]> Git Repo - linux.git/blob - mm/memory.c
mm/page_isolation: unset migratetype directly for non Buddy page
[linux.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *              Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh ([email protected])
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *              ([email protected])
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/coredump.h>
47 #include <linux/sched/numa_balancing.h>
48 #include <linux/sched/task.h>
49 #include <linux/hugetlb.h>
50 #include <linux/mman.h>
51 #include <linux/swap.h>
52 #include <linux/highmem.h>
53 #include <linux/pagemap.h>
54 #include <linux/memremap.h>
55 #include <linux/ksm.h>
56 #include <linux/rmap.h>
57 #include <linux/export.h>
58 #include <linux/delayacct.h>
59 #include <linux/init.h>
60 #include <linux/pfn_t.h>
61 #include <linux/writeback.h>
62 #include <linux/memcontrol.h>
63 #include <linux/mmu_notifier.h>
64 #include <linux/swapops.h>
65 #include <linux/elf.h>
66 #include <linux/gfp.h>
67 #include <linux/migrate.h>
68 #include <linux/string.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
74 #include <linux/perf_event.h>
75 #include <linux/ptrace.h>
76 #include <linux/vmalloc.h>
77
78 #include <trace/events/kmem.h>
79
80 #include <asm/io.h>
81 #include <asm/mmu_context.h>
82 #include <asm/pgalloc.h>
83 #include <linux/uaccess.h>
84 #include <asm/tlb.h>
85 #include <asm/tlbflush.h>
86
87 #include "pgalloc-track.h"
88 #include "internal.h"
89
90 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
91 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
92 #endif
93
94 #ifndef CONFIG_NUMA
95 unsigned long max_mapnr;
96 EXPORT_SYMBOL(max_mapnr);
97
98 struct page *mem_map;
99 EXPORT_SYMBOL(mem_map);
100 #endif
101
102 /*
103  * A number of key systems in x86 including ioremap() rely on the assumption
104  * that high_memory defines the upper bound on direct map memory, then end
105  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
106  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
107  * and ZONE_HIGHMEM.
108  */
109 void *high_memory;
110 EXPORT_SYMBOL(high_memory);
111
112 /*
113  * Randomize the address space (stacks, mmaps, brk, etc.).
114  *
115  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
116  *   as ancient (libc5 based) binaries can segfault. )
117  */
118 int randomize_va_space __read_mostly =
119 #ifdef CONFIG_COMPAT_BRK
120                                         1;
121 #else
122                                         2;
123 #endif
124
125 #ifndef arch_faults_on_old_pte
126 static inline bool arch_faults_on_old_pte(void)
127 {
128         /*
129          * Those arches which don't have hw access flag feature need to
130          * implement their own helper. By default, "true" means pagefault
131          * will be hit on old pte.
132          */
133         return true;
134 }
135 #endif
136
137 #ifndef arch_wants_old_prefaulted_pte
138 static inline bool arch_wants_old_prefaulted_pte(void)
139 {
140         /*
141          * Transitioning a PTE from 'old' to 'young' can be expensive on
142          * some architectures, even if it's performed in hardware. By
143          * default, "false" means prefaulted entries will be 'young'.
144          */
145         return false;
146 }
147 #endif
148
149 static int __init disable_randmaps(char *s)
150 {
151         randomize_va_space = 0;
152         return 1;
153 }
154 __setup("norandmaps", disable_randmaps);
155
156 unsigned long zero_pfn __read_mostly;
157 EXPORT_SYMBOL(zero_pfn);
158
159 unsigned long highest_memmap_pfn __read_mostly;
160
161 /*
162  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
163  */
164 static int __init init_zero_pfn(void)
165 {
166         zero_pfn = page_to_pfn(ZERO_PAGE(0));
167         return 0;
168 }
169 early_initcall(init_zero_pfn);
170
171 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
172 {
173         trace_rss_stat(mm, member, count);
174 }
175
176 #if defined(SPLIT_RSS_COUNTING)
177
178 void sync_mm_rss(struct mm_struct *mm)
179 {
180         int i;
181
182         for (i = 0; i < NR_MM_COUNTERS; i++) {
183                 if (current->rss_stat.count[i]) {
184                         add_mm_counter(mm, i, current->rss_stat.count[i]);
185                         current->rss_stat.count[i] = 0;
186                 }
187         }
188         current->rss_stat.events = 0;
189 }
190
191 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
192 {
193         struct task_struct *task = current;
194
195         if (likely(task->mm == mm))
196                 task->rss_stat.count[member] += val;
197         else
198                 add_mm_counter(mm, member, val);
199 }
200 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
201 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
202
203 /* sync counter once per 64 page faults */
204 #define TASK_RSS_EVENTS_THRESH  (64)
205 static void check_sync_rss_stat(struct task_struct *task)
206 {
207         if (unlikely(task != current))
208                 return;
209         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
210                 sync_mm_rss(task->mm);
211 }
212 #else /* SPLIT_RSS_COUNTING */
213
214 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
215 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
216
217 static void check_sync_rss_stat(struct task_struct *task)
218 {
219 }
220
221 #endif /* SPLIT_RSS_COUNTING */
222
223 /*
224  * Note: this doesn't free the actual pages themselves. That
225  * has been handled earlier when unmapping all the memory regions.
226  */
227 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
228                            unsigned long addr)
229 {
230         pgtable_t token = pmd_pgtable(*pmd);
231         pmd_clear(pmd);
232         pte_free_tlb(tlb, token, addr);
233         mm_dec_nr_ptes(tlb->mm);
234 }
235
236 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
237                                 unsigned long addr, unsigned long end,
238                                 unsigned long floor, unsigned long ceiling)
239 {
240         pmd_t *pmd;
241         unsigned long next;
242         unsigned long start;
243
244         start = addr;
245         pmd = pmd_offset(pud, addr);
246         do {
247                 next = pmd_addr_end(addr, end);
248                 if (pmd_none_or_clear_bad(pmd))
249                         continue;
250                 free_pte_range(tlb, pmd, addr);
251         } while (pmd++, addr = next, addr != end);
252
253         start &= PUD_MASK;
254         if (start < floor)
255                 return;
256         if (ceiling) {
257                 ceiling &= PUD_MASK;
258                 if (!ceiling)
259                         return;
260         }
261         if (end - 1 > ceiling - 1)
262                 return;
263
264         pmd = pmd_offset(pud, start);
265         pud_clear(pud);
266         pmd_free_tlb(tlb, pmd, start);
267         mm_dec_nr_pmds(tlb->mm);
268 }
269
270 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
271                                 unsigned long addr, unsigned long end,
272                                 unsigned long floor, unsigned long ceiling)
273 {
274         pud_t *pud;
275         unsigned long next;
276         unsigned long start;
277
278         start = addr;
279         pud = pud_offset(p4d, addr);
280         do {
281                 next = pud_addr_end(addr, end);
282                 if (pud_none_or_clear_bad(pud))
283                         continue;
284                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
285         } while (pud++, addr = next, addr != end);
286
287         start &= P4D_MASK;
288         if (start < floor)
289                 return;
290         if (ceiling) {
291                 ceiling &= P4D_MASK;
292                 if (!ceiling)
293                         return;
294         }
295         if (end - 1 > ceiling - 1)
296                 return;
297
298         pud = pud_offset(p4d, start);
299         p4d_clear(p4d);
300         pud_free_tlb(tlb, pud, start);
301         mm_dec_nr_puds(tlb->mm);
302 }
303
304 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
305                                 unsigned long addr, unsigned long end,
306                                 unsigned long floor, unsigned long ceiling)
307 {
308         p4d_t *p4d;
309         unsigned long next;
310         unsigned long start;
311
312         start = addr;
313         p4d = p4d_offset(pgd, addr);
314         do {
315                 next = p4d_addr_end(addr, end);
316                 if (p4d_none_or_clear_bad(p4d))
317                         continue;
318                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
319         } while (p4d++, addr = next, addr != end);
320
321         start &= PGDIR_MASK;
322         if (start < floor)
323                 return;
324         if (ceiling) {
325                 ceiling &= PGDIR_MASK;
326                 if (!ceiling)
327                         return;
328         }
329         if (end - 1 > ceiling - 1)
330                 return;
331
332         p4d = p4d_offset(pgd, start);
333         pgd_clear(pgd);
334         p4d_free_tlb(tlb, p4d, start);
335 }
336
337 /*
338  * This function frees user-level page tables of a process.
339  */
340 void free_pgd_range(struct mmu_gather *tlb,
341                         unsigned long addr, unsigned long end,
342                         unsigned long floor, unsigned long ceiling)
343 {
344         pgd_t *pgd;
345         unsigned long next;
346
347         /*
348          * The next few lines have given us lots of grief...
349          *
350          * Why are we testing PMD* at this top level?  Because often
351          * there will be no work to do at all, and we'd prefer not to
352          * go all the way down to the bottom just to discover that.
353          *
354          * Why all these "- 1"s?  Because 0 represents both the bottom
355          * of the address space and the top of it (using -1 for the
356          * top wouldn't help much: the masks would do the wrong thing).
357          * The rule is that addr 0 and floor 0 refer to the bottom of
358          * the address space, but end 0 and ceiling 0 refer to the top
359          * Comparisons need to use "end - 1" and "ceiling - 1" (though
360          * that end 0 case should be mythical).
361          *
362          * Wherever addr is brought up or ceiling brought down, we must
363          * be careful to reject "the opposite 0" before it confuses the
364          * subsequent tests.  But what about where end is brought down
365          * by PMD_SIZE below? no, end can't go down to 0 there.
366          *
367          * Whereas we round start (addr) and ceiling down, by different
368          * masks at different levels, in order to test whether a table
369          * now has no other vmas using it, so can be freed, we don't
370          * bother to round floor or end up - the tests don't need that.
371          */
372
373         addr &= PMD_MASK;
374         if (addr < floor) {
375                 addr += PMD_SIZE;
376                 if (!addr)
377                         return;
378         }
379         if (ceiling) {
380                 ceiling &= PMD_MASK;
381                 if (!ceiling)
382                         return;
383         }
384         if (end - 1 > ceiling - 1)
385                 end -= PMD_SIZE;
386         if (addr > end - 1)
387                 return;
388         /*
389          * We add page table cache pages with PAGE_SIZE,
390          * (see pte_free_tlb()), flush the tlb if we need
391          */
392         tlb_change_page_size(tlb, PAGE_SIZE);
393         pgd = pgd_offset(tlb->mm, addr);
394         do {
395                 next = pgd_addr_end(addr, end);
396                 if (pgd_none_or_clear_bad(pgd))
397                         continue;
398                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
399         } while (pgd++, addr = next, addr != end);
400 }
401
402 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
403                 unsigned long floor, unsigned long ceiling)
404 {
405         while (vma) {
406                 struct vm_area_struct *next = vma->vm_next;
407                 unsigned long addr = vma->vm_start;
408
409                 /*
410                  * Hide vma from rmap and truncate_pagecache before freeing
411                  * pgtables
412                  */
413                 unlink_anon_vmas(vma);
414                 unlink_file_vma(vma);
415
416                 if (is_vm_hugetlb_page(vma)) {
417                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
418                                 floor, next ? next->vm_start : ceiling);
419                 } else {
420                         /*
421                          * Optimization: gather nearby vmas into one call down
422                          */
423                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
424                                && !is_vm_hugetlb_page(next)) {
425                                 vma = next;
426                                 next = vma->vm_next;
427                                 unlink_anon_vmas(vma);
428                                 unlink_file_vma(vma);
429                         }
430                         free_pgd_range(tlb, addr, vma->vm_end,
431                                 floor, next ? next->vm_start : ceiling);
432                 }
433                 vma = next;
434         }
435 }
436
437 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
438 {
439         spinlock_t *ptl = pmd_lock(mm, pmd);
440
441         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
442                 mm_inc_nr_ptes(mm);
443                 /*
444                  * Ensure all pte setup (eg. pte page lock and page clearing) are
445                  * visible before the pte is made visible to other CPUs by being
446                  * put into page tables.
447                  *
448                  * The other side of the story is the pointer chasing in the page
449                  * table walking code (when walking the page table without locking;
450                  * ie. most of the time). Fortunately, these data accesses consist
451                  * of a chain of data-dependent loads, meaning most CPUs (alpha
452                  * being the notable exception) will already guarantee loads are
453                  * seen in-order. See the alpha page table accessors for the
454                  * smp_rmb() barriers in page table walking code.
455                  */
456                 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
457                 pmd_populate(mm, pmd, *pte);
458                 *pte = NULL;
459         }
460         spin_unlock(ptl);
461 }
462
463 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
464 {
465         pgtable_t new = pte_alloc_one(mm);
466         if (!new)
467                 return -ENOMEM;
468
469         pmd_install(mm, pmd, &new);
470         if (new)
471                 pte_free(mm, new);
472         return 0;
473 }
474
475 int __pte_alloc_kernel(pmd_t *pmd)
476 {
477         pte_t *new = pte_alloc_one_kernel(&init_mm);
478         if (!new)
479                 return -ENOMEM;
480
481         spin_lock(&init_mm.page_table_lock);
482         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
483                 smp_wmb(); /* See comment in pmd_install() */
484                 pmd_populate_kernel(&init_mm, pmd, new);
485                 new = NULL;
486         }
487         spin_unlock(&init_mm.page_table_lock);
488         if (new)
489                 pte_free_kernel(&init_mm, new);
490         return 0;
491 }
492
493 static inline void init_rss_vec(int *rss)
494 {
495         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
496 }
497
498 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
499 {
500         int i;
501
502         if (current->mm == mm)
503                 sync_mm_rss(mm);
504         for (i = 0; i < NR_MM_COUNTERS; i++)
505                 if (rss[i])
506                         add_mm_counter(mm, i, rss[i]);
507 }
508
509 /*
510  * This function is called to print an error when a bad pte
511  * is found. For example, we might have a PFN-mapped pte in
512  * a region that doesn't allow it.
513  *
514  * The calling function must still handle the error.
515  */
516 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
517                           pte_t pte, struct page *page)
518 {
519         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
520         p4d_t *p4d = p4d_offset(pgd, addr);
521         pud_t *pud = pud_offset(p4d, addr);
522         pmd_t *pmd = pmd_offset(pud, addr);
523         struct address_space *mapping;
524         pgoff_t index;
525         static unsigned long resume;
526         static unsigned long nr_shown;
527         static unsigned long nr_unshown;
528
529         /*
530          * Allow a burst of 60 reports, then keep quiet for that minute;
531          * or allow a steady drip of one report per second.
532          */
533         if (nr_shown == 60) {
534                 if (time_before(jiffies, resume)) {
535                         nr_unshown++;
536                         return;
537                 }
538                 if (nr_unshown) {
539                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
540                                  nr_unshown);
541                         nr_unshown = 0;
542                 }
543                 nr_shown = 0;
544         }
545         if (nr_shown++ == 0)
546                 resume = jiffies + 60 * HZ;
547
548         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
549         index = linear_page_index(vma, addr);
550
551         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
552                  current->comm,
553                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
554         if (page)
555                 dump_page(page, "bad pte");
556         pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
557                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
558         pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
559                  vma->vm_file,
560                  vma->vm_ops ? vma->vm_ops->fault : NULL,
561                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
562                  mapping ? mapping->a_ops->readpage : NULL);
563         dump_stack();
564         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
565 }
566
567 /*
568  * vm_normal_page -- This function gets the "struct page" associated with a pte.
569  *
570  * "Special" mappings do not wish to be associated with a "struct page" (either
571  * it doesn't exist, or it exists but they don't want to touch it). In this
572  * case, NULL is returned here. "Normal" mappings do have a struct page.
573  *
574  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
575  * pte bit, in which case this function is trivial. Secondly, an architecture
576  * may not have a spare pte bit, which requires a more complicated scheme,
577  * described below.
578  *
579  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
580  * special mapping (even if there are underlying and valid "struct pages").
581  * COWed pages of a VM_PFNMAP are always normal.
582  *
583  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
584  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
585  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
586  * mapping will always honor the rule
587  *
588  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
589  *
590  * And for normal mappings this is false.
591  *
592  * This restricts such mappings to be a linear translation from virtual address
593  * to pfn. To get around this restriction, we allow arbitrary mappings so long
594  * as the vma is not a COW mapping; in that case, we know that all ptes are
595  * special (because none can have been COWed).
596  *
597  *
598  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
599  *
600  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
601  * page" backing, however the difference is that _all_ pages with a struct
602  * page (that is, those where pfn_valid is true) are refcounted and considered
603  * normal pages by the VM. The disadvantage is that pages are refcounted
604  * (which can be slower and simply not an option for some PFNMAP users). The
605  * advantage is that we don't have to follow the strict linearity rule of
606  * PFNMAP mappings in order to support COWable mappings.
607  *
608  */
609 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
610                             pte_t pte)
611 {
612         unsigned long pfn = pte_pfn(pte);
613
614         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
615                 if (likely(!pte_special(pte)))
616                         goto check_pfn;
617                 if (vma->vm_ops && vma->vm_ops->find_special_page)
618                         return vma->vm_ops->find_special_page(vma, addr);
619                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
620                         return NULL;
621                 if (is_zero_pfn(pfn))
622                         return NULL;
623                 if (pte_devmap(pte))
624                         return NULL;
625
626                 print_bad_pte(vma, addr, pte, NULL);
627                 return NULL;
628         }
629
630         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
631
632         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
633                 if (vma->vm_flags & VM_MIXEDMAP) {
634                         if (!pfn_valid(pfn))
635                                 return NULL;
636                         goto out;
637                 } else {
638                         unsigned long off;
639                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
640                         if (pfn == vma->vm_pgoff + off)
641                                 return NULL;
642                         if (!is_cow_mapping(vma->vm_flags))
643                                 return NULL;
644                 }
645         }
646
647         if (is_zero_pfn(pfn))
648                 return NULL;
649
650 check_pfn:
651         if (unlikely(pfn > highest_memmap_pfn)) {
652                 print_bad_pte(vma, addr, pte, NULL);
653                 return NULL;
654         }
655
656         /*
657          * NOTE! We still have PageReserved() pages in the page tables.
658          * eg. VDSO mappings can cause them to exist.
659          */
660 out:
661         return pfn_to_page(pfn);
662 }
663
664 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
665 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
666                                 pmd_t pmd)
667 {
668         unsigned long pfn = pmd_pfn(pmd);
669
670         /*
671          * There is no pmd_special() but there may be special pmds, e.g.
672          * in a direct-access (dax) mapping, so let's just replicate the
673          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
674          */
675         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
676                 if (vma->vm_flags & VM_MIXEDMAP) {
677                         if (!pfn_valid(pfn))
678                                 return NULL;
679                         goto out;
680                 } else {
681                         unsigned long off;
682                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
683                         if (pfn == vma->vm_pgoff + off)
684                                 return NULL;
685                         if (!is_cow_mapping(vma->vm_flags))
686                                 return NULL;
687                 }
688         }
689
690         if (pmd_devmap(pmd))
691                 return NULL;
692         if (is_huge_zero_pmd(pmd))
693                 return NULL;
694         if (unlikely(pfn > highest_memmap_pfn))
695                 return NULL;
696
697         /*
698          * NOTE! We still have PageReserved() pages in the page tables.
699          * eg. VDSO mappings can cause them to exist.
700          */
701 out:
702         return pfn_to_page(pfn);
703 }
704 #endif
705
706 static void restore_exclusive_pte(struct vm_area_struct *vma,
707                                   struct page *page, unsigned long address,
708                                   pte_t *ptep)
709 {
710         pte_t pte;
711         swp_entry_t entry;
712
713         pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
714         if (pte_swp_soft_dirty(*ptep))
715                 pte = pte_mksoft_dirty(pte);
716
717         entry = pte_to_swp_entry(*ptep);
718         if (pte_swp_uffd_wp(*ptep))
719                 pte = pte_mkuffd_wp(pte);
720         else if (is_writable_device_exclusive_entry(entry))
721                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
722
723         /*
724          * No need to take a page reference as one was already
725          * created when the swap entry was made.
726          */
727         if (PageAnon(page))
728                 page_add_anon_rmap(page, vma, address, false);
729         else
730                 /*
731                  * Currently device exclusive access only supports anonymous
732                  * memory so the entry shouldn't point to a filebacked page.
733                  */
734                 WARN_ON_ONCE(!PageAnon(page));
735
736         set_pte_at(vma->vm_mm, address, ptep, pte);
737
738         if (vma->vm_flags & VM_LOCKED)
739                 mlock_vma_page(page);
740
741         /*
742          * No need to invalidate - it was non-present before. However
743          * secondary CPUs may have mappings that need invalidating.
744          */
745         update_mmu_cache(vma, address, ptep);
746 }
747
748 /*
749  * Tries to restore an exclusive pte if the page lock can be acquired without
750  * sleeping.
751  */
752 static int
753 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
754                         unsigned long addr)
755 {
756         swp_entry_t entry = pte_to_swp_entry(*src_pte);
757         struct page *page = pfn_swap_entry_to_page(entry);
758
759         if (trylock_page(page)) {
760                 restore_exclusive_pte(vma, page, addr, src_pte);
761                 unlock_page(page);
762                 return 0;
763         }
764
765         return -EBUSY;
766 }
767
768 /*
769  * copy one vm_area from one task to the other. Assumes the page tables
770  * already present in the new task to be cleared in the whole range
771  * covered by this vma.
772  */
773
774 static unsigned long
775 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
776                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
777                 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
778 {
779         unsigned long vm_flags = dst_vma->vm_flags;
780         pte_t pte = *src_pte;
781         struct page *page;
782         swp_entry_t entry = pte_to_swp_entry(pte);
783
784         if (likely(!non_swap_entry(entry))) {
785                 if (swap_duplicate(entry) < 0)
786                         return -EIO;
787
788                 /* make sure dst_mm is on swapoff's mmlist. */
789                 if (unlikely(list_empty(&dst_mm->mmlist))) {
790                         spin_lock(&mmlist_lock);
791                         if (list_empty(&dst_mm->mmlist))
792                                 list_add(&dst_mm->mmlist,
793                                                 &src_mm->mmlist);
794                         spin_unlock(&mmlist_lock);
795                 }
796                 rss[MM_SWAPENTS]++;
797         } else if (is_migration_entry(entry)) {
798                 page = pfn_swap_entry_to_page(entry);
799
800                 rss[mm_counter(page)]++;
801
802                 if (is_writable_migration_entry(entry) &&
803                                 is_cow_mapping(vm_flags)) {
804                         /*
805                          * COW mappings require pages in both
806                          * parent and child to be set to read.
807                          */
808                         entry = make_readable_migration_entry(
809                                                         swp_offset(entry));
810                         pte = swp_entry_to_pte(entry);
811                         if (pte_swp_soft_dirty(*src_pte))
812                                 pte = pte_swp_mksoft_dirty(pte);
813                         if (pte_swp_uffd_wp(*src_pte))
814                                 pte = pte_swp_mkuffd_wp(pte);
815                         set_pte_at(src_mm, addr, src_pte, pte);
816                 }
817         } else if (is_device_private_entry(entry)) {
818                 page = pfn_swap_entry_to_page(entry);
819
820                 /*
821                  * Update rss count even for unaddressable pages, as
822                  * they should treated just like normal pages in this
823                  * respect.
824                  *
825                  * We will likely want to have some new rss counters
826                  * for unaddressable pages, at some point. But for now
827                  * keep things as they are.
828                  */
829                 get_page(page);
830                 rss[mm_counter(page)]++;
831                 page_dup_rmap(page, false);
832
833                 /*
834                  * We do not preserve soft-dirty information, because so
835                  * far, checkpoint/restore is the only feature that
836                  * requires that. And checkpoint/restore does not work
837                  * when a device driver is involved (you cannot easily
838                  * save and restore device driver state).
839                  */
840                 if (is_writable_device_private_entry(entry) &&
841                     is_cow_mapping(vm_flags)) {
842                         entry = make_readable_device_private_entry(
843                                                         swp_offset(entry));
844                         pte = swp_entry_to_pte(entry);
845                         if (pte_swp_uffd_wp(*src_pte))
846                                 pte = pte_swp_mkuffd_wp(pte);
847                         set_pte_at(src_mm, addr, src_pte, pte);
848                 }
849         } else if (is_device_exclusive_entry(entry)) {
850                 /*
851                  * Make device exclusive entries present by restoring the
852                  * original entry then copying as for a present pte. Device
853                  * exclusive entries currently only support private writable
854                  * (ie. COW) mappings.
855                  */
856                 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
857                 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
858                         return -EBUSY;
859                 return -ENOENT;
860         }
861         if (!userfaultfd_wp(dst_vma))
862                 pte = pte_swp_clear_uffd_wp(pte);
863         set_pte_at(dst_mm, addr, dst_pte, pte);
864         return 0;
865 }
866
867 /*
868  * Copy a present and normal page if necessary.
869  *
870  * NOTE! The usual case is that this doesn't need to do
871  * anything, and can just return a positive value. That
872  * will let the caller know that it can just increase
873  * the page refcount and re-use the pte the traditional
874  * way.
875  *
876  * But _if_ we need to copy it because it needs to be
877  * pinned in the parent (and the child should get its own
878  * copy rather than just a reference to the same page),
879  * we'll do that here and return zero to let the caller
880  * know we're done.
881  *
882  * And if we need a pre-allocated page but don't yet have
883  * one, return a negative error to let the preallocation
884  * code know so that it can do so outside the page table
885  * lock.
886  */
887 static inline int
888 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
889                   pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
890                   struct page **prealloc, pte_t pte, struct page *page)
891 {
892         struct page *new_page;
893
894         /*
895          * What we want to do is to check whether this page may
896          * have been pinned by the parent process.  If so,
897          * instead of wrprotect the pte on both sides, we copy
898          * the page immediately so that we'll always guarantee
899          * the pinned page won't be randomly replaced in the
900          * future.
901          *
902          * The page pinning checks are just "has this mm ever
903          * seen pinning", along with the (inexact) check of
904          * the page count. That might give false positives for
905          * for pinning, but it will work correctly.
906          */
907         if (likely(!page_needs_cow_for_dma(src_vma, page)))
908                 return 1;
909
910         new_page = *prealloc;
911         if (!new_page)
912                 return -EAGAIN;
913
914         /*
915          * We have a prealloc page, all good!  Take it
916          * over and copy the page & arm it.
917          */
918         *prealloc = NULL;
919         copy_user_highpage(new_page, page, addr, src_vma);
920         __SetPageUptodate(new_page);
921         page_add_new_anon_rmap(new_page, dst_vma, addr, false);
922         lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
923         rss[mm_counter(new_page)]++;
924
925         /* All done, just insert the new page copy in the child */
926         pte = mk_pte(new_page, dst_vma->vm_page_prot);
927         pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
928         if (userfaultfd_pte_wp(dst_vma, *src_pte))
929                 /* Uffd-wp needs to be delivered to dest pte as well */
930                 pte = pte_wrprotect(pte_mkuffd_wp(pte));
931         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
932         return 0;
933 }
934
935 /*
936  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
937  * is required to copy this pte.
938  */
939 static inline int
940 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
941                  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
942                  struct page **prealloc)
943 {
944         struct mm_struct *src_mm = src_vma->vm_mm;
945         unsigned long vm_flags = src_vma->vm_flags;
946         pte_t pte = *src_pte;
947         struct page *page;
948
949         page = vm_normal_page(src_vma, addr, pte);
950         if (page) {
951                 int retval;
952
953                 retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
954                                            addr, rss, prealloc, pte, page);
955                 if (retval <= 0)
956                         return retval;
957
958                 get_page(page);
959                 page_dup_rmap(page, false);
960                 rss[mm_counter(page)]++;
961         }
962
963         /*
964          * If it's a COW mapping, write protect it both
965          * in the parent and the child
966          */
967         if (is_cow_mapping(vm_flags) && pte_write(pte)) {
968                 ptep_set_wrprotect(src_mm, addr, src_pte);
969                 pte = pte_wrprotect(pte);
970         }
971
972         /*
973          * If it's a shared mapping, mark it clean in
974          * the child
975          */
976         if (vm_flags & VM_SHARED)
977                 pte = pte_mkclean(pte);
978         pte = pte_mkold(pte);
979
980         if (!userfaultfd_wp(dst_vma))
981                 pte = pte_clear_uffd_wp(pte);
982
983         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
984         return 0;
985 }
986
987 static inline struct page *
988 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
989                    unsigned long addr)
990 {
991         struct page *new_page;
992
993         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
994         if (!new_page)
995                 return NULL;
996
997         if (mem_cgroup_charge(page_folio(new_page), src_mm, GFP_KERNEL)) {
998                 put_page(new_page);
999                 return NULL;
1000         }
1001         cgroup_throttle_swaprate(new_page, GFP_KERNEL);
1002
1003         return new_page;
1004 }
1005
1006 static int
1007 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1008                pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1009                unsigned long end)
1010 {
1011         struct mm_struct *dst_mm = dst_vma->vm_mm;
1012         struct mm_struct *src_mm = src_vma->vm_mm;
1013         pte_t *orig_src_pte, *orig_dst_pte;
1014         pte_t *src_pte, *dst_pte;
1015         spinlock_t *src_ptl, *dst_ptl;
1016         int progress, ret = 0;
1017         int rss[NR_MM_COUNTERS];
1018         swp_entry_t entry = (swp_entry_t){0};
1019         struct page *prealloc = NULL;
1020
1021 again:
1022         progress = 0;
1023         init_rss_vec(rss);
1024
1025         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1026         if (!dst_pte) {
1027                 ret = -ENOMEM;
1028                 goto out;
1029         }
1030         src_pte = pte_offset_map(src_pmd, addr);
1031         src_ptl = pte_lockptr(src_mm, src_pmd);
1032         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1033         orig_src_pte = src_pte;
1034         orig_dst_pte = dst_pte;
1035         arch_enter_lazy_mmu_mode();
1036
1037         do {
1038                 /*
1039                  * We are holding two locks at this point - either of them
1040                  * could generate latencies in another task on another CPU.
1041                  */
1042                 if (progress >= 32) {
1043                         progress = 0;
1044                         if (need_resched() ||
1045                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1046                                 break;
1047                 }
1048                 if (pte_none(*src_pte)) {
1049                         progress++;
1050                         continue;
1051                 }
1052                 if (unlikely(!pte_present(*src_pte))) {
1053                         ret = copy_nonpresent_pte(dst_mm, src_mm,
1054                                                   dst_pte, src_pte,
1055                                                   dst_vma, src_vma,
1056                                                   addr, rss);
1057                         if (ret == -EIO) {
1058                                 entry = pte_to_swp_entry(*src_pte);
1059                                 break;
1060                         } else if (ret == -EBUSY) {
1061                                 break;
1062                         } else if (!ret) {
1063                                 progress += 8;
1064                                 continue;
1065                         }
1066
1067                         /*
1068                          * Device exclusive entry restored, continue by copying
1069                          * the now present pte.
1070                          */
1071                         WARN_ON_ONCE(ret != -ENOENT);
1072                 }
1073                 /* copy_present_pte() will clear `*prealloc' if consumed */
1074                 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1075                                        addr, rss, &prealloc);
1076                 /*
1077                  * If we need a pre-allocated page for this pte, drop the
1078                  * locks, allocate, and try again.
1079                  */
1080                 if (unlikely(ret == -EAGAIN))
1081                         break;
1082                 if (unlikely(prealloc)) {
1083                         /*
1084                          * pre-alloc page cannot be reused by next time so as
1085                          * to strictly follow mempolicy (e.g., alloc_page_vma()
1086                          * will allocate page according to address).  This
1087                          * could only happen if one pinned pte changed.
1088                          */
1089                         put_page(prealloc);
1090                         prealloc = NULL;
1091                 }
1092                 progress += 8;
1093         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1094
1095         arch_leave_lazy_mmu_mode();
1096         spin_unlock(src_ptl);
1097         pte_unmap(orig_src_pte);
1098         add_mm_rss_vec(dst_mm, rss);
1099         pte_unmap_unlock(orig_dst_pte, dst_ptl);
1100         cond_resched();
1101
1102         if (ret == -EIO) {
1103                 VM_WARN_ON_ONCE(!entry.val);
1104                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1105                         ret = -ENOMEM;
1106                         goto out;
1107                 }
1108                 entry.val = 0;
1109         } else if (ret == -EBUSY) {
1110                 goto out;
1111         } else if (ret ==  -EAGAIN) {
1112                 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1113                 if (!prealloc)
1114                         return -ENOMEM;
1115         } else if (ret) {
1116                 VM_WARN_ON_ONCE(1);
1117         }
1118
1119         /* We've captured and resolved the error. Reset, try again. */
1120         ret = 0;
1121
1122         if (addr != end)
1123                 goto again;
1124 out:
1125         if (unlikely(prealloc))
1126                 put_page(prealloc);
1127         return ret;
1128 }
1129
1130 static inline int
1131 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1132                pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1133                unsigned long end)
1134 {
1135         struct mm_struct *dst_mm = dst_vma->vm_mm;
1136         struct mm_struct *src_mm = src_vma->vm_mm;
1137         pmd_t *src_pmd, *dst_pmd;
1138         unsigned long next;
1139
1140         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1141         if (!dst_pmd)
1142                 return -ENOMEM;
1143         src_pmd = pmd_offset(src_pud, addr);
1144         do {
1145                 next = pmd_addr_end(addr, end);
1146                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1147                         || pmd_devmap(*src_pmd)) {
1148                         int err;
1149                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1150                         err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1151                                             addr, dst_vma, src_vma);
1152                         if (err == -ENOMEM)
1153                                 return -ENOMEM;
1154                         if (!err)
1155                                 continue;
1156                         /* fall through */
1157                 }
1158                 if (pmd_none_or_clear_bad(src_pmd))
1159                         continue;
1160                 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1161                                    addr, next))
1162                         return -ENOMEM;
1163         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1164         return 0;
1165 }
1166
1167 static inline int
1168 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1169                p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1170                unsigned long end)
1171 {
1172         struct mm_struct *dst_mm = dst_vma->vm_mm;
1173         struct mm_struct *src_mm = src_vma->vm_mm;
1174         pud_t *src_pud, *dst_pud;
1175         unsigned long next;
1176
1177         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1178         if (!dst_pud)
1179                 return -ENOMEM;
1180         src_pud = pud_offset(src_p4d, addr);
1181         do {
1182                 next = pud_addr_end(addr, end);
1183                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1184                         int err;
1185
1186                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1187                         err = copy_huge_pud(dst_mm, src_mm,
1188                                             dst_pud, src_pud, addr, src_vma);
1189                         if (err == -ENOMEM)
1190                                 return -ENOMEM;
1191                         if (!err)
1192                                 continue;
1193                         /* fall through */
1194                 }
1195                 if (pud_none_or_clear_bad(src_pud))
1196                         continue;
1197                 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1198                                    addr, next))
1199                         return -ENOMEM;
1200         } while (dst_pud++, src_pud++, addr = next, addr != end);
1201         return 0;
1202 }
1203
1204 static inline int
1205 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1206                pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1207                unsigned long end)
1208 {
1209         struct mm_struct *dst_mm = dst_vma->vm_mm;
1210         p4d_t *src_p4d, *dst_p4d;
1211         unsigned long next;
1212
1213         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1214         if (!dst_p4d)
1215                 return -ENOMEM;
1216         src_p4d = p4d_offset(src_pgd, addr);
1217         do {
1218                 next = p4d_addr_end(addr, end);
1219                 if (p4d_none_or_clear_bad(src_p4d))
1220                         continue;
1221                 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1222                                    addr, next))
1223                         return -ENOMEM;
1224         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1225         return 0;
1226 }
1227
1228 int
1229 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1230 {
1231         pgd_t *src_pgd, *dst_pgd;
1232         unsigned long next;
1233         unsigned long addr = src_vma->vm_start;
1234         unsigned long end = src_vma->vm_end;
1235         struct mm_struct *dst_mm = dst_vma->vm_mm;
1236         struct mm_struct *src_mm = src_vma->vm_mm;
1237         struct mmu_notifier_range range;
1238         bool is_cow;
1239         int ret;
1240
1241         /*
1242          * Don't copy ptes where a page fault will fill them correctly.
1243          * Fork becomes much lighter when there are big shared or private
1244          * readonly mappings. The tradeoff is that copy_page_range is more
1245          * efficient than faulting.
1246          */
1247         if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1248             !src_vma->anon_vma)
1249                 return 0;
1250
1251         if (is_vm_hugetlb_page(src_vma))
1252                 return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1253
1254         if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1255                 /*
1256                  * We do not free on error cases below as remove_vma
1257                  * gets called on error from higher level routine
1258                  */
1259                 ret = track_pfn_copy(src_vma);
1260                 if (ret)
1261                         return ret;
1262         }
1263
1264         /*
1265          * We need to invalidate the secondary MMU mappings only when
1266          * there could be a permission downgrade on the ptes of the
1267          * parent mm. And a permission downgrade will only happen if
1268          * is_cow_mapping() returns true.
1269          */
1270         is_cow = is_cow_mapping(src_vma->vm_flags);
1271
1272         if (is_cow) {
1273                 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1274                                         0, src_vma, src_mm, addr, end);
1275                 mmu_notifier_invalidate_range_start(&range);
1276                 /*
1277                  * Disabling preemption is not needed for the write side, as
1278                  * the read side doesn't spin, but goes to the mmap_lock.
1279                  *
1280                  * Use the raw variant of the seqcount_t write API to avoid
1281                  * lockdep complaining about preemptibility.
1282                  */
1283                 mmap_assert_write_locked(src_mm);
1284                 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1285         }
1286
1287         ret = 0;
1288         dst_pgd = pgd_offset(dst_mm, addr);
1289         src_pgd = pgd_offset(src_mm, addr);
1290         do {
1291                 next = pgd_addr_end(addr, end);
1292                 if (pgd_none_or_clear_bad(src_pgd))
1293                         continue;
1294                 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1295                                             addr, next))) {
1296                         ret = -ENOMEM;
1297                         break;
1298                 }
1299         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1300
1301         if (is_cow) {
1302                 raw_write_seqcount_end(&src_mm->write_protect_seq);
1303                 mmu_notifier_invalidate_range_end(&range);
1304         }
1305         return ret;
1306 }
1307
1308 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1309                                 struct vm_area_struct *vma, pmd_t *pmd,
1310                                 unsigned long addr, unsigned long end,
1311                                 struct zap_details *details)
1312 {
1313         struct mm_struct *mm = tlb->mm;
1314         int force_flush = 0;
1315         int rss[NR_MM_COUNTERS];
1316         spinlock_t *ptl;
1317         pte_t *start_pte;
1318         pte_t *pte;
1319         swp_entry_t entry;
1320
1321         tlb_change_page_size(tlb, PAGE_SIZE);
1322 again:
1323         init_rss_vec(rss);
1324         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1325         pte = start_pte;
1326         flush_tlb_batched_pending(mm);
1327         arch_enter_lazy_mmu_mode();
1328         do {
1329                 pte_t ptent = *pte;
1330                 if (pte_none(ptent))
1331                         continue;
1332
1333                 if (need_resched())
1334                         break;
1335
1336                 if (pte_present(ptent)) {
1337                         struct page *page;
1338
1339                         page = vm_normal_page(vma, addr, ptent);
1340                         if (unlikely(zap_skip_check_mapping(details, page)))
1341                                 continue;
1342                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1343                                                         tlb->fullmm);
1344                         tlb_remove_tlb_entry(tlb, pte, addr);
1345                         if (unlikely(!page))
1346                                 continue;
1347
1348                         if (!PageAnon(page)) {
1349                                 if (pte_dirty(ptent)) {
1350                                         force_flush = 1;
1351                                         set_page_dirty(page);
1352                                 }
1353                                 if (pte_young(ptent) &&
1354                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1355                                         mark_page_accessed(page);
1356                         }
1357                         rss[mm_counter(page)]--;
1358                         page_remove_rmap(page, false);
1359                         if (unlikely(page_mapcount(page) < 0))
1360                                 print_bad_pte(vma, addr, ptent, page);
1361                         if (unlikely(__tlb_remove_page(tlb, page))) {
1362                                 force_flush = 1;
1363                                 addr += PAGE_SIZE;
1364                                 break;
1365                         }
1366                         continue;
1367                 }
1368
1369                 entry = pte_to_swp_entry(ptent);
1370                 if (is_device_private_entry(entry) ||
1371                     is_device_exclusive_entry(entry)) {
1372                         struct page *page = pfn_swap_entry_to_page(entry);
1373
1374                         if (unlikely(zap_skip_check_mapping(details, page)))
1375                                 continue;
1376                         pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1377                         rss[mm_counter(page)]--;
1378
1379                         if (is_device_private_entry(entry))
1380                                 page_remove_rmap(page, false);
1381
1382                         put_page(page);
1383                         continue;
1384                 }
1385
1386                 /* If details->check_mapping, we leave swap entries. */
1387                 if (unlikely(details))
1388                         continue;
1389
1390                 if (!non_swap_entry(entry))
1391                         rss[MM_SWAPENTS]--;
1392                 else if (is_migration_entry(entry)) {
1393                         struct page *page;
1394
1395                         page = pfn_swap_entry_to_page(entry);
1396                         rss[mm_counter(page)]--;
1397                 }
1398                 if (unlikely(!free_swap_and_cache(entry)))
1399                         print_bad_pte(vma, addr, ptent, NULL);
1400                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1401         } while (pte++, addr += PAGE_SIZE, addr != end);
1402
1403         add_mm_rss_vec(mm, rss);
1404         arch_leave_lazy_mmu_mode();
1405
1406         /* Do the actual TLB flush before dropping ptl */
1407         if (force_flush)
1408                 tlb_flush_mmu_tlbonly(tlb);
1409         pte_unmap_unlock(start_pte, ptl);
1410
1411         /*
1412          * If we forced a TLB flush (either due to running out of
1413          * batch buffers or because we needed to flush dirty TLB
1414          * entries before releasing the ptl), free the batched
1415          * memory too. Restart if we didn't do everything.
1416          */
1417         if (force_flush) {
1418                 force_flush = 0;
1419                 tlb_flush_mmu(tlb);
1420         }
1421
1422         if (addr != end) {
1423                 cond_resched();
1424                 goto again;
1425         }
1426
1427         return addr;
1428 }
1429
1430 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1431                                 struct vm_area_struct *vma, pud_t *pud,
1432                                 unsigned long addr, unsigned long end,
1433                                 struct zap_details *details)
1434 {
1435         pmd_t *pmd;
1436         unsigned long next;
1437
1438         pmd = pmd_offset(pud, addr);
1439         do {
1440                 next = pmd_addr_end(addr, end);
1441                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1442                         if (next - addr != HPAGE_PMD_SIZE)
1443                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1444                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
1445                                 goto next;
1446                         /* fall through */
1447                 } else if (details && details->single_page &&
1448                            PageTransCompound(details->single_page) &&
1449                            next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1450                         spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1451                         /*
1452                          * Take and drop THP pmd lock so that we cannot return
1453                          * prematurely, while zap_huge_pmd() has cleared *pmd,
1454                          * but not yet decremented compound_mapcount().
1455                          */
1456                         spin_unlock(ptl);
1457                 }
1458
1459                 /*
1460                  * Here there can be other concurrent MADV_DONTNEED or
1461                  * trans huge page faults running, and if the pmd is
1462                  * none or trans huge it can change under us. This is
1463                  * because MADV_DONTNEED holds the mmap_lock in read
1464                  * mode.
1465                  */
1466                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1467                         goto next;
1468                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1469 next:
1470                 cond_resched();
1471         } while (pmd++, addr = next, addr != end);
1472
1473         return addr;
1474 }
1475
1476 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1477                                 struct vm_area_struct *vma, p4d_t *p4d,
1478                                 unsigned long addr, unsigned long end,
1479                                 struct zap_details *details)
1480 {
1481         pud_t *pud;
1482         unsigned long next;
1483
1484         pud = pud_offset(p4d, addr);
1485         do {
1486                 next = pud_addr_end(addr, end);
1487                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1488                         if (next - addr != HPAGE_PUD_SIZE) {
1489                                 mmap_assert_locked(tlb->mm);
1490                                 split_huge_pud(vma, pud, addr);
1491                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1492                                 goto next;
1493                         /* fall through */
1494                 }
1495                 if (pud_none_or_clear_bad(pud))
1496                         continue;
1497                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1498 next:
1499                 cond_resched();
1500         } while (pud++, addr = next, addr != end);
1501
1502         return addr;
1503 }
1504
1505 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1506                                 struct vm_area_struct *vma, pgd_t *pgd,
1507                                 unsigned long addr, unsigned long end,
1508                                 struct zap_details *details)
1509 {
1510         p4d_t *p4d;
1511         unsigned long next;
1512
1513         p4d = p4d_offset(pgd, addr);
1514         do {
1515                 next = p4d_addr_end(addr, end);
1516                 if (p4d_none_or_clear_bad(p4d))
1517                         continue;
1518                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1519         } while (p4d++, addr = next, addr != end);
1520
1521         return addr;
1522 }
1523
1524 void unmap_page_range(struct mmu_gather *tlb,
1525                              struct vm_area_struct *vma,
1526                              unsigned long addr, unsigned long end,
1527                              struct zap_details *details)
1528 {
1529         pgd_t *pgd;
1530         unsigned long next;
1531
1532         BUG_ON(addr >= end);
1533         tlb_start_vma(tlb, vma);
1534         pgd = pgd_offset(vma->vm_mm, addr);
1535         do {
1536                 next = pgd_addr_end(addr, end);
1537                 if (pgd_none_or_clear_bad(pgd))
1538                         continue;
1539                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1540         } while (pgd++, addr = next, addr != end);
1541         tlb_end_vma(tlb, vma);
1542 }
1543
1544
1545 static void unmap_single_vma(struct mmu_gather *tlb,
1546                 struct vm_area_struct *vma, unsigned long start_addr,
1547                 unsigned long end_addr,
1548                 struct zap_details *details)
1549 {
1550         unsigned long start = max(vma->vm_start, start_addr);
1551         unsigned long end;
1552
1553         if (start >= vma->vm_end)
1554                 return;
1555         end = min(vma->vm_end, end_addr);
1556         if (end <= vma->vm_start)
1557                 return;
1558
1559         if (vma->vm_file)
1560                 uprobe_munmap(vma, start, end);
1561
1562         if (unlikely(vma->vm_flags & VM_PFNMAP))
1563                 untrack_pfn(vma, 0, 0);
1564
1565         if (start != end) {
1566                 if (unlikely(is_vm_hugetlb_page(vma))) {
1567                         /*
1568                          * It is undesirable to test vma->vm_file as it
1569                          * should be non-null for valid hugetlb area.
1570                          * However, vm_file will be NULL in the error
1571                          * cleanup path of mmap_region. When
1572                          * hugetlbfs ->mmap method fails,
1573                          * mmap_region() nullifies vma->vm_file
1574                          * before calling this function to clean up.
1575                          * Since no pte has actually been setup, it is
1576                          * safe to do nothing in this case.
1577                          */
1578                         if (vma->vm_file) {
1579                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1580                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1581                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1582                         }
1583                 } else
1584                         unmap_page_range(tlb, vma, start, end, details);
1585         }
1586 }
1587
1588 /**
1589  * unmap_vmas - unmap a range of memory covered by a list of vma's
1590  * @tlb: address of the caller's struct mmu_gather
1591  * @vma: the starting vma
1592  * @start_addr: virtual address at which to start unmapping
1593  * @end_addr: virtual address at which to end unmapping
1594  *
1595  * Unmap all pages in the vma list.
1596  *
1597  * Only addresses between `start' and `end' will be unmapped.
1598  *
1599  * The VMA list must be sorted in ascending virtual address order.
1600  *
1601  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1602  * range after unmap_vmas() returns.  So the only responsibility here is to
1603  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1604  * drops the lock and schedules.
1605  */
1606 void unmap_vmas(struct mmu_gather *tlb,
1607                 struct vm_area_struct *vma, unsigned long start_addr,
1608                 unsigned long end_addr)
1609 {
1610         struct mmu_notifier_range range;
1611
1612         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1613                                 start_addr, end_addr);
1614         mmu_notifier_invalidate_range_start(&range);
1615         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1616                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1617         mmu_notifier_invalidate_range_end(&range);
1618 }
1619
1620 /**
1621  * zap_page_range - remove user pages in a given range
1622  * @vma: vm_area_struct holding the applicable pages
1623  * @start: starting address of pages to zap
1624  * @size: number of bytes to zap
1625  *
1626  * Caller must protect the VMA list
1627  */
1628 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1629                 unsigned long size)
1630 {
1631         struct mmu_notifier_range range;
1632         struct mmu_gather tlb;
1633
1634         lru_add_drain();
1635         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1636                                 start, start + size);
1637         tlb_gather_mmu(&tlb, vma->vm_mm);
1638         update_hiwater_rss(vma->vm_mm);
1639         mmu_notifier_invalidate_range_start(&range);
1640         for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1641                 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1642         mmu_notifier_invalidate_range_end(&range);
1643         tlb_finish_mmu(&tlb);
1644 }
1645
1646 /**
1647  * zap_page_range_single - remove user pages in a given range
1648  * @vma: vm_area_struct holding the applicable pages
1649  * @address: starting address of pages to zap
1650  * @size: number of bytes to zap
1651  * @details: details of shared cache invalidation
1652  *
1653  * The range must fit into one VMA.
1654  */
1655 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1656                 unsigned long size, struct zap_details *details)
1657 {
1658         struct mmu_notifier_range range;
1659         struct mmu_gather tlb;
1660
1661         lru_add_drain();
1662         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1663                                 address, address + size);
1664         tlb_gather_mmu(&tlb, vma->vm_mm);
1665         update_hiwater_rss(vma->vm_mm);
1666         mmu_notifier_invalidate_range_start(&range);
1667         unmap_single_vma(&tlb, vma, address, range.end, details);
1668         mmu_notifier_invalidate_range_end(&range);
1669         tlb_finish_mmu(&tlb);
1670 }
1671
1672 /**
1673  * zap_vma_ptes - remove ptes mapping the vma
1674  * @vma: vm_area_struct holding ptes to be zapped
1675  * @address: starting address of pages to zap
1676  * @size: number of bytes to zap
1677  *
1678  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1679  *
1680  * The entire address range must be fully contained within the vma.
1681  *
1682  */
1683 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1684                 unsigned long size)
1685 {
1686         if (address < vma->vm_start || address + size > vma->vm_end ||
1687                         !(vma->vm_flags & VM_PFNMAP))
1688                 return;
1689
1690         zap_page_range_single(vma, address, size, NULL);
1691 }
1692 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1693
1694 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1695 {
1696         pgd_t *pgd;
1697         p4d_t *p4d;
1698         pud_t *pud;
1699         pmd_t *pmd;
1700
1701         pgd = pgd_offset(mm, addr);
1702         p4d = p4d_alloc(mm, pgd, addr);
1703         if (!p4d)
1704                 return NULL;
1705         pud = pud_alloc(mm, p4d, addr);
1706         if (!pud)
1707                 return NULL;
1708         pmd = pmd_alloc(mm, pud, addr);
1709         if (!pmd)
1710                 return NULL;
1711
1712         VM_BUG_ON(pmd_trans_huge(*pmd));
1713         return pmd;
1714 }
1715
1716 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1717                         spinlock_t **ptl)
1718 {
1719         pmd_t *pmd = walk_to_pmd(mm, addr);
1720
1721         if (!pmd)
1722                 return NULL;
1723         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1724 }
1725
1726 static int validate_page_before_insert(struct page *page)
1727 {
1728         if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1729                 return -EINVAL;
1730         flush_dcache_page(page);
1731         return 0;
1732 }
1733
1734 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1735                         unsigned long addr, struct page *page, pgprot_t prot)
1736 {
1737         if (!pte_none(*pte))
1738                 return -EBUSY;
1739         /* Ok, finally just insert the thing.. */
1740         get_page(page);
1741         inc_mm_counter_fast(mm, mm_counter_file(page));
1742         page_add_file_rmap(page, false);
1743         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1744         return 0;
1745 }
1746
1747 /*
1748  * This is the old fallback for page remapping.
1749  *
1750  * For historical reasons, it only allows reserved pages. Only
1751  * old drivers should use this, and they needed to mark their
1752  * pages reserved for the old functions anyway.
1753  */
1754 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1755                         struct page *page, pgprot_t prot)
1756 {
1757         struct mm_struct *mm = vma->vm_mm;
1758         int retval;
1759         pte_t *pte;
1760         spinlock_t *ptl;
1761
1762         retval = validate_page_before_insert(page);
1763         if (retval)
1764                 goto out;
1765         retval = -ENOMEM;
1766         pte = get_locked_pte(mm, addr, &ptl);
1767         if (!pte)
1768                 goto out;
1769         retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1770         pte_unmap_unlock(pte, ptl);
1771 out:
1772         return retval;
1773 }
1774
1775 #ifdef pte_index
1776 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
1777                         unsigned long addr, struct page *page, pgprot_t prot)
1778 {
1779         int err;
1780
1781         if (!page_count(page))
1782                 return -EINVAL;
1783         err = validate_page_before_insert(page);
1784         if (err)
1785                 return err;
1786         return insert_page_into_pte_locked(mm, pte, addr, page, prot);
1787 }
1788
1789 /* insert_pages() amortizes the cost of spinlock operations
1790  * when inserting pages in a loop. Arch *must* define pte_index.
1791  */
1792 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1793                         struct page **pages, unsigned long *num, pgprot_t prot)
1794 {
1795         pmd_t *pmd = NULL;
1796         pte_t *start_pte, *pte;
1797         spinlock_t *pte_lock;
1798         struct mm_struct *const mm = vma->vm_mm;
1799         unsigned long curr_page_idx = 0;
1800         unsigned long remaining_pages_total = *num;
1801         unsigned long pages_to_write_in_pmd;
1802         int ret;
1803 more:
1804         ret = -EFAULT;
1805         pmd = walk_to_pmd(mm, addr);
1806         if (!pmd)
1807                 goto out;
1808
1809         pages_to_write_in_pmd = min_t(unsigned long,
1810                 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1811
1812         /* Allocate the PTE if necessary; takes PMD lock once only. */
1813         ret = -ENOMEM;
1814         if (pte_alloc(mm, pmd))
1815                 goto out;
1816
1817         while (pages_to_write_in_pmd) {
1818                 int pte_idx = 0;
1819                 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1820
1821                 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1822                 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1823                         int err = insert_page_in_batch_locked(mm, pte,
1824                                 addr, pages[curr_page_idx], prot);
1825                         if (unlikely(err)) {
1826                                 pte_unmap_unlock(start_pte, pte_lock);
1827                                 ret = err;
1828                                 remaining_pages_total -= pte_idx;
1829                                 goto out;
1830                         }
1831                         addr += PAGE_SIZE;
1832                         ++curr_page_idx;
1833                 }
1834                 pte_unmap_unlock(start_pte, pte_lock);
1835                 pages_to_write_in_pmd -= batch_size;
1836                 remaining_pages_total -= batch_size;
1837         }
1838         if (remaining_pages_total)
1839                 goto more;
1840         ret = 0;
1841 out:
1842         *num = remaining_pages_total;
1843         return ret;
1844 }
1845 #endif  /* ifdef pte_index */
1846
1847 /**
1848  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1849  * @vma: user vma to map to
1850  * @addr: target start user address of these pages
1851  * @pages: source kernel pages
1852  * @num: in: number of pages to map. out: number of pages that were *not*
1853  * mapped. (0 means all pages were successfully mapped).
1854  *
1855  * Preferred over vm_insert_page() when inserting multiple pages.
1856  *
1857  * In case of error, we may have mapped a subset of the provided
1858  * pages. It is the caller's responsibility to account for this case.
1859  *
1860  * The same restrictions apply as in vm_insert_page().
1861  */
1862 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1863                         struct page **pages, unsigned long *num)
1864 {
1865 #ifdef pte_index
1866         const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1867
1868         if (addr < vma->vm_start || end_addr >= vma->vm_end)
1869                 return -EFAULT;
1870         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1871                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1872                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1873                 vma->vm_flags |= VM_MIXEDMAP;
1874         }
1875         /* Defer page refcount checking till we're about to map that page. */
1876         return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1877 #else
1878         unsigned long idx = 0, pgcount = *num;
1879         int err = -EINVAL;
1880
1881         for (; idx < pgcount; ++idx) {
1882                 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1883                 if (err)
1884                         break;
1885         }
1886         *num = pgcount - idx;
1887         return err;
1888 #endif  /* ifdef pte_index */
1889 }
1890 EXPORT_SYMBOL(vm_insert_pages);
1891
1892 /**
1893  * vm_insert_page - insert single page into user vma
1894  * @vma: user vma to map to
1895  * @addr: target user address of this page
1896  * @page: source kernel page
1897  *
1898  * This allows drivers to insert individual pages they've allocated
1899  * into a user vma.
1900  *
1901  * The page has to be a nice clean _individual_ kernel allocation.
1902  * If you allocate a compound page, you need to have marked it as
1903  * such (__GFP_COMP), or manually just split the page up yourself
1904  * (see split_page()).
1905  *
1906  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1907  * took an arbitrary page protection parameter. This doesn't allow
1908  * that. Your vma protection will have to be set up correctly, which
1909  * means that if you want a shared writable mapping, you'd better
1910  * ask for a shared writable mapping!
1911  *
1912  * The page does not need to be reserved.
1913  *
1914  * Usually this function is called from f_op->mmap() handler
1915  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1916  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1917  * function from other places, for example from page-fault handler.
1918  *
1919  * Return: %0 on success, negative error code otherwise.
1920  */
1921 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1922                         struct page *page)
1923 {
1924         if (addr < vma->vm_start || addr >= vma->vm_end)
1925                 return -EFAULT;
1926         if (!page_count(page))
1927                 return -EINVAL;
1928         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1929                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1930                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1931                 vma->vm_flags |= VM_MIXEDMAP;
1932         }
1933         return insert_page(vma, addr, page, vma->vm_page_prot);
1934 }
1935 EXPORT_SYMBOL(vm_insert_page);
1936
1937 /*
1938  * __vm_map_pages - maps range of kernel pages into user vma
1939  * @vma: user vma to map to
1940  * @pages: pointer to array of source kernel pages
1941  * @num: number of pages in page array
1942  * @offset: user's requested vm_pgoff
1943  *
1944  * This allows drivers to map range of kernel pages into a user vma.
1945  *
1946  * Return: 0 on success and error code otherwise.
1947  */
1948 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1949                                 unsigned long num, unsigned long offset)
1950 {
1951         unsigned long count = vma_pages(vma);
1952         unsigned long uaddr = vma->vm_start;
1953         int ret, i;
1954
1955         /* Fail if the user requested offset is beyond the end of the object */
1956         if (offset >= num)
1957                 return -ENXIO;
1958
1959         /* Fail if the user requested size exceeds available object size */
1960         if (count > num - offset)
1961                 return -ENXIO;
1962
1963         for (i = 0; i < count; i++) {
1964                 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1965                 if (ret < 0)
1966                         return ret;
1967                 uaddr += PAGE_SIZE;
1968         }
1969
1970         return 0;
1971 }
1972
1973 /**
1974  * vm_map_pages - maps range of kernel pages starts with non zero offset
1975  * @vma: user vma to map to
1976  * @pages: pointer to array of source kernel pages
1977  * @num: number of pages in page array
1978  *
1979  * Maps an object consisting of @num pages, catering for the user's
1980  * requested vm_pgoff
1981  *
1982  * If we fail to insert any page into the vma, the function will return
1983  * immediately leaving any previously inserted pages present.  Callers
1984  * from the mmap handler may immediately return the error as their caller
1985  * will destroy the vma, removing any successfully inserted pages. Other
1986  * callers should make their own arrangements for calling unmap_region().
1987  *
1988  * Context: Process context. Called by mmap handlers.
1989  * Return: 0 on success and error code otherwise.
1990  */
1991 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1992                                 unsigned long num)
1993 {
1994         return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1995 }
1996 EXPORT_SYMBOL(vm_map_pages);
1997
1998 /**
1999  * vm_map_pages_zero - map range of kernel pages starts with zero offset
2000  * @vma: user vma to map to
2001  * @pages: pointer to array of source kernel pages
2002  * @num: number of pages in page array
2003  *
2004  * Similar to vm_map_pages(), except that it explicitly sets the offset
2005  * to 0. This function is intended for the drivers that did not consider
2006  * vm_pgoff.
2007  *
2008  * Context: Process context. Called by mmap handlers.
2009  * Return: 0 on success and error code otherwise.
2010  */
2011 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2012                                 unsigned long num)
2013 {
2014         return __vm_map_pages(vma, pages, num, 0);
2015 }
2016 EXPORT_SYMBOL(vm_map_pages_zero);
2017
2018 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2019                         pfn_t pfn, pgprot_t prot, bool mkwrite)
2020 {
2021         struct mm_struct *mm = vma->vm_mm;
2022         pte_t *pte, entry;
2023         spinlock_t *ptl;
2024
2025         pte = get_locked_pte(mm, addr, &ptl);
2026         if (!pte)
2027                 return VM_FAULT_OOM;
2028         if (!pte_none(*pte)) {
2029                 if (mkwrite) {
2030                         /*
2031                          * For read faults on private mappings the PFN passed
2032                          * in may not match the PFN we have mapped if the
2033                          * mapped PFN is a writeable COW page.  In the mkwrite
2034                          * case we are creating a writable PTE for a shared
2035                          * mapping and we expect the PFNs to match. If they
2036                          * don't match, we are likely racing with block
2037                          * allocation and mapping invalidation so just skip the
2038                          * update.
2039                          */
2040                         if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2041                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
2042                                 goto out_unlock;
2043                         }
2044                         entry = pte_mkyoung(*pte);
2045                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2046                         if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2047                                 update_mmu_cache(vma, addr, pte);
2048                 }
2049                 goto out_unlock;
2050         }
2051
2052         /* Ok, finally just insert the thing.. */
2053         if (pfn_t_devmap(pfn))
2054                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2055         else
2056                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2057
2058         if (mkwrite) {
2059                 entry = pte_mkyoung(entry);
2060                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2061         }
2062
2063         set_pte_at(mm, addr, pte, entry);
2064         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2065
2066 out_unlock:
2067         pte_unmap_unlock(pte, ptl);
2068         return VM_FAULT_NOPAGE;
2069 }
2070
2071 /**
2072  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2073  * @vma: user vma to map to
2074  * @addr: target user address of this page
2075  * @pfn: source kernel pfn
2076  * @pgprot: pgprot flags for the inserted page
2077  *
2078  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2079  * to override pgprot on a per-page basis.
2080  *
2081  * This only makes sense for IO mappings, and it makes no sense for
2082  * COW mappings.  In general, using multiple vmas is preferable;
2083  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2084  * impractical.
2085  *
2086  * See vmf_insert_mixed_prot() for a discussion of the implication of using
2087  * a value of @pgprot different from that of @vma->vm_page_prot.
2088  *
2089  * Context: Process context.  May allocate using %GFP_KERNEL.
2090  * Return: vm_fault_t value.
2091  */
2092 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2093                         unsigned long pfn, pgprot_t pgprot)
2094 {
2095         /*
2096          * Technically, architectures with pte_special can avoid all these
2097          * restrictions (same for remap_pfn_range).  However we would like
2098          * consistency in testing and feature parity among all, so we should
2099          * try to keep these invariants in place for everybody.
2100          */
2101         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2102         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2103                                                 (VM_PFNMAP|VM_MIXEDMAP));
2104         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2105         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2106
2107         if (addr < vma->vm_start || addr >= vma->vm_end)
2108                 return VM_FAULT_SIGBUS;
2109
2110         if (!pfn_modify_allowed(pfn, pgprot))
2111                 return VM_FAULT_SIGBUS;
2112
2113         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2114
2115         return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2116                         false);
2117 }
2118 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2119
2120 /**
2121  * vmf_insert_pfn - insert single pfn into user vma
2122  * @vma: user vma to map to
2123  * @addr: target user address of this page
2124  * @pfn: source kernel pfn
2125  *
2126  * Similar to vm_insert_page, this allows drivers to insert individual pages
2127  * they've allocated into a user vma. Same comments apply.
2128  *
2129  * This function should only be called from a vm_ops->fault handler, and
2130  * in that case the handler should return the result of this function.
2131  *
2132  * vma cannot be a COW mapping.
2133  *
2134  * As this is called only for pages that do not currently exist, we
2135  * do not need to flush old virtual caches or the TLB.
2136  *
2137  * Context: Process context.  May allocate using %GFP_KERNEL.
2138  * Return: vm_fault_t value.
2139  */
2140 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2141                         unsigned long pfn)
2142 {
2143         return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2144 }
2145 EXPORT_SYMBOL(vmf_insert_pfn);
2146
2147 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2148 {
2149         /* these checks mirror the abort conditions in vm_normal_page */
2150         if (vma->vm_flags & VM_MIXEDMAP)
2151                 return true;
2152         if (pfn_t_devmap(pfn))
2153                 return true;
2154         if (pfn_t_special(pfn))
2155                 return true;
2156         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2157                 return true;
2158         return false;
2159 }
2160
2161 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2162                 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2163                 bool mkwrite)
2164 {
2165         int err;
2166
2167         BUG_ON(!vm_mixed_ok(vma, pfn));
2168
2169         if (addr < vma->vm_start || addr >= vma->vm_end)
2170                 return VM_FAULT_SIGBUS;
2171
2172         track_pfn_insert(vma, &pgprot, pfn);
2173
2174         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2175                 return VM_FAULT_SIGBUS;
2176
2177         /*
2178          * If we don't have pte special, then we have to use the pfn_valid()
2179          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2180          * refcount the page if pfn_valid is true (hence insert_page rather
2181          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2182          * without pte special, it would there be refcounted as a normal page.
2183          */
2184         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2185             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2186                 struct page *page;
2187
2188                 /*
2189                  * At this point we are committed to insert_page()
2190                  * regardless of whether the caller specified flags that
2191                  * result in pfn_t_has_page() == false.
2192                  */
2193                 page = pfn_to_page(pfn_t_to_pfn(pfn));
2194                 err = insert_page(vma, addr, page, pgprot);
2195         } else {
2196                 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2197         }
2198
2199         if (err == -ENOMEM)
2200                 return VM_FAULT_OOM;
2201         if (err < 0 && err != -EBUSY)
2202                 return VM_FAULT_SIGBUS;
2203
2204         return VM_FAULT_NOPAGE;
2205 }
2206
2207 /**
2208  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2209  * @vma: user vma to map to
2210  * @addr: target user address of this page
2211  * @pfn: source kernel pfn
2212  * @pgprot: pgprot flags for the inserted page
2213  *
2214  * This is exactly like vmf_insert_mixed(), except that it allows drivers
2215  * to override pgprot on a per-page basis.
2216  *
2217  * Typically this function should be used by drivers to set caching- and
2218  * encryption bits different than those of @vma->vm_page_prot, because
2219  * the caching- or encryption mode may not be known at mmap() time.
2220  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2221  * to set caching and encryption bits for those vmas (except for COW pages).
2222  * This is ensured by core vm only modifying these page table entries using
2223  * functions that don't touch caching- or encryption bits, using pte_modify()
2224  * if needed. (See for example mprotect()).
2225  * Also when new page-table entries are created, this is only done using the
2226  * fault() callback, and never using the value of vma->vm_page_prot,
2227  * except for page-table entries that point to anonymous pages as the result
2228  * of COW.
2229  *
2230  * Context: Process context.  May allocate using %GFP_KERNEL.
2231  * Return: vm_fault_t value.
2232  */
2233 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2234                                  pfn_t pfn, pgprot_t pgprot)
2235 {
2236         return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2237 }
2238 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2239
2240 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2241                 pfn_t pfn)
2242 {
2243         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2244 }
2245 EXPORT_SYMBOL(vmf_insert_mixed);
2246
2247 /*
2248  *  If the insertion of PTE failed because someone else already added a
2249  *  different entry in the mean time, we treat that as success as we assume
2250  *  the same entry was actually inserted.
2251  */
2252 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2253                 unsigned long addr, pfn_t pfn)
2254 {
2255         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2256 }
2257 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2258
2259 /*
2260  * maps a range of physical memory into the requested pages. the old
2261  * mappings are removed. any references to nonexistent pages results
2262  * in null mappings (currently treated as "copy-on-access")
2263  */
2264 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2265                         unsigned long addr, unsigned long end,
2266                         unsigned long pfn, pgprot_t prot)
2267 {
2268         pte_t *pte, *mapped_pte;
2269         spinlock_t *ptl;
2270         int err = 0;
2271
2272         mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2273         if (!pte)
2274                 return -ENOMEM;
2275         arch_enter_lazy_mmu_mode();
2276         do {
2277                 BUG_ON(!pte_none(*pte));
2278                 if (!pfn_modify_allowed(pfn, prot)) {
2279                         err = -EACCES;
2280                         break;
2281                 }
2282                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2283                 pfn++;
2284         } while (pte++, addr += PAGE_SIZE, addr != end);
2285         arch_leave_lazy_mmu_mode();
2286         pte_unmap_unlock(mapped_pte, ptl);
2287         return err;
2288 }
2289
2290 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2291                         unsigned long addr, unsigned long end,
2292                         unsigned long pfn, pgprot_t prot)
2293 {
2294         pmd_t *pmd;
2295         unsigned long next;
2296         int err;
2297
2298         pfn -= addr >> PAGE_SHIFT;
2299         pmd = pmd_alloc(mm, pud, addr);
2300         if (!pmd)
2301                 return -ENOMEM;
2302         VM_BUG_ON(pmd_trans_huge(*pmd));
2303         do {
2304                 next = pmd_addr_end(addr, end);
2305                 err = remap_pte_range(mm, pmd, addr, next,
2306                                 pfn + (addr >> PAGE_SHIFT), prot);
2307                 if (err)
2308                         return err;
2309         } while (pmd++, addr = next, addr != end);
2310         return 0;
2311 }
2312
2313 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2314                         unsigned long addr, unsigned long end,
2315                         unsigned long pfn, pgprot_t prot)
2316 {
2317         pud_t *pud;
2318         unsigned long next;
2319         int err;
2320
2321         pfn -= addr >> PAGE_SHIFT;
2322         pud = pud_alloc(mm, p4d, addr);
2323         if (!pud)
2324                 return -ENOMEM;
2325         do {
2326                 next = pud_addr_end(addr, end);
2327                 err = remap_pmd_range(mm, pud, addr, next,
2328                                 pfn + (addr >> PAGE_SHIFT), prot);
2329                 if (err)
2330                         return err;
2331         } while (pud++, addr = next, addr != end);
2332         return 0;
2333 }
2334
2335 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2336                         unsigned long addr, unsigned long end,
2337                         unsigned long pfn, pgprot_t prot)
2338 {
2339         p4d_t *p4d;
2340         unsigned long next;
2341         int err;
2342
2343         pfn -= addr >> PAGE_SHIFT;
2344         p4d = p4d_alloc(mm, pgd, addr);
2345         if (!p4d)
2346                 return -ENOMEM;
2347         do {
2348                 next = p4d_addr_end(addr, end);
2349                 err = remap_pud_range(mm, p4d, addr, next,
2350                                 pfn + (addr >> PAGE_SHIFT), prot);
2351                 if (err)
2352                         return err;
2353         } while (p4d++, addr = next, addr != end);
2354         return 0;
2355 }
2356
2357 /*
2358  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2359  * must have pre-validated the caching bits of the pgprot_t.
2360  */
2361 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2362                 unsigned long pfn, unsigned long size, pgprot_t prot)
2363 {
2364         pgd_t *pgd;
2365         unsigned long next;
2366         unsigned long end = addr + PAGE_ALIGN(size);
2367         struct mm_struct *mm = vma->vm_mm;
2368         int err;
2369
2370         if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2371                 return -EINVAL;
2372
2373         /*
2374          * Physically remapped pages are special. Tell the
2375          * rest of the world about it:
2376          *   VM_IO tells people not to look at these pages
2377          *      (accesses can have side effects).
2378          *   VM_PFNMAP tells the core MM that the base pages are just
2379          *      raw PFN mappings, and do not have a "struct page" associated
2380          *      with them.
2381          *   VM_DONTEXPAND
2382          *      Disable vma merging and expanding with mremap().
2383          *   VM_DONTDUMP
2384          *      Omit vma from core dump, even when VM_IO turned off.
2385          *
2386          * There's a horrible special case to handle copy-on-write
2387          * behaviour that some programs depend on. We mark the "original"
2388          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2389          * See vm_normal_page() for details.
2390          */
2391         if (is_cow_mapping(vma->vm_flags)) {
2392                 if (addr != vma->vm_start || end != vma->vm_end)
2393                         return -EINVAL;
2394                 vma->vm_pgoff = pfn;
2395         }
2396
2397         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2398
2399         BUG_ON(addr >= end);
2400         pfn -= addr >> PAGE_SHIFT;
2401         pgd = pgd_offset(mm, addr);
2402         flush_cache_range(vma, addr, end);
2403         do {
2404                 next = pgd_addr_end(addr, end);
2405                 err = remap_p4d_range(mm, pgd, addr, next,
2406                                 pfn + (addr >> PAGE_SHIFT), prot);
2407                 if (err)
2408                         return err;
2409         } while (pgd++, addr = next, addr != end);
2410
2411         return 0;
2412 }
2413
2414 /**
2415  * remap_pfn_range - remap kernel memory to userspace
2416  * @vma: user vma to map to
2417  * @addr: target page aligned user address to start at
2418  * @pfn: page frame number of kernel physical memory address
2419  * @size: size of mapping area
2420  * @prot: page protection flags for this mapping
2421  *
2422  * Note: this is only safe if the mm semaphore is held when called.
2423  *
2424  * Return: %0 on success, negative error code otherwise.
2425  */
2426 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2427                     unsigned long pfn, unsigned long size, pgprot_t prot)
2428 {
2429         int err;
2430
2431         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2432         if (err)
2433                 return -EINVAL;
2434
2435         err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2436         if (err)
2437                 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2438         return err;
2439 }
2440 EXPORT_SYMBOL(remap_pfn_range);
2441
2442 /**
2443  * vm_iomap_memory - remap memory to userspace
2444  * @vma: user vma to map to
2445  * @start: start of the physical memory to be mapped
2446  * @len: size of area
2447  *
2448  * This is a simplified io_remap_pfn_range() for common driver use. The
2449  * driver just needs to give us the physical memory range to be mapped,
2450  * we'll figure out the rest from the vma information.
2451  *
2452  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2453  * whatever write-combining details or similar.
2454  *
2455  * Return: %0 on success, negative error code otherwise.
2456  */
2457 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2458 {
2459         unsigned long vm_len, pfn, pages;
2460
2461         /* Check that the physical memory area passed in looks valid */
2462         if (start + len < start)
2463                 return -EINVAL;
2464         /*
2465          * You *really* shouldn't map things that aren't page-aligned,
2466          * but we've historically allowed it because IO memory might
2467          * just have smaller alignment.
2468          */
2469         len += start & ~PAGE_MASK;
2470         pfn = start >> PAGE_SHIFT;
2471         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2472         if (pfn + pages < pfn)
2473                 return -EINVAL;
2474
2475         /* We start the mapping 'vm_pgoff' pages into the area */
2476         if (vma->vm_pgoff > pages)
2477                 return -EINVAL;
2478         pfn += vma->vm_pgoff;
2479         pages -= vma->vm_pgoff;
2480
2481         /* Can we fit all of the mapping? */
2482         vm_len = vma->vm_end - vma->vm_start;
2483         if (vm_len >> PAGE_SHIFT > pages)
2484                 return -EINVAL;
2485
2486         /* Ok, let it rip */
2487         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2488 }
2489 EXPORT_SYMBOL(vm_iomap_memory);
2490
2491 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2492                                      unsigned long addr, unsigned long end,
2493                                      pte_fn_t fn, void *data, bool create,
2494                                      pgtbl_mod_mask *mask)
2495 {
2496         pte_t *pte, *mapped_pte;
2497         int err = 0;
2498         spinlock_t *ptl;
2499
2500         if (create) {
2501                 mapped_pte = pte = (mm == &init_mm) ?
2502                         pte_alloc_kernel_track(pmd, addr, mask) :
2503                         pte_alloc_map_lock(mm, pmd, addr, &ptl);
2504                 if (!pte)
2505                         return -ENOMEM;
2506         } else {
2507                 mapped_pte = pte = (mm == &init_mm) ?
2508                         pte_offset_kernel(pmd, addr) :
2509                         pte_offset_map_lock(mm, pmd, addr, &ptl);
2510         }
2511
2512         BUG_ON(pmd_huge(*pmd));
2513
2514         arch_enter_lazy_mmu_mode();
2515
2516         if (fn) {
2517                 do {
2518                         if (create || !pte_none(*pte)) {
2519                                 err = fn(pte++, addr, data);
2520                                 if (err)
2521                                         break;
2522                         }
2523                 } while (addr += PAGE_SIZE, addr != end);
2524         }
2525         *mask |= PGTBL_PTE_MODIFIED;
2526
2527         arch_leave_lazy_mmu_mode();
2528
2529         if (mm != &init_mm)
2530                 pte_unmap_unlock(mapped_pte, ptl);
2531         return err;
2532 }
2533
2534 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2535                                      unsigned long addr, unsigned long end,
2536                                      pte_fn_t fn, void *data, bool create,
2537                                      pgtbl_mod_mask *mask)
2538 {
2539         pmd_t *pmd;
2540         unsigned long next;
2541         int err = 0;
2542
2543         BUG_ON(pud_huge(*pud));
2544
2545         if (create) {
2546                 pmd = pmd_alloc_track(mm, pud, addr, mask);
2547                 if (!pmd)
2548                         return -ENOMEM;
2549         } else {
2550                 pmd = pmd_offset(pud, addr);
2551         }
2552         do {
2553                 next = pmd_addr_end(addr, end);
2554                 if (pmd_none(*pmd) && !create)
2555                         continue;
2556                 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2557                         return -EINVAL;
2558                 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2559                         if (!create)
2560                                 continue;
2561                         pmd_clear_bad(pmd);
2562                 }
2563                 err = apply_to_pte_range(mm, pmd, addr, next,
2564                                          fn, data, create, mask);
2565                 if (err)
2566                         break;
2567         } while (pmd++, addr = next, addr != end);
2568
2569         return err;
2570 }
2571
2572 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2573                                      unsigned long addr, unsigned long end,
2574                                      pte_fn_t fn, void *data, bool create,
2575                                      pgtbl_mod_mask *mask)
2576 {
2577         pud_t *pud;
2578         unsigned long next;
2579         int err = 0;
2580
2581         if (create) {
2582                 pud = pud_alloc_track(mm, p4d, addr, mask);
2583                 if (!pud)
2584                         return -ENOMEM;
2585         } else {
2586                 pud = pud_offset(p4d, addr);
2587         }
2588         do {
2589                 next = pud_addr_end(addr, end);
2590                 if (pud_none(*pud) && !create)
2591                         continue;
2592                 if (WARN_ON_ONCE(pud_leaf(*pud)))
2593                         return -EINVAL;
2594                 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2595                         if (!create)
2596                                 continue;
2597                         pud_clear_bad(pud);
2598                 }
2599                 err = apply_to_pmd_range(mm, pud, addr, next,
2600                                          fn, data, create, mask);
2601                 if (err)
2602                         break;
2603         } while (pud++, addr = next, addr != end);
2604
2605         return err;
2606 }
2607
2608 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2609                                      unsigned long addr, unsigned long end,
2610                                      pte_fn_t fn, void *data, bool create,
2611                                      pgtbl_mod_mask *mask)
2612 {
2613         p4d_t *p4d;
2614         unsigned long next;
2615         int err = 0;
2616
2617         if (create) {
2618                 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2619                 if (!p4d)
2620                         return -ENOMEM;
2621         } else {
2622                 p4d = p4d_offset(pgd, addr);
2623         }
2624         do {
2625                 next = p4d_addr_end(addr, end);
2626                 if (p4d_none(*p4d) && !create)
2627                         continue;
2628                 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2629                         return -EINVAL;
2630                 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2631                         if (!create)
2632                                 continue;
2633                         p4d_clear_bad(p4d);
2634                 }
2635                 err = apply_to_pud_range(mm, p4d, addr, next,
2636                                          fn, data, create, mask);
2637                 if (err)
2638                         break;
2639         } while (p4d++, addr = next, addr != end);
2640
2641         return err;
2642 }
2643
2644 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2645                                  unsigned long size, pte_fn_t fn,
2646                                  void *data, bool create)
2647 {
2648         pgd_t *pgd;
2649         unsigned long start = addr, next;
2650         unsigned long end = addr + size;
2651         pgtbl_mod_mask mask = 0;
2652         int err = 0;
2653
2654         if (WARN_ON(addr >= end))
2655                 return -EINVAL;
2656
2657         pgd = pgd_offset(mm, addr);
2658         do {
2659                 next = pgd_addr_end(addr, end);
2660                 if (pgd_none(*pgd) && !create)
2661                         continue;
2662                 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2663                         return -EINVAL;
2664                 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2665                         if (!create)
2666                                 continue;
2667                         pgd_clear_bad(pgd);
2668                 }
2669                 err = apply_to_p4d_range(mm, pgd, addr, next,
2670                                          fn, data, create, &mask);
2671                 if (err)
2672                         break;
2673         } while (pgd++, addr = next, addr != end);
2674
2675         if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2676                 arch_sync_kernel_mappings(start, start + size);
2677
2678         return err;
2679 }
2680
2681 /*
2682  * Scan a region of virtual memory, filling in page tables as necessary
2683  * and calling a provided function on each leaf page table.
2684  */
2685 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2686                         unsigned long size, pte_fn_t fn, void *data)
2687 {
2688         return __apply_to_page_range(mm, addr, size, fn, data, true);
2689 }
2690 EXPORT_SYMBOL_GPL(apply_to_page_range);
2691
2692 /*
2693  * Scan a region of virtual memory, calling a provided function on
2694  * each leaf page table where it exists.
2695  *
2696  * Unlike apply_to_page_range, this does _not_ fill in page tables
2697  * where they are absent.
2698  */
2699 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2700                                  unsigned long size, pte_fn_t fn, void *data)
2701 {
2702         return __apply_to_page_range(mm, addr, size, fn, data, false);
2703 }
2704 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2705
2706 /*
2707  * handle_pte_fault chooses page fault handler according to an entry which was
2708  * read non-atomically.  Before making any commitment, on those architectures
2709  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2710  * parts, do_swap_page must check under lock before unmapping the pte and
2711  * proceeding (but do_wp_page is only called after already making such a check;
2712  * and do_anonymous_page can safely check later on).
2713  */
2714 static inline int pte_unmap_same(struct vm_fault *vmf)
2715 {
2716         int same = 1;
2717 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2718         if (sizeof(pte_t) > sizeof(unsigned long)) {
2719                 spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
2720                 spin_lock(ptl);
2721                 same = pte_same(*vmf->pte, vmf->orig_pte);
2722                 spin_unlock(ptl);
2723         }
2724 #endif
2725         pte_unmap(vmf->pte);
2726         vmf->pte = NULL;
2727         return same;
2728 }
2729
2730 static inline bool cow_user_page(struct page *dst, struct page *src,
2731                                  struct vm_fault *vmf)
2732 {
2733         bool ret;
2734         void *kaddr;
2735         void __user *uaddr;
2736         bool locked = false;
2737         struct vm_area_struct *vma = vmf->vma;
2738         struct mm_struct *mm = vma->vm_mm;
2739         unsigned long addr = vmf->address;
2740
2741         if (likely(src)) {
2742                 copy_user_highpage(dst, src, addr, vma);
2743                 return true;
2744         }
2745
2746         /*
2747          * If the source page was a PFN mapping, we don't have
2748          * a "struct page" for it. We do a best-effort copy by
2749          * just copying from the original user address. If that
2750          * fails, we just zero-fill it. Live with it.
2751          */
2752         kaddr = kmap_atomic(dst);
2753         uaddr = (void __user *)(addr & PAGE_MASK);
2754
2755         /*
2756          * On architectures with software "accessed" bits, we would
2757          * take a double page fault, so mark it accessed here.
2758          */
2759         if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2760                 pte_t entry;
2761
2762                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2763                 locked = true;
2764                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2765                         /*
2766                          * Other thread has already handled the fault
2767                          * and update local tlb only
2768                          */
2769                         update_mmu_tlb(vma, addr, vmf->pte);
2770                         ret = false;
2771                         goto pte_unlock;
2772                 }
2773
2774                 entry = pte_mkyoung(vmf->orig_pte);
2775                 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2776                         update_mmu_cache(vma, addr, vmf->pte);
2777         }
2778
2779         /*
2780          * This really shouldn't fail, because the page is there
2781          * in the page tables. But it might just be unreadable,
2782          * in which case we just give up and fill the result with
2783          * zeroes.
2784          */
2785         if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2786                 if (locked)
2787                         goto warn;
2788
2789                 /* Re-validate under PTL if the page is still mapped */
2790                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2791                 locked = true;
2792                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2793                         /* The PTE changed under us, update local tlb */
2794                         update_mmu_tlb(vma, addr, vmf->pte);
2795                         ret = false;
2796                         goto pte_unlock;
2797                 }
2798
2799                 /*
2800                  * The same page can be mapped back since last copy attempt.
2801                  * Try to copy again under PTL.
2802                  */
2803                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2804                         /*
2805                          * Give a warn in case there can be some obscure
2806                          * use-case
2807                          */
2808 warn:
2809                         WARN_ON_ONCE(1);
2810                         clear_page(kaddr);
2811                 }
2812         }
2813
2814         ret = true;
2815
2816 pte_unlock:
2817         if (locked)
2818                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2819         kunmap_atomic(kaddr);
2820         flush_dcache_page(dst);
2821
2822         return ret;
2823 }
2824
2825 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2826 {
2827         struct file *vm_file = vma->vm_file;
2828
2829         if (vm_file)
2830                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2831
2832         /*
2833          * Special mappings (e.g. VDSO) do not have any file so fake
2834          * a default GFP_KERNEL for them.
2835          */
2836         return GFP_KERNEL;
2837 }
2838
2839 /*
2840  * Notify the address space that the page is about to become writable so that
2841  * it can prohibit this or wait for the page to get into an appropriate state.
2842  *
2843  * We do this without the lock held, so that it can sleep if it needs to.
2844  */
2845 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2846 {
2847         vm_fault_t ret;
2848         struct page *page = vmf->page;
2849         unsigned int old_flags = vmf->flags;
2850
2851         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2852
2853         if (vmf->vma->vm_file &&
2854             IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2855                 return VM_FAULT_SIGBUS;
2856
2857         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2858         /* Restore original flags so that caller is not surprised */
2859         vmf->flags = old_flags;
2860         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2861                 return ret;
2862         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2863                 lock_page(page);
2864                 if (!page->mapping) {
2865                         unlock_page(page);
2866                         return 0; /* retry */
2867                 }
2868                 ret |= VM_FAULT_LOCKED;
2869         } else
2870                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2871         return ret;
2872 }
2873
2874 /*
2875  * Handle dirtying of a page in shared file mapping on a write fault.
2876  *
2877  * The function expects the page to be locked and unlocks it.
2878  */
2879 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2880 {
2881         struct vm_area_struct *vma = vmf->vma;
2882         struct address_space *mapping;
2883         struct page *page = vmf->page;
2884         bool dirtied;
2885         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2886
2887         dirtied = set_page_dirty(page);
2888         VM_BUG_ON_PAGE(PageAnon(page), page);
2889         /*
2890          * Take a local copy of the address_space - page.mapping may be zeroed
2891          * by truncate after unlock_page().   The address_space itself remains
2892          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2893          * release semantics to prevent the compiler from undoing this copying.
2894          */
2895         mapping = page_rmapping(page);
2896         unlock_page(page);
2897
2898         if (!page_mkwrite)
2899                 file_update_time(vma->vm_file);
2900
2901         /*
2902          * Throttle page dirtying rate down to writeback speed.
2903          *
2904          * mapping may be NULL here because some device drivers do not
2905          * set page.mapping but still dirty their pages
2906          *
2907          * Drop the mmap_lock before waiting on IO, if we can. The file
2908          * is pinning the mapping, as per above.
2909          */
2910         if ((dirtied || page_mkwrite) && mapping) {
2911                 struct file *fpin;
2912
2913                 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2914                 balance_dirty_pages_ratelimited(mapping);
2915                 if (fpin) {
2916                         fput(fpin);
2917                         return VM_FAULT_RETRY;
2918                 }
2919         }
2920
2921         return 0;
2922 }
2923
2924 /*
2925  * Handle write page faults for pages that can be reused in the current vma
2926  *
2927  * This can happen either due to the mapping being with the VM_SHARED flag,
2928  * or due to us being the last reference standing to the page. In either
2929  * case, all we need to do here is to mark the page as writable and update
2930  * any related book-keeping.
2931  */
2932 static inline void wp_page_reuse(struct vm_fault *vmf)
2933         __releases(vmf->ptl)
2934 {
2935         struct vm_area_struct *vma = vmf->vma;
2936         struct page *page = vmf->page;
2937         pte_t entry;
2938         /*
2939          * Clear the pages cpupid information as the existing
2940          * information potentially belongs to a now completely
2941          * unrelated process.
2942          */
2943         if (page)
2944                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2945
2946         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2947         entry = pte_mkyoung(vmf->orig_pte);
2948         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2949         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2950                 update_mmu_cache(vma, vmf->address, vmf->pte);
2951         pte_unmap_unlock(vmf->pte, vmf->ptl);
2952         count_vm_event(PGREUSE);
2953 }
2954
2955 /*
2956  * Handle the case of a page which we actually need to copy to a new page.
2957  *
2958  * Called with mmap_lock locked and the old page referenced, but
2959  * without the ptl held.
2960  *
2961  * High level logic flow:
2962  *
2963  * - Allocate a page, copy the content of the old page to the new one.
2964  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2965  * - Take the PTL. If the pte changed, bail out and release the allocated page
2966  * - If the pte is still the way we remember it, update the page table and all
2967  *   relevant references. This includes dropping the reference the page-table
2968  *   held to the old page, as well as updating the rmap.
2969  * - In any case, unlock the PTL and drop the reference we took to the old page.
2970  */
2971 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2972 {
2973         struct vm_area_struct *vma = vmf->vma;
2974         struct mm_struct *mm = vma->vm_mm;
2975         struct page *old_page = vmf->page;
2976         struct page *new_page = NULL;
2977         pte_t entry;
2978         int page_copied = 0;
2979         struct mmu_notifier_range range;
2980
2981         if (unlikely(anon_vma_prepare(vma)))
2982                 goto oom;
2983
2984         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2985                 new_page = alloc_zeroed_user_highpage_movable(vma,
2986                                                               vmf->address);
2987                 if (!new_page)
2988                         goto oom;
2989         } else {
2990                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2991                                 vmf->address);
2992                 if (!new_page)
2993                         goto oom;
2994
2995                 if (!cow_user_page(new_page, old_page, vmf)) {
2996                         /*
2997                          * COW failed, if the fault was solved by other,
2998                          * it's fine. If not, userspace would re-fault on
2999                          * the same address and we will handle the fault
3000                          * from the second attempt.
3001                          */
3002                         put_page(new_page);
3003                         if (old_page)
3004                                 put_page(old_page);
3005                         return 0;
3006                 }
3007         }
3008
3009         if (mem_cgroup_charge(page_folio(new_page), mm, GFP_KERNEL))
3010                 goto oom_free_new;
3011         cgroup_throttle_swaprate(new_page, GFP_KERNEL);
3012
3013         __SetPageUptodate(new_page);
3014
3015         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
3016                                 vmf->address & PAGE_MASK,
3017                                 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3018         mmu_notifier_invalidate_range_start(&range);
3019
3020         /*
3021          * Re-check the pte - we dropped the lock
3022          */
3023         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3024         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
3025                 if (old_page) {
3026                         if (!PageAnon(old_page)) {
3027                                 dec_mm_counter_fast(mm,
3028                                                 mm_counter_file(old_page));
3029                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
3030                         }
3031                 } else {
3032                         inc_mm_counter_fast(mm, MM_ANONPAGES);
3033                 }
3034                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3035                 entry = mk_pte(new_page, vma->vm_page_prot);
3036                 entry = pte_sw_mkyoung(entry);
3037                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3038
3039                 /*
3040                  * Clear the pte entry and flush it first, before updating the
3041                  * pte with the new entry, to keep TLBs on different CPUs in
3042                  * sync. This code used to set the new PTE then flush TLBs, but
3043                  * that left a window where the new PTE could be loaded into
3044                  * some TLBs while the old PTE remains in others.
3045                  */
3046                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3047                 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
3048                 lru_cache_add_inactive_or_unevictable(new_page, vma);
3049                 /*
3050                  * We call the notify macro here because, when using secondary
3051                  * mmu page tables (such as kvm shadow page tables), we want the
3052                  * new page to be mapped directly into the secondary page table.
3053                  */
3054                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3055                 update_mmu_cache(vma, vmf->address, vmf->pte);
3056                 if (old_page) {
3057                         /*
3058                          * Only after switching the pte to the new page may
3059                          * we remove the mapcount here. Otherwise another
3060                          * process may come and find the rmap count decremented
3061                          * before the pte is switched to the new page, and
3062                          * "reuse" the old page writing into it while our pte
3063                          * here still points into it and can be read by other
3064                          * threads.
3065                          *
3066                          * The critical issue is to order this
3067                          * page_remove_rmap with the ptp_clear_flush above.
3068                          * Those stores are ordered by (if nothing else,)
3069                          * the barrier present in the atomic_add_negative
3070                          * in page_remove_rmap.
3071                          *
3072                          * Then the TLB flush in ptep_clear_flush ensures that
3073                          * no process can access the old page before the
3074                          * decremented mapcount is visible. And the old page
3075                          * cannot be reused until after the decremented
3076                          * mapcount is visible. So transitively, TLBs to
3077                          * old page will be flushed before it can be reused.
3078                          */
3079                         page_remove_rmap(old_page, false);
3080                 }
3081
3082                 /* Free the old page.. */
3083                 new_page = old_page;
3084                 page_copied = 1;
3085         } else {
3086                 update_mmu_tlb(vma, vmf->address, vmf->pte);
3087         }
3088
3089         if (new_page)
3090                 put_page(new_page);
3091
3092         pte_unmap_unlock(vmf->pte, vmf->ptl);
3093         /*
3094          * No need to double call mmu_notifier->invalidate_range() callback as
3095          * the above ptep_clear_flush_notify() did already call it.
3096          */
3097         mmu_notifier_invalidate_range_only_end(&range);
3098         if (old_page) {
3099                 /*
3100                  * Don't let another task, with possibly unlocked vma,
3101                  * keep the mlocked page.
3102                  */
3103                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
3104                         lock_page(old_page);    /* LRU manipulation */
3105                         if (PageMlocked(old_page))
3106                                 munlock_vma_page(old_page);
3107                         unlock_page(old_page);
3108                 }
3109                 if (page_copied)
3110                         free_swap_cache(old_page);
3111                 put_page(old_page);
3112         }
3113         return page_copied ? VM_FAULT_WRITE : 0;
3114 oom_free_new:
3115         put_page(new_page);
3116 oom:
3117         if (old_page)
3118                 put_page(old_page);
3119         return VM_FAULT_OOM;
3120 }
3121
3122 /**
3123  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3124  *                        writeable once the page is prepared
3125  *
3126  * @vmf: structure describing the fault
3127  *
3128  * This function handles all that is needed to finish a write page fault in a
3129  * shared mapping due to PTE being read-only once the mapped page is prepared.
3130  * It handles locking of PTE and modifying it.
3131  *
3132  * The function expects the page to be locked or other protection against
3133  * concurrent faults / writeback (such as DAX radix tree locks).
3134  *
3135  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3136  * we acquired PTE lock.
3137  */
3138 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3139 {
3140         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3141         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3142                                        &vmf->ptl);
3143         /*
3144          * We might have raced with another page fault while we released the
3145          * pte_offset_map_lock.
3146          */
3147         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3148                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3149                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3150                 return VM_FAULT_NOPAGE;
3151         }
3152         wp_page_reuse(vmf);
3153         return 0;
3154 }
3155
3156 /*
3157  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3158  * mapping
3159  */
3160 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3161 {
3162         struct vm_area_struct *vma = vmf->vma;
3163
3164         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3165                 vm_fault_t ret;
3166
3167                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3168                 vmf->flags |= FAULT_FLAG_MKWRITE;
3169                 ret = vma->vm_ops->pfn_mkwrite(vmf);
3170                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3171                         return ret;
3172                 return finish_mkwrite_fault(vmf);
3173         }
3174         wp_page_reuse(vmf);
3175         return VM_FAULT_WRITE;
3176 }
3177
3178 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3179         __releases(vmf->ptl)
3180 {
3181         struct vm_area_struct *vma = vmf->vma;
3182         vm_fault_t ret = VM_FAULT_WRITE;
3183
3184         get_page(vmf->page);
3185
3186         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3187                 vm_fault_t tmp;
3188
3189                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3190                 tmp = do_page_mkwrite(vmf);
3191                 if (unlikely(!tmp || (tmp &
3192                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3193                         put_page(vmf->page);
3194                         return tmp;
3195                 }
3196                 tmp = finish_mkwrite_fault(vmf);
3197                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3198                         unlock_page(vmf->page);
3199                         put_page(vmf->page);
3200                         return tmp;
3201                 }
3202         } else {
3203                 wp_page_reuse(vmf);
3204                 lock_page(vmf->page);
3205         }
3206         ret |= fault_dirty_shared_page(vmf);
3207         put_page(vmf->page);
3208
3209         return ret;
3210 }
3211
3212 /*
3213  * This routine handles present pages, when users try to write
3214  * to a shared page. It is done by copying the page to a new address
3215  * and decrementing the shared-page counter for the old page.
3216  *
3217  * Note that this routine assumes that the protection checks have been
3218  * done by the caller (the low-level page fault routine in most cases).
3219  * Thus we can safely just mark it writable once we've done any necessary
3220  * COW.
3221  *
3222  * We also mark the page dirty at this point even though the page will
3223  * change only once the write actually happens. This avoids a few races,
3224  * and potentially makes it more efficient.
3225  *
3226  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3227  * but allow concurrent faults), with pte both mapped and locked.
3228  * We return with mmap_lock still held, but pte unmapped and unlocked.
3229  */
3230 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3231         __releases(vmf->ptl)
3232 {
3233         struct vm_area_struct *vma = vmf->vma;
3234
3235         if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3236                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3237                 return handle_userfault(vmf, VM_UFFD_WP);
3238         }
3239
3240         /*
3241          * Userfaultfd write-protect can defer flushes. Ensure the TLB
3242          * is flushed in this case before copying.
3243          */
3244         if (unlikely(userfaultfd_wp(vmf->vma) &&
3245                      mm_tlb_flush_pending(vmf->vma->vm_mm)))
3246                 flush_tlb_page(vmf->vma, vmf->address);
3247
3248         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3249         if (!vmf->page) {
3250                 /*
3251                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3252                  * VM_PFNMAP VMA.
3253                  *
3254                  * We should not cow pages in a shared writeable mapping.
3255                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
3256                  */
3257                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3258                                      (VM_WRITE|VM_SHARED))
3259                         return wp_pfn_shared(vmf);
3260
3261                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3262                 return wp_page_copy(vmf);
3263         }
3264
3265         /*
3266          * Take out anonymous pages first, anonymous shared vmas are
3267          * not dirty accountable.
3268          */
3269         if (PageAnon(vmf->page)) {
3270                 struct page *page = vmf->page;
3271
3272                 /* PageKsm() doesn't necessarily raise the page refcount */
3273                 if (PageKsm(page) || page_count(page) != 1)
3274                         goto copy;
3275                 if (!trylock_page(page))
3276                         goto copy;
3277                 if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
3278                         unlock_page(page);
3279                         goto copy;
3280                 }
3281                 /*
3282                  * Ok, we've got the only map reference, and the only
3283                  * page count reference, and the page is locked,
3284                  * it's dark out, and we're wearing sunglasses. Hit it.
3285                  */
3286                 unlock_page(page);
3287                 wp_page_reuse(vmf);
3288                 return VM_FAULT_WRITE;
3289         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3290                                         (VM_WRITE|VM_SHARED))) {
3291                 return wp_page_shared(vmf);
3292         }
3293 copy:
3294         /*
3295          * Ok, we need to copy. Oh, well..
3296          */
3297         get_page(vmf->page);
3298
3299         pte_unmap_unlock(vmf->pte, vmf->ptl);
3300         return wp_page_copy(vmf);
3301 }
3302
3303 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3304                 unsigned long start_addr, unsigned long end_addr,
3305                 struct zap_details *details)
3306 {
3307         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3308 }
3309
3310 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3311                                             pgoff_t first_index,
3312                                             pgoff_t last_index,
3313                                             struct zap_details *details)
3314 {
3315         struct vm_area_struct *vma;
3316         pgoff_t vba, vea, zba, zea;
3317
3318         vma_interval_tree_foreach(vma, root, first_index, last_index) {
3319                 vba = vma->vm_pgoff;
3320                 vea = vba + vma_pages(vma) - 1;
3321                 zba = first_index;
3322                 if (zba < vba)
3323                         zba = vba;
3324                 zea = last_index;
3325                 if (zea > vea)
3326                         zea = vea;
3327
3328                 unmap_mapping_range_vma(vma,
3329                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3330                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3331                                 details);
3332         }
3333 }
3334
3335 /**
3336  * unmap_mapping_page() - Unmap single page from processes.
3337  * @page: The locked page to be unmapped.
3338  *
3339  * Unmap this page from any userspace process which still has it mmaped.
3340  * Typically, for efficiency, the range of nearby pages has already been
3341  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3342  * truncation or invalidation holds the lock on a page, it may find that
3343  * the page has been remapped again: and then uses unmap_mapping_page()
3344  * to unmap it finally.
3345  */
3346 void unmap_mapping_page(struct page *page)
3347 {
3348         struct address_space *mapping = page->mapping;
3349         struct zap_details details = { };
3350         pgoff_t first_index;
3351         pgoff_t last_index;
3352
3353         VM_BUG_ON(!PageLocked(page));
3354         VM_BUG_ON(PageTail(page));
3355
3356         first_index = page->index;
3357         last_index = page->index + thp_nr_pages(page) - 1;
3358
3359         details.zap_mapping = mapping;
3360         details.single_page = page;
3361
3362         i_mmap_lock_write(mapping);
3363         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3364                 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3365                                          last_index, &details);
3366         i_mmap_unlock_write(mapping);
3367 }
3368
3369 /**
3370  * unmap_mapping_pages() - Unmap pages from processes.
3371  * @mapping: The address space containing pages to be unmapped.
3372  * @start: Index of first page to be unmapped.
3373  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3374  * @even_cows: Whether to unmap even private COWed pages.
3375  *
3376  * Unmap the pages in this address space from any userspace process which
3377  * has them mmaped.  Generally, you want to remove COWed pages as well when
3378  * a file is being truncated, but not when invalidating pages from the page
3379  * cache.
3380  */
3381 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3382                 pgoff_t nr, bool even_cows)
3383 {
3384         struct zap_details details = { };
3385         pgoff_t first_index = start;
3386         pgoff_t last_index = start + nr - 1;
3387
3388         details.zap_mapping = even_cows ? NULL : mapping;
3389         if (last_index < first_index)
3390                 last_index = ULONG_MAX;
3391
3392         i_mmap_lock_write(mapping);
3393         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3394                 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3395                                          last_index, &details);
3396         i_mmap_unlock_write(mapping);
3397 }
3398 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3399
3400 /**
3401  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3402  * address_space corresponding to the specified byte range in the underlying
3403  * file.
3404  *
3405  * @mapping: the address space containing mmaps to be unmapped.
3406  * @holebegin: byte in first page to unmap, relative to the start of
3407  * the underlying file.  This will be rounded down to a PAGE_SIZE
3408  * boundary.  Note that this is different from truncate_pagecache(), which
3409  * must keep the partial page.  In contrast, we must get rid of
3410  * partial pages.
3411  * @holelen: size of prospective hole in bytes.  This will be rounded
3412  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3413  * end of the file.
3414  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3415  * but 0 when invalidating pagecache, don't throw away private data.
3416  */
3417 void unmap_mapping_range(struct address_space *mapping,
3418                 loff_t const holebegin, loff_t const holelen, int even_cows)
3419 {
3420         pgoff_t hba = holebegin >> PAGE_SHIFT;
3421         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3422
3423         /* Check for overflow. */
3424         if (sizeof(holelen) > sizeof(hlen)) {
3425                 long long holeend =
3426                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3427                 if (holeend & ~(long long)ULONG_MAX)
3428                         hlen = ULONG_MAX - hba + 1;
3429         }
3430
3431         unmap_mapping_pages(mapping, hba, hlen, even_cows);
3432 }
3433 EXPORT_SYMBOL(unmap_mapping_range);
3434
3435 /*
3436  * Restore a potential device exclusive pte to a working pte entry
3437  */
3438 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3439 {
3440         struct page *page = vmf->page;
3441         struct vm_area_struct *vma = vmf->vma;
3442         struct mmu_notifier_range range;
3443
3444         if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags))
3445                 return VM_FAULT_RETRY;
3446         mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
3447                                 vma->vm_mm, vmf->address & PAGE_MASK,
3448                                 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3449         mmu_notifier_invalidate_range_start(&range);
3450
3451         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3452                                 &vmf->ptl);
3453         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3454                 restore_exclusive_pte(vma, page, vmf->address, vmf->pte);
3455
3456         pte_unmap_unlock(vmf->pte, vmf->ptl);
3457         unlock_page(page);
3458
3459         mmu_notifier_invalidate_range_end(&range);
3460         return 0;
3461 }
3462
3463 /*
3464  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3465  * but allow concurrent faults), and pte mapped but not yet locked.
3466  * We return with pte unmapped and unlocked.
3467  *
3468  * We return with the mmap_lock locked or unlocked in the same cases
3469  * as does filemap_fault().
3470  */
3471 vm_fault_t do_swap_page(struct vm_fault *vmf)
3472 {
3473         struct vm_area_struct *vma = vmf->vma;
3474         struct page *page = NULL, *swapcache;
3475         struct swap_info_struct *si = NULL;
3476         swp_entry_t entry;
3477         pte_t pte;
3478         int locked;
3479         int exclusive = 0;
3480         vm_fault_t ret = 0;
3481         void *shadow = NULL;
3482
3483         if (!pte_unmap_same(vmf))
3484                 goto out;
3485
3486         entry = pte_to_swp_entry(vmf->orig_pte);
3487         if (unlikely(non_swap_entry(entry))) {
3488                 if (is_migration_entry(entry)) {
3489                         migration_entry_wait(vma->vm_mm, vmf->pmd,
3490                                              vmf->address);
3491                 } else if (is_device_exclusive_entry(entry)) {
3492                         vmf->page = pfn_swap_entry_to_page(entry);
3493                         ret = remove_device_exclusive_entry(vmf);
3494                 } else if (is_device_private_entry(entry)) {
3495                         vmf->page = pfn_swap_entry_to_page(entry);
3496                         ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3497                 } else if (is_hwpoison_entry(entry)) {
3498                         ret = VM_FAULT_HWPOISON;
3499                 } else {
3500                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3501                         ret = VM_FAULT_SIGBUS;
3502                 }
3503                 goto out;
3504         }
3505
3506         /* Prevent swapoff from happening to us. */
3507         si = get_swap_device(entry);
3508         if (unlikely(!si))
3509                 goto out;
3510
3511         delayacct_set_flag(current, DELAYACCT_PF_SWAPIN);
3512         page = lookup_swap_cache(entry, vma, vmf->address);
3513         swapcache = page;
3514
3515         if (!page) {
3516                 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3517                     __swap_count(entry) == 1) {
3518                         /* skip swapcache */
3519                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3520                                                         vmf->address);
3521                         if (page) {
3522                                 __SetPageLocked(page);
3523                                 __SetPageSwapBacked(page);
3524
3525                                 if (mem_cgroup_swapin_charge_page(page,
3526                                         vma->vm_mm, GFP_KERNEL, entry)) {
3527                                         ret = VM_FAULT_OOM;
3528                                         goto out_page;
3529                                 }
3530                                 mem_cgroup_swapin_uncharge_swap(entry);
3531
3532                                 shadow = get_shadow_from_swap_cache(entry);
3533                                 if (shadow)
3534                                         workingset_refault(page_folio(page),
3535                                                                 shadow);
3536
3537                                 lru_cache_add(page);
3538
3539                                 /* To provide entry to swap_readpage() */
3540                                 set_page_private(page, entry.val);
3541                                 swap_readpage(page, true);
3542                                 set_page_private(page, 0);
3543                         }
3544                 } else {
3545                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3546                                                 vmf);
3547                         swapcache = page;
3548                 }
3549
3550                 if (!page) {
3551                         /*
3552                          * Back out if somebody else faulted in this pte
3553                          * while we released the pte lock.
3554                          */
3555                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3556                                         vmf->address, &vmf->ptl);
3557                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3558                                 ret = VM_FAULT_OOM;
3559                         delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
3560                         goto unlock;
3561                 }
3562
3563                 /* Had to read the page from swap area: Major fault */
3564                 ret = VM_FAULT_MAJOR;
3565                 count_vm_event(PGMAJFAULT);
3566                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3567         } else if (PageHWPoison(page)) {
3568                 /*
3569                  * hwpoisoned dirty swapcache pages are kept for killing
3570                  * owner processes (which may be unknown at hwpoison time)
3571                  */
3572                 ret = VM_FAULT_HWPOISON;
3573                 delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
3574                 goto out_release;
3575         }
3576
3577         locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3578
3579         delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
3580         if (!locked) {
3581                 ret |= VM_FAULT_RETRY;
3582                 goto out_release;
3583         }
3584
3585         /*
3586          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3587          * release the swapcache from under us.  The page pin, and pte_same
3588          * test below, are not enough to exclude that.  Even if it is still
3589          * swapcache, we need to check that the page's swap has not changed.
3590          */
3591         if (unlikely((!PageSwapCache(page) ||
3592                         page_private(page) != entry.val)) && swapcache)
3593                 goto out_page;
3594
3595         page = ksm_might_need_to_copy(page, vma, vmf->address);
3596         if (unlikely(!page)) {
3597                 ret = VM_FAULT_OOM;
3598                 page = swapcache;
3599                 goto out_page;
3600         }
3601
3602         cgroup_throttle_swaprate(page, GFP_KERNEL);
3603
3604         /*
3605          * Back out if somebody else already faulted in this pte.
3606          */
3607         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3608                         &vmf->ptl);
3609         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3610                 goto out_nomap;
3611
3612         if (unlikely(!PageUptodate(page))) {
3613                 ret = VM_FAULT_SIGBUS;
3614                 goto out_nomap;
3615         }
3616
3617         /*
3618          * The page isn't present yet, go ahead with the fault.
3619          *
3620          * Be careful about the sequence of operations here.
3621          * To get its accounting right, reuse_swap_page() must be called
3622          * while the page is counted on swap but not yet in mapcount i.e.
3623          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3624          * must be called after the swap_free(), or it will never succeed.
3625          */
3626
3627         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3628         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3629         pte = mk_pte(page, vma->vm_page_prot);
3630         if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3631                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3632                 vmf->flags &= ~FAULT_FLAG_WRITE;
3633                 ret |= VM_FAULT_WRITE;
3634                 exclusive = RMAP_EXCLUSIVE;
3635         }
3636         flush_icache_page(vma, page);
3637         if (pte_swp_soft_dirty(vmf->orig_pte))
3638                 pte = pte_mksoft_dirty(pte);
3639         if (pte_swp_uffd_wp(vmf->orig_pte)) {
3640                 pte = pte_mkuffd_wp(pte);
3641                 pte = pte_wrprotect(pte);
3642         }
3643         vmf->orig_pte = pte;
3644
3645         /* ksm created a completely new copy */
3646         if (unlikely(page != swapcache && swapcache)) {
3647                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3648                 lru_cache_add_inactive_or_unevictable(page, vma);
3649         } else {
3650                 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3651         }
3652
3653         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3654         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3655
3656         swap_free(entry);
3657         if (mem_cgroup_swap_full(page) ||
3658             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3659                 try_to_free_swap(page);
3660         unlock_page(page);
3661         if (page != swapcache && swapcache) {
3662                 /*
3663                  * Hold the lock to avoid the swap entry to be reused
3664                  * until we take the PT lock for the pte_same() check
3665                  * (to avoid false positives from pte_same). For
3666                  * further safety release the lock after the swap_free
3667                  * so that the swap count won't change under a
3668                  * parallel locked swapcache.
3669                  */
3670                 unlock_page(swapcache);
3671                 put_page(swapcache);
3672         }
3673
3674         if (vmf->flags & FAULT_FLAG_WRITE) {
3675                 ret |= do_wp_page(vmf);
3676                 if (ret & VM_FAULT_ERROR)
3677                         ret &= VM_FAULT_ERROR;
3678                 goto out;
3679         }
3680
3681         /* No need to invalidate - it was non-present before */
3682         update_mmu_cache(vma, vmf->address, vmf->pte);
3683 unlock:
3684         pte_unmap_unlock(vmf->pte, vmf->ptl);
3685 out:
3686         if (si)
3687                 put_swap_device(si);
3688         return ret;
3689 out_nomap:
3690         pte_unmap_unlock(vmf->pte, vmf->ptl);
3691 out_page:
3692         unlock_page(page);
3693 out_release:
3694         put_page(page);
3695         if (page != swapcache && swapcache) {
3696                 unlock_page(swapcache);
3697                 put_page(swapcache);
3698         }
3699         if (si)
3700                 put_swap_device(si);
3701         return ret;
3702 }
3703
3704 /*
3705  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3706  * but allow concurrent faults), and pte mapped but not yet locked.
3707  * We return with mmap_lock still held, but pte unmapped and unlocked.
3708  */
3709 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3710 {
3711         struct vm_area_struct *vma = vmf->vma;
3712         struct page *page;
3713         vm_fault_t ret = 0;
3714         pte_t entry;
3715
3716         /* File mapping without ->vm_ops ? */
3717         if (vma->vm_flags & VM_SHARED)
3718                 return VM_FAULT_SIGBUS;
3719
3720         /*
3721          * Use pte_alloc() instead of pte_alloc_map().  We can't run
3722          * pte_offset_map() on pmds where a huge pmd might be created
3723          * from a different thread.
3724          *
3725          * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3726          * parallel threads are excluded by other means.
3727          *
3728          * Here we only have mmap_read_lock(mm).
3729          */
3730         if (pte_alloc(vma->vm_mm, vmf->pmd))
3731                 return VM_FAULT_OOM;
3732
3733         /* See comment in handle_pte_fault() */
3734         if (unlikely(pmd_trans_unstable(vmf->pmd)))
3735                 return 0;
3736
3737         /* Use the zero-page for reads */
3738         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3739                         !mm_forbids_zeropage(vma->vm_mm)) {
3740                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3741                                                 vma->vm_page_prot));
3742                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3743                                 vmf->address, &vmf->ptl);
3744                 if (!pte_none(*vmf->pte)) {
3745                         update_mmu_tlb(vma, vmf->address, vmf->pte);
3746                         goto unlock;
3747                 }
3748                 ret = check_stable_address_space(vma->vm_mm);
3749                 if (ret)
3750                         goto unlock;
3751                 /* Deliver the page fault to userland, check inside PT lock */
3752                 if (userfaultfd_missing(vma)) {
3753                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3754                         return handle_userfault(vmf, VM_UFFD_MISSING);
3755                 }
3756                 goto setpte;
3757         }
3758
3759         /* Allocate our own private page. */
3760         if (unlikely(anon_vma_prepare(vma)))
3761                 goto oom;
3762         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3763         if (!page)
3764                 goto oom;
3765
3766         if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
3767                 goto oom_free_page;
3768         cgroup_throttle_swaprate(page, GFP_KERNEL);
3769
3770         /*
3771          * The memory barrier inside __SetPageUptodate makes sure that
3772          * preceding stores to the page contents become visible before
3773          * the set_pte_at() write.
3774          */
3775         __SetPageUptodate(page);
3776
3777         entry = mk_pte(page, vma->vm_page_prot);
3778         entry = pte_sw_mkyoung(entry);
3779         if (vma->vm_flags & VM_WRITE)
3780                 entry = pte_mkwrite(pte_mkdirty(entry));
3781
3782         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3783                         &vmf->ptl);
3784         if (!pte_none(*vmf->pte)) {
3785                 update_mmu_cache(vma, vmf->address, vmf->pte);
3786                 goto release;
3787         }
3788
3789         ret = check_stable_address_space(vma->vm_mm);
3790         if (ret)
3791                 goto release;
3792
3793         /* Deliver the page fault to userland, check inside PT lock */
3794         if (userfaultfd_missing(vma)) {
3795                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3796                 put_page(page);
3797                 return handle_userfault(vmf, VM_UFFD_MISSING);
3798         }
3799
3800         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3801         page_add_new_anon_rmap(page, vma, vmf->address, false);
3802         lru_cache_add_inactive_or_unevictable(page, vma);
3803 setpte:
3804         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3805
3806         /* No need to invalidate - it was non-present before */
3807         update_mmu_cache(vma, vmf->address, vmf->pte);
3808 unlock:
3809         pte_unmap_unlock(vmf->pte, vmf->ptl);
3810         return ret;
3811 release:
3812         put_page(page);
3813         goto unlock;
3814 oom_free_page:
3815         put_page(page);
3816 oom:
3817         return VM_FAULT_OOM;
3818 }
3819
3820 /*
3821  * The mmap_lock must have been held on entry, and may have been
3822  * released depending on flags and vma->vm_ops->fault() return value.
3823  * See filemap_fault() and __lock_page_retry().
3824  */
3825 static vm_fault_t __do_fault(struct vm_fault *vmf)
3826 {
3827         struct vm_area_struct *vma = vmf->vma;
3828         vm_fault_t ret;
3829
3830         /*
3831          * Preallocate pte before we take page_lock because this might lead to
3832          * deadlocks for memcg reclaim which waits for pages under writeback:
3833          *                              lock_page(A)
3834          *                              SetPageWriteback(A)
3835          *                              unlock_page(A)
3836          * lock_page(B)
3837          *                              lock_page(B)
3838          * pte_alloc_one
3839          *   shrink_page_list
3840          *     wait_on_page_writeback(A)
3841          *                              SetPageWriteback(B)
3842          *                              unlock_page(B)
3843          *                              # flush A, B to clear the writeback
3844          */
3845         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3846                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3847                 if (!vmf->prealloc_pte)
3848                         return VM_FAULT_OOM;
3849         }
3850
3851         ret = vma->vm_ops->fault(vmf);
3852         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3853                             VM_FAULT_DONE_COW)))
3854                 return ret;
3855
3856         if (unlikely(PageHWPoison(vmf->page))) {
3857                 if (ret & VM_FAULT_LOCKED)
3858                         unlock_page(vmf->page);
3859                 put_page(vmf->page);
3860                 vmf->page = NULL;
3861                 return VM_FAULT_HWPOISON;
3862         }
3863
3864         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3865                 lock_page(vmf->page);
3866         else
3867                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3868
3869         return ret;
3870 }
3871
3872 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3873 static void deposit_prealloc_pte(struct vm_fault *vmf)
3874 {
3875         struct vm_area_struct *vma = vmf->vma;
3876
3877         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3878         /*
3879          * We are going to consume the prealloc table,
3880          * count that as nr_ptes.
3881          */
3882         mm_inc_nr_ptes(vma->vm_mm);
3883         vmf->prealloc_pte = NULL;
3884 }
3885
3886 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3887 {
3888         struct vm_area_struct *vma = vmf->vma;
3889         bool write = vmf->flags & FAULT_FLAG_WRITE;
3890         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3891         pmd_t entry;
3892         int i;
3893         vm_fault_t ret = VM_FAULT_FALLBACK;
3894
3895         if (!transhuge_vma_suitable(vma, haddr))
3896                 return ret;
3897
3898         page = compound_head(page);
3899         if (compound_order(page) != HPAGE_PMD_ORDER)
3900                 return ret;
3901
3902         /*
3903          * Just backoff if any subpage of a THP is corrupted otherwise
3904          * the corrupted page may mapped by PMD silently to escape the
3905          * check.  This kind of THP just can be PTE mapped.  Access to
3906          * the corrupted subpage should trigger SIGBUS as expected.
3907          */
3908         if (unlikely(PageHasHWPoisoned(page)))
3909                 return ret;
3910
3911         /*
3912          * Archs like ppc64 need additional space to store information
3913          * related to pte entry. Use the preallocated table for that.
3914          */
3915         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3916                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3917                 if (!vmf->prealloc_pte)
3918                         return VM_FAULT_OOM;
3919         }
3920
3921         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3922         if (unlikely(!pmd_none(*vmf->pmd)))
3923                 goto out;
3924
3925         for (i = 0; i < HPAGE_PMD_NR; i++)
3926                 flush_icache_page(vma, page + i);
3927
3928         entry = mk_huge_pmd(page, vma->vm_page_prot);
3929         if (write)
3930                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3931
3932         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3933         page_add_file_rmap(page, true);
3934         /*
3935          * deposit and withdraw with pmd lock held
3936          */
3937         if (arch_needs_pgtable_deposit())
3938                 deposit_prealloc_pte(vmf);
3939
3940         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3941
3942         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3943
3944         /* fault is handled */
3945         ret = 0;
3946         count_vm_event(THP_FILE_MAPPED);
3947 out:
3948         spin_unlock(vmf->ptl);
3949         return ret;
3950 }
3951 #else
3952 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3953 {
3954         return VM_FAULT_FALLBACK;
3955 }
3956 #endif
3957
3958 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
3959 {
3960         struct vm_area_struct *vma = vmf->vma;
3961         bool write = vmf->flags & FAULT_FLAG_WRITE;
3962         bool prefault = vmf->address != addr;
3963         pte_t entry;
3964
3965         flush_icache_page(vma, page);
3966         entry = mk_pte(page, vma->vm_page_prot);
3967
3968         if (prefault && arch_wants_old_prefaulted_pte())
3969                 entry = pte_mkold(entry);
3970         else
3971                 entry = pte_sw_mkyoung(entry);
3972
3973         if (write)
3974                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3975         /* copy-on-write page */
3976         if (write && !(vma->vm_flags & VM_SHARED)) {
3977                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3978                 page_add_new_anon_rmap(page, vma, addr, false);
3979                 lru_cache_add_inactive_or_unevictable(page, vma);
3980         } else {
3981                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3982                 page_add_file_rmap(page, false);
3983         }
3984         set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
3985 }
3986
3987 /**
3988  * finish_fault - finish page fault once we have prepared the page to fault
3989  *
3990  * @vmf: structure describing the fault
3991  *
3992  * This function handles all that is needed to finish a page fault once the
3993  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3994  * given page, adds reverse page mapping, handles memcg charges and LRU
3995  * addition.
3996  *
3997  * The function expects the page to be locked and on success it consumes a
3998  * reference of a page being mapped (for the PTE which maps it).
3999  *
4000  * Return: %0 on success, %VM_FAULT_ code in case of error.
4001  */
4002 vm_fault_t finish_fault(struct vm_fault *vmf)
4003 {
4004         struct vm_area_struct *vma = vmf->vma;
4005         struct page *page;
4006         vm_fault_t ret;
4007
4008         /* Did we COW the page? */
4009         if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4010                 page = vmf->cow_page;
4011         else
4012                 page = vmf->page;
4013
4014         /*
4015          * check even for read faults because we might have lost our CoWed
4016          * page
4017          */
4018         if (!(vma->vm_flags & VM_SHARED)) {
4019                 ret = check_stable_address_space(vma->vm_mm);
4020                 if (ret)
4021                         return ret;
4022         }
4023
4024         if (pmd_none(*vmf->pmd)) {
4025                 if (PageTransCompound(page)) {
4026                         ret = do_set_pmd(vmf, page);
4027                         if (ret != VM_FAULT_FALLBACK)
4028                                 return ret;
4029                 }
4030
4031                 if (vmf->prealloc_pte)
4032                         pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4033                 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4034                         return VM_FAULT_OOM;
4035         }
4036
4037         /* See comment in handle_pte_fault() */
4038         if (pmd_devmap_trans_unstable(vmf->pmd))
4039                 return 0;
4040
4041         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4042                                       vmf->address, &vmf->ptl);
4043         ret = 0;
4044         /* Re-check under ptl */
4045         if (likely(pte_none(*vmf->pte)))
4046                 do_set_pte(vmf, page, vmf->address);
4047         else
4048                 ret = VM_FAULT_NOPAGE;
4049
4050         update_mmu_tlb(vma, vmf->address, vmf->pte);
4051         pte_unmap_unlock(vmf->pte, vmf->ptl);
4052         return ret;
4053 }
4054
4055 static unsigned long fault_around_bytes __read_mostly =
4056         rounddown_pow_of_two(65536);
4057
4058 #ifdef CONFIG_DEBUG_FS
4059 static int fault_around_bytes_get(void *data, u64 *val)
4060 {
4061         *val = fault_around_bytes;
4062         return 0;
4063 }
4064
4065 /*
4066  * fault_around_bytes must be rounded down to the nearest page order as it's
4067  * what do_fault_around() expects to see.
4068  */
4069 static int fault_around_bytes_set(void *data, u64 val)
4070 {
4071         if (val / PAGE_SIZE > PTRS_PER_PTE)
4072                 return -EINVAL;
4073         if (val > PAGE_SIZE)
4074                 fault_around_bytes = rounddown_pow_of_two(val);
4075         else
4076                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
4077         return 0;
4078 }
4079 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4080                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4081
4082 static int __init fault_around_debugfs(void)
4083 {
4084         debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4085                                    &fault_around_bytes_fops);
4086         return 0;
4087 }
4088 late_initcall(fault_around_debugfs);
4089 #endif
4090
4091 /*
4092  * do_fault_around() tries to map few pages around the fault address. The hope
4093  * is that the pages will be needed soon and this will lower the number of
4094  * faults to handle.
4095  *
4096  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4097  * not ready to be mapped: not up-to-date, locked, etc.
4098  *
4099  * This function is called with the page table lock taken. In the split ptlock
4100  * case the page table lock only protects only those entries which belong to
4101  * the page table corresponding to the fault address.
4102  *
4103  * This function doesn't cross the VMA boundaries, in order to call map_pages()
4104  * only once.
4105  *
4106  * fault_around_bytes defines how many bytes we'll try to map.
4107  * do_fault_around() expects it to be set to a power of two less than or equal
4108  * to PTRS_PER_PTE.
4109  *
4110  * The virtual address of the area that we map is naturally aligned to
4111  * fault_around_bytes rounded down to the machine page size
4112  * (and therefore to page order).  This way it's easier to guarantee
4113  * that we don't cross page table boundaries.
4114  */
4115 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4116 {
4117         unsigned long address = vmf->address, nr_pages, mask;
4118         pgoff_t start_pgoff = vmf->pgoff;
4119         pgoff_t end_pgoff;
4120         int off;
4121
4122         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
4123         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4124
4125         address = max(address & mask, vmf->vma->vm_start);
4126         off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
4127         start_pgoff -= off;
4128
4129         /*
4130          *  end_pgoff is either the end of the page table, the end of
4131          *  the vma or nr_pages from start_pgoff, depending what is nearest.
4132          */
4133         end_pgoff = start_pgoff -
4134                 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
4135                 PTRS_PER_PTE - 1;
4136         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
4137                         start_pgoff + nr_pages - 1);
4138
4139         if (pmd_none(*vmf->pmd)) {
4140                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4141                 if (!vmf->prealloc_pte)
4142                         return VM_FAULT_OOM;
4143         }
4144
4145         return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
4146 }
4147
4148 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4149 {
4150         struct vm_area_struct *vma = vmf->vma;
4151         vm_fault_t ret = 0;
4152
4153         /*
4154          * Let's call ->map_pages() first and use ->fault() as fallback
4155          * if page by the offset is not ready to be mapped (cold cache or
4156          * something).
4157          */
4158         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
4159                 if (likely(!userfaultfd_minor(vmf->vma))) {
4160                         ret = do_fault_around(vmf);
4161                         if (ret)
4162                                 return ret;
4163                 }
4164         }
4165
4166         ret = __do_fault(vmf);
4167         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4168                 return ret;
4169
4170         ret |= finish_fault(vmf);
4171         unlock_page(vmf->page);
4172         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4173                 put_page(vmf->page);
4174         return ret;
4175 }
4176
4177 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4178 {
4179         struct vm_area_struct *vma = vmf->vma;
4180         vm_fault_t ret;
4181
4182         if (unlikely(anon_vma_prepare(vma)))
4183                 return VM_FAULT_OOM;
4184
4185         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4186         if (!vmf->cow_page)
4187                 return VM_FAULT_OOM;
4188
4189         if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4190                                 GFP_KERNEL)) {
4191                 put_page(vmf->cow_page);
4192                 return VM_FAULT_OOM;
4193         }
4194         cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4195
4196         ret = __do_fault(vmf);
4197         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4198                 goto uncharge_out;
4199         if (ret & VM_FAULT_DONE_COW)
4200                 return ret;
4201
4202         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4203         __SetPageUptodate(vmf->cow_page);
4204
4205         ret |= finish_fault(vmf);
4206         unlock_page(vmf->page);
4207         put_page(vmf->page);
4208         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4209                 goto uncharge_out;
4210         return ret;
4211 uncharge_out:
4212         put_page(vmf->cow_page);
4213         return ret;
4214 }
4215
4216 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4217 {
4218         struct vm_area_struct *vma = vmf->vma;
4219         vm_fault_t ret, tmp;
4220
4221         ret = __do_fault(vmf);
4222         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4223                 return ret;
4224
4225         /*
4226          * Check if the backing address space wants to know that the page is
4227          * about to become writable
4228          */
4229         if (vma->vm_ops->page_mkwrite) {
4230                 unlock_page(vmf->page);
4231                 tmp = do_page_mkwrite(vmf);
4232                 if (unlikely(!tmp ||
4233                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4234                         put_page(vmf->page);
4235                         return tmp;
4236                 }
4237         }
4238
4239         ret |= finish_fault(vmf);
4240         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4241                                         VM_FAULT_RETRY))) {
4242                 unlock_page(vmf->page);
4243                 put_page(vmf->page);
4244                 return ret;
4245         }
4246
4247         ret |= fault_dirty_shared_page(vmf);
4248         return ret;
4249 }
4250
4251 /*
4252  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4253  * but allow concurrent faults).
4254  * The mmap_lock may have been released depending on flags and our
4255  * return value.  See filemap_fault() and __folio_lock_or_retry().
4256  * If mmap_lock is released, vma may become invalid (for example
4257  * by other thread calling munmap()).
4258  */
4259 static vm_fault_t do_fault(struct vm_fault *vmf)
4260 {
4261         struct vm_area_struct *vma = vmf->vma;
4262         struct mm_struct *vm_mm = vma->vm_mm;
4263         vm_fault_t ret;
4264
4265         /*
4266          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4267          */
4268         if (!vma->vm_ops->fault) {
4269                 /*
4270                  * If we find a migration pmd entry or a none pmd entry, which
4271                  * should never happen, return SIGBUS
4272                  */
4273                 if (unlikely(!pmd_present(*vmf->pmd)))
4274                         ret = VM_FAULT_SIGBUS;
4275                 else {
4276                         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4277                                                        vmf->pmd,
4278                                                        vmf->address,
4279                                                        &vmf->ptl);
4280                         /*
4281                          * Make sure this is not a temporary clearing of pte
4282                          * by holding ptl and checking again. A R/M/W update
4283                          * of pte involves: take ptl, clearing the pte so that
4284                          * we don't have concurrent modification by hardware
4285                          * followed by an update.
4286                          */
4287                         if (unlikely(pte_none(*vmf->pte)))
4288                                 ret = VM_FAULT_SIGBUS;
4289                         else
4290                                 ret = VM_FAULT_NOPAGE;
4291
4292                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4293                 }
4294         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4295                 ret = do_read_fault(vmf);
4296         else if (!(vma->vm_flags & VM_SHARED))
4297                 ret = do_cow_fault(vmf);
4298         else
4299                 ret = do_shared_fault(vmf);
4300
4301         /* preallocated pagetable is unused: free it */
4302         if (vmf->prealloc_pte) {
4303                 pte_free(vm_mm, vmf->prealloc_pte);
4304                 vmf->prealloc_pte = NULL;
4305         }
4306         return ret;
4307 }
4308
4309 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4310                       unsigned long addr, int page_nid, int *flags)
4311 {
4312         get_page(page);
4313
4314         count_vm_numa_event(NUMA_HINT_FAULTS);
4315         if (page_nid == numa_node_id()) {
4316                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4317                 *flags |= TNF_FAULT_LOCAL;
4318         }
4319
4320         return mpol_misplaced(page, vma, addr);
4321 }
4322
4323 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4324 {
4325         struct vm_area_struct *vma = vmf->vma;
4326         struct page *page = NULL;
4327         int page_nid = NUMA_NO_NODE;
4328         int last_cpupid;
4329         int target_nid;
4330         pte_t pte, old_pte;
4331         bool was_writable = pte_savedwrite(vmf->orig_pte);
4332         int flags = 0;
4333
4334         /*
4335          * The "pte" at this point cannot be used safely without
4336          * validation through pte_unmap_same(). It's of NUMA type but
4337          * the pfn may be screwed if the read is non atomic.
4338          */
4339         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4340         spin_lock(vmf->ptl);
4341         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4342                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4343                 goto out;
4344         }
4345
4346         /* Get the normal PTE  */
4347         old_pte = ptep_get(vmf->pte);
4348         pte = pte_modify(old_pte, vma->vm_page_prot);
4349
4350         page = vm_normal_page(vma, vmf->address, pte);
4351         if (!page)
4352                 goto out_map;
4353
4354         /* TODO: handle PTE-mapped THP */
4355         if (PageCompound(page))
4356                 goto out_map;
4357
4358         /*
4359          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4360          * much anyway since they can be in shared cache state. This misses
4361          * the case where a mapping is writable but the process never writes
4362          * to it but pte_write gets cleared during protection updates and
4363          * pte_dirty has unpredictable behaviour between PTE scan updates,
4364          * background writeback, dirty balancing and application behaviour.
4365          */
4366         if (!was_writable)
4367                 flags |= TNF_NO_GROUP;
4368
4369         /*
4370          * Flag if the page is shared between multiple address spaces. This
4371          * is later used when determining whether to group tasks together
4372          */
4373         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4374                 flags |= TNF_SHARED;
4375
4376         last_cpupid = page_cpupid_last(page);
4377         page_nid = page_to_nid(page);
4378         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4379                         &flags);
4380         if (target_nid == NUMA_NO_NODE) {
4381                 put_page(page);
4382                 goto out_map;
4383         }
4384         pte_unmap_unlock(vmf->pte, vmf->ptl);
4385
4386         /* Migrate to the requested node */
4387         if (migrate_misplaced_page(page, vma, target_nid)) {
4388                 page_nid = target_nid;
4389                 flags |= TNF_MIGRATED;
4390         } else {
4391                 flags |= TNF_MIGRATE_FAIL;
4392                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4393                 spin_lock(vmf->ptl);
4394                 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4395                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4396                         goto out;
4397                 }
4398                 goto out_map;
4399         }
4400
4401 out:
4402         if (page_nid != NUMA_NO_NODE)
4403                 task_numa_fault(last_cpupid, page_nid, 1, flags);
4404         return 0;
4405 out_map:
4406         /*
4407          * Make it present again, depending on how arch implements
4408          * non-accessible ptes, some can allow access by kernel mode.
4409          */
4410         old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4411         pte = pte_modify(old_pte, vma->vm_page_prot);
4412         pte = pte_mkyoung(pte);
4413         if (was_writable)
4414                 pte = pte_mkwrite(pte);
4415         ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4416         update_mmu_cache(vma, vmf->address, vmf->pte);
4417         pte_unmap_unlock(vmf->pte, vmf->ptl);
4418         goto out;
4419 }
4420
4421 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4422 {
4423         if (vma_is_anonymous(vmf->vma))
4424                 return do_huge_pmd_anonymous_page(vmf);
4425         if (vmf->vma->vm_ops->huge_fault)
4426                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4427         return VM_FAULT_FALLBACK;
4428 }
4429
4430 /* `inline' is required to avoid gcc 4.1.2 build error */
4431 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4432 {
4433         if (vma_is_anonymous(vmf->vma)) {
4434                 if (userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
4435                         return handle_userfault(vmf, VM_UFFD_WP);
4436                 return do_huge_pmd_wp_page(vmf);
4437         }
4438         if (vmf->vma->vm_ops->huge_fault) {
4439                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4440
4441                 if (!(ret & VM_FAULT_FALLBACK))
4442                         return ret;
4443         }
4444
4445         /* COW or write-notify handled on pte level: split pmd. */
4446         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4447
4448         return VM_FAULT_FALLBACK;
4449 }
4450
4451 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4452 {
4453 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
4454         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4455         /* No support for anonymous transparent PUD pages yet */
4456         if (vma_is_anonymous(vmf->vma))
4457                 goto split;
4458         if (vmf->vma->vm_ops->huge_fault) {
4459                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4460
4461                 if (!(ret & VM_FAULT_FALLBACK))
4462                         return ret;
4463         }
4464 split:
4465         /* COW or write-notify not handled on PUD level: split pud.*/
4466         __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4467 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4468         return VM_FAULT_FALLBACK;
4469 }
4470
4471 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4472 {
4473 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4474         /* No support for anonymous transparent PUD pages yet */
4475         if (vma_is_anonymous(vmf->vma))
4476                 return VM_FAULT_FALLBACK;
4477         if (vmf->vma->vm_ops->huge_fault)
4478                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4479 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4480         return VM_FAULT_FALLBACK;
4481 }
4482
4483 /*
4484  * These routines also need to handle stuff like marking pages dirty
4485  * and/or accessed for architectures that don't do it in hardware (most
4486  * RISC architectures).  The early dirtying is also good on the i386.
4487  *
4488  * There is also a hook called "update_mmu_cache()" that architectures
4489  * with external mmu caches can use to update those (ie the Sparc or
4490  * PowerPC hashed page tables that act as extended TLBs).
4491  *
4492  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4493  * concurrent faults).
4494  *
4495  * The mmap_lock may have been released depending on flags and our return value.
4496  * See filemap_fault() and __folio_lock_or_retry().
4497  */
4498 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4499 {
4500         pte_t entry;
4501
4502         if (unlikely(pmd_none(*vmf->pmd))) {
4503                 /*
4504                  * Leave __pte_alloc() until later: because vm_ops->fault may
4505                  * want to allocate huge page, and if we expose page table
4506                  * for an instant, it will be difficult to retract from
4507                  * concurrent faults and from rmap lookups.
4508                  */
4509                 vmf->pte = NULL;
4510         } else {
4511                 /*
4512                  * If a huge pmd materialized under us just retry later.  Use
4513                  * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4514                  * of pmd_trans_huge() to ensure the pmd didn't become
4515                  * pmd_trans_huge under us and then back to pmd_none, as a
4516                  * result of MADV_DONTNEED running immediately after a huge pmd
4517                  * fault in a different thread of this mm, in turn leading to a
4518                  * misleading pmd_trans_huge() retval. All we have to ensure is
4519                  * that it is a regular pmd that we can walk with
4520                  * pte_offset_map() and we can do that through an atomic read
4521                  * in C, which is what pmd_trans_unstable() provides.
4522                  */
4523                 if (pmd_devmap_trans_unstable(vmf->pmd))
4524                         return 0;
4525                 /*
4526                  * A regular pmd is established and it can't morph into a huge
4527                  * pmd from under us anymore at this point because we hold the
4528                  * mmap_lock read mode and khugepaged takes it in write mode.
4529                  * So now it's safe to run pte_offset_map().
4530                  */
4531                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4532                 vmf->orig_pte = *vmf->pte;
4533
4534                 /*
4535                  * some architectures can have larger ptes than wordsize,
4536                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4537                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4538                  * accesses.  The code below just needs a consistent view
4539                  * for the ifs and we later double check anyway with the
4540                  * ptl lock held. So here a barrier will do.
4541                  */
4542                 barrier();
4543                 if (pte_none(vmf->orig_pte)) {
4544                         pte_unmap(vmf->pte);
4545                         vmf->pte = NULL;
4546                 }
4547         }
4548
4549         if (!vmf->pte) {
4550                 if (vma_is_anonymous(vmf->vma))
4551                         return do_anonymous_page(vmf);
4552                 else
4553                         return do_fault(vmf);
4554         }
4555
4556         if (!pte_present(vmf->orig_pte))
4557                 return do_swap_page(vmf);
4558
4559         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4560                 return do_numa_page(vmf);
4561
4562         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4563         spin_lock(vmf->ptl);
4564         entry = vmf->orig_pte;
4565         if (unlikely(!pte_same(*vmf->pte, entry))) {
4566                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4567                 goto unlock;
4568         }
4569         if (vmf->flags & FAULT_FLAG_WRITE) {
4570                 if (!pte_write(entry))
4571                         return do_wp_page(vmf);
4572                 entry = pte_mkdirty(entry);
4573         }
4574         entry = pte_mkyoung(entry);
4575         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4576                                 vmf->flags & FAULT_FLAG_WRITE)) {
4577                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4578         } else {
4579                 /* Skip spurious TLB flush for retried page fault */
4580                 if (vmf->flags & FAULT_FLAG_TRIED)
4581                         goto unlock;
4582                 /*
4583                  * This is needed only for protection faults but the arch code
4584                  * is not yet telling us if this is a protection fault or not.
4585                  * This still avoids useless tlb flushes for .text page faults
4586                  * with threads.
4587                  */
4588                 if (vmf->flags & FAULT_FLAG_WRITE)
4589                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4590         }
4591 unlock:
4592         pte_unmap_unlock(vmf->pte, vmf->ptl);
4593         return 0;
4594 }
4595
4596 /*
4597  * By the time we get here, we already hold the mm semaphore
4598  *
4599  * The mmap_lock may have been released depending on flags and our
4600  * return value.  See filemap_fault() and __folio_lock_or_retry().
4601  */
4602 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4603                 unsigned long address, unsigned int flags)
4604 {
4605         struct vm_fault vmf = {
4606                 .vma = vma,
4607                 .address = address & PAGE_MASK,
4608                 .flags = flags,
4609                 .pgoff = linear_page_index(vma, address),
4610                 .gfp_mask = __get_fault_gfp_mask(vma),
4611         };
4612         unsigned int dirty = flags & FAULT_FLAG_WRITE;
4613         struct mm_struct *mm = vma->vm_mm;
4614         pgd_t *pgd;
4615         p4d_t *p4d;
4616         vm_fault_t ret;
4617
4618         pgd = pgd_offset(mm, address);
4619         p4d = p4d_alloc(mm, pgd, address);
4620         if (!p4d)
4621                 return VM_FAULT_OOM;
4622
4623         vmf.pud = pud_alloc(mm, p4d, address);
4624         if (!vmf.pud)
4625                 return VM_FAULT_OOM;
4626 retry_pud:
4627         if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4628                 ret = create_huge_pud(&vmf);
4629                 if (!(ret & VM_FAULT_FALLBACK))
4630                         return ret;
4631         } else {
4632                 pud_t orig_pud = *vmf.pud;
4633
4634                 barrier();
4635                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4636
4637                         /* NUMA case for anonymous PUDs would go here */
4638
4639                         if (dirty && !pud_write(orig_pud)) {
4640                                 ret = wp_huge_pud(&vmf, orig_pud);
4641                                 if (!(ret & VM_FAULT_FALLBACK))
4642                                         return ret;
4643                         } else {
4644                                 huge_pud_set_accessed(&vmf, orig_pud);
4645                                 return 0;
4646                         }
4647                 }
4648         }
4649
4650         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4651         if (!vmf.pmd)
4652                 return VM_FAULT_OOM;
4653
4654         /* Huge pud page fault raced with pmd_alloc? */
4655         if (pud_trans_unstable(vmf.pud))
4656                 goto retry_pud;
4657
4658         if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4659                 ret = create_huge_pmd(&vmf);
4660                 if (!(ret & VM_FAULT_FALLBACK))
4661                         return ret;
4662         } else {
4663                 vmf.orig_pmd = *vmf.pmd;
4664
4665                 barrier();
4666                 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
4667                         VM_BUG_ON(thp_migration_supported() &&
4668                                           !is_pmd_migration_entry(vmf.orig_pmd));
4669                         if (is_pmd_migration_entry(vmf.orig_pmd))
4670                                 pmd_migration_entry_wait(mm, vmf.pmd);
4671                         return 0;
4672                 }
4673                 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
4674                         if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
4675                                 return do_huge_pmd_numa_page(&vmf);
4676
4677                         if (dirty && !pmd_write(vmf.orig_pmd)) {
4678                                 ret = wp_huge_pmd(&vmf);
4679                                 if (!(ret & VM_FAULT_FALLBACK))
4680                                         return ret;
4681                         } else {
4682                                 huge_pmd_set_accessed(&vmf);
4683                                 return 0;
4684                         }
4685                 }
4686         }
4687
4688         return handle_pte_fault(&vmf);
4689 }
4690
4691 /**
4692  * mm_account_fault - Do page fault accounting
4693  *
4694  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
4695  *        of perf event counters, but we'll still do the per-task accounting to
4696  *        the task who triggered this page fault.
4697  * @address: the faulted address.
4698  * @flags: the fault flags.
4699  * @ret: the fault retcode.
4700  *
4701  * This will take care of most of the page fault accounting.  Meanwhile, it
4702  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4703  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4704  * still be in per-arch page fault handlers at the entry of page fault.
4705  */
4706 static inline void mm_account_fault(struct pt_regs *regs,
4707                                     unsigned long address, unsigned int flags,
4708                                     vm_fault_t ret)
4709 {
4710         bool major;
4711
4712         /*
4713          * We don't do accounting for some specific faults:
4714          *
4715          * - Unsuccessful faults (e.g. when the address wasn't valid).  That
4716          *   includes arch_vma_access_permitted() failing before reaching here.
4717          *   So this is not a "this many hardware page faults" counter.  We
4718          *   should use the hw profiling for that.
4719          *
4720          * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
4721          *   once they're completed.
4722          */
4723         if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4724                 return;
4725
4726         /*
4727          * We define the fault as a major fault when the final successful fault
4728          * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4729          * handle it immediately previously).
4730          */
4731         major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4732
4733         if (major)
4734                 current->maj_flt++;
4735         else
4736                 current->min_flt++;
4737
4738         /*
4739          * If the fault is done for GUP, regs will be NULL.  We only do the
4740          * accounting for the per thread fault counters who triggered the
4741          * fault, and we skip the perf event updates.
4742          */
4743         if (!regs)
4744                 return;
4745
4746         if (major)
4747                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
4748         else
4749                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
4750 }
4751
4752 /*
4753  * By the time we get here, we already hold the mm semaphore
4754  *
4755  * The mmap_lock may have been released depending on flags and our
4756  * return value.  See filemap_fault() and __folio_lock_or_retry().
4757  */
4758 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4759                            unsigned int flags, struct pt_regs *regs)
4760 {
4761         vm_fault_t ret;
4762
4763         __set_current_state(TASK_RUNNING);
4764
4765         count_vm_event(PGFAULT);
4766         count_memcg_event_mm(vma->vm_mm, PGFAULT);
4767
4768         /* do counter updates before entering really critical section. */
4769         check_sync_rss_stat(current);
4770
4771         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4772                                             flags & FAULT_FLAG_INSTRUCTION,
4773                                             flags & FAULT_FLAG_REMOTE))
4774                 return VM_FAULT_SIGSEGV;
4775
4776         /*
4777          * Enable the memcg OOM handling for faults triggered in user
4778          * space.  Kernel faults are handled more gracefully.
4779          */
4780         if (flags & FAULT_FLAG_USER)
4781                 mem_cgroup_enter_user_fault();
4782
4783         if (unlikely(is_vm_hugetlb_page(vma)))
4784                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4785         else
4786                 ret = __handle_mm_fault(vma, address, flags);
4787
4788         if (flags & FAULT_FLAG_USER) {
4789                 mem_cgroup_exit_user_fault();
4790                 /*
4791                  * The task may have entered a memcg OOM situation but
4792                  * if the allocation error was handled gracefully (no
4793                  * VM_FAULT_OOM), there is no need to kill anything.
4794                  * Just clean up the OOM state peacefully.
4795                  */
4796                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4797                         mem_cgroup_oom_synchronize(false);
4798         }
4799
4800         mm_account_fault(regs, address, flags, ret);
4801
4802         return ret;
4803 }
4804 EXPORT_SYMBOL_GPL(handle_mm_fault);
4805
4806 #ifndef __PAGETABLE_P4D_FOLDED
4807 /*
4808  * Allocate p4d page table.
4809  * We've already handled the fast-path in-line.
4810  */
4811 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4812 {
4813         p4d_t *new = p4d_alloc_one(mm, address);
4814         if (!new)
4815                 return -ENOMEM;
4816
4817         spin_lock(&mm->page_table_lock);
4818         if (pgd_present(*pgd)) {        /* Another has populated it */
4819                 p4d_free(mm, new);
4820         } else {
4821                 smp_wmb(); /* See comment in pmd_install() */
4822                 pgd_populate(mm, pgd, new);
4823         }
4824         spin_unlock(&mm->page_table_lock);
4825         return 0;
4826 }
4827 #endif /* __PAGETABLE_P4D_FOLDED */
4828
4829 #ifndef __PAGETABLE_PUD_FOLDED
4830 /*
4831  * Allocate page upper directory.
4832  * We've already handled the fast-path in-line.
4833  */
4834 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4835 {
4836         pud_t *new = pud_alloc_one(mm, address);
4837         if (!new)
4838                 return -ENOMEM;
4839
4840         spin_lock(&mm->page_table_lock);
4841         if (!p4d_present(*p4d)) {
4842                 mm_inc_nr_puds(mm);
4843                 smp_wmb(); /* See comment in pmd_install() */
4844                 p4d_populate(mm, p4d, new);
4845         } else  /* Another has populated it */
4846                 pud_free(mm, new);
4847         spin_unlock(&mm->page_table_lock);
4848         return 0;
4849 }
4850 #endif /* __PAGETABLE_PUD_FOLDED */
4851
4852 #ifndef __PAGETABLE_PMD_FOLDED
4853 /*
4854  * Allocate page middle directory.
4855  * We've already handled the fast-path in-line.
4856  */
4857 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4858 {
4859         spinlock_t *ptl;
4860         pmd_t *new = pmd_alloc_one(mm, address);
4861         if (!new)
4862                 return -ENOMEM;
4863
4864         ptl = pud_lock(mm, pud);
4865         if (!pud_present(*pud)) {
4866                 mm_inc_nr_pmds(mm);
4867                 smp_wmb(); /* See comment in pmd_install() */
4868                 pud_populate(mm, pud, new);
4869         } else {        /* Another has populated it */
4870                 pmd_free(mm, new);
4871         }
4872         spin_unlock(ptl);
4873         return 0;
4874 }
4875 #endif /* __PAGETABLE_PMD_FOLDED */
4876
4877 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
4878                           struct mmu_notifier_range *range, pte_t **ptepp,
4879                           pmd_t **pmdpp, spinlock_t **ptlp)
4880 {
4881         pgd_t *pgd;
4882         p4d_t *p4d;
4883         pud_t *pud;
4884         pmd_t *pmd;
4885         pte_t *ptep;
4886
4887         pgd = pgd_offset(mm, address);
4888         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4889                 goto out;
4890
4891         p4d = p4d_offset(pgd, address);
4892         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4893                 goto out;
4894
4895         pud = pud_offset(p4d, address);
4896         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4897                 goto out;
4898
4899         pmd = pmd_offset(pud, address);
4900         VM_BUG_ON(pmd_trans_huge(*pmd));
4901
4902         if (pmd_huge(*pmd)) {
4903                 if (!pmdpp)
4904                         goto out;
4905
4906                 if (range) {
4907                         mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4908                                                 NULL, mm, address & PMD_MASK,
4909                                                 (address & PMD_MASK) + PMD_SIZE);
4910                         mmu_notifier_invalidate_range_start(range);
4911                 }
4912                 *ptlp = pmd_lock(mm, pmd);
4913                 if (pmd_huge(*pmd)) {
4914                         *pmdpp = pmd;
4915                         return 0;
4916                 }
4917                 spin_unlock(*ptlp);
4918                 if (range)
4919                         mmu_notifier_invalidate_range_end(range);
4920         }
4921
4922         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4923                 goto out;
4924
4925         if (range) {
4926                 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4927                                         address & PAGE_MASK,
4928                                         (address & PAGE_MASK) + PAGE_SIZE);
4929                 mmu_notifier_invalidate_range_start(range);
4930         }
4931         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4932         if (!pte_present(*ptep))
4933                 goto unlock;
4934         *ptepp = ptep;
4935         return 0;
4936 unlock:
4937         pte_unmap_unlock(ptep, *ptlp);
4938         if (range)
4939                 mmu_notifier_invalidate_range_end(range);
4940 out:
4941         return -EINVAL;
4942 }
4943
4944 /**
4945  * follow_pte - look up PTE at a user virtual address
4946  * @mm: the mm_struct of the target address space
4947  * @address: user virtual address
4948  * @ptepp: location to store found PTE
4949  * @ptlp: location to store the lock for the PTE
4950  *
4951  * On a successful return, the pointer to the PTE is stored in @ptepp;
4952  * the corresponding lock is taken and its location is stored in @ptlp.
4953  * The contents of the PTE are only stable until @ptlp is released;
4954  * any further use, if any, must be protected against invalidation
4955  * with MMU notifiers.
4956  *
4957  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
4958  * should be taken for read.
4959  *
4960  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
4961  * it is not a good general-purpose API.
4962  *
4963  * Return: zero on success, -ve otherwise.
4964  */
4965 int follow_pte(struct mm_struct *mm, unsigned long address,
4966                pte_t **ptepp, spinlock_t **ptlp)
4967 {
4968         return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp);
4969 }
4970 EXPORT_SYMBOL_GPL(follow_pte);
4971
4972 /**
4973  * follow_pfn - look up PFN at a user virtual address
4974  * @vma: memory mapping
4975  * @address: user virtual address
4976  * @pfn: location to store found PFN
4977  *
4978  * Only IO mappings and raw PFN mappings are allowed.
4979  *
4980  * This function does not allow the caller to read the permissions
4981  * of the PTE.  Do not use it.
4982  *
4983  * Return: zero and the pfn at @pfn on success, -ve otherwise.
4984  */
4985 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4986         unsigned long *pfn)
4987 {
4988         int ret = -EINVAL;
4989         spinlock_t *ptl;
4990         pte_t *ptep;
4991
4992         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4993                 return ret;
4994
4995         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4996         if (ret)
4997                 return ret;
4998         *pfn = pte_pfn(*ptep);
4999         pte_unmap_unlock(ptep, ptl);
5000         return 0;
5001 }
5002 EXPORT_SYMBOL(follow_pfn);
5003
5004 #ifdef CONFIG_HAVE_IOREMAP_PROT
5005 int follow_phys(struct vm_area_struct *vma,
5006                 unsigned long address, unsigned int flags,
5007                 unsigned long *prot, resource_size_t *phys)
5008 {
5009         int ret = -EINVAL;
5010         pte_t *ptep, pte;
5011         spinlock_t *ptl;
5012
5013         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5014                 goto out;
5015
5016         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5017                 goto out;
5018         pte = *ptep;
5019
5020         if ((flags & FOLL_WRITE) && !pte_write(pte))
5021                 goto unlock;
5022
5023         *prot = pgprot_val(pte_pgprot(pte));
5024         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5025
5026         ret = 0;
5027 unlock:
5028         pte_unmap_unlock(ptep, ptl);
5029 out:
5030         return ret;
5031 }
5032
5033 /**
5034  * generic_access_phys - generic implementation for iomem mmap access
5035  * @vma: the vma to access
5036  * @addr: userspace address, not relative offset within @vma
5037  * @buf: buffer to read/write
5038  * @len: length of transfer
5039  * @write: set to FOLL_WRITE when writing, otherwise reading
5040  *
5041  * This is a generic implementation for &vm_operations_struct.access for an
5042  * iomem mapping. This callback is used by access_process_vm() when the @vma is
5043  * not page based.
5044  */
5045 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5046                         void *buf, int len, int write)
5047 {
5048         resource_size_t phys_addr;
5049         unsigned long prot = 0;
5050         void __iomem *maddr;
5051         pte_t *ptep, pte;
5052         spinlock_t *ptl;
5053         int offset = offset_in_page(addr);
5054         int ret = -EINVAL;
5055
5056         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5057                 return -EINVAL;
5058
5059 retry:
5060         if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5061                 return -EINVAL;
5062         pte = *ptep;
5063         pte_unmap_unlock(ptep, ptl);
5064
5065         prot = pgprot_val(pte_pgprot(pte));
5066         phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5067
5068         if ((write & FOLL_WRITE) && !pte_write(pte))
5069                 return -EINVAL;
5070
5071         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5072         if (!maddr)
5073                 return -ENOMEM;
5074
5075         if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5076                 goto out_unmap;
5077
5078         if (!pte_same(pte, *ptep)) {
5079                 pte_unmap_unlock(ptep, ptl);
5080                 iounmap(maddr);
5081
5082                 goto retry;
5083         }
5084
5085         if (write)
5086                 memcpy_toio(maddr + offset, buf, len);
5087         else
5088                 memcpy_fromio(buf, maddr + offset, len);
5089         ret = len;
5090         pte_unmap_unlock(ptep, ptl);
5091 out_unmap:
5092         iounmap(maddr);
5093
5094         return ret;
5095 }
5096 EXPORT_SYMBOL_GPL(generic_access_phys);
5097 #endif
5098
5099 /*
5100  * Access another process' address space as given in mm.
5101  */
5102 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5103                        int len, unsigned int gup_flags)
5104 {
5105         struct vm_area_struct *vma;
5106         void *old_buf = buf;
5107         int write = gup_flags & FOLL_WRITE;
5108
5109         if (mmap_read_lock_killable(mm))
5110                 return 0;
5111
5112         /* ignore errors, just check how much was successfully transferred */
5113         while (len) {
5114                 int bytes, ret, offset;
5115                 void *maddr;
5116                 struct page *page = NULL;
5117
5118                 ret = get_user_pages_remote(mm, addr, 1,
5119                                 gup_flags, &page, &vma, NULL);
5120                 if (ret <= 0) {
5121 #ifndef CONFIG_HAVE_IOREMAP_PROT
5122                         break;
5123 #else
5124                         /*
5125                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
5126                          * we can access using slightly different code.
5127                          */
5128                         vma = vma_lookup(mm, addr);
5129                         if (!vma)
5130                                 break;
5131                         if (vma->vm_ops && vma->vm_ops->access)
5132                                 ret = vma->vm_ops->access(vma, addr, buf,
5133                                                           len, write);
5134                         if (ret <= 0)
5135                                 break;
5136                         bytes = ret;
5137 #endif
5138                 } else {
5139                         bytes = len;
5140                         offset = addr & (PAGE_SIZE-1);
5141                         if (bytes > PAGE_SIZE-offset)
5142                                 bytes = PAGE_SIZE-offset;
5143
5144                         maddr = kmap(page);
5145                         if (write) {
5146                                 copy_to_user_page(vma, page, addr,
5147                                                   maddr + offset, buf, bytes);
5148                                 set_page_dirty_lock(page);
5149                         } else {
5150                                 copy_from_user_page(vma, page, addr,
5151                                                     buf, maddr + offset, bytes);
5152                         }
5153                         kunmap(page);
5154                         put_page(page);
5155                 }
5156                 len -= bytes;
5157                 buf += bytes;
5158                 addr += bytes;
5159         }
5160         mmap_read_unlock(mm);
5161
5162         return buf - old_buf;
5163 }
5164
5165 /**
5166  * access_remote_vm - access another process' address space
5167  * @mm:         the mm_struct of the target address space
5168  * @addr:       start address to access
5169  * @buf:        source or destination buffer
5170  * @len:        number of bytes to transfer
5171  * @gup_flags:  flags modifying lookup behaviour
5172  *
5173  * The caller must hold a reference on @mm.
5174  *
5175  * Return: number of bytes copied from source to destination.
5176  */
5177 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5178                 void *buf, int len, unsigned int gup_flags)
5179 {
5180         return __access_remote_vm(mm, addr, buf, len, gup_flags);
5181 }
5182
5183 /*
5184  * Access another process' address space.
5185  * Source/target buffer must be kernel space,
5186  * Do not walk the page table directly, use get_user_pages
5187  */
5188 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5189                 void *buf, int len, unsigned int gup_flags)
5190 {
5191         struct mm_struct *mm;
5192         int ret;
5193
5194         mm = get_task_mm(tsk);
5195         if (!mm)
5196                 return 0;
5197
5198         ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5199
5200         mmput(mm);
5201
5202         return ret;
5203 }
5204 EXPORT_SYMBOL_GPL(access_process_vm);
5205
5206 /*
5207  * Print the name of a VMA.
5208  */
5209 void print_vma_addr(char *prefix, unsigned long ip)
5210 {
5211         struct mm_struct *mm = current->mm;
5212         struct vm_area_struct *vma;
5213
5214         /*
5215          * we might be running from an atomic context so we cannot sleep
5216          */
5217         if (!mmap_read_trylock(mm))
5218                 return;
5219
5220         vma = find_vma(mm, ip);
5221         if (vma && vma->vm_file) {
5222                 struct file *f = vma->vm_file;
5223                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5224                 if (buf) {
5225                         char *p;
5226
5227                         p = file_path(f, buf, PAGE_SIZE);
5228                         if (IS_ERR(p))
5229                                 p = "?";
5230                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5231                                         vma->vm_start,
5232                                         vma->vm_end - vma->vm_start);
5233                         free_page((unsigned long)buf);
5234                 }
5235         }
5236         mmap_read_unlock(mm);
5237 }
5238
5239 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5240 void __might_fault(const char *file, int line)
5241 {
5242         /*
5243          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
5244          * holding the mmap_lock, this is safe because kernel memory doesn't
5245          * get paged out, therefore we'll never actually fault, and the
5246          * below annotations will generate false positives.
5247          */
5248         if (uaccess_kernel())
5249                 return;
5250         if (pagefault_disabled())
5251                 return;
5252         __might_sleep(file, line);
5253 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5254         if (current->mm)
5255                 might_lock_read(&current->mm->mmap_lock);
5256 #endif
5257 }
5258 EXPORT_SYMBOL(__might_fault);
5259 #endif
5260
5261 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5262 /*
5263  * Process all subpages of the specified huge page with the specified
5264  * operation.  The target subpage will be processed last to keep its
5265  * cache lines hot.
5266  */
5267 static inline void process_huge_page(
5268         unsigned long addr_hint, unsigned int pages_per_huge_page,
5269         void (*process_subpage)(unsigned long addr, int idx, void *arg),
5270         void *arg)
5271 {
5272         int i, n, base, l;
5273         unsigned long addr = addr_hint &
5274                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5275
5276         /* Process target subpage last to keep its cache lines hot */
5277         might_sleep();
5278         n = (addr_hint - addr) / PAGE_SIZE;
5279         if (2 * n <= pages_per_huge_page) {
5280                 /* If target subpage in first half of huge page */
5281                 base = 0;
5282                 l = n;
5283                 /* Process subpages at the end of huge page */
5284                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5285                         cond_resched();
5286                         process_subpage(addr + i * PAGE_SIZE, i, arg);
5287                 }
5288         } else {
5289                 /* If target subpage in second half of huge page */
5290                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5291                 l = pages_per_huge_page - n;
5292                 /* Process subpages at the begin of huge page */
5293                 for (i = 0; i < base; i++) {
5294                         cond_resched();
5295                         process_subpage(addr + i * PAGE_SIZE, i, arg);
5296                 }
5297         }
5298         /*
5299          * Process remaining subpages in left-right-left-right pattern
5300          * towards the target subpage
5301          */
5302         for (i = 0; i < l; i++) {
5303                 int left_idx = base + i;
5304                 int right_idx = base + 2 * l - 1 - i;
5305
5306                 cond_resched();
5307                 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5308                 cond_resched();
5309                 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5310         }
5311 }
5312
5313 static void clear_gigantic_page(struct page *page,
5314                                 unsigned long addr,
5315                                 unsigned int pages_per_huge_page)
5316 {
5317         int i;
5318         struct page *p = page;
5319
5320         might_sleep();
5321         for (i = 0; i < pages_per_huge_page;
5322              i++, p = mem_map_next(p, page, i)) {
5323                 cond_resched();
5324                 clear_user_highpage(p, addr + i * PAGE_SIZE);
5325         }
5326 }
5327
5328 static void clear_subpage(unsigned long addr, int idx, void *arg)
5329 {
5330         struct page *page = arg;
5331
5332         clear_user_highpage(page + idx, addr);
5333 }
5334
5335 void clear_huge_page(struct page *page,
5336                      unsigned long addr_hint, unsigned int pages_per_huge_page)
5337 {
5338         unsigned long addr = addr_hint &
5339                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5340
5341         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5342                 clear_gigantic_page(page, addr, pages_per_huge_page);
5343                 return;
5344         }
5345
5346         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5347 }
5348
5349 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5350                                     unsigned long addr,
5351                                     struct vm_area_struct *vma,
5352                                     unsigned int pages_per_huge_page)
5353 {
5354         int i;
5355         struct page *dst_base = dst;
5356         struct page *src_base = src;
5357
5358         for (i = 0; i < pages_per_huge_page; ) {
5359                 cond_resched();
5360                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5361
5362                 i++;
5363                 dst = mem_map_next(dst, dst_base, i);
5364                 src = mem_map_next(src, src_base, i);
5365         }
5366 }
5367
5368 struct copy_subpage_arg {
5369         struct page *dst;
5370         struct page *src;
5371         struct vm_area_struct *vma;
5372 };
5373
5374 static void copy_subpage(unsigned long addr, int idx, void *arg)
5375 {
5376         struct copy_subpage_arg *copy_arg = arg;
5377
5378         copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5379                            addr, copy_arg->vma);
5380 }
5381
5382 void copy_user_huge_page(struct page *dst, struct page *src,
5383                          unsigned long addr_hint, struct vm_area_struct *vma,
5384                          unsigned int pages_per_huge_page)
5385 {
5386         unsigned long addr = addr_hint &
5387                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5388         struct copy_subpage_arg arg = {
5389                 .dst = dst,
5390                 .src = src,
5391                 .vma = vma,
5392         };
5393
5394         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5395                 copy_user_gigantic_page(dst, src, addr, vma,
5396                                         pages_per_huge_page);
5397                 return;
5398         }
5399
5400         process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5401 }
5402
5403 long copy_huge_page_from_user(struct page *dst_page,
5404                                 const void __user *usr_src,
5405                                 unsigned int pages_per_huge_page,
5406                                 bool allow_pagefault)
5407 {
5408         void *page_kaddr;
5409         unsigned long i, rc = 0;
5410         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5411         struct page *subpage = dst_page;
5412
5413         for (i = 0; i < pages_per_huge_page;
5414              i++, subpage = mem_map_next(subpage, dst_page, i)) {
5415                 if (allow_pagefault)
5416                         page_kaddr = kmap(subpage);
5417                 else
5418                         page_kaddr = kmap_atomic(subpage);
5419                 rc = copy_from_user(page_kaddr,
5420                                 usr_src + i * PAGE_SIZE, PAGE_SIZE);
5421                 if (allow_pagefault)
5422                         kunmap(subpage);
5423                 else
5424                         kunmap_atomic(page_kaddr);
5425
5426                 ret_val -= (PAGE_SIZE - rc);
5427                 if (rc)
5428                         break;
5429
5430                 cond_resched();
5431         }
5432         return ret_val;
5433 }
5434 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5435
5436 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5437
5438 static struct kmem_cache *page_ptl_cachep;
5439
5440 void __init ptlock_cache_init(void)
5441 {
5442         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5443                         SLAB_PANIC, NULL);
5444 }
5445
5446 bool ptlock_alloc(struct page *page)
5447 {
5448         spinlock_t *ptl;
5449
5450         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5451         if (!ptl)
5452                 return false;
5453         page->ptl = ptl;
5454         return true;
5455 }
5456
5457 void ptlock_free(struct page *page)
5458 {
5459         kmem_cache_free(page_ptl_cachep, page->ptl);
5460 }
5461 #endif
This page took 0.344445 seconds and 4 git commands to generate.