]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/mm/page_alloc.c | |
3 | * | |
4 | * Manages the free list, the system allocates free pages here. | |
5 | * Note that kmalloc() lives in slab.c | |
6 | * | |
7 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds | |
8 | * Swap reorganised 29.12.95, Stephen Tweedie | |
9 | * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 | |
10 | * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 | |
11 | * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 | |
12 | * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 | |
13 | * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 | |
14 | * (lots of bits borrowed from Ingo Molnar & Andrew Morton) | |
15 | */ | |
16 | ||
1da177e4 LT |
17 | #include <linux/stddef.h> |
18 | #include <linux/mm.h> | |
19 | #include <linux/swap.h> | |
20 | #include <linux/interrupt.h> | |
21 | #include <linux/pagemap.h> | |
10ed273f | 22 | #include <linux/jiffies.h> |
1da177e4 | 23 | #include <linux/bootmem.h> |
edbe7d23 | 24 | #include <linux/memblock.h> |
1da177e4 | 25 | #include <linux/compiler.h> |
9f158333 | 26 | #include <linux/kernel.h> |
b1eeab67 | 27 | #include <linux/kmemcheck.h> |
b8c73fc2 | 28 | #include <linux/kasan.h> |
1da177e4 LT |
29 | #include <linux/module.h> |
30 | #include <linux/suspend.h> | |
31 | #include <linux/pagevec.h> | |
32 | #include <linux/blkdev.h> | |
33 | #include <linux/slab.h> | |
a238ab5b | 34 | #include <linux/ratelimit.h> |
5a3135c2 | 35 | #include <linux/oom.h> |
1da177e4 LT |
36 | #include <linux/notifier.h> |
37 | #include <linux/topology.h> | |
38 | #include <linux/sysctl.h> | |
39 | #include <linux/cpu.h> | |
40 | #include <linux/cpuset.h> | |
bdc8cb98 | 41 | #include <linux/memory_hotplug.h> |
1da177e4 LT |
42 | #include <linux/nodemask.h> |
43 | #include <linux/vmalloc.h> | |
a6cccdc3 | 44 | #include <linux/vmstat.h> |
4be38e35 | 45 | #include <linux/mempolicy.h> |
4b94ffdc | 46 | #include <linux/memremap.h> |
6811378e | 47 | #include <linux/stop_machine.h> |
c713216d MG |
48 | #include <linux/sort.h> |
49 | #include <linux/pfn.h> | |
3fcfab16 | 50 | #include <linux/backing-dev.h> |
933e312e | 51 | #include <linux/fault-inject.h> |
a5d76b54 | 52 | #include <linux/page-isolation.h> |
eefa864b | 53 | #include <linux/page_ext.h> |
3ac7fe5a | 54 | #include <linux/debugobjects.h> |
dbb1f81c | 55 | #include <linux/kmemleak.h> |
56de7263 | 56 | #include <linux/compaction.h> |
0d3d062a | 57 | #include <trace/events/kmem.h> |
268bb0ce | 58 | #include <linux/prefetch.h> |
6e543d57 | 59 | #include <linux/mm_inline.h> |
041d3a8c | 60 | #include <linux/migrate.h> |
e30825f1 | 61 | #include <linux/page_ext.h> |
949f7ec5 | 62 | #include <linux/hugetlb.h> |
8bd75c77 | 63 | #include <linux/sched/rt.h> |
48c96a36 | 64 | #include <linux/page_owner.h> |
0e1cc95b | 65 | #include <linux/kthread.h> |
1da177e4 | 66 | |
7ee3d4e8 | 67 | #include <asm/sections.h> |
1da177e4 | 68 | #include <asm/tlbflush.h> |
ac924c60 | 69 | #include <asm/div64.h> |
1da177e4 LT |
70 | #include "internal.h" |
71 | ||
c8e251fa CS |
72 | /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ |
73 | static DEFINE_MUTEX(pcp_batch_high_lock); | |
7cd2b0a3 | 74 | #define MIN_PERCPU_PAGELIST_FRACTION (8) |
c8e251fa | 75 | |
72812019 LS |
76 | #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID |
77 | DEFINE_PER_CPU(int, numa_node); | |
78 | EXPORT_PER_CPU_SYMBOL(numa_node); | |
79 | #endif | |
80 | ||
7aac7898 LS |
81 | #ifdef CONFIG_HAVE_MEMORYLESS_NODES |
82 | /* | |
83 | * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. | |
84 | * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. | |
85 | * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() | |
86 | * defined in <linux/topology.h>. | |
87 | */ | |
88 | DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ | |
89 | EXPORT_PER_CPU_SYMBOL(_numa_mem_); | |
ad2c8144 | 90 | int _node_numa_mem_[MAX_NUMNODES]; |
7aac7898 LS |
91 | #endif |
92 | ||
1da177e4 | 93 | /* |
13808910 | 94 | * Array of node states. |
1da177e4 | 95 | */ |
13808910 CL |
96 | nodemask_t node_states[NR_NODE_STATES] __read_mostly = { |
97 | [N_POSSIBLE] = NODE_MASK_ALL, | |
98 | [N_ONLINE] = { { [0] = 1UL } }, | |
99 | #ifndef CONFIG_NUMA | |
100 | [N_NORMAL_MEMORY] = { { [0] = 1UL } }, | |
101 | #ifdef CONFIG_HIGHMEM | |
102 | [N_HIGH_MEMORY] = { { [0] = 1UL } }, | |
20b2f52b LJ |
103 | #endif |
104 | #ifdef CONFIG_MOVABLE_NODE | |
105 | [N_MEMORY] = { { [0] = 1UL } }, | |
13808910 CL |
106 | #endif |
107 | [N_CPU] = { { [0] = 1UL } }, | |
108 | #endif /* NUMA */ | |
109 | }; | |
110 | EXPORT_SYMBOL(node_states); | |
111 | ||
c3d5f5f0 JL |
112 | /* Protect totalram_pages and zone->managed_pages */ |
113 | static DEFINE_SPINLOCK(managed_page_count_lock); | |
114 | ||
6c231b7b | 115 | unsigned long totalram_pages __read_mostly; |
cb45b0e9 | 116 | unsigned long totalreserve_pages __read_mostly; |
e48322ab | 117 | unsigned long totalcma_pages __read_mostly; |
ab8fabd4 | 118 | |
1b76b02f | 119 | int percpu_pagelist_fraction; |
dcce284a | 120 | gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; |
1da177e4 | 121 | |
bb14c2c7 VB |
122 | /* |
123 | * A cached value of the page's pageblock's migratetype, used when the page is | |
124 | * put on a pcplist. Used to avoid the pageblock migratetype lookup when | |
125 | * freeing from pcplists in most cases, at the cost of possibly becoming stale. | |
126 | * Also the migratetype set in the page does not necessarily match the pcplist | |
127 | * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any | |
128 | * other index - this ensures that it will be put on the correct CMA freelist. | |
129 | */ | |
130 | static inline int get_pcppage_migratetype(struct page *page) | |
131 | { | |
132 | return page->index; | |
133 | } | |
134 | ||
135 | static inline void set_pcppage_migratetype(struct page *page, int migratetype) | |
136 | { | |
137 | page->index = migratetype; | |
138 | } | |
139 | ||
452aa699 RW |
140 | #ifdef CONFIG_PM_SLEEP |
141 | /* | |
142 | * The following functions are used by the suspend/hibernate code to temporarily | |
143 | * change gfp_allowed_mask in order to avoid using I/O during memory allocations | |
144 | * while devices are suspended. To avoid races with the suspend/hibernate code, | |
145 | * they should always be called with pm_mutex held (gfp_allowed_mask also should | |
146 | * only be modified with pm_mutex held, unless the suspend/hibernate code is | |
147 | * guaranteed not to run in parallel with that modification). | |
148 | */ | |
c9e664f1 RW |
149 | |
150 | static gfp_t saved_gfp_mask; | |
151 | ||
152 | void pm_restore_gfp_mask(void) | |
452aa699 RW |
153 | { |
154 | WARN_ON(!mutex_is_locked(&pm_mutex)); | |
c9e664f1 RW |
155 | if (saved_gfp_mask) { |
156 | gfp_allowed_mask = saved_gfp_mask; | |
157 | saved_gfp_mask = 0; | |
158 | } | |
452aa699 RW |
159 | } |
160 | ||
c9e664f1 | 161 | void pm_restrict_gfp_mask(void) |
452aa699 | 162 | { |
452aa699 | 163 | WARN_ON(!mutex_is_locked(&pm_mutex)); |
c9e664f1 RW |
164 | WARN_ON(saved_gfp_mask); |
165 | saved_gfp_mask = gfp_allowed_mask; | |
d0164adc | 166 | gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); |
452aa699 | 167 | } |
f90ac398 MG |
168 | |
169 | bool pm_suspended_storage(void) | |
170 | { | |
d0164adc | 171 | if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) |
f90ac398 MG |
172 | return false; |
173 | return true; | |
174 | } | |
452aa699 RW |
175 | #endif /* CONFIG_PM_SLEEP */ |
176 | ||
d9c23400 | 177 | #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE |
d00181b9 | 178 | unsigned int pageblock_order __read_mostly; |
d9c23400 MG |
179 | #endif |
180 | ||
d98c7a09 | 181 | static void __free_pages_ok(struct page *page, unsigned int order); |
a226f6c8 | 182 | |
1da177e4 LT |
183 | /* |
184 | * results with 256, 32 in the lowmem_reserve sysctl: | |
185 | * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) | |
186 | * 1G machine -> (16M dma, 784M normal, 224M high) | |
187 | * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA | |
188 | * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL | |
84109e15 | 189 | * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA |
a2f1b424 AK |
190 | * |
191 | * TBD: should special case ZONE_DMA32 machines here - in those we normally | |
192 | * don't need any ZONE_NORMAL reservation | |
1da177e4 | 193 | */ |
2f1b6248 | 194 | int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { |
4b51d669 | 195 | #ifdef CONFIG_ZONE_DMA |
2f1b6248 | 196 | 256, |
4b51d669 | 197 | #endif |
fb0e7942 | 198 | #ifdef CONFIG_ZONE_DMA32 |
2f1b6248 | 199 | 256, |
fb0e7942 | 200 | #endif |
e53ef38d | 201 | #ifdef CONFIG_HIGHMEM |
2a1e274a | 202 | 32, |
e53ef38d | 203 | #endif |
2a1e274a | 204 | 32, |
2f1b6248 | 205 | }; |
1da177e4 LT |
206 | |
207 | EXPORT_SYMBOL(totalram_pages); | |
1da177e4 | 208 | |
15ad7cdc | 209 | static char * const zone_names[MAX_NR_ZONES] = { |
4b51d669 | 210 | #ifdef CONFIG_ZONE_DMA |
2f1b6248 | 211 | "DMA", |
4b51d669 | 212 | #endif |
fb0e7942 | 213 | #ifdef CONFIG_ZONE_DMA32 |
2f1b6248 | 214 | "DMA32", |
fb0e7942 | 215 | #endif |
2f1b6248 | 216 | "Normal", |
e53ef38d | 217 | #ifdef CONFIG_HIGHMEM |
2a1e274a | 218 | "HighMem", |
e53ef38d | 219 | #endif |
2a1e274a | 220 | "Movable", |
033fbae9 DW |
221 | #ifdef CONFIG_ZONE_DEVICE |
222 | "Device", | |
223 | #endif | |
2f1b6248 CL |
224 | }; |
225 | ||
60f30350 VB |
226 | char * const migratetype_names[MIGRATE_TYPES] = { |
227 | "Unmovable", | |
228 | "Movable", | |
229 | "Reclaimable", | |
230 | "HighAtomic", | |
231 | #ifdef CONFIG_CMA | |
232 | "CMA", | |
233 | #endif | |
234 | #ifdef CONFIG_MEMORY_ISOLATION | |
235 | "Isolate", | |
236 | #endif | |
237 | }; | |
238 | ||
f1e61557 KS |
239 | compound_page_dtor * const compound_page_dtors[] = { |
240 | NULL, | |
241 | free_compound_page, | |
242 | #ifdef CONFIG_HUGETLB_PAGE | |
243 | free_huge_page, | |
244 | #endif | |
9a982250 KS |
245 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
246 | free_transhuge_page, | |
247 | #endif | |
f1e61557 KS |
248 | }; |
249 | ||
1da177e4 | 250 | int min_free_kbytes = 1024; |
42aa83cb | 251 | int user_min_free_kbytes = -1; |
1da177e4 | 252 | |
2c85f51d JB |
253 | static unsigned long __meminitdata nr_kernel_pages; |
254 | static unsigned long __meminitdata nr_all_pages; | |
a3142c8e | 255 | static unsigned long __meminitdata dma_reserve; |
1da177e4 | 256 | |
0ee332c1 TH |
257 | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP |
258 | static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; | |
259 | static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; | |
260 | static unsigned long __initdata required_kernelcore; | |
261 | static unsigned long __initdata required_movablecore; | |
262 | static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; | |
342332e6 | 263 | static bool mirrored_kernelcore; |
0ee332c1 TH |
264 | |
265 | /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ | |
266 | int movable_zone; | |
267 | EXPORT_SYMBOL(movable_zone); | |
268 | #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ | |
c713216d | 269 | |
418508c1 MS |
270 | #if MAX_NUMNODES > 1 |
271 | int nr_node_ids __read_mostly = MAX_NUMNODES; | |
62bc62a8 | 272 | int nr_online_nodes __read_mostly = 1; |
418508c1 | 273 | EXPORT_SYMBOL(nr_node_ids); |
62bc62a8 | 274 | EXPORT_SYMBOL(nr_online_nodes); |
418508c1 MS |
275 | #endif |
276 | ||
9ef9acb0 MG |
277 | int page_group_by_mobility_disabled __read_mostly; |
278 | ||
3a80a7fa MG |
279 | #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT |
280 | static inline void reset_deferred_meminit(pg_data_t *pgdat) | |
281 | { | |
282 | pgdat->first_deferred_pfn = ULONG_MAX; | |
283 | } | |
284 | ||
285 | /* Returns true if the struct page for the pfn is uninitialised */ | |
0e1cc95b | 286 | static inline bool __meminit early_page_uninitialised(unsigned long pfn) |
3a80a7fa | 287 | { |
ae026b2a | 288 | if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn) |
3a80a7fa MG |
289 | return true; |
290 | ||
291 | return false; | |
292 | } | |
293 | ||
7e18adb4 MG |
294 | static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid) |
295 | { | |
296 | if (pfn >= NODE_DATA(nid)->first_deferred_pfn) | |
297 | return true; | |
298 | ||
299 | return false; | |
300 | } | |
301 | ||
3a80a7fa MG |
302 | /* |
303 | * Returns false when the remaining initialisation should be deferred until | |
304 | * later in the boot cycle when it can be parallelised. | |
305 | */ | |
306 | static inline bool update_defer_init(pg_data_t *pgdat, | |
307 | unsigned long pfn, unsigned long zone_end, | |
308 | unsigned long *nr_initialised) | |
309 | { | |
310 | /* Always populate low zones for address-contrained allocations */ | |
311 | if (zone_end < pgdat_end_pfn(pgdat)) | |
312 | return true; | |
313 | ||
314 | /* Initialise at least 2G of the highest zone */ | |
315 | (*nr_initialised)++; | |
316 | if (*nr_initialised > (2UL << (30 - PAGE_SHIFT)) && | |
317 | (pfn & (PAGES_PER_SECTION - 1)) == 0) { | |
318 | pgdat->first_deferred_pfn = pfn; | |
319 | return false; | |
320 | } | |
321 | ||
322 | return true; | |
323 | } | |
324 | #else | |
325 | static inline void reset_deferred_meminit(pg_data_t *pgdat) | |
326 | { | |
327 | } | |
328 | ||
329 | static inline bool early_page_uninitialised(unsigned long pfn) | |
330 | { | |
331 | return false; | |
332 | } | |
333 | ||
7e18adb4 MG |
334 | static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid) |
335 | { | |
336 | return false; | |
337 | } | |
338 | ||
3a80a7fa MG |
339 | static inline bool update_defer_init(pg_data_t *pgdat, |
340 | unsigned long pfn, unsigned long zone_end, | |
341 | unsigned long *nr_initialised) | |
342 | { | |
343 | return true; | |
344 | } | |
345 | #endif | |
346 | ||
347 | ||
ee6f509c | 348 | void set_pageblock_migratetype(struct page *page, int migratetype) |
b2a0ac88 | 349 | { |
5d0f3f72 KM |
350 | if (unlikely(page_group_by_mobility_disabled && |
351 | migratetype < MIGRATE_PCPTYPES)) | |
49255c61 MG |
352 | migratetype = MIGRATE_UNMOVABLE; |
353 | ||
b2a0ac88 MG |
354 | set_pageblock_flags_group(page, (unsigned long)migratetype, |
355 | PB_migrate, PB_migrate_end); | |
356 | } | |
357 | ||
13e7444b | 358 | #ifdef CONFIG_DEBUG_VM |
c6a57e19 | 359 | static int page_outside_zone_boundaries(struct zone *zone, struct page *page) |
1da177e4 | 360 | { |
bdc8cb98 DH |
361 | int ret = 0; |
362 | unsigned seq; | |
363 | unsigned long pfn = page_to_pfn(page); | |
b5e6a5a2 | 364 | unsigned long sp, start_pfn; |
c6a57e19 | 365 | |
bdc8cb98 DH |
366 | do { |
367 | seq = zone_span_seqbegin(zone); | |
b5e6a5a2 CS |
368 | start_pfn = zone->zone_start_pfn; |
369 | sp = zone->spanned_pages; | |
108bcc96 | 370 | if (!zone_spans_pfn(zone, pfn)) |
bdc8cb98 DH |
371 | ret = 1; |
372 | } while (zone_span_seqretry(zone, seq)); | |
373 | ||
b5e6a5a2 | 374 | if (ret) |
613813e8 DH |
375 | pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", |
376 | pfn, zone_to_nid(zone), zone->name, | |
377 | start_pfn, start_pfn + sp); | |
b5e6a5a2 | 378 | |
bdc8cb98 | 379 | return ret; |
c6a57e19 DH |
380 | } |
381 | ||
382 | static int page_is_consistent(struct zone *zone, struct page *page) | |
383 | { | |
14e07298 | 384 | if (!pfn_valid_within(page_to_pfn(page))) |
c6a57e19 | 385 | return 0; |
1da177e4 | 386 | if (zone != page_zone(page)) |
c6a57e19 DH |
387 | return 0; |
388 | ||
389 | return 1; | |
390 | } | |
391 | /* | |
392 | * Temporary debugging check for pages not lying within a given zone. | |
393 | */ | |
394 | static int bad_range(struct zone *zone, struct page *page) | |
395 | { | |
396 | if (page_outside_zone_boundaries(zone, page)) | |
1da177e4 | 397 | return 1; |
c6a57e19 DH |
398 | if (!page_is_consistent(zone, page)) |
399 | return 1; | |
400 | ||
1da177e4 LT |
401 | return 0; |
402 | } | |
13e7444b NP |
403 | #else |
404 | static inline int bad_range(struct zone *zone, struct page *page) | |
405 | { | |
406 | return 0; | |
407 | } | |
408 | #endif | |
409 | ||
d230dec1 KS |
410 | static void bad_page(struct page *page, const char *reason, |
411 | unsigned long bad_flags) | |
1da177e4 | 412 | { |
d936cf9b HD |
413 | static unsigned long resume; |
414 | static unsigned long nr_shown; | |
415 | static unsigned long nr_unshown; | |
416 | ||
2a7684a2 WF |
417 | /* Don't complain about poisoned pages */ |
418 | if (PageHWPoison(page)) { | |
22b751c3 | 419 | page_mapcount_reset(page); /* remove PageBuddy */ |
2a7684a2 WF |
420 | return; |
421 | } | |
422 | ||
d936cf9b HD |
423 | /* |
424 | * Allow a burst of 60 reports, then keep quiet for that minute; | |
425 | * or allow a steady drip of one report per second. | |
426 | */ | |
427 | if (nr_shown == 60) { | |
428 | if (time_before(jiffies, resume)) { | |
429 | nr_unshown++; | |
430 | goto out; | |
431 | } | |
432 | if (nr_unshown) { | |
1e9e6365 HD |
433 | printk(KERN_ALERT |
434 | "BUG: Bad page state: %lu messages suppressed\n", | |
d936cf9b HD |
435 | nr_unshown); |
436 | nr_unshown = 0; | |
437 | } | |
438 | nr_shown = 0; | |
439 | } | |
440 | if (nr_shown++ == 0) | |
441 | resume = jiffies + 60 * HZ; | |
442 | ||
1e9e6365 | 443 | printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n", |
3dc14741 | 444 | current->comm, page_to_pfn(page)); |
f0b791a3 | 445 | dump_page_badflags(page, reason, bad_flags); |
3dc14741 | 446 | |
4f31888c | 447 | print_modules(); |
1da177e4 | 448 | dump_stack(); |
d936cf9b | 449 | out: |
8cc3b392 | 450 | /* Leave bad fields for debug, except PageBuddy could make trouble */ |
22b751c3 | 451 | page_mapcount_reset(page); /* remove PageBuddy */ |
373d4d09 | 452 | add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); |
1da177e4 LT |
453 | } |
454 | ||
1da177e4 LT |
455 | /* |
456 | * Higher-order pages are called "compound pages". They are structured thusly: | |
457 | * | |
1d798ca3 | 458 | * The first PAGE_SIZE page is called the "head page" and have PG_head set. |
1da177e4 | 459 | * |
1d798ca3 KS |
460 | * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded |
461 | * in bit 0 of page->compound_head. The rest of bits is pointer to head page. | |
1da177e4 | 462 | * |
1d798ca3 KS |
463 | * The first tail page's ->compound_dtor holds the offset in array of compound |
464 | * page destructors. See compound_page_dtors. | |
1da177e4 | 465 | * |
1d798ca3 | 466 | * The first tail page's ->compound_order holds the order of allocation. |
41d78ba5 | 467 | * This usage means that zero-order pages may not be compound. |
1da177e4 | 468 | */ |
d98c7a09 | 469 | |
9a982250 | 470 | void free_compound_page(struct page *page) |
d98c7a09 | 471 | { |
d85f3385 | 472 | __free_pages_ok(page, compound_order(page)); |
d98c7a09 HD |
473 | } |
474 | ||
d00181b9 | 475 | void prep_compound_page(struct page *page, unsigned int order) |
18229df5 AW |
476 | { |
477 | int i; | |
478 | int nr_pages = 1 << order; | |
479 | ||
f1e61557 | 480 | set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); |
18229df5 AW |
481 | set_compound_order(page, order); |
482 | __SetPageHead(page); | |
483 | for (i = 1; i < nr_pages; i++) { | |
484 | struct page *p = page + i; | |
58a84aa9 | 485 | set_page_count(p, 0); |
1c290f64 | 486 | p->mapping = TAIL_MAPPING; |
1d798ca3 | 487 | set_compound_head(p, page); |
18229df5 | 488 | } |
53f9263b | 489 | atomic_set(compound_mapcount_ptr(page), -1); |
18229df5 AW |
490 | } |
491 | ||
c0a32fc5 SG |
492 | #ifdef CONFIG_DEBUG_PAGEALLOC |
493 | unsigned int _debug_guardpage_minorder; | |
ea6eabb0 CB |
494 | bool _debug_pagealloc_enabled __read_mostly |
495 | = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); | |
e30825f1 JK |
496 | bool _debug_guardpage_enabled __read_mostly; |
497 | ||
031bc574 JK |
498 | static int __init early_debug_pagealloc(char *buf) |
499 | { | |
500 | if (!buf) | |
501 | return -EINVAL; | |
502 | ||
503 | if (strcmp(buf, "on") == 0) | |
504 | _debug_pagealloc_enabled = true; | |
505 | ||
ea6eabb0 CB |
506 | if (strcmp(buf, "off") == 0) |
507 | _debug_pagealloc_enabled = false; | |
508 | ||
031bc574 JK |
509 | return 0; |
510 | } | |
511 | early_param("debug_pagealloc", early_debug_pagealloc); | |
512 | ||
e30825f1 JK |
513 | static bool need_debug_guardpage(void) |
514 | { | |
031bc574 JK |
515 | /* If we don't use debug_pagealloc, we don't need guard page */ |
516 | if (!debug_pagealloc_enabled()) | |
517 | return false; | |
518 | ||
e30825f1 JK |
519 | return true; |
520 | } | |
521 | ||
522 | static void init_debug_guardpage(void) | |
523 | { | |
031bc574 JK |
524 | if (!debug_pagealloc_enabled()) |
525 | return; | |
526 | ||
e30825f1 JK |
527 | _debug_guardpage_enabled = true; |
528 | } | |
529 | ||
530 | struct page_ext_operations debug_guardpage_ops = { | |
531 | .need = need_debug_guardpage, | |
532 | .init = init_debug_guardpage, | |
533 | }; | |
c0a32fc5 SG |
534 | |
535 | static int __init debug_guardpage_minorder_setup(char *buf) | |
536 | { | |
537 | unsigned long res; | |
538 | ||
539 | if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { | |
540 | printk(KERN_ERR "Bad debug_guardpage_minorder value\n"); | |
541 | return 0; | |
542 | } | |
543 | _debug_guardpage_minorder = res; | |
544 | printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res); | |
545 | return 0; | |
546 | } | |
547 | __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup); | |
548 | ||
2847cf95 JK |
549 | static inline void set_page_guard(struct zone *zone, struct page *page, |
550 | unsigned int order, int migratetype) | |
c0a32fc5 | 551 | { |
e30825f1 JK |
552 | struct page_ext *page_ext; |
553 | ||
554 | if (!debug_guardpage_enabled()) | |
555 | return; | |
556 | ||
557 | page_ext = lookup_page_ext(page); | |
558 | __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); | |
559 | ||
2847cf95 JK |
560 | INIT_LIST_HEAD(&page->lru); |
561 | set_page_private(page, order); | |
562 | /* Guard pages are not available for any usage */ | |
563 | __mod_zone_freepage_state(zone, -(1 << order), migratetype); | |
c0a32fc5 SG |
564 | } |
565 | ||
2847cf95 JK |
566 | static inline void clear_page_guard(struct zone *zone, struct page *page, |
567 | unsigned int order, int migratetype) | |
c0a32fc5 | 568 | { |
e30825f1 JK |
569 | struct page_ext *page_ext; |
570 | ||
571 | if (!debug_guardpage_enabled()) | |
572 | return; | |
573 | ||
574 | page_ext = lookup_page_ext(page); | |
575 | __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); | |
576 | ||
2847cf95 JK |
577 | set_page_private(page, 0); |
578 | if (!is_migrate_isolate(migratetype)) | |
579 | __mod_zone_freepage_state(zone, (1 << order), migratetype); | |
c0a32fc5 SG |
580 | } |
581 | #else | |
e30825f1 | 582 | struct page_ext_operations debug_guardpage_ops = { NULL, }; |
2847cf95 JK |
583 | static inline void set_page_guard(struct zone *zone, struct page *page, |
584 | unsigned int order, int migratetype) {} | |
585 | static inline void clear_page_guard(struct zone *zone, struct page *page, | |
586 | unsigned int order, int migratetype) {} | |
c0a32fc5 SG |
587 | #endif |
588 | ||
7aeb09f9 | 589 | static inline void set_page_order(struct page *page, unsigned int order) |
6aa3001b | 590 | { |
4c21e2f2 | 591 | set_page_private(page, order); |
676165a8 | 592 | __SetPageBuddy(page); |
1da177e4 LT |
593 | } |
594 | ||
595 | static inline void rmv_page_order(struct page *page) | |
596 | { | |
676165a8 | 597 | __ClearPageBuddy(page); |
4c21e2f2 | 598 | set_page_private(page, 0); |
1da177e4 LT |
599 | } |
600 | ||
1da177e4 LT |
601 | /* |
602 | * This function checks whether a page is free && is the buddy | |
603 | * we can do coalesce a page and its buddy if | |
13e7444b | 604 | * (a) the buddy is not in a hole && |
676165a8 | 605 | * (b) the buddy is in the buddy system && |
cb2b95e1 AW |
606 | * (c) a page and its buddy have the same order && |
607 | * (d) a page and its buddy are in the same zone. | |
676165a8 | 608 | * |
cf6fe945 WSH |
609 | * For recording whether a page is in the buddy system, we set ->_mapcount |
610 | * PAGE_BUDDY_MAPCOUNT_VALUE. | |
611 | * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is | |
612 | * serialized by zone->lock. | |
1da177e4 | 613 | * |
676165a8 | 614 | * For recording page's order, we use page_private(page). |
1da177e4 | 615 | */ |
cb2b95e1 | 616 | static inline int page_is_buddy(struct page *page, struct page *buddy, |
7aeb09f9 | 617 | unsigned int order) |
1da177e4 | 618 | { |
14e07298 | 619 | if (!pfn_valid_within(page_to_pfn(buddy))) |
13e7444b | 620 | return 0; |
13e7444b | 621 | |
c0a32fc5 | 622 | if (page_is_guard(buddy) && page_order(buddy) == order) { |
d34c5fa0 MG |
623 | if (page_zone_id(page) != page_zone_id(buddy)) |
624 | return 0; | |
625 | ||
4c5018ce WY |
626 | VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); |
627 | ||
c0a32fc5 SG |
628 | return 1; |
629 | } | |
630 | ||
cb2b95e1 | 631 | if (PageBuddy(buddy) && page_order(buddy) == order) { |
d34c5fa0 MG |
632 | /* |
633 | * zone check is done late to avoid uselessly | |
634 | * calculating zone/node ids for pages that could | |
635 | * never merge. | |
636 | */ | |
637 | if (page_zone_id(page) != page_zone_id(buddy)) | |
638 | return 0; | |
639 | ||
4c5018ce WY |
640 | VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); |
641 | ||
6aa3001b | 642 | return 1; |
676165a8 | 643 | } |
6aa3001b | 644 | return 0; |
1da177e4 LT |
645 | } |
646 | ||
647 | /* | |
648 | * Freeing function for a buddy system allocator. | |
649 | * | |
650 | * The concept of a buddy system is to maintain direct-mapped table | |
651 | * (containing bit values) for memory blocks of various "orders". | |
652 | * The bottom level table contains the map for the smallest allocatable | |
653 | * units of memory (here, pages), and each level above it describes | |
654 | * pairs of units from the levels below, hence, "buddies". | |
655 | * At a high level, all that happens here is marking the table entry | |
656 | * at the bottom level available, and propagating the changes upward | |
657 | * as necessary, plus some accounting needed to play nicely with other | |
658 | * parts of the VM system. | |
659 | * At each level, we keep a list of pages, which are heads of continuous | |
cf6fe945 WSH |
660 | * free pages of length of (1 << order) and marked with _mapcount |
661 | * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page) | |
662 | * field. | |
1da177e4 | 663 | * So when we are allocating or freeing one, we can derive the state of the |
5f63b720 MN |
664 | * other. That is, if we allocate a small block, and both were |
665 | * free, the remainder of the region must be split into blocks. | |
1da177e4 | 666 | * If a block is freed, and its buddy is also free, then this |
5f63b720 | 667 | * triggers coalescing into a block of larger size. |
1da177e4 | 668 | * |
6d49e352 | 669 | * -- nyc |
1da177e4 LT |
670 | */ |
671 | ||
48db57f8 | 672 | static inline void __free_one_page(struct page *page, |
dc4b0caf | 673 | unsigned long pfn, |
ed0ae21d MG |
674 | struct zone *zone, unsigned int order, |
675 | int migratetype) | |
1da177e4 LT |
676 | { |
677 | unsigned long page_idx; | |
6dda9d55 | 678 | unsigned long combined_idx; |
43506fad | 679 | unsigned long uninitialized_var(buddy_idx); |
6dda9d55 | 680 | struct page *buddy; |
d00181b9 | 681 | unsigned int max_order = MAX_ORDER; |
1da177e4 | 682 | |
d29bb978 | 683 | VM_BUG_ON(!zone_is_initialized(zone)); |
6e9f0d58 | 684 | VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); |
1da177e4 | 685 | |
ed0ae21d | 686 | VM_BUG_ON(migratetype == -1); |
3c605096 JK |
687 | if (is_migrate_isolate(migratetype)) { |
688 | /* | |
689 | * We restrict max order of merging to prevent merge | |
690 | * between freepages on isolate pageblock and normal | |
691 | * pageblock. Without this, pageblock isolation | |
692 | * could cause incorrect freepage accounting. | |
693 | */ | |
d00181b9 | 694 | max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1); |
3c605096 | 695 | } else { |
8f82b55d | 696 | __mod_zone_freepage_state(zone, 1 << order, migratetype); |
3c605096 | 697 | } |
ed0ae21d | 698 | |
3c605096 | 699 | page_idx = pfn & ((1 << max_order) - 1); |
1da177e4 | 700 | |
309381fe SL |
701 | VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page); |
702 | VM_BUG_ON_PAGE(bad_range(zone, page), page); | |
1da177e4 | 703 | |
3c605096 | 704 | while (order < max_order - 1) { |
43506fad KC |
705 | buddy_idx = __find_buddy_index(page_idx, order); |
706 | buddy = page + (buddy_idx - page_idx); | |
cb2b95e1 | 707 | if (!page_is_buddy(page, buddy, order)) |
3c82d0ce | 708 | break; |
c0a32fc5 SG |
709 | /* |
710 | * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, | |
711 | * merge with it and move up one order. | |
712 | */ | |
713 | if (page_is_guard(buddy)) { | |
2847cf95 | 714 | clear_page_guard(zone, buddy, order, migratetype); |
c0a32fc5 SG |
715 | } else { |
716 | list_del(&buddy->lru); | |
717 | zone->free_area[order].nr_free--; | |
718 | rmv_page_order(buddy); | |
719 | } | |
43506fad | 720 | combined_idx = buddy_idx & page_idx; |
1da177e4 LT |
721 | page = page + (combined_idx - page_idx); |
722 | page_idx = combined_idx; | |
723 | order++; | |
724 | } | |
725 | set_page_order(page, order); | |
6dda9d55 CZ |
726 | |
727 | /* | |
728 | * If this is not the largest possible page, check if the buddy | |
729 | * of the next-highest order is free. If it is, it's possible | |
730 | * that pages are being freed that will coalesce soon. In case, | |
731 | * that is happening, add the free page to the tail of the list | |
732 | * so it's less likely to be used soon and more likely to be merged | |
733 | * as a higher order page | |
734 | */ | |
b7f50cfa | 735 | if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) { |
6dda9d55 | 736 | struct page *higher_page, *higher_buddy; |
43506fad KC |
737 | combined_idx = buddy_idx & page_idx; |
738 | higher_page = page + (combined_idx - page_idx); | |
739 | buddy_idx = __find_buddy_index(combined_idx, order + 1); | |
0ba8f2d5 | 740 | higher_buddy = higher_page + (buddy_idx - combined_idx); |
6dda9d55 CZ |
741 | if (page_is_buddy(higher_page, higher_buddy, order + 1)) { |
742 | list_add_tail(&page->lru, | |
743 | &zone->free_area[order].free_list[migratetype]); | |
744 | goto out; | |
745 | } | |
746 | } | |
747 | ||
748 | list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); | |
749 | out: | |
1da177e4 LT |
750 | zone->free_area[order].nr_free++; |
751 | } | |
752 | ||
224abf92 | 753 | static inline int free_pages_check(struct page *page) |
1da177e4 | 754 | { |
d230dec1 | 755 | const char *bad_reason = NULL; |
f0b791a3 DH |
756 | unsigned long bad_flags = 0; |
757 | ||
53f9263b | 758 | if (unlikely(atomic_read(&page->_mapcount) != -1)) |
f0b791a3 DH |
759 | bad_reason = "nonzero mapcount"; |
760 | if (unlikely(page->mapping != NULL)) | |
761 | bad_reason = "non-NULL mapping"; | |
762 | if (unlikely(atomic_read(&page->_count) != 0)) | |
763 | bad_reason = "nonzero _count"; | |
764 | if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) { | |
765 | bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; | |
766 | bad_flags = PAGE_FLAGS_CHECK_AT_FREE; | |
767 | } | |
9edad6ea JW |
768 | #ifdef CONFIG_MEMCG |
769 | if (unlikely(page->mem_cgroup)) | |
770 | bad_reason = "page still charged to cgroup"; | |
771 | #endif | |
f0b791a3 DH |
772 | if (unlikely(bad_reason)) { |
773 | bad_page(page, bad_reason, bad_flags); | |
79f4b7bf | 774 | return 1; |
8cc3b392 | 775 | } |
90572890 | 776 | page_cpupid_reset_last(page); |
79f4b7bf HD |
777 | if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
778 | page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; | |
779 | return 0; | |
1da177e4 LT |
780 | } |
781 | ||
782 | /* | |
5f8dcc21 | 783 | * Frees a number of pages from the PCP lists |
1da177e4 | 784 | * Assumes all pages on list are in same zone, and of same order. |
207f36ee | 785 | * count is the number of pages to free. |
1da177e4 LT |
786 | * |
787 | * If the zone was previously in an "all pages pinned" state then look to | |
788 | * see if this freeing clears that state. | |
789 | * | |
790 | * And clear the zone's pages_scanned counter, to hold off the "all pages are | |
791 | * pinned" detection logic. | |
792 | */ | |
5f8dcc21 MG |
793 | static void free_pcppages_bulk(struct zone *zone, int count, |
794 | struct per_cpu_pages *pcp) | |
1da177e4 | 795 | { |
5f8dcc21 | 796 | int migratetype = 0; |
a6f9edd6 | 797 | int batch_free = 0; |
72853e29 | 798 | int to_free = count; |
0d5d823a | 799 | unsigned long nr_scanned; |
5f8dcc21 | 800 | |
c54ad30c | 801 | spin_lock(&zone->lock); |
0d5d823a MG |
802 | nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED); |
803 | if (nr_scanned) | |
804 | __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned); | |
f2260e6b | 805 | |
72853e29 | 806 | while (to_free) { |
48db57f8 | 807 | struct page *page; |
5f8dcc21 MG |
808 | struct list_head *list; |
809 | ||
810 | /* | |
a6f9edd6 MG |
811 | * Remove pages from lists in a round-robin fashion. A |
812 | * batch_free count is maintained that is incremented when an | |
813 | * empty list is encountered. This is so more pages are freed | |
814 | * off fuller lists instead of spinning excessively around empty | |
815 | * lists | |
5f8dcc21 MG |
816 | */ |
817 | do { | |
a6f9edd6 | 818 | batch_free++; |
5f8dcc21 MG |
819 | if (++migratetype == MIGRATE_PCPTYPES) |
820 | migratetype = 0; | |
821 | list = &pcp->lists[migratetype]; | |
822 | } while (list_empty(list)); | |
48db57f8 | 823 | |
1d16871d NK |
824 | /* This is the only non-empty list. Free them all. */ |
825 | if (batch_free == MIGRATE_PCPTYPES) | |
826 | batch_free = to_free; | |
827 | ||
a6f9edd6 | 828 | do { |
770c8aaa BZ |
829 | int mt; /* migratetype of the to-be-freed page */ |
830 | ||
a16601c5 | 831 | page = list_last_entry(list, struct page, lru); |
a6f9edd6 MG |
832 | /* must delete as __free_one_page list manipulates */ |
833 | list_del(&page->lru); | |
aa016d14 | 834 | |
bb14c2c7 | 835 | mt = get_pcppage_migratetype(page); |
aa016d14 VB |
836 | /* MIGRATE_ISOLATE page should not go to pcplists */ |
837 | VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); | |
838 | /* Pageblock could have been isolated meanwhile */ | |
8f82b55d | 839 | if (unlikely(has_isolate_pageblock(zone))) |
51bb1a40 | 840 | mt = get_pageblock_migratetype(page); |
51bb1a40 | 841 | |
dc4b0caf | 842 | __free_one_page(page, page_to_pfn(page), zone, 0, mt); |
770c8aaa | 843 | trace_mm_page_pcpu_drain(page, 0, mt); |
72853e29 | 844 | } while (--to_free && --batch_free && !list_empty(list)); |
1da177e4 | 845 | } |
c54ad30c | 846 | spin_unlock(&zone->lock); |
1da177e4 LT |
847 | } |
848 | ||
dc4b0caf MG |
849 | static void free_one_page(struct zone *zone, |
850 | struct page *page, unsigned long pfn, | |
7aeb09f9 | 851 | unsigned int order, |
ed0ae21d | 852 | int migratetype) |
1da177e4 | 853 | { |
0d5d823a | 854 | unsigned long nr_scanned; |
006d22d9 | 855 | spin_lock(&zone->lock); |
0d5d823a MG |
856 | nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED); |
857 | if (nr_scanned) | |
858 | __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned); | |
f2260e6b | 859 | |
ad53f92e JK |
860 | if (unlikely(has_isolate_pageblock(zone) || |
861 | is_migrate_isolate(migratetype))) { | |
862 | migratetype = get_pfnblock_migratetype(page, pfn); | |
ad53f92e | 863 | } |
dc4b0caf | 864 | __free_one_page(page, pfn, zone, order, migratetype); |
006d22d9 | 865 | spin_unlock(&zone->lock); |
48db57f8 NP |
866 | } |
867 | ||
81422f29 KS |
868 | static int free_tail_pages_check(struct page *head_page, struct page *page) |
869 | { | |
1d798ca3 KS |
870 | int ret = 1; |
871 | ||
872 | /* | |
873 | * We rely page->lru.next never has bit 0 set, unless the page | |
874 | * is PageTail(). Let's make sure that's true even for poisoned ->lru. | |
875 | */ | |
876 | BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); | |
877 | ||
878 | if (!IS_ENABLED(CONFIG_DEBUG_VM)) { | |
879 | ret = 0; | |
880 | goto out; | |
881 | } | |
9a982250 KS |
882 | switch (page - head_page) { |
883 | case 1: | |
884 | /* the first tail page: ->mapping is compound_mapcount() */ | |
53f9263b KS |
885 | if (unlikely(compound_mapcount(page))) { |
886 | bad_page(page, "nonzero compound_mapcount", 0); | |
887 | goto out; | |
888 | } | |
9a982250 KS |
889 | break; |
890 | case 2: | |
891 | /* | |
892 | * the second tail page: ->mapping is | |
893 | * page_deferred_list().next -- ignore value. | |
894 | */ | |
895 | break; | |
896 | default: | |
897 | if (page->mapping != TAIL_MAPPING) { | |
898 | bad_page(page, "corrupted mapping in tail page", 0); | |
899 | goto out; | |
900 | } | |
901 | break; | |
1c290f64 | 902 | } |
81422f29 KS |
903 | if (unlikely(!PageTail(page))) { |
904 | bad_page(page, "PageTail not set", 0); | |
1d798ca3 | 905 | goto out; |
81422f29 | 906 | } |
1d798ca3 KS |
907 | if (unlikely(compound_head(page) != head_page)) { |
908 | bad_page(page, "compound_head not consistent", 0); | |
909 | goto out; | |
81422f29 | 910 | } |
1d798ca3 KS |
911 | ret = 0; |
912 | out: | |
1c290f64 | 913 | page->mapping = NULL; |
1d798ca3 KS |
914 | clear_compound_head(page); |
915 | return ret; | |
81422f29 KS |
916 | } |
917 | ||
1e8ce83c RH |
918 | static void __meminit __init_single_page(struct page *page, unsigned long pfn, |
919 | unsigned long zone, int nid) | |
920 | { | |
1e8ce83c | 921 | set_page_links(page, zone, nid, pfn); |
1e8ce83c RH |
922 | init_page_count(page); |
923 | page_mapcount_reset(page); | |
924 | page_cpupid_reset_last(page); | |
1e8ce83c | 925 | |
1e8ce83c RH |
926 | INIT_LIST_HEAD(&page->lru); |
927 | #ifdef WANT_PAGE_VIRTUAL | |
928 | /* The shift won't overflow because ZONE_NORMAL is below 4G. */ | |
929 | if (!is_highmem_idx(zone)) | |
930 | set_page_address(page, __va(pfn << PAGE_SHIFT)); | |
931 | #endif | |
932 | } | |
933 | ||
934 | static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone, | |
935 | int nid) | |
936 | { | |
937 | return __init_single_page(pfn_to_page(pfn), pfn, zone, nid); | |
938 | } | |
939 | ||
7e18adb4 MG |
940 | #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT |
941 | static void init_reserved_page(unsigned long pfn) | |
942 | { | |
943 | pg_data_t *pgdat; | |
944 | int nid, zid; | |
945 | ||
946 | if (!early_page_uninitialised(pfn)) | |
947 | return; | |
948 | ||
949 | nid = early_pfn_to_nid(pfn); | |
950 | pgdat = NODE_DATA(nid); | |
951 | ||
952 | for (zid = 0; zid < MAX_NR_ZONES; zid++) { | |
953 | struct zone *zone = &pgdat->node_zones[zid]; | |
954 | ||
955 | if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone)) | |
956 | break; | |
957 | } | |
958 | __init_single_pfn(pfn, zid, nid); | |
959 | } | |
960 | #else | |
961 | static inline void init_reserved_page(unsigned long pfn) | |
962 | { | |
963 | } | |
964 | #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ | |
965 | ||
92923ca3 NZ |
966 | /* |
967 | * Initialised pages do not have PageReserved set. This function is | |
968 | * called for each range allocated by the bootmem allocator and | |
969 | * marks the pages PageReserved. The remaining valid pages are later | |
970 | * sent to the buddy page allocator. | |
971 | */ | |
7e18adb4 | 972 | void __meminit reserve_bootmem_region(unsigned long start, unsigned long end) |
92923ca3 NZ |
973 | { |
974 | unsigned long start_pfn = PFN_DOWN(start); | |
975 | unsigned long end_pfn = PFN_UP(end); | |
976 | ||
7e18adb4 MG |
977 | for (; start_pfn < end_pfn; start_pfn++) { |
978 | if (pfn_valid(start_pfn)) { | |
979 | struct page *page = pfn_to_page(start_pfn); | |
980 | ||
981 | init_reserved_page(start_pfn); | |
1d798ca3 KS |
982 | |
983 | /* Avoid false-positive PageTail() */ | |
984 | INIT_LIST_HEAD(&page->lru); | |
985 | ||
7e18adb4 MG |
986 | SetPageReserved(page); |
987 | } | |
988 | } | |
92923ca3 NZ |
989 | } |
990 | ||
ec95f53a | 991 | static bool free_pages_prepare(struct page *page, unsigned int order) |
48db57f8 | 992 | { |
81422f29 KS |
993 | bool compound = PageCompound(page); |
994 | int i, bad = 0; | |
1da177e4 | 995 | |
ab1f306f | 996 | VM_BUG_ON_PAGE(PageTail(page), page); |
81422f29 | 997 | VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); |
ab1f306f | 998 | |
b413d48a | 999 | trace_mm_page_free(page, order); |
b1eeab67 | 1000 | kmemcheck_free_shadow(page, order); |
b8c73fc2 | 1001 | kasan_free_pages(page, order); |
b1eeab67 | 1002 | |
8dd60a3a AA |
1003 | if (PageAnon(page)) |
1004 | page->mapping = NULL; | |
81422f29 KS |
1005 | bad += free_pages_check(page); |
1006 | for (i = 1; i < (1 << order); i++) { | |
1007 | if (compound) | |
1008 | bad += free_tail_pages_check(page, page + i); | |
8dd60a3a | 1009 | bad += free_pages_check(page + i); |
81422f29 | 1010 | } |
8cc3b392 | 1011 | if (bad) |
ec95f53a | 1012 | return false; |
689bcebf | 1013 | |
48c96a36 JK |
1014 | reset_page_owner(page, order); |
1015 | ||
3ac7fe5a | 1016 | if (!PageHighMem(page)) { |
b8af2941 PK |
1017 | debug_check_no_locks_freed(page_address(page), |
1018 | PAGE_SIZE << order); | |
3ac7fe5a TG |
1019 | debug_check_no_obj_freed(page_address(page), |
1020 | PAGE_SIZE << order); | |
1021 | } | |
dafb1367 | 1022 | arch_free_page(page, order); |
48db57f8 | 1023 | kernel_map_pages(page, 1 << order, 0); |
dafb1367 | 1024 | |
ec95f53a KM |
1025 | return true; |
1026 | } | |
1027 | ||
1028 | static void __free_pages_ok(struct page *page, unsigned int order) | |
1029 | { | |
1030 | unsigned long flags; | |
95e34412 | 1031 | int migratetype; |
dc4b0caf | 1032 | unsigned long pfn = page_to_pfn(page); |
ec95f53a KM |
1033 | |
1034 | if (!free_pages_prepare(page, order)) | |
1035 | return; | |
1036 | ||
cfc47a28 | 1037 | migratetype = get_pfnblock_migratetype(page, pfn); |
c54ad30c | 1038 | local_irq_save(flags); |
f8891e5e | 1039 | __count_vm_events(PGFREE, 1 << order); |
dc4b0caf | 1040 | free_one_page(page_zone(page), page, pfn, order, migratetype); |
c54ad30c | 1041 | local_irq_restore(flags); |
1da177e4 LT |
1042 | } |
1043 | ||
0e1cc95b | 1044 | static void __init __free_pages_boot_core(struct page *page, |
3a80a7fa | 1045 | unsigned long pfn, unsigned int order) |
a226f6c8 | 1046 | { |
c3993076 | 1047 | unsigned int nr_pages = 1 << order; |
e2d0bd2b | 1048 | struct page *p = page; |
c3993076 | 1049 | unsigned int loop; |
a226f6c8 | 1050 | |
e2d0bd2b YL |
1051 | prefetchw(p); |
1052 | for (loop = 0; loop < (nr_pages - 1); loop++, p++) { | |
1053 | prefetchw(p + 1); | |
c3993076 JW |
1054 | __ClearPageReserved(p); |
1055 | set_page_count(p, 0); | |
a226f6c8 | 1056 | } |
e2d0bd2b YL |
1057 | __ClearPageReserved(p); |
1058 | set_page_count(p, 0); | |
c3993076 | 1059 | |
e2d0bd2b | 1060 | page_zone(page)->managed_pages += nr_pages; |
c3993076 JW |
1061 | set_page_refcounted(page); |
1062 | __free_pages(page, order); | |
a226f6c8 DH |
1063 | } |
1064 | ||
75a592a4 MG |
1065 | #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \ |
1066 | defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) | |
7ace9917 | 1067 | |
75a592a4 MG |
1068 | static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; |
1069 | ||
1070 | int __meminit early_pfn_to_nid(unsigned long pfn) | |
1071 | { | |
7ace9917 | 1072 | static DEFINE_SPINLOCK(early_pfn_lock); |
75a592a4 MG |
1073 | int nid; |
1074 | ||
7ace9917 | 1075 | spin_lock(&early_pfn_lock); |
75a592a4 | 1076 | nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); |
7ace9917 MG |
1077 | if (nid < 0) |
1078 | nid = 0; | |
1079 | spin_unlock(&early_pfn_lock); | |
1080 | ||
1081 | return nid; | |
75a592a4 MG |
1082 | } |
1083 | #endif | |
1084 | ||
1085 | #ifdef CONFIG_NODES_SPAN_OTHER_NODES | |
1086 | static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node, | |
1087 | struct mminit_pfnnid_cache *state) | |
1088 | { | |
1089 | int nid; | |
1090 | ||
1091 | nid = __early_pfn_to_nid(pfn, state); | |
1092 | if (nid >= 0 && nid != node) | |
1093 | return false; | |
1094 | return true; | |
1095 | } | |
1096 | ||
1097 | /* Only safe to use early in boot when initialisation is single-threaded */ | |
1098 | static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) | |
1099 | { | |
1100 | return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache); | |
1101 | } | |
1102 | ||
1103 | #else | |
1104 | ||
1105 | static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) | |
1106 | { | |
1107 | return true; | |
1108 | } | |
1109 | static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node, | |
1110 | struct mminit_pfnnid_cache *state) | |
1111 | { | |
1112 | return true; | |
1113 | } | |
1114 | #endif | |
1115 | ||
1116 | ||
0e1cc95b | 1117 | void __init __free_pages_bootmem(struct page *page, unsigned long pfn, |
3a80a7fa MG |
1118 | unsigned int order) |
1119 | { | |
1120 | if (early_page_uninitialised(pfn)) | |
1121 | return; | |
1122 | return __free_pages_boot_core(page, pfn, order); | |
1123 | } | |
1124 | ||
7e18adb4 | 1125 | #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT |
0e1cc95b | 1126 | static void __init deferred_free_range(struct page *page, |
a4de83dd MG |
1127 | unsigned long pfn, int nr_pages) |
1128 | { | |
1129 | int i; | |
1130 | ||
1131 | if (!page) | |
1132 | return; | |
1133 | ||
1134 | /* Free a large naturally-aligned chunk if possible */ | |
1135 | if (nr_pages == MAX_ORDER_NR_PAGES && | |
1136 | (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) { | |
ac5d2539 | 1137 | set_pageblock_migratetype(page, MIGRATE_MOVABLE); |
a4de83dd MG |
1138 | __free_pages_boot_core(page, pfn, MAX_ORDER-1); |
1139 | return; | |
1140 | } | |
1141 | ||
1142 | for (i = 0; i < nr_pages; i++, page++, pfn++) | |
1143 | __free_pages_boot_core(page, pfn, 0); | |
1144 | } | |
1145 | ||
d3cd131d NS |
1146 | /* Completion tracking for deferred_init_memmap() threads */ |
1147 | static atomic_t pgdat_init_n_undone __initdata; | |
1148 | static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); | |
1149 | ||
1150 | static inline void __init pgdat_init_report_one_done(void) | |
1151 | { | |
1152 | if (atomic_dec_and_test(&pgdat_init_n_undone)) | |
1153 | complete(&pgdat_init_all_done_comp); | |
1154 | } | |
0e1cc95b | 1155 | |
7e18adb4 | 1156 | /* Initialise remaining memory on a node */ |
0e1cc95b | 1157 | static int __init deferred_init_memmap(void *data) |
7e18adb4 | 1158 | { |
0e1cc95b MG |
1159 | pg_data_t *pgdat = data; |
1160 | int nid = pgdat->node_id; | |
7e18adb4 MG |
1161 | struct mminit_pfnnid_cache nid_init_state = { }; |
1162 | unsigned long start = jiffies; | |
1163 | unsigned long nr_pages = 0; | |
1164 | unsigned long walk_start, walk_end; | |
1165 | int i, zid; | |
1166 | struct zone *zone; | |
7e18adb4 | 1167 | unsigned long first_init_pfn = pgdat->first_deferred_pfn; |
0e1cc95b | 1168 | const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); |
7e18adb4 | 1169 | |
0e1cc95b | 1170 | if (first_init_pfn == ULONG_MAX) { |
d3cd131d | 1171 | pgdat_init_report_one_done(); |
0e1cc95b MG |
1172 | return 0; |
1173 | } | |
1174 | ||
1175 | /* Bind memory initialisation thread to a local node if possible */ | |
1176 | if (!cpumask_empty(cpumask)) | |
1177 | set_cpus_allowed_ptr(current, cpumask); | |
7e18adb4 MG |
1178 | |
1179 | /* Sanity check boundaries */ | |
1180 | BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); | |
1181 | BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); | |
1182 | pgdat->first_deferred_pfn = ULONG_MAX; | |
1183 | ||
1184 | /* Only the highest zone is deferred so find it */ | |
1185 | for (zid = 0; zid < MAX_NR_ZONES; zid++) { | |
1186 | zone = pgdat->node_zones + zid; | |
1187 | if (first_init_pfn < zone_end_pfn(zone)) | |
1188 | break; | |
1189 | } | |
1190 | ||
1191 | for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) { | |
1192 | unsigned long pfn, end_pfn; | |
54608c3f | 1193 | struct page *page = NULL; |
a4de83dd MG |
1194 | struct page *free_base_page = NULL; |
1195 | unsigned long free_base_pfn = 0; | |
1196 | int nr_to_free = 0; | |
7e18adb4 MG |
1197 | |
1198 | end_pfn = min(walk_end, zone_end_pfn(zone)); | |
1199 | pfn = first_init_pfn; | |
1200 | if (pfn < walk_start) | |
1201 | pfn = walk_start; | |
1202 | if (pfn < zone->zone_start_pfn) | |
1203 | pfn = zone->zone_start_pfn; | |
1204 | ||
1205 | for (; pfn < end_pfn; pfn++) { | |
54608c3f | 1206 | if (!pfn_valid_within(pfn)) |
a4de83dd | 1207 | goto free_range; |
7e18adb4 | 1208 | |
54608c3f MG |
1209 | /* |
1210 | * Ensure pfn_valid is checked every | |
1211 | * MAX_ORDER_NR_PAGES for memory holes | |
1212 | */ | |
1213 | if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) { | |
1214 | if (!pfn_valid(pfn)) { | |
1215 | page = NULL; | |
a4de83dd | 1216 | goto free_range; |
54608c3f MG |
1217 | } |
1218 | } | |
1219 | ||
1220 | if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) { | |
1221 | page = NULL; | |
a4de83dd | 1222 | goto free_range; |
54608c3f MG |
1223 | } |
1224 | ||
1225 | /* Minimise pfn page lookups and scheduler checks */ | |
1226 | if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) { | |
1227 | page++; | |
1228 | } else { | |
a4de83dd MG |
1229 | nr_pages += nr_to_free; |
1230 | deferred_free_range(free_base_page, | |
1231 | free_base_pfn, nr_to_free); | |
1232 | free_base_page = NULL; | |
1233 | free_base_pfn = nr_to_free = 0; | |
1234 | ||
54608c3f MG |
1235 | page = pfn_to_page(pfn); |
1236 | cond_resched(); | |
1237 | } | |
7e18adb4 MG |
1238 | |
1239 | if (page->flags) { | |
1240 | VM_BUG_ON(page_zone(page) != zone); | |
a4de83dd | 1241 | goto free_range; |
7e18adb4 MG |
1242 | } |
1243 | ||
1244 | __init_single_page(page, pfn, zid, nid); | |
a4de83dd MG |
1245 | if (!free_base_page) { |
1246 | free_base_page = page; | |
1247 | free_base_pfn = pfn; | |
1248 | nr_to_free = 0; | |
1249 | } | |
1250 | nr_to_free++; | |
1251 | ||
1252 | /* Where possible, batch up pages for a single free */ | |
1253 | continue; | |
1254 | free_range: | |
1255 | /* Free the current block of pages to allocator */ | |
1256 | nr_pages += nr_to_free; | |
1257 | deferred_free_range(free_base_page, free_base_pfn, | |
1258 | nr_to_free); | |
1259 | free_base_page = NULL; | |
1260 | free_base_pfn = nr_to_free = 0; | |
7e18adb4 | 1261 | } |
a4de83dd | 1262 | |
7e18adb4 MG |
1263 | first_init_pfn = max(end_pfn, first_init_pfn); |
1264 | } | |
1265 | ||
1266 | /* Sanity check that the next zone really is unpopulated */ | |
1267 | WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); | |
1268 | ||
0e1cc95b | 1269 | pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages, |
7e18adb4 | 1270 | jiffies_to_msecs(jiffies - start)); |
d3cd131d NS |
1271 | |
1272 | pgdat_init_report_one_done(); | |
0e1cc95b MG |
1273 | return 0; |
1274 | } | |
1275 | ||
1276 | void __init page_alloc_init_late(void) | |
1277 | { | |
1278 | int nid; | |
1279 | ||
d3cd131d NS |
1280 | /* There will be num_node_state(N_MEMORY) threads */ |
1281 | atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); | |
0e1cc95b | 1282 | for_each_node_state(nid, N_MEMORY) { |
0e1cc95b MG |
1283 | kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); |
1284 | } | |
1285 | ||
1286 | /* Block until all are initialised */ | |
d3cd131d | 1287 | wait_for_completion(&pgdat_init_all_done_comp); |
4248b0da MG |
1288 | |
1289 | /* Reinit limits that are based on free pages after the kernel is up */ | |
1290 | files_maxfiles_init(); | |
7e18adb4 MG |
1291 | } |
1292 | #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ | |
1293 | ||
47118af0 | 1294 | #ifdef CONFIG_CMA |
9cf510a5 | 1295 | /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ |
47118af0 MN |
1296 | void __init init_cma_reserved_pageblock(struct page *page) |
1297 | { | |
1298 | unsigned i = pageblock_nr_pages; | |
1299 | struct page *p = page; | |
1300 | ||
1301 | do { | |
1302 | __ClearPageReserved(p); | |
1303 | set_page_count(p, 0); | |
1304 | } while (++p, --i); | |
1305 | ||
47118af0 | 1306 | set_pageblock_migratetype(page, MIGRATE_CMA); |
dc78327c MN |
1307 | |
1308 | if (pageblock_order >= MAX_ORDER) { | |
1309 | i = pageblock_nr_pages; | |
1310 | p = page; | |
1311 | do { | |
1312 | set_page_refcounted(p); | |
1313 | __free_pages(p, MAX_ORDER - 1); | |
1314 | p += MAX_ORDER_NR_PAGES; | |
1315 | } while (i -= MAX_ORDER_NR_PAGES); | |
1316 | } else { | |
1317 | set_page_refcounted(page); | |
1318 | __free_pages(page, pageblock_order); | |
1319 | } | |
1320 | ||
3dcc0571 | 1321 | adjust_managed_page_count(page, pageblock_nr_pages); |
47118af0 MN |
1322 | } |
1323 | #endif | |
1da177e4 LT |
1324 | |
1325 | /* | |
1326 | * The order of subdivision here is critical for the IO subsystem. | |
1327 | * Please do not alter this order without good reasons and regression | |
1328 | * testing. Specifically, as large blocks of memory are subdivided, | |
1329 | * the order in which smaller blocks are delivered depends on the order | |
1330 | * they're subdivided in this function. This is the primary factor | |
1331 | * influencing the order in which pages are delivered to the IO | |
1332 | * subsystem according to empirical testing, and this is also justified | |
1333 | * by considering the behavior of a buddy system containing a single | |
1334 | * large block of memory acted on by a series of small allocations. | |
1335 | * This behavior is a critical factor in sglist merging's success. | |
1336 | * | |
6d49e352 | 1337 | * -- nyc |
1da177e4 | 1338 | */ |
085cc7d5 | 1339 | static inline void expand(struct zone *zone, struct page *page, |
b2a0ac88 MG |
1340 | int low, int high, struct free_area *area, |
1341 | int migratetype) | |
1da177e4 LT |
1342 | { |
1343 | unsigned long size = 1 << high; | |
1344 | ||
1345 | while (high > low) { | |
1346 | area--; | |
1347 | high--; | |
1348 | size >>= 1; | |
309381fe | 1349 | VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); |
c0a32fc5 | 1350 | |
2847cf95 | 1351 | if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && |
e30825f1 | 1352 | debug_guardpage_enabled() && |
2847cf95 | 1353 | high < debug_guardpage_minorder()) { |
c0a32fc5 SG |
1354 | /* |
1355 | * Mark as guard pages (or page), that will allow to | |
1356 | * merge back to allocator when buddy will be freed. | |
1357 | * Corresponding page table entries will not be touched, | |
1358 | * pages will stay not present in virtual address space | |
1359 | */ | |
2847cf95 | 1360 | set_page_guard(zone, &page[size], high, migratetype); |
c0a32fc5 SG |
1361 | continue; |
1362 | } | |
b2a0ac88 | 1363 | list_add(&page[size].lru, &area->free_list[migratetype]); |
1da177e4 LT |
1364 | area->nr_free++; |
1365 | set_page_order(&page[size], high); | |
1366 | } | |
1da177e4 LT |
1367 | } |
1368 | ||
1da177e4 LT |
1369 | /* |
1370 | * This page is about to be returned from the page allocator | |
1371 | */ | |
2a7684a2 | 1372 | static inline int check_new_page(struct page *page) |
1da177e4 | 1373 | { |
d230dec1 | 1374 | const char *bad_reason = NULL; |
f0b791a3 DH |
1375 | unsigned long bad_flags = 0; |
1376 | ||
53f9263b | 1377 | if (unlikely(atomic_read(&page->_mapcount) != -1)) |
f0b791a3 DH |
1378 | bad_reason = "nonzero mapcount"; |
1379 | if (unlikely(page->mapping != NULL)) | |
1380 | bad_reason = "non-NULL mapping"; | |
1381 | if (unlikely(atomic_read(&page->_count) != 0)) | |
1382 | bad_reason = "nonzero _count"; | |
f4c18e6f NH |
1383 | if (unlikely(page->flags & __PG_HWPOISON)) { |
1384 | bad_reason = "HWPoisoned (hardware-corrupted)"; | |
1385 | bad_flags = __PG_HWPOISON; | |
1386 | } | |
f0b791a3 DH |
1387 | if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) { |
1388 | bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set"; | |
1389 | bad_flags = PAGE_FLAGS_CHECK_AT_PREP; | |
1390 | } | |
9edad6ea JW |
1391 | #ifdef CONFIG_MEMCG |
1392 | if (unlikely(page->mem_cgroup)) | |
1393 | bad_reason = "page still charged to cgroup"; | |
1394 | #endif | |
f0b791a3 DH |
1395 | if (unlikely(bad_reason)) { |
1396 | bad_page(page, bad_reason, bad_flags); | |
689bcebf | 1397 | return 1; |
8cc3b392 | 1398 | } |
2a7684a2 WF |
1399 | return 0; |
1400 | } | |
1401 | ||
75379191 VB |
1402 | static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, |
1403 | int alloc_flags) | |
2a7684a2 WF |
1404 | { |
1405 | int i; | |
1406 | ||
1407 | for (i = 0; i < (1 << order); i++) { | |
1408 | struct page *p = page + i; | |
1409 | if (unlikely(check_new_page(p))) | |
1410 | return 1; | |
1411 | } | |
689bcebf | 1412 | |
4c21e2f2 | 1413 | set_page_private(page, 0); |
7835e98b | 1414 | set_page_refcounted(page); |
cc102509 NP |
1415 | |
1416 | arch_alloc_page(page, order); | |
1da177e4 | 1417 | kernel_map_pages(page, 1 << order, 1); |
b8c73fc2 | 1418 | kasan_alloc_pages(page, order); |
17cf4406 NP |
1419 | |
1420 | if (gfp_flags & __GFP_ZERO) | |
f4d2897b AA |
1421 | for (i = 0; i < (1 << order); i++) |
1422 | clear_highpage(page + i); | |
17cf4406 NP |
1423 | |
1424 | if (order && (gfp_flags & __GFP_COMP)) | |
1425 | prep_compound_page(page, order); | |
1426 | ||
48c96a36 JK |
1427 | set_page_owner(page, order, gfp_flags); |
1428 | ||
75379191 | 1429 | /* |
2f064f34 | 1430 | * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to |
75379191 VB |
1431 | * allocate the page. The expectation is that the caller is taking |
1432 | * steps that will free more memory. The caller should avoid the page | |
1433 | * being used for !PFMEMALLOC purposes. | |
1434 | */ | |
2f064f34 MH |
1435 | if (alloc_flags & ALLOC_NO_WATERMARKS) |
1436 | set_page_pfmemalloc(page); | |
1437 | else | |
1438 | clear_page_pfmemalloc(page); | |
75379191 | 1439 | |
689bcebf | 1440 | return 0; |
1da177e4 LT |
1441 | } |
1442 | ||
56fd56b8 MG |
1443 | /* |
1444 | * Go through the free lists for the given migratetype and remove | |
1445 | * the smallest available page from the freelists | |
1446 | */ | |
728ec980 MG |
1447 | static inline |
1448 | struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, | |
56fd56b8 MG |
1449 | int migratetype) |
1450 | { | |
1451 | unsigned int current_order; | |
b8af2941 | 1452 | struct free_area *area; |
56fd56b8 MG |
1453 | struct page *page; |
1454 | ||
1455 | /* Find a page of the appropriate size in the preferred list */ | |
1456 | for (current_order = order; current_order < MAX_ORDER; ++current_order) { | |
1457 | area = &(zone->free_area[current_order]); | |
a16601c5 | 1458 | page = list_first_entry_or_null(&area->free_list[migratetype], |
56fd56b8 | 1459 | struct page, lru); |
a16601c5 GT |
1460 | if (!page) |
1461 | continue; | |
56fd56b8 MG |
1462 | list_del(&page->lru); |
1463 | rmv_page_order(page); | |
1464 | area->nr_free--; | |
56fd56b8 | 1465 | expand(zone, page, order, current_order, area, migratetype); |
bb14c2c7 | 1466 | set_pcppage_migratetype(page, migratetype); |
56fd56b8 MG |
1467 | return page; |
1468 | } | |
1469 | ||
1470 | return NULL; | |
1471 | } | |
1472 | ||
1473 | ||
b2a0ac88 MG |
1474 | /* |
1475 | * This array describes the order lists are fallen back to when | |
1476 | * the free lists for the desirable migrate type are depleted | |
1477 | */ | |
47118af0 | 1478 | static int fallbacks[MIGRATE_TYPES][4] = { |
974a786e MG |
1479 | [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, |
1480 | [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, | |
1481 | [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, | |
47118af0 | 1482 | #ifdef CONFIG_CMA |
974a786e | 1483 | [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */ |
47118af0 | 1484 | #endif |
194159fb | 1485 | #ifdef CONFIG_MEMORY_ISOLATION |
974a786e | 1486 | [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */ |
194159fb | 1487 | #endif |
b2a0ac88 MG |
1488 | }; |
1489 | ||
dc67647b JK |
1490 | #ifdef CONFIG_CMA |
1491 | static struct page *__rmqueue_cma_fallback(struct zone *zone, | |
1492 | unsigned int order) | |
1493 | { | |
1494 | return __rmqueue_smallest(zone, order, MIGRATE_CMA); | |
1495 | } | |
1496 | #else | |
1497 | static inline struct page *__rmqueue_cma_fallback(struct zone *zone, | |
1498 | unsigned int order) { return NULL; } | |
1499 | #endif | |
1500 | ||
c361be55 MG |
1501 | /* |
1502 | * Move the free pages in a range to the free lists of the requested type. | |
d9c23400 | 1503 | * Note that start_page and end_pages are not aligned on a pageblock |
c361be55 MG |
1504 | * boundary. If alignment is required, use move_freepages_block() |
1505 | */ | |
435b405c | 1506 | int move_freepages(struct zone *zone, |
b69a7288 AB |
1507 | struct page *start_page, struct page *end_page, |
1508 | int migratetype) | |
c361be55 MG |
1509 | { |
1510 | struct page *page; | |
d00181b9 | 1511 | unsigned int order; |
d100313f | 1512 | int pages_moved = 0; |
c361be55 MG |
1513 | |
1514 | #ifndef CONFIG_HOLES_IN_ZONE | |
1515 | /* | |
1516 | * page_zone is not safe to call in this context when | |
1517 | * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant | |
1518 | * anyway as we check zone boundaries in move_freepages_block(). | |
1519 | * Remove at a later date when no bug reports exist related to | |
ac0e5b7a | 1520 | * grouping pages by mobility |
c361be55 | 1521 | */ |
97ee4ba7 | 1522 | VM_BUG_ON(page_zone(start_page) != page_zone(end_page)); |
c361be55 MG |
1523 | #endif |
1524 | ||
1525 | for (page = start_page; page <= end_page;) { | |
344c790e | 1526 | /* Make sure we are not inadvertently changing nodes */ |
309381fe | 1527 | VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); |
344c790e | 1528 | |
c361be55 MG |
1529 | if (!pfn_valid_within(page_to_pfn(page))) { |
1530 | page++; | |
1531 | continue; | |
1532 | } | |
1533 | ||
1534 | if (!PageBuddy(page)) { | |
1535 | page++; | |
1536 | continue; | |
1537 | } | |
1538 | ||
1539 | order = page_order(page); | |
84be48d8 KS |
1540 | list_move(&page->lru, |
1541 | &zone->free_area[order].free_list[migratetype]); | |
c361be55 | 1542 | page += 1 << order; |
d100313f | 1543 | pages_moved += 1 << order; |
c361be55 MG |
1544 | } |
1545 | ||
d100313f | 1546 | return pages_moved; |
c361be55 MG |
1547 | } |
1548 | ||
ee6f509c | 1549 | int move_freepages_block(struct zone *zone, struct page *page, |
68e3e926 | 1550 | int migratetype) |
c361be55 MG |
1551 | { |
1552 | unsigned long start_pfn, end_pfn; | |
1553 | struct page *start_page, *end_page; | |
1554 | ||
1555 | start_pfn = page_to_pfn(page); | |
d9c23400 | 1556 | start_pfn = start_pfn & ~(pageblock_nr_pages-1); |
c361be55 | 1557 | start_page = pfn_to_page(start_pfn); |
d9c23400 MG |
1558 | end_page = start_page + pageblock_nr_pages - 1; |
1559 | end_pfn = start_pfn + pageblock_nr_pages - 1; | |
c361be55 MG |
1560 | |
1561 | /* Do not cross zone boundaries */ | |
108bcc96 | 1562 | if (!zone_spans_pfn(zone, start_pfn)) |
c361be55 | 1563 | start_page = page; |
108bcc96 | 1564 | if (!zone_spans_pfn(zone, end_pfn)) |
c361be55 MG |
1565 | return 0; |
1566 | ||
1567 | return move_freepages(zone, start_page, end_page, migratetype); | |
1568 | } | |
1569 | ||
2f66a68f MG |
1570 | static void change_pageblock_range(struct page *pageblock_page, |
1571 | int start_order, int migratetype) | |
1572 | { | |
1573 | int nr_pageblocks = 1 << (start_order - pageblock_order); | |
1574 | ||
1575 | while (nr_pageblocks--) { | |
1576 | set_pageblock_migratetype(pageblock_page, migratetype); | |
1577 | pageblock_page += pageblock_nr_pages; | |
1578 | } | |
1579 | } | |
1580 | ||
fef903ef | 1581 | /* |
9c0415eb VB |
1582 | * When we are falling back to another migratetype during allocation, try to |
1583 | * steal extra free pages from the same pageblocks to satisfy further | |
1584 | * allocations, instead of polluting multiple pageblocks. | |
1585 | * | |
1586 | * If we are stealing a relatively large buddy page, it is likely there will | |
1587 | * be more free pages in the pageblock, so try to steal them all. For | |
1588 | * reclaimable and unmovable allocations, we steal regardless of page size, | |
1589 | * as fragmentation caused by those allocations polluting movable pageblocks | |
1590 | * is worse than movable allocations stealing from unmovable and reclaimable | |
1591 | * pageblocks. | |
fef903ef | 1592 | */ |
4eb7dce6 JK |
1593 | static bool can_steal_fallback(unsigned int order, int start_mt) |
1594 | { | |
1595 | /* | |
1596 | * Leaving this order check is intended, although there is | |
1597 | * relaxed order check in next check. The reason is that | |
1598 | * we can actually steal whole pageblock if this condition met, | |
1599 | * but, below check doesn't guarantee it and that is just heuristic | |
1600 | * so could be changed anytime. | |
1601 | */ | |
1602 | if (order >= pageblock_order) | |
1603 | return true; | |
1604 | ||
1605 | if (order >= pageblock_order / 2 || | |
1606 | start_mt == MIGRATE_RECLAIMABLE || | |
1607 | start_mt == MIGRATE_UNMOVABLE || | |
1608 | page_group_by_mobility_disabled) | |
1609 | return true; | |
1610 | ||
1611 | return false; | |
1612 | } | |
1613 | ||
1614 | /* | |
1615 | * This function implements actual steal behaviour. If order is large enough, | |
1616 | * we can steal whole pageblock. If not, we first move freepages in this | |
1617 | * pageblock and check whether half of pages are moved or not. If half of | |
1618 | * pages are moved, we can change migratetype of pageblock and permanently | |
1619 | * use it's pages as requested migratetype in the future. | |
1620 | */ | |
1621 | static void steal_suitable_fallback(struct zone *zone, struct page *page, | |
1622 | int start_type) | |
fef903ef | 1623 | { |
d00181b9 | 1624 | unsigned int current_order = page_order(page); |
4eb7dce6 | 1625 | int pages; |
fef903ef | 1626 | |
fef903ef SB |
1627 | /* Take ownership for orders >= pageblock_order */ |
1628 | if (current_order >= pageblock_order) { | |
1629 | change_pageblock_range(page, current_order, start_type); | |
3a1086fb | 1630 | return; |
fef903ef SB |
1631 | } |
1632 | ||
4eb7dce6 | 1633 | pages = move_freepages_block(zone, page, start_type); |
fef903ef | 1634 | |
4eb7dce6 JK |
1635 | /* Claim the whole block if over half of it is free */ |
1636 | if (pages >= (1 << (pageblock_order-1)) || | |
1637 | page_group_by_mobility_disabled) | |
1638 | set_pageblock_migratetype(page, start_type); | |
1639 | } | |
1640 | ||
2149cdae JK |
1641 | /* |
1642 | * Check whether there is a suitable fallback freepage with requested order. | |
1643 | * If only_stealable is true, this function returns fallback_mt only if | |
1644 | * we can steal other freepages all together. This would help to reduce | |
1645 | * fragmentation due to mixed migratetype pages in one pageblock. | |
1646 | */ | |
1647 | int find_suitable_fallback(struct free_area *area, unsigned int order, | |
1648 | int migratetype, bool only_stealable, bool *can_steal) | |
4eb7dce6 JK |
1649 | { |
1650 | int i; | |
1651 | int fallback_mt; | |
1652 | ||
1653 | if (area->nr_free == 0) | |
1654 | return -1; | |
1655 | ||
1656 | *can_steal = false; | |
1657 | for (i = 0;; i++) { | |
1658 | fallback_mt = fallbacks[migratetype][i]; | |
974a786e | 1659 | if (fallback_mt == MIGRATE_TYPES) |
4eb7dce6 JK |
1660 | break; |
1661 | ||
1662 | if (list_empty(&area->free_list[fallback_mt])) | |
1663 | continue; | |
fef903ef | 1664 | |
4eb7dce6 JK |
1665 | if (can_steal_fallback(order, migratetype)) |
1666 | *can_steal = true; | |
1667 | ||
2149cdae JK |
1668 | if (!only_stealable) |
1669 | return fallback_mt; | |
1670 | ||
1671 | if (*can_steal) | |
1672 | return fallback_mt; | |
fef903ef | 1673 | } |
4eb7dce6 JK |
1674 | |
1675 | return -1; | |
fef903ef SB |
1676 | } |
1677 | ||
0aaa29a5 MG |
1678 | /* |
1679 | * Reserve a pageblock for exclusive use of high-order atomic allocations if | |
1680 | * there are no empty page blocks that contain a page with a suitable order | |
1681 | */ | |
1682 | static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, | |
1683 | unsigned int alloc_order) | |
1684 | { | |
1685 | int mt; | |
1686 | unsigned long max_managed, flags; | |
1687 | ||
1688 | /* | |
1689 | * Limit the number reserved to 1 pageblock or roughly 1% of a zone. | |
1690 | * Check is race-prone but harmless. | |
1691 | */ | |
1692 | max_managed = (zone->managed_pages / 100) + pageblock_nr_pages; | |
1693 | if (zone->nr_reserved_highatomic >= max_managed) | |
1694 | return; | |
1695 | ||
1696 | spin_lock_irqsave(&zone->lock, flags); | |
1697 | ||
1698 | /* Recheck the nr_reserved_highatomic limit under the lock */ | |
1699 | if (zone->nr_reserved_highatomic >= max_managed) | |
1700 | goto out_unlock; | |
1701 | ||
1702 | /* Yoink! */ | |
1703 | mt = get_pageblock_migratetype(page); | |
1704 | if (mt != MIGRATE_HIGHATOMIC && | |
1705 | !is_migrate_isolate(mt) && !is_migrate_cma(mt)) { | |
1706 | zone->nr_reserved_highatomic += pageblock_nr_pages; | |
1707 | set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); | |
1708 | move_freepages_block(zone, page, MIGRATE_HIGHATOMIC); | |
1709 | } | |
1710 | ||
1711 | out_unlock: | |
1712 | spin_unlock_irqrestore(&zone->lock, flags); | |
1713 | } | |
1714 | ||
1715 | /* | |
1716 | * Used when an allocation is about to fail under memory pressure. This | |
1717 | * potentially hurts the reliability of high-order allocations when under | |
1718 | * intense memory pressure but failed atomic allocations should be easier | |
1719 | * to recover from than an OOM. | |
1720 | */ | |
1721 | static void unreserve_highatomic_pageblock(const struct alloc_context *ac) | |
1722 | { | |
1723 | struct zonelist *zonelist = ac->zonelist; | |
1724 | unsigned long flags; | |
1725 | struct zoneref *z; | |
1726 | struct zone *zone; | |
1727 | struct page *page; | |
1728 | int order; | |
1729 | ||
1730 | for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx, | |
1731 | ac->nodemask) { | |
1732 | /* Preserve at least one pageblock */ | |
1733 | if (zone->nr_reserved_highatomic <= pageblock_nr_pages) | |
1734 | continue; | |
1735 | ||
1736 | spin_lock_irqsave(&zone->lock, flags); | |
1737 | for (order = 0; order < MAX_ORDER; order++) { | |
1738 | struct free_area *area = &(zone->free_area[order]); | |
1739 | ||
a16601c5 GT |
1740 | page = list_first_entry_or_null( |
1741 | &area->free_list[MIGRATE_HIGHATOMIC], | |
1742 | struct page, lru); | |
1743 | if (!page) | |
0aaa29a5 MG |
1744 | continue; |
1745 | ||
0aaa29a5 MG |
1746 | /* |
1747 | * It should never happen but changes to locking could | |
1748 | * inadvertently allow a per-cpu drain to add pages | |
1749 | * to MIGRATE_HIGHATOMIC while unreserving so be safe | |
1750 | * and watch for underflows. | |
1751 | */ | |
1752 | zone->nr_reserved_highatomic -= min(pageblock_nr_pages, | |
1753 | zone->nr_reserved_highatomic); | |
1754 | ||
1755 | /* | |
1756 | * Convert to ac->migratetype and avoid the normal | |
1757 | * pageblock stealing heuristics. Minimally, the caller | |
1758 | * is doing the work and needs the pages. More | |
1759 | * importantly, if the block was always converted to | |
1760 | * MIGRATE_UNMOVABLE or another type then the number | |
1761 | * of pageblocks that cannot be completely freed | |
1762 | * may increase. | |
1763 | */ | |
1764 | set_pageblock_migratetype(page, ac->migratetype); | |
1765 | move_freepages_block(zone, page, ac->migratetype); | |
1766 | spin_unlock_irqrestore(&zone->lock, flags); | |
1767 | return; | |
1768 | } | |
1769 | spin_unlock_irqrestore(&zone->lock, flags); | |
1770 | } | |
1771 | } | |
1772 | ||
b2a0ac88 | 1773 | /* Remove an element from the buddy allocator from the fallback list */ |
0ac3a409 | 1774 | static inline struct page * |
7aeb09f9 | 1775 | __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype) |
b2a0ac88 | 1776 | { |
b8af2941 | 1777 | struct free_area *area; |
7aeb09f9 | 1778 | unsigned int current_order; |
b2a0ac88 | 1779 | struct page *page; |
4eb7dce6 JK |
1780 | int fallback_mt; |
1781 | bool can_steal; | |
b2a0ac88 MG |
1782 | |
1783 | /* Find the largest possible block of pages in the other list */ | |
7aeb09f9 MG |
1784 | for (current_order = MAX_ORDER-1; |
1785 | current_order >= order && current_order <= MAX_ORDER-1; | |
1786 | --current_order) { | |
4eb7dce6 JK |
1787 | area = &(zone->free_area[current_order]); |
1788 | fallback_mt = find_suitable_fallback(area, current_order, | |
2149cdae | 1789 | start_migratetype, false, &can_steal); |
4eb7dce6 JK |
1790 | if (fallback_mt == -1) |
1791 | continue; | |
b2a0ac88 | 1792 | |
a16601c5 | 1793 | page = list_first_entry(&area->free_list[fallback_mt], |
4eb7dce6 JK |
1794 | struct page, lru); |
1795 | if (can_steal) | |
1796 | steal_suitable_fallback(zone, page, start_migratetype); | |
b2a0ac88 | 1797 | |
4eb7dce6 JK |
1798 | /* Remove the page from the freelists */ |
1799 | area->nr_free--; | |
1800 | list_del(&page->lru); | |
1801 | rmv_page_order(page); | |
3a1086fb | 1802 | |
4eb7dce6 JK |
1803 | expand(zone, page, order, current_order, area, |
1804 | start_migratetype); | |
1805 | /* | |
bb14c2c7 | 1806 | * The pcppage_migratetype may differ from pageblock's |
4eb7dce6 | 1807 | * migratetype depending on the decisions in |
bb14c2c7 VB |
1808 | * find_suitable_fallback(). This is OK as long as it does not |
1809 | * differ for MIGRATE_CMA pageblocks. Those can be used as | |
1810 | * fallback only via special __rmqueue_cma_fallback() function | |
4eb7dce6 | 1811 | */ |
bb14c2c7 | 1812 | set_pcppage_migratetype(page, start_migratetype); |
e0fff1bd | 1813 | |
4eb7dce6 JK |
1814 | trace_mm_page_alloc_extfrag(page, order, current_order, |
1815 | start_migratetype, fallback_mt); | |
e0fff1bd | 1816 | |
4eb7dce6 | 1817 | return page; |
b2a0ac88 MG |
1818 | } |
1819 | ||
728ec980 | 1820 | return NULL; |
b2a0ac88 MG |
1821 | } |
1822 | ||
56fd56b8 | 1823 | /* |
1da177e4 LT |
1824 | * Do the hard work of removing an element from the buddy allocator. |
1825 | * Call me with the zone->lock already held. | |
1826 | */ | |
b2a0ac88 | 1827 | static struct page *__rmqueue(struct zone *zone, unsigned int order, |
6ac0206b | 1828 | int migratetype) |
1da177e4 | 1829 | { |
1da177e4 LT |
1830 | struct page *page; |
1831 | ||
56fd56b8 | 1832 | page = __rmqueue_smallest(zone, order, migratetype); |
974a786e | 1833 | if (unlikely(!page)) { |
dc67647b JK |
1834 | if (migratetype == MIGRATE_MOVABLE) |
1835 | page = __rmqueue_cma_fallback(zone, order); | |
1836 | ||
1837 | if (!page) | |
1838 | page = __rmqueue_fallback(zone, order, migratetype); | |
728ec980 MG |
1839 | } |
1840 | ||
0d3d062a | 1841 | trace_mm_page_alloc_zone_locked(page, order, migratetype); |
b2a0ac88 | 1842 | return page; |
1da177e4 LT |
1843 | } |
1844 | ||
5f63b720 | 1845 | /* |
1da177e4 LT |
1846 | * Obtain a specified number of elements from the buddy allocator, all under |
1847 | * a single hold of the lock, for efficiency. Add them to the supplied list. | |
1848 | * Returns the number of new pages which were placed at *list. | |
1849 | */ | |
5f63b720 | 1850 | static int rmqueue_bulk(struct zone *zone, unsigned int order, |
b2a0ac88 | 1851 | unsigned long count, struct list_head *list, |
b745bc85 | 1852 | int migratetype, bool cold) |
1da177e4 | 1853 | { |
5bcc9f86 | 1854 | int i; |
5f63b720 | 1855 | |
c54ad30c | 1856 | spin_lock(&zone->lock); |
1da177e4 | 1857 | for (i = 0; i < count; ++i) { |
6ac0206b | 1858 | struct page *page = __rmqueue(zone, order, migratetype); |
085cc7d5 | 1859 | if (unlikely(page == NULL)) |
1da177e4 | 1860 | break; |
81eabcbe MG |
1861 | |
1862 | /* | |
1863 | * Split buddy pages returned by expand() are received here | |
1864 | * in physical page order. The page is added to the callers and | |
1865 | * list and the list head then moves forward. From the callers | |
1866 | * perspective, the linked list is ordered by page number in | |
1867 | * some conditions. This is useful for IO devices that can | |
1868 | * merge IO requests if the physical pages are ordered | |
1869 | * properly. | |
1870 | */ | |
b745bc85 | 1871 | if (likely(!cold)) |
e084b2d9 MG |
1872 | list_add(&page->lru, list); |
1873 | else | |
1874 | list_add_tail(&page->lru, list); | |
81eabcbe | 1875 | list = &page->lru; |
bb14c2c7 | 1876 | if (is_migrate_cma(get_pcppage_migratetype(page))) |
d1ce749a BZ |
1877 | __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, |
1878 | -(1 << order)); | |
1da177e4 | 1879 | } |
f2260e6b | 1880 | __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); |
c54ad30c | 1881 | spin_unlock(&zone->lock); |
085cc7d5 | 1882 | return i; |
1da177e4 LT |
1883 | } |
1884 | ||
4ae7c039 | 1885 | #ifdef CONFIG_NUMA |
8fce4d8e | 1886 | /* |
4037d452 CL |
1887 | * Called from the vmstat counter updater to drain pagesets of this |
1888 | * currently executing processor on remote nodes after they have | |
1889 | * expired. | |
1890 | * | |
879336c3 CL |
1891 | * Note that this function must be called with the thread pinned to |
1892 | * a single processor. | |
8fce4d8e | 1893 | */ |
4037d452 | 1894 | void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) |
4ae7c039 | 1895 | { |
4ae7c039 | 1896 | unsigned long flags; |
7be12fc9 | 1897 | int to_drain, batch; |
4ae7c039 | 1898 | |
4037d452 | 1899 | local_irq_save(flags); |
4db0c3c2 | 1900 | batch = READ_ONCE(pcp->batch); |
7be12fc9 | 1901 | to_drain = min(pcp->count, batch); |
2a13515c KM |
1902 | if (to_drain > 0) { |
1903 | free_pcppages_bulk(zone, to_drain, pcp); | |
1904 | pcp->count -= to_drain; | |
1905 | } | |
4037d452 | 1906 | local_irq_restore(flags); |
4ae7c039 CL |
1907 | } |
1908 | #endif | |
1909 | ||
9f8f2172 | 1910 | /* |
93481ff0 | 1911 | * Drain pcplists of the indicated processor and zone. |
9f8f2172 CL |
1912 | * |
1913 | * The processor must either be the current processor and the | |
1914 | * thread pinned to the current processor or a processor that | |
1915 | * is not online. | |
1916 | */ | |
93481ff0 | 1917 | static void drain_pages_zone(unsigned int cpu, struct zone *zone) |
1da177e4 | 1918 | { |
c54ad30c | 1919 | unsigned long flags; |
93481ff0 VB |
1920 | struct per_cpu_pageset *pset; |
1921 | struct per_cpu_pages *pcp; | |
1da177e4 | 1922 | |
93481ff0 VB |
1923 | local_irq_save(flags); |
1924 | pset = per_cpu_ptr(zone->pageset, cpu); | |
1da177e4 | 1925 | |
93481ff0 VB |
1926 | pcp = &pset->pcp; |
1927 | if (pcp->count) { | |
1928 | free_pcppages_bulk(zone, pcp->count, pcp); | |
1929 | pcp->count = 0; | |
1930 | } | |
1931 | local_irq_restore(flags); | |
1932 | } | |
3dfa5721 | 1933 | |
93481ff0 VB |
1934 | /* |
1935 | * Drain pcplists of all zones on the indicated processor. | |
1936 | * | |
1937 | * The processor must either be the current processor and the | |
1938 | * thread pinned to the current processor or a processor that | |
1939 | * is not online. | |
1940 | */ | |
1941 | static void drain_pages(unsigned int cpu) | |
1942 | { | |
1943 | struct zone *zone; | |
1944 | ||
1945 | for_each_populated_zone(zone) { | |
1946 | drain_pages_zone(cpu, zone); | |
1da177e4 LT |
1947 | } |
1948 | } | |
1da177e4 | 1949 | |
9f8f2172 CL |
1950 | /* |
1951 | * Spill all of this CPU's per-cpu pages back into the buddy allocator. | |
93481ff0 VB |
1952 | * |
1953 | * The CPU has to be pinned. When zone parameter is non-NULL, spill just | |
1954 | * the single zone's pages. | |
9f8f2172 | 1955 | */ |
93481ff0 | 1956 | void drain_local_pages(struct zone *zone) |
9f8f2172 | 1957 | { |
93481ff0 VB |
1958 | int cpu = smp_processor_id(); |
1959 | ||
1960 | if (zone) | |
1961 | drain_pages_zone(cpu, zone); | |
1962 | else | |
1963 | drain_pages(cpu); | |
9f8f2172 CL |
1964 | } |
1965 | ||
1966 | /* | |
74046494 GBY |
1967 | * Spill all the per-cpu pages from all CPUs back into the buddy allocator. |
1968 | * | |
93481ff0 VB |
1969 | * When zone parameter is non-NULL, spill just the single zone's pages. |
1970 | * | |
74046494 GBY |
1971 | * Note that this code is protected against sending an IPI to an offline |
1972 | * CPU but does not guarantee sending an IPI to newly hotplugged CPUs: | |
1973 | * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but | |
1974 | * nothing keeps CPUs from showing up after we populated the cpumask and | |
1975 | * before the call to on_each_cpu_mask(). | |
9f8f2172 | 1976 | */ |
93481ff0 | 1977 | void drain_all_pages(struct zone *zone) |
9f8f2172 | 1978 | { |
74046494 | 1979 | int cpu; |
74046494 GBY |
1980 | |
1981 | /* | |
1982 | * Allocate in the BSS so we wont require allocation in | |
1983 | * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y | |
1984 | */ | |
1985 | static cpumask_t cpus_with_pcps; | |
1986 | ||
1987 | /* | |
1988 | * We don't care about racing with CPU hotplug event | |
1989 | * as offline notification will cause the notified | |
1990 | * cpu to drain that CPU pcps and on_each_cpu_mask | |
1991 | * disables preemption as part of its processing | |
1992 | */ | |
1993 | for_each_online_cpu(cpu) { | |
93481ff0 VB |
1994 | struct per_cpu_pageset *pcp; |
1995 | struct zone *z; | |
74046494 | 1996 | bool has_pcps = false; |
93481ff0 VB |
1997 | |
1998 | if (zone) { | |
74046494 | 1999 | pcp = per_cpu_ptr(zone->pageset, cpu); |
93481ff0 | 2000 | if (pcp->pcp.count) |
74046494 | 2001 | has_pcps = true; |
93481ff0 VB |
2002 | } else { |
2003 | for_each_populated_zone(z) { | |
2004 | pcp = per_cpu_ptr(z->pageset, cpu); | |
2005 | if (pcp->pcp.count) { | |
2006 | has_pcps = true; | |
2007 | break; | |
2008 | } | |
74046494 GBY |
2009 | } |
2010 | } | |
93481ff0 | 2011 | |
74046494 GBY |
2012 | if (has_pcps) |
2013 | cpumask_set_cpu(cpu, &cpus_with_pcps); | |
2014 | else | |
2015 | cpumask_clear_cpu(cpu, &cpus_with_pcps); | |
2016 | } | |
93481ff0 VB |
2017 | on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages, |
2018 | zone, 1); | |
9f8f2172 CL |
2019 | } |
2020 | ||
296699de | 2021 | #ifdef CONFIG_HIBERNATION |
1da177e4 LT |
2022 | |
2023 | void mark_free_pages(struct zone *zone) | |
2024 | { | |
f623f0db RW |
2025 | unsigned long pfn, max_zone_pfn; |
2026 | unsigned long flags; | |
7aeb09f9 | 2027 | unsigned int order, t; |
86760a2c | 2028 | struct page *page; |
1da177e4 | 2029 | |
8080fc03 | 2030 | if (zone_is_empty(zone)) |
1da177e4 LT |
2031 | return; |
2032 | ||
2033 | spin_lock_irqsave(&zone->lock, flags); | |
f623f0db | 2034 | |
108bcc96 | 2035 | max_zone_pfn = zone_end_pfn(zone); |
f623f0db RW |
2036 | for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) |
2037 | if (pfn_valid(pfn)) { | |
86760a2c | 2038 | page = pfn_to_page(pfn); |
7be98234 RW |
2039 | if (!swsusp_page_is_forbidden(page)) |
2040 | swsusp_unset_page_free(page); | |
f623f0db | 2041 | } |
1da177e4 | 2042 | |
b2a0ac88 | 2043 | for_each_migratetype_order(order, t) { |
86760a2c GT |
2044 | list_for_each_entry(page, |
2045 | &zone->free_area[order].free_list[t], lru) { | |
f623f0db | 2046 | unsigned long i; |
1da177e4 | 2047 | |
86760a2c | 2048 | pfn = page_to_pfn(page); |
f623f0db | 2049 | for (i = 0; i < (1UL << order); i++) |
7be98234 | 2050 | swsusp_set_page_free(pfn_to_page(pfn + i)); |
f623f0db | 2051 | } |
b2a0ac88 | 2052 | } |
1da177e4 LT |
2053 | spin_unlock_irqrestore(&zone->lock, flags); |
2054 | } | |
e2c55dc8 | 2055 | #endif /* CONFIG_PM */ |
1da177e4 | 2056 | |
1da177e4 LT |
2057 | /* |
2058 | * Free a 0-order page | |
b745bc85 | 2059 | * cold == true ? free a cold page : free a hot page |
1da177e4 | 2060 | */ |
b745bc85 | 2061 | void free_hot_cold_page(struct page *page, bool cold) |
1da177e4 LT |
2062 | { |
2063 | struct zone *zone = page_zone(page); | |
2064 | struct per_cpu_pages *pcp; | |
2065 | unsigned long flags; | |
dc4b0caf | 2066 | unsigned long pfn = page_to_pfn(page); |
5f8dcc21 | 2067 | int migratetype; |
1da177e4 | 2068 | |
ec95f53a | 2069 | if (!free_pages_prepare(page, 0)) |
689bcebf HD |
2070 | return; |
2071 | ||
dc4b0caf | 2072 | migratetype = get_pfnblock_migratetype(page, pfn); |
bb14c2c7 | 2073 | set_pcppage_migratetype(page, migratetype); |
1da177e4 | 2074 | local_irq_save(flags); |
f8891e5e | 2075 | __count_vm_event(PGFREE); |
da456f14 | 2076 | |
5f8dcc21 MG |
2077 | /* |
2078 | * We only track unmovable, reclaimable and movable on pcp lists. | |
2079 | * Free ISOLATE pages back to the allocator because they are being | |
2080 | * offlined but treat RESERVE as movable pages so we can get those | |
2081 | * areas back if necessary. Otherwise, we may have to free | |
2082 | * excessively into the page allocator | |
2083 | */ | |
2084 | if (migratetype >= MIGRATE_PCPTYPES) { | |
194159fb | 2085 | if (unlikely(is_migrate_isolate(migratetype))) { |
dc4b0caf | 2086 | free_one_page(zone, page, pfn, 0, migratetype); |
5f8dcc21 MG |
2087 | goto out; |
2088 | } | |
2089 | migratetype = MIGRATE_MOVABLE; | |
2090 | } | |
2091 | ||
99dcc3e5 | 2092 | pcp = &this_cpu_ptr(zone->pageset)->pcp; |
b745bc85 | 2093 | if (!cold) |
5f8dcc21 | 2094 | list_add(&page->lru, &pcp->lists[migratetype]); |
b745bc85 MG |
2095 | else |
2096 | list_add_tail(&page->lru, &pcp->lists[migratetype]); | |
1da177e4 | 2097 | pcp->count++; |
48db57f8 | 2098 | if (pcp->count >= pcp->high) { |
4db0c3c2 | 2099 | unsigned long batch = READ_ONCE(pcp->batch); |
998d39cb CS |
2100 | free_pcppages_bulk(zone, batch, pcp); |
2101 | pcp->count -= batch; | |
48db57f8 | 2102 | } |
5f8dcc21 MG |
2103 | |
2104 | out: | |
1da177e4 | 2105 | local_irq_restore(flags); |
1da177e4 LT |
2106 | } |
2107 | ||
cc59850e KK |
2108 | /* |
2109 | * Free a list of 0-order pages | |
2110 | */ | |
b745bc85 | 2111 | void free_hot_cold_page_list(struct list_head *list, bool cold) |
cc59850e KK |
2112 | { |
2113 | struct page *page, *next; | |
2114 | ||
2115 | list_for_each_entry_safe(page, next, list, lru) { | |
b413d48a | 2116 | trace_mm_page_free_batched(page, cold); |
cc59850e KK |
2117 | free_hot_cold_page(page, cold); |
2118 | } | |
2119 | } | |
2120 | ||
8dfcc9ba NP |
2121 | /* |
2122 | * split_page takes a non-compound higher-order page, and splits it into | |
2123 | * n (1<<order) sub-pages: page[0..n] | |
2124 | * Each sub-page must be freed individually. | |
2125 | * | |
2126 | * Note: this is probably too low level an operation for use in drivers. | |
2127 | * Please consult with lkml before using this in your driver. | |
2128 | */ | |
2129 | void split_page(struct page *page, unsigned int order) | |
2130 | { | |
2131 | int i; | |
e2cfc911 | 2132 | gfp_t gfp_mask; |
8dfcc9ba | 2133 | |
309381fe SL |
2134 | VM_BUG_ON_PAGE(PageCompound(page), page); |
2135 | VM_BUG_ON_PAGE(!page_count(page), page); | |
b1eeab67 VN |
2136 | |
2137 | #ifdef CONFIG_KMEMCHECK | |
2138 | /* | |
2139 | * Split shadow pages too, because free(page[0]) would | |
2140 | * otherwise free the whole shadow. | |
2141 | */ | |
2142 | if (kmemcheck_page_is_tracked(page)) | |
2143 | split_page(virt_to_page(page[0].shadow), order); | |
2144 | #endif | |
2145 | ||
e2cfc911 JK |
2146 | gfp_mask = get_page_owner_gfp(page); |
2147 | set_page_owner(page, 0, gfp_mask); | |
48c96a36 | 2148 | for (i = 1; i < (1 << order); i++) { |
7835e98b | 2149 | set_page_refcounted(page + i); |
e2cfc911 | 2150 | set_page_owner(page + i, 0, gfp_mask); |
48c96a36 | 2151 | } |
8dfcc9ba | 2152 | } |
5853ff23 | 2153 | EXPORT_SYMBOL_GPL(split_page); |
8dfcc9ba | 2154 | |
3c605096 | 2155 | int __isolate_free_page(struct page *page, unsigned int order) |
748446bb | 2156 | { |
748446bb MG |
2157 | unsigned long watermark; |
2158 | struct zone *zone; | |
2139cbe6 | 2159 | int mt; |
748446bb MG |
2160 | |
2161 | BUG_ON(!PageBuddy(page)); | |
2162 | ||
2163 | zone = page_zone(page); | |
2e30abd1 | 2164 | mt = get_pageblock_migratetype(page); |
748446bb | 2165 | |
194159fb | 2166 | if (!is_migrate_isolate(mt)) { |
2e30abd1 MS |
2167 | /* Obey watermarks as if the page was being allocated */ |
2168 | watermark = low_wmark_pages(zone) + (1 << order); | |
2169 | if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) | |
2170 | return 0; | |
2171 | ||
8fb74b9f | 2172 | __mod_zone_freepage_state(zone, -(1UL << order), mt); |
2e30abd1 | 2173 | } |
748446bb MG |
2174 | |
2175 | /* Remove page from free list */ | |
2176 | list_del(&page->lru); | |
2177 | zone->free_area[order].nr_free--; | |
2178 | rmv_page_order(page); | |
2139cbe6 | 2179 | |
e2cfc911 | 2180 | set_page_owner(page, order, __GFP_MOVABLE); |
f3a14ced | 2181 | |
8fb74b9f | 2182 | /* Set the pageblock if the isolated page is at least a pageblock */ |
748446bb MG |
2183 | if (order >= pageblock_order - 1) { |
2184 | struct page *endpage = page + (1 << order) - 1; | |
47118af0 MN |
2185 | for (; page < endpage; page += pageblock_nr_pages) { |
2186 | int mt = get_pageblock_migratetype(page); | |
194159fb | 2187 | if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)) |
47118af0 MN |
2188 | set_pageblock_migratetype(page, |
2189 | MIGRATE_MOVABLE); | |
2190 | } | |
748446bb MG |
2191 | } |
2192 | ||
f3a14ced | 2193 | |
8fb74b9f | 2194 | return 1UL << order; |
1fb3f8ca MG |
2195 | } |
2196 | ||
2197 | /* | |
2198 | * Similar to split_page except the page is already free. As this is only | |
2199 | * being used for migration, the migratetype of the block also changes. | |
2200 | * As this is called with interrupts disabled, the caller is responsible | |
2201 | * for calling arch_alloc_page() and kernel_map_page() after interrupts | |
2202 | * are enabled. | |
2203 | * | |
2204 | * Note: this is probably too low level an operation for use in drivers. | |
2205 | * Please consult with lkml before using this in your driver. | |
2206 | */ | |
2207 | int split_free_page(struct page *page) | |
2208 | { | |
2209 | unsigned int order; | |
2210 | int nr_pages; | |
2211 | ||
1fb3f8ca MG |
2212 | order = page_order(page); |
2213 | ||
8fb74b9f | 2214 | nr_pages = __isolate_free_page(page, order); |
1fb3f8ca MG |
2215 | if (!nr_pages) |
2216 | return 0; | |
2217 | ||
2218 | /* Split into individual pages */ | |
2219 | set_page_refcounted(page); | |
2220 | split_page(page, order); | |
2221 | return nr_pages; | |
748446bb MG |
2222 | } |
2223 | ||
1da177e4 | 2224 | /* |
75379191 | 2225 | * Allocate a page from the given zone. Use pcplists for order-0 allocations. |
1da177e4 | 2226 | */ |
0a15c3e9 MG |
2227 | static inline |
2228 | struct page *buffered_rmqueue(struct zone *preferred_zone, | |
7aeb09f9 | 2229 | struct zone *zone, unsigned int order, |
0aaa29a5 | 2230 | gfp_t gfp_flags, int alloc_flags, int migratetype) |
1da177e4 LT |
2231 | { |
2232 | unsigned long flags; | |
689bcebf | 2233 | struct page *page; |
b745bc85 | 2234 | bool cold = ((gfp_flags & __GFP_COLD) != 0); |
1da177e4 | 2235 | |
48db57f8 | 2236 | if (likely(order == 0)) { |
1da177e4 | 2237 | struct per_cpu_pages *pcp; |
5f8dcc21 | 2238 | struct list_head *list; |
1da177e4 | 2239 | |
1da177e4 | 2240 | local_irq_save(flags); |
99dcc3e5 CL |
2241 | pcp = &this_cpu_ptr(zone->pageset)->pcp; |
2242 | list = &pcp->lists[migratetype]; | |
5f8dcc21 | 2243 | if (list_empty(list)) { |
535131e6 | 2244 | pcp->count += rmqueue_bulk(zone, 0, |
5f8dcc21 | 2245 | pcp->batch, list, |
e084b2d9 | 2246 | migratetype, cold); |
5f8dcc21 | 2247 | if (unlikely(list_empty(list))) |
6fb332fa | 2248 | goto failed; |
535131e6 | 2249 | } |
b92a6edd | 2250 | |
5f8dcc21 | 2251 | if (cold) |
a16601c5 | 2252 | page = list_last_entry(list, struct page, lru); |
5f8dcc21 | 2253 | else |
a16601c5 | 2254 | page = list_first_entry(list, struct page, lru); |
5f8dcc21 | 2255 | |
b92a6edd MG |
2256 | list_del(&page->lru); |
2257 | pcp->count--; | |
7fb1d9fc | 2258 | } else { |
dab48dab AM |
2259 | if (unlikely(gfp_flags & __GFP_NOFAIL)) { |
2260 | /* | |
2261 | * __GFP_NOFAIL is not to be used in new code. | |
2262 | * | |
2263 | * All __GFP_NOFAIL callers should be fixed so that they | |
2264 | * properly detect and handle allocation failures. | |
2265 | * | |
2266 | * We most definitely don't want callers attempting to | |
4923abf9 | 2267 | * allocate greater than order-1 page units with |
dab48dab AM |
2268 | * __GFP_NOFAIL. |
2269 | */ | |
4923abf9 | 2270 | WARN_ON_ONCE(order > 1); |
dab48dab | 2271 | } |
1da177e4 | 2272 | spin_lock_irqsave(&zone->lock, flags); |
0aaa29a5 MG |
2273 | |
2274 | page = NULL; | |
2275 | if (alloc_flags & ALLOC_HARDER) { | |
2276 | page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); | |
2277 | if (page) | |
2278 | trace_mm_page_alloc_zone_locked(page, order, migratetype); | |
2279 | } | |
2280 | if (!page) | |
6ac0206b | 2281 | page = __rmqueue(zone, order, migratetype); |
a74609fa NP |
2282 | spin_unlock(&zone->lock); |
2283 | if (!page) | |
2284 | goto failed; | |
d1ce749a | 2285 | __mod_zone_freepage_state(zone, -(1 << order), |
bb14c2c7 | 2286 | get_pcppage_migratetype(page)); |
1da177e4 LT |
2287 | } |
2288 | ||
3a025760 | 2289 | __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order)); |
abe5f972 | 2290 | if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 && |
57054651 JW |
2291 | !test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) |
2292 | set_bit(ZONE_FAIR_DEPLETED, &zone->flags); | |
27329369 | 2293 | |
f8891e5e | 2294 | __count_zone_vm_events(PGALLOC, zone, 1 << order); |
78afd561 | 2295 | zone_statistics(preferred_zone, zone, gfp_flags); |
a74609fa | 2296 | local_irq_restore(flags); |
1da177e4 | 2297 | |
309381fe | 2298 | VM_BUG_ON_PAGE(bad_range(zone, page), page); |
1da177e4 | 2299 | return page; |
a74609fa NP |
2300 | |
2301 | failed: | |
2302 | local_irq_restore(flags); | |
a74609fa | 2303 | return NULL; |
1da177e4 LT |
2304 | } |
2305 | ||
933e312e AM |
2306 | #ifdef CONFIG_FAIL_PAGE_ALLOC |
2307 | ||
b2588c4b | 2308 | static struct { |
933e312e AM |
2309 | struct fault_attr attr; |
2310 | ||
621a5f7a | 2311 | bool ignore_gfp_highmem; |
71baba4b | 2312 | bool ignore_gfp_reclaim; |
54114994 | 2313 | u32 min_order; |
933e312e AM |
2314 | } fail_page_alloc = { |
2315 | .attr = FAULT_ATTR_INITIALIZER, | |
71baba4b | 2316 | .ignore_gfp_reclaim = true, |
621a5f7a | 2317 | .ignore_gfp_highmem = true, |
54114994 | 2318 | .min_order = 1, |
933e312e AM |
2319 | }; |
2320 | ||
2321 | static int __init setup_fail_page_alloc(char *str) | |
2322 | { | |
2323 | return setup_fault_attr(&fail_page_alloc.attr, str); | |
2324 | } | |
2325 | __setup("fail_page_alloc=", setup_fail_page_alloc); | |
2326 | ||
deaf386e | 2327 | static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) |
933e312e | 2328 | { |
54114994 | 2329 | if (order < fail_page_alloc.min_order) |
deaf386e | 2330 | return false; |
933e312e | 2331 | if (gfp_mask & __GFP_NOFAIL) |
deaf386e | 2332 | return false; |
933e312e | 2333 | if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) |
deaf386e | 2334 | return false; |
71baba4b MG |
2335 | if (fail_page_alloc.ignore_gfp_reclaim && |
2336 | (gfp_mask & __GFP_DIRECT_RECLAIM)) | |
deaf386e | 2337 | return false; |
933e312e AM |
2338 | |
2339 | return should_fail(&fail_page_alloc.attr, 1 << order); | |
2340 | } | |
2341 | ||
2342 | #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS | |
2343 | ||
2344 | static int __init fail_page_alloc_debugfs(void) | |
2345 | { | |
f4ae40a6 | 2346 | umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; |
933e312e | 2347 | struct dentry *dir; |
933e312e | 2348 | |
dd48c085 AM |
2349 | dir = fault_create_debugfs_attr("fail_page_alloc", NULL, |
2350 | &fail_page_alloc.attr); | |
2351 | if (IS_ERR(dir)) | |
2352 | return PTR_ERR(dir); | |
933e312e | 2353 | |
b2588c4b | 2354 | if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, |
71baba4b | 2355 | &fail_page_alloc.ignore_gfp_reclaim)) |
b2588c4b AM |
2356 | goto fail; |
2357 | if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, | |
2358 | &fail_page_alloc.ignore_gfp_highmem)) | |
2359 | goto fail; | |
2360 | if (!debugfs_create_u32("min-order", mode, dir, | |
2361 | &fail_page_alloc.min_order)) | |
2362 | goto fail; | |
2363 | ||
2364 | return 0; | |
2365 | fail: | |
dd48c085 | 2366 | debugfs_remove_recursive(dir); |
933e312e | 2367 | |
b2588c4b | 2368 | return -ENOMEM; |
933e312e AM |
2369 | } |
2370 | ||
2371 | late_initcall(fail_page_alloc_debugfs); | |
2372 | ||
2373 | #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ | |
2374 | ||
2375 | #else /* CONFIG_FAIL_PAGE_ALLOC */ | |
2376 | ||
deaf386e | 2377 | static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) |
933e312e | 2378 | { |
deaf386e | 2379 | return false; |
933e312e AM |
2380 | } |
2381 | ||
2382 | #endif /* CONFIG_FAIL_PAGE_ALLOC */ | |
2383 | ||
1da177e4 | 2384 | /* |
97a16fc8 MG |
2385 | * Return true if free base pages are above 'mark'. For high-order checks it |
2386 | * will return true of the order-0 watermark is reached and there is at least | |
2387 | * one free page of a suitable size. Checking now avoids taking the zone lock | |
2388 | * to check in the allocation paths if no pages are free. | |
1da177e4 | 2389 | */ |
7aeb09f9 MG |
2390 | static bool __zone_watermark_ok(struct zone *z, unsigned int order, |
2391 | unsigned long mark, int classzone_idx, int alloc_flags, | |
2392 | long free_pages) | |
1da177e4 | 2393 | { |
d23ad423 | 2394 | long min = mark; |
1da177e4 | 2395 | int o; |
97a16fc8 | 2396 | const int alloc_harder = (alloc_flags & ALLOC_HARDER); |
1da177e4 | 2397 | |
0aaa29a5 | 2398 | /* free_pages may go negative - that's OK */ |
df0a6daa | 2399 | free_pages -= (1 << order) - 1; |
0aaa29a5 | 2400 | |
7fb1d9fc | 2401 | if (alloc_flags & ALLOC_HIGH) |
1da177e4 | 2402 | min -= min / 2; |
0aaa29a5 MG |
2403 | |
2404 | /* | |
2405 | * If the caller does not have rights to ALLOC_HARDER then subtract | |
2406 | * the high-atomic reserves. This will over-estimate the size of the | |
2407 | * atomic reserve but it avoids a search. | |
2408 | */ | |
97a16fc8 | 2409 | if (likely(!alloc_harder)) |
0aaa29a5 MG |
2410 | free_pages -= z->nr_reserved_highatomic; |
2411 | else | |
1da177e4 | 2412 | min -= min / 4; |
e2b19197 | 2413 | |
d95ea5d1 BZ |
2414 | #ifdef CONFIG_CMA |
2415 | /* If allocation can't use CMA areas don't use free CMA pages */ | |
2416 | if (!(alloc_flags & ALLOC_CMA)) | |
97a16fc8 | 2417 | free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES); |
d95ea5d1 | 2418 | #endif |
026b0814 | 2419 | |
97a16fc8 MG |
2420 | /* |
2421 | * Check watermarks for an order-0 allocation request. If these | |
2422 | * are not met, then a high-order request also cannot go ahead | |
2423 | * even if a suitable page happened to be free. | |
2424 | */ | |
2425 | if (free_pages <= min + z->lowmem_reserve[classzone_idx]) | |
88f5acf8 | 2426 | return false; |
1da177e4 | 2427 | |
97a16fc8 MG |
2428 | /* If this is an order-0 request then the watermark is fine */ |
2429 | if (!order) | |
2430 | return true; | |
2431 | ||
2432 | /* For a high-order request, check at least one suitable page is free */ | |
2433 | for (o = order; o < MAX_ORDER; o++) { | |
2434 | struct free_area *area = &z->free_area[o]; | |
2435 | int mt; | |
2436 | ||
2437 | if (!area->nr_free) | |
2438 | continue; | |
2439 | ||
2440 | if (alloc_harder) | |
2441 | return true; | |
1da177e4 | 2442 | |
97a16fc8 MG |
2443 | for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { |
2444 | if (!list_empty(&area->free_list[mt])) | |
2445 | return true; | |
2446 | } | |
2447 | ||
2448 | #ifdef CONFIG_CMA | |
2449 | if ((alloc_flags & ALLOC_CMA) && | |
2450 | !list_empty(&area->free_list[MIGRATE_CMA])) { | |
2451 | return true; | |
2452 | } | |
2453 | #endif | |
1da177e4 | 2454 | } |
97a16fc8 | 2455 | return false; |
88f5acf8 MG |
2456 | } |
2457 | ||
7aeb09f9 | 2458 | bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, |
88f5acf8 MG |
2459 | int classzone_idx, int alloc_flags) |
2460 | { | |
2461 | return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, | |
2462 | zone_page_state(z, NR_FREE_PAGES)); | |
2463 | } | |
2464 | ||
7aeb09f9 | 2465 | bool zone_watermark_ok_safe(struct zone *z, unsigned int order, |
e2b19197 | 2466 | unsigned long mark, int classzone_idx) |
88f5acf8 MG |
2467 | { |
2468 | long free_pages = zone_page_state(z, NR_FREE_PAGES); | |
2469 | ||
2470 | if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) | |
2471 | free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); | |
2472 | ||
e2b19197 | 2473 | return __zone_watermark_ok(z, order, mark, classzone_idx, 0, |
88f5acf8 | 2474 | free_pages); |
1da177e4 LT |
2475 | } |
2476 | ||
9276b1bc | 2477 | #ifdef CONFIG_NUMA |
81c0a2bb JW |
2478 | static bool zone_local(struct zone *local_zone, struct zone *zone) |
2479 | { | |
fff4068c | 2480 | return local_zone->node == zone->node; |
81c0a2bb JW |
2481 | } |
2482 | ||
957f822a DR |
2483 | static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) |
2484 | { | |
5f7a75ac MG |
2485 | return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) < |
2486 | RECLAIM_DISTANCE; | |
957f822a | 2487 | } |
9276b1bc | 2488 | #else /* CONFIG_NUMA */ |
81c0a2bb JW |
2489 | static bool zone_local(struct zone *local_zone, struct zone *zone) |
2490 | { | |
2491 | return true; | |
2492 | } | |
2493 | ||
957f822a DR |
2494 | static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) |
2495 | { | |
2496 | return true; | |
2497 | } | |
9276b1bc PJ |
2498 | #endif /* CONFIG_NUMA */ |
2499 | ||
4ffeaf35 MG |
2500 | static void reset_alloc_batches(struct zone *preferred_zone) |
2501 | { | |
2502 | struct zone *zone = preferred_zone->zone_pgdat->node_zones; | |
2503 | ||
2504 | do { | |
2505 | mod_zone_page_state(zone, NR_ALLOC_BATCH, | |
2506 | high_wmark_pages(zone) - low_wmark_pages(zone) - | |
2507 | atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH])); | |
57054651 | 2508 | clear_bit(ZONE_FAIR_DEPLETED, &zone->flags); |
4ffeaf35 MG |
2509 | } while (zone++ != preferred_zone); |
2510 | } | |
2511 | ||
7fb1d9fc | 2512 | /* |
0798e519 | 2513 | * get_page_from_freelist goes through the zonelist trying to allocate |
7fb1d9fc RS |
2514 | * a page. |
2515 | */ | |
2516 | static struct page * | |
a9263751 VB |
2517 | get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, |
2518 | const struct alloc_context *ac) | |
753ee728 | 2519 | { |
a9263751 | 2520 | struct zonelist *zonelist = ac->zonelist; |
dd1a239f | 2521 | struct zoneref *z; |
7fb1d9fc | 2522 | struct page *page = NULL; |
5117f45d | 2523 | struct zone *zone; |
4ffeaf35 MG |
2524 | int nr_fair_skipped = 0; |
2525 | bool zonelist_rescan; | |
54a6eb5c | 2526 | |
9276b1bc | 2527 | zonelist_scan: |
4ffeaf35 MG |
2528 | zonelist_rescan = false; |
2529 | ||
7fb1d9fc | 2530 | /* |
9276b1bc | 2531 | * Scan zonelist, looking for a zone with enough free. |
344736f2 | 2532 | * See also __cpuset_node_allowed() comment in kernel/cpuset.c. |
7fb1d9fc | 2533 | */ |
a9263751 VB |
2534 | for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx, |
2535 | ac->nodemask) { | |
e085dbc5 JW |
2536 | unsigned long mark; |
2537 | ||
664eedde MG |
2538 | if (cpusets_enabled() && |
2539 | (alloc_flags & ALLOC_CPUSET) && | |
344736f2 | 2540 | !cpuset_zone_allowed(zone, gfp_mask)) |
cd38b115 | 2541 | continue; |
81c0a2bb JW |
2542 | /* |
2543 | * Distribute pages in proportion to the individual | |
2544 | * zone size to ensure fair page aging. The zone a | |
2545 | * page was allocated in should have no effect on the | |
2546 | * time the page has in memory before being reclaimed. | |
81c0a2bb | 2547 | */ |
3a025760 | 2548 | if (alloc_flags & ALLOC_FAIR) { |
a9263751 | 2549 | if (!zone_local(ac->preferred_zone, zone)) |
f7b5d647 | 2550 | break; |
57054651 | 2551 | if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) { |
4ffeaf35 | 2552 | nr_fair_skipped++; |
3a025760 | 2553 | continue; |
4ffeaf35 | 2554 | } |
81c0a2bb | 2555 | } |
a756cf59 JW |
2556 | /* |
2557 | * When allocating a page cache page for writing, we | |
2558 | * want to get it from a zone that is within its dirty | |
2559 | * limit, such that no single zone holds more than its | |
2560 | * proportional share of globally allowed dirty pages. | |
2561 | * The dirty limits take into account the zone's | |
2562 | * lowmem reserves and high watermark so that kswapd | |
2563 | * should be able to balance it without having to | |
2564 | * write pages from its LRU list. | |
2565 | * | |
2566 | * This may look like it could increase pressure on | |
2567 | * lower zones by failing allocations in higher zones | |
2568 | * before they are full. But the pages that do spill | |
2569 | * over are limited as the lower zones are protected | |
2570 | * by this very same mechanism. It should not become | |
2571 | * a practical burden to them. | |
2572 | * | |
2573 | * XXX: For now, allow allocations to potentially | |
2574 | * exceed the per-zone dirty limit in the slowpath | |
c9ab0c4f | 2575 | * (spread_dirty_pages unset) before going into reclaim, |
a756cf59 JW |
2576 | * which is important when on a NUMA setup the allowed |
2577 | * zones are together not big enough to reach the | |
2578 | * global limit. The proper fix for these situations | |
2579 | * will require awareness of zones in the | |
2580 | * dirty-throttling and the flusher threads. | |
2581 | */ | |
c9ab0c4f | 2582 | if (ac->spread_dirty_pages && !zone_dirty_ok(zone)) |
800a1e75 | 2583 | continue; |
7fb1d9fc | 2584 | |
e085dbc5 JW |
2585 | mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; |
2586 | if (!zone_watermark_ok(zone, order, mark, | |
a9263751 | 2587 | ac->classzone_idx, alloc_flags)) { |
fa5e084e MG |
2588 | int ret; |
2589 | ||
5dab2911 MG |
2590 | /* Checked here to keep the fast path fast */ |
2591 | BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); | |
2592 | if (alloc_flags & ALLOC_NO_WATERMARKS) | |
2593 | goto try_this_zone; | |
2594 | ||
957f822a | 2595 | if (zone_reclaim_mode == 0 || |
a9263751 | 2596 | !zone_allows_reclaim(ac->preferred_zone, zone)) |
cd38b115 MG |
2597 | continue; |
2598 | ||
fa5e084e MG |
2599 | ret = zone_reclaim(zone, gfp_mask, order); |
2600 | switch (ret) { | |
2601 | case ZONE_RECLAIM_NOSCAN: | |
2602 | /* did not scan */ | |
cd38b115 | 2603 | continue; |
fa5e084e MG |
2604 | case ZONE_RECLAIM_FULL: |
2605 | /* scanned but unreclaimable */ | |
cd38b115 | 2606 | continue; |
fa5e084e MG |
2607 | default: |
2608 | /* did we reclaim enough */ | |
fed2719e | 2609 | if (zone_watermark_ok(zone, order, mark, |
a9263751 | 2610 | ac->classzone_idx, alloc_flags)) |
fed2719e MG |
2611 | goto try_this_zone; |
2612 | ||
fed2719e | 2613 | continue; |
0798e519 | 2614 | } |
7fb1d9fc RS |
2615 | } |
2616 | ||
fa5e084e | 2617 | try_this_zone: |
a9263751 | 2618 | page = buffered_rmqueue(ac->preferred_zone, zone, order, |
0aaa29a5 | 2619 | gfp_mask, alloc_flags, ac->migratetype); |
75379191 VB |
2620 | if (page) { |
2621 | if (prep_new_page(page, order, gfp_mask, alloc_flags)) | |
2622 | goto try_this_zone; | |
0aaa29a5 MG |
2623 | |
2624 | /* | |
2625 | * If this is a high-order atomic allocation then check | |
2626 | * if the pageblock should be reserved for the future | |
2627 | */ | |
2628 | if (unlikely(order && (alloc_flags & ALLOC_HARDER))) | |
2629 | reserve_highatomic_pageblock(page, zone, order); | |
2630 | ||
75379191 VB |
2631 | return page; |
2632 | } | |
54a6eb5c | 2633 | } |
9276b1bc | 2634 | |
4ffeaf35 MG |
2635 | /* |
2636 | * The first pass makes sure allocations are spread fairly within the | |
2637 | * local node. However, the local node might have free pages left | |
2638 | * after the fairness batches are exhausted, and remote zones haven't | |
2639 | * even been considered yet. Try once more without fairness, and | |
2640 | * include remote zones now, before entering the slowpath and waking | |
2641 | * kswapd: prefer spilling to a remote zone over swapping locally. | |
2642 | */ | |
2643 | if (alloc_flags & ALLOC_FAIR) { | |
2644 | alloc_flags &= ~ALLOC_FAIR; | |
2645 | if (nr_fair_skipped) { | |
2646 | zonelist_rescan = true; | |
a9263751 | 2647 | reset_alloc_batches(ac->preferred_zone); |
4ffeaf35 MG |
2648 | } |
2649 | if (nr_online_nodes > 1) | |
2650 | zonelist_rescan = true; | |
2651 | } | |
2652 | ||
4ffeaf35 MG |
2653 | if (zonelist_rescan) |
2654 | goto zonelist_scan; | |
2655 | ||
2656 | return NULL; | |
753ee728 MH |
2657 | } |
2658 | ||
29423e77 DR |
2659 | /* |
2660 | * Large machines with many possible nodes should not always dump per-node | |
2661 | * meminfo in irq context. | |
2662 | */ | |
2663 | static inline bool should_suppress_show_mem(void) | |
2664 | { | |
2665 | bool ret = false; | |
2666 | ||
2667 | #if NODES_SHIFT > 8 | |
2668 | ret = in_interrupt(); | |
2669 | #endif | |
2670 | return ret; | |
2671 | } | |
2672 | ||
a238ab5b DH |
2673 | static DEFINE_RATELIMIT_STATE(nopage_rs, |
2674 | DEFAULT_RATELIMIT_INTERVAL, | |
2675 | DEFAULT_RATELIMIT_BURST); | |
2676 | ||
d00181b9 | 2677 | void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...) |
a238ab5b | 2678 | { |
a238ab5b DH |
2679 | unsigned int filter = SHOW_MEM_FILTER_NODES; |
2680 | ||
c0a32fc5 SG |
2681 | if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) || |
2682 | debug_guardpage_minorder() > 0) | |
a238ab5b DH |
2683 | return; |
2684 | ||
2685 | /* | |
2686 | * This documents exceptions given to allocations in certain | |
2687 | * contexts that are allowed to allocate outside current's set | |
2688 | * of allowed nodes. | |
2689 | */ | |
2690 | if (!(gfp_mask & __GFP_NOMEMALLOC)) | |
2691 | if (test_thread_flag(TIF_MEMDIE) || | |
2692 | (current->flags & (PF_MEMALLOC | PF_EXITING))) | |
2693 | filter &= ~SHOW_MEM_FILTER_NODES; | |
d0164adc | 2694 | if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) |
a238ab5b DH |
2695 | filter &= ~SHOW_MEM_FILTER_NODES; |
2696 | ||
2697 | if (fmt) { | |
3ee9a4f0 JP |
2698 | struct va_format vaf; |
2699 | va_list args; | |
2700 | ||
a238ab5b | 2701 | va_start(args, fmt); |
3ee9a4f0 JP |
2702 | |
2703 | vaf.fmt = fmt; | |
2704 | vaf.va = &args; | |
2705 | ||
2706 | pr_warn("%pV", &vaf); | |
2707 | ||
a238ab5b DH |
2708 | va_end(args); |
2709 | } | |
2710 | ||
c5c990e8 VB |
2711 | pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n", |
2712 | current->comm, order, gfp_mask, &gfp_mask); | |
a238ab5b DH |
2713 | dump_stack(); |
2714 | if (!should_suppress_show_mem()) | |
2715 | show_mem(filter); | |
2716 | } | |
2717 | ||
11e33f6a MG |
2718 | static inline struct page * |
2719 | __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, | |
a9263751 | 2720 | const struct alloc_context *ac, unsigned long *did_some_progress) |
11e33f6a | 2721 | { |
6e0fc46d DR |
2722 | struct oom_control oc = { |
2723 | .zonelist = ac->zonelist, | |
2724 | .nodemask = ac->nodemask, | |
2725 | .gfp_mask = gfp_mask, | |
2726 | .order = order, | |
6e0fc46d | 2727 | }; |
11e33f6a MG |
2728 | struct page *page; |
2729 | ||
9879de73 JW |
2730 | *did_some_progress = 0; |
2731 | ||
9879de73 | 2732 | /* |
dc56401f JW |
2733 | * Acquire the oom lock. If that fails, somebody else is |
2734 | * making progress for us. | |
9879de73 | 2735 | */ |
dc56401f | 2736 | if (!mutex_trylock(&oom_lock)) { |
9879de73 | 2737 | *did_some_progress = 1; |
11e33f6a | 2738 | schedule_timeout_uninterruptible(1); |
1da177e4 LT |
2739 | return NULL; |
2740 | } | |
6b1de916 | 2741 | |
11e33f6a MG |
2742 | /* |
2743 | * Go through the zonelist yet one more time, keep very high watermark | |
2744 | * here, this is only to catch a parallel oom killing, we must fail if | |
2745 | * we're still under heavy pressure. | |
2746 | */ | |
a9263751 VB |
2747 | page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order, |
2748 | ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); | |
7fb1d9fc | 2749 | if (page) |
11e33f6a MG |
2750 | goto out; |
2751 | ||
4365a567 | 2752 | if (!(gfp_mask & __GFP_NOFAIL)) { |
9879de73 JW |
2753 | /* Coredumps can quickly deplete all memory reserves */ |
2754 | if (current->flags & PF_DUMPCORE) | |
2755 | goto out; | |
4365a567 KH |
2756 | /* The OOM killer will not help higher order allocs */ |
2757 | if (order > PAGE_ALLOC_COSTLY_ORDER) | |
2758 | goto out; | |
03668b3c | 2759 | /* The OOM killer does not needlessly kill tasks for lowmem */ |
a9263751 | 2760 | if (ac->high_zoneidx < ZONE_NORMAL) |
03668b3c | 2761 | goto out; |
9083905a | 2762 | /* The OOM killer does not compensate for IO-less reclaim */ |
cc873177 JW |
2763 | if (!(gfp_mask & __GFP_FS)) { |
2764 | /* | |
2765 | * XXX: Page reclaim didn't yield anything, | |
2766 | * and the OOM killer can't be invoked, but | |
9083905a | 2767 | * keep looping as per tradition. |
cc873177 JW |
2768 | */ |
2769 | *did_some_progress = 1; | |
9879de73 | 2770 | goto out; |
cc873177 | 2771 | } |
9083905a JW |
2772 | if (pm_suspended_storage()) |
2773 | goto out; | |
4167e9b2 | 2774 | /* The OOM killer may not free memory on a specific node */ |
4365a567 KH |
2775 | if (gfp_mask & __GFP_THISNODE) |
2776 | goto out; | |
2777 | } | |
11e33f6a | 2778 | /* Exhausted what can be done so it's blamo time */ |
5020e285 | 2779 | if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { |
c32b3cbe | 2780 | *did_some_progress = 1; |
5020e285 MH |
2781 | |
2782 | if (gfp_mask & __GFP_NOFAIL) { | |
2783 | page = get_page_from_freelist(gfp_mask, order, | |
2784 | ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac); | |
2785 | /* | |
2786 | * fallback to ignore cpuset restriction if our nodes | |
2787 | * are depleted | |
2788 | */ | |
2789 | if (!page) | |
2790 | page = get_page_from_freelist(gfp_mask, order, | |
2791 | ALLOC_NO_WATERMARKS, ac); | |
2792 | } | |
2793 | } | |
11e33f6a | 2794 | out: |
dc56401f | 2795 | mutex_unlock(&oom_lock); |
11e33f6a MG |
2796 | return page; |
2797 | } | |
2798 | ||
56de7263 MG |
2799 | #ifdef CONFIG_COMPACTION |
2800 | /* Try memory compaction for high-order allocations before reclaim */ | |
2801 | static struct page * | |
2802 | __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, | |
a9263751 VB |
2803 | int alloc_flags, const struct alloc_context *ac, |
2804 | enum migrate_mode mode, int *contended_compaction, | |
2805 | bool *deferred_compaction) | |
56de7263 | 2806 | { |
53853e2d | 2807 | unsigned long compact_result; |
98dd3b48 | 2808 | struct page *page; |
53853e2d VB |
2809 | |
2810 | if (!order) | |
66199712 | 2811 | return NULL; |
66199712 | 2812 | |
c06b1fca | 2813 | current->flags |= PF_MEMALLOC; |
1a6d53a1 VB |
2814 | compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, |
2815 | mode, contended_compaction); | |
c06b1fca | 2816 | current->flags &= ~PF_MEMALLOC; |
56de7263 | 2817 | |
98dd3b48 VB |
2818 | switch (compact_result) { |
2819 | case COMPACT_DEFERRED: | |
53853e2d | 2820 | *deferred_compaction = true; |
98dd3b48 VB |
2821 | /* fall-through */ |
2822 | case COMPACT_SKIPPED: | |
2823 | return NULL; | |
2824 | default: | |
2825 | break; | |
2826 | } | |
53853e2d | 2827 | |
98dd3b48 VB |
2828 | /* |
2829 | * At least in one zone compaction wasn't deferred or skipped, so let's | |
2830 | * count a compaction stall | |
2831 | */ | |
2832 | count_vm_event(COMPACTSTALL); | |
8fb74b9f | 2833 | |
a9263751 VB |
2834 | page = get_page_from_freelist(gfp_mask, order, |
2835 | alloc_flags & ~ALLOC_NO_WATERMARKS, ac); | |
53853e2d | 2836 | |
98dd3b48 VB |
2837 | if (page) { |
2838 | struct zone *zone = page_zone(page); | |
53853e2d | 2839 | |
98dd3b48 VB |
2840 | zone->compact_blockskip_flush = false; |
2841 | compaction_defer_reset(zone, order, true); | |
2842 | count_vm_event(COMPACTSUCCESS); | |
2843 | return page; | |
2844 | } | |
56de7263 | 2845 | |
98dd3b48 VB |
2846 | /* |
2847 | * It's bad if compaction run occurs and fails. The most likely reason | |
2848 | * is that pages exist, but not enough to satisfy watermarks. | |
2849 | */ | |
2850 | count_vm_event(COMPACTFAIL); | |
66199712 | 2851 | |
98dd3b48 | 2852 | cond_resched(); |
56de7263 MG |
2853 | |
2854 | return NULL; | |
2855 | } | |
2856 | #else | |
2857 | static inline struct page * | |
2858 | __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, | |
a9263751 VB |
2859 | int alloc_flags, const struct alloc_context *ac, |
2860 | enum migrate_mode mode, int *contended_compaction, | |
2861 | bool *deferred_compaction) | |
56de7263 MG |
2862 | { |
2863 | return NULL; | |
2864 | } | |
2865 | #endif /* CONFIG_COMPACTION */ | |
2866 | ||
bba90710 MS |
2867 | /* Perform direct synchronous page reclaim */ |
2868 | static int | |
a9263751 VB |
2869 | __perform_reclaim(gfp_t gfp_mask, unsigned int order, |
2870 | const struct alloc_context *ac) | |
11e33f6a | 2871 | { |
11e33f6a | 2872 | struct reclaim_state reclaim_state; |
bba90710 | 2873 | int progress; |
11e33f6a MG |
2874 | |
2875 | cond_resched(); | |
2876 | ||
2877 | /* We now go into synchronous reclaim */ | |
2878 | cpuset_memory_pressure_bump(); | |
c06b1fca | 2879 | current->flags |= PF_MEMALLOC; |
11e33f6a MG |
2880 | lockdep_set_current_reclaim_state(gfp_mask); |
2881 | reclaim_state.reclaimed_slab = 0; | |
c06b1fca | 2882 | current->reclaim_state = &reclaim_state; |
11e33f6a | 2883 | |
a9263751 VB |
2884 | progress = try_to_free_pages(ac->zonelist, order, gfp_mask, |
2885 | ac->nodemask); | |
11e33f6a | 2886 | |
c06b1fca | 2887 | current->reclaim_state = NULL; |
11e33f6a | 2888 | lockdep_clear_current_reclaim_state(); |
c06b1fca | 2889 | current->flags &= ~PF_MEMALLOC; |
11e33f6a MG |
2890 | |
2891 | cond_resched(); | |
2892 | ||
bba90710 MS |
2893 | return progress; |
2894 | } | |
2895 | ||
2896 | /* The really slow allocator path where we enter direct reclaim */ | |
2897 | static inline struct page * | |
2898 | __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, | |
a9263751 VB |
2899 | int alloc_flags, const struct alloc_context *ac, |
2900 | unsigned long *did_some_progress) | |
bba90710 MS |
2901 | { |
2902 | struct page *page = NULL; | |
2903 | bool drained = false; | |
2904 | ||
a9263751 | 2905 | *did_some_progress = __perform_reclaim(gfp_mask, order, ac); |
9ee493ce MG |
2906 | if (unlikely(!(*did_some_progress))) |
2907 | return NULL; | |
11e33f6a | 2908 | |
9ee493ce | 2909 | retry: |
a9263751 VB |
2910 | page = get_page_from_freelist(gfp_mask, order, |
2911 | alloc_flags & ~ALLOC_NO_WATERMARKS, ac); | |
9ee493ce MG |
2912 | |
2913 | /* | |
2914 | * If an allocation failed after direct reclaim, it could be because | |
0aaa29a5 MG |
2915 | * pages are pinned on the per-cpu lists or in high alloc reserves. |
2916 | * Shrink them them and try again | |
9ee493ce MG |
2917 | */ |
2918 | if (!page && !drained) { | |
0aaa29a5 | 2919 | unreserve_highatomic_pageblock(ac); |
93481ff0 | 2920 | drain_all_pages(NULL); |
9ee493ce MG |
2921 | drained = true; |
2922 | goto retry; | |
2923 | } | |
2924 | ||
11e33f6a MG |
2925 | return page; |
2926 | } | |
2927 | ||
a9263751 | 2928 | static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac) |
3a025760 JW |
2929 | { |
2930 | struct zoneref *z; | |
2931 | struct zone *zone; | |
2932 | ||
a9263751 VB |
2933 | for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, |
2934 | ac->high_zoneidx, ac->nodemask) | |
2935 | wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone)); | |
3a025760 JW |
2936 | } |
2937 | ||
341ce06f PZ |
2938 | static inline int |
2939 | gfp_to_alloc_flags(gfp_t gfp_mask) | |
2940 | { | |
341ce06f | 2941 | int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; |
1da177e4 | 2942 | |
a56f57ff | 2943 | /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ |
e6223a3b | 2944 | BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); |
933e312e | 2945 | |
341ce06f PZ |
2946 | /* |
2947 | * The caller may dip into page reserves a bit more if the caller | |
2948 | * cannot run direct reclaim, or if the caller has realtime scheduling | |
2949 | * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will | |
d0164adc | 2950 | * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). |
341ce06f | 2951 | */ |
e6223a3b | 2952 | alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); |
1da177e4 | 2953 | |
d0164adc | 2954 | if (gfp_mask & __GFP_ATOMIC) { |
5c3240d9 | 2955 | /* |
b104a35d DR |
2956 | * Not worth trying to allocate harder for __GFP_NOMEMALLOC even |
2957 | * if it can't schedule. | |
5c3240d9 | 2958 | */ |
b104a35d | 2959 | if (!(gfp_mask & __GFP_NOMEMALLOC)) |
5c3240d9 | 2960 | alloc_flags |= ALLOC_HARDER; |
523b9458 | 2961 | /* |
b104a35d | 2962 | * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the |
344736f2 | 2963 | * comment for __cpuset_node_allowed(). |
523b9458 | 2964 | */ |
341ce06f | 2965 | alloc_flags &= ~ALLOC_CPUSET; |
c06b1fca | 2966 | } else if (unlikely(rt_task(current)) && !in_interrupt()) |
341ce06f PZ |
2967 | alloc_flags |= ALLOC_HARDER; |
2968 | ||
b37f1dd0 MG |
2969 | if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) { |
2970 | if (gfp_mask & __GFP_MEMALLOC) | |
2971 | alloc_flags |= ALLOC_NO_WATERMARKS; | |
907aed48 MG |
2972 | else if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) |
2973 | alloc_flags |= ALLOC_NO_WATERMARKS; | |
2974 | else if (!in_interrupt() && | |
2975 | ((current->flags & PF_MEMALLOC) || | |
2976 | unlikely(test_thread_flag(TIF_MEMDIE)))) | |
341ce06f | 2977 | alloc_flags |= ALLOC_NO_WATERMARKS; |
1da177e4 | 2978 | } |
d95ea5d1 | 2979 | #ifdef CONFIG_CMA |
43e7a34d | 2980 | if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) |
d95ea5d1 BZ |
2981 | alloc_flags |= ALLOC_CMA; |
2982 | #endif | |
341ce06f PZ |
2983 | return alloc_flags; |
2984 | } | |
2985 | ||
072bb0aa MG |
2986 | bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) |
2987 | { | |
b37f1dd0 | 2988 | return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS); |
072bb0aa MG |
2989 | } |
2990 | ||
d0164adc MG |
2991 | static inline bool is_thp_gfp_mask(gfp_t gfp_mask) |
2992 | { | |
2993 | return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE; | |
2994 | } | |
2995 | ||
11e33f6a MG |
2996 | static inline struct page * |
2997 | __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, | |
a9263751 | 2998 | struct alloc_context *ac) |
11e33f6a | 2999 | { |
d0164adc | 3000 | bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; |
11e33f6a MG |
3001 | struct page *page = NULL; |
3002 | int alloc_flags; | |
3003 | unsigned long pages_reclaimed = 0; | |
3004 | unsigned long did_some_progress; | |
e0b9daeb | 3005 | enum migrate_mode migration_mode = MIGRATE_ASYNC; |
66199712 | 3006 | bool deferred_compaction = false; |
1f9efdef | 3007 | int contended_compaction = COMPACT_CONTENDED_NONE; |
1da177e4 | 3008 | |
72807a74 MG |
3009 | /* |
3010 | * In the slowpath, we sanity check order to avoid ever trying to | |
3011 | * reclaim >= MAX_ORDER areas which will never succeed. Callers may | |
3012 | * be using allocators in order of preference for an area that is | |
3013 | * too large. | |
3014 | */ | |
1fc28b70 MG |
3015 | if (order >= MAX_ORDER) { |
3016 | WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); | |
72807a74 | 3017 | return NULL; |
1fc28b70 | 3018 | } |
1da177e4 | 3019 | |
d0164adc MG |
3020 | /* |
3021 | * We also sanity check to catch abuse of atomic reserves being used by | |
3022 | * callers that are not in atomic context. | |
3023 | */ | |
3024 | if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == | |
3025 | (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) | |
3026 | gfp_mask &= ~__GFP_ATOMIC; | |
3027 | ||
952f3b51 | 3028 | /* |
4167e9b2 DR |
3029 | * If this allocation cannot block and it is for a specific node, then |
3030 | * fail early. There's no need to wakeup kswapd or retry for a | |
3031 | * speculative node-specific allocation. | |
952f3b51 | 3032 | */ |
d0164adc | 3033 | if (IS_ENABLED(CONFIG_NUMA) && (gfp_mask & __GFP_THISNODE) && !can_direct_reclaim) |
952f3b51 CL |
3034 | goto nopage; |
3035 | ||
9879de73 | 3036 | retry: |
d0164adc | 3037 | if (gfp_mask & __GFP_KSWAPD_RECLAIM) |
a9263751 | 3038 | wake_all_kswapds(order, ac); |
1da177e4 | 3039 | |
9bf2229f | 3040 | /* |
7fb1d9fc RS |
3041 | * OK, we're below the kswapd watermark and have kicked background |
3042 | * reclaim. Now things get more complex, so set up alloc_flags according | |
3043 | * to how we want to proceed. | |
9bf2229f | 3044 | */ |
341ce06f | 3045 | alloc_flags = gfp_to_alloc_flags(gfp_mask); |
1da177e4 | 3046 | |
f33261d7 DR |
3047 | /* |
3048 | * Find the true preferred zone if the allocation is unconstrained by | |
3049 | * cpusets. | |
3050 | */ | |
a9263751 | 3051 | if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) { |
d8846374 | 3052 | struct zoneref *preferred_zoneref; |
a9263751 VB |
3053 | preferred_zoneref = first_zones_zonelist(ac->zonelist, |
3054 | ac->high_zoneidx, NULL, &ac->preferred_zone); | |
3055 | ac->classzone_idx = zonelist_zone_idx(preferred_zoneref); | |
d8846374 | 3056 | } |
f33261d7 | 3057 | |
341ce06f | 3058 | /* This is the last chance, in general, before the goto nopage. */ |
a9263751 VB |
3059 | page = get_page_from_freelist(gfp_mask, order, |
3060 | alloc_flags & ~ALLOC_NO_WATERMARKS, ac); | |
7fb1d9fc RS |
3061 | if (page) |
3062 | goto got_pg; | |
1da177e4 | 3063 | |
11e33f6a | 3064 | /* Allocate without watermarks if the context allows */ |
341ce06f | 3065 | if (alloc_flags & ALLOC_NO_WATERMARKS) { |
183f6371 MG |
3066 | /* |
3067 | * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds | |
3068 | * the allocation is high priority and these type of | |
3069 | * allocations are system rather than user orientated | |
3070 | */ | |
a9263751 | 3071 | ac->zonelist = node_zonelist(numa_node_id(), gfp_mask); |
33d53103 MH |
3072 | page = get_page_from_freelist(gfp_mask, order, |
3073 | ALLOC_NO_WATERMARKS, ac); | |
3074 | if (page) | |
3075 | goto got_pg; | |
1da177e4 LT |
3076 | } |
3077 | ||
d0164adc MG |
3078 | /* Caller is not willing to reclaim, we can't balance anything */ |
3079 | if (!can_direct_reclaim) { | |
aed0a0e3 | 3080 | /* |
33d53103 MH |
3081 | * All existing users of the __GFP_NOFAIL are blockable, so warn |
3082 | * of any new users that actually allow this type of allocation | |
3083 | * to fail. | |
aed0a0e3 DR |
3084 | */ |
3085 | WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL); | |
1da177e4 | 3086 | goto nopage; |
aed0a0e3 | 3087 | } |
1da177e4 | 3088 | |
341ce06f | 3089 | /* Avoid recursion of direct reclaim */ |
33d53103 MH |
3090 | if (current->flags & PF_MEMALLOC) { |
3091 | /* | |
3092 | * __GFP_NOFAIL request from this context is rather bizarre | |
3093 | * because we cannot reclaim anything and only can loop waiting | |
3094 | * for somebody to do a work for us. | |
3095 | */ | |
3096 | if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { | |
3097 | cond_resched(); | |
3098 | goto retry; | |
3099 | } | |
341ce06f | 3100 | goto nopage; |
33d53103 | 3101 | } |
341ce06f | 3102 | |
6583bb64 DR |
3103 | /* Avoid allocations with no watermarks from looping endlessly */ |
3104 | if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) | |
3105 | goto nopage; | |
3106 | ||
77f1fe6b MG |
3107 | /* |
3108 | * Try direct compaction. The first pass is asynchronous. Subsequent | |
3109 | * attempts after direct reclaim are synchronous | |
3110 | */ | |
a9263751 VB |
3111 | page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, |
3112 | migration_mode, | |
3113 | &contended_compaction, | |
53853e2d | 3114 | &deferred_compaction); |
56de7263 MG |
3115 | if (page) |
3116 | goto got_pg; | |
75f30861 | 3117 | |
1f9efdef | 3118 | /* Checks for THP-specific high-order allocations */ |
d0164adc | 3119 | if (is_thp_gfp_mask(gfp_mask)) { |
1f9efdef VB |
3120 | /* |
3121 | * If compaction is deferred for high-order allocations, it is | |
3122 | * because sync compaction recently failed. If this is the case | |
3123 | * and the caller requested a THP allocation, we do not want | |
3124 | * to heavily disrupt the system, so we fail the allocation | |
3125 | * instead of entering direct reclaim. | |
3126 | */ | |
3127 | if (deferred_compaction) | |
3128 | goto nopage; | |
3129 | ||
3130 | /* | |
3131 | * In all zones where compaction was attempted (and not | |
3132 | * deferred or skipped), lock contention has been detected. | |
3133 | * For THP allocation we do not want to disrupt the others | |
3134 | * so we fallback to base pages instead. | |
3135 | */ | |
3136 | if (contended_compaction == COMPACT_CONTENDED_LOCK) | |
3137 | goto nopage; | |
3138 | ||
3139 | /* | |
3140 | * If compaction was aborted due to need_resched(), we do not | |
3141 | * want to further increase allocation latency, unless it is | |
3142 | * khugepaged trying to collapse. | |
3143 | */ | |
3144 | if (contended_compaction == COMPACT_CONTENDED_SCHED | |
3145 | && !(current->flags & PF_KTHREAD)) | |
3146 | goto nopage; | |
3147 | } | |
66199712 | 3148 | |
8fe78048 DR |
3149 | /* |
3150 | * It can become very expensive to allocate transparent hugepages at | |
3151 | * fault, so use asynchronous memory compaction for THP unless it is | |
3152 | * khugepaged trying to collapse. | |
3153 | */ | |
d0164adc | 3154 | if (!is_thp_gfp_mask(gfp_mask) || (current->flags & PF_KTHREAD)) |
8fe78048 DR |
3155 | migration_mode = MIGRATE_SYNC_LIGHT; |
3156 | ||
11e33f6a | 3157 | /* Try direct reclaim and then allocating */ |
a9263751 VB |
3158 | page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, |
3159 | &did_some_progress); | |
11e33f6a MG |
3160 | if (page) |
3161 | goto got_pg; | |
1da177e4 | 3162 | |
9083905a JW |
3163 | /* Do not loop if specifically requested */ |
3164 | if (gfp_mask & __GFP_NORETRY) | |
3165 | goto noretry; | |
3166 | ||
3167 | /* Keep reclaiming pages as long as there is reasonable progress */ | |
a41f24ea | 3168 | pages_reclaimed += did_some_progress; |
9083905a JW |
3169 | if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) || |
3170 | ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) { | |
11e33f6a | 3171 | /* Wait for some write requests to complete then retry */ |
a9263751 | 3172 | wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50); |
9879de73 | 3173 | goto retry; |
1da177e4 LT |
3174 | } |
3175 | ||
9083905a JW |
3176 | /* Reclaim has failed us, start killing things */ |
3177 | page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); | |
3178 | if (page) | |
3179 | goto got_pg; | |
3180 | ||
3181 | /* Retry as long as the OOM killer is making progress */ | |
3182 | if (did_some_progress) | |
3183 | goto retry; | |
3184 | ||
3185 | noretry: | |
3186 | /* | |
3187 | * High-order allocations do not necessarily loop after | |
3188 | * direct reclaim and reclaim/compaction depends on compaction | |
3189 | * being called after reclaim so call directly if necessary | |
3190 | */ | |
3191 | page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, | |
3192 | ac, migration_mode, | |
3193 | &contended_compaction, | |
3194 | &deferred_compaction); | |
3195 | if (page) | |
3196 | goto got_pg; | |
1da177e4 | 3197 | nopage: |
a238ab5b | 3198 | warn_alloc_failed(gfp_mask, order, NULL); |
1da177e4 | 3199 | got_pg: |
072bb0aa | 3200 | return page; |
1da177e4 | 3201 | } |
11e33f6a MG |
3202 | |
3203 | /* | |
3204 | * This is the 'heart' of the zoned buddy allocator. | |
3205 | */ | |
3206 | struct page * | |
3207 | __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, | |
3208 | struct zonelist *zonelist, nodemask_t *nodemask) | |
3209 | { | |
d8846374 | 3210 | struct zoneref *preferred_zoneref; |
cc9a6c87 | 3211 | struct page *page = NULL; |
cc9a6c87 | 3212 | unsigned int cpuset_mems_cookie; |
3a025760 | 3213 | int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR; |
91fbdc0f | 3214 | gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */ |
a9263751 VB |
3215 | struct alloc_context ac = { |
3216 | .high_zoneidx = gfp_zone(gfp_mask), | |
3217 | .nodemask = nodemask, | |
3218 | .migratetype = gfpflags_to_migratetype(gfp_mask), | |
3219 | }; | |
11e33f6a | 3220 | |
dcce284a BH |
3221 | gfp_mask &= gfp_allowed_mask; |
3222 | ||
11e33f6a MG |
3223 | lockdep_trace_alloc(gfp_mask); |
3224 | ||
d0164adc | 3225 | might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); |
11e33f6a MG |
3226 | |
3227 | if (should_fail_alloc_page(gfp_mask, order)) | |
3228 | return NULL; | |
3229 | ||
3230 | /* | |
3231 | * Check the zones suitable for the gfp_mask contain at least one | |
3232 | * valid zone. It's possible to have an empty zonelist as a result | |
4167e9b2 | 3233 | * of __GFP_THISNODE and a memoryless node |
11e33f6a MG |
3234 | */ |
3235 | if (unlikely(!zonelist->_zonerefs->zone)) | |
3236 | return NULL; | |
3237 | ||
a9263751 | 3238 | if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE) |
21bb9bd1 VB |
3239 | alloc_flags |= ALLOC_CMA; |
3240 | ||
cc9a6c87 | 3241 | retry_cpuset: |
d26914d1 | 3242 | cpuset_mems_cookie = read_mems_allowed_begin(); |
cc9a6c87 | 3243 | |
a9263751 VB |
3244 | /* We set it here, as __alloc_pages_slowpath might have changed it */ |
3245 | ac.zonelist = zonelist; | |
c9ab0c4f MG |
3246 | |
3247 | /* Dirty zone balancing only done in the fast path */ | |
3248 | ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE); | |
3249 | ||
5117f45d | 3250 | /* The preferred zone is used for statistics later */ |
a9263751 VB |
3251 | preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx, |
3252 | ac.nodemask ? : &cpuset_current_mems_allowed, | |
3253 | &ac.preferred_zone); | |
3254 | if (!ac.preferred_zone) | |
cc9a6c87 | 3255 | goto out; |
a9263751 | 3256 | ac.classzone_idx = zonelist_zone_idx(preferred_zoneref); |
5117f45d MG |
3257 | |
3258 | /* First allocation attempt */ | |
91fbdc0f | 3259 | alloc_mask = gfp_mask|__GFP_HARDWALL; |
a9263751 | 3260 | page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac); |
21caf2fc ML |
3261 | if (unlikely(!page)) { |
3262 | /* | |
3263 | * Runtime PM, block IO and its error handling path | |
3264 | * can deadlock because I/O on the device might not | |
3265 | * complete. | |
3266 | */ | |
91fbdc0f | 3267 | alloc_mask = memalloc_noio_flags(gfp_mask); |
c9ab0c4f | 3268 | ac.spread_dirty_pages = false; |
91fbdc0f | 3269 | |
a9263751 | 3270 | page = __alloc_pages_slowpath(alloc_mask, order, &ac); |
21caf2fc | 3271 | } |
11e33f6a | 3272 | |
23f086f9 XQ |
3273 | if (kmemcheck_enabled && page) |
3274 | kmemcheck_pagealloc_alloc(page, order, gfp_mask); | |
3275 | ||
a9263751 | 3276 | trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype); |
cc9a6c87 MG |
3277 | |
3278 | out: | |
3279 | /* | |
3280 | * When updating a task's mems_allowed, it is possible to race with | |
3281 | * parallel threads in such a way that an allocation can fail while | |
3282 | * the mask is being updated. If a page allocation is about to fail, | |
3283 | * check if the cpuset changed during allocation and if so, retry. | |
3284 | */ | |
d26914d1 | 3285 | if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) |
cc9a6c87 MG |
3286 | goto retry_cpuset; |
3287 | ||
11e33f6a | 3288 | return page; |
1da177e4 | 3289 | } |
d239171e | 3290 | EXPORT_SYMBOL(__alloc_pages_nodemask); |
1da177e4 LT |
3291 | |
3292 | /* | |
3293 | * Common helper functions. | |
3294 | */ | |
920c7a5d | 3295 | unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) |
1da177e4 | 3296 | { |
945a1113 AM |
3297 | struct page *page; |
3298 | ||
3299 | /* | |
3300 | * __get_free_pages() returns a 32-bit address, which cannot represent | |
3301 | * a highmem page | |
3302 | */ | |
3303 | VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); | |
3304 | ||
1da177e4 LT |
3305 | page = alloc_pages(gfp_mask, order); |
3306 | if (!page) | |
3307 | return 0; | |
3308 | return (unsigned long) page_address(page); | |
3309 | } | |
1da177e4 LT |
3310 | EXPORT_SYMBOL(__get_free_pages); |
3311 | ||
920c7a5d | 3312 | unsigned long get_zeroed_page(gfp_t gfp_mask) |
1da177e4 | 3313 | { |
945a1113 | 3314 | return __get_free_pages(gfp_mask | __GFP_ZERO, 0); |
1da177e4 | 3315 | } |
1da177e4 LT |
3316 | EXPORT_SYMBOL(get_zeroed_page); |
3317 | ||
920c7a5d | 3318 | void __free_pages(struct page *page, unsigned int order) |
1da177e4 | 3319 | { |
b5810039 | 3320 | if (put_page_testzero(page)) { |
1da177e4 | 3321 | if (order == 0) |
b745bc85 | 3322 | free_hot_cold_page(page, false); |
1da177e4 LT |
3323 | else |
3324 | __free_pages_ok(page, order); | |
3325 | } | |
3326 | } | |
3327 | ||
3328 | EXPORT_SYMBOL(__free_pages); | |
3329 | ||
920c7a5d | 3330 | void free_pages(unsigned long addr, unsigned int order) |
1da177e4 LT |
3331 | { |
3332 | if (addr != 0) { | |
725d704e | 3333 | VM_BUG_ON(!virt_addr_valid((void *)addr)); |
1da177e4 LT |
3334 | __free_pages(virt_to_page((void *)addr), order); |
3335 | } | |
3336 | } | |
3337 | ||
3338 | EXPORT_SYMBOL(free_pages); | |
3339 | ||
b63ae8ca AD |
3340 | /* |
3341 | * Page Fragment: | |
3342 | * An arbitrary-length arbitrary-offset area of memory which resides | |
3343 | * within a 0 or higher order page. Multiple fragments within that page | |
3344 | * are individually refcounted, in the page's reference counter. | |
3345 | * | |
3346 | * The page_frag functions below provide a simple allocation framework for | |
3347 | * page fragments. This is used by the network stack and network device | |
3348 | * drivers to provide a backing region of memory for use as either an | |
3349 | * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. | |
3350 | */ | |
3351 | static struct page *__page_frag_refill(struct page_frag_cache *nc, | |
3352 | gfp_t gfp_mask) | |
3353 | { | |
3354 | struct page *page = NULL; | |
3355 | gfp_t gfp = gfp_mask; | |
3356 | ||
3357 | #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) | |
3358 | gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | | |
3359 | __GFP_NOMEMALLOC; | |
3360 | page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, | |
3361 | PAGE_FRAG_CACHE_MAX_ORDER); | |
3362 | nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; | |
3363 | #endif | |
3364 | if (unlikely(!page)) | |
3365 | page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); | |
3366 | ||
3367 | nc->va = page ? page_address(page) : NULL; | |
3368 | ||
3369 | return page; | |
3370 | } | |
3371 | ||
3372 | void *__alloc_page_frag(struct page_frag_cache *nc, | |
3373 | unsigned int fragsz, gfp_t gfp_mask) | |
3374 | { | |
3375 | unsigned int size = PAGE_SIZE; | |
3376 | struct page *page; | |
3377 | int offset; | |
3378 | ||
3379 | if (unlikely(!nc->va)) { | |
3380 | refill: | |
3381 | page = __page_frag_refill(nc, gfp_mask); | |
3382 | if (!page) | |
3383 | return NULL; | |
3384 | ||
3385 | #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) | |
3386 | /* if size can vary use size else just use PAGE_SIZE */ | |
3387 | size = nc->size; | |
3388 | #endif | |
3389 | /* Even if we own the page, we do not use atomic_set(). | |
3390 | * This would break get_page_unless_zero() users. | |
3391 | */ | |
3392 | atomic_add(size - 1, &page->_count); | |
3393 | ||
3394 | /* reset page count bias and offset to start of new frag */ | |
2f064f34 | 3395 | nc->pfmemalloc = page_is_pfmemalloc(page); |
b63ae8ca AD |
3396 | nc->pagecnt_bias = size; |
3397 | nc->offset = size; | |
3398 | } | |
3399 | ||
3400 | offset = nc->offset - fragsz; | |
3401 | if (unlikely(offset < 0)) { | |
3402 | page = virt_to_page(nc->va); | |
3403 | ||
3404 | if (!atomic_sub_and_test(nc->pagecnt_bias, &page->_count)) | |
3405 | goto refill; | |
3406 | ||
3407 | #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) | |
3408 | /* if size can vary use size else just use PAGE_SIZE */ | |
3409 | size = nc->size; | |
3410 | #endif | |
3411 | /* OK, page count is 0, we can safely set it */ | |
3412 | atomic_set(&page->_count, size); | |
3413 | ||
3414 | /* reset page count bias and offset to start of new frag */ | |
3415 | nc->pagecnt_bias = size; | |
3416 | offset = size - fragsz; | |
3417 | } | |
3418 | ||
3419 | nc->pagecnt_bias--; | |
3420 | nc->offset = offset; | |
3421 | ||
3422 | return nc->va + offset; | |
3423 | } | |
3424 | EXPORT_SYMBOL(__alloc_page_frag); | |
3425 | ||
3426 | /* | |
3427 | * Frees a page fragment allocated out of either a compound or order 0 page. | |
3428 | */ | |
3429 | void __free_page_frag(void *addr) | |
3430 | { | |
3431 | struct page *page = virt_to_head_page(addr); | |
3432 | ||
3433 | if (unlikely(put_page_testzero(page))) | |
3434 | __free_pages_ok(page, compound_order(page)); | |
3435 | } | |
3436 | EXPORT_SYMBOL(__free_page_frag); | |
3437 | ||
6a1a0d3b | 3438 | /* |
52383431 | 3439 | * alloc_kmem_pages charges newly allocated pages to the kmem resource counter |
a9bb7e62 VD |
3440 | * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is |
3441 | * equivalent to alloc_pages. | |
6a1a0d3b | 3442 | * |
52383431 VD |
3443 | * It should be used when the caller would like to use kmalloc, but since the |
3444 | * allocation is large, it has to fall back to the page allocator. | |
3445 | */ | |
3446 | struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order) | |
3447 | { | |
3448 | struct page *page; | |
52383431 | 3449 | |
52383431 | 3450 | page = alloc_pages(gfp_mask, order); |
d05e83a6 VD |
3451 | if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) { |
3452 | __free_pages(page, order); | |
3453 | page = NULL; | |
3454 | } | |
52383431 VD |
3455 | return page; |
3456 | } | |
3457 | ||
3458 | struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order) | |
3459 | { | |
3460 | struct page *page; | |
52383431 | 3461 | |
52383431 | 3462 | page = alloc_pages_node(nid, gfp_mask, order); |
d05e83a6 VD |
3463 | if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) { |
3464 | __free_pages(page, order); | |
3465 | page = NULL; | |
3466 | } | |
52383431 VD |
3467 | return page; |
3468 | } | |
3469 | ||
3470 | /* | |
3471 | * __free_kmem_pages and free_kmem_pages will free pages allocated with | |
3472 | * alloc_kmem_pages. | |
6a1a0d3b | 3473 | */ |
52383431 | 3474 | void __free_kmem_pages(struct page *page, unsigned int order) |
6a1a0d3b | 3475 | { |
d05e83a6 | 3476 | memcg_kmem_uncharge(page, order); |
6a1a0d3b GC |
3477 | __free_pages(page, order); |
3478 | } | |
3479 | ||
52383431 | 3480 | void free_kmem_pages(unsigned long addr, unsigned int order) |
6a1a0d3b GC |
3481 | { |
3482 | if (addr != 0) { | |
3483 | VM_BUG_ON(!virt_addr_valid((void *)addr)); | |
52383431 | 3484 | __free_kmem_pages(virt_to_page((void *)addr), order); |
6a1a0d3b GC |
3485 | } |
3486 | } | |
3487 | ||
d00181b9 KS |
3488 | static void *make_alloc_exact(unsigned long addr, unsigned int order, |
3489 | size_t size) | |
ee85c2e1 AK |
3490 | { |
3491 | if (addr) { | |
3492 | unsigned long alloc_end = addr + (PAGE_SIZE << order); | |
3493 | unsigned long used = addr + PAGE_ALIGN(size); | |
3494 | ||
3495 | split_page(virt_to_page((void *)addr), order); | |
3496 | while (used < alloc_end) { | |
3497 | free_page(used); | |
3498 | used += PAGE_SIZE; | |
3499 | } | |
3500 | } | |
3501 | return (void *)addr; | |
3502 | } | |
3503 | ||
2be0ffe2 TT |
3504 | /** |
3505 | * alloc_pages_exact - allocate an exact number physically-contiguous pages. | |
3506 | * @size: the number of bytes to allocate | |
3507 | * @gfp_mask: GFP flags for the allocation | |
3508 | * | |
3509 | * This function is similar to alloc_pages(), except that it allocates the | |
3510 | * minimum number of pages to satisfy the request. alloc_pages() can only | |
3511 | * allocate memory in power-of-two pages. | |
3512 | * | |
3513 | * This function is also limited by MAX_ORDER. | |
3514 | * | |
3515 | * Memory allocated by this function must be released by free_pages_exact(). | |
3516 | */ | |
3517 | void *alloc_pages_exact(size_t size, gfp_t gfp_mask) | |
3518 | { | |
3519 | unsigned int order = get_order(size); | |
3520 | unsigned long addr; | |
3521 | ||
3522 | addr = __get_free_pages(gfp_mask, order); | |
ee85c2e1 | 3523 | return make_alloc_exact(addr, order, size); |
2be0ffe2 TT |
3524 | } |
3525 | EXPORT_SYMBOL(alloc_pages_exact); | |
3526 | ||
ee85c2e1 AK |
3527 | /** |
3528 | * alloc_pages_exact_nid - allocate an exact number of physically-contiguous | |
3529 | * pages on a node. | |
b5e6ab58 | 3530 | * @nid: the preferred node ID where memory should be allocated |
ee85c2e1 AK |
3531 | * @size: the number of bytes to allocate |
3532 | * @gfp_mask: GFP flags for the allocation | |
3533 | * | |
3534 | * Like alloc_pages_exact(), but try to allocate on node nid first before falling | |
3535 | * back. | |
ee85c2e1 | 3536 | */ |
e1931811 | 3537 | void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) |
ee85c2e1 | 3538 | { |
d00181b9 | 3539 | unsigned int order = get_order(size); |
ee85c2e1 AK |
3540 | struct page *p = alloc_pages_node(nid, gfp_mask, order); |
3541 | if (!p) | |
3542 | return NULL; | |
3543 | return make_alloc_exact((unsigned long)page_address(p), order, size); | |
3544 | } | |
ee85c2e1 | 3545 | |
2be0ffe2 TT |
3546 | /** |
3547 | * free_pages_exact - release memory allocated via alloc_pages_exact() | |
3548 | * @virt: the value returned by alloc_pages_exact. | |
3549 | * @size: size of allocation, same value as passed to alloc_pages_exact(). | |
3550 | * | |
3551 | * Release the memory allocated by a previous call to alloc_pages_exact. | |
3552 | */ | |
3553 | void free_pages_exact(void *virt, size_t size) | |
3554 | { | |
3555 | unsigned long addr = (unsigned long)virt; | |
3556 | unsigned long end = addr + PAGE_ALIGN(size); | |
3557 | ||
3558 | while (addr < end) { | |
3559 | free_page(addr); | |
3560 | addr += PAGE_SIZE; | |
3561 | } | |
3562 | } | |
3563 | EXPORT_SYMBOL(free_pages_exact); | |
3564 | ||
e0fb5815 ZY |
3565 | /** |
3566 | * nr_free_zone_pages - count number of pages beyond high watermark | |
3567 | * @offset: The zone index of the highest zone | |
3568 | * | |
3569 | * nr_free_zone_pages() counts the number of counts pages which are beyond the | |
3570 | * high watermark within all zones at or below a given zone index. For each | |
3571 | * zone, the number of pages is calculated as: | |
834405c3 | 3572 | * managed_pages - high_pages |
e0fb5815 | 3573 | */ |
ebec3862 | 3574 | static unsigned long nr_free_zone_pages(int offset) |
1da177e4 | 3575 | { |
dd1a239f | 3576 | struct zoneref *z; |
54a6eb5c MG |
3577 | struct zone *zone; |
3578 | ||
e310fd43 | 3579 | /* Just pick one node, since fallback list is circular */ |
ebec3862 | 3580 | unsigned long sum = 0; |
1da177e4 | 3581 | |
0e88460d | 3582 | struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); |
1da177e4 | 3583 | |
54a6eb5c | 3584 | for_each_zone_zonelist(zone, z, zonelist, offset) { |
b40da049 | 3585 | unsigned long size = zone->managed_pages; |
41858966 | 3586 | unsigned long high = high_wmark_pages(zone); |
e310fd43 MB |
3587 | if (size > high) |
3588 | sum += size - high; | |
1da177e4 LT |
3589 | } |
3590 | ||
3591 | return sum; | |
3592 | } | |
3593 | ||
e0fb5815 ZY |
3594 | /** |
3595 | * nr_free_buffer_pages - count number of pages beyond high watermark | |
3596 | * | |
3597 | * nr_free_buffer_pages() counts the number of pages which are beyond the high | |
3598 | * watermark within ZONE_DMA and ZONE_NORMAL. | |
1da177e4 | 3599 | */ |
ebec3862 | 3600 | unsigned long nr_free_buffer_pages(void) |
1da177e4 | 3601 | { |
af4ca457 | 3602 | return nr_free_zone_pages(gfp_zone(GFP_USER)); |
1da177e4 | 3603 | } |
c2f1a551 | 3604 | EXPORT_SYMBOL_GPL(nr_free_buffer_pages); |
1da177e4 | 3605 | |
e0fb5815 ZY |
3606 | /** |
3607 | * nr_free_pagecache_pages - count number of pages beyond high watermark | |
3608 | * | |
3609 | * nr_free_pagecache_pages() counts the number of pages which are beyond the | |
3610 | * high watermark within all zones. | |
1da177e4 | 3611 | */ |
ebec3862 | 3612 | unsigned long nr_free_pagecache_pages(void) |
1da177e4 | 3613 | { |
2a1e274a | 3614 | return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); |
1da177e4 | 3615 | } |
08e0f6a9 CL |
3616 | |
3617 | static inline void show_node(struct zone *zone) | |
1da177e4 | 3618 | { |
e5adfffc | 3619 | if (IS_ENABLED(CONFIG_NUMA)) |
25ba77c1 | 3620 | printk("Node %d ", zone_to_nid(zone)); |
1da177e4 | 3621 | } |
1da177e4 | 3622 | |
1da177e4 LT |
3623 | void si_meminfo(struct sysinfo *val) |
3624 | { | |
3625 | val->totalram = totalram_pages; | |
cc7452b6 | 3626 | val->sharedram = global_page_state(NR_SHMEM); |
d23ad423 | 3627 | val->freeram = global_page_state(NR_FREE_PAGES); |
1da177e4 | 3628 | val->bufferram = nr_blockdev_pages(); |
1da177e4 LT |
3629 | val->totalhigh = totalhigh_pages; |
3630 | val->freehigh = nr_free_highpages(); | |
1da177e4 LT |
3631 | val->mem_unit = PAGE_SIZE; |
3632 | } | |
3633 | ||
3634 | EXPORT_SYMBOL(si_meminfo); | |
3635 | ||
3636 | #ifdef CONFIG_NUMA | |
3637 | void si_meminfo_node(struct sysinfo *val, int nid) | |
3638 | { | |
cdd91a77 JL |
3639 | int zone_type; /* needs to be signed */ |
3640 | unsigned long managed_pages = 0; | |
1da177e4 LT |
3641 | pg_data_t *pgdat = NODE_DATA(nid); |
3642 | ||
cdd91a77 JL |
3643 | for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) |
3644 | managed_pages += pgdat->node_zones[zone_type].managed_pages; | |
3645 | val->totalram = managed_pages; | |
cc7452b6 | 3646 | val->sharedram = node_page_state(nid, NR_SHMEM); |
d23ad423 | 3647 | val->freeram = node_page_state(nid, NR_FREE_PAGES); |
98d2b0eb | 3648 | #ifdef CONFIG_HIGHMEM |
b40da049 | 3649 | val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages; |
d23ad423 CL |
3650 | val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], |
3651 | NR_FREE_PAGES); | |
98d2b0eb CL |
3652 | #else |
3653 | val->totalhigh = 0; | |
3654 | val->freehigh = 0; | |
3655 | #endif | |
1da177e4 LT |
3656 | val->mem_unit = PAGE_SIZE; |
3657 | } | |
3658 | #endif | |
3659 | ||
ddd588b5 | 3660 | /* |
7bf02ea2 DR |
3661 | * Determine whether the node should be displayed or not, depending on whether |
3662 | * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). | |
ddd588b5 | 3663 | */ |
7bf02ea2 | 3664 | bool skip_free_areas_node(unsigned int flags, int nid) |
ddd588b5 DR |
3665 | { |
3666 | bool ret = false; | |
cc9a6c87 | 3667 | unsigned int cpuset_mems_cookie; |
ddd588b5 DR |
3668 | |
3669 | if (!(flags & SHOW_MEM_FILTER_NODES)) | |
3670 | goto out; | |
3671 | ||
cc9a6c87 | 3672 | do { |
d26914d1 | 3673 | cpuset_mems_cookie = read_mems_allowed_begin(); |
cc9a6c87 | 3674 | ret = !node_isset(nid, cpuset_current_mems_allowed); |
d26914d1 | 3675 | } while (read_mems_allowed_retry(cpuset_mems_cookie)); |
ddd588b5 DR |
3676 | out: |
3677 | return ret; | |
3678 | } | |
3679 | ||
1da177e4 LT |
3680 | #define K(x) ((x) << (PAGE_SHIFT-10)) |
3681 | ||
377e4f16 RV |
3682 | static void show_migration_types(unsigned char type) |
3683 | { | |
3684 | static const char types[MIGRATE_TYPES] = { | |
3685 | [MIGRATE_UNMOVABLE] = 'U', | |
377e4f16 | 3686 | [MIGRATE_MOVABLE] = 'M', |
475a2f90 VB |
3687 | [MIGRATE_RECLAIMABLE] = 'E', |
3688 | [MIGRATE_HIGHATOMIC] = 'H', | |
377e4f16 RV |
3689 | #ifdef CONFIG_CMA |
3690 | [MIGRATE_CMA] = 'C', | |
3691 | #endif | |
194159fb | 3692 | #ifdef CONFIG_MEMORY_ISOLATION |
377e4f16 | 3693 | [MIGRATE_ISOLATE] = 'I', |
194159fb | 3694 | #endif |
377e4f16 RV |
3695 | }; |
3696 | char tmp[MIGRATE_TYPES + 1]; | |
3697 | char *p = tmp; | |
3698 | int i; | |
3699 | ||
3700 | for (i = 0; i < MIGRATE_TYPES; i++) { | |
3701 | if (type & (1 << i)) | |
3702 | *p++ = types[i]; | |
3703 | } | |
3704 | ||
3705 | *p = '\0'; | |
3706 | printk("(%s) ", tmp); | |
3707 | } | |
3708 | ||
1da177e4 LT |
3709 | /* |
3710 | * Show free area list (used inside shift_scroll-lock stuff) | |
3711 | * We also calculate the percentage fragmentation. We do this by counting the | |
3712 | * memory on each free list with the exception of the first item on the list. | |
d1bfcdb8 KK |
3713 | * |
3714 | * Bits in @filter: | |
3715 | * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's | |
3716 | * cpuset. | |
1da177e4 | 3717 | */ |
7bf02ea2 | 3718 | void show_free_areas(unsigned int filter) |
1da177e4 | 3719 | { |
d1bfcdb8 | 3720 | unsigned long free_pcp = 0; |
c7241913 | 3721 | int cpu; |
1da177e4 LT |
3722 | struct zone *zone; |
3723 | ||
ee99c71c | 3724 | for_each_populated_zone(zone) { |
7bf02ea2 | 3725 | if (skip_free_areas_node(filter, zone_to_nid(zone))) |
ddd588b5 | 3726 | continue; |
d1bfcdb8 | 3727 | |
761b0677 KK |
3728 | for_each_online_cpu(cpu) |
3729 | free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; | |
1da177e4 LT |
3730 | } |
3731 | ||
a731286d KM |
3732 | printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" |
3733 | " active_file:%lu inactive_file:%lu isolated_file:%lu\n" | |
d1bfcdb8 KK |
3734 | " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n" |
3735 | " slab_reclaimable:%lu slab_unreclaimable:%lu\n" | |
d1ce749a | 3736 | " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" |
d1bfcdb8 | 3737 | " free:%lu free_pcp:%lu free_cma:%lu\n", |
4f98a2fe | 3738 | global_page_state(NR_ACTIVE_ANON), |
4f98a2fe | 3739 | global_page_state(NR_INACTIVE_ANON), |
a731286d KM |
3740 | global_page_state(NR_ISOLATED_ANON), |
3741 | global_page_state(NR_ACTIVE_FILE), | |
4f98a2fe | 3742 | global_page_state(NR_INACTIVE_FILE), |
a731286d | 3743 | global_page_state(NR_ISOLATED_FILE), |
7b854121 | 3744 | global_page_state(NR_UNEVICTABLE), |
b1e7a8fd | 3745 | global_page_state(NR_FILE_DIRTY), |
ce866b34 | 3746 | global_page_state(NR_WRITEBACK), |
fd39fc85 | 3747 | global_page_state(NR_UNSTABLE_NFS), |
3701b033 KM |
3748 | global_page_state(NR_SLAB_RECLAIMABLE), |
3749 | global_page_state(NR_SLAB_UNRECLAIMABLE), | |
65ba55f5 | 3750 | global_page_state(NR_FILE_MAPPED), |
4b02108a | 3751 | global_page_state(NR_SHMEM), |
a25700a5 | 3752 | global_page_state(NR_PAGETABLE), |
d1ce749a | 3753 | global_page_state(NR_BOUNCE), |
d1bfcdb8 KK |
3754 | global_page_state(NR_FREE_PAGES), |
3755 | free_pcp, | |
d1ce749a | 3756 | global_page_state(NR_FREE_CMA_PAGES)); |
1da177e4 | 3757 | |
ee99c71c | 3758 | for_each_populated_zone(zone) { |
1da177e4 LT |
3759 | int i; |
3760 | ||
7bf02ea2 | 3761 | if (skip_free_areas_node(filter, zone_to_nid(zone))) |
ddd588b5 | 3762 | continue; |
d1bfcdb8 KK |
3763 | |
3764 | free_pcp = 0; | |
3765 | for_each_online_cpu(cpu) | |
3766 | free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; | |
3767 | ||
1da177e4 LT |
3768 | show_node(zone); |
3769 | printk("%s" | |
3770 | " free:%lukB" | |
3771 | " min:%lukB" | |
3772 | " low:%lukB" | |
3773 | " high:%lukB" | |
4f98a2fe RR |
3774 | " active_anon:%lukB" |
3775 | " inactive_anon:%lukB" | |
3776 | " active_file:%lukB" | |
3777 | " inactive_file:%lukB" | |
7b854121 | 3778 | " unevictable:%lukB" |
a731286d KM |
3779 | " isolated(anon):%lukB" |
3780 | " isolated(file):%lukB" | |
1da177e4 | 3781 | " present:%lukB" |
9feedc9d | 3782 | " managed:%lukB" |
4a0aa73f KM |
3783 | " mlocked:%lukB" |
3784 | " dirty:%lukB" | |
3785 | " writeback:%lukB" | |
3786 | " mapped:%lukB" | |
4b02108a | 3787 | " shmem:%lukB" |
4a0aa73f KM |
3788 | " slab_reclaimable:%lukB" |
3789 | " slab_unreclaimable:%lukB" | |
c6a7f572 | 3790 | " kernel_stack:%lukB" |
4a0aa73f KM |
3791 | " pagetables:%lukB" |
3792 | " unstable:%lukB" | |
3793 | " bounce:%lukB" | |
d1bfcdb8 KK |
3794 | " free_pcp:%lukB" |
3795 | " local_pcp:%ukB" | |
d1ce749a | 3796 | " free_cma:%lukB" |
4a0aa73f | 3797 | " writeback_tmp:%lukB" |
1da177e4 LT |
3798 | " pages_scanned:%lu" |
3799 | " all_unreclaimable? %s" | |
3800 | "\n", | |
3801 | zone->name, | |
88f5acf8 | 3802 | K(zone_page_state(zone, NR_FREE_PAGES)), |
41858966 MG |
3803 | K(min_wmark_pages(zone)), |
3804 | K(low_wmark_pages(zone)), | |
3805 | K(high_wmark_pages(zone)), | |
4f98a2fe RR |
3806 | K(zone_page_state(zone, NR_ACTIVE_ANON)), |
3807 | K(zone_page_state(zone, NR_INACTIVE_ANON)), | |
3808 | K(zone_page_state(zone, NR_ACTIVE_FILE)), | |
3809 | K(zone_page_state(zone, NR_INACTIVE_FILE)), | |
7b854121 | 3810 | K(zone_page_state(zone, NR_UNEVICTABLE)), |
a731286d KM |
3811 | K(zone_page_state(zone, NR_ISOLATED_ANON)), |
3812 | K(zone_page_state(zone, NR_ISOLATED_FILE)), | |
1da177e4 | 3813 | K(zone->present_pages), |
9feedc9d | 3814 | K(zone->managed_pages), |
4a0aa73f KM |
3815 | K(zone_page_state(zone, NR_MLOCK)), |
3816 | K(zone_page_state(zone, NR_FILE_DIRTY)), | |
3817 | K(zone_page_state(zone, NR_WRITEBACK)), | |
3818 | K(zone_page_state(zone, NR_FILE_MAPPED)), | |
4b02108a | 3819 | K(zone_page_state(zone, NR_SHMEM)), |
4a0aa73f KM |
3820 | K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), |
3821 | K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), | |
c6a7f572 KM |
3822 | zone_page_state(zone, NR_KERNEL_STACK) * |
3823 | THREAD_SIZE / 1024, | |
4a0aa73f KM |
3824 | K(zone_page_state(zone, NR_PAGETABLE)), |
3825 | K(zone_page_state(zone, NR_UNSTABLE_NFS)), | |
3826 | K(zone_page_state(zone, NR_BOUNCE)), | |
d1bfcdb8 KK |
3827 | K(free_pcp), |
3828 | K(this_cpu_read(zone->pageset->pcp.count)), | |
d1ce749a | 3829 | K(zone_page_state(zone, NR_FREE_CMA_PAGES)), |
4a0aa73f | 3830 | K(zone_page_state(zone, NR_WRITEBACK_TEMP)), |
0d5d823a | 3831 | K(zone_page_state(zone, NR_PAGES_SCANNED)), |
6e543d57 | 3832 | (!zone_reclaimable(zone) ? "yes" : "no") |
1da177e4 LT |
3833 | ); |
3834 | printk("lowmem_reserve[]:"); | |
3835 | for (i = 0; i < MAX_NR_ZONES; i++) | |
3484b2de | 3836 | printk(" %ld", zone->lowmem_reserve[i]); |
1da177e4 LT |
3837 | printk("\n"); |
3838 | } | |
3839 | ||
ee99c71c | 3840 | for_each_populated_zone(zone) { |
d00181b9 KS |
3841 | unsigned int order; |
3842 | unsigned long nr[MAX_ORDER], flags, total = 0; | |
377e4f16 | 3843 | unsigned char types[MAX_ORDER]; |
1da177e4 | 3844 | |
7bf02ea2 | 3845 | if (skip_free_areas_node(filter, zone_to_nid(zone))) |
ddd588b5 | 3846 | continue; |
1da177e4 LT |
3847 | show_node(zone); |
3848 | printk("%s: ", zone->name); | |
1da177e4 LT |
3849 | |
3850 | spin_lock_irqsave(&zone->lock, flags); | |
3851 | for (order = 0; order < MAX_ORDER; order++) { | |
377e4f16 RV |
3852 | struct free_area *area = &zone->free_area[order]; |
3853 | int type; | |
3854 | ||
3855 | nr[order] = area->nr_free; | |
8f9de51a | 3856 | total += nr[order] << order; |
377e4f16 RV |
3857 | |
3858 | types[order] = 0; | |
3859 | for (type = 0; type < MIGRATE_TYPES; type++) { | |
3860 | if (!list_empty(&area->free_list[type])) | |
3861 | types[order] |= 1 << type; | |
3862 | } | |
1da177e4 LT |
3863 | } |
3864 | spin_unlock_irqrestore(&zone->lock, flags); | |
377e4f16 | 3865 | for (order = 0; order < MAX_ORDER; order++) { |
8f9de51a | 3866 | printk("%lu*%lukB ", nr[order], K(1UL) << order); |
377e4f16 RV |
3867 | if (nr[order]) |
3868 | show_migration_types(types[order]); | |
3869 | } | |
1da177e4 LT |
3870 | printk("= %lukB\n", K(total)); |
3871 | } | |
3872 | ||
949f7ec5 DR |
3873 | hugetlb_show_meminfo(); |
3874 | ||
e6f3602d LW |
3875 | printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); |
3876 | ||
1da177e4 LT |
3877 | show_swap_cache_info(); |
3878 | } | |
3879 | ||
19770b32 MG |
3880 | static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) |
3881 | { | |
3882 | zoneref->zone = zone; | |
3883 | zoneref->zone_idx = zone_idx(zone); | |
3884 | } | |
3885 | ||
1da177e4 LT |
3886 | /* |
3887 | * Builds allocation fallback zone lists. | |
1a93205b CL |
3888 | * |
3889 | * Add all populated zones of a node to the zonelist. | |
1da177e4 | 3890 | */ |
f0c0b2b8 | 3891 | static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, |
bc732f1d | 3892 | int nr_zones) |
1da177e4 | 3893 | { |
1a93205b | 3894 | struct zone *zone; |
bc732f1d | 3895 | enum zone_type zone_type = MAX_NR_ZONES; |
02a68a5e CL |
3896 | |
3897 | do { | |
2f6726e5 | 3898 | zone_type--; |
070f8032 | 3899 | zone = pgdat->node_zones + zone_type; |
1a93205b | 3900 | if (populated_zone(zone)) { |
dd1a239f MG |
3901 | zoneref_set_zone(zone, |
3902 | &zonelist->_zonerefs[nr_zones++]); | |
070f8032 | 3903 | check_highest_zone(zone_type); |
1da177e4 | 3904 | } |
2f6726e5 | 3905 | } while (zone_type); |
bc732f1d | 3906 | |
070f8032 | 3907 | return nr_zones; |
1da177e4 LT |
3908 | } |
3909 | ||
f0c0b2b8 KH |
3910 | |
3911 | /* | |
3912 | * zonelist_order: | |
3913 | * 0 = automatic detection of better ordering. | |
3914 | * 1 = order by ([node] distance, -zonetype) | |
3915 | * 2 = order by (-zonetype, [node] distance) | |
3916 | * | |
3917 | * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create | |
3918 | * the same zonelist. So only NUMA can configure this param. | |
3919 | */ | |
3920 | #define ZONELIST_ORDER_DEFAULT 0 | |
3921 | #define ZONELIST_ORDER_NODE 1 | |
3922 | #define ZONELIST_ORDER_ZONE 2 | |
3923 | ||
3924 | /* zonelist order in the kernel. | |
3925 | * set_zonelist_order() will set this to NODE or ZONE. | |
3926 | */ | |
3927 | static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; | |
3928 | static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; | |
3929 | ||
3930 | ||
1da177e4 | 3931 | #ifdef CONFIG_NUMA |
f0c0b2b8 KH |
3932 | /* The value user specified ....changed by config */ |
3933 | static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; | |
3934 | /* string for sysctl */ | |
3935 | #define NUMA_ZONELIST_ORDER_LEN 16 | |
3936 | char numa_zonelist_order[16] = "default"; | |
3937 | ||
3938 | /* | |
3939 | * interface for configure zonelist ordering. | |
3940 | * command line option "numa_zonelist_order" | |
3941 | * = "[dD]efault - default, automatic configuration. | |
3942 | * = "[nN]ode - order by node locality, then by zone within node | |
3943 | * = "[zZ]one - order by zone, then by locality within zone | |
3944 | */ | |
3945 | ||
3946 | static int __parse_numa_zonelist_order(char *s) | |
3947 | { | |
3948 | if (*s == 'd' || *s == 'D') { | |
3949 | user_zonelist_order = ZONELIST_ORDER_DEFAULT; | |
3950 | } else if (*s == 'n' || *s == 'N') { | |
3951 | user_zonelist_order = ZONELIST_ORDER_NODE; | |
3952 | } else if (*s == 'z' || *s == 'Z') { | |
3953 | user_zonelist_order = ZONELIST_ORDER_ZONE; | |
3954 | } else { | |
3955 | printk(KERN_WARNING | |
3956 | "Ignoring invalid numa_zonelist_order value: " | |
3957 | "%s\n", s); | |
3958 | return -EINVAL; | |
3959 | } | |
3960 | return 0; | |
3961 | } | |
3962 | ||
3963 | static __init int setup_numa_zonelist_order(char *s) | |
3964 | { | |
ecb256f8 VL |
3965 | int ret; |
3966 | ||
3967 | if (!s) | |
3968 | return 0; | |
3969 | ||
3970 | ret = __parse_numa_zonelist_order(s); | |
3971 | if (ret == 0) | |
3972 | strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN); | |
3973 | ||
3974 | return ret; | |
f0c0b2b8 KH |
3975 | } |
3976 | early_param("numa_zonelist_order", setup_numa_zonelist_order); | |
3977 | ||
3978 | /* | |
3979 | * sysctl handler for numa_zonelist_order | |
3980 | */ | |
cccad5b9 | 3981 | int numa_zonelist_order_handler(struct ctl_table *table, int write, |
8d65af78 | 3982 | void __user *buffer, size_t *length, |
f0c0b2b8 KH |
3983 | loff_t *ppos) |
3984 | { | |
3985 | char saved_string[NUMA_ZONELIST_ORDER_LEN]; | |
3986 | int ret; | |
443c6f14 | 3987 | static DEFINE_MUTEX(zl_order_mutex); |
f0c0b2b8 | 3988 | |
443c6f14 | 3989 | mutex_lock(&zl_order_mutex); |
dacbde09 CG |
3990 | if (write) { |
3991 | if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) { | |
3992 | ret = -EINVAL; | |
3993 | goto out; | |
3994 | } | |
3995 | strcpy(saved_string, (char *)table->data); | |
3996 | } | |
8d65af78 | 3997 | ret = proc_dostring(table, write, buffer, length, ppos); |
f0c0b2b8 | 3998 | if (ret) |
443c6f14 | 3999 | goto out; |
f0c0b2b8 KH |
4000 | if (write) { |
4001 | int oldval = user_zonelist_order; | |
dacbde09 CG |
4002 | |
4003 | ret = __parse_numa_zonelist_order((char *)table->data); | |
4004 | if (ret) { | |
f0c0b2b8 KH |
4005 | /* |
4006 | * bogus value. restore saved string | |
4007 | */ | |
dacbde09 | 4008 | strncpy((char *)table->data, saved_string, |
f0c0b2b8 KH |
4009 | NUMA_ZONELIST_ORDER_LEN); |
4010 | user_zonelist_order = oldval; | |
4eaf3f64 HL |
4011 | } else if (oldval != user_zonelist_order) { |
4012 | mutex_lock(&zonelists_mutex); | |
9adb62a5 | 4013 | build_all_zonelists(NULL, NULL); |
4eaf3f64 HL |
4014 | mutex_unlock(&zonelists_mutex); |
4015 | } | |
f0c0b2b8 | 4016 | } |
443c6f14 AK |
4017 | out: |
4018 | mutex_unlock(&zl_order_mutex); | |
4019 | return ret; | |
f0c0b2b8 KH |
4020 | } |
4021 | ||
4022 | ||
62bc62a8 | 4023 | #define MAX_NODE_LOAD (nr_online_nodes) |
f0c0b2b8 KH |
4024 | static int node_load[MAX_NUMNODES]; |
4025 | ||
1da177e4 | 4026 | /** |
4dc3b16b | 4027 | * find_next_best_node - find the next node that should appear in a given node's fallback list |
1da177e4 LT |
4028 | * @node: node whose fallback list we're appending |
4029 | * @used_node_mask: nodemask_t of already used nodes | |
4030 | * | |
4031 | * We use a number of factors to determine which is the next node that should | |
4032 | * appear on a given node's fallback list. The node should not have appeared | |
4033 | * already in @node's fallback list, and it should be the next closest node | |
4034 | * according to the distance array (which contains arbitrary distance values | |
4035 | * from each node to each node in the system), and should also prefer nodes | |
4036 | * with no CPUs, since presumably they'll have very little allocation pressure | |
4037 | * on them otherwise. | |
4038 | * It returns -1 if no node is found. | |
4039 | */ | |
f0c0b2b8 | 4040 | static int find_next_best_node(int node, nodemask_t *used_node_mask) |
1da177e4 | 4041 | { |
4cf808eb | 4042 | int n, val; |
1da177e4 | 4043 | int min_val = INT_MAX; |
00ef2d2f | 4044 | int best_node = NUMA_NO_NODE; |
a70f7302 | 4045 | const struct cpumask *tmp = cpumask_of_node(0); |
1da177e4 | 4046 | |
4cf808eb LT |
4047 | /* Use the local node if we haven't already */ |
4048 | if (!node_isset(node, *used_node_mask)) { | |
4049 | node_set(node, *used_node_mask); | |
4050 | return node; | |
4051 | } | |
1da177e4 | 4052 | |
4b0ef1fe | 4053 | for_each_node_state(n, N_MEMORY) { |
1da177e4 LT |
4054 | |
4055 | /* Don't want a node to appear more than once */ | |
4056 | if (node_isset(n, *used_node_mask)) | |
4057 | continue; | |
4058 | ||
1da177e4 LT |
4059 | /* Use the distance array to find the distance */ |
4060 | val = node_distance(node, n); | |
4061 | ||
4cf808eb LT |
4062 | /* Penalize nodes under us ("prefer the next node") */ |
4063 | val += (n < node); | |
4064 | ||
1da177e4 | 4065 | /* Give preference to headless and unused nodes */ |
a70f7302 RR |
4066 | tmp = cpumask_of_node(n); |
4067 | if (!cpumask_empty(tmp)) | |
1da177e4 LT |
4068 | val += PENALTY_FOR_NODE_WITH_CPUS; |
4069 | ||
4070 | /* Slight preference for less loaded node */ | |
4071 | val *= (MAX_NODE_LOAD*MAX_NUMNODES); | |
4072 | val += node_load[n]; | |
4073 | ||
4074 | if (val < min_val) { | |
4075 | min_val = val; | |
4076 | best_node = n; | |
4077 | } | |
4078 | } | |
4079 | ||
4080 | if (best_node >= 0) | |
4081 | node_set(best_node, *used_node_mask); | |
4082 | ||
4083 | return best_node; | |
4084 | } | |
4085 | ||
f0c0b2b8 KH |
4086 | |
4087 | /* | |
4088 | * Build zonelists ordered by node and zones within node. | |
4089 | * This results in maximum locality--normal zone overflows into local | |
4090 | * DMA zone, if any--but risks exhausting DMA zone. | |
4091 | */ | |
4092 | static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) | |
1da177e4 | 4093 | { |
f0c0b2b8 | 4094 | int j; |
1da177e4 | 4095 | struct zonelist *zonelist; |
f0c0b2b8 | 4096 | |
54a6eb5c | 4097 | zonelist = &pgdat->node_zonelists[0]; |
dd1a239f | 4098 | for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) |
54a6eb5c | 4099 | ; |
bc732f1d | 4100 | j = build_zonelists_node(NODE_DATA(node), zonelist, j); |
dd1a239f MG |
4101 | zonelist->_zonerefs[j].zone = NULL; |
4102 | zonelist->_zonerefs[j].zone_idx = 0; | |
f0c0b2b8 KH |
4103 | } |
4104 | ||
523b9458 CL |
4105 | /* |
4106 | * Build gfp_thisnode zonelists | |
4107 | */ | |
4108 | static void build_thisnode_zonelists(pg_data_t *pgdat) | |
4109 | { | |
523b9458 CL |
4110 | int j; |
4111 | struct zonelist *zonelist; | |
4112 | ||
54a6eb5c | 4113 | zonelist = &pgdat->node_zonelists[1]; |
bc732f1d | 4114 | j = build_zonelists_node(pgdat, zonelist, 0); |
dd1a239f MG |
4115 | zonelist->_zonerefs[j].zone = NULL; |
4116 | zonelist->_zonerefs[j].zone_idx = 0; | |
523b9458 CL |
4117 | } |
4118 | ||
f0c0b2b8 KH |
4119 | /* |
4120 | * Build zonelists ordered by zone and nodes within zones. | |
4121 | * This results in conserving DMA zone[s] until all Normal memory is | |
4122 | * exhausted, but results in overflowing to remote node while memory | |
4123 | * may still exist in local DMA zone. | |
4124 | */ | |
4125 | static int node_order[MAX_NUMNODES]; | |
4126 | ||
4127 | static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) | |
4128 | { | |
f0c0b2b8 KH |
4129 | int pos, j, node; |
4130 | int zone_type; /* needs to be signed */ | |
4131 | struct zone *z; | |
4132 | struct zonelist *zonelist; | |
4133 | ||
54a6eb5c MG |
4134 | zonelist = &pgdat->node_zonelists[0]; |
4135 | pos = 0; | |
4136 | for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { | |
4137 | for (j = 0; j < nr_nodes; j++) { | |
4138 | node = node_order[j]; | |
4139 | z = &NODE_DATA(node)->node_zones[zone_type]; | |
4140 | if (populated_zone(z)) { | |
dd1a239f MG |
4141 | zoneref_set_zone(z, |
4142 | &zonelist->_zonerefs[pos++]); | |
54a6eb5c | 4143 | check_highest_zone(zone_type); |
f0c0b2b8 KH |
4144 | } |
4145 | } | |
f0c0b2b8 | 4146 | } |
dd1a239f MG |
4147 | zonelist->_zonerefs[pos].zone = NULL; |
4148 | zonelist->_zonerefs[pos].zone_idx = 0; | |
f0c0b2b8 KH |
4149 | } |
4150 | ||
3193913c MG |
4151 | #if defined(CONFIG_64BIT) |
4152 | /* | |
4153 | * Devices that require DMA32/DMA are relatively rare and do not justify a | |
4154 | * penalty to every machine in case the specialised case applies. Default | |
4155 | * to Node-ordering on 64-bit NUMA machines | |
4156 | */ | |
4157 | static int default_zonelist_order(void) | |
4158 | { | |
4159 | return ZONELIST_ORDER_NODE; | |
4160 | } | |
4161 | #else | |
4162 | /* | |
4163 | * On 32-bit, the Normal zone needs to be preserved for allocations accessible | |
4164 | * by the kernel. If processes running on node 0 deplete the low memory zone | |
4165 | * then reclaim will occur more frequency increasing stalls and potentially | |
4166 | * be easier to OOM if a large percentage of the zone is under writeback or | |
4167 | * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set. | |
4168 | * Hence, default to zone ordering on 32-bit. | |
4169 | */ | |
f0c0b2b8 KH |
4170 | static int default_zonelist_order(void) |
4171 | { | |
f0c0b2b8 KH |
4172 | return ZONELIST_ORDER_ZONE; |
4173 | } | |
3193913c | 4174 | #endif /* CONFIG_64BIT */ |
f0c0b2b8 KH |
4175 | |
4176 | static void set_zonelist_order(void) | |
4177 | { | |
4178 | if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) | |
4179 | current_zonelist_order = default_zonelist_order(); | |
4180 | else | |
4181 | current_zonelist_order = user_zonelist_order; | |
4182 | } | |
4183 | ||
4184 | static void build_zonelists(pg_data_t *pgdat) | |
4185 | { | |
c00eb15a | 4186 | int i, node, load; |
1da177e4 | 4187 | nodemask_t used_mask; |
f0c0b2b8 KH |
4188 | int local_node, prev_node; |
4189 | struct zonelist *zonelist; | |
d00181b9 | 4190 | unsigned int order = current_zonelist_order; |
1da177e4 LT |
4191 | |
4192 | /* initialize zonelists */ | |
523b9458 | 4193 | for (i = 0; i < MAX_ZONELISTS; i++) { |
1da177e4 | 4194 | zonelist = pgdat->node_zonelists + i; |
dd1a239f MG |
4195 | zonelist->_zonerefs[0].zone = NULL; |
4196 | zonelist->_zonerefs[0].zone_idx = 0; | |
1da177e4 LT |
4197 | } |
4198 | ||
4199 | /* NUMA-aware ordering of nodes */ | |
4200 | local_node = pgdat->node_id; | |
62bc62a8 | 4201 | load = nr_online_nodes; |
1da177e4 LT |
4202 | prev_node = local_node; |
4203 | nodes_clear(used_mask); | |
f0c0b2b8 | 4204 | |
f0c0b2b8 | 4205 | memset(node_order, 0, sizeof(node_order)); |
c00eb15a | 4206 | i = 0; |
f0c0b2b8 | 4207 | |
1da177e4 LT |
4208 | while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { |
4209 | /* | |
4210 | * We don't want to pressure a particular node. | |
4211 | * So adding penalty to the first node in same | |
4212 | * distance group to make it round-robin. | |
4213 | */ | |
957f822a DR |
4214 | if (node_distance(local_node, node) != |
4215 | node_distance(local_node, prev_node)) | |
f0c0b2b8 KH |
4216 | node_load[node] = load; |
4217 | ||
1da177e4 LT |
4218 | prev_node = node; |
4219 | load--; | |
f0c0b2b8 KH |
4220 | if (order == ZONELIST_ORDER_NODE) |
4221 | build_zonelists_in_node_order(pgdat, node); | |
4222 | else | |
c00eb15a | 4223 | node_order[i++] = node; /* remember order */ |
f0c0b2b8 | 4224 | } |
1da177e4 | 4225 | |
f0c0b2b8 KH |
4226 | if (order == ZONELIST_ORDER_ZONE) { |
4227 | /* calculate node order -- i.e., DMA last! */ | |
c00eb15a | 4228 | build_zonelists_in_zone_order(pgdat, i); |
1da177e4 | 4229 | } |
523b9458 CL |
4230 | |
4231 | build_thisnode_zonelists(pgdat); | |
1da177e4 LT |
4232 | } |
4233 | ||
7aac7898 LS |
4234 | #ifdef CONFIG_HAVE_MEMORYLESS_NODES |
4235 | /* | |
4236 | * Return node id of node used for "local" allocations. | |
4237 | * I.e., first node id of first zone in arg node's generic zonelist. | |
4238 | * Used for initializing percpu 'numa_mem', which is used primarily | |
4239 | * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. | |
4240 | */ | |
4241 | int local_memory_node(int node) | |
4242 | { | |
4243 | struct zone *zone; | |
4244 | ||
4245 | (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL), | |
4246 | gfp_zone(GFP_KERNEL), | |
4247 | NULL, | |
4248 | &zone); | |
4249 | return zone->node; | |
4250 | } | |
4251 | #endif | |
f0c0b2b8 | 4252 | |
1da177e4 LT |
4253 | #else /* CONFIG_NUMA */ |
4254 | ||
f0c0b2b8 KH |
4255 | static void set_zonelist_order(void) |
4256 | { | |
4257 | current_zonelist_order = ZONELIST_ORDER_ZONE; | |
4258 | } | |
4259 | ||
4260 | static void build_zonelists(pg_data_t *pgdat) | |
1da177e4 | 4261 | { |
19655d34 | 4262 | int node, local_node; |
54a6eb5c MG |
4263 | enum zone_type j; |
4264 | struct zonelist *zonelist; | |
1da177e4 LT |
4265 | |
4266 | local_node = pgdat->node_id; | |
1da177e4 | 4267 | |
54a6eb5c | 4268 | zonelist = &pgdat->node_zonelists[0]; |
bc732f1d | 4269 | j = build_zonelists_node(pgdat, zonelist, 0); |
1da177e4 | 4270 | |
54a6eb5c MG |
4271 | /* |
4272 | * Now we build the zonelist so that it contains the zones | |
4273 | * of all the other nodes. | |
4274 | * We don't want to pressure a particular node, so when | |
4275 | * building the zones for node N, we make sure that the | |
4276 | * zones coming right after the local ones are those from | |
4277 | * node N+1 (modulo N) | |
4278 | */ | |
4279 | for (node = local_node + 1; node < MAX_NUMNODES; node++) { | |
4280 | if (!node_online(node)) | |
4281 | continue; | |
bc732f1d | 4282 | j = build_zonelists_node(NODE_DATA(node), zonelist, j); |
1da177e4 | 4283 | } |
54a6eb5c MG |
4284 | for (node = 0; node < local_node; node++) { |
4285 | if (!node_online(node)) | |
4286 | continue; | |
bc732f1d | 4287 | j = build_zonelists_node(NODE_DATA(node), zonelist, j); |
54a6eb5c MG |
4288 | } |
4289 | ||
dd1a239f MG |
4290 | zonelist->_zonerefs[j].zone = NULL; |
4291 | zonelist->_zonerefs[j].zone_idx = 0; | |
1da177e4 LT |
4292 | } |
4293 | ||
4294 | #endif /* CONFIG_NUMA */ | |
4295 | ||
99dcc3e5 CL |
4296 | /* |
4297 | * Boot pageset table. One per cpu which is going to be used for all | |
4298 | * zones and all nodes. The parameters will be set in such a way | |
4299 | * that an item put on a list will immediately be handed over to | |
4300 | * the buddy list. This is safe since pageset manipulation is done | |
4301 | * with interrupts disabled. | |
4302 | * | |
4303 | * The boot_pagesets must be kept even after bootup is complete for | |
4304 | * unused processors and/or zones. They do play a role for bootstrapping | |
4305 | * hotplugged processors. | |
4306 | * | |
4307 | * zoneinfo_show() and maybe other functions do | |
4308 | * not check if the processor is online before following the pageset pointer. | |
4309 | * Other parts of the kernel may not check if the zone is available. | |
4310 | */ | |
4311 | static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); | |
4312 | static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); | |
1f522509 | 4313 | static void setup_zone_pageset(struct zone *zone); |
99dcc3e5 | 4314 | |
4eaf3f64 HL |
4315 | /* |
4316 | * Global mutex to protect against size modification of zonelists | |
4317 | * as well as to serialize pageset setup for the new populated zone. | |
4318 | */ | |
4319 | DEFINE_MUTEX(zonelists_mutex); | |
4320 | ||
9b1a4d38 | 4321 | /* return values int ....just for stop_machine() */ |
4ed7e022 | 4322 | static int __build_all_zonelists(void *data) |
1da177e4 | 4323 | { |
6811378e | 4324 | int nid; |
99dcc3e5 | 4325 | int cpu; |
9adb62a5 | 4326 | pg_data_t *self = data; |
9276b1bc | 4327 | |
7f9cfb31 BL |
4328 | #ifdef CONFIG_NUMA |
4329 | memset(node_load, 0, sizeof(node_load)); | |
4330 | #endif | |
9adb62a5 JL |
4331 | |
4332 | if (self && !node_online(self->node_id)) { | |
4333 | build_zonelists(self); | |
9adb62a5 JL |
4334 | } |
4335 | ||
9276b1bc | 4336 | for_each_online_node(nid) { |
7ea1530a CL |
4337 | pg_data_t *pgdat = NODE_DATA(nid); |
4338 | ||
4339 | build_zonelists(pgdat); | |
9276b1bc | 4340 | } |
99dcc3e5 CL |
4341 | |
4342 | /* | |
4343 | * Initialize the boot_pagesets that are going to be used | |
4344 | * for bootstrapping processors. The real pagesets for | |
4345 | * each zone will be allocated later when the per cpu | |
4346 | * allocator is available. | |
4347 | * | |
4348 | * boot_pagesets are used also for bootstrapping offline | |
4349 | * cpus if the system is already booted because the pagesets | |
4350 | * are needed to initialize allocators on a specific cpu too. | |
4351 | * F.e. the percpu allocator needs the page allocator which | |
4352 | * needs the percpu allocator in order to allocate its pagesets | |
4353 | * (a chicken-egg dilemma). | |
4354 | */ | |
7aac7898 | 4355 | for_each_possible_cpu(cpu) { |
99dcc3e5 CL |
4356 | setup_pageset(&per_cpu(boot_pageset, cpu), 0); |
4357 | ||
7aac7898 LS |
4358 | #ifdef CONFIG_HAVE_MEMORYLESS_NODES |
4359 | /* | |
4360 | * We now know the "local memory node" for each node-- | |
4361 | * i.e., the node of the first zone in the generic zonelist. | |
4362 | * Set up numa_mem percpu variable for on-line cpus. During | |
4363 | * boot, only the boot cpu should be on-line; we'll init the | |
4364 | * secondary cpus' numa_mem as they come on-line. During | |
4365 | * node/memory hotplug, we'll fixup all on-line cpus. | |
4366 | */ | |
4367 | if (cpu_online(cpu)) | |
4368 | set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); | |
4369 | #endif | |
4370 | } | |
4371 | ||
6811378e YG |
4372 | return 0; |
4373 | } | |
4374 | ||
061f67bc RV |
4375 | static noinline void __init |
4376 | build_all_zonelists_init(void) | |
4377 | { | |
4378 | __build_all_zonelists(NULL); | |
4379 | mminit_verify_zonelist(); | |
4380 | cpuset_init_current_mems_allowed(); | |
4381 | } | |
4382 | ||
4eaf3f64 HL |
4383 | /* |
4384 | * Called with zonelists_mutex held always | |
4385 | * unless system_state == SYSTEM_BOOTING. | |
061f67bc RV |
4386 | * |
4387 | * __ref due to (1) call of __meminit annotated setup_zone_pageset | |
4388 | * [we're only called with non-NULL zone through __meminit paths] and | |
4389 | * (2) call of __init annotated helper build_all_zonelists_init | |
4390 | * [protected by SYSTEM_BOOTING]. | |
4eaf3f64 | 4391 | */ |
9adb62a5 | 4392 | void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone) |
6811378e | 4393 | { |
f0c0b2b8 KH |
4394 | set_zonelist_order(); |
4395 | ||
6811378e | 4396 | if (system_state == SYSTEM_BOOTING) { |
061f67bc | 4397 | build_all_zonelists_init(); |
6811378e | 4398 | } else { |
e9959f0f | 4399 | #ifdef CONFIG_MEMORY_HOTPLUG |
9adb62a5 JL |
4400 | if (zone) |
4401 | setup_zone_pageset(zone); | |
e9959f0f | 4402 | #endif |
dd1895e2 CS |
4403 | /* we have to stop all cpus to guarantee there is no user |
4404 | of zonelist */ | |
9adb62a5 | 4405 | stop_machine(__build_all_zonelists, pgdat, NULL); |
6811378e YG |
4406 | /* cpuset refresh routine should be here */ |
4407 | } | |
bd1e22b8 | 4408 | vm_total_pages = nr_free_pagecache_pages(); |
9ef9acb0 MG |
4409 | /* |
4410 | * Disable grouping by mobility if the number of pages in the | |
4411 | * system is too low to allow the mechanism to work. It would be | |
4412 | * more accurate, but expensive to check per-zone. This check is | |
4413 | * made on memory-hotadd so a system can start with mobility | |
4414 | * disabled and enable it later | |
4415 | */ | |
d9c23400 | 4416 | if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) |
9ef9acb0 MG |
4417 | page_group_by_mobility_disabled = 1; |
4418 | else | |
4419 | page_group_by_mobility_disabled = 0; | |
4420 | ||
f88dfff5 | 4421 | pr_info("Built %i zonelists in %s order, mobility grouping %s. " |
9ef9acb0 | 4422 | "Total pages: %ld\n", |
62bc62a8 | 4423 | nr_online_nodes, |
f0c0b2b8 | 4424 | zonelist_order_name[current_zonelist_order], |
9ef9acb0 | 4425 | page_group_by_mobility_disabled ? "off" : "on", |
f0c0b2b8 KH |
4426 | vm_total_pages); |
4427 | #ifdef CONFIG_NUMA | |
f88dfff5 | 4428 | pr_info("Policy zone: %s\n", zone_names[policy_zone]); |
f0c0b2b8 | 4429 | #endif |
1da177e4 LT |
4430 | } |
4431 | ||
4432 | /* | |
4433 | * Helper functions to size the waitqueue hash table. | |
4434 | * Essentially these want to choose hash table sizes sufficiently | |
4435 | * large so that collisions trying to wait on pages are rare. | |
4436 | * But in fact, the number of active page waitqueues on typical | |
4437 | * systems is ridiculously low, less than 200. So this is even | |
4438 | * conservative, even though it seems large. | |
4439 | * | |
4440 | * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to | |
4441 | * waitqueues, i.e. the size of the waitq table given the number of pages. | |
4442 | */ | |
4443 | #define PAGES_PER_WAITQUEUE 256 | |
4444 | ||
cca448fe | 4445 | #ifndef CONFIG_MEMORY_HOTPLUG |
02b694de | 4446 | static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) |
1da177e4 LT |
4447 | { |
4448 | unsigned long size = 1; | |
4449 | ||
4450 | pages /= PAGES_PER_WAITQUEUE; | |
4451 | ||
4452 | while (size < pages) | |
4453 | size <<= 1; | |
4454 | ||
4455 | /* | |
4456 | * Once we have dozens or even hundreds of threads sleeping | |
4457 | * on IO we've got bigger problems than wait queue collision. | |
4458 | * Limit the size of the wait table to a reasonable size. | |
4459 | */ | |
4460 | size = min(size, 4096UL); | |
4461 | ||
4462 | return max(size, 4UL); | |
4463 | } | |
cca448fe YG |
4464 | #else |
4465 | /* | |
4466 | * A zone's size might be changed by hot-add, so it is not possible to determine | |
4467 | * a suitable size for its wait_table. So we use the maximum size now. | |
4468 | * | |
4469 | * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: | |
4470 | * | |
4471 | * i386 (preemption config) : 4096 x 16 = 64Kbyte. | |
4472 | * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. | |
4473 | * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. | |
4474 | * | |
4475 | * The maximum entries are prepared when a zone's memory is (512K + 256) pages | |
4476 | * or more by the traditional way. (See above). It equals: | |
4477 | * | |
4478 | * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. | |
4479 | * ia64(16K page size) : = ( 8G + 4M)byte. | |
4480 | * powerpc (64K page size) : = (32G +16M)byte. | |
4481 | */ | |
4482 | static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) | |
4483 | { | |
4484 | return 4096UL; | |
4485 | } | |
4486 | #endif | |
1da177e4 LT |
4487 | |
4488 | /* | |
4489 | * This is an integer logarithm so that shifts can be used later | |
4490 | * to extract the more random high bits from the multiplicative | |
4491 | * hash function before the remainder is taken. | |
4492 | */ | |
4493 | static inline unsigned long wait_table_bits(unsigned long size) | |
4494 | { | |
4495 | return ffz(~size); | |
4496 | } | |
4497 | ||
1da177e4 LT |
4498 | /* |
4499 | * Initially all pages are reserved - free ones are freed | |
4500 | * up by free_all_bootmem() once the early boot process is | |
4501 | * done. Non-atomic initialization, single-pass. | |
4502 | */ | |
c09b4240 | 4503 | void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, |
a2f3aa02 | 4504 | unsigned long start_pfn, enum memmap_context context) |
1da177e4 | 4505 | { |
4b94ffdc | 4506 | struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn)); |
29751f69 | 4507 | unsigned long end_pfn = start_pfn + size; |
4b94ffdc | 4508 | pg_data_t *pgdat = NODE_DATA(nid); |
29751f69 | 4509 | unsigned long pfn; |
3a80a7fa | 4510 | unsigned long nr_initialised = 0; |
342332e6 TI |
4511 | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP |
4512 | struct memblock_region *r = NULL, *tmp; | |
4513 | #endif | |
1da177e4 | 4514 | |
22b31eec HD |
4515 | if (highest_memmap_pfn < end_pfn - 1) |
4516 | highest_memmap_pfn = end_pfn - 1; | |
4517 | ||
4b94ffdc DW |
4518 | /* |
4519 | * Honor reservation requested by the driver for this ZONE_DEVICE | |
4520 | * memory | |
4521 | */ | |
4522 | if (altmap && start_pfn == altmap->base_pfn) | |
4523 | start_pfn += altmap->reserve; | |
4524 | ||
cbe8dd4a | 4525 | for (pfn = start_pfn; pfn < end_pfn; pfn++) { |
a2f3aa02 | 4526 | /* |
b72d0ffb AM |
4527 | * There can be holes in boot-time mem_map[]s handed to this |
4528 | * function. They do not exist on hotplugged memory. | |
a2f3aa02 | 4529 | */ |
b72d0ffb AM |
4530 | if (context != MEMMAP_EARLY) |
4531 | goto not_early; | |
4532 | ||
4533 | if (!early_pfn_valid(pfn)) | |
4534 | continue; | |
4535 | if (!early_pfn_in_nid(pfn, nid)) | |
4536 | continue; | |
4537 | if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised)) | |
4538 | break; | |
342332e6 TI |
4539 | |
4540 | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP | |
b72d0ffb AM |
4541 | /* |
4542 | * If not mirrored_kernelcore and ZONE_MOVABLE exists, range | |
4543 | * from zone_movable_pfn[nid] to end of each node should be | |
4544 | * ZONE_MOVABLE not ZONE_NORMAL. skip it. | |
4545 | */ | |
4546 | if (!mirrored_kernelcore && zone_movable_pfn[nid]) | |
4547 | if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid]) | |
4548 | continue; | |
342332e6 | 4549 | |
b72d0ffb AM |
4550 | /* |
4551 | * Check given memblock attribute by firmware which can affect | |
4552 | * kernel memory layout. If zone==ZONE_MOVABLE but memory is | |
4553 | * mirrored, it's an overlapped memmap init. skip it. | |
4554 | */ | |
4555 | if (mirrored_kernelcore && zone == ZONE_MOVABLE) { | |
4556 | if (!r || pfn >= memblock_region_memory_end_pfn(r)) { | |
4557 | for_each_memblock(memory, tmp) | |
4558 | if (pfn < memblock_region_memory_end_pfn(tmp)) | |
4559 | break; | |
4560 | r = tmp; | |
4561 | } | |
4562 | if (pfn >= memblock_region_memory_base_pfn(r) && | |
4563 | memblock_is_mirror(r)) { | |
4564 | /* already initialized as NORMAL */ | |
4565 | pfn = memblock_region_memory_end_pfn(r); | |
4566 | continue; | |
342332e6 | 4567 | } |
a2f3aa02 | 4568 | } |
b72d0ffb | 4569 | #endif |
ac5d2539 | 4570 | |
b72d0ffb | 4571 | not_early: |
ac5d2539 MG |
4572 | /* |
4573 | * Mark the block movable so that blocks are reserved for | |
4574 | * movable at startup. This will force kernel allocations | |
4575 | * to reserve their blocks rather than leaking throughout | |
4576 | * the address space during boot when many long-lived | |
974a786e | 4577 | * kernel allocations are made. |
ac5d2539 MG |
4578 | * |
4579 | * bitmap is created for zone's valid pfn range. but memmap | |
4580 | * can be created for invalid pages (for alignment) | |
4581 | * check here not to call set_pageblock_migratetype() against | |
4582 | * pfn out of zone. | |
4583 | */ | |
4584 | if (!(pfn & (pageblock_nr_pages - 1))) { | |
4585 | struct page *page = pfn_to_page(pfn); | |
4586 | ||
4587 | __init_single_page(page, pfn, zone, nid); | |
4588 | set_pageblock_migratetype(page, MIGRATE_MOVABLE); | |
4589 | } else { | |
4590 | __init_single_pfn(pfn, zone, nid); | |
4591 | } | |
1da177e4 LT |
4592 | } |
4593 | } | |
4594 | ||
1e548deb | 4595 | static void __meminit zone_init_free_lists(struct zone *zone) |
1da177e4 | 4596 | { |
7aeb09f9 | 4597 | unsigned int order, t; |
b2a0ac88 MG |
4598 | for_each_migratetype_order(order, t) { |
4599 | INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); | |
1da177e4 LT |
4600 | zone->free_area[order].nr_free = 0; |
4601 | } | |
4602 | } | |
4603 | ||
4604 | #ifndef __HAVE_ARCH_MEMMAP_INIT | |
4605 | #define memmap_init(size, nid, zone, start_pfn) \ | |
a2f3aa02 | 4606 | memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) |
1da177e4 LT |
4607 | #endif |
4608 | ||
7cd2b0a3 | 4609 | static int zone_batchsize(struct zone *zone) |
e7c8d5c9 | 4610 | { |
3a6be87f | 4611 | #ifdef CONFIG_MMU |
e7c8d5c9 CL |
4612 | int batch; |
4613 | ||
4614 | /* | |
4615 | * The per-cpu-pages pools are set to around 1000th of the | |
ba56e91c | 4616 | * size of the zone. But no more than 1/2 of a meg. |
e7c8d5c9 CL |
4617 | * |
4618 | * OK, so we don't know how big the cache is. So guess. | |
4619 | */ | |
b40da049 | 4620 | batch = zone->managed_pages / 1024; |
ba56e91c SR |
4621 | if (batch * PAGE_SIZE > 512 * 1024) |
4622 | batch = (512 * 1024) / PAGE_SIZE; | |
e7c8d5c9 CL |
4623 | batch /= 4; /* We effectively *= 4 below */ |
4624 | if (batch < 1) | |
4625 | batch = 1; | |
4626 | ||
4627 | /* | |
0ceaacc9 NP |
4628 | * Clamp the batch to a 2^n - 1 value. Having a power |
4629 | * of 2 value was found to be more likely to have | |
4630 | * suboptimal cache aliasing properties in some cases. | |
e7c8d5c9 | 4631 | * |
0ceaacc9 NP |
4632 | * For example if 2 tasks are alternately allocating |
4633 | * batches of pages, one task can end up with a lot | |
4634 | * of pages of one half of the possible page colors | |
4635 | * and the other with pages of the other colors. | |
e7c8d5c9 | 4636 | */ |
9155203a | 4637 | batch = rounddown_pow_of_two(batch + batch/2) - 1; |
ba56e91c | 4638 | |
e7c8d5c9 | 4639 | return batch; |
3a6be87f DH |
4640 | |
4641 | #else | |
4642 | /* The deferral and batching of frees should be suppressed under NOMMU | |
4643 | * conditions. | |
4644 | * | |
4645 | * The problem is that NOMMU needs to be able to allocate large chunks | |
4646 | * of contiguous memory as there's no hardware page translation to | |
4647 | * assemble apparent contiguous memory from discontiguous pages. | |
4648 | * | |
4649 | * Queueing large contiguous runs of pages for batching, however, | |
4650 | * causes the pages to actually be freed in smaller chunks. As there | |
4651 | * can be a significant delay between the individual batches being | |
4652 | * recycled, this leads to the once large chunks of space being | |
4653 | * fragmented and becoming unavailable for high-order allocations. | |
4654 | */ | |
4655 | return 0; | |
4656 | #endif | |
e7c8d5c9 CL |
4657 | } |
4658 | ||
8d7a8fa9 CS |
4659 | /* |
4660 | * pcp->high and pcp->batch values are related and dependent on one another: | |
4661 | * ->batch must never be higher then ->high. | |
4662 | * The following function updates them in a safe manner without read side | |
4663 | * locking. | |
4664 | * | |
4665 | * Any new users of pcp->batch and pcp->high should ensure they can cope with | |
4666 | * those fields changing asynchronously (acording the the above rule). | |
4667 | * | |
4668 | * mutex_is_locked(&pcp_batch_high_lock) required when calling this function | |
4669 | * outside of boot time (or some other assurance that no concurrent updaters | |
4670 | * exist). | |
4671 | */ | |
4672 | static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, | |
4673 | unsigned long batch) | |
4674 | { | |
4675 | /* start with a fail safe value for batch */ | |
4676 | pcp->batch = 1; | |
4677 | smp_wmb(); | |
4678 | ||
4679 | /* Update high, then batch, in order */ | |
4680 | pcp->high = high; | |
4681 | smp_wmb(); | |
4682 | ||
4683 | pcp->batch = batch; | |
4684 | } | |
4685 | ||
3664033c | 4686 | /* a companion to pageset_set_high() */ |
4008bab7 CS |
4687 | static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) |
4688 | { | |
8d7a8fa9 | 4689 | pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); |
4008bab7 CS |
4690 | } |
4691 | ||
88c90dbc | 4692 | static void pageset_init(struct per_cpu_pageset *p) |
2caaad41 CL |
4693 | { |
4694 | struct per_cpu_pages *pcp; | |
5f8dcc21 | 4695 | int migratetype; |
2caaad41 | 4696 | |
1c6fe946 MD |
4697 | memset(p, 0, sizeof(*p)); |
4698 | ||
3dfa5721 | 4699 | pcp = &p->pcp; |
2caaad41 | 4700 | pcp->count = 0; |
5f8dcc21 MG |
4701 | for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) |
4702 | INIT_LIST_HEAD(&pcp->lists[migratetype]); | |
2caaad41 CL |
4703 | } |
4704 | ||
88c90dbc CS |
4705 | static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) |
4706 | { | |
4707 | pageset_init(p); | |
4708 | pageset_set_batch(p, batch); | |
4709 | } | |
4710 | ||
8ad4b1fb | 4711 | /* |
3664033c | 4712 | * pageset_set_high() sets the high water mark for hot per_cpu_pagelist |
8ad4b1fb RS |
4713 | * to the value high for the pageset p. |
4714 | */ | |
3664033c | 4715 | static void pageset_set_high(struct per_cpu_pageset *p, |
8ad4b1fb RS |
4716 | unsigned long high) |
4717 | { | |
8d7a8fa9 CS |
4718 | unsigned long batch = max(1UL, high / 4); |
4719 | if ((high / 4) > (PAGE_SHIFT * 8)) | |
4720 | batch = PAGE_SHIFT * 8; | |
8ad4b1fb | 4721 | |
8d7a8fa9 | 4722 | pageset_update(&p->pcp, high, batch); |
8ad4b1fb RS |
4723 | } |
4724 | ||
7cd2b0a3 DR |
4725 | static void pageset_set_high_and_batch(struct zone *zone, |
4726 | struct per_cpu_pageset *pcp) | |
56cef2b8 | 4727 | { |
56cef2b8 | 4728 | if (percpu_pagelist_fraction) |
3664033c | 4729 | pageset_set_high(pcp, |
56cef2b8 CS |
4730 | (zone->managed_pages / |
4731 | percpu_pagelist_fraction)); | |
4732 | else | |
4733 | pageset_set_batch(pcp, zone_batchsize(zone)); | |
4734 | } | |
4735 | ||
169f6c19 CS |
4736 | static void __meminit zone_pageset_init(struct zone *zone, int cpu) |
4737 | { | |
4738 | struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); | |
4739 | ||
4740 | pageset_init(pcp); | |
4741 | pageset_set_high_and_batch(zone, pcp); | |
4742 | } | |
4743 | ||
4ed7e022 | 4744 | static void __meminit setup_zone_pageset(struct zone *zone) |
319774e2 WF |
4745 | { |
4746 | int cpu; | |
319774e2 | 4747 | zone->pageset = alloc_percpu(struct per_cpu_pageset); |
56cef2b8 CS |
4748 | for_each_possible_cpu(cpu) |
4749 | zone_pageset_init(zone, cpu); | |
319774e2 WF |
4750 | } |
4751 | ||
2caaad41 | 4752 | /* |
99dcc3e5 CL |
4753 | * Allocate per cpu pagesets and initialize them. |
4754 | * Before this call only boot pagesets were available. | |
e7c8d5c9 | 4755 | */ |
99dcc3e5 | 4756 | void __init setup_per_cpu_pageset(void) |
e7c8d5c9 | 4757 | { |
99dcc3e5 | 4758 | struct zone *zone; |
e7c8d5c9 | 4759 | |
319774e2 WF |
4760 | for_each_populated_zone(zone) |
4761 | setup_zone_pageset(zone); | |
e7c8d5c9 CL |
4762 | } |
4763 | ||
577a32f6 | 4764 | static noinline __init_refok |
cca448fe | 4765 | int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) |
ed8ece2e DH |
4766 | { |
4767 | int i; | |
cca448fe | 4768 | size_t alloc_size; |
ed8ece2e DH |
4769 | |
4770 | /* | |
4771 | * The per-page waitqueue mechanism uses hashed waitqueues | |
4772 | * per zone. | |
4773 | */ | |
02b694de YG |
4774 | zone->wait_table_hash_nr_entries = |
4775 | wait_table_hash_nr_entries(zone_size_pages); | |
4776 | zone->wait_table_bits = | |
4777 | wait_table_bits(zone->wait_table_hash_nr_entries); | |
cca448fe YG |
4778 | alloc_size = zone->wait_table_hash_nr_entries |
4779 | * sizeof(wait_queue_head_t); | |
4780 | ||
cd94b9db | 4781 | if (!slab_is_available()) { |
cca448fe | 4782 | zone->wait_table = (wait_queue_head_t *) |
6782832e SS |
4783 | memblock_virt_alloc_node_nopanic( |
4784 | alloc_size, zone->zone_pgdat->node_id); | |
cca448fe YG |
4785 | } else { |
4786 | /* | |
4787 | * This case means that a zone whose size was 0 gets new memory | |
4788 | * via memory hot-add. | |
4789 | * But it may be the case that a new node was hot-added. In | |
4790 | * this case vmalloc() will not be able to use this new node's | |
4791 | * memory - this wait_table must be initialized to use this new | |
4792 | * node itself as well. | |
4793 | * To use this new node's memory, further consideration will be | |
4794 | * necessary. | |
4795 | */ | |
8691f3a7 | 4796 | zone->wait_table = vmalloc(alloc_size); |
cca448fe YG |
4797 | } |
4798 | if (!zone->wait_table) | |
4799 | return -ENOMEM; | |
ed8ece2e | 4800 | |
b8af2941 | 4801 | for (i = 0; i < zone->wait_table_hash_nr_entries; ++i) |
ed8ece2e | 4802 | init_waitqueue_head(zone->wait_table + i); |
cca448fe YG |
4803 | |
4804 | return 0; | |
ed8ece2e DH |
4805 | } |
4806 | ||
c09b4240 | 4807 | static __meminit void zone_pcp_init(struct zone *zone) |
ed8ece2e | 4808 | { |
99dcc3e5 CL |
4809 | /* |
4810 | * per cpu subsystem is not up at this point. The following code | |
4811 | * relies on the ability of the linker to provide the | |
4812 | * offset of a (static) per cpu variable into the per cpu area. | |
4813 | */ | |
4814 | zone->pageset = &boot_pageset; | |
ed8ece2e | 4815 | |
b38a8725 | 4816 | if (populated_zone(zone)) |
99dcc3e5 CL |
4817 | printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", |
4818 | zone->name, zone->present_pages, | |
4819 | zone_batchsize(zone)); | |
ed8ece2e DH |
4820 | } |
4821 | ||
4ed7e022 | 4822 | int __meminit init_currently_empty_zone(struct zone *zone, |
718127cc | 4823 | unsigned long zone_start_pfn, |
b171e409 | 4824 | unsigned long size) |
ed8ece2e DH |
4825 | { |
4826 | struct pglist_data *pgdat = zone->zone_pgdat; | |
cca448fe YG |
4827 | int ret; |
4828 | ret = zone_wait_table_init(zone, size); | |
4829 | if (ret) | |
4830 | return ret; | |
ed8ece2e DH |
4831 | pgdat->nr_zones = zone_idx(zone) + 1; |
4832 | ||
ed8ece2e DH |
4833 | zone->zone_start_pfn = zone_start_pfn; |
4834 | ||
708614e6 MG |
4835 | mminit_dprintk(MMINIT_TRACE, "memmap_init", |
4836 | "Initialising map node %d zone %lu pfns %lu -> %lu\n", | |
4837 | pgdat->node_id, | |
4838 | (unsigned long)zone_idx(zone), | |
4839 | zone_start_pfn, (zone_start_pfn + size)); | |
4840 | ||
1e548deb | 4841 | zone_init_free_lists(zone); |
718127cc YG |
4842 | |
4843 | return 0; | |
ed8ece2e DH |
4844 | } |
4845 | ||
0ee332c1 | 4846 | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP |
c713216d | 4847 | #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID |
8a942fde | 4848 | |
c713216d MG |
4849 | /* |
4850 | * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. | |
c713216d | 4851 | */ |
8a942fde MG |
4852 | int __meminit __early_pfn_to_nid(unsigned long pfn, |
4853 | struct mminit_pfnnid_cache *state) | |
c713216d | 4854 | { |
c13291a5 | 4855 | unsigned long start_pfn, end_pfn; |
e76b63f8 | 4856 | int nid; |
7c243c71 | 4857 | |
8a942fde MG |
4858 | if (state->last_start <= pfn && pfn < state->last_end) |
4859 | return state->last_nid; | |
c713216d | 4860 | |
e76b63f8 YL |
4861 | nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); |
4862 | if (nid != -1) { | |
8a942fde MG |
4863 | state->last_start = start_pfn; |
4864 | state->last_end = end_pfn; | |
4865 | state->last_nid = nid; | |
e76b63f8 YL |
4866 | } |
4867 | ||
4868 | return nid; | |
c713216d MG |
4869 | } |
4870 | #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ | |
4871 | ||
c713216d | 4872 | /** |
6782832e | 4873 | * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range |
88ca3b94 | 4874 | * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. |
6782832e | 4875 | * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid |
c713216d | 4876 | * |
7d018176 ZZ |
4877 | * If an architecture guarantees that all ranges registered contain no holes |
4878 | * and may be freed, this this function may be used instead of calling | |
4879 | * memblock_free_early_nid() manually. | |
c713216d | 4880 | */ |
c13291a5 | 4881 | void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) |
cc289894 | 4882 | { |
c13291a5 TH |
4883 | unsigned long start_pfn, end_pfn; |
4884 | int i, this_nid; | |
edbe7d23 | 4885 | |
c13291a5 TH |
4886 | for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { |
4887 | start_pfn = min(start_pfn, max_low_pfn); | |
4888 | end_pfn = min(end_pfn, max_low_pfn); | |
edbe7d23 | 4889 | |
c13291a5 | 4890 | if (start_pfn < end_pfn) |
6782832e SS |
4891 | memblock_free_early_nid(PFN_PHYS(start_pfn), |
4892 | (end_pfn - start_pfn) << PAGE_SHIFT, | |
4893 | this_nid); | |
edbe7d23 | 4894 | } |
edbe7d23 | 4895 | } |
edbe7d23 | 4896 | |
c713216d MG |
4897 | /** |
4898 | * sparse_memory_present_with_active_regions - Call memory_present for each active range | |
88ca3b94 | 4899 | * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. |
c713216d | 4900 | * |
7d018176 ZZ |
4901 | * If an architecture guarantees that all ranges registered contain no holes and may |
4902 | * be freed, this function may be used instead of calling memory_present() manually. | |
c713216d MG |
4903 | */ |
4904 | void __init sparse_memory_present_with_active_regions(int nid) | |
4905 | { | |
c13291a5 TH |
4906 | unsigned long start_pfn, end_pfn; |
4907 | int i, this_nid; | |
c713216d | 4908 | |
c13291a5 TH |
4909 | for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) |
4910 | memory_present(this_nid, start_pfn, end_pfn); | |
c713216d MG |
4911 | } |
4912 | ||
4913 | /** | |
4914 | * get_pfn_range_for_nid - Return the start and end page frames for a node | |
88ca3b94 RD |
4915 | * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. |
4916 | * @start_pfn: Passed by reference. On return, it will have the node start_pfn. | |
4917 | * @end_pfn: Passed by reference. On return, it will have the node end_pfn. | |
c713216d MG |
4918 | * |
4919 | * It returns the start and end page frame of a node based on information | |
7d018176 | 4920 | * provided by memblock_set_node(). If called for a node |
c713216d | 4921 | * with no available memory, a warning is printed and the start and end |
88ca3b94 | 4922 | * PFNs will be 0. |
c713216d | 4923 | */ |
a3142c8e | 4924 | void __meminit get_pfn_range_for_nid(unsigned int nid, |
c713216d MG |
4925 | unsigned long *start_pfn, unsigned long *end_pfn) |
4926 | { | |
c13291a5 | 4927 | unsigned long this_start_pfn, this_end_pfn; |
c713216d | 4928 | int i; |
c13291a5 | 4929 | |
c713216d MG |
4930 | *start_pfn = -1UL; |
4931 | *end_pfn = 0; | |
4932 | ||
c13291a5 TH |
4933 | for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { |
4934 | *start_pfn = min(*start_pfn, this_start_pfn); | |
4935 | *end_pfn = max(*end_pfn, this_end_pfn); | |
c713216d MG |
4936 | } |
4937 | ||
633c0666 | 4938 | if (*start_pfn == -1UL) |
c713216d | 4939 | *start_pfn = 0; |
c713216d MG |
4940 | } |
4941 | ||
2a1e274a MG |
4942 | /* |
4943 | * This finds a zone that can be used for ZONE_MOVABLE pages. The | |
4944 | * assumption is made that zones within a node are ordered in monotonic | |
4945 | * increasing memory addresses so that the "highest" populated zone is used | |
4946 | */ | |
b69a7288 | 4947 | static void __init find_usable_zone_for_movable(void) |
2a1e274a MG |
4948 | { |
4949 | int zone_index; | |
4950 | for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { | |
4951 | if (zone_index == ZONE_MOVABLE) | |
4952 | continue; | |
4953 | ||
4954 | if (arch_zone_highest_possible_pfn[zone_index] > | |
4955 | arch_zone_lowest_possible_pfn[zone_index]) | |
4956 | break; | |
4957 | } | |
4958 | ||
4959 | VM_BUG_ON(zone_index == -1); | |
4960 | movable_zone = zone_index; | |
4961 | } | |
4962 | ||
4963 | /* | |
4964 | * The zone ranges provided by the architecture do not include ZONE_MOVABLE | |
25985edc | 4965 | * because it is sized independent of architecture. Unlike the other zones, |
2a1e274a MG |
4966 | * the starting point for ZONE_MOVABLE is not fixed. It may be different |
4967 | * in each node depending on the size of each node and how evenly kernelcore | |
4968 | * is distributed. This helper function adjusts the zone ranges | |
4969 | * provided by the architecture for a given node by using the end of the | |
4970 | * highest usable zone for ZONE_MOVABLE. This preserves the assumption that | |
4971 | * zones within a node are in order of monotonic increases memory addresses | |
4972 | */ | |
b69a7288 | 4973 | static void __meminit adjust_zone_range_for_zone_movable(int nid, |
2a1e274a MG |
4974 | unsigned long zone_type, |
4975 | unsigned long node_start_pfn, | |
4976 | unsigned long node_end_pfn, | |
4977 | unsigned long *zone_start_pfn, | |
4978 | unsigned long *zone_end_pfn) | |
4979 | { | |
4980 | /* Only adjust if ZONE_MOVABLE is on this node */ | |
4981 | if (zone_movable_pfn[nid]) { | |
4982 | /* Size ZONE_MOVABLE */ | |
4983 | if (zone_type == ZONE_MOVABLE) { | |
4984 | *zone_start_pfn = zone_movable_pfn[nid]; | |
4985 | *zone_end_pfn = min(node_end_pfn, | |
4986 | arch_zone_highest_possible_pfn[movable_zone]); | |
4987 | ||
2a1e274a MG |
4988 | /* Check if this whole range is within ZONE_MOVABLE */ |
4989 | } else if (*zone_start_pfn >= zone_movable_pfn[nid]) | |
4990 | *zone_start_pfn = *zone_end_pfn; | |
4991 | } | |
4992 | } | |
4993 | ||
c713216d MG |
4994 | /* |
4995 | * Return the number of pages a zone spans in a node, including holes | |
4996 | * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() | |
4997 | */ | |
6ea6e688 | 4998 | static unsigned long __meminit zone_spanned_pages_in_node(int nid, |
c713216d | 4999 | unsigned long zone_type, |
7960aedd ZY |
5000 | unsigned long node_start_pfn, |
5001 | unsigned long node_end_pfn, | |
d91749c1 TI |
5002 | unsigned long *zone_start_pfn, |
5003 | unsigned long *zone_end_pfn, | |
c713216d MG |
5004 | unsigned long *ignored) |
5005 | { | |
b5685e92 | 5006 | /* When hotadd a new node from cpu_up(), the node should be empty */ |
f9126ab9 XQ |
5007 | if (!node_start_pfn && !node_end_pfn) |
5008 | return 0; | |
5009 | ||
7960aedd | 5010 | /* Get the start and end of the zone */ |
d91749c1 TI |
5011 | *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; |
5012 | *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; | |
2a1e274a MG |
5013 | adjust_zone_range_for_zone_movable(nid, zone_type, |
5014 | node_start_pfn, node_end_pfn, | |
d91749c1 | 5015 | zone_start_pfn, zone_end_pfn); |
c713216d MG |
5016 | |
5017 | /* Check that this node has pages within the zone's required range */ | |
d91749c1 | 5018 | if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) |
c713216d MG |
5019 | return 0; |
5020 | ||
5021 | /* Move the zone boundaries inside the node if necessary */ | |
d91749c1 TI |
5022 | *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); |
5023 | *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); | |
c713216d MG |
5024 | |
5025 | /* Return the spanned pages */ | |
d91749c1 | 5026 | return *zone_end_pfn - *zone_start_pfn; |
c713216d MG |
5027 | } |
5028 | ||
5029 | /* | |
5030 | * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, | |
88ca3b94 | 5031 | * then all holes in the requested range will be accounted for. |
c713216d | 5032 | */ |
32996250 | 5033 | unsigned long __meminit __absent_pages_in_range(int nid, |
c713216d MG |
5034 | unsigned long range_start_pfn, |
5035 | unsigned long range_end_pfn) | |
5036 | { | |
96e907d1 TH |
5037 | unsigned long nr_absent = range_end_pfn - range_start_pfn; |
5038 | unsigned long start_pfn, end_pfn; | |
5039 | int i; | |
c713216d | 5040 | |
96e907d1 TH |
5041 | for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { |
5042 | start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); | |
5043 | end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); | |
5044 | nr_absent -= end_pfn - start_pfn; | |
c713216d | 5045 | } |
96e907d1 | 5046 | return nr_absent; |
c713216d MG |
5047 | } |
5048 | ||
5049 | /** | |
5050 | * absent_pages_in_range - Return number of page frames in holes within a range | |
5051 | * @start_pfn: The start PFN to start searching for holes | |
5052 | * @end_pfn: The end PFN to stop searching for holes | |
5053 | * | |
88ca3b94 | 5054 | * It returns the number of pages frames in memory holes within a range. |
c713216d MG |
5055 | */ |
5056 | unsigned long __init absent_pages_in_range(unsigned long start_pfn, | |
5057 | unsigned long end_pfn) | |
5058 | { | |
5059 | return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); | |
5060 | } | |
5061 | ||
5062 | /* Return the number of page frames in holes in a zone on a node */ | |
6ea6e688 | 5063 | static unsigned long __meminit zone_absent_pages_in_node(int nid, |
c713216d | 5064 | unsigned long zone_type, |
7960aedd ZY |
5065 | unsigned long node_start_pfn, |
5066 | unsigned long node_end_pfn, | |
c713216d MG |
5067 | unsigned long *ignored) |
5068 | { | |
96e907d1 TH |
5069 | unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; |
5070 | unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; | |
9c7cd687 | 5071 | unsigned long zone_start_pfn, zone_end_pfn; |
342332e6 | 5072 | unsigned long nr_absent; |
9c7cd687 | 5073 | |
b5685e92 | 5074 | /* When hotadd a new node from cpu_up(), the node should be empty */ |
f9126ab9 XQ |
5075 | if (!node_start_pfn && !node_end_pfn) |
5076 | return 0; | |
5077 | ||
96e907d1 TH |
5078 | zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); |
5079 | zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); | |
9c7cd687 | 5080 | |
2a1e274a MG |
5081 | adjust_zone_range_for_zone_movable(nid, zone_type, |
5082 | node_start_pfn, node_end_pfn, | |
5083 | &zone_start_pfn, &zone_end_pfn); | |
342332e6 TI |
5084 | nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); |
5085 | ||
5086 | /* | |
5087 | * ZONE_MOVABLE handling. | |
5088 | * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages | |
5089 | * and vice versa. | |
5090 | */ | |
5091 | if (zone_movable_pfn[nid]) { | |
5092 | if (mirrored_kernelcore) { | |
5093 | unsigned long start_pfn, end_pfn; | |
5094 | struct memblock_region *r; | |
5095 | ||
5096 | for_each_memblock(memory, r) { | |
5097 | start_pfn = clamp(memblock_region_memory_base_pfn(r), | |
5098 | zone_start_pfn, zone_end_pfn); | |
5099 | end_pfn = clamp(memblock_region_memory_end_pfn(r), | |
5100 | zone_start_pfn, zone_end_pfn); | |
5101 | ||
5102 | if (zone_type == ZONE_MOVABLE && | |
5103 | memblock_is_mirror(r)) | |
5104 | nr_absent += end_pfn - start_pfn; | |
5105 | ||
5106 | if (zone_type == ZONE_NORMAL && | |
5107 | !memblock_is_mirror(r)) | |
5108 | nr_absent += end_pfn - start_pfn; | |
5109 | } | |
5110 | } else { | |
5111 | if (zone_type == ZONE_NORMAL) | |
5112 | nr_absent += node_end_pfn - zone_movable_pfn[nid]; | |
5113 | } | |
5114 | } | |
5115 | ||
5116 | return nr_absent; | |
c713216d | 5117 | } |
0e0b864e | 5118 | |
0ee332c1 | 5119 | #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ |
6ea6e688 | 5120 | static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, |
c713216d | 5121 | unsigned long zone_type, |
7960aedd ZY |
5122 | unsigned long node_start_pfn, |
5123 | unsigned long node_end_pfn, | |
d91749c1 TI |
5124 | unsigned long *zone_start_pfn, |
5125 | unsigned long *zone_end_pfn, | |
c713216d MG |
5126 | unsigned long *zones_size) |
5127 | { | |
d91749c1 TI |
5128 | unsigned int zone; |
5129 | ||
5130 | *zone_start_pfn = node_start_pfn; | |
5131 | for (zone = 0; zone < zone_type; zone++) | |
5132 | *zone_start_pfn += zones_size[zone]; | |
5133 | ||
5134 | *zone_end_pfn = *zone_start_pfn + zones_size[zone_type]; | |
5135 | ||
c713216d MG |
5136 | return zones_size[zone_type]; |
5137 | } | |
5138 | ||
6ea6e688 | 5139 | static inline unsigned long __meminit zone_absent_pages_in_node(int nid, |
c713216d | 5140 | unsigned long zone_type, |
7960aedd ZY |
5141 | unsigned long node_start_pfn, |
5142 | unsigned long node_end_pfn, | |
c713216d MG |
5143 | unsigned long *zholes_size) |
5144 | { | |
5145 | if (!zholes_size) | |
5146 | return 0; | |
5147 | ||
5148 | return zholes_size[zone_type]; | |
5149 | } | |
20e6926d | 5150 | |
0ee332c1 | 5151 | #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ |
c713216d | 5152 | |
a3142c8e | 5153 | static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, |
7960aedd ZY |
5154 | unsigned long node_start_pfn, |
5155 | unsigned long node_end_pfn, | |
5156 | unsigned long *zones_size, | |
5157 | unsigned long *zholes_size) | |
c713216d | 5158 | { |
febd5949 | 5159 | unsigned long realtotalpages = 0, totalpages = 0; |
c713216d MG |
5160 | enum zone_type i; |
5161 | ||
febd5949 GZ |
5162 | for (i = 0; i < MAX_NR_ZONES; i++) { |
5163 | struct zone *zone = pgdat->node_zones + i; | |
d91749c1 | 5164 | unsigned long zone_start_pfn, zone_end_pfn; |
febd5949 | 5165 | unsigned long size, real_size; |
c713216d | 5166 | |
febd5949 GZ |
5167 | size = zone_spanned_pages_in_node(pgdat->node_id, i, |
5168 | node_start_pfn, | |
5169 | node_end_pfn, | |
d91749c1 TI |
5170 | &zone_start_pfn, |
5171 | &zone_end_pfn, | |
febd5949 GZ |
5172 | zones_size); |
5173 | real_size = size - zone_absent_pages_in_node(pgdat->node_id, i, | |
7960aedd ZY |
5174 | node_start_pfn, node_end_pfn, |
5175 | zholes_size); | |
d91749c1 TI |
5176 | if (size) |
5177 | zone->zone_start_pfn = zone_start_pfn; | |
5178 | else | |
5179 | zone->zone_start_pfn = 0; | |
febd5949 GZ |
5180 | zone->spanned_pages = size; |
5181 | zone->present_pages = real_size; | |
5182 | ||
5183 | totalpages += size; | |
5184 | realtotalpages += real_size; | |
5185 | } | |
5186 | ||
5187 | pgdat->node_spanned_pages = totalpages; | |
c713216d MG |
5188 | pgdat->node_present_pages = realtotalpages; |
5189 | printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, | |
5190 | realtotalpages); | |
5191 | } | |
5192 | ||
835c134e MG |
5193 | #ifndef CONFIG_SPARSEMEM |
5194 | /* | |
5195 | * Calculate the size of the zone->blockflags rounded to an unsigned long | |
d9c23400 MG |
5196 | * Start by making sure zonesize is a multiple of pageblock_order by rounding |
5197 | * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally | |
835c134e MG |
5198 | * round what is now in bits to nearest long in bits, then return it in |
5199 | * bytes. | |
5200 | */ | |
7c45512d | 5201 | static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) |
835c134e MG |
5202 | { |
5203 | unsigned long usemapsize; | |
5204 | ||
7c45512d | 5205 | zonesize += zone_start_pfn & (pageblock_nr_pages-1); |
d9c23400 MG |
5206 | usemapsize = roundup(zonesize, pageblock_nr_pages); |
5207 | usemapsize = usemapsize >> pageblock_order; | |
835c134e MG |
5208 | usemapsize *= NR_PAGEBLOCK_BITS; |
5209 | usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); | |
5210 | ||
5211 | return usemapsize / 8; | |
5212 | } | |
5213 | ||
5214 | static void __init setup_usemap(struct pglist_data *pgdat, | |
7c45512d LT |
5215 | struct zone *zone, |
5216 | unsigned long zone_start_pfn, | |
5217 | unsigned long zonesize) | |
835c134e | 5218 | { |
7c45512d | 5219 | unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); |
835c134e | 5220 | zone->pageblock_flags = NULL; |
58a01a45 | 5221 | if (usemapsize) |
6782832e SS |
5222 | zone->pageblock_flags = |
5223 | memblock_virt_alloc_node_nopanic(usemapsize, | |
5224 | pgdat->node_id); | |
835c134e MG |
5225 | } |
5226 | #else | |
7c45512d LT |
5227 | static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, |
5228 | unsigned long zone_start_pfn, unsigned long zonesize) {} | |
835c134e MG |
5229 | #endif /* CONFIG_SPARSEMEM */ |
5230 | ||
d9c23400 | 5231 | #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE |
ba72cb8c | 5232 | |
d9c23400 | 5233 | /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ |
15ca220e | 5234 | void __paginginit set_pageblock_order(void) |
d9c23400 | 5235 | { |
955c1cd7 AM |
5236 | unsigned int order; |
5237 | ||
d9c23400 MG |
5238 | /* Check that pageblock_nr_pages has not already been setup */ |
5239 | if (pageblock_order) | |
5240 | return; | |
5241 | ||
955c1cd7 AM |
5242 | if (HPAGE_SHIFT > PAGE_SHIFT) |
5243 | order = HUGETLB_PAGE_ORDER; | |
5244 | else | |
5245 | order = MAX_ORDER - 1; | |
5246 | ||
d9c23400 MG |
5247 | /* |
5248 | * Assume the largest contiguous order of interest is a huge page. | |
955c1cd7 AM |
5249 | * This value may be variable depending on boot parameters on IA64 and |
5250 | * powerpc. | |
d9c23400 MG |
5251 | */ |
5252 | pageblock_order = order; | |
5253 | } | |
5254 | #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ | |
5255 | ||
ba72cb8c MG |
5256 | /* |
5257 | * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() | |
955c1cd7 AM |
5258 | * is unused as pageblock_order is set at compile-time. See |
5259 | * include/linux/pageblock-flags.h for the values of pageblock_order based on | |
5260 | * the kernel config | |
ba72cb8c | 5261 | */ |
15ca220e | 5262 | void __paginginit set_pageblock_order(void) |
ba72cb8c | 5263 | { |
ba72cb8c | 5264 | } |
d9c23400 MG |
5265 | |
5266 | #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ | |
5267 | ||
01cefaef JL |
5268 | static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages, |
5269 | unsigned long present_pages) | |
5270 | { | |
5271 | unsigned long pages = spanned_pages; | |
5272 | ||
5273 | /* | |
5274 | * Provide a more accurate estimation if there are holes within | |
5275 | * the zone and SPARSEMEM is in use. If there are holes within the | |
5276 | * zone, each populated memory region may cost us one or two extra | |
5277 | * memmap pages due to alignment because memmap pages for each | |
5278 | * populated regions may not naturally algined on page boundary. | |
5279 | * So the (present_pages >> 4) heuristic is a tradeoff for that. | |
5280 | */ | |
5281 | if (spanned_pages > present_pages + (present_pages >> 4) && | |
5282 | IS_ENABLED(CONFIG_SPARSEMEM)) | |
5283 | pages = present_pages; | |
5284 | ||
5285 | return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; | |
5286 | } | |
5287 | ||
1da177e4 LT |
5288 | /* |
5289 | * Set up the zone data structures: | |
5290 | * - mark all pages reserved | |
5291 | * - mark all memory queues empty | |
5292 | * - clear the memory bitmaps | |
6527af5d MK |
5293 | * |
5294 | * NOTE: pgdat should get zeroed by caller. | |
1da177e4 | 5295 | */ |
7f3eb55b | 5296 | static void __paginginit free_area_init_core(struct pglist_data *pgdat) |
1da177e4 | 5297 | { |
2f1b6248 | 5298 | enum zone_type j; |
ed8ece2e | 5299 | int nid = pgdat->node_id; |
718127cc | 5300 | int ret; |
1da177e4 | 5301 | |
208d54e5 | 5302 | pgdat_resize_init(pgdat); |
8177a420 AA |
5303 | #ifdef CONFIG_NUMA_BALANCING |
5304 | spin_lock_init(&pgdat->numabalancing_migrate_lock); | |
5305 | pgdat->numabalancing_migrate_nr_pages = 0; | |
5306 | pgdat->numabalancing_migrate_next_window = jiffies; | |
a3d0a918 KS |
5307 | #endif |
5308 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | |
5309 | spin_lock_init(&pgdat->split_queue_lock); | |
5310 | INIT_LIST_HEAD(&pgdat->split_queue); | |
5311 | pgdat->split_queue_len = 0; | |
8177a420 | 5312 | #endif |
1da177e4 | 5313 | init_waitqueue_head(&pgdat->kswapd_wait); |
5515061d | 5314 | init_waitqueue_head(&pgdat->pfmemalloc_wait); |
eefa864b | 5315 | pgdat_page_ext_init(pgdat); |
5f63b720 | 5316 | |
1da177e4 LT |
5317 | for (j = 0; j < MAX_NR_ZONES; j++) { |
5318 | struct zone *zone = pgdat->node_zones + j; | |
9feedc9d | 5319 | unsigned long size, realsize, freesize, memmap_pages; |
d91749c1 | 5320 | unsigned long zone_start_pfn = zone->zone_start_pfn; |
1da177e4 | 5321 | |
febd5949 GZ |
5322 | size = zone->spanned_pages; |
5323 | realsize = freesize = zone->present_pages; | |
1da177e4 | 5324 | |
0e0b864e | 5325 | /* |
9feedc9d | 5326 | * Adjust freesize so that it accounts for how much memory |
0e0b864e MG |
5327 | * is used by this zone for memmap. This affects the watermark |
5328 | * and per-cpu initialisations | |
5329 | */ | |
01cefaef | 5330 | memmap_pages = calc_memmap_size(size, realsize); |
ba914f48 ZH |
5331 | if (!is_highmem_idx(j)) { |
5332 | if (freesize >= memmap_pages) { | |
5333 | freesize -= memmap_pages; | |
5334 | if (memmap_pages) | |
5335 | printk(KERN_DEBUG | |
5336 | " %s zone: %lu pages used for memmap\n", | |
5337 | zone_names[j], memmap_pages); | |
5338 | } else | |
5339 | printk(KERN_WARNING | |
5340 | " %s zone: %lu pages exceeds freesize %lu\n", | |
5341 | zone_names[j], memmap_pages, freesize); | |
5342 | } | |
0e0b864e | 5343 | |
6267276f | 5344 | /* Account for reserved pages */ |
9feedc9d JL |
5345 | if (j == 0 && freesize > dma_reserve) { |
5346 | freesize -= dma_reserve; | |
d903ef9f | 5347 | printk(KERN_DEBUG " %s zone: %lu pages reserved\n", |
6267276f | 5348 | zone_names[0], dma_reserve); |
0e0b864e MG |
5349 | } |
5350 | ||
98d2b0eb | 5351 | if (!is_highmem_idx(j)) |
9feedc9d | 5352 | nr_kernel_pages += freesize; |
01cefaef JL |
5353 | /* Charge for highmem memmap if there are enough kernel pages */ |
5354 | else if (nr_kernel_pages > memmap_pages * 2) | |
5355 | nr_kernel_pages -= memmap_pages; | |
9feedc9d | 5356 | nr_all_pages += freesize; |
1da177e4 | 5357 | |
9feedc9d JL |
5358 | /* |
5359 | * Set an approximate value for lowmem here, it will be adjusted | |
5360 | * when the bootmem allocator frees pages into the buddy system. | |
5361 | * And all highmem pages will be managed by the buddy system. | |
5362 | */ | |
5363 | zone->managed_pages = is_highmem_idx(j) ? realsize : freesize; | |
9614634f | 5364 | #ifdef CONFIG_NUMA |
d5f541ed | 5365 | zone->node = nid; |
9feedc9d | 5366 | zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio) |
9614634f | 5367 | / 100; |
9feedc9d | 5368 | zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100; |
9614634f | 5369 | #endif |
1da177e4 LT |
5370 | zone->name = zone_names[j]; |
5371 | spin_lock_init(&zone->lock); | |
5372 | spin_lock_init(&zone->lru_lock); | |
bdc8cb98 | 5373 | zone_seqlock_init(zone); |
1da177e4 | 5374 | zone->zone_pgdat = pgdat; |
ed8ece2e | 5375 | zone_pcp_init(zone); |
81c0a2bb JW |
5376 | |
5377 | /* For bootup, initialized properly in watermark setup */ | |
5378 | mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages); | |
5379 | ||
bea8c150 | 5380 | lruvec_init(&zone->lruvec); |
1da177e4 LT |
5381 | if (!size) |
5382 | continue; | |
5383 | ||
955c1cd7 | 5384 | set_pageblock_order(); |
7c45512d | 5385 | setup_usemap(pgdat, zone, zone_start_pfn, size); |
b171e409 | 5386 | ret = init_currently_empty_zone(zone, zone_start_pfn, size); |
718127cc | 5387 | BUG_ON(ret); |
76cdd58e | 5388 | memmap_init(size, nid, j, zone_start_pfn); |
1da177e4 LT |
5389 | } |
5390 | } | |
5391 | ||
577a32f6 | 5392 | static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) |
1da177e4 | 5393 | { |
b0aeba74 | 5394 | unsigned long __maybe_unused start = 0; |
a1c34a3b LA |
5395 | unsigned long __maybe_unused offset = 0; |
5396 | ||
1da177e4 LT |
5397 | /* Skip empty nodes */ |
5398 | if (!pgdat->node_spanned_pages) | |
5399 | return; | |
5400 | ||
d41dee36 | 5401 | #ifdef CONFIG_FLAT_NODE_MEM_MAP |
b0aeba74 TL |
5402 | start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); |
5403 | offset = pgdat->node_start_pfn - start; | |
1da177e4 LT |
5404 | /* ia64 gets its own node_mem_map, before this, without bootmem */ |
5405 | if (!pgdat->node_mem_map) { | |
b0aeba74 | 5406 | unsigned long size, end; |
d41dee36 AW |
5407 | struct page *map; |
5408 | ||
e984bb43 BP |
5409 | /* |
5410 | * The zone's endpoints aren't required to be MAX_ORDER | |
5411 | * aligned but the node_mem_map endpoints must be in order | |
5412 | * for the buddy allocator to function correctly. | |
5413 | */ | |
108bcc96 | 5414 | end = pgdat_end_pfn(pgdat); |
e984bb43 BP |
5415 | end = ALIGN(end, MAX_ORDER_NR_PAGES); |
5416 | size = (end - start) * sizeof(struct page); | |
6f167ec7 DH |
5417 | map = alloc_remap(pgdat->node_id, size); |
5418 | if (!map) | |
6782832e SS |
5419 | map = memblock_virt_alloc_node_nopanic(size, |
5420 | pgdat->node_id); | |
a1c34a3b | 5421 | pgdat->node_mem_map = map + offset; |
1da177e4 | 5422 | } |
12d810c1 | 5423 | #ifndef CONFIG_NEED_MULTIPLE_NODES |
1da177e4 LT |
5424 | /* |
5425 | * With no DISCONTIG, the global mem_map is just set as node 0's | |
5426 | */ | |
c713216d | 5427 | if (pgdat == NODE_DATA(0)) { |
1da177e4 | 5428 | mem_map = NODE_DATA(0)->node_mem_map; |
a1c34a3b | 5429 | #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM) |
c713216d | 5430 | if (page_to_pfn(mem_map) != pgdat->node_start_pfn) |
a1c34a3b | 5431 | mem_map -= offset; |
0ee332c1 | 5432 | #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ |
c713216d | 5433 | } |
1da177e4 | 5434 | #endif |
d41dee36 | 5435 | #endif /* CONFIG_FLAT_NODE_MEM_MAP */ |
1da177e4 LT |
5436 | } |
5437 | ||
9109fb7b JW |
5438 | void __paginginit free_area_init_node(int nid, unsigned long *zones_size, |
5439 | unsigned long node_start_pfn, unsigned long *zholes_size) | |
1da177e4 | 5440 | { |
9109fb7b | 5441 | pg_data_t *pgdat = NODE_DATA(nid); |
7960aedd ZY |
5442 | unsigned long start_pfn = 0; |
5443 | unsigned long end_pfn = 0; | |
9109fb7b | 5444 | |
88fdf75d | 5445 | /* pg_data_t should be reset to zero when it's allocated */ |
8783b6e2 | 5446 | WARN_ON(pgdat->nr_zones || pgdat->classzone_idx); |
88fdf75d | 5447 | |
3a80a7fa | 5448 | reset_deferred_meminit(pgdat); |
1da177e4 LT |
5449 | pgdat->node_id = nid; |
5450 | pgdat->node_start_pfn = node_start_pfn; | |
7960aedd ZY |
5451 | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP |
5452 | get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); | |
8d29e18a | 5453 | pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, |
4ada0c5a ZL |
5454 | (u64)start_pfn << PAGE_SHIFT, |
5455 | end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); | |
d91749c1 TI |
5456 | #else |
5457 | start_pfn = node_start_pfn; | |
7960aedd ZY |
5458 | #endif |
5459 | calculate_node_totalpages(pgdat, start_pfn, end_pfn, | |
5460 | zones_size, zholes_size); | |
1da177e4 LT |
5461 | |
5462 | alloc_node_mem_map(pgdat); | |
e8c27ac9 YL |
5463 | #ifdef CONFIG_FLAT_NODE_MEM_MAP |
5464 | printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", | |
5465 | nid, (unsigned long)pgdat, | |
5466 | (unsigned long)pgdat->node_mem_map); | |
5467 | #endif | |
1da177e4 | 5468 | |
7f3eb55b | 5469 | free_area_init_core(pgdat); |
1da177e4 LT |
5470 | } |
5471 | ||
0ee332c1 | 5472 | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP |
418508c1 MS |
5473 | |
5474 | #if MAX_NUMNODES > 1 | |
5475 | /* | |
5476 | * Figure out the number of possible node ids. | |
5477 | */ | |
f9872caf | 5478 | void __init setup_nr_node_ids(void) |
418508c1 | 5479 | { |
904a9553 | 5480 | unsigned int highest; |
418508c1 | 5481 | |
904a9553 | 5482 | highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); |
418508c1 MS |
5483 | nr_node_ids = highest + 1; |
5484 | } | |
418508c1 MS |
5485 | #endif |
5486 | ||
1e01979c TH |
5487 | /** |
5488 | * node_map_pfn_alignment - determine the maximum internode alignment | |
5489 | * | |
5490 | * This function should be called after node map is populated and sorted. | |
5491 | * It calculates the maximum power of two alignment which can distinguish | |
5492 | * all the nodes. | |
5493 | * | |
5494 | * For example, if all nodes are 1GiB and aligned to 1GiB, the return value | |
5495 | * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the | |
5496 | * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is | |
5497 | * shifted, 1GiB is enough and this function will indicate so. | |
5498 | * | |
5499 | * This is used to test whether pfn -> nid mapping of the chosen memory | |
5500 | * model has fine enough granularity to avoid incorrect mapping for the | |
5501 | * populated node map. | |
5502 | * | |
5503 | * Returns the determined alignment in pfn's. 0 if there is no alignment | |
5504 | * requirement (single node). | |
5505 | */ | |
5506 | unsigned long __init node_map_pfn_alignment(void) | |
5507 | { | |
5508 | unsigned long accl_mask = 0, last_end = 0; | |
c13291a5 | 5509 | unsigned long start, end, mask; |
1e01979c | 5510 | int last_nid = -1; |
c13291a5 | 5511 | int i, nid; |
1e01979c | 5512 | |
c13291a5 | 5513 | for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { |
1e01979c TH |
5514 | if (!start || last_nid < 0 || last_nid == nid) { |
5515 | last_nid = nid; | |
5516 | last_end = end; | |
5517 | continue; | |
5518 | } | |
5519 | ||
5520 | /* | |
5521 | * Start with a mask granular enough to pin-point to the | |
5522 | * start pfn and tick off bits one-by-one until it becomes | |
5523 | * too coarse to separate the current node from the last. | |
5524 | */ | |
5525 | mask = ~((1 << __ffs(start)) - 1); | |
5526 | while (mask && last_end <= (start & (mask << 1))) | |
5527 | mask <<= 1; | |
5528 | ||
5529 | /* accumulate all internode masks */ | |
5530 | accl_mask |= mask; | |
5531 | } | |
5532 | ||
5533 | /* convert mask to number of pages */ | |
5534 | return ~accl_mask + 1; | |
5535 | } | |
5536 | ||
a6af2bc3 | 5537 | /* Find the lowest pfn for a node */ |
b69a7288 | 5538 | static unsigned long __init find_min_pfn_for_node(int nid) |
c713216d | 5539 | { |
a6af2bc3 | 5540 | unsigned long min_pfn = ULONG_MAX; |
c13291a5 TH |
5541 | unsigned long start_pfn; |
5542 | int i; | |
1abbfb41 | 5543 | |
c13291a5 TH |
5544 | for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) |
5545 | min_pfn = min(min_pfn, start_pfn); | |
c713216d | 5546 | |
a6af2bc3 MG |
5547 | if (min_pfn == ULONG_MAX) { |
5548 | printk(KERN_WARNING | |
2bc0d261 | 5549 | "Could not find start_pfn for node %d\n", nid); |
a6af2bc3 MG |
5550 | return 0; |
5551 | } | |
5552 | ||
5553 | return min_pfn; | |
c713216d MG |
5554 | } |
5555 | ||
5556 | /** | |
5557 | * find_min_pfn_with_active_regions - Find the minimum PFN registered | |
5558 | * | |
5559 | * It returns the minimum PFN based on information provided via | |
7d018176 | 5560 | * memblock_set_node(). |
c713216d MG |
5561 | */ |
5562 | unsigned long __init find_min_pfn_with_active_regions(void) | |
5563 | { | |
5564 | return find_min_pfn_for_node(MAX_NUMNODES); | |
5565 | } | |
5566 | ||
37b07e41 LS |
5567 | /* |
5568 | * early_calculate_totalpages() | |
5569 | * Sum pages in active regions for movable zone. | |
4b0ef1fe | 5570 | * Populate N_MEMORY for calculating usable_nodes. |
37b07e41 | 5571 | */ |
484f51f8 | 5572 | static unsigned long __init early_calculate_totalpages(void) |
7e63efef | 5573 | { |
7e63efef | 5574 | unsigned long totalpages = 0; |
c13291a5 TH |
5575 | unsigned long start_pfn, end_pfn; |
5576 | int i, nid; | |
5577 | ||
5578 | for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { | |
5579 | unsigned long pages = end_pfn - start_pfn; | |
7e63efef | 5580 | |
37b07e41 LS |
5581 | totalpages += pages; |
5582 | if (pages) | |
4b0ef1fe | 5583 | node_set_state(nid, N_MEMORY); |
37b07e41 | 5584 | } |
b8af2941 | 5585 | return totalpages; |
7e63efef MG |
5586 | } |
5587 | ||
2a1e274a MG |
5588 | /* |
5589 | * Find the PFN the Movable zone begins in each node. Kernel memory | |
5590 | * is spread evenly between nodes as long as the nodes have enough | |
5591 | * memory. When they don't, some nodes will have more kernelcore than | |
5592 | * others | |
5593 | */ | |
b224ef85 | 5594 | static void __init find_zone_movable_pfns_for_nodes(void) |
2a1e274a MG |
5595 | { |
5596 | int i, nid; | |
5597 | unsigned long usable_startpfn; | |
5598 | unsigned long kernelcore_node, kernelcore_remaining; | |
66918dcd | 5599 | /* save the state before borrow the nodemask */ |
4b0ef1fe | 5600 | nodemask_t saved_node_state = node_states[N_MEMORY]; |
37b07e41 | 5601 | unsigned long totalpages = early_calculate_totalpages(); |
4b0ef1fe | 5602 | int usable_nodes = nodes_weight(node_states[N_MEMORY]); |
136199f0 | 5603 | struct memblock_region *r; |
b2f3eebe TC |
5604 | |
5605 | /* Need to find movable_zone earlier when movable_node is specified. */ | |
5606 | find_usable_zone_for_movable(); | |
5607 | ||
5608 | /* | |
5609 | * If movable_node is specified, ignore kernelcore and movablecore | |
5610 | * options. | |
5611 | */ | |
5612 | if (movable_node_is_enabled()) { | |
136199f0 EM |
5613 | for_each_memblock(memory, r) { |
5614 | if (!memblock_is_hotpluggable(r)) | |
b2f3eebe TC |
5615 | continue; |
5616 | ||
136199f0 | 5617 | nid = r->nid; |
b2f3eebe | 5618 | |
136199f0 | 5619 | usable_startpfn = PFN_DOWN(r->base); |
b2f3eebe TC |
5620 | zone_movable_pfn[nid] = zone_movable_pfn[nid] ? |
5621 | min(usable_startpfn, zone_movable_pfn[nid]) : | |
5622 | usable_startpfn; | |
5623 | } | |
5624 | ||
5625 | goto out2; | |
5626 | } | |
2a1e274a | 5627 | |
342332e6 TI |
5628 | /* |
5629 | * If kernelcore=mirror is specified, ignore movablecore option | |
5630 | */ | |
5631 | if (mirrored_kernelcore) { | |
5632 | bool mem_below_4gb_not_mirrored = false; | |
5633 | ||
5634 | for_each_memblock(memory, r) { | |
5635 | if (memblock_is_mirror(r)) | |
5636 | continue; | |
5637 | ||
5638 | nid = r->nid; | |
5639 | ||
5640 | usable_startpfn = memblock_region_memory_base_pfn(r); | |
5641 | ||
5642 | if (usable_startpfn < 0x100000) { | |
5643 | mem_below_4gb_not_mirrored = true; | |
5644 | continue; | |
5645 | } | |
5646 | ||
5647 | zone_movable_pfn[nid] = zone_movable_pfn[nid] ? | |
5648 | min(usable_startpfn, zone_movable_pfn[nid]) : | |
5649 | usable_startpfn; | |
5650 | } | |
5651 | ||
5652 | if (mem_below_4gb_not_mirrored) | |
5653 | pr_warn("This configuration results in unmirrored kernel memory."); | |
5654 | ||
5655 | goto out2; | |
5656 | } | |
5657 | ||
7e63efef | 5658 | /* |
b2f3eebe | 5659 | * If movablecore=nn[KMG] was specified, calculate what size of |
7e63efef MG |
5660 | * kernelcore that corresponds so that memory usable for |
5661 | * any allocation type is evenly spread. If both kernelcore | |
5662 | * and movablecore are specified, then the value of kernelcore | |
5663 | * will be used for required_kernelcore if it's greater than | |
5664 | * what movablecore would have allowed. | |
5665 | */ | |
5666 | if (required_movablecore) { | |
7e63efef MG |
5667 | unsigned long corepages; |
5668 | ||
5669 | /* | |
5670 | * Round-up so that ZONE_MOVABLE is at least as large as what | |
5671 | * was requested by the user | |
5672 | */ | |
5673 | required_movablecore = | |
5674 | roundup(required_movablecore, MAX_ORDER_NR_PAGES); | |
9fd745d4 | 5675 | required_movablecore = min(totalpages, required_movablecore); |
7e63efef MG |
5676 | corepages = totalpages - required_movablecore; |
5677 | ||
5678 | required_kernelcore = max(required_kernelcore, corepages); | |
5679 | } | |
5680 | ||
bde304bd XQ |
5681 | /* |
5682 | * If kernelcore was not specified or kernelcore size is larger | |
5683 | * than totalpages, there is no ZONE_MOVABLE. | |
5684 | */ | |
5685 | if (!required_kernelcore || required_kernelcore >= totalpages) | |
66918dcd | 5686 | goto out; |
2a1e274a MG |
5687 | |
5688 | /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ | |
2a1e274a MG |
5689 | usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; |
5690 | ||
5691 | restart: | |
5692 | /* Spread kernelcore memory as evenly as possible throughout nodes */ | |
5693 | kernelcore_node = required_kernelcore / usable_nodes; | |
4b0ef1fe | 5694 | for_each_node_state(nid, N_MEMORY) { |
c13291a5 TH |
5695 | unsigned long start_pfn, end_pfn; |
5696 | ||
2a1e274a MG |
5697 | /* |
5698 | * Recalculate kernelcore_node if the division per node | |
5699 | * now exceeds what is necessary to satisfy the requested | |
5700 | * amount of memory for the kernel | |
5701 | */ | |
5702 | if (required_kernelcore < kernelcore_node) | |
5703 | kernelcore_node = required_kernelcore / usable_nodes; | |
5704 | ||
5705 | /* | |
5706 | * As the map is walked, we track how much memory is usable | |
5707 | * by the kernel using kernelcore_remaining. When it is | |
5708 | * 0, the rest of the node is usable by ZONE_MOVABLE | |
5709 | */ | |
5710 | kernelcore_remaining = kernelcore_node; | |
5711 | ||
5712 | /* Go through each range of PFNs within this node */ | |
c13291a5 | 5713 | for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { |
2a1e274a MG |
5714 | unsigned long size_pages; |
5715 | ||
c13291a5 | 5716 | start_pfn = max(start_pfn, zone_movable_pfn[nid]); |
2a1e274a MG |
5717 | if (start_pfn >= end_pfn) |
5718 | continue; | |
5719 | ||
5720 | /* Account for what is only usable for kernelcore */ | |
5721 | if (start_pfn < usable_startpfn) { | |
5722 | unsigned long kernel_pages; | |
5723 | kernel_pages = min(end_pfn, usable_startpfn) | |
5724 | - start_pfn; | |
5725 | ||
5726 | kernelcore_remaining -= min(kernel_pages, | |
5727 | kernelcore_remaining); | |
5728 | required_kernelcore -= min(kernel_pages, | |
5729 | required_kernelcore); | |
5730 | ||
5731 | /* Continue if range is now fully accounted */ | |
5732 | if (end_pfn <= usable_startpfn) { | |
5733 | ||
5734 | /* | |
5735 | * Push zone_movable_pfn to the end so | |
5736 | * that if we have to rebalance | |
5737 | * kernelcore across nodes, we will | |
5738 | * not double account here | |
5739 | */ | |
5740 | zone_movable_pfn[nid] = end_pfn; | |
5741 | continue; | |
5742 | } | |
5743 | start_pfn = usable_startpfn; | |
5744 | } | |
5745 | ||
5746 | /* | |
5747 | * The usable PFN range for ZONE_MOVABLE is from | |
5748 | * start_pfn->end_pfn. Calculate size_pages as the | |
5749 | * number of pages used as kernelcore | |
5750 | */ | |
5751 | size_pages = end_pfn - start_pfn; | |
5752 | if (size_pages > kernelcore_remaining) | |
5753 | size_pages = kernelcore_remaining; | |
5754 | zone_movable_pfn[nid] = start_pfn + size_pages; | |
5755 | ||
5756 | /* | |
5757 | * Some kernelcore has been met, update counts and | |
5758 | * break if the kernelcore for this node has been | |
b8af2941 | 5759 | * satisfied |
2a1e274a MG |
5760 | */ |
5761 | required_kernelcore -= min(required_kernelcore, | |
5762 | size_pages); | |
5763 | kernelcore_remaining -= size_pages; | |
5764 | if (!kernelcore_remaining) | |
5765 | break; | |
5766 | } | |
5767 | } | |
5768 | ||
5769 | /* | |
5770 | * If there is still required_kernelcore, we do another pass with one | |
5771 | * less node in the count. This will push zone_movable_pfn[nid] further | |
5772 | * along on the nodes that still have memory until kernelcore is | |
b8af2941 | 5773 | * satisfied |
2a1e274a MG |
5774 | */ |
5775 | usable_nodes--; | |
5776 | if (usable_nodes && required_kernelcore > usable_nodes) | |
5777 | goto restart; | |
5778 | ||
b2f3eebe | 5779 | out2: |
2a1e274a MG |
5780 | /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ |
5781 | for (nid = 0; nid < MAX_NUMNODES; nid++) | |
5782 | zone_movable_pfn[nid] = | |
5783 | roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); | |
66918dcd | 5784 | |
20e6926d | 5785 | out: |
66918dcd | 5786 | /* restore the node_state */ |
4b0ef1fe | 5787 | node_states[N_MEMORY] = saved_node_state; |
2a1e274a MG |
5788 | } |
5789 | ||
4b0ef1fe LJ |
5790 | /* Any regular or high memory on that node ? */ |
5791 | static void check_for_memory(pg_data_t *pgdat, int nid) | |
37b07e41 | 5792 | { |
37b07e41 LS |
5793 | enum zone_type zone_type; |
5794 | ||
4b0ef1fe LJ |
5795 | if (N_MEMORY == N_NORMAL_MEMORY) |
5796 | return; | |
5797 | ||
5798 | for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { | |
37b07e41 | 5799 | struct zone *zone = &pgdat->node_zones[zone_type]; |
b38a8725 | 5800 | if (populated_zone(zone)) { |
4b0ef1fe LJ |
5801 | node_set_state(nid, N_HIGH_MEMORY); |
5802 | if (N_NORMAL_MEMORY != N_HIGH_MEMORY && | |
5803 | zone_type <= ZONE_NORMAL) | |
5804 | node_set_state(nid, N_NORMAL_MEMORY); | |
d0048b0e BL |
5805 | break; |
5806 | } | |
37b07e41 | 5807 | } |
37b07e41 LS |
5808 | } |
5809 | ||
c713216d MG |
5810 | /** |
5811 | * free_area_init_nodes - Initialise all pg_data_t and zone data | |
88ca3b94 | 5812 | * @max_zone_pfn: an array of max PFNs for each zone |
c713216d MG |
5813 | * |
5814 | * This will call free_area_init_node() for each active node in the system. | |
7d018176 | 5815 | * Using the page ranges provided by memblock_set_node(), the size of each |
c713216d MG |
5816 | * zone in each node and their holes is calculated. If the maximum PFN |
5817 | * between two adjacent zones match, it is assumed that the zone is empty. | |
5818 | * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed | |
5819 | * that arch_max_dma32_pfn has no pages. It is also assumed that a zone | |
5820 | * starts where the previous one ended. For example, ZONE_DMA32 starts | |
5821 | * at arch_max_dma_pfn. | |
5822 | */ | |
5823 | void __init free_area_init_nodes(unsigned long *max_zone_pfn) | |
5824 | { | |
c13291a5 TH |
5825 | unsigned long start_pfn, end_pfn; |
5826 | int i, nid; | |
a6af2bc3 | 5827 | |
c713216d MG |
5828 | /* Record where the zone boundaries are */ |
5829 | memset(arch_zone_lowest_possible_pfn, 0, | |
5830 | sizeof(arch_zone_lowest_possible_pfn)); | |
5831 | memset(arch_zone_highest_possible_pfn, 0, | |
5832 | sizeof(arch_zone_highest_possible_pfn)); | |
5833 | arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); | |
5834 | arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; | |
5835 | for (i = 1; i < MAX_NR_ZONES; i++) { | |
2a1e274a MG |
5836 | if (i == ZONE_MOVABLE) |
5837 | continue; | |
c713216d MG |
5838 | arch_zone_lowest_possible_pfn[i] = |
5839 | arch_zone_highest_possible_pfn[i-1]; | |
5840 | arch_zone_highest_possible_pfn[i] = | |
5841 | max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); | |
5842 | } | |
2a1e274a MG |
5843 | arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; |
5844 | arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; | |
5845 | ||
5846 | /* Find the PFNs that ZONE_MOVABLE begins at in each node */ | |
5847 | memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); | |
b224ef85 | 5848 | find_zone_movable_pfns_for_nodes(); |
c713216d | 5849 | |
c713216d | 5850 | /* Print out the zone ranges */ |
f88dfff5 | 5851 | pr_info("Zone ranges:\n"); |
2a1e274a MG |
5852 | for (i = 0; i < MAX_NR_ZONES; i++) { |
5853 | if (i == ZONE_MOVABLE) | |
5854 | continue; | |
f88dfff5 | 5855 | pr_info(" %-8s ", zone_names[i]); |
72f0ba02 DR |
5856 | if (arch_zone_lowest_possible_pfn[i] == |
5857 | arch_zone_highest_possible_pfn[i]) | |
f88dfff5 | 5858 | pr_cont("empty\n"); |
72f0ba02 | 5859 | else |
8d29e18a JG |
5860 | pr_cont("[mem %#018Lx-%#018Lx]\n", |
5861 | (u64)arch_zone_lowest_possible_pfn[i] | |
5862 | << PAGE_SHIFT, | |
5863 | ((u64)arch_zone_highest_possible_pfn[i] | |
a62e2f4f | 5864 | << PAGE_SHIFT) - 1); |
2a1e274a MG |
5865 | } |
5866 | ||
5867 | /* Print out the PFNs ZONE_MOVABLE begins at in each node */ | |
f88dfff5 | 5868 | pr_info("Movable zone start for each node\n"); |
2a1e274a MG |
5869 | for (i = 0; i < MAX_NUMNODES; i++) { |
5870 | if (zone_movable_pfn[i]) | |
8d29e18a JG |
5871 | pr_info(" Node %d: %#018Lx\n", i, |
5872 | (u64)zone_movable_pfn[i] << PAGE_SHIFT); | |
2a1e274a | 5873 | } |
c713216d | 5874 | |
f2d52fe5 | 5875 | /* Print out the early node map */ |
f88dfff5 | 5876 | pr_info("Early memory node ranges\n"); |
c13291a5 | 5877 | for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) |
8d29e18a JG |
5878 | pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, |
5879 | (u64)start_pfn << PAGE_SHIFT, | |
5880 | ((u64)end_pfn << PAGE_SHIFT) - 1); | |
c713216d MG |
5881 | |
5882 | /* Initialise every node */ | |
708614e6 | 5883 | mminit_verify_pageflags_layout(); |
8ef82866 | 5884 | setup_nr_node_ids(); |
c713216d MG |
5885 | for_each_online_node(nid) { |
5886 | pg_data_t *pgdat = NODE_DATA(nid); | |
9109fb7b | 5887 | free_area_init_node(nid, NULL, |
c713216d | 5888 | find_min_pfn_for_node(nid), NULL); |
37b07e41 LS |
5889 | |
5890 | /* Any memory on that node */ | |
5891 | if (pgdat->node_present_pages) | |
4b0ef1fe LJ |
5892 | node_set_state(nid, N_MEMORY); |
5893 | check_for_memory(pgdat, nid); | |
c713216d MG |
5894 | } |
5895 | } | |
2a1e274a | 5896 | |
7e63efef | 5897 | static int __init cmdline_parse_core(char *p, unsigned long *core) |
2a1e274a MG |
5898 | { |
5899 | unsigned long long coremem; | |
5900 | if (!p) | |
5901 | return -EINVAL; | |
5902 | ||
5903 | coremem = memparse(p, &p); | |
7e63efef | 5904 | *core = coremem >> PAGE_SHIFT; |
2a1e274a | 5905 | |
7e63efef | 5906 | /* Paranoid check that UL is enough for the coremem value */ |
2a1e274a MG |
5907 | WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); |
5908 | ||
5909 | return 0; | |
5910 | } | |
ed7ed365 | 5911 | |
7e63efef MG |
5912 | /* |
5913 | * kernelcore=size sets the amount of memory for use for allocations that | |
5914 | * cannot be reclaimed or migrated. | |
5915 | */ | |
5916 | static int __init cmdline_parse_kernelcore(char *p) | |
5917 | { | |
342332e6 TI |
5918 | /* parse kernelcore=mirror */ |
5919 | if (parse_option_str(p, "mirror")) { | |
5920 | mirrored_kernelcore = true; | |
5921 | return 0; | |
5922 | } | |
5923 | ||
7e63efef MG |
5924 | return cmdline_parse_core(p, &required_kernelcore); |
5925 | } | |
5926 | ||
5927 | /* | |
5928 | * movablecore=size sets the amount of memory for use for allocations that | |
5929 | * can be reclaimed or migrated. | |
5930 | */ | |
5931 | static int __init cmdline_parse_movablecore(char *p) | |
5932 | { | |
5933 | return cmdline_parse_core(p, &required_movablecore); | |
5934 | } | |
5935 | ||
ed7ed365 | 5936 | early_param("kernelcore", cmdline_parse_kernelcore); |
7e63efef | 5937 | early_param("movablecore", cmdline_parse_movablecore); |
ed7ed365 | 5938 | |
0ee332c1 | 5939 | #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ |
c713216d | 5940 | |
c3d5f5f0 JL |
5941 | void adjust_managed_page_count(struct page *page, long count) |
5942 | { | |
5943 | spin_lock(&managed_page_count_lock); | |
5944 | page_zone(page)->managed_pages += count; | |
5945 | totalram_pages += count; | |
3dcc0571 JL |
5946 | #ifdef CONFIG_HIGHMEM |
5947 | if (PageHighMem(page)) | |
5948 | totalhigh_pages += count; | |
5949 | #endif | |
c3d5f5f0 JL |
5950 | spin_unlock(&managed_page_count_lock); |
5951 | } | |
3dcc0571 | 5952 | EXPORT_SYMBOL(adjust_managed_page_count); |
c3d5f5f0 | 5953 | |
11199692 | 5954 | unsigned long free_reserved_area(void *start, void *end, int poison, char *s) |
69afade7 | 5955 | { |
11199692 JL |
5956 | void *pos; |
5957 | unsigned long pages = 0; | |
69afade7 | 5958 | |
11199692 JL |
5959 | start = (void *)PAGE_ALIGN((unsigned long)start); |
5960 | end = (void *)((unsigned long)end & PAGE_MASK); | |
5961 | for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { | |
dbe67df4 | 5962 | if ((unsigned int)poison <= 0xFF) |
11199692 JL |
5963 | memset(pos, poison, PAGE_SIZE); |
5964 | free_reserved_page(virt_to_page(pos)); | |
69afade7 JL |
5965 | } |
5966 | ||
5967 | if (pages && s) | |
11199692 | 5968 | pr_info("Freeing %s memory: %ldK (%p - %p)\n", |
69afade7 JL |
5969 | s, pages << (PAGE_SHIFT - 10), start, end); |
5970 | ||
5971 | return pages; | |
5972 | } | |
11199692 | 5973 | EXPORT_SYMBOL(free_reserved_area); |
69afade7 | 5974 | |
cfa11e08 JL |
5975 | #ifdef CONFIG_HIGHMEM |
5976 | void free_highmem_page(struct page *page) | |
5977 | { | |
5978 | __free_reserved_page(page); | |
5979 | totalram_pages++; | |
7b4b2a0d | 5980 | page_zone(page)->managed_pages++; |
cfa11e08 JL |
5981 | totalhigh_pages++; |
5982 | } | |
5983 | #endif | |
5984 | ||
7ee3d4e8 JL |
5985 | |
5986 | void __init mem_init_print_info(const char *str) | |
5987 | { | |
5988 | unsigned long physpages, codesize, datasize, rosize, bss_size; | |
5989 | unsigned long init_code_size, init_data_size; | |
5990 | ||
5991 | physpages = get_num_physpages(); | |
5992 | codesize = _etext - _stext; | |
5993 | datasize = _edata - _sdata; | |
5994 | rosize = __end_rodata - __start_rodata; | |
5995 | bss_size = __bss_stop - __bss_start; | |
5996 | init_data_size = __init_end - __init_begin; | |
5997 | init_code_size = _einittext - _sinittext; | |
5998 | ||
5999 | /* | |
6000 | * Detect special cases and adjust section sizes accordingly: | |
6001 | * 1) .init.* may be embedded into .data sections | |
6002 | * 2) .init.text.* may be out of [__init_begin, __init_end], | |
6003 | * please refer to arch/tile/kernel/vmlinux.lds.S. | |
6004 | * 3) .rodata.* may be embedded into .text or .data sections. | |
6005 | */ | |
6006 | #define adj_init_size(start, end, size, pos, adj) \ | |
b8af2941 PK |
6007 | do { \ |
6008 | if (start <= pos && pos < end && size > adj) \ | |
6009 | size -= adj; \ | |
6010 | } while (0) | |
7ee3d4e8 JL |
6011 | |
6012 | adj_init_size(__init_begin, __init_end, init_data_size, | |
6013 | _sinittext, init_code_size); | |
6014 | adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); | |
6015 | adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); | |
6016 | adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); | |
6017 | adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); | |
6018 | ||
6019 | #undef adj_init_size | |
6020 | ||
f88dfff5 | 6021 | pr_info("Memory: %luK/%luK available " |
7ee3d4e8 | 6022 | "(%luK kernel code, %luK rwdata, %luK rodata, " |
e48322ab | 6023 | "%luK init, %luK bss, %luK reserved, %luK cma-reserved" |
7ee3d4e8 JL |
6024 | #ifdef CONFIG_HIGHMEM |
6025 | ", %luK highmem" | |
6026 | #endif | |
6027 | "%s%s)\n", | |
6028 | nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10), | |
6029 | codesize >> 10, datasize >> 10, rosize >> 10, | |
6030 | (init_data_size + init_code_size) >> 10, bss_size >> 10, | |
e48322ab PK |
6031 | (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10), |
6032 | totalcma_pages << (PAGE_SHIFT-10), | |
7ee3d4e8 JL |
6033 | #ifdef CONFIG_HIGHMEM |
6034 | totalhigh_pages << (PAGE_SHIFT-10), | |
6035 | #endif | |
6036 | str ? ", " : "", str ? str : ""); | |
6037 | } | |
6038 | ||
0e0b864e | 6039 | /** |
88ca3b94 RD |
6040 | * set_dma_reserve - set the specified number of pages reserved in the first zone |
6041 | * @new_dma_reserve: The number of pages to mark reserved | |
0e0b864e | 6042 | * |
013110a7 | 6043 | * The per-cpu batchsize and zone watermarks are determined by managed_pages. |
0e0b864e MG |
6044 | * In the DMA zone, a significant percentage may be consumed by kernel image |
6045 | * and other unfreeable allocations which can skew the watermarks badly. This | |
88ca3b94 RD |
6046 | * function may optionally be used to account for unfreeable pages in the |
6047 | * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and | |
6048 | * smaller per-cpu batchsize. | |
0e0b864e MG |
6049 | */ |
6050 | void __init set_dma_reserve(unsigned long new_dma_reserve) | |
6051 | { | |
6052 | dma_reserve = new_dma_reserve; | |
6053 | } | |
6054 | ||
1da177e4 LT |
6055 | void __init free_area_init(unsigned long *zones_size) |
6056 | { | |
9109fb7b | 6057 | free_area_init_node(0, zones_size, |
1da177e4 LT |
6058 | __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); |
6059 | } | |
1da177e4 | 6060 | |
1da177e4 LT |
6061 | static int page_alloc_cpu_notify(struct notifier_block *self, |
6062 | unsigned long action, void *hcpu) | |
6063 | { | |
6064 | int cpu = (unsigned long)hcpu; | |
1da177e4 | 6065 | |
8bb78442 | 6066 | if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { |
f0cb3c76 | 6067 | lru_add_drain_cpu(cpu); |
9f8f2172 CL |
6068 | drain_pages(cpu); |
6069 | ||
6070 | /* | |
6071 | * Spill the event counters of the dead processor | |
6072 | * into the current processors event counters. | |
6073 | * This artificially elevates the count of the current | |
6074 | * processor. | |
6075 | */ | |
f8891e5e | 6076 | vm_events_fold_cpu(cpu); |
9f8f2172 CL |
6077 | |
6078 | /* | |
6079 | * Zero the differential counters of the dead processor | |
6080 | * so that the vm statistics are consistent. | |
6081 | * | |
6082 | * This is only okay since the processor is dead and cannot | |
6083 | * race with what we are doing. | |
6084 | */ | |
2bb921e5 | 6085 | cpu_vm_stats_fold(cpu); |
1da177e4 LT |
6086 | } |
6087 | return NOTIFY_OK; | |
6088 | } | |
1da177e4 LT |
6089 | |
6090 | void __init page_alloc_init(void) | |
6091 | { | |
6092 | hotcpu_notifier(page_alloc_cpu_notify, 0); | |
6093 | } | |
6094 | ||
cb45b0e9 | 6095 | /* |
34b10060 | 6096 | * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio |
cb45b0e9 HA |
6097 | * or min_free_kbytes changes. |
6098 | */ | |
6099 | static void calculate_totalreserve_pages(void) | |
6100 | { | |
6101 | struct pglist_data *pgdat; | |
6102 | unsigned long reserve_pages = 0; | |
2f6726e5 | 6103 | enum zone_type i, j; |
cb45b0e9 HA |
6104 | |
6105 | for_each_online_pgdat(pgdat) { | |
6106 | for (i = 0; i < MAX_NR_ZONES; i++) { | |
6107 | struct zone *zone = pgdat->node_zones + i; | |
3484b2de | 6108 | long max = 0; |
cb45b0e9 HA |
6109 | |
6110 | /* Find valid and maximum lowmem_reserve in the zone */ | |
6111 | for (j = i; j < MAX_NR_ZONES; j++) { | |
6112 | if (zone->lowmem_reserve[j] > max) | |
6113 | max = zone->lowmem_reserve[j]; | |
6114 | } | |
6115 | ||
41858966 MG |
6116 | /* we treat the high watermark as reserved pages. */ |
6117 | max += high_wmark_pages(zone); | |
cb45b0e9 | 6118 | |
b40da049 JL |
6119 | if (max > zone->managed_pages) |
6120 | max = zone->managed_pages; | |
a8d01437 JW |
6121 | |
6122 | zone->totalreserve_pages = max; | |
6123 | ||
cb45b0e9 HA |
6124 | reserve_pages += max; |
6125 | } | |
6126 | } | |
6127 | totalreserve_pages = reserve_pages; | |
6128 | } | |
6129 | ||
1da177e4 LT |
6130 | /* |
6131 | * setup_per_zone_lowmem_reserve - called whenever | |
34b10060 | 6132 | * sysctl_lowmem_reserve_ratio changes. Ensures that each zone |
1da177e4 LT |
6133 | * has a correct pages reserved value, so an adequate number of |
6134 | * pages are left in the zone after a successful __alloc_pages(). | |
6135 | */ | |
6136 | static void setup_per_zone_lowmem_reserve(void) | |
6137 | { | |
6138 | struct pglist_data *pgdat; | |
2f6726e5 | 6139 | enum zone_type j, idx; |
1da177e4 | 6140 | |
ec936fc5 | 6141 | for_each_online_pgdat(pgdat) { |
1da177e4 LT |
6142 | for (j = 0; j < MAX_NR_ZONES; j++) { |
6143 | struct zone *zone = pgdat->node_zones + j; | |
b40da049 | 6144 | unsigned long managed_pages = zone->managed_pages; |
1da177e4 LT |
6145 | |
6146 | zone->lowmem_reserve[j] = 0; | |
6147 | ||
2f6726e5 CL |
6148 | idx = j; |
6149 | while (idx) { | |
1da177e4 LT |
6150 | struct zone *lower_zone; |
6151 | ||
2f6726e5 CL |
6152 | idx--; |
6153 | ||
1da177e4 LT |
6154 | if (sysctl_lowmem_reserve_ratio[idx] < 1) |
6155 | sysctl_lowmem_reserve_ratio[idx] = 1; | |
6156 | ||
6157 | lower_zone = pgdat->node_zones + idx; | |
b40da049 | 6158 | lower_zone->lowmem_reserve[j] = managed_pages / |
1da177e4 | 6159 | sysctl_lowmem_reserve_ratio[idx]; |
b40da049 | 6160 | managed_pages += lower_zone->managed_pages; |
1da177e4 LT |
6161 | } |
6162 | } | |
6163 | } | |
cb45b0e9 HA |
6164 | |
6165 | /* update totalreserve_pages */ | |
6166 | calculate_totalreserve_pages(); | |
1da177e4 LT |
6167 | } |
6168 | ||
cfd3da1e | 6169 | static void __setup_per_zone_wmarks(void) |
1da177e4 LT |
6170 | { |
6171 | unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); | |
6172 | unsigned long lowmem_pages = 0; | |
6173 | struct zone *zone; | |
6174 | unsigned long flags; | |
6175 | ||
6176 | /* Calculate total number of !ZONE_HIGHMEM pages */ | |
6177 | for_each_zone(zone) { | |
6178 | if (!is_highmem(zone)) | |
b40da049 | 6179 | lowmem_pages += zone->managed_pages; |
1da177e4 LT |
6180 | } |
6181 | ||
6182 | for_each_zone(zone) { | |
ac924c60 AM |
6183 | u64 tmp; |
6184 | ||
1125b4e3 | 6185 | spin_lock_irqsave(&zone->lock, flags); |
b40da049 | 6186 | tmp = (u64)pages_min * zone->managed_pages; |
ac924c60 | 6187 | do_div(tmp, lowmem_pages); |
1da177e4 LT |
6188 | if (is_highmem(zone)) { |
6189 | /* | |
669ed175 NP |
6190 | * __GFP_HIGH and PF_MEMALLOC allocations usually don't |
6191 | * need highmem pages, so cap pages_min to a small | |
6192 | * value here. | |
6193 | * | |
41858966 | 6194 | * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) |
42ff2703 | 6195 | * deltas control asynch page reclaim, and so should |
669ed175 | 6196 | * not be capped for highmem. |
1da177e4 | 6197 | */ |
90ae8d67 | 6198 | unsigned long min_pages; |
1da177e4 | 6199 | |
b40da049 | 6200 | min_pages = zone->managed_pages / 1024; |
90ae8d67 | 6201 | min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); |
41858966 | 6202 | zone->watermark[WMARK_MIN] = min_pages; |
1da177e4 | 6203 | } else { |
669ed175 NP |
6204 | /* |
6205 | * If it's a lowmem zone, reserve a number of pages | |
1da177e4 LT |
6206 | * proportionate to the zone's size. |
6207 | */ | |
41858966 | 6208 | zone->watermark[WMARK_MIN] = tmp; |
1da177e4 LT |
6209 | } |
6210 | ||
41858966 MG |
6211 | zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2); |
6212 | zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1); | |
49f223a9 | 6213 | |
81c0a2bb | 6214 | __mod_zone_page_state(zone, NR_ALLOC_BATCH, |
abe5f972 JW |
6215 | high_wmark_pages(zone) - low_wmark_pages(zone) - |
6216 | atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH])); | |
81c0a2bb | 6217 | |
1125b4e3 | 6218 | spin_unlock_irqrestore(&zone->lock, flags); |
1da177e4 | 6219 | } |
cb45b0e9 HA |
6220 | |
6221 | /* update totalreserve_pages */ | |
6222 | calculate_totalreserve_pages(); | |
1da177e4 LT |
6223 | } |
6224 | ||
cfd3da1e MG |
6225 | /** |
6226 | * setup_per_zone_wmarks - called when min_free_kbytes changes | |
6227 | * or when memory is hot-{added|removed} | |
6228 | * | |
6229 | * Ensures that the watermark[min,low,high] values for each zone are set | |
6230 | * correctly with respect to min_free_kbytes. | |
6231 | */ | |
6232 | void setup_per_zone_wmarks(void) | |
6233 | { | |
6234 | mutex_lock(&zonelists_mutex); | |
6235 | __setup_per_zone_wmarks(); | |
6236 | mutex_unlock(&zonelists_mutex); | |
6237 | } | |
6238 | ||
55a4462a | 6239 | /* |
556adecb RR |
6240 | * The inactive anon list should be small enough that the VM never has to |
6241 | * do too much work, but large enough that each inactive page has a chance | |
6242 | * to be referenced again before it is swapped out. | |
6243 | * | |
6244 | * The inactive_anon ratio is the target ratio of ACTIVE_ANON to | |
6245 | * INACTIVE_ANON pages on this zone's LRU, maintained by the | |
6246 | * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of | |
6247 | * the anonymous pages are kept on the inactive list. | |
6248 | * | |
6249 | * total target max | |
6250 | * memory ratio inactive anon | |
6251 | * ------------------------------------- | |
6252 | * 10MB 1 5MB | |
6253 | * 100MB 1 50MB | |
6254 | * 1GB 3 250MB | |
6255 | * 10GB 10 0.9GB | |
6256 | * 100GB 31 3GB | |
6257 | * 1TB 101 10GB | |
6258 | * 10TB 320 32GB | |
6259 | */ | |
1b79acc9 | 6260 | static void __meminit calculate_zone_inactive_ratio(struct zone *zone) |
556adecb | 6261 | { |
96cb4df5 | 6262 | unsigned int gb, ratio; |
556adecb | 6263 | |
96cb4df5 | 6264 | /* Zone size in gigabytes */ |
b40da049 | 6265 | gb = zone->managed_pages >> (30 - PAGE_SHIFT); |
96cb4df5 | 6266 | if (gb) |
556adecb | 6267 | ratio = int_sqrt(10 * gb); |
96cb4df5 MK |
6268 | else |
6269 | ratio = 1; | |
556adecb | 6270 | |
96cb4df5 MK |
6271 | zone->inactive_ratio = ratio; |
6272 | } | |
556adecb | 6273 | |
839a4fcc | 6274 | static void __meminit setup_per_zone_inactive_ratio(void) |
96cb4df5 MK |
6275 | { |
6276 | struct zone *zone; | |
6277 | ||
6278 | for_each_zone(zone) | |
6279 | calculate_zone_inactive_ratio(zone); | |
556adecb RR |
6280 | } |
6281 | ||
1da177e4 LT |
6282 | /* |
6283 | * Initialise min_free_kbytes. | |
6284 | * | |
6285 | * For small machines we want it small (128k min). For large machines | |
6286 | * we want it large (64MB max). But it is not linear, because network | |
6287 | * bandwidth does not increase linearly with machine size. We use | |
6288 | * | |
b8af2941 | 6289 | * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: |
1da177e4 LT |
6290 | * min_free_kbytes = sqrt(lowmem_kbytes * 16) |
6291 | * | |
6292 | * which yields | |
6293 | * | |
6294 | * 16MB: 512k | |
6295 | * 32MB: 724k | |
6296 | * 64MB: 1024k | |
6297 | * 128MB: 1448k | |
6298 | * 256MB: 2048k | |
6299 | * 512MB: 2896k | |
6300 | * 1024MB: 4096k | |
6301 | * 2048MB: 5792k | |
6302 | * 4096MB: 8192k | |
6303 | * 8192MB: 11584k | |
6304 | * 16384MB: 16384k | |
6305 | */ | |
1b79acc9 | 6306 | int __meminit init_per_zone_wmark_min(void) |
1da177e4 LT |
6307 | { |
6308 | unsigned long lowmem_kbytes; | |
5f12733e | 6309 | int new_min_free_kbytes; |
1da177e4 LT |
6310 | |
6311 | lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); | |
5f12733e MH |
6312 | new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); |
6313 | ||
6314 | if (new_min_free_kbytes > user_min_free_kbytes) { | |
6315 | min_free_kbytes = new_min_free_kbytes; | |
6316 | if (min_free_kbytes < 128) | |
6317 | min_free_kbytes = 128; | |
6318 | if (min_free_kbytes > 65536) | |
6319 | min_free_kbytes = 65536; | |
6320 | } else { | |
6321 | pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", | |
6322 | new_min_free_kbytes, user_min_free_kbytes); | |
6323 | } | |
bc75d33f | 6324 | setup_per_zone_wmarks(); |
a6cccdc3 | 6325 | refresh_zone_stat_thresholds(); |
1da177e4 | 6326 | setup_per_zone_lowmem_reserve(); |
556adecb | 6327 | setup_per_zone_inactive_ratio(); |
1da177e4 LT |
6328 | return 0; |
6329 | } | |
bc75d33f | 6330 | module_init(init_per_zone_wmark_min) |
1da177e4 LT |
6331 | |
6332 | /* | |
b8af2941 | 6333 | * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so |
1da177e4 LT |
6334 | * that we can call two helper functions whenever min_free_kbytes |
6335 | * changes. | |
6336 | */ | |
cccad5b9 | 6337 | int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, |
8d65af78 | 6338 | void __user *buffer, size_t *length, loff_t *ppos) |
1da177e4 | 6339 | { |
da8c757b HP |
6340 | int rc; |
6341 | ||
6342 | rc = proc_dointvec_minmax(table, write, buffer, length, ppos); | |
6343 | if (rc) | |
6344 | return rc; | |
6345 | ||
5f12733e MH |
6346 | if (write) { |
6347 | user_min_free_kbytes = min_free_kbytes; | |
bc75d33f | 6348 | setup_per_zone_wmarks(); |
5f12733e | 6349 | } |
1da177e4 LT |
6350 | return 0; |
6351 | } | |
6352 | ||
9614634f | 6353 | #ifdef CONFIG_NUMA |
cccad5b9 | 6354 | int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, |
8d65af78 | 6355 | void __user *buffer, size_t *length, loff_t *ppos) |
9614634f CL |
6356 | { |
6357 | struct zone *zone; | |
6358 | int rc; | |
6359 | ||
8d65af78 | 6360 | rc = proc_dointvec_minmax(table, write, buffer, length, ppos); |
9614634f CL |
6361 | if (rc) |
6362 | return rc; | |
6363 | ||
6364 | for_each_zone(zone) | |
b40da049 | 6365 | zone->min_unmapped_pages = (zone->managed_pages * |
9614634f CL |
6366 | sysctl_min_unmapped_ratio) / 100; |
6367 | return 0; | |
6368 | } | |
0ff38490 | 6369 | |
cccad5b9 | 6370 | int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, |
8d65af78 | 6371 | void __user *buffer, size_t *length, loff_t *ppos) |
0ff38490 CL |
6372 | { |
6373 | struct zone *zone; | |
6374 | int rc; | |
6375 | ||
8d65af78 | 6376 | rc = proc_dointvec_minmax(table, write, buffer, length, ppos); |
0ff38490 CL |
6377 | if (rc) |
6378 | return rc; | |
6379 | ||
6380 | for_each_zone(zone) | |
b40da049 | 6381 | zone->min_slab_pages = (zone->managed_pages * |
0ff38490 CL |
6382 | sysctl_min_slab_ratio) / 100; |
6383 | return 0; | |
6384 | } | |
9614634f CL |
6385 | #endif |
6386 | ||
1da177e4 LT |
6387 | /* |
6388 | * lowmem_reserve_ratio_sysctl_handler - just a wrapper around | |
6389 | * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() | |
6390 | * whenever sysctl_lowmem_reserve_ratio changes. | |
6391 | * | |
6392 | * The reserve ratio obviously has absolutely no relation with the | |
41858966 | 6393 | * minimum watermarks. The lowmem reserve ratio can only make sense |
1da177e4 LT |
6394 | * if in function of the boot time zone sizes. |
6395 | */ | |
cccad5b9 | 6396 | int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, |
8d65af78 | 6397 | void __user *buffer, size_t *length, loff_t *ppos) |
1da177e4 | 6398 | { |
8d65af78 | 6399 | proc_dointvec_minmax(table, write, buffer, length, ppos); |
1da177e4 LT |
6400 | setup_per_zone_lowmem_reserve(); |
6401 | return 0; | |
6402 | } | |
6403 | ||
8ad4b1fb RS |
6404 | /* |
6405 | * percpu_pagelist_fraction - changes the pcp->high for each zone on each | |
b8af2941 PK |
6406 | * cpu. It is the fraction of total pages in each zone that a hot per cpu |
6407 | * pagelist can have before it gets flushed back to buddy allocator. | |
8ad4b1fb | 6408 | */ |
cccad5b9 | 6409 | int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, |
8d65af78 | 6410 | void __user *buffer, size_t *length, loff_t *ppos) |
8ad4b1fb RS |
6411 | { |
6412 | struct zone *zone; | |
7cd2b0a3 | 6413 | int old_percpu_pagelist_fraction; |
8ad4b1fb RS |
6414 | int ret; |
6415 | ||
7cd2b0a3 DR |
6416 | mutex_lock(&pcp_batch_high_lock); |
6417 | old_percpu_pagelist_fraction = percpu_pagelist_fraction; | |
6418 | ||
8d65af78 | 6419 | ret = proc_dointvec_minmax(table, write, buffer, length, ppos); |
7cd2b0a3 DR |
6420 | if (!write || ret < 0) |
6421 | goto out; | |
6422 | ||
6423 | /* Sanity checking to avoid pcp imbalance */ | |
6424 | if (percpu_pagelist_fraction && | |
6425 | percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { | |
6426 | percpu_pagelist_fraction = old_percpu_pagelist_fraction; | |
6427 | ret = -EINVAL; | |
6428 | goto out; | |
6429 | } | |
6430 | ||
6431 | /* No change? */ | |
6432 | if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) | |
6433 | goto out; | |
c8e251fa | 6434 | |
364df0eb | 6435 | for_each_populated_zone(zone) { |
7cd2b0a3 DR |
6436 | unsigned int cpu; |
6437 | ||
22a7f12b | 6438 | for_each_possible_cpu(cpu) |
7cd2b0a3 DR |
6439 | pageset_set_high_and_batch(zone, |
6440 | per_cpu_ptr(zone->pageset, cpu)); | |
8ad4b1fb | 6441 | } |
7cd2b0a3 | 6442 | out: |
c8e251fa | 6443 | mutex_unlock(&pcp_batch_high_lock); |
7cd2b0a3 | 6444 | return ret; |
8ad4b1fb RS |
6445 | } |
6446 | ||
a9919c79 | 6447 | #ifdef CONFIG_NUMA |
f034b5d4 | 6448 | int hashdist = HASHDIST_DEFAULT; |
1da177e4 | 6449 | |
1da177e4 LT |
6450 | static int __init set_hashdist(char *str) |
6451 | { | |
6452 | if (!str) | |
6453 | return 0; | |
6454 | hashdist = simple_strtoul(str, &str, 0); | |
6455 | return 1; | |
6456 | } | |
6457 | __setup("hashdist=", set_hashdist); | |
6458 | #endif | |
6459 | ||
6460 | /* | |
6461 | * allocate a large system hash table from bootmem | |
6462 | * - it is assumed that the hash table must contain an exact power-of-2 | |
6463 | * quantity of entries | |
6464 | * - limit is the number of hash buckets, not the total allocation size | |
6465 | */ | |
6466 | void *__init alloc_large_system_hash(const char *tablename, | |
6467 | unsigned long bucketsize, | |
6468 | unsigned long numentries, | |
6469 | int scale, | |
6470 | int flags, | |
6471 | unsigned int *_hash_shift, | |
6472 | unsigned int *_hash_mask, | |
31fe62b9 TB |
6473 | unsigned long low_limit, |
6474 | unsigned long high_limit) | |
1da177e4 | 6475 | { |
31fe62b9 | 6476 | unsigned long long max = high_limit; |
1da177e4 LT |
6477 | unsigned long log2qty, size; |
6478 | void *table = NULL; | |
6479 | ||
6480 | /* allow the kernel cmdline to have a say */ | |
6481 | if (!numentries) { | |
6482 | /* round applicable memory size up to nearest megabyte */ | |
04903664 | 6483 | numentries = nr_kernel_pages; |
a7e83318 JZ |
6484 | |
6485 | /* It isn't necessary when PAGE_SIZE >= 1MB */ | |
6486 | if (PAGE_SHIFT < 20) | |
6487 | numentries = round_up(numentries, (1<<20)/PAGE_SIZE); | |
1da177e4 LT |
6488 | |
6489 | /* limit to 1 bucket per 2^scale bytes of low memory */ | |
6490 | if (scale > PAGE_SHIFT) | |
6491 | numentries >>= (scale - PAGE_SHIFT); | |
6492 | else | |
6493 | numentries <<= (PAGE_SHIFT - scale); | |
9ab37b8f PM |
6494 | |
6495 | /* Make sure we've got at least a 0-order allocation.. */ | |
2c85f51d JB |
6496 | if (unlikely(flags & HASH_SMALL)) { |
6497 | /* Makes no sense without HASH_EARLY */ | |
6498 | WARN_ON(!(flags & HASH_EARLY)); | |
6499 | if (!(numentries >> *_hash_shift)) { | |
6500 | numentries = 1UL << *_hash_shift; | |
6501 | BUG_ON(!numentries); | |
6502 | } | |
6503 | } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) | |
9ab37b8f | 6504 | numentries = PAGE_SIZE / bucketsize; |
1da177e4 | 6505 | } |
6e692ed3 | 6506 | numentries = roundup_pow_of_two(numentries); |
1da177e4 LT |
6507 | |
6508 | /* limit allocation size to 1/16 total memory by default */ | |
6509 | if (max == 0) { | |
6510 | max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; | |
6511 | do_div(max, bucketsize); | |
6512 | } | |
074b8517 | 6513 | max = min(max, 0x80000000ULL); |
1da177e4 | 6514 | |
31fe62b9 TB |
6515 | if (numentries < low_limit) |
6516 | numentries = low_limit; | |
1da177e4 LT |
6517 | if (numentries > max) |
6518 | numentries = max; | |
6519 | ||
f0d1b0b3 | 6520 | log2qty = ilog2(numentries); |
1da177e4 LT |
6521 | |
6522 | do { | |
6523 | size = bucketsize << log2qty; | |
6524 | if (flags & HASH_EARLY) | |
6782832e | 6525 | table = memblock_virt_alloc_nopanic(size, 0); |
1da177e4 LT |
6526 | else if (hashdist) |
6527 | table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); | |
6528 | else { | |
1037b83b ED |
6529 | /* |
6530 | * If bucketsize is not a power-of-two, we may free | |
a1dd268c MG |
6531 | * some pages at the end of hash table which |
6532 | * alloc_pages_exact() automatically does | |
1037b83b | 6533 | */ |
264ef8a9 | 6534 | if (get_order(size) < MAX_ORDER) { |
a1dd268c | 6535 | table = alloc_pages_exact(size, GFP_ATOMIC); |
264ef8a9 CM |
6536 | kmemleak_alloc(table, size, 1, GFP_ATOMIC); |
6537 | } | |
1da177e4 LT |
6538 | } |
6539 | } while (!table && size > PAGE_SIZE && --log2qty); | |
6540 | ||
6541 | if (!table) | |
6542 | panic("Failed to allocate %s hash table\n", tablename); | |
6543 | ||
f241e660 | 6544 | printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n", |
1da177e4 | 6545 | tablename, |
f241e660 | 6546 | (1UL << log2qty), |
f0d1b0b3 | 6547 | ilog2(size) - PAGE_SHIFT, |
1da177e4 LT |
6548 | size); |
6549 | ||
6550 | if (_hash_shift) | |
6551 | *_hash_shift = log2qty; | |
6552 | if (_hash_mask) | |
6553 | *_hash_mask = (1 << log2qty) - 1; | |
6554 | ||
6555 | return table; | |
6556 | } | |
a117e66e | 6557 | |
835c134e MG |
6558 | /* Return a pointer to the bitmap storing bits affecting a block of pages */ |
6559 | static inline unsigned long *get_pageblock_bitmap(struct zone *zone, | |
6560 | unsigned long pfn) | |
6561 | { | |
6562 | #ifdef CONFIG_SPARSEMEM | |
6563 | return __pfn_to_section(pfn)->pageblock_flags; | |
6564 | #else | |
6565 | return zone->pageblock_flags; | |
6566 | #endif /* CONFIG_SPARSEMEM */ | |
6567 | } | |
6568 | ||
6569 | static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) | |
6570 | { | |
6571 | #ifdef CONFIG_SPARSEMEM | |
6572 | pfn &= (PAGES_PER_SECTION-1); | |
d9c23400 | 6573 | return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; |
835c134e | 6574 | #else |
c060f943 | 6575 | pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages); |
d9c23400 | 6576 | return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; |
835c134e MG |
6577 | #endif /* CONFIG_SPARSEMEM */ |
6578 | } | |
6579 | ||
6580 | /** | |
1aab4d77 | 6581 | * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages |
835c134e | 6582 | * @page: The page within the block of interest |
1aab4d77 RD |
6583 | * @pfn: The target page frame number |
6584 | * @end_bitidx: The last bit of interest to retrieve | |
6585 | * @mask: mask of bits that the caller is interested in | |
6586 | * | |
6587 | * Return: pageblock_bits flags | |
835c134e | 6588 | */ |
dc4b0caf | 6589 | unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, |
e58469ba MG |
6590 | unsigned long end_bitidx, |
6591 | unsigned long mask) | |
835c134e MG |
6592 | { |
6593 | struct zone *zone; | |
6594 | unsigned long *bitmap; | |
dc4b0caf | 6595 | unsigned long bitidx, word_bitidx; |
e58469ba | 6596 | unsigned long word; |
835c134e MG |
6597 | |
6598 | zone = page_zone(page); | |
835c134e MG |
6599 | bitmap = get_pageblock_bitmap(zone, pfn); |
6600 | bitidx = pfn_to_bitidx(zone, pfn); | |
e58469ba MG |
6601 | word_bitidx = bitidx / BITS_PER_LONG; |
6602 | bitidx &= (BITS_PER_LONG-1); | |
835c134e | 6603 | |
e58469ba MG |
6604 | word = bitmap[word_bitidx]; |
6605 | bitidx += end_bitidx; | |
6606 | return (word >> (BITS_PER_LONG - bitidx - 1)) & mask; | |
835c134e MG |
6607 | } |
6608 | ||
6609 | /** | |
dc4b0caf | 6610 | * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages |
835c134e | 6611 | * @page: The page within the block of interest |
835c134e | 6612 | * @flags: The flags to set |
1aab4d77 RD |
6613 | * @pfn: The target page frame number |
6614 | * @end_bitidx: The last bit of interest | |
6615 | * @mask: mask of bits that the caller is interested in | |
835c134e | 6616 | */ |
dc4b0caf MG |
6617 | void set_pfnblock_flags_mask(struct page *page, unsigned long flags, |
6618 | unsigned long pfn, | |
e58469ba MG |
6619 | unsigned long end_bitidx, |
6620 | unsigned long mask) | |
835c134e MG |
6621 | { |
6622 | struct zone *zone; | |
6623 | unsigned long *bitmap; | |
dc4b0caf | 6624 | unsigned long bitidx, word_bitidx; |
e58469ba MG |
6625 | unsigned long old_word, word; |
6626 | ||
6627 | BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); | |
835c134e MG |
6628 | |
6629 | zone = page_zone(page); | |
835c134e MG |
6630 | bitmap = get_pageblock_bitmap(zone, pfn); |
6631 | bitidx = pfn_to_bitidx(zone, pfn); | |
e58469ba MG |
6632 | word_bitidx = bitidx / BITS_PER_LONG; |
6633 | bitidx &= (BITS_PER_LONG-1); | |
6634 | ||
309381fe | 6635 | VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page); |
835c134e | 6636 | |
e58469ba MG |
6637 | bitidx += end_bitidx; |
6638 | mask <<= (BITS_PER_LONG - bitidx - 1); | |
6639 | flags <<= (BITS_PER_LONG - bitidx - 1); | |
6640 | ||
4db0c3c2 | 6641 | word = READ_ONCE(bitmap[word_bitidx]); |
e58469ba MG |
6642 | for (;;) { |
6643 | old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); | |
6644 | if (word == old_word) | |
6645 | break; | |
6646 | word = old_word; | |
6647 | } | |
835c134e | 6648 | } |
a5d76b54 KH |
6649 | |
6650 | /* | |
80934513 MK |
6651 | * This function checks whether pageblock includes unmovable pages or not. |
6652 | * If @count is not zero, it is okay to include less @count unmovable pages | |
6653 | * | |
b8af2941 | 6654 | * PageLRU check without isolation or lru_lock could race so that |
80934513 MK |
6655 | * MIGRATE_MOVABLE block might include unmovable pages. It means you can't |
6656 | * expect this function should be exact. | |
a5d76b54 | 6657 | */ |
b023f468 WC |
6658 | bool has_unmovable_pages(struct zone *zone, struct page *page, int count, |
6659 | bool skip_hwpoisoned_pages) | |
49ac8255 KH |
6660 | { |
6661 | unsigned long pfn, iter, found; | |
47118af0 MN |
6662 | int mt; |
6663 | ||
49ac8255 KH |
6664 | /* |
6665 | * For avoiding noise data, lru_add_drain_all() should be called | |
80934513 | 6666 | * If ZONE_MOVABLE, the zone never contains unmovable pages |
49ac8255 KH |
6667 | */ |
6668 | if (zone_idx(zone) == ZONE_MOVABLE) | |
80934513 | 6669 | return false; |
47118af0 MN |
6670 | mt = get_pageblock_migratetype(page); |
6671 | if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt)) | |
80934513 | 6672 | return false; |
49ac8255 KH |
6673 | |
6674 | pfn = page_to_pfn(page); | |
6675 | for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { | |
6676 | unsigned long check = pfn + iter; | |
6677 | ||
29723fcc | 6678 | if (!pfn_valid_within(check)) |
49ac8255 | 6679 | continue; |
29723fcc | 6680 | |
49ac8255 | 6681 | page = pfn_to_page(check); |
c8721bbb NH |
6682 | |
6683 | /* | |
6684 | * Hugepages are not in LRU lists, but they're movable. | |
6685 | * We need not scan over tail pages bacause we don't | |
6686 | * handle each tail page individually in migration. | |
6687 | */ | |
6688 | if (PageHuge(page)) { | |
6689 | iter = round_up(iter + 1, 1<<compound_order(page)) - 1; | |
6690 | continue; | |
6691 | } | |
6692 | ||
97d255c8 MK |
6693 | /* |
6694 | * We can't use page_count without pin a page | |
6695 | * because another CPU can free compound page. | |
6696 | * This check already skips compound tails of THP | |
6697 | * because their page->_count is zero at all time. | |
6698 | */ | |
6699 | if (!atomic_read(&page->_count)) { | |
49ac8255 KH |
6700 | if (PageBuddy(page)) |
6701 | iter += (1 << page_order(page)) - 1; | |
6702 | continue; | |
6703 | } | |
97d255c8 | 6704 | |
b023f468 WC |
6705 | /* |
6706 | * The HWPoisoned page may be not in buddy system, and | |
6707 | * page_count() is not 0. | |
6708 | */ | |
6709 | if (skip_hwpoisoned_pages && PageHWPoison(page)) | |
6710 | continue; | |
6711 | ||
49ac8255 KH |
6712 | if (!PageLRU(page)) |
6713 | found++; | |
6714 | /* | |
6b4f7799 JW |
6715 | * If there are RECLAIMABLE pages, we need to check |
6716 | * it. But now, memory offline itself doesn't call | |
6717 | * shrink_node_slabs() and it still to be fixed. | |
49ac8255 KH |
6718 | */ |
6719 | /* | |
6720 | * If the page is not RAM, page_count()should be 0. | |
6721 | * we don't need more check. This is an _used_ not-movable page. | |
6722 | * | |
6723 | * The problematic thing here is PG_reserved pages. PG_reserved | |
6724 | * is set to both of a memory hole page and a _used_ kernel | |
6725 | * page at boot. | |
6726 | */ | |
6727 | if (found > count) | |
80934513 | 6728 | return true; |
49ac8255 | 6729 | } |
80934513 | 6730 | return false; |
49ac8255 KH |
6731 | } |
6732 | ||
6733 | bool is_pageblock_removable_nolock(struct page *page) | |
6734 | { | |
656a0706 MH |
6735 | struct zone *zone; |
6736 | unsigned long pfn; | |
687875fb MH |
6737 | |
6738 | /* | |
6739 | * We have to be careful here because we are iterating over memory | |
6740 | * sections which are not zone aware so we might end up outside of | |
6741 | * the zone but still within the section. | |
656a0706 MH |
6742 | * We have to take care about the node as well. If the node is offline |
6743 | * its NODE_DATA will be NULL - see page_zone. | |
687875fb | 6744 | */ |
656a0706 MH |
6745 | if (!node_online(page_to_nid(page))) |
6746 | return false; | |
6747 | ||
6748 | zone = page_zone(page); | |
6749 | pfn = page_to_pfn(page); | |
108bcc96 | 6750 | if (!zone_spans_pfn(zone, pfn)) |
687875fb MH |
6751 | return false; |
6752 | ||
b023f468 | 6753 | return !has_unmovable_pages(zone, page, 0, true); |
a5d76b54 | 6754 | } |
0c0e6195 | 6755 | |
080fe206 | 6756 | #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA) |
041d3a8c MN |
6757 | |
6758 | static unsigned long pfn_max_align_down(unsigned long pfn) | |
6759 | { | |
6760 | return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, | |
6761 | pageblock_nr_pages) - 1); | |
6762 | } | |
6763 | ||
6764 | static unsigned long pfn_max_align_up(unsigned long pfn) | |
6765 | { | |
6766 | return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, | |
6767 | pageblock_nr_pages)); | |
6768 | } | |
6769 | ||
041d3a8c | 6770 | /* [start, end) must belong to a single zone. */ |
bb13ffeb MG |
6771 | static int __alloc_contig_migrate_range(struct compact_control *cc, |
6772 | unsigned long start, unsigned long end) | |
041d3a8c MN |
6773 | { |
6774 | /* This function is based on compact_zone() from compaction.c. */ | |
beb51eaa | 6775 | unsigned long nr_reclaimed; |
041d3a8c MN |
6776 | unsigned long pfn = start; |
6777 | unsigned int tries = 0; | |
6778 | int ret = 0; | |
6779 | ||
be49a6e1 | 6780 | migrate_prep(); |
041d3a8c | 6781 | |
bb13ffeb | 6782 | while (pfn < end || !list_empty(&cc->migratepages)) { |
041d3a8c MN |
6783 | if (fatal_signal_pending(current)) { |
6784 | ret = -EINTR; | |
6785 | break; | |
6786 | } | |
6787 | ||
bb13ffeb MG |
6788 | if (list_empty(&cc->migratepages)) { |
6789 | cc->nr_migratepages = 0; | |
edc2ca61 | 6790 | pfn = isolate_migratepages_range(cc, pfn, end); |
041d3a8c MN |
6791 | if (!pfn) { |
6792 | ret = -EINTR; | |
6793 | break; | |
6794 | } | |
6795 | tries = 0; | |
6796 | } else if (++tries == 5) { | |
6797 | ret = ret < 0 ? ret : -EBUSY; | |
6798 | break; | |
6799 | } | |
6800 | ||
beb51eaa MK |
6801 | nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, |
6802 | &cc->migratepages); | |
6803 | cc->nr_migratepages -= nr_reclaimed; | |
02c6de8d | 6804 | |
9c620e2b | 6805 | ret = migrate_pages(&cc->migratepages, alloc_migrate_target, |
e0b9daeb | 6806 | NULL, 0, cc->mode, MR_CMA); |
041d3a8c | 6807 | } |
2a6f5124 SP |
6808 | if (ret < 0) { |
6809 | putback_movable_pages(&cc->migratepages); | |
6810 | return ret; | |
6811 | } | |
6812 | return 0; | |
041d3a8c MN |
6813 | } |
6814 | ||
6815 | /** | |
6816 | * alloc_contig_range() -- tries to allocate given range of pages | |
6817 | * @start: start PFN to allocate | |
6818 | * @end: one-past-the-last PFN to allocate | |
0815f3d8 MN |
6819 | * @migratetype: migratetype of the underlaying pageblocks (either |
6820 | * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks | |
6821 | * in range must have the same migratetype and it must | |
6822 | * be either of the two. | |
041d3a8c MN |
6823 | * |
6824 | * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES | |
6825 | * aligned, however it's the caller's responsibility to guarantee that | |
6826 | * we are the only thread that changes migrate type of pageblocks the | |
6827 | * pages fall in. | |
6828 | * | |
6829 | * The PFN range must belong to a single zone. | |
6830 | * | |
6831 | * Returns zero on success or negative error code. On success all | |
6832 | * pages which PFN is in [start, end) are allocated for the caller and | |
6833 | * need to be freed with free_contig_range(). | |
6834 | */ | |
0815f3d8 MN |
6835 | int alloc_contig_range(unsigned long start, unsigned long end, |
6836 | unsigned migratetype) | |
041d3a8c | 6837 | { |
041d3a8c | 6838 | unsigned long outer_start, outer_end; |
d00181b9 KS |
6839 | unsigned int order; |
6840 | int ret = 0; | |
041d3a8c | 6841 | |
bb13ffeb MG |
6842 | struct compact_control cc = { |
6843 | .nr_migratepages = 0, | |
6844 | .order = -1, | |
6845 | .zone = page_zone(pfn_to_page(start)), | |
e0b9daeb | 6846 | .mode = MIGRATE_SYNC, |
bb13ffeb MG |
6847 | .ignore_skip_hint = true, |
6848 | }; | |
6849 | INIT_LIST_HEAD(&cc.migratepages); | |
6850 | ||
041d3a8c MN |
6851 | /* |
6852 | * What we do here is we mark all pageblocks in range as | |
6853 | * MIGRATE_ISOLATE. Because pageblock and max order pages may | |
6854 | * have different sizes, and due to the way page allocator | |
6855 | * work, we align the range to biggest of the two pages so | |
6856 | * that page allocator won't try to merge buddies from | |
6857 | * different pageblocks and change MIGRATE_ISOLATE to some | |
6858 | * other migration type. | |
6859 | * | |
6860 | * Once the pageblocks are marked as MIGRATE_ISOLATE, we | |
6861 | * migrate the pages from an unaligned range (ie. pages that | |
6862 | * we are interested in). This will put all the pages in | |
6863 | * range back to page allocator as MIGRATE_ISOLATE. | |
6864 | * | |
6865 | * When this is done, we take the pages in range from page | |
6866 | * allocator removing them from the buddy system. This way | |
6867 | * page allocator will never consider using them. | |
6868 | * | |
6869 | * This lets us mark the pageblocks back as | |
6870 | * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the | |
6871 | * aligned range but not in the unaligned, original range are | |
6872 | * put back to page allocator so that buddy can use them. | |
6873 | */ | |
6874 | ||
6875 | ret = start_isolate_page_range(pfn_max_align_down(start), | |
b023f468 WC |
6876 | pfn_max_align_up(end), migratetype, |
6877 | false); | |
041d3a8c | 6878 | if (ret) |
86a595f9 | 6879 | return ret; |
041d3a8c | 6880 | |
8ef5849f JK |
6881 | /* |
6882 | * In case of -EBUSY, we'd like to know which page causes problem. | |
6883 | * So, just fall through. We will check it in test_pages_isolated(). | |
6884 | */ | |
bb13ffeb | 6885 | ret = __alloc_contig_migrate_range(&cc, start, end); |
8ef5849f | 6886 | if (ret && ret != -EBUSY) |
041d3a8c MN |
6887 | goto done; |
6888 | ||
6889 | /* | |
6890 | * Pages from [start, end) are within a MAX_ORDER_NR_PAGES | |
6891 | * aligned blocks that are marked as MIGRATE_ISOLATE. What's | |
6892 | * more, all pages in [start, end) are free in page allocator. | |
6893 | * What we are going to do is to allocate all pages from | |
6894 | * [start, end) (that is remove them from page allocator). | |
6895 | * | |
6896 | * The only problem is that pages at the beginning and at the | |
6897 | * end of interesting range may be not aligned with pages that | |
6898 | * page allocator holds, ie. they can be part of higher order | |
6899 | * pages. Because of this, we reserve the bigger range and | |
6900 | * once this is done free the pages we are not interested in. | |
6901 | * | |
6902 | * We don't have to hold zone->lock here because the pages are | |
6903 | * isolated thus they won't get removed from buddy. | |
6904 | */ | |
6905 | ||
6906 | lru_add_drain_all(); | |
510f5507 | 6907 | drain_all_pages(cc.zone); |
041d3a8c MN |
6908 | |
6909 | order = 0; | |
6910 | outer_start = start; | |
6911 | while (!PageBuddy(pfn_to_page(outer_start))) { | |
6912 | if (++order >= MAX_ORDER) { | |
8ef5849f JK |
6913 | outer_start = start; |
6914 | break; | |
041d3a8c MN |
6915 | } |
6916 | outer_start &= ~0UL << order; | |
6917 | } | |
6918 | ||
8ef5849f JK |
6919 | if (outer_start != start) { |
6920 | order = page_order(pfn_to_page(outer_start)); | |
6921 | ||
6922 | /* | |
6923 | * outer_start page could be small order buddy page and | |
6924 | * it doesn't include start page. Adjust outer_start | |
6925 | * in this case to report failed page properly | |
6926 | * on tracepoint in test_pages_isolated() | |
6927 | */ | |
6928 | if (outer_start + (1UL << order) <= start) | |
6929 | outer_start = start; | |
6930 | } | |
6931 | ||
041d3a8c | 6932 | /* Make sure the range is really isolated. */ |
b023f468 | 6933 | if (test_pages_isolated(outer_start, end, false)) { |
dae803e1 MN |
6934 | pr_info("%s: [%lx, %lx) PFNs busy\n", |
6935 | __func__, outer_start, end); | |
041d3a8c MN |
6936 | ret = -EBUSY; |
6937 | goto done; | |
6938 | } | |
6939 | ||
49f223a9 | 6940 | /* Grab isolated pages from freelists. */ |
bb13ffeb | 6941 | outer_end = isolate_freepages_range(&cc, outer_start, end); |
041d3a8c MN |
6942 | if (!outer_end) { |
6943 | ret = -EBUSY; | |
6944 | goto done; | |
6945 | } | |
6946 | ||
6947 | /* Free head and tail (if any) */ | |
6948 | if (start != outer_start) | |
6949 | free_contig_range(outer_start, start - outer_start); | |
6950 | if (end != outer_end) | |
6951 | free_contig_range(end, outer_end - end); | |
6952 | ||
6953 | done: | |
6954 | undo_isolate_page_range(pfn_max_align_down(start), | |
0815f3d8 | 6955 | pfn_max_align_up(end), migratetype); |
041d3a8c MN |
6956 | return ret; |
6957 | } | |
6958 | ||
6959 | void free_contig_range(unsigned long pfn, unsigned nr_pages) | |
6960 | { | |
bcc2b02f MS |
6961 | unsigned int count = 0; |
6962 | ||
6963 | for (; nr_pages--; pfn++) { | |
6964 | struct page *page = pfn_to_page(pfn); | |
6965 | ||
6966 | count += page_count(page) != 1; | |
6967 | __free_page(page); | |
6968 | } | |
6969 | WARN(count != 0, "%d pages are still in use!\n", count); | |
041d3a8c MN |
6970 | } |
6971 | #endif | |
6972 | ||
4ed7e022 | 6973 | #ifdef CONFIG_MEMORY_HOTPLUG |
0a647f38 CS |
6974 | /* |
6975 | * The zone indicated has a new number of managed_pages; batch sizes and percpu | |
6976 | * page high values need to be recalulated. | |
6977 | */ | |
4ed7e022 JL |
6978 | void __meminit zone_pcp_update(struct zone *zone) |
6979 | { | |
0a647f38 | 6980 | unsigned cpu; |
c8e251fa | 6981 | mutex_lock(&pcp_batch_high_lock); |
0a647f38 | 6982 | for_each_possible_cpu(cpu) |
169f6c19 CS |
6983 | pageset_set_high_and_batch(zone, |
6984 | per_cpu_ptr(zone->pageset, cpu)); | |
c8e251fa | 6985 | mutex_unlock(&pcp_batch_high_lock); |
4ed7e022 JL |
6986 | } |
6987 | #endif | |
6988 | ||
340175b7 JL |
6989 | void zone_pcp_reset(struct zone *zone) |
6990 | { | |
6991 | unsigned long flags; | |
5a883813 MK |
6992 | int cpu; |
6993 | struct per_cpu_pageset *pset; | |
340175b7 JL |
6994 | |
6995 | /* avoid races with drain_pages() */ | |
6996 | local_irq_save(flags); | |
6997 | if (zone->pageset != &boot_pageset) { | |
5a883813 MK |
6998 | for_each_online_cpu(cpu) { |
6999 | pset = per_cpu_ptr(zone->pageset, cpu); | |
7000 | drain_zonestat(zone, pset); | |
7001 | } | |
340175b7 JL |
7002 | free_percpu(zone->pageset); |
7003 | zone->pageset = &boot_pageset; | |
7004 | } | |
7005 | local_irq_restore(flags); | |
7006 | } | |
7007 | ||
6dcd73d7 | 7008 | #ifdef CONFIG_MEMORY_HOTREMOVE |
0c0e6195 KH |
7009 | /* |
7010 | * All pages in the range must be isolated before calling this. | |
7011 | */ | |
7012 | void | |
7013 | __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) | |
7014 | { | |
7015 | struct page *page; | |
7016 | struct zone *zone; | |
7aeb09f9 | 7017 | unsigned int order, i; |
0c0e6195 KH |
7018 | unsigned long pfn; |
7019 | unsigned long flags; | |
7020 | /* find the first valid pfn */ | |
7021 | for (pfn = start_pfn; pfn < end_pfn; pfn++) | |
7022 | if (pfn_valid(pfn)) | |
7023 | break; | |
7024 | if (pfn == end_pfn) | |
7025 | return; | |
7026 | zone = page_zone(pfn_to_page(pfn)); | |
7027 | spin_lock_irqsave(&zone->lock, flags); | |
7028 | pfn = start_pfn; | |
7029 | while (pfn < end_pfn) { | |
7030 | if (!pfn_valid(pfn)) { | |
7031 | pfn++; | |
7032 | continue; | |
7033 | } | |
7034 | page = pfn_to_page(pfn); | |
b023f468 WC |
7035 | /* |
7036 | * The HWPoisoned page may be not in buddy system, and | |
7037 | * page_count() is not 0. | |
7038 | */ | |
7039 | if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { | |
7040 | pfn++; | |
7041 | SetPageReserved(page); | |
7042 | continue; | |
7043 | } | |
7044 | ||
0c0e6195 KH |
7045 | BUG_ON(page_count(page)); |
7046 | BUG_ON(!PageBuddy(page)); | |
7047 | order = page_order(page); | |
7048 | #ifdef CONFIG_DEBUG_VM | |
7049 | printk(KERN_INFO "remove from free list %lx %d %lx\n", | |
7050 | pfn, 1 << order, end_pfn); | |
7051 | #endif | |
7052 | list_del(&page->lru); | |
7053 | rmv_page_order(page); | |
7054 | zone->free_area[order].nr_free--; | |
0c0e6195 KH |
7055 | for (i = 0; i < (1 << order); i++) |
7056 | SetPageReserved((page+i)); | |
7057 | pfn += (1 << order); | |
7058 | } | |
7059 | spin_unlock_irqrestore(&zone->lock, flags); | |
7060 | } | |
7061 | #endif | |
8d22ba1b WF |
7062 | |
7063 | #ifdef CONFIG_MEMORY_FAILURE | |
7064 | bool is_free_buddy_page(struct page *page) | |
7065 | { | |
7066 | struct zone *zone = page_zone(page); | |
7067 | unsigned long pfn = page_to_pfn(page); | |
7068 | unsigned long flags; | |
7aeb09f9 | 7069 | unsigned int order; |
8d22ba1b WF |
7070 | |
7071 | spin_lock_irqsave(&zone->lock, flags); | |
7072 | for (order = 0; order < MAX_ORDER; order++) { | |
7073 | struct page *page_head = page - (pfn & ((1 << order) - 1)); | |
7074 | ||
7075 | if (PageBuddy(page_head) && page_order(page_head) >= order) | |
7076 | break; | |
7077 | } | |
7078 | spin_unlock_irqrestore(&zone->lock, flags); | |
7079 | ||
7080 | return order < MAX_ORDER; | |
7081 | } | |
7082 | #endif |