]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/mm/page_alloc.c | |
3 | * | |
4 | * Manages the free list, the system allocates free pages here. | |
5 | * Note that kmalloc() lives in slab.c | |
6 | * | |
7 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds | |
8 | * Swap reorganised 29.12.95, Stephen Tweedie | |
9 | * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 | |
10 | * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 | |
11 | * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 | |
12 | * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 | |
13 | * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 | |
14 | * (lots of bits borrowed from Ingo Molnar & Andrew Morton) | |
15 | */ | |
16 | ||
1da177e4 LT |
17 | #include <linux/stddef.h> |
18 | #include <linux/mm.h> | |
19 | #include <linux/swap.h> | |
20 | #include <linux/interrupt.h> | |
21 | #include <linux/pagemap.h> | |
10ed273f | 22 | #include <linux/jiffies.h> |
1da177e4 | 23 | #include <linux/bootmem.h> |
edbe7d23 | 24 | #include <linux/memblock.h> |
1da177e4 | 25 | #include <linux/compiler.h> |
9f158333 | 26 | #include <linux/kernel.h> |
b1eeab67 | 27 | #include <linux/kmemcheck.h> |
b8c73fc2 | 28 | #include <linux/kasan.h> |
1da177e4 LT |
29 | #include <linux/module.h> |
30 | #include <linux/suspend.h> | |
31 | #include <linux/pagevec.h> | |
32 | #include <linux/blkdev.h> | |
33 | #include <linux/slab.h> | |
a238ab5b | 34 | #include <linux/ratelimit.h> |
5a3135c2 | 35 | #include <linux/oom.h> |
1da177e4 LT |
36 | #include <linux/notifier.h> |
37 | #include <linux/topology.h> | |
38 | #include <linux/sysctl.h> | |
39 | #include <linux/cpu.h> | |
40 | #include <linux/cpuset.h> | |
bdc8cb98 | 41 | #include <linux/memory_hotplug.h> |
1da177e4 LT |
42 | #include <linux/nodemask.h> |
43 | #include <linux/vmalloc.h> | |
a6cccdc3 | 44 | #include <linux/vmstat.h> |
4be38e35 | 45 | #include <linux/mempolicy.h> |
4b94ffdc | 46 | #include <linux/memremap.h> |
6811378e | 47 | #include <linux/stop_machine.h> |
c713216d MG |
48 | #include <linux/sort.h> |
49 | #include <linux/pfn.h> | |
3fcfab16 | 50 | #include <linux/backing-dev.h> |
933e312e | 51 | #include <linux/fault-inject.h> |
a5d76b54 | 52 | #include <linux/page-isolation.h> |
eefa864b | 53 | #include <linux/page_ext.h> |
3ac7fe5a | 54 | #include <linux/debugobjects.h> |
dbb1f81c | 55 | #include <linux/kmemleak.h> |
56de7263 | 56 | #include <linux/compaction.h> |
0d3d062a | 57 | #include <trace/events/kmem.h> |
268bb0ce | 58 | #include <linux/prefetch.h> |
6e543d57 | 59 | #include <linux/mm_inline.h> |
041d3a8c | 60 | #include <linux/migrate.h> |
e30825f1 | 61 | #include <linux/page_ext.h> |
949f7ec5 | 62 | #include <linux/hugetlb.h> |
8bd75c77 | 63 | #include <linux/sched/rt.h> |
48c96a36 | 64 | #include <linux/page_owner.h> |
0e1cc95b | 65 | #include <linux/kthread.h> |
4949148a | 66 | #include <linux/memcontrol.h> |
1da177e4 | 67 | |
7ee3d4e8 | 68 | #include <asm/sections.h> |
1da177e4 | 69 | #include <asm/tlbflush.h> |
ac924c60 | 70 | #include <asm/div64.h> |
1da177e4 LT |
71 | #include "internal.h" |
72 | ||
c8e251fa CS |
73 | /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ |
74 | static DEFINE_MUTEX(pcp_batch_high_lock); | |
7cd2b0a3 | 75 | #define MIN_PERCPU_PAGELIST_FRACTION (8) |
c8e251fa | 76 | |
72812019 LS |
77 | #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID |
78 | DEFINE_PER_CPU(int, numa_node); | |
79 | EXPORT_PER_CPU_SYMBOL(numa_node); | |
80 | #endif | |
81 | ||
7aac7898 LS |
82 | #ifdef CONFIG_HAVE_MEMORYLESS_NODES |
83 | /* | |
84 | * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. | |
85 | * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. | |
86 | * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() | |
87 | * defined in <linux/topology.h>. | |
88 | */ | |
89 | DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ | |
90 | EXPORT_PER_CPU_SYMBOL(_numa_mem_); | |
ad2c8144 | 91 | int _node_numa_mem_[MAX_NUMNODES]; |
7aac7898 LS |
92 | #endif |
93 | ||
1da177e4 | 94 | /* |
13808910 | 95 | * Array of node states. |
1da177e4 | 96 | */ |
13808910 CL |
97 | nodemask_t node_states[NR_NODE_STATES] __read_mostly = { |
98 | [N_POSSIBLE] = NODE_MASK_ALL, | |
99 | [N_ONLINE] = { { [0] = 1UL } }, | |
100 | #ifndef CONFIG_NUMA | |
101 | [N_NORMAL_MEMORY] = { { [0] = 1UL } }, | |
102 | #ifdef CONFIG_HIGHMEM | |
103 | [N_HIGH_MEMORY] = { { [0] = 1UL } }, | |
20b2f52b LJ |
104 | #endif |
105 | #ifdef CONFIG_MOVABLE_NODE | |
106 | [N_MEMORY] = { { [0] = 1UL } }, | |
13808910 CL |
107 | #endif |
108 | [N_CPU] = { { [0] = 1UL } }, | |
109 | #endif /* NUMA */ | |
110 | }; | |
111 | EXPORT_SYMBOL(node_states); | |
112 | ||
c3d5f5f0 JL |
113 | /* Protect totalram_pages and zone->managed_pages */ |
114 | static DEFINE_SPINLOCK(managed_page_count_lock); | |
115 | ||
6c231b7b | 116 | unsigned long totalram_pages __read_mostly; |
cb45b0e9 | 117 | unsigned long totalreserve_pages __read_mostly; |
e48322ab | 118 | unsigned long totalcma_pages __read_mostly; |
ab8fabd4 | 119 | |
1b76b02f | 120 | int percpu_pagelist_fraction; |
dcce284a | 121 | gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; |
1da177e4 | 122 | |
bb14c2c7 VB |
123 | /* |
124 | * A cached value of the page's pageblock's migratetype, used when the page is | |
125 | * put on a pcplist. Used to avoid the pageblock migratetype lookup when | |
126 | * freeing from pcplists in most cases, at the cost of possibly becoming stale. | |
127 | * Also the migratetype set in the page does not necessarily match the pcplist | |
128 | * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any | |
129 | * other index - this ensures that it will be put on the correct CMA freelist. | |
130 | */ | |
131 | static inline int get_pcppage_migratetype(struct page *page) | |
132 | { | |
133 | return page->index; | |
134 | } | |
135 | ||
136 | static inline void set_pcppage_migratetype(struct page *page, int migratetype) | |
137 | { | |
138 | page->index = migratetype; | |
139 | } | |
140 | ||
452aa699 RW |
141 | #ifdef CONFIG_PM_SLEEP |
142 | /* | |
143 | * The following functions are used by the suspend/hibernate code to temporarily | |
144 | * change gfp_allowed_mask in order to avoid using I/O during memory allocations | |
145 | * while devices are suspended. To avoid races with the suspend/hibernate code, | |
146 | * they should always be called with pm_mutex held (gfp_allowed_mask also should | |
147 | * only be modified with pm_mutex held, unless the suspend/hibernate code is | |
148 | * guaranteed not to run in parallel with that modification). | |
149 | */ | |
c9e664f1 RW |
150 | |
151 | static gfp_t saved_gfp_mask; | |
152 | ||
153 | void pm_restore_gfp_mask(void) | |
452aa699 RW |
154 | { |
155 | WARN_ON(!mutex_is_locked(&pm_mutex)); | |
c9e664f1 RW |
156 | if (saved_gfp_mask) { |
157 | gfp_allowed_mask = saved_gfp_mask; | |
158 | saved_gfp_mask = 0; | |
159 | } | |
452aa699 RW |
160 | } |
161 | ||
c9e664f1 | 162 | void pm_restrict_gfp_mask(void) |
452aa699 | 163 | { |
452aa699 | 164 | WARN_ON(!mutex_is_locked(&pm_mutex)); |
c9e664f1 RW |
165 | WARN_ON(saved_gfp_mask); |
166 | saved_gfp_mask = gfp_allowed_mask; | |
d0164adc | 167 | gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); |
452aa699 | 168 | } |
f90ac398 MG |
169 | |
170 | bool pm_suspended_storage(void) | |
171 | { | |
d0164adc | 172 | if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) |
f90ac398 MG |
173 | return false; |
174 | return true; | |
175 | } | |
452aa699 RW |
176 | #endif /* CONFIG_PM_SLEEP */ |
177 | ||
d9c23400 | 178 | #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE |
d00181b9 | 179 | unsigned int pageblock_order __read_mostly; |
d9c23400 MG |
180 | #endif |
181 | ||
d98c7a09 | 182 | static void __free_pages_ok(struct page *page, unsigned int order); |
a226f6c8 | 183 | |
1da177e4 LT |
184 | /* |
185 | * results with 256, 32 in the lowmem_reserve sysctl: | |
186 | * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) | |
187 | * 1G machine -> (16M dma, 784M normal, 224M high) | |
188 | * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA | |
189 | * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL | |
84109e15 | 190 | * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA |
a2f1b424 AK |
191 | * |
192 | * TBD: should special case ZONE_DMA32 machines here - in those we normally | |
193 | * don't need any ZONE_NORMAL reservation | |
1da177e4 | 194 | */ |
2f1b6248 | 195 | int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { |
4b51d669 | 196 | #ifdef CONFIG_ZONE_DMA |
2f1b6248 | 197 | 256, |
4b51d669 | 198 | #endif |
fb0e7942 | 199 | #ifdef CONFIG_ZONE_DMA32 |
2f1b6248 | 200 | 256, |
fb0e7942 | 201 | #endif |
e53ef38d | 202 | #ifdef CONFIG_HIGHMEM |
2a1e274a | 203 | 32, |
e53ef38d | 204 | #endif |
2a1e274a | 205 | 32, |
2f1b6248 | 206 | }; |
1da177e4 LT |
207 | |
208 | EXPORT_SYMBOL(totalram_pages); | |
1da177e4 | 209 | |
15ad7cdc | 210 | static char * const zone_names[MAX_NR_ZONES] = { |
4b51d669 | 211 | #ifdef CONFIG_ZONE_DMA |
2f1b6248 | 212 | "DMA", |
4b51d669 | 213 | #endif |
fb0e7942 | 214 | #ifdef CONFIG_ZONE_DMA32 |
2f1b6248 | 215 | "DMA32", |
fb0e7942 | 216 | #endif |
2f1b6248 | 217 | "Normal", |
e53ef38d | 218 | #ifdef CONFIG_HIGHMEM |
2a1e274a | 219 | "HighMem", |
e53ef38d | 220 | #endif |
2a1e274a | 221 | "Movable", |
033fbae9 DW |
222 | #ifdef CONFIG_ZONE_DEVICE |
223 | "Device", | |
224 | #endif | |
2f1b6248 CL |
225 | }; |
226 | ||
60f30350 VB |
227 | char * const migratetype_names[MIGRATE_TYPES] = { |
228 | "Unmovable", | |
229 | "Movable", | |
230 | "Reclaimable", | |
231 | "HighAtomic", | |
232 | #ifdef CONFIG_CMA | |
233 | "CMA", | |
234 | #endif | |
235 | #ifdef CONFIG_MEMORY_ISOLATION | |
236 | "Isolate", | |
237 | #endif | |
238 | }; | |
239 | ||
f1e61557 KS |
240 | compound_page_dtor * const compound_page_dtors[] = { |
241 | NULL, | |
242 | free_compound_page, | |
243 | #ifdef CONFIG_HUGETLB_PAGE | |
244 | free_huge_page, | |
245 | #endif | |
9a982250 KS |
246 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
247 | free_transhuge_page, | |
248 | #endif | |
f1e61557 KS |
249 | }; |
250 | ||
1da177e4 | 251 | int min_free_kbytes = 1024; |
42aa83cb | 252 | int user_min_free_kbytes = -1; |
795ae7a0 | 253 | int watermark_scale_factor = 10; |
1da177e4 | 254 | |
2c85f51d JB |
255 | static unsigned long __meminitdata nr_kernel_pages; |
256 | static unsigned long __meminitdata nr_all_pages; | |
a3142c8e | 257 | static unsigned long __meminitdata dma_reserve; |
1da177e4 | 258 | |
0ee332c1 TH |
259 | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP |
260 | static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; | |
261 | static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; | |
262 | static unsigned long __initdata required_kernelcore; | |
263 | static unsigned long __initdata required_movablecore; | |
264 | static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; | |
342332e6 | 265 | static bool mirrored_kernelcore; |
0ee332c1 TH |
266 | |
267 | /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ | |
268 | int movable_zone; | |
269 | EXPORT_SYMBOL(movable_zone); | |
270 | #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ | |
c713216d | 271 | |
418508c1 MS |
272 | #if MAX_NUMNODES > 1 |
273 | int nr_node_ids __read_mostly = MAX_NUMNODES; | |
62bc62a8 | 274 | int nr_online_nodes __read_mostly = 1; |
418508c1 | 275 | EXPORT_SYMBOL(nr_node_ids); |
62bc62a8 | 276 | EXPORT_SYMBOL(nr_online_nodes); |
418508c1 MS |
277 | #endif |
278 | ||
9ef9acb0 MG |
279 | int page_group_by_mobility_disabled __read_mostly; |
280 | ||
3a80a7fa MG |
281 | #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT |
282 | static inline void reset_deferred_meminit(pg_data_t *pgdat) | |
283 | { | |
284 | pgdat->first_deferred_pfn = ULONG_MAX; | |
285 | } | |
286 | ||
287 | /* Returns true if the struct page for the pfn is uninitialised */ | |
0e1cc95b | 288 | static inline bool __meminit early_page_uninitialised(unsigned long pfn) |
3a80a7fa | 289 | { |
ef70b6f4 MG |
290 | int nid = early_pfn_to_nid(pfn); |
291 | ||
292 | if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) | |
3a80a7fa MG |
293 | return true; |
294 | ||
295 | return false; | |
296 | } | |
297 | ||
298 | /* | |
299 | * Returns false when the remaining initialisation should be deferred until | |
300 | * later in the boot cycle when it can be parallelised. | |
301 | */ | |
302 | static inline bool update_defer_init(pg_data_t *pgdat, | |
303 | unsigned long pfn, unsigned long zone_end, | |
304 | unsigned long *nr_initialised) | |
305 | { | |
987b3095 LZ |
306 | unsigned long max_initialise; |
307 | ||
3a80a7fa MG |
308 | /* Always populate low zones for address-contrained allocations */ |
309 | if (zone_end < pgdat_end_pfn(pgdat)) | |
310 | return true; | |
987b3095 LZ |
311 | /* |
312 | * Initialise at least 2G of a node but also take into account that | |
313 | * two large system hashes that can take up 1GB for 0.25TB/node. | |
314 | */ | |
315 | max_initialise = max(2UL << (30 - PAGE_SHIFT), | |
316 | (pgdat->node_spanned_pages >> 8)); | |
3a80a7fa | 317 | |
3a80a7fa | 318 | (*nr_initialised)++; |
987b3095 | 319 | if ((*nr_initialised > max_initialise) && |
3a80a7fa MG |
320 | (pfn & (PAGES_PER_SECTION - 1)) == 0) { |
321 | pgdat->first_deferred_pfn = pfn; | |
322 | return false; | |
323 | } | |
324 | ||
325 | return true; | |
326 | } | |
327 | #else | |
328 | static inline void reset_deferred_meminit(pg_data_t *pgdat) | |
329 | { | |
330 | } | |
331 | ||
332 | static inline bool early_page_uninitialised(unsigned long pfn) | |
333 | { | |
334 | return false; | |
335 | } | |
336 | ||
337 | static inline bool update_defer_init(pg_data_t *pgdat, | |
338 | unsigned long pfn, unsigned long zone_end, | |
339 | unsigned long *nr_initialised) | |
340 | { | |
341 | return true; | |
342 | } | |
343 | #endif | |
344 | ||
0b423ca2 MG |
345 | /* Return a pointer to the bitmap storing bits affecting a block of pages */ |
346 | static inline unsigned long *get_pageblock_bitmap(struct page *page, | |
347 | unsigned long pfn) | |
348 | { | |
349 | #ifdef CONFIG_SPARSEMEM | |
350 | return __pfn_to_section(pfn)->pageblock_flags; | |
351 | #else | |
352 | return page_zone(page)->pageblock_flags; | |
353 | #endif /* CONFIG_SPARSEMEM */ | |
354 | } | |
355 | ||
356 | static inline int pfn_to_bitidx(struct page *page, unsigned long pfn) | |
357 | { | |
358 | #ifdef CONFIG_SPARSEMEM | |
359 | pfn &= (PAGES_PER_SECTION-1); | |
360 | return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; | |
361 | #else | |
362 | pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages); | |
363 | return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; | |
364 | #endif /* CONFIG_SPARSEMEM */ | |
365 | } | |
366 | ||
367 | /** | |
368 | * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages | |
369 | * @page: The page within the block of interest | |
370 | * @pfn: The target page frame number | |
371 | * @end_bitidx: The last bit of interest to retrieve | |
372 | * @mask: mask of bits that the caller is interested in | |
373 | * | |
374 | * Return: pageblock_bits flags | |
375 | */ | |
376 | static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page, | |
377 | unsigned long pfn, | |
378 | unsigned long end_bitidx, | |
379 | unsigned long mask) | |
380 | { | |
381 | unsigned long *bitmap; | |
382 | unsigned long bitidx, word_bitidx; | |
383 | unsigned long word; | |
384 | ||
385 | bitmap = get_pageblock_bitmap(page, pfn); | |
386 | bitidx = pfn_to_bitidx(page, pfn); | |
387 | word_bitidx = bitidx / BITS_PER_LONG; | |
388 | bitidx &= (BITS_PER_LONG-1); | |
389 | ||
390 | word = bitmap[word_bitidx]; | |
391 | bitidx += end_bitidx; | |
392 | return (word >> (BITS_PER_LONG - bitidx - 1)) & mask; | |
393 | } | |
394 | ||
395 | unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, | |
396 | unsigned long end_bitidx, | |
397 | unsigned long mask) | |
398 | { | |
399 | return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask); | |
400 | } | |
401 | ||
402 | static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn) | |
403 | { | |
404 | return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK); | |
405 | } | |
406 | ||
407 | /** | |
408 | * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages | |
409 | * @page: The page within the block of interest | |
410 | * @flags: The flags to set | |
411 | * @pfn: The target page frame number | |
412 | * @end_bitidx: The last bit of interest | |
413 | * @mask: mask of bits that the caller is interested in | |
414 | */ | |
415 | void set_pfnblock_flags_mask(struct page *page, unsigned long flags, | |
416 | unsigned long pfn, | |
417 | unsigned long end_bitidx, | |
418 | unsigned long mask) | |
419 | { | |
420 | unsigned long *bitmap; | |
421 | unsigned long bitidx, word_bitidx; | |
422 | unsigned long old_word, word; | |
423 | ||
424 | BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); | |
425 | ||
426 | bitmap = get_pageblock_bitmap(page, pfn); | |
427 | bitidx = pfn_to_bitidx(page, pfn); | |
428 | word_bitidx = bitidx / BITS_PER_LONG; | |
429 | bitidx &= (BITS_PER_LONG-1); | |
430 | ||
431 | VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); | |
432 | ||
433 | bitidx += end_bitidx; | |
434 | mask <<= (BITS_PER_LONG - bitidx - 1); | |
435 | flags <<= (BITS_PER_LONG - bitidx - 1); | |
436 | ||
437 | word = READ_ONCE(bitmap[word_bitidx]); | |
438 | for (;;) { | |
439 | old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); | |
440 | if (word == old_word) | |
441 | break; | |
442 | word = old_word; | |
443 | } | |
444 | } | |
3a80a7fa | 445 | |
ee6f509c | 446 | void set_pageblock_migratetype(struct page *page, int migratetype) |
b2a0ac88 | 447 | { |
5d0f3f72 KM |
448 | if (unlikely(page_group_by_mobility_disabled && |
449 | migratetype < MIGRATE_PCPTYPES)) | |
49255c61 MG |
450 | migratetype = MIGRATE_UNMOVABLE; |
451 | ||
b2a0ac88 MG |
452 | set_pageblock_flags_group(page, (unsigned long)migratetype, |
453 | PB_migrate, PB_migrate_end); | |
454 | } | |
455 | ||
13e7444b | 456 | #ifdef CONFIG_DEBUG_VM |
c6a57e19 | 457 | static int page_outside_zone_boundaries(struct zone *zone, struct page *page) |
1da177e4 | 458 | { |
bdc8cb98 DH |
459 | int ret = 0; |
460 | unsigned seq; | |
461 | unsigned long pfn = page_to_pfn(page); | |
b5e6a5a2 | 462 | unsigned long sp, start_pfn; |
c6a57e19 | 463 | |
bdc8cb98 DH |
464 | do { |
465 | seq = zone_span_seqbegin(zone); | |
b5e6a5a2 CS |
466 | start_pfn = zone->zone_start_pfn; |
467 | sp = zone->spanned_pages; | |
108bcc96 | 468 | if (!zone_spans_pfn(zone, pfn)) |
bdc8cb98 DH |
469 | ret = 1; |
470 | } while (zone_span_seqretry(zone, seq)); | |
471 | ||
b5e6a5a2 | 472 | if (ret) |
613813e8 DH |
473 | pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", |
474 | pfn, zone_to_nid(zone), zone->name, | |
475 | start_pfn, start_pfn + sp); | |
b5e6a5a2 | 476 | |
bdc8cb98 | 477 | return ret; |
c6a57e19 DH |
478 | } |
479 | ||
480 | static int page_is_consistent(struct zone *zone, struct page *page) | |
481 | { | |
14e07298 | 482 | if (!pfn_valid_within(page_to_pfn(page))) |
c6a57e19 | 483 | return 0; |
1da177e4 | 484 | if (zone != page_zone(page)) |
c6a57e19 DH |
485 | return 0; |
486 | ||
487 | return 1; | |
488 | } | |
489 | /* | |
490 | * Temporary debugging check for pages not lying within a given zone. | |
491 | */ | |
492 | static int bad_range(struct zone *zone, struct page *page) | |
493 | { | |
494 | if (page_outside_zone_boundaries(zone, page)) | |
1da177e4 | 495 | return 1; |
c6a57e19 DH |
496 | if (!page_is_consistent(zone, page)) |
497 | return 1; | |
498 | ||
1da177e4 LT |
499 | return 0; |
500 | } | |
13e7444b NP |
501 | #else |
502 | static inline int bad_range(struct zone *zone, struct page *page) | |
503 | { | |
504 | return 0; | |
505 | } | |
506 | #endif | |
507 | ||
d230dec1 KS |
508 | static void bad_page(struct page *page, const char *reason, |
509 | unsigned long bad_flags) | |
1da177e4 | 510 | { |
d936cf9b HD |
511 | static unsigned long resume; |
512 | static unsigned long nr_shown; | |
513 | static unsigned long nr_unshown; | |
514 | ||
515 | /* | |
516 | * Allow a burst of 60 reports, then keep quiet for that minute; | |
517 | * or allow a steady drip of one report per second. | |
518 | */ | |
519 | if (nr_shown == 60) { | |
520 | if (time_before(jiffies, resume)) { | |
521 | nr_unshown++; | |
522 | goto out; | |
523 | } | |
524 | if (nr_unshown) { | |
ff8e8116 | 525 | pr_alert( |
1e9e6365 | 526 | "BUG: Bad page state: %lu messages suppressed\n", |
d936cf9b HD |
527 | nr_unshown); |
528 | nr_unshown = 0; | |
529 | } | |
530 | nr_shown = 0; | |
531 | } | |
532 | if (nr_shown++ == 0) | |
533 | resume = jiffies + 60 * HZ; | |
534 | ||
ff8e8116 | 535 | pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", |
3dc14741 | 536 | current->comm, page_to_pfn(page)); |
ff8e8116 VB |
537 | __dump_page(page, reason); |
538 | bad_flags &= page->flags; | |
539 | if (bad_flags) | |
540 | pr_alert("bad because of flags: %#lx(%pGp)\n", | |
541 | bad_flags, &bad_flags); | |
4e462112 | 542 | dump_page_owner(page); |
3dc14741 | 543 | |
4f31888c | 544 | print_modules(); |
1da177e4 | 545 | dump_stack(); |
d936cf9b | 546 | out: |
8cc3b392 | 547 | /* Leave bad fields for debug, except PageBuddy could make trouble */ |
22b751c3 | 548 | page_mapcount_reset(page); /* remove PageBuddy */ |
373d4d09 | 549 | add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); |
1da177e4 LT |
550 | } |
551 | ||
1da177e4 LT |
552 | /* |
553 | * Higher-order pages are called "compound pages". They are structured thusly: | |
554 | * | |
1d798ca3 | 555 | * The first PAGE_SIZE page is called the "head page" and have PG_head set. |
1da177e4 | 556 | * |
1d798ca3 KS |
557 | * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded |
558 | * in bit 0 of page->compound_head. The rest of bits is pointer to head page. | |
1da177e4 | 559 | * |
1d798ca3 KS |
560 | * The first tail page's ->compound_dtor holds the offset in array of compound |
561 | * page destructors. See compound_page_dtors. | |
1da177e4 | 562 | * |
1d798ca3 | 563 | * The first tail page's ->compound_order holds the order of allocation. |
41d78ba5 | 564 | * This usage means that zero-order pages may not be compound. |
1da177e4 | 565 | */ |
d98c7a09 | 566 | |
9a982250 | 567 | void free_compound_page(struct page *page) |
d98c7a09 | 568 | { |
d85f3385 | 569 | __free_pages_ok(page, compound_order(page)); |
d98c7a09 HD |
570 | } |
571 | ||
d00181b9 | 572 | void prep_compound_page(struct page *page, unsigned int order) |
18229df5 AW |
573 | { |
574 | int i; | |
575 | int nr_pages = 1 << order; | |
576 | ||
f1e61557 | 577 | set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); |
18229df5 AW |
578 | set_compound_order(page, order); |
579 | __SetPageHead(page); | |
580 | for (i = 1; i < nr_pages; i++) { | |
581 | struct page *p = page + i; | |
58a84aa9 | 582 | set_page_count(p, 0); |
1c290f64 | 583 | p->mapping = TAIL_MAPPING; |
1d798ca3 | 584 | set_compound_head(p, page); |
18229df5 | 585 | } |
53f9263b | 586 | atomic_set(compound_mapcount_ptr(page), -1); |
18229df5 AW |
587 | } |
588 | ||
c0a32fc5 SG |
589 | #ifdef CONFIG_DEBUG_PAGEALLOC |
590 | unsigned int _debug_guardpage_minorder; | |
ea6eabb0 CB |
591 | bool _debug_pagealloc_enabled __read_mostly |
592 | = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); | |
505f6d22 | 593 | EXPORT_SYMBOL(_debug_pagealloc_enabled); |
e30825f1 JK |
594 | bool _debug_guardpage_enabled __read_mostly; |
595 | ||
031bc574 JK |
596 | static int __init early_debug_pagealloc(char *buf) |
597 | { | |
598 | if (!buf) | |
599 | return -EINVAL; | |
2a138dc7 | 600 | return kstrtobool(buf, &_debug_pagealloc_enabled); |
031bc574 JK |
601 | } |
602 | early_param("debug_pagealloc", early_debug_pagealloc); | |
603 | ||
e30825f1 JK |
604 | static bool need_debug_guardpage(void) |
605 | { | |
031bc574 JK |
606 | /* If we don't use debug_pagealloc, we don't need guard page */ |
607 | if (!debug_pagealloc_enabled()) | |
608 | return false; | |
609 | ||
e30825f1 JK |
610 | return true; |
611 | } | |
612 | ||
613 | static void init_debug_guardpage(void) | |
614 | { | |
031bc574 JK |
615 | if (!debug_pagealloc_enabled()) |
616 | return; | |
617 | ||
e30825f1 JK |
618 | _debug_guardpage_enabled = true; |
619 | } | |
620 | ||
621 | struct page_ext_operations debug_guardpage_ops = { | |
622 | .need = need_debug_guardpage, | |
623 | .init = init_debug_guardpage, | |
624 | }; | |
c0a32fc5 SG |
625 | |
626 | static int __init debug_guardpage_minorder_setup(char *buf) | |
627 | { | |
628 | unsigned long res; | |
629 | ||
630 | if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { | |
1170532b | 631 | pr_err("Bad debug_guardpage_minorder value\n"); |
c0a32fc5 SG |
632 | return 0; |
633 | } | |
634 | _debug_guardpage_minorder = res; | |
1170532b | 635 | pr_info("Setting debug_guardpage_minorder to %lu\n", res); |
c0a32fc5 SG |
636 | return 0; |
637 | } | |
638 | __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup); | |
639 | ||
2847cf95 JK |
640 | static inline void set_page_guard(struct zone *zone, struct page *page, |
641 | unsigned int order, int migratetype) | |
c0a32fc5 | 642 | { |
e30825f1 JK |
643 | struct page_ext *page_ext; |
644 | ||
645 | if (!debug_guardpage_enabled()) | |
646 | return; | |
647 | ||
648 | page_ext = lookup_page_ext(page); | |
f86e4271 YS |
649 | if (unlikely(!page_ext)) |
650 | return; | |
651 | ||
e30825f1 JK |
652 | __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); |
653 | ||
2847cf95 JK |
654 | INIT_LIST_HEAD(&page->lru); |
655 | set_page_private(page, order); | |
656 | /* Guard pages are not available for any usage */ | |
657 | __mod_zone_freepage_state(zone, -(1 << order), migratetype); | |
c0a32fc5 SG |
658 | } |
659 | ||
2847cf95 JK |
660 | static inline void clear_page_guard(struct zone *zone, struct page *page, |
661 | unsigned int order, int migratetype) | |
c0a32fc5 | 662 | { |
e30825f1 JK |
663 | struct page_ext *page_ext; |
664 | ||
665 | if (!debug_guardpage_enabled()) | |
666 | return; | |
667 | ||
668 | page_ext = lookup_page_ext(page); | |
f86e4271 YS |
669 | if (unlikely(!page_ext)) |
670 | return; | |
671 | ||
e30825f1 JK |
672 | __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); |
673 | ||
2847cf95 JK |
674 | set_page_private(page, 0); |
675 | if (!is_migrate_isolate(migratetype)) | |
676 | __mod_zone_freepage_state(zone, (1 << order), migratetype); | |
c0a32fc5 SG |
677 | } |
678 | #else | |
e30825f1 | 679 | struct page_ext_operations debug_guardpage_ops = { NULL, }; |
2847cf95 JK |
680 | static inline void set_page_guard(struct zone *zone, struct page *page, |
681 | unsigned int order, int migratetype) {} | |
682 | static inline void clear_page_guard(struct zone *zone, struct page *page, | |
683 | unsigned int order, int migratetype) {} | |
c0a32fc5 SG |
684 | #endif |
685 | ||
7aeb09f9 | 686 | static inline void set_page_order(struct page *page, unsigned int order) |
6aa3001b | 687 | { |
4c21e2f2 | 688 | set_page_private(page, order); |
676165a8 | 689 | __SetPageBuddy(page); |
1da177e4 LT |
690 | } |
691 | ||
692 | static inline void rmv_page_order(struct page *page) | |
693 | { | |
676165a8 | 694 | __ClearPageBuddy(page); |
4c21e2f2 | 695 | set_page_private(page, 0); |
1da177e4 LT |
696 | } |
697 | ||
1da177e4 LT |
698 | /* |
699 | * This function checks whether a page is free && is the buddy | |
700 | * we can do coalesce a page and its buddy if | |
13e7444b | 701 | * (a) the buddy is not in a hole && |
676165a8 | 702 | * (b) the buddy is in the buddy system && |
cb2b95e1 AW |
703 | * (c) a page and its buddy have the same order && |
704 | * (d) a page and its buddy are in the same zone. | |
676165a8 | 705 | * |
cf6fe945 WSH |
706 | * For recording whether a page is in the buddy system, we set ->_mapcount |
707 | * PAGE_BUDDY_MAPCOUNT_VALUE. | |
708 | * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is | |
709 | * serialized by zone->lock. | |
1da177e4 | 710 | * |
676165a8 | 711 | * For recording page's order, we use page_private(page). |
1da177e4 | 712 | */ |
cb2b95e1 | 713 | static inline int page_is_buddy(struct page *page, struct page *buddy, |
7aeb09f9 | 714 | unsigned int order) |
1da177e4 | 715 | { |
14e07298 | 716 | if (!pfn_valid_within(page_to_pfn(buddy))) |
13e7444b | 717 | return 0; |
13e7444b | 718 | |
c0a32fc5 | 719 | if (page_is_guard(buddy) && page_order(buddy) == order) { |
d34c5fa0 MG |
720 | if (page_zone_id(page) != page_zone_id(buddy)) |
721 | return 0; | |
722 | ||
4c5018ce WY |
723 | VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); |
724 | ||
c0a32fc5 SG |
725 | return 1; |
726 | } | |
727 | ||
cb2b95e1 | 728 | if (PageBuddy(buddy) && page_order(buddy) == order) { |
d34c5fa0 MG |
729 | /* |
730 | * zone check is done late to avoid uselessly | |
731 | * calculating zone/node ids for pages that could | |
732 | * never merge. | |
733 | */ | |
734 | if (page_zone_id(page) != page_zone_id(buddy)) | |
735 | return 0; | |
736 | ||
4c5018ce WY |
737 | VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); |
738 | ||
6aa3001b | 739 | return 1; |
676165a8 | 740 | } |
6aa3001b | 741 | return 0; |
1da177e4 LT |
742 | } |
743 | ||
744 | /* | |
745 | * Freeing function for a buddy system allocator. | |
746 | * | |
747 | * The concept of a buddy system is to maintain direct-mapped table | |
748 | * (containing bit values) for memory blocks of various "orders". | |
749 | * The bottom level table contains the map for the smallest allocatable | |
750 | * units of memory (here, pages), and each level above it describes | |
751 | * pairs of units from the levels below, hence, "buddies". | |
752 | * At a high level, all that happens here is marking the table entry | |
753 | * at the bottom level available, and propagating the changes upward | |
754 | * as necessary, plus some accounting needed to play nicely with other | |
755 | * parts of the VM system. | |
756 | * At each level, we keep a list of pages, which are heads of continuous | |
cf6fe945 WSH |
757 | * free pages of length of (1 << order) and marked with _mapcount |
758 | * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page) | |
759 | * field. | |
1da177e4 | 760 | * So when we are allocating or freeing one, we can derive the state of the |
5f63b720 MN |
761 | * other. That is, if we allocate a small block, and both were |
762 | * free, the remainder of the region must be split into blocks. | |
1da177e4 | 763 | * If a block is freed, and its buddy is also free, then this |
5f63b720 | 764 | * triggers coalescing into a block of larger size. |
1da177e4 | 765 | * |
6d49e352 | 766 | * -- nyc |
1da177e4 LT |
767 | */ |
768 | ||
48db57f8 | 769 | static inline void __free_one_page(struct page *page, |
dc4b0caf | 770 | unsigned long pfn, |
ed0ae21d MG |
771 | struct zone *zone, unsigned int order, |
772 | int migratetype) | |
1da177e4 LT |
773 | { |
774 | unsigned long page_idx; | |
6dda9d55 | 775 | unsigned long combined_idx; |
43506fad | 776 | unsigned long uninitialized_var(buddy_idx); |
6dda9d55 | 777 | struct page *buddy; |
d9dddbf5 VB |
778 | unsigned int max_order; |
779 | ||
780 | max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1); | |
1da177e4 | 781 | |
d29bb978 | 782 | VM_BUG_ON(!zone_is_initialized(zone)); |
6e9f0d58 | 783 | VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); |
1da177e4 | 784 | |
ed0ae21d | 785 | VM_BUG_ON(migratetype == -1); |
d9dddbf5 | 786 | if (likely(!is_migrate_isolate(migratetype))) |
8f82b55d | 787 | __mod_zone_freepage_state(zone, 1 << order, migratetype); |
ed0ae21d | 788 | |
d9dddbf5 | 789 | page_idx = pfn & ((1 << MAX_ORDER) - 1); |
1da177e4 | 790 | |
309381fe SL |
791 | VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page); |
792 | VM_BUG_ON_PAGE(bad_range(zone, page), page); | |
1da177e4 | 793 | |
d9dddbf5 | 794 | continue_merging: |
3c605096 | 795 | while (order < max_order - 1) { |
43506fad KC |
796 | buddy_idx = __find_buddy_index(page_idx, order); |
797 | buddy = page + (buddy_idx - page_idx); | |
cb2b95e1 | 798 | if (!page_is_buddy(page, buddy, order)) |
d9dddbf5 | 799 | goto done_merging; |
c0a32fc5 SG |
800 | /* |
801 | * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, | |
802 | * merge with it and move up one order. | |
803 | */ | |
804 | if (page_is_guard(buddy)) { | |
2847cf95 | 805 | clear_page_guard(zone, buddy, order, migratetype); |
c0a32fc5 SG |
806 | } else { |
807 | list_del(&buddy->lru); | |
808 | zone->free_area[order].nr_free--; | |
809 | rmv_page_order(buddy); | |
810 | } | |
43506fad | 811 | combined_idx = buddy_idx & page_idx; |
1da177e4 LT |
812 | page = page + (combined_idx - page_idx); |
813 | page_idx = combined_idx; | |
814 | order++; | |
815 | } | |
d9dddbf5 VB |
816 | if (max_order < MAX_ORDER) { |
817 | /* If we are here, it means order is >= pageblock_order. | |
818 | * We want to prevent merge between freepages on isolate | |
819 | * pageblock and normal pageblock. Without this, pageblock | |
820 | * isolation could cause incorrect freepage or CMA accounting. | |
821 | * | |
822 | * We don't want to hit this code for the more frequent | |
823 | * low-order merging. | |
824 | */ | |
825 | if (unlikely(has_isolate_pageblock(zone))) { | |
826 | int buddy_mt; | |
827 | ||
828 | buddy_idx = __find_buddy_index(page_idx, order); | |
829 | buddy = page + (buddy_idx - page_idx); | |
830 | buddy_mt = get_pageblock_migratetype(buddy); | |
831 | ||
832 | if (migratetype != buddy_mt | |
833 | && (is_migrate_isolate(migratetype) || | |
834 | is_migrate_isolate(buddy_mt))) | |
835 | goto done_merging; | |
836 | } | |
837 | max_order++; | |
838 | goto continue_merging; | |
839 | } | |
840 | ||
841 | done_merging: | |
1da177e4 | 842 | set_page_order(page, order); |
6dda9d55 CZ |
843 | |
844 | /* | |
845 | * If this is not the largest possible page, check if the buddy | |
846 | * of the next-highest order is free. If it is, it's possible | |
847 | * that pages are being freed that will coalesce soon. In case, | |
848 | * that is happening, add the free page to the tail of the list | |
849 | * so it's less likely to be used soon and more likely to be merged | |
850 | * as a higher order page | |
851 | */ | |
b7f50cfa | 852 | if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) { |
6dda9d55 | 853 | struct page *higher_page, *higher_buddy; |
43506fad KC |
854 | combined_idx = buddy_idx & page_idx; |
855 | higher_page = page + (combined_idx - page_idx); | |
856 | buddy_idx = __find_buddy_index(combined_idx, order + 1); | |
0ba8f2d5 | 857 | higher_buddy = higher_page + (buddy_idx - combined_idx); |
6dda9d55 CZ |
858 | if (page_is_buddy(higher_page, higher_buddy, order + 1)) { |
859 | list_add_tail(&page->lru, | |
860 | &zone->free_area[order].free_list[migratetype]); | |
861 | goto out; | |
862 | } | |
863 | } | |
864 | ||
865 | list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); | |
866 | out: | |
1da177e4 LT |
867 | zone->free_area[order].nr_free++; |
868 | } | |
869 | ||
7bfec6f4 MG |
870 | /* |
871 | * A bad page could be due to a number of fields. Instead of multiple branches, | |
872 | * try and check multiple fields with one check. The caller must do a detailed | |
873 | * check if necessary. | |
874 | */ | |
875 | static inline bool page_expected_state(struct page *page, | |
876 | unsigned long check_flags) | |
877 | { | |
878 | if (unlikely(atomic_read(&page->_mapcount) != -1)) | |
879 | return false; | |
880 | ||
881 | if (unlikely((unsigned long)page->mapping | | |
882 | page_ref_count(page) | | |
883 | #ifdef CONFIG_MEMCG | |
884 | (unsigned long)page->mem_cgroup | | |
885 | #endif | |
886 | (page->flags & check_flags))) | |
887 | return false; | |
888 | ||
889 | return true; | |
890 | } | |
891 | ||
bb552ac6 | 892 | static void free_pages_check_bad(struct page *page) |
1da177e4 | 893 | { |
7bfec6f4 MG |
894 | const char *bad_reason; |
895 | unsigned long bad_flags; | |
896 | ||
7bfec6f4 MG |
897 | bad_reason = NULL; |
898 | bad_flags = 0; | |
f0b791a3 | 899 | |
53f9263b | 900 | if (unlikely(atomic_read(&page->_mapcount) != -1)) |
f0b791a3 DH |
901 | bad_reason = "nonzero mapcount"; |
902 | if (unlikely(page->mapping != NULL)) | |
903 | bad_reason = "non-NULL mapping"; | |
fe896d18 | 904 | if (unlikely(page_ref_count(page) != 0)) |
0139aa7b | 905 | bad_reason = "nonzero _refcount"; |
f0b791a3 DH |
906 | if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) { |
907 | bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; | |
908 | bad_flags = PAGE_FLAGS_CHECK_AT_FREE; | |
909 | } | |
9edad6ea JW |
910 | #ifdef CONFIG_MEMCG |
911 | if (unlikely(page->mem_cgroup)) | |
912 | bad_reason = "page still charged to cgroup"; | |
913 | #endif | |
7bfec6f4 | 914 | bad_page(page, bad_reason, bad_flags); |
bb552ac6 MG |
915 | } |
916 | ||
917 | static inline int free_pages_check(struct page *page) | |
918 | { | |
da838d4f | 919 | if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) |
bb552ac6 | 920 | return 0; |
bb552ac6 MG |
921 | |
922 | /* Something has gone sideways, find it */ | |
923 | free_pages_check_bad(page); | |
7bfec6f4 | 924 | return 1; |
1da177e4 LT |
925 | } |
926 | ||
4db7548c MG |
927 | static int free_tail_pages_check(struct page *head_page, struct page *page) |
928 | { | |
929 | int ret = 1; | |
930 | ||
931 | /* | |
932 | * We rely page->lru.next never has bit 0 set, unless the page | |
933 | * is PageTail(). Let's make sure that's true even for poisoned ->lru. | |
934 | */ | |
935 | BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); | |
936 | ||
937 | if (!IS_ENABLED(CONFIG_DEBUG_VM)) { | |
938 | ret = 0; | |
939 | goto out; | |
940 | } | |
941 | switch (page - head_page) { | |
942 | case 1: | |
943 | /* the first tail page: ->mapping is compound_mapcount() */ | |
944 | if (unlikely(compound_mapcount(page))) { | |
945 | bad_page(page, "nonzero compound_mapcount", 0); | |
946 | goto out; | |
947 | } | |
948 | break; | |
949 | case 2: | |
950 | /* | |
951 | * the second tail page: ->mapping is | |
952 | * page_deferred_list().next -- ignore value. | |
953 | */ | |
954 | break; | |
955 | default: | |
956 | if (page->mapping != TAIL_MAPPING) { | |
957 | bad_page(page, "corrupted mapping in tail page", 0); | |
958 | goto out; | |
959 | } | |
960 | break; | |
961 | } | |
962 | if (unlikely(!PageTail(page))) { | |
963 | bad_page(page, "PageTail not set", 0); | |
964 | goto out; | |
965 | } | |
966 | if (unlikely(compound_head(page) != head_page)) { | |
967 | bad_page(page, "compound_head not consistent", 0); | |
968 | goto out; | |
969 | } | |
970 | ret = 0; | |
971 | out: | |
972 | page->mapping = NULL; | |
973 | clear_compound_head(page); | |
974 | return ret; | |
975 | } | |
976 | ||
e2769dbd MG |
977 | static __always_inline bool free_pages_prepare(struct page *page, |
978 | unsigned int order, bool check_free) | |
4db7548c | 979 | { |
e2769dbd | 980 | int bad = 0; |
4db7548c | 981 | |
4db7548c MG |
982 | VM_BUG_ON_PAGE(PageTail(page), page); |
983 | ||
e2769dbd MG |
984 | trace_mm_page_free(page, order); |
985 | kmemcheck_free_shadow(page, order); | |
e2769dbd MG |
986 | |
987 | /* | |
988 | * Check tail pages before head page information is cleared to | |
989 | * avoid checking PageCompound for order-0 pages. | |
990 | */ | |
991 | if (unlikely(order)) { | |
992 | bool compound = PageCompound(page); | |
993 | int i; | |
994 | ||
995 | VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); | |
4db7548c | 996 | |
9a73f61b KS |
997 | if (compound) |
998 | ClearPageDoubleMap(page); | |
e2769dbd MG |
999 | for (i = 1; i < (1 << order); i++) { |
1000 | if (compound) | |
1001 | bad += free_tail_pages_check(page, page + i); | |
1002 | if (unlikely(free_pages_check(page + i))) { | |
1003 | bad++; | |
1004 | continue; | |
1005 | } | |
1006 | (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; | |
1007 | } | |
1008 | } | |
bda807d4 | 1009 | if (PageMappingFlags(page)) |
4db7548c | 1010 | page->mapping = NULL; |
c4159a75 | 1011 | if (memcg_kmem_enabled() && PageKmemcg(page)) |
4949148a | 1012 | memcg_kmem_uncharge(page, order); |
e2769dbd MG |
1013 | if (check_free) |
1014 | bad += free_pages_check(page); | |
1015 | if (bad) | |
1016 | return false; | |
4db7548c | 1017 | |
e2769dbd MG |
1018 | page_cpupid_reset_last(page); |
1019 | page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; | |
1020 | reset_page_owner(page, order); | |
4db7548c MG |
1021 | |
1022 | if (!PageHighMem(page)) { | |
1023 | debug_check_no_locks_freed(page_address(page), | |
e2769dbd | 1024 | PAGE_SIZE << order); |
4db7548c | 1025 | debug_check_no_obj_freed(page_address(page), |
e2769dbd | 1026 | PAGE_SIZE << order); |
4db7548c | 1027 | } |
e2769dbd MG |
1028 | arch_free_page(page, order); |
1029 | kernel_poison_pages(page, 1 << order, 0); | |
1030 | kernel_map_pages(page, 1 << order, 0); | |
29b52de1 | 1031 | kasan_free_pages(page, order); |
4db7548c | 1032 | |
4db7548c MG |
1033 | return true; |
1034 | } | |
1035 | ||
e2769dbd MG |
1036 | #ifdef CONFIG_DEBUG_VM |
1037 | static inline bool free_pcp_prepare(struct page *page) | |
1038 | { | |
1039 | return free_pages_prepare(page, 0, true); | |
1040 | } | |
1041 | ||
1042 | static inline bool bulkfree_pcp_prepare(struct page *page) | |
1043 | { | |
1044 | return false; | |
1045 | } | |
1046 | #else | |
1047 | static bool free_pcp_prepare(struct page *page) | |
1048 | { | |
1049 | return free_pages_prepare(page, 0, false); | |
1050 | } | |
1051 | ||
4db7548c MG |
1052 | static bool bulkfree_pcp_prepare(struct page *page) |
1053 | { | |
1054 | return free_pages_check(page); | |
1055 | } | |
1056 | #endif /* CONFIG_DEBUG_VM */ | |
1057 | ||
1da177e4 | 1058 | /* |
5f8dcc21 | 1059 | * Frees a number of pages from the PCP lists |
1da177e4 | 1060 | * Assumes all pages on list are in same zone, and of same order. |
207f36ee | 1061 | * count is the number of pages to free. |
1da177e4 LT |
1062 | * |
1063 | * If the zone was previously in an "all pages pinned" state then look to | |
1064 | * see if this freeing clears that state. | |
1065 | * | |
1066 | * And clear the zone's pages_scanned counter, to hold off the "all pages are | |
1067 | * pinned" detection logic. | |
1068 | */ | |
5f8dcc21 MG |
1069 | static void free_pcppages_bulk(struct zone *zone, int count, |
1070 | struct per_cpu_pages *pcp) | |
1da177e4 | 1071 | { |
5f8dcc21 | 1072 | int migratetype = 0; |
a6f9edd6 | 1073 | int batch_free = 0; |
0d5d823a | 1074 | unsigned long nr_scanned; |
3777999d | 1075 | bool isolated_pageblocks; |
5f8dcc21 | 1076 | |
c54ad30c | 1077 | spin_lock(&zone->lock); |
3777999d | 1078 | isolated_pageblocks = has_isolate_pageblock(zone); |
599d0c95 | 1079 | nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED); |
0d5d823a | 1080 | if (nr_scanned) |
599d0c95 | 1081 | __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned); |
f2260e6b | 1082 | |
e5b31ac2 | 1083 | while (count) { |
48db57f8 | 1084 | struct page *page; |
5f8dcc21 MG |
1085 | struct list_head *list; |
1086 | ||
1087 | /* | |
a6f9edd6 MG |
1088 | * Remove pages from lists in a round-robin fashion. A |
1089 | * batch_free count is maintained that is incremented when an | |
1090 | * empty list is encountered. This is so more pages are freed | |
1091 | * off fuller lists instead of spinning excessively around empty | |
1092 | * lists | |
5f8dcc21 MG |
1093 | */ |
1094 | do { | |
a6f9edd6 | 1095 | batch_free++; |
5f8dcc21 MG |
1096 | if (++migratetype == MIGRATE_PCPTYPES) |
1097 | migratetype = 0; | |
1098 | list = &pcp->lists[migratetype]; | |
1099 | } while (list_empty(list)); | |
48db57f8 | 1100 | |
1d16871d NK |
1101 | /* This is the only non-empty list. Free them all. */ |
1102 | if (batch_free == MIGRATE_PCPTYPES) | |
e5b31ac2 | 1103 | batch_free = count; |
1d16871d | 1104 | |
a6f9edd6 | 1105 | do { |
770c8aaa BZ |
1106 | int mt; /* migratetype of the to-be-freed page */ |
1107 | ||
a16601c5 | 1108 | page = list_last_entry(list, struct page, lru); |
a6f9edd6 MG |
1109 | /* must delete as __free_one_page list manipulates */ |
1110 | list_del(&page->lru); | |
aa016d14 | 1111 | |
bb14c2c7 | 1112 | mt = get_pcppage_migratetype(page); |
aa016d14 VB |
1113 | /* MIGRATE_ISOLATE page should not go to pcplists */ |
1114 | VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); | |
1115 | /* Pageblock could have been isolated meanwhile */ | |
3777999d | 1116 | if (unlikely(isolated_pageblocks)) |
51bb1a40 | 1117 | mt = get_pageblock_migratetype(page); |
51bb1a40 | 1118 | |
4db7548c MG |
1119 | if (bulkfree_pcp_prepare(page)) |
1120 | continue; | |
1121 | ||
dc4b0caf | 1122 | __free_one_page(page, page_to_pfn(page), zone, 0, mt); |
770c8aaa | 1123 | trace_mm_page_pcpu_drain(page, 0, mt); |
e5b31ac2 | 1124 | } while (--count && --batch_free && !list_empty(list)); |
1da177e4 | 1125 | } |
c54ad30c | 1126 | spin_unlock(&zone->lock); |
1da177e4 LT |
1127 | } |
1128 | ||
dc4b0caf MG |
1129 | static void free_one_page(struct zone *zone, |
1130 | struct page *page, unsigned long pfn, | |
7aeb09f9 | 1131 | unsigned int order, |
ed0ae21d | 1132 | int migratetype) |
1da177e4 | 1133 | { |
0d5d823a | 1134 | unsigned long nr_scanned; |
006d22d9 | 1135 | spin_lock(&zone->lock); |
599d0c95 | 1136 | nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED); |
0d5d823a | 1137 | if (nr_scanned) |
599d0c95 | 1138 | __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned); |
f2260e6b | 1139 | |
ad53f92e JK |
1140 | if (unlikely(has_isolate_pageblock(zone) || |
1141 | is_migrate_isolate(migratetype))) { | |
1142 | migratetype = get_pfnblock_migratetype(page, pfn); | |
ad53f92e | 1143 | } |
dc4b0caf | 1144 | __free_one_page(page, pfn, zone, order, migratetype); |
006d22d9 | 1145 | spin_unlock(&zone->lock); |
48db57f8 NP |
1146 | } |
1147 | ||
1e8ce83c RH |
1148 | static void __meminit __init_single_page(struct page *page, unsigned long pfn, |
1149 | unsigned long zone, int nid) | |
1150 | { | |
1e8ce83c | 1151 | set_page_links(page, zone, nid, pfn); |
1e8ce83c RH |
1152 | init_page_count(page); |
1153 | page_mapcount_reset(page); | |
1154 | page_cpupid_reset_last(page); | |
1e8ce83c | 1155 | |
1e8ce83c RH |
1156 | INIT_LIST_HEAD(&page->lru); |
1157 | #ifdef WANT_PAGE_VIRTUAL | |
1158 | /* The shift won't overflow because ZONE_NORMAL is below 4G. */ | |
1159 | if (!is_highmem_idx(zone)) | |
1160 | set_page_address(page, __va(pfn << PAGE_SHIFT)); | |
1161 | #endif | |
1162 | } | |
1163 | ||
1164 | static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone, | |
1165 | int nid) | |
1166 | { | |
1167 | return __init_single_page(pfn_to_page(pfn), pfn, zone, nid); | |
1168 | } | |
1169 | ||
7e18adb4 MG |
1170 | #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT |
1171 | static void init_reserved_page(unsigned long pfn) | |
1172 | { | |
1173 | pg_data_t *pgdat; | |
1174 | int nid, zid; | |
1175 | ||
1176 | if (!early_page_uninitialised(pfn)) | |
1177 | return; | |
1178 | ||
1179 | nid = early_pfn_to_nid(pfn); | |
1180 | pgdat = NODE_DATA(nid); | |
1181 | ||
1182 | for (zid = 0; zid < MAX_NR_ZONES; zid++) { | |
1183 | struct zone *zone = &pgdat->node_zones[zid]; | |
1184 | ||
1185 | if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone)) | |
1186 | break; | |
1187 | } | |
1188 | __init_single_pfn(pfn, zid, nid); | |
1189 | } | |
1190 | #else | |
1191 | static inline void init_reserved_page(unsigned long pfn) | |
1192 | { | |
1193 | } | |
1194 | #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ | |
1195 | ||
92923ca3 NZ |
1196 | /* |
1197 | * Initialised pages do not have PageReserved set. This function is | |
1198 | * called for each range allocated by the bootmem allocator and | |
1199 | * marks the pages PageReserved. The remaining valid pages are later | |
1200 | * sent to the buddy page allocator. | |
1201 | */ | |
4b50bcc7 | 1202 | void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) |
92923ca3 NZ |
1203 | { |
1204 | unsigned long start_pfn = PFN_DOWN(start); | |
1205 | unsigned long end_pfn = PFN_UP(end); | |
1206 | ||
7e18adb4 MG |
1207 | for (; start_pfn < end_pfn; start_pfn++) { |
1208 | if (pfn_valid(start_pfn)) { | |
1209 | struct page *page = pfn_to_page(start_pfn); | |
1210 | ||
1211 | init_reserved_page(start_pfn); | |
1d798ca3 KS |
1212 | |
1213 | /* Avoid false-positive PageTail() */ | |
1214 | INIT_LIST_HEAD(&page->lru); | |
1215 | ||
7e18adb4 MG |
1216 | SetPageReserved(page); |
1217 | } | |
1218 | } | |
92923ca3 NZ |
1219 | } |
1220 | ||
ec95f53a KM |
1221 | static void __free_pages_ok(struct page *page, unsigned int order) |
1222 | { | |
1223 | unsigned long flags; | |
95e34412 | 1224 | int migratetype; |
dc4b0caf | 1225 | unsigned long pfn = page_to_pfn(page); |
ec95f53a | 1226 | |
e2769dbd | 1227 | if (!free_pages_prepare(page, order, true)) |
ec95f53a KM |
1228 | return; |
1229 | ||
cfc47a28 | 1230 | migratetype = get_pfnblock_migratetype(page, pfn); |
c54ad30c | 1231 | local_irq_save(flags); |
f8891e5e | 1232 | __count_vm_events(PGFREE, 1 << order); |
dc4b0caf | 1233 | free_one_page(page_zone(page), page, pfn, order, migratetype); |
c54ad30c | 1234 | local_irq_restore(flags); |
1da177e4 LT |
1235 | } |
1236 | ||
949698a3 | 1237 | static void __init __free_pages_boot_core(struct page *page, unsigned int order) |
a226f6c8 | 1238 | { |
c3993076 | 1239 | unsigned int nr_pages = 1 << order; |
e2d0bd2b | 1240 | struct page *p = page; |
c3993076 | 1241 | unsigned int loop; |
a226f6c8 | 1242 | |
e2d0bd2b YL |
1243 | prefetchw(p); |
1244 | for (loop = 0; loop < (nr_pages - 1); loop++, p++) { | |
1245 | prefetchw(p + 1); | |
c3993076 JW |
1246 | __ClearPageReserved(p); |
1247 | set_page_count(p, 0); | |
a226f6c8 | 1248 | } |
e2d0bd2b YL |
1249 | __ClearPageReserved(p); |
1250 | set_page_count(p, 0); | |
c3993076 | 1251 | |
e2d0bd2b | 1252 | page_zone(page)->managed_pages += nr_pages; |
c3993076 JW |
1253 | set_page_refcounted(page); |
1254 | __free_pages(page, order); | |
a226f6c8 DH |
1255 | } |
1256 | ||
75a592a4 MG |
1257 | #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \ |
1258 | defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) | |
7ace9917 | 1259 | |
75a592a4 MG |
1260 | static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; |
1261 | ||
1262 | int __meminit early_pfn_to_nid(unsigned long pfn) | |
1263 | { | |
7ace9917 | 1264 | static DEFINE_SPINLOCK(early_pfn_lock); |
75a592a4 MG |
1265 | int nid; |
1266 | ||
7ace9917 | 1267 | spin_lock(&early_pfn_lock); |
75a592a4 | 1268 | nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); |
7ace9917 | 1269 | if (nid < 0) |
e4568d38 | 1270 | nid = first_online_node; |
7ace9917 MG |
1271 | spin_unlock(&early_pfn_lock); |
1272 | ||
1273 | return nid; | |
75a592a4 MG |
1274 | } |
1275 | #endif | |
1276 | ||
1277 | #ifdef CONFIG_NODES_SPAN_OTHER_NODES | |
1278 | static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node, | |
1279 | struct mminit_pfnnid_cache *state) | |
1280 | { | |
1281 | int nid; | |
1282 | ||
1283 | nid = __early_pfn_to_nid(pfn, state); | |
1284 | if (nid >= 0 && nid != node) | |
1285 | return false; | |
1286 | return true; | |
1287 | } | |
1288 | ||
1289 | /* Only safe to use early in boot when initialisation is single-threaded */ | |
1290 | static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) | |
1291 | { | |
1292 | return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache); | |
1293 | } | |
1294 | ||
1295 | #else | |
1296 | ||
1297 | static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) | |
1298 | { | |
1299 | return true; | |
1300 | } | |
1301 | static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node, | |
1302 | struct mminit_pfnnid_cache *state) | |
1303 | { | |
1304 | return true; | |
1305 | } | |
1306 | #endif | |
1307 | ||
1308 | ||
0e1cc95b | 1309 | void __init __free_pages_bootmem(struct page *page, unsigned long pfn, |
3a80a7fa MG |
1310 | unsigned int order) |
1311 | { | |
1312 | if (early_page_uninitialised(pfn)) | |
1313 | return; | |
949698a3 | 1314 | return __free_pages_boot_core(page, order); |
3a80a7fa MG |
1315 | } |
1316 | ||
7cf91a98 JK |
1317 | /* |
1318 | * Check that the whole (or subset of) a pageblock given by the interval of | |
1319 | * [start_pfn, end_pfn) is valid and within the same zone, before scanning it | |
1320 | * with the migration of free compaction scanner. The scanners then need to | |
1321 | * use only pfn_valid_within() check for arches that allow holes within | |
1322 | * pageblocks. | |
1323 | * | |
1324 | * Return struct page pointer of start_pfn, or NULL if checks were not passed. | |
1325 | * | |
1326 | * It's possible on some configurations to have a setup like node0 node1 node0 | |
1327 | * i.e. it's possible that all pages within a zones range of pages do not | |
1328 | * belong to a single zone. We assume that a border between node0 and node1 | |
1329 | * can occur within a single pageblock, but not a node0 node1 node0 | |
1330 | * interleaving within a single pageblock. It is therefore sufficient to check | |
1331 | * the first and last page of a pageblock and avoid checking each individual | |
1332 | * page in a pageblock. | |
1333 | */ | |
1334 | struct page *__pageblock_pfn_to_page(unsigned long start_pfn, | |
1335 | unsigned long end_pfn, struct zone *zone) | |
1336 | { | |
1337 | struct page *start_page; | |
1338 | struct page *end_page; | |
1339 | ||
1340 | /* end_pfn is one past the range we are checking */ | |
1341 | end_pfn--; | |
1342 | ||
1343 | if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) | |
1344 | return NULL; | |
1345 | ||
1346 | start_page = pfn_to_page(start_pfn); | |
1347 | ||
1348 | if (page_zone(start_page) != zone) | |
1349 | return NULL; | |
1350 | ||
1351 | end_page = pfn_to_page(end_pfn); | |
1352 | ||
1353 | /* This gives a shorter code than deriving page_zone(end_page) */ | |
1354 | if (page_zone_id(start_page) != page_zone_id(end_page)) | |
1355 | return NULL; | |
1356 | ||
1357 | return start_page; | |
1358 | } | |
1359 | ||
1360 | void set_zone_contiguous(struct zone *zone) | |
1361 | { | |
1362 | unsigned long block_start_pfn = zone->zone_start_pfn; | |
1363 | unsigned long block_end_pfn; | |
1364 | ||
1365 | block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); | |
1366 | for (; block_start_pfn < zone_end_pfn(zone); | |
1367 | block_start_pfn = block_end_pfn, | |
1368 | block_end_pfn += pageblock_nr_pages) { | |
1369 | ||
1370 | block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); | |
1371 | ||
1372 | if (!__pageblock_pfn_to_page(block_start_pfn, | |
1373 | block_end_pfn, zone)) | |
1374 | return; | |
1375 | } | |
1376 | ||
1377 | /* We confirm that there is no hole */ | |
1378 | zone->contiguous = true; | |
1379 | } | |
1380 | ||
1381 | void clear_zone_contiguous(struct zone *zone) | |
1382 | { | |
1383 | zone->contiguous = false; | |
1384 | } | |
1385 | ||
7e18adb4 | 1386 | #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT |
0e1cc95b | 1387 | static void __init deferred_free_range(struct page *page, |
a4de83dd MG |
1388 | unsigned long pfn, int nr_pages) |
1389 | { | |
1390 | int i; | |
1391 | ||
1392 | if (!page) | |
1393 | return; | |
1394 | ||
1395 | /* Free a large naturally-aligned chunk if possible */ | |
1396 | if (nr_pages == MAX_ORDER_NR_PAGES && | |
1397 | (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) { | |
ac5d2539 | 1398 | set_pageblock_migratetype(page, MIGRATE_MOVABLE); |
949698a3 | 1399 | __free_pages_boot_core(page, MAX_ORDER-1); |
a4de83dd MG |
1400 | return; |
1401 | } | |
1402 | ||
949698a3 LZ |
1403 | for (i = 0; i < nr_pages; i++, page++) |
1404 | __free_pages_boot_core(page, 0); | |
a4de83dd MG |
1405 | } |
1406 | ||
d3cd131d NS |
1407 | /* Completion tracking for deferred_init_memmap() threads */ |
1408 | static atomic_t pgdat_init_n_undone __initdata; | |
1409 | static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); | |
1410 | ||
1411 | static inline void __init pgdat_init_report_one_done(void) | |
1412 | { | |
1413 | if (atomic_dec_and_test(&pgdat_init_n_undone)) | |
1414 | complete(&pgdat_init_all_done_comp); | |
1415 | } | |
0e1cc95b | 1416 | |
7e18adb4 | 1417 | /* Initialise remaining memory on a node */ |
0e1cc95b | 1418 | static int __init deferred_init_memmap(void *data) |
7e18adb4 | 1419 | { |
0e1cc95b MG |
1420 | pg_data_t *pgdat = data; |
1421 | int nid = pgdat->node_id; | |
7e18adb4 MG |
1422 | struct mminit_pfnnid_cache nid_init_state = { }; |
1423 | unsigned long start = jiffies; | |
1424 | unsigned long nr_pages = 0; | |
1425 | unsigned long walk_start, walk_end; | |
1426 | int i, zid; | |
1427 | struct zone *zone; | |
7e18adb4 | 1428 | unsigned long first_init_pfn = pgdat->first_deferred_pfn; |
0e1cc95b | 1429 | const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); |
7e18adb4 | 1430 | |
0e1cc95b | 1431 | if (first_init_pfn == ULONG_MAX) { |
d3cd131d | 1432 | pgdat_init_report_one_done(); |
0e1cc95b MG |
1433 | return 0; |
1434 | } | |
1435 | ||
1436 | /* Bind memory initialisation thread to a local node if possible */ | |
1437 | if (!cpumask_empty(cpumask)) | |
1438 | set_cpus_allowed_ptr(current, cpumask); | |
7e18adb4 MG |
1439 | |
1440 | /* Sanity check boundaries */ | |
1441 | BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); | |
1442 | BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); | |
1443 | pgdat->first_deferred_pfn = ULONG_MAX; | |
1444 | ||
1445 | /* Only the highest zone is deferred so find it */ | |
1446 | for (zid = 0; zid < MAX_NR_ZONES; zid++) { | |
1447 | zone = pgdat->node_zones + zid; | |
1448 | if (first_init_pfn < zone_end_pfn(zone)) | |
1449 | break; | |
1450 | } | |
1451 | ||
1452 | for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) { | |
1453 | unsigned long pfn, end_pfn; | |
54608c3f | 1454 | struct page *page = NULL; |
a4de83dd MG |
1455 | struct page *free_base_page = NULL; |
1456 | unsigned long free_base_pfn = 0; | |
1457 | int nr_to_free = 0; | |
7e18adb4 MG |
1458 | |
1459 | end_pfn = min(walk_end, zone_end_pfn(zone)); | |
1460 | pfn = first_init_pfn; | |
1461 | if (pfn < walk_start) | |
1462 | pfn = walk_start; | |
1463 | if (pfn < zone->zone_start_pfn) | |
1464 | pfn = zone->zone_start_pfn; | |
1465 | ||
1466 | for (; pfn < end_pfn; pfn++) { | |
54608c3f | 1467 | if (!pfn_valid_within(pfn)) |
a4de83dd | 1468 | goto free_range; |
7e18adb4 | 1469 | |
54608c3f MG |
1470 | /* |
1471 | * Ensure pfn_valid is checked every | |
1472 | * MAX_ORDER_NR_PAGES for memory holes | |
1473 | */ | |
1474 | if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) { | |
1475 | if (!pfn_valid(pfn)) { | |
1476 | page = NULL; | |
a4de83dd | 1477 | goto free_range; |
54608c3f MG |
1478 | } |
1479 | } | |
1480 | ||
1481 | if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) { | |
1482 | page = NULL; | |
a4de83dd | 1483 | goto free_range; |
54608c3f MG |
1484 | } |
1485 | ||
1486 | /* Minimise pfn page lookups and scheduler checks */ | |
1487 | if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) { | |
1488 | page++; | |
1489 | } else { | |
a4de83dd MG |
1490 | nr_pages += nr_to_free; |
1491 | deferred_free_range(free_base_page, | |
1492 | free_base_pfn, nr_to_free); | |
1493 | free_base_page = NULL; | |
1494 | free_base_pfn = nr_to_free = 0; | |
1495 | ||
54608c3f MG |
1496 | page = pfn_to_page(pfn); |
1497 | cond_resched(); | |
1498 | } | |
7e18adb4 MG |
1499 | |
1500 | if (page->flags) { | |
1501 | VM_BUG_ON(page_zone(page) != zone); | |
a4de83dd | 1502 | goto free_range; |
7e18adb4 MG |
1503 | } |
1504 | ||
1505 | __init_single_page(page, pfn, zid, nid); | |
a4de83dd MG |
1506 | if (!free_base_page) { |
1507 | free_base_page = page; | |
1508 | free_base_pfn = pfn; | |
1509 | nr_to_free = 0; | |
1510 | } | |
1511 | nr_to_free++; | |
1512 | ||
1513 | /* Where possible, batch up pages for a single free */ | |
1514 | continue; | |
1515 | free_range: | |
1516 | /* Free the current block of pages to allocator */ | |
1517 | nr_pages += nr_to_free; | |
1518 | deferred_free_range(free_base_page, free_base_pfn, | |
1519 | nr_to_free); | |
1520 | free_base_page = NULL; | |
1521 | free_base_pfn = nr_to_free = 0; | |
7e18adb4 | 1522 | } |
a4de83dd | 1523 | |
7e18adb4 MG |
1524 | first_init_pfn = max(end_pfn, first_init_pfn); |
1525 | } | |
1526 | ||
1527 | /* Sanity check that the next zone really is unpopulated */ | |
1528 | WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); | |
1529 | ||
0e1cc95b | 1530 | pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages, |
7e18adb4 | 1531 | jiffies_to_msecs(jiffies - start)); |
d3cd131d NS |
1532 | |
1533 | pgdat_init_report_one_done(); | |
0e1cc95b MG |
1534 | return 0; |
1535 | } | |
7cf91a98 | 1536 | #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ |
0e1cc95b MG |
1537 | |
1538 | void __init page_alloc_init_late(void) | |
1539 | { | |
7cf91a98 JK |
1540 | struct zone *zone; |
1541 | ||
1542 | #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT | |
0e1cc95b MG |
1543 | int nid; |
1544 | ||
d3cd131d NS |
1545 | /* There will be num_node_state(N_MEMORY) threads */ |
1546 | atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); | |
0e1cc95b | 1547 | for_each_node_state(nid, N_MEMORY) { |
0e1cc95b MG |
1548 | kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); |
1549 | } | |
1550 | ||
1551 | /* Block until all are initialised */ | |
d3cd131d | 1552 | wait_for_completion(&pgdat_init_all_done_comp); |
4248b0da MG |
1553 | |
1554 | /* Reinit limits that are based on free pages after the kernel is up */ | |
1555 | files_maxfiles_init(); | |
7cf91a98 JK |
1556 | #endif |
1557 | ||
1558 | for_each_populated_zone(zone) | |
1559 | set_zone_contiguous(zone); | |
7e18adb4 | 1560 | } |
7e18adb4 | 1561 | |
47118af0 | 1562 | #ifdef CONFIG_CMA |
9cf510a5 | 1563 | /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ |
47118af0 MN |
1564 | void __init init_cma_reserved_pageblock(struct page *page) |
1565 | { | |
1566 | unsigned i = pageblock_nr_pages; | |
1567 | struct page *p = page; | |
1568 | ||
1569 | do { | |
1570 | __ClearPageReserved(p); | |
1571 | set_page_count(p, 0); | |
1572 | } while (++p, --i); | |
1573 | ||
47118af0 | 1574 | set_pageblock_migratetype(page, MIGRATE_CMA); |
dc78327c MN |
1575 | |
1576 | if (pageblock_order >= MAX_ORDER) { | |
1577 | i = pageblock_nr_pages; | |
1578 | p = page; | |
1579 | do { | |
1580 | set_page_refcounted(p); | |
1581 | __free_pages(p, MAX_ORDER - 1); | |
1582 | p += MAX_ORDER_NR_PAGES; | |
1583 | } while (i -= MAX_ORDER_NR_PAGES); | |
1584 | } else { | |
1585 | set_page_refcounted(page); | |
1586 | __free_pages(page, pageblock_order); | |
1587 | } | |
1588 | ||
3dcc0571 | 1589 | adjust_managed_page_count(page, pageblock_nr_pages); |
47118af0 MN |
1590 | } |
1591 | #endif | |
1da177e4 LT |
1592 | |
1593 | /* | |
1594 | * The order of subdivision here is critical for the IO subsystem. | |
1595 | * Please do not alter this order without good reasons and regression | |
1596 | * testing. Specifically, as large blocks of memory are subdivided, | |
1597 | * the order in which smaller blocks are delivered depends on the order | |
1598 | * they're subdivided in this function. This is the primary factor | |
1599 | * influencing the order in which pages are delivered to the IO | |
1600 | * subsystem according to empirical testing, and this is also justified | |
1601 | * by considering the behavior of a buddy system containing a single | |
1602 | * large block of memory acted on by a series of small allocations. | |
1603 | * This behavior is a critical factor in sglist merging's success. | |
1604 | * | |
6d49e352 | 1605 | * -- nyc |
1da177e4 | 1606 | */ |
085cc7d5 | 1607 | static inline void expand(struct zone *zone, struct page *page, |
b2a0ac88 MG |
1608 | int low, int high, struct free_area *area, |
1609 | int migratetype) | |
1da177e4 LT |
1610 | { |
1611 | unsigned long size = 1 << high; | |
1612 | ||
1613 | while (high > low) { | |
1614 | area--; | |
1615 | high--; | |
1616 | size >>= 1; | |
309381fe | 1617 | VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); |
c0a32fc5 | 1618 | |
2847cf95 | 1619 | if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && |
e30825f1 | 1620 | debug_guardpage_enabled() && |
2847cf95 | 1621 | high < debug_guardpage_minorder()) { |
c0a32fc5 SG |
1622 | /* |
1623 | * Mark as guard pages (or page), that will allow to | |
1624 | * merge back to allocator when buddy will be freed. | |
1625 | * Corresponding page table entries will not be touched, | |
1626 | * pages will stay not present in virtual address space | |
1627 | */ | |
2847cf95 | 1628 | set_page_guard(zone, &page[size], high, migratetype); |
c0a32fc5 SG |
1629 | continue; |
1630 | } | |
b2a0ac88 | 1631 | list_add(&page[size].lru, &area->free_list[migratetype]); |
1da177e4 LT |
1632 | area->nr_free++; |
1633 | set_page_order(&page[size], high); | |
1634 | } | |
1da177e4 LT |
1635 | } |
1636 | ||
4e611801 | 1637 | static void check_new_page_bad(struct page *page) |
1da177e4 | 1638 | { |
4e611801 VB |
1639 | const char *bad_reason = NULL; |
1640 | unsigned long bad_flags = 0; | |
7bfec6f4 | 1641 | |
53f9263b | 1642 | if (unlikely(atomic_read(&page->_mapcount) != -1)) |
f0b791a3 DH |
1643 | bad_reason = "nonzero mapcount"; |
1644 | if (unlikely(page->mapping != NULL)) | |
1645 | bad_reason = "non-NULL mapping"; | |
fe896d18 | 1646 | if (unlikely(page_ref_count(page) != 0)) |
f0b791a3 | 1647 | bad_reason = "nonzero _count"; |
f4c18e6f NH |
1648 | if (unlikely(page->flags & __PG_HWPOISON)) { |
1649 | bad_reason = "HWPoisoned (hardware-corrupted)"; | |
1650 | bad_flags = __PG_HWPOISON; | |
e570f56c NH |
1651 | /* Don't complain about hwpoisoned pages */ |
1652 | page_mapcount_reset(page); /* remove PageBuddy */ | |
1653 | return; | |
f4c18e6f | 1654 | } |
f0b791a3 DH |
1655 | if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) { |
1656 | bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set"; | |
1657 | bad_flags = PAGE_FLAGS_CHECK_AT_PREP; | |
1658 | } | |
9edad6ea JW |
1659 | #ifdef CONFIG_MEMCG |
1660 | if (unlikely(page->mem_cgroup)) | |
1661 | bad_reason = "page still charged to cgroup"; | |
1662 | #endif | |
4e611801 VB |
1663 | bad_page(page, bad_reason, bad_flags); |
1664 | } | |
1665 | ||
1666 | /* | |
1667 | * This page is about to be returned from the page allocator | |
1668 | */ | |
1669 | static inline int check_new_page(struct page *page) | |
1670 | { | |
1671 | if (likely(page_expected_state(page, | |
1672 | PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) | |
1673 | return 0; | |
1674 | ||
1675 | check_new_page_bad(page); | |
1676 | return 1; | |
2a7684a2 WF |
1677 | } |
1678 | ||
1414c7f4 LA |
1679 | static inline bool free_pages_prezeroed(bool poisoned) |
1680 | { | |
1681 | return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) && | |
1682 | page_poisoning_enabled() && poisoned; | |
1683 | } | |
1684 | ||
479f854a MG |
1685 | #ifdef CONFIG_DEBUG_VM |
1686 | static bool check_pcp_refill(struct page *page) | |
1687 | { | |
1688 | return false; | |
1689 | } | |
1690 | ||
1691 | static bool check_new_pcp(struct page *page) | |
1692 | { | |
1693 | return check_new_page(page); | |
1694 | } | |
1695 | #else | |
1696 | static bool check_pcp_refill(struct page *page) | |
1697 | { | |
1698 | return check_new_page(page); | |
1699 | } | |
1700 | static bool check_new_pcp(struct page *page) | |
1701 | { | |
1702 | return false; | |
1703 | } | |
1704 | #endif /* CONFIG_DEBUG_VM */ | |
1705 | ||
1706 | static bool check_new_pages(struct page *page, unsigned int order) | |
1707 | { | |
1708 | int i; | |
1709 | for (i = 0; i < (1 << order); i++) { | |
1710 | struct page *p = page + i; | |
1711 | ||
1712 | if (unlikely(check_new_page(p))) | |
1713 | return true; | |
1714 | } | |
1715 | ||
1716 | return false; | |
1717 | } | |
1718 | ||
46f24fd8 JK |
1719 | inline void post_alloc_hook(struct page *page, unsigned int order, |
1720 | gfp_t gfp_flags) | |
1721 | { | |
1722 | set_page_private(page, 0); | |
1723 | set_page_refcounted(page); | |
1724 | ||
1725 | arch_alloc_page(page, order); | |
1726 | kernel_map_pages(page, 1 << order, 1); | |
1727 | kernel_poison_pages(page, 1 << order, 1); | |
1728 | kasan_alloc_pages(page, order); | |
1729 | set_page_owner(page, order, gfp_flags); | |
1730 | } | |
1731 | ||
479f854a | 1732 | static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, |
c603844b | 1733 | unsigned int alloc_flags) |
2a7684a2 WF |
1734 | { |
1735 | int i; | |
1414c7f4 | 1736 | bool poisoned = true; |
2a7684a2 WF |
1737 | |
1738 | for (i = 0; i < (1 << order); i++) { | |
1739 | struct page *p = page + i; | |
1414c7f4 LA |
1740 | if (poisoned) |
1741 | poisoned &= page_is_poisoned(p); | |
2a7684a2 | 1742 | } |
689bcebf | 1743 | |
46f24fd8 | 1744 | post_alloc_hook(page, order, gfp_flags); |
17cf4406 | 1745 | |
1414c7f4 | 1746 | if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO)) |
f4d2897b AA |
1747 | for (i = 0; i < (1 << order); i++) |
1748 | clear_highpage(page + i); | |
17cf4406 NP |
1749 | |
1750 | if (order && (gfp_flags & __GFP_COMP)) | |
1751 | prep_compound_page(page, order); | |
1752 | ||
75379191 | 1753 | /* |
2f064f34 | 1754 | * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to |
75379191 VB |
1755 | * allocate the page. The expectation is that the caller is taking |
1756 | * steps that will free more memory. The caller should avoid the page | |
1757 | * being used for !PFMEMALLOC purposes. | |
1758 | */ | |
2f064f34 MH |
1759 | if (alloc_flags & ALLOC_NO_WATERMARKS) |
1760 | set_page_pfmemalloc(page); | |
1761 | else | |
1762 | clear_page_pfmemalloc(page); | |
1da177e4 LT |
1763 | } |
1764 | ||
56fd56b8 MG |
1765 | /* |
1766 | * Go through the free lists for the given migratetype and remove | |
1767 | * the smallest available page from the freelists | |
1768 | */ | |
728ec980 MG |
1769 | static inline |
1770 | struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, | |
56fd56b8 MG |
1771 | int migratetype) |
1772 | { | |
1773 | unsigned int current_order; | |
b8af2941 | 1774 | struct free_area *area; |
56fd56b8 MG |
1775 | struct page *page; |
1776 | ||
1777 | /* Find a page of the appropriate size in the preferred list */ | |
1778 | for (current_order = order; current_order < MAX_ORDER; ++current_order) { | |
1779 | area = &(zone->free_area[current_order]); | |
a16601c5 | 1780 | page = list_first_entry_or_null(&area->free_list[migratetype], |
56fd56b8 | 1781 | struct page, lru); |
a16601c5 GT |
1782 | if (!page) |
1783 | continue; | |
56fd56b8 MG |
1784 | list_del(&page->lru); |
1785 | rmv_page_order(page); | |
1786 | area->nr_free--; | |
56fd56b8 | 1787 | expand(zone, page, order, current_order, area, migratetype); |
bb14c2c7 | 1788 | set_pcppage_migratetype(page, migratetype); |
56fd56b8 MG |
1789 | return page; |
1790 | } | |
1791 | ||
1792 | return NULL; | |
1793 | } | |
1794 | ||
1795 | ||
b2a0ac88 MG |
1796 | /* |
1797 | * This array describes the order lists are fallen back to when | |
1798 | * the free lists for the desirable migrate type are depleted | |
1799 | */ | |
47118af0 | 1800 | static int fallbacks[MIGRATE_TYPES][4] = { |
974a786e MG |
1801 | [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, |
1802 | [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, | |
1803 | [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, | |
47118af0 | 1804 | #ifdef CONFIG_CMA |
974a786e | 1805 | [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */ |
47118af0 | 1806 | #endif |
194159fb | 1807 | #ifdef CONFIG_MEMORY_ISOLATION |
974a786e | 1808 | [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */ |
194159fb | 1809 | #endif |
b2a0ac88 MG |
1810 | }; |
1811 | ||
dc67647b JK |
1812 | #ifdef CONFIG_CMA |
1813 | static struct page *__rmqueue_cma_fallback(struct zone *zone, | |
1814 | unsigned int order) | |
1815 | { | |
1816 | return __rmqueue_smallest(zone, order, MIGRATE_CMA); | |
1817 | } | |
1818 | #else | |
1819 | static inline struct page *__rmqueue_cma_fallback(struct zone *zone, | |
1820 | unsigned int order) { return NULL; } | |
1821 | #endif | |
1822 | ||
c361be55 MG |
1823 | /* |
1824 | * Move the free pages in a range to the free lists of the requested type. | |
d9c23400 | 1825 | * Note that start_page and end_pages are not aligned on a pageblock |
c361be55 MG |
1826 | * boundary. If alignment is required, use move_freepages_block() |
1827 | */ | |
435b405c | 1828 | int move_freepages(struct zone *zone, |
b69a7288 AB |
1829 | struct page *start_page, struct page *end_page, |
1830 | int migratetype) | |
c361be55 MG |
1831 | { |
1832 | struct page *page; | |
d00181b9 | 1833 | unsigned int order; |
d100313f | 1834 | int pages_moved = 0; |
c361be55 MG |
1835 | |
1836 | #ifndef CONFIG_HOLES_IN_ZONE | |
1837 | /* | |
1838 | * page_zone is not safe to call in this context when | |
1839 | * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant | |
1840 | * anyway as we check zone boundaries in move_freepages_block(). | |
1841 | * Remove at a later date when no bug reports exist related to | |
ac0e5b7a | 1842 | * grouping pages by mobility |
c361be55 | 1843 | */ |
97ee4ba7 | 1844 | VM_BUG_ON(page_zone(start_page) != page_zone(end_page)); |
c361be55 MG |
1845 | #endif |
1846 | ||
1847 | for (page = start_page; page <= end_page;) { | |
344c790e | 1848 | /* Make sure we are not inadvertently changing nodes */ |
309381fe | 1849 | VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); |
344c790e | 1850 | |
c361be55 MG |
1851 | if (!pfn_valid_within(page_to_pfn(page))) { |
1852 | page++; | |
1853 | continue; | |
1854 | } | |
1855 | ||
1856 | if (!PageBuddy(page)) { | |
1857 | page++; | |
1858 | continue; | |
1859 | } | |
1860 | ||
1861 | order = page_order(page); | |
84be48d8 KS |
1862 | list_move(&page->lru, |
1863 | &zone->free_area[order].free_list[migratetype]); | |
c361be55 | 1864 | page += 1 << order; |
d100313f | 1865 | pages_moved += 1 << order; |
c361be55 MG |
1866 | } |
1867 | ||
d100313f | 1868 | return pages_moved; |
c361be55 MG |
1869 | } |
1870 | ||
ee6f509c | 1871 | int move_freepages_block(struct zone *zone, struct page *page, |
68e3e926 | 1872 | int migratetype) |
c361be55 MG |
1873 | { |
1874 | unsigned long start_pfn, end_pfn; | |
1875 | struct page *start_page, *end_page; | |
1876 | ||
1877 | start_pfn = page_to_pfn(page); | |
d9c23400 | 1878 | start_pfn = start_pfn & ~(pageblock_nr_pages-1); |
c361be55 | 1879 | start_page = pfn_to_page(start_pfn); |
d9c23400 MG |
1880 | end_page = start_page + pageblock_nr_pages - 1; |
1881 | end_pfn = start_pfn + pageblock_nr_pages - 1; | |
c361be55 MG |
1882 | |
1883 | /* Do not cross zone boundaries */ | |
108bcc96 | 1884 | if (!zone_spans_pfn(zone, start_pfn)) |
c361be55 | 1885 | start_page = page; |
108bcc96 | 1886 | if (!zone_spans_pfn(zone, end_pfn)) |
c361be55 MG |
1887 | return 0; |
1888 | ||
1889 | return move_freepages(zone, start_page, end_page, migratetype); | |
1890 | } | |
1891 | ||
2f66a68f MG |
1892 | static void change_pageblock_range(struct page *pageblock_page, |
1893 | int start_order, int migratetype) | |
1894 | { | |
1895 | int nr_pageblocks = 1 << (start_order - pageblock_order); | |
1896 | ||
1897 | while (nr_pageblocks--) { | |
1898 | set_pageblock_migratetype(pageblock_page, migratetype); | |
1899 | pageblock_page += pageblock_nr_pages; | |
1900 | } | |
1901 | } | |
1902 | ||
fef903ef | 1903 | /* |
9c0415eb VB |
1904 | * When we are falling back to another migratetype during allocation, try to |
1905 | * steal extra free pages from the same pageblocks to satisfy further | |
1906 | * allocations, instead of polluting multiple pageblocks. | |
1907 | * | |
1908 | * If we are stealing a relatively large buddy page, it is likely there will | |
1909 | * be more free pages in the pageblock, so try to steal them all. For | |
1910 | * reclaimable and unmovable allocations, we steal regardless of page size, | |
1911 | * as fragmentation caused by those allocations polluting movable pageblocks | |
1912 | * is worse than movable allocations stealing from unmovable and reclaimable | |
1913 | * pageblocks. | |
fef903ef | 1914 | */ |
4eb7dce6 JK |
1915 | static bool can_steal_fallback(unsigned int order, int start_mt) |
1916 | { | |
1917 | /* | |
1918 | * Leaving this order check is intended, although there is | |
1919 | * relaxed order check in next check. The reason is that | |
1920 | * we can actually steal whole pageblock if this condition met, | |
1921 | * but, below check doesn't guarantee it and that is just heuristic | |
1922 | * so could be changed anytime. | |
1923 | */ | |
1924 | if (order >= pageblock_order) | |
1925 | return true; | |
1926 | ||
1927 | if (order >= pageblock_order / 2 || | |
1928 | start_mt == MIGRATE_RECLAIMABLE || | |
1929 | start_mt == MIGRATE_UNMOVABLE || | |
1930 | page_group_by_mobility_disabled) | |
1931 | return true; | |
1932 | ||
1933 | return false; | |
1934 | } | |
1935 | ||
1936 | /* | |
1937 | * This function implements actual steal behaviour. If order is large enough, | |
1938 | * we can steal whole pageblock. If not, we first move freepages in this | |
1939 | * pageblock and check whether half of pages are moved or not. If half of | |
1940 | * pages are moved, we can change migratetype of pageblock and permanently | |
1941 | * use it's pages as requested migratetype in the future. | |
1942 | */ | |
1943 | static void steal_suitable_fallback(struct zone *zone, struct page *page, | |
1944 | int start_type) | |
fef903ef | 1945 | { |
d00181b9 | 1946 | unsigned int current_order = page_order(page); |
4eb7dce6 | 1947 | int pages; |
fef903ef | 1948 | |
fef903ef SB |
1949 | /* Take ownership for orders >= pageblock_order */ |
1950 | if (current_order >= pageblock_order) { | |
1951 | change_pageblock_range(page, current_order, start_type); | |
3a1086fb | 1952 | return; |
fef903ef SB |
1953 | } |
1954 | ||
4eb7dce6 | 1955 | pages = move_freepages_block(zone, page, start_type); |
fef903ef | 1956 | |
4eb7dce6 JK |
1957 | /* Claim the whole block if over half of it is free */ |
1958 | if (pages >= (1 << (pageblock_order-1)) || | |
1959 | page_group_by_mobility_disabled) | |
1960 | set_pageblock_migratetype(page, start_type); | |
1961 | } | |
1962 | ||
2149cdae JK |
1963 | /* |
1964 | * Check whether there is a suitable fallback freepage with requested order. | |
1965 | * If only_stealable is true, this function returns fallback_mt only if | |
1966 | * we can steal other freepages all together. This would help to reduce | |
1967 | * fragmentation due to mixed migratetype pages in one pageblock. | |
1968 | */ | |
1969 | int find_suitable_fallback(struct free_area *area, unsigned int order, | |
1970 | int migratetype, bool only_stealable, bool *can_steal) | |
4eb7dce6 JK |
1971 | { |
1972 | int i; | |
1973 | int fallback_mt; | |
1974 | ||
1975 | if (area->nr_free == 0) | |
1976 | return -1; | |
1977 | ||
1978 | *can_steal = false; | |
1979 | for (i = 0;; i++) { | |
1980 | fallback_mt = fallbacks[migratetype][i]; | |
974a786e | 1981 | if (fallback_mt == MIGRATE_TYPES) |
4eb7dce6 JK |
1982 | break; |
1983 | ||
1984 | if (list_empty(&area->free_list[fallback_mt])) | |
1985 | continue; | |
fef903ef | 1986 | |
4eb7dce6 JK |
1987 | if (can_steal_fallback(order, migratetype)) |
1988 | *can_steal = true; | |
1989 | ||
2149cdae JK |
1990 | if (!only_stealable) |
1991 | return fallback_mt; | |
1992 | ||
1993 | if (*can_steal) | |
1994 | return fallback_mt; | |
fef903ef | 1995 | } |
4eb7dce6 JK |
1996 | |
1997 | return -1; | |
fef903ef SB |
1998 | } |
1999 | ||
0aaa29a5 MG |
2000 | /* |
2001 | * Reserve a pageblock for exclusive use of high-order atomic allocations if | |
2002 | * there are no empty page blocks that contain a page with a suitable order | |
2003 | */ | |
2004 | static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, | |
2005 | unsigned int alloc_order) | |
2006 | { | |
2007 | int mt; | |
2008 | unsigned long max_managed, flags; | |
2009 | ||
2010 | /* | |
2011 | * Limit the number reserved to 1 pageblock or roughly 1% of a zone. | |
2012 | * Check is race-prone but harmless. | |
2013 | */ | |
2014 | max_managed = (zone->managed_pages / 100) + pageblock_nr_pages; | |
2015 | if (zone->nr_reserved_highatomic >= max_managed) | |
2016 | return; | |
2017 | ||
2018 | spin_lock_irqsave(&zone->lock, flags); | |
2019 | ||
2020 | /* Recheck the nr_reserved_highatomic limit under the lock */ | |
2021 | if (zone->nr_reserved_highatomic >= max_managed) | |
2022 | goto out_unlock; | |
2023 | ||
2024 | /* Yoink! */ | |
2025 | mt = get_pageblock_migratetype(page); | |
2026 | if (mt != MIGRATE_HIGHATOMIC && | |
2027 | !is_migrate_isolate(mt) && !is_migrate_cma(mt)) { | |
2028 | zone->nr_reserved_highatomic += pageblock_nr_pages; | |
2029 | set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); | |
2030 | move_freepages_block(zone, page, MIGRATE_HIGHATOMIC); | |
2031 | } | |
2032 | ||
2033 | out_unlock: | |
2034 | spin_unlock_irqrestore(&zone->lock, flags); | |
2035 | } | |
2036 | ||
2037 | /* | |
2038 | * Used when an allocation is about to fail under memory pressure. This | |
2039 | * potentially hurts the reliability of high-order allocations when under | |
2040 | * intense memory pressure but failed atomic allocations should be easier | |
2041 | * to recover from than an OOM. | |
2042 | */ | |
2043 | static void unreserve_highatomic_pageblock(const struct alloc_context *ac) | |
2044 | { | |
2045 | struct zonelist *zonelist = ac->zonelist; | |
2046 | unsigned long flags; | |
2047 | struct zoneref *z; | |
2048 | struct zone *zone; | |
2049 | struct page *page; | |
2050 | int order; | |
2051 | ||
2052 | for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx, | |
2053 | ac->nodemask) { | |
2054 | /* Preserve at least one pageblock */ | |
2055 | if (zone->nr_reserved_highatomic <= pageblock_nr_pages) | |
2056 | continue; | |
2057 | ||
2058 | spin_lock_irqsave(&zone->lock, flags); | |
2059 | for (order = 0; order < MAX_ORDER; order++) { | |
2060 | struct free_area *area = &(zone->free_area[order]); | |
2061 | ||
a16601c5 GT |
2062 | page = list_first_entry_or_null( |
2063 | &area->free_list[MIGRATE_HIGHATOMIC], | |
2064 | struct page, lru); | |
2065 | if (!page) | |
0aaa29a5 MG |
2066 | continue; |
2067 | ||
0aaa29a5 MG |
2068 | /* |
2069 | * It should never happen but changes to locking could | |
2070 | * inadvertently allow a per-cpu drain to add pages | |
2071 | * to MIGRATE_HIGHATOMIC while unreserving so be safe | |
2072 | * and watch for underflows. | |
2073 | */ | |
2074 | zone->nr_reserved_highatomic -= min(pageblock_nr_pages, | |
2075 | zone->nr_reserved_highatomic); | |
2076 | ||
2077 | /* | |
2078 | * Convert to ac->migratetype and avoid the normal | |
2079 | * pageblock stealing heuristics. Minimally, the caller | |
2080 | * is doing the work and needs the pages. More | |
2081 | * importantly, if the block was always converted to | |
2082 | * MIGRATE_UNMOVABLE or another type then the number | |
2083 | * of pageblocks that cannot be completely freed | |
2084 | * may increase. | |
2085 | */ | |
2086 | set_pageblock_migratetype(page, ac->migratetype); | |
2087 | move_freepages_block(zone, page, ac->migratetype); | |
2088 | spin_unlock_irqrestore(&zone->lock, flags); | |
2089 | return; | |
2090 | } | |
2091 | spin_unlock_irqrestore(&zone->lock, flags); | |
2092 | } | |
2093 | } | |
2094 | ||
b2a0ac88 | 2095 | /* Remove an element from the buddy allocator from the fallback list */ |
0ac3a409 | 2096 | static inline struct page * |
7aeb09f9 | 2097 | __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype) |
b2a0ac88 | 2098 | { |
b8af2941 | 2099 | struct free_area *area; |
7aeb09f9 | 2100 | unsigned int current_order; |
b2a0ac88 | 2101 | struct page *page; |
4eb7dce6 JK |
2102 | int fallback_mt; |
2103 | bool can_steal; | |
b2a0ac88 MG |
2104 | |
2105 | /* Find the largest possible block of pages in the other list */ | |
7aeb09f9 MG |
2106 | for (current_order = MAX_ORDER-1; |
2107 | current_order >= order && current_order <= MAX_ORDER-1; | |
2108 | --current_order) { | |
4eb7dce6 JK |
2109 | area = &(zone->free_area[current_order]); |
2110 | fallback_mt = find_suitable_fallback(area, current_order, | |
2149cdae | 2111 | start_migratetype, false, &can_steal); |
4eb7dce6 JK |
2112 | if (fallback_mt == -1) |
2113 | continue; | |
b2a0ac88 | 2114 | |
a16601c5 | 2115 | page = list_first_entry(&area->free_list[fallback_mt], |
4eb7dce6 JK |
2116 | struct page, lru); |
2117 | if (can_steal) | |
2118 | steal_suitable_fallback(zone, page, start_migratetype); | |
b2a0ac88 | 2119 | |
4eb7dce6 JK |
2120 | /* Remove the page from the freelists */ |
2121 | area->nr_free--; | |
2122 | list_del(&page->lru); | |
2123 | rmv_page_order(page); | |
3a1086fb | 2124 | |
4eb7dce6 JK |
2125 | expand(zone, page, order, current_order, area, |
2126 | start_migratetype); | |
2127 | /* | |
bb14c2c7 | 2128 | * The pcppage_migratetype may differ from pageblock's |
4eb7dce6 | 2129 | * migratetype depending on the decisions in |
bb14c2c7 VB |
2130 | * find_suitable_fallback(). This is OK as long as it does not |
2131 | * differ for MIGRATE_CMA pageblocks. Those can be used as | |
2132 | * fallback only via special __rmqueue_cma_fallback() function | |
4eb7dce6 | 2133 | */ |
bb14c2c7 | 2134 | set_pcppage_migratetype(page, start_migratetype); |
e0fff1bd | 2135 | |
4eb7dce6 JK |
2136 | trace_mm_page_alloc_extfrag(page, order, current_order, |
2137 | start_migratetype, fallback_mt); | |
e0fff1bd | 2138 | |
4eb7dce6 | 2139 | return page; |
b2a0ac88 MG |
2140 | } |
2141 | ||
728ec980 | 2142 | return NULL; |
b2a0ac88 MG |
2143 | } |
2144 | ||
56fd56b8 | 2145 | /* |
1da177e4 LT |
2146 | * Do the hard work of removing an element from the buddy allocator. |
2147 | * Call me with the zone->lock already held. | |
2148 | */ | |
b2a0ac88 | 2149 | static struct page *__rmqueue(struct zone *zone, unsigned int order, |
6ac0206b | 2150 | int migratetype) |
1da177e4 | 2151 | { |
1da177e4 LT |
2152 | struct page *page; |
2153 | ||
56fd56b8 | 2154 | page = __rmqueue_smallest(zone, order, migratetype); |
974a786e | 2155 | if (unlikely(!page)) { |
dc67647b JK |
2156 | if (migratetype == MIGRATE_MOVABLE) |
2157 | page = __rmqueue_cma_fallback(zone, order); | |
2158 | ||
2159 | if (!page) | |
2160 | page = __rmqueue_fallback(zone, order, migratetype); | |
728ec980 MG |
2161 | } |
2162 | ||
0d3d062a | 2163 | trace_mm_page_alloc_zone_locked(page, order, migratetype); |
b2a0ac88 | 2164 | return page; |
1da177e4 LT |
2165 | } |
2166 | ||
5f63b720 | 2167 | /* |
1da177e4 LT |
2168 | * Obtain a specified number of elements from the buddy allocator, all under |
2169 | * a single hold of the lock, for efficiency. Add them to the supplied list. | |
2170 | * Returns the number of new pages which were placed at *list. | |
2171 | */ | |
5f63b720 | 2172 | static int rmqueue_bulk(struct zone *zone, unsigned int order, |
b2a0ac88 | 2173 | unsigned long count, struct list_head *list, |
b745bc85 | 2174 | int migratetype, bool cold) |
1da177e4 | 2175 | { |
5bcc9f86 | 2176 | int i; |
5f63b720 | 2177 | |
c54ad30c | 2178 | spin_lock(&zone->lock); |
1da177e4 | 2179 | for (i = 0; i < count; ++i) { |
6ac0206b | 2180 | struct page *page = __rmqueue(zone, order, migratetype); |
085cc7d5 | 2181 | if (unlikely(page == NULL)) |
1da177e4 | 2182 | break; |
81eabcbe | 2183 | |
479f854a MG |
2184 | if (unlikely(check_pcp_refill(page))) |
2185 | continue; | |
2186 | ||
81eabcbe MG |
2187 | /* |
2188 | * Split buddy pages returned by expand() are received here | |
2189 | * in physical page order. The page is added to the callers and | |
2190 | * list and the list head then moves forward. From the callers | |
2191 | * perspective, the linked list is ordered by page number in | |
2192 | * some conditions. This is useful for IO devices that can | |
2193 | * merge IO requests if the physical pages are ordered | |
2194 | * properly. | |
2195 | */ | |
b745bc85 | 2196 | if (likely(!cold)) |
e084b2d9 MG |
2197 | list_add(&page->lru, list); |
2198 | else | |
2199 | list_add_tail(&page->lru, list); | |
81eabcbe | 2200 | list = &page->lru; |
bb14c2c7 | 2201 | if (is_migrate_cma(get_pcppage_migratetype(page))) |
d1ce749a BZ |
2202 | __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, |
2203 | -(1 << order)); | |
1da177e4 | 2204 | } |
f2260e6b | 2205 | __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); |
c54ad30c | 2206 | spin_unlock(&zone->lock); |
085cc7d5 | 2207 | return i; |
1da177e4 LT |
2208 | } |
2209 | ||
4ae7c039 | 2210 | #ifdef CONFIG_NUMA |
8fce4d8e | 2211 | /* |
4037d452 CL |
2212 | * Called from the vmstat counter updater to drain pagesets of this |
2213 | * currently executing processor on remote nodes after they have | |
2214 | * expired. | |
2215 | * | |
879336c3 CL |
2216 | * Note that this function must be called with the thread pinned to |
2217 | * a single processor. | |
8fce4d8e | 2218 | */ |
4037d452 | 2219 | void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) |
4ae7c039 | 2220 | { |
4ae7c039 | 2221 | unsigned long flags; |
7be12fc9 | 2222 | int to_drain, batch; |
4ae7c039 | 2223 | |
4037d452 | 2224 | local_irq_save(flags); |
4db0c3c2 | 2225 | batch = READ_ONCE(pcp->batch); |
7be12fc9 | 2226 | to_drain = min(pcp->count, batch); |
2a13515c KM |
2227 | if (to_drain > 0) { |
2228 | free_pcppages_bulk(zone, to_drain, pcp); | |
2229 | pcp->count -= to_drain; | |
2230 | } | |
4037d452 | 2231 | local_irq_restore(flags); |
4ae7c039 CL |
2232 | } |
2233 | #endif | |
2234 | ||
9f8f2172 | 2235 | /* |
93481ff0 | 2236 | * Drain pcplists of the indicated processor and zone. |
9f8f2172 CL |
2237 | * |
2238 | * The processor must either be the current processor and the | |
2239 | * thread pinned to the current processor or a processor that | |
2240 | * is not online. | |
2241 | */ | |
93481ff0 | 2242 | static void drain_pages_zone(unsigned int cpu, struct zone *zone) |
1da177e4 | 2243 | { |
c54ad30c | 2244 | unsigned long flags; |
93481ff0 VB |
2245 | struct per_cpu_pageset *pset; |
2246 | struct per_cpu_pages *pcp; | |
1da177e4 | 2247 | |
93481ff0 VB |
2248 | local_irq_save(flags); |
2249 | pset = per_cpu_ptr(zone->pageset, cpu); | |
1da177e4 | 2250 | |
93481ff0 VB |
2251 | pcp = &pset->pcp; |
2252 | if (pcp->count) { | |
2253 | free_pcppages_bulk(zone, pcp->count, pcp); | |
2254 | pcp->count = 0; | |
2255 | } | |
2256 | local_irq_restore(flags); | |
2257 | } | |
3dfa5721 | 2258 | |
93481ff0 VB |
2259 | /* |
2260 | * Drain pcplists of all zones on the indicated processor. | |
2261 | * | |
2262 | * The processor must either be the current processor and the | |
2263 | * thread pinned to the current processor or a processor that | |
2264 | * is not online. | |
2265 | */ | |
2266 | static void drain_pages(unsigned int cpu) | |
2267 | { | |
2268 | struct zone *zone; | |
2269 | ||
2270 | for_each_populated_zone(zone) { | |
2271 | drain_pages_zone(cpu, zone); | |
1da177e4 LT |
2272 | } |
2273 | } | |
1da177e4 | 2274 | |
9f8f2172 CL |
2275 | /* |
2276 | * Spill all of this CPU's per-cpu pages back into the buddy allocator. | |
93481ff0 VB |
2277 | * |
2278 | * The CPU has to be pinned. When zone parameter is non-NULL, spill just | |
2279 | * the single zone's pages. | |
9f8f2172 | 2280 | */ |
93481ff0 | 2281 | void drain_local_pages(struct zone *zone) |
9f8f2172 | 2282 | { |
93481ff0 VB |
2283 | int cpu = smp_processor_id(); |
2284 | ||
2285 | if (zone) | |
2286 | drain_pages_zone(cpu, zone); | |
2287 | else | |
2288 | drain_pages(cpu); | |
9f8f2172 CL |
2289 | } |
2290 | ||
2291 | /* | |
74046494 GBY |
2292 | * Spill all the per-cpu pages from all CPUs back into the buddy allocator. |
2293 | * | |
93481ff0 VB |
2294 | * When zone parameter is non-NULL, spill just the single zone's pages. |
2295 | * | |
74046494 GBY |
2296 | * Note that this code is protected against sending an IPI to an offline |
2297 | * CPU but does not guarantee sending an IPI to newly hotplugged CPUs: | |
2298 | * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but | |
2299 | * nothing keeps CPUs from showing up after we populated the cpumask and | |
2300 | * before the call to on_each_cpu_mask(). | |
9f8f2172 | 2301 | */ |
93481ff0 | 2302 | void drain_all_pages(struct zone *zone) |
9f8f2172 | 2303 | { |
74046494 | 2304 | int cpu; |
74046494 GBY |
2305 | |
2306 | /* | |
2307 | * Allocate in the BSS so we wont require allocation in | |
2308 | * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y | |
2309 | */ | |
2310 | static cpumask_t cpus_with_pcps; | |
2311 | ||
2312 | /* | |
2313 | * We don't care about racing with CPU hotplug event | |
2314 | * as offline notification will cause the notified | |
2315 | * cpu to drain that CPU pcps and on_each_cpu_mask | |
2316 | * disables preemption as part of its processing | |
2317 | */ | |
2318 | for_each_online_cpu(cpu) { | |
93481ff0 VB |
2319 | struct per_cpu_pageset *pcp; |
2320 | struct zone *z; | |
74046494 | 2321 | bool has_pcps = false; |
93481ff0 VB |
2322 | |
2323 | if (zone) { | |
74046494 | 2324 | pcp = per_cpu_ptr(zone->pageset, cpu); |
93481ff0 | 2325 | if (pcp->pcp.count) |
74046494 | 2326 | has_pcps = true; |
93481ff0 VB |
2327 | } else { |
2328 | for_each_populated_zone(z) { | |
2329 | pcp = per_cpu_ptr(z->pageset, cpu); | |
2330 | if (pcp->pcp.count) { | |
2331 | has_pcps = true; | |
2332 | break; | |
2333 | } | |
74046494 GBY |
2334 | } |
2335 | } | |
93481ff0 | 2336 | |
74046494 GBY |
2337 | if (has_pcps) |
2338 | cpumask_set_cpu(cpu, &cpus_with_pcps); | |
2339 | else | |
2340 | cpumask_clear_cpu(cpu, &cpus_with_pcps); | |
2341 | } | |
93481ff0 VB |
2342 | on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages, |
2343 | zone, 1); | |
9f8f2172 CL |
2344 | } |
2345 | ||
296699de | 2346 | #ifdef CONFIG_HIBERNATION |
1da177e4 LT |
2347 | |
2348 | void mark_free_pages(struct zone *zone) | |
2349 | { | |
f623f0db RW |
2350 | unsigned long pfn, max_zone_pfn; |
2351 | unsigned long flags; | |
7aeb09f9 | 2352 | unsigned int order, t; |
86760a2c | 2353 | struct page *page; |
1da177e4 | 2354 | |
8080fc03 | 2355 | if (zone_is_empty(zone)) |
1da177e4 LT |
2356 | return; |
2357 | ||
2358 | spin_lock_irqsave(&zone->lock, flags); | |
f623f0db | 2359 | |
108bcc96 | 2360 | max_zone_pfn = zone_end_pfn(zone); |
f623f0db RW |
2361 | for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) |
2362 | if (pfn_valid(pfn)) { | |
86760a2c | 2363 | page = pfn_to_page(pfn); |
ba6b0979 JK |
2364 | |
2365 | if (page_zone(page) != zone) | |
2366 | continue; | |
2367 | ||
7be98234 RW |
2368 | if (!swsusp_page_is_forbidden(page)) |
2369 | swsusp_unset_page_free(page); | |
f623f0db | 2370 | } |
1da177e4 | 2371 | |
b2a0ac88 | 2372 | for_each_migratetype_order(order, t) { |
86760a2c GT |
2373 | list_for_each_entry(page, |
2374 | &zone->free_area[order].free_list[t], lru) { | |
f623f0db | 2375 | unsigned long i; |
1da177e4 | 2376 | |
86760a2c | 2377 | pfn = page_to_pfn(page); |
f623f0db | 2378 | for (i = 0; i < (1UL << order); i++) |
7be98234 | 2379 | swsusp_set_page_free(pfn_to_page(pfn + i)); |
f623f0db | 2380 | } |
b2a0ac88 | 2381 | } |
1da177e4 LT |
2382 | spin_unlock_irqrestore(&zone->lock, flags); |
2383 | } | |
e2c55dc8 | 2384 | #endif /* CONFIG_PM */ |
1da177e4 | 2385 | |
1da177e4 LT |
2386 | /* |
2387 | * Free a 0-order page | |
b745bc85 | 2388 | * cold == true ? free a cold page : free a hot page |
1da177e4 | 2389 | */ |
b745bc85 | 2390 | void free_hot_cold_page(struct page *page, bool cold) |
1da177e4 LT |
2391 | { |
2392 | struct zone *zone = page_zone(page); | |
2393 | struct per_cpu_pages *pcp; | |
2394 | unsigned long flags; | |
dc4b0caf | 2395 | unsigned long pfn = page_to_pfn(page); |
5f8dcc21 | 2396 | int migratetype; |
1da177e4 | 2397 | |
4db7548c | 2398 | if (!free_pcp_prepare(page)) |
689bcebf HD |
2399 | return; |
2400 | ||
dc4b0caf | 2401 | migratetype = get_pfnblock_migratetype(page, pfn); |
bb14c2c7 | 2402 | set_pcppage_migratetype(page, migratetype); |
1da177e4 | 2403 | local_irq_save(flags); |
f8891e5e | 2404 | __count_vm_event(PGFREE); |
da456f14 | 2405 | |
5f8dcc21 MG |
2406 | /* |
2407 | * We only track unmovable, reclaimable and movable on pcp lists. | |
2408 | * Free ISOLATE pages back to the allocator because they are being | |
2409 | * offlined but treat RESERVE as movable pages so we can get those | |
2410 | * areas back if necessary. Otherwise, we may have to free | |
2411 | * excessively into the page allocator | |
2412 | */ | |
2413 | if (migratetype >= MIGRATE_PCPTYPES) { | |
194159fb | 2414 | if (unlikely(is_migrate_isolate(migratetype))) { |
dc4b0caf | 2415 | free_one_page(zone, page, pfn, 0, migratetype); |
5f8dcc21 MG |
2416 | goto out; |
2417 | } | |
2418 | migratetype = MIGRATE_MOVABLE; | |
2419 | } | |
2420 | ||
99dcc3e5 | 2421 | pcp = &this_cpu_ptr(zone->pageset)->pcp; |
b745bc85 | 2422 | if (!cold) |
5f8dcc21 | 2423 | list_add(&page->lru, &pcp->lists[migratetype]); |
b745bc85 MG |
2424 | else |
2425 | list_add_tail(&page->lru, &pcp->lists[migratetype]); | |
1da177e4 | 2426 | pcp->count++; |
48db57f8 | 2427 | if (pcp->count >= pcp->high) { |
4db0c3c2 | 2428 | unsigned long batch = READ_ONCE(pcp->batch); |
998d39cb CS |
2429 | free_pcppages_bulk(zone, batch, pcp); |
2430 | pcp->count -= batch; | |
48db57f8 | 2431 | } |
5f8dcc21 MG |
2432 | |
2433 | out: | |
1da177e4 | 2434 | local_irq_restore(flags); |
1da177e4 LT |
2435 | } |
2436 | ||
cc59850e KK |
2437 | /* |
2438 | * Free a list of 0-order pages | |
2439 | */ | |
b745bc85 | 2440 | void free_hot_cold_page_list(struct list_head *list, bool cold) |
cc59850e KK |
2441 | { |
2442 | struct page *page, *next; | |
2443 | ||
2444 | list_for_each_entry_safe(page, next, list, lru) { | |
b413d48a | 2445 | trace_mm_page_free_batched(page, cold); |
cc59850e KK |
2446 | free_hot_cold_page(page, cold); |
2447 | } | |
2448 | } | |
2449 | ||
8dfcc9ba NP |
2450 | /* |
2451 | * split_page takes a non-compound higher-order page, and splits it into | |
2452 | * n (1<<order) sub-pages: page[0..n] | |
2453 | * Each sub-page must be freed individually. | |
2454 | * | |
2455 | * Note: this is probably too low level an operation for use in drivers. | |
2456 | * Please consult with lkml before using this in your driver. | |
2457 | */ | |
2458 | void split_page(struct page *page, unsigned int order) | |
2459 | { | |
2460 | int i; | |
2461 | ||
309381fe SL |
2462 | VM_BUG_ON_PAGE(PageCompound(page), page); |
2463 | VM_BUG_ON_PAGE(!page_count(page), page); | |
b1eeab67 VN |
2464 | |
2465 | #ifdef CONFIG_KMEMCHECK | |
2466 | /* | |
2467 | * Split shadow pages too, because free(page[0]) would | |
2468 | * otherwise free the whole shadow. | |
2469 | */ | |
2470 | if (kmemcheck_page_is_tracked(page)) | |
2471 | split_page(virt_to_page(page[0].shadow), order); | |
2472 | #endif | |
2473 | ||
a9627bc5 | 2474 | for (i = 1; i < (1 << order); i++) |
7835e98b | 2475 | set_page_refcounted(page + i); |
a9627bc5 | 2476 | split_page_owner(page, order); |
8dfcc9ba | 2477 | } |
5853ff23 | 2478 | EXPORT_SYMBOL_GPL(split_page); |
8dfcc9ba | 2479 | |
3c605096 | 2480 | int __isolate_free_page(struct page *page, unsigned int order) |
748446bb | 2481 | { |
748446bb MG |
2482 | unsigned long watermark; |
2483 | struct zone *zone; | |
2139cbe6 | 2484 | int mt; |
748446bb MG |
2485 | |
2486 | BUG_ON(!PageBuddy(page)); | |
2487 | ||
2488 | zone = page_zone(page); | |
2e30abd1 | 2489 | mt = get_pageblock_migratetype(page); |
748446bb | 2490 | |
194159fb | 2491 | if (!is_migrate_isolate(mt)) { |
2e30abd1 MS |
2492 | /* Obey watermarks as if the page was being allocated */ |
2493 | watermark = low_wmark_pages(zone) + (1 << order); | |
2494 | if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) | |
2495 | return 0; | |
2496 | ||
8fb74b9f | 2497 | __mod_zone_freepage_state(zone, -(1UL << order), mt); |
2e30abd1 | 2498 | } |
748446bb MG |
2499 | |
2500 | /* Remove page from free list */ | |
2501 | list_del(&page->lru); | |
2502 | zone->free_area[order].nr_free--; | |
2503 | rmv_page_order(page); | |
2139cbe6 | 2504 | |
400bc7fd | 2505 | /* |
2506 | * Set the pageblock if the isolated page is at least half of a | |
2507 | * pageblock | |
2508 | */ | |
748446bb MG |
2509 | if (order >= pageblock_order - 1) { |
2510 | struct page *endpage = page + (1 << order) - 1; | |
47118af0 MN |
2511 | for (; page < endpage; page += pageblock_nr_pages) { |
2512 | int mt = get_pageblock_migratetype(page); | |
194159fb | 2513 | if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)) |
47118af0 MN |
2514 | set_pageblock_migratetype(page, |
2515 | MIGRATE_MOVABLE); | |
2516 | } | |
748446bb MG |
2517 | } |
2518 | ||
f3a14ced | 2519 | |
8fb74b9f | 2520 | return 1UL << order; |
1fb3f8ca MG |
2521 | } |
2522 | ||
060e7417 MG |
2523 | /* |
2524 | * Update NUMA hit/miss statistics | |
2525 | * | |
2526 | * Must be called with interrupts disabled. | |
2527 | * | |
2528 | * When __GFP_OTHER_NODE is set assume the node of the preferred | |
2529 | * zone is the local node. This is useful for daemons who allocate | |
2530 | * memory on behalf of other processes. | |
2531 | */ | |
2532 | static inline void zone_statistics(struct zone *preferred_zone, struct zone *z, | |
2533 | gfp_t flags) | |
2534 | { | |
2535 | #ifdef CONFIG_NUMA | |
2536 | int local_nid = numa_node_id(); | |
2537 | enum zone_stat_item local_stat = NUMA_LOCAL; | |
2538 | ||
2539 | if (unlikely(flags & __GFP_OTHER_NODE)) { | |
2540 | local_stat = NUMA_OTHER; | |
2541 | local_nid = preferred_zone->node; | |
2542 | } | |
2543 | ||
2544 | if (z->node == local_nid) { | |
2545 | __inc_zone_state(z, NUMA_HIT); | |
2546 | __inc_zone_state(z, local_stat); | |
2547 | } else { | |
2548 | __inc_zone_state(z, NUMA_MISS); | |
2549 | __inc_zone_state(preferred_zone, NUMA_FOREIGN); | |
2550 | } | |
2551 | #endif | |
2552 | } | |
2553 | ||
1da177e4 | 2554 | /* |
75379191 | 2555 | * Allocate a page from the given zone. Use pcplists for order-0 allocations. |
1da177e4 | 2556 | */ |
0a15c3e9 MG |
2557 | static inline |
2558 | struct page *buffered_rmqueue(struct zone *preferred_zone, | |
7aeb09f9 | 2559 | struct zone *zone, unsigned int order, |
c603844b MG |
2560 | gfp_t gfp_flags, unsigned int alloc_flags, |
2561 | int migratetype) | |
1da177e4 LT |
2562 | { |
2563 | unsigned long flags; | |
689bcebf | 2564 | struct page *page; |
b745bc85 | 2565 | bool cold = ((gfp_flags & __GFP_COLD) != 0); |
1da177e4 | 2566 | |
48db57f8 | 2567 | if (likely(order == 0)) { |
1da177e4 | 2568 | struct per_cpu_pages *pcp; |
5f8dcc21 | 2569 | struct list_head *list; |
1da177e4 | 2570 | |
1da177e4 | 2571 | local_irq_save(flags); |
479f854a MG |
2572 | do { |
2573 | pcp = &this_cpu_ptr(zone->pageset)->pcp; | |
2574 | list = &pcp->lists[migratetype]; | |
2575 | if (list_empty(list)) { | |
2576 | pcp->count += rmqueue_bulk(zone, 0, | |
2577 | pcp->batch, list, | |
2578 | migratetype, cold); | |
2579 | if (unlikely(list_empty(list))) | |
2580 | goto failed; | |
2581 | } | |
b92a6edd | 2582 | |
479f854a MG |
2583 | if (cold) |
2584 | page = list_last_entry(list, struct page, lru); | |
2585 | else | |
2586 | page = list_first_entry(list, struct page, lru); | |
5f8dcc21 | 2587 | |
83b9355b VB |
2588 | list_del(&page->lru); |
2589 | pcp->count--; | |
2590 | ||
2591 | } while (check_new_pcp(page)); | |
7fb1d9fc | 2592 | } else { |
0f352e53 MH |
2593 | /* |
2594 | * We most definitely don't want callers attempting to | |
2595 | * allocate greater than order-1 page units with __GFP_NOFAIL. | |
2596 | */ | |
2597 | WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); | |
1da177e4 | 2598 | spin_lock_irqsave(&zone->lock, flags); |
0aaa29a5 | 2599 | |
479f854a MG |
2600 | do { |
2601 | page = NULL; | |
2602 | if (alloc_flags & ALLOC_HARDER) { | |
2603 | page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); | |
2604 | if (page) | |
2605 | trace_mm_page_alloc_zone_locked(page, order, migratetype); | |
2606 | } | |
2607 | if (!page) | |
2608 | page = __rmqueue(zone, order, migratetype); | |
2609 | } while (page && check_new_pages(page, order)); | |
a74609fa NP |
2610 | spin_unlock(&zone->lock); |
2611 | if (!page) | |
2612 | goto failed; | |
d1ce749a | 2613 | __mod_zone_freepage_state(zone, -(1 << order), |
bb14c2c7 | 2614 | get_pcppage_migratetype(page)); |
1da177e4 LT |
2615 | } |
2616 | ||
16709d1d | 2617 | __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); |
78afd561 | 2618 | zone_statistics(preferred_zone, zone, gfp_flags); |
a74609fa | 2619 | local_irq_restore(flags); |
1da177e4 | 2620 | |
309381fe | 2621 | VM_BUG_ON_PAGE(bad_range(zone, page), page); |
1da177e4 | 2622 | return page; |
a74609fa NP |
2623 | |
2624 | failed: | |
2625 | local_irq_restore(flags); | |
a74609fa | 2626 | return NULL; |
1da177e4 LT |
2627 | } |
2628 | ||
933e312e AM |
2629 | #ifdef CONFIG_FAIL_PAGE_ALLOC |
2630 | ||
b2588c4b | 2631 | static struct { |
933e312e AM |
2632 | struct fault_attr attr; |
2633 | ||
621a5f7a | 2634 | bool ignore_gfp_highmem; |
71baba4b | 2635 | bool ignore_gfp_reclaim; |
54114994 | 2636 | u32 min_order; |
933e312e AM |
2637 | } fail_page_alloc = { |
2638 | .attr = FAULT_ATTR_INITIALIZER, | |
71baba4b | 2639 | .ignore_gfp_reclaim = true, |
621a5f7a | 2640 | .ignore_gfp_highmem = true, |
54114994 | 2641 | .min_order = 1, |
933e312e AM |
2642 | }; |
2643 | ||
2644 | static int __init setup_fail_page_alloc(char *str) | |
2645 | { | |
2646 | return setup_fault_attr(&fail_page_alloc.attr, str); | |
2647 | } | |
2648 | __setup("fail_page_alloc=", setup_fail_page_alloc); | |
2649 | ||
deaf386e | 2650 | static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) |
933e312e | 2651 | { |
54114994 | 2652 | if (order < fail_page_alloc.min_order) |
deaf386e | 2653 | return false; |
933e312e | 2654 | if (gfp_mask & __GFP_NOFAIL) |
deaf386e | 2655 | return false; |
933e312e | 2656 | if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) |
deaf386e | 2657 | return false; |
71baba4b MG |
2658 | if (fail_page_alloc.ignore_gfp_reclaim && |
2659 | (gfp_mask & __GFP_DIRECT_RECLAIM)) | |
deaf386e | 2660 | return false; |
933e312e AM |
2661 | |
2662 | return should_fail(&fail_page_alloc.attr, 1 << order); | |
2663 | } | |
2664 | ||
2665 | #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS | |
2666 | ||
2667 | static int __init fail_page_alloc_debugfs(void) | |
2668 | { | |
f4ae40a6 | 2669 | umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; |
933e312e | 2670 | struct dentry *dir; |
933e312e | 2671 | |
dd48c085 AM |
2672 | dir = fault_create_debugfs_attr("fail_page_alloc", NULL, |
2673 | &fail_page_alloc.attr); | |
2674 | if (IS_ERR(dir)) | |
2675 | return PTR_ERR(dir); | |
933e312e | 2676 | |
b2588c4b | 2677 | if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, |
71baba4b | 2678 | &fail_page_alloc.ignore_gfp_reclaim)) |
b2588c4b AM |
2679 | goto fail; |
2680 | if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, | |
2681 | &fail_page_alloc.ignore_gfp_highmem)) | |
2682 | goto fail; | |
2683 | if (!debugfs_create_u32("min-order", mode, dir, | |
2684 | &fail_page_alloc.min_order)) | |
2685 | goto fail; | |
2686 | ||
2687 | return 0; | |
2688 | fail: | |
dd48c085 | 2689 | debugfs_remove_recursive(dir); |
933e312e | 2690 | |
b2588c4b | 2691 | return -ENOMEM; |
933e312e AM |
2692 | } |
2693 | ||
2694 | late_initcall(fail_page_alloc_debugfs); | |
2695 | ||
2696 | #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ | |
2697 | ||
2698 | #else /* CONFIG_FAIL_PAGE_ALLOC */ | |
2699 | ||
deaf386e | 2700 | static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) |
933e312e | 2701 | { |
deaf386e | 2702 | return false; |
933e312e AM |
2703 | } |
2704 | ||
2705 | #endif /* CONFIG_FAIL_PAGE_ALLOC */ | |
2706 | ||
1da177e4 | 2707 | /* |
97a16fc8 MG |
2708 | * Return true if free base pages are above 'mark'. For high-order checks it |
2709 | * will return true of the order-0 watermark is reached and there is at least | |
2710 | * one free page of a suitable size. Checking now avoids taking the zone lock | |
2711 | * to check in the allocation paths if no pages are free. | |
1da177e4 | 2712 | */ |
86a294a8 MH |
2713 | bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, |
2714 | int classzone_idx, unsigned int alloc_flags, | |
2715 | long free_pages) | |
1da177e4 | 2716 | { |
d23ad423 | 2717 | long min = mark; |
1da177e4 | 2718 | int o; |
c603844b | 2719 | const bool alloc_harder = (alloc_flags & ALLOC_HARDER); |
1da177e4 | 2720 | |
0aaa29a5 | 2721 | /* free_pages may go negative - that's OK */ |
df0a6daa | 2722 | free_pages -= (1 << order) - 1; |
0aaa29a5 | 2723 | |
7fb1d9fc | 2724 | if (alloc_flags & ALLOC_HIGH) |
1da177e4 | 2725 | min -= min / 2; |
0aaa29a5 MG |
2726 | |
2727 | /* | |
2728 | * If the caller does not have rights to ALLOC_HARDER then subtract | |
2729 | * the high-atomic reserves. This will over-estimate the size of the | |
2730 | * atomic reserve but it avoids a search. | |
2731 | */ | |
97a16fc8 | 2732 | if (likely(!alloc_harder)) |
0aaa29a5 MG |
2733 | free_pages -= z->nr_reserved_highatomic; |
2734 | else | |
1da177e4 | 2735 | min -= min / 4; |
e2b19197 | 2736 | |
d95ea5d1 BZ |
2737 | #ifdef CONFIG_CMA |
2738 | /* If allocation can't use CMA areas don't use free CMA pages */ | |
2739 | if (!(alloc_flags & ALLOC_CMA)) | |
97a16fc8 | 2740 | free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES); |
d95ea5d1 | 2741 | #endif |
026b0814 | 2742 | |
97a16fc8 MG |
2743 | /* |
2744 | * Check watermarks for an order-0 allocation request. If these | |
2745 | * are not met, then a high-order request also cannot go ahead | |
2746 | * even if a suitable page happened to be free. | |
2747 | */ | |
2748 | if (free_pages <= min + z->lowmem_reserve[classzone_idx]) | |
88f5acf8 | 2749 | return false; |
1da177e4 | 2750 | |
97a16fc8 MG |
2751 | /* If this is an order-0 request then the watermark is fine */ |
2752 | if (!order) | |
2753 | return true; | |
2754 | ||
2755 | /* For a high-order request, check at least one suitable page is free */ | |
2756 | for (o = order; o < MAX_ORDER; o++) { | |
2757 | struct free_area *area = &z->free_area[o]; | |
2758 | int mt; | |
2759 | ||
2760 | if (!area->nr_free) | |
2761 | continue; | |
2762 | ||
2763 | if (alloc_harder) | |
2764 | return true; | |
1da177e4 | 2765 | |
97a16fc8 MG |
2766 | for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { |
2767 | if (!list_empty(&area->free_list[mt])) | |
2768 | return true; | |
2769 | } | |
2770 | ||
2771 | #ifdef CONFIG_CMA | |
2772 | if ((alloc_flags & ALLOC_CMA) && | |
2773 | !list_empty(&area->free_list[MIGRATE_CMA])) { | |
2774 | return true; | |
2775 | } | |
2776 | #endif | |
1da177e4 | 2777 | } |
97a16fc8 | 2778 | return false; |
88f5acf8 MG |
2779 | } |
2780 | ||
7aeb09f9 | 2781 | bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, |
c603844b | 2782 | int classzone_idx, unsigned int alloc_flags) |
88f5acf8 MG |
2783 | { |
2784 | return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, | |
2785 | zone_page_state(z, NR_FREE_PAGES)); | |
2786 | } | |
2787 | ||
48ee5f36 MG |
2788 | static inline bool zone_watermark_fast(struct zone *z, unsigned int order, |
2789 | unsigned long mark, int classzone_idx, unsigned int alloc_flags) | |
2790 | { | |
2791 | long free_pages = zone_page_state(z, NR_FREE_PAGES); | |
2792 | long cma_pages = 0; | |
2793 | ||
2794 | #ifdef CONFIG_CMA | |
2795 | /* If allocation can't use CMA areas don't use free CMA pages */ | |
2796 | if (!(alloc_flags & ALLOC_CMA)) | |
2797 | cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES); | |
2798 | #endif | |
2799 | ||
2800 | /* | |
2801 | * Fast check for order-0 only. If this fails then the reserves | |
2802 | * need to be calculated. There is a corner case where the check | |
2803 | * passes but only the high-order atomic reserve are free. If | |
2804 | * the caller is !atomic then it'll uselessly search the free | |
2805 | * list. That corner case is then slower but it is harmless. | |
2806 | */ | |
2807 | if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx]) | |
2808 | return true; | |
2809 | ||
2810 | return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, | |
2811 | free_pages); | |
2812 | } | |
2813 | ||
7aeb09f9 | 2814 | bool zone_watermark_ok_safe(struct zone *z, unsigned int order, |
e2b19197 | 2815 | unsigned long mark, int classzone_idx) |
88f5acf8 MG |
2816 | { |
2817 | long free_pages = zone_page_state(z, NR_FREE_PAGES); | |
2818 | ||
2819 | if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) | |
2820 | free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); | |
2821 | ||
e2b19197 | 2822 | return __zone_watermark_ok(z, order, mark, classzone_idx, 0, |
88f5acf8 | 2823 | free_pages); |
1da177e4 LT |
2824 | } |
2825 | ||
9276b1bc | 2826 | #ifdef CONFIG_NUMA |
957f822a DR |
2827 | static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) |
2828 | { | |
5f7a75ac MG |
2829 | return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) < |
2830 | RECLAIM_DISTANCE; | |
957f822a | 2831 | } |
9276b1bc | 2832 | #else /* CONFIG_NUMA */ |
957f822a DR |
2833 | static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) |
2834 | { | |
2835 | return true; | |
2836 | } | |
9276b1bc PJ |
2837 | #endif /* CONFIG_NUMA */ |
2838 | ||
7fb1d9fc | 2839 | /* |
0798e519 | 2840 | * get_page_from_freelist goes through the zonelist trying to allocate |
7fb1d9fc RS |
2841 | * a page. |
2842 | */ | |
2843 | static struct page * | |
a9263751 VB |
2844 | get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, |
2845 | const struct alloc_context *ac) | |
753ee728 | 2846 | { |
c33d6c06 | 2847 | struct zoneref *z = ac->preferred_zoneref; |
5117f45d | 2848 | struct zone *zone; |
3b8c0be4 MG |
2849 | struct pglist_data *last_pgdat_dirty_limit = NULL; |
2850 | ||
7fb1d9fc | 2851 | /* |
9276b1bc | 2852 | * Scan zonelist, looking for a zone with enough free. |
344736f2 | 2853 | * See also __cpuset_node_allowed() comment in kernel/cpuset.c. |
7fb1d9fc | 2854 | */ |
c33d6c06 | 2855 | for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, |
a9263751 | 2856 | ac->nodemask) { |
be06af00 | 2857 | struct page *page; |
e085dbc5 JW |
2858 | unsigned long mark; |
2859 | ||
664eedde MG |
2860 | if (cpusets_enabled() && |
2861 | (alloc_flags & ALLOC_CPUSET) && | |
002f2906 | 2862 | !__cpuset_zone_allowed(zone, gfp_mask)) |
cd38b115 | 2863 | continue; |
a756cf59 JW |
2864 | /* |
2865 | * When allocating a page cache page for writing, we | |
281e3726 MG |
2866 | * want to get it from a node that is within its dirty |
2867 | * limit, such that no single node holds more than its | |
a756cf59 | 2868 | * proportional share of globally allowed dirty pages. |
281e3726 | 2869 | * The dirty limits take into account the node's |
a756cf59 JW |
2870 | * lowmem reserves and high watermark so that kswapd |
2871 | * should be able to balance it without having to | |
2872 | * write pages from its LRU list. | |
2873 | * | |
a756cf59 | 2874 | * XXX: For now, allow allocations to potentially |
281e3726 | 2875 | * exceed the per-node dirty limit in the slowpath |
c9ab0c4f | 2876 | * (spread_dirty_pages unset) before going into reclaim, |
a756cf59 | 2877 | * which is important when on a NUMA setup the allowed |
281e3726 | 2878 | * nodes are together not big enough to reach the |
a756cf59 | 2879 | * global limit. The proper fix for these situations |
281e3726 | 2880 | * will require awareness of nodes in the |
a756cf59 JW |
2881 | * dirty-throttling and the flusher threads. |
2882 | */ | |
3b8c0be4 MG |
2883 | if (ac->spread_dirty_pages) { |
2884 | if (last_pgdat_dirty_limit == zone->zone_pgdat) | |
2885 | continue; | |
2886 | ||
2887 | if (!node_dirty_ok(zone->zone_pgdat)) { | |
2888 | last_pgdat_dirty_limit = zone->zone_pgdat; | |
2889 | continue; | |
2890 | } | |
2891 | } | |
7fb1d9fc | 2892 | |
e085dbc5 | 2893 | mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; |
48ee5f36 | 2894 | if (!zone_watermark_fast(zone, order, mark, |
93ea9964 | 2895 | ac_classzone_idx(ac), alloc_flags)) { |
fa5e084e MG |
2896 | int ret; |
2897 | ||
5dab2911 MG |
2898 | /* Checked here to keep the fast path fast */ |
2899 | BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); | |
2900 | if (alloc_flags & ALLOC_NO_WATERMARKS) | |
2901 | goto try_this_zone; | |
2902 | ||
a5f5f91d | 2903 | if (node_reclaim_mode == 0 || |
c33d6c06 | 2904 | !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) |
cd38b115 MG |
2905 | continue; |
2906 | ||
a5f5f91d | 2907 | ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); |
fa5e084e | 2908 | switch (ret) { |
a5f5f91d | 2909 | case NODE_RECLAIM_NOSCAN: |
fa5e084e | 2910 | /* did not scan */ |
cd38b115 | 2911 | continue; |
a5f5f91d | 2912 | case NODE_RECLAIM_FULL: |
fa5e084e | 2913 | /* scanned but unreclaimable */ |
cd38b115 | 2914 | continue; |
fa5e084e MG |
2915 | default: |
2916 | /* did we reclaim enough */ | |
fed2719e | 2917 | if (zone_watermark_ok(zone, order, mark, |
93ea9964 | 2918 | ac_classzone_idx(ac), alloc_flags)) |
fed2719e MG |
2919 | goto try_this_zone; |
2920 | ||
fed2719e | 2921 | continue; |
0798e519 | 2922 | } |
7fb1d9fc RS |
2923 | } |
2924 | ||
fa5e084e | 2925 | try_this_zone: |
c33d6c06 | 2926 | page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order, |
0aaa29a5 | 2927 | gfp_mask, alloc_flags, ac->migratetype); |
75379191 | 2928 | if (page) { |
479f854a | 2929 | prep_new_page(page, order, gfp_mask, alloc_flags); |
0aaa29a5 MG |
2930 | |
2931 | /* | |
2932 | * If this is a high-order atomic allocation then check | |
2933 | * if the pageblock should be reserved for the future | |
2934 | */ | |
2935 | if (unlikely(order && (alloc_flags & ALLOC_HARDER))) | |
2936 | reserve_highatomic_pageblock(page, zone, order); | |
2937 | ||
75379191 VB |
2938 | return page; |
2939 | } | |
54a6eb5c | 2940 | } |
9276b1bc | 2941 | |
4ffeaf35 | 2942 | return NULL; |
753ee728 MH |
2943 | } |
2944 | ||
29423e77 DR |
2945 | /* |
2946 | * Large machines with many possible nodes should not always dump per-node | |
2947 | * meminfo in irq context. | |
2948 | */ | |
2949 | static inline bool should_suppress_show_mem(void) | |
2950 | { | |
2951 | bool ret = false; | |
2952 | ||
2953 | #if NODES_SHIFT > 8 | |
2954 | ret = in_interrupt(); | |
2955 | #endif | |
2956 | return ret; | |
2957 | } | |
2958 | ||
a238ab5b DH |
2959 | static DEFINE_RATELIMIT_STATE(nopage_rs, |
2960 | DEFAULT_RATELIMIT_INTERVAL, | |
2961 | DEFAULT_RATELIMIT_BURST); | |
2962 | ||
d00181b9 | 2963 | void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...) |
a238ab5b | 2964 | { |
a238ab5b DH |
2965 | unsigned int filter = SHOW_MEM_FILTER_NODES; |
2966 | ||
c0a32fc5 SG |
2967 | if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) || |
2968 | debug_guardpage_minorder() > 0) | |
a238ab5b DH |
2969 | return; |
2970 | ||
2971 | /* | |
2972 | * This documents exceptions given to allocations in certain | |
2973 | * contexts that are allowed to allocate outside current's set | |
2974 | * of allowed nodes. | |
2975 | */ | |
2976 | if (!(gfp_mask & __GFP_NOMEMALLOC)) | |
2977 | if (test_thread_flag(TIF_MEMDIE) || | |
2978 | (current->flags & (PF_MEMALLOC | PF_EXITING))) | |
2979 | filter &= ~SHOW_MEM_FILTER_NODES; | |
d0164adc | 2980 | if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) |
a238ab5b DH |
2981 | filter &= ~SHOW_MEM_FILTER_NODES; |
2982 | ||
2983 | if (fmt) { | |
3ee9a4f0 JP |
2984 | struct va_format vaf; |
2985 | va_list args; | |
2986 | ||
a238ab5b | 2987 | va_start(args, fmt); |
3ee9a4f0 JP |
2988 | |
2989 | vaf.fmt = fmt; | |
2990 | vaf.va = &args; | |
2991 | ||
2992 | pr_warn("%pV", &vaf); | |
2993 | ||
a238ab5b DH |
2994 | va_end(args); |
2995 | } | |
2996 | ||
c5c990e8 VB |
2997 | pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n", |
2998 | current->comm, order, gfp_mask, &gfp_mask); | |
a238ab5b DH |
2999 | dump_stack(); |
3000 | if (!should_suppress_show_mem()) | |
3001 | show_mem(filter); | |
3002 | } | |
3003 | ||
11e33f6a MG |
3004 | static inline struct page * |
3005 | __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, | |
a9263751 | 3006 | const struct alloc_context *ac, unsigned long *did_some_progress) |
11e33f6a | 3007 | { |
6e0fc46d DR |
3008 | struct oom_control oc = { |
3009 | .zonelist = ac->zonelist, | |
3010 | .nodemask = ac->nodemask, | |
2a966b77 | 3011 | .memcg = NULL, |
6e0fc46d DR |
3012 | .gfp_mask = gfp_mask, |
3013 | .order = order, | |
6e0fc46d | 3014 | }; |
11e33f6a MG |
3015 | struct page *page; |
3016 | ||
9879de73 JW |
3017 | *did_some_progress = 0; |
3018 | ||
9879de73 | 3019 | /* |
dc56401f JW |
3020 | * Acquire the oom lock. If that fails, somebody else is |
3021 | * making progress for us. | |
9879de73 | 3022 | */ |
dc56401f | 3023 | if (!mutex_trylock(&oom_lock)) { |
9879de73 | 3024 | *did_some_progress = 1; |
11e33f6a | 3025 | schedule_timeout_uninterruptible(1); |
1da177e4 LT |
3026 | return NULL; |
3027 | } | |
6b1de916 | 3028 | |
11e33f6a MG |
3029 | /* |
3030 | * Go through the zonelist yet one more time, keep very high watermark | |
3031 | * here, this is only to catch a parallel oom killing, we must fail if | |
3032 | * we're still under heavy pressure. | |
3033 | */ | |
a9263751 VB |
3034 | page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order, |
3035 | ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); | |
7fb1d9fc | 3036 | if (page) |
11e33f6a MG |
3037 | goto out; |
3038 | ||
4365a567 | 3039 | if (!(gfp_mask & __GFP_NOFAIL)) { |
9879de73 JW |
3040 | /* Coredumps can quickly deplete all memory reserves */ |
3041 | if (current->flags & PF_DUMPCORE) | |
3042 | goto out; | |
4365a567 KH |
3043 | /* The OOM killer will not help higher order allocs */ |
3044 | if (order > PAGE_ALLOC_COSTLY_ORDER) | |
3045 | goto out; | |
03668b3c | 3046 | /* The OOM killer does not needlessly kill tasks for lowmem */ |
a9263751 | 3047 | if (ac->high_zoneidx < ZONE_NORMAL) |
03668b3c | 3048 | goto out; |
9083905a JW |
3049 | if (pm_suspended_storage()) |
3050 | goto out; | |
3da88fb3 MH |
3051 | /* |
3052 | * XXX: GFP_NOFS allocations should rather fail than rely on | |
3053 | * other request to make a forward progress. | |
3054 | * We are in an unfortunate situation where out_of_memory cannot | |
3055 | * do much for this context but let's try it to at least get | |
3056 | * access to memory reserved if the current task is killed (see | |
3057 | * out_of_memory). Once filesystems are ready to handle allocation | |
3058 | * failures more gracefully we should just bail out here. | |
3059 | */ | |
3060 | ||
4167e9b2 | 3061 | /* The OOM killer may not free memory on a specific node */ |
4365a567 KH |
3062 | if (gfp_mask & __GFP_THISNODE) |
3063 | goto out; | |
3064 | } | |
11e33f6a | 3065 | /* Exhausted what can be done so it's blamo time */ |
5020e285 | 3066 | if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { |
c32b3cbe | 3067 | *did_some_progress = 1; |
5020e285 MH |
3068 | |
3069 | if (gfp_mask & __GFP_NOFAIL) { | |
3070 | page = get_page_from_freelist(gfp_mask, order, | |
3071 | ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac); | |
3072 | /* | |
3073 | * fallback to ignore cpuset restriction if our nodes | |
3074 | * are depleted | |
3075 | */ | |
3076 | if (!page) | |
3077 | page = get_page_from_freelist(gfp_mask, order, | |
3078 | ALLOC_NO_WATERMARKS, ac); | |
3079 | } | |
3080 | } | |
11e33f6a | 3081 | out: |
dc56401f | 3082 | mutex_unlock(&oom_lock); |
11e33f6a MG |
3083 | return page; |
3084 | } | |
3085 | ||
33c2d214 MH |
3086 | /* |
3087 | * Maximum number of compaction retries wit a progress before OOM | |
3088 | * killer is consider as the only way to move forward. | |
3089 | */ | |
3090 | #define MAX_COMPACT_RETRIES 16 | |
3091 | ||
56de7263 MG |
3092 | #ifdef CONFIG_COMPACTION |
3093 | /* Try memory compaction for high-order allocations before reclaim */ | |
3094 | static struct page * | |
3095 | __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, | |
c603844b | 3096 | unsigned int alloc_flags, const struct alloc_context *ac, |
a5508cd8 | 3097 | enum compact_priority prio, enum compact_result *compact_result) |
56de7263 | 3098 | { |
98dd3b48 | 3099 | struct page *page; |
53853e2d VB |
3100 | |
3101 | if (!order) | |
66199712 | 3102 | return NULL; |
66199712 | 3103 | |
c06b1fca | 3104 | current->flags |= PF_MEMALLOC; |
c5d01d0d | 3105 | *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, |
c3486f53 | 3106 | prio); |
c06b1fca | 3107 | current->flags &= ~PF_MEMALLOC; |
56de7263 | 3108 | |
c5d01d0d | 3109 | if (*compact_result <= COMPACT_INACTIVE) |
98dd3b48 | 3110 | return NULL; |
53853e2d | 3111 | |
98dd3b48 VB |
3112 | /* |
3113 | * At least in one zone compaction wasn't deferred or skipped, so let's | |
3114 | * count a compaction stall | |
3115 | */ | |
3116 | count_vm_event(COMPACTSTALL); | |
8fb74b9f | 3117 | |
31a6c190 | 3118 | page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); |
53853e2d | 3119 | |
98dd3b48 VB |
3120 | if (page) { |
3121 | struct zone *zone = page_zone(page); | |
53853e2d | 3122 | |
98dd3b48 VB |
3123 | zone->compact_blockskip_flush = false; |
3124 | compaction_defer_reset(zone, order, true); | |
3125 | count_vm_event(COMPACTSUCCESS); | |
3126 | return page; | |
3127 | } | |
56de7263 | 3128 | |
98dd3b48 VB |
3129 | /* |
3130 | * It's bad if compaction run occurs and fails. The most likely reason | |
3131 | * is that pages exist, but not enough to satisfy watermarks. | |
3132 | */ | |
3133 | count_vm_event(COMPACTFAIL); | |
66199712 | 3134 | |
98dd3b48 | 3135 | cond_resched(); |
56de7263 MG |
3136 | |
3137 | return NULL; | |
3138 | } | |
33c2d214 MH |
3139 | |
3140 | static inline bool | |
86a294a8 | 3141 | should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, |
a5508cd8 VB |
3142 | enum compact_result compact_result, |
3143 | enum compact_priority *compact_priority, | |
33c2d214 MH |
3144 | int compaction_retries) |
3145 | { | |
7854ea6c MH |
3146 | int max_retries = MAX_COMPACT_RETRIES; |
3147 | ||
33c2d214 MH |
3148 | if (!order) |
3149 | return false; | |
3150 | ||
3151 | /* | |
3152 | * compaction considers all the zone as desperately out of memory | |
3153 | * so it doesn't really make much sense to retry except when the | |
a5508cd8 | 3154 | * failure could be caused by insufficient priority |
33c2d214 MH |
3155 | */ |
3156 | if (compaction_failed(compact_result)) { | |
a5508cd8 VB |
3157 | if (*compact_priority > MIN_COMPACT_PRIORITY) { |
3158 | (*compact_priority)--; | |
33c2d214 MH |
3159 | return true; |
3160 | } | |
3161 | return false; | |
3162 | } | |
3163 | ||
3164 | /* | |
7854ea6c MH |
3165 | * make sure the compaction wasn't deferred or didn't bail out early |
3166 | * due to locks contention before we declare that we should give up. | |
86a294a8 MH |
3167 | * But do not retry if the given zonelist is not suitable for |
3168 | * compaction. | |
33c2d214 | 3169 | */ |
7854ea6c | 3170 | if (compaction_withdrawn(compact_result)) |
86a294a8 | 3171 | return compaction_zonelist_suitable(ac, order, alloc_flags); |
7854ea6c MH |
3172 | |
3173 | /* | |
3174 | * !costly requests are much more important than __GFP_REPEAT | |
3175 | * costly ones because they are de facto nofail and invoke OOM | |
3176 | * killer to move on while costly can fail and users are ready | |
3177 | * to cope with that. 1/4 retries is rather arbitrary but we | |
3178 | * would need much more detailed feedback from compaction to | |
3179 | * make a better decision. | |
3180 | */ | |
3181 | if (order > PAGE_ALLOC_COSTLY_ORDER) | |
3182 | max_retries /= 4; | |
3183 | if (compaction_retries <= max_retries) | |
3184 | return true; | |
33c2d214 MH |
3185 | |
3186 | return false; | |
3187 | } | |
56de7263 MG |
3188 | #else |
3189 | static inline struct page * | |
3190 | __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, | |
c603844b | 3191 | unsigned int alloc_flags, const struct alloc_context *ac, |
a5508cd8 | 3192 | enum compact_priority prio, enum compact_result *compact_result) |
56de7263 | 3193 | { |
33c2d214 | 3194 | *compact_result = COMPACT_SKIPPED; |
56de7263 MG |
3195 | return NULL; |
3196 | } | |
33c2d214 MH |
3197 | |
3198 | static inline bool | |
86a294a8 MH |
3199 | should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, |
3200 | enum compact_result compact_result, | |
a5508cd8 | 3201 | enum compact_priority *compact_priority, |
33c2d214 MH |
3202 | int compaction_retries) |
3203 | { | |
31e49bfd MH |
3204 | struct zone *zone; |
3205 | struct zoneref *z; | |
3206 | ||
3207 | if (!order || order > PAGE_ALLOC_COSTLY_ORDER) | |
3208 | return false; | |
3209 | ||
3210 | /* | |
3211 | * There are setups with compaction disabled which would prefer to loop | |
3212 | * inside the allocator rather than hit the oom killer prematurely. | |
3213 | * Let's give them a good hope and keep retrying while the order-0 | |
3214 | * watermarks are OK. | |
3215 | */ | |
3216 | for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, | |
3217 | ac->nodemask) { | |
3218 | if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), | |
3219 | ac_classzone_idx(ac), alloc_flags)) | |
3220 | return true; | |
3221 | } | |
33c2d214 MH |
3222 | return false; |
3223 | } | |
56de7263 MG |
3224 | #endif /* CONFIG_COMPACTION */ |
3225 | ||
bba90710 MS |
3226 | /* Perform direct synchronous page reclaim */ |
3227 | static int | |
a9263751 VB |
3228 | __perform_reclaim(gfp_t gfp_mask, unsigned int order, |
3229 | const struct alloc_context *ac) | |
11e33f6a | 3230 | { |
11e33f6a | 3231 | struct reclaim_state reclaim_state; |
bba90710 | 3232 | int progress; |
11e33f6a MG |
3233 | |
3234 | cond_resched(); | |
3235 | ||
3236 | /* We now go into synchronous reclaim */ | |
3237 | cpuset_memory_pressure_bump(); | |
c06b1fca | 3238 | current->flags |= PF_MEMALLOC; |
11e33f6a MG |
3239 | lockdep_set_current_reclaim_state(gfp_mask); |
3240 | reclaim_state.reclaimed_slab = 0; | |
c06b1fca | 3241 | current->reclaim_state = &reclaim_state; |
11e33f6a | 3242 | |
a9263751 VB |
3243 | progress = try_to_free_pages(ac->zonelist, order, gfp_mask, |
3244 | ac->nodemask); | |
11e33f6a | 3245 | |
c06b1fca | 3246 | current->reclaim_state = NULL; |
11e33f6a | 3247 | lockdep_clear_current_reclaim_state(); |
c06b1fca | 3248 | current->flags &= ~PF_MEMALLOC; |
11e33f6a MG |
3249 | |
3250 | cond_resched(); | |
3251 | ||
bba90710 MS |
3252 | return progress; |
3253 | } | |
3254 | ||
3255 | /* The really slow allocator path where we enter direct reclaim */ | |
3256 | static inline struct page * | |
3257 | __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, | |
c603844b | 3258 | unsigned int alloc_flags, const struct alloc_context *ac, |
a9263751 | 3259 | unsigned long *did_some_progress) |
bba90710 MS |
3260 | { |
3261 | struct page *page = NULL; | |
3262 | bool drained = false; | |
3263 | ||
a9263751 | 3264 | *did_some_progress = __perform_reclaim(gfp_mask, order, ac); |
9ee493ce MG |
3265 | if (unlikely(!(*did_some_progress))) |
3266 | return NULL; | |
11e33f6a | 3267 | |
9ee493ce | 3268 | retry: |
31a6c190 | 3269 | page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); |
9ee493ce MG |
3270 | |
3271 | /* | |
3272 | * If an allocation failed after direct reclaim, it could be because | |
0aaa29a5 MG |
3273 | * pages are pinned on the per-cpu lists or in high alloc reserves. |
3274 | * Shrink them them and try again | |
9ee493ce MG |
3275 | */ |
3276 | if (!page && !drained) { | |
0aaa29a5 | 3277 | unreserve_highatomic_pageblock(ac); |
93481ff0 | 3278 | drain_all_pages(NULL); |
9ee493ce MG |
3279 | drained = true; |
3280 | goto retry; | |
3281 | } | |
3282 | ||
11e33f6a MG |
3283 | return page; |
3284 | } | |
3285 | ||
a9263751 | 3286 | static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac) |
3a025760 JW |
3287 | { |
3288 | struct zoneref *z; | |
3289 | struct zone *zone; | |
e1a55637 | 3290 | pg_data_t *last_pgdat = NULL; |
3a025760 | 3291 | |
a9263751 | 3292 | for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, |
e1a55637 MG |
3293 | ac->high_zoneidx, ac->nodemask) { |
3294 | if (last_pgdat != zone->zone_pgdat) | |
52e9f87a | 3295 | wakeup_kswapd(zone, order, ac->high_zoneidx); |
e1a55637 MG |
3296 | last_pgdat = zone->zone_pgdat; |
3297 | } | |
3a025760 JW |
3298 | } |
3299 | ||
c603844b | 3300 | static inline unsigned int |
341ce06f PZ |
3301 | gfp_to_alloc_flags(gfp_t gfp_mask) |
3302 | { | |
c603844b | 3303 | unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; |
1da177e4 | 3304 | |
a56f57ff | 3305 | /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ |
e6223a3b | 3306 | BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); |
933e312e | 3307 | |
341ce06f PZ |
3308 | /* |
3309 | * The caller may dip into page reserves a bit more if the caller | |
3310 | * cannot run direct reclaim, or if the caller has realtime scheduling | |
3311 | * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will | |
d0164adc | 3312 | * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). |
341ce06f | 3313 | */ |
e6223a3b | 3314 | alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); |
1da177e4 | 3315 | |
d0164adc | 3316 | if (gfp_mask & __GFP_ATOMIC) { |
5c3240d9 | 3317 | /* |
b104a35d DR |
3318 | * Not worth trying to allocate harder for __GFP_NOMEMALLOC even |
3319 | * if it can't schedule. | |
5c3240d9 | 3320 | */ |
b104a35d | 3321 | if (!(gfp_mask & __GFP_NOMEMALLOC)) |
5c3240d9 | 3322 | alloc_flags |= ALLOC_HARDER; |
523b9458 | 3323 | /* |
b104a35d | 3324 | * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the |
344736f2 | 3325 | * comment for __cpuset_node_allowed(). |
523b9458 | 3326 | */ |
341ce06f | 3327 | alloc_flags &= ~ALLOC_CPUSET; |
c06b1fca | 3328 | } else if (unlikely(rt_task(current)) && !in_interrupt()) |
341ce06f PZ |
3329 | alloc_flags |= ALLOC_HARDER; |
3330 | ||
d95ea5d1 | 3331 | #ifdef CONFIG_CMA |
43e7a34d | 3332 | if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) |
d95ea5d1 BZ |
3333 | alloc_flags |= ALLOC_CMA; |
3334 | #endif | |
341ce06f PZ |
3335 | return alloc_flags; |
3336 | } | |
3337 | ||
072bb0aa MG |
3338 | bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) |
3339 | { | |
31a6c190 VB |
3340 | if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) |
3341 | return false; | |
3342 | ||
3343 | if (gfp_mask & __GFP_MEMALLOC) | |
3344 | return true; | |
3345 | if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) | |
3346 | return true; | |
3347 | if (!in_interrupt() && | |
3348 | ((current->flags & PF_MEMALLOC) || | |
3349 | unlikely(test_thread_flag(TIF_MEMDIE)))) | |
3350 | return true; | |
3351 | ||
3352 | return false; | |
072bb0aa MG |
3353 | } |
3354 | ||
0a0337e0 MH |
3355 | /* |
3356 | * Maximum number of reclaim retries without any progress before OOM killer | |
3357 | * is consider as the only way to move forward. | |
3358 | */ | |
3359 | #define MAX_RECLAIM_RETRIES 16 | |
3360 | ||
3361 | /* | |
3362 | * Checks whether it makes sense to retry the reclaim to make a forward progress | |
3363 | * for the given allocation request. | |
3364 | * The reclaim feedback represented by did_some_progress (any progress during | |
7854ea6c MH |
3365 | * the last reclaim round) and no_progress_loops (number of reclaim rounds without |
3366 | * any progress in a row) is considered as well as the reclaimable pages on the | |
3367 | * applicable zone list (with a backoff mechanism which is a function of | |
3368 | * no_progress_loops). | |
0a0337e0 MH |
3369 | * |
3370 | * Returns true if a retry is viable or false to enter the oom path. | |
3371 | */ | |
3372 | static inline bool | |
3373 | should_reclaim_retry(gfp_t gfp_mask, unsigned order, | |
3374 | struct alloc_context *ac, int alloc_flags, | |
7854ea6c | 3375 | bool did_some_progress, int no_progress_loops) |
0a0337e0 MH |
3376 | { |
3377 | struct zone *zone; | |
3378 | struct zoneref *z; | |
3379 | ||
3380 | /* | |
3381 | * Make sure we converge to OOM if we cannot make any progress | |
3382 | * several times in the row. | |
3383 | */ | |
3384 | if (no_progress_loops > MAX_RECLAIM_RETRIES) | |
3385 | return false; | |
3386 | ||
bca67592 MG |
3387 | /* |
3388 | * Keep reclaiming pages while there is a chance this will lead | |
3389 | * somewhere. If none of the target zones can satisfy our allocation | |
3390 | * request even if all reclaimable pages are considered then we are | |
3391 | * screwed and have to go OOM. | |
0a0337e0 MH |
3392 | */ |
3393 | for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, | |
3394 | ac->nodemask) { | |
3395 | unsigned long available; | |
ede37713 | 3396 | unsigned long reclaimable; |
0a0337e0 | 3397 | |
5a1c84b4 | 3398 | available = reclaimable = zone_reclaimable_pages(zone); |
0a0337e0 MH |
3399 | available -= DIV_ROUND_UP(no_progress_loops * available, |
3400 | MAX_RECLAIM_RETRIES); | |
5a1c84b4 | 3401 | available += zone_page_state_snapshot(zone, NR_FREE_PAGES); |
0a0337e0 MH |
3402 | |
3403 | /* | |
3404 | * Would the allocation succeed if we reclaimed the whole | |
5a1c84b4 | 3405 | * available? |
0a0337e0 | 3406 | */ |
5a1c84b4 MG |
3407 | if (__zone_watermark_ok(zone, order, min_wmark_pages(zone), |
3408 | ac_classzone_idx(ac), alloc_flags, available)) { | |
ede37713 MH |
3409 | /* |
3410 | * If we didn't make any progress and have a lot of | |
3411 | * dirty + writeback pages then we should wait for | |
3412 | * an IO to complete to slow down the reclaim and | |
3413 | * prevent from pre mature OOM | |
3414 | */ | |
3415 | if (!did_some_progress) { | |
11fb9989 | 3416 | unsigned long write_pending; |
ede37713 | 3417 | |
5a1c84b4 MG |
3418 | write_pending = zone_page_state_snapshot(zone, |
3419 | NR_ZONE_WRITE_PENDING); | |
ede37713 | 3420 | |
11fb9989 | 3421 | if (2 * write_pending > reclaimable) { |
ede37713 MH |
3422 | congestion_wait(BLK_RW_ASYNC, HZ/10); |
3423 | return true; | |
3424 | } | |
3425 | } | |
5a1c84b4 | 3426 | |
ede37713 MH |
3427 | /* |
3428 | * Memory allocation/reclaim might be called from a WQ | |
3429 | * context and the current implementation of the WQ | |
3430 | * concurrency control doesn't recognize that | |
3431 | * a particular WQ is congested if the worker thread is | |
3432 | * looping without ever sleeping. Therefore we have to | |
3433 | * do a short sleep here rather than calling | |
3434 | * cond_resched(). | |
3435 | */ | |
3436 | if (current->flags & PF_WQ_WORKER) | |
3437 | schedule_timeout_uninterruptible(1); | |
3438 | else | |
3439 | cond_resched(); | |
3440 | ||
0a0337e0 MH |
3441 | return true; |
3442 | } | |
3443 | } | |
3444 | ||
3445 | return false; | |
3446 | } | |
3447 | ||
11e33f6a MG |
3448 | static inline struct page * |
3449 | __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, | |
a9263751 | 3450 | struct alloc_context *ac) |
11e33f6a | 3451 | { |
d0164adc | 3452 | bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; |
11e33f6a | 3453 | struct page *page = NULL; |
c603844b | 3454 | unsigned int alloc_flags; |
11e33f6a | 3455 | unsigned long did_some_progress; |
a5508cd8 | 3456 | enum compact_priority compact_priority = DEF_COMPACT_PRIORITY; |
c5d01d0d | 3457 | enum compact_result compact_result; |
33c2d214 | 3458 | int compaction_retries = 0; |
0a0337e0 | 3459 | int no_progress_loops = 0; |
1da177e4 | 3460 | |
72807a74 MG |
3461 | /* |
3462 | * In the slowpath, we sanity check order to avoid ever trying to | |
3463 | * reclaim >= MAX_ORDER areas which will never succeed. Callers may | |
3464 | * be using allocators in order of preference for an area that is | |
3465 | * too large. | |
3466 | */ | |
1fc28b70 MG |
3467 | if (order >= MAX_ORDER) { |
3468 | WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); | |
72807a74 | 3469 | return NULL; |
1fc28b70 | 3470 | } |
1da177e4 | 3471 | |
d0164adc MG |
3472 | /* |
3473 | * We also sanity check to catch abuse of atomic reserves being used by | |
3474 | * callers that are not in atomic context. | |
3475 | */ | |
3476 | if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == | |
3477 | (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) | |
3478 | gfp_mask &= ~__GFP_ATOMIC; | |
3479 | ||
9bf2229f | 3480 | /* |
31a6c190 VB |
3481 | * The fast path uses conservative alloc_flags to succeed only until |
3482 | * kswapd needs to be woken up, and to avoid the cost of setting up | |
3483 | * alloc_flags precisely. So we do that now. | |
9bf2229f | 3484 | */ |
341ce06f | 3485 | alloc_flags = gfp_to_alloc_flags(gfp_mask); |
1da177e4 | 3486 | |
23771235 VB |
3487 | if (gfp_mask & __GFP_KSWAPD_RECLAIM) |
3488 | wake_all_kswapds(order, ac); | |
3489 | ||
3490 | /* | |
3491 | * The adjusted alloc_flags might result in immediate success, so try | |
3492 | * that first | |
3493 | */ | |
3494 | page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); | |
3495 | if (page) | |
3496 | goto got_pg; | |
3497 | ||
a8161d1e VB |
3498 | /* |
3499 | * For costly allocations, try direct compaction first, as it's likely | |
3500 | * that we have enough base pages and don't need to reclaim. Don't try | |
3501 | * that for allocations that are allowed to ignore watermarks, as the | |
3502 | * ALLOC_NO_WATERMARKS attempt didn't yet happen. | |
3503 | */ | |
3504 | if (can_direct_reclaim && order > PAGE_ALLOC_COSTLY_ORDER && | |
3505 | !gfp_pfmemalloc_allowed(gfp_mask)) { | |
3506 | page = __alloc_pages_direct_compact(gfp_mask, order, | |
3507 | alloc_flags, ac, | |
a5508cd8 | 3508 | INIT_COMPACT_PRIORITY, |
a8161d1e VB |
3509 | &compact_result); |
3510 | if (page) | |
3511 | goto got_pg; | |
3512 | ||
3eb2771b VB |
3513 | /* |
3514 | * Checks for costly allocations with __GFP_NORETRY, which | |
3515 | * includes THP page fault allocations | |
3516 | */ | |
3517 | if (gfp_mask & __GFP_NORETRY) { | |
a8161d1e VB |
3518 | /* |
3519 | * If compaction is deferred for high-order allocations, | |
3520 | * it is because sync compaction recently failed. If | |
3521 | * this is the case and the caller requested a THP | |
3522 | * allocation, we do not want to heavily disrupt the | |
3523 | * system, so we fail the allocation instead of entering | |
3524 | * direct reclaim. | |
3525 | */ | |
3526 | if (compact_result == COMPACT_DEFERRED) | |
3527 | goto nopage; | |
3528 | ||
a8161d1e | 3529 | /* |
3eb2771b VB |
3530 | * Looks like reclaim/compaction is worth trying, but |
3531 | * sync compaction could be very expensive, so keep | |
25160354 | 3532 | * using async compaction. |
a8161d1e | 3533 | */ |
a5508cd8 | 3534 | compact_priority = INIT_COMPACT_PRIORITY; |
a8161d1e VB |
3535 | } |
3536 | } | |
23771235 | 3537 | |
31a6c190 | 3538 | retry: |
23771235 | 3539 | /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ |
31a6c190 VB |
3540 | if (gfp_mask & __GFP_KSWAPD_RECLAIM) |
3541 | wake_all_kswapds(order, ac); | |
3542 | ||
23771235 VB |
3543 | if (gfp_pfmemalloc_allowed(gfp_mask)) |
3544 | alloc_flags = ALLOC_NO_WATERMARKS; | |
3545 | ||
e46e7b77 MG |
3546 | /* |
3547 | * Reset the zonelist iterators if memory policies can be ignored. | |
3548 | * These allocations are high priority and system rather than user | |
3549 | * orientated. | |
3550 | */ | |
23771235 | 3551 | if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) { |
e46e7b77 MG |
3552 | ac->zonelist = node_zonelist(numa_node_id(), gfp_mask); |
3553 | ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, | |
3554 | ac->high_zoneidx, ac->nodemask); | |
3555 | } | |
3556 | ||
23771235 | 3557 | /* Attempt with potentially adjusted zonelist and alloc_flags */ |
31a6c190 | 3558 | page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); |
7fb1d9fc RS |
3559 | if (page) |
3560 | goto got_pg; | |
1da177e4 | 3561 | |
d0164adc MG |
3562 | /* Caller is not willing to reclaim, we can't balance anything */ |
3563 | if (!can_direct_reclaim) { | |
aed0a0e3 | 3564 | /* |
33d53103 MH |
3565 | * All existing users of the __GFP_NOFAIL are blockable, so warn |
3566 | * of any new users that actually allow this type of allocation | |
3567 | * to fail. | |
aed0a0e3 DR |
3568 | */ |
3569 | WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL); | |
1da177e4 | 3570 | goto nopage; |
aed0a0e3 | 3571 | } |
1da177e4 | 3572 | |
341ce06f | 3573 | /* Avoid recursion of direct reclaim */ |
33d53103 MH |
3574 | if (current->flags & PF_MEMALLOC) { |
3575 | /* | |
3576 | * __GFP_NOFAIL request from this context is rather bizarre | |
3577 | * because we cannot reclaim anything and only can loop waiting | |
3578 | * for somebody to do a work for us. | |
3579 | */ | |
3580 | if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { | |
3581 | cond_resched(); | |
3582 | goto retry; | |
3583 | } | |
341ce06f | 3584 | goto nopage; |
33d53103 | 3585 | } |
341ce06f | 3586 | |
6583bb64 DR |
3587 | /* Avoid allocations with no watermarks from looping endlessly */ |
3588 | if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) | |
3589 | goto nopage; | |
3590 | ||
a8161d1e VB |
3591 | |
3592 | /* Try direct reclaim and then allocating */ | |
3593 | page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, | |
3594 | &did_some_progress); | |
3595 | if (page) | |
3596 | goto got_pg; | |
3597 | ||
3598 | /* Try direct compaction and then allocating */ | |
a9263751 | 3599 | page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, |
a5508cd8 | 3600 | compact_priority, &compact_result); |
56de7263 MG |
3601 | if (page) |
3602 | goto got_pg; | |
75f30861 | 3603 | |
33c2d214 MH |
3604 | if (order && compaction_made_progress(compact_result)) |
3605 | compaction_retries++; | |
8fe78048 | 3606 | |
9083905a JW |
3607 | /* Do not loop if specifically requested */ |
3608 | if (gfp_mask & __GFP_NORETRY) | |
a8161d1e | 3609 | goto nopage; |
9083905a | 3610 | |
0a0337e0 MH |
3611 | /* |
3612 | * Do not retry costly high order allocations unless they are | |
3613 | * __GFP_REPEAT | |
3614 | */ | |
3615 | if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT)) | |
a8161d1e | 3616 | goto nopage; |
0a0337e0 | 3617 | |
7854ea6c MH |
3618 | /* |
3619 | * Costly allocations might have made a progress but this doesn't mean | |
3620 | * their order will become available due to high fragmentation so | |
3621 | * always increment the no progress counter for them | |
3622 | */ | |
3623 | if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) | |
0a0337e0 | 3624 | no_progress_loops = 0; |
7854ea6c | 3625 | else |
0a0337e0 | 3626 | no_progress_loops++; |
1da177e4 | 3627 | |
0a0337e0 | 3628 | if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, |
7854ea6c | 3629 | did_some_progress > 0, no_progress_loops)) |
0a0337e0 MH |
3630 | goto retry; |
3631 | ||
33c2d214 MH |
3632 | /* |
3633 | * It doesn't make any sense to retry for the compaction if the order-0 | |
3634 | * reclaim is not able to make any progress because the current | |
3635 | * implementation of the compaction depends on the sufficient amount | |
3636 | * of free memory (see __compaction_suitable) | |
3637 | */ | |
3638 | if (did_some_progress > 0 && | |
86a294a8 | 3639 | should_compact_retry(ac, order, alloc_flags, |
a5508cd8 | 3640 | compact_result, &compact_priority, |
86a294a8 | 3641 | compaction_retries)) |
33c2d214 MH |
3642 | goto retry; |
3643 | ||
9083905a JW |
3644 | /* Reclaim has failed us, start killing things */ |
3645 | page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); | |
3646 | if (page) | |
3647 | goto got_pg; | |
3648 | ||
3649 | /* Retry as long as the OOM killer is making progress */ | |
0a0337e0 MH |
3650 | if (did_some_progress) { |
3651 | no_progress_loops = 0; | |
9083905a | 3652 | goto retry; |
0a0337e0 | 3653 | } |
9083905a | 3654 | |
1da177e4 | 3655 | nopage: |
a238ab5b | 3656 | warn_alloc_failed(gfp_mask, order, NULL); |
1da177e4 | 3657 | got_pg: |
072bb0aa | 3658 | return page; |
1da177e4 | 3659 | } |
11e33f6a MG |
3660 | |
3661 | /* | |
3662 | * This is the 'heart' of the zoned buddy allocator. | |
3663 | */ | |
3664 | struct page * | |
3665 | __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, | |
3666 | struct zonelist *zonelist, nodemask_t *nodemask) | |
3667 | { | |
5bb1b169 | 3668 | struct page *page; |
cc9a6c87 | 3669 | unsigned int cpuset_mems_cookie; |
e6cbd7f2 | 3670 | unsigned int alloc_flags = ALLOC_WMARK_LOW; |
83d4ca81 | 3671 | gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */ |
a9263751 VB |
3672 | struct alloc_context ac = { |
3673 | .high_zoneidx = gfp_zone(gfp_mask), | |
682a3385 | 3674 | .zonelist = zonelist, |
a9263751 VB |
3675 | .nodemask = nodemask, |
3676 | .migratetype = gfpflags_to_migratetype(gfp_mask), | |
3677 | }; | |
11e33f6a | 3678 | |
682a3385 | 3679 | if (cpusets_enabled()) { |
83d4ca81 | 3680 | alloc_mask |= __GFP_HARDWALL; |
682a3385 MG |
3681 | alloc_flags |= ALLOC_CPUSET; |
3682 | if (!ac.nodemask) | |
3683 | ac.nodemask = &cpuset_current_mems_allowed; | |
3684 | } | |
3685 | ||
dcce284a BH |
3686 | gfp_mask &= gfp_allowed_mask; |
3687 | ||
11e33f6a MG |
3688 | lockdep_trace_alloc(gfp_mask); |
3689 | ||
d0164adc | 3690 | might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); |
11e33f6a MG |
3691 | |
3692 | if (should_fail_alloc_page(gfp_mask, order)) | |
3693 | return NULL; | |
3694 | ||
3695 | /* | |
3696 | * Check the zones suitable for the gfp_mask contain at least one | |
3697 | * valid zone. It's possible to have an empty zonelist as a result | |
4167e9b2 | 3698 | * of __GFP_THISNODE and a memoryless node |
11e33f6a MG |
3699 | */ |
3700 | if (unlikely(!zonelist->_zonerefs->zone)) | |
3701 | return NULL; | |
3702 | ||
a9263751 | 3703 | if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE) |
21bb9bd1 VB |
3704 | alloc_flags |= ALLOC_CMA; |
3705 | ||
cc9a6c87 | 3706 | retry_cpuset: |
d26914d1 | 3707 | cpuset_mems_cookie = read_mems_allowed_begin(); |
cc9a6c87 | 3708 | |
c9ab0c4f MG |
3709 | /* Dirty zone balancing only done in the fast path */ |
3710 | ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE); | |
3711 | ||
e46e7b77 MG |
3712 | /* |
3713 | * The preferred zone is used for statistics but crucially it is | |
3714 | * also used as the starting point for the zonelist iterator. It | |
3715 | * may get reset for allocations that ignore memory policies. | |
3716 | */ | |
c33d6c06 MG |
3717 | ac.preferred_zoneref = first_zones_zonelist(ac.zonelist, |
3718 | ac.high_zoneidx, ac.nodemask); | |
3719 | if (!ac.preferred_zoneref) { | |
5bb1b169 | 3720 | page = NULL; |
4fcb0971 | 3721 | goto no_zone; |
5bb1b169 MG |
3722 | } |
3723 | ||
5117f45d | 3724 | /* First allocation attempt */ |
a9263751 | 3725 | page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac); |
4fcb0971 MG |
3726 | if (likely(page)) |
3727 | goto out; | |
11e33f6a | 3728 | |
4fcb0971 MG |
3729 | /* |
3730 | * Runtime PM, block IO and its error handling path can deadlock | |
3731 | * because I/O on the device might not complete. | |
3732 | */ | |
3733 | alloc_mask = memalloc_noio_flags(gfp_mask); | |
3734 | ac.spread_dirty_pages = false; | |
23f086f9 | 3735 | |
4741526b MG |
3736 | /* |
3737 | * Restore the original nodemask if it was potentially replaced with | |
3738 | * &cpuset_current_mems_allowed to optimize the fast-path attempt. | |
3739 | */ | |
3740 | if (cpusets_enabled()) | |
3741 | ac.nodemask = nodemask; | |
4fcb0971 | 3742 | page = __alloc_pages_slowpath(alloc_mask, order, &ac); |
cc9a6c87 | 3743 | |
4fcb0971 | 3744 | no_zone: |
cc9a6c87 MG |
3745 | /* |
3746 | * When updating a task's mems_allowed, it is possible to race with | |
3747 | * parallel threads in such a way that an allocation can fail while | |
3748 | * the mask is being updated. If a page allocation is about to fail, | |
3749 | * check if the cpuset changed during allocation and if so, retry. | |
3750 | */ | |
83d4ca81 MG |
3751 | if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) { |
3752 | alloc_mask = gfp_mask; | |
cc9a6c87 | 3753 | goto retry_cpuset; |
83d4ca81 | 3754 | } |
cc9a6c87 | 3755 | |
4fcb0971 | 3756 | out: |
c4159a75 VD |
3757 | if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page && |
3758 | unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) { | |
3759 | __free_pages(page, order); | |
3760 | page = NULL; | |
4949148a VD |
3761 | } |
3762 | ||
4fcb0971 MG |
3763 | if (kmemcheck_enabled && page) |
3764 | kmemcheck_pagealloc_alloc(page, order, gfp_mask); | |
3765 | ||
3766 | trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype); | |
3767 | ||
11e33f6a | 3768 | return page; |
1da177e4 | 3769 | } |
d239171e | 3770 | EXPORT_SYMBOL(__alloc_pages_nodemask); |
1da177e4 LT |
3771 | |
3772 | /* | |
3773 | * Common helper functions. | |
3774 | */ | |
920c7a5d | 3775 | unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) |
1da177e4 | 3776 | { |
945a1113 AM |
3777 | struct page *page; |
3778 | ||
3779 | /* | |
3780 | * __get_free_pages() returns a 32-bit address, which cannot represent | |
3781 | * a highmem page | |
3782 | */ | |
3783 | VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); | |
3784 | ||
1da177e4 LT |
3785 | page = alloc_pages(gfp_mask, order); |
3786 | if (!page) | |
3787 | return 0; | |
3788 | return (unsigned long) page_address(page); | |
3789 | } | |
1da177e4 LT |
3790 | EXPORT_SYMBOL(__get_free_pages); |
3791 | ||
920c7a5d | 3792 | unsigned long get_zeroed_page(gfp_t gfp_mask) |
1da177e4 | 3793 | { |
945a1113 | 3794 | return __get_free_pages(gfp_mask | __GFP_ZERO, 0); |
1da177e4 | 3795 | } |
1da177e4 LT |
3796 | EXPORT_SYMBOL(get_zeroed_page); |
3797 | ||
920c7a5d | 3798 | void __free_pages(struct page *page, unsigned int order) |
1da177e4 | 3799 | { |
b5810039 | 3800 | if (put_page_testzero(page)) { |
1da177e4 | 3801 | if (order == 0) |
b745bc85 | 3802 | free_hot_cold_page(page, false); |
1da177e4 LT |
3803 | else |
3804 | __free_pages_ok(page, order); | |
3805 | } | |
3806 | } | |
3807 | ||
3808 | EXPORT_SYMBOL(__free_pages); | |
3809 | ||
920c7a5d | 3810 | void free_pages(unsigned long addr, unsigned int order) |
1da177e4 LT |
3811 | { |
3812 | if (addr != 0) { | |
725d704e | 3813 | VM_BUG_ON(!virt_addr_valid((void *)addr)); |
1da177e4 LT |
3814 | __free_pages(virt_to_page((void *)addr), order); |
3815 | } | |
3816 | } | |
3817 | ||
3818 | EXPORT_SYMBOL(free_pages); | |
3819 | ||
b63ae8ca AD |
3820 | /* |
3821 | * Page Fragment: | |
3822 | * An arbitrary-length arbitrary-offset area of memory which resides | |
3823 | * within a 0 or higher order page. Multiple fragments within that page | |
3824 | * are individually refcounted, in the page's reference counter. | |
3825 | * | |
3826 | * The page_frag functions below provide a simple allocation framework for | |
3827 | * page fragments. This is used by the network stack and network device | |
3828 | * drivers to provide a backing region of memory for use as either an | |
3829 | * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. | |
3830 | */ | |
3831 | static struct page *__page_frag_refill(struct page_frag_cache *nc, | |
3832 | gfp_t gfp_mask) | |
3833 | { | |
3834 | struct page *page = NULL; | |
3835 | gfp_t gfp = gfp_mask; | |
3836 | ||
3837 | #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) | |
3838 | gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | | |
3839 | __GFP_NOMEMALLOC; | |
3840 | page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, | |
3841 | PAGE_FRAG_CACHE_MAX_ORDER); | |
3842 | nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; | |
3843 | #endif | |
3844 | if (unlikely(!page)) | |
3845 | page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); | |
3846 | ||
3847 | nc->va = page ? page_address(page) : NULL; | |
3848 | ||
3849 | return page; | |
3850 | } | |
3851 | ||
3852 | void *__alloc_page_frag(struct page_frag_cache *nc, | |
3853 | unsigned int fragsz, gfp_t gfp_mask) | |
3854 | { | |
3855 | unsigned int size = PAGE_SIZE; | |
3856 | struct page *page; | |
3857 | int offset; | |
3858 | ||
3859 | if (unlikely(!nc->va)) { | |
3860 | refill: | |
3861 | page = __page_frag_refill(nc, gfp_mask); | |
3862 | if (!page) | |
3863 | return NULL; | |
3864 | ||
3865 | #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) | |
3866 | /* if size can vary use size else just use PAGE_SIZE */ | |
3867 | size = nc->size; | |
3868 | #endif | |
3869 | /* Even if we own the page, we do not use atomic_set(). | |
3870 | * This would break get_page_unless_zero() users. | |
3871 | */ | |
fe896d18 | 3872 | page_ref_add(page, size - 1); |
b63ae8ca AD |
3873 | |
3874 | /* reset page count bias and offset to start of new frag */ | |
2f064f34 | 3875 | nc->pfmemalloc = page_is_pfmemalloc(page); |
b63ae8ca AD |
3876 | nc->pagecnt_bias = size; |
3877 | nc->offset = size; | |
3878 | } | |
3879 | ||
3880 | offset = nc->offset - fragsz; | |
3881 | if (unlikely(offset < 0)) { | |
3882 | page = virt_to_page(nc->va); | |
3883 | ||
fe896d18 | 3884 | if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) |
b63ae8ca AD |
3885 | goto refill; |
3886 | ||
3887 | #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) | |
3888 | /* if size can vary use size else just use PAGE_SIZE */ | |
3889 | size = nc->size; | |
3890 | #endif | |
3891 | /* OK, page count is 0, we can safely set it */ | |
fe896d18 | 3892 | set_page_count(page, size); |
b63ae8ca AD |
3893 | |
3894 | /* reset page count bias and offset to start of new frag */ | |
3895 | nc->pagecnt_bias = size; | |
3896 | offset = size - fragsz; | |
3897 | } | |
3898 | ||
3899 | nc->pagecnt_bias--; | |
3900 | nc->offset = offset; | |
3901 | ||
3902 | return nc->va + offset; | |
3903 | } | |
3904 | EXPORT_SYMBOL(__alloc_page_frag); | |
3905 | ||
3906 | /* | |
3907 | * Frees a page fragment allocated out of either a compound or order 0 page. | |
3908 | */ | |
3909 | void __free_page_frag(void *addr) | |
3910 | { | |
3911 | struct page *page = virt_to_head_page(addr); | |
3912 | ||
3913 | if (unlikely(put_page_testzero(page))) | |
3914 | __free_pages_ok(page, compound_order(page)); | |
3915 | } | |
3916 | EXPORT_SYMBOL(__free_page_frag); | |
3917 | ||
d00181b9 KS |
3918 | static void *make_alloc_exact(unsigned long addr, unsigned int order, |
3919 | size_t size) | |
ee85c2e1 AK |
3920 | { |
3921 | if (addr) { | |
3922 | unsigned long alloc_end = addr + (PAGE_SIZE << order); | |
3923 | unsigned long used = addr + PAGE_ALIGN(size); | |
3924 | ||
3925 | split_page(virt_to_page((void *)addr), order); | |
3926 | while (used < alloc_end) { | |
3927 | free_page(used); | |
3928 | used += PAGE_SIZE; | |
3929 | } | |
3930 | } | |
3931 | return (void *)addr; | |
3932 | } | |
3933 | ||
2be0ffe2 TT |
3934 | /** |
3935 | * alloc_pages_exact - allocate an exact number physically-contiguous pages. | |
3936 | * @size: the number of bytes to allocate | |
3937 | * @gfp_mask: GFP flags for the allocation | |
3938 | * | |
3939 | * This function is similar to alloc_pages(), except that it allocates the | |
3940 | * minimum number of pages to satisfy the request. alloc_pages() can only | |
3941 | * allocate memory in power-of-two pages. | |
3942 | * | |
3943 | * This function is also limited by MAX_ORDER. | |
3944 | * | |
3945 | * Memory allocated by this function must be released by free_pages_exact(). | |
3946 | */ | |
3947 | void *alloc_pages_exact(size_t size, gfp_t gfp_mask) | |
3948 | { | |
3949 | unsigned int order = get_order(size); | |
3950 | unsigned long addr; | |
3951 | ||
3952 | addr = __get_free_pages(gfp_mask, order); | |
ee85c2e1 | 3953 | return make_alloc_exact(addr, order, size); |
2be0ffe2 TT |
3954 | } |
3955 | EXPORT_SYMBOL(alloc_pages_exact); | |
3956 | ||
ee85c2e1 AK |
3957 | /** |
3958 | * alloc_pages_exact_nid - allocate an exact number of physically-contiguous | |
3959 | * pages on a node. | |
b5e6ab58 | 3960 | * @nid: the preferred node ID where memory should be allocated |
ee85c2e1 AK |
3961 | * @size: the number of bytes to allocate |
3962 | * @gfp_mask: GFP flags for the allocation | |
3963 | * | |
3964 | * Like alloc_pages_exact(), but try to allocate on node nid first before falling | |
3965 | * back. | |
ee85c2e1 | 3966 | */ |
e1931811 | 3967 | void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) |
ee85c2e1 | 3968 | { |
d00181b9 | 3969 | unsigned int order = get_order(size); |
ee85c2e1 AK |
3970 | struct page *p = alloc_pages_node(nid, gfp_mask, order); |
3971 | if (!p) | |
3972 | return NULL; | |
3973 | return make_alloc_exact((unsigned long)page_address(p), order, size); | |
3974 | } | |
ee85c2e1 | 3975 | |
2be0ffe2 TT |
3976 | /** |
3977 | * free_pages_exact - release memory allocated via alloc_pages_exact() | |
3978 | * @virt: the value returned by alloc_pages_exact. | |
3979 | * @size: size of allocation, same value as passed to alloc_pages_exact(). | |
3980 | * | |
3981 | * Release the memory allocated by a previous call to alloc_pages_exact. | |
3982 | */ | |
3983 | void free_pages_exact(void *virt, size_t size) | |
3984 | { | |
3985 | unsigned long addr = (unsigned long)virt; | |
3986 | unsigned long end = addr + PAGE_ALIGN(size); | |
3987 | ||
3988 | while (addr < end) { | |
3989 | free_page(addr); | |
3990 | addr += PAGE_SIZE; | |
3991 | } | |
3992 | } | |
3993 | EXPORT_SYMBOL(free_pages_exact); | |
3994 | ||
e0fb5815 ZY |
3995 | /** |
3996 | * nr_free_zone_pages - count number of pages beyond high watermark | |
3997 | * @offset: The zone index of the highest zone | |
3998 | * | |
3999 | * nr_free_zone_pages() counts the number of counts pages which are beyond the | |
4000 | * high watermark within all zones at or below a given zone index. For each | |
4001 | * zone, the number of pages is calculated as: | |
834405c3 | 4002 | * managed_pages - high_pages |
e0fb5815 | 4003 | */ |
ebec3862 | 4004 | static unsigned long nr_free_zone_pages(int offset) |
1da177e4 | 4005 | { |
dd1a239f | 4006 | struct zoneref *z; |
54a6eb5c MG |
4007 | struct zone *zone; |
4008 | ||
e310fd43 | 4009 | /* Just pick one node, since fallback list is circular */ |
ebec3862 | 4010 | unsigned long sum = 0; |
1da177e4 | 4011 | |
0e88460d | 4012 | struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); |
1da177e4 | 4013 | |
54a6eb5c | 4014 | for_each_zone_zonelist(zone, z, zonelist, offset) { |
b40da049 | 4015 | unsigned long size = zone->managed_pages; |
41858966 | 4016 | unsigned long high = high_wmark_pages(zone); |
e310fd43 MB |
4017 | if (size > high) |
4018 | sum += size - high; | |
1da177e4 LT |
4019 | } |
4020 | ||
4021 | return sum; | |
4022 | } | |
4023 | ||
e0fb5815 ZY |
4024 | /** |
4025 | * nr_free_buffer_pages - count number of pages beyond high watermark | |
4026 | * | |
4027 | * nr_free_buffer_pages() counts the number of pages which are beyond the high | |
4028 | * watermark within ZONE_DMA and ZONE_NORMAL. | |
1da177e4 | 4029 | */ |
ebec3862 | 4030 | unsigned long nr_free_buffer_pages(void) |
1da177e4 | 4031 | { |
af4ca457 | 4032 | return nr_free_zone_pages(gfp_zone(GFP_USER)); |
1da177e4 | 4033 | } |
c2f1a551 | 4034 | EXPORT_SYMBOL_GPL(nr_free_buffer_pages); |
1da177e4 | 4035 | |
e0fb5815 ZY |
4036 | /** |
4037 | * nr_free_pagecache_pages - count number of pages beyond high watermark | |
4038 | * | |
4039 | * nr_free_pagecache_pages() counts the number of pages which are beyond the | |
4040 | * high watermark within all zones. | |
1da177e4 | 4041 | */ |
ebec3862 | 4042 | unsigned long nr_free_pagecache_pages(void) |
1da177e4 | 4043 | { |
2a1e274a | 4044 | return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); |
1da177e4 | 4045 | } |
08e0f6a9 CL |
4046 | |
4047 | static inline void show_node(struct zone *zone) | |
1da177e4 | 4048 | { |
e5adfffc | 4049 | if (IS_ENABLED(CONFIG_NUMA)) |
25ba77c1 | 4050 | printk("Node %d ", zone_to_nid(zone)); |
1da177e4 | 4051 | } |
1da177e4 | 4052 | |
d02bd27b IR |
4053 | long si_mem_available(void) |
4054 | { | |
4055 | long available; | |
4056 | unsigned long pagecache; | |
4057 | unsigned long wmark_low = 0; | |
4058 | unsigned long pages[NR_LRU_LISTS]; | |
4059 | struct zone *zone; | |
4060 | int lru; | |
4061 | ||
4062 | for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) | |
4063 | pages[lru] = global_page_state(NR_LRU_BASE + lru); | |
4064 | ||
4065 | for_each_zone(zone) | |
4066 | wmark_low += zone->watermark[WMARK_LOW]; | |
4067 | ||
4068 | /* | |
4069 | * Estimate the amount of memory available for userspace allocations, | |
4070 | * without causing swapping. | |
4071 | */ | |
4072 | available = global_page_state(NR_FREE_PAGES) - totalreserve_pages; | |
4073 | ||
4074 | /* | |
4075 | * Not all the page cache can be freed, otherwise the system will | |
4076 | * start swapping. Assume at least half of the page cache, or the | |
4077 | * low watermark worth of cache, needs to stay. | |
4078 | */ | |
4079 | pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; | |
4080 | pagecache -= min(pagecache / 2, wmark_low); | |
4081 | available += pagecache; | |
4082 | ||
4083 | /* | |
4084 | * Part of the reclaimable slab consists of items that are in use, | |
4085 | * and cannot be freed. Cap this estimate at the low watermark. | |
4086 | */ | |
4087 | available += global_page_state(NR_SLAB_RECLAIMABLE) - | |
4088 | min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low); | |
4089 | ||
4090 | if (available < 0) | |
4091 | available = 0; | |
4092 | return available; | |
4093 | } | |
4094 | EXPORT_SYMBOL_GPL(si_mem_available); | |
4095 | ||
1da177e4 LT |
4096 | void si_meminfo(struct sysinfo *val) |
4097 | { | |
4098 | val->totalram = totalram_pages; | |
11fb9989 | 4099 | val->sharedram = global_node_page_state(NR_SHMEM); |
d23ad423 | 4100 | val->freeram = global_page_state(NR_FREE_PAGES); |
1da177e4 | 4101 | val->bufferram = nr_blockdev_pages(); |
1da177e4 LT |
4102 | val->totalhigh = totalhigh_pages; |
4103 | val->freehigh = nr_free_highpages(); | |
1da177e4 LT |
4104 | val->mem_unit = PAGE_SIZE; |
4105 | } | |
4106 | ||
4107 | EXPORT_SYMBOL(si_meminfo); | |
4108 | ||
4109 | #ifdef CONFIG_NUMA | |
4110 | void si_meminfo_node(struct sysinfo *val, int nid) | |
4111 | { | |
cdd91a77 JL |
4112 | int zone_type; /* needs to be signed */ |
4113 | unsigned long managed_pages = 0; | |
fc2bd799 JK |
4114 | unsigned long managed_highpages = 0; |
4115 | unsigned long free_highpages = 0; | |
1da177e4 LT |
4116 | pg_data_t *pgdat = NODE_DATA(nid); |
4117 | ||
cdd91a77 JL |
4118 | for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) |
4119 | managed_pages += pgdat->node_zones[zone_type].managed_pages; | |
4120 | val->totalram = managed_pages; | |
11fb9989 | 4121 | val->sharedram = node_page_state(pgdat, NR_SHMEM); |
75ef7184 | 4122 | val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); |
98d2b0eb | 4123 | #ifdef CONFIG_HIGHMEM |
fc2bd799 JK |
4124 | for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { |
4125 | struct zone *zone = &pgdat->node_zones[zone_type]; | |
4126 | ||
4127 | if (is_highmem(zone)) { | |
4128 | managed_highpages += zone->managed_pages; | |
4129 | free_highpages += zone_page_state(zone, NR_FREE_PAGES); | |
4130 | } | |
4131 | } | |
4132 | val->totalhigh = managed_highpages; | |
4133 | val->freehigh = free_highpages; | |
98d2b0eb | 4134 | #else |
fc2bd799 JK |
4135 | val->totalhigh = managed_highpages; |
4136 | val->freehigh = free_highpages; | |
98d2b0eb | 4137 | #endif |
1da177e4 LT |
4138 | val->mem_unit = PAGE_SIZE; |
4139 | } | |
4140 | #endif | |
4141 | ||
ddd588b5 | 4142 | /* |
7bf02ea2 DR |
4143 | * Determine whether the node should be displayed or not, depending on whether |
4144 | * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). | |
ddd588b5 | 4145 | */ |
7bf02ea2 | 4146 | bool skip_free_areas_node(unsigned int flags, int nid) |
ddd588b5 DR |
4147 | { |
4148 | bool ret = false; | |
cc9a6c87 | 4149 | unsigned int cpuset_mems_cookie; |
ddd588b5 DR |
4150 | |
4151 | if (!(flags & SHOW_MEM_FILTER_NODES)) | |
4152 | goto out; | |
4153 | ||
cc9a6c87 | 4154 | do { |
d26914d1 | 4155 | cpuset_mems_cookie = read_mems_allowed_begin(); |
cc9a6c87 | 4156 | ret = !node_isset(nid, cpuset_current_mems_allowed); |
d26914d1 | 4157 | } while (read_mems_allowed_retry(cpuset_mems_cookie)); |
ddd588b5 DR |
4158 | out: |
4159 | return ret; | |
4160 | } | |
4161 | ||
1da177e4 LT |
4162 | #define K(x) ((x) << (PAGE_SHIFT-10)) |
4163 | ||
377e4f16 RV |
4164 | static void show_migration_types(unsigned char type) |
4165 | { | |
4166 | static const char types[MIGRATE_TYPES] = { | |
4167 | [MIGRATE_UNMOVABLE] = 'U', | |
377e4f16 | 4168 | [MIGRATE_MOVABLE] = 'M', |
475a2f90 VB |
4169 | [MIGRATE_RECLAIMABLE] = 'E', |
4170 | [MIGRATE_HIGHATOMIC] = 'H', | |
377e4f16 RV |
4171 | #ifdef CONFIG_CMA |
4172 | [MIGRATE_CMA] = 'C', | |
4173 | #endif | |
194159fb | 4174 | #ifdef CONFIG_MEMORY_ISOLATION |
377e4f16 | 4175 | [MIGRATE_ISOLATE] = 'I', |
194159fb | 4176 | #endif |
377e4f16 RV |
4177 | }; |
4178 | char tmp[MIGRATE_TYPES + 1]; | |
4179 | char *p = tmp; | |
4180 | int i; | |
4181 | ||
4182 | for (i = 0; i < MIGRATE_TYPES; i++) { | |
4183 | if (type & (1 << i)) | |
4184 | *p++ = types[i]; | |
4185 | } | |
4186 | ||
4187 | *p = '\0'; | |
4188 | printk("(%s) ", tmp); | |
4189 | } | |
4190 | ||
1da177e4 LT |
4191 | /* |
4192 | * Show free area list (used inside shift_scroll-lock stuff) | |
4193 | * We also calculate the percentage fragmentation. We do this by counting the | |
4194 | * memory on each free list with the exception of the first item on the list. | |
d1bfcdb8 KK |
4195 | * |
4196 | * Bits in @filter: | |
4197 | * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's | |
4198 | * cpuset. | |
1da177e4 | 4199 | */ |
7bf02ea2 | 4200 | void show_free_areas(unsigned int filter) |
1da177e4 | 4201 | { |
d1bfcdb8 | 4202 | unsigned long free_pcp = 0; |
c7241913 | 4203 | int cpu; |
1da177e4 | 4204 | struct zone *zone; |
599d0c95 | 4205 | pg_data_t *pgdat; |
1da177e4 | 4206 | |
ee99c71c | 4207 | for_each_populated_zone(zone) { |
7bf02ea2 | 4208 | if (skip_free_areas_node(filter, zone_to_nid(zone))) |
ddd588b5 | 4209 | continue; |
d1bfcdb8 | 4210 | |
761b0677 KK |
4211 | for_each_online_cpu(cpu) |
4212 | free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; | |
1da177e4 LT |
4213 | } |
4214 | ||
a731286d KM |
4215 | printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" |
4216 | " active_file:%lu inactive_file:%lu isolated_file:%lu\n" | |
d1bfcdb8 KK |
4217 | " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n" |
4218 | " slab_reclaimable:%lu slab_unreclaimable:%lu\n" | |
d1ce749a | 4219 | " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" |
d1bfcdb8 | 4220 | " free:%lu free_pcp:%lu free_cma:%lu\n", |
599d0c95 MG |
4221 | global_node_page_state(NR_ACTIVE_ANON), |
4222 | global_node_page_state(NR_INACTIVE_ANON), | |
4223 | global_node_page_state(NR_ISOLATED_ANON), | |
4224 | global_node_page_state(NR_ACTIVE_FILE), | |
4225 | global_node_page_state(NR_INACTIVE_FILE), | |
4226 | global_node_page_state(NR_ISOLATED_FILE), | |
4227 | global_node_page_state(NR_UNEVICTABLE), | |
11fb9989 MG |
4228 | global_node_page_state(NR_FILE_DIRTY), |
4229 | global_node_page_state(NR_WRITEBACK), | |
4230 | global_node_page_state(NR_UNSTABLE_NFS), | |
3701b033 KM |
4231 | global_page_state(NR_SLAB_RECLAIMABLE), |
4232 | global_page_state(NR_SLAB_UNRECLAIMABLE), | |
50658e2e | 4233 | global_node_page_state(NR_FILE_MAPPED), |
11fb9989 | 4234 | global_node_page_state(NR_SHMEM), |
a25700a5 | 4235 | global_page_state(NR_PAGETABLE), |
d1ce749a | 4236 | global_page_state(NR_BOUNCE), |
d1bfcdb8 KK |
4237 | global_page_state(NR_FREE_PAGES), |
4238 | free_pcp, | |
d1ce749a | 4239 | global_page_state(NR_FREE_CMA_PAGES)); |
1da177e4 | 4240 | |
599d0c95 MG |
4241 | for_each_online_pgdat(pgdat) { |
4242 | printk("Node %d" | |
4243 | " active_anon:%lukB" | |
4244 | " inactive_anon:%lukB" | |
4245 | " active_file:%lukB" | |
4246 | " inactive_file:%lukB" | |
4247 | " unevictable:%lukB" | |
4248 | " isolated(anon):%lukB" | |
4249 | " isolated(file):%lukB" | |
50658e2e | 4250 | " mapped:%lukB" |
11fb9989 MG |
4251 | " dirty:%lukB" |
4252 | " writeback:%lukB" | |
4253 | " shmem:%lukB" | |
4254 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | |
4255 | " shmem_thp: %lukB" | |
4256 | " shmem_pmdmapped: %lukB" | |
4257 | " anon_thp: %lukB" | |
4258 | #endif | |
4259 | " writeback_tmp:%lukB" | |
4260 | " unstable:%lukB" | |
33e077bd | 4261 | " pages_scanned:%lu" |
599d0c95 MG |
4262 | " all_unreclaimable? %s" |
4263 | "\n", | |
4264 | pgdat->node_id, | |
4265 | K(node_page_state(pgdat, NR_ACTIVE_ANON)), | |
4266 | K(node_page_state(pgdat, NR_INACTIVE_ANON)), | |
4267 | K(node_page_state(pgdat, NR_ACTIVE_FILE)), | |
4268 | K(node_page_state(pgdat, NR_INACTIVE_FILE)), | |
4269 | K(node_page_state(pgdat, NR_UNEVICTABLE)), | |
4270 | K(node_page_state(pgdat, NR_ISOLATED_ANON)), | |
4271 | K(node_page_state(pgdat, NR_ISOLATED_FILE)), | |
50658e2e | 4272 | K(node_page_state(pgdat, NR_FILE_MAPPED)), |
11fb9989 MG |
4273 | K(node_page_state(pgdat, NR_FILE_DIRTY)), |
4274 | K(node_page_state(pgdat, NR_WRITEBACK)), | |
4275 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | |
4276 | K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR), | |
4277 | K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED) | |
4278 | * HPAGE_PMD_NR), | |
4279 | K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR), | |
4280 | #endif | |
4281 | K(node_page_state(pgdat, NR_SHMEM)), | |
4282 | K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), | |
4283 | K(node_page_state(pgdat, NR_UNSTABLE_NFS)), | |
33e077bd | 4284 | node_page_state(pgdat, NR_PAGES_SCANNED), |
599d0c95 MG |
4285 | !pgdat_reclaimable(pgdat) ? "yes" : "no"); |
4286 | } | |
4287 | ||
ee99c71c | 4288 | for_each_populated_zone(zone) { |
1da177e4 LT |
4289 | int i; |
4290 | ||
7bf02ea2 | 4291 | if (skip_free_areas_node(filter, zone_to_nid(zone))) |
ddd588b5 | 4292 | continue; |
d1bfcdb8 KK |
4293 | |
4294 | free_pcp = 0; | |
4295 | for_each_online_cpu(cpu) | |
4296 | free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; | |
4297 | ||
1da177e4 LT |
4298 | show_node(zone); |
4299 | printk("%s" | |
4300 | " free:%lukB" | |
4301 | " min:%lukB" | |
4302 | " low:%lukB" | |
4303 | " high:%lukB" | |
71c799f4 MK |
4304 | " active_anon:%lukB" |
4305 | " inactive_anon:%lukB" | |
4306 | " active_file:%lukB" | |
4307 | " inactive_file:%lukB" | |
4308 | " unevictable:%lukB" | |
5a1c84b4 | 4309 | " writepending:%lukB" |
1da177e4 | 4310 | " present:%lukB" |
9feedc9d | 4311 | " managed:%lukB" |
4a0aa73f | 4312 | " mlocked:%lukB" |
4a0aa73f KM |
4313 | " slab_reclaimable:%lukB" |
4314 | " slab_unreclaimable:%lukB" | |
c6a7f572 | 4315 | " kernel_stack:%lukB" |
4a0aa73f | 4316 | " pagetables:%lukB" |
4a0aa73f | 4317 | " bounce:%lukB" |
d1bfcdb8 KK |
4318 | " free_pcp:%lukB" |
4319 | " local_pcp:%ukB" | |
d1ce749a | 4320 | " free_cma:%lukB" |
1da177e4 LT |
4321 | "\n", |
4322 | zone->name, | |
88f5acf8 | 4323 | K(zone_page_state(zone, NR_FREE_PAGES)), |
41858966 MG |
4324 | K(min_wmark_pages(zone)), |
4325 | K(low_wmark_pages(zone)), | |
4326 | K(high_wmark_pages(zone)), | |
71c799f4 MK |
4327 | K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), |
4328 | K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), | |
4329 | K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), | |
4330 | K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), | |
4331 | K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), | |
5a1c84b4 | 4332 | K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), |
1da177e4 | 4333 | K(zone->present_pages), |
9feedc9d | 4334 | K(zone->managed_pages), |
4a0aa73f | 4335 | K(zone_page_state(zone, NR_MLOCK)), |
4a0aa73f KM |
4336 | K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), |
4337 | K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), | |
d30dd8be | 4338 | zone_page_state(zone, NR_KERNEL_STACK_KB), |
4a0aa73f | 4339 | K(zone_page_state(zone, NR_PAGETABLE)), |
4a0aa73f | 4340 | K(zone_page_state(zone, NR_BOUNCE)), |
d1bfcdb8 KK |
4341 | K(free_pcp), |
4342 | K(this_cpu_read(zone->pageset->pcp.count)), | |
33e077bd | 4343 | K(zone_page_state(zone, NR_FREE_CMA_PAGES))); |
1da177e4 LT |
4344 | printk("lowmem_reserve[]:"); |
4345 | for (i = 0; i < MAX_NR_ZONES; i++) | |
3484b2de | 4346 | printk(" %ld", zone->lowmem_reserve[i]); |
1da177e4 LT |
4347 | printk("\n"); |
4348 | } | |
4349 | ||
ee99c71c | 4350 | for_each_populated_zone(zone) { |
d00181b9 KS |
4351 | unsigned int order; |
4352 | unsigned long nr[MAX_ORDER], flags, total = 0; | |
377e4f16 | 4353 | unsigned char types[MAX_ORDER]; |
1da177e4 | 4354 | |
7bf02ea2 | 4355 | if (skip_free_areas_node(filter, zone_to_nid(zone))) |
ddd588b5 | 4356 | continue; |
1da177e4 LT |
4357 | show_node(zone); |
4358 | printk("%s: ", zone->name); | |
1da177e4 LT |
4359 | |
4360 | spin_lock_irqsave(&zone->lock, flags); | |
4361 | for (order = 0; order < MAX_ORDER; order++) { | |
377e4f16 RV |
4362 | struct free_area *area = &zone->free_area[order]; |
4363 | int type; | |
4364 | ||
4365 | nr[order] = area->nr_free; | |
8f9de51a | 4366 | total += nr[order] << order; |
377e4f16 RV |
4367 | |
4368 | types[order] = 0; | |
4369 | for (type = 0; type < MIGRATE_TYPES; type++) { | |
4370 | if (!list_empty(&area->free_list[type])) | |
4371 | types[order] |= 1 << type; | |
4372 | } | |
1da177e4 LT |
4373 | } |
4374 | spin_unlock_irqrestore(&zone->lock, flags); | |
377e4f16 | 4375 | for (order = 0; order < MAX_ORDER; order++) { |
8f9de51a | 4376 | printk("%lu*%lukB ", nr[order], K(1UL) << order); |
377e4f16 RV |
4377 | if (nr[order]) |
4378 | show_migration_types(types[order]); | |
4379 | } | |
1da177e4 LT |
4380 | printk("= %lukB\n", K(total)); |
4381 | } | |
4382 | ||
949f7ec5 DR |
4383 | hugetlb_show_meminfo(); |
4384 | ||
11fb9989 | 4385 | printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); |
e6f3602d | 4386 | |
1da177e4 LT |
4387 | show_swap_cache_info(); |
4388 | } | |
4389 | ||
19770b32 MG |
4390 | static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) |
4391 | { | |
4392 | zoneref->zone = zone; | |
4393 | zoneref->zone_idx = zone_idx(zone); | |
4394 | } | |
4395 | ||
1da177e4 LT |
4396 | /* |
4397 | * Builds allocation fallback zone lists. | |
1a93205b CL |
4398 | * |
4399 | * Add all populated zones of a node to the zonelist. | |
1da177e4 | 4400 | */ |
f0c0b2b8 | 4401 | static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, |
bc732f1d | 4402 | int nr_zones) |
1da177e4 | 4403 | { |
1a93205b | 4404 | struct zone *zone; |
bc732f1d | 4405 | enum zone_type zone_type = MAX_NR_ZONES; |
02a68a5e CL |
4406 | |
4407 | do { | |
2f6726e5 | 4408 | zone_type--; |
070f8032 | 4409 | zone = pgdat->node_zones + zone_type; |
1a93205b | 4410 | if (populated_zone(zone)) { |
dd1a239f MG |
4411 | zoneref_set_zone(zone, |
4412 | &zonelist->_zonerefs[nr_zones++]); | |
070f8032 | 4413 | check_highest_zone(zone_type); |
1da177e4 | 4414 | } |
2f6726e5 | 4415 | } while (zone_type); |
bc732f1d | 4416 | |
070f8032 | 4417 | return nr_zones; |
1da177e4 LT |
4418 | } |
4419 | ||
f0c0b2b8 KH |
4420 | |
4421 | /* | |
4422 | * zonelist_order: | |
4423 | * 0 = automatic detection of better ordering. | |
4424 | * 1 = order by ([node] distance, -zonetype) | |
4425 | * 2 = order by (-zonetype, [node] distance) | |
4426 | * | |
4427 | * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create | |
4428 | * the same zonelist. So only NUMA can configure this param. | |
4429 | */ | |
4430 | #define ZONELIST_ORDER_DEFAULT 0 | |
4431 | #define ZONELIST_ORDER_NODE 1 | |
4432 | #define ZONELIST_ORDER_ZONE 2 | |
4433 | ||
4434 | /* zonelist order in the kernel. | |
4435 | * set_zonelist_order() will set this to NODE or ZONE. | |
4436 | */ | |
4437 | static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; | |
4438 | static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; | |
4439 | ||
4440 | ||
1da177e4 | 4441 | #ifdef CONFIG_NUMA |
f0c0b2b8 KH |
4442 | /* The value user specified ....changed by config */ |
4443 | static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; | |
4444 | /* string for sysctl */ | |
4445 | #define NUMA_ZONELIST_ORDER_LEN 16 | |
4446 | char numa_zonelist_order[16] = "default"; | |
4447 | ||
4448 | /* | |
4449 | * interface for configure zonelist ordering. | |
4450 | * command line option "numa_zonelist_order" | |
4451 | * = "[dD]efault - default, automatic configuration. | |
4452 | * = "[nN]ode - order by node locality, then by zone within node | |
4453 | * = "[zZ]one - order by zone, then by locality within zone | |
4454 | */ | |
4455 | ||
4456 | static int __parse_numa_zonelist_order(char *s) | |
4457 | { | |
4458 | if (*s == 'd' || *s == 'D') { | |
4459 | user_zonelist_order = ZONELIST_ORDER_DEFAULT; | |
4460 | } else if (*s == 'n' || *s == 'N') { | |
4461 | user_zonelist_order = ZONELIST_ORDER_NODE; | |
4462 | } else if (*s == 'z' || *s == 'Z') { | |
4463 | user_zonelist_order = ZONELIST_ORDER_ZONE; | |
4464 | } else { | |
1170532b | 4465 | pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s); |
f0c0b2b8 KH |
4466 | return -EINVAL; |
4467 | } | |
4468 | return 0; | |
4469 | } | |
4470 | ||
4471 | static __init int setup_numa_zonelist_order(char *s) | |
4472 | { | |
ecb256f8 VL |
4473 | int ret; |
4474 | ||
4475 | if (!s) | |
4476 | return 0; | |
4477 | ||
4478 | ret = __parse_numa_zonelist_order(s); | |
4479 | if (ret == 0) | |
4480 | strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN); | |
4481 | ||
4482 | return ret; | |
f0c0b2b8 KH |
4483 | } |
4484 | early_param("numa_zonelist_order", setup_numa_zonelist_order); | |
4485 | ||
4486 | /* | |
4487 | * sysctl handler for numa_zonelist_order | |
4488 | */ | |
cccad5b9 | 4489 | int numa_zonelist_order_handler(struct ctl_table *table, int write, |
8d65af78 | 4490 | void __user *buffer, size_t *length, |
f0c0b2b8 KH |
4491 | loff_t *ppos) |
4492 | { | |
4493 | char saved_string[NUMA_ZONELIST_ORDER_LEN]; | |
4494 | int ret; | |
443c6f14 | 4495 | static DEFINE_MUTEX(zl_order_mutex); |
f0c0b2b8 | 4496 | |
443c6f14 | 4497 | mutex_lock(&zl_order_mutex); |
dacbde09 CG |
4498 | if (write) { |
4499 | if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) { | |
4500 | ret = -EINVAL; | |
4501 | goto out; | |
4502 | } | |
4503 | strcpy(saved_string, (char *)table->data); | |
4504 | } | |
8d65af78 | 4505 | ret = proc_dostring(table, write, buffer, length, ppos); |
f0c0b2b8 | 4506 | if (ret) |
443c6f14 | 4507 | goto out; |
f0c0b2b8 KH |
4508 | if (write) { |
4509 | int oldval = user_zonelist_order; | |
dacbde09 CG |
4510 | |
4511 | ret = __parse_numa_zonelist_order((char *)table->data); | |
4512 | if (ret) { | |
f0c0b2b8 KH |
4513 | /* |
4514 | * bogus value. restore saved string | |
4515 | */ | |
dacbde09 | 4516 | strncpy((char *)table->data, saved_string, |
f0c0b2b8 KH |
4517 | NUMA_ZONELIST_ORDER_LEN); |
4518 | user_zonelist_order = oldval; | |
4eaf3f64 HL |
4519 | } else if (oldval != user_zonelist_order) { |
4520 | mutex_lock(&zonelists_mutex); | |
9adb62a5 | 4521 | build_all_zonelists(NULL, NULL); |
4eaf3f64 HL |
4522 | mutex_unlock(&zonelists_mutex); |
4523 | } | |
f0c0b2b8 | 4524 | } |
443c6f14 AK |
4525 | out: |
4526 | mutex_unlock(&zl_order_mutex); | |
4527 | return ret; | |
f0c0b2b8 KH |
4528 | } |
4529 | ||
4530 | ||
62bc62a8 | 4531 | #define MAX_NODE_LOAD (nr_online_nodes) |
f0c0b2b8 KH |
4532 | static int node_load[MAX_NUMNODES]; |
4533 | ||
1da177e4 | 4534 | /** |
4dc3b16b | 4535 | * find_next_best_node - find the next node that should appear in a given node's fallback list |
1da177e4 LT |
4536 | * @node: node whose fallback list we're appending |
4537 | * @used_node_mask: nodemask_t of already used nodes | |
4538 | * | |
4539 | * We use a number of factors to determine which is the next node that should | |
4540 | * appear on a given node's fallback list. The node should not have appeared | |
4541 | * already in @node's fallback list, and it should be the next closest node | |
4542 | * according to the distance array (which contains arbitrary distance values | |
4543 | * from each node to each node in the system), and should also prefer nodes | |
4544 | * with no CPUs, since presumably they'll have very little allocation pressure | |
4545 | * on them otherwise. | |
4546 | * It returns -1 if no node is found. | |
4547 | */ | |
f0c0b2b8 | 4548 | static int find_next_best_node(int node, nodemask_t *used_node_mask) |
1da177e4 | 4549 | { |
4cf808eb | 4550 | int n, val; |
1da177e4 | 4551 | int min_val = INT_MAX; |
00ef2d2f | 4552 | int best_node = NUMA_NO_NODE; |
a70f7302 | 4553 | const struct cpumask *tmp = cpumask_of_node(0); |
1da177e4 | 4554 | |
4cf808eb LT |
4555 | /* Use the local node if we haven't already */ |
4556 | if (!node_isset(node, *used_node_mask)) { | |
4557 | node_set(node, *used_node_mask); | |
4558 | return node; | |
4559 | } | |
1da177e4 | 4560 | |
4b0ef1fe | 4561 | for_each_node_state(n, N_MEMORY) { |
1da177e4 LT |
4562 | |
4563 | /* Don't want a node to appear more than once */ | |
4564 | if (node_isset(n, *used_node_mask)) | |
4565 | continue; | |
4566 | ||
1da177e4 LT |
4567 | /* Use the distance array to find the distance */ |
4568 | val = node_distance(node, n); | |
4569 | ||
4cf808eb LT |
4570 | /* Penalize nodes under us ("prefer the next node") */ |
4571 | val += (n < node); | |
4572 | ||
1da177e4 | 4573 | /* Give preference to headless and unused nodes */ |
a70f7302 RR |
4574 | tmp = cpumask_of_node(n); |
4575 | if (!cpumask_empty(tmp)) | |
1da177e4 LT |
4576 | val += PENALTY_FOR_NODE_WITH_CPUS; |
4577 | ||
4578 | /* Slight preference for less loaded node */ | |
4579 | val *= (MAX_NODE_LOAD*MAX_NUMNODES); | |
4580 | val += node_load[n]; | |
4581 | ||
4582 | if (val < min_val) { | |
4583 | min_val = val; | |
4584 | best_node = n; | |
4585 | } | |
4586 | } | |
4587 | ||
4588 | if (best_node >= 0) | |
4589 | node_set(best_node, *used_node_mask); | |
4590 | ||
4591 | return best_node; | |
4592 | } | |
4593 | ||
f0c0b2b8 KH |
4594 | |
4595 | /* | |
4596 | * Build zonelists ordered by node and zones within node. | |
4597 | * This results in maximum locality--normal zone overflows into local | |
4598 | * DMA zone, if any--but risks exhausting DMA zone. | |
4599 | */ | |
4600 | static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) | |
1da177e4 | 4601 | { |
f0c0b2b8 | 4602 | int j; |
1da177e4 | 4603 | struct zonelist *zonelist; |
f0c0b2b8 | 4604 | |
54a6eb5c | 4605 | zonelist = &pgdat->node_zonelists[0]; |
dd1a239f | 4606 | for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) |
54a6eb5c | 4607 | ; |
bc732f1d | 4608 | j = build_zonelists_node(NODE_DATA(node), zonelist, j); |
dd1a239f MG |
4609 | zonelist->_zonerefs[j].zone = NULL; |
4610 | zonelist->_zonerefs[j].zone_idx = 0; | |
f0c0b2b8 KH |
4611 | } |
4612 | ||
523b9458 CL |
4613 | /* |
4614 | * Build gfp_thisnode zonelists | |
4615 | */ | |
4616 | static void build_thisnode_zonelists(pg_data_t *pgdat) | |
4617 | { | |
523b9458 CL |
4618 | int j; |
4619 | struct zonelist *zonelist; | |
4620 | ||
54a6eb5c | 4621 | zonelist = &pgdat->node_zonelists[1]; |
bc732f1d | 4622 | j = build_zonelists_node(pgdat, zonelist, 0); |
dd1a239f MG |
4623 | zonelist->_zonerefs[j].zone = NULL; |
4624 | zonelist->_zonerefs[j].zone_idx = 0; | |
523b9458 CL |
4625 | } |
4626 | ||
f0c0b2b8 KH |
4627 | /* |
4628 | * Build zonelists ordered by zone and nodes within zones. | |
4629 | * This results in conserving DMA zone[s] until all Normal memory is | |
4630 | * exhausted, but results in overflowing to remote node while memory | |
4631 | * may still exist in local DMA zone. | |
4632 | */ | |
4633 | static int node_order[MAX_NUMNODES]; | |
4634 | ||
4635 | static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) | |
4636 | { | |
f0c0b2b8 KH |
4637 | int pos, j, node; |
4638 | int zone_type; /* needs to be signed */ | |
4639 | struct zone *z; | |
4640 | struct zonelist *zonelist; | |
4641 | ||
54a6eb5c MG |
4642 | zonelist = &pgdat->node_zonelists[0]; |
4643 | pos = 0; | |
4644 | for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { | |
4645 | for (j = 0; j < nr_nodes; j++) { | |
4646 | node = node_order[j]; | |
4647 | z = &NODE_DATA(node)->node_zones[zone_type]; | |
4648 | if (populated_zone(z)) { | |
dd1a239f MG |
4649 | zoneref_set_zone(z, |
4650 | &zonelist->_zonerefs[pos++]); | |
54a6eb5c | 4651 | check_highest_zone(zone_type); |
f0c0b2b8 KH |
4652 | } |
4653 | } | |
f0c0b2b8 | 4654 | } |
dd1a239f MG |
4655 | zonelist->_zonerefs[pos].zone = NULL; |
4656 | zonelist->_zonerefs[pos].zone_idx = 0; | |
f0c0b2b8 KH |
4657 | } |
4658 | ||
3193913c MG |
4659 | #if defined(CONFIG_64BIT) |
4660 | /* | |
4661 | * Devices that require DMA32/DMA are relatively rare and do not justify a | |
4662 | * penalty to every machine in case the specialised case applies. Default | |
4663 | * to Node-ordering on 64-bit NUMA machines | |
4664 | */ | |
4665 | static int default_zonelist_order(void) | |
4666 | { | |
4667 | return ZONELIST_ORDER_NODE; | |
4668 | } | |
4669 | #else | |
4670 | /* | |
4671 | * On 32-bit, the Normal zone needs to be preserved for allocations accessible | |
4672 | * by the kernel. If processes running on node 0 deplete the low memory zone | |
4673 | * then reclaim will occur more frequency increasing stalls and potentially | |
4674 | * be easier to OOM if a large percentage of the zone is under writeback or | |
4675 | * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set. | |
4676 | * Hence, default to zone ordering on 32-bit. | |
4677 | */ | |
f0c0b2b8 KH |
4678 | static int default_zonelist_order(void) |
4679 | { | |
f0c0b2b8 KH |
4680 | return ZONELIST_ORDER_ZONE; |
4681 | } | |
3193913c | 4682 | #endif /* CONFIG_64BIT */ |
f0c0b2b8 KH |
4683 | |
4684 | static void set_zonelist_order(void) | |
4685 | { | |
4686 | if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) | |
4687 | current_zonelist_order = default_zonelist_order(); | |
4688 | else | |
4689 | current_zonelist_order = user_zonelist_order; | |
4690 | } | |
4691 | ||
4692 | static void build_zonelists(pg_data_t *pgdat) | |
4693 | { | |
c00eb15a | 4694 | int i, node, load; |
1da177e4 | 4695 | nodemask_t used_mask; |
f0c0b2b8 KH |
4696 | int local_node, prev_node; |
4697 | struct zonelist *zonelist; | |
d00181b9 | 4698 | unsigned int order = current_zonelist_order; |
1da177e4 LT |
4699 | |
4700 | /* initialize zonelists */ | |
523b9458 | 4701 | for (i = 0; i < MAX_ZONELISTS; i++) { |
1da177e4 | 4702 | zonelist = pgdat->node_zonelists + i; |
dd1a239f MG |
4703 | zonelist->_zonerefs[0].zone = NULL; |
4704 | zonelist->_zonerefs[0].zone_idx = 0; | |
1da177e4 LT |
4705 | } |
4706 | ||
4707 | /* NUMA-aware ordering of nodes */ | |
4708 | local_node = pgdat->node_id; | |
62bc62a8 | 4709 | load = nr_online_nodes; |
1da177e4 LT |
4710 | prev_node = local_node; |
4711 | nodes_clear(used_mask); | |
f0c0b2b8 | 4712 | |
f0c0b2b8 | 4713 | memset(node_order, 0, sizeof(node_order)); |
c00eb15a | 4714 | i = 0; |
f0c0b2b8 | 4715 | |
1da177e4 LT |
4716 | while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { |
4717 | /* | |
4718 | * We don't want to pressure a particular node. | |
4719 | * So adding penalty to the first node in same | |
4720 | * distance group to make it round-robin. | |
4721 | */ | |
957f822a DR |
4722 | if (node_distance(local_node, node) != |
4723 | node_distance(local_node, prev_node)) | |
f0c0b2b8 KH |
4724 | node_load[node] = load; |
4725 | ||
1da177e4 LT |
4726 | prev_node = node; |
4727 | load--; | |
f0c0b2b8 KH |
4728 | if (order == ZONELIST_ORDER_NODE) |
4729 | build_zonelists_in_node_order(pgdat, node); | |
4730 | else | |
c00eb15a | 4731 | node_order[i++] = node; /* remember order */ |
f0c0b2b8 | 4732 | } |
1da177e4 | 4733 | |
f0c0b2b8 KH |
4734 | if (order == ZONELIST_ORDER_ZONE) { |
4735 | /* calculate node order -- i.e., DMA last! */ | |
c00eb15a | 4736 | build_zonelists_in_zone_order(pgdat, i); |
1da177e4 | 4737 | } |
523b9458 CL |
4738 | |
4739 | build_thisnode_zonelists(pgdat); | |
1da177e4 LT |
4740 | } |
4741 | ||
7aac7898 LS |
4742 | #ifdef CONFIG_HAVE_MEMORYLESS_NODES |
4743 | /* | |
4744 | * Return node id of node used for "local" allocations. | |
4745 | * I.e., first node id of first zone in arg node's generic zonelist. | |
4746 | * Used for initializing percpu 'numa_mem', which is used primarily | |
4747 | * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. | |
4748 | */ | |
4749 | int local_memory_node(int node) | |
4750 | { | |
c33d6c06 | 4751 | struct zoneref *z; |
7aac7898 | 4752 | |
c33d6c06 | 4753 | z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), |
7aac7898 | 4754 | gfp_zone(GFP_KERNEL), |
c33d6c06 MG |
4755 | NULL); |
4756 | return z->zone->node; | |
7aac7898 LS |
4757 | } |
4758 | #endif | |
f0c0b2b8 | 4759 | |
1da177e4 LT |
4760 | #else /* CONFIG_NUMA */ |
4761 | ||
f0c0b2b8 KH |
4762 | static void set_zonelist_order(void) |
4763 | { | |
4764 | current_zonelist_order = ZONELIST_ORDER_ZONE; | |
4765 | } | |
4766 | ||
4767 | static void build_zonelists(pg_data_t *pgdat) | |
1da177e4 | 4768 | { |
19655d34 | 4769 | int node, local_node; |
54a6eb5c MG |
4770 | enum zone_type j; |
4771 | struct zonelist *zonelist; | |
1da177e4 LT |
4772 | |
4773 | local_node = pgdat->node_id; | |
1da177e4 | 4774 | |
54a6eb5c | 4775 | zonelist = &pgdat->node_zonelists[0]; |
bc732f1d | 4776 | j = build_zonelists_node(pgdat, zonelist, 0); |
1da177e4 | 4777 | |
54a6eb5c MG |
4778 | /* |
4779 | * Now we build the zonelist so that it contains the zones | |
4780 | * of all the other nodes. | |
4781 | * We don't want to pressure a particular node, so when | |
4782 | * building the zones for node N, we make sure that the | |
4783 | * zones coming right after the local ones are those from | |
4784 | * node N+1 (modulo N) | |
4785 | */ | |
4786 | for (node = local_node + 1; node < MAX_NUMNODES; node++) { | |
4787 | if (!node_online(node)) | |
4788 | continue; | |
bc732f1d | 4789 | j = build_zonelists_node(NODE_DATA(node), zonelist, j); |
1da177e4 | 4790 | } |
54a6eb5c MG |
4791 | for (node = 0; node < local_node; node++) { |
4792 | if (!node_online(node)) | |
4793 | continue; | |
bc732f1d | 4794 | j = build_zonelists_node(NODE_DATA(node), zonelist, j); |
54a6eb5c MG |
4795 | } |
4796 | ||
dd1a239f MG |
4797 | zonelist->_zonerefs[j].zone = NULL; |
4798 | zonelist->_zonerefs[j].zone_idx = 0; | |
1da177e4 LT |
4799 | } |
4800 | ||
4801 | #endif /* CONFIG_NUMA */ | |
4802 | ||
99dcc3e5 CL |
4803 | /* |
4804 | * Boot pageset table. One per cpu which is going to be used for all | |
4805 | * zones and all nodes. The parameters will be set in such a way | |
4806 | * that an item put on a list will immediately be handed over to | |
4807 | * the buddy list. This is safe since pageset manipulation is done | |
4808 | * with interrupts disabled. | |
4809 | * | |
4810 | * The boot_pagesets must be kept even after bootup is complete for | |
4811 | * unused processors and/or zones. They do play a role for bootstrapping | |
4812 | * hotplugged processors. | |
4813 | * | |
4814 | * zoneinfo_show() and maybe other functions do | |
4815 | * not check if the processor is online before following the pageset pointer. | |
4816 | * Other parts of the kernel may not check if the zone is available. | |
4817 | */ | |
4818 | static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); | |
4819 | static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); | |
1f522509 | 4820 | static void setup_zone_pageset(struct zone *zone); |
99dcc3e5 | 4821 | |
4eaf3f64 HL |
4822 | /* |
4823 | * Global mutex to protect against size modification of zonelists | |
4824 | * as well as to serialize pageset setup for the new populated zone. | |
4825 | */ | |
4826 | DEFINE_MUTEX(zonelists_mutex); | |
4827 | ||
9b1a4d38 | 4828 | /* return values int ....just for stop_machine() */ |
4ed7e022 | 4829 | static int __build_all_zonelists(void *data) |
1da177e4 | 4830 | { |
6811378e | 4831 | int nid; |
99dcc3e5 | 4832 | int cpu; |
9adb62a5 | 4833 | pg_data_t *self = data; |
9276b1bc | 4834 | |
7f9cfb31 BL |
4835 | #ifdef CONFIG_NUMA |
4836 | memset(node_load, 0, sizeof(node_load)); | |
4837 | #endif | |
9adb62a5 JL |
4838 | |
4839 | if (self && !node_online(self->node_id)) { | |
4840 | build_zonelists(self); | |
9adb62a5 JL |
4841 | } |
4842 | ||
9276b1bc | 4843 | for_each_online_node(nid) { |
7ea1530a CL |
4844 | pg_data_t *pgdat = NODE_DATA(nid); |
4845 | ||
4846 | build_zonelists(pgdat); | |
9276b1bc | 4847 | } |
99dcc3e5 CL |
4848 | |
4849 | /* | |
4850 | * Initialize the boot_pagesets that are going to be used | |
4851 | * for bootstrapping processors. The real pagesets for | |
4852 | * each zone will be allocated later when the per cpu | |
4853 | * allocator is available. | |
4854 | * | |
4855 | * boot_pagesets are used also for bootstrapping offline | |
4856 | * cpus if the system is already booted because the pagesets | |
4857 | * are needed to initialize allocators on a specific cpu too. | |
4858 | * F.e. the percpu allocator needs the page allocator which | |
4859 | * needs the percpu allocator in order to allocate its pagesets | |
4860 | * (a chicken-egg dilemma). | |
4861 | */ | |
7aac7898 | 4862 | for_each_possible_cpu(cpu) { |
99dcc3e5 CL |
4863 | setup_pageset(&per_cpu(boot_pageset, cpu), 0); |
4864 | ||
7aac7898 LS |
4865 | #ifdef CONFIG_HAVE_MEMORYLESS_NODES |
4866 | /* | |
4867 | * We now know the "local memory node" for each node-- | |
4868 | * i.e., the node of the first zone in the generic zonelist. | |
4869 | * Set up numa_mem percpu variable for on-line cpus. During | |
4870 | * boot, only the boot cpu should be on-line; we'll init the | |
4871 | * secondary cpus' numa_mem as they come on-line. During | |
4872 | * node/memory hotplug, we'll fixup all on-line cpus. | |
4873 | */ | |
4874 | if (cpu_online(cpu)) | |
4875 | set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); | |
4876 | #endif | |
4877 | } | |
4878 | ||
6811378e YG |
4879 | return 0; |
4880 | } | |
4881 | ||
061f67bc RV |
4882 | static noinline void __init |
4883 | build_all_zonelists_init(void) | |
4884 | { | |
4885 | __build_all_zonelists(NULL); | |
4886 | mminit_verify_zonelist(); | |
4887 | cpuset_init_current_mems_allowed(); | |
4888 | } | |
4889 | ||
4eaf3f64 HL |
4890 | /* |
4891 | * Called with zonelists_mutex held always | |
4892 | * unless system_state == SYSTEM_BOOTING. | |
061f67bc RV |
4893 | * |
4894 | * __ref due to (1) call of __meminit annotated setup_zone_pageset | |
4895 | * [we're only called with non-NULL zone through __meminit paths] and | |
4896 | * (2) call of __init annotated helper build_all_zonelists_init | |
4897 | * [protected by SYSTEM_BOOTING]. | |
4eaf3f64 | 4898 | */ |
9adb62a5 | 4899 | void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone) |
6811378e | 4900 | { |
f0c0b2b8 KH |
4901 | set_zonelist_order(); |
4902 | ||
6811378e | 4903 | if (system_state == SYSTEM_BOOTING) { |
061f67bc | 4904 | build_all_zonelists_init(); |
6811378e | 4905 | } else { |
e9959f0f | 4906 | #ifdef CONFIG_MEMORY_HOTPLUG |
9adb62a5 JL |
4907 | if (zone) |
4908 | setup_zone_pageset(zone); | |
e9959f0f | 4909 | #endif |
dd1895e2 CS |
4910 | /* we have to stop all cpus to guarantee there is no user |
4911 | of zonelist */ | |
9adb62a5 | 4912 | stop_machine(__build_all_zonelists, pgdat, NULL); |
6811378e YG |
4913 | /* cpuset refresh routine should be here */ |
4914 | } | |
bd1e22b8 | 4915 | vm_total_pages = nr_free_pagecache_pages(); |
9ef9acb0 MG |
4916 | /* |
4917 | * Disable grouping by mobility if the number of pages in the | |
4918 | * system is too low to allow the mechanism to work. It would be | |
4919 | * more accurate, but expensive to check per-zone. This check is | |
4920 | * made on memory-hotadd so a system can start with mobility | |
4921 | * disabled and enable it later | |
4922 | */ | |
d9c23400 | 4923 | if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) |
9ef9acb0 MG |
4924 | page_group_by_mobility_disabled = 1; |
4925 | else | |
4926 | page_group_by_mobility_disabled = 0; | |
4927 | ||
756a025f JP |
4928 | pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n", |
4929 | nr_online_nodes, | |
4930 | zonelist_order_name[current_zonelist_order], | |
4931 | page_group_by_mobility_disabled ? "off" : "on", | |
4932 | vm_total_pages); | |
f0c0b2b8 | 4933 | #ifdef CONFIG_NUMA |
f88dfff5 | 4934 | pr_info("Policy zone: %s\n", zone_names[policy_zone]); |
f0c0b2b8 | 4935 | #endif |
1da177e4 LT |
4936 | } |
4937 | ||
4938 | /* | |
4939 | * Helper functions to size the waitqueue hash table. | |
4940 | * Essentially these want to choose hash table sizes sufficiently | |
4941 | * large so that collisions trying to wait on pages are rare. | |
4942 | * But in fact, the number of active page waitqueues on typical | |
4943 | * systems is ridiculously low, less than 200. So this is even | |
4944 | * conservative, even though it seems large. | |
4945 | * | |
4946 | * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to | |
4947 | * waitqueues, i.e. the size of the waitq table given the number of pages. | |
4948 | */ | |
4949 | #define PAGES_PER_WAITQUEUE 256 | |
4950 | ||
cca448fe | 4951 | #ifndef CONFIG_MEMORY_HOTPLUG |
02b694de | 4952 | static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) |
1da177e4 LT |
4953 | { |
4954 | unsigned long size = 1; | |
4955 | ||
4956 | pages /= PAGES_PER_WAITQUEUE; | |
4957 | ||
4958 | while (size < pages) | |
4959 | size <<= 1; | |
4960 | ||
4961 | /* | |
4962 | * Once we have dozens or even hundreds of threads sleeping | |
4963 | * on IO we've got bigger problems than wait queue collision. | |
4964 | * Limit the size of the wait table to a reasonable size. | |
4965 | */ | |
4966 | size = min(size, 4096UL); | |
4967 | ||
4968 | return max(size, 4UL); | |
4969 | } | |
cca448fe YG |
4970 | #else |
4971 | /* | |
4972 | * A zone's size might be changed by hot-add, so it is not possible to determine | |
4973 | * a suitable size for its wait_table. So we use the maximum size now. | |
4974 | * | |
4975 | * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: | |
4976 | * | |
4977 | * i386 (preemption config) : 4096 x 16 = 64Kbyte. | |
4978 | * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. | |
4979 | * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. | |
4980 | * | |
4981 | * The maximum entries are prepared when a zone's memory is (512K + 256) pages | |
4982 | * or more by the traditional way. (See above). It equals: | |
4983 | * | |
4984 | * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. | |
4985 | * ia64(16K page size) : = ( 8G + 4M)byte. | |
4986 | * powerpc (64K page size) : = (32G +16M)byte. | |
4987 | */ | |
4988 | static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) | |
4989 | { | |
4990 | return 4096UL; | |
4991 | } | |
4992 | #endif | |
1da177e4 LT |
4993 | |
4994 | /* | |
4995 | * This is an integer logarithm so that shifts can be used later | |
4996 | * to extract the more random high bits from the multiplicative | |
4997 | * hash function before the remainder is taken. | |
4998 | */ | |
4999 | static inline unsigned long wait_table_bits(unsigned long size) | |
5000 | { | |
5001 | return ffz(~size); | |
5002 | } | |
5003 | ||
1da177e4 LT |
5004 | /* |
5005 | * Initially all pages are reserved - free ones are freed | |
5006 | * up by free_all_bootmem() once the early boot process is | |
5007 | * done. Non-atomic initialization, single-pass. | |
5008 | */ | |
c09b4240 | 5009 | void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, |
a2f3aa02 | 5010 | unsigned long start_pfn, enum memmap_context context) |
1da177e4 | 5011 | { |
4b94ffdc | 5012 | struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn)); |
29751f69 | 5013 | unsigned long end_pfn = start_pfn + size; |
4b94ffdc | 5014 | pg_data_t *pgdat = NODE_DATA(nid); |
29751f69 | 5015 | unsigned long pfn; |
3a80a7fa | 5016 | unsigned long nr_initialised = 0; |
342332e6 TI |
5017 | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP |
5018 | struct memblock_region *r = NULL, *tmp; | |
5019 | #endif | |
1da177e4 | 5020 | |
22b31eec HD |
5021 | if (highest_memmap_pfn < end_pfn - 1) |
5022 | highest_memmap_pfn = end_pfn - 1; | |
5023 | ||
4b94ffdc DW |
5024 | /* |
5025 | * Honor reservation requested by the driver for this ZONE_DEVICE | |
5026 | * memory | |
5027 | */ | |
5028 | if (altmap && start_pfn == altmap->base_pfn) | |
5029 | start_pfn += altmap->reserve; | |
5030 | ||
cbe8dd4a | 5031 | for (pfn = start_pfn; pfn < end_pfn; pfn++) { |
a2f3aa02 | 5032 | /* |
b72d0ffb AM |
5033 | * There can be holes in boot-time mem_map[]s handed to this |
5034 | * function. They do not exist on hotplugged memory. | |
a2f3aa02 | 5035 | */ |
b72d0ffb AM |
5036 | if (context != MEMMAP_EARLY) |
5037 | goto not_early; | |
5038 | ||
5039 | if (!early_pfn_valid(pfn)) | |
5040 | continue; | |
5041 | if (!early_pfn_in_nid(pfn, nid)) | |
5042 | continue; | |
5043 | if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised)) | |
5044 | break; | |
342332e6 TI |
5045 | |
5046 | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP | |
b72d0ffb AM |
5047 | /* |
5048 | * If not mirrored_kernelcore and ZONE_MOVABLE exists, range | |
5049 | * from zone_movable_pfn[nid] to end of each node should be | |
5050 | * ZONE_MOVABLE not ZONE_NORMAL. skip it. | |
5051 | */ | |
5052 | if (!mirrored_kernelcore && zone_movable_pfn[nid]) | |
5053 | if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid]) | |
5054 | continue; | |
342332e6 | 5055 | |
b72d0ffb AM |
5056 | /* |
5057 | * Check given memblock attribute by firmware which can affect | |
5058 | * kernel memory layout. If zone==ZONE_MOVABLE but memory is | |
5059 | * mirrored, it's an overlapped memmap init. skip it. | |
5060 | */ | |
5061 | if (mirrored_kernelcore && zone == ZONE_MOVABLE) { | |
5062 | if (!r || pfn >= memblock_region_memory_end_pfn(r)) { | |
5063 | for_each_memblock(memory, tmp) | |
5064 | if (pfn < memblock_region_memory_end_pfn(tmp)) | |
5065 | break; | |
5066 | r = tmp; | |
5067 | } | |
5068 | if (pfn >= memblock_region_memory_base_pfn(r) && | |
5069 | memblock_is_mirror(r)) { | |
5070 | /* already initialized as NORMAL */ | |
5071 | pfn = memblock_region_memory_end_pfn(r); | |
5072 | continue; | |
342332e6 | 5073 | } |
a2f3aa02 | 5074 | } |
b72d0ffb | 5075 | #endif |
ac5d2539 | 5076 | |
b72d0ffb | 5077 | not_early: |
ac5d2539 MG |
5078 | /* |
5079 | * Mark the block movable so that blocks are reserved for | |
5080 | * movable at startup. This will force kernel allocations | |
5081 | * to reserve their blocks rather than leaking throughout | |
5082 | * the address space during boot when many long-lived | |
974a786e | 5083 | * kernel allocations are made. |
ac5d2539 MG |
5084 | * |
5085 | * bitmap is created for zone's valid pfn range. but memmap | |
5086 | * can be created for invalid pages (for alignment) | |
5087 | * check here not to call set_pageblock_migratetype() against | |
5088 | * pfn out of zone. | |
5089 | */ | |
5090 | if (!(pfn & (pageblock_nr_pages - 1))) { | |
5091 | struct page *page = pfn_to_page(pfn); | |
5092 | ||
5093 | __init_single_page(page, pfn, zone, nid); | |
5094 | set_pageblock_migratetype(page, MIGRATE_MOVABLE); | |
5095 | } else { | |
5096 | __init_single_pfn(pfn, zone, nid); | |
5097 | } | |
1da177e4 LT |
5098 | } |
5099 | } | |
5100 | ||
1e548deb | 5101 | static void __meminit zone_init_free_lists(struct zone *zone) |
1da177e4 | 5102 | { |
7aeb09f9 | 5103 | unsigned int order, t; |
b2a0ac88 MG |
5104 | for_each_migratetype_order(order, t) { |
5105 | INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); | |
1da177e4 LT |
5106 | zone->free_area[order].nr_free = 0; |
5107 | } | |
5108 | } | |
5109 | ||
5110 | #ifndef __HAVE_ARCH_MEMMAP_INIT | |
5111 | #define memmap_init(size, nid, zone, start_pfn) \ | |
a2f3aa02 | 5112 | memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) |
1da177e4 LT |
5113 | #endif |
5114 | ||
7cd2b0a3 | 5115 | static int zone_batchsize(struct zone *zone) |
e7c8d5c9 | 5116 | { |
3a6be87f | 5117 | #ifdef CONFIG_MMU |
e7c8d5c9 CL |
5118 | int batch; |
5119 | ||
5120 | /* | |
5121 | * The per-cpu-pages pools are set to around 1000th of the | |
ba56e91c | 5122 | * size of the zone. But no more than 1/2 of a meg. |
e7c8d5c9 CL |
5123 | * |
5124 | * OK, so we don't know how big the cache is. So guess. | |
5125 | */ | |
b40da049 | 5126 | batch = zone->managed_pages / 1024; |
ba56e91c SR |
5127 | if (batch * PAGE_SIZE > 512 * 1024) |
5128 | batch = (512 * 1024) / PAGE_SIZE; | |
e7c8d5c9 CL |
5129 | batch /= 4; /* We effectively *= 4 below */ |
5130 | if (batch < 1) | |
5131 | batch = 1; | |
5132 | ||
5133 | /* | |
0ceaacc9 NP |
5134 | * Clamp the batch to a 2^n - 1 value. Having a power |
5135 | * of 2 value was found to be more likely to have | |
5136 | * suboptimal cache aliasing properties in some cases. | |
e7c8d5c9 | 5137 | * |
0ceaacc9 NP |
5138 | * For example if 2 tasks are alternately allocating |
5139 | * batches of pages, one task can end up with a lot | |
5140 | * of pages of one half of the possible page colors | |
5141 | * and the other with pages of the other colors. | |
e7c8d5c9 | 5142 | */ |
9155203a | 5143 | batch = rounddown_pow_of_two(batch + batch/2) - 1; |
ba56e91c | 5144 | |
e7c8d5c9 | 5145 | return batch; |
3a6be87f DH |
5146 | |
5147 | #else | |
5148 | /* The deferral and batching of frees should be suppressed under NOMMU | |
5149 | * conditions. | |
5150 | * | |
5151 | * The problem is that NOMMU needs to be able to allocate large chunks | |
5152 | * of contiguous memory as there's no hardware page translation to | |
5153 | * assemble apparent contiguous memory from discontiguous pages. | |
5154 | * | |
5155 | * Queueing large contiguous runs of pages for batching, however, | |
5156 | * causes the pages to actually be freed in smaller chunks. As there | |
5157 | * can be a significant delay between the individual batches being | |
5158 | * recycled, this leads to the once large chunks of space being | |
5159 | * fragmented and becoming unavailable for high-order allocations. | |
5160 | */ | |
5161 | return 0; | |
5162 | #endif | |
e7c8d5c9 CL |
5163 | } |
5164 | ||
8d7a8fa9 CS |
5165 | /* |
5166 | * pcp->high and pcp->batch values are related and dependent on one another: | |
5167 | * ->batch must never be higher then ->high. | |
5168 | * The following function updates them in a safe manner without read side | |
5169 | * locking. | |
5170 | * | |
5171 | * Any new users of pcp->batch and pcp->high should ensure they can cope with | |
5172 | * those fields changing asynchronously (acording the the above rule). | |
5173 | * | |
5174 | * mutex_is_locked(&pcp_batch_high_lock) required when calling this function | |
5175 | * outside of boot time (or some other assurance that no concurrent updaters | |
5176 | * exist). | |
5177 | */ | |
5178 | static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, | |
5179 | unsigned long batch) | |
5180 | { | |
5181 | /* start with a fail safe value for batch */ | |
5182 | pcp->batch = 1; | |
5183 | smp_wmb(); | |
5184 | ||
5185 | /* Update high, then batch, in order */ | |
5186 | pcp->high = high; | |
5187 | smp_wmb(); | |
5188 | ||
5189 | pcp->batch = batch; | |
5190 | } | |
5191 | ||
3664033c | 5192 | /* a companion to pageset_set_high() */ |
4008bab7 CS |
5193 | static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) |
5194 | { | |
8d7a8fa9 | 5195 | pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); |
4008bab7 CS |
5196 | } |
5197 | ||
88c90dbc | 5198 | static void pageset_init(struct per_cpu_pageset *p) |
2caaad41 CL |
5199 | { |
5200 | struct per_cpu_pages *pcp; | |
5f8dcc21 | 5201 | int migratetype; |
2caaad41 | 5202 | |
1c6fe946 MD |
5203 | memset(p, 0, sizeof(*p)); |
5204 | ||
3dfa5721 | 5205 | pcp = &p->pcp; |
2caaad41 | 5206 | pcp->count = 0; |
5f8dcc21 MG |
5207 | for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) |
5208 | INIT_LIST_HEAD(&pcp->lists[migratetype]); | |
2caaad41 CL |
5209 | } |
5210 | ||
88c90dbc CS |
5211 | static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) |
5212 | { | |
5213 | pageset_init(p); | |
5214 | pageset_set_batch(p, batch); | |
5215 | } | |
5216 | ||
8ad4b1fb | 5217 | /* |
3664033c | 5218 | * pageset_set_high() sets the high water mark for hot per_cpu_pagelist |
8ad4b1fb RS |
5219 | * to the value high for the pageset p. |
5220 | */ | |
3664033c | 5221 | static void pageset_set_high(struct per_cpu_pageset *p, |
8ad4b1fb RS |
5222 | unsigned long high) |
5223 | { | |
8d7a8fa9 CS |
5224 | unsigned long batch = max(1UL, high / 4); |
5225 | if ((high / 4) > (PAGE_SHIFT * 8)) | |
5226 | batch = PAGE_SHIFT * 8; | |
8ad4b1fb | 5227 | |
8d7a8fa9 | 5228 | pageset_update(&p->pcp, high, batch); |
8ad4b1fb RS |
5229 | } |
5230 | ||
7cd2b0a3 DR |
5231 | static void pageset_set_high_and_batch(struct zone *zone, |
5232 | struct per_cpu_pageset *pcp) | |
56cef2b8 | 5233 | { |
56cef2b8 | 5234 | if (percpu_pagelist_fraction) |
3664033c | 5235 | pageset_set_high(pcp, |
56cef2b8 CS |
5236 | (zone->managed_pages / |
5237 | percpu_pagelist_fraction)); | |
5238 | else | |
5239 | pageset_set_batch(pcp, zone_batchsize(zone)); | |
5240 | } | |
5241 | ||
169f6c19 CS |
5242 | static void __meminit zone_pageset_init(struct zone *zone, int cpu) |
5243 | { | |
5244 | struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); | |
5245 | ||
5246 | pageset_init(pcp); | |
5247 | pageset_set_high_and_batch(zone, pcp); | |
5248 | } | |
5249 | ||
4ed7e022 | 5250 | static void __meminit setup_zone_pageset(struct zone *zone) |
319774e2 WF |
5251 | { |
5252 | int cpu; | |
319774e2 | 5253 | zone->pageset = alloc_percpu(struct per_cpu_pageset); |
56cef2b8 CS |
5254 | for_each_possible_cpu(cpu) |
5255 | zone_pageset_init(zone, cpu); | |
319774e2 WF |
5256 | } |
5257 | ||
2caaad41 | 5258 | /* |
99dcc3e5 CL |
5259 | * Allocate per cpu pagesets and initialize them. |
5260 | * Before this call only boot pagesets were available. | |
e7c8d5c9 | 5261 | */ |
99dcc3e5 | 5262 | void __init setup_per_cpu_pageset(void) |
e7c8d5c9 | 5263 | { |
b4911ea2 | 5264 | struct pglist_data *pgdat; |
99dcc3e5 | 5265 | struct zone *zone; |
e7c8d5c9 | 5266 | |
319774e2 WF |
5267 | for_each_populated_zone(zone) |
5268 | setup_zone_pageset(zone); | |
b4911ea2 MG |
5269 | |
5270 | for_each_online_pgdat(pgdat) | |
5271 | pgdat->per_cpu_nodestats = | |
5272 | alloc_percpu(struct per_cpu_nodestat); | |
e7c8d5c9 CL |
5273 | } |
5274 | ||
bd721ea7 | 5275 | static noinline __ref |
cca448fe | 5276 | int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) |
ed8ece2e DH |
5277 | { |
5278 | int i; | |
cca448fe | 5279 | size_t alloc_size; |
ed8ece2e DH |
5280 | |
5281 | /* | |
5282 | * The per-page waitqueue mechanism uses hashed waitqueues | |
5283 | * per zone. | |
5284 | */ | |
02b694de YG |
5285 | zone->wait_table_hash_nr_entries = |
5286 | wait_table_hash_nr_entries(zone_size_pages); | |
5287 | zone->wait_table_bits = | |
5288 | wait_table_bits(zone->wait_table_hash_nr_entries); | |
cca448fe YG |
5289 | alloc_size = zone->wait_table_hash_nr_entries |
5290 | * sizeof(wait_queue_head_t); | |
5291 | ||
cd94b9db | 5292 | if (!slab_is_available()) { |
cca448fe | 5293 | zone->wait_table = (wait_queue_head_t *) |
6782832e SS |
5294 | memblock_virt_alloc_node_nopanic( |
5295 | alloc_size, zone->zone_pgdat->node_id); | |
cca448fe YG |
5296 | } else { |
5297 | /* | |
5298 | * This case means that a zone whose size was 0 gets new memory | |
5299 | * via memory hot-add. | |
5300 | * But it may be the case that a new node was hot-added. In | |
5301 | * this case vmalloc() will not be able to use this new node's | |
5302 | * memory - this wait_table must be initialized to use this new | |
5303 | * node itself as well. | |
5304 | * To use this new node's memory, further consideration will be | |
5305 | * necessary. | |
5306 | */ | |
8691f3a7 | 5307 | zone->wait_table = vmalloc(alloc_size); |
cca448fe YG |
5308 | } |
5309 | if (!zone->wait_table) | |
5310 | return -ENOMEM; | |
ed8ece2e | 5311 | |
b8af2941 | 5312 | for (i = 0; i < zone->wait_table_hash_nr_entries; ++i) |
ed8ece2e | 5313 | init_waitqueue_head(zone->wait_table + i); |
cca448fe YG |
5314 | |
5315 | return 0; | |
ed8ece2e DH |
5316 | } |
5317 | ||
c09b4240 | 5318 | static __meminit void zone_pcp_init(struct zone *zone) |
ed8ece2e | 5319 | { |
99dcc3e5 CL |
5320 | /* |
5321 | * per cpu subsystem is not up at this point. The following code | |
5322 | * relies on the ability of the linker to provide the | |
5323 | * offset of a (static) per cpu variable into the per cpu area. | |
5324 | */ | |
5325 | zone->pageset = &boot_pageset; | |
ed8ece2e | 5326 | |
b38a8725 | 5327 | if (populated_zone(zone)) |
99dcc3e5 CL |
5328 | printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", |
5329 | zone->name, zone->present_pages, | |
5330 | zone_batchsize(zone)); | |
ed8ece2e DH |
5331 | } |
5332 | ||
4ed7e022 | 5333 | int __meminit init_currently_empty_zone(struct zone *zone, |
718127cc | 5334 | unsigned long zone_start_pfn, |
b171e409 | 5335 | unsigned long size) |
ed8ece2e DH |
5336 | { |
5337 | struct pglist_data *pgdat = zone->zone_pgdat; | |
cca448fe YG |
5338 | int ret; |
5339 | ret = zone_wait_table_init(zone, size); | |
5340 | if (ret) | |
5341 | return ret; | |
ed8ece2e DH |
5342 | pgdat->nr_zones = zone_idx(zone) + 1; |
5343 | ||
ed8ece2e DH |
5344 | zone->zone_start_pfn = zone_start_pfn; |
5345 | ||
708614e6 MG |
5346 | mminit_dprintk(MMINIT_TRACE, "memmap_init", |
5347 | "Initialising map node %d zone %lu pfns %lu -> %lu\n", | |
5348 | pgdat->node_id, | |
5349 | (unsigned long)zone_idx(zone), | |
5350 | zone_start_pfn, (zone_start_pfn + size)); | |
5351 | ||
1e548deb | 5352 | zone_init_free_lists(zone); |
718127cc YG |
5353 | |
5354 | return 0; | |
ed8ece2e DH |
5355 | } |
5356 | ||
0ee332c1 | 5357 | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP |
c713216d | 5358 | #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID |
8a942fde | 5359 | |
c713216d MG |
5360 | /* |
5361 | * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. | |
c713216d | 5362 | */ |
8a942fde MG |
5363 | int __meminit __early_pfn_to_nid(unsigned long pfn, |
5364 | struct mminit_pfnnid_cache *state) | |
c713216d | 5365 | { |
c13291a5 | 5366 | unsigned long start_pfn, end_pfn; |
e76b63f8 | 5367 | int nid; |
7c243c71 | 5368 | |
8a942fde MG |
5369 | if (state->last_start <= pfn && pfn < state->last_end) |
5370 | return state->last_nid; | |
c713216d | 5371 | |
e76b63f8 YL |
5372 | nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); |
5373 | if (nid != -1) { | |
8a942fde MG |
5374 | state->last_start = start_pfn; |
5375 | state->last_end = end_pfn; | |
5376 | state->last_nid = nid; | |
e76b63f8 YL |
5377 | } |
5378 | ||
5379 | return nid; | |
c713216d MG |
5380 | } |
5381 | #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ | |
5382 | ||
c713216d | 5383 | /** |
6782832e | 5384 | * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range |
88ca3b94 | 5385 | * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. |
6782832e | 5386 | * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid |
c713216d | 5387 | * |
7d018176 ZZ |
5388 | * If an architecture guarantees that all ranges registered contain no holes |
5389 | * and may be freed, this this function may be used instead of calling | |
5390 | * memblock_free_early_nid() manually. | |
c713216d | 5391 | */ |
c13291a5 | 5392 | void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) |
cc289894 | 5393 | { |
c13291a5 TH |
5394 | unsigned long start_pfn, end_pfn; |
5395 | int i, this_nid; | |
edbe7d23 | 5396 | |
c13291a5 TH |
5397 | for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { |
5398 | start_pfn = min(start_pfn, max_low_pfn); | |
5399 | end_pfn = min(end_pfn, max_low_pfn); | |
edbe7d23 | 5400 | |
c13291a5 | 5401 | if (start_pfn < end_pfn) |
6782832e SS |
5402 | memblock_free_early_nid(PFN_PHYS(start_pfn), |
5403 | (end_pfn - start_pfn) << PAGE_SHIFT, | |
5404 | this_nid); | |
edbe7d23 | 5405 | } |
edbe7d23 | 5406 | } |
edbe7d23 | 5407 | |
c713216d MG |
5408 | /** |
5409 | * sparse_memory_present_with_active_regions - Call memory_present for each active range | |
88ca3b94 | 5410 | * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. |
c713216d | 5411 | * |
7d018176 ZZ |
5412 | * If an architecture guarantees that all ranges registered contain no holes and may |
5413 | * be freed, this function may be used instead of calling memory_present() manually. | |
c713216d MG |
5414 | */ |
5415 | void __init sparse_memory_present_with_active_regions(int nid) | |
5416 | { | |
c13291a5 TH |
5417 | unsigned long start_pfn, end_pfn; |
5418 | int i, this_nid; | |
c713216d | 5419 | |
c13291a5 TH |
5420 | for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) |
5421 | memory_present(this_nid, start_pfn, end_pfn); | |
c713216d MG |
5422 | } |
5423 | ||
5424 | /** | |
5425 | * get_pfn_range_for_nid - Return the start and end page frames for a node | |
88ca3b94 RD |
5426 | * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. |
5427 | * @start_pfn: Passed by reference. On return, it will have the node start_pfn. | |
5428 | * @end_pfn: Passed by reference. On return, it will have the node end_pfn. | |
c713216d MG |
5429 | * |
5430 | * It returns the start and end page frame of a node based on information | |
7d018176 | 5431 | * provided by memblock_set_node(). If called for a node |
c713216d | 5432 | * with no available memory, a warning is printed and the start and end |
88ca3b94 | 5433 | * PFNs will be 0. |
c713216d | 5434 | */ |
a3142c8e | 5435 | void __meminit get_pfn_range_for_nid(unsigned int nid, |
c713216d MG |
5436 | unsigned long *start_pfn, unsigned long *end_pfn) |
5437 | { | |
c13291a5 | 5438 | unsigned long this_start_pfn, this_end_pfn; |
c713216d | 5439 | int i; |
c13291a5 | 5440 | |
c713216d MG |
5441 | *start_pfn = -1UL; |
5442 | *end_pfn = 0; | |
5443 | ||
c13291a5 TH |
5444 | for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { |
5445 | *start_pfn = min(*start_pfn, this_start_pfn); | |
5446 | *end_pfn = max(*end_pfn, this_end_pfn); | |
c713216d MG |
5447 | } |
5448 | ||
633c0666 | 5449 | if (*start_pfn == -1UL) |
c713216d | 5450 | *start_pfn = 0; |
c713216d MG |
5451 | } |
5452 | ||
2a1e274a MG |
5453 | /* |
5454 | * This finds a zone that can be used for ZONE_MOVABLE pages. The | |
5455 | * assumption is made that zones within a node are ordered in monotonic | |
5456 | * increasing memory addresses so that the "highest" populated zone is used | |
5457 | */ | |
b69a7288 | 5458 | static void __init find_usable_zone_for_movable(void) |
2a1e274a MG |
5459 | { |
5460 | int zone_index; | |
5461 | for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { | |
5462 | if (zone_index == ZONE_MOVABLE) | |
5463 | continue; | |
5464 | ||
5465 | if (arch_zone_highest_possible_pfn[zone_index] > | |
5466 | arch_zone_lowest_possible_pfn[zone_index]) | |
5467 | break; | |
5468 | } | |
5469 | ||
5470 | VM_BUG_ON(zone_index == -1); | |
5471 | movable_zone = zone_index; | |
5472 | } | |
5473 | ||
5474 | /* | |
5475 | * The zone ranges provided by the architecture do not include ZONE_MOVABLE | |
25985edc | 5476 | * because it is sized independent of architecture. Unlike the other zones, |
2a1e274a MG |
5477 | * the starting point for ZONE_MOVABLE is not fixed. It may be different |
5478 | * in each node depending on the size of each node and how evenly kernelcore | |
5479 | * is distributed. This helper function adjusts the zone ranges | |
5480 | * provided by the architecture for a given node by using the end of the | |
5481 | * highest usable zone for ZONE_MOVABLE. This preserves the assumption that | |
5482 | * zones within a node are in order of monotonic increases memory addresses | |
5483 | */ | |
b69a7288 | 5484 | static void __meminit adjust_zone_range_for_zone_movable(int nid, |
2a1e274a MG |
5485 | unsigned long zone_type, |
5486 | unsigned long node_start_pfn, | |
5487 | unsigned long node_end_pfn, | |
5488 | unsigned long *zone_start_pfn, | |
5489 | unsigned long *zone_end_pfn) | |
5490 | { | |
5491 | /* Only adjust if ZONE_MOVABLE is on this node */ | |
5492 | if (zone_movable_pfn[nid]) { | |
5493 | /* Size ZONE_MOVABLE */ | |
5494 | if (zone_type == ZONE_MOVABLE) { | |
5495 | *zone_start_pfn = zone_movable_pfn[nid]; | |
5496 | *zone_end_pfn = min(node_end_pfn, | |
5497 | arch_zone_highest_possible_pfn[movable_zone]); | |
5498 | ||
2a1e274a MG |
5499 | /* Check if this whole range is within ZONE_MOVABLE */ |
5500 | } else if (*zone_start_pfn >= zone_movable_pfn[nid]) | |
5501 | *zone_start_pfn = *zone_end_pfn; | |
5502 | } | |
5503 | } | |
5504 | ||
c713216d MG |
5505 | /* |
5506 | * Return the number of pages a zone spans in a node, including holes | |
5507 | * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() | |
5508 | */ | |
6ea6e688 | 5509 | static unsigned long __meminit zone_spanned_pages_in_node(int nid, |
c713216d | 5510 | unsigned long zone_type, |
7960aedd ZY |
5511 | unsigned long node_start_pfn, |
5512 | unsigned long node_end_pfn, | |
d91749c1 TI |
5513 | unsigned long *zone_start_pfn, |
5514 | unsigned long *zone_end_pfn, | |
c713216d MG |
5515 | unsigned long *ignored) |
5516 | { | |
b5685e92 | 5517 | /* When hotadd a new node from cpu_up(), the node should be empty */ |
f9126ab9 XQ |
5518 | if (!node_start_pfn && !node_end_pfn) |
5519 | return 0; | |
5520 | ||
7960aedd | 5521 | /* Get the start and end of the zone */ |
d91749c1 TI |
5522 | *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; |
5523 | *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; | |
2a1e274a MG |
5524 | adjust_zone_range_for_zone_movable(nid, zone_type, |
5525 | node_start_pfn, node_end_pfn, | |
d91749c1 | 5526 | zone_start_pfn, zone_end_pfn); |
c713216d MG |
5527 | |
5528 | /* Check that this node has pages within the zone's required range */ | |
d91749c1 | 5529 | if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) |
c713216d MG |
5530 | return 0; |
5531 | ||
5532 | /* Move the zone boundaries inside the node if necessary */ | |
d91749c1 TI |
5533 | *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); |
5534 | *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); | |
c713216d MG |
5535 | |
5536 | /* Return the spanned pages */ | |
d91749c1 | 5537 | return *zone_end_pfn - *zone_start_pfn; |
c713216d MG |
5538 | } |
5539 | ||
5540 | /* | |
5541 | * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, | |
88ca3b94 | 5542 | * then all holes in the requested range will be accounted for. |
c713216d | 5543 | */ |
32996250 | 5544 | unsigned long __meminit __absent_pages_in_range(int nid, |
c713216d MG |
5545 | unsigned long range_start_pfn, |
5546 | unsigned long range_end_pfn) | |
5547 | { | |
96e907d1 TH |
5548 | unsigned long nr_absent = range_end_pfn - range_start_pfn; |
5549 | unsigned long start_pfn, end_pfn; | |
5550 | int i; | |
c713216d | 5551 | |
96e907d1 TH |
5552 | for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { |
5553 | start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); | |
5554 | end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); | |
5555 | nr_absent -= end_pfn - start_pfn; | |
c713216d | 5556 | } |
96e907d1 | 5557 | return nr_absent; |
c713216d MG |
5558 | } |
5559 | ||
5560 | /** | |
5561 | * absent_pages_in_range - Return number of page frames in holes within a range | |
5562 | * @start_pfn: The start PFN to start searching for holes | |
5563 | * @end_pfn: The end PFN to stop searching for holes | |
5564 | * | |
88ca3b94 | 5565 | * It returns the number of pages frames in memory holes within a range. |
c713216d MG |
5566 | */ |
5567 | unsigned long __init absent_pages_in_range(unsigned long start_pfn, | |
5568 | unsigned long end_pfn) | |
5569 | { | |
5570 | return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); | |
5571 | } | |
5572 | ||
5573 | /* Return the number of page frames in holes in a zone on a node */ | |
6ea6e688 | 5574 | static unsigned long __meminit zone_absent_pages_in_node(int nid, |
c713216d | 5575 | unsigned long zone_type, |
7960aedd ZY |
5576 | unsigned long node_start_pfn, |
5577 | unsigned long node_end_pfn, | |
c713216d MG |
5578 | unsigned long *ignored) |
5579 | { | |
96e907d1 TH |
5580 | unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; |
5581 | unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; | |
9c7cd687 | 5582 | unsigned long zone_start_pfn, zone_end_pfn; |
342332e6 | 5583 | unsigned long nr_absent; |
9c7cd687 | 5584 | |
b5685e92 | 5585 | /* When hotadd a new node from cpu_up(), the node should be empty */ |
f9126ab9 XQ |
5586 | if (!node_start_pfn && !node_end_pfn) |
5587 | return 0; | |
5588 | ||
96e907d1 TH |
5589 | zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); |
5590 | zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); | |
9c7cd687 | 5591 | |
2a1e274a MG |
5592 | adjust_zone_range_for_zone_movable(nid, zone_type, |
5593 | node_start_pfn, node_end_pfn, | |
5594 | &zone_start_pfn, &zone_end_pfn); | |
342332e6 TI |
5595 | nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); |
5596 | ||
5597 | /* | |
5598 | * ZONE_MOVABLE handling. | |
5599 | * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages | |
5600 | * and vice versa. | |
5601 | */ | |
5602 | if (zone_movable_pfn[nid]) { | |
5603 | if (mirrored_kernelcore) { | |
5604 | unsigned long start_pfn, end_pfn; | |
5605 | struct memblock_region *r; | |
5606 | ||
5607 | for_each_memblock(memory, r) { | |
5608 | start_pfn = clamp(memblock_region_memory_base_pfn(r), | |
5609 | zone_start_pfn, zone_end_pfn); | |
5610 | end_pfn = clamp(memblock_region_memory_end_pfn(r), | |
5611 | zone_start_pfn, zone_end_pfn); | |
5612 | ||
5613 | if (zone_type == ZONE_MOVABLE && | |
5614 | memblock_is_mirror(r)) | |
5615 | nr_absent += end_pfn - start_pfn; | |
5616 | ||
5617 | if (zone_type == ZONE_NORMAL && | |
5618 | !memblock_is_mirror(r)) | |
5619 | nr_absent += end_pfn - start_pfn; | |
5620 | } | |
5621 | } else { | |
5622 | if (zone_type == ZONE_NORMAL) | |
5623 | nr_absent += node_end_pfn - zone_movable_pfn[nid]; | |
5624 | } | |
5625 | } | |
5626 | ||
5627 | return nr_absent; | |
c713216d | 5628 | } |
0e0b864e | 5629 | |
0ee332c1 | 5630 | #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ |
6ea6e688 | 5631 | static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, |
c713216d | 5632 | unsigned long zone_type, |
7960aedd ZY |
5633 | unsigned long node_start_pfn, |
5634 | unsigned long node_end_pfn, | |
d91749c1 TI |
5635 | unsigned long *zone_start_pfn, |
5636 | unsigned long *zone_end_pfn, | |
c713216d MG |
5637 | unsigned long *zones_size) |
5638 | { | |
d91749c1 TI |
5639 | unsigned int zone; |
5640 | ||
5641 | *zone_start_pfn = node_start_pfn; | |
5642 | for (zone = 0; zone < zone_type; zone++) | |
5643 | *zone_start_pfn += zones_size[zone]; | |
5644 | ||
5645 | *zone_end_pfn = *zone_start_pfn + zones_size[zone_type]; | |
5646 | ||
c713216d MG |
5647 | return zones_size[zone_type]; |
5648 | } | |
5649 | ||
6ea6e688 | 5650 | static inline unsigned long __meminit zone_absent_pages_in_node(int nid, |
c713216d | 5651 | unsigned long zone_type, |
7960aedd ZY |
5652 | unsigned long node_start_pfn, |
5653 | unsigned long node_end_pfn, | |
c713216d MG |
5654 | unsigned long *zholes_size) |
5655 | { | |
5656 | if (!zholes_size) | |
5657 | return 0; | |
5658 | ||
5659 | return zholes_size[zone_type]; | |
5660 | } | |
20e6926d | 5661 | |
0ee332c1 | 5662 | #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ |
c713216d | 5663 | |
a3142c8e | 5664 | static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, |
7960aedd ZY |
5665 | unsigned long node_start_pfn, |
5666 | unsigned long node_end_pfn, | |
5667 | unsigned long *zones_size, | |
5668 | unsigned long *zholes_size) | |
c713216d | 5669 | { |
febd5949 | 5670 | unsigned long realtotalpages = 0, totalpages = 0; |
c713216d MG |
5671 | enum zone_type i; |
5672 | ||
febd5949 GZ |
5673 | for (i = 0; i < MAX_NR_ZONES; i++) { |
5674 | struct zone *zone = pgdat->node_zones + i; | |
d91749c1 | 5675 | unsigned long zone_start_pfn, zone_end_pfn; |
febd5949 | 5676 | unsigned long size, real_size; |
c713216d | 5677 | |
febd5949 GZ |
5678 | size = zone_spanned_pages_in_node(pgdat->node_id, i, |
5679 | node_start_pfn, | |
5680 | node_end_pfn, | |
d91749c1 TI |
5681 | &zone_start_pfn, |
5682 | &zone_end_pfn, | |
febd5949 GZ |
5683 | zones_size); |
5684 | real_size = size - zone_absent_pages_in_node(pgdat->node_id, i, | |
7960aedd ZY |
5685 | node_start_pfn, node_end_pfn, |
5686 | zholes_size); | |
d91749c1 TI |
5687 | if (size) |
5688 | zone->zone_start_pfn = zone_start_pfn; | |
5689 | else | |
5690 | zone->zone_start_pfn = 0; | |
febd5949 GZ |
5691 | zone->spanned_pages = size; |
5692 | zone->present_pages = real_size; | |
5693 | ||
5694 | totalpages += size; | |
5695 | realtotalpages += real_size; | |
5696 | } | |
5697 | ||
5698 | pgdat->node_spanned_pages = totalpages; | |
c713216d MG |
5699 | pgdat->node_present_pages = realtotalpages; |
5700 | printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, | |
5701 | realtotalpages); | |
5702 | } | |
5703 | ||
835c134e MG |
5704 | #ifndef CONFIG_SPARSEMEM |
5705 | /* | |
5706 | * Calculate the size of the zone->blockflags rounded to an unsigned long | |
d9c23400 MG |
5707 | * Start by making sure zonesize is a multiple of pageblock_order by rounding |
5708 | * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally | |
835c134e MG |
5709 | * round what is now in bits to nearest long in bits, then return it in |
5710 | * bytes. | |
5711 | */ | |
7c45512d | 5712 | static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) |
835c134e MG |
5713 | { |
5714 | unsigned long usemapsize; | |
5715 | ||
7c45512d | 5716 | zonesize += zone_start_pfn & (pageblock_nr_pages-1); |
d9c23400 MG |
5717 | usemapsize = roundup(zonesize, pageblock_nr_pages); |
5718 | usemapsize = usemapsize >> pageblock_order; | |
835c134e MG |
5719 | usemapsize *= NR_PAGEBLOCK_BITS; |
5720 | usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); | |
5721 | ||
5722 | return usemapsize / 8; | |
5723 | } | |
5724 | ||
5725 | static void __init setup_usemap(struct pglist_data *pgdat, | |
7c45512d LT |
5726 | struct zone *zone, |
5727 | unsigned long zone_start_pfn, | |
5728 | unsigned long zonesize) | |
835c134e | 5729 | { |
7c45512d | 5730 | unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); |
835c134e | 5731 | zone->pageblock_flags = NULL; |
58a01a45 | 5732 | if (usemapsize) |
6782832e SS |
5733 | zone->pageblock_flags = |
5734 | memblock_virt_alloc_node_nopanic(usemapsize, | |
5735 | pgdat->node_id); | |
835c134e MG |
5736 | } |
5737 | #else | |
7c45512d LT |
5738 | static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, |
5739 | unsigned long zone_start_pfn, unsigned long zonesize) {} | |
835c134e MG |
5740 | #endif /* CONFIG_SPARSEMEM */ |
5741 | ||
d9c23400 | 5742 | #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE |
ba72cb8c | 5743 | |
d9c23400 | 5744 | /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ |
15ca220e | 5745 | void __paginginit set_pageblock_order(void) |
d9c23400 | 5746 | { |
955c1cd7 AM |
5747 | unsigned int order; |
5748 | ||
d9c23400 MG |
5749 | /* Check that pageblock_nr_pages has not already been setup */ |
5750 | if (pageblock_order) | |
5751 | return; | |
5752 | ||
955c1cd7 AM |
5753 | if (HPAGE_SHIFT > PAGE_SHIFT) |
5754 | order = HUGETLB_PAGE_ORDER; | |
5755 | else | |
5756 | order = MAX_ORDER - 1; | |
5757 | ||
d9c23400 MG |
5758 | /* |
5759 | * Assume the largest contiguous order of interest is a huge page. | |
955c1cd7 AM |
5760 | * This value may be variable depending on boot parameters on IA64 and |
5761 | * powerpc. | |
d9c23400 MG |
5762 | */ |
5763 | pageblock_order = order; | |
5764 | } | |
5765 | #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ | |
5766 | ||
ba72cb8c MG |
5767 | /* |
5768 | * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() | |
955c1cd7 AM |
5769 | * is unused as pageblock_order is set at compile-time. See |
5770 | * include/linux/pageblock-flags.h for the values of pageblock_order based on | |
5771 | * the kernel config | |
ba72cb8c | 5772 | */ |
15ca220e | 5773 | void __paginginit set_pageblock_order(void) |
ba72cb8c | 5774 | { |
ba72cb8c | 5775 | } |
d9c23400 MG |
5776 | |
5777 | #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ | |
5778 | ||
01cefaef JL |
5779 | static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages, |
5780 | unsigned long present_pages) | |
5781 | { | |
5782 | unsigned long pages = spanned_pages; | |
5783 | ||
5784 | /* | |
5785 | * Provide a more accurate estimation if there are holes within | |
5786 | * the zone and SPARSEMEM is in use. If there are holes within the | |
5787 | * zone, each populated memory region may cost us one or two extra | |
5788 | * memmap pages due to alignment because memmap pages for each | |
5789 | * populated regions may not naturally algined on page boundary. | |
5790 | * So the (present_pages >> 4) heuristic is a tradeoff for that. | |
5791 | */ | |
5792 | if (spanned_pages > present_pages + (present_pages >> 4) && | |
5793 | IS_ENABLED(CONFIG_SPARSEMEM)) | |
5794 | pages = present_pages; | |
5795 | ||
5796 | return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; | |
5797 | } | |
5798 | ||
1da177e4 LT |
5799 | /* |
5800 | * Set up the zone data structures: | |
5801 | * - mark all pages reserved | |
5802 | * - mark all memory queues empty | |
5803 | * - clear the memory bitmaps | |
6527af5d MK |
5804 | * |
5805 | * NOTE: pgdat should get zeroed by caller. | |
1da177e4 | 5806 | */ |
7f3eb55b | 5807 | static void __paginginit free_area_init_core(struct pglist_data *pgdat) |
1da177e4 | 5808 | { |
2f1b6248 | 5809 | enum zone_type j; |
ed8ece2e | 5810 | int nid = pgdat->node_id; |
718127cc | 5811 | int ret; |
1da177e4 | 5812 | |
208d54e5 | 5813 | pgdat_resize_init(pgdat); |
8177a420 AA |
5814 | #ifdef CONFIG_NUMA_BALANCING |
5815 | spin_lock_init(&pgdat->numabalancing_migrate_lock); | |
5816 | pgdat->numabalancing_migrate_nr_pages = 0; | |
5817 | pgdat->numabalancing_migrate_next_window = jiffies; | |
a3d0a918 KS |
5818 | #endif |
5819 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | |
5820 | spin_lock_init(&pgdat->split_queue_lock); | |
5821 | INIT_LIST_HEAD(&pgdat->split_queue); | |
5822 | pgdat->split_queue_len = 0; | |
8177a420 | 5823 | #endif |
1da177e4 | 5824 | init_waitqueue_head(&pgdat->kswapd_wait); |
5515061d | 5825 | init_waitqueue_head(&pgdat->pfmemalloc_wait); |
698b1b30 VB |
5826 | #ifdef CONFIG_COMPACTION |
5827 | init_waitqueue_head(&pgdat->kcompactd_wait); | |
5828 | #endif | |
eefa864b | 5829 | pgdat_page_ext_init(pgdat); |
a52633d8 | 5830 | spin_lock_init(&pgdat->lru_lock); |
a9dd0a83 | 5831 | lruvec_init(node_lruvec(pgdat)); |
5f63b720 | 5832 | |
1da177e4 LT |
5833 | for (j = 0; j < MAX_NR_ZONES; j++) { |
5834 | struct zone *zone = pgdat->node_zones + j; | |
9feedc9d | 5835 | unsigned long size, realsize, freesize, memmap_pages; |
d91749c1 | 5836 | unsigned long zone_start_pfn = zone->zone_start_pfn; |
1da177e4 | 5837 | |
febd5949 GZ |
5838 | size = zone->spanned_pages; |
5839 | realsize = freesize = zone->present_pages; | |
1da177e4 | 5840 | |
0e0b864e | 5841 | /* |
9feedc9d | 5842 | * Adjust freesize so that it accounts for how much memory |
0e0b864e MG |
5843 | * is used by this zone for memmap. This affects the watermark |
5844 | * and per-cpu initialisations | |
5845 | */ | |
01cefaef | 5846 | memmap_pages = calc_memmap_size(size, realsize); |
ba914f48 ZH |
5847 | if (!is_highmem_idx(j)) { |
5848 | if (freesize >= memmap_pages) { | |
5849 | freesize -= memmap_pages; | |
5850 | if (memmap_pages) | |
5851 | printk(KERN_DEBUG | |
5852 | " %s zone: %lu pages used for memmap\n", | |
5853 | zone_names[j], memmap_pages); | |
5854 | } else | |
1170532b | 5855 | pr_warn(" %s zone: %lu pages exceeds freesize %lu\n", |
ba914f48 ZH |
5856 | zone_names[j], memmap_pages, freesize); |
5857 | } | |
0e0b864e | 5858 | |
6267276f | 5859 | /* Account for reserved pages */ |
9feedc9d JL |
5860 | if (j == 0 && freesize > dma_reserve) { |
5861 | freesize -= dma_reserve; | |
d903ef9f | 5862 | printk(KERN_DEBUG " %s zone: %lu pages reserved\n", |
6267276f | 5863 | zone_names[0], dma_reserve); |
0e0b864e MG |
5864 | } |
5865 | ||
98d2b0eb | 5866 | if (!is_highmem_idx(j)) |
9feedc9d | 5867 | nr_kernel_pages += freesize; |
01cefaef JL |
5868 | /* Charge for highmem memmap if there are enough kernel pages */ |
5869 | else if (nr_kernel_pages > memmap_pages * 2) | |
5870 | nr_kernel_pages -= memmap_pages; | |
9feedc9d | 5871 | nr_all_pages += freesize; |
1da177e4 | 5872 | |
9feedc9d JL |
5873 | /* |
5874 | * Set an approximate value for lowmem here, it will be adjusted | |
5875 | * when the bootmem allocator frees pages into the buddy system. | |
5876 | * And all highmem pages will be managed by the buddy system. | |
5877 | */ | |
5878 | zone->managed_pages = is_highmem_idx(j) ? realsize : freesize; | |
9614634f | 5879 | #ifdef CONFIG_NUMA |
d5f541ed | 5880 | zone->node = nid; |
a5f5f91d | 5881 | pgdat->min_unmapped_pages += (freesize*sysctl_min_unmapped_ratio) |
9614634f | 5882 | / 100; |
a5f5f91d | 5883 | pgdat->min_slab_pages += (freesize * sysctl_min_slab_ratio) / 100; |
9614634f | 5884 | #endif |
1da177e4 | 5885 | zone->name = zone_names[j]; |
a52633d8 | 5886 | zone->zone_pgdat = pgdat; |
1da177e4 | 5887 | spin_lock_init(&zone->lock); |
bdc8cb98 | 5888 | zone_seqlock_init(zone); |
ed8ece2e | 5889 | zone_pcp_init(zone); |
81c0a2bb | 5890 | |
1da177e4 LT |
5891 | if (!size) |
5892 | continue; | |
5893 | ||
955c1cd7 | 5894 | set_pageblock_order(); |
7c45512d | 5895 | setup_usemap(pgdat, zone, zone_start_pfn, size); |
b171e409 | 5896 | ret = init_currently_empty_zone(zone, zone_start_pfn, size); |
718127cc | 5897 | BUG_ON(ret); |
76cdd58e | 5898 | memmap_init(size, nid, j, zone_start_pfn); |
1da177e4 LT |
5899 | } |
5900 | } | |
5901 | ||
bd721ea7 | 5902 | static void __ref alloc_node_mem_map(struct pglist_data *pgdat) |
1da177e4 | 5903 | { |
b0aeba74 | 5904 | unsigned long __maybe_unused start = 0; |
a1c34a3b LA |
5905 | unsigned long __maybe_unused offset = 0; |
5906 | ||
1da177e4 LT |
5907 | /* Skip empty nodes */ |
5908 | if (!pgdat->node_spanned_pages) | |
5909 | return; | |
5910 | ||
d41dee36 | 5911 | #ifdef CONFIG_FLAT_NODE_MEM_MAP |
b0aeba74 TL |
5912 | start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); |
5913 | offset = pgdat->node_start_pfn - start; | |
1da177e4 LT |
5914 | /* ia64 gets its own node_mem_map, before this, without bootmem */ |
5915 | if (!pgdat->node_mem_map) { | |
b0aeba74 | 5916 | unsigned long size, end; |
d41dee36 AW |
5917 | struct page *map; |
5918 | ||
e984bb43 BP |
5919 | /* |
5920 | * The zone's endpoints aren't required to be MAX_ORDER | |
5921 | * aligned but the node_mem_map endpoints must be in order | |
5922 | * for the buddy allocator to function correctly. | |
5923 | */ | |
108bcc96 | 5924 | end = pgdat_end_pfn(pgdat); |
e984bb43 BP |
5925 | end = ALIGN(end, MAX_ORDER_NR_PAGES); |
5926 | size = (end - start) * sizeof(struct page); | |
6f167ec7 DH |
5927 | map = alloc_remap(pgdat->node_id, size); |
5928 | if (!map) | |
6782832e SS |
5929 | map = memblock_virt_alloc_node_nopanic(size, |
5930 | pgdat->node_id); | |
a1c34a3b | 5931 | pgdat->node_mem_map = map + offset; |
1da177e4 | 5932 | } |
12d810c1 | 5933 | #ifndef CONFIG_NEED_MULTIPLE_NODES |
1da177e4 LT |
5934 | /* |
5935 | * With no DISCONTIG, the global mem_map is just set as node 0's | |
5936 | */ | |
c713216d | 5937 | if (pgdat == NODE_DATA(0)) { |
1da177e4 | 5938 | mem_map = NODE_DATA(0)->node_mem_map; |
a1c34a3b | 5939 | #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM) |
c713216d | 5940 | if (page_to_pfn(mem_map) != pgdat->node_start_pfn) |
a1c34a3b | 5941 | mem_map -= offset; |
0ee332c1 | 5942 | #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ |
c713216d | 5943 | } |
1da177e4 | 5944 | #endif |
d41dee36 | 5945 | #endif /* CONFIG_FLAT_NODE_MEM_MAP */ |
1da177e4 LT |
5946 | } |
5947 | ||
9109fb7b JW |
5948 | void __paginginit free_area_init_node(int nid, unsigned long *zones_size, |
5949 | unsigned long node_start_pfn, unsigned long *zholes_size) | |
1da177e4 | 5950 | { |
9109fb7b | 5951 | pg_data_t *pgdat = NODE_DATA(nid); |
7960aedd ZY |
5952 | unsigned long start_pfn = 0; |
5953 | unsigned long end_pfn = 0; | |
9109fb7b | 5954 | |
88fdf75d | 5955 | /* pg_data_t should be reset to zero when it's allocated */ |
38087d9b | 5956 | WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx); |
88fdf75d | 5957 | |
3a80a7fa | 5958 | reset_deferred_meminit(pgdat); |
1da177e4 LT |
5959 | pgdat->node_id = nid; |
5960 | pgdat->node_start_pfn = node_start_pfn; | |
75ef7184 | 5961 | pgdat->per_cpu_nodestats = NULL; |
7960aedd ZY |
5962 | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP |
5963 | get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); | |
8d29e18a | 5964 | pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, |
4ada0c5a ZL |
5965 | (u64)start_pfn << PAGE_SHIFT, |
5966 | end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); | |
d91749c1 TI |
5967 | #else |
5968 | start_pfn = node_start_pfn; | |
7960aedd ZY |
5969 | #endif |
5970 | calculate_node_totalpages(pgdat, start_pfn, end_pfn, | |
5971 | zones_size, zholes_size); | |
1da177e4 LT |
5972 | |
5973 | alloc_node_mem_map(pgdat); | |
e8c27ac9 YL |
5974 | #ifdef CONFIG_FLAT_NODE_MEM_MAP |
5975 | printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", | |
5976 | nid, (unsigned long)pgdat, | |
5977 | (unsigned long)pgdat->node_mem_map); | |
5978 | #endif | |
1da177e4 | 5979 | |
7f3eb55b | 5980 | free_area_init_core(pgdat); |
1da177e4 LT |
5981 | } |
5982 | ||
0ee332c1 | 5983 | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP |
418508c1 MS |
5984 | |
5985 | #if MAX_NUMNODES > 1 | |
5986 | /* | |
5987 | * Figure out the number of possible node ids. | |
5988 | */ | |
f9872caf | 5989 | void __init setup_nr_node_ids(void) |
418508c1 | 5990 | { |
904a9553 | 5991 | unsigned int highest; |
418508c1 | 5992 | |
904a9553 | 5993 | highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); |
418508c1 MS |
5994 | nr_node_ids = highest + 1; |
5995 | } | |
418508c1 MS |
5996 | #endif |
5997 | ||
1e01979c TH |
5998 | /** |
5999 | * node_map_pfn_alignment - determine the maximum internode alignment | |
6000 | * | |
6001 | * This function should be called after node map is populated and sorted. | |
6002 | * It calculates the maximum power of two alignment which can distinguish | |
6003 | * all the nodes. | |
6004 | * | |
6005 | * For example, if all nodes are 1GiB and aligned to 1GiB, the return value | |
6006 | * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the | |
6007 | * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is | |
6008 | * shifted, 1GiB is enough and this function will indicate so. | |
6009 | * | |
6010 | * This is used to test whether pfn -> nid mapping of the chosen memory | |
6011 | * model has fine enough granularity to avoid incorrect mapping for the | |
6012 | * populated node map. | |
6013 | * | |
6014 | * Returns the determined alignment in pfn's. 0 if there is no alignment | |
6015 | * requirement (single node). | |
6016 | */ | |
6017 | unsigned long __init node_map_pfn_alignment(void) | |
6018 | { | |
6019 | unsigned long accl_mask = 0, last_end = 0; | |
c13291a5 | 6020 | unsigned long start, end, mask; |
1e01979c | 6021 | int last_nid = -1; |
c13291a5 | 6022 | int i, nid; |
1e01979c | 6023 | |
c13291a5 | 6024 | for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { |
1e01979c TH |
6025 | if (!start || last_nid < 0 || last_nid == nid) { |
6026 | last_nid = nid; | |
6027 | last_end = end; | |
6028 | continue; | |
6029 | } | |
6030 | ||
6031 | /* | |
6032 | * Start with a mask granular enough to pin-point to the | |
6033 | * start pfn and tick off bits one-by-one until it becomes | |
6034 | * too coarse to separate the current node from the last. | |
6035 | */ | |
6036 | mask = ~((1 << __ffs(start)) - 1); | |
6037 | while (mask && last_end <= (start & (mask << 1))) | |
6038 | mask <<= 1; | |
6039 | ||
6040 | /* accumulate all internode masks */ | |
6041 | accl_mask |= mask; | |
6042 | } | |
6043 | ||
6044 | /* convert mask to number of pages */ | |
6045 | return ~accl_mask + 1; | |
6046 | } | |
6047 | ||
a6af2bc3 | 6048 | /* Find the lowest pfn for a node */ |
b69a7288 | 6049 | static unsigned long __init find_min_pfn_for_node(int nid) |
c713216d | 6050 | { |
a6af2bc3 | 6051 | unsigned long min_pfn = ULONG_MAX; |
c13291a5 TH |
6052 | unsigned long start_pfn; |
6053 | int i; | |
1abbfb41 | 6054 | |
c13291a5 TH |
6055 | for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) |
6056 | min_pfn = min(min_pfn, start_pfn); | |
c713216d | 6057 | |
a6af2bc3 | 6058 | if (min_pfn == ULONG_MAX) { |
1170532b | 6059 | pr_warn("Could not find start_pfn for node %d\n", nid); |
a6af2bc3 MG |
6060 | return 0; |
6061 | } | |
6062 | ||
6063 | return min_pfn; | |
c713216d MG |
6064 | } |
6065 | ||
6066 | /** | |
6067 | * find_min_pfn_with_active_regions - Find the minimum PFN registered | |
6068 | * | |
6069 | * It returns the minimum PFN based on information provided via | |
7d018176 | 6070 | * memblock_set_node(). |
c713216d MG |
6071 | */ |
6072 | unsigned long __init find_min_pfn_with_active_regions(void) | |
6073 | { | |
6074 | return find_min_pfn_for_node(MAX_NUMNODES); | |
6075 | } | |
6076 | ||
37b07e41 LS |
6077 | /* |
6078 | * early_calculate_totalpages() | |
6079 | * Sum pages in active regions for movable zone. | |
4b0ef1fe | 6080 | * Populate N_MEMORY for calculating usable_nodes. |
37b07e41 | 6081 | */ |
484f51f8 | 6082 | static unsigned long __init early_calculate_totalpages(void) |
7e63efef | 6083 | { |
7e63efef | 6084 | unsigned long totalpages = 0; |
c13291a5 TH |
6085 | unsigned long start_pfn, end_pfn; |
6086 | int i, nid; | |
6087 | ||
6088 | for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { | |
6089 | unsigned long pages = end_pfn - start_pfn; | |
7e63efef | 6090 | |
37b07e41 LS |
6091 | totalpages += pages; |
6092 | if (pages) | |
4b0ef1fe | 6093 | node_set_state(nid, N_MEMORY); |
37b07e41 | 6094 | } |
b8af2941 | 6095 | return totalpages; |
7e63efef MG |
6096 | } |
6097 | ||
2a1e274a MG |
6098 | /* |
6099 | * Find the PFN the Movable zone begins in each node. Kernel memory | |
6100 | * is spread evenly between nodes as long as the nodes have enough | |
6101 | * memory. When they don't, some nodes will have more kernelcore than | |
6102 | * others | |
6103 | */ | |
b224ef85 | 6104 | static void __init find_zone_movable_pfns_for_nodes(void) |
2a1e274a MG |
6105 | { |
6106 | int i, nid; | |
6107 | unsigned long usable_startpfn; | |
6108 | unsigned long kernelcore_node, kernelcore_remaining; | |
66918dcd | 6109 | /* save the state before borrow the nodemask */ |
4b0ef1fe | 6110 | nodemask_t saved_node_state = node_states[N_MEMORY]; |
37b07e41 | 6111 | unsigned long totalpages = early_calculate_totalpages(); |
4b0ef1fe | 6112 | int usable_nodes = nodes_weight(node_states[N_MEMORY]); |
136199f0 | 6113 | struct memblock_region *r; |
b2f3eebe TC |
6114 | |
6115 | /* Need to find movable_zone earlier when movable_node is specified. */ | |
6116 | find_usable_zone_for_movable(); | |
6117 | ||
6118 | /* | |
6119 | * If movable_node is specified, ignore kernelcore and movablecore | |
6120 | * options. | |
6121 | */ | |
6122 | if (movable_node_is_enabled()) { | |
136199f0 EM |
6123 | for_each_memblock(memory, r) { |
6124 | if (!memblock_is_hotpluggable(r)) | |
b2f3eebe TC |
6125 | continue; |
6126 | ||
136199f0 | 6127 | nid = r->nid; |
b2f3eebe | 6128 | |
136199f0 | 6129 | usable_startpfn = PFN_DOWN(r->base); |
b2f3eebe TC |
6130 | zone_movable_pfn[nid] = zone_movable_pfn[nid] ? |
6131 | min(usable_startpfn, zone_movable_pfn[nid]) : | |
6132 | usable_startpfn; | |
6133 | } | |
6134 | ||
6135 | goto out2; | |
6136 | } | |
2a1e274a | 6137 | |
342332e6 TI |
6138 | /* |
6139 | * If kernelcore=mirror is specified, ignore movablecore option | |
6140 | */ | |
6141 | if (mirrored_kernelcore) { | |
6142 | bool mem_below_4gb_not_mirrored = false; | |
6143 | ||
6144 | for_each_memblock(memory, r) { | |
6145 | if (memblock_is_mirror(r)) | |
6146 | continue; | |
6147 | ||
6148 | nid = r->nid; | |
6149 | ||
6150 | usable_startpfn = memblock_region_memory_base_pfn(r); | |
6151 | ||
6152 | if (usable_startpfn < 0x100000) { | |
6153 | mem_below_4gb_not_mirrored = true; | |
6154 | continue; | |
6155 | } | |
6156 | ||
6157 | zone_movable_pfn[nid] = zone_movable_pfn[nid] ? | |
6158 | min(usable_startpfn, zone_movable_pfn[nid]) : | |
6159 | usable_startpfn; | |
6160 | } | |
6161 | ||
6162 | if (mem_below_4gb_not_mirrored) | |
6163 | pr_warn("This configuration results in unmirrored kernel memory."); | |
6164 | ||
6165 | goto out2; | |
6166 | } | |
6167 | ||
7e63efef | 6168 | /* |
b2f3eebe | 6169 | * If movablecore=nn[KMG] was specified, calculate what size of |
7e63efef MG |
6170 | * kernelcore that corresponds so that memory usable for |
6171 | * any allocation type is evenly spread. If both kernelcore | |
6172 | * and movablecore are specified, then the value of kernelcore | |
6173 | * will be used for required_kernelcore if it's greater than | |
6174 | * what movablecore would have allowed. | |
6175 | */ | |
6176 | if (required_movablecore) { | |
7e63efef MG |
6177 | unsigned long corepages; |
6178 | ||
6179 | /* | |
6180 | * Round-up so that ZONE_MOVABLE is at least as large as what | |
6181 | * was requested by the user | |
6182 | */ | |
6183 | required_movablecore = | |
6184 | roundup(required_movablecore, MAX_ORDER_NR_PAGES); | |
9fd745d4 | 6185 | required_movablecore = min(totalpages, required_movablecore); |
7e63efef MG |
6186 | corepages = totalpages - required_movablecore; |
6187 | ||
6188 | required_kernelcore = max(required_kernelcore, corepages); | |
6189 | } | |
6190 | ||
bde304bd XQ |
6191 | /* |
6192 | * If kernelcore was not specified or kernelcore size is larger | |
6193 | * than totalpages, there is no ZONE_MOVABLE. | |
6194 | */ | |
6195 | if (!required_kernelcore || required_kernelcore >= totalpages) | |
66918dcd | 6196 | goto out; |
2a1e274a MG |
6197 | |
6198 | /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ | |
2a1e274a MG |
6199 | usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; |
6200 | ||
6201 | restart: | |
6202 | /* Spread kernelcore memory as evenly as possible throughout nodes */ | |
6203 | kernelcore_node = required_kernelcore / usable_nodes; | |
4b0ef1fe | 6204 | for_each_node_state(nid, N_MEMORY) { |
c13291a5 TH |
6205 | unsigned long start_pfn, end_pfn; |
6206 | ||
2a1e274a MG |
6207 | /* |
6208 | * Recalculate kernelcore_node if the division per node | |
6209 | * now exceeds what is necessary to satisfy the requested | |
6210 | * amount of memory for the kernel | |
6211 | */ | |
6212 | if (required_kernelcore < kernelcore_node) | |
6213 | kernelcore_node = required_kernelcore / usable_nodes; | |
6214 | ||
6215 | /* | |
6216 | * As the map is walked, we track how much memory is usable | |
6217 | * by the kernel using kernelcore_remaining. When it is | |
6218 | * 0, the rest of the node is usable by ZONE_MOVABLE | |
6219 | */ | |
6220 | kernelcore_remaining = kernelcore_node; | |
6221 | ||
6222 | /* Go through each range of PFNs within this node */ | |
c13291a5 | 6223 | for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { |
2a1e274a MG |
6224 | unsigned long size_pages; |
6225 | ||
c13291a5 | 6226 | start_pfn = max(start_pfn, zone_movable_pfn[nid]); |
2a1e274a MG |
6227 | if (start_pfn >= end_pfn) |
6228 | continue; | |
6229 | ||
6230 | /* Account for what is only usable for kernelcore */ | |
6231 | if (start_pfn < usable_startpfn) { | |
6232 | unsigned long kernel_pages; | |
6233 | kernel_pages = min(end_pfn, usable_startpfn) | |
6234 | - start_pfn; | |
6235 | ||
6236 | kernelcore_remaining -= min(kernel_pages, | |
6237 | kernelcore_remaining); | |
6238 | required_kernelcore -= min(kernel_pages, | |
6239 | required_kernelcore); | |
6240 | ||
6241 | /* Continue if range is now fully accounted */ | |
6242 | if (end_pfn <= usable_startpfn) { | |
6243 | ||
6244 | /* | |
6245 | * Push zone_movable_pfn to the end so | |
6246 | * that if we have to rebalance | |
6247 | * kernelcore across nodes, we will | |
6248 | * not double account here | |
6249 | */ | |
6250 | zone_movable_pfn[nid] = end_pfn; | |
6251 | continue; | |
6252 | } | |
6253 | start_pfn = usable_startpfn; | |
6254 | } | |
6255 | ||
6256 | /* | |
6257 | * The usable PFN range for ZONE_MOVABLE is from | |
6258 | * start_pfn->end_pfn. Calculate size_pages as the | |
6259 | * number of pages used as kernelcore | |
6260 | */ | |
6261 | size_pages = end_pfn - start_pfn; | |
6262 | if (size_pages > kernelcore_remaining) | |
6263 | size_pages = kernelcore_remaining; | |
6264 | zone_movable_pfn[nid] = start_pfn + size_pages; | |
6265 | ||
6266 | /* | |
6267 | * Some kernelcore has been met, update counts and | |
6268 | * break if the kernelcore for this node has been | |
b8af2941 | 6269 | * satisfied |
2a1e274a MG |
6270 | */ |
6271 | required_kernelcore -= min(required_kernelcore, | |
6272 | size_pages); | |
6273 | kernelcore_remaining -= size_pages; | |
6274 | if (!kernelcore_remaining) | |
6275 | break; | |
6276 | } | |
6277 | } | |
6278 | ||
6279 | /* | |
6280 | * If there is still required_kernelcore, we do another pass with one | |
6281 | * less node in the count. This will push zone_movable_pfn[nid] further | |
6282 | * along on the nodes that still have memory until kernelcore is | |
b8af2941 | 6283 | * satisfied |
2a1e274a MG |
6284 | */ |
6285 | usable_nodes--; | |
6286 | if (usable_nodes && required_kernelcore > usable_nodes) | |
6287 | goto restart; | |
6288 | ||
b2f3eebe | 6289 | out2: |
2a1e274a MG |
6290 | /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ |
6291 | for (nid = 0; nid < MAX_NUMNODES; nid++) | |
6292 | zone_movable_pfn[nid] = | |
6293 | roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); | |
66918dcd | 6294 | |
20e6926d | 6295 | out: |
66918dcd | 6296 | /* restore the node_state */ |
4b0ef1fe | 6297 | node_states[N_MEMORY] = saved_node_state; |
2a1e274a MG |
6298 | } |
6299 | ||
4b0ef1fe LJ |
6300 | /* Any regular or high memory on that node ? */ |
6301 | static void check_for_memory(pg_data_t *pgdat, int nid) | |
37b07e41 | 6302 | { |
37b07e41 LS |
6303 | enum zone_type zone_type; |
6304 | ||
4b0ef1fe LJ |
6305 | if (N_MEMORY == N_NORMAL_MEMORY) |
6306 | return; | |
6307 | ||
6308 | for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { | |
37b07e41 | 6309 | struct zone *zone = &pgdat->node_zones[zone_type]; |
b38a8725 | 6310 | if (populated_zone(zone)) { |
4b0ef1fe LJ |
6311 | node_set_state(nid, N_HIGH_MEMORY); |
6312 | if (N_NORMAL_MEMORY != N_HIGH_MEMORY && | |
6313 | zone_type <= ZONE_NORMAL) | |
6314 | node_set_state(nid, N_NORMAL_MEMORY); | |
d0048b0e BL |
6315 | break; |
6316 | } | |
37b07e41 | 6317 | } |
37b07e41 LS |
6318 | } |
6319 | ||
c713216d MG |
6320 | /** |
6321 | * free_area_init_nodes - Initialise all pg_data_t and zone data | |
88ca3b94 | 6322 | * @max_zone_pfn: an array of max PFNs for each zone |
c713216d MG |
6323 | * |
6324 | * This will call free_area_init_node() for each active node in the system. | |
7d018176 | 6325 | * Using the page ranges provided by memblock_set_node(), the size of each |
c713216d MG |
6326 | * zone in each node and their holes is calculated. If the maximum PFN |
6327 | * between two adjacent zones match, it is assumed that the zone is empty. | |
6328 | * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed | |
6329 | * that arch_max_dma32_pfn has no pages. It is also assumed that a zone | |
6330 | * starts where the previous one ended. For example, ZONE_DMA32 starts | |
6331 | * at arch_max_dma_pfn. | |
6332 | */ | |
6333 | void __init free_area_init_nodes(unsigned long *max_zone_pfn) | |
6334 | { | |
c13291a5 TH |
6335 | unsigned long start_pfn, end_pfn; |
6336 | int i, nid; | |
a6af2bc3 | 6337 | |
c713216d MG |
6338 | /* Record where the zone boundaries are */ |
6339 | memset(arch_zone_lowest_possible_pfn, 0, | |
6340 | sizeof(arch_zone_lowest_possible_pfn)); | |
6341 | memset(arch_zone_highest_possible_pfn, 0, | |
6342 | sizeof(arch_zone_highest_possible_pfn)); | |
90cae1fe OH |
6343 | |
6344 | start_pfn = find_min_pfn_with_active_regions(); | |
6345 | ||
6346 | for (i = 0; i < MAX_NR_ZONES; i++) { | |
2a1e274a MG |
6347 | if (i == ZONE_MOVABLE) |
6348 | continue; | |
90cae1fe OH |
6349 | |
6350 | end_pfn = max(max_zone_pfn[i], start_pfn); | |
6351 | arch_zone_lowest_possible_pfn[i] = start_pfn; | |
6352 | arch_zone_highest_possible_pfn[i] = end_pfn; | |
6353 | ||
6354 | start_pfn = end_pfn; | |
c713216d | 6355 | } |
2a1e274a MG |
6356 | arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; |
6357 | arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; | |
6358 | ||
6359 | /* Find the PFNs that ZONE_MOVABLE begins at in each node */ | |
6360 | memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); | |
b224ef85 | 6361 | find_zone_movable_pfns_for_nodes(); |
c713216d | 6362 | |
c713216d | 6363 | /* Print out the zone ranges */ |
f88dfff5 | 6364 | pr_info("Zone ranges:\n"); |
2a1e274a MG |
6365 | for (i = 0; i < MAX_NR_ZONES; i++) { |
6366 | if (i == ZONE_MOVABLE) | |
6367 | continue; | |
f88dfff5 | 6368 | pr_info(" %-8s ", zone_names[i]); |
72f0ba02 DR |
6369 | if (arch_zone_lowest_possible_pfn[i] == |
6370 | arch_zone_highest_possible_pfn[i]) | |
f88dfff5 | 6371 | pr_cont("empty\n"); |
72f0ba02 | 6372 | else |
8d29e18a JG |
6373 | pr_cont("[mem %#018Lx-%#018Lx]\n", |
6374 | (u64)arch_zone_lowest_possible_pfn[i] | |
6375 | << PAGE_SHIFT, | |
6376 | ((u64)arch_zone_highest_possible_pfn[i] | |
a62e2f4f | 6377 | << PAGE_SHIFT) - 1); |
2a1e274a MG |
6378 | } |
6379 | ||
6380 | /* Print out the PFNs ZONE_MOVABLE begins at in each node */ | |
f88dfff5 | 6381 | pr_info("Movable zone start for each node\n"); |
2a1e274a MG |
6382 | for (i = 0; i < MAX_NUMNODES; i++) { |
6383 | if (zone_movable_pfn[i]) | |
8d29e18a JG |
6384 | pr_info(" Node %d: %#018Lx\n", i, |
6385 | (u64)zone_movable_pfn[i] << PAGE_SHIFT); | |
2a1e274a | 6386 | } |
c713216d | 6387 | |
f2d52fe5 | 6388 | /* Print out the early node map */ |
f88dfff5 | 6389 | pr_info("Early memory node ranges\n"); |
c13291a5 | 6390 | for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) |
8d29e18a JG |
6391 | pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, |
6392 | (u64)start_pfn << PAGE_SHIFT, | |
6393 | ((u64)end_pfn << PAGE_SHIFT) - 1); | |
c713216d MG |
6394 | |
6395 | /* Initialise every node */ | |
708614e6 | 6396 | mminit_verify_pageflags_layout(); |
8ef82866 | 6397 | setup_nr_node_ids(); |
c713216d MG |
6398 | for_each_online_node(nid) { |
6399 | pg_data_t *pgdat = NODE_DATA(nid); | |
9109fb7b | 6400 | free_area_init_node(nid, NULL, |
c713216d | 6401 | find_min_pfn_for_node(nid), NULL); |
37b07e41 LS |
6402 | |
6403 | /* Any memory on that node */ | |
6404 | if (pgdat->node_present_pages) | |
4b0ef1fe LJ |
6405 | node_set_state(nid, N_MEMORY); |
6406 | check_for_memory(pgdat, nid); | |
c713216d MG |
6407 | } |
6408 | } | |
2a1e274a | 6409 | |
7e63efef | 6410 | static int __init cmdline_parse_core(char *p, unsigned long *core) |
2a1e274a MG |
6411 | { |
6412 | unsigned long long coremem; | |
6413 | if (!p) | |
6414 | return -EINVAL; | |
6415 | ||
6416 | coremem = memparse(p, &p); | |
7e63efef | 6417 | *core = coremem >> PAGE_SHIFT; |
2a1e274a | 6418 | |
7e63efef | 6419 | /* Paranoid check that UL is enough for the coremem value */ |
2a1e274a MG |
6420 | WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); |
6421 | ||
6422 | return 0; | |
6423 | } | |
ed7ed365 | 6424 | |
7e63efef MG |
6425 | /* |
6426 | * kernelcore=size sets the amount of memory for use for allocations that | |
6427 | * cannot be reclaimed or migrated. | |
6428 | */ | |
6429 | static int __init cmdline_parse_kernelcore(char *p) | |
6430 | { | |
342332e6 TI |
6431 | /* parse kernelcore=mirror */ |
6432 | if (parse_option_str(p, "mirror")) { | |
6433 | mirrored_kernelcore = true; | |
6434 | return 0; | |
6435 | } | |
6436 | ||
7e63efef MG |
6437 | return cmdline_parse_core(p, &required_kernelcore); |
6438 | } | |
6439 | ||
6440 | /* | |
6441 | * movablecore=size sets the amount of memory for use for allocations that | |
6442 | * can be reclaimed or migrated. | |
6443 | */ | |
6444 | static int __init cmdline_parse_movablecore(char *p) | |
6445 | { | |
6446 | return cmdline_parse_core(p, &required_movablecore); | |
6447 | } | |
6448 | ||
ed7ed365 | 6449 | early_param("kernelcore", cmdline_parse_kernelcore); |
7e63efef | 6450 | early_param("movablecore", cmdline_parse_movablecore); |
ed7ed365 | 6451 | |
0ee332c1 | 6452 | #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ |
c713216d | 6453 | |
c3d5f5f0 JL |
6454 | void adjust_managed_page_count(struct page *page, long count) |
6455 | { | |
6456 | spin_lock(&managed_page_count_lock); | |
6457 | page_zone(page)->managed_pages += count; | |
6458 | totalram_pages += count; | |
3dcc0571 JL |
6459 | #ifdef CONFIG_HIGHMEM |
6460 | if (PageHighMem(page)) | |
6461 | totalhigh_pages += count; | |
6462 | #endif | |
c3d5f5f0 JL |
6463 | spin_unlock(&managed_page_count_lock); |
6464 | } | |
3dcc0571 | 6465 | EXPORT_SYMBOL(adjust_managed_page_count); |
c3d5f5f0 | 6466 | |
11199692 | 6467 | unsigned long free_reserved_area(void *start, void *end, int poison, char *s) |
69afade7 | 6468 | { |
11199692 JL |
6469 | void *pos; |
6470 | unsigned long pages = 0; | |
69afade7 | 6471 | |
11199692 JL |
6472 | start = (void *)PAGE_ALIGN((unsigned long)start); |
6473 | end = (void *)((unsigned long)end & PAGE_MASK); | |
6474 | for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { | |
dbe67df4 | 6475 | if ((unsigned int)poison <= 0xFF) |
11199692 JL |
6476 | memset(pos, poison, PAGE_SIZE); |
6477 | free_reserved_page(virt_to_page(pos)); | |
69afade7 JL |
6478 | } |
6479 | ||
6480 | if (pages && s) | |
11199692 | 6481 | pr_info("Freeing %s memory: %ldK (%p - %p)\n", |
69afade7 JL |
6482 | s, pages << (PAGE_SHIFT - 10), start, end); |
6483 | ||
6484 | return pages; | |
6485 | } | |
11199692 | 6486 | EXPORT_SYMBOL(free_reserved_area); |
69afade7 | 6487 | |
cfa11e08 JL |
6488 | #ifdef CONFIG_HIGHMEM |
6489 | void free_highmem_page(struct page *page) | |
6490 | { | |
6491 | __free_reserved_page(page); | |
6492 | totalram_pages++; | |
7b4b2a0d | 6493 | page_zone(page)->managed_pages++; |
cfa11e08 JL |
6494 | totalhigh_pages++; |
6495 | } | |
6496 | #endif | |
6497 | ||
7ee3d4e8 JL |
6498 | |
6499 | void __init mem_init_print_info(const char *str) | |
6500 | { | |
6501 | unsigned long physpages, codesize, datasize, rosize, bss_size; | |
6502 | unsigned long init_code_size, init_data_size; | |
6503 | ||
6504 | physpages = get_num_physpages(); | |
6505 | codesize = _etext - _stext; | |
6506 | datasize = _edata - _sdata; | |
6507 | rosize = __end_rodata - __start_rodata; | |
6508 | bss_size = __bss_stop - __bss_start; | |
6509 | init_data_size = __init_end - __init_begin; | |
6510 | init_code_size = _einittext - _sinittext; | |
6511 | ||
6512 | /* | |
6513 | * Detect special cases and adjust section sizes accordingly: | |
6514 | * 1) .init.* may be embedded into .data sections | |
6515 | * 2) .init.text.* may be out of [__init_begin, __init_end], | |
6516 | * please refer to arch/tile/kernel/vmlinux.lds.S. | |
6517 | * 3) .rodata.* may be embedded into .text or .data sections. | |
6518 | */ | |
6519 | #define adj_init_size(start, end, size, pos, adj) \ | |
b8af2941 PK |
6520 | do { \ |
6521 | if (start <= pos && pos < end && size > adj) \ | |
6522 | size -= adj; \ | |
6523 | } while (0) | |
7ee3d4e8 JL |
6524 | |
6525 | adj_init_size(__init_begin, __init_end, init_data_size, | |
6526 | _sinittext, init_code_size); | |
6527 | adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); | |
6528 | adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); | |
6529 | adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); | |
6530 | adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); | |
6531 | ||
6532 | #undef adj_init_size | |
6533 | ||
756a025f | 6534 | pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" |
7ee3d4e8 | 6535 | #ifdef CONFIG_HIGHMEM |
756a025f | 6536 | ", %luK highmem" |
7ee3d4e8 | 6537 | #endif |
756a025f JP |
6538 | "%s%s)\n", |
6539 | nr_free_pages() << (PAGE_SHIFT - 10), | |
6540 | physpages << (PAGE_SHIFT - 10), | |
6541 | codesize >> 10, datasize >> 10, rosize >> 10, | |
6542 | (init_data_size + init_code_size) >> 10, bss_size >> 10, | |
6543 | (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10), | |
6544 | totalcma_pages << (PAGE_SHIFT - 10), | |
7ee3d4e8 | 6545 | #ifdef CONFIG_HIGHMEM |
756a025f | 6546 | totalhigh_pages << (PAGE_SHIFT - 10), |
7ee3d4e8 | 6547 | #endif |
756a025f | 6548 | str ? ", " : "", str ? str : ""); |
7ee3d4e8 JL |
6549 | } |
6550 | ||
0e0b864e | 6551 | /** |
88ca3b94 RD |
6552 | * set_dma_reserve - set the specified number of pages reserved in the first zone |
6553 | * @new_dma_reserve: The number of pages to mark reserved | |
0e0b864e | 6554 | * |
013110a7 | 6555 | * The per-cpu batchsize and zone watermarks are determined by managed_pages. |
0e0b864e MG |
6556 | * In the DMA zone, a significant percentage may be consumed by kernel image |
6557 | * and other unfreeable allocations which can skew the watermarks badly. This | |
88ca3b94 RD |
6558 | * function may optionally be used to account for unfreeable pages in the |
6559 | * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and | |
6560 | * smaller per-cpu batchsize. | |
0e0b864e MG |
6561 | */ |
6562 | void __init set_dma_reserve(unsigned long new_dma_reserve) | |
6563 | { | |
6564 | dma_reserve = new_dma_reserve; | |
6565 | } | |
6566 | ||
1da177e4 LT |
6567 | void __init free_area_init(unsigned long *zones_size) |
6568 | { | |
9109fb7b | 6569 | free_area_init_node(0, zones_size, |
1da177e4 LT |
6570 | __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); |
6571 | } | |
1da177e4 | 6572 | |
1da177e4 LT |
6573 | static int page_alloc_cpu_notify(struct notifier_block *self, |
6574 | unsigned long action, void *hcpu) | |
6575 | { | |
6576 | int cpu = (unsigned long)hcpu; | |
1da177e4 | 6577 | |
8bb78442 | 6578 | if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { |
f0cb3c76 | 6579 | lru_add_drain_cpu(cpu); |
9f8f2172 CL |
6580 | drain_pages(cpu); |
6581 | ||
6582 | /* | |
6583 | * Spill the event counters of the dead processor | |
6584 | * into the current processors event counters. | |
6585 | * This artificially elevates the count of the current | |
6586 | * processor. | |
6587 | */ | |
f8891e5e | 6588 | vm_events_fold_cpu(cpu); |
9f8f2172 CL |
6589 | |
6590 | /* | |
6591 | * Zero the differential counters of the dead processor | |
6592 | * so that the vm statistics are consistent. | |
6593 | * | |
6594 | * This is only okay since the processor is dead and cannot | |
6595 | * race with what we are doing. | |
6596 | */ | |
2bb921e5 | 6597 | cpu_vm_stats_fold(cpu); |
1da177e4 LT |
6598 | } |
6599 | return NOTIFY_OK; | |
6600 | } | |
1da177e4 LT |
6601 | |
6602 | void __init page_alloc_init(void) | |
6603 | { | |
6604 | hotcpu_notifier(page_alloc_cpu_notify, 0); | |
6605 | } | |
6606 | ||
cb45b0e9 | 6607 | /* |
34b10060 | 6608 | * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio |
cb45b0e9 HA |
6609 | * or min_free_kbytes changes. |
6610 | */ | |
6611 | static void calculate_totalreserve_pages(void) | |
6612 | { | |
6613 | struct pglist_data *pgdat; | |
6614 | unsigned long reserve_pages = 0; | |
2f6726e5 | 6615 | enum zone_type i, j; |
cb45b0e9 HA |
6616 | |
6617 | for_each_online_pgdat(pgdat) { | |
281e3726 MG |
6618 | |
6619 | pgdat->totalreserve_pages = 0; | |
6620 | ||
cb45b0e9 HA |
6621 | for (i = 0; i < MAX_NR_ZONES; i++) { |
6622 | struct zone *zone = pgdat->node_zones + i; | |
3484b2de | 6623 | long max = 0; |
cb45b0e9 HA |
6624 | |
6625 | /* Find valid and maximum lowmem_reserve in the zone */ | |
6626 | for (j = i; j < MAX_NR_ZONES; j++) { | |
6627 | if (zone->lowmem_reserve[j] > max) | |
6628 | max = zone->lowmem_reserve[j]; | |
6629 | } | |
6630 | ||
41858966 MG |
6631 | /* we treat the high watermark as reserved pages. */ |
6632 | max += high_wmark_pages(zone); | |
cb45b0e9 | 6633 | |
b40da049 JL |
6634 | if (max > zone->managed_pages) |
6635 | max = zone->managed_pages; | |
a8d01437 | 6636 | |
281e3726 | 6637 | pgdat->totalreserve_pages += max; |
a8d01437 | 6638 | |
cb45b0e9 HA |
6639 | reserve_pages += max; |
6640 | } | |
6641 | } | |
6642 | totalreserve_pages = reserve_pages; | |
6643 | } | |
6644 | ||
1da177e4 LT |
6645 | /* |
6646 | * setup_per_zone_lowmem_reserve - called whenever | |
34b10060 | 6647 | * sysctl_lowmem_reserve_ratio changes. Ensures that each zone |
1da177e4 LT |
6648 | * has a correct pages reserved value, so an adequate number of |
6649 | * pages are left in the zone after a successful __alloc_pages(). | |
6650 | */ | |
6651 | static void setup_per_zone_lowmem_reserve(void) | |
6652 | { | |
6653 | struct pglist_data *pgdat; | |
2f6726e5 | 6654 | enum zone_type j, idx; |
1da177e4 | 6655 | |
ec936fc5 | 6656 | for_each_online_pgdat(pgdat) { |
1da177e4 LT |
6657 | for (j = 0; j < MAX_NR_ZONES; j++) { |
6658 | struct zone *zone = pgdat->node_zones + j; | |
b40da049 | 6659 | unsigned long managed_pages = zone->managed_pages; |
1da177e4 LT |
6660 | |
6661 | zone->lowmem_reserve[j] = 0; | |
6662 | ||
2f6726e5 CL |
6663 | idx = j; |
6664 | while (idx) { | |
1da177e4 LT |
6665 | struct zone *lower_zone; |
6666 | ||
2f6726e5 CL |
6667 | idx--; |
6668 | ||
1da177e4 LT |
6669 | if (sysctl_lowmem_reserve_ratio[idx] < 1) |
6670 | sysctl_lowmem_reserve_ratio[idx] = 1; | |
6671 | ||
6672 | lower_zone = pgdat->node_zones + idx; | |
b40da049 | 6673 | lower_zone->lowmem_reserve[j] = managed_pages / |
1da177e4 | 6674 | sysctl_lowmem_reserve_ratio[idx]; |
b40da049 | 6675 | managed_pages += lower_zone->managed_pages; |
1da177e4 LT |
6676 | } |
6677 | } | |
6678 | } | |
cb45b0e9 HA |
6679 | |
6680 | /* update totalreserve_pages */ | |
6681 | calculate_totalreserve_pages(); | |
1da177e4 LT |
6682 | } |
6683 | ||
cfd3da1e | 6684 | static void __setup_per_zone_wmarks(void) |
1da177e4 LT |
6685 | { |
6686 | unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); | |
6687 | unsigned long lowmem_pages = 0; | |
6688 | struct zone *zone; | |
6689 | unsigned long flags; | |
6690 | ||
6691 | /* Calculate total number of !ZONE_HIGHMEM pages */ | |
6692 | for_each_zone(zone) { | |
6693 | if (!is_highmem(zone)) | |
b40da049 | 6694 | lowmem_pages += zone->managed_pages; |
1da177e4 LT |
6695 | } |
6696 | ||
6697 | for_each_zone(zone) { | |
ac924c60 AM |
6698 | u64 tmp; |
6699 | ||
1125b4e3 | 6700 | spin_lock_irqsave(&zone->lock, flags); |
b40da049 | 6701 | tmp = (u64)pages_min * zone->managed_pages; |
ac924c60 | 6702 | do_div(tmp, lowmem_pages); |
1da177e4 LT |
6703 | if (is_highmem(zone)) { |
6704 | /* | |
669ed175 NP |
6705 | * __GFP_HIGH and PF_MEMALLOC allocations usually don't |
6706 | * need highmem pages, so cap pages_min to a small | |
6707 | * value here. | |
6708 | * | |
41858966 | 6709 | * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) |
42ff2703 | 6710 | * deltas control asynch page reclaim, and so should |
669ed175 | 6711 | * not be capped for highmem. |
1da177e4 | 6712 | */ |
90ae8d67 | 6713 | unsigned long min_pages; |
1da177e4 | 6714 | |
b40da049 | 6715 | min_pages = zone->managed_pages / 1024; |
90ae8d67 | 6716 | min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); |
41858966 | 6717 | zone->watermark[WMARK_MIN] = min_pages; |
1da177e4 | 6718 | } else { |
669ed175 NP |
6719 | /* |
6720 | * If it's a lowmem zone, reserve a number of pages | |
1da177e4 LT |
6721 | * proportionate to the zone's size. |
6722 | */ | |
41858966 | 6723 | zone->watermark[WMARK_MIN] = tmp; |
1da177e4 LT |
6724 | } |
6725 | ||
795ae7a0 JW |
6726 | /* |
6727 | * Set the kswapd watermarks distance according to the | |
6728 | * scale factor in proportion to available memory, but | |
6729 | * ensure a minimum size on small systems. | |
6730 | */ | |
6731 | tmp = max_t(u64, tmp >> 2, | |
6732 | mult_frac(zone->managed_pages, | |
6733 | watermark_scale_factor, 10000)); | |
6734 | ||
6735 | zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; | |
6736 | zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2; | |
49f223a9 | 6737 | |
1125b4e3 | 6738 | spin_unlock_irqrestore(&zone->lock, flags); |
1da177e4 | 6739 | } |
cb45b0e9 HA |
6740 | |
6741 | /* update totalreserve_pages */ | |
6742 | calculate_totalreserve_pages(); | |
1da177e4 LT |
6743 | } |
6744 | ||
cfd3da1e MG |
6745 | /** |
6746 | * setup_per_zone_wmarks - called when min_free_kbytes changes | |
6747 | * or when memory is hot-{added|removed} | |
6748 | * | |
6749 | * Ensures that the watermark[min,low,high] values for each zone are set | |
6750 | * correctly with respect to min_free_kbytes. | |
6751 | */ | |
6752 | void setup_per_zone_wmarks(void) | |
6753 | { | |
6754 | mutex_lock(&zonelists_mutex); | |
6755 | __setup_per_zone_wmarks(); | |
6756 | mutex_unlock(&zonelists_mutex); | |
6757 | } | |
6758 | ||
1da177e4 LT |
6759 | /* |
6760 | * Initialise min_free_kbytes. | |
6761 | * | |
6762 | * For small machines we want it small (128k min). For large machines | |
6763 | * we want it large (64MB max). But it is not linear, because network | |
6764 | * bandwidth does not increase linearly with machine size. We use | |
6765 | * | |
b8af2941 | 6766 | * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: |
1da177e4 LT |
6767 | * min_free_kbytes = sqrt(lowmem_kbytes * 16) |
6768 | * | |
6769 | * which yields | |
6770 | * | |
6771 | * 16MB: 512k | |
6772 | * 32MB: 724k | |
6773 | * 64MB: 1024k | |
6774 | * 128MB: 1448k | |
6775 | * 256MB: 2048k | |
6776 | * 512MB: 2896k | |
6777 | * 1024MB: 4096k | |
6778 | * 2048MB: 5792k | |
6779 | * 4096MB: 8192k | |
6780 | * 8192MB: 11584k | |
6781 | * 16384MB: 16384k | |
6782 | */ | |
1b79acc9 | 6783 | int __meminit init_per_zone_wmark_min(void) |
1da177e4 LT |
6784 | { |
6785 | unsigned long lowmem_kbytes; | |
5f12733e | 6786 | int new_min_free_kbytes; |
1da177e4 LT |
6787 | |
6788 | lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); | |
5f12733e MH |
6789 | new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); |
6790 | ||
6791 | if (new_min_free_kbytes > user_min_free_kbytes) { | |
6792 | min_free_kbytes = new_min_free_kbytes; | |
6793 | if (min_free_kbytes < 128) | |
6794 | min_free_kbytes = 128; | |
6795 | if (min_free_kbytes > 65536) | |
6796 | min_free_kbytes = 65536; | |
6797 | } else { | |
6798 | pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", | |
6799 | new_min_free_kbytes, user_min_free_kbytes); | |
6800 | } | |
bc75d33f | 6801 | setup_per_zone_wmarks(); |
a6cccdc3 | 6802 | refresh_zone_stat_thresholds(); |
1da177e4 LT |
6803 | setup_per_zone_lowmem_reserve(); |
6804 | return 0; | |
6805 | } | |
bc22af74 | 6806 | core_initcall(init_per_zone_wmark_min) |
1da177e4 LT |
6807 | |
6808 | /* | |
b8af2941 | 6809 | * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so |
1da177e4 LT |
6810 | * that we can call two helper functions whenever min_free_kbytes |
6811 | * changes. | |
6812 | */ | |
cccad5b9 | 6813 | int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, |
8d65af78 | 6814 | void __user *buffer, size_t *length, loff_t *ppos) |
1da177e4 | 6815 | { |
da8c757b HP |
6816 | int rc; |
6817 | ||
6818 | rc = proc_dointvec_minmax(table, write, buffer, length, ppos); | |
6819 | if (rc) | |
6820 | return rc; | |
6821 | ||
5f12733e MH |
6822 | if (write) { |
6823 | user_min_free_kbytes = min_free_kbytes; | |
bc75d33f | 6824 | setup_per_zone_wmarks(); |
5f12733e | 6825 | } |
1da177e4 LT |
6826 | return 0; |
6827 | } | |
6828 | ||
795ae7a0 JW |
6829 | int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, |
6830 | void __user *buffer, size_t *length, loff_t *ppos) | |
6831 | { | |
6832 | int rc; | |
6833 | ||
6834 | rc = proc_dointvec_minmax(table, write, buffer, length, ppos); | |
6835 | if (rc) | |
6836 | return rc; | |
6837 | ||
6838 | if (write) | |
6839 | setup_per_zone_wmarks(); | |
6840 | ||
6841 | return 0; | |
6842 | } | |
6843 | ||
9614634f | 6844 | #ifdef CONFIG_NUMA |
cccad5b9 | 6845 | int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, |
8d65af78 | 6846 | void __user *buffer, size_t *length, loff_t *ppos) |
9614634f | 6847 | { |
a5f5f91d | 6848 | struct pglist_data *pgdat; |
9614634f CL |
6849 | struct zone *zone; |
6850 | int rc; | |
6851 | ||
8d65af78 | 6852 | rc = proc_dointvec_minmax(table, write, buffer, length, ppos); |
9614634f CL |
6853 | if (rc) |
6854 | return rc; | |
6855 | ||
a5f5f91d | 6856 | for_each_online_pgdat(pgdat) |
81cbcbc2 | 6857 | pgdat->min_unmapped_pages = 0; |
a5f5f91d | 6858 | |
9614634f | 6859 | for_each_zone(zone) |
a5f5f91d | 6860 | zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages * |
9614634f CL |
6861 | sysctl_min_unmapped_ratio) / 100; |
6862 | return 0; | |
6863 | } | |
0ff38490 | 6864 | |
cccad5b9 | 6865 | int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, |
8d65af78 | 6866 | void __user *buffer, size_t *length, loff_t *ppos) |
0ff38490 | 6867 | { |
a5f5f91d | 6868 | struct pglist_data *pgdat; |
0ff38490 CL |
6869 | struct zone *zone; |
6870 | int rc; | |
6871 | ||
8d65af78 | 6872 | rc = proc_dointvec_minmax(table, write, buffer, length, ppos); |
0ff38490 CL |
6873 | if (rc) |
6874 | return rc; | |
6875 | ||
a5f5f91d MG |
6876 | for_each_online_pgdat(pgdat) |
6877 | pgdat->min_slab_pages = 0; | |
6878 | ||
0ff38490 | 6879 | for_each_zone(zone) |
a5f5f91d | 6880 | zone->zone_pgdat->min_slab_pages += (zone->managed_pages * |
0ff38490 CL |
6881 | sysctl_min_slab_ratio) / 100; |
6882 | return 0; | |
6883 | } | |
9614634f CL |
6884 | #endif |
6885 | ||
1da177e4 LT |
6886 | /* |
6887 | * lowmem_reserve_ratio_sysctl_handler - just a wrapper around | |
6888 | * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() | |
6889 | * whenever sysctl_lowmem_reserve_ratio changes. | |
6890 | * | |
6891 | * The reserve ratio obviously has absolutely no relation with the | |
41858966 | 6892 | * minimum watermarks. The lowmem reserve ratio can only make sense |
1da177e4 LT |
6893 | * if in function of the boot time zone sizes. |
6894 | */ | |
cccad5b9 | 6895 | int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, |
8d65af78 | 6896 | void __user *buffer, size_t *length, loff_t *ppos) |
1da177e4 | 6897 | { |
8d65af78 | 6898 | proc_dointvec_minmax(table, write, buffer, length, ppos); |
1da177e4 LT |
6899 | setup_per_zone_lowmem_reserve(); |
6900 | return 0; | |
6901 | } | |
6902 | ||
8ad4b1fb RS |
6903 | /* |
6904 | * percpu_pagelist_fraction - changes the pcp->high for each zone on each | |
b8af2941 PK |
6905 | * cpu. It is the fraction of total pages in each zone that a hot per cpu |
6906 | * pagelist can have before it gets flushed back to buddy allocator. | |
8ad4b1fb | 6907 | */ |
cccad5b9 | 6908 | int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, |
8d65af78 | 6909 | void __user *buffer, size_t *length, loff_t *ppos) |
8ad4b1fb RS |
6910 | { |
6911 | struct zone *zone; | |
7cd2b0a3 | 6912 | int old_percpu_pagelist_fraction; |
8ad4b1fb RS |
6913 | int ret; |
6914 | ||
7cd2b0a3 DR |
6915 | mutex_lock(&pcp_batch_high_lock); |
6916 | old_percpu_pagelist_fraction = percpu_pagelist_fraction; | |
6917 | ||
8d65af78 | 6918 | ret = proc_dointvec_minmax(table, write, buffer, length, ppos); |
7cd2b0a3 DR |
6919 | if (!write || ret < 0) |
6920 | goto out; | |
6921 | ||
6922 | /* Sanity checking to avoid pcp imbalance */ | |
6923 | if (percpu_pagelist_fraction && | |
6924 | percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { | |
6925 | percpu_pagelist_fraction = old_percpu_pagelist_fraction; | |
6926 | ret = -EINVAL; | |
6927 | goto out; | |
6928 | } | |
6929 | ||
6930 | /* No change? */ | |
6931 | if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) | |
6932 | goto out; | |
c8e251fa | 6933 | |
364df0eb | 6934 | for_each_populated_zone(zone) { |
7cd2b0a3 DR |
6935 | unsigned int cpu; |
6936 | ||
22a7f12b | 6937 | for_each_possible_cpu(cpu) |
7cd2b0a3 DR |
6938 | pageset_set_high_and_batch(zone, |
6939 | per_cpu_ptr(zone->pageset, cpu)); | |
8ad4b1fb | 6940 | } |
7cd2b0a3 | 6941 | out: |
c8e251fa | 6942 | mutex_unlock(&pcp_batch_high_lock); |
7cd2b0a3 | 6943 | return ret; |
8ad4b1fb RS |
6944 | } |
6945 | ||
a9919c79 | 6946 | #ifdef CONFIG_NUMA |
f034b5d4 | 6947 | int hashdist = HASHDIST_DEFAULT; |
1da177e4 | 6948 | |
1da177e4 LT |
6949 | static int __init set_hashdist(char *str) |
6950 | { | |
6951 | if (!str) | |
6952 | return 0; | |
6953 | hashdist = simple_strtoul(str, &str, 0); | |
6954 | return 1; | |
6955 | } | |
6956 | __setup("hashdist=", set_hashdist); | |
6957 | #endif | |
6958 | ||
6959 | /* | |
6960 | * allocate a large system hash table from bootmem | |
6961 | * - it is assumed that the hash table must contain an exact power-of-2 | |
6962 | * quantity of entries | |
6963 | * - limit is the number of hash buckets, not the total allocation size | |
6964 | */ | |
6965 | void *__init alloc_large_system_hash(const char *tablename, | |
6966 | unsigned long bucketsize, | |
6967 | unsigned long numentries, | |
6968 | int scale, | |
6969 | int flags, | |
6970 | unsigned int *_hash_shift, | |
6971 | unsigned int *_hash_mask, | |
31fe62b9 TB |
6972 | unsigned long low_limit, |
6973 | unsigned long high_limit) | |
1da177e4 | 6974 | { |
31fe62b9 | 6975 | unsigned long long max = high_limit; |
1da177e4 LT |
6976 | unsigned long log2qty, size; |
6977 | void *table = NULL; | |
6978 | ||
6979 | /* allow the kernel cmdline to have a say */ | |
6980 | if (!numentries) { | |
6981 | /* round applicable memory size up to nearest megabyte */ | |
04903664 | 6982 | numentries = nr_kernel_pages; |
a7e83318 JZ |
6983 | |
6984 | /* It isn't necessary when PAGE_SIZE >= 1MB */ | |
6985 | if (PAGE_SHIFT < 20) | |
6986 | numentries = round_up(numentries, (1<<20)/PAGE_SIZE); | |
1da177e4 LT |
6987 | |
6988 | /* limit to 1 bucket per 2^scale bytes of low memory */ | |
6989 | if (scale > PAGE_SHIFT) | |
6990 | numentries >>= (scale - PAGE_SHIFT); | |
6991 | else | |
6992 | numentries <<= (PAGE_SHIFT - scale); | |
9ab37b8f PM |
6993 | |
6994 | /* Make sure we've got at least a 0-order allocation.. */ | |
2c85f51d JB |
6995 | if (unlikely(flags & HASH_SMALL)) { |
6996 | /* Makes no sense without HASH_EARLY */ | |
6997 | WARN_ON(!(flags & HASH_EARLY)); | |
6998 | if (!(numentries >> *_hash_shift)) { | |
6999 | numentries = 1UL << *_hash_shift; | |
7000 | BUG_ON(!numentries); | |
7001 | } | |
7002 | } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) | |
9ab37b8f | 7003 | numentries = PAGE_SIZE / bucketsize; |
1da177e4 | 7004 | } |
6e692ed3 | 7005 | numentries = roundup_pow_of_two(numentries); |
1da177e4 LT |
7006 | |
7007 | /* limit allocation size to 1/16 total memory by default */ | |
7008 | if (max == 0) { | |
7009 | max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; | |
7010 | do_div(max, bucketsize); | |
7011 | } | |
074b8517 | 7012 | max = min(max, 0x80000000ULL); |
1da177e4 | 7013 | |
31fe62b9 TB |
7014 | if (numentries < low_limit) |
7015 | numentries = low_limit; | |
1da177e4 LT |
7016 | if (numentries > max) |
7017 | numentries = max; | |
7018 | ||
f0d1b0b3 | 7019 | log2qty = ilog2(numentries); |
1da177e4 LT |
7020 | |
7021 | do { | |
7022 | size = bucketsize << log2qty; | |
7023 | if (flags & HASH_EARLY) | |
6782832e | 7024 | table = memblock_virt_alloc_nopanic(size, 0); |
1da177e4 LT |
7025 | else if (hashdist) |
7026 | table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); | |
7027 | else { | |
1037b83b ED |
7028 | /* |
7029 | * If bucketsize is not a power-of-two, we may free | |
a1dd268c MG |
7030 | * some pages at the end of hash table which |
7031 | * alloc_pages_exact() automatically does | |
1037b83b | 7032 | */ |
264ef8a9 | 7033 | if (get_order(size) < MAX_ORDER) { |
a1dd268c | 7034 | table = alloc_pages_exact(size, GFP_ATOMIC); |
264ef8a9 CM |
7035 | kmemleak_alloc(table, size, 1, GFP_ATOMIC); |
7036 | } | |
1da177e4 LT |
7037 | } |
7038 | } while (!table && size > PAGE_SIZE && --log2qty); | |
7039 | ||
7040 | if (!table) | |
7041 | panic("Failed to allocate %s hash table\n", tablename); | |
7042 | ||
1170532b JP |
7043 | pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n", |
7044 | tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size); | |
1da177e4 LT |
7045 | |
7046 | if (_hash_shift) | |
7047 | *_hash_shift = log2qty; | |
7048 | if (_hash_mask) | |
7049 | *_hash_mask = (1 << log2qty) - 1; | |
7050 | ||
7051 | return table; | |
7052 | } | |
a117e66e | 7053 | |
a5d76b54 | 7054 | /* |
80934513 MK |
7055 | * This function checks whether pageblock includes unmovable pages or not. |
7056 | * If @count is not zero, it is okay to include less @count unmovable pages | |
7057 | * | |
b8af2941 | 7058 | * PageLRU check without isolation or lru_lock could race so that |
80934513 MK |
7059 | * MIGRATE_MOVABLE block might include unmovable pages. It means you can't |
7060 | * expect this function should be exact. | |
a5d76b54 | 7061 | */ |
b023f468 WC |
7062 | bool has_unmovable_pages(struct zone *zone, struct page *page, int count, |
7063 | bool skip_hwpoisoned_pages) | |
49ac8255 KH |
7064 | { |
7065 | unsigned long pfn, iter, found; | |
47118af0 MN |
7066 | int mt; |
7067 | ||
49ac8255 KH |
7068 | /* |
7069 | * For avoiding noise data, lru_add_drain_all() should be called | |
80934513 | 7070 | * If ZONE_MOVABLE, the zone never contains unmovable pages |
49ac8255 KH |
7071 | */ |
7072 | if (zone_idx(zone) == ZONE_MOVABLE) | |
80934513 | 7073 | return false; |
47118af0 MN |
7074 | mt = get_pageblock_migratetype(page); |
7075 | if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt)) | |
80934513 | 7076 | return false; |
49ac8255 KH |
7077 | |
7078 | pfn = page_to_pfn(page); | |
7079 | for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { | |
7080 | unsigned long check = pfn + iter; | |
7081 | ||
29723fcc | 7082 | if (!pfn_valid_within(check)) |
49ac8255 | 7083 | continue; |
29723fcc | 7084 | |
49ac8255 | 7085 | page = pfn_to_page(check); |
c8721bbb NH |
7086 | |
7087 | /* | |
7088 | * Hugepages are not in LRU lists, but they're movable. | |
7089 | * We need not scan over tail pages bacause we don't | |
7090 | * handle each tail page individually in migration. | |
7091 | */ | |
7092 | if (PageHuge(page)) { | |
7093 | iter = round_up(iter + 1, 1<<compound_order(page)) - 1; | |
7094 | continue; | |
7095 | } | |
7096 | ||
97d255c8 MK |
7097 | /* |
7098 | * We can't use page_count without pin a page | |
7099 | * because another CPU can free compound page. | |
7100 | * This check already skips compound tails of THP | |
0139aa7b | 7101 | * because their page->_refcount is zero at all time. |
97d255c8 | 7102 | */ |
fe896d18 | 7103 | if (!page_ref_count(page)) { |
49ac8255 KH |
7104 | if (PageBuddy(page)) |
7105 | iter += (1 << page_order(page)) - 1; | |
7106 | continue; | |
7107 | } | |
97d255c8 | 7108 | |
b023f468 WC |
7109 | /* |
7110 | * The HWPoisoned page may be not in buddy system, and | |
7111 | * page_count() is not 0. | |
7112 | */ | |
7113 | if (skip_hwpoisoned_pages && PageHWPoison(page)) | |
7114 | continue; | |
7115 | ||
49ac8255 KH |
7116 | if (!PageLRU(page)) |
7117 | found++; | |
7118 | /* | |
6b4f7799 JW |
7119 | * If there are RECLAIMABLE pages, we need to check |
7120 | * it. But now, memory offline itself doesn't call | |
7121 | * shrink_node_slabs() and it still to be fixed. | |
49ac8255 KH |
7122 | */ |
7123 | /* | |
7124 | * If the page is not RAM, page_count()should be 0. | |
7125 | * we don't need more check. This is an _used_ not-movable page. | |
7126 | * | |
7127 | * The problematic thing here is PG_reserved pages. PG_reserved | |
7128 | * is set to both of a memory hole page and a _used_ kernel | |
7129 | * page at boot. | |
7130 | */ | |
7131 | if (found > count) | |
80934513 | 7132 | return true; |
49ac8255 | 7133 | } |
80934513 | 7134 | return false; |
49ac8255 KH |
7135 | } |
7136 | ||
7137 | bool is_pageblock_removable_nolock(struct page *page) | |
7138 | { | |
656a0706 MH |
7139 | struct zone *zone; |
7140 | unsigned long pfn; | |
687875fb MH |
7141 | |
7142 | /* | |
7143 | * We have to be careful here because we are iterating over memory | |
7144 | * sections which are not zone aware so we might end up outside of | |
7145 | * the zone but still within the section. | |
656a0706 MH |
7146 | * We have to take care about the node as well. If the node is offline |
7147 | * its NODE_DATA will be NULL - see page_zone. | |
687875fb | 7148 | */ |
656a0706 MH |
7149 | if (!node_online(page_to_nid(page))) |
7150 | return false; | |
7151 | ||
7152 | zone = page_zone(page); | |
7153 | pfn = page_to_pfn(page); | |
108bcc96 | 7154 | if (!zone_spans_pfn(zone, pfn)) |
687875fb MH |
7155 | return false; |
7156 | ||
b023f468 | 7157 | return !has_unmovable_pages(zone, page, 0, true); |
a5d76b54 | 7158 | } |
0c0e6195 | 7159 | |
080fe206 | 7160 | #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA) |
041d3a8c MN |
7161 | |
7162 | static unsigned long pfn_max_align_down(unsigned long pfn) | |
7163 | { | |
7164 | return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, | |
7165 | pageblock_nr_pages) - 1); | |
7166 | } | |
7167 | ||
7168 | static unsigned long pfn_max_align_up(unsigned long pfn) | |
7169 | { | |
7170 | return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, | |
7171 | pageblock_nr_pages)); | |
7172 | } | |
7173 | ||
041d3a8c | 7174 | /* [start, end) must belong to a single zone. */ |
bb13ffeb MG |
7175 | static int __alloc_contig_migrate_range(struct compact_control *cc, |
7176 | unsigned long start, unsigned long end) | |
041d3a8c MN |
7177 | { |
7178 | /* This function is based on compact_zone() from compaction.c. */ | |
beb51eaa | 7179 | unsigned long nr_reclaimed; |
041d3a8c MN |
7180 | unsigned long pfn = start; |
7181 | unsigned int tries = 0; | |
7182 | int ret = 0; | |
7183 | ||
be49a6e1 | 7184 | migrate_prep(); |
041d3a8c | 7185 | |
bb13ffeb | 7186 | while (pfn < end || !list_empty(&cc->migratepages)) { |
041d3a8c MN |
7187 | if (fatal_signal_pending(current)) { |
7188 | ret = -EINTR; | |
7189 | break; | |
7190 | } | |
7191 | ||
bb13ffeb MG |
7192 | if (list_empty(&cc->migratepages)) { |
7193 | cc->nr_migratepages = 0; | |
edc2ca61 | 7194 | pfn = isolate_migratepages_range(cc, pfn, end); |
041d3a8c MN |
7195 | if (!pfn) { |
7196 | ret = -EINTR; | |
7197 | break; | |
7198 | } | |
7199 | tries = 0; | |
7200 | } else if (++tries == 5) { | |
7201 | ret = ret < 0 ? ret : -EBUSY; | |
7202 | break; | |
7203 | } | |
7204 | ||
beb51eaa MK |
7205 | nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, |
7206 | &cc->migratepages); | |
7207 | cc->nr_migratepages -= nr_reclaimed; | |
02c6de8d | 7208 | |
9c620e2b | 7209 | ret = migrate_pages(&cc->migratepages, alloc_migrate_target, |
e0b9daeb | 7210 | NULL, 0, cc->mode, MR_CMA); |
041d3a8c | 7211 | } |
2a6f5124 SP |
7212 | if (ret < 0) { |
7213 | putback_movable_pages(&cc->migratepages); | |
7214 | return ret; | |
7215 | } | |
7216 | return 0; | |
041d3a8c MN |
7217 | } |
7218 | ||
7219 | /** | |
7220 | * alloc_contig_range() -- tries to allocate given range of pages | |
7221 | * @start: start PFN to allocate | |
7222 | * @end: one-past-the-last PFN to allocate | |
0815f3d8 MN |
7223 | * @migratetype: migratetype of the underlaying pageblocks (either |
7224 | * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks | |
7225 | * in range must have the same migratetype and it must | |
7226 | * be either of the two. | |
041d3a8c MN |
7227 | * |
7228 | * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES | |
7229 | * aligned, however it's the caller's responsibility to guarantee that | |
7230 | * we are the only thread that changes migrate type of pageblocks the | |
7231 | * pages fall in. | |
7232 | * | |
7233 | * The PFN range must belong to a single zone. | |
7234 | * | |
7235 | * Returns zero on success or negative error code. On success all | |
7236 | * pages which PFN is in [start, end) are allocated for the caller and | |
7237 | * need to be freed with free_contig_range(). | |
7238 | */ | |
0815f3d8 MN |
7239 | int alloc_contig_range(unsigned long start, unsigned long end, |
7240 | unsigned migratetype) | |
041d3a8c | 7241 | { |
041d3a8c | 7242 | unsigned long outer_start, outer_end; |
d00181b9 KS |
7243 | unsigned int order; |
7244 | int ret = 0; | |
041d3a8c | 7245 | |
bb13ffeb MG |
7246 | struct compact_control cc = { |
7247 | .nr_migratepages = 0, | |
7248 | .order = -1, | |
7249 | .zone = page_zone(pfn_to_page(start)), | |
e0b9daeb | 7250 | .mode = MIGRATE_SYNC, |
bb13ffeb MG |
7251 | .ignore_skip_hint = true, |
7252 | }; | |
7253 | INIT_LIST_HEAD(&cc.migratepages); | |
7254 | ||
041d3a8c MN |
7255 | /* |
7256 | * What we do here is we mark all pageblocks in range as | |
7257 | * MIGRATE_ISOLATE. Because pageblock and max order pages may | |
7258 | * have different sizes, and due to the way page allocator | |
7259 | * work, we align the range to biggest of the two pages so | |
7260 | * that page allocator won't try to merge buddies from | |
7261 | * different pageblocks and change MIGRATE_ISOLATE to some | |
7262 | * other migration type. | |
7263 | * | |
7264 | * Once the pageblocks are marked as MIGRATE_ISOLATE, we | |
7265 | * migrate the pages from an unaligned range (ie. pages that | |
7266 | * we are interested in). This will put all the pages in | |
7267 | * range back to page allocator as MIGRATE_ISOLATE. | |
7268 | * | |
7269 | * When this is done, we take the pages in range from page | |
7270 | * allocator removing them from the buddy system. This way | |
7271 | * page allocator will never consider using them. | |
7272 | * | |
7273 | * This lets us mark the pageblocks back as | |
7274 | * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the | |
7275 | * aligned range but not in the unaligned, original range are | |
7276 | * put back to page allocator so that buddy can use them. | |
7277 | */ | |
7278 | ||
7279 | ret = start_isolate_page_range(pfn_max_align_down(start), | |
b023f468 WC |
7280 | pfn_max_align_up(end), migratetype, |
7281 | false); | |
041d3a8c | 7282 | if (ret) |
86a595f9 | 7283 | return ret; |
041d3a8c | 7284 | |
8ef5849f JK |
7285 | /* |
7286 | * In case of -EBUSY, we'd like to know which page causes problem. | |
7287 | * So, just fall through. We will check it in test_pages_isolated(). | |
7288 | */ | |
bb13ffeb | 7289 | ret = __alloc_contig_migrate_range(&cc, start, end); |
8ef5849f | 7290 | if (ret && ret != -EBUSY) |
041d3a8c MN |
7291 | goto done; |
7292 | ||
7293 | /* | |
7294 | * Pages from [start, end) are within a MAX_ORDER_NR_PAGES | |
7295 | * aligned blocks that are marked as MIGRATE_ISOLATE. What's | |
7296 | * more, all pages in [start, end) are free in page allocator. | |
7297 | * What we are going to do is to allocate all pages from | |
7298 | * [start, end) (that is remove them from page allocator). | |
7299 | * | |
7300 | * The only problem is that pages at the beginning and at the | |
7301 | * end of interesting range may be not aligned with pages that | |
7302 | * page allocator holds, ie. they can be part of higher order | |
7303 | * pages. Because of this, we reserve the bigger range and | |
7304 | * once this is done free the pages we are not interested in. | |
7305 | * | |
7306 | * We don't have to hold zone->lock here because the pages are | |
7307 | * isolated thus they won't get removed from buddy. | |
7308 | */ | |
7309 | ||
7310 | lru_add_drain_all(); | |
510f5507 | 7311 | drain_all_pages(cc.zone); |
041d3a8c MN |
7312 | |
7313 | order = 0; | |
7314 | outer_start = start; | |
7315 | while (!PageBuddy(pfn_to_page(outer_start))) { | |
7316 | if (++order >= MAX_ORDER) { | |
8ef5849f JK |
7317 | outer_start = start; |
7318 | break; | |
041d3a8c MN |
7319 | } |
7320 | outer_start &= ~0UL << order; | |
7321 | } | |
7322 | ||
8ef5849f JK |
7323 | if (outer_start != start) { |
7324 | order = page_order(pfn_to_page(outer_start)); | |
7325 | ||
7326 | /* | |
7327 | * outer_start page could be small order buddy page and | |
7328 | * it doesn't include start page. Adjust outer_start | |
7329 | * in this case to report failed page properly | |
7330 | * on tracepoint in test_pages_isolated() | |
7331 | */ | |
7332 | if (outer_start + (1UL << order) <= start) | |
7333 | outer_start = start; | |
7334 | } | |
7335 | ||
041d3a8c | 7336 | /* Make sure the range is really isolated. */ |
b023f468 | 7337 | if (test_pages_isolated(outer_start, end, false)) { |
dae803e1 MN |
7338 | pr_info("%s: [%lx, %lx) PFNs busy\n", |
7339 | __func__, outer_start, end); | |
041d3a8c MN |
7340 | ret = -EBUSY; |
7341 | goto done; | |
7342 | } | |
7343 | ||
49f223a9 | 7344 | /* Grab isolated pages from freelists. */ |
bb13ffeb | 7345 | outer_end = isolate_freepages_range(&cc, outer_start, end); |
041d3a8c MN |
7346 | if (!outer_end) { |
7347 | ret = -EBUSY; | |
7348 | goto done; | |
7349 | } | |
7350 | ||
7351 | /* Free head and tail (if any) */ | |
7352 | if (start != outer_start) | |
7353 | free_contig_range(outer_start, start - outer_start); | |
7354 | if (end != outer_end) | |
7355 | free_contig_range(end, outer_end - end); | |
7356 | ||
7357 | done: | |
7358 | undo_isolate_page_range(pfn_max_align_down(start), | |
0815f3d8 | 7359 | pfn_max_align_up(end), migratetype); |
041d3a8c MN |
7360 | return ret; |
7361 | } | |
7362 | ||
7363 | void free_contig_range(unsigned long pfn, unsigned nr_pages) | |
7364 | { | |
bcc2b02f MS |
7365 | unsigned int count = 0; |
7366 | ||
7367 | for (; nr_pages--; pfn++) { | |
7368 | struct page *page = pfn_to_page(pfn); | |
7369 | ||
7370 | count += page_count(page) != 1; | |
7371 | __free_page(page); | |
7372 | } | |
7373 | WARN(count != 0, "%d pages are still in use!\n", count); | |
041d3a8c MN |
7374 | } |
7375 | #endif | |
7376 | ||
4ed7e022 | 7377 | #ifdef CONFIG_MEMORY_HOTPLUG |
0a647f38 CS |
7378 | /* |
7379 | * The zone indicated has a new number of managed_pages; batch sizes and percpu | |
7380 | * page high values need to be recalulated. | |
7381 | */ | |
4ed7e022 JL |
7382 | void __meminit zone_pcp_update(struct zone *zone) |
7383 | { | |
0a647f38 | 7384 | unsigned cpu; |
c8e251fa | 7385 | mutex_lock(&pcp_batch_high_lock); |
0a647f38 | 7386 | for_each_possible_cpu(cpu) |
169f6c19 CS |
7387 | pageset_set_high_and_batch(zone, |
7388 | per_cpu_ptr(zone->pageset, cpu)); | |
c8e251fa | 7389 | mutex_unlock(&pcp_batch_high_lock); |
4ed7e022 JL |
7390 | } |
7391 | #endif | |
7392 | ||
340175b7 JL |
7393 | void zone_pcp_reset(struct zone *zone) |
7394 | { | |
7395 | unsigned long flags; | |
5a883813 MK |
7396 | int cpu; |
7397 | struct per_cpu_pageset *pset; | |
340175b7 JL |
7398 | |
7399 | /* avoid races with drain_pages() */ | |
7400 | local_irq_save(flags); | |
7401 | if (zone->pageset != &boot_pageset) { | |
5a883813 MK |
7402 | for_each_online_cpu(cpu) { |
7403 | pset = per_cpu_ptr(zone->pageset, cpu); | |
7404 | drain_zonestat(zone, pset); | |
7405 | } | |
340175b7 JL |
7406 | free_percpu(zone->pageset); |
7407 | zone->pageset = &boot_pageset; | |
7408 | } | |
7409 | local_irq_restore(flags); | |
7410 | } | |
7411 | ||
6dcd73d7 | 7412 | #ifdef CONFIG_MEMORY_HOTREMOVE |
0c0e6195 | 7413 | /* |
b9eb6319 JK |
7414 | * All pages in the range must be in a single zone and isolated |
7415 | * before calling this. | |
0c0e6195 KH |
7416 | */ |
7417 | void | |
7418 | __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) | |
7419 | { | |
7420 | struct page *page; | |
7421 | struct zone *zone; | |
7aeb09f9 | 7422 | unsigned int order, i; |
0c0e6195 KH |
7423 | unsigned long pfn; |
7424 | unsigned long flags; | |
7425 | /* find the first valid pfn */ | |
7426 | for (pfn = start_pfn; pfn < end_pfn; pfn++) | |
7427 | if (pfn_valid(pfn)) | |
7428 | break; | |
7429 | if (pfn == end_pfn) | |
7430 | return; | |
7431 | zone = page_zone(pfn_to_page(pfn)); | |
7432 | spin_lock_irqsave(&zone->lock, flags); | |
7433 | pfn = start_pfn; | |
7434 | while (pfn < end_pfn) { | |
7435 | if (!pfn_valid(pfn)) { | |
7436 | pfn++; | |
7437 | continue; | |
7438 | } | |
7439 | page = pfn_to_page(pfn); | |
b023f468 WC |
7440 | /* |
7441 | * The HWPoisoned page may be not in buddy system, and | |
7442 | * page_count() is not 0. | |
7443 | */ | |
7444 | if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { | |
7445 | pfn++; | |
7446 | SetPageReserved(page); | |
7447 | continue; | |
7448 | } | |
7449 | ||
0c0e6195 KH |
7450 | BUG_ON(page_count(page)); |
7451 | BUG_ON(!PageBuddy(page)); | |
7452 | order = page_order(page); | |
7453 | #ifdef CONFIG_DEBUG_VM | |
1170532b JP |
7454 | pr_info("remove from free list %lx %d %lx\n", |
7455 | pfn, 1 << order, end_pfn); | |
0c0e6195 KH |
7456 | #endif |
7457 | list_del(&page->lru); | |
7458 | rmv_page_order(page); | |
7459 | zone->free_area[order].nr_free--; | |
0c0e6195 KH |
7460 | for (i = 0; i < (1 << order); i++) |
7461 | SetPageReserved((page+i)); | |
7462 | pfn += (1 << order); | |
7463 | } | |
7464 | spin_unlock_irqrestore(&zone->lock, flags); | |
7465 | } | |
7466 | #endif | |
8d22ba1b | 7467 | |
8d22ba1b WF |
7468 | bool is_free_buddy_page(struct page *page) |
7469 | { | |
7470 | struct zone *zone = page_zone(page); | |
7471 | unsigned long pfn = page_to_pfn(page); | |
7472 | unsigned long flags; | |
7aeb09f9 | 7473 | unsigned int order; |
8d22ba1b WF |
7474 | |
7475 | spin_lock_irqsave(&zone->lock, flags); | |
7476 | for (order = 0; order < MAX_ORDER; order++) { | |
7477 | struct page *page_head = page - (pfn & ((1 << order) - 1)); | |
7478 | ||
7479 | if (PageBuddy(page_head) && page_order(page_head) >= order) | |
7480 | break; | |
7481 | } | |
7482 | spin_unlock_irqrestore(&zone->lock, flags); | |
7483 | ||
7484 | return order < MAX_ORDER; | |
7485 | } |