]> Git Repo - linux.git/blame - mm/page_alloc.c
mm, page_alloc: avoid page_to_pfn() when merging buddies
[linux.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
4b94ffdc 46#include <linux/memremap.h>
6811378e 47#include <linux/stop_machine.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
eefa864b 53#include <linux/page_ext.h>
3ac7fe5a 54#include <linux/debugobjects.h>
dbb1f81c 55#include <linux/kmemleak.h>
56de7263 56#include <linux/compaction.h>
0d3d062a 57#include <trace/events/kmem.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
e30825f1 61#include <linux/page_ext.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
4949148a 66#include <linux/memcontrol.h>
1da177e4 67
7ee3d4e8 68#include <asm/sections.h>
1da177e4 69#include <asm/tlbflush.h>
ac924c60 70#include <asm/div64.h>
1da177e4
LT
71#include "internal.h"
72
c8e251fa
CS
73/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
74static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 75#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 76
72812019
LS
77#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
78DEFINE_PER_CPU(int, numa_node);
79EXPORT_PER_CPU_SYMBOL(numa_node);
80#endif
81
7aac7898
LS
82#ifdef CONFIG_HAVE_MEMORYLESS_NODES
83/*
84 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
85 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
86 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
87 * defined in <linux/topology.h>.
88 */
89DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
90EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 91int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
92#endif
93
38addce8 94#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 95volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
96EXPORT_SYMBOL(latent_entropy);
97#endif
98
1da177e4 99/*
13808910 100 * Array of node states.
1da177e4 101 */
13808910
CL
102nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
103 [N_POSSIBLE] = NODE_MASK_ALL,
104 [N_ONLINE] = { { [0] = 1UL } },
105#ifndef CONFIG_NUMA
106 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
107#ifdef CONFIG_HIGHMEM
108 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
109#endif
110#ifdef CONFIG_MOVABLE_NODE
111 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
112#endif
113 [N_CPU] = { { [0] = 1UL } },
114#endif /* NUMA */
115};
116EXPORT_SYMBOL(node_states);
117
c3d5f5f0
JL
118/* Protect totalram_pages and zone->managed_pages */
119static DEFINE_SPINLOCK(managed_page_count_lock);
120
6c231b7b 121unsigned long totalram_pages __read_mostly;
cb45b0e9 122unsigned long totalreserve_pages __read_mostly;
e48322ab 123unsigned long totalcma_pages __read_mostly;
ab8fabd4 124
1b76b02f 125int percpu_pagelist_fraction;
dcce284a 126gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 127
bb14c2c7
VB
128/*
129 * A cached value of the page's pageblock's migratetype, used when the page is
130 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
131 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
132 * Also the migratetype set in the page does not necessarily match the pcplist
133 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
134 * other index - this ensures that it will be put on the correct CMA freelist.
135 */
136static inline int get_pcppage_migratetype(struct page *page)
137{
138 return page->index;
139}
140
141static inline void set_pcppage_migratetype(struct page *page, int migratetype)
142{
143 page->index = migratetype;
144}
145
452aa699
RW
146#ifdef CONFIG_PM_SLEEP
147/*
148 * The following functions are used by the suspend/hibernate code to temporarily
149 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
150 * while devices are suspended. To avoid races with the suspend/hibernate code,
151 * they should always be called with pm_mutex held (gfp_allowed_mask also should
152 * only be modified with pm_mutex held, unless the suspend/hibernate code is
153 * guaranteed not to run in parallel with that modification).
154 */
c9e664f1
RW
155
156static gfp_t saved_gfp_mask;
157
158void pm_restore_gfp_mask(void)
452aa699
RW
159{
160 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
161 if (saved_gfp_mask) {
162 gfp_allowed_mask = saved_gfp_mask;
163 saved_gfp_mask = 0;
164 }
452aa699
RW
165}
166
c9e664f1 167void pm_restrict_gfp_mask(void)
452aa699 168{
452aa699 169 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
170 WARN_ON(saved_gfp_mask);
171 saved_gfp_mask = gfp_allowed_mask;
d0164adc 172 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 173}
f90ac398
MG
174
175bool pm_suspended_storage(void)
176{
d0164adc 177 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
178 return false;
179 return true;
180}
452aa699
RW
181#endif /* CONFIG_PM_SLEEP */
182
d9c23400 183#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 184unsigned int pageblock_order __read_mostly;
d9c23400
MG
185#endif
186
d98c7a09 187static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 188
1da177e4
LT
189/*
190 * results with 256, 32 in the lowmem_reserve sysctl:
191 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
192 * 1G machine -> (16M dma, 784M normal, 224M high)
193 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
194 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 195 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
196 *
197 * TBD: should special case ZONE_DMA32 machines here - in those we normally
198 * don't need any ZONE_NORMAL reservation
1da177e4 199 */
2f1b6248 200int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 201#ifdef CONFIG_ZONE_DMA
2f1b6248 202 256,
4b51d669 203#endif
fb0e7942 204#ifdef CONFIG_ZONE_DMA32
2f1b6248 205 256,
fb0e7942 206#endif
e53ef38d 207#ifdef CONFIG_HIGHMEM
2a1e274a 208 32,
e53ef38d 209#endif
2a1e274a 210 32,
2f1b6248 211};
1da177e4
LT
212
213EXPORT_SYMBOL(totalram_pages);
1da177e4 214
15ad7cdc 215static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 216#ifdef CONFIG_ZONE_DMA
2f1b6248 217 "DMA",
4b51d669 218#endif
fb0e7942 219#ifdef CONFIG_ZONE_DMA32
2f1b6248 220 "DMA32",
fb0e7942 221#endif
2f1b6248 222 "Normal",
e53ef38d 223#ifdef CONFIG_HIGHMEM
2a1e274a 224 "HighMem",
e53ef38d 225#endif
2a1e274a 226 "Movable",
033fbae9
DW
227#ifdef CONFIG_ZONE_DEVICE
228 "Device",
229#endif
2f1b6248
CL
230};
231
60f30350
VB
232char * const migratetype_names[MIGRATE_TYPES] = {
233 "Unmovable",
234 "Movable",
235 "Reclaimable",
236 "HighAtomic",
237#ifdef CONFIG_CMA
238 "CMA",
239#endif
240#ifdef CONFIG_MEMORY_ISOLATION
241 "Isolate",
242#endif
243};
244
f1e61557
KS
245compound_page_dtor * const compound_page_dtors[] = {
246 NULL,
247 free_compound_page,
248#ifdef CONFIG_HUGETLB_PAGE
249 free_huge_page,
250#endif
9a982250
KS
251#ifdef CONFIG_TRANSPARENT_HUGEPAGE
252 free_transhuge_page,
253#endif
f1e61557
KS
254};
255
1da177e4 256int min_free_kbytes = 1024;
42aa83cb 257int user_min_free_kbytes = -1;
795ae7a0 258int watermark_scale_factor = 10;
1da177e4 259
2c85f51d
JB
260static unsigned long __meminitdata nr_kernel_pages;
261static unsigned long __meminitdata nr_all_pages;
a3142c8e 262static unsigned long __meminitdata dma_reserve;
1da177e4 263
0ee332c1
TH
264#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
265static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
266static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
267static unsigned long __initdata required_kernelcore;
268static unsigned long __initdata required_movablecore;
269static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
342332e6 270static bool mirrored_kernelcore;
0ee332c1
TH
271
272/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
273int movable_zone;
274EXPORT_SYMBOL(movable_zone);
275#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 276
418508c1
MS
277#if MAX_NUMNODES > 1
278int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 279int nr_online_nodes __read_mostly = 1;
418508c1 280EXPORT_SYMBOL(nr_node_ids);
62bc62a8 281EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
282#endif
283
9ef9acb0
MG
284int page_group_by_mobility_disabled __read_mostly;
285
3a80a7fa
MG
286#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
287static inline void reset_deferred_meminit(pg_data_t *pgdat)
288{
289 pgdat->first_deferred_pfn = ULONG_MAX;
290}
291
292/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 293static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 294{
ef70b6f4
MG
295 int nid = early_pfn_to_nid(pfn);
296
297 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
298 return true;
299
300 return false;
301}
302
303/*
304 * Returns false when the remaining initialisation should be deferred until
305 * later in the boot cycle when it can be parallelised.
306 */
307static inline bool update_defer_init(pg_data_t *pgdat,
308 unsigned long pfn, unsigned long zone_end,
309 unsigned long *nr_initialised)
310{
987b3095
LZ
311 unsigned long max_initialise;
312
3a80a7fa
MG
313 /* Always populate low zones for address-contrained allocations */
314 if (zone_end < pgdat_end_pfn(pgdat))
315 return true;
987b3095
LZ
316 /*
317 * Initialise at least 2G of a node but also take into account that
318 * two large system hashes that can take up 1GB for 0.25TB/node.
319 */
320 max_initialise = max(2UL << (30 - PAGE_SHIFT),
321 (pgdat->node_spanned_pages >> 8));
3a80a7fa 322
3a80a7fa 323 (*nr_initialised)++;
987b3095 324 if ((*nr_initialised > max_initialise) &&
3a80a7fa
MG
325 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
326 pgdat->first_deferred_pfn = pfn;
327 return false;
328 }
329
330 return true;
331}
332#else
333static inline void reset_deferred_meminit(pg_data_t *pgdat)
334{
335}
336
337static inline bool early_page_uninitialised(unsigned long pfn)
338{
339 return false;
340}
341
342static inline bool update_defer_init(pg_data_t *pgdat,
343 unsigned long pfn, unsigned long zone_end,
344 unsigned long *nr_initialised)
345{
346 return true;
347}
348#endif
349
0b423ca2
MG
350/* Return a pointer to the bitmap storing bits affecting a block of pages */
351static inline unsigned long *get_pageblock_bitmap(struct page *page,
352 unsigned long pfn)
353{
354#ifdef CONFIG_SPARSEMEM
355 return __pfn_to_section(pfn)->pageblock_flags;
356#else
357 return page_zone(page)->pageblock_flags;
358#endif /* CONFIG_SPARSEMEM */
359}
360
361static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
362{
363#ifdef CONFIG_SPARSEMEM
364 pfn &= (PAGES_PER_SECTION-1);
365 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
366#else
367 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
368 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
369#endif /* CONFIG_SPARSEMEM */
370}
371
372/**
373 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
374 * @page: The page within the block of interest
375 * @pfn: The target page frame number
376 * @end_bitidx: The last bit of interest to retrieve
377 * @mask: mask of bits that the caller is interested in
378 *
379 * Return: pageblock_bits flags
380 */
381static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
382 unsigned long pfn,
383 unsigned long end_bitidx,
384 unsigned long mask)
385{
386 unsigned long *bitmap;
387 unsigned long bitidx, word_bitidx;
388 unsigned long word;
389
390 bitmap = get_pageblock_bitmap(page, pfn);
391 bitidx = pfn_to_bitidx(page, pfn);
392 word_bitidx = bitidx / BITS_PER_LONG;
393 bitidx &= (BITS_PER_LONG-1);
394
395 word = bitmap[word_bitidx];
396 bitidx += end_bitidx;
397 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
398}
399
400unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
401 unsigned long end_bitidx,
402 unsigned long mask)
403{
404 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
405}
406
407static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
408{
409 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
410}
411
412/**
413 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
414 * @page: The page within the block of interest
415 * @flags: The flags to set
416 * @pfn: The target page frame number
417 * @end_bitidx: The last bit of interest
418 * @mask: mask of bits that the caller is interested in
419 */
420void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
421 unsigned long pfn,
422 unsigned long end_bitidx,
423 unsigned long mask)
424{
425 unsigned long *bitmap;
426 unsigned long bitidx, word_bitidx;
427 unsigned long old_word, word;
428
429 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
430
431 bitmap = get_pageblock_bitmap(page, pfn);
432 bitidx = pfn_to_bitidx(page, pfn);
433 word_bitidx = bitidx / BITS_PER_LONG;
434 bitidx &= (BITS_PER_LONG-1);
435
436 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
437
438 bitidx += end_bitidx;
439 mask <<= (BITS_PER_LONG - bitidx - 1);
440 flags <<= (BITS_PER_LONG - bitidx - 1);
441
442 word = READ_ONCE(bitmap[word_bitidx]);
443 for (;;) {
444 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
445 if (word == old_word)
446 break;
447 word = old_word;
448 }
449}
3a80a7fa 450
ee6f509c 451void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 452{
5d0f3f72
KM
453 if (unlikely(page_group_by_mobility_disabled &&
454 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
455 migratetype = MIGRATE_UNMOVABLE;
456
b2a0ac88
MG
457 set_pageblock_flags_group(page, (unsigned long)migratetype,
458 PB_migrate, PB_migrate_end);
459}
460
13e7444b 461#ifdef CONFIG_DEBUG_VM
c6a57e19 462static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 463{
bdc8cb98
DH
464 int ret = 0;
465 unsigned seq;
466 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 467 unsigned long sp, start_pfn;
c6a57e19 468
bdc8cb98
DH
469 do {
470 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
471 start_pfn = zone->zone_start_pfn;
472 sp = zone->spanned_pages;
108bcc96 473 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
474 ret = 1;
475 } while (zone_span_seqretry(zone, seq));
476
b5e6a5a2 477 if (ret)
613813e8
DH
478 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
479 pfn, zone_to_nid(zone), zone->name,
480 start_pfn, start_pfn + sp);
b5e6a5a2 481
bdc8cb98 482 return ret;
c6a57e19
DH
483}
484
485static int page_is_consistent(struct zone *zone, struct page *page)
486{
14e07298 487 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 488 return 0;
1da177e4 489 if (zone != page_zone(page))
c6a57e19
DH
490 return 0;
491
492 return 1;
493}
494/*
495 * Temporary debugging check for pages not lying within a given zone.
496 */
497static int bad_range(struct zone *zone, struct page *page)
498{
499 if (page_outside_zone_boundaries(zone, page))
1da177e4 500 return 1;
c6a57e19
DH
501 if (!page_is_consistent(zone, page))
502 return 1;
503
1da177e4
LT
504 return 0;
505}
13e7444b
NP
506#else
507static inline int bad_range(struct zone *zone, struct page *page)
508{
509 return 0;
510}
511#endif
512
d230dec1
KS
513static void bad_page(struct page *page, const char *reason,
514 unsigned long bad_flags)
1da177e4 515{
d936cf9b
HD
516 static unsigned long resume;
517 static unsigned long nr_shown;
518 static unsigned long nr_unshown;
519
520 /*
521 * Allow a burst of 60 reports, then keep quiet for that minute;
522 * or allow a steady drip of one report per second.
523 */
524 if (nr_shown == 60) {
525 if (time_before(jiffies, resume)) {
526 nr_unshown++;
527 goto out;
528 }
529 if (nr_unshown) {
ff8e8116 530 pr_alert(
1e9e6365 531 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
532 nr_unshown);
533 nr_unshown = 0;
534 }
535 nr_shown = 0;
536 }
537 if (nr_shown++ == 0)
538 resume = jiffies + 60 * HZ;
539
ff8e8116 540 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 541 current->comm, page_to_pfn(page));
ff8e8116
VB
542 __dump_page(page, reason);
543 bad_flags &= page->flags;
544 if (bad_flags)
545 pr_alert("bad because of flags: %#lx(%pGp)\n",
546 bad_flags, &bad_flags);
4e462112 547 dump_page_owner(page);
3dc14741 548
4f31888c 549 print_modules();
1da177e4 550 dump_stack();
d936cf9b 551out:
8cc3b392 552 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 553 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 554 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
555}
556
1da177e4
LT
557/*
558 * Higher-order pages are called "compound pages". They are structured thusly:
559 *
1d798ca3 560 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 561 *
1d798ca3
KS
562 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
563 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 564 *
1d798ca3
KS
565 * The first tail page's ->compound_dtor holds the offset in array of compound
566 * page destructors. See compound_page_dtors.
1da177e4 567 *
1d798ca3 568 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 569 * This usage means that zero-order pages may not be compound.
1da177e4 570 */
d98c7a09 571
9a982250 572void free_compound_page(struct page *page)
d98c7a09 573{
d85f3385 574 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
575}
576
d00181b9 577void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
578{
579 int i;
580 int nr_pages = 1 << order;
581
f1e61557 582 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
583 set_compound_order(page, order);
584 __SetPageHead(page);
585 for (i = 1; i < nr_pages; i++) {
586 struct page *p = page + i;
58a84aa9 587 set_page_count(p, 0);
1c290f64 588 p->mapping = TAIL_MAPPING;
1d798ca3 589 set_compound_head(p, page);
18229df5 590 }
53f9263b 591 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
592}
593
c0a32fc5
SG
594#ifdef CONFIG_DEBUG_PAGEALLOC
595unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
596bool _debug_pagealloc_enabled __read_mostly
597 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 598EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
599bool _debug_guardpage_enabled __read_mostly;
600
031bc574
JK
601static int __init early_debug_pagealloc(char *buf)
602{
603 if (!buf)
604 return -EINVAL;
2a138dc7 605 return kstrtobool(buf, &_debug_pagealloc_enabled);
031bc574
JK
606}
607early_param("debug_pagealloc", early_debug_pagealloc);
608
e30825f1
JK
609static bool need_debug_guardpage(void)
610{
031bc574
JK
611 /* If we don't use debug_pagealloc, we don't need guard page */
612 if (!debug_pagealloc_enabled())
613 return false;
614
f1c1e9f7
JK
615 if (!debug_guardpage_minorder())
616 return false;
617
e30825f1
JK
618 return true;
619}
620
621static void init_debug_guardpage(void)
622{
031bc574
JK
623 if (!debug_pagealloc_enabled())
624 return;
625
f1c1e9f7
JK
626 if (!debug_guardpage_minorder())
627 return;
628
e30825f1
JK
629 _debug_guardpage_enabled = true;
630}
631
632struct page_ext_operations debug_guardpage_ops = {
633 .need = need_debug_guardpage,
634 .init = init_debug_guardpage,
635};
c0a32fc5
SG
636
637static int __init debug_guardpage_minorder_setup(char *buf)
638{
639 unsigned long res;
640
641 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 642 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
643 return 0;
644 }
645 _debug_guardpage_minorder = res;
1170532b 646 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
647 return 0;
648}
f1c1e9f7 649early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 650
acbc15a4 651static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 652 unsigned int order, int migratetype)
c0a32fc5 653{
e30825f1
JK
654 struct page_ext *page_ext;
655
656 if (!debug_guardpage_enabled())
acbc15a4
JK
657 return false;
658
659 if (order >= debug_guardpage_minorder())
660 return false;
e30825f1
JK
661
662 page_ext = lookup_page_ext(page);
f86e4271 663 if (unlikely(!page_ext))
acbc15a4 664 return false;
f86e4271 665
e30825f1
JK
666 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
667
2847cf95
JK
668 INIT_LIST_HEAD(&page->lru);
669 set_page_private(page, order);
670 /* Guard pages are not available for any usage */
671 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
672
673 return true;
c0a32fc5
SG
674}
675
2847cf95
JK
676static inline void clear_page_guard(struct zone *zone, struct page *page,
677 unsigned int order, int migratetype)
c0a32fc5 678{
e30825f1
JK
679 struct page_ext *page_ext;
680
681 if (!debug_guardpage_enabled())
682 return;
683
684 page_ext = lookup_page_ext(page);
f86e4271
YS
685 if (unlikely(!page_ext))
686 return;
687
e30825f1
JK
688 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
689
2847cf95
JK
690 set_page_private(page, 0);
691 if (!is_migrate_isolate(migratetype))
692 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
693}
694#else
980ac167 695struct page_ext_operations debug_guardpage_ops;
acbc15a4
JK
696static inline bool set_page_guard(struct zone *zone, struct page *page,
697 unsigned int order, int migratetype) { return false; }
2847cf95
JK
698static inline void clear_page_guard(struct zone *zone, struct page *page,
699 unsigned int order, int migratetype) {}
c0a32fc5
SG
700#endif
701
7aeb09f9 702static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 703{
4c21e2f2 704 set_page_private(page, order);
676165a8 705 __SetPageBuddy(page);
1da177e4
LT
706}
707
708static inline void rmv_page_order(struct page *page)
709{
676165a8 710 __ClearPageBuddy(page);
4c21e2f2 711 set_page_private(page, 0);
1da177e4
LT
712}
713
1da177e4
LT
714/*
715 * This function checks whether a page is free && is the buddy
716 * we can do coalesce a page and its buddy if
13ad59df 717 * (a) the buddy is not in a hole (check before calling!) &&
676165a8 718 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
719 * (c) a page and its buddy have the same order &&
720 * (d) a page and its buddy are in the same zone.
676165a8 721 *
cf6fe945
WSH
722 * For recording whether a page is in the buddy system, we set ->_mapcount
723 * PAGE_BUDDY_MAPCOUNT_VALUE.
724 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
725 * serialized by zone->lock.
1da177e4 726 *
676165a8 727 * For recording page's order, we use page_private(page).
1da177e4 728 */
cb2b95e1 729static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 730 unsigned int order)
1da177e4 731{
c0a32fc5 732 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
733 if (page_zone_id(page) != page_zone_id(buddy))
734 return 0;
735
4c5018ce
WY
736 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
737
c0a32fc5
SG
738 return 1;
739 }
740
cb2b95e1 741 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
742 /*
743 * zone check is done late to avoid uselessly
744 * calculating zone/node ids for pages that could
745 * never merge.
746 */
747 if (page_zone_id(page) != page_zone_id(buddy))
748 return 0;
749
4c5018ce
WY
750 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
751
6aa3001b 752 return 1;
676165a8 753 }
6aa3001b 754 return 0;
1da177e4
LT
755}
756
757/*
758 * Freeing function for a buddy system allocator.
759 *
760 * The concept of a buddy system is to maintain direct-mapped table
761 * (containing bit values) for memory blocks of various "orders".
762 * The bottom level table contains the map for the smallest allocatable
763 * units of memory (here, pages), and each level above it describes
764 * pairs of units from the levels below, hence, "buddies".
765 * At a high level, all that happens here is marking the table entry
766 * at the bottom level available, and propagating the changes upward
767 * as necessary, plus some accounting needed to play nicely with other
768 * parts of the VM system.
769 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
770 * free pages of length of (1 << order) and marked with _mapcount
771 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
772 * field.
1da177e4 773 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
774 * other. That is, if we allocate a small block, and both were
775 * free, the remainder of the region must be split into blocks.
1da177e4 776 * If a block is freed, and its buddy is also free, then this
5f63b720 777 * triggers coalescing into a block of larger size.
1da177e4 778 *
6d49e352 779 * -- nyc
1da177e4
LT
780 */
781
48db57f8 782static inline void __free_one_page(struct page *page,
dc4b0caf 783 unsigned long pfn,
ed0ae21d
MG
784 struct zone *zone, unsigned int order,
785 int migratetype)
1da177e4 786{
76741e77
VB
787 unsigned long combined_pfn;
788 unsigned long uninitialized_var(buddy_pfn);
6dda9d55 789 struct page *buddy;
d9dddbf5
VB
790 unsigned int max_order;
791
792 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 793
d29bb978 794 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 795 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 796
ed0ae21d 797 VM_BUG_ON(migratetype == -1);
d9dddbf5 798 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 799 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 800
76741e77 801 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 802 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 803
d9dddbf5 804continue_merging:
3c605096 805 while (order < max_order - 1) {
76741e77
VB
806 buddy_pfn = __find_buddy_pfn(pfn, order);
807 buddy = page + (buddy_pfn - pfn);
13ad59df
VB
808
809 if (!pfn_valid_within(buddy_pfn))
810 goto done_merging;
cb2b95e1 811 if (!page_is_buddy(page, buddy, order))
d9dddbf5 812 goto done_merging;
c0a32fc5
SG
813 /*
814 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
815 * merge with it and move up one order.
816 */
817 if (page_is_guard(buddy)) {
2847cf95 818 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
819 } else {
820 list_del(&buddy->lru);
821 zone->free_area[order].nr_free--;
822 rmv_page_order(buddy);
823 }
76741e77
VB
824 combined_pfn = buddy_pfn & pfn;
825 page = page + (combined_pfn - pfn);
826 pfn = combined_pfn;
1da177e4
LT
827 order++;
828 }
d9dddbf5
VB
829 if (max_order < MAX_ORDER) {
830 /* If we are here, it means order is >= pageblock_order.
831 * We want to prevent merge between freepages on isolate
832 * pageblock and normal pageblock. Without this, pageblock
833 * isolation could cause incorrect freepage or CMA accounting.
834 *
835 * We don't want to hit this code for the more frequent
836 * low-order merging.
837 */
838 if (unlikely(has_isolate_pageblock(zone))) {
839 int buddy_mt;
840
76741e77
VB
841 buddy_pfn = __find_buddy_pfn(pfn, order);
842 buddy = page + (buddy_pfn - pfn);
d9dddbf5
VB
843 buddy_mt = get_pageblock_migratetype(buddy);
844
845 if (migratetype != buddy_mt
846 && (is_migrate_isolate(migratetype) ||
847 is_migrate_isolate(buddy_mt)))
848 goto done_merging;
849 }
850 max_order++;
851 goto continue_merging;
852 }
853
854done_merging:
1da177e4 855 set_page_order(page, order);
6dda9d55
CZ
856
857 /*
858 * If this is not the largest possible page, check if the buddy
859 * of the next-highest order is free. If it is, it's possible
860 * that pages are being freed that will coalesce soon. In case,
861 * that is happening, add the free page to the tail of the list
862 * so it's less likely to be used soon and more likely to be merged
863 * as a higher order page
864 */
13ad59df 865 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
6dda9d55 866 struct page *higher_page, *higher_buddy;
76741e77
VB
867 combined_pfn = buddy_pfn & pfn;
868 higher_page = page + (combined_pfn - pfn);
869 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
870 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
6dda9d55
CZ
871 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
872 list_add_tail(&page->lru,
873 &zone->free_area[order].free_list[migratetype]);
874 goto out;
875 }
876 }
877
878 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
879out:
1da177e4
LT
880 zone->free_area[order].nr_free++;
881}
882
7bfec6f4
MG
883/*
884 * A bad page could be due to a number of fields. Instead of multiple branches,
885 * try and check multiple fields with one check. The caller must do a detailed
886 * check if necessary.
887 */
888static inline bool page_expected_state(struct page *page,
889 unsigned long check_flags)
890{
891 if (unlikely(atomic_read(&page->_mapcount) != -1))
892 return false;
893
894 if (unlikely((unsigned long)page->mapping |
895 page_ref_count(page) |
896#ifdef CONFIG_MEMCG
897 (unsigned long)page->mem_cgroup |
898#endif
899 (page->flags & check_flags)))
900 return false;
901
902 return true;
903}
904
bb552ac6 905static void free_pages_check_bad(struct page *page)
1da177e4 906{
7bfec6f4
MG
907 const char *bad_reason;
908 unsigned long bad_flags;
909
7bfec6f4
MG
910 bad_reason = NULL;
911 bad_flags = 0;
f0b791a3 912
53f9263b 913 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
914 bad_reason = "nonzero mapcount";
915 if (unlikely(page->mapping != NULL))
916 bad_reason = "non-NULL mapping";
fe896d18 917 if (unlikely(page_ref_count(page) != 0))
0139aa7b 918 bad_reason = "nonzero _refcount";
f0b791a3
DH
919 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
920 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
921 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
922 }
9edad6ea
JW
923#ifdef CONFIG_MEMCG
924 if (unlikely(page->mem_cgroup))
925 bad_reason = "page still charged to cgroup";
926#endif
7bfec6f4 927 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
928}
929
930static inline int free_pages_check(struct page *page)
931{
da838d4f 932 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 933 return 0;
bb552ac6
MG
934
935 /* Something has gone sideways, find it */
936 free_pages_check_bad(page);
7bfec6f4 937 return 1;
1da177e4
LT
938}
939
4db7548c
MG
940static int free_tail_pages_check(struct page *head_page, struct page *page)
941{
942 int ret = 1;
943
944 /*
945 * We rely page->lru.next never has bit 0 set, unless the page
946 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
947 */
948 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
949
950 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
951 ret = 0;
952 goto out;
953 }
954 switch (page - head_page) {
955 case 1:
956 /* the first tail page: ->mapping is compound_mapcount() */
957 if (unlikely(compound_mapcount(page))) {
958 bad_page(page, "nonzero compound_mapcount", 0);
959 goto out;
960 }
961 break;
962 case 2:
963 /*
964 * the second tail page: ->mapping is
965 * page_deferred_list().next -- ignore value.
966 */
967 break;
968 default:
969 if (page->mapping != TAIL_MAPPING) {
970 bad_page(page, "corrupted mapping in tail page", 0);
971 goto out;
972 }
973 break;
974 }
975 if (unlikely(!PageTail(page))) {
976 bad_page(page, "PageTail not set", 0);
977 goto out;
978 }
979 if (unlikely(compound_head(page) != head_page)) {
980 bad_page(page, "compound_head not consistent", 0);
981 goto out;
982 }
983 ret = 0;
984out:
985 page->mapping = NULL;
986 clear_compound_head(page);
987 return ret;
988}
989
e2769dbd
MG
990static __always_inline bool free_pages_prepare(struct page *page,
991 unsigned int order, bool check_free)
4db7548c 992{
e2769dbd 993 int bad = 0;
4db7548c 994
4db7548c
MG
995 VM_BUG_ON_PAGE(PageTail(page), page);
996
e2769dbd
MG
997 trace_mm_page_free(page, order);
998 kmemcheck_free_shadow(page, order);
e2769dbd
MG
999
1000 /*
1001 * Check tail pages before head page information is cleared to
1002 * avoid checking PageCompound for order-0 pages.
1003 */
1004 if (unlikely(order)) {
1005 bool compound = PageCompound(page);
1006 int i;
1007
1008 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1009
9a73f61b
KS
1010 if (compound)
1011 ClearPageDoubleMap(page);
e2769dbd
MG
1012 for (i = 1; i < (1 << order); i++) {
1013 if (compound)
1014 bad += free_tail_pages_check(page, page + i);
1015 if (unlikely(free_pages_check(page + i))) {
1016 bad++;
1017 continue;
1018 }
1019 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1020 }
1021 }
bda807d4 1022 if (PageMappingFlags(page))
4db7548c 1023 page->mapping = NULL;
c4159a75 1024 if (memcg_kmem_enabled() && PageKmemcg(page))
4949148a 1025 memcg_kmem_uncharge(page, order);
e2769dbd
MG
1026 if (check_free)
1027 bad += free_pages_check(page);
1028 if (bad)
1029 return false;
4db7548c 1030
e2769dbd
MG
1031 page_cpupid_reset_last(page);
1032 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1033 reset_page_owner(page, order);
4db7548c
MG
1034
1035 if (!PageHighMem(page)) {
1036 debug_check_no_locks_freed(page_address(page),
e2769dbd 1037 PAGE_SIZE << order);
4db7548c 1038 debug_check_no_obj_freed(page_address(page),
e2769dbd 1039 PAGE_SIZE << order);
4db7548c 1040 }
e2769dbd
MG
1041 arch_free_page(page, order);
1042 kernel_poison_pages(page, 1 << order, 0);
1043 kernel_map_pages(page, 1 << order, 0);
29b52de1 1044 kasan_free_pages(page, order);
4db7548c 1045
4db7548c
MG
1046 return true;
1047}
1048
e2769dbd
MG
1049#ifdef CONFIG_DEBUG_VM
1050static inline bool free_pcp_prepare(struct page *page)
1051{
1052 return free_pages_prepare(page, 0, true);
1053}
1054
1055static inline bool bulkfree_pcp_prepare(struct page *page)
1056{
1057 return false;
1058}
1059#else
1060static bool free_pcp_prepare(struct page *page)
1061{
1062 return free_pages_prepare(page, 0, false);
1063}
1064
4db7548c
MG
1065static bool bulkfree_pcp_prepare(struct page *page)
1066{
1067 return free_pages_check(page);
1068}
1069#endif /* CONFIG_DEBUG_VM */
1070
1da177e4 1071/*
5f8dcc21 1072 * Frees a number of pages from the PCP lists
1da177e4 1073 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1074 * count is the number of pages to free.
1da177e4
LT
1075 *
1076 * If the zone was previously in an "all pages pinned" state then look to
1077 * see if this freeing clears that state.
1078 *
1079 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1080 * pinned" detection logic.
1081 */
5f8dcc21
MG
1082static void free_pcppages_bulk(struct zone *zone, int count,
1083 struct per_cpu_pages *pcp)
1da177e4 1084{
5f8dcc21 1085 int migratetype = 0;
a6f9edd6 1086 int batch_free = 0;
0d5d823a 1087 unsigned long nr_scanned;
3777999d 1088 bool isolated_pageblocks;
5f8dcc21 1089
c54ad30c 1090 spin_lock(&zone->lock);
3777999d 1091 isolated_pageblocks = has_isolate_pageblock(zone);
599d0c95 1092 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
0d5d823a 1093 if (nr_scanned)
599d0c95 1094 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 1095
e5b31ac2 1096 while (count) {
48db57f8 1097 struct page *page;
5f8dcc21
MG
1098 struct list_head *list;
1099
1100 /*
a6f9edd6
MG
1101 * Remove pages from lists in a round-robin fashion. A
1102 * batch_free count is maintained that is incremented when an
1103 * empty list is encountered. This is so more pages are freed
1104 * off fuller lists instead of spinning excessively around empty
1105 * lists
5f8dcc21
MG
1106 */
1107 do {
a6f9edd6 1108 batch_free++;
5f8dcc21
MG
1109 if (++migratetype == MIGRATE_PCPTYPES)
1110 migratetype = 0;
1111 list = &pcp->lists[migratetype];
1112 } while (list_empty(list));
48db57f8 1113
1d16871d
NK
1114 /* This is the only non-empty list. Free them all. */
1115 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1116 batch_free = count;
1d16871d 1117
a6f9edd6 1118 do {
770c8aaa
BZ
1119 int mt; /* migratetype of the to-be-freed page */
1120
a16601c5 1121 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
1122 /* must delete as __free_one_page list manipulates */
1123 list_del(&page->lru);
aa016d14 1124
bb14c2c7 1125 mt = get_pcppage_migratetype(page);
aa016d14
VB
1126 /* MIGRATE_ISOLATE page should not go to pcplists */
1127 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1128 /* Pageblock could have been isolated meanwhile */
3777999d 1129 if (unlikely(isolated_pageblocks))
51bb1a40 1130 mt = get_pageblock_migratetype(page);
51bb1a40 1131
4db7548c
MG
1132 if (bulkfree_pcp_prepare(page))
1133 continue;
1134
dc4b0caf 1135 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 1136 trace_mm_page_pcpu_drain(page, 0, mt);
e5b31ac2 1137 } while (--count && --batch_free && !list_empty(list));
1da177e4 1138 }
c54ad30c 1139 spin_unlock(&zone->lock);
1da177e4
LT
1140}
1141
dc4b0caf
MG
1142static void free_one_page(struct zone *zone,
1143 struct page *page, unsigned long pfn,
7aeb09f9 1144 unsigned int order,
ed0ae21d 1145 int migratetype)
1da177e4 1146{
0d5d823a 1147 unsigned long nr_scanned;
006d22d9 1148 spin_lock(&zone->lock);
599d0c95 1149 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
0d5d823a 1150 if (nr_scanned)
599d0c95 1151 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 1152
ad53f92e
JK
1153 if (unlikely(has_isolate_pageblock(zone) ||
1154 is_migrate_isolate(migratetype))) {
1155 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1156 }
dc4b0caf 1157 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 1158 spin_unlock(&zone->lock);
48db57f8
NP
1159}
1160
1e8ce83c
RH
1161static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1162 unsigned long zone, int nid)
1163{
1e8ce83c 1164 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1165 init_page_count(page);
1166 page_mapcount_reset(page);
1167 page_cpupid_reset_last(page);
1e8ce83c 1168
1e8ce83c
RH
1169 INIT_LIST_HEAD(&page->lru);
1170#ifdef WANT_PAGE_VIRTUAL
1171 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1172 if (!is_highmem_idx(zone))
1173 set_page_address(page, __va(pfn << PAGE_SHIFT));
1174#endif
1175}
1176
1177static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1178 int nid)
1179{
1180 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1181}
1182
7e18adb4
MG
1183#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1184static void init_reserved_page(unsigned long pfn)
1185{
1186 pg_data_t *pgdat;
1187 int nid, zid;
1188
1189 if (!early_page_uninitialised(pfn))
1190 return;
1191
1192 nid = early_pfn_to_nid(pfn);
1193 pgdat = NODE_DATA(nid);
1194
1195 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1196 struct zone *zone = &pgdat->node_zones[zid];
1197
1198 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1199 break;
1200 }
1201 __init_single_pfn(pfn, zid, nid);
1202}
1203#else
1204static inline void init_reserved_page(unsigned long pfn)
1205{
1206}
1207#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1208
92923ca3
NZ
1209/*
1210 * Initialised pages do not have PageReserved set. This function is
1211 * called for each range allocated by the bootmem allocator and
1212 * marks the pages PageReserved. The remaining valid pages are later
1213 * sent to the buddy page allocator.
1214 */
4b50bcc7 1215void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1216{
1217 unsigned long start_pfn = PFN_DOWN(start);
1218 unsigned long end_pfn = PFN_UP(end);
1219
7e18adb4
MG
1220 for (; start_pfn < end_pfn; start_pfn++) {
1221 if (pfn_valid(start_pfn)) {
1222 struct page *page = pfn_to_page(start_pfn);
1223
1224 init_reserved_page(start_pfn);
1d798ca3
KS
1225
1226 /* Avoid false-positive PageTail() */
1227 INIT_LIST_HEAD(&page->lru);
1228
7e18adb4
MG
1229 SetPageReserved(page);
1230 }
1231 }
92923ca3
NZ
1232}
1233
ec95f53a
KM
1234static void __free_pages_ok(struct page *page, unsigned int order)
1235{
1236 unsigned long flags;
95e34412 1237 int migratetype;
dc4b0caf 1238 unsigned long pfn = page_to_pfn(page);
ec95f53a 1239
e2769dbd 1240 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1241 return;
1242
cfc47a28 1243 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 1244 local_irq_save(flags);
f8891e5e 1245 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1246 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 1247 local_irq_restore(flags);
1da177e4
LT
1248}
1249
949698a3 1250static void __init __free_pages_boot_core(struct page *page, unsigned int order)
a226f6c8 1251{
c3993076 1252 unsigned int nr_pages = 1 << order;
e2d0bd2b 1253 struct page *p = page;
c3993076 1254 unsigned int loop;
a226f6c8 1255
e2d0bd2b
YL
1256 prefetchw(p);
1257 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1258 prefetchw(p + 1);
c3993076
JW
1259 __ClearPageReserved(p);
1260 set_page_count(p, 0);
a226f6c8 1261 }
e2d0bd2b
YL
1262 __ClearPageReserved(p);
1263 set_page_count(p, 0);
c3993076 1264
e2d0bd2b 1265 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1266 set_page_refcounted(page);
1267 __free_pages(page, order);
a226f6c8
DH
1268}
1269
75a592a4
MG
1270#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1271 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1272
75a592a4
MG
1273static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1274
1275int __meminit early_pfn_to_nid(unsigned long pfn)
1276{
7ace9917 1277 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1278 int nid;
1279
7ace9917 1280 spin_lock(&early_pfn_lock);
75a592a4 1281 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1282 if (nid < 0)
e4568d38 1283 nid = first_online_node;
7ace9917
MG
1284 spin_unlock(&early_pfn_lock);
1285
1286 return nid;
75a592a4
MG
1287}
1288#endif
1289
1290#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1291static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1292 struct mminit_pfnnid_cache *state)
1293{
1294 int nid;
1295
1296 nid = __early_pfn_to_nid(pfn, state);
1297 if (nid >= 0 && nid != node)
1298 return false;
1299 return true;
1300}
1301
1302/* Only safe to use early in boot when initialisation is single-threaded */
1303static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1304{
1305 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1306}
1307
1308#else
1309
1310static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1311{
1312 return true;
1313}
1314static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1315 struct mminit_pfnnid_cache *state)
1316{
1317 return true;
1318}
1319#endif
1320
1321
0e1cc95b 1322void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1323 unsigned int order)
1324{
1325 if (early_page_uninitialised(pfn))
1326 return;
949698a3 1327 return __free_pages_boot_core(page, order);
3a80a7fa
MG
1328}
1329
7cf91a98
JK
1330/*
1331 * Check that the whole (or subset of) a pageblock given by the interval of
1332 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1333 * with the migration of free compaction scanner. The scanners then need to
1334 * use only pfn_valid_within() check for arches that allow holes within
1335 * pageblocks.
1336 *
1337 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1338 *
1339 * It's possible on some configurations to have a setup like node0 node1 node0
1340 * i.e. it's possible that all pages within a zones range of pages do not
1341 * belong to a single zone. We assume that a border between node0 and node1
1342 * can occur within a single pageblock, but not a node0 node1 node0
1343 * interleaving within a single pageblock. It is therefore sufficient to check
1344 * the first and last page of a pageblock and avoid checking each individual
1345 * page in a pageblock.
1346 */
1347struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1348 unsigned long end_pfn, struct zone *zone)
1349{
1350 struct page *start_page;
1351 struct page *end_page;
1352
1353 /* end_pfn is one past the range we are checking */
1354 end_pfn--;
1355
1356 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1357 return NULL;
1358
1359 start_page = pfn_to_page(start_pfn);
1360
1361 if (page_zone(start_page) != zone)
1362 return NULL;
1363
1364 end_page = pfn_to_page(end_pfn);
1365
1366 /* This gives a shorter code than deriving page_zone(end_page) */
1367 if (page_zone_id(start_page) != page_zone_id(end_page))
1368 return NULL;
1369
1370 return start_page;
1371}
1372
1373void set_zone_contiguous(struct zone *zone)
1374{
1375 unsigned long block_start_pfn = zone->zone_start_pfn;
1376 unsigned long block_end_pfn;
1377
1378 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1379 for (; block_start_pfn < zone_end_pfn(zone);
1380 block_start_pfn = block_end_pfn,
1381 block_end_pfn += pageblock_nr_pages) {
1382
1383 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1384
1385 if (!__pageblock_pfn_to_page(block_start_pfn,
1386 block_end_pfn, zone))
1387 return;
1388 }
1389
1390 /* We confirm that there is no hole */
1391 zone->contiguous = true;
1392}
1393
1394void clear_zone_contiguous(struct zone *zone)
1395{
1396 zone->contiguous = false;
1397}
1398
7e18adb4 1399#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1400static void __init deferred_free_range(struct page *page,
a4de83dd
MG
1401 unsigned long pfn, int nr_pages)
1402{
1403 int i;
1404
1405 if (!page)
1406 return;
1407
1408 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1409 if (nr_pages == pageblock_nr_pages &&
1410 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1411 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
e780149b 1412 __free_pages_boot_core(page, pageblock_order);
a4de83dd
MG
1413 return;
1414 }
1415
e780149b
XQ
1416 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1417 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1418 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
949698a3 1419 __free_pages_boot_core(page, 0);
e780149b 1420 }
a4de83dd
MG
1421}
1422
d3cd131d
NS
1423/* Completion tracking for deferred_init_memmap() threads */
1424static atomic_t pgdat_init_n_undone __initdata;
1425static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1426
1427static inline void __init pgdat_init_report_one_done(void)
1428{
1429 if (atomic_dec_and_test(&pgdat_init_n_undone))
1430 complete(&pgdat_init_all_done_comp);
1431}
0e1cc95b 1432
7e18adb4 1433/* Initialise remaining memory on a node */
0e1cc95b 1434static int __init deferred_init_memmap(void *data)
7e18adb4 1435{
0e1cc95b
MG
1436 pg_data_t *pgdat = data;
1437 int nid = pgdat->node_id;
7e18adb4
MG
1438 struct mminit_pfnnid_cache nid_init_state = { };
1439 unsigned long start = jiffies;
1440 unsigned long nr_pages = 0;
1441 unsigned long walk_start, walk_end;
1442 int i, zid;
1443 struct zone *zone;
7e18adb4 1444 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1445 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7e18adb4 1446
0e1cc95b 1447 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1448 pgdat_init_report_one_done();
0e1cc95b
MG
1449 return 0;
1450 }
1451
1452 /* Bind memory initialisation thread to a local node if possible */
1453 if (!cpumask_empty(cpumask))
1454 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1455
1456 /* Sanity check boundaries */
1457 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1458 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1459 pgdat->first_deferred_pfn = ULONG_MAX;
1460
1461 /* Only the highest zone is deferred so find it */
1462 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1463 zone = pgdat->node_zones + zid;
1464 if (first_init_pfn < zone_end_pfn(zone))
1465 break;
1466 }
1467
1468 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1469 unsigned long pfn, end_pfn;
54608c3f 1470 struct page *page = NULL;
a4de83dd
MG
1471 struct page *free_base_page = NULL;
1472 unsigned long free_base_pfn = 0;
1473 int nr_to_free = 0;
7e18adb4
MG
1474
1475 end_pfn = min(walk_end, zone_end_pfn(zone));
1476 pfn = first_init_pfn;
1477 if (pfn < walk_start)
1478 pfn = walk_start;
1479 if (pfn < zone->zone_start_pfn)
1480 pfn = zone->zone_start_pfn;
1481
1482 for (; pfn < end_pfn; pfn++) {
54608c3f 1483 if (!pfn_valid_within(pfn))
a4de83dd 1484 goto free_range;
7e18adb4 1485
54608c3f
MG
1486 /*
1487 * Ensure pfn_valid is checked every
e780149b 1488 * pageblock_nr_pages for memory holes
54608c3f 1489 */
e780149b 1490 if ((pfn & (pageblock_nr_pages - 1)) == 0) {
54608c3f
MG
1491 if (!pfn_valid(pfn)) {
1492 page = NULL;
a4de83dd 1493 goto free_range;
54608c3f
MG
1494 }
1495 }
1496
1497 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1498 page = NULL;
a4de83dd 1499 goto free_range;
54608c3f
MG
1500 }
1501
1502 /* Minimise pfn page lookups and scheduler checks */
e780149b 1503 if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
54608c3f
MG
1504 page++;
1505 } else {
a4de83dd
MG
1506 nr_pages += nr_to_free;
1507 deferred_free_range(free_base_page,
1508 free_base_pfn, nr_to_free);
1509 free_base_page = NULL;
1510 free_base_pfn = nr_to_free = 0;
1511
54608c3f
MG
1512 page = pfn_to_page(pfn);
1513 cond_resched();
1514 }
7e18adb4
MG
1515
1516 if (page->flags) {
1517 VM_BUG_ON(page_zone(page) != zone);
a4de83dd 1518 goto free_range;
7e18adb4
MG
1519 }
1520
1521 __init_single_page(page, pfn, zid, nid);
a4de83dd
MG
1522 if (!free_base_page) {
1523 free_base_page = page;
1524 free_base_pfn = pfn;
1525 nr_to_free = 0;
1526 }
1527 nr_to_free++;
1528
1529 /* Where possible, batch up pages for a single free */
1530 continue;
1531free_range:
1532 /* Free the current block of pages to allocator */
1533 nr_pages += nr_to_free;
1534 deferred_free_range(free_base_page, free_base_pfn,
1535 nr_to_free);
1536 free_base_page = NULL;
1537 free_base_pfn = nr_to_free = 0;
7e18adb4 1538 }
e780149b
XQ
1539 /* Free the last block of pages to allocator */
1540 nr_pages += nr_to_free;
1541 deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
a4de83dd 1542
7e18adb4
MG
1543 first_init_pfn = max(end_pfn, first_init_pfn);
1544 }
1545
1546 /* Sanity check that the next zone really is unpopulated */
1547 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1548
0e1cc95b 1549 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1550 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1551
1552 pgdat_init_report_one_done();
0e1cc95b
MG
1553 return 0;
1554}
7cf91a98 1555#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1556
1557void __init page_alloc_init_late(void)
1558{
7cf91a98
JK
1559 struct zone *zone;
1560
1561#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1562 int nid;
1563
d3cd131d
NS
1564 /* There will be num_node_state(N_MEMORY) threads */
1565 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1566 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1567 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1568 }
1569
1570 /* Block until all are initialised */
d3cd131d 1571 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1572
1573 /* Reinit limits that are based on free pages after the kernel is up */
1574 files_maxfiles_init();
7cf91a98
JK
1575#endif
1576
1577 for_each_populated_zone(zone)
1578 set_zone_contiguous(zone);
7e18adb4 1579}
7e18adb4 1580
47118af0 1581#ifdef CONFIG_CMA
9cf510a5 1582/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1583void __init init_cma_reserved_pageblock(struct page *page)
1584{
1585 unsigned i = pageblock_nr_pages;
1586 struct page *p = page;
1587
1588 do {
1589 __ClearPageReserved(p);
1590 set_page_count(p, 0);
1591 } while (++p, --i);
1592
47118af0 1593 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1594
1595 if (pageblock_order >= MAX_ORDER) {
1596 i = pageblock_nr_pages;
1597 p = page;
1598 do {
1599 set_page_refcounted(p);
1600 __free_pages(p, MAX_ORDER - 1);
1601 p += MAX_ORDER_NR_PAGES;
1602 } while (i -= MAX_ORDER_NR_PAGES);
1603 } else {
1604 set_page_refcounted(page);
1605 __free_pages(page, pageblock_order);
1606 }
1607
3dcc0571 1608 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1609}
1610#endif
1da177e4
LT
1611
1612/*
1613 * The order of subdivision here is critical for the IO subsystem.
1614 * Please do not alter this order without good reasons and regression
1615 * testing. Specifically, as large blocks of memory are subdivided,
1616 * the order in which smaller blocks are delivered depends on the order
1617 * they're subdivided in this function. This is the primary factor
1618 * influencing the order in which pages are delivered to the IO
1619 * subsystem according to empirical testing, and this is also justified
1620 * by considering the behavior of a buddy system containing a single
1621 * large block of memory acted on by a series of small allocations.
1622 * This behavior is a critical factor in sglist merging's success.
1623 *
6d49e352 1624 * -- nyc
1da177e4 1625 */
085cc7d5 1626static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1627 int low, int high, struct free_area *area,
1628 int migratetype)
1da177e4
LT
1629{
1630 unsigned long size = 1 << high;
1631
1632 while (high > low) {
1633 area--;
1634 high--;
1635 size >>= 1;
309381fe 1636 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1637
acbc15a4
JK
1638 /*
1639 * Mark as guard pages (or page), that will allow to
1640 * merge back to allocator when buddy will be freed.
1641 * Corresponding page table entries will not be touched,
1642 * pages will stay not present in virtual address space
1643 */
1644 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 1645 continue;
acbc15a4 1646
b2a0ac88 1647 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1648 area->nr_free++;
1649 set_page_order(&page[size], high);
1650 }
1da177e4
LT
1651}
1652
4e611801 1653static void check_new_page_bad(struct page *page)
1da177e4 1654{
4e611801
VB
1655 const char *bad_reason = NULL;
1656 unsigned long bad_flags = 0;
7bfec6f4 1657
53f9263b 1658 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1659 bad_reason = "nonzero mapcount";
1660 if (unlikely(page->mapping != NULL))
1661 bad_reason = "non-NULL mapping";
fe896d18 1662 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1663 bad_reason = "nonzero _count";
f4c18e6f
NH
1664 if (unlikely(page->flags & __PG_HWPOISON)) {
1665 bad_reason = "HWPoisoned (hardware-corrupted)";
1666 bad_flags = __PG_HWPOISON;
e570f56c
NH
1667 /* Don't complain about hwpoisoned pages */
1668 page_mapcount_reset(page); /* remove PageBuddy */
1669 return;
f4c18e6f 1670 }
f0b791a3
DH
1671 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1672 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1673 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1674 }
9edad6ea
JW
1675#ifdef CONFIG_MEMCG
1676 if (unlikely(page->mem_cgroup))
1677 bad_reason = "page still charged to cgroup";
1678#endif
4e611801
VB
1679 bad_page(page, bad_reason, bad_flags);
1680}
1681
1682/*
1683 * This page is about to be returned from the page allocator
1684 */
1685static inline int check_new_page(struct page *page)
1686{
1687 if (likely(page_expected_state(page,
1688 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1689 return 0;
1690
1691 check_new_page_bad(page);
1692 return 1;
2a7684a2
WF
1693}
1694
1414c7f4
LA
1695static inline bool free_pages_prezeroed(bool poisoned)
1696{
1697 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1698 page_poisoning_enabled() && poisoned;
1699}
1700
479f854a
MG
1701#ifdef CONFIG_DEBUG_VM
1702static bool check_pcp_refill(struct page *page)
1703{
1704 return false;
1705}
1706
1707static bool check_new_pcp(struct page *page)
1708{
1709 return check_new_page(page);
1710}
1711#else
1712static bool check_pcp_refill(struct page *page)
1713{
1714 return check_new_page(page);
1715}
1716static bool check_new_pcp(struct page *page)
1717{
1718 return false;
1719}
1720#endif /* CONFIG_DEBUG_VM */
1721
1722static bool check_new_pages(struct page *page, unsigned int order)
1723{
1724 int i;
1725 for (i = 0; i < (1 << order); i++) {
1726 struct page *p = page + i;
1727
1728 if (unlikely(check_new_page(p)))
1729 return true;
1730 }
1731
1732 return false;
1733}
1734
46f24fd8
JK
1735inline void post_alloc_hook(struct page *page, unsigned int order,
1736 gfp_t gfp_flags)
1737{
1738 set_page_private(page, 0);
1739 set_page_refcounted(page);
1740
1741 arch_alloc_page(page, order);
1742 kernel_map_pages(page, 1 << order, 1);
1743 kernel_poison_pages(page, 1 << order, 1);
1744 kasan_alloc_pages(page, order);
1745 set_page_owner(page, order, gfp_flags);
1746}
1747
479f854a 1748static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 1749 unsigned int alloc_flags)
2a7684a2
WF
1750{
1751 int i;
1414c7f4 1752 bool poisoned = true;
2a7684a2
WF
1753
1754 for (i = 0; i < (1 << order); i++) {
1755 struct page *p = page + i;
1414c7f4
LA
1756 if (poisoned)
1757 poisoned &= page_is_poisoned(p);
2a7684a2 1758 }
689bcebf 1759
46f24fd8 1760 post_alloc_hook(page, order, gfp_flags);
17cf4406 1761
1414c7f4 1762 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1763 for (i = 0; i < (1 << order); i++)
1764 clear_highpage(page + i);
17cf4406
NP
1765
1766 if (order && (gfp_flags & __GFP_COMP))
1767 prep_compound_page(page, order);
1768
75379191 1769 /*
2f064f34 1770 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1771 * allocate the page. The expectation is that the caller is taking
1772 * steps that will free more memory. The caller should avoid the page
1773 * being used for !PFMEMALLOC purposes.
1774 */
2f064f34
MH
1775 if (alloc_flags & ALLOC_NO_WATERMARKS)
1776 set_page_pfmemalloc(page);
1777 else
1778 clear_page_pfmemalloc(page);
1da177e4
LT
1779}
1780
56fd56b8
MG
1781/*
1782 * Go through the free lists for the given migratetype and remove
1783 * the smallest available page from the freelists
1784 */
728ec980
MG
1785static inline
1786struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1787 int migratetype)
1788{
1789 unsigned int current_order;
b8af2941 1790 struct free_area *area;
56fd56b8
MG
1791 struct page *page;
1792
1793 /* Find a page of the appropriate size in the preferred list */
1794 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1795 area = &(zone->free_area[current_order]);
a16601c5 1796 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1797 struct page, lru);
a16601c5
GT
1798 if (!page)
1799 continue;
56fd56b8
MG
1800 list_del(&page->lru);
1801 rmv_page_order(page);
1802 area->nr_free--;
56fd56b8 1803 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1804 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1805 return page;
1806 }
1807
1808 return NULL;
1809}
1810
1811
b2a0ac88
MG
1812/*
1813 * This array describes the order lists are fallen back to when
1814 * the free lists for the desirable migrate type are depleted
1815 */
47118af0 1816static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1817 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1818 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1819 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1820#ifdef CONFIG_CMA
974a786e 1821 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1822#endif
194159fb 1823#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1824 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1825#endif
b2a0ac88
MG
1826};
1827
dc67647b
JK
1828#ifdef CONFIG_CMA
1829static struct page *__rmqueue_cma_fallback(struct zone *zone,
1830 unsigned int order)
1831{
1832 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1833}
1834#else
1835static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1836 unsigned int order) { return NULL; }
1837#endif
1838
c361be55
MG
1839/*
1840 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1841 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1842 * boundary. If alignment is required, use move_freepages_block()
1843 */
435b405c 1844int move_freepages(struct zone *zone,
b69a7288
AB
1845 struct page *start_page, struct page *end_page,
1846 int migratetype)
c361be55
MG
1847{
1848 struct page *page;
d00181b9 1849 unsigned int order;
d100313f 1850 int pages_moved = 0;
c361be55
MG
1851
1852#ifndef CONFIG_HOLES_IN_ZONE
1853 /*
1854 * page_zone is not safe to call in this context when
1855 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1856 * anyway as we check zone boundaries in move_freepages_block().
1857 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1858 * grouping pages by mobility
c361be55 1859 */
97ee4ba7 1860 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1861#endif
1862
1863 for (page = start_page; page <= end_page;) {
1864 if (!pfn_valid_within(page_to_pfn(page))) {
1865 page++;
1866 continue;
1867 }
1868
f073bdc5
AB
1869 /* Make sure we are not inadvertently changing nodes */
1870 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1871
c361be55
MG
1872 if (!PageBuddy(page)) {
1873 page++;
1874 continue;
1875 }
1876
1877 order = page_order(page);
84be48d8
KS
1878 list_move(&page->lru,
1879 &zone->free_area[order].free_list[migratetype]);
c361be55 1880 page += 1 << order;
d100313f 1881 pages_moved += 1 << order;
c361be55
MG
1882 }
1883
d100313f 1884 return pages_moved;
c361be55
MG
1885}
1886
ee6f509c 1887int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1888 int migratetype)
c361be55
MG
1889{
1890 unsigned long start_pfn, end_pfn;
1891 struct page *start_page, *end_page;
1892
1893 start_pfn = page_to_pfn(page);
d9c23400 1894 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1895 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1896 end_page = start_page + pageblock_nr_pages - 1;
1897 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1898
1899 /* Do not cross zone boundaries */
108bcc96 1900 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1901 start_page = page;
108bcc96 1902 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1903 return 0;
1904
1905 return move_freepages(zone, start_page, end_page, migratetype);
1906}
1907
2f66a68f
MG
1908static void change_pageblock_range(struct page *pageblock_page,
1909 int start_order, int migratetype)
1910{
1911 int nr_pageblocks = 1 << (start_order - pageblock_order);
1912
1913 while (nr_pageblocks--) {
1914 set_pageblock_migratetype(pageblock_page, migratetype);
1915 pageblock_page += pageblock_nr_pages;
1916 }
1917}
1918
fef903ef 1919/*
9c0415eb
VB
1920 * When we are falling back to another migratetype during allocation, try to
1921 * steal extra free pages from the same pageblocks to satisfy further
1922 * allocations, instead of polluting multiple pageblocks.
1923 *
1924 * If we are stealing a relatively large buddy page, it is likely there will
1925 * be more free pages in the pageblock, so try to steal them all. For
1926 * reclaimable and unmovable allocations, we steal regardless of page size,
1927 * as fragmentation caused by those allocations polluting movable pageblocks
1928 * is worse than movable allocations stealing from unmovable and reclaimable
1929 * pageblocks.
fef903ef 1930 */
4eb7dce6
JK
1931static bool can_steal_fallback(unsigned int order, int start_mt)
1932{
1933 /*
1934 * Leaving this order check is intended, although there is
1935 * relaxed order check in next check. The reason is that
1936 * we can actually steal whole pageblock if this condition met,
1937 * but, below check doesn't guarantee it and that is just heuristic
1938 * so could be changed anytime.
1939 */
1940 if (order >= pageblock_order)
1941 return true;
1942
1943 if (order >= pageblock_order / 2 ||
1944 start_mt == MIGRATE_RECLAIMABLE ||
1945 start_mt == MIGRATE_UNMOVABLE ||
1946 page_group_by_mobility_disabled)
1947 return true;
1948
1949 return false;
1950}
1951
1952/*
1953 * This function implements actual steal behaviour. If order is large enough,
1954 * we can steal whole pageblock. If not, we first move freepages in this
1955 * pageblock and check whether half of pages are moved or not. If half of
1956 * pages are moved, we can change migratetype of pageblock and permanently
1957 * use it's pages as requested migratetype in the future.
1958 */
1959static void steal_suitable_fallback(struct zone *zone, struct page *page,
1960 int start_type)
fef903ef 1961{
d00181b9 1962 unsigned int current_order = page_order(page);
4eb7dce6 1963 int pages;
fef903ef 1964
fef903ef
SB
1965 /* Take ownership for orders >= pageblock_order */
1966 if (current_order >= pageblock_order) {
1967 change_pageblock_range(page, current_order, start_type);
3a1086fb 1968 return;
fef903ef
SB
1969 }
1970
4eb7dce6 1971 pages = move_freepages_block(zone, page, start_type);
fef903ef 1972
4eb7dce6
JK
1973 /* Claim the whole block if over half of it is free */
1974 if (pages >= (1 << (pageblock_order-1)) ||
1975 page_group_by_mobility_disabled)
1976 set_pageblock_migratetype(page, start_type);
1977}
1978
2149cdae
JK
1979/*
1980 * Check whether there is a suitable fallback freepage with requested order.
1981 * If only_stealable is true, this function returns fallback_mt only if
1982 * we can steal other freepages all together. This would help to reduce
1983 * fragmentation due to mixed migratetype pages in one pageblock.
1984 */
1985int find_suitable_fallback(struct free_area *area, unsigned int order,
1986 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1987{
1988 int i;
1989 int fallback_mt;
1990
1991 if (area->nr_free == 0)
1992 return -1;
1993
1994 *can_steal = false;
1995 for (i = 0;; i++) {
1996 fallback_mt = fallbacks[migratetype][i];
974a786e 1997 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
1998 break;
1999
2000 if (list_empty(&area->free_list[fallback_mt]))
2001 continue;
fef903ef 2002
4eb7dce6
JK
2003 if (can_steal_fallback(order, migratetype))
2004 *can_steal = true;
2005
2149cdae
JK
2006 if (!only_stealable)
2007 return fallback_mt;
2008
2009 if (*can_steal)
2010 return fallback_mt;
fef903ef 2011 }
4eb7dce6
JK
2012
2013 return -1;
fef903ef
SB
2014}
2015
0aaa29a5
MG
2016/*
2017 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2018 * there are no empty page blocks that contain a page with a suitable order
2019 */
2020static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2021 unsigned int alloc_order)
2022{
2023 int mt;
2024 unsigned long max_managed, flags;
2025
2026 /*
2027 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2028 * Check is race-prone but harmless.
2029 */
2030 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2031 if (zone->nr_reserved_highatomic >= max_managed)
2032 return;
2033
2034 spin_lock_irqsave(&zone->lock, flags);
2035
2036 /* Recheck the nr_reserved_highatomic limit under the lock */
2037 if (zone->nr_reserved_highatomic >= max_managed)
2038 goto out_unlock;
2039
2040 /* Yoink! */
2041 mt = get_pageblock_migratetype(page);
2042 if (mt != MIGRATE_HIGHATOMIC &&
2043 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2044 zone->nr_reserved_highatomic += pageblock_nr_pages;
2045 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2046 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2047 }
2048
2049out_unlock:
2050 spin_unlock_irqrestore(&zone->lock, flags);
2051}
2052
2053/*
2054 * Used when an allocation is about to fail under memory pressure. This
2055 * potentially hurts the reliability of high-order allocations when under
2056 * intense memory pressure but failed atomic allocations should be easier
2057 * to recover from than an OOM.
29fac03b
MK
2058 *
2059 * If @force is true, try to unreserve a pageblock even though highatomic
2060 * pageblock is exhausted.
0aaa29a5 2061 */
29fac03b
MK
2062static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2063 bool force)
0aaa29a5
MG
2064{
2065 struct zonelist *zonelist = ac->zonelist;
2066 unsigned long flags;
2067 struct zoneref *z;
2068 struct zone *zone;
2069 struct page *page;
2070 int order;
04c8716f 2071 bool ret;
0aaa29a5
MG
2072
2073 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2074 ac->nodemask) {
29fac03b
MK
2075 /*
2076 * Preserve at least one pageblock unless memory pressure
2077 * is really high.
2078 */
2079 if (!force && zone->nr_reserved_highatomic <=
2080 pageblock_nr_pages)
0aaa29a5
MG
2081 continue;
2082
2083 spin_lock_irqsave(&zone->lock, flags);
2084 for (order = 0; order < MAX_ORDER; order++) {
2085 struct free_area *area = &(zone->free_area[order]);
2086
a16601c5
GT
2087 page = list_first_entry_or_null(
2088 &area->free_list[MIGRATE_HIGHATOMIC],
2089 struct page, lru);
2090 if (!page)
0aaa29a5
MG
2091 continue;
2092
0aaa29a5 2093 /*
4855e4a7
MK
2094 * In page freeing path, migratetype change is racy so
2095 * we can counter several free pages in a pageblock
2096 * in this loop althoug we changed the pageblock type
2097 * from highatomic to ac->migratetype. So we should
2098 * adjust the count once.
0aaa29a5 2099 */
4855e4a7
MK
2100 if (get_pageblock_migratetype(page) ==
2101 MIGRATE_HIGHATOMIC) {
2102 /*
2103 * It should never happen but changes to
2104 * locking could inadvertently allow a per-cpu
2105 * drain to add pages to MIGRATE_HIGHATOMIC
2106 * while unreserving so be safe and watch for
2107 * underflows.
2108 */
2109 zone->nr_reserved_highatomic -= min(
2110 pageblock_nr_pages,
2111 zone->nr_reserved_highatomic);
2112 }
0aaa29a5
MG
2113
2114 /*
2115 * Convert to ac->migratetype and avoid the normal
2116 * pageblock stealing heuristics. Minimally, the caller
2117 * is doing the work and needs the pages. More
2118 * importantly, if the block was always converted to
2119 * MIGRATE_UNMOVABLE or another type then the number
2120 * of pageblocks that cannot be completely freed
2121 * may increase.
2122 */
2123 set_pageblock_migratetype(page, ac->migratetype);
04c8716f 2124 ret = move_freepages_block(zone, page, ac->migratetype);
29fac03b
MK
2125 if (ret) {
2126 spin_unlock_irqrestore(&zone->lock, flags);
2127 return ret;
2128 }
0aaa29a5
MG
2129 }
2130 spin_unlock_irqrestore(&zone->lock, flags);
2131 }
04c8716f
MK
2132
2133 return false;
0aaa29a5
MG
2134}
2135
b2a0ac88 2136/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 2137static inline struct page *
7aeb09f9 2138__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 2139{
b8af2941 2140 struct free_area *area;
7aeb09f9 2141 unsigned int current_order;
b2a0ac88 2142 struct page *page;
4eb7dce6
JK
2143 int fallback_mt;
2144 bool can_steal;
b2a0ac88
MG
2145
2146 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
2147 for (current_order = MAX_ORDER-1;
2148 current_order >= order && current_order <= MAX_ORDER-1;
2149 --current_order) {
4eb7dce6
JK
2150 area = &(zone->free_area[current_order]);
2151 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2152 start_migratetype, false, &can_steal);
4eb7dce6
JK
2153 if (fallback_mt == -1)
2154 continue;
b2a0ac88 2155
a16601c5 2156 page = list_first_entry(&area->free_list[fallback_mt],
4eb7dce6 2157 struct page, lru);
88ed365e
MK
2158 if (can_steal &&
2159 get_pageblock_migratetype(page) != MIGRATE_HIGHATOMIC)
4eb7dce6 2160 steal_suitable_fallback(zone, page, start_migratetype);
b2a0ac88 2161
4eb7dce6
JK
2162 /* Remove the page from the freelists */
2163 area->nr_free--;
2164 list_del(&page->lru);
2165 rmv_page_order(page);
3a1086fb 2166
4eb7dce6
JK
2167 expand(zone, page, order, current_order, area,
2168 start_migratetype);
2169 /*
bb14c2c7 2170 * The pcppage_migratetype may differ from pageblock's
4eb7dce6 2171 * migratetype depending on the decisions in
bb14c2c7
VB
2172 * find_suitable_fallback(). This is OK as long as it does not
2173 * differ for MIGRATE_CMA pageblocks. Those can be used as
2174 * fallback only via special __rmqueue_cma_fallback() function
4eb7dce6 2175 */
bb14c2c7 2176 set_pcppage_migratetype(page, start_migratetype);
e0fff1bd 2177
4eb7dce6
JK
2178 trace_mm_page_alloc_extfrag(page, order, current_order,
2179 start_migratetype, fallback_mt);
e0fff1bd 2180
4eb7dce6 2181 return page;
b2a0ac88
MG
2182 }
2183
728ec980 2184 return NULL;
b2a0ac88
MG
2185}
2186
56fd56b8 2187/*
1da177e4
LT
2188 * Do the hard work of removing an element from the buddy allocator.
2189 * Call me with the zone->lock already held.
2190 */
b2a0ac88 2191static struct page *__rmqueue(struct zone *zone, unsigned int order,
6ac0206b 2192 int migratetype)
1da177e4 2193{
1da177e4
LT
2194 struct page *page;
2195
56fd56b8 2196 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2197 if (unlikely(!page)) {
dc67647b
JK
2198 if (migratetype == MIGRATE_MOVABLE)
2199 page = __rmqueue_cma_fallback(zone, order);
2200
2201 if (!page)
2202 page = __rmqueue_fallback(zone, order, migratetype);
728ec980
MG
2203 }
2204
0d3d062a 2205 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2206 return page;
1da177e4
LT
2207}
2208
5f63b720 2209/*
1da177e4
LT
2210 * Obtain a specified number of elements from the buddy allocator, all under
2211 * a single hold of the lock, for efficiency. Add them to the supplied list.
2212 * Returns the number of new pages which were placed at *list.
2213 */
5f63b720 2214static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2215 unsigned long count, struct list_head *list,
b745bc85 2216 int migratetype, bool cold)
1da177e4 2217{
a6de734b 2218 int i, alloced = 0;
5f63b720 2219
c54ad30c 2220 spin_lock(&zone->lock);
1da177e4 2221 for (i = 0; i < count; ++i) {
6ac0206b 2222 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 2223 if (unlikely(page == NULL))
1da177e4 2224 break;
81eabcbe 2225
479f854a
MG
2226 if (unlikely(check_pcp_refill(page)))
2227 continue;
2228
81eabcbe
MG
2229 /*
2230 * Split buddy pages returned by expand() are received here
2231 * in physical page order. The page is added to the callers and
2232 * list and the list head then moves forward. From the callers
2233 * perspective, the linked list is ordered by page number in
2234 * some conditions. This is useful for IO devices that can
2235 * merge IO requests if the physical pages are ordered
2236 * properly.
2237 */
b745bc85 2238 if (likely(!cold))
e084b2d9
MG
2239 list_add(&page->lru, list);
2240 else
2241 list_add_tail(&page->lru, list);
81eabcbe 2242 list = &page->lru;
a6de734b 2243 alloced++;
bb14c2c7 2244 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2245 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2246 -(1 << order));
1da177e4 2247 }
a6de734b
MG
2248
2249 /*
2250 * i pages were removed from the buddy list even if some leak due
2251 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2252 * on i. Do not confuse with 'alloced' which is the number of
2253 * pages added to the pcp list.
2254 */
f2260e6b 2255 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 2256 spin_unlock(&zone->lock);
a6de734b 2257 return alloced;
1da177e4
LT
2258}
2259
4ae7c039 2260#ifdef CONFIG_NUMA
8fce4d8e 2261/*
4037d452
CL
2262 * Called from the vmstat counter updater to drain pagesets of this
2263 * currently executing processor on remote nodes after they have
2264 * expired.
2265 *
879336c3
CL
2266 * Note that this function must be called with the thread pinned to
2267 * a single processor.
8fce4d8e 2268 */
4037d452 2269void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2270{
4ae7c039 2271 unsigned long flags;
7be12fc9 2272 int to_drain, batch;
4ae7c039 2273
4037d452 2274 local_irq_save(flags);
4db0c3c2 2275 batch = READ_ONCE(pcp->batch);
7be12fc9 2276 to_drain = min(pcp->count, batch);
2a13515c
KM
2277 if (to_drain > 0) {
2278 free_pcppages_bulk(zone, to_drain, pcp);
2279 pcp->count -= to_drain;
2280 }
4037d452 2281 local_irq_restore(flags);
4ae7c039
CL
2282}
2283#endif
2284
9f8f2172 2285/*
93481ff0 2286 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2287 *
2288 * The processor must either be the current processor and the
2289 * thread pinned to the current processor or a processor that
2290 * is not online.
2291 */
93481ff0 2292static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2293{
c54ad30c 2294 unsigned long flags;
93481ff0
VB
2295 struct per_cpu_pageset *pset;
2296 struct per_cpu_pages *pcp;
1da177e4 2297
93481ff0
VB
2298 local_irq_save(flags);
2299 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2300
93481ff0
VB
2301 pcp = &pset->pcp;
2302 if (pcp->count) {
2303 free_pcppages_bulk(zone, pcp->count, pcp);
2304 pcp->count = 0;
2305 }
2306 local_irq_restore(flags);
2307}
3dfa5721 2308
93481ff0
VB
2309/*
2310 * Drain pcplists of all zones on the indicated processor.
2311 *
2312 * The processor must either be the current processor and the
2313 * thread pinned to the current processor or a processor that
2314 * is not online.
2315 */
2316static void drain_pages(unsigned int cpu)
2317{
2318 struct zone *zone;
2319
2320 for_each_populated_zone(zone) {
2321 drain_pages_zone(cpu, zone);
1da177e4
LT
2322 }
2323}
1da177e4 2324
9f8f2172
CL
2325/*
2326 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2327 *
2328 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2329 * the single zone's pages.
9f8f2172 2330 */
93481ff0 2331void drain_local_pages(struct zone *zone)
9f8f2172 2332{
93481ff0
VB
2333 int cpu = smp_processor_id();
2334
2335 if (zone)
2336 drain_pages_zone(cpu, zone);
2337 else
2338 drain_pages(cpu);
9f8f2172
CL
2339}
2340
2341/*
74046494
GBY
2342 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2343 *
93481ff0
VB
2344 * When zone parameter is non-NULL, spill just the single zone's pages.
2345 *
74046494
GBY
2346 * Note that this code is protected against sending an IPI to an offline
2347 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2348 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2349 * nothing keeps CPUs from showing up after we populated the cpumask and
2350 * before the call to on_each_cpu_mask().
9f8f2172 2351 */
93481ff0 2352void drain_all_pages(struct zone *zone)
9f8f2172 2353{
74046494 2354 int cpu;
74046494
GBY
2355
2356 /*
2357 * Allocate in the BSS so we wont require allocation in
2358 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2359 */
2360 static cpumask_t cpus_with_pcps;
2361
2362 /*
2363 * We don't care about racing with CPU hotplug event
2364 * as offline notification will cause the notified
2365 * cpu to drain that CPU pcps and on_each_cpu_mask
2366 * disables preemption as part of its processing
2367 */
2368 for_each_online_cpu(cpu) {
93481ff0
VB
2369 struct per_cpu_pageset *pcp;
2370 struct zone *z;
74046494 2371 bool has_pcps = false;
93481ff0
VB
2372
2373 if (zone) {
74046494 2374 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2375 if (pcp->pcp.count)
74046494 2376 has_pcps = true;
93481ff0
VB
2377 } else {
2378 for_each_populated_zone(z) {
2379 pcp = per_cpu_ptr(z->pageset, cpu);
2380 if (pcp->pcp.count) {
2381 has_pcps = true;
2382 break;
2383 }
74046494
GBY
2384 }
2385 }
93481ff0 2386
74046494
GBY
2387 if (has_pcps)
2388 cpumask_set_cpu(cpu, &cpus_with_pcps);
2389 else
2390 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2391 }
93481ff0
VB
2392 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2393 zone, 1);
9f8f2172
CL
2394}
2395
296699de 2396#ifdef CONFIG_HIBERNATION
1da177e4
LT
2397
2398void mark_free_pages(struct zone *zone)
2399{
f623f0db
RW
2400 unsigned long pfn, max_zone_pfn;
2401 unsigned long flags;
7aeb09f9 2402 unsigned int order, t;
86760a2c 2403 struct page *page;
1da177e4 2404
8080fc03 2405 if (zone_is_empty(zone))
1da177e4
LT
2406 return;
2407
2408 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2409
108bcc96 2410 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2411 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2412 if (pfn_valid(pfn)) {
86760a2c 2413 page = pfn_to_page(pfn);
ba6b0979
JK
2414
2415 if (page_zone(page) != zone)
2416 continue;
2417
7be98234
RW
2418 if (!swsusp_page_is_forbidden(page))
2419 swsusp_unset_page_free(page);
f623f0db 2420 }
1da177e4 2421
b2a0ac88 2422 for_each_migratetype_order(order, t) {
86760a2c
GT
2423 list_for_each_entry(page,
2424 &zone->free_area[order].free_list[t], lru) {
f623f0db 2425 unsigned long i;
1da177e4 2426
86760a2c 2427 pfn = page_to_pfn(page);
f623f0db 2428 for (i = 0; i < (1UL << order); i++)
7be98234 2429 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 2430 }
b2a0ac88 2431 }
1da177e4
LT
2432 spin_unlock_irqrestore(&zone->lock, flags);
2433}
e2c55dc8 2434#endif /* CONFIG_PM */
1da177e4 2435
1da177e4
LT
2436/*
2437 * Free a 0-order page
b745bc85 2438 * cold == true ? free a cold page : free a hot page
1da177e4 2439 */
b745bc85 2440void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
2441{
2442 struct zone *zone = page_zone(page);
2443 struct per_cpu_pages *pcp;
2444 unsigned long flags;
dc4b0caf 2445 unsigned long pfn = page_to_pfn(page);
5f8dcc21 2446 int migratetype;
1da177e4 2447
4db7548c 2448 if (!free_pcp_prepare(page))
689bcebf
HD
2449 return;
2450
dc4b0caf 2451 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2452 set_pcppage_migratetype(page, migratetype);
1da177e4 2453 local_irq_save(flags);
f8891e5e 2454 __count_vm_event(PGFREE);
da456f14 2455
5f8dcc21
MG
2456 /*
2457 * We only track unmovable, reclaimable and movable on pcp lists.
2458 * Free ISOLATE pages back to the allocator because they are being
2459 * offlined but treat RESERVE as movable pages so we can get those
2460 * areas back if necessary. Otherwise, we may have to free
2461 * excessively into the page allocator
2462 */
2463 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2464 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2465 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
2466 goto out;
2467 }
2468 migratetype = MIGRATE_MOVABLE;
2469 }
2470
99dcc3e5 2471 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 2472 if (!cold)
5f8dcc21 2473 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
2474 else
2475 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 2476 pcp->count++;
48db57f8 2477 if (pcp->count >= pcp->high) {
4db0c3c2 2478 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2479 free_pcppages_bulk(zone, batch, pcp);
2480 pcp->count -= batch;
48db57f8 2481 }
5f8dcc21
MG
2482
2483out:
1da177e4 2484 local_irq_restore(flags);
1da177e4
LT
2485}
2486
cc59850e
KK
2487/*
2488 * Free a list of 0-order pages
2489 */
b745bc85 2490void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
2491{
2492 struct page *page, *next;
2493
2494 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 2495 trace_mm_page_free_batched(page, cold);
cc59850e
KK
2496 free_hot_cold_page(page, cold);
2497 }
2498}
2499
8dfcc9ba
NP
2500/*
2501 * split_page takes a non-compound higher-order page, and splits it into
2502 * n (1<<order) sub-pages: page[0..n]
2503 * Each sub-page must be freed individually.
2504 *
2505 * Note: this is probably too low level an operation for use in drivers.
2506 * Please consult with lkml before using this in your driver.
2507 */
2508void split_page(struct page *page, unsigned int order)
2509{
2510 int i;
2511
309381fe
SL
2512 VM_BUG_ON_PAGE(PageCompound(page), page);
2513 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
2514
2515#ifdef CONFIG_KMEMCHECK
2516 /*
2517 * Split shadow pages too, because free(page[0]) would
2518 * otherwise free the whole shadow.
2519 */
2520 if (kmemcheck_page_is_tracked(page))
2521 split_page(virt_to_page(page[0].shadow), order);
2522#endif
2523
a9627bc5 2524 for (i = 1; i < (1 << order); i++)
7835e98b 2525 set_page_refcounted(page + i);
a9627bc5 2526 split_page_owner(page, order);
8dfcc9ba 2527}
5853ff23 2528EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2529
3c605096 2530int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2531{
748446bb
MG
2532 unsigned long watermark;
2533 struct zone *zone;
2139cbe6 2534 int mt;
748446bb
MG
2535
2536 BUG_ON(!PageBuddy(page));
2537
2538 zone = page_zone(page);
2e30abd1 2539 mt = get_pageblock_migratetype(page);
748446bb 2540
194159fb 2541 if (!is_migrate_isolate(mt)) {
8348faf9
VB
2542 /*
2543 * Obey watermarks as if the page was being allocated. We can
2544 * emulate a high-order watermark check with a raised order-0
2545 * watermark, because we already know our high-order page
2546 * exists.
2547 */
2548 watermark = min_wmark_pages(zone) + (1UL << order);
984fdba6 2549 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
2550 return 0;
2551
8fb74b9f 2552 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2553 }
748446bb
MG
2554
2555 /* Remove page from free list */
2556 list_del(&page->lru);
2557 zone->free_area[order].nr_free--;
2558 rmv_page_order(page);
2139cbe6 2559
400bc7fd 2560 /*
2561 * Set the pageblock if the isolated page is at least half of a
2562 * pageblock
2563 */
748446bb
MG
2564 if (order >= pageblock_order - 1) {
2565 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2566 for (; page < endpage; page += pageblock_nr_pages) {
2567 int mt = get_pageblock_migratetype(page);
88ed365e
MK
2568 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2569 && mt != MIGRATE_HIGHATOMIC)
47118af0
MN
2570 set_pageblock_migratetype(page,
2571 MIGRATE_MOVABLE);
2572 }
748446bb
MG
2573 }
2574
f3a14ced 2575
8fb74b9f 2576 return 1UL << order;
1fb3f8ca
MG
2577}
2578
060e7417
MG
2579/*
2580 * Update NUMA hit/miss statistics
2581 *
2582 * Must be called with interrupts disabled.
060e7417 2583 */
41b6167e 2584static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
060e7417
MG
2585{
2586#ifdef CONFIG_NUMA
060e7417
MG
2587 enum zone_stat_item local_stat = NUMA_LOCAL;
2588
2df26639 2589 if (z->node != numa_node_id())
060e7417 2590 local_stat = NUMA_OTHER;
060e7417 2591
2df26639 2592 if (z->node == preferred_zone->node)
060e7417 2593 __inc_zone_state(z, NUMA_HIT);
2df26639 2594 else {
060e7417
MG
2595 __inc_zone_state(z, NUMA_MISS);
2596 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2597 }
2df26639 2598 __inc_zone_state(z, local_stat);
060e7417
MG
2599#endif
2600}
2601
1da177e4 2602/*
75379191 2603 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2604 */
0a15c3e9
MG
2605static inline
2606struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9 2607 struct zone *zone, unsigned int order,
c603844b
MG
2608 gfp_t gfp_flags, unsigned int alloc_flags,
2609 int migratetype)
1da177e4
LT
2610{
2611 unsigned long flags;
689bcebf 2612 struct page *page;
b745bc85 2613 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 2614
48db57f8 2615 if (likely(order == 0)) {
1da177e4 2616 struct per_cpu_pages *pcp;
5f8dcc21 2617 struct list_head *list;
1da177e4 2618
1da177e4 2619 local_irq_save(flags);
479f854a
MG
2620 do {
2621 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2622 list = &pcp->lists[migratetype];
2623 if (list_empty(list)) {
2624 pcp->count += rmqueue_bulk(zone, 0,
2625 pcp->batch, list,
2626 migratetype, cold);
2627 if (unlikely(list_empty(list)))
2628 goto failed;
2629 }
b92a6edd 2630
479f854a
MG
2631 if (cold)
2632 page = list_last_entry(list, struct page, lru);
2633 else
2634 page = list_first_entry(list, struct page, lru);
5f8dcc21 2635
83b9355b
VB
2636 list_del(&page->lru);
2637 pcp->count--;
2638
2639 } while (check_new_pcp(page));
7fb1d9fc 2640 } else {
0f352e53
MH
2641 /*
2642 * We most definitely don't want callers attempting to
2643 * allocate greater than order-1 page units with __GFP_NOFAIL.
2644 */
2645 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
1da177e4 2646 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 2647
479f854a
MG
2648 do {
2649 page = NULL;
2650 if (alloc_flags & ALLOC_HARDER) {
2651 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2652 if (page)
2653 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2654 }
2655 if (!page)
2656 page = __rmqueue(zone, order, migratetype);
2657 } while (page && check_new_pages(page, order));
a74609fa
NP
2658 spin_unlock(&zone->lock);
2659 if (!page)
2660 goto failed;
d1ce749a 2661 __mod_zone_freepage_state(zone, -(1 << order),
bb14c2c7 2662 get_pcppage_migratetype(page));
1da177e4
LT
2663 }
2664
16709d1d 2665 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
41b6167e 2666 zone_statistics(preferred_zone, zone);
a74609fa 2667 local_irq_restore(flags);
1da177e4 2668
309381fe 2669 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 2670 return page;
a74609fa
NP
2671
2672failed:
2673 local_irq_restore(flags);
a74609fa 2674 return NULL;
1da177e4
LT
2675}
2676
933e312e
AM
2677#ifdef CONFIG_FAIL_PAGE_ALLOC
2678
b2588c4b 2679static struct {
933e312e
AM
2680 struct fault_attr attr;
2681
621a5f7a 2682 bool ignore_gfp_highmem;
71baba4b 2683 bool ignore_gfp_reclaim;
54114994 2684 u32 min_order;
933e312e
AM
2685} fail_page_alloc = {
2686 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2687 .ignore_gfp_reclaim = true,
621a5f7a 2688 .ignore_gfp_highmem = true,
54114994 2689 .min_order = 1,
933e312e
AM
2690};
2691
2692static int __init setup_fail_page_alloc(char *str)
2693{
2694 return setup_fault_attr(&fail_page_alloc.attr, str);
2695}
2696__setup("fail_page_alloc=", setup_fail_page_alloc);
2697
deaf386e 2698static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2699{
54114994 2700 if (order < fail_page_alloc.min_order)
deaf386e 2701 return false;
933e312e 2702 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2703 return false;
933e312e 2704 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2705 return false;
71baba4b
MG
2706 if (fail_page_alloc.ignore_gfp_reclaim &&
2707 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2708 return false;
933e312e
AM
2709
2710 return should_fail(&fail_page_alloc.attr, 1 << order);
2711}
2712
2713#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2714
2715static int __init fail_page_alloc_debugfs(void)
2716{
f4ae40a6 2717 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2718 struct dentry *dir;
933e312e 2719
dd48c085
AM
2720 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2721 &fail_page_alloc.attr);
2722 if (IS_ERR(dir))
2723 return PTR_ERR(dir);
933e312e 2724
b2588c4b 2725 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2726 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2727 goto fail;
2728 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2729 &fail_page_alloc.ignore_gfp_highmem))
2730 goto fail;
2731 if (!debugfs_create_u32("min-order", mode, dir,
2732 &fail_page_alloc.min_order))
2733 goto fail;
2734
2735 return 0;
2736fail:
dd48c085 2737 debugfs_remove_recursive(dir);
933e312e 2738
b2588c4b 2739 return -ENOMEM;
933e312e
AM
2740}
2741
2742late_initcall(fail_page_alloc_debugfs);
2743
2744#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2745
2746#else /* CONFIG_FAIL_PAGE_ALLOC */
2747
deaf386e 2748static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2749{
deaf386e 2750 return false;
933e312e
AM
2751}
2752
2753#endif /* CONFIG_FAIL_PAGE_ALLOC */
2754
1da177e4 2755/*
97a16fc8
MG
2756 * Return true if free base pages are above 'mark'. For high-order checks it
2757 * will return true of the order-0 watermark is reached and there is at least
2758 * one free page of a suitable size. Checking now avoids taking the zone lock
2759 * to check in the allocation paths if no pages are free.
1da177e4 2760 */
86a294a8
MH
2761bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2762 int classzone_idx, unsigned int alloc_flags,
2763 long free_pages)
1da177e4 2764{
d23ad423 2765 long min = mark;
1da177e4 2766 int o;
c603844b 2767 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
1da177e4 2768
0aaa29a5 2769 /* free_pages may go negative - that's OK */
df0a6daa 2770 free_pages -= (1 << order) - 1;
0aaa29a5 2771
7fb1d9fc 2772 if (alloc_flags & ALLOC_HIGH)
1da177e4 2773 min -= min / 2;
0aaa29a5
MG
2774
2775 /*
2776 * If the caller does not have rights to ALLOC_HARDER then subtract
2777 * the high-atomic reserves. This will over-estimate the size of the
2778 * atomic reserve but it avoids a search.
2779 */
97a16fc8 2780 if (likely(!alloc_harder))
0aaa29a5
MG
2781 free_pages -= z->nr_reserved_highatomic;
2782 else
1da177e4 2783 min -= min / 4;
e2b19197 2784
d95ea5d1
BZ
2785#ifdef CONFIG_CMA
2786 /* If allocation can't use CMA areas don't use free CMA pages */
2787 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 2788 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2789#endif
026b0814 2790
97a16fc8
MG
2791 /*
2792 * Check watermarks for an order-0 allocation request. If these
2793 * are not met, then a high-order request also cannot go ahead
2794 * even if a suitable page happened to be free.
2795 */
2796 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 2797 return false;
1da177e4 2798
97a16fc8
MG
2799 /* If this is an order-0 request then the watermark is fine */
2800 if (!order)
2801 return true;
2802
2803 /* For a high-order request, check at least one suitable page is free */
2804 for (o = order; o < MAX_ORDER; o++) {
2805 struct free_area *area = &z->free_area[o];
2806 int mt;
2807
2808 if (!area->nr_free)
2809 continue;
2810
2811 if (alloc_harder)
2812 return true;
1da177e4 2813
97a16fc8
MG
2814 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2815 if (!list_empty(&area->free_list[mt]))
2816 return true;
2817 }
2818
2819#ifdef CONFIG_CMA
2820 if ((alloc_flags & ALLOC_CMA) &&
2821 !list_empty(&area->free_list[MIGRATE_CMA])) {
2822 return true;
2823 }
2824#endif
1da177e4 2825 }
97a16fc8 2826 return false;
88f5acf8
MG
2827}
2828
7aeb09f9 2829bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 2830 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
2831{
2832 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2833 zone_page_state(z, NR_FREE_PAGES));
2834}
2835
48ee5f36
MG
2836static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2837 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2838{
2839 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2840 long cma_pages = 0;
2841
2842#ifdef CONFIG_CMA
2843 /* If allocation can't use CMA areas don't use free CMA pages */
2844 if (!(alloc_flags & ALLOC_CMA))
2845 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2846#endif
2847
2848 /*
2849 * Fast check for order-0 only. If this fails then the reserves
2850 * need to be calculated. There is a corner case where the check
2851 * passes but only the high-order atomic reserve are free. If
2852 * the caller is !atomic then it'll uselessly search the free
2853 * list. That corner case is then slower but it is harmless.
2854 */
2855 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2856 return true;
2857
2858 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2859 free_pages);
2860}
2861
7aeb09f9 2862bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 2863 unsigned long mark, int classzone_idx)
88f5acf8
MG
2864{
2865 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2866
2867 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2868 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2869
e2b19197 2870 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 2871 free_pages);
1da177e4
LT
2872}
2873
9276b1bc 2874#ifdef CONFIG_NUMA
957f822a
DR
2875static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2876{
5f7a75ac
MG
2877 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2878 RECLAIM_DISTANCE;
957f822a 2879}
9276b1bc 2880#else /* CONFIG_NUMA */
957f822a
DR
2881static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2882{
2883 return true;
2884}
9276b1bc
PJ
2885#endif /* CONFIG_NUMA */
2886
7fb1d9fc 2887/*
0798e519 2888 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2889 * a page.
2890 */
2891static struct page *
a9263751
VB
2892get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2893 const struct alloc_context *ac)
753ee728 2894{
c33d6c06 2895 struct zoneref *z = ac->preferred_zoneref;
5117f45d 2896 struct zone *zone;
3b8c0be4
MG
2897 struct pglist_data *last_pgdat_dirty_limit = NULL;
2898
7fb1d9fc 2899 /*
9276b1bc 2900 * Scan zonelist, looking for a zone with enough free.
344736f2 2901 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2902 */
c33d6c06 2903 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 2904 ac->nodemask) {
be06af00 2905 struct page *page;
e085dbc5
JW
2906 unsigned long mark;
2907
664eedde
MG
2908 if (cpusets_enabled() &&
2909 (alloc_flags & ALLOC_CPUSET) &&
002f2906 2910 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2911 continue;
a756cf59
JW
2912 /*
2913 * When allocating a page cache page for writing, we
281e3726
MG
2914 * want to get it from a node that is within its dirty
2915 * limit, such that no single node holds more than its
a756cf59 2916 * proportional share of globally allowed dirty pages.
281e3726 2917 * The dirty limits take into account the node's
a756cf59
JW
2918 * lowmem reserves and high watermark so that kswapd
2919 * should be able to balance it without having to
2920 * write pages from its LRU list.
2921 *
a756cf59 2922 * XXX: For now, allow allocations to potentially
281e3726 2923 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 2924 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 2925 * which is important when on a NUMA setup the allowed
281e3726 2926 * nodes are together not big enough to reach the
a756cf59 2927 * global limit. The proper fix for these situations
281e3726 2928 * will require awareness of nodes in the
a756cf59
JW
2929 * dirty-throttling and the flusher threads.
2930 */
3b8c0be4
MG
2931 if (ac->spread_dirty_pages) {
2932 if (last_pgdat_dirty_limit == zone->zone_pgdat)
2933 continue;
2934
2935 if (!node_dirty_ok(zone->zone_pgdat)) {
2936 last_pgdat_dirty_limit = zone->zone_pgdat;
2937 continue;
2938 }
2939 }
7fb1d9fc 2940
e085dbc5 2941 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
48ee5f36 2942 if (!zone_watermark_fast(zone, order, mark,
93ea9964 2943 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
2944 int ret;
2945
5dab2911
MG
2946 /* Checked here to keep the fast path fast */
2947 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2948 if (alloc_flags & ALLOC_NO_WATERMARKS)
2949 goto try_this_zone;
2950
a5f5f91d 2951 if (node_reclaim_mode == 0 ||
c33d6c06 2952 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
2953 continue;
2954
a5f5f91d 2955 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 2956 switch (ret) {
a5f5f91d 2957 case NODE_RECLAIM_NOSCAN:
fa5e084e 2958 /* did not scan */
cd38b115 2959 continue;
a5f5f91d 2960 case NODE_RECLAIM_FULL:
fa5e084e 2961 /* scanned but unreclaimable */
cd38b115 2962 continue;
fa5e084e
MG
2963 default:
2964 /* did we reclaim enough */
fed2719e 2965 if (zone_watermark_ok(zone, order, mark,
93ea9964 2966 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
2967 goto try_this_zone;
2968
fed2719e 2969 continue;
0798e519 2970 }
7fb1d9fc
RS
2971 }
2972
fa5e084e 2973try_this_zone:
c33d6c06 2974 page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 2975 gfp_mask, alloc_flags, ac->migratetype);
75379191 2976 if (page) {
479f854a 2977 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
2978
2979 /*
2980 * If this is a high-order atomic allocation then check
2981 * if the pageblock should be reserved for the future
2982 */
2983 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2984 reserve_highatomic_pageblock(page, zone, order);
2985
75379191
VB
2986 return page;
2987 }
54a6eb5c 2988 }
9276b1bc 2989
4ffeaf35 2990 return NULL;
753ee728
MH
2991}
2992
29423e77
DR
2993/*
2994 * Large machines with many possible nodes should not always dump per-node
2995 * meminfo in irq context.
2996 */
2997static inline bool should_suppress_show_mem(void)
2998{
2999 bool ret = false;
3000
3001#if NODES_SHIFT > 8
3002 ret = in_interrupt();
3003#endif
3004 return ret;
3005}
3006
aa187507 3007static void warn_alloc_show_mem(gfp_t gfp_mask)
a238ab5b 3008{
a238ab5b 3009 unsigned int filter = SHOW_MEM_FILTER_NODES;
aa187507 3010 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
a238ab5b 3011
aa187507 3012 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
a238ab5b
DH
3013 return;
3014
3015 /*
3016 * This documents exceptions given to allocations in certain
3017 * contexts that are allowed to allocate outside current's set
3018 * of allowed nodes.
3019 */
3020 if (!(gfp_mask & __GFP_NOMEMALLOC))
3021 if (test_thread_flag(TIF_MEMDIE) ||
3022 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3023 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3024 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3025 filter &= ~SHOW_MEM_FILTER_NODES;
3026
aa187507
MH
3027 show_mem(filter);
3028}
3029
3030void warn_alloc(gfp_t gfp_mask, const char *fmt, ...)
3031{
3032 struct va_format vaf;
3033 va_list args;
3034 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3035 DEFAULT_RATELIMIT_BURST);
3036
3037 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
3038 debug_guardpage_minorder() > 0)
3039 return;
3040
7877cdcc 3041 pr_warn("%s: ", current->comm);
3ee9a4f0 3042
7877cdcc
MH
3043 va_start(args, fmt);
3044 vaf.fmt = fmt;
3045 vaf.va = &args;
3046 pr_cont("%pV", &vaf);
3047 va_end(args);
3ee9a4f0 3048
7877cdcc 3049 pr_cont(", mode:%#x(%pGg)\n", gfp_mask, &gfp_mask);
3ee9a4f0 3050
a238ab5b 3051 dump_stack();
aa187507 3052 warn_alloc_show_mem(gfp_mask);
a238ab5b
DH
3053}
3054
11e33f6a
MG
3055static inline struct page *
3056__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3057 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3058{
6e0fc46d
DR
3059 struct oom_control oc = {
3060 .zonelist = ac->zonelist,
3061 .nodemask = ac->nodemask,
2a966b77 3062 .memcg = NULL,
6e0fc46d
DR
3063 .gfp_mask = gfp_mask,
3064 .order = order,
6e0fc46d 3065 };
11e33f6a
MG
3066 struct page *page;
3067
9879de73
JW
3068 *did_some_progress = 0;
3069
9879de73 3070 /*
dc56401f
JW
3071 * Acquire the oom lock. If that fails, somebody else is
3072 * making progress for us.
9879de73 3073 */
dc56401f 3074 if (!mutex_trylock(&oom_lock)) {
9879de73 3075 *did_some_progress = 1;
11e33f6a 3076 schedule_timeout_uninterruptible(1);
1da177e4
LT
3077 return NULL;
3078 }
6b1de916 3079
11e33f6a
MG
3080 /*
3081 * Go through the zonelist yet one more time, keep very high watermark
3082 * here, this is only to catch a parallel oom killing, we must fail if
3083 * we're still under heavy pressure.
3084 */
a9263751
VB
3085 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3086 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3087 if (page)
11e33f6a
MG
3088 goto out;
3089
4365a567 3090 if (!(gfp_mask & __GFP_NOFAIL)) {
9879de73
JW
3091 /* Coredumps can quickly deplete all memory reserves */
3092 if (current->flags & PF_DUMPCORE)
3093 goto out;
4365a567
KH
3094 /* The OOM killer will not help higher order allocs */
3095 if (order > PAGE_ALLOC_COSTLY_ORDER)
3096 goto out;
03668b3c 3097 /* The OOM killer does not needlessly kill tasks for lowmem */
a9263751 3098 if (ac->high_zoneidx < ZONE_NORMAL)
03668b3c 3099 goto out;
9083905a
JW
3100 if (pm_suspended_storage())
3101 goto out;
3da88fb3
MH
3102 /*
3103 * XXX: GFP_NOFS allocations should rather fail than rely on
3104 * other request to make a forward progress.
3105 * We are in an unfortunate situation where out_of_memory cannot
3106 * do much for this context but let's try it to at least get
3107 * access to memory reserved if the current task is killed (see
3108 * out_of_memory). Once filesystems are ready to handle allocation
3109 * failures more gracefully we should just bail out here.
3110 */
3111
4167e9b2 3112 /* The OOM killer may not free memory on a specific node */
4365a567
KH
3113 if (gfp_mask & __GFP_THISNODE)
3114 goto out;
3115 }
11e33f6a 3116 /* Exhausted what can be done so it's blamo time */
5020e285 3117 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3118 *did_some_progress = 1;
5020e285
MH
3119
3120 if (gfp_mask & __GFP_NOFAIL) {
3121 page = get_page_from_freelist(gfp_mask, order,
3122 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
3123 /*
3124 * fallback to ignore cpuset restriction if our nodes
3125 * are depleted
3126 */
3127 if (!page)
3128 page = get_page_from_freelist(gfp_mask, order,
3129 ALLOC_NO_WATERMARKS, ac);
3130 }
3131 }
11e33f6a 3132out:
dc56401f 3133 mutex_unlock(&oom_lock);
11e33f6a
MG
3134 return page;
3135}
3136
33c2d214
MH
3137/*
3138 * Maximum number of compaction retries wit a progress before OOM
3139 * killer is consider as the only way to move forward.
3140 */
3141#define MAX_COMPACT_RETRIES 16
3142
56de7263
MG
3143#ifdef CONFIG_COMPACTION
3144/* Try memory compaction for high-order allocations before reclaim */
3145static struct page *
3146__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3147 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3148 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3149{
98dd3b48 3150 struct page *page;
53853e2d
VB
3151
3152 if (!order)
66199712 3153 return NULL;
66199712 3154
c06b1fca 3155 current->flags |= PF_MEMALLOC;
c5d01d0d 3156 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
c3486f53 3157 prio);
c06b1fca 3158 current->flags &= ~PF_MEMALLOC;
56de7263 3159
c5d01d0d 3160 if (*compact_result <= COMPACT_INACTIVE)
98dd3b48 3161 return NULL;
53853e2d 3162
98dd3b48
VB
3163 /*
3164 * At least in one zone compaction wasn't deferred or skipped, so let's
3165 * count a compaction stall
3166 */
3167 count_vm_event(COMPACTSTALL);
8fb74b9f 3168
31a6c190 3169 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 3170
98dd3b48
VB
3171 if (page) {
3172 struct zone *zone = page_zone(page);
53853e2d 3173
98dd3b48
VB
3174 zone->compact_blockskip_flush = false;
3175 compaction_defer_reset(zone, order, true);
3176 count_vm_event(COMPACTSUCCESS);
3177 return page;
3178 }
56de7263 3179
98dd3b48
VB
3180 /*
3181 * It's bad if compaction run occurs and fails. The most likely reason
3182 * is that pages exist, but not enough to satisfy watermarks.
3183 */
3184 count_vm_event(COMPACTFAIL);
66199712 3185
98dd3b48 3186 cond_resched();
56de7263
MG
3187
3188 return NULL;
3189}
33c2d214 3190
3250845d
VB
3191static inline bool
3192should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3193 enum compact_result compact_result,
3194 enum compact_priority *compact_priority,
d9436498 3195 int *compaction_retries)
3250845d
VB
3196{
3197 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 3198 int min_priority;
3250845d
VB
3199
3200 if (!order)
3201 return false;
3202
d9436498
VB
3203 if (compaction_made_progress(compact_result))
3204 (*compaction_retries)++;
3205
3250845d
VB
3206 /*
3207 * compaction considers all the zone as desperately out of memory
3208 * so it doesn't really make much sense to retry except when the
3209 * failure could be caused by insufficient priority
3210 */
d9436498
VB
3211 if (compaction_failed(compact_result))
3212 goto check_priority;
3250845d
VB
3213
3214 /*
3215 * make sure the compaction wasn't deferred or didn't bail out early
3216 * due to locks contention before we declare that we should give up.
3217 * But do not retry if the given zonelist is not suitable for
3218 * compaction.
3219 */
3220 if (compaction_withdrawn(compact_result))
3221 return compaction_zonelist_suitable(ac, order, alloc_flags);
3222
3223 /*
3224 * !costly requests are much more important than __GFP_REPEAT
3225 * costly ones because they are de facto nofail and invoke OOM
3226 * killer to move on while costly can fail and users are ready
3227 * to cope with that. 1/4 retries is rather arbitrary but we
3228 * would need much more detailed feedback from compaction to
3229 * make a better decision.
3230 */
3231 if (order > PAGE_ALLOC_COSTLY_ORDER)
3232 max_retries /= 4;
d9436498 3233 if (*compaction_retries <= max_retries)
3250845d
VB
3234 return true;
3235
d9436498
VB
3236 /*
3237 * Make sure there are attempts at the highest priority if we exhausted
3238 * all retries or failed at the lower priorities.
3239 */
3240check_priority:
c2033b00
VB
3241 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3242 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3243 if (*compact_priority > min_priority) {
d9436498
VB
3244 (*compact_priority)--;
3245 *compaction_retries = 0;
3246 return true;
3247 }
3250845d
VB
3248 return false;
3249}
56de7263
MG
3250#else
3251static inline struct page *
3252__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3253 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3254 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3255{
33c2d214 3256 *compact_result = COMPACT_SKIPPED;
56de7263
MG
3257 return NULL;
3258}
33c2d214
MH
3259
3260static inline bool
86a294a8
MH
3261should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3262 enum compact_result compact_result,
a5508cd8 3263 enum compact_priority *compact_priority,
d9436498 3264 int *compaction_retries)
33c2d214 3265{
31e49bfd
MH
3266 struct zone *zone;
3267 struct zoneref *z;
3268
3269 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3270 return false;
3271
3272 /*
3273 * There are setups with compaction disabled which would prefer to loop
3274 * inside the allocator rather than hit the oom killer prematurely.
3275 * Let's give them a good hope and keep retrying while the order-0
3276 * watermarks are OK.
3277 */
3278 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3279 ac->nodemask) {
3280 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3281 ac_classzone_idx(ac), alloc_flags))
3282 return true;
3283 }
33c2d214
MH
3284 return false;
3285}
3250845d 3286#endif /* CONFIG_COMPACTION */
56de7263 3287
bba90710
MS
3288/* Perform direct synchronous page reclaim */
3289static int
a9263751
VB
3290__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3291 const struct alloc_context *ac)
11e33f6a 3292{
11e33f6a 3293 struct reclaim_state reclaim_state;
bba90710 3294 int progress;
11e33f6a
MG
3295
3296 cond_resched();
3297
3298 /* We now go into synchronous reclaim */
3299 cpuset_memory_pressure_bump();
c06b1fca 3300 current->flags |= PF_MEMALLOC;
11e33f6a
MG
3301 lockdep_set_current_reclaim_state(gfp_mask);
3302 reclaim_state.reclaimed_slab = 0;
c06b1fca 3303 current->reclaim_state = &reclaim_state;
11e33f6a 3304
a9263751
VB
3305 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3306 ac->nodemask);
11e33f6a 3307
c06b1fca 3308 current->reclaim_state = NULL;
11e33f6a 3309 lockdep_clear_current_reclaim_state();
c06b1fca 3310 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
3311
3312 cond_resched();
3313
bba90710
MS
3314 return progress;
3315}
3316
3317/* The really slow allocator path where we enter direct reclaim */
3318static inline struct page *
3319__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 3320 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 3321 unsigned long *did_some_progress)
bba90710
MS
3322{
3323 struct page *page = NULL;
3324 bool drained = false;
3325
a9263751 3326 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3327 if (unlikely(!(*did_some_progress)))
3328 return NULL;
11e33f6a 3329
9ee493ce 3330retry:
31a6c190 3331 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
3332
3333 /*
3334 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3335 * pages are pinned on the per-cpu lists or in high alloc reserves.
3336 * Shrink them them and try again
9ee493ce
MG
3337 */
3338 if (!page && !drained) {
29fac03b 3339 unreserve_highatomic_pageblock(ac, false);
93481ff0 3340 drain_all_pages(NULL);
9ee493ce
MG
3341 drained = true;
3342 goto retry;
3343 }
3344
11e33f6a
MG
3345 return page;
3346}
3347
a9263751 3348static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
3349{
3350 struct zoneref *z;
3351 struct zone *zone;
e1a55637 3352 pg_data_t *last_pgdat = NULL;
3a025760 3353
a9263751 3354 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
e1a55637
MG
3355 ac->high_zoneidx, ac->nodemask) {
3356 if (last_pgdat != zone->zone_pgdat)
52e9f87a 3357 wakeup_kswapd(zone, order, ac->high_zoneidx);
e1a55637
MG
3358 last_pgdat = zone->zone_pgdat;
3359 }
3a025760
JW
3360}
3361
c603844b 3362static inline unsigned int
341ce06f
PZ
3363gfp_to_alloc_flags(gfp_t gfp_mask)
3364{
c603844b 3365 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3366
a56f57ff 3367 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3368 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3369
341ce06f
PZ
3370 /*
3371 * The caller may dip into page reserves a bit more if the caller
3372 * cannot run direct reclaim, or if the caller has realtime scheduling
3373 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3374 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3375 */
e6223a3b 3376 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3377
d0164adc 3378 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3379 /*
b104a35d
DR
3380 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3381 * if it can't schedule.
5c3240d9 3382 */
b104a35d 3383 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3384 alloc_flags |= ALLOC_HARDER;
523b9458 3385 /*
b104a35d 3386 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3387 * comment for __cpuset_node_allowed().
523b9458 3388 */
341ce06f 3389 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3390 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3391 alloc_flags |= ALLOC_HARDER;
3392
d95ea5d1 3393#ifdef CONFIG_CMA
43e7a34d 3394 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
3395 alloc_flags |= ALLOC_CMA;
3396#endif
341ce06f
PZ
3397 return alloc_flags;
3398}
3399
072bb0aa
MG
3400bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3401{
31a6c190
VB
3402 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3403 return false;
3404
3405 if (gfp_mask & __GFP_MEMALLOC)
3406 return true;
3407 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3408 return true;
3409 if (!in_interrupt() &&
3410 ((current->flags & PF_MEMALLOC) ||
3411 unlikely(test_thread_flag(TIF_MEMDIE))))
3412 return true;
3413
3414 return false;
072bb0aa
MG
3415}
3416
0a0337e0
MH
3417/*
3418 * Maximum number of reclaim retries without any progress before OOM killer
3419 * is consider as the only way to move forward.
3420 */
3421#define MAX_RECLAIM_RETRIES 16
3422
3423/*
3424 * Checks whether it makes sense to retry the reclaim to make a forward progress
3425 * for the given allocation request.
3426 * The reclaim feedback represented by did_some_progress (any progress during
7854ea6c
MH
3427 * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3428 * any progress in a row) is considered as well as the reclaimable pages on the
3429 * applicable zone list (with a backoff mechanism which is a function of
3430 * no_progress_loops).
0a0337e0
MH
3431 *
3432 * Returns true if a retry is viable or false to enter the oom path.
3433 */
3434static inline bool
3435should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3436 struct alloc_context *ac, int alloc_flags,
423b452e 3437 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
3438{
3439 struct zone *zone;
3440 struct zoneref *z;
3441
423b452e
VB
3442 /*
3443 * Costly allocations might have made a progress but this doesn't mean
3444 * their order will become available due to high fragmentation so
3445 * always increment the no progress counter for them
3446 */
3447 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3448 *no_progress_loops = 0;
3449 else
3450 (*no_progress_loops)++;
3451
0a0337e0
MH
3452 /*
3453 * Make sure we converge to OOM if we cannot make any progress
3454 * several times in the row.
3455 */
04c8716f
MK
3456 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3457 /* Before OOM, exhaust highatomic_reserve */
29fac03b 3458 return unreserve_highatomic_pageblock(ac, true);
04c8716f 3459 }
0a0337e0 3460
bca67592
MG
3461 /*
3462 * Keep reclaiming pages while there is a chance this will lead
3463 * somewhere. If none of the target zones can satisfy our allocation
3464 * request even if all reclaimable pages are considered then we are
3465 * screwed and have to go OOM.
0a0337e0
MH
3466 */
3467 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3468 ac->nodemask) {
3469 unsigned long available;
ede37713 3470 unsigned long reclaimable;
0a0337e0 3471
5a1c84b4 3472 available = reclaimable = zone_reclaimable_pages(zone);
423b452e 3473 available -= DIV_ROUND_UP((*no_progress_loops) * available,
0a0337e0 3474 MAX_RECLAIM_RETRIES);
5a1c84b4 3475 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
3476
3477 /*
3478 * Would the allocation succeed if we reclaimed the whole
5a1c84b4 3479 * available?
0a0337e0 3480 */
5a1c84b4
MG
3481 if (__zone_watermark_ok(zone, order, min_wmark_pages(zone),
3482 ac_classzone_idx(ac), alloc_flags, available)) {
ede37713
MH
3483 /*
3484 * If we didn't make any progress and have a lot of
3485 * dirty + writeback pages then we should wait for
3486 * an IO to complete to slow down the reclaim and
3487 * prevent from pre mature OOM
3488 */
3489 if (!did_some_progress) {
11fb9989 3490 unsigned long write_pending;
ede37713 3491
5a1c84b4
MG
3492 write_pending = zone_page_state_snapshot(zone,
3493 NR_ZONE_WRITE_PENDING);
ede37713 3494
11fb9989 3495 if (2 * write_pending > reclaimable) {
ede37713
MH
3496 congestion_wait(BLK_RW_ASYNC, HZ/10);
3497 return true;
3498 }
3499 }
5a1c84b4 3500
ede37713
MH
3501 /*
3502 * Memory allocation/reclaim might be called from a WQ
3503 * context and the current implementation of the WQ
3504 * concurrency control doesn't recognize that
3505 * a particular WQ is congested if the worker thread is
3506 * looping without ever sleeping. Therefore we have to
3507 * do a short sleep here rather than calling
3508 * cond_resched().
3509 */
3510 if (current->flags & PF_WQ_WORKER)
3511 schedule_timeout_uninterruptible(1);
3512 else
3513 cond_resched();
3514
0a0337e0
MH
3515 return true;
3516 }
3517 }
3518
3519 return false;
3520}
3521
11e33f6a
MG
3522static inline struct page *
3523__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 3524 struct alloc_context *ac)
11e33f6a 3525{
d0164adc 3526 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
11e33f6a 3527 struct page *page = NULL;
c603844b 3528 unsigned int alloc_flags;
11e33f6a 3529 unsigned long did_some_progress;
5ce9bfef 3530 enum compact_priority compact_priority;
c5d01d0d 3531 enum compact_result compact_result;
5ce9bfef
VB
3532 int compaction_retries;
3533 int no_progress_loops;
63f53dea
MH
3534 unsigned long alloc_start = jiffies;
3535 unsigned int stall_timeout = 10 * HZ;
5ce9bfef 3536 unsigned int cpuset_mems_cookie;
1da177e4 3537
72807a74
MG
3538 /*
3539 * In the slowpath, we sanity check order to avoid ever trying to
3540 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3541 * be using allocators in order of preference for an area that is
3542 * too large.
3543 */
1fc28b70
MG
3544 if (order >= MAX_ORDER) {
3545 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 3546 return NULL;
1fc28b70 3547 }
1da177e4 3548
d0164adc
MG
3549 /*
3550 * We also sanity check to catch abuse of atomic reserves being used by
3551 * callers that are not in atomic context.
3552 */
3553 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3554 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3555 gfp_mask &= ~__GFP_ATOMIC;
3556
5ce9bfef
VB
3557retry_cpuset:
3558 compaction_retries = 0;
3559 no_progress_loops = 0;
3560 compact_priority = DEF_COMPACT_PRIORITY;
3561 cpuset_mems_cookie = read_mems_allowed_begin();
e47483bc
VB
3562 /*
3563 * We need to recalculate the starting point for the zonelist iterator
3564 * because we might have used different nodemask in the fast path, or
3565 * there was a cpuset modification and we are retrying - otherwise we
3566 * could end up iterating over non-eligible zones endlessly.
3567 */
3568 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3569 ac->high_zoneidx, ac->nodemask);
3570 if (!ac->preferred_zoneref->zone)
3571 goto nopage;
3572
5ce9bfef 3573
9bf2229f 3574 /*
31a6c190
VB
3575 * The fast path uses conservative alloc_flags to succeed only until
3576 * kswapd needs to be woken up, and to avoid the cost of setting up
3577 * alloc_flags precisely. So we do that now.
9bf2229f 3578 */
341ce06f 3579 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 3580
23771235
VB
3581 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3582 wake_all_kswapds(order, ac);
3583
3584 /*
3585 * The adjusted alloc_flags might result in immediate success, so try
3586 * that first
3587 */
3588 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3589 if (page)
3590 goto got_pg;
3591
a8161d1e
VB
3592 /*
3593 * For costly allocations, try direct compaction first, as it's likely
3594 * that we have enough base pages and don't need to reclaim. Don't try
3595 * that for allocations that are allowed to ignore watermarks, as the
3596 * ALLOC_NO_WATERMARKS attempt didn't yet happen.
3597 */
3598 if (can_direct_reclaim && order > PAGE_ALLOC_COSTLY_ORDER &&
3599 !gfp_pfmemalloc_allowed(gfp_mask)) {
3600 page = __alloc_pages_direct_compact(gfp_mask, order,
3601 alloc_flags, ac,
a5508cd8 3602 INIT_COMPACT_PRIORITY,
a8161d1e
VB
3603 &compact_result);
3604 if (page)
3605 goto got_pg;
3606
3eb2771b
VB
3607 /*
3608 * Checks for costly allocations with __GFP_NORETRY, which
3609 * includes THP page fault allocations
3610 */
3611 if (gfp_mask & __GFP_NORETRY) {
a8161d1e
VB
3612 /*
3613 * If compaction is deferred for high-order allocations,
3614 * it is because sync compaction recently failed. If
3615 * this is the case and the caller requested a THP
3616 * allocation, we do not want to heavily disrupt the
3617 * system, so we fail the allocation instead of entering
3618 * direct reclaim.
3619 */
3620 if (compact_result == COMPACT_DEFERRED)
3621 goto nopage;
3622
a8161d1e 3623 /*
3eb2771b
VB
3624 * Looks like reclaim/compaction is worth trying, but
3625 * sync compaction could be very expensive, so keep
25160354 3626 * using async compaction.
a8161d1e 3627 */
a5508cd8 3628 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
3629 }
3630 }
23771235 3631
31a6c190 3632retry:
23771235 3633 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
31a6c190
VB
3634 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3635 wake_all_kswapds(order, ac);
3636
23771235
VB
3637 if (gfp_pfmemalloc_allowed(gfp_mask))
3638 alloc_flags = ALLOC_NO_WATERMARKS;
3639
e46e7b77
MG
3640 /*
3641 * Reset the zonelist iterators if memory policies can be ignored.
3642 * These allocations are high priority and system rather than user
3643 * orientated.
3644 */
23771235 3645 if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
e46e7b77
MG
3646 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3647 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3648 ac->high_zoneidx, ac->nodemask);
3649 }
3650
23771235 3651 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 3652 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
3653 if (page)
3654 goto got_pg;
1da177e4 3655
d0164adc
MG
3656 /* Caller is not willing to reclaim, we can't balance anything */
3657 if (!can_direct_reclaim) {
aed0a0e3 3658 /*
33d53103
MH
3659 * All existing users of the __GFP_NOFAIL are blockable, so warn
3660 * of any new users that actually allow this type of allocation
3661 * to fail.
aed0a0e3
DR
3662 */
3663 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 3664 goto nopage;
aed0a0e3 3665 }
1da177e4 3666
341ce06f 3667 /* Avoid recursion of direct reclaim */
33d53103
MH
3668 if (current->flags & PF_MEMALLOC) {
3669 /*
3670 * __GFP_NOFAIL request from this context is rather bizarre
3671 * because we cannot reclaim anything and only can loop waiting
3672 * for somebody to do a work for us.
3673 */
3674 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3675 cond_resched();
3676 goto retry;
3677 }
341ce06f 3678 goto nopage;
33d53103 3679 }
341ce06f 3680
6583bb64
DR
3681 /* Avoid allocations with no watermarks from looping endlessly */
3682 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3683 goto nopage;
3684
a8161d1e
VB
3685
3686 /* Try direct reclaim and then allocating */
3687 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3688 &did_some_progress);
3689 if (page)
3690 goto got_pg;
3691
3692 /* Try direct compaction and then allocating */
a9263751 3693 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 3694 compact_priority, &compact_result);
56de7263
MG
3695 if (page)
3696 goto got_pg;
75f30861 3697
9083905a
JW
3698 /* Do not loop if specifically requested */
3699 if (gfp_mask & __GFP_NORETRY)
a8161d1e 3700 goto nopage;
9083905a 3701
0a0337e0
MH
3702 /*
3703 * Do not retry costly high order allocations unless they are
3704 * __GFP_REPEAT
3705 */
3706 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
a8161d1e 3707 goto nopage;
0a0337e0 3708
63f53dea
MH
3709 /* Make sure we know about allocations which stall for too long */
3710 if (time_after(jiffies, alloc_start + stall_timeout)) {
3711 warn_alloc(gfp_mask,
9e80c719 3712 "page allocation stalls for %ums, order:%u",
63f53dea
MH
3713 jiffies_to_msecs(jiffies-alloc_start), order);
3714 stall_timeout += 10 * HZ;
3715 }
3716
0a0337e0 3717 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 3718 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
3719 goto retry;
3720
33c2d214
MH
3721 /*
3722 * It doesn't make any sense to retry for the compaction if the order-0
3723 * reclaim is not able to make any progress because the current
3724 * implementation of the compaction depends on the sufficient amount
3725 * of free memory (see __compaction_suitable)
3726 */
3727 if (did_some_progress > 0 &&
86a294a8 3728 should_compact_retry(ac, order, alloc_flags,
a5508cd8 3729 compact_result, &compact_priority,
d9436498 3730 &compaction_retries))
33c2d214
MH
3731 goto retry;
3732
e47483bc
VB
3733 /*
3734 * It's possible we raced with cpuset update so the OOM would be
3735 * premature (see below the nopage: label for full explanation).
3736 */
3737 if (read_mems_allowed_retry(cpuset_mems_cookie))
3738 goto retry_cpuset;
3739
9083905a
JW
3740 /* Reclaim has failed us, start killing things */
3741 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3742 if (page)
3743 goto got_pg;
3744
3745 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
3746 if (did_some_progress) {
3747 no_progress_loops = 0;
9083905a 3748 goto retry;
0a0337e0 3749 }
9083905a 3750
1da177e4 3751nopage:
5ce9bfef 3752 /*
e47483bc
VB
3753 * When updating a task's mems_allowed or mempolicy nodemask, it is
3754 * possible to race with parallel threads in such a way that our
3755 * allocation can fail while the mask is being updated. If we are about
3756 * to fail, check if the cpuset changed during allocation and if so,
3757 * retry.
5ce9bfef
VB
3758 */
3759 if (read_mems_allowed_retry(cpuset_mems_cookie))
3760 goto retry_cpuset;
3761
7877cdcc
MH
3762 warn_alloc(gfp_mask,
3763 "page allocation failure: order:%u", order);
1da177e4 3764got_pg:
072bb0aa 3765 return page;
1da177e4 3766}
11e33f6a
MG
3767
3768/*
3769 * This is the 'heart' of the zoned buddy allocator.
3770 */
3771struct page *
3772__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3773 struct zonelist *zonelist, nodemask_t *nodemask)
3774{
5bb1b169 3775 struct page *page;
e6cbd7f2 3776 unsigned int alloc_flags = ALLOC_WMARK_LOW;
83d4ca81 3777 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
a9263751
VB
3778 struct alloc_context ac = {
3779 .high_zoneidx = gfp_zone(gfp_mask),
682a3385 3780 .zonelist = zonelist,
a9263751
VB
3781 .nodemask = nodemask,
3782 .migratetype = gfpflags_to_migratetype(gfp_mask),
3783 };
11e33f6a 3784
682a3385 3785 if (cpusets_enabled()) {
83d4ca81 3786 alloc_mask |= __GFP_HARDWALL;
682a3385
MG
3787 alloc_flags |= ALLOC_CPUSET;
3788 if (!ac.nodemask)
3789 ac.nodemask = &cpuset_current_mems_allowed;
3790 }
3791
dcce284a
BH
3792 gfp_mask &= gfp_allowed_mask;
3793
11e33f6a
MG
3794 lockdep_trace_alloc(gfp_mask);
3795
d0164adc 3796 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
3797
3798 if (should_fail_alloc_page(gfp_mask, order))
3799 return NULL;
3800
3801 /*
3802 * Check the zones suitable for the gfp_mask contain at least one
3803 * valid zone. It's possible to have an empty zonelist as a result
4167e9b2 3804 * of __GFP_THISNODE and a memoryless node
11e33f6a
MG
3805 */
3806 if (unlikely(!zonelist->_zonerefs->zone))
3807 return NULL;
3808
a9263751 3809 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
21bb9bd1
VB
3810 alloc_flags |= ALLOC_CMA;
3811
c9ab0c4f
MG
3812 /* Dirty zone balancing only done in the fast path */
3813 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3814
e46e7b77
MG
3815 /*
3816 * The preferred zone is used for statistics but crucially it is
3817 * also used as the starting point for the zonelist iterator. It
3818 * may get reset for allocations that ignore memory policies.
3819 */
c33d6c06
MG
3820 ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
3821 ac.high_zoneidx, ac.nodemask);
ea57485a 3822 if (!ac.preferred_zoneref->zone) {
5bb1b169 3823 page = NULL;
5ce9bfef
VB
3824 /*
3825 * This might be due to race with cpuset_current_mems_allowed
3826 * update, so make sure we retry with original nodemask in the
3827 * slow path.
3828 */
4fcb0971 3829 goto no_zone;
5bb1b169
MG
3830 }
3831
5117f45d 3832 /* First allocation attempt */
a9263751 3833 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
3834 if (likely(page))
3835 goto out;
11e33f6a 3836
5ce9bfef 3837no_zone:
4fcb0971
MG
3838 /*
3839 * Runtime PM, block IO and its error handling path can deadlock
3840 * because I/O on the device might not complete.
3841 */
3842 alloc_mask = memalloc_noio_flags(gfp_mask);
3843 ac.spread_dirty_pages = false;
23f086f9 3844
4741526b
MG
3845 /*
3846 * Restore the original nodemask if it was potentially replaced with
3847 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3848 */
e47483bc 3849 if (unlikely(ac.nodemask != nodemask))
4741526b 3850 ac.nodemask = nodemask;
16096c25 3851
4fcb0971 3852 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 3853
4fcb0971 3854out:
c4159a75
VD
3855 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
3856 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
3857 __free_pages(page, order);
3858 page = NULL;
4949148a
VD
3859 }
3860
4fcb0971
MG
3861 if (kmemcheck_enabled && page)
3862 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3863
3864 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3865
11e33f6a 3866 return page;
1da177e4 3867}
d239171e 3868EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
3869
3870/*
3871 * Common helper functions.
3872 */
920c7a5d 3873unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 3874{
945a1113
AM
3875 struct page *page;
3876
3877 /*
3878 * __get_free_pages() returns a 32-bit address, which cannot represent
3879 * a highmem page
3880 */
3881 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3882
1da177e4
LT
3883 page = alloc_pages(gfp_mask, order);
3884 if (!page)
3885 return 0;
3886 return (unsigned long) page_address(page);
3887}
1da177e4
LT
3888EXPORT_SYMBOL(__get_free_pages);
3889
920c7a5d 3890unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 3891{
945a1113 3892 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 3893}
1da177e4
LT
3894EXPORT_SYMBOL(get_zeroed_page);
3895
920c7a5d 3896void __free_pages(struct page *page, unsigned int order)
1da177e4 3897{
b5810039 3898 if (put_page_testzero(page)) {
1da177e4 3899 if (order == 0)
b745bc85 3900 free_hot_cold_page(page, false);
1da177e4
LT
3901 else
3902 __free_pages_ok(page, order);
3903 }
3904}
3905
3906EXPORT_SYMBOL(__free_pages);
3907
920c7a5d 3908void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
3909{
3910 if (addr != 0) {
725d704e 3911 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
3912 __free_pages(virt_to_page((void *)addr), order);
3913 }
3914}
3915
3916EXPORT_SYMBOL(free_pages);
3917
b63ae8ca
AD
3918/*
3919 * Page Fragment:
3920 * An arbitrary-length arbitrary-offset area of memory which resides
3921 * within a 0 or higher order page. Multiple fragments within that page
3922 * are individually refcounted, in the page's reference counter.
3923 *
3924 * The page_frag functions below provide a simple allocation framework for
3925 * page fragments. This is used by the network stack and network device
3926 * drivers to provide a backing region of memory for use as either an
3927 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3928 */
2976db80
AD
3929static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
3930 gfp_t gfp_mask)
b63ae8ca
AD
3931{
3932 struct page *page = NULL;
3933 gfp_t gfp = gfp_mask;
3934
3935#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3936 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3937 __GFP_NOMEMALLOC;
3938 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3939 PAGE_FRAG_CACHE_MAX_ORDER);
3940 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3941#endif
3942 if (unlikely(!page))
3943 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3944
3945 nc->va = page ? page_address(page) : NULL;
3946
3947 return page;
3948}
3949
2976db80 3950void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
3951{
3952 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
3953
3954 if (page_ref_sub_and_test(page, count)) {
2976db80
AD
3955 unsigned int order = compound_order(page);
3956
44fdffd7
AD
3957 if (order == 0)
3958 free_hot_cold_page(page, false);
3959 else
3960 __free_pages_ok(page, order);
3961 }
3962}
2976db80 3963EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 3964
8c2dd3e4
AD
3965void *page_frag_alloc(struct page_frag_cache *nc,
3966 unsigned int fragsz, gfp_t gfp_mask)
b63ae8ca
AD
3967{
3968 unsigned int size = PAGE_SIZE;
3969 struct page *page;
3970 int offset;
3971
3972 if (unlikely(!nc->va)) {
3973refill:
2976db80 3974 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
3975 if (!page)
3976 return NULL;
3977
3978#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3979 /* if size can vary use size else just use PAGE_SIZE */
3980 size = nc->size;
3981#endif
3982 /* Even if we own the page, we do not use atomic_set().
3983 * This would break get_page_unless_zero() users.
3984 */
fe896d18 3985 page_ref_add(page, size - 1);
b63ae8ca
AD
3986
3987 /* reset page count bias and offset to start of new frag */
2f064f34 3988 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
3989 nc->pagecnt_bias = size;
3990 nc->offset = size;
3991 }
3992
3993 offset = nc->offset - fragsz;
3994 if (unlikely(offset < 0)) {
3995 page = virt_to_page(nc->va);
3996
fe896d18 3997 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
3998 goto refill;
3999
4000#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4001 /* if size can vary use size else just use PAGE_SIZE */
4002 size = nc->size;
4003#endif
4004 /* OK, page count is 0, we can safely set it */
fe896d18 4005 set_page_count(page, size);
b63ae8ca
AD
4006
4007 /* reset page count bias and offset to start of new frag */
4008 nc->pagecnt_bias = size;
4009 offset = size - fragsz;
4010 }
4011
4012 nc->pagecnt_bias--;
4013 nc->offset = offset;
4014
4015 return nc->va + offset;
4016}
8c2dd3e4 4017EXPORT_SYMBOL(page_frag_alloc);
b63ae8ca
AD
4018
4019/*
4020 * Frees a page fragment allocated out of either a compound or order 0 page.
4021 */
8c2dd3e4 4022void page_frag_free(void *addr)
b63ae8ca
AD
4023{
4024 struct page *page = virt_to_head_page(addr);
4025
4026 if (unlikely(put_page_testzero(page)))
4027 __free_pages_ok(page, compound_order(page));
4028}
8c2dd3e4 4029EXPORT_SYMBOL(page_frag_free);
b63ae8ca 4030
d00181b9
KS
4031static void *make_alloc_exact(unsigned long addr, unsigned int order,
4032 size_t size)
ee85c2e1
AK
4033{
4034 if (addr) {
4035 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4036 unsigned long used = addr + PAGE_ALIGN(size);
4037
4038 split_page(virt_to_page((void *)addr), order);
4039 while (used < alloc_end) {
4040 free_page(used);
4041 used += PAGE_SIZE;
4042 }
4043 }
4044 return (void *)addr;
4045}
4046
2be0ffe2
TT
4047/**
4048 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4049 * @size: the number of bytes to allocate
4050 * @gfp_mask: GFP flags for the allocation
4051 *
4052 * This function is similar to alloc_pages(), except that it allocates the
4053 * minimum number of pages to satisfy the request. alloc_pages() can only
4054 * allocate memory in power-of-two pages.
4055 *
4056 * This function is also limited by MAX_ORDER.
4057 *
4058 * Memory allocated by this function must be released by free_pages_exact().
4059 */
4060void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4061{
4062 unsigned int order = get_order(size);
4063 unsigned long addr;
4064
4065 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 4066 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
4067}
4068EXPORT_SYMBOL(alloc_pages_exact);
4069
ee85c2e1
AK
4070/**
4071 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4072 * pages on a node.
b5e6ab58 4073 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
4074 * @size: the number of bytes to allocate
4075 * @gfp_mask: GFP flags for the allocation
4076 *
4077 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4078 * back.
ee85c2e1 4079 */
e1931811 4080void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 4081{
d00181b9 4082 unsigned int order = get_order(size);
ee85c2e1
AK
4083 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4084 if (!p)
4085 return NULL;
4086 return make_alloc_exact((unsigned long)page_address(p), order, size);
4087}
ee85c2e1 4088
2be0ffe2
TT
4089/**
4090 * free_pages_exact - release memory allocated via alloc_pages_exact()
4091 * @virt: the value returned by alloc_pages_exact.
4092 * @size: size of allocation, same value as passed to alloc_pages_exact().
4093 *
4094 * Release the memory allocated by a previous call to alloc_pages_exact.
4095 */
4096void free_pages_exact(void *virt, size_t size)
4097{
4098 unsigned long addr = (unsigned long)virt;
4099 unsigned long end = addr + PAGE_ALIGN(size);
4100
4101 while (addr < end) {
4102 free_page(addr);
4103 addr += PAGE_SIZE;
4104 }
4105}
4106EXPORT_SYMBOL(free_pages_exact);
4107
e0fb5815
ZY
4108/**
4109 * nr_free_zone_pages - count number of pages beyond high watermark
4110 * @offset: The zone index of the highest zone
4111 *
4112 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4113 * high watermark within all zones at or below a given zone index. For each
4114 * zone, the number of pages is calculated as:
834405c3 4115 * managed_pages - high_pages
e0fb5815 4116 */
ebec3862 4117static unsigned long nr_free_zone_pages(int offset)
1da177e4 4118{
dd1a239f 4119 struct zoneref *z;
54a6eb5c
MG
4120 struct zone *zone;
4121
e310fd43 4122 /* Just pick one node, since fallback list is circular */
ebec3862 4123 unsigned long sum = 0;
1da177e4 4124
0e88460d 4125 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 4126
54a6eb5c 4127 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 4128 unsigned long size = zone->managed_pages;
41858966 4129 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
4130 if (size > high)
4131 sum += size - high;
1da177e4
LT
4132 }
4133
4134 return sum;
4135}
4136
e0fb5815
ZY
4137/**
4138 * nr_free_buffer_pages - count number of pages beyond high watermark
4139 *
4140 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4141 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 4142 */
ebec3862 4143unsigned long nr_free_buffer_pages(void)
1da177e4 4144{
af4ca457 4145 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 4146}
c2f1a551 4147EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 4148
e0fb5815
ZY
4149/**
4150 * nr_free_pagecache_pages - count number of pages beyond high watermark
4151 *
4152 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4153 * high watermark within all zones.
1da177e4 4154 */
ebec3862 4155unsigned long nr_free_pagecache_pages(void)
1da177e4 4156{
2a1e274a 4157 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 4158}
08e0f6a9
CL
4159
4160static inline void show_node(struct zone *zone)
1da177e4 4161{
e5adfffc 4162 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 4163 printk("Node %d ", zone_to_nid(zone));
1da177e4 4164}
1da177e4 4165
d02bd27b
IR
4166long si_mem_available(void)
4167{
4168 long available;
4169 unsigned long pagecache;
4170 unsigned long wmark_low = 0;
4171 unsigned long pages[NR_LRU_LISTS];
4172 struct zone *zone;
4173 int lru;
4174
4175 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 4176 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
4177
4178 for_each_zone(zone)
4179 wmark_low += zone->watermark[WMARK_LOW];
4180
4181 /*
4182 * Estimate the amount of memory available for userspace allocations,
4183 * without causing swapping.
4184 */
4185 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4186
4187 /*
4188 * Not all the page cache can be freed, otherwise the system will
4189 * start swapping. Assume at least half of the page cache, or the
4190 * low watermark worth of cache, needs to stay.
4191 */
4192 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4193 pagecache -= min(pagecache / 2, wmark_low);
4194 available += pagecache;
4195
4196 /*
4197 * Part of the reclaimable slab consists of items that are in use,
4198 * and cannot be freed. Cap this estimate at the low watermark.
4199 */
4200 available += global_page_state(NR_SLAB_RECLAIMABLE) -
4201 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4202
4203 if (available < 0)
4204 available = 0;
4205 return available;
4206}
4207EXPORT_SYMBOL_GPL(si_mem_available);
4208
1da177e4
LT
4209void si_meminfo(struct sysinfo *val)
4210{
4211 val->totalram = totalram_pages;
11fb9989 4212 val->sharedram = global_node_page_state(NR_SHMEM);
d23ad423 4213 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 4214 val->bufferram = nr_blockdev_pages();
1da177e4
LT
4215 val->totalhigh = totalhigh_pages;
4216 val->freehigh = nr_free_highpages();
1da177e4
LT
4217 val->mem_unit = PAGE_SIZE;
4218}
4219
4220EXPORT_SYMBOL(si_meminfo);
4221
4222#ifdef CONFIG_NUMA
4223void si_meminfo_node(struct sysinfo *val, int nid)
4224{
cdd91a77
JL
4225 int zone_type; /* needs to be signed */
4226 unsigned long managed_pages = 0;
fc2bd799
JK
4227 unsigned long managed_highpages = 0;
4228 unsigned long free_highpages = 0;
1da177e4
LT
4229 pg_data_t *pgdat = NODE_DATA(nid);
4230
cdd91a77
JL
4231 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4232 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4233 val->totalram = managed_pages;
11fb9989 4234 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 4235 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 4236#ifdef CONFIG_HIGHMEM
fc2bd799
JK
4237 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4238 struct zone *zone = &pgdat->node_zones[zone_type];
4239
4240 if (is_highmem(zone)) {
4241 managed_highpages += zone->managed_pages;
4242 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4243 }
4244 }
4245 val->totalhigh = managed_highpages;
4246 val->freehigh = free_highpages;
98d2b0eb 4247#else
fc2bd799
JK
4248 val->totalhigh = managed_highpages;
4249 val->freehigh = free_highpages;
98d2b0eb 4250#endif
1da177e4
LT
4251 val->mem_unit = PAGE_SIZE;
4252}
4253#endif
4254
ddd588b5 4255/*
7bf02ea2
DR
4256 * Determine whether the node should be displayed or not, depending on whether
4257 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 4258 */
7bf02ea2 4259bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
4260{
4261 bool ret = false;
cc9a6c87 4262 unsigned int cpuset_mems_cookie;
ddd588b5
DR
4263
4264 if (!(flags & SHOW_MEM_FILTER_NODES))
4265 goto out;
4266
cc9a6c87 4267 do {
d26914d1 4268 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 4269 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 4270 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
4271out:
4272 return ret;
4273}
4274
1da177e4
LT
4275#define K(x) ((x) << (PAGE_SHIFT-10))
4276
377e4f16
RV
4277static void show_migration_types(unsigned char type)
4278{
4279 static const char types[MIGRATE_TYPES] = {
4280 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 4281 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
4282 [MIGRATE_RECLAIMABLE] = 'E',
4283 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
4284#ifdef CONFIG_CMA
4285 [MIGRATE_CMA] = 'C',
4286#endif
194159fb 4287#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 4288 [MIGRATE_ISOLATE] = 'I',
194159fb 4289#endif
377e4f16
RV
4290 };
4291 char tmp[MIGRATE_TYPES + 1];
4292 char *p = tmp;
4293 int i;
4294
4295 for (i = 0; i < MIGRATE_TYPES; i++) {
4296 if (type & (1 << i))
4297 *p++ = types[i];
4298 }
4299
4300 *p = '\0';
1f84a18f 4301 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
4302}
4303
1da177e4
LT
4304/*
4305 * Show free area list (used inside shift_scroll-lock stuff)
4306 * We also calculate the percentage fragmentation. We do this by counting the
4307 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
4308 *
4309 * Bits in @filter:
4310 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4311 * cpuset.
1da177e4 4312 */
7bf02ea2 4313void show_free_areas(unsigned int filter)
1da177e4 4314{
d1bfcdb8 4315 unsigned long free_pcp = 0;
c7241913 4316 int cpu;
1da177e4 4317 struct zone *zone;
599d0c95 4318 pg_data_t *pgdat;
1da177e4 4319
ee99c71c 4320 for_each_populated_zone(zone) {
7bf02ea2 4321 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4322 continue;
d1bfcdb8 4323
761b0677
KK
4324 for_each_online_cpu(cpu)
4325 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
4326 }
4327
a731286d
KM
4328 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4329 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
4330 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4331 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 4332 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 4333 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
4334 global_node_page_state(NR_ACTIVE_ANON),
4335 global_node_page_state(NR_INACTIVE_ANON),
4336 global_node_page_state(NR_ISOLATED_ANON),
4337 global_node_page_state(NR_ACTIVE_FILE),
4338 global_node_page_state(NR_INACTIVE_FILE),
4339 global_node_page_state(NR_ISOLATED_FILE),
4340 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
4341 global_node_page_state(NR_FILE_DIRTY),
4342 global_node_page_state(NR_WRITEBACK),
4343 global_node_page_state(NR_UNSTABLE_NFS),
3701b033
KM
4344 global_page_state(NR_SLAB_RECLAIMABLE),
4345 global_page_state(NR_SLAB_UNRECLAIMABLE),
50658e2e 4346 global_node_page_state(NR_FILE_MAPPED),
11fb9989 4347 global_node_page_state(NR_SHMEM),
a25700a5 4348 global_page_state(NR_PAGETABLE),
d1ce749a 4349 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
4350 global_page_state(NR_FREE_PAGES),
4351 free_pcp,
d1ce749a 4352 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 4353
599d0c95
MG
4354 for_each_online_pgdat(pgdat) {
4355 printk("Node %d"
4356 " active_anon:%lukB"
4357 " inactive_anon:%lukB"
4358 " active_file:%lukB"
4359 " inactive_file:%lukB"
4360 " unevictable:%lukB"
4361 " isolated(anon):%lukB"
4362 " isolated(file):%lukB"
50658e2e 4363 " mapped:%lukB"
11fb9989
MG
4364 " dirty:%lukB"
4365 " writeback:%lukB"
4366 " shmem:%lukB"
4367#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4368 " shmem_thp: %lukB"
4369 " shmem_pmdmapped: %lukB"
4370 " anon_thp: %lukB"
4371#endif
4372 " writeback_tmp:%lukB"
4373 " unstable:%lukB"
33e077bd 4374 " pages_scanned:%lu"
599d0c95
MG
4375 " all_unreclaimable? %s"
4376 "\n",
4377 pgdat->node_id,
4378 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4379 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4380 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4381 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4382 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4383 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4384 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 4385 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
4386 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4387 K(node_page_state(pgdat, NR_WRITEBACK)),
4388#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4389 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4390 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4391 * HPAGE_PMD_NR),
4392 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4393#endif
4394 K(node_page_state(pgdat, NR_SHMEM)),
4395 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4396 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
33e077bd 4397 node_page_state(pgdat, NR_PAGES_SCANNED),
599d0c95
MG
4398 !pgdat_reclaimable(pgdat) ? "yes" : "no");
4399 }
4400
ee99c71c 4401 for_each_populated_zone(zone) {
1da177e4
LT
4402 int i;
4403
7bf02ea2 4404 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4405 continue;
d1bfcdb8
KK
4406
4407 free_pcp = 0;
4408 for_each_online_cpu(cpu)
4409 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4410
1da177e4 4411 show_node(zone);
1f84a18f
JP
4412 printk(KERN_CONT
4413 "%s"
1da177e4
LT
4414 " free:%lukB"
4415 " min:%lukB"
4416 " low:%lukB"
4417 " high:%lukB"
71c799f4
MK
4418 " active_anon:%lukB"
4419 " inactive_anon:%lukB"
4420 " active_file:%lukB"
4421 " inactive_file:%lukB"
4422 " unevictable:%lukB"
5a1c84b4 4423 " writepending:%lukB"
1da177e4 4424 " present:%lukB"
9feedc9d 4425 " managed:%lukB"
4a0aa73f 4426 " mlocked:%lukB"
4a0aa73f
KM
4427 " slab_reclaimable:%lukB"
4428 " slab_unreclaimable:%lukB"
c6a7f572 4429 " kernel_stack:%lukB"
4a0aa73f 4430 " pagetables:%lukB"
4a0aa73f 4431 " bounce:%lukB"
d1bfcdb8
KK
4432 " free_pcp:%lukB"
4433 " local_pcp:%ukB"
d1ce749a 4434 " free_cma:%lukB"
1da177e4
LT
4435 "\n",
4436 zone->name,
88f5acf8 4437 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
4438 K(min_wmark_pages(zone)),
4439 K(low_wmark_pages(zone)),
4440 K(high_wmark_pages(zone)),
71c799f4
MK
4441 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4442 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4443 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4444 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4445 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 4446 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 4447 K(zone->present_pages),
9feedc9d 4448 K(zone->managed_pages),
4a0aa73f 4449 K(zone_page_state(zone, NR_MLOCK)),
4a0aa73f
KM
4450 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4451 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
d30dd8be 4452 zone_page_state(zone, NR_KERNEL_STACK_KB),
4a0aa73f 4453 K(zone_page_state(zone, NR_PAGETABLE)),
4a0aa73f 4454 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
4455 K(free_pcp),
4456 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 4457 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
4458 printk("lowmem_reserve[]:");
4459 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
4460 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4461 printk(KERN_CONT "\n");
1da177e4
LT
4462 }
4463
ee99c71c 4464 for_each_populated_zone(zone) {
d00181b9
KS
4465 unsigned int order;
4466 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 4467 unsigned char types[MAX_ORDER];
1da177e4 4468
7bf02ea2 4469 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4470 continue;
1da177e4 4471 show_node(zone);
1f84a18f 4472 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
4473
4474 spin_lock_irqsave(&zone->lock, flags);
4475 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
4476 struct free_area *area = &zone->free_area[order];
4477 int type;
4478
4479 nr[order] = area->nr_free;
8f9de51a 4480 total += nr[order] << order;
377e4f16
RV
4481
4482 types[order] = 0;
4483 for (type = 0; type < MIGRATE_TYPES; type++) {
4484 if (!list_empty(&area->free_list[type]))
4485 types[order] |= 1 << type;
4486 }
1da177e4
LT
4487 }
4488 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 4489 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
4490 printk(KERN_CONT "%lu*%lukB ",
4491 nr[order], K(1UL) << order);
377e4f16
RV
4492 if (nr[order])
4493 show_migration_types(types[order]);
4494 }
1f84a18f 4495 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
4496 }
4497
949f7ec5
DR
4498 hugetlb_show_meminfo();
4499
11fb9989 4500 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 4501
1da177e4
LT
4502 show_swap_cache_info();
4503}
4504
19770b32
MG
4505static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4506{
4507 zoneref->zone = zone;
4508 zoneref->zone_idx = zone_idx(zone);
4509}
4510
1da177e4
LT
4511/*
4512 * Builds allocation fallback zone lists.
1a93205b
CL
4513 *
4514 * Add all populated zones of a node to the zonelist.
1da177e4 4515 */
f0c0b2b8 4516static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 4517 int nr_zones)
1da177e4 4518{
1a93205b 4519 struct zone *zone;
bc732f1d 4520 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
4521
4522 do {
2f6726e5 4523 zone_type--;
070f8032 4524 zone = pgdat->node_zones + zone_type;
6aa303de 4525 if (managed_zone(zone)) {
dd1a239f
MG
4526 zoneref_set_zone(zone,
4527 &zonelist->_zonerefs[nr_zones++]);
070f8032 4528 check_highest_zone(zone_type);
1da177e4 4529 }
2f6726e5 4530 } while (zone_type);
bc732f1d 4531
070f8032 4532 return nr_zones;
1da177e4
LT
4533}
4534
f0c0b2b8
KH
4535
4536/*
4537 * zonelist_order:
4538 * 0 = automatic detection of better ordering.
4539 * 1 = order by ([node] distance, -zonetype)
4540 * 2 = order by (-zonetype, [node] distance)
4541 *
4542 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4543 * the same zonelist. So only NUMA can configure this param.
4544 */
4545#define ZONELIST_ORDER_DEFAULT 0
4546#define ZONELIST_ORDER_NODE 1
4547#define ZONELIST_ORDER_ZONE 2
4548
4549/* zonelist order in the kernel.
4550 * set_zonelist_order() will set this to NODE or ZONE.
4551 */
4552static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4553static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4554
4555
1da177e4 4556#ifdef CONFIG_NUMA
f0c0b2b8
KH
4557/* The value user specified ....changed by config */
4558static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4559/* string for sysctl */
4560#define NUMA_ZONELIST_ORDER_LEN 16
4561char numa_zonelist_order[16] = "default";
4562
4563/*
4564 * interface for configure zonelist ordering.
4565 * command line option "numa_zonelist_order"
4566 * = "[dD]efault - default, automatic configuration.
4567 * = "[nN]ode - order by node locality, then by zone within node
4568 * = "[zZ]one - order by zone, then by locality within zone
4569 */
4570
4571static int __parse_numa_zonelist_order(char *s)
4572{
4573 if (*s == 'd' || *s == 'D') {
4574 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4575 } else if (*s == 'n' || *s == 'N') {
4576 user_zonelist_order = ZONELIST_ORDER_NODE;
4577 } else if (*s == 'z' || *s == 'Z') {
4578 user_zonelist_order = ZONELIST_ORDER_ZONE;
4579 } else {
1170532b 4580 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
4581 return -EINVAL;
4582 }
4583 return 0;
4584}
4585
4586static __init int setup_numa_zonelist_order(char *s)
4587{
ecb256f8
VL
4588 int ret;
4589
4590 if (!s)
4591 return 0;
4592
4593 ret = __parse_numa_zonelist_order(s);
4594 if (ret == 0)
4595 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4596
4597 return ret;
f0c0b2b8
KH
4598}
4599early_param("numa_zonelist_order", setup_numa_zonelist_order);
4600
4601/*
4602 * sysctl handler for numa_zonelist_order
4603 */
cccad5b9 4604int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 4605 void __user *buffer, size_t *length,
f0c0b2b8
KH
4606 loff_t *ppos)
4607{
4608 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4609 int ret;
443c6f14 4610 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 4611
443c6f14 4612 mutex_lock(&zl_order_mutex);
dacbde09
CG
4613 if (write) {
4614 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4615 ret = -EINVAL;
4616 goto out;
4617 }
4618 strcpy(saved_string, (char *)table->data);
4619 }
8d65af78 4620 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 4621 if (ret)
443c6f14 4622 goto out;
f0c0b2b8
KH
4623 if (write) {
4624 int oldval = user_zonelist_order;
dacbde09
CG
4625
4626 ret = __parse_numa_zonelist_order((char *)table->data);
4627 if (ret) {
f0c0b2b8
KH
4628 /*
4629 * bogus value. restore saved string
4630 */
dacbde09 4631 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
4632 NUMA_ZONELIST_ORDER_LEN);
4633 user_zonelist_order = oldval;
4eaf3f64
HL
4634 } else if (oldval != user_zonelist_order) {
4635 mutex_lock(&zonelists_mutex);
9adb62a5 4636 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
4637 mutex_unlock(&zonelists_mutex);
4638 }
f0c0b2b8 4639 }
443c6f14
AK
4640out:
4641 mutex_unlock(&zl_order_mutex);
4642 return ret;
f0c0b2b8
KH
4643}
4644
4645
62bc62a8 4646#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4647static int node_load[MAX_NUMNODES];
4648
1da177e4 4649/**
4dc3b16b 4650 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4651 * @node: node whose fallback list we're appending
4652 * @used_node_mask: nodemask_t of already used nodes
4653 *
4654 * We use a number of factors to determine which is the next node that should
4655 * appear on a given node's fallback list. The node should not have appeared
4656 * already in @node's fallback list, and it should be the next closest node
4657 * according to the distance array (which contains arbitrary distance values
4658 * from each node to each node in the system), and should also prefer nodes
4659 * with no CPUs, since presumably they'll have very little allocation pressure
4660 * on them otherwise.
4661 * It returns -1 if no node is found.
4662 */
f0c0b2b8 4663static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4664{
4cf808eb 4665 int n, val;
1da177e4 4666 int min_val = INT_MAX;
00ef2d2f 4667 int best_node = NUMA_NO_NODE;
a70f7302 4668 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 4669
4cf808eb
LT
4670 /* Use the local node if we haven't already */
4671 if (!node_isset(node, *used_node_mask)) {
4672 node_set(node, *used_node_mask);
4673 return node;
4674 }
1da177e4 4675
4b0ef1fe 4676 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4677
4678 /* Don't want a node to appear more than once */
4679 if (node_isset(n, *used_node_mask))
4680 continue;
4681
1da177e4
LT
4682 /* Use the distance array to find the distance */
4683 val = node_distance(node, n);
4684
4cf808eb
LT
4685 /* Penalize nodes under us ("prefer the next node") */
4686 val += (n < node);
4687
1da177e4 4688 /* Give preference to headless and unused nodes */
a70f7302
RR
4689 tmp = cpumask_of_node(n);
4690 if (!cpumask_empty(tmp))
1da177e4
LT
4691 val += PENALTY_FOR_NODE_WITH_CPUS;
4692
4693 /* Slight preference for less loaded node */
4694 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4695 val += node_load[n];
4696
4697 if (val < min_val) {
4698 min_val = val;
4699 best_node = n;
4700 }
4701 }
4702
4703 if (best_node >= 0)
4704 node_set(best_node, *used_node_mask);
4705
4706 return best_node;
4707}
4708
f0c0b2b8
KH
4709
4710/*
4711 * Build zonelists ordered by node and zones within node.
4712 * This results in maximum locality--normal zone overflows into local
4713 * DMA zone, if any--but risks exhausting DMA zone.
4714 */
4715static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 4716{
f0c0b2b8 4717 int j;
1da177e4 4718 struct zonelist *zonelist;
f0c0b2b8 4719
c9634cf0 4720 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
dd1a239f 4721 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 4722 ;
bc732f1d 4723 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
4724 zonelist->_zonerefs[j].zone = NULL;
4725 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
4726}
4727
523b9458
CL
4728/*
4729 * Build gfp_thisnode zonelists
4730 */
4731static void build_thisnode_zonelists(pg_data_t *pgdat)
4732{
523b9458
CL
4733 int j;
4734 struct zonelist *zonelist;
4735
c9634cf0 4736 zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK];
bc732f1d 4737 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
4738 zonelist->_zonerefs[j].zone = NULL;
4739 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
4740}
4741
f0c0b2b8
KH
4742/*
4743 * Build zonelists ordered by zone and nodes within zones.
4744 * This results in conserving DMA zone[s] until all Normal memory is
4745 * exhausted, but results in overflowing to remote node while memory
4746 * may still exist in local DMA zone.
4747 */
4748static int node_order[MAX_NUMNODES];
4749
4750static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4751{
f0c0b2b8
KH
4752 int pos, j, node;
4753 int zone_type; /* needs to be signed */
4754 struct zone *z;
4755 struct zonelist *zonelist;
4756
c9634cf0 4757 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
54a6eb5c
MG
4758 pos = 0;
4759 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4760 for (j = 0; j < nr_nodes; j++) {
4761 node = node_order[j];
4762 z = &NODE_DATA(node)->node_zones[zone_type];
6aa303de 4763 if (managed_zone(z)) {
dd1a239f
MG
4764 zoneref_set_zone(z,
4765 &zonelist->_zonerefs[pos++]);
54a6eb5c 4766 check_highest_zone(zone_type);
f0c0b2b8
KH
4767 }
4768 }
f0c0b2b8 4769 }
dd1a239f
MG
4770 zonelist->_zonerefs[pos].zone = NULL;
4771 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
4772}
4773
3193913c
MG
4774#if defined(CONFIG_64BIT)
4775/*
4776 * Devices that require DMA32/DMA are relatively rare and do not justify a
4777 * penalty to every machine in case the specialised case applies. Default
4778 * to Node-ordering on 64-bit NUMA machines
4779 */
4780static int default_zonelist_order(void)
4781{
4782 return ZONELIST_ORDER_NODE;
4783}
4784#else
4785/*
4786 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4787 * by the kernel. If processes running on node 0 deplete the low memory zone
4788 * then reclaim will occur more frequency increasing stalls and potentially
4789 * be easier to OOM if a large percentage of the zone is under writeback or
4790 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4791 * Hence, default to zone ordering on 32-bit.
4792 */
f0c0b2b8
KH
4793static int default_zonelist_order(void)
4794{
f0c0b2b8
KH
4795 return ZONELIST_ORDER_ZONE;
4796}
3193913c 4797#endif /* CONFIG_64BIT */
f0c0b2b8
KH
4798
4799static void set_zonelist_order(void)
4800{
4801 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4802 current_zonelist_order = default_zonelist_order();
4803 else
4804 current_zonelist_order = user_zonelist_order;
4805}
4806
4807static void build_zonelists(pg_data_t *pgdat)
4808{
c00eb15a 4809 int i, node, load;
1da177e4 4810 nodemask_t used_mask;
f0c0b2b8
KH
4811 int local_node, prev_node;
4812 struct zonelist *zonelist;
d00181b9 4813 unsigned int order = current_zonelist_order;
1da177e4
LT
4814
4815 /* initialize zonelists */
523b9458 4816 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 4817 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
4818 zonelist->_zonerefs[0].zone = NULL;
4819 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
4820 }
4821
4822 /* NUMA-aware ordering of nodes */
4823 local_node = pgdat->node_id;
62bc62a8 4824 load = nr_online_nodes;
1da177e4
LT
4825 prev_node = local_node;
4826 nodes_clear(used_mask);
f0c0b2b8 4827
f0c0b2b8 4828 memset(node_order, 0, sizeof(node_order));
c00eb15a 4829 i = 0;
f0c0b2b8 4830
1da177e4
LT
4831 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4832 /*
4833 * We don't want to pressure a particular node.
4834 * So adding penalty to the first node in same
4835 * distance group to make it round-robin.
4836 */
957f822a
DR
4837 if (node_distance(local_node, node) !=
4838 node_distance(local_node, prev_node))
f0c0b2b8
KH
4839 node_load[node] = load;
4840
1da177e4
LT
4841 prev_node = node;
4842 load--;
f0c0b2b8
KH
4843 if (order == ZONELIST_ORDER_NODE)
4844 build_zonelists_in_node_order(pgdat, node);
4845 else
c00eb15a 4846 node_order[i++] = node; /* remember order */
f0c0b2b8 4847 }
1da177e4 4848
f0c0b2b8
KH
4849 if (order == ZONELIST_ORDER_ZONE) {
4850 /* calculate node order -- i.e., DMA last! */
c00eb15a 4851 build_zonelists_in_zone_order(pgdat, i);
1da177e4 4852 }
523b9458
CL
4853
4854 build_thisnode_zonelists(pgdat);
1da177e4
LT
4855}
4856
7aac7898
LS
4857#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4858/*
4859 * Return node id of node used for "local" allocations.
4860 * I.e., first node id of first zone in arg node's generic zonelist.
4861 * Used for initializing percpu 'numa_mem', which is used primarily
4862 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4863 */
4864int local_memory_node(int node)
4865{
c33d6c06 4866 struct zoneref *z;
7aac7898 4867
c33d6c06 4868 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 4869 gfp_zone(GFP_KERNEL),
c33d6c06
MG
4870 NULL);
4871 return z->zone->node;
7aac7898
LS
4872}
4873#endif
f0c0b2b8 4874
6423aa81
JK
4875static void setup_min_unmapped_ratio(void);
4876static void setup_min_slab_ratio(void);
1da177e4
LT
4877#else /* CONFIG_NUMA */
4878
f0c0b2b8
KH
4879static void set_zonelist_order(void)
4880{
4881 current_zonelist_order = ZONELIST_ORDER_ZONE;
4882}
4883
4884static void build_zonelists(pg_data_t *pgdat)
1da177e4 4885{
19655d34 4886 int node, local_node;
54a6eb5c
MG
4887 enum zone_type j;
4888 struct zonelist *zonelist;
1da177e4
LT
4889
4890 local_node = pgdat->node_id;
1da177e4 4891
c9634cf0 4892 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
bc732f1d 4893 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 4894
54a6eb5c
MG
4895 /*
4896 * Now we build the zonelist so that it contains the zones
4897 * of all the other nodes.
4898 * We don't want to pressure a particular node, so when
4899 * building the zones for node N, we make sure that the
4900 * zones coming right after the local ones are those from
4901 * node N+1 (modulo N)
4902 */
4903 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4904 if (!node_online(node))
4905 continue;
bc732f1d 4906 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 4907 }
54a6eb5c
MG
4908 for (node = 0; node < local_node; node++) {
4909 if (!node_online(node))
4910 continue;
bc732f1d 4911 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
4912 }
4913
dd1a239f
MG
4914 zonelist->_zonerefs[j].zone = NULL;
4915 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
4916}
4917
4918#endif /* CONFIG_NUMA */
4919
99dcc3e5
CL
4920/*
4921 * Boot pageset table. One per cpu which is going to be used for all
4922 * zones and all nodes. The parameters will be set in such a way
4923 * that an item put on a list will immediately be handed over to
4924 * the buddy list. This is safe since pageset manipulation is done
4925 * with interrupts disabled.
4926 *
4927 * The boot_pagesets must be kept even after bootup is complete for
4928 * unused processors and/or zones. They do play a role for bootstrapping
4929 * hotplugged processors.
4930 *
4931 * zoneinfo_show() and maybe other functions do
4932 * not check if the processor is online before following the pageset pointer.
4933 * Other parts of the kernel may not check if the zone is available.
4934 */
4935static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4936static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 4937static void setup_zone_pageset(struct zone *zone);
99dcc3e5 4938
4eaf3f64
HL
4939/*
4940 * Global mutex to protect against size modification of zonelists
4941 * as well as to serialize pageset setup for the new populated zone.
4942 */
4943DEFINE_MUTEX(zonelists_mutex);
4944
9b1a4d38 4945/* return values int ....just for stop_machine() */
4ed7e022 4946static int __build_all_zonelists(void *data)
1da177e4 4947{
6811378e 4948 int nid;
99dcc3e5 4949 int cpu;
9adb62a5 4950 pg_data_t *self = data;
9276b1bc 4951
7f9cfb31
BL
4952#ifdef CONFIG_NUMA
4953 memset(node_load, 0, sizeof(node_load));
4954#endif
9adb62a5
JL
4955
4956 if (self && !node_online(self->node_id)) {
4957 build_zonelists(self);
9adb62a5
JL
4958 }
4959
9276b1bc 4960 for_each_online_node(nid) {
7ea1530a
CL
4961 pg_data_t *pgdat = NODE_DATA(nid);
4962
4963 build_zonelists(pgdat);
9276b1bc 4964 }
99dcc3e5
CL
4965
4966 /*
4967 * Initialize the boot_pagesets that are going to be used
4968 * for bootstrapping processors. The real pagesets for
4969 * each zone will be allocated later when the per cpu
4970 * allocator is available.
4971 *
4972 * boot_pagesets are used also for bootstrapping offline
4973 * cpus if the system is already booted because the pagesets
4974 * are needed to initialize allocators on a specific cpu too.
4975 * F.e. the percpu allocator needs the page allocator which
4976 * needs the percpu allocator in order to allocate its pagesets
4977 * (a chicken-egg dilemma).
4978 */
7aac7898 4979 for_each_possible_cpu(cpu) {
99dcc3e5
CL
4980 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4981
7aac7898
LS
4982#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4983 /*
4984 * We now know the "local memory node" for each node--
4985 * i.e., the node of the first zone in the generic zonelist.
4986 * Set up numa_mem percpu variable for on-line cpus. During
4987 * boot, only the boot cpu should be on-line; we'll init the
4988 * secondary cpus' numa_mem as they come on-line. During
4989 * node/memory hotplug, we'll fixup all on-line cpus.
4990 */
4991 if (cpu_online(cpu))
4992 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4993#endif
4994 }
4995
6811378e
YG
4996 return 0;
4997}
4998
061f67bc
RV
4999static noinline void __init
5000build_all_zonelists_init(void)
5001{
5002 __build_all_zonelists(NULL);
5003 mminit_verify_zonelist();
5004 cpuset_init_current_mems_allowed();
5005}
5006
4eaf3f64
HL
5007/*
5008 * Called with zonelists_mutex held always
5009 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
5010 *
5011 * __ref due to (1) call of __meminit annotated setup_zone_pageset
5012 * [we're only called with non-NULL zone through __meminit paths] and
5013 * (2) call of __init annotated helper build_all_zonelists_init
5014 * [protected by SYSTEM_BOOTING].
4eaf3f64 5015 */
9adb62a5 5016void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 5017{
f0c0b2b8
KH
5018 set_zonelist_order();
5019
6811378e 5020 if (system_state == SYSTEM_BOOTING) {
061f67bc 5021 build_all_zonelists_init();
6811378e 5022 } else {
e9959f0f 5023#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
5024 if (zone)
5025 setup_zone_pageset(zone);
e9959f0f 5026#endif
dd1895e2
CS
5027 /* we have to stop all cpus to guarantee there is no user
5028 of zonelist */
9adb62a5 5029 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
5030 /* cpuset refresh routine should be here */
5031 }
bd1e22b8 5032 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
5033 /*
5034 * Disable grouping by mobility if the number of pages in the
5035 * system is too low to allow the mechanism to work. It would be
5036 * more accurate, but expensive to check per-zone. This check is
5037 * made on memory-hotadd so a system can start with mobility
5038 * disabled and enable it later
5039 */
d9c23400 5040 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
5041 page_group_by_mobility_disabled = 1;
5042 else
5043 page_group_by_mobility_disabled = 0;
5044
756a025f
JP
5045 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
5046 nr_online_nodes,
5047 zonelist_order_name[current_zonelist_order],
5048 page_group_by_mobility_disabled ? "off" : "on",
5049 vm_total_pages);
f0c0b2b8 5050#ifdef CONFIG_NUMA
f88dfff5 5051 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 5052#endif
1da177e4
LT
5053}
5054
1da177e4
LT
5055/*
5056 * Initially all pages are reserved - free ones are freed
5057 * up by free_all_bootmem() once the early boot process is
5058 * done. Non-atomic initialization, single-pass.
5059 */
c09b4240 5060void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 5061 unsigned long start_pfn, enum memmap_context context)
1da177e4 5062{
4b94ffdc 5063 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
29751f69 5064 unsigned long end_pfn = start_pfn + size;
4b94ffdc 5065 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 5066 unsigned long pfn;
3a80a7fa 5067 unsigned long nr_initialised = 0;
342332e6
TI
5068#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5069 struct memblock_region *r = NULL, *tmp;
5070#endif
1da177e4 5071
22b31eec
HD
5072 if (highest_memmap_pfn < end_pfn - 1)
5073 highest_memmap_pfn = end_pfn - 1;
5074
4b94ffdc
DW
5075 /*
5076 * Honor reservation requested by the driver for this ZONE_DEVICE
5077 * memory
5078 */
5079 if (altmap && start_pfn == altmap->base_pfn)
5080 start_pfn += altmap->reserve;
5081
cbe8dd4a 5082 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 5083 /*
b72d0ffb
AM
5084 * There can be holes in boot-time mem_map[]s handed to this
5085 * function. They do not exist on hotplugged memory.
a2f3aa02 5086 */
b72d0ffb
AM
5087 if (context != MEMMAP_EARLY)
5088 goto not_early;
5089
5090 if (!early_pfn_valid(pfn))
5091 continue;
5092 if (!early_pfn_in_nid(pfn, nid))
5093 continue;
5094 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5095 break;
342332e6
TI
5096
5097#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
b72d0ffb
AM
5098 /*
5099 * Check given memblock attribute by firmware which can affect
5100 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5101 * mirrored, it's an overlapped memmap init. skip it.
5102 */
5103 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5104 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5105 for_each_memblock(memory, tmp)
5106 if (pfn < memblock_region_memory_end_pfn(tmp))
5107 break;
5108 r = tmp;
5109 }
5110 if (pfn >= memblock_region_memory_base_pfn(r) &&
5111 memblock_is_mirror(r)) {
5112 /* already initialized as NORMAL */
5113 pfn = memblock_region_memory_end_pfn(r);
5114 continue;
342332e6 5115 }
a2f3aa02 5116 }
b72d0ffb 5117#endif
ac5d2539 5118
b72d0ffb 5119not_early:
ac5d2539
MG
5120 /*
5121 * Mark the block movable so that blocks are reserved for
5122 * movable at startup. This will force kernel allocations
5123 * to reserve their blocks rather than leaking throughout
5124 * the address space during boot when many long-lived
974a786e 5125 * kernel allocations are made.
ac5d2539
MG
5126 *
5127 * bitmap is created for zone's valid pfn range. but memmap
5128 * can be created for invalid pages (for alignment)
5129 * check here not to call set_pageblock_migratetype() against
5130 * pfn out of zone.
5131 */
5132 if (!(pfn & (pageblock_nr_pages - 1))) {
5133 struct page *page = pfn_to_page(pfn);
5134
5135 __init_single_page(page, pfn, zone, nid);
5136 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5137 } else {
5138 __init_single_pfn(pfn, zone, nid);
5139 }
1da177e4
LT
5140 }
5141}
5142
1e548deb 5143static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 5144{
7aeb09f9 5145 unsigned int order, t;
b2a0ac88
MG
5146 for_each_migratetype_order(order, t) {
5147 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
5148 zone->free_area[order].nr_free = 0;
5149 }
5150}
5151
5152#ifndef __HAVE_ARCH_MEMMAP_INIT
5153#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 5154 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
5155#endif
5156
7cd2b0a3 5157static int zone_batchsize(struct zone *zone)
e7c8d5c9 5158{
3a6be87f 5159#ifdef CONFIG_MMU
e7c8d5c9
CL
5160 int batch;
5161
5162 /*
5163 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 5164 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
5165 *
5166 * OK, so we don't know how big the cache is. So guess.
5167 */
b40da049 5168 batch = zone->managed_pages / 1024;
ba56e91c
SR
5169 if (batch * PAGE_SIZE > 512 * 1024)
5170 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
5171 batch /= 4; /* We effectively *= 4 below */
5172 if (batch < 1)
5173 batch = 1;
5174
5175 /*
0ceaacc9
NP
5176 * Clamp the batch to a 2^n - 1 value. Having a power
5177 * of 2 value was found to be more likely to have
5178 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 5179 *
0ceaacc9
NP
5180 * For example if 2 tasks are alternately allocating
5181 * batches of pages, one task can end up with a lot
5182 * of pages of one half of the possible page colors
5183 * and the other with pages of the other colors.
e7c8d5c9 5184 */
9155203a 5185 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 5186
e7c8d5c9 5187 return batch;
3a6be87f
DH
5188
5189#else
5190 /* The deferral and batching of frees should be suppressed under NOMMU
5191 * conditions.
5192 *
5193 * The problem is that NOMMU needs to be able to allocate large chunks
5194 * of contiguous memory as there's no hardware page translation to
5195 * assemble apparent contiguous memory from discontiguous pages.
5196 *
5197 * Queueing large contiguous runs of pages for batching, however,
5198 * causes the pages to actually be freed in smaller chunks. As there
5199 * can be a significant delay between the individual batches being
5200 * recycled, this leads to the once large chunks of space being
5201 * fragmented and becoming unavailable for high-order allocations.
5202 */
5203 return 0;
5204#endif
e7c8d5c9
CL
5205}
5206
8d7a8fa9
CS
5207/*
5208 * pcp->high and pcp->batch values are related and dependent on one another:
5209 * ->batch must never be higher then ->high.
5210 * The following function updates them in a safe manner without read side
5211 * locking.
5212 *
5213 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5214 * those fields changing asynchronously (acording the the above rule).
5215 *
5216 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5217 * outside of boot time (or some other assurance that no concurrent updaters
5218 * exist).
5219 */
5220static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5221 unsigned long batch)
5222{
5223 /* start with a fail safe value for batch */
5224 pcp->batch = 1;
5225 smp_wmb();
5226
5227 /* Update high, then batch, in order */
5228 pcp->high = high;
5229 smp_wmb();
5230
5231 pcp->batch = batch;
5232}
5233
3664033c 5234/* a companion to pageset_set_high() */
4008bab7
CS
5235static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5236{
8d7a8fa9 5237 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
5238}
5239
88c90dbc 5240static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
5241{
5242 struct per_cpu_pages *pcp;
5f8dcc21 5243 int migratetype;
2caaad41 5244
1c6fe946
MD
5245 memset(p, 0, sizeof(*p));
5246
3dfa5721 5247 pcp = &p->pcp;
2caaad41 5248 pcp->count = 0;
5f8dcc21
MG
5249 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5250 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
5251}
5252
88c90dbc
CS
5253static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5254{
5255 pageset_init(p);
5256 pageset_set_batch(p, batch);
5257}
5258
8ad4b1fb 5259/*
3664033c 5260 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
5261 * to the value high for the pageset p.
5262 */
3664033c 5263static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
5264 unsigned long high)
5265{
8d7a8fa9
CS
5266 unsigned long batch = max(1UL, high / 4);
5267 if ((high / 4) > (PAGE_SHIFT * 8))
5268 batch = PAGE_SHIFT * 8;
8ad4b1fb 5269
8d7a8fa9 5270 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
5271}
5272
7cd2b0a3
DR
5273static void pageset_set_high_and_batch(struct zone *zone,
5274 struct per_cpu_pageset *pcp)
56cef2b8 5275{
56cef2b8 5276 if (percpu_pagelist_fraction)
3664033c 5277 pageset_set_high(pcp,
56cef2b8
CS
5278 (zone->managed_pages /
5279 percpu_pagelist_fraction));
5280 else
5281 pageset_set_batch(pcp, zone_batchsize(zone));
5282}
5283
169f6c19
CS
5284static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5285{
5286 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5287
5288 pageset_init(pcp);
5289 pageset_set_high_and_batch(zone, pcp);
5290}
5291
4ed7e022 5292static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
5293{
5294 int cpu;
319774e2 5295 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
5296 for_each_possible_cpu(cpu)
5297 zone_pageset_init(zone, cpu);
319774e2
WF
5298}
5299
2caaad41 5300/*
99dcc3e5
CL
5301 * Allocate per cpu pagesets and initialize them.
5302 * Before this call only boot pagesets were available.
e7c8d5c9 5303 */
99dcc3e5 5304void __init setup_per_cpu_pageset(void)
e7c8d5c9 5305{
b4911ea2 5306 struct pglist_data *pgdat;
99dcc3e5 5307 struct zone *zone;
e7c8d5c9 5308
319774e2
WF
5309 for_each_populated_zone(zone)
5310 setup_zone_pageset(zone);
b4911ea2
MG
5311
5312 for_each_online_pgdat(pgdat)
5313 pgdat->per_cpu_nodestats =
5314 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
5315}
5316
c09b4240 5317static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 5318{
99dcc3e5
CL
5319 /*
5320 * per cpu subsystem is not up at this point. The following code
5321 * relies on the ability of the linker to provide the
5322 * offset of a (static) per cpu variable into the per cpu area.
5323 */
5324 zone->pageset = &boot_pageset;
ed8ece2e 5325
b38a8725 5326 if (populated_zone(zone))
99dcc3e5
CL
5327 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5328 zone->name, zone->present_pages,
5329 zone_batchsize(zone));
ed8ece2e
DH
5330}
5331
4ed7e022 5332int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 5333 unsigned long zone_start_pfn,
b171e409 5334 unsigned long size)
ed8ece2e
DH
5335{
5336 struct pglist_data *pgdat = zone->zone_pgdat;
9dcb8b68 5337
ed8ece2e
DH
5338 pgdat->nr_zones = zone_idx(zone) + 1;
5339
ed8ece2e
DH
5340 zone->zone_start_pfn = zone_start_pfn;
5341
708614e6
MG
5342 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5343 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5344 pgdat->node_id,
5345 (unsigned long)zone_idx(zone),
5346 zone_start_pfn, (zone_start_pfn + size));
5347
1e548deb 5348 zone_init_free_lists(zone);
9dcb8b68 5349 zone->initialized = 1;
718127cc
YG
5350
5351 return 0;
ed8ece2e
DH
5352}
5353
0ee332c1 5354#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5355#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 5356
c713216d
MG
5357/*
5358 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 5359 */
8a942fde
MG
5360int __meminit __early_pfn_to_nid(unsigned long pfn,
5361 struct mminit_pfnnid_cache *state)
c713216d 5362{
c13291a5 5363 unsigned long start_pfn, end_pfn;
e76b63f8 5364 int nid;
7c243c71 5365
8a942fde
MG
5366 if (state->last_start <= pfn && pfn < state->last_end)
5367 return state->last_nid;
c713216d 5368
e76b63f8
YL
5369 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5370 if (nid != -1) {
8a942fde
MG
5371 state->last_start = start_pfn;
5372 state->last_end = end_pfn;
5373 state->last_nid = nid;
e76b63f8
YL
5374 }
5375
5376 return nid;
c713216d
MG
5377}
5378#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5379
c713216d 5380/**
6782832e 5381 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 5382 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 5383 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 5384 *
7d018176
ZZ
5385 * If an architecture guarantees that all ranges registered contain no holes
5386 * and may be freed, this this function may be used instead of calling
5387 * memblock_free_early_nid() manually.
c713216d 5388 */
c13291a5 5389void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 5390{
c13291a5
TH
5391 unsigned long start_pfn, end_pfn;
5392 int i, this_nid;
edbe7d23 5393
c13291a5
TH
5394 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5395 start_pfn = min(start_pfn, max_low_pfn);
5396 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 5397
c13291a5 5398 if (start_pfn < end_pfn)
6782832e
SS
5399 memblock_free_early_nid(PFN_PHYS(start_pfn),
5400 (end_pfn - start_pfn) << PAGE_SHIFT,
5401 this_nid);
edbe7d23 5402 }
edbe7d23 5403}
edbe7d23 5404
c713216d
MG
5405/**
5406 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 5407 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 5408 *
7d018176
ZZ
5409 * If an architecture guarantees that all ranges registered contain no holes and may
5410 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
5411 */
5412void __init sparse_memory_present_with_active_regions(int nid)
5413{
c13291a5
TH
5414 unsigned long start_pfn, end_pfn;
5415 int i, this_nid;
c713216d 5416
c13291a5
TH
5417 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5418 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5419}
5420
5421/**
5422 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5423 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5424 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5425 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5426 *
5427 * It returns the start and end page frame of a node based on information
7d018176 5428 * provided by memblock_set_node(). If called for a node
c713216d 5429 * with no available memory, a warning is printed and the start and end
88ca3b94 5430 * PFNs will be 0.
c713216d 5431 */
a3142c8e 5432void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5433 unsigned long *start_pfn, unsigned long *end_pfn)
5434{
c13291a5 5435 unsigned long this_start_pfn, this_end_pfn;
c713216d 5436 int i;
c13291a5 5437
c713216d
MG
5438 *start_pfn = -1UL;
5439 *end_pfn = 0;
5440
c13291a5
TH
5441 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5442 *start_pfn = min(*start_pfn, this_start_pfn);
5443 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5444 }
5445
633c0666 5446 if (*start_pfn == -1UL)
c713216d 5447 *start_pfn = 0;
c713216d
MG
5448}
5449
2a1e274a
MG
5450/*
5451 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5452 * assumption is made that zones within a node are ordered in monotonic
5453 * increasing memory addresses so that the "highest" populated zone is used
5454 */
b69a7288 5455static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5456{
5457 int zone_index;
5458 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5459 if (zone_index == ZONE_MOVABLE)
5460 continue;
5461
5462 if (arch_zone_highest_possible_pfn[zone_index] >
5463 arch_zone_lowest_possible_pfn[zone_index])
5464 break;
5465 }
5466
5467 VM_BUG_ON(zone_index == -1);
5468 movable_zone = zone_index;
5469}
5470
5471/*
5472 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5473 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5474 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5475 * in each node depending on the size of each node and how evenly kernelcore
5476 * is distributed. This helper function adjusts the zone ranges
5477 * provided by the architecture for a given node by using the end of the
5478 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5479 * zones within a node are in order of monotonic increases memory addresses
5480 */
b69a7288 5481static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5482 unsigned long zone_type,
5483 unsigned long node_start_pfn,
5484 unsigned long node_end_pfn,
5485 unsigned long *zone_start_pfn,
5486 unsigned long *zone_end_pfn)
5487{
5488 /* Only adjust if ZONE_MOVABLE is on this node */
5489 if (zone_movable_pfn[nid]) {
5490 /* Size ZONE_MOVABLE */
5491 if (zone_type == ZONE_MOVABLE) {
5492 *zone_start_pfn = zone_movable_pfn[nid];
5493 *zone_end_pfn = min(node_end_pfn,
5494 arch_zone_highest_possible_pfn[movable_zone]);
5495
e506b996
XQ
5496 /* Adjust for ZONE_MOVABLE starting within this range */
5497 } else if (!mirrored_kernelcore &&
5498 *zone_start_pfn < zone_movable_pfn[nid] &&
5499 *zone_end_pfn > zone_movable_pfn[nid]) {
5500 *zone_end_pfn = zone_movable_pfn[nid];
5501
2a1e274a
MG
5502 /* Check if this whole range is within ZONE_MOVABLE */
5503 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5504 *zone_start_pfn = *zone_end_pfn;
5505 }
5506}
5507
c713216d
MG
5508/*
5509 * Return the number of pages a zone spans in a node, including holes
5510 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5511 */
6ea6e688 5512static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5513 unsigned long zone_type,
7960aedd
ZY
5514 unsigned long node_start_pfn,
5515 unsigned long node_end_pfn,
d91749c1
TI
5516 unsigned long *zone_start_pfn,
5517 unsigned long *zone_end_pfn,
c713216d
MG
5518 unsigned long *ignored)
5519{
b5685e92 5520 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5521 if (!node_start_pfn && !node_end_pfn)
5522 return 0;
5523
7960aedd 5524 /* Get the start and end of the zone */
d91749c1
TI
5525 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5526 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5527 adjust_zone_range_for_zone_movable(nid, zone_type,
5528 node_start_pfn, node_end_pfn,
d91749c1 5529 zone_start_pfn, zone_end_pfn);
c713216d
MG
5530
5531 /* Check that this node has pages within the zone's required range */
d91749c1 5532 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
5533 return 0;
5534
5535 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
5536 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5537 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
5538
5539 /* Return the spanned pages */
d91749c1 5540 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
5541}
5542
5543/*
5544 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5545 * then all holes in the requested range will be accounted for.
c713216d 5546 */
32996250 5547unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5548 unsigned long range_start_pfn,
5549 unsigned long range_end_pfn)
5550{
96e907d1
TH
5551 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5552 unsigned long start_pfn, end_pfn;
5553 int i;
c713216d 5554
96e907d1
TH
5555 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5556 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5557 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5558 nr_absent -= end_pfn - start_pfn;
c713216d 5559 }
96e907d1 5560 return nr_absent;
c713216d
MG
5561}
5562
5563/**
5564 * absent_pages_in_range - Return number of page frames in holes within a range
5565 * @start_pfn: The start PFN to start searching for holes
5566 * @end_pfn: The end PFN to stop searching for holes
5567 *
88ca3b94 5568 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5569 */
5570unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5571 unsigned long end_pfn)
5572{
5573 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5574}
5575
5576/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5577static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5578 unsigned long zone_type,
7960aedd
ZY
5579 unsigned long node_start_pfn,
5580 unsigned long node_end_pfn,
c713216d
MG
5581 unsigned long *ignored)
5582{
96e907d1
TH
5583 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5584 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 5585 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 5586 unsigned long nr_absent;
9c7cd687 5587
b5685e92 5588 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5589 if (!node_start_pfn && !node_end_pfn)
5590 return 0;
5591
96e907d1
TH
5592 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5593 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5594
2a1e274a
MG
5595 adjust_zone_range_for_zone_movable(nid, zone_type,
5596 node_start_pfn, node_end_pfn,
5597 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
5598 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5599
5600 /*
5601 * ZONE_MOVABLE handling.
5602 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5603 * and vice versa.
5604 */
e506b996
XQ
5605 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5606 unsigned long start_pfn, end_pfn;
5607 struct memblock_region *r;
5608
5609 for_each_memblock(memory, r) {
5610 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5611 zone_start_pfn, zone_end_pfn);
5612 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5613 zone_start_pfn, zone_end_pfn);
5614
5615 if (zone_type == ZONE_MOVABLE &&
5616 memblock_is_mirror(r))
5617 nr_absent += end_pfn - start_pfn;
5618
5619 if (zone_type == ZONE_NORMAL &&
5620 !memblock_is_mirror(r))
5621 nr_absent += end_pfn - start_pfn;
342332e6
TI
5622 }
5623 }
5624
5625 return nr_absent;
c713216d 5626}
0e0b864e 5627
0ee332c1 5628#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5629static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5630 unsigned long zone_type,
7960aedd
ZY
5631 unsigned long node_start_pfn,
5632 unsigned long node_end_pfn,
d91749c1
TI
5633 unsigned long *zone_start_pfn,
5634 unsigned long *zone_end_pfn,
c713216d
MG
5635 unsigned long *zones_size)
5636{
d91749c1
TI
5637 unsigned int zone;
5638
5639 *zone_start_pfn = node_start_pfn;
5640 for (zone = 0; zone < zone_type; zone++)
5641 *zone_start_pfn += zones_size[zone];
5642
5643 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5644
c713216d
MG
5645 return zones_size[zone_type];
5646}
5647
6ea6e688 5648static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5649 unsigned long zone_type,
7960aedd
ZY
5650 unsigned long node_start_pfn,
5651 unsigned long node_end_pfn,
c713216d
MG
5652 unsigned long *zholes_size)
5653{
5654 if (!zholes_size)
5655 return 0;
5656
5657 return zholes_size[zone_type];
5658}
20e6926d 5659
0ee332c1 5660#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5661
a3142c8e 5662static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5663 unsigned long node_start_pfn,
5664 unsigned long node_end_pfn,
5665 unsigned long *zones_size,
5666 unsigned long *zholes_size)
c713216d 5667{
febd5949 5668 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5669 enum zone_type i;
5670
febd5949
GZ
5671 for (i = 0; i < MAX_NR_ZONES; i++) {
5672 struct zone *zone = pgdat->node_zones + i;
d91749c1 5673 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 5674 unsigned long size, real_size;
c713216d 5675
febd5949
GZ
5676 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5677 node_start_pfn,
5678 node_end_pfn,
d91749c1
TI
5679 &zone_start_pfn,
5680 &zone_end_pfn,
febd5949
GZ
5681 zones_size);
5682 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5683 node_start_pfn, node_end_pfn,
5684 zholes_size);
d91749c1
TI
5685 if (size)
5686 zone->zone_start_pfn = zone_start_pfn;
5687 else
5688 zone->zone_start_pfn = 0;
febd5949
GZ
5689 zone->spanned_pages = size;
5690 zone->present_pages = real_size;
5691
5692 totalpages += size;
5693 realtotalpages += real_size;
5694 }
5695
5696 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5697 pgdat->node_present_pages = realtotalpages;
5698 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5699 realtotalpages);
5700}
5701
835c134e
MG
5702#ifndef CONFIG_SPARSEMEM
5703/*
5704 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5705 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5706 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5707 * round what is now in bits to nearest long in bits, then return it in
5708 * bytes.
5709 */
7c45512d 5710static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5711{
5712 unsigned long usemapsize;
5713
7c45512d 5714 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5715 usemapsize = roundup(zonesize, pageblock_nr_pages);
5716 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5717 usemapsize *= NR_PAGEBLOCK_BITS;
5718 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5719
5720 return usemapsize / 8;
5721}
5722
5723static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5724 struct zone *zone,
5725 unsigned long zone_start_pfn,
5726 unsigned long zonesize)
835c134e 5727{
7c45512d 5728 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5729 zone->pageblock_flags = NULL;
58a01a45 5730 if (usemapsize)
6782832e
SS
5731 zone->pageblock_flags =
5732 memblock_virt_alloc_node_nopanic(usemapsize,
5733 pgdat->node_id);
835c134e
MG
5734}
5735#else
7c45512d
LT
5736static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5737 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5738#endif /* CONFIG_SPARSEMEM */
5739
d9c23400 5740#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5741
d9c23400 5742/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5743void __paginginit set_pageblock_order(void)
d9c23400 5744{
955c1cd7
AM
5745 unsigned int order;
5746
d9c23400
MG
5747 /* Check that pageblock_nr_pages has not already been setup */
5748 if (pageblock_order)
5749 return;
5750
955c1cd7
AM
5751 if (HPAGE_SHIFT > PAGE_SHIFT)
5752 order = HUGETLB_PAGE_ORDER;
5753 else
5754 order = MAX_ORDER - 1;
5755
d9c23400
MG
5756 /*
5757 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5758 * This value may be variable depending on boot parameters on IA64 and
5759 * powerpc.
d9c23400
MG
5760 */
5761 pageblock_order = order;
5762}
5763#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5764
ba72cb8c
MG
5765/*
5766 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
5767 * is unused as pageblock_order is set at compile-time. See
5768 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5769 * the kernel config
ba72cb8c 5770 */
15ca220e 5771void __paginginit set_pageblock_order(void)
ba72cb8c 5772{
ba72cb8c 5773}
d9c23400
MG
5774
5775#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5776
01cefaef
JL
5777static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5778 unsigned long present_pages)
5779{
5780 unsigned long pages = spanned_pages;
5781
5782 /*
5783 * Provide a more accurate estimation if there are holes within
5784 * the zone and SPARSEMEM is in use. If there are holes within the
5785 * zone, each populated memory region may cost us one or two extra
5786 * memmap pages due to alignment because memmap pages for each
5787 * populated regions may not naturally algined on page boundary.
5788 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5789 */
5790 if (spanned_pages > present_pages + (present_pages >> 4) &&
5791 IS_ENABLED(CONFIG_SPARSEMEM))
5792 pages = present_pages;
5793
5794 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5795}
5796
1da177e4
LT
5797/*
5798 * Set up the zone data structures:
5799 * - mark all pages reserved
5800 * - mark all memory queues empty
5801 * - clear the memory bitmaps
6527af5d
MK
5802 *
5803 * NOTE: pgdat should get zeroed by caller.
1da177e4 5804 */
7f3eb55b 5805static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 5806{
2f1b6248 5807 enum zone_type j;
ed8ece2e 5808 int nid = pgdat->node_id;
718127cc 5809 int ret;
1da177e4 5810
208d54e5 5811 pgdat_resize_init(pgdat);
8177a420
AA
5812#ifdef CONFIG_NUMA_BALANCING
5813 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5814 pgdat->numabalancing_migrate_nr_pages = 0;
5815 pgdat->numabalancing_migrate_next_window = jiffies;
a3d0a918
KS
5816#endif
5817#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5818 spin_lock_init(&pgdat->split_queue_lock);
5819 INIT_LIST_HEAD(&pgdat->split_queue);
5820 pgdat->split_queue_len = 0;
8177a420 5821#endif
1da177e4 5822 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 5823 init_waitqueue_head(&pgdat->pfmemalloc_wait);
698b1b30
VB
5824#ifdef CONFIG_COMPACTION
5825 init_waitqueue_head(&pgdat->kcompactd_wait);
5826#endif
eefa864b 5827 pgdat_page_ext_init(pgdat);
a52633d8 5828 spin_lock_init(&pgdat->lru_lock);
a9dd0a83 5829 lruvec_init(node_lruvec(pgdat));
5f63b720 5830
1da177e4
LT
5831 for (j = 0; j < MAX_NR_ZONES; j++) {
5832 struct zone *zone = pgdat->node_zones + j;
9feedc9d 5833 unsigned long size, realsize, freesize, memmap_pages;
d91749c1 5834 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 5835
febd5949
GZ
5836 size = zone->spanned_pages;
5837 realsize = freesize = zone->present_pages;
1da177e4 5838
0e0b864e 5839 /*
9feedc9d 5840 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
5841 * is used by this zone for memmap. This affects the watermark
5842 * and per-cpu initialisations
5843 */
01cefaef 5844 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
5845 if (!is_highmem_idx(j)) {
5846 if (freesize >= memmap_pages) {
5847 freesize -= memmap_pages;
5848 if (memmap_pages)
5849 printk(KERN_DEBUG
5850 " %s zone: %lu pages used for memmap\n",
5851 zone_names[j], memmap_pages);
5852 } else
1170532b 5853 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
5854 zone_names[j], memmap_pages, freesize);
5855 }
0e0b864e 5856
6267276f 5857 /* Account for reserved pages */
9feedc9d
JL
5858 if (j == 0 && freesize > dma_reserve) {
5859 freesize -= dma_reserve;
d903ef9f 5860 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 5861 zone_names[0], dma_reserve);
0e0b864e
MG
5862 }
5863
98d2b0eb 5864 if (!is_highmem_idx(j))
9feedc9d 5865 nr_kernel_pages += freesize;
01cefaef
JL
5866 /* Charge for highmem memmap if there are enough kernel pages */
5867 else if (nr_kernel_pages > memmap_pages * 2)
5868 nr_kernel_pages -= memmap_pages;
9feedc9d 5869 nr_all_pages += freesize;
1da177e4 5870
9feedc9d
JL
5871 /*
5872 * Set an approximate value for lowmem here, it will be adjusted
5873 * when the bootmem allocator frees pages into the buddy system.
5874 * And all highmem pages will be managed by the buddy system.
5875 */
5876 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 5877#ifdef CONFIG_NUMA
d5f541ed 5878 zone->node = nid;
9614634f 5879#endif
1da177e4 5880 zone->name = zone_names[j];
a52633d8 5881 zone->zone_pgdat = pgdat;
1da177e4 5882 spin_lock_init(&zone->lock);
bdc8cb98 5883 zone_seqlock_init(zone);
ed8ece2e 5884 zone_pcp_init(zone);
81c0a2bb 5885
1da177e4
LT
5886 if (!size)
5887 continue;
5888
955c1cd7 5889 set_pageblock_order();
7c45512d 5890 setup_usemap(pgdat, zone, zone_start_pfn, size);
b171e409 5891 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
718127cc 5892 BUG_ON(ret);
76cdd58e 5893 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
5894 }
5895}
5896
bd721ea7 5897static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 5898{
b0aeba74 5899 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
5900 unsigned long __maybe_unused offset = 0;
5901
1da177e4
LT
5902 /* Skip empty nodes */
5903 if (!pgdat->node_spanned_pages)
5904 return;
5905
d41dee36 5906#ifdef CONFIG_FLAT_NODE_MEM_MAP
b0aeba74
TL
5907 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5908 offset = pgdat->node_start_pfn - start;
1da177e4
LT
5909 /* ia64 gets its own node_mem_map, before this, without bootmem */
5910 if (!pgdat->node_mem_map) {
b0aeba74 5911 unsigned long size, end;
d41dee36
AW
5912 struct page *map;
5913
e984bb43
BP
5914 /*
5915 * The zone's endpoints aren't required to be MAX_ORDER
5916 * aligned but the node_mem_map endpoints must be in order
5917 * for the buddy allocator to function correctly.
5918 */
108bcc96 5919 end = pgdat_end_pfn(pgdat);
e984bb43
BP
5920 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5921 size = (end - start) * sizeof(struct page);
6f167ec7
DH
5922 map = alloc_remap(pgdat->node_id, size);
5923 if (!map)
6782832e
SS
5924 map = memblock_virt_alloc_node_nopanic(size,
5925 pgdat->node_id);
a1c34a3b 5926 pgdat->node_mem_map = map + offset;
1da177e4 5927 }
12d810c1 5928#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
5929 /*
5930 * With no DISCONTIG, the global mem_map is just set as node 0's
5931 */
c713216d 5932 if (pgdat == NODE_DATA(0)) {
1da177e4 5933 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 5934#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 5935 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 5936 mem_map -= offset;
0ee332c1 5937#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5938 }
1da177e4 5939#endif
d41dee36 5940#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
5941}
5942
9109fb7b
JW
5943void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5944 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 5945{
9109fb7b 5946 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
5947 unsigned long start_pfn = 0;
5948 unsigned long end_pfn = 0;
9109fb7b 5949
88fdf75d 5950 /* pg_data_t should be reset to zero when it's allocated */
38087d9b 5951 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
88fdf75d 5952
3a80a7fa 5953 reset_deferred_meminit(pgdat);
1da177e4
LT
5954 pgdat->node_id = nid;
5955 pgdat->node_start_pfn = node_start_pfn;
75ef7184 5956 pgdat->per_cpu_nodestats = NULL;
7960aedd
ZY
5957#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5958 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 5959 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
5960 (u64)start_pfn << PAGE_SHIFT,
5961 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
5962#else
5963 start_pfn = node_start_pfn;
7960aedd
ZY
5964#endif
5965 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5966 zones_size, zholes_size);
1da177e4
LT
5967
5968 alloc_node_mem_map(pgdat);
e8c27ac9
YL
5969#ifdef CONFIG_FLAT_NODE_MEM_MAP
5970 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5971 nid, (unsigned long)pgdat,
5972 (unsigned long)pgdat->node_mem_map);
5973#endif
1da177e4 5974
7f3eb55b 5975 free_area_init_core(pgdat);
1da177e4
LT
5976}
5977
0ee332c1 5978#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
5979
5980#if MAX_NUMNODES > 1
5981/*
5982 * Figure out the number of possible node ids.
5983 */
f9872caf 5984void __init setup_nr_node_ids(void)
418508c1 5985{
904a9553 5986 unsigned int highest;
418508c1 5987
904a9553 5988 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
5989 nr_node_ids = highest + 1;
5990}
418508c1
MS
5991#endif
5992
1e01979c
TH
5993/**
5994 * node_map_pfn_alignment - determine the maximum internode alignment
5995 *
5996 * This function should be called after node map is populated and sorted.
5997 * It calculates the maximum power of two alignment which can distinguish
5998 * all the nodes.
5999 *
6000 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6001 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6002 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6003 * shifted, 1GiB is enough and this function will indicate so.
6004 *
6005 * This is used to test whether pfn -> nid mapping of the chosen memory
6006 * model has fine enough granularity to avoid incorrect mapping for the
6007 * populated node map.
6008 *
6009 * Returns the determined alignment in pfn's. 0 if there is no alignment
6010 * requirement (single node).
6011 */
6012unsigned long __init node_map_pfn_alignment(void)
6013{
6014 unsigned long accl_mask = 0, last_end = 0;
c13291a5 6015 unsigned long start, end, mask;
1e01979c 6016 int last_nid = -1;
c13291a5 6017 int i, nid;
1e01979c 6018
c13291a5 6019 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
6020 if (!start || last_nid < 0 || last_nid == nid) {
6021 last_nid = nid;
6022 last_end = end;
6023 continue;
6024 }
6025
6026 /*
6027 * Start with a mask granular enough to pin-point to the
6028 * start pfn and tick off bits one-by-one until it becomes
6029 * too coarse to separate the current node from the last.
6030 */
6031 mask = ~((1 << __ffs(start)) - 1);
6032 while (mask && last_end <= (start & (mask << 1)))
6033 mask <<= 1;
6034
6035 /* accumulate all internode masks */
6036 accl_mask |= mask;
6037 }
6038
6039 /* convert mask to number of pages */
6040 return ~accl_mask + 1;
6041}
6042
a6af2bc3 6043/* Find the lowest pfn for a node */
b69a7288 6044static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 6045{
a6af2bc3 6046 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
6047 unsigned long start_pfn;
6048 int i;
1abbfb41 6049
c13291a5
TH
6050 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6051 min_pfn = min(min_pfn, start_pfn);
c713216d 6052
a6af2bc3 6053 if (min_pfn == ULONG_MAX) {
1170532b 6054 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
6055 return 0;
6056 }
6057
6058 return min_pfn;
c713216d
MG
6059}
6060
6061/**
6062 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6063 *
6064 * It returns the minimum PFN based on information provided via
7d018176 6065 * memblock_set_node().
c713216d
MG
6066 */
6067unsigned long __init find_min_pfn_with_active_regions(void)
6068{
6069 return find_min_pfn_for_node(MAX_NUMNODES);
6070}
6071
37b07e41
LS
6072/*
6073 * early_calculate_totalpages()
6074 * Sum pages in active regions for movable zone.
4b0ef1fe 6075 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 6076 */
484f51f8 6077static unsigned long __init early_calculate_totalpages(void)
7e63efef 6078{
7e63efef 6079 unsigned long totalpages = 0;
c13291a5
TH
6080 unsigned long start_pfn, end_pfn;
6081 int i, nid;
6082
6083 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6084 unsigned long pages = end_pfn - start_pfn;
7e63efef 6085
37b07e41
LS
6086 totalpages += pages;
6087 if (pages)
4b0ef1fe 6088 node_set_state(nid, N_MEMORY);
37b07e41 6089 }
b8af2941 6090 return totalpages;
7e63efef
MG
6091}
6092
2a1e274a
MG
6093/*
6094 * Find the PFN the Movable zone begins in each node. Kernel memory
6095 * is spread evenly between nodes as long as the nodes have enough
6096 * memory. When they don't, some nodes will have more kernelcore than
6097 * others
6098 */
b224ef85 6099static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
6100{
6101 int i, nid;
6102 unsigned long usable_startpfn;
6103 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 6104 /* save the state before borrow the nodemask */
4b0ef1fe 6105 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 6106 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 6107 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 6108 struct memblock_region *r;
b2f3eebe
TC
6109
6110 /* Need to find movable_zone earlier when movable_node is specified. */
6111 find_usable_zone_for_movable();
6112
6113 /*
6114 * If movable_node is specified, ignore kernelcore and movablecore
6115 * options.
6116 */
6117 if (movable_node_is_enabled()) {
136199f0
EM
6118 for_each_memblock(memory, r) {
6119 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
6120 continue;
6121
136199f0 6122 nid = r->nid;
b2f3eebe 6123
136199f0 6124 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
6125 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6126 min(usable_startpfn, zone_movable_pfn[nid]) :
6127 usable_startpfn;
6128 }
6129
6130 goto out2;
6131 }
2a1e274a 6132
342332e6
TI
6133 /*
6134 * If kernelcore=mirror is specified, ignore movablecore option
6135 */
6136 if (mirrored_kernelcore) {
6137 bool mem_below_4gb_not_mirrored = false;
6138
6139 for_each_memblock(memory, r) {
6140 if (memblock_is_mirror(r))
6141 continue;
6142
6143 nid = r->nid;
6144
6145 usable_startpfn = memblock_region_memory_base_pfn(r);
6146
6147 if (usable_startpfn < 0x100000) {
6148 mem_below_4gb_not_mirrored = true;
6149 continue;
6150 }
6151
6152 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6153 min(usable_startpfn, zone_movable_pfn[nid]) :
6154 usable_startpfn;
6155 }
6156
6157 if (mem_below_4gb_not_mirrored)
6158 pr_warn("This configuration results in unmirrored kernel memory.");
6159
6160 goto out2;
6161 }
6162
7e63efef 6163 /*
b2f3eebe 6164 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
6165 * kernelcore that corresponds so that memory usable for
6166 * any allocation type is evenly spread. If both kernelcore
6167 * and movablecore are specified, then the value of kernelcore
6168 * will be used for required_kernelcore if it's greater than
6169 * what movablecore would have allowed.
6170 */
6171 if (required_movablecore) {
7e63efef
MG
6172 unsigned long corepages;
6173
6174 /*
6175 * Round-up so that ZONE_MOVABLE is at least as large as what
6176 * was requested by the user
6177 */
6178 required_movablecore =
6179 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 6180 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
6181 corepages = totalpages - required_movablecore;
6182
6183 required_kernelcore = max(required_kernelcore, corepages);
6184 }
6185
bde304bd
XQ
6186 /*
6187 * If kernelcore was not specified or kernelcore size is larger
6188 * than totalpages, there is no ZONE_MOVABLE.
6189 */
6190 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 6191 goto out;
2a1e274a
MG
6192
6193 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
6194 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6195
6196restart:
6197 /* Spread kernelcore memory as evenly as possible throughout nodes */
6198 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 6199 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
6200 unsigned long start_pfn, end_pfn;
6201
2a1e274a
MG
6202 /*
6203 * Recalculate kernelcore_node if the division per node
6204 * now exceeds what is necessary to satisfy the requested
6205 * amount of memory for the kernel
6206 */
6207 if (required_kernelcore < kernelcore_node)
6208 kernelcore_node = required_kernelcore / usable_nodes;
6209
6210 /*
6211 * As the map is walked, we track how much memory is usable
6212 * by the kernel using kernelcore_remaining. When it is
6213 * 0, the rest of the node is usable by ZONE_MOVABLE
6214 */
6215 kernelcore_remaining = kernelcore_node;
6216
6217 /* Go through each range of PFNs within this node */
c13291a5 6218 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
6219 unsigned long size_pages;
6220
c13291a5 6221 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
6222 if (start_pfn >= end_pfn)
6223 continue;
6224
6225 /* Account for what is only usable for kernelcore */
6226 if (start_pfn < usable_startpfn) {
6227 unsigned long kernel_pages;
6228 kernel_pages = min(end_pfn, usable_startpfn)
6229 - start_pfn;
6230
6231 kernelcore_remaining -= min(kernel_pages,
6232 kernelcore_remaining);
6233 required_kernelcore -= min(kernel_pages,
6234 required_kernelcore);
6235
6236 /* Continue if range is now fully accounted */
6237 if (end_pfn <= usable_startpfn) {
6238
6239 /*
6240 * Push zone_movable_pfn to the end so
6241 * that if we have to rebalance
6242 * kernelcore across nodes, we will
6243 * not double account here
6244 */
6245 zone_movable_pfn[nid] = end_pfn;
6246 continue;
6247 }
6248 start_pfn = usable_startpfn;
6249 }
6250
6251 /*
6252 * The usable PFN range for ZONE_MOVABLE is from
6253 * start_pfn->end_pfn. Calculate size_pages as the
6254 * number of pages used as kernelcore
6255 */
6256 size_pages = end_pfn - start_pfn;
6257 if (size_pages > kernelcore_remaining)
6258 size_pages = kernelcore_remaining;
6259 zone_movable_pfn[nid] = start_pfn + size_pages;
6260
6261 /*
6262 * Some kernelcore has been met, update counts and
6263 * break if the kernelcore for this node has been
b8af2941 6264 * satisfied
2a1e274a
MG
6265 */
6266 required_kernelcore -= min(required_kernelcore,
6267 size_pages);
6268 kernelcore_remaining -= size_pages;
6269 if (!kernelcore_remaining)
6270 break;
6271 }
6272 }
6273
6274 /*
6275 * If there is still required_kernelcore, we do another pass with one
6276 * less node in the count. This will push zone_movable_pfn[nid] further
6277 * along on the nodes that still have memory until kernelcore is
b8af2941 6278 * satisfied
2a1e274a
MG
6279 */
6280 usable_nodes--;
6281 if (usable_nodes && required_kernelcore > usable_nodes)
6282 goto restart;
6283
b2f3eebe 6284out2:
2a1e274a
MG
6285 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6286 for (nid = 0; nid < MAX_NUMNODES; nid++)
6287 zone_movable_pfn[nid] =
6288 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 6289
20e6926d 6290out:
66918dcd 6291 /* restore the node_state */
4b0ef1fe 6292 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
6293}
6294
4b0ef1fe
LJ
6295/* Any regular or high memory on that node ? */
6296static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 6297{
37b07e41
LS
6298 enum zone_type zone_type;
6299
4b0ef1fe
LJ
6300 if (N_MEMORY == N_NORMAL_MEMORY)
6301 return;
6302
6303 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 6304 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 6305 if (populated_zone(zone)) {
4b0ef1fe
LJ
6306 node_set_state(nid, N_HIGH_MEMORY);
6307 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6308 zone_type <= ZONE_NORMAL)
6309 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
6310 break;
6311 }
37b07e41 6312 }
37b07e41
LS
6313}
6314
c713216d
MG
6315/**
6316 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 6317 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
6318 *
6319 * This will call free_area_init_node() for each active node in the system.
7d018176 6320 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
6321 * zone in each node and their holes is calculated. If the maximum PFN
6322 * between two adjacent zones match, it is assumed that the zone is empty.
6323 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6324 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6325 * starts where the previous one ended. For example, ZONE_DMA32 starts
6326 * at arch_max_dma_pfn.
6327 */
6328void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6329{
c13291a5
TH
6330 unsigned long start_pfn, end_pfn;
6331 int i, nid;
a6af2bc3 6332
c713216d
MG
6333 /* Record where the zone boundaries are */
6334 memset(arch_zone_lowest_possible_pfn, 0,
6335 sizeof(arch_zone_lowest_possible_pfn));
6336 memset(arch_zone_highest_possible_pfn, 0,
6337 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
6338
6339 start_pfn = find_min_pfn_with_active_regions();
6340
6341 for (i = 0; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
6342 if (i == ZONE_MOVABLE)
6343 continue;
90cae1fe
OH
6344
6345 end_pfn = max(max_zone_pfn[i], start_pfn);
6346 arch_zone_lowest_possible_pfn[i] = start_pfn;
6347 arch_zone_highest_possible_pfn[i] = end_pfn;
6348
6349 start_pfn = end_pfn;
c713216d 6350 }
2a1e274a
MG
6351 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6352 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6353
6354 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6355 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 6356 find_zone_movable_pfns_for_nodes();
c713216d 6357
c713216d 6358 /* Print out the zone ranges */
f88dfff5 6359 pr_info("Zone ranges:\n");
2a1e274a
MG
6360 for (i = 0; i < MAX_NR_ZONES; i++) {
6361 if (i == ZONE_MOVABLE)
6362 continue;
f88dfff5 6363 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
6364 if (arch_zone_lowest_possible_pfn[i] ==
6365 arch_zone_highest_possible_pfn[i])
f88dfff5 6366 pr_cont("empty\n");
72f0ba02 6367 else
8d29e18a
JG
6368 pr_cont("[mem %#018Lx-%#018Lx]\n",
6369 (u64)arch_zone_lowest_possible_pfn[i]
6370 << PAGE_SHIFT,
6371 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 6372 << PAGE_SHIFT) - 1);
2a1e274a
MG
6373 }
6374
6375 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 6376 pr_info("Movable zone start for each node\n");
2a1e274a
MG
6377 for (i = 0; i < MAX_NUMNODES; i++) {
6378 if (zone_movable_pfn[i])
8d29e18a
JG
6379 pr_info(" Node %d: %#018Lx\n", i,
6380 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 6381 }
c713216d 6382
f2d52fe5 6383 /* Print out the early node map */
f88dfff5 6384 pr_info("Early memory node ranges\n");
c13291a5 6385 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
6386 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6387 (u64)start_pfn << PAGE_SHIFT,
6388 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
6389
6390 /* Initialise every node */
708614e6 6391 mminit_verify_pageflags_layout();
8ef82866 6392 setup_nr_node_ids();
c713216d
MG
6393 for_each_online_node(nid) {
6394 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 6395 free_area_init_node(nid, NULL,
c713216d 6396 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
6397
6398 /* Any memory on that node */
6399 if (pgdat->node_present_pages)
4b0ef1fe
LJ
6400 node_set_state(nid, N_MEMORY);
6401 check_for_memory(pgdat, nid);
c713216d
MG
6402 }
6403}
2a1e274a 6404
7e63efef 6405static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
6406{
6407 unsigned long long coremem;
6408 if (!p)
6409 return -EINVAL;
6410
6411 coremem = memparse(p, &p);
7e63efef 6412 *core = coremem >> PAGE_SHIFT;
2a1e274a 6413
7e63efef 6414 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
6415 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6416
6417 return 0;
6418}
ed7ed365 6419
7e63efef
MG
6420/*
6421 * kernelcore=size sets the amount of memory for use for allocations that
6422 * cannot be reclaimed or migrated.
6423 */
6424static int __init cmdline_parse_kernelcore(char *p)
6425{
342332e6
TI
6426 /* parse kernelcore=mirror */
6427 if (parse_option_str(p, "mirror")) {
6428 mirrored_kernelcore = true;
6429 return 0;
6430 }
6431
7e63efef
MG
6432 return cmdline_parse_core(p, &required_kernelcore);
6433}
6434
6435/*
6436 * movablecore=size sets the amount of memory for use for allocations that
6437 * can be reclaimed or migrated.
6438 */
6439static int __init cmdline_parse_movablecore(char *p)
6440{
6441 return cmdline_parse_core(p, &required_movablecore);
6442}
6443
ed7ed365 6444early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 6445early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 6446
0ee332c1 6447#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6448
c3d5f5f0
JL
6449void adjust_managed_page_count(struct page *page, long count)
6450{
6451 spin_lock(&managed_page_count_lock);
6452 page_zone(page)->managed_pages += count;
6453 totalram_pages += count;
3dcc0571
JL
6454#ifdef CONFIG_HIGHMEM
6455 if (PageHighMem(page))
6456 totalhigh_pages += count;
6457#endif
c3d5f5f0
JL
6458 spin_unlock(&managed_page_count_lock);
6459}
3dcc0571 6460EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 6461
11199692 6462unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 6463{
11199692
JL
6464 void *pos;
6465 unsigned long pages = 0;
69afade7 6466
11199692
JL
6467 start = (void *)PAGE_ALIGN((unsigned long)start);
6468 end = (void *)((unsigned long)end & PAGE_MASK);
6469 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 6470 if ((unsigned int)poison <= 0xFF)
11199692
JL
6471 memset(pos, poison, PAGE_SIZE);
6472 free_reserved_page(virt_to_page(pos));
69afade7
JL
6473 }
6474
6475 if (pages && s)
adb1fe9a
JP
6476 pr_info("Freeing %s memory: %ldK\n",
6477 s, pages << (PAGE_SHIFT - 10));
69afade7
JL
6478
6479 return pages;
6480}
11199692 6481EXPORT_SYMBOL(free_reserved_area);
69afade7 6482
cfa11e08
JL
6483#ifdef CONFIG_HIGHMEM
6484void free_highmem_page(struct page *page)
6485{
6486 __free_reserved_page(page);
6487 totalram_pages++;
7b4b2a0d 6488 page_zone(page)->managed_pages++;
cfa11e08
JL
6489 totalhigh_pages++;
6490}
6491#endif
6492
7ee3d4e8
JL
6493
6494void __init mem_init_print_info(const char *str)
6495{
6496 unsigned long physpages, codesize, datasize, rosize, bss_size;
6497 unsigned long init_code_size, init_data_size;
6498
6499 physpages = get_num_physpages();
6500 codesize = _etext - _stext;
6501 datasize = _edata - _sdata;
6502 rosize = __end_rodata - __start_rodata;
6503 bss_size = __bss_stop - __bss_start;
6504 init_data_size = __init_end - __init_begin;
6505 init_code_size = _einittext - _sinittext;
6506
6507 /*
6508 * Detect special cases and adjust section sizes accordingly:
6509 * 1) .init.* may be embedded into .data sections
6510 * 2) .init.text.* may be out of [__init_begin, __init_end],
6511 * please refer to arch/tile/kernel/vmlinux.lds.S.
6512 * 3) .rodata.* may be embedded into .text or .data sections.
6513 */
6514#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
6515 do { \
6516 if (start <= pos && pos < end && size > adj) \
6517 size -= adj; \
6518 } while (0)
7ee3d4e8
JL
6519
6520 adj_init_size(__init_begin, __init_end, init_data_size,
6521 _sinittext, init_code_size);
6522 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6523 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6524 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6525 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6526
6527#undef adj_init_size
6528
756a025f 6529 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 6530#ifdef CONFIG_HIGHMEM
756a025f 6531 ", %luK highmem"
7ee3d4e8 6532#endif
756a025f
JP
6533 "%s%s)\n",
6534 nr_free_pages() << (PAGE_SHIFT - 10),
6535 physpages << (PAGE_SHIFT - 10),
6536 codesize >> 10, datasize >> 10, rosize >> 10,
6537 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6538 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6539 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6540#ifdef CONFIG_HIGHMEM
756a025f 6541 totalhigh_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6542#endif
756a025f 6543 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
6544}
6545
0e0b864e 6546/**
88ca3b94
RD
6547 * set_dma_reserve - set the specified number of pages reserved in the first zone
6548 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 6549 *
013110a7 6550 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
6551 * In the DMA zone, a significant percentage may be consumed by kernel image
6552 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6553 * function may optionally be used to account for unfreeable pages in the
6554 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6555 * smaller per-cpu batchsize.
0e0b864e
MG
6556 */
6557void __init set_dma_reserve(unsigned long new_dma_reserve)
6558{
6559 dma_reserve = new_dma_reserve;
6560}
6561
1da177e4
LT
6562void __init free_area_init(unsigned long *zones_size)
6563{
9109fb7b 6564 free_area_init_node(0, zones_size,
1da177e4
LT
6565 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6566}
1da177e4 6567
005fd4bb 6568static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 6569{
1da177e4 6570
005fd4bb
SAS
6571 lru_add_drain_cpu(cpu);
6572 drain_pages(cpu);
9f8f2172 6573
005fd4bb
SAS
6574 /*
6575 * Spill the event counters of the dead processor
6576 * into the current processors event counters.
6577 * This artificially elevates the count of the current
6578 * processor.
6579 */
6580 vm_events_fold_cpu(cpu);
9f8f2172 6581
005fd4bb
SAS
6582 /*
6583 * Zero the differential counters of the dead processor
6584 * so that the vm statistics are consistent.
6585 *
6586 * This is only okay since the processor is dead and cannot
6587 * race with what we are doing.
6588 */
6589 cpu_vm_stats_fold(cpu);
6590 return 0;
1da177e4 6591}
1da177e4
LT
6592
6593void __init page_alloc_init(void)
6594{
005fd4bb
SAS
6595 int ret;
6596
6597 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6598 "mm/page_alloc:dead", NULL,
6599 page_alloc_cpu_dead);
6600 WARN_ON(ret < 0);
1da177e4
LT
6601}
6602
cb45b0e9 6603/*
34b10060 6604 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
6605 * or min_free_kbytes changes.
6606 */
6607static void calculate_totalreserve_pages(void)
6608{
6609 struct pglist_data *pgdat;
6610 unsigned long reserve_pages = 0;
2f6726e5 6611 enum zone_type i, j;
cb45b0e9
HA
6612
6613 for_each_online_pgdat(pgdat) {
281e3726
MG
6614
6615 pgdat->totalreserve_pages = 0;
6616
cb45b0e9
HA
6617 for (i = 0; i < MAX_NR_ZONES; i++) {
6618 struct zone *zone = pgdat->node_zones + i;
3484b2de 6619 long max = 0;
cb45b0e9
HA
6620
6621 /* Find valid and maximum lowmem_reserve in the zone */
6622 for (j = i; j < MAX_NR_ZONES; j++) {
6623 if (zone->lowmem_reserve[j] > max)
6624 max = zone->lowmem_reserve[j];
6625 }
6626
41858966
MG
6627 /* we treat the high watermark as reserved pages. */
6628 max += high_wmark_pages(zone);
cb45b0e9 6629
b40da049
JL
6630 if (max > zone->managed_pages)
6631 max = zone->managed_pages;
a8d01437 6632
281e3726 6633 pgdat->totalreserve_pages += max;
a8d01437 6634
cb45b0e9
HA
6635 reserve_pages += max;
6636 }
6637 }
6638 totalreserve_pages = reserve_pages;
6639}
6640
1da177e4
LT
6641/*
6642 * setup_per_zone_lowmem_reserve - called whenever
34b10060 6643 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
6644 * has a correct pages reserved value, so an adequate number of
6645 * pages are left in the zone after a successful __alloc_pages().
6646 */
6647static void setup_per_zone_lowmem_reserve(void)
6648{
6649 struct pglist_data *pgdat;
2f6726e5 6650 enum zone_type j, idx;
1da177e4 6651
ec936fc5 6652 for_each_online_pgdat(pgdat) {
1da177e4
LT
6653 for (j = 0; j < MAX_NR_ZONES; j++) {
6654 struct zone *zone = pgdat->node_zones + j;
b40da049 6655 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6656
6657 zone->lowmem_reserve[j] = 0;
6658
2f6726e5
CL
6659 idx = j;
6660 while (idx) {
1da177e4
LT
6661 struct zone *lower_zone;
6662
2f6726e5
CL
6663 idx--;
6664
1da177e4
LT
6665 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6666 sysctl_lowmem_reserve_ratio[idx] = 1;
6667
6668 lower_zone = pgdat->node_zones + idx;
b40da049 6669 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6670 sysctl_lowmem_reserve_ratio[idx];
b40da049 6671 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6672 }
6673 }
6674 }
cb45b0e9
HA
6675
6676 /* update totalreserve_pages */
6677 calculate_totalreserve_pages();
1da177e4
LT
6678}
6679
cfd3da1e 6680static void __setup_per_zone_wmarks(void)
1da177e4
LT
6681{
6682 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6683 unsigned long lowmem_pages = 0;
6684 struct zone *zone;
6685 unsigned long flags;
6686
6687 /* Calculate total number of !ZONE_HIGHMEM pages */
6688 for_each_zone(zone) {
6689 if (!is_highmem(zone))
b40da049 6690 lowmem_pages += zone->managed_pages;
1da177e4
LT
6691 }
6692
6693 for_each_zone(zone) {
ac924c60
AM
6694 u64 tmp;
6695
1125b4e3 6696 spin_lock_irqsave(&zone->lock, flags);
b40da049 6697 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6698 do_div(tmp, lowmem_pages);
1da177e4
LT
6699 if (is_highmem(zone)) {
6700 /*
669ed175
NP
6701 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6702 * need highmem pages, so cap pages_min to a small
6703 * value here.
6704 *
41858966 6705 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6706 * deltas control asynch page reclaim, and so should
669ed175 6707 * not be capped for highmem.
1da177e4 6708 */
90ae8d67 6709 unsigned long min_pages;
1da177e4 6710
b40da049 6711 min_pages = zone->managed_pages / 1024;
90ae8d67 6712 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6713 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6714 } else {
669ed175
NP
6715 /*
6716 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6717 * proportionate to the zone's size.
6718 */
41858966 6719 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6720 }
6721
795ae7a0
JW
6722 /*
6723 * Set the kswapd watermarks distance according to the
6724 * scale factor in proportion to available memory, but
6725 * ensure a minimum size on small systems.
6726 */
6727 tmp = max_t(u64, tmp >> 2,
6728 mult_frac(zone->managed_pages,
6729 watermark_scale_factor, 10000));
6730
6731 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6732 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 6733
1125b4e3 6734 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 6735 }
cb45b0e9
HA
6736
6737 /* update totalreserve_pages */
6738 calculate_totalreserve_pages();
1da177e4
LT
6739}
6740
cfd3da1e
MG
6741/**
6742 * setup_per_zone_wmarks - called when min_free_kbytes changes
6743 * or when memory is hot-{added|removed}
6744 *
6745 * Ensures that the watermark[min,low,high] values for each zone are set
6746 * correctly with respect to min_free_kbytes.
6747 */
6748void setup_per_zone_wmarks(void)
6749{
6750 mutex_lock(&zonelists_mutex);
6751 __setup_per_zone_wmarks();
6752 mutex_unlock(&zonelists_mutex);
6753}
6754
1da177e4
LT
6755/*
6756 * Initialise min_free_kbytes.
6757 *
6758 * For small machines we want it small (128k min). For large machines
6759 * we want it large (64MB max). But it is not linear, because network
6760 * bandwidth does not increase linearly with machine size. We use
6761 *
b8af2941 6762 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
6763 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6764 *
6765 * which yields
6766 *
6767 * 16MB: 512k
6768 * 32MB: 724k
6769 * 64MB: 1024k
6770 * 128MB: 1448k
6771 * 256MB: 2048k
6772 * 512MB: 2896k
6773 * 1024MB: 4096k
6774 * 2048MB: 5792k
6775 * 4096MB: 8192k
6776 * 8192MB: 11584k
6777 * 16384MB: 16384k
6778 */
1b79acc9 6779int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
6780{
6781 unsigned long lowmem_kbytes;
5f12733e 6782 int new_min_free_kbytes;
1da177e4
LT
6783
6784 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
6785 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6786
6787 if (new_min_free_kbytes > user_min_free_kbytes) {
6788 min_free_kbytes = new_min_free_kbytes;
6789 if (min_free_kbytes < 128)
6790 min_free_kbytes = 128;
6791 if (min_free_kbytes > 65536)
6792 min_free_kbytes = 65536;
6793 } else {
6794 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6795 new_min_free_kbytes, user_min_free_kbytes);
6796 }
bc75d33f 6797 setup_per_zone_wmarks();
a6cccdc3 6798 refresh_zone_stat_thresholds();
1da177e4 6799 setup_per_zone_lowmem_reserve();
6423aa81
JK
6800
6801#ifdef CONFIG_NUMA
6802 setup_min_unmapped_ratio();
6803 setup_min_slab_ratio();
6804#endif
6805
1da177e4
LT
6806 return 0;
6807}
bc22af74 6808core_initcall(init_per_zone_wmark_min)
1da177e4
LT
6809
6810/*
b8af2941 6811 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
6812 * that we can call two helper functions whenever min_free_kbytes
6813 * changes.
6814 */
cccad5b9 6815int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6816 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6817{
da8c757b
HP
6818 int rc;
6819
6820 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6821 if (rc)
6822 return rc;
6823
5f12733e
MH
6824 if (write) {
6825 user_min_free_kbytes = min_free_kbytes;
bc75d33f 6826 setup_per_zone_wmarks();
5f12733e 6827 }
1da177e4
LT
6828 return 0;
6829}
6830
795ae7a0
JW
6831int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6832 void __user *buffer, size_t *length, loff_t *ppos)
6833{
6834 int rc;
6835
6836 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6837 if (rc)
6838 return rc;
6839
6840 if (write)
6841 setup_per_zone_wmarks();
6842
6843 return 0;
6844}
6845
9614634f 6846#ifdef CONFIG_NUMA
6423aa81 6847static void setup_min_unmapped_ratio(void)
9614634f 6848{
6423aa81 6849 pg_data_t *pgdat;
9614634f 6850 struct zone *zone;
9614634f 6851
a5f5f91d 6852 for_each_online_pgdat(pgdat)
81cbcbc2 6853 pgdat->min_unmapped_pages = 0;
a5f5f91d 6854
9614634f 6855 for_each_zone(zone)
a5f5f91d 6856 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
9614634f 6857 sysctl_min_unmapped_ratio) / 100;
9614634f 6858}
0ff38490 6859
6423aa81
JK
6860
6861int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6862 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490 6863{
0ff38490
CL
6864 int rc;
6865
8d65af78 6866 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
6867 if (rc)
6868 return rc;
6869
6423aa81
JK
6870 setup_min_unmapped_ratio();
6871
6872 return 0;
6873}
6874
6875static void setup_min_slab_ratio(void)
6876{
6877 pg_data_t *pgdat;
6878 struct zone *zone;
6879
a5f5f91d
MG
6880 for_each_online_pgdat(pgdat)
6881 pgdat->min_slab_pages = 0;
6882
0ff38490 6883 for_each_zone(zone)
a5f5f91d 6884 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
0ff38490 6885 sysctl_min_slab_ratio) / 100;
6423aa81
JK
6886}
6887
6888int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6889 void __user *buffer, size_t *length, loff_t *ppos)
6890{
6891 int rc;
6892
6893 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6894 if (rc)
6895 return rc;
6896
6897 setup_min_slab_ratio();
6898
0ff38490
CL
6899 return 0;
6900}
9614634f
CL
6901#endif
6902
1da177e4
LT
6903/*
6904 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6905 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6906 * whenever sysctl_lowmem_reserve_ratio changes.
6907 *
6908 * The reserve ratio obviously has absolutely no relation with the
41858966 6909 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
6910 * if in function of the boot time zone sizes.
6911 */
cccad5b9 6912int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6913 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6914{
8d65af78 6915 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
6916 setup_per_zone_lowmem_reserve();
6917 return 0;
6918}
6919
8ad4b1fb
RS
6920/*
6921 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
6922 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6923 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 6924 */
cccad5b9 6925int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6926 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
6927{
6928 struct zone *zone;
7cd2b0a3 6929 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
6930 int ret;
6931
7cd2b0a3
DR
6932 mutex_lock(&pcp_batch_high_lock);
6933 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6934
8d65af78 6935 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
6936 if (!write || ret < 0)
6937 goto out;
6938
6939 /* Sanity checking to avoid pcp imbalance */
6940 if (percpu_pagelist_fraction &&
6941 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6942 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6943 ret = -EINVAL;
6944 goto out;
6945 }
6946
6947 /* No change? */
6948 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6949 goto out;
c8e251fa 6950
364df0eb 6951 for_each_populated_zone(zone) {
7cd2b0a3
DR
6952 unsigned int cpu;
6953
22a7f12b 6954 for_each_possible_cpu(cpu)
7cd2b0a3
DR
6955 pageset_set_high_and_batch(zone,
6956 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 6957 }
7cd2b0a3 6958out:
c8e251fa 6959 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 6960 return ret;
8ad4b1fb
RS
6961}
6962
a9919c79 6963#ifdef CONFIG_NUMA
f034b5d4 6964int hashdist = HASHDIST_DEFAULT;
1da177e4 6965
1da177e4
LT
6966static int __init set_hashdist(char *str)
6967{
6968 if (!str)
6969 return 0;
6970 hashdist = simple_strtoul(str, &str, 0);
6971 return 1;
6972}
6973__setup("hashdist=", set_hashdist);
6974#endif
6975
f6f34b43
SD
6976#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
6977/*
6978 * Returns the number of pages that arch has reserved but
6979 * is not known to alloc_large_system_hash().
6980 */
6981static unsigned long __init arch_reserved_kernel_pages(void)
6982{
6983 return 0;
6984}
6985#endif
6986
1da177e4
LT
6987/*
6988 * allocate a large system hash table from bootmem
6989 * - it is assumed that the hash table must contain an exact power-of-2
6990 * quantity of entries
6991 * - limit is the number of hash buckets, not the total allocation size
6992 */
6993void *__init alloc_large_system_hash(const char *tablename,
6994 unsigned long bucketsize,
6995 unsigned long numentries,
6996 int scale,
6997 int flags,
6998 unsigned int *_hash_shift,
6999 unsigned int *_hash_mask,
31fe62b9
TB
7000 unsigned long low_limit,
7001 unsigned long high_limit)
1da177e4 7002{
31fe62b9 7003 unsigned long long max = high_limit;
1da177e4
LT
7004 unsigned long log2qty, size;
7005 void *table = NULL;
7006
7007 /* allow the kernel cmdline to have a say */
7008 if (!numentries) {
7009 /* round applicable memory size up to nearest megabyte */
04903664 7010 numentries = nr_kernel_pages;
f6f34b43 7011 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
7012
7013 /* It isn't necessary when PAGE_SIZE >= 1MB */
7014 if (PAGE_SHIFT < 20)
7015 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
7016
7017 /* limit to 1 bucket per 2^scale bytes of low memory */
7018 if (scale > PAGE_SHIFT)
7019 numentries >>= (scale - PAGE_SHIFT);
7020 else
7021 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
7022
7023 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
7024 if (unlikely(flags & HASH_SMALL)) {
7025 /* Makes no sense without HASH_EARLY */
7026 WARN_ON(!(flags & HASH_EARLY));
7027 if (!(numentries >> *_hash_shift)) {
7028 numentries = 1UL << *_hash_shift;
7029 BUG_ON(!numentries);
7030 }
7031 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 7032 numentries = PAGE_SIZE / bucketsize;
1da177e4 7033 }
6e692ed3 7034 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
7035
7036 /* limit allocation size to 1/16 total memory by default */
7037 if (max == 0) {
7038 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7039 do_div(max, bucketsize);
7040 }
074b8517 7041 max = min(max, 0x80000000ULL);
1da177e4 7042
31fe62b9
TB
7043 if (numentries < low_limit)
7044 numentries = low_limit;
1da177e4
LT
7045 if (numentries > max)
7046 numentries = max;
7047
f0d1b0b3 7048 log2qty = ilog2(numentries);
1da177e4
LT
7049
7050 do {
7051 size = bucketsize << log2qty;
7052 if (flags & HASH_EARLY)
6782832e 7053 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
7054 else if (hashdist)
7055 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7056 else {
1037b83b
ED
7057 /*
7058 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
7059 * some pages at the end of hash table which
7060 * alloc_pages_exact() automatically does
1037b83b 7061 */
264ef8a9 7062 if (get_order(size) < MAX_ORDER) {
a1dd268c 7063 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
7064 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7065 }
1da177e4
LT
7066 }
7067 } while (!table && size > PAGE_SIZE && --log2qty);
7068
7069 if (!table)
7070 panic("Failed to allocate %s hash table\n", tablename);
7071
1170532b
JP
7072 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7073 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
7074
7075 if (_hash_shift)
7076 *_hash_shift = log2qty;
7077 if (_hash_mask)
7078 *_hash_mask = (1 << log2qty) - 1;
7079
7080 return table;
7081}
a117e66e 7082
a5d76b54 7083/*
80934513
MK
7084 * This function checks whether pageblock includes unmovable pages or not.
7085 * If @count is not zero, it is okay to include less @count unmovable pages
7086 *
b8af2941 7087 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
7088 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
7089 * expect this function should be exact.
a5d76b54 7090 */
b023f468
WC
7091bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7092 bool skip_hwpoisoned_pages)
49ac8255
KH
7093{
7094 unsigned long pfn, iter, found;
47118af0
MN
7095 int mt;
7096
49ac8255
KH
7097 /*
7098 * For avoiding noise data, lru_add_drain_all() should be called
80934513 7099 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
7100 */
7101 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 7102 return false;
47118af0
MN
7103 mt = get_pageblock_migratetype(page);
7104 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 7105 return false;
49ac8255
KH
7106
7107 pfn = page_to_pfn(page);
7108 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7109 unsigned long check = pfn + iter;
7110
29723fcc 7111 if (!pfn_valid_within(check))
49ac8255 7112 continue;
29723fcc 7113
49ac8255 7114 page = pfn_to_page(check);
c8721bbb
NH
7115
7116 /*
7117 * Hugepages are not in LRU lists, but they're movable.
7118 * We need not scan over tail pages bacause we don't
7119 * handle each tail page individually in migration.
7120 */
7121 if (PageHuge(page)) {
7122 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7123 continue;
7124 }
7125
97d255c8
MK
7126 /*
7127 * We can't use page_count without pin a page
7128 * because another CPU can free compound page.
7129 * This check already skips compound tails of THP
0139aa7b 7130 * because their page->_refcount is zero at all time.
97d255c8 7131 */
fe896d18 7132 if (!page_ref_count(page)) {
49ac8255
KH
7133 if (PageBuddy(page))
7134 iter += (1 << page_order(page)) - 1;
7135 continue;
7136 }
97d255c8 7137
b023f468
WC
7138 /*
7139 * The HWPoisoned page may be not in buddy system, and
7140 * page_count() is not 0.
7141 */
7142 if (skip_hwpoisoned_pages && PageHWPoison(page))
7143 continue;
7144
49ac8255
KH
7145 if (!PageLRU(page))
7146 found++;
7147 /*
6b4f7799
JW
7148 * If there are RECLAIMABLE pages, we need to check
7149 * it. But now, memory offline itself doesn't call
7150 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
7151 */
7152 /*
7153 * If the page is not RAM, page_count()should be 0.
7154 * we don't need more check. This is an _used_ not-movable page.
7155 *
7156 * The problematic thing here is PG_reserved pages. PG_reserved
7157 * is set to both of a memory hole page and a _used_ kernel
7158 * page at boot.
7159 */
7160 if (found > count)
80934513 7161 return true;
49ac8255 7162 }
80934513 7163 return false;
49ac8255
KH
7164}
7165
7166bool is_pageblock_removable_nolock(struct page *page)
7167{
656a0706
MH
7168 struct zone *zone;
7169 unsigned long pfn;
687875fb
MH
7170
7171 /*
7172 * We have to be careful here because we are iterating over memory
7173 * sections which are not zone aware so we might end up outside of
7174 * the zone but still within the section.
656a0706
MH
7175 * We have to take care about the node as well. If the node is offline
7176 * its NODE_DATA will be NULL - see page_zone.
687875fb 7177 */
656a0706
MH
7178 if (!node_online(page_to_nid(page)))
7179 return false;
7180
7181 zone = page_zone(page);
7182 pfn = page_to_pfn(page);
108bcc96 7183 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
7184 return false;
7185
b023f468 7186 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 7187}
0c0e6195 7188
080fe206 7189#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
7190
7191static unsigned long pfn_max_align_down(unsigned long pfn)
7192{
7193 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7194 pageblock_nr_pages) - 1);
7195}
7196
7197static unsigned long pfn_max_align_up(unsigned long pfn)
7198{
7199 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7200 pageblock_nr_pages));
7201}
7202
041d3a8c 7203/* [start, end) must belong to a single zone. */
bb13ffeb
MG
7204static int __alloc_contig_migrate_range(struct compact_control *cc,
7205 unsigned long start, unsigned long end)
041d3a8c
MN
7206{
7207 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 7208 unsigned long nr_reclaimed;
041d3a8c
MN
7209 unsigned long pfn = start;
7210 unsigned int tries = 0;
7211 int ret = 0;
7212
be49a6e1 7213 migrate_prep();
041d3a8c 7214
bb13ffeb 7215 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
7216 if (fatal_signal_pending(current)) {
7217 ret = -EINTR;
7218 break;
7219 }
7220
bb13ffeb
MG
7221 if (list_empty(&cc->migratepages)) {
7222 cc->nr_migratepages = 0;
edc2ca61 7223 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
7224 if (!pfn) {
7225 ret = -EINTR;
7226 break;
7227 }
7228 tries = 0;
7229 } else if (++tries == 5) {
7230 ret = ret < 0 ? ret : -EBUSY;
7231 break;
7232 }
7233
beb51eaa
MK
7234 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7235 &cc->migratepages);
7236 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 7237
9c620e2b 7238 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 7239 NULL, 0, cc->mode, MR_CMA);
041d3a8c 7240 }
2a6f5124
SP
7241 if (ret < 0) {
7242 putback_movable_pages(&cc->migratepages);
7243 return ret;
7244 }
7245 return 0;
041d3a8c
MN
7246}
7247
7248/**
7249 * alloc_contig_range() -- tries to allocate given range of pages
7250 * @start: start PFN to allocate
7251 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
7252 * @migratetype: migratetype of the underlaying pageblocks (either
7253 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7254 * in range must have the same migratetype and it must
7255 * be either of the two.
041d3a8c
MN
7256 *
7257 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7258 * aligned, however it's the caller's responsibility to guarantee that
7259 * we are the only thread that changes migrate type of pageblocks the
7260 * pages fall in.
7261 *
7262 * The PFN range must belong to a single zone.
7263 *
7264 * Returns zero on success or negative error code. On success all
7265 * pages which PFN is in [start, end) are allocated for the caller and
7266 * need to be freed with free_contig_range().
7267 */
0815f3d8
MN
7268int alloc_contig_range(unsigned long start, unsigned long end,
7269 unsigned migratetype)
041d3a8c 7270{
041d3a8c 7271 unsigned long outer_start, outer_end;
d00181b9
KS
7272 unsigned int order;
7273 int ret = 0;
041d3a8c 7274
bb13ffeb
MG
7275 struct compact_control cc = {
7276 .nr_migratepages = 0,
7277 .order = -1,
7278 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 7279 .mode = MIGRATE_SYNC,
bb13ffeb 7280 .ignore_skip_hint = true,
424f6c48 7281 .gfp_mask = GFP_KERNEL,
bb13ffeb
MG
7282 };
7283 INIT_LIST_HEAD(&cc.migratepages);
7284
041d3a8c
MN
7285 /*
7286 * What we do here is we mark all pageblocks in range as
7287 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7288 * have different sizes, and due to the way page allocator
7289 * work, we align the range to biggest of the two pages so
7290 * that page allocator won't try to merge buddies from
7291 * different pageblocks and change MIGRATE_ISOLATE to some
7292 * other migration type.
7293 *
7294 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7295 * migrate the pages from an unaligned range (ie. pages that
7296 * we are interested in). This will put all the pages in
7297 * range back to page allocator as MIGRATE_ISOLATE.
7298 *
7299 * When this is done, we take the pages in range from page
7300 * allocator removing them from the buddy system. This way
7301 * page allocator will never consider using them.
7302 *
7303 * This lets us mark the pageblocks back as
7304 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7305 * aligned range but not in the unaligned, original range are
7306 * put back to page allocator so that buddy can use them.
7307 */
7308
7309 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
7310 pfn_max_align_up(end), migratetype,
7311 false);
041d3a8c 7312 if (ret)
86a595f9 7313 return ret;
041d3a8c 7314
8ef5849f
JK
7315 /*
7316 * In case of -EBUSY, we'd like to know which page causes problem.
7317 * So, just fall through. We will check it in test_pages_isolated().
7318 */
bb13ffeb 7319 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 7320 if (ret && ret != -EBUSY)
041d3a8c
MN
7321 goto done;
7322
7323 /*
7324 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7325 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7326 * more, all pages in [start, end) are free in page allocator.
7327 * What we are going to do is to allocate all pages from
7328 * [start, end) (that is remove them from page allocator).
7329 *
7330 * The only problem is that pages at the beginning and at the
7331 * end of interesting range may be not aligned with pages that
7332 * page allocator holds, ie. they can be part of higher order
7333 * pages. Because of this, we reserve the bigger range and
7334 * once this is done free the pages we are not interested in.
7335 *
7336 * We don't have to hold zone->lock here because the pages are
7337 * isolated thus they won't get removed from buddy.
7338 */
7339
7340 lru_add_drain_all();
510f5507 7341 drain_all_pages(cc.zone);
041d3a8c
MN
7342
7343 order = 0;
7344 outer_start = start;
7345 while (!PageBuddy(pfn_to_page(outer_start))) {
7346 if (++order >= MAX_ORDER) {
8ef5849f
JK
7347 outer_start = start;
7348 break;
041d3a8c
MN
7349 }
7350 outer_start &= ~0UL << order;
7351 }
7352
8ef5849f
JK
7353 if (outer_start != start) {
7354 order = page_order(pfn_to_page(outer_start));
7355
7356 /*
7357 * outer_start page could be small order buddy page and
7358 * it doesn't include start page. Adjust outer_start
7359 * in this case to report failed page properly
7360 * on tracepoint in test_pages_isolated()
7361 */
7362 if (outer_start + (1UL << order) <= start)
7363 outer_start = start;
7364 }
7365
041d3a8c 7366 /* Make sure the range is really isolated. */
b023f468 7367 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
7368 pr_info("%s: [%lx, %lx) PFNs busy\n",
7369 __func__, outer_start, end);
041d3a8c
MN
7370 ret = -EBUSY;
7371 goto done;
7372 }
7373
49f223a9 7374 /* Grab isolated pages from freelists. */
bb13ffeb 7375 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
7376 if (!outer_end) {
7377 ret = -EBUSY;
7378 goto done;
7379 }
7380
7381 /* Free head and tail (if any) */
7382 if (start != outer_start)
7383 free_contig_range(outer_start, start - outer_start);
7384 if (end != outer_end)
7385 free_contig_range(end, outer_end - end);
7386
7387done:
7388 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 7389 pfn_max_align_up(end), migratetype);
041d3a8c
MN
7390 return ret;
7391}
7392
7393void free_contig_range(unsigned long pfn, unsigned nr_pages)
7394{
bcc2b02f
MS
7395 unsigned int count = 0;
7396
7397 for (; nr_pages--; pfn++) {
7398 struct page *page = pfn_to_page(pfn);
7399
7400 count += page_count(page) != 1;
7401 __free_page(page);
7402 }
7403 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
7404}
7405#endif
7406
4ed7e022 7407#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
7408/*
7409 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7410 * page high values need to be recalulated.
7411 */
4ed7e022
JL
7412void __meminit zone_pcp_update(struct zone *zone)
7413{
0a647f38 7414 unsigned cpu;
c8e251fa 7415 mutex_lock(&pcp_batch_high_lock);
0a647f38 7416 for_each_possible_cpu(cpu)
169f6c19
CS
7417 pageset_set_high_and_batch(zone,
7418 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 7419 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
7420}
7421#endif
7422
340175b7
JL
7423void zone_pcp_reset(struct zone *zone)
7424{
7425 unsigned long flags;
5a883813
MK
7426 int cpu;
7427 struct per_cpu_pageset *pset;
340175b7
JL
7428
7429 /* avoid races with drain_pages() */
7430 local_irq_save(flags);
7431 if (zone->pageset != &boot_pageset) {
5a883813
MK
7432 for_each_online_cpu(cpu) {
7433 pset = per_cpu_ptr(zone->pageset, cpu);
7434 drain_zonestat(zone, pset);
7435 }
340175b7
JL
7436 free_percpu(zone->pageset);
7437 zone->pageset = &boot_pageset;
7438 }
7439 local_irq_restore(flags);
7440}
7441
6dcd73d7 7442#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 7443/*
b9eb6319
JK
7444 * All pages in the range must be in a single zone and isolated
7445 * before calling this.
0c0e6195
KH
7446 */
7447void
7448__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7449{
7450 struct page *page;
7451 struct zone *zone;
7aeb09f9 7452 unsigned int order, i;
0c0e6195
KH
7453 unsigned long pfn;
7454 unsigned long flags;
7455 /* find the first valid pfn */
7456 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7457 if (pfn_valid(pfn))
7458 break;
7459 if (pfn == end_pfn)
7460 return;
7461 zone = page_zone(pfn_to_page(pfn));
7462 spin_lock_irqsave(&zone->lock, flags);
7463 pfn = start_pfn;
7464 while (pfn < end_pfn) {
7465 if (!pfn_valid(pfn)) {
7466 pfn++;
7467 continue;
7468 }
7469 page = pfn_to_page(pfn);
b023f468
WC
7470 /*
7471 * The HWPoisoned page may be not in buddy system, and
7472 * page_count() is not 0.
7473 */
7474 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7475 pfn++;
7476 SetPageReserved(page);
7477 continue;
7478 }
7479
0c0e6195
KH
7480 BUG_ON(page_count(page));
7481 BUG_ON(!PageBuddy(page));
7482 order = page_order(page);
7483#ifdef CONFIG_DEBUG_VM
1170532b
JP
7484 pr_info("remove from free list %lx %d %lx\n",
7485 pfn, 1 << order, end_pfn);
0c0e6195
KH
7486#endif
7487 list_del(&page->lru);
7488 rmv_page_order(page);
7489 zone->free_area[order].nr_free--;
0c0e6195
KH
7490 for (i = 0; i < (1 << order); i++)
7491 SetPageReserved((page+i));
7492 pfn += (1 << order);
7493 }
7494 spin_unlock_irqrestore(&zone->lock, flags);
7495}
7496#endif
8d22ba1b 7497
8d22ba1b
WF
7498bool is_free_buddy_page(struct page *page)
7499{
7500 struct zone *zone = page_zone(page);
7501 unsigned long pfn = page_to_pfn(page);
7502 unsigned long flags;
7aeb09f9 7503 unsigned int order;
8d22ba1b
WF
7504
7505 spin_lock_irqsave(&zone->lock, flags);
7506 for (order = 0; order < MAX_ORDER; order++) {
7507 struct page *page_head = page - (pfn & ((1 << order) - 1));
7508
7509 if (PageBuddy(page_head) && page_order(page_head) >= order)
7510 break;
7511 }
7512 spin_unlock_irqrestore(&zone->lock, flags);
7513
7514 return order < MAX_ORDER;
7515}
This page took 3.048769 seconds and 4 git commands to generate.