]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/mm/page_alloc.c | |
3 | * | |
4 | * Manages the free list, the system allocates free pages here. | |
5 | * Note that kmalloc() lives in slab.c | |
6 | * | |
7 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds | |
8 | * Swap reorganised 29.12.95, Stephen Tweedie | |
9 | * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 | |
10 | * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 | |
11 | * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 | |
12 | * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 | |
13 | * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 | |
14 | * (lots of bits borrowed from Ingo Molnar & Andrew Morton) | |
15 | */ | |
16 | ||
1da177e4 LT |
17 | #include <linux/stddef.h> |
18 | #include <linux/mm.h> | |
19 | #include <linux/swap.h> | |
20 | #include <linux/interrupt.h> | |
21 | #include <linux/pagemap.h> | |
10ed273f | 22 | #include <linux/jiffies.h> |
1da177e4 LT |
23 | #include <linux/bootmem.h> |
24 | #include <linux/compiler.h> | |
9f158333 | 25 | #include <linux/kernel.h> |
b1eeab67 | 26 | #include <linux/kmemcheck.h> |
1da177e4 LT |
27 | #include <linux/module.h> |
28 | #include <linux/suspend.h> | |
29 | #include <linux/pagevec.h> | |
30 | #include <linux/blkdev.h> | |
31 | #include <linux/slab.h> | |
5a3135c2 | 32 | #include <linux/oom.h> |
1da177e4 LT |
33 | #include <linux/notifier.h> |
34 | #include <linux/topology.h> | |
35 | #include <linux/sysctl.h> | |
36 | #include <linux/cpu.h> | |
37 | #include <linux/cpuset.h> | |
bdc8cb98 | 38 | #include <linux/memory_hotplug.h> |
1da177e4 LT |
39 | #include <linux/nodemask.h> |
40 | #include <linux/vmalloc.h> | |
4be38e35 | 41 | #include <linux/mempolicy.h> |
6811378e | 42 | #include <linux/stop_machine.h> |
c713216d MG |
43 | #include <linux/sort.h> |
44 | #include <linux/pfn.h> | |
3fcfab16 | 45 | #include <linux/backing-dev.h> |
933e312e | 46 | #include <linux/fault-inject.h> |
a5d76b54 | 47 | #include <linux/page-isolation.h> |
52d4b9ac | 48 | #include <linux/page_cgroup.h> |
3ac7fe5a | 49 | #include <linux/debugobjects.h> |
dbb1f81c | 50 | #include <linux/kmemleak.h> |
1da177e4 LT |
51 | |
52 | #include <asm/tlbflush.h> | |
ac924c60 | 53 | #include <asm/div64.h> |
1da177e4 LT |
54 | #include "internal.h" |
55 | ||
56 | /* | |
13808910 | 57 | * Array of node states. |
1da177e4 | 58 | */ |
13808910 CL |
59 | nodemask_t node_states[NR_NODE_STATES] __read_mostly = { |
60 | [N_POSSIBLE] = NODE_MASK_ALL, | |
61 | [N_ONLINE] = { { [0] = 1UL } }, | |
62 | #ifndef CONFIG_NUMA | |
63 | [N_NORMAL_MEMORY] = { { [0] = 1UL } }, | |
64 | #ifdef CONFIG_HIGHMEM | |
65 | [N_HIGH_MEMORY] = { { [0] = 1UL } }, | |
66 | #endif | |
67 | [N_CPU] = { { [0] = 1UL } }, | |
68 | #endif /* NUMA */ | |
69 | }; | |
70 | EXPORT_SYMBOL(node_states); | |
71 | ||
6c231b7b | 72 | unsigned long totalram_pages __read_mostly; |
cb45b0e9 | 73 | unsigned long totalreserve_pages __read_mostly; |
22b31eec | 74 | unsigned long highest_memmap_pfn __read_mostly; |
8ad4b1fb | 75 | int percpu_pagelist_fraction; |
dcce284a | 76 | gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; |
1da177e4 | 77 | |
d9c23400 MG |
78 | #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE |
79 | int pageblock_order __read_mostly; | |
80 | #endif | |
81 | ||
d98c7a09 | 82 | static void __free_pages_ok(struct page *page, unsigned int order); |
a226f6c8 | 83 | |
1da177e4 LT |
84 | /* |
85 | * results with 256, 32 in the lowmem_reserve sysctl: | |
86 | * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) | |
87 | * 1G machine -> (16M dma, 784M normal, 224M high) | |
88 | * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA | |
89 | * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL | |
90 | * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA | |
a2f1b424 AK |
91 | * |
92 | * TBD: should special case ZONE_DMA32 machines here - in those we normally | |
93 | * don't need any ZONE_NORMAL reservation | |
1da177e4 | 94 | */ |
2f1b6248 | 95 | int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { |
4b51d669 | 96 | #ifdef CONFIG_ZONE_DMA |
2f1b6248 | 97 | 256, |
4b51d669 | 98 | #endif |
fb0e7942 | 99 | #ifdef CONFIG_ZONE_DMA32 |
2f1b6248 | 100 | 256, |
fb0e7942 | 101 | #endif |
e53ef38d | 102 | #ifdef CONFIG_HIGHMEM |
2a1e274a | 103 | 32, |
e53ef38d | 104 | #endif |
2a1e274a | 105 | 32, |
2f1b6248 | 106 | }; |
1da177e4 LT |
107 | |
108 | EXPORT_SYMBOL(totalram_pages); | |
1da177e4 | 109 | |
15ad7cdc | 110 | static char * const zone_names[MAX_NR_ZONES] = { |
4b51d669 | 111 | #ifdef CONFIG_ZONE_DMA |
2f1b6248 | 112 | "DMA", |
4b51d669 | 113 | #endif |
fb0e7942 | 114 | #ifdef CONFIG_ZONE_DMA32 |
2f1b6248 | 115 | "DMA32", |
fb0e7942 | 116 | #endif |
2f1b6248 | 117 | "Normal", |
e53ef38d | 118 | #ifdef CONFIG_HIGHMEM |
2a1e274a | 119 | "HighMem", |
e53ef38d | 120 | #endif |
2a1e274a | 121 | "Movable", |
2f1b6248 CL |
122 | }; |
123 | ||
1da177e4 LT |
124 | int min_free_kbytes = 1024; |
125 | ||
86356ab1 YG |
126 | unsigned long __meminitdata nr_kernel_pages; |
127 | unsigned long __meminitdata nr_all_pages; | |
a3142c8e | 128 | static unsigned long __meminitdata dma_reserve; |
1da177e4 | 129 | |
c713216d MG |
130 | #ifdef CONFIG_ARCH_POPULATES_NODE_MAP |
131 | /* | |
183ff22b | 132 | * MAX_ACTIVE_REGIONS determines the maximum number of distinct |
c713216d MG |
133 | * ranges of memory (RAM) that may be registered with add_active_range(). |
134 | * Ranges passed to add_active_range() will be merged if possible | |
135 | * so the number of times add_active_range() can be called is | |
136 | * related to the number of nodes and the number of holes | |
137 | */ | |
138 | #ifdef CONFIG_MAX_ACTIVE_REGIONS | |
139 | /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */ | |
140 | #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS | |
141 | #else | |
142 | #if MAX_NUMNODES >= 32 | |
143 | /* If there can be many nodes, allow up to 50 holes per node */ | |
144 | #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50) | |
145 | #else | |
146 | /* By default, allow up to 256 distinct regions */ | |
147 | #define MAX_ACTIVE_REGIONS 256 | |
148 | #endif | |
149 | #endif | |
150 | ||
98011f56 JB |
151 | static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS]; |
152 | static int __meminitdata nr_nodemap_entries; | |
153 | static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; | |
154 | static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; | |
b69a7288 | 155 | static unsigned long __initdata required_kernelcore; |
484f51f8 | 156 | static unsigned long __initdata required_movablecore; |
b69a7288 | 157 | static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; |
2a1e274a MG |
158 | |
159 | /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ | |
160 | int movable_zone; | |
161 | EXPORT_SYMBOL(movable_zone); | |
c713216d MG |
162 | #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ |
163 | ||
418508c1 MS |
164 | #if MAX_NUMNODES > 1 |
165 | int nr_node_ids __read_mostly = MAX_NUMNODES; | |
62bc62a8 | 166 | int nr_online_nodes __read_mostly = 1; |
418508c1 | 167 | EXPORT_SYMBOL(nr_node_ids); |
62bc62a8 | 168 | EXPORT_SYMBOL(nr_online_nodes); |
418508c1 MS |
169 | #endif |
170 | ||
9ef9acb0 MG |
171 | int page_group_by_mobility_disabled __read_mostly; |
172 | ||
b2a0ac88 MG |
173 | static void set_pageblock_migratetype(struct page *page, int migratetype) |
174 | { | |
49255c61 MG |
175 | |
176 | if (unlikely(page_group_by_mobility_disabled)) | |
177 | migratetype = MIGRATE_UNMOVABLE; | |
178 | ||
b2a0ac88 MG |
179 | set_pageblock_flags_group(page, (unsigned long)migratetype, |
180 | PB_migrate, PB_migrate_end); | |
181 | } | |
182 | ||
7f33d49a RW |
183 | bool oom_killer_disabled __read_mostly; |
184 | ||
13e7444b | 185 | #ifdef CONFIG_DEBUG_VM |
c6a57e19 | 186 | static int page_outside_zone_boundaries(struct zone *zone, struct page *page) |
1da177e4 | 187 | { |
bdc8cb98 DH |
188 | int ret = 0; |
189 | unsigned seq; | |
190 | unsigned long pfn = page_to_pfn(page); | |
c6a57e19 | 191 | |
bdc8cb98 DH |
192 | do { |
193 | seq = zone_span_seqbegin(zone); | |
194 | if (pfn >= zone->zone_start_pfn + zone->spanned_pages) | |
195 | ret = 1; | |
196 | else if (pfn < zone->zone_start_pfn) | |
197 | ret = 1; | |
198 | } while (zone_span_seqretry(zone, seq)); | |
199 | ||
200 | return ret; | |
c6a57e19 DH |
201 | } |
202 | ||
203 | static int page_is_consistent(struct zone *zone, struct page *page) | |
204 | { | |
14e07298 | 205 | if (!pfn_valid_within(page_to_pfn(page))) |
c6a57e19 | 206 | return 0; |
1da177e4 | 207 | if (zone != page_zone(page)) |
c6a57e19 DH |
208 | return 0; |
209 | ||
210 | return 1; | |
211 | } | |
212 | /* | |
213 | * Temporary debugging check for pages not lying within a given zone. | |
214 | */ | |
215 | static int bad_range(struct zone *zone, struct page *page) | |
216 | { | |
217 | if (page_outside_zone_boundaries(zone, page)) | |
1da177e4 | 218 | return 1; |
c6a57e19 DH |
219 | if (!page_is_consistent(zone, page)) |
220 | return 1; | |
221 | ||
1da177e4 LT |
222 | return 0; |
223 | } | |
13e7444b NP |
224 | #else |
225 | static inline int bad_range(struct zone *zone, struct page *page) | |
226 | { | |
227 | return 0; | |
228 | } | |
229 | #endif | |
230 | ||
224abf92 | 231 | static void bad_page(struct page *page) |
1da177e4 | 232 | { |
d936cf9b HD |
233 | static unsigned long resume; |
234 | static unsigned long nr_shown; | |
235 | static unsigned long nr_unshown; | |
236 | ||
237 | /* | |
238 | * Allow a burst of 60 reports, then keep quiet for that minute; | |
239 | * or allow a steady drip of one report per second. | |
240 | */ | |
241 | if (nr_shown == 60) { | |
242 | if (time_before(jiffies, resume)) { | |
243 | nr_unshown++; | |
244 | goto out; | |
245 | } | |
246 | if (nr_unshown) { | |
1e9e6365 HD |
247 | printk(KERN_ALERT |
248 | "BUG: Bad page state: %lu messages suppressed\n", | |
d936cf9b HD |
249 | nr_unshown); |
250 | nr_unshown = 0; | |
251 | } | |
252 | nr_shown = 0; | |
253 | } | |
254 | if (nr_shown++ == 0) | |
255 | resume = jiffies + 60 * HZ; | |
256 | ||
1e9e6365 | 257 | printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n", |
3dc14741 | 258 | current->comm, page_to_pfn(page)); |
1e9e6365 | 259 | printk(KERN_ALERT |
3dc14741 HD |
260 | "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n", |
261 | page, (void *)page->flags, page_count(page), | |
262 | page_mapcount(page), page->mapping, page->index); | |
3dc14741 | 263 | |
1da177e4 | 264 | dump_stack(); |
d936cf9b | 265 | out: |
8cc3b392 HD |
266 | /* Leave bad fields for debug, except PageBuddy could make trouble */ |
267 | __ClearPageBuddy(page); | |
9f158333 | 268 | add_taint(TAINT_BAD_PAGE); |
1da177e4 LT |
269 | } |
270 | ||
1da177e4 LT |
271 | /* |
272 | * Higher-order pages are called "compound pages". They are structured thusly: | |
273 | * | |
274 | * The first PAGE_SIZE page is called the "head page". | |
275 | * | |
276 | * The remaining PAGE_SIZE pages are called "tail pages". | |
277 | * | |
278 | * All pages have PG_compound set. All pages have their ->private pointing at | |
279 | * the head page (even the head page has this). | |
280 | * | |
41d78ba5 HD |
281 | * The first tail page's ->lru.next holds the address of the compound page's |
282 | * put_page() function. Its ->lru.prev holds the order of allocation. | |
283 | * This usage means that zero-order pages may not be compound. | |
1da177e4 | 284 | */ |
d98c7a09 HD |
285 | |
286 | static void free_compound_page(struct page *page) | |
287 | { | |
d85f3385 | 288 | __free_pages_ok(page, compound_order(page)); |
d98c7a09 HD |
289 | } |
290 | ||
01ad1c08 | 291 | void prep_compound_page(struct page *page, unsigned long order) |
18229df5 AW |
292 | { |
293 | int i; | |
294 | int nr_pages = 1 << order; | |
295 | ||
296 | set_compound_page_dtor(page, free_compound_page); | |
297 | set_compound_order(page, order); | |
298 | __SetPageHead(page); | |
299 | for (i = 1; i < nr_pages; i++) { | |
300 | struct page *p = page + i; | |
301 | ||
302 | __SetPageTail(p); | |
303 | p->first_page = page; | |
304 | } | |
305 | } | |
306 | ||
8cc3b392 | 307 | static int destroy_compound_page(struct page *page, unsigned long order) |
1da177e4 LT |
308 | { |
309 | int i; | |
310 | int nr_pages = 1 << order; | |
8cc3b392 | 311 | int bad = 0; |
1da177e4 | 312 | |
8cc3b392 HD |
313 | if (unlikely(compound_order(page) != order) || |
314 | unlikely(!PageHead(page))) { | |
224abf92 | 315 | bad_page(page); |
8cc3b392 HD |
316 | bad++; |
317 | } | |
1da177e4 | 318 | |
6d777953 | 319 | __ClearPageHead(page); |
8cc3b392 | 320 | |
18229df5 AW |
321 | for (i = 1; i < nr_pages; i++) { |
322 | struct page *p = page + i; | |
1da177e4 | 323 | |
e713a21d | 324 | if (unlikely(!PageTail(p) || (p->first_page != page))) { |
224abf92 | 325 | bad_page(page); |
8cc3b392 HD |
326 | bad++; |
327 | } | |
d85f3385 | 328 | __ClearPageTail(p); |
1da177e4 | 329 | } |
8cc3b392 HD |
330 | |
331 | return bad; | |
1da177e4 | 332 | } |
1da177e4 | 333 | |
17cf4406 NP |
334 | static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) |
335 | { | |
336 | int i; | |
337 | ||
6626c5d5 AM |
338 | /* |
339 | * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO | |
340 | * and __GFP_HIGHMEM from hard or soft interrupt context. | |
341 | */ | |
725d704e | 342 | VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); |
17cf4406 NP |
343 | for (i = 0; i < (1 << order); i++) |
344 | clear_highpage(page + i); | |
345 | } | |
346 | ||
6aa3001b AM |
347 | static inline void set_page_order(struct page *page, int order) |
348 | { | |
4c21e2f2 | 349 | set_page_private(page, order); |
676165a8 | 350 | __SetPageBuddy(page); |
1da177e4 LT |
351 | } |
352 | ||
353 | static inline void rmv_page_order(struct page *page) | |
354 | { | |
676165a8 | 355 | __ClearPageBuddy(page); |
4c21e2f2 | 356 | set_page_private(page, 0); |
1da177e4 LT |
357 | } |
358 | ||
359 | /* | |
360 | * Locate the struct page for both the matching buddy in our | |
361 | * pair (buddy1) and the combined O(n+1) page they form (page). | |
362 | * | |
363 | * 1) Any buddy B1 will have an order O twin B2 which satisfies | |
364 | * the following equation: | |
365 | * B2 = B1 ^ (1 << O) | |
366 | * For example, if the starting buddy (buddy2) is #8 its order | |
367 | * 1 buddy is #10: | |
368 | * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 | |
369 | * | |
370 | * 2) Any buddy B will have an order O+1 parent P which | |
371 | * satisfies the following equation: | |
372 | * P = B & ~(1 << O) | |
373 | * | |
d6e05edc | 374 | * Assumption: *_mem_map is contiguous at least up to MAX_ORDER |
1da177e4 LT |
375 | */ |
376 | static inline struct page * | |
377 | __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order) | |
378 | { | |
379 | unsigned long buddy_idx = page_idx ^ (1 << order); | |
380 | ||
381 | return page + (buddy_idx - page_idx); | |
382 | } | |
383 | ||
384 | static inline unsigned long | |
385 | __find_combined_index(unsigned long page_idx, unsigned int order) | |
386 | { | |
387 | return (page_idx & ~(1 << order)); | |
388 | } | |
389 | ||
390 | /* | |
391 | * This function checks whether a page is free && is the buddy | |
392 | * we can do coalesce a page and its buddy if | |
13e7444b | 393 | * (a) the buddy is not in a hole && |
676165a8 | 394 | * (b) the buddy is in the buddy system && |
cb2b95e1 AW |
395 | * (c) a page and its buddy have the same order && |
396 | * (d) a page and its buddy are in the same zone. | |
676165a8 NP |
397 | * |
398 | * For recording whether a page is in the buddy system, we use PG_buddy. | |
399 | * Setting, clearing, and testing PG_buddy is serialized by zone->lock. | |
1da177e4 | 400 | * |
676165a8 | 401 | * For recording page's order, we use page_private(page). |
1da177e4 | 402 | */ |
cb2b95e1 AW |
403 | static inline int page_is_buddy(struct page *page, struct page *buddy, |
404 | int order) | |
1da177e4 | 405 | { |
14e07298 | 406 | if (!pfn_valid_within(page_to_pfn(buddy))) |
13e7444b | 407 | return 0; |
13e7444b | 408 | |
cb2b95e1 AW |
409 | if (page_zone_id(page) != page_zone_id(buddy)) |
410 | return 0; | |
411 | ||
412 | if (PageBuddy(buddy) && page_order(buddy) == order) { | |
a3af9c38 | 413 | VM_BUG_ON(page_count(buddy) != 0); |
6aa3001b | 414 | return 1; |
676165a8 | 415 | } |
6aa3001b | 416 | return 0; |
1da177e4 LT |
417 | } |
418 | ||
419 | /* | |
420 | * Freeing function for a buddy system allocator. | |
421 | * | |
422 | * The concept of a buddy system is to maintain direct-mapped table | |
423 | * (containing bit values) for memory blocks of various "orders". | |
424 | * The bottom level table contains the map for the smallest allocatable | |
425 | * units of memory (here, pages), and each level above it describes | |
426 | * pairs of units from the levels below, hence, "buddies". | |
427 | * At a high level, all that happens here is marking the table entry | |
428 | * at the bottom level available, and propagating the changes upward | |
429 | * as necessary, plus some accounting needed to play nicely with other | |
430 | * parts of the VM system. | |
431 | * At each level, we keep a list of pages, which are heads of continuous | |
676165a8 | 432 | * free pages of length of (1 << order) and marked with PG_buddy. Page's |
4c21e2f2 | 433 | * order is recorded in page_private(page) field. |
1da177e4 LT |
434 | * So when we are allocating or freeing one, we can derive the state of the |
435 | * other. That is, if we allocate a small block, and both were | |
436 | * free, the remainder of the region must be split into blocks. | |
437 | * If a block is freed, and its buddy is also free, then this | |
438 | * triggers coalescing into a block of larger size. | |
439 | * | |
440 | * -- wli | |
441 | */ | |
442 | ||
48db57f8 | 443 | static inline void __free_one_page(struct page *page, |
ed0ae21d MG |
444 | struct zone *zone, unsigned int order, |
445 | int migratetype) | |
1da177e4 LT |
446 | { |
447 | unsigned long page_idx; | |
1da177e4 | 448 | |
224abf92 | 449 | if (unlikely(PageCompound(page))) |
8cc3b392 HD |
450 | if (unlikely(destroy_compound_page(page, order))) |
451 | return; | |
1da177e4 | 452 | |
ed0ae21d MG |
453 | VM_BUG_ON(migratetype == -1); |
454 | ||
1da177e4 LT |
455 | page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); |
456 | ||
f2260e6b | 457 | VM_BUG_ON(page_idx & ((1 << order) - 1)); |
725d704e | 458 | VM_BUG_ON(bad_range(zone, page)); |
1da177e4 | 459 | |
1da177e4 LT |
460 | while (order < MAX_ORDER-1) { |
461 | unsigned long combined_idx; | |
1da177e4 LT |
462 | struct page *buddy; |
463 | ||
1da177e4 | 464 | buddy = __page_find_buddy(page, page_idx, order); |
cb2b95e1 | 465 | if (!page_is_buddy(page, buddy, order)) |
3c82d0ce | 466 | break; |
13e7444b | 467 | |
3c82d0ce | 468 | /* Our buddy is free, merge with it and move up one order. */ |
1da177e4 | 469 | list_del(&buddy->lru); |
b2a0ac88 | 470 | zone->free_area[order].nr_free--; |
1da177e4 | 471 | rmv_page_order(buddy); |
13e7444b | 472 | combined_idx = __find_combined_index(page_idx, order); |
1da177e4 LT |
473 | page = page + (combined_idx - page_idx); |
474 | page_idx = combined_idx; | |
475 | order++; | |
476 | } | |
477 | set_page_order(page, order); | |
b2a0ac88 MG |
478 | list_add(&page->lru, |
479 | &zone->free_area[order].free_list[migratetype]); | |
1da177e4 LT |
480 | zone->free_area[order].nr_free++; |
481 | } | |
482 | ||
092cead6 KM |
483 | #ifdef CONFIG_HAVE_MLOCKED_PAGE_BIT |
484 | /* | |
485 | * free_page_mlock() -- clean up attempts to free and mlocked() page. | |
486 | * Page should not be on lru, so no need to fix that up. | |
487 | * free_pages_check() will verify... | |
488 | */ | |
489 | static inline void free_page_mlock(struct page *page) | |
490 | { | |
092cead6 KM |
491 | __dec_zone_page_state(page, NR_MLOCK); |
492 | __count_vm_event(UNEVICTABLE_MLOCKFREED); | |
493 | } | |
494 | #else | |
495 | static void free_page_mlock(struct page *page) { } | |
496 | #endif | |
497 | ||
224abf92 | 498 | static inline int free_pages_check(struct page *page) |
1da177e4 | 499 | { |
92be2e33 NP |
500 | if (unlikely(page_mapcount(page) | |
501 | (page->mapping != NULL) | | |
a3af9c38 | 502 | (atomic_read(&page->_count) != 0) | |
8cc3b392 | 503 | (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) { |
224abf92 | 504 | bad_page(page); |
79f4b7bf | 505 | return 1; |
8cc3b392 | 506 | } |
79f4b7bf HD |
507 | if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
508 | page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; | |
509 | return 0; | |
1da177e4 LT |
510 | } |
511 | ||
512 | /* | |
513 | * Frees a list of pages. | |
514 | * Assumes all pages on list are in same zone, and of same order. | |
207f36ee | 515 | * count is the number of pages to free. |
1da177e4 LT |
516 | * |
517 | * If the zone was previously in an "all pages pinned" state then look to | |
518 | * see if this freeing clears that state. | |
519 | * | |
520 | * And clear the zone's pages_scanned counter, to hold off the "all pages are | |
521 | * pinned" detection logic. | |
522 | */ | |
48db57f8 NP |
523 | static void free_pages_bulk(struct zone *zone, int count, |
524 | struct list_head *list, int order) | |
1da177e4 | 525 | { |
c54ad30c | 526 | spin_lock(&zone->lock); |
e815af95 | 527 | zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE); |
1da177e4 | 528 | zone->pages_scanned = 0; |
f2260e6b MG |
529 | |
530 | __mod_zone_page_state(zone, NR_FREE_PAGES, count << order); | |
48db57f8 NP |
531 | while (count--) { |
532 | struct page *page; | |
533 | ||
725d704e | 534 | VM_BUG_ON(list_empty(list)); |
1da177e4 | 535 | page = list_entry(list->prev, struct page, lru); |
48db57f8 | 536 | /* have to delete it as __free_one_page list manipulates */ |
1da177e4 | 537 | list_del(&page->lru); |
ed0ae21d | 538 | __free_one_page(page, zone, order, page_private(page)); |
1da177e4 | 539 | } |
c54ad30c | 540 | spin_unlock(&zone->lock); |
1da177e4 LT |
541 | } |
542 | ||
ed0ae21d MG |
543 | static void free_one_page(struct zone *zone, struct page *page, int order, |
544 | int migratetype) | |
1da177e4 | 545 | { |
006d22d9 | 546 | spin_lock(&zone->lock); |
e815af95 | 547 | zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE); |
006d22d9 | 548 | zone->pages_scanned = 0; |
f2260e6b MG |
549 | |
550 | __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order); | |
ed0ae21d | 551 | __free_one_page(page, zone, order, migratetype); |
006d22d9 | 552 | spin_unlock(&zone->lock); |
48db57f8 NP |
553 | } |
554 | ||
555 | static void __free_pages_ok(struct page *page, unsigned int order) | |
556 | { | |
557 | unsigned long flags; | |
1da177e4 | 558 | int i; |
8cc3b392 | 559 | int bad = 0; |
c277331d | 560 | int wasMlocked = TestClearPageMlocked(page); |
1da177e4 | 561 | |
b1eeab67 VN |
562 | kmemcheck_free_shadow(page, order); |
563 | ||
1da177e4 | 564 | for (i = 0 ; i < (1 << order) ; ++i) |
8cc3b392 HD |
565 | bad += free_pages_check(page + i); |
566 | if (bad) | |
689bcebf HD |
567 | return; |
568 | ||
3ac7fe5a | 569 | if (!PageHighMem(page)) { |
9858db50 | 570 | debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order); |
3ac7fe5a TG |
571 | debug_check_no_obj_freed(page_address(page), |
572 | PAGE_SIZE << order); | |
573 | } | |
dafb1367 | 574 | arch_free_page(page, order); |
48db57f8 | 575 | kernel_map_pages(page, 1 << order, 0); |
dafb1367 | 576 | |
c54ad30c | 577 | local_irq_save(flags); |
c277331d | 578 | if (unlikely(wasMlocked)) |
da456f14 | 579 | free_page_mlock(page); |
f8891e5e | 580 | __count_vm_events(PGFREE, 1 << order); |
ed0ae21d MG |
581 | free_one_page(page_zone(page), page, order, |
582 | get_pageblock_migratetype(page)); | |
c54ad30c | 583 | local_irq_restore(flags); |
1da177e4 LT |
584 | } |
585 | ||
a226f6c8 DH |
586 | /* |
587 | * permit the bootmem allocator to evade page validation on high-order frees | |
588 | */ | |
af370fb8 | 589 | void __meminit __free_pages_bootmem(struct page *page, unsigned int order) |
a226f6c8 DH |
590 | { |
591 | if (order == 0) { | |
592 | __ClearPageReserved(page); | |
593 | set_page_count(page, 0); | |
7835e98b | 594 | set_page_refcounted(page); |
545b1ea9 | 595 | __free_page(page); |
a226f6c8 | 596 | } else { |
a226f6c8 DH |
597 | int loop; |
598 | ||
545b1ea9 | 599 | prefetchw(page); |
a226f6c8 DH |
600 | for (loop = 0; loop < BITS_PER_LONG; loop++) { |
601 | struct page *p = &page[loop]; | |
602 | ||
545b1ea9 NP |
603 | if (loop + 1 < BITS_PER_LONG) |
604 | prefetchw(p + 1); | |
a226f6c8 DH |
605 | __ClearPageReserved(p); |
606 | set_page_count(p, 0); | |
607 | } | |
608 | ||
7835e98b | 609 | set_page_refcounted(page); |
545b1ea9 | 610 | __free_pages(page, order); |
a226f6c8 DH |
611 | } |
612 | } | |
613 | ||
1da177e4 LT |
614 | |
615 | /* | |
616 | * The order of subdivision here is critical for the IO subsystem. | |
617 | * Please do not alter this order without good reasons and regression | |
618 | * testing. Specifically, as large blocks of memory are subdivided, | |
619 | * the order in which smaller blocks are delivered depends on the order | |
620 | * they're subdivided in this function. This is the primary factor | |
621 | * influencing the order in which pages are delivered to the IO | |
622 | * subsystem according to empirical testing, and this is also justified | |
623 | * by considering the behavior of a buddy system containing a single | |
624 | * large block of memory acted on by a series of small allocations. | |
625 | * This behavior is a critical factor in sglist merging's success. | |
626 | * | |
627 | * -- wli | |
628 | */ | |
085cc7d5 | 629 | static inline void expand(struct zone *zone, struct page *page, |
b2a0ac88 MG |
630 | int low, int high, struct free_area *area, |
631 | int migratetype) | |
1da177e4 LT |
632 | { |
633 | unsigned long size = 1 << high; | |
634 | ||
635 | while (high > low) { | |
636 | area--; | |
637 | high--; | |
638 | size >>= 1; | |
725d704e | 639 | VM_BUG_ON(bad_range(zone, &page[size])); |
b2a0ac88 | 640 | list_add(&page[size].lru, &area->free_list[migratetype]); |
1da177e4 LT |
641 | area->nr_free++; |
642 | set_page_order(&page[size], high); | |
643 | } | |
1da177e4 LT |
644 | } |
645 | ||
1da177e4 LT |
646 | /* |
647 | * This page is about to be returned from the page allocator | |
648 | */ | |
17cf4406 | 649 | static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) |
1da177e4 | 650 | { |
92be2e33 NP |
651 | if (unlikely(page_mapcount(page) | |
652 | (page->mapping != NULL) | | |
a3af9c38 | 653 | (atomic_read(&page->_count) != 0) | |
8cc3b392 | 654 | (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) { |
224abf92 | 655 | bad_page(page); |
689bcebf | 656 | return 1; |
8cc3b392 | 657 | } |
689bcebf | 658 | |
4c21e2f2 | 659 | set_page_private(page, 0); |
7835e98b | 660 | set_page_refcounted(page); |
cc102509 NP |
661 | |
662 | arch_alloc_page(page, order); | |
1da177e4 | 663 | kernel_map_pages(page, 1 << order, 1); |
17cf4406 NP |
664 | |
665 | if (gfp_flags & __GFP_ZERO) | |
666 | prep_zero_page(page, order, gfp_flags); | |
667 | ||
668 | if (order && (gfp_flags & __GFP_COMP)) | |
669 | prep_compound_page(page, order); | |
670 | ||
689bcebf | 671 | return 0; |
1da177e4 LT |
672 | } |
673 | ||
56fd56b8 MG |
674 | /* |
675 | * Go through the free lists for the given migratetype and remove | |
676 | * the smallest available page from the freelists | |
677 | */ | |
728ec980 MG |
678 | static inline |
679 | struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, | |
56fd56b8 MG |
680 | int migratetype) |
681 | { | |
682 | unsigned int current_order; | |
683 | struct free_area * area; | |
684 | struct page *page; | |
685 | ||
686 | /* Find a page of the appropriate size in the preferred list */ | |
687 | for (current_order = order; current_order < MAX_ORDER; ++current_order) { | |
688 | area = &(zone->free_area[current_order]); | |
689 | if (list_empty(&area->free_list[migratetype])) | |
690 | continue; | |
691 | ||
692 | page = list_entry(area->free_list[migratetype].next, | |
693 | struct page, lru); | |
694 | list_del(&page->lru); | |
695 | rmv_page_order(page); | |
696 | area->nr_free--; | |
56fd56b8 MG |
697 | expand(zone, page, order, current_order, area, migratetype); |
698 | return page; | |
699 | } | |
700 | ||
701 | return NULL; | |
702 | } | |
703 | ||
704 | ||
b2a0ac88 MG |
705 | /* |
706 | * This array describes the order lists are fallen back to when | |
707 | * the free lists for the desirable migrate type are depleted | |
708 | */ | |
709 | static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = { | |
64c5e135 MG |
710 | [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, |
711 | [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, | |
712 | [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, | |
713 | [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */ | |
b2a0ac88 MG |
714 | }; |
715 | ||
c361be55 MG |
716 | /* |
717 | * Move the free pages in a range to the free lists of the requested type. | |
d9c23400 | 718 | * Note that start_page and end_pages are not aligned on a pageblock |
c361be55 MG |
719 | * boundary. If alignment is required, use move_freepages_block() |
720 | */ | |
b69a7288 AB |
721 | static int move_freepages(struct zone *zone, |
722 | struct page *start_page, struct page *end_page, | |
723 | int migratetype) | |
c361be55 MG |
724 | { |
725 | struct page *page; | |
726 | unsigned long order; | |
d100313f | 727 | int pages_moved = 0; |
c361be55 MG |
728 | |
729 | #ifndef CONFIG_HOLES_IN_ZONE | |
730 | /* | |
731 | * page_zone is not safe to call in this context when | |
732 | * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant | |
733 | * anyway as we check zone boundaries in move_freepages_block(). | |
734 | * Remove at a later date when no bug reports exist related to | |
ac0e5b7a | 735 | * grouping pages by mobility |
c361be55 MG |
736 | */ |
737 | BUG_ON(page_zone(start_page) != page_zone(end_page)); | |
738 | #endif | |
739 | ||
740 | for (page = start_page; page <= end_page;) { | |
344c790e AL |
741 | /* Make sure we are not inadvertently changing nodes */ |
742 | VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone)); | |
743 | ||
c361be55 MG |
744 | if (!pfn_valid_within(page_to_pfn(page))) { |
745 | page++; | |
746 | continue; | |
747 | } | |
748 | ||
749 | if (!PageBuddy(page)) { | |
750 | page++; | |
751 | continue; | |
752 | } | |
753 | ||
754 | order = page_order(page); | |
755 | list_del(&page->lru); | |
756 | list_add(&page->lru, | |
757 | &zone->free_area[order].free_list[migratetype]); | |
758 | page += 1 << order; | |
d100313f | 759 | pages_moved += 1 << order; |
c361be55 MG |
760 | } |
761 | ||
d100313f | 762 | return pages_moved; |
c361be55 MG |
763 | } |
764 | ||
b69a7288 AB |
765 | static int move_freepages_block(struct zone *zone, struct page *page, |
766 | int migratetype) | |
c361be55 MG |
767 | { |
768 | unsigned long start_pfn, end_pfn; | |
769 | struct page *start_page, *end_page; | |
770 | ||
771 | start_pfn = page_to_pfn(page); | |
d9c23400 | 772 | start_pfn = start_pfn & ~(pageblock_nr_pages-1); |
c361be55 | 773 | start_page = pfn_to_page(start_pfn); |
d9c23400 MG |
774 | end_page = start_page + pageblock_nr_pages - 1; |
775 | end_pfn = start_pfn + pageblock_nr_pages - 1; | |
c361be55 MG |
776 | |
777 | /* Do not cross zone boundaries */ | |
778 | if (start_pfn < zone->zone_start_pfn) | |
779 | start_page = page; | |
780 | if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages) | |
781 | return 0; | |
782 | ||
783 | return move_freepages(zone, start_page, end_page, migratetype); | |
784 | } | |
785 | ||
b2a0ac88 | 786 | /* Remove an element from the buddy allocator from the fallback list */ |
0ac3a409 MG |
787 | static inline struct page * |
788 | __rmqueue_fallback(struct zone *zone, int order, int start_migratetype) | |
b2a0ac88 MG |
789 | { |
790 | struct free_area * area; | |
791 | int current_order; | |
792 | struct page *page; | |
793 | int migratetype, i; | |
794 | ||
795 | /* Find the largest possible block of pages in the other list */ | |
796 | for (current_order = MAX_ORDER-1; current_order >= order; | |
797 | --current_order) { | |
798 | for (i = 0; i < MIGRATE_TYPES - 1; i++) { | |
799 | migratetype = fallbacks[start_migratetype][i]; | |
800 | ||
56fd56b8 MG |
801 | /* MIGRATE_RESERVE handled later if necessary */ |
802 | if (migratetype == MIGRATE_RESERVE) | |
803 | continue; | |
e010487d | 804 | |
b2a0ac88 MG |
805 | area = &(zone->free_area[current_order]); |
806 | if (list_empty(&area->free_list[migratetype])) | |
807 | continue; | |
808 | ||
809 | page = list_entry(area->free_list[migratetype].next, | |
810 | struct page, lru); | |
811 | area->nr_free--; | |
812 | ||
813 | /* | |
c361be55 | 814 | * If breaking a large block of pages, move all free |
46dafbca MG |
815 | * pages to the preferred allocation list. If falling |
816 | * back for a reclaimable kernel allocation, be more | |
817 | * agressive about taking ownership of free pages | |
b2a0ac88 | 818 | */ |
d9c23400 | 819 | if (unlikely(current_order >= (pageblock_order >> 1)) || |
dd5d241e MG |
820 | start_migratetype == MIGRATE_RECLAIMABLE || |
821 | page_group_by_mobility_disabled) { | |
46dafbca MG |
822 | unsigned long pages; |
823 | pages = move_freepages_block(zone, page, | |
824 | start_migratetype); | |
825 | ||
826 | /* Claim the whole block if over half of it is free */ | |
dd5d241e MG |
827 | if (pages >= (1 << (pageblock_order-1)) || |
828 | page_group_by_mobility_disabled) | |
46dafbca MG |
829 | set_pageblock_migratetype(page, |
830 | start_migratetype); | |
831 | ||
b2a0ac88 | 832 | migratetype = start_migratetype; |
c361be55 | 833 | } |
b2a0ac88 MG |
834 | |
835 | /* Remove the page from the freelists */ | |
836 | list_del(&page->lru); | |
837 | rmv_page_order(page); | |
b2a0ac88 | 838 | |
d9c23400 | 839 | if (current_order == pageblock_order) |
b2a0ac88 MG |
840 | set_pageblock_migratetype(page, |
841 | start_migratetype); | |
842 | ||
843 | expand(zone, page, order, current_order, area, migratetype); | |
844 | return page; | |
845 | } | |
846 | } | |
847 | ||
728ec980 | 848 | return NULL; |
b2a0ac88 MG |
849 | } |
850 | ||
56fd56b8 | 851 | /* |
1da177e4 LT |
852 | * Do the hard work of removing an element from the buddy allocator. |
853 | * Call me with the zone->lock already held. | |
854 | */ | |
b2a0ac88 MG |
855 | static struct page *__rmqueue(struct zone *zone, unsigned int order, |
856 | int migratetype) | |
1da177e4 | 857 | { |
1da177e4 LT |
858 | struct page *page; |
859 | ||
728ec980 | 860 | retry_reserve: |
56fd56b8 | 861 | page = __rmqueue_smallest(zone, order, migratetype); |
b2a0ac88 | 862 | |
728ec980 | 863 | if (unlikely(!page) && migratetype != MIGRATE_RESERVE) { |
56fd56b8 | 864 | page = __rmqueue_fallback(zone, order, migratetype); |
b2a0ac88 | 865 | |
728ec980 MG |
866 | /* |
867 | * Use MIGRATE_RESERVE rather than fail an allocation. goto | |
868 | * is used because __rmqueue_smallest is an inline function | |
869 | * and we want just one call site | |
870 | */ | |
871 | if (!page) { | |
872 | migratetype = MIGRATE_RESERVE; | |
873 | goto retry_reserve; | |
874 | } | |
875 | } | |
876 | ||
b2a0ac88 | 877 | return page; |
1da177e4 LT |
878 | } |
879 | ||
880 | /* | |
881 | * Obtain a specified number of elements from the buddy allocator, all under | |
882 | * a single hold of the lock, for efficiency. Add them to the supplied list. | |
883 | * Returns the number of new pages which were placed at *list. | |
884 | */ | |
885 | static int rmqueue_bulk(struct zone *zone, unsigned int order, | |
b2a0ac88 | 886 | unsigned long count, struct list_head *list, |
e084b2d9 | 887 | int migratetype, int cold) |
1da177e4 | 888 | { |
1da177e4 | 889 | int i; |
1da177e4 | 890 | |
c54ad30c | 891 | spin_lock(&zone->lock); |
1da177e4 | 892 | for (i = 0; i < count; ++i) { |
b2a0ac88 | 893 | struct page *page = __rmqueue(zone, order, migratetype); |
085cc7d5 | 894 | if (unlikely(page == NULL)) |
1da177e4 | 895 | break; |
81eabcbe MG |
896 | |
897 | /* | |
898 | * Split buddy pages returned by expand() are received here | |
899 | * in physical page order. The page is added to the callers and | |
900 | * list and the list head then moves forward. From the callers | |
901 | * perspective, the linked list is ordered by page number in | |
902 | * some conditions. This is useful for IO devices that can | |
903 | * merge IO requests if the physical pages are ordered | |
904 | * properly. | |
905 | */ | |
e084b2d9 MG |
906 | if (likely(cold == 0)) |
907 | list_add(&page->lru, list); | |
908 | else | |
909 | list_add_tail(&page->lru, list); | |
535131e6 | 910 | set_page_private(page, migratetype); |
81eabcbe | 911 | list = &page->lru; |
1da177e4 | 912 | } |
f2260e6b | 913 | __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); |
c54ad30c | 914 | spin_unlock(&zone->lock); |
085cc7d5 | 915 | return i; |
1da177e4 LT |
916 | } |
917 | ||
4ae7c039 | 918 | #ifdef CONFIG_NUMA |
8fce4d8e | 919 | /* |
4037d452 CL |
920 | * Called from the vmstat counter updater to drain pagesets of this |
921 | * currently executing processor on remote nodes after they have | |
922 | * expired. | |
923 | * | |
879336c3 CL |
924 | * Note that this function must be called with the thread pinned to |
925 | * a single processor. | |
8fce4d8e | 926 | */ |
4037d452 | 927 | void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) |
4ae7c039 | 928 | { |
4ae7c039 | 929 | unsigned long flags; |
4037d452 | 930 | int to_drain; |
4ae7c039 | 931 | |
4037d452 CL |
932 | local_irq_save(flags); |
933 | if (pcp->count >= pcp->batch) | |
934 | to_drain = pcp->batch; | |
935 | else | |
936 | to_drain = pcp->count; | |
937 | free_pages_bulk(zone, to_drain, &pcp->list, 0); | |
938 | pcp->count -= to_drain; | |
939 | local_irq_restore(flags); | |
4ae7c039 CL |
940 | } |
941 | #endif | |
942 | ||
9f8f2172 CL |
943 | /* |
944 | * Drain pages of the indicated processor. | |
945 | * | |
946 | * The processor must either be the current processor and the | |
947 | * thread pinned to the current processor or a processor that | |
948 | * is not online. | |
949 | */ | |
950 | static void drain_pages(unsigned int cpu) | |
1da177e4 | 951 | { |
c54ad30c | 952 | unsigned long flags; |
1da177e4 | 953 | struct zone *zone; |
1da177e4 | 954 | |
ee99c71c | 955 | for_each_populated_zone(zone) { |
1da177e4 | 956 | struct per_cpu_pageset *pset; |
3dfa5721 | 957 | struct per_cpu_pages *pcp; |
1da177e4 | 958 | |
e7c8d5c9 | 959 | pset = zone_pcp(zone, cpu); |
3dfa5721 CL |
960 | |
961 | pcp = &pset->pcp; | |
962 | local_irq_save(flags); | |
963 | free_pages_bulk(zone, pcp->count, &pcp->list, 0); | |
964 | pcp->count = 0; | |
965 | local_irq_restore(flags); | |
1da177e4 LT |
966 | } |
967 | } | |
1da177e4 | 968 | |
9f8f2172 CL |
969 | /* |
970 | * Spill all of this CPU's per-cpu pages back into the buddy allocator. | |
971 | */ | |
972 | void drain_local_pages(void *arg) | |
973 | { | |
974 | drain_pages(smp_processor_id()); | |
975 | } | |
976 | ||
977 | /* | |
978 | * Spill all the per-cpu pages from all CPUs back into the buddy allocator | |
979 | */ | |
980 | void drain_all_pages(void) | |
981 | { | |
15c8b6c1 | 982 | on_each_cpu(drain_local_pages, NULL, 1); |
9f8f2172 CL |
983 | } |
984 | ||
296699de | 985 | #ifdef CONFIG_HIBERNATION |
1da177e4 LT |
986 | |
987 | void mark_free_pages(struct zone *zone) | |
988 | { | |
f623f0db RW |
989 | unsigned long pfn, max_zone_pfn; |
990 | unsigned long flags; | |
b2a0ac88 | 991 | int order, t; |
1da177e4 LT |
992 | struct list_head *curr; |
993 | ||
994 | if (!zone->spanned_pages) | |
995 | return; | |
996 | ||
997 | spin_lock_irqsave(&zone->lock, flags); | |
f623f0db RW |
998 | |
999 | max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; | |
1000 | for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) | |
1001 | if (pfn_valid(pfn)) { | |
1002 | struct page *page = pfn_to_page(pfn); | |
1003 | ||
7be98234 RW |
1004 | if (!swsusp_page_is_forbidden(page)) |
1005 | swsusp_unset_page_free(page); | |
f623f0db | 1006 | } |
1da177e4 | 1007 | |
b2a0ac88 MG |
1008 | for_each_migratetype_order(order, t) { |
1009 | list_for_each(curr, &zone->free_area[order].free_list[t]) { | |
f623f0db | 1010 | unsigned long i; |
1da177e4 | 1011 | |
f623f0db RW |
1012 | pfn = page_to_pfn(list_entry(curr, struct page, lru)); |
1013 | for (i = 0; i < (1UL << order); i++) | |
7be98234 | 1014 | swsusp_set_page_free(pfn_to_page(pfn + i)); |
f623f0db | 1015 | } |
b2a0ac88 | 1016 | } |
1da177e4 LT |
1017 | spin_unlock_irqrestore(&zone->lock, flags); |
1018 | } | |
e2c55dc8 | 1019 | #endif /* CONFIG_PM */ |
1da177e4 | 1020 | |
1da177e4 LT |
1021 | /* |
1022 | * Free a 0-order page | |
1023 | */ | |
920c7a5d | 1024 | static void free_hot_cold_page(struct page *page, int cold) |
1da177e4 LT |
1025 | { |
1026 | struct zone *zone = page_zone(page); | |
1027 | struct per_cpu_pages *pcp; | |
1028 | unsigned long flags; | |
c277331d | 1029 | int wasMlocked = TestClearPageMlocked(page); |
1da177e4 | 1030 | |
b1eeab67 VN |
1031 | kmemcheck_free_shadow(page, 0); |
1032 | ||
1da177e4 LT |
1033 | if (PageAnon(page)) |
1034 | page->mapping = NULL; | |
224abf92 | 1035 | if (free_pages_check(page)) |
689bcebf HD |
1036 | return; |
1037 | ||
3ac7fe5a | 1038 | if (!PageHighMem(page)) { |
9858db50 | 1039 | debug_check_no_locks_freed(page_address(page), PAGE_SIZE); |
3ac7fe5a TG |
1040 | debug_check_no_obj_freed(page_address(page), PAGE_SIZE); |
1041 | } | |
dafb1367 | 1042 | arch_free_page(page, 0); |
689bcebf HD |
1043 | kernel_map_pages(page, 1, 0); |
1044 | ||
3dfa5721 | 1045 | pcp = &zone_pcp(zone, get_cpu())->pcp; |
974709bd | 1046 | set_page_private(page, get_pageblock_migratetype(page)); |
1da177e4 | 1047 | local_irq_save(flags); |
c277331d | 1048 | if (unlikely(wasMlocked)) |
da456f14 | 1049 | free_page_mlock(page); |
f8891e5e | 1050 | __count_vm_event(PGFREE); |
da456f14 | 1051 | |
3dfa5721 CL |
1052 | if (cold) |
1053 | list_add_tail(&page->lru, &pcp->list); | |
1054 | else | |
1055 | list_add(&page->lru, &pcp->list); | |
1da177e4 | 1056 | pcp->count++; |
48db57f8 NP |
1057 | if (pcp->count >= pcp->high) { |
1058 | free_pages_bulk(zone, pcp->batch, &pcp->list, 0); | |
1059 | pcp->count -= pcp->batch; | |
1060 | } | |
1da177e4 LT |
1061 | local_irq_restore(flags); |
1062 | put_cpu(); | |
1063 | } | |
1064 | ||
920c7a5d | 1065 | void free_hot_page(struct page *page) |
1da177e4 LT |
1066 | { |
1067 | free_hot_cold_page(page, 0); | |
1068 | } | |
1069 | ||
920c7a5d | 1070 | void free_cold_page(struct page *page) |
1da177e4 LT |
1071 | { |
1072 | free_hot_cold_page(page, 1); | |
1073 | } | |
1074 | ||
8dfcc9ba NP |
1075 | /* |
1076 | * split_page takes a non-compound higher-order page, and splits it into | |
1077 | * n (1<<order) sub-pages: page[0..n] | |
1078 | * Each sub-page must be freed individually. | |
1079 | * | |
1080 | * Note: this is probably too low level an operation for use in drivers. | |
1081 | * Please consult with lkml before using this in your driver. | |
1082 | */ | |
1083 | void split_page(struct page *page, unsigned int order) | |
1084 | { | |
1085 | int i; | |
1086 | ||
725d704e NP |
1087 | VM_BUG_ON(PageCompound(page)); |
1088 | VM_BUG_ON(!page_count(page)); | |
b1eeab67 VN |
1089 | |
1090 | #ifdef CONFIG_KMEMCHECK | |
1091 | /* | |
1092 | * Split shadow pages too, because free(page[0]) would | |
1093 | * otherwise free the whole shadow. | |
1094 | */ | |
1095 | if (kmemcheck_page_is_tracked(page)) | |
1096 | split_page(virt_to_page(page[0].shadow), order); | |
1097 | #endif | |
1098 | ||
7835e98b NP |
1099 | for (i = 1; i < (1 << order); i++) |
1100 | set_page_refcounted(page + i); | |
8dfcc9ba | 1101 | } |
8dfcc9ba | 1102 | |
1da177e4 LT |
1103 | /* |
1104 | * Really, prep_compound_page() should be called from __rmqueue_bulk(). But | |
1105 | * we cheat by calling it from here, in the order > 0 path. Saves a branch | |
1106 | * or two. | |
1107 | */ | |
0a15c3e9 MG |
1108 | static inline |
1109 | struct page *buffered_rmqueue(struct zone *preferred_zone, | |
3dd28266 MG |
1110 | struct zone *zone, int order, gfp_t gfp_flags, |
1111 | int migratetype) | |
1da177e4 LT |
1112 | { |
1113 | unsigned long flags; | |
689bcebf | 1114 | struct page *page; |
1da177e4 | 1115 | int cold = !!(gfp_flags & __GFP_COLD); |
a74609fa | 1116 | int cpu; |
1da177e4 | 1117 | |
689bcebf | 1118 | again: |
a74609fa | 1119 | cpu = get_cpu(); |
48db57f8 | 1120 | if (likely(order == 0)) { |
1da177e4 LT |
1121 | struct per_cpu_pages *pcp; |
1122 | ||
3dfa5721 | 1123 | pcp = &zone_pcp(zone, cpu)->pcp; |
1da177e4 | 1124 | local_irq_save(flags); |
a74609fa | 1125 | if (!pcp->count) { |
941c7105 | 1126 | pcp->count = rmqueue_bulk(zone, 0, |
e084b2d9 MG |
1127 | pcp->batch, &pcp->list, |
1128 | migratetype, cold); | |
a74609fa NP |
1129 | if (unlikely(!pcp->count)) |
1130 | goto failed; | |
1da177e4 | 1131 | } |
b92a6edd | 1132 | |
535131e6 | 1133 | /* Find a page of the appropriate migrate type */ |
3dfa5721 CL |
1134 | if (cold) { |
1135 | list_for_each_entry_reverse(page, &pcp->list, lru) | |
1136 | if (page_private(page) == migratetype) | |
1137 | break; | |
1138 | } else { | |
1139 | list_for_each_entry(page, &pcp->list, lru) | |
1140 | if (page_private(page) == migratetype) | |
1141 | break; | |
1142 | } | |
535131e6 | 1143 | |
b92a6edd MG |
1144 | /* Allocate more to the pcp list if necessary */ |
1145 | if (unlikely(&page->lru == &pcp->list)) { | |
6fb332fa SL |
1146 | int get_one_page = 0; |
1147 | ||
535131e6 | 1148 | pcp->count += rmqueue_bulk(zone, 0, |
e084b2d9 MG |
1149 | pcp->batch, &pcp->list, |
1150 | migratetype, cold); | |
6fb332fa SL |
1151 | list_for_each_entry(page, &pcp->list, lru) { |
1152 | if (get_pageblock_migratetype(page) != | |
1153 | MIGRATE_ISOLATE) { | |
1154 | get_one_page = 1; | |
1155 | break; | |
1156 | } | |
1157 | } | |
1158 | if (!get_one_page) | |
1159 | goto failed; | |
535131e6 | 1160 | } |
b92a6edd MG |
1161 | |
1162 | list_del(&page->lru); | |
1163 | pcp->count--; | |
7fb1d9fc | 1164 | } else { |
dab48dab AM |
1165 | if (unlikely(gfp_flags & __GFP_NOFAIL)) { |
1166 | /* | |
1167 | * __GFP_NOFAIL is not to be used in new code. | |
1168 | * | |
1169 | * All __GFP_NOFAIL callers should be fixed so that they | |
1170 | * properly detect and handle allocation failures. | |
1171 | * | |
1172 | * We most definitely don't want callers attempting to | |
4923abf9 | 1173 | * allocate greater than order-1 page units with |
dab48dab AM |
1174 | * __GFP_NOFAIL. |
1175 | */ | |
4923abf9 | 1176 | WARN_ON_ONCE(order > 1); |
dab48dab | 1177 | } |
1da177e4 | 1178 | spin_lock_irqsave(&zone->lock, flags); |
b2a0ac88 | 1179 | page = __rmqueue(zone, order, migratetype); |
f2260e6b | 1180 | __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order)); |
a74609fa NP |
1181 | spin_unlock(&zone->lock); |
1182 | if (!page) | |
1183 | goto failed; | |
1da177e4 LT |
1184 | } |
1185 | ||
f8891e5e | 1186 | __count_zone_vm_events(PGALLOC, zone, 1 << order); |
18ea7e71 | 1187 | zone_statistics(preferred_zone, zone); |
a74609fa NP |
1188 | local_irq_restore(flags); |
1189 | put_cpu(); | |
1da177e4 | 1190 | |
725d704e | 1191 | VM_BUG_ON(bad_range(zone, page)); |
17cf4406 | 1192 | if (prep_new_page(page, order, gfp_flags)) |
a74609fa | 1193 | goto again; |
1da177e4 | 1194 | return page; |
a74609fa NP |
1195 | |
1196 | failed: | |
1197 | local_irq_restore(flags); | |
1198 | put_cpu(); | |
1199 | return NULL; | |
1da177e4 LT |
1200 | } |
1201 | ||
41858966 MG |
1202 | /* The ALLOC_WMARK bits are used as an index to zone->watermark */ |
1203 | #define ALLOC_WMARK_MIN WMARK_MIN | |
1204 | #define ALLOC_WMARK_LOW WMARK_LOW | |
1205 | #define ALLOC_WMARK_HIGH WMARK_HIGH | |
1206 | #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */ | |
1207 | ||
1208 | /* Mask to get the watermark bits */ | |
1209 | #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1) | |
1210 | ||
3148890b NP |
1211 | #define ALLOC_HARDER 0x10 /* try to alloc harder */ |
1212 | #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ | |
1213 | #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ | |
7fb1d9fc | 1214 | |
933e312e AM |
1215 | #ifdef CONFIG_FAIL_PAGE_ALLOC |
1216 | ||
1217 | static struct fail_page_alloc_attr { | |
1218 | struct fault_attr attr; | |
1219 | ||
1220 | u32 ignore_gfp_highmem; | |
1221 | u32 ignore_gfp_wait; | |
54114994 | 1222 | u32 min_order; |
933e312e AM |
1223 | |
1224 | #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS | |
1225 | ||
1226 | struct dentry *ignore_gfp_highmem_file; | |
1227 | struct dentry *ignore_gfp_wait_file; | |
54114994 | 1228 | struct dentry *min_order_file; |
933e312e AM |
1229 | |
1230 | #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ | |
1231 | ||
1232 | } fail_page_alloc = { | |
1233 | .attr = FAULT_ATTR_INITIALIZER, | |
6b1b60f4 DM |
1234 | .ignore_gfp_wait = 1, |
1235 | .ignore_gfp_highmem = 1, | |
54114994 | 1236 | .min_order = 1, |
933e312e AM |
1237 | }; |
1238 | ||
1239 | static int __init setup_fail_page_alloc(char *str) | |
1240 | { | |
1241 | return setup_fault_attr(&fail_page_alloc.attr, str); | |
1242 | } | |
1243 | __setup("fail_page_alloc=", setup_fail_page_alloc); | |
1244 | ||
1245 | static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) | |
1246 | { | |
54114994 AM |
1247 | if (order < fail_page_alloc.min_order) |
1248 | return 0; | |
933e312e AM |
1249 | if (gfp_mask & __GFP_NOFAIL) |
1250 | return 0; | |
1251 | if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) | |
1252 | return 0; | |
1253 | if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) | |
1254 | return 0; | |
1255 | ||
1256 | return should_fail(&fail_page_alloc.attr, 1 << order); | |
1257 | } | |
1258 | ||
1259 | #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS | |
1260 | ||
1261 | static int __init fail_page_alloc_debugfs(void) | |
1262 | { | |
1263 | mode_t mode = S_IFREG | S_IRUSR | S_IWUSR; | |
1264 | struct dentry *dir; | |
1265 | int err; | |
1266 | ||
1267 | err = init_fault_attr_dentries(&fail_page_alloc.attr, | |
1268 | "fail_page_alloc"); | |
1269 | if (err) | |
1270 | return err; | |
1271 | dir = fail_page_alloc.attr.dentries.dir; | |
1272 | ||
1273 | fail_page_alloc.ignore_gfp_wait_file = | |
1274 | debugfs_create_bool("ignore-gfp-wait", mode, dir, | |
1275 | &fail_page_alloc.ignore_gfp_wait); | |
1276 | ||
1277 | fail_page_alloc.ignore_gfp_highmem_file = | |
1278 | debugfs_create_bool("ignore-gfp-highmem", mode, dir, | |
1279 | &fail_page_alloc.ignore_gfp_highmem); | |
54114994 AM |
1280 | fail_page_alloc.min_order_file = |
1281 | debugfs_create_u32("min-order", mode, dir, | |
1282 | &fail_page_alloc.min_order); | |
933e312e AM |
1283 | |
1284 | if (!fail_page_alloc.ignore_gfp_wait_file || | |
54114994 AM |
1285 | !fail_page_alloc.ignore_gfp_highmem_file || |
1286 | !fail_page_alloc.min_order_file) { | |
933e312e AM |
1287 | err = -ENOMEM; |
1288 | debugfs_remove(fail_page_alloc.ignore_gfp_wait_file); | |
1289 | debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file); | |
54114994 | 1290 | debugfs_remove(fail_page_alloc.min_order_file); |
933e312e AM |
1291 | cleanup_fault_attr_dentries(&fail_page_alloc.attr); |
1292 | } | |
1293 | ||
1294 | return err; | |
1295 | } | |
1296 | ||
1297 | late_initcall(fail_page_alloc_debugfs); | |
1298 | ||
1299 | #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ | |
1300 | ||
1301 | #else /* CONFIG_FAIL_PAGE_ALLOC */ | |
1302 | ||
1303 | static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) | |
1304 | { | |
1305 | return 0; | |
1306 | } | |
1307 | ||
1308 | #endif /* CONFIG_FAIL_PAGE_ALLOC */ | |
1309 | ||
1da177e4 LT |
1310 | /* |
1311 | * Return 1 if free pages are above 'mark'. This takes into account the order | |
1312 | * of the allocation. | |
1313 | */ | |
1314 | int zone_watermark_ok(struct zone *z, int order, unsigned long mark, | |
7fb1d9fc | 1315 | int classzone_idx, int alloc_flags) |
1da177e4 LT |
1316 | { |
1317 | /* free_pages my go negative - that's OK */ | |
d23ad423 CL |
1318 | long min = mark; |
1319 | long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1; | |
1da177e4 LT |
1320 | int o; |
1321 | ||
7fb1d9fc | 1322 | if (alloc_flags & ALLOC_HIGH) |
1da177e4 | 1323 | min -= min / 2; |
7fb1d9fc | 1324 | if (alloc_flags & ALLOC_HARDER) |
1da177e4 LT |
1325 | min -= min / 4; |
1326 | ||
1327 | if (free_pages <= min + z->lowmem_reserve[classzone_idx]) | |
1328 | return 0; | |
1329 | for (o = 0; o < order; o++) { | |
1330 | /* At the next order, this order's pages become unavailable */ | |
1331 | free_pages -= z->free_area[o].nr_free << o; | |
1332 | ||
1333 | /* Require fewer higher order pages to be free */ | |
1334 | min >>= 1; | |
1335 | ||
1336 | if (free_pages <= min) | |
1337 | return 0; | |
1338 | } | |
1339 | return 1; | |
1340 | } | |
1341 | ||
9276b1bc PJ |
1342 | #ifdef CONFIG_NUMA |
1343 | /* | |
1344 | * zlc_setup - Setup for "zonelist cache". Uses cached zone data to | |
1345 | * skip over zones that are not allowed by the cpuset, or that have | |
1346 | * been recently (in last second) found to be nearly full. See further | |
1347 | * comments in mmzone.h. Reduces cache footprint of zonelist scans | |
183ff22b | 1348 | * that have to skip over a lot of full or unallowed zones. |
9276b1bc PJ |
1349 | * |
1350 | * If the zonelist cache is present in the passed in zonelist, then | |
1351 | * returns a pointer to the allowed node mask (either the current | |
37b07e41 | 1352 | * tasks mems_allowed, or node_states[N_HIGH_MEMORY].) |
9276b1bc PJ |
1353 | * |
1354 | * If the zonelist cache is not available for this zonelist, does | |
1355 | * nothing and returns NULL. | |
1356 | * | |
1357 | * If the fullzones BITMAP in the zonelist cache is stale (more than | |
1358 | * a second since last zap'd) then we zap it out (clear its bits.) | |
1359 | * | |
1360 | * We hold off even calling zlc_setup, until after we've checked the | |
1361 | * first zone in the zonelist, on the theory that most allocations will | |
1362 | * be satisfied from that first zone, so best to examine that zone as | |
1363 | * quickly as we can. | |
1364 | */ | |
1365 | static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) | |
1366 | { | |
1367 | struct zonelist_cache *zlc; /* cached zonelist speedup info */ | |
1368 | nodemask_t *allowednodes; /* zonelist_cache approximation */ | |
1369 | ||
1370 | zlc = zonelist->zlcache_ptr; | |
1371 | if (!zlc) | |
1372 | return NULL; | |
1373 | ||
f05111f5 | 1374 | if (time_after(jiffies, zlc->last_full_zap + HZ)) { |
9276b1bc PJ |
1375 | bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); |
1376 | zlc->last_full_zap = jiffies; | |
1377 | } | |
1378 | ||
1379 | allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? | |
1380 | &cpuset_current_mems_allowed : | |
37b07e41 | 1381 | &node_states[N_HIGH_MEMORY]; |
9276b1bc PJ |
1382 | return allowednodes; |
1383 | } | |
1384 | ||
1385 | /* | |
1386 | * Given 'z' scanning a zonelist, run a couple of quick checks to see | |
1387 | * if it is worth looking at further for free memory: | |
1388 | * 1) Check that the zone isn't thought to be full (doesn't have its | |
1389 | * bit set in the zonelist_cache fullzones BITMAP). | |
1390 | * 2) Check that the zones node (obtained from the zonelist_cache | |
1391 | * z_to_n[] mapping) is allowed in the passed in allowednodes mask. | |
1392 | * Return true (non-zero) if zone is worth looking at further, or | |
1393 | * else return false (zero) if it is not. | |
1394 | * | |
1395 | * This check -ignores- the distinction between various watermarks, | |
1396 | * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is | |
1397 | * found to be full for any variation of these watermarks, it will | |
1398 | * be considered full for up to one second by all requests, unless | |
1399 | * we are so low on memory on all allowed nodes that we are forced | |
1400 | * into the second scan of the zonelist. | |
1401 | * | |
1402 | * In the second scan we ignore this zonelist cache and exactly | |
1403 | * apply the watermarks to all zones, even it is slower to do so. | |
1404 | * We are low on memory in the second scan, and should leave no stone | |
1405 | * unturned looking for a free page. | |
1406 | */ | |
dd1a239f | 1407 | static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, |
9276b1bc PJ |
1408 | nodemask_t *allowednodes) |
1409 | { | |
1410 | struct zonelist_cache *zlc; /* cached zonelist speedup info */ | |
1411 | int i; /* index of *z in zonelist zones */ | |
1412 | int n; /* node that zone *z is on */ | |
1413 | ||
1414 | zlc = zonelist->zlcache_ptr; | |
1415 | if (!zlc) | |
1416 | return 1; | |
1417 | ||
dd1a239f | 1418 | i = z - zonelist->_zonerefs; |
9276b1bc PJ |
1419 | n = zlc->z_to_n[i]; |
1420 | ||
1421 | /* This zone is worth trying if it is allowed but not full */ | |
1422 | return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); | |
1423 | } | |
1424 | ||
1425 | /* | |
1426 | * Given 'z' scanning a zonelist, set the corresponding bit in | |
1427 | * zlc->fullzones, so that subsequent attempts to allocate a page | |
1428 | * from that zone don't waste time re-examining it. | |
1429 | */ | |
dd1a239f | 1430 | static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) |
9276b1bc PJ |
1431 | { |
1432 | struct zonelist_cache *zlc; /* cached zonelist speedup info */ | |
1433 | int i; /* index of *z in zonelist zones */ | |
1434 | ||
1435 | zlc = zonelist->zlcache_ptr; | |
1436 | if (!zlc) | |
1437 | return; | |
1438 | ||
dd1a239f | 1439 | i = z - zonelist->_zonerefs; |
9276b1bc PJ |
1440 | |
1441 | set_bit(i, zlc->fullzones); | |
1442 | } | |
1443 | ||
1444 | #else /* CONFIG_NUMA */ | |
1445 | ||
1446 | static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) | |
1447 | { | |
1448 | return NULL; | |
1449 | } | |
1450 | ||
dd1a239f | 1451 | static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, |
9276b1bc PJ |
1452 | nodemask_t *allowednodes) |
1453 | { | |
1454 | return 1; | |
1455 | } | |
1456 | ||
dd1a239f | 1457 | static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) |
9276b1bc PJ |
1458 | { |
1459 | } | |
1460 | #endif /* CONFIG_NUMA */ | |
1461 | ||
7fb1d9fc | 1462 | /* |
0798e519 | 1463 | * get_page_from_freelist goes through the zonelist trying to allocate |
7fb1d9fc RS |
1464 | * a page. |
1465 | */ | |
1466 | static struct page * | |
19770b32 | 1467 | get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order, |
5117f45d | 1468 | struct zonelist *zonelist, int high_zoneidx, int alloc_flags, |
3dd28266 | 1469 | struct zone *preferred_zone, int migratetype) |
753ee728 | 1470 | { |
dd1a239f | 1471 | struct zoneref *z; |
7fb1d9fc | 1472 | struct page *page = NULL; |
54a6eb5c | 1473 | int classzone_idx; |
5117f45d | 1474 | struct zone *zone; |
9276b1bc PJ |
1475 | nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ |
1476 | int zlc_active = 0; /* set if using zonelist_cache */ | |
1477 | int did_zlc_setup = 0; /* just call zlc_setup() one time */ | |
54a6eb5c | 1478 | |
19770b32 | 1479 | classzone_idx = zone_idx(preferred_zone); |
9276b1bc | 1480 | zonelist_scan: |
7fb1d9fc | 1481 | /* |
9276b1bc | 1482 | * Scan zonelist, looking for a zone with enough free. |
7fb1d9fc RS |
1483 | * See also cpuset_zone_allowed() comment in kernel/cpuset.c. |
1484 | */ | |
19770b32 MG |
1485 | for_each_zone_zonelist_nodemask(zone, z, zonelist, |
1486 | high_zoneidx, nodemask) { | |
9276b1bc PJ |
1487 | if (NUMA_BUILD && zlc_active && |
1488 | !zlc_zone_worth_trying(zonelist, z, allowednodes)) | |
1489 | continue; | |
7fb1d9fc | 1490 | if ((alloc_flags & ALLOC_CPUSET) && |
02a0e53d | 1491 | !cpuset_zone_allowed_softwall(zone, gfp_mask)) |
9276b1bc | 1492 | goto try_next_zone; |
7fb1d9fc | 1493 | |
41858966 | 1494 | BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); |
7fb1d9fc | 1495 | if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { |
3148890b | 1496 | unsigned long mark; |
fa5e084e MG |
1497 | int ret; |
1498 | ||
41858966 | 1499 | mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; |
fa5e084e MG |
1500 | if (zone_watermark_ok(zone, order, mark, |
1501 | classzone_idx, alloc_flags)) | |
1502 | goto try_this_zone; | |
1503 | ||
1504 | if (zone_reclaim_mode == 0) | |
1505 | goto this_zone_full; | |
1506 | ||
1507 | ret = zone_reclaim(zone, gfp_mask, order); | |
1508 | switch (ret) { | |
1509 | case ZONE_RECLAIM_NOSCAN: | |
1510 | /* did not scan */ | |
1511 | goto try_next_zone; | |
1512 | case ZONE_RECLAIM_FULL: | |
1513 | /* scanned but unreclaimable */ | |
1514 | goto this_zone_full; | |
1515 | default: | |
1516 | /* did we reclaim enough */ | |
1517 | if (!zone_watermark_ok(zone, order, mark, | |
1518 | classzone_idx, alloc_flags)) | |
9276b1bc | 1519 | goto this_zone_full; |
0798e519 | 1520 | } |
7fb1d9fc RS |
1521 | } |
1522 | ||
fa5e084e | 1523 | try_this_zone: |
3dd28266 MG |
1524 | page = buffered_rmqueue(preferred_zone, zone, order, |
1525 | gfp_mask, migratetype); | |
0798e519 | 1526 | if (page) |
7fb1d9fc | 1527 | break; |
9276b1bc PJ |
1528 | this_zone_full: |
1529 | if (NUMA_BUILD) | |
1530 | zlc_mark_zone_full(zonelist, z); | |
1531 | try_next_zone: | |
62bc62a8 | 1532 | if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) { |
d395b734 MG |
1533 | /* |
1534 | * we do zlc_setup after the first zone is tried but only | |
1535 | * if there are multiple nodes make it worthwhile | |
1536 | */ | |
9276b1bc PJ |
1537 | allowednodes = zlc_setup(zonelist, alloc_flags); |
1538 | zlc_active = 1; | |
1539 | did_zlc_setup = 1; | |
1540 | } | |
54a6eb5c | 1541 | } |
9276b1bc PJ |
1542 | |
1543 | if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) { | |
1544 | /* Disable zlc cache for second zonelist scan */ | |
1545 | zlc_active = 0; | |
1546 | goto zonelist_scan; | |
1547 | } | |
7fb1d9fc | 1548 | return page; |
753ee728 MH |
1549 | } |
1550 | ||
11e33f6a MG |
1551 | static inline int |
1552 | should_alloc_retry(gfp_t gfp_mask, unsigned int order, | |
1553 | unsigned long pages_reclaimed) | |
1da177e4 | 1554 | { |
11e33f6a MG |
1555 | /* Do not loop if specifically requested */ |
1556 | if (gfp_mask & __GFP_NORETRY) | |
1557 | return 0; | |
1da177e4 | 1558 | |
11e33f6a MG |
1559 | /* |
1560 | * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER | |
1561 | * means __GFP_NOFAIL, but that may not be true in other | |
1562 | * implementations. | |
1563 | */ | |
1564 | if (order <= PAGE_ALLOC_COSTLY_ORDER) | |
1565 | return 1; | |
1566 | ||
1567 | /* | |
1568 | * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is | |
1569 | * specified, then we retry until we no longer reclaim any pages | |
1570 | * (above), or we've reclaimed an order of pages at least as | |
1571 | * large as the allocation's order. In both cases, if the | |
1572 | * allocation still fails, we stop retrying. | |
1573 | */ | |
1574 | if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order)) | |
1575 | return 1; | |
cf40bd16 | 1576 | |
11e33f6a MG |
1577 | /* |
1578 | * Don't let big-order allocations loop unless the caller | |
1579 | * explicitly requests that. | |
1580 | */ | |
1581 | if (gfp_mask & __GFP_NOFAIL) | |
1582 | return 1; | |
1da177e4 | 1583 | |
11e33f6a MG |
1584 | return 0; |
1585 | } | |
933e312e | 1586 | |
11e33f6a MG |
1587 | static inline struct page * |
1588 | __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, | |
1589 | struct zonelist *zonelist, enum zone_type high_zoneidx, | |
3dd28266 MG |
1590 | nodemask_t *nodemask, struct zone *preferred_zone, |
1591 | int migratetype) | |
11e33f6a MG |
1592 | { |
1593 | struct page *page; | |
1594 | ||
1595 | /* Acquire the OOM killer lock for the zones in zonelist */ | |
1596 | if (!try_set_zone_oom(zonelist, gfp_mask)) { | |
1597 | schedule_timeout_uninterruptible(1); | |
1da177e4 LT |
1598 | return NULL; |
1599 | } | |
6b1de916 | 1600 | |
11e33f6a MG |
1601 | /* |
1602 | * Go through the zonelist yet one more time, keep very high watermark | |
1603 | * here, this is only to catch a parallel oom killing, we must fail if | |
1604 | * we're still under heavy pressure. | |
1605 | */ | |
1606 | page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, | |
1607 | order, zonelist, high_zoneidx, | |
5117f45d | 1608 | ALLOC_WMARK_HIGH|ALLOC_CPUSET, |
3dd28266 | 1609 | preferred_zone, migratetype); |
7fb1d9fc | 1610 | if (page) |
11e33f6a MG |
1611 | goto out; |
1612 | ||
1613 | /* The OOM killer will not help higher order allocs */ | |
82553a93 | 1614 | if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_NOFAIL)) |
11e33f6a MG |
1615 | goto out; |
1616 | ||
1617 | /* Exhausted what can be done so it's blamo time */ | |
1618 | out_of_memory(zonelist, gfp_mask, order); | |
1619 | ||
1620 | out: | |
1621 | clear_zonelist_oom(zonelist, gfp_mask); | |
1622 | return page; | |
1623 | } | |
1624 | ||
1625 | /* The really slow allocator path where we enter direct reclaim */ | |
1626 | static inline struct page * | |
1627 | __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, | |
1628 | struct zonelist *zonelist, enum zone_type high_zoneidx, | |
5117f45d | 1629 | nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, |
3dd28266 | 1630 | int migratetype, unsigned long *did_some_progress) |
11e33f6a MG |
1631 | { |
1632 | struct page *page = NULL; | |
1633 | struct reclaim_state reclaim_state; | |
1634 | struct task_struct *p = current; | |
1635 | ||
1636 | cond_resched(); | |
1637 | ||
1638 | /* We now go into synchronous reclaim */ | |
1639 | cpuset_memory_pressure_bump(); | |
11e33f6a MG |
1640 | p->flags |= PF_MEMALLOC; |
1641 | lockdep_set_current_reclaim_state(gfp_mask); | |
1642 | reclaim_state.reclaimed_slab = 0; | |
1643 | p->reclaim_state = &reclaim_state; | |
1644 | ||
1645 | *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask); | |
1646 | ||
1647 | p->reclaim_state = NULL; | |
1648 | lockdep_clear_current_reclaim_state(); | |
1649 | p->flags &= ~PF_MEMALLOC; | |
1650 | ||
1651 | cond_resched(); | |
1652 | ||
1653 | if (order != 0) | |
1654 | drain_all_pages(); | |
1655 | ||
1656 | if (likely(*did_some_progress)) | |
1657 | page = get_page_from_freelist(gfp_mask, nodemask, order, | |
5117f45d | 1658 | zonelist, high_zoneidx, |
3dd28266 MG |
1659 | alloc_flags, preferred_zone, |
1660 | migratetype); | |
11e33f6a MG |
1661 | return page; |
1662 | } | |
1663 | ||
1da177e4 | 1664 | /* |
11e33f6a MG |
1665 | * This is called in the allocator slow-path if the allocation request is of |
1666 | * sufficient urgency to ignore watermarks and take other desperate measures | |
1da177e4 | 1667 | */ |
11e33f6a MG |
1668 | static inline struct page * |
1669 | __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order, | |
1670 | struct zonelist *zonelist, enum zone_type high_zoneidx, | |
3dd28266 MG |
1671 | nodemask_t *nodemask, struct zone *preferred_zone, |
1672 | int migratetype) | |
11e33f6a MG |
1673 | { |
1674 | struct page *page; | |
1675 | ||
1676 | do { | |
1677 | page = get_page_from_freelist(gfp_mask, nodemask, order, | |
5117f45d | 1678 | zonelist, high_zoneidx, ALLOC_NO_WATERMARKS, |
3dd28266 | 1679 | preferred_zone, migratetype); |
11e33f6a MG |
1680 | |
1681 | if (!page && gfp_mask & __GFP_NOFAIL) | |
8aa7e847 | 1682 | congestion_wait(BLK_RW_ASYNC, HZ/50); |
11e33f6a MG |
1683 | } while (!page && (gfp_mask & __GFP_NOFAIL)); |
1684 | ||
1685 | return page; | |
1686 | } | |
1687 | ||
1688 | static inline | |
1689 | void wake_all_kswapd(unsigned int order, struct zonelist *zonelist, | |
1690 | enum zone_type high_zoneidx) | |
1da177e4 | 1691 | { |
dd1a239f MG |
1692 | struct zoneref *z; |
1693 | struct zone *zone; | |
1da177e4 | 1694 | |
11e33f6a MG |
1695 | for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) |
1696 | wakeup_kswapd(zone, order); | |
1697 | } | |
cf40bd16 | 1698 | |
341ce06f PZ |
1699 | static inline int |
1700 | gfp_to_alloc_flags(gfp_t gfp_mask) | |
1701 | { | |
1702 | struct task_struct *p = current; | |
1703 | int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; | |
1704 | const gfp_t wait = gfp_mask & __GFP_WAIT; | |
1da177e4 | 1705 | |
a56f57ff MG |
1706 | /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ |
1707 | BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH); | |
933e312e | 1708 | |
341ce06f PZ |
1709 | /* |
1710 | * The caller may dip into page reserves a bit more if the caller | |
1711 | * cannot run direct reclaim, or if the caller has realtime scheduling | |
1712 | * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will | |
1713 | * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). | |
1714 | */ | |
a56f57ff | 1715 | alloc_flags |= (gfp_mask & __GFP_HIGH); |
1da177e4 | 1716 | |
341ce06f PZ |
1717 | if (!wait) { |
1718 | alloc_flags |= ALLOC_HARDER; | |
523b9458 | 1719 | /* |
341ce06f PZ |
1720 | * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. |
1721 | * See also cpuset_zone_allowed() comment in kernel/cpuset.c. | |
523b9458 | 1722 | */ |
341ce06f PZ |
1723 | alloc_flags &= ~ALLOC_CPUSET; |
1724 | } else if (unlikely(rt_task(p))) | |
1725 | alloc_flags |= ALLOC_HARDER; | |
1726 | ||
1727 | if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) { | |
1728 | if (!in_interrupt() && | |
1729 | ((p->flags & PF_MEMALLOC) || | |
1730 | unlikely(test_thread_flag(TIF_MEMDIE)))) | |
1731 | alloc_flags |= ALLOC_NO_WATERMARKS; | |
1da177e4 | 1732 | } |
6b1de916 | 1733 | |
341ce06f PZ |
1734 | return alloc_flags; |
1735 | } | |
1736 | ||
11e33f6a MG |
1737 | static inline struct page * |
1738 | __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, | |
1739 | struct zonelist *zonelist, enum zone_type high_zoneidx, | |
3dd28266 MG |
1740 | nodemask_t *nodemask, struct zone *preferred_zone, |
1741 | int migratetype) | |
11e33f6a MG |
1742 | { |
1743 | const gfp_t wait = gfp_mask & __GFP_WAIT; | |
1744 | struct page *page = NULL; | |
1745 | int alloc_flags; | |
1746 | unsigned long pages_reclaimed = 0; | |
1747 | unsigned long did_some_progress; | |
1748 | struct task_struct *p = current; | |
1da177e4 | 1749 | |
72807a74 MG |
1750 | /* |
1751 | * In the slowpath, we sanity check order to avoid ever trying to | |
1752 | * reclaim >= MAX_ORDER areas which will never succeed. Callers may | |
1753 | * be using allocators in order of preference for an area that is | |
1754 | * too large. | |
1755 | */ | |
1fc28b70 MG |
1756 | if (order >= MAX_ORDER) { |
1757 | WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); | |
72807a74 | 1758 | return NULL; |
1fc28b70 | 1759 | } |
1da177e4 | 1760 | |
952f3b51 CL |
1761 | /* |
1762 | * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and | |
1763 | * __GFP_NOWARN set) should not cause reclaim since the subsystem | |
1764 | * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim | |
1765 | * using a larger set of nodes after it has established that the | |
1766 | * allowed per node queues are empty and that nodes are | |
1767 | * over allocated. | |
1768 | */ | |
1769 | if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE) | |
1770 | goto nopage; | |
1771 | ||
11e33f6a | 1772 | wake_all_kswapd(order, zonelist, high_zoneidx); |
1da177e4 | 1773 | |
9bf2229f | 1774 | /* |
7fb1d9fc RS |
1775 | * OK, we're below the kswapd watermark and have kicked background |
1776 | * reclaim. Now things get more complex, so set up alloc_flags according | |
1777 | * to how we want to proceed. | |
9bf2229f | 1778 | */ |
341ce06f | 1779 | alloc_flags = gfp_to_alloc_flags(gfp_mask); |
1da177e4 | 1780 | |
11e33f6a | 1781 | restart: |
341ce06f | 1782 | /* This is the last chance, in general, before the goto nopage. */ |
19770b32 | 1783 | page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist, |
341ce06f PZ |
1784 | high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS, |
1785 | preferred_zone, migratetype); | |
7fb1d9fc RS |
1786 | if (page) |
1787 | goto got_pg; | |
1da177e4 | 1788 | |
b43a57bb | 1789 | rebalance: |
11e33f6a | 1790 | /* Allocate without watermarks if the context allows */ |
341ce06f PZ |
1791 | if (alloc_flags & ALLOC_NO_WATERMARKS) { |
1792 | page = __alloc_pages_high_priority(gfp_mask, order, | |
1793 | zonelist, high_zoneidx, nodemask, | |
1794 | preferred_zone, migratetype); | |
1795 | if (page) | |
1796 | goto got_pg; | |
1da177e4 LT |
1797 | } |
1798 | ||
1799 | /* Atomic allocations - we can't balance anything */ | |
1800 | if (!wait) | |
1801 | goto nopage; | |
1802 | ||
341ce06f PZ |
1803 | /* Avoid recursion of direct reclaim */ |
1804 | if (p->flags & PF_MEMALLOC) | |
1805 | goto nopage; | |
1806 | ||
6583bb64 DR |
1807 | /* Avoid allocations with no watermarks from looping endlessly */ |
1808 | if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) | |
1809 | goto nopage; | |
1810 | ||
11e33f6a MG |
1811 | /* Try direct reclaim and then allocating */ |
1812 | page = __alloc_pages_direct_reclaim(gfp_mask, order, | |
1813 | zonelist, high_zoneidx, | |
1814 | nodemask, | |
5117f45d | 1815 | alloc_flags, preferred_zone, |
3dd28266 | 1816 | migratetype, &did_some_progress); |
11e33f6a MG |
1817 | if (page) |
1818 | goto got_pg; | |
1da177e4 | 1819 | |
e33c3b5e | 1820 | /* |
11e33f6a MG |
1821 | * If we failed to make any progress reclaiming, then we are |
1822 | * running out of options and have to consider going OOM | |
e33c3b5e | 1823 | */ |
11e33f6a MG |
1824 | if (!did_some_progress) { |
1825 | if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { | |
7f33d49a RW |
1826 | if (oom_killer_disabled) |
1827 | goto nopage; | |
11e33f6a MG |
1828 | page = __alloc_pages_may_oom(gfp_mask, order, |
1829 | zonelist, high_zoneidx, | |
3dd28266 MG |
1830 | nodemask, preferred_zone, |
1831 | migratetype); | |
11e33f6a MG |
1832 | if (page) |
1833 | goto got_pg; | |
1da177e4 | 1834 | |
11e33f6a | 1835 | /* |
82553a93 DR |
1836 | * The OOM killer does not trigger for high-order |
1837 | * ~__GFP_NOFAIL allocations so if no progress is being | |
1838 | * made, there are no other options and retrying is | |
1839 | * unlikely to help. | |
11e33f6a | 1840 | */ |
82553a93 DR |
1841 | if (order > PAGE_ALLOC_COSTLY_ORDER && |
1842 | !(gfp_mask & __GFP_NOFAIL)) | |
11e33f6a | 1843 | goto nopage; |
e2c55dc8 | 1844 | |
ff0ceb9d DR |
1845 | goto restart; |
1846 | } | |
1da177e4 LT |
1847 | } |
1848 | ||
11e33f6a | 1849 | /* Check if we should retry the allocation */ |
a41f24ea | 1850 | pages_reclaimed += did_some_progress; |
11e33f6a MG |
1851 | if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) { |
1852 | /* Wait for some write requests to complete then retry */ | |
8aa7e847 | 1853 | congestion_wait(BLK_RW_ASYNC, HZ/50); |
1da177e4 LT |
1854 | goto rebalance; |
1855 | } | |
1856 | ||
1857 | nopage: | |
1858 | if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) { | |
1859 | printk(KERN_WARNING "%s: page allocation failure." | |
1860 | " order:%d, mode:0x%x\n", | |
1861 | p->comm, order, gfp_mask); | |
1862 | dump_stack(); | |
578c2fd6 | 1863 | show_mem(); |
1da177e4 | 1864 | } |
b1eeab67 | 1865 | return page; |
1da177e4 | 1866 | got_pg: |
b1eeab67 VN |
1867 | if (kmemcheck_enabled) |
1868 | kmemcheck_pagealloc_alloc(page, order, gfp_mask); | |
1da177e4 | 1869 | return page; |
11e33f6a | 1870 | |
1da177e4 | 1871 | } |
11e33f6a MG |
1872 | |
1873 | /* | |
1874 | * This is the 'heart' of the zoned buddy allocator. | |
1875 | */ | |
1876 | struct page * | |
1877 | __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, | |
1878 | struct zonelist *zonelist, nodemask_t *nodemask) | |
1879 | { | |
1880 | enum zone_type high_zoneidx = gfp_zone(gfp_mask); | |
5117f45d | 1881 | struct zone *preferred_zone; |
11e33f6a | 1882 | struct page *page; |
3dd28266 | 1883 | int migratetype = allocflags_to_migratetype(gfp_mask); |
11e33f6a | 1884 | |
dcce284a BH |
1885 | gfp_mask &= gfp_allowed_mask; |
1886 | ||
11e33f6a MG |
1887 | lockdep_trace_alloc(gfp_mask); |
1888 | ||
1889 | might_sleep_if(gfp_mask & __GFP_WAIT); | |
1890 | ||
1891 | if (should_fail_alloc_page(gfp_mask, order)) | |
1892 | return NULL; | |
1893 | ||
1894 | /* | |
1895 | * Check the zones suitable for the gfp_mask contain at least one | |
1896 | * valid zone. It's possible to have an empty zonelist as a result | |
1897 | * of GFP_THISNODE and a memoryless node | |
1898 | */ | |
1899 | if (unlikely(!zonelist->_zonerefs->zone)) | |
1900 | return NULL; | |
1901 | ||
5117f45d MG |
1902 | /* The preferred zone is used for statistics later */ |
1903 | first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone); | |
1904 | if (!preferred_zone) | |
1905 | return NULL; | |
1906 | ||
1907 | /* First allocation attempt */ | |
11e33f6a | 1908 | page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order, |
5117f45d | 1909 | zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET, |
3dd28266 | 1910 | preferred_zone, migratetype); |
11e33f6a MG |
1911 | if (unlikely(!page)) |
1912 | page = __alloc_pages_slowpath(gfp_mask, order, | |
5117f45d | 1913 | zonelist, high_zoneidx, nodemask, |
3dd28266 | 1914 | preferred_zone, migratetype); |
11e33f6a MG |
1915 | |
1916 | return page; | |
1da177e4 | 1917 | } |
d239171e | 1918 | EXPORT_SYMBOL(__alloc_pages_nodemask); |
1da177e4 LT |
1919 | |
1920 | /* | |
1921 | * Common helper functions. | |
1922 | */ | |
920c7a5d | 1923 | unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) |
1da177e4 LT |
1924 | { |
1925 | struct page * page; | |
1926 | page = alloc_pages(gfp_mask, order); | |
1927 | if (!page) | |
1928 | return 0; | |
1929 | return (unsigned long) page_address(page); | |
1930 | } | |
1931 | ||
1932 | EXPORT_SYMBOL(__get_free_pages); | |
1933 | ||
920c7a5d | 1934 | unsigned long get_zeroed_page(gfp_t gfp_mask) |
1da177e4 LT |
1935 | { |
1936 | struct page * page; | |
1937 | ||
1938 | /* | |
1939 | * get_zeroed_page() returns a 32-bit address, which cannot represent | |
1940 | * a highmem page | |
1941 | */ | |
725d704e | 1942 | VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); |
1da177e4 LT |
1943 | |
1944 | page = alloc_pages(gfp_mask | __GFP_ZERO, 0); | |
1945 | if (page) | |
1946 | return (unsigned long) page_address(page); | |
1947 | return 0; | |
1948 | } | |
1949 | ||
1950 | EXPORT_SYMBOL(get_zeroed_page); | |
1951 | ||
1952 | void __pagevec_free(struct pagevec *pvec) | |
1953 | { | |
1954 | int i = pagevec_count(pvec); | |
1955 | ||
1956 | while (--i >= 0) | |
1957 | free_hot_cold_page(pvec->pages[i], pvec->cold); | |
1958 | } | |
1959 | ||
920c7a5d | 1960 | void __free_pages(struct page *page, unsigned int order) |
1da177e4 | 1961 | { |
b5810039 | 1962 | if (put_page_testzero(page)) { |
1da177e4 LT |
1963 | if (order == 0) |
1964 | free_hot_page(page); | |
1965 | else | |
1966 | __free_pages_ok(page, order); | |
1967 | } | |
1968 | } | |
1969 | ||
1970 | EXPORT_SYMBOL(__free_pages); | |
1971 | ||
920c7a5d | 1972 | void free_pages(unsigned long addr, unsigned int order) |
1da177e4 LT |
1973 | { |
1974 | if (addr != 0) { | |
725d704e | 1975 | VM_BUG_ON(!virt_addr_valid((void *)addr)); |
1da177e4 LT |
1976 | __free_pages(virt_to_page((void *)addr), order); |
1977 | } | |
1978 | } | |
1979 | ||
1980 | EXPORT_SYMBOL(free_pages); | |
1981 | ||
2be0ffe2 TT |
1982 | /** |
1983 | * alloc_pages_exact - allocate an exact number physically-contiguous pages. | |
1984 | * @size: the number of bytes to allocate | |
1985 | * @gfp_mask: GFP flags for the allocation | |
1986 | * | |
1987 | * This function is similar to alloc_pages(), except that it allocates the | |
1988 | * minimum number of pages to satisfy the request. alloc_pages() can only | |
1989 | * allocate memory in power-of-two pages. | |
1990 | * | |
1991 | * This function is also limited by MAX_ORDER. | |
1992 | * | |
1993 | * Memory allocated by this function must be released by free_pages_exact(). | |
1994 | */ | |
1995 | void *alloc_pages_exact(size_t size, gfp_t gfp_mask) | |
1996 | { | |
1997 | unsigned int order = get_order(size); | |
1998 | unsigned long addr; | |
1999 | ||
2000 | addr = __get_free_pages(gfp_mask, order); | |
2001 | if (addr) { | |
2002 | unsigned long alloc_end = addr + (PAGE_SIZE << order); | |
2003 | unsigned long used = addr + PAGE_ALIGN(size); | |
2004 | ||
5bfd7560 | 2005 | split_page(virt_to_page((void *)addr), order); |
2be0ffe2 TT |
2006 | while (used < alloc_end) { |
2007 | free_page(used); | |
2008 | used += PAGE_SIZE; | |
2009 | } | |
2010 | } | |
2011 | ||
2012 | return (void *)addr; | |
2013 | } | |
2014 | EXPORT_SYMBOL(alloc_pages_exact); | |
2015 | ||
2016 | /** | |
2017 | * free_pages_exact - release memory allocated via alloc_pages_exact() | |
2018 | * @virt: the value returned by alloc_pages_exact. | |
2019 | * @size: size of allocation, same value as passed to alloc_pages_exact(). | |
2020 | * | |
2021 | * Release the memory allocated by a previous call to alloc_pages_exact. | |
2022 | */ | |
2023 | void free_pages_exact(void *virt, size_t size) | |
2024 | { | |
2025 | unsigned long addr = (unsigned long)virt; | |
2026 | unsigned long end = addr + PAGE_ALIGN(size); | |
2027 | ||
2028 | while (addr < end) { | |
2029 | free_page(addr); | |
2030 | addr += PAGE_SIZE; | |
2031 | } | |
2032 | } | |
2033 | EXPORT_SYMBOL(free_pages_exact); | |
2034 | ||
1da177e4 LT |
2035 | static unsigned int nr_free_zone_pages(int offset) |
2036 | { | |
dd1a239f | 2037 | struct zoneref *z; |
54a6eb5c MG |
2038 | struct zone *zone; |
2039 | ||
e310fd43 | 2040 | /* Just pick one node, since fallback list is circular */ |
1da177e4 LT |
2041 | unsigned int sum = 0; |
2042 | ||
0e88460d | 2043 | struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); |
1da177e4 | 2044 | |
54a6eb5c | 2045 | for_each_zone_zonelist(zone, z, zonelist, offset) { |
e310fd43 | 2046 | unsigned long size = zone->present_pages; |
41858966 | 2047 | unsigned long high = high_wmark_pages(zone); |
e310fd43 MB |
2048 | if (size > high) |
2049 | sum += size - high; | |
1da177e4 LT |
2050 | } |
2051 | ||
2052 | return sum; | |
2053 | } | |
2054 | ||
2055 | /* | |
2056 | * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL | |
2057 | */ | |
2058 | unsigned int nr_free_buffer_pages(void) | |
2059 | { | |
af4ca457 | 2060 | return nr_free_zone_pages(gfp_zone(GFP_USER)); |
1da177e4 | 2061 | } |
c2f1a551 | 2062 | EXPORT_SYMBOL_GPL(nr_free_buffer_pages); |
1da177e4 LT |
2063 | |
2064 | /* | |
2065 | * Amount of free RAM allocatable within all zones | |
2066 | */ | |
2067 | unsigned int nr_free_pagecache_pages(void) | |
2068 | { | |
2a1e274a | 2069 | return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); |
1da177e4 | 2070 | } |
08e0f6a9 CL |
2071 | |
2072 | static inline void show_node(struct zone *zone) | |
1da177e4 | 2073 | { |
08e0f6a9 | 2074 | if (NUMA_BUILD) |
25ba77c1 | 2075 | printk("Node %d ", zone_to_nid(zone)); |
1da177e4 | 2076 | } |
1da177e4 | 2077 | |
1da177e4 LT |
2078 | void si_meminfo(struct sysinfo *val) |
2079 | { | |
2080 | val->totalram = totalram_pages; | |
2081 | val->sharedram = 0; | |
d23ad423 | 2082 | val->freeram = global_page_state(NR_FREE_PAGES); |
1da177e4 | 2083 | val->bufferram = nr_blockdev_pages(); |
1da177e4 LT |
2084 | val->totalhigh = totalhigh_pages; |
2085 | val->freehigh = nr_free_highpages(); | |
1da177e4 LT |
2086 | val->mem_unit = PAGE_SIZE; |
2087 | } | |
2088 | ||
2089 | EXPORT_SYMBOL(si_meminfo); | |
2090 | ||
2091 | #ifdef CONFIG_NUMA | |
2092 | void si_meminfo_node(struct sysinfo *val, int nid) | |
2093 | { | |
2094 | pg_data_t *pgdat = NODE_DATA(nid); | |
2095 | ||
2096 | val->totalram = pgdat->node_present_pages; | |
d23ad423 | 2097 | val->freeram = node_page_state(nid, NR_FREE_PAGES); |
98d2b0eb | 2098 | #ifdef CONFIG_HIGHMEM |
1da177e4 | 2099 | val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; |
d23ad423 CL |
2100 | val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], |
2101 | NR_FREE_PAGES); | |
98d2b0eb CL |
2102 | #else |
2103 | val->totalhigh = 0; | |
2104 | val->freehigh = 0; | |
2105 | #endif | |
1da177e4 LT |
2106 | val->mem_unit = PAGE_SIZE; |
2107 | } | |
2108 | #endif | |
2109 | ||
2110 | #define K(x) ((x) << (PAGE_SHIFT-10)) | |
2111 | ||
2112 | /* | |
2113 | * Show free area list (used inside shift_scroll-lock stuff) | |
2114 | * We also calculate the percentage fragmentation. We do this by counting the | |
2115 | * memory on each free list with the exception of the first item on the list. | |
2116 | */ | |
2117 | void show_free_areas(void) | |
2118 | { | |
c7241913 | 2119 | int cpu; |
1da177e4 LT |
2120 | struct zone *zone; |
2121 | ||
ee99c71c | 2122 | for_each_populated_zone(zone) { |
c7241913 JS |
2123 | show_node(zone); |
2124 | printk("%s per-cpu:\n", zone->name); | |
1da177e4 | 2125 | |
6b482c67 | 2126 | for_each_online_cpu(cpu) { |
1da177e4 LT |
2127 | struct per_cpu_pageset *pageset; |
2128 | ||
e7c8d5c9 | 2129 | pageset = zone_pcp(zone, cpu); |
1da177e4 | 2130 | |
3dfa5721 CL |
2131 | printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n", |
2132 | cpu, pageset->pcp.high, | |
2133 | pageset->pcp.batch, pageset->pcp.count); | |
1da177e4 LT |
2134 | } |
2135 | } | |
2136 | ||
7b854121 LS |
2137 | printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n" |
2138 | " inactive_file:%lu" | |
7b854121 | 2139 | " unevictable:%lu" |
7b854121 | 2140 | " dirty:%lu writeback:%lu unstable:%lu\n" |
d23ad423 | 2141 | " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n", |
4f98a2fe RR |
2142 | global_page_state(NR_ACTIVE_ANON), |
2143 | global_page_state(NR_ACTIVE_FILE), | |
2144 | global_page_state(NR_INACTIVE_ANON), | |
2145 | global_page_state(NR_INACTIVE_FILE), | |
7b854121 | 2146 | global_page_state(NR_UNEVICTABLE), |
b1e7a8fd | 2147 | global_page_state(NR_FILE_DIRTY), |
ce866b34 | 2148 | global_page_state(NR_WRITEBACK), |
fd39fc85 | 2149 | global_page_state(NR_UNSTABLE_NFS), |
d23ad423 | 2150 | global_page_state(NR_FREE_PAGES), |
972d1a7b CL |
2151 | global_page_state(NR_SLAB_RECLAIMABLE) + |
2152 | global_page_state(NR_SLAB_UNRECLAIMABLE), | |
65ba55f5 | 2153 | global_page_state(NR_FILE_MAPPED), |
a25700a5 AM |
2154 | global_page_state(NR_PAGETABLE), |
2155 | global_page_state(NR_BOUNCE)); | |
1da177e4 | 2156 | |
ee99c71c | 2157 | for_each_populated_zone(zone) { |
1da177e4 LT |
2158 | int i; |
2159 | ||
2160 | show_node(zone); | |
2161 | printk("%s" | |
2162 | " free:%lukB" | |
2163 | " min:%lukB" | |
2164 | " low:%lukB" | |
2165 | " high:%lukB" | |
4f98a2fe RR |
2166 | " active_anon:%lukB" |
2167 | " inactive_anon:%lukB" | |
2168 | " active_file:%lukB" | |
2169 | " inactive_file:%lukB" | |
7b854121 | 2170 | " unevictable:%lukB" |
1da177e4 LT |
2171 | " present:%lukB" |
2172 | " pages_scanned:%lu" | |
2173 | " all_unreclaimable? %s" | |
2174 | "\n", | |
2175 | zone->name, | |
d23ad423 | 2176 | K(zone_page_state(zone, NR_FREE_PAGES)), |
41858966 MG |
2177 | K(min_wmark_pages(zone)), |
2178 | K(low_wmark_pages(zone)), | |
2179 | K(high_wmark_pages(zone)), | |
4f98a2fe RR |
2180 | K(zone_page_state(zone, NR_ACTIVE_ANON)), |
2181 | K(zone_page_state(zone, NR_INACTIVE_ANON)), | |
2182 | K(zone_page_state(zone, NR_ACTIVE_FILE)), | |
2183 | K(zone_page_state(zone, NR_INACTIVE_FILE)), | |
7b854121 | 2184 | K(zone_page_state(zone, NR_UNEVICTABLE)), |
1da177e4 LT |
2185 | K(zone->present_pages), |
2186 | zone->pages_scanned, | |
e815af95 | 2187 | (zone_is_all_unreclaimable(zone) ? "yes" : "no") |
1da177e4 LT |
2188 | ); |
2189 | printk("lowmem_reserve[]:"); | |
2190 | for (i = 0; i < MAX_NR_ZONES; i++) | |
2191 | printk(" %lu", zone->lowmem_reserve[i]); | |
2192 | printk("\n"); | |
2193 | } | |
2194 | ||
ee99c71c | 2195 | for_each_populated_zone(zone) { |
8f9de51a | 2196 | unsigned long nr[MAX_ORDER], flags, order, total = 0; |
1da177e4 LT |
2197 | |
2198 | show_node(zone); | |
2199 | printk("%s: ", zone->name); | |
1da177e4 LT |
2200 | |
2201 | spin_lock_irqsave(&zone->lock, flags); | |
2202 | for (order = 0; order < MAX_ORDER; order++) { | |
8f9de51a KK |
2203 | nr[order] = zone->free_area[order].nr_free; |
2204 | total += nr[order] << order; | |
1da177e4 LT |
2205 | } |
2206 | spin_unlock_irqrestore(&zone->lock, flags); | |
8f9de51a KK |
2207 | for (order = 0; order < MAX_ORDER; order++) |
2208 | printk("%lu*%lukB ", nr[order], K(1UL) << order); | |
1da177e4 LT |
2209 | printk("= %lukB\n", K(total)); |
2210 | } | |
2211 | ||
e6f3602d LW |
2212 | printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); |
2213 | ||
1da177e4 LT |
2214 | show_swap_cache_info(); |
2215 | } | |
2216 | ||
19770b32 MG |
2217 | static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) |
2218 | { | |
2219 | zoneref->zone = zone; | |
2220 | zoneref->zone_idx = zone_idx(zone); | |
2221 | } | |
2222 | ||
1da177e4 LT |
2223 | /* |
2224 | * Builds allocation fallback zone lists. | |
1a93205b CL |
2225 | * |
2226 | * Add all populated zones of a node to the zonelist. | |
1da177e4 | 2227 | */ |
f0c0b2b8 KH |
2228 | static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, |
2229 | int nr_zones, enum zone_type zone_type) | |
1da177e4 | 2230 | { |
1a93205b CL |
2231 | struct zone *zone; |
2232 | ||
98d2b0eb | 2233 | BUG_ON(zone_type >= MAX_NR_ZONES); |
2f6726e5 | 2234 | zone_type++; |
02a68a5e CL |
2235 | |
2236 | do { | |
2f6726e5 | 2237 | zone_type--; |
070f8032 | 2238 | zone = pgdat->node_zones + zone_type; |
1a93205b | 2239 | if (populated_zone(zone)) { |
dd1a239f MG |
2240 | zoneref_set_zone(zone, |
2241 | &zonelist->_zonerefs[nr_zones++]); | |
070f8032 | 2242 | check_highest_zone(zone_type); |
1da177e4 | 2243 | } |
02a68a5e | 2244 | |
2f6726e5 | 2245 | } while (zone_type); |
070f8032 | 2246 | return nr_zones; |
1da177e4 LT |
2247 | } |
2248 | ||
f0c0b2b8 KH |
2249 | |
2250 | /* | |
2251 | * zonelist_order: | |
2252 | * 0 = automatic detection of better ordering. | |
2253 | * 1 = order by ([node] distance, -zonetype) | |
2254 | * 2 = order by (-zonetype, [node] distance) | |
2255 | * | |
2256 | * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create | |
2257 | * the same zonelist. So only NUMA can configure this param. | |
2258 | */ | |
2259 | #define ZONELIST_ORDER_DEFAULT 0 | |
2260 | #define ZONELIST_ORDER_NODE 1 | |
2261 | #define ZONELIST_ORDER_ZONE 2 | |
2262 | ||
2263 | /* zonelist order in the kernel. | |
2264 | * set_zonelist_order() will set this to NODE or ZONE. | |
2265 | */ | |
2266 | static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; | |
2267 | static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; | |
2268 | ||
2269 | ||
1da177e4 | 2270 | #ifdef CONFIG_NUMA |
f0c0b2b8 KH |
2271 | /* The value user specified ....changed by config */ |
2272 | static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; | |
2273 | /* string for sysctl */ | |
2274 | #define NUMA_ZONELIST_ORDER_LEN 16 | |
2275 | char numa_zonelist_order[16] = "default"; | |
2276 | ||
2277 | /* | |
2278 | * interface for configure zonelist ordering. | |
2279 | * command line option "numa_zonelist_order" | |
2280 | * = "[dD]efault - default, automatic configuration. | |
2281 | * = "[nN]ode - order by node locality, then by zone within node | |
2282 | * = "[zZ]one - order by zone, then by locality within zone | |
2283 | */ | |
2284 | ||
2285 | static int __parse_numa_zonelist_order(char *s) | |
2286 | { | |
2287 | if (*s == 'd' || *s == 'D') { | |
2288 | user_zonelist_order = ZONELIST_ORDER_DEFAULT; | |
2289 | } else if (*s == 'n' || *s == 'N') { | |
2290 | user_zonelist_order = ZONELIST_ORDER_NODE; | |
2291 | } else if (*s == 'z' || *s == 'Z') { | |
2292 | user_zonelist_order = ZONELIST_ORDER_ZONE; | |
2293 | } else { | |
2294 | printk(KERN_WARNING | |
2295 | "Ignoring invalid numa_zonelist_order value: " | |
2296 | "%s\n", s); | |
2297 | return -EINVAL; | |
2298 | } | |
2299 | return 0; | |
2300 | } | |
2301 | ||
2302 | static __init int setup_numa_zonelist_order(char *s) | |
2303 | { | |
2304 | if (s) | |
2305 | return __parse_numa_zonelist_order(s); | |
2306 | return 0; | |
2307 | } | |
2308 | early_param("numa_zonelist_order", setup_numa_zonelist_order); | |
2309 | ||
2310 | /* | |
2311 | * sysctl handler for numa_zonelist_order | |
2312 | */ | |
2313 | int numa_zonelist_order_handler(ctl_table *table, int write, | |
2314 | struct file *file, void __user *buffer, size_t *length, | |
2315 | loff_t *ppos) | |
2316 | { | |
2317 | char saved_string[NUMA_ZONELIST_ORDER_LEN]; | |
2318 | int ret; | |
2319 | ||
2320 | if (write) | |
2321 | strncpy(saved_string, (char*)table->data, | |
2322 | NUMA_ZONELIST_ORDER_LEN); | |
2323 | ret = proc_dostring(table, write, file, buffer, length, ppos); | |
2324 | if (ret) | |
2325 | return ret; | |
2326 | if (write) { | |
2327 | int oldval = user_zonelist_order; | |
2328 | if (__parse_numa_zonelist_order((char*)table->data)) { | |
2329 | /* | |
2330 | * bogus value. restore saved string | |
2331 | */ | |
2332 | strncpy((char*)table->data, saved_string, | |
2333 | NUMA_ZONELIST_ORDER_LEN); | |
2334 | user_zonelist_order = oldval; | |
2335 | } else if (oldval != user_zonelist_order) | |
2336 | build_all_zonelists(); | |
2337 | } | |
2338 | return 0; | |
2339 | } | |
2340 | ||
2341 | ||
62bc62a8 | 2342 | #define MAX_NODE_LOAD (nr_online_nodes) |
f0c0b2b8 KH |
2343 | static int node_load[MAX_NUMNODES]; |
2344 | ||
1da177e4 | 2345 | /** |
4dc3b16b | 2346 | * find_next_best_node - find the next node that should appear in a given node's fallback list |
1da177e4 LT |
2347 | * @node: node whose fallback list we're appending |
2348 | * @used_node_mask: nodemask_t of already used nodes | |
2349 | * | |
2350 | * We use a number of factors to determine which is the next node that should | |
2351 | * appear on a given node's fallback list. The node should not have appeared | |
2352 | * already in @node's fallback list, and it should be the next closest node | |
2353 | * according to the distance array (which contains arbitrary distance values | |
2354 | * from each node to each node in the system), and should also prefer nodes | |
2355 | * with no CPUs, since presumably they'll have very little allocation pressure | |
2356 | * on them otherwise. | |
2357 | * It returns -1 if no node is found. | |
2358 | */ | |
f0c0b2b8 | 2359 | static int find_next_best_node(int node, nodemask_t *used_node_mask) |
1da177e4 | 2360 | { |
4cf808eb | 2361 | int n, val; |
1da177e4 LT |
2362 | int min_val = INT_MAX; |
2363 | int best_node = -1; | |
a70f7302 | 2364 | const struct cpumask *tmp = cpumask_of_node(0); |
1da177e4 | 2365 | |
4cf808eb LT |
2366 | /* Use the local node if we haven't already */ |
2367 | if (!node_isset(node, *used_node_mask)) { | |
2368 | node_set(node, *used_node_mask); | |
2369 | return node; | |
2370 | } | |
1da177e4 | 2371 | |
37b07e41 | 2372 | for_each_node_state(n, N_HIGH_MEMORY) { |
1da177e4 LT |
2373 | |
2374 | /* Don't want a node to appear more than once */ | |
2375 | if (node_isset(n, *used_node_mask)) | |
2376 | continue; | |
2377 | ||
1da177e4 LT |
2378 | /* Use the distance array to find the distance */ |
2379 | val = node_distance(node, n); | |
2380 | ||
4cf808eb LT |
2381 | /* Penalize nodes under us ("prefer the next node") */ |
2382 | val += (n < node); | |
2383 | ||
1da177e4 | 2384 | /* Give preference to headless and unused nodes */ |
a70f7302 RR |
2385 | tmp = cpumask_of_node(n); |
2386 | if (!cpumask_empty(tmp)) | |
1da177e4 LT |
2387 | val += PENALTY_FOR_NODE_WITH_CPUS; |
2388 | ||
2389 | /* Slight preference for less loaded node */ | |
2390 | val *= (MAX_NODE_LOAD*MAX_NUMNODES); | |
2391 | val += node_load[n]; | |
2392 | ||
2393 | if (val < min_val) { | |
2394 | min_val = val; | |
2395 | best_node = n; | |
2396 | } | |
2397 | } | |
2398 | ||
2399 | if (best_node >= 0) | |
2400 | node_set(best_node, *used_node_mask); | |
2401 | ||
2402 | return best_node; | |
2403 | } | |
2404 | ||
f0c0b2b8 KH |
2405 | |
2406 | /* | |
2407 | * Build zonelists ordered by node and zones within node. | |
2408 | * This results in maximum locality--normal zone overflows into local | |
2409 | * DMA zone, if any--but risks exhausting DMA zone. | |
2410 | */ | |
2411 | static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) | |
1da177e4 | 2412 | { |
f0c0b2b8 | 2413 | int j; |
1da177e4 | 2414 | struct zonelist *zonelist; |
f0c0b2b8 | 2415 | |
54a6eb5c | 2416 | zonelist = &pgdat->node_zonelists[0]; |
dd1a239f | 2417 | for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) |
54a6eb5c MG |
2418 | ; |
2419 | j = build_zonelists_node(NODE_DATA(node), zonelist, j, | |
2420 | MAX_NR_ZONES - 1); | |
dd1a239f MG |
2421 | zonelist->_zonerefs[j].zone = NULL; |
2422 | zonelist->_zonerefs[j].zone_idx = 0; | |
f0c0b2b8 KH |
2423 | } |
2424 | ||
523b9458 CL |
2425 | /* |
2426 | * Build gfp_thisnode zonelists | |
2427 | */ | |
2428 | static void build_thisnode_zonelists(pg_data_t *pgdat) | |
2429 | { | |
523b9458 CL |
2430 | int j; |
2431 | struct zonelist *zonelist; | |
2432 | ||
54a6eb5c MG |
2433 | zonelist = &pgdat->node_zonelists[1]; |
2434 | j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); | |
dd1a239f MG |
2435 | zonelist->_zonerefs[j].zone = NULL; |
2436 | zonelist->_zonerefs[j].zone_idx = 0; | |
523b9458 CL |
2437 | } |
2438 | ||
f0c0b2b8 KH |
2439 | /* |
2440 | * Build zonelists ordered by zone and nodes within zones. | |
2441 | * This results in conserving DMA zone[s] until all Normal memory is | |
2442 | * exhausted, but results in overflowing to remote node while memory | |
2443 | * may still exist in local DMA zone. | |
2444 | */ | |
2445 | static int node_order[MAX_NUMNODES]; | |
2446 | ||
2447 | static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) | |
2448 | { | |
f0c0b2b8 KH |
2449 | int pos, j, node; |
2450 | int zone_type; /* needs to be signed */ | |
2451 | struct zone *z; | |
2452 | struct zonelist *zonelist; | |
2453 | ||
54a6eb5c MG |
2454 | zonelist = &pgdat->node_zonelists[0]; |
2455 | pos = 0; | |
2456 | for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { | |
2457 | for (j = 0; j < nr_nodes; j++) { | |
2458 | node = node_order[j]; | |
2459 | z = &NODE_DATA(node)->node_zones[zone_type]; | |
2460 | if (populated_zone(z)) { | |
dd1a239f MG |
2461 | zoneref_set_zone(z, |
2462 | &zonelist->_zonerefs[pos++]); | |
54a6eb5c | 2463 | check_highest_zone(zone_type); |
f0c0b2b8 KH |
2464 | } |
2465 | } | |
f0c0b2b8 | 2466 | } |
dd1a239f MG |
2467 | zonelist->_zonerefs[pos].zone = NULL; |
2468 | zonelist->_zonerefs[pos].zone_idx = 0; | |
f0c0b2b8 KH |
2469 | } |
2470 | ||
2471 | static int default_zonelist_order(void) | |
2472 | { | |
2473 | int nid, zone_type; | |
2474 | unsigned long low_kmem_size,total_size; | |
2475 | struct zone *z; | |
2476 | int average_size; | |
2477 | /* | |
2478 | * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem. | |
2479 | * If they are really small and used heavily, the system can fall | |
2480 | * into OOM very easily. | |
2481 | * This function detect ZONE_DMA/DMA32 size and confgigures zone order. | |
2482 | */ | |
2483 | /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */ | |
2484 | low_kmem_size = 0; | |
2485 | total_size = 0; | |
2486 | for_each_online_node(nid) { | |
2487 | for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { | |
2488 | z = &NODE_DATA(nid)->node_zones[zone_type]; | |
2489 | if (populated_zone(z)) { | |
2490 | if (zone_type < ZONE_NORMAL) | |
2491 | low_kmem_size += z->present_pages; | |
2492 | total_size += z->present_pages; | |
2493 | } | |
2494 | } | |
2495 | } | |
2496 | if (!low_kmem_size || /* there are no DMA area. */ | |
2497 | low_kmem_size > total_size/2) /* DMA/DMA32 is big. */ | |
2498 | return ZONELIST_ORDER_NODE; | |
2499 | /* | |
2500 | * look into each node's config. | |
2501 | * If there is a node whose DMA/DMA32 memory is very big area on | |
2502 | * local memory, NODE_ORDER may be suitable. | |
2503 | */ | |
37b07e41 LS |
2504 | average_size = total_size / |
2505 | (nodes_weight(node_states[N_HIGH_MEMORY]) + 1); | |
f0c0b2b8 KH |
2506 | for_each_online_node(nid) { |
2507 | low_kmem_size = 0; | |
2508 | total_size = 0; | |
2509 | for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { | |
2510 | z = &NODE_DATA(nid)->node_zones[zone_type]; | |
2511 | if (populated_zone(z)) { | |
2512 | if (zone_type < ZONE_NORMAL) | |
2513 | low_kmem_size += z->present_pages; | |
2514 | total_size += z->present_pages; | |
2515 | } | |
2516 | } | |
2517 | if (low_kmem_size && | |
2518 | total_size > average_size && /* ignore small node */ | |
2519 | low_kmem_size > total_size * 70/100) | |
2520 | return ZONELIST_ORDER_NODE; | |
2521 | } | |
2522 | return ZONELIST_ORDER_ZONE; | |
2523 | } | |
2524 | ||
2525 | static void set_zonelist_order(void) | |
2526 | { | |
2527 | if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) | |
2528 | current_zonelist_order = default_zonelist_order(); | |
2529 | else | |
2530 | current_zonelist_order = user_zonelist_order; | |
2531 | } | |
2532 | ||
2533 | static void build_zonelists(pg_data_t *pgdat) | |
2534 | { | |
2535 | int j, node, load; | |
2536 | enum zone_type i; | |
1da177e4 | 2537 | nodemask_t used_mask; |
f0c0b2b8 KH |
2538 | int local_node, prev_node; |
2539 | struct zonelist *zonelist; | |
2540 | int order = current_zonelist_order; | |
1da177e4 LT |
2541 | |
2542 | /* initialize zonelists */ | |
523b9458 | 2543 | for (i = 0; i < MAX_ZONELISTS; i++) { |
1da177e4 | 2544 | zonelist = pgdat->node_zonelists + i; |
dd1a239f MG |
2545 | zonelist->_zonerefs[0].zone = NULL; |
2546 | zonelist->_zonerefs[0].zone_idx = 0; | |
1da177e4 LT |
2547 | } |
2548 | ||
2549 | /* NUMA-aware ordering of nodes */ | |
2550 | local_node = pgdat->node_id; | |
62bc62a8 | 2551 | load = nr_online_nodes; |
1da177e4 LT |
2552 | prev_node = local_node; |
2553 | nodes_clear(used_mask); | |
f0c0b2b8 | 2554 | |
f0c0b2b8 KH |
2555 | memset(node_order, 0, sizeof(node_order)); |
2556 | j = 0; | |
2557 | ||
1da177e4 | 2558 | while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { |
9eeff239 CL |
2559 | int distance = node_distance(local_node, node); |
2560 | ||
2561 | /* | |
2562 | * If another node is sufficiently far away then it is better | |
2563 | * to reclaim pages in a zone before going off node. | |
2564 | */ | |
2565 | if (distance > RECLAIM_DISTANCE) | |
2566 | zone_reclaim_mode = 1; | |
2567 | ||
1da177e4 LT |
2568 | /* |
2569 | * We don't want to pressure a particular node. | |
2570 | * So adding penalty to the first node in same | |
2571 | * distance group to make it round-robin. | |
2572 | */ | |
9eeff239 | 2573 | if (distance != node_distance(local_node, prev_node)) |
f0c0b2b8 KH |
2574 | node_load[node] = load; |
2575 | ||
1da177e4 LT |
2576 | prev_node = node; |
2577 | load--; | |
f0c0b2b8 KH |
2578 | if (order == ZONELIST_ORDER_NODE) |
2579 | build_zonelists_in_node_order(pgdat, node); | |
2580 | else | |
2581 | node_order[j++] = node; /* remember order */ | |
2582 | } | |
1da177e4 | 2583 | |
f0c0b2b8 KH |
2584 | if (order == ZONELIST_ORDER_ZONE) { |
2585 | /* calculate node order -- i.e., DMA last! */ | |
2586 | build_zonelists_in_zone_order(pgdat, j); | |
1da177e4 | 2587 | } |
523b9458 CL |
2588 | |
2589 | build_thisnode_zonelists(pgdat); | |
1da177e4 LT |
2590 | } |
2591 | ||
9276b1bc | 2592 | /* Construct the zonelist performance cache - see further mmzone.h */ |
f0c0b2b8 | 2593 | static void build_zonelist_cache(pg_data_t *pgdat) |
9276b1bc | 2594 | { |
54a6eb5c MG |
2595 | struct zonelist *zonelist; |
2596 | struct zonelist_cache *zlc; | |
dd1a239f | 2597 | struct zoneref *z; |
9276b1bc | 2598 | |
54a6eb5c MG |
2599 | zonelist = &pgdat->node_zonelists[0]; |
2600 | zonelist->zlcache_ptr = zlc = &zonelist->zlcache; | |
2601 | bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); | |
dd1a239f MG |
2602 | for (z = zonelist->_zonerefs; z->zone; z++) |
2603 | zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); | |
9276b1bc PJ |
2604 | } |
2605 | ||
f0c0b2b8 | 2606 | |
1da177e4 LT |
2607 | #else /* CONFIG_NUMA */ |
2608 | ||
f0c0b2b8 KH |
2609 | static void set_zonelist_order(void) |
2610 | { | |
2611 | current_zonelist_order = ZONELIST_ORDER_ZONE; | |
2612 | } | |
2613 | ||
2614 | static void build_zonelists(pg_data_t *pgdat) | |
1da177e4 | 2615 | { |
19655d34 | 2616 | int node, local_node; |
54a6eb5c MG |
2617 | enum zone_type j; |
2618 | struct zonelist *zonelist; | |
1da177e4 LT |
2619 | |
2620 | local_node = pgdat->node_id; | |
1da177e4 | 2621 | |
54a6eb5c MG |
2622 | zonelist = &pgdat->node_zonelists[0]; |
2623 | j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); | |
1da177e4 | 2624 | |
54a6eb5c MG |
2625 | /* |
2626 | * Now we build the zonelist so that it contains the zones | |
2627 | * of all the other nodes. | |
2628 | * We don't want to pressure a particular node, so when | |
2629 | * building the zones for node N, we make sure that the | |
2630 | * zones coming right after the local ones are those from | |
2631 | * node N+1 (modulo N) | |
2632 | */ | |
2633 | for (node = local_node + 1; node < MAX_NUMNODES; node++) { | |
2634 | if (!node_online(node)) | |
2635 | continue; | |
2636 | j = build_zonelists_node(NODE_DATA(node), zonelist, j, | |
2637 | MAX_NR_ZONES - 1); | |
1da177e4 | 2638 | } |
54a6eb5c MG |
2639 | for (node = 0; node < local_node; node++) { |
2640 | if (!node_online(node)) | |
2641 | continue; | |
2642 | j = build_zonelists_node(NODE_DATA(node), zonelist, j, | |
2643 | MAX_NR_ZONES - 1); | |
2644 | } | |
2645 | ||
dd1a239f MG |
2646 | zonelist->_zonerefs[j].zone = NULL; |
2647 | zonelist->_zonerefs[j].zone_idx = 0; | |
1da177e4 LT |
2648 | } |
2649 | ||
9276b1bc | 2650 | /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ |
f0c0b2b8 | 2651 | static void build_zonelist_cache(pg_data_t *pgdat) |
9276b1bc | 2652 | { |
54a6eb5c | 2653 | pgdat->node_zonelists[0].zlcache_ptr = NULL; |
9276b1bc PJ |
2654 | } |
2655 | ||
1da177e4 LT |
2656 | #endif /* CONFIG_NUMA */ |
2657 | ||
9b1a4d38 | 2658 | /* return values int ....just for stop_machine() */ |
f0c0b2b8 | 2659 | static int __build_all_zonelists(void *dummy) |
1da177e4 | 2660 | { |
6811378e | 2661 | int nid; |
9276b1bc | 2662 | |
7f9cfb31 BL |
2663 | #ifdef CONFIG_NUMA |
2664 | memset(node_load, 0, sizeof(node_load)); | |
2665 | #endif | |
9276b1bc | 2666 | for_each_online_node(nid) { |
7ea1530a CL |
2667 | pg_data_t *pgdat = NODE_DATA(nid); |
2668 | ||
2669 | build_zonelists(pgdat); | |
2670 | build_zonelist_cache(pgdat); | |
9276b1bc | 2671 | } |
6811378e YG |
2672 | return 0; |
2673 | } | |
2674 | ||
f0c0b2b8 | 2675 | void build_all_zonelists(void) |
6811378e | 2676 | { |
f0c0b2b8 KH |
2677 | set_zonelist_order(); |
2678 | ||
6811378e | 2679 | if (system_state == SYSTEM_BOOTING) { |
423b41d7 | 2680 | __build_all_zonelists(NULL); |
68ad8df4 | 2681 | mminit_verify_zonelist(); |
6811378e YG |
2682 | cpuset_init_current_mems_allowed(); |
2683 | } else { | |
183ff22b | 2684 | /* we have to stop all cpus to guarantee there is no user |
6811378e | 2685 | of zonelist */ |
9b1a4d38 | 2686 | stop_machine(__build_all_zonelists, NULL, NULL); |
6811378e YG |
2687 | /* cpuset refresh routine should be here */ |
2688 | } | |
bd1e22b8 | 2689 | vm_total_pages = nr_free_pagecache_pages(); |
9ef9acb0 MG |
2690 | /* |
2691 | * Disable grouping by mobility if the number of pages in the | |
2692 | * system is too low to allow the mechanism to work. It would be | |
2693 | * more accurate, but expensive to check per-zone. This check is | |
2694 | * made on memory-hotadd so a system can start with mobility | |
2695 | * disabled and enable it later | |
2696 | */ | |
d9c23400 | 2697 | if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) |
9ef9acb0 MG |
2698 | page_group_by_mobility_disabled = 1; |
2699 | else | |
2700 | page_group_by_mobility_disabled = 0; | |
2701 | ||
2702 | printk("Built %i zonelists in %s order, mobility grouping %s. " | |
2703 | "Total pages: %ld\n", | |
62bc62a8 | 2704 | nr_online_nodes, |
f0c0b2b8 | 2705 | zonelist_order_name[current_zonelist_order], |
9ef9acb0 | 2706 | page_group_by_mobility_disabled ? "off" : "on", |
f0c0b2b8 KH |
2707 | vm_total_pages); |
2708 | #ifdef CONFIG_NUMA | |
2709 | printk("Policy zone: %s\n", zone_names[policy_zone]); | |
2710 | #endif | |
1da177e4 LT |
2711 | } |
2712 | ||
2713 | /* | |
2714 | * Helper functions to size the waitqueue hash table. | |
2715 | * Essentially these want to choose hash table sizes sufficiently | |
2716 | * large so that collisions trying to wait on pages are rare. | |
2717 | * But in fact, the number of active page waitqueues on typical | |
2718 | * systems is ridiculously low, less than 200. So this is even | |
2719 | * conservative, even though it seems large. | |
2720 | * | |
2721 | * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to | |
2722 | * waitqueues, i.e. the size of the waitq table given the number of pages. | |
2723 | */ | |
2724 | #define PAGES_PER_WAITQUEUE 256 | |
2725 | ||
cca448fe | 2726 | #ifndef CONFIG_MEMORY_HOTPLUG |
02b694de | 2727 | static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) |
1da177e4 LT |
2728 | { |
2729 | unsigned long size = 1; | |
2730 | ||
2731 | pages /= PAGES_PER_WAITQUEUE; | |
2732 | ||
2733 | while (size < pages) | |
2734 | size <<= 1; | |
2735 | ||
2736 | /* | |
2737 | * Once we have dozens or even hundreds of threads sleeping | |
2738 | * on IO we've got bigger problems than wait queue collision. | |
2739 | * Limit the size of the wait table to a reasonable size. | |
2740 | */ | |
2741 | size = min(size, 4096UL); | |
2742 | ||
2743 | return max(size, 4UL); | |
2744 | } | |
cca448fe YG |
2745 | #else |
2746 | /* | |
2747 | * A zone's size might be changed by hot-add, so it is not possible to determine | |
2748 | * a suitable size for its wait_table. So we use the maximum size now. | |
2749 | * | |
2750 | * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: | |
2751 | * | |
2752 | * i386 (preemption config) : 4096 x 16 = 64Kbyte. | |
2753 | * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. | |
2754 | * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. | |
2755 | * | |
2756 | * The maximum entries are prepared when a zone's memory is (512K + 256) pages | |
2757 | * or more by the traditional way. (See above). It equals: | |
2758 | * | |
2759 | * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. | |
2760 | * ia64(16K page size) : = ( 8G + 4M)byte. | |
2761 | * powerpc (64K page size) : = (32G +16M)byte. | |
2762 | */ | |
2763 | static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) | |
2764 | { | |
2765 | return 4096UL; | |
2766 | } | |
2767 | #endif | |
1da177e4 LT |
2768 | |
2769 | /* | |
2770 | * This is an integer logarithm so that shifts can be used later | |
2771 | * to extract the more random high bits from the multiplicative | |
2772 | * hash function before the remainder is taken. | |
2773 | */ | |
2774 | static inline unsigned long wait_table_bits(unsigned long size) | |
2775 | { | |
2776 | return ffz(~size); | |
2777 | } | |
2778 | ||
2779 | #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) | |
2780 | ||
56fd56b8 | 2781 | /* |
d9c23400 | 2782 | * Mark a number of pageblocks as MIGRATE_RESERVE. The number |
41858966 MG |
2783 | * of blocks reserved is based on min_wmark_pages(zone). The memory within |
2784 | * the reserve will tend to store contiguous free pages. Setting min_free_kbytes | |
56fd56b8 MG |
2785 | * higher will lead to a bigger reserve which will get freed as contiguous |
2786 | * blocks as reclaim kicks in | |
2787 | */ | |
2788 | static void setup_zone_migrate_reserve(struct zone *zone) | |
2789 | { | |
2790 | unsigned long start_pfn, pfn, end_pfn; | |
2791 | struct page *page; | |
2792 | unsigned long reserve, block_migratetype; | |
2793 | ||
2794 | /* Get the start pfn, end pfn and the number of blocks to reserve */ | |
2795 | start_pfn = zone->zone_start_pfn; | |
2796 | end_pfn = start_pfn + zone->spanned_pages; | |
41858966 | 2797 | reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >> |
d9c23400 | 2798 | pageblock_order; |
56fd56b8 | 2799 | |
d9c23400 | 2800 | for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { |
56fd56b8 MG |
2801 | if (!pfn_valid(pfn)) |
2802 | continue; | |
2803 | page = pfn_to_page(pfn); | |
2804 | ||
344c790e AL |
2805 | /* Watch out for overlapping nodes */ |
2806 | if (page_to_nid(page) != zone_to_nid(zone)) | |
2807 | continue; | |
2808 | ||
56fd56b8 MG |
2809 | /* Blocks with reserved pages will never free, skip them. */ |
2810 | if (PageReserved(page)) | |
2811 | continue; | |
2812 | ||
2813 | block_migratetype = get_pageblock_migratetype(page); | |
2814 | ||
2815 | /* If this block is reserved, account for it */ | |
2816 | if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) { | |
2817 | reserve--; | |
2818 | continue; | |
2819 | } | |
2820 | ||
2821 | /* Suitable for reserving if this block is movable */ | |
2822 | if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) { | |
2823 | set_pageblock_migratetype(page, MIGRATE_RESERVE); | |
2824 | move_freepages_block(zone, page, MIGRATE_RESERVE); | |
2825 | reserve--; | |
2826 | continue; | |
2827 | } | |
2828 | ||
2829 | /* | |
2830 | * If the reserve is met and this is a previous reserved block, | |
2831 | * take it back | |
2832 | */ | |
2833 | if (block_migratetype == MIGRATE_RESERVE) { | |
2834 | set_pageblock_migratetype(page, MIGRATE_MOVABLE); | |
2835 | move_freepages_block(zone, page, MIGRATE_MOVABLE); | |
2836 | } | |
2837 | } | |
2838 | } | |
ac0e5b7a | 2839 | |
1da177e4 LT |
2840 | /* |
2841 | * Initially all pages are reserved - free ones are freed | |
2842 | * up by free_all_bootmem() once the early boot process is | |
2843 | * done. Non-atomic initialization, single-pass. | |
2844 | */ | |
c09b4240 | 2845 | void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, |
a2f3aa02 | 2846 | unsigned long start_pfn, enum memmap_context context) |
1da177e4 | 2847 | { |
1da177e4 | 2848 | struct page *page; |
29751f69 AW |
2849 | unsigned long end_pfn = start_pfn + size; |
2850 | unsigned long pfn; | |
86051ca5 | 2851 | struct zone *z; |
1da177e4 | 2852 | |
22b31eec HD |
2853 | if (highest_memmap_pfn < end_pfn - 1) |
2854 | highest_memmap_pfn = end_pfn - 1; | |
2855 | ||
86051ca5 | 2856 | z = &NODE_DATA(nid)->node_zones[zone]; |
cbe8dd4a | 2857 | for (pfn = start_pfn; pfn < end_pfn; pfn++) { |
a2f3aa02 DH |
2858 | /* |
2859 | * There can be holes in boot-time mem_map[]s | |
2860 | * handed to this function. They do not | |
2861 | * exist on hotplugged memory. | |
2862 | */ | |
2863 | if (context == MEMMAP_EARLY) { | |
2864 | if (!early_pfn_valid(pfn)) | |
2865 | continue; | |
2866 | if (!early_pfn_in_nid(pfn, nid)) | |
2867 | continue; | |
2868 | } | |
d41dee36 AW |
2869 | page = pfn_to_page(pfn); |
2870 | set_page_links(page, zone, nid, pfn); | |
708614e6 | 2871 | mminit_verify_page_links(page, zone, nid, pfn); |
7835e98b | 2872 | init_page_count(page); |
1da177e4 LT |
2873 | reset_page_mapcount(page); |
2874 | SetPageReserved(page); | |
b2a0ac88 MG |
2875 | /* |
2876 | * Mark the block movable so that blocks are reserved for | |
2877 | * movable at startup. This will force kernel allocations | |
2878 | * to reserve their blocks rather than leaking throughout | |
2879 | * the address space during boot when many long-lived | |
56fd56b8 MG |
2880 | * kernel allocations are made. Later some blocks near |
2881 | * the start are marked MIGRATE_RESERVE by | |
2882 | * setup_zone_migrate_reserve() | |
86051ca5 KH |
2883 | * |
2884 | * bitmap is created for zone's valid pfn range. but memmap | |
2885 | * can be created for invalid pages (for alignment) | |
2886 | * check here not to call set_pageblock_migratetype() against | |
2887 | * pfn out of zone. | |
b2a0ac88 | 2888 | */ |
86051ca5 KH |
2889 | if ((z->zone_start_pfn <= pfn) |
2890 | && (pfn < z->zone_start_pfn + z->spanned_pages) | |
2891 | && !(pfn & (pageblock_nr_pages - 1))) | |
56fd56b8 | 2892 | set_pageblock_migratetype(page, MIGRATE_MOVABLE); |
b2a0ac88 | 2893 | |
1da177e4 LT |
2894 | INIT_LIST_HEAD(&page->lru); |
2895 | #ifdef WANT_PAGE_VIRTUAL | |
2896 | /* The shift won't overflow because ZONE_NORMAL is below 4G. */ | |
2897 | if (!is_highmem_idx(zone)) | |
3212c6be | 2898 | set_page_address(page, __va(pfn << PAGE_SHIFT)); |
1da177e4 | 2899 | #endif |
1da177e4 LT |
2900 | } |
2901 | } | |
2902 | ||
1e548deb | 2903 | static void __meminit zone_init_free_lists(struct zone *zone) |
1da177e4 | 2904 | { |
b2a0ac88 MG |
2905 | int order, t; |
2906 | for_each_migratetype_order(order, t) { | |
2907 | INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); | |
1da177e4 LT |
2908 | zone->free_area[order].nr_free = 0; |
2909 | } | |
2910 | } | |
2911 | ||
2912 | #ifndef __HAVE_ARCH_MEMMAP_INIT | |
2913 | #define memmap_init(size, nid, zone, start_pfn) \ | |
a2f3aa02 | 2914 | memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) |
1da177e4 LT |
2915 | #endif |
2916 | ||
1d6f4e60 | 2917 | static int zone_batchsize(struct zone *zone) |
e7c8d5c9 | 2918 | { |
3a6be87f | 2919 | #ifdef CONFIG_MMU |
e7c8d5c9 CL |
2920 | int batch; |
2921 | ||
2922 | /* | |
2923 | * The per-cpu-pages pools are set to around 1000th of the | |
ba56e91c | 2924 | * size of the zone. But no more than 1/2 of a meg. |
e7c8d5c9 CL |
2925 | * |
2926 | * OK, so we don't know how big the cache is. So guess. | |
2927 | */ | |
2928 | batch = zone->present_pages / 1024; | |
ba56e91c SR |
2929 | if (batch * PAGE_SIZE > 512 * 1024) |
2930 | batch = (512 * 1024) / PAGE_SIZE; | |
e7c8d5c9 CL |
2931 | batch /= 4; /* We effectively *= 4 below */ |
2932 | if (batch < 1) | |
2933 | batch = 1; | |
2934 | ||
2935 | /* | |
0ceaacc9 NP |
2936 | * Clamp the batch to a 2^n - 1 value. Having a power |
2937 | * of 2 value was found to be more likely to have | |
2938 | * suboptimal cache aliasing properties in some cases. | |
e7c8d5c9 | 2939 | * |
0ceaacc9 NP |
2940 | * For example if 2 tasks are alternately allocating |
2941 | * batches of pages, one task can end up with a lot | |
2942 | * of pages of one half of the possible page colors | |
2943 | * and the other with pages of the other colors. | |
e7c8d5c9 | 2944 | */ |
9155203a | 2945 | batch = rounddown_pow_of_two(batch + batch/2) - 1; |
ba56e91c | 2946 | |
e7c8d5c9 | 2947 | return batch; |
3a6be87f DH |
2948 | |
2949 | #else | |
2950 | /* The deferral and batching of frees should be suppressed under NOMMU | |
2951 | * conditions. | |
2952 | * | |
2953 | * The problem is that NOMMU needs to be able to allocate large chunks | |
2954 | * of contiguous memory as there's no hardware page translation to | |
2955 | * assemble apparent contiguous memory from discontiguous pages. | |
2956 | * | |
2957 | * Queueing large contiguous runs of pages for batching, however, | |
2958 | * causes the pages to actually be freed in smaller chunks. As there | |
2959 | * can be a significant delay between the individual batches being | |
2960 | * recycled, this leads to the once large chunks of space being | |
2961 | * fragmented and becoming unavailable for high-order allocations. | |
2962 | */ | |
2963 | return 0; | |
2964 | #endif | |
e7c8d5c9 CL |
2965 | } |
2966 | ||
b69a7288 | 2967 | static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) |
2caaad41 CL |
2968 | { |
2969 | struct per_cpu_pages *pcp; | |
2970 | ||
1c6fe946 MD |
2971 | memset(p, 0, sizeof(*p)); |
2972 | ||
3dfa5721 | 2973 | pcp = &p->pcp; |
2caaad41 | 2974 | pcp->count = 0; |
2caaad41 CL |
2975 | pcp->high = 6 * batch; |
2976 | pcp->batch = max(1UL, 1 * batch); | |
2977 | INIT_LIST_HEAD(&pcp->list); | |
2caaad41 CL |
2978 | } |
2979 | ||
8ad4b1fb RS |
2980 | /* |
2981 | * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist | |
2982 | * to the value high for the pageset p. | |
2983 | */ | |
2984 | ||
2985 | static void setup_pagelist_highmark(struct per_cpu_pageset *p, | |
2986 | unsigned long high) | |
2987 | { | |
2988 | struct per_cpu_pages *pcp; | |
2989 | ||
3dfa5721 | 2990 | pcp = &p->pcp; |
8ad4b1fb RS |
2991 | pcp->high = high; |
2992 | pcp->batch = max(1UL, high/4); | |
2993 | if ((high/4) > (PAGE_SHIFT * 8)) | |
2994 | pcp->batch = PAGE_SHIFT * 8; | |
2995 | } | |
2996 | ||
2997 | ||
e7c8d5c9 CL |
2998 | #ifdef CONFIG_NUMA |
2999 | /* | |
2caaad41 CL |
3000 | * Boot pageset table. One per cpu which is going to be used for all |
3001 | * zones and all nodes. The parameters will be set in such a way | |
3002 | * that an item put on a list will immediately be handed over to | |
3003 | * the buddy list. This is safe since pageset manipulation is done | |
3004 | * with interrupts disabled. | |
3005 | * | |
3006 | * Some NUMA counter updates may also be caught by the boot pagesets. | |
b7c84c6a CL |
3007 | * |
3008 | * The boot_pagesets must be kept even after bootup is complete for | |
3009 | * unused processors and/or zones. They do play a role for bootstrapping | |
3010 | * hotplugged processors. | |
3011 | * | |
3012 | * zoneinfo_show() and maybe other functions do | |
3013 | * not check if the processor is online before following the pageset pointer. | |
3014 | * Other parts of the kernel may not check if the zone is available. | |
2caaad41 | 3015 | */ |
88a2a4ac | 3016 | static struct per_cpu_pageset boot_pageset[NR_CPUS]; |
2caaad41 CL |
3017 | |
3018 | /* | |
3019 | * Dynamically allocate memory for the | |
e7c8d5c9 CL |
3020 | * per cpu pageset array in struct zone. |
3021 | */ | |
6292d9aa | 3022 | static int __cpuinit process_zones(int cpu) |
e7c8d5c9 CL |
3023 | { |
3024 | struct zone *zone, *dzone; | |
37c0708d CL |
3025 | int node = cpu_to_node(cpu); |
3026 | ||
3027 | node_set_state(node, N_CPU); /* this node has a cpu */ | |
e7c8d5c9 | 3028 | |
ee99c71c | 3029 | for_each_populated_zone(zone) { |
23316bc8 | 3030 | zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset), |
37c0708d | 3031 | GFP_KERNEL, node); |
23316bc8 | 3032 | if (!zone_pcp(zone, cpu)) |
e7c8d5c9 | 3033 | goto bad; |
e7c8d5c9 | 3034 | |
23316bc8 | 3035 | setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone)); |
8ad4b1fb RS |
3036 | |
3037 | if (percpu_pagelist_fraction) | |
3038 | setup_pagelist_highmark(zone_pcp(zone, cpu), | |
3039 | (zone->present_pages / percpu_pagelist_fraction)); | |
e7c8d5c9 CL |
3040 | } |
3041 | ||
3042 | return 0; | |
3043 | bad: | |
3044 | for_each_zone(dzone) { | |
64191688 AM |
3045 | if (!populated_zone(dzone)) |
3046 | continue; | |
e7c8d5c9 CL |
3047 | if (dzone == zone) |
3048 | break; | |
23316bc8 | 3049 | kfree(zone_pcp(dzone, cpu)); |
364df0eb | 3050 | zone_pcp(dzone, cpu) = &boot_pageset[cpu]; |
e7c8d5c9 CL |
3051 | } |
3052 | return -ENOMEM; | |
3053 | } | |
3054 | ||
3055 | static inline void free_zone_pagesets(int cpu) | |
3056 | { | |
e7c8d5c9 CL |
3057 | struct zone *zone; |
3058 | ||
3059 | for_each_zone(zone) { | |
3060 | struct per_cpu_pageset *pset = zone_pcp(zone, cpu); | |
3061 | ||
f3ef9ead DR |
3062 | /* Free per_cpu_pageset if it is slab allocated */ |
3063 | if (pset != &boot_pageset[cpu]) | |
3064 | kfree(pset); | |
364df0eb | 3065 | zone_pcp(zone, cpu) = &boot_pageset[cpu]; |
e7c8d5c9 | 3066 | } |
e7c8d5c9 CL |
3067 | } |
3068 | ||
9c7b216d | 3069 | static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb, |
e7c8d5c9 CL |
3070 | unsigned long action, |
3071 | void *hcpu) | |
3072 | { | |
3073 | int cpu = (long)hcpu; | |
3074 | int ret = NOTIFY_OK; | |
3075 | ||
3076 | switch (action) { | |
ce421c79 | 3077 | case CPU_UP_PREPARE: |
8bb78442 | 3078 | case CPU_UP_PREPARE_FROZEN: |
ce421c79 AW |
3079 | if (process_zones(cpu)) |
3080 | ret = NOTIFY_BAD; | |
3081 | break; | |
3082 | case CPU_UP_CANCELED: | |
8bb78442 | 3083 | case CPU_UP_CANCELED_FROZEN: |
ce421c79 | 3084 | case CPU_DEAD: |
8bb78442 | 3085 | case CPU_DEAD_FROZEN: |
ce421c79 AW |
3086 | free_zone_pagesets(cpu); |
3087 | break; | |
3088 | default: | |
3089 | break; | |
e7c8d5c9 CL |
3090 | } |
3091 | return ret; | |
3092 | } | |
3093 | ||
74b85f37 | 3094 | static struct notifier_block __cpuinitdata pageset_notifier = |
e7c8d5c9 CL |
3095 | { &pageset_cpuup_callback, NULL, 0 }; |
3096 | ||
78d9955b | 3097 | void __init setup_per_cpu_pageset(void) |
e7c8d5c9 CL |
3098 | { |
3099 | int err; | |
3100 | ||
3101 | /* Initialize per_cpu_pageset for cpu 0. | |
3102 | * A cpuup callback will do this for every cpu | |
3103 | * as it comes online | |
3104 | */ | |
3105 | err = process_zones(smp_processor_id()); | |
3106 | BUG_ON(err); | |
3107 | register_cpu_notifier(&pageset_notifier); | |
3108 | } | |
3109 | ||
3110 | #endif | |
3111 | ||
577a32f6 | 3112 | static noinline __init_refok |
cca448fe | 3113 | int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) |
ed8ece2e DH |
3114 | { |
3115 | int i; | |
3116 | struct pglist_data *pgdat = zone->zone_pgdat; | |
cca448fe | 3117 | size_t alloc_size; |
ed8ece2e DH |
3118 | |
3119 | /* | |
3120 | * The per-page waitqueue mechanism uses hashed waitqueues | |
3121 | * per zone. | |
3122 | */ | |
02b694de YG |
3123 | zone->wait_table_hash_nr_entries = |
3124 | wait_table_hash_nr_entries(zone_size_pages); | |
3125 | zone->wait_table_bits = | |
3126 | wait_table_bits(zone->wait_table_hash_nr_entries); | |
cca448fe YG |
3127 | alloc_size = zone->wait_table_hash_nr_entries |
3128 | * sizeof(wait_queue_head_t); | |
3129 | ||
cd94b9db | 3130 | if (!slab_is_available()) { |
cca448fe YG |
3131 | zone->wait_table = (wait_queue_head_t *) |
3132 | alloc_bootmem_node(pgdat, alloc_size); | |
3133 | } else { | |
3134 | /* | |
3135 | * This case means that a zone whose size was 0 gets new memory | |
3136 | * via memory hot-add. | |
3137 | * But it may be the case that a new node was hot-added. In | |
3138 | * this case vmalloc() will not be able to use this new node's | |
3139 | * memory - this wait_table must be initialized to use this new | |
3140 | * node itself as well. | |
3141 | * To use this new node's memory, further consideration will be | |
3142 | * necessary. | |
3143 | */ | |
8691f3a7 | 3144 | zone->wait_table = vmalloc(alloc_size); |
cca448fe YG |
3145 | } |
3146 | if (!zone->wait_table) | |
3147 | return -ENOMEM; | |
ed8ece2e | 3148 | |
02b694de | 3149 | for(i = 0; i < zone->wait_table_hash_nr_entries; ++i) |
ed8ece2e | 3150 | init_waitqueue_head(zone->wait_table + i); |
cca448fe YG |
3151 | |
3152 | return 0; | |
ed8ece2e DH |
3153 | } |
3154 | ||
112067f0 SL |
3155 | static int __zone_pcp_update(void *data) |
3156 | { | |
3157 | struct zone *zone = data; | |
3158 | int cpu; | |
3159 | unsigned long batch = zone_batchsize(zone), flags; | |
3160 | ||
3161 | for (cpu = 0; cpu < NR_CPUS; cpu++) { | |
3162 | struct per_cpu_pageset *pset; | |
3163 | struct per_cpu_pages *pcp; | |
3164 | ||
3165 | pset = zone_pcp(zone, cpu); | |
3166 | pcp = &pset->pcp; | |
3167 | ||
3168 | local_irq_save(flags); | |
3169 | free_pages_bulk(zone, pcp->count, &pcp->list, 0); | |
3170 | setup_pageset(pset, batch); | |
3171 | local_irq_restore(flags); | |
3172 | } | |
3173 | return 0; | |
3174 | } | |
3175 | ||
3176 | void zone_pcp_update(struct zone *zone) | |
3177 | { | |
3178 | stop_machine(__zone_pcp_update, zone, NULL); | |
3179 | } | |
3180 | ||
c09b4240 | 3181 | static __meminit void zone_pcp_init(struct zone *zone) |
ed8ece2e DH |
3182 | { |
3183 | int cpu; | |
3184 | unsigned long batch = zone_batchsize(zone); | |
3185 | ||
3186 | for (cpu = 0; cpu < NR_CPUS; cpu++) { | |
3187 | #ifdef CONFIG_NUMA | |
3188 | /* Early boot. Slab allocator not functional yet */ | |
23316bc8 | 3189 | zone_pcp(zone, cpu) = &boot_pageset[cpu]; |
ed8ece2e DH |
3190 | setup_pageset(&boot_pageset[cpu],0); |
3191 | #else | |
3192 | setup_pageset(zone_pcp(zone,cpu), batch); | |
3193 | #endif | |
3194 | } | |
f5335c0f AB |
3195 | if (zone->present_pages) |
3196 | printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n", | |
3197 | zone->name, zone->present_pages, batch); | |
ed8ece2e DH |
3198 | } |
3199 | ||
718127cc YG |
3200 | __meminit int init_currently_empty_zone(struct zone *zone, |
3201 | unsigned long zone_start_pfn, | |
a2f3aa02 DH |
3202 | unsigned long size, |
3203 | enum memmap_context context) | |
ed8ece2e DH |
3204 | { |
3205 | struct pglist_data *pgdat = zone->zone_pgdat; | |
cca448fe YG |
3206 | int ret; |
3207 | ret = zone_wait_table_init(zone, size); | |
3208 | if (ret) | |
3209 | return ret; | |
ed8ece2e DH |
3210 | pgdat->nr_zones = zone_idx(zone) + 1; |
3211 | ||
ed8ece2e DH |
3212 | zone->zone_start_pfn = zone_start_pfn; |
3213 | ||
708614e6 MG |
3214 | mminit_dprintk(MMINIT_TRACE, "memmap_init", |
3215 | "Initialising map node %d zone %lu pfns %lu -> %lu\n", | |
3216 | pgdat->node_id, | |
3217 | (unsigned long)zone_idx(zone), | |
3218 | zone_start_pfn, (zone_start_pfn + size)); | |
3219 | ||
1e548deb | 3220 | zone_init_free_lists(zone); |
718127cc YG |
3221 | |
3222 | return 0; | |
ed8ece2e DH |
3223 | } |
3224 | ||
c713216d MG |
3225 | #ifdef CONFIG_ARCH_POPULATES_NODE_MAP |
3226 | /* | |
3227 | * Basic iterator support. Return the first range of PFNs for a node | |
3228 | * Note: nid == MAX_NUMNODES returns first region regardless of node | |
3229 | */ | |
a3142c8e | 3230 | static int __meminit first_active_region_index_in_nid(int nid) |
c713216d MG |
3231 | { |
3232 | int i; | |
3233 | ||
3234 | for (i = 0; i < nr_nodemap_entries; i++) | |
3235 | if (nid == MAX_NUMNODES || early_node_map[i].nid == nid) | |
3236 | return i; | |
3237 | ||
3238 | return -1; | |
3239 | } | |
3240 | ||
3241 | /* | |
3242 | * Basic iterator support. Return the next active range of PFNs for a node | |
183ff22b | 3243 | * Note: nid == MAX_NUMNODES returns next region regardless of node |
c713216d | 3244 | */ |
a3142c8e | 3245 | static int __meminit next_active_region_index_in_nid(int index, int nid) |
c713216d MG |
3246 | { |
3247 | for (index = index + 1; index < nr_nodemap_entries; index++) | |
3248 | if (nid == MAX_NUMNODES || early_node_map[index].nid == nid) | |
3249 | return index; | |
3250 | ||
3251 | return -1; | |
3252 | } | |
3253 | ||
3254 | #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID | |
3255 | /* | |
3256 | * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. | |
3257 | * Architectures may implement their own version but if add_active_range() | |
3258 | * was used and there are no special requirements, this is a convenient | |
3259 | * alternative | |
3260 | */ | |
f2dbcfa7 | 3261 | int __meminit __early_pfn_to_nid(unsigned long pfn) |
c713216d MG |
3262 | { |
3263 | int i; | |
3264 | ||
3265 | for (i = 0; i < nr_nodemap_entries; i++) { | |
3266 | unsigned long start_pfn = early_node_map[i].start_pfn; | |
3267 | unsigned long end_pfn = early_node_map[i].end_pfn; | |
3268 | ||
3269 | if (start_pfn <= pfn && pfn < end_pfn) | |
3270 | return early_node_map[i].nid; | |
3271 | } | |
cc2559bc KH |
3272 | /* This is a memory hole */ |
3273 | return -1; | |
c713216d MG |
3274 | } |
3275 | #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ | |
3276 | ||
f2dbcfa7 KH |
3277 | int __meminit early_pfn_to_nid(unsigned long pfn) |
3278 | { | |
cc2559bc KH |
3279 | int nid; |
3280 | ||
3281 | nid = __early_pfn_to_nid(pfn); | |
3282 | if (nid >= 0) | |
3283 | return nid; | |
3284 | /* just returns 0 */ | |
3285 | return 0; | |
f2dbcfa7 KH |
3286 | } |
3287 | ||
cc2559bc KH |
3288 | #ifdef CONFIG_NODES_SPAN_OTHER_NODES |
3289 | bool __meminit early_pfn_in_nid(unsigned long pfn, int node) | |
3290 | { | |
3291 | int nid; | |
3292 | ||
3293 | nid = __early_pfn_to_nid(pfn); | |
3294 | if (nid >= 0 && nid != node) | |
3295 | return false; | |
3296 | return true; | |
3297 | } | |
3298 | #endif | |
f2dbcfa7 | 3299 | |
c713216d MG |
3300 | /* Basic iterator support to walk early_node_map[] */ |
3301 | #define for_each_active_range_index_in_nid(i, nid) \ | |
3302 | for (i = first_active_region_index_in_nid(nid); i != -1; \ | |
3303 | i = next_active_region_index_in_nid(i, nid)) | |
3304 | ||
3305 | /** | |
3306 | * free_bootmem_with_active_regions - Call free_bootmem_node for each active range | |
88ca3b94 RD |
3307 | * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. |
3308 | * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node | |
c713216d MG |
3309 | * |
3310 | * If an architecture guarantees that all ranges registered with | |
3311 | * add_active_ranges() contain no holes and may be freed, this | |
3312 | * this function may be used instead of calling free_bootmem() manually. | |
3313 | */ | |
3314 | void __init free_bootmem_with_active_regions(int nid, | |
3315 | unsigned long max_low_pfn) | |
3316 | { | |
3317 | int i; | |
3318 | ||
3319 | for_each_active_range_index_in_nid(i, nid) { | |
3320 | unsigned long size_pages = 0; | |
3321 | unsigned long end_pfn = early_node_map[i].end_pfn; | |
3322 | ||
3323 | if (early_node_map[i].start_pfn >= max_low_pfn) | |
3324 | continue; | |
3325 | ||
3326 | if (end_pfn > max_low_pfn) | |
3327 | end_pfn = max_low_pfn; | |
3328 | ||
3329 | size_pages = end_pfn - early_node_map[i].start_pfn; | |
3330 | free_bootmem_node(NODE_DATA(early_node_map[i].nid), | |
3331 | PFN_PHYS(early_node_map[i].start_pfn), | |
3332 | size_pages << PAGE_SHIFT); | |
3333 | } | |
3334 | } | |
3335 | ||
b5bc6c0e YL |
3336 | void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data) |
3337 | { | |
3338 | int i; | |
d52d53b8 | 3339 | int ret; |
b5bc6c0e | 3340 | |
d52d53b8 YL |
3341 | for_each_active_range_index_in_nid(i, nid) { |
3342 | ret = work_fn(early_node_map[i].start_pfn, | |
3343 | early_node_map[i].end_pfn, data); | |
3344 | if (ret) | |
3345 | break; | |
3346 | } | |
b5bc6c0e | 3347 | } |
c713216d MG |
3348 | /** |
3349 | * sparse_memory_present_with_active_regions - Call memory_present for each active range | |
88ca3b94 | 3350 | * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. |
c713216d MG |
3351 | * |
3352 | * If an architecture guarantees that all ranges registered with | |
3353 | * add_active_ranges() contain no holes and may be freed, this | |
88ca3b94 | 3354 | * function may be used instead of calling memory_present() manually. |
c713216d MG |
3355 | */ |
3356 | void __init sparse_memory_present_with_active_regions(int nid) | |
3357 | { | |
3358 | int i; | |
3359 | ||
3360 | for_each_active_range_index_in_nid(i, nid) | |
3361 | memory_present(early_node_map[i].nid, | |
3362 | early_node_map[i].start_pfn, | |
3363 | early_node_map[i].end_pfn); | |
3364 | } | |
3365 | ||
3366 | /** | |
3367 | * get_pfn_range_for_nid - Return the start and end page frames for a node | |
88ca3b94 RD |
3368 | * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. |
3369 | * @start_pfn: Passed by reference. On return, it will have the node start_pfn. | |
3370 | * @end_pfn: Passed by reference. On return, it will have the node end_pfn. | |
c713216d MG |
3371 | * |
3372 | * It returns the start and end page frame of a node based on information | |
3373 | * provided by an arch calling add_active_range(). If called for a node | |
3374 | * with no available memory, a warning is printed and the start and end | |
88ca3b94 | 3375 | * PFNs will be 0. |
c713216d | 3376 | */ |
a3142c8e | 3377 | void __meminit get_pfn_range_for_nid(unsigned int nid, |
c713216d MG |
3378 | unsigned long *start_pfn, unsigned long *end_pfn) |
3379 | { | |
3380 | int i; | |
3381 | *start_pfn = -1UL; | |
3382 | *end_pfn = 0; | |
3383 | ||
3384 | for_each_active_range_index_in_nid(i, nid) { | |
3385 | *start_pfn = min(*start_pfn, early_node_map[i].start_pfn); | |
3386 | *end_pfn = max(*end_pfn, early_node_map[i].end_pfn); | |
3387 | } | |
3388 | ||
633c0666 | 3389 | if (*start_pfn == -1UL) |
c713216d | 3390 | *start_pfn = 0; |
c713216d MG |
3391 | } |
3392 | ||
2a1e274a MG |
3393 | /* |
3394 | * This finds a zone that can be used for ZONE_MOVABLE pages. The | |
3395 | * assumption is made that zones within a node are ordered in monotonic | |
3396 | * increasing memory addresses so that the "highest" populated zone is used | |
3397 | */ | |
b69a7288 | 3398 | static void __init find_usable_zone_for_movable(void) |
2a1e274a MG |
3399 | { |
3400 | int zone_index; | |
3401 | for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { | |
3402 | if (zone_index == ZONE_MOVABLE) | |
3403 | continue; | |
3404 | ||
3405 | if (arch_zone_highest_possible_pfn[zone_index] > | |
3406 | arch_zone_lowest_possible_pfn[zone_index]) | |
3407 | break; | |
3408 | } | |
3409 | ||
3410 | VM_BUG_ON(zone_index == -1); | |
3411 | movable_zone = zone_index; | |
3412 | } | |
3413 | ||
3414 | /* | |
3415 | * The zone ranges provided by the architecture do not include ZONE_MOVABLE | |
3416 | * because it is sized independant of architecture. Unlike the other zones, | |
3417 | * the starting point for ZONE_MOVABLE is not fixed. It may be different | |
3418 | * in each node depending on the size of each node and how evenly kernelcore | |
3419 | * is distributed. This helper function adjusts the zone ranges | |
3420 | * provided by the architecture for a given node by using the end of the | |
3421 | * highest usable zone for ZONE_MOVABLE. This preserves the assumption that | |
3422 | * zones within a node are in order of monotonic increases memory addresses | |
3423 | */ | |
b69a7288 | 3424 | static void __meminit adjust_zone_range_for_zone_movable(int nid, |
2a1e274a MG |
3425 | unsigned long zone_type, |
3426 | unsigned long node_start_pfn, | |
3427 | unsigned long node_end_pfn, | |
3428 | unsigned long *zone_start_pfn, | |
3429 | unsigned long *zone_end_pfn) | |
3430 | { | |
3431 | /* Only adjust if ZONE_MOVABLE is on this node */ | |
3432 | if (zone_movable_pfn[nid]) { | |
3433 | /* Size ZONE_MOVABLE */ | |
3434 | if (zone_type == ZONE_MOVABLE) { | |
3435 | *zone_start_pfn = zone_movable_pfn[nid]; | |
3436 | *zone_end_pfn = min(node_end_pfn, | |
3437 | arch_zone_highest_possible_pfn[movable_zone]); | |
3438 | ||
3439 | /* Adjust for ZONE_MOVABLE starting within this range */ | |
3440 | } else if (*zone_start_pfn < zone_movable_pfn[nid] && | |
3441 | *zone_end_pfn > zone_movable_pfn[nid]) { | |
3442 | *zone_end_pfn = zone_movable_pfn[nid]; | |
3443 | ||
3444 | /* Check if this whole range is within ZONE_MOVABLE */ | |
3445 | } else if (*zone_start_pfn >= zone_movable_pfn[nid]) | |
3446 | *zone_start_pfn = *zone_end_pfn; | |
3447 | } | |
3448 | } | |
3449 | ||
c713216d MG |
3450 | /* |
3451 | * Return the number of pages a zone spans in a node, including holes | |
3452 | * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() | |
3453 | */ | |
6ea6e688 | 3454 | static unsigned long __meminit zone_spanned_pages_in_node(int nid, |
c713216d MG |
3455 | unsigned long zone_type, |
3456 | unsigned long *ignored) | |
3457 | { | |
3458 | unsigned long node_start_pfn, node_end_pfn; | |
3459 | unsigned long zone_start_pfn, zone_end_pfn; | |
3460 | ||
3461 | /* Get the start and end of the node and zone */ | |
3462 | get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); | |
3463 | zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; | |
3464 | zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; | |
2a1e274a MG |
3465 | adjust_zone_range_for_zone_movable(nid, zone_type, |
3466 | node_start_pfn, node_end_pfn, | |
3467 | &zone_start_pfn, &zone_end_pfn); | |
c713216d MG |
3468 | |
3469 | /* Check that this node has pages within the zone's required range */ | |
3470 | if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) | |
3471 | return 0; | |
3472 | ||
3473 | /* Move the zone boundaries inside the node if necessary */ | |
3474 | zone_end_pfn = min(zone_end_pfn, node_end_pfn); | |
3475 | zone_start_pfn = max(zone_start_pfn, node_start_pfn); | |
3476 | ||
3477 | /* Return the spanned pages */ | |
3478 | return zone_end_pfn - zone_start_pfn; | |
3479 | } | |
3480 | ||
3481 | /* | |
3482 | * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, | |
88ca3b94 | 3483 | * then all holes in the requested range will be accounted for. |
c713216d | 3484 | */ |
b69a7288 | 3485 | static unsigned long __meminit __absent_pages_in_range(int nid, |
c713216d MG |
3486 | unsigned long range_start_pfn, |
3487 | unsigned long range_end_pfn) | |
3488 | { | |
3489 | int i = 0; | |
3490 | unsigned long prev_end_pfn = 0, hole_pages = 0; | |
3491 | unsigned long start_pfn; | |
3492 | ||
3493 | /* Find the end_pfn of the first active range of pfns in the node */ | |
3494 | i = first_active_region_index_in_nid(nid); | |
3495 | if (i == -1) | |
3496 | return 0; | |
3497 | ||
b5445f95 MG |
3498 | prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn); |
3499 | ||
9c7cd687 MG |
3500 | /* Account for ranges before physical memory on this node */ |
3501 | if (early_node_map[i].start_pfn > range_start_pfn) | |
b5445f95 | 3502 | hole_pages = prev_end_pfn - range_start_pfn; |
c713216d MG |
3503 | |
3504 | /* Find all holes for the zone within the node */ | |
3505 | for (; i != -1; i = next_active_region_index_in_nid(i, nid)) { | |
3506 | ||
3507 | /* No need to continue if prev_end_pfn is outside the zone */ | |
3508 | if (prev_end_pfn >= range_end_pfn) | |
3509 | break; | |
3510 | ||
3511 | /* Make sure the end of the zone is not within the hole */ | |
3512 | start_pfn = min(early_node_map[i].start_pfn, range_end_pfn); | |
3513 | prev_end_pfn = max(prev_end_pfn, range_start_pfn); | |
3514 | ||
3515 | /* Update the hole size cound and move on */ | |
3516 | if (start_pfn > range_start_pfn) { | |
3517 | BUG_ON(prev_end_pfn > start_pfn); | |
3518 | hole_pages += start_pfn - prev_end_pfn; | |
3519 | } | |
3520 | prev_end_pfn = early_node_map[i].end_pfn; | |
3521 | } | |
3522 | ||
9c7cd687 MG |
3523 | /* Account for ranges past physical memory on this node */ |
3524 | if (range_end_pfn > prev_end_pfn) | |
0c6cb974 | 3525 | hole_pages += range_end_pfn - |
9c7cd687 MG |
3526 | max(range_start_pfn, prev_end_pfn); |
3527 | ||
c713216d MG |
3528 | return hole_pages; |
3529 | } | |
3530 | ||
3531 | /** | |
3532 | * absent_pages_in_range - Return number of page frames in holes within a range | |
3533 | * @start_pfn: The start PFN to start searching for holes | |
3534 | * @end_pfn: The end PFN to stop searching for holes | |
3535 | * | |
88ca3b94 | 3536 | * It returns the number of pages frames in memory holes within a range. |
c713216d MG |
3537 | */ |
3538 | unsigned long __init absent_pages_in_range(unsigned long start_pfn, | |
3539 | unsigned long end_pfn) | |
3540 | { | |
3541 | return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); | |
3542 | } | |
3543 | ||
3544 | /* Return the number of page frames in holes in a zone on a node */ | |
6ea6e688 | 3545 | static unsigned long __meminit zone_absent_pages_in_node(int nid, |
c713216d MG |
3546 | unsigned long zone_type, |
3547 | unsigned long *ignored) | |
3548 | { | |
9c7cd687 MG |
3549 | unsigned long node_start_pfn, node_end_pfn; |
3550 | unsigned long zone_start_pfn, zone_end_pfn; | |
3551 | ||
3552 | get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); | |
3553 | zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type], | |
3554 | node_start_pfn); | |
3555 | zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type], | |
3556 | node_end_pfn); | |
3557 | ||
2a1e274a MG |
3558 | adjust_zone_range_for_zone_movable(nid, zone_type, |
3559 | node_start_pfn, node_end_pfn, | |
3560 | &zone_start_pfn, &zone_end_pfn); | |
9c7cd687 | 3561 | return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); |
c713216d | 3562 | } |
0e0b864e | 3563 | |
c713216d | 3564 | #else |
6ea6e688 | 3565 | static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, |
c713216d MG |
3566 | unsigned long zone_type, |
3567 | unsigned long *zones_size) | |
3568 | { | |
3569 | return zones_size[zone_type]; | |
3570 | } | |
3571 | ||
6ea6e688 | 3572 | static inline unsigned long __meminit zone_absent_pages_in_node(int nid, |
c713216d MG |
3573 | unsigned long zone_type, |
3574 | unsigned long *zholes_size) | |
3575 | { | |
3576 | if (!zholes_size) | |
3577 | return 0; | |
3578 | ||
3579 | return zholes_size[zone_type]; | |
3580 | } | |
0e0b864e | 3581 | |
c713216d MG |
3582 | #endif |
3583 | ||
a3142c8e | 3584 | static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, |
c713216d MG |
3585 | unsigned long *zones_size, unsigned long *zholes_size) |
3586 | { | |
3587 | unsigned long realtotalpages, totalpages = 0; | |
3588 | enum zone_type i; | |
3589 | ||
3590 | for (i = 0; i < MAX_NR_ZONES; i++) | |
3591 | totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, | |
3592 | zones_size); | |
3593 | pgdat->node_spanned_pages = totalpages; | |
3594 | ||
3595 | realtotalpages = totalpages; | |
3596 | for (i = 0; i < MAX_NR_ZONES; i++) | |
3597 | realtotalpages -= | |
3598 | zone_absent_pages_in_node(pgdat->node_id, i, | |
3599 | zholes_size); | |
3600 | pgdat->node_present_pages = realtotalpages; | |
3601 | printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, | |
3602 | realtotalpages); | |
3603 | } | |
3604 | ||
835c134e MG |
3605 | #ifndef CONFIG_SPARSEMEM |
3606 | /* | |
3607 | * Calculate the size of the zone->blockflags rounded to an unsigned long | |
d9c23400 MG |
3608 | * Start by making sure zonesize is a multiple of pageblock_order by rounding |
3609 | * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally | |
835c134e MG |
3610 | * round what is now in bits to nearest long in bits, then return it in |
3611 | * bytes. | |
3612 | */ | |
3613 | static unsigned long __init usemap_size(unsigned long zonesize) | |
3614 | { | |
3615 | unsigned long usemapsize; | |
3616 | ||
d9c23400 MG |
3617 | usemapsize = roundup(zonesize, pageblock_nr_pages); |
3618 | usemapsize = usemapsize >> pageblock_order; | |
835c134e MG |
3619 | usemapsize *= NR_PAGEBLOCK_BITS; |
3620 | usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); | |
3621 | ||
3622 | return usemapsize / 8; | |
3623 | } | |
3624 | ||
3625 | static void __init setup_usemap(struct pglist_data *pgdat, | |
3626 | struct zone *zone, unsigned long zonesize) | |
3627 | { | |
3628 | unsigned long usemapsize = usemap_size(zonesize); | |
3629 | zone->pageblock_flags = NULL; | |
58a01a45 | 3630 | if (usemapsize) |
835c134e | 3631 | zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize); |
835c134e MG |
3632 | } |
3633 | #else | |
3634 | static void inline setup_usemap(struct pglist_data *pgdat, | |
3635 | struct zone *zone, unsigned long zonesize) {} | |
3636 | #endif /* CONFIG_SPARSEMEM */ | |
3637 | ||
d9c23400 | 3638 | #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE |
ba72cb8c MG |
3639 | |
3640 | /* Return a sensible default order for the pageblock size. */ | |
3641 | static inline int pageblock_default_order(void) | |
3642 | { | |
3643 | if (HPAGE_SHIFT > PAGE_SHIFT) | |
3644 | return HUGETLB_PAGE_ORDER; | |
3645 | ||
3646 | return MAX_ORDER-1; | |
3647 | } | |
3648 | ||
d9c23400 MG |
3649 | /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ |
3650 | static inline void __init set_pageblock_order(unsigned int order) | |
3651 | { | |
3652 | /* Check that pageblock_nr_pages has not already been setup */ | |
3653 | if (pageblock_order) | |
3654 | return; | |
3655 | ||
3656 | /* | |
3657 | * Assume the largest contiguous order of interest is a huge page. | |
3658 | * This value may be variable depending on boot parameters on IA64 | |
3659 | */ | |
3660 | pageblock_order = order; | |
3661 | } | |
3662 | #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ | |
3663 | ||
ba72cb8c MG |
3664 | /* |
3665 | * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() | |
3666 | * and pageblock_default_order() are unused as pageblock_order is set | |
3667 | * at compile-time. See include/linux/pageblock-flags.h for the values of | |
3668 | * pageblock_order based on the kernel config | |
3669 | */ | |
3670 | static inline int pageblock_default_order(unsigned int order) | |
3671 | { | |
3672 | return MAX_ORDER-1; | |
3673 | } | |
d9c23400 MG |
3674 | #define set_pageblock_order(x) do {} while (0) |
3675 | ||
3676 | #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ | |
3677 | ||
1da177e4 LT |
3678 | /* |
3679 | * Set up the zone data structures: | |
3680 | * - mark all pages reserved | |
3681 | * - mark all memory queues empty | |
3682 | * - clear the memory bitmaps | |
3683 | */ | |
b5a0e011 | 3684 | static void __paginginit free_area_init_core(struct pglist_data *pgdat, |
1da177e4 LT |
3685 | unsigned long *zones_size, unsigned long *zholes_size) |
3686 | { | |
2f1b6248 | 3687 | enum zone_type j; |
ed8ece2e | 3688 | int nid = pgdat->node_id; |
1da177e4 | 3689 | unsigned long zone_start_pfn = pgdat->node_start_pfn; |
718127cc | 3690 | int ret; |
1da177e4 | 3691 | |
208d54e5 | 3692 | pgdat_resize_init(pgdat); |
1da177e4 LT |
3693 | pgdat->nr_zones = 0; |
3694 | init_waitqueue_head(&pgdat->kswapd_wait); | |
3695 | pgdat->kswapd_max_order = 0; | |
52d4b9ac | 3696 | pgdat_page_cgroup_init(pgdat); |
1da177e4 LT |
3697 | |
3698 | for (j = 0; j < MAX_NR_ZONES; j++) { | |
3699 | struct zone *zone = pgdat->node_zones + j; | |
0e0b864e | 3700 | unsigned long size, realsize, memmap_pages; |
b69408e8 | 3701 | enum lru_list l; |
1da177e4 | 3702 | |
c713216d MG |
3703 | size = zone_spanned_pages_in_node(nid, j, zones_size); |
3704 | realsize = size - zone_absent_pages_in_node(nid, j, | |
3705 | zholes_size); | |
1da177e4 | 3706 | |
0e0b864e MG |
3707 | /* |
3708 | * Adjust realsize so that it accounts for how much memory | |
3709 | * is used by this zone for memmap. This affects the watermark | |
3710 | * and per-cpu initialisations | |
3711 | */ | |
f7232154 JW |
3712 | memmap_pages = |
3713 | PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT; | |
0e0b864e MG |
3714 | if (realsize >= memmap_pages) { |
3715 | realsize -= memmap_pages; | |
5594c8c8 YL |
3716 | if (memmap_pages) |
3717 | printk(KERN_DEBUG | |
3718 | " %s zone: %lu pages used for memmap\n", | |
3719 | zone_names[j], memmap_pages); | |
0e0b864e MG |
3720 | } else |
3721 | printk(KERN_WARNING | |
3722 | " %s zone: %lu pages exceeds realsize %lu\n", | |
3723 | zone_names[j], memmap_pages, realsize); | |
3724 | ||
6267276f CL |
3725 | /* Account for reserved pages */ |
3726 | if (j == 0 && realsize > dma_reserve) { | |
0e0b864e | 3727 | realsize -= dma_reserve; |
d903ef9f | 3728 | printk(KERN_DEBUG " %s zone: %lu pages reserved\n", |
6267276f | 3729 | zone_names[0], dma_reserve); |
0e0b864e MG |
3730 | } |
3731 | ||
98d2b0eb | 3732 | if (!is_highmem_idx(j)) |
1da177e4 LT |
3733 | nr_kernel_pages += realsize; |
3734 | nr_all_pages += realsize; | |
3735 | ||
3736 | zone->spanned_pages = size; | |
3737 | zone->present_pages = realsize; | |
9614634f | 3738 | #ifdef CONFIG_NUMA |
d5f541ed | 3739 | zone->node = nid; |
8417bba4 | 3740 | zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio) |
9614634f | 3741 | / 100; |
0ff38490 | 3742 | zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100; |
9614634f | 3743 | #endif |
1da177e4 LT |
3744 | zone->name = zone_names[j]; |
3745 | spin_lock_init(&zone->lock); | |
3746 | spin_lock_init(&zone->lru_lock); | |
bdc8cb98 | 3747 | zone_seqlock_init(zone); |
1da177e4 | 3748 | zone->zone_pgdat = pgdat; |
1da177e4 | 3749 | |
3bb1a852 | 3750 | zone->prev_priority = DEF_PRIORITY; |
1da177e4 | 3751 | |
ed8ece2e | 3752 | zone_pcp_init(zone); |
b69408e8 CL |
3753 | for_each_lru(l) { |
3754 | INIT_LIST_HEAD(&zone->lru[l].list); | |
6e08a369 | 3755 | zone->lru[l].nr_saved_scan = 0; |
b69408e8 | 3756 | } |
6e901571 KM |
3757 | zone->reclaim_stat.recent_rotated[0] = 0; |
3758 | zone->reclaim_stat.recent_rotated[1] = 0; | |
3759 | zone->reclaim_stat.recent_scanned[0] = 0; | |
3760 | zone->reclaim_stat.recent_scanned[1] = 0; | |
2244b95a | 3761 | zap_zone_vm_stats(zone); |
e815af95 | 3762 | zone->flags = 0; |
1da177e4 LT |
3763 | if (!size) |
3764 | continue; | |
3765 | ||
ba72cb8c | 3766 | set_pageblock_order(pageblock_default_order()); |
835c134e | 3767 | setup_usemap(pgdat, zone, size); |
a2f3aa02 DH |
3768 | ret = init_currently_empty_zone(zone, zone_start_pfn, |
3769 | size, MEMMAP_EARLY); | |
718127cc | 3770 | BUG_ON(ret); |
76cdd58e | 3771 | memmap_init(size, nid, j, zone_start_pfn); |
1da177e4 | 3772 | zone_start_pfn += size; |
1da177e4 LT |
3773 | } |
3774 | } | |
3775 | ||
577a32f6 | 3776 | static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) |
1da177e4 | 3777 | { |
1da177e4 LT |
3778 | /* Skip empty nodes */ |
3779 | if (!pgdat->node_spanned_pages) | |
3780 | return; | |
3781 | ||
d41dee36 | 3782 | #ifdef CONFIG_FLAT_NODE_MEM_MAP |
1da177e4 LT |
3783 | /* ia64 gets its own node_mem_map, before this, without bootmem */ |
3784 | if (!pgdat->node_mem_map) { | |
e984bb43 | 3785 | unsigned long size, start, end; |
d41dee36 AW |
3786 | struct page *map; |
3787 | ||
e984bb43 BP |
3788 | /* |
3789 | * The zone's endpoints aren't required to be MAX_ORDER | |
3790 | * aligned but the node_mem_map endpoints must be in order | |
3791 | * for the buddy allocator to function correctly. | |
3792 | */ | |
3793 | start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); | |
3794 | end = pgdat->node_start_pfn + pgdat->node_spanned_pages; | |
3795 | end = ALIGN(end, MAX_ORDER_NR_PAGES); | |
3796 | size = (end - start) * sizeof(struct page); | |
6f167ec7 DH |
3797 | map = alloc_remap(pgdat->node_id, size); |
3798 | if (!map) | |
3799 | map = alloc_bootmem_node(pgdat, size); | |
e984bb43 | 3800 | pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); |
1da177e4 | 3801 | } |
12d810c1 | 3802 | #ifndef CONFIG_NEED_MULTIPLE_NODES |
1da177e4 LT |
3803 | /* |
3804 | * With no DISCONTIG, the global mem_map is just set as node 0's | |
3805 | */ | |
c713216d | 3806 | if (pgdat == NODE_DATA(0)) { |
1da177e4 | 3807 | mem_map = NODE_DATA(0)->node_mem_map; |
c713216d MG |
3808 | #ifdef CONFIG_ARCH_POPULATES_NODE_MAP |
3809 | if (page_to_pfn(mem_map) != pgdat->node_start_pfn) | |
467bc461 | 3810 | mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); |
c713216d MG |
3811 | #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ |
3812 | } | |
1da177e4 | 3813 | #endif |
d41dee36 | 3814 | #endif /* CONFIG_FLAT_NODE_MEM_MAP */ |
1da177e4 LT |
3815 | } |
3816 | ||
9109fb7b JW |
3817 | void __paginginit free_area_init_node(int nid, unsigned long *zones_size, |
3818 | unsigned long node_start_pfn, unsigned long *zholes_size) | |
1da177e4 | 3819 | { |
9109fb7b JW |
3820 | pg_data_t *pgdat = NODE_DATA(nid); |
3821 | ||
1da177e4 LT |
3822 | pgdat->node_id = nid; |
3823 | pgdat->node_start_pfn = node_start_pfn; | |
c713216d | 3824 | calculate_node_totalpages(pgdat, zones_size, zholes_size); |
1da177e4 LT |
3825 | |
3826 | alloc_node_mem_map(pgdat); | |
e8c27ac9 YL |
3827 | #ifdef CONFIG_FLAT_NODE_MEM_MAP |
3828 | printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", | |
3829 | nid, (unsigned long)pgdat, | |
3830 | (unsigned long)pgdat->node_mem_map); | |
3831 | #endif | |
1da177e4 LT |
3832 | |
3833 | free_area_init_core(pgdat, zones_size, zholes_size); | |
3834 | } | |
3835 | ||
c713216d | 3836 | #ifdef CONFIG_ARCH_POPULATES_NODE_MAP |
418508c1 MS |
3837 | |
3838 | #if MAX_NUMNODES > 1 | |
3839 | /* | |
3840 | * Figure out the number of possible node ids. | |
3841 | */ | |
3842 | static void __init setup_nr_node_ids(void) | |
3843 | { | |
3844 | unsigned int node; | |
3845 | unsigned int highest = 0; | |
3846 | ||
3847 | for_each_node_mask(node, node_possible_map) | |
3848 | highest = node; | |
3849 | nr_node_ids = highest + 1; | |
3850 | } | |
3851 | #else | |
3852 | static inline void setup_nr_node_ids(void) | |
3853 | { | |
3854 | } | |
3855 | #endif | |
3856 | ||
c713216d MG |
3857 | /** |
3858 | * add_active_range - Register a range of PFNs backed by physical memory | |
3859 | * @nid: The node ID the range resides on | |
3860 | * @start_pfn: The start PFN of the available physical memory | |
3861 | * @end_pfn: The end PFN of the available physical memory | |
3862 | * | |
3863 | * These ranges are stored in an early_node_map[] and later used by | |
3864 | * free_area_init_nodes() to calculate zone sizes and holes. If the | |
3865 | * range spans a memory hole, it is up to the architecture to ensure | |
3866 | * the memory is not freed by the bootmem allocator. If possible | |
3867 | * the range being registered will be merged with existing ranges. | |
3868 | */ | |
3869 | void __init add_active_range(unsigned int nid, unsigned long start_pfn, | |
3870 | unsigned long end_pfn) | |
3871 | { | |
3872 | int i; | |
3873 | ||
6b74ab97 MG |
3874 | mminit_dprintk(MMINIT_TRACE, "memory_register", |
3875 | "Entering add_active_range(%d, %#lx, %#lx) " | |
3876 | "%d entries of %d used\n", | |
3877 | nid, start_pfn, end_pfn, | |
3878 | nr_nodemap_entries, MAX_ACTIVE_REGIONS); | |
c713216d | 3879 | |
2dbb51c4 MG |
3880 | mminit_validate_memmodel_limits(&start_pfn, &end_pfn); |
3881 | ||
c713216d MG |
3882 | /* Merge with existing active regions if possible */ |
3883 | for (i = 0; i < nr_nodemap_entries; i++) { | |
3884 | if (early_node_map[i].nid != nid) | |
3885 | continue; | |
3886 | ||
3887 | /* Skip if an existing region covers this new one */ | |
3888 | if (start_pfn >= early_node_map[i].start_pfn && | |
3889 | end_pfn <= early_node_map[i].end_pfn) | |
3890 | return; | |
3891 | ||
3892 | /* Merge forward if suitable */ | |
3893 | if (start_pfn <= early_node_map[i].end_pfn && | |
3894 | end_pfn > early_node_map[i].end_pfn) { | |
3895 | early_node_map[i].end_pfn = end_pfn; | |
3896 | return; | |
3897 | } | |
3898 | ||
3899 | /* Merge backward if suitable */ | |
3900 | if (start_pfn < early_node_map[i].end_pfn && | |
3901 | end_pfn >= early_node_map[i].start_pfn) { | |
3902 | early_node_map[i].start_pfn = start_pfn; | |
3903 | return; | |
3904 | } | |
3905 | } | |
3906 | ||
3907 | /* Check that early_node_map is large enough */ | |
3908 | if (i >= MAX_ACTIVE_REGIONS) { | |
3909 | printk(KERN_CRIT "More than %d memory regions, truncating\n", | |
3910 | MAX_ACTIVE_REGIONS); | |
3911 | return; | |
3912 | } | |
3913 | ||
3914 | early_node_map[i].nid = nid; | |
3915 | early_node_map[i].start_pfn = start_pfn; | |
3916 | early_node_map[i].end_pfn = end_pfn; | |
3917 | nr_nodemap_entries = i + 1; | |
3918 | } | |
3919 | ||
3920 | /** | |
cc1050ba | 3921 | * remove_active_range - Shrink an existing registered range of PFNs |
c713216d | 3922 | * @nid: The node id the range is on that should be shrunk |
cc1050ba YL |
3923 | * @start_pfn: The new PFN of the range |
3924 | * @end_pfn: The new PFN of the range | |
c713216d MG |
3925 | * |
3926 | * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node. | |
cc1a9d86 YL |
3927 | * The map is kept near the end physical page range that has already been |
3928 | * registered. This function allows an arch to shrink an existing registered | |
3929 | * range. | |
c713216d | 3930 | */ |
cc1050ba YL |
3931 | void __init remove_active_range(unsigned int nid, unsigned long start_pfn, |
3932 | unsigned long end_pfn) | |
c713216d | 3933 | { |
cc1a9d86 YL |
3934 | int i, j; |
3935 | int removed = 0; | |
c713216d | 3936 | |
cc1050ba YL |
3937 | printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n", |
3938 | nid, start_pfn, end_pfn); | |
3939 | ||
c713216d | 3940 | /* Find the old active region end and shrink */ |
cc1a9d86 | 3941 | for_each_active_range_index_in_nid(i, nid) { |
cc1050ba YL |
3942 | if (early_node_map[i].start_pfn >= start_pfn && |
3943 | early_node_map[i].end_pfn <= end_pfn) { | |
cc1a9d86 | 3944 | /* clear it */ |
cc1050ba | 3945 | early_node_map[i].start_pfn = 0; |
cc1a9d86 YL |
3946 | early_node_map[i].end_pfn = 0; |
3947 | removed = 1; | |
3948 | continue; | |
3949 | } | |
cc1050ba YL |
3950 | if (early_node_map[i].start_pfn < start_pfn && |
3951 | early_node_map[i].end_pfn > start_pfn) { | |
3952 | unsigned long temp_end_pfn = early_node_map[i].end_pfn; | |
3953 | early_node_map[i].end_pfn = start_pfn; | |
3954 | if (temp_end_pfn > end_pfn) | |
3955 | add_active_range(nid, end_pfn, temp_end_pfn); | |
3956 | continue; | |
3957 | } | |
3958 | if (early_node_map[i].start_pfn >= start_pfn && | |
3959 | early_node_map[i].end_pfn > end_pfn && | |
3960 | early_node_map[i].start_pfn < end_pfn) { | |
3961 | early_node_map[i].start_pfn = end_pfn; | |
cc1a9d86 | 3962 | continue; |
c713216d | 3963 | } |
cc1a9d86 YL |
3964 | } |
3965 | ||
3966 | if (!removed) | |
3967 | return; | |
3968 | ||
3969 | /* remove the blank ones */ | |
3970 | for (i = nr_nodemap_entries - 1; i > 0; i--) { | |
3971 | if (early_node_map[i].nid != nid) | |
3972 | continue; | |
3973 | if (early_node_map[i].end_pfn) | |
3974 | continue; | |
3975 | /* we found it, get rid of it */ | |
3976 | for (j = i; j < nr_nodemap_entries - 1; j++) | |
3977 | memcpy(&early_node_map[j], &early_node_map[j+1], | |
3978 | sizeof(early_node_map[j])); | |
3979 | j = nr_nodemap_entries - 1; | |
3980 | memset(&early_node_map[j], 0, sizeof(early_node_map[j])); | |
3981 | nr_nodemap_entries--; | |
3982 | } | |
c713216d MG |
3983 | } |
3984 | ||
3985 | /** | |
3986 | * remove_all_active_ranges - Remove all currently registered regions | |
88ca3b94 | 3987 | * |
c713216d MG |
3988 | * During discovery, it may be found that a table like SRAT is invalid |
3989 | * and an alternative discovery method must be used. This function removes | |
3990 | * all currently registered regions. | |
3991 | */ | |
88ca3b94 | 3992 | void __init remove_all_active_ranges(void) |
c713216d MG |
3993 | { |
3994 | memset(early_node_map, 0, sizeof(early_node_map)); | |
3995 | nr_nodemap_entries = 0; | |
3996 | } | |
3997 | ||
3998 | /* Compare two active node_active_regions */ | |
3999 | static int __init cmp_node_active_region(const void *a, const void *b) | |
4000 | { | |
4001 | struct node_active_region *arange = (struct node_active_region *)a; | |
4002 | struct node_active_region *brange = (struct node_active_region *)b; | |
4003 | ||
4004 | /* Done this way to avoid overflows */ | |
4005 | if (arange->start_pfn > brange->start_pfn) | |
4006 | return 1; | |
4007 | if (arange->start_pfn < brange->start_pfn) | |
4008 | return -1; | |
4009 | ||
4010 | return 0; | |
4011 | } | |
4012 | ||
4013 | /* sort the node_map by start_pfn */ | |
4014 | static void __init sort_node_map(void) | |
4015 | { | |
4016 | sort(early_node_map, (size_t)nr_nodemap_entries, | |
4017 | sizeof(struct node_active_region), | |
4018 | cmp_node_active_region, NULL); | |
4019 | } | |
4020 | ||
a6af2bc3 | 4021 | /* Find the lowest pfn for a node */ |
b69a7288 | 4022 | static unsigned long __init find_min_pfn_for_node(int nid) |
c713216d MG |
4023 | { |
4024 | int i; | |
a6af2bc3 | 4025 | unsigned long min_pfn = ULONG_MAX; |
1abbfb41 | 4026 | |
c713216d MG |
4027 | /* Assuming a sorted map, the first range found has the starting pfn */ |
4028 | for_each_active_range_index_in_nid(i, nid) | |
a6af2bc3 | 4029 | min_pfn = min(min_pfn, early_node_map[i].start_pfn); |
c713216d | 4030 | |
a6af2bc3 MG |
4031 | if (min_pfn == ULONG_MAX) { |
4032 | printk(KERN_WARNING | |
2bc0d261 | 4033 | "Could not find start_pfn for node %d\n", nid); |
a6af2bc3 MG |
4034 | return 0; |
4035 | } | |
4036 | ||
4037 | return min_pfn; | |
c713216d MG |
4038 | } |
4039 | ||
4040 | /** | |
4041 | * find_min_pfn_with_active_regions - Find the minimum PFN registered | |
4042 | * | |
4043 | * It returns the minimum PFN based on information provided via | |
88ca3b94 | 4044 | * add_active_range(). |
c713216d MG |
4045 | */ |
4046 | unsigned long __init find_min_pfn_with_active_regions(void) | |
4047 | { | |
4048 | return find_min_pfn_for_node(MAX_NUMNODES); | |
4049 | } | |
4050 | ||
37b07e41 LS |
4051 | /* |
4052 | * early_calculate_totalpages() | |
4053 | * Sum pages in active regions for movable zone. | |
4054 | * Populate N_HIGH_MEMORY for calculating usable_nodes. | |
4055 | */ | |
484f51f8 | 4056 | static unsigned long __init early_calculate_totalpages(void) |
7e63efef MG |
4057 | { |
4058 | int i; | |
4059 | unsigned long totalpages = 0; | |
4060 | ||
37b07e41 LS |
4061 | for (i = 0; i < nr_nodemap_entries; i++) { |
4062 | unsigned long pages = early_node_map[i].end_pfn - | |
7e63efef | 4063 | early_node_map[i].start_pfn; |
37b07e41 LS |
4064 | totalpages += pages; |
4065 | if (pages) | |
4066 | node_set_state(early_node_map[i].nid, N_HIGH_MEMORY); | |
4067 | } | |
4068 | return totalpages; | |
7e63efef MG |
4069 | } |
4070 | ||
2a1e274a MG |
4071 | /* |
4072 | * Find the PFN the Movable zone begins in each node. Kernel memory | |
4073 | * is spread evenly between nodes as long as the nodes have enough | |
4074 | * memory. When they don't, some nodes will have more kernelcore than | |
4075 | * others | |
4076 | */ | |
b69a7288 | 4077 | static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn) |
2a1e274a MG |
4078 | { |
4079 | int i, nid; | |
4080 | unsigned long usable_startpfn; | |
4081 | unsigned long kernelcore_node, kernelcore_remaining; | |
66918dcd YL |
4082 | /* save the state before borrow the nodemask */ |
4083 | nodemask_t saved_node_state = node_states[N_HIGH_MEMORY]; | |
37b07e41 LS |
4084 | unsigned long totalpages = early_calculate_totalpages(); |
4085 | int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]); | |
2a1e274a | 4086 | |
7e63efef MG |
4087 | /* |
4088 | * If movablecore was specified, calculate what size of | |
4089 | * kernelcore that corresponds so that memory usable for | |
4090 | * any allocation type is evenly spread. If both kernelcore | |
4091 | * and movablecore are specified, then the value of kernelcore | |
4092 | * will be used for required_kernelcore if it's greater than | |
4093 | * what movablecore would have allowed. | |
4094 | */ | |
4095 | if (required_movablecore) { | |
7e63efef MG |
4096 | unsigned long corepages; |
4097 | ||
4098 | /* | |
4099 | * Round-up so that ZONE_MOVABLE is at least as large as what | |
4100 | * was requested by the user | |
4101 | */ | |
4102 | required_movablecore = | |
4103 | roundup(required_movablecore, MAX_ORDER_NR_PAGES); | |
4104 | corepages = totalpages - required_movablecore; | |
4105 | ||
4106 | required_kernelcore = max(required_kernelcore, corepages); | |
4107 | } | |
4108 | ||
2a1e274a MG |
4109 | /* If kernelcore was not specified, there is no ZONE_MOVABLE */ |
4110 | if (!required_kernelcore) | |
66918dcd | 4111 | goto out; |
2a1e274a MG |
4112 | |
4113 | /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ | |
4114 | find_usable_zone_for_movable(); | |
4115 | usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; | |
4116 | ||
4117 | restart: | |
4118 | /* Spread kernelcore memory as evenly as possible throughout nodes */ | |
4119 | kernelcore_node = required_kernelcore / usable_nodes; | |
37b07e41 | 4120 | for_each_node_state(nid, N_HIGH_MEMORY) { |
2a1e274a MG |
4121 | /* |
4122 | * Recalculate kernelcore_node if the division per node | |
4123 | * now exceeds what is necessary to satisfy the requested | |
4124 | * amount of memory for the kernel | |
4125 | */ | |
4126 | if (required_kernelcore < kernelcore_node) | |
4127 | kernelcore_node = required_kernelcore / usable_nodes; | |
4128 | ||
4129 | /* | |
4130 | * As the map is walked, we track how much memory is usable | |
4131 | * by the kernel using kernelcore_remaining. When it is | |
4132 | * 0, the rest of the node is usable by ZONE_MOVABLE | |
4133 | */ | |
4134 | kernelcore_remaining = kernelcore_node; | |
4135 | ||
4136 | /* Go through each range of PFNs within this node */ | |
4137 | for_each_active_range_index_in_nid(i, nid) { | |
4138 | unsigned long start_pfn, end_pfn; | |
4139 | unsigned long size_pages; | |
4140 | ||
4141 | start_pfn = max(early_node_map[i].start_pfn, | |
4142 | zone_movable_pfn[nid]); | |
4143 | end_pfn = early_node_map[i].end_pfn; | |
4144 | if (start_pfn >= end_pfn) | |
4145 | continue; | |
4146 | ||
4147 | /* Account for what is only usable for kernelcore */ | |
4148 | if (start_pfn < usable_startpfn) { | |
4149 | unsigned long kernel_pages; | |
4150 | kernel_pages = min(end_pfn, usable_startpfn) | |
4151 | - start_pfn; | |
4152 | ||
4153 | kernelcore_remaining -= min(kernel_pages, | |
4154 | kernelcore_remaining); | |
4155 | required_kernelcore -= min(kernel_pages, | |
4156 | required_kernelcore); | |
4157 | ||
4158 | /* Continue if range is now fully accounted */ | |
4159 | if (end_pfn <= usable_startpfn) { | |
4160 | ||
4161 | /* | |
4162 | * Push zone_movable_pfn to the end so | |
4163 | * that if we have to rebalance | |
4164 | * kernelcore across nodes, we will | |
4165 | * not double account here | |
4166 | */ | |
4167 | zone_movable_pfn[nid] = end_pfn; | |
4168 | continue; | |
4169 | } | |
4170 | start_pfn = usable_startpfn; | |
4171 | } | |
4172 | ||
4173 | /* | |
4174 | * The usable PFN range for ZONE_MOVABLE is from | |
4175 | * start_pfn->end_pfn. Calculate size_pages as the | |
4176 | * number of pages used as kernelcore | |
4177 | */ | |
4178 | size_pages = end_pfn - start_pfn; | |
4179 | if (size_pages > kernelcore_remaining) | |
4180 | size_pages = kernelcore_remaining; | |
4181 | zone_movable_pfn[nid] = start_pfn + size_pages; | |
4182 | ||
4183 | /* | |
4184 | * Some kernelcore has been met, update counts and | |
4185 | * break if the kernelcore for this node has been | |
4186 | * satisified | |
4187 | */ | |
4188 | required_kernelcore -= min(required_kernelcore, | |
4189 | size_pages); | |
4190 | kernelcore_remaining -= size_pages; | |
4191 | if (!kernelcore_remaining) | |
4192 | break; | |
4193 | } | |
4194 | } | |
4195 | ||
4196 | /* | |
4197 | * If there is still required_kernelcore, we do another pass with one | |
4198 | * less node in the count. This will push zone_movable_pfn[nid] further | |
4199 | * along on the nodes that still have memory until kernelcore is | |
4200 | * satisified | |
4201 | */ | |
4202 | usable_nodes--; | |
4203 | if (usable_nodes && required_kernelcore > usable_nodes) | |
4204 | goto restart; | |
4205 | ||
4206 | /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ | |
4207 | for (nid = 0; nid < MAX_NUMNODES; nid++) | |
4208 | zone_movable_pfn[nid] = | |
4209 | roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); | |
66918dcd YL |
4210 | |
4211 | out: | |
4212 | /* restore the node_state */ | |
4213 | node_states[N_HIGH_MEMORY] = saved_node_state; | |
2a1e274a MG |
4214 | } |
4215 | ||
37b07e41 LS |
4216 | /* Any regular memory on that node ? */ |
4217 | static void check_for_regular_memory(pg_data_t *pgdat) | |
4218 | { | |
4219 | #ifdef CONFIG_HIGHMEM | |
4220 | enum zone_type zone_type; | |
4221 | ||
4222 | for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) { | |
4223 | struct zone *zone = &pgdat->node_zones[zone_type]; | |
4224 | if (zone->present_pages) | |
4225 | node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY); | |
4226 | } | |
4227 | #endif | |
4228 | } | |
4229 | ||
c713216d MG |
4230 | /** |
4231 | * free_area_init_nodes - Initialise all pg_data_t and zone data | |
88ca3b94 | 4232 | * @max_zone_pfn: an array of max PFNs for each zone |
c713216d MG |
4233 | * |
4234 | * This will call free_area_init_node() for each active node in the system. | |
4235 | * Using the page ranges provided by add_active_range(), the size of each | |
4236 | * zone in each node and their holes is calculated. If the maximum PFN | |
4237 | * between two adjacent zones match, it is assumed that the zone is empty. | |
4238 | * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed | |
4239 | * that arch_max_dma32_pfn has no pages. It is also assumed that a zone | |
4240 | * starts where the previous one ended. For example, ZONE_DMA32 starts | |
4241 | * at arch_max_dma_pfn. | |
4242 | */ | |
4243 | void __init free_area_init_nodes(unsigned long *max_zone_pfn) | |
4244 | { | |
4245 | unsigned long nid; | |
db99100d | 4246 | int i; |
c713216d | 4247 | |
a6af2bc3 MG |
4248 | /* Sort early_node_map as initialisation assumes it is sorted */ |
4249 | sort_node_map(); | |
4250 | ||
c713216d MG |
4251 | /* Record where the zone boundaries are */ |
4252 | memset(arch_zone_lowest_possible_pfn, 0, | |
4253 | sizeof(arch_zone_lowest_possible_pfn)); | |
4254 | memset(arch_zone_highest_possible_pfn, 0, | |
4255 | sizeof(arch_zone_highest_possible_pfn)); | |
4256 | arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); | |
4257 | arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; | |
4258 | for (i = 1; i < MAX_NR_ZONES; i++) { | |
2a1e274a MG |
4259 | if (i == ZONE_MOVABLE) |
4260 | continue; | |
c713216d MG |
4261 | arch_zone_lowest_possible_pfn[i] = |
4262 | arch_zone_highest_possible_pfn[i-1]; | |
4263 | arch_zone_highest_possible_pfn[i] = | |
4264 | max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); | |
4265 | } | |
2a1e274a MG |
4266 | arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; |
4267 | arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; | |
4268 | ||
4269 | /* Find the PFNs that ZONE_MOVABLE begins at in each node */ | |
4270 | memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); | |
4271 | find_zone_movable_pfns_for_nodes(zone_movable_pfn); | |
c713216d | 4272 | |
c713216d MG |
4273 | /* Print out the zone ranges */ |
4274 | printk("Zone PFN ranges:\n"); | |
2a1e274a MG |
4275 | for (i = 0; i < MAX_NR_ZONES; i++) { |
4276 | if (i == ZONE_MOVABLE) | |
4277 | continue; | |
5dab8ec1 | 4278 | printk(" %-8s %0#10lx -> %0#10lx\n", |
c713216d MG |
4279 | zone_names[i], |
4280 | arch_zone_lowest_possible_pfn[i], | |
4281 | arch_zone_highest_possible_pfn[i]); | |
2a1e274a MG |
4282 | } |
4283 | ||
4284 | /* Print out the PFNs ZONE_MOVABLE begins at in each node */ | |
4285 | printk("Movable zone start PFN for each node\n"); | |
4286 | for (i = 0; i < MAX_NUMNODES; i++) { | |
4287 | if (zone_movable_pfn[i]) | |
4288 | printk(" Node %d: %lu\n", i, zone_movable_pfn[i]); | |
4289 | } | |
c713216d MG |
4290 | |
4291 | /* Print out the early_node_map[] */ | |
4292 | printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries); | |
4293 | for (i = 0; i < nr_nodemap_entries; i++) | |
5dab8ec1 | 4294 | printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid, |
c713216d MG |
4295 | early_node_map[i].start_pfn, |
4296 | early_node_map[i].end_pfn); | |
4297 | ||
4298 | /* Initialise every node */ | |
708614e6 | 4299 | mminit_verify_pageflags_layout(); |
8ef82866 | 4300 | setup_nr_node_ids(); |
c713216d MG |
4301 | for_each_online_node(nid) { |
4302 | pg_data_t *pgdat = NODE_DATA(nid); | |
9109fb7b | 4303 | free_area_init_node(nid, NULL, |
c713216d | 4304 | find_min_pfn_for_node(nid), NULL); |
37b07e41 LS |
4305 | |
4306 | /* Any memory on that node */ | |
4307 | if (pgdat->node_present_pages) | |
4308 | node_set_state(nid, N_HIGH_MEMORY); | |
4309 | check_for_regular_memory(pgdat); | |
c713216d MG |
4310 | } |
4311 | } | |
2a1e274a | 4312 | |
7e63efef | 4313 | static int __init cmdline_parse_core(char *p, unsigned long *core) |
2a1e274a MG |
4314 | { |
4315 | unsigned long long coremem; | |
4316 | if (!p) | |
4317 | return -EINVAL; | |
4318 | ||
4319 | coremem = memparse(p, &p); | |
7e63efef | 4320 | *core = coremem >> PAGE_SHIFT; |
2a1e274a | 4321 | |
7e63efef | 4322 | /* Paranoid check that UL is enough for the coremem value */ |
2a1e274a MG |
4323 | WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); |
4324 | ||
4325 | return 0; | |
4326 | } | |
ed7ed365 | 4327 | |
7e63efef MG |
4328 | /* |
4329 | * kernelcore=size sets the amount of memory for use for allocations that | |
4330 | * cannot be reclaimed or migrated. | |
4331 | */ | |
4332 | static int __init cmdline_parse_kernelcore(char *p) | |
4333 | { | |
4334 | return cmdline_parse_core(p, &required_kernelcore); | |
4335 | } | |
4336 | ||
4337 | /* | |
4338 | * movablecore=size sets the amount of memory for use for allocations that | |
4339 | * can be reclaimed or migrated. | |
4340 | */ | |
4341 | static int __init cmdline_parse_movablecore(char *p) | |
4342 | { | |
4343 | return cmdline_parse_core(p, &required_movablecore); | |
4344 | } | |
4345 | ||
ed7ed365 | 4346 | early_param("kernelcore", cmdline_parse_kernelcore); |
7e63efef | 4347 | early_param("movablecore", cmdline_parse_movablecore); |
ed7ed365 | 4348 | |
c713216d MG |
4349 | #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ |
4350 | ||
0e0b864e | 4351 | /** |
88ca3b94 RD |
4352 | * set_dma_reserve - set the specified number of pages reserved in the first zone |
4353 | * @new_dma_reserve: The number of pages to mark reserved | |
0e0b864e MG |
4354 | * |
4355 | * The per-cpu batchsize and zone watermarks are determined by present_pages. | |
4356 | * In the DMA zone, a significant percentage may be consumed by kernel image | |
4357 | * and other unfreeable allocations which can skew the watermarks badly. This | |
88ca3b94 RD |
4358 | * function may optionally be used to account for unfreeable pages in the |
4359 | * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and | |
4360 | * smaller per-cpu batchsize. | |
0e0b864e MG |
4361 | */ |
4362 | void __init set_dma_reserve(unsigned long new_dma_reserve) | |
4363 | { | |
4364 | dma_reserve = new_dma_reserve; | |
4365 | } | |
4366 | ||
93b7504e | 4367 | #ifndef CONFIG_NEED_MULTIPLE_NODES |
52765583 | 4368 | struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] }; |
1da177e4 | 4369 | EXPORT_SYMBOL(contig_page_data); |
93b7504e | 4370 | #endif |
1da177e4 LT |
4371 | |
4372 | void __init free_area_init(unsigned long *zones_size) | |
4373 | { | |
9109fb7b | 4374 | free_area_init_node(0, zones_size, |
1da177e4 LT |
4375 | __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); |
4376 | } | |
1da177e4 | 4377 | |
1da177e4 LT |
4378 | static int page_alloc_cpu_notify(struct notifier_block *self, |
4379 | unsigned long action, void *hcpu) | |
4380 | { | |
4381 | int cpu = (unsigned long)hcpu; | |
1da177e4 | 4382 | |
8bb78442 | 4383 | if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { |
9f8f2172 CL |
4384 | drain_pages(cpu); |
4385 | ||
4386 | /* | |
4387 | * Spill the event counters of the dead processor | |
4388 | * into the current processors event counters. | |
4389 | * This artificially elevates the count of the current | |
4390 | * processor. | |
4391 | */ | |
f8891e5e | 4392 | vm_events_fold_cpu(cpu); |
9f8f2172 CL |
4393 | |
4394 | /* | |
4395 | * Zero the differential counters of the dead processor | |
4396 | * so that the vm statistics are consistent. | |
4397 | * | |
4398 | * This is only okay since the processor is dead and cannot | |
4399 | * race with what we are doing. | |
4400 | */ | |
2244b95a | 4401 | refresh_cpu_vm_stats(cpu); |
1da177e4 LT |
4402 | } |
4403 | return NOTIFY_OK; | |
4404 | } | |
1da177e4 LT |
4405 | |
4406 | void __init page_alloc_init(void) | |
4407 | { | |
4408 | hotcpu_notifier(page_alloc_cpu_notify, 0); | |
4409 | } | |
4410 | ||
cb45b0e9 HA |
4411 | /* |
4412 | * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio | |
4413 | * or min_free_kbytes changes. | |
4414 | */ | |
4415 | static void calculate_totalreserve_pages(void) | |
4416 | { | |
4417 | struct pglist_data *pgdat; | |
4418 | unsigned long reserve_pages = 0; | |
2f6726e5 | 4419 | enum zone_type i, j; |
cb45b0e9 HA |
4420 | |
4421 | for_each_online_pgdat(pgdat) { | |
4422 | for (i = 0; i < MAX_NR_ZONES; i++) { | |
4423 | struct zone *zone = pgdat->node_zones + i; | |
4424 | unsigned long max = 0; | |
4425 | ||
4426 | /* Find valid and maximum lowmem_reserve in the zone */ | |
4427 | for (j = i; j < MAX_NR_ZONES; j++) { | |
4428 | if (zone->lowmem_reserve[j] > max) | |
4429 | max = zone->lowmem_reserve[j]; | |
4430 | } | |
4431 | ||
41858966 MG |
4432 | /* we treat the high watermark as reserved pages. */ |
4433 | max += high_wmark_pages(zone); | |
cb45b0e9 HA |
4434 | |
4435 | if (max > zone->present_pages) | |
4436 | max = zone->present_pages; | |
4437 | reserve_pages += max; | |
4438 | } | |
4439 | } | |
4440 | totalreserve_pages = reserve_pages; | |
4441 | } | |
4442 | ||
1da177e4 LT |
4443 | /* |
4444 | * setup_per_zone_lowmem_reserve - called whenever | |
4445 | * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone | |
4446 | * has a correct pages reserved value, so an adequate number of | |
4447 | * pages are left in the zone after a successful __alloc_pages(). | |
4448 | */ | |
4449 | static void setup_per_zone_lowmem_reserve(void) | |
4450 | { | |
4451 | struct pglist_data *pgdat; | |
2f6726e5 | 4452 | enum zone_type j, idx; |
1da177e4 | 4453 | |
ec936fc5 | 4454 | for_each_online_pgdat(pgdat) { |
1da177e4 LT |
4455 | for (j = 0; j < MAX_NR_ZONES; j++) { |
4456 | struct zone *zone = pgdat->node_zones + j; | |
4457 | unsigned long present_pages = zone->present_pages; | |
4458 | ||
4459 | zone->lowmem_reserve[j] = 0; | |
4460 | ||
2f6726e5 CL |
4461 | idx = j; |
4462 | while (idx) { | |
1da177e4 LT |
4463 | struct zone *lower_zone; |
4464 | ||
2f6726e5 CL |
4465 | idx--; |
4466 | ||
1da177e4 LT |
4467 | if (sysctl_lowmem_reserve_ratio[idx] < 1) |
4468 | sysctl_lowmem_reserve_ratio[idx] = 1; | |
4469 | ||
4470 | lower_zone = pgdat->node_zones + idx; | |
4471 | lower_zone->lowmem_reserve[j] = present_pages / | |
4472 | sysctl_lowmem_reserve_ratio[idx]; | |
4473 | present_pages += lower_zone->present_pages; | |
4474 | } | |
4475 | } | |
4476 | } | |
cb45b0e9 HA |
4477 | |
4478 | /* update totalreserve_pages */ | |
4479 | calculate_totalreserve_pages(); | |
1da177e4 LT |
4480 | } |
4481 | ||
88ca3b94 | 4482 | /** |
bc75d33f | 4483 | * setup_per_zone_wmarks - called when min_free_kbytes changes |
bce7394a | 4484 | * or when memory is hot-{added|removed} |
88ca3b94 | 4485 | * |
bc75d33f MK |
4486 | * Ensures that the watermark[min,low,high] values for each zone are set |
4487 | * correctly with respect to min_free_kbytes. | |
1da177e4 | 4488 | */ |
bc75d33f | 4489 | void setup_per_zone_wmarks(void) |
1da177e4 LT |
4490 | { |
4491 | unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); | |
4492 | unsigned long lowmem_pages = 0; | |
4493 | struct zone *zone; | |
4494 | unsigned long flags; | |
4495 | ||
4496 | /* Calculate total number of !ZONE_HIGHMEM pages */ | |
4497 | for_each_zone(zone) { | |
4498 | if (!is_highmem(zone)) | |
4499 | lowmem_pages += zone->present_pages; | |
4500 | } | |
4501 | ||
4502 | for_each_zone(zone) { | |
ac924c60 AM |
4503 | u64 tmp; |
4504 | ||
1125b4e3 | 4505 | spin_lock_irqsave(&zone->lock, flags); |
ac924c60 AM |
4506 | tmp = (u64)pages_min * zone->present_pages; |
4507 | do_div(tmp, lowmem_pages); | |
1da177e4 LT |
4508 | if (is_highmem(zone)) { |
4509 | /* | |
669ed175 NP |
4510 | * __GFP_HIGH and PF_MEMALLOC allocations usually don't |
4511 | * need highmem pages, so cap pages_min to a small | |
4512 | * value here. | |
4513 | * | |
41858966 | 4514 | * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) |
669ed175 NP |
4515 | * deltas controls asynch page reclaim, and so should |
4516 | * not be capped for highmem. | |
1da177e4 LT |
4517 | */ |
4518 | int min_pages; | |
4519 | ||
4520 | min_pages = zone->present_pages / 1024; | |
4521 | if (min_pages < SWAP_CLUSTER_MAX) | |
4522 | min_pages = SWAP_CLUSTER_MAX; | |
4523 | if (min_pages > 128) | |
4524 | min_pages = 128; | |
41858966 | 4525 | zone->watermark[WMARK_MIN] = min_pages; |
1da177e4 | 4526 | } else { |
669ed175 NP |
4527 | /* |
4528 | * If it's a lowmem zone, reserve a number of pages | |
1da177e4 LT |
4529 | * proportionate to the zone's size. |
4530 | */ | |
41858966 | 4531 | zone->watermark[WMARK_MIN] = tmp; |
1da177e4 LT |
4532 | } |
4533 | ||
41858966 MG |
4534 | zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2); |
4535 | zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1); | |
56fd56b8 | 4536 | setup_zone_migrate_reserve(zone); |
1125b4e3 | 4537 | spin_unlock_irqrestore(&zone->lock, flags); |
1da177e4 | 4538 | } |
cb45b0e9 HA |
4539 | |
4540 | /* update totalreserve_pages */ | |
4541 | calculate_totalreserve_pages(); | |
1da177e4 LT |
4542 | } |
4543 | ||
55a4462a | 4544 | /* |
556adecb RR |
4545 | * The inactive anon list should be small enough that the VM never has to |
4546 | * do too much work, but large enough that each inactive page has a chance | |
4547 | * to be referenced again before it is swapped out. | |
4548 | * | |
4549 | * The inactive_anon ratio is the target ratio of ACTIVE_ANON to | |
4550 | * INACTIVE_ANON pages on this zone's LRU, maintained by the | |
4551 | * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of | |
4552 | * the anonymous pages are kept on the inactive list. | |
4553 | * | |
4554 | * total target max | |
4555 | * memory ratio inactive anon | |
4556 | * ------------------------------------- | |
4557 | * 10MB 1 5MB | |
4558 | * 100MB 1 50MB | |
4559 | * 1GB 3 250MB | |
4560 | * 10GB 10 0.9GB | |
4561 | * 100GB 31 3GB | |
4562 | * 1TB 101 10GB | |
4563 | * 10TB 320 32GB | |
4564 | */ | |
96cb4df5 | 4565 | void calculate_zone_inactive_ratio(struct zone *zone) |
556adecb | 4566 | { |
96cb4df5 | 4567 | unsigned int gb, ratio; |
556adecb | 4568 | |
96cb4df5 MK |
4569 | /* Zone size in gigabytes */ |
4570 | gb = zone->present_pages >> (30 - PAGE_SHIFT); | |
4571 | if (gb) | |
556adecb | 4572 | ratio = int_sqrt(10 * gb); |
96cb4df5 MK |
4573 | else |
4574 | ratio = 1; | |
556adecb | 4575 | |
96cb4df5 MK |
4576 | zone->inactive_ratio = ratio; |
4577 | } | |
556adecb | 4578 | |
96cb4df5 MK |
4579 | static void __init setup_per_zone_inactive_ratio(void) |
4580 | { | |
4581 | struct zone *zone; | |
4582 | ||
4583 | for_each_zone(zone) | |
4584 | calculate_zone_inactive_ratio(zone); | |
556adecb RR |
4585 | } |
4586 | ||
1da177e4 LT |
4587 | /* |
4588 | * Initialise min_free_kbytes. | |
4589 | * | |
4590 | * For small machines we want it small (128k min). For large machines | |
4591 | * we want it large (64MB max). But it is not linear, because network | |
4592 | * bandwidth does not increase linearly with machine size. We use | |
4593 | * | |
4594 | * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: | |
4595 | * min_free_kbytes = sqrt(lowmem_kbytes * 16) | |
4596 | * | |
4597 | * which yields | |
4598 | * | |
4599 | * 16MB: 512k | |
4600 | * 32MB: 724k | |
4601 | * 64MB: 1024k | |
4602 | * 128MB: 1448k | |
4603 | * 256MB: 2048k | |
4604 | * 512MB: 2896k | |
4605 | * 1024MB: 4096k | |
4606 | * 2048MB: 5792k | |
4607 | * 4096MB: 8192k | |
4608 | * 8192MB: 11584k | |
4609 | * 16384MB: 16384k | |
4610 | */ | |
bc75d33f | 4611 | static int __init init_per_zone_wmark_min(void) |
1da177e4 LT |
4612 | { |
4613 | unsigned long lowmem_kbytes; | |
4614 | ||
4615 | lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); | |
4616 | ||
4617 | min_free_kbytes = int_sqrt(lowmem_kbytes * 16); | |
4618 | if (min_free_kbytes < 128) | |
4619 | min_free_kbytes = 128; | |
4620 | if (min_free_kbytes > 65536) | |
4621 | min_free_kbytes = 65536; | |
bc75d33f | 4622 | setup_per_zone_wmarks(); |
1da177e4 | 4623 | setup_per_zone_lowmem_reserve(); |
556adecb | 4624 | setup_per_zone_inactive_ratio(); |
1da177e4 LT |
4625 | return 0; |
4626 | } | |
bc75d33f | 4627 | module_init(init_per_zone_wmark_min) |
1da177e4 LT |
4628 | |
4629 | /* | |
4630 | * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so | |
4631 | * that we can call two helper functions whenever min_free_kbytes | |
4632 | * changes. | |
4633 | */ | |
4634 | int min_free_kbytes_sysctl_handler(ctl_table *table, int write, | |
4635 | struct file *file, void __user *buffer, size_t *length, loff_t *ppos) | |
4636 | { | |
4637 | proc_dointvec(table, write, file, buffer, length, ppos); | |
3b1d92c5 | 4638 | if (write) |
bc75d33f | 4639 | setup_per_zone_wmarks(); |
1da177e4 LT |
4640 | return 0; |
4641 | } | |
4642 | ||
9614634f CL |
4643 | #ifdef CONFIG_NUMA |
4644 | int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write, | |
4645 | struct file *file, void __user *buffer, size_t *length, loff_t *ppos) | |
4646 | { | |
4647 | struct zone *zone; | |
4648 | int rc; | |
4649 | ||
4650 | rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos); | |
4651 | if (rc) | |
4652 | return rc; | |
4653 | ||
4654 | for_each_zone(zone) | |
8417bba4 | 4655 | zone->min_unmapped_pages = (zone->present_pages * |
9614634f CL |
4656 | sysctl_min_unmapped_ratio) / 100; |
4657 | return 0; | |
4658 | } | |
0ff38490 CL |
4659 | |
4660 | int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write, | |
4661 | struct file *file, void __user *buffer, size_t *length, loff_t *ppos) | |
4662 | { | |
4663 | struct zone *zone; | |
4664 | int rc; | |
4665 | ||
4666 | rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos); | |
4667 | if (rc) | |
4668 | return rc; | |
4669 | ||
4670 | for_each_zone(zone) | |
4671 | zone->min_slab_pages = (zone->present_pages * | |
4672 | sysctl_min_slab_ratio) / 100; | |
4673 | return 0; | |
4674 | } | |
9614634f CL |
4675 | #endif |
4676 | ||
1da177e4 LT |
4677 | /* |
4678 | * lowmem_reserve_ratio_sysctl_handler - just a wrapper around | |
4679 | * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() | |
4680 | * whenever sysctl_lowmem_reserve_ratio changes. | |
4681 | * | |
4682 | * The reserve ratio obviously has absolutely no relation with the | |
41858966 | 4683 | * minimum watermarks. The lowmem reserve ratio can only make sense |
1da177e4 LT |
4684 | * if in function of the boot time zone sizes. |
4685 | */ | |
4686 | int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, | |
4687 | struct file *file, void __user *buffer, size_t *length, loff_t *ppos) | |
4688 | { | |
4689 | proc_dointvec_minmax(table, write, file, buffer, length, ppos); | |
4690 | setup_per_zone_lowmem_reserve(); | |
4691 | return 0; | |
4692 | } | |
4693 | ||
8ad4b1fb RS |
4694 | /* |
4695 | * percpu_pagelist_fraction - changes the pcp->high for each zone on each | |
4696 | * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist | |
4697 | * can have before it gets flushed back to buddy allocator. | |
4698 | */ | |
4699 | ||
4700 | int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, | |
4701 | struct file *file, void __user *buffer, size_t *length, loff_t *ppos) | |
4702 | { | |
4703 | struct zone *zone; | |
4704 | unsigned int cpu; | |
4705 | int ret; | |
4706 | ||
4707 | ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos); | |
4708 | if (!write || (ret == -EINVAL)) | |
4709 | return ret; | |
364df0eb | 4710 | for_each_populated_zone(zone) { |
8ad4b1fb RS |
4711 | for_each_online_cpu(cpu) { |
4712 | unsigned long high; | |
4713 | high = zone->present_pages / percpu_pagelist_fraction; | |
4714 | setup_pagelist_highmark(zone_pcp(zone, cpu), high); | |
4715 | } | |
4716 | } | |
4717 | return 0; | |
4718 | } | |
4719 | ||
f034b5d4 | 4720 | int hashdist = HASHDIST_DEFAULT; |
1da177e4 LT |
4721 | |
4722 | #ifdef CONFIG_NUMA | |
4723 | static int __init set_hashdist(char *str) | |
4724 | { | |
4725 | if (!str) | |
4726 | return 0; | |
4727 | hashdist = simple_strtoul(str, &str, 0); | |
4728 | return 1; | |
4729 | } | |
4730 | __setup("hashdist=", set_hashdist); | |
4731 | #endif | |
4732 | ||
4733 | /* | |
4734 | * allocate a large system hash table from bootmem | |
4735 | * - it is assumed that the hash table must contain an exact power-of-2 | |
4736 | * quantity of entries | |
4737 | * - limit is the number of hash buckets, not the total allocation size | |
4738 | */ | |
4739 | void *__init alloc_large_system_hash(const char *tablename, | |
4740 | unsigned long bucketsize, | |
4741 | unsigned long numentries, | |
4742 | int scale, | |
4743 | int flags, | |
4744 | unsigned int *_hash_shift, | |
4745 | unsigned int *_hash_mask, | |
4746 | unsigned long limit) | |
4747 | { | |
4748 | unsigned long long max = limit; | |
4749 | unsigned long log2qty, size; | |
4750 | void *table = NULL; | |
4751 | ||
4752 | /* allow the kernel cmdline to have a say */ | |
4753 | if (!numentries) { | |
4754 | /* round applicable memory size up to nearest megabyte */ | |
04903664 | 4755 | numentries = nr_kernel_pages; |
1da177e4 LT |
4756 | numentries += (1UL << (20 - PAGE_SHIFT)) - 1; |
4757 | numentries >>= 20 - PAGE_SHIFT; | |
4758 | numentries <<= 20 - PAGE_SHIFT; | |
4759 | ||
4760 | /* limit to 1 bucket per 2^scale bytes of low memory */ | |
4761 | if (scale > PAGE_SHIFT) | |
4762 | numentries >>= (scale - PAGE_SHIFT); | |
4763 | else | |
4764 | numentries <<= (PAGE_SHIFT - scale); | |
9ab37b8f PM |
4765 | |
4766 | /* Make sure we've got at least a 0-order allocation.. */ | |
4767 | if (unlikely((numentries * bucketsize) < PAGE_SIZE)) | |
4768 | numentries = PAGE_SIZE / bucketsize; | |
1da177e4 | 4769 | } |
6e692ed3 | 4770 | numentries = roundup_pow_of_two(numentries); |
1da177e4 LT |
4771 | |
4772 | /* limit allocation size to 1/16 total memory by default */ | |
4773 | if (max == 0) { | |
4774 | max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; | |
4775 | do_div(max, bucketsize); | |
4776 | } | |
4777 | ||
4778 | if (numentries > max) | |
4779 | numentries = max; | |
4780 | ||
f0d1b0b3 | 4781 | log2qty = ilog2(numentries); |
1da177e4 LT |
4782 | |
4783 | do { | |
4784 | size = bucketsize << log2qty; | |
4785 | if (flags & HASH_EARLY) | |
74768ed8 | 4786 | table = alloc_bootmem_nopanic(size); |
1da177e4 LT |
4787 | else if (hashdist) |
4788 | table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); | |
4789 | else { | |
1037b83b ED |
4790 | /* |
4791 | * If bucketsize is not a power-of-two, we may free | |
a1dd268c MG |
4792 | * some pages at the end of hash table which |
4793 | * alloc_pages_exact() automatically does | |
1037b83b | 4794 | */ |
264ef8a9 | 4795 | if (get_order(size) < MAX_ORDER) { |
a1dd268c | 4796 | table = alloc_pages_exact(size, GFP_ATOMIC); |
264ef8a9 CM |
4797 | kmemleak_alloc(table, size, 1, GFP_ATOMIC); |
4798 | } | |
1da177e4 LT |
4799 | } |
4800 | } while (!table && size > PAGE_SIZE && --log2qty); | |
4801 | ||
4802 | if (!table) | |
4803 | panic("Failed to allocate %s hash table\n", tablename); | |
4804 | ||
b49ad484 | 4805 | printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n", |
1da177e4 LT |
4806 | tablename, |
4807 | (1U << log2qty), | |
f0d1b0b3 | 4808 | ilog2(size) - PAGE_SHIFT, |
1da177e4 LT |
4809 | size); |
4810 | ||
4811 | if (_hash_shift) | |
4812 | *_hash_shift = log2qty; | |
4813 | if (_hash_mask) | |
4814 | *_hash_mask = (1 << log2qty) - 1; | |
4815 | ||
4816 | return table; | |
4817 | } | |
a117e66e | 4818 | |
835c134e MG |
4819 | /* Return a pointer to the bitmap storing bits affecting a block of pages */ |
4820 | static inline unsigned long *get_pageblock_bitmap(struct zone *zone, | |
4821 | unsigned long pfn) | |
4822 | { | |
4823 | #ifdef CONFIG_SPARSEMEM | |
4824 | return __pfn_to_section(pfn)->pageblock_flags; | |
4825 | #else | |
4826 | return zone->pageblock_flags; | |
4827 | #endif /* CONFIG_SPARSEMEM */ | |
4828 | } | |
4829 | ||
4830 | static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) | |
4831 | { | |
4832 | #ifdef CONFIG_SPARSEMEM | |
4833 | pfn &= (PAGES_PER_SECTION-1); | |
d9c23400 | 4834 | return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; |
835c134e MG |
4835 | #else |
4836 | pfn = pfn - zone->zone_start_pfn; | |
d9c23400 | 4837 | return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; |
835c134e MG |
4838 | #endif /* CONFIG_SPARSEMEM */ |
4839 | } | |
4840 | ||
4841 | /** | |
d9c23400 | 4842 | * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages |
835c134e MG |
4843 | * @page: The page within the block of interest |
4844 | * @start_bitidx: The first bit of interest to retrieve | |
4845 | * @end_bitidx: The last bit of interest | |
4846 | * returns pageblock_bits flags | |
4847 | */ | |
4848 | unsigned long get_pageblock_flags_group(struct page *page, | |
4849 | int start_bitidx, int end_bitidx) | |
4850 | { | |
4851 | struct zone *zone; | |
4852 | unsigned long *bitmap; | |
4853 | unsigned long pfn, bitidx; | |
4854 | unsigned long flags = 0; | |
4855 | unsigned long value = 1; | |
4856 | ||
4857 | zone = page_zone(page); | |
4858 | pfn = page_to_pfn(page); | |
4859 | bitmap = get_pageblock_bitmap(zone, pfn); | |
4860 | bitidx = pfn_to_bitidx(zone, pfn); | |
4861 | ||
4862 | for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) | |
4863 | if (test_bit(bitidx + start_bitidx, bitmap)) | |
4864 | flags |= value; | |
6220ec78 | 4865 | |
835c134e MG |
4866 | return flags; |
4867 | } | |
4868 | ||
4869 | /** | |
d9c23400 | 4870 | * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages |
835c134e MG |
4871 | * @page: The page within the block of interest |
4872 | * @start_bitidx: The first bit of interest | |
4873 | * @end_bitidx: The last bit of interest | |
4874 | * @flags: The flags to set | |
4875 | */ | |
4876 | void set_pageblock_flags_group(struct page *page, unsigned long flags, | |
4877 | int start_bitidx, int end_bitidx) | |
4878 | { | |
4879 | struct zone *zone; | |
4880 | unsigned long *bitmap; | |
4881 | unsigned long pfn, bitidx; | |
4882 | unsigned long value = 1; | |
4883 | ||
4884 | zone = page_zone(page); | |
4885 | pfn = page_to_pfn(page); | |
4886 | bitmap = get_pageblock_bitmap(zone, pfn); | |
4887 | bitidx = pfn_to_bitidx(zone, pfn); | |
86051ca5 KH |
4888 | VM_BUG_ON(pfn < zone->zone_start_pfn); |
4889 | VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages); | |
835c134e MG |
4890 | |
4891 | for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) | |
4892 | if (flags & value) | |
4893 | __set_bit(bitidx + start_bitidx, bitmap); | |
4894 | else | |
4895 | __clear_bit(bitidx + start_bitidx, bitmap); | |
4896 | } | |
a5d76b54 KH |
4897 | |
4898 | /* | |
4899 | * This is designed as sub function...plz see page_isolation.c also. | |
4900 | * set/clear page block's type to be ISOLATE. | |
4901 | * page allocater never alloc memory from ISOLATE block. | |
4902 | */ | |
4903 | ||
4904 | int set_migratetype_isolate(struct page *page) | |
4905 | { | |
4906 | struct zone *zone; | |
4907 | unsigned long flags; | |
4908 | int ret = -EBUSY; | |
8e7e40d9 | 4909 | int zone_idx; |
a5d76b54 KH |
4910 | |
4911 | zone = page_zone(page); | |
8e7e40d9 | 4912 | zone_idx = zone_idx(zone); |
a5d76b54 KH |
4913 | spin_lock_irqsave(&zone->lock, flags); |
4914 | /* | |
4915 | * In future, more migrate types will be able to be isolation target. | |
4916 | */ | |
8e7e40d9 SL |
4917 | if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE && |
4918 | zone_idx != ZONE_MOVABLE) | |
a5d76b54 KH |
4919 | goto out; |
4920 | set_pageblock_migratetype(page, MIGRATE_ISOLATE); | |
4921 | move_freepages_block(zone, page, MIGRATE_ISOLATE); | |
4922 | ret = 0; | |
4923 | out: | |
4924 | spin_unlock_irqrestore(&zone->lock, flags); | |
4925 | if (!ret) | |
9f8f2172 | 4926 | drain_all_pages(); |
a5d76b54 KH |
4927 | return ret; |
4928 | } | |
4929 | ||
4930 | void unset_migratetype_isolate(struct page *page) | |
4931 | { | |
4932 | struct zone *zone; | |
4933 | unsigned long flags; | |
4934 | zone = page_zone(page); | |
4935 | spin_lock_irqsave(&zone->lock, flags); | |
4936 | if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE) | |
4937 | goto out; | |
4938 | set_pageblock_migratetype(page, MIGRATE_MOVABLE); | |
4939 | move_freepages_block(zone, page, MIGRATE_MOVABLE); | |
4940 | out: | |
4941 | spin_unlock_irqrestore(&zone->lock, flags); | |
4942 | } | |
0c0e6195 KH |
4943 | |
4944 | #ifdef CONFIG_MEMORY_HOTREMOVE | |
4945 | /* | |
4946 | * All pages in the range must be isolated before calling this. | |
4947 | */ | |
4948 | void | |
4949 | __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) | |
4950 | { | |
4951 | struct page *page; | |
4952 | struct zone *zone; | |
4953 | int order, i; | |
4954 | unsigned long pfn; | |
4955 | unsigned long flags; | |
4956 | /* find the first valid pfn */ | |
4957 | for (pfn = start_pfn; pfn < end_pfn; pfn++) | |
4958 | if (pfn_valid(pfn)) | |
4959 | break; | |
4960 | if (pfn == end_pfn) | |
4961 | return; | |
4962 | zone = page_zone(pfn_to_page(pfn)); | |
4963 | spin_lock_irqsave(&zone->lock, flags); | |
4964 | pfn = start_pfn; | |
4965 | while (pfn < end_pfn) { | |
4966 | if (!pfn_valid(pfn)) { | |
4967 | pfn++; | |
4968 | continue; | |
4969 | } | |
4970 | page = pfn_to_page(pfn); | |
4971 | BUG_ON(page_count(page)); | |
4972 | BUG_ON(!PageBuddy(page)); | |
4973 | order = page_order(page); | |
4974 | #ifdef CONFIG_DEBUG_VM | |
4975 | printk(KERN_INFO "remove from free list %lx %d %lx\n", | |
4976 | pfn, 1 << order, end_pfn); | |
4977 | #endif | |
4978 | list_del(&page->lru); | |
4979 | rmv_page_order(page); | |
4980 | zone->free_area[order].nr_free--; | |
4981 | __mod_zone_page_state(zone, NR_FREE_PAGES, | |
4982 | - (1UL << order)); | |
4983 | for (i = 0; i < (1 << order); i++) | |
4984 | SetPageReserved((page+i)); | |
4985 | pfn += (1 << order); | |
4986 | } | |
4987 | spin_unlock_irqrestore(&zone->lock, flags); | |
4988 | } | |
4989 | #endif |