1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
33 * 05.04.94 - Multi-page memory management added for v1.1.
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
42 #include <linux/kernel_stat.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/coredump.h>
47 #include <linux/sched/numa_balancing.h>
48 #include <linux/sched/task.h>
49 #include <linux/hugetlb.h>
50 #include <linux/mman.h>
51 #include <linux/swap.h>
52 #include <linux/highmem.h>
53 #include <linux/pagemap.h>
54 #include <linux/memremap.h>
55 #include <linux/ksm.h>
56 #include <linux/rmap.h>
57 #include <linux/export.h>
58 #include <linux/delayacct.h>
59 #include <linux/init.h>
60 #include <linux/pfn_t.h>
61 #include <linux/writeback.h>
62 #include <linux/memcontrol.h>
63 #include <linux/mmu_notifier.h>
64 #include <linux/swapops.h>
65 #include <linux/elf.h>
66 #include <linux/gfp.h>
67 #include <linux/migrate.h>
68 #include <linux/string.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
74 #include <linux/perf_event.h>
75 #include <linux/ptrace.h>
76 #include <linux/vmalloc.h>
78 #include <trace/events/kmem.h>
81 #include <asm/mmu_context.h>
82 #include <asm/pgalloc.h>
83 #include <linux/uaccess.h>
85 #include <asm/tlbflush.h>
87 #include "pgalloc-track.h"
90 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
91 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
95 unsigned long max_mapnr;
96 EXPORT_SYMBOL(max_mapnr);
99 EXPORT_SYMBOL(mem_map);
103 * A number of key systems in x86 including ioremap() rely on the assumption
104 * that high_memory defines the upper bound on direct map memory, then end
105 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
106 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
110 EXPORT_SYMBOL(high_memory);
113 * Randomize the address space (stacks, mmaps, brk, etc.).
115 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
116 * as ancient (libc5 based) binaries can segfault. )
118 int randomize_va_space __read_mostly =
119 #ifdef CONFIG_COMPAT_BRK
125 #ifndef arch_faults_on_old_pte
126 static inline bool arch_faults_on_old_pte(void)
129 * Those arches which don't have hw access flag feature need to
130 * implement their own helper. By default, "true" means pagefault
131 * will be hit on old pte.
137 #ifndef arch_wants_old_prefaulted_pte
138 static inline bool arch_wants_old_prefaulted_pte(void)
141 * Transitioning a PTE from 'old' to 'young' can be expensive on
142 * some architectures, even if it's performed in hardware. By
143 * default, "false" means prefaulted entries will be 'young'.
149 static int __init disable_randmaps(char *s)
151 randomize_va_space = 0;
154 __setup("norandmaps", disable_randmaps);
156 unsigned long zero_pfn __read_mostly;
157 EXPORT_SYMBOL(zero_pfn);
159 unsigned long highest_memmap_pfn __read_mostly;
162 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
164 static int __init init_zero_pfn(void)
166 zero_pfn = page_to_pfn(ZERO_PAGE(0));
169 early_initcall(init_zero_pfn);
171 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
173 trace_rss_stat(mm, member, count);
176 #if defined(SPLIT_RSS_COUNTING)
178 void sync_mm_rss(struct mm_struct *mm)
182 for (i = 0; i < NR_MM_COUNTERS; i++) {
183 if (current->rss_stat.count[i]) {
184 add_mm_counter(mm, i, current->rss_stat.count[i]);
185 current->rss_stat.count[i] = 0;
188 current->rss_stat.events = 0;
191 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
193 struct task_struct *task = current;
195 if (likely(task->mm == mm))
196 task->rss_stat.count[member] += val;
198 add_mm_counter(mm, member, val);
200 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
201 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
203 /* sync counter once per 64 page faults */
204 #define TASK_RSS_EVENTS_THRESH (64)
205 static void check_sync_rss_stat(struct task_struct *task)
207 if (unlikely(task != current))
209 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
210 sync_mm_rss(task->mm);
212 #else /* SPLIT_RSS_COUNTING */
214 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
215 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
217 static void check_sync_rss_stat(struct task_struct *task)
221 #endif /* SPLIT_RSS_COUNTING */
224 * Note: this doesn't free the actual pages themselves. That
225 * has been handled earlier when unmapping all the memory regions.
227 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
230 pgtable_t token = pmd_pgtable(*pmd);
232 pte_free_tlb(tlb, token, addr);
233 mm_dec_nr_ptes(tlb->mm);
236 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
237 unsigned long addr, unsigned long end,
238 unsigned long floor, unsigned long ceiling)
245 pmd = pmd_offset(pud, addr);
247 next = pmd_addr_end(addr, end);
248 if (pmd_none_or_clear_bad(pmd))
250 free_pte_range(tlb, pmd, addr);
251 } while (pmd++, addr = next, addr != end);
261 if (end - 1 > ceiling - 1)
264 pmd = pmd_offset(pud, start);
266 pmd_free_tlb(tlb, pmd, start);
267 mm_dec_nr_pmds(tlb->mm);
270 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
271 unsigned long addr, unsigned long end,
272 unsigned long floor, unsigned long ceiling)
279 pud = pud_offset(p4d, addr);
281 next = pud_addr_end(addr, end);
282 if (pud_none_or_clear_bad(pud))
284 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
285 } while (pud++, addr = next, addr != end);
295 if (end - 1 > ceiling - 1)
298 pud = pud_offset(p4d, start);
300 pud_free_tlb(tlb, pud, start);
301 mm_dec_nr_puds(tlb->mm);
304 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
305 unsigned long addr, unsigned long end,
306 unsigned long floor, unsigned long ceiling)
313 p4d = p4d_offset(pgd, addr);
315 next = p4d_addr_end(addr, end);
316 if (p4d_none_or_clear_bad(p4d))
318 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
319 } while (p4d++, addr = next, addr != end);
325 ceiling &= PGDIR_MASK;
329 if (end - 1 > ceiling - 1)
332 p4d = p4d_offset(pgd, start);
334 p4d_free_tlb(tlb, p4d, start);
338 * This function frees user-level page tables of a process.
340 void free_pgd_range(struct mmu_gather *tlb,
341 unsigned long addr, unsigned long end,
342 unsigned long floor, unsigned long ceiling)
348 * The next few lines have given us lots of grief...
350 * Why are we testing PMD* at this top level? Because often
351 * there will be no work to do at all, and we'd prefer not to
352 * go all the way down to the bottom just to discover that.
354 * Why all these "- 1"s? Because 0 represents both the bottom
355 * of the address space and the top of it (using -1 for the
356 * top wouldn't help much: the masks would do the wrong thing).
357 * The rule is that addr 0 and floor 0 refer to the bottom of
358 * the address space, but end 0 and ceiling 0 refer to the top
359 * Comparisons need to use "end - 1" and "ceiling - 1" (though
360 * that end 0 case should be mythical).
362 * Wherever addr is brought up or ceiling brought down, we must
363 * be careful to reject "the opposite 0" before it confuses the
364 * subsequent tests. But what about where end is brought down
365 * by PMD_SIZE below? no, end can't go down to 0 there.
367 * Whereas we round start (addr) and ceiling down, by different
368 * masks at different levels, in order to test whether a table
369 * now has no other vmas using it, so can be freed, we don't
370 * bother to round floor or end up - the tests don't need that.
384 if (end - 1 > ceiling - 1)
389 * We add page table cache pages with PAGE_SIZE,
390 * (see pte_free_tlb()), flush the tlb if we need
392 tlb_change_page_size(tlb, PAGE_SIZE);
393 pgd = pgd_offset(tlb->mm, addr);
395 next = pgd_addr_end(addr, end);
396 if (pgd_none_or_clear_bad(pgd))
398 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
399 } while (pgd++, addr = next, addr != end);
402 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
403 unsigned long floor, unsigned long ceiling)
406 struct vm_area_struct *next = vma->vm_next;
407 unsigned long addr = vma->vm_start;
410 * Hide vma from rmap and truncate_pagecache before freeing
413 unlink_anon_vmas(vma);
414 unlink_file_vma(vma);
416 if (is_vm_hugetlb_page(vma)) {
417 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
418 floor, next ? next->vm_start : ceiling);
421 * Optimization: gather nearby vmas into one call down
423 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
424 && !is_vm_hugetlb_page(next)) {
427 unlink_anon_vmas(vma);
428 unlink_file_vma(vma);
430 free_pgd_range(tlb, addr, vma->vm_end,
431 floor, next ? next->vm_start : ceiling);
437 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
439 spinlock_t *ptl = pmd_lock(mm, pmd);
441 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
444 * Ensure all pte setup (eg. pte page lock and page clearing) are
445 * visible before the pte is made visible to other CPUs by being
446 * put into page tables.
448 * The other side of the story is the pointer chasing in the page
449 * table walking code (when walking the page table without locking;
450 * ie. most of the time). Fortunately, these data accesses consist
451 * of a chain of data-dependent loads, meaning most CPUs (alpha
452 * being the notable exception) will already guarantee loads are
453 * seen in-order. See the alpha page table accessors for the
454 * smp_rmb() barriers in page table walking code.
456 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
457 pmd_populate(mm, pmd, *pte);
463 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
465 pgtable_t new = pte_alloc_one(mm);
469 pmd_install(mm, pmd, &new);
475 int __pte_alloc_kernel(pmd_t *pmd)
477 pte_t *new = pte_alloc_one_kernel(&init_mm);
481 spin_lock(&init_mm.page_table_lock);
482 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
483 smp_wmb(); /* See comment in pmd_install() */
484 pmd_populate_kernel(&init_mm, pmd, new);
487 spin_unlock(&init_mm.page_table_lock);
489 pte_free_kernel(&init_mm, new);
493 static inline void init_rss_vec(int *rss)
495 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
498 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
502 if (current->mm == mm)
504 for (i = 0; i < NR_MM_COUNTERS; i++)
506 add_mm_counter(mm, i, rss[i]);
510 * This function is called to print an error when a bad pte
511 * is found. For example, we might have a PFN-mapped pte in
512 * a region that doesn't allow it.
514 * The calling function must still handle the error.
516 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
517 pte_t pte, struct page *page)
519 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
520 p4d_t *p4d = p4d_offset(pgd, addr);
521 pud_t *pud = pud_offset(p4d, addr);
522 pmd_t *pmd = pmd_offset(pud, addr);
523 struct address_space *mapping;
525 static unsigned long resume;
526 static unsigned long nr_shown;
527 static unsigned long nr_unshown;
530 * Allow a burst of 60 reports, then keep quiet for that minute;
531 * or allow a steady drip of one report per second.
533 if (nr_shown == 60) {
534 if (time_before(jiffies, resume)) {
539 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
546 resume = jiffies + 60 * HZ;
548 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
549 index = linear_page_index(vma, addr);
551 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
553 (long long)pte_val(pte), (long long)pmd_val(*pmd));
555 dump_page(page, "bad pte");
556 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
557 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
558 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
560 vma->vm_ops ? vma->vm_ops->fault : NULL,
561 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
562 mapping ? mapping->a_ops->readpage : NULL);
564 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
568 * vm_normal_page -- This function gets the "struct page" associated with a pte.
570 * "Special" mappings do not wish to be associated with a "struct page" (either
571 * it doesn't exist, or it exists but they don't want to touch it). In this
572 * case, NULL is returned here. "Normal" mappings do have a struct page.
574 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
575 * pte bit, in which case this function is trivial. Secondly, an architecture
576 * may not have a spare pte bit, which requires a more complicated scheme,
579 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
580 * special mapping (even if there are underlying and valid "struct pages").
581 * COWed pages of a VM_PFNMAP are always normal.
583 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
584 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
585 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
586 * mapping will always honor the rule
588 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
590 * And for normal mappings this is false.
592 * This restricts such mappings to be a linear translation from virtual address
593 * to pfn. To get around this restriction, we allow arbitrary mappings so long
594 * as the vma is not a COW mapping; in that case, we know that all ptes are
595 * special (because none can have been COWed).
598 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
600 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
601 * page" backing, however the difference is that _all_ pages with a struct
602 * page (that is, those where pfn_valid is true) are refcounted and considered
603 * normal pages by the VM. The disadvantage is that pages are refcounted
604 * (which can be slower and simply not an option for some PFNMAP users). The
605 * advantage is that we don't have to follow the strict linearity rule of
606 * PFNMAP mappings in order to support COWable mappings.
609 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
612 unsigned long pfn = pte_pfn(pte);
614 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
615 if (likely(!pte_special(pte)))
617 if (vma->vm_ops && vma->vm_ops->find_special_page)
618 return vma->vm_ops->find_special_page(vma, addr);
619 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
621 if (is_zero_pfn(pfn))
626 print_bad_pte(vma, addr, pte, NULL);
630 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
632 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
633 if (vma->vm_flags & VM_MIXEDMAP) {
639 off = (addr - vma->vm_start) >> PAGE_SHIFT;
640 if (pfn == vma->vm_pgoff + off)
642 if (!is_cow_mapping(vma->vm_flags))
647 if (is_zero_pfn(pfn))
651 if (unlikely(pfn > highest_memmap_pfn)) {
652 print_bad_pte(vma, addr, pte, NULL);
657 * NOTE! We still have PageReserved() pages in the page tables.
658 * eg. VDSO mappings can cause them to exist.
661 return pfn_to_page(pfn);
664 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
665 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
668 unsigned long pfn = pmd_pfn(pmd);
671 * There is no pmd_special() but there may be special pmds, e.g.
672 * in a direct-access (dax) mapping, so let's just replicate the
673 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
675 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
676 if (vma->vm_flags & VM_MIXEDMAP) {
682 off = (addr - vma->vm_start) >> PAGE_SHIFT;
683 if (pfn == vma->vm_pgoff + off)
685 if (!is_cow_mapping(vma->vm_flags))
692 if (is_huge_zero_pmd(pmd))
694 if (unlikely(pfn > highest_memmap_pfn))
698 * NOTE! We still have PageReserved() pages in the page tables.
699 * eg. VDSO mappings can cause them to exist.
702 return pfn_to_page(pfn);
706 static void restore_exclusive_pte(struct vm_area_struct *vma,
707 struct page *page, unsigned long address,
713 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
714 if (pte_swp_soft_dirty(*ptep))
715 pte = pte_mksoft_dirty(pte);
717 entry = pte_to_swp_entry(*ptep);
718 if (pte_swp_uffd_wp(*ptep))
719 pte = pte_mkuffd_wp(pte);
720 else if (is_writable_device_exclusive_entry(entry))
721 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
724 * No need to take a page reference as one was already
725 * created when the swap entry was made.
728 page_add_anon_rmap(page, vma, address, false);
731 * Currently device exclusive access only supports anonymous
732 * memory so the entry shouldn't point to a filebacked page.
734 WARN_ON_ONCE(!PageAnon(page));
736 set_pte_at(vma->vm_mm, address, ptep, pte);
738 if (vma->vm_flags & VM_LOCKED)
739 mlock_vma_page(page);
742 * No need to invalidate - it was non-present before. However
743 * secondary CPUs may have mappings that need invalidating.
745 update_mmu_cache(vma, address, ptep);
749 * Tries to restore an exclusive pte if the page lock can be acquired without
753 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
756 swp_entry_t entry = pte_to_swp_entry(*src_pte);
757 struct page *page = pfn_swap_entry_to_page(entry);
759 if (trylock_page(page)) {
760 restore_exclusive_pte(vma, page, addr, src_pte);
769 * copy one vm_area from one task to the other. Assumes the page tables
770 * already present in the new task to be cleared in the whole range
771 * covered by this vma.
775 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
776 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
777 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
779 unsigned long vm_flags = dst_vma->vm_flags;
780 pte_t pte = *src_pte;
782 swp_entry_t entry = pte_to_swp_entry(pte);
784 if (likely(!non_swap_entry(entry))) {
785 if (swap_duplicate(entry) < 0)
788 /* make sure dst_mm is on swapoff's mmlist. */
789 if (unlikely(list_empty(&dst_mm->mmlist))) {
790 spin_lock(&mmlist_lock);
791 if (list_empty(&dst_mm->mmlist))
792 list_add(&dst_mm->mmlist,
794 spin_unlock(&mmlist_lock);
797 } else if (is_migration_entry(entry)) {
798 page = pfn_swap_entry_to_page(entry);
800 rss[mm_counter(page)]++;
802 if (is_writable_migration_entry(entry) &&
803 is_cow_mapping(vm_flags)) {
805 * COW mappings require pages in both
806 * parent and child to be set to read.
808 entry = make_readable_migration_entry(
810 pte = swp_entry_to_pte(entry);
811 if (pte_swp_soft_dirty(*src_pte))
812 pte = pte_swp_mksoft_dirty(pte);
813 if (pte_swp_uffd_wp(*src_pte))
814 pte = pte_swp_mkuffd_wp(pte);
815 set_pte_at(src_mm, addr, src_pte, pte);
817 } else if (is_device_private_entry(entry)) {
818 page = pfn_swap_entry_to_page(entry);
821 * Update rss count even for unaddressable pages, as
822 * they should treated just like normal pages in this
825 * We will likely want to have some new rss counters
826 * for unaddressable pages, at some point. But for now
827 * keep things as they are.
830 rss[mm_counter(page)]++;
831 page_dup_rmap(page, false);
834 * We do not preserve soft-dirty information, because so
835 * far, checkpoint/restore is the only feature that
836 * requires that. And checkpoint/restore does not work
837 * when a device driver is involved (you cannot easily
838 * save and restore device driver state).
840 if (is_writable_device_private_entry(entry) &&
841 is_cow_mapping(vm_flags)) {
842 entry = make_readable_device_private_entry(
844 pte = swp_entry_to_pte(entry);
845 if (pte_swp_uffd_wp(*src_pte))
846 pte = pte_swp_mkuffd_wp(pte);
847 set_pte_at(src_mm, addr, src_pte, pte);
849 } else if (is_device_exclusive_entry(entry)) {
851 * Make device exclusive entries present by restoring the
852 * original entry then copying as for a present pte. Device
853 * exclusive entries currently only support private writable
854 * (ie. COW) mappings.
856 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
857 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
861 if (!userfaultfd_wp(dst_vma))
862 pte = pte_swp_clear_uffd_wp(pte);
863 set_pte_at(dst_mm, addr, dst_pte, pte);
868 * Copy a present and normal page if necessary.
870 * NOTE! The usual case is that this doesn't need to do
871 * anything, and can just return a positive value. That
872 * will let the caller know that it can just increase
873 * the page refcount and re-use the pte the traditional
876 * But _if_ we need to copy it because it needs to be
877 * pinned in the parent (and the child should get its own
878 * copy rather than just a reference to the same page),
879 * we'll do that here and return zero to let the caller
882 * And if we need a pre-allocated page but don't yet have
883 * one, return a negative error to let the preallocation
884 * code know so that it can do so outside the page table
888 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
889 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
890 struct page **prealloc, pte_t pte, struct page *page)
892 struct page *new_page;
895 * What we want to do is to check whether this page may
896 * have been pinned by the parent process. If so,
897 * instead of wrprotect the pte on both sides, we copy
898 * the page immediately so that we'll always guarantee
899 * the pinned page won't be randomly replaced in the
902 * The page pinning checks are just "has this mm ever
903 * seen pinning", along with the (inexact) check of
904 * the page count. That might give false positives for
905 * for pinning, but it will work correctly.
907 if (likely(!page_needs_cow_for_dma(src_vma, page)))
910 new_page = *prealloc;
915 * We have a prealloc page, all good! Take it
916 * over and copy the page & arm it.
919 copy_user_highpage(new_page, page, addr, src_vma);
920 __SetPageUptodate(new_page);
921 page_add_new_anon_rmap(new_page, dst_vma, addr, false);
922 lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
923 rss[mm_counter(new_page)]++;
925 /* All done, just insert the new page copy in the child */
926 pte = mk_pte(new_page, dst_vma->vm_page_prot);
927 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
928 if (userfaultfd_pte_wp(dst_vma, *src_pte))
929 /* Uffd-wp needs to be delivered to dest pte as well */
930 pte = pte_wrprotect(pte_mkuffd_wp(pte));
931 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
936 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
937 * is required to copy this pte.
940 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
941 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
942 struct page **prealloc)
944 struct mm_struct *src_mm = src_vma->vm_mm;
945 unsigned long vm_flags = src_vma->vm_flags;
946 pte_t pte = *src_pte;
949 page = vm_normal_page(src_vma, addr, pte);
953 retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
954 addr, rss, prealloc, pte, page);
959 page_dup_rmap(page, false);
960 rss[mm_counter(page)]++;
964 * If it's a COW mapping, write protect it both
965 * in the parent and the child
967 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
968 ptep_set_wrprotect(src_mm, addr, src_pte);
969 pte = pte_wrprotect(pte);
973 * If it's a shared mapping, mark it clean in
976 if (vm_flags & VM_SHARED)
977 pte = pte_mkclean(pte);
978 pte = pte_mkold(pte);
980 if (!userfaultfd_wp(dst_vma))
981 pte = pte_clear_uffd_wp(pte);
983 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
987 static inline struct page *
988 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
991 struct page *new_page;
993 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
997 if (mem_cgroup_charge(page_folio(new_page), src_mm, GFP_KERNEL)) {
1001 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
1007 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1008 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1011 struct mm_struct *dst_mm = dst_vma->vm_mm;
1012 struct mm_struct *src_mm = src_vma->vm_mm;
1013 pte_t *orig_src_pte, *orig_dst_pte;
1014 pte_t *src_pte, *dst_pte;
1015 spinlock_t *src_ptl, *dst_ptl;
1016 int progress, ret = 0;
1017 int rss[NR_MM_COUNTERS];
1018 swp_entry_t entry = (swp_entry_t){0};
1019 struct page *prealloc = NULL;
1025 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1030 src_pte = pte_offset_map(src_pmd, addr);
1031 src_ptl = pte_lockptr(src_mm, src_pmd);
1032 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1033 orig_src_pte = src_pte;
1034 orig_dst_pte = dst_pte;
1035 arch_enter_lazy_mmu_mode();
1039 * We are holding two locks at this point - either of them
1040 * could generate latencies in another task on another CPU.
1042 if (progress >= 32) {
1044 if (need_resched() ||
1045 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1048 if (pte_none(*src_pte)) {
1052 if (unlikely(!pte_present(*src_pte))) {
1053 ret = copy_nonpresent_pte(dst_mm, src_mm,
1058 entry = pte_to_swp_entry(*src_pte);
1060 } else if (ret == -EBUSY) {
1068 * Device exclusive entry restored, continue by copying
1069 * the now present pte.
1071 WARN_ON_ONCE(ret != -ENOENT);
1073 /* copy_present_pte() will clear `*prealloc' if consumed */
1074 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1075 addr, rss, &prealloc);
1077 * If we need a pre-allocated page for this pte, drop the
1078 * locks, allocate, and try again.
1080 if (unlikely(ret == -EAGAIN))
1082 if (unlikely(prealloc)) {
1084 * pre-alloc page cannot be reused by next time so as
1085 * to strictly follow mempolicy (e.g., alloc_page_vma()
1086 * will allocate page according to address). This
1087 * could only happen if one pinned pte changed.
1093 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1095 arch_leave_lazy_mmu_mode();
1096 spin_unlock(src_ptl);
1097 pte_unmap(orig_src_pte);
1098 add_mm_rss_vec(dst_mm, rss);
1099 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1103 VM_WARN_ON_ONCE(!entry.val);
1104 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1109 } else if (ret == -EBUSY) {
1111 } else if (ret == -EAGAIN) {
1112 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1119 /* We've captured and resolved the error. Reset, try again. */
1125 if (unlikely(prealloc))
1131 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1132 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1135 struct mm_struct *dst_mm = dst_vma->vm_mm;
1136 struct mm_struct *src_mm = src_vma->vm_mm;
1137 pmd_t *src_pmd, *dst_pmd;
1140 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1143 src_pmd = pmd_offset(src_pud, addr);
1145 next = pmd_addr_end(addr, end);
1146 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1147 || pmd_devmap(*src_pmd)) {
1149 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1150 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1151 addr, dst_vma, src_vma);
1158 if (pmd_none_or_clear_bad(src_pmd))
1160 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1163 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1168 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1169 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1172 struct mm_struct *dst_mm = dst_vma->vm_mm;
1173 struct mm_struct *src_mm = src_vma->vm_mm;
1174 pud_t *src_pud, *dst_pud;
1177 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1180 src_pud = pud_offset(src_p4d, addr);
1182 next = pud_addr_end(addr, end);
1183 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1186 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1187 err = copy_huge_pud(dst_mm, src_mm,
1188 dst_pud, src_pud, addr, src_vma);
1195 if (pud_none_or_clear_bad(src_pud))
1197 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1200 } while (dst_pud++, src_pud++, addr = next, addr != end);
1205 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1206 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1209 struct mm_struct *dst_mm = dst_vma->vm_mm;
1210 p4d_t *src_p4d, *dst_p4d;
1213 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1216 src_p4d = p4d_offset(src_pgd, addr);
1218 next = p4d_addr_end(addr, end);
1219 if (p4d_none_or_clear_bad(src_p4d))
1221 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1224 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1229 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1231 pgd_t *src_pgd, *dst_pgd;
1233 unsigned long addr = src_vma->vm_start;
1234 unsigned long end = src_vma->vm_end;
1235 struct mm_struct *dst_mm = dst_vma->vm_mm;
1236 struct mm_struct *src_mm = src_vma->vm_mm;
1237 struct mmu_notifier_range range;
1242 * Don't copy ptes where a page fault will fill them correctly.
1243 * Fork becomes much lighter when there are big shared or private
1244 * readonly mappings. The tradeoff is that copy_page_range is more
1245 * efficient than faulting.
1247 if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1251 if (is_vm_hugetlb_page(src_vma))
1252 return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1254 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1256 * We do not free on error cases below as remove_vma
1257 * gets called on error from higher level routine
1259 ret = track_pfn_copy(src_vma);
1265 * We need to invalidate the secondary MMU mappings only when
1266 * there could be a permission downgrade on the ptes of the
1267 * parent mm. And a permission downgrade will only happen if
1268 * is_cow_mapping() returns true.
1270 is_cow = is_cow_mapping(src_vma->vm_flags);
1273 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1274 0, src_vma, src_mm, addr, end);
1275 mmu_notifier_invalidate_range_start(&range);
1277 * Disabling preemption is not needed for the write side, as
1278 * the read side doesn't spin, but goes to the mmap_lock.
1280 * Use the raw variant of the seqcount_t write API to avoid
1281 * lockdep complaining about preemptibility.
1283 mmap_assert_write_locked(src_mm);
1284 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1288 dst_pgd = pgd_offset(dst_mm, addr);
1289 src_pgd = pgd_offset(src_mm, addr);
1291 next = pgd_addr_end(addr, end);
1292 if (pgd_none_or_clear_bad(src_pgd))
1294 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1299 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1302 raw_write_seqcount_end(&src_mm->write_protect_seq);
1303 mmu_notifier_invalidate_range_end(&range);
1308 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1309 struct vm_area_struct *vma, pmd_t *pmd,
1310 unsigned long addr, unsigned long end,
1311 struct zap_details *details)
1313 struct mm_struct *mm = tlb->mm;
1314 int force_flush = 0;
1315 int rss[NR_MM_COUNTERS];
1321 tlb_change_page_size(tlb, PAGE_SIZE);
1324 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1326 flush_tlb_batched_pending(mm);
1327 arch_enter_lazy_mmu_mode();
1330 if (pte_none(ptent))
1336 if (pte_present(ptent)) {
1339 page = vm_normal_page(vma, addr, ptent);
1340 if (unlikely(zap_skip_check_mapping(details, page)))
1342 ptent = ptep_get_and_clear_full(mm, addr, pte,
1344 tlb_remove_tlb_entry(tlb, pte, addr);
1345 if (unlikely(!page))
1348 if (!PageAnon(page)) {
1349 if (pte_dirty(ptent)) {
1351 set_page_dirty(page);
1353 if (pte_young(ptent) &&
1354 likely(!(vma->vm_flags & VM_SEQ_READ)))
1355 mark_page_accessed(page);
1357 rss[mm_counter(page)]--;
1358 page_remove_rmap(page, false);
1359 if (unlikely(page_mapcount(page) < 0))
1360 print_bad_pte(vma, addr, ptent, page);
1361 if (unlikely(__tlb_remove_page(tlb, page))) {
1369 entry = pte_to_swp_entry(ptent);
1370 if (is_device_private_entry(entry) ||
1371 is_device_exclusive_entry(entry)) {
1372 struct page *page = pfn_swap_entry_to_page(entry);
1374 if (unlikely(zap_skip_check_mapping(details, page)))
1376 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1377 rss[mm_counter(page)]--;
1379 if (is_device_private_entry(entry))
1380 page_remove_rmap(page, false);
1386 /* If details->check_mapping, we leave swap entries. */
1387 if (unlikely(details))
1390 if (!non_swap_entry(entry))
1392 else if (is_migration_entry(entry)) {
1395 page = pfn_swap_entry_to_page(entry);
1396 rss[mm_counter(page)]--;
1398 if (unlikely(!free_swap_and_cache(entry)))
1399 print_bad_pte(vma, addr, ptent, NULL);
1400 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1401 } while (pte++, addr += PAGE_SIZE, addr != end);
1403 add_mm_rss_vec(mm, rss);
1404 arch_leave_lazy_mmu_mode();
1406 /* Do the actual TLB flush before dropping ptl */
1408 tlb_flush_mmu_tlbonly(tlb);
1409 pte_unmap_unlock(start_pte, ptl);
1412 * If we forced a TLB flush (either due to running out of
1413 * batch buffers or because we needed to flush dirty TLB
1414 * entries before releasing the ptl), free the batched
1415 * memory too. Restart if we didn't do everything.
1430 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1431 struct vm_area_struct *vma, pud_t *pud,
1432 unsigned long addr, unsigned long end,
1433 struct zap_details *details)
1438 pmd = pmd_offset(pud, addr);
1440 next = pmd_addr_end(addr, end);
1441 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1442 if (next - addr != HPAGE_PMD_SIZE)
1443 __split_huge_pmd(vma, pmd, addr, false, NULL);
1444 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1447 } else if (details && details->single_page &&
1448 PageTransCompound(details->single_page) &&
1449 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1450 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1452 * Take and drop THP pmd lock so that we cannot return
1453 * prematurely, while zap_huge_pmd() has cleared *pmd,
1454 * but not yet decremented compound_mapcount().
1460 * Here there can be other concurrent MADV_DONTNEED or
1461 * trans huge page faults running, and if the pmd is
1462 * none or trans huge it can change under us. This is
1463 * because MADV_DONTNEED holds the mmap_lock in read
1466 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1468 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1471 } while (pmd++, addr = next, addr != end);
1476 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1477 struct vm_area_struct *vma, p4d_t *p4d,
1478 unsigned long addr, unsigned long end,
1479 struct zap_details *details)
1484 pud = pud_offset(p4d, addr);
1486 next = pud_addr_end(addr, end);
1487 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1488 if (next - addr != HPAGE_PUD_SIZE) {
1489 mmap_assert_locked(tlb->mm);
1490 split_huge_pud(vma, pud, addr);
1491 } else if (zap_huge_pud(tlb, vma, pud, addr))
1495 if (pud_none_or_clear_bad(pud))
1497 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1500 } while (pud++, addr = next, addr != end);
1505 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1506 struct vm_area_struct *vma, pgd_t *pgd,
1507 unsigned long addr, unsigned long end,
1508 struct zap_details *details)
1513 p4d = p4d_offset(pgd, addr);
1515 next = p4d_addr_end(addr, end);
1516 if (p4d_none_or_clear_bad(p4d))
1518 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1519 } while (p4d++, addr = next, addr != end);
1524 void unmap_page_range(struct mmu_gather *tlb,
1525 struct vm_area_struct *vma,
1526 unsigned long addr, unsigned long end,
1527 struct zap_details *details)
1532 BUG_ON(addr >= end);
1533 tlb_start_vma(tlb, vma);
1534 pgd = pgd_offset(vma->vm_mm, addr);
1536 next = pgd_addr_end(addr, end);
1537 if (pgd_none_or_clear_bad(pgd))
1539 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1540 } while (pgd++, addr = next, addr != end);
1541 tlb_end_vma(tlb, vma);
1545 static void unmap_single_vma(struct mmu_gather *tlb,
1546 struct vm_area_struct *vma, unsigned long start_addr,
1547 unsigned long end_addr,
1548 struct zap_details *details)
1550 unsigned long start = max(vma->vm_start, start_addr);
1553 if (start >= vma->vm_end)
1555 end = min(vma->vm_end, end_addr);
1556 if (end <= vma->vm_start)
1560 uprobe_munmap(vma, start, end);
1562 if (unlikely(vma->vm_flags & VM_PFNMAP))
1563 untrack_pfn(vma, 0, 0);
1566 if (unlikely(is_vm_hugetlb_page(vma))) {
1568 * It is undesirable to test vma->vm_file as it
1569 * should be non-null for valid hugetlb area.
1570 * However, vm_file will be NULL in the error
1571 * cleanup path of mmap_region. When
1572 * hugetlbfs ->mmap method fails,
1573 * mmap_region() nullifies vma->vm_file
1574 * before calling this function to clean up.
1575 * Since no pte has actually been setup, it is
1576 * safe to do nothing in this case.
1579 i_mmap_lock_write(vma->vm_file->f_mapping);
1580 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1581 i_mmap_unlock_write(vma->vm_file->f_mapping);
1584 unmap_page_range(tlb, vma, start, end, details);
1589 * unmap_vmas - unmap a range of memory covered by a list of vma's
1590 * @tlb: address of the caller's struct mmu_gather
1591 * @vma: the starting vma
1592 * @start_addr: virtual address at which to start unmapping
1593 * @end_addr: virtual address at which to end unmapping
1595 * Unmap all pages in the vma list.
1597 * Only addresses between `start' and `end' will be unmapped.
1599 * The VMA list must be sorted in ascending virtual address order.
1601 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1602 * range after unmap_vmas() returns. So the only responsibility here is to
1603 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1604 * drops the lock and schedules.
1606 void unmap_vmas(struct mmu_gather *tlb,
1607 struct vm_area_struct *vma, unsigned long start_addr,
1608 unsigned long end_addr)
1610 struct mmu_notifier_range range;
1612 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1613 start_addr, end_addr);
1614 mmu_notifier_invalidate_range_start(&range);
1615 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1616 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1617 mmu_notifier_invalidate_range_end(&range);
1621 * zap_page_range - remove user pages in a given range
1622 * @vma: vm_area_struct holding the applicable pages
1623 * @start: starting address of pages to zap
1624 * @size: number of bytes to zap
1626 * Caller must protect the VMA list
1628 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1631 struct mmu_notifier_range range;
1632 struct mmu_gather tlb;
1635 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1636 start, start + size);
1637 tlb_gather_mmu(&tlb, vma->vm_mm);
1638 update_hiwater_rss(vma->vm_mm);
1639 mmu_notifier_invalidate_range_start(&range);
1640 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1641 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1642 mmu_notifier_invalidate_range_end(&range);
1643 tlb_finish_mmu(&tlb);
1647 * zap_page_range_single - remove user pages in a given range
1648 * @vma: vm_area_struct holding the applicable pages
1649 * @address: starting address of pages to zap
1650 * @size: number of bytes to zap
1651 * @details: details of shared cache invalidation
1653 * The range must fit into one VMA.
1655 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1656 unsigned long size, struct zap_details *details)
1658 struct mmu_notifier_range range;
1659 struct mmu_gather tlb;
1662 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1663 address, address + size);
1664 tlb_gather_mmu(&tlb, vma->vm_mm);
1665 update_hiwater_rss(vma->vm_mm);
1666 mmu_notifier_invalidate_range_start(&range);
1667 unmap_single_vma(&tlb, vma, address, range.end, details);
1668 mmu_notifier_invalidate_range_end(&range);
1669 tlb_finish_mmu(&tlb);
1673 * zap_vma_ptes - remove ptes mapping the vma
1674 * @vma: vm_area_struct holding ptes to be zapped
1675 * @address: starting address of pages to zap
1676 * @size: number of bytes to zap
1678 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1680 * The entire address range must be fully contained within the vma.
1683 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1686 if (address < vma->vm_start || address + size > vma->vm_end ||
1687 !(vma->vm_flags & VM_PFNMAP))
1690 zap_page_range_single(vma, address, size, NULL);
1692 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1694 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1701 pgd = pgd_offset(mm, addr);
1702 p4d = p4d_alloc(mm, pgd, addr);
1705 pud = pud_alloc(mm, p4d, addr);
1708 pmd = pmd_alloc(mm, pud, addr);
1712 VM_BUG_ON(pmd_trans_huge(*pmd));
1716 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1719 pmd_t *pmd = walk_to_pmd(mm, addr);
1723 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1726 static int validate_page_before_insert(struct page *page)
1728 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1730 flush_dcache_page(page);
1734 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1735 unsigned long addr, struct page *page, pgprot_t prot)
1737 if (!pte_none(*pte))
1739 /* Ok, finally just insert the thing.. */
1741 inc_mm_counter_fast(mm, mm_counter_file(page));
1742 page_add_file_rmap(page, false);
1743 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1748 * This is the old fallback for page remapping.
1750 * For historical reasons, it only allows reserved pages. Only
1751 * old drivers should use this, and they needed to mark their
1752 * pages reserved for the old functions anyway.
1754 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1755 struct page *page, pgprot_t prot)
1757 struct mm_struct *mm = vma->vm_mm;
1762 retval = validate_page_before_insert(page);
1766 pte = get_locked_pte(mm, addr, &ptl);
1769 retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1770 pte_unmap_unlock(pte, ptl);
1776 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
1777 unsigned long addr, struct page *page, pgprot_t prot)
1781 if (!page_count(page))
1783 err = validate_page_before_insert(page);
1786 return insert_page_into_pte_locked(mm, pte, addr, page, prot);
1789 /* insert_pages() amortizes the cost of spinlock operations
1790 * when inserting pages in a loop. Arch *must* define pte_index.
1792 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1793 struct page **pages, unsigned long *num, pgprot_t prot)
1796 pte_t *start_pte, *pte;
1797 spinlock_t *pte_lock;
1798 struct mm_struct *const mm = vma->vm_mm;
1799 unsigned long curr_page_idx = 0;
1800 unsigned long remaining_pages_total = *num;
1801 unsigned long pages_to_write_in_pmd;
1805 pmd = walk_to_pmd(mm, addr);
1809 pages_to_write_in_pmd = min_t(unsigned long,
1810 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1812 /* Allocate the PTE if necessary; takes PMD lock once only. */
1814 if (pte_alloc(mm, pmd))
1817 while (pages_to_write_in_pmd) {
1819 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1821 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1822 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1823 int err = insert_page_in_batch_locked(mm, pte,
1824 addr, pages[curr_page_idx], prot);
1825 if (unlikely(err)) {
1826 pte_unmap_unlock(start_pte, pte_lock);
1828 remaining_pages_total -= pte_idx;
1834 pte_unmap_unlock(start_pte, pte_lock);
1835 pages_to_write_in_pmd -= batch_size;
1836 remaining_pages_total -= batch_size;
1838 if (remaining_pages_total)
1842 *num = remaining_pages_total;
1845 #endif /* ifdef pte_index */
1848 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1849 * @vma: user vma to map to
1850 * @addr: target start user address of these pages
1851 * @pages: source kernel pages
1852 * @num: in: number of pages to map. out: number of pages that were *not*
1853 * mapped. (0 means all pages were successfully mapped).
1855 * Preferred over vm_insert_page() when inserting multiple pages.
1857 * In case of error, we may have mapped a subset of the provided
1858 * pages. It is the caller's responsibility to account for this case.
1860 * The same restrictions apply as in vm_insert_page().
1862 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1863 struct page **pages, unsigned long *num)
1866 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1868 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1870 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1871 BUG_ON(mmap_read_trylock(vma->vm_mm));
1872 BUG_ON(vma->vm_flags & VM_PFNMAP);
1873 vma->vm_flags |= VM_MIXEDMAP;
1875 /* Defer page refcount checking till we're about to map that page. */
1876 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1878 unsigned long idx = 0, pgcount = *num;
1881 for (; idx < pgcount; ++idx) {
1882 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1886 *num = pgcount - idx;
1888 #endif /* ifdef pte_index */
1890 EXPORT_SYMBOL(vm_insert_pages);
1893 * vm_insert_page - insert single page into user vma
1894 * @vma: user vma to map to
1895 * @addr: target user address of this page
1896 * @page: source kernel page
1898 * This allows drivers to insert individual pages they've allocated
1901 * The page has to be a nice clean _individual_ kernel allocation.
1902 * If you allocate a compound page, you need to have marked it as
1903 * such (__GFP_COMP), or manually just split the page up yourself
1904 * (see split_page()).
1906 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1907 * took an arbitrary page protection parameter. This doesn't allow
1908 * that. Your vma protection will have to be set up correctly, which
1909 * means that if you want a shared writable mapping, you'd better
1910 * ask for a shared writable mapping!
1912 * The page does not need to be reserved.
1914 * Usually this function is called from f_op->mmap() handler
1915 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1916 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1917 * function from other places, for example from page-fault handler.
1919 * Return: %0 on success, negative error code otherwise.
1921 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1924 if (addr < vma->vm_start || addr >= vma->vm_end)
1926 if (!page_count(page))
1928 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1929 BUG_ON(mmap_read_trylock(vma->vm_mm));
1930 BUG_ON(vma->vm_flags & VM_PFNMAP);
1931 vma->vm_flags |= VM_MIXEDMAP;
1933 return insert_page(vma, addr, page, vma->vm_page_prot);
1935 EXPORT_SYMBOL(vm_insert_page);
1938 * __vm_map_pages - maps range of kernel pages into user vma
1939 * @vma: user vma to map to
1940 * @pages: pointer to array of source kernel pages
1941 * @num: number of pages in page array
1942 * @offset: user's requested vm_pgoff
1944 * This allows drivers to map range of kernel pages into a user vma.
1946 * Return: 0 on success and error code otherwise.
1948 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1949 unsigned long num, unsigned long offset)
1951 unsigned long count = vma_pages(vma);
1952 unsigned long uaddr = vma->vm_start;
1955 /* Fail if the user requested offset is beyond the end of the object */
1959 /* Fail if the user requested size exceeds available object size */
1960 if (count > num - offset)
1963 for (i = 0; i < count; i++) {
1964 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1974 * vm_map_pages - maps range of kernel pages starts with non zero offset
1975 * @vma: user vma to map to
1976 * @pages: pointer to array of source kernel pages
1977 * @num: number of pages in page array
1979 * Maps an object consisting of @num pages, catering for the user's
1980 * requested vm_pgoff
1982 * If we fail to insert any page into the vma, the function will return
1983 * immediately leaving any previously inserted pages present. Callers
1984 * from the mmap handler may immediately return the error as their caller
1985 * will destroy the vma, removing any successfully inserted pages. Other
1986 * callers should make their own arrangements for calling unmap_region().
1988 * Context: Process context. Called by mmap handlers.
1989 * Return: 0 on success and error code otherwise.
1991 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1994 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1996 EXPORT_SYMBOL(vm_map_pages);
1999 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2000 * @vma: user vma to map to
2001 * @pages: pointer to array of source kernel pages
2002 * @num: number of pages in page array
2004 * Similar to vm_map_pages(), except that it explicitly sets the offset
2005 * to 0. This function is intended for the drivers that did not consider
2008 * Context: Process context. Called by mmap handlers.
2009 * Return: 0 on success and error code otherwise.
2011 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2014 return __vm_map_pages(vma, pages, num, 0);
2016 EXPORT_SYMBOL(vm_map_pages_zero);
2018 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2019 pfn_t pfn, pgprot_t prot, bool mkwrite)
2021 struct mm_struct *mm = vma->vm_mm;
2025 pte = get_locked_pte(mm, addr, &ptl);
2027 return VM_FAULT_OOM;
2028 if (!pte_none(*pte)) {
2031 * For read faults on private mappings the PFN passed
2032 * in may not match the PFN we have mapped if the
2033 * mapped PFN is a writeable COW page. In the mkwrite
2034 * case we are creating a writable PTE for a shared
2035 * mapping and we expect the PFNs to match. If they
2036 * don't match, we are likely racing with block
2037 * allocation and mapping invalidation so just skip the
2040 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2041 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
2044 entry = pte_mkyoung(*pte);
2045 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2046 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2047 update_mmu_cache(vma, addr, pte);
2052 /* Ok, finally just insert the thing.. */
2053 if (pfn_t_devmap(pfn))
2054 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2056 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2059 entry = pte_mkyoung(entry);
2060 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2063 set_pte_at(mm, addr, pte, entry);
2064 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2067 pte_unmap_unlock(pte, ptl);
2068 return VM_FAULT_NOPAGE;
2072 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2073 * @vma: user vma to map to
2074 * @addr: target user address of this page
2075 * @pfn: source kernel pfn
2076 * @pgprot: pgprot flags for the inserted page
2078 * This is exactly like vmf_insert_pfn(), except that it allows drivers
2079 * to override pgprot on a per-page basis.
2081 * This only makes sense for IO mappings, and it makes no sense for
2082 * COW mappings. In general, using multiple vmas is preferable;
2083 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2086 * See vmf_insert_mixed_prot() for a discussion of the implication of using
2087 * a value of @pgprot different from that of @vma->vm_page_prot.
2089 * Context: Process context. May allocate using %GFP_KERNEL.
2090 * Return: vm_fault_t value.
2092 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2093 unsigned long pfn, pgprot_t pgprot)
2096 * Technically, architectures with pte_special can avoid all these
2097 * restrictions (same for remap_pfn_range). However we would like
2098 * consistency in testing and feature parity among all, so we should
2099 * try to keep these invariants in place for everybody.
2101 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2102 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2103 (VM_PFNMAP|VM_MIXEDMAP));
2104 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2105 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2107 if (addr < vma->vm_start || addr >= vma->vm_end)
2108 return VM_FAULT_SIGBUS;
2110 if (!pfn_modify_allowed(pfn, pgprot))
2111 return VM_FAULT_SIGBUS;
2113 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2115 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2118 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2121 * vmf_insert_pfn - insert single pfn into user vma
2122 * @vma: user vma to map to
2123 * @addr: target user address of this page
2124 * @pfn: source kernel pfn
2126 * Similar to vm_insert_page, this allows drivers to insert individual pages
2127 * they've allocated into a user vma. Same comments apply.
2129 * This function should only be called from a vm_ops->fault handler, and
2130 * in that case the handler should return the result of this function.
2132 * vma cannot be a COW mapping.
2134 * As this is called only for pages that do not currently exist, we
2135 * do not need to flush old virtual caches or the TLB.
2137 * Context: Process context. May allocate using %GFP_KERNEL.
2138 * Return: vm_fault_t value.
2140 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2143 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2145 EXPORT_SYMBOL(vmf_insert_pfn);
2147 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2149 /* these checks mirror the abort conditions in vm_normal_page */
2150 if (vma->vm_flags & VM_MIXEDMAP)
2152 if (pfn_t_devmap(pfn))
2154 if (pfn_t_special(pfn))
2156 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2161 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2162 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2167 BUG_ON(!vm_mixed_ok(vma, pfn));
2169 if (addr < vma->vm_start || addr >= vma->vm_end)
2170 return VM_FAULT_SIGBUS;
2172 track_pfn_insert(vma, &pgprot, pfn);
2174 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2175 return VM_FAULT_SIGBUS;
2178 * If we don't have pte special, then we have to use the pfn_valid()
2179 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2180 * refcount the page if pfn_valid is true (hence insert_page rather
2181 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2182 * without pte special, it would there be refcounted as a normal page.
2184 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2185 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2189 * At this point we are committed to insert_page()
2190 * regardless of whether the caller specified flags that
2191 * result in pfn_t_has_page() == false.
2193 page = pfn_to_page(pfn_t_to_pfn(pfn));
2194 err = insert_page(vma, addr, page, pgprot);
2196 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2200 return VM_FAULT_OOM;
2201 if (err < 0 && err != -EBUSY)
2202 return VM_FAULT_SIGBUS;
2204 return VM_FAULT_NOPAGE;
2208 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2209 * @vma: user vma to map to
2210 * @addr: target user address of this page
2211 * @pfn: source kernel pfn
2212 * @pgprot: pgprot flags for the inserted page
2214 * This is exactly like vmf_insert_mixed(), except that it allows drivers
2215 * to override pgprot on a per-page basis.
2217 * Typically this function should be used by drivers to set caching- and
2218 * encryption bits different than those of @vma->vm_page_prot, because
2219 * the caching- or encryption mode may not be known at mmap() time.
2220 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2221 * to set caching and encryption bits for those vmas (except for COW pages).
2222 * This is ensured by core vm only modifying these page table entries using
2223 * functions that don't touch caching- or encryption bits, using pte_modify()
2224 * if needed. (See for example mprotect()).
2225 * Also when new page-table entries are created, this is only done using the
2226 * fault() callback, and never using the value of vma->vm_page_prot,
2227 * except for page-table entries that point to anonymous pages as the result
2230 * Context: Process context. May allocate using %GFP_KERNEL.
2231 * Return: vm_fault_t value.
2233 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2234 pfn_t pfn, pgprot_t pgprot)
2236 return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2238 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2240 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2243 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2245 EXPORT_SYMBOL(vmf_insert_mixed);
2248 * If the insertion of PTE failed because someone else already added a
2249 * different entry in the mean time, we treat that as success as we assume
2250 * the same entry was actually inserted.
2252 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2253 unsigned long addr, pfn_t pfn)
2255 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2257 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2260 * maps a range of physical memory into the requested pages. the old
2261 * mappings are removed. any references to nonexistent pages results
2262 * in null mappings (currently treated as "copy-on-access")
2264 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2265 unsigned long addr, unsigned long end,
2266 unsigned long pfn, pgprot_t prot)
2268 pte_t *pte, *mapped_pte;
2272 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2275 arch_enter_lazy_mmu_mode();
2277 BUG_ON(!pte_none(*pte));
2278 if (!pfn_modify_allowed(pfn, prot)) {
2282 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2284 } while (pte++, addr += PAGE_SIZE, addr != end);
2285 arch_leave_lazy_mmu_mode();
2286 pte_unmap_unlock(mapped_pte, ptl);
2290 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2291 unsigned long addr, unsigned long end,
2292 unsigned long pfn, pgprot_t prot)
2298 pfn -= addr >> PAGE_SHIFT;
2299 pmd = pmd_alloc(mm, pud, addr);
2302 VM_BUG_ON(pmd_trans_huge(*pmd));
2304 next = pmd_addr_end(addr, end);
2305 err = remap_pte_range(mm, pmd, addr, next,
2306 pfn + (addr >> PAGE_SHIFT), prot);
2309 } while (pmd++, addr = next, addr != end);
2313 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2314 unsigned long addr, unsigned long end,
2315 unsigned long pfn, pgprot_t prot)
2321 pfn -= addr >> PAGE_SHIFT;
2322 pud = pud_alloc(mm, p4d, addr);
2326 next = pud_addr_end(addr, end);
2327 err = remap_pmd_range(mm, pud, addr, next,
2328 pfn + (addr >> PAGE_SHIFT), prot);
2331 } while (pud++, addr = next, addr != end);
2335 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2336 unsigned long addr, unsigned long end,
2337 unsigned long pfn, pgprot_t prot)
2343 pfn -= addr >> PAGE_SHIFT;
2344 p4d = p4d_alloc(mm, pgd, addr);
2348 next = p4d_addr_end(addr, end);
2349 err = remap_pud_range(mm, p4d, addr, next,
2350 pfn + (addr >> PAGE_SHIFT), prot);
2353 } while (p4d++, addr = next, addr != end);
2358 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2359 * must have pre-validated the caching bits of the pgprot_t.
2361 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2362 unsigned long pfn, unsigned long size, pgprot_t prot)
2366 unsigned long end = addr + PAGE_ALIGN(size);
2367 struct mm_struct *mm = vma->vm_mm;
2370 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2374 * Physically remapped pages are special. Tell the
2375 * rest of the world about it:
2376 * VM_IO tells people not to look at these pages
2377 * (accesses can have side effects).
2378 * VM_PFNMAP tells the core MM that the base pages are just
2379 * raw PFN mappings, and do not have a "struct page" associated
2382 * Disable vma merging and expanding with mremap().
2384 * Omit vma from core dump, even when VM_IO turned off.
2386 * There's a horrible special case to handle copy-on-write
2387 * behaviour that some programs depend on. We mark the "original"
2388 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2389 * See vm_normal_page() for details.
2391 if (is_cow_mapping(vma->vm_flags)) {
2392 if (addr != vma->vm_start || end != vma->vm_end)
2394 vma->vm_pgoff = pfn;
2397 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2399 BUG_ON(addr >= end);
2400 pfn -= addr >> PAGE_SHIFT;
2401 pgd = pgd_offset(mm, addr);
2402 flush_cache_range(vma, addr, end);
2404 next = pgd_addr_end(addr, end);
2405 err = remap_p4d_range(mm, pgd, addr, next,
2406 pfn + (addr >> PAGE_SHIFT), prot);
2409 } while (pgd++, addr = next, addr != end);
2415 * remap_pfn_range - remap kernel memory to userspace
2416 * @vma: user vma to map to
2417 * @addr: target page aligned user address to start at
2418 * @pfn: page frame number of kernel physical memory address
2419 * @size: size of mapping area
2420 * @prot: page protection flags for this mapping
2422 * Note: this is only safe if the mm semaphore is held when called.
2424 * Return: %0 on success, negative error code otherwise.
2426 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2427 unsigned long pfn, unsigned long size, pgprot_t prot)
2431 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2435 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2437 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2440 EXPORT_SYMBOL(remap_pfn_range);
2443 * vm_iomap_memory - remap memory to userspace
2444 * @vma: user vma to map to
2445 * @start: start of the physical memory to be mapped
2446 * @len: size of area
2448 * This is a simplified io_remap_pfn_range() for common driver use. The
2449 * driver just needs to give us the physical memory range to be mapped,
2450 * we'll figure out the rest from the vma information.
2452 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2453 * whatever write-combining details or similar.
2455 * Return: %0 on success, negative error code otherwise.
2457 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2459 unsigned long vm_len, pfn, pages;
2461 /* Check that the physical memory area passed in looks valid */
2462 if (start + len < start)
2465 * You *really* shouldn't map things that aren't page-aligned,
2466 * but we've historically allowed it because IO memory might
2467 * just have smaller alignment.
2469 len += start & ~PAGE_MASK;
2470 pfn = start >> PAGE_SHIFT;
2471 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2472 if (pfn + pages < pfn)
2475 /* We start the mapping 'vm_pgoff' pages into the area */
2476 if (vma->vm_pgoff > pages)
2478 pfn += vma->vm_pgoff;
2479 pages -= vma->vm_pgoff;
2481 /* Can we fit all of the mapping? */
2482 vm_len = vma->vm_end - vma->vm_start;
2483 if (vm_len >> PAGE_SHIFT > pages)
2486 /* Ok, let it rip */
2487 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2489 EXPORT_SYMBOL(vm_iomap_memory);
2491 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2492 unsigned long addr, unsigned long end,
2493 pte_fn_t fn, void *data, bool create,
2494 pgtbl_mod_mask *mask)
2496 pte_t *pte, *mapped_pte;
2501 mapped_pte = pte = (mm == &init_mm) ?
2502 pte_alloc_kernel_track(pmd, addr, mask) :
2503 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2507 mapped_pte = pte = (mm == &init_mm) ?
2508 pte_offset_kernel(pmd, addr) :
2509 pte_offset_map_lock(mm, pmd, addr, &ptl);
2512 BUG_ON(pmd_huge(*pmd));
2514 arch_enter_lazy_mmu_mode();
2518 if (create || !pte_none(*pte)) {
2519 err = fn(pte++, addr, data);
2523 } while (addr += PAGE_SIZE, addr != end);
2525 *mask |= PGTBL_PTE_MODIFIED;
2527 arch_leave_lazy_mmu_mode();
2530 pte_unmap_unlock(mapped_pte, ptl);
2534 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2535 unsigned long addr, unsigned long end,
2536 pte_fn_t fn, void *data, bool create,
2537 pgtbl_mod_mask *mask)
2543 BUG_ON(pud_huge(*pud));
2546 pmd = pmd_alloc_track(mm, pud, addr, mask);
2550 pmd = pmd_offset(pud, addr);
2553 next = pmd_addr_end(addr, end);
2554 if (pmd_none(*pmd) && !create)
2556 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2558 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2563 err = apply_to_pte_range(mm, pmd, addr, next,
2564 fn, data, create, mask);
2567 } while (pmd++, addr = next, addr != end);
2572 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2573 unsigned long addr, unsigned long end,
2574 pte_fn_t fn, void *data, bool create,
2575 pgtbl_mod_mask *mask)
2582 pud = pud_alloc_track(mm, p4d, addr, mask);
2586 pud = pud_offset(p4d, addr);
2589 next = pud_addr_end(addr, end);
2590 if (pud_none(*pud) && !create)
2592 if (WARN_ON_ONCE(pud_leaf(*pud)))
2594 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2599 err = apply_to_pmd_range(mm, pud, addr, next,
2600 fn, data, create, mask);
2603 } while (pud++, addr = next, addr != end);
2608 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2609 unsigned long addr, unsigned long end,
2610 pte_fn_t fn, void *data, bool create,
2611 pgtbl_mod_mask *mask)
2618 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2622 p4d = p4d_offset(pgd, addr);
2625 next = p4d_addr_end(addr, end);
2626 if (p4d_none(*p4d) && !create)
2628 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2630 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2635 err = apply_to_pud_range(mm, p4d, addr, next,
2636 fn, data, create, mask);
2639 } while (p4d++, addr = next, addr != end);
2644 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2645 unsigned long size, pte_fn_t fn,
2646 void *data, bool create)
2649 unsigned long start = addr, next;
2650 unsigned long end = addr + size;
2651 pgtbl_mod_mask mask = 0;
2654 if (WARN_ON(addr >= end))
2657 pgd = pgd_offset(mm, addr);
2659 next = pgd_addr_end(addr, end);
2660 if (pgd_none(*pgd) && !create)
2662 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2664 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2669 err = apply_to_p4d_range(mm, pgd, addr, next,
2670 fn, data, create, &mask);
2673 } while (pgd++, addr = next, addr != end);
2675 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2676 arch_sync_kernel_mappings(start, start + size);
2682 * Scan a region of virtual memory, filling in page tables as necessary
2683 * and calling a provided function on each leaf page table.
2685 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2686 unsigned long size, pte_fn_t fn, void *data)
2688 return __apply_to_page_range(mm, addr, size, fn, data, true);
2690 EXPORT_SYMBOL_GPL(apply_to_page_range);
2693 * Scan a region of virtual memory, calling a provided function on
2694 * each leaf page table where it exists.
2696 * Unlike apply_to_page_range, this does _not_ fill in page tables
2697 * where they are absent.
2699 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2700 unsigned long size, pte_fn_t fn, void *data)
2702 return __apply_to_page_range(mm, addr, size, fn, data, false);
2704 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2707 * handle_pte_fault chooses page fault handler according to an entry which was
2708 * read non-atomically. Before making any commitment, on those architectures
2709 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2710 * parts, do_swap_page must check under lock before unmapping the pte and
2711 * proceeding (but do_wp_page is only called after already making such a check;
2712 * and do_anonymous_page can safely check later on).
2714 static inline int pte_unmap_same(struct vm_fault *vmf)
2717 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2718 if (sizeof(pte_t) > sizeof(unsigned long)) {
2719 spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
2721 same = pte_same(*vmf->pte, vmf->orig_pte);
2725 pte_unmap(vmf->pte);
2730 static inline bool cow_user_page(struct page *dst, struct page *src,
2731 struct vm_fault *vmf)
2736 bool locked = false;
2737 struct vm_area_struct *vma = vmf->vma;
2738 struct mm_struct *mm = vma->vm_mm;
2739 unsigned long addr = vmf->address;
2742 copy_user_highpage(dst, src, addr, vma);
2747 * If the source page was a PFN mapping, we don't have
2748 * a "struct page" for it. We do a best-effort copy by
2749 * just copying from the original user address. If that
2750 * fails, we just zero-fill it. Live with it.
2752 kaddr = kmap_atomic(dst);
2753 uaddr = (void __user *)(addr & PAGE_MASK);
2756 * On architectures with software "accessed" bits, we would
2757 * take a double page fault, so mark it accessed here.
2759 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2762 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2764 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2766 * Other thread has already handled the fault
2767 * and update local tlb only
2769 update_mmu_tlb(vma, addr, vmf->pte);
2774 entry = pte_mkyoung(vmf->orig_pte);
2775 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2776 update_mmu_cache(vma, addr, vmf->pte);
2780 * This really shouldn't fail, because the page is there
2781 * in the page tables. But it might just be unreadable,
2782 * in which case we just give up and fill the result with
2785 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2789 /* Re-validate under PTL if the page is still mapped */
2790 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2792 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2793 /* The PTE changed under us, update local tlb */
2794 update_mmu_tlb(vma, addr, vmf->pte);
2800 * The same page can be mapped back since last copy attempt.
2801 * Try to copy again under PTL.
2803 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2805 * Give a warn in case there can be some obscure
2818 pte_unmap_unlock(vmf->pte, vmf->ptl);
2819 kunmap_atomic(kaddr);
2820 flush_dcache_page(dst);
2825 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2827 struct file *vm_file = vma->vm_file;
2830 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2833 * Special mappings (e.g. VDSO) do not have any file so fake
2834 * a default GFP_KERNEL for them.
2840 * Notify the address space that the page is about to become writable so that
2841 * it can prohibit this or wait for the page to get into an appropriate state.
2843 * We do this without the lock held, so that it can sleep if it needs to.
2845 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2848 struct page *page = vmf->page;
2849 unsigned int old_flags = vmf->flags;
2851 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2853 if (vmf->vma->vm_file &&
2854 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2855 return VM_FAULT_SIGBUS;
2857 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2858 /* Restore original flags so that caller is not surprised */
2859 vmf->flags = old_flags;
2860 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2862 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2864 if (!page->mapping) {
2866 return 0; /* retry */
2868 ret |= VM_FAULT_LOCKED;
2870 VM_BUG_ON_PAGE(!PageLocked(page), page);
2875 * Handle dirtying of a page in shared file mapping on a write fault.
2877 * The function expects the page to be locked and unlocks it.
2879 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2881 struct vm_area_struct *vma = vmf->vma;
2882 struct address_space *mapping;
2883 struct page *page = vmf->page;
2885 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2887 dirtied = set_page_dirty(page);
2888 VM_BUG_ON_PAGE(PageAnon(page), page);
2890 * Take a local copy of the address_space - page.mapping may be zeroed
2891 * by truncate after unlock_page(). The address_space itself remains
2892 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2893 * release semantics to prevent the compiler from undoing this copying.
2895 mapping = page_rmapping(page);
2899 file_update_time(vma->vm_file);
2902 * Throttle page dirtying rate down to writeback speed.
2904 * mapping may be NULL here because some device drivers do not
2905 * set page.mapping but still dirty their pages
2907 * Drop the mmap_lock before waiting on IO, if we can. The file
2908 * is pinning the mapping, as per above.
2910 if ((dirtied || page_mkwrite) && mapping) {
2913 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2914 balance_dirty_pages_ratelimited(mapping);
2917 return VM_FAULT_RETRY;
2925 * Handle write page faults for pages that can be reused in the current vma
2927 * This can happen either due to the mapping being with the VM_SHARED flag,
2928 * or due to us being the last reference standing to the page. In either
2929 * case, all we need to do here is to mark the page as writable and update
2930 * any related book-keeping.
2932 static inline void wp_page_reuse(struct vm_fault *vmf)
2933 __releases(vmf->ptl)
2935 struct vm_area_struct *vma = vmf->vma;
2936 struct page *page = vmf->page;
2939 * Clear the pages cpupid information as the existing
2940 * information potentially belongs to a now completely
2941 * unrelated process.
2944 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2946 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2947 entry = pte_mkyoung(vmf->orig_pte);
2948 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2949 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2950 update_mmu_cache(vma, vmf->address, vmf->pte);
2951 pte_unmap_unlock(vmf->pte, vmf->ptl);
2952 count_vm_event(PGREUSE);
2956 * Handle the case of a page which we actually need to copy to a new page.
2958 * Called with mmap_lock locked and the old page referenced, but
2959 * without the ptl held.
2961 * High level logic flow:
2963 * - Allocate a page, copy the content of the old page to the new one.
2964 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2965 * - Take the PTL. If the pte changed, bail out and release the allocated page
2966 * - If the pte is still the way we remember it, update the page table and all
2967 * relevant references. This includes dropping the reference the page-table
2968 * held to the old page, as well as updating the rmap.
2969 * - In any case, unlock the PTL and drop the reference we took to the old page.
2971 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2973 struct vm_area_struct *vma = vmf->vma;
2974 struct mm_struct *mm = vma->vm_mm;
2975 struct page *old_page = vmf->page;
2976 struct page *new_page = NULL;
2978 int page_copied = 0;
2979 struct mmu_notifier_range range;
2981 if (unlikely(anon_vma_prepare(vma)))
2984 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2985 new_page = alloc_zeroed_user_highpage_movable(vma,
2990 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2995 if (!cow_user_page(new_page, old_page, vmf)) {
2997 * COW failed, if the fault was solved by other,
2998 * it's fine. If not, userspace would re-fault on
2999 * the same address and we will handle the fault
3000 * from the second attempt.
3009 if (mem_cgroup_charge(page_folio(new_page), mm, GFP_KERNEL))
3011 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
3013 __SetPageUptodate(new_page);
3015 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
3016 vmf->address & PAGE_MASK,
3017 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3018 mmu_notifier_invalidate_range_start(&range);
3021 * Re-check the pte - we dropped the lock
3023 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3024 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
3026 if (!PageAnon(old_page)) {
3027 dec_mm_counter_fast(mm,
3028 mm_counter_file(old_page));
3029 inc_mm_counter_fast(mm, MM_ANONPAGES);
3032 inc_mm_counter_fast(mm, MM_ANONPAGES);
3034 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3035 entry = mk_pte(new_page, vma->vm_page_prot);
3036 entry = pte_sw_mkyoung(entry);
3037 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3040 * Clear the pte entry and flush it first, before updating the
3041 * pte with the new entry, to keep TLBs on different CPUs in
3042 * sync. This code used to set the new PTE then flush TLBs, but
3043 * that left a window where the new PTE could be loaded into
3044 * some TLBs while the old PTE remains in others.
3046 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3047 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
3048 lru_cache_add_inactive_or_unevictable(new_page, vma);
3050 * We call the notify macro here because, when using secondary
3051 * mmu page tables (such as kvm shadow page tables), we want the
3052 * new page to be mapped directly into the secondary page table.
3054 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3055 update_mmu_cache(vma, vmf->address, vmf->pte);
3058 * Only after switching the pte to the new page may
3059 * we remove the mapcount here. Otherwise another
3060 * process may come and find the rmap count decremented
3061 * before the pte is switched to the new page, and
3062 * "reuse" the old page writing into it while our pte
3063 * here still points into it and can be read by other
3066 * The critical issue is to order this
3067 * page_remove_rmap with the ptp_clear_flush above.
3068 * Those stores are ordered by (if nothing else,)
3069 * the barrier present in the atomic_add_negative
3070 * in page_remove_rmap.
3072 * Then the TLB flush in ptep_clear_flush ensures that
3073 * no process can access the old page before the
3074 * decremented mapcount is visible. And the old page
3075 * cannot be reused until after the decremented
3076 * mapcount is visible. So transitively, TLBs to
3077 * old page will be flushed before it can be reused.
3079 page_remove_rmap(old_page, false);
3082 /* Free the old page.. */
3083 new_page = old_page;
3086 update_mmu_tlb(vma, vmf->address, vmf->pte);
3092 pte_unmap_unlock(vmf->pte, vmf->ptl);
3094 * No need to double call mmu_notifier->invalidate_range() callback as
3095 * the above ptep_clear_flush_notify() did already call it.
3097 mmu_notifier_invalidate_range_only_end(&range);
3100 * Don't let another task, with possibly unlocked vma,
3101 * keep the mlocked page.
3103 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
3104 lock_page(old_page); /* LRU manipulation */
3105 if (PageMlocked(old_page))
3106 munlock_vma_page(old_page);
3107 unlock_page(old_page);
3110 free_swap_cache(old_page);
3113 return page_copied ? VM_FAULT_WRITE : 0;
3119 return VM_FAULT_OOM;
3123 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3124 * writeable once the page is prepared
3126 * @vmf: structure describing the fault
3128 * This function handles all that is needed to finish a write page fault in a
3129 * shared mapping due to PTE being read-only once the mapped page is prepared.
3130 * It handles locking of PTE and modifying it.
3132 * The function expects the page to be locked or other protection against
3133 * concurrent faults / writeback (such as DAX radix tree locks).
3135 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3136 * we acquired PTE lock.
3138 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3140 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3141 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3144 * We might have raced with another page fault while we released the
3145 * pte_offset_map_lock.
3147 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3148 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3149 pte_unmap_unlock(vmf->pte, vmf->ptl);
3150 return VM_FAULT_NOPAGE;
3157 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3160 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3162 struct vm_area_struct *vma = vmf->vma;
3164 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3167 pte_unmap_unlock(vmf->pte, vmf->ptl);
3168 vmf->flags |= FAULT_FLAG_MKWRITE;
3169 ret = vma->vm_ops->pfn_mkwrite(vmf);
3170 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3172 return finish_mkwrite_fault(vmf);
3175 return VM_FAULT_WRITE;
3178 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3179 __releases(vmf->ptl)
3181 struct vm_area_struct *vma = vmf->vma;
3182 vm_fault_t ret = VM_FAULT_WRITE;
3184 get_page(vmf->page);
3186 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3189 pte_unmap_unlock(vmf->pte, vmf->ptl);
3190 tmp = do_page_mkwrite(vmf);
3191 if (unlikely(!tmp || (tmp &
3192 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3193 put_page(vmf->page);
3196 tmp = finish_mkwrite_fault(vmf);
3197 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3198 unlock_page(vmf->page);
3199 put_page(vmf->page);
3204 lock_page(vmf->page);
3206 ret |= fault_dirty_shared_page(vmf);
3207 put_page(vmf->page);
3213 * This routine handles present pages, when users try to write
3214 * to a shared page. It is done by copying the page to a new address
3215 * and decrementing the shared-page counter for the old page.
3217 * Note that this routine assumes that the protection checks have been
3218 * done by the caller (the low-level page fault routine in most cases).
3219 * Thus we can safely just mark it writable once we've done any necessary
3222 * We also mark the page dirty at this point even though the page will
3223 * change only once the write actually happens. This avoids a few races,
3224 * and potentially makes it more efficient.
3226 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3227 * but allow concurrent faults), with pte both mapped and locked.
3228 * We return with mmap_lock still held, but pte unmapped and unlocked.
3230 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3231 __releases(vmf->ptl)
3233 struct vm_area_struct *vma = vmf->vma;
3235 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3236 pte_unmap_unlock(vmf->pte, vmf->ptl);
3237 return handle_userfault(vmf, VM_UFFD_WP);
3241 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3242 * is flushed in this case before copying.
3244 if (unlikely(userfaultfd_wp(vmf->vma) &&
3245 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3246 flush_tlb_page(vmf->vma, vmf->address);
3248 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3251 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3254 * We should not cow pages in a shared writeable mapping.
3255 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3257 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3258 (VM_WRITE|VM_SHARED))
3259 return wp_pfn_shared(vmf);
3261 pte_unmap_unlock(vmf->pte, vmf->ptl);
3262 return wp_page_copy(vmf);
3266 * Take out anonymous pages first, anonymous shared vmas are
3267 * not dirty accountable.
3269 if (PageAnon(vmf->page)) {
3270 struct page *page = vmf->page;
3272 /* PageKsm() doesn't necessarily raise the page refcount */
3273 if (PageKsm(page) || page_count(page) != 1)
3275 if (!trylock_page(page))
3277 if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
3282 * Ok, we've got the only map reference, and the only
3283 * page count reference, and the page is locked,
3284 * it's dark out, and we're wearing sunglasses. Hit it.
3288 return VM_FAULT_WRITE;
3289 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3290 (VM_WRITE|VM_SHARED))) {
3291 return wp_page_shared(vmf);
3295 * Ok, we need to copy. Oh, well..
3297 get_page(vmf->page);
3299 pte_unmap_unlock(vmf->pte, vmf->ptl);
3300 return wp_page_copy(vmf);
3303 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3304 unsigned long start_addr, unsigned long end_addr,
3305 struct zap_details *details)
3307 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3310 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3311 pgoff_t first_index,
3313 struct zap_details *details)
3315 struct vm_area_struct *vma;
3316 pgoff_t vba, vea, zba, zea;
3318 vma_interval_tree_foreach(vma, root, first_index, last_index) {
3319 vba = vma->vm_pgoff;
3320 vea = vba + vma_pages(vma) - 1;
3328 unmap_mapping_range_vma(vma,
3329 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3330 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3336 * unmap_mapping_page() - Unmap single page from processes.
3337 * @page: The locked page to be unmapped.
3339 * Unmap this page from any userspace process which still has it mmaped.
3340 * Typically, for efficiency, the range of nearby pages has already been
3341 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3342 * truncation or invalidation holds the lock on a page, it may find that
3343 * the page has been remapped again: and then uses unmap_mapping_page()
3344 * to unmap it finally.
3346 void unmap_mapping_page(struct page *page)
3348 struct address_space *mapping = page->mapping;
3349 struct zap_details details = { };
3350 pgoff_t first_index;
3353 VM_BUG_ON(!PageLocked(page));
3354 VM_BUG_ON(PageTail(page));
3356 first_index = page->index;
3357 last_index = page->index + thp_nr_pages(page) - 1;
3359 details.zap_mapping = mapping;
3360 details.single_page = page;
3362 i_mmap_lock_write(mapping);
3363 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3364 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3365 last_index, &details);
3366 i_mmap_unlock_write(mapping);
3370 * unmap_mapping_pages() - Unmap pages from processes.
3371 * @mapping: The address space containing pages to be unmapped.
3372 * @start: Index of first page to be unmapped.
3373 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3374 * @even_cows: Whether to unmap even private COWed pages.
3376 * Unmap the pages in this address space from any userspace process which
3377 * has them mmaped. Generally, you want to remove COWed pages as well when
3378 * a file is being truncated, but not when invalidating pages from the page
3381 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3382 pgoff_t nr, bool even_cows)
3384 struct zap_details details = { };
3385 pgoff_t first_index = start;
3386 pgoff_t last_index = start + nr - 1;
3388 details.zap_mapping = even_cows ? NULL : mapping;
3389 if (last_index < first_index)
3390 last_index = ULONG_MAX;
3392 i_mmap_lock_write(mapping);
3393 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3394 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3395 last_index, &details);
3396 i_mmap_unlock_write(mapping);
3398 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3401 * unmap_mapping_range - unmap the portion of all mmaps in the specified
3402 * address_space corresponding to the specified byte range in the underlying
3405 * @mapping: the address space containing mmaps to be unmapped.
3406 * @holebegin: byte in first page to unmap, relative to the start of
3407 * the underlying file. This will be rounded down to a PAGE_SIZE
3408 * boundary. Note that this is different from truncate_pagecache(), which
3409 * must keep the partial page. In contrast, we must get rid of
3411 * @holelen: size of prospective hole in bytes. This will be rounded
3412 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3414 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3415 * but 0 when invalidating pagecache, don't throw away private data.
3417 void unmap_mapping_range(struct address_space *mapping,
3418 loff_t const holebegin, loff_t const holelen, int even_cows)
3420 pgoff_t hba = holebegin >> PAGE_SHIFT;
3421 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3423 /* Check for overflow. */
3424 if (sizeof(holelen) > sizeof(hlen)) {
3426 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3427 if (holeend & ~(long long)ULONG_MAX)
3428 hlen = ULONG_MAX - hba + 1;
3431 unmap_mapping_pages(mapping, hba, hlen, even_cows);
3433 EXPORT_SYMBOL(unmap_mapping_range);
3436 * Restore a potential device exclusive pte to a working pte entry
3438 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3440 struct page *page = vmf->page;
3441 struct vm_area_struct *vma = vmf->vma;
3442 struct mmu_notifier_range range;
3444 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags))
3445 return VM_FAULT_RETRY;
3446 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
3447 vma->vm_mm, vmf->address & PAGE_MASK,
3448 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3449 mmu_notifier_invalidate_range_start(&range);
3451 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3453 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3454 restore_exclusive_pte(vma, page, vmf->address, vmf->pte);
3456 pte_unmap_unlock(vmf->pte, vmf->ptl);
3459 mmu_notifier_invalidate_range_end(&range);
3464 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3465 * but allow concurrent faults), and pte mapped but not yet locked.
3466 * We return with pte unmapped and unlocked.
3468 * We return with the mmap_lock locked or unlocked in the same cases
3469 * as does filemap_fault().
3471 vm_fault_t do_swap_page(struct vm_fault *vmf)
3473 struct vm_area_struct *vma = vmf->vma;
3474 struct page *page = NULL, *swapcache;
3475 struct swap_info_struct *si = NULL;
3481 void *shadow = NULL;
3483 if (!pte_unmap_same(vmf))
3486 entry = pte_to_swp_entry(vmf->orig_pte);
3487 if (unlikely(non_swap_entry(entry))) {
3488 if (is_migration_entry(entry)) {
3489 migration_entry_wait(vma->vm_mm, vmf->pmd,
3491 } else if (is_device_exclusive_entry(entry)) {
3492 vmf->page = pfn_swap_entry_to_page(entry);
3493 ret = remove_device_exclusive_entry(vmf);
3494 } else if (is_device_private_entry(entry)) {
3495 vmf->page = pfn_swap_entry_to_page(entry);
3496 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3497 } else if (is_hwpoison_entry(entry)) {
3498 ret = VM_FAULT_HWPOISON;
3500 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3501 ret = VM_FAULT_SIGBUS;
3506 /* Prevent swapoff from happening to us. */
3507 si = get_swap_device(entry);
3511 delayacct_set_flag(current, DELAYACCT_PF_SWAPIN);
3512 page = lookup_swap_cache(entry, vma, vmf->address);
3516 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3517 __swap_count(entry) == 1) {
3518 /* skip swapcache */
3519 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3522 __SetPageLocked(page);
3523 __SetPageSwapBacked(page);
3525 if (mem_cgroup_swapin_charge_page(page,
3526 vma->vm_mm, GFP_KERNEL, entry)) {
3530 mem_cgroup_swapin_uncharge_swap(entry);
3532 shadow = get_shadow_from_swap_cache(entry);
3534 workingset_refault(page_folio(page),
3537 lru_cache_add(page);
3539 /* To provide entry to swap_readpage() */
3540 set_page_private(page, entry.val);
3541 swap_readpage(page, true);
3542 set_page_private(page, 0);
3545 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3552 * Back out if somebody else faulted in this pte
3553 * while we released the pte lock.
3555 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3556 vmf->address, &vmf->ptl);
3557 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3559 delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
3563 /* Had to read the page from swap area: Major fault */
3564 ret = VM_FAULT_MAJOR;
3565 count_vm_event(PGMAJFAULT);
3566 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3567 } else if (PageHWPoison(page)) {
3569 * hwpoisoned dirty swapcache pages are kept for killing
3570 * owner processes (which may be unknown at hwpoison time)
3572 ret = VM_FAULT_HWPOISON;
3573 delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
3577 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3579 delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
3581 ret |= VM_FAULT_RETRY;
3586 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3587 * release the swapcache from under us. The page pin, and pte_same
3588 * test below, are not enough to exclude that. Even if it is still
3589 * swapcache, we need to check that the page's swap has not changed.
3591 if (unlikely((!PageSwapCache(page) ||
3592 page_private(page) != entry.val)) && swapcache)
3595 page = ksm_might_need_to_copy(page, vma, vmf->address);
3596 if (unlikely(!page)) {
3602 cgroup_throttle_swaprate(page, GFP_KERNEL);
3605 * Back out if somebody else already faulted in this pte.
3607 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3609 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3612 if (unlikely(!PageUptodate(page))) {
3613 ret = VM_FAULT_SIGBUS;
3618 * The page isn't present yet, go ahead with the fault.
3620 * Be careful about the sequence of operations here.
3621 * To get its accounting right, reuse_swap_page() must be called
3622 * while the page is counted on swap but not yet in mapcount i.e.
3623 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3624 * must be called after the swap_free(), or it will never succeed.
3627 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3628 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3629 pte = mk_pte(page, vma->vm_page_prot);
3630 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3631 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3632 vmf->flags &= ~FAULT_FLAG_WRITE;
3633 ret |= VM_FAULT_WRITE;
3634 exclusive = RMAP_EXCLUSIVE;
3636 flush_icache_page(vma, page);
3637 if (pte_swp_soft_dirty(vmf->orig_pte))
3638 pte = pte_mksoft_dirty(pte);
3639 if (pte_swp_uffd_wp(vmf->orig_pte)) {
3640 pte = pte_mkuffd_wp(pte);
3641 pte = pte_wrprotect(pte);
3643 vmf->orig_pte = pte;
3645 /* ksm created a completely new copy */
3646 if (unlikely(page != swapcache && swapcache)) {
3647 page_add_new_anon_rmap(page, vma, vmf->address, false);
3648 lru_cache_add_inactive_or_unevictable(page, vma);
3650 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3653 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3654 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3657 if (mem_cgroup_swap_full(page) ||
3658 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3659 try_to_free_swap(page);
3661 if (page != swapcache && swapcache) {
3663 * Hold the lock to avoid the swap entry to be reused
3664 * until we take the PT lock for the pte_same() check
3665 * (to avoid false positives from pte_same). For
3666 * further safety release the lock after the swap_free
3667 * so that the swap count won't change under a
3668 * parallel locked swapcache.
3670 unlock_page(swapcache);
3671 put_page(swapcache);
3674 if (vmf->flags & FAULT_FLAG_WRITE) {
3675 ret |= do_wp_page(vmf);
3676 if (ret & VM_FAULT_ERROR)
3677 ret &= VM_FAULT_ERROR;
3681 /* No need to invalidate - it was non-present before */
3682 update_mmu_cache(vma, vmf->address, vmf->pte);
3684 pte_unmap_unlock(vmf->pte, vmf->ptl);
3687 put_swap_device(si);
3690 pte_unmap_unlock(vmf->pte, vmf->ptl);
3695 if (page != swapcache && swapcache) {
3696 unlock_page(swapcache);
3697 put_page(swapcache);
3700 put_swap_device(si);
3705 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3706 * but allow concurrent faults), and pte mapped but not yet locked.
3707 * We return with mmap_lock still held, but pte unmapped and unlocked.
3709 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3711 struct vm_area_struct *vma = vmf->vma;
3716 /* File mapping without ->vm_ops ? */
3717 if (vma->vm_flags & VM_SHARED)
3718 return VM_FAULT_SIGBUS;
3721 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3722 * pte_offset_map() on pmds where a huge pmd might be created
3723 * from a different thread.
3725 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3726 * parallel threads are excluded by other means.
3728 * Here we only have mmap_read_lock(mm).
3730 if (pte_alloc(vma->vm_mm, vmf->pmd))
3731 return VM_FAULT_OOM;
3733 /* See comment in handle_pte_fault() */
3734 if (unlikely(pmd_trans_unstable(vmf->pmd)))
3737 /* Use the zero-page for reads */
3738 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3739 !mm_forbids_zeropage(vma->vm_mm)) {
3740 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3741 vma->vm_page_prot));
3742 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3743 vmf->address, &vmf->ptl);
3744 if (!pte_none(*vmf->pte)) {
3745 update_mmu_tlb(vma, vmf->address, vmf->pte);
3748 ret = check_stable_address_space(vma->vm_mm);
3751 /* Deliver the page fault to userland, check inside PT lock */
3752 if (userfaultfd_missing(vma)) {
3753 pte_unmap_unlock(vmf->pte, vmf->ptl);
3754 return handle_userfault(vmf, VM_UFFD_MISSING);
3759 /* Allocate our own private page. */
3760 if (unlikely(anon_vma_prepare(vma)))
3762 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3766 if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
3768 cgroup_throttle_swaprate(page, GFP_KERNEL);
3771 * The memory barrier inside __SetPageUptodate makes sure that
3772 * preceding stores to the page contents become visible before
3773 * the set_pte_at() write.
3775 __SetPageUptodate(page);
3777 entry = mk_pte(page, vma->vm_page_prot);
3778 entry = pte_sw_mkyoung(entry);
3779 if (vma->vm_flags & VM_WRITE)
3780 entry = pte_mkwrite(pte_mkdirty(entry));
3782 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3784 if (!pte_none(*vmf->pte)) {
3785 update_mmu_cache(vma, vmf->address, vmf->pte);
3789 ret = check_stable_address_space(vma->vm_mm);
3793 /* Deliver the page fault to userland, check inside PT lock */
3794 if (userfaultfd_missing(vma)) {
3795 pte_unmap_unlock(vmf->pte, vmf->ptl);
3797 return handle_userfault(vmf, VM_UFFD_MISSING);
3800 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3801 page_add_new_anon_rmap(page, vma, vmf->address, false);
3802 lru_cache_add_inactive_or_unevictable(page, vma);
3804 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3806 /* No need to invalidate - it was non-present before */
3807 update_mmu_cache(vma, vmf->address, vmf->pte);
3809 pte_unmap_unlock(vmf->pte, vmf->ptl);
3817 return VM_FAULT_OOM;
3821 * The mmap_lock must have been held on entry, and may have been
3822 * released depending on flags and vma->vm_ops->fault() return value.
3823 * See filemap_fault() and __lock_page_retry().
3825 static vm_fault_t __do_fault(struct vm_fault *vmf)
3827 struct vm_area_struct *vma = vmf->vma;
3831 * Preallocate pte before we take page_lock because this might lead to
3832 * deadlocks for memcg reclaim which waits for pages under writeback:
3834 * SetPageWriteback(A)
3840 * wait_on_page_writeback(A)
3841 * SetPageWriteback(B)
3843 * # flush A, B to clear the writeback
3845 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3846 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3847 if (!vmf->prealloc_pte)
3848 return VM_FAULT_OOM;
3851 ret = vma->vm_ops->fault(vmf);
3852 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3853 VM_FAULT_DONE_COW)))
3856 if (unlikely(PageHWPoison(vmf->page))) {
3857 if (ret & VM_FAULT_LOCKED)
3858 unlock_page(vmf->page);
3859 put_page(vmf->page);
3861 return VM_FAULT_HWPOISON;
3864 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3865 lock_page(vmf->page);
3867 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3872 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3873 static void deposit_prealloc_pte(struct vm_fault *vmf)
3875 struct vm_area_struct *vma = vmf->vma;
3877 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3879 * We are going to consume the prealloc table,
3880 * count that as nr_ptes.
3882 mm_inc_nr_ptes(vma->vm_mm);
3883 vmf->prealloc_pte = NULL;
3886 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3888 struct vm_area_struct *vma = vmf->vma;
3889 bool write = vmf->flags & FAULT_FLAG_WRITE;
3890 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3893 vm_fault_t ret = VM_FAULT_FALLBACK;
3895 if (!transhuge_vma_suitable(vma, haddr))
3898 page = compound_head(page);
3899 if (compound_order(page) != HPAGE_PMD_ORDER)
3903 * Just backoff if any subpage of a THP is corrupted otherwise
3904 * the corrupted page may mapped by PMD silently to escape the
3905 * check. This kind of THP just can be PTE mapped. Access to
3906 * the corrupted subpage should trigger SIGBUS as expected.
3908 if (unlikely(PageHasHWPoisoned(page)))
3912 * Archs like ppc64 need additional space to store information
3913 * related to pte entry. Use the preallocated table for that.
3915 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3916 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3917 if (!vmf->prealloc_pte)
3918 return VM_FAULT_OOM;
3921 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3922 if (unlikely(!pmd_none(*vmf->pmd)))
3925 for (i = 0; i < HPAGE_PMD_NR; i++)
3926 flush_icache_page(vma, page + i);
3928 entry = mk_huge_pmd(page, vma->vm_page_prot);
3930 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3932 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3933 page_add_file_rmap(page, true);
3935 * deposit and withdraw with pmd lock held
3937 if (arch_needs_pgtable_deposit())
3938 deposit_prealloc_pte(vmf);
3940 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3942 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3944 /* fault is handled */
3946 count_vm_event(THP_FILE_MAPPED);
3948 spin_unlock(vmf->ptl);
3952 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3954 return VM_FAULT_FALLBACK;
3958 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
3960 struct vm_area_struct *vma = vmf->vma;
3961 bool write = vmf->flags & FAULT_FLAG_WRITE;
3962 bool prefault = vmf->address != addr;
3965 flush_icache_page(vma, page);
3966 entry = mk_pte(page, vma->vm_page_prot);
3968 if (prefault && arch_wants_old_prefaulted_pte())
3969 entry = pte_mkold(entry);
3971 entry = pte_sw_mkyoung(entry);
3974 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3975 /* copy-on-write page */
3976 if (write && !(vma->vm_flags & VM_SHARED)) {
3977 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3978 page_add_new_anon_rmap(page, vma, addr, false);
3979 lru_cache_add_inactive_or_unevictable(page, vma);
3981 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3982 page_add_file_rmap(page, false);
3984 set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
3988 * finish_fault - finish page fault once we have prepared the page to fault
3990 * @vmf: structure describing the fault
3992 * This function handles all that is needed to finish a page fault once the
3993 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3994 * given page, adds reverse page mapping, handles memcg charges and LRU
3997 * The function expects the page to be locked and on success it consumes a
3998 * reference of a page being mapped (for the PTE which maps it).
4000 * Return: %0 on success, %VM_FAULT_ code in case of error.
4002 vm_fault_t finish_fault(struct vm_fault *vmf)
4004 struct vm_area_struct *vma = vmf->vma;
4008 /* Did we COW the page? */
4009 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4010 page = vmf->cow_page;
4015 * check even for read faults because we might have lost our CoWed
4018 if (!(vma->vm_flags & VM_SHARED)) {
4019 ret = check_stable_address_space(vma->vm_mm);
4024 if (pmd_none(*vmf->pmd)) {
4025 if (PageTransCompound(page)) {
4026 ret = do_set_pmd(vmf, page);
4027 if (ret != VM_FAULT_FALLBACK)
4031 if (vmf->prealloc_pte)
4032 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4033 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4034 return VM_FAULT_OOM;
4037 /* See comment in handle_pte_fault() */
4038 if (pmd_devmap_trans_unstable(vmf->pmd))
4041 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4042 vmf->address, &vmf->ptl);
4044 /* Re-check under ptl */
4045 if (likely(pte_none(*vmf->pte)))
4046 do_set_pte(vmf, page, vmf->address);
4048 ret = VM_FAULT_NOPAGE;
4050 update_mmu_tlb(vma, vmf->address, vmf->pte);
4051 pte_unmap_unlock(vmf->pte, vmf->ptl);
4055 static unsigned long fault_around_bytes __read_mostly =
4056 rounddown_pow_of_two(65536);
4058 #ifdef CONFIG_DEBUG_FS
4059 static int fault_around_bytes_get(void *data, u64 *val)
4061 *val = fault_around_bytes;
4066 * fault_around_bytes must be rounded down to the nearest page order as it's
4067 * what do_fault_around() expects to see.
4069 static int fault_around_bytes_set(void *data, u64 val)
4071 if (val / PAGE_SIZE > PTRS_PER_PTE)
4073 if (val > PAGE_SIZE)
4074 fault_around_bytes = rounddown_pow_of_two(val);
4076 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
4079 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4080 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4082 static int __init fault_around_debugfs(void)
4084 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4085 &fault_around_bytes_fops);
4088 late_initcall(fault_around_debugfs);
4092 * do_fault_around() tries to map few pages around the fault address. The hope
4093 * is that the pages will be needed soon and this will lower the number of
4096 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4097 * not ready to be mapped: not up-to-date, locked, etc.
4099 * This function is called with the page table lock taken. In the split ptlock
4100 * case the page table lock only protects only those entries which belong to
4101 * the page table corresponding to the fault address.
4103 * This function doesn't cross the VMA boundaries, in order to call map_pages()
4106 * fault_around_bytes defines how many bytes we'll try to map.
4107 * do_fault_around() expects it to be set to a power of two less than or equal
4110 * The virtual address of the area that we map is naturally aligned to
4111 * fault_around_bytes rounded down to the machine page size
4112 * (and therefore to page order). This way it's easier to guarantee
4113 * that we don't cross page table boundaries.
4115 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4117 unsigned long address = vmf->address, nr_pages, mask;
4118 pgoff_t start_pgoff = vmf->pgoff;
4122 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
4123 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4125 address = max(address & mask, vmf->vma->vm_start);
4126 off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
4130 * end_pgoff is either the end of the page table, the end of
4131 * the vma or nr_pages from start_pgoff, depending what is nearest.
4133 end_pgoff = start_pgoff -
4134 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
4136 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
4137 start_pgoff + nr_pages - 1);
4139 if (pmd_none(*vmf->pmd)) {
4140 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4141 if (!vmf->prealloc_pte)
4142 return VM_FAULT_OOM;
4145 return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
4148 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4150 struct vm_area_struct *vma = vmf->vma;
4154 * Let's call ->map_pages() first and use ->fault() as fallback
4155 * if page by the offset is not ready to be mapped (cold cache or
4158 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
4159 if (likely(!userfaultfd_minor(vmf->vma))) {
4160 ret = do_fault_around(vmf);
4166 ret = __do_fault(vmf);
4167 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4170 ret |= finish_fault(vmf);
4171 unlock_page(vmf->page);
4172 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4173 put_page(vmf->page);
4177 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4179 struct vm_area_struct *vma = vmf->vma;
4182 if (unlikely(anon_vma_prepare(vma)))
4183 return VM_FAULT_OOM;
4185 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4187 return VM_FAULT_OOM;
4189 if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4191 put_page(vmf->cow_page);
4192 return VM_FAULT_OOM;
4194 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4196 ret = __do_fault(vmf);
4197 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4199 if (ret & VM_FAULT_DONE_COW)
4202 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4203 __SetPageUptodate(vmf->cow_page);
4205 ret |= finish_fault(vmf);
4206 unlock_page(vmf->page);
4207 put_page(vmf->page);
4208 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4212 put_page(vmf->cow_page);
4216 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4218 struct vm_area_struct *vma = vmf->vma;
4219 vm_fault_t ret, tmp;
4221 ret = __do_fault(vmf);
4222 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4226 * Check if the backing address space wants to know that the page is
4227 * about to become writable
4229 if (vma->vm_ops->page_mkwrite) {
4230 unlock_page(vmf->page);
4231 tmp = do_page_mkwrite(vmf);
4232 if (unlikely(!tmp ||
4233 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4234 put_page(vmf->page);
4239 ret |= finish_fault(vmf);
4240 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4242 unlock_page(vmf->page);
4243 put_page(vmf->page);
4247 ret |= fault_dirty_shared_page(vmf);
4252 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4253 * but allow concurrent faults).
4254 * The mmap_lock may have been released depending on flags and our
4255 * return value. See filemap_fault() and __folio_lock_or_retry().
4256 * If mmap_lock is released, vma may become invalid (for example
4257 * by other thread calling munmap()).
4259 static vm_fault_t do_fault(struct vm_fault *vmf)
4261 struct vm_area_struct *vma = vmf->vma;
4262 struct mm_struct *vm_mm = vma->vm_mm;
4266 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4268 if (!vma->vm_ops->fault) {
4270 * If we find a migration pmd entry or a none pmd entry, which
4271 * should never happen, return SIGBUS
4273 if (unlikely(!pmd_present(*vmf->pmd)))
4274 ret = VM_FAULT_SIGBUS;
4276 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4281 * Make sure this is not a temporary clearing of pte
4282 * by holding ptl and checking again. A R/M/W update
4283 * of pte involves: take ptl, clearing the pte so that
4284 * we don't have concurrent modification by hardware
4285 * followed by an update.
4287 if (unlikely(pte_none(*vmf->pte)))
4288 ret = VM_FAULT_SIGBUS;
4290 ret = VM_FAULT_NOPAGE;
4292 pte_unmap_unlock(vmf->pte, vmf->ptl);
4294 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4295 ret = do_read_fault(vmf);
4296 else if (!(vma->vm_flags & VM_SHARED))
4297 ret = do_cow_fault(vmf);
4299 ret = do_shared_fault(vmf);
4301 /* preallocated pagetable is unused: free it */
4302 if (vmf->prealloc_pte) {
4303 pte_free(vm_mm, vmf->prealloc_pte);
4304 vmf->prealloc_pte = NULL;
4309 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4310 unsigned long addr, int page_nid, int *flags)
4314 count_vm_numa_event(NUMA_HINT_FAULTS);
4315 if (page_nid == numa_node_id()) {
4316 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4317 *flags |= TNF_FAULT_LOCAL;
4320 return mpol_misplaced(page, vma, addr);
4323 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4325 struct vm_area_struct *vma = vmf->vma;
4326 struct page *page = NULL;
4327 int page_nid = NUMA_NO_NODE;
4331 bool was_writable = pte_savedwrite(vmf->orig_pte);
4335 * The "pte" at this point cannot be used safely without
4336 * validation through pte_unmap_same(). It's of NUMA type but
4337 * the pfn may be screwed if the read is non atomic.
4339 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4340 spin_lock(vmf->ptl);
4341 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4342 pte_unmap_unlock(vmf->pte, vmf->ptl);
4346 /* Get the normal PTE */
4347 old_pte = ptep_get(vmf->pte);
4348 pte = pte_modify(old_pte, vma->vm_page_prot);
4350 page = vm_normal_page(vma, vmf->address, pte);
4354 /* TODO: handle PTE-mapped THP */
4355 if (PageCompound(page))
4359 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4360 * much anyway since they can be in shared cache state. This misses
4361 * the case where a mapping is writable but the process never writes
4362 * to it but pte_write gets cleared during protection updates and
4363 * pte_dirty has unpredictable behaviour between PTE scan updates,
4364 * background writeback, dirty balancing and application behaviour.
4367 flags |= TNF_NO_GROUP;
4370 * Flag if the page is shared between multiple address spaces. This
4371 * is later used when determining whether to group tasks together
4373 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4374 flags |= TNF_SHARED;
4376 last_cpupid = page_cpupid_last(page);
4377 page_nid = page_to_nid(page);
4378 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4380 if (target_nid == NUMA_NO_NODE) {
4384 pte_unmap_unlock(vmf->pte, vmf->ptl);
4386 /* Migrate to the requested node */
4387 if (migrate_misplaced_page(page, vma, target_nid)) {
4388 page_nid = target_nid;
4389 flags |= TNF_MIGRATED;
4391 flags |= TNF_MIGRATE_FAIL;
4392 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4393 spin_lock(vmf->ptl);
4394 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4395 pte_unmap_unlock(vmf->pte, vmf->ptl);
4402 if (page_nid != NUMA_NO_NODE)
4403 task_numa_fault(last_cpupid, page_nid, 1, flags);
4407 * Make it present again, depending on how arch implements
4408 * non-accessible ptes, some can allow access by kernel mode.
4410 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4411 pte = pte_modify(old_pte, vma->vm_page_prot);
4412 pte = pte_mkyoung(pte);
4414 pte = pte_mkwrite(pte);
4415 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4416 update_mmu_cache(vma, vmf->address, vmf->pte);
4417 pte_unmap_unlock(vmf->pte, vmf->ptl);
4421 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4423 if (vma_is_anonymous(vmf->vma))
4424 return do_huge_pmd_anonymous_page(vmf);
4425 if (vmf->vma->vm_ops->huge_fault)
4426 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4427 return VM_FAULT_FALLBACK;
4430 /* `inline' is required to avoid gcc 4.1.2 build error */
4431 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4433 if (vma_is_anonymous(vmf->vma)) {
4434 if (userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
4435 return handle_userfault(vmf, VM_UFFD_WP);
4436 return do_huge_pmd_wp_page(vmf);
4438 if (vmf->vma->vm_ops->huge_fault) {
4439 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4441 if (!(ret & VM_FAULT_FALLBACK))
4445 /* COW or write-notify handled on pte level: split pmd. */
4446 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4448 return VM_FAULT_FALLBACK;
4451 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4453 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4454 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4455 /* No support for anonymous transparent PUD pages yet */
4456 if (vma_is_anonymous(vmf->vma))
4458 if (vmf->vma->vm_ops->huge_fault) {
4459 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4461 if (!(ret & VM_FAULT_FALLBACK))
4465 /* COW or write-notify not handled on PUD level: split pud.*/
4466 __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4467 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4468 return VM_FAULT_FALLBACK;
4471 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4473 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4474 /* No support for anonymous transparent PUD pages yet */
4475 if (vma_is_anonymous(vmf->vma))
4476 return VM_FAULT_FALLBACK;
4477 if (vmf->vma->vm_ops->huge_fault)
4478 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4479 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4480 return VM_FAULT_FALLBACK;
4484 * These routines also need to handle stuff like marking pages dirty
4485 * and/or accessed for architectures that don't do it in hardware (most
4486 * RISC architectures). The early dirtying is also good on the i386.
4488 * There is also a hook called "update_mmu_cache()" that architectures
4489 * with external mmu caches can use to update those (ie the Sparc or
4490 * PowerPC hashed page tables that act as extended TLBs).
4492 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4493 * concurrent faults).
4495 * The mmap_lock may have been released depending on flags and our return value.
4496 * See filemap_fault() and __folio_lock_or_retry().
4498 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4502 if (unlikely(pmd_none(*vmf->pmd))) {
4504 * Leave __pte_alloc() until later: because vm_ops->fault may
4505 * want to allocate huge page, and if we expose page table
4506 * for an instant, it will be difficult to retract from
4507 * concurrent faults and from rmap lookups.
4512 * If a huge pmd materialized under us just retry later. Use
4513 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4514 * of pmd_trans_huge() to ensure the pmd didn't become
4515 * pmd_trans_huge under us and then back to pmd_none, as a
4516 * result of MADV_DONTNEED running immediately after a huge pmd
4517 * fault in a different thread of this mm, in turn leading to a
4518 * misleading pmd_trans_huge() retval. All we have to ensure is
4519 * that it is a regular pmd that we can walk with
4520 * pte_offset_map() and we can do that through an atomic read
4521 * in C, which is what pmd_trans_unstable() provides.
4523 if (pmd_devmap_trans_unstable(vmf->pmd))
4526 * A regular pmd is established and it can't morph into a huge
4527 * pmd from under us anymore at this point because we hold the
4528 * mmap_lock read mode and khugepaged takes it in write mode.
4529 * So now it's safe to run pte_offset_map().
4531 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4532 vmf->orig_pte = *vmf->pte;
4535 * some architectures can have larger ptes than wordsize,
4536 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4537 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4538 * accesses. The code below just needs a consistent view
4539 * for the ifs and we later double check anyway with the
4540 * ptl lock held. So here a barrier will do.
4543 if (pte_none(vmf->orig_pte)) {
4544 pte_unmap(vmf->pte);
4550 if (vma_is_anonymous(vmf->vma))
4551 return do_anonymous_page(vmf);
4553 return do_fault(vmf);
4556 if (!pte_present(vmf->orig_pte))
4557 return do_swap_page(vmf);
4559 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4560 return do_numa_page(vmf);
4562 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4563 spin_lock(vmf->ptl);
4564 entry = vmf->orig_pte;
4565 if (unlikely(!pte_same(*vmf->pte, entry))) {
4566 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4569 if (vmf->flags & FAULT_FLAG_WRITE) {
4570 if (!pte_write(entry))
4571 return do_wp_page(vmf);
4572 entry = pte_mkdirty(entry);
4574 entry = pte_mkyoung(entry);
4575 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4576 vmf->flags & FAULT_FLAG_WRITE)) {
4577 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4579 /* Skip spurious TLB flush for retried page fault */
4580 if (vmf->flags & FAULT_FLAG_TRIED)
4583 * This is needed only for protection faults but the arch code
4584 * is not yet telling us if this is a protection fault or not.
4585 * This still avoids useless tlb flushes for .text page faults
4588 if (vmf->flags & FAULT_FLAG_WRITE)
4589 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4592 pte_unmap_unlock(vmf->pte, vmf->ptl);
4597 * By the time we get here, we already hold the mm semaphore
4599 * The mmap_lock may have been released depending on flags and our
4600 * return value. See filemap_fault() and __folio_lock_or_retry().
4602 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4603 unsigned long address, unsigned int flags)
4605 struct vm_fault vmf = {
4607 .address = address & PAGE_MASK,
4609 .pgoff = linear_page_index(vma, address),
4610 .gfp_mask = __get_fault_gfp_mask(vma),
4612 unsigned int dirty = flags & FAULT_FLAG_WRITE;
4613 struct mm_struct *mm = vma->vm_mm;
4618 pgd = pgd_offset(mm, address);
4619 p4d = p4d_alloc(mm, pgd, address);
4621 return VM_FAULT_OOM;
4623 vmf.pud = pud_alloc(mm, p4d, address);
4625 return VM_FAULT_OOM;
4627 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4628 ret = create_huge_pud(&vmf);
4629 if (!(ret & VM_FAULT_FALLBACK))
4632 pud_t orig_pud = *vmf.pud;
4635 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4637 /* NUMA case for anonymous PUDs would go here */
4639 if (dirty && !pud_write(orig_pud)) {
4640 ret = wp_huge_pud(&vmf, orig_pud);
4641 if (!(ret & VM_FAULT_FALLBACK))
4644 huge_pud_set_accessed(&vmf, orig_pud);
4650 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4652 return VM_FAULT_OOM;
4654 /* Huge pud page fault raced with pmd_alloc? */
4655 if (pud_trans_unstable(vmf.pud))
4658 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4659 ret = create_huge_pmd(&vmf);
4660 if (!(ret & VM_FAULT_FALLBACK))
4663 vmf.orig_pmd = *vmf.pmd;
4666 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
4667 VM_BUG_ON(thp_migration_supported() &&
4668 !is_pmd_migration_entry(vmf.orig_pmd));
4669 if (is_pmd_migration_entry(vmf.orig_pmd))
4670 pmd_migration_entry_wait(mm, vmf.pmd);
4673 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
4674 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
4675 return do_huge_pmd_numa_page(&vmf);
4677 if (dirty && !pmd_write(vmf.orig_pmd)) {
4678 ret = wp_huge_pmd(&vmf);
4679 if (!(ret & VM_FAULT_FALLBACK))
4682 huge_pmd_set_accessed(&vmf);
4688 return handle_pte_fault(&vmf);
4692 * mm_account_fault - Do page fault accounting
4694 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
4695 * of perf event counters, but we'll still do the per-task accounting to
4696 * the task who triggered this page fault.
4697 * @address: the faulted address.
4698 * @flags: the fault flags.
4699 * @ret: the fault retcode.
4701 * This will take care of most of the page fault accounting. Meanwhile, it
4702 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4703 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4704 * still be in per-arch page fault handlers at the entry of page fault.
4706 static inline void mm_account_fault(struct pt_regs *regs,
4707 unsigned long address, unsigned int flags,
4713 * We don't do accounting for some specific faults:
4715 * - Unsuccessful faults (e.g. when the address wasn't valid). That
4716 * includes arch_vma_access_permitted() failing before reaching here.
4717 * So this is not a "this many hardware page faults" counter. We
4718 * should use the hw profiling for that.
4720 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted
4721 * once they're completed.
4723 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4727 * We define the fault as a major fault when the final successful fault
4728 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4729 * handle it immediately previously).
4731 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4739 * If the fault is done for GUP, regs will be NULL. We only do the
4740 * accounting for the per thread fault counters who triggered the
4741 * fault, and we skip the perf event updates.
4747 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
4749 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
4753 * By the time we get here, we already hold the mm semaphore
4755 * The mmap_lock may have been released depending on flags and our
4756 * return value. See filemap_fault() and __folio_lock_or_retry().
4758 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4759 unsigned int flags, struct pt_regs *regs)
4763 __set_current_state(TASK_RUNNING);
4765 count_vm_event(PGFAULT);
4766 count_memcg_event_mm(vma->vm_mm, PGFAULT);
4768 /* do counter updates before entering really critical section. */
4769 check_sync_rss_stat(current);
4771 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4772 flags & FAULT_FLAG_INSTRUCTION,
4773 flags & FAULT_FLAG_REMOTE))
4774 return VM_FAULT_SIGSEGV;
4777 * Enable the memcg OOM handling for faults triggered in user
4778 * space. Kernel faults are handled more gracefully.
4780 if (flags & FAULT_FLAG_USER)
4781 mem_cgroup_enter_user_fault();
4783 if (unlikely(is_vm_hugetlb_page(vma)))
4784 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4786 ret = __handle_mm_fault(vma, address, flags);
4788 if (flags & FAULT_FLAG_USER) {
4789 mem_cgroup_exit_user_fault();
4791 * The task may have entered a memcg OOM situation but
4792 * if the allocation error was handled gracefully (no
4793 * VM_FAULT_OOM), there is no need to kill anything.
4794 * Just clean up the OOM state peacefully.
4796 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4797 mem_cgroup_oom_synchronize(false);
4800 mm_account_fault(regs, address, flags, ret);
4804 EXPORT_SYMBOL_GPL(handle_mm_fault);
4806 #ifndef __PAGETABLE_P4D_FOLDED
4808 * Allocate p4d page table.
4809 * We've already handled the fast-path in-line.
4811 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4813 p4d_t *new = p4d_alloc_one(mm, address);
4817 spin_lock(&mm->page_table_lock);
4818 if (pgd_present(*pgd)) { /* Another has populated it */
4821 smp_wmb(); /* See comment in pmd_install() */
4822 pgd_populate(mm, pgd, new);
4824 spin_unlock(&mm->page_table_lock);
4827 #endif /* __PAGETABLE_P4D_FOLDED */
4829 #ifndef __PAGETABLE_PUD_FOLDED
4831 * Allocate page upper directory.
4832 * We've already handled the fast-path in-line.
4834 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4836 pud_t *new = pud_alloc_one(mm, address);
4840 spin_lock(&mm->page_table_lock);
4841 if (!p4d_present(*p4d)) {
4843 smp_wmb(); /* See comment in pmd_install() */
4844 p4d_populate(mm, p4d, new);
4845 } else /* Another has populated it */
4847 spin_unlock(&mm->page_table_lock);
4850 #endif /* __PAGETABLE_PUD_FOLDED */
4852 #ifndef __PAGETABLE_PMD_FOLDED
4854 * Allocate page middle directory.
4855 * We've already handled the fast-path in-line.
4857 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4860 pmd_t *new = pmd_alloc_one(mm, address);
4864 ptl = pud_lock(mm, pud);
4865 if (!pud_present(*pud)) {
4867 smp_wmb(); /* See comment in pmd_install() */
4868 pud_populate(mm, pud, new);
4869 } else { /* Another has populated it */
4875 #endif /* __PAGETABLE_PMD_FOLDED */
4877 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
4878 struct mmu_notifier_range *range, pte_t **ptepp,
4879 pmd_t **pmdpp, spinlock_t **ptlp)
4887 pgd = pgd_offset(mm, address);
4888 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4891 p4d = p4d_offset(pgd, address);
4892 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4895 pud = pud_offset(p4d, address);
4896 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4899 pmd = pmd_offset(pud, address);
4900 VM_BUG_ON(pmd_trans_huge(*pmd));
4902 if (pmd_huge(*pmd)) {
4907 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4908 NULL, mm, address & PMD_MASK,
4909 (address & PMD_MASK) + PMD_SIZE);
4910 mmu_notifier_invalidate_range_start(range);
4912 *ptlp = pmd_lock(mm, pmd);
4913 if (pmd_huge(*pmd)) {
4919 mmu_notifier_invalidate_range_end(range);
4922 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4926 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4927 address & PAGE_MASK,
4928 (address & PAGE_MASK) + PAGE_SIZE);
4929 mmu_notifier_invalidate_range_start(range);
4931 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4932 if (!pte_present(*ptep))
4937 pte_unmap_unlock(ptep, *ptlp);
4939 mmu_notifier_invalidate_range_end(range);
4945 * follow_pte - look up PTE at a user virtual address
4946 * @mm: the mm_struct of the target address space
4947 * @address: user virtual address
4948 * @ptepp: location to store found PTE
4949 * @ptlp: location to store the lock for the PTE
4951 * On a successful return, the pointer to the PTE is stored in @ptepp;
4952 * the corresponding lock is taken and its location is stored in @ptlp.
4953 * The contents of the PTE are only stable until @ptlp is released;
4954 * any further use, if any, must be protected against invalidation
4955 * with MMU notifiers.
4957 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
4958 * should be taken for read.
4960 * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
4961 * it is not a good general-purpose API.
4963 * Return: zero on success, -ve otherwise.
4965 int follow_pte(struct mm_struct *mm, unsigned long address,
4966 pte_t **ptepp, spinlock_t **ptlp)
4968 return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp);
4970 EXPORT_SYMBOL_GPL(follow_pte);
4973 * follow_pfn - look up PFN at a user virtual address
4974 * @vma: memory mapping
4975 * @address: user virtual address
4976 * @pfn: location to store found PFN
4978 * Only IO mappings and raw PFN mappings are allowed.
4980 * This function does not allow the caller to read the permissions
4981 * of the PTE. Do not use it.
4983 * Return: zero and the pfn at @pfn on success, -ve otherwise.
4985 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4992 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4995 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4998 *pfn = pte_pfn(*ptep);
4999 pte_unmap_unlock(ptep, ptl);
5002 EXPORT_SYMBOL(follow_pfn);
5004 #ifdef CONFIG_HAVE_IOREMAP_PROT
5005 int follow_phys(struct vm_area_struct *vma,
5006 unsigned long address, unsigned int flags,
5007 unsigned long *prot, resource_size_t *phys)
5013 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5016 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5020 if ((flags & FOLL_WRITE) && !pte_write(pte))
5023 *prot = pgprot_val(pte_pgprot(pte));
5024 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5028 pte_unmap_unlock(ptep, ptl);
5034 * generic_access_phys - generic implementation for iomem mmap access
5035 * @vma: the vma to access
5036 * @addr: userspace address, not relative offset within @vma
5037 * @buf: buffer to read/write
5038 * @len: length of transfer
5039 * @write: set to FOLL_WRITE when writing, otherwise reading
5041 * This is a generic implementation for &vm_operations_struct.access for an
5042 * iomem mapping. This callback is used by access_process_vm() when the @vma is
5045 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5046 void *buf, int len, int write)
5048 resource_size_t phys_addr;
5049 unsigned long prot = 0;
5050 void __iomem *maddr;
5053 int offset = offset_in_page(addr);
5056 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5060 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5063 pte_unmap_unlock(ptep, ptl);
5065 prot = pgprot_val(pte_pgprot(pte));
5066 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5068 if ((write & FOLL_WRITE) && !pte_write(pte))
5071 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5075 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5078 if (!pte_same(pte, *ptep)) {
5079 pte_unmap_unlock(ptep, ptl);
5086 memcpy_toio(maddr + offset, buf, len);
5088 memcpy_fromio(buf, maddr + offset, len);
5090 pte_unmap_unlock(ptep, ptl);
5096 EXPORT_SYMBOL_GPL(generic_access_phys);
5100 * Access another process' address space as given in mm.
5102 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5103 int len, unsigned int gup_flags)
5105 struct vm_area_struct *vma;
5106 void *old_buf = buf;
5107 int write = gup_flags & FOLL_WRITE;
5109 if (mmap_read_lock_killable(mm))
5112 /* ignore errors, just check how much was successfully transferred */
5114 int bytes, ret, offset;
5116 struct page *page = NULL;
5118 ret = get_user_pages_remote(mm, addr, 1,
5119 gup_flags, &page, &vma, NULL);
5121 #ifndef CONFIG_HAVE_IOREMAP_PROT
5125 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5126 * we can access using slightly different code.
5128 vma = vma_lookup(mm, addr);
5131 if (vma->vm_ops && vma->vm_ops->access)
5132 ret = vma->vm_ops->access(vma, addr, buf,
5140 offset = addr & (PAGE_SIZE-1);
5141 if (bytes > PAGE_SIZE-offset)
5142 bytes = PAGE_SIZE-offset;
5146 copy_to_user_page(vma, page, addr,
5147 maddr + offset, buf, bytes);
5148 set_page_dirty_lock(page);
5150 copy_from_user_page(vma, page, addr,
5151 buf, maddr + offset, bytes);
5160 mmap_read_unlock(mm);
5162 return buf - old_buf;
5166 * access_remote_vm - access another process' address space
5167 * @mm: the mm_struct of the target address space
5168 * @addr: start address to access
5169 * @buf: source or destination buffer
5170 * @len: number of bytes to transfer
5171 * @gup_flags: flags modifying lookup behaviour
5173 * The caller must hold a reference on @mm.
5175 * Return: number of bytes copied from source to destination.
5177 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5178 void *buf, int len, unsigned int gup_flags)
5180 return __access_remote_vm(mm, addr, buf, len, gup_flags);
5184 * Access another process' address space.
5185 * Source/target buffer must be kernel space,
5186 * Do not walk the page table directly, use get_user_pages
5188 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5189 void *buf, int len, unsigned int gup_flags)
5191 struct mm_struct *mm;
5194 mm = get_task_mm(tsk);
5198 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5204 EXPORT_SYMBOL_GPL(access_process_vm);
5207 * Print the name of a VMA.
5209 void print_vma_addr(char *prefix, unsigned long ip)
5211 struct mm_struct *mm = current->mm;
5212 struct vm_area_struct *vma;
5215 * we might be running from an atomic context so we cannot sleep
5217 if (!mmap_read_trylock(mm))
5220 vma = find_vma(mm, ip);
5221 if (vma && vma->vm_file) {
5222 struct file *f = vma->vm_file;
5223 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5227 p = file_path(f, buf, PAGE_SIZE);
5230 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5232 vma->vm_end - vma->vm_start);
5233 free_page((unsigned long)buf);
5236 mmap_read_unlock(mm);
5239 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5240 void __might_fault(const char *file, int line)
5243 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
5244 * holding the mmap_lock, this is safe because kernel memory doesn't
5245 * get paged out, therefore we'll never actually fault, and the
5246 * below annotations will generate false positives.
5248 if (uaccess_kernel())
5250 if (pagefault_disabled())
5252 __might_sleep(file, line);
5253 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5255 might_lock_read(¤t->mm->mmap_lock);
5258 EXPORT_SYMBOL(__might_fault);
5261 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5263 * Process all subpages of the specified huge page with the specified
5264 * operation. The target subpage will be processed last to keep its
5267 static inline void process_huge_page(
5268 unsigned long addr_hint, unsigned int pages_per_huge_page,
5269 void (*process_subpage)(unsigned long addr, int idx, void *arg),
5273 unsigned long addr = addr_hint &
5274 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5276 /* Process target subpage last to keep its cache lines hot */
5278 n = (addr_hint - addr) / PAGE_SIZE;
5279 if (2 * n <= pages_per_huge_page) {
5280 /* If target subpage in first half of huge page */
5283 /* Process subpages at the end of huge page */
5284 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5286 process_subpage(addr + i * PAGE_SIZE, i, arg);
5289 /* If target subpage in second half of huge page */
5290 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5291 l = pages_per_huge_page - n;
5292 /* Process subpages at the begin of huge page */
5293 for (i = 0; i < base; i++) {
5295 process_subpage(addr + i * PAGE_SIZE, i, arg);
5299 * Process remaining subpages in left-right-left-right pattern
5300 * towards the target subpage
5302 for (i = 0; i < l; i++) {
5303 int left_idx = base + i;
5304 int right_idx = base + 2 * l - 1 - i;
5307 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5309 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5313 static void clear_gigantic_page(struct page *page,
5315 unsigned int pages_per_huge_page)
5318 struct page *p = page;
5321 for (i = 0; i < pages_per_huge_page;
5322 i++, p = mem_map_next(p, page, i)) {
5324 clear_user_highpage(p, addr + i * PAGE_SIZE);
5328 static void clear_subpage(unsigned long addr, int idx, void *arg)
5330 struct page *page = arg;
5332 clear_user_highpage(page + idx, addr);
5335 void clear_huge_page(struct page *page,
5336 unsigned long addr_hint, unsigned int pages_per_huge_page)
5338 unsigned long addr = addr_hint &
5339 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5341 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5342 clear_gigantic_page(page, addr, pages_per_huge_page);
5346 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5349 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5351 struct vm_area_struct *vma,
5352 unsigned int pages_per_huge_page)
5355 struct page *dst_base = dst;
5356 struct page *src_base = src;
5358 for (i = 0; i < pages_per_huge_page; ) {
5360 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5363 dst = mem_map_next(dst, dst_base, i);
5364 src = mem_map_next(src, src_base, i);
5368 struct copy_subpage_arg {
5371 struct vm_area_struct *vma;
5374 static void copy_subpage(unsigned long addr, int idx, void *arg)
5376 struct copy_subpage_arg *copy_arg = arg;
5378 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5379 addr, copy_arg->vma);
5382 void copy_user_huge_page(struct page *dst, struct page *src,
5383 unsigned long addr_hint, struct vm_area_struct *vma,
5384 unsigned int pages_per_huge_page)
5386 unsigned long addr = addr_hint &
5387 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5388 struct copy_subpage_arg arg = {
5394 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5395 copy_user_gigantic_page(dst, src, addr, vma,
5396 pages_per_huge_page);
5400 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5403 long copy_huge_page_from_user(struct page *dst_page,
5404 const void __user *usr_src,
5405 unsigned int pages_per_huge_page,
5406 bool allow_pagefault)
5409 unsigned long i, rc = 0;
5410 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5411 struct page *subpage = dst_page;
5413 for (i = 0; i < pages_per_huge_page;
5414 i++, subpage = mem_map_next(subpage, dst_page, i)) {
5415 if (allow_pagefault)
5416 page_kaddr = kmap(subpage);
5418 page_kaddr = kmap_atomic(subpage);
5419 rc = copy_from_user(page_kaddr,
5420 usr_src + i * PAGE_SIZE, PAGE_SIZE);
5421 if (allow_pagefault)
5424 kunmap_atomic(page_kaddr);
5426 ret_val -= (PAGE_SIZE - rc);
5434 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5436 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5438 static struct kmem_cache *page_ptl_cachep;
5440 void __init ptlock_cache_init(void)
5442 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5446 bool ptlock_alloc(struct page *page)
5450 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5457 void ptlock_free(struct page *page)
5459 kmem_cache_free(page_ptl_cachep, page->ptl);