]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/mm/page_alloc.c | |
3 | * | |
4 | * Manages the free list, the system allocates free pages here. | |
5 | * Note that kmalloc() lives in slab.c | |
6 | * | |
7 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds | |
8 | * Swap reorganised 29.12.95, Stephen Tweedie | |
9 | * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 | |
10 | * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 | |
11 | * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 | |
12 | * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 | |
13 | * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 | |
14 | * (lots of bits borrowed from Ingo Molnar & Andrew Morton) | |
15 | */ | |
16 | ||
1da177e4 LT |
17 | #include <linux/stddef.h> |
18 | #include <linux/mm.h> | |
19 | #include <linux/swap.h> | |
20 | #include <linux/interrupt.h> | |
21 | #include <linux/pagemap.h> | |
10ed273f | 22 | #include <linux/jiffies.h> |
1da177e4 | 23 | #include <linux/bootmem.h> |
edbe7d23 | 24 | #include <linux/memblock.h> |
1da177e4 | 25 | #include <linux/compiler.h> |
9f158333 | 26 | #include <linux/kernel.h> |
b1eeab67 | 27 | #include <linux/kmemcheck.h> |
1da177e4 LT |
28 | #include <linux/module.h> |
29 | #include <linux/suspend.h> | |
30 | #include <linux/pagevec.h> | |
31 | #include <linux/blkdev.h> | |
32 | #include <linux/slab.h> | |
a238ab5b | 33 | #include <linux/ratelimit.h> |
5a3135c2 | 34 | #include <linux/oom.h> |
1da177e4 LT |
35 | #include <linux/notifier.h> |
36 | #include <linux/topology.h> | |
37 | #include <linux/sysctl.h> | |
38 | #include <linux/cpu.h> | |
39 | #include <linux/cpuset.h> | |
bdc8cb98 | 40 | #include <linux/memory_hotplug.h> |
1da177e4 LT |
41 | #include <linux/nodemask.h> |
42 | #include <linux/vmalloc.h> | |
a6cccdc3 | 43 | #include <linux/vmstat.h> |
4be38e35 | 44 | #include <linux/mempolicy.h> |
6811378e | 45 | #include <linux/stop_machine.h> |
c713216d MG |
46 | #include <linux/sort.h> |
47 | #include <linux/pfn.h> | |
3fcfab16 | 48 | #include <linux/backing-dev.h> |
933e312e | 49 | #include <linux/fault-inject.h> |
a5d76b54 | 50 | #include <linux/page-isolation.h> |
52d4b9ac | 51 | #include <linux/page_cgroup.h> |
3ac7fe5a | 52 | #include <linux/debugobjects.h> |
dbb1f81c | 53 | #include <linux/kmemleak.h> |
56de7263 | 54 | #include <linux/compaction.h> |
0d3d062a | 55 | #include <trace/events/kmem.h> |
268bb0ce | 56 | #include <linux/prefetch.h> |
6e543d57 | 57 | #include <linux/mm_inline.h> |
041d3a8c | 58 | #include <linux/migrate.h> |
c0a32fc5 | 59 | #include <linux/page-debug-flags.h> |
949f7ec5 | 60 | #include <linux/hugetlb.h> |
8bd75c77 | 61 | #include <linux/sched/rt.h> |
1da177e4 | 62 | |
7ee3d4e8 | 63 | #include <asm/sections.h> |
1da177e4 | 64 | #include <asm/tlbflush.h> |
ac924c60 | 65 | #include <asm/div64.h> |
1da177e4 LT |
66 | #include "internal.h" |
67 | ||
c8e251fa CS |
68 | /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ |
69 | static DEFINE_MUTEX(pcp_batch_high_lock); | |
7cd2b0a3 | 70 | #define MIN_PERCPU_PAGELIST_FRACTION (8) |
c8e251fa | 71 | |
72812019 LS |
72 | #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID |
73 | DEFINE_PER_CPU(int, numa_node); | |
74 | EXPORT_PER_CPU_SYMBOL(numa_node); | |
75 | #endif | |
76 | ||
7aac7898 LS |
77 | #ifdef CONFIG_HAVE_MEMORYLESS_NODES |
78 | /* | |
79 | * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. | |
80 | * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. | |
81 | * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() | |
82 | * defined in <linux/topology.h>. | |
83 | */ | |
84 | DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ | |
85 | EXPORT_PER_CPU_SYMBOL(_numa_mem_); | |
ad2c8144 | 86 | int _node_numa_mem_[MAX_NUMNODES]; |
7aac7898 LS |
87 | #endif |
88 | ||
1da177e4 | 89 | /* |
13808910 | 90 | * Array of node states. |
1da177e4 | 91 | */ |
13808910 CL |
92 | nodemask_t node_states[NR_NODE_STATES] __read_mostly = { |
93 | [N_POSSIBLE] = NODE_MASK_ALL, | |
94 | [N_ONLINE] = { { [0] = 1UL } }, | |
95 | #ifndef CONFIG_NUMA | |
96 | [N_NORMAL_MEMORY] = { { [0] = 1UL } }, | |
97 | #ifdef CONFIG_HIGHMEM | |
98 | [N_HIGH_MEMORY] = { { [0] = 1UL } }, | |
20b2f52b LJ |
99 | #endif |
100 | #ifdef CONFIG_MOVABLE_NODE | |
101 | [N_MEMORY] = { { [0] = 1UL } }, | |
13808910 CL |
102 | #endif |
103 | [N_CPU] = { { [0] = 1UL } }, | |
104 | #endif /* NUMA */ | |
105 | }; | |
106 | EXPORT_SYMBOL(node_states); | |
107 | ||
c3d5f5f0 JL |
108 | /* Protect totalram_pages and zone->managed_pages */ |
109 | static DEFINE_SPINLOCK(managed_page_count_lock); | |
110 | ||
6c231b7b | 111 | unsigned long totalram_pages __read_mostly; |
cb45b0e9 | 112 | unsigned long totalreserve_pages __read_mostly; |
ab8fabd4 JW |
113 | /* |
114 | * When calculating the number of globally allowed dirty pages, there | |
115 | * is a certain number of per-zone reserves that should not be | |
116 | * considered dirtyable memory. This is the sum of those reserves | |
117 | * over all existing zones that contribute dirtyable memory. | |
118 | */ | |
119 | unsigned long dirty_balance_reserve __read_mostly; | |
120 | ||
1b76b02f | 121 | int percpu_pagelist_fraction; |
dcce284a | 122 | gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; |
1da177e4 | 123 | |
452aa699 RW |
124 | #ifdef CONFIG_PM_SLEEP |
125 | /* | |
126 | * The following functions are used by the suspend/hibernate code to temporarily | |
127 | * change gfp_allowed_mask in order to avoid using I/O during memory allocations | |
128 | * while devices are suspended. To avoid races with the suspend/hibernate code, | |
129 | * they should always be called with pm_mutex held (gfp_allowed_mask also should | |
130 | * only be modified with pm_mutex held, unless the suspend/hibernate code is | |
131 | * guaranteed not to run in parallel with that modification). | |
132 | */ | |
c9e664f1 RW |
133 | |
134 | static gfp_t saved_gfp_mask; | |
135 | ||
136 | void pm_restore_gfp_mask(void) | |
452aa699 RW |
137 | { |
138 | WARN_ON(!mutex_is_locked(&pm_mutex)); | |
c9e664f1 RW |
139 | if (saved_gfp_mask) { |
140 | gfp_allowed_mask = saved_gfp_mask; | |
141 | saved_gfp_mask = 0; | |
142 | } | |
452aa699 RW |
143 | } |
144 | ||
c9e664f1 | 145 | void pm_restrict_gfp_mask(void) |
452aa699 | 146 | { |
452aa699 | 147 | WARN_ON(!mutex_is_locked(&pm_mutex)); |
c9e664f1 RW |
148 | WARN_ON(saved_gfp_mask); |
149 | saved_gfp_mask = gfp_allowed_mask; | |
150 | gfp_allowed_mask &= ~GFP_IOFS; | |
452aa699 | 151 | } |
f90ac398 MG |
152 | |
153 | bool pm_suspended_storage(void) | |
154 | { | |
155 | if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS) | |
156 | return false; | |
157 | return true; | |
158 | } | |
452aa699 RW |
159 | #endif /* CONFIG_PM_SLEEP */ |
160 | ||
d9c23400 MG |
161 | #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE |
162 | int pageblock_order __read_mostly; | |
163 | #endif | |
164 | ||
d98c7a09 | 165 | static void __free_pages_ok(struct page *page, unsigned int order); |
a226f6c8 | 166 | |
1da177e4 LT |
167 | /* |
168 | * results with 256, 32 in the lowmem_reserve sysctl: | |
169 | * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) | |
170 | * 1G machine -> (16M dma, 784M normal, 224M high) | |
171 | * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA | |
172 | * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL | |
173 | * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA | |
a2f1b424 AK |
174 | * |
175 | * TBD: should special case ZONE_DMA32 machines here - in those we normally | |
176 | * don't need any ZONE_NORMAL reservation | |
1da177e4 | 177 | */ |
2f1b6248 | 178 | int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { |
4b51d669 | 179 | #ifdef CONFIG_ZONE_DMA |
2f1b6248 | 180 | 256, |
4b51d669 | 181 | #endif |
fb0e7942 | 182 | #ifdef CONFIG_ZONE_DMA32 |
2f1b6248 | 183 | 256, |
fb0e7942 | 184 | #endif |
e53ef38d | 185 | #ifdef CONFIG_HIGHMEM |
2a1e274a | 186 | 32, |
e53ef38d | 187 | #endif |
2a1e274a | 188 | 32, |
2f1b6248 | 189 | }; |
1da177e4 LT |
190 | |
191 | EXPORT_SYMBOL(totalram_pages); | |
1da177e4 | 192 | |
15ad7cdc | 193 | static char * const zone_names[MAX_NR_ZONES] = { |
4b51d669 | 194 | #ifdef CONFIG_ZONE_DMA |
2f1b6248 | 195 | "DMA", |
4b51d669 | 196 | #endif |
fb0e7942 | 197 | #ifdef CONFIG_ZONE_DMA32 |
2f1b6248 | 198 | "DMA32", |
fb0e7942 | 199 | #endif |
2f1b6248 | 200 | "Normal", |
e53ef38d | 201 | #ifdef CONFIG_HIGHMEM |
2a1e274a | 202 | "HighMem", |
e53ef38d | 203 | #endif |
2a1e274a | 204 | "Movable", |
2f1b6248 CL |
205 | }; |
206 | ||
1da177e4 | 207 | int min_free_kbytes = 1024; |
42aa83cb | 208 | int user_min_free_kbytes = -1; |
1da177e4 | 209 | |
2c85f51d JB |
210 | static unsigned long __meminitdata nr_kernel_pages; |
211 | static unsigned long __meminitdata nr_all_pages; | |
a3142c8e | 212 | static unsigned long __meminitdata dma_reserve; |
1da177e4 | 213 | |
0ee332c1 TH |
214 | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP |
215 | static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; | |
216 | static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; | |
217 | static unsigned long __initdata required_kernelcore; | |
218 | static unsigned long __initdata required_movablecore; | |
219 | static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; | |
220 | ||
221 | /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ | |
222 | int movable_zone; | |
223 | EXPORT_SYMBOL(movable_zone); | |
224 | #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ | |
c713216d | 225 | |
418508c1 MS |
226 | #if MAX_NUMNODES > 1 |
227 | int nr_node_ids __read_mostly = MAX_NUMNODES; | |
62bc62a8 | 228 | int nr_online_nodes __read_mostly = 1; |
418508c1 | 229 | EXPORT_SYMBOL(nr_node_ids); |
62bc62a8 | 230 | EXPORT_SYMBOL(nr_online_nodes); |
418508c1 MS |
231 | #endif |
232 | ||
9ef9acb0 MG |
233 | int page_group_by_mobility_disabled __read_mostly; |
234 | ||
ee6f509c | 235 | void set_pageblock_migratetype(struct page *page, int migratetype) |
b2a0ac88 | 236 | { |
5d0f3f72 KM |
237 | if (unlikely(page_group_by_mobility_disabled && |
238 | migratetype < MIGRATE_PCPTYPES)) | |
49255c61 MG |
239 | migratetype = MIGRATE_UNMOVABLE; |
240 | ||
b2a0ac88 MG |
241 | set_pageblock_flags_group(page, (unsigned long)migratetype, |
242 | PB_migrate, PB_migrate_end); | |
243 | } | |
244 | ||
7f33d49a RW |
245 | bool oom_killer_disabled __read_mostly; |
246 | ||
13e7444b | 247 | #ifdef CONFIG_DEBUG_VM |
c6a57e19 | 248 | static int page_outside_zone_boundaries(struct zone *zone, struct page *page) |
1da177e4 | 249 | { |
bdc8cb98 DH |
250 | int ret = 0; |
251 | unsigned seq; | |
252 | unsigned long pfn = page_to_pfn(page); | |
b5e6a5a2 | 253 | unsigned long sp, start_pfn; |
c6a57e19 | 254 | |
bdc8cb98 DH |
255 | do { |
256 | seq = zone_span_seqbegin(zone); | |
b5e6a5a2 CS |
257 | start_pfn = zone->zone_start_pfn; |
258 | sp = zone->spanned_pages; | |
108bcc96 | 259 | if (!zone_spans_pfn(zone, pfn)) |
bdc8cb98 DH |
260 | ret = 1; |
261 | } while (zone_span_seqretry(zone, seq)); | |
262 | ||
b5e6a5a2 | 263 | if (ret) |
613813e8 DH |
264 | pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", |
265 | pfn, zone_to_nid(zone), zone->name, | |
266 | start_pfn, start_pfn + sp); | |
b5e6a5a2 | 267 | |
bdc8cb98 | 268 | return ret; |
c6a57e19 DH |
269 | } |
270 | ||
271 | static int page_is_consistent(struct zone *zone, struct page *page) | |
272 | { | |
14e07298 | 273 | if (!pfn_valid_within(page_to_pfn(page))) |
c6a57e19 | 274 | return 0; |
1da177e4 | 275 | if (zone != page_zone(page)) |
c6a57e19 DH |
276 | return 0; |
277 | ||
278 | return 1; | |
279 | } | |
280 | /* | |
281 | * Temporary debugging check for pages not lying within a given zone. | |
282 | */ | |
283 | static int bad_range(struct zone *zone, struct page *page) | |
284 | { | |
285 | if (page_outside_zone_boundaries(zone, page)) | |
1da177e4 | 286 | return 1; |
c6a57e19 DH |
287 | if (!page_is_consistent(zone, page)) |
288 | return 1; | |
289 | ||
1da177e4 LT |
290 | return 0; |
291 | } | |
13e7444b NP |
292 | #else |
293 | static inline int bad_range(struct zone *zone, struct page *page) | |
294 | { | |
295 | return 0; | |
296 | } | |
297 | #endif | |
298 | ||
d230dec1 KS |
299 | static void bad_page(struct page *page, const char *reason, |
300 | unsigned long bad_flags) | |
1da177e4 | 301 | { |
d936cf9b HD |
302 | static unsigned long resume; |
303 | static unsigned long nr_shown; | |
304 | static unsigned long nr_unshown; | |
305 | ||
2a7684a2 WF |
306 | /* Don't complain about poisoned pages */ |
307 | if (PageHWPoison(page)) { | |
22b751c3 | 308 | page_mapcount_reset(page); /* remove PageBuddy */ |
2a7684a2 WF |
309 | return; |
310 | } | |
311 | ||
d936cf9b HD |
312 | /* |
313 | * Allow a burst of 60 reports, then keep quiet for that minute; | |
314 | * or allow a steady drip of one report per second. | |
315 | */ | |
316 | if (nr_shown == 60) { | |
317 | if (time_before(jiffies, resume)) { | |
318 | nr_unshown++; | |
319 | goto out; | |
320 | } | |
321 | if (nr_unshown) { | |
1e9e6365 HD |
322 | printk(KERN_ALERT |
323 | "BUG: Bad page state: %lu messages suppressed\n", | |
d936cf9b HD |
324 | nr_unshown); |
325 | nr_unshown = 0; | |
326 | } | |
327 | nr_shown = 0; | |
328 | } | |
329 | if (nr_shown++ == 0) | |
330 | resume = jiffies + 60 * HZ; | |
331 | ||
1e9e6365 | 332 | printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n", |
3dc14741 | 333 | current->comm, page_to_pfn(page)); |
f0b791a3 | 334 | dump_page_badflags(page, reason, bad_flags); |
3dc14741 | 335 | |
4f31888c | 336 | print_modules(); |
1da177e4 | 337 | dump_stack(); |
d936cf9b | 338 | out: |
8cc3b392 | 339 | /* Leave bad fields for debug, except PageBuddy could make trouble */ |
22b751c3 | 340 | page_mapcount_reset(page); /* remove PageBuddy */ |
373d4d09 | 341 | add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); |
1da177e4 LT |
342 | } |
343 | ||
1da177e4 LT |
344 | /* |
345 | * Higher-order pages are called "compound pages". They are structured thusly: | |
346 | * | |
347 | * The first PAGE_SIZE page is called the "head page". | |
348 | * | |
349 | * The remaining PAGE_SIZE pages are called "tail pages". | |
350 | * | |
6416b9fa WSH |
351 | * All pages have PG_compound set. All tail pages have their ->first_page |
352 | * pointing at the head page. | |
1da177e4 | 353 | * |
41d78ba5 HD |
354 | * The first tail page's ->lru.next holds the address of the compound page's |
355 | * put_page() function. Its ->lru.prev holds the order of allocation. | |
356 | * This usage means that zero-order pages may not be compound. | |
1da177e4 | 357 | */ |
d98c7a09 HD |
358 | |
359 | static void free_compound_page(struct page *page) | |
360 | { | |
d85f3385 | 361 | __free_pages_ok(page, compound_order(page)); |
d98c7a09 HD |
362 | } |
363 | ||
01ad1c08 | 364 | void prep_compound_page(struct page *page, unsigned long order) |
18229df5 AW |
365 | { |
366 | int i; | |
367 | int nr_pages = 1 << order; | |
368 | ||
369 | set_compound_page_dtor(page, free_compound_page); | |
370 | set_compound_order(page, order); | |
371 | __SetPageHead(page); | |
372 | for (i = 1; i < nr_pages; i++) { | |
373 | struct page *p = page + i; | |
58a84aa9 | 374 | set_page_count(p, 0); |
18229df5 | 375 | p->first_page = page; |
668f9abb DR |
376 | /* Make sure p->first_page is always valid for PageTail() */ |
377 | smp_wmb(); | |
378 | __SetPageTail(p); | |
18229df5 AW |
379 | } |
380 | } | |
381 | ||
59ff4216 | 382 | /* update __split_huge_page_refcount if you change this function */ |
8cc3b392 | 383 | static int destroy_compound_page(struct page *page, unsigned long order) |
1da177e4 LT |
384 | { |
385 | int i; | |
386 | int nr_pages = 1 << order; | |
8cc3b392 | 387 | int bad = 0; |
1da177e4 | 388 | |
0bb2c763 | 389 | if (unlikely(compound_order(page) != order)) { |
f0b791a3 | 390 | bad_page(page, "wrong compound order", 0); |
8cc3b392 HD |
391 | bad++; |
392 | } | |
1da177e4 | 393 | |
6d777953 | 394 | __ClearPageHead(page); |
8cc3b392 | 395 | |
18229df5 AW |
396 | for (i = 1; i < nr_pages; i++) { |
397 | struct page *p = page + i; | |
1da177e4 | 398 | |
f0b791a3 DH |
399 | if (unlikely(!PageTail(p))) { |
400 | bad_page(page, "PageTail not set", 0); | |
401 | bad++; | |
402 | } else if (unlikely(p->first_page != page)) { | |
403 | bad_page(page, "first_page not consistent", 0); | |
8cc3b392 HD |
404 | bad++; |
405 | } | |
d85f3385 | 406 | __ClearPageTail(p); |
1da177e4 | 407 | } |
8cc3b392 HD |
408 | |
409 | return bad; | |
1da177e4 | 410 | } |
1da177e4 | 411 | |
7aeb09f9 MG |
412 | static inline void prep_zero_page(struct page *page, unsigned int order, |
413 | gfp_t gfp_flags) | |
17cf4406 NP |
414 | { |
415 | int i; | |
416 | ||
6626c5d5 AM |
417 | /* |
418 | * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO | |
419 | * and __GFP_HIGHMEM from hard or soft interrupt context. | |
420 | */ | |
725d704e | 421 | VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); |
17cf4406 NP |
422 | for (i = 0; i < (1 << order); i++) |
423 | clear_highpage(page + i); | |
424 | } | |
425 | ||
c0a32fc5 SG |
426 | #ifdef CONFIG_DEBUG_PAGEALLOC |
427 | unsigned int _debug_guardpage_minorder; | |
428 | ||
429 | static int __init debug_guardpage_minorder_setup(char *buf) | |
430 | { | |
431 | unsigned long res; | |
432 | ||
433 | if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { | |
434 | printk(KERN_ERR "Bad debug_guardpage_minorder value\n"); | |
435 | return 0; | |
436 | } | |
437 | _debug_guardpage_minorder = res; | |
438 | printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res); | |
439 | return 0; | |
440 | } | |
441 | __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup); | |
442 | ||
443 | static inline void set_page_guard_flag(struct page *page) | |
444 | { | |
445 | __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); | |
446 | } | |
447 | ||
448 | static inline void clear_page_guard_flag(struct page *page) | |
449 | { | |
450 | __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); | |
451 | } | |
452 | #else | |
453 | static inline void set_page_guard_flag(struct page *page) { } | |
454 | static inline void clear_page_guard_flag(struct page *page) { } | |
455 | #endif | |
456 | ||
7aeb09f9 | 457 | static inline void set_page_order(struct page *page, unsigned int order) |
6aa3001b | 458 | { |
4c21e2f2 | 459 | set_page_private(page, order); |
676165a8 | 460 | __SetPageBuddy(page); |
1da177e4 LT |
461 | } |
462 | ||
463 | static inline void rmv_page_order(struct page *page) | |
464 | { | |
676165a8 | 465 | __ClearPageBuddy(page); |
4c21e2f2 | 466 | set_page_private(page, 0); |
1da177e4 LT |
467 | } |
468 | ||
469 | /* | |
470 | * Locate the struct page for both the matching buddy in our | |
471 | * pair (buddy1) and the combined O(n+1) page they form (page). | |
472 | * | |
473 | * 1) Any buddy B1 will have an order O twin B2 which satisfies | |
474 | * the following equation: | |
475 | * B2 = B1 ^ (1 << O) | |
476 | * For example, if the starting buddy (buddy2) is #8 its order | |
477 | * 1 buddy is #10: | |
478 | * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 | |
479 | * | |
480 | * 2) Any buddy B will have an order O+1 parent P which | |
481 | * satisfies the following equation: | |
482 | * P = B & ~(1 << O) | |
483 | * | |
d6e05edc | 484 | * Assumption: *_mem_map is contiguous at least up to MAX_ORDER |
1da177e4 | 485 | */ |
1da177e4 | 486 | static inline unsigned long |
43506fad | 487 | __find_buddy_index(unsigned long page_idx, unsigned int order) |
1da177e4 | 488 | { |
43506fad | 489 | return page_idx ^ (1 << order); |
1da177e4 LT |
490 | } |
491 | ||
492 | /* | |
493 | * This function checks whether a page is free && is the buddy | |
494 | * we can do coalesce a page and its buddy if | |
13e7444b | 495 | * (a) the buddy is not in a hole && |
676165a8 | 496 | * (b) the buddy is in the buddy system && |
cb2b95e1 AW |
497 | * (c) a page and its buddy have the same order && |
498 | * (d) a page and its buddy are in the same zone. | |
676165a8 | 499 | * |
cf6fe945 WSH |
500 | * For recording whether a page is in the buddy system, we set ->_mapcount |
501 | * PAGE_BUDDY_MAPCOUNT_VALUE. | |
502 | * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is | |
503 | * serialized by zone->lock. | |
1da177e4 | 504 | * |
676165a8 | 505 | * For recording page's order, we use page_private(page). |
1da177e4 | 506 | */ |
cb2b95e1 | 507 | static inline int page_is_buddy(struct page *page, struct page *buddy, |
7aeb09f9 | 508 | unsigned int order) |
1da177e4 | 509 | { |
14e07298 | 510 | if (!pfn_valid_within(page_to_pfn(buddy))) |
13e7444b | 511 | return 0; |
13e7444b | 512 | |
c0a32fc5 | 513 | if (page_is_guard(buddy) && page_order(buddy) == order) { |
309381fe | 514 | VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); |
d34c5fa0 MG |
515 | |
516 | if (page_zone_id(page) != page_zone_id(buddy)) | |
517 | return 0; | |
518 | ||
c0a32fc5 SG |
519 | return 1; |
520 | } | |
521 | ||
cb2b95e1 | 522 | if (PageBuddy(buddy) && page_order(buddy) == order) { |
309381fe | 523 | VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); |
d34c5fa0 MG |
524 | |
525 | /* | |
526 | * zone check is done late to avoid uselessly | |
527 | * calculating zone/node ids for pages that could | |
528 | * never merge. | |
529 | */ | |
530 | if (page_zone_id(page) != page_zone_id(buddy)) | |
531 | return 0; | |
532 | ||
6aa3001b | 533 | return 1; |
676165a8 | 534 | } |
6aa3001b | 535 | return 0; |
1da177e4 LT |
536 | } |
537 | ||
538 | /* | |
539 | * Freeing function for a buddy system allocator. | |
540 | * | |
541 | * The concept of a buddy system is to maintain direct-mapped table | |
542 | * (containing bit values) for memory blocks of various "orders". | |
543 | * The bottom level table contains the map for the smallest allocatable | |
544 | * units of memory (here, pages), and each level above it describes | |
545 | * pairs of units from the levels below, hence, "buddies". | |
546 | * At a high level, all that happens here is marking the table entry | |
547 | * at the bottom level available, and propagating the changes upward | |
548 | * as necessary, plus some accounting needed to play nicely with other | |
549 | * parts of the VM system. | |
550 | * At each level, we keep a list of pages, which are heads of continuous | |
cf6fe945 WSH |
551 | * free pages of length of (1 << order) and marked with _mapcount |
552 | * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page) | |
553 | * field. | |
1da177e4 | 554 | * So when we are allocating or freeing one, we can derive the state of the |
5f63b720 MN |
555 | * other. That is, if we allocate a small block, and both were |
556 | * free, the remainder of the region must be split into blocks. | |
1da177e4 | 557 | * If a block is freed, and its buddy is also free, then this |
5f63b720 | 558 | * triggers coalescing into a block of larger size. |
1da177e4 | 559 | * |
6d49e352 | 560 | * -- nyc |
1da177e4 LT |
561 | */ |
562 | ||
48db57f8 | 563 | static inline void __free_one_page(struct page *page, |
dc4b0caf | 564 | unsigned long pfn, |
ed0ae21d MG |
565 | struct zone *zone, unsigned int order, |
566 | int migratetype) | |
1da177e4 LT |
567 | { |
568 | unsigned long page_idx; | |
6dda9d55 | 569 | unsigned long combined_idx; |
43506fad | 570 | unsigned long uninitialized_var(buddy_idx); |
6dda9d55 | 571 | struct page *buddy; |
1da177e4 | 572 | |
d29bb978 CS |
573 | VM_BUG_ON(!zone_is_initialized(zone)); |
574 | ||
224abf92 | 575 | if (unlikely(PageCompound(page))) |
8cc3b392 HD |
576 | if (unlikely(destroy_compound_page(page, order))) |
577 | return; | |
1da177e4 | 578 | |
ed0ae21d MG |
579 | VM_BUG_ON(migratetype == -1); |
580 | ||
dc4b0caf | 581 | page_idx = pfn & ((1 << MAX_ORDER) - 1); |
1da177e4 | 582 | |
309381fe SL |
583 | VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page); |
584 | VM_BUG_ON_PAGE(bad_range(zone, page), page); | |
1da177e4 | 585 | |
1da177e4 | 586 | while (order < MAX_ORDER-1) { |
43506fad KC |
587 | buddy_idx = __find_buddy_index(page_idx, order); |
588 | buddy = page + (buddy_idx - page_idx); | |
cb2b95e1 | 589 | if (!page_is_buddy(page, buddy, order)) |
3c82d0ce | 590 | break; |
c0a32fc5 SG |
591 | /* |
592 | * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, | |
593 | * merge with it and move up one order. | |
594 | */ | |
595 | if (page_is_guard(buddy)) { | |
596 | clear_page_guard_flag(buddy); | |
597 | set_page_private(page, 0); | |
d1ce749a BZ |
598 | __mod_zone_freepage_state(zone, 1 << order, |
599 | migratetype); | |
c0a32fc5 SG |
600 | } else { |
601 | list_del(&buddy->lru); | |
602 | zone->free_area[order].nr_free--; | |
603 | rmv_page_order(buddy); | |
604 | } | |
43506fad | 605 | combined_idx = buddy_idx & page_idx; |
1da177e4 LT |
606 | page = page + (combined_idx - page_idx); |
607 | page_idx = combined_idx; | |
608 | order++; | |
609 | } | |
610 | set_page_order(page, order); | |
6dda9d55 CZ |
611 | |
612 | /* | |
613 | * If this is not the largest possible page, check if the buddy | |
614 | * of the next-highest order is free. If it is, it's possible | |
615 | * that pages are being freed that will coalesce soon. In case, | |
616 | * that is happening, add the free page to the tail of the list | |
617 | * so it's less likely to be used soon and more likely to be merged | |
618 | * as a higher order page | |
619 | */ | |
b7f50cfa | 620 | if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) { |
6dda9d55 | 621 | struct page *higher_page, *higher_buddy; |
43506fad KC |
622 | combined_idx = buddy_idx & page_idx; |
623 | higher_page = page + (combined_idx - page_idx); | |
624 | buddy_idx = __find_buddy_index(combined_idx, order + 1); | |
0ba8f2d5 | 625 | higher_buddy = higher_page + (buddy_idx - combined_idx); |
6dda9d55 CZ |
626 | if (page_is_buddy(higher_page, higher_buddy, order + 1)) { |
627 | list_add_tail(&page->lru, | |
628 | &zone->free_area[order].free_list[migratetype]); | |
629 | goto out; | |
630 | } | |
631 | } | |
632 | ||
633 | list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); | |
634 | out: | |
1da177e4 LT |
635 | zone->free_area[order].nr_free++; |
636 | } | |
637 | ||
224abf92 | 638 | static inline int free_pages_check(struct page *page) |
1da177e4 | 639 | { |
d230dec1 | 640 | const char *bad_reason = NULL; |
f0b791a3 DH |
641 | unsigned long bad_flags = 0; |
642 | ||
643 | if (unlikely(page_mapcount(page))) | |
644 | bad_reason = "nonzero mapcount"; | |
645 | if (unlikely(page->mapping != NULL)) | |
646 | bad_reason = "non-NULL mapping"; | |
647 | if (unlikely(atomic_read(&page->_count) != 0)) | |
648 | bad_reason = "nonzero _count"; | |
649 | if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) { | |
650 | bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; | |
651 | bad_flags = PAGE_FLAGS_CHECK_AT_FREE; | |
652 | } | |
653 | if (unlikely(mem_cgroup_bad_page_check(page))) | |
654 | bad_reason = "cgroup check failed"; | |
655 | if (unlikely(bad_reason)) { | |
656 | bad_page(page, bad_reason, bad_flags); | |
79f4b7bf | 657 | return 1; |
8cc3b392 | 658 | } |
90572890 | 659 | page_cpupid_reset_last(page); |
79f4b7bf HD |
660 | if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
661 | page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; | |
662 | return 0; | |
1da177e4 LT |
663 | } |
664 | ||
665 | /* | |
5f8dcc21 | 666 | * Frees a number of pages from the PCP lists |
1da177e4 | 667 | * Assumes all pages on list are in same zone, and of same order. |
207f36ee | 668 | * count is the number of pages to free. |
1da177e4 LT |
669 | * |
670 | * If the zone was previously in an "all pages pinned" state then look to | |
671 | * see if this freeing clears that state. | |
672 | * | |
673 | * And clear the zone's pages_scanned counter, to hold off the "all pages are | |
674 | * pinned" detection logic. | |
675 | */ | |
5f8dcc21 MG |
676 | static void free_pcppages_bulk(struct zone *zone, int count, |
677 | struct per_cpu_pages *pcp) | |
1da177e4 | 678 | { |
5f8dcc21 | 679 | int migratetype = 0; |
a6f9edd6 | 680 | int batch_free = 0; |
72853e29 | 681 | int to_free = count; |
0d5d823a | 682 | unsigned long nr_scanned; |
5f8dcc21 | 683 | |
c54ad30c | 684 | spin_lock(&zone->lock); |
0d5d823a MG |
685 | nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED); |
686 | if (nr_scanned) | |
687 | __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned); | |
f2260e6b | 688 | |
72853e29 | 689 | while (to_free) { |
48db57f8 | 690 | struct page *page; |
5f8dcc21 MG |
691 | struct list_head *list; |
692 | ||
693 | /* | |
a6f9edd6 MG |
694 | * Remove pages from lists in a round-robin fashion. A |
695 | * batch_free count is maintained that is incremented when an | |
696 | * empty list is encountered. This is so more pages are freed | |
697 | * off fuller lists instead of spinning excessively around empty | |
698 | * lists | |
5f8dcc21 MG |
699 | */ |
700 | do { | |
a6f9edd6 | 701 | batch_free++; |
5f8dcc21 MG |
702 | if (++migratetype == MIGRATE_PCPTYPES) |
703 | migratetype = 0; | |
704 | list = &pcp->lists[migratetype]; | |
705 | } while (list_empty(list)); | |
48db57f8 | 706 | |
1d16871d NK |
707 | /* This is the only non-empty list. Free them all. */ |
708 | if (batch_free == MIGRATE_PCPTYPES) | |
709 | batch_free = to_free; | |
710 | ||
a6f9edd6 | 711 | do { |
770c8aaa BZ |
712 | int mt; /* migratetype of the to-be-freed page */ |
713 | ||
a6f9edd6 MG |
714 | page = list_entry(list->prev, struct page, lru); |
715 | /* must delete as __free_one_page list manipulates */ | |
716 | list_del(&page->lru); | |
b12c4ad1 | 717 | mt = get_freepage_migratetype(page); |
a7016235 | 718 | /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */ |
dc4b0caf | 719 | __free_one_page(page, page_to_pfn(page), zone, 0, mt); |
770c8aaa | 720 | trace_mm_page_pcpu_drain(page, 0, mt); |
194159fb | 721 | if (likely(!is_migrate_isolate_page(page))) { |
97d0da22 WC |
722 | __mod_zone_page_state(zone, NR_FREE_PAGES, 1); |
723 | if (is_migrate_cma(mt)) | |
724 | __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1); | |
725 | } | |
72853e29 | 726 | } while (--to_free && --batch_free && !list_empty(list)); |
1da177e4 | 727 | } |
c54ad30c | 728 | spin_unlock(&zone->lock); |
1da177e4 LT |
729 | } |
730 | ||
dc4b0caf MG |
731 | static void free_one_page(struct zone *zone, |
732 | struct page *page, unsigned long pfn, | |
7aeb09f9 | 733 | unsigned int order, |
ed0ae21d | 734 | int migratetype) |
1da177e4 | 735 | { |
0d5d823a | 736 | unsigned long nr_scanned; |
006d22d9 | 737 | spin_lock(&zone->lock); |
0d5d823a MG |
738 | nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED); |
739 | if (nr_scanned) | |
740 | __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned); | |
f2260e6b | 741 | |
dc4b0caf | 742 | __free_one_page(page, pfn, zone, order, migratetype); |
194159fb | 743 | if (unlikely(!is_migrate_isolate(migratetype))) |
d1ce749a | 744 | __mod_zone_freepage_state(zone, 1 << order, migratetype); |
006d22d9 | 745 | spin_unlock(&zone->lock); |
48db57f8 NP |
746 | } |
747 | ||
ec95f53a | 748 | static bool free_pages_prepare(struct page *page, unsigned int order) |
48db57f8 | 749 | { |
1da177e4 | 750 | int i; |
8cc3b392 | 751 | int bad = 0; |
1da177e4 | 752 | |
b413d48a | 753 | trace_mm_page_free(page, order); |
b1eeab67 VN |
754 | kmemcheck_free_shadow(page, order); |
755 | ||
8dd60a3a AA |
756 | if (PageAnon(page)) |
757 | page->mapping = NULL; | |
758 | for (i = 0; i < (1 << order); i++) | |
759 | bad += free_pages_check(page + i); | |
8cc3b392 | 760 | if (bad) |
ec95f53a | 761 | return false; |
689bcebf | 762 | |
3ac7fe5a | 763 | if (!PageHighMem(page)) { |
b8af2941 PK |
764 | debug_check_no_locks_freed(page_address(page), |
765 | PAGE_SIZE << order); | |
3ac7fe5a TG |
766 | debug_check_no_obj_freed(page_address(page), |
767 | PAGE_SIZE << order); | |
768 | } | |
dafb1367 | 769 | arch_free_page(page, order); |
48db57f8 | 770 | kernel_map_pages(page, 1 << order, 0); |
dafb1367 | 771 | |
ec95f53a KM |
772 | return true; |
773 | } | |
774 | ||
775 | static void __free_pages_ok(struct page *page, unsigned int order) | |
776 | { | |
777 | unsigned long flags; | |
95e34412 | 778 | int migratetype; |
dc4b0caf | 779 | unsigned long pfn = page_to_pfn(page); |
ec95f53a KM |
780 | |
781 | if (!free_pages_prepare(page, order)) | |
782 | return; | |
783 | ||
cfc47a28 | 784 | migratetype = get_pfnblock_migratetype(page, pfn); |
c54ad30c | 785 | local_irq_save(flags); |
f8891e5e | 786 | __count_vm_events(PGFREE, 1 << order); |
95e34412 | 787 | set_freepage_migratetype(page, migratetype); |
dc4b0caf | 788 | free_one_page(page_zone(page), page, pfn, order, migratetype); |
c54ad30c | 789 | local_irq_restore(flags); |
1da177e4 LT |
790 | } |
791 | ||
170a5a7e | 792 | void __init __free_pages_bootmem(struct page *page, unsigned int order) |
a226f6c8 | 793 | { |
c3993076 | 794 | unsigned int nr_pages = 1 << order; |
e2d0bd2b | 795 | struct page *p = page; |
c3993076 | 796 | unsigned int loop; |
a226f6c8 | 797 | |
e2d0bd2b YL |
798 | prefetchw(p); |
799 | for (loop = 0; loop < (nr_pages - 1); loop++, p++) { | |
800 | prefetchw(p + 1); | |
c3993076 JW |
801 | __ClearPageReserved(p); |
802 | set_page_count(p, 0); | |
a226f6c8 | 803 | } |
e2d0bd2b YL |
804 | __ClearPageReserved(p); |
805 | set_page_count(p, 0); | |
c3993076 | 806 | |
e2d0bd2b | 807 | page_zone(page)->managed_pages += nr_pages; |
c3993076 JW |
808 | set_page_refcounted(page); |
809 | __free_pages(page, order); | |
a226f6c8 DH |
810 | } |
811 | ||
47118af0 | 812 | #ifdef CONFIG_CMA |
9cf510a5 | 813 | /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ |
47118af0 MN |
814 | void __init init_cma_reserved_pageblock(struct page *page) |
815 | { | |
816 | unsigned i = pageblock_nr_pages; | |
817 | struct page *p = page; | |
818 | ||
819 | do { | |
820 | __ClearPageReserved(p); | |
821 | set_page_count(p, 0); | |
822 | } while (++p, --i); | |
823 | ||
47118af0 | 824 | set_pageblock_migratetype(page, MIGRATE_CMA); |
dc78327c MN |
825 | |
826 | if (pageblock_order >= MAX_ORDER) { | |
827 | i = pageblock_nr_pages; | |
828 | p = page; | |
829 | do { | |
830 | set_page_refcounted(p); | |
831 | __free_pages(p, MAX_ORDER - 1); | |
832 | p += MAX_ORDER_NR_PAGES; | |
833 | } while (i -= MAX_ORDER_NR_PAGES); | |
834 | } else { | |
835 | set_page_refcounted(page); | |
836 | __free_pages(page, pageblock_order); | |
837 | } | |
838 | ||
3dcc0571 | 839 | adjust_managed_page_count(page, pageblock_nr_pages); |
47118af0 MN |
840 | } |
841 | #endif | |
1da177e4 LT |
842 | |
843 | /* | |
844 | * The order of subdivision here is critical for the IO subsystem. | |
845 | * Please do not alter this order without good reasons and regression | |
846 | * testing. Specifically, as large blocks of memory are subdivided, | |
847 | * the order in which smaller blocks are delivered depends on the order | |
848 | * they're subdivided in this function. This is the primary factor | |
849 | * influencing the order in which pages are delivered to the IO | |
850 | * subsystem according to empirical testing, and this is also justified | |
851 | * by considering the behavior of a buddy system containing a single | |
852 | * large block of memory acted on by a series of small allocations. | |
853 | * This behavior is a critical factor in sglist merging's success. | |
854 | * | |
6d49e352 | 855 | * -- nyc |
1da177e4 | 856 | */ |
085cc7d5 | 857 | static inline void expand(struct zone *zone, struct page *page, |
b2a0ac88 MG |
858 | int low, int high, struct free_area *area, |
859 | int migratetype) | |
1da177e4 LT |
860 | { |
861 | unsigned long size = 1 << high; | |
862 | ||
863 | while (high > low) { | |
864 | area--; | |
865 | high--; | |
866 | size >>= 1; | |
309381fe | 867 | VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); |
c0a32fc5 SG |
868 | |
869 | #ifdef CONFIG_DEBUG_PAGEALLOC | |
870 | if (high < debug_guardpage_minorder()) { | |
871 | /* | |
872 | * Mark as guard pages (or page), that will allow to | |
873 | * merge back to allocator when buddy will be freed. | |
874 | * Corresponding page table entries will not be touched, | |
875 | * pages will stay not present in virtual address space | |
876 | */ | |
877 | INIT_LIST_HEAD(&page[size].lru); | |
878 | set_page_guard_flag(&page[size]); | |
879 | set_page_private(&page[size], high); | |
880 | /* Guard pages are not available for any usage */ | |
d1ce749a BZ |
881 | __mod_zone_freepage_state(zone, -(1 << high), |
882 | migratetype); | |
c0a32fc5 SG |
883 | continue; |
884 | } | |
885 | #endif | |
b2a0ac88 | 886 | list_add(&page[size].lru, &area->free_list[migratetype]); |
1da177e4 LT |
887 | area->nr_free++; |
888 | set_page_order(&page[size], high); | |
889 | } | |
1da177e4 LT |
890 | } |
891 | ||
1da177e4 LT |
892 | /* |
893 | * This page is about to be returned from the page allocator | |
894 | */ | |
2a7684a2 | 895 | static inline int check_new_page(struct page *page) |
1da177e4 | 896 | { |
d230dec1 | 897 | const char *bad_reason = NULL; |
f0b791a3 DH |
898 | unsigned long bad_flags = 0; |
899 | ||
900 | if (unlikely(page_mapcount(page))) | |
901 | bad_reason = "nonzero mapcount"; | |
902 | if (unlikely(page->mapping != NULL)) | |
903 | bad_reason = "non-NULL mapping"; | |
904 | if (unlikely(atomic_read(&page->_count) != 0)) | |
905 | bad_reason = "nonzero _count"; | |
906 | if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) { | |
907 | bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set"; | |
908 | bad_flags = PAGE_FLAGS_CHECK_AT_PREP; | |
909 | } | |
910 | if (unlikely(mem_cgroup_bad_page_check(page))) | |
911 | bad_reason = "cgroup check failed"; | |
912 | if (unlikely(bad_reason)) { | |
913 | bad_page(page, bad_reason, bad_flags); | |
689bcebf | 914 | return 1; |
8cc3b392 | 915 | } |
2a7684a2 WF |
916 | return 0; |
917 | } | |
918 | ||
7aeb09f9 | 919 | static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags) |
2a7684a2 WF |
920 | { |
921 | int i; | |
922 | ||
923 | for (i = 0; i < (1 << order); i++) { | |
924 | struct page *p = page + i; | |
925 | if (unlikely(check_new_page(p))) | |
926 | return 1; | |
927 | } | |
689bcebf | 928 | |
4c21e2f2 | 929 | set_page_private(page, 0); |
7835e98b | 930 | set_page_refcounted(page); |
cc102509 NP |
931 | |
932 | arch_alloc_page(page, order); | |
1da177e4 | 933 | kernel_map_pages(page, 1 << order, 1); |
17cf4406 NP |
934 | |
935 | if (gfp_flags & __GFP_ZERO) | |
936 | prep_zero_page(page, order, gfp_flags); | |
937 | ||
938 | if (order && (gfp_flags & __GFP_COMP)) | |
939 | prep_compound_page(page, order); | |
940 | ||
689bcebf | 941 | return 0; |
1da177e4 LT |
942 | } |
943 | ||
56fd56b8 MG |
944 | /* |
945 | * Go through the free lists for the given migratetype and remove | |
946 | * the smallest available page from the freelists | |
947 | */ | |
728ec980 MG |
948 | static inline |
949 | struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, | |
56fd56b8 MG |
950 | int migratetype) |
951 | { | |
952 | unsigned int current_order; | |
b8af2941 | 953 | struct free_area *area; |
56fd56b8 MG |
954 | struct page *page; |
955 | ||
956 | /* Find a page of the appropriate size in the preferred list */ | |
957 | for (current_order = order; current_order < MAX_ORDER; ++current_order) { | |
958 | area = &(zone->free_area[current_order]); | |
959 | if (list_empty(&area->free_list[migratetype])) | |
960 | continue; | |
961 | ||
962 | page = list_entry(area->free_list[migratetype].next, | |
963 | struct page, lru); | |
964 | list_del(&page->lru); | |
965 | rmv_page_order(page); | |
966 | area->nr_free--; | |
56fd56b8 | 967 | expand(zone, page, order, current_order, area, migratetype); |
5bcc9f86 | 968 | set_freepage_migratetype(page, migratetype); |
56fd56b8 MG |
969 | return page; |
970 | } | |
971 | ||
972 | return NULL; | |
973 | } | |
974 | ||
975 | ||
b2a0ac88 MG |
976 | /* |
977 | * This array describes the order lists are fallen back to when | |
978 | * the free lists for the desirable migrate type are depleted | |
979 | */ | |
47118af0 MN |
980 | static int fallbacks[MIGRATE_TYPES][4] = { |
981 | [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, | |
982 | [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, | |
983 | #ifdef CONFIG_CMA | |
984 | [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, | |
985 | [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */ | |
986 | #else | |
987 | [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, | |
988 | #endif | |
6d4a4916 | 989 | [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */ |
194159fb | 990 | #ifdef CONFIG_MEMORY_ISOLATION |
6d4a4916 | 991 | [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */ |
194159fb | 992 | #endif |
b2a0ac88 MG |
993 | }; |
994 | ||
c361be55 MG |
995 | /* |
996 | * Move the free pages in a range to the free lists of the requested type. | |
d9c23400 | 997 | * Note that start_page and end_pages are not aligned on a pageblock |
c361be55 MG |
998 | * boundary. If alignment is required, use move_freepages_block() |
999 | */ | |
435b405c | 1000 | int move_freepages(struct zone *zone, |
b69a7288 AB |
1001 | struct page *start_page, struct page *end_page, |
1002 | int migratetype) | |
c361be55 MG |
1003 | { |
1004 | struct page *page; | |
1005 | unsigned long order; | |
d100313f | 1006 | int pages_moved = 0; |
c361be55 MG |
1007 | |
1008 | #ifndef CONFIG_HOLES_IN_ZONE | |
1009 | /* | |
1010 | * page_zone is not safe to call in this context when | |
1011 | * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant | |
1012 | * anyway as we check zone boundaries in move_freepages_block(). | |
1013 | * Remove at a later date when no bug reports exist related to | |
ac0e5b7a | 1014 | * grouping pages by mobility |
c361be55 | 1015 | */ |
97ee4ba7 | 1016 | VM_BUG_ON(page_zone(start_page) != page_zone(end_page)); |
c361be55 MG |
1017 | #endif |
1018 | ||
1019 | for (page = start_page; page <= end_page;) { | |
344c790e | 1020 | /* Make sure we are not inadvertently changing nodes */ |
309381fe | 1021 | VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); |
344c790e | 1022 | |
c361be55 MG |
1023 | if (!pfn_valid_within(page_to_pfn(page))) { |
1024 | page++; | |
1025 | continue; | |
1026 | } | |
1027 | ||
1028 | if (!PageBuddy(page)) { | |
1029 | page++; | |
1030 | continue; | |
1031 | } | |
1032 | ||
1033 | order = page_order(page); | |
84be48d8 KS |
1034 | list_move(&page->lru, |
1035 | &zone->free_area[order].free_list[migratetype]); | |
95e34412 | 1036 | set_freepage_migratetype(page, migratetype); |
c361be55 | 1037 | page += 1 << order; |
d100313f | 1038 | pages_moved += 1 << order; |
c361be55 MG |
1039 | } |
1040 | ||
d100313f | 1041 | return pages_moved; |
c361be55 MG |
1042 | } |
1043 | ||
ee6f509c | 1044 | int move_freepages_block(struct zone *zone, struct page *page, |
68e3e926 | 1045 | int migratetype) |
c361be55 MG |
1046 | { |
1047 | unsigned long start_pfn, end_pfn; | |
1048 | struct page *start_page, *end_page; | |
1049 | ||
1050 | start_pfn = page_to_pfn(page); | |
d9c23400 | 1051 | start_pfn = start_pfn & ~(pageblock_nr_pages-1); |
c361be55 | 1052 | start_page = pfn_to_page(start_pfn); |
d9c23400 MG |
1053 | end_page = start_page + pageblock_nr_pages - 1; |
1054 | end_pfn = start_pfn + pageblock_nr_pages - 1; | |
c361be55 MG |
1055 | |
1056 | /* Do not cross zone boundaries */ | |
108bcc96 | 1057 | if (!zone_spans_pfn(zone, start_pfn)) |
c361be55 | 1058 | start_page = page; |
108bcc96 | 1059 | if (!zone_spans_pfn(zone, end_pfn)) |
c361be55 MG |
1060 | return 0; |
1061 | ||
1062 | return move_freepages(zone, start_page, end_page, migratetype); | |
1063 | } | |
1064 | ||
2f66a68f MG |
1065 | static void change_pageblock_range(struct page *pageblock_page, |
1066 | int start_order, int migratetype) | |
1067 | { | |
1068 | int nr_pageblocks = 1 << (start_order - pageblock_order); | |
1069 | ||
1070 | while (nr_pageblocks--) { | |
1071 | set_pageblock_migratetype(pageblock_page, migratetype); | |
1072 | pageblock_page += pageblock_nr_pages; | |
1073 | } | |
1074 | } | |
1075 | ||
fef903ef SB |
1076 | /* |
1077 | * If breaking a large block of pages, move all free pages to the preferred | |
1078 | * allocation list. If falling back for a reclaimable kernel allocation, be | |
1079 | * more aggressive about taking ownership of free pages. | |
1080 | * | |
1081 | * On the other hand, never change migration type of MIGRATE_CMA pageblocks | |
1082 | * nor move CMA pages to different free lists. We don't want unmovable pages | |
1083 | * to be allocated from MIGRATE_CMA areas. | |
1084 | * | |
1085 | * Returns the new migratetype of the pageblock (or the same old migratetype | |
1086 | * if it was unchanged). | |
1087 | */ | |
1088 | static int try_to_steal_freepages(struct zone *zone, struct page *page, | |
1089 | int start_type, int fallback_type) | |
1090 | { | |
1091 | int current_order = page_order(page); | |
1092 | ||
0cbef29a KM |
1093 | /* |
1094 | * When borrowing from MIGRATE_CMA, we need to release the excess | |
5bcc9f86 VB |
1095 | * buddy pages to CMA itself. We also ensure the freepage_migratetype |
1096 | * is set to CMA so it is returned to the correct freelist in case | |
1097 | * the page ends up being not actually allocated from the pcp lists. | |
0cbef29a | 1098 | */ |
fef903ef SB |
1099 | if (is_migrate_cma(fallback_type)) |
1100 | return fallback_type; | |
1101 | ||
1102 | /* Take ownership for orders >= pageblock_order */ | |
1103 | if (current_order >= pageblock_order) { | |
1104 | change_pageblock_range(page, current_order, start_type); | |
1105 | return start_type; | |
1106 | } | |
1107 | ||
1108 | if (current_order >= pageblock_order / 2 || | |
1109 | start_type == MIGRATE_RECLAIMABLE || | |
1110 | page_group_by_mobility_disabled) { | |
1111 | int pages; | |
1112 | ||
1113 | pages = move_freepages_block(zone, page, start_type); | |
1114 | ||
1115 | /* Claim the whole block if over half of it is free */ | |
1116 | if (pages >= (1 << (pageblock_order-1)) || | |
1117 | page_group_by_mobility_disabled) { | |
1118 | ||
1119 | set_pageblock_migratetype(page, start_type); | |
1120 | return start_type; | |
1121 | } | |
1122 | ||
1123 | } | |
1124 | ||
1125 | return fallback_type; | |
1126 | } | |
1127 | ||
b2a0ac88 | 1128 | /* Remove an element from the buddy allocator from the fallback list */ |
0ac3a409 | 1129 | static inline struct page * |
7aeb09f9 | 1130 | __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype) |
b2a0ac88 | 1131 | { |
b8af2941 | 1132 | struct free_area *area; |
7aeb09f9 | 1133 | unsigned int current_order; |
b2a0ac88 | 1134 | struct page *page; |
fef903ef | 1135 | int migratetype, new_type, i; |
b2a0ac88 MG |
1136 | |
1137 | /* Find the largest possible block of pages in the other list */ | |
7aeb09f9 MG |
1138 | for (current_order = MAX_ORDER-1; |
1139 | current_order >= order && current_order <= MAX_ORDER-1; | |
1140 | --current_order) { | |
6d4a4916 | 1141 | for (i = 0;; i++) { |
b2a0ac88 MG |
1142 | migratetype = fallbacks[start_migratetype][i]; |
1143 | ||
56fd56b8 MG |
1144 | /* MIGRATE_RESERVE handled later if necessary */ |
1145 | if (migratetype == MIGRATE_RESERVE) | |
6d4a4916 | 1146 | break; |
e010487d | 1147 | |
b2a0ac88 MG |
1148 | area = &(zone->free_area[current_order]); |
1149 | if (list_empty(&area->free_list[migratetype])) | |
1150 | continue; | |
1151 | ||
1152 | page = list_entry(area->free_list[migratetype].next, | |
1153 | struct page, lru); | |
1154 | area->nr_free--; | |
1155 | ||
fef903ef SB |
1156 | new_type = try_to_steal_freepages(zone, page, |
1157 | start_migratetype, | |
1158 | migratetype); | |
b2a0ac88 MG |
1159 | |
1160 | /* Remove the page from the freelists */ | |
1161 | list_del(&page->lru); | |
1162 | rmv_page_order(page); | |
b2a0ac88 | 1163 | |
47118af0 | 1164 | expand(zone, page, order, current_order, area, |
0cbef29a | 1165 | new_type); |
5bcc9f86 VB |
1166 | /* The freepage_migratetype may differ from pageblock's |
1167 | * migratetype depending on the decisions in | |
1168 | * try_to_steal_freepages. This is OK as long as it does | |
1169 | * not differ for MIGRATE_CMA type. | |
1170 | */ | |
1171 | set_freepage_migratetype(page, new_type); | |
e0fff1bd | 1172 | |
52c8f6a5 KM |
1173 | trace_mm_page_alloc_extfrag(page, order, current_order, |
1174 | start_migratetype, migratetype, new_type); | |
e0fff1bd | 1175 | |
b2a0ac88 MG |
1176 | return page; |
1177 | } | |
1178 | } | |
1179 | ||
728ec980 | 1180 | return NULL; |
b2a0ac88 MG |
1181 | } |
1182 | ||
56fd56b8 | 1183 | /* |
1da177e4 LT |
1184 | * Do the hard work of removing an element from the buddy allocator. |
1185 | * Call me with the zone->lock already held. | |
1186 | */ | |
b2a0ac88 MG |
1187 | static struct page *__rmqueue(struct zone *zone, unsigned int order, |
1188 | int migratetype) | |
1da177e4 | 1189 | { |
1da177e4 LT |
1190 | struct page *page; |
1191 | ||
728ec980 | 1192 | retry_reserve: |
56fd56b8 | 1193 | page = __rmqueue_smallest(zone, order, migratetype); |
b2a0ac88 | 1194 | |
728ec980 | 1195 | if (unlikely(!page) && migratetype != MIGRATE_RESERVE) { |
56fd56b8 | 1196 | page = __rmqueue_fallback(zone, order, migratetype); |
b2a0ac88 | 1197 | |
728ec980 MG |
1198 | /* |
1199 | * Use MIGRATE_RESERVE rather than fail an allocation. goto | |
1200 | * is used because __rmqueue_smallest is an inline function | |
1201 | * and we want just one call site | |
1202 | */ | |
1203 | if (!page) { | |
1204 | migratetype = MIGRATE_RESERVE; | |
1205 | goto retry_reserve; | |
1206 | } | |
1207 | } | |
1208 | ||
0d3d062a | 1209 | trace_mm_page_alloc_zone_locked(page, order, migratetype); |
b2a0ac88 | 1210 | return page; |
1da177e4 LT |
1211 | } |
1212 | ||
5f63b720 | 1213 | /* |
1da177e4 LT |
1214 | * Obtain a specified number of elements from the buddy allocator, all under |
1215 | * a single hold of the lock, for efficiency. Add them to the supplied list. | |
1216 | * Returns the number of new pages which were placed at *list. | |
1217 | */ | |
5f63b720 | 1218 | static int rmqueue_bulk(struct zone *zone, unsigned int order, |
b2a0ac88 | 1219 | unsigned long count, struct list_head *list, |
b745bc85 | 1220 | int migratetype, bool cold) |
1da177e4 | 1221 | { |
5bcc9f86 | 1222 | int i; |
5f63b720 | 1223 | |
c54ad30c | 1224 | spin_lock(&zone->lock); |
1da177e4 | 1225 | for (i = 0; i < count; ++i) { |
b2a0ac88 | 1226 | struct page *page = __rmqueue(zone, order, migratetype); |
085cc7d5 | 1227 | if (unlikely(page == NULL)) |
1da177e4 | 1228 | break; |
81eabcbe MG |
1229 | |
1230 | /* | |
1231 | * Split buddy pages returned by expand() are received here | |
1232 | * in physical page order. The page is added to the callers and | |
1233 | * list and the list head then moves forward. From the callers | |
1234 | * perspective, the linked list is ordered by page number in | |
1235 | * some conditions. This is useful for IO devices that can | |
1236 | * merge IO requests if the physical pages are ordered | |
1237 | * properly. | |
1238 | */ | |
b745bc85 | 1239 | if (likely(!cold)) |
e084b2d9 MG |
1240 | list_add(&page->lru, list); |
1241 | else | |
1242 | list_add_tail(&page->lru, list); | |
81eabcbe | 1243 | list = &page->lru; |
5bcc9f86 | 1244 | if (is_migrate_cma(get_freepage_migratetype(page))) |
d1ce749a BZ |
1245 | __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, |
1246 | -(1 << order)); | |
1da177e4 | 1247 | } |
f2260e6b | 1248 | __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); |
c54ad30c | 1249 | spin_unlock(&zone->lock); |
085cc7d5 | 1250 | return i; |
1da177e4 LT |
1251 | } |
1252 | ||
4ae7c039 | 1253 | #ifdef CONFIG_NUMA |
8fce4d8e | 1254 | /* |
4037d452 CL |
1255 | * Called from the vmstat counter updater to drain pagesets of this |
1256 | * currently executing processor on remote nodes after they have | |
1257 | * expired. | |
1258 | * | |
879336c3 CL |
1259 | * Note that this function must be called with the thread pinned to |
1260 | * a single processor. | |
8fce4d8e | 1261 | */ |
4037d452 | 1262 | void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) |
4ae7c039 | 1263 | { |
4ae7c039 | 1264 | unsigned long flags; |
7be12fc9 | 1265 | int to_drain, batch; |
4ae7c039 | 1266 | |
4037d452 | 1267 | local_irq_save(flags); |
998d39cb | 1268 | batch = ACCESS_ONCE(pcp->batch); |
7be12fc9 | 1269 | to_drain = min(pcp->count, batch); |
2a13515c KM |
1270 | if (to_drain > 0) { |
1271 | free_pcppages_bulk(zone, to_drain, pcp); | |
1272 | pcp->count -= to_drain; | |
1273 | } | |
4037d452 | 1274 | local_irq_restore(flags); |
4ae7c039 CL |
1275 | } |
1276 | #endif | |
1277 | ||
9f8f2172 CL |
1278 | /* |
1279 | * Drain pages of the indicated processor. | |
1280 | * | |
1281 | * The processor must either be the current processor and the | |
1282 | * thread pinned to the current processor or a processor that | |
1283 | * is not online. | |
1284 | */ | |
1285 | static void drain_pages(unsigned int cpu) | |
1da177e4 | 1286 | { |
c54ad30c | 1287 | unsigned long flags; |
1da177e4 | 1288 | struct zone *zone; |
1da177e4 | 1289 | |
ee99c71c | 1290 | for_each_populated_zone(zone) { |
1da177e4 | 1291 | struct per_cpu_pageset *pset; |
3dfa5721 | 1292 | struct per_cpu_pages *pcp; |
1da177e4 | 1293 | |
99dcc3e5 CL |
1294 | local_irq_save(flags); |
1295 | pset = per_cpu_ptr(zone->pageset, cpu); | |
3dfa5721 CL |
1296 | |
1297 | pcp = &pset->pcp; | |
2ff754fa DR |
1298 | if (pcp->count) { |
1299 | free_pcppages_bulk(zone, pcp->count, pcp); | |
1300 | pcp->count = 0; | |
1301 | } | |
3dfa5721 | 1302 | local_irq_restore(flags); |
1da177e4 LT |
1303 | } |
1304 | } | |
1da177e4 | 1305 | |
9f8f2172 CL |
1306 | /* |
1307 | * Spill all of this CPU's per-cpu pages back into the buddy allocator. | |
1308 | */ | |
1309 | void drain_local_pages(void *arg) | |
1310 | { | |
1311 | drain_pages(smp_processor_id()); | |
1312 | } | |
1313 | ||
1314 | /* | |
74046494 GBY |
1315 | * Spill all the per-cpu pages from all CPUs back into the buddy allocator. |
1316 | * | |
1317 | * Note that this code is protected against sending an IPI to an offline | |
1318 | * CPU but does not guarantee sending an IPI to newly hotplugged CPUs: | |
1319 | * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but | |
1320 | * nothing keeps CPUs from showing up after we populated the cpumask and | |
1321 | * before the call to on_each_cpu_mask(). | |
9f8f2172 CL |
1322 | */ |
1323 | void drain_all_pages(void) | |
1324 | { | |
74046494 GBY |
1325 | int cpu; |
1326 | struct per_cpu_pageset *pcp; | |
1327 | struct zone *zone; | |
1328 | ||
1329 | /* | |
1330 | * Allocate in the BSS so we wont require allocation in | |
1331 | * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y | |
1332 | */ | |
1333 | static cpumask_t cpus_with_pcps; | |
1334 | ||
1335 | /* | |
1336 | * We don't care about racing with CPU hotplug event | |
1337 | * as offline notification will cause the notified | |
1338 | * cpu to drain that CPU pcps and on_each_cpu_mask | |
1339 | * disables preemption as part of its processing | |
1340 | */ | |
1341 | for_each_online_cpu(cpu) { | |
1342 | bool has_pcps = false; | |
1343 | for_each_populated_zone(zone) { | |
1344 | pcp = per_cpu_ptr(zone->pageset, cpu); | |
1345 | if (pcp->pcp.count) { | |
1346 | has_pcps = true; | |
1347 | break; | |
1348 | } | |
1349 | } | |
1350 | if (has_pcps) | |
1351 | cpumask_set_cpu(cpu, &cpus_with_pcps); | |
1352 | else | |
1353 | cpumask_clear_cpu(cpu, &cpus_with_pcps); | |
1354 | } | |
1355 | on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1); | |
9f8f2172 CL |
1356 | } |
1357 | ||
296699de | 1358 | #ifdef CONFIG_HIBERNATION |
1da177e4 LT |
1359 | |
1360 | void mark_free_pages(struct zone *zone) | |
1361 | { | |
f623f0db RW |
1362 | unsigned long pfn, max_zone_pfn; |
1363 | unsigned long flags; | |
7aeb09f9 | 1364 | unsigned int order, t; |
1da177e4 LT |
1365 | struct list_head *curr; |
1366 | ||
8080fc03 | 1367 | if (zone_is_empty(zone)) |
1da177e4 LT |
1368 | return; |
1369 | ||
1370 | spin_lock_irqsave(&zone->lock, flags); | |
f623f0db | 1371 | |
108bcc96 | 1372 | max_zone_pfn = zone_end_pfn(zone); |
f623f0db RW |
1373 | for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) |
1374 | if (pfn_valid(pfn)) { | |
1375 | struct page *page = pfn_to_page(pfn); | |
1376 | ||
7be98234 RW |
1377 | if (!swsusp_page_is_forbidden(page)) |
1378 | swsusp_unset_page_free(page); | |
f623f0db | 1379 | } |
1da177e4 | 1380 | |
b2a0ac88 MG |
1381 | for_each_migratetype_order(order, t) { |
1382 | list_for_each(curr, &zone->free_area[order].free_list[t]) { | |
f623f0db | 1383 | unsigned long i; |
1da177e4 | 1384 | |
f623f0db RW |
1385 | pfn = page_to_pfn(list_entry(curr, struct page, lru)); |
1386 | for (i = 0; i < (1UL << order); i++) | |
7be98234 | 1387 | swsusp_set_page_free(pfn_to_page(pfn + i)); |
f623f0db | 1388 | } |
b2a0ac88 | 1389 | } |
1da177e4 LT |
1390 | spin_unlock_irqrestore(&zone->lock, flags); |
1391 | } | |
e2c55dc8 | 1392 | #endif /* CONFIG_PM */ |
1da177e4 | 1393 | |
1da177e4 LT |
1394 | /* |
1395 | * Free a 0-order page | |
b745bc85 | 1396 | * cold == true ? free a cold page : free a hot page |
1da177e4 | 1397 | */ |
b745bc85 | 1398 | void free_hot_cold_page(struct page *page, bool cold) |
1da177e4 LT |
1399 | { |
1400 | struct zone *zone = page_zone(page); | |
1401 | struct per_cpu_pages *pcp; | |
1402 | unsigned long flags; | |
dc4b0caf | 1403 | unsigned long pfn = page_to_pfn(page); |
5f8dcc21 | 1404 | int migratetype; |
1da177e4 | 1405 | |
ec95f53a | 1406 | if (!free_pages_prepare(page, 0)) |
689bcebf HD |
1407 | return; |
1408 | ||
dc4b0caf | 1409 | migratetype = get_pfnblock_migratetype(page, pfn); |
b12c4ad1 | 1410 | set_freepage_migratetype(page, migratetype); |
1da177e4 | 1411 | local_irq_save(flags); |
f8891e5e | 1412 | __count_vm_event(PGFREE); |
da456f14 | 1413 | |
5f8dcc21 MG |
1414 | /* |
1415 | * We only track unmovable, reclaimable and movable on pcp lists. | |
1416 | * Free ISOLATE pages back to the allocator because they are being | |
1417 | * offlined but treat RESERVE as movable pages so we can get those | |
1418 | * areas back if necessary. Otherwise, we may have to free | |
1419 | * excessively into the page allocator | |
1420 | */ | |
1421 | if (migratetype >= MIGRATE_PCPTYPES) { | |
194159fb | 1422 | if (unlikely(is_migrate_isolate(migratetype))) { |
dc4b0caf | 1423 | free_one_page(zone, page, pfn, 0, migratetype); |
5f8dcc21 MG |
1424 | goto out; |
1425 | } | |
1426 | migratetype = MIGRATE_MOVABLE; | |
1427 | } | |
1428 | ||
99dcc3e5 | 1429 | pcp = &this_cpu_ptr(zone->pageset)->pcp; |
b745bc85 | 1430 | if (!cold) |
5f8dcc21 | 1431 | list_add(&page->lru, &pcp->lists[migratetype]); |
b745bc85 MG |
1432 | else |
1433 | list_add_tail(&page->lru, &pcp->lists[migratetype]); | |
1da177e4 | 1434 | pcp->count++; |
48db57f8 | 1435 | if (pcp->count >= pcp->high) { |
998d39cb CS |
1436 | unsigned long batch = ACCESS_ONCE(pcp->batch); |
1437 | free_pcppages_bulk(zone, batch, pcp); | |
1438 | pcp->count -= batch; | |
48db57f8 | 1439 | } |
5f8dcc21 MG |
1440 | |
1441 | out: | |
1da177e4 | 1442 | local_irq_restore(flags); |
1da177e4 LT |
1443 | } |
1444 | ||
cc59850e KK |
1445 | /* |
1446 | * Free a list of 0-order pages | |
1447 | */ | |
b745bc85 | 1448 | void free_hot_cold_page_list(struct list_head *list, bool cold) |
cc59850e KK |
1449 | { |
1450 | struct page *page, *next; | |
1451 | ||
1452 | list_for_each_entry_safe(page, next, list, lru) { | |
b413d48a | 1453 | trace_mm_page_free_batched(page, cold); |
cc59850e KK |
1454 | free_hot_cold_page(page, cold); |
1455 | } | |
1456 | } | |
1457 | ||
8dfcc9ba NP |
1458 | /* |
1459 | * split_page takes a non-compound higher-order page, and splits it into | |
1460 | * n (1<<order) sub-pages: page[0..n] | |
1461 | * Each sub-page must be freed individually. | |
1462 | * | |
1463 | * Note: this is probably too low level an operation for use in drivers. | |
1464 | * Please consult with lkml before using this in your driver. | |
1465 | */ | |
1466 | void split_page(struct page *page, unsigned int order) | |
1467 | { | |
1468 | int i; | |
1469 | ||
309381fe SL |
1470 | VM_BUG_ON_PAGE(PageCompound(page), page); |
1471 | VM_BUG_ON_PAGE(!page_count(page), page); | |
b1eeab67 VN |
1472 | |
1473 | #ifdef CONFIG_KMEMCHECK | |
1474 | /* | |
1475 | * Split shadow pages too, because free(page[0]) would | |
1476 | * otherwise free the whole shadow. | |
1477 | */ | |
1478 | if (kmemcheck_page_is_tracked(page)) | |
1479 | split_page(virt_to_page(page[0].shadow), order); | |
1480 | #endif | |
1481 | ||
7835e98b NP |
1482 | for (i = 1; i < (1 << order); i++) |
1483 | set_page_refcounted(page + i); | |
8dfcc9ba | 1484 | } |
5853ff23 | 1485 | EXPORT_SYMBOL_GPL(split_page); |
8dfcc9ba | 1486 | |
8fb74b9f | 1487 | static int __isolate_free_page(struct page *page, unsigned int order) |
748446bb | 1488 | { |
748446bb MG |
1489 | unsigned long watermark; |
1490 | struct zone *zone; | |
2139cbe6 | 1491 | int mt; |
748446bb MG |
1492 | |
1493 | BUG_ON(!PageBuddy(page)); | |
1494 | ||
1495 | zone = page_zone(page); | |
2e30abd1 | 1496 | mt = get_pageblock_migratetype(page); |
748446bb | 1497 | |
194159fb | 1498 | if (!is_migrate_isolate(mt)) { |
2e30abd1 MS |
1499 | /* Obey watermarks as if the page was being allocated */ |
1500 | watermark = low_wmark_pages(zone) + (1 << order); | |
1501 | if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) | |
1502 | return 0; | |
1503 | ||
8fb74b9f | 1504 | __mod_zone_freepage_state(zone, -(1UL << order), mt); |
2e30abd1 | 1505 | } |
748446bb MG |
1506 | |
1507 | /* Remove page from free list */ | |
1508 | list_del(&page->lru); | |
1509 | zone->free_area[order].nr_free--; | |
1510 | rmv_page_order(page); | |
2139cbe6 | 1511 | |
8fb74b9f | 1512 | /* Set the pageblock if the isolated page is at least a pageblock */ |
748446bb MG |
1513 | if (order >= pageblock_order - 1) { |
1514 | struct page *endpage = page + (1 << order) - 1; | |
47118af0 MN |
1515 | for (; page < endpage; page += pageblock_nr_pages) { |
1516 | int mt = get_pageblock_migratetype(page); | |
194159fb | 1517 | if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)) |
47118af0 MN |
1518 | set_pageblock_migratetype(page, |
1519 | MIGRATE_MOVABLE); | |
1520 | } | |
748446bb MG |
1521 | } |
1522 | ||
8fb74b9f | 1523 | return 1UL << order; |
1fb3f8ca MG |
1524 | } |
1525 | ||
1526 | /* | |
1527 | * Similar to split_page except the page is already free. As this is only | |
1528 | * being used for migration, the migratetype of the block also changes. | |
1529 | * As this is called with interrupts disabled, the caller is responsible | |
1530 | * for calling arch_alloc_page() and kernel_map_page() after interrupts | |
1531 | * are enabled. | |
1532 | * | |
1533 | * Note: this is probably too low level an operation for use in drivers. | |
1534 | * Please consult with lkml before using this in your driver. | |
1535 | */ | |
1536 | int split_free_page(struct page *page) | |
1537 | { | |
1538 | unsigned int order; | |
1539 | int nr_pages; | |
1540 | ||
1fb3f8ca MG |
1541 | order = page_order(page); |
1542 | ||
8fb74b9f | 1543 | nr_pages = __isolate_free_page(page, order); |
1fb3f8ca MG |
1544 | if (!nr_pages) |
1545 | return 0; | |
1546 | ||
1547 | /* Split into individual pages */ | |
1548 | set_page_refcounted(page); | |
1549 | split_page(page, order); | |
1550 | return nr_pages; | |
748446bb MG |
1551 | } |
1552 | ||
1da177e4 LT |
1553 | /* |
1554 | * Really, prep_compound_page() should be called from __rmqueue_bulk(). But | |
1555 | * we cheat by calling it from here, in the order > 0 path. Saves a branch | |
1556 | * or two. | |
1557 | */ | |
0a15c3e9 MG |
1558 | static inline |
1559 | struct page *buffered_rmqueue(struct zone *preferred_zone, | |
7aeb09f9 MG |
1560 | struct zone *zone, unsigned int order, |
1561 | gfp_t gfp_flags, int migratetype) | |
1da177e4 LT |
1562 | { |
1563 | unsigned long flags; | |
689bcebf | 1564 | struct page *page; |
b745bc85 | 1565 | bool cold = ((gfp_flags & __GFP_COLD) != 0); |
1da177e4 | 1566 | |
689bcebf | 1567 | again: |
48db57f8 | 1568 | if (likely(order == 0)) { |
1da177e4 | 1569 | struct per_cpu_pages *pcp; |
5f8dcc21 | 1570 | struct list_head *list; |
1da177e4 | 1571 | |
1da177e4 | 1572 | local_irq_save(flags); |
99dcc3e5 CL |
1573 | pcp = &this_cpu_ptr(zone->pageset)->pcp; |
1574 | list = &pcp->lists[migratetype]; | |
5f8dcc21 | 1575 | if (list_empty(list)) { |
535131e6 | 1576 | pcp->count += rmqueue_bulk(zone, 0, |
5f8dcc21 | 1577 | pcp->batch, list, |
e084b2d9 | 1578 | migratetype, cold); |
5f8dcc21 | 1579 | if (unlikely(list_empty(list))) |
6fb332fa | 1580 | goto failed; |
535131e6 | 1581 | } |
b92a6edd | 1582 | |
5f8dcc21 MG |
1583 | if (cold) |
1584 | page = list_entry(list->prev, struct page, lru); | |
1585 | else | |
1586 | page = list_entry(list->next, struct page, lru); | |
1587 | ||
b92a6edd MG |
1588 | list_del(&page->lru); |
1589 | pcp->count--; | |
7fb1d9fc | 1590 | } else { |
dab48dab AM |
1591 | if (unlikely(gfp_flags & __GFP_NOFAIL)) { |
1592 | /* | |
1593 | * __GFP_NOFAIL is not to be used in new code. | |
1594 | * | |
1595 | * All __GFP_NOFAIL callers should be fixed so that they | |
1596 | * properly detect and handle allocation failures. | |
1597 | * | |
1598 | * We most definitely don't want callers attempting to | |
4923abf9 | 1599 | * allocate greater than order-1 page units with |
dab48dab AM |
1600 | * __GFP_NOFAIL. |
1601 | */ | |
4923abf9 | 1602 | WARN_ON_ONCE(order > 1); |
dab48dab | 1603 | } |
1da177e4 | 1604 | spin_lock_irqsave(&zone->lock, flags); |
b2a0ac88 | 1605 | page = __rmqueue(zone, order, migratetype); |
a74609fa NP |
1606 | spin_unlock(&zone->lock); |
1607 | if (!page) | |
1608 | goto failed; | |
d1ce749a | 1609 | __mod_zone_freepage_state(zone, -(1 << order), |
5bcc9f86 | 1610 | get_freepage_migratetype(page)); |
1da177e4 LT |
1611 | } |
1612 | ||
3a025760 | 1613 | __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order)); |
abe5f972 | 1614 | if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 && |
57054651 JW |
1615 | !test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) |
1616 | set_bit(ZONE_FAIR_DEPLETED, &zone->flags); | |
27329369 | 1617 | |
f8891e5e | 1618 | __count_zone_vm_events(PGALLOC, zone, 1 << order); |
78afd561 | 1619 | zone_statistics(preferred_zone, zone, gfp_flags); |
a74609fa | 1620 | local_irq_restore(flags); |
1da177e4 | 1621 | |
309381fe | 1622 | VM_BUG_ON_PAGE(bad_range(zone, page), page); |
17cf4406 | 1623 | if (prep_new_page(page, order, gfp_flags)) |
a74609fa | 1624 | goto again; |
1da177e4 | 1625 | return page; |
a74609fa NP |
1626 | |
1627 | failed: | |
1628 | local_irq_restore(flags); | |
a74609fa | 1629 | return NULL; |
1da177e4 LT |
1630 | } |
1631 | ||
933e312e AM |
1632 | #ifdef CONFIG_FAIL_PAGE_ALLOC |
1633 | ||
b2588c4b | 1634 | static struct { |
933e312e AM |
1635 | struct fault_attr attr; |
1636 | ||
1637 | u32 ignore_gfp_highmem; | |
1638 | u32 ignore_gfp_wait; | |
54114994 | 1639 | u32 min_order; |
933e312e AM |
1640 | } fail_page_alloc = { |
1641 | .attr = FAULT_ATTR_INITIALIZER, | |
6b1b60f4 DM |
1642 | .ignore_gfp_wait = 1, |
1643 | .ignore_gfp_highmem = 1, | |
54114994 | 1644 | .min_order = 1, |
933e312e AM |
1645 | }; |
1646 | ||
1647 | static int __init setup_fail_page_alloc(char *str) | |
1648 | { | |
1649 | return setup_fault_attr(&fail_page_alloc.attr, str); | |
1650 | } | |
1651 | __setup("fail_page_alloc=", setup_fail_page_alloc); | |
1652 | ||
deaf386e | 1653 | static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) |
933e312e | 1654 | { |
54114994 | 1655 | if (order < fail_page_alloc.min_order) |
deaf386e | 1656 | return false; |
933e312e | 1657 | if (gfp_mask & __GFP_NOFAIL) |
deaf386e | 1658 | return false; |
933e312e | 1659 | if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) |
deaf386e | 1660 | return false; |
933e312e | 1661 | if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) |
deaf386e | 1662 | return false; |
933e312e AM |
1663 | |
1664 | return should_fail(&fail_page_alloc.attr, 1 << order); | |
1665 | } | |
1666 | ||
1667 | #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS | |
1668 | ||
1669 | static int __init fail_page_alloc_debugfs(void) | |
1670 | { | |
f4ae40a6 | 1671 | umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; |
933e312e | 1672 | struct dentry *dir; |
933e312e | 1673 | |
dd48c085 AM |
1674 | dir = fault_create_debugfs_attr("fail_page_alloc", NULL, |
1675 | &fail_page_alloc.attr); | |
1676 | if (IS_ERR(dir)) | |
1677 | return PTR_ERR(dir); | |
933e312e | 1678 | |
b2588c4b AM |
1679 | if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, |
1680 | &fail_page_alloc.ignore_gfp_wait)) | |
1681 | goto fail; | |
1682 | if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, | |
1683 | &fail_page_alloc.ignore_gfp_highmem)) | |
1684 | goto fail; | |
1685 | if (!debugfs_create_u32("min-order", mode, dir, | |
1686 | &fail_page_alloc.min_order)) | |
1687 | goto fail; | |
1688 | ||
1689 | return 0; | |
1690 | fail: | |
dd48c085 | 1691 | debugfs_remove_recursive(dir); |
933e312e | 1692 | |
b2588c4b | 1693 | return -ENOMEM; |
933e312e AM |
1694 | } |
1695 | ||
1696 | late_initcall(fail_page_alloc_debugfs); | |
1697 | ||
1698 | #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ | |
1699 | ||
1700 | #else /* CONFIG_FAIL_PAGE_ALLOC */ | |
1701 | ||
deaf386e | 1702 | static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) |
933e312e | 1703 | { |
deaf386e | 1704 | return false; |
933e312e AM |
1705 | } |
1706 | ||
1707 | #endif /* CONFIG_FAIL_PAGE_ALLOC */ | |
1708 | ||
1da177e4 | 1709 | /* |
88f5acf8 | 1710 | * Return true if free pages are above 'mark'. This takes into account the order |
1da177e4 LT |
1711 | * of the allocation. |
1712 | */ | |
7aeb09f9 MG |
1713 | static bool __zone_watermark_ok(struct zone *z, unsigned int order, |
1714 | unsigned long mark, int classzone_idx, int alloc_flags, | |
1715 | long free_pages) | |
1da177e4 LT |
1716 | { |
1717 | /* free_pages my go negative - that's OK */ | |
d23ad423 | 1718 | long min = mark; |
1da177e4 | 1719 | int o; |
026b0814 | 1720 | long free_cma = 0; |
1da177e4 | 1721 | |
df0a6daa | 1722 | free_pages -= (1 << order) - 1; |
7fb1d9fc | 1723 | if (alloc_flags & ALLOC_HIGH) |
1da177e4 | 1724 | min -= min / 2; |
7fb1d9fc | 1725 | if (alloc_flags & ALLOC_HARDER) |
1da177e4 | 1726 | min -= min / 4; |
d95ea5d1 BZ |
1727 | #ifdef CONFIG_CMA |
1728 | /* If allocation can't use CMA areas don't use free CMA pages */ | |
1729 | if (!(alloc_flags & ALLOC_CMA)) | |
026b0814 | 1730 | free_cma = zone_page_state(z, NR_FREE_CMA_PAGES); |
d95ea5d1 | 1731 | #endif |
026b0814 | 1732 | |
3484b2de | 1733 | if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx]) |
88f5acf8 | 1734 | return false; |
1da177e4 LT |
1735 | for (o = 0; o < order; o++) { |
1736 | /* At the next order, this order's pages become unavailable */ | |
1737 | free_pages -= z->free_area[o].nr_free << o; | |
1738 | ||
1739 | /* Require fewer higher order pages to be free */ | |
1740 | min >>= 1; | |
1741 | ||
1742 | if (free_pages <= min) | |
88f5acf8 | 1743 | return false; |
1da177e4 | 1744 | } |
88f5acf8 MG |
1745 | return true; |
1746 | } | |
1747 | ||
7aeb09f9 | 1748 | bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, |
88f5acf8 MG |
1749 | int classzone_idx, int alloc_flags) |
1750 | { | |
1751 | return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, | |
1752 | zone_page_state(z, NR_FREE_PAGES)); | |
1753 | } | |
1754 | ||
7aeb09f9 MG |
1755 | bool zone_watermark_ok_safe(struct zone *z, unsigned int order, |
1756 | unsigned long mark, int classzone_idx, int alloc_flags) | |
88f5acf8 MG |
1757 | { |
1758 | long free_pages = zone_page_state(z, NR_FREE_PAGES); | |
1759 | ||
1760 | if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) | |
1761 | free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); | |
1762 | ||
1763 | return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, | |
1764 | free_pages); | |
1da177e4 LT |
1765 | } |
1766 | ||
9276b1bc PJ |
1767 | #ifdef CONFIG_NUMA |
1768 | /* | |
1769 | * zlc_setup - Setup for "zonelist cache". Uses cached zone data to | |
1770 | * skip over zones that are not allowed by the cpuset, or that have | |
1771 | * been recently (in last second) found to be nearly full. See further | |
1772 | * comments in mmzone.h. Reduces cache footprint of zonelist scans | |
183ff22b | 1773 | * that have to skip over a lot of full or unallowed zones. |
9276b1bc | 1774 | * |
a1aeb65a | 1775 | * If the zonelist cache is present in the passed zonelist, then |
9276b1bc | 1776 | * returns a pointer to the allowed node mask (either the current |
4b0ef1fe | 1777 | * tasks mems_allowed, or node_states[N_MEMORY].) |
9276b1bc PJ |
1778 | * |
1779 | * If the zonelist cache is not available for this zonelist, does | |
1780 | * nothing and returns NULL. | |
1781 | * | |
1782 | * If the fullzones BITMAP in the zonelist cache is stale (more than | |
1783 | * a second since last zap'd) then we zap it out (clear its bits.) | |
1784 | * | |
1785 | * We hold off even calling zlc_setup, until after we've checked the | |
1786 | * first zone in the zonelist, on the theory that most allocations will | |
1787 | * be satisfied from that first zone, so best to examine that zone as | |
1788 | * quickly as we can. | |
1789 | */ | |
1790 | static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) | |
1791 | { | |
1792 | struct zonelist_cache *zlc; /* cached zonelist speedup info */ | |
1793 | nodemask_t *allowednodes; /* zonelist_cache approximation */ | |
1794 | ||
1795 | zlc = zonelist->zlcache_ptr; | |
1796 | if (!zlc) | |
1797 | return NULL; | |
1798 | ||
f05111f5 | 1799 | if (time_after(jiffies, zlc->last_full_zap + HZ)) { |
9276b1bc PJ |
1800 | bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); |
1801 | zlc->last_full_zap = jiffies; | |
1802 | } | |
1803 | ||
1804 | allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? | |
1805 | &cpuset_current_mems_allowed : | |
4b0ef1fe | 1806 | &node_states[N_MEMORY]; |
9276b1bc PJ |
1807 | return allowednodes; |
1808 | } | |
1809 | ||
1810 | /* | |
1811 | * Given 'z' scanning a zonelist, run a couple of quick checks to see | |
1812 | * if it is worth looking at further for free memory: | |
1813 | * 1) Check that the zone isn't thought to be full (doesn't have its | |
1814 | * bit set in the zonelist_cache fullzones BITMAP). | |
1815 | * 2) Check that the zones node (obtained from the zonelist_cache | |
1816 | * z_to_n[] mapping) is allowed in the passed in allowednodes mask. | |
1817 | * Return true (non-zero) if zone is worth looking at further, or | |
1818 | * else return false (zero) if it is not. | |
1819 | * | |
1820 | * This check -ignores- the distinction between various watermarks, | |
1821 | * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is | |
1822 | * found to be full for any variation of these watermarks, it will | |
1823 | * be considered full for up to one second by all requests, unless | |
1824 | * we are so low on memory on all allowed nodes that we are forced | |
1825 | * into the second scan of the zonelist. | |
1826 | * | |
1827 | * In the second scan we ignore this zonelist cache and exactly | |
1828 | * apply the watermarks to all zones, even it is slower to do so. | |
1829 | * We are low on memory in the second scan, and should leave no stone | |
1830 | * unturned looking for a free page. | |
1831 | */ | |
dd1a239f | 1832 | static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, |
9276b1bc PJ |
1833 | nodemask_t *allowednodes) |
1834 | { | |
1835 | struct zonelist_cache *zlc; /* cached zonelist speedup info */ | |
1836 | int i; /* index of *z in zonelist zones */ | |
1837 | int n; /* node that zone *z is on */ | |
1838 | ||
1839 | zlc = zonelist->zlcache_ptr; | |
1840 | if (!zlc) | |
1841 | return 1; | |
1842 | ||
dd1a239f | 1843 | i = z - zonelist->_zonerefs; |
9276b1bc PJ |
1844 | n = zlc->z_to_n[i]; |
1845 | ||
1846 | /* This zone is worth trying if it is allowed but not full */ | |
1847 | return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); | |
1848 | } | |
1849 | ||
1850 | /* | |
1851 | * Given 'z' scanning a zonelist, set the corresponding bit in | |
1852 | * zlc->fullzones, so that subsequent attempts to allocate a page | |
1853 | * from that zone don't waste time re-examining it. | |
1854 | */ | |
dd1a239f | 1855 | static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) |
9276b1bc PJ |
1856 | { |
1857 | struct zonelist_cache *zlc; /* cached zonelist speedup info */ | |
1858 | int i; /* index of *z in zonelist zones */ | |
1859 | ||
1860 | zlc = zonelist->zlcache_ptr; | |
1861 | if (!zlc) | |
1862 | return; | |
1863 | ||
dd1a239f | 1864 | i = z - zonelist->_zonerefs; |
9276b1bc PJ |
1865 | |
1866 | set_bit(i, zlc->fullzones); | |
1867 | } | |
1868 | ||
76d3fbf8 MG |
1869 | /* |
1870 | * clear all zones full, called after direct reclaim makes progress so that | |
1871 | * a zone that was recently full is not skipped over for up to a second | |
1872 | */ | |
1873 | static void zlc_clear_zones_full(struct zonelist *zonelist) | |
1874 | { | |
1875 | struct zonelist_cache *zlc; /* cached zonelist speedup info */ | |
1876 | ||
1877 | zlc = zonelist->zlcache_ptr; | |
1878 | if (!zlc) | |
1879 | return; | |
1880 | ||
1881 | bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); | |
1882 | } | |
1883 | ||
81c0a2bb JW |
1884 | static bool zone_local(struct zone *local_zone, struct zone *zone) |
1885 | { | |
fff4068c | 1886 | return local_zone->node == zone->node; |
81c0a2bb JW |
1887 | } |
1888 | ||
957f822a DR |
1889 | static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) |
1890 | { | |
5f7a75ac MG |
1891 | return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) < |
1892 | RECLAIM_DISTANCE; | |
957f822a DR |
1893 | } |
1894 | ||
9276b1bc PJ |
1895 | #else /* CONFIG_NUMA */ |
1896 | ||
1897 | static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) | |
1898 | { | |
1899 | return NULL; | |
1900 | } | |
1901 | ||
dd1a239f | 1902 | static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, |
9276b1bc PJ |
1903 | nodemask_t *allowednodes) |
1904 | { | |
1905 | return 1; | |
1906 | } | |
1907 | ||
dd1a239f | 1908 | static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) |
9276b1bc PJ |
1909 | { |
1910 | } | |
76d3fbf8 MG |
1911 | |
1912 | static void zlc_clear_zones_full(struct zonelist *zonelist) | |
1913 | { | |
1914 | } | |
957f822a | 1915 | |
81c0a2bb JW |
1916 | static bool zone_local(struct zone *local_zone, struct zone *zone) |
1917 | { | |
1918 | return true; | |
1919 | } | |
1920 | ||
957f822a DR |
1921 | static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) |
1922 | { | |
1923 | return true; | |
1924 | } | |
1925 | ||
9276b1bc PJ |
1926 | #endif /* CONFIG_NUMA */ |
1927 | ||
4ffeaf35 MG |
1928 | static void reset_alloc_batches(struct zone *preferred_zone) |
1929 | { | |
1930 | struct zone *zone = preferred_zone->zone_pgdat->node_zones; | |
1931 | ||
1932 | do { | |
1933 | mod_zone_page_state(zone, NR_ALLOC_BATCH, | |
1934 | high_wmark_pages(zone) - low_wmark_pages(zone) - | |
1935 | atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH])); | |
57054651 | 1936 | clear_bit(ZONE_FAIR_DEPLETED, &zone->flags); |
4ffeaf35 MG |
1937 | } while (zone++ != preferred_zone); |
1938 | } | |
1939 | ||
7fb1d9fc | 1940 | /* |
0798e519 | 1941 | * get_page_from_freelist goes through the zonelist trying to allocate |
7fb1d9fc RS |
1942 | * a page. |
1943 | */ | |
1944 | static struct page * | |
19770b32 | 1945 | get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order, |
5117f45d | 1946 | struct zonelist *zonelist, int high_zoneidx, int alloc_flags, |
d8846374 | 1947 | struct zone *preferred_zone, int classzone_idx, int migratetype) |
753ee728 | 1948 | { |
dd1a239f | 1949 | struct zoneref *z; |
7fb1d9fc | 1950 | struct page *page = NULL; |
5117f45d | 1951 | struct zone *zone; |
9276b1bc PJ |
1952 | nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ |
1953 | int zlc_active = 0; /* set if using zonelist_cache */ | |
1954 | int did_zlc_setup = 0; /* just call zlc_setup() one time */ | |
a6e21b14 MG |
1955 | bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) && |
1956 | (gfp_mask & __GFP_WRITE); | |
4ffeaf35 MG |
1957 | int nr_fair_skipped = 0; |
1958 | bool zonelist_rescan; | |
54a6eb5c | 1959 | |
9276b1bc | 1960 | zonelist_scan: |
4ffeaf35 MG |
1961 | zonelist_rescan = false; |
1962 | ||
7fb1d9fc | 1963 | /* |
9276b1bc | 1964 | * Scan zonelist, looking for a zone with enough free. |
3b11f0aa | 1965 | * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c. |
7fb1d9fc | 1966 | */ |
19770b32 MG |
1967 | for_each_zone_zonelist_nodemask(zone, z, zonelist, |
1968 | high_zoneidx, nodemask) { | |
e085dbc5 JW |
1969 | unsigned long mark; |
1970 | ||
e5adfffc | 1971 | if (IS_ENABLED(CONFIG_NUMA) && zlc_active && |
9276b1bc PJ |
1972 | !zlc_zone_worth_trying(zonelist, z, allowednodes)) |
1973 | continue; | |
664eedde MG |
1974 | if (cpusets_enabled() && |
1975 | (alloc_flags & ALLOC_CPUSET) && | |
02a0e53d | 1976 | !cpuset_zone_allowed_softwall(zone, gfp_mask)) |
cd38b115 | 1977 | continue; |
81c0a2bb JW |
1978 | /* |
1979 | * Distribute pages in proportion to the individual | |
1980 | * zone size to ensure fair page aging. The zone a | |
1981 | * page was allocated in should have no effect on the | |
1982 | * time the page has in memory before being reclaimed. | |
81c0a2bb | 1983 | */ |
3a025760 | 1984 | if (alloc_flags & ALLOC_FAIR) { |
fff4068c | 1985 | if (!zone_local(preferred_zone, zone)) |
f7b5d647 | 1986 | break; |
57054651 | 1987 | if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) { |
4ffeaf35 | 1988 | nr_fair_skipped++; |
3a025760 | 1989 | continue; |
4ffeaf35 | 1990 | } |
81c0a2bb | 1991 | } |
a756cf59 JW |
1992 | /* |
1993 | * When allocating a page cache page for writing, we | |
1994 | * want to get it from a zone that is within its dirty | |
1995 | * limit, such that no single zone holds more than its | |
1996 | * proportional share of globally allowed dirty pages. | |
1997 | * The dirty limits take into account the zone's | |
1998 | * lowmem reserves and high watermark so that kswapd | |
1999 | * should be able to balance it without having to | |
2000 | * write pages from its LRU list. | |
2001 | * | |
2002 | * This may look like it could increase pressure on | |
2003 | * lower zones by failing allocations in higher zones | |
2004 | * before they are full. But the pages that do spill | |
2005 | * over are limited as the lower zones are protected | |
2006 | * by this very same mechanism. It should not become | |
2007 | * a practical burden to them. | |
2008 | * | |
2009 | * XXX: For now, allow allocations to potentially | |
2010 | * exceed the per-zone dirty limit in the slowpath | |
2011 | * (ALLOC_WMARK_LOW unset) before going into reclaim, | |
2012 | * which is important when on a NUMA setup the allowed | |
2013 | * zones are together not big enough to reach the | |
2014 | * global limit. The proper fix for these situations | |
2015 | * will require awareness of zones in the | |
2016 | * dirty-throttling and the flusher threads. | |
2017 | */ | |
a6e21b14 | 2018 | if (consider_zone_dirty && !zone_dirty_ok(zone)) |
800a1e75 | 2019 | continue; |
7fb1d9fc | 2020 | |
e085dbc5 JW |
2021 | mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; |
2022 | if (!zone_watermark_ok(zone, order, mark, | |
2023 | classzone_idx, alloc_flags)) { | |
fa5e084e MG |
2024 | int ret; |
2025 | ||
5dab2911 MG |
2026 | /* Checked here to keep the fast path fast */ |
2027 | BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); | |
2028 | if (alloc_flags & ALLOC_NO_WATERMARKS) | |
2029 | goto try_this_zone; | |
2030 | ||
e5adfffc KS |
2031 | if (IS_ENABLED(CONFIG_NUMA) && |
2032 | !did_zlc_setup && nr_online_nodes > 1) { | |
cd38b115 MG |
2033 | /* |
2034 | * we do zlc_setup if there are multiple nodes | |
2035 | * and before considering the first zone allowed | |
2036 | * by the cpuset. | |
2037 | */ | |
2038 | allowednodes = zlc_setup(zonelist, alloc_flags); | |
2039 | zlc_active = 1; | |
2040 | did_zlc_setup = 1; | |
2041 | } | |
2042 | ||
957f822a DR |
2043 | if (zone_reclaim_mode == 0 || |
2044 | !zone_allows_reclaim(preferred_zone, zone)) | |
fa5e084e MG |
2045 | goto this_zone_full; |
2046 | ||
cd38b115 MG |
2047 | /* |
2048 | * As we may have just activated ZLC, check if the first | |
2049 | * eligible zone has failed zone_reclaim recently. | |
2050 | */ | |
e5adfffc | 2051 | if (IS_ENABLED(CONFIG_NUMA) && zlc_active && |
cd38b115 MG |
2052 | !zlc_zone_worth_trying(zonelist, z, allowednodes)) |
2053 | continue; | |
2054 | ||
fa5e084e MG |
2055 | ret = zone_reclaim(zone, gfp_mask, order); |
2056 | switch (ret) { | |
2057 | case ZONE_RECLAIM_NOSCAN: | |
2058 | /* did not scan */ | |
cd38b115 | 2059 | continue; |
fa5e084e MG |
2060 | case ZONE_RECLAIM_FULL: |
2061 | /* scanned but unreclaimable */ | |
cd38b115 | 2062 | continue; |
fa5e084e MG |
2063 | default: |
2064 | /* did we reclaim enough */ | |
fed2719e | 2065 | if (zone_watermark_ok(zone, order, mark, |
fa5e084e | 2066 | classzone_idx, alloc_flags)) |
fed2719e MG |
2067 | goto try_this_zone; |
2068 | ||
2069 | /* | |
2070 | * Failed to reclaim enough to meet watermark. | |
2071 | * Only mark the zone full if checking the min | |
2072 | * watermark or if we failed to reclaim just | |
2073 | * 1<<order pages or else the page allocator | |
2074 | * fastpath will prematurely mark zones full | |
2075 | * when the watermark is between the low and | |
2076 | * min watermarks. | |
2077 | */ | |
2078 | if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) || | |
2079 | ret == ZONE_RECLAIM_SOME) | |
9276b1bc | 2080 | goto this_zone_full; |
fed2719e MG |
2081 | |
2082 | continue; | |
0798e519 | 2083 | } |
7fb1d9fc RS |
2084 | } |
2085 | ||
fa5e084e | 2086 | try_this_zone: |
3dd28266 MG |
2087 | page = buffered_rmqueue(preferred_zone, zone, order, |
2088 | gfp_mask, migratetype); | |
0798e519 | 2089 | if (page) |
7fb1d9fc | 2090 | break; |
9276b1bc | 2091 | this_zone_full: |
65bb3719 | 2092 | if (IS_ENABLED(CONFIG_NUMA) && zlc_active) |
9276b1bc | 2093 | zlc_mark_zone_full(zonelist, z); |
54a6eb5c | 2094 | } |
9276b1bc | 2095 | |
4ffeaf35 | 2096 | if (page) { |
b121186a AS |
2097 | /* |
2098 | * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was | |
2099 | * necessary to allocate the page. The expectation is | |
2100 | * that the caller is taking steps that will free more | |
2101 | * memory. The caller should avoid the page being used | |
2102 | * for !PFMEMALLOC purposes. | |
2103 | */ | |
2104 | page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS); | |
4ffeaf35 MG |
2105 | return page; |
2106 | } | |
b121186a | 2107 | |
4ffeaf35 MG |
2108 | /* |
2109 | * The first pass makes sure allocations are spread fairly within the | |
2110 | * local node. However, the local node might have free pages left | |
2111 | * after the fairness batches are exhausted, and remote zones haven't | |
2112 | * even been considered yet. Try once more without fairness, and | |
2113 | * include remote zones now, before entering the slowpath and waking | |
2114 | * kswapd: prefer spilling to a remote zone over swapping locally. | |
2115 | */ | |
2116 | if (alloc_flags & ALLOC_FAIR) { | |
2117 | alloc_flags &= ~ALLOC_FAIR; | |
2118 | if (nr_fair_skipped) { | |
2119 | zonelist_rescan = true; | |
2120 | reset_alloc_batches(preferred_zone); | |
2121 | } | |
2122 | if (nr_online_nodes > 1) | |
2123 | zonelist_rescan = true; | |
2124 | } | |
2125 | ||
2126 | if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) { | |
2127 | /* Disable zlc cache for second zonelist scan */ | |
2128 | zlc_active = 0; | |
2129 | zonelist_rescan = true; | |
2130 | } | |
2131 | ||
2132 | if (zonelist_rescan) | |
2133 | goto zonelist_scan; | |
2134 | ||
2135 | return NULL; | |
753ee728 MH |
2136 | } |
2137 | ||
29423e77 DR |
2138 | /* |
2139 | * Large machines with many possible nodes should not always dump per-node | |
2140 | * meminfo in irq context. | |
2141 | */ | |
2142 | static inline bool should_suppress_show_mem(void) | |
2143 | { | |
2144 | bool ret = false; | |
2145 | ||
2146 | #if NODES_SHIFT > 8 | |
2147 | ret = in_interrupt(); | |
2148 | #endif | |
2149 | return ret; | |
2150 | } | |
2151 | ||
a238ab5b DH |
2152 | static DEFINE_RATELIMIT_STATE(nopage_rs, |
2153 | DEFAULT_RATELIMIT_INTERVAL, | |
2154 | DEFAULT_RATELIMIT_BURST); | |
2155 | ||
2156 | void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...) | |
2157 | { | |
a238ab5b DH |
2158 | unsigned int filter = SHOW_MEM_FILTER_NODES; |
2159 | ||
c0a32fc5 SG |
2160 | if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) || |
2161 | debug_guardpage_minorder() > 0) | |
a238ab5b DH |
2162 | return; |
2163 | ||
2164 | /* | |
2165 | * This documents exceptions given to allocations in certain | |
2166 | * contexts that are allowed to allocate outside current's set | |
2167 | * of allowed nodes. | |
2168 | */ | |
2169 | if (!(gfp_mask & __GFP_NOMEMALLOC)) | |
2170 | if (test_thread_flag(TIF_MEMDIE) || | |
2171 | (current->flags & (PF_MEMALLOC | PF_EXITING))) | |
2172 | filter &= ~SHOW_MEM_FILTER_NODES; | |
2173 | if (in_interrupt() || !(gfp_mask & __GFP_WAIT)) | |
2174 | filter &= ~SHOW_MEM_FILTER_NODES; | |
2175 | ||
2176 | if (fmt) { | |
3ee9a4f0 JP |
2177 | struct va_format vaf; |
2178 | va_list args; | |
2179 | ||
a238ab5b | 2180 | va_start(args, fmt); |
3ee9a4f0 JP |
2181 | |
2182 | vaf.fmt = fmt; | |
2183 | vaf.va = &args; | |
2184 | ||
2185 | pr_warn("%pV", &vaf); | |
2186 | ||
a238ab5b DH |
2187 | va_end(args); |
2188 | } | |
2189 | ||
3ee9a4f0 JP |
2190 | pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n", |
2191 | current->comm, order, gfp_mask); | |
a238ab5b DH |
2192 | |
2193 | dump_stack(); | |
2194 | if (!should_suppress_show_mem()) | |
2195 | show_mem(filter); | |
2196 | } | |
2197 | ||
11e33f6a MG |
2198 | static inline int |
2199 | should_alloc_retry(gfp_t gfp_mask, unsigned int order, | |
f90ac398 | 2200 | unsigned long did_some_progress, |
11e33f6a | 2201 | unsigned long pages_reclaimed) |
1da177e4 | 2202 | { |
11e33f6a MG |
2203 | /* Do not loop if specifically requested */ |
2204 | if (gfp_mask & __GFP_NORETRY) | |
2205 | return 0; | |
1da177e4 | 2206 | |
f90ac398 MG |
2207 | /* Always retry if specifically requested */ |
2208 | if (gfp_mask & __GFP_NOFAIL) | |
2209 | return 1; | |
2210 | ||
2211 | /* | |
2212 | * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim | |
2213 | * making forward progress without invoking OOM. Suspend also disables | |
2214 | * storage devices so kswapd will not help. Bail if we are suspending. | |
2215 | */ | |
2216 | if (!did_some_progress && pm_suspended_storage()) | |
2217 | return 0; | |
2218 | ||
11e33f6a MG |
2219 | /* |
2220 | * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER | |
2221 | * means __GFP_NOFAIL, but that may not be true in other | |
2222 | * implementations. | |
2223 | */ | |
2224 | if (order <= PAGE_ALLOC_COSTLY_ORDER) | |
2225 | return 1; | |
2226 | ||
2227 | /* | |
2228 | * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is | |
2229 | * specified, then we retry until we no longer reclaim any pages | |
2230 | * (above), or we've reclaimed an order of pages at least as | |
2231 | * large as the allocation's order. In both cases, if the | |
2232 | * allocation still fails, we stop retrying. | |
2233 | */ | |
2234 | if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order)) | |
2235 | return 1; | |
cf40bd16 | 2236 | |
11e33f6a MG |
2237 | return 0; |
2238 | } | |
933e312e | 2239 | |
11e33f6a MG |
2240 | static inline struct page * |
2241 | __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, | |
2242 | struct zonelist *zonelist, enum zone_type high_zoneidx, | |
3dd28266 | 2243 | nodemask_t *nodemask, struct zone *preferred_zone, |
d8846374 | 2244 | int classzone_idx, int migratetype) |
11e33f6a MG |
2245 | { |
2246 | struct page *page; | |
2247 | ||
e972a070 DR |
2248 | /* Acquire the per-zone oom lock for each zone */ |
2249 | if (!oom_zonelist_trylock(zonelist, gfp_mask)) { | |
11e33f6a | 2250 | schedule_timeout_uninterruptible(1); |
1da177e4 LT |
2251 | return NULL; |
2252 | } | |
6b1de916 | 2253 | |
5695be14 MH |
2254 | /* |
2255 | * PM-freezer should be notified that there might be an OOM killer on | |
2256 | * its way to kill and wake somebody up. This is too early and we might | |
2257 | * end up not killing anything but false positives are acceptable. | |
2258 | * See freeze_processes. | |
2259 | */ | |
2260 | note_oom_kill(); | |
2261 | ||
11e33f6a MG |
2262 | /* |
2263 | * Go through the zonelist yet one more time, keep very high watermark | |
2264 | * here, this is only to catch a parallel oom killing, we must fail if | |
2265 | * we're still under heavy pressure. | |
2266 | */ | |
2267 | page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, | |
2268 | order, zonelist, high_zoneidx, | |
5117f45d | 2269 | ALLOC_WMARK_HIGH|ALLOC_CPUSET, |
d8846374 | 2270 | preferred_zone, classzone_idx, migratetype); |
7fb1d9fc | 2271 | if (page) |
11e33f6a MG |
2272 | goto out; |
2273 | ||
4365a567 KH |
2274 | if (!(gfp_mask & __GFP_NOFAIL)) { |
2275 | /* The OOM killer will not help higher order allocs */ | |
2276 | if (order > PAGE_ALLOC_COSTLY_ORDER) | |
2277 | goto out; | |
03668b3c DR |
2278 | /* The OOM killer does not needlessly kill tasks for lowmem */ |
2279 | if (high_zoneidx < ZONE_NORMAL) | |
2280 | goto out; | |
4365a567 KH |
2281 | /* |
2282 | * GFP_THISNODE contains __GFP_NORETRY and we never hit this. | |
2283 | * Sanity check for bare calls of __GFP_THISNODE, not real OOM. | |
2284 | * The caller should handle page allocation failure by itself if | |
2285 | * it specifies __GFP_THISNODE. | |
2286 | * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER. | |
2287 | */ | |
2288 | if (gfp_mask & __GFP_THISNODE) | |
2289 | goto out; | |
2290 | } | |
11e33f6a | 2291 | /* Exhausted what can be done so it's blamo time */ |
08ab9b10 | 2292 | out_of_memory(zonelist, gfp_mask, order, nodemask, false); |
11e33f6a MG |
2293 | |
2294 | out: | |
e972a070 | 2295 | oom_zonelist_unlock(zonelist, gfp_mask); |
11e33f6a MG |
2296 | return page; |
2297 | } | |
2298 | ||
56de7263 MG |
2299 | #ifdef CONFIG_COMPACTION |
2300 | /* Try memory compaction for high-order allocations before reclaim */ | |
2301 | static struct page * | |
2302 | __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, | |
2303 | struct zonelist *zonelist, enum zone_type high_zoneidx, | |
2304 | nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, | |
d8846374 | 2305 | int classzone_idx, int migratetype, enum migrate_mode mode, |
1f9efdef | 2306 | int *contended_compaction, bool *deferred_compaction) |
56de7263 | 2307 | { |
53853e2d VB |
2308 | struct zone *last_compact_zone = NULL; |
2309 | unsigned long compact_result; | |
98dd3b48 | 2310 | struct page *page; |
53853e2d VB |
2311 | |
2312 | if (!order) | |
66199712 | 2313 | return NULL; |
66199712 | 2314 | |
c06b1fca | 2315 | current->flags |= PF_MEMALLOC; |
53853e2d | 2316 | compact_result = try_to_compact_pages(zonelist, order, gfp_mask, |
e0b9daeb | 2317 | nodemask, mode, |
53853e2d VB |
2318 | contended_compaction, |
2319 | &last_compact_zone); | |
c06b1fca | 2320 | current->flags &= ~PF_MEMALLOC; |
56de7263 | 2321 | |
98dd3b48 VB |
2322 | switch (compact_result) { |
2323 | case COMPACT_DEFERRED: | |
53853e2d | 2324 | *deferred_compaction = true; |
98dd3b48 VB |
2325 | /* fall-through */ |
2326 | case COMPACT_SKIPPED: | |
2327 | return NULL; | |
2328 | default: | |
2329 | break; | |
2330 | } | |
53853e2d | 2331 | |
98dd3b48 VB |
2332 | /* |
2333 | * At least in one zone compaction wasn't deferred or skipped, so let's | |
2334 | * count a compaction stall | |
2335 | */ | |
2336 | count_vm_event(COMPACTSTALL); | |
8fb74b9f | 2337 | |
98dd3b48 VB |
2338 | /* Page migration frees to the PCP lists but we want merging */ |
2339 | drain_pages(get_cpu()); | |
2340 | put_cpu(); | |
56de7263 | 2341 | |
98dd3b48 VB |
2342 | page = get_page_from_freelist(gfp_mask, nodemask, |
2343 | order, zonelist, high_zoneidx, | |
2344 | alloc_flags & ~ALLOC_NO_WATERMARKS, | |
2345 | preferred_zone, classzone_idx, migratetype); | |
53853e2d | 2346 | |
98dd3b48 VB |
2347 | if (page) { |
2348 | struct zone *zone = page_zone(page); | |
53853e2d | 2349 | |
98dd3b48 VB |
2350 | zone->compact_blockskip_flush = false; |
2351 | compaction_defer_reset(zone, order, true); | |
2352 | count_vm_event(COMPACTSUCCESS); | |
2353 | return page; | |
2354 | } | |
56de7263 | 2355 | |
98dd3b48 VB |
2356 | /* |
2357 | * last_compact_zone is where try_to_compact_pages thought allocation | |
2358 | * should succeed, so it did not defer compaction. But here we know | |
2359 | * that it didn't succeed, so we do the defer. | |
2360 | */ | |
2361 | if (last_compact_zone && mode != MIGRATE_ASYNC) | |
2362 | defer_compaction(last_compact_zone, order); | |
53853e2d | 2363 | |
98dd3b48 VB |
2364 | /* |
2365 | * It's bad if compaction run occurs and fails. The most likely reason | |
2366 | * is that pages exist, but not enough to satisfy watermarks. | |
2367 | */ | |
2368 | count_vm_event(COMPACTFAIL); | |
66199712 | 2369 | |
98dd3b48 | 2370 | cond_resched(); |
56de7263 MG |
2371 | |
2372 | return NULL; | |
2373 | } | |
2374 | #else | |
2375 | static inline struct page * | |
2376 | __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, | |
2377 | struct zonelist *zonelist, enum zone_type high_zoneidx, | |
2378 | nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, | |
53853e2d | 2379 | int classzone_idx, int migratetype, enum migrate_mode mode, |
1f9efdef | 2380 | int *contended_compaction, bool *deferred_compaction) |
56de7263 MG |
2381 | { |
2382 | return NULL; | |
2383 | } | |
2384 | #endif /* CONFIG_COMPACTION */ | |
2385 | ||
bba90710 MS |
2386 | /* Perform direct synchronous page reclaim */ |
2387 | static int | |
2388 | __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist, | |
2389 | nodemask_t *nodemask) | |
11e33f6a | 2390 | { |
11e33f6a | 2391 | struct reclaim_state reclaim_state; |
bba90710 | 2392 | int progress; |
11e33f6a MG |
2393 | |
2394 | cond_resched(); | |
2395 | ||
2396 | /* We now go into synchronous reclaim */ | |
2397 | cpuset_memory_pressure_bump(); | |
c06b1fca | 2398 | current->flags |= PF_MEMALLOC; |
11e33f6a MG |
2399 | lockdep_set_current_reclaim_state(gfp_mask); |
2400 | reclaim_state.reclaimed_slab = 0; | |
c06b1fca | 2401 | current->reclaim_state = &reclaim_state; |
11e33f6a | 2402 | |
bba90710 | 2403 | progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask); |
11e33f6a | 2404 | |
c06b1fca | 2405 | current->reclaim_state = NULL; |
11e33f6a | 2406 | lockdep_clear_current_reclaim_state(); |
c06b1fca | 2407 | current->flags &= ~PF_MEMALLOC; |
11e33f6a MG |
2408 | |
2409 | cond_resched(); | |
2410 | ||
bba90710 MS |
2411 | return progress; |
2412 | } | |
2413 | ||
2414 | /* The really slow allocator path where we enter direct reclaim */ | |
2415 | static inline struct page * | |
2416 | __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, | |
2417 | struct zonelist *zonelist, enum zone_type high_zoneidx, | |
2418 | nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, | |
d8846374 | 2419 | int classzone_idx, int migratetype, unsigned long *did_some_progress) |
bba90710 MS |
2420 | { |
2421 | struct page *page = NULL; | |
2422 | bool drained = false; | |
2423 | ||
2424 | *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist, | |
2425 | nodemask); | |
9ee493ce MG |
2426 | if (unlikely(!(*did_some_progress))) |
2427 | return NULL; | |
11e33f6a | 2428 | |
76d3fbf8 | 2429 | /* After successful reclaim, reconsider all zones for allocation */ |
e5adfffc | 2430 | if (IS_ENABLED(CONFIG_NUMA)) |
76d3fbf8 MG |
2431 | zlc_clear_zones_full(zonelist); |
2432 | ||
9ee493ce MG |
2433 | retry: |
2434 | page = get_page_from_freelist(gfp_mask, nodemask, order, | |
5117f45d | 2435 | zonelist, high_zoneidx, |
cfd19c5a | 2436 | alloc_flags & ~ALLOC_NO_WATERMARKS, |
d8846374 MG |
2437 | preferred_zone, classzone_idx, |
2438 | migratetype); | |
9ee493ce MG |
2439 | |
2440 | /* | |
2441 | * If an allocation failed after direct reclaim, it could be because | |
2442 | * pages are pinned on the per-cpu lists. Drain them and try again | |
2443 | */ | |
2444 | if (!page && !drained) { | |
2445 | drain_all_pages(); | |
2446 | drained = true; | |
2447 | goto retry; | |
2448 | } | |
2449 | ||
11e33f6a MG |
2450 | return page; |
2451 | } | |
2452 | ||
1da177e4 | 2453 | /* |
11e33f6a MG |
2454 | * This is called in the allocator slow-path if the allocation request is of |
2455 | * sufficient urgency to ignore watermarks and take other desperate measures | |
1da177e4 | 2456 | */ |
11e33f6a MG |
2457 | static inline struct page * |
2458 | __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order, | |
2459 | struct zonelist *zonelist, enum zone_type high_zoneidx, | |
3dd28266 | 2460 | nodemask_t *nodemask, struct zone *preferred_zone, |
d8846374 | 2461 | int classzone_idx, int migratetype) |
11e33f6a MG |
2462 | { |
2463 | struct page *page; | |
2464 | ||
2465 | do { | |
2466 | page = get_page_from_freelist(gfp_mask, nodemask, order, | |
5117f45d | 2467 | zonelist, high_zoneidx, ALLOC_NO_WATERMARKS, |
d8846374 | 2468 | preferred_zone, classzone_idx, migratetype); |
11e33f6a MG |
2469 | |
2470 | if (!page && gfp_mask & __GFP_NOFAIL) | |
0e093d99 | 2471 | wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); |
11e33f6a MG |
2472 | } while (!page && (gfp_mask & __GFP_NOFAIL)); |
2473 | ||
2474 | return page; | |
2475 | } | |
2476 | ||
3a025760 JW |
2477 | static void wake_all_kswapds(unsigned int order, |
2478 | struct zonelist *zonelist, | |
2479 | enum zone_type high_zoneidx, | |
7ade3c99 WY |
2480 | struct zone *preferred_zone, |
2481 | nodemask_t *nodemask) | |
3a025760 JW |
2482 | { |
2483 | struct zoneref *z; | |
2484 | struct zone *zone; | |
2485 | ||
7ade3c99 WY |
2486 | for_each_zone_zonelist_nodemask(zone, z, zonelist, |
2487 | high_zoneidx, nodemask) | |
3a025760 JW |
2488 | wakeup_kswapd(zone, order, zone_idx(preferred_zone)); |
2489 | } | |
2490 | ||
341ce06f PZ |
2491 | static inline int |
2492 | gfp_to_alloc_flags(gfp_t gfp_mask) | |
2493 | { | |
341ce06f | 2494 | int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; |
b104a35d | 2495 | const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD)); |
1da177e4 | 2496 | |
a56f57ff | 2497 | /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ |
e6223a3b | 2498 | BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); |
933e312e | 2499 | |
341ce06f PZ |
2500 | /* |
2501 | * The caller may dip into page reserves a bit more if the caller | |
2502 | * cannot run direct reclaim, or if the caller has realtime scheduling | |
2503 | * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will | |
b104a35d | 2504 | * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH). |
341ce06f | 2505 | */ |
e6223a3b | 2506 | alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); |
1da177e4 | 2507 | |
b104a35d | 2508 | if (atomic) { |
5c3240d9 | 2509 | /* |
b104a35d DR |
2510 | * Not worth trying to allocate harder for __GFP_NOMEMALLOC even |
2511 | * if it can't schedule. | |
5c3240d9 | 2512 | */ |
b104a35d | 2513 | if (!(gfp_mask & __GFP_NOMEMALLOC)) |
5c3240d9 | 2514 | alloc_flags |= ALLOC_HARDER; |
523b9458 | 2515 | /* |
b104a35d DR |
2516 | * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the |
2517 | * comment for __cpuset_node_allowed_softwall(). | |
523b9458 | 2518 | */ |
341ce06f | 2519 | alloc_flags &= ~ALLOC_CPUSET; |
c06b1fca | 2520 | } else if (unlikely(rt_task(current)) && !in_interrupt()) |
341ce06f PZ |
2521 | alloc_flags |= ALLOC_HARDER; |
2522 | ||
b37f1dd0 MG |
2523 | if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) { |
2524 | if (gfp_mask & __GFP_MEMALLOC) | |
2525 | alloc_flags |= ALLOC_NO_WATERMARKS; | |
907aed48 MG |
2526 | else if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) |
2527 | alloc_flags |= ALLOC_NO_WATERMARKS; | |
2528 | else if (!in_interrupt() && | |
2529 | ((current->flags & PF_MEMALLOC) || | |
2530 | unlikely(test_thread_flag(TIF_MEMDIE)))) | |
341ce06f | 2531 | alloc_flags |= ALLOC_NO_WATERMARKS; |
1da177e4 | 2532 | } |
d95ea5d1 | 2533 | #ifdef CONFIG_CMA |
43e7a34d | 2534 | if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) |
d95ea5d1 BZ |
2535 | alloc_flags |= ALLOC_CMA; |
2536 | #endif | |
341ce06f PZ |
2537 | return alloc_flags; |
2538 | } | |
2539 | ||
072bb0aa MG |
2540 | bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) |
2541 | { | |
b37f1dd0 | 2542 | return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS); |
072bb0aa MG |
2543 | } |
2544 | ||
11e33f6a MG |
2545 | static inline struct page * |
2546 | __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, | |
2547 | struct zonelist *zonelist, enum zone_type high_zoneidx, | |
3dd28266 | 2548 | nodemask_t *nodemask, struct zone *preferred_zone, |
d8846374 | 2549 | int classzone_idx, int migratetype) |
11e33f6a MG |
2550 | { |
2551 | const gfp_t wait = gfp_mask & __GFP_WAIT; | |
2552 | struct page *page = NULL; | |
2553 | int alloc_flags; | |
2554 | unsigned long pages_reclaimed = 0; | |
2555 | unsigned long did_some_progress; | |
e0b9daeb | 2556 | enum migrate_mode migration_mode = MIGRATE_ASYNC; |
66199712 | 2557 | bool deferred_compaction = false; |
1f9efdef | 2558 | int contended_compaction = COMPACT_CONTENDED_NONE; |
1da177e4 | 2559 | |
72807a74 MG |
2560 | /* |
2561 | * In the slowpath, we sanity check order to avoid ever trying to | |
2562 | * reclaim >= MAX_ORDER areas which will never succeed. Callers may | |
2563 | * be using allocators in order of preference for an area that is | |
2564 | * too large. | |
2565 | */ | |
1fc28b70 MG |
2566 | if (order >= MAX_ORDER) { |
2567 | WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); | |
72807a74 | 2568 | return NULL; |
1fc28b70 | 2569 | } |
1da177e4 | 2570 | |
952f3b51 CL |
2571 | /* |
2572 | * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and | |
2573 | * __GFP_NOWARN set) should not cause reclaim since the subsystem | |
2574 | * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim | |
2575 | * using a larger set of nodes after it has established that the | |
2576 | * allowed per node queues are empty and that nodes are | |
2577 | * over allocated. | |
2578 | */ | |
3a025760 JW |
2579 | if (IS_ENABLED(CONFIG_NUMA) && |
2580 | (gfp_mask & GFP_THISNODE) == GFP_THISNODE) | |
952f3b51 CL |
2581 | goto nopage; |
2582 | ||
cc4a6851 | 2583 | restart: |
3a025760 | 2584 | if (!(gfp_mask & __GFP_NO_KSWAPD)) |
7ade3c99 WY |
2585 | wake_all_kswapds(order, zonelist, high_zoneidx, |
2586 | preferred_zone, nodemask); | |
1da177e4 | 2587 | |
9bf2229f | 2588 | /* |
7fb1d9fc RS |
2589 | * OK, we're below the kswapd watermark and have kicked background |
2590 | * reclaim. Now things get more complex, so set up alloc_flags according | |
2591 | * to how we want to proceed. | |
9bf2229f | 2592 | */ |
341ce06f | 2593 | alloc_flags = gfp_to_alloc_flags(gfp_mask); |
1da177e4 | 2594 | |
f33261d7 DR |
2595 | /* |
2596 | * Find the true preferred zone if the allocation is unconstrained by | |
2597 | * cpusets. | |
2598 | */ | |
d8846374 MG |
2599 | if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) { |
2600 | struct zoneref *preferred_zoneref; | |
2601 | preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx, | |
2602 | NULL, &preferred_zone); | |
2603 | classzone_idx = zonelist_zone_idx(preferred_zoneref); | |
2604 | } | |
f33261d7 | 2605 | |
cfa54a0f | 2606 | rebalance: |
341ce06f | 2607 | /* This is the last chance, in general, before the goto nopage. */ |
19770b32 | 2608 | page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist, |
341ce06f | 2609 | high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS, |
d8846374 | 2610 | preferred_zone, classzone_idx, migratetype); |
7fb1d9fc RS |
2611 | if (page) |
2612 | goto got_pg; | |
1da177e4 | 2613 | |
11e33f6a | 2614 | /* Allocate without watermarks if the context allows */ |
341ce06f | 2615 | if (alloc_flags & ALLOC_NO_WATERMARKS) { |
183f6371 MG |
2616 | /* |
2617 | * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds | |
2618 | * the allocation is high priority and these type of | |
2619 | * allocations are system rather than user orientated | |
2620 | */ | |
2621 | zonelist = node_zonelist(numa_node_id(), gfp_mask); | |
2622 | ||
341ce06f PZ |
2623 | page = __alloc_pages_high_priority(gfp_mask, order, |
2624 | zonelist, high_zoneidx, nodemask, | |
d8846374 | 2625 | preferred_zone, classzone_idx, migratetype); |
cfd19c5a | 2626 | if (page) { |
341ce06f | 2627 | goto got_pg; |
cfd19c5a | 2628 | } |
1da177e4 LT |
2629 | } |
2630 | ||
2631 | /* Atomic allocations - we can't balance anything */ | |
aed0a0e3 DR |
2632 | if (!wait) { |
2633 | /* | |
2634 | * All existing users of the deprecated __GFP_NOFAIL are | |
2635 | * blockable, so warn of any new users that actually allow this | |
2636 | * type of allocation to fail. | |
2637 | */ | |
2638 | WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL); | |
1da177e4 | 2639 | goto nopage; |
aed0a0e3 | 2640 | } |
1da177e4 | 2641 | |
341ce06f | 2642 | /* Avoid recursion of direct reclaim */ |
c06b1fca | 2643 | if (current->flags & PF_MEMALLOC) |
341ce06f PZ |
2644 | goto nopage; |
2645 | ||
6583bb64 DR |
2646 | /* Avoid allocations with no watermarks from looping endlessly */ |
2647 | if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) | |
2648 | goto nopage; | |
2649 | ||
77f1fe6b MG |
2650 | /* |
2651 | * Try direct compaction. The first pass is asynchronous. Subsequent | |
2652 | * attempts after direct reclaim are synchronous | |
2653 | */ | |
e0b9daeb DR |
2654 | page = __alloc_pages_direct_compact(gfp_mask, order, zonelist, |
2655 | high_zoneidx, nodemask, alloc_flags, | |
d8846374 MG |
2656 | preferred_zone, |
2657 | classzone_idx, migratetype, | |
e0b9daeb | 2658 | migration_mode, &contended_compaction, |
53853e2d | 2659 | &deferred_compaction); |
56de7263 MG |
2660 | if (page) |
2661 | goto got_pg; | |
75f30861 | 2662 | |
1f9efdef VB |
2663 | /* Checks for THP-specific high-order allocations */ |
2664 | if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) { | |
2665 | /* | |
2666 | * If compaction is deferred for high-order allocations, it is | |
2667 | * because sync compaction recently failed. If this is the case | |
2668 | * and the caller requested a THP allocation, we do not want | |
2669 | * to heavily disrupt the system, so we fail the allocation | |
2670 | * instead of entering direct reclaim. | |
2671 | */ | |
2672 | if (deferred_compaction) | |
2673 | goto nopage; | |
2674 | ||
2675 | /* | |
2676 | * In all zones where compaction was attempted (and not | |
2677 | * deferred or skipped), lock contention has been detected. | |
2678 | * For THP allocation we do not want to disrupt the others | |
2679 | * so we fallback to base pages instead. | |
2680 | */ | |
2681 | if (contended_compaction == COMPACT_CONTENDED_LOCK) | |
2682 | goto nopage; | |
2683 | ||
2684 | /* | |
2685 | * If compaction was aborted due to need_resched(), we do not | |
2686 | * want to further increase allocation latency, unless it is | |
2687 | * khugepaged trying to collapse. | |
2688 | */ | |
2689 | if (contended_compaction == COMPACT_CONTENDED_SCHED | |
2690 | && !(current->flags & PF_KTHREAD)) | |
2691 | goto nopage; | |
2692 | } | |
66199712 | 2693 | |
8fe78048 DR |
2694 | /* |
2695 | * It can become very expensive to allocate transparent hugepages at | |
2696 | * fault, so use asynchronous memory compaction for THP unless it is | |
2697 | * khugepaged trying to collapse. | |
2698 | */ | |
2699 | if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE || | |
2700 | (current->flags & PF_KTHREAD)) | |
2701 | migration_mode = MIGRATE_SYNC_LIGHT; | |
2702 | ||
11e33f6a MG |
2703 | /* Try direct reclaim and then allocating */ |
2704 | page = __alloc_pages_direct_reclaim(gfp_mask, order, | |
2705 | zonelist, high_zoneidx, | |
2706 | nodemask, | |
5117f45d | 2707 | alloc_flags, preferred_zone, |
d8846374 MG |
2708 | classzone_idx, migratetype, |
2709 | &did_some_progress); | |
11e33f6a MG |
2710 | if (page) |
2711 | goto got_pg; | |
1da177e4 | 2712 | |
e33c3b5e | 2713 | /* |
11e33f6a MG |
2714 | * If we failed to make any progress reclaiming, then we are |
2715 | * running out of options and have to consider going OOM | |
e33c3b5e | 2716 | */ |
11e33f6a | 2717 | if (!did_some_progress) { |
b9921ecd | 2718 | if (oom_gfp_allowed(gfp_mask)) { |
7f33d49a RW |
2719 | if (oom_killer_disabled) |
2720 | goto nopage; | |
29fd66d2 DR |
2721 | /* Coredumps can quickly deplete all memory reserves */ |
2722 | if ((current->flags & PF_DUMPCORE) && | |
2723 | !(gfp_mask & __GFP_NOFAIL)) | |
2724 | goto nopage; | |
11e33f6a MG |
2725 | page = __alloc_pages_may_oom(gfp_mask, order, |
2726 | zonelist, high_zoneidx, | |
3dd28266 | 2727 | nodemask, preferred_zone, |
d8846374 | 2728 | classzone_idx, migratetype); |
11e33f6a MG |
2729 | if (page) |
2730 | goto got_pg; | |
1da177e4 | 2731 | |
03668b3c DR |
2732 | if (!(gfp_mask & __GFP_NOFAIL)) { |
2733 | /* | |
2734 | * The oom killer is not called for high-order | |
2735 | * allocations that may fail, so if no progress | |
2736 | * is being made, there are no other options and | |
2737 | * retrying is unlikely to help. | |
2738 | */ | |
2739 | if (order > PAGE_ALLOC_COSTLY_ORDER) | |
2740 | goto nopage; | |
2741 | /* | |
2742 | * The oom killer is not called for lowmem | |
2743 | * allocations to prevent needlessly killing | |
2744 | * innocent tasks. | |
2745 | */ | |
2746 | if (high_zoneidx < ZONE_NORMAL) | |
2747 | goto nopage; | |
2748 | } | |
e2c55dc8 | 2749 | |
ff0ceb9d DR |
2750 | goto restart; |
2751 | } | |
1da177e4 LT |
2752 | } |
2753 | ||
11e33f6a | 2754 | /* Check if we should retry the allocation */ |
a41f24ea | 2755 | pages_reclaimed += did_some_progress; |
f90ac398 MG |
2756 | if (should_alloc_retry(gfp_mask, order, did_some_progress, |
2757 | pages_reclaimed)) { | |
11e33f6a | 2758 | /* Wait for some write requests to complete then retry */ |
0e093d99 | 2759 | wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); |
1da177e4 | 2760 | goto rebalance; |
3e7d3449 MG |
2761 | } else { |
2762 | /* | |
2763 | * High-order allocations do not necessarily loop after | |
2764 | * direct reclaim and reclaim/compaction depends on compaction | |
2765 | * being called after reclaim so call directly if necessary | |
2766 | */ | |
e0b9daeb DR |
2767 | page = __alloc_pages_direct_compact(gfp_mask, order, zonelist, |
2768 | high_zoneidx, nodemask, alloc_flags, | |
d8846374 MG |
2769 | preferred_zone, |
2770 | classzone_idx, migratetype, | |
e0b9daeb | 2771 | migration_mode, &contended_compaction, |
53853e2d | 2772 | &deferred_compaction); |
3e7d3449 MG |
2773 | if (page) |
2774 | goto got_pg; | |
1da177e4 LT |
2775 | } |
2776 | ||
2777 | nopage: | |
a238ab5b | 2778 | warn_alloc_failed(gfp_mask, order, NULL); |
b1eeab67 | 2779 | return page; |
1da177e4 | 2780 | got_pg: |
b1eeab67 VN |
2781 | if (kmemcheck_enabled) |
2782 | kmemcheck_pagealloc_alloc(page, order, gfp_mask); | |
11e33f6a | 2783 | |
072bb0aa | 2784 | return page; |
1da177e4 | 2785 | } |
11e33f6a MG |
2786 | |
2787 | /* | |
2788 | * This is the 'heart' of the zoned buddy allocator. | |
2789 | */ | |
2790 | struct page * | |
2791 | __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, | |
2792 | struct zonelist *zonelist, nodemask_t *nodemask) | |
2793 | { | |
2794 | enum zone_type high_zoneidx = gfp_zone(gfp_mask); | |
5117f45d | 2795 | struct zone *preferred_zone; |
d8846374 | 2796 | struct zoneref *preferred_zoneref; |
cc9a6c87 | 2797 | struct page *page = NULL; |
43e7a34d | 2798 | int migratetype = gfpflags_to_migratetype(gfp_mask); |
cc9a6c87 | 2799 | unsigned int cpuset_mems_cookie; |
3a025760 | 2800 | int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR; |
d8846374 | 2801 | int classzone_idx; |
11e33f6a | 2802 | |
dcce284a BH |
2803 | gfp_mask &= gfp_allowed_mask; |
2804 | ||
11e33f6a MG |
2805 | lockdep_trace_alloc(gfp_mask); |
2806 | ||
2807 | might_sleep_if(gfp_mask & __GFP_WAIT); | |
2808 | ||
2809 | if (should_fail_alloc_page(gfp_mask, order)) | |
2810 | return NULL; | |
2811 | ||
2812 | /* | |
2813 | * Check the zones suitable for the gfp_mask contain at least one | |
2814 | * valid zone. It's possible to have an empty zonelist as a result | |
2815 | * of GFP_THISNODE and a memoryless node | |
2816 | */ | |
2817 | if (unlikely(!zonelist->_zonerefs->zone)) | |
2818 | return NULL; | |
2819 | ||
21bb9bd1 VB |
2820 | if (IS_ENABLED(CONFIG_CMA) && migratetype == MIGRATE_MOVABLE) |
2821 | alloc_flags |= ALLOC_CMA; | |
2822 | ||
cc9a6c87 | 2823 | retry_cpuset: |
d26914d1 | 2824 | cpuset_mems_cookie = read_mems_allowed_begin(); |
cc9a6c87 | 2825 | |
5117f45d | 2826 | /* The preferred zone is used for statistics later */ |
d8846374 | 2827 | preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx, |
f33261d7 DR |
2828 | nodemask ? : &cpuset_current_mems_allowed, |
2829 | &preferred_zone); | |
cc9a6c87 MG |
2830 | if (!preferred_zone) |
2831 | goto out; | |
d8846374 | 2832 | classzone_idx = zonelist_zone_idx(preferred_zoneref); |
5117f45d MG |
2833 | |
2834 | /* First allocation attempt */ | |
11e33f6a | 2835 | page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order, |
d95ea5d1 | 2836 | zonelist, high_zoneidx, alloc_flags, |
d8846374 | 2837 | preferred_zone, classzone_idx, migratetype); |
21caf2fc ML |
2838 | if (unlikely(!page)) { |
2839 | /* | |
2840 | * Runtime PM, block IO and its error handling path | |
2841 | * can deadlock because I/O on the device might not | |
2842 | * complete. | |
2843 | */ | |
2844 | gfp_mask = memalloc_noio_flags(gfp_mask); | |
11e33f6a | 2845 | page = __alloc_pages_slowpath(gfp_mask, order, |
5117f45d | 2846 | zonelist, high_zoneidx, nodemask, |
d8846374 | 2847 | preferred_zone, classzone_idx, migratetype); |
21caf2fc | 2848 | } |
11e33f6a | 2849 | |
4b4f278c | 2850 | trace_mm_page_alloc(page, order, gfp_mask, migratetype); |
cc9a6c87 MG |
2851 | |
2852 | out: | |
2853 | /* | |
2854 | * When updating a task's mems_allowed, it is possible to race with | |
2855 | * parallel threads in such a way that an allocation can fail while | |
2856 | * the mask is being updated. If a page allocation is about to fail, | |
2857 | * check if the cpuset changed during allocation and if so, retry. | |
2858 | */ | |
d26914d1 | 2859 | if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) |
cc9a6c87 MG |
2860 | goto retry_cpuset; |
2861 | ||
11e33f6a | 2862 | return page; |
1da177e4 | 2863 | } |
d239171e | 2864 | EXPORT_SYMBOL(__alloc_pages_nodemask); |
1da177e4 LT |
2865 | |
2866 | /* | |
2867 | * Common helper functions. | |
2868 | */ | |
920c7a5d | 2869 | unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) |
1da177e4 | 2870 | { |
945a1113 AM |
2871 | struct page *page; |
2872 | ||
2873 | /* | |
2874 | * __get_free_pages() returns a 32-bit address, which cannot represent | |
2875 | * a highmem page | |
2876 | */ | |
2877 | VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); | |
2878 | ||
1da177e4 LT |
2879 | page = alloc_pages(gfp_mask, order); |
2880 | if (!page) | |
2881 | return 0; | |
2882 | return (unsigned long) page_address(page); | |
2883 | } | |
1da177e4 LT |
2884 | EXPORT_SYMBOL(__get_free_pages); |
2885 | ||
920c7a5d | 2886 | unsigned long get_zeroed_page(gfp_t gfp_mask) |
1da177e4 | 2887 | { |
945a1113 | 2888 | return __get_free_pages(gfp_mask | __GFP_ZERO, 0); |
1da177e4 | 2889 | } |
1da177e4 LT |
2890 | EXPORT_SYMBOL(get_zeroed_page); |
2891 | ||
920c7a5d | 2892 | void __free_pages(struct page *page, unsigned int order) |
1da177e4 | 2893 | { |
b5810039 | 2894 | if (put_page_testzero(page)) { |
1da177e4 | 2895 | if (order == 0) |
b745bc85 | 2896 | free_hot_cold_page(page, false); |
1da177e4 LT |
2897 | else |
2898 | __free_pages_ok(page, order); | |
2899 | } | |
2900 | } | |
2901 | ||
2902 | EXPORT_SYMBOL(__free_pages); | |
2903 | ||
920c7a5d | 2904 | void free_pages(unsigned long addr, unsigned int order) |
1da177e4 LT |
2905 | { |
2906 | if (addr != 0) { | |
725d704e | 2907 | VM_BUG_ON(!virt_addr_valid((void *)addr)); |
1da177e4 LT |
2908 | __free_pages(virt_to_page((void *)addr), order); |
2909 | } | |
2910 | } | |
2911 | ||
2912 | EXPORT_SYMBOL(free_pages); | |
2913 | ||
6a1a0d3b | 2914 | /* |
52383431 VD |
2915 | * alloc_kmem_pages charges newly allocated pages to the kmem resource counter |
2916 | * of the current memory cgroup. | |
6a1a0d3b | 2917 | * |
52383431 VD |
2918 | * It should be used when the caller would like to use kmalloc, but since the |
2919 | * allocation is large, it has to fall back to the page allocator. | |
2920 | */ | |
2921 | struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order) | |
2922 | { | |
2923 | struct page *page; | |
2924 | struct mem_cgroup *memcg = NULL; | |
2925 | ||
2926 | if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order)) | |
2927 | return NULL; | |
2928 | page = alloc_pages(gfp_mask, order); | |
2929 | memcg_kmem_commit_charge(page, memcg, order); | |
2930 | return page; | |
2931 | } | |
2932 | ||
2933 | struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order) | |
2934 | { | |
2935 | struct page *page; | |
2936 | struct mem_cgroup *memcg = NULL; | |
2937 | ||
2938 | if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order)) | |
2939 | return NULL; | |
2940 | page = alloc_pages_node(nid, gfp_mask, order); | |
2941 | memcg_kmem_commit_charge(page, memcg, order); | |
2942 | return page; | |
2943 | } | |
2944 | ||
2945 | /* | |
2946 | * __free_kmem_pages and free_kmem_pages will free pages allocated with | |
2947 | * alloc_kmem_pages. | |
6a1a0d3b | 2948 | */ |
52383431 | 2949 | void __free_kmem_pages(struct page *page, unsigned int order) |
6a1a0d3b GC |
2950 | { |
2951 | memcg_kmem_uncharge_pages(page, order); | |
2952 | __free_pages(page, order); | |
2953 | } | |
2954 | ||
52383431 | 2955 | void free_kmem_pages(unsigned long addr, unsigned int order) |
6a1a0d3b GC |
2956 | { |
2957 | if (addr != 0) { | |
2958 | VM_BUG_ON(!virt_addr_valid((void *)addr)); | |
52383431 | 2959 | __free_kmem_pages(virt_to_page((void *)addr), order); |
6a1a0d3b GC |
2960 | } |
2961 | } | |
2962 | ||
ee85c2e1 AK |
2963 | static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size) |
2964 | { | |
2965 | if (addr) { | |
2966 | unsigned long alloc_end = addr + (PAGE_SIZE << order); | |
2967 | unsigned long used = addr + PAGE_ALIGN(size); | |
2968 | ||
2969 | split_page(virt_to_page((void *)addr), order); | |
2970 | while (used < alloc_end) { | |
2971 | free_page(used); | |
2972 | used += PAGE_SIZE; | |
2973 | } | |
2974 | } | |
2975 | return (void *)addr; | |
2976 | } | |
2977 | ||
2be0ffe2 TT |
2978 | /** |
2979 | * alloc_pages_exact - allocate an exact number physically-contiguous pages. | |
2980 | * @size: the number of bytes to allocate | |
2981 | * @gfp_mask: GFP flags for the allocation | |
2982 | * | |
2983 | * This function is similar to alloc_pages(), except that it allocates the | |
2984 | * minimum number of pages to satisfy the request. alloc_pages() can only | |
2985 | * allocate memory in power-of-two pages. | |
2986 | * | |
2987 | * This function is also limited by MAX_ORDER. | |
2988 | * | |
2989 | * Memory allocated by this function must be released by free_pages_exact(). | |
2990 | */ | |
2991 | void *alloc_pages_exact(size_t size, gfp_t gfp_mask) | |
2992 | { | |
2993 | unsigned int order = get_order(size); | |
2994 | unsigned long addr; | |
2995 | ||
2996 | addr = __get_free_pages(gfp_mask, order); | |
ee85c2e1 | 2997 | return make_alloc_exact(addr, order, size); |
2be0ffe2 TT |
2998 | } |
2999 | EXPORT_SYMBOL(alloc_pages_exact); | |
3000 | ||
ee85c2e1 AK |
3001 | /** |
3002 | * alloc_pages_exact_nid - allocate an exact number of physically-contiguous | |
3003 | * pages on a node. | |
b5e6ab58 | 3004 | * @nid: the preferred node ID where memory should be allocated |
ee85c2e1 AK |
3005 | * @size: the number of bytes to allocate |
3006 | * @gfp_mask: GFP flags for the allocation | |
3007 | * | |
3008 | * Like alloc_pages_exact(), but try to allocate on node nid first before falling | |
3009 | * back. | |
3010 | * Note this is not alloc_pages_exact_node() which allocates on a specific node, | |
3011 | * but is not exact. | |
3012 | */ | |
e1931811 | 3013 | void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) |
ee85c2e1 AK |
3014 | { |
3015 | unsigned order = get_order(size); | |
3016 | struct page *p = alloc_pages_node(nid, gfp_mask, order); | |
3017 | if (!p) | |
3018 | return NULL; | |
3019 | return make_alloc_exact((unsigned long)page_address(p), order, size); | |
3020 | } | |
ee85c2e1 | 3021 | |
2be0ffe2 TT |
3022 | /** |
3023 | * free_pages_exact - release memory allocated via alloc_pages_exact() | |
3024 | * @virt: the value returned by alloc_pages_exact. | |
3025 | * @size: size of allocation, same value as passed to alloc_pages_exact(). | |
3026 | * | |
3027 | * Release the memory allocated by a previous call to alloc_pages_exact. | |
3028 | */ | |
3029 | void free_pages_exact(void *virt, size_t size) | |
3030 | { | |
3031 | unsigned long addr = (unsigned long)virt; | |
3032 | unsigned long end = addr + PAGE_ALIGN(size); | |
3033 | ||
3034 | while (addr < end) { | |
3035 | free_page(addr); | |
3036 | addr += PAGE_SIZE; | |
3037 | } | |
3038 | } | |
3039 | EXPORT_SYMBOL(free_pages_exact); | |
3040 | ||
e0fb5815 ZY |
3041 | /** |
3042 | * nr_free_zone_pages - count number of pages beyond high watermark | |
3043 | * @offset: The zone index of the highest zone | |
3044 | * | |
3045 | * nr_free_zone_pages() counts the number of counts pages which are beyond the | |
3046 | * high watermark within all zones at or below a given zone index. For each | |
3047 | * zone, the number of pages is calculated as: | |
834405c3 | 3048 | * managed_pages - high_pages |
e0fb5815 | 3049 | */ |
ebec3862 | 3050 | static unsigned long nr_free_zone_pages(int offset) |
1da177e4 | 3051 | { |
dd1a239f | 3052 | struct zoneref *z; |
54a6eb5c MG |
3053 | struct zone *zone; |
3054 | ||
e310fd43 | 3055 | /* Just pick one node, since fallback list is circular */ |
ebec3862 | 3056 | unsigned long sum = 0; |
1da177e4 | 3057 | |
0e88460d | 3058 | struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); |
1da177e4 | 3059 | |
54a6eb5c | 3060 | for_each_zone_zonelist(zone, z, zonelist, offset) { |
b40da049 | 3061 | unsigned long size = zone->managed_pages; |
41858966 | 3062 | unsigned long high = high_wmark_pages(zone); |
e310fd43 MB |
3063 | if (size > high) |
3064 | sum += size - high; | |
1da177e4 LT |
3065 | } |
3066 | ||
3067 | return sum; | |
3068 | } | |
3069 | ||
e0fb5815 ZY |
3070 | /** |
3071 | * nr_free_buffer_pages - count number of pages beyond high watermark | |
3072 | * | |
3073 | * nr_free_buffer_pages() counts the number of pages which are beyond the high | |
3074 | * watermark within ZONE_DMA and ZONE_NORMAL. | |
1da177e4 | 3075 | */ |
ebec3862 | 3076 | unsigned long nr_free_buffer_pages(void) |
1da177e4 | 3077 | { |
af4ca457 | 3078 | return nr_free_zone_pages(gfp_zone(GFP_USER)); |
1da177e4 | 3079 | } |
c2f1a551 | 3080 | EXPORT_SYMBOL_GPL(nr_free_buffer_pages); |
1da177e4 | 3081 | |
e0fb5815 ZY |
3082 | /** |
3083 | * nr_free_pagecache_pages - count number of pages beyond high watermark | |
3084 | * | |
3085 | * nr_free_pagecache_pages() counts the number of pages which are beyond the | |
3086 | * high watermark within all zones. | |
1da177e4 | 3087 | */ |
ebec3862 | 3088 | unsigned long nr_free_pagecache_pages(void) |
1da177e4 | 3089 | { |
2a1e274a | 3090 | return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); |
1da177e4 | 3091 | } |
08e0f6a9 CL |
3092 | |
3093 | static inline void show_node(struct zone *zone) | |
1da177e4 | 3094 | { |
e5adfffc | 3095 | if (IS_ENABLED(CONFIG_NUMA)) |
25ba77c1 | 3096 | printk("Node %d ", zone_to_nid(zone)); |
1da177e4 | 3097 | } |
1da177e4 | 3098 | |
1da177e4 LT |
3099 | void si_meminfo(struct sysinfo *val) |
3100 | { | |
3101 | val->totalram = totalram_pages; | |
cc7452b6 | 3102 | val->sharedram = global_page_state(NR_SHMEM); |
d23ad423 | 3103 | val->freeram = global_page_state(NR_FREE_PAGES); |
1da177e4 | 3104 | val->bufferram = nr_blockdev_pages(); |
1da177e4 LT |
3105 | val->totalhigh = totalhigh_pages; |
3106 | val->freehigh = nr_free_highpages(); | |
1da177e4 LT |
3107 | val->mem_unit = PAGE_SIZE; |
3108 | } | |
3109 | ||
3110 | EXPORT_SYMBOL(si_meminfo); | |
3111 | ||
3112 | #ifdef CONFIG_NUMA | |
3113 | void si_meminfo_node(struct sysinfo *val, int nid) | |
3114 | { | |
cdd91a77 JL |
3115 | int zone_type; /* needs to be signed */ |
3116 | unsigned long managed_pages = 0; | |
1da177e4 LT |
3117 | pg_data_t *pgdat = NODE_DATA(nid); |
3118 | ||
cdd91a77 JL |
3119 | for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) |
3120 | managed_pages += pgdat->node_zones[zone_type].managed_pages; | |
3121 | val->totalram = managed_pages; | |
cc7452b6 | 3122 | val->sharedram = node_page_state(nid, NR_SHMEM); |
d23ad423 | 3123 | val->freeram = node_page_state(nid, NR_FREE_PAGES); |
98d2b0eb | 3124 | #ifdef CONFIG_HIGHMEM |
b40da049 | 3125 | val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages; |
d23ad423 CL |
3126 | val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], |
3127 | NR_FREE_PAGES); | |
98d2b0eb CL |
3128 | #else |
3129 | val->totalhigh = 0; | |
3130 | val->freehigh = 0; | |
3131 | #endif | |
1da177e4 LT |
3132 | val->mem_unit = PAGE_SIZE; |
3133 | } | |
3134 | #endif | |
3135 | ||
ddd588b5 | 3136 | /* |
7bf02ea2 DR |
3137 | * Determine whether the node should be displayed or not, depending on whether |
3138 | * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). | |
ddd588b5 | 3139 | */ |
7bf02ea2 | 3140 | bool skip_free_areas_node(unsigned int flags, int nid) |
ddd588b5 DR |
3141 | { |
3142 | bool ret = false; | |
cc9a6c87 | 3143 | unsigned int cpuset_mems_cookie; |
ddd588b5 DR |
3144 | |
3145 | if (!(flags & SHOW_MEM_FILTER_NODES)) | |
3146 | goto out; | |
3147 | ||
cc9a6c87 | 3148 | do { |
d26914d1 | 3149 | cpuset_mems_cookie = read_mems_allowed_begin(); |
cc9a6c87 | 3150 | ret = !node_isset(nid, cpuset_current_mems_allowed); |
d26914d1 | 3151 | } while (read_mems_allowed_retry(cpuset_mems_cookie)); |
ddd588b5 DR |
3152 | out: |
3153 | return ret; | |
3154 | } | |
3155 | ||
1da177e4 LT |
3156 | #define K(x) ((x) << (PAGE_SHIFT-10)) |
3157 | ||
377e4f16 RV |
3158 | static void show_migration_types(unsigned char type) |
3159 | { | |
3160 | static const char types[MIGRATE_TYPES] = { | |
3161 | [MIGRATE_UNMOVABLE] = 'U', | |
3162 | [MIGRATE_RECLAIMABLE] = 'E', | |
3163 | [MIGRATE_MOVABLE] = 'M', | |
3164 | [MIGRATE_RESERVE] = 'R', | |
3165 | #ifdef CONFIG_CMA | |
3166 | [MIGRATE_CMA] = 'C', | |
3167 | #endif | |
194159fb | 3168 | #ifdef CONFIG_MEMORY_ISOLATION |
377e4f16 | 3169 | [MIGRATE_ISOLATE] = 'I', |
194159fb | 3170 | #endif |
377e4f16 RV |
3171 | }; |
3172 | char tmp[MIGRATE_TYPES + 1]; | |
3173 | char *p = tmp; | |
3174 | int i; | |
3175 | ||
3176 | for (i = 0; i < MIGRATE_TYPES; i++) { | |
3177 | if (type & (1 << i)) | |
3178 | *p++ = types[i]; | |
3179 | } | |
3180 | ||
3181 | *p = '\0'; | |
3182 | printk("(%s) ", tmp); | |
3183 | } | |
3184 | ||
1da177e4 LT |
3185 | /* |
3186 | * Show free area list (used inside shift_scroll-lock stuff) | |
3187 | * We also calculate the percentage fragmentation. We do this by counting the | |
3188 | * memory on each free list with the exception of the first item on the list. | |
ddd588b5 DR |
3189 | * Suppresses nodes that are not allowed by current's cpuset if |
3190 | * SHOW_MEM_FILTER_NODES is passed. | |
1da177e4 | 3191 | */ |
7bf02ea2 | 3192 | void show_free_areas(unsigned int filter) |
1da177e4 | 3193 | { |
c7241913 | 3194 | int cpu; |
1da177e4 LT |
3195 | struct zone *zone; |
3196 | ||
ee99c71c | 3197 | for_each_populated_zone(zone) { |
7bf02ea2 | 3198 | if (skip_free_areas_node(filter, zone_to_nid(zone))) |
ddd588b5 | 3199 | continue; |
c7241913 JS |
3200 | show_node(zone); |
3201 | printk("%s per-cpu:\n", zone->name); | |
1da177e4 | 3202 | |
6b482c67 | 3203 | for_each_online_cpu(cpu) { |
1da177e4 LT |
3204 | struct per_cpu_pageset *pageset; |
3205 | ||
99dcc3e5 | 3206 | pageset = per_cpu_ptr(zone->pageset, cpu); |
1da177e4 | 3207 | |
3dfa5721 CL |
3208 | printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n", |
3209 | cpu, pageset->pcp.high, | |
3210 | pageset->pcp.batch, pageset->pcp.count); | |
1da177e4 LT |
3211 | } |
3212 | } | |
3213 | ||
a731286d KM |
3214 | printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" |
3215 | " active_file:%lu inactive_file:%lu isolated_file:%lu\n" | |
7b854121 | 3216 | " unevictable:%lu" |
b76146ed | 3217 | " dirty:%lu writeback:%lu unstable:%lu\n" |
3701b033 | 3218 | " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n" |
d1ce749a BZ |
3219 | " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" |
3220 | " free_cma:%lu\n", | |
4f98a2fe | 3221 | global_page_state(NR_ACTIVE_ANON), |
4f98a2fe | 3222 | global_page_state(NR_INACTIVE_ANON), |
a731286d KM |
3223 | global_page_state(NR_ISOLATED_ANON), |
3224 | global_page_state(NR_ACTIVE_FILE), | |
4f98a2fe | 3225 | global_page_state(NR_INACTIVE_FILE), |
a731286d | 3226 | global_page_state(NR_ISOLATED_FILE), |
7b854121 | 3227 | global_page_state(NR_UNEVICTABLE), |
b1e7a8fd | 3228 | global_page_state(NR_FILE_DIRTY), |
ce866b34 | 3229 | global_page_state(NR_WRITEBACK), |
fd39fc85 | 3230 | global_page_state(NR_UNSTABLE_NFS), |
d23ad423 | 3231 | global_page_state(NR_FREE_PAGES), |
3701b033 KM |
3232 | global_page_state(NR_SLAB_RECLAIMABLE), |
3233 | global_page_state(NR_SLAB_UNRECLAIMABLE), | |
65ba55f5 | 3234 | global_page_state(NR_FILE_MAPPED), |
4b02108a | 3235 | global_page_state(NR_SHMEM), |
a25700a5 | 3236 | global_page_state(NR_PAGETABLE), |
d1ce749a BZ |
3237 | global_page_state(NR_BOUNCE), |
3238 | global_page_state(NR_FREE_CMA_PAGES)); | |
1da177e4 | 3239 | |
ee99c71c | 3240 | for_each_populated_zone(zone) { |
1da177e4 LT |
3241 | int i; |
3242 | ||
7bf02ea2 | 3243 | if (skip_free_areas_node(filter, zone_to_nid(zone))) |
ddd588b5 | 3244 | continue; |
1da177e4 LT |
3245 | show_node(zone); |
3246 | printk("%s" | |
3247 | " free:%lukB" | |
3248 | " min:%lukB" | |
3249 | " low:%lukB" | |
3250 | " high:%lukB" | |
4f98a2fe RR |
3251 | " active_anon:%lukB" |
3252 | " inactive_anon:%lukB" | |
3253 | " active_file:%lukB" | |
3254 | " inactive_file:%lukB" | |
7b854121 | 3255 | " unevictable:%lukB" |
a731286d KM |
3256 | " isolated(anon):%lukB" |
3257 | " isolated(file):%lukB" | |
1da177e4 | 3258 | " present:%lukB" |
9feedc9d | 3259 | " managed:%lukB" |
4a0aa73f KM |
3260 | " mlocked:%lukB" |
3261 | " dirty:%lukB" | |
3262 | " writeback:%lukB" | |
3263 | " mapped:%lukB" | |
4b02108a | 3264 | " shmem:%lukB" |
4a0aa73f KM |
3265 | " slab_reclaimable:%lukB" |
3266 | " slab_unreclaimable:%lukB" | |
c6a7f572 | 3267 | " kernel_stack:%lukB" |
4a0aa73f KM |
3268 | " pagetables:%lukB" |
3269 | " unstable:%lukB" | |
3270 | " bounce:%lukB" | |
d1ce749a | 3271 | " free_cma:%lukB" |
4a0aa73f | 3272 | " writeback_tmp:%lukB" |
1da177e4 LT |
3273 | " pages_scanned:%lu" |
3274 | " all_unreclaimable? %s" | |
3275 | "\n", | |
3276 | zone->name, | |
88f5acf8 | 3277 | K(zone_page_state(zone, NR_FREE_PAGES)), |
41858966 MG |
3278 | K(min_wmark_pages(zone)), |
3279 | K(low_wmark_pages(zone)), | |
3280 | K(high_wmark_pages(zone)), | |
4f98a2fe RR |
3281 | K(zone_page_state(zone, NR_ACTIVE_ANON)), |
3282 | K(zone_page_state(zone, NR_INACTIVE_ANON)), | |
3283 | K(zone_page_state(zone, NR_ACTIVE_FILE)), | |
3284 | K(zone_page_state(zone, NR_INACTIVE_FILE)), | |
7b854121 | 3285 | K(zone_page_state(zone, NR_UNEVICTABLE)), |
a731286d KM |
3286 | K(zone_page_state(zone, NR_ISOLATED_ANON)), |
3287 | K(zone_page_state(zone, NR_ISOLATED_FILE)), | |
1da177e4 | 3288 | K(zone->present_pages), |
9feedc9d | 3289 | K(zone->managed_pages), |
4a0aa73f KM |
3290 | K(zone_page_state(zone, NR_MLOCK)), |
3291 | K(zone_page_state(zone, NR_FILE_DIRTY)), | |
3292 | K(zone_page_state(zone, NR_WRITEBACK)), | |
3293 | K(zone_page_state(zone, NR_FILE_MAPPED)), | |
4b02108a | 3294 | K(zone_page_state(zone, NR_SHMEM)), |
4a0aa73f KM |
3295 | K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), |
3296 | K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), | |
c6a7f572 KM |
3297 | zone_page_state(zone, NR_KERNEL_STACK) * |
3298 | THREAD_SIZE / 1024, | |
4a0aa73f KM |
3299 | K(zone_page_state(zone, NR_PAGETABLE)), |
3300 | K(zone_page_state(zone, NR_UNSTABLE_NFS)), | |
3301 | K(zone_page_state(zone, NR_BOUNCE)), | |
d1ce749a | 3302 | K(zone_page_state(zone, NR_FREE_CMA_PAGES)), |
4a0aa73f | 3303 | K(zone_page_state(zone, NR_WRITEBACK_TEMP)), |
0d5d823a | 3304 | K(zone_page_state(zone, NR_PAGES_SCANNED)), |
6e543d57 | 3305 | (!zone_reclaimable(zone) ? "yes" : "no") |
1da177e4 LT |
3306 | ); |
3307 | printk("lowmem_reserve[]:"); | |
3308 | for (i = 0; i < MAX_NR_ZONES; i++) | |
3484b2de | 3309 | printk(" %ld", zone->lowmem_reserve[i]); |
1da177e4 LT |
3310 | printk("\n"); |
3311 | } | |
3312 | ||
ee99c71c | 3313 | for_each_populated_zone(zone) { |
b8af2941 | 3314 | unsigned long nr[MAX_ORDER], flags, order, total = 0; |
377e4f16 | 3315 | unsigned char types[MAX_ORDER]; |
1da177e4 | 3316 | |
7bf02ea2 | 3317 | if (skip_free_areas_node(filter, zone_to_nid(zone))) |
ddd588b5 | 3318 | continue; |
1da177e4 LT |
3319 | show_node(zone); |
3320 | printk("%s: ", zone->name); | |
1da177e4 LT |
3321 | |
3322 | spin_lock_irqsave(&zone->lock, flags); | |
3323 | for (order = 0; order < MAX_ORDER; order++) { | |
377e4f16 RV |
3324 | struct free_area *area = &zone->free_area[order]; |
3325 | int type; | |
3326 | ||
3327 | nr[order] = area->nr_free; | |
8f9de51a | 3328 | total += nr[order] << order; |
377e4f16 RV |
3329 | |
3330 | types[order] = 0; | |
3331 | for (type = 0; type < MIGRATE_TYPES; type++) { | |
3332 | if (!list_empty(&area->free_list[type])) | |
3333 | types[order] |= 1 << type; | |
3334 | } | |
1da177e4 LT |
3335 | } |
3336 | spin_unlock_irqrestore(&zone->lock, flags); | |
377e4f16 | 3337 | for (order = 0; order < MAX_ORDER; order++) { |
8f9de51a | 3338 | printk("%lu*%lukB ", nr[order], K(1UL) << order); |
377e4f16 RV |
3339 | if (nr[order]) |
3340 | show_migration_types(types[order]); | |
3341 | } | |
1da177e4 LT |
3342 | printk("= %lukB\n", K(total)); |
3343 | } | |
3344 | ||
949f7ec5 DR |
3345 | hugetlb_show_meminfo(); |
3346 | ||
e6f3602d LW |
3347 | printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); |
3348 | ||
1da177e4 LT |
3349 | show_swap_cache_info(); |
3350 | } | |
3351 | ||
19770b32 MG |
3352 | static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) |
3353 | { | |
3354 | zoneref->zone = zone; | |
3355 | zoneref->zone_idx = zone_idx(zone); | |
3356 | } | |
3357 | ||
1da177e4 LT |
3358 | /* |
3359 | * Builds allocation fallback zone lists. | |
1a93205b CL |
3360 | * |
3361 | * Add all populated zones of a node to the zonelist. | |
1da177e4 | 3362 | */ |
f0c0b2b8 | 3363 | static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, |
bc732f1d | 3364 | int nr_zones) |
1da177e4 | 3365 | { |
1a93205b | 3366 | struct zone *zone; |
bc732f1d | 3367 | enum zone_type zone_type = MAX_NR_ZONES; |
02a68a5e CL |
3368 | |
3369 | do { | |
2f6726e5 | 3370 | zone_type--; |
070f8032 | 3371 | zone = pgdat->node_zones + zone_type; |
1a93205b | 3372 | if (populated_zone(zone)) { |
dd1a239f MG |
3373 | zoneref_set_zone(zone, |
3374 | &zonelist->_zonerefs[nr_zones++]); | |
070f8032 | 3375 | check_highest_zone(zone_type); |
1da177e4 | 3376 | } |
2f6726e5 | 3377 | } while (zone_type); |
bc732f1d | 3378 | |
070f8032 | 3379 | return nr_zones; |
1da177e4 LT |
3380 | } |
3381 | ||
f0c0b2b8 KH |
3382 | |
3383 | /* | |
3384 | * zonelist_order: | |
3385 | * 0 = automatic detection of better ordering. | |
3386 | * 1 = order by ([node] distance, -zonetype) | |
3387 | * 2 = order by (-zonetype, [node] distance) | |
3388 | * | |
3389 | * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create | |
3390 | * the same zonelist. So only NUMA can configure this param. | |
3391 | */ | |
3392 | #define ZONELIST_ORDER_DEFAULT 0 | |
3393 | #define ZONELIST_ORDER_NODE 1 | |
3394 | #define ZONELIST_ORDER_ZONE 2 | |
3395 | ||
3396 | /* zonelist order in the kernel. | |
3397 | * set_zonelist_order() will set this to NODE or ZONE. | |
3398 | */ | |
3399 | static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; | |
3400 | static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; | |
3401 | ||
3402 | ||
1da177e4 | 3403 | #ifdef CONFIG_NUMA |
f0c0b2b8 KH |
3404 | /* The value user specified ....changed by config */ |
3405 | static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; | |
3406 | /* string for sysctl */ | |
3407 | #define NUMA_ZONELIST_ORDER_LEN 16 | |
3408 | char numa_zonelist_order[16] = "default"; | |
3409 | ||
3410 | /* | |
3411 | * interface for configure zonelist ordering. | |
3412 | * command line option "numa_zonelist_order" | |
3413 | * = "[dD]efault - default, automatic configuration. | |
3414 | * = "[nN]ode - order by node locality, then by zone within node | |
3415 | * = "[zZ]one - order by zone, then by locality within zone | |
3416 | */ | |
3417 | ||
3418 | static int __parse_numa_zonelist_order(char *s) | |
3419 | { | |
3420 | if (*s == 'd' || *s == 'D') { | |
3421 | user_zonelist_order = ZONELIST_ORDER_DEFAULT; | |
3422 | } else if (*s == 'n' || *s == 'N') { | |
3423 | user_zonelist_order = ZONELIST_ORDER_NODE; | |
3424 | } else if (*s == 'z' || *s == 'Z') { | |
3425 | user_zonelist_order = ZONELIST_ORDER_ZONE; | |
3426 | } else { | |
3427 | printk(KERN_WARNING | |
3428 | "Ignoring invalid numa_zonelist_order value: " | |
3429 | "%s\n", s); | |
3430 | return -EINVAL; | |
3431 | } | |
3432 | return 0; | |
3433 | } | |
3434 | ||
3435 | static __init int setup_numa_zonelist_order(char *s) | |
3436 | { | |
ecb256f8 VL |
3437 | int ret; |
3438 | ||
3439 | if (!s) | |
3440 | return 0; | |
3441 | ||
3442 | ret = __parse_numa_zonelist_order(s); | |
3443 | if (ret == 0) | |
3444 | strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN); | |
3445 | ||
3446 | return ret; | |
f0c0b2b8 KH |
3447 | } |
3448 | early_param("numa_zonelist_order", setup_numa_zonelist_order); | |
3449 | ||
3450 | /* | |
3451 | * sysctl handler for numa_zonelist_order | |
3452 | */ | |
cccad5b9 | 3453 | int numa_zonelist_order_handler(struct ctl_table *table, int write, |
8d65af78 | 3454 | void __user *buffer, size_t *length, |
f0c0b2b8 KH |
3455 | loff_t *ppos) |
3456 | { | |
3457 | char saved_string[NUMA_ZONELIST_ORDER_LEN]; | |
3458 | int ret; | |
443c6f14 | 3459 | static DEFINE_MUTEX(zl_order_mutex); |
f0c0b2b8 | 3460 | |
443c6f14 | 3461 | mutex_lock(&zl_order_mutex); |
dacbde09 CG |
3462 | if (write) { |
3463 | if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) { | |
3464 | ret = -EINVAL; | |
3465 | goto out; | |
3466 | } | |
3467 | strcpy(saved_string, (char *)table->data); | |
3468 | } | |
8d65af78 | 3469 | ret = proc_dostring(table, write, buffer, length, ppos); |
f0c0b2b8 | 3470 | if (ret) |
443c6f14 | 3471 | goto out; |
f0c0b2b8 KH |
3472 | if (write) { |
3473 | int oldval = user_zonelist_order; | |
dacbde09 CG |
3474 | |
3475 | ret = __parse_numa_zonelist_order((char *)table->data); | |
3476 | if (ret) { | |
f0c0b2b8 KH |
3477 | /* |
3478 | * bogus value. restore saved string | |
3479 | */ | |
dacbde09 | 3480 | strncpy((char *)table->data, saved_string, |
f0c0b2b8 KH |
3481 | NUMA_ZONELIST_ORDER_LEN); |
3482 | user_zonelist_order = oldval; | |
4eaf3f64 HL |
3483 | } else if (oldval != user_zonelist_order) { |
3484 | mutex_lock(&zonelists_mutex); | |
9adb62a5 | 3485 | build_all_zonelists(NULL, NULL); |
4eaf3f64 HL |
3486 | mutex_unlock(&zonelists_mutex); |
3487 | } | |
f0c0b2b8 | 3488 | } |
443c6f14 AK |
3489 | out: |
3490 | mutex_unlock(&zl_order_mutex); | |
3491 | return ret; | |
f0c0b2b8 KH |
3492 | } |
3493 | ||
3494 | ||
62bc62a8 | 3495 | #define MAX_NODE_LOAD (nr_online_nodes) |
f0c0b2b8 KH |
3496 | static int node_load[MAX_NUMNODES]; |
3497 | ||
1da177e4 | 3498 | /** |
4dc3b16b | 3499 | * find_next_best_node - find the next node that should appear in a given node's fallback list |
1da177e4 LT |
3500 | * @node: node whose fallback list we're appending |
3501 | * @used_node_mask: nodemask_t of already used nodes | |
3502 | * | |
3503 | * We use a number of factors to determine which is the next node that should | |
3504 | * appear on a given node's fallback list. The node should not have appeared | |
3505 | * already in @node's fallback list, and it should be the next closest node | |
3506 | * according to the distance array (which contains arbitrary distance values | |
3507 | * from each node to each node in the system), and should also prefer nodes | |
3508 | * with no CPUs, since presumably they'll have very little allocation pressure | |
3509 | * on them otherwise. | |
3510 | * It returns -1 if no node is found. | |
3511 | */ | |
f0c0b2b8 | 3512 | static int find_next_best_node(int node, nodemask_t *used_node_mask) |
1da177e4 | 3513 | { |
4cf808eb | 3514 | int n, val; |
1da177e4 | 3515 | int min_val = INT_MAX; |
00ef2d2f | 3516 | int best_node = NUMA_NO_NODE; |
a70f7302 | 3517 | const struct cpumask *tmp = cpumask_of_node(0); |
1da177e4 | 3518 | |
4cf808eb LT |
3519 | /* Use the local node if we haven't already */ |
3520 | if (!node_isset(node, *used_node_mask)) { | |
3521 | node_set(node, *used_node_mask); | |
3522 | return node; | |
3523 | } | |
1da177e4 | 3524 | |
4b0ef1fe | 3525 | for_each_node_state(n, N_MEMORY) { |
1da177e4 LT |
3526 | |
3527 | /* Don't want a node to appear more than once */ | |
3528 | if (node_isset(n, *used_node_mask)) | |
3529 | continue; | |
3530 | ||
1da177e4 LT |
3531 | /* Use the distance array to find the distance */ |
3532 | val = node_distance(node, n); | |
3533 | ||
4cf808eb LT |
3534 | /* Penalize nodes under us ("prefer the next node") */ |
3535 | val += (n < node); | |
3536 | ||
1da177e4 | 3537 | /* Give preference to headless and unused nodes */ |
a70f7302 RR |
3538 | tmp = cpumask_of_node(n); |
3539 | if (!cpumask_empty(tmp)) | |
1da177e4 LT |
3540 | val += PENALTY_FOR_NODE_WITH_CPUS; |
3541 | ||
3542 | /* Slight preference for less loaded node */ | |
3543 | val *= (MAX_NODE_LOAD*MAX_NUMNODES); | |
3544 | val += node_load[n]; | |
3545 | ||
3546 | if (val < min_val) { | |
3547 | min_val = val; | |
3548 | best_node = n; | |
3549 | } | |
3550 | } | |
3551 | ||
3552 | if (best_node >= 0) | |
3553 | node_set(best_node, *used_node_mask); | |
3554 | ||
3555 | return best_node; | |
3556 | } | |
3557 | ||
f0c0b2b8 KH |
3558 | |
3559 | /* | |
3560 | * Build zonelists ordered by node and zones within node. | |
3561 | * This results in maximum locality--normal zone overflows into local | |
3562 | * DMA zone, if any--but risks exhausting DMA zone. | |
3563 | */ | |
3564 | static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) | |
1da177e4 | 3565 | { |
f0c0b2b8 | 3566 | int j; |
1da177e4 | 3567 | struct zonelist *zonelist; |
f0c0b2b8 | 3568 | |
54a6eb5c | 3569 | zonelist = &pgdat->node_zonelists[0]; |
dd1a239f | 3570 | for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) |
54a6eb5c | 3571 | ; |
bc732f1d | 3572 | j = build_zonelists_node(NODE_DATA(node), zonelist, j); |
dd1a239f MG |
3573 | zonelist->_zonerefs[j].zone = NULL; |
3574 | zonelist->_zonerefs[j].zone_idx = 0; | |
f0c0b2b8 KH |
3575 | } |
3576 | ||
523b9458 CL |
3577 | /* |
3578 | * Build gfp_thisnode zonelists | |
3579 | */ | |
3580 | static void build_thisnode_zonelists(pg_data_t *pgdat) | |
3581 | { | |
523b9458 CL |
3582 | int j; |
3583 | struct zonelist *zonelist; | |
3584 | ||
54a6eb5c | 3585 | zonelist = &pgdat->node_zonelists[1]; |
bc732f1d | 3586 | j = build_zonelists_node(pgdat, zonelist, 0); |
dd1a239f MG |
3587 | zonelist->_zonerefs[j].zone = NULL; |
3588 | zonelist->_zonerefs[j].zone_idx = 0; | |
523b9458 CL |
3589 | } |
3590 | ||
f0c0b2b8 KH |
3591 | /* |
3592 | * Build zonelists ordered by zone and nodes within zones. | |
3593 | * This results in conserving DMA zone[s] until all Normal memory is | |
3594 | * exhausted, but results in overflowing to remote node while memory | |
3595 | * may still exist in local DMA zone. | |
3596 | */ | |
3597 | static int node_order[MAX_NUMNODES]; | |
3598 | ||
3599 | static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) | |
3600 | { | |
f0c0b2b8 KH |
3601 | int pos, j, node; |
3602 | int zone_type; /* needs to be signed */ | |
3603 | struct zone *z; | |
3604 | struct zonelist *zonelist; | |
3605 | ||
54a6eb5c MG |
3606 | zonelist = &pgdat->node_zonelists[0]; |
3607 | pos = 0; | |
3608 | for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { | |
3609 | for (j = 0; j < nr_nodes; j++) { | |
3610 | node = node_order[j]; | |
3611 | z = &NODE_DATA(node)->node_zones[zone_type]; | |
3612 | if (populated_zone(z)) { | |
dd1a239f MG |
3613 | zoneref_set_zone(z, |
3614 | &zonelist->_zonerefs[pos++]); | |
54a6eb5c | 3615 | check_highest_zone(zone_type); |
f0c0b2b8 KH |
3616 | } |
3617 | } | |
f0c0b2b8 | 3618 | } |
dd1a239f MG |
3619 | zonelist->_zonerefs[pos].zone = NULL; |
3620 | zonelist->_zonerefs[pos].zone_idx = 0; | |
f0c0b2b8 KH |
3621 | } |
3622 | ||
3193913c MG |
3623 | #if defined(CONFIG_64BIT) |
3624 | /* | |
3625 | * Devices that require DMA32/DMA are relatively rare and do not justify a | |
3626 | * penalty to every machine in case the specialised case applies. Default | |
3627 | * to Node-ordering on 64-bit NUMA machines | |
3628 | */ | |
3629 | static int default_zonelist_order(void) | |
3630 | { | |
3631 | return ZONELIST_ORDER_NODE; | |
3632 | } | |
3633 | #else | |
3634 | /* | |
3635 | * On 32-bit, the Normal zone needs to be preserved for allocations accessible | |
3636 | * by the kernel. If processes running on node 0 deplete the low memory zone | |
3637 | * then reclaim will occur more frequency increasing stalls and potentially | |
3638 | * be easier to OOM if a large percentage of the zone is under writeback or | |
3639 | * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set. | |
3640 | * Hence, default to zone ordering on 32-bit. | |
3641 | */ | |
f0c0b2b8 KH |
3642 | static int default_zonelist_order(void) |
3643 | { | |
f0c0b2b8 KH |
3644 | return ZONELIST_ORDER_ZONE; |
3645 | } | |
3193913c | 3646 | #endif /* CONFIG_64BIT */ |
f0c0b2b8 KH |
3647 | |
3648 | static void set_zonelist_order(void) | |
3649 | { | |
3650 | if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) | |
3651 | current_zonelist_order = default_zonelist_order(); | |
3652 | else | |
3653 | current_zonelist_order = user_zonelist_order; | |
3654 | } | |
3655 | ||
3656 | static void build_zonelists(pg_data_t *pgdat) | |
3657 | { | |
3658 | int j, node, load; | |
3659 | enum zone_type i; | |
1da177e4 | 3660 | nodemask_t used_mask; |
f0c0b2b8 KH |
3661 | int local_node, prev_node; |
3662 | struct zonelist *zonelist; | |
3663 | int order = current_zonelist_order; | |
1da177e4 LT |
3664 | |
3665 | /* initialize zonelists */ | |
523b9458 | 3666 | for (i = 0; i < MAX_ZONELISTS; i++) { |
1da177e4 | 3667 | zonelist = pgdat->node_zonelists + i; |
dd1a239f MG |
3668 | zonelist->_zonerefs[0].zone = NULL; |
3669 | zonelist->_zonerefs[0].zone_idx = 0; | |
1da177e4 LT |
3670 | } |
3671 | ||
3672 | /* NUMA-aware ordering of nodes */ | |
3673 | local_node = pgdat->node_id; | |
62bc62a8 | 3674 | load = nr_online_nodes; |
1da177e4 LT |
3675 | prev_node = local_node; |
3676 | nodes_clear(used_mask); | |
f0c0b2b8 | 3677 | |
f0c0b2b8 KH |
3678 | memset(node_order, 0, sizeof(node_order)); |
3679 | j = 0; | |
3680 | ||
1da177e4 LT |
3681 | while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { |
3682 | /* | |
3683 | * We don't want to pressure a particular node. | |
3684 | * So adding penalty to the first node in same | |
3685 | * distance group to make it round-robin. | |
3686 | */ | |
957f822a DR |
3687 | if (node_distance(local_node, node) != |
3688 | node_distance(local_node, prev_node)) | |
f0c0b2b8 KH |
3689 | node_load[node] = load; |
3690 | ||
1da177e4 LT |
3691 | prev_node = node; |
3692 | load--; | |
f0c0b2b8 KH |
3693 | if (order == ZONELIST_ORDER_NODE) |
3694 | build_zonelists_in_node_order(pgdat, node); | |
3695 | else | |
3696 | node_order[j++] = node; /* remember order */ | |
3697 | } | |
1da177e4 | 3698 | |
f0c0b2b8 KH |
3699 | if (order == ZONELIST_ORDER_ZONE) { |
3700 | /* calculate node order -- i.e., DMA last! */ | |
3701 | build_zonelists_in_zone_order(pgdat, j); | |
1da177e4 | 3702 | } |
523b9458 CL |
3703 | |
3704 | build_thisnode_zonelists(pgdat); | |
1da177e4 LT |
3705 | } |
3706 | ||
9276b1bc | 3707 | /* Construct the zonelist performance cache - see further mmzone.h */ |
f0c0b2b8 | 3708 | static void build_zonelist_cache(pg_data_t *pgdat) |
9276b1bc | 3709 | { |
54a6eb5c MG |
3710 | struct zonelist *zonelist; |
3711 | struct zonelist_cache *zlc; | |
dd1a239f | 3712 | struct zoneref *z; |
9276b1bc | 3713 | |
54a6eb5c MG |
3714 | zonelist = &pgdat->node_zonelists[0]; |
3715 | zonelist->zlcache_ptr = zlc = &zonelist->zlcache; | |
3716 | bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); | |
dd1a239f MG |
3717 | for (z = zonelist->_zonerefs; z->zone; z++) |
3718 | zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); | |
9276b1bc PJ |
3719 | } |
3720 | ||
7aac7898 LS |
3721 | #ifdef CONFIG_HAVE_MEMORYLESS_NODES |
3722 | /* | |
3723 | * Return node id of node used for "local" allocations. | |
3724 | * I.e., first node id of first zone in arg node's generic zonelist. | |
3725 | * Used for initializing percpu 'numa_mem', which is used primarily | |
3726 | * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. | |
3727 | */ | |
3728 | int local_memory_node(int node) | |
3729 | { | |
3730 | struct zone *zone; | |
3731 | ||
3732 | (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL), | |
3733 | gfp_zone(GFP_KERNEL), | |
3734 | NULL, | |
3735 | &zone); | |
3736 | return zone->node; | |
3737 | } | |
3738 | #endif | |
f0c0b2b8 | 3739 | |
1da177e4 LT |
3740 | #else /* CONFIG_NUMA */ |
3741 | ||
f0c0b2b8 KH |
3742 | static void set_zonelist_order(void) |
3743 | { | |
3744 | current_zonelist_order = ZONELIST_ORDER_ZONE; | |
3745 | } | |
3746 | ||
3747 | static void build_zonelists(pg_data_t *pgdat) | |
1da177e4 | 3748 | { |
19655d34 | 3749 | int node, local_node; |
54a6eb5c MG |
3750 | enum zone_type j; |
3751 | struct zonelist *zonelist; | |
1da177e4 LT |
3752 | |
3753 | local_node = pgdat->node_id; | |
1da177e4 | 3754 | |
54a6eb5c | 3755 | zonelist = &pgdat->node_zonelists[0]; |
bc732f1d | 3756 | j = build_zonelists_node(pgdat, zonelist, 0); |
1da177e4 | 3757 | |
54a6eb5c MG |
3758 | /* |
3759 | * Now we build the zonelist so that it contains the zones | |
3760 | * of all the other nodes. | |
3761 | * We don't want to pressure a particular node, so when | |
3762 | * building the zones for node N, we make sure that the | |
3763 | * zones coming right after the local ones are those from | |
3764 | * node N+1 (modulo N) | |
3765 | */ | |
3766 | for (node = local_node + 1; node < MAX_NUMNODES; node++) { | |
3767 | if (!node_online(node)) | |
3768 | continue; | |
bc732f1d | 3769 | j = build_zonelists_node(NODE_DATA(node), zonelist, j); |
1da177e4 | 3770 | } |
54a6eb5c MG |
3771 | for (node = 0; node < local_node; node++) { |
3772 | if (!node_online(node)) | |
3773 | continue; | |
bc732f1d | 3774 | j = build_zonelists_node(NODE_DATA(node), zonelist, j); |
54a6eb5c MG |
3775 | } |
3776 | ||
dd1a239f MG |
3777 | zonelist->_zonerefs[j].zone = NULL; |
3778 | zonelist->_zonerefs[j].zone_idx = 0; | |
1da177e4 LT |
3779 | } |
3780 | ||
9276b1bc | 3781 | /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ |
f0c0b2b8 | 3782 | static void build_zonelist_cache(pg_data_t *pgdat) |
9276b1bc | 3783 | { |
54a6eb5c | 3784 | pgdat->node_zonelists[0].zlcache_ptr = NULL; |
9276b1bc PJ |
3785 | } |
3786 | ||
1da177e4 LT |
3787 | #endif /* CONFIG_NUMA */ |
3788 | ||
99dcc3e5 CL |
3789 | /* |
3790 | * Boot pageset table. One per cpu which is going to be used for all | |
3791 | * zones and all nodes. The parameters will be set in such a way | |
3792 | * that an item put on a list will immediately be handed over to | |
3793 | * the buddy list. This is safe since pageset manipulation is done | |
3794 | * with interrupts disabled. | |
3795 | * | |
3796 | * The boot_pagesets must be kept even after bootup is complete for | |
3797 | * unused processors and/or zones. They do play a role for bootstrapping | |
3798 | * hotplugged processors. | |
3799 | * | |
3800 | * zoneinfo_show() and maybe other functions do | |
3801 | * not check if the processor is online before following the pageset pointer. | |
3802 | * Other parts of the kernel may not check if the zone is available. | |
3803 | */ | |
3804 | static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); | |
3805 | static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); | |
1f522509 | 3806 | static void setup_zone_pageset(struct zone *zone); |
99dcc3e5 | 3807 | |
4eaf3f64 HL |
3808 | /* |
3809 | * Global mutex to protect against size modification of zonelists | |
3810 | * as well as to serialize pageset setup for the new populated zone. | |
3811 | */ | |
3812 | DEFINE_MUTEX(zonelists_mutex); | |
3813 | ||
9b1a4d38 | 3814 | /* return values int ....just for stop_machine() */ |
4ed7e022 | 3815 | static int __build_all_zonelists(void *data) |
1da177e4 | 3816 | { |
6811378e | 3817 | int nid; |
99dcc3e5 | 3818 | int cpu; |
9adb62a5 | 3819 | pg_data_t *self = data; |
9276b1bc | 3820 | |
7f9cfb31 BL |
3821 | #ifdef CONFIG_NUMA |
3822 | memset(node_load, 0, sizeof(node_load)); | |
3823 | #endif | |
9adb62a5 JL |
3824 | |
3825 | if (self && !node_online(self->node_id)) { | |
3826 | build_zonelists(self); | |
3827 | build_zonelist_cache(self); | |
3828 | } | |
3829 | ||
9276b1bc | 3830 | for_each_online_node(nid) { |
7ea1530a CL |
3831 | pg_data_t *pgdat = NODE_DATA(nid); |
3832 | ||
3833 | build_zonelists(pgdat); | |
3834 | build_zonelist_cache(pgdat); | |
9276b1bc | 3835 | } |
99dcc3e5 CL |
3836 | |
3837 | /* | |
3838 | * Initialize the boot_pagesets that are going to be used | |
3839 | * for bootstrapping processors. The real pagesets for | |
3840 | * each zone will be allocated later when the per cpu | |
3841 | * allocator is available. | |
3842 | * | |
3843 | * boot_pagesets are used also for bootstrapping offline | |
3844 | * cpus if the system is already booted because the pagesets | |
3845 | * are needed to initialize allocators on a specific cpu too. | |
3846 | * F.e. the percpu allocator needs the page allocator which | |
3847 | * needs the percpu allocator in order to allocate its pagesets | |
3848 | * (a chicken-egg dilemma). | |
3849 | */ | |
7aac7898 | 3850 | for_each_possible_cpu(cpu) { |
99dcc3e5 CL |
3851 | setup_pageset(&per_cpu(boot_pageset, cpu), 0); |
3852 | ||
7aac7898 LS |
3853 | #ifdef CONFIG_HAVE_MEMORYLESS_NODES |
3854 | /* | |
3855 | * We now know the "local memory node" for each node-- | |
3856 | * i.e., the node of the first zone in the generic zonelist. | |
3857 | * Set up numa_mem percpu variable for on-line cpus. During | |
3858 | * boot, only the boot cpu should be on-line; we'll init the | |
3859 | * secondary cpus' numa_mem as they come on-line. During | |
3860 | * node/memory hotplug, we'll fixup all on-line cpus. | |
3861 | */ | |
3862 | if (cpu_online(cpu)) | |
3863 | set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); | |
3864 | #endif | |
3865 | } | |
3866 | ||
6811378e YG |
3867 | return 0; |
3868 | } | |
3869 | ||
4eaf3f64 HL |
3870 | /* |
3871 | * Called with zonelists_mutex held always | |
3872 | * unless system_state == SYSTEM_BOOTING. | |
3873 | */ | |
9adb62a5 | 3874 | void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone) |
6811378e | 3875 | { |
f0c0b2b8 KH |
3876 | set_zonelist_order(); |
3877 | ||
6811378e | 3878 | if (system_state == SYSTEM_BOOTING) { |
423b41d7 | 3879 | __build_all_zonelists(NULL); |
68ad8df4 | 3880 | mminit_verify_zonelist(); |
6811378e YG |
3881 | cpuset_init_current_mems_allowed(); |
3882 | } else { | |
e9959f0f | 3883 | #ifdef CONFIG_MEMORY_HOTPLUG |
9adb62a5 JL |
3884 | if (zone) |
3885 | setup_zone_pageset(zone); | |
e9959f0f | 3886 | #endif |
dd1895e2 CS |
3887 | /* we have to stop all cpus to guarantee there is no user |
3888 | of zonelist */ | |
9adb62a5 | 3889 | stop_machine(__build_all_zonelists, pgdat, NULL); |
6811378e YG |
3890 | /* cpuset refresh routine should be here */ |
3891 | } | |
bd1e22b8 | 3892 | vm_total_pages = nr_free_pagecache_pages(); |
9ef9acb0 MG |
3893 | /* |
3894 | * Disable grouping by mobility if the number of pages in the | |
3895 | * system is too low to allow the mechanism to work. It would be | |
3896 | * more accurate, but expensive to check per-zone. This check is | |
3897 | * made on memory-hotadd so a system can start with mobility | |
3898 | * disabled and enable it later | |
3899 | */ | |
d9c23400 | 3900 | if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) |
9ef9acb0 MG |
3901 | page_group_by_mobility_disabled = 1; |
3902 | else | |
3903 | page_group_by_mobility_disabled = 0; | |
3904 | ||
3905 | printk("Built %i zonelists in %s order, mobility grouping %s. " | |
3906 | "Total pages: %ld\n", | |
62bc62a8 | 3907 | nr_online_nodes, |
f0c0b2b8 | 3908 | zonelist_order_name[current_zonelist_order], |
9ef9acb0 | 3909 | page_group_by_mobility_disabled ? "off" : "on", |
f0c0b2b8 KH |
3910 | vm_total_pages); |
3911 | #ifdef CONFIG_NUMA | |
3912 | printk("Policy zone: %s\n", zone_names[policy_zone]); | |
3913 | #endif | |
1da177e4 LT |
3914 | } |
3915 | ||
3916 | /* | |
3917 | * Helper functions to size the waitqueue hash table. | |
3918 | * Essentially these want to choose hash table sizes sufficiently | |
3919 | * large so that collisions trying to wait on pages are rare. | |
3920 | * But in fact, the number of active page waitqueues on typical | |
3921 | * systems is ridiculously low, less than 200. So this is even | |
3922 | * conservative, even though it seems large. | |
3923 | * | |
3924 | * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to | |
3925 | * waitqueues, i.e. the size of the waitq table given the number of pages. | |
3926 | */ | |
3927 | #define PAGES_PER_WAITQUEUE 256 | |
3928 | ||
cca448fe | 3929 | #ifndef CONFIG_MEMORY_HOTPLUG |
02b694de | 3930 | static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) |
1da177e4 LT |
3931 | { |
3932 | unsigned long size = 1; | |
3933 | ||
3934 | pages /= PAGES_PER_WAITQUEUE; | |
3935 | ||
3936 | while (size < pages) | |
3937 | size <<= 1; | |
3938 | ||
3939 | /* | |
3940 | * Once we have dozens or even hundreds of threads sleeping | |
3941 | * on IO we've got bigger problems than wait queue collision. | |
3942 | * Limit the size of the wait table to a reasonable size. | |
3943 | */ | |
3944 | size = min(size, 4096UL); | |
3945 | ||
3946 | return max(size, 4UL); | |
3947 | } | |
cca448fe YG |
3948 | #else |
3949 | /* | |
3950 | * A zone's size might be changed by hot-add, so it is not possible to determine | |
3951 | * a suitable size for its wait_table. So we use the maximum size now. | |
3952 | * | |
3953 | * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: | |
3954 | * | |
3955 | * i386 (preemption config) : 4096 x 16 = 64Kbyte. | |
3956 | * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. | |
3957 | * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. | |
3958 | * | |
3959 | * The maximum entries are prepared when a zone's memory is (512K + 256) pages | |
3960 | * or more by the traditional way. (See above). It equals: | |
3961 | * | |
3962 | * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. | |
3963 | * ia64(16K page size) : = ( 8G + 4M)byte. | |
3964 | * powerpc (64K page size) : = (32G +16M)byte. | |
3965 | */ | |
3966 | static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) | |
3967 | { | |
3968 | return 4096UL; | |
3969 | } | |
3970 | #endif | |
1da177e4 LT |
3971 | |
3972 | /* | |
3973 | * This is an integer logarithm so that shifts can be used later | |
3974 | * to extract the more random high bits from the multiplicative | |
3975 | * hash function before the remainder is taken. | |
3976 | */ | |
3977 | static inline unsigned long wait_table_bits(unsigned long size) | |
3978 | { | |
3979 | return ffz(~size); | |
3980 | } | |
3981 | ||
6d3163ce AH |
3982 | /* |
3983 | * Check if a pageblock contains reserved pages | |
3984 | */ | |
3985 | static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn) | |
3986 | { | |
3987 | unsigned long pfn; | |
3988 | ||
3989 | for (pfn = start_pfn; pfn < end_pfn; pfn++) { | |
3990 | if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn))) | |
3991 | return 1; | |
3992 | } | |
3993 | return 0; | |
3994 | } | |
3995 | ||
56fd56b8 | 3996 | /* |
d9c23400 | 3997 | * Mark a number of pageblocks as MIGRATE_RESERVE. The number |
41858966 MG |
3998 | * of blocks reserved is based on min_wmark_pages(zone). The memory within |
3999 | * the reserve will tend to store contiguous free pages. Setting min_free_kbytes | |
56fd56b8 MG |
4000 | * higher will lead to a bigger reserve which will get freed as contiguous |
4001 | * blocks as reclaim kicks in | |
4002 | */ | |
4003 | static void setup_zone_migrate_reserve(struct zone *zone) | |
4004 | { | |
6d3163ce | 4005 | unsigned long start_pfn, pfn, end_pfn, block_end_pfn; |
56fd56b8 | 4006 | struct page *page; |
78986a67 MG |
4007 | unsigned long block_migratetype; |
4008 | int reserve; | |
943dca1a | 4009 | int old_reserve; |
56fd56b8 | 4010 | |
d0215638 MH |
4011 | /* |
4012 | * Get the start pfn, end pfn and the number of blocks to reserve | |
4013 | * We have to be careful to be aligned to pageblock_nr_pages to | |
4014 | * make sure that we always check pfn_valid for the first page in | |
4015 | * the block. | |
4016 | */ | |
56fd56b8 | 4017 | start_pfn = zone->zone_start_pfn; |
108bcc96 | 4018 | end_pfn = zone_end_pfn(zone); |
d0215638 | 4019 | start_pfn = roundup(start_pfn, pageblock_nr_pages); |
41858966 | 4020 | reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >> |
d9c23400 | 4021 | pageblock_order; |
56fd56b8 | 4022 | |
78986a67 MG |
4023 | /* |
4024 | * Reserve blocks are generally in place to help high-order atomic | |
4025 | * allocations that are short-lived. A min_free_kbytes value that | |
4026 | * would result in more than 2 reserve blocks for atomic allocations | |
4027 | * is assumed to be in place to help anti-fragmentation for the | |
4028 | * future allocation of hugepages at runtime. | |
4029 | */ | |
4030 | reserve = min(2, reserve); | |
943dca1a YI |
4031 | old_reserve = zone->nr_migrate_reserve_block; |
4032 | ||
4033 | /* When memory hot-add, we almost always need to do nothing */ | |
4034 | if (reserve == old_reserve) | |
4035 | return; | |
4036 | zone->nr_migrate_reserve_block = reserve; | |
78986a67 | 4037 | |
d9c23400 | 4038 | for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { |
56fd56b8 MG |
4039 | if (!pfn_valid(pfn)) |
4040 | continue; | |
4041 | page = pfn_to_page(pfn); | |
4042 | ||
344c790e AL |
4043 | /* Watch out for overlapping nodes */ |
4044 | if (page_to_nid(page) != zone_to_nid(zone)) | |
4045 | continue; | |
4046 | ||
56fd56b8 MG |
4047 | block_migratetype = get_pageblock_migratetype(page); |
4048 | ||
938929f1 MG |
4049 | /* Only test what is necessary when the reserves are not met */ |
4050 | if (reserve > 0) { | |
4051 | /* | |
4052 | * Blocks with reserved pages will never free, skip | |
4053 | * them. | |
4054 | */ | |
4055 | block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn); | |
4056 | if (pageblock_is_reserved(pfn, block_end_pfn)) | |
4057 | continue; | |
56fd56b8 | 4058 | |
938929f1 MG |
4059 | /* If this block is reserved, account for it */ |
4060 | if (block_migratetype == MIGRATE_RESERVE) { | |
4061 | reserve--; | |
4062 | continue; | |
4063 | } | |
4064 | ||
4065 | /* Suitable for reserving if this block is movable */ | |
4066 | if (block_migratetype == MIGRATE_MOVABLE) { | |
4067 | set_pageblock_migratetype(page, | |
4068 | MIGRATE_RESERVE); | |
4069 | move_freepages_block(zone, page, | |
4070 | MIGRATE_RESERVE); | |
4071 | reserve--; | |
4072 | continue; | |
4073 | } | |
943dca1a YI |
4074 | } else if (!old_reserve) { |
4075 | /* | |
4076 | * At boot time we don't need to scan the whole zone | |
4077 | * for turning off MIGRATE_RESERVE. | |
4078 | */ | |
4079 | break; | |
56fd56b8 MG |
4080 | } |
4081 | ||
4082 | /* | |
4083 | * If the reserve is met and this is a previous reserved block, | |
4084 | * take it back | |
4085 | */ | |
4086 | if (block_migratetype == MIGRATE_RESERVE) { | |
4087 | set_pageblock_migratetype(page, MIGRATE_MOVABLE); | |
4088 | move_freepages_block(zone, page, MIGRATE_MOVABLE); | |
4089 | } | |
4090 | } | |
4091 | } | |
ac0e5b7a | 4092 | |
1da177e4 LT |
4093 | /* |
4094 | * Initially all pages are reserved - free ones are freed | |
4095 | * up by free_all_bootmem() once the early boot process is | |
4096 | * done. Non-atomic initialization, single-pass. | |
4097 | */ | |
c09b4240 | 4098 | void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, |
a2f3aa02 | 4099 | unsigned long start_pfn, enum memmap_context context) |
1da177e4 | 4100 | { |
1da177e4 | 4101 | struct page *page; |
29751f69 AW |
4102 | unsigned long end_pfn = start_pfn + size; |
4103 | unsigned long pfn; | |
86051ca5 | 4104 | struct zone *z; |
1da177e4 | 4105 | |
22b31eec HD |
4106 | if (highest_memmap_pfn < end_pfn - 1) |
4107 | highest_memmap_pfn = end_pfn - 1; | |
4108 | ||
86051ca5 | 4109 | z = &NODE_DATA(nid)->node_zones[zone]; |
cbe8dd4a | 4110 | for (pfn = start_pfn; pfn < end_pfn; pfn++) { |
a2f3aa02 DH |
4111 | /* |
4112 | * There can be holes in boot-time mem_map[]s | |
4113 | * handed to this function. They do not | |
4114 | * exist on hotplugged memory. | |
4115 | */ | |
4116 | if (context == MEMMAP_EARLY) { | |
4117 | if (!early_pfn_valid(pfn)) | |
4118 | continue; | |
4119 | if (!early_pfn_in_nid(pfn, nid)) | |
4120 | continue; | |
4121 | } | |
d41dee36 AW |
4122 | page = pfn_to_page(pfn); |
4123 | set_page_links(page, zone, nid, pfn); | |
708614e6 | 4124 | mminit_verify_page_links(page, zone, nid, pfn); |
7835e98b | 4125 | init_page_count(page); |
22b751c3 | 4126 | page_mapcount_reset(page); |
90572890 | 4127 | page_cpupid_reset_last(page); |
1da177e4 | 4128 | SetPageReserved(page); |
b2a0ac88 MG |
4129 | /* |
4130 | * Mark the block movable so that blocks are reserved for | |
4131 | * movable at startup. This will force kernel allocations | |
4132 | * to reserve their blocks rather than leaking throughout | |
4133 | * the address space during boot when many long-lived | |
56fd56b8 MG |
4134 | * kernel allocations are made. Later some blocks near |
4135 | * the start are marked MIGRATE_RESERVE by | |
4136 | * setup_zone_migrate_reserve() | |
86051ca5 KH |
4137 | * |
4138 | * bitmap is created for zone's valid pfn range. but memmap | |
4139 | * can be created for invalid pages (for alignment) | |
4140 | * check here not to call set_pageblock_migratetype() against | |
4141 | * pfn out of zone. | |
b2a0ac88 | 4142 | */ |
86051ca5 | 4143 | if ((z->zone_start_pfn <= pfn) |
108bcc96 | 4144 | && (pfn < zone_end_pfn(z)) |
86051ca5 | 4145 | && !(pfn & (pageblock_nr_pages - 1))) |
56fd56b8 | 4146 | set_pageblock_migratetype(page, MIGRATE_MOVABLE); |
b2a0ac88 | 4147 | |
1da177e4 LT |
4148 | INIT_LIST_HEAD(&page->lru); |
4149 | #ifdef WANT_PAGE_VIRTUAL | |
4150 | /* The shift won't overflow because ZONE_NORMAL is below 4G. */ | |
4151 | if (!is_highmem_idx(zone)) | |
3212c6be | 4152 | set_page_address(page, __va(pfn << PAGE_SHIFT)); |
1da177e4 | 4153 | #endif |
1da177e4 LT |
4154 | } |
4155 | } | |
4156 | ||
1e548deb | 4157 | static void __meminit zone_init_free_lists(struct zone *zone) |
1da177e4 | 4158 | { |
7aeb09f9 | 4159 | unsigned int order, t; |
b2a0ac88 MG |
4160 | for_each_migratetype_order(order, t) { |
4161 | INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); | |
1da177e4 LT |
4162 | zone->free_area[order].nr_free = 0; |
4163 | } | |
4164 | } | |
4165 | ||
4166 | #ifndef __HAVE_ARCH_MEMMAP_INIT | |
4167 | #define memmap_init(size, nid, zone, start_pfn) \ | |
a2f3aa02 | 4168 | memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) |
1da177e4 LT |
4169 | #endif |
4170 | ||
7cd2b0a3 | 4171 | static int zone_batchsize(struct zone *zone) |
e7c8d5c9 | 4172 | { |
3a6be87f | 4173 | #ifdef CONFIG_MMU |
e7c8d5c9 CL |
4174 | int batch; |
4175 | ||
4176 | /* | |
4177 | * The per-cpu-pages pools are set to around 1000th of the | |
ba56e91c | 4178 | * size of the zone. But no more than 1/2 of a meg. |
e7c8d5c9 CL |
4179 | * |
4180 | * OK, so we don't know how big the cache is. So guess. | |
4181 | */ | |
b40da049 | 4182 | batch = zone->managed_pages / 1024; |
ba56e91c SR |
4183 | if (batch * PAGE_SIZE > 512 * 1024) |
4184 | batch = (512 * 1024) / PAGE_SIZE; | |
e7c8d5c9 CL |
4185 | batch /= 4; /* We effectively *= 4 below */ |
4186 | if (batch < 1) | |
4187 | batch = 1; | |
4188 | ||
4189 | /* | |
0ceaacc9 NP |
4190 | * Clamp the batch to a 2^n - 1 value. Having a power |
4191 | * of 2 value was found to be more likely to have | |
4192 | * suboptimal cache aliasing properties in some cases. | |
e7c8d5c9 | 4193 | * |
0ceaacc9 NP |
4194 | * For example if 2 tasks are alternately allocating |
4195 | * batches of pages, one task can end up with a lot | |
4196 | * of pages of one half of the possible page colors | |
4197 | * and the other with pages of the other colors. | |
e7c8d5c9 | 4198 | */ |
9155203a | 4199 | batch = rounddown_pow_of_two(batch + batch/2) - 1; |
ba56e91c | 4200 | |
e7c8d5c9 | 4201 | return batch; |
3a6be87f DH |
4202 | |
4203 | #else | |
4204 | /* The deferral and batching of frees should be suppressed under NOMMU | |
4205 | * conditions. | |
4206 | * | |
4207 | * The problem is that NOMMU needs to be able to allocate large chunks | |
4208 | * of contiguous memory as there's no hardware page translation to | |
4209 | * assemble apparent contiguous memory from discontiguous pages. | |
4210 | * | |
4211 | * Queueing large contiguous runs of pages for batching, however, | |
4212 | * causes the pages to actually be freed in smaller chunks. As there | |
4213 | * can be a significant delay between the individual batches being | |
4214 | * recycled, this leads to the once large chunks of space being | |
4215 | * fragmented and becoming unavailable for high-order allocations. | |
4216 | */ | |
4217 | return 0; | |
4218 | #endif | |
e7c8d5c9 CL |
4219 | } |
4220 | ||
8d7a8fa9 CS |
4221 | /* |
4222 | * pcp->high and pcp->batch values are related and dependent on one another: | |
4223 | * ->batch must never be higher then ->high. | |
4224 | * The following function updates them in a safe manner without read side | |
4225 | * locking. | |
4226 | * | |
4227 | * Any new users of pcp->batch and pcp->high should ensure they can cope with | |
4228 | * those fields changing asynchronously (acording the the above rule). | |
4229 | * | |
4230 | * mutex_is_locked(&pcp_batch_high_lock) required when calling this function | |
4231 | * outside of boot time (or some other assurance that no concurrent updaters | |
4232 | * exist). | |
4233 | */ | |
4234 | static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, | |
4235 | unsigned long batch) | |
4236 | { | |
4237 | /* start with a fail safe value for batch */ | |
4238 | pcp->batch = 1; | |
4239 | smp_wmb(); | |
4240 | ||
4241 | /* Update high, then batch, in order */ | |
4242 | pcp->high = high; | |
4243 | smp_wmb(); | |
4244 | ||
4245 | pcp->batch = batch; | |
4246 | } | |
4247 | ||
3664033c | 4248 | /* a companion to pageset_set_high() */ |
4008bab7 CS |
4249 | static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) |
4250 | { | |
8d7a8fa9 | 4251 | pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); |
4008bab7 CS |
4252 | } |
4253 | ||
88c90dbc | 4254 | static void pageset_init(struct per_cpu_pageset *p) |
2caaad41 CL |
4255 | { |
4256 | struct per_cpu_pages *pcp; | |
5f8dcc21 | 4257 | int migratetype; |
2caaad41 | 4258 | |
1c6fe946 MD |
4259 | memset(p, 0, sizeof(*p)); |
4260 | ||
3dfa5721 | 4261 | pcp = &p->pcp; |
2caaad41 | 4262 | pcp->count = 0; |
5f8dcc21 MG |
4263 | for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) |
4264 | INIT_LIST_HEAD(&pcp->lists[migratetype]); | |
2caaad41 CL |
4265 | } |
4266 | ||
88c90dbc CS |
4267 | static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) |
4268 | { | |
4269 | pageset_init(p); | |
4270 | pageset_set_batch(p, batch); | |
4271 | } | |
4272 | ||
8ad4b1fb | 4273 | /* |
3664033c | 4274 | * pageset_set_high() sets the high water mark for hot per_cpu_pagelist |
8ad4b1fb RS |
4275 | * to the value high for the pageset p. |
4276 | */ | |
3664033c | 4277 | static void pageset_set_high(struct per_cpu_pageset *p, |
8ad4b1fb RS |
4278 | unsigned long high) |
4279 | { | |
8d7a8fa9 CS |
4280 | unsigned long batch = max(1UL, high / 4); |
4281 | if ((high / 4) > (PAGE_SHIFT * 8)) | |
4282 | batch = PAGE_SHIFT * 8; | |
8ad4b1fb | 4283 | |
8d7a8fa9 | 4284 | pageset_update(&p->pcp, high, batch); |
8ad4b1fb RS |
4285 | } |
4286 | ||
7cd2b0a3 DR |
4287 | static void pageset_set_high_and_batch(struct zone *zone, |
4288 | struct per_cpu_pageset *pcp) | |
56cef2b8 | 4289 | { |
56cef2b8 | 4290 | if (percpu_pagelist_fraction) |
3664033c | 4291 | pageset_set_high(pcp, |
56cef2b8 CS |
4292 | (zone->managed_pages / |
4293 | percpu_pagelist_fraction)); | |
4294 | else | |
4295 | pageset_set_batch(pcp, zone_batchsize(zone)); | |
4296 | } | |
4297 | ||
169f6c19 CS |
4298 | static void __meminit zone_pageset_init(struct zone *zone, int cpu) |
4299 | { | |
4300 | struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); | |
4301 | ||
4302 | pageset_init(pcp); | |
4303 | pageset_set_high_and_batch(zone, pcp); | |
4304 | } | |
4305 | ||
4ed7e022 | 4306 | static void __meminit setup_zone_pageset(struct zone *zone) |
319774e2 WF |
4307 | { |
4308 | int cpu; | |
319774e2 | 4309 | zone->pageset = alloc_percpu(struct per_cpu_pageset); |
56cef2b8 CS |
4310 | for_each_possible_cpu(cpu) |
4311 | zone_pageset_init(zone, cpu); | |
319774e2 WF |
4312 | } |
4313 | ||
2caaad41 | 4314 | /* |
99dcc3e5 CL |
4315 | * Allocate per cpu pagesets and initialize them. |
4316 | * Before this call only boot pagesets were available. | |
e7c8d5c9 | 4317 | */ |
99dcc3e5 | 4318 | void __init setup_per_cpu_pageset(void) |
e7c8d5c9 | 4319 | { |
99dcc3e5 | 4320 | struct zone *zone; |
e7c8d5c9 | 4321 | |
319774e2 WF |
4322 | for_each_populated_zone(zone) |
4323 | setup_zone_pageset(zone); | |
e7c8d5c9 CL |
4324 | } |
4325 | ||
577a32f6 | 4326 | static noinline __init_refok |
cca448fe | 4327 | int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) |
ed8ece2e DH |
4328 | { |
4329 | int i; | |
cca448fe | 4330 | size_t alloc_size; |
ed8ece2e DH |
4331 | |
4332 | /* | |
4333 | * The per-page waitqueue mechanism uses hashed waitqueues | |
4334 | * per zone. | |
4335 | */ | |
02b694de YG |
4336 | zone->wait_table_hash_nr_entries = |
4337 | wait_table_hash_nr_entries(zone_size_pages); | |
4338 | zone->wait_table_bits = | |
4339 | wait_table_bits(zone->wait_table_hash_nr_entries); | |
cca448fe YG |
4340 | alloc_size = zone->wait_table_hash_nr_entries |
4341 | * sizeof(wait_queue_head_t); | |
4342 | ||
cd94b9db | 4343 | if (!slab_is_available()) { |
cca448fe | 4344 | zone->wait_table = (wait_queue_head_t *) |
6782832e SS |
4345 | memblock_virt_alloc_node_nopanic( |
4346 | alloc_size, zone->zone_pgdat->node_id); | |
cca448fe YG |
4347 | } else { |
4348 | /* | |
4349 | * This case means that a zone whose size was 0 gets new memory | |
4350 | * via memory hot-add. | |
4351 | * But it may be the case that a new node was hot-added. In | |
4352 | * this case vmalloc() will not be able to use this new node's | |
4353 | * memory - this wait_table must be initialized to use this new | |
4354 | * node itself as well. | |
4355 | * To use this new node's memory, further consideration will be | |
4356 | * necessary. | |
4357 | */ | |
8691f3a7 | 4358 | zone->wait_table = vmalloc(alloc_size); |
cca448fe YG |
4359 | } |
4360 | if (!zone->wait_table) | |
4361 | return -ENOMEM; | |
ed8ece2e | 4362 | |
b8af2941 | 4363 | for (i = 0; i < zone->wait_table_hash_nr_entries; ++i) |
ed8ece2e | 4364 | init_waitqueue_head(zone->wait_table + i); |
cca448fe YG |
4365 | |
4366 | return 0; | |
ed8ece2e DH |
4367 | } |
4368 | ||
c09b4240 | 4369 | static __meminit void zone_pcp_init(struct zone *zone) |
ed8ece2e | 4370 | { |
99dcc3e5 CL |
4371 | /* |
4372 | * per cpu subsystem is not up at this point. The following code | |
4373 | * relies on the ability of the linker to provide the | |
4374 | * offset of a (static) per cpu variable into the per cpu area. | |
4375 | */ | |
4376 | zone->pageset = &boot_pageset; | |
ed8ece2e | 4377 | |
b38a8725 | 4378 | if (populated_zone(zone)) |
99dcc3e5 CL |
4379 | printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", |
4380 | zone->name, zone->present_pages, | |
4381 | zone_batchsize(zone)); | |
ed8ece2e DH |
4382 | } |
4383 | ||
4ed7e022 | 4384 | int __meminit init_currently_empty_zone(struct zone *zone, |
718127cc | 4385 | unsigned long zone_start_pfn, |
a2f3aa02 DH |
4386 | unsigned long size, |
4387 | enum memmap_context context) | |
ed8ece2e DH |
4388 | { |
4389 | struct pglist_data *pgdat = zone->zone_pgdat; | |
cca448fe YG |
4390 | int ret; |
4391 | ret = zone_wait_table_init(zone, size); | |
4392 | if (ret) | |
4393 | return ret; | |
ed8ece2e DH |
4394 | pgdat->nr_zones = zone_idx(zone) + 1; |
4395 | ||
ed8ece2e DH |
4396 | zone->zone_start_pfn = zone_start_pfn; |
4397 | ||
708614e6 MG |
4398 | mminit_dprintk(MMINIT_TRACE, "memmap_init", |
4399 | "Initialising map node %d zone %lu pfns %lu -> %lu\n", | |
4400 | pgdat->node_id, | |
4401 | (unsigned long)zone_idx(zone), | |
4402 | zone_start_pfn, (zone_start_pfn + size)); | |
4403 | ||
1e548deb | 4404 | zone_init_free_lists(zone); |
718127cc YG |
4405 | |
4406 | return 0; | |
ed8ece2e DH |
4407 | } |
4408 | ||
0ee332c1 | 4409 | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP |
c713216d MG |
4410 | #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID |
4411 | /* | |
4412 | * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. | |
c713216d | 4413 | */ |
f2dbcfa7 | 4414 | int __meminit __early_pfn_to_nid(unsigned long pfn) |
c713216d | 4415 | { |
c13291a5 | 4416 | unsigned long start_pfn, end_pfn; |
e76b63f8 | 4417 | int nid; |
7c243c71 RA |
4418 | /* |
4419 | * NOTE: The following SMP-unsafe globals are only used early in boot | |
4420 | * when the kernel is running single-threaded. | |
4421 | */ | |
4422 | static unsigned long __meminitdata last_start_pfn, last_end_pfn; | |
4423 | static int __meminitdata last_nid; | |
4424 | ||
4425 | if (last_start_pfn <= pfn && pfn < last_end_pfn) | |
4426 | return last_nid; | |
c713216d | 4427 | |
e76b63f8 YL |
4428 | nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); |
4429 | if (nid != -1) { | |
4430 | last_start_pfn = start_pfn; | |
4431 | last_end_pfn = end_pfn; | |
4432 | last_nid = nid; | |
4433 | } | |
4434 | ||
4435 | return nid; | |
c713216d MG |
4436 | } |
4437 | #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ | |
4438 | ||
f2dbcfa7 KH |
4439 | int __meminit early_pfn_to_nid(unsigned long pfn) |
4440 | { | |
cc2559bc KH |
4441 | int nid; |
4442 | ||
4443 | nid = __early_pfn_to_nid(pfn); | |
4444 | if (nid >= 0) | |
4445 | return nid; | |
4446 | /* just returns 0 */ | |
4447 | return 0; | |
f2dbcfa7 KH |
4448 | } |
4449 | ||
cc2559bc KH |
4450 | #ifdef CONFIG_NODES_SPAN_OTHER_NODES |
4451 | bool __meminit early_pfn_in_nid(unsigned long pfn, int node) | |
4452 | { | |
4453 | int nid; | |
4454 | ||
4455 | nid = __early_pfn_to_nid(pfn); | |
4456 | if (nid >= 0 && nid != node) | |
4457 | return false; | |
4458 | return true; | |
4459 | } | |
4460 | #endif | |
f2dbcfa7 | 4461 | |
c713216d | 4462 | /** |
6782832e | 4463 | * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range |
88ca3b94 | 4464 | * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. |
6782832e | 4465 | * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid |
c713216d | 4466 | * |
7d018176 ZZ |
4467 | * If an architecture guarantees that all ranges registered contain no holes |
4468 | * and may be freed, this this function may be used instead of calling | |
4469 | * memblock_free_early_nid() manually. | |
c713216d | 4470 | */ |
c13291a5 | 4471 | void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) |
cc289894 | 4472 | { |
c13291a5 TH |
4473 | unsigned long start_pfn, end_pfn; |
4474 | int i, this_nid; | |
edbe7d23 | 4475 | |
c13291a5 TH |
4476 | for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { |
4477 | start_pfn = min(start_pfn, max_low_pfn); | |
4478 | end_pfn = min(end_pfn, max_low_pfn); | |
edbe7d23 | 4479 | |
c13291a5 | 4480 | if (start_pfn < end_pfn) |
6782832e SS |
4481 | memblock_free_early_nid(PFN_PHYS(start_pfn), |
4482 | (end_pfn - start_pfn) << PAGE_SHIFT, | |
4483 | this_nid); | |
edbe7d23 | 4484 | } |
edbe7d23 | 4485 | } |
edbe7d23 | 4486 | |
c713216d MG |
4487 | /** |
4488 | * sparse_memory_present_with_active_regions - Call memory_present for each active range | |
88ca3b94 | 4489 | * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. |
c713216d | 4490 | * |
7d018176 ZZ |
4491 | * If an architecture guarantees that all ranges registered contain no holes and may |
4492 | * be freed, this function may be used instead of calling memory_present() manually. | |
c713216d MG |
4493 | */ |
4494 | void __init sparse_memory_present_with_active_regions(int nid) | |
4495 | { | |
c13291a5 TH |
4496 | unsigned long start_pfn, end_pfn; |
4497 | int i, this_nid; | |
c713216d | 4498 | |
c13291a5 TH |
4499 | for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) |
4500 | memory_present(this_nid, start_pfn, end_pfn); | |
c713216d MG |
4501 | } |
4502 | ||
4503 | /** | |
4504 | * get_pfn_range_for_nid - Return the start and end page frames for a node | |
88ca3b94 RD |
4505 | * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. |
4506 | * @start_pfn: Passed by reference. On return, it will have the node start_pfn. | |
4507 | * @end_pfn: Passed by reference. On return, it will have the node end_pfn. | |
c713216d MG |
4508 | * |
4509 | * It returns the start and end page frame of a node based on information | |
7d018176 | 4510 | * provided by memblock_set_node(). If called for a node |
c713216d | 4511 | * with no available memory, a warning is printed and the start and end |
88ca3b94 | 4512 | * PFNs will be 0. |
c713216d | 4513 | */ |
a3142c8e | 4514 | void __meminit get_pfn_range_for_nid(unsigned int nid, |
c713216d MG |
4515 | unsigned long *start_pfn, unsigned long *end_pfn) |
4516 | { | |
c13291a5 | 4517 | unsigned long this_start_pfn, this_end_pfn; |
c713216d | 4518 | int i; |
c13291a5 | 4519 | |
c713216d MG |
4520 | *start_pfn = -1UL; |
4521 | *end_pfn = 0; | |
4522 | ||
c13291a5 TH |
4523 | for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { |
4524 | *start_pfn = min(*start_pfn, this_start_pfn); | |
4525 | *end_pfn = max(*end_pfn, this_end_pfn); | |
c713216d MG |
4526 | } |
4527 | ||
633c0666 | 4528 | if (*start_pfn == -1UL) |
c713216d | 4529 | *start_pfn = 0; |
c713216d MG |
4530 | } |
4531 | ||
2a1e274a MG |
4532 | /* |
4533 | * This finds a zone that can be used for ZONE_MOVABLE pages. The | |
4534 | * assumption is made that zones within a node are ordered in monotonic | |
4535 | * increasing memory addresses so that the "highest" populated zone is used | |
4536 | */ | |
b69a7288 | 4537 | static void __init find_usable_zone_for_movable(void) |
2a1e274a MG |
4538 | { |
4539 | int zone_index; | |
4540 | for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { | |
4541 | if (zone_index == ZONE_MOVABLE) | |
4542 | continue; | |
4543 | ||
4544 | if (arch_zone_highest_possible_pfn[zone_index] > | |
4545 | arch_zone_lowest_possible_pfn[zone_index]) | |
4546 | break; | |
4547 | } | |
4548 | ||
4549 | VM_BUG_ON(zone_index == -1); | |
4550 | movable_zone = zone_index; | |
4551 | } | |
4552 | ||
4553 | /* | |
4554 | * The zone ranges provided by the architecture do not include ZONE_MOVABLE | |
25985edc | 4555 | * because it is sized independent of architecture. Unlike the other zones, |
2a1e274a MG |
4556 | * the starting point for ZONE_MOVABLE is not fixed. It may be different |
4557 | * in each node depending on the size of each node and how evenly kernelcore | |
4558 | * is distributed. This helper function adjusts the zone ranges | |
4559 | * provided by the architecture for a given node by using the end of the | |
4560 | * highest usable zone for ZONE_MOVABLE. This preserves the assumption that | |
4561 | * zones within a node are in order of monotonic increases memory addresses | |
4562 | */ | |
b69a7288 | 4563 | static void __meminit adjust_zone_range_for_zone_movable(int nid, |
2a1e274a MG |
4564 | unsigned long zone_type, |
4565 | unsigned long node_start_pfn, | |
4566 | unsigned long node_end_pfn, | |
4567 | unsigned long *zone_start_pfn, | |
4568 | unsigned long *zone_end_pfn) | |
4569 | { | |
4570 | /* Only adjust if ZONE_MOVABLE is on this node */ | |
4571 | if (zone_movable_pfn[nid]) { | |
4572 | /* Size ZONE_MOVABLE */ | |
4573 | if (zone_type == ZONE_MOVABLE) { | |
4574 | *zone_start_pfn = zone_movable_pfn[nid]; | |
4575 | *zone_end_pfn = min(node_end_pfn, | |
4576 | arch_zone_highest_possible_pfn[movable_zone]); | |
4577 | ||
4578 | /* Adjust for ZONE_MOVABLE starting within this range */ | |
4579 | } else if (*zone_start_pfn < zone_movable_pfn[nid] && | |
4580 | *zone_end_pfn > zone_movable_pfn[nid]) { | |
4581 | *zone_end_pfn = zone_movable_pfn[nid]; | |
4582 | ||
4583 | /* Check if this whole range is within ZONE_MOVABLE */ | |
4584 | } else if (*zone_start_pfn >= zone_movable_pfn[nid]) | |
4585 | *zone_start_pfn = *zone_end_pfn; | |
4586 | } | |
4587 | } | |
4588 | ||
c713216d MG |
4589 | /* |
4590 | * Return the number of pages a zone spans in a node, including holes | |
4591 | * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() | |
4592 | */ | |
6ea6e688 | 4593 | static unsigned long __meminit zone_spanned_pages_in_node(int nid, |
c713216d | 4594 | unsigned long zone_type, |
7960aedd ZY |
4595 | unsigned long node_start_pfn, |
4596 | unsigned long node_end_pfn, | |
c713216d MG |
4597 | unsigned long *ignored) |
4598 | { | |
c713216d MG |
4599 | unsigned long zone_start_pfn, zone_end_pfn; |
4600 | ||
7960aedd | 4601 | /* Get the start and end of the zone */ |
c713216d MG |
4602 | zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; |
4603 | zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; | |
2a1e274a MG |
4604 | adjust_zone_range_for_zone_movable(nid, zone_type, |
4605 | node_start_pfn, node_end_pfn, | |
4606 | &zone_start_pfn, &zone_end_pfn); | |
c713216d MG |
4607 | |
4608 | /* Check that this node has pages within the zone's required range */ | |
4609 | if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) | |
4610 | return 0; | |
4611 | ||
4612 | /* Move the zone boundaries inside the node if necessary */ | |
4613 | zone_end_pfn = min(zone_end_pfn, node_end_pfn); | |
4614 | zone_start_pfn = max(zone_start_pfn, node_start_pfn); | |
4615 | ||
4616 | /* Return the spanned pages */ | |
4617 | return zone_end_pfn - zone_start_pfn; | |
4618 | } | |
4619 | ||
4620 | /* | |
4621 | * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, | |
88ca3b94 | 4622 | * then all holes in the requested range will be accounted for. |
c713216d | 4623 | */ |
32996250 | 4624 | unsigned long __meminit __absent_pages_in_range(int nid, |
c713216d MG |
4625 | unsigned long range_start_pfn, |
4626 | unsigned long range_end_pfn) | |
4627 | { | |
96e907d1 TH |
4628 | unsigned long nr_absent = range_end_pfn - range_start_pfn; |
4629 | unsigned long start_pfn, end_pfn; | |
4630 | int i; | |
c713216d | 4631 | |
96e907d1 TH |
4632 | for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { |
4633 | start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); | |
4634 | end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); | |
4635 | nr_absent -= end_pfn - start_pfn; | |
c713216d | 4636 | } |
96e907d1 | 4637 | return nr_absent; |
c713216d MG |
4638 | } |
4639 | ||
4640 | /** | |
4641 | * absent_pages_in_range - Return number of page frames in holes within a range | |
4642 | * @start_pfn: The start PFN to start searching for holes | |
4643 | * @end_pfn: The end PFN to stop searching for holes | |
4644 | * | |
88ca3b94 | 4645 | * It returns the number of pages frames in memory holes within a range. |
c713216d MG |
4646 | */ |
4647 | unsigned long __init absent_pages_in_range(unsigned long start_pfn, | |
4648 | unsigned long end_pfn) | |
4649 | { | |
4650 | return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); | |
4651 | } | |
4652 | ||
4653 | /* Return the number of page frames in holes in a zone on a node */ | |
6ea6e688 | 4654 | static unsigned long __meminit zone_absent_pages_in_node(int nid, |
c713216d | 4655 | unsigned long zone_type, |
7960aedd ZY |
4656 | unsigned long node_start_pfn, |
4657 | unsigned long node_end_pfn, | |
c713216d MG |
4658 | unsigned long *ignored) |
4659 | { | |
96e907d1 TH |
4660 | unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; |
4661 | unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; | |
9c7cd687 MG |
4662 | unsigned long zone_start_pfn, zone_end_pfn; |
4663 | ||
96e907d1 TH |
4664 | zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); |
4665 | zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); | |
9c7cd687 | 4666 | |
2a1e274a MG |
4667 | adjust_zone_range_for_zone_movable(nid, zone_type, |
4668 | node_start_pfn, node_end_pfn, | |
4669 | &zone_start_pfn, &zone_end_pfn); | |
9c7cd687 | 4670 | return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); |
c713216d | 4671 | } |
0e0b864e | 4672 | |
0ee332c1 | 4673 | #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ |
6ea6e688 | 4674 | static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, |
c713216d | 4675 | unsigned long zone_type, |
7960aedd ZY |
4676 | unsigned long node_start_pfn, |
4677 | unsigned long node_end_pfn, | |
c713216d MG |
4678 | unsigned long *zones_size) |
4679 | { | |
4680 | return zones_size[zone_type]; | |
4681 | } | |
4682 | ||
6ea6e688 | 4683 | static inline unsigned long __meminit zone_absent_pages_in_node(int nid, |
c713216d | 4684 | unsigned long zone_type, |
7960aedd ZY |
4685 | unsigned long node_start_pfn, |
4686 | unsigned long node_end_pfn, | |
c713216d MG |
4687 | unsigned long *zholes_size) |
4688 | { | |
4689 | if (!zholes_size) | |
4690 | return 0; | |
4691 | ||
4692 | return zholes_size[zone_type]; | |
4693 | } | |
20e6926d | 4694 | |
0ee332c1 | 4695 | #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ |
c713216d | 4696 | |
a3142c8e | 4697 | static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, |
7960aedd ZY |
4698 | unsigned long node_start_pfn, |
4699 | unsigned long node_end_pfn, | |
4700 | unsigned long *zones_size, | |
4701 | unsigned long *zholes_size) | |
c713216d MG |
4702 | { |
4703 | unsigned long realtotalpages, totalpages = 0; | |
4704 | enum zone_type i; | |
4705 | ||
4706 | for (i = 0; i < MAX_NR_ZONES; i++) | |
4707 | totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, | |
7960aedd ZY |
4708 | node_start_pfn, |
4709 | node_end_pfn, | |
4710 | zones_size); | |
c713216d MG |
4711 | pgdat->node_spanned_pages = totalpages; |
4712 | ||
4713 | realtotalpages = totalpages; | |
4714 | for (i = 0; i < MAX_NR_ZONES; i++) | |
4715 | realtotalpages -= | |
4716 | zone_absent_pages_in_node(pgdat->node_id, i, | |
7960aedd ZY |
4717 | node_start_pfn, node_end_pfn, |
4718 | zholes_size); | |
c713216d MG |
4719 | pgdat->node_present_pages = realtotalpages; |
4720 | printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, | |
4721 | realtotalpages); | |
4722 | } | |
4723 | ||
835c134e MG |
4724 | #ifndef CONFIG_SPARSEMEM |
4725 | /* | |
4726 | * Calculate the size of the zone->blockflags rounded to an unsigned long | |
d9c23400 MG |
4727 | * Start by making sure zonesize is a multiple of pageblock_order by rounding |
4728 | * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally | |
835c134e MG |
4729 | * round what is now in bits to nearest long in bits, then return it in |
4730 | * bytes. | |
4731 | */ | |
7c45512d | 4732 | static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) |
835c134e MG |
4733 | { |
4734 | unsigned long usemapsize; | |
4735 | ||
7c45512d | 4736 | zonesize += zone_start_pfn & (pageblock_nr_pages-1); |
d9c23400 MG |
4737 | usemapsize = roundup(zonesize, pageblock_nr_pages); |
4738 | usemapsize = usemapsize >> pageblock_order; | |
835c134e MG |
4739 | usemapsize *= NR_PAGEBLOCK_BITS; |
4740 | usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); | |
4741 | ||
4742 | return usemapsize / 8; | |
4743 | } | |
4744 | ||
4745 | static void __init setup_usemap(struct pglist_data *pgdat, | |
7c45512d LT |
4746 | struct zone *zone, |
4747 | unsigned long zone_start_pfn, | |
4748 | unsigned long zonesize) | |
835c134e | 4749 | { |
7c45512d | 4750 | unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); |
835c134e | 4751 | zone->pageblock_flags = NULL; |
58a01a45 | 4752 | if (usemapsize) |
6782832e SS |
4753 | zone->pageblock_flags = |
4754 | memblock_virt_alloc_node_nopanic(usemapsize, | |
4755 | pgdat->node_id); | |
835c134e MG |
4756 | } |
4757 | #else | |
7c45512d LT |
4758 | static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, |
4759 | unsigned long zone_start_pfn, unsigned long zonesize) {} | |
835c134e MG |
4760 | #endif /* CONFIG_SPARSEMEM */ |
4761 | ||
d9c23400 | 4762 | #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE |
ba72cb8c | 4763 | |
d9c23400 | 4764 | /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ |
15ca220e | 4765 | void __paginginit set_pageblock_order(void) |
d9c23400 | 4766 | { |
955c1cd7 AM |
4767 | unsigned int order; |
4768 | ||
d9c23400 MG |
4769 | /* Check that pageblock_nr_pages has not already been setup */ |
4770 | if (pageblock_order) | |
4771 | return; | |
4772 | ||
955c1cd7 AM |
4773 | if (HPAGE_SHIFT > PAGE_SHIFT) |
4774 | order = HUGETLB_PAGE_ORDER; | |
4775 | else | |
4776 | order = MAX_ORDER - 1; | |
4777 | ||
d9c23400 MG |
4778 | /* |
4779 | * Assume the largest contiguous order of interest is a huge page. | |
955c1cd7 AM |
4780 | * This value may be variable depending on boot parameters on IA64 and |
4781 | * powerpc. | |
d9c23400 MG |
4782 | */ |
4783 | pageblock_order = order; | |
4784 | } | |
4785 | #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ | |
4786 | ||
ba72cb8c MG |
4787 | /* |
4788 | * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() | |
955c1cd7 AM |
4789 | * is unused as pageblock_order is set at compile-time. See |
4790 | * include/linux/pageblock-flags.h for the values of pageblock_order based on | |
4791 | * the kernel config | |
ba72cb8c | 4792 | */ |
15ca220e | 4793 | void __paginginit set_pageblock_order(void) |
ba72cb8c | 4794 | { |
ba72cb8c | 4795 | } |
d9c23400 MG |
4796 | |
4797 | #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ | |
4798 | ||
01cefaef JL |
4799 | static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages, |
4800 | unsigned long present_pages) | |
4801 | { | |
4802 | unsigned long pages = spanned_pages; | |
4803 | ||
4804 | /* | |
4805 | * Provide a more accurate estimation if there are holes within | |
4806 | * the zone and SPARSEMEM is in use. If there are holes within the | |
4807 | * zone, each populated memory region may cost us one or two extra | |
4808 | * memmap pages due to alignment because memmap pages for each | |
4809 | * populated regions may not naturally algined on page boundary. | |
4810 | * So the (present_pages >> 4) heuristic is a tradeoff for that. | |
4811 | */ | |
4812 | if (spanned_pages > present_pages + (present_pages >> 4) && | |
4813 | IS_ENABLED(CONFIG_SPARSEMEM)) | |
4814 | pages = present_pages; | |
4815 | ||
4816 | return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; | |
4817 | } | |
4818 | ||
1da177e4 LT |
4819 | /* |
4820 | * Set up the zone data structures: | |
4821 | * - mark all pages reserved | |
4822 | * - mark all memory queues empty | |
4823 | * - clear the memory bitmaps | |
6527af5d MK |
4824 | * |
4825 | * NOTE: pgdat should get zeroed by caller. | |
1da177e4 | 4826 | */ |
b5a0e011 | 4827 | static void __paginginit free_area_init_core(struct pglist_data *pgdat, |
7960aedd | 4828 | unsigned long node_start_pfn, unsigned long node_end_pfn, |
1da177e4 LT |
4829 | unsigned long *zones_size, unsigned long *zholes_size) |
4830 | { | |
2f1b6248 | 4831 | enum zone_type j; |
ed8ece2e | 4832 | int nid = pgdat->node_id; |
1da177e4 | 4833 | unsigned long zone_start_pfn = pgdat->node_start_pfn; |
718127cc | 4834 | int ret; |
1da177e4 | 4835 | |
208d54e5 | 4836 | pgdat_resize_init(pgdat); |
8177a420 AA |
4837 | #ifdef CONFIG_NUMA_BALANCING |
4838 | spin_lock_init(&pgdat->numabalancing_migrate_lock); | |
4839 | pgdat->numabalancing_migrate_nr_pages = 0; | |
4840 | pgdat->numabalancing_migrate_next_window = jiffies; | |
4841 | #endif | |
1da177e4 | 4842 | init_waitqueue_head(&pgdat->kswapd_wait); |
5515061d | 4843 | init_waitqueue_head(&pgdat->pfmemalloc_wait); |
52d4b9ac | 4844 | pgdat_page_cgroup_init(pgdat); |
5f63b720 | 4845 | |
1da177e4 LT |
4846 | for (j = 0; j < MAX_NR_ZONES; j++) { |
4847 | struct zone *zone = pgdat->node_zones + j; | |
9feedc9d | 4848 | unsigned long size, realsize, freesize, memmap_pages; |
1da177e4 | 4849 | |
7960aedd ZY |
4850 | size = zone_spanned_pages_in_node(nid, j, node_start_pfn, |
4851 | node_end_pfn, zones_size); | |
9feedc9d | 4852 | realsize = freesize = size - zone_absent_pages_in_node(nid, j, |
7960aedd ZY |
4853 | node_start_pfn, |
4854 | node_end_pfn, | |
c713216d | 4855 | zholes_size); |
1da177e4 | 4856 | |
0e0b864e | 4857 | /* |
9feedc9d | 4858 | * Adjust freesize so that it accounts for how much memory |
0e0b864e MG |
4859 | * is used by this zone for memmap. This affects the watermark |
4860 | * and per-cpu initialisations | |
4861 | */ | |
01cefaef | 4862 | memmap_pages = calc_memmap_size(size, realsize); |
9feedc9d JL |
4863 | if (freesize >= memmap_pages) { |
4864 | freesize -= memmap_pages; | |
5594c8c8 YL |
4865 | if (memmap_pages) |
4866 | printk(KERN_DEBUG | |
4867 | " %s zone: %lu pages used for memmap\n", | |
4868 | zone_names[j], memmap_pages); | |
0e0b864e MG |
4869 | } else |
4870 | printk(KERN_WARNING | |
9feedc9d JL |
4871 | " %s zone: %lu pages exceeds freesize %lu\n", |
4872 | zone_names[j], memmap_pages, freesize); | |
0e0b864e | 4873 | |
6267276f | 4874 | /* Account for reserved pages */ |
9feedc9d JL |
4875 | if (j == 0 && freesize > dma_reserve) { |
4876 | freesize -= dma_reserve; | |
d903ef9f | 4877 | printk(KERN_DEBUG " %s zone: %lu pages reserved\n", |
6267276f | 4878 | zone_names[0], dma_reserve); |
0e0b864e MG |
4879 | } |
4880 | ||
98d2b0eb | 4881 | if (!is_highmem_idx(j)) |
9feedc9d | 4882 | nr_kernel_pages += freesize; |
01cefaef JL |
4883 | /* Charge for highmem memmap if there are enough kernel pages */ |
4884 | else if (nr_kernel_pages > memmap_pages * 2) | |
4885 | nr_kernel_pages -= memmap_pages; | |
9feedc9d | 4886 | nr_all_pages += freesize; |
1da177e4 LT |
4887 | |
4888 | zone->spanned_pages = size; | |
306f2e9e | 4889 | zone->present_pages = realsize; |
9feedc9d JL |
4890 | /* |
4891 | * Set an approximate value for lowmem here, it will be adjusted | |
4892 | * when the bootmem allocator frees pages into the buddy system. | |
4893 | * And all highmem pages will be managed by the buddy system. | |
4894 | */ | |
4895 | zone->managed_pages = is_highmem_idx(j) ? realsize : freesize; | |
9614634f | 4896 | #ifdef CONFIG_NUMA |
d5f541ed | 4897 | zone->node = nid; |
9feedc9d | 4898 | zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio) |
9614634f | 4899 | / 100; |
9feedc9d | 4900 | zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100; |
9614634f | 4901 | #endif |
1da177e4 LT |
4902 | zone->name = zone_names[j]; |
4903 | spin_lock_init(&zone->lock); | |
4904 | spin_lock_init(&zone->lru_lock); | |
bdc8cb98 | 4905 | zone_seqlock_init(zone); |
1da177e4 | 4906 | zone->zone_pgdat = pgdat; |
ed8ece2e | 4907 | zone_pcp_init(zone); |
81c0a2bb JW |
4908 | |
4909 | /* For bootup, initialized properly in watermark setup */ | |
4910 | mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages); | |
4911 | ||
bea8c150 | 4912 | lruvec_init(&zone->lruvec); |
1da177e4 LT |
4913 | if (!size) |
4914 | continue; | |
4915 | ||
955c1cd7 | 4916 | set_pageblock_order(); |
7c45512d | 4917 | setup_usemap(pgdat, zone, zone_start_pfn, size); |
a2f3aa02 DH |
4918 | ret = init_currently_empty_zone(zone, zone_start_pfn, |
4919 | size, MEMMAP_EARLY); | |
718127cc | 4920 | BUG_ON(ret); |
76cdd58e | 4921 | memmap_init(size, nid, j, zone_start_pfn); |
1da177e4 | 4922 | zone_start_pfn += size; |
1da177e4 LT |
4923 | } |
4924 | } | |
4925 | ||
577a32f6 | 4926 | static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) |
1da177e4 | 4927 | { |
1da177e4 LT |
4928 | /* Skip empty nodes */ |
4929 | if (!pgdat->node_spanned_pages) | |
4930 | return; | |
4931 | ||
d41dee36 | 4932 | #ifdef CONFIG_FLAT_NODE_MEM_MAP |
1da177e4 LT |
4933 | /* ia64 gets its own node_mem_map, before this, without bootmem */ |
4934 | if (!pgdat->node_mem_map) { | |
e984bb43 | 4935 | unsigned long size, start, end; |
d41dee36 AW |
4936 | struct page *map; |
4937 | ||
e984bb43 BP |
4938 | /* |
4939 | * The zone's endpoints aren't required to be MAX_ORDER | |
4940 | * aligned but the node_mem_map endpoints must be in order | |
4941 | * for the buddy allocator to function correctly. | |
4942 | */ | |
4943 | start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); | |
108bcc96 | 4944 | end = pgdat_end_pfn(pgdat); |
e984bb43 BP |
4945 | end = ALIGN(end, MAX_ORDER_NR_PAGES); |
4946 | size = (end - start) * sizeof(struct page); | |
6f167ec7 DH |
4947 | map = alloc_remap(pgdat->node_id, size); |
4948 | if (!map) | |
6782832e SS |
4949 | map = memblock_virt_alloc_node_nopanic(size, |
4950 | pgdat->node_id); | |
e984bb43 | 4951 | pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); |
1da177e4 | 4952 | } |
12d810c1 | 4953 | #ifndef CONFIG_NEED_MULTIPLE_NODES |
1da177e4 LT |
4954 | /* |
4955 | * With no DISCONTIG, the global mem_map is just set as node 0's | |
4956 | */ | |
c713216d | 4957 | if (pgdat == NODE_DATA(0)) { |
1da177e4 | 4958 | mem_map = NODE_DATA(0)->node_mem_map; |
0ee332c1 | 4959 | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP |
c713216d | 4960 | if (page_to_pfn(mem_map) != pgdat->node_start_pfn) |
467bc461 | 4961 | mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); |
0ee332c1 | 4962 | #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ |
c713216d | 4963 | } |
1da177e4 | 4964 | #endif |
d41dee36 | 4965 | #endif /* CONFIG_FLAT_NODE_MEM_MAP */ |
1da177e4 LT |
4966 | } |
4967 | ||
9109fb7b JW |
4968 | void __paginginit free_area_init_node(int nid, unsigned long *zones_size, |
4969 | unsigned long node_start_pfn, unsigned long *zholes_size) | |
1da177e4 | 4970 | { |
9109fb7b | 4971 | pg_data_t *pgdat = NODE_DATA(nid); |
7960aedd ZY |
4972 | unsigned long start_pfn = 0; |
4973 | unsigned long end_pfn = 0; | |
9109fb7b | 4974 | |
88fdf75d | 4975 | /* pg_data_t should be reset to zero when it's allocated */ |
8783b6e2 | 4976 | WARN_ON(pgdat->nr_zones || pgdat->classzone_idx); |
88fdf75d | 4977 | |
1da177e4 LT |
4978 | pgdat->node_id = nid; |
4979 | pgdat->node_start_pfn = node_start_pfn; | |
7960aedd ZY |
4980 | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP |
4981 | get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); | |
8b375f64 LC |
4982 | printk(KERN_INFO "Initmem setup node %d [mem %#010Lx-%#010Lx]\n", nid, |
4983 | (u64) start_pfn << PAGE_SHIFT, (u64) (end_pfn << PAGE_SHIFT) - 1); | |
7960aedd ZY |
4984 | #endif |
4985 | calculate_node_totalpages(pgdat, start_pfn, end_pfn, | |
4986 | zones_size, zholes_size); | |
1da177e4 LT |
4987 | |
4988 | alloc_node_mem_map(pgdat); | |
e8c27ac9 YL |
4989 | #ifdef CONFIG_FLAT_NODE_MEM_MAP |
4990 | printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", | |
4991 | nid, (unsigned long)pgdat, | |
4992 | (unsigned long)pgdat->node_mem_map); | |
4993 | #endif | |
1da177e4 | 4994 | |
7960aedd ZY |
4995 | free_area_init_core(pgdat, start_pfn, end_pfn, |
4996 | zones_size, zholes_size); | |
1da177e4 LT |
4997 | } |
4998 | ||
0ee332c1 | 4999 | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP |
418508c1 MS |
5000 | |
5001 | #if MAX_NUMNODES > 1 | |
5002 | /* | |
5003 | * Figure out the number of possible node ids. | |
5004 | */ | |
f9872caf | 5005 | void __init setup_nr_node_ids(void) |
418508c1 MS |
5006 | { |
5007 | unsigned int node; | |
5008 | unsigned int highest = 0; | |
5009 | ||
5010 | for_each_node_mask(node, node_possible_map) | |
5011 | highest = node; | |
5012 | nr_node_ids = highest + 1; | |
5013 | } | |
418508c1 MS |
5014 | #endif |
5015 | ||
1e01979c TH |
5016 | /** |
5017 | * node_map_pfn_alignment - determine the maximum internode alignment | |
5018 | * | |
5019 | * This function should be called after node map is populated and sorted. | |
5020 | * It calculates the maximum power of two alignment which can distinguish | |
5021 | * all the nodes. | |
5022 | * | |
5023 | * For example, if all nodes are 1GiB and aligned to 1GiB, the return value | |
5024 | * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the | |
5025 | * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is | |
5026 | * shifted, 1GiB is enough and this function will indicate so. | |
5027 | * | |
5028 | * This is used to test whether pfn -> nid mapping of the chosen memory | |
5029 | * model has fine enough granularity to avoid incorrect mapping for the | |
5030 | * populated node map. | |
5031 | * | |
5032 | * Returns the determined alignment in pfn's. 0 if there is no alignment | |
5033 | * requirement (single node). | |
5034 | */ | |
5035 | unsigned long __init node_map_pfn_alignment(void) | |
5036 | { | |
5037 | unsigned long accl_mask = 0, last_end = 0; | |
c13291a5 | 5038 | unsigned long start, end, mask; |
1e01979c | 5039 | int last_nid = -1; |
c13291a5 | 5040 | int i, nid; |
1e01979c | 5041 | |
c13291a5 | 5042 | for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { |
1e01979c TH |
5043 | if (!start || last_nid < 0 || last_nid == nid) { |
5044 | last_nid = nid; | |
5045 | last_end = end; | |
5046 | continue; | |
5047 | } | |
5048 | ||
5049 | /* | |
5050 | * Start with a mask granular enough to pin-point to the | |
5051 | * start pfn and tick off bits one-by-one until it becomes | |
5052 | * too coarse to separate the current node from the last. | |
5053 | */ | |
5054 | mask = ~((1 << __ffs(start)) - 1); | |
5055 | while (mask && last_end <= (start & (mask << 1))) | |
5056 | mask <<= 1; | |
5057 | ||
5058 | /* accumulate all internode masks */ | |
5059 | accl_mask |= mask; | |
5060 | } | |
5061 | ||
5062 | /* convert mask to number of pages */ | |
5063 | return ~accl_mask + 1; | |
5064 | } | |
5065 | ||
a6af2bc3 | 5066 | /* Find the lowest pfn for a node */ |
b69a7288 | 5067 | static unsigned long __init find_min_pfn_for_node(int nid) |
c713216d | 5068 | { |
a6af2bc3 | 5069 | unsigned long min_pfn = ULONG_MAX; |
c13291a5 TH |
5070 | unsigned long start_pfn; |
5071 | int i; | |
1abbfb41 | 5072 | |
c13291a5 TH |
5073 | for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) |
5074 | min_pfn = min(min_pfn, start_pfn); | |
c713216d | 5075 | |
a6af2bc3 MG |
5076 | if (min_pfn == ULONG_MAX) { |
5077 | printk(KERN_WARNING | |
2bc0d261 | 5078 | "Could not find start_pfn for node %d\n", nid); |
a6af2bc3 MG |
5079 | return 0; |
5080 | } | |
5081 | ||
5082 | return min_pfn; | |
c713216d MG |
5083 | } |
5084 | ||
5085 | /** | |
5086 | * find_min_pfn_with_active_regions - Find the minimum PFN registered | |
5087 | * | |
5088 | * It returns the minimum PFN based on information provided via | |
7d018176 | 5089 | * memblock_set_node(). |
c713216d MG |
5090 | */ |
5091 | unsigned long __init find_min_pfn_with_active_regions(void) | |
5092 | { | |
5093 | return find_min_pfn_for_node(MAX_NUMNODES); | |
5094 | } | |
5095 | ||
37b07e41 LS |
5096 | /* |
5097 | * early_calculate_totalpages() | |
5098 | * Sum pages in active regions for movable zone. | |
4b0ef1fe | 5099 | * Populate N_MEMORY for calculating usable_nodes. |
37b07e41 | 5100 | */ |
484f51f8 | 5101 | static unsigned long __init early_calculate_totalpages(void) |
7e63efef | 5102 | { |
7e63efef | 5103 | unsigned long totalpages = 0; |
c13291a5 TH |
5104 | unsigned long start_pfn, end_pfn; |
5105 | int i, nid; | |
5106 | ||
5107 | for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { | |
5108 | unsigned long pages = end_pfn - start_pfn; | |
7e63efef | 5109 | |
37b07e41 LS |
5110 | totalpages += pages; |
5111 | if (pages) | |
4b0ef1fe | 5112 | node_set_state(nid, N_MEMORY); |
37b07e41 | 5113 | } |
b8af2941 | 5114 | return totalpages; |
7e63efef MG |
5115 | } |
5116 | ||
2a1e274a MG |
5117 | /* |
5118 | * Find the PFN the Movable zone begins in each node. Kernel memory | |
5119 | * is spread evenly between nodes as long as the nodes have enough | |
5120 | * memory. When they don't, some nodes will have more kernelcore than | |
5121 | * others | |
5122 | */ | |
b224ef85 | 5123 | static void __init find_zone_movable_pfns_for_nodes(void) |
2a1e274a MG |
5124 | { |
5125 | int i, nid; | |
5126 | unsigned long usable_startpfn; | |
5127 | unsigned long kernelcore_node, kernelcore_remaining; | |
66918dcd | 5128 | /* save the state before borrow the nodemask */ |
4b0ef1fe | 5129 | nodemask_t saved_node_state = node_states[N_MEMORY]; |
37b07e41 | 5130 | unsigned long totalpages = early_calculate_totalpages(); |
4b0ef1fe | 5131 | int usable_nodes = nodes_weight(node_states[N_MEMORY]); |
136199f0 | 5132 | struct memblock_region *r; |
b2f3eebe TC |
5133 | |
5134 | /* Need to find movable_zone earlier when movable_node is specified. */ | |
5135 | find_usable_zone_for_movable(); | |
5136 | ||
5137 | /* | |
5138 | * If movable_node is specified, ignore kernelcore and movablecore | |
5139 | * options. | |
5140 | */ | |
5141 | if (movable_node_is_enabled()) { | |
136199f0 EM |
5142 | for_each_memblock(memory, r) { |
5143 | if (!memblock_is_hotpluggable(r)) | |
b2f3eebe TC |
5144 | continue; |
5145 | ||
136199f0 | 5146 | nid = r->nid; |
b2f3eebe | 5147 | |
136199f0 | 5148 | usable_startpfn = PFN_DOWN(r->base); |
b2f3eebe TC |
5149 | zone_movable_pfn[nid] = zone_movable_pfn[nid] ? |
5150 | min(usable_startpfn, zone_movable_pfn[nid]) : | |
5151 | usable_startpfn; | |
5152 | } | |
5153 | ||
5154 | goto out2; | |
5155 | } | |
2a1e274a | 5156 | |
7e63efef | 5157 | /* |
b2f3eebe | 5158 | * If movablecore=nn[KMG] was specified, calculate what size of |
7e63efef MG |
5159 | * kernelcore that corresponds so that memory usable for |
5160 | * any allocation type is evenly spread. If both kernelcore | |
5161 | * and movablecore are specified, then the value of kernelcore | |
5162 | * will be used for required_kernelcore if it's greater than | |
5163 | * what movablecore would have allowed. | |
5164 | */ | |
5165 | if (required_movablecore) { | |
7e63efef MG |
5166 | unsigned long corepages; |
5167 | ||
5168 | /* | |
5169 | * Round-up so that ZONE_MOVABLE is at least as large as what | |
5170 | * was requested by the user | |
5171 | */ | |
5172 | required_movablecore = | |
5173 | roundup(required_movablecore, MAX_ORDER_NR_PAGES); | |
5174 | corepages = totalpages - required_movablecore; | |
5175 | ||
5176 | required_kernelcore = max(required_kernelcore, corepages); | |
5177 | } | |
5178 | ||
20e6926d YL |
5179 | /* If kernelcore was not specified, there is no ZONE_MOVABLE */ |
5180 | if (!required_kernelcore) | |
66918dcd | 5181 | goto out; |
2a1e274a MG |
5182 | |
5183 | /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ | |
2a1e274a MG |
5184 | usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; |
5185 | ||
5186 | restart: | |
5187 | /* Spread kernelcore memory as evenly as possible throughout nodes */ | |
5188 | kernelcore_node = required_kernelcore / usable_nodes; | |
4b0ef1fe | 5189 | for_each_node_state(nid, N_MEMORY) { |
c13291a5 TH |
5190 | unsigned long start_pfn, end_pfn; |
5191 | ||
2a1e274a MG |
5192 | /* |
5193 | * Recalculate kernelcore_node if the division per node | |
5194 | * now exceeds what is necessary to satisfy the requested | |
5195 | * amount of memory for the kernel | |
5196 | */ | |
5197 | if (required_kernelcore < kernelcore_node) | |
5198 | kernelcore_node = required_kernelcore / usable_nodes; | |
5199 | ||
5200 | /* | |
5201 | * As the map is walked, we track how much memory is usable | |
5202 | * by the kernel using kernelcore_remaining. When it is | |
5203 | * 0, the rest of the node is usable by ZONE_MOVABLE | |
5204 | */ | |
5205 | kernelcore_remaining = kernelcore_node; | |
5206 | ||
5207 | /* Go through each range of PFNs within this node */ | |
c13291a5 | 5208 | for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { |
2a1e274a MG |
5209 | unsigned long size_pages; |
5210 | ||
c13291a5 | 5211 | start_pfn = max(start_pfn, zone_movable_pfn[nid]); |
2a1e274a MG |
5212 | if (start_pfn >= end_pfn) |
5213 | continue; | |
5214 | ||
5215 | /* Account for what is only usable for kernelcore */ | |
5216 | if (start_pfn < usable_startpfn) { | |
5217 | unsigned long kernel_pages; | |
5218 | kernel_pages = min(end_pfn, usable_startpfn) | |
5219 | - start_pfn; | |
5220 | ||
5221 | kernelcore_remaining -= min(kernel_pages, | |
5222 | kernelcore_remaining); | |
5223 | required_kernelcore -= min(kernel_pages, | |
5224 | required_kernelcore); | |
5225 | ||
5226 | /* Continue if range is now fully accounted */ | |
5227 | if (end_pfn <= usable_startpfn) { | |
5228 | ||
5229 | /* | |
5230 | * Push zone_movable_pfn to the end so | |
5231 | * that if we have to rebalance | |
5232 | * kernelcore across nodes, we will | |
5233 | * not double account here | |
5234 | */ | |
5235 | zone_movable_pfn[nid] = end_pfn; | |
5236 | continue; | |
5237 | } | |
5238 | start_pfn = usable_startpfn; | |
5239 | } | |
5240 | ||
5241 | /* | |
5242 | * The usable PFN range for ZONE_MOVABLE is from | |
5243 | * start_pfn->end_pfn. Calculate size_pages as the | |
5244 | * number of pages used as kernelcore | |
5245 | */ | |
5246 | size_pages = end_pfn - start_pfn; | |
5247 | if (size_pages > kernelcore_remaining) | |
5248 | size_pages = kernelcore_remaining; | |
5249 | zone_movable_pfn[nid] = start_pfn + size_pages; | |
5250 | ||
5251 | /* | |
5252 | * Some kernelcore has been met, update counts and | |
5253 | * break if the kernelcore for this node has been | |
b8af2941 | 5254 | * satisfied |
2a1e274a MG |
5255 | */ |
5256 | required_kernelcore -= min(required_kernelcore, | |
5257 | size_pages); | |
5258 | kernelcore_remaining -= size_pages; | |
5259 | if (!kernelcore_remaining) | |
5260 | break; | |
5261 | } | |
5262 | } | |
5263 | ||
5264 | /* | |
5265 | * If there is still required_kernelcore, we do another pass with one | |
5266 | * less node in the count. This will push zone_movable_pfn[nid] further | |
5267 | * along on the nodes that still have memory until kernelcore is | |
b8af2941 | 5268 | * satisfied |
2a1e274a MG |
5269 | */ |
5270 | usable_nodes--; | |
5271 | if (usable_nodes && required_kernelcore > usable_nodes) | |
5272 | goto restart; | |
5273 | ||
b2f3eebe | 5274 | out2: |
2a1e274a MG |
5275 | /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ |
5276 | for (nid = 0; nid < MAX_NUMNODES; nid++) | |
5277 | zone_movable_pfn[nid] = | |
5278 | roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); | |
66918dcd | 5279 | |
20e6926d | 5280 | out: |
66918dcd | 5281 | /* restore the node_state */ |
4b0ef1fe | 5282 | node_states[N_MEMORY] = saved_node_state; |
2a1e274a MG |
5283 | } |
5284 | ||
4b0ef1fe LJ |
5285 | /* Any regular or high memory on that node ? */ |
5286 | static void check_for_memory(pg_data_t *pgdat, int nid) | |
37b07e41 | 5287 | { |
37b07e41 LS |
5288 | enum zone_type zone_type; |
5289 | ||
4b0ef1fe LJ |
5290 | if (N_MEMORY == N_NORMAL_MEMORY) |
5291 | return; | |
5292 | ||
5293 | for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { | |
37b07e41 | 5294 | struct zone *zone = &pgdat->node_zones[zone_type]; |
b38a8725 | 5295 | if (populated_zone(zone)) { |
4b0ef1fe LJ |
5296 | node_set_state(nid, N_HIGH_MEMORY); |
5297 | if (N_NORMAL_MEMORY != N_HIGH_MEMORY && | |
5298 | zone_type <= ZONE_NORMAL) | |
5299 | node_set_state(nid, N_NORMAL_MEMORY); | |
d0048b0e BL |
5300 | break; |
5301 | } | |
37b07e41 | 5302 | } |
37b07e41 LS |
5303 | } |
5304 | ||
c713216d MG |
5305 | /** |
5306 | * free_area_init_nodes - Initialise all pg_data_t and zone data | |
88ca3b94 | 5307 | * @max_zone_pfn: an array of max PFNs for each zone |
c713216d MG |
5308 | * |
5309 | * This will call free_area_init_node() for each active node in the system. | |
7d018176 | 5310 | * Using the page ranges provided by memblock_set_node(), the size of each |
c713216d MG |
5311 | * zone in each node and their holes is calculated. If the maximum PFN |
5312 | * between two adjacent zones match, it is assumed that the zone is empty. | |
5313 | * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed | |
5314 | * that arch_max_dma32_pfn has no pages. It is also assumed that a zone | |
5315 | * starts where the previous one ended. For example, ZONE_DMA32 starts | |
5316 | * at arch_max_dma_pfn. | |
5317 | */ | |
5318 | void __init free_area_init_nodes(unsigned long *max_zone_pfn) | |
5319 | { | |
c13291a5 TH |
5320 | unsigned long start_pfn, end_pfn; |
5321 | int i, nid; | |
a6af2bc3 | 5322 | |
c713216d MG |
5323 | /* Record where the zone boundaries are */ |
5324 | memset(arch_zone_lowest_possible_pfn, 0, | |
5325 | sizeof(arch_zone_lowest_possible_pfn)); | |
5326 | memset(arch_zone_highest_possible_pfn, 0, | |
5327 | sizeof(arch_zone_highest_possible_pfn)); | |
5328 | arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); | |
5329 | arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; | |
5330 | for (i = 1; i < MAX_NR_ZONES; i++) { | |
2a1e274a MG |
5331 | if (i == ZONE_MOVABLE) |
5332 | continue; | |
c713216d MG |
5333 | arch_zone_lowest_possible_pfn[i] = |
5334 | arch_zone_highest_possible_pfn[i-1]; | |
5335 | arch_zone_highest_possible_pfn[i] = | |
5336 | max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); | |
5337 | } | |
2a1e274a MG |
5338 | arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; |
5339 | arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; | |
5340 | ||
5341 | /* Find the PFNs that ZONE_MOVABLE begins at in each node */ | |
5342 | memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); | |
b224ef85 | 5343 | find_zone_movable_pfns_for_nodes(); |
c713216d | 5344 | |
c713216d | 5345 | /* Print out the zone ranges */ |
a62e2f4f | 5346 | printk("Zone ranges:\n"); |
2a1e274a MG |
5347 | for (i = 0; i < MAX_NR_ZONES; i++) { |
5348 | if (i == ZONE_MOVABLE) | |
5349 | continue; | |
155cbfc8 | 5350 | printk(KERN_CONT " %-8s ", zone_names[i]); |
72f0ba02 DR |
5351 | if (arch_zone_lowest_possible_pfn[i] == |
5352 | arch_zone_highest_possible_pfn[i]) | |
155cbfc8 | 5353 | printk(KERN_CONT "empty\n"); |
72f0ba02 | 5354 | else |
a62e2f4f BH |
5355 | printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n", |
5356 | arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT, | |
5357 | (arch_zone_highest_possible_pfn[i] | |
5358 | << PAGE_SHIFT) - 1); | |
2a1e274a MG |
5359 | } |
5360 | ||
5361 | /* Print out the PFNs ZONE_MOVABLE begins at in each node */ | |
a62e2f4f | 5362 | printk("Movable zone start for each node\n"); |
2a1e274a MG |
5363 | for (i = 0; i < MAX_NUMNODES; i++) { |
5364 | if (zone_movable_pfn[i]) | |
a62e2f4f BH |
5365 | printk(" Node %d: %#010lx\n", i, |
5366 | zone_movable_pfn[i] << PAGE_SHIFT); | |
2a1e274a | 5367 | } |
c713216d | 5368 | |
f2d52fe5 | 5369 | /* Print out the early node map */ |
a62e2f4f | 5370 | printk("Early memory node ranges\n"); |
c13291a5 | 5371 | for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) |
a62e2f4f BH |
5372 | printk(" node %3d: [mem %#010lx-%#010lx]\n", nid, |
5373 | start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1); | |
c713216d MG |
5374 | |
5375 | /* Initialise every node */ | |
708614e6 | 5376 | mminit_verify_pageflags_layout(); |
8ef82866 | 5377 | setup_nr_node_ids(); |
c713216d MG |
5378 | for_each_online_node(nid) { |
5379 | pg_data_t *pgdat = NODE_DATA(nid); | |
9109fb7b | 5380 | free_area_init_node(nid, NULL, |
c713216d | 5381 | find_min_pfn_for_node(nid), NULL); |
37b07e41 LS |
5382 | |
5383 | /* Any memory on that node */ | |
5384 | if (pgdat->node_present_pages) | |
4b0ef1fe LJ |
5385 | node_set_state(nid, N_MEMORY); |
5386 | check_for_memory(pgdat, nid); | |
c713216d MG |
5387 | } |
5388 | } | |
2a1e274a | 5389 | |
7e63efef | 5390 | static int __init cmdline_parse_core(char *p, unsigned long *core) |
2a1e274a MG |
5391 | { |
5392 | unsigned long long coremem; | |
5393 | if (!p) | |
5394 | return -EINVAL; | |
5395 | ||
5396 | coremem = memparse(p, &p); | |
7e63efef | 5397 | *core = coremem >> PAGE_SHIFT; |
2a1e274a | 5398 | |
7e63efef | 5399 | /* Paranoid check that UL is enough for the coremem value */ |
2a1e274a MG |
5400 | WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); |
5401 | ||
5402 | return 0; | |
5403 | } | |
ed7ed365 | 5404 | |
7e63efef MG |
5405 | /* |
5406 | * kernelcore=size sets the amount of memory for use for allocations that | |
5407 | * cannot be reclaimed or migrated. | |
5408 | */ | |
5409 | static int __init cmdline_parse_kernelcore(char *p) | |
5410 | { | |
5411 | return cmdline_parse_core(p, &required_kernelcore); | |
5412 | } | |
5413 | ||
5414 | /* | |
5415 | * movablecore=size sets the amount of memory for use for allocations that | |
5416 | * can be reclaimed or migrated. | |
5417 | */ | |
5418 | static int __init cmdline_parse_movablecore(char *p) | |
5419 | { | |
5420 | return cmdline_parse_core(p, &required_movablecore); | |
5421 | } | |
5422 | ||
ed7ed365 | 5423 | early_param("kernelcore", cmdline_parse_kernelcore); |
7e63efef | 5424 | early_param("movablecore", cmdline_parse_movablecore); |
ed7ed365 | 5425 | |
0ee332c1 | 5426 | #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ |
c713216d | 5427 | |
c3d5f5f0 JL |
5428 | void adjust_managed_page_count(struct page *page, long count) |
5429 | { | |
5430 | spin_lock(&managed_page_count_lock); | |
5431 | page_zone(page)->managed_pages += count; | |
5432 | totalram_pages += count; | |
3dcc0571 JL |
5433 | #ifdef CONFIG_HIGHMEM |
5434 | if (PageHighMem(page)) | |
5435 | totalhigh_pages += count; | |
5436 | #endif | |
c3d5f5f0 JL |
5437 | spin_unlock(&managed_page_count_lock); |
5438 | } | |
3dcc0571 | 5439 | EXPORT_SYMBOL(adjust_managed_page_count); |
c3d5f5f0 | 5440 | |
11199692 | 5441 | unsigned long free_reserved_area(void *start, void *end, int poison, char *s) |
69afade7 | 5442 | { |
11199692 JL |
5443 | void *pos; |
5444 | unsigned long pages = 0; | |
69afade7 | 5445 | |
11199692 JL |
5446 | start = (void *)PAGE_ALIGN((unsigned long)start); |
5447 | end = (void *)((unsigned long)end & PAGE_MASK); | |
5448 | for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { | |
dbe67df4 | 5449 | if ((unsigned int)poison <= 0xFF) |
11199692 JL |
5450 | memset(pos, poison, PAGE_SIZE); |
5451 | free_reserved_page(virt_to_page(pos)); | |
69afade7 JL |
5452 | } |
5453 | ||
5454 | if (pages && s) | |
11199692 | 5455 | pr_info("Freeing %s memory: %ldK (%p - %p)\n", |
69afade7 JL |
5456 | s, pages << (PAGE_SHIFT - 10), start, end); |
5457 | ||
5458 | return pages; | |
5459 | } | |
11199692 | 5460 | EXPORT_SYMBOL(free_reserved_area); |
69afade7 | 5461 | |
cfa11e08 JL |
5462 | #ifdef CONFIG_HIGHMEM |
5463 | void free_highmem_page(struct page *page) | |
5464 | { | |
5465 | __free_reserved_page(page); | |
5466 | totalram_pages++; | |
7b4b2a0d | 5467 | page_zone(page)->managed_pages++; |
cfa11e08 JL |
5468 | totalhigh_pages++; |
5469 | } | |
5470 | #endif | |
5471 | ||
7ee3d4e8 JL |
5472 | |
5473 | void __init mem_init_print_info(const char *str) | |
5474 | { | |
5475 | unsigned long physpages, codesize, datasize, rosize, bss_size; | |
5476 | unsigned long init_code_size, init_data_size; | |
5477 | ||
5478 | physpages = get_num_physpages(); | |
5479 | codesize = _etext - _stext; | |
5480 | datasize = _edata - _sdata; | |
5481 | rosize = __end_rodata - __start_rodata; | |
5482 | bss_size = __bss_stop - __bss_start; | |
5483 | init_data_size = __init_end - __init_begin; | |
5484 | init_code_size = _einittext - _sinittext; | |
5485 | ||
5486 | /* | |
5487 | * Detect special cases and adjust section sizes accordingly: | |
5488 | * 1) .init.* may be embedded into .data sections | |
5489 | * 2) .init.text.* may be out of [__init_begin, __init_end], | |
5490 | * please refer to arch/tile/kernel/vmlinux.lds.S. | |
5491 | * 3) .rodata.* may be embedded into .text or .data sections. | |
5492 | */ | |
5493 | #define adj_init_size(start, end, size, pos, adj) \ | |
b8af2941 PK |
5494 | do { \ |
5495 | if (start <= pos && pos < end && size > adj) \ | |
5496 | size -= adj; \ | |
5497 | } while (0) | |
7ee3d4e8 JL |
5498 | |
5499 | adj_init_size(__init_begin, __init_end, init_data_size, | |
5500 | _sinittext, init_code_size); | |
5501 | adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); | |
5502 | adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); | |
5503 | adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); | |
5504 | adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); | |
5505 | ||
5506 | #undef adj_init_size | |
5507 | ||
5508 | printk("Memory: %luK/%luK available " | |
5509 | "(%luK kernel code, %luK rwdata, %luK rodata, " | |
5510 | "%luK init, %luK bss, %luK reserved" | |
5511 | #ifdef CONFIG_HIGHMEM | |
5512 | ", %luK highmem" | |
5513 | #endif | |
5514 | "%s%s)\n", | |
5515 | nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10), | |
5516 | codesize >> 10, datasize >> 10, rosize >> 10, | |
5517 | (init_data_size + init_code_size) >> 10, bss_size >> 10, | |
5518 | (physpages - totalram_pages) << (PAGE_SHIFT-10), | |
5519 | #ifdef CONFIG_HIGHMEM | |
5520 | totalhigh_pages << (PAGE_SHIFT-10), | |
5521 | #endif | |
5522 | str ? ", " : "", str ? str : ""); | |
5523 | } | |
5524 | ||
0e0b864e | 5525 | /** |
88ca3b94 RD |
5526 | * set_dma_reserve - set the specified number of pages reserved in the first zone |
5527 | * @new_dma_reserve: The number of pages to mark reserved | |
0e0b864e MG |
5528 | * |
5529 | * The per-cpu batchsize and zone watermarks are determined by present_pages. | |
5530 | * In the DMA zone, a significant percentage may be consumed by kernel image | |
5531 | * and other unfreeable allocations which can skew the watermarks badly. This | |
88ca3b94 RD |
5532 | * function may optionally be used to account for unfreeable pages in the |
5533 | * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and | |
5534 | * smaller per-cpu batchsize. | |
0e0b864e MG |
5535 | */ |
5536 | void __init set_dma_reserve(unsigned long new_dma_reserve) | |
5537 | { | |
5538 | dma_reserve = new_dma_reserve; | |
5539 | } | |
5540 | ||
1da177e4 LT |
5541 | void __init free_area_init(unsigned long *zones_size) |
5542 | { | |
9109fb7b | 5543 | free_area_init_node(0, zones_size, |
1da177e4 LT |
5544 | __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); |
5545 | } | |
1da177e4 | 5546 | |
1da177e4 LT |
5547 | static int page_alloc_cpu_notify(struct notifier_block *self, |
5548 | unsigned long action, void *hcpu) | |
5549 | { | |
5550 | int cpu = (unsigned long)hcpu; | |
1da177e4 | 5551 | |
8bb78442 | 5552 | if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { |
f0cb3c76 | 5553 | lru_add_drain_cpu(cpu); |
9f8f2172 CL |
5554 | drain_pages(cpu); |
5555 | ||
5556 | /* | |
5557 | * Spill the event counters of the dead processor | |
5558 | * into the current processors event counters. | |
5559 | * This artificially elevates the count of the current | |
5560 | * processor. | |
5561 | */ | |
f8891e5e | 5562 | vm_events_fold_cpu(cpu); |
9f8f2172 CL |
5563 | |
5564 | /* | |
5565 | * Zero the differential counters of the dead processor | |
5566 | * so that the vm statistics are consistent. | |
5567 | * | |
5568 | * This is only okay since the processor is dead and cannot | |
5569 | * race with what we are doing. | |
5570 | */ | |
2bb921e5 | 5571 | cpu_vm_stats_fold(cpu); |
1da177e4 LT |
5572 | } |
5573 | return NOTIFY_OK; | |
5574 | } | |
1da177e4 LT |
5575 | |
5576 | void __init page_alloc_init(void) | |
5577 | { | |
5578 | hotcpu_notifier(page_alloc_cpu_notify, 0); | |
5579 | } | |
5580 | ||
cb45b0e9 HA |
5581 | /* |
5582 | * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio | |
5583 | * or min_free_kbytes changes. | |
5584 | */ | |
5585 | static void calculate_totalreserve_pages(void) | |
5586 | { | |
5587 | struct pglist_data *pgdat; | |
5588 | unsigned long reserve_pages = 0; | |
2f6726e5 | 5589 | enum zone_type i, j; |
cb45b0e9 HA |
5590 | |
5591 | for_each_online_pgdat(pgdat) { | |
5592 | for (i = 0; i < MAX_NR_ZONES; i++) { | |
5593 | struct zone *zone = pgdat->node_zones + i; | |
3484b2de | 5594 | long max = 0; |
cb45b0e9 HA |
5595 | |
5596 | /* Find valid and maximum lowmem_reserve in the zone */ | |
5597 | for (j = i; j < MAX_NR_ZONES; j++) { | |
5598 | if (zone->lowmem_reserve[j] > max) | |
5599 | max = zone->lowmem_reserve[j]; | |
5600 | } | |
5601 | ||
41858966 MG |
5602 | /* we treat the high watermark as reserved pages. */ |
5603 | max += high_wmark_pages(zone); | |
cb45b0e9 | 5604 | |
b40da049 JL |
5605 | if (max > zone->managed_pages) |
5606 | max = zone->managed_pages; | |
cb45b0e9 | 5607 | reserve_pages += max; |
ab8fabd4 JW |
5608 | /* |
5609 | * Lowmem reserves are not available to | |
5610 | * GFP_HIGHUSER page cache allocations and | |
5611 | * kswapd tries to balance zones to their high | |
5612 | * watermark. As a result, neither should be | |
5613 | * regarded as dirtyable memory, to prevent a | |
5614 | * situation where reclaim has to clean pages | |
5615 | * in order to balance the zones. | |
5616 | */ | |
5617 | zone->dirty_balance_reserve = max; | |
cb45b0e9 HA |
5618 | } |
5619 | } | |
ab8fabd4 | 5620 | dirty_balance_reserve = reserve_pages; |
cb45b0e9 HA |
5621 | totalreserve_pages = reserve_pages; |
5622 | } | |
5623 | ||
1da177e4 LT |
5624 | /* |
5625 | * setup_per_zone_lowmem_reserve - called whenever | |
5626 | * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone | |
5627 | * has a correct pages reserved value, so an adequate number of | |
5628 | * pages are left in the zone after a successful __alloc_pages(). | |
5629 | */ | |
5630 | static void setup_per_zone_lowmem_reserve(void) | |
5631 | { | |
5632 | struct pglist_data *pgdat; | |
2f6726e5 | 5633 | enum zone_type j, idx; |
1da177e4 | 5634 | |
ec936fc5 | 5635 | for_each_online_pgdat(pgdat) { |
1da177e4 LT |
5636 | for (j = 0; j < MAX_NR_ZONES; j++) { |
5637 | struct zone *zone = pgdat->node_zones + j; | |
b40da049 | 5638 | unsigned long managed_pages = zone->managed_pages; |
1da177e4 LT |
5639 | |
5640 | zone->lowmem_reserve[j] = 0; | |
5641 | ||
2f6726e5 CL |
5642 | idx = j; |
5643 | while (idx) { | |
1da177e4 LT |
5644 | struct zone *lower_zone; |
5645 | ||
2f6726e5 CL |
5646 | idx--; |
5647 | ||
1da177e4 LT |
5648 | if (sysctl_lowmem_reserve_ratio[idx] < 1) |
5649 | sysctl_lowmem_reserve_ratio[idx] = 1; | |
5650 | ||
5651 | lower_zone = pgdat->node_zones + idx; | |
b40da049 | 5652 | lower_zone->lowmem_reserve[j] = managed_pages / |
1da177e4 | 5653 | sysctl_lowmem_reserve_ratio[idx]; |
b40da049 | 5654 | managed_pages += lower_zone->managed_pages; |
1da177e4 LT |
5655 | } |
5656 | } | |
5657 | } | |
cb45b0e9 HA |
5658 | |
5659 | /* update totalreserve_pages */ | |
5660 | calculate_totalreserve_pages(); | |
1da177e4 LT |
5661 | } |
5662 | ||
cfd3da1e | 5663 | static void __setup_per_zone_wmarks(void) |
1da177e4 LT |
5664 | { |
5665 | unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); | |
5666 | unsigned long lowmem_pages = 0; | |
5667 | struct zone *zone; | |
5668 | unsigned long flags; | |
5669 | ||
5670 | /* Calculate total number of !ZONE_HIGHMEM pages */ | |
5671 | for_each_zone(zone) { | |
5672 | if (!is_highmem(zone)) | |
b40da049 | 5673 | lowmem_pages += zone->managed_pages; |
1da177e4 LT |
5674 | } |
5675 | ||
5676 | for_each_zone(zone) { | |
ac924c60 AM |
5677 | u64 tmp; |
5678 | ||
1125b4e3 | 5679 | spin_lock_irqsave(&zone->lock, flags); |
b40da049 | 5680 | tmp = (u64)pages_min * zone->managed_pages; |
ac924c60 | 5681 | do_div(tmp, lowmem_pages); |
1da177e4 LT |
5682 | if (is_highmem(zone)) { |
5683 | /* | |
669ed175 NP |
5684 | * __GFP_HIGH and PF_MEMALLOC allocations usually don't |
5685 | * need highmem pages, so cap pages_min to a small | |
5686 | * value here. | |
5687 | * | |
41858966 | 5688 | * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) |
669ed175 NP |
5689 | * deltas controls asynch page reclaim, and so should |
5690 | * not be capped for highmem. | |
1da177e4 | 5691 | */ |
90ae8d67 | 5692 | unsigned long min_pages; |
1da177e4 | 5693 | |
b40da049 | 5694 | min_pages = zone->managed_pages / 1024; |
90ae8d67 | 5695 | min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); |
41858966 | 5696 | zone->watermark[WMARK_MIN] = min_pages; |
1da177e4 | 5697 | } else { |
669ed175 NP |
5698 | /* |
5699 | * If it's a lowmem zone, reserve a number of pages | |
1da177e4 LT |
5700 | * proportionate to the zone's size. |
5701 | */ | |
41858966 | 5702 | zone->watermark[WMARK_MIN] = tmp; |
1da177e4 LT |
5703 | } |
5704 | ||
41858966 MG |
5705 | zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2); |
5706 | zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1); | |
49f223a9 | 5707 | |
81c0a2bb | 5708 | __mod_zone_page_state(zone, NR_ALLOC_BATCH, |
abe5f972 JW |
5709 | high_wmark_pages(zone) - low_wmark_pages(zone) - |
5710 | atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH])); | |
81c0a2bb | 5711 | |
56fd56b8 | 5712 | setup_zone_migrate_reserve(zone); |
1125b4e3 | 5713 | spin_unlock_irqrestore(&zone->lock, flags); |
1da177e4 | 5714 | } |
cb45b0e9 HA |
5715 | |
5716 | /* update totalreserve_pages */ | |
5717 | calculate_totalreserve_pages(); | |
1da177e4 LT |
5718 | } |
5719 | ||
cfd3da1e MG |
5720 | /** |
5721 | * setup_per_zone_wmarks - called when min_free_kbytes changes | |
5722 | * or when memory is hot-{added|removed} | |
5723 | * | |
5724 | * Ensures that the watermark[min,low,high] values for each zone are set | |
5725 | * correctly with respect to min_free_kbytes. | |
5726 | */ | |
5727 | void setup_per_zone_wmarks(void) | |
5728 | { | |
5729 | mutex_lock(&zonelists_mutex); | |
5730 | __setup_per_zone_wmarks(); | |
5731 | mutex_unlock(&zonelists_mutex); | |
5732 | } | |
5733 | ||
55a4462a | 5734 | /* |
556adecb RR |
5735 | * The inactive anon list should be small enough that the VM never has to |
5736 | * do too much work, but large enough that each inactive page has a chance | |
5737 | * to be referenced again before it is swapped out. | |
5738 | * | |
5739 | * The inactive_anon ratio is the target ratio of ACTIVE_ANON to | |
5740 | * INACTIVE_ANON pages on this zone's LRU, maintained by the | |
5741 | * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of | |
5742 | * the anonymous pages are kept on the inactive list. | |
5743 | * | |
5744 | * total target max | |
5745 | * memory ratio inactive anon | |
5746 | * ------------------------------------- | |
5747 | * 10MB 1 5MB | |
5748 | * 100MB 1 50MB | |
5749 | * 1GB 3 250MB | |
5750 | * 10GB 10 0.9GB | |
5751 | * 100GB 31 3GB | |
5752 | * 1TB 101 10GB | |
5753 | * 10TB 320 32GB | |
5754 | */ | |
1b79acc9 | 5755 | static void __meminit calculate_zone_inactive_ratio(struct zone *zone) |
556adecb | 5756 | { |
96cb4df5 | 5757 | unsigned int gb, ratio; |
556adecb | 5758 | |
96cb4df5 | 5759 | /* Zone size in gigabytes */ |
b40da049 | 5760 | gb = zone->managed_pages >> (30 - PAGE_SHIFT); |
96cb4df5 | 5761 | if (gb) |
556adecb | 5762 | ratio = int_sqrt(10 * gb); |
96cb4df5 MK |
5763 | else |
5764 | ratio = 1; | |
556adecb | 5765 | |
96cb4df5 MK |
5766 | zone->inactive_ratio = ratio; |
5767 | } | |
556adecb | 5768 | |
839a4fcc | 5769 | static void __meminit setup_per_zone_inactive_ratio(void) |
96cb4df5 MK |
5770 | { |
5771 | struct zone *zone; | |
5772 | ||
5773 | for_each_zone(zone) | |
5774 | calculate_zone_inactive_ratio(zone); | |
556adecb RR |
5775 | } |
5776 | ||
1da177e4 LT |
5777 | /* |
5778 | * Initialise min_free_kbytes. | |
5779 | * | |
5780 | * For small machines we want it small (128k min). For large machines | |
5781 | * we want it large (64MB max). But it is not linear, because network | |
5782 | * bandwidth does not increase linearly with machine size. We use | |
5783 | * | |
b8af2941 | 5784 | * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: |
1da177e4 LT |
5785 | * min_free_kbytes = sqrt(lowmem_kbytes * 16) |
5786 | * | |
5787 | * which yields | |
5788 | * | |
5789 | * 16MB: 512k | |
5790 | * 32MB: 724k | |
5791 | * 64MB: 1024k | |
5792 | * 128MB: 1448k | |
5793 | * 256MB: 2048k | |
5794 | * 512MB: 2896k | |
5795 | * 1024MB: 4096k | |
5796 | * 2048MB: 5792k | |
5797 | * 4096MB: 8192k | |
5798 | * 8192MB: 11584k | |
5799 | * 16384MB: 16384k | |
5800 | */ | |
1b79acc9 | 5801 | int __meminit init_per_zone_wmark_min(void) |
1da177e4 LT |
5802 | { |
5803 | unsigned long lowmem_kbytes; | |
5f12733e | 5804 | int new_min_free_kbytes; |
1da177e4 LT |
5805 | |
5806 | lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); | |
5f12733e MH |
5807 | new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); |
5808 | ||
5809 | if (new_min_free_kbytes > user_min_free_kbytes) { | |
5810 | min_free_kbytes = new_min_free_kbytes; | |
5811 | if (min_free_kbytes < 128) | |
5812 | min_free_kbytes = 128; | |
5813 | if (min_free_kbytes > 65536) | |
5814 | min_free_kbytes = 65536; | |
5815 | } else { | |
5816 | pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", | |
5817 | new_min_free_kbytes, user_min_free_kbytes); | |
5818 | } | |
bc75d33f | 5819 | setup_per_zone_wmarks(); |
a6cccdc3 | 5820 | refresh_zone_stat_thresholds(); |
1da177e4 | 5821 | setup_per_zone_lowmem_reserve(); |
556adecb | 5822 | setup_per_zone_inactive_ratio(); |
1da177e4 LT |
5823 | return 0; |
5824 | } | |
bc75d33f | 5825 | module_init(init_per_zone_wmark_min) |
1da177e4 LT |
5826 | |
5827 | /* | |
b8af2941 | 5828 | * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so |
1da177e4 LT |
5829 | * that we can call two helper functions whenever min_free_kbytes |
5830 | * changes. | |
5831 | */ | |
cccad5b9 | 5832 | int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, |
8d65af78 | 5833 | void __user *buffer, size_t *length, loff_t *ppos) |
1da177e4 | 5834 | { |
da8c757b HP |
5835 | int rc; |
5836 | ||
5837 | rc = proc_dointvec_minmax(table, write, buffer, length, ppos); | |
5838 | if (rc) | |
5839 | return rc; | |
5840 | ||
5f12733e MH |
5841 | if (write) { |
5842 | user_min_free_kbytes = min_free_kbytes; | |
bc75d33f | 5843 | setup_per_zone_wmarks(); |
5f12733e | 5844 | } |
1da177e4 LT |
5845 | return 0; |
5846 | } | |
5847 | ||
9614634f | 5848 | #ifdef CONFIG_NUMA |
cccad5b9 | 5849 | int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, |
8d65af78 | 5850 | void __user *buffer, size_t *length, loff_t *ppos) |
9614634f CL |
5851 | { |
5852 | struct zone *zone; | |
5853 | int rc; | |
5854 | ||
8d65af78 | 5855 | rc = proc_dointvec_minmax(table, write, buffer, length, ppos); |
9614634f CL |
5856 | if (rc) |
5857 | return rc; | |
5858 | ||
5859 | for_each_zone(zone) | |
b40da049 | 5860 | zone->min_unmapped_pages = (zone->managed_pages * |
9614634f CL |
5861 | sysctl_min_unmapped_ratio) / 100; |
5862 | return 0; | |
5863 | } | |
0ff38490 | 5864 | |
cccad5b9 | 5865 | int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, |
8d65af78 | 5866 | void __user *buffer, size_t *length, loff_t *ppos) |
0ff38490 CL |
5867 | { |
5868 | struct zone *zone; | |
5869 | int rc; | |
5870 | ||
8d65af78 | 5871 | rc = proc_dointvec_minmax(table, write, buffer, length, ppos); |
0ff38490 CL |
5872 | if (rc) |
5873 | return rc; | |
5874 | ||
5875 | for_each_zone(zone) | |
b40da049 | 5876 | zone->min_slab_pages = (zone->managed_pages * |
0ff38490 CL |
5877 | sysctl_min_slab_ratio) / 100; |
5878 | return 0; | |
5879 | } | |
9614634f CL |
5880 | #endif |
5881 | ||
1da177e4 LT |
5882 | /* |
5883 | * lowmem_reserve_ratio_sysctl_handler - just a wrapper around | |
5884 | * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() | |
5885 | * whenever sysctl_lowmem_reserve_ratio changes. | |
5886 | * | |
5887 | * The reserve ratio obviously has absolutely no relation with the | |
41858966 | 5888 | * minimum watermarks. The lowmem reserve ratio can only make sense |
1da177e4 LT |
5889 | * if in function of the boot time zone sizes. |
5890 | */ | |
cccad5b9 | 5891 | int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, |
8d65af78 | 5892 | void __user *buffer, size_t *length, loff_t *ppos) |
1da177e4 | 5893 | { |
8d65af78 | 5894 | proc_dointvec_minmax(table, write, buffer, length, ppos); |
1da177e4 LT |
5895 | setup_per_zone_lowmem_reserve(); |
5896 | return 0; | |
5897 | } | |
5898 | ||
8ad4b1fb RS |
5899 | /* |
5900 | * percpu_pagelist_fraction - changes the pcp->high for each zone on each | |
b8af2941 PK |
5901 | * cpu. It is the fraction of total pages in each zone that a hot per cpu |
5902 | * pagelist can have before it gets flushed back to buddy allocator. | |
8ad4b1fb | 5903 | */ |
cccad5b9 | 5904 | int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, |
8d65af78 | 5905 | void __user *buffer, size_t *length, loff_t *ppos) |
8ad4b1fb RS |
5906 | { |
5907 | struct zone *zone; | |
7cd2b0a3 | 5908 | int old_percpu_pagelist_fraction; |
8ad4b1fb RS |
5909 | int ret; |
5910 | ||
7cd2b0a3 DR |
5911 | mutex_lock(&pcp_batch_high_lock); |
5912 | old_percpu_pagelist_fraction = percpu_pagelist_fraction; | |
5913 | ||
8d65af78 | 5914 | ret = proc_dointvec_minmax(table, write, buffer, length, ppos); |
7cd2b0a3 DR |
5915 | if (!write || ret < 0) |
5916 | goto out; | |
5917 | ||
5918 | /* Sanity checking to avoid pcp imbalance */ | |
5919 | if (percpu_pagelist_fraction && | |
5920 | percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { | |
5921 | percpu_pagelist_fraction = old_percpu_pagelist_fraction; | |
5922 | ret = -EINVAL; | |
5923 | goto out; | |
5924 | } | |
5925 | ||
5926 | /* No change? */ | |
5927 | if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) | |
5928 | goto out; | |
c8e251fa | 5929 | |
364df0eb | 5930 | for_each_populated_zone(zone) { |
7cd2b0a3 DR |
5931 | unsigned int cpu; |
5932 | ||
22a7f12b | 5933 | for_each_possible_cpu(cpu) |
7cd2b0a3 DR |
5934 | pageset_set_high_and_batch(zone, |
5935 | per_cpu_ptr(zone->pageset, cpu)); | |
8ad4b1fb | 5936 | } |
7cd2b0a3 | 5937 | out: |
c8e251fa | 5938 | mutex_unlock(&pcp_batch_high_lock); |
7cd2b0a3 | 5939 | return ret; |
8ad4b1fb RS |
5940 | } |
5941 | ||
f034b5d4 | 5942 | int hashdist = HASHDIST_DEFAULT; |
1da177e4 LT |
5943 | |
5944 | #ifdef CONFIG_NUMA | |
5945 | static int __init set_hashdist(char *str) | |
5946 | { | |
5947 | if (!str) | |
5948 | return 0; | |
5949 | hashdist = simple_strtoul(str, &str, 0); | |
5950 | return 1; | |
5951 | } | |
5952 | __setup("hashdist=", set_hashdist); | |
5953 | #endif | |
5954 | ||
5955 | /* | |
5956 | * allocate a large system hash table from bootmem | |
5957 | * - it is assumed that the hash table must contain an exact power-of-2 | |
5958 | * quantity of entries | |
5959 | * - limit is the number of hash buckets, not the total allocation size | |
5960 | */ | |
5961 | void *__init alloc_large_system_hash(const char *tablename, | |
5962 | unsigned long bucketsize, | |
5963 | unsigned long numentries, | |
5964 | int scale, | |
5965 | int flags, | |
5966 | unsigned int *_hash_shift, | |
5967 | unsigned int *_hash_mask, | |
31fe62b9 TB |
5968 | unsigned long low_limit, |
5969 | unsigned long high_limit) | |
1da177e4 | 5970 | { |
31fe62b9 | 5971 | unsigned long long max = high_limit; |
1da177e4 LT |
5972 | unsigned long log2qty, size; |
5973 | void *table = NULL; | |
5974 | ||
5975 | /* allow the kernel cmdline to have a say */ | |
5976 | if (!numentries) { | |
5977 | /* round applicable memory size up to nearest megabyte */ | |
04903664 | 5978 | numentries = nr_kernel_pages; |
a7e83318 JZ |
5979 | |
5980 | /* It isn't necessary when PAGE_SIZE >= 1MB */ | |
5981 | if (PAGE_SHIFT < 20) | |
5982 | numentries = round_up(numentries, (1<<20)/PAGE_SIZE); | |
1da177e4 LT |
5983 | |
5984 | /* limit to 1 bucket per 2^scale bytes of low memory */ | |
5985 | if (scale > PAGE_SHIFT) | |
5986 | numentries >>= (scale - PAGE_SHIFT); | |
5987 | else | |
5988 | numentries <<= (PAGE_SHIFT - scale); | |
9ab37b8f PM |
5989 | |
5990 | /* Make sure we've got at least a 0-order allocation.. */ | |
2c85f51d JB |
5991 | if (unlikely(flags & HASH_SMALL)) { |
5992 | /* Makes no sense without HASH_EARLY */ | |
5993 | WARN_ON(!(flags & HASH_EARLY)); | |
5994 | if (!(numentries >> *_hash_shift)) { | |
5995 | numentries = 1UL << *_hash_shift; | |
5996 | BUG_ON(!numentries); | |
5997 | } | |
5998 | } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) | |
9ab37b8f | 5999 | numentries = PAGE_SIZE / bucketsize; |
1da177e4 | 6000 | } |
6e692ed3 | 6001 | numentries = roundup_pow_of_two(numentries); |
1da177e4 LT |
6002 | |
6003 | /* limit allocation size to 1/16 total memory by default */ | |
6004 | if (max == 0) { | |
6005 | max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; | |
6006 | do_div(max, bucketsize); | |
6007 | } | |
074b8517 | 6008 | max = min(max, 0x80000000ULL); |
1da177e4 | 6009 | |
31fe62b9 TB |
6010 | if (numentries < low_limit) |
6011 | numentries = low_limit; | |
1da177e4 LT |
6012 | if (numentries > max) |
6013 | numentries = max; | |
6014 | ||
f0d1b0b3 | 6015 | log2qty = ilog2(numentries); |
1da177e4 LT |
6016 | |
6017 | do { | |
6018 | size = bucketsize << log2qty; | |
6019 | if (flags & HASH_EARLY) | |
6782832e | 6020 | table = memblock_virt_alloc_nopanic(size, 0); |
1da177e4 LT |
6021 | else if (hashdist) |
6022 | table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); | |
6023 | else { | |
1037b83b ED |
6024 | /* |
6025 | * If bucketsize is not a power-of-two, we may free | |
a1dd268c MG |
6026 | * some pages at the end of hash table which |
6027 | * alloc_pages_exact() automatically does | |
1037b83b | 6028 | */ |
264ef8a9 | 6029 | if (get_order(size) < MAX_ORDER) { |
a1dd268c | 6030 | table = alloc_pages_exact(size, GFP_ATOMIC); |
264ef8a9 CM |
6031 | kmemleak_alloc(table, size, 1, GFP_ATOMIC); |
6032 | } | |
1da177e4 LT |
6033 | } |
6034 | } while (!table && size > PAGE_SIZE && --log2qty); | |
6035 | ||
6036 | if (!table) | |
6037 | panic("Failed to allocate %s hash table\n", tablename); | |
6038 | ||
f241e660 | 6039 | printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n", |
1da177e4 | 6040 | tablename, |
f241e660 | 6041 | (1UL << log2qty), |
f0d1b0b3 | 6042 | ilog2(size) - PAGE_SHIFT, |
1da177e4 LT |
6043 | size); |
6044 | ||
6045 | if (_hash_shift) | |
6046 | *_hash_shift = log2qty; | |
6047 | if (_hash_mask) | |
6048 | *_hash_mask = (1 << log2qty) - 1; | |
6049 | ||
6050 | return table; | |
6051 | } | |
a117e66e | 6052 | |
835c134e MG |
6053 | /* Return a pointer to the bitmap storing bits affecting a block of pages */ |
6054 | static inline unsigned long *get_pageblock_bitmap(struct zone *zone, | |
6055 | unsigned long pfn) | |
6056 | { | |
6057 | #ifdef CONFIG_SPARSEMEM | |
6058 | return __pfn_to_section(pfn)->pageblock_flags; | |
6059 | #else | |
6060 | return zone->pageblock_flags; | |
6061 | #endif /* CONFIG_SPARSEMEM */ | |
6062 | } | |
6063 | ||
6064 | static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) | |
6065 | { | |
6066 | #ifdef CONFIG_SPARSEMEM | |
6067 | pfn &= (PAGES_PER_SECTION-1); | |
d9c23400 | 6068 | return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; |
835c134e | 6069 | #else |
c060f943 | 6070 | pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages); |
d9c23400 | 6071 | return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; |
835c134e MG |
6072 | #endif /* CONFIG_SPARSEMEM */ |
6073 | } | |
6074 | ||
6075 | /** | |
1aab4d77 | 6076 | * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages |
835c134e | 6077 | * @page: The page within the block of interest |
1aab4d77 RD |
6078 | * @pfn: The target page frame number |
6079 | * @end_bitidx: The last bit of interest to retrieve | |
6080 | * @mask: mask of bits that the caller is interested in | |
6081 | * | |
6082 | * Return: pageblock_bits flags | |
835c134e | 6083 | */ |
dc4b0caf | 6084 | unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, |
e58469ba MG |
6085 | unsigned long end_bitidx, |
6086 | unsigned long mask) | |
835c134e MG |
6087 | { |
6088 | struct zone *zone; | |
6089 | unsigned long *bitmap; | |
dc4b0caf | 6090 | unsigned long bitidx, word_bitidx; |
e58469ba | 6091 | unsigned long word; |
835c134e MG |
6092 | |
6093 | zone = page_zone(page); | |
835c134e MG |
6094 | bitmap = get_pageblock_bitmap(zone, pfn); |
6095 | bitidx = pfn_to_bitidx(zone, pfn); | |
e58469ba MG |
6096 | word_bitidx = bitidx / BITS_PER_LONG; |
6097 | bitidx &= (BITS_PER_LONG-1); | |
835c134e | 6098 | |
e58469ba MG |
6099 | word = bitmap[word_bitidx]; |
6100 | bitidx += end_bitidx; | |
6101 | return (word >> (BITS_PER_LONG - bitidx - 1)) & mask; | |
835c134e MG |
6102 | } |
6103 | ||
6104 | /** | |
dc4b0caf | 6105 | * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages |
835c134e | 6106 | * @page: The page within the block of interest |
835c134e | 6107 | * @flags: The flags to set |
1aab4d77 RD |
6108 | * @pfn: The target page frame number |
6109 | * @end_bitidx: The last bit of interest | |
6110 | * @mask: mask of bits that the caller is interested in | |
835c134e | 6111 | */ |
dc4b0caf MG |
6112 | void set_pfnblock_flags_mask(struct page *page, unsigned long flags, |
6113 | unsigned long pfn, | |
e58469ba MG |
6114 | unsigned long end_bitidx, |
6115 | unsigned long mask) | |
835c134e MG |
6116 | { |
6117 | struct zone *zone; | |
6118 | unsigned long *bitmap; | |
dc4b0caf | 6119 | unsigned long bitidx, word_bitidx; |
e58469ba MG |
6120 | unsigned long old_word, word; |
6121 | ||
6122 | BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); | |
835c134e MG |
6123 | |
6124 | zone = page_zone(page); | |
835c134e MG |
6125 | bitmap = get_pageblock_bitmap(zone, pfn); |
6126 | bitidx = pfn_to_bitidx(zone, pfn); | |
e58469ba MG |
6127 | word_bitidx = bitidx / BITS_PER_LONG; |
6128 | bitidx &= (BITS_PER_LONG-1); | |
6129 | ||
309381fe | 6130 | VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page); |
835c134e | 6131 | |
e58469ba MG |
6132 | bitidx += end_bitidx; |
6133 | mask <<= (BITS_PER_LONG - bitidx - 1); | |
6134 | flags <<= (BITS_PER_LONG - bitidx - 1); | |
6135 | ||
6136 | word = ACCESS_ONCE(bitmap[word_bitidx]); | |
6137 | for (;;) { | |
6138 | old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); | |
6139 | if (word == old_word) | |
6140 | break; | |
6141 | word = old_word; | |
6142 | } | |
835c134e | 6143 | } |
a5d76b54 KH |
6144 | |
6145 | /* | |
80934513 MK |
6146 | * This function checks whether pageblock includes unmovable pages or not. |
6147 | * If @count is not zero, it is okay to include less @count unmovable pages | |
6148 | * | |
b8af2941 | 6149 | * PageLRU check without isolation or lru_lock could race so that |
80934513 MK |
6150 | * MIGRATE_MOVABLE block might include unmovable pages. It means you can't |
6151 | * expect this function should be exact. | |
a5d76b54 | 6152 | */ |
b023f468 WC |
6153 | bool has_unmovable_pages(struct zone *zone, struct page *page, int count, |
6154 | bool skip_hwpoisoned_pages) | |
49ac8255 KH |
6155 | { |
6156 | unsigned long pfn, iter, found; | |
47118af0 MN |
6157 | int mt; |
6158 | ||
49ac8255 KH |
6159 | /* |
6160 | * For avoiding noise data, lru_add_drain_all() should be called | |
80934513 | 6161 | * If ZONE_MOVABLE, the zone never contains unmovable pages |
49ac8255 KH |
6162 | */ |
6163 | if (zone_idx(zone) == ZONE_MOVABLE) | |
80934513 | 6164 | return false; |
47118af0 MN |
6165 | mt = get_pageblock_migratetype(page); |
6166 | if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt)) | |
80934513 | 6167 | return false; |
49ac8255 KH |
6168 | |
6169 | pfn = page_to_pfn(page); | |
6170 | for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { | |
6171 | unsigned long check = pfn + iter; | |
6172 | ||
29723fcc | 6173 | if (!pfn_valid_within(check)) |
49ac8255 | 6174 | continue; |
29723fcc | 6175 | |
49ac8255 | 6176 | page = pfn_to_page(check); |
c8721bbb NH |
6177 | |
6178 | /* | |
6179 | * Hugepages are not in LRU lists, but they're movable. | |
6180 | * We need not scan over tail pages bacause we don't | |
6181 | * handle each tail page individually in migration. | |
6182 | */ | |
6183 | if (PageHuge(page)) { | |
6184 | iter = round_up(iter + 1, 1<<compound_order(page)) - 1; | |
6185 | continue; | |
6186 | } | |
6187 | ||
97d255c8 MK |
6188 | /* |
6189 | * We can't use page_count without pin a page | |
6190 | * because another CPU can free compound page. | |
6191 | * This check already skips compound tails of THP | |
6192 | * because their page->_count is zero at all time. | |
6193 | */ | |
6194 | if (!atomic_read(&page->_count)) { | |
49ac8255 KH |
6195 | if (PageBuddy(page)) |
6196 | iter += (1 << page_order(page)) - 1; | |
6197 | continue; | |
6198 | } | |
97d255c8 | 6199 | |
b023f468 WC |
6200 | /* |
6201 | * The HWPoisoned page may be not in buddy system, and | |
6202 | * page_count() is not 0. | |
6203 | */ | |
6204 | if (skip_hwpoisoned_pages && PageHWPoison(page)) | |
6205 | continue; | |
6206 | ||
49ac8255 KH |
6207 | if (!PageLRU(page)) |
6208 | found++; | |
6209 | /* | |
6210 | * If there are RECLAIMABLE pages, we need to check it. | |
6211 | * But now, memory offline itself doesn't call shrink_slab() | |
6212 | * and it still to be fixed. | |
6213 | */ | |
6214 | /* | |
6215 | * If the page is not RAM, page_count()should be 0. | |
6216 | * we don't need more check. This is an _used_ not-movable page. | |
6217 | * | |
6218 | * The problematic thing here is PG_reserved pages. PG_reserved | |
6219 | * is set to both of a memory hole page and a _used_ kernel | |
6220 | * page at boot. | |
6221 | */ | |
6222 | if (found > count) | |
80934513 | 6223 | return true; |
49ac8255 | 6224 | } |
80934513 | 6225 | return false; |
49ac8255 KH |
6226 | } |
6227 | ||
6228 | bool is_pageblock_removable_nolock(struct page *page) | |
6229 | { | |
656a0706 MH |
6230 | struct zone *zone; |
6231 | unsigned long pfn; | |
687875fb MH |
6232 | |
6233 | /* | |
6234 | * We have to be careful here because we are iterating over memory | |
6235 | * sections which are not zone aware so we might end up outside of | |
6236 | * the zone but still within the section. | |
656a0706 MH |
6237 | * We have to take care about the node as well. If the node is offline |
6238 | * its NODE_DATA will be NULL - see page_zone. | |
687875fb | 6239 | */ |
656a0706 MH |
6240 | if (!node_online(page_to_nid(page))) |
6241 | return false; | |
6242 | ||
6243 | zone = page_zone(page); | |
6244 | pfn = page_to_pfn(page); | |
108bcc96 | 6245 | if (!zone_spans_pfn(zone, pfn)) |
687875fb MH |
6246 | return false; |
6247 | ||
b023f468 | 6248 | return !has_unmovable_pages(zone, page, 0, true); |
a5d76b54 | 6249 | } |
0c0e6195 | 6250 | |
041d3a8c MN |
6251 | #ifdef CONFIG_CMA |
6252 | ||
6253 | static unsigned long pfn_max_align_down(unsigned long pfn) | |
6254 | { | |
6255 | return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, | |
6256 | pageblock_nr_pages) - 1); | |
6257 | } | |
6258 | ||
6259 | static unsigned long pfn_max_align_up(unsigned long pfn) | |
6260 | { | |
6261 | return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, | |
6262 | pageblock_nr_pages)); | |
6263 | } | |
6264 | ||
041d3a8c | 6265 | /* [start, end) must belong to a single zone. */ |
bb13ffeb MG |
6266 | static int __alloc_contig_migrate_range(struct compact_control *cc, |
6267 | unsigned long start, unsigned long end) | |
041d3a8c MN |
6268 | { |
6269 | /* This function is based on compact_zone() from compaction.c. */ | |
beb51eaa | 6270 | unsigned long nr_reclaimed; |
041d3a8c MN |
6271 | unsigned long pfn = start; |
6272 | unsigned int tries = 0; | |
6273 | int ret = 0; | |
6274 | ||
be49a6e1 | 6275 | migrate_prep(); |
041d3a8c | 6276 | |
bb13ffeb | 6277 | while (pfn < end || !list_empty(&cc->migratepages)) { |
041d3a8c MN |
6278 | if (fatal_signal_pending(current)) { |
6279 | ret = -EINTR; | |
6280 | break; | |
6281 | } | |
6282 | ||
bb13ffeb MG |
6283 | if (list_empty(&cc->migratepages)) { |
6284 | cc->nr_migratepages = 0; | |
edc2ca61 | 6285 | pfn = isolate_migratepages_range(cc, pfn, end); |
041d3a8c MN |
6286 | if (!pfn) { |
6287 | ret = -EINTR; | |
6288 | break; | |
6289 | } | |
6290 | tries = 0; | |
6291 | } else if (++tries == 5) { | |
6292 | ret = ret < 0 ? ret : -EBUSY; | |
6293 | break; | |
6294 | } | |
6295 | ||
beb51eaa MK |
6296 | nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, |
6297 | &cc->migratepages); | |
6298 | cc->nr_migratepages -= nr_reclaimed; | |
02c6de8d | 6299 | |
9c620e2b | 6300 | ret = migrate_pages(&cc->migratepages, alloc_migrate_target, |
e0b9daeb | 6301 | NULL, 0, cc->mode, MR_CMA); |
041d3a8c | 6302 | } |
2a6f5124 SP |
6303 | if (ret < 0) { |
6304 | putback_movable_pages(&cc->migratepages); | |
6305 | return ret; | |
6306 | } | |
6307 | return 0; | |
041d3a8c MN |
6308 | } |
6309 | ||
6310 | /** | |
6311 | * alloc_contig_range() -- tries to allocate given range of pages | |
6312 | * @start: start PFN to allocate | |
6313 | * @end: one-past-the-last PFN to allocate | |
0815f3d8 MN |
6314 | * @migratetype: migratetype of the underlaying pageblocks (either |
6315 | * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks | |
6316 | * in range must have the same migratetype and it must | |
6317 | * be either of the two. | |
041d3a8c MN |
6318 | * |
6319 | * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES | |
6320 | * aligned, however it's the caller's responsibility to guarantee that | |
6321 | * we are the only thread that changes migrate type of pageblocks the | |
6322 | * pages fall in. | |
6323 | * | |
6324 | * The PFN range must belong to a single zone. | |
6325 | * | |
6326 | * Returns zero on success or negative error code. On success all | |
6327 | * pages which PFN is in [start, end) are allocated for the caller and | |
6328 | * need to be freed with free_contig_range(). | |
6329 | */ | |
0815f3d8 MN |
6330 | int alloc_contig_range(unsigned long start, unsigned long end, |
6331 | unsigned migratetype) | |
041d3a8c | 6332 | { |
041d3a8c MN |
6333 | unsigned long outer_start, outer_end; |
6334 | int ret = 0, order; | |
6335 | ||
bb13ffeb MG |
6336 | struct compact_control cc = { |
6337 | .nr_migratepages = 0, | |
6338 | .order = -1, | |
6339 | .zone = page_zone(pfn_to_page(start)), | |
e0b9daeb | 6340 | .mode = MIGRATE_SYNC, |
bb13ffeb MG |
6341 | .ignore_skip_hint = true, |
6342 | }; | |
6343 | INIT_LIST_HEAD(&cc.migratepages); | |
6344 | ||
041d3a8c MN |
6345 | /* |
6346 | * What we do here is we mark all pageblocks in range as | |
6347 | * MIGRATE_ISOLATE. Because pageblock and max order pages may | |
6348 | * have different sizes, and due to the way page allocator | |
6349 | * work, we align the range to biggest of the two pages so | |
6350 | * that page allocator won't try to merge buddies from | |
6351 | * different pageblocks and change MIGRATE_ISOLATE to some | |
6352 | * other migration type. | |
6353 | * | |
6354 | * Once the pageblocks are marked as MIGRATE_ISOLATE, we | |
6355 | * migrate the pages from an unaligned range (ie. pages that | |
6356 | * we are interested in). This will put all the pages in | |
6357 | * range back to page allocator as MIGRATE_ISOLATE. | |
6358 | * | |
6359 | * When this is done, we take the pages in range from page | |
6360 | * allocator removing them from the buddy system. This way | |
6361 | * page allocator will never consider using them. | |
6362 | * | |
6363 | * This lets us mark the pageblocks back as | |
6364 | * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the | |
6365 | * aligned range but not in the unaligned, original range are | |
6366 | * put back to page allocator so that buddy can use them. | |
6367 | */ | |
6368 | ||
6369 | ret = start_isolate_page_range(pfn_max_align_down(start), | |
b023f468 WC |
6370 | pfn_max_align_up(end), migratetype, |
6371 | false); | |
041d3a8c | 6372 | if (ret) |
86a595f9 | 6373 | return ret; |
041d3a8c | 6374 | |
bb13ffeb | 6375 | ret = __alloc_contig_migrate_range(&cc, start, end); |
041d3a8c MN |
6376 | if (ret) |
6377 | goto done; | |
6378 | ||
6379 | /* | |
6380 | * Pages from [start, end) are within a MAX_ORDER_NR_PAGES | |
6381 | * aligned blocks that are marked as MIGRATE_ISOLATE. What's | |
6382 | * more, all pages in [start, end) are free in page allocator. | |
6383 | * What we are going to do is to allocate all pages from | |
6384 | * [start, end) (that is remove them from page allocator). | |
6385 | * | |
6386 | * The only problem is that pages at the beginning and at the | |
6387 | * end of interesting range may be not aligned with pages that | |
6388 | * page allocator holds, ie. they can be part of higher order | |
6389 | * pages. Because of this, we reserve the bigger range and | |
6390 | * once this is done free the pages we are not interested in. | |
6391 | * | |
6392 | * We don't have to hold zone->lock here because the pages are | |
6393 | * isolated thus they won't get removed from buddy. | |
6394 | */ | |
6395 | ||
6396 | lru_add_drain_all(); | |
6397 | drain_all_pages(); | |
6398 | ||
6399 | order = 0; | |
6400 | outer_start = start; | |
6401 | while (!PageBuddy(pfn_to_page(outer_start))) { | |
6402 | if (++order >= MAX_ORDER) { | |
6403 | ret = -EBUSY; | |
6404 | goto done; | |
6405 | } | |
6406 | outer_start &= ~0UL << order; | |
6407 | } | |
6408 | ||
6409 | /* Make sure the range is really isolated. */ | |
b023f468 | 6410 | if (test_pages_isolated(outer_start, end, false)) { |
041d3a8c MN |
6411 | pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n", |
6412 | outer_start, end); | |
6413 | ret = -EBUSY; | |
6414 | goto done; | |
6415 | } | |
6416 | ||
49f223a9 MS |
6417 | |
6418 | /* Grab isolated pages from freelists. */ | |
bb13ffeb | 6419 | outer_end = isolate_freepages_range(&cc, outer_start, end); |
041d3a8c MN |
6420 | if (!outer_end) { |
6421 | ret = -EBUSY; | |
6422 | goto done; | |
6423 | } | |
6424 | ||
6425 | /* Free head and tail (if any) */ | |
6426 | if (start != outer_start) | |
6427 | free_contig_range(outer_start, start - outer_start); | |
6428 | if (end != outer_end) | |
6429 | free_contig_range(end, outer_end - end); | |
6430 | ||
6431 | done: | |
6432 | undo_isolate_page_range(pfn_max_align_down(start), | |
0815f3d8 | 6433 | pfn_max_align_up(end), migratetype); |
041d3a8c MN |
6434 | return ret; |
6435 | } | |
6436 | ||
6437 | void free_contig_range(unsigned long pfn, unsigned nr_pages) | |
6438 | { | |
bcc2b02f MS |
6439 | unsigned int count = 0; |
6440 | ||
6441 | for (; nr_pages--; pfn++) { | |
6442 | struct page *page = pfn_to_page(pfn); | |
6443 | ||
6444 | count += page_count(page) != 1; | |
6445 | __free_page(page); | |
6446 | } | |
6447 | WARN(count != 0, "%d pages are still in use!\n", count); | |
041d3a8c MN |
6448 | } |
6449 | #endif | |
6450 | ||
4ed7e022 | 6451 | #ifdef CONFIG_MEMORY_HOTPLUG |
0a647f38 CS |
6452 | /* |
6453 | * The zone indicated has a new number of managed_pages; batch sizes and percpu | |
6454 | * page high values need to be recalulated. | |
6455 | */ | |
4ed7e022 JL |
6456 | void __meminit zone_pcp_update(struct zone *zone) |
6457 | { | |
0a647f38 | 6458 | unsigned cpu; |
c8e251fa | 6459 | mutex_lock(&pcp_batch_high_lock); |
0a647f38 | 6460 | for_each_possible_cpu(cpu) |
169f6c19 CS |
6461 | pageset_set_high_and_batch(zone, |
6462 | per_cpu_ptr(zone->pageset, cpu)); | |
c8e251fa | 6463 | mutex_unlock(&pcp_batch_high_lock); |
4ed7e022 JL |
6464 | } |
6465 | #endif | |
6466 | ||
340175b7 JL |
6467 | void zone_pcp_reset(struct zone *zone) |
6468 | { | |
6469 | unsigned long flags; | |
5a883813 MK |
6470 | int cpu; |
6471 | struct per_cpu_pageset *pset; | |
340175b7 JL |
6472 | |
6473 | /* avoid races with drain_pages() */ | |
6474 | local_irq_save(flags); | |
6475 | if (zone->pageset != &boot_pageset) { | |
5a883813 MK |
6476 | for_each_online_cpu(cpu) { |
6477 | pset = per_cpu_ptr(zone->pageset, cpu); | |
6478 | drain_zonestat(zone, pset); | |
6479 | } | |
340175b7 JL |
6480 | free_percpu(zone->pageset); |
6481 | zone->pageset = &boot_pageset; | |
6482 | } | |
6483 | local_irq_restore(flags); | |
6484 | } | |
6485 | ||
6dcd73d7 | 6486 | #ifdef CONFIG_MEMORY_HOTREMOVE |
0c0e6195 KH |
6487 | /* |
6488 | * All pages in the range must be isolated before calling this. | |
6489 | */ | |
6490 | void | |
6491 | __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) | |
6492 | { | |
6493 | struct page *page; | |
6494 | struct zone *zone; | |
7aeb09f9 | 6495 | unsigned int order, i; |
0c0e6195 KH |
6496 | unsigned long pfn; |
6497 | unsigned long flags; | |
6498 | /* find the first valid pfn */ | |
6499 | for (pfn = start_pfn; pfn < end_pfn; pfn++) | |
6500 | if (pfn_valid(pfn)) | |
6501 | break; | |
6502 | if (pfn == end_pfn) | |
6503 | return; | |
6504 | zone = page_zone(pfn_to_page(pfn)); | |
6505 | spin_lock_irqsave(&zone->lock, flags); | |
6506 | pfn = start_pfn; | |
6507 | while (pfn < end_pfn) { | |
6508 | if (!pfn_valid(pfn)) { | |
6509 | pfn++; | |
6510 | continue; | |
6511 | } | |
6512 | page = pfn_to_page(pfn); | |
b023f468 WC |
6513 | /* |
6514 | * The HWPoisoned page may be not in buddy system, and | |
6515 | * page_count() is not 0. | |
6516 | */ | |
6517 | if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { | |
6518 | pfn++; | |
6519 | SetPageReserved(page); | |
6520 | continue; | |
6521 | } | |
6522 | ||
0c0e6195 KH |
6523 | BUG_ON(page_count(page)); |
6524 | BUG_ON(!PageBuddy(page)); | |
6525 | order = page_order(page); | |
6526 | #ifdef CONFIG_DEBUG_VM | |
6527 | printk(KERN_INFO "remove from free list %lx %d %lx\n", | |
6528 | pfn, 1 << order, end_pfn); | |
6529 | #endif | |
6530 | list_del(&page->lru); | |
6531 | rmv_page_order(page); | |
6532 | zone->free_area[order].nr_free--; | |
0c0e6195 KH |
6533 | for (i = 0; i < (1 << order); i++) |
6534 | SetPageReserved((page+i)); | |
6535 | pfn += (1 << order); | |
6536 | } | |
6537 | spin_unlock_irqrestore(&zone->lock, flags); | |
6538 | } | |
6539 | #endif | |
8d22ba1b WF |
6540 | |
6541 | #ifdef CONFIG_MEMORY_FAILURE | |
6542 | bool is_free_buddy_page(struct page *page) | |
6543 | { | |
6544 | struct zone *zone = page_zone(page); | |
6545 | unsigned long pfn = page_to_pfn(page); | |
6546 | unsigned long flags; | |
7aeb09f9 | 6547 | unsigned int order; |
8d22ba1b WF |
6548 | |
6549 | spin_lock_irqsave(&zone->lock, flags); | |
6550 | for (order = 0; order < MAX_ORDER; order++) { | |
6551 | struct page *page_head = page - (pfn & ((1 << order) - 1)); | |
6552 | ||
6553 | if (PageBuddy(page_head) && page_order(page_head) >= order) | |
6554 | break; | |
6555 | } | |
6556 | spin_unlock_irqrestore(&zone->lock, flags); | |
6557 | ||
6558 | return order < MAX_ORDER; | |
6559 | } | |
6560 | #endif |