]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/mm/page_alloc.c | |
3 | * | |
4 | * Manages the free list, the system allocates free pages here. | |
5 | * Note that kmalloc() lives in slab.c | |
6 | * | |
7 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds | |
8 | * Swap reorganised 29.12.95, Stephen Tweedie | |
9 | * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 | |
10 | * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 | |
11 | * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 | |
12 | * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 | |
13 | * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 | |
14 | * (lots of bits borrowed from Ingo Molnar & Andrew Morton) | |
15 | */ | |
16 | ||
1da177e4 LT |
17 | #include <linux/stddef.h> |
18 | #include <linux/mm.h> | |
19 | #include <linux/swap.h> | |
20 | #include <linux/interrupt.h> | |
21 | #include <linux/pagemap.h> | |
10ed273f | 22 | #include <linux/jiffies.h> |
1da177e4 | 23 | #include <linux/bootmem.h> |
edbe7d23 | 24 | #include <linux/memblock.h> |
1da177e4 | 25 | #include <linux/compiler.h> |
9f158333 | 26 | #include <linux/kernel.h> |
b1eeab67 | 27 | #include <linux/kmemcheck.h> |
1da177e4 LT |
28 | #include <linux/module.h> |
29 | #include <linux/suspend.h> | |
30 | #include <linux/pagevec.h> | |
31 | #include <linux/blkdev.h> | |
32 | #include <linux/slab.h> | |
a238ab5b | 33 | #include <linux/ratelimit.h> |
5a3135c2 | 34 | #include <linux/oom.h> |
1da177e4 LT |
35 | #include <linux/notifier.h> |
36 | #include <linux/topology.h> | |
37 | #include <linux/sysctl.h> | |
38 | #include <linux/cpu.h> | |
39 | #include <linux/cpuset.h> | |
bdc8cb98 | 40 | #include <linux/memory_hotplug.h> |
1da177e4 LT |
41 | #include <linux/nodemask.h> |
42 | #include <linux/vmalloc.h> | |
a6cccdc3 | 43 | #include <linux/vmstat.h> |
4be38e35 | 44 | #include <linux/mempolicy.h> |
6811378e | 45 | #include <linux/stop_machine.h> |
c713216d MG |
46 | #include <linux/sort.h> |
47 | #include <linux/pfn.h> | |
3fcfab16 | 48 | #include <linux/backing-dev.h> |
933e312e | 49 | #include <linux/fault-inject.h> |
a5d76b54 | 50 | #include <linux/page-isolation.h> |
52d4b9ac | 51 | #include <linux/page_cgroup.h> |
3ac7fe5a | 52 | #include <linux/debugobjects.h> |
dbb1f81c | 53 | #include <linux/kmemleak.h> |
56de7263 | 54 | #include <linux/compaction.h> |
0d3d062a | 55 | #include <trace/events/kmem.h> |
718a3821 | 56 | #include <linux/ftrace_event.h> |
f212ad7c | 57 | #include <linux/memcontrol.h> |
268bb0ce | 58 | #include <linux/prefetch.h> |
041d3a8c | 59 | #include <linux/migrate.h> |
c0a32fc5 | 60 | #include <linux/page-debug-flags.h> |
949f7ec5 | 61 | #include <linux/hugetlb.h> |
8bd75c77 | 62 | #include <linux/sched/rt.h> |
1da177e4 | 63 | |
7ee3d4e8 | 64 | #include <asm/sections.h> |
1da177e4 | 65 | #include <asm/tlbflush.h> |
ac924c60 | 66 | #include <asm/div64.h> |
1da177e4 LT |
67 | #include "internal.h" |
68 | ||
c8e251fa CS |
69 | /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ |
70 | static DEFINE_MUTEX(pcp_batch_high_lock); | |
71 | ||
72812019 LS |
72 | #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID |
73 | DEFINE_PER_CPU(int, numa_node); | |
74 | EXPORT_PER_CPU_SYMBOL(numa_node); | |
75 | #endif | |
76 | ||
7aac7898 LS |
77 | #ifdef CONFIG_HAVE_MEMORYLESS_NODES |
78 | /* | |
79 | * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. | |
80 | * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. | |
81 | * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() | |
82 | * defined in <linux/topology.h>. | |
83 | */ | |
84 | DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ | |
85 | EXPORT_PER_CPU_SYMBOL(_numa_mem_); | |
86 | #endif | |
87 | ||
1da177e4 | 88 | /* |
13808910 | 89 | * Array of node states. |
1da177e4 | 90 | */ |
13808910 CL |
91 | nodemask_t node_states[NR_NODE_STATES] __read_mostly = { |
92 | [N_POSSIBLE] = NODE_MASK_ALL, | |
93 | [N_ONLINE] = { { [0] = 1UL } }, | |
94 | #ifndef CONFIG_NUMA | |
95 | [N_NORMAL_MEMORY] = { { [0] = 1UL } }, | |
96 | #ifdef CONFIG_HIGHMEM | |
97 | [N_HIGH_MEMORY] = { { [0] = 1UL } }, | |
20b2f52b LJ |
98 | #endif |
99 | #ifdef CONFIG_MOVABLE_NODE | |
100 | [N_MEMORY] = { { [0] = 1UL } }, | |
13808910 CL |
101 | #endif |
102 | [N_CPU] = { { [0] = 1UL } }, | |
103 | #endif /* NUMA */ | |
104 | }; | |
105 | EXPORT_SYMBOL(node_states); | |
106 | ||
c3d5f5f0 JL |
107 | /* Protect totalram_pages and zone->managed_pages */ |
108 | static DEFINE_SPINLOCK(managed_page_count_lock); | |
109 | ||
6c231b7b | 110 | unsigned long totalram_pages __read_mostly; |
cb45b0e9 | 111 | unsigned long totalreserve_pages __read_mostly; |
ab8fabd4 JW |
112 | /* |
113 | * When calculating the number of globally allowed dirty pages, there | |
114 | * is a certain number of per-zone reserves that should not be | |
115 | * considered dirtyable memory. This is the sum of those reserves | |
116 | * over all existing zones that contribute dirtyable memory. | |
117 | */ | |
118 | unsigned long dirty_balance_reserve __read_mostly; | |
119 | ||
1b76b02f | 120 | int percpu_pagelist_fraction; |
dcce284a | 121 | gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; |
1da177e4 | 122 | |
452aa699 RW |
123 | #ifdef CONFIG_PM_SLEEP |
124 | /* | |
125 | * The following functions are used by the suspend/hibernate code to temporarily | |
126 | * change gfp_allowed_mask in order to avoid using I/O during memory allocations | |
127 | * while devices are suspended. To avoid races with the suspend/hibernate code, | |
128 | * they should always be called with pm_mutex held (gfp_allowed_mask also should | |
129 | * only be modified with pm_mutex held, unless the suspend/hibernate code is | |
130 | * guaranteed not to run in parallel with that modification). | |
131 | */ | |
c9e664f1 RW |
132 | |
133 | static gfp_t saved_gfp_mask; | |
134 | ||
135 | void pm_restore_gfp_mask(void) | |
452aa699 RW |
136 | { |
137 | WARN_ON(!mutex_is_locked(&pm_mutex)); | |
c9e664f1 RW |
138 | if (saved_gfp_mask) { |
139 | gfp_allowed_mask = saved_gfp_mask; | |
140 | saved_gfp_mask = 0; | |
141 | } | |
452aa699 RW |
142 | } |
143 | ||
c9e664f1 | 144 | void pm_restrict_gfp_mask(void) |
452aa699 | 145 | { |
452aa699 | 146 | WARN_ON(!mutex_is_locked(&pm_mutex)); |
c9e664f1 RW |
147 | WARN_ON(saved_gfp_mask); |
148 | saved_gfp_mask = gfp_allowed_mask; | |
149 | gfp_allowed_mask &= ~GFP_IOFS; | |
452aa699 | 150 | } |
f90ac398 MG |
151 | |
152 | bool pm_suspended_storage(void) | |
153 | { | |
154 | if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS) | |
155 | return false; | |
156 | return true; | |
157 | } | |
452aa699 RW |
158 | #endif /* CONFIG_PM_SLEEP */ |
159 | ||
d9c23400 MG |
160 | #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE |
161 | int pageblock_order __read_mostly; | |
162 | #endif | |
163 | ||
d98c7a09 | 164 | static void __free_pages_ok(struct page *page, unsigned int order); |
a226f6c8 | 165 | |
1da177e4 LT |
166 | /* |
167 | * results with 256, 32 in the lowmem_reserve sysctl: | |
168 | * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) | |
169 | * 1G machine -> (16M dma, 784M normal, 224M high) | |
170 | * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA | |
171 | * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL | |
172 | * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA | |
a2f1b424 AK |
173 | * |
174 | * TBD: should special case ZONE_DMA32 machines here - in those we normally | |
175 | * don't need any ZONE_NORMAL reservation | |
1da177e4 | 176 | */ |
2f1b6248 | 177 | int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { |
4b51d669 | 178 | #ifdef CONFIG_ZONE_DMA |
2f1b6248 | 179 | 256, |
4b51d669 | 180 | #endif |
fb0e7942 | 181 | #ifdef CONFIG_ZONE_DMA32 |
2f1b6248 | 182 | 256, |
fb0e7942 | 183 | #endif |
e53ef38d | 184 | #ifdef CONFIG_HIGHMEM |
2a1e274a | 185 | 32, |
e53ef38d | 186 | #endif |
2a1e274a | 187 | 32, |
2f1b6248 | 188 | }; |
1da177e4 LT |
189 | |
190 | EXPORT_SYMBOL(totalram_pages); | |
1da177e4 | 191 | |
15ad7cdc | 192 | static char * const zone_names[MAX_NR_ZONES] = { |
4b51d669 | 193 | #ifdef CONFIG_ZONE_DMA |
2f1b6248 | 194 | "DMA", |
4b51d669 | 195 | #endif |
fb0e7942 | 196 | #ifdef CONFIG_ZONE_DMA32 |
2f1b6248 | 197 | "DMA32", |
fb0e7942 | 198 | #endif |
2f1b6248 | 199 | "Normal", |
e53ef38d | 200 | #ifdef CONFIG_HIGHMEM |
2a1e274a | 201 | "HighMem", |
e53ef38d | 202 | #endif |
2a1e274a | 203 | "Movable", |
2f1b6248 CL |
204 | }; |
205 | ||
1da177e4 LT |
206 | int min_free_kbytes = 1024; |
207 | ||
2c85f51d JB |
208 | static unsigned long __meminitdata nr_kernel_pages; |
209 | static unsigned long __meminitdata nr_all_pages; | |
a3142c8e | 210 | static unsigned long __meminitdata dma_reserve; |
1da177e4 | 211 | |
0ee332c1 TH |
212 | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP |
213 | static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; | |
214 | static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; | |
215 | static unsigned long __initdata required_kernelcore; | |
216 | static unsigned long __initdata required_movablecore; | |
217 | static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; | |
218 | ||
219 | /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ | |
220 | int movable_zone; | |
221 | EXPORT_SYMBOL(movable_zone); | |
222 | #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ | |
c713216d | 223 | |
418508c1 MS |
224 | #if MAX_NUMNODES > 1 |
225 | int nr_node_ids __read_mostly = MAX_NUMNODES; | |
62bc62a8 | 226 | int nr_online_nodes __read_mostly = 1; |
418508c1 | 227 | EXPORT_SYMBOL(nr_node_ids); |
62bc62a8 | 228 | EXPORT_SYMBOL(nr_online_nodes); |
418508c1 MS |
229 | #endif |
230 | ||
9ef9acb0 MG |
231 | int page_group_by_mobility_disabled __read_mostly; |
232 | ||
ee6f509c | 233 | void set_pageblock_migratetype(struct page *page, int migratetype) |
b2a0ac88 | 234 | { |
49255c61 MG |
235 | |
236 | if (unlikely(page_group_by_mobility_disabled)) | |
237 | migratetype = MIGRATE_UNMOVABLE; | |
238 | ||
b2a0ac88 MG |
239 | set_pageblock_flags_group(page, (unsigned long)migratetype, |
240 | PB_migrate, PB_migrate_end); | |
241 | } | |
242 | ||
7f33d49a RW |
243 | bool oom_killer_disabled __read_mostly; |
244 | ||
13e7444b | 245 | #ifdef CONFIG_DEBUG_VM |
c6a57e19 | 246 | static int page_outside_zone_boundaries(struct zone *zone, struct page *page) |
1da177e4 | 247 | { |
bdc8cb98 DH |
248 | int ret = 0; |
249 | unsigned seq; | |
250 | unsigned long pfn = page_to_pfn(page); | |
b5e6a5a2 | 251 | unsigned long sp, start_pfn; |
c6a57e19 | 252 | |
bdc8cb98 DH |
253 | do { |
254 | seq = zone_span_seqbegin(zone); | |
b5e6a5a2 CS |
255 | start_pfn = zone->zone_start_pfn; |
256 | sp = zone->spanned_pages; | |
108bcc96 | 257 | if (!zone_spans_pfn(zone, pfn)) |
bdc8cb98 DH |
258 | ret = 1; |
259 | } while (zone_span_seqretry(zone, seq)); | |
260 | ||
b5e6a5a2 CS |
261 | if (ret) |
262 | pr_err("page %lu outside zone [ %lu - %lu ]\n", | |
263 | pfn, start_pfn, start_pfn + sp); | |
264 | ||
bdc8cb98 | 265 | return ret; |
c6a57e19 DH |
266 | } |
267 | ||
268 | static int page_is_consistent(struct zone *zone, struct page *page) | |
269 | { | |
14e07298 | 270 | if (!pfn_valid_within(page_to_pfn(page))) |
c6a57e19 | 271 | return 0; |
1da177e4 | 272 | if (zone != page_zone(page)) |
c6a57e19 DH |
273 | return 0; |
274 | ||
275 | return 1; | |
276 | } | |
277 | /* | |
278 | * Temporary debugging check for pages not lying within a given zone. | |
279 | */ | |
280 | static int bad_range(struct zone *zone, struct page *page) | |
281 | { | |
282 | if (page_outside_zone_boundaries(zone, page)) | |
1da177e4 | 283 | return 1; |
c6a57e19 DH |
284 | if (!page_is_consistent(zone, page)) |
285 | return 1; | |
286 | ||
1da177e4 LT |
287 | return 0; |
288 | } | |
13e7444b NP |
289 | #else |
290 | static inline int bad_range(struct zone *zone, struct page *page) | |
291 | { | |
292 | return 0; | |
293 | } | |
294 | #endif | |
295 | ||
224abf92 | 296 | static void bad_page(struct page *page) |
1da177e4 | 297 | { |
d936cf9b HD |
298 | static unsigned long resume; |
299 | static unsigned long nr_shown; | |
300 | static unsigned long nr_unshown; | |
301 | ||
2a7684a2 WF |
302 | /* Don't complain about poisoned pages */ |
303 | if (PageHWPoison(page)) { | |
22b751c3 | 304 | page_mapcount_reset(page); /* remove PageBuddy */ |
2a7684a2 WF |
305 | return; |
306 | } | |
307 | ||
d936cf9b HD |
308 | /* |
309 | * Allow a burst of 60 reports, then keep quiet for that minute; | |
310 | * or allow a steady drip of one report per second. | |
311 | */ | |
312 | if (nr_shown == 60) { | |
313 | if (time_before(jiffies, resume)) { | |
314 | nr_unshown++; | |
315 | goto out; | |
316 | } | |
317 | if (nr_unshown) { | |
1e9e6365 HD |
318 | printk(KERN_ALERT |
319 | "BUG: Bad page state: %lu messages suppressed\n", | |
d936cf9b HD |
320 | nr_unshown); |
321 | nr_unshown = 0; | |
322 | } | |
323 | nr_shown = 0; | |
324 | } | |
325 | if (nr_shown++ == 0) | |
326 | resume = jiffies + 60 * HZ; | |
327 | ||
1e9e6365 | 328 | printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n", |
3dc14741 | 329 | current->comm, page_to_pfn(page)); |
718a3821 | 330 | dump_page(page); |
3dc14741 | 331 | |
4f31888c | 332 | print_modules(); |
1da177e4 | 333 | dump_stack(); |
d936cf9b | 334 | out: |
8cc3b392 | 335 | /* Leave bad fields for debug, except PageBuddy could make trouble */ |
22b751c3 | 336 | page_mapcount_reset(page); /* remove PageBuddy */ |
373d4d09 | 337 | add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); |
1da177e4 LT |
338 | } |
339 | ||
1da177e4 LT |
340 | /* |
341 | * Higher-order pages are called "compound pages". They are structured thusly: | |
342 | * | |
343 | * The first PAGE_SIZE page is called the "head page". | |
344 | * | |
345 | * The remaining PAGE_SIZE pages are called "tail pages". | |
346 | * | |
6416b9fa WSH |
347 | * All pages have PG_compound set. All tail pages have their ->first_page |
348 | * pointing at the head page. | |
1da177e4 | 349 | * |
41d78ba5 HD |
350 | * The first tail page's ->lru.next holds the address of the compound page's |
351 | * put_page() function. Its ->lru.prev holds the order of allocation. | |
352 | * This usage means that zero-order pages may not be compound. | |
1da177e4 | 353 | */ |
d98c7a09 HD |
354 | |
355 | static void free_compound_page(struct page *page) | |
356 | { | |
d85f3385 | 357 | __free_pages_ok(page, compound_order(page)); |
d98c7a09 HD |
358 | } |
359 | ||
01ad1c08 | 360 | void prep_compound_page(struct page *page, unsigned long order) |
18229df5 AW |
361 | { |
362 | int i; | |
363 | int nr_pages = 1 << order; | |
364 | ||
365 | set_compound_page_dtor(page, free_compound_page); | |
366 | set_compound_order(page, order); | |
367 | __SetPageHead(page); | |
368 | for (i = 1; i < nr_pages; i++) { | |
369 | struct page *p = page + i; | |
18229df5 | 370 | __SetPageTail(p); |
58a84aa9 | 371 | set_page_count(p, 0); |
18229df5 AW |
372 | p->first_page = page; |
373 | } | |
374 | } | |
375 | ||
59ff4216 | 376 | /* update __split_huge_page_refcount if you change this function */ |
8cc3b392 | 377 | static int destroy_compound_page(struct page *page, unsigned long order) |
1da177e4 LT |
378 | { |
379 | int i; | |
380 | int nr_pages = 1 << order; | |
8cc3b392 | 381 | int bad = 0; |
1da177e4 | 382 | |
0bb2c763 | 383 | if (unlikely(compound_order(page) != order)) { |
224abf92 | 384 | bad_page(page); |
8cc3b392 HD |
385 | bad++; |
386 | } | |
1da177e4 | 387 | |
6d777953 | 388 | __ClearPageHead(page); |
8cc3b392 | 389 | |
18229df5 AW |
390 | for (i = 1; i < nr_pages; i++) { |
391 | struct page *p = page + i; | |
1da177e4 | 392 | |
e713a21d | 393 | if (unlikely(!PageTail(p) || (p->first_page != page))) { |
224abf92 | 394 | bad_page(page); |
8cc3b392 HD |
395 | bad++; |
396 | } | |
d85f3385 | 397 | __ClearPageTail(p); |
1da177e4 | 398 | } |
8cc3b392 HD |
399 | |
400 | return bad; | |
1da177e4 | 401 | } |
1da177e4 | 402 | |
17cf4406 NP |
403 | static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) |
404 | { | |
405 | int i; | |
406 | ||
6626c5d5 AM |
407 | /* |
408 | * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO | |
409 | * and __GFP_HIGHMEM from hard or soft interrupt context. | |
410 | */ | |
725d704e | 411 | VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); |
17cf4406 NP |
412 | for (i = 0; i < (1 << order); i++) |
413 | clear_highpage(page + i); | |
414 | } | |
415 | ||
c0a32fc5 SG |
416 | #ifdef CONFIG_DEBUG_PAGEALLOC |
417 | unsigned int _debug_guardpage_minorder; | |
418 | ||
419 | static int __init debug_guardpage_minorder_setup(char *buf) | |
420 | { | |
421 | unsigned long res; | |
422 | ||
423 | if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { | |
424 | printk(KERN_ERR "Bad debug_guardpage_minorder value\n"); | |
425 | return 0; | |
426 | } | |
427 | _debug_guardpage_minorder = res; | |
428 | printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res); | |
429 | return 0; | |
430 | } | |
431 | __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup); | |
432 | ||
433 | static inline void set_page_guard_flag(struct page *page) | |
434 | { | |
435 | __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); | |
436 | } | |
437 | ||
438 | static inline void clear_page_guard_flag(struct page *page) | |
439 | { | |
440 | __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); | |
441 | } | |
442 | #else | |
443 | static inline void set_page_guard_flag(struct page *page) { } | |
444 | static inline void clear_page_guard_flag(struct page *page) { } | |
445 | #endif | |
446 | ||
6aa3001b AM |
447 | static inline void set_page_order(struct page *page, int order) |
448 | { | |
4c21e2f2 | 449 | set_page_private(page, order); |
676165a8 | 450 | __SetPageBuddy(page); |
1da177e4 LT |
451 | } |
452 | ||
453 | static inline void rmv_page_order(struct page *page) | |
454 | { | |
676165a8 | 455 | __ClearPageBuddy(page); |
4c21e2f2 | 456 | set_page_private(page, 0); |
1da177e4 LT |
457 | } |
458 | ||
459 | /* | |
460 | * Locate the struct page for both the matching buddy in our | |
461 | * pair (buddy1) and the combined O(n+1) page they form (page). | |
462 | * | |
463 | * 1) Any buddy B1 will have an order O twin B2 which satisfies | |
464 | * the following equation: | |
465 | * B2 = B1 ^ (1 << O) | |
466 | * For example, if the starting buddy (buddy2) is #8 its order | |
467 | * 1 buddy is #10: | |
468 | * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 | |
469 | * | |
470 | * 2) Any buddy B will have an order O+1 parent P which | |
471 | * satisfies the following equation: | |
472 | * P = B & ~(1 << O) | |
473 | * | |
d6e05edc | 474 | * Assumption: *_mem_map is contiguous at least up to MAX_ORDER |
1da177e4 | 475 | */ |
1da177e4 | 476 | static inline unsigned long |
43506fad | 477 | __find_buddy_index(unsigned long page_idx, unsigned int order) |
1da177e4 | 478 | { |
43506fad | 479 | return page_idx ^ (1 << order); |
1da177e4 LT |
480 | } |
481 | ||
482 | /* | |
483 | * This function checks whether a page is free && is the buddy | |
484 | * we can do coalesce a page and its buddy if | |
13e7444b | 485 | * (a) the buddy is not in a hole && |
676165a8 | 486 | * (b) the buddy is in the buddy system && |
cb2b95e1 AW |
487 | * (c) a page and its buddy have the same order && |
488 | * (d) a page and its buddy are in the same zone. | |
676165a8 | 489 | * |
5f24ce5f AA |
490 | * For recording whether a page is in the buddy system, we set ->_mapcount -2. |
491 | * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock. | |
1da177e4 | 492 | * |
676165a8 | 493 | * For recording page's order, we use page_private(page). |
1da177e4 | 494 | */ |
cb2b95e1 AW |
495 | static inline int page_is_buddy(struct page *page, struct page *buddy, |
496 | int order) | |
1da177e4 | 497 | { |
14e07298 | 498 | if (!pfn_valid_within(page_to_pfn(buddy))) |
13e7444b | 499 | return 0; |
13e7444b | 500 | |
cb2b95e1 AW |
501 | if (page_zone_id(page) != page_zone_id(buddy)) |
502 | return 0; | |
503 | ||
c0a32fc5 SG |
504 | if (page_is_guard(buddy) && page_order(buddy) == order) { |
505 | VM_BUG_ON(page_count(buddy) != 0); | |
506 | return 1; | |
507 | } | |
508 | ||
cb2b95e1 | 509 | if (PageBuddy(buddy) && page_order(buddy) == order) { |
a3af9c38 | 510 | VM_BUG_ON(page_count(buddy) != 0); |
6aa3001b | 511 | return 1; |
676165a8 | 512 | } |
6aa3001b | 513 | return 0; |
1da177e4 LT |
514 | } |
515 | ||
516 | /* | |
517 | * Freeing function for a buddy system allocator. | |
518 | * | |
519 | * The concept of a buddy system is to maintain direct-mapped table | |
520 | * (containing bit values) for memory blocks of various "orders". | |
521 | * The bottom level table contains the map for the smallest allocatable | |
522 | * units of memory (here, pages), and each level above it describes | |
523 | * pairs of units from the levels below, hence, "buddies". | |
524 | * At a high level, all that happens here is marking the table entry | |
525 | * at the bottom level available, and propagating the changes upward | |
526 | * as necessary, plus some accounting needed to play nicely with other | |
527 | * parts of the VM system. | |
528 | * At each level, we keep a list of pages, which are heads of continuous | |
5f24ce5f | 529 | * free pages of length of (1 << order) and marked with _mapcount -2. Page's |
4c21e2f2 | 530 | * order is recorded in page_private(page) field. |
1da177e4 | 531 | * So when we are allocating or freeing one, we can derive the state of the |
5f63b720 MN |
532 | * other. That is, if we allocate a small block, and both were |
533 | * free, the remainder of the region must be split into blocks. | |
1da177e4 | 534 | * If a block is freed, and its buddy is also free, then this |
5f63b720 | 535 | * triggers coalescing into a block of larger size. |
1da177e4 | 536 | * |
6d49e352 | 537 | * -- nyc |
1da177e4 LT |
538 | */ |
539 | ||
48db57f8 | 540 | static inline void __free_one_page(struct page *page, |
ed0ae21d MG |
541 | struct zone *zone, unsigned int order, |
542 | int migratetype) | |
1da177e4 LT |
543 | { |
544 | unsigned long page_idx; | |
6dda9d55 | 545 | unsigned long combined_idx; |
43506fad | 546 | unsigned long uninitialized_var(buddy_idx); |
6dda9d55 | 547 | struct page *buddy; |
1da177e4 | 548 | |
d29bb978 CS |
549 | VM_BUG_ON(!zone_is_initialized(zone)); |
550 | ||
224abf92 | 551 | if (unlikely(PageCompound(page))) |
8cc3b392 HD |
552 | if (unlikely(destroy_compound_page(page, order))) |
553 | return; | |
1da177e4 | 554 | |
ed0ae21d MG |
555 | VM_BUG_ON(migratetype == -1); |
556 | ||
1da177e4 LT |
557 | page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); |
558 | ||
f2260e6b | 559 | VM_BUG_ON(page_idx & ((1 << order) - 1)); |
725d704e | 560 | VM_BUG_ON(bad_range(zone, page)); |
1da177e4 | 561 | |
1da177e4 | 562 | while (order < MAX_ORDER-1) { |
43506fad KC |
563 | buddy_idx = __find_buddy_index(page_idx, order); |
564 | buddy = page + (buddy_idx - page_idx); | |
cb2b95e1 | 565 | if (!page_is_buddy(page, buddy, order)) |
3c82d0ce | 566 | break; |
c0a32fc5 SG |
567 | /* |
568 | * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, | |
569 | * merge with it and move up one order. | |
570 | */ | |
571 | if (page_is_guard(buddy)) { | |
572 | clear_page_guard_flag(buddy); | |
573 | set_page_private(page, 0); | |
d1ce749a BZ |
574 | __mod_zone_freepage_state(zone, 1 << order, |
575 | migratetype); | |
c0a32fc5 SG |
576 | } else { |
577 | list_del(&buddy->lru); | |
578 | zone->free_area[order].nr_free--; | |
579 | rmv_page_order(buddy); | |
580 | } | |
43506fad | 581 | combined_idx = buddy_idx & page_idx; |
1da177e4 LT |
582 | page = page + (combined_idx - page_idx); |
583 | page_idx = combined_idx; | |
584 | order++; | |
585 | } | |
586 | set_page_order(page, order); | |
6dda9d55 CZ |
587 | |
588 | /* | |
589 | * If this is not the largest possible page, check if the buddy | |
590 | * of the next-highest order is free. If it is, it's possible | |
591 | * that pages are being freed that will coalesce soon. In case, | |
592 | * that is happening, add the free page to the tail of the list | |
593 | * so it's less likely to be used soon and more likely to be merged | |
594 | * as a higher order page | |
595 | */ | |
b7f50cfa | 596 | if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) { |
6dda9d55 | 597 | struct page *higher_page, *higher_buddy; |
43506fad KC |
598 | combined_idx = buddy_idx & page_idx; |
599 | higher_page = page + (combined_idx - page_idx); | |
600 | buddy_idx = __find_buddy_index(combined_idx, order + 1); | |
0ba8f2d5 | 601 | higher_buddy = higher_page + (buddy_idx - combined_idx); |
6dda9d55 CZ |
602 | if (page_is_buddy(higher_page, higher_buddy, order + 1)) { |
603 | list_add_tail(&page->lru, | |
604 | &zone->free_area[order].free_list[migratetype]); | |
605 | goto out; | |
606 | } | |
607 | } | |
608 | ||
609 | list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); | |
610 | out: | |
1da177e4 LT |
611 | zone->free_area[order].nr_free++; |
612 | } | |
613 | ||
224abf92 | 614 | static inline int free_pages_check(struct page *page) |
1da177e4 | 615 | { |
92be2e33 NP |
616 | if (unlikely(page_mapcount(page) | |
617 | (page->mapping != NULL) | | |
a3af9c38 | 618 | (atomic_read(&page->_count) != 0) | |
f212ad7c DN |
619 | (page->flags & PAGE_FLAGS_CHECK_AT_FREE) | |
620 | (mem_cgroup_bad_page_check(page)))) { | |
224abf92 | 621 | bad_page(page); |
79f4b7bf | 622 | return 1; |
8cc3b392 | 623 | } |
22b751c3 | 624 | page_nid_reset_last(page); |
79f4b7bf HD |
625 | if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
626 | page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; | |
627 | return 0; | |
1da177e4 LT |
628 | } |
629 | ||
630 | /* | |
5f8dcc21 | 631 | * Frees a number of pages from the PCP lists |
1da177e4 | 632 | * Assumes all pages on list are in same zone, and of same order. |
207f36ee | 633 | * count is the number of pages to free. |
1da177e4 LT |
634 | * |
635 | * If the zone was previously in an "all pages pinned" state then look to | |
636 | * see if this freeing clears that state. | |
637 | * | |
638 | * And clear the zone's pages_scanned counter, to hold off the "all pages are | |
639 | * pinned" detection logic. | |
640 | */ | |
5f8dcc21 MG |
641 | static void free_pcppages_bulk(struct zone *zone, int count, |
642 | struct per_cpu_pages *pcp) | |
1da177e4 | 643 | { |
5f8dcc21 | 644 | int migratetype = 0; |
a6f9edd6 | 645 | int batch_free = 0; |
72853e29 | 646 | int to_free = count; |
5f8dcc21 | 647 | |
c54ad30c | 648 | spin_lock(&zone->lock); |
93e4a89a | 649 | zone->all_unreclaimable = 0; |
1da177e4 | 650 | zone->pages_scanned = 0; |
f2260e6b | 651 | |
72853e29 | 652 | while (to_free) { |
48db57f8 | 653 | struct page *page; |
5f8dcc21 MG |
654 | struct list_head *list; |
655 | ||
656 | /* | |
a6f9edd6 MG |
657 | * Remove pages from lists in a round-robin fashion. A |
658 | * batch_free count is maintained that is incremented when an | |
659 | * empty list is encountered. This is so more pages are freed | |
660 | * off fuller lists instead of spinning excessively around empty | |
661 | * lists | |
5f8dcc21 MG |
662 | */ |
663 | do { | |
a6f9edd6 | 664 | batch_free++; |
5f8dcc21 MG |
665 | if (++migratetype == MIGRATE_PCPTYPES) |
666 | migratetype = 0; | |
667 | list = &pcp->lists[migratetype]; | |
668 | } while (list_empty(list)); | |
48db57f8 | 669 | |
1d16871d NK |
670 | /* This is the only non-empty list. Free them all. */ |
671 | if (batch_free == MIGRATE_PCPTYPES) | |
672 | batch_free = to_free; | |
673 | ||
a6f9edd6 | 674 | do { |
770c8aaa BZ |
675 | int mt; /* migratetype of the to-be-freed page */ |
676 | ||
a6f9edd6 MG |
677 | page = list_entry(list->prev, struct page, lru); |
678 | /* must delete as __free_one_page list manipulates */ | |
679 | list_del(&page->lru); | |
b12c4ad1 | 680 | mt = get_freepage_migratetype(page); |
a7016235 | 681 | /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */ |
770c8aaa BZ |
682 | __free_one_page(page, zone, 0, mt); |
683 | trace_mm_page_pcpu_drain(page, 0, mt); | |
194159fb | 684 | if (likely(!is_migrate_isolate_page(page))) { |
97d0da22 WC |
685 | __mod_zone_page_state(zone, NR_FREE_PAGES, 1); |
686 | if (is_migrate_cma(mt)) | |
687 | __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1); | |
688 | } | |
72853e29 | 689 | } while (--to_free && --batch_free && !list_empty(list)); |
1da177e4 | 690 | } |
c54ad30c | 691 | spin_unlock(&zone->lock); |
1da177e4 LT |
692 | } |
693 | ||
ed0ae21d MG |
694 | static void free_one_page(struct zone *zone, struct page *page, int order, |
695 | int migratetype) | |
1da177e4 | 696 | { |
006d22d9 | 697 | spin_lock(&zone->lock); |
93e4a89a | 698 | zone->all_unreclaimable = 0; |
006d22d9 | 699 | zone->pages_scanned = 0; |
f2260e6b | 700 | |
ed0ae21d | 701 | __free_one_page(page, zone, order, migratetype); |
194159fb | 702 | if (unlikely(!is_migrate_isolate(migratetype))) |
d1ce749a | 703 | __mod_zone_freepage_state(zone, 1 << order, migratetype); |
006d22d9 | 704 | spin_unlock(&zone->lock); |
48db57f8 NP |
705 | } |
706 | ||
ec95f53a | 707 | static bool free_pages_prepare(struct page *page, unsigned int order) |
48db57f8 | 708 | { |
1da177e4 | 709 | int i; |
8cc3b392 | 710 | int bad = 0; |
1da177e4 | 711 | |
b413d48a | 712 | trace_mm_page_free(page, order); |
b1eeab67 VN |
713 | kmemcheck_free_shadow(page, order); |
714 | ||
8dd60a3a AA |
715 | if (PageAnon(page)) |
716 | page->mapping = NULL; | |
717 | for (i = 0; i < (1 << order); i++) | |
718 | bad += free_pages_check(page + i); | |
8cc3b392 | 719 | if (bad) |
ec95f53a | 720 | return false; |
689bcebf | 721 | |
3ac7fe5a | 722 | if (!PageHighMem(page)) { |
9858db50 | 723 | debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order); |
3ac7fe5a TG |
724 | debug_check_no_obj_freed(page_address(page), |
725 | PAGE_SIZE << order); | |
726 | } | |
dafb1367 | 727 | arch_free_page(page, order); |
48db57f8 | 728 | kernel_map_pages(page, 1 << order, 0); |
dafb1367 | 729 | |
ec95f53a KM |
730 | return true; |
731 | } | |
732 | ||
733 | static void __free_pages_ok(struct page *page, unsigned int order) | |
734 | { | |
735 | unsigned long flags; | |
95e34412 | 736 | int migratetype; |
ec95f53a KM |
737 | |
738 | if (!free_pages_prepare(page, order)) | |
739 | return; | |
740 | ||
c54ad30c | 741 | local_irq_save(flags); |
f8891e5e | 742 | __count_vm_events(PGFREE, 1 << order); |
95e34412 MK |
743 | migratetype = get_pageblock_migratetype(page); |
744 | set_freepage_migratetype(page, migratetype); | |
745 | free_one_page(page_zone(page), page, order, migratetype); | |
c54ad30c | 746 | local_irq_restore(flags); |
1da177e4 LT |
747 | } |
748 | ||
170a5a7e | 749 | void __init __free_pages_bootmem(struct page *page, unsigned int order) |
a226f6c8 | 750 | { |
c3993076 JW |
751 | unsigned int nr_pages = 1 << order; |
752 | unsigned int loop; | |
a226f6c8 | 753 | |
c3993076 JW |
754 | prefetchw(page); |
755 | for (loop = 0; loop < nr_pages; loop++) { | |
756 | struct page *p = &page[loop]; | |
757 | ||
758 | if (loop + 1 < nr_pages) | |
759 | prefetchw(p + 1); | |
760 | __ClearPageReserved(p); | |
761 | set_page_count(p, 0); | |
a226f6c8 | 762 | } |
c3993076 | 763 | |
9feedc9d | 764 | page_zone(page)->managed_pages += 1 << order; |
c3993076 JW |
765 | set_page_refcounted(page); |
766 | __free_pages(page, order); | |
a226f6c8 DH |
767 | } |
768 | ||
47118af0 MN |
769 | #ifdef CONFIG_CMA |
770 | /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */ | |
771 | void __init init_cma_reserved_pageblock(struct page *page) | |
772 | { | |
773 | unsigned i = pageblock_nr_pages; | |
774 | struct page *p = page; | |
775 | ||
776 | do { | |
777 | __ClearPageReserved(p); | |
778 | set_page_count(p, 0); | |
779 | } while (++p, --i); | |
780 | ||
781 | set_page_refcounted(page); | |
782 | set_pageblock_migratetype(page, MIGRATE_CMA); | |
783 | __free_pages(page, pageblock_order); | |
3dcc0571 | 784 | adjust_managed_page_count(page, pageblock_nr_pages); |
47118af0 MN |
785 | } |
786 | #endif | |
1da177e4 LT |
787 | |
788 | /* | |
789 | * The order of subdivision here is critical for the IO subsystem. | |
790 | * Please do not alter this order without good reasons and regression | |
791 | * testing. Specifically, as large blocks of memory are subdivided, | |
792 | * the order in which smaller blocks are delivered depends on the order | |
793 | * they're subdivided in this function. This is the primary factor | |
794 | * influencing the order in which pages are delivered to the IO | |
795 | * subsystem according to empirical testing, and this is also justified | |
796 | * by considering the behavior of a buddy system containing a single | |
797 | * large block of memory acted on by a series of small allocations. | |
798 | * This behavior is a critical factor in sglist merging's success. | |
799 | * | |
6d49e352 | 800 | * -- nyc |
1da177e4 | 801 | */ |
085cc7d5 | 802 | static inline void expand(struct zone *zone, struct page *page, |
b2a0ac88 MG |
803 | int low, int high, struct free_area *area, |
804 | int migratetype) | |
1da177e4 LT |
805 | { |
806 | unsigned long size = 1 << high; | |
807 | ||
808 | while (high > low) { | |
809 | area--; | |
810 | high--; | |
811 | size >>= 1; | |
725d704e | 812 | VM_BUG_ON(bad_range(zone, &page[size])); |
c0a32fc5 SG |
813 | |
814 | #ifdef CONFIG_DEBUG_PAGEALLOC | |
815 | if (high < debug_guardpage_minorder()) { | |
816 | /* | |
817 | * Mark as guard pages (or page), that will allow to | |
818 | * merge back to allocator when buddy will be freed. | |
819 | * Corresponding page table entries will not be touched, | |
820 | * pages will stay not present in virtual address space | |
821 | */ | |
822 | INIT_LIST_HEAD(&page[size].lru); | |
823 | set_page_guard_flag(&page[size]); | |
824 | set_page_private(&page[size], high); | |
825 | /* Guard pages are not available for any usage */ | |
d1ce749a BZ |
826 | __mod_zone_freepage_state(zone, -(1 << high), |
827 | migratetype); | |
c0a32fc5 SG |
828 | continue; |
829 | } | |
830 | #endif | |
b2a0ac88 | 831 | list_add(&page[size].lru, &area->free_list[migratetype]); |
1da177e4 LT |
832 | area->nr_free++; |
833 | set_page_order(&page[size], high); | |
834 | } | |
1da177e4 LT |
835 | } |
836 | ||
1da177e4 LT |
837 | /* |
838 | * This page is about to be returned from the page allocator | |
839 | */ | |
2a7684a2 | 840 | static inline int check_new_page(struct page *page) |
1da177e4 | 841 | { |
92be2e33 NP |
842 | if (unlikely(page_mapcount(page) | |
843 | (page->mapping != NULL) | | |
a3af9c38 | 844 | (atomic_read(&page->_count) != 0) | |
f212ad7c DN |
845 | (page->flags & PAGE_FLAGS_CHECK_AT_PREP) | |
846 | (mem_cgroup_bad_page_check(page)))) { | |
224abf92 | 847 | bad_page(page); |
689bcebf | 848 | return 1; |
8cc3b392 | 849 | } |
2a7684a2 WF |
850 | return 0; |
851 | } | |
852 | ||
853 | static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) | |
854 | { | |
855 | int i; | |
856 | ||
857 | for (i = 0; i < (1 << order); i++) { | |
858 | struct page *p = page + i; | |
859 | if (unlikely(check_new_page(p))) | |
860 | return 1; | |
861 | } | |
689bcebf | 862 | |
4c21e2f2 | 863 | set_page_private(page, 0); |
7835e98b | 864 | set_page_refcounted(page); |
cc102509 NP |
865 | |
866 | arch_alloc_page(page, order); | |
1da177e4 | 867 | kernel_map_pages(page, 1 << order, 1); |
17cf4406 NP |
868 | |
869 | if (gfp_flags & __GFP_ZERO) | |
870 | prep_zero_page(page, order, gfp_flags); | |
871 | ||
872 | if (order && (gfp_flags & __GFP_COMP)) | |
873 | prep_compound_page(page, order); | |
874 | ||
689bcebf | 875 | return 0; |
1da177e4 LT |
876 | } |
877 | ||
56fd56b8 MG |
878 | /* |
879 | * Go through the free lists for the given migratetype and remove | |
880 | * the smallest available page from the freelists | |
881 | */ | |
728ec980 MG |
882 | static inline |
883 | struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, | |
56fd56b8 MG |
884 | int migratetype) |
885 | { | |
886 | unsigned int current_order; | |
887 | struct free_area * area; | |
888 | struct page *page; | |
889 | ||
890 | /* Find a page of the appropriate size in the preferred list */ | |
891 | for (current_order = order; current_order < MAX_ORDER; ++current_order) { | |
892 | area = &(zone->free_area[current_order]); | |
893 | if (list_empty(&area->free_list[migratetype])) | |
894 | continue; | |
895 | ||
896 | page = list_entry(area->free_list[migratetype].next, | |
897 | struct page, lru); | |
898 | list_del(&page->lru); | |
899 | rmv_page_order(page); | |
900 | area->nr_free--; | |
56fd56b8 MG |
901 | expand(zone, page, order, current_order, area, migratetype); |
902 | return page; | |
903 | } | |
904 | ||
905 | return NULL; | |
906 | } | |
907 | ||
908 | ||
b2a0ac88 MG |
909 | /* |
910 | * This array describes the order lists are fallen back to when | |
911 | * the free lists for the desirable migrate type are depleted | |
912 | */ | |
47118af0 MN |
913 | static int fallbacks[MIGRATE_TYPES][4] = { |
914 | [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, | |
915 | [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, | |
916 | #ifdef CONFIG_CMA | |
917 | [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, | |
918 | [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */ | |
919 | #else | |
920 | [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, | |
921 | #endif | |
6d4a4916 | 922 | [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */ |
194159fb | 923 | #ifdef CONFIG_MEMORY_ISOLATION |
6d4a4916 | 924 | [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */ |
194159fb | 925 | #endif |
b2a0ac88 MG |
926 | }; |
927 | ||
c361be55 MG |
928 | /* |
929 | * Move the free pages in a range to the free lists of the requested type. | |
d9c23400 | 930 | * Note that start_page and end_pages are not aligned on a pageblock |
c361be55 MG |
931 | * boundary. If alignment is required, use move_freepages_block() |
932 | */ | |
435b405c | 933 | int move_freepages(struct zone *zone, |
b69a7288 AB |
934 | struct page *start_page, struct page *end_page, |
935 | int migratetype) | |
c361be55 MG |
936 | { |
937 | struct page *page; | |
938 | unsigned long order; | |
d100313f | 939 | int pages_moved = 0; |
c361be55 MG |
940 | |
941 | #ifndef CONFIG_HOLES_IN_ZONE | |
942 | /* | |
943 | * page_zone is not safe to call in this context when | |
944 | * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant | |
945 | * anyway as we check zone boundaries in move_freepages_block(). | |
946 | * Remove at a later date when no bug reports exist related to | |
ac0e5b7a | 947 | * grouping pages by mobility |
c361be55 MG |
948 | */ |
949 | BUG_ON(page_zone(start_page) != page_zone(end_page)); | |
950 | #endif | |
951 | ||
952 | for (page = start_page; page <= end_page;) { | |
344c790e AL |
953 | /* Make sure we are not inadvertently changing nodes */ |
954 | VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone)); | |
955 | ||
c361be55 MG |
956 | if (!pfn_valid_within(page_to_pfn(page))) { |
957 | page++; | |
958 | continue; | |
959 | } | |
960 | ||
961 | if (!PageBuddy(page)) { | |
962 | page++; | |
963 | continue; | |
964 | } | |
965 | ||
966 | order = page_order(page); | |
84be48d8 KS |
967 | list_move(&page->lru, |
968 | &zone->free_area[order].free_list[migratetype]); | |
95e34412 | 969 | set_freepage_migratetype(page, migratetype); |
c361be55 | 970 | page += 1 << order; |
d100313f | 971 | pages_moved += 1 << order; |
c361be55 MG |
972 | } |
973 | ||
d100313f | 974 | return pages_moved; |
c361be55 MG |
975 | } |
976 | ||
ee6f509c | 977 | int move_freepages_block(struct zone *zone, struct page *page, |
68e3e926 | 978 | int migratetype) |
c361be55 MG |
979 | { |
980 | unsigned long start_pfn, end_pfn; | |
981 | struct page *start_page, *end_page; | |
982 | ||
983 | start_pfn = page_to_pfn(page); | |
d9c23400 | 984 | start_pfn = start_pfn & ~(pageblock_nr_pages-1); |
c361be55 | 985 | start_page = pfn_to_page(start_pfn); |
d9c23400 MG |
986 | end_page = start_page + pageblock_nr_pages - 1; |
987 | end_pfn = start_pfn + pageblock_nr_pages - 1; | |
c361be55 MG |
988 | |
989 | /* Do not cross zone boundaries */ | |
108bcc96 | 990 | if (!zone_spans_pfn(zone, start_pfn)) |
c361be55 | 991 | start_page = page; |
108bcc96 | 992 | if (!zone_spans_pfn(zone, end_pfn)) |
c361be55 MG |
993 | return 0; |
994 | ||
995 | return move_freepages(zone, start_page, end_page, migratetype); | |
996 | } | |
997 | ||
2f66a68f MG |
998 | static void change_pageblock_range(struct page *pageblock_page, |
999 | int start_order, int migratetype) | |
1000 | { | |
1001 | int nr_pageblocks = 1 << (start_order - pageblock_order); | |
1002 | ||
1003 | while (nr_pageblocks--) { | |
1004 | set_pageblock_migratetype(pageblock_page, migratetype); | |
1005 | pageblock_page += pageblock_nr_pages; | |
1006 | } | |
1007 | } | |
1008 | ||
b2a0ac88 | 1009 | /* Remove an element from the buddy allocator from the fallback list */ |
0ac3a409 MG |
1010 | static inline struct page * |
1011 | __rmqueue_fallback(struct zone *zone, int order, int start_migratetype) | |
b2a0ac88 MG |
1012 | { |
1013 | struct free_area * area; | |
1014 | int current_order; | |
1015 | struct page *page; | |
1016 | int migratetype, i; | |
1017 | ||
1018 | /* Find the largest possible block of pages in the other list */ | |
1019 | for (current_order = MAX_ORDER-1; current_order >= order; | |
1020 | --current_order) { | |
6d4a4916 | 1021 | for (i = 0;; i++) { |
b2a0ac88 MG |
1022 | migratetype = fallbacks[start_migratetype][i]; |
1023 | ||
56fd56b8 MG |
1024 | /* MIGRATE_RESERVE handled later if necessary */ |
1025 | if (migratetype == MIGRATE_RESERVE) | |
6d4a4916 | 1026 | break; |
e010487d | 1027 | |
b2a0ac88 MG |
1028 | area = &(zone->free_area[current_order]); |
1029 | if (list_empty(&area->free_list[migratetype])) | |
1030 | continue; | |
1031 | ||
1032 | page = list_entry(area->free_list[migratetype].next, | |
1033 | struct page, lru); | |
1034 | area->nr_free--; | |
1035 | ||
1036 | /* | |
c361be55 | 1037 | * If breaking a large block of pages, move all free |
46dafbca MG |
1038 | * pages to the preferred allocation list. If falling |
1039 | * back for a reclaimable kernel allocation, be more | |
25985edc | 1040 | * aggressive about taking ownership of free pages |
47118af0 MN |
1041 | * |
1042 | * On the other hand, never change migration | |
1043 | * type of MIGRATE_CMA pageblocks nor move CMA | |
1044 | * pages on different free lists. We don't | |
1045 | * want unmovable pages to be allocated from | |
1046 | * MIGRATE_CMA areas. | |
b2a0ac88 | 1047 | */ |
47118af0 MN |
1048 | if (!is_migrate_cma(migratetype) && |
1049 | (unlikely(current_order >= pageblock_order / 2) || | |
1050 | start_migratetype == MIGRATE_RECLAIMABLE || | |
1051 | page_group_by_mobility_disabled)) { | |
1052 | int pages; | |
46dafbca MG |
1053 | pages = move_freepages_block(zone, page, |
1054 | start_migratetype); | |
1055 | ||
1056 | /* Claim the whole block if over half of it is free */ | |
dd5d241e MG |
1057 | if (pages >= (1 << (pageblock_order-1)) || |
1058 | page_group_by_mobility_disabled) | |
46dafbca MG |
1059 | set_pageblock_migratetype(page, |
1060 | start_migratetype); | |
1061 | ||
b2a0ac88 | 1062 | migratetype = start_migratetype; |
c361be55 | 1063 | } |
b2a0ac88 MG |
1064 | |
1065 | /* Remove the page from the freelists */ | |
1066 | list_del(&page->lru); | |
1067 | rmv_page_order(page); | |
b2a0ac88 | 1068 | |
2f66a68f | 1069 | /* Take ownership for orders >= pageblock_order */ |
47118af0 MN |
1070 | if (current_order >= pageblock_order && |
1071 | !is_migrate_cma(migratetype)) | |
2f66a68f | 1072 | change_pageblock_range(page, current_order, |
b2a0ac88 MG |
1073 | start_migratetype); |
1074 | ||
47118af0 MN |
1075 | expand(zone, page, order, current_order, area, |
1076 | is_migrate_cma(migratetype) | |
1077 | ? migratetype : start_migratetype); | |
e0fff1bd MG |
1078 | |
1079 | trace_mm_page_alloc_extfrag(page, order, current_order, | |
1080 | start_migratetype, migratetype); | |
1081 | ||
b2a0ac88 MG |
1082 | return page; |
1083 | } | |
1084 | } | |
1085 | ||
728ec980 | 1086 | return NULL; |
b2a0ac88 MG |
1087 | } |
1088 | ||
56fd56b8 | 1089 | /* |
1da177e4 LT |
1090 | * Do the hard work of removing an element from the buddy allocator. |
1091 | * Call me with the zone->lock already held. | |
1092 | */ | |
b2a0ac88 MG |
1093 | static struct page *__rmqueue(struct zone *zone, unsigned int order, |
1094 | int migratetype) | |
1da177e4 | 1095 | { |
1da177e4 LT |
1096 | struct page *page; |
1097 | ||
728ec980 | 1098 | retry_reserve: |
56fd56b8 | 1099 | page = __rmqueue_smallest(zone, order, migratetype); |
b2a0ac88 | 1100 | |
728ec980 | 1101 | if (unlikely(!page) && migratetype != MIGRATE_RESERVE) { |
56fd56b8 | 1102 | page = __rmqueue_fallback(zone, order, migratetype); |
b2a0ac88 | 1103 | |
728ec980 MG |
1104 | /* |
1105 | * Use MIGRATE_RESERVE rather than fail an allocation. goto | |
1106 | * is used because __rmqueue_smallest is an inline function | |
1107 | * and we want just one call site | |
1108 | */ | |
1109 | if (!page) { | |
1110 | migratetype = MIGRATE_RESERVE; | |
1111 | goto retry_reserve; | |
1112 | } | |
1113 | } | |
1114 | ||
0d3d062a | 1115 | trace_mm_page_alloc_zone_locked(page, order, migratetype); |
b2a0ac88 | 1116 | return page; |
1da177e4 LT |
1117 | } |
1118 | ||
5f63b720 | 1119 | /* |
1da177e4 LT |
1120 | * Obtain a specified number of elements from the buddy allocator, all under |
1121 | * a single hold of the lock, for efficiency. Add them to the supplied list. | |
1122 | * Returns the number of new pages which were placed at *list. | |
1123 | */ | |
5f63b720 | 1124 | static int rmqueue_bulk(struct zone *zone, unsigned int order, |
b2a0ac88 | 1125 | unsigned long count, struct list_head *list, |
e084b2d9 | 1126 | int migratetype, int cold) |
1da177e4 | 1127 | { |
47118af0 | 1128 | int mt = migratetype, i; |
5f63b720 | 1129 | |
c54ad30c | 1130 | spin_lock(&zone->lock); |
1da177e4 | 1131 | for (i = 0; i < count; ++i) { |
b2a0ac88 | 1132 | struct page *page = __rmqueue(zone, order, migratetype); |
085cc7d5 | 1133 | if (unlikely(page == NULL)) |
1da177e4 | 1134 | break; |
81eabcbe MG |
1135 | |
1136 | /* | |
1137 | * Split buddy pages returned by expand() are received here | |
1138 | * in physical page order. The page is added to the callers and | |
1139 | * list and the list head then moves forward. From the callers | |
1140 | * perspective, the linked list is ordered by page number in | |
1141 | * some conditions. This is useful for IO devices that can | |
1142 | * merge IO requests if the physical pages are ordered | |
1143 | * properly. | |
1144 | */ | |
e084b2d9 MG |
1145 | if (likely(cold == 0)) |
1146 | list_add(&page->lru, list); | |
1147 | else | |
1148 | list_add_tail(&page->lru, list); | |
47118af0 MN |
1149 | if (IS_ENABLED(CONFIG_CMA)) { |
1150 | mt = get_pageblock_migratetype(page); | |
194159fb | 1151 | if (!is_migrate_cma(mt) && !is_migrate_isolate(mt)) |
47118af0 MN |
1152 | mt = migratetype; |
1153 | } | |
b12c4ad1 | 1154 | set_freepage_migratetype(page, mt); |
81eabcbe | 1155 | list = &page->lru; |
d1ce749a BZ |
1156 | if (is_migrate_cma(mt)) |
1157 | __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, | |
1158 | -(1 << order)); | |
1da177e4 | 1159 | } |
f2260e6b | 1160 | __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); |
c54ad30c | 1161 | spin_unlock(&zone->lock); |
085cc7d5 | 1162 | return i; |
1da177e4 LT |
1163 | } |
1164 | ||
4ae7c039 | 1165 | #ifdef CONFIG_NUMA |
8fce4d8e | 1166 | /* |
4037d452 CL |
1167 | * Called from the vmstat counter updater to drain pagesets of this |
1168 | * currently executing processor on remote nodes after they have | |
1169 | * expired. | |
1170 | * | |
879336c3 CL |
1171 | * Note that this function must be called with the thread pinned to |
1172 | * a single processor. | |
8fce4d8e | 1173 | */ |
4037d452 | 1174 | void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) |
4ae7c039 | 1175 | { |
4ae7c039 | 1176 | unsigned long flags; |
4037d452 | 1177 | int to_drain; |
998d39cb | 1178 | unsigned long batch; |
4ae7c039 | 1179 | |
4037d452 | 1180 | local_irq_save(flags); |
998d39cb CS |
1181 | batch = ACCESS_ONCE(pcp->batch); |
1182 | if (pcp->count >= batch) | |
1183 | to_drain = batch; | |
4037d452 CL |
1184 | else |
1185 | to_drain = pcp->count; | |
2a13515c KM |
1186 | if (to_drain > 0) { |
1187 | free_pcppages_bulk(zone, to_drain, pcp); | |
1188 | pcp->count -= to_drain; | |
1189 | } | |
4037d452 | 1190 | local_irq_restore(flags); |
4ae7c039 CL |
1191 | } |
1192 | #endif | |
1193 | ||
9f8f2172 CL |
1194 | /* |
1195 | * Drain pages of the indicated processor. | |
1196 | * | |
1197 | * The processor must either be the current processor and the | |
1198 | * thread pinned to the current processor or a processor that | |
1199 | * is not online. | |
1200 | */ | |
1201 | static void drain_pages(unsigned int cpu) | |
1da177e4 | 1202 | { |
c54ad30c | 1203 | unsigned long flags; |
1da177e4 | 1204 | struct zone *zone; |
1da177e4 | 1205 | |
ee99c71c | 1206 | for_each_populated_zone(zone) { |
1da177e4 | 1207 | struct per_cpu_pageset *pset; |
3dfa5721 | 1208 | struct per_cpu_pages *pcp; |
1da177e4 | 1209 | |
99dcc3e5 CL |
1210 | local_irq_save(flags); |
1211 | pset = per_cpu_ptr(zone->pageset, cpu); | |
3dfa5721 CL |
1212 | |
1213 | pcp = &pset->pcp; | |
2ff754fa DR |
1214 | if (pcp->count) { |
1215 | free_pcppages_bulk(zone, pcp->count, pcp); | |
1216 | pcp->count = 0; | |
1217 | } | |
3dfa5721 | 1218 | local_irq_restore(flags); |
1da177e4 LT |
1219 | } |
1220 | } | |
1da177e4 | 1221 | |
9f8f2172 CL |
1222 | /* |
1223 | * Spill all of this CPU's per-cpu pages back into the buddy allocator. | |
1224 | */ | |
1225 | void drain_local_pages(void *arg) | |
1226 | { | |
1227 | drain_pages(smp_processor_id()); | |
1228 | } | |
1229 | ||
1230 | /* | |
74046494 GBY |
1231 | * Spill all the per-cpu pages from all CPUs back into the buddy allocator. |
1232 | * | |
1233 | * Note that this code is protected against sending an IPI to an offline | |
1234 | * CPU but does not guarantee sending an IPI to newly hotplugged CPUs: | |
1235 | * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but | |
1236 | * nothing keeps CPUs from showing up after we populated the cpumask and | |
1237 | * before the call to on_each_cpu_mask(). | |
9f8f2172 CL |
1238 | */ |
1239 | void drain_all_pages(void) | |
1240 | { | |
74046494 GBY |
1241 | int cpu; |
1242 | struct per_cpu_pageset *pcp; | |
1243 | struct zone *zone; | |
1244 | ||
1245 | /* | |
1246 | * Allocate in the BSS so we wont require allocation in | |
1247 | * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y | |
1248 | */ | |
1249 | static cpumask_t cpus_with_pcps; | |
1250 | ||
1251 | /* | |
1252 | * We don't care about racing with CPU hotplug event | |
1253 | * as offline notification will cause the notified | |
1254 | * cpu to drain that CPU pcps and on_each_cpu_mask | |
1255 | * disables preemption as part of its processing | |
1256 | */ | |
1257 | for_each_online_cpu(cpu) { | |
1258 | bool has_pcps = false; | |
1259 | for_each_populated_zone(zone) { | |
1260 | pcp = per_cpu_ptr(zone->pageset, cpu); | |
1261 | if (pcp->pcp.count) { | |
1262 | has_pcps = true; | |
1263 | break; | |
1264 | } | |
1265 | } | |
1266 | if (has_pcps) | |
1267 | cpumask_set_cpu(cpu, &cpus_with_pcps); | |
1268 | else | |
1269 | cpumask_clear_cpu(cpu, &cpus_with_pcps); | |
1270 | } | |
1271 | on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1); | |
9f8f2172 CL |
1272 | } |
1273 | ||
296699de | 1274 | #ifdef CONFIG_HIBERNATION |
1da177e4 LT |
1275 | |
1276 | void mark_free_pages(struct zone *zone) | |
1277 | { | |
f623f0db RW |
1278 | unsigned long pfn, max_zone_pfn; |
1279 | unsigned long flags; | |
b2a0ac88 | 1280 | int order, t; |
1da177e4 LT |
1281 | struct list_head *curr; |
1282 | ||
1283 | if (!zone->spanned_pages) | |
1284 | return; | |
1285 | ||
1286 | spin_lock_irqsave(&zone->lock, flags); | |
f623f0db | 1287 | |
108bcc96 | 1288 | max_zone_pfn = zone_end_pfn(zone); |
f623f0db RW |
1289 | for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) |
1290 | if (pfn_valid(pfn)) { | |
1291 | struct page *page = pfn_to_page(pfn); | |
1292 | ||
7be98234 RW |
1293 | if (!swsusp_page_is_forbidden(page)) |
1294 | swsusp_unset_page_free(page); | |
f623f0db | 1295 | } |
1da177e4 | 1296 | |
b2a0ac88 MG |
1297 | for_each_migratetype_order(order, t) { |
1298 | list_for_each(curr, &zone->free_area[order].free_list[t]) { | |
f623f0db | 1299 | unsigned long i; |
1da177e4 | 1300 | |
f623f0db RW |
1301 | pfn = page_to_pfn(list_entry(curr, struct page, lru)); |
1302 | for (i = 0; i < (1UL << order); i++) | |
7be98234 | 1303 | swsusp_set_page_free(pfn_to_page(pfn + i)); |
f623f0db | 1304 | } |
b2a0ac88 | 1305 | } |
1da177e4 LT |
1306 | spin_unlock_irqrestore(&zone->lock, flags); |
1307 | } | |
e2c55dc8 | 1308 | #endif /* CONFIG_PM */ |
1da177e4 | 1309 | |
1da177e4 LT |
1310 | /* |
1311 | * Free a 0-order page | |
fc91668e | 1312 | * cold == 1 ? free a cold page : free a hot page |
1da177e4 | 1313 | */ |
fc91668e | 1314 | void free_hot_cold_page(struct page *page, int cold) |
1da177e4 LT |
1315 | { |
1316 | struct zone *zone = page_zone(page); | |
1317 | struct per_cpu_pages *pcp; | |
1318 | unsigned long flags; | |
5f8dcc21 | 1319 | int migratetype; |
1da177e4 | 1320 | |
ec95f53a | 1321 | if (!free_pages_prepare(page, 0)) |
689bcebf HD |
1322 | return; |
1323 | ||
5f8dcc21 | 1324 | migratetype = get_pageblock_migratetype(page); |
b12c4ad1 | 1325 | set_freepage_migratetype(page, migratetype); |
1da177e4 | 1326 | local_irq_save(flags); |
f8891e5e | 1327 | __count_vm_event(PGFREE); |
da456f14 | 1328 | |
5f8dcc21 MG |
1329 | /* |
1330 | * We only track unmovable, reclaimable and movable on pcp lists. | |
1331 | * Free ISOLATE pages back to the allocator because they are being | |
1332 | * offlined but treat RESERVE as movable pages so we can get those | |
1333 | * areas back if necessary. Otherwise, we may have to free | |
1334 | * excessively into the page allocator | |
1335 | */ | |
1336 | if (migratetype >= MIGRATE_PCPTYPES) { | |
194159fb | 1337 | if (unlikely(is_migrate_isolate(migratetype))) { |
5f8dcc21 MG |
1338 | free_one_page(zone, page, 0, migratetype); |
1339 | goto out; | |
1340 | } | |
1341 | migratetype = MIGRATE_MOVABLE; | |
1342 | } | |
1343 | ||
99dcc3e5 | 1344 | pcp = &this_cpu_ptr(zone->pageset)->pcp; |
3dfa5721 | 1345 | if (cold) |
5f8dcc21 | 1346 | list_add_tail(&page->lru, &pcp->lists[migratetype]); |
3dfa5721 | 1347 | else |
5f8dcc21 | 1348 | list_add(&page->lru, &pcp->lists[migratetype]); |
1da177e4 | 1349 | pcp->count++; |
48db57f8 | 1350 | if (pcp->count >= pcp->high) { |
998d39cb CS |
1351 | unsigned long batch = ACCESS_ONCE(pcp->batch); |
1352 | free_pcppages_bulk(zone, batch, pcp); | |
1353 | pcp->count -= batch; | |
48db57f8 | 1354 | } |
5f8dcc21 MG |
1355 | |
1356 | out: | |
1da177e4 | 1357 | local_irq_restore(flags); |
1da177e4 LT |
1358 | } |
1359 | ||
cc59850e KK |
1360 | /* |
1361 | * Free a list of 0-order pages | |
1362 | */ | |
1363 | void free_hot_cold_page_list(struct list_head *list, int cold) | |
1364 | { | |
1365 | struct page *page, *next; | |
1366 | ||
1367 | list_for_each_entry_safe(page, next, list, lru) { | |
b413d48a | 1368 | trace_mm_page_free_batched(page, cold); |
cc59850e KK |
1369 | free_hot_cold_page(page, cold); |
1370 | } | |
1371 | } | |
1372 | ||
8dfcc9ba NP |
1373 | /* |
1374 | * split_page takes a non-compound higher-order page, and splits it into | |
1375 | * n (1<<order) sub-pages: page[0..n] | |
1376 | * Each sub-page must be freed individually. | |
1377 | * | |
1378 | * Note: this is probably too low level an operation for use in drivers. | |
1379 | * Please consult with lkml before using this in your driver. | |
1380 | */ | |
1381 | void split_page(struct page *page, unsigned int order) | |
1382 | { | |
1383 | int i; | |
1384 | ||
725d704e NP |
1385 | VM_BUG_ON(PageCompound(page)); |
1386 | VM_BUG_ON(!page_count(page)); | |
b1eeab67 VN |
1387 | |
1388 | #ifdef CONFIG_KMEMCHECK | |
1389 | /* | |
1390 | * Split shadow pages too, because free(page[0]) would | |
1391 | * otherwise free the whole shadow. | |
1392 | */ | |
1393 | if (kmemcheck_page_is_tracked(page)) | |
1394 | split_page(virt_to_page(page[0].shadow), order); | |
1395 | #endif | |
1396 | ||
7835e98b NP |
1397 | for (i = 1; i < (1 << order); i++) |
1398 | set_page_refcounted(page + i); | |
8dfcc9ba | 1399 | } |
5853ff23 | 1400 | EXPORT_SYMBOL_GPL(split_page); |
8dfcc9ba | 1401 | |
8fb74b9f | 1402 | static int __isolate_free_page(struct page *page, unsigned int order) |
748446bb | 1403 | { |
748446bb MG |
1404 | unsigned long watermark; |
1405 | struct zone *zone; | |
2139cbe6 | 1406 | int mt; |
748446bb MG |
1407 | |
1408 | BUG_ON(!PageBuddy(page)); | |
1409 | ||
1410 | zone = page_zone(page); | |
2e30abd1 | 1411 | mt = get_pageblock_migratetype(page); |
748446bb | 1412 | |
194159fb | 1413 | if (!is_migrate_isolate(mt)) { |
2e30abd1 MS |
1414 | /* Obey watermarks as if the page was being allocated */ |
1415 | watermark = low_wmark_pages(zone) + (1 << order); | |
1416 | if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) | |
1417 | return 0; | |
1418 | ||
8fb74b9f | 1419 | __mod_zone_freepage_state(zone, -(1UL << order), mt); |
2e30abd1 | 1420 | } |
748446bb MG |
1421 | |
1422 | /* Remove page from free list */ | |
1423 | list_del(&page->lru); | |
1424 | zone->free_area[order].nr_free--; | |
1425 | rmv_page_order(page); | |
2139cbe6 | 1426 | |
8fb74b9f | 1427 | /* Set the pageblock if the isolated page is at least a pageblock */ |
748446bb MG |
1428 | if (order >= pageblock_order - 1) { |
1429 | struct page *endpage = page + (1 << order) - 1; | |
47118af0 MN |
1430 | for (; page < endpage; page += pageblock_nr_pages) { |
1431 | int mt = get_pageblock_migratetype(page); | |
194159fb | 1432 | if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)) |
47118af0 MN |
1433 | set_pageblock_migratetype(page, |
1434 | MIGRATE_MOVABLE); | |
1435 | } | |
748446bb MG |
1436 | } |
1437 | ||
8fb74b9f | 1438 | return 1UL << order; |
1fb3f8ca MG |
1439 | } |
1440 | ||
1441 | /* | |
1442 | * Similar to split_page except the page is already free. As this is only | |
1443 | * being used for migration, the migratetype of the block also changes. | |
1444 | * As this is called with interrupts disabled, the caller is responsible | |
1445 | * for calling arch_alloc_page() and kernel_map_page() after interrupts | |
1446 | * are enabled. | |
1447 | * | |
1448 | * Note: this is probably too low level an operation for use in drivers. | |
1449 | * Please consult with lkml before using this in your driver. | |
1450 | */ | |
1451 | int split_free_page(struct page *page) | |
1452 | { | |
1453 | unsigned int order; | |
1454 | int nr_pages; | |
1455 | ||
1fb3f8ca MG |
1456 | order = page_order(page); |
1457 | ||
8fb74b9f | 1458 | nr_pages = __isolate_free_page(page, order); |
1fb3f8ca MG |
1459 | if (!nr_pages) |
1460 | return 0; | |
1461 | ||
1462 | /* Split into individual pages */ | |
1463 | set_page_refcounted(page); | |
1464 | split_page(page, order); | |
1465 | return nr_pages; | |
748446bb MG |
1466 | } |
1467 | ||
1da177e4 LT |
1468 | /* |
1469 | * Really, prep_compound_page() should be called from __rmqueue_bulk(). But | |
1470 | * we cheat by calling it from here, in the order > 0 path. Saves a branch | |
1471 | * or two. | |
1472 | */ | |
0a15c3e9 MG |
1473 | static inline |
1474 | struct page *buffered_rmqueue(struct zone *preferred_zone, | |
3dd28266 MG |
1475 | struct zone *zone, int order, gfp_t gfp_flags, |
1476 | int migratetype) | |
1da177e4 LT |
1477 | { |
1478 | unsigned long flags; | |
689bcebf | 1479 | struct page *page; |
1da177e4 LT |
1480 | int cold = !!(gfp_flags & __GFP_COLD); |
1481 | ||
689bcebf | 1482 | again: |
48db57f8 | 1483 | if (likely(order == 0)) { |
1da177e4 | 1484 | struct per_cpu_pages *pcp; |
5f8dcc21 | 1485 | struct list_head *list; |
1da177e4 | 1486 | |
1da177e4 | 1487 | local_irq_save(flags); |
99dcc3e5 CL |
1488 | pcp = &this_cpu_ptr(zone->pageset)->pcp; |
1489 | list = &pcp->lists[migratetype]; | |
5f8dcc21 | 1490 | if (list_empty(list)) { |
535131e6 | 1491 | pcp->count += rmqueue_bulk(zone, 0, |
5f8dcc21 | 1492 | pcp->batch, list, |
e084b2d9 | 1493 | migratetype, cold); |
5f8dcc21 | 1494 | if (unlikely(list_empty(list))) |
6fb332fa | 1495 | goto failed; |
535131e6 | 1496 | } |
b92a6edd | 1497 | |
5f8dcc21 MG |
1498 | if (cold) |
1499 | page = list_entry(list->prev, struct page, lru); | |
1500 | else | |
1501 | page = list_entry(list->next, struct page, lru); | |
1502 | ||
b92a6edd MG |
1503 | list_del(&page->lru); |
1504 | pcp->count--; | |
7fb1d9fc | 1505 | } else { |
dab48dab AM |
1506 | if (unlikely(gfp_flags & __GFP_NOFAIL)) { |
1507 | /* | |
1508 | * __GFP_NOFAIL is not to be used in new code. | |
1509 | * | |
1510 | * All __GFP_NOFAIL callers should be fixed so that they | |
1511 | * properly detect and handle allocation failures. | |
1512 | * | |
1513 | * We most definitely don't want callers attempting to | |
4923abf9 | 1514 | * allocate greater than order-1 page units with |
dab48dab AM |
1515 | * __GFP_NOFAIL. |
1516 | */ | |
4923abf9 | 1517 | WARN_ON_ONCE(order > 1); |
dab48dab | 1518 | } |
1da177e4 | 1519 | spin_lock_irqsave(&zone->lock, flags); |
b2a0ac88 | 1520 | page = __rmqueue(zone, order, migratetype); |
a74609fa NP |
1521 | spin_unlock(&zone->lock); |
1522 | if (!page) | |
1523 | goto failed; | |
d1ce749a BZ |
1524 | __mod_zone_freepage_state(zone, -(1 << order), |
1525 | get_pageblock_migratetype(page)); | |
1da177e4 LT |
1526 | } |
1527 | ||
f8891e5e | 1528 | __count_zone_vm_events(PGALLOC, zone, 1 << order); |
78afd561 | 1529 | zone_statistics(preferred_zone, zone, gfp_flags); |
a74609fa | 1530 | local_irq_restore(flags); |
1da177e4 | 1531 | |
725d704e | 1532 | VM_BUG_ON(bad_range(zone, page)); |
17cf4406 | 1533 | if (prep_new_page(page, order, gfp_flags)) |
a74609fa | 1534 | goto again; |
1da177e4 | 1535 | return page; |
a74609fa NP |
1536 | |
1537 | failed: | |
1538 | local_irq_restore(flags); | |
a74609fa | 1539 | return NULL; |
1da177e4 LT |
1540 | } |
1541 | ||
933e312e AM |
1542 | #ifdef CONFIG_FAIL_PAGE_ALLOC |
1543 | ||
b2588c4b | 1544 | static struct { |
933e312e AM |
1545 | struct fault_attr attr; |
1546 | ||
1547 | u32 ignore_gfp_highmem; | |
1548 | u32 ignore_gfp_wait; | |
54114994 | 1549 | u32 min_order; |
933e312e AM |
1550 | } fail_page_alloc = { |
1551 | .attr = FAULT_ATTR_INITIALIZER, | |
6b1b60f4 DM |
1552 | .ignore_gfp_wait = 1, |
1553 | .ignore_gfp_highmem = 1, | |
54114994 | 1554 | .min_order = 1, |
933e312e AM |
1555 | }; |
1556 | ||
1557 | static int __init setup_fail_page_alloc(char *str) | |
1558 | { | |
1559 | return setup_fault_attr(&fail_page_alloc.attr, str); | |
1560 | } | |
1561 | __setup("fail_page_alloc=", setup_fail_page_alloc); | |
1562 | ||
deaf386e | 1563 | static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) |
933e312e | 1564 | { |
54114994 | 1565 | if (order < fail_page_alloc.min_order) |
deaf386e | 1566 | return false; |
933e312e | 1567 | if (gfp_mask & __GFP_NOFAIL) |
deaf386e | 1568 | return false; |
933e312e | 1569 | if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) |
deaf386e | 1570 | return false; |
933e312e | 1571 | if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) |
deaf386e | 1572 | return false; |
933e312e AM |
1573 | |
1574 | return should_fail(&fail_page_alloc.attr, 1 << order); | |
1575 | } | |
1576 | ||
1577 | #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS | |
1578 | ||
1579 | static int __init fail_page_alloc_debugfs(void) | |
1580 | { | |
f4ae40a6 | 1581 | umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; |
933e312e | 1582 | struct dentry *dir; |
933e312e | 1583 | |
dd48c085 AM |
1584 | dir = fault_create_debugfs_attr("fail_page_alloc", NULL, |
1585 | &fail_page_alloc.attr); | |
1586 | if (IS_ERR(dir)) | |
1587 | return PTR_ERR(dir); | |
933e312e | 1588 | |
b2588c4b AM |
1589 | if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, |
1590 | &fail_page_alloc.ignore_gfp_wait)) | |
1591 | goto fail; | |
1592 | if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, | |
1593 | &fail_page_alloc.ignore_gfp_highmem)) | |
1594 | goto fail; | |
1595 | if (!debugfs_create_u32("min-order", mode, dir, | |
1596 | &fail_page_alloc.min_order)) | |
1597 | goto fail; | |
1598 | ||
1599 | return 0; | |
1600 | fail: | |
dd48c085 | 1601 | debugfs_remove_recursive(dir); |
933e312e | 1602 | |
b2588c4b | 1603 | return -ENOMEM; |
933e312e AM |
1604 | } |
1605 | ||
1606 | late_initcall(fail_page_alloc_debugfs); | |
1607 | ||
1608 | #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ | |
1609 | ||
1610 | #else /* CONFIG_FAIL_PAGE_ALLOC */ | |
1611 | ||
deaf386e | 1612 | static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) |
933e312e | 1613 | { |
deaf386e | 1614 | return false; |
933e312e AM |
1615 | } |
1616 | ||
1617 | #endif /* CONFIG_FAIL_PAGE_ALLOC */ | |
1618 | ||
1da177e4 | 1619 | /* |
88f5acf8 | 1620 | * Return true if free pages are above 'mark'. This takes into account the order |
1da177e4 LT |
1621 | * of the allocation. |
1622 | */ | |
88f5acf8 MG |
1623 | static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark, |
1624 | int classzone_idx, int alloc_flags, long free_pages) | |
1da177e4 LT |
1625 | { |
1626 | /* free_pages my go negative - that's OK */ | |
d23ad423 | 1627 | long min = mark; |
2cfed075 | 1628 | long lowmem_reserve = z->lowmem_reserve[classzone_idx]; |
1da177e4 | 1629 | int o; |
026b0814 | 1630 | long free_cma = 0; |
1da177e4 | 1631 | |
df0a6daa | 1632 | free_pages -= (1 << order) - 1; |
7fb1d9fc | 1633 | if (alloc_flags & ALLOC_HIGH) |
1da177e4 | 1634 | min -= min / 2; |
7fb1d9fc | 1635 | if (alloc_flags & ALLOC_HARDER) |
1da177e4 | 1636 | min -= min / 4; |
d95ea5d1 BZ |
1637 | #ifdef CONFIG_CMA |
1638 | /* If allocation can't use CMA areas don't use free CMA pages */ | |
1639 | if (!(alloc_flags & ALLOC_CMA)) | |
026b0814 | 1640 | free_cma = zone_page_state(z, NR_FREE_CMA_PAGES); |
d95ea5d1 | 1641 | #endif |
026b0814 TS |
1642 | |
1643 | if (free_pages - free_cma <= min + lowmem_reserve) | |
88f5acf8 | 1644 | return false; |
1da177e4 LT |
1645 | for (o = 0; o < order; o++) { |
1646 | /* At the next order, this order's pages become unavailable */ | |
1647 | free_pages -= z->free_area[o].nr_free << o; | |
1648 | ||
1649 | /* Require fewer higher order pages to be free */ | |
1650 | min >>= 1; | |
1651 | ||
1652 | if (free_pages <= min) | |
88f5acf8 | 1653 | return false; |
1da177e4 | 1654 | } |
88f5acf8 MG |
1655 | return true; |
1656 | } | |
1657 | ||
1658 | bool zone_watermark_ok(struct zone *z, int order, unsigned long mark, | |
1659 | int classzone_idx, int alloc_flags) | |
1660 | { | |
1661 | return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, | |
1662 | zone_page_state(z, NR_FREE_PAGES)); | |
1663 | } | |
1664 | ||
1665 | bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark, | |
1666 | int classzone_idx, int alloc_flags) | |
1667 | { | |
1668 | long free_pages = zone_page_state(z, NR_FREE_PAGES); | |
1669 | ||
1670 | if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) | |
1671 | free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); | |
1672 | ||
1673 | return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, | |
1674 | free_pages); | |
1da177e4 LT |
1675 | } |
1676 | ||
9276b1bc PJ |
1677 | #ifdef CONFIG_NUMA |
1678 | /* | |
1679 | * zlc_setup - Setup for "zonelist cache". Uses cached zone data to | |
1680 | * skip over zones that are not allowed by the cpuset, or that have | |
1681 | * been recently (in last second) found to be nearly full. See further | |
1682 | * comments in mmzone.h. Reduces cache footprint of zonelist scans | |
183ff22b | 1683 | * that have to skip over a lot of full or unallowed zones. |
9276b1bc PJ |
1684 | * |
1685 | * If the zonelist cache is present in the passed in zonelist, then | |
1686 | * returns a pointer to the allowed node mask (either the current | |
4b0ef1fe | 1687 | * tasks mems_allowed, or node_states[N_MEMORY].) |
9276b1bc PJ |
1688 | * |
1689 | * If the zonelist cache is not available for this zonelist, does | |
1690 | * nothing and returns NULL. | |
1691 | * | |
1692 | * If the fullzones BITMAP in the zonelist cache is stale (more than | |
1693 | * a second since last zap'd) then we zap it out (clear its bits.) | |
1694 | * | |
1695 | * We hold off even calling zlc_setup, until after we've checked the | |
1696 | * first zone in the zonelist, on the theory that most allocations will | |
1697 | * be satisfied from that first zone, so best to examine that zone as | |
1698 | * quickly as we can. | |
1699 | */ | |
1700 | static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) | |
1701 | { | |
1702 | struct zonelist_cache *zlc; /* cached zonelist speedup info */ | |
1703 | nodemask_t *allowednodes; /* zonelist_cache approximation */ | |
1704 | ||
1705 | zlc = zonelist->zlcache_ptr; | |
1706 | if (!zlc) | |
1707 | return NULL; | |
1708 | ||
f05111f5 | 1709 | if (time_after(jiffies, zlc->last_full_zap + HZ)) { |
9276b1bc PJ |
1710 | bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); |
1711 | zlc->last_full_zap = jiffies; | |
1712 | } | |
1713 | ||
1714 | allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? | |
1715 | &cpuset_current_mems_allowed : | |
4b0ef1fe | 1716 | &node_states[N_MEMORY]; |
9276b1bc PJ |
1717 | return allowednodes; |
1718 | } | |
1719 | ||
1720 | /* | |
1721 | * Given 'z' scanning a zonelist, run a couple of quick checks to see | |
1722 | * if it is worth looking at further for free memory: | |
1723 | * 1) Check that the zone isn't thought to be full (doesn't have its | |
1724 | * bit set in the zonelist_cache fullzones BITMAP). | |
1725 | * 2) Check that the zones node (obtained from the zonelist_cache | |
1726 | * z_to_n[] mapping) is allowed in the passed in allowednodes mask. | |
1727 | * Return true (non-zero) if zone is worth looking at further, or | |
1728 | * else return false (zero) if it is not. | |
1729 | * | |
1730 | * This check -ignores- the distinction between various watermarks, | |
1731 | * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is | |
1732 | * found to be full for any variation of these watermarks, it will | |
1733 | * be considered full for up to one second by all requests, unless | |
1734 | * we are so low on memory on all allowed nodes that we are forced | |
1735 | * into the second scan of the zonelist. | |
1736 | * | |
1737 | * In the second scan we ignore this zonelist cache and exactly | |
1738 | * apply the watermarks to all zones, even it is slower to do so. | |
1739 | * We are low on memory in the second scan, and should leave no stone | |
1740 | * unturned looking for a free page. | |
1741 | */ | |
dd1a239f | 1742 | static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, |
9276b1bc PJ |
1743 | nodemask_t *allowednodes) |
1744 | { | |
1745 | struct zonelist_cache *zlc; /* cached zonelist speedup info */ | |
1746 | int i; /* index of *z in zonelist zones */ | |
1747 | int n; /* node that zone *z is on */ | |
1748 | ||
1749 | zlc = zonelist->zlcache_ptr; | |
1750 | if (!zlc) | |
1751 | return 1; | |
1752 | ||
dd1a239f | 1753 | i = z - zonelist->_zonerefs; |
9276b1bc PJ |
1754 | n = zlc->z_to_n[i]; |
1755 | ||
1756 | /* This zone is worth trying if it is allowed but not full */ | |
1757 | return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); | |
1758 | } | |
1759 | ||
1760 | /* | |
1761 | * Given 'z' scanning a zonelist, set the corresponding bit in | |
1762 | * zlc->fullzones, so that subsequent attempts to allocate a page | |
1763 | * from that zone don't waste time re-examining it. | |
1764 | */ | |
dd1a239f | 1765 | static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) |
9276b1bc PJ |
1766 | { |
1767 | struct zonelist_cache *zlc; /* cached zonelist speedup info */ | |
1768 | int i; /* index of *z in zonelist zones */ | |
1769 | ||
1770 | zlc = zonelist->zlcache_ptr; | |
1771 | if (!zlc) | |
1772 | return; | |
1773 | ||
dd1a239f | 1774 | i = z - zonelist->_zonerefs; |
9276b1bc PJ |
1775 | |
1776 | set_bit(i, zlc->fullzones); | |
1777 | } | |
1778 | ||
76d3fbf8 MG |
1779 | /* |
1780 | * clear all zones full, called after direct reclaim makes progress so that | |
1781 | * a zone that was recently full is not skipped over for up to a second | |
1782 | */ | |
1783 | static void zlc_clear_zones_full(struct zonelist *zonelist) | |
1784 | { | |
1785 | struct zonelist_cache *zlc; /* cached zonelist speedup info */ | |
1786 | ||
1787 | zlc = zonelist->zlcache_ptr; | |
1788 | if (!zlc) | |
1789 | return; | |
1790 | ||
1791 | bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); | |
1792 | } | |
1793 | ||
957f822a DR |
1794 | static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) |
1795 | { | |
1796 | return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes); | |
1797 | } | |
1798 | ||
1799 | static void __paginginit init_zone_allows_reclaim(int nid) | |
1800 | { | |
1801 | int i; | |
1802 | ||
1803 | for_each_online_node(i) | |
6b187d02 | 1804 | if (node_distance(nid, i) <= RECLAIM_DISTANCE) |
957f822a | 1805 | node_set(i, NODE_DATA(nid)->reclaim_nodes); |
6b187d02 | 1806 | else |
957f822a | 1807 | zone_reclaim_mode = 1; |
957f822a DR |
1808 | } |
1809 | ||
9276b1bc PJ |
1810 | #else /* CONFIG_NUMA */ |
1811 | ||
1812 | static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) | |
1813 | { | |
1814 | return NULL; | |
1815 | } | |
1816 | ||
dd1a239f | 1817 | static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, |
9276b1bc PJ |
1818 | nodemask_t *allowednodes) |
1819 | { | |
1820 | return 1; | |
1821 | } | |
1822 | ||
dd1a239f | 1823 | static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) |
9276b1bc PJ |
1824 | { |
1825 | } | |
76d3fbf8 MG |
1826 | |
1827 | static void zlc_clear_zones_full(struct zonelist *zonelist) | |
1828 | { | |
1829 | } | |
957f822a DR |
1830 | |
1831 | static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) | |
1832 | { | |
1833 | return true; | |
1834 | } | |
1835 | ||
1836 | static inline void init_zone_allows_reclaim(int nid) | |
1837 | { | |
1838 | } | |
9276b1bc PJ |
1839 | #endif /* CONFIG_NUMA */ |
1840 | ||
7fb1d9fc | 1841 | /* |
0798e519 | 1842 | * get_page_from_freelist goes through the zonelist trying to allocate |
7fb1d9fc RS |
1843 | * a page. |
1844 | */ | |
1845 | static struct page * | |
19770b32 | 1846 | get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order, |
5117f45d | 1847 | struct zonelist *zonelist, int high_zoneidx, int alloc_flags, |
3dd28266 | 1848 | struct zone *preferred_zone, int migratetype) |
753ee728 | 1849 | { |
dd1a239f | 1850 | struct zoneref *z; |
7fb1d9fc | 1851 | struct page *page = NULL; |
54a6eb5c | 1852 | int classzone_idx; |
5117f45d | 1853 | struct zone *zone; |
9276b1bc PJ |
1854 | nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ |
1855 | int zlc_active = 0; /* set if using zonelist_cache */ | |
1856 | int did_zlc_setup = 0; /* just call zlc_setup() one time */ | |
54a6eb5c | 1857 | |
19770b32 | 1858 | classzone_idx = zone_idx(preferred_zone); |
9276b1bc | 1859 | zonelist_scan: |
7fb1d9fc | 1860 | /* |
9276b1bc | 1861 | * Scan zonelist, looking for a zone with enough free. |
7fb1d9fc RS |
1862 | * See also cpuset_zone_allowed() comment in kernel/cpuset.c. |
1863 | */ | |
19770b32 MG |
1864 | for_each_zone_zonelist_nodemask(zone, z, zonelist, |
1865 | high_zoneidx, nodemask) { | |
e5adfffc | 1866 | if (IS_ENABLED(CONFIG_NUMA) && zlc_active && |
9276b1bc PJ |
1867 | !zlc_zone_worth_trying(zonelist, z, allowednodes)) |
1868 | continue; | |
7fb1d9fc | 1869 | if ((alloc_flags & ALLOC_CPUSET) && |
02a0e53d | 1870 | !cpuset_zone_allowed_softwall(zone, gfp_mask)) |
cd38b115 | 1871 | continue; |
a756cf59 JW |
1872 | /* |
1873 | * When allocating a page cache page for writing, we | |
1874 | * want to get it from a zone that is within its dirty | |
1875 | * limit, such that no single zone holds more than its | |
1876 | * proportional share of globally allowed dirty pages. | |
1877 | * The dirty limits take into account the zone's | |
1878 | * lowmem reserves and high watermark so that kswapd | |
1879 | * should be able to balance it without having to | |
1880 | * write pages from its LRU list. | |
1881 | * | |
1882 | * This may look like it could increase pressure on | |
1883 | * lower zones by failing allocations in higher zones | |
1884 | * before they are full. But the pages that do spill | |
1885 | * over are limited as the lower zones are protected | |
1886 | * by this very same mechanism. It should not become | |
1887 | * a practical burden to them. | |
1888 | * | |
1889 | * XXX: For now, allow allocations to potentially | |
1890 | * exceed the per-zone dirty limit in the slowpath | |
1891 | * (ALLOC_WMARK_LOW unset) before going into reclaim, | |
1892 | * which is important when on a NUMA setup the allowed | |
1893 | * zones are together not big enough to reach the | |
1894 | * global limit. The proper fix for these situations | |
1895 | * will require awareness of zones in the | |
1896 | * dirty-throttling and the flusher threads. | |
1897 | */ | |
1898 | if ((alloc_flags & ALLOC_WMARK_LOW) && | |
1899 | (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone)) | |
1900 | goto this_zone_full; | |
7fb1d9fc | 1901 | |
41858966 | 1902 | BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); |
7fb1d9fc | 1903 | if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { |
3148890b | 1904 | unsigned long mark; |
fa5e084e MG |
1905 | int ret; |
1906 | ||
41858966 | 1907 | mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; |
fa5e084e MG |
1908 | if (zone_watermark_ok(zone, order, mark, |
1909 | classzone_idx, alloc_flags)) | |
1910 | goto try_this_zone; | |
1911 | ||
e5adfffc KS |
1912 | if (IS_ENABLED(CONFIG_NUMA) && |
1913 | !did_zlc_setup && nr_online_nodes > 1) { | |
cd38b115 MG |
1914 | /* |
1915 | * we do zlc_setup if there are multiple nodes | |
1916 | * and before considering the first zone allowed | |
1917 | * by the cpuset. | |
1918 | */ | |
1919 | allowednodes = zlc_setup(zonelist, alloc_flags); | |
1920 | zlc_active = 1; | |
1921 | did_zlc_setup = 1; | |
1922 | } | |
1923 | ||
957f822a DR |
1924 | if (zone_reclaim_mode == 0 || |
1925 | !zone_allows_reclaim(preferred_zone, zone)) | |
fa5e084e MG |
1926 | goto this_zone_full; |
1927 | ||
cd38b115 MG |
1928 | /* |
1929 | * As we may have just activated ZLC, check if the first | |
1930 | * eligible zone has failed zone_reclaim recently. | |
1931 | */ | |
e5adfffc | 1932 | if (IS_ENABLED(CONFIG_NUMA) && zlc_active && |
cd38b115 MG |
1933 | !zlc_zone_worth_trying(zonelist, z, allowednodes)) |
1934 | continue; | |
1935 | ||
fa5e084e MG |
1936 | ret = zone_reclaim(zone, gfp_mask, order); |
1937 | switch (ret) { | |
1938 | case ZONE_RECLAIM_NOSCAN: | |
1939 | /* did not scan */ | |
cd38b115 | 1940 | continue; |
fa5e084e MG |
1941 | case ZONE_RECLAIM_FULL: |
1942 | /* scanned but unreclaimable */ | |
cd38b115 | 1943 | continue; |
fa5e084e MG |
1944 | default: |
1945 | /* did we reclaim enough */ | |
fed2719e | 1946 | if (zone_watermark_ok(zone, order, mark, |
fa5e084e | 1947 | classzone_idx, alloc_flags)) |
fed2719e MG |
1948 | goto try_this_zone; |
1949 | ||
1950 | /* | |
1951 | * Failed to reclaim enough to meet watermark. | |
1952 | * Only mark the zone full if checking the min | |
1953 | * watermark or if we failed to reclaim just | |
1954 | * 1<<order pages or else the page allocator | |
1955 | * fastpath will prematurely mark zones full | |
1956 | * when the watermark is between the low and | |
1957 | * min watermarks. | |
1958 | */ | |
1959 | if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) || | |
1960 | ret == ZONE_RECLAIM_SOME) | |
9276b1bc | 1961 | goto this_zone_full; |
fed2719e MG |
1962 | |
1963 | continue; | |
0798e519 | 1964 | } |
7fb1d9fc RS |
1965 | } |
1966 | ||
fa5e084e | 1967 | try_this_zone: |
3dd28266 MG |
1968 | page = buffered_rmqueue(preferred_zone, zone, order, |
1969 | gfp_mask, migratetype); | |
0798e519 | 1970 | if (page) |
7fb1d9fc | 1971 | break; |
9276b1bc | 1972 | this_zone_full: |
e5adfffc | 1973 | if (IS_ENABLED(CONFIG_NUMA)) |
9276b1bc | 1974 | zlc_mark_zone_full(zonelist, z); |
54a6eb5c | 1975 | } |
9276b1bc | 1976 | |
e5adfffc | 1977 | if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) { |
9276b1bc PJ |
1978 | /* Disable zlc cache for second zonelist scan */ |
1979 | zlc_active = 0; | |
1980 | goto zonelist_scan; | |
1981 | } | |
b121186a AS |
1982 | |
1983 | if (page) | |
1984 | /* | |
1985 | * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was | |
1986 | * necessary to allocate the page. The expectation is | |
1987 | * that the caller is taking steps that will free more | |
1988 | * memory. The caller should avoid the page being used | |
1989 | * for !PFMEMALLOC purposes. | |
1990 | */ | |
1991 | page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS); | |
1992 | ||
7fb1d9fc | 1993 | return page; |
753ee728 MH |
1994 | } |
1995 | ||
29423e77 DR |
1996 | /* |
1997 | * Large machines with many possible nodes should not always dump per-node | |
1998 | * meminfo in irq context. | |
1999 | */ | |
2000 | static inline bool should_suppress_show_mem(void) | |
2001 | { | |
2002 | bool ret = false; | |
2003 | ||
2004 | #if NODES_SHIFT > 8 | |
2005 | ret = in_interrupt(); | |
2006 | #endif | |
2007 | return ret; | |
2008 | } | |
2009 | ||
a238ab5b DH |
2010 | static DEFINE_RATELIMIT_STATE(nopage_rs, |
2011 | DEFAULT_RATELIMIT_INTERVAL, | |
2012 | DEFAULT_RATELIMIT_BURST); | |
2013 | ||
2014 | void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...) | |
2015 | { | |
a238ab5b DH |
2016 | unsigned int filter = SHOW_MEM_FILTER_NODES; |
2017 | ||
c0a32fc5 SG |
2018 | if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) || |
2019 | debug_guardpage_minorder() > 0) | |
a238ab5b DH |
2020 | return; |
2021 | ||
4b59e6c4 DR |
2022 | /* |
2023 | * Walking all memory to count page types is very expensive and should | |
2024 | * be inhibited in non-blockable contexts. | |
2025 | */ | |
2026 | if (!(gfp_mask & __GFP_WAIT)) | |
2027 | filter |= SHOW_MEM_FILTER_PAGE_COUNT; | |
2028 | ||
a238ab5b DH |
2029 | /* |
2030 | * This documents exceptions given to allocations in certain | |
2031 | * contexts that are allowed to allocate outside current's set | |
2032 | * of allowed nodes. | |
2033 | */ | |
2034 | if (!(gfp_mask & __GFP_NOMEMALLOC)) | |
2035 | if (test_thread_flag(TIF_MEMDIE) || | |
2036 | (current->flags & (PF_MEMALLOC | PF_EXITING))) | |
2037 | filter &= ~SHOW_MEM_FILTER_NODES; | |
2038 | if (in_interrupt() || !(gfp_mask & __GFP_WAIT)) | |
2039 | filter &= ~SHOW_MEM_FILTER_NODES; | |
2040 | ||
2041 | if (fmt) { | |
3ee9a4f0 JP |
2042 | struct va_format vaf; |
2043 | va_list args; | |
2044 | ||
a238ab5b | 2045 | va_start(args, fmt); |
3ee9a4f0 JP |
2046 | |
2047 | vaf.fmt = fmt; | |
2048 | vaf.va = &args; | |
2049 | ||
2050 | pr_warn("%pV", &vaf); | |
2051 | ||
a238ab5b DH |
2052 | va_end(args); |
2053 | } | |
2054 | ||
3ee9a4f0 JP |
2055 | pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n", |
2056 | current->comm, order, gfp_mask); | |
a238ab5b DH |
2057 | |
2058 | dump_stack(); | |
2059 | if (!should_suppress_show_mem()) | |
2060 | show_mem(filter); | |
2061 | } | |
2062 | ||
11e33f6a MG |
2063 | static inline int |
2064 | should_alloc_retry(gfp_t gfp_mask, unsigned int order, | |
f90ac398 | 2065 | unsigned long did_some_progress, |
11e33f6a | 2066 | unsigned long pages_reclaimed) |
1da177e4 | 2067 | { |
11e33f6a MG |
2068 | /* Do not loop if specifically requested */ |
2069 | if (gfp_mask & __GFP_NORETRY) | |
2070 | return 0; | |
1da177e4 | 2071 | |
f90ac398 MG |
2072 | /* Always retry if specifically requested */ |
2073 | if (gfp_mask & __GFP_NOFAIL) | |
2074 | return 1; | |
2075 | ||
2076 | /* | |
2077 | * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim | |
2078 | * making forward progress without invoking OOM. Suspend also disables | |
2079 | * storage devices so kswapd will not help. Bail if we are suspending. | |
2080 | */ | |
2081 | if (!did_some_progress && pm_suspended_storage()) | |
2082 | return 0; | |
2083 | ||
11e33f6a MG |
2084 | /* |
2085 | * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER | |
2086 | * means __GFP_NOFAIL, but that may not be true in other | |
2087 | * implementations. | |
2088 | */ | |
2089 | if (order <= PAGE_ALLOC_COSTLY_ORDER) | |
2090 | return 1; | |
2091 | ||
2092 | /* | |
2093 | * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is | |
2094 | * specified, then we retry until we no longer reclaim any pages | |
2095 | * (above), or we've reclaimed an order of pages at least as | |
2096 | * large as the allocation's order. In both cases, if the | |
2097 | * allocation still fails, we stop retrying. | |
2098 | */ | |
2099 | if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order)) | |
2100 | return 1; | |
cf40bd16 | 2101 | |
11e33f6a MG |
2102 | return 0; |
2103 | } | |
933e312e | 2104 | |
11e33f6a MG |
2105 | static inline struct page * |
2106 | __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, | |
2107 | struct zonelist *zonelist, enum zone_type high_zoneidx, | |
3dd28266 MG |
2108 | nodemask_t *nodemask, struct zone *preferred_zone, |
2109 | int migratetype) | |
11e33f6a MG |
2110 | { |
2111 | struct page *page; | |
2112 | ||
2113 | /* Acquire the OOM killer lock for the zones in zonelist */ | |
ff321fea | 2114 | if (!try_set_zonelist_oom(zonelist, gfp_mask)) { |
11e33f6a | 2115 | schedule_timeout_uninterruptible(1); |
1da177e4 LT |
2116 | return NULL; |
2117 | } | |
6b1de916 | 2118 | |
11e33f6a MG |
2119 | /* |
2120 | * Go through the zonelist yet one more time, keep very high watermark | |
2121 | * here, this is only to catch a parallel oom killing, we must fail if | |
2122 | * we're still under heavy pressure. | |
2123 | */ | |
2124 | page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, | |
2125 | order, zonelist, high_zoneidx, | |
5117f45d | 2126 | ALLOC_WMARK_HIGH|ALLOC_CPUSET, |
3dd28266 | 2127 | preferred_zone, migratetype); |
7fb1d9fc | 2128 | if (page) |
11e33f6a MG |
2129 | goto out; |
2130 | ||
4365a567 KH |
2131 | if (!(gfp_mask & __GFP_NOFAIL)) { |
2132 | /* The OOM killer will not help higher order allocs */ | |
2133 | if (order > PAGE_ALLOC_COSTLY_ORDER) | |
2134 | goto out; | |
03668b3c DR |
2135 | /* The OOM killer does not needlessly kill tasks for lowmem */ |
2136 | if (high_zoneidx < ZONE_NORMAL) | |
2137 | goto out; | |
4365a567 KH |
2138 | /* |
2139 | * GFP_THISNODE contains __GFP_NORETRY and we never hit this. | |
2140 | * Sanity check for bare calls of __GFP_THISNODE, not real OOM. | |
2141 | * The caller should handle page allocation failure by itself if | |
2142 | * it specifies __GFP_THISNODE. | |
2143 | * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER. | |
2144 | */ | |
2145 | if (gfp_mask & __GFP_THISNODE) | |
2146 | goto out; | |
2147 | } | |
11e33f6a | 2148 | /* Exhausted what can be done so it's blamo time */ |
08ab9b10 | 2149 | out_of_memory(zonelist, gfp_mask, order, nodemask, false); |
11e33f6a MG |
2150 | |
2151 | out: | |
2152 | clear_zonelist_oom(zonelist, gfp_mask); | |
2153 | return page; | |
2154 | } | |
2155 | ||
56de7263 MG |
2156 | #ifdef CONFIG_COMPACTION |
2157 | /* Try memory compaction for high-order allocations before reclaim */ | |
2158 | static struct page * | |
2159 | __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, | |
2160 | struct zonelist *zonelist, enum zone_type high_zoneidx, | |
2161 | nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, | |
66199712 | 2162 | int migratetype, bool sync_migration, |
c67fe375 | 2163 | bool *contended_compaction, bool *deferred_compaction, |
66199712 | 2164 | unsigned long *did_some_progress) |
56de7263 | 2165 | { |
66199712 | 2166 | if (!order) |
56de7263 MG |
2167 | return NULL; |
2168 | ||
aff62249 | 2169 | if (compaction_deferred(preferred_zone, order)) { |
66199712 MG |
2170 | *deferred_compaction = true; |
2171 | return NULL; | |
2172 | } | |
2173 | ||
c06b1fca | 2174 | current->flags |= PF_MEMALLOC; |
56de7263 | 2175 | *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask, |
c67fe375 | 2176 | nodemask, sync_migration, |
8fb74b9f | 2177 | contended_compaction); |
c06b1fca | 2178 | current->flags &= ~PF_MEMALLOC; |
56de7263 | 2179 | |
1fb3f8ca | 2180 | if (*did_some_progress != COMPACT_SKIPPED) { |
8fb74b9f MG |
2181 | struct page *page; |
2182 | ||
56de7263 MG |
2183 | /* Page migration frees to the PCP lists but we want merging */ |
2184 | drain_pages(get_cpu()); | |
2185 | put_cpu(); | |
2186 | ||
2187 | page = get_page_from_freelist(gfp_mask, nodemask, | |
2188 | order, zonelist, high_zoneidx, | |
cfd19c5a MG |
2189 | alloc_flags & ~ALLOC_NO_WATERMARKS, |
2190 | preferred_zone, migratetype); | |
56de7263 | 2191 | if (page) { |
62997027 | 2192 | preferred_zone->compact_blockskip_flush = false; |
4f92e258 MG |
2193 | preferred_zone->compact_considered = 0; |
2194 | preferred_zone->compact_defer_shift = 0; | |
aff62249 RR |
2195 | if (order >= preferred_zone->compact_order_failed) |
2196 | preferred_zone->compact_order_failed = order + 1; | |
56de7263 MG |
2197 | count_vm_event(COMPACTSUCCESS); |
2198 | return page; | |
2199 | } | |
2200 | ||
2201 | /* | |
2202 | * It's bad if compaction run occurs and fails. | |
2203 | * The most likely reason is that pages exist, | |
2204 | * but not enough to satisfy watermarks. | |
2205 | */ | |
2206 | count_vm_event(COMPACTFAIL); | |
66199712 MG |
2207 | |
2208 | /* | |
2209 | * As async compaction considers a subset of pageblocks, only | |
2210 | * defer if the failure was a sync compaction failure. | |
2211 | */ | |
2212 | if (sync_migration) | |
aff62249 | 2213 | defer_compaction(preferred_zone, order); |
56de7263 MG |
2214 | |
2215 | cond_resched(); | |
2216 | } | |
2217 | ||
2218 | return NULL; | |
2219 | } | |
2220 | #else | |
2221 | static inline struct page * | |
2222 | __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, | |
2223 | struct zonelist *zonelist, enum zone_type high_zoneidx, | |
2224 | nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, | |
66199712 | 2225 | int migratetype, bool sync_migration, |
c67fe375 | 2226 | bool *contended_compaction, bool *deferred_compaction, |
66199712 | 2227 | unsigned long *did_some_progress) |
56de7263 MG |
2228 | { |
2229 | return NULL; | |
2230 | } | |
2231 | #endif /* CONFIG_COMPACTION */ | |
2232 | ||
bba90710 MS |
2233 | /* Perform direct synchronous page reclaim */ |
2234 | static int | |
2235 | __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist, | |
2236 | nodemask_t *nodemask) | |
11e33f6a | 2237 | { |
11e33f6a | 2238 | struct reclaim_state reclaim_state; |
bba90710 | 2239 | int progress; |
11e33f6a MG |
2240 | |
2241 | cond_resched(); | |
2242 | ||
2243 | /* We now go into synchronous reclaim */ | |
2244 | cpuset_memory_pressure_bump(); | |
c06b1fca | 2245 | current->flags |= PF_MEMALLOC; |
11e33f6a MG |
2246 | lockdep_set_current_reclaim_state(gfp_mask); |
2247 | reclaim_state.reclaimed_slab = 0; | |
c06b1fca | 2248 | current->reclaim_state = &reclaim_state; |
11e33f6a | 2249 | |
bba90710 | 2250 | progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask); |
11e33f6a | 2251 | |
c06b1fca | 2252 | current->reclaim_state = NULL; |
11e33f6a | 2253 | lockdep_clear_current_reclaim_state(); |
c06b1fca | 2254 | current->flags &= ~PF_MEMALLOC; |
11e33f6a MG |
2255 | |
2256 | cond_resched(); | |
2257 | ||
bba90710 MS |
2258 | return progress; |
2259 | } | |
2260 | ||
2261 | /* The really slow allocator path where we enter direct reclaim */ | |
2262 | static inline struct page * | |
2263 | __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, | |
2264 | struct zonelist *zonelist, enum zone_type high_zoneidx, | |
2265 | nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, | |
2266 | int migratetype, unsigned long *did_some_progress) | |
2267 | { | |
2268 | struct page *page = NULL; | |
2269 | bool drained = false; | |
2270 | ||
2271 | *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist, | |
2272 | nodemask); | |
9ee493ce MG |
2273 | if (unlikely(!(*did_some_progress))) |
2274 | return NULL; | |
11e33f6a | 2275 | |
76d3fbf8 | 2276 | /* After successful reclaim, reconsider all zones for allocation */ |
e5adfffc | 2277 | if (IS_ENABLED(CONFIG_NUMA)) |
76d3fbf8 MG |
2278 | zlc_clear_zones_full(zonelist); |
2279 | ||
9ee493ce MG |
2280 | retry: |
2281 | page = get_page_from_freelist(gfp_mask, nodemask, order, | |
5117f45d | 2282 | zonelist, high_zoneidx, |
cfd19c5a MG |
2283 | alloc_flags & ~ALLOC_NO_WATERMARKS, |
2284 | preferred_zone, migratetype); | |
9ee493ce MG |
2285 | |
2286 | /* | |
2287 | * If an allocation failed after direct reclaim, it could be because | |
2288 | * pages are pinned on the per-cpu lists. Drain them and try again | |
2289 | */ | |
2290 | if (!page && !drained) { | |
2291 | drain_all_pages(); | |
2292 | drained = true; | |
2293 | goto retry; | |
2294 | } | |
2295 | ||
11e33f6a MG |
2296 | return page; |
2297 | } | |
2298 | ||
1da177e4 | 2299 | /* |
11e33f6a MG |
2300 | * This is called in the allocator slow-path if the allocation request is of |
2301 | * sufficient urgency to ignore watermarks and take other desperate measures | |
1da177e4 | 2302 | */ |
11e33f6a MG |
2303 | static inline struct page * |
2304 | __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order, | |
2305 | struct zonelist *zonelist, enum zone_type high_zoneidx, | |
3dd28266 MG |
2306 | nodemask_t *nodemask, struct zone *preferred_zone, |
2307 | int migratetype) | |
11e33f6a MG |
2308 | { |
2309 | struct page *page; | |
2310 | ||
2311 | do { | |
2312 | page = get_page_from_freelist(gfp_mask, nodemask, order, | |
5117f45d | 2313 | zonelist, high_zoneidx, ALLOC_NO_WATERMARKS, |
3dd28266 | 2314 | preferred_zone, migratetype); |
11e33f6a MG |
2315 | |
2316 | if (!page && gfp_mask & __GFP_NOFAIL) | |
0e093d99 | 2317 | wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); |
11e33f6a MG |
2318 | } while (!page && (gfp_mask & __GFP_NOFAIL)); |
2319 | ||
2320 | return page; | |
2321 | } | |
2322 | ||
2323 | static inline | |
2324 | void wake_all_kswapd(unsigned int order, struct zonelist *zonelist, | |
99504748 MG |
2325 | enum zone_type high_zoneidx, |
2326 | enum zone_type classzone_idx) | |
1da177e4 | 2327 | { |
dd1a239f MG |
2328 | struct zoneref *z; |
2329 | struct zone *zone; | |
1da177e4 | 2330 | |
11e33f6a | 2331 | for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) |
99504748 | 2332 | wakeup_kswapd(zone, order, classzone_idx); |
11e33f6a | 2333 | } |
cf40bd16 | 2334 | |
341ce06f PZ |
2335 | static inline int |
2336 | gfp_to_alloc_flags(gfp_t gfp_mask) | |
2337 | { | |
341ce06f PZ |
2338 | int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; |
2339 | const gfp_t wait = gfp_mask & __GFP_WAIT; | |
1da177e4 | 2340 | |
a56f57ff | 2341 | /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ |
e6223a3b | 2342 | BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); |
933e312e | 2343 | |
341ce06f PZ |
2344 | /* |
2345 | * The caller may dip into page reserves a bit more if the caller | |
2346 | * cannot run direct reclaim, or if the caller has realtime scheduling | |
2347 | * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will | |
2348 | * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). | |
2349 | */ | |
e6223a3b | 2350 | alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); |
1da177e4 | 2351 | |
341ce06f | 2352 | if (!wait) { |
5c3240d9 AA |
2353 | /* |
2354 | * Not worth trying to allocate harder for | |
2355 | * __GFP_NOMEMALLOC even if it can't schedule. | |
2356 | */ | |
2357 | if (!(gfp_mask & __GFP_NOMEMALLOC)) | |
2358 | alloc_flags |= ALLOC_HARDER; | |
523b9458 | 2359 | /* |
341ce06f PZ |
2360 | * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. |
2361 | * See also cpuset_zone_allowed() comment in kernel/cpuset.c. | |
523b9458 | 2362 | */ |
341ce06f | 2363 | alloc_flags &= ~ALLOC_CPUSET; |
c06b1fca | 2364 | } else if (unlikely(rt_task(current)) && !in_interrupt()) |
341ce06f PZ |
2365 | alloc_flags |= ALLOC_HARDER; |
2366 | ||
b37f1dd0 MG |
2367 | if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) { |
2368 | if (gfp_mask & __GFP_MEMALLOC) | |
2369 | alloc_flags |= ALLOC_NO_WATERMARKS; | |
907aed48 MG |
2370 | else if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) |
2371 | alloc_flags |= ALLOC_NO_WATERMARKS; | |
2372 | else if (!in_interrupt() && | |
2373 | ((current->flags & PF_MEMALLOC) || | |
2374 | unlikely(test_thread_flag(TIF_MEMDIE)))) | |
341ce06f | 2375 | alloc_flags |= ALLOC_NO_WATERMARKS; |
1da177e4 | 2376 | } |
d95ea5d1 BZ |
2377 | #ifdef CONFIG_CMA |
2378 | if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) | |
2379 | alloc_flags |= ALLOC_CMA; | |
2380 | #endif | |
341ce06f PZ |
2381 | return alloc_flags; |
2382 | } | |
2383 | ||
072bb0aa MG |
2384 | bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) |
2385 | { | |
b37f1dd0 | 2386 | return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS); |
072bb0aa MG |
2387 | } |
2388 | ||
11e33f6a MG |
2389 | static inline struct page * |
2390 | __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, | |
2391 | struct zonelist *zonelist, enum zone_type high_zoneidx, | |
3dd28266 MG |
2392 | nodemask_t *nodemask, struct zone *preferred_zone, |
2393 | int migratetype) | |
11e33f6a MG |
2394 | { |
2395 | const gfp_t wait = gfp_mask & __GFP_WAIT; | |
2396 | struct page *page = NULL; | |
2397 | int alloc_flags; | |
2398 | unsigned long pages_reclaimed = 0; | |
2399 | unsigned long did_some_progress; | |
77f1fe6b | 2400 | bool sync_migration = false; |
66199712 | 2401 | bool deferred_compaction = false; |
c67fe375 | 2402 | bool contended_compaction = false; |
1da177e4 | 2403 | |
72807a74 MG |
2404 | /* |
2405 | * In the slowpath, we sanity check order to avoid ever trying to | |
2406 | * reclaim >= MAX_ORDER areas which will never succeed. Callers may | |
2407 | * be using allocators in order of preference for an area that is | |
2408 | * too large. | |
2409 | */ | |
1fc28b70 MG |
2410 | if (order >= MAX_ORDER) { |
2411 | WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); | |
72807a74 | 2412 | return NULL; |
1fc28b70 | 2413 | } |
1da177e4 | 2414 | |
952f3b51 CL |
2415 | /* |
2416 | * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and | |
2417 | * __GFP_NOWARN set) should not cause reclaim since the subsystem | |
2418 | * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim | |
2419 | * using a larger set of nodes after it has established that the | |
2420 | * allowed per node queues are empty and that nodes are | |
2421 | * over allocated. | |
2422 | */ | |
e5adfffc KS |
2423 | if (IS_ENABLED(CONFIG_NUMA) && |
2424 | (gfp_mask & GFP_THISNODE) == GFP_THISNODE) | |
952f3b51 CL |
2425 | goto nopage; |
2426 | ||
cc4a6851 | 2427 | restart: |
caf49191 LT |
2428 | if (!(gfp_mask & __GFP_NO_KSWAPD)) |
2429 | wake_all_kswapd(order, zonelist, high_zoneidx, | |
2430 | zone_idx(preferred_zone)); | |
1da177e4 | 2431 | |
9bf2229f | 2432 | /* |
7fb1d9fc RS |
2433 | * OK, we're below the kswapd watermark and have kicked background |
2434 | * reclaim. Now things get more complex, so set up alloc_flags according | |
2435 | * to how we want to proceed. | |
9bf2229f | 2436 | */ |
341ce06f | 2437 | alloc_flags = gfp_to_alloc_flags(gfp_mask); |
1da177e4 | 2438 | |
f33261d7 DR |
2439 | /* |
2440 | * Find the true preferred zone if the allocation is unconstrained by | |
2441 | * cpusets. | |
2442 | */ | |
2443 | if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) | |
2444 | first_zones_zonelist(zonelist, high_zoneidx, NULL, | |
2445 | &preferred_zone); | |
2446 | ||
cfa54a0f | 2447 | rebalance: |
341ce06f | 2448 | /* This is the last chance, in general, before the goto nopage. */ |
19770b32 | 2449 | page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist, |
341ce06f PZ |
2450 | high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS, |
2451 | preferred_zone, migratetype); | |
7fb1d9fc RS |
2452 | if (page) |
2453 | goto got_pg; | |
1da177e4 | 2454 | |
11e33f6a | 2455 | /* Allocate without watermarks if the context allows */ |
341ce06f | 2456 | if (alloc_flags & ALLOC_NO_WATERMARKS) { |
183f6371 MG |
2457 | /* |
2458 | * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds | |
2459 | * the allocation is high priority and these type of | |
2460 | * allocations are system rather than user orientated | |
2461 | */ | |
2462 | zonelist = node_zonelist(numa_node_id(), gfp_mask); | |
2463 | ||
341ce06f PZ |
2464 | page = __alloc_pages_high_priority(gfp_mask, order, |
2465 | zonelist, high_zoneidx, nodemask, | |
2466 | preferred_zone, migratetype); | |
cfd19c5a | 2467 | if (page) { |
341ce06f | 2468 | goto got_pg; |
cfd19c5a | 2469 | } |
1da177e4 LT |
2470 | } |
2471 | ||
2472 | /* Atomic allocations - we can't balance anything */ | |
2473 | if (!wait) | |
2474 | goto nopage; | |
2475 | ||
341ce06f | 2476 | /* Avoid recursion of direct reclaim */ |
c06b1fca | 2477 | if (current->flags & PF_MEMALLOC) |
341ce06f PZ |
2478 | goto nopage; |
2479 | ||
6583bb64 DR |
2480 | /* Avoid allocations with no watermarks from looping endlessly */ |
2481 | if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) | |
2482 | goto nopage; | |
2483 | ||
77f1fe6b MG |
2484 | /* |
2485 | * Try direct compaction. The first pass is asynchronous. Subsequent | |
2486 | * attempts after direct reclaim are synchronous | |
2487 | */ | |
56de7263 MG |
2488 | page = __alloc_pages_direct_compact(gfp_mask, order, |
2489 | zonelist, high_zoneidx, | |
2490 | nodemask, | |
2491 | alloc_flags, preferred_zone, | |
66199712 | 2492 | migratetype, sync_migration, |
c67fe375 | 2493 | &contended_compaction, |
66199712 MG |
2494 | &deferred_compaction, |
2495 | &did_some_progress); | |
56de7263 MG |
2496 | if (page) |
2497 | goto got_pg; | |
c6a140bf | 2498 | sync_migration = true; |
56de7263 | 2499 | |
31f8d42d LT |
2500 | /* |
2501 | * If compaction is deferred for high-order allocations, it is because | |
2502 | * sync compaction recently failed. In this is the case and the caller | |
2503 | * requested a movable allocation that does not heavily disrupt the | |
2504 | * system then fail the allocation instead of entering direct reclaim. | |
2505 | */ | |
2506 | if ((deferred_compaction || contended_compaction) && | |
caf49191 | 2507 | (gfp_mask & __GFP_NO_KSWAPD)) |
31f8d42d | 2508 | goto nopage; |
66199712 | 2509 | |
11e33f6a MG |
2510 | /* Try direct reclaim and then allocating */ |
2511 | page = __alloc_pages_direct_reclaim(gfp_mask, order, | |
2512 | zonelist, high_zoneidx, | |
2513 | nodemask, | |
5117f45d | 2514 | alloc_flags, preferred_zone, |
3dd28266 | 2515 | migratetype, &did_some_progress); |
11e33f6a MG |
2516 | if (page) |
2517 | goto got_pg; | |
1da177e4 | 2518 | |
e33c3b5e | 2519 | /* |
11e33f6a MG |
2520 | * If we failed to make any progress reclaiming, then we are |
2521 | * running out of options and have to consider going OOM | |
e33c3b5e | 2522 | */ |
11e33f6a MG |
2523 | if (!did_some_progress) { |
2524 | if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { | |
7f33d49a RW |
2525 | if (oom_killer_disabled) |
2526 | goto nopage; | |
29fd66d2 DR |
2527 | /* Coredumps can quickly deplete all memory reserves */ |
2528 | if ((current->flags & PF_DUMPCORE) && | |
2529 | !(gfp_mask & __GFP_NOFAIL)) | |
2530 | goto nopage; | |
11e33f6a MG |
2531 | page = __alloc_pages_may_oom(gfp_mask, order, |
2532 | zonelist, high_zoneidx, | |
3dd28266 MG |
2533 | nodemask, preferred_zone, |
2534 | migratetype); | |
11e33f6a MG |
2535 | if (page) |
2536 | goto got_pg; | |
1da177e4 | 2537 | |
03668b3c DR |
2538 | if (!(gfp_mask & __GFP_NOFAIL)) { |
2539 | /* | |
2540 | * The oom killer is not called for high-order | |
2541 | * allocations that may fail, so if no progress | |
2542 | * is being made, there are no other options and | |
2543 | * retrying is unlikely to help. | |
2544 | */ | |
2545 | if (order > PAGE_ALLOC_COSTLY_ORDER) | |
2546 | goto nopage; | |
2547 | /* | |
2548 | * The oom killer is not called for lowmem | |
2549 | * allocations to prevent needlessly killing | |
2550 | * innocent tasks. | |
2551 | */ | |
2552 | if (high_zoneidx < ZONE_NORMAL) | |
2553 | goto nopage; | |
2554 | } | |
e2c55dc8 | 2555 | |
ff0ceb9d DR |
2556 | goto restart; |
2557 | } | |
1da177e4 LT |
2558 | } |
2559 | ||
11e33f6a | 2560 | /* Check if we should retry the allocation */ |
a41f24ea | 2561 | pages_reclaimed += did_some_progress; |
f90ac398 MG |
2562 | if (should_alloc_retry(gfp_mask, order, did_some_progress, |
2563 | pages_reclaimed)) { | |
11e33f6a | 2564 | /* Wait for some write requests to complete then retry */ |
0e093d99 | 2565 | wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); |
1da177e4 | 2566 | goto rebalance; |
3e7d3449 MG |
2567 | } else { |
2568 | /* | |
2569 | * High-order allocations do not necessarily loop after | |
2570 | * direct reclaim and reclaim/compaction depends on compaction | |
2571 | * being called after reclaim so call directly if necessary | |
2572 | */ | |
2573 | page = __alloc_pages_direct_compact(gfp_mask, order, | |
2574 | zonelist, high_zoneidx, | |
2575 | nodemask, | |
2576 | alloc_flags, preferred_zone, | |
66199712 | 2577 | migratetype, sync_migration, |
c67fe375 | 2578 | &contended_compaction, |
66199712 MG |
2579 | &deferred_compaction, |
2580 | &did_some_progress); | |
3e7d3449 MG |
2581 | if (page) |
2582 | goto got_pg; | |
1da177e4 LT |
2583 | } |
2584 | ||
2585 | nopage: | |
a238ab5b | 2586 | warn_alloc_failed(gfp_mask, order, NULL); |
b1eeab67 | 2587 | return page; |
1da177e4 | 2588 | got_pg: |
b1eeab67 VN |
2589 | if (kmemcheck_enabled) |
2590 | kmemcheck_pagealloc_alloc(page, order, gfp_mask); | |
11e33f6a | 2591 | |
072bb0aa | 2592 | return page; |
1da177e4 | 2593 | } |
11e33f6a MG |
2594 | |
2595 | /* | |
2596 | * This is the 'heart' of the zoned buddy allocator. | |
2597 | */ | |
2598 | struct page * | |
2599 | __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, | |
2600 | struct zonelist *zonelist, nodemask_t *nodemask) | |
2601 | { | |
2602 | enum zone_type high_zoneidx = gfp_zone(gfp_mask); | |
5117f45d | 2603 | struct zone *preferred_zone; |
cc9a6c87 | 2604 | struct page *page = NULL; |
3dd28266 | 2605 | int migratetype = allocflags_to_migratetype(gfp_mask); |
cc9a6c87 | 2606 | unsigned int cpuset_mems_cookie; |
d95ea5d1 | 2607 | int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET; |
6a1a0d3b | 2608 | struct mem_cgroup *memcg = NULL; |
11e33f6a | 2609 | |
dcce284a BH |
2610 | gfp_mask &= gfp_allowed_mask; |
2611 | ||
11e33f6a MG |
2612 | lockdep_trace_alloc(gfp_mask); |
2613 | ||
2614 | might_sleep_if(gfp_mask & __GFP_WAIT); | |
2615 | ||
2616 | if (should_fail_alloc_page(gfp_mask, order)) | |
2617 | return NULL; | |
2618 | ||
2619 | /* | |
2620 | * Check the zones suitable for the gfp_mask contain at least one | |
2621 | * valid zone. It's possible to have an empty zonelist as a result | |
2622 | * of GFP_THISNODE and a memoryless node | |
2623 | */ | |
2624 | if (unlikely(!zonelist->_zonerefs->zone)) | |
2625 | return NULL; | |
2626 | ||
6a1a0d3b GC |
2627 | /* |
2628 | * Will only have any effect when __GFP_KMEMCG is set. This is | |
2629 | * verified in the (always inline) callee | |
2630 | */ | |
2631 | if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order)) | |
2632 | return NULL; | |
2633 | ||
cc9a6c87 MG |
2634 | retry_cpuset: |
2635 | cpuset_mems_cookie = get_mems_allowed(); | |
2636 | ||
5117f45d | 2637 | /* The preferred zone is used for statistics later */ |
f33261d7 DR |
2638 | first_zones_zonelist(zonelist, high_zoneidx, |
2639 | nodemask ? : &cpuset_current_mems_allowed, | |
2640 | &preferred_zone); | |
cc9a6c87 MG |
2641 | if (!preferred_zone) |
2642 | goto out; | |
5117f45d | 2643 | |
d95ea5d1 BZ |
2644 | #ifdef CONFIG_CMA |
2645 | if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) | |
2646 | alloc_flags |= ALLOC_CMA; | |
2647 | #endif | |
5117f45d | 2648 | /* First allocation attempt */ |
11e33f6a | 2649 | page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order, |
d95ea5d1 | 2650 | zonelist, high_zoneidx, alloc_flags, |
3dd28266 | 2651 | preferred_zone, migratetype); |
21caf2fc ML |
2652 | if (unlikely(!page)) { |
2653 | /* | |
2654 | * Runtime PM, block IO and its error handling path | |
2655 | * can deadlock because I/O on the device might not | |
2656 | * complete. | |
2657 | */ | |
2658 | gfp_mask = memalloc_noio_flags(gfp_mask); | |
11e33f6a | 2659 | page = __alloc_pages_slowpath(gfp_mask, order, |
5117f45d | 2660 | zonelist, high_zoneidx, nodemask, |
3dd28266 | 2661 | preferred_zone, migratetype); |
21caf2fc | 2662 | } |
11e33f6a | 2663 | |
4b4f278c | 2664 | trace_mm_page_alloc(page, order, gfp_mask, migratetype); |
cc9a6c87 MG |
2665 | |
2666 | out: | |
2667 | /* | |
2668 | * When updating a task's mems_allowed, it is possible to race with | |
2669 | * parallel threads in such a way that an allocation can fail while | |
2670 | * the mask is being updated. If a page allocation is about to fail, | |
2671 | * check if the cpuset changed during allocation and if so, retry. | |
2672 | */ | |
2673 | if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page)) | |
2674 | goto retry_cpuset; | |
2675 | ||
6a1a0d3b GC |
2676 | memcg_kmem_commit_charge(page, memcg, order); |
2677 | ||
11e33f6a | 2678 | return page; |
1da177e4 | 2679 | } |
d239171e | 2680 | EXPORT_SYMBOL(__alloc_pages_nodemask); |
1da177e4 LT |
2681 | |
2682 | /* | |
2683 | * Common helper functions. | |
2684 | */ | |
920c7a5d | 2685 | unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) |
1da177e4 | 2686 | { |
945a1113 AM |
2687 | struct page *page; |
2688 | ||
2689 | /* | |
2690 | * __get_free_pages() returns a 32-bit address, which cannot represent | |
2691 | * a highmem page | |
2692 | */ | |
2693 | VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); | |
2694 | ||
1da177e4 LT |
2695 | page = alloc_pages(gfp_mask, order); |
2696 | if (!page) | |
2697 | return 0; | |
2698 | return (unsigned long) page_address(page); | |
2699 | } | |
1da177e4 LT |
2700 | EXPORT_SYMBOL(__get_free_pages); |
2701 | ||
920c7a5d | 2702 | unsigned long get_zeroed_page(gfp_t gfp_mask) |
1da177e4 | 2703 | { |
945a1113 | 2704 | return __get_free_pages(gfp_mask | __GFP_ZERO, 0); |
1da177e4 | 2705 | } |
1da177e4 LT |
2706 | EXPORT_SYMBOL(get_zeroed_page); |
2707 | ||
920c7a5d | 2708 | void __free_pages(struct page *page, unsigned int order) |
1da177e4 | 2709 | { |
b5810039 | 2710 | if (put_page_testzero(page)) { |
1da177e4 | 2711 | if (order == 0) |
fc91668e | 2712 | free_hot_cold_page(page, 0); |
1da177e4 LT |
2713 | else |
2714 | __free_pages_ok(page, order); | |
2715 | } | |
2716 | } | |
2717 | ||
2718 | EXPORT_SYMBOL(__free_pages); | |
2719 | ||
920c7a5d | 2720 | void free_pages(unsigned long addr, unsigned int order) |
1da177e4 LT |
2721 | { |
2722 | if (addr != 0) { | |
725d704e | 2723 | VM_BUG_ON(!virt_addr_valid((void *)addr)); |
1da177e4 LT |
2724 | __free_pages(virt_to_page((void *)addr), order); |
2725 | } | |
2726 | } | |
2727 | ||
2728 | EXPORT_SYMBOL(free_pages); | |
2729 | ||
6a1a0d3b GC |
2730 | /* |
2731 | * __free_memcg_kmem_pages and free_memcg_kmem_pages will free | |
2732 | * pages allocated with __GFP_KMEMCG. | |
2733 | * | |
2734 | * Those pages are accounted to a particular memcg, embedded in the | |
2735 | * corresponding page_cgroup. To avoid adding a hit in the allocator to search | |
2736 | * for that information only to find out that it is NULL for users who have no | |
2737 | * interest in that whatsoever, we provide these functions. | |
2738 | * | |
2739 | * The caller knows better which flags it relies on. | |
2740 | */ | |
2741 | void __free_memcg_kmem_pages(struct page *page, unsigned int order) | |
2742 | { | |
2743 | memcg_kmem_uncharge_pages(page, order); | |
2744 | __free_pages(page, order); | |
2745 | } | |
2746 | ||
2747 | void free_memcg_kmem_pages(unsigned long addr, unsigned int order) | |
2748 | { | |
2749 | if (addr != 0) { | |
2750 | VM_BUG_ON(!virt_addr_valid((void *)addr)); | |
2751 | __free_memcg_kmem_pages(virt_to_page((void *)addr), order); | |
2752 | } | |
2753 | } | |
2754 | ||
ee85c2e1 AK |
2755 | static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size) |
2756 | { | |
2757 | if (addr) { | |
2758 | unsigned long alloc_end = addr + (PAGE_SIZE << order); | |
2759 | unsigned long used = addr + PAGE_ALIGN(size); | |
2760 | ||
2761 | split_page(virt_to_page((void *)addr), order); | |
2762 | while (used < alloc_end) { | |
2763 | free_page(used); | |
2764 | used += PAGE_SIZE; | |
2765 | } | |
2766 | } | |
2767 | return (void *)addr; | |
2768 | } | |
2769 | ||
2be0ffe2 TT |
2770 | /** |
2771 | * alloc_pages_exact - allocate an exact number physically-contiguous pages. | |
2772 | * @size: the number of bytes to allocate | |
2773 | * @gfp_mask: GFP flags for the allocation | |
2774 | * | |
2775 | * This function is similar to alloc_pages(), except that it allocates the | |
2776 | * minimum number of pages to satisfy the request. alloc_pages() can only | |
2777 | * allocate memory in power-of-two pages. | |
2778 | * | |
2779 | * This function is also limited by MAX_ORDER. | |
2780 | * | |
2781 | * Memory allocated by this function must be released by free_pages_exact(). | |
2782 | */ | |
2783 | void *alloc_pages_exact(size_t size, gfp_t gfp_mask) | |
2784 | { | |
2785 | unsigned int order = get_order(size); | |
2786 | unsigned long addr; | |
2787 | ||
2788 | addr = __get_free_pages(gfp_mask, order); | |
ee85c2e1 | 2789 | return make_alloc_exact(addr, order, size); |
2be0ffe2 TT |
2790 | } |
2791 | EXPORT_SYMBOL(alloc_pages_exact); | |
2792 | ||
ee85c2e1 AK |
2793 | /** |
2794 | * alloc_pages_exact_nid - allocate an exact number of physically-contiguous | |
2795 | * pages on a node. | |
b5e6ab58 | 2796 | * @nid: the preferred node ID where memory should be allocated |
ee85c2e1 AK |
2797 | * @size: the number of bytes to allocate |
2798 | * @gfp_mask: GFP flags for the allocation | |
2799 | * | |
2800 | * Like alloc_pages_exact(), but try to allocate on node nid first before falling | |
2801 | * back. | |
2802 | * Note this is not alloc_pages_exact_node() which allocates on a specific node, | |
2803 | * but is not exact. | |
2804 | */ | |
2805 | void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) | |
2806 | { | |
2807 | unsigned order = get_order(size); | |
2808 | struct page *p = alloc_pages_node(nid, gfp_mask, order); | |
2809 | if (!p) | |
2810 | return NULL; | |
2811 | return make_alloc_exact((unsigned long)page_address(p), order, size); | |
2812 | } | |
2813 | EXPORT_SYMBOL(alloc_pages_exact_nid); | |
2814 | ||
2be0ffe2 TT |
2815 | /** |
2816 | * free_pages_exact - release memory allocated via alloc_pages_exact() | |
2817 | * @virt: the value returned by alloc_pages_exact. | |
2818 | * @size: size of allocation, same value as passed to alloc_pages_exact(). | |
2819 | * | |
2820 | * Release the memory allocated by a previous call to alloc_pages_exact. | |
2821 | */ | |
2822 | void free_pages_exact(void *virt, size_t size) | |
2823 | { | |
2824 | unsigned long addr = (unsigned long)virt; | |
2825 | unsigned long end = addr + PAGE_ALIGN(size); | |
2826 | ||
2827 | while (addr < end) { | |
2828 | free_page(addr); | |
2829 | addr += PAGE_SIZE; | |
2830 | } | |
2831 | } | |
2832 | EXPORT_SYMBOL(free_pages_exact); | |
2833 | ||
e0fb5815 ZY |
2834 | /** |
2835 | * nr_free_zone_pages - count number of pages beyond high watermark | |
2836 | * @offset: The zone index of the highest zone | |
2837 | * | |
2838 | * nr_free_zone_pages() counts the number of counts pages which are beyond the | |
2839 | * high watermark within all zones at or below a given zone index. For each | |
2840 | * zone, the number of pages is calculated as: | |
834405c3 | 2841 | * managed_pages - high_pages |
e0fb5815 | 2842 | */ |
ebec3862 | 2843 | static unsigned long nr_free_zone_pages(int offset) |
1da177e4 | 2844 | { |
dd1a239f | 2845 | struct zoneref *z; |
54a6eb5c MG |
2846 | struct zone *zone; |
2847 | ||
e310fd43 | 2848 | /* Just pick one node, since fallback list is circular */ |
ebec3862 | 2849 | unsigned long sum = 0; |
1da177e4 | 2850 | |
0e88460d | 2851 | struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); |
1da177e4 | 2852 | |
54a6eb5c | 2853 | for_each_zone_zonelist(zone, z, zonelist, offset) { |
b40da049 | 2854 | unsigned long size = zone->managed_pages; |
41858966 | 2855 | unsigned long high = high_wmark_pages(zone); |
e310fd43 MB |
2856 | if (size > high) |
2857 | sum += size - high; | |
1da177e4 LT |
2858 | } |
2859 | ||
2860 | return sum; | |
2861 | } | |
2862 | ||
e0fb5815 ZY |
2863 | /** |
2864 | * nr_free_buffer_pages - count number of pages beyond high watermark | |
2865 | * | |
2866 | * nr_free_buffer_pages() counts the number of pages which are beyond the high | |
2867 | * watermark within ZONE_DMA and ZONE_NORMAL. | |
1da177e4 | 2868 | */ |
ebec3862 | 2869 | unsigned long nr_free_buffer_pages(void) |
1da177e4 | 2870 | { |
af4ca457 | 2871 | return nr_free_zone_pages(gfp_zone(GFP_USER)); |
1da177e4 | 2872 | } |
c2f1a551 | 2873 | EXPORT_SYMBOL_GPL(nr_free_buffer_pages); |
1da177e4 | 2874 | |
e0fb5815 ZY |
2875 | /** |
2876 | * nr_free_pagecache_pages - count number of pages beyond high watermark | |
2877 | * | |
2878 | * nr_free_pagecache_pages() counts the number of pages which are beyond the | |
2879 | * high watermark within all zones. | |
1da177e4 | 2880 | */ |
ebec3862 | 2881 | unsigned long nr_free_pagecache_pages(void) |
1da177e4 | 2882 | { |
2a1e274a | 2883 | return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); |
1da177e4 | 2884 | } |
08e0f6a9 CL |
2885 | |
2886 | static inline void show_node(struct zone *zone) | |
1da177e4 | 2887 | { |
e5adfffc | 2888 | if (IS_ENABLED(CONFIG_NUMA)) |
25ba77c1 | 2889 | printk("Node %d ", zone_to_nid(zone)); |
1da177e4 | 2890 | } |
1da177e4 | 2891 | |
1da177e4 LT |
2892 | void si_meminfo(struct sysinfo *val) |
2893 | { | |
2894 | val->totalram = totalram_pages; | |
2895 | val->sharedram = 0; | |
d23ad423 | 2896 | val->freeram = global_page_state(NR_FREE_PAGES); |
1da177e4 | 2897 | val->bufferram = nr_blockdev_pages(); |
1da177e4 LT |
2898 | val->totalhigh = totalhigh_pages; |
2899 | val->freehigh = nr_free_highpages(); | |
1da177e4 LT |
2900 | val->mem_unit = PAGE_SIZE; |
2901 | } | |
2902 | ||
2903 | EXPORT_SYMBOL(si_meminfo); | |
2904 | ||
2905 | #ifdef CONFIG_NUMA | |
2906 | void si_meminfo_node(struct sysinfo *val, int nid) | |
2907 | { | |
cdd91a77 JL |
2908 | int zone_type; /* needs to be signed */ |
2909 | unsigned long managed_pages = 0; | |
1da177e4 LT |
2910 | pg_data_t *pgdat = NODE_DATA(nid); |
2911 | ||
cdd91a77 JL |
2912 | for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) |
2913 | managed_pages += pgdat->node_zones[zone_type].managed_pages; | |
2914 | val->totalram = managed_pages; | |
d23ad423 | 2915 | val->freeram = node_page_state(nid, NR_FREE_PAGES); |
98d2b0eb | 2916 | #ifdef CONFIG_HIGHMEM |
b40da049 | 2917 | val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages; |
d23ad423 CL |
2918 | val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], |
2919 | NR_FREE_PAGES); | |
98d2b0eb CL |
2920 | #else |
2921 | val->totalhigh = 0; | |
2922 | val->freehigh = 0; | |
2923 | #endif | |
1da177e4 LT |
2924 | val->mem_unit = PAGE_SIZE; |
2925 | } | |
2926 | #endif | |
2927 | ||
ddd588b5 | 2928 | /* |
7bf02ea2 DR |
2929 | * Determine whether the node should be displayed or not, depending on whether |
2930 | * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). | |
ddd588b5 | 2931 | */ |
7bf02ea2 | 2932 | bool skip_free_areas_node(unsigned int flags, int nid) |
ddd588b5 DR |
2933 | { |
2934 | bool ret = false; | |
cc9a6c87 | 2935 | unsigned int cpuset_mems_cookie; |
ddd588b5 DR |
2936 | |
2937 | if (!(flags & SHOW_MEM_FILTER_NODES)) | |
2938 | goto out; | |
2939 | ||
cc9a6c87 MG |
2940 | do { |
2941 | cpuset_mems_cookie = get_mems_allowed(); | |
2942 | ret = !node_isset(nid, cpuset_current_mems_allowed); | |
2943 | } while (!put_mems_allowed(cpuset_mems_cookie)); | |
ddd588b5 DR |
2944 | out: |
2945 | return ret; | |
2946 | } | |
2947 | ||
1da177e4 LT |
2948 | #define K(x) ((x) << (PAGE_SHIFT-10)) |
2949 | ||
377e4f16 RV |
2950 | static void show_migration_types(unsigned char type) |
2951 | { | |
2952 | static const char types[MIGRATE_TYPES] = { | |
2953 | [MIGRATE_UNMOVABLE] = 'U', | |
2954 | [MIGRATE_RECLAIMABLE] = 'E', | |
2955 | [MIGRATE_MOVABLE] = 'M', | |
2956 | [MIGRATE_RESERVE] = 'R', | |
2957 | #ifdef CONFIG_CMA | |
2958 | [MIGRATE_CMA] = 'C', | |
2959 | #endif | |
194159fb | 2960 | #ifdef CONFIG_MEMORY_ISOLATION |
377e4f16 | 2961 | [MIGRATE_ISOLATE] = 'I', |
194159fb | 2962 | #endif |
377e4f16 RV |
2963 | }; |
2964 | char tmp[MIGRATE_TYPES + 1]; | |
2965 | char *p = tmp; | |
2966 | int i; | |
2967 | ||
2968 | for (i = 0; i < MIGRATE_TYPES; i++) { | |
2969 | if (type & (1 << i)) | |
2970 | *p++ = types[i]; | |
2971 | } | |
2972 | ||
2973 | *p = '\0'; | |
2974 | printk("(%s) ", tmp); | |
2975 | } | |
2976 | ||
1da177e4 LT |
2977 | /* |
2978 | * Show free area list (used inside shift_scroll-lock stuff) | |
2979 | * We also calculate the percentage fragmentation. We do this by counting the | |
2980 | * memory on each free list with the exception of the first item on the list. | |
ddd588b5 DR |
2981 | * Suppresses nodes that are not allowed by current's cpuset if |
2982 | * SHOW_MEM_FILTER_NODES is passed. | |
1da177e4 | 2983 | */ |
7bf02ea2 | 2984 | void show_free_areas(unsigned int filter) |
1da177e4 | 2985 | { |
c7241913 | 2986 | int cpu; |
1da177e4 LT |
2987 | struct zone *zone; |
2988 | ||
ee99c71c | 2989 | for_each_populated_zone(zone) { |
7bf02ea2 | 2990 | if (skip_free_areas_node(filter, zone_to_nid(zone))) |
ddd588b5 | 2991 | continue; |
c7241913 JS |
2992 | show_node(zone); |
2993 | printk("%s per-cpu:\n", zone->name); | |
1da177e4 | 2994 | |
6b482c67 | 2995 | for_each_online_cpu(cpu) { |
1da177e4 LT |
2996 | struct per_cpu_pageset *pageset; |
2997 | ||
99dcc3e5 | 2998 | pageset = per_cpu_ptr(zone->pageset, cpu); |
1da177e4 | 2999 | |
3dfa5721 CL |
3000 | printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n", |
3001 | cpu, pageset->pcp.high, | |
3002 | pageset->pcp.batch, pageset->pcp.count); | |
1da177e4 LT |
3003 | } |
3004 | } | |
3005 | ||
a731286d KM |
3006 | printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" |
3007 | " active_file:%lu inactive_file:%lu isolated_file:%lu\n" | |
7b854121 | 3008 | " unevictable:%lu" |
b76146ed | 3009 | " dirty:%lu writeback:%lu unstable:%lu\n" |
3701b033 | 3010 | " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n" |
d1ce749a BZ |
3011 | " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" |
3012 | " free_cma:%lu\n", | |
4f98a2fe | 3013 | global_page_state(NR_ACTIVE_ANON), |
4f98a2fe | 3014 | global_page_state(NR_INACTIVE_ANON), |
a731286d KM |
3015 | global_page_state(NR_ISOLATED_ANON), |
3016 | global_page_state(NR_ACTIVE_FILE), | |
4f98a2fe | 3017 | global_page_state(NR_INACTIVE_FILE), |
a731286d | 3018 | global_page_state(NR_ISOLATED_FILE), |
7b854121 | 3019 | global_page_state(NR_UNEVICTABLE), |
b1e7a8fd | 3020 | global_page_state(NR_FILE_DIRTY), |
ce866b34 | 3021 | global_page_state(NR_WRITEBACK), |
fd39fc85 | 3022 | global_page_state(NR_UNSTABLE_NFS), |
d23ad423 | 3023 | global_page_state(NR_FREE_PAGES), |
3701b033 KM |
3024 | global_page_state(NR_SLAB_RECLAIMABLE), |
3025 | global_page_state(NR_SLAB_UNRECLAIMABLE), | |
65ba55f5 | 3026 | global_page_state(NR_FILE_MAPPED), |
4b02108a | 3027 | global_page_state(NR_SHMEM), |
a25700a5 | 3028 | global_page_state(NR_PAGETABLE), |
d1ce749a BZ |
3029 | global_page_state(NR_BOUNCE), |
3030 | global_page_state(NR_FREE_CMA_PAGES)); | |
1da177e4 | 3031 | |
ee99c71c | 3032 | for_each_populated_zone(zone) { |
1da177e4 LT |
3033 | int i; |
3034 | ||
7bf02ea2 | 3035 | if (skip_free_areas_node(filter, zone_to_nid(zone))) |
ddd588b5 | 3036 | continue; |
1da177e4 LT |
3037 | show_node(zone); |
3038 | printk("%s" | |
3039 | " free:%lukB" | |
3040 | " min:%lukB" | |
3041 | " low:%lukB" | |
3042 | " high:%lukB" | |
4f98a2fe RR |
3043 | " active_anon:%lukB" |
3044 | " inactive_anon:%lukB" | |
3045 | " active_file:%lukB" | |
3046 | " inactive_file:%lukB" | |
7b854121 | 3047 | " unevictable:%lukB" |
a731286d KM |
3048 | " isolated(anon):%lukB" |
3049 | " isolated(file):%lukB" | |
1da177e4 | 3050 | " present:%lukB" |
9feedc9d | 3051 | " managed:%lukB" |
4a0aa73f KM |
3052 | " mlocked:%lukB" |
3053 | " dirty:%lukB" | |
3054 | " writeback:%lukB" | |
3055 | " mapped:%lukB" | |
4b02108a | 3056 | " shmem:%lukB" |
4a0aa73f KM |
3057 | " slab_reclaimable:%lukB" |
3058 | " slab_unreclaimable:%lukB" | |
c6a7f572 | 3059 | " kernel_stack:%lukB" |
4a0aa73f KM |
3060 | " pagetables:%lukB" |
3061 | " unstable:%lukB" | |
3062 | " bounce:%lukB" | |
d1ce749a | 3063 | " free_cma:%lukB" |
4a0aa73f | 3064 | " writeback_tmp:%lukB" |
1da177e4 LT |
3065 | " pages_scanned:%lu" |
3066 | " all_unreclaimable? %s" | |
3067 | "\n", | |
3068 | zone->name, | |
88f5acf8 | 3069 | K(zone_page_state(zone, NR_FREE_PAGES)), |
41858966 MG |
3070 | K(min_wmark_pages(zone)), |
3071 | K(low_wmark_pages(zone)), | |
3072 | K(high_wmark_pages(zone)), | |
4f98a2fe RR |
3073 | K(zone_page_state(zone, NR_ACTIVE_ANON)), |
3074 | K(zone_page_state(zone, NR_INACTIVE_ANON)), | |
3075 | K(zone_page_state(zone, NR_ACTIVE_FILE)), | |
3076 | K(zone_page_state(zone, NR_INACTIVE_FILE)), | |
7b854121 | 3077 | K(zone_page_state(zone, NR_UNEVICTABLE)), |
a731286d KM |
3078 | K(zone_page_state(zone, NR_ISOLATED_ANON)), |
3079 | K(zone_page_state(zone, NR_ISOLATED_FILE)), | |
1da177e4 | 3080 | K(zone->present_pages), |
9feedc9d | 3081 | K(zone->managed_pages), |
4a0aa73f KM |
3082 | K(zone_page_state(zone, NR_MLOCK)), |
3083 | K(zone_page_state(zone, NR_FILE_DIRTY)), | |
3084 | K(zone_page_state(zone, NR_WRITEBACK)), | |
3085 | K(zone_page_state(zone, NR_FILE_MAPPED)), | |
4b02108a | 3086 | K(zone_page_state(zone, NR_SHMEM)), |
4a0aa73f KM |
3087 | K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), |
3088 | K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), | |
c6a7f572 KM |
3089 | zone_page_state(zone, NR_KERNEL_STACK) * |
3090 | THREAD_SIZE / 1024, | |
4a0aa73f KM |
3091 | K(zone_page_state(zone, NR_PAGETABLE)), |
3092 | K(zone_page_state(zone, NR_UNSTABLE_NFS)), | |
3093 | K(zone_page_state(zone, NR_BOUNCE)), | |
d1ce749a | 3094 | K(zone_page_state(zone, NR_FREE_CMA_PAGES)), |
4a0aa73f | 3095 | K(zone_page_state(zone, NR_WRITEBACK_TEMP)), |
1da177e4 | 3096 | zone->pages_scanned, |
93e4a89a | 3097 | (zone->all_unreclaimable ? "yes" : "no") |
1da177e4 LT |
3098 | ); |
3099 | printk("lowmem_reserve[]:"); | |
3100 | for (i = 0; i < MAX_NR_ZONES; i++) | |
3101 | printk(" %lu", zone->lowmem_reserve[i]); | |
3102 | printk("\n"); | |
3103 | } | |
3104 | ||
ee99c71c | 3105 | for_each_populated_zone(zone) { |
8f9de51a | 3106 | unsigned long nr[MAX_ORDER], flags, order, total = 0; |
377e4f16 | 3107 | unsigned char types[MAX_ORDER]; |
1da177e4 | 3108 | |
7bf02ea2 | 3109 | if (skip_free_areas_node(filter, zone_to_nid(zone))) |
ddd588b5 | 3110 | continue; |
1da177e4 LT |
3111 | show_node(zone); |
3112 | printk("%s: ", zone->name); | |
1da177e4 LT |
3113 | |
3114 | spin_lock_irqsave(&zone->lock, flags); | |
3115 | for (order = 0; order < MAX_ORDER; order++) { | |
377e4f16 RV |
3116 | struct free_area *area = &zone->free_area[order]; |
3117 | int type; | |
3118 | ||
3119 | nr[order] = area->nr_free; | |
8f9de51a | 3120 | total += nr[order] << order; |
377e4f16 RV |
3121 | |
3122 | types[order] = 0; | |
3123 | for (type = 0; type < MIGRATE_TYPES; type++) { | |
3124 | if (!list_empty(&area->free_list[type])) | |
3125 | types[order] |= 1 << type; | |
3126 | } | |
1da177e4 LT |
3127 | } |
3128 | spin_unlock_irqrestore(&zone->lock, flags); | |
377e4f16 | 3129 | for (order = 0; order < MAX_ORDER; order++) { |
8f9de51a | 3130 | printk("%lu*%lukB ", nr[order], K(1UL) << order); |
377e4f16 RV |
3131 | if (nr[order]) |
3132 | show_migration_types(types[order]); | |
3133 | } | |
1da177e4 LT |
3134 | printk("= %lukB\n", K(total)); |
3135 | } | |
3136 | ||
949f7ec5 DR |
3137 | hugetlb_show_meminfo(); |
3138 | ||
e6f3602d LW |
3139 | printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); |
3140 | ||
1da177e4 LT |
3141 | show_swap_cache_info(); |
3142 | } | |
3143 | ||
19770b32 MG |
3144 | static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) |
3145 | { | |
3146 | zoneref->zone = zone; | |
3147 | zoneref->zone_idx = zone_idx(zone); | |
3148 | } | |
3149 | ||
1da177e4 LT |
3150 | /* |
3151 | * Builds allocation fallback zone lists. | |
1a93205b CL |
3152 | * |
3153 | * Add all populated zones of a node to the zonelist. | |
1da177e4 | 3154 | */ |
f0c0b2b8 KH |
3155 | static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, |
3156 | int nr_zones, enum zone_type zone_type) | |
1da177e4 | 3157 | { |
1a93205b CL |
3158 | struct zone *zone; |
3159 | ||
98d2b0eb | 3160 | BUG_ON(zone_type >= MAX_NR_ZONES); |
2f6726e5 | 3161 | zone_type++; |
02a68a5e CL |
3162 | |
3163 | do { | |
2f6726e5 | 3164 | zone_type--; |
070f8032 | 3165 | zone = pgdat->node_zones + zone_type; |
1a93205b | 3166 | if (populated_zone(zone)) { |
dd1a239f MG |
3167 | zoneref_set_zone(zone, |
3168 | &zonelist->_zonerefs[nr_zones++]); | |
070f8032 | 3169 | check_highest_zone(zone_type); |
1da177e4 | 3170 | } |
02a68a5e | 3171 | |
2f6726e5 | 3172 | } while (zone_type); |
070f8032 | 3173 | return nr_zones; |
1da177e4 LT |
3174 | } |
3175 | ||
f0c0b2b8 KH |
3176 | |
3177 | /* | |
3178 | * zonelist_order: | |
3179 | * 0 = automatic detection of better ordering. | |
3180 | * 1 = order by ([node] distance, -zonetype) | |
3181 | * 2 = order by (-zonetype, [node] distance) | |
3182 | * | |
3183 | * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create | |
3184 | * the same zonelist. So only NUMA can configure this param. | |
3185 | */ | |
3186 | #define ZONELIST_ORDER_DEFAULT 0 | |
3187 | #define ZONELIST_ORDER_NODE 1 | |
3188 | #define ZONELIST_ORDER_ZONE 2 | |
3189 | ||
3190 | /* zonelist order in the kernel. | |
3191 | * set_zonelist_order() will set this to NODE or ZONE. | |
3192 | */ | |
3193 | static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; | |
3194 | static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; | |
3195 | ||
3196 | ||
1da177e4 | 3197 | #ifdef CONFIG_NUMA |
f0c0b2b8 KH |
3198 | /* The value user specified ....changed by config */ |
3199 | static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; | |
3200 | /* string for sysctl */ | |
3201 | #define NUMA_ZONELIST_ORDER_LEN 16 | |
3202 | char numa_zonelist_order[16] = "default"; | |
3203 | ||
3204 | /* | |
3205 | * interface for configure zonelist ordering. | |
3206 | * command line option "numa_zonelist_order" | |
3207 | * = "[dD]efault - default, automatic configuration. | |
3208 | * = "[nN]ode - order by node locality, then by zone within node | |
3209 | * = "[zZ]one - order by zone, then by locality within zone | |
3210 | */ | |
3211 | ||
3212 | static int __parse_numa_zonelist_order(char *s) | |
3213 | { | |
3214 | if (*s == 'd' || *s == 'D') { | |
3215 | user_zonelist_order = ZONELIST_ORDER_DEFAULT; | |
3216 | } else if (*s == 'n' || *s == 'N') { | |
3217 | user_zonelist_order = ZONELIST_ORDER_NODE; | |
3218 | } else if (*s == 'z' || *s == 'Z') { | |
3219 | user_zonelist_order = ZONELIST_ORDER_ZONE; | |
3220 | } else { | |
3221 | printk(KERN_WARNING | |
3222 | "Ignoring invalid numa_zonelist_order value: " | |
3223 | "%s\n", s); | |
3224 | return -EINVAL; | |
3225 | } | |
3226 | return 0; | |
3227 | } | |
3228 | ||
3229 | static __init int setup_numa_zonelist_order(char *s) | |
3230 | { | |
ecb256f8 VL |
3231 | int ret; |
3232 | ||
3233 | if (!s) | |
3234 | return 0; | |
3235 | ||
3236 | ret = __parse_numa_zonelist_order(s); | |
3237 | if (ret == 0) | |
3238 | strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN); | |
3239 | ||
3240 | return ret; | |
f0c0b2b8 KH |
3241 | } |
3242 | early_param("numa_zonelist_order", setup_numa_zonelist_order); | |
3243 | ||
3244 | /* | |
3245 | * sysctl handler for numa_zonelist_order | |
3246 | */ | |
3247 | int numa_zonelist_order_handler(ctl_table *table, int write, | |
8d65af78 | 3248 | void __user *buffer, size_t *length, |
f0c0b2b8 KH |
3249 | loff_t *ppos) |
3250 | { | |
3251 | char saved_string[NUMA_ZONELIST_ORDER_LEN]; | |
3252 | int ret; | |
443c6f14 | 3253 | static DEFINE_MUTEX(zl_order_mutex); |
f0c0b2b8 | 3254 | |
443c6f14 | 3255 | mutex_lock(&zl_order_mutex); |
dacbde09 CG |
3256 | if (write) { |
3257 | if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) { | |
3258 | ret = -EINVAL; | |
3259 | goto out; | |
3260 | } | |
3261 | strcpy(saved_string, (char *)table->data); | |
3262 | } | |
8d65af78 | 3263 | ret = proc_dostring(table, write, buffer, length, ppos); |
f0c0b2b8 | 3264 | if (ret) |
443c6f14 | 3265 | goto out; |
f0c0b2b8 KH |
3266 | if (write) { |
3267 | int oldval = user_zonelist_order; | |
dacbde09 CG |
3268 | |
3269 | ret = __parse_numa_zonelist_order((char *)table->data); | |
3270 | if (ret) { | |
f0c0b2b8 KH |
3271 | /* |
3272 | * bogus value. restore saved string | |
3273 | */ | |
dacbde09 | 3274 | strncpy((char *)table->data, saved_string, |
f0c0b2b8 KH |
3275 | NUMA_ZONELIST_ORDER_LEN); |
3276 | user_zonelist_order = oldval; | |
4eaf3f64 HL |
3277 | } else if (oldval != user_zonelist_order) { |
3278 | mutex_lock(&zonelists_mutex); | |
9adb62a5 | 3279 | build_all_zonelists(NULL, NULL); |
4eaf3f64 HL |
3280 | mutex_unlock(&zonelists_mutex); |
3281 | } | |
f0c0b2b8 | 3282 | } |
443c6f14 AK |
3283 | out: |
3284 | mutex_unlock(&zl_order_mutex); | |
3285 | return ret; | |
f0c0b2b8 KH |
3286 | } |
3287 | ||
3288 | ||
62bc62a8 | 3289 | #define MAX_NODE_LOAD (nr_online_nodes) |
f0c0b2b8 KH |
3290 | static int node_load[MAX_NUMNODES]; |
3291 | ||
1da177e4 | 3292 | /** |
4dc3b16b | 3293 | * find_next_best_node - find the next node that should appear in a given node's fallback list |
1da177e4 LT |
3294 | * @node: node whose fallback list we're appending |
3295 | * @used_node_mask: nodemask_t of already used nodes | |
3296 | * | |
3297 | * We use a number of factors to determine which is the next node that should | |
3298 | * appear on a given node's fallback list. The node should not have appeared | |
3299 | * already in @node's fallback list, and it should be the next closest node | |
3300 | * according to the distance array (which contains arbitrary distance values | |
3301 | * from each node to each node in the system), and should also prefer nodes | |
3302 | * with no CPUs, since presumably they'll have very little allocation pressure | |
3303 | * on them otherwise. | |
3304 | * It returns -1 if no node is found. | |
3305 | */ | |
f0c0b2b8 | 3306 | static int find_next_best_node(int node, nodemask_t *used_node_mask) |
1da177e4 | 3307 | { |
4cf808eb | 3308 | int n, val; |
1da177e4 | 3309 | int min_val = INT_MAX; |
00ef2d2f | 3310 | int best_node = NUMA_NO_NODE; |
a70f7302 | 3311 | const struct cpumask *tmp = cpumask_of_node(0); |
1da177e4 | 3312 | |
4cf808eb LT |
3313 | /* Use the local node if we haven't already */ |
3314 | if (!node_isset(node, *used_node_mask)) { | |
3315 | node_set(node, *used_node_mask); | |
3316 | return node; | |
3317 | } | |
1da177e4 | 3318 | |
4b0ef1fe | 3319 | for_each_node_state(n, N_MEMORY) { |
1da177e4 LT |
3320 | |
3321 | /* Don't want a node to appear more than once */ | |
3322 | if (node_isset(n, *used_node_mask)) | |
3323 | continue; | |
3324 | ||
1da177e4 LT |
3325 | /* Use the distance array to find the distance */ |
3326 | val = node_distance(node, n); | |
3327 | ||
4cf808eb LT |
3328 | /* Penalize nodes under us ("prefer the next node") */ |
3329 | val += (n < node); | |
3330 | ||
1da177e4 | 3331 | /* Give preference to headless and unused nodes */ |
a70f7302 RR |
3332 | tmp = cpumask_of_node(n); |
3333 | if (!cpumask_empty(tmp)) | |
1da177e4 LT |
3334 | val += PENALTY_FOR_NODE_WITH_CPUS; |
3335 | ||
3336 | /* Slight preference for less loaded node */ | |
3337 | val *= (MAX_NODE_LOAD*MAX_NUMNODES); | |
3338 | val += node_load[n]; | |
3339 | ||
3340 | if (val < min_val) { | |
3341 | min_val = val; | |
3342 | best_node = n; | |
3343 | } | |
3344 | } | |
3345 | ||
3346 | if (best_node >= 0) | |
3347 | node_set(best_node, *used_node_mask); | |
3348 | ||
3349 | return best_node; | |
3350 | } | |
3351 | ||
f0c0b2b8 KH |
3352 | |
3353 | /* | |
3354 | * Build zonelists ordered by node and zones within node. | |
3355 | * This results in maximum locality--normal zone overflows into local | |
3356 | * DMA zone, if any--but risks exhausting DMA zone. | |
3357 | */ | |
3358 | static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) | |
1da177e4 | 3359 | { |
f0c0b2b8 | 3360 | int j; |
1da177e4 | 3361 | struct zonelist *zonelist; |
f0c0b2b8 | 3362 | |
54a6eb5c | 3363 | zonelist = &pgdat->node_zonelists[0]; |
dd1a239f | 3364 | for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) |
54a6eb5c MG |
3365 | ; |
3366 | j = build_zonelists_node(NODE_DATA(node), zonelist, j, | |
3367 | MAX_NR_ZONES - 1); | |
dd1a239f MG |
3368 | zonelist->_zonerefs[j].zone = NULL; |
3369 | zonelist->_zonerefs[j].zone_idx = 0; | |
f0c0b2b8 KH |
3370 | } |
3371 | ||
523b9458 CL |
3372 | /* |
3373 | * Build gfp_thisnode zonelists | |
3374 | */ | |
3375 | static void build_thisnode_zonelists(pg_data_t *pgdat) | |
3376 | { | |
523b9458 CL |
3377 | int j; |
3378 | struct zonelist *zonelist; | |
3379 | ||
54a6eb5c MG |
3380 | zonelist = &pgdat->node_zonelists[1]; |
3381 | j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); | |
dd1a239f MG |
3382 | zonelist->_zonerefs[j].zone = NULL; |
3383 | zonelist->_zonerefs[j].zone_idx = 0; | |
523b9458 CL |
3384 | } |
3385 | ||
f0c0b2b8 KH |
3386 | /* |
3387 | * Build zonelists ordered by zone and nodes within zones. | |
3388 | * This results in conserving DMA zone[s] until all Normal memory is | |
3389 | * exhausted, but results in overflowing to remote node while memory | |
3390 | * may still exist in local DMA zone. | |
3391 | */ | |
3392 | static int node_order[MAX_NUMNODES]; | |
3393 | ||
3394 | static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) | |
3395 | { | |
f0c0b2b8 KH |
3396 | int pos, j, node; |
3397 | int zone_type; /* needs to be signed */ | |
3398 | struct zone *z; | |
3399 | struct zonelist *zonelist; | |
3400 | ||
54a6eb5c MG |
3401 | zonelist = &pgdat->node_zonelists[0]; |
3402 | pos = 0; | |
3403 | for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { | |
3404 | for (j = 0; j < nr_nodes; j++) { | |
3405 | node = node_order[j]; | |
3406 | z = &NODE_DATA(node)->node_zones[zone_type]; | |
3407 | if (populated_zone(z)) { | |
dd1a239f MG |
3408 | zoneref_set_zone(z, |
3409 | &zonelist->_zonerefs[pos++]); | |
54a6eb5c | 3410 | check_highest_zone(zone_type); |
f0c0b2b8 KH |
3411 | } |
3412 | } | |
f0c0b2b8 | 3413 | } |
dd1a239f MG |
3414 | zonelist->_zonerefs[pos].zone = NULL; |
3415 | zonelist->_zonerefs[pos].zone_idx = 0; | |
f0c0b2b8 KH |
3416 | } |
3417 | ||
3418 | static int default_zonelist_order(void) | |
3419 | { | |
3420 | int nid, zone_type; | |
3421 | unsigned long low_kmem_size,total_size; | |
3422 | struct zone *z; | |
3423 | int average_size; | |
3424 | /* | |
88393161 | 3425 | * ZONE_DMA and ZONE_DMA32 can be very small area in the system. |
f0c0b2b8 KH |
3426 | * If they are really small and used heavily, the system can fall |
3427 | * into OOM very easily. | |
e325c90f | 3428 | * This function detect ZONE_DMA/DMA32 size and configures zone order. |
f0c0b2b8 KH |
3429 | */ |
3430 | /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */ | |
3431 | low_kmem_size = 0; | |
3432 | total_size = 0; | |
3433 | for_each_online_node(nid) { | |
3434 | for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { | |
3435 | z = &NODE_DATA(nid)->node_zones[zone_type]; | |
3436 | if (populated_zone(z)) { | |
3437 | if (zone_type < ZONE_NORMAL) | |
4f9f4774 JL |
3438 | low_kmem_size += z->managed_pages; |
3439 | total_size += z->managed_pages; | |
e325c90f DR |
3440 | } else if (zone_type == ZONE_NORMAL) { |
3441 | /* | |
3442 | * If any node has only lowmem, then node order | |
3443 | * is preferred to allow kernel allocations | |
3444 | * locally; otherwise, they can easily infringe | |
3445 | * on other nodes when there is an abundance of | |
3446 | * lowmem available to allocate from. | |
3447 | */ | |
3448 | return ZONELIST_ORDER_NODE; | |
f0c0b2b8 KH |
3449 | } |
3450 | } | |
3451 | } | |
3452 | if (!low_kmem_size || /* there are no DMA area. */ | |
3453 | low_kmem_size > total_size/2) /* DMA/DMA32 is big. */ | |
3454 | return ZONELIST_ORDER_NODE; | |
3455 | /* | |
3456 | * look into each node's config. | |
3457 | * If there is a node whose DMA/DMA32 memory is very big area on | |
3458 | * local memory, NODE_ORDER may be suitable. | |
3459 | */ | |
37b07e41 | 3460 | average_size = total_size / |
4b0ef1fe | 3461 | (nodes_weight(node_states[N_MEMORY]) + 1); |
f0c0b2b8 KH |
3462 | for_each_online_node(nid) { |
3463 | low_kmem_size = 0; | |
3464 | total_size = 0; | |
3465 | for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { | |
3466 | z = &NODE_DATA(nid)->node_zones[zone_type]; | |
3467 | if (populated_zone(z)) { | |
3468 | if (zone_type < ZONE_NORMAL) | |
3469 | low_kmem_size += z->present_pages; | |
3470 | total_size += z->present_pages; | |
3471 | } | |
3472 | } | |
3473 | if (low_kmem_size && | |
3474 | total_size > average_size && /* ignore small node */ | |
3475 | low_kmem_size > total_size * 70/100) | |
3476 | return ZONELIST_ORDER_NODE; | |
3477 | } | |
3478 | return ZONELIST_ORDER_ZONE; | |
3479 | } | |
3480 | ||
3481 | static void set_zonelist_order(void) | |
3482 | { | |
3483 | if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) | |
3484 | current_zonelist_order = default_zonelist_order(); | |
3485 | else | |
3486 | current_zonelist_order = user_zonelist_order; | |
3487 | } | |
3488 | ||
3489 | static void build_zonelists(pg_data_t *pgdat) | |
3490 | { | |
3491 | int j, node, load; | |
3492 | enum zone_type i; | |
1da177e4 | 3493 | nodemask_t used_mask; |
f0c0b2b8 KH |
3494 | int local_node, prev_node; |
3495 | struct zonelist *zonelist; | |
3496 | int order = current_zonelist_order; | |
1da177e4 LT |
3497 | |
3498 | /* initialize zonelists */ | |
523b9458 | 3499 | for (i = 0; i < MAX_ZONELISTS; i++) { |
1da177e4 | 3500 | zonelist = pgdat->node_zonelists + i; |
dd1a239f MG |
3501 | zonelist->_zonerefs[0].zone = NULL; |
3502 | zonelist->_zonerefs[0].zone_idx = 0; | |
1da177e4 LT |
3503 | } |
3504 | ||
3505 | /* NUMA-aware ordering of nodes */ | |
3506 | local_node = pgdat->node_id; | |
62bc62a8 | 3507 | load = nr_online_nodes; |
1da177e4 LT |
3508 | prev_node = local_node; |
3509 | nodes_clear(used_mask); | |
f0c0b2b8 | 3510 | |
f0c0b2b8 KH |
3511 | memset(node_order, 0, sizeof(node_order)); |
3512 | j = 0; | |
3513 | ||
1da177e4 LT |
3514 | while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { |
3515 | /* | |
3516 | * We don't want to pressure a particular node. | |
3517 | * So adding penalty to the first node in same | |
3518 | * distance group to make it round-robin. | |
3519 | */ | |
957f822a DR |
3520 | if (node_distance(local_node, node) != |
3521 | node_distance(local_node, prev_node)) | |
f0c0b2b8 KH |
3522 | node_load[node] = load; |
3523 | ||
1da177e4 LT |
3524 | prev_node = node; |
3525 | load--; | |
f0c0b2b8 KH |
3526 | if (order == ZONELIST_ORDER_NODE) |
3527 | build_zonelists_in_node_order(pgdat, node); | |
3528 | else | |
3529 | node_order[j++] = node; /* remember order */ | |
3530 | } | |
1da177e4 | 3531 | |
f0c0b2b8 KH |
3532 | if (order == ZONELIST_ORDER_ZONE) { |
3533 | /* calculate node order -- i.e., DMA last! */ | |
3534 | build_zonelists_in_zone_order(pgdat, j); | |
1da177e4 | 3535 | } |
523b9458 CL |
3536 | |
3537 | build_thisnode_zonelists(pgdat); | |
1da177e4 LT |
3538 | } |
3539 | ||
9276b1bc | 3540 | /* Construct the zonelist performance cache - see further mmzone.h */ |
f0c0b2b8 | 3541 | static void build_zonelist_cache(pg_data_t *pgdat) |
9276b1bc | 3542 | { |
54a6eb5c MG |
3543 | struct zonelist *zonelist; |
3544 | struct zonelist_cache *zlc; | |
dd1a239f | 3545 | struct zoneref *z; |
9276b1bc | 3546 | |
54a6eb5c MG |
3547 | zonelist = &pgdat->node_zonelists[0]; |
3548 | zonelist->zlcache_ptr = zlc = &zonelist->zlcache; | |
3549 | bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); | |
dd1a239f MG |
3550 | for (z = zonelist->_zonerefs; z->zone; z++) |
3551 | zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); | |
9276b1bc PJ |
3552 | } |
3553 | ||
7aac7898 LS |
3554 | #ifdef CONFIG_HAVE_MEMORYLESS_NODES |
3555 | /* | |
3556 | * Return node id of node used for "local" allocations. | |
3557 | * I.e., first node id of first zone in arg node's generic zonelist. | |
3558 | * Used for initializing percpu 'numa_mem', which is used primarily | |
3559 | * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. | |
3560 | */ | |
3561 | int local_memory_node(int node) | |
3562 | { | |
3563 | struct zone *zone; | |
3564 | ||
3565 | (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL), | |
3566 | gfp_zone(GFP_KERNEL), | |
3567 | NULL, | |
3568 | &zone); | |
3569 | return zone->node; | |
3570 | } | |
3571 | #endif | |
f0c0b2b8 | 3572 | |
1da177e4 LT |
3573 | #else /* CONFIG_NUMA */ |
3574 | ||
f0c0b2b8 KH |
3575 | static void set_zonelist_order(void) |
3576 | { | |
3577 | current_zonelist_order = ZONELIST_ORDER_ZONE; | |
3578 | } | |
3579 | ||
3580 | static void build_zonelists(pg_data_t *pgdat) | |
1da177e4 | 3581 | { |
19655d34 | 3582 | int node, local_node; |
54a6eb5c MG |
3583 | enum zone_type j; |
3584 | struct zonelist *zonelist; | |
1da177e4 LT |
3585 | |
3586 | local_node = pgdat->node_id; | |
1da177e4 | 3587 | |
54a6eb5c MG |
3588 | zonelist = &pgdat->node_zonelists[0]; |
3589 | j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); | |
1da177e4 | 3590 | |
54a6eb5c MG |
3591 | /* |
3592 | * Now we build the zonelist so that it contains the zones | |
3593 | * of all the other nodes. | |
3594 | * We don't want to pressure a particular node, so when | |
3595 | * building the zones for node N, we make sure that the | |
3596 | * zones coming right after the local ones are those from | |
3597 | * node N+1 (modulo N) | |
3598 | */ | |
3599 | for (node = local_node + 1; node < MAX_NUMNODES; node++) { | |
3600 | if (!node_online(node)) | |
3601 | continue; | |
3602 | j = build_zonelists_node(NODE_DATA(node), zonelist, j, | |
3603 | MAX_NR_ZONES - 1); | |
1da177e4 | 3604 | } |
54a6eb5c MG |
3605 | for (node = 0; node < local_node; node++) { |
3606 | if (!node_online(node)) | |
3607 | continue; | |
3608 | j = build_zonelists_node(NODE_DATA(node), zonelist, j, | |
3609 | MAX_NR_ZONES - 1); | |
3610 | } | |
3611 | ||
dd1a239f MG |
3612 | zonelist->_zonerefs[j].zone = NULL; |
3613 | zonelist->_zonerefs[j].zone_idx = 0; | |
1da177e4 LT |
3614 | } |
3615 | ||
9276b1bc | 3616 | /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ |
f0c0b2b8 | 3617 | static void build_zonelist_cache(pg_data_t *pgdat) |
9276b1bc | 3618 | { |
54a6eb5c | 3619 | pgdat->node_zonelists[0].zlcache_ptr = NULL; |
9276b1bc PJ |
3620 | } |
3621 | ||
1da177e4 LT |
3622 | #endif /* CONFIG_NUMA */ |
3623 | ||
99dcc3e5 CL |
3624 | /* |
3625 | * Boot pageset table. One per cpu which is going to be used for all | |
3626 | * zones and all nodes. The parameters will be set in such a way | |
3627 | * that an item put on a list will immediately be handed over to | |
3628 | * the buddy list. This is safe since pageset manipulation is done | |
3629 | * with interrupts disabled. | |
3630 | * | |
3631 | * The boot_pagesets must be kept even after bootup is complete for | |
3632 | * unused processors and/or zones. They do play a role for bootstrapping | |
3633 | * hotplugged processors. | |
3634 | * | |
3635 | * zoneinfo_show() and maybe other functions do | |
3636 | * not check if the processor is online before following the pageset pointer. | |
3637 | * Other parts of the kernel may not check if the zone is available. | |
3638 | */ | |
3639 | static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); | |
3640 | static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); | |
1f522509 | 3641 | static void setup_zone_pageset(struct zone *zone); |
99dcc3e5 | 3642 | |
4eaf3f64 HL |
3643 | /* |
3644 | * Global mutex to protect against size modification of zonelists | |
3645 | * as well as to serialize pageset setup for the new populated zone. | |
3646 | */ | |
3647 | DEFINE_MUTEX(zonelists_mutex); | |
3648 | ||
9b1a4d38 | 3649 | /* return values int ....just for stop_machine() */ |
4ed7e022 | 3650 | static int __build_all_zonelists(void *data) |
1da177e4 | 3651 | { |
6811378e | 3652 | int nid; |
99dcc3e5 | 3653 | int cpu; |
9adb62a5 | 3654 | pg_data_t *self = data; |
9276b1bc | 3655 | |
7f9cfb31 BL |
3656 | #ifdef CONFIG_NUMA |
3657 | memset(node_load, 0, sizeof(node_load)); | |
3658 | #endif | |
9adb62a5 JL |
3659 | |
3660 | if (self && !node_online(self->node_id)) { | |
3661 | build_zonelists(self); | |
3662 | build_zonelist_cache(self); | |
3663 | } | |
3664 | ||
9276b1bc | 3665 | for_each_online_node(nid) { |
7ea1530a CL |
3666 | pg_data_t *pgdat = NODE_DATA(nid); |
3667 | ||
3668 | build_zonelists(pgdat); | |
3669 | build_zonelist_cache(pgdat); | |
9276b1bc | 3670 | } |
99dcc3e5 CL |
3671 | |
3672 | /* | |
3673 | * Initialize the boot_pagesets that are going to be used | |
3674 | * for bootstrapping processors. The real pagesets for | |
3675 | * each zone will be allocated later when the per cpu | |
3676 | * allocator is available. | |
3677 | * | |
3678 | * boot_pagesets are used also for bootstrapping offline | |
3679 | * cpus if the system is already booted because the pagesets | |
3680 | * are needed to initialize allocators on a specific cpu too. | |
3681 | * F.e. the percpu allocator needs the page allocator which | |
3682 | * needs the percpu allocator in order to allocate its pagesets | |
3683 | * (a chicken-egg dilemma). | |
3684 | */ | |
7aac7898 | 3685 | for_each_possible_cpu(cpu) { |
99dcc3e5 CL |
3686 | setup_pageset(&per_cpu(boot_pageset, cpu), 0); |
3687 | ||
7aac7898 LS |
3688 | #ifdef CONFIG_HAVE_MEMORYLESS_NODES |
3689 | /* | |
3690 | * We now know the "local memory node" for each node-- | |
3691 | * i.e., the node of the first zone in the generic zonelist. | |
3692 | * Set up numa_mem percpu variable for on-line cpus. During | |
3693 | * boot, only the boot cpu should be on-line; we'll init the | |
3694 | * secondary cpus' numa_mem as they come on-line. During | |
3695 | * node/memory hotplug, we'll fixup all on-line cpus. | |
3696 | */ | |
3697 | if (cpu_online(cpu)) | |
3698 | set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); | |
3699 | #endif | |
3700 | } | |
3701 | ||
6811378e YG |
3702 | return 0; |
3703 | } | |
3704 | ||
4eaf3f64 HL |
3705 | /* |
3706 | * Called with zonelists_mutex held always | |
3707 | * unless system_state == SYSTEM_BOOTING. | |
3708 | */ | |
9adb62a5 | 3709 | void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone) |
6811378e | 3710 | { |
f0c0b2b8 KH |
3711 | set_zonelist_order(); |
3712 | ||
6811378e | 3713 | if (system_state == SYSTEM_BOOTING) { |
423b41d7 | 3714 | __build_all_zonelists(NULL); |
68ad8df4 | 3715 | mminit_verify_zonelist(); |
6811378e YG |
3716 | cpuset_init_current_mems_allowed(); |
3717 | } else { | |
e9959f0f | 3718 | #ifdef CONFIG_MEMORY_HOTPLUG |
9adb62a5 JL |
3719 | if (zone) |
3720 | setup_zone_pageset(zone); | |
e9959f0f | 3721 | #endif |
dd1895e2 CS |
3722 | /* we have to stop all cpus to guarantee there is no user |
3723 | of zonelist */ | |
9adb62a5 | 3724 | stop_machine(__build_all_zonelists, pgdat, NULL); |
6811378e YG |
3725 | /* cpuset refresh routine should be here */ |
3726 | } | |
bd1e22b8 | 3727 | vm_total_pages = nr_free_pagecache_pages(); |
9ef9acb0 MG |
3728 | /* |
3729 | * Disable grouping by mobility if the number of pages in the | |
3730 | * system is too low to allow the mechanism to work. It would be | |
3731 | * more accurate, but expensive to check per-zone. This check is | |
3732 | * made on memory-hotadd so a system can start with mobility | |
3733 | * disabled and enable it later | |
3734 | */ | |
d9c23400 | 3735 | if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) |
9ef9acb0 MG |
3736 | page_group_by_mobility_disabled = 1; |
3737 | else | |
3738 | page_group_by_mobility_disabled = 0; | |
3739 | ||
3740 | printk("Built %i zonelists in %s order, mobility grouping %s. " | |
3741 | "Total pages: %ld\n", | |
62bc62a8 | 3742 | nr_online_nodes, |
f0c0b2b8 | 3743 | zonelist_order_name[current_zonelist_order], |
9ef9acb0 | 3744 | page_group_by_mobility_disabled ? "off" : "on", |
f0c0b2b8 KH |
3745 | vm_total_pages); |
3746 | #ifdef CONFIG_NUMA | |
3747 | printk("Policy zone: %s\n", zone_names[policy_zone]); | |
3748 | #endif | |
1da177e4 LT |
3749 | } |
3750 | ||
3751 | /* | |
3752 | * Helper functions to size the waitqueue hash table. | |
3753 | * Essentially these want to choose hash table sizes sufficiently | |
3754 | * large so that collisions trying to wait on pages are rare. | |
3755 | * But in fact, the number of active page waitqueues on typical | |
3756 | * systems is ridiculously low, less than 200. So this is even | |
3757 | * conservative, even though it seems large. | |
3758 | * | |
3759 | * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to | |
3760 | * waitqueues, i.e. the size of the waitq table given the number of pages. | |
3761 | */ | |
3762 | #define PAGES_PER_WAITQUEUE 256 | |
3763 | ||
cca448fe | 3764 | #ifndef CONFIG_MEMORY_HOTPLUG |
02b694de | 3765 | static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) |
1da177e4 LT |
3766 | { |
3767 | unsigned long size = 1; | |
3768 | ||
3769 | pages /= PAGES_PER_WAITQUEUE; | |
3770 | ||
3771 | while (size < pages) | |
3772 | size <<= 1; | |
3773 | ||
3774 | /* | |
3775 | * Once we have dozens or even hundreds of threads sleeping | |
3776 | * on IO we've got bigger problems than wait queue collision. | |
3777 | * Limit the size of the wait table to a reasonable size. | |
3778 | */ | |
3779 | size = min(size, 4096UL); | |
3780 | ||
3781 | return max(size, 4UL); | |
3782 | } | |
cca448fe YG |
3783 | #else |
3784 | /* | |
3785 | * A zone's size might be changed by hot-add, so it is not possible to determine | |
3786 | * a suitable size for its wait_table. So we use the maximum size now. | |
3787 | * | |
3788 | * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: | |
3789 | * | |
3790 | * i386 (preemption config) : 4096 x 16 = 64Kbyte. | |
3791 | * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. | |
3792 | * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. | |
3793 | * | |
3794 | * The maximum entries are prepared when a zone's memory is (512K + 256) pages | |
3795 | * or more by the traditional way. (See above). It equals: | |
3796 | * | |
3797 | * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. | |
3798 | * ia64(16K page size) : = ( 8G + 4M)byte. | |
3799 | * powerpc (64K page size) : = (32G +16M)byte. | |
3800 | */ | |
3801 | static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) | |
3802 | { | |
3803 | return 4096UL; | |
3804 | } | |
3805 | #endif | |
1da177e4 LT |
3806 | |
3807 | /* | |
3808 | * This is an integer logarithm so that shifts can be used later | |
3809 | * to extract the more random high bits from the multiplicative | |
3810 | * hash function before the remainder is taken. | |
3811 | */ | |
3812 | static inline unsigned long wait_table_bits(unsigned long size) | |
3813 | { | |
3814 | return ffz(~size); | |
3815 | } | |
3816 | ||
3817 | #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) | |
3818 | ||
6d3163ce AH |
3819 | /* |
3820 | * Check if a pageblock contains reserved pages | |
3821 | */ | |
3822 | static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn) | |
3823 | { | |
3824 | unsigned long pfn; | |
3825 | ||
3826 | for (pfn = start_pfn; pfn < end_pfn; pfn++) { | |
3827 | if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn))) | |
3828 | return 1; | |
3829 | } | |
3830 | return 0; | |
3831 | } | |
3832 | ||
56fd56b8 | 3833 | /* |
d9c23400 | 3834 | * Mark a number of pageblocks as MIGRATE_RESERVE. The number |
41858966 MG |
3835 | * of blocks reserved is based on min_wmark_pages(zone). The memory within |
3836 | * the reserve will tend to store contiguous free pages. Setting min_free_kbytes | |
56fd56b8 MG |
3837 | * higher will lead to a bigger reserve which will get freed as contiguous |
3838 | * blocks as reclaim kicks in | |
3839 | */ | |
3840 | static void setup_zone_migrate_reserve(struct zone *zone) | |
3841 | { | |
6d3163ce | 3842 | unsigned long start_pfn, pfn, end_pfn, block_end_pfn; |
56fd56b8 | 3843 | struct page *page; |
78986a67 MG |
3844 | unsigned long block_migratetype; |
3845 | int reserve; | |
56fd56b8 | 3846 | |
d0215638 MH |
3847 | /* |
3848 | * Get the start pfn, end pfn and the number of blocks to reserve | |
3849 | * We have to be careful to be aligned to pageblock_nr_pages to | |
3850 | * make sure that we always check pfn_valid for the first page in | |
3851 | * the block. | |
3852 | */ | |
56fd56b8 | 3853 | start_pfn = zone->zone_start_pfn; |
108bcc96 | 3854 | end_pfn = zone_end_pfn(zone); |
d0215638 | 3855 | start_pfn = roundup(start_pfn, pageblock_nr_pages); |
41858966 | 3856 | reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >> |
d9c23400 | 3857 | pageblock_order; |
56fd56b8 | 3858 | |
78986a67 MG |
3859 | /* |
3860 | * Reserve blocks are generally in place to help high-order atomic | |
3861 | * allocations that are short-lived. A min_free_kbytes value that | |
3862 | * would result in more than 2 reserve blocks for atomic allocations | |
3863 | * is assumed to be in place to help anti-fragmentation for the | |
3864 | * future allocation of hugepages at runtime. | |
3865 | */ | |
3866 | reserve = min(2, reserve); | |
3867 | ||
d9c23400 | 3868 | for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { |
56fd56b8 MG |
3869 | if (!pfn_valid(pfn)) |
3870 | continue; | |
3871 | page = pfn_to_page(pfn); | |
3872 | ||
344c790e AL |
3873 | /* Watch out for overlapping nodes */ |
3874 | if (page_to_nid(page) != zone_to_nid(zone)) | |
3875 | continue; | |
3876 | ||
56fd56b8 MG |
3877 | block_migratetype = get_pageblock_migratetype(page); |
3878 | ||
938929f1 MG |
3879 | /* Only test what is necessary when the reserves are not met */ |
3880 | if (reserve > 0) { | |
3881 | /* | |
3882 | * Blocks with reserved pages will never free, skip | |
3883 | * them. | |
3884 | */ | |
3885 | block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn); | |
3886 | if (pageblock_is_reserved(pfn, block_end_pfn)) | |
3887 | continue; | |
56fd56b8 | 3888 | |
938929f1 MG |
3889 | /* If this block is reserved, account for it */ |
3890 | if (block_migratetype == MIGRATE_RESERVE) { | |
3891 | reserve--; | |
3892 | continue; | |
3893 | } | |
3894 | ||
3895 | /* Suitable for reserving if this block is movable */ | |
3896 | if (block_migratetype == MIGRATE_MOVABLE) { | |
3897 | set_pageblock_migratetype(page, | |
3898 | MIGRATE_RESERVE); | |
3899 | move_freepages_block(zone, page, | |
3900 | MIGRATE_RESERVE); | |
3901 | reserve--; | |
3902 | continue; | |
3903 | } | |
56fd56b8 MG |
3904 | } |
3905 | ||
3906 | /* | |
3907 | * If the reserve is met and this is a previous reserved block, | |
3908 | * take it back | |
3909 | */ | |
3910 | if (block_migratetype == MIGRATE_RESERVE) { | |
3911 | set_pageblock_migratetype(page, MIGRATE_MOVABLE); | |
3912 | move_freepages_block(zone, page, MIGRATE_MOVABLE); | |
3913 | } | |
3914 | } | |
3915 | } | |
ac0e5b7a | 3916 | |
1da177e4 LT |
3917 | /* |
3918 | * Initially all pages are reserved - free ones are freed | |
3919 | * up by free_all_bootmem() once the early boot process is | |
3920 | * done. Non-atomic initialization, single-pass. | |
3921 | */ | |
c09b4240 | 3922 | void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, |
a2f3aa02 | 3923 | unsigned long start_pfn, enum memmap_context context) |
1da177e4 | 3924 | { |
1da177e4 | 3925 | struct page *page; |
29751f69 AW |
3926 | unsigned long end_pfn = start_pfn + size; |
3927 | unsigned long pfn; | |
86051ca5 | 3928 | struct zone *z; |
1da177e4 | 3929 | |
22b31eec HD |
3930 | if (highest_memmap_pfn < end_pfn - 1) |
3931 | highest_memmap_pfn = end_pfn - 1; | |
3932 | ||
86051ca5 | 3933 | z = &NODE_DATA(nid)->node_zones[zone]; |
cbe8dd4a | 3934 | for (pfn = start_pfn; pfn < end_pfn; pfn++) { |
a2f3aa02 DH |
3935 | /* |
3936 | * There can be holes in boot-time mem_map[]s | |
3937 | * handed to this function. They do not | |
3938 | * exist on hotplugged memory. | |
3939 | */ | |
3940 | if (context == MEMMAP_EARLY) { | |
3941 | if (!early_pfn_valid(pfn)) | |
3942 | continue; | |
3943 | if (!early_pfn_in_nid(pfn, nid)) | |
3944 | continue; | |
3945 | } | |
d41dee36 AW |
3946 | page = pfn_to_page(pfn); |
3947 | set_page_links(page, zone, nid, pfn); | |
708614e6 | 3948 | mminit_verify_page_links(page, zone, nid, pfn); |
7835e98b | 3949 | init_page_count(page); |
22b751c3 MG |
3950 | page_mapcount_reset(page); |
3951 | page_nid_reset_last(page); | |
1da177e4 | 3952 | SetPageReserved(page); |
b2a0ac88 MG |
3953 | /* |
3954 | * Mark the block movable so that blocks are reserved for | |
3955 | * movable at startup. This will force kernel allocations | |
3956 | * to reserve their blocks rather than leaking throughout | |
3957 | * the address space during boot when many long-lived | |
56fd56b8 MG |
3958 | * kernel allocations are made. Later some blocks near |
3959 | * the start are marked MIGRATE_RESERVE by | |
3960 | * setup_zone_migrate_reserve() | |
86051ca5 KH |
3961 | * |
3962 | * bitmap is created for zone's valid pfn range. but memmap | |
3963 | * can be created for invalid pages (for alignment) | |
3964 | * check here not to call set_pageblock_migratetype() against | |
3965 | * pfn out of zone. | |
b2a0ac88 | 3966 | */ |
86051ca5 | 3967 | if ((z->zone_start_pfn <= pfn) |
108bcc96 | 3968 | && (pfn < zone_end_pfn(z)) |
86051ca5 | 3969 | && !(pfn & (pageblock_nr_pages - 1))) |
56fd56b8 | 3970 | set_pageblock_migratetype(page, MIGRATE_MOVABLE); |
b2a0ac88 | 3971 | |
1da177e4 LT |
3972 | INIT_LIST_HEAD(&page->lru); |
3973 | #ifdef WANT_PAGE_VIRTUAL | |
3974 | /* The shift won't overflow because ZONE_NORMAL is below 4G. */ | |
3975 | if (!is_highmem_idx(zone)) | |
3212c6be | 3976 | set_page_address(page, __va(pfn << PAGE_SHIFT)); |
1da177e4 | 3977 | #endif |
1da177e4 LT |
3978 | } |
3979 | } | |
3980 | ||
1e548deb | 3981 | static void __meminit zone_init_free_lists(struct zone *zone) |
1da177e4 | 3982 | { |
b2a0ac88 MG |
3983 | int order, t; |
3984 | for_each_migratetype_order(order, t) { | |
3985 | INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); | |
1da177e4 LT |
3986 | zone->free_area[order].nr_free = 0; |
3987 | } | |
3988 | } | |
3989 | ||
3990 | #ifndef __HAVE_ARCH_MEMMAP_INIT | |
3991 | #define memmap_init(size, nid, zone, start_pfn) \ | |
a2f3aa02 | 3992 | memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) |
1da177e4 LT |
3993 | #endif |
3994 | ||
4ed7e022 | 3995 | static int __meminit zone_batchsize(struct zone *zone) |
e7c8d5c9 | 3996 | { |
3a6be87f | 3997 | #ifdef CONFIG_MMU |
e7c8d5c9 CL |
3998 | int batch; |
3999 | ||
4000 | /* | |
4001 | * The per-cpu-pages pools are set to around 1000th of the | |
ba56e91c | 4002 | * size of the zone. But no more than 1/2 of a meg. |
e7c8d5c9 CL |
4003 | * |
4004 | * OK, so we don't know how big the cache is. So guess. | |
4005 | */ | |
b40da049 | 4006 | batch = zone->managed_pages / 1024; |
ba56e91c SR |
4007 | if (batch * PAGE_SIZE > 512 * 1024) |
4008 | batch = (512 * 1024) / PAGE_SIZE; | |
e7c8d5c9 CL |
4009 | batch /= 4; /* We effectively *= 4 below */ |
4010 | if (batch < 1) | |
4011 | batch = 1; | |
4012 | ||
4013 | /* | |
0ceaacc9 NP |
4014 | * Clamp the batch to a 2^n - 1 value. Having a power |
4015 | * of 2 value was found to be more likely to have | |
4016 | * suboptimal cache aliasing properties in some cases. | |
e7c8d5c9 | 4017 | * |
0ceaacc9 NP |
4018 | * For example if 2 tasks are alternately allocating |
4019 | * batches of pages, one task can end up with a lot | |
4020 | * of pages of one half of the possible page colors | |
4021 | * and the other with pages of the other colors. | |
e7c8d5c9 | 4022 | */ |
9155203a | 4023 | batch = rounddown_pow_of_two(batch + batch/2) - 1; |
ba56e91c | 4024 | |
e7c8d5c9 | 4025 | return batch; |
3a6be87f DH |
4026 | |
4027 | #else | |
4028 | /* The deferral and batching of frees should be suppressed under NOMMU | |
4029 | * conditions. | |
4030 | * | |
4031 | * The problem is that NOMMU needs to be able to allocate large chunks | |
4032 | * of contiguous memory as there's no hardware page translation to | |
4033 | * assemble apparent contiguous memory from discontiguous pages. | |
4034 | * | |
4035 | * Queueing large contiguous runs of pages for batching, however, | |
4036 | * causes the pages to actually be freed in smaller chunks. As there | |
4037 | * can be a significant delay between the individual batches being | |
4038 | * recycled, this leads to the once large chunks of space being | |
4039 | * fragmented and becoming unavailable for high-order allocations. | |
4040 | */ | |
4041 | return 0; | |
4042 | #endif | |
e7c8d5c9 CL |
4043 | } |
4044 | ||
8d7a8fa9 CS |
4045 | /* |
4046 | * pcp->high and pcp->batch values are related and dependent on one another: | |
4047 | * ->batch must never be higher then ->high. | |
4048 | * The following function updates them in a safe manner without read side | |
4049 | * locking. | |
4050 | * | |
4051 | * Any new users of pcp->batch and pcp->high should ensure they can cope with | |
4052 | * those fields changing asynchronously (acording the the above rule). | |
4053 | * | |
4054 | * mutex_is_locked(&pcp_batch_high_lock) required when calling this function | |
4055 | * outside of boot time (or some other assurance that no concurrent updaters | |
4056 | * exist). | |
4057 | */ | |
4058 | static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, | |
4059 | unsigned long batch) | |
4060 | { | |
4061 | /* start with a fail safe value for batch */ | |
4062 | pcp->batch = 1; | |
4063 | smp_wmb(); | |
4064 | ||
4065 | /* Update high, then batch, in order */ | |
4066 | pcp->high = high; | |
4067 | smp_wmb(); | |
4068 | ||
4069 | pcp->batch = batch; | |
4070 | } | |
4071 | ||
3664033c | 4072 | /* a companion to pageset_set_high() */ |
4008bab7 CS |
4073 | static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) |
4074 | { | |
8d7a8fa9 | 4075 | pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); |
4008bab7 CS |
4076 | } |
4077 | ||
88c90dbc | 4078 | static void pageset_init(struct per_cpu_pageset *p) |
2caaad41 CL |
4079 | { |
4080 | struct per_cpu_pages *pcp; | |
5f8dcc21 | 4081 | int migratetype; |
2caaad41 | 4082 | |
1c6fe946 MD |
4083 | memset(p, 0, sizeof(*p)); |
4084 | ||
3dfa5721 | 4085 | pcp = &p->pcp; |
2caaad41 | 4086 | pcp->count = 0; |
5f8dcc21 MG |
4087 | for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) |
4088 | INIT_LIST_HEAD(&pcp->lists[migratetype]); | |
2caaad41 CL |
4089 | } |
4090 | ||
88c90dbc CS |
4091 | static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) |
4092 | { | |
4093 | pageset_init(p); | |
4094 | pageset_set_batch(p, batch); | |
4095 | } | |
4096 | ||
8ad4b1fb | 4097 | /* |
3664033c | 4098 | * pageset_set_high() sets the high water mark for hot per_cpu_pagelist |
8ad4b1fb RS |
4099 | * to the value high for the pageset p. |
4100 | */ | |
3664033c | 4101 | static void pageset_set_high(struct per_cpu_pageset *p, |
8ad4b1fb RS |
4102 | unsigned long high) |
4103 | { | |
8d7a8fa9 CS |
4104 | unsigned long batch = max(1UL, high / 4); |
4105 | if ((high / 4) > (PAGE_SHIFT * 8)) | |
4106 | batch = PAGE_SHIFT * 8; | |
8ad4b1fb | 4107 | |
8d7a8fa9 | 4108 | pageset_update(&p->pcp, high, batch); |
8ad4b1fb RS |
4109 | } |
4110 | ||
169f6c19 CS |
4111 | static void __meminit pageset_set_high_and_batch(struct zone *zone, |
4112 | struct per_cpu_pageset *pcp) | |
56cef2b8 | 4113 | { |
56cef2b8 | 4114 | if (percpu_pagelist_fraction) |
3664033c | 4115 | pageset_set_high(pcp, |
56cef2b8 CS |
4116 | (zone->managed_pages / |
4117 | percpu_pagelist_fraction)); | |
4118 | else | |
4119 | pageset_set_batch(pcp, zone_batchsize(zone)); | |
4120 | } | |
4121 | ||
169f6c19 CS |
4122 | static void __meminit zone_pageset_init(struct zone *zone, int cpu) |
4123 | { | |
4124 | struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); | |
4125 | ||
4126 | pageset_init(pcp); | |
4127 | pageset_set_high_and_batch(zone, pcp); | |
4128 | } | |
4129 | ||
4ed7e022 | 4130 | static void __meminit setup_zone_pageset(struct zone *zone) |
319774e2 WF |
4131 | { |
4132 | int cpu; | |
319774e2 | 4133 | zone->pageset = alloc_percpu(struct per_cpu_pageset); |
56cef2b8 CS |
4134 | for_each_possible_cpu(cpu) |
4135 | zone_pageset_init(zone, cpu); | |
319774e2 WF |
4136 | } |
4137 | ||
2caaad41 | 4138 | /* |
99dcc3e5 CL |
4139 | * Allocate per cpu pagesets and initialize them. |
4140 | * Before this call only boot pagesets were available. | |
e7c8d5c9 | 4141 | */ |
99dcc3e5 | 4142 | void __init setup_per_cpu_pageset(void) |
e7c8d5c9 | 4143 | { |
99dcc3e5 | 4144 | struct zone *zone; |
e7c8d5c9 | 4145 | |
319774e2 WF |
4146 | for_each_populated_zone(zone) |
4147 | setup_zone_pageset(zone); | |
e7c8d5c9 CL |
4148 | } |
4149 | ||
577a32f6 | 4150 | static noinline __init_refok |
cca448fe | 4151 | int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) |
ed8ece2e DH |
4152 | { |
4153 | int i; | |
4154 | struct pglist_data *pgdat = zone->zone_pgdat; | |
cca448fe | 4155 | size_t alloc_size; |
ed8ece2e DH |
4156 | |
4157 | /* | |
4158 | * The per-page waitqueue mechanism uses hashed waitqueues | |
4159 | * per zone. | |
4160 | */ | |
02b694de YG |
4161 | zone->wait_table_hash_nr_entries = |
4162 | wait_table_hash_nr_entries(zone_size_pages); | |
4163 | zone->wait_table_bits = | |
4164 | wait_table_bits(zone->wait_table_hash_nr_entries); | |
cca448fe YG |
4165 | alloc_size = zone->wait_table_hash_nr_entries |
4166 | * sizeof(wait_queue_head_t); | |
4167 | ||
cd94b9db | 4168 | if (!slab_is_available()) { |
cca448fe | 4169 | zone->wait_table = (wait_queue_head_t *) |
8f389a99 | 4170 | alloc_bootmem_node_nopanic(pgdat, alloc_size); |
cca448fe YG |
4171 | } else { |
4172 | /* | |
4173 | * This case means that a zone whose size was 0 gets new memory | |
4174 | * via memory hot-add. | |
4175 | * But it may be the case that a new node was hot-added. In | |
4176 | * this case vmalloc() will not be able to use this new node's | |
4177 | * memory - this wait_table must be initialized to use this new | |
4178 | * node itself as well. | |
4179 | * To use this new node's memory, further consideration will be | |
4180 | * necessary. | |
4181 | */ | |
8691f3a7 | 4182 | zone->wait_table = vmalloc(alloc_size); |
cca448fe YG |
4183 | } |
4184 | if (!zone->wait_table) | |
4185 | return -ENOMEM; | |
ed8ece2e | 4186 | |
02b694de | 4187 | for(i = 0; i < zone->wait_table_hash_nr_entries; ++i) |
ed8ece2e | 4188 | init_waitqueue_head(zone->wait_table + i); |
cca448fe YG |
4189 | |
4190 | return 0; | |
ed8ece2e DH |
4191 | } |
4192 | ||
c09b4240 | 4193 | static __meminit void zone_pcp_init(struct zone *zone) |
ed8ece2e | 4194 | { |
99dcc3e5 CL |
4195 | /* |
4196 | * per cpu subsystem is not up at this point. The following code | |
4197 | * relies on the ability of the linker to provide the | |
4198 | * offset of a (static) per cpu variable into the per cpu area. | |
4199 | */ | |
4200 | zone->pageset = &boot_pageset; | |
ed8ece2e | 4201 | |
f5335c0f | 4202 | if (zone->present_pages) |
99dcc3e5 CL |
4203 | printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", |
4204 | zone->name, zone->present_pages, | |
4205 | zone_batchsize(zone)); | |
ed8ece2e DH |
4206 | } |
4207 | ||
4ed7e022 | 4208 | int __meminit init_currently_empty_zone(struct zone *zone, |
718127cc | 4209 | unsigned long zone_start_pfn, |
a2f3aa02 DH |
4210 | unsigned long size, |
4211 | enum memmap_context context) | |
ed8ece2e DH |
4212 | { |
4213 | struct pglist_data *pgdat = zone->zone_pgdat; | |
cca448fe YG |
4214 | int ret; |
4215 | ret = zone_wait_table_init(zone, size); | |
4216 | if (ret) | |
4217 | return ret; | |
ed8ece2e DH |
4218 | pgdat->nr_zones = zone_idx(zone) + 1; |
4219 | ||
ed8ece2e DH |
4220 | zone->zone_start_pfn = zone_start_pfn; |
4221 | ||
708614e6 MG |
4222 | mminit_dprintk(MMINIT_TRACE, "memmap_init", |
4223 | "Initialising map node %d zone %lu pfns %lu -> %lu\n", | |
4224 | pgdat->node_id, | |
4225 | (unsigned long)zone_idx(zone), | |
4226 | zone_start_pfn, (zone_start_pfn + size)); | |
4227 | ||
1e548deb | 4228 | zone_init_free_lists(zone); |
718127cc YG |
4229 | |
4230 | return 0; | |
ed8ece2e DH |
4231 | } |
4232 | ||
0ee332c1 | 4233 | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP |
c713216d MG |
4234 | #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID |
4235 | /* | |
4236 | * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. | |
4237 | * Architectures may implement their own version but if add_active_range() | |
4238 | * was used and there are no special requirements, this is a convenient | |
4239 | * alternative | |
4240 | */ | |
f2dbcfa7 | 4241 | int __meminit __early_pfn_to_nid(unsigned long pfn) |
c713216d | 4242 | { |
c13291a5 TH |
4243 | unsigned long start_pfn, end_pfn; |
4244 | int i, nid; | |
7c243c71 RA |
4245 | /* |
4246 | * NOTE: The following SMP-unsafe globals are only used early in boot | |
4247 | * when the kernel is running single-threaded. | |
4248 | */ | |
4249 | static unsigned long __meminitdata last_start_pfn, last_end_pfn; | |
4250 | static int __meminitdata last_nid; | |
4251 | ||
4252 | if (last_start_pfn <= pfn && pfn < last_end_pfn) | |
4253 | return last_nid; | |
c713216d | 4254 | |
c13291a5 | 4255 | for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) |
7c243c71 RA |
4256 | if (start_pfn <= pfn && pfn < end_pfn) { |
4257 | last_start_pfn = start_pfn; | |
4258 | last_end_pfn = end_pfn; | |
4259 | last_nid = nid; | |
c13291a5 | 4260 | return nid; |
7c243c71 | 4261 | } |
cc2559bc KH |
4262 | /* This is a memory hole */ |
4263 | return -1; | |
c713216d MG |
4264 | } |
4265 | #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ | |
4266 | ||
f2dbcfa7 KH |
4267 | int __meminit early_pfn_to_nid(unsigned long pfn) |
4268 | { | |
cc2559bc KH |
4269 | int nid; |
4270 | ||
4271 | nid = __early_pfn_to_nid(pfn); | |
4272 | if (nid >= 0) | |
4273 | return nid; | |
4274 | /* just returns 0 */ | |
4275 | return 0; | |
f2dbcfa7 KH |
4276 | } |
4277 | ||
cc2559bc KH |
4278 | #ifdef CONFIG_NODES_SPAN_OTHER_NODES |
4279 | bool __meminit early_pfn_in_nid(unsigned long pfn, int node) | |
4280 | { | |
4281 | int nid; | |
4282 | ||
4283 | nid = __early_pfn_to_nid(pfn); | |
4284 | if (nid >= 0 && nid != node) | |
4285 | return false; | |
4286 | return true; | |
4287 | } | |
4288 | #endif | |
f2dbcfa7 | 4289 | |
c713216d MG |
4290 | /** |
4291 | * free_bootmem_with_active_regions - Call free_bootmem_node for each active range | |
88ca3b94 RD |
4292 | * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. |
4293 | * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node | |
c713216d MG |
4294 | * |
4295 | * If an architecture guarantees that all ranges registered with | |
4296 | * add_active_ranges() contain no holes and may be freed, this | |
4297 | * this function may be used instead of calling free_bootmem() manually. | |
4298 | */ | |
c13291a5 | 4299 | void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) |
cc289894 | 4300 | { |
c13291a5 TH |
4301 | unsigned long start_pfn, end_pfn; |
4302 | int i, this_nid; | |
edbe7d23 | 4303 | |
c13291a5 TH |
4304 | for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { |
4305 | start_pfn = min(start_pfn, max_low_pfn); | |
4306 | end_pfn = min(end_pfn, max_low_pfn); | |
edbe7d23 | 4307 | |
c13291a5 TH |
4308 | if (start_pfn < end_pfn) |
4309 | free_bootmem_node(NODE_DATA(this_nid), | |
4310 | PFN_PHYS(start_pfn), | |
4311 | (end_pfn - start_pfn) << PAGE_SHIFT); | |
edbe7d23 | 4312 | } |
edbe7d23 | 4313 | } |
edbe7d23 | 4314 | |
c713216d MG |
4315 | /** |
4316 | * sparse_memory_present_with_active_regions - Call memory_present for each active range | |
88ca3b94 | 4317 | * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. |
c713216d MG |
4318 | * |
4319 | * If an architecture guarantees that all ranges registered with | |
4320 | * add_active_ranges() contain no holes and may be freed, this | |
88ca3b94 | 4321 | * function may be used instead of calling memory_present() manually. |
c713216d MG |
4322 | */ |
4323 | void __init sparse_memory_present_with_active_regions(int nid) | |
4324 | { | |
c13291a5 TH |
4325 | unsigned long start_pfn, end_pfn; |
4326 | int i, this_nid; | |
c713216d | 4327 | |
c13291a5 TH |
4328 | for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) |
4329 | memory_present(this_nid, start_pfn, end_pfn); | |
c713216d MG |
4330 | } |
4331 | ||
4332 | /** | |
4333 | * get_pfn_range_for_nid - Return the start and end page frames for a node | |
88ca3b94 RD |
4334 | * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. |
4335 | * @start_pfn: Passed by reference. On return, it will have the node start_pfn. | |
4336 | * @end_pfn: Passed by reference. On return, it will have the node end_pfn. | |
c713216d MG |
4337 | * |
4338 | * It returns the start and end page frame of a node based on information | |
4339 | * provided by an arch calling add_active_range(). If called for a node | |
4340 | * with no available memory, a warning is printed and the start and end | |
88ca3b94 | 4341 | * PFNs will be 0. |
c713216d | 4342 | */ |
a3142c8e | 4343 | void __meminit get_pfn_range_for_nid(unsigned int nid, |
c713216d MG |
4344 | unsigned long *start_pfn, unsigned long *end_pfn) |
4345 | { | |
c13291a5 | 4346 | unsigned long this_start_pfn, this_end_pfn; |
c713216d | 4347 | int i; |
c13291a5 | 4348 | |
c713216d MG |
4349 | *start_pfn = -1UL; |
4350 | *end_pfn = 0; | |
4351 | ||
c13291a5 TH |
4352 | for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { |
4353 | *start_pfn = min(*start_pfn, this_start_pfn); | |
4354 | *end_pfn = max(*end_pfn, this_end_pfn); | |
c713216d MG |
4355 | } |
4356 | ||
633c0666 | 4357 | if (*start_pfn == -1UL) |
c713216d | 4358 | *start_pfn = 0; |
c713216d MG |
4359 | } |
4360 | ||
2a1e274a MG |
4361 | /* |
4362 | * This finds a zone that can be used for ZONE_MOVABLE pages. The | |
4363 | * assumption is made that zones within a node are ordered in monotonic | |
4364 | * increasing memory addresses so that the "highest" populated zone is used | |
4365 | */ | |
b69a7288 | 4366 | static void __init find_usable_zone_for_movable(void) |
2a1e274a MG |
4367 | { |
4368 | int zone_index; | |
4369 | for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { | |
4370 | if (zone_index == ZONE_MOVABLE) | |
4371 | continue; | |
4372 | ||
4373 | if (arch_zone_highest_possible_pfn[zone_index] > | |
4374 | arch_zone_lowest_possible_pfn[zone_index]) | |
4375 | break; | |
4376 | } | |
4377 | ||
4378 | VM_BUG_ON(zone_index == -1); | |
4379 | movable_zone = zone_index; | |
4380 | } | |
4381 | ||
4382 | /* | |
4383 | * The zone ranges provided by the architecture do not include ZONE_MOVABLE | |
25985edc | 4384 | * because it is sized independent of architecture. Unlike the other zones, |
2a1e274a MG |
4385 | * the starting point for ZONE_MOVABLE is not fixed. It may be different |
4386 | * in each node depending on the size of each node and how evenly kernelcore | |
4387 | * is distributed. This helper function adjusts the zone ranges | |
4388 | * provided by the architecture for a given node by using the end of the | |
4389 | * highest usable zone for ZONE_MOVABLE. This preserves the assumption that | |
4390 | * zones within a node are in order of monotonic increases memory addresses | |
4391 | */ | |
b69a7288 | 4392 | static void __meminit adjust_zone_range_for_zone_movable(int nid, |
2a1e274a MG |
4393 | unsigned long zone_type, |
4394 | unsigned long node_start_pfn, | |
4395 | unsigned long node_end_pfn, | |
4396 | unsigned long *zone_start_pfn, | |
4397 | unsigned long *zone_end_pfn) | |
4398 | { | |
4399 | /* Only adjust if ZONE_MOVABLE is on this node */ | |
4400 | if (zone_movable_pfn[nid]) { | |
4401 | /* Size ZONE_MOVABLE */ | |
4402 | if (zone_type == ZONE_MOVABLE) { | |
4403 | *zone_start_pfn = zone_movable_pfn[nid]; | |
4404 | *zone_end_pfn = min(node_end_pfn, | |
4405 | arch_zone_highest_possible_pfn[movable_zone]); | |
4406 | ||
4407 | /* Adjust for ZONE_MOVABLE starting within this range */ | |
4408 | } else if (*zone_start_pfn < zone_movable_pfn[nid] && | |
4409 | *zone_end_pfn > zone_movable_pfn[nid]) { | |
4410 | *zone_end_pfn = zone_movable_pfn[nid]; | |
4411 | ||
4412 | /* Check if this whole range is within ZONE_MOVABLE */ | |
4413 | } else if (*zone_start_pfn >= zone_movable_pfn[nid]) | |
4414 | *zone_start_pfn = *zone_end_pfn; | |
4415 | } | |
4416 | } | |
4417 | ||
c713216d MG |
4418 | /* |
4419 | * Return the number of pages a zone spans in a node, including holes | |
4420 | * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() | |
4421 | */ | |
6ea6e688 | 4422 | static unsigned long __meminit zone_spanned_pages_in_node(int nid, |
c713216d | 4423 | unsigned long zone_type, |
7960aedd ZY |
4424 | unsigned long node_start_pfn, |
4425 | unsigned long node_end_pfn, | |
c713216d MG |
4426 | unsigned long *ignored) |
4427 | { | |
c713216d MG |
4428 | unsigned long zone_start_pfn, zone_end_pfn; |
4429 | ||
7960aedd | 4430 | /* Get the start and end of the zone */ |
c713216d MG |
4431 | zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; |
4432 | zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; | |
2a1e274a MG |
4433 | adjust_zone_range_for_zone_movable(nid, zone_type, |
4434 | node_start_pfn, node_end_pfn, | |
4435 | &zone_start_pfn, &zone_end_pfn); | |
c713216d MG |
4436 | |
4437 | /* Check that this node has pages within the zone's required range */ | |
4438 | if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) | |
4439 | return 0; | |
4440 | ||
4441 | /* Move the zone boundaries inside the node if necessary */ | |
4442 | zone_end_pfn = min(zone_end_pfn, node_end_pfn); | |
4443 | zone_start_pfn = max(zone_start_pfn, node_start_pfn); | |
4444 | ||
4445 | /* Return the spanned pages */ | |
4446 | return zone_end_pfn - zone_start_pfn; | |
4447 | } | |
4448 | ||
4449 | /* | |
4450 | * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, | |
88ca3b94 | 4451 | * then all holes in the requested range will be accounted for. |
c713216d | 4452 | */ |
32996250 | 4453 | unsigned long __meminit __absent_pages_in_range(int nid, |
c713216d MG |
4454 | unsigned long range_start_pfn, |
4455 | unsigned long range_end_pfn) | |
4456 | { | |
96e907d1 TH |
4457 | unsigned long nr_absent = range_end_pfn - range_start_pfn; |
4458 | unsigned long start_pfn, end_pfn; | |
4459 | int i; | |
c713216d | 4460 | |
96e907d1 TH |
4461 | for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { |
4462 | start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); | |
4463 | end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); | |
4464 | nr_absent -= end_pfn - start_pfn; | |
c713216d | 4465 | } |
96e907d1 | 4466 | return nr_absent; |
c713216d MG |
4467 | } |
4468 | ||
4469 | /** | |
4470 | * absent_pages_in_range - Return number of page frames in holes within a range | |
4471 | * @start_pfn: The start PFN to start searching for holes | |
4472 | * @end_pfn: The end PFN to stop searching for holes | |
4473 | * | |
88ca3b94 | 4474 | * It returns the number of pages frames in memory holes within a range. |
c713216d MG |
4475 | */ |
4476 | unsigned long __init absent_pages_in_range(unsigned long start_pfn, | |
4477 | unsigned long end_pfn) | |
4478 | { | |
4479 | return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); | |
4480 | } | |
4481 | ||
4482 | /* Return the number of page frames in holes in a zone on a node */ | |
6ea6e688 | 4483 | static unsigned long __meminit zone_absent_pages_in_node(int nid, |
c713216d | 4484 | unsigned long zone_type, |
7960aedd ZY |
4485 | unsigned long node_start_pfn, |
4486 | unsigned long node_end_pfn, | |
c713216d MG |
4487 | unsigned long *ignored) |
4488 | { | |
96e907d1 TH |
4489 | unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; |
4490 | unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; | |
9c7cd687 MG |
4491 | unsigned long zone_start_pfn, zone_end_pfn; |
4492 | ||
96e907d1 TH |
4493 | zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); |
4494 | zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); | |
9c7cd687 | 4495 | |
2a1e274a MG |
4496 | adjust_zone_range_for_zone_movable(nid, zone_type, |
4497 | node_start_pfn, node_end_pfn, | |
4498 | &zone_start_pfn, &zone_end_pfn); | |
9c7cd687 | 4499 | return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); |
c713216d | 4500 | } |
0e0b864e | 4501 | |
0ee332c1 | 4502 | #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ |
6ea6e688 | 4503 | static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, |
c713216d | 4504 | unsigned long zone_type, |
7960aedd ZY |
4505 | unsigned long node_start_pfn, |
4506 | unsigned long node_end_pfn, | |
c713216d MG |
4507 | unsigned long *zones_size) |
4508 | { | |
4509 | return zones_size[zone_type]; | |
4510 | } | |
4511 | ||
6ea6e688 | 4512 | static inline unsigned long __meminit zone_absent_pages_in_node(int nid, |
c713216d | 4513 | unsigned long zone_type, |
7960aedd ZY |
4514 | unsigned long node_start_pfn, |
4515 | unsigned long node_end_pfn, | |
c713216d MG |
4516 | unsigned long *zholes_size) |
4517 | { | |
4518 | if (!zholes_size) | |
4519 | return 0; | |
4520 | ||
4521 | return zholes_size[zone_type]; | |
4522 | } | |
20e6926d | 4523 | |
0ee332c1 | 4524 | #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ |
c713216d | 4525 | |
a3142c8e | 4526 | static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, |
7960aedd ZY |
4527 | unsigned long node_start_pfn, |
4528 | unsigned long node_end_pfn, | |
4529 | unsigned long *zones_size, | |
4530 | unsigned long *zholes_size) | |
c713216d MG |
4531 | { |
4532 | unsigned long realtotalpages, totalpages = 0; | |
4533 | enum zone_type i; | |
4534 | ||
4535 | for (i = 0; i < MAX_NR_ZONES; i++) | |
4536 | totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, | |
7960aedd ZY |
4537 | node_start_pfn, |
4538 | node_end_pfn, | |
4539 | zones_size); | |
c713216d MG |
4540 | pgdat->node_spanned_pages = totalpages; |
4541 | ||
4542 | realtotalpages = totalpages; | |
4543 | for (i = 0; i < MAX_NR_ZONES; i++) | |
4544 | realtotalpages -= | |
4545 | zone_absent_pages_in_node(pgdat->node_id, i, | |
7960aedd ZY |
4546 | node_start_pfn, node_end_pfn, |
4547 | zholes_size); | |
c713216d MG |
4548 | pgdat->node_present_pages = realtotalpages; |
4549 | printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, | |
4550 | realtotalpages); | |
4551 | } | |
4552 | ||
835c134e MG |
4553 | #ifndef CONFIG_SPARSEMEM |
4554 | /* | |
4555 | * Calculate the size of the zone->blockflags rounded to an unsigned long | |
d9c23400 MG |
4556 | * Start by making sure zonesize is a multiple of pageblock_order by rounding |
4557 | * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally | |
835c134e MG |
4558 | * round what is now in bits to nearest long in bits, then return it in |
4559 | * bytes. | |
4560 | */ | |
7c45512d | 4561 | static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) |
835c134e MG |
4562 | { |
4563 | unsigned long usemapsize; | |
4564 | ||
7c45512d | 4565 | zonesize += zone_start_pfn & (pageblock_nr_pages-1); |
d9c23400 MG |
4566 | usemapsize = roundup(zonesize, pageblock_nr_pages); |
4567 | usemapsize = usemapsize >> pageblock_order; | |
835c134e MG |
4568 | usemapsize *= NR_PAGEBLOCK_BITS; |
4569 | usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); | |
4570 | ||
4571 | return usemapsize / 8; | |
4572 | } | |
4573 | ||
4574 | static void __init setup_usemap(struct pglist_data *pgdat, | |
7c45512d LT |
4575 | struct zone *zone, |
4576 | unsigned long zone_start_pfn, | |
4577 | unsigned long zonesize) | |
835c134e | 4578 | { |
7c45512d | 4579 | unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); |
835c134e | 4580 | zone->pageblock_flags = NULL; |
58a01a45 | 4581 | if (usemapsize) |
8f389a99 YL |
4582 | zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat, |
4583 | usemapsize); | |
835c134e MG |
4584 | } |
4585 | #else | |
7c45512d LT |
4586 | static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, |
4587 | unsigned long zone_start_pfn, unsigned long zonesize) {} | |
835c134e MG |
4588 | #endif /* CONFIG_SPARSEMEM */ |
4589 | ||
d9c23400 | 4590 | #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE |
ba72cb8c | 4591 | |
d9c23400 | 4592 | /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ |
ca57df79 | 4593 | void __init set_pageblock_order(void) |
d9c23400 | 4594 | { |
955c1cd7 AM |
4595 | unsigned int order; |
4596 | ||
d9c23400 MG |
4597 | /* Check that pageblock_nr_pages has not already been setup */ |
4598 | if (pageblock_order) | |
4599 | return; | |
4600 | ||
955c1cd7 AM |
4601 | if (HPAGE_SHIFT > PAGE_SHIFT) |
4602 | order = HUGETLB_PAGE_ORDER; | |
4603 | else | |
4604 | order = MAX_ORDER - 1; | |
4605 | ||
d9c23400 MG |
4606 | /* |
4607 | * Assume the largest contiguous order of interest is a huge page. | |
955c1cd7 AM |
4608 | * This value may be variable depending on boot parameters on IA64 and |
4609 | * powerpc. | |
d9c23400 MG |
4610 | */ |
4611 | pageblock_order = order; | |
4612 | } | |
4613 | #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ | |
4614 | ||
ba72cb8c MG |
4615 | /* |
4616 | * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() | |
955c1cd7 AM |
4617 | * is unused as pageblock_order is set at compile-time. See |
4618 | * include/linux/pageblock-flags.h for the values of pageblock_order based on | |
4619 | * the kernel config | |
ba72cb8c | 4620 | */ |
ca57df79 | 4621 | void __init set_pageblock_order(void) |
ba72cb8c | 4622 | { |
ba72cb8c | 4623 | } |
d9c23400 MG |
4624 | |
4625 | #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ | |
4626 | ||
01cefaef JL |
4627 | static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages, |
4628 | unsigned long present_pages) | |
4629 | { | |
4630 | unsigned long pages = spanned_pages; | |
4631 | ||
4632 | /* | |
4633 | * Provide a more accurate estimation if there are holes within | |
4634 | * the zone and SPARSEMEM is in use. If there are holes within the | |
4635 | * zone, each populated memory region may cost us one or two extra | |
4636 | * memmap pages due to alignment because memmap pages for each | |
4637 | * populated regions may not naturally algined on page boundary. | |
4638 | * So the (present_pages >> 4) heuristic is a tradeoff for that. | |
4639 | */ | |
4640 | if (spanned_pages > present_pages + (present_pages >> 4) && | |
4641 | IS_ENABLED(CONFIG_SPARSEMEM)) | |
4642 | pages = present_pages; | |
4643 | ||
4644 | return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; | |
4645 | } | |
4646 | ||
1da177e4 LT |
4647 | /* |
4648 | * Set up the zone data structures: | |
4649 | * - mark all pages reserved | |
4650 | * - mark all memory queues empty | |
4651 | * - clear the memory bitmaps | |
6527af5d MK |
4652 | * |
4653 | * NOTE: pgdat should get zeroed by caller. | |
1da177e4 | 4654 | */ |
b5a0e011 | 4655 | static void __paginginit free_area_init_core(struct pglist_data *pgdat, |
7960aedd | 4656 | unsigned long node_start_pfn, unsigned long node_end_pfn, |
1da177e4 LT |
4657 | unsigned long *zones_size, unsigned long *zholes_size) |
4658 | { | |
2f1b6248 | 4659 | enum zone_type j; |
ed8ece2e | 4660 | int nid = pgdat->node_id; |
1da177e4 | 4661 | unsigned long zone_start_pfn = pgdat->node_start_pfn; |
718127cc | 4662 | int ret; |
1da177e4 | 4663 | |
208d54e5 | 4664 | pgdat_resize_init(pgdat); |
8177a420 AA |
4665 | #ifdef CONFIG_NUMA_BALANCING |
4666 | spin_lock_init(&pgdat->numabalancing_migrate_lock); | |
4667 | pgdat->numabalancing_migrate_nr_pages = 0; | |
4668 | pgdat->numabalancing_migrate_next_window = jiffies; | |
4669 | #endif | |
1da177e4 | 4670 | init_waitqueue_head(&pgdat->kswapd_wait); |
5515061d | 4671 | init_waitqueue_head(&pgdat->pfmemalloc_wait); |
52d4b9ac | 4672 | pgdat_page_cgroup_init(pgdat); |
5f63b720 | 4673 | |
1da177e4 LT |
4674 | for (j = 0; j < MAX_NR_ZONES; j++) { |
4675 | struct zone *zone = pgdat->node_zones + j; | |
9feedc9d | 4676 | unsigned long size, realsize, freesize, memmap_pages; |
1da177e4 | 4677 | |
7960aedd ZY |
4678 | size = zone_spanned_pages_in_node(nid, j, node_start_pfn, |
4679 | node_end_pfn, zones_size); | |
9feedc9d | 4680 | realsize = freesize = size - zone_absent_pages_in_node(nid, j, |
7960aedd ZY |
4681 | node_start_pfn, |
4682 | node_end_pfn, | |
c713216d | 4683 | zholes_size); |
1da177e4 | 4684 | |
0e0b864e | 4685 | /* |
9feedc9d | 4686 | * Adjust freesize so that it accounts for how much memory |
0e0b864e MG |
4687 | * is used by this zone for memmap. This affects the watermark |
4688 | * and per-cpu initialisations | |
4689 | */ | |
01cefaef | 4690 | memmap_pages = calc_memmap_size(size, realsize); |
9feedc9d JL |
4691 | if (freesize >= memmap_pages) { |
4692 | freesize -= memmap_pages; | |
5594c8c8 YL |
4693 | if (memmap_pages) |
4694 | printk(KERN_DEBUG | |
4695 | " %s zone: %lu pages used for memmap\n", | |
4696 | zone_names[j], memmap_pages); | |
0e0b864e MG |
4697 | } else |
4698 | printk(KERN_WARNING | |
9feedc9d JL |
4699 | " %s zone: %lu pages exceeds freesize %lu\n", |
4700 | zone_names[j], memmap_pages, freesize); | |
0e0b864e | 4701 | |
6267276f | 4702 | /* Account for reserved pages */ |
9feedc9d JL |
4703 | if (j == 0 && freesize > dma_reserve) { |
4704 | freesize -= dma_reserve; | |
d903ef9f | 4705 | printk(KERN_DEBUG " %s zone: %lu pages reserved\n", |
6267276f | 4706 | zone_names[0], dma_reserve); |
0e0b864e MG |
4707 | } |
4708 | ||
98d2b0eb | 4709 | if (!is_highmem_idx(j)) |
9feedc9d | 4710 | nr_kernel_pages += freesize; |
01cefaef JL |
4711 | /* Charge for highmem memmap if there are enough kernel pages */ |
4712 | else if (nr_kernel_pages > memmap_pages * 2) | |
4713 | nr_kernel_pages -= memmap_pages; | |
9feedc9d | 4714 | nr_all_pages += freesize; |
1da177e4 LT |
4715 | |
4716 | zone->spanned_pages = size; | |
306f2e9e | 4717 | zone->present_pages = realsize; |
9feedc9d JL |
4718 | /* |
4719 | * Set an approximate value for lowmem here, it will be adjusted | |
4720 | * when the bootmem allocator frees pages into the buddy system. | |
4721 | * And all highmem pages will be managed by the buddy system. | |
4722 | */ | |
4723 | zone->managed_pages = is_highmem_idx(j) ? realsize : freesize; | |
9614634f | 4724 | #ifdef CONFIG_NUMA |
d5f541ed | 4725 | zone->node = nid; |
9feedc9d | 4726 | zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio) |
9614634f | 4727 | / 100; |
9feedc9d | 4728 | zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100; |
9614634f | 4729 | #endif |
1da177e4 LT |
4730 | zone->name = zone_names[j]; |
4731 | spin_lock_init(&zone->lock); | |
4732 | spin_lock_init(&zone->lru_lock); | |
bdc8cb98 | 4733 | zone_seqlock_init(zone); |
1da177e4 | 4734 | zone->zone_pgdat = pgdat; |
1da177e4 | 4735 | |
ed8ece2e | 4736 | zone_pcp_init(zone); |
bea8c150 | 4737 | lruvec_init(&zone->lruvec); |
1da177e4 LT |
4738 | if (!size) |
4739 | continue; | |
4740 | ||
955c1cd7 | 4741 | set_pageblock_order(); |
7c45512d | 4742 | setup_usemap(pgdat, zone, zone_start_pfn, size); |
a2f3aa02 DH |
4743 | ret = init_currently_empty_zone(zone, zone_start_pfn, |
4744 | size, MEMMAP_EARLY); | |
718127cc | 4745 | BUG_ON(ret); |
76cdd58e | 4746 | memmap_init(size, nid, j, zone_start_pfn); |
1da177e4 | 4747 | zone_start_pfn += size; |
1da177e4 LT |
4748 | } |
4749 | } | |
4750 | ||
577a32f6 | 4751 | static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) |
1da177e4 | 4752 | { |
1da177e4 LT |
4753 | /* Skip empty nodes */ |
4754 | if (!pgdat->node_spanned_pages) | |
4755 | return; | |
4756 | ||
d41dee36 | 4757 | #ifdef CONFIG_FLAT_NODE_MEM_MAP |
1da177e4 LT |
4758 | /* ia64 gets its own node_mem_map, before this, without bootmem */ |
4759 | if (!pgdat->node_mem_map) { | |
e984bb43 | 4760 | unsigned long size, start, end; |
d41dee36 AW |
4761 | struct page *map; |
4762 | ||
e984bb43 BP |
4763 | /* |
4764 | * The zone's endpoints aren't required to be MAX_ORDER | |
4765 | * aligned but the node_mem_map endpoints must be in order | |
4766 | * for the buddy allocator to function correctly. | |
4767 | */ | |
4768 | start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); | |
108bcc96 | 4769 | end = pgdat_end_pfn(pgdat); |
e984bb43 BP |
4770 | end = ALIGN(end, MAX_ORDER_NR_PAGES); |
4771 | size = (end - start) * sizeof(struct page); | |
6f167ec7 DH |
4772 | map = alloc_remap(pgdat->node_id, size); |
4773 | if (!map) | |
8f389a99 | 4774 | map = alloc_bootmem_node_nopanic(pgdat, size); |
e984bb43 | 4775 | pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); |
1da177e4 | 4776 | } |
12d810c1 | 4777 | #ifndef CONFIG_NEED_MULTIPLE_NODES |
1da177e4 LT |
4778 | /* |
4779 | * With no DISCONTIG, the global mem_map is just set as node 0's | |
4780 | */ | |
c713216d | 4781 | if (pgdat == NODE_DATA(0)) { |
1da177e4 | 4782 | mem_map = NODE_DATA(0)->node_mem_map; |
0ee332c1 | 4783 | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP |
c713216d | 4784 | if (page_to_pfn(mem_map) != pgdat->node_start_pfn) |
467bc461 | 4785 | mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); |
0ee332c1 | 4786 | #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ |
c713216d | 4787 | } |
1da177e4 | 4788 | #endif |
d41dee36 | 4789 | #endif /* CONFIG_FLAT_NODE_MEM_MAP */ |
1da177e4 LT |
4790 | } |
4791 | ||
9109fb7b JW |
4792 | void __paginginit free_area_init_node(int nid, unsigned long *zones_size, |
4793 | unsigned long node_start_pfn, unsigned long *zholes_size) | |
1da177e4 | 4794 | { |
9109fb7b | 4795 | pg_data_t *pgdat = NODE_DATA(nid); |
7960aedd ZY |
4796 | unsigned long start_pfn = 0; |
4797 | unsigned long end_pfn = 0; | |
9109fb7b | 4798 | |
88fdf75d | 4799 | /* pg_data_t should be reset to zero when it's allocated */ |
8783b6e2 | 4800 | WARN_ON(pgdat->nr_zones || pgdat->classzone_idx); |
88fdf75d | 4801 | |
1da177e4 LT |
4802 | pgdat->node_id = nid; |
4803 | pgdat->node_start_pfn = node_start_pfn; | |
957f822a | 4804 | init_zone_allows_reclaim(nid); |
7960aedd ZY |
4805 | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP |
4806 | get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); | |
4807 | #endif | |
4808 | calculate_node_totalpages(pgdat, start_pfn, end_pfn, | |
4809 | zones_size, zholes_size); | |
1da177e4 LT |
4810 | |
4811 | alloc_node_mem_map(pgdat); | |
e8c27ac9 YL |
4812 | #ifdef CONFIG_FLAT_NODE_MEM_MAP |
4813 | printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", | |
4814 | nid, (unsigned long)pgdat, | |
4815 | (unsigned long)pgdat->node_mem_map); | |
4816 | #endif | |
1da177e4 | 4817 | |
7960aedd ZY |
4818 | free_area_init_core(pgdat, start_pfn, end_pfn, |
4819 | zones_size, zholes_size); | |
1da177e4 LT |
4820 | } |
4821 | ||
0ee332c1 | 4822 | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP |
418508c1 MS |
4823 | |
4824 | #if MAX_NUMNODES > 1 | |
4825 | /* | |
4826 | * Figure out the number of possible node ids. | |
4827 | */ | |
f9872caf | 4828 | void __init setup_nr_node_ids(void) |
418508c1 MS |
4829 | { |
4830 | unsigned int node; | |
4831 | unsigned int highest = 0; | |
4832 | ||
4833 | for_each_node_mask(node, node_possible_map) | |
4834 | highest = node; | |
4835 | nr_node_ids = highest + 1; | |
4836 | } | |
418508c1 MS |
4837 | #endif |
4838 | ||
1e01979c TH |
4839 | /** |
4840 | * node_map_pfn_alignment - determine the maximum internode alignment | |
4841 | * | |
4842 | * This function should be called after node map is populated and sorted. | |
4843 | * It calculates the maximum power of two alignment which can distinguish | |
4844 | * all the nodes. | |
4845 | * | |
4846 | * For example, if all nodes are 1GiB and aligned to 1GiB, the return value | |
4847 | * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the | |
4848 | * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is | |
4849 | * shifted, 1GiB is enough and this function will indicate so. | |
4850 | * | |
4851 | * This is used to test whether pfn -> nid mapping of the chosen memory | |
4852 | * model has fine enough granularity to avoid incorrect mapping for the | |
4853 | * populated node map. | |
4854 | * | |
4855 | * Returns the determined alignment in pfn's. 0 if there is no alignment | |
4856 | * requirement (single node). | |
4857 | */ | |
4858 | unsigned long __init node_map_pfn_alignment(void) | |
4859 | { | |
4860 | unsigned long accl_mask = 0, last_end = 0; | |
c13291a5 | 4861 | unsigned long start, end, mask; |
1e01979c | 4862 | int last_nid = -1; |
c13291a5 | 4863 | int i, nid; |
1e01979c | 4864 | |
c13291a5 | 4865 | for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { |
1e01979c TH |
4866 | if (!start || last_nid < 0 || last_nid == nid) { |
4867 | last_nid = nid; | |
4868 | last_end = end; | |
4869 | continue; | |
4870 | } | |
4871 | ||
4872 | /* | |
4873 | * Start with a mask granular enough to pin-point to the | |
4874 | * start pfn and tick off bits one-by-one until it becomes | |
4875 | * too coarse to separate the current node from the last. | |
4876 | */ | |
4877 | mask = ~((1 << __ffs(start)) - 1); | |
4878 | while (mask && last_end <= (start & (mask << 1))) | |
4879 | mask <<= 1; | |
4880 | ||
4881 | /* accumulate all internode masks */ | |
4882 | accl_mask |= mask; | |
4883 | } | |
4884 | ||
4885 | /* convert mask to number of pages */ | |
4886 | return ~accl_mask + 1; | |
4887 | } | |
4888 | ||
a6af2bc3 | 4889 | /* Find the lowest pfn for a node */ |
b69a7288 | 4890 | static unsigned long __init find_min_pfn_for_node(int nid) |
c713216d | 4891 | { |
a6af2bc3 | 4892 | unsigned long min_pfn = ULONG_MAX; |
c13291a5 TH |
4893 | unsigned long start_pfn; |
4894 | int i; | |
1abbfb41 | 4895 | |
c13291a5 TH |
4896 | for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) |
4897 | min_pfn = min(min_pfn, start_pfn); | |
c713216d | 4898 | |
a6af2bc3 MG |
4899 | if (min_pfn == ULONG_MAX) { |
4900 | printk(KERN_WARNING | |
2bc0d261 | 4901 | "Could not find start_pfn for node %d\n", nid); |
a6af2bc3 MG |
4902 | return 0; |
4903 | } | |
4904 | ||
4905 | return min_pfn; | |
c713216d MG |
4906 | } |
4907 | ||
4908 | /** | |
4909 | * find_min_pfn_with_active_regions - Find the minimum PFN registered | |
4910 | * | |
4911 | * It returns the minimum PFN based on information provided via | |
88ca3b94 | 4912 | * add_active_range(). |
c713216d MG |
4913 | */ |
4914 | unsigned long __init find_min_pfn_with_active_regions(void) | |
4915 | { | |
4916 | return find_min_pfn_for_node(MAX_NUMNODES); | |
4917 | } | |
4918 | ||
37b07e41 LS |
4919 | /* |
4920 | * early_calculate_totalpages() | |
4921 | * Sum pages in active regions for movable zone. | |
4b0ef1fe | 4922 | * Populate N_MEMORY for calculating usable_nodes. |
37b07e41 | 4923 | */ |
484f51f8 | 4924 | static unsigned long __init early_calculate_totalpages(void) |
7e63efef | 4925 | { |
7e63efef | 4926 | unsigned long totalpages = 0; |
c13291a5 TH |
4927 | unsigned long start_pfn, end_pfn; |
4928 | int i, nid; | |
4929 | ||
4930 | for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { | |
4931 | unsigned long pages = end_pfn - start_pfn; | |
7e63efef | 4932 | |
37b07e41 LS |
4933 | totalpages += pages; |
4934 | if (pages) | |
4b0ef1fe | 4935 | node_set_state(nid, N_MEMORY); |
37b07e41 LS |
4936 | } |
4937 | return totalpages; | |
7e63efef MG |
4938 | } |
4939 | ||
2a1e274a MG |
4940 | /* |
4941 | * Find the PFN the Movable zone begins in each node. Kernel memory | |
4942 | * is spread evenly between nodes as long as the nodes have enough | |
4943 | * memory. When they don't, some nodes will have more kernelcore than | |
4944 | * others | |
4945 | */ | |
b224ef85 | 4946 | static void __init find_zone_movable_pfns_for_nodes(void) |
2a1e274a MG |
4947 | { |
4948 | int i, nid; | |
4949 | unsigned long usable_startpfn; | |
4950 | unsigned long kernelcore_node, kernelcore_remaining; | |
66918dcd | 4951 | /* save the state before borrow the nodemask */ |
4b0ef1fe | 4952 | nodemask_t saved_node_state = node_states[N_MEMORY]; |
37b07e41 | 4953 | unsigned long totalpages = early_calculate_totalpages(); |
4b0ef1fe | 4954 | int usable_nodes = nodes_weight(node_states[N_MEMORY]); |
2a1e274a | 4955 | |
7e63efef MG |
4956 | /* |
4957 | * If movablecore was specified, calculate what size of | |
4958 | * kernelcore that corresponds so that memory usable for | |
4959 | * any allocation type is evenly spread. If both kernelcore | |
4960 | * and movablecore are specified, then the value of kernelcore | |
4961 | * will be used for required_kernelcore if it's greater than | |
4962 | * what movablecore would have allowed. | |
4963 | */ | |
4964 | if (required_movablecore) { | |
7e63efef MG |
4965 | unsigned long corepages; |
4966 | ||
4967 | /* | |
4968 | * Round-up so that ZONE_MOVABLE is at least as large as what | |
4969 | * was requested by the user | |
4970 | */ | |
4971 | required_movablecore = | |
4972 | roundup(required_movablecore, MAX_ORDER_NR_PAGES); | |
4973 | corepages = totalpages - required_movablecore; | |
4974 | ||
4975 | required_kernelcore = max(required_kernelcore, corepages); | |
4976 | } | |
4977 | ||
20e6926d YL |
4978 | /* If kernelcore was not specified, there is no ZONE_MOVABLE */ |
4979 | if (!required_kernelcore) | |
66918dcd | 4980 | goto out; |
2a1e274a MG |
4981 | |
4982 | /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ | |
20e6926d | 4983 | find_usable_zone_for_movable(); |
2a1e274a MG |
4984 | usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; |
4985 | ||
4986 | restart: | |
4987 | /* Spread kernelcore memory as evenly as possible throughout nodes */ | |
4988 | kernelcore_node = required_kernelcore / usable_nodes; | |
4b0ef1fe | 4989 | for_each_node_state(nid, N_MEMORY) { |
c13291a5 TH |
4990 | unsigned long start_pfn, end_pfn; |
4991 | ||
2a1e274a MG |
4992 | /* |
4993 | * Recalculate kernelcore_node if the division per node | |
4994 | * now exceeds what is necessary to satisfy the requested | |
4995 | * amount of memory for the kernel | |
4996 | */ | |
4997 | if (required_kernelcore < kernelcore_node) | |
4998 | kernelcore_node = required_kernelcore / usable_nodes; | |
4999 | ||
5000 | /* | |
5001 | * As the map is walked, we track how much memory is usable | |
5002 | * by the kernel using kernelcore_remaining. When it is | |
5003 | * 0, the rest of the node is usable by ZONE_MOVABLE | |
5004 | */ | |
5005 | kernelcore_remaining = kernelcore_node; | |
5006 | ||
5007 | /* Go through each range of PFNs within this node */ | |
c13291a5 | 5008 | for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { |
2a1e274a MG |
5009 | unsigned long size_pages; |
5010 | ||
c13291a5 | 5011 | start_pfn = max(start_pfn, zone_movable_pfn[nid]); |
2a1e274a MG |
5012 | if (start_pfn >= end_pfn) |
5013 | continue; | |
5014 | ||
5015 | /* Account for what is only usable for kernelcore */ | |
5016 | if (start_pfn < usable_startpfn) { | |
5017 | unsigned long kernel_pages; | |
5018 | kernel_pages = min(end_pfn, usable_startpfn) | |
5019 | - start_pfn; | |
5020 | ||
5021 | kernelcore_remaining -= min(kernel_pages, | |
5022 | kernelcore_remaining); | |
5023 | required_kernelcore -= min(kernel_pages, | |
5024 | required_kernelcore); | |
5025 | ||
5026 | /* Continue if range is now fully accounted */ | |
5027 | if (end_pfn <= usable_startpfn) { | |
5028 | ||
5029 | /* | |
5030 | * Push zone_movable_pfn to the end so | |
5031 | * that if we have to rebalance | |
5032 | * kernelcore across nodes, we will | |
5033 | * not double account here | |
5034 | */ | |
5035 | zone_movable_pfn[nid] = end_pfn; | |
5036 | continue; | |
5037 | } | |
5038 | start_pfn = usable_startpfn; | |
5039 | } | |
5040 | ||
5041 | /* | |
5042 | * The usable PFN range for ZONE_MOVABLE is from | |
5043 | * start_pfn->end_pfn. Calculate size_pages as the | |
5044 | * number of pages used as kernelcore | |
5045 | */ | |
5046 | size_pages = end_pfn - start_pfn; | |
5047 | if (size_pages > kernelcore_remaining) | |
5048 | size_pages = kernelcore_remaining; | |
5049 | zone_movable_pfn[nid] = start_pfn + size_pages; | |
5050 | ||
5051 | /* | |
5052 | * Some kernelcore has been met, update counts and | |
5053 | * break if the kernelcore for this node has been | |
5054 | * satisified | |
5055 | */ | |
5056 | required_kernelcore -= min(required_kernelcore, | |
5057 | size_pages); | |
5058 | kernelcore_remaining -= size_pages; | |
5059 | if (!kernelcore_remaining) | |
5060 | break; | |
5061 | } | |
5062 | } | |
5063 | ||
5064 | /* | |
5065 | * If there is still required_kernelcore, we do another pass with one | |
5066 | * less node in the count. This will push zone_movable_pfn[nid] further | |
5067 | * along on the nodes that still have memory until kernelcore is | |
5068 | * satisified | |
5069 | */ | |
5070 | usable_nodes--; | |
5071 | if (usable_nodes && required_kernelcore > usable_nodes) | |
5072 | goto restart; | |
5073 | ||
5074 | /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ | |
5075 | for (nid = 0; nid < MAX_NUMNODES; nid++) | |
5076 | zone_movable_pfn[nid] = | |
5077 | roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); | |
66918dcd | 5078 | |
20e6926d | 5079 | out: |
66918dcd | 5080 | /* restore the node_state */ |
4b0ef1fe | 5081 | node_states[N_MEMORY] = saved_node_state; |
2a1e274a MG |
5082 | } |
5083 | ||
4b0ef1fe LJ |
5084 | /* Any regular or high memory on that node ? */ |
5085 | static void check_for_memory(pg_data_t *pgdat, int nid) | |
37b07e41 | 5086 | { |
37b07e41 LS |
5087 | enum zone_type zone_type; |
5088 | ||
4b0ef1fe LJ |
5089 | if (N_MEMORY == N_NORMAL_MEMORY) |
5090 | return; | |
5091 | ||
5092 | for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { | |
37b07e41 | 5093 | struct zone *zone = &pgdat->node_zones[zone_type]; |
d0048b0e | 5094 | if (zone->present_pages) { |
4b0ef1fe LJ |
5095 | node_set_state(nid, N_HIGH_MEMORY); |
5096 | if (N_NORMAL_MEMORY != N_HIGH_MEMORY && | |
5097 | zone_type <= ZONE_NORMAL) | |
5098 | node_set_state(nid, N_NORMAL_MEMORY); | |
d0048b0e BL |
5099 | break; |
5100 | } | |
37b07e41 | 5101 | } |
37b07e41 LS |
5102 | } |
5103 | ||
c713216d MG |
5104 | /** |
5105 | * free_area_init_nodes - Initialise all pg_data_t and zone data | |
88ca3b94 | 5106 | * @max_zone_pfn: an array of max PFNs for each zone |
c713216d MG |
5107 | * |
5108 | * This will call free_area_init_node() for each active node in the system. | |
5109 | * Using the page ranges provided by add_active_range(), the size of each | |
5110 | * zone in each node and their holes is calculated. If the maximum PFN | |
5111 | * between two adjacent zones match, it is assumed that the zone is empty. | |
5112 | * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed | |
5113 | * that arch_max_dma32_pfn has no pages. It is also assumed that a zone | |
5114 | * starts where the previous one ended. For example, ZONE_DMA32 starts | |
5115 | * at arch_max_dma_pfn. | |
5116 | */ | |
5117 | void __init free_area_init_nodes(unsigned long *max_zone_pfn) | |
5118 | { | |
c13291a5 TH |
5119 | unsigned long start_pfn, end_pfn; |
5120 | int i, nid; | |
a6af2bc3 | 5121 | |
c713216d MG |
5122 | /* Record where the zone boundaries are */ |
5123 | memset(arch_zone_lowest_possible_pfn, 0, | |
5124 | sizeof(arch_zone_lowest_possible_pfn)); | |
5125 | memset(arch_zone_highest_possible_pfn, 0, | |
5126 | sizeof(arch_zone_highest_possible_pfn)); | |
5127 | arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); | |
5128 | arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; | |
5129 | for (i = 1; i < MAX_NR_ZONES; i++) { | |
2a1e274a MG |
5130 | if (i == ZONE_MOVABLE) |
5131 | continue; | |
c713216d MG |
5132 | arch_zone_lowest_possible_pfn[i] = |
5133 | arch_zone_highest_possible_pfn[i-1]; | |
5134 | arch_zone_highest_possible_pfn[i] = | |
5135 | max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); | |
5136 | } | |
2a1e274a MG |
5137 | arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; |
5138 | arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; | |
5139 | ||
5140 | /* Find the PFNs that ZONE_MOVABLE begins at in each node */ | |
5141 | memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); | |
b224ef85 | 5142 | find_zone_movable_pfns_for_nodes(); |
c713216d | 5143 | |
c713216d | 5144 | /* Print out the zone ranges */ |
a62e2f4f | 5145 | printk("Zone ranges:\n"); |
2a1e274a MG |
5146 | for (i = 0; i < MAX_NR_ZONES; i++) { |
5147 | if (i == ZONE_MOVABLE) | |
5148 | continue; | |
155cbfc8 | 5149 | printk(KERN_CONT " %-8s ", zone_names[i]); |
72f0ba02 DR |
5150 | if (arch_zone_lowest_possible_pfn[i] == |
5151 | arch_zone_highest_possible_pfn[i]) | |
155cbfc8 | 5152 | printk(KERN_CONT "empty\n"); |
72f0ba02 | 5153 | else |
a62e2f4f BH |
5154 | printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n", |
5155 | arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT, | |
5156 | (arch_zone_highest_possible_pfn[i] | |
5157 | << PAGE_SHIFT) - 1); | |
2a1e274a MG |
5158 | } |
5159 | ||
5160 | /* Print out the PFNs ZONE_MOVABLE begins at in each node */ | |
a62e2f4f | 5161 | printk("Movable zone start for each node\n"); |
2a1e274a MG |
5162 | for (i = 0; i < MAX_NUMNODES; i++) { |
5163 | if (zone_movable_pfn[i]) | |
a62e2f4f BH |
5164 | printk(" Node %d: %#010lx\n", i, |
5165 | zone_movable_pfn[i] << PAGE_SHIFT); | |
2a1e274a | 5166 | } |
c713216d | 5167 | |
f2d52fe5 | 5168 | /* Print out the early node map */ |
a62e2f4f | 5169 | printk("Early memory node ranges\n"); |
c13291a5 | 5170 | for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) |
a62e2f4f BH |
5171 | printk(" node %3d: [mem %#010lx-%#010lx]\n", nid, |
5172 | start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1); | |
c713216d MG |
5173 | |
5174 | /* Initialise every node */ | |
708614e6 | 5175 | mminit_verify_pageflags_layout(); |
8ef82866 | 5176 | setup_nr_node_ids(); |
c713216d MG |
5177 | for_each_online_node(nid) { |
5178 | pg_data_t *pgdat = NODE_DATA(nid); | |
9109fb7b | 5179 | free_area_init_node(nid, NULL, |
c713216d | 5180 | find_min_pfn_for_node(nid), NULL); |
37b07e41 LS |
5181 | |
5182 | /* Any memory on that node */ | |
5183 | if (pgdat->node_present_pages) | |
4b0ef1fe LJ |
5184 | node_set_state(nid, N_MEMORY); |
5185 | check_for_memory(pgdat, nid); | |
c713216d MG |
5186 | } |
5187 | } | |
2a1e274a | 5188 | |
7e63efef | 5189 | static int __init cmdline_parse_core(char *p, unsigned long *core) |
2a1e274a MG |
5190 | { |
5191 | unsigned long long coremem; | |
5192 | if (!p) | |
5193 | return -EINVAL; | |
5194 | ||
5195 | coremem = memparse(p, &p); | |
7e63efef | 5196 | *core = coremem >> PAGE_SHIFT; |
2a1e274a | 5197 | |
7e63efef | 5198 | /* Paranoid check that UL is enough for the coremem value */ |
2a1e274a MG |
5199 | WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); |
5200 | ||
5201 | return 0; | |
5202 | } | |
ed7ed365 | 5203 | |
7e63efef MG |
5204 | /* |
5205 | * kernelcore=size sets the amount of memory for use for allocations that | |
5206 | * cannot be reclaimed or migrated. | |
5207 | */ | |
5208 | static int __init cmdline_parse_kernelcore(char *p) | |
5209 | { | |
5210 | return cmdline_parse_core(p, &required_kernelcore); | |
5211 | } | |
5212 | ||
5213 | /* | |
5214 | * movablecore=size sets the amount of memory for use for allocations that | |
5215 | * can be reclaimed or migrated. | |
5216 | */ | |
5217 | static int __init cmdline_parse_movablecore(char *p) | |
5218 | { | |
5219 | return cmdline_parse_core(p, &required_movablecore); | |
5220 | } | |
5221 | ||
ed7ed365 | 5222 | early_param("kernelcore", cmdline_parse_kernelcore); |
7e63efef | 5223 | early_param("movablecore", cmdline_parse_movablecore); |
ed7ed365 | 5224 | |
0ee332c1 | 5225 | #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ |
c713216d | 5226 | |
c3d5f5f0 JL |
5227 | void adjust_managed_page_count(struct page *page, long count) |
5228 | { | |
5229 | spin_lock(&managed_page_count_lock); | |
5230 | page_zone(page)->managed_pages += count; | |
5231 | totalram_pages += count; | |
3dcc0571 JL |
5232 | #ifdef CONFIG_HIGHMEM |
5233 | if (PageHighMem(page)) | |
5234 | totalhigh_pages += count; | |
5235 | #endif | |
c3d5f5f0 JL |
5236 | spin_unlock(&managed_page_count_lock); |
5237 | } | |
3dcc0571 | 5238 | EXPORT_SYMBOL(adjust_managed_page_count); |
c3d5f5f0 | 5239 | |
11199692 | 5240 | unsigned long free_reserved_area(void *start, void *end, int poison, char *s) |
69afade7 | 5241 | { |
11199692 JL |
5242 | void *pos; |
5243 | unsigned long pages = 0; | |
69afade7 | 5244 | |
11199692 JL |
5245 | start = (void *)PAGE_ALIGN((unsigned long)start); |
5246 | end = (void *)((unsigned long)end & PAGE_MASK); | |
5247 | for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { | |
dbe67df4 | 5248 | if ((unsigned int)poison <= 0xFF) |
11199692 JL |
5249 | memset(pos, poison, PAGE_SIZE); |
5250 | free_reserved_page(virt_to_page(pos)); | |
69afade7 JL |
5251 | } |
5252 | ||
5253 | if (pages && s) | |
11199692 | 5254 | pr_info("Freeing %s memory: %ldK (%p - %p)\n", |
69afade7 JL |
5255 | s, pages << (PAGE_SHIFT - 10), start, end); |
5256 | ||
5257 | return pages; | |
5258 | } | |
11199692 | 5259 | EXPORT_SYMBOL(free_reserved_area); |
69afade7 | 5260 | |
cfa11e08 JL |
5261 | #ifdef CONFIG_HIGHMEM |
5262 | void free_highmem_page(struct page *page) | |
5263 | { | |
5264 | __free_reserved_page(page); | |
5265 | totalram_pages++; | |
7b4b2a0d | 5266 | page_zone(page)->managed_pages++; |
cfa11e08 JL |
5267 | totalhigh_pages++; |
5268 | } | |
5269 | #endif | |
5270 | ||
7ee3d4e8 JL |
5271 | |
5272 | void __init mem_init_print_info(const char *str) | |
5273 | { | |
5274 | unsigned long physpages, codesize, datasize, rosize, bss_size; | |
5275 | unsigned long init_code_size, init_data_size; | |
5276 | ||
5277 | physpages = get_num_physpages(); | |
5278 | codesize = _etext - _stext; | |
5279 | datasize = _edata - _sdata; | |
5280 | rosize = __end_rodata - __start_rodata; | |
5281 | bss_size = __bss_stop - __bss_start; | |
5282 | init_data_size = __init_end - __init_begin; | |
5283 | init_code_size = _einittext - _sinittext; | |
5284 | ||
5285 | /* | |
5286 | * Detect special cases and adjust section sizes accordingly: | |
5287 | * 1) .init.* may be embedded into .data sections | |
5288 | * 2) .init.text.* may be out of [__init_begin, __init_end], | |
5289 | * please refer to arch/tile/kernel/vmlinux.lds.S. | |
5290 | * 3) .rodata.* may be embedded into .text or .data sections. | |
5291 | */ | |
5292 | #define adj_init_size(start, end, size, pos, adj) \ | |
5293 | if (start <= pos && pos < end && size > adj) \ | |
5294 | size -= adj; | |
5295 | ||
5296 | adj_init_size(__init_begin, __init_end, init_data_size, | |
5297 | _sinittext, init_code_size); | |
5298 | adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); | |
5299 | adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); | |
5300 | adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); | |
5301 | adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); | |
5302 | ||
5303 | #undef adj_init_size | |
5304 | ||
5305 | printk("Memory: %luK/%luK available " | |
5306 | "(%luK kernel code, %luK rwdata, %luK rodata, " | |
5307 | "%luK init, %luK bss, %luK reserved" | |
5308 | #ifdef CONFIG_HIGHMEM | |
5309 | ", %luK highmem" | |
5310 | #endif | |
5311 | "%s%s)\n", | |
5312 | nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10), | |
5313 | codesize >> 10, datasize >> 10, rosize >> 10, | |
5314 | (init_data_size + init_code_size) >> 10, bss_size >> 10, | |
5315 | (physpages - totalram_pages) << (PAGE_SHIFT-10), | |
5316 | #ifdef CONFIG_HIGHMEM | |
5317 | totalhigh_pages << (PAGE_SHIFT-10), | |
5318 | #endif | |
5319 | str ? ", " : "", str ? str : ""); | |
5320 | } | |
5321 | ||
0e0b864e | 5322 | /** |
88ca3b94 RD |
5323 | * set_dma_reserve - set the specified number of pages reserved in the first zone |
5324 | * @new_dma_reserve: The number of pages to mark reserved | |
0e0b864e MG |
5325 | * |
5326 | * The per-cpu batchsize and zone watermarks are determined by present_pages. | |
5327 | * In the DMA zone, a significant percentage may be consumed by kernel image | |
5328 | * and other unfreeable allocations which can skew the watermarks badly. This | |
88ca3b94 RD |
5329 | * function may optionally be used to account for unfreeable pages in the |
5330 | * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and | |
5331 | * smaller per-cpu batchsize. | |
0e0b864e MG |
5332 | */ |
5333 | void __init set_dma_reserve(unsigned long new_dma_reserve) | |
5334 | { | |
5335 | dma_reserve = new_dma_reserve; | |
5336 | } | |
5337 | ||
1da177e4 LT |
5338 | void __init free_area_init(unsigned long *zones_size) |
5339 | { | |
9109fb7b | 5340 | free_area_init_node(0, zones_size, |
1da177e4 LT |
5341 | __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); |
5342 | } | |
1da177e4 | 5343 | |
1da177e4 LT |
5344 | static int page_alloc_cpu_notify(struct notifier_block *self, |
5345 | unsigned long action, void *hcpu) | |
5346 | { | |
5347 | int cpu = (unsigned long)hcpu; | |
1da177e4 | 5348 | |
8bb78442 | 5349 | if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { |
f0cb3c76 | 5350 | lru_add_drain_cpu(cpu); |
9f8f2172 CL |
5351 | drain_pages(cpu); |
5352 | ||
5353 | /* | |
5354 | * Spill the event counters of the dead processor | |
5355 | * into the current processors event counters. | |
5356 | * This artificially elevates the count of the current | |
5357 | * processor. | |
5358 | */ | |
f8891e5e | 5359 | vm_events_fold_cpu(cpu); |
9f8f2172 CL |
5360 | |
5361 | /* | |
5362 | * Zero the differential counters of the dead processor | |
5363 | * so that the vm statistics are consistent. | |
5364 | * | |
5365 | * This is only okay since the processor is dead and cannot | |
5366 | * race with what we are doing. | |
5367 | */ | |
2244b95a | 5368 | refresh_cpu_vm_stats(cpu); |
1da177e4 LT |
5369 | } |
5370 | return NOTIFY_OK; | |
5371 | } | |
1da177e4 LT |
5372 | |
5373 | void __init page_alloc_init(void) | |
5374 | { | |
5375 | hotcpu_notifier(page_alloc_cpu_notify, 0); | |
5376 | } | |
5377 | ||
cb45b0e9 HA |
5378 | /* |
5379 | * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio | |
5380 | * or min_free_kbytes changes. | |
5381 | */ | |
5382 | static void calculate_totalreserve_pages(void) | |
5383 | { | |
5384 | struct pglist_data *pgdat; | |
5385 | unsigned long reserve_pages = 0; | |
2f6726e5 | 5386 | enum zone_type i, j; |
cb45b0e9 HA |
5387 | |
5388 | for_each_online_pgdat(pgdat) { | |
5389 | for (i = 0; i < MAX_NR_ZONES; i++) { | |
5390 | struct zone *zone = pgdat->node_zones + i; | |
5391 | unsigned long max = 0; | |
5392 | ||
5393 | /* Find valid and maximum lowmem_reserve in the zone */ | |
5394 | for (j = i; j < MAX_NR_ZONES; j++) { | |
5395 | if (zone->lowmem_reserve[j] > max) | |
5396 | max = zone->lowmem_reserve[j]; | |
5397 | } | |
5398 | ||
41858966 MG |
5399 | /* we treat the high watermark as reserved pages. */ |
5400 | max += high_wmark_pages(zone); | |
cb45b0e9 | 5401 | |
b40da049 JL |
5402 | if (max > zone->managed_pages) |
5403 | max = zone->managed_pages; | |
cb45b0e9 | 5404 | reserve_pages += max; |
ab8fabd4 JW |
5405 | /* |
5406 | * Lowmem reserves are not available to | |
5407 | * GFP_HIGHUSER page cache allocations and | |
5408 | * kswapd tries to balance zones to their high | |
5409 | * watermark. As a result, neither should be | |
5410 | * regarded as dirtyable memory, to prevent a | |
5411 | * situation where reclaim has to clean pages | |
5412 | * in order to balance the zones. | |
5413 | */ | |
5414 | zone->dirty_balance_reserve = max; | |
cb45b0e9 HA |
5415 | } |
5416 | } | |
ab8fabd4 | 5417 | dirty_balance_reserve = reserve_pages; |
cb45b0e9 HA |
5418 | totalreserve_pages = reserve_pages; |
5419 | } | |
5420 | ||
1da177e4 LT |
5421 | /* |
5422 | * setup_per_zone_lowmem_reserve - called whenever | |
5423 | * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone | |
5424 | * has a correct pages reserved value, so an adequate number of | |
5425 | * pages are left in the zone after a successful __alloc_pages(). | |
5426 | */ | |
5427 | static void setup_per_zone_lowmem_reserve(void) | |
5428 | { | |
5429 | struct pglist_data *pgdat; | |
2f6726e5 | 5430 | enum zone_type j, idx; |
1da177e4 | 5431 | |
ec936fc5 | 5432 | for_each_online_pgdat(pgdat) { |
1da177e4 LT |
5433 | for (j = 0; j < MAX_NR_ZONES; j++) { |
5434 | struct zone *zone = pgdat->node_zones + j; | |
b40da049 | 5435 | unsigned long managed_pages = zone->managed_pages; |
1da177e4 LT |
5436 | |
5437 | zone->lowmem_reserve[j] = 0; | |
5438 | ||
2f6726e5 CL |
5439 | idx = j; |
5440 | while (idx) { | |
1da177e4 LT |
5441 | struct zone *lower_zone; |
5442 | ||
2f6726e5 CL |
5443 | idx--; |
5444 | ||
1da177e4 LT |
5445 | if (sysctl_lowmem_reserve_ratio[idx] < 1) |
5446 | sysctl_lowmem_reserve_ratio[idx] = 1; | |
5447 | ||
5448 | lower_zone = pgdat->node_zones + idx; | |
b40da049 | 5449 | lower_zone->lowmem_reserve[j] = managed_pages / |
1da177e4 | 5450 | sysctl_lowmem_reserve_ratio[idx]; |
b40da049 | 5451 | managed_pages += lower_zone->managed_pages; |
1da177e4 LT |
5452 | } |
5453 | } | |
5454 | } | |
cb45b0e9 HA |
5455 | |
5456 | /* update totalreserve_pages */ | |
5457 | calculate_totalreserve_pages(); | |
1da177e4 LT |
5458 | } |
5459 | ||
cfd3da1e | 5460 | static void __setup_per_zone_wmarks(void) |
1da177e4 LT |
5461 | { |
5462 | unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); | |
5463 | unsigned long lowmem_pages = 0; | |
5464 | struct zone *zone; | |
5465 | unsigned long flags; | |
5466 | ||
5467 | /* Calculate total number of !ZONE_HIGHMEM pages */ | |
5468 | for_each_zone(zone) { | |
5469 | if (!is_highmem(zone)) | |
b40da049 | 5470 | lowmem_pages += zone->managed_pages; |
1da177e4 LT |
5471 | } |
5472 | ||
5473 | for_each_zone(zone) { | |
ac924c60 AM |
5474 | u64 tmp; |
5475 | ||
1125b4e3 | 5476 | spin_lock_irqsave(&zone->lock, flags); |
b40da049 | 5477 | tmp = (u64)pages_min * zone->managed_pages; |
ac924c60 | 5478 | do_div(tmp, lowmem_pages); |
1da177e4 LT |
5479 | if (is_highmem(zone)) { |
5480 | /* | |
669ed175 NP |
5481 | * __GFP_HIGH and PF_MEMALLOC allocations usually don't |
5482 | * need highmem pages, so cap pages_min to a small | |
5483 | * value here. | |
5484 | * | |
41858966 | 5485 | * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) |
669ed175 NP |
5486 | * deltas controls asynch page reclaim, and so should |
5487 | * not be capped for highmem. | |
1da177e4 | 5488 | */ |
90ae8d67 | 5489 | unsigned long min_pages; |
1da177e4 | 5490 | |
b40da049 | 5491 | min_pages = zone->managed_pages / 1024; |
90ae8d67 | 5492 | min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); |
41858966 | 5493 | zone->watermark[WMARK_MIN] = min_pages; |
1da177e4 | 5494 | } else { |
669ed175 NP |
5495 | /* |
5496 | * If it's a lowmem zone, reserve a number of pages | |
1da177e4 LT |
5497 | * proportionate to the zone's size. |
5498 | */ | |
41858966 | 5499 | zone->watermark[WMARK_MIN] = tmp; |
1da177e4 LT |
5500 | } |
5501 | ||
41858966 MG |
5502 | zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2); |
5503 | zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1); | |
49f223a9 | 5504 | |
56fd56b8 | 5505 | setup_zone_migrate_reserve(zone); |
1125b4e3 | 5506 | spin_unlock_irqrestore(&zone->lock, flags); |
1da177e4 | 5507 | } |
cb45b0e9 HA |
5508 | |
5509 | /* update totalreserve_pages */ | |
5510 | calculate_totalreserve_pages(); | |
1da177e4 LT |
5511 | } |
5512 | ||
cfd3da1e MG |
5513 | /** |
5514 | * setup_per_zone_wmarks - called when min_free_kbytes changes | |
5515 | * or when memory is hot-{added|removed} | |
5516 | * | |
5517 | * Ensures that the watermark[min,low,high] values for each zone are set | |
5518 | * correctly with respect to min_free_kbytes. | |
5519 | */ | |
5520 | void setup_per_zone_wmarks(void) | |
5521 | { | |
5522 | mutex_lock(&zonelists_mutex); | |
5523 | __setup_per_zone_wmarks(); | |
5524 | mutex_unlock(&zonelists_mutex); | |
5525 | } | |
5526 | ||
55a4462a | 5527 | /* |
556adecb RR |
5528 | * The inactive anon list should be small enough that the VM never has to |
5529 | * do too much work, but large enough that each inactive page has a chance | |
5530 | * to be referenced again before it is swapped out. | |
5531 | * | |
5532 | * The inactive_anon ratio is the target ratio of ACTIVE_ANON to | |
5533 | * INACTIVE_ANON pages on this zone's LRU, maintained by the | |
5534 | * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of | |
5535 | * the anonymous pages are kept on the inactive list. | |
5536 | * | |
5537 | * total target max | |
5538 | * memory ratio inactive anon | |
5539 | * ------------------------------------- | |
5540 | * 10MB 1 5MB | |
5541 | * 100MB 1 50MB | |
5542 | * 1GB 3 250MB | |
5543 | * 10GB 10 0.9GB | |
5544 | * 100GB 31 3GB | |
5545 | * 1TB 101 10GB | |
5546 | * 10TB 320 32GB | |
5547 | */ | |
1b79acc9 | 5548 | static void __meminit calculate_zone_inactive_ratio(struct zone *zone) |
556adecb | 5549 | { |
96cb4df5 | 5550 | unsigned int gb, ratio; |
556adecb | 5551 | |
96cb4df5 | 5552 | /* Zone size in gigabytes */ |
b40da049 | 5553 | gb = zone->managed_pages >> (30 - PAGE_SHIFT); |
96cb4df5 | 5554 | if (gb) |
556adecb | 5555 | ratio = int_sqrt(10 * gb); |
96cb4df5 MK |
5556 | else |
5557 | ratio = 1; | |
556adecb | 5558 | |
96cb4df5 MK |
5559 | zone->inactive_ratio = ratio; |
5560 | } | |
556adecb | 5561 | |
839a4fcc | 5562 | static void __meminit setup_per_zone_inactive_ratio(void) |
96cb4df5 MK |
5563 | { |
5564 | struct zone *zone; | |
5565 | ||
5566 | for_each_zone(zone) | |
5567 | calculate_zone_inactive_ratio(zone); | |
556adecb RR |
5568 | } |
5569 | ||
1da177e4 LT |
5570 | /* |
5571 | * Initialise min_free_kbytes. | |
5572 | * | |
5573 | * For small machines we want it small (128k min). For large machines | |
5574 | * we want it large (64MB max). But it is not linear, because network | |
5575 | * bandwidth does not increase linearly with machine size. We use | |
5576 | * | |
5577 | * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: | |
5578 | * min_free_kbytes = sqrt(lowmem_kbytes * 16) | |
5579 | * | |
5580 | * which yields | |
5581 | * | |
5582 | * 16MB: 512k | |
5583 | * 32MB: 724k | |
5584 | * 64MB: 1024k | |
5585 | * 128MB: 1448k | |
5586 | * 256MB: 2048k | |
5587 | * 512MB: 2896k | |
5588 | * 1024MB: 4096k | |
5589 | * 2048MB: 5792k | |
5590 | * 4096MB: 8192k | |
5591 | * 8192MB: 11584k | |
5592 | * 16384MB: 16384k | |
5593 | */ | |
1b79acc9 | 5594 | int __meminit init_per_zone_wmark_min(void) |
1da177e4 LT |
5595 | { |
5596 | unsigned long lowmem_kbytes; | |
5597 | ||
5598 | lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); | |
5599 | ||
5600 | min_free_kbytes = int_sqrt(lowmem_kbytes * 16); | |
5601 | if (min_free_kbytes < 128) | |
5602 | min_free_kbytes = 128; | |
5603 | if (min_free_kbytes > 65536) | |
5604 | min_free_kbytes = 65536; | |
bc75d33f | 5605 | setup_per_zone_wmarks(); |
a6cccdc3 | 5606 | refresh_zone_stat_thresholds(); |
1da177e4 | 5607 | setup_per_zone_lowmem_reserve(); |
556adecb | 5608 | setup_per_zone_inactive_ratio(); |
1da177e4 LT |
5609 | return 0; |
5610 | } | |
bc75d33f | 5611 | module_init(init_per_zone_wmark_min) |
1da177e4 LT |
5612 | |
5613 | /* | |
5614 | * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so | |
5615 | * that we can call two helper functions whenever min_free_kbytes | |
5616 | * changes. | |
5617 | */ | |
5618 | int min_free_kbytes_sysctl_handler(ctl_table *table, int write, | |
8d65af78 | 5619 | void __user *buffer, size_t *length, loff_t *ppos) |
1da177e4 | 5620 | { |
8d65af78 | 5621 | proc_dointvec(table, write, buffer, length, ppos); |
3b1d92c5 | 5622 | if (write) |
bc75d33f | 5623 | setup_per_zone_wmarks(); |
1da177e4 LT |
5624 | return 0; |
5625 | } | |
5626 | ||
9614634f CL |
5627 | #ifdef CONFIG_NUMA |
5628 | int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write, | |
8d65af78 | 5629 | void __user *buffer, size_t *length, loff_t *ppos) |
9614634f CL |
5630 | { |
5631 | struct zone *zone; | |
5632 | int rc; | |
5633 | ||
8d65af78 | 5634 | rc = proc_dointvec_minmax(table, write, buffer, length, ppos); |
9614634f CL |
5635 | if (rc) |
5636 | return rc; | |
5637 | ||
5638 | for_each_zone(zone) | |
b40da049 | 5639 | zone->min_unmapped_pages = (zone->managed_pages * |
9614634f CL |
5640 | sysctl_min_unmapped_ratio) / 100; |
5641 | return 0; | |
5642 | } | |
0ff38490 CL |
5643 | |
5644 | int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write, | |
8d65af78 | 5645 | void __user *buffer, size_t *length, loff_t *ppos) |
0ff38490 CL |
5646 | { |
5647 | struct zone *zone; | |
5648 | int rc; | |
5649 | ||
8d65af78 | 5650 | rc = proc_dointvec_minmax(table, write, buffer, length, ppos); |
0ff38490 CL |
5651 | if (rc) |
5652 | return rc; | |
5653 | ||
5654 | for_each_zone(zone) | |
b40da049 | 5655 | zone->min_slab_pages = (zone->managed_pages * |
0ff38490 CL |
5656 | sysctl_min_slab_ratio) / 100; |
5657 | return 0; | |
5658 | } | |
9614634f CL |
5659 | #endif |
5660 | ||
1da177e4 LT |
5661 | /* |
5662 | * lowmem_reserve_ratio_sysctl_handler - just a wrapper around | |
5663 | * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() | |
5664 | * whenever sysctl_lowmem_reserve_ratio changes. | |
5665 | * | |
5666 | * The reserve ratio obviously has absolutely no relation with the | |
41858966 | 5667 | * minimum watermarks. The lowmem reserve ratio can only make sense |
1da177e4 LT |
5668 | * if in function of the boot time zone sizes. |
5669 | */ | |
5670 | int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, | |
8d65af78 | 5671 | void __user *buffer, size_t *length, loff_t *ppos) |
1da177e4 | 5672 | { |
8d65af78 | 5673 | proc_dointvec_minmax(table, write, buffer, length, ppos); |
1da177e4 LT |
5674 | setup_per_zone_lowmem_reserve(); |
5675 | return 0; | |
5676 | } | |
5677 | ||
8ad4b1fb RS |
5678 | /* |
5679 | * percpu_pagelist_fraction - changes the pcp->high for each zone on each | |
5680 | * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist | |
5681 | * can have before it gets flushed back to buddy allocator. | |
5682 | */ | |
8ad4b1fb | 5683 | int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, |
8d65af78 | 5684 | void __user *buffer, size_t *length, loff_t *ppos) |
8ad4b1fb RS |
5685 | { |
5686 | struct zone *zone; | |
5687 | unsigned int cpu; | |
5688 | int ret; | |
5689 | ||
8d65af78 | 5690 | ret = proc_dointvec_minmax(table, write, buffer, length, ppos); |
93278814 | 5691 | if (!write || (ret < 0)) |
8ad4b1fb | 5692 | return ret; |
c8e251fa CS |
5693 | |
5694 | mutex_lock(&pcp_batch_high_lock); | |
364df0eb | 5695 | for_each_populated_zone(zone) { |
22a7f12b CS |
5696 | unsigned long high; |
5697 | high = zone->managed_pages / percpu_pagelist_fraction; | |
5698 | for_each_possible_cpu(cpu) | |
3664033c CS |
5699 | pageset_set_high(per_cpu_ptr(zone->pageset, cpu), |
5700 | high); | |
8ad4b1fb | 5701 | } |
c8e251fa | 5702 | mutex_unlock(&pcp_batch_high_lock); |
8ad4b1fb RS |
5703 | return 0; |
5704 | } | |
5705 | ||
f034b5d4 | 5706 | int hashdist = HASHDIST_DEFAULT; |
1da177e4 LT |
5707 | |
5708 | #ifdef CONFIG_NUMA | |
5709 | static int __init set_hashdist(char *str) | |
5710 | { | |
5711 | if (!str) | |
5712 | return 0; | |
5713 | hashdist = simple_strtoul(str, &str, 0); | |
5714 | return 1; | |
5715 | } | |
5716 | __setup("hashdist=", set_hashdist); | |
5717 | #endif | |
5718 | ||
5719 | /* | |
5720 | * allocate a large system hash table from bootmem | |
5721 | * - it is assumed that the hash table must contain an exact power-of-2 | |
5722 | * quantity of entries | |
5723 | * - limit is the number of hash buckets, not the total allocation size | |
5724 | */ | |
5725 | void *__init alloc_large_system_hash(const char *tablename, | |
5726 | unsigned long bucketsize, | |
5727 | unsigned long numentries, | |
5728 | int scale, | |
5729 | int flags, | |
5730 | unsigned int *_hash_shift, | |
5731 | unsigned int *_hash_mask, | |
31fe62b9 TB |
5732 | unsigned long low_limit, |
5733 | unsigned long high_limit) | |
1da177e4 | 5734 | { |
31fe62b9 | 5735 | unsigned long long max = high_limit; |
1da177e4 LT |
5736 | unsigned long log2qty, size; |
5737 | void *table = NULL; | |
5738 | ||
5739 | /* allow the kernel cmdline to have a say */ | |
5740 | if (!numentries) { | |
5741 | /* round applicable memory size up to nearest megabyte */ | |
04903664 | 5742 | numentries = nr_kernel_pages; |
1da177e4 LT |
5743 | numentries += (1UL << (20 - PAGE_SHIFT)) - 1; |
5744 | numentries >>= 20 - PAGE_SHIFT; | |
5745 | numentries <<= 20 - PAGE_SHIFT; | |
5746 | ||
5747 | /* limit to 1 bucket per 2^scale bytes of low memory */ | |
5748 | if (scale > PAGE_SHIFT) | |
5749 | numentries >>= (scale - PAGE_SHIFT); | |
5750 | else | |
5751 | numentries <<= (PAGE_SHIFT - scale); | |
9ab37b8f PM |
5752 | |
5753 | /* Make sure we've got at least a 0-order allocation.. */ | |
2c85f51d JB |
5754 | if (unlikely(flags & HASH_SMALL)) { |
5755 | /* Makes no sense without HASH_EARLY */ | |
5756 | WARN_ON(!(flags & HASH_EARLY)); | |
5757 | if (!(numentries >> *_hash_shift)) { | |
5758 | numentries = 1UL << *_hash_shift; | |
5759 | BUG_ON(!numentries); | |
5760 | } | |
5761 | } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) | |
9ab37b8f | 5762 | numentries = PAGE_SIZE / bucketsize; |
1da177e4 | 5763 | } |
6e692ed3 | 5764 | numentries = roundup_pow_of_two(numentries); |
1da177e4 LT |
5765 | |
5766 | /* limit allocation size to 1/16 total memory by default */ | |
5767 | if (max == 0) { | |
5768 | max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; | |
5769 | do_div(max, bucketsize); | |
5770 | } | |
074b8517 | 5771 | max = min(max, 0x80000000ULL); |
1da177e4 | 5772 | |
31fe62b9 TB |
5773 | if (numentries < low_limit) |
5774 | numentries = low_limit; | |
1da177e4 LT |
5775 | if (numentries > max) |
5776 | numentries = max; | |
5777 | ||
f0d1b0b3 | 5778 | log2qty = ilog2(numentries); |
1da177e4 LT |
5779 | |
5780 | do { | |
5781 | size = bucketsize << log2qty; | |
5782 | if (flags & HASH_EARLY) | |
74768ed8 | 5783 | table = alloc_bootmem_nopanic(size); |
1da177e4 LT |
5784 | else if (hashdist) |
5785 | table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); | |
5786 | else { | |
1037b83b ED |
5787 | /* |
5788 | * If bucketsize is not a power-of-two, we may free | |
a1dd268c MG |
5789 | * some pages at the end of hash table which |
5790 | * alloc_pages_exact() automatically does | |
1037b83b | 5791 | */ |
264ef8a9 | 5792 | if (get_order(size) < MAX_ORDER) { |
a1dd268c | 5793 | table = alloc_pages_exact(size, GFP_ATOMIC); |
264ef8a9 CM |
5794 | kmemleak_alloc(table, size, 1, GFP_ATOMIC); |
5795 | } | |
1da177e4 LT |
5796 | } |
5797 | } while (!table && size > PAGE_SIZE && --log2qty); | |
5798 | ||
5799 | if (!table) | |
5800 | panic("Failed to allocate %s hash table\n", tablename); | |
5801 | ||
f241e660 | 5802 | printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n", |
1da177e4 | 5803 | tablename, |
f241e660 | 5804 | (1UL << log2qty), |
f0d1b0b3 | 5805 | ilog2(size) - PAGE_SHIFT, |
1da177e4 LT |
5806 | size); |
5807 | ||
5808 | if (_hash_shift) | |
5809 | *_hash_shift = log2qty; | |
5810 | if (_hash_mask) | |
5811 | *_hash_mask = (1 << log2qty) - 1; | |
5812 | ||
5813 | return table; | |
5814 | } | |
a117e66e | 5815 | |
835c134e MG |
5816 | /* Return a pointer to the bitmap storing bits affecting a block of pages */ |
5817 | static inline unsigned long *get_pageblock_bitmap(struct zone *zone, | |
5818 | unsigned long pfn) | |
5819 | { | |
5820 | #ifdef CONFIG_SPARSEMEM | |
5821 | return __pfn_to_section(pfn)->pageblock_flags; | |
5822 | #else | |
5823 | return zone->pageblock_flags; | |
5824 | #endif /* CONFIG_SPARSEMEM */ | |
5825 | } | |
5826 | ||
5827 | static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) | |
5828 | { | |
5829 | #ifdef CONFIG_SPARSEMEM | |
5830 | pfn &= (PAGES_PER_SECTION-1); | |
d9c23400 | 5831 | return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; |
835c134e | 5832 | #else |
c060f943 | 5833 | pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages); |
d9c23400 | 5834 | return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; |
835c134e MG |
5835 | #endif /* CONFIG_SPARSEMEM */ |
5836 | } | |
5837 | ||
5838 | /** | |
d9c23400 | 5839 | * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages |
835c134e MG |
5840 | * @page: The page within the block of interest |
5841 | * @start_bitidx: The first bit of interest to retrieve | |
5842 | * @end_bitidx: The last bit of interest | |
5843 | * returns pageblock_bits flags | |
5844 | */ | |
5845 | unsigned long get_pageblock_flags_group(struct page *page, | |
5846 | int start_bitidx, int end_bitidx) | |
5847 | { | |
5848 | struct zone *zone; | |
5849 | unsigned long *bitmap; | |
5850 | unsigned long pfn, bitidx; | |
5851 | unsigned long flags = 0; | |
5852 | unsigned long value = 1; | |
5853 | ||
5854 | zone = page_zone(page); | |
5855 | pfn = page_to_pfn(page); | |
5856 | bitmap = get_pageblock_bitmap(zone, pfn); | |
5857 | bitidx = pfn_to_bitidx(zone, pfn); | |
5858 | ||
5859 | for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) | |
5860 | if (test_bit(bitidx + start_bitidx, bitmap)) | |
5861 | flags |= value; | |
6220ec78 | 5862 | |
835c134e MG |
5863 | return flags; |
5864 | } | |
5865 | ||
5866 | /** | |
d9c23400 | 5867 | * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages |
835c134e MG |
5868 | * @page: The page within the block of interest |
5869 | * @start_bitidx: The first bit of interest | |
5870 | * @end_bitidx: The last bit of interest | |
5871 | * @flags: The flags to set | |
5872 | */ | |
5873 | void set_pageblock_flags_group(struct page *page, unsigned long flags, | |
5874 | int start_bitidx, int end_bitidx) | |
5875 | { | |
5876 | struct zone *zone; | |
5877 | unsigned long *bitmap; | |
5878 | unsigned long pfn, bitidx; | |
5879 | unsigned long value = 1; | |
5880 | ||
5881 | zone = page_zone(page); | |
5882 | pfn = page_to_pfn(page); | |
5883 | bitmap = get_pageblock_bitmap(zone, pfn); | |
5884 | bitidx = pfn_to_bitidx(zone, pfn); | |
108bcc96 | 5885 | VM_BUG_ON(!zone_spans_pfn(zone, pfn)); |
835c134e MG |
5886 | |
5887 | for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) | |
5888 | if (flags & value) | |
5889 | __set_bit(bitidx + start_bitidx, bitmap); | |
5890 | else | |
5891 | __clear_bit(bitidx + start_bitidx, bitmap); | |
5892 | } | |
a5d76b54 KH |
5893 | |
5894 | /* | |
80934513 MK |
5895 | * This function checks whether pageblock includes unmovable pages or not. |
5896 | * If @count is not zero, it is okay to include less @count unmovable pages | |
5897 | * | |
5898 | * PageLRU check wihtout isolation or lru_lock could race so that | |
5899 | * MIGRATE_MOVABLE block might include unmovable pages. It means you can't | |
5900 | * expect this function should be exact. | |
a5d76b54 | 5901 | */ |
b023f468 WC |
5902 | bool has_unmovable_pages(struct zone *zone, struct page *page, int count, |
5903 | bool skip_hwpoisoned_pages) | |
49ac8255 KH |
5904 | { |
5905 | unsigned long pfn, iter, found; | |
47118af0 MN |
5906 | int mt; |
5907 | ||
49ac8255 KH |
5908 | /* |
5909 | * For avoiding noise data, lru_add_drain_all() should be called | |
80934513 | 5910 | * If ZONE_MOVABLE, the zone never contains unmovable pages |
49ac8255 KH |
5911 | */ |
5912 | if (zone_idx(zone) == ZONE_MOVABLE) | |
80934513 | 5913 | return false; |
47118af0 MN |
5914 | mt = get_pageblock_migratetype(page); |
5915 | if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt)) | |
80934513 | 5916 | return false; |
49ac8255 KH |
5917 | |
5918 | pfn = page_to_pfn(page); | |
5919 | for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { | |
5920 | unsigned long check = pfn + iter; | |
5921 | ||
29723fcc | 5922 | if (!pfn_valid_within(check)) |
49ac8255 | 5923 | continue; |
29723fcc | 5924 | |
49ac8255 | 5925 | page = pfn_to_page(check); |
97d255c8 MK |
5926 | /* |
5927 | * We can't use page_count without pin a page | |
5928 | * because another CPU can free compound page. | |
5929 | * This check already skips compound tails of THP | |
5930 | * because their page->_count is zero at all time. | |
5931 | */ | |
5932 | if (!atomic_read(&page->_count)) { | |
49ac8255 KH |
5933 | if (PageBuddy(page)) |
5934 | iter += (1 << page_order(page)) - 1; | |
5935 | continue; | |
5936 | } | |
97d255c8 | 5937 | |
b023f468 WC |
5938 | /* |
5939 | * The HWPoisoned page may be not in buddy system, and | |
5940 | * page_count() is not 0. | |
5941 | */ | |
5942 | if (skip_hwpoisoned_pages && PageHWPoison(page)) | |
5943 | continue; | |
5944 | ||
49ac8255 KH |
5945 | if (!PageLRU(page)) |
5946 | found++; | |
5947 | /* | |
5948 | * If there are RECLAIMABLE pages, we need to check it. | |
5949 | * But now, memory offline itself doesn't call shrink_slab() | |
5950 | * and it still to be fixed. | |
5951 | */ | |
5952 | /* | |
5953 | * If the page is not RAM, page_count()should be 0. | |
5954 | * we don't need more check. This is an _used_ not-movable page. | |
5955 | * | |
5956 | * The problematic thing here is PG_reserved pages. PG_reserved | |
5957 | * is set to both of a memory hole page and a _used_ kernel | |
5958 | * page at boot. | |
5959 | */ | |
5960 | if (found > count) | |
80934513 | 5961 | return true; |
49ac8255 | 5962 | } |
80934513 | 5963 | return false; |
49ac8255 KH |
5964 | } |
5965 | ||
5966 | bool is_pageblock_removable_nolock(struct page *page) | |
5967 | { | |
656a0706 MH |
5968 | struct zone *zone; |
5969 | unsigned long pfn; | |
687875fb MH |
5970 | |
5971 | /* | |
5972 | * We have to be careful here because we are iterating over memory | |
5973 | * sections which are not zone aware so we might end up outside of | |
5974 | * the zone but still within the section. | |
656a0706 MH |
5975 | * We have to take care about the node as well. If the node is offline |
5976 | * its NODE_DATA will be NULL - see page_zone. | |
687875fb | 5977 | */ |
656a0706 MH |
5978 | if (!node_online(page_to_nid(page))) |
5979 | return false; | |
5980 | ||
5981 | zone = page_zone(page); | |
5982 | pfn = page_to_pfn(page); | |
108bcc96 | 5983 | if (!zone_spans_pfn(zone, pfn)) |
687875fb MH |
5984 | return false; |
5985 | ||
b023f468 | 5986 | return !has_unmovable_pages(zone, page, 0, true); |
a5d76b54 | 5987 | } |
0c0e6195 | 5988 | |
041d3a8c MN |
5989 | #ifdef CONFIG_CMA |
5990 | ||
5991 | static unsigned long pfn_max_align_down(unsigned long pfn) | |
5992 | { | |
5993 | return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, | |
5994 | pageblock_nr_pages) - 1); | |
5995 | } | |
5996 | ||
5997 | static unsigned long pfn_max_align_up(unsigned long pfn) | |
5998 | { | |
5999 | return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, | |
6000 | pageblock_nr_pages)); | |
6001 | } | |
6002 | ||
041d3a8c | 6003 | /* [start, end) must belong to a single zone. */ |
bb13ffeb MG |
6004 | static int __alloc_contig_migrate_range(struct compact_control *cc, |
6005 | unsigned long start, unsigned long end) | |
041d3a8c MN |
6006 | { |
6007 | /* This function is based on compact_zone() from compaction.c. */ | |
beb51eaa | 6008 | unsigned long nr_reclaimed; |
041d3a8c MN |
6009 | unsigned long pfn = start; |
6010 | unsigned int tries = 0; | |
6011 | int ret = 0; | |
6012 | ||
be49a6e1 | 6013 | migrate_prep(); |
041d3a8c | 6014 | |
bb13ffeb | 6015 | while (pfn < end || !list_empty(&cc->migratepages)) { |
041d3a8c MN |
6016 | if (fatal_signal_pending(current)) { |
6017 | ret = -EINTR; | |
6018 | break; | |
6019 | } | |
6020 | ||
bb13ffeb MG |
6021 | if (list_empty(&cc->migratepages)) { |
6022 | cc->nr_migratepages = 0; | |
6023 | pfn = isolate_migratepages_range(cc->zone, cc, | |
e46a2879 | 6024 | pfn, end, true); |
041d3a8c MN |
6025 | if (!pfn) { |
6026 | ret = -EINTR; | |
6027 | break; | |
6028 | } | |
6029 | tries = 0; | |
6030 | } else if (++tries == 5) { | |
6031 | ret = ret < 0 ? ret : -EBUSY; | |
6032 | break; | |
6033 | } | |
6034 | ||
beb51eaa MK |
6035 | nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, |
6036 | &cc->migratepages); | |
6037 | cc->nr_migratepages -= nr_reclaimed; | |
02c6de8d | 6038 | |
9c620e2b HD |
6039 | ret = migrate_pages(&cc->migratepages, alloc_migrate_target, |
6040 | 0, MIGRATE_SYNC, MR_CMA); | |
041d3a8c | 6041 | } |
2a6f5124 SP |
6042 | if (ret < 0) { |
6043 | putback_movable_pages(&cc->migratepages); | |
6044 | return ret; | |
6045 | } | |
6046 | return 0; | |
041d3a8c MN |
6047 | } |
6048 | ||
6049 | /** | |
6050 | * alloc_contig_range() -- tries to allocate given range of pages | |
6051 | * @start: start PFN to allocate | |
6052 | * @end: one-past-the-last PFN to allocate | |
0815f3d8 MN |
6053 | * @migratetype: migratetype of the underlaying pageblocks (either |
6054 | * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks | |
6055 | * in range must have the same migratetype and it must | |
6056 | * be either of the two. | |
041d3a8c MN |
6057 | * |
6058 | * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES | |
6059 | * aligned, however it's the caller's responsibility to guarantee that | |
6060 | * we are the only thread that changes migrate type of pageblocks the | |
6061 | * pages fall in. | |
6062 | * | |
6063 | * The PFN range must belong to a single zone. | |
6064 | * | |
6065 | * Returns zero on success or negative error code. On success all | |
6066 | * pages which PFN is in [start, end) are allocated for the caller and | |
6067 | * need to be freed with free_contig_range(). | |
6068 | */ | |
0815f3d8 MN |
6069 | int alloc_contig_range(unsigned long start, unsigned long end, |
6070 | unsigned migratetype) | |
041d3a8c | 6071 | { |
041d3a8c MN |
6072 | unsigned long outer_start, outer_end; |
6073 | int ret = 0, order; | |
6074 | ||
bb13ffeb MG |
6075 | struct compact_control cc = { |
6076 | .nr_migratepages = 0, | |
6077 | .order = -1, | |
6078 | .zone = page_zone(pfn_to_page(start)), | |
6079 | .sync = true, | |
6080 | .ignore_skip_hint = true, | |
6081 | }; | |
6082 | INIT_LIST_HEAD(&cc.migratepages); | |
6083 | ||
041d3a8c MN |
6084 | /* |
6085 | * What we do here is we mark all pageblocks in range as | |
6086 | * MIGRATE_ISOLATE. Because pageblock and max order pages may | |
6087 | * have different sizes, and due to the way page allocator | |
6088 | * work, we align the range to biggest of the two pages so | |
6089 | * that page allocator won't try to merge buddies from | |
6090 | * different pageblocks and change MIGRATE_ISOLATE to some | |
6091 | * other migration type. | |
6092 | * | |
6093 | * Once the pageblocks are marked as MIGRATE_ISOLATE, we | |
6094 | * migrate the pages from an unaligned range (ie. pages that | |
6095 | * we are interested in). This will put all the pages in | |
6096 | * range back to page allocator as MIGRATE_ISOLATE. | |
6097 | * | |
6098 | * When this is done, we take the pages in range from page | |
6099 | * allocator removing them from the buddy system. This way | |
6100 | * page allocator will never consider using them. | |
6101 | * | |
6102 | * This lets us mark the pageblocks back as | |
6103 | * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the | |
6104 | * aligned range but not in the unaligned, original range are | |
6105 | * put back to page allocator so that buddy can use them. | |
6106 | */ | |
6107 | ||
6108 | ret = start_isolate_page_range(pfn_max_align_down(start), | |
b023f468 WC |
6109 | pfn_max_align_up(end), migratetype, |
6110 | false); | |
041d3a8c | 6111 | if (ret) |
86a595f9 | 6112 | return ret; |
041d3a8c | 6113 | |
bb13ffeb | 6114 | ret = __alloc_contig_migrate_range(&cc, start, end); |
041d3a8c MN |
6115 | if (ret) |
6116 | goto done; | |
6117 | ||
6118 | /* | |
6119 | * Pages from [start, end) are within a MAX_ORDER_NR_PAGES | |
6120 | * aligned blocks that are marked as MIGRATE_ISOLATE. What's | |
6121 | * more, all pages in [start, end) are free in page allocator. | |
6122 | * What we are going to do is to allocate all pages from | |
6123 | * [start, end) (that is remove them from page allocator). | |
6124 | * | |
6125 | * The only problem is that pages at the beginning and at the | |
6126 | * end of interesting range may be not aligned with pages that | |
6127 | * page allocator holds, ie. they can be part of higher order | |
6128 | * pages. Because of this, we reserve the bigger range and | |
6129 | * once this is done free the pages we are not interested in. | |
6130 | * | |
6131 | * We don't have to hold zone->lock here because the pages are | |
6132 | * isolated thus they won't get removed from buddy. | |
6133 | */ | |
6134 | ||
6135 | lru_add_drain_all(); | |
6136 | drain_all_pages(); | |
6137 | ||
6138 | order = 0; | |
6139 | outer_start = start; | |
6140 | while (!PageBuddy(pfn_to_page(outer_start))) { | |
6141 | if (++order >= MAX_ORDER) { | |
6142 | ret = -EBUSY; | |
6143 | goto done; | |
6144 | } | |
6145 | outer_start &= ~0UL << order; | |
6146 | } | |
6147 | ||
6148 | /* Make sure the range is really isolated. */ | |
b023f468 | 6149 | if (test_pages_isolated(outer_start, end, false)) { |
041d3a8c MN |
6150 | pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n", |
6151 | outer_start, end); | |
6152 | ret = -EBUSY; | |
6153 | goto done; | |
6154 | } | |
6155 | ||
49f223a9 MS |
6156 | |
6157 | /* Grab isolated pages from freelists. */ | |
bb13ffeb | 6158 | outer_end = isolate_freepages_range(&cc, outer_start, end); |
041d3a8c MN |
6159 | if (!outer_end) { |
6160 | ret = -EBUSY; | |
6161 | goto done; | |
6162 | } | |
6163 | ||
6164 | /* Free head and tail (if any) */ | |
6165 | if (start != outer_start) | |
6166 | free_contig_range(outer_start, start - outer_start); | |
6167 | if (end != outer_end) | |
6168 | free_contig_range(end, outer_end - end); | |
6169 | ||
6170 | done: | |
6171 | undo_isolate_page_range(pfn_max_align_down(start), | |
0815f3d8 | 6172 | pfn_max_align_up(end), migratetype); |
041d3a8c MN |
6173 | return ret; |
6174 | } | |
6175 | ||
6176 | void free_contig_range(unsigned long pfn, unsigned nr_pages) | |
6177 | { | |
bcc2b02f MS |
6178 | unsigned int count = 0; |
6179 | ||
6180 | for (; nr_pages--; pfn++) { | |
6181 | struct page *page = pfn_to_page(pfn); | |
6182 | ||
6183 | count += page_count(page) != 1; | |
6184 | __free_page(page); | |
6185 | } | |
6186 | WARN(count != 0, "%d pages are still in use!\n", count); | |
041d3a8c MN |
6187 | } |
6188 | #endif | |
6189 | ||
4ed7e022 | 6190 | #ifdef CONFIG_MEMORY_HOTPLUG |
0a647f38 CS |
6191 | /* |
6192 | * The zone indicated has a new number of managed_pages; batch sizes and percpu | |
6193 | * page high values need to be recalulated. | |
6194 | */ | |
4ed7e022 JL |
6195 | void __meminit zone_pcp_update(struct zone *zone) |
6196 | { | |
0a647f38 | 6197 | unsigned cpu; |
c8e251fa | 6198 | mutex_lock(&pcp_batch_high_lock); |
0a647f38 | 6199 | for_each_possible_cpu(cpu) |
169f6c19 CS |
6200 | pageset_set_high_and_batch(zone, |
6201 | per_cpu_ptr(zone->pageset, cpu)); | |
c8e251fa | 6202 | mutex_unlock(&pcp_batch_high_lock); |
4ed7e022 JL |
6203 | } |
6204 | #endif | |
6205 | ||
340175b7 JL |
6206 | void zone_pcp_reset(struct zone *zone) |
6207 | { | |
6208 | unsigned long flags; | |
5a883813 MK |
6209 | int cpu; |
6210 | struct per_cpu_pageset *pset; | |
340175b7 JL |
6211 | |
6212 | /* avoid races with drain_pages() */ | |
6213 | local_irq_save(flags); | |
6214 | if (zone->pageset != &boot_pageset) { | |
5a883813 MK |
6215 | for_each_online_cpu(cpu) { |
6216 | pset = per_cpu_ptr(zone->pageset, cpu); | |
6217 | drain_zonestat(zone, pset); | |
6218 | } | |
340175b7 JL |
6219 | free_percpu(zone->pageset); |
6220 | zone->pageset = &boot_pageset; | |
6221 | } | |
6222 | local_irq_restore(flags); | |
6223 | } | |
6224 | ||
6dcd73d7 | 6225 | #ifdef CONFIG_MEMORY_HOTREMOVE |
0c0e6195 KH |
6226 | /* |
6227 | * All pages in the range must be isolated before calling this. | |
6228 | */ | |
6229 | void | |
6230 | __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) | |
6231 | { | |
6232 | struct page *page; | |
6233 | struct zone *zone; | |
6234 | int order, i; | |
6235 | unsigned long pfn; | |
6236 | unsigned long flags; | |
6237 | /* find the first valid pfn */ | |
6238 | for (pfn = start_pfn; pfn < end_pfn; pfn++) | |
6239 | if (pfn_valid(pfn)) | |
6240 | break; | |
6241 | if (pfn == end_pfn) | |
6242 | return; | |
6243 | zone = page_zone(pfn_to_page(pfn)); | |
6244 | spin_lock_irqsave(&zone->lock, flags); | |
6245 | pfn = start_pfn; | |
6246 | while (pfn < end_pfn) { | |
6247 | if (!pfn_valid(pfn)) { | |
6248 | pfn++; | |
6249 | continue; | |
6250 | } | |
6251 | page = pfn_to_page(pfn); | |
b023f468 WC |
6252 | /* |
6253 | * The HWPoisoned page may be not in buddy system, and | |
6254 | * page_count() is not 0. | |
6255 | */ | |
6256 | if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { | |
6257 | pfn++; | |
6258 | SetPageReserved(page); | |
6259 | continue; | |
6260 | } | |
6261 | ||
0c0e6195 KH |
6262 | BUG_ON(page_count(page)); |
6263 | BUG_ON(!PageBuddy(page)); | |
6264 | order = page_order(page); | |
6265 | #ifdef CONFIG_DEBUG_VM | |
6266 | printk(KERN_INFO "remove from free list %lx %d %lx\n", | |
6267 | pfn, 1 << order, end_pfn); | |
6268 | #endif | |
6269 | list_del(&page->lru); | |
6270 | rmv_page_order(page); | |
6271 | zone->free_area[order].nr_free--; | |
cea27eb2 WL |
6272 | #ifdef CONFIG_HIGHMEM |
6273 | if (PageHighMem(page)) | |
6274 | totalhigh_pages -= 1 << order; | |
6275 | #endif | |
0c0e6195 KH |
6276 | for (i = 0; i < (1 << order); i++) |
6277 | SetPageReserved((page+i)); | |
6278 | pfn += (1 << order); | |
6279 | } | |
6280 | spin_unlock_irqrestore(&zone->lock, flags); | |
6281 | } | |
6282 | #endif | |
8d22ba1b WF |
6283 | |
6284 | #ifdef CONFIG_MEMORY_FAILURE | |
6285 | bool is_free_buddy_page(struct page *page) | |
6286 | { | |
6287 | struct zone *zone = page_zone(page); | |
6288 | unsigned long pfn = page_to_pfn(page); | |
6289 | unsigned long flags; | |
6290 | int order; | |
6291 | ||
6292 | spin_lock_irqsave(&zone->lock, flags); | |
6293 | for (order = 0; order < MAX_ORDER; order++) { | |
6294 | struct page *page_head = page - (pfn & ((1 << order) - 1)); | |
6295 | ||
6296 | if (PageBuddy(page_head) && page_order(page_head) >= order) | |
6297 | break; | |
6298 | } | |
6299 | spin_unlock_irqrestore(&zone->lock, flags); | |
6300 | ||
6301 | return order < MAX_ORDER; | |
6302 | } | |
6303 | #endif | |
718a3821 | 6304 | |
51300cef | 6305 | static const struct trace_print_flags pageflag_names[] = { |
718a3821 WF |
6306 | {1UL << PG_locked, "locked" }, |
6307 | {1UL << PG_error, "error" }, | |
6308 | {1UL << PG_referenced, "referenced" }, | |
6309 | {1UL << PG_uptodate, "uptodate" }, | |
6310 | {1UL << PG_dirty, "dirty" }, | |
6311 | {1UL << PG_lru, "lru" }, | |
6312 | {1UL << PG_active, "active" }, | |
6313 | {1UL << PG_slab, "slab" }, | |
6314 | {1UL << PG_owner_priv_1, "owner_priv_1" }, | |
6315 | {1UL << PG_arch_1, "arch_1" }, | |
6316 | {1UL << PG_reserved, "reserved" }, | |
6317 | {1UL << PG_private, "private" }, | |
6318 | {1UL << PG_private_2, "private_2" }, | |
6319 | {1UL << PG_writeback, "writeback" }, | |
6320 | #ifdef CONFIG_PAGEFLAGS_EXTENDED | |
6321 | {1UL << PG_head, "head" }, | |
6322 | {1UL << PG_tail, "tail" }, | |
6323 | #else | |
6324 | {1UL << PG_compound, "compound" }, | |
6325 | #endif | |
6326 | {1UL << PG_swapcache, "swapcache" }, | |
6327 | {1UL << PG_mappedtodisk, "mappedtodisk" }, | |
6328 | {1UL << PG_reclaim, "reclaim" }, | |
718a3821 WF |
6329 | {1UL << PG_swapbacked, "swapbacked" }, |
6330 | {1UL << PG_unevictable, "unevictable" }, | |
6331 | #ifdef CONFIG_MMU | |
6332 | {1UL << PG_mlocked, "mlocked" }, | |
6333 | #endif | |
6334 | #ifdef CONFIG_ARCH_USES_PG_UNCACHED | |
6335 | {1UL << PG_uncached, "uncached" }, | |
6336 | #endif | |
6337 | #ifdef CONFIG_MEMORY_FAILURE | |
6338 | {1UL << PG_hwpoison, "hwpoison" }, | |
be9cd873 GS |
6339 | #endif |
6340 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | |
6341 | {1UL << PG_compound_lock, "compound_lock" }, | |
718a3821 | 6342 | #endif |
718a3821 WF |
6343 | }; |
6344 | ||
6345 | static void dump_page_flags(unsigned long flags) | |
6346 | { | |
6347 | const char *delim = ""; | |
6348 | unsigned long mask; | |
6349 | int i; | |
6350 | ||
51300cef | 6351 | BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS); |
acc50c11 | 6352 | |
718a3821 WF |
6353 | printk(KERN_ALERT "page flags: %#lx(", flags); |
6354 | ||
6355 | /* remove zone id */ | |
6356 | flags &= (1UL << NR_PAGEFLAGS) - 1; | |
6357 | ||
51300cef | 6358 | for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) { |
718a3821 WF |
6359 | |
6360 | mask = pageflag_names[i].mask; | |
6361 | if ((flags & mask) != mask) | |
6362 | continue; | |
6363 | ||
6364 | flags &= ~mask; | |
6365 | printk("%s%s", delim, pageflag_names[i].name); | |
6366 | delim = "|"; | |
6367 | } | |
6368 | ||
6369 | /* check for left over flags */ | |
6370 | if (flags) | |
6371 | printk("%s%#lx", delim, flags); | |
6372 | ||
6373 | printk(")\n"); | |
6374 | } | |
6375 | ||
6376 | void dump_page(struct page *page) | |
6377 | { | |
6378 | printk(KERN_ALERT | |
6379 | "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n", | |
4e9f64c4 | 6380 | page, atomic_read(&page->_count), page_mapcount(page), |
718a3821 WF |
6381 | page->mapping, page->index); |
6382 | dump_page_flags(page->flags); | |
f212ad7c | 6383 | mem_cgroup_print_bad_page(page); |
718a3821 | 6384 | } |