4 | 1387 | lru_add_drain(); |
7269f999 | 1388 | mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, |
6f4f13e8 | 1389 | address, address + size); |
ac46d4f3 JG |
1390 | tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end); |
1391 | update_hiwater_rss(vma->vm_mm); | |
1392 | mmu_notifier_invalidate_range_start(&range); | |
1393 | unmap_single_vma(&tlb, vma, address, range.end, details); | |
1394 | mmu_notifier_invalidate_range_end(&range); | |
1395 | tlb_finish_mmu(&tlb, address, range.end); | |
1da177e4 LT |
1396 | } |
1397 | ||
c627f9cc JS |
1398 | /** |
1399 | * zap_vma_ptes - remove ptes mapping the vma | |
1400 | * @vma: vm_area_struct holding ptes to be zapped | |
1401 | * @address: starting address of pages to zap | |
1402 | * @size: number of bytes to zap | |
1403 | * | |
1404 | * This function only unmaps ptes assigned to VM_PFNMAP vmas. | |
1405 | * | |
1406 | * The entire address range must be fully contained within the vma. | |
1407 | * | |
c627f9cc | 1408 | */ |
27d036e3 | 1409 | void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, |
c627f9cc JS |
1410 | unsigned long size) |
1411 | { | |
1412 | if (address < vma->vm_start || address + size > vma->vm_end || | |
1413 | !(vma->vm_flags & VM_PFNMAP)) | |
27d036e3 LR |
1414 | return; |
1415 | ||
f5cc4eef | 1416 | zap_page_range_single(vma, address, size, NULL); |
c627f9cc JS |
1417 | } |
1418 | EXPORT_SYMBOL_GPL(zap_vma_ptes); | |
1419 | ||
8cd3984d | 1420 | static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) |
c9cfcddf | 1421 | { |
c2febafc KS |
1422 | pgd_t *pgd; |
1423 | p4d_t *p4d; | |
1424 | pud_t *pud; | |
1425 | pmd_t *pmd; | |
1426 | ||
1427 | pgd = pgd_offset(mm, addr); | |
1428 | p4d = p4d_alloc(mm, pgd, addr); | |
1429 | if (!p4d) | |
1430 | return NULL; | |
1431 | pud = pud_alloc(mm, p4d, addr); | |
1432 | if (!pud) | |
1433 | return NULL; | |
1434 | pmd = pmd_alloc(mm, pud, addr); | |
1435 | if (!pmd) | |
1436 | return NULL; | |
1437 | ||
1438 | VM_BUG_ON(pmd_trans_huge(*pmd)); | |
8cd3984d AR |
1439 | return pmd; |
1440 | } | |
1441 | ||
1442 | pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, | |
1443 | spinlock_t **ptl) | |
1444 | { | |
1445 | pmd_t *pmd = walk_to_pmd(mm, addr); | |
1446 | ||
1447 | if (!pmd) | |
1448 | return NULL; | |
c2febafc | 1449 | return pte_alloc_map_lock(mm, pmd, addr, ptl); |
c9cfcddf LT |
1450 | } |
1451 | ||
8efd6f5b AR |
1452 | static int validate_page_before_insert(struct page *page) |
1453 | { | |
1454 | if (PageAnon(page) || PageSlab(page) || page_has_type(page)) | |
1455 | return -EINVAL; | |
1456 | flush_dcache_page(page); | |
1457 | return 0; | |
1458 | } | |
1459 | ||
1460 | static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte, | |
1461 | unsigned long addr, struct page *page, pgprot_t prot) | |
1462 | { | |
1463 | if (!pte_none(*pte)) | |
1464 | return -EBUSY; | |
1465 | /* Ok, finally just insert the thing.. */ | |
1466 | get_page(page); | |
1467 | inc_mm_counter_fast(mm, mm_counter_file(page)); | |
1468 | page_add_file_rmap(page, false); | |
1469 | set_pte_at(mm, addr, pte, mk_pte(page, prot)); | |
1470 | return 0; | |
1471 | } | |
1472 | ||
238f58d8 LT |
1473 | /* |
1474 | * This is the old fallback for page remapping. | |
1475 | * | |
1476 | * For historical reasons, it only allows reserved pages. Only | |
1477 | * old drivers should use this, and they needed to mark their | |
1478 | * pages reserved for the old functions anyway. | |
1479 | */ | |
423bad60 NP |
1480 | static int insert_page(struct vm_area_struct *vma, unsigned long addr, |
1481 | struct page *page, pgprot_t prot) | |
238f58d8 | 1482 | { |
423bad60 | 1483 | struct mm_struct *mm = vma->vm_mm; |
238f58d8 | 1484 | int retval; |
c9cfcddf | 1485 | pte_t *pte; |
8a9f3ccd BS |
1486 | spinlock_t *ptl; |
1487 | ||
8efd6f5b AR |
1488 | retval = validate_page_before_insert(page); |
1489 | if (retval) | |
5b4e655e | 1490 | goto out; |
238f58d8 | 1491 | retval = -ENOMEM; |
c9cfcddf | 1492 | pte = get_locked_pte(mm, addr, &ptl); |
238f58d8 | 1493 | if (!pte) |
5b4e655e | 1494 | goto out; |
8efd6f5b | 1495 | retval = insert_page_into_pte_locked(mm, pte, addr, page, prot); |
238f58d8 LT |
1496 | pte_unmap_unlock(pte, ptl); |
1497 | out: | |
1498 | return retval; | |
1499 | } | |
1500 | ||
8cd3984d AR |
1501 | #ifdef pte_index |
1502 | static int insert_page_in_batch_locked(struct mm_struct *mm, pmd_t *pmd, | |
1503 | unsigned long addr, struct page *page, pgprot_t prot) | |
1504 | { | |
1505 | int err; | |
1506 | ||
1507 | if (!page_count(page)) | |
1508 | return -EINVAL; | |
1509 | err = validate_page_before_insert(page); | |
1510 | return err ? err : insert_page_into_pte_locked( | |
1511 | mm, pte_offset_map(pmd, addr), addr, page, prot); | |
1512 | } | |
1513 | ||
1514 | /* insert_pages() amortizes the cost of spinlock operations | |
1515 | * when inserting pages in a loop. Arch *must* define pte_index. | |
1516 | */ | |
1517 | static int insert_pages(struct vm_area_struct *vma, unsigned long addr, | |
1518 | struct page **pages, unsigned long *num, pgprot_t prot) | |
1519 | { | |
1520 | pmd_t *pmd = NULL; | |
1521 | spinlock_t *pte_lock = NULL; | |
1522 | struct mm_struct *const mm = vma->vm_mm; | |
1523 | unsigned long curr_page_idx = 0; | |
1524 | unsigned long remaining_pages_total = *num; | |
1525 | unsigned long pages_to_write_in_pmd; | |
1526 | int ret; | |
1527 | more: | |
1528 | ret = -EFAULT; | |
1529 | pmd = walk_to_pmd(mm, addr); | |
1530 | if (!pmd) | |
1531 | goto out; | |
1532 | ||
1533 | pages_to_write_in_pmd = min_t(unsigned long, | |
1534 | remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); | |
1535 | ||
1536 | /* Allocate the PTE if necessary; takes PMD lock once only. */ | |
1537 | ret = -ENOMEM; | |
1538 | if (pte_alloc(mm, pmd)) | |
1539 | goto out; | |
1540 | pte_lock = pte_lockptr(mm, pmd); | |
1541 | ||
1542 | while (pages_to_write_in_pmd) { | |
1543 | int pte_idx = 0; | |
1544 | const int batch_size = min_t(int, pages_to_write_in_pmd, 8); | |
1545 | ||
1546 | spin_lock(pte_lock); | |
1547 | for (; pte_idx < batch_size; ++pte_idx) { | |
1548 | int err = insert_page_in_batch_locked(mm, pmd, | |
1549 | addr, pages[curr_page_idx], prot); | |
1550 | if (unlikely(err)) { | |
1551 | spin_unlock(pte_lock); | |
1552 | ret = err; | |
1553 | remaining_pages_total -= pte_idx; | |
1554 | goto out; | |
1555 | } | |
1556 | addr += PAGE_SIZE; | |
1557 | ++curr_page_idx; | |
1558 | } | |
1559 | spin_unlock(pte_lock); | |
1560 | pages_to_write_in_pmd -= batch_size; | |
1561 | remaining_pages_total -= batch_size; | |
1562 | } | |
1563 | if (remaining_pages_total) | |
1564 | goto more; | |
1565 | ret = 0; | |
1566 | out: | |
1567 | *num = remaining_pages_total; | |
1568 | return ret; | |
1569 | } | |
1570 | #endif /* ifdef pte_index */ | |
1571 | ||
1572 | /** | |
1573 | * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. | |
1574 | * @vma: user vma to map to | |
1575 | * @addr: target start user address of these pages | |
1576 | * @pages: source kernel pages | |
1577 | * @num: in: number of pages to map. out: number of pages that were *not* | |
1578 | * mapped. (0 means all pages were successfully mapped). | |
1579 | * | |
1580 | * Preferred over vm_insert_page() when inserting multiple pages. | |
1581 | * | |
1582 | * In case of error, we may have mapped a subset of the provided | |
1583 | * pages. It is the caller's responsibility to account for this case. | |
1584 | * | |
1585 | * The same restrictions apply as in vm_insert_page(). | |
1586 | */ | |
1587 | int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, | |
1588 | struct page **pages, unsigned long *num) | |
1589 | { | |
1590 | #ifdef pte_index | |
1591 | const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; | |
1592 | ||
1593 | if (addr < vma->vm_start || end_addr >= vma->vm_end) | |
1594 | return -EFAULT; | |
1595 | if (!(vma->vm_flags & VM_MIXEDMAP)) { | |
1596 | BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem)); | |
1597 | BUG_ON(vma->vm_flags & VM_PFNMAP); | |
1598 | vma->vm_flags |= VM_MIXEDMAP; | |
1599 | } | |
1600 | /* Defer page refcount checking till we're about to map that page. */ | |
1601 | return insert_pages(vma, addr, pages, num, vma->vm_page_prot); | |
1602 | #else | |
1603 | unsigned long idx = 0, pgcount = *num; | |
1604 | int err; | |
1605 | ||
1606 | for (; idx < pgcount; ++idx) { | |
1607 | err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]); | |
1608 | if (err) | |
1609 | break; | |
1610 | } | |
1611 | *num = pgcount - idx; | |
1612 | return err; | |
1613 | #endif /* ifdef pte_index */ | |
1614 | } | |
1615 | EXPORT_SYMBOL(vm_insert_pages); | |
1616 | ||
bfa5bf6d REB |
1617 | /** |
1618 | * vm_insert_page - insert single page into user vma | |
1619 | * @vma: user vma to map to | |
1620 | * @addr: target user address of this page | |
1621 | * @page: source kernel page | |
1622 | * | |
a145dd41 LT |
1623 | * This allows drivers to insert individual pages they've allocated |
1624 | * into a user vma. | |
1625 | * | |
1626 | * The page has to be a nice clean _individual_ kernel allocation. | |
1627 | * If you allocate a compound page, you need to have marked it as | |
1628 | * such (__GFP_COMP), or manually just split the page up yourself | |
8dfcc9ba | 1629 | * (see split_page()). |
a145dd41 LT |
1630 | * |
1631 | * NOTE! Traditionally this was done with "remap_pfn_range()" which | |
1632 | * took an arbitrary page protection parameter. This doesn't allow | |
1633 | * that. Your vma protection will have to be set up correctly, which | |
1634 | * means that if you want a shared writable mapping, you'd better | |
1635 | * ask for a shared writable mapping! | |
1636 | * | |
1637 | * The page does not need to be reserved. | |
4b6e1e37 KK |
1638 | * |
1639 | * Usually this function is called from f_op->mmap() handler | |
1640 | * under mm->mmap_sem write-lock, so it can change vma->vm_flags. | |
1641 | * Caller must set VM_MIXEDMAP on vma if it wants to call this | |
1642 | * function from other places, for example from page-fault handler. | |
a862f68a MR |
1643 | * |
1644 | * Return: %0 on success, negative error code otherwise. | |
a145dd41 | 1645 | */ |
423bad60 NP |
1646 | int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, |
1647 | struct page *page) | |
a145dd41 LT |
1648 | { |
1649 | if (addr < vma->vm_start || addr >= vma->vm_end) | |
1650 | return -EFAULT; | |
1651 | if (!page_count(page)) | |
1652 | return -EINVAL; | |
4b6e1e37 KK |
1653 | if (!(vma->vm_flags & VM_MIXEDMAP)) { |
1654 | BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem)); | |
1655 | BUG_ON(vma->vm_flags & VM_PFNMAP); | |
1656 | vma->vm_flags |= VM_MIXEDMAP; | |
1657 | } | |
423bad60 | 1658 | return insert_page(vma, addr, page, vma->vm_page_prot); |
a145dd41 | 1659 | } |
e3c3374f | 1660 | EXPORT_SYMBOL(vm_insert_page); |
a145dd41 | 1661 | |
a667d745 SJ |
1662 | /* |
1663 | * __vm_map_pages - maps range of kernel pages into user vma | |
1664 | * @vma: user vma to map to | |
1665 | * @pages: pointer to array of source kernel pages | |
1666 | * @num: number of pages in page array | |
1667 | * @offset: user's requested vm_pgoff | |
1668 | * | |
1669 | * This allows drivers to map range of kernel pages into a user vma. | |
1670 | * | |
1671 | * Return: 0 on success and error code otherwise. | |
1672 | */ | |
1673 | static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, | |
1674 | unsigned long num, unsigned long offset) | |
1675 | { | |
1676 | unsigned long count = vma_pages(vma); | |
1677 | unsigned long uaddr = vma->vm_start; | |
1678 | int ret, i; | |
1679 | ||
1680 | /* Fail if the user requested offset is beyond the end of the object */ | |
96756fcb | 1681 | if (offset >= num) |
a667d745 SJ |
1682 | return -ENXIO; |
1683 | ||
1684 | /* Fail if the user requested size exceeds available object size */ | |
1685 | if (count > num - offset) | |
1686 | return -ENXIO; | |
1687 | ||
1688 | for (i = 0; i < count; i++) { | |
1689 | ret = vm_insert_page(vma, uaddr, pages[offset + i]); | |
1690 | if (ret < 0) | |
1691 | return ret; | |
1692 | uaddr += PAGE_SIZE; | |
1693 | } | |
1694 | ||
1695 | return 0; | |
1696 | } | |
1697 | ||
1698 | /** | |
1699 | * vm_map_pages - maps range of kernel pages starts with non zero offset | |
1700 | * @vma: user vma to map to | |
1701 | * @pages: pointer to array of source kernel pages | |
1702 | * @num: number of pages in page array | |
1703 | * | |
1704 | * Maps an object consisting of @num pages, catering for the user's | |
1705 | * requested vm_pgoff | |
1706 | * | |
1707 | * If we fail to insert any page into the vma, the function will return | |
1708 | * immediately leaving any previously inserted pages present. Callers | |
1709 | * from the mmap handler may immediately return the error as their caller | |
1710 | * will destroy the vma, removing any successfully inserted pages. Other | |
1711 | * callers should make their own arrangements for calling unmap_region(). | |
1712 | * | |
1713 | * Context: Process context. Called by mmap handlers. | |
1714 | * Return: 0 on success and error code otherwise. | |
1715 | */ | |
1716 | int vm_map_pages(struct vm_area_struct *vma, struct page **pages, | |
1717 | unsigned long num) | |
1718 | { | |
1719 | return __vm_map_pages(vma, pages, num, vma->vm_pgoff); | |
1720 | } | |
1721 | EXPORT_SYMBOL(vm_map_pages); | |
1722 | ||
1723 | /** | |
1724 | * vm_map_pages_zero - map range of kernel pages starts with zero offset | |
1725 | * @vma: user vma to map to | |
1726 | * @pages: pointer to array of source kernel pages | |
1727 | * @num: number of pages in page array | |
1728 | * | |
1729 | * Similar to vm_map_pages(), except that it explicitly sets the offset | |
1730 | * to 0. This function is intended for the drivers that did not consider | |
1731 | * vm_pgoff. | |
1732 | * | |
1733 | * Context: Process context. Called by mmap handlers. | |
1734 | * Return: 0 on success and error code otherwise. | |
1735 | */ | |
1736 | int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, | |
1737 | unsigned long num) | |
1738 | { | |
1739 | return __vm_map_pages(vma, pages, num, 0); | |
1740 | } | |
1741 | EXPORT_SYMBOL(vm_map_pages_zero); | |
1742 | ||
9b5a8e00 | 1743 | static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, |
b2770da6 | 1744 | pfn_t pfn, pgprot_t prot, bool mkwrite) |
423bad60 NP |
1745 | { |
1746 | struct mm_struct *mm = vma->vm_mm; | |
423bad60 NP |
1747 | pte_t *pte, entry; |
1748 | spinlock_t *ptl; | |
1749 | ||
423bad60 NP |
1750 | pte = get_locked_pte(mm, addr, &ptl); |
1751 | if (!pte) | |
9b5a8e00 | 1752 | return VM_FAULT_OOM; |
b2770da6 RZ |
1753 | if (!pte_none(*pte)) { |
1754 | if (mkwrite) { | |
1755 | /* | |
1756 | * For read faults on private mappings the PFN passed | |
1757 | * in may not match the PFN we have mapped if the | |
1758 | * mapped PFN is a writeable COW page. In the mkwrite | |
1759 | * case we are creating a writable PTE for a shared | |
f2c57d91 JK |
1760 | * mapping and we expect the PFNs to match. If they |
1761 | * don't match, we are likely racing with block | |
1762 | * allocation and mapping invalidation so just skip the | |
1763 | * update. | |
b2770da6 | 1764 | */ |
f2c57d91 JK |
1765 | if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) { |
1766 | WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte))); | |
b2770da6 | 1767 | goto out_unlock; |
f2c57d91 | 1768 | } |
cae85cb8 JK |
1769 | entry = pte_mkyoung(*pte); |
1770 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | |
1771 | if (ptep_set_access_flags(vma, addr, pte, entry, 1)) | |
1772 | update_mmu_cache(vma, addr, pte); | |
1773 | } | |
1774 | goto out_unlock; | |
b2770da6 | 1775 | } |
423bad60 NP |
1776 | |
1777 | /* Ok, finally just insert the thing.. */ | |
01c8f1c4 DW |
1778 | if (pfn_t_devmap(pfn)) |
1779 | entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); | |
1780 | else | |
1781 | entry = pte_mkspecial(pfn_t_pte(pfn, prot)); | |
b2770da6 | 1782 | |
b2770da6 RZ |
1783 | if (mkwrite) { |
1784 | entry = pte_mkyoung(entry); | |
1785 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | |
1786 | } | |
1787 | ||
423bad60 | 1788 | set_pte_at(mm, addr, pte, entry); |
4b3073e1 | 1789 | update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ |
423bad60 | 1790 | |
423bad60 NP |
1791 | out_unlock: |
1792 | pte_unmap_unlock(pte, ptl); | |
9b5a8e00 | 1793 | return VM_FAULT_NOPAGE; |
423bad60 NP |
1794 | } |
1795 | ||
f5e6d1d5 MW |
1796 | /** |
1797 | * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot | |
1798 | * @vma: user vma to map to | |
1799 | * @addr: target user address of this page | |
1800 | * @pfn: source kernel pfn | |
1801 | * @pgprot: pgprot flags for the inserted page | |
1802 | * | |
1803 | * This is exactly like vmf_insert_pfn(), except that it allows drivers to | |
1804 | * to override pgprot on a per-page basis. | |
1805 | * | |
1806 | * This only makes sense for IO mappings, and it makes no sense for | |
1807 | * COW mappings. In general, using multiple vmas is preferable; | |
ae2b01f3 | 1808 | * vmf_insert_pfn_prot should only be used if using multiple VMAs is |
f5e6d1d5 MW |
1809 | * impractical. |
1810 | * | |
574c5b3d TH |
1811 | * See vmf_insert_mixed_prot() for a discussion of the implication of using |
1812 | * a value of @pgprot different from that of @vma->vm_page_prot. | |
1813 | * | |
ae2b01f3 | 1814 | * Context: Process context. May allocate using %GFP_KERNEL. |
f5e6d1d5 MW |
1815 | * Return: vm_fault_t value. |
1816 | */ | |
1817 | vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, | |
1818 | unsigned long pfn, pgprot_t pgprot) | |
1819 | { | |
6d958546 MW |
1820 | /* |
1821 | * Technically, architectures with pte_special can avoid all these | |
1822 | * restrictions (same for remap_pfn_range). However we would like | |
1823 | * consistency in testing and feature parity among all, so we should | |
1824 | * try to keep these invariants in place for everybody. | |
1825 | */ | |
1826 | BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); | |
1827 | BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == | |
1828 | (VM_PFNMAP|VM_MIXEDMAP)); | |
1829 | BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); | |
1830 | BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); | |
1831 | ||
1832 | if (addr < vma->vm_start || addr >= vma->vm_end) | |
1833 | return VM_FAULT_SIGBUS; | |
1834 | ||
1835 | if (!pfn_modify_allowed(pfn, pgprot)) | |
1836 | return VM_FAULT_SIGBUS; | |
1837 | ||
1838 | track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); | |
1839 | ||
9b5a8e00 | 1840 | return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, |
6d958546 | 1841 | false); |
f5e6d1d5 MW |
1842 | } |
1843 | EXPORT_SYMBOL(vmf_insert_pfn_prot); | |
e0dc0d8f | 1844 | |
ae2b01f3 MW |
1845 | /** |
1846 | * vmf_insert_pfn - insert single pfn into user vma | |
1847 | * @vma: user vma to map to | |
1848 | * @addr: target user address of this page | |
1849 | * @pfn: source kernel pfn | |
1850 | * | |
1851 | * Similar to vm_insert_page, this allows drivers to insert individual pages | |
1852 | * they've allocated into a user vma. Same comments apply. | |
1853 | * | |
1854 | * This function should only be called from a vm_ops->fault handler, and | |
1855 | * in that case the handler should return the result of this function. | |
1856 | * | |
1857 | * vma cannot be a COW mapping. | |
1858 | * | |
1859 | * As this is called only for pages that do not currently exist, we | |
1860 | * do not need to flush old virtual caches or the TLB. | |
1861 | * | |
1862 | * Context: Process context. May allocate using %GFP_KERNEL. | |
1863 | * Return: vm_fault_t value. | |
1864 | */ | |
1865 | vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, | |
1866 | unsigned long pfn) | |
1867 | { | |
1868 | return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); | |
1869 | } | |
1870 | EXPORT_SYMBOL(vmf_insert_pfn); | |
1871 | ||
785a3fab DW |
1872 | static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn) |
1873 | { | |
1874 | /* these checks mirror the abort conditions in vm_normal_page */ | |
1875 | if (vma->vm_flags & VM_MIXEDMAP) | |
1876 | return true; | |
1877 | if (pfn_t_devmap(pfn)) | |
1878 | return true; | |
1879 | if (pfn_t_special(pfn)) | |
1880 | return true; | |
1881 | if (is_zero_pfn(pfn_t_to_pfn(pfn))) | |
1882 | return true; | |
1883 | return false; | |
1884 | } | |
1885 | ||
79f3aa5b | 1886 | static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, |
574c5b3d TH |
1887 | unsigned long addr, pfn_t pfn, pgprot_t pgprot, |
1888 | bool mkwrite) | |
423bad60 | 1889 | { |
79f3aa5b | 1890 | int err; |
87744ab3 | 1891 | |
785a3fab | 1892 | BUG_ON(!vm_mixed_ok(vma, pfn)); |
e0dc0d8f | 1893 | |
423bad60 | 1894 | if (addr < vma->vm_start || addr >= vma->vm_end) |
79f3aa5b | 1895 | return VM_FAULT_SIGBUS; |
308a047c BP |
1896 | |
1897 | track_pfn_insert(vma, &pgprot, pfn); | |
e0dc0d8f | 1898 | |
42e4089c | 1899 | if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) |
79f3aa5b | 1900 | return VM_FAULT_SIGBUS; |
42e4089c | 1901 | |
423bad60 NP |
1902 | /* |
1903 | * If we don't have pte special, then we have to use the pfn_valid() | |
1904 | * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* | |
1905 | * refcount the page if pfn_valid is true (hence insert_page rather | |
62eede62 HD |
1906 | * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP |
1907 | * without pte special, it would there be refcounted as a normal page. | |
423bad60 | 1908 | */ |
00b3a331 LD |
1909 | if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && |
1910 | !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { | |
423bad60 NP |
1911 | struct page *page; |
1912 | ||
03fc2da6 DW |
1913 | /* |
1914 | * At this point we are committed to insert_page() | |
1915 | * regardless of whether the caller specified flags that | |
1916 | * result in pfn_t_has_page() == false. | |
1917 | */ | |
1918 | page = pfn_to_page(pfn_t_to_pfn(pfn)); | |
79f3aa5b MW |
1919 | err = insert_page(vma, addr, page, pgprot); |
1920 | } else { | |
9b5a8e00 | 1921 | return insert_pfn(vma, addr, pfn, pgprot, mkwrite); |
423bad60 | 1922 | } |
b2770da6 | 1923 | |
5d747637 MW |
1924 | if (err == -ENOMEM) |
1925 | return VM_FAULT_OOM; | |
1926 | if (err < 0 && err != -EBUSY) | |
1927 | return VM_FAULT_SIGBUS; | |
1928 | ||
1929 | return VM_FAULT_NOPAGE; | |
e0dc0d8f | 1930 | } |
79f3aa5b | 1931 | |
574c5b3d TH |
1932 | /** |
1933 | * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot | |
1934 | * @vma: user vma to map to | |
1935 | * @addr: target user address of this page | |
1936 | * @pfn: source kernel pfn | |
1937 | * @pgprot: pgprot flags for the inserted page | |
1938 | * | |
1939 | * This is exactly like vmf_insert_mixed(), except that it allows drivers to | |
1940 | * to override pgprot on a per-page basis. | |
1941 | * | |
1942 | * Typically this function should be used by drivers to set caching- and | |
1943 | * encryption bits different than those of @vma->vm_page_prot, because | |
1944 | * the caching- or encryption mode may not be known at mmap() time. | |
1945 | * This is ok as long as @vma->vm_page_prot is not used by the core vm | |
1946 | * to set caching and encryption bits for those vmas (except for COW pages). | |
1947 | * This is ensured by core vm only modifying these page table entries using | |
1948 | * functions that don't touch caching- or encryption bits, using pte_modify() | |
1949 | * if needed. (See for example mprotect()). | |
1950 | * Also when new page-table entries are created, this is only done using the | |
1951 | * fault() callback, and never using the value of vma->vm_page_prot, | |
1952 | * except for page-table entries that point to anonymous pages as the result | |
1953 | * of COW. | |
1954 | * | |
1955 | * Context: Process context. May allocate using %GFP_KERNEL. | |
1956 | * Return: vm_fault_t value. | |
1957 | */ | |
1958 | vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, | |
1959 | pfn_t pfn, pgprot_t pgprot) | |
1960 | { | |
1961 | return __vm_insert_mixed(vma, addr, pfn, pgprot, false); | |
1962 | } | |
5379e4dd | 1963 | EXPORT_SYMBOL(vmf_insert_mixed_prot); |
574c5b3d | 1964 | |
79f3aa5b MW |
1965 | vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, |
1966 | pfn_t pfn) | |
1967 | { | |
574c5b3d | 1968 | return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false); |
79f3aa5b | 1969 | } |
5d747637 | 1970 | EXPORT_SYMBOL(vmf_insert_mixed); |
e0dc0d8f | 1971 | |
ab77dab4 SJ |
1972 | /* |
1973 | * If the insertion of PTE failed because someone else already added a | |
1974 | * different entry in the mean time, we treat that as success as we assume | |
1975 | * the same entry was actually inserted. | |
1976 | */ | |
ab77dab4 SJ |
1977 | vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, |
1978 | unsigned long addr, pfn_t pfn) | |
b2770da6 | 1979 | { |
574c5b3d | 1980 | return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true); |
b2770da6 | 1981 | } |
ab77dab4 | 1982 | EXPORT_SYMBOL(vmf_insert_mixed_mkwrite); |
b2770da6 | 1983 | |
1da177e4 LT |
1984 | /* |
1985 | * maps a range of physical memory into the requested pages. the old | |
1986 | * mappings are removed. any references to nonexistent pages results | |
1987 | * in null mappings (currently treated as "copy-on-access") | |
1988 | */ | |
1989 | static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, | |
1990 | unsigned long addr, unsigned long end, | |
1991 | unsigned long pfn, pgprot_t prot) | |
1992 | { | |
1993 | pte_t *pte; | |
c74df32c | 1994 | spinlock_t *ptl; |
42e4089c | 1995 | int err = 0; |
1da177e4 | 1996 | |
c74df32c | 1997 | pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); |
1da177e4 LT |
1998 | if (!pte) |
1999 | return -ENOMEM; | |
6606c3e0 | 2000 | arch_enter_lazy_mmu_mode(); |
1da177e4 LT |
2001 | do { |
2002 | BUG_ON(!pte_none(*pte)); | |
42e4089c AK |
2003 | if (!pfn_modify_allowed(pfn, prot)) { |
2004 | err = -EACCES; | |
2005 | break; | |
2006 | } | |
7e675137 | 2007 | set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); |
1da177e4 LT |
2008 | pfn++; |
2009 | } while (pte++, addr += PAGE_SIZE, addr != end); | |
6606c3e0 | 2010 | arch_leave_lazy_mmu_mode(); |
c74df32c | 2011 | pte_unmap_unlock(pte - 1, ptl); |
42e4089c | 2012 | return err; |
1da177e4 LT |
2013 | } |
2014 | ||
2015 | static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, | |
2016 | unsigned long addr, unsigned long end, | |
2017 | unsigned long pfn, pgprot_t prot) | |
2018 | { | |
2019 | pmd_t *pmd; | |
2020 | unsigned long next; | |
42e4089c | 2021 | int err; |
1da177e4 LT |
2022 | |
2023 | pfn -= addr >> PAGE_SHIFT; | |
2024 | pmd = pmd_alloc(mm, pud, addr); | |
2025 | if (!pmd) | |
2026 | return -ENOMEM; | |
f66055ab | 2027 | VM_BUG_ON(pmd_trans_huge(*pmd)); |
1da177e4 LT |
2028 | do { |
2029 | next = pmd_addr_end(addr, end); | |
42e4089c AK |
2030 | err = remap_pte_range(mm, pmd, addr, next, |
2031 | pfn + (addr >> PAGE_SHIFT), prot); | |
2032 | if (err) | |
2033 | return err; | |
1da177e4 LT |
2034 | } while (pmd++, addr = next, addr != end); |
2035 | return 0; | |
2036 | } | |
2037 | ||
c2febafc | 2038 | static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, |
1da177e4 LT |
2039 | unsigned long addr, unsigned long end, |
2040 | unsigned long pfn, pgprot_t prot) | |
2041 | { | |
2042 | pud_t *pud; | |
2043 | unsigned long next; | |
42e4089c | 2044 | int err; |
1da177e4 LT |
2045 | |
2046 | pfn -= addr >> PAGE_SHIFT; | |
c2febafc | 2047 | pud = pud_alloc(mm, p4d, addr); |
1da177e4 LT |
2048 | if (!pud) |
2049 | return -ENOMEM; | |
2050 | do { | |
2051 | next = pud_addr_end(addr, end); | |
42e4089c AK |
2052 | err = remap_pmd_range(mm, pud, addr, next, |
2053 | pfn + (addr >> PAGE_SHIFT), prot); | |
2054 | if (err) | |
2055 | return err; | |
1da177e4 LT |
2056 | } while (pud++, addr = next, addr != end); |
2057 | return 0; | |
2058 | } | |
2059 | ||
c2febafc KS |
2060 | static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, |
2061 | unsigned long addr, unsigned long end, | |
2062 | unsigned long pfn, pgprot_t prot) | |
2063 | { | |
2064 | p4d_t *p4d; | |
2065 | unsigned long next; | |
42e4089c | 2066 | int err; |
c2febafc KS |
2067 | |
2068 | pfn -= addr >> PAGE_SHIFT; | |
2069 | p4d = p4d_alloc(mm, pgd, addr); | |
2070 | if (!p4d) | |
2071 | return -ENOMEM; | |
2072 | do { | |
2073 | next = p4d_addr_end(addr, end); | |
42e4089c AK |
2074 | err = remap_pud_range(mm, p4d, addr, next, |
2075 | pfn + (addr >> PAGE_SHIFT), prot); | |
2076 | if (err) | |
2077 | return err; | |
c2febafc KS |
2078 | } while (p4d++, addr = next, addr != end); |
2079 | return 0; | |
2080 | } | |
2081 | ||
bfa5bf6d REB |
2082 | /** |
2083 | * remap_pfn_range - remap kernel memory to userspace | |
2084 | * @vma: user vma to map to | |
2085 | * @addr: target user address to start at | |
86a76331 | 2086 | * @pfn: page frame number of kernel physical memory address |
552657b7 | 2087 | * @size: size of mapping area |
bfa5bf6d REB |
2088 | * @prot: page protection flags for this mapping |
2089 | * | |
a862f68a MR |
2090 | * Note: this is only safe if the mm semaphore is held when called. |
2091 | * | |
2092 | * Return: %0 on success, negative error code otherwise. | |
bfa5bf6d | 2093 | */ |
1da177e4 LT |
2094 | int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, |
2095 | unsigned long pfn, unsigned long size, pgprot_t prot) | |
2096 | { | |
2097 | pgd_t *pgd; | |
2098 | unsigned long next; | |
2d15cab8 | 2099 | unsigned long end = addr + PAGE_ALIGN(size); |
1da177e4 | 2100 | struct mm_struct *mm = vma->vm_mm; |
d5957d2f | 2101 | unsigned long remap_pfn = pfn; |
1da177e4 LT |
2102 | int err; |
2103 | ||
2104 | /* | |
2105 | * Physically remapped pages are special. Tell the | |
2106 | * rest of the world about it: | |
2107 | * VM_IO tells people not to look at these pages | |
2108 | * (accesses can have side effects). | |
6aab341e LT |
2109 | * VM_PFNMAP tells the core MM that the base pages are just |
2110 | * raw PFN mappings, and do not have a "struct page" associated | |
2111 | * with them. | |
314e51b9 KK |
2112 | * VM_DONTEXPAND |
2113 | * Disable vma merging and expanding with mremap(). | |
2114 | * VM_DONTDUMP | |
2115 | * Omit vma from core dump, even when VM_IO turned off. | |
fb155c16 LT |
2116 | * |
2117 | * There's a horrible special case to handle copy-on-write | |
2118 | * behaviour that some programs depend on. We mark the "original" | |
2119 | * un-COW'ed pages by matching them up with "vma->vm_pgoff". | |
b3b9c293 | 2120 | * See vm_normal_page() for details. |
1da177e4 | 2121 | */ |
b3b9c293 KK |
2122 | if (is_cow_mapping(vma->vm_flags)) { |
2123 | if (addr != vma->vm_start || end != vma->vm_end) | |
2124 | return -EINVAL; | |
fb155c16 | 2125 | vma->vm_pgoff = pfn; |
b3b9c293 KK |
2126 | } |
2127 | ||
d5957d2f | 2128 | err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size)); |
b3b9c293 | 2129 | if (err) |
3c8bb73a | 2130 | return -EINVAL; |
fb155c16 | 2131 | |
314e51b9 | 2132 | vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; |
1da177e4 LT |
2133 | |
2134 | BUG_ON(addr >= end); | |
2135 | pfn -= addr >> PAGE_SHIFT; | |
2136 | pgd = pgd_offset(mm, addr); | |
2137 | flush_cache_range(vma, addr, end); | |
1da177e4 LT |
2138 | do { |
2139 | next = pgd_addr_end(addr, end); | |
c2febafc | 2140 | err = remap_p4d_range(mm, pgd, addr, next, |
1da177e4 LT |
2141 | pfn + (addr >> PAGE_SHIFT), prot); |
2142 | if (err) | |
2143 | break; | |
2144 | } while (pgd++, addr = next, addr != end); | |
2ab64037 | 2145 | |
2146 | if (err) | |
d5957d2f | 2147 | untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size)); |
2ab64037 | 2148 | |
1da177e4 LT |
2149 | return err; |
2150 | } | |
2151 | EXPORT_SYMBOL(remap_pfn_range); | |
2152 | ||
b4cbb197 LT |
2153 | /** |
2154 | * vm_iomap_memory - remap memory to userspace | |
2155 | * @vma: user vma to map to | |
abd69b9e | 2156 | * @start: start of the physical memory to be mapped |
b4cbb197 LT |
2157 | * @len: size of area |
2158 | * | |
2159 | * This is a simplified io_remap_pfn_range() for common driver use. The | |
2160 | * driver just needs to give us the physical memory range to be mapped, | |
2161 | * we'll figure out the rest from the vma information. | |
2162 | * | |
2163 | * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get | |
2164 | * whatever write-combining details or similar. | |
a862f68a MR |
2165 | * |
2166 | * Return: %0 on success, negative error code otherwise. | |
b4cbb197 LT |
2167 | */ |
2168 | int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) | |
2169 | { | |
2170 | unsigned long vm_len, pfn, pages; | |
2171 | ||
2172 | /* Check that the physical memory area passed in looks valid */ | |
2173 | if (start + len < start) | |
2174 | return -EINVAL; | |
2175 | /* | |
2176 | * You *really* shouldn't map things that aren't page-aligned, | |
2177 | * but we've historically allowed it because IO memory might | |
2178 | * just have smaller alignment. | |
2179 | */ | |
2180 | len += start & ~PAGE_MASK; | |
2181 | pfn = start >> PAGE_SHIFT; | |
2182 | pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; | |
2183 | if (pfn + pages < pfn) | |
2184 | return -EINVAL; | |
2185 | ||
2186 | /* We start the mapping 'vm_pgoff' pages into the area */ | |
2187 | if (vma->vm_pgoff > pages) | |
2188 | return -EINVAL; | |
2189 | pfn += vma->vm_pgoff; | |
2190 | pages -= vma->vm_pgoff; | |
2191 | ||
2192 | /* Can we fit all of the mapping? */ | |
2193 | vm_len = vma->vm_end - vma->vm_start; | |
2194 | if (vm_len >> PAGE_SHIFT > pages) | |
2195 | return -EINVAL; | |
2196 | ||
2197 | /* Ok, let it rip */ | |
2198 | return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); | |
2199 | } | |
2200 | EXPORT_SYMBOL(vm_iomap_memory); | |
2201 | ||
aee16b3c JF |
2202 | static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, |
2203 | unsigned long addr, unsigned long end, | |
be1db475 | 2204 | pte_fn_t fn, void *data, bool create) |
aee16b3c JF |
2205 | { |
2206 | pte_t *pte; | |
be1db475 | 2207 | int err = 0; |
94909914 | 2208 | spinlock_t *uninitialized_var(ptl); |
aee16b3c | 2209 | |
be1db475 DA |
2210 | if (create) { |
2211 | pte = (mm == &init_mm) ? | |
2212 | pte_alloc_kernel(pmd, addr) : | |
2213 | pte_alloc_map_lock(mm, pmd, addr, &ptl); | |
2214 | if (!pte) | |
2215 | return -ENOMEM; | |
2216 | } else { | |
2217 | pte = (mm == &init_mm) ? | |
2218 | pte_offset_kernel(pmd, addr) : | |
2219 | pte_offset_map_lock(mm, pmd, addr, &ptl); | |
2220 | } | |
aee16b3c JF |
2221 | |
2222 | BUG_ON(pmd_huge(*pmd)); | |
2223 | ||
38e0edb1 JF |
2224 | arch_enter_lazy_mmu_mode(); |
2225 | ||
aee16b3c | 2226 | do { |
be1db475 DA |
2227 | if (create || !pte_none(*pte)) { |
2228 | err = fn(pte++, addr, data); | |
2229 | if (err) | |
2230 | break; | |
2231 | } | |
c36987e2 | 2232 | } while (addr += PAGE_SIZE, addr != end); |
aee16b3c | 2233 | |
38e0edb1 JF |
2234 | arch_leave_lazy_mmu_mode(); |
2235 | ||
aee16b3c JF |
2236 | if (mm != &init_mm) |
2237 | pte_unmap_unlock(pte-1, ptl); | |
2238 | return err; | |
2239 | } | |
2240 | ||
2241 | static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, | |
2242 | unsigned long addr, unsigned long end, | |
be1db475 | 2243 | pte_fn_t fn, void *data, bool create) |
aee16b3c JF |
2244 | { |
2245 | pmd_t *pmd; | |
2246 | unsigned long next; | |
be1db475 | 2247 | int err = 0; |
aee16b3c | 2248 | |
ceb86879 AK |
2249 | BUG_ON(pud_huge(*pud)); |
2250 | ||
be1db475 DA |
2251 | if (create) { |
2252 | pmd = pmd_alloc(mm, pud, addr); | |
2253 | if (!pmd) | |
2254 | return -ENOMEM; | |
2255 | } else { | |
2256 | pmd = pmd_offset(pud, addr); | |
2257 | } | |
aee16b3c JF |
2258 | do { |
2259 | next = pmd_addr_end(addr, end); | |
be1db475 DA |
2260 | if (create || !pmd_none_or_clear_bad(pmd)) { |
2261 | err = apply_to_pte_range(mm, pmd, addr, next, fn, data, | |
2262 | create); | |
2263 | if (err) | |
2264 | break; | |
2265 | } | |
aee16b3c JF |
2266 | } while (pmd++, addr = next, addr != end); |
2267 | return err; | |
2268 | } | |
2269 | ||
c2febafc | 2270 | static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, |
aee16b3c | 2271 | unsigned long addr, unsigned long end, |
be1db475 | 2272 | pte_fn_t fn, void *data, bool create) |
aee16b3c JF |
2273 | { |
2274 | pud_t *pud; | |
2275 | unsigned long next; | |
be1db475 | 2276 | int err = 0; |
aee16b3c | 2277 | |
be1db475 DA |
2278 | if (create) { |
2279 | pud = pud_alloc(mm, p4d, addr); | |
2280 | if (!pud) | |
2281 | return -ENOMEM; | |
2282 | } else { | |
2283 | pud = pud_offset(p4d, addr); | |
2284 | } | |
aee16b3c JF |
2285 | do { |
2286 | next = pud_addr_end(addr, end); | |
be1db475 DA |
2287 | if (create || !pud_none_or_clear_bad(pud)) { |
2288 | err = apply_to_pmd_range(mm, pud, addr, next, fn, data, | |
2289 | create); | |
2290 | if (err) | |
2291 | break; | |
2292 | } | |
aee16b3c JF |
2293 | } while (pud++, addr = next, addr != end); |
2294 | return err; | |
2295 | } | |
2296 | ||
c2febafc KS |
2297 | static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, |
2298 | unsigned long addr, unsigned long end, | |
be1db475 | 2299 | pte_fn_t fn, void *data, bool create) |
c2febafc KS |
2300 | { |
2301 | p4d_t *p4d; | |
2302 | unsigned long next; | |
be1db475 | 2303 | int err = 0; |
c2febafc | 2304 | |
be1db475 DA |
2305 | if (create) { |
2306 | p4d = p4d_alloc(mm, pgd, addr); | |
2307 | if (!p4d) | |
2308 | return -ENOMEM; | |
2309 | } else { | |
2310 | p4d = p4d_offset(pgd, addr); | |
2311 | } | |
c2febafc KS |
2312 | do { |
2313 | next = p4d_addr_end(addr, end); | |
be1db475 DA |
2314 | if (create || !p4d_none_or_clear_bad(p4d)) { |
2315 | err = apply_to_pud_range(mm, p4d, addr, next, fn, data, | |
2316 | create); | |
2317 | if (err) | |
2318 | break; | |
2319 | } | |
c2febafc KS |
2320 | } while (p4d++, addr = next, addr != end); |
2321 | return err; | |
2322 | } | |
2323 | ||
be1db475 DA |
2324 | static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, |
2325 | unsigned long size, pte_fn_t fn, | |
2326 | void *data, bool create) | |
aee16b3c JF |
2327 | { |
2328 | pgd_t *pgd; | |
2329 | unsigned long next; | |
57250a5b | 2330 | unsigned long end = addr + size; |
be1db475 | 2331 | int err = 0; |
aee16b3c | 2332 | |
9cb65bc3 MP |
2333 | if (WARN_ON(addr >= end)) |
2334 | return -EINVAL; | |
2335 | ||
aee16b3c JF |
2336 | pgd = pgd_offset(mm, addr); |
2337 | do { | |
2338 | next = pgd_addr_end(addr, end); | |
be1db475 DA |
2339 | if (!create && pgd_none_or_clear_bad(pgd)) |
2340 | continue; | |
2341 | err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create); | |
aee16b3c JF |
2342 | if (err) |
2343 | break; | |
2344 | } while (pgd++, addr = next, addr != end); | |
57250a5b | 2345 | |
aee16b3c JF |
2346 | return err; |
2347 | } | |
be1db475 DA |
2348 | |
2349 | /* | |
2350 | * Scan a region of virtual memory, filling in page tables as necessary | |
2351 | * and calling a provided function on each leaf page table. | |
2352 | */ | |
2353 | int apply_to_page_range(struct mm_struct *mm, unsigned long addr, | |
2354 | unsigned long size, pte_fn_t fn, void *data) | |
2355 | { | |
2356 | return __apply_to_page_range(mm, addr, size, fn, data, true); | |
2357 | } | |
aee16b3c JF |
2358 | EXPORT_SYMBOL_GPL(apply_to_page_range); |
2359 | ||
be1db475 DA |
2360 | /* |
2361 | * Scan a region of virtual memory, calling a provided function on | |
2362 | * each leaf page table where it exists. | |
2363 | * | |
2364 | * Unlike apply_to_page_range, this does _not_ fill in page tables | |
2365 | * where they are absent. | |
2366 | */ | |
2367 | int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, | |
2368 | unsigned long size, pte_fn_t fn, void *data) | |
2369 | { | |
2370 | return __apply_to_page_range(mm, addr, size, fn, data, false); | |
2371 | } | |
2372 | EXPORT_SYMBOL_GPL(apply_to_existing_page_range); | |
2373 | ||
8f4e2101 | 2374 | /* |
9b4bdd2f KS |
2375 | * handle_pte_fault chooses page fault handler according to an entry which was |
2376 | * read non-atomically. Before making any commitment, on those architectures | |
2377 | * or configurations (e.g. i386 with PAE) which might give a mix of unmatched | |
2378 | * parts, do_swap_page must check under lock before unmapping the pte and | |
2379 | * proceeding (but do_wp_page is only called after already making such a check; | |
a335b2e1 | 2380 | * and do_anonymous_page can safely check later on). |
8f4e2101 | 2381 | */ |
4c21e2f2 | 2382 | static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, |
8f4e2101 HD |
2383 | pte_t *page_table, pte_t orig_pte) |
2384 | { | |
2385 | int same = 1; | |
923717cb | 2386 | #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) |
8f4e2101 | 2387 | if (sizeof(pte_t) > sizeof(unsigned long)) { |
4c21e2f2 HD |
2388 | spinlock_t *ptl = pte_lockptr(mm, pmd); |
2389 | spin_lock(ptl); | |
8f4e2101 | 2390 | same = pte_same(*page_table, orig_pte); |
4c21e2f2 | 2391 | spin_unlock(ptl); |
8f4e2101 HD |
2392 | } |
2393 | #endif | |
2394 | pte_unmap(page_table); | |
2395 | return same; | |
2396 | } | |
2397 | ||
83d116c5 JH |
2398 | static inline bool cow_user_page(struct page *dst, struct page *src, |
2399 | struct vm_fault *vmf) | |
6aab341e | 2400 | { |
83d116c5 JH |
2401 | bool ret; |
2402 | void *kaddr; | |
2403 | void __user *uaddr; | |
c3e5ea6e | 2404 | bool locked = false; |
83d116c5 JH |
2405 | struct vm_area_struct *vma = vmf->vma; |
2406 | struct mm_struct *mm = vma->vm_mm; | |
2407 | unsigned long addr = vmf->address; | |
2408 | ||
0abdd7a8 DW |
2409 | debug_dma_assert_idle(src); |
2410 | ||
83d116c5 JH |
2411 | if (likely(src)) { |
2412 | copy_user_highpage(dst, src, addr, vma); | |
2413 | return true; | |
2414 | } | |
2415 | ||
6aab341e LT |
2416 | /* |
2417 | * If the source page was a PFN mapping, we don't have | |
2418 | * a "struct page" for it. We do a best-effort copy by | |
2419 | * just copying from the original user address. If that | |
2420 | * fails, we just zero-fill it. Live with it. | |
2421 | */ | |
83d116c5 JH |
2422 | kaddr = kmap_atomic(dst); |
2423 | uaddr = (void __user *)(addr & PAGE_MASK); | |
2424 | ||
2425 | /* | |
2426 | * On architectures with software "accessed" bits, we would | |
2427 | * take a double page fault, so mark it accessed here. | |
2428 | */ | |
c3e5ea6e | 2429 | if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) { |
83d116c5 | 2430 | pte_t entry; |
5d2a2dbb | 2431 | |
83d116c5 | 2432 | vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); |
c3e5ea6e | 2433 | locked = true; |
83d116c5 JH |
2434 | if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { |
2435 | /* | |
2436 | * Other thread has already handled the fault | |
2437 | * and we don't need to do anything. If it's | |
2438 | * not the case, the fault will be triggered | |
2439 | * again on the same address. | |
2440 | */ | |
2441 | ret = false; | |
2442 | goto pte_unlock; | |
2443 | } | |
2444 | ||
2445 | entry = pte_mkyoung(vmf->orig_pte); | |
2446 | if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) | |
2447 | update_mmu_cache(vma, addr, vmf->pte); | |
2448 | } | |
2449 | ||
2450 | /* | |
2451 | * This really shouldn't fail, because the page is there | |
2452 | * in the page tables. But it might just be unreadable, | |
2453 | * in which case we just give up and fill the result with | |
2454 | * zeroes. | |
2455 | */ | |
2456 | if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { | |
c3e5ea6e KS |
2457 | if (locked) |
2458 | goto warn; | |
2459 | ||
2460 | /* Re-validate under PTL if the page is still mapped */ | |
2461 | vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); | |
2462 | locked = true; | |
2463 | if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { | |
2464 | /* The PTE changed under us. Retry page fault. */ | |
2465 | ret = false; | |
2466 | goto pte_unlock; | |
2467 | } | |
2468 | ||
5d2a2dbb | 2469 | /* |
c3e5ea6e KS |
2470 | * The same page can be mapped back since last copy attampt. |
2471 | * Try to copy again under PTL. | |
5d2a2dbb | 2472 | */ |
c3e5ea6e KS |
2473 | if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { |
2474 | /* | |
2475 | * Give a warn in case there can be some obscure | |
2476 | * use-case | |
2477 | */ | |
2478 | warn: | |
2479 | WARN_ON_ONCE(1); | |
2480 | clear_page(kaddr); | |
2481 | } | |
83d116c5 JH |
2482 | } |
2483 | ||
2484 | ret = true; | |
2485 | ||
2486 | pte_unlock: | |
c3e5ea6e | 2487 | if (locked) |
83d116c5 JH |
2488 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
2489 | kunmap_atomic(kaddr); | |
2490 | flush_dcache_page(dst); | |
2491 | ||
2492 | return ret; | |
6aab341e LT |
2493 | } |
2494 | ||
c20cd45e MH |
2495 | static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) |
2496 | { | |
2497 | struct file *vm_file = vma->vm_file; | |
2498 | ||
2499 | if (vm_file) | |
2500 | return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; | |
2501 | ||
2502 | /* | |
2503 | * Special mappings (e.g. VDSO) do not have any file so fake | |
2504 | * a default GFP_KERNEL for them. | |
2505 | */ | |
2506 | return GFP_KERNEL; | |
2507 | } | |
2508 | ||
fb09a464 KS |
2509 | /* |
2510 | * Notify the address space that the page is about to become writable so that | |
2511 | * it can prohibit this or wait for the page to get into an appropriate state. | |
2512 | * | |
2513 | * We do this without the lock held, so that it can sleep if it needs to. | |
2514 | */ | |
2b740303 | 2515 | static vm_fault_t do_page_mkwrite(struct vm_fault *vmf) |
fb09a464 | 2516 | { |
2b740303 | 2517 | vm_fault_t ret; |
38b8cb7f JK |
2518 | struct page *page = vmf->page; |
2519 | unsigned int old_flags = vmf->flags; | |
fb09a464 | 2520 | |
38b8cb7f | 2521 | vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; |
fb09a464 | 2522 | |
dc617f29 DW |
2523 | if (vmf->vma->vm_file && |
2524 | IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) | |
2525 | return VM_FAULT_SIGBUS; | |
2526 | ||
11bac800 | 2527 | ret = vmf->vma->vm_ops->page_mkwrite(vmf); |
38b8cb7f JK |
2528 | /* Restore original flags so that caller is not surprised */ |
2529 | vmf->flags = old_flags; | |
fb09a464 KS |
2530 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) |
2531 | return ret; | |
2532 | if (unlikely(!(ret & VM_FAULT_LOCKED))) { | |
2533 | lock_page(page); | |
2534 | if (!page->mapping) { | |
2535 | unlock_page(page); | |
2536 | return 0; /* retry */ | |
2537 | } | |
2538 | ret |= VM_FAULT_LOCKED; | |
2539 | } else | |
2540 | VM_BUG_ON_PAGE(!PageLocked(page), page); | |
2541 | return ret; | |
2542 | } | |
2543 | ||
97ba0c2b JK |
2544 | /* |
2545 | * Handle dirtying of a page in shared file mapping on a write fault. | |
2546 | * | |
2547 | * The function expects the page to be locked and unlocks it. | |
2548 | */ | |
89b15332 | 2549 | static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) |
97ba0c2b | 2550 | { |
89b15332 | 2551 | struct vm_area_struct *vma = vmf->vma; |
97ba0c2b | 2552 | struct address_space *mapping; |
89b15332 | 2553 | struct page *page = vmf->page; |
97ba0c2b JK |
2554 | bool dirtied; |
2555 | bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; | |
2556 | ||
2557 | dirtied = set_page_dirty(page); | |
2558 | VM_BUG_ON_PAGE(PageAnon(page), page); | |
2559 | /* | |
2560 | * Take a local copy of the address_space - page.mapping may be zeroed | |
2561 | * by truncate after unlock_page(). The address_space itself remains | |
2562 | * pinned by vma->vm_file's reference. We rely on unlock_page()'s | |
2563 | * release semantics to prevent the compiler from undoing this copying. | |
2564 | */ | |
2565 | mapping = page_rmapping(page); | |
2566 | unlock_page(page); | |
2567 | ||
89b15332 JW |
2568 | if (!page_mkwrite) |
2569 | file_update_time(vma->vm_file); | |
2570 | ||
2571 | /* | |
2572 | * Throttle page dirtying rate down to writeback speed. | |
2573 | * | |
2574 | * mapping may be NULL here because some device drivers do not | |
2575 | * set page.mapping but still dirty their pages | |
2576 | * | |
2577 | * Drop the mmap_sem before waiting on IO, if we can. The file | |
2578 | * is pinning the mapping, as per above. | |
2579 | */ | |
97ba0c2b | 2580 | if ((dirtied || page_mkwrite) && mapping) { |
89b15332 JW |
2581 | struct file *fpin; |
2582 | ||
2583 | fpin = maybe_unlock_mmap_for_io(vmf, NULL); | |
97ba0c2b | 2584 | balance_dirty_pages_ratelimited(mapping); |
89b15332 JW |
2585 | if (fpin) { |
2586 | fput(fpin); | |
2587 | return VM_FAULT_RETRY; | |
2588 | } | |
97ba0c2b JK |
2589 | } |
2590 | ||
89b15332 | 2591 | return 0; |
97ba0c2b JK |
2592 | } |
2593 | ||
4e047f89 SR |
2594 | /* |
2595 | * Handle write page faults for pages that can be reused in the current vma | |
2596 | * | |
2597 | * This can happen either due to the mapping being with the VM_SHARED flag, | |
2598 | * or due to us being the last reference standing to the page. In either | |
2599 | * case, all we need to do here is to mark the page as writable and update | |
2600 | * any related book-keeping. | |
2601 | */ | |
997dd98d | 2602 | static inline void wp_page_reuse(struct vm_fault *vmf) |
82b0f8c3 | 2603 | __releases(vmf->ptl) |
4e047f89 | 2604 | { |
82b0f8c3 | 2605 | struct vm_area_struct *vma = vmf->vma; |
a41b70d6 | 2606 | struct page *page = vmf->page; |
4e047f89 SR |
2607 | pte_t entry; |
2608 | /* | |
2609 | * Clear the pages cpupid information as the existing | |
2610 | * information potentially belongs to a now completely | |
2611 | * unrelated process. | |
2612 | */ | |
2613 | if (page) | |
2614 | page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); | |
2615 | ||
2994302b JK |
2616 | flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); |
2617 | entry = pte_mkyoung(vmf->orig_pte); | |
4e047f89 | 2618 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); |
82b0f8c3 JK |
2619 | if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) |
2620 | update_mmu_cache(vma, vmf->address, vmf->pte); | |
2621 | pte_unmap_unlock(vmf->pte, vmf->ptl); | |
4e047f89 SR |
2622 | } |
2623 | ||
2f38ab2c SR |
2624 | /* |
2625 | * Handle the case of a page which we actually need to copy to a new page. | |
2626 | * | |
2627 | * Called with mmap_sem locked and the old page referenced, but | |
2628 | * without the ptl held. | |
2629 | * | |
2630 | * High level logic flow: | |
2631 | * | |
2632 | * - Allocate a page, copy the content of the old page to the new one. | |
2633 | * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. | |
2634 | * - Take the PTL. If the pte changed, bail out and release the allocated page | |
2635 | * - If the pte is still the way we remember it, update the page table and all | |
2636 | * relevant references. This includes dropping the reference the page-table | |
2637 | * held to the old page, as well as updating the rmap. | |
2638 | * - In any case, unlock the PTL and drop the reference we took to the old page. | |
2639 | */ | |
2b740303 | 2640 | static vm_fault_t wp_page_copy(struct vm_fault *vmf) |
2f38ab2c | 2641 | { |
82b0f8c3 | 2642 | struct vm_area_struct *vma = vmf->vma; |
bae473a4 | 2643 | struct mm_struct *mm = vma->vm_mm; |
a41b70d6 | 2644 | struct page *old_page = vmf->page; |
2f38ab2c | 2645 | struct page *new_page = NULL; |
2f38ab2c SR |
2646 | pte_t entry; |
2647 | int page_copied = 0; | |
ac46d4f3 | 2648 | struct mmu_notifier_range range; |
2f38ab2c SR |
2649 | |
2650 | if (unlikely(anon_vma_prepare(vma))) | |
2651 | goto oom; | |
2652 | ||
2994302b | 2653 | if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { |
82b0f8c3 JK |
2654 | new_page = alloc_zeroed_user_highpage_movable(vma, |
2655 | vmf->address); | |
2f38ab2c SR |
2656 | if (!new_page) |
2657 | goto oom; | |
2658 | } else { | |
bae473a4 | 2659 | new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, |
82b0f8c3 | 2660 | vmf->address); |
2f38ab2c SR |
2661 | if (!new_page) |
2662 | goto oom; | |
83d116c5 JH |
2663 | |
2664 | if (!cow_user_page(new_page, old_page, vmf)) { | |
2665 | /* | |
2666 | * COW failed, if the fault was solved by other, | |
2667 | * it's fine. If not, userspace would re-fault on | |
2668 | * the same address and we will handle the fault | |
2669 | * from the second attempt. | |
2670 | */ | |
2671 | put_page(new_page); | |
2672 | if (old_page) | |
2673 | put_page(old_page); | |
2674 | return 0; | |
2675 | } | |
2f38ab2c | 2676 | } |
2f38ab2c | 2677 | |
9d82c694 | 2678 | if (mem_cgroup_charge(new_page, mm, GFP_KERNEL, false)) |
2f38ab2c | 2679 | goto oom_free_new; |
9d82c694 | 2680 | cgroup_throttle_swaprate(new_page, GFP_KERNEL); |
2f38ab2c | 2681 | |
eb3c24f3 MG |
2682 | __SetPageUptodate(new_page); |
2683 | ||
7269f999 | 2684 | mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, |
6f4f13e8 | 2685 | vmf->address & PAGE_MASK, |
ac46d4f3 JG |
2686 | (vmf->address & PAGE_MASK) + PAGE_SIZE); |
2687 | mmu_notifier_invalidate_range_start(&range); | |
2f38ab2c SR |
2688 | |
2689 | /* | |
2690 | * Re-check the pte - we dropped the lock | |
2691 | */ | |
82b0f8c3 | 2692 | vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); |
2994302b | 2693 | if (likely(pte_same(*vmf->pte, vmf->orig_pte))) { |
2f38ab2c SR |
2694 | if (old_page) { |
2695 | if (!PageAnon(old_page)) { | |
eca56ff9 JM |
2696 | dec_mm_counter_fast(mm, |
2697 | mm_counter_file(old_page)); | |
2f38ab2c SR |
2698 | inc_mm_counter_fast(mm, MM_ANONPAGES); |
2699 | } | |
2700 | } else { | |
2701 | inc_mm_counter_fast(mm, MM_ANONPAGES); | |
2702 | } | |
2994302b | 2703 | flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); |
2f38ab2c SR |
2704 | entry = mk_pte(new_page, vma->vm_page_prot); |
2705 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | |
2706 | /* | |
2707 | * Clear the pte entry and flush it first, before updating the | |
2708 | * pte with the new entry. This will avoid a race condition | |
2709 | * seen in the presence of one thread doing SMC and another | |
2710 | * thread doing COW. | |
2711 | */ | |
82b0f8c3 | 2712 | ptep_clear_flush_notify(vma, vmf->address, vmf->pte); |
be5d0a74 | 2713 | page_add_new_anon_rmap(new_page, vma, vmf->address, false); |
2f38ab2c SR |
2714 | lru_cache_add_active_or_unevictable(new_page, vma); |
2715 | /* | |
2716 | * We call the notify macro here because, when using secondary | |
2717 | * mmu page tables (such as kvm shadow page tables), we want the | |
2718 | * new page to be mapped directly into the secondary page table. | |
2719 | */ | |
82b0f8c3 JK |
2720 | set_pte_at_notify(mm, vmf->address, vmf->pte, entry); |
2721 | update_mmu_cache(vma, vmf->address, vmf->pte); | |
2f38ab2c SR |
2722 | if (old_page) { |
2723 | /* | |
2724 | * Only after switching the pte to the new page may | |
2725 | * we remove the mapcount here. Otherwise another | |
2726 | * process may come and find the rmap count decremented | |
2727 | * before the pte is switched to the new page, and | |
2728 | * "reuse" the old page writing into it while our pte | |
2729 | * here still points into it and can be read by other | |
2730 | * threads. | |
2731 | * | |
2732 | * The critical issue is to order this | |
2733 | * page_remove_rmap with the ptp_clear_flush above. | |
2734 | * Those stores are ordered by (if nothing else,) | |
2735 | * the barrier present in the atomic_add_negative | |
2736 | * in page_remove_rmap. | |
2737 | * | |
2738 | * Then the TLB flush in ptep_clear_flush ensures that | |
2739 | * no process can access the old page before the | |
2740 | * decremented mapcount is visible. And the old page | |
2741 | * cannot be reused until after the decremented | |
2742 | * mapcount is visible. So transitively, TLBs to | |
2743 | * old page will be flushed before it can be reused. | |
2744 | */ | |
d281ee61 | 2745 | page_remove_rmap(old_page, false); |
2f38ab2c SR |
2746 | } |
2747 | ||
2748 | /* Free the old page.. */ | |
2749 | new_page = old_page; | |
2750 | page_copied = 1; | |
2f38ab2c SR |
2751 | } |
2752 | ||
2753 | if (new_page) | |
09cbfeaf | 2754 | put_page(new_page); |
2f38ab2c | 2755 | |
82b0f8c3 | 2756 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
4645b9fe JG |
2757 | /* |
2758 | * No need to double call mmu_notifier->invalidate_range() callback as | |
2759 | * the above ptep_clear_flush_notify() did already call it. | |
2760 | */ | |
ac46d4f3 | 2761 | mmu_notifier_invalidate_range_only_end(&range); |
2f38ab2c SR |
2762 | if (old_page) { |
2763 | /* | |
2764 | * Don't let another task, with possibly unlocked vma, | |
2765 | * keep the mlocked page. | |
2766 | */ | |
2767 | if (page_copied && (vma->vm_flags & VM_LOCKED)) { | |
2768 | lock_page(old_page); /* LRU manipulation */ | |
e90309c9 KS |
2769 | if (PageMlocked(old_page)) |
2770 | munlock_vma_page(old_page); | |
2f38ab2c SR |
2771 | unlock_page(old_page); |
2772 | } | |
09cbfeaf | 2773 | put_page(old_page); |
2f38ab2c SR |
2774 | } |
2775 | return page_copied ? VM_FAULT_WRITE : 0; | |
2776 | oom_free_new: | |
09cbfeaf | 2777 | put_page(new_page); |
2f38ab2c SR |
2778 | oom: |
2779 | if (old_page) | |
09cbfeaf | 2780 | put_page(old_page); |
2f38ab2c SR |
2781 | return VM_FAULT_OOM; |
2782 | } | |
2783 | ||
66a6197c JK |
2784 | /** |
2785 | * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE | |
2786 | * writeable once the page is prepared | |
2787 | * | |
2788 | * @vmf: structure describing the fault | |
2789 | * | |
2790 | * This function handles all that is needed to finish a write page fault in a | |
2791 | * shared mapping due to PTE being read-only once the mapped page is prepared. | |
a862f68a | 2792 | * It handles locking of PTE and modifying it. |
66a6197c JK |
2793 | * |
2794 | * The function expects the page to be locked or other protection against | |
2795 | * concurrent faults / writeback (such as DAX radix tree locks). | |
a862f68a MR |
2796 | * |
2797 | * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before | |
2798 | * we acquired PTE lock. | |
66a6197c | 2799 | */ |
2b740303 | 2800 | vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf) |
66a6197c JK |
2801 | { |
2802 | WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); | |
2803 | vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, | |
2804 | &vmf->ptl); | |
2805 | /* | |
2806 | * We might have raced with another page fault while we released the | |
2807 | * pte_offset_map_lock. | |
2808 | */ | |
2809 | if (!pte_same(*vmf->pte, vmf->orig_pte)) { | |
2810 | pte_unmap_unlock(vmf->pte, vmf->ptl); | |
a19e2553 | 2811 | return VM_FAULT_NOPAGE; |
66a6197c JK |
2812 | } |
2813 | wp_page_reuse(vmf); | |
a19e2553 | 2814 | return 0; |
66a6197c JK |
2815 | } |
2816 | ||
dd906184 BH |
2817 | /* |
2818 | * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED | |
2819 | * mapping | |
2820 | */ | |
2b740303 | 2821 | static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) |
dd906184 | 2822 | { |
82b0f8c3 | 2823 | struct vm_area_struct *vma = vmf->vma; |
bae473a4 | 2824 | |
dd906184 | 2825 | if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { |
2b740303 | 2826 | vm_fault_t ret; |
dd906184 | 2827 | |
82b0f8c3 | 2828 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
fe82221f | 2829 | vmf->flags |= FAULT_FLAG_MKWRITE; |
11bac800 | 2830 | ret = vma->vm_ops->pfn_mkwrite(vmf); |
2f89dc12 | 2831 | if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) |
dd906184 | 2832 | return ret; |
66a6197c | 2833 | return finish_mkwrite_fault(vmf); |
dd906184 | 2834 | } |
997dd98d JK |
2835 | wp_page_reuse(vmf); |
2836 | return VM_FAULT_WRITE; | |
dd906184 BH |
2837 | } |
2838 | ||
2b740303 | 2839 | static vm_fault_t wp_page_shared(struct vm_fault *vmf) |
82b0f8c3 | 2840 | __releases(vmf->ptl) |
93e478d4 | 2841 | { |
82b0f8c3 | 2842 | struct vm_area_struct *vma = vmf->vma; |
89b15332 | 2843 | vm_fault_t ret = VM_FAULT_WRITE; |
93e478d4 | 2844 | |
a41b70d6 | 2845 | get_page(vmf->page); |
93e478d4 | 2846 | |
93e478d4 | 2847 | if (vma->vm_ops && vma->vm_ops->page_mkwrite) { |
2b740303 | 2848 | vm_fault_t tmp; |
93e478d4 | 2849 | |
82b0f8c3 | 2850 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
38b8cb7f | 2851 | tmp = do_page_mkwrite(vmf); |
93e478d4 SR |
2852 | if (unlikely(!tmp || (tmp & |
2853 | (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { | |
a41b70d6 | 2854 | put_page(vmf->page); |
93e478d4 SR |
2855 | return tmp; |
2856 | } | |
66a6197c | 2857 | tmp = finish_mkwrite_fault(vmf); |
a19e2553 | 2858 | if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { |
a41b70d6 | 2859 | unlock_page(vmf->page); |
a41b70d6 | 2860 | put_page(vmf->page); |
66a6197c | 2861 | return tmp; |
93e478d4 | 2862 | } |
66a6197c JK |
2863 | } else { |
2864 | wp_page_reuse(vmf); | |
997dd98d | 2865 | lock_page(vmf->page); |
93e478d4 | 2866 | } |
89b15332 | 2867 | ret |= fault_dirty_shared_page(vmf); |
997dd98d | 2868 | put_page(vmf->page); |
93e478d4 | 2869 | |
89b15332 | 2870 | return ret; |
93e478d4 SR |
2871 | } |
2872 | ||
1da177e4 LT |
2873 | /* |
2874 | * This routine handles present pages, when users try to write | |
2875 | * to a shared page. It is done by copying the page to a new address | |
2876 | * and decrementing the shared-page counter for the old page. | |
2877 | * | |
1da177e4 LT |
2878 | * Note that this routine assumes that the protection checks have been |
2879 | * done by the caller (the low-level page fault routine in most cases). | |
2880 | * Thus we can safely just mark it writable once we've done any necessary | |
2881 | * COW. | |
2882 | * | |
2883 | * We also mark the page dirty at this point even though the page will | |
2884 | * change only once the write actually happens. This avoids a few races, | |
2885 | * and potentially makes it more efficient. | |
2886 | * | |
8f4e2101 HD |
2887 | * We enter with non-exclusive mmap_sem (to exclude vma changes, |
2888 | * but allow concurrent faults), with pte both mapped and locked. | |
2889 | * We return with mmap_sem still held, but pte unmapped and unlocked. | |
1da177e4 | 2890 | */ |
2b740303 | 2891 | static vm_fault_t do_wp_page(struct vm_fault *vmf) |
82b0f8c3 | 2892 | __releases(vmf->ptl) |
1da177e4 | 2893 | { |
82b0f8c3 | 2894 | struct vm_area_struct *vma = vmf->vma; |
1da177e4 | 2895 | |
292924b2 | 2896 | if (userfaultfd_pte_wp(vma, *vmf->pte)) { |
529b930b AA |
2897 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
2898 | return handle_userfault(vmf, VM_UFFD_WP); | |
2899 | } | |
2900 | ||
a41b70d6 JK |
2901 | vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); |
2902 | if (!vmf->page) { | |
251b97f5 | 2903 | /* |
64e45507 PF |
2904 | * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a |
2905 | * VM_PFNMAP VMA. | |
251b97f5 PZ |
2906 | * |
2907 | * We should not cow pages in a shared writeable mapping. | |
dd906184 | 2908 | * Just mark the pages writable and/or call ops->pfn_mkwrite. |
251b97f5 PZ |
2909 | */ |
2910 | if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == | |
2911 | (VM_WRITE|VM_SHARED)) | |
2994302b | 2912 | return wp_pfn_shared(vmf); |
2f38ab2c | 2913 | |
82b0f8c3 | 2914 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
a41b70d6 | 2915 | return wp_page_copy(vmf); |
251b97f5 | 2916 | } |
1da177e4 | 2917 | |
d08b3851 | 2918 | /* |
ee6a6457 PZ |
2919 | * Take out anonymous pages first, anonymous shared vmas are |
2920 | * not dirty accountable. | |
d08b3851 | 2921 | */ |
52d1e606 | 2922 | if (PageAnon(vmf->page)) { |
ba3c4ce6 | 2923 | int total_map_swapcount; |
52d1e606 KT |
2924 | if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) || |
2925 | page_count(vmf->page) != 1)) | |
2926 | goto copy; | |
a41b70d6 JK |
2927 | if (!trylock_page(vmf->page)) { |
2928 | get_page(vmf->page); | |
82b0f8c3 | 2929 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
a41b70d6 | 2930 | lock_page(vmf->page); |
82b0f8c3 JK |
2931 | vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, |
2932 | vmf->address, &vmf->ptl); | |
2994302b | 2933 | if (!pte_same(*vmf->pte, vmf->orig_pte)) { |
a41b70d6 | 2934 | unlock_page(vmf->page); |
82b0f8c3 | 2935 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
a41b70d6 | 2936 | put_page(vmf->page); |
28766805 | 2937 | return 0; |
ab967d86 | 2938 | } |
a41b70d6 | 2939 | put_page(vmf->page); |
ee6a6457 | 2940 | } |
52d1e606 KT |
2941 | if (PageKsm(vmf->page)) { |
2942 | bool reused = reuse_ksm_page(vmf->page, vmf->vma, | |
2943 | vmf->address); | |
2944 | unlock_page(vmf->page); | |
2945 | if (!reused) | |
2946 | goto copy; | |
2947 | wp_page_reuse(vmf); | |
2948 | return VM_FAULT_WRITE; | |
2949 | } | |
ba3c4ce6 YH |
2950 | if (reuse_swap_page(vmf->page, &total_map_swapcount)) { |
2951 | if (total_map_swapcount == 1) { | |
6d0a07ed AA |
2952 | /* |
2953 | * The page is all ours. Move it to | |
2954 | * our anon_vma so the rmap code will | |
2955 | * not search our parent or siblings. | |
2956 | * Protected against the rmap code by | |
2957 | * the page lock. | |
2958 | */ | |
a41b70d6 | 2959 | page_move_anon_rmap(vmf->page, vma); |
6d0a07ed | 2960 | } |
a41b70d6 | 2961 | unlock_page(vmf->page); |
997dd98d JK |
2962 | wp_page_reuse(vmf); |
2963 | return VM_FAULT_WRITE; | |
b009c024 | 2964 | } |
a41b70d6 | 2965 | unlock_page(vmf->page); |
ee6a6457 | 2966 | } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == |
d08b3851 | 2967 | (VM_WRITE|VM_SHARED))) { |
a41b70d6 | 2968 | return wp_page_shared(vmf); |
1da177e4 | 2969 | } |
52d1e606 | 2970 | copy: |
1da177e4 LT |
2971 | /* |
2972 | * Ok, we need to copy. Oh, well.. | |
2973 | */ | |
a41b70d6 | 2974 | get_page(vmf->page); |
28766805 | 2975 | |
82b0f8c3 | 2976 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
a41b70d6 | 2977 | return wp_page_copy(vmf); |
1da177e4 LT |
2978 | } |
2979 | ||
97a89413 | 2980 | static void unmap_mapping_range_vma(struct vm_area_struct *vma, |
1da177e4 LT |
2981 | unsigned long start_addr, unsigned long end_addr, |
2982 | struct zap_details *details) | |
2983 | { | |
f5cc4eef | 2984 | zap_page_range_single(vma, start_addr, end_addr - start_addr, details); |
1da177e4 LT |
2985 | } |
2986 | ||
f808c13f | 2987 | static inline void unmap_mapping_range_tree(struct rb_root_cached *root, |
1da177e4 LT |
2988 | struct zap_details *details) |
2989 | { | |
2990 | struct vm_area_struct *vma; | |
1da177e4 LT |
2991 | pgoff_t vba, vea, zba, zea; |
2992 | ||
6b2dbba8 | 2993 | vma_interval_tree_foreach(vma, root, |
1da177e4 | 2994 | details->first_index, details->last_index) { |
1da177e4 LT |
2995 | |
2996 | vba = vma->vm_pgoff; | |
d6e93217 | 2997 | vea = vba + vma_pages(vma) - 1; |
1da177e4 LT |
2998 | zba = details->first_index; |
2999 | if (zba < vba) | |
3000 | zba = vba; | |
3001 | zea = details->last_index; | |
3002 | if (zea > vea) | |
3003 | zea = vea; | |
3004 | ||
97a89413 | 3005 | unmap_mapping_range_vma(vma, |
1da177e4 LT |
3006 | ((zba - vba) << PAGE_SHIFT) + vma->vm_start, |
3007 | ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, | |
97a89413 | 3008 | details); |
1da177e4 LT |
3009 | } |
3010 | } | |
3011 | ||
977fbdcd MW |
3012 | /** |
3013 | * unmap_mapping_pages() - Unmap pages from processes. | |
3014 | * @mapping: The address space containing pages to be unmapped. | |
3015 | * @start: Index of first page to be unmapped. | |
3016 | * @nr: Number of pages to be unmapped. 0 to unmap to end of file. | |
3017 | * @even_cows: Whether to unmap even private COWed pages. | |
3018 | * | |
3019 | * Unmap the pages in this address space from any userspace process which | |
3020 | * has them mmaped. Generally, you want to remove COWed pages as well when | |
3021 | * a file is being truncated, but not when invalidating pages from the page | |
3022 | * cache. | |
3023 | */ | |
3024 | void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, | |
3025 | pgoff_t nr, bool even_cows) | |
3026 | { | |
3027 | struct zap_details details = { }; | |
3028 | ||
3029 | details.check_mapping = even_cows ? NULL : mapping; | |
3030 | details.first_index = start; | |
3031 | details.last_index = start + nr - 1; | |
3032 | if (details.last_index < details.first_index) | |
3033 | details.last_index = ULONG_MAX; | |
3034 | ||
3035 | i_mmap_lock_write(mapping); | |
3036 | if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) | |
3037 | unmap_mapping_range_tree(&mapping->i_mmap, &details); | |
3038 | i_mmap_unlock_write(mapping); | |
3039 | } | |
3040 | ||
1da177e4 | 3041 | /** |
8a5f14a2 | 3042 | * unmap_mapping_range - unmap the portion of all mmaps in the specified |
977fbdcd | 3043 | * address_space corresponding to the specified byte range in the underlying |
8a5f14a2 KS |
3044 | * file. |
3045 | * | |
3d41088f | 3046 | * @mapping: the address space containing mmaps to be unmapped. |
1da177e4 LT |
3047 | * @holebegin: byte in first page to unmap, relative to the start of |
3048 | * the underlying file. This will be rounded down to a PAGE_SIZE | |
25d9e2d1 | 3049 | * boundary. Note that this is different from truncate_pagecache(), which |
1da177e4 LT |
3050 | * must keep the partial page. In contrast, we must get rid of |
3051 | * partial pages. | |
3052 | * @holelen: size of prospective hole in bytes. This will be rounded | |
3053 | * up to a PAGE_SIZE boundary. A holelen of zero truncates to the | |
3054 | * end of the file. | |
3055 | * @even_cows: 1 when truncating a file, unmap even private COWed pages; | |
3056 | * but 0 when invalidating pagecache, don't throw away private data. | |
3057 | */ | |
3058 | void unmap_mapping_range(struct address_space *mapping, | |
3059 | loff_t const holebegin, loff_t const holelen, int even_cows) | |
3060 | { | |
1da177e4 LT |
3061 | pgoff_t hba = holebegin >> PAGE_SHIFT; |
3062 | pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; | |
3063 | ||
3064 | /* Check for overflow. */ | |
3065 | if (sizeof(holelen) > sizeof(hlen)) { | |
3066 | long long holeend = | |
3067 | (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; | |
3068 | if (holeend & ~(long long)ULONG_MAX) | |
3069 | hlen = ULONG_MAX - hba + 1; | |
3070 | } | |
3071 | ||
977fbdcd | 3072 | unmap_mapping_pages(mapping, hba, hlen, even_cows); |
1da177e4 LT |
3073 | } |
3074 | EXPORT_SYMBOL(unmap_mapping_range); | |
3075 | ||
1da177e4 | 3076 | /* |
8f4e2101 HD |
3077 | * We enter with non-exclusive mmap_sem (to exclude vma changes, |
3078 | * but allow concurrent faults), and pte mapped but not yet locked. | |
9a95f3cf PC |
3079 | * We return with pte unmapped and unlocked. |
3080 | * | |
3081 | * We return with the mmap_sem locked or unlocked in the same cases | |
3082 | * as does filemap_fault(). | |
1da177e4 | 3083 | */ |
2b740303 | 3084 | vm_fault_t do_swap_page(struct vm_fault *vmf) |
1da177e4 | 3085 | { |
82b0f8c3 | 3086 | struct vm_area_struct *vma = vmf->vma; |
eaf649eb | 3087 | struct page *page = NULL, *swapcache; |
65500d23 | 3088 | swp_entry_t entry; |
1da177e4 | 3089 | pte_t pte; |
d065bd81 | 3090 | int locked; |
ad8c2ee8 | 3091 | int exclusive = 0; |
2b740303 | 3092 | vm_fault_t ret = 0; |
1da177e4 | 3093 | |
eaf649eb | 3094 | if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte)) |
8f4e2101 | 3095 | goto out; |
65500d23 | 3096 | |
2994302b | 3097 | entry = pte_to_swp_entry(vmf->orig_pte); |
d1737fdb AK |
3098 | if (unlikely(non_swap_entry(entry))) { |
3099 | if (is_migration_entry(entry)) { | |
82b0f8c3 JK |
3100 | migration_entry_wait(vma->vm_mm, vmf->pmd, |
3101 | vmf->address); | |
5042db43 | 3102 | } else if (is_device_private_entry(entry)) { |
897e6365 CH |
3103 | vmf->page = device_private_entry_to_page(entry); |
3104 | ret = vmf->page->pgmap->ops->migrate_to_ram(vmf); | |
d1737fdb AK |
3105 | } else if (is_hwpoison_entry(entry)) { |
3106 | ret = VM_FAULT_HWPOISON; | |
3107 | } else { | |
2994302b | 3108 | print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); |
d99be1a8 | 3109 | ret = VM_FAULT_SIGBUS; |
d1737fdb | 3110 | } |
0697212a CL |
3111 | goto out; |
3112 | } | |
0bcac06f MK |
3113 | |
3114 | ||
0ff92245 | 3115 | delayacct_set_flag(DELAYACCT_PF_SWAPIN); |
eaf649eb MK |
3116 | page = lookup_swap_cache(entry, vma, vmf->address); |
3117 | swapcache = page; | |
f8020772 | 3118 | |
1da177e4 | 3119 | if (!page) { |
0bcac06f MK |
3120 | struct swap_info_struct *si = swp_swap_info(entry); |
3121 | ||
aa8d22a1 | 3122 | if (si->flags & SWP_SYNCHRONOUS_IO && |
eb085574 | 3123 | __swap_count(entry) == 1) { |
0bcac06f | 3124 | /* skip swapcache */ |
e9e9b7ec MK |
3125 | page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, |
3126 | vmf->address); | |
0bcac06f MK |
3127 | if (page) { |
3128 | __SetPageLocked(page); | |
3129 | __SetPageSwapBacked(page); | |
3130 | set_page_private(page, entry.val); | |
3131 | lru_cache_add_anon(page); | |
3132 | swap_readpage(page, true); | |
3133 | } | |
aa8d22a1 | 3134 | } else { |
e9e9b7ec MK |
3135 | page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, |
3136 | vmf); | |
aa8d22a1 | 3137 | swapcache = page; |
0bcac06f MK |
3138 | } |
3139 | ||
1da177e4 LT |
3140 | if (!page) { |
3141 | /* | |
8f4e2101 HD |
3142 | * Back out if somebody else faulted in this pte |
3143 | * while we released the pte lock. | |
1da177e4 | 3144 | */ |
82b0f8c3 JK |
3145 | vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, |
3146 | vmf->address, &vmf->ptl); | |
2994302b | 3147 | if (likely(pte_same(*vmf->pte, vmf->orig_pte))) |
1da177e4 | 3148 | ret = VM_FAULT_OOM; |
0ff92245 | 3149 | delayacct_clear_flag(DELAYACCT_PF_SWAPIN); |
65500d23 | 3150 | goto unlock; |
1da177e4 LT |
3151 | } |
3152 | ||
3153 | /* Had to read the page from swap area: Major fault */ | |
3154 | ret = VM_FAULT_MAJOR; | |
f8891e5e | 3155 | count_vm_event(PGMAJFAULT); |
2262185c | 3156 | count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); |
d1737fdb | 3157 | } else if (PageHWPoison(page)) { |
71f72525 WF |
3158 | /* |
3159 | * hwpoisoned dirty swapcache pages are kept for killing | |
3160 | * owner processes (which may be unknown at hwpoison time) | |
3161 | */ | |
d1737fdb AK |
3162 | ret = VM_FAULT_HWPOISON; |
3163 | delayacct_clear_flag(DELAYACCT_PF_SWAPIN); | |
4779cb31 | 3164 | goto out_release; |
1da177e4 LT |
3165 | } |
3166 | ||
82b0f8c3 | 3167 | locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags); |
e709ffd6 | 3168 | |
073e587e | 3169 | delayacct_clear_flag(DELAYACCT_PF_SWAPIN); |
d065bd81 ML |
3170 | if (!locked) { |
3171 | ret |= VM_FAULT_RETRY; | |
3172 | goto out_release; | |
3173 | } | |
073e587e | 3174 | |
4969c119 | 3175 | /* |
31c4a3d3 HD |
3176 | * Make sure try_to_free_swap or reuse_swap_page or swapoff did not |
3177 | * release the swapcache from under us. The page pin, and pte_same | |
3178 | * test below, are not enough to exclude that. Even if it is still | |
3179 | * swapcache, we need to check that the page's swap has not changed. | |
4969c119 | 3180 | */ |
0bcac06f MK |
3181 | if (unlikely((!PageSwapCache(page) || |
3182 | page_private(page) != entry.val)) && swapcache) | |
4969c119 AA |
3183 | goto out_page; |
3184 | ||
82b0f8c3 | 3185 | page = ksm_might_need_to_copy(page, vma, vmf->address); |
cbf86cfe HD |
3186 | if (unlikely(!page)) { |
3187 | ret = VM_FAULT_OOM; | |
3188 | page = swapcache; | |
cbf86cfe | 3189 | goto out_page; |
5ad64688 HD |
3190 | } |
3191 | ||
9d82c694 | 3192 | if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL, true)) { |
8a9f3ccd | 3193 | ret = VM_FAULT_OOM; |
bc43f75c | 3194 | goto out_page; |
8a9f3ccd | 3195 | } |
9d82c694 | 3196 | cgroup_throttle_swaprate(page, GFP_KERNEL); |
8a9f3ccd | 3197 | |
1da177e4 | 3198 | /* |
8f4e2101 | 3199 | * Back out if somebody else already faulted in this pte. |
1da177e4 | 3200 | */ |
82b0f8c3 JK |
3201 | vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, |
3202 | &vmf->ptl); | |
2994302b | 3203 | if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) |
b8107480 | 3204 | goto out_nomap; |
b8107480 KK |
3205 | |
3206 | if (unlikely(!PageUptodate(page))) { | |
3207 | ret = VM_FAULT_SIGBUS; | |
3208 | goto out_nomap; | |
1da177e4 LT |
3209 | } |
3210 | ||
8c7c6e34 KH |
3211 | /* |
3212 | * The page isn't present yet, go ahead with the fault. | |
3213 | * | |
3214 | * Be careful about the sequence of operations here. | |
3215 | * To get its accounting right, reuse_swap_page() must be called | |
3216 | * while the page is counted on swap but not yet in mapcount i.e. | |
3217 | * before page_add_anon_rmap() and swap_free(); try_to_free_swap() | |
3218 | * must be called after the swap_free(), or it will never succeed. | |
8c7c6e34 | 3219 | */ |
1da177e4 | 3220 | |
bae473a4 KS |
3221 | inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); |
3222 | dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS); | |
1da177e4 | 3223 | pte = mk_pte(page, vma->vm_page_prot); |
82b0f8c3 | 3224 | if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) { |
1da177e4 | 3225 | pte = maybe_mkwrite(pte_mkdirty(pte), vma); |
82b0f8c3 | 3226 | vmf->flags &= ~FAULT_FLAG_WRITE; |
9a5b489b | 3227 | ret |= VM_FAULT_WRITE; |
d281ee61 | 3228 | exclusive = RMAP_EXCLUSIVE; |
1da177e4 | 3229 | } |
1da177e4 | 3230 | flush_icache_page(vma, page); |
2994302b | 3231 | if (pte_swp_soft_dirty(vmf->orig_pte)) |
179ef71c | 3232 | pte = pte_mksoft_dirty(pte); |
f45ec5ff PX |
3233 | if (pte_swp_uffd_wp(vmf->orig_pte)) { |
3234 | pte = pte_mkuffd_wp(pte); | |
3235 | pte = pte_wrprotect(pte); | |
3236 | } | |
82b0f8c3 | 3237 | set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); |
ca827d55 | 3238 | arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte); |
2994302b | 3239 | vmf->orig_pte = pte; |
0bcac06f MK |
3240 | |
3241 | /* ksm created a completely new copy */ | |
3242 | if (unlikely(page != swapcache && swapcache)) { | |
be5d0a74 | 3243 | page_add_new_anon_rmap(page, vma, vmf->address, false); |
00501b53 | 3244 | lru_cache_add_active_or_unevictable(page, vma); |
0bcac06f | 3245 | } else { |
be5d0a74 | 3246 | do_page_add_anon_rmap(page, vma, vmf->address, exclusive); |
0bcac06f | 3247 | activate_page(page); |
00501b53 | 3248 | } |
1da177e4 | 3249 | |
c475a8ab | 3250 | swap_free(entry); |
5ccc5aba VD |
3251 | if (mem_cgroup_swap_full(page) || |
3252 | (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) | |
a2c43eed | 3253 | try_to_free_swap(page); |
c475a8ab | 3254 | unlock_page(page); |
0bcac06f | 3255 | if (page != swapcache && swapcache) { |
4969c119 AA |
3256 | /* |
3257 | * Hold the lock to avoid the swap entry to be reused | |
3258 | * until we take the PT lock for the pte_same() check | |
3259 | * (to avoid false positives from pte_same). For | |
3260 | * further safety release the lock after the swap_free | |
3261 | * so that the swap count won't change under a | |
3262 | * parallel locked swapcache. | |
3263 | */ | |
3264 | unlock_page(swapcache); | |
09cbfeaf | 3265 | put_page(swapcache); |
4969c119 | 3266 | } |
c475a8ab | 3267 | |
82b0f8c3 | 3268 | if (vmf->flags & FAULT_FLAG_WRITE) { |
2994302b | 3269 | ret |= do_wp_page(vmf); |
61469f1d HD |
3270 | if (ret & VM_FAULT_ERROR) |
3271 | ret &= VM_FAULT_ERROR; | |
1da177e4 LT |
3272 | goto out; |
3273 | } | |
3274 | ||
3275 | /* No need to invalidate - it was non-present before */ | |
82b0f8c3 | 3276 | update_mmu_cache(vma, vmf->address, vmf->pte); |
65500d23 | 3277 | unlock: |
82b0f8c3 | 3278 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
1da177e4 LT |
3279 | out: |
3280 | return ret; | |
b8107480 | 3281 | out_nomap: |
82b0f8c3 | 3282 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
bc43f75c | 3283 | out_page: |
b8107480 | 3284 | unlock_page(page); |
4779cb31 | 3285 | out_release: |
09cbfeaf | 3286 | put_page(page); |
0bcac06f | 3287 | if (page != swapcache && swapcache) { |
4969c119 | 3288 | unlock_page(swapcache); |
09cbfeaf | 3289 | put_page(swapcache); |
4969c119 | 3290 | } |
65500d23 | 3291 | return ret; |
1da177e4 LT |
3292 | } |
3293 | ||
3294 | /* | |
8f4e2101 HD |
3295 | * We enter with non-exclusive mmap_sem (to exclude vma changes, |
3296 | * but allow concurrent faults), and pte mapped but not yet locked. | |
3297 | * We return with mmap_sem still held, but pte unmapped and unlocked. | |
1da177e4 | 3298 | */ |
2b740303 | 3299 | static vm_fault_t do_anonymous_page(struct vm_fault *vmf) |
1da177e4 | 3300 | { |
82b0f8c3 | 3301 | struct vm_area_struct *vma = vmf->vma; |
8f4e2101 | 3302 | struct page *page; |
2b740303 | 3303 | vm_fault_t ret = 0; |
1da177e4 | 3304 | pte_t entry; |
1da177e4 | 3305 | |
6b7339f4 KS |
3306 | /* File mapping without ->vm_ops ? */ |
3307 | if (vma->vm_flags & VM_SHARED) | |
3308 | return VM_FAULT_SIGBUS; | |
3309 | ||
7267ec00 KS |
3310 | /* |
3311 | * Use pte_alloc() instead of pte_alloc_map(). We can't run | |
3312 | * pte_offset_map() on pmds where a huge pmd might be created | |
3313 | * from a different thread. | |
3314 | * | |
3315 | * pte_alloc_map() is safe to use under down_write(mmap_sem) or when | |
3316 | * parallel threads are excluded by other means. | |
3317 | * | |
3318 | * Here we only have down_read(mmap_sem). | |
3319 | */ | |
4cf58924 | 3320 | if (pte_alloc(vma->vm_mm, vmf->pmd)) |
7267ec00 KS |
3321 | return VM_FAULT_OOM; |
3322 | ||
3323 | /* See the comment in pte_alloc_one_map() */ | |
82b0f8c3 | 3324 | if (unlikely(pmd_trans_unstable(vmf->pmd))) |
7267ec00 KS |
3325 | return 0; |
3326 | ||
11ac5524 | 3327 | /* Use the zero-page for reads */ |
82b0f8c3 | 3328 | if (!(vmf->flags & FAULT_FLAG_WRITE) && |
bae473a4 | 3329 | !mm_forbids_zeropage(vma->vm_mm)) { |
82b0f8c3 | 3330 | entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), |
62eede62 | 3331 | vma->vm_page_prot)); |
82b0f8c3 JK |
3332 | vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, |
3333 | vmf->address, &vmf->ptl); | |
3334 | if (!pte_none(*vmf->pte)) | |
a13ea5b7 | 3335 | goto unlock; |
6b31d595 MH |
3336 | ret = check_stable_address_space(vma->vm_mm); |
3337 | if (ret) | |
3338 | goto unlock; | |
6b251fc9 AA |
3339 | /* Deliver the page fault to userland, check inside PT lock */ |
3340 | if (userfaultfd_missing(vma)) { | |
82b0f8c3 JK |
3341 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
3342 | return handle_userfault(vmf, VM_UFFD_MISSING); | |
6b251fc9 | 3343 | } |
a13ea5b7 HD |
3344 | goto setpte; |
3345 | } | |
3346 | ||
557ed1fa | 3347 | /* Allocate our own private page. */ |
557ed1fa NP |
3348 | if (unlikely(anon_vma_prepare(vma))) |
3349 | goto oom; | |
82b0f8c3 | 3350 | page = alloc_zeroed_user_highpage_movable(vma, vmf->address); |
557ed1fa NP |
3351 | if (!page) |
3352 | goto oom; | |
eb3c24f3 | 3353 | |
9d82c694 | 3354 | if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL, false)) |
eb3c24f3 | 3355 | goto oom_free_page; |
9d82c694 | 3356 | cgroup_throttle_swaprate(page, GFP_KERNEL); |
eb3c24f3 | 3357 | |
52f37629 MK |
3358 | /* |
3359 | * The memory barrier inside __SetPageUptodate makes sure that | |
f4f5329d | 3360 | * preceding stores to the page contents become visible before |
52f37629 MK |
3361 | * the set_pte_at() write. |
3362 | */ | |
0ed361de | 3363 | __SetPageUptodate(page); |
8f4e2101 | 3364 | |
557ed1fa | 3365 | entry = mk_pte(page, vma->vm_page_prot); |
1ac0cb5d HD |
3366 | if (vma->vm_flags & VM_WRITE) |
3367 | entry = pte_mkwrite(pte_mkdirty(entry)); | |
1da177e4 | 3368 | |
82b0f8c3 JK |
3369 | vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, |
3370 | &vmf->ptl); | |
3371 | if (!pte_none(*vmf->pte)) | |
557ed1fa | 3372 | goto release; |
9ba69294 | 3373 | |
6b31d595 MH |
3374 | ret = check_stable_address_space(vma->vm_mm); |
3375 | if (ret) | |
3376 | goto release; | |
3377 | ||
6b251fc9 AA |
3378 | /* Deliver the page fault to userland, check inside PT lock */ |
3379 | if (userfaultfd_missing(vma)) { | |
82b0f8c3 | 3380 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
09cbfeaf | 3381 | put_page(page); |
82b0f8c3 | 3382 | return handle_userfault(vmf, VM_UFFD_MISSING); |
6b251fc9 AA |
3383 | } |
3384 | ||
bae473a4 | 3385 | inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); |
be5d0a74 | 3386 | page_add_new_anon_rmap(page, vma, vmf->address, false); |
00501b53 | 3387 | lru_cache_add_active_or_unevictable(page, vma); |
a13ea5b7 | 3388 | setpte: |
82b0f8c3 | 3389 | set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); |
1da177e4 LT |
3390 | |
3391 | /* No need to invalidate - it was non-present before */ | |
82b0f8c3 | 3392 | update_mmu_cache(vma, vmf->address, vmf->pte); |
65500d23 | 3393 | unlock: |
82b0f8c3 | 3394 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
6b31d595 | 3395 | return ret; |
8f4e2101 | 3396 | release: |
09cbfeaf | 3397 | put_page(page); |
8f4e2101 | 3398 | goto unlock; |
8a9f3ccd | 3399 | oom_free_page: |
09cbfeaf | 3400 | put_page(page); |
65500d23 | 3401 | oom: |
1da177e4 LT |
3402 | return VM_FAULT_OOM; |
3403 | } | |
3404 | ||
9a95f3cf PC |
3405 | /* |
3406 | * The mmap_sem must have been held on entry, and may have been | |
3407 | * released depending on flags and vma->vm_ops->fault() return value. | |
3408 | * See filemap_fault() and __lock_page_retry(). | |
3409 | */ | |
2b740303 | 3410 | static vm_fault_t __do_fault(struct vm_fault *vmf) |
7eae74af | 3411 | { |
82b0f8c3 | 3412 | struct vm_area_struct *vma = vmf->vma; |
2b740303 | 3413 | vm_fault_t ret; |
7eae74af | 3414 | |
63f3655f MH |
3415 | /* |
3416 | * Preallocate pte before we take page_lock because this might lead to | |
3417 | * deadlocks for memcg reclaim which waits for pages under writeback: | |
3418 | * lock_page(A) | |
3419 | * SetPageWriteback(A) | |
3420 | * unlock_page(A) | |
3421 | * lock_page(B) | |
3422 | * lock_page(B) | |
3423 | * pte_alloc_pne | |
3424 | * shrink_page_list | |
3425 | * wait_on_page_writeback(A) | |
3426 | * SetPageWriteback(B) | |
3427 | * unlock_page(B) | |
3428 | * # flush A, B to clear the writeback | |
3429 | */ | |
3430 | if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { | |
3431 | vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); | |
3432 | if (!vmf->prealloc_pte) | |
3433 | return VM_FAULT_OOM; | |
3434 | smp_wmb(); /* See comment in __pte_alloc() */ | |
3435 | } | |
3436 | ||
11bac800 | 3437 | ret = vma->vm_ops->fault(vmf); |
3917048d | 3438 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | |
b1aa812b | 3439 | VM_FAULT_DONE_COW))) |
bc2466e4 | 3440 | return ret; |
7eae74af | 3441 | |
667240e0 | 3442 | if (unlikely(PageHWPoison(vmf->page))) { |
7eae74af | 3443 | if (ret & VM_FAULT_LOCKED) |
667240e0 JK |
3444 | unlock_page(vmf->page); |
3445 | put_page(vmf->page); | |
936ca80d | 3446 | vmf->page = NULL; |
7eae74af KS |
3447 | return VM_FAULT_HWPOISON; |
3448 | } | |
3449 | ||
3450 | if (unlikely(!(ret & VM_FAULT_LOCKED))) | |
667240e0 | 3451 | lock_page(vmf->page); |
7eae74af | 3452 | else |
667240e0 | 3453 | VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); |
7eae74af | 3454 | |
7eae74af KS |
3455 | return ret; |
3456 | } | |
3457 | ||
d0f0931d RZ |
3458 | /* |
3459 | * The ordering of these checks is important for pmds with _PAGE_DEVMAP set. | |
3460 | * If we check pmd_trans_unstable() first we will trip the bad_pmd() check | |
3461 | * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly | |
3462 | * returning 1 but not before it spams dmesg with the pmd_clear_bad() output. | |
3463 | */ | |
3464 | static int pmd_devmap_trans_unstable(pmd_t *pmd) | |
3465 | { | |
3466 | return pmd_devmap(*pmd) || pmd_trans_unstable(pmd); | |
3467 | } | |
3468 | ||
2b740303 | 3469 | static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf) |
7267ec00 | 3470 | { |
82b0f8c3 | 3471 | struct vm_area_struct *vma = vmf->vma; |
7267ec00 | 3472 | |
82b0f8c3 | 3473 | if (!pmd_none(*vmf->pmd)) |
7267ec00 | 3474 | goto map_pte; |
82b0f8c3 JK |
3475 | if (vmf->prealloc_pte) { |
3476 | vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); | |
3477 | if (unlikely(!pmd_none(*vmf->pmd))) { | |
3478 | spin_unlock(vmf->ptl); | |
7267ec00 KS |
3479 | goto map_pte; |
3480 | } | |
3481 | ||
c4812909 | 3482 | mm_inc_nr_ptes(vma->vm_mm); |
82b0f8c3 JK |
3483 | pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); |
3484 | spin_unlock(vmf->ptl); | |
7f2b6ce8 | 3485 | vmf->prealloc_pte = NULL; |
4cf58924 | 3486 | } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) { |
7267ec00 KS |
3487 | return VM_FAULT_OOM; |
3488 | } | |
3489 | map_pte: | |
3490 | /* | |
3491 | * If a huge pmd materialized under us just retry later. Use | |
d0f0931d RZ |
3492 | * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of |
3493 | * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge | |
3494 | * under us and then back to pmd_none, as a result of MADV_DONTNEED | |
3495 | * running immediately after a huge pmd fault in a different thread of | |
3496 | * this mm, in turn leading to a misleading pmd_trans_huge() retval. | |
3497 | * All we have to ensure is that it is a regular pmd that we can walk | |
3498 | * with pte_offset_map() and we can do that through an atomic read in | |
3499 | * C, which is what pmd_trans_unstable() provides. | |
7267ec00 | 3500 | */ |
d0f0931d | 3501 | if (pmd_devmap_trans_unstable(vmf->pmd)) |
7267ec00 KS |
3502 | return VM_FAULT_NOPAGE; |
3503 | ||
d0f0931d RZ |
3504 | /* |
3505 | * At this point we know that our vmf->pmd points to a page of ptes | |
3506 | * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge() | |
3507 | * for the duration of the fault. If a racing MADV_DONTNEED runs and | |
3508 | * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still | |
3509 | * be valid and we will re-check to make sure the vmf->pte isn't | |
3510 | * pte_none() under vmf->ptl protection when we return to | |
3511 | * alloc_set_pte(). | |
3512 | */ | |
82b0f8c3 JK |
3513 | vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, |
3514 | &vmf->ptl); | |
7267ec00 KS |
3515 | return 0; |
3516 | } | |
3517 | ||
396bcc52 | 3518 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
82b0f8c3 | 3519 | static void deposit_prealloc_pte(struct vm_fault *vmf) |
953c66c2 | 3520 | { |
82b0f8c3 | 3521 | struct vm_area_struct *vma = vmf->vma; |
953c66c2 | 3522 | |
82b0f8c3 | 3523 | pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); |
953c66c2 AK |
3524 | /* |
3525 | * We are going to consume the prealloc table, | |
3526 | * count that as nr_ptes. | |
3527 | */ | |
c4812909 | 3528 | mm_inc_nr_ptes(vma->vm_mm); |
7f2b6ce8 | 3529 | vmf->prealloc_pte = NULL; |
953c66c2 AK |
3530 | } |
3531 | ||
2b740303 | 3532 | static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) |
10102459 | 3533 | { |
82b0f8c3 JK |
3534 | struct vm_area_struct *vma = vmf->vma; |
3535 | bool write = vmf->flags & FAULT_FLAG_WRITE; | |
3536 | unsigned long haddr = vmf->address & HPAGE_PMD_MASK; | |
10102459 | 3537 | pmd_t entry; |
2b740303 SJ |
3538 | int i; |
3539 | vm_fault_t ret; | |
10102459 KS |
3540 | |
3541 | if (!transhuge_vma_suitable(vma, haddr)) | |
3542 | return VM_FAULT_FALLBACK; | |
3543 | ||
3544 | ret = VM_FAULT_FALLBACK; | |
3545 | page = compound_head(page); | |
3546 | ||
953c66c2 AK |
3547 | /* |
3548 | * Archs like ppc64 need additonal space to store information | |
3549 | * related to pte entry. Use the preallocated table for that. | |
3550 | */ | |
82b0f8c3 | 3551 | if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { |
4cf58924 | 3552 | vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); |
82b0f8c3 | 3553 | if (!vmf->prealloc_pte) |
953c66c2 AK |
3554 | return VM_FAULT_OOM; |
3555 | smp_wmb(); /* See comment in __pte_alloc() */ | |
3556 | } | |
3557 | ||
82b0f8c3 JK |
3558 | vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); |
3559 | if (unlikely(!pmd_none(*vmf->pmd))) | |
10102459 KS |
3560 | goto out; |
3561 | ||
3562 | for (i = 0; i < HPAGE_PMD_NR; i++) | |
3563 | flush_icache_page(vma, page + i); | |
3564 | ||
3565 | entry = mk_huge_pmd(page, vma->vm_page_prot); | |
3566 | if (write) | |
f55e1014 | 3567 | entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); |
10102459 | 3568 | |
fadae295 | 3569 | add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR); |
10102459 | 3570 | page_add_file_rmap(page, true); |
953c66c2 AK |
3571 | /* |
3572 | * deposit and withdraw with pmd lock held | |
3573 | */ | |
3574 | if (arch_needs_pgtable_deposit()) | |
82b0f8c3 | 3575 | deposit_prealloc_pte(vmf); |
10102459 | 3576 | |
82b0f8c3 | 3577 | set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); |
10102459 | 3578 | |
82b0f8c3 | 3579 | update_mmu_cache_pmd(vma, haddr, vmf->pmd); |
10102459 KS |
3580 | |
3581 | /* fault is handled */ | |
3582 | ret = 0; | |
95ecedcd | 3583 | count_vm_event(THP_FILE_MAPPED); |
10102459 | 3584 | out: |
82b0f8c3 | 3585 | spin_unlock(vmf->ptl); |
10102459 KS |
3586 | return ret; |
3587 | } | |
3588 | #else | |
2b740303 | 3589 | static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) |
10102459 KS |
3590 | { |
3591 | BUILD_BUG(); | |
3592 | return 0; | |
3593 | } | |
3594 | #endif | |
3595 | ||
8c6e50b0 | 3596 | /** |
7267ec00 KS |
3597 | * alloc_set_pte - setup new PTE entry for given page and add reverse page |
3598 | * mapping. If needed, the fucntion allocates page table or use pre-allocated. | |
8c6e50b0 | 3599 | * |
82b0f8c3 | 3600 | * @vmf: fault environment |
8c6e50b0 | 3601 | * @page: page to map |
8c6e50b0 | 3602 | * |
82b0f8c3 JK |
3603 | * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on |
3604 | * return. | |
8c6e50b0 KS |
3605 | * |
3606 | * Target users are page handler itself and implementations of | |
3607 | * vm_ops->map_pages. | |
a862f68a MR |
3608 | * |
3609 | * Return: %0 on success, %VM_FAULT_ code in case of error. | |
8c6e50b0 | 3610 | */ |
9d82c694 | 3611 | vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page) |
3bb97794 | 3612 | { |
82b0f8c3 JK |
3613 | struct vm_area_struct *vma = vmf->vma; |
3614 | bool write = vmf->flags & FAULT_FLAG_WRITE; | |
3bb97794 | 3615 | pte_t entry; |
2b740303 | 3616 | vm_fault_t ret; |
10102459 | 3617 | |
396bcc52 | 3618 | if (pmd_none(*vmf->pmd) && PageTransCompound(page)) { |
82b0f8c3 | 3619 | ret = do_set_pmd(vmf, page); |
10102459 | 3620 | if (ret != VM_FAULT_FALLBACK) |
b0b9b3df | 3621 | return ret; |
10102459 | 3622 | } |
3bb97794 | 3623 | |
82b0f8c3 JK |
3624 | if (!vmf->pte) { |
3625 | ret = pte_alloc_one_map(vmf); | |
7267ec00 | 3626 | if (ret) |
b0b9b3df | 3627 | return ret; |
7267ec00 KS |
3628 | } |
3629 | ||
3630 | /* Re-check under ptl */ | |
b0b9b3df HD |
3631 | if (unlikely(!pte_none(*vmf->pte))) |
3632 | return VM_FAULT_NOPAGE; | |
7267ec00 | 3633 | |
3bb97794 KS |
3634 | flush_icache_page(vma, page); |
3635 | entry = mk_pte(page, vma->vm_page_prot); | |
3636 | if (write) | |
3637 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | |
bae473a4 KS |
3638 | /* copy-on-write page */ |
3639 | if (write && !(vma->vm_flags & VM_SHARED)) { | |
3bb97794 | 3640 | inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); |
be5d0a74 | 3641 | page_add_new_anon_rmap(page, vma, vmf->address, false); |
7267ec00 | 3642 | lru_cache_add_active_or_unevictable(page, vma); |
3bb97794 | 3643 | } else { |
eca56ff9 | 3644 | inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page)); |
dd78fedd | 3645 | page_add_file_rmap(page, false); |
3bb97794 | 3646 | } |
82b0f8c3 | 3647 | set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); |
3bb97794 KS |
3648 | |
3649 | /* no need to invalidate: a not-present page won't be cached */ | |
82b0f8c3 | 3650 | update_mmu_cache(vma, vmf->address, vmf->pte); |
7267ec00 | 3651 | |
b0b9b3df | 3652 | return 0; |
3bb97794 KS |
3653 | } |
3654 | ||
9118c0cb JK |
3655 | |
3656 | /** | |
3657 | * finish_fault - finish page fault once we have prepared the page to fault | |
3658 | * | |
3659 | * @vmf: structure describing the fault | |
3660 | * | |
3661 | * This function handles all that is needed to finish a page fault once the | |
3662 | * page to fault in is prepared. It handles locking of PTEs, inserts PTE for | |
3663 | * given page, adds reverse page mapping, handles memcg charges and LRU | |
a862f68a | 3664 | * addition. |
9118c0cb JK |
3665 | * |
3666 | * The function expects the page to be locked and on success it consumes a | |
3667 | * reference of a page being mapped (for the PTE which maps it). | |
a862f68a MR |
3668 | * |
3669 | * Return: %0 on success, %VM_FAULT_ code in case of error. | |
9118c0cb | 3670 | */ |
2b740303 | 3671 | vm_fault_t finish_fault(struct vm_fault *vmf) |
9118c0cb JK |
3672 | { |
3673 | struct page *page; | |
2b740303 | 3674 | vm_fault_t ret = 0; |
9118c0cb JK |
3675 | |
3676 | /* Did we COW the page? */ | |
3677 | if ((vmf->flags & FAULT_FLAG_WRITE) && | |
3678 | !(vmf->vma->vm_flags & VM_SHARED)) | |
3679 | page = vmf->cow_page; | |
3680 | else | |
3681 | page = vmf->page; | |
6b31d595 MH |
3682 | |
3683 | /* | |
3684 | * check even for read faults because we might have lost our CoWed | |
3685 | * page | |
3686 | */ | |
3687 | if (!(vmf->vma->vm_flags & VM_SHARED)) | |
3688 | ret = check_stable_address_space(vmf->vma->vm_mm); | |
3689 | if (!ret) | |
9d82c694 | 3690 | ret = alloc_set_pte(vmf, page); |
9118c0cb JK |
3691 | if (vmf->pte) |
3692 | pte_unmap_unlock(vmf->pte, vmf->ptl); | |
3693 | return ret; | |
3694 | } | |
3695 | ||
3a91053a KS |
3696 | static unsigned long fault_around_bytes __read_mostly = |
3697 | rounddown_pow_of_two(65536); | |
a9b0f861 | 3698 | |
a9b0f861 KS |
3699 | #ifdef CONFIG_DEBUG_FS |
3700 | static int fault_around_bytes_get(void *data, u64 *val) | |
1592eef0 | 3701 | { |
a9b0f861 | 3702 | *val = fault_around_bytes; |
1592eef0 KS |
3703 | return 0; |
3704 | } | |
3705 | ||
b4903d6e | 3706 | /* |
da391d64 WK |
3707 | * fault_around_bytes must be rounded down to the nearest page order as it's |
3708 | * what do_fault_around() expects to see. | |
b4903d6e | 3709 | */ |
a9b0f861 | 3710 | static int fault_around_bytes_set(void *data, u64 val) |
1592eef0 | 3711 | { |
a9b0f861 | 3712 | if (val / PAGE_SIZE > PTRS_PER_PTE) |
1592eef0 | 3713 | return -EINVAL; |
b4903d6e AR |
3714 | if (val > PAGE_SIZE) |
3715 | fault_around_bytes = rounddown_pow_of_two(val); | |
3716 | else | |
3717 | fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ | |
1592eef0 KS |
3718 | return 0; |
3719 | } | |
0a1345f8 | 3720 | DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, |
a9b0f861 | 3721 | fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); |
1592eef0 KS |
3722 | |
3723 | static int __init fault_around_debugfs(void) | |
3724 | { | |
d9f7979c GKH |
3725 | debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, |
3726 | &fault_around_bytes_fops); | |
1592eef0 KS |
3727 | return 0; |
3728 | } | |
3729 | late_initcall(fault_around_debugfs); | |
1592eef0 | 3730 | #endif |
8c6e50b0 | 3731 | |
1fdb412b KS |
3732 | /* |
3733 | * do_fault_around() tries to map few pages around the fault address. The hope | |
3734 | * is that the pages will be needed soon and this will lower the number of | |
3735 | * faults to handle. | |
3736 | * | |
3737 | * It uses vm_ops->map_pages() to map the pages, which skips the page if it's | |
3738 | * not ready to be mapped: not up-to-date, locked, etc. | |
3739 | * | |
3740 | * This function is called with the page table lock taken. In the split ptlock | |
3741 | * case the page table lock only protects only those entries which belong to | |
3742 | * the page table corresponding to the fault address. | |
3743 | * | |
3744 | * This function doesn't cross the VMA boundaries, in order to call map_pages() | |
3745 | * only once. | |
3746 | * | |
da391d64 WK |
3747 | * fault_around_bytes defines how many bytes we'll try to map. |
3748 | * do_fault_around() expects it to be set to a power of two less than or equal | |
3749 | * to PTRS_PER_PTE. | |
1fdb412b | 3750 | * |
da391d64 WK |
3751 | * The virtual address of the area that we map is naturally aligned to |
3752 | * fault_around_bytes rounded down to the machine page size | |
3753 | * (and therefore to page order). This way it's easier to guarantee | |
3754 | * that we don't cross page table boundaries. | |
1fdb412b | 3755 | */ |
2b740303 | 3756 | static vm_fault_t do_fault_around(struct vm_fault *vmf) |
8c6e50b0 | 3757 | { |
82b0f8c3 | 3758 | unsigned long address = vmf->address, nr_pages, mask; |
0721ec8b | 3759 | pgoff_t start_pgoff = vmf->pgoff; |
bae473a4 | 3760 | pgoff_t end_pgoff; |
2b740303 SJ |
3761 | int off; |
3762 | vm_fault_t ret = 0; | |
8c6e50b0 | 3763 | |
4db0c3c2 | 3764 | nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT; |
aecd6f44 KS |
3765 | mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; |
3766 | ||
82b0f8c3 JK |
3767 | vmf->address = max(address & mask, vmf->vma->vm_start); |
3768 | off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); | |
bae473a4 | 3769 | start_pgoff -= off; |
8c6e50b0 KS |
3770 | |
3771 | /* | |
da391d64 WK |
3772 | * end_pgoff is either the end of the page table, the end of |
3773 | * the vma or nr_pages from start_pgoff, depending what is nearest. | |
8c6e50b0 | 3774 | */ |
bae473a4 | 3775 | end_pgoff = start_pgoff - |
82b0f8c3 | 3776 | ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + |
8c6e50b0 | 3777 | PTRS_PER_PTE - 1; |
82b0f8c3 | 3778 | end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1, |
bae473a4 | 3779 | start_pgoff + nr_pages - 1); |
8c6e50b0 | 3780 | |
82b0f8c3 | 3781 | if (pmd_none(*vmf->pmd)) { |
4cf58924 | 3782 | vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); |
82b0f8c3 | 3783 | if (!vmf->prealloc_pte) |
c5f88bd2 | 3784 | goto out; |
7267ec00 | 3785 | smp_wmb(); /* See comment in __pte_alloc() */ |
8c6e50b0 KS |
3786 | } |
3787 | ||
82b0f8c3 | 3788 | vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff); |
7267ec00 | 3789 | |
7267ec00 | 3790 | /* Huge page is mapped? Page fault is solved */ |
82b0f8c3 | 3791 | if (pmd_trans_huge(*vmf->pmd)) { |
7267ec00 KS |
3792 | ret = VM_FAULT_NOPAGE; |
3793 | goto out; | |
3794 | } | |
3795 | ||
3796 | /* ->map_pages() haven't done anything useful. Cold page cache? */ | |
82b0f8c3 | 3797 | if (!vmf->pte) |
7267ec00 KS |
3798 | goto out; |
3799 | ||
3800 | /* check if the page fault is solved */ | |
82b0f8c3 JK |
3801 | vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT); |
3802 | if (!pte_none(*vmf->pte)) | |
7267ec00 | 3803 | ret = VM_FAULT_NOPAGE; |
82b0f8c3 | 3804 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
bae473a4 | 3805 | out: |
82b0f8c3 JK |
3806 | vmf->address = address; |
3807 | vmf->pte = NULL; | |
7267ec00 | 3808 | return ret; |
8c6e50b0 KS |
3809 | } |
3810 | ||
2b740303 | 3811 | static vm_fault_t do_read_fault(struct vm_fault *vmf) |
e655fb29 | 3812 | { |
82b0f8c3 | 3813 | struct vm_area_struct *vma = vmf->vma; |
2b740303 | 3814 | vm_fault_t ret = 0; |
8c6e50b0 KS |
3815 | |
3816 | /* | |
3817 | * Let's call ->map_pages() first and use ->fault() as fallback | |
3818 | * if page by the offset is not ready to be mapped (cold cache or | |
3819 | * something). | |
3820 | */ | |
9b4bdd2f | 3821 | if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) { |
0721ec8b | 3822 | ret = do_fault_around(vmf); |
7267ec00 KS |
3823 | if (ret) |
3824 | return ret; | |
8c6e50b0 | 3825 | } |
e655fb29 | 3826 | |
936ca80d | 3827 | ret = __do_fault(vmf); |
e655fb29 KS |
3828 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) |
3829 | return ret; | |
3830 | ||
9118c0cb | 3831 | ret |= finish_fault(vmf); |
936ca80d | 3832 | unlock_page(vmf->page); |
7267ec00 | 3833 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) |
936ca80d | 3834 | put_page(vmf->page); |
e655fb29 KS |
3835 | return ret; |
3836 | } | |
3837 | ||
2b740303 | 3838 | static vm_fault_t do_cow_fault(struct vm_fault *vmf) |
ec47c3b9 | 3839 | { |
82b0f8c3 | 3840 | struct vm_area_struct *vma = vmf->vma; |
2b740303 | 3841 | vm_fault_t ret; |
ec47c3b9 KS |
3842 | |
3843 | if (unlikely(anon_vma_prepare(vma))) | |
3844 | return VM_FAULT_OOM; | |
3845 | ||
936ca80d JK |
3846 | vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); |
3847 | if (!vmf->cow_page) | |
ec47c3b9 KS |
3848 | return VM_FAULT_OOM; |
3849 | ||
9d82c694 | 3850 | if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL, false)) { |
936ca80d | 3851 | put_page(vmf->cow_page); |
ec47c3b9 KS |
3852 | return VM_FAULT_OOM; |
3853 | } | |
9d82c694 | 3854 | cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL); |
ec47c3b9 | 3855 | |
936ca80d | 3856 | ret = __do_fault(vmf); |
ec47c3b9 KS |
3857 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) |
3858 | goto uncharge_out; | |
3917048d JK |
3859 | if (ret & VM_FAULT_DONE_COW) |
3860 | return ret; | |
ec47c3b9 | 3861 | |
b1aa812b | 3862 | copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); |
936ca80d | 3863 | __SetPageUptodate(vmf->cow_page); |
ec47c3b9 | 3864 | |
9118c0cb | 3865 | ret |= finish_fault(vmf); |
b1aa812b JK |
3866 | unlock_page(vmf->page); |
3867 | put_page(vmf->page); | |
7267ec00 KS |
3868 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) |
3869 | goto uncharge_out; | |
ec47c3b9 KS |
3870 | return ret; |
3871 | uncharge_out: | |
936ca80d | 3872 | put_page(vmf->cow_page); |
ec47c3b9 KS |
3873 | return ret; |
3874 | } | |
3875 | ||
2b740303 | 3876 | static vm_fault_t do_shared_fault(struct vm_fault *vmf) |
1da177e4 | 3877 | { |
82b0f8c3 | 3878 | struct vm_area_struct *vma = vmf->vma; |
2b740303 | 3879 | vm_fault_t ret, tmp; |
1d65f86d | 3880 | |
936ca80d | 3881 | ret = __do_fault(vmf); |
7eae74af | 3882 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) |
f0c6d4d2 | 3883 | return ret; |
1da177e4 LT |
3884 | |
3885 | /* | |
f0c6d4d2 KS |
3886 | * Check if the backing address space wants to know that the page is |
3887 | * about to become writable | |
1da177e4 | 3888 | */ |
fb09a464 | 3889 | if (vma->vm_ops->page_mkwrite) { |
936ca80d | 3890 | unlock_page(vmf->page); |
38b8cb7f | 3891 | tmp = do_page_mkwrite(vmf); |
fb09a464 KS |
3892 | if (unlikely(!tmp || |
3893 | (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { | |
936ca80d | 3894 | put_page(vmf->page); |
fb09a464 | 3895 | return tmp; |
4294621f | 3896 | } |
fb09a464 KS |
3897 | } |
3898 | ||
9118c0cb | 3899 | ret |= finish_fault(vmf); |
7267ec00 KS |
3900 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | |
3901 | VM_FAULT_RETRY))) { | |
936ca80d JK |
3902 | unlock_page(vmf->page); |
3903 | put_page(vmf->page); | |
f0c6d4d2 | 3904 | return ret; |
1da177e4 | 3905 | } |
b827e496 | 3906 | |
89b15332 | 3907 | ret |= fault_dirty_shared_page(vmf); |
1d65f86d | 3908 | return ret; |
54cb8821 | 3909 | } |
d00806b1 | 3910 | |
9a95f3cf PC |
3911 | /* |
3912 | * We enter with non-exclusive mmap_sem (to exclude vma changes, | |
3913 | * but allow concurrent faults). | |
3914 | * The mmap_sem may have been released depending on flags and our | |
3915 | * return value. See filemap_fault() and __lock_page_or_retry(). | |
fc8efd2d JS |
3916 | * If mmap_sem is released, vma may become invalid (for example |
3917 | * by other thread calling munmap()). | |
9a95f3cf | 3918 | */ |
2b740303 | 3919 | static vm_fault_t do_fault(struct vm_fault *vmf) |
54cb8821 | 3920 | { |
82b0f8c3 | 3921 | struct vm_area_struct *vma = vmf->vma; |
fc8efd2d | 3922 | struct mm_struct *vm_mm = vma->vm_mm; |
2b740303 | 3923 | vm_fault_t ret; |
54cb8821 | 3924 | |
ff09d7ec AK |
3925 | /* |
3926 | * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND | |
3927 | */ | |
3928 | if (!vma->vm_ops->fault) { | |
3929 | /* | |
3930 | * If we find a migration pmd entry or a none pmd entry, which | |
3931 | * should never happen, return SIGBUS | |
3932 | */ | |
3933 | if (unlikely(!pmd_present(*vmf->pmd))) | |
3934 | ret = VM_FAULT_SIGBUS; | |
3935 | else { | |
3936 | vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, | |
3937 | vmf->pmd, | |
3938 | vmf->address, | |
3939 | &vmf->ptl); | |
3940 | /* | |
3941 | * Make sure this is not a temporary clearing of pte | |
3942 | * by holding ptl and checking again. A R/M/W update | |
3943 | * of pte involves: take ptl, clearing the pte so that | |
3944 | * we don't have concurrent modification by hardware | |
3945 | * followed by an update. | |
3946 | */ | |
3947 | if (unlikely(pte_none(*vmf->pte))) | |
3948 | ret = VM_FAULT_SIGBUS; | |
3949 | else | |
3950 | ret = VM_FAULT_NOPAGE; | |
3951 | ||
3952 | pte_unmap_unlock(vmf->pte, vmf->ptl); | |
3953 | } | |
3954 | } else if (!(vmf->flags & FAULT_FLAG_WRITE)) | |
b0b9b3df HD |
3955 | ret = do_read_fault(vmf); |
3956 | else if (!(vma->vm_flags & VM_SHARED)) | |
3957 | ret = do_cow_fault(vmf); | |
3958 | else | |
3959 | ret = do_shared_fault(vmf); | |
3960 | ||
3961 | /* preallocated pagetable is unused: free it */ | |
3962 | if (vmf->prealloc_pte) { | |
fc8efd2d | 3963 | pte_free(vm_mm, vmf->prealloc_pte); |
7f2b6ce8 | 3964 | vmf->prealloc_pte = NULL; |
b0b9b3df HD |
3965 | } |
3966 | return ret; | |
54cb8821 NP |
3967 | } |
3968 | ||
b19a9939 | 3969 | static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, |
04bb2f94 RR |
3970 | unsigned long addr, int page_nid, |
3971 | int *flags) | |
9532fec1 MG |
3972 | { |
3973 | get_page(page); | |
3974 | ||
3975 | count_vm_numa_event(NUMA_HINT_FAULTS); | |
04bb2f94 | 3976 | if (page_nid == numa_node_id()) { |
9532fec1 | 3977 | count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); |
04bb2f94 RR |
3978 | *flags |= TNF_FAULT_LOCAL; |
3979 | } | |
9532fec1 MG |
3980 | |
3981 | return mpol_misplaced(page, vma, addr); | |
3982 | } | |
3983 | ||
2b740303 | 3984 | static vm_fault_t do_numa_page(struct vm_fault *vmf) |
d10e63f2 | 3985 | { |
82b0f8c3 | 3986 | struct vm_area_struct *vma = vmf->vma; |
4daae3b4 | 3987 | struct page *page = NULL; |
98fa15f3 | 3988 | int page_nid = NUMA_NO_NODE; |
90572890 | 3989 | int last_cpupid; |
cbee9f88 | 3990 | int target_nid; |
b8593bfd | 3991 | bool migrated = false; |
04a86453 | 3992 | pte_t pte, old_pte; |
288bc549 | 3993 | bool was_writable = pte_savedwrite(vmf->orig_pte); |
6688cc05 | 3994 | int flags = 0; |
d10e63f2 MG |
3995 | |
3996 | /* | |
166f61b9 TH |
3997 | * The "pte" at this point cannot be used safely without |
3998 | * validation through pte_unmap_same(). It's of NUMA type but | |
3999 | * the pfn may be screwed if the read is non atomic. | |
166f61b9 | 4000 | */ |
82b0f8c3 JK |
4001 | vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd); |
4002 | spin_lock(vmf->ptl); | |
cee216a6 | 4003 | if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { |
82b0f8c3 | 4004 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
4daae3b4 MG |
4005 | goto out; |
4006 | } | |
4007 | ||
cee216a6 AK |
4008 | /* |
4009 | * Make it present again, Depending on how arch implementes non | |
4010 | * accessible ptes, some can allow access by kernel mode. | |
4011 | */ | |
04a86453 AK |
4012 | old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte); |
4013 | pte = pte_modify(old_pte, vma->vm_page_prot); | |
4d942466 | 4014 | pte = pte_mkyoung(pte); |
b191f9b1 MG |
4015 | if (was_writable) |
4016 | pte = pte_mkwrite(pte); | |
04a86453 | 4017 | ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte); |
82b0f8c3 | 4018 | update_mmu_cache(vma, vmf->address, vmf->pte); |
d10e63f2 | 4019 | |
82b0f8c3 | 4020 | page = vm_normal_page(vma, vmf->address, pte); |
d10e63f2 | 4021 | if (!page) { |
82b0f8c3 | 4022 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
d10e63f2 MG |
4023 | return 0; |
4024 | } | |
4025 | ||
e81c4802 KS |
4026 | /* TODO: handle PTE-mapped THP */ |
4027 | if (PageCompound(page)) { | |
82b0f8c3 | 4028 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
e81c4802 KS |
4029 | return 0; |
4030 | } | |
4031 | ||
6688cc05 | 4032 | /* |
bea66fbd MG |
4033 | * Avoid grouping on RO pages in general. RO pages shouldn't hurt as |
4034 | * much anyway since they can be in shared cache state. This misses | |
4035 | * the case where a mapping is writable but the process never writes | |
4036 | * to it but pte_write gets cleared during protection updates and | |
4037 | * pte_dirty has unpredictable behaviour between PTE scan updates, | |
4038 | * background writeback, dirty balancing and application behaviour. | |
6688cc05 | 4039 | */ |
d59dc7bc | 4040 | if (!pte_write(pte)) |
6688cc05 PZ |
4041 | flags |= TNF_NO_GROUP; |
4042 | ||
dabe1d99 RR |
4043 | /* |
4044 | * Flag if the page is shared between multiple address spaces. This | |
4045 | * is later used when determining whether to group tasks together | |
4046 | */ | |
4047 | if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) | |
4048 | flags |= TNF_SHARED; | |
4049 | ||
90572890 | 4050 | last_cpupid = page_cpupid_last(page); |
8191acbd | 4051 | page_nid = page_to_nid(page); |
82b0f8c3 | 4052 | target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid, |
bae473a4 | 4053 | &flags); |
82b0f8c3 | 4054 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
98fa15f3 | 4055 | if (target_nid == NUMA_NO_NODE) { |
4daae3b4 MG |
4056 | put_page(page); |
4057 | goto out; | |
4058 | } | |
4059 | ||
4060 | /* Migrate to the requested node */ | |
1bc115d8 | 4061 | migrated = migrate_misplaced_page(page, vma, target_nid); |
6688cc05 | 4062 | if (migrated) { |
8191acbd | 4063 | page_nid = target_nid; |
6688cc05 | 4064 | flags |= TNF_MIGRATED; |
074c2381 MG |
4065 | } else |
4066 | flags |= TNF_MIGRATE_FAIL; | |
4daae3b4 MG |
4067 | |
4068 | out: | |
98fa15f3 | 4069 | if (page_nid != NUMA_NO_NODE) |
6688cc05 | 4070 | task_numa_fault(last_cpupid, page_nid, 1, flags); |
d10e63f2 MG |
4071 | return 0; |
4072 | } | |
4073 | ||
2b740303 | 4074 | static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) |
b96375f7 | 4075 | { |
f4200391 | 4076 | if (vma_is_anonymous(vmf->vma)) |
82b0f8c3 | 4077 | return do_huge_pmd_anonymous_page(vmf); |
a2d58167 | 4078 | if (vmf->vma->vm_ops->huge_fault) |
c791ace1 | 4079 | return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); |
b96375f7 MW |
4080 | return VM_FAULT_FALLBACK; |
4081 | } | |
4082 | ||
183f24aa | 4083 | /* `inline' is required to avoid gcc 4.1.2 build error */ |
2b740303 | 4084 | static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd) |
b96375f7 | 4085 | { |
529b930b | 4086 | if (vma_is_anonymous(vmf->vma)) { |
292924b2 | 4087 | if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd)) |
529b930b | 4088 | return handle_userfault(vmf, VM_UFFD_WP); |
82b0f8c3 | 4089 | return do_huge_pmd_wp_page(vmf, orig_pmd); |
529b930b | 4090 | } |
327e9fd4 THV |
4091 | if (vmf->vma->vm_ops->huge_fault) { |
4092 | vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); | |
4093 | ||
4094 | if (!(ret & VM_FAULT_FALLBACK)) | |
4095 | return ret; | |
4096 | } | |
af9e4d5f | 4097 | |
327e9fd4 | 4098 | /* COW or write-notify handled on pte level: split pmd. */ |
82b0f8c3 | 4099 | __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL); |
af9e4d5f | 4100 | |
b96375f7 MW |
4101 | return VM_FAULT_FALLBACK; |
4102 | } | |
4103 | ||
2b740303 | 4104 | static vm_fault_t create_huge_pud(struct vm_fault *vmf) |
a00cc7d9 | 4105 | { |
327e9fd4 THV |
4106 | #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ |
4107 | defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) | |
a00cc7d9 MW |
4108 | /* No support for anonymous transparent PUD pages yet */ |
4109 | if (vma_is_anonymous(vmf->vma)) | |
327e9fd4 THV |
4110 | goto split; |
4111 | if (vmf->vma->vm_ops->huge_fault) { | |
4112 | vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); | |
4113 | ||
4114 | if (!(ret & VM_FAULT_FALLBACK)) | |
4115 | return ret; | |
4116 | } | |
4117 | split: | |
4118 | /* COW or write-notify not handled on PUD level: split pud.*/ | |
4119 | __split_huge_pud(vmf->vma, vmf->pud, vmf->address); | |
a00cc7d9 MW |
4120 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ |
4121 | return VM_FAULT_FALLBACK; | |
4122 | } | |
4123 | ||
2b740303 | 4124 | static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) |
a00cc7d9 MW |
4125 | { |
4126 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | |
4127 | /* No support for anonymous transparent PUD pages yet */ | |
4128 | if (vma_is_anonymous(vmf->vma)) | |
4129 | return VM_FAULT_FALLBACK; | |
4130 | if (vmf->vma->vm_ops->huge_fault) | |
c791ace1 | 4131 | return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); |
a00cc7d9 MW |
4132 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ |
4133 | return VM_FAULT_FALLBACK; | |
4134 | } | |
4135 | ||
1da177e4 LT |
4136 | /* |
4137 | * These routines also need to handle stuff like marking pages dirty | |
4138 | * and/or accessed for architectures that don't do it in hardware (most | |
4139 | * RISC architectures). The early dirtying is also good on the i386. | |
4140 | * | |
4141 | * There is also a hook called "update_mmu_cache()" that architectures | |
4142 | * with external mmu caches can use to update those (ie the Sparc or | |
4143 | * PowerPC hashed page tables that act as extended TLBs). | |
4144 | * | |
7267ec00 KS |
4145 | * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow |
4146 | * concurrent faults). | |
9a95f3cf | 4147 | * |
7267ec00 KS |
4148 | * The mmap_sem may have been released depending on flags and our return value. |
4149 | * See filemap_fault() and __lock_page_or_retry(). | |
1da177e4 | 4150 | */ |
2b740303 | 4151 | static vm_fault_t handle_pte_fault(struct vm_fault *vmf) |
1da177e4 LT |
4152 | { |
4153 | pte_t entry; | |
4154 | ||
82b0f8c3 | 4155 | if (unlikely(pmd_none(*vmf->pmd))) { |
7267ec00 KS |
4156 | /* |
4157 | * Leave __pte_alloc() until later: because vm_ops->fault may | |
4158 | * want to allocate huge page, and if we expose page table | |
4159 | * for an instant, it will be difficult to retract from | |
4160 | * concurrent faults and from rmap lookups. | |
4161 | */ | |
82b0f8c3 | 4162 | vmf->pte = NULL; |
7267ec00 KS |
4163 | } else { |
4164 | /* See comment in pte_alloc_one_map() */ | |
d0f0931d | 4165 | if (pmd_devmap_trans_unstable(vmf->pmd)) |
7267ec00 KS |
4166 | return 0; |
4167 | /* | |
4168 | * A regular pmd is established and it can't morph into a huge | |
4169 | * pmd from under us anymore at this point because we hold the | |
4170 | * mmap_sem read mode and khugepaged takes it in write mode. | |
4171 | * So now it's safe to run pte_offset_map(). | |
4172 | */ | |
82b0f8c3 | 4173 | vmf->pte = pte_offset_map(vmf->pmd, vmf->address); |
2994302b | 4174 | vmf->orig_pte = *vmf->pte; |
7267ec00 KS |
4175 | |
4176 | /* | |
4177 | * some architectures can have larger ptes than wordsize, | |
4178 | * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and | |
b03a0fe0 PM |
4179 | * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic |
4180 | * accesses. The code below just needs a consistent view | |
4181 | * for the ifs and we later double check anyway with the | |
7267ec00 KS |
4182 | * ptl lock held. So here a barrier will do. |
4183 | */ | |
4184 | barrier(); | |
2994302b | 4185 | if (pte_none(vmf->orig_pte)) { |
82b0f8c3 JK |
4186 | pte_unmap(vmf->pte); |
4187 | vmf->pte = NULL; | |
65500d23 | 4188 | } |
1da177e4 LT |
4189 | } |
4190 | ||
82b0f8c3 JK |
4191 | if (!vmf->pte) { |
4192 | if (vma_is_anonymous(vmf->vma)) | |
4193 | return do_anonymous_page(vmf); | |
7267ec00 | 4194 | else |
82b0f8c3 | 4195 | return do_fault(vmf); |
7267ec00 KS |
4196 | } |
4197 | ||
2994302b JK |
4198 | if (!pte_present(vmf->orig_pte)) |
4199 | return do_swap_page(vmf); | |
7267ec00 | 4200 | |
2994302b JK |
4201 | if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) |
4202 | return do_numa_page(vmf); | |
d10e63f2 | 4203 | |
82b0f8c3 JK |
4204 | vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); |
4205 | spin_lock(vmf->ptl); | |
2994302b | 4206 | entry = vmf->orig_pte; |
82b0f8c3 | 4207 | if (unlikely(!pte_same(*vmf->pte, entry))) |
8f4e2101 | 4208 | goto unlock; |
82b0f8c3 | 4209 | if (vmf->flags & FAULT_FLAG_WRITE) { |
f6f37321 | 4210 | if (!pte_write(entry)) |
2994302b | 4211 | return do_wp_page(vmf); |
1da177e4 LT |
4212 | entry = pte_mkdirty(entry); |
4213 | } | |
4214 | entry = pte_mkyoung(entry); | |
82b0f8c3 JK |
4215 | if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, |
4216 | vmf->flags & FAULT_FLAG_WRITE)) { | |
4217 | update_mmu_cache(vmf->vma, vmf->address, vmf->pte); | |
1a44e149 AA |
4218 | } else { |
4219 | /* | |
4220 | * This is needed only for protection faults but the arch code | |
4221 | * is not yet telling us if this is a protection fault or not. | |
4222 | * This still avoids useless tlb flushes for .text page faults | |
4223 | * with threads. | |
4224 | */ | |
82b0f8c3 JK |
4225 | if (vmf->flags & FAULT_FLAG_WRITE) |
4226 | flush_tlb_fix_spurious_fault(vmf->vma, vmf->address); | |
1a44e149 | 4227 | } |
8f4e2101 | 4228 | unlock: |
82b0f8c3 | 4229 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
83c54070 | 4230 | return 0; |
1da177e4 LT |
4231 | } |
4232 | ||
4233 | /* | |
4234 | * By the time we get here, we already hold the mm semaphore | |
9a95f3cf PC |
4235 | * |
4236 | * The mmap_sem may have been released depending on flags and our | |
4237 | * return value. See filemap_fault() and __lock_page_or_retry(). | |
1da177e4 | 4238 | */ |
2b740303 SJ |
4239 | static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, |
4240 | unsigned long address, unsigned int flags) | |
1da177e4 | 4241 | { |
82b0f8c3 | 4242 | struct vm_fault vmf = { |
bae473a4 | 4243 | .vma = vma, |
1a29d85e | 4244 | .address = address & PAGE_MASK, |
bae473a4 | 4245 | .flags = flags, |
0721ec8b | 4246 | .pgoff = linear_page_index(vma, address), |
667240e0 | 4247 | .gfp_mask = __get_fault_gfp_mask(vma), |
bae473a4 | 4248 | }; |
fde26bed | 4249 | unsigned int dirty = flags & FAULT_FLAG_WRITE; |
dcddffd4 | 4250 | struct mm_struct *mm = vma->vm_mm; |
1da177e4 | 4251 | pgd_t *pgd; |
c2febafc | 4252 | p4d_t *p4d; |
2b740303 | 4253 | vm_fault_t ret; |
1da177e4 | 4254 | |
1da177e4 | 4255 | pgd = pgd_offset(mm, address); |
c2febafc KS |
4256 | p4d = p4d_alloc(mm, pgd, address); |
4257 | if (!p4d) | |
4258 | return VM_FAULT_OOM; | |
a00cc7d9 | 4259 | |
c2febafc | 4260 | vmf.pud = pud_alloc(mm, p4d, address); |
a00cc7d9 | 4261 | if (!vmf.pud) |
c74df32c | 4262 | return VM_FAULT_OOM; |
625110b5 | 4263 | retry_pud: |
7635d9cb | 4264 | if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) { |
a00cc7d9 MW |
4265 | ret = create_huge_pud(&vmf); |
4266 | if (!(ret & VM_FAULT_FALLBACK)) | |
4267 | return ret; | |
4268 | } else { | |
4269 | pud_t orig_pud = *vmf.pud; | |
4270 | ||
4271 | barrier(); | |
4272 | if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { | |
a00cc7d9 | 4273 | |
a00cc7d9 MW |
4274 | /* NUMA case for anonymous PUDs would go here */ |
4275 | ||
f6f37321 | 4276 | if (dirty && !pud_write(orig_pud)) { |
a00cc7d9 MW |
4277 | ret = wp_huge_pud(&vmf, orig_pud); |
4278 | if (!(ret & VM_FAULT_FALLBACK)) | |
4279 | return ret; | |
4280 | } else { | |
4281 | huge_pud_set_accessed(&vmf, orig_pud); | |
4282 | return 0; | |
4283 | } | |
4284 | } | |
4285 | } | |
4286 | ||
4287 | vmf.pmd = pmd_alloc(mm, vmf.pud, address); | |
82b0f8c3 | 4288 | if (!vmf.pmd) |
c74df32c | 4289 | return VM_FAULT_OOM; |
625110b5 TH |
4290 | |
4291 | /* Huge pud page fault raced with pmd_alloc? */ | |
4292 | if (pud_trans_unstable(vmf.pud)) | |
4293 | goto retry_pud; | |
4294 | ||
7635d9cb | 4295 | if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) { |
a2d58167 | 4296 | ret = create_huge_pmd(&vmf); |
c0292554 KS |
4297 | if (!(ret & VM_FAULT_FALLBACK)) |
4298 | return ret; | |
71e3aac0 | 4299 | } else { |
82b0f8c3 | 4300 | pmd_t orig_pmd = *vmf.pmd; |
1f1d06c3 | 4301 | |
71e3aac0 | 4302 | barrier(); |
84c3fc4e ZY |
4303 | if (unlikely(is_swap_pmd(orig_pmd))) { |
4304 | VM_BUG_ON(thp_migration_supported() && | |
4305 | !is_pmd_migration_entry(orig_pmd)); | |
4306 | if (is_pmd_migration_entry(orig_pmd)) | |
4307 | pmd_migration_entry_wait(mm, vmf.pmd); | |
4308 | return 0; | |
4309 | } | |
5c7fb56e | 4310 | if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) { |
38e08854 | 4311 | if (pmd_protnone(orig_pmd) && vma_is_accessible(vma)) |
82b0f8c3 | 4312 | return do_huge_pmd_numa_page(&vmf, orig_pmd); |
d10e63f2 | 4313 | |
f6f37321 | 4314 | if (dirty && !pmd_write(orig_pmd)) { |
82b0f8c3 | 4315 | ret = wp_huge_pmd(&vmf, orig_pmd); |
9845cbbd KS |
4316 | if (!(ret & VM_FAULT_FALLBACK)) |
4317 | return ret; | |
a1dd450b | 4318 | } else { |
82b0f8c3 | 4319 | huge_pmd_set_accessed(&vmf, orig_pmd); |
9845cbbd | 4320 | return 0; |
1f1d06c3 | 4321 | } |
71e3aac0 AA |
4322 | } |
4323 | } | |
4324 | ||
82b0f8c3 | 4325 | return handle_pte_fault(&vmf); |
1da177e4 LT |
4326 | } |
4327 | ||
9a95f3cf PC |
4328 | /* |
4329 | * By the time we get here, we already hold the mm semaphore | |
4330 | * | |
4331 | * The mmap_sem may have been released depending on flags and our | |
4332 | * return value. See filemap_fault() and __lock_page_or_retry(). | |
4333 | */ | |
2b740303 | 4334 | vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, |
dcddffd4 | 4335 | unsigned int flags) |
519e5247 | 4336 | { |
2b740303 | 4337 | vm_fault_t ret; |
519e5247 JW |
4338 | |
4339 | __set_current_state(TASK_RUNNING); | |
4340 | ||
4341 | count_vm_event(PGFAULT); | |
2262185c | 4342 | count_memcg_event_mm(vma->vm_mm, PGFAULT); |
519e5247 JW |
4343 | |
4344 | /* do counter updates before entering really critical section. */ | |
4345 | check_sync_rss_stat(current); | |
4346 | ||
de0c799b LD |
4347 | if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, |
4348 | flags & FAULT_FLAG_INSTRUCTION, | |
4349 | flags & FAULT_FLAG_REMOTE)) | |
4350 | return VM_FAULT_SIGSEGV; | |
4351 | ||
519e5247 JW |
4352 | /* |
4353 | * Enable the memcg OOM handling for faults triggered in user | |
4354 | * space. Kernel faults are handled more gracefully. | |
4355 | */ | |
4356 | if (flags & FAULT_FLAG_USER) | |
29ef680a | 4357 | mem_cgroup_enter_user_fault(); |
519e5247 | 4358 | |
bae473a4 KS |
4359 | if (unlikely(is_vm_hugetlb_page(vma))) |
4360 | ret = hugetlb_fault(vma->vm_mm, vma, address, flags); | |
4361 | else | |
4362 | ret = __handle_mm_fault(vma, address, flags); | |
519e5247 | 4363 | |
49426420 | 4364 | if (flags & FAULT_FLAG_USER) { |
29ef680a | 4365 | mem_cgroup_exit_user_fault(); |
166f61b9 TH |
4366 | /* |
4367 | * The task may have entered a memcg OOM situation but | |
4368 | * if the allocation error was handled gracefully (no | |
4369 | * VM_FAULT_OOM), there is no need to kill anything. | |
4370 | * Just clean up the OOM state peacefully. | |
4371 | */ | |
4372 | if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) | |
4373 | mem_cgroup_oom_synchronize(false); | |
49426420 | 4374 | } |
3812c8c8 | 4375 | |
519e5247 JW |
4376 | return ret; |
4377 | } | |
e1d6d01a | 4378 | EXPORT_SYMBOL_GPL(handle_mm_fault); |
519e5247 | 4379 | |
90eceff1 KS |
4380 | #ifndef __PAGETABLE_P4D_FOLDED |
4381 | /* | |
4382 | * Allocate p4d page table. | |
4383 | * We've already handled the fast-path in-line. | |
4384 | */ | |
4385 | int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) | |
4386 | { | |
4387 | p4d_t *new = p4d_alloc_one(mm, address); | |
4388 | if (!new) | |
4389 | return -ENOMEM; | |
4390 | ||
4391 | smp_wmb(); /* See comment in __pte_alloc */ | |
4392 | ||
4393 | spin_lock(&mm->page_table_lock); | |
4394 | if (pgd_present(*pgd)) /* Another has populated it */ | |
4395 | p4d_free(mm, new); | |
4396 | else | |
4397 | pgd_populate(mm, pgd, new); | |
4398 | spin_unlock(&mm->page_table_lock); | |
4399 | return 0; | |
4400 | } | |
4401 | #endif /* __PAGETABLE_P4D_FOLDED */ | |
4402 | ||
1da177e4 LT |
4403 | #ifndef __PAGETABLE_PUD_FOLDED |
4404 | /* | |
4405 | * Allocate page upper directory. | |
872fec16 | 4406 | * We've already handled the fast-path in-line. |
1da177e4 | 4407 | */ |
c2febafc | 4408 | int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) |
1da177e4 | 4409 | { |
c74df32c HD |
4410 | pud_t *new = pud_alloc_one(mm, address); |
4411 | if (!new) | |
1bb3630e | 4412 | return -ENOMEM; |
1da177e4 | 4413 | |
362a61ad NP |
4414 | smp_wmb(); /* See comment in __pte_alloc */ |
4415 | ||
872fec16 | 4416 | spin_lock(&mm->page_table_lock); |
c2febafc | 4417 | #ifndef __ARCH_HAS_5LEVEL_HACK |
b4e98d9a KS |
4418 | if (!p4d_present(*p4d)) { |
4419 | mm_inc_nr_puds(mm); | |
c2febafc | 4420 | p4d_populate(mm, p4d, new); |
b4e98d9a | 4421 | } else /* Another has populated it */ |
5e541973 | 4422 | pud_free(mm, new); |
b4e98d9a KS |
4423 | #else |
4424 | if (!pgd_present(*p4d)) { | |
4425 | mm_inc_nr_puds(mm); | |
c2febafc | 4426 | pgd_populate(mm, p4d, new); |
b4e98d9a KS |
4427 | } else /* Another has populated it */ |
4428 | pud_free(mm, new); | |
c2febafc | 4429 | #endif /* __ARCH_HAS_5LEVEL_HACK */ |
c74df32c | 4430 | spin_unlock(&mm->page_table_lock); |
1bb3630e | 4431 | return 0; |
1da177e4 LT |
4432 | } |
4433 | #endif /* __PAGETABLE_PUD_FOLDED */ | |
4434 | ||
4435 | #ifndef __PAGETABLE_PMD_FOLDED | |
4436 | /* | |
4437 | * Allocate page middle directory. | |
872fec16 | 4438 | * We've already handled the fast-path in-line. |
1da177e4 | 4439 | */ |
1bb3630e | 4440 | int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) |
1da177e4 | 4441 | { |
a00cc7d9 | 4442 | spinlock_t *ptl; |
c74df32c HD |
4443 | pmd_t *new = pmd_alloc_one(mm, address); |
4444 | if (!new) | |
1bb3630e | 4445 | return -ENOMEM; |
1da177e4 | 4446 | |
362a61ad NP |
4447 | smp_wmb(); /* See comment in __pte_alloc */ |
4448 | ||
a00cc7d9 | 4449 | ptl = pud_lock(mm, pud); |
dc6c9a35 KS |
4450 | if (!pud_present(*pud)) { |
4451 | mm_inc_nr_pmds(mm); | |
1bb3630e | 4452 | pud_populate(mm, pud, new); |
dc6c9a35 | 4453 | } else /* Another has populated it */ |
5e541973 | 4454 | pmd_free(mm, new); |
a00cc7d9 | 4455 | spin_unlock(ptl); |
1bb3630e | 4456 | return 0; |
e0f39591 | 4457 | } |
1da177e4 LT |
4458 | #endif /* __PAGETABLE_PMD_FOLDED */ |
4459 | ||
09796395 | 4460 | static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address, |
ac46d4f3 | 4461 | struct mmu_notifier_range *range, |
a4d1a885 | 4462 | pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) |
f8ad0f49 JW |
4463 | { |
4464 | pgd_t *pgd; | |
c2febafc | 4465 | p4d_t *p4d; |
f8ad0f49 JW |
4466 | pud_t *pud; |
4467 | pmd_t *pmd; | |
4468 | pte_t *ptep; | |
4469 | ||
4470 | pgd = pgd_offset(mm, address); | |
4471 | if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) | |
4472 | goto out; | |
4473 | ||
c2febafc KS |
4474 | p4d = p4d_offset(pgd, address); |
4475 | if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) | |
4476 | goto out; | |
4477 | ||
4478 | pud = pud_offset(p4d, address); | |
f8ad0f49 JW |
4479 | if (pud_none(*pud) || unlikely(pud_bad(*pud))) |
4480 | goto out; | |
4481 | ||
4482 | pmd = pmd_offset(pud, address); | |
f66055ab | 4483 | VM_BUG_ON(pmd_trans_huge(*pmd)); |
f8ad0f49 | 4484 | |
09796395 RZ |
4485 | if (pmd_huge(*pmd)) { |
4486 | if (!pmdpp) | |
4487 | goto out; | |
4488 | ||
ac46d4f3 | 4489 | if (range) { |
7269f999 | 4490 | mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, |
6f4f13e8 JG |
4491 | NULL, mm, address & PMD_MASK, |
4492 | (address & PMD_MASK) + PMD_SIZE); | |
ac46d4f3 | 4493 | mmu_notifier_invalidate_range_start(range); |
a4d1a885 | 4494 | } |
09796395 RZ |
4495 | *ptlp = pmd_lock(mm, pmd); |
4496 | if (pmd_huge(*pmd)) { | |
4497 | *pmdpp = pmd; | |
4498 | return 0; | |
4499 | } | |
4500 | spin_unlock(*ptlp); | |
ac46d4f3 JG |
4501 | if (range) |
4502 | mmu_notifier_invalidate_range_end(range); | |
09796395 RZ |
4503 | } |
4504 | ||
4505 | if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) | |
f8ad0f49 JW |
4506 | goto out; |
4507 | ||
ac46d4f3 | 4508 | if (range) { |
7269f999 | 4509 | mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm, |
6f4f13e8 JG |
4510 | address & PAGE_MASK, |
4511 | (address & PAGE_MASK) + PAGE_SIZE); | |
ac46d4f3 | 4512 | mmu_notifier_invalidate_range_start(range); |
a4d1a885 | 4513 | } |
f8ad0f49 | 4514 | ptep = pte_offset_map_lock(mm, pmd, address, ptlp); |
f8ad0f49 JW |
4515 | if (!pte_present(*ptep)) |
4516 | goto unlock; | |
4517 | *ptepp = ptep; | |
4518 | return 0; | |
4519 | unlock: | |
4520 | pte_unmap_unlock(ptep, *ptlp); | |
ac46d4f3 JG |
4521 | if (range) |
4522 | mmu_notifier_invalidate_range_end(range); | |
f8ad0f49 JW |
4523 | out: |
4524 | return -EINVAL; | |
4525 | } | |
4526 | ||
f729c8c9 RZ |
4527 | static inline int follow_pte(struct mm_struct *mm, unsigned long address, |
4528 | pte_t **ptepp, spinlock_t **ptlp) | |
1b36ba81 NK |
4529 | { |
4530 | int res; | |
4531 | ||
4532 | /* (void) is needed to make gcc happy */ | |
4533 | (void) __cond_lock(*ptlp, | |
ac46d4f3 | 4534 | !(res = __follow_pte_pmd(mm, address, NULL, |
a4d1a885 | 4535 | ptepp, NULL, ptlp))); |
09796395 RZ |
4536 | return res; |
4537 | } | |
4538 | ||
4539 | int follow_pte_pmd(struct mm_struct *mm, unsigned long address, | |
ac46d4f3 JG |
4540 | struct mmu_notifier_range *range, |
4541 | pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) | |
09796395 RZ |
4542 | { |
4543 | int res; | |
4544 | ||
4545 | /* (void) is needed to make gcc happy */ | |
4546 | (void) __cond_lock(*ptlp, | |
ac46d4f3 | 4547 | !(res = __follow_pte_pmd(mm, address, range, |
a4d1a885 | 4548 | ptepp, pmdpp, ptlp))); |
1b36ba81 NK |
4549 | return res; |
4550 | } | |
09796395 | 4551 | EXPORT_SYMBOL(follow_pte_pmd); |
1b36ba81 | 4552 | |
3b6748e2 JW |
4553 | /** |
4554 | * follow_pfn - look up PFN at a user virtual address | |
4555 | * @vma: memory mapping | |
4556 | * @address: user virtual address | |
4557 | * @pfn: location to store found PFN | |
4558 | * | |
4559 | * Only IO mappings and raw PFN mappings are allowed. | |
4560 | * | |
a862f68a | 4561 | * Return: zero and the pfn at @pfn on success, -ve otherwise. |
3b6748e2 JW |
4562 | */ |
4563 | int follow_pfn(struct vm_area_struct *vma, unsigned long address, | |
4564 | unsigned long *pfn) | |
4565 | { | |
4566 | int ret = -EINVAL; | |
4567 | spinlock_t *ptl; | |
4568 | pte_t *ptep; | |
4569 | ||
4570 | if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) | |
4571 | return ret; | |
4572 | ||
4573 | ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); | |
4574 | if (ret) | |
4575 | return ret; | |
4576 | *pfn = pte_pfn(*ptep); | |
4577 | pte_unmap_unlock(ptep, ptl); | |
4578 | return 0; | |
4579 | } | |
4580 | EXPORT_SYMBOL(follow_pfn); | |
4581 | ||
28b2ee20 | 4582 | #ifdef CONFIG_HAVE_IOREMAP_PROT |
d87fe660 | 4583 | int follow_phys(struct vm_area_struct *vma, |
4584 | unsigned long address, unsigned int flags, | |
4585 | unsigned long *prot, resource_size_t *phys) | |
28b2ee20 | 4586 | { |
03668a4d | 4587 | int ret = -EINVAL; |
28b2ee20 RR |
4588 | pte_t *ptep, pte; |
4589 | spinlock_t *ptl; | |
28b2ee20 | 4590 | |
d87fe660 | 4591 | if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) |
4592 | goto out; | |
28b2ee20 | 4593 | |
03668a4d | 4594 | if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) |
d87fe660 | 4595 | goto out; |
28b2ee20 | 4596 | pte = *ptep; |
03668a4d | 4597 | |
f6f37321 | 4598 | if ((flags & FOLL_WRITE) && !pte_write(pte)) |
28b2ee20 | 4599 | goto unlock; |
28b2ee20 RR |
4600 | |
4601 | *prot = pgprot_val(pte_pgprot(pte)); | |
03668a4d | 4602 | *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; |
28b2ee20 | 4603 | |
03668a4d | 4604 | ret = 0; |
28b2ee20 RR |
4605 | unlock: |
4606 | pte_unmap_unlock(ptep, ptl); | |
4607 | out: | |
d87fe660 | 4608 | return ret; |
28b2ee20 RR |
4609 | } |
4610 | ||
4611 | int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, | |
4612 | void *buf, int len, int write) | |
4613 | { | |
4614 | resource_size_t phys_addr; | |
4615 | unsigned long prot = 0; | |
2bc7273b | 4616 | void __iomem *maddr; |
28b2ee20 RR |
4617 | int offset = addr & (PAGE_SIZE-1); |
4618 | ||
d87fe660 | 4619 | if (follow_phys(vma, addr, write, &prot, &phys_addr)) |
28b2ee20 RR |
4620 | return -EINVAL; |
4621 | ||
9cb12d7b | 4622 | maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); |
24eee1e4 | 4623 | if (!maddr) |
4624 | return -ENOMEM; | |
4625 | ||
28b2ee20 RR |
4626 | if (write) |
4627 | memcpy_toio(maddr + offset, buf, len); | |
4628 | else | |
4629 | memcpy_fromio(buf, maddr + offset, len); | |
4630 | iounmap(maddr); | |
4631 | ||
4632 | return len; | |
4633 | } | |
5a73633e | 4634 | EXPORT_SYMBOL_GPL(generic_access_phys); |
28b2ee20 RR |
4635 | #endif |
4636 | ||
0ec76a11 | 4637 | /* |
206cb636 SW |
4638 | * Access another process' address space as given in mm. If non-NULL, use the |
4639 | * given task for page fault accounting. | |
0ec76a11 | 4640 | */ |
84d77d3f | 4641 | int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, |
442486ec | 4642 | unsigned long addr, void *buf, int len, unsigned int gup_flags) |
0ec76a11 | 4643 | { |
0ec76a11 | 4644 | struct vm_area_struct *vma; |
0ec76a11 | 4645 | void *old_buf = buf; |
442486ec | 4646 | int write = gup_flags & FOLL_WRITE; |
0ec76a11 | 4647 | |
1e426fe2 KK |
4648 | if (down_read_killable(&mm->mmap_sem)) |
4649 | return 0; | |
4650 | ||
183ff22b | 4651 | /* ignore errors, just check how much was successfully transferred */ |
0ec76a11 DH |
4652 | while (len) { |
4653 | int bytes, ret, offset; | |
4654 | void *maddr; | |
28b2ee20 | 4655 | struct page *page = NULL; |
0ec76a11 | 4656 | |
1e987790 | 4657 | ret = get_user_pages_remote(tsk, mm, addr, 1, |
5b56d49f | 4658 | gup_flags, &page, &vma, NULL); |
28b2ee20 | 4659 | if (ret <= 0) { |
dbffcd03 RR |
4660 | #ifndef CONFIG_HAVE_IOREMAP_PROT |
4661 | break; | |
4662 | #else | |
28b2ee20 RR |
4663 | /* |
4664 | * Check if this is a VM_IO | VM_PFNMAP VMA, which | |
4665 | * we can access using slightly different code. | |
4666 | */ | |
28b2ee20 | 4667 | vma = find_vma(mm, addr); |
fe936dfc | 4668 | if (!vma || vma->vm_start > addr) |
28b2ee20 RR |
4669 | break; |
4670 | if (vma->vm_ops && vma->vm_ops->access) | |
4671 | ret = vma->vm_ops->access(vma, addr, buf, | |
4672 | len, write); | |
4673 | if (ret <= 0) | |
28b2ee20 RR |
4674 | break; |
4675 | bytes = ret; | |
dbffcd03 | 4676 | #endif |
0ec76a11 | 4677 | } else { |
28b2ee20 RR |
4678 | bytes = len; |
4679 | offset = addr & (PAGE_SIZE-1); | |
4680 | if (bytes > PAGE_SIZE-offset) | |
4681 | bytes = PAGE_SIZE-offset; | |
4682 | ||
4683 | maddr = kmap(page); | |
4684 | if (write) { | |
4685 | copy_to_user_page(vma, page, addr, | |
4686 | maddr + offset, buf, bytes); | |
4687 | set_page_dirty_lock(page); | |
4688 | } else { | |
4689 | copy_from_user_page(vma, page, addr, | |
4690 | buf, maddr + offset, bytes); | |
4691 | } | |
4692 | kunmap(page); | |
09cbfeaf | 4693 | put_page(page); |
0ec76a11 | 4694 | } |
0ec76a11 DH |
4695 | len -= bytes; |
4696 | buf += bytes; | |
4697 | addr += bytes; | |
4698 | } | |
4699 | up_read(&mm->mmap_sem); | |
0ec76a11 DH |
4700 | |
4701 | return buf - old_buf; | |
4702 | } | |
03252919 | 4703 | |
5ddd36b9 | 4704 | /** |
ae91dbfc | 4705 | * access_remote_vm - access another process' address space |
5ddd36b9 SW |
4706 | * @mm: the mm_struct of the target address space |
4707 | * @addr: start address to access | |
4708 | * @buf: source or destination buffer | |
4709 | * @len: number of bytes to transfer | |
6347e8d5 | 4710 | * @gup_flags: flags modifying lookup behaviour |
5ddd36b9 SW |
4711 | * |
4712 | * The caller must hold a reference on @mm. | |
a862f68a MR |
4713 | * |
4714 | * Return: number of bytes copied from source to destination. | |
5ddd36b9 SW |
4715 | */ |
4716 | int access_remote_vm(struct mm_struct *mm, unsigned long addr, | |
6347e8d5 | 4717 | void *buf, int len, unsigned int gup_flags) |
5ddd36b9 | 4718 | { |
6347e8d5 | 4719 | return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags); |
5ddd36b9 SW |
4720 | } |
4721 | ||
206cb636 SW |
4722 | /* |
4723 | * Access another process' address space. | |
4724 | * Source/target buffer must be kernel space, | |
4725 | * Do not walk the page table directly, use get_user_pages | |
4726 | */ | |
4727 | int access_process_vm(struct task_struct *tsk, unsigned long addr, | |
f307ab6d | 4728 | void *buf, int len, unsigned int gup_flags) |
206cb636 SW |
4729 | { |
4730 | struct mm_struct *mm; | |
4731 | int ret; | |
4732 | ||
4733 | mm = get_task_mm(tsk); | |
4734 | if (!mm) | |
4735 | return 0; | |
4736 | ||
f307ab6d | 4737 | ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags); |
442486ec | 4738 | |
206cb636 SW |
4739 | mmput(mm); |
4740 | ||
4741 | return ret; | |
4742 | } | |
fcd35857 | 4743 | EXPORT_SYMBOL_GPL(access_process_vm); |
206cb636 | 4744 | |
03252919 AK |
4745 | /* |
4746 | * Print the name of a VMA. | |
4747 | */ | |
4748 | void print_vma_addr(char *prefix, unsigned long ip) | |
4749 | { | |
4750 | struct mm_struct *mm = current->mm; | |
4751 | struct vm_area_struct *vma; | |
4752 | ||
e8bff74a | 4753 | /* |
0a7f682d | 4754 | * we might be running from an atomic context so we cannot sleep |
e8bff74a | 4755 | */ |
0a7f682d | 4756 | if (!down_read_trylock(&mm->mmap_sem)) |
e8bff74a IM |
4757 | return; |
4758 | ||
03252919 AK |
4759 | vma = find_vma(mm, ip); |
4760 | if (vma && vma->vm_file) { | |
4761 | struct file *f = vma->vm_file; | |
0a7f682d | 4762 | char *buf = (char *)__get_free_page(GFP_NOWAIT); |
03252919 | 4763 | if (buf) { |
2fbc57c5 | 4764 | char *p; |
03252919 | 4765 | |
9bf39ab2 | 4766 | p = file_path(f, buf, PAGE_SIZE); |
03252919 AK |
4767 | if (IS_ERR(p)) |
4768 | p = "?"; | |
2fbc57c5 | 4769 | printk("%s%s[%lx+%lx]", prefix, kbasename(p), |
03252919 AK |
4770 | vma->vm_start, |
4771 | vma->vm_end - vma->vm_start); | |
4772 | free_page((unsigned long)buf); | |
4773 | } | |
4774 | } | |
51a07e50 | 4775 | up_read(&mm->mmap_sem); |
03252919 | 4776 | } |
3ee1afa3 | 4777 | |
662bbcb2 | 4778 | #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) |
9ec23531 | 4779 | void __might_fault(const char *file, int line) |
3ee1afa3 | 4780 | { |
95156f00 PZ |
4781 | /* |
4782 | * Some code (nfs/sunrpc) uses socket ops on kernel memory while | |
4783 | * holding the mmap_sem, this is safe because kernel memory doesn't | |
4784 | * get paged out, therefore we'll never actually fault, and the | |
4785 | * below annotations will generate false positives. | |
4786 | */ | |
db68ce10 | 4787 | if (uaccess_kernel()) |
95156f00 | 4788 | return; |
9ec23531 | 4789 | if (pagefault_disabled()) |
662bbcb2 | 4790 | return; |
9ec23531 DH |
4791 | __might_sleep(file, line, 0); |
4792 | #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) | |
662bbcb2 | 4793 | if (current->mm) |
3ee1afa3 | 4794 | might_lock_read(¤t->mm->mmap_sem); |
9ec23531 | 4795 | #endif |
3ee1afa3 | 4796 | } |
9ec23531 | 4797 | EXPORT_SYMBOL(__might_fault); |
3ee1afa3 | 4798 | #endif |
47ad8475 AA |
4799 | |
4800 | #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) | |
c6ddfb6c YH |
4801 | /* |
4802 | * Process all subpages of the specified huge page with the specified | |
4803 | * operation. The target subpage will be processed last to keep its | |
4804 | * cache lines hot. | |
4805 | */ | |
4806 | static inline void process_huge_page( | |
4807 | unsigned long addr_hint, unsigned int pages_per_huge_page, | |
4808 | void (*process_subpage)(unsigned long addr, int idx, void *arg), | |
4809 | void *arg) | |
47ad8475 | 4810 | { |
c79b57e4 YH |
4811 | int i, n, base, l; |
4812 | unsigned long addr = addr_hint & | |
4813 | ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); | |
47ad8475 | 4814 | |
c6ddfb6c | 4815 | /* Process target subpage last to keep its cache lines hot */ |
47ad8475 | 4816 | might_sleep(); |
c79b57e4 YH |
4817 | n = (addr_hint - addr) / PAGE_SIZE; |
4818 | if (2 * n <= pages_per_huge_page) { | |
c6ddfb6c | 4819 | /* If target subpage in first half of huge page */ |
c79b57e4 YH |
4820 | base = 0; |
4821 | l = n; | |
c6ddfb6c | 4822 | /* Process subpages at the end of huge page */ |
c79b57e4 YH |
4823 | for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { |
4824 | cond_resched(); | |
c6ddfb6c | 4825 | process_subpage(addr + i * PAGE_SIZE, i, arg); |
c79b57e4 YH |
4826 | } |
4827 | } else { | |
c6ddfb6c | 4828 | /* If target subpage in second half of huge page */ |
c79b57e4 YH |
4829 | base = pages_per_huge_page - 2 * (pages_per_huge_page - n); |
4830 | l = pages_per_huge_page - n; | |
c6ddfb6c | 4831 | /* Process subpages at the begin of huge page */ |
c79b57e4 YH |
4832 | for (i = 0; i < base; i++) { |
4833 | cond_resched(); | |
c6ddfb6c | 4834 | process_subpage(addr + i * PAGE_SIZE, i, arg); |
c79b57e4 YH |
4835 | } |
4836 | } | |
4837 | /* | |
c6ddfb6c YH |
4838 | * Process remaining subpages in left-right-left-right pattern |
4839 | * towards the target subpage | |
c79b57e4 YH |
4840 | */ |
4841 | for (i = 0; i < l; i++) { | |
4842 | int left_idx = base + i; | |
4843 | int right_idx = base + 2 * l - 1 - i; | |
4844 | ||
4845 | cond_resched(); | |
c6ddfb6c | 4846 | process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); |
47ad8475 | 4847 | cond_resched(); |
c6ddfb6c | 4848 | process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); |
47ad8475 AA |
4849 | } |
4850 | } | |
4851 | ||
c6ddfb6c YH |
4852 | static void clear_gigantic_page(struct page *page, |
4853 | unsigned long addr, | |
4854 | unsigned int pages_per_huge_page) | |
4855 | { | |
4856 | int i; | |
4857 | struct page *p = page; | |
4858 | ||
4859 | might_sleep(); | |
4860 | for (i = 0; i < pages_per_huge_page; | |
4861 | i++, p = mem_map_next(p, page, i)) { | |
4862 | cond_resched(); | |
4863 | clear_user_highpage(p, addr + i * PAGE_SIZE); | |
4864 | } | |
4865 | } | |
4866 | ||
4867 | static void clear_subpage(unsigned long addr, int idx, void *arg) | |
4868 | { | |
4869 | struct page *page = arg; | |
4870 | ||
4871 | clear_user_highpage(page + idx, addr); | |
4872 | } | |
4873 | ||
4874 | void clear_huge_page(struct page *page, | |
4875 | unsigned long addr_hint, unsigned int pages_per_huge_page) | |
4876 | { | |
4877 | unsigned long addr = addr_hint & | |
4878 | ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); | |
4879 | ||
4880 | if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { | |
4881 | clear_gigantic_page(page, addr, pages_per_huge_page); | |
4882 | return; | |
4883 | } | |
4884 | ||
4885 | process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page); | |
4886 | } | |
4887 | ||
47ad8475 AA |
4888 | static void copy_user_gigantic_page(struct page *dst, struct page *src, |
4889 | unsigned long addr, | |
4890 | struct vm_area_struct *vma, | |
4891 | unsigned int pages_per_huge_page) | |
4892 | { | |
4893 | int i; | |
4894 | struct page *dst_base = dst; | |
4895 | struct page *src_base = src; | |
4896 | ||
4897 | for (i = 0; i < pages_per_huge_page; ) { | |
4898 | cond_resched(); | |
4899 | copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); | |
4900 | ||
4901 | i++; | |
4902 | dst = mem_map_next(dst, dst_base, i); | |
4903 | src = mem_map_next(src, src_base, i); | |
4904 | } | |
4905 | } | |
4906 | ||
c9f4cd71 YH |
4907 | struct copy_subpage_arg { |
4908 | struct page *dst; | |
4909 | struct page *src; | |
4910 | struct vm_area_struct *vma; | |
4911 | }; | |
4912 | ||
4913 | static void copy_subpage(unsigned long addr, int idx, void *arg) | |
4914 | { | |
4915 | struct copy_subpage_arg *copy_arg = arg; | |
4916 | ||
4917 | copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx, | |
4918 | addr, copy_arg->vma); | |
4919 | } | |
4920 | ||
47ad8475 | 4921 | void copy_user_huge_page(struct page *dst, struct page *src, |
c9f4cd71 | 4922 | unsigned long addr_hint, struct vm_area_struct *vma, |
47ad8475 AA |
4923 | unsigned int pages_per_huge_page) |
4924 | { | |
c9f4cd71 YH |
4925 | unsigned long addr = addr_hint & |
4926 | ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); | |
4927 | struct copy_subpage_arg arg = { | |
4928 | .dst = dst, | |
4929 | .src = src, | |
4930 | .vma = vma, | |
4931 | }; | |
47ad8475 AA |
4932 | |
4933 | if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { | |
4934 | copy_user_gigantic_page(dst, src, addr, vma, | |
4935 | pages_per_huge_page); | |
4936 | return; | |
4937 | } | |
4938 | ||
c9f4cd71 | 4939 | process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg); |
47ad8475 | 4940 | } |
fa4d75c1 MK |
4941 | |
4942 | long copy_huge_page_from_user(struct page *dst_page, | |
4943 | const void __user *usr_src, | |
810a56b9 MK |
4944 | unsigned int pages_per_huge_page, |
4945 | bool allow_pagefault) | |
fa4d75c1 MK |
4946 | { |
4947 | void *src = (void *)usr_src; | |
4948 | void *page_kaddr; | |
4949 | unsigned long i, rc = 0; | |
4950 | unsigned long ret_val = pages_per_huge_page * PAGE_SIZE; | |
4951 | ||
4952 | for (i = 0; i < pages_per_huge_page; i++) { | |
810a56b9 MK |
4953 | if (allow_pagefault) |
4954 | page_kaddr = kmap(dst_page + i); | |
4955 | else | |
4956 | page_kaddr = kmap_atomic(dst_page + i); | |
fa4d75c1 MK |
4957 | rc = copy_from_user(page_kaddr, |
4958 | (const void __user *)(src + i * PAGE_SIZE), | |
4959 | PAGE_SIZE); | |
810a56b9 MK |
4960 | if (allow_pagefault) |
4961 | kunmap(dst_page + i); | |
4962 | else | |
4963 | kunmap_atomic(page_kaddr); | |
fa4d75c1 MK |
4964 | |
4965 | ret_val -= (PAGE_SIZE - rc); | |
4966 | if (rc) | |
4967 | break; | |
4968 | ||
4969 | cond_resched(); | |
4970 | } | |
4971 | return ret_val; | |
4972 | } | |
47ad8475 | 4973 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ |
49076ec2 | 4974 | |
40b64acd | 4975 | #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS |
b35f1819 KS |
4976 | |
4977 | static struct kmem_cache *page_ptl_cachep; | |
4978 | ||
4979 | void __init ptlock_cache_init(void) | |
4980 | { | |
4981 | page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, | |
4982 | SLAB_PANIC, NULL); | |
4983 | } | |
4984 | ||
539edb58 | 4985 | bool ptlock_alloc(struct page *page) |
49076ec2 KS |
4986 | { |
4987 | spinlock_t *ptl; | |
4988 | ||
b35f1819 | 4989 | ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); |
49076ec2 KS |
4990 | if (!ptl) |
4991 | return false; | |
539edb58 | 4992 | page->ptl = ptl; |
49076ec2 KS |
4993 | return true; |
4994 | } | |
4995 | ||
539edb58 | 4996 | void ptlock_free(struct page *page) |
49076ec2 | 4997 | { |
b35f1819 | 4998 | kmem_cache_free(page_ptl_cachep, page->ptl); |
49076ec2 KS |
4999 | } |
5000 | #endif |