]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/mm/memory.c | |
3 | * | |
4 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds | |
5 | */ | |
6 | ||
7 | /* | |
8 | * demand-loading started 01.12.91 - seems it is high on the list of | |
9 | * things wanted, and it should be easy to implement. - Linus | |
10 | */ | |
11 | ||
12 | /* | |
13 | * Ok, demand-loading was easy, shared pages a little bit tricker. Shared | |
14 | * pages started 02.12.91, seems to work. - Linus. | |
15 | * | |
16 | * Tested sharing by executing about 30 /bin/sh: under the old kernel it | |
17 | * would have taken more than the 6M I have free, but it worked well as | |
18 | * far as I could see. | |
19 | * | |
20 | * Also corrected some "invalidate()"s - I wasn't doing enough of them. | |
21 | */ | |
22 | ||
23 | /* | |
24 | * Real VM (paging to/from disk) started 18.12.91. Much more work and | |
25 | * thought has to go into this. Oh, well.. | |
26 | * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. | |
27 | * Found it. Everything seems to work now. | |
28 | * 20.12.91 - Ok, making the swap-device changeable like the root. | |
29 | */ | |
30 | ||
31 | /* | |
32 | * 05.04.94 - Multi-page memory management added for v1.1. | |
33 | * Idea by Alex Bligh ([email protected]) | |
34 | * | |
35 | * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG | |
36 | * ([email protected]) | |
37 | * | |
38 | * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) | |
39 | */ | |
40 | ||
41 | #include <linux/kernel_stat.h> | |
42 | #include <linux/mm.h> | |
43 | #include <linux/hugetlb.h> | |
44 | #include <linux/mman.h> | |
45 | #include <linux/swap.h> | |
46 | #include <linux/highmem.h> | |
47 | #include <linux/pagemap.h> | |
48 | #include <linux/rmap.h> | |
49 | #include <linux/module.h> | |
50 | #include <linux/init.h> | |
51 | ||
52 | #include <asm/pgalloc.h> | |
53 | #include <asm/uaccess.h> | |
54 | #include <asm/tlb.h> | |
55 | #include <asm/tlbflush.h> | |
56 | #include <asm/pgtable.h> | |
57 | ||
58 | #include <linux/swapops.h> | |
59 | #include <linux/elf.h> | |
60 | ||
d41dee36 | 61 | #ifndef CONFIG_NEED_MULTIPLE_NODES |
1da177e4 LT |
62 | /* use the per-pgdat data instead for discontigmem - mbligh */ |
63 | unsigned long max_mapnr; | |
64 | struct page *mem_map; | |
65 | ||
66 | EXPORT_SYMBOL(max_mapnr); | |
67 | EXPORT_SYMBOL(mem_map); | |
68 | #endif | |
69 | ||
70 | unsigned long num_physpages; | |
71 | /* | |
72 | * A number of key systems in x86 including ioremap() rely on the assumption | |
73 | * that high_memory defines the upper bound on direct map memory, then end | |
74 | * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and | |
75 | * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL | |
76 | * and ZONE_HIGHMEM. | |
77 | */ | |
78 | void * high_memory; | |
79 | unsigned long vmalloc_earlyreserve; | |
80 | ||
81 | EXPORT_SYMBOL(num_physpages); | |
82 | EXPORT_SYMBOL(high_memory); | |
83 | EXPORT_SYMBOL(vmalloc_earlyreserve); | |
84 | ||
85 | /* | |
86 | * If a p?d_bad entry is found while walking page tables, report | |
87 | * the error, before resetting entry to p?d_none. Usually (but | |
88 | * very seldom) called out from the p?d_none_or_clear_bad macros. | |
89 | */ | |
90 | ||
91 | void pgd_clear_bad(pgd_t *pgd) | |
92 | { | |
93 | pgd_ERROR(*pgd); | |
94 | pgd_clear(pgd); | |
95 | } | |
96 | ||
97 | void pud_clear_bad(pud_t *pud) | |
98 | { | |
99 | pud_ERROR(*pud); | |
100 | pud_clear(pud); | |
101 | } | |
102 | ||
103 | void pmd_clear_bad(pmd_t *pmd) | |
104 | { | |
105 | pmd_ERROR(*pmd); | |
106 | pmd_clear(pmd); | |
107 | } | |
108 | ||
109 | /* | |
110 | * Note: this doesn't free the actual pages themselves. That | |
111 | * has been handled earlier when unmapping all the memory regions. | |
112 | */ | |
e0da382c | 113 | static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd) |
1da177e4 | 114 | { |
e0da382c HD |
115 | struct page *page = pmd_page(*pmd); |
116 | pmd_clear(pmd); | |
4c21e2f2 | 117 | pte_lock_deinit(page); |
e0da382c HD |
118 | pte_free_tlb(tlb, page); |
119 | dec_page_state(nr_page_table_pages); | |
120 | tlb->mm->nr_ptes--; | |
1da177e4 LT |
121 | } |
122 | ||
e0da382c HD |
123 | static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, |
124 | unsigned long addr, unsigned long end, | |
125 | unsigned long floor, unsigned long ceiling) | |
1da177e4 LT |
126 | { |
127 | pmd_t *pmd; | |
128 | unsigned long next; | |
e0da382c | 129 | unsigned long start; |
1da177e4 | 130 | |
e0da382c | 131 | start = addr; |
1da177e4 | 132 | pmd = pmd_offset(pud, addr); |
1da177e4 LT |
133 | do { |
134 | next = pmd_addr_end(addr, end); | |
135 | if (pmd_none_or_clear_bad(pmd)) | |
136 | continue; | |
e0da382c | 137 | free_pte_range(tlb, pmd); |
1da177e4 LT |
138 | } while (pmd++, addr = next, addr != end); |
139 | ||
e0da382c HD |
140 | start &= PUD_MASK; |
141 | if (start < floor) | |
142 | return; | |
143 | if (ceiling) { | |
144 | ceiling &= PUD_MASK; | |
145 | if (!ceiling) | |
146 | return; | |
1da177e4 | 147 | } |
e0da382c HD |
148 | if (end - 1 > ceiling - 1) |
149 | return; | |
150 | ||
151 | pmd = pmd_offset(pud, start); | |
152 | pud_clear(pud); | |
153 | pmd_free_tlb(tlb, pmd); | |
1da177e4 LT |
154 | } |
155 | ||
e0da382c HD |
156 | static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, |
157 | unsigned long addr, unsigned long end, | |
158 | unsigned long floor, unsigned long ceiling) | |
1da177e4 LT |
159 | { |
160 | pud_t *pud; | |
161 | unsigned long next; | |
e0da382c | 162 | unsigned long start; |
1da177e4 | 163 | |
e0da382c | 164 | start = addr; |
1da177e4 | 165 | pud = pud_offset(pgd, addr); |
1da177e4 LT |
166 | do { |
167 | next = pud_addr_end(addr, end); | |
168 | if (pud_none_or_clear_bad(pud)) | |
169 | continue; | |
e0da382c | 170 | free_pmd_range(tlb, pud, addr, next, floor, ceiling); |
1da177e4 LT |
171 | } while (pud++, addr = next, addr != end); |
172 | ||
e0da382c HD |
173 | start &= PGDIR_MASK; |
174 | if (start < floor) | |
175 | return; | |
176 | if (ceiling) { | |
177 | ceiling &= PGDIR_MASK; | |
178 | if (!ceiling) | |
179 | return; | |
1da177e4 | 180 | } |
e0da382c HD |
181 | if (end - 1 > ceiling - 1) |
182 | return; | |
183 | ||
184 | pud = pud_offset(pgd, start); | |
185 | pgd_clear(pgd); | |
186 | pud_free_tlb(tlb, pud); | |
1da177e4 LT |
187 | } |
188 | ||
189 | /* | |
e0da382c HD |
190 | * This function frees user-level page tables of a process. |
191 | * | |
1da177e4 LT |
192 | * Must be called with pagetable lock held. |
193 | */ | |
3bf5ee95 | 194 | void free_pgd_range(struct mmu_gather **tlb, |
e0da382c HD |
195 | unsigned long addr, unsigned long end, |
196 | unsigned long floor, unsigned long ceiling) | |
1da177e4 LT |
197 | { |
198 | pgd_t *pgd; | |
199 | unsigned long next; | |
e0da382c HD |
200 | unsigned long start; |
201 | ||
202 | /* | |
203 | * The next few lines have given us lots of grief... | |
204 | * | |
205 | * Why are we testing PMD* at this top level? Because often | |
206 | * there will be no work to do at all, and we'd prefer not to | |
207 | * go all the way down to the bottom just to discover that. | |
208 | * | |
209 | * Why all these "- 1"s? Because 0 represents both the bottom | |
210 | * of the address space and the top of it (using -1 for the | |
211 | * top wouldn't help much: the masks would do the wrong thing). | |
212 | * The rule is that addr 0 and floor 0 refer to the bottom of | |
213 | * the address space, but end 0 and ceiling 0 refer to the top | |
214 | * Comparisons need to use "end - 1" and "ceiling - 1" (though | |
215 | * that end 0 case should be mythical). | |
216 | * | |
217 | * Wherever addr is brought up or ceiling brought down, we must | |
218 | * be careful to reject "the opposite 0" before it confuses the | |
219 | * subsequent tests. But what about where end is brought down | |
220 | * by PMD_SIZE below? no, end can't go down to 0 there. | |
221 | * | |
222 | * Whereas we round start (addr) and ceiling down, by different | |
223 | * masks at different levels, in order to test whether a table | |
224 | * now has no other vmas using it, so can be freed, we don't | |
225 | * bother to round floor or end up - the tests don't need that. | |
226 | */ | |
1da177e4 | 227 | |
e0da382c HD |
228 | addr &= PMD_MASK; |
229 | if (addr < floor) { | |
230 | addr += PMD_SIZE; | |
231 | if (!addr) | |
232 | return; | |
233 | } | |
234 | if (ceiling) { | |
235 | ceiling &= PMD_MASK; | |
236 | if (!ceiling) | |
237 | return; | |
238 | } | |
239 | if (end - 1 > ceiling - 1) | |
240 | end -= PMD_SIZE; | |
241 | if (addr > end - 1) | |
242 | return; | |
243 | ||
244 | start = addr; | |
3bf5ee95 | 245 | pgd = pgd_offset((*tlb)->mm, addr); |
1da177e4 LT |
246 | do { |
247 | next = pgd_addr_end(addr, end); | |
248 | if (pgd_none_or_clear_bad(pgd)) | |
249 | continue; | |
3bf5ee95 | 250 | free_pud_range(*tlb, pgd, addr, next, floor, ceiling); |
1da177e4 | 251 | } while (pgd++, addr = next, addr != end); |
e0da382c | 252 | |
4d6ddfa9 | 253 | if (!(*tlb)->fullmm) |
3bf5ee95 | 254 | flush_tlb_pgtables((*tlb)->mm, start, end); |
e0da382c HD |
255 | } |
256 | ||
257 | void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma, | |
3bf5ee95 | 258 | unsigned long floor, unsigned long ceiling) |
e0da382c HD |
259 | { |
260 | while (vma) { | |
261 | struct vm_area_struct *next = vma->vm_next; | |
262 | unsigned long addr = vma->vm_start; | |
263 | ||
8f4f8c16 HD |
264 | /* |
265 | * Hide vma from rmap and vmtruncate before freeing pgtables | |
266 | */ | |
267 | anon_vma_unlink(vma); | |
268 | unlink_file_vma(vma); | |
269 | ||
3bf5ee95 HD |
270 | if (is_hugepage_only_range(vma->vm_mm, addr, HPAGE_SIZE)) { |
271 | hugetlb_free_pgd_range(tlb, addr, vma->vm_end, | |
e0da382c | 272 | floor, next? next->vm_start: ceiling); |
3bf5ee95 HD |
273 | } else { |
274 | /* | |
275 | * Optimization: gather nearby vmas into one call down | |
276 | */ | |
277 | while (next && next->vm_start <= vma->vm_end + PMD_SIZE | |
278 | && !is_hugepage_only_range(vma->vm_mm, next->vm_start, | |
279 | HPAGE_SIZE)) { | |
280 | vma = next; | |
281 | next = vma->vm_next; | |
8f4f8c16 HD |
282 | anon_vma_unlink(vma); |
283 | unlink_file_vma(vma); | |
3bf5ee95 HD |
284 | } |
285 | free_pgd_range(tlb, addr, vma->vm_end, | |
286 | floor, next? next->vm_start: ceiling); | |
287 | } | |
e0da382c HD |
288 | vma = next; |
289 | } | |
1da177e4 LT |
290 | } |
291 | ||
1bb3630e | 292 | int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address) |
1da177e4 | 293 | { |
c74df32c | 294 | struct page *new = pte_alloc_one(mm, address); |
1bb3630e HD |
295 | if (!new) |
296 | return -ENOMEM; | |
297 | ||
4c21e2f2 | 298 | pte_lock_init(new); |
c74df32c | 299 | spin_lock(&mm->page_table_lock); |
4c21e2f2 HD |
300 | if (pmd_present(*pmd)) { /* Another has populated it */ |
301 | pte_lock_deinit(new); | |
1bb3630e | 302 | pte_free(new); |
4c21e2f2 | 303 | } else { |
1da177e4 LT |
304 | mm->nr_ptes++; |
305 | inc_page_state(nr_page_table_pages); | |
306 | pmd_populate(mm, pmd, new); | |
307 | } | |
c74df32c | 308 | spin_unlock(&mm->page_table_lock); |
1bb3630e | 309 | return 0; |
1da177e4 LT |
310 | } |
311 | ||
1bb3630e | 312 | int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) |
1da177e4 | 313 | { |
1bb3630e HD |
314 | pte_t *new = pte_alloc_one_kernel(&init_mm, address); |
315 | if (!new) | |
316 | return -ENOMEM; | |
317 | ||
318 | spin_lock(&init_mm.page_table_lock); | |
319 | if (pmd_present(*pmd)) /* Another has populated it */ | |
320 | pte_free_kernel(new); | |
321 | else | |
322 | pmd_populate_kernel(&init_mm, pmd, new); | |
323 | spin_unlock(&init_mm.page_table_lock); | |
324 | return 0; | |
1da177e4 LT |
325 | } |
326 | ||
ae859762 HD |
327 | static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss) |
328 | { | |
329 | if (file_rss) | |
330 | add_mm_counter(mm, file_rss, file_rss); | |
331 | if (anon_rss) | |
332 | add_mm_counter(mm, anon_rss, anon_rss); | |
333 | } | |
334 | ||
b5810039 NP |
335 | /* |
336 | * This function is called to print an error when a pte in a | |
0b14c179 | 337 | * !VM_UNPAGED region is found pointing to an invalid pfn (which |
b5810039 NP |
338 | * is an error. |
339 | * | |
340 | * The calling function must still handle the error. | |
341 | */ | |
342 | void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr) | |
343 | { | |
344 | printk(KERN_ERR "Bad pte = %08llx, process = %s, " | |
345 | "vm_flags = %lx, vaddr = %lx\n", | |
346 | (long long)pte_val(pte), | |
347 | (vma->vm_mm == current->mm ? current->comm : "???"), | |
348 | vma->vm_flags, vaddr); | |
349 | dump_stack(); | |
350 | } | |
351 | ||
ee498ed7 HD |
352 | /* |
353 | * page_is_anon applies strict checks for an anonymous page belonging to | |
354 | * this vma at this address. It is used on VM_UNPAGED vmas, which are | |
355 | * usually populated with shared originals (which must not be counted), | |
356 | * but occasionally contain private COWed copies (when !VM_SHARED, or | |
357 | * perhaps via ptrace when VM_SHARED). An mmap of /dev/mem might window | |
358 | * free pages, pages from other processes, or from other parts of this: | |
359 | * it's tricky, but try not to be deceived by foreign anonymous pages. | |
360 | */ | |
361 | static inline int page_is_anon(struct page *page, | |
362 | struct vm_area_struct *vma, unsigned long addr) | |
363 | { | |
364 | return page && PageAnon(page) && page_mapped(page) && | |
365 | page_address_in_vma(page, vma) == addr; | |
366 | } | |
367 | ||
1da177e4 LT |
368 | /* |
369 | * copy one vm_area from one task to the other. Assumes the page tables | |
370 | * already present in the new task to be cleared in the whole range | |
371 | * covered by this vma. | |
1da177e4 LT |
372 | */ |
373 | ||
8c103762 | 374 | static inline void |
1da177e4 | 375 | copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, |
b5810039 | 376 | pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, |
8c103762 | 377 | unsigned long addr, int *rss) |
1da177e4 | 378 | { |
b5810039 | 379 | unsigned long vm_flags = vma->vm_flags; |
1da177e4 LT |
380 | pte_t pte = *src_pte; |
381 | struct page *page; | |
382 | unsigned long pfn; | |
383 | ||
384 | /* pte contains position in swap or file, so copy. */ | |
385 | if (unlikely(!pte_present(pte))) { | |
386 | if (!pte_file(pte)) { | |
387 | swap_duplicate(pte_to_swp_entry(pte)); | |
388 | /* make sure dst_mm is on swapoff's mmlist. */ | |
389 | if (unlikely(list_empty(&dst_mm->mmlist))) { | |
390 | spin_lock(&mmlist_lock); | |
f412ac08 HD |
391 | if (list_empty(&dst_mm->mmlist)) |
392 | list_add(&dst_mm->mmlist, | |
393 | &src_mm->mmlist); | |
1da177e4 LT |
394 | spin_unlock(&mmlist_lock); |
395 | } | |
396 | } | |
ae859762 | 397 | goto out_set_pte; |
1da177e4 LT |
398 | } |
399 | ||
400 | pfn = pte_pfn(pte); | |
ee498ed7 HD |
401 | page = pfn_valid(pfn)? pfn_to_page(pfn): NULL; |
402 | ||
403 | if (unlikely(vm_flags & VM_UNPAGED)) | |
404 | if (!page_is_anon(page, vma, addr)) | |
405 | goto out_set_pte; | |
406 | ||
407 | /* | |
408 | * If the pte points outside of valid memory but | |
0b14c179 | 409 | * the region is not VM_UNPAGED, we have a problem. |
1da177e4 | 410 | */ |
ee498ed7 | 411 | if (unlikely(!page)) { |
b5810039 NP |
412 | print_bad_pte(vma, pte, addr); |
413 | goto out_set_pte; /* try to do something sane */ | |
414 | } | |
1da177e4 | 415 | |
1da177e4 LT |
416 | /* |
417 | * If it's a COW mapping, write protect it both | |
418 | * in the parent and the child | |
419 | */ | |
420 | if ((vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE) { | |
421 | ptep_set_wrprotect(src_mm, addr, src_pte); | |
422 | pte = *src_pte; | |
423 | } | |
424 | ||
425 | /* | |
426 | * If it's a shared mapping, mark it clean in | |
427 | * the child | |
428 | */ | |
429 | if (vm_flags & VM_SHARED) | |
430 | pte = pte_mkclean(pte); | |
431 | pte = pte_mkold(pte); | |
432 | get_page(page); | |
1da177e4 | 433 | page_dup_rmap(page); |
8c103762 | 434 | rss[!!PageAnon(page)]++; |
ae859762 HD |
435 | |
436 | out_set_pte: | |
437 | set_pte_at(dst_mm, addr, dst_pte, pte); | |
1da177e4 LT |
438 | } |
439 | ||
440 | static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | |
441 | pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, | |
442 | unsigned long addr, unsigned long end) | |
443 | { | |
444 | pte_t *src_pte, *dst_pte; | |
c74df32c | 445 | spinlock_t *src_ptl, *dst_ptl; |
e040f218 | 446 | int progress = 0; |
8c103762 | 447 | int rss[2]; |
1da177e4 LT |
448 | |
449 | again: | |
ae859762 | 450 | rss[1] = rss[0] = 0; |
c74df32c | 451 | dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); |
1da177e4 LT |
452 | if (!dst_pte) |
453 | return -ENOMEM; | |
454 | src_pte = pte_offset_map_nested(src_pmd, addr); | |
4c21e2f2 | 455 | src_ptl = pte_lockptr(src_mm, src_pmd); |
c74df32c | 456 | spin_lock(src_ptl); |
1da177e4 | 457 | |
1da177e4 LT |
458 | do { |
459 | /* | |
460 | * We are holding two locks at this point - either of them | |
461 | * could generate latencies in another task on another CPU. | |
462 | */ | |
e040f218 HD |
463 | if (progress >= 32) { |
464 | progress = 0; | |
465 | if (need_resched() || | |
c74df32c HD |
466 | need_lockbreak(src_ptl) || |
467 | need_lockbreak(dst_ptl)) | |
e040f218 HD |
468 | break; |
469 | } | |
1da177e4 LT |
470 | if (pte_none(*src_pte)) { |
471 | progress++; | |
472 | continue; | |
473 | } | |
8c103762 | 474 | copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss); |
1da177e4 LT |
475 | progress += 8; |
476 | } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); | |
1da177e4 | 477 | |
c74df32c | 478 | spin_unlock(src_ptl); |
1da177e4 | 479 | pte_unmap_nested(src_pte - 1); |
ae859762 | 480 | add_mm_rss(dst_mm, rss[0], rss[1]); |
c74df32c HD |
481 | pte_unmap_unlock(dst_pte - 1, dst_ptl); |
482 | cond_resched(); | |
1da177e4 LT |
483 | if (addr != end) |
484 | goto again; | |
485 | return 0; | |
486 | } | |
487 | ||
488 | static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | |
489 | pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, | |
490 | unsigned long addr, unsigned long end) | |
491 | { | |
492 | pmd_t *src_pmd, *dst_pmd; | |
493 | unsigned long next; | |
494 | ||
495 | dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); | |
496 | if (!dst_pmd) | |
497 | return -ENOMEM; | |
498 | src_pmd = pmd_offset(src_pud, addr); | |
499 | do { | |
500 | next = pmd_addr_end(addr, end); | |
501 | if (pmd_none_or_clear_bad(src_pmd)) | |
502 | continue; | |
503 | if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, | |
504 | vma, addr, next)) | |
505 | return -ENOMEM; | |
506 | } while (dst_pmd++, src_pmd++, addr = next, addr != end); | |
507 | return 0; | |
508 | } | |
509 | ||
510 | static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | |
511 | pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, | |
512 | unsigned long addr, unsigned long end) | |
513 | { | |
514 | pud_t *src_pud, *dst_pud; | |
515 | unsigned long next; | |
516 | ||
517 | dst_pud = pud_alloc(dst_mm, dst_pgd, addr); | |
518 | if (!dst_pud) | |
519 | return -ENOMEM; | |
520 | src_pud = pud_offset(src_pgd, addr); | |
521 | do { | |
522 | next = pud_addr_end(addr, end); | |
523 | if (pud_none_or_clear_bad(src_pud)) | |
524 | continue; | |
525 | if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, | |
526 | vma, addr, next)) | |
527 | return -ENOMEM; | |
528 | } while (dst_pud++, src_pud++, addr = next, addr != end); | |
529 | return 0; | |
530 | } | |
531 | ||
532 | int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | |
533 | struct vm_area_struct *vma) | |
534 | { | |
535 | pgd_t *src_pgd, *dst_pgd; | |
536 | unsigned long next; | |
537 | unsigned long addr = vma->vm_start; | |
538 | unsigned long end = vma->vm_end; | |
539 | ||
d992895b NP |
540 | /* |
541 | * Don't copy ptes where a page fault will fill them correctly. | |
542 | * Fork becomes much lighter when there are big shared or private | |
543 | * readonly mappings. The tradeoff is that copy_page_range is more | |
544 | * efficient than faulting. | |
545 | */ | |
0b14c179 | 546 | if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_UNPAGED))) { |
d992895b NP |
547 | if (!vma->anon_vma) |
548 | return 0; | |
549 | } | |
550 | ||
1da177e4 LT |
551 | if (is_vm_hugetlb_page(vma)) |
552 | return copy_hugetlb_page_range(dst_mm, src_mm, vma); | |
553 | ||
554 | dst_pgd = pgd_offset(dst_mm, addr); | |
555 | src_pgd = pgd_offset(src_mm, addr); | |
556 | do { | |
557 | next = pgd_addr_end(addr, end); | |
558 | if (pgd_none_or_clear_bad(src_pgd)) | |
559 | continue; | |
560 | if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, | |
561 | vma, addr, next)) | |
562 | return -ENOMEM; | |
563 | } while (dst_pgd++, src_pgd++, addr = next, addr != end); | |
564 | return 0; | |
565 | } | |
566 | ||
51c6f666 | 567 | static unsigned long zap_pte_range(struct mmu_gather *tlb, |
b5810039 | 568 | struct vm_area_struct *vma, pmd_t *pmd, |
1da177e4 | 569 | unsigned long addr, unsigned long end, |
51c6f666 | 570 | long *zap_work, struct zap_details *details) |
1da177e4 | 571 | { |
b5810039 | 572 | struct mm_struct *mm = tlb->mm; |
1da177e4 | 573 | pte_t *pte; |
508034a3 | 574 | spinlock_t *ptl; |
ae859762 HD |
575 | int file_rss = 0; |
576 | int anon_rss = 0; | |
1da177e4 | 577 | |
508034a3 | 578 | pte = pte_offset_map_lock(mm, pmd, addr, &ptl); |
1da177e4 LT |
579 | do { |
580 | pte_t ptent = *pte; | |
51c6f666 RH |
581 | if (pte_none(ptent)) { |
582 | (*zap_work)--; | |
1da177e4 | 583 | continue; |
51c6f666 | 584 | } |
1da177e4 | 585 | if (pte_present(ptent)) { |
ee498ed7 HD |
586 | struct page *page; |
587 | unsigned long pfn; | |
51c6f666 RH |
588 | |
589 | (*zap_work) -= PAGE_SIZE; | |
590 | ||
ee498ed7 HD |
591 | pfn = pte_pfn(ptent); |
592 | page = pfn_valid(pfn)? pfn_to_page(pfn): NULL; | |
593 | ||
594 | if (unlikely(vma->vm_flags & VM_UNPAGED)) { | |
595 | if (!page_is_anon(page, vma, addr)) | |
596 | page = NULL; | |
597 | } else if (unlikely(!page)) | |
598 | print_bad_pte(vma, ptent, addr); | |
599 | ||
1da177e4 LT |
600 | if (unlikely(details) && page) { |
601 | /* | |
602 | * unmap_shared_mapping_pages() wants to | |
603 | * invalidate cache without truncating: | |
604 | * unmap shared but keep private pages. | |
605 | */ | |
606 | if (details->check_mapping && | |
607 | details->check_mapping != page->mapping) | |
608 | continue; | |
609 | /* | |
610 | * Each page->index must be checked when | |
611 | * invalidating or truncating nonlinear. | |
612 | */ | |
613 | if (details->nonlinear_vma && | |
614 | (page->index < details->first_index || | |
615 | page->index > details->last_index)) | |
616 | continue; | |
617 | } | |
b5810039 | 618 | ptent = ptep_get_and_clear_full(mm, addr, pte, |
a600388d | 619 | tlb->fullmm); |
1da177e4 LT |
620 | tlb_remove_tlb_entry(tlb, pte, addr); |
621 | if (unlikely(!page)) | |
622 | continue; | |
623 | if (unlikely(details) && details->nonlinear_vma | |
624 | && linear_page_index(details->nonlinear_vma, | |
625 | addr) != page->index) | |
b5810039 | 626 | set_pte_at(mm, addr, pte, |
1da177e4 | 627 | pgoff_to_pte(page->index)); |
1da177e4 | 628 | if (PageAnon(page)) |
86d912f4 | 629 | anon_rss--; |
6237bcd9 HD |
630 | else { |
631 | if (pte_dirty(ptent)) | |
632 | set_page_dirty(page); | |
633 | if (pte_young(ptent)) | |
634 | mark_page_accessed(page); | |
86d912f4 | 635 | file_rss--; |
6237bcd9 | 636 | } |
1da177e4 LT |
637 | page_remove_rmap(page); |
638 | tlb_remove_page(tlb, page); | |
639 | continue; | |
640 | } | |
641 | /* | |
642 | * If details->check_mapping, we leave swap entries; | |
643 | * if details->nonlinear_vma, we leave file entries. | |
644 | */ | |
645 | if (unlikely(details)) | |
646 | continue; | |
647 | if (!pte_file(ptent)) | |
648 | free_swap_and_cache(pte_to_swp_entry(ptent)); | |
b5810039 | 649 | pte_clear_full(mm, addr, pte, tlb->fullmm); |
51c6f666 | 650 | } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0)); |
ae859762 | 651 | |
86d912f4 | 652 | add_mm_rss(mm, file_rss, anon_rss); |
508034a3 | 653 | pte_unmap_unlock(pte - 1, ptl); |
51c6f666 RH |
654 | |
655 | return addr; | |
1da177e4 LT |
656 | } |
657 | ||
51c6f666 | 658 | static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, |
b5810039 | 659 | struct vm_area_struct *vma, pud_t *pud, |
1da177e4 | 660 | unsigned long addr, unsigned long end, |
51c6f666 | 661 | long *zap_work, struct zap_details *details) |
1da177e4 LT |
662 | { |
663 | pmd_t *pmd; | |
664 | unsigned long next; | |
665 | ||
666 | pmd = pmd_offset(pud, addr); | |
667 | do { | |
668 | next = pmd_addr_end(addr, end); | |
51c6f666 RH |
669 | if (pmd_none_or_clear_bad(pmd)) { |
670 | (*zap_work)--; | |
1da177e4 | 671 | continue; |
51c6f666 RH |
672 | } |
673 | next = zap_pte_range(tlb, vma, pmd, addr, next, | |
674 | zap_work, details); | |
675 | } while (pmd++, addr = next, (addr != end && *zap_work > 0)); | |
676 | ||
677 | return addr; | |
1da177e4 LT |
678 | } |
679 | ||
51c6f666 | 680 | static inline unsigned long zap_pud_range(struct mmu_gather *tlb, |
b5810039 | 681 | struct vm_area_struct *vma, pgd_t *pgd, |
1da177e4 | 682 | unsigned long addr, unsigned long end, |
51c6f666 | 683 | long *zap_work, struct zap_details *details) |
1da177e4 LT |
684 | { |
685 | pud_t *pud; | |
686 | unsigned long next; | |
687 | ||
688 | pud = pud_offset(pgd, addr); | |
689 | do { | |
690 | next = pud_addr_end(addr, end); | |
51c6f666 RH |
691 | if (pud_none_or_clear_bad(pud)) { |
692 | (*zap_work)--; | |
1da177e4 | 693 | continue; |
51c6f666 RH |
694 | } |
695 | next = zap_pmd_range(tlb, vma, pud, addr, next, | |
696 | zap_work, details); | |
697 | } while (pud++, addr = next, (addr != end && *zap_work > 0)); | |
698 | ||
699 | return addr; | |
1da177e4 LT |
700 | } |
701 | ||
51c6f666 RH |
702 | static unsigned long unmap_page_range(struct mmu_gather *tlb, |
703 | struct vm_area_struct *vma, | |
1da177e4 | 704 | unsigned long addr, unsigned long end, |
51c6f666 | 705 | long *zap_work, struct zap_details *details) |
1da177e4 LT |
706 | { |
707 | pgd_t *pgd; | |
708 | unsigned long next; | |
709 | ||
710 | if (details && !details->check_mapping && !details->nonlinear_vma) | |
711 | details = NULL; | |
712 | ||
713 | BUG_ON(addr >= end); | |
714 | tlb_start_vma(tlb, vma); | |
715 | pgd = pgd_offset(vma->vm_mm, addr); | |
716 | do { | |
717 | next = pgd_addr_end(addr, end); | |
51c6f666 RH |
718 | if (pgd_none_or_clear_bad(pgd)) { |
719 | (*zap_work)--; | |
1da177e4 | 720 | continue; |
51c6f666 RH |
721 | } |
722 | next = zap_pud_range(tlb, vma, pgd, addr, next, | |
723 | zap_work, details); | |
724 | } while (pgd++, addr = next, (addr != end && *zap_work > 0)); | |
1da177e4 | 725 | tlb_end_vma(tlb, vma); |
51c6f666 RH |
726 | |
727 | return addr; | |
1da177e4 LT |
728 | } |
729 | ||
730 | #ifdef CONFIG_PREEMPT | |
731 | # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE) | |
732 | #else | |
733 | /* No preempt: go for improved straight-line efficiency */ | |
734 | # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE) | |
735 | #endif | |
736 | ||
737 | /** | |
738 | * unmap_vmas - unmap a range of memory covered by a list of vma's | |
739 | * @tlbp: address of the caller's struct mmu_gather | |
1da177e4 LT |
740 | * @vma: the starting vma |
741 | * @start_addr: virtual address at which to start unmapping | |
742 | * @end_addr: virtual address at which to end unmapping | |
743 | * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here | |
744 | * @details: details of nonlinear truncation or shared cache invalidation | |
745 | * | |
ee39b37b | 746 | * Returns the end address of the unmapping (restart addr if interrupted). |
1da177e4 | 747 | * |
508034a3 | 748 | * Unmap all pages in the vma list. |
1da177e4 | 749 | * |
508034a3 HD |
750 | * We aim to not hold locks for too long (for scheduling latency reasons). |
751 | * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to | |
1da177e4 LT |
752 | * return the ending mmu_gather to the caller. |
753 | * | |
754 | * Only addresses between `start' and `end' will be unmapped. | |
755 | * | |
756 | * The VMA list must be sorted in ascending virtual address order. | |
757 | * | |
758 | * unmap_vmas() assumes that the caller will flush the whole unmapped address | |
759 | * range after unmap_vmas() returns. So the only responsibility here is to | |
760 | * ensure that any thus-far unmapped pages are flushed before unmap_vmas() | |
761 | * drops the lock and schedules. | |
762 | */ | |
508034a3 | 763 | unsigned long unmap_vmas(struct mmu_gather **tlbp, |
1da177e4 LT |
764 | struct vm_area_struct *vma, unsigned long start_addr, |
765 | unsigned long end_addr, unsigned long *nr_accounted, | |
766 | struct zap_details *details) | |
767 | { | |
51c6f666 | 768 | long zap_work = ZAP_BLOCK_SIZE; |
1da177e4 LT |
769 | unsigned long tlb_start = 0; /* For tlb_finish_mmu */ |
770 | int tlb_start_valid = 0; | |
ee39b37b | 771 | unsigned long start = start_addr; |
1da177e4 | 772 | spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL; |
4d6ddfa9 | 773 | int fullmm = (*tlbp)->fullmm; |
1da177e4 LT |
774 | |
775 | for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) { | |
1da177e4 LT |
776 | unsigned long end; |
777 | ||
778 | start = max(vma->vm_start, start_addr); | |
779 | if (start >= vma->vm_end) | |
780 | continue; | |
781 | end = min(vma->vm_end, end_addr); | |
782 | if (end <= vma->vm_start) | |
783 | continue; | |
784 | ||
785 | if (vma->vm_flags & VM_ACCOUNT) | |
786 | *nr_accounted += (end - start) >> PAGE_SHIFT; | |
787 | ||
1da177e4 | 788 | while (start != end) { |
1da177e4 LT |
789 | if (!tlb_start_valid) { |
790 | tlb_start = start; | |
791 | tlb_start_valid = 1; | |
792 | } | |
793 | ||
51c6f666 | 794 | if (unlikely(is_vm_hugetlb_page(vma))) { |
1da177e4 | 795 | unmap_hugepage_range(vma, start, end); |
51c6f666 RH |
796 | zap_work -= (end - start) / |
797 | (HPAGE_SIZE / PAGE_SIZE); | |
798 | start = end; | |
799 | } else | |
800 | start = unmap_page_range(*tlbp, vma, | |
801 | start, end, &zap_work, details); | |
802 | ||
803 | if (zap_work > 0) { | |
804 | BUG_ON(start != end); | |
805 | break; | |
1da177e4 LT |
806 | } |
807 | ||
1da177e4 LT |
808 | tlb_finish_mmu(*tlbp, tlb_start, start); |
809 | ||
810 | if (need_resched() || | |
1da177e4 LT |
811 | (i_mmap_lock && need_lockbreak(i_mmap_lock))) { |
812 | if (i_mmap_lock) { | |
508034a3 | 813 | *tlbp = NULL; |
1da177e4 LT |
814 | goto out; |
815 | } | |
1da177e4 | 816 | cond_resched(); |
1da177e4 LT |
817 | } |
818 | ||
508034a3 | 819 | *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm); |
1da177e4 | 820 | tlb_start_valid = 0; |
51c6f666 | 821 | zap_work = ZAP_BLOCK_SIZE; |
1da177e4 LT |
822 | } |
823 | } | |
824 | out: | |
ee39b37b | 825 | return start; /* which is now the end (or restart) address */ |
1da177e4 LT |
826 | } |
827 | ||
828 | /** | |
829 | * zap_page_range - remove user pages in a given range | |
830 | * @vma: vm_area_struct holding the applicable pages | |
831 | * @address: starting address of pages to zap | |
832 | * @size: number of bytes to zap | |
833 | * @details: details of nonlinear truncation or shared cache invalidation | |
834 | */ | |
ee39b37b | 835 | unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, |
1da177e4 LT |
836 | unsigned long size, struct zap_details *details) |
837 | { | |
838 | struct mm_struct *mm = vma->vm_mm; | |
839 | struct mmu_gather *tlb; | |
840 | unsigned long end = address + size; | |
841 | unsigned long nr_accounted = 0; | |
842 | ||
1da177e4 | 843 | lru_add_drain(); |
1da177e4 | 844 | tlb = tlb_gather_mmu(mm, 0); |
365e9c87 | 845 | update_hiwater_rss(mm); |
508034a3 HD |
846 | end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details); |
847 | if (tlb) | |
848 | tlb_finish_mmu(tlb, address, end); | |
ee39b37b | 849 | return end; |
1da177e4 LT |
850 | } |
851 | ||
852 | /* | |
853 | * Do a quick page-table lookup for a single page. | |
1da177e4 | 854 | */ |
deceb6cd HD |
855 | struct page *follow_page(struct mm_struct *mm, unsigned long address, |
856 | unsigned int flags) | |
1da177e4 LT |
857 | { |
858 | pgd_t *pgd; | |
859 | pud_t *pud; | |
860 | pmd_t *pmd; | |
861 | pte_t *ptep, pte; | |
deceb6cd | 862 | spinlock_t *ptl; |
1da177e4 LT |
863 | unsigned long pfn; |
864 | struct page *page; | |
865 | ||
deceb6cd HD |
866 | page = follow_huge_addr(mm, address, flags & FOLL_WRITE); |
867 | if (!IS_ERR(page)) { | |
868 | BUG_ON(flags & FOLL_GET); | |
869 | goto out; | |
870 | } | |
1da177e4 | 871 | |
deceb6cd | 872 | page = NULL; |
1da177e4 LT |
873 | pgd = pgd_offset(mm, address); |
874 | if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) | |
deceb6cd | 875 | goto no_page_table; |
1da177e4 LT |
876 | |
877 | pud = pud_offset(pgd, address); | |
878 | if (pud_none(*pud) || unlikely(pud_bad(*pud))) | |
deceb6cd | 879 | goto no_page_table; |
1da177e4 LT |
880 | |
881 | pmd = pmd_offset(pud, address); | |
882 | if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) | |
deceb6cd HD |
883 | goto no_page_table; |
884 | ||
885 | if (pmd_huge(*pmd)) { | |
886 | BUG_ON(flags & FOLL_GET); | |
887 | page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); | |
1da177e4 | 888 | goto out; |
deceb6cd | 889 | } |
1da177e4 | 890 | |
deceb6cd | 891 | ptep = pte_offset_map_lock(mm, pmd, address, &ptl); |
1da177e4 LT |
892 | if (!ptep) |
893 | goto out; | |
894 | ||
895 | pte = *ptep; | |
deceb6cd HD |
896 | if (!pte_present(pte)) |
897 | goto unlock; | |
898 | if ((flags & FOLL_WRITE) && !pte_write(pte)) | |
899 | goto unlock; | |
900 | pfn = pte_pfn(pte); | |
901 | if (!pfn_valid(pfn)) | |
902 | goto unlock; | |
1da177e4 | 903 | |
deceb6cd HD |
904 | page = pfn_to_page(pfn); |
905 | if (flags & FOLL_GET) | |
906 | get_page(page); | |
907 | if (flags & FOLL_TOUCH) { | |
908 | if ((flags & FOLL_WRITE) && | |
909 | !pte_dirty(pte) && !PageDirty(page)) | |
910 | set_page_dirty(page); | |
911 | mark_page_accessed(page); | |
912 | } | |
913 | unlock: | |
914 | pte_unmap_unlock(ptep, ptl); | |
1da177e4 | 915 | out: |
deceb6cd | 916 | return page; |
1da177e4 | 917 | |
deceb6cd HD |
918 | no_page_table: |
919 | /* | |
920 | * When core dumping an enormous anonymous area that nobody | |
921 | * has touched so far, we don't want to allocate page tables. | |
922 | */ | |
923 | if (flags & FOLL_ANON) { | |
924 | page = ZERO_PAGE(address); | |
925 | if (flags & FOLL_GET) | |
926 | get_page(page); | |
927 | BUG_ON(flags & FOLL_WRITE); | |
928 | } | |
929 | return page; | |
1da177e4 LT |
930 | } |
931 | ||
1da177e4 LT |
932 | int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, |
933 | unsigned long start, int len, int write, int force, | |
934 | struct page **pages, struct vm_area_struct **vmas) | |
935 | { | |
936 | int i; | |
deceb6cd | 937 | unsigned int vm_flags; |
1da177e4 LT |
938 | |
939 | /* | |
940 | * Require read or write permissions. | |
941 | * If 'force' is set, we only require the "MAY" flags. | |
942 | */ | |
deceb6cd HD |
943 | vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); |
944 | vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); | |
1da177e4 LT |
945 | i = 0; |
946 | ||
947 | do { | |
deceb6cd HD |
948 | struct vm_area_struct *vma; |
949 | unsigned int foll_flags; | |
1da177e4 LT |
950 | |
951 | vma = find_extend_vma(mm, start); | |
952 | if (!vma && in_gate_area(tsk, start)) { | |
953 | unsigned long pg = start & PAGE_MASK; | |
954 | struct vm_area_struct *gate_vma = get_gate_vma(tsk); | |
955 | pgd_t *pgd; | |
956 | pud_t *pud; | |
957 | pmd_t *pmd; | |
958 | pte_t *pte; | |
959 | if (write) /* user gate pages are read-only */ | |
960 | return i ? : -EFAULT; | |
961 | if (pg > TASK_SIZE) | |
962 | pgd = pgd_offset_k(pg); | |
963 | else | |
964 | pgd = pgd_offset_gate(mm, pg); | |
965 | BUG_ON(pgd_none(*pgd)); | |
966 | pud = pud_offset(pgd, pg); | |
967 | BUG_ON(pud_none(*pud)); | |
968 | pmd = pmd_offset(pud, pg); | |
690dbe1c HD |
969 | if (pmd_none(*pmd)) |
970 | return i ? : -EFAULT; | |
1da177e4 | 971 | pte = pte_offset_map(pmd, pg); |
690dbe1c HD |
972 | if (pte_none(*pte)) { |
973 | pte_unmap(pte); | |
974 | return i ? : -EFAULT; | |
975 | } | |
1da177e4 LT |
976 | if (pages) { |
977 | pages[i] = pte_page(*pte); | |
978 | get_page(pages[i]); | |
979 | } | |
980 | pte_unmap(pte); | |
981 | if (vmas) | |
982 | vmas[i] = gate_vma; | |
983 | i++; | |
984 | start += PAGE_SIZE; | |
985 | len--; | |
986 | continue; | |
987 | } | |
988 | ||
ed5297a9 | 989 | if (!vma || (vma->vm_flags & VM_IO) |
deceb6cd | 990 | || !(vm_flags & vma->vm_flags)) |
1da177e4 LT |
991 | return i ? : -EFAULT; |
992 | ||
993 | if (is_vm_hugetlb_page(vma)) { | |
994 | i = follow_hugetlb_page(mm, vma, pages, vmas, | |
995 | &start, &len, i); | |
996 | continue; | |
997 | } | |
deceb6cd HD |
998 | |
999 | foll_flags = FOLL_TOUCH; | |
1000 | if (pages) | |
1001 | foll_flags |= FOLL_GET; | |
1002 | if (!write && !(vma->vm_flags & VM_LOCKED) && | |
1003 | (!vma->vm_ops || !vma->vm_ops->nopage)) | |
1004 | foll_flags |= FOLL_ANON; | |
1005 | ||
1da177e4 | 1006 | do { |
08ef4729 | 1007 | struct page *page; |
1da177e4 | 1008 | |
deceb6cd HD |
1009 | if (write) |
1010 | foll_flags |= FOLL_WRITE; | |
a68d2ebc | 1011 | |
deceb6cd HD |
1012 | cond_resched(); |
1013 | while (!(page = follow_page(mm, start, foll_flags))) { | |
1014 | int ret; | |
1015 | ret = __handle_mm_fault(mm, vma, start, | |
1016 | foll_flags & FOLL_WRITE); | |
a68d2ebc LT |
1017 | /* |
1018 | * The VM_FAULT_WRITE bit tells us that do_wp_page has | |
1019 | * broken COW when necessary, even if maybe_mkwrite | |
1020 | * decided not to set pte_write. We can thus safely do | |
1021 | * subsequent page lookups as if they were reads. | |
1022 | */ | |
1023 | if (ret & VM_FAULT_WRITE) | |
deceb6cd | 1024 | foll_flags &= ~FOLL_WRITE; |
a68d2ebc LT |
1025 | |
1026 | switch (ret & ~VM_FAULT_WRITE) { | |
1da177e4 LT |
1027 | case VM_FAULT_MINOR: |
1028 | tsk->min_flt++; | |
1029 | break; | |
1030 | case VM_FAULT_MAJOR: | |
1031 | tsk->maj_flt++; | |
1032 | break; | |
1033 | case VM_FAULT_SIGBUS: | |
1034 | return i ? i : -EFAULT; | |
1035 | case VM_FAULT_OOM: | |
1036 | return i ? i : -ENOMEM; | |
1037 | default: | |
1038 | BUG(); | |
1039 | } | |
1da177e4 LT |
1040 | } |
1041 | if (pages) { | |
08ef4729 HD |
1042 | pages[i] = page; |
1043 | flush_dcache_page(page); | |
1da177e4 LT |
1044 | } |
1045 | if (vmas) | |
1046 | vmas[i] = vma; | |
1047 | i++; | |
1048 | start += PAGE_SIZE; | |
1049 | len--; | |
08ef4729 | 1050 | } while (len && start < vma->vm_end); |
08ef4729 | 1051 | } while (len); |
1da177e4 LT |
1052 | return i; |
1053 | } | |
1da177e4 LT |
1054 | EXPORT_SYMBOL(get_user_pages); |
1055 | ||
1056 | static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd, | |
1057 | unsigned long addr, unsigned long end, pgprot_t prot) | |
1058 | { | |
1059 | pte_t *pte; | |
c74df32c | 1060 | spinlock_t *ptl; |
1da177e4 | 1061 | |
c74df32c | 1062 | pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); |
1da177e4 LT |
1063 | if (!pte) |
1064 | return -ENOMEM; | |
1065 | do { | |
b5810039 NP |
1066 | struct page *page = ZERO_PAGE(addr); |
1067 | pte_t zero_pte = pte_wrprotect(mk_pte(page, prot)); | |
1068 | page_cache_get(page); | |
1069 | page_add_file_rmap(page); | |
1070 | inc_mm_counter(mm, file_rss); | |
1da177e4 LT |
1071 | BUG_ON(!pte_none(*pte)); |
1072 | set_pte_at(mm, addr, pte, zero_pte); | |
1073 | } while (pte++, addr += PAGE_SIZE, addr != end); | |
c74df32c | 1074 | pte_unmap_unlock(pte - 1, ptl); |
1da177e4 LT |
1075 | return 0; |
1076 | } | |
1077 | ||
1078 | static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud, | |
1079 | unsigned long addr, unsigned long end, pgprot_t prot) | |
1080 | { | |
1081 | pmd_t *pmd; | |
1082 | unsigned long next; | |
1083 | ||
1084 | pmd = pmd_alloc(mm, pud, addr); | |
1085 | if (!pmd) | |
1086 | return -ENOMEM; | |
1087 | do { | |
1088 | next = pmd_addr_end(addr, end); | |
1089 | if (zeromap_pte_range(mm, pmd, addr, next, prot)) | |
1090 | return -ENOMEM; | |
1091 | } while (pmd++, addr = next, addr != end); | |
1092 | return 0; | |
1093 | } | |
1094 | ||
1095 | static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd, | |
1096 | unsigned long addr, unsigned long end, pgprot_t prot) | |
1097 | { | |
1098 | pud_t *pud; | |
1099 | unsigned long next; | |
1100 | ||
1101 | pud = pud_alloc(mm, pgd, addr); | |
1102 | if (!pud) | |
1103 | return -ENOMEM; | |
1104 | do { | |
1105 | next = pud_addr_end(addr, end); | |
1106 | if (zeromap_pmd_range(mm, pud, addr, next, prot)) | |
1107 | return -ENOMEM; | |
1108 | } while (pud++, addr = next, addr != end); | |
1109 | return 0; | |
1110 | } | |
1111 | ||
1112 | int zeromap_page_range(struct vm_area_struct *vma, | |
1113 | unsigned long addr, unsigned long size, pgprot_t prot) | |
1114 | { | |
1115 | pgd_t *pgd; | |
1116 | unsigned long next; | |
1117 | unsigned long end = addr + size; | |
1118 | struct mm_struct *mm = vma->vm_mm; | |
1119 | int err; | |
1120 | ||
1121 | BUG_ON(addr >= end); | |
1122 | pgd = pgd_offset(mm, addr); | |
1123 | flush_cache_range(vma, addr, end); | |
1da177e4 LT |
1124 | do { |
1125 | next = pgd_addr_end(addr, end); | |
1126 | err = zeromap_pud_range(mm, pgd, addr, next, prot); | |
1127 | if (err) | |
1128 | break; | |
1129 | } while (pgd++, addr = next, addr != end); | |
1da177e4 LT |
1130 | return err; |
1131 | } | |
1132 | ||
1133 | /* | |
1134 | * maps a range of physical memory into the requested pages. the old | |
1135 | * mappings are removed. any references to nonexistent pages results | |
1136 | * in null mappings (currently treated as "copy-on-access") | |
1137 | */ | |
1138 | static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, | |
1139 | unsigned long addr, unsigned long end, | |
1140 | unsigned long pfn, pgprot_t prot) | |
1141 | { | |
1142 | pte_t *pte; | |
c74df32c | 1143 | spinlock_t *ptl; |
1da177e4 | 1144 | |
c74df32c | 1145 | pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); |
1da177e4 LT |
1146 | if (!pte) |
1147 | return -ENOMEM; | |
1148 | do { | |
1149 | BUG_ON(!pte_none(*pte)); | |
b5810039 | 1150 | set_pte_at(mm, addr, pte, pfn_pte(pfn, prot)); |
1da177e4 LT |
1151 | pfn++; |
1152 | } while (pte++, addr += PAGE_SIZE, addr != end); | |
c74df32c | 1153 | pte_unmap_unlock(pte - 1, ptl); |
1da177e4 LT |
1154 | return 0; |
1155 | } | |
1156 | ||
1157 | static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, | |
1158 | unsigned long addr, unsigned long end, | |
1159 | unsigned long pfn, pgprot_t prot) | |
1160 | { | |
1161 | pmd_t *pmd; | |
1162 | unsigned long next; | |
1163 | ||
1164 | pfn -= addr >> PAGE_SHIFT; | |
1165 | pmd = pmd_alloc(mm, pud, addr); | |
1166 | if (!pmd) | |
1167 | return -ENOMEM; | |
1168 | do { | |
1169 | next = pmd_addr_end(addr, end); | |
1170 | if (remap_pte_range(mm, pmd, addr, next, | |
1171 | pfn + (addr >> PAGE_SHIFT), prot)) | |
1172 | return -ENOMEM; | |
1173 | } while (pmd++, addr = next, addr != end); | |
1174 | return 0; | |
1175 | } | |
1176 | ||
1177 | static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, | |
1178 | unsigned long addr, unsigned long end, | |
1179 | unsigned long pfn, pgprot_t prot) | |
1180 | { | |
1181 | pud_t *pud; | |
1182 | unsigned long next; | |
1183 | ||
1184 | pfn -= addr >> PAGE_SHIFT; | |
1185 | pud = pud_alloc(mm, pgd, addr); | |
1186 | if (!pud) | |
1187 | return -ENOMEM; | |
1188 | do { | |
1189 | next = pud_addr_end(addr, end); | |
1190 | if (remap_pmd_range(mm, pud, addr, next, | |
1191 | pfn + (addr >> PAGE_SHIFT), prot)) | |
1192 | return -ENOMEM; | |
1193 | } while (pud++, addr = next, addr != end); | |
1194 | return 0; | |
1195 | } | |
1196 | ||
1197 | /* Note: this is only safe if the mm semaphore is held when called. */ | |
1198 | int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, | |
1199 | unsigned long pfn, unsigned long size, pgprot_t prot) | |
1200 | { | |
1201 | pgd_t *pgd; | |
1202 | unsigned long next; | |
2d15cab8 | 1203 | unsigned long end = addr + PAGE_ALIGN(size); |
1da177e4 LT |
1204 | struct mm_struct *mm = vma->vm_mm; |
1205 | int err; | |
1206 | ||
1207 | /* | |
1208 | * Physically remapped pages are special. Tell the | |
1209 | * rest of the world about it: | |
1210 | * VM_IO tells people not to look at these pages | |
1211 | * (accesses can have side effects). | |
0b14c179 HD |
1212 | * VM_RESERVED is specified all over the place, because |
1213 | * in 2.4 it kept swapout's vma scan off this vma; but | |
1214 | * in 2.6 the LRU scan won't even find its pages, so this | |
1215 | * flag means no more than count its pages in reserved_vm, | |
1216 | * and omit it from core dump, even when VM_IO turned off. | |
1217 | * VM_UNPAGED tells the core MM not to "manage" these pages | |
1218 | * (e.g. refcount, mapcount, try to swap them out): in | |
1219 | * particular, zap_pte_range does not try to free them. | |
1da177e4 | 1220 | */ |
0b14c179 | 1221 | vma->vm_flags |= VM_IO | VM_RESERVED | VM_UNPAGED; |
1da177e4 LT |
1222 | |
1223 | BUG_ON(addr >= end); | |
1224 | pfn -= addr >> PAGE_SHIFT; | |
1225 | pgd = pgd_offset(mm, addr); | |
1226 | flush_cache_range(vma, addr, end); | |
1da177e4 LT |
1227 | do { |
1228 | next = pgd_addr_end(addr, end); | |
1229 | err = remap_pud_range(mm, pgd, addr, next, | |
1230 | pfn + (addr >> PAGE_SHIFT), prot); | |
1231 | if (err) | |
1232 | break; | |
1233 | } while (pgd++, addr = next, addr != end); | |
1da177e4 LT |
1234 | return err; |
1235 | } | |
1236 | EXPORT_SYMBOL(remap_pfn_range); | |
1237 | ||
8f4e2101 HD |
1238 | /* |
1239 | * handle_pte_fault chooses page fault handler according to an entry | |
1240 | * which was read non-atomically. Before making any commitment, on | |
1241 | * those architectures or configurations (e.g. i386 with PAE) which | |
1242 | * might give a mix of unmatched parts, do_swap_page and do_file_page | |
1243 | * must check under lock before unmapping the pte and proceeding | |
1244 | * (but do_wp_page is only called after already making such a check; | |
1245 | * and do_anonymous_page and do_no_page can safely check later on). | |
1246 | */ | |
4c21e2f2 | 1247 | static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, |
8f4e2101 HD |
1248 | pte_t *page_table, pte_t orig_pte) |
1249 | { | |
1250 | int same = 1; | |
1251 | #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) | |
1252 | if (sizeof(pte_t) > sizeof(unsigned long)) { | |
4c21e2f2 HD |
1253 | spinlock_t *ptl = pte_lockptr(mm, pmd); |
1254 | spin_lock(ptl); | |
8f4e2101 | 1255 | same = pte_same(*page_table, orig_pte); |
4c21e2f2 | 1256 | spin_unlock(ptl); |
8f4e2101 HD |
1257 | } |
1258 | #endif | |
1259 | pte_unmap(page_table); | |
1260 | return same; | |
1261 | } | |
1262 | ||
1da177e4 LT |
1263 | /* |
1264 | * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when | |
1265 | * servicing faults for write access. In the normal case, do always want | |
1266 | * pte_mkwrite. But get_user_pages can cause write faults for mappings | |
1267 | * that do not have writing enabled, when used by access_process_vm. | |
1268 | */ | |
1269 | static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) | |
1270 | { | |
1271 | if (likely(vma->vm_flags & VM_WRITE)) | |
1272 | pte = pte_mkwrite(pte); | |
1273 | return pte; | |
1274 | } | |
1275 | ||
1da177e4 LT |
1276 | /* |
1277 | * This routine handles present pages, when users try to write | |
1278 | * to a shared page. It is done by copying the page to a new address | |
1279 | * and decrementing the shared-page counter for the old page. | |
1280 | * | |
1da177e4 LT |
1281 | * Note that this routine assumes that the protection checks have been |
1282 | * done by the caller (the low-level page fault routine in most cases). | |
1283 | * Thus we can safely just mark it writable once we've done any necessary | |
1284 | * COW. | |
1285 | * | |
1286 | * We also mark the page dirty at this point even though the page will | |
1287 | * change only once the write actually happens. This avoids a few races, | |
1288 | * and potentially makes it more efficient. | |
1289 | * | |
8f4e2101 HD |
1290 | * We enter with non-exclusive mmap_sem (to exclude vma changes, |
1291 | * but allow concurrent faults), with pte both mapped and locked. | |
1292 | * We return with mmap_sem still held, but pte unmapped and unlocked. | |
1da177e4 | 1293 | */ |
65500d23 HD |
1294 | static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, |
1295 | unsigned long address, pte_t *page_table, pmd_t *pmd, | |
8f4e2101 | 1296 | spinlock_t *ptl, pte_t orig_pte) |
1da177e4 | 1297 | { |
920fc356 | 1298 | struct page *old_page, *src_page, *new_page; |
65500d23 | 1299 | unsigned long pfn = pte_pfn(orig_pte); |
1da177e4 | 1300 | pte_t entry; |
65500d23 | 1301 | int ret = VM_FAULT_MINOR; |
1da177e4 LT |
1302 | |
1303 | if (unlikely(!pfn_valid(pfn))) { | |
1304 | /* | |
65500d23 | 1305 | * Page table corrupted: show pte and kill process. |
920fc356 HD |
1306 | * Or it's an attempt to COW an out-of-map VM_UNPAGED |
1307 | * entry, which copy_user_highpage does not support. | |
1da177e4 | 1308 | */ |
b5810039 | 1309 | print_bad_pte(vma, orig_pte, address); |
65500d23 HD |
1310 | ret = VM_FAULT_OOM; |
1311 | goto unlock; | |
1da177e4 LT |
1312 | } |
1313 | old_page = pfn_to_page(pfn); | |
920fc356 HD |
1314 | src_page = old_page; |
1315 | ||
ee498ed7 HD |
1316 | if (unlikely(vma->vm_flags & VM_UNPAGED)) |
1317 | if (!page_is_anon(old_page, vma, address)) { | |
1318 | old_page = NULL; | |
1319 | goto gotten; | |
1320 | } | |
1da177e4 | 1321 | |
d296e9cd | 1322 | if (PageAnon(old_page) && !TestSetPageLocked(old_page)) { |
1da177e4 LT |
1323 | int reuse = can_share_swap_page(old_page); |
1324 | unlock_page(old_page); | |
1325 | if (reuse) { | |
1326 | flush_cache_page(vma, address, pfn); | |
65500d23 HD |
1327 | entry = pte_mkyoung(orig_pte); |
1328 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | |
1da177e4 LT |
1329 | ptep_set_access_flags(vma, address, page_table, entry, 1); |
1330 | update_mmu_cache(vma, address, entry); | |
1331 | lazy_mmu_prot_update(entry); | |
65500d23 HD |
1332 | ret |= VM_FAULT_WRITE; |
1333 | goto unlock; | |
1da177e4 LT |
1334 | } |
1335 | } | |
1da177e4 LT |
1336 | |
1337 | /* | |
1338 | * Ok, we need to copy. Oh, well.. | |
1339 | */ | |
b5810039 | 1340 | page_cache_get(old_page); |
920fc356 | 1341 | gotten: |
8f4e2101 | 1342 | pte_unmap_unlock(page_table, ptl); |
1da177e4 LT |
1343 | |
1344 | if (unlikely(anon_vma_prepare(vma))) | |
65500d23 | 1345 | goto oom; |
920fc356 | 1346 | if (src_page == ZERO_PAGE(address)) { |
1da177e4 LT |
1347 | new_page = alloc_zeroed_user_highpage(vma, address); |
1348 | if (!new_page) | |
65500d23 | 1349 | goto oom; |
1da177e4 LT |
1350 | } else { |
1351 | new_page = alloc_page_vma(GFP_HIGHUSER, vma, address); | |
1352 | if (!new_page) | |
65500d23 | 1353 | goto oom; |
920fc356 | 1354 | copy_user_highpage(new_page, src_page, address); |
1da177e4 | 1355 | } |
65500d23 | 1356 | |
1da177e4 LT |
1357 | /* |
1358 | * Re-check the pte - we dropped the lock | |
1359 | */ | |
8f4e2101 | 1360 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); |
65500d23 | 1361 | if (likely(pte_same(*page_table, orig_pte))) { |
920fc356 HD |
1362 | if (old_page) { |
1363 | page_remove_rmap(old_page); | |
1364 | if (!PageAnon(old_page)) { | |
1365 | dec_mm_counter(mm, file_rss); | |
1366 | inc_mm_counter(mm, anon_rss); | |
1367 | } | |
1368 | } else | |
4294621f | 1369 | inc_mm_counter(mm, anon_rss); |
1da177e4 | 1370 | flush_cache_page(vma, address, pfn); |
65500d23 HD |
1371 | entry = mk_pte(new_page, vma->vm_page_prot); |
1372 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | |
1373 | ptep_establish(vma, address, page_table, entry); | |
1374 | update_mmu_cache(vma, address, entry); | |
1375 | lazy_mmu_prot_update(entry); | |
1da177e4 LT |
1376 | lru_cache_add_active(new_page); |
1377 | page_add_anon_rmap(new_page, vma, address); | |
1378 | ||
1379 | /* Free the old page.. */ | |
1380 | new_page = old_page; | |
f33ea7f4 | 1381 | ret |= VM_FAULT_WRITE; |
1da177e4 | 1382 | } |
920fc356 HD |
1383 | if (new_page) |
1384 | page_cache_release(new_page); | |
1385 | if (old_page) | |
1386 | page_cache_release(old_page); | |
65500d23 | 1387 | unlock: |
8f4e2101 | 1388 | pte_unmap_unlock(page_table, ptl); |
f33ea7f4 | 1389 | return ret; |
65500d23 | 1390 | oom: |
920fc356 HD |
1391 | if (old_page) |
1392 | page_cache_release(old_page); | |
1da177e4 LT |
1393 | return VM_FAULT_OOM; |
1394 | } | |
1395 | ||
1396 | /* | |
1397 | * Helper functions for unmap_mapping_range(). | |
1398 | * | |
1399 | * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __ | |
1400 | * | |
1401 | * We have to restart searching the prio_tree whenever we drop the lock, | |
1402 | * since the iterator is only valid while the lock is held, and anyway | |
1403 | * a later vma might be split and reinserted earlier while lock dropped. | |
1404 | * | |
1405 | * The list of nonlinear vmas could be handled more efficiently, using | |
1406 | * a placeholder, but handle it in the same way until a need is shown. | |
1407 | * It is important to search the prio_tree before nonlinear list: a vma | |
1408 | * may become nonlinear and be shifted from prio_tree to nonlinear list | |
1409 | * while the lock is dropped; but never shifted from list to prio_tree. | |
1410 | * | |
1411 | * In order to make forward progress despite restarting the search, | |
1412 | * vm_truncate_count is used to mark a vma as now dealt with, so we can | |
1413 | * quickly skip it next time around. Since the prio_tree search only | |
1414 | * shows us those vmas affected by unmapping the range in question, we | |
1415 | * can't efficiently keep all vmas in step with mapping->truncate_count: | |
1416 | * so instead reset them all whenever it wraps back to 0 (then go to 1). | |
1417 | * mapping->truncate_count and vma->vm_truncate_count are protected by | |
1418 | * i_mmap_lock. | |
1419 | * | |
1420 | * In order to make forward progress despite repeatedly restarting some | |
ee39b37b | 1421 | * large vma, note the restart_addr from unmap_vmas when it breaks out: |
1da177e4 LT |
1422 | * and restart from that address when we reach that vma again. It might |
1423 | * have been split or merged, shrunk or extended, but never shifted: so | |
1424 | * restart_addr remains valid so long as it remains in the vma's range. | |
1425 | * unmap_mapping_range forces truncate_count to leap over page-aligned | |
1426 | * values so we can save vma's restart_addr in its truncate_count field. | |
1427 | */ | |
1428 | #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK)) | |
1429 | ||
1430 | static void reset_vma_truncate_counts(struct address_space *mapping) | |
1431 | { | |
1432 | struct vm_area_struct *vma; | |
1433 | struct prio_tree_iter iter; | |
1434 | ||
1435 | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX) | |
1436 | vma->vm_truncate_count = 0; | |
1437 | list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) | |
1438 | vma->vm_truncate_count = 0; | |
1439 | } | |
1440 | ||
1441 | static int unmap_mapping_range_vma(struct vm_area_struct *vma, | |
1442 | unsigned long start_addr, unsigned long end_addr, | |
1443 | struct zap_details *details) | |
1444 | { | |
1445 | unsigned long restart_addr; | |
1446 | int need_break; | |
1447 | ||
1448 | again: | |
1449 | restart_addr = vma->vm_truncate_count; | |
1450 | if (is_restart_addr(restart_addr) && start_addr < restart_addr) { | |
1451 | start_addr = restart_addr; | |
1452 | if (start_addr >= end_addr) { | |
1453 | /* Top of vma has been split off since last time */ | |
1454 | vma->vm_truncate_count = details->truncate_count; | |
1455 | return 0; | |
1456 | } | |
1457 | } | |
1458 | ||
ee39b37b HD |
1459 | restart_addr = zap_page_range(vma, start_addr, |
1460 | end_addr - start_addr, details); | |
1da177e4 LT |
1461 | need_break = need_resched() || |
1462 | need_lockbreak(details->i_mmap_lock); | |
1463 | ||
ee39b37b | 1464 | if (restart_addr >= end_addr) { |
1da177e4 LT |
1465 | /* We have now completed this vma: mark it so */ |
1466 | vma->vm_truncate_count = details->truncate_count; | |
1467 | if (!need_break) | |
1468 | return 0; | |
1469 | } else { | |
1470 | /* Note restart_addr in vma's truncate_count field */ | |
ee39b37b | 1471 | vma->vm_truncate_count = restart_addr; |
1da177e4 LT |
1472 | if (!need_break) |
1473 | goto again; | |
1474 | } | |
1475 | ||
1476 | spin_unlock(details->i_mmap_lock); | |
1477 | cond_resched(); | |
1478 | spin_lock(details->i_mmap_lock); | |
1479 | return -EINTR; | |
1480 | } | |
1481 | ||
1482 | static inline void unmap_mapping_range_tree(struct prio_tree_root *root, | |
1483 | struct zap_details *details) | |
1484 | { | |
1485 | struct vm_area_struct *vma; | |
1486 | struct prio_tree_iter iter; | |
1487 | pgoff_t vba, vea, zba, zea; | |
1488 | ||
1489 | restart: | |
1490 | vma_prio_tree_foreach(vma, &iter, root, | |
1491 | details->first_index, details->last_index) { | |
1492 | /* Skip quickly over those we have already dealt with */ | |
1493 | if (vma->vm_truncate_count == details->truncate_count) | |
1494 | continue; | |
1495 | ||
1496 | vba = vma->vm_pgoff; | |
1497 | vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1; | |
1498 | /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ | |
1499 | zba = details->first_index; | |
1500 | if (zba < vba) | |
1501 | zba = vba; | |
1502 | zea = details->last_index; | |
1503 | if (zea > vea) | |
1504 | zea = vea; | |
1505 | ||
1506 | if (unmap_mapping_range_vma(vma, | |
1507 | ((zba - vba) << PAGE_SHIFT) + vma->vm_start, | |
1508 | ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, | |
1509 | details) < 0) | |
1510 | goto restart; | |
1511 | } | |
1512 | } | |
1513 | ||
1514 | static inline void unmap_mapping_range_list(struct list_head *head, | |
1515 | struct zap_details *details) | |
1516 | { | |
1517 | struct vm_area_struct *vma; | |
1518 | ||
1519 | /* | |
1520 | * In nonlinear VMAs there is no correspondence between virtual address | |
1521 | * offset and file offset. So we must perform an exhaustive search | |
1522 | * across *all* the pages in each nonlinear VMA, not just the pages | |
1523 | * whose virtual address lies outside the file truncation point. | |
1524 | */ | |
1525 | restart: | |
1526 | list_for_each_entry(vma, head, shared.vm_set.list) { | |
1527 | /* Skip quickly over those we have already dealt with */ | |
1528 | if (vma->vm_truncate_count == details->truncate_count) | |
1529 | continue; | |
1530 | details->nonlinear_vma = vma; | |
1531 | if (unmap_mapping_range_vma(vma, vma->vm_start, | |
1532 | vma->vm_end, details) < 0) | |
1533 | goto restart; | |
1534 | } | |
1535 | } | |
1536 | ||
1537 | /** | |
1538 | * unmap_mapping_range - unmap the portion of all mmaps | |
1539 | * in the specified address_space corresponding to the specified | |
1540 | * page range in the underlying file. | |
3d41088f | 1541 | * @mapping: the address space containing mmaps to be unmapped. |
1da177e4 LT |
1542 | * @holebegin: byte in first page to unmap, relative to the start of |
1543 | * the underlying file. This will be rounded down to a PAGE_SIZE | |
1544 | * boundary. Note that this is different from vmtruncate(), which | |
1545 | * must keep the partial page. In contrast, we must get rid of | |
1546 | * partial pages. | |
1547 | * @holelen: size of prospective hole in bytes. This will be rounded | |
1548 | * up to a PAGE_SIZE boundary. A holelen of zero truncates to the | |
1549 | * end of the file. | |
1550 | * @even_cows: 1 when truncating a file, unmap even private COWed pages; | |
1551 | * but 0 when invalidating pagecache, don't throw away private data. | |
1552 | */ | |
1553 | void unmap_mapping_range(struct address_space *mapping, | |
1554 | loff_t const holebegin, loff_t const holelen, int even_cows) | |
1555 | { | |
1556 | struct zap_details details; | |
1557 | pgoff_t hba = holebegin >> PAGE_SHIFT; | |
1558 | pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; | |
1559 | ||
1560 | /* Check for overflow. */ | |
1561 | if (sizeof(holelen) > sizeof(hlen)) { | |
1562 | long long holeend = | |
1563 | (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; | |
1564 | if (holeend & ~(long long)ULONG_MAX) | |
1565 | hlen = ULONG_MAX - hba + 1; | |
1566 | } | |
1567 | ||
1568 | details.check_mapping = even_cows? NULL: mapping; | |
1569 | details.nonlinear_vma = NULL; | |
1570 | details.first_index = hba; | |
1571 | details.last_index = hba + hlen - 1; | |
1572 | if (details.last_index < details.first_index) | |
1573 | details.last_index = ULONG_MAX; | |
1574 | details.i_mmap_lock = &mapping->i_mmap_lock; | |
1575 | ||
1576 | spin_lock(&mapping->i_mmap_lock); | |
1577 | ||
1578 | /* serialize i_size write against truncate_count write */ | |
1579 | smp_wmb(); | |
1580 | /* Protect against page faults, and endless unmapping loops */ | |
1581 | mapping->truncate_count++; | |
1582 | /* | |
1583 | * For archs where spin_lock has inclusive semantics like ia64 | |
1584 | * this smp_mb() will prevent to read pagetable contents | |
1585 | * before the truncate_count increment is visible to | |
1586 | * other cpus. | |
1587 | */ | |
1588 | smp_mb(); | |
1589 | if (unlikely(is_restart_addr(mapping->truncate_count))) { | |
1590 | if (mapping->truncate_count == 0) | |
1591 | reset_vma_truncate_counts(mapping); | |
1592 | mapping->truncate_count++; | |
1593 | } | |
1594 | details.truncate_count = mapping->truncate_count; | |
1595 | ||
1596 | if (unlikely(!prio_tree_empty(&mapping->i_mmap))) | |
1597 | unmap_mapping_range_tree(&mapping->i_mmap, &details); | |
1598 | if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) | |
1599 | unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); | |
1600 | spin_unlock(&mapping->i_mmap_lock); | |
1601 | } | |
1602 | EXPORT_SYMBOL(unmap_mapping_range); | |
1603 | ||
1604 | /* | |
1605 | * Handle all mappings that got truncated by a "truncate()" | |
1606 | * system call. | |
1607 | * | |
1608 | * NOTE! We have to be ready to update the memory sharing | |
1609 | * between the file and the memory map for a potential last | |
1610 | * incomplete page. Ugly, but necessary. | |
1611 | */ | |
1612 | int vmtruncate(struct inode * inode, loff_t offset) | |
1613 | { | |
1614 | struct address_space *mapping = inode->i_mapping; | |
1615 | unsigned long limit; | |
1616 | ||
1617 | if (inode->i_size < offset) | |
1618 | goto do_expand; | |
1619 | /* | |
1620 | * truncation of in-use swapfiles is disallowed - it would cause | |
1621 | * subsequent swapout to scribble on the now-freed blocks. | |
1622 | */ | |
1623 | if (IS_SWAPFILE(inode)) | |
1624 | goto out_busy; | |
1625 | i_size_write(inode, offset); | |
1626 | unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1); | |
1627 | truncate_inode_pages(mapping, offset); | |
1628 | goto out_truncate; | |
1629 | ||
1630 | do_expand: | |
1631 | limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; | |
1632 | if (limit != RLIM_INFINITY && offset > limit) | |
1633 | goto out_sig; | |
1634 | if (offset > inode->i_sb->s_maxbytes) | |
1635 | goto out_big; | |
1636 | i_size_write(inode, offset); | |
1637 | ||
1638 | out_truncate: | |
1639 | if (inode->i_op && inode->i_op->truncate) | |
1640 | inode->i_op->truncate(inode); | |
1641 | return 0; | |
1642 | out_sig: | |
1643 | send_sig(SIGXFSZ, current, 0); | |
1644 | out_big: | |
1645 | return -EFBIG; | |
1646 | out_busy: | |
1647 | return -ETXTBSY; | |
1648 | } | |
1649 | ||
1650 | EXPORT_SYMBOL(vmtruncate); | |
1651 | ||
1652 | /* | |
1653 | * Primitive swap readahead code. We simply read an aligned block of | |
1654 | * (1 << page_cluster) entries in the swap area. This method is chosen | |
1655 | * because it doesn't cost us any seek time. We also make sure to queue | |
1656 | * the 'original' request together with the readahead ones... | |
1657 | * | |
1658 | * This has been extended to use the NUMA policies from the mm triggering | |
1659 | * the readahead. | |
1660 | * | |
1661 | * Caller must hold down_read on the vma->vm_mm if vma is not NULL. | |
1662 | */ | |
1663 | void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma) | |
1664 | { | |
1665 | #ifdef CONFIG_NUMA | |
1666 | struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL; | |
1667 | #endif | |
1668 | int i, num; | |
1669 | struct page *new_page; | |
1670 | unsigned long offset; | |
1671 | ||
1672 | /* | |
1673 | * Get the number of handles we should do readahead io to. | |
1674 | */ | |
1675 | num = valid_swaphandles(entry, &offset); | |
1676 | for (i = 0; i < num; offset++, i++) { | |
1677 | /* Ok, do the async read-ahead now */ | |
1678 | new_page = read_swap_cache_async(swp_entry(swp_type(entry), | |
1679 | offset), vma, addr); | |
1680 | if (!new_page) | |
1681 | break; | |
1682 | page_cache_release(new_page); | |
1683 | #ifdef CONFIG_NUMA | |
1684 | /* | |
1685 | * Find the next applicable VMA for the NUMA policy. | |
1686 | */ | |
1687 | addr += PAGE_SIZE; | |
1688 | if (addr == 0) | |
1689 | vma = NULL; | |
1690 | if (vma) { | |
1691 | if (addr >= vma->vm_end) { | |
1692 | vma = next_vma; | |
1693 | next_vma = vma ? vma->vm_next : NULL; | |
1694 | } | |
1695 | if (vma && addr < vma->vm_start) | |
1696 | vma = NULL; | |
1697 | } else { | |
1698 | if (next_vma && addr >= next_vma->vm_start) { | |
1699 | vma = next_vma; | |
1700 | next_vma = vma->vm_next; | |
1701 | } | |
1702 | } | |
1703 | #endif | |
1704 | } | |
1705 | lru_add_drain(); /* Push any new pages onto the LRU now */ | |
1706 | } | |
1707 | ||
1708 | /* | |
8f4e2101 HD |
1709 | * We enter with non-exclusive mmap_sem (to exclude vma changes, |
1710 | * but allow concurrent faults), and pte mapped but not yet locked. | |
1711 | * We return with mmap_sem still held, but pte unmapped and unlocked. | |
1da177e4 | 1712 | */ |
65500d23 HD |
1713 | static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, |
1714 | unsigned long address, pte_t *page_table, pmd_t *pmd, | |
1715 | int write_access, pte_t orig_pte) | |
1da177e4 | 1716 | { |
8f4e2101 | 1717 | spinlock_t *ptl; |
1da177e4 | 1718 | struct page *page; |
65500d23 | 1719 | swp_entry_t entry; |
1da177e4 LT |
1720 | pte_t pte; |
1721 | int ret = VM_FAULT_MINOR; | |
1722 | ||
4c21e2f2 | 1723 | if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) |
8f4e2101 | 1724 | goto out; |
65500d23 HD |
1725 | |
1726 | entry = pte_to_swp_entry(orig_pte); | |
1da177e4 LT |
1727 | page = lookup_swap_cache(entry); |
1728 | if (!page) { | |
1729 | swapin_readahead(entry, address, vma); | |
1730 | page = read_swap_cache_async(entry, vma, address); | |
1731 | if (!page) { | |
1732 | /* | |
8f4e2101 HD |
1733 | * Back out if somebody else faulted in this pte |
1734 | * while we released the pte lock. | |
1da177e4 | 1735 | */ |
8f4e2101 | 1736 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); |
1da177e4 LT |
1737 | if (likely(pte_same(*page_table, orig_pte))) |
1738 | ret = VM_FAULT_OOM; | |
65500d23 | 1739 | goto unlock; |
1da177e4 LT |
1740 | } |
1741 | ||
1742 | /* Had to read the page from swap area: Major fault */ | |
1743 | ret = VM_FAULT_MAJOR; | |
1744 | inc_page_state(pgmajfault); | |
1745 | grab_swap_token(); | |
1746 | } | |
1747 | ||
1748 | mark_page_accessed(page); | |
1749 | lock_page(page); | |
1750 | ||
1751 | /* | |
8f4e2101 | 1752 | * Back out if somebody else already faulted in this pte. |
1da177e4 | 1753 | */ |
8f4e2101 | 1754 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); |
9e9bef07 | 1755 | if (unlikely(!pte_same(*page_table, orig_pte))) |
b8107480 | 1756 | goto out_nomap; |
b8107480 KK |
1757 | |
1758 | if (unlikely(!PageUptodate(page))) { | |
1759 | ret = VM_FAULT_SIGBUS; | |
1760 | goto out_nomap; | |
1da177e4 LT |
1761 | } |
1762 | ||
1763 | /* The page isn't present yet, go ahead with the fault. */ | |
1da177e4 | 1764 | |
4294621f | 1765 | inc_mm_counter(mm, anon_rss); |
1da177e4 LT |
1766 | pte = mk_pte(page, vma->vm_page_prot); |
1767 | if (write_access && can_share_swap_page(page)) { | |
1768 | pte = maybe_mkwrite(pte_mkdirty(pte), vma); | |
1769 | write_access = 0; | |
1770 | } | |
1da177e4 LT |
1771 | |
1772 | flush_icache_page(vma, page); | |
1773 | set_pte_at(mm, address, page_table, pte); | |
1774 | page_add_anon_rmap(page, vma, address); | |
1775 | ||
c475a8ab HD |
1776 | swap_free(entry); |
1777 | if (vm_swap_full()) | |
1778 | remove_exclusive_swap_page(page); | |
1779 | unlock_page(page); | |
1780 | ||
1da177e4 LT |
1781 | if (write_access) { |
1782 | if (do_wp_page(mm, vma, address, | |
8f4e2101 | 1783 | page_table, pmd, ptl, pte) == VM_FAULT_OOM) |
1da177e4 LT |
1784 | ret = VM_FAULT_OOM; |
1785 | goto out; | |
1786 | } | |
1787 | ||
1788 | /* No need to invalidate - it was non-present before */ | |
1789 | update_mmu_cache(vma, address, pte); | |
1790 | lazy_mmu_prot_update(pte); | |
65500d23 | 1791 | unlock: |
8f4e2101 | 1792 | pte_unmap_unlock(page_table, ptl); |
1da177e4 LT |
1793 | out: |
1794 | return ret; | |
b8107480 | 1795 | out_nomap: |
8f4e2101 | 1796 | pte_unmap_unlock(page_table, ptl); |
b8107480 KK |
1797 | unlock_page(page); |
1798 | page_cache_release(page); | |
65500d23 | 1799 | return ret; |
1da177e4 LT |
1800 | } |
1801 | ||
1802 | /* | |
8f4e2101 HD |
1803 | * We enter with non-exclusive mmap_sem (to exclude vma changes, |
1804 | * but allow concurrent faults), and pte mapped but not yet locked. | |
1805 | * We return with mmap_sem still held, but pte unmapped and unlocked. | |
1da177e4 | 1806 | */ |
65500d23 HD |
1807 | static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, |
1808 | unsigned long address, pte_t *page_table, pmd_t *pmd, | |
1809 | int write_access) | |
1da177e4 | 1810 | { |
8f4e2101 HD |
1811 | struct page *page; |
1812 | spinlock_t *ptl; | |
1da177e4 | 1813 | pte_t entry; |
1da177e4 | 1814 | |
f57e88a8 HD |
1815 | /* |
1816 | * A VM_UNPAGED vma will normally be filled with present ptes | |
1817 | * by remap_pfn_range, and never arrive here; but it might have | |
1818 | * holes, or if !VM_DONTEXPAND, mremap might have expanded it. | |
1819 | * It's weird enough handling anon pages in unpaged vmas, we do | |
1820 | * not want to worry about ZERO_PAGEs too (it may or may not | |
1821 | * matter if their counts wrap): just give them anon pages. | |
1822 | */ | |
1823 | ||
1824 | if (write_access || (vma->vm_flags & VM_UNPAGED)) { | |
1da177e4 LT |
1825 | /* Allocate our own private page. */ |
1826 | pte_unmap(page_table); | |
1da177e4 LT |
1827 | |
1828 | if (unlikely(anon_vma_prepare(vma))) | |
65500d23 HD |
1829 | goto oom; |
1830 | page = alloc_zeroed_user_highpage(vma, address); | |
1da177e4 | 1831 | if (!page) |
65500d23 | 1832 | goto oom; |
1da177e4 | 1833 | |
65500d23 HD |
1834 | entry = mk_pte(page, vma->vm_page_prot); |
1835 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | |
8f4e2101 HD |
1836 | |
1837 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); | |
1838 | if (!pte_none(*page_table)) | |
1839 | goto release; | |
1840 | inc_mm_counter(mm, anon_rss); | |
1da177e4 LT |
1841 | lru_cache_add_active(page); |
1842 | SetPageReferenced(page); | |
65500d23 | 1843 | page_add_anon_rmap(page, vma, address); |
b5810039 | 1844 | } else { |
8f4e2101 HD |
1845 | /* Map the ZERO_PAGE - vm_page_prot is readonly */ |
1846 | page = ZERO_PAGE(address); | |
1847 | page_cache_get(page); | |
1848 | entry = mk_pte(page, vma->vm_page_prot); | |
1849 | ||
4c21e2f2 | 1850 | ptl = pte_lockptr(mm, pmd); |
8f4e2101 HD |
1851 | spin_lock(ptl); |
1852 | if (!pte_none(*page_table)) | |
1853 | goto release; | |
b5810039 NP |
1854 | inc_mm_counter(mm, file_rss); |
1855 | page_add_file_rmap(page); | |
1da177e4 LT |
1856 | } |
1857 | ||
65500d23 | 1858 | set_pte_at(mm, address, page_table, entry); |
1da177e4 LT |
1859 | |
1860 | /* No need to invalidate - it was non-present before */ | |
65500d23 | 1861 | update_mmu_cache(vma, address, entry); |
1da177e4 | 1862 | lazy_mmu_prot_update(entry); |
65500d23 | 1863 | unlock: |
8f4e2101 | 1864 | pte_unmap_unlock(page_table, ptl); |
1da177e4 | 1865 | return VM_FAULT_MINOR; |
8f4e2101 HD |
1866 | release: |
1867 | page_cache_release(page); | |
1868 | goto unlock; | |
65500d23 | 1869 | oom: |
1da177e4 LT |
1870 | return VM_FAULT_OOM; |
1871 | } | |
1872 | ||
1873 | /* | |
1874 | * do_no_page() tries to create a new page mapping. It aggressively | |
1875 | * tries to share with existing pages, but makes a separate copy if | |
1876 | * the "write_access" parameter is true in order to avoid the next | |
1877 | * page fault. | |
1878 | * | |
1879 | * As this is called only for pages that do not currently exist, we | |
1880 | * do not need to flush old virtual caches or the TLB. | |
1881 | * | |
8f4e2101 HD |
1882 | * We enter with non-exclusive mmap_sem (to exclude vma changes, |
1883 | * but allow concurrent faults), and pte mapped but not yet locked. | |
1884 | * We return with mmap_sem still held, but pte unmapped and unlocked. | |
1da177e4 | 1885 | */ |
65500d23 HD |
1886 | static int do_no_page(struct mm_struct *mm, struct vm_area_struct *vma, |
1887 | unsigned long address, pte_t *page_table, pmd_t *pmd, | |
1888 | int write_access) | |
1da177e4 | 1889 | { |
8f4e2101 | 1890 | spinlock_t *ptl; |
65500d23 | 1891 | struct page *new_page; |
1da177e4 LT |
1892 | struct address_space *mapping = NULL; |
1893 | pte_t entry; | |
1894 | unsigned int sequence = 0; | |
1895 | int ret = VM_FAULT_MINOR; | |
1896 | int anon = 0; | |
1897 | ||
1da177e4 | 1898 | pte_unmap(page_table); |
f57e88a8 | 1899 | BUG_ON(vma->vm_flags & VM_UNPAGED); |
1da177e4 LT |
1900 | |
1901 | if (vma->vm_file) { | |
1902 | mapping = vma->vm_file->f_mapping; | |
1903 | sequence = mapping->truncate_count; | |
1904 | smp_rmb(); /* serializes i_size against truncate_count */ | |
1905 | } | |
1906 | retry: | |
1da177e4 LT |
1907 | new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret); |
1908 | /* | |
1909 | * No smp_rmb is needed here as long as there's a full | |
1910 | * spin_lock/unlock sequence inside the ->nopage callback | |
1911 | * (for the pagecache lookup) that acts as an implicit | |
1912 | * smp_mb() and prevents the i_size read to happen | |
1913 | * after the next truncate_count read. | |
1914 | */ | |
1915 | ||
1916 | /* no page was available -- either SIGBUS or OOM */ | |
1917 | if (new_page == NOPAGE_SIGBUS) | |
1918 | return VM_FAULT_SIGBUS; | |
1919 | if (new_page == NOPAGE_OOM) | |
1920 | return VM_FAULT_OOM; | |
1921 | ||
1922 | /* | |
1923 | * Should we do an early C-O-W break? | |
1924 | */ | |
1925 | if (write_access && !(vma->vm_flags & VM_SHARED)) { | |
1926 | struct page *page; | |
1927 | ||
1928 | if (unlikely(anon_vma_prepare(vma))) | |
1929 | goto oom; | |
1930 | page = alloc_page_vma(GFP_HIGHUSER, vma, address); | |
1931 | if (!page) | |
1932 | goto oom; | |
1933 | copy_user_highpage(page, new_page, address); | |
1934 | page_cache_release(new_page); | |
1935 | new_page = page; | |
1936 | anon = 1; | |
1937 | } | |
1938 | ||
8f4e2101 | 1939 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); |
1da177e4 LT |
1940 | /* |
1941 | * For a file-backed vma, someone could have truncated or otherwise | |
1942 | * invalidated this page. If unmap_mapping_range got called, | |
1943 | * retry getting the page. | |
1944 | */ | |
1945 | if (mapping && unlikely(sequence != mapping->truncate_count)) { | |
8f4e2101 | 1946 | pte_unmap_unlock(page_table, ptl); |
1da177e4 | 1947 | page_cache_release(new_page); |
65500d23 HD |
1948 | cond_resched(); |
1949 | sequence = mapping->truncate_count; | |
1950 | smp_rmb(); | |
1da177e4 LT |
1951 | goto retry; |
1952 | } | |
1da177e4 LT |
1953 | |
1954 | /* | |
1955 | * This silly early PAGE_DIRTY setting removes a race | |
1956 | * due to the bad i386 page protection. But it's valid | |
1957 | * for other architectures too. | |
1958 | * | |
1959 | * Note that if write_access is true, we either now have | |
1960 | * an exclusive copy of the page, or this is a shared mapping, | |
1961 | * so we can make it writable and dirty to avoid having to | |
1962 | * handle that later. | |
1963 | */ | |
1964 | /* Only go through if we didn't race with anybody else... */ | |
1965 | if (pte_none(*page_table)) { | |
1da177e4 LT |
1966 | flush_icache_page(vma, new_page); |
1967 | entry = mk_pte(new_page, vma->vm_page_prot); | |
1968 | if (write_access) | |
1969 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | |
1970 | set_pte_at(mm, address, page_table, entry); | |
1971 | if (anon) { | |
4294621f | 1972 | inc_mm_counter(mm, anon_rss); |
1da177e4 LT |
1973 | lru_cache_add_active(new_page); |
1974 | page_add_anon_rmap(new_page, vma, address); | |
f57e88a8 | 1975 | } else { |
4294621f | 1976 | inc_mm_counter(mm, file_rss); |
1da177e4 | 1977 | page_add_file_rmap(new_page); |
4294621f | 1978 | } |
1da177e4 LT |
1979 | } else { |
1980 | /* One of our sibling threads was faster, back out. */ | |
1da177e4 | 1981 | page_cache_release(new_page); |
65500d23 | 1982 | goto unlock; |
1da177e4 LT |
1983 | } |
1984 | ||
1985 | /* no need to invalidate: a not-present page shouldn't be cached */ | |
1986 | update_mmu_cache(vma, address, entry); | |
1987 | lazy_mmu_prot_update(entry); | |
65500d23 | 1988 | unlock: |
8f4e2101 | 1989 | pte_unmap_unlock(page_table, ptl); |
1da177e4 LT |
1990 | return ret; |
1991 | oom: | |
1992 | page_cache_release(new_page); | |
65500d23 | 1993 | return VM_FAULT_OOM; |
1da177e4 LT |
1994 | } |
1995 | ||
1996 | /* | |
1997 | * Fault of a previously existing named mapping. Repopulate the pte | |
1998 | * from the encoded file_pte if possible. This enables swappable | |
1999 | * nonlinear vmas. | |
8f4e2101 HD |
2000 | * |
2001 | * We enter with non-exclusive mmap_sem (to exclude vma changes, | |
2002 | * but allow concurrent faults), and pte mapped but not yet locked. | |
2003 | * We return with mmap_sem still held, but pte unmapped and unlocked. | |
1da177e4 | 2004 | */ |
65500d23 HD |
2005 | static int do_file_page(struct mm_struct *mm, struct vm_area_struct *vma, |
2006 | unsigned long address, pte_t *page_table, pmd_t *pmd, | |
2007 | int write_access, pte_t orig_pte) | |
1da177e4 | 2008 | { |
65500d23 | 2009 | pgoff_t pgoff; |
1da177e4 LT |
2010 | int err; |
2011 | ||
4c21e2f2 | 2012 | if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) |
8f4e2101 | 2013 | return VM_FAULT_MINOR; |
1da177e4 | 2014 | |
65500d23 HD |
2015 | if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) { |
2016 | /* | |
2017 | * Page table corrupted: show pte and kill process. | |
2018 | */ | |
b5810039 | 2019 | print_bad_pte(vma, orig_pte, address); |
65500d23 HD |
2020 | return VM_FAULT_OOM; |
2021 | } | |
2022 | /* We can then assume vm->vm_ops && vma->vm_ops->populate */ | |
2023 | ||
2024 | pgoff = pte_to_pgoff(orig_pte); | |
2025 | err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE, | |
2026 | vma->vm_page_prot, pgoff, 0); | |
1da177e4 LT |
2027 | if (err == -ENOMEM) |
2028 | return VM_FAULT_OOM; | |
2029 | if (err) | |
2030 | return VM_FAULT_SIGBUS; | |
2031 | return VM_FAULT_MAJOR; | |
2032 | } | |
2033 | ||
2034 | /* | |
2035 | * These routines also need to handle stuff like marking pages dirty | |
2036 | * and/or accessed for architectures that don't do it in hardware (most | |
2037 | * RISC architectures). The early dirtying is also good on the i386. | |
2038 | * | |
2039 | * There is also a hook called "update_mmu_cache()" that architectures | |
2040 | * with external mmu caches can use to update those (ie the Sparc or | |
2041 | * PowerPC hashed page tables that act as extended TLBs). | |
2042 | * | |
c74df32c HD |
2043 | * We enter with non-exclusive mmap_sem (to exclude vma changes, |
2044 | * but allow concurrent faults), and pte mapped but not yet locked. | |
2045 | * We return with mmap_sem still held, but pte unmapped and unlocked. | |
1da177e4 LT |
2046 | */ |
2047 | static inline int handle_pte_fault(struct mm_struct *mm, | |
65500d23 HD |
2048 | struct vm_area_struct *vma, unsigned long address, |
2049 | pte_t *pte, pmd_t *pmd, int write_access) | |
1da177e4 LT |
2050 | { |
2051 | pte_t entry; | |
1a44e149 | 2052 | pte_t old_entry; |
8f4e2101 | 2053 | spinlock_t *ptl; |
1da177e4 | 2054 | |
1a44e149 | 2055 | old_entry = entry = *pte; |
1da177e4 | 2056 | if (!pte_present(entry)) { |
65500d23 HD |
2057 | if (pte_none(entry)) { |
2058 | if (!vma->vm_ops || !vma->vm_ops->nopage) | |
2059 | return do_anonymous_page(mm, vma, address, | |
2060 | pte, pmd, write_access); | |
2061 | return do_no_page(mm, vma, address, | |
2062 | pte, pmd, write_access); | |
2063 | } | |
1da177e4 | 2064 | if (pte_file(entry)) |
65500d23 HD |
2065 | return do_file_page(mm, vma, address, |
2066 | pte, pmd, write_access, entry); | |
2067 | return do_swap_page(mm, vma, address, | |
2068 | pte, pmd, write_access, entry); | |
1da177e4 LT |
2069 | } |
2070 | ||
4c21e2f2 | 2071 | ptl = pte_lockptr(mm, pmd); |
8f4e2101 HD |
2072 | spin_lock(ptl); |
2073 | if (unlikely(!pte_same(*pte, entry))) | |
2074 | goto unlock; | |
1da177e4 LT |
2075 | if (write_access) { |
2076 | if (!pte_write(entry)) | |
8f4e2101 HD |
2077 | return do_wp_page(mm, vma, address, |
2078 | pte, pmd, ptl, entry); | |
1da177e4 LT |
2079 | entry = pte_mkdirty(entry); |
2080 | } | |
2081 | entry = pte_mkyoung(entry); | |
1a44e149 AA |
2082 | if (!pte_same(old_entry, entry)) { |
2083 | ptep_set_access_flags(vma, address, pte, entry, write_access); | |
2084 | update_mmu_cache(vma, address, entry); | |
2085 | lazy_mmu_prot_update(entry); | |
2086 | } else { | |
2087 | /* | |
2088 | * This is needed only for protection faults but the arch code | |
2089 | * is not yet telling us if this is a protection fault or not. | |
2090 | * This still avoids useless tlb flushes for .text page faults | |
2091 | * with threads. | |
2092 | */ | |
2093 | if (write_access) | |
2094 | flush_tlb_page(vma, address); | |
2095 | } | |
8f4e2101 HD |
2096 | unlock: |
2097 | pte_unmap_unlock(pte, ptl); | |
1da177e4 LT |
2098 | return VM_FAULT_MINOR; |
2099 | } | |
2100 | ||
2101 | /* | |
2102 | * By the time we get here, we already hold the mm semaphore | |
2103 | */ | |
65500d23 | 2104 | int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, |
1da177e4 LT |
2105 | unsigned long address, int write_access) |
2106 | { | |
2107 | pgd_t *pgd; | |
2108 | pud_t *pud; | |
2109 | pmd_t *pmd; | |
2110 | pte_t *pte; | |
2111 | ||
2112 | __set_current_state(TASK_RUNNING); | |
2113 | ||
2114 | inc_page_state(pgfault); | |
2115 | ||
ac9b9c66 HD |
2116 | if (unlikely(is_vm_hugetlb_page(vma))) |
2117 | return hugetlb_fault(mm, vma, address, write_access); | |
1da177e4 | 2118 | |
1da177e4 | 2119 | pgd = pgd_offset(mm, address); |
1da177e4 LT |
2120 | pud = pud_alloc(mm, pgd, address); |
2121 | if (!pud) | |
c74df32c | 2122 | return VM_FAULT_OOM; |
1da177e4 LT |
2123 | pmd = pmd_alloc(mm, pud, address); |
2124 | if (!pmd) | |
c74df32c | 2125 | return VM_FAULT_OOM; |
1da177e4 LT |
2126 | pte = pte_alloc_map(mm, pmd, address); |
2127 | if (!pte) | |
c74df32c | 2128 | return VM_FAULT_OOM; |
1da177e4 | 2129 | |
c74df32c | 2130 | return handle_pte_fault(mm, vma, address, pte, pmd, write_access); |
1da177e4 LT |
2131 | } |
2132 | ||
2133 | #ifndef __PAGETABLE_PUD_FOLDED | |
2134 | /* | |
2135 | * Allocate page upper directory. | |
872fec16 | 2136 | * We've already handled the fast-path in-line. |
1da177e4 | 2137 | */ |
1bb3630e | 2138 | int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) |
1da177e4 | 2139 | { |
c74df32c HD |
2140 | pud_t *new = pud_alloc_one(mm, address); |
2141 | if (!new) | |
1bb3630e | 2142 | return -ENOMEM; |
1da177e4 | 2143 | |
872fec16 | 2144 | spin_lock(&mm->page_table_lock); |
1bb3630e | 2145 | if (pgd_present(*pgd)) /* Another has populated it */ |
1da177e4 | 2146 | pud_free(new); |
1bb3630e HD |
2147 | else |
2148 | pgd_populate(mm, pgd, new); | |
c74df32c | 2149 | spin_unlock(&mm->page_table_lock); |
1bb3630e | 2150 | return 0; |
1da177e4 LT |
2151 | } |
2152 | #endif /* __PAGETABLE_PUD_FOLDED */ | |
2153 | ||
2154 | #ifndef __PAGETABLE_PMD_FOLDED | |
2155 | /* | |
2156 | * Allocate page middle directory. | |
872fec16 | 2157 | * We've already handled the fast-path in-line. |
1da177e4 | 2158 | */ |
1bb3630e | 2159 | int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) |
1da177e4 | 2160 | { |
c74df32c HD |
2161 | pmd_t *new = pmd_alloc_one(mm, address); |
2162 | if (!new) | |
1bb3630e | 2163 | return -ENOMEM; |
1da177e4 | 2164 | |
872fec16 | 2165 | spin_lock(&mm->page_table_lock); |
1da177e4 | 2166 | #ifndef __ARCH_HAS_4LEVEL_HACK |
1bb3630e | 2167 | if (pud_present(*pud)) /* Another has populated it */ |
1da177e4 | 2168 | pmd_free(new); |
1bb3630e HD |
2169 | else |
2170 | pud_populate(mm, pud, new); | |
1da177e4 | 2171 | #else |
1bb3630e | 2172 | if (pgd_present(*pud)) /* Another has populated it */ |
1da177e4 | 2173 | pmd_free(new); |
1bb3630e HD |
2174 | else |
2175 | pgd_populate(mm, pud, new); | |
1da177e4 | 2176 | #endif /* __ARCH_HAS_4LEVEL_HACK */ |
c74df32c | 2177 | spin_unlock(&mm->page_table_lock); |
1bb3630e | 2178 | return 0; |
1da177e4 LT |
2179 | } |
2180 | #endif /* __PAGETABLE_PMD_FOLDED */ | |
2181 | ||
2182 | int make_pages_present(unsigned long addr, unsigned long end) | |
2183 | { | |
2184 | int ret, len, write; | |
2185 | struct vm_area_struct * vma; | |
2186 | ||
2187 | vma = find_vma(current->mm, addr); | |
2188 | if (!vma) | |
2189 | return -1; | |
2190 | write = (vma->vm_flags & VM_WRITE) != 0; | |
2191 | if (addr >= end) | |
2192 | BUG(); | |
2193 | if (end > vma->vm_end) | |
2194 | BUG(); | |
2195 | len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE; | |
2196 | ret = get_user_pages(current, current->mm, addr, | |
2197 | len, write, 0, NULL, NULL); | |
2198 | if (ret < 0) | |
2199 | return ret; | |
2200 | return ret == len ? 0 : -1; | |
2201 | } | |
2202 | ||
2203 | /* | |
2204 | * Map a vmalloc()-space virtual address to the physical page. | |
2205 | */ | |
2206 | struct page * vmalloc_to_page(void * vmalloc_addr) | |
2207 | { | |
2208 | unsigned long addr = (unsigned long) vmalloc_addr; | |
2209 | struct page *page = NULL; | |
2210 | pgd_t *pgd = pgd_offset_k(addr); | |
2211 | pud_t *pud; | |
2212 | pmd_t *pmd; | |
2213 | pte_t *ptep, pte; | |
2214 | ||
2215 | if (!pgd_none(*pgd)) { | |
2216 | pud = pud_offset(pgd, addr); | |
2217 | if (!pud_none(*pud)) { | |
2218 | pmd = pmd_offset(pud, addr); | |
2219 | if (!pmd_none(*pmd)) { | |
2220 | ptep = pte_offset_map(pmd, addr); | |
2221 | pte = *ptep; | |
2222 | if (pte_present(pte)) | |
2223 | page = pte_page(pte); | |
2224 | pte_unmap(ptep); | |
2225 | } | |
2226 | } | |
2227 | } | |
2228 | return page; | |
2229 | } | |
2230 | ||
2231 | EXPORT_SYMBOL(vmalloc_to_page); | |
2232 | ||
2233 | /* | |
2234 | * Map a vmalloc()-space virtual address to the physical page frame number. | |
2235 | */ | |
2236 | unsigned long vmalloc_to_pfn(void * vmalloc_addr) | |
2237 | { | |
2238 | return page_to_pfn(vmalloc_to_page(vmalloc_addr)); | |
2239 | } | |
2240 | ||
2241 | EXPORT_SYMBOL(vmalloc_to_pfn); | |
2242 | ||
1da177e4 LT |
2243 | #if !defined(__HAVE_ARCH_GATE_AREA) |
2244 | ||
2245 | #if defined(AT_SYSINFO_EHDR) | |
5ce7852c | 2246 | static struct vm_area_struct gate_vma; |
1da177e4 LT |
2247 | |
2248 | static int __init gate_vma_init(void) | |
2249 | { | |
2250 | gate_vma.vm_mm = NULL; | |
2251 | gate_vma.vm_start = FIXADDR_USER_START; | |
2252 | gate_vma.vm_end = FIXADDR_USER_END; | |
2253 | gate_vma.vm_page_prot = PAGE_READONLY; | |
0b14c179 | 2254 | gate_vma.vm_flags = 0; |
1da177e4 LT |
2255 | return 0; |
2256 | } | |
2257 | __initcall(gate_vma_init); | |
2258 | #endif | |
2259 | ||
2260 | struct vm_area_struct *get_gate_vma(struct task_struct *tsk) | |
2261 | { | |
2262 | #ifdef AT_SYSINFO_EHDR | |
2263 | return &gate_vma; | |
2264 | #else | |
2265 | return NULL; | |
2266 | #endif | |
2267 | } | |
2268 | ||
2269 | int in_gate_area_no_task(unsigned long addr) | |
2270 | { | |
2271 | #ifdef AT_SYSINFO_EHDR | |
2272 | if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) | |
2273 | return 1; | |
2274 | #endif | |
2275 | return 0; | |
2276 | } | |
2277 | ||
2278 | #endif /* __HAVE_ARCH_GATE_AREA */ |