]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/mm/page_alloc.c | |
3 | * | |
4 | * Manages the free list, the system allocates free pages here. | |
5 | * Note that kmalloc() lives in slab.c | |
6 | * | |
7 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds | |
8 | * Swap reorganised 29.12.95, Stephen Tweedie | |
9 | * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 | |
10 | * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 | |
11 | * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 | |
12 | * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 | |
13 | * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 | |
14 | * (lots of bits borrowed from Ingo Molnar & Andrew Morton) | |
15 | */ | |
16 | ||
1da177e4 LT |
17 | #include <linux/stddef.h> |
18 | #include <linux/mm.h> | |
19 | #include <linux/swap.h> | |
20 | #include <linux/interrupt.h> | |
21 | #include <linux/pagemap.h> | |
10ed273f | 22 | #include <linux/jiffies.h> |
1da177e4 | 23 | #include <linux/bootmem.h> |
edbe7d23 | 24 | #include <linux/memblock.h> |
1da177e4 | 25 | #include <linux/compiler.h> |
9f158333 | 26 | #include <linux/kernel.h> |
b1eeab67 | 27 | #include <linux/kmemcheck.h> |
1da177e4 LT |
28 | #include <linux/module.h> |
29 | #include <linux/suspend.h> | |
30 | #include <linux/pagevec.h> | |
31 | #include <linux/blkdev.h> | |
32 | #include <linux/slab.h> | |
a238ab5b | 33 | #include <linux/ratelimit.h> |
5a3135c2 | 34 | #include <linux/oom.h> |
1da177e4 LT |
35 | #include <linux/notifier.h> |
36 | #include <linux/topology.h> | |
37 | #include <linux/sysctl.h> | |
38 | #include <linux/cpu.h> | |
39 | #include <linux/cpuset.h> | |
bdc8cb98 | 40 | #include <linux/memory_hotplug.h> |
1da177e4 LT |
41 | #include <linux/nodemask.h> |
42 | #include <linux/vmalloc.h> | |
a6cccdc3 | 43 | #include <linux/vmstat.h> |
4be38e35 | 44 | #include <linux/mempolicy.h> |
6811378e | 45 | #include <linux/stop_machine.h> |
c713216d MG |
46 | #include <linux/sort.h> |
47 | #include <linux/pfn.h> | |
3fcfab16 | 48 | #include <linux/backing-dev.h> |
933e312e | 49 | #include <linux/fault-inject.h> |
a5d76b54 | 50 | #include <linux/page-isolation.h> |
52d4b9ac | 51 | #include <linux/page_cgroup.h> |
3ac7fe5a | 52 | #include <linux/debugobjects.h> |
dbb1f81c | 53 | #include <linux/kmemleak.h> |
925cc71e | 54 | #include <linux/memory.h> |
56de7263 | 55 | #include <linux/compaction.h> |
0d3d062a | 56 | #include <trace/events/kmem.h> |
718a3821 | 57 | #include <linux/ftrace_event.h> |
f212ad7c | 58 | #include <linux/memcontrol.h> |
268bb0ce | 59 | #include <linux/prefetch.h> |
c0a32fc5 | 60 | #include <linux/page-debug-flags.h> |
1da177e4 LT |
61 | |
62 | #include <asm/tlbflush.h> | |
ac924c60 | 63 | #include <asm/div64.h> |
1da177e4 LT |
64 | #include "internal.h" |
65 | ||
72812019 LS |
66 | #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID |
67 | DEFINE_PER_CPU(int, numa_node); | |
68 | EXPORT_PER_CPU_SYMBOL(numa_node); | |
69 | #endif | |
70 | ||
7aac7898 LS |
71 | #ifdef CONFIG_HAVE_MEMORYLESS_NODES |
72 | /* | |
73 | * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. | |
74 | * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. | |
75 | * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() | |
76 | * defined in <linux/topology.h>. | |
77 | */ | |
78 | DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ | |
79 | EXPORT_PER_CPU_SYMBOL(_numa_mem_); | |
80 | #endif | |
81 | ||
1da177e4 | 82 | /* |
13808910 | 83 | * Array of node states. |
1da177e4 | 84 | */ |
13808910 CL |
85 | nodemask_t node_states[NR_NODE_STATES] __read_mostly = { |
86 | [N_POSSIBLE] = NODE_MASK_ALL, | |
87 | [N_ONLINE] = { { [0] = 1UL } }, | |
88 | #ifndef CONFIG_NUMA | |
89 | [N_NORMAL_MEMORY] = { { [0] = 1UL } }, | |
90 | #ifdef CONFIG_HIGHMEM | |
91 | [N_HIGH_MEMORY] = { { [0] = 1UL } }, | |
92 | #endif | |
93 | [N_CPU] = { { [0] = 1UL } }, | |
94 | #endif /* NUMA */ | |
95 | }; | |
96 | EXPORT_SYMBOL(node_states); | |
97 | ||
6c231b7b | 98 | unsigned long totalram_pages __read_mostly; |
cb45b0e9 | 99 | unsigned long totalreserve_pages __read_mostly; |
ab8fabd4 JW |
100 | /* |
101 | * When calculating the number of globally allowed dirty pages, there | |
102 | * is a certain number of per-zone reserves that should not be | |
103 | * considered dirtyable memory. This is the sum of those reserves | |
104 | * over all existing zones that contribute dirtyable memory. | |
105 | */ | |
106 | unsigned long dirty_balance_reserve __read_mostly; | |
107 | ||
1b76b02f | 108 | int percpu_pagelist_fraction; |
dcce284a | 109 | gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; |
1da177e4 | 110 | |
452aa699 RW |
111 | #ifdef CONFIG_PM_SLEEP |
112 | /* | |
113 | * The following functions are used by the suspend/hibernate code to temporarily | |
114 | * change gfp_allowed_mask in order to avoid using I/O during memory allocations | |
115 | * while devices are suspended. To avoid races with the suspend/hibernate code, | |
116 | * they should always be called with pm_mutex held (gfp_allowed_mask also should | |
117 | * only be modified with pm_mutex held, unless the suspend/hibernate code is | |
118 | * guaranteed not to run in parallel with that modification). | |
119 | */ | |
c9e664f1 RW |
120 | |
121 | static gfp_t saved_gfp_mask; | |
122 | ||
123 | void pm_restore_gfp_mask(void) | |
452aa699 RW |
124 | { |
125 | WARN_ON(!mutex_is_locked(&pm_mutex)); | |
c9e664f1 RW |
126 | if (saved_gfp_mask) { |
127 | gfp_allowed_mask = saved_gfp_mask; | |
128 | saved_gfp_mask = 0; | |
129 | } | |
452aa699 RW |
130 | } |
131 | ||
c9e664f1 | 132 | void pm_restrict_gfp_mask(void) |
452aa699 | 133 | { |
452aa699 | 134 | WARN_ON(!mutex_is_locked(&pm_mutex)); |
c9e664f1 RW |
135 | WARN_ON(saved_gfp_mask); |
136 | saved_gfp_mask = gfp_allowed_mask; | |
137 | gfp_allowed_mask &= ~GFP_IOFS; | |
452aa699 | 138 | } |
f90ac398 MG |
139 | |
140 | bool pm_suspended_storage(void) | |
141 | { | |
142 | if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS) | |
143 | return false; | |
144 | return true; | |
145 | } | |
452aa699 RW |
146 | #endif /* CONFIG_PM_SLEEP */ |
147 | ||
d9c23400 MG |
148 | #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE |
149 | int pageblock_order __read_mostly; | |
150 | #endif | |
151 | ||
d98c7a09 | 152 | static void __free_pages_ok(struct page *page, unsigned int order); |
a226f6c8 | 153 | |
1da177e4 LT |
154 | /* |
155 | * results with 256, 32 in the lowmem_reserve sysctl: | |
156 | * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) | |
157 | * 1G machine -> (16M dma, 784M normal, 224M high) | |
158 | * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA | |
159 | * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL | |
160 | * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA | |
a2f1b424 AK |
161 | * |
162 | * TBD: should special case ZONE_DMA32 machines here - in those we normally | |
163 | * don't need any ZONE_NORMAL reservation | |
1da177e4 | 164 | */ |
2f1b6248 | 165 | int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { |
4b51d669 | 166 | #ifdef CONFIG_ZONE_DMA |
2f1b6248 | 167 | 256, |
4b51d669 | 168 | #endif |
fb0e7942 | 169 | #ifdef CONFIG_ZONE_DMA32 |
2f1b6248 | 170 | 256, |
fb0e7942 | 171 | #endif |
e53ef38d | 172 | #ifdef CONFIG_HIGHMEM |
2a1e274a | 173 | 32, |
e53ef38d | 174 | #endif |
2a1e274a | 175 | 32, |
2f1b6248 | 176 | }; |
1da177e4 LT |
177 | |
178 | EXPORT_SYMBOL(totalram_pages); | |
1da177e4 | 179 | |
15ad7cdc | 180 | static char * const zone_names[MAX_NR_ZONES] = { |
4b51d669 | 181 | #ifdef CONFIG_ZONE_DMA |
2f1b6248 | 182 | "DMA", |
4b51d669 | 183 | #endif |
fb0e7942 | 184 | #ifdef CONFIG_ZONE_DMA32 |
2f1b6248 | 185 | "DMA32", |
fb0e7942 | 186 | #endif |
2f1b6248 | 187 | "Normal", |
e53ef38d | 188 | #ifdef CONFIG_HIGHMEM |
2a1e274a | 189 | "HighMem", |
e53ef38d | 190 | #endif |
2a1e274a | 191 | "Movable", |
2f1b6248 CL |
192 | }; |
193 | ||
1da177e4 LT |
194 | int min_free_kbytes = 1024; |
195 | ||
2c85f51d JB |
196 | static unsigned long __meminitdata nr_kernel_pages; |
197 | static unsigned long __meminitdata nr_all_pages; | |
a3142c8e | 198 | static unsigned long __meminitdata dma_reserve; |
1da177e4 | 199 | |
0ee332c1 TH |
200 | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP |
201 | static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; | |
202 | static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; | |
203 | static unsigned long __initdata required_kernelcore; | |
204 | static unsigned long __initdata required_movablecore; | |
205 | static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; | |
206 | ||
207 | /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ | |
208 | int movable_zone; | |
209 | EXPORT_SYMBOL(movable_zone); | |
210 | #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ | |
c713216d | 211 | |
418508c1 MS |
212 | #if MAX_NUMNODES > 1 |
213 | int nr_node_ids __read_mostly = MAX_NUMNODES; | |
62bc62a8 | 214 | int nr_online_nodes __read_mostly = 1; |
418508c1 | 215 | EXPORT_SYMBOL(nr_node_ids); |
62bc62a8 | 216 | EXPORT_SYMBOL(nr_online_nodes); |
418508c1 MS |
217 | #endif |
218 | ||
9ef9acb0 MG |
219 | int page_group_by_mobility_disabled __read_mostly; |
220 | ||
b2a0ac88 MG |
221 | static void set_pageblock_migratetype(struct page *page, int migratetype) |
222 | { | |
49255c61 MG |
223 | |
224 | if (unlikely(page_group_by_mobility_disabled)) | |
225 | migratetype = MIGRATE_UNMOVABLE; | |
226 | ||
b2a0ac88 MG |
227 | set_pageblock_flags_group(page, (unsigned long)migratetype, |
228 | PB_migrate, PB_migrate_end); | |
229 | } | |
230 | ||
7f33d49a RW |
231 | bool oom_killer_disabled __read_mostly; |
232 | ||
13e7444b | 233 | #ifdef CONFIG_DEBUG_VM |
c6a57e19 | 234 | static int page_outside_zone_boundaries(struct zone *zone, struct page *page) |
1da177e4 | 235 | { |
bdc8cb98 DH |
236 | int ret = 0; |
237 | unsigned seq; | |
238 | unsigned long pfn = page_to_pfn(page); | |
c6a57e19 | 239 | |
bdc8cb98 DH |
240 | do { |
241 | seq = zone_span_seqbegin(zone); | |
242 | if (pfn >= zone->zone_start_pfn + zone->spanned_pages) | |
243 | ret = 1; | |
244 | else if (pfn < zone->zone_start_pfn) | |
245 | ret = 1; | |
246 | } while (zone_span_seqretry(zone, seq)); | |
247 | ||
248 | return ret; | |
c6a57e19 DH |
249 | } |
250 | ||
251 | static int page_is_consistent(struct zone *zone, struct page *page) | |
252 | { | |
14e07298 | 253 | if (!pfn_valid_within(page_to_pfn(page))) |
c6a57e19 | 254 | return 0; |
1da177e4 | 255 | if (zone != page_zone(page)) |
c6a57e19 DH |
256 | return 0; |
257 | ||
258 | return 1; | |
259 | } | |
260 | /* | |
261 | * Temporary debugging check for pages not lying within a given zone. | |
262 | */ | |
263 | static int bad_range(struct zone *zone, struct page *page) | |
264 | { | |
265 | if (page_outside_zone_boundaries(zone, page)) | |
1da177e4 | 266 | return 1; |
c6a57e19 DH |
267 | if (!page_is_consistent(zone, page)) |
268 | return 1; | |
269 | ||
1da177e4 LT |
270 | return 0; |
271 | } | |
13e7444b NP |
272 | #else |
273 | static inline int bad_range(struct zone *zone, struct page *page) | |
274 | { | |
275 | return 0; | |
276 | } | |
277 | #endif | |
278 | ||
224abf92 | 279 | static void bad_page(struct page *page) |
1da177e4 | 280 | { |
d936cf9b HD |
281 | static unsigned long resume; |
282 | static unsigned long nr_shown; | |
283 | static unsigned long nr_unshown; | |
284 | ||
2a7684a2 WF |
285 | /* Don't complain about poisoned pages */ |
286 | if (PageHWPoison(page)) { | |
ef2b4b95 | 287 | reset_page_mapcount(page); /* remove PageBuddy */ |
2a7684a2 WF |
288 | return; |
289 | } | |
290 | ||
d936cf9b HD |
291 | /* |
292 | * Allow a burst of 60 reports, then keep quiet for that minute; | |
293 | * or allow a steady drip of one report per second. | |
294 | */ | |
295 | if (nr_shown == 60) { | |
296 | if (time_before(jiffies, resume)) { | |
297 | nr_unshown++; | |
298 | goto out; | |
299 | } | |
300 | if (nr_unshown) { | |
1e9e6365 HD |
301 | printk(KERN_ALERT |
302 | "BUG: Bad page state: %lu messages suppressed\n", | |
d936cf9b HD |
303 | nr_unshown); |
304 | nr_unshown = 0; | |
305 | } | |
306 | nr_shown = 0; | |
307 | } | |
308 | if (nr_shown++ == 0) | |
309 | resume = jiffies + 60 * HZ; | |
310 | ||
1e9e6365 | 311 | printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n", |
3dc14741 | 312 | current->comm, page_to_pfn(page)); |
718a3821 | 313 | dump_page(page); |
3dc14741 | 314 | |
4f31888c | 315 | print_modules(); |
1da177e4 | 316 | dump_stack(); |
d936cf9b | 317 | out: |
8cc3b392 | 318 | /* Leave bad fields for debug, except PageBuddy could make trouble */ |
ef2b4b95 | 319 | reset_page_mapcount(page); /* remove PageBuddy */ |
9f158333 | 320 | add_taint(TAINT_BAD_PAGE); |
1da177e4 LT |
321 | } |
322 | ||
1da177e4 LT |
323 | /* |
324 | * Higher-order pages are called "compound pages". They are structured thusly: | |
325 | * | |
326 | * The first PAGE_SIZE page is called the "head page". | |
327 | * | |
328 | * The remaining PAGE_SIZE pages are called "tail pages". | |
329 | * | |
6416b9fa WSH |
330 | * All pages have PG_compound set. All tail pages have their ->first_page |
331 | * pointing at the head page. | |
1da177e4 | 332 | * |
41d78ba5 HD |
333 | * The first tail page's ->lru.next holds the address of the compound page's |
334 | * put_page() function. Its ->lru.prev holds the order of allocation. | |
335 | * This usage means that zero-order pages may not be compound. | |
1da177e4 | 336 | */ |
d98c7a09 HD |
337 | |
338 | static void free_compound_page(struct page *page) | |
339 | { | |
d85f3385 | 340 | __free_pages_ok(page, compound_order(page)); |
d98c7a09 HD |
341 | } |
342 | ||
01ad1c08 | 343 | void prep_compound_page(struct page *page, unsigned long order) |
18229df5 AW |
344 | { |
345 | int i; | |
346 | int nr_pages = 1 << order; | |
347 | ||
348 | set_compound_page_dtor(page, free_compound_page); | |
349 | set_compound_order(page, order); | |
350 | __SetPageHead(page); | |
351 | for (i = 1; i < nr_pages; i++) { | |
352 | struct page *p = page + i; | |
18229df5 | 353 | __SetPageTail(p); |
58a84aa9 | 354 | set_page_count(p, 0); |
18229df5 AW |
355 | p->first_page = page; |
356 | } | |
357 | } | |
358 | ||
59ff4216 | 359 | /* update __split_huge_page_refcount if you change this function */ |
8cc3b392 | 360 | static int destroy_compound_page(struct page *page, unsigned long order) |
1da177e4 LT |
361 | { |
362 | int i; | |
363 | int nr_pages = 1 << order; | |
8cc3b392 | 364 | int bad = 0; |
1da177e4 | 365 | |
8cc3b392 HD |
366 | if (unlikely(compound_order(page) != order) || |
367 | unlikely(!PageHead(page))) { | |
224abf92 | 368 | bad_page(page); |
8cc3b392 HD |
369 | bad++; |
370 | } | |
1da177e4 | 371 | |
6d777953 | 372 | __ClearPageHead(page); |
8cc3b392 | 373 | |
18229df5 AW |
374 | for (i = 1; i < nr_pages; i++) { |
375 | struct page *p = page + i; | |
1da177e4 | 376 | |
e713a21d | 377 | if (unlikely(!PageTail(p) || (p->first_page != page))) { |
224abf92 | 378 | bad_page(page); |
8cc3b392 HD |
379 | bad++; |
380 | } | |
d85f3385 | 381 | __ClearPageTail(p); |
1da177e4 | 382 | } |
8cc3b392 HD |
383 | |
384 | return bad; | |
1da177e4 | 385 | } |
1da177e4 | 386 | |
17cf4406 NP |
387 | static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) |
388 | { | |
389 | int i; | |
390 | ||
6626c5d5 AM |
391 | /* |
392 | * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO | |
393 | * and __GFP_HIGHMEM from hard or soft interrupt context. | |
394 | */ | |
725d704e | 395 | VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); |
17cf4406 NP |
396 | for (i = 0; i < (1 << order); i++) |
397 | clear_highpage(page + i); | |
398 | } | |
399 | ||
c0a32fc5 SG |
400 | #ifdef CONFIG_DEBUG_PAGEALLOC |
401 | unsigned int _debug_guardpage_minorder; | |
402 | ||
403 | static int __init debug_guardpage_minorder_setup(char *buf) | |
404 | { | |
405 | unsigned long res; | |
406 | ||
407 | if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { | |
408 | printk(KERN_ERR "Bad debug_guardpage_minorder value\n"); | |
409 | return 0; | |
410 | } | |
411 | _debug_guardpage_minorder = res; | |
412 | printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res); | |
413 | return 0; | |
414 | } | |
415 | __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup); | |
416 | ||
417 | static inline void set_page_guard_flag(struct page *page) | |
418 | { | |
419 | __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); | |
420 | } | |
421 | ||
422 | static inline void clear_page_guard_flag(struct page *page) | |
423 | { | |
424 | __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); | |
425 | } | |
426 | #else | |
427 | static inline void set_page_guard_flag(struct page *page) { } | |
428 | static inline void clear_page_guard_flag(struct page *page) { } | |
429 | #endif | |
430 | ||
6aa3001b AM |
431 | static inline void set_page_order(struct page *page, int order) |
432 | { | |
4c21e2f2 | 433 | set_page_private(page, order); |
676165a8 | 434 | __SetPageBuddy(page); |
1da177e4 LT |
435 | } |
436 | ||
437 | static inline void rmv_page_order(struct page *page) | |
438 | { | |
676165a8 | 439 | __ClearPageBuddy(page); |
4c21e2f2 | 440 | set_page_private(page, 0); |
1da177e4 LT |
441 | } |
442 | ||
443 | /* | |
444 | * Locate the struct page for both the matching buddy in our | |
445 | * pair (buddy1) and the combined O(n+1) page they form (page). | |
446 | * | |
447 | * 1) Any buddy B1 will have an order O twin B2 which satisfies | |
448 | * the following equation: | |
449 | * B2 = B1 ^ (1 << O) | |
450 | * For example, if the starting buddy (buddy2) is #8 its order | |
451 | * 1 buddy is #10: | |
452 | * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 | |
453 | * | |
454 | * 2) Any buddy B will have an order O+1 parent P which | |
455 | * satisfies the following equation: | |
456 | * P = B & ~(1 << O) | |
457 | * | |
d6e05edc | 458 | * Assumption: *_mem_map is contiguous at least up to MAX_ORDER |
1da177e4 | 459 | */ |
1da177e4 | 460 | static inline unsigned long |
43506fad | 461 | __find_buddy_index(unsigned long page_idx, unsigned int order) |
1da177e4 | 462 | { |
43506fad | 463 | return page_idx ^ (1 << order); |
1da177e4 LT |
464 | } |
465 | ||
466 | /* | |
467 | * This function checks whether a page is free && is the buddy | |
468 | * we can do coalesce a page and its buddy if | |
13e7444b | 469 | * (a) the buddy is not in a hole && |
676165a8 | 470 | * (b) the buddy is in the buddy system && |
cb2b95e1 AW |
471 | * (c) a page and its buddy have the same order && |
472 | * (d) a page and its buddy are in the same zone. | |
676165a8 | 473 | * |
5f24ce5f AA |
474 | * For recording whether a page is in the buddy system, we set ->_mapcount -2. |
475 | * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock. | |
1da177e4 | 476 | * |
676165a8 | 477 | * For recording page's order, we use page_private(page). |
1da177e4 | 478 | */ |
cb2b95e1 AW |
479 | static inline int page_is_buddy(struct page *page, struct page *buddy, |
480 | int order) | |
1da177e4 | 481 | { |
14e07298 | 482 | if (!pfn_valid_within(page_to_pfn(buddy))) |
13e7444b | 483 | return 0; |
13e7444b | 484 | |
cb2b95e1 AW |
485 | if (page_zone_id(page) != page_zone_id(buddy)) |
486 | return 0; | |
487 | ||
c0a32fc5 SG |
488 | if (page_is_guard(buddy) && page_order(buddy) == order) { |
489 | VM_BUG_ON(page_count(buddy) != 0); | |
490 | return 1; | |
491 | } | |
492 | ||
cb2b95e1 | 493 | if (PageBuddy(buddy) && page_order(buddy) == order) { |
a3af9c38 | 494 | VM_BUG_ON(page_count(buddy) != 0); |
6aa3001b | 495 | return 1; |
676165a8 | 496 | } |
6aa3001b | 497 | return 0; |
1da177e4 LT |
498 | } |
499 | ||
500 | /* | |
501 | * Freeing function for a buddy system allocator. | |
502 | * | |
503 | * The concept of a buddy system is to maintain direct-mapped table | |
504 | * (containing bit values) for memory blocks of various "orders". | |
505 | * The bottom level table contains the map for the smallest allocatable | |
506 | * units of memory (here, pages), and each level above it describes | |
507 | * pairs of units from the levels below, hence, "buddies". | |
508 | * At a high level, all that happens here is marking the table entry | |
509 | * at the bottom level available, and propagating the changes upward | |
510 | * as necessary, plus some accounting needed to play nicely with other | |
511 | * parts of the VM system. | |
512 | * At each level, we keep a list of pages, which are heads of continuous | |
5f24ce5f | 513 | * free pages of length of (1 << order) and marked with _mapcount -2. Page's |
4c21e2f2 | 514 | * order is recorded in page_private(page) field. |
1da177e4 LT |
515 | * So when we are allocating or freeing one, we can derive the state of the |
516 | * other. That is, if we allocate a small block, and both were | |
517 | * free, the remainder of the region must be split into blocks. | |
518 | * If a block is freed, and its buddy is also free, then this | |
519 | * triggers coalescing into a block of larger size. | |
520 | * | |
521 | * -- wli | |
522 | */ | |
523 | ||
48db57f8 | 524 | static inline void __free_one_page(struct page *page, |
ed0ae21d MG |
525 | struct zone *zone, unsigned int order, |
526 | int migratetype) | |
1da177e4 LT |
527 | { |
528 | unsigned long page_idx; | |
6dda9d55 | 529 | unsigned long combined_idx; |
43506fad | 530 | unsigned long uninitialized_var(buddy_idx); |
6dda9d55 | 531 | struct page *buddy; |
1da177e4 | 532 | |
224abf92 | 533 | if (unlikely(PageCompound(page))) |
8cc3b392 HD |
534 | if (unlikely(destroy_compound_page(page, order))) |
535 | return; | |
1da177e4 | 536 | |
ed0ae21d MG |
537 | VM_BUG_ON(migratetype == -1); |
538 | ||
1da177e4 LT |
539 | page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); |
540 | ||
f2260e6b | 541 | VM_BUG_ON(page_idx & ((1 << order) - 1)); |
725d704e | 542 | VM_BUG_ON(bad_range(zone, page)); |
1da177e4 | 543 | |
1da177e4 | 544 | while (order < MAX_ORDER-1) { |
43506fad KC |
545 | buddy_idx = __find_buddy_index(page_idx, order); |
546 | buddy = page + (buddy_idx - page_idx); | |
cb2b95e1 | 547 | if (!page_is_buddy(page, buddy, order)) |
3c82d0ce | 548 | break; |
c0a32fc5 SG |
549 | /* |
550 | * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, | |
551 | * merge with it and move up one order. | |
552 | */ | |
553 | if (page_is_guard(buddy)) { | |
554 | clear_page_guard_flag(buddy); | |
555 | set_page_private(page, 0); | |
556 | __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order); | |
557 | } else { | |
558 | list_del(&buddy->lru); | |
559 | zone->free_area[order].nr_free--; | |
560 | rmv_page_order(buddy); | |
561 | } | |
43506fad | 562 | combined_idx = buddy_idx & page_idx; |
1da177e4 LT |
563 | page = page + (combined_idx - page_idx); |
564 | page_idx = combined_idx; | |
565 | order++; | |
566 | } | |
567 | set_page_order(page, order); | |
6dda9d55 CZ |
568 | |
569 | /* | |
570 | * If this is not the largest possible page, check if the buddy | |
571 | * of the next-highest order is free. If it is, it's possible | |
572 | * that pages are being freed that will coalesce soon. In case, | |
573 | * that is happening, add the free page to the tail of the list | |
574 | * so it's less likely to be used soon and more likely to be merged | |
575 | * as a higher order page | |
576 | */ | |
b7f50cfa | 577 | if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) { |
6dda9d55 | 578 | struct page *higher_page, *higher_buddy; |
43506fad KC |
579 | combined_idx = buddy_idx & page_idx; |
580 | higher_page = page + (combined_idx - page_idx); | |
581 | buddy_idx = __find_buddy_index(combined_idx, order + 1); | |
582 | higher_buddy = page + (buddy_idx - combined_idx); | |
6dda9d55 CZ |
583 | if (page_is_buddy(higher_page, higher_buddy, order + 1)) { |
584 | list_add_tail(&page->lru, | |
585 | &zone->free_area[order].free_list[migratetype]); | |
586 | goto out; | |
587 | } | |
588 | } | |
589 | ||
590 | list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); | |
591 | out: | |
1da177e4 LT |
592 | zone->free_area[order].nr_free++; |
593 | } | |
594 | ||
092cead6 KM |
595 | /* |
596 | * free_page_mlock() -- clean up attempts to free and mlocked() page. | |
597 | * Page should not be on lru, so no need to fix that up. | |
598 | * free_pages_check() will verify... | |
599 | */ | |
600 | static inline void free_page_mlock(struct page *page) | |
601 | { | |
092cead6 KM |
602 | __dec_zone_page_state(page, NR_MLOCK); |
603 | __count_vm_event(UNEVICTABLE_MLOCKFREED); | |
604 | } | |
092cead6 | 605 | |
224abf92 | 606 | static inline int free_pages_check(struct page *page) |
1da177e4 | 607 | { |
92be2e33 NP |
608 | if (unlikely(page_mapcount(page) | |
609 | (page->mapping != NULL) | | |
a3af9c38 | 610 | (atomic_read(&page->_count) != 0) | |
f212ad7c DN |
611 | (page->flags & PAGE_FLAGS_CHECK_AT_FREE) | |
612 | (mem_cgroup_bad_page_check(page)))) { | |
224abf92 | 613 | bad_page(page); |
79f4b7bf | 614 | return 1; |
8cc3b392 | 615 | } |
79f4b7bf HD |
616 | if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
617 | page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; | |
618 | return 0; | |
1da177e4 LT |
619 | } |
620 | ||
621 | /* | |
5f8dcc21 | 622 | * Frees a number of pages from the PCP lists |
1da177e4 | 623 | * Assumes all pages on list are in same zone, and of same order. |
207f36ee | 624 | * count is the number of pages to free. |
1da177e4 LT |
625 | * |
626 | * If the zone was previously in an "all pages pinned" state then look to | |
627 | * see if this freeing clears that state. | |
628 | * | |
629 | * And clear the zone's pages_scanned counter, to hold off the "all pages are | |
630 | * pinned" detection logic. | |
631 | */ | |
5f8dcc21 MG |
632 | static void free_pcppages_bulk(struct zone *zone, int count, |
633 | struct per_cpu_pages *pcp) | |
1da177e4 | 634 | { |
5f8dcc21 | 635 | int migratetype = 0; |
a6f9edd6 | 636 | int batch_free = 0; |
72853e29 | 637 | int to_free = count; |
5f8dcc21 | 638 | |
c54ad30c | 639 | spin_lock(&zone->lock); |
93e4a89a | 640 | zone->all_unreclaimable = 0; |
1da177e4 | 641 | zone->pages_scanned = 0; |
f2260e6b | 642 | |
72853e29 | 643 | while (to_free) { |
48db57f8 | 644 | struct page *page; |
5f8dcc21 MG |
645 | struct list_head *list; |
646 | ||
647 | /* | |
a6f9edd6 MG |
648 | * Remove pages from lists in a round-robin fashion. A |
649 | * batch_free count is maintained that is incremented when an | |
650 | * empty list is encountered. This is so more pages are freed | |
651 | * off fuller lists instead of spinning excessively around empty | |
652 | * lists | |
5f8dcc21 MG |
653 | */ |
654 | do { | |
a6f9edd6 | 655 | batch_free++; |
5f8dcc21 MG |
656 | if (++migratetype == MIGRATE_PCPTYPES) |
657 | migratetype = 0; | |
658 | list = &pcp->lists[migratetype]; | |
659 | } while (list_empty(list)); | |
48db57f8 | 660 | |
1d16871d NK |
661 | /* This is the only non-empty list. Free them all. */ |
662 | if (batch_free == MIGRATE_PCPTYPES) | |
663 | batch_free = to_free; | |
664 | ||
a6f9edd6 MG |
665 | do { |
666 | page = list_entry(list->prev, struct page, lru); | |
667 | /* must delete as __free_one_page list manipulates */ | |
668 | list_del(&page->lru); | |
a7016235 HD |
669 | /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */ |
670 | __free_one_page(page, zone, 0, page_private(page)); | |
671 | trace_mm_page_pcpu_drain(page, 0, page_private(page)); | |
72853e29 | 672 | } while (--to_free && --batch_free && !list_empty(list)); |
1da177e4 | 673 | } |
72853e29 | 674 | __mod_zone_page_state(zone, NR_FREE_PAGES, count); |
c54ad30c | 675 | spin_unlock(&zone->lock); |
1da177e4 LT |
676 | } |
677 | ||
ed0ae21d MG |
678 | static void free_one_page(struct zone *zone, struct page *page, int order, |
679 | int migratetype) | |
1da177e4 | 680 | { |
006d22d9 | 681 | spin_lock(&zone->lock); |
93e4a89a | 682 | zone->all_unreclaimable = 0; |
006d22d9 | 683 | zone->pages_scanned = 0; |
f2260e6b | 684 | |
ed0ae21d | 685 | __free_one_page(page, zone, order, migratetype); |
72853e29 | 686 | __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order); |
006d22d9 | 687 | spin_unlock(&zone->lock); |
48db57f8 NP |
688 | } |
689 | ||
ec95f53a | 690 | static bool free_pages_prepare(struct page *page, unsigned int order) |
48db57f8 | 691 | { |
1da177e4 | 692 | int i; |
8cc3b392 | 693 | int bad = 0; |
1da177e4 | 694 | |
b413d48a | 695 | trace_mm_page_free(page, order); |
b1eeab67 VN |
696 | kmemcheck_free_shadow(page, order); |
697 | ||
8dd60a3a AA |
698 | if (PageAnon(page)) |
699 | page->mapping = NULL; | |
700 | for (i = 0; i < (1 << order); i++) | |
701 | bad += free_pages_check(page + i); | |
8cc3b392 | 702 | if (bad) |
ec95f53a | 703 | return false; |
689bcebf | 704 | |
3ac7fe5a | 705 | if (!PageHighMem(page)) { |
9858db50 | 706 | debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order); |
3ac7fe5a TG |
707 | debug_check_no_obj_freed(page_address(page), |
708 | PAGE_SIZE << order); | |
709 | } | |
dafb1367 | 710 | arch_free_page(page, order); |
48db57f8 | 711 | kernel_map_pages(page, 1 << order, 0); |
dafb1367 | 712 | |
ec95f53a KM |
713 | return true; |
714 | } | |
715 | ||
716 | static void __free_pages_ok(struct page *page, unsigned int order) | |
717 | { | |
718 | unsigned long flags; | |
719 | int wasMlocked = __TestClearPageMlocked(page); | |
720 | ||
721 | if (!free_pages_prepare(page, order)) | |
722 | return; | |
723 | ||
c54ad30c | 724 | local_irq_save(flags); |
c277331d | 725 | if (unlikely(wasMlocked)) |
da456f14 | 726 | free_page_mlock(page); |
f8891e5e | 727 | __count_vm_events(PGFREE, 1 << order); |
ed0ae21d MG |
728 | free_one_page(page_zone(page), page, order, |
729 | get_pageblock_migratetype(page)); | |
c54ad30c | 730 | local_irq_restore(flags); |
1da177e4 LT |
731 | } |
732 | ||
af370fb8 | 733 | void __meminit __free_pages_bootmem(struct page *page, unsigned int order) |
a226f6c8 | 734 | { |
c3993076 JW |
735 | unsigned int nr_pages = 1 << order; |
736 | unsigned int loop; | |
a226f6c8 | 737 | |
c3993076 JW |
738 | prefetchw(page); |
739 | for (loop = 0; loop < nr_pages; loop++) { | |
740 | struct page *p = &page[loop]; | |
741 | ||
742 | if (loop + 1 < nr_pages) | |
743 | prefetchw(p + 1); | |
744 | __ClearPageReserved(p); | |
745 | set_page_count(p, 0); | |
a226f6c8 | 746 | } |
c3993076 JW |
747 | |
748 | set_page_refcounted(page); | |
749 | __free_pages(page, order); | |
a226f6c8 DH |
750 | } |
751 | ||
1da177e4 LT |
752 | |
753 | /* | |
754 | * The order of subdivision here is critical for the IO subsystem. | |
755 | * Please do not alter this order without good reasons and regression | |
756 | * testing. Specifically, as large blocks of memory are subdivided, | |
757 | * the order in which smaller blocks are delivered depends on the order | |
758 | * they're subdivided in this function. This is the primary factor | |
759 | * influencing the order in which pages are delivered to the IO | |
760 | * subsystem according to empirical testing, and this is also justified | |
761 | * by considering the behavior of a buddy system containing a single | |
762 | * large block of memory acted on by a series of small allocations. | |
763 | * This behavior is a critical factor in sglist merging's success. | |
764 | * | |
765 | * -- wli | |
766 | */ | |
085cc7d5 | 767 | static inline void expand(struct zone *zone, struct page *page, |
b2a0ac88 MG |
768 | int low, int high, struct free_area *area, |
769 | int migratetype) | |
1da177e4 LT |
770 | { |
771 | unsigned long size = 1 << high; | |
772 | ||
773 | while (high > low) { | |
774 | area--; | |
775 | high--; | |
776 | size >>= 1; | |
725d704e | 777 | VM_BUG_ON(bad_range(zone, &page[size])); |
c0a32fc5 SG |
778 | |
779 | #ifdef CONFIG_DEBUG_PAGEALLOC | |
780 | if (high < debug_guardpage_minorder()) { | |
781 | /* | |
782 | * Mark as guard pages (or page), that will allow to | |
783 | * merge back to allocator when buddy will be freed. | |
784 | * Corresponding page table entries will not be touched, | |
785 | * pages will stay not present in virtual address space | |
786 | */ | |
787 | INIT_LIST_HEAD(&page[size].lru); | |
788 | set_page_guard_flag(&page[size]); | |
789 | set_page_private(&page[size], high); | |
790 | /* Guard pages are not available for any usage */ | |
791 | __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << high)); | |
792 | continue; | |
793 | } | |
794 | #endif | |
b2a0ac88 | 795 | list_add(&page[size].lru, &area->free_list[migratetype]); |
1da177e4 LT |
796 | area->nr_free++; |
797 | set_page_order(&page[size], high); | |
798 | } | |
1da177e4 LT |
799 | } |
800 | ||
1da177e4 LT |
801 | /* |
802 | * This page is about to be returned from the page allocator | |
803 | */ | |
2a7684a2 | 804 | static inline int check_new_page(struct page *page) |
1da177e4 | 805 | { |
92be2e33 NP |
806 | if (unlikely(page_mapcount(page) | |
807 | (page->mapping != NULL) | | |
a3af9c38 | 808 | (atomic_read(&page->_count) != 0) | |
f212ad7c DN |
809 | (page->flags & PAGE_FLAGS_CHECK_AT_PREP) | |
810 | (mem_cgroup_bad_page_check(page)))) { | |
224abf92 | 811 | bad_page(page); |
689bcebf | 812 | return 1; |
8cc3b392 | 813 | } |
2a7684a2 WF |
814 | return 0; |
815 | } | |
816 | ||
817 | static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) | |
818 | { | |
819 | int i; | |
820 | ||
821 | for (i = 0; i < (1 << order); i++) { | |
822 | struct page *p = page + i; | |
823 | if (unlikely(check_new_page(p))) | |
824 | return 1; | |
825 | } | |
689bcebf | 826 | |
4c21e2f2 | 827 | set_page_private(page, 0); |
7835e98b | 828 | set_page_refcounted(page); |
cc102509 NP |
829 | |
830 | arch_alloc_page(page, order); | |
1da177e4 | 831 | kernel_map_pages(page, 1 << order, 1); |
17cf4406 NP |
832 | |
833 | if (gfp_flags & __GFP_ZERO) | |
834 | prep_zero_page(page, order, gfp_flags); | |
835 | ||
836 | if (order && (gfp_flags & __GFP_COMP)) | |
837 | prep_compound_page(page, order); | |
838 | ||
689bcebf | 839 | return 0; |
1da177e4 LT |
840 | } |
841 | ||
56fd56b8 MG |
842 | /* |
843 | * Go through the free lists for the given migratetype and remove | |
844 | * the smallest available page from the freelists | |
845 | */ | |
728ec980 MG |
846 | static inline |
847 | struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, | |
56fd56b8 MG |
848 | int migratetype) |
849 | { | |
850 | unsigned int current_order; | |
851 | struct free_area * area; | |
852 | struct page *page; | |
853 | ||
854 | /* Find a page of the appropriate size in the preferred list */ | |
855 | for (current_order = order; current_order < MAX_ORDER; ++current_order) { | |
856 | area = &(zone->free_area[current_order]); | |
857 | if (list_empty(&area->free_list[migratetype])) | |
858 | continue; | |
859 | ||
860 | page = list_entry(area->free_list[migratetype].next, | |
861 | struct page, lru); | |
862 | list_del(&page->lru); | |
863 | rmv_page_order(page); | |
864 | area->nr_free--; | |
56fd56b8 MG |
865 | expand(zone, page, order, current_order, area, migratetype); |
866 | return page; | |
867 | } | |
868 | ||
869 | return NULL; | |
870 | } | |
871 | ||
872 | ||
b2a0ac88 MG |
873 | /* |
874 | * This array describes the order lists are fallen back to when | |
875 | * the free lists for the desirable migrate type are depleted | |
876 | */ | |
877 | static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = { | |
64c5e135 MG |
878 | [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, |
879 | [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, | |
880 | [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, | |
881 | [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */ | |
b2a0ac88 MG |
882 | }; |
883 | ||
c361be55 MG |
884 | /* |
885 | * Move the free pages in a range to the free lists of the requested type. | |
d9c23400 | 886 | * Note that start_page and end_pages are not aligned on a pageblock |
c361be55 MG |
887 | * boundary. If alignment is required, use move_freepages_block() |
888 | */ | |
b69a7288 AB |
889 | static int move_freepages(struct zone *zone, |
890 | struct page *start_page, struct page *end_page, | |
891 | int migratetype) | |
c361be55 MG |
892 | { |
893 | struct page *page; | |
894 | unsigned long order; | |
d100313f | 895 | int pages_moved = 0; |
c361be55 MG |
896 | |
897 | #ifndef CONFIG_HOLES_IN_ZONE | |
898 | /* | |
899 | * page_zone is not safe to call in this context when | |
900 | * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant | |
901 | * anyway as we check zone boundaries in move_freepages_block(). | |
902 | * Remove at a later date when no bug reports exist related to | |
ac0e5b7a | 903 | * grouping pages by mobility |
c361be55 MG |
904 | */ |
905 | BUG_ON(page_zone(start_page) != page_zone(end_page)); | |
906 | #endif | |
907 | ||
908 | for (page = start_page; page <= end_page;) { | |
344c790e AL |
909 | /* Make sure we are not inadvertently changing nodes */ |
910 | VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone)); | |
911 | ||
c361be55 MG |
912 | if (!pfn_valid_within(page_to_pfn(page))) { |
913 | page++; | |
914 | continue; | |
915 | } | |
916 | ||
917 | if (!PageBuddy(page)) { | |
918 | page++; | |
919 | continue; | |
920 | } | |
921 | ||
922 | order = page_order(page); | |
84be48d8 KS |
923 | list_move(&page->lru, |
924 | &zone->free_area[order].free_list[migratetype]); | |
c361be55 | 925 | page += 1 << order; |
d100313f | 926 | pages_moved += 1 << order; |
c361be55 MG |
927 | } |
928 | ||
d100313f | 929 | return pages_moved; |
c361be55 MG |
930 | } |
931 | ||
b69a7288 AB |
932 | static int move_freepages_block(struct zone *zone, struct page *page, |
933 | int migratetype) | |
c361be55 MG |
934 | { |
935 | unsigned long start_pfn, end_pfn; | |
936 | struct page *start_page, *end_page; | |
937 | ||
938 | start_pfn = page_to_pfn(page); | |
d9c23400 | 939 | start_pfn = start_pfn & ~(pageblock_nr_pages-1); |
c361be55 | 940 | start_page = pfn_to_page(start_pfn); |
d9c23400 MG |
941 | end_page = start_page + pageblock_nr_pages - 1; |
942 | end_pfn = start_pfn + pageblock_nr_pages - 1; | |
c361be55 MG |
943 | |
944 | /* Do not cross zone boundaries */ | |
945 | if (start_pfn < zone->zone_start_pfn) | |
946 | start_page = page; | |
947 | if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages) | |
948 | return 0; | |
949 | ||
950 | return move_freepages(zone, start_page, end_page, migratetype); | |
951 | } | |
952 | ||
2f66a68f MG |
953 | static void change_pageblock_range(struct page *pageblock_page, |
954 | int start_order, int migratetype) | |
955 | { | |
956 | int nr_pageblocks = 1 << (start_order - pageblock_order); | |
957 | ||
958 | while (nr_pageblocks--) { | |
959 | set_pageblock_migratetype(pageblock_page, migratetype); | |
960 | pageblock_page += pageblock_nr_pages; | |
961 | } | |
962 | } | |
963 | ||
b2a0ac88 | 964 | /* Remove an element from the buddy allocator from the fallback list */ |
0ac3a409 MG |
965 | static inline struct page * |
966 | __rmqueue_fallback(struct zone *zone, int order, int start_migratetype) | |
b2a0ac88 MG |
967 | { |
968 | struct free_area * area; | |
969 | int current_order; | |
970 | struct page *page; | |
971 | int migratetype, i; | |
972 | ||
973 | /* Find the largest possible block of pages in the other list */ | |
974 | for (current_order = MAX_ORDER-1; current_order >= order; | |
975 | --current_order) { | |
976 | for (i = 0; i < MIGRATE_TYPES - 1; i++) { | |
977 | migratetype = fallbacks[start_migratetype][i]; | |
978 | ||
56fd56b8 MG |
979 | /* MIGRATE_RESERVE handled later if necessary */ |
980 | if (migratetype == MIGRATE_RESERVE) | |
981 | continue; | |
e010487d | 982 | |
b2a0ac88 MG |
983 | area = &(zone->free_area[current_order]); |
984 | if (list_empty(&area->free_list[migratetype])) | |
985 | continue; | |
986 | ||
987 | page = list_entry(area->free_list[migratetype].next, | |
988 | struct page, lru); | |
989 | area->nr_free--; | |
990 | ||
991 | /* | |
c361be55 | 992 | * If breaking a large block of pages, move all free |
46dafbca MG |
993 | * pages to the preferred allocation list. If falling |
994 | * back for a reclaimable kernel allocation, be more | |
25985edc | 995 | * aggressive about taking ownership of free pages |
b2a0ac88 | 996 | */ |
d9c23400 | 997 | if (unlikely(current_order >= (pageblock_order >> 1)) || |
dd5d241e MG |
998 | start_migratetype == MIGRATE_RECLAIMABLE || |
999 | page_group_by_mobility_disabled) { | |
46dafbca MG |
1000 | unsigned long pages; |
1001 | pages = move_freepages_block(zone, page, | |
1002 | start_migratetype); | |
1003 | ||
1004 | /* Claim the whole block if over half of it is free */ | |
dd5d241e MG |
1005 | if (pages >= (1 << (pageblock_order-1)) || |
1006 | page_group_by_mobility_disabled) | |
46dafbca MG |
1007 | set_pageblock_migratetype(page, |
1008 | start_migratetype); | |
1009 | ||
b2a0ac88 | 1010 | migratetype = start_migratetype; |
c361be55 | 1011 | } |
b2a0ac88 MG |
1012 | |
1013 | /* Remove the page from the freelists */ | |
1014 | list_del(&page->lru); | |
1015 | rmv_page_order(page); | |
b2a0ac88 | 1016 | |
2f66a68f MG |
1017 | /* Take ownership for orders >= pageblock_order */ |
1018 | if (current_order >= pageblock_order) | |
1019 | change_pageblock_range(page, current_order, | |
b2a0ac88 MG |
1020 | start_migratetype); |
1021 | ||
1022 | expand(zone, page, order, current_order, area, migratetype); | |
e0fff1bd MG |
1023 | |
1024 | trace_mm_page_alloc_extfrag(page, order, current_order, | |
1025 | start_migratetype, migratetype); | |
1026 | ||
b2a0ac88 MG |
1027 | return page; |
1028 | } | |
1029 | } | |
1030 | ||
728ec980 | 1031 | return NULL; |
b2a0ac88 MG |
1032 | } |
1033 | ||
56fd56b8 | 1034 | /* |
1da177e4 LT |
1035 | * Do the hard work of removing an element from the buddy allocator. |
1036 | * Call me with the zone->lock already held. | |
1037 | */ | |
b2a0ac88 MG |
1038 | static struct page *__rmqueue(struct zone *zone, unsigned int order, |
1039 | int migratetype) | |
1da177e4 | 1040 | { |
1da177e4 LT |
1041 | struct page *page; |
1042 | ||
728ec980 | 1043 | retry_reserve: |
56fd56b8 | 1044 | page = __rmqueue_smallest(zone, order, migratetype); |
b2a0ac88 | 1045 | |
728ec980 | 1046 | if (unlikely(!page) && migratetype != MIGRATE_RESERVE) { |
56fd56b8 | 1047 | page = __rmqueue_fallback(zone, order, migratetype); |
b2a0ac88 | 1048 | |
728ec980 MG |
1049 | /* |
1050 | * Use MIGRATE_RESERVE rather than fail an allocation. goto | |
1051 | * is used because __rmqueue_smallest is an inline function | |
1052 | * and we want just one call site | |
1053 | */ | |
1054 | if (!page) { | |
1055 | migratetype = MIGRATE_RESERVE; | |
1056 | goto retry_reserve; | |
1057 | } | |
1058 | } | |
1059 | ||
0d3d062a | 1060 | trace_mm_page_alloc_zone_locked(page, order, migratetype); |
b2a0ac88 | 1061 | return page; |
1da177e4 LT |
1062 | } |
1063 | ||
1064 | /* | |
1065 | * Obtain a specified number of elements from the buddy allocator, all under | |
1066 | * a single hold of the lock, for efficiency. Add them to the supplied list. | |
1067 | * Returns the number of new pages which were placed at *list. | |
1068 | */ | |
1069 | static int rmqueue_bulk(struct zone *zone, unsigned int order, | |
b2a0ac88 | 1070 | unsigned long count, struct list_head *list, |
e084b2d9 | 1071 | int migratetype, int cold) |
1da177e4 | 1072 | { |
1da177e4 | 1073 | int i; |
1da177e4 | 1074 | |
c54ad30c | 1075 | spin_lock(&zone->lock); |
1da177e4 | 1076 | for (i = 0; i < count; ++i) { |
b2a0ac88 | 1077 | struct page *page = __rmqueue(zone, order, migratetype); |
085cc7d5 | 1078 | if (unlikely(page == NULL)) |
1da177e4 | 1079 | break; |
81eabcbe MG |
1080 | |
1081 | /* | |
1082 | * Split buddy pages returned by expand() are received here | |
1083 | * in physical page order. The page is added to the callers and | |
1084 | * list and the list head then moves forward. From the callers | |
1085 | * perspective, the linked list is ordered by page number in | |
1086 | * some conditions. This is useful for IO devices that can | |
1087 | * merge IO requests if the physical pages are ordered | |
1088 | * properly. | |
1089 | */ | |
e084b2d9 MG |
1090 | if (likely(cold == 0)) |
1091 | list_add(&page->lru, list); | |
1092 | else | |
1093 | list_add_tail(&page->lru, list); | |
535131e6 | 1094 | set_page_private(page, migratetype); |
81eabcbe | 1095 | list = &page->lru; |
1da177e4 | 1096 | } |
f2260e6b | 1097 | __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); |
c54ad30c | 1098 | spin_unlock(&zone->lock); |
085cc7d5 | 1099 | return i; |
1da177e4 LT |
1100 | } |
1101 | ||
4ae7c039 | 1102 | #ifdef CONFIG_NUMA |
8fce4d8e | 1103 | /* |
4037d452 CL |
1104 | * Called from the vmstat counter updater to drain pagesets of this |
1105 | * currently executing processor on remote nodes after they have | |
1106 | * expired. | |
1107 | * | |
879336c3 CL |
1108 | * Note that this function must be called with the thread pinned to |
1109 | * a single processor. | |
8fce4d8e | 1110 | */ |
4037d452 | 1111 | void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) |
4ae7c039 | 1112 | { |
4ae7c039 | 1113 | unsigned long flags; |
4037d452 | 1114 | int to_drain; |
4ae7c039 | 1115 | |
4037d452 CL |
1116 | local_irq_save(flags); |
1117 | if (pcp->count >= pcp->batch) | |
1118 | to_drain = pcp->batch; | |
1119 | else | |
1120 | to_drain = pcp->count; | |
5f8dcc21 | 1121 | free_pcppages_bulk(zone, to_drain, pcp); |
4037d452 CL |
1122 | pcp->count -= to_drain; |
1123 | local_irq_restore(flags); | |
4ae7c039 CL |
1124 | } |
1125 | #endif | |
1126 | ||
9f8f2172 CL |
1127 | /* |
1128 | * Drain pages of the indicated processor. | |
1129 | * | |
1130 | * The processor must either be the current processor and the | |
1131 | * thread pinned to the current processor or a processor that | |
1132 | * is not online. | |
1133 | */ | |
1134 | static void drain_pages(unsigned int cpu) | |
1da177e4 | 1135 | { |
c54ad30c | 1136 | unsigned long flags; |
1da177e4 | 1137 | struct zone *zone; |
1da177e4 | 1138 | |
ee99c71c | 1139 | for_each_populated_zone(zone) { |
1da177e4 | 1140 | struct per_cpu_pageset *pset; |
3dfa5721 | 1141 | struct per_cpu_pages *pcp; |
1da177e4 | 1142 | |
99dcc3e5 CL |
1143 | local_irq_save(flags); |
1144 | pset = per_cpu_ptr(zone->pageset, cpu); | |
3dfa5721 CL |
1145 | |
1146 | pcp = &pset->pcp; | |
2ff754fa DR |
1147 | if (pcp->count) { |
1148 | free_pcppages_bulk(zone, pcp->count, pcp); | |
1149 | pcp->count = 0; | |
1150 | } | |
3dfa5721 | 1151 | local_irq_restore(flags); |
1da177e4 LT |
1152 | } |
1153 | } | |
1da177e4 | 1154 | |
9f8f2172 CL |
1155 | /* |
1156 | * Spill all of this CPU's per-cpu pages back into the buddy allocator. | |
1157 | */ | |
1158 | void drain_local_pages(void *arg) | |
1159 | { | |
1160 | drain_pages(smp_processor_id()); | |
1161 | } | |
1162 | ||
1163 | /* | |
74046494 GBY |
1164 | * Spill all the per-cpu pages from all CPUs back into the buddy allocator. |
1165 | * | |
1166 | * Note that this code is protected against sending an IPI to an offline | |
1167 | * CPU but does not guarantee sending an IPI to newly hotplugged CPUs: | |
1168 | * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but | |
1169 | * nothing keeps CPUs from showing up after we populated the cpumask and | |
1170 | * before the call to on_each_cpu_mask(). | |
9f8f2172 CL |
1171 | */ |
1172 | void drain_all_pages(void) | |
1173 | { | |
74046494 GBY |
1174 | int cpu; |
1175 | struct per_cpu_pageset *pcp; | |
1176 | struct zone *zone; | |
1177 | ||
1178 | /* | |
1179 | * Allocate in the BSS so we wont require allocation in | |
1180 | * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y | |
1181 | */ | |
1182 | static cpumask_t cpus_with_pcps; | |
1183 | ||
1184 | /* | |
1185 | * We don't care about racing with CPU hotplug event | |
1186 | * as offline notification will cause the notified | |
1187 | * cpu to drain that CPU pcps and on_each_cpu_mask | |
1188 | * disables preemption as part of its processing | |
1189 | */ | |
1190 | for_each_online_cpu(cpu) { | |
1191 | bool has_pcps = false; | |
1192 | for_each_populated_zone(zone) { | |
1193 | pcp = per_cpu_ptr(zone->pageset, cpu); | |
1194 | if (pcp->pcp.count) { | |
1195 | has_pcps = true; | |
1196 | break; | |
1197 | } | |
1198 | } | |
1199 | if (has_pcps) | |
1200 | cpumask_set_cpu(cpu, &cpus_with_pcps); | |
1201 | else | |
1202 | cpumask_clear_cpu(cpu, &cpus_with_pcps); | |
1203 | } | |
1204 | on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1); | |
9f8f2172 CL |
1205 | } |
1206 | ||
296699de | 1207 | #ifdef CONFIG_HIBERNATION |
1da177e4 LT |
1208 | |
1209 | void mark_free_pages(struct zone *zone) | |
1210 | { | |
f623f0db RW |
1211 | unsigned long pfn, max_zone_pfn; |
1212 | unsigned long flags; | |
b2a0ac88 | 1213 | int order, t; |
1da177e4 LT |
1214 | struct list_head *curr; |
1215 | ||
1216 | if (!zone->spanned_pages) | |
1217 | return; | |
1218 | ||
1219 | spin_lock_irqsave(&zone->lock, flags); | |
f623f0db RW |
1220 | |
1221 | max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; | |
1222 | for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) | |
1223 | if (pfn_valid(pfn)) { | |
1224 | struct page *page = pfn_to_page(pfn); | |
1225 | ||
7be98234 RW |
1226 | if (!swsusp_page_is_forbidden(page)) |
1227 | swsusp_unset_page_free(page); | |
f623f0db | 1228 | } |
1da177e4 | 1229 | |
b2a0ac88 MG |
1230 | for_each_migratetype_order(order, t) { |
1231 | list_for_each(curr, &zone->free_area[order].free_list[t]) { | |
f623f0db | 1232 | unsigned long i; |
1da177e4 | 1233 | |
f623f0db RW |
1234 | pfn = page_to_pfn(list_entry(curr, struct page, lru)); |
1235 | for (i = 0; i < (1UL << order); i++) | |
7be98234 | 1236 | swsusp_set_page_free(pfn_to_page(pfn + i)); |
f623f0db | 1237 | } |
b2a0ac88 | 1238 | } |
1da177e4 LT |
1239 | spin_unlock_irqrestore(&zone->lock, flags); |
1240 | } | |
e2c55dc8 | 1241 | #endif /* CONFIG_PM */ |
1da177e4 | 1242 | |
1da177e4 LT |
1243 | /* |
1244 | * Free a 0-order page | |
fc91668e | 1245 | * cold == 1 ? free a cold page : free a hot page |
1da177e4 | 1246 | */ |
fc91668e | 1247 | void free_hot_cold_page(struct page *page, int cold) |
1da177e4 LT |
1248 | { |
1249 | struct zone *zone = page_zone(page); | |
1250 | struct per_cpu_pages *pcp; | |
1251 | unsigned long flags; | |
5f8dcc21 | 1252 | int migratetype; |
451ea25d | 1253 | int wasMlocked = __TestClearPageMlocked(page); |
1da177e4 | 1254 | |
ec95f53a | 1255 | if (!free_pages_prepare(page, 0)) |
689bcebf HD |
1256 | return; |
1257 | ||
5f8dcc21 MG |
1258 | migratetype = get_pageblock_migratetype(page); |
1259 | set_page_private(page, migratetype); | |
1da177e4 | 1260 | local_irq_save(flags); |
c277331d | 1261 | if (unlikely(wasMlocked)) |
da456f14 | 1262 | free_page_mlock(page); |
f8891e5e | 1263 | __count_vm_event(PGFREE); |
da456f14 | 1264 | |
5f8dcc21 MG |
1265 | /* |
1266 | * We only track unmovable, reclaimable and movable on pcp lists. | |
1267 | * Free ISOLATE pages back to the allocator because they are being | |
1268 | * offlined but treat RESERVE as movable pages so we can get those | |
1269 | * areas back if necessary. Otherwise, we may have to free | |
1270 | * excessively into the page allocator | |
1271 | */ | |
1272 | if (migratetype >= MIGRATE_PCPTYPES) { | |
1273 | if (unlikely(migratetype == MIGRATE_ISOLATE)) { | |
1274 | free_one_page(zone, page, 0, migratetype); | |
1275 | goto out; | |
1276 | } | |
1277 | migratetype = MIGRATE_MOVABLE; | |
1278 | } | |
1279 | ||
99dcc3e5 | 1280 | pcp = &this_cpu_ptr(zone->pageset)->pcp; |
3dfa5721 | 1281 | if (cold) |
5f8dcc21 | 1282 | list_add_tail(&page->lru, &pcp->lists[migratetype]); |
3dfa5721 | 1283 | else |
5f8dcc21 | 1284 | list_add(&page->lru, &pcp->lists[migratetype]); |
1da177e4 | 1285 | pcp->count++; |
48db57f8 | 1286 | if (pcp->count >= pcp->high) { |
5f8dcc21 | 1287 | free_pcppages_bulk(zone, pcp->batch, pcp); |
48db57f8 NP |
1288 | pcp->count -= pcp->batch; |
1289 | } | |
5f8dcc21 MG |
1290 | |
1291 | out: | |
1da177e4 | 1292 | local_irq_restore(flags); |
1da177e4 LT |
1293 | } |
1294 | ||
cc59850e KK |
1295 | /* |
1296 | * Free a list of 0-order pages | |
1297 | */ | |
1298 | void free_hot_cold_page_list(struct list_head *list, int cold) | |
1299 | { | |
1300 | struct page *page, *next; | |
1301 | ||
1302 | list_for_each_entry_safe(page, next, list, lru) { | |
b413d48a | 1303 | trace_mm_page_free_batched(page, cold); |
cc59850e KK |
1304 | free_hot_cold_page(page, cold); |
1305 | } | |
1306 | } | |
1307 | ||
8dfcc9ba NP |
1308 | /* |
1309 | * split_page takes a non-compound higher-order page, and splits it into | |
1310 | * n (1<<order) sub-pages: page[0..n] | |
1311 | * Each sub-page must be freed individually. | |
1312 | * | |
1313 | * Note: this is probably too low level an operation for use in drivers. | |
1314 | * Please consult with lkml before using this in your driver. | |
1315 | */ | |
1316 | void split_page(struct page *page, unsigned int order) | |
1317 | { | |
1318 | int i; | |
1319 | ||
725d704e NP |
1320 | VM_BUG_ON(PageCompound(page)); |
1321 | VM_BUG_ON(!page_count(page)); | |
b1eeab67 VN |
1322 | |
1323 | #ifdef CONFIG_KMEMCHECK | |
1324 | /* | |
1325 | * Split shadow pages too, because free(page[0]) would | |
1326 | * otherwise free the whole shadow. | |
1327 | */ | |
1328 | if (kmemcheck_page_is_tracked(page)) | |
1329 | split_page(virt_to_page(page[0].shadow), order); | |
1330 | #endif | |
1331 | ||
7835e98b NP |
1332 | for (i = 1; i < (1 << order); i++) |
1333 | set_page_refcounted(page + i); | |
8dfcc9ba | 1334 | } |
8dfcc9ba | 1335 | |
748446bb MG |
1336 | /* |
1337 | * Similar to split_page except the page is already free. As this is only | |
1338 | * being used for migration, the migratetype of the block also changes. | |
1339 | * As this is called with interrupts disabled, the caller is responsible | |
1340 | * for calling arch_alloc_page() and kernel_map_page() after interrupts | |
1341 | * are enabled. | |
1342 | * | |
1343 | * Note: this is probably too low level an operation for use in drivers. | |
1344 | * Please consult with lkml before using this in your driver. | |
1345 | */ | |
1346 | int split_free_page(struct page *page) | |
1347 | { | |
1348 | unsigned int order; | |
1349 | unsigned long watermark; | |
1350 | struct zone *zone; | |
1351 | ||
1352 | BUG_ON(!PageBuddy(page)); | |
1353 | ||
1354 | zone = page_zone(page); | |
1355 | order = page_order(page); | |
1356 | ||
1357 | /* Obey watermarks as if the page was being allocated */ | |
1358 | watermark = low_wmark_pages(zone) + (1 << order); | |
1359 | if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) | |
1360 | return 0; | |
1361 | ||
1362 | /* Remove page from free list */ | |
1363 | list_del(&page->lru); | |
1364 | zone->free_area[order].nr_free--; | |
1365 | rmv_page_order(page); | |
1366 | __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order)); | |
1367 | ||
1368 | /* Split into individual pages */ | |
1369 | set_page_refcounted(page); | |
1370 | split_page(page, order); | |
1371 | ||
1372 | if (order >= pageblock_order - 1) { | |
1373 | struct page *endpage = page + (1 << order) - 1; | |
1374 | for (; page < endpage; page += pageblock_nr_pages) | |
1375 | set_pageblock_migratetype(page, MIGRATE_MOVABLE); | |
1376 | } | |
1377 | ||
1378 | return 1 << order; | |
1379 | } | |
1380 | ||
1da177e4 LT |
1381 | /* |
1382 | * Really, prep_compound_page() should be called from __rmqueue_bulk(). But | |
1383 | * we cheat by calling it from here, in the order > 0 path. Saves a branch | |
1384 | * or two. | |
1385 | */ | |
0a15c3e9 MG |
1386 | static inline |
1387 | struct page *buffered_rmqueue(struct zone *preferred_zone, | |
3dd28266 MG |
1388 | struct zone *zone, int order, gfp_t gfp_flags, |
1389 | int migratetype) | |
1da177e4 LT |
1390 | { |
1391 | unsigned long flags; | |
689bcebf | 1392 | struct page *page; |
1da177e4 LT |
1393 | int cold = !!(gfp_flags & __GFP_COLD); |
1394 | ||
689bcebf | 1395 | again: |
48db57f8 | 1396 | if (likely(order == 0)) { |
1da177e4 | 1397 | struct per_cpu_pages *pcp; |
5f8dcc21 | 1398 | struct list_head *list; |
1da177e4 | 1399 | |
1da177e4 | 1400 | local_irq_save(flags); |
99dcc3e5 CL |
1401 | pcp = &this_cpu_ptr(zone->pageset)->pcp; |
1402 | list = &pcp->lists[migratetype]; | |
5f8dcc21 | 1403 | if (list_empty(list)) { |
535131e6 | 1404 | pcp->count += rmqueue_bulk(zone, 0, |
5f8dcc21 | 1405 | pcp->batch, list, |
e084b2d9 | 1406 | migratetype, cold); |
5f8dcc21 | 1407 | if (unlikely(list_empty(list))) |
6fb332fa | 1408 | goto failed; |
535131e6 | 1409 | } |
b92a6edd | 1410 | |
5f8dcc21 MG |
1411 | if (cold) |
1412 | page = list_entry(list->prev, struct page, lru); | |
1413 | else | |
1414 | page = list_entry(list->next, struct page, lru); | |
1415 | ||
b92a6edd MG |
1416 | list_del(&page->lru); |
1417 | pcp->count--; | |
7fb1d9fc | 1418 | } else { |
dab48dab AM |
1419 | if (unlikely(gfp_flags & __GFP_NOFAIL)) { |
1420 | /* | |
1421 | * __GFP_NOFAIL is not to be used in new code. | |
1422 | * | |
1423 | * All __GFP_NOFAIL callers should be fixed so that they | |
1424 | * properly detect and handle allocation failures. | |
1425 | * | |
1426 | * We most definitely don't want callers attempting to | |
4923abf9 | 1427 | * allocate greater than order-1 page units with |
dab48dab AM |
1428 | * __GFP_NOFAIL. |
1429 | */ | |
4923abf9 | 1430 | WARN_ON_ONCE(order > 1); |
dab48dab | 1431 | } |
1da177e4 | 1432 | spin_lock_irqsave(&zone->lock, flags); |
b2a0ac88 | 1433 | page = __rmqueue(zone, order, migratetype); |
a74609fa NP |
1434 | spin_unlock(&zone->lock); |
1435 | if (!page) | |
1436 | goto failed; | |
6ccf80eb | 1437 | __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order)); |
1da177e4 LT |
1438 | } |
1439 | ||
f8891e5e | 1440 | __count_zone_vm_events(PGALLOC, zone, 1 << order); |
78afd561 | 1441 | zone_statistics(preferred_zone, zone, gfp_flags); |
a74609fa | 1442 | local_irq_restore(flags); |
1da177e4 | 1443 | |
725d704e | 1444 | VM_BUG_ON(bad_range(zone, page)); |
17cf4406 | 1445 | if (prep_new_page(page, order, gfp_flags)) |
a74609fa | 1446 | goto again; |
1da177e4 | 1447 | return page; |
a74609fa NP |
1448 | |
1449 | failed: | |
1450 | local_irq_restore(flags); | |
a74609fa | 1451 | return NULL; |
1da177e4 LT |
1452 | } |
1453 | ||
41858966 MG |
1454 | /* The ALLOC_WMARK bits are used as an index to zone->watermark */ |
1455 | #define ALLOC_WMARK_MIN WMARK_MIN | |
1456 | #define ALLOC_WMARK_LOW WMARK_LOW | |
1457 | #define ALLOC_WMARK_HIGH WMARK_HIGH | |
1458 | #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */ | |
1459 | ||
1460 | /* Mask to get the watermark bits */ | |
1461 | #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1) | |
1462 | ||
3148890b NP |
1463 | #define ALLOC_HARDER 0x10 /* try to alloc harder */ |
1464 | #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ | |
1465 | #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ | |
7fb1d9fc | 1466 | |
933e312e AM |
1467 | #ifdef CONFIG_FAIL_PAGE_ALLOC |
1468 | ||
b2588c4b | 1469 | static struct { |
933e312e AM |
1470 | struct fault_attr attr; |
1471 | ||
1472 | u32 ignore_gfp_highmem; | |
1473 | u32 ignore_gfp_wait; | |
54114994 | 1474 | u32 min_order; |
933e312e AM |
1475 | } fail_page_alloc = { |
1476 | .attr = FAULT_ATTR_INITIALIZER, | |
6b1b60f4 DM |
1477 | .ignore_gfp_wait = 1, |
1478 | .ignore_gfp_highmem = 1, | |
54114994 | 1479 | .min_order = 1, |
933e312e AM |
1480 | }; |
1481 | ||
1482 | static int __init setup_fail_page_alloc(char *str) | |
1483 | { | |
1484 | return setup_fault_attr(&fail_page_alloc.attr, str); | |
1485 | } | |
1486 | __setup("fail_page_alloc=", setup_fail_page_alloc); | |
1487 | ||
1488 | static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) | |
1489 | { | |
54114994 AM |
1490 | if (order < fail_page_alloc.min_order) |
1491 | return 0; | |
933e312e AM |
1492 | if (gfp_mask & __GFP_NOFAIL) |
1493 | return 0; | |
1494 | if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) | |
1495 | return 0; | |
1496 | if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) | |
1497 | return 0; | |
1498 | ||
1499 | return should_fail(&fail_page_alloc.attr, 1 << order); | |
1500 | } | |
1501 | ||
1502 | #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS | |
1503 | ||
1504 | static int __init fail_page_alloc_debugfs(void) | |
1505 | { | |
f4ae40a6 | 1506 | umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; |
933e312e | 1507 | struct dentry *dir; |
933e312e | 1508 | |
dd48c085 AM |
1509 | dir = fault_create_debugfs_attr("fail_page_alloc", NULL, |
1510 | &fail_page_alloc.attr); | |
1511 | if (IS_ERR(dir)) | |
1512 | return PTR_ERR(dir); | |
933e312e | 1513 | |
b2588c4b AM |
1514 | if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, |
1515 | &fail_page_alloc.ignore_gfp_wait)) | |
1516 | goto fail; | |
1517 | if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, | |
1518 | &fail_page_alloc.ignore_gfp_highmem)) | |
1519 | goto fail; | |
1520 | if (!debugfs_create_u32("min-order", mode, dir, | |
1521 | &fail_page_alloc.min_order)) | |
1522 | goto fail; | |
1523 | ||
1524 | return 0; | |
1525 | fail: | |
dd48c085 | 1526 | debugfs_remove_recursive(dir); |
933e312e | 1527 | |
b2588c4b | 1528 | return -ENOMEM; |
933e312e AM |
1529 | } |
1530 | ||
1531 | late_initcall(fail_page_alloc_debugfs); | |
1532 | ||
1533 | #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ | |
1534 | ||
1535 | #else /* CONFIG_FAIL_PAGE_ALLOC */ | |
1536 | ||
1537 | static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) | |
1538 | { | |
1539 | return 0; | |
1540 | } | |
1541 | ||
1542 | #endif /* CONFIG_FAIL_PAGE_ALLOC */ | |
1543 | ||
1da177e4 | 1544 | /* |
88f5acf8 | 1545 | * Return true if free pages are above 'mark'. This takes into account the order |
1da177e4 LT |
1546 | * of the allocation. |
1547 | */ | |
88f5acf8 MG |
1548 | static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark, |
1549 | int classzone_idx, int alloc_flags, long free_pages) | |
1da177e4 LT |
1550 | { |
1551 | /* free_pages my go negative - that's OK */ | |
d23ad423 | 1552 | long min = mark; |
1da177e4 LT |
1553 | int o; |
1554 | ||
df0a6daa | 1555 | free_pages -= (1 << order) - 1; |
7fb1d9fc | 1556 | if (alloc_flags & ALLOC_HIGH) |
1da177e4 | 1557 | min -= min / 2; |
7fb1d9fc | 1558 | if (alloc_flags & ALLOC_HARDER) |
1da177e4 LT |
1559 | min -= min / 4; |
1560 | ||
1561 | if (free_pages <= min + z->lowmem_reserve[classzone_idx]) | |
88f5acf8 | 1562 | return false; |
1da177e4 LT |
1563 | for (o = 0; o < order; o++) { |
1564 | /* At the next order, this order's pages become unavailable */ | |
1565 | free_pages -= z->free_area[o].nr_free << o; | |
1566 | ||
1567 | /* Require fewer higher order pages to be free */ | |
1568 | min >>= 1; | |
1569 | ||
1570 | if (free_pages <= min) | |
88f5acf8 | 1571 | return false; |
1da177e4 | 1572 | } |
88f5acf8 MG |
1573 | return true; |
1574 | } | |
1575 | ||
1576 | bool zone_watermark_ok(struct zone *z, int order, unsigned long mark, | |
1577 | int classzone_idx, int alloc_flags) | |
1578 | { | |
1579 | return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, | |
1580 | zone_page_state(z, NR_FREE_PAGES)); | |
1581 | } | |
1582 | ||
1583 | bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark, | |
1584 | int classzone_idx, int alloc_flags) | |
1585 | { | |
1586 | long free_pages = zone_page_state(z, NR_FREE_PAGES); | |
1587 | ||
1588 | if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) | |
1589 | free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); | |
1590 | ||
1591 | return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, | |
1592 | free_pages); | |
1da177e4 LT |
1593 | } |
1594 | ||
9276b1bc PJ |
1595 | #ifdef CONFIG_NUMA |
1596 | /* | |
1597 | * zlc_setup - Setup for "zonelist cache". Uses cached zone data to | |
1598 | * skip over zones that are not allowed by the cpuset, or that have | |
1599 | * been recently (in last second) found to be nearly full. See further | |
1600 | * comments in mmzone.h. Reduces cache footprint of zonelist scans | |
183ff22b | 1601 | * that have to skip over a lot of full or unallowed zones. |
9276b1bc PJ |
1602 | * |
1603 | * If the zonelist cache is present in the passed in zonelist, then | |
1604 | * returns a pointer to the allowed node mask (either the current | |
37b07e41 | 1605 | * tasks mems_allowed, or node_states[N_HIGH_MEMORY].) |
9276b1bc PJ |
1606 | * |
1607 | * If the zonelist cache is not available for this zonelist, does | |
1608 | * nothing and returns NULL. | |
1609 | * | |
1610 | * If the fullzones BITMAP in the zonelist cache is stale (more than | |
1611 | * a second since last zap'd) then we zap it out (clear its bits.) | |
1612 | * | |
1613 | * We hold off even calling zlc_setup, until after we've checked the | |
1614 | * first zone in the zonelist, on the theory that most allocations will | |
1615 | * be satisfied from that first zone, so best to examine that zone as | |
1616 | * quickly as we can. | |
1617 | */ | |
1618 | static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) | |
1619 | { | |
1620 | struct zonelist_cache *zlc; /* cached zonelist speedup info */ | |
1621 | nodemask_t *allowednodes; /* zonelist_cache approximation */ | |
1622 | ||
1623 | zlc = zonelist->zlcache_ptr; | |
1624 | if (!zlc) | |
1625 | return NULL; | |
1626 | ||
f05111f5 | 1627 | if (time_after(jiffies, zlc->last_full_zap + HZ)) { |
9276b1bc PJ |
1628 | bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); |
1629 | zlc->last_full_zap = jiffies; | |
1630 | } | |
1631 | ||
1632 | allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? | |
1633 | &cpuset_current_mems_allowed : | |
37b07e41 | 1634 | &node_states[N_HIGH_MEMORY]; |
9276b1bc PJ |
1635 | return allowednodes; |
1636 | } | |
1637 | ||
1638 | /* | |
1639 | * Given 'z' scanning a zonelist, run a couple of quick checks to see | |
1640 | * if it is worth looking at further for free memory: | |
1641 | * 1) Check that the zone isn't thought to be full (doesn't have its | |
1642 | * bit set in the zonelist_cache fullzones BITMAP). | |
1643 | * 2) Check that the zones node (obtained from the zonelist_cache | |
1644 | * z_to_n[] mapping) is allowed in the passed in allowednodes mask. | |
1645 | * Return true (non-zero) if zone is worth looking at further, or | |
1646 | * else return false (zero) if it is not. | |
1647 | * | |
1648 | * This check -ignores- the distinction between various watermarks, | |
1649 | * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is | |
1650 | * found to be full for any variation of these watermarks, it will | |
1651 | * be considered full for up to one second by all requests, unless | |
1652 | * we are so low on memory on all allowed nodes that we are forced | |
1653 | * into the second scan of the zonelist. | |
1654 | * | |
1655 | * In the second scan we ignore this zonelist cache and exactly | |
1656 | * apply the watermarks to all zones, even it is slower to do so. | |
1657 | * We are low on memory in the second scan, and should leave no stone | |
1658 | * unturned looking for a free page. | |
1659 | */ | |
dd1a239f | 1660 | static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, |
9276b1bc PJ |
1661 | nodemask_t *allowednodes) |
1662 | { | |
1663 | struct zonelist_cache *zlc; /* cached zonelist speedup info */ | |
1664 | int i; /* index of *z in zonelist zones */ | |
1665 | int n; /* node that zone *z is on */ | |
1666 | ||
1667 | zlc = zonelist->zlcache_ptr; | |
1668 | if (!zlc) | |
1669 | return 1; | |
1670 | ||
dd1a239f | 1671 | i = z - zonelist->_zonerefs; |
9276b1bc PJ |
1672 | n = zlc->z_to_n[i]; |
1673 | ||
1674 | /* This zone is worth trying if it is allowed but not full */ | |
1675 | return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); | |
1676 | } | |
1677 | ||
1678 | /* | |
1679 | * Given 'z' scanning a zonelist, set the corresponding bit in | |
1680 | * zlc->fullzones, so that subsequent attempts to allocate a page | |
1681 | * from that zone don't waste time re-examining it. | |
1682 | */ | |
dd1a239f | 1683 | static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) |
9276b1bc PJ |
1684 | { |
1685 | struct zonelist_cache *zlc; /* cached zonelist speedup info */ | |
1686 | int i; /* index of *z in zonelist zones */ | |
1687 | ||
1688 | zlc = zonelist->zlcache_ptr; | |
1689 | if (!zlc) | |
1690 | return; | |
1691 | ||
dd1a239f | 1692 | i = z - zonelist->_zonerefs; |
9276b1bc PJ |
1693 | |
1694 | set_bit(i, zlc->fullzones); | |
1695 | } | |
1696 | ||
76d3fbf8 MG |
1697 | /* |
1698 | * clear all zones full, called after direct reclaim makes progress so that | |
1699 | * a zone that was recently full is not skipped over for up to a second | |
1700 | */ | |
1701 | static void zlc_clear_zones_full(struct zonelist *zonelist) | |
1702 | { | |
1703 | struct zonelist_cache *zlc; /* cached zonelist speedup info */ | |
1704 | ||
1705 | zlc = zonelist->zlcache_ptr; | |
1706 | if (!zlc) | |
1707 | return; | |
1708 | ||
1709 | bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); | |
1710 | } | |
1711 | ||
9276b1bc PJ |
1712 | #else /* CONFIG_NUMA */ |
1713 | ||
1714 | static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) | |
1715 | { | |
1716 | return NULL; | |
1717 | } | |
1718 | ||
dd1a239f | 1719 | static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, |
9276b1bc PJ |
1720 | nodemask_t *allowednodes) |
1721 | { | |
1722 | return 1; | |
1723 | } | |
1724 | ||
dd1a239f | 1725 | static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) |
9276b1bc PJ |
1726 | { |
1727 | } | |
76d3fbf8 MG |
1728 | |
1729 | static void zlc_clear_zones_full(struct zonelist *zonelist) | |
1730 | { | |
1731 | } | |
9276b1bc PJ |
1732 | #endif /* CONFIG_NUMA */ |
1733 | ||
7fb1d9fc | 1734 | /* |
0798e519 | 1735 | * get_page_from_freelist goes through the zonelist trying to allocate |
7fb1d9fc RS |
1736 | * a page. |
1737 | */ | |
1738 | static struct page * | |
19770b32 | 1739 | get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order, |
5117f45d | 1740 | struct zonelist *zonelist, int high_zoneidx, int alloc_flags, |
3dd28266 | 1741 | struct zone *preferred_zone, int migratetype) |
753ee728 | 1742 | { |
dd1a239f | 1743 | struct zoneref *z; |
7fb1d9fc | 1744 | struct page *page = NULL; |
54a6eb5c | 1745 | int classzone_idx; |
5117f45d | 1746 | struct zone *zone; |
9276b1bc PJ |
1747 | nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ |
1748 | int zlc_active = 0; /* set if using zonelist_cache */ | |
1749 | int did_zlc_setup = 0; /* just call zlc_setup() one time */ | |
54a6eb5c | 1750 | |
19770b32 | 1751 | classzone_idx = zone_idx(preferred_zone); |
9276b1bc | 1752 | zonelist_scan: |
7fb1d9fc | 1753 | /* |
9276b1bc | 1754 | * Scan zonelist, looking for a zone with enough free. |
7fb1d9fc RS |
1755 | * See also cpuset_zone_allowed() comment in kernel/cpuset.c. |
1756 | */ | |
19770b32 MG |
1757 | for_each_zone_zonelist_nodemask(zone, z, zonelist, |
1758 | high_zoneidx, nodemask) { | |
9276b1bc PJ |
1759 | if (NUMA_BUILD && zlc_active && |
1760 | !zlc_zone_worth_trying(zonelist, z, allowednodes)) | |
1761 | continue; | |
7fb1d9fc | 1762 | if ((alloc_flags & ALLOC_CPUSET) && |
02a0e53d | 1763 | !cpuset_zone_allowed_softwall(zone, gfp_mask)) |
cd38b115 | 1764 | continue; |
a756cf59 JW |
1765 | /* |
1766 | * When allocating a page cache page for writing, we | |
1767 | * want to get it from a zone that is within its dirty | |
1768 | * limit, such that no single zone holds more than its | |
1769 | * proportional share of globally allowed dirty pages. | |
1770 | * The dirty limits take into account the zone's | |
1771 | * lowmem reserves and high watermark so that kswapd | |
1772 | * should be able to balance it without having to | |
1773 | * write pages from its LRU list. | |
1774 | * | |
1775 | * This may look like it could increase pressure on | |
1776 | * lower zones by failing allocations in higher zones | |
1777 | * before they are full. But the pages that do spill | |
1778 | * over are limited as the lower zones are protected | |
1779 | * by this very same mechanism. It should not become | |
1780 | * a practical burden to them. | |
1781 | * | |
1782 | * XXX: For now, allow allocations to potentially | |
1783 | * exceed the per-zone dirty limit in the slowpath | |
1784 | * (ALLOC_WMARK_LOW unset) before going into reclaim, | |
1785 | * which is important when on a NUMA setup the allowed | |
1786 | * zones are together not big enough to reach the | |
1787 | * global limit. The proper fix for these situations | |
1788 | * will require awareness of zones in the | |
1789 | * dirty-throttling and the flusher threads. | |
1790 | */ | |
1791 | if ((alloc_flags & ALLOC_WMARK_LOW) && | |
1792 | (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone)) | |
1793 | goto this_zone_full; | |
7fb1d9fc | 1794 | |
41858966 | 1795 | BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); |
7fb1d9fc | 1796 | if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { |
3148890b | 1797 | unsigned long mark; |
fa5e084e MG |
1798 | int ret; |
1799 | ||
41858966 | 1800 | mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; |
fa5e084e MG |
1801 | if (zone_watermark_ok(zone, order, mark, |
1802 | classzone_idx, alloc_flags)) | |
1803 | goto try_this_zone; | |
1804 | ||
cd38b115 MG |
1805 | if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) { |
1806 | /* | |
1807 | * we do zlc_setup if there are multiple nodes | |
1808 | * and before considering the first zone allowed | |
1809 | * by the cpuset. | |
1810 | */ | |
1811 | allowednodes = zlc_setup(zonelist, alloc_flags); | |
1812 | zlc_active = 1; | |
1813 | did_zlc_setup = 1; | |
1814 | } | |
1815 | ||
fa5e084e MG |
1816 | if (zone_reclaim_mode == 0) |
1817 | goto this_zone_full; | |
1818 | ||
cd38b115 MG |
1819 | /* |
1820 | * As we may have just activated ZLC, check if the first | |
1821 | * eligible zone has failed zone_reclaim recently. | |
1822 | */ | |
1823 | if (NUMA_BUILD && zlc_active && | |
1824 | !zlc_zone_worth_trying(zonelist, z, allowednodes)) | |
1825 | continue; | |
1826 | ||
fa5e084e MG |
1827 | ret = zone_reclaim(zone, gfp_mask, order); |
1828 | switch (ret) { | |
1829 | case ZONE_RECLAIM_NOSCAN: | |
1830 | /* did not scan */ | |
cd38b115 | 1831 | continue; |
fa5e084e MG |
1832 | case ZONE_RECLAIM_FULL: |
1833 | /* scanned but unreclaimable */ | |
cd38b115 | 1834 | continue; |
fa5e084e MG |
1835 | default: |
1836 | /* did we reclaim enough */ | |
1837 | if (!zone_watermark_ok(zone, order, mark, | |
1838 | classzone_idx, alloc_flags)) | |
9276b1bc | 1839 | goto this_zone_full; |
0798e519 | 1840 | } |
7fb1d9fc RS |
1841 | } |
1842 | ||
fa5e084e | 1843 | try_this_zone: |
3dd28266 MG |
1844 | page = buffered_rmqueue(preferred_zone, zone, order, |
1845 | gfp_mask, migratetype); | |
0798e519 | 1846 | if (page) |
7fb1d9fc | 1847 | break; |
9276b1bc PJ |
1848 | this_zone_full: |
1849 | if (NUMA_BUILD) | |
1850 | zlc_mark_zone_full(zonelist, z); | |
54a6eb5c | 1851 | } |
9276b1bc PJ |
1852 | |
1853 | if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) { | |
1854 | /* Disable zlc cache for second zonelist scan */ | |
1855 | zlc_active = 0; | |
1856 | goto zonelist_scan; | |
1857 | } | |
7fb1d9fc | 1858 | return page; |
753ee728 MH |
1859 | } |
1860 | ||
29423e77 DR |
1861 | /* |
1862 | * Large machines with many possible nodes should not always dump per-node | |
1863 | * meminfo in irq context. | |
1864 | */ | |
1865 | static inline bool should_suppress_show_mem(void) | |
1866 | { | |
1867 | bool ret = false; | |
1868 | ||
1869 | #if NODES_SHIFT > 8 | |
1870 | ret = in_interrupt(); | |
1871 | #endif | |
1872 | return ret; | |
1873 | } | |
1874 | ||
a238ab5b DH |
1875 | static DEFINE_RATELIMIT_STATE(nopage_rs, |
1876 | DEFAULT_RATELIMIT_INTERVAL, | |
1877 | DEFAULT_RATELIMIT_BURST); | |
1878 | ||
1879 | void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...) | |
1880 | { | |
a238ab5b DH |
1881 | unsigned int filter = SHOW_MEM_FILTER_NODES; |
1882 | ||
c0a32fc5 SG |
1883 | if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) || |
1884 | debug_guardpage_minorder() > 0) | |
a238ab5b DH |
1885 | return; |
1886 | ||
1887 | /* | |
1888 | * This documents exceptions given to allocations in certain | |
1889 | * contexts that are allowed to allocate outside current's set | |
1890 | * of allowed nodes. | |
1891 | */ | |
1892 | if (!(gfp_mask & __GFP_NOMEMALLOC)) | |
1893 | if (test_thread_flag(TIF_MEMDIE) || | |
1894 | (current->flags & (PF_MEMALLOC | PF_EXITING))) | |
1895 | filter &= ~SHOW_MEM_FILTER_NODES; | |
1896 | if (in_interrupt() || !(gfp_mask & __GFP_WAIT)) | |
1897 | filter &= ~SHOW_MEM_FILTER_NODES; | |
1898 | ||
1899 | if (fmt) { | |
3ee9a4f0 JP |
1900 | struct va_format vaf; |
1901 | va_list args; | |
1902 | ||
a238ab5b | 1903 | va_start(args, fmt); |
3ee9a4f0 JP |
1904 | |
1905 | vaf.fmt = fmt; | |
1906 | vaf.va = &args; | |
1907 | ||
1908 | pr_warn("%pV", &vaf); | |
1909 | ||
a238ab5b DH |
1910 | va_end(args); |
1911 | } | |
1912 | ||
3ee9a4f0 JP |
1913 | pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n", |
1914 | current->comm, order, gfp_mask); | |
a238ab5b DH |
1915 | |
1916 | dump_stack(); | |
1917 | if (!should_suppress_show_mem()) | |
1918 | show_mem(filter); | |
1919 | } | |
1920 | ||
11e33f6a MG |
1921 | static inline int |
1922 | should_alloc_retry(gfp_t gfp_mask, unsigned int order, | |
f90ac398 | 1923 | unsigned long did_some_progress, |
11e33f6a | 1924 | unsigned long pages_reclaimed) |
1da177e4 | 1925 | { |
11e33f6a MG |
1926 | /* Do not loop if specifically requested */ |
1927 | if (gfp_mask & __GFP_NORETRY) | |
1928 | return 0; | |
1da177e4 | 1929 | |
f90ac398 MG |
1930 | /* Always retry if specifically requested */ |
1931 | if (gfp_mask & __GFP_NOFAIL) | |
1932 | return 1; | |
1933 | ||
1934 | /* | |
1935 | * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim | |
1936 | * making forward progress without invoking OOM. Suspend also disables | |
1937 | * storage devices so kswapd will not help. Bail if we are suspending. | |
1938 | */ | |
1939 | if (!did_some_progress && pm_suspended_storage()) | |
1940 | return 0; | |
1941 | ||
11e33f6a MG |
1942 | /* |
1943 | * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER | |
1944 | * means __GFP_NOFAIL, but that may not be true in other | |
1945 | * implementations. | |
1946 | */ | |
1947 | if (order <= PAGE_ALLOC_COSTLY_ORDER) | |
1948 | return 1; | |
1949 | ||
1950 | /* | |
1951 | * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is | |
1952 | * specified, then we retry until we no longer reclaim any pages | |
1953 | * (above), or we've reclaimed an order of pages at least as | |
1954 | * large as the allocation's order. In both cases, if the | |
1955 | * allocation still fails, we stop retrying. | |
1956 | */ | |
1957 | if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order)) | |
1958 | return 1; | |
cf40bd16 | 1959 | |
11e33f6a MG |
1960 | return 0; |
1961 | } | |
933e312e | 1962 | |
11e33f6a MG |
1963 | static inline struct page * |
1964 | __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, | |
1965 | struct zonelist *zonelist, enum zone_type high_zoneidx, | |
3dd28266 MG |
1966 | nodemask_t *nodemask, struct zone *preferred_zone, |
1967 | int migratetype) | |
11e33f6a MG |
1968 | { |
1969 | struct page *page; | |
1970 | ||
1971 | /* Acquire the OOM killer lock for the zones in zonelist */ | |
ff321fea | 1972 | if (!try_set_zonelist_oom(zonelist, gfp_mask)) { |
11e33f6a | 1973 | schedule_timeout_uninterruptible(1); |
1da177e4 LT |
1974 | return NULL; |
1975 | } | |
6b1de916 | 1976 | |
11e33f6a MG |
1977 | /* |
1978 | * Go through the zonelist yet one more time, keep very high watermark | |
1979 | * here, this is only to catch a parallel oom killing, we must fail if | |
1980 | * we're still under heavy pressure. | |
1981 | */ | |
1982 | page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, | |
1983 | order, zonelist, high_zoneidx, | |
5117f45d | 1984 | ALLOC_WMARK_HIGH|ALLOC_CPUSET, |
3dd28266 | 1985 | preferred_zone, migratetype); |
7fb1d9fc | 1986 | if (page) |
11e33f6a MG |
1987 | goto out; |
1988 | ||
4365a567 KH |
1989 | if (!(gfp_mask & __GFP_NOFAIL)) { |
1990 | /* The OOM killer will not help higher order allocs */ | |
1991 | if (order > PAGE_ALLOC_COSTLY_ORDER) | |
1992 | goto out; | |
03668b3c DR |
1993 | /* The OOM killer does not needlessly kill tasks for lowmem */ |
1994 | if (high_zoneidx < ZONE_NORMAL) | |
1995 | goto out; | |
4365a567 KH |
1996 | /* |
1997 | * GFP_THISNODE contains __GFP_NORETRY and we never hit this. | |
1998 | * Sanity check for bare calls of __GFP_THISNODE, not real OOM. | |
1999 | * The caller should handle page allocation failure by itself if | |
2000 | * it specifies __GFP_THISNODE. | |
2001 | * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER. | |
2002 | */ | |
2003 | if (gfp_mask & __GFP_THISNODE) | |
2004 | goto out; | |
2005 | } | |
11e33f6a | 2006 | /* Exhausted what can be done so it's blamo time */ |
08ab9b10 | 2007 | out_of_memory(zonelist, gfp_mask, order, nodemask, false); |
11e33f6a MG |
2008 | |
2009 | out: | |
2010 | clear_zonelist_oom(zonelist, gfp_mask); | |
2011 | return page; | |
2012 | } | |
2013 | ||
56de7263 MG |
2014 | #ifdef CONFIG_COMPACTION |
2015 | /* Try memory compaction for high-order allocations before reclaim */ | |
2016 | static struct page * | |
2017 | __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, | |
2018 | struct zonelist *zonelist, enum zone_type high_zoneidx, | |
2019 | nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, | |
66199712 MG |
2020 | int migratetype, bool sync_migration, |
2021 | bool *deferred_compaction, | |
2022 | unsigned long *did_some_progress) | |
56de7263 MG |
2023 | { |
2024 | struct page *page; | |
2025 | ||
66199712 | 2026 | if (!order) |
56de7263 MG |
2027 | return NULL; |
2028 | ||
aff62249 | 2029 | if (compaction_deferred(preferred_zone, order)) { |
66199712 MG |
2030 | *deferred_compaction = true; |
2031 | return NULL; | |
2032 | } | |
2033 | ||
c06b1fca | 2034 | current->flags |= PF_MEMALLOC; |
56de7263 | 2035 | *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask, |
77f1fe6b | 2036 | nodemask, sync_migration); |
c06b1fca | 2037 | current->flags &= ~PF_MEMALLOC; |
56de7263 MG |
2038 | if (*did_some_progress != COMPACT_SKIPPED) { |
2039 | ||
2040 | /* Page migration frees to the PCP lists but we want merging */ | |
2041 | drain_pages(get_cpu()); | |
2042 | put_cpu(); | |
2043 | ||
2044 | page = get_page_from_freelist(gfp_mask, nodemask, | |
2045 | order, zonelist, high_zoneidx, | |
2046 | alloc_flags, preferred_zone, | |
2047 | migratetype); | |
2048 | if (page) { | |
4f92e258 MG |
2049 | preferred_zone->compact_considered = 0; |
2050 | preferred_zone->compact_defer_shift = 0; | |
aff62249 RR |
2051 | if (order >= preferred_zone->compact_order_failed) |
2052 | preferred_zone->compact_order_failed = order + 1; | |
56de7263 MG |
2053 | count_vm_event(COMPACTSUCCESS); |
2054 | return page; | |
2055 | } | |
2056 | ||
2057 | /* | |
2058 | * It's bad if compaction run occurs and fails. | |
2059 | * The most likely reason is that pages exist, | |
2060 | * but not enough to satisfy watermarks. | |
2061 | */ | |
2062 | count_vm_event(COMPACTFAIL); | |
66199712 MG |
2063 | |
2064 | /* | |
2065 | * As async compaction considers a subset of pageblocks, only | |
2066 | * defer if the failure was a sync compaction failure. | |
2067 | */ | |
2068 | if (sync_migration) | |
aff62249 | 2069 | defer_compaction(preferred_zone, order); |
56de7263 MG |
2070 | |
2071 | cond_resched(); | |
2072 | } | |
2073 | ||
2074 | return NULL; | |
2075 | } | |
2076 | #else | |
2077 | static inline struct page * | |
2078 | __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, | |
2079 | struct zonelist *zonelist, enum zone_type high_zoneidx, | |
2080 | nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, | |
66199712 MG |
2081 | int migratetype, bool sync_migration, |
2082 | bool *deferred_compaction, | |
2083 | unsigned long *did_some_progress) | |
56de7263 MG |
2084 | { |
2085 | return NULL; | |
2086 | } | |
2087 | #endif /* CONFIG_COMPACTION */ | |
2088 | ||
11e33f6a MG |
2089 | /* The really slow allocator path where we enter direct reclaim */ |
2090 | static inline struct page * | |
2091 | __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, | |
2092 | struct zonelist *zonelist, enum zone_type high_zoneidx, | |
5117f45d | 2093 | nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, |
3dd28266 | 2094 | int migratetype, unsigned long *did_some_progress) |
11e33f6a MG |
2095 | { |
2096 | struct page *page = NULL; | |
2097 | struct reclaim_state reclaim_state; | |
9ee493ce | 2098 | bool drained = false; |
11e33f6a MG |
2099 | |
2100 | cond_resched(); | |
2101 | ||
2102 | /* We now go into synchronous reclaim */ | |
2103 | cpuset_memory_pressure_bump(); | |
c06b1fca | 2104 | current->flags |= PF_MEMALLOC; |
11e33f6a MG |
2105 | lockdep_set_current_reclaim_state(gfp_mask); |
2106 | reclaim_state.reclaimed_slab = 0; | |
c06b1fca | 2107 | current->reclaim_state = &reclaim_state; |
11e33f6a MG |
2108 | |
2109 | *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask); | |
2110 | ||
c06b1fca | 2111 | current->reclaim_state = NULL; |
11e33f6a | 2112 | lockdep_clear_current_reclaim_state(); |
c06b1fca | 2113 | current->flags &= ~PF_MEMALLOC; |
11e33f6a MG |
2114 | |
2115 | cond_resched(); | |
2116 | ||
9ee493ce MG |
2117 | if (unlikely(!(*did_some_progress))) |
2118 | return NULL; | |
11e33f6a | 2119 | |
76d3fbf8 MG |
2120 | /* After successful reclaim, reconsider all zones for allocation */ |
2121 | if (NUMA_BUILD) | |
2122 | zlc_clear_zones_full(zonelist); | |
2123 | ||
9ee493ce MG |
2124 | retry: |
2125 | page = get_page_from_freelist(gfp_mask, nodemask, order, | |
5117f45d | 2126 | zonelist, high_zoneidx, |
3dd28266 MG |
2127 | alloc_flags, preferred_zone, |
2128 | migratetype); | |
9ee493ce MG |
2129 | |
2130 | /* | |
2131 | * If an allocation failed after direct reclaim, it could be because | |
2132 | * pages are pinned on the per-cpu lists. Drain them and try again | |
2133 | */ | |
2134 | if (!page && !drained) { | |
2135 | drain_all_pages(); | |
2136 | drained = true; | |
2137 | goto retry; | |
2138 | } | |
2139 | ||
11e33f6a MG |
2140 | return page; |
2141 | } | |
2142 | ||
1da177e4 | 2143 | /* |
11e33f6a MG |
2144 | * This is called in the allocator slow-path if the allocation request is of |
2145 | * sufficient urgency to ignore watermarks and take other desperate measures | |
1da177e4 | 2146 | */ |
11e33f6a MG |
2147 | static inline struct page * |
2148 | __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order, | |
2149 | struct zonelist *zonelist, enum zone_type high_zoneidx, | |
3dd28266 MG |
2150 | nodemask_t *nodemask, struct zone *preferred_zone, |
2151 | int migratetype) | |
11e33f6a MG |
2152 | { |
2153 | struct page *page; | |
2154 | ||
2155 | do { | |
2156 | page = get_page_from_freelist(gfp_mask, nodemask, order, | |
5117f45d | 2157 | zonelist, high_zoneidx, ALLOC_NO_WATERMARKS, |
3dd28266 | 2158 | preferred_zone, migratetype); |
11e33f6a MG |
2159 | |
2160 | if (!page && gfp_mask & __GFP_NOFAIL) | |
0e093d99 | 2161 | wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); |
11e33f6a MG |
2162 | } while (!page && (gfp_mask & __GFP_NOFAIL)); |
2163 | ||
2164 | return page; | |
2165 | } | |
2166 | ||
2167 | static inline | |
2168 | void wake_all_kswapd(unsigned int order, struct zonelist *zonelist, | |
99504748 MG |
2169 | enum zone_type high_zoneidx, |
2170 | enum zone_type classzone_idx) | |
1da177e4 | 2171 | { |
dd1a239f MG |
2172 | struct zoneref *z; |
2173 | struct zone *zone; | |
1da177e4 | 2174 | |
11e33f6a | 2175 | for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) |
99504748 | 2176 | wakeup_kswapd(zone, order, classzone_idx); |
11e33f6a | 2177 | } |
cf40bd16 | 2178 | |
341ce06f PZ |
2179 | static inline int |
2180 | gfp_to_alloc_flags(gfp_t gfp_mask) | |
2181 | { | |
341ce06f PZ |
2182 | int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; |
2183 | const gfp_t wait = gfp_mask & __GFP_WAIT; | |
1da177e4 | 2184 | |
a56f57ff | 2185 | /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ |
e6223a3b | 2186 | BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); |
933e312e | 2187 | |
341ce06f PZ |
2188 | /* |
2189 | * The caller may dip into page reserves a bit more if the caller | |
2190 | * cannot run direct reclaim, or if the caller has realtime scheduling | |
2191 | * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will | |
2192 | * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). | |
2193 | */ | |
e6223a3b | 2194 | alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); |
1da177e4 | 2195 | |
341ce06f | 2196 | if (!wait) { |
5c3240d9 AA |
2197 | /* |
2198 | * Not worth trying to allocate harder for | |
2199 | * __GFP_NOMEMALLOC even if it can't schedule. | |
2200 | */ | |
2201 | if (!(gfp_mask & __GFP_NOMEMALLOC)) | |
2202 | alloc_flags |= ALLOC_HARDER; | |
523b9458 | 2203 | /* |
341ce06f PZ |
2204 | * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. |
2205 | * See also cpuset_zone_allowed() comment in kernel/cpuset.c. | |
523b9458 | 2206 | */ |
341ce06f | 2207 | alloc_flags &= ~ALLOC_CPUSET; |
c06b1fca | 2208 | } else if (unlikely(rt_task(current)) && !in_interrupt()) |
341ce06f PZ |
2209 | alloc_flags |= ALLOC_HARDER; |
2210 | ||
2211 | if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) { | |
2212 | if (!in_interrupt() && | |
c06b1fca | 2213 | ((current->flags & PF_MEMALLOC) || |
341ce06f PZ |
2214 | unlikely(test_thread_flag(TIF_MEMDIE)))) |
2215 | alloc_flags |= ALLOC_NO_WATERMARKS; | |
1da177e4 | 2216 | } |
6b1de916 | 2217 | |
341ce06f PZ |
2218 | return alloc_flags; |
2219 | } | |
2220 | ||
11e33f6a MG |
2221 | static inline struct page * |
2222 | __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, | |
2223 | struct zonelist *zonelist, enum zone_type high_zoneidx, | |
3dd28266 MG |
2224 | nodemask_t *nodemask, struct zone *preferred_zone, |
2225 | int migratetype) | |
11e33f6a MG |
2226 | { |
2227 | const gfp_t wait = gfp_mask & __GFP_WAIT; | |
2228 | struct page *page = NULL; | |
2229 | int alloc_flags; | |
2230 | unsigned long pages_reclaimed = 0; | |
2231 | unsigned long did_some_progress; | |
77f1fe6b | 2232 | bool sync_migration = false; |
66199712 | 2233 | bool deferred_compaction = false; |
1da177e4 | 2234 | |
72807a74 MG |
2235 | /* |
2236 | * In the slowpath, we sanity check order to avoid ever trying to | |
2237 | * reclaim >= MAX_ORDER areas which will never succeed. Callers may | |
2238 | * be using allocators in order of preference for an area that is | |
2239 | * too large. | |
2240 | */ | |
1fc28b70 MG |
2241 | if (order >= MAX_ORDER) { |
2242 | WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); | |
72807a74 | 2243 | return NULL; |
1fc28b70 | 2244 | } |
1da177e4 | 2245 | |
952f3b51 CL |
2246 | /* |
2247 | * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and | |
2248 | * __GFP_NOWARN set) should not cause reclaim since the subsystem | |
2249 | * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim | |
2250 | * using a larger set of nodes after it has established that the | |
2251 | * allowed per node queues are empty and that nodes are | |
2252 | * over allocated. | |
2253 | */ | |
2254 | if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE) | |
2255 | goto nopage; | |
2256 | ||
cc4a6851 | 2257 | restart: |
32dba98e AA |
2258 | if (!(gfp_mask & __GFP_NO_KSWAPD)) |
2259 | wake_all_kswapd(order, zonelist, high_zoneidx, | |
99504748 | 2260 | zone_idx(preferred_zone)); |
1da177e4 | 2261 | |
9bf2229f | 2262 | /* |
7fb1d9fc RS |
2263 | * OK, we're below the kswapd watermark and have kicked background |
2264 | * reclaim. Now things get more complex, so set up alloc_flags according | |
2265 | * to how we want to proceed. | |
9bf2229f | 2266 | */ |
341ce06f | 2267 | alloc_flags = gfp_to_alloc_flags(gfp_mask); |
1da177e4 | 2268 | |
f33261d7 DR |
2269 | /* |
2270 | * Find the true preferred zone if the allocation is unconstrained by | |
2271 | * cpusets. | |
2272 | */ | |
2273 | if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) | |
2274 | first_zones_zonelist(zonelist, high_zoneidx, NULL, | |
2275 | &preferred_zone); | |
2276 | ||
cfa54a0f | 2277 | rebalance: |
341ce06f | 2278 | /* This is the last chance, in general, before the goto nopage. */ |
19770b32 | 2279 | page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist, |
341ce06f PZ |
2280 | high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS, |
2281 | preferred_zone, migratetype); | |
7fb1d9fc RS |
2282 | if (page) |
2283 | goto got_pg; | |
1da177e4 | 2284 | |
11e33f6a | 2285 | /* Allocate without watermarks if the context allows */ |
341ce06f PZ |
2286 | if (alloc_flags & ALLOC_NO_WATERMARKS) { |
2287 | page = __alloc_pages_high_priority(gfp_mask, order, | |
2288 | zonelist, high_zoneidx, nodemask, | |
2289 | preferred_zone, migratetype); | |
2290 | if (page) | |
2291 | goto got_pg; | |
1da177e4 LT |
2292 | } |
2293 | ||
2294 | /* Atomic allocations - we can't balance anything */ | |
2295 | if (!wait) | |
2296 | goto nopage; | |
2297 | ||
341ce06f | 2298 | /* Avoid recursion of direct reclaim */ |
c06b1fca | 2299 | if (current->flags & PF_MEMALLOC) |
341ce06f PZ |
2300 | goto nopage; |
2301 | ||
6583bb64 DR |
2302 | /* Avoid allocations with no watermarks from looping endlessly */ |
2303 | if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) | |
2304 | goto nopage; | |
2305 | ||
77f1fe6b MG |
2306 | /* |
2307 | * Try direct compaction. The first pass is asynchronous. Subsequent | |
2308 | * attempts after direct reclaim are synchronous | |
2309 | */ | |
56de7263 MG |
2310 | page = __alloc_pages_direct_compact(gfp_mask, order, |
2311 | zonelist, high_zoneidx, | |
2312 | nodemask, | |
2313 | alloc_flags, preferred_zone, | |
66199712 MG |
2314 | migratetype, sync_migration, |
2315 | &deferred_compaction, | |
2316 | &did_some_progress); | |
56de7263 MG |
2317 | if (page) |
2318 | goto got_pg; | |
c6a140bf | 2319 | sync_migration = true; |
56de7263 | 2320 | |
66199712 MG |
2321 | /* |
2322 | * If compaction is deferred for high-order allocations, it is because | |
2323 | * sync compaction recently failed. In this is the case and the caller | |
2324 | * has requested the system not be heavily disrupted, fail the | |
2325 | * allocation now instead of entering direct reclaim | |
2326 | */ | |
2327 | if (deferred_compaction && (gfp_mask & __GFP_NO_KSWAPD)) | |
2328 | goto nopage; | |
2329 | ||
11e33f6a MG |
2330 | /* Try direct reclaim and then allocating */ |
2331 | page = __alloc_pages_direct_reclaim(gfp_mask, order, | |
2332 | zonelist, high_zoneidx, | |
2333 | nodemask, | |
5117f45d | 2334 | alloc_flags, preferred_zone, |
3dd28266 | 2335 | migratetype, &did_some_progress); |
11e33f6a MG |
2336 | if (page) |
2337 | goto got_pg; | |
1da177e4 | 2338 | |
e33c3b5e | 2339 | /* |
11e33f6a MG |
2340 | * If we failed to make any progress reclaiming, then we are |
2341 | * running out of options and have to consider going OOM | |
e33c3b5e | 2342 | */ |
11e33f6a MG |
2343 | if (!did_some_progress) { |
2344 | if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { | |
7f33d49a RW |
2345 | if (oom_killer_disabled) |
2346 | goto nopage; | |
29fd66d2 DR |
2347 | /* Coredumps can quickly deplete all memory reserves */ |
2348 | if ((current->flags & PF_DUMPCORE) && | |
2349 | !(gfp_mask & __GFP_NOFAIL)) | |
2350 | goto nopage; | |
11e33f6a MG |
2351 | page = __alloc_pages_may_oom(gfp_mask, order, |
2352 | zonelist, high_zoneidx, | |
3dd28266 MG |
2353 | nodemask, preferred_zone, |
2354 | migratetype); | |
11e33f6a MG |
2355 | if (page) |
2356 | goto got_pg; | |
1da177e4 | 2357 | |
03668b3c DR |
2358 | if (!(gfp_mask & __GFP_NOFAIL)) { |
2359 | /* | |
2360 | * The oom killer is not called for high-order | |
2361 | * allocations that may fail, so if no progress | |
2362 | * is being made, there are no other options and | |
2363 | * retrying is unlikely to help. | |
2364 | */ | |
2365 | if (order > PAGE_ALLOC_COSTLY_ORDER) | |
2366 | goto nopage; | |
2367 | /* | |
2368 | * The oom killer is not called for lowmem | |
2369 | * allocations to prevent needlessly killing | |
2370 | * innocent tasks. | |
2371 | */ | |
2372 | if (high_zoneidx < ZONE_NORMAL) | |
2373 | goto nopage; | |
2374 | } | |
e2c55dc8 | 2375 | |
ff0ceb9d DR |
2376 | goto restart; |
2377 | } | |
1da177e4 LT |
2378 | } |
2379 | ||
11e33f6a | 2380 | /* Check if we should retry the allocation */ |
a41f24ea | 2381 | pages_reclaimed += did_some_progress; |
f90ac398 MG |
2382 | if (should_alloc_retry(gfp_mask, order, did_some_progress, |
2383 | pages_reclaimed)) { | |
11e33f6a | 2384 | /* Wait for some write requests to complete then retry */ |
0e093d99 | 2385 | wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); |
1da177e4 | 2386 | goto rebalance; |
3e7d3449 MG |
2387 | } else { |
2388 | /* | |
2389 | * High-order allocations do not necessarily loop after | |
2390 | * direct reclaim and reclaim/compaction depends on compaction | |
2391 | * being called after reclaim so call directly if necessary | |
2392 | */ | |
2393 | page = __alloc_pages_direct_compact(gfp_mask, order, | |
2394 | zonelist, high_zoneidx, | |
2395 | nodemask, | |
2396 | alloc_flags, preferred_zone, | |
66199712 MG |
2397 | migratetype, sync_migration, |
2398 | &deferred_compaction, | |
2399 | &did_some_progress); | |
3e7d3449 MG |
2400 | if (page) |
2401 | goto got_pg; | |
1da177e4 LT |
2402 | } |
2403 | ||
2404 | nopage: | |
a238ab5b | 2405 | warn_alloc_failed(gfp_mask, order, NULL); |
b1eeab67 | 2406 | return page; |
1da177e4 | 2407 | got_pg: |
b1eeab67 VN |
2408 | if (kmemcheck_enabled) |
2409 | kmemcheck_pagealloc_alloc(page, order, gfp_mask); | |
1da177e4 | 2410 | return page; |
11e33f6a | 2411 | |
1da177e4 | 2412 | } |
11e33f6a MG |
2413 | |
2414 | /* | |
2415 | * This is the 'heart' of the zoned buddy allocator. | |
2416 | */ | |
2417 | struct page * | |
2418 | __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, | |
2419 | struct zonelist *zonelist, nodemask_t *nodemask) | |
2420 | { | |
2421 | enum zone_type high_zoneidx = gfp_zone(gfp_mask); | |
5117f45d | 2422 | struct zone *preferred_zone; |
cc9a6c87 | 2423 | struct page *page = NULL; |
3dd28266 | 2424 | int migratetype = allocflags_to_migratetype(gfp_mask); |
cc9a6c87 | 2425 | unsigned int cpuset_mems_cookie; |
11e33f6a | 2426 | |
dcce284a BH |
2427 | gfp_mask &= gfp_allowed_mask; |
2428 | ||
11e33f6a MG |
2429 | lockdep_trace_alloc(gfp_mask); |
2430 | ||
2431 | might_sleep_if(gfp_mask & __GFP_WAIT); | |
2432 | ||
2433 | if (should_fail_alloc_page(gfp_mask, order)) | |
2434 | return NULL; | |
2435 | ||
2436 | /* | |
2437 | * Check the zones suitable for the gfp_mask contain at least one | |
2438 | * valid zone. It's possible to have an empty zonelist as a result | |
2439 | * of GFP_THISNODE and a memoryless node | |
2440 | */ | |
2441 | if (unlikely(!zonelist->_zonerefs->zone)) | |
2442 | return NULL; | |
2443 | ||
cc9a6c87 MG |
2444 | retry_cpuset: |
2445 | cpuset_mems_cookie = get_mems_allowed(); | |
2446 | ||
5117f45d | 2447 | /* The preferred zone is used for statistics later */ |
f33261d7 DR |
2448 | first_zones_zonelist(zonelist, high_zoneidx, |
2449 | nodemask ? : &cpuset_current_mems_allowed, | |
2450 | &preferred_zone); | |
cc9a6c87 MG |
2451 | if (!preferred_zone) |
2452 | goto out; | |
5117f45d MG |
2453 | |
2454 | /* First allocation attempt */ | |
11e33f6a | 2455 | page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order, |
5117f45d | 2456 | zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET, |
3dd28266 | 2457 | preferred_zone, migratetype); |
11e33f6a MG |
2458 | if (unlikely(!page)) |
2459 | page = __alloc_pages_slowpath(gfp_mask, order, | |
5117f45d | 2460 | zonelist, high_zoneidx, nodemask, |
3dd28266 | 2461 | preferred_zone, migratetype); |
11e33f6a | 2462 | |
4b4f278c | 2463 | trace_mm_page_alloc(page, order, gfp_mask, migratetype); |
cc9a6c87 MG |
2464 | |
2465 | out: | |
2466 | /* | |
2467 | * When updating a task's mems_allowed, it is possible to race with | |
2468 | * parallel threads in such a way that an allocation can fail while | |
2469 | * the mask is being updated. If a page allocation is about to fail, | |
2470 | * check if the cpuset changed during allocation and if so, retry. | |
2471 | */ | |
2472 | if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page)) | |
2473 | goto retry_cpuset; | |
2474 | ||
11e33f6a | 2475 | return page; |
1da177e4 | 2476 | } |
d239171e | 2477 | EXPORT_SYMBOL(__alloc_pages_nodemask); |
1da177e4 LT |
2478 | |
2479 | /* | |
2480 | * Common helper functions. | |
2481 | */ | |
920c7a5d | 2482 | unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) |
1da177e4 | 2483 | { |
945a1113 AM |
2484 | struct page *page; |
2485 | ||
2486 | /* | |
2487 | * __get_free_pages() returns a 32-bit address, which cannot represent | |
2488 | * a highmem page | |
2489 | */ | |
2490 | VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); | |
2491 | ||
1da177e4 LT |
2492 | page = alloc_pages(gfp_mask, order); |
2493 | if (!page) | |
2494 | return 0; | |
2495 | return (unsigned long) page_address(page); | |
2496 | } | |
1da177e4 LT |
2497 | EXPORT_SYMBOL(__get_free_pages); |
2498 | ||
920c7a5d | 2499 | unsigned long get_zeroed_page(gfp_t gfp_mask) |
1da177e4 | 2500 | { |
945a1113 | 2501 | return __get_free_pages(gfp_mask | __GFP_ZERO, 0); |
1da177e4 | 2502 | } |
1da177e4 LT |
2503 | EXPORT_SYMBOL(get_zeroed_page); |
2504 | ||
920c7a5d | 2505 | void __free_pages(struct page *page, unsigned int order) |
1da177e4 | 2506 | { |
b5810039 | 2507 | if (put_page_testzero(page)) { |
1da177e4 | 2508 | if (order == 0) |
fc91668e | 2509 | free_hot_cold_page(page, 0); |
1da177e4 LT |
2510 | else |
2511 | __free_pages_ok(page, order); | |
2512 | } | |
2513 | } | |
2514 | ||
2515 | EXPORT_SYMBOL(__free_pages); | |
2516 | ||
920c7a5d | 2517 | void free_pages(unsigned long addr, unsigned int order) |
1da177e4 LT |
2518 | { |
2519 | if (addr != 0) { | |
725d704e | 2520 | VM_BUG_ON(!virt_addr_valid((void *)addr)); |
1da177e4 LT |
2521 | __free_pages(virt_to_page((void *)addr), order); |
2522 | } | |
2523 | } | |
2524 | ||
2525 | EXPORT_SYMBOL(free_pages); | |
2526 | ||
ee85c2e1 AK |
2527 | static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size) |
2528 | { | |
2529 | if (addr) { | |
2530 | unsigned long alloc_end = addr + (PAGE_SIZE << order); | |
2531 | unsigned long used = addr + PAGE_ALIGN(size); | |
2532 | ||
2533 | split_page(virt_to_page((void *)addr), order); | |
2534 | while (used < alloc_end) { | |
2535 | free_page(used); | |
2536 | used += PAGE_SIZE; | |
2537 | } | |
2538 | } | |
2539 | return (void *)addr; | |
2540 | } | |
2541 | ||
2be0ffe2 TT |
2542 | /** |
2543 | * alloc_pages_exact - allocate an exact number physically-contiguous pages. | |
2544 | * @size: the number of bytes to allocate | |
2545 | * @gfp_mask: GFP flags for the allocation | |
2546 | * | |
2547 | * This function is similar to alloc_pages(), except that it allocates the | |
2548 | * minimum number of pages to satisfy the request. alloc_pages() can only | |
2549 | * allocate memory in power-of-two pages. | |
2550 | * | |
2551 | * This function is also limited by MAX_ORDER. | |
2552 | * | |
2553 | * Memory allocated by this function must be released by free_pages_exact(). | |
2554 | */ | |
2555 | void *alloc_pages_exact(size_t size, gfp_t gfp_mask) | |
2556 | { | |
2557 | unsigned int order = get_order(size); | |
2558 | unsigned long addr; | |
2559 | ||
2560 | addr = __get_free_pages(gfp_mask, order); | |
ee85c2e1 | 2561 | return make_alloc_exact(addr, order, size); |
2be0ffe2 TT |
2562 | } |
2563 | EXPORT_SYMBOL(alloc_pages_exact); | |
2564 | ||
ee85c2e1 AK |
2565 | /** |
2566 | * alloc_pages_exact_nid - allocate an exact number of physically-contiguous | |
2567 | * pages on a node. | |
b5e6ab58 | 2568 | * @nid: the preferred node ID where memory should be allocated |
ee85c2e1 AK |
2569 | * @size: the number of bytes to allocate |
2570 | * @gfp_mask: GFP flags for the allocation | |
2571 | * | |
2572 | * Like alloc_pages_exact(), but try to allocate on node nid first before falling | |
2573 | * back. | |
2574 | * Note this is not alloc_pages_exact_node() which allocates on a specific node, | |
2575 | * but is not exact. | |
2576 | */ | |
2577 | void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) | |
2578 | { | |
2579 | unsigned order = get_order(size); | |
2580 | struct page *p = alloc_pages_node(nid, gfp_mask, order); | |
2581 | if (!p) | |
2582 | return NULL; | |
2583 | return make_alloc_exact((unsigned long)page_address(p), order, size); | |
2584 | } | |
2585 | EXPORT_SYMBOL(alloc_pages_exact_nid); | |
2586 | ||
2be0ffe2 TT |
2587 | /** |
2588 | * free_pages_exact - release memory allocated via alloc_pages_exact() | |
2589 | * @virt: the value returned by alloc_pages_exact. | |
2590 | * @size: size of allocation, same value as passed to alloc_pages_exact(). | |
2591 | * | |
2592 | * Release the memory allocated by a previous call to alloc_pages_exact. | |
2593 | */ | |
2594 | void free_pages_exact(void *virt, size_t size) | |
2595 | { | |
2596 | unsigned long addr = (unsigned long)virt; | |
2597 | unsigned long end = addr + PAGE_ALIGN(size); | |
2598 | ||
2599 | while (addr < end) { | |
2600 | free_page(addr); | |
2601 | addr += PAGE_SIZE; | |
2602 | } | |
2603 | } | |
2604 | EXPORT_SYMBOL(free_pages_exact); | |
2605 | ||
1da177e4 LT |
2606 | static unsigned int nr_free_zone_pages(int offset) |
2607 | { | |
dd1a239f | 2608 | struct zoneref *z; |
54a6eb5c MG |
2609 | struct zone *zone; |
2610 | ||
e310fd43 | 2611 | /* Just pick one node, since fallback list is circular */ |
1da177e4 LT |
2612 | unsigned int sum = 0; |
2613 | ||
0e88460d | 2614 | struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); |
1da177e4 | 2615 | |
54a6eb5c | 2616 | for_each_zone_zonelist(zone, z, zonelist, offset) { |
e310fd43 | 2617 | unsigned long size = zone->present_pages; |
41858966 | 2618 | unsigned long high = high_wmark_pages(zone); |
e310fd43 MB |
2619 | if (size > high) |
2620 | sum += size - high; | |
1da177e4 LT |
2621 | } |
2622 | ||
2623 | return sum; | |
2624 | } | |
2625 | ||
2626 | /* | |
2627 | * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL | |
2628 | */ | |
2629 | unsigned int nr_free_buffer_pages(void) | |
2630 | { | |
af4ca457 | 2631 | return nr_free_zone_pages(gfp_zone(GFP_USER)); |
1da177e4 | 2632 | } |
c2f1a551 | 2633 | EXPORT_SYMBOL_GPL(nr_free_buffer_pages); |
1da177e4 LT |
2634 | |
2635 | /* | |
2636 | * Amount of free RAM allocatable within all zones | |
2637 | */ | |
2638 | unsigned int nr_free_pagecache_pages(void) | |
2639 | { | |
2a1e274a | 2640 | return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); |
1da177e4 | 2641 | } |
08e0f6a9 CL |
2642 | |
2643 | static inline void show_node(struct zone *zone) | |
1da177e4 | 2644 | { |
08e0f6a9 | 2645 | if (NUMA_BUILD) |
25ba77c1 | 2646 | printk("Node %d ", zone_to_nid(zone)); |
1da177e4 | 2647 | } |
1da177e4 | 2648 | |
1da177e4 LT |
2649 | void si_meminfo(struct sysinfo *val) |
2650 | { | |
2651 | val->totalram = totalram_pages; | |
2652 | val->sharedram = 0; | |
d23ad423 | 2653 | val->freeram = global_page_state(NR_FREE_PAGES); |
1da177e4 | 2654 | val->bufferram = nr_blockdev_pages(); |
1da177e4 LT |
2655 | val->totalhigh = totalhigh_pages; |
2656 | val->freehigh = nr_free_highpages(); | |
1da177e4 LT |
2657 | val->mem_unit = PAGE_SIZE; |
2658 | } | |
2659 | ||
2660 | EXPORT_SYMBOL(si_meminfo); | |
2661 | ||
2662 | #ifdef CONFIG_NUMA | |
2663 | void si_meminfo_node(struct sysinfo *val, int nid) | |
2664 | { | |
2665 | pg_data_t *pgdat = NODE_DATA(nid); | |
2666 | ||
2667 | val->totalram = pgdat->node_present_pages; | |
d23ad423 | 2668 | val->freeram = node_page_state(nid, NR_FREE_PAGES); |
98d2b0eb | 2669 | #ifdef CONFIG_HIGHMEM |
1da177e4 | 2670 | val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; |
d23ad423 CL |
2671 | val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], |
2672 | NR_FREE_PAGES); | |
98d2b0eb CL |
2673 | #else |
2674 | val->totalhigh = 0; | |
2675 | val->freehigh = 0; | |
2676 | #endif | |
1da177e4 LT |
2677 | val->mem_unit = PAGE_SIZE; |
2678 | } | |
2679 | #endif | |
2680 | ||
ddd588b5 | 2681 | /* |
7bf02ea2 DR |
2682 | * Determine whether the node should be displayed or not, depending on whether |
2683 | * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). | |
ddd588b5 | 2684 | */ |
7bf02ea2 | 2685 | bool skip_free_areas_node(unsigned int flags, int nid) |
ddd588b5 DR |
2686 | { |
2687 | bool ret = false; | |
cc9a6c87 | 2688 | unsigned int cpuset_mems_cookie; |
ddd588b5 DR |
2689 | |
2690 | if (!(flags & SHOW_MEM_FILTER_NODES)) | |
2691 | goto out; | |
2692 | ||
cc9a6c87 MG |
2693 | do { |
2694 | cpuset_mems_cookie = get_mems_allowed(); | |
2695 | ret = !node_isset(nid, cpuset_current_mems_allowed); | |
2696 | } while (!put_mems_allowed(cpuset_mems_cookie)); | |
ddd588b5 DR |
2697 | out: |
2698 | return ret; | |
2699 | } | |
2700 | ||
1da177e4 LT |
2701 | #define K(x) ((x) << (PAGE_SHIFT-10)) |
2702 | ||
2703 | /* | |
2704 | * Show free area list (used inside shift_scroll-lock stuff) | |
2705 | * We also calculate the percentage fragmentation. We do this by counting the | |
2706 | * memory on each free list with the exception of the first item on the list. | |
ddd588b5 DR |
2707 | * Suppresses nodes that are not allowed by current's cpuset if |
2708 | * SHOW_MEM_FILTER_NODES is passed. | |
1da177e4 | 2709 | */ |
7bf02ea2 | 2710 | void show_free_areas(unsigned int filter) |
1da177e4 | 2711 | { |
c7241913 | 2712 | int cpu; |
1da177e4 LT |
2713 | struct zone *zone; |
2714 | ||
ee99c71c | 2715 | for_each_populated_zone(zone) { |
7bf02ea2 | 2716 | if (skip_free_areas_node(filter, zone_to_nid(zone))) |
ddd588b5 | 2717 | continue; |
c7241913 JS |
2718 | show_node(zone); |
2719 | printk("%s per-cpu:\n", zone->name); | |
1da177e4 | 2720 | |
6b482c67 | 2721 | for_each_online_cpu(cpu) { |
1da177e4 LT |
2722 | struct per_cpu_pageset *pageset; |
2723 | ||
99dcc3e5 | 2724 | pageset = per_cpu_ptr(zone->pageset, cpu); |
1da177e4 | 2725 | |
3dfa5721 CL |
2726 | printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n", |
2727 | cpu, pageset->pcp.high, | |
2728 | pageset->pcp.batch, pageset->pcp.count); | |
1da177e4 LT |
2729 | } |
2730 | } | |
2731 | ||
a731286d KM |
2732 | printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" |
2733 | " active_file:%lu inactive_file:%lu isolated_file:%lu\n" | |
7b854121 | 2734 | " unevictable:%lu" |
b76146ed | 2735 | " dirty:%lu writeback:%lu unstable:%lu\n" |
3701b033 | 2736 | " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n" |
4b02108a | 2737 | " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n", |
4f98a2fe | 2738 | global_page_state(NR_ACTIVE_ANON), |
4f98a2fe | 2739 | global_page_state(NR_INACTIVE_ANON), |
a731286d KM |
2740 | global_page_state(NR_ISOLATED_ANON), |
2741 | global_page_state(NR_ACTIVE_FILE), | |
4f98a2fe | 2742 | global_page_state(NR_INACTIVE_FILE), |
a731286d | 2743 | global_page_state(NR_ISOLATED_FILE), |
7b854121 | 2744 | global_page_state(NR_UNEVICTABLE), |
b1e7a8fd | 2745 | global_page_state(NR_FILE_DIRTY), |
ce866b34 | 2746 | global_page_state(NR_WRITEBACK), |
fd39fc85 | 2747 | global_page_state(NR_UNSTABLE_NFS), |
d23ad423 | 2748 | global_page_state(NR_FREE_PAGES), |
3701b033 KM |
2749 | global_page_state(NR_SLAB_RECLAIMABLE), |
2750 | global_page_state(NR_SLAB_UNRECLAIMABLE), | |
65ba55f5 | 2751 | global_page_state(NR_FILE_MAPPED), |
4b02108a | 2752 | global_page_state(NR_SHMEM), |
a25700a5 AM |
2753 | global_page_state(NR_PAGETABLE), |
2754 | global_page_state(NR_BOUNCE)); | |
1da177e4 | 2755 | |
ee99c71c | 2756 | for_each_populated_zone(zone) { |
1da177e4 LT |
2757 | int i; |
2758 | ||
7bf02ea2 | 2759 | if (skip_free_areas_node(filter, zone_to_nid(zone))) |
ddd588b5 | 2760 | continue; |
1da177e4 LT |
2761 | show_node(zone); |
2762 | printk("%s" | |
2763 | " free:%lukB" | |
2764 | " min:%lukB" | |
2765 | " low:%lukB" | |
2766 | " high:%lukB" | |
4f98a2fe RR |
2767 | " active_anon:%lukB" |
2768 | " inactive_anon:%lukB" | |
2769 | " active_file:%lukB" | |
2770 | " inactive_file:%lukB" | |
7b854121 | 2771 | " unevictable:%lukB" |
a731286d KM |
2772 | " isolated(anon):%lukB" |
2773 | " isolated(file):%lukB" | |
1da177e4 | 2774 | " present:%lukB" |
4a0aa73f KM |
2775 | " mlocked:%lukB" |
2776 | " dirty:%lukB" | |
2777 | " writeback:%lukB" | |
2778 | " mapped:%lukB" | |
4b02108a | 2779 | " shmem:%lukB" |
4a0aa73f KM |
2780 | " slab_reclaimable:%lukB" |
2781 | " slab_unreclaimable:%lukB" | |
c6a7f572 | 2782 | " kernel_stack:%lukB" |
4a0aa73f KM |
2783 | " pagetables:%lukB" |
2784 | " unstable:%lukB" | |
2785 | " bounce:%lukB" | |
2786 | " writeback_tmp:%lukB" | |
1da177e4 LT |
2787 | " pages_scanned:%lu" |
2788 | " all_unreclaimable? %s" | |
2789 | "\n", | |
2790 | zone->name, | |
88f5acf8 | 2791 | K(zone_page_state(zone, NR_FREE_PAGES)), |
41858966 MG |
2792 | K(min_wmark_pages(zone)), |
2793 | K(low_wmark_pages(zone)), | |
2794 | K(high_wmark_pages(zone)), | |
4f98a2fe RR |
2795 | K(zone_page_state(zone, NR_ACTIVE_ANON)), |
2796 | K(zone_page_state(zone, NR_INACTIVE_ANON)), | |
2797 | K(zone_page_state(zone, NR_ACTIVE_FILE)), | |
2798 | K(zone_page_state(zone, NR_INACTIVE_FILE)), | |
7b854121 | 2799 | K(zone_page_state(zone, NR_UNEVICTABLE)), |
a731286d KM |
2800 | K(zone_page_state(zone, NR_ISOLATED_ANON)), |
2801 | K(zone_page_state(zone, NR_ISOLATED_FILE)), | |
1da177e4 | 2802 | K(zone->present_pages), |
4a0aa73f KM |
2803 | K(zone_page_state(zone, NR_MLOCK)), |
2804 | K(zone_page_state(zone, NR_FILE_DIRTY)), | |
2805 | K(zone_page_state(zone, NR_WRITEBACK)), | |
2806 | K(zone_page_state(zone, NR_FILE_MAPPED)), | |
4b02108a | 2807 | K(zone_page_state(zone, NR_SHMEM)), |
4a0aa73f KM |
2808 | K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), |
2809 | K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), | |
c6a7f572 KM |
2810 | zone_page_state(zone, NR_KERNEL_STACK) * |
2811 | THREAD_SIZE / 1024, | |
4a0aa73f KM |
2812 | K(zone_page_state(zone, NR_PAGETABLE)), |
2813 | K(zone_page_state(zone, NR_UNSTABLE_NFS)), | |
2814 | K(zone_page_state(zone, NR_BOUNCE)), | |
2815 | K(zone_page_state(zone, NR_WRITEBACK_TEMP)), | |
1da177e4 | 2816 | zone->pages_scanned, |
93e4a89a | 2817 | (zone->all_unreclaimable ? "yes" : "no") |
1da177e4 LT |
2818 | ); |
2819 | printk("lowmem_reserve[]:"); | |
2820 | for (i = 0; i < MAX_NR_ZONES; i++) | |
2821 | printk(" %lu", zone->lowmem_reserve[i]); | |
2822 | printk("\n"); | |
2823 | } | |
2824 | ||
ee99c71c | 2825 | for_each_populated_zone(zone) { |
8f9de51a | 2826 | unsigned long nr[MAX_ORDER], flags, order, total = 0; |
1da177e4 | 2827 | |
7bf02ea2 | 2828 | if (skip_free_areas_node(filter, zone_to_nid(zone))) |
ddd588b5 | 2829 | continue; |
1da177e4 LT |
2830 | show_node(zone); |
2831 | printk("%s: ", zone->name); | |
1da177e4 LT |
2832 | |
2833 | spin_lock_irqsave(&zone->lock, flags); | |
2834 | for (order = 0; order < MAX_ORDER; order++) { | |
8f9de51a KK |
2835 | nr[order] = zone->free_area[order].nr_free; |
2836 | total += nr[order] << order; | |
1da177e4 LT |
2837 | } |
2838 | spin_unlock_irqrestore(&zone->lock, flags); | |
8f9de51a KK |
2839 | for (order = 0; order < MAX_ORDER; order++) |
2840 | printk("%lu*%lukB ", nr[order], K(1UL) << order); | |
1da177e4 LT |
2841 | printk("= %lukB\n", K(total)); |
2842 | } | |
2843 | ||
e6f3602d LW |
2844 | printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); |
2845 | ||
1da177e4 LT |
2846 | show_swap_cache_info(); |
2847 | } | |
2848 | ||
19770b32 MG |
2849 | static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) |
2850 | { | |
2851 | zoneref->zone = zone; | |
2852 | zoneref->zone_idx = zone_idx(zone); | |
2853 | } | |
2854 | ||
1da177e4 LT |
2855 | /* |
2856 | * Builds allocation fallback zone lists. | |
1a93205b CL |
2857 | * |
2858 | * Add all populated zones of a node to the zonelist. | |
1da177e4 | 2859 | */ |
f0c0b2b8 KH |
2860 | static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, |
2861 | int nr_zones, enum zone_type zone_type) | |
1da177e4 | 2862 | { |
1a93205b CL |
2863 | struct zone *zone; |
2864 | ||
98d2b0eb | 2865 | BUG_ON(zone_type >= MAX_NR_ZONES); |
2f6726e5 | 2866 | zone_type++; |
02a68a5e CL |
2867 | |
2868 | do { | |
2f6726e5 | 2869 | zone_type--; |
070f8032 | 2870 | zone = pgdat->node_zones + zone_type; |
1a93205b | 2871 | if (populated_zone(zone)) { |
dd1a239f MG |
2872 | zoneref_set_zone(zone, |
2873 | &zonelist->_zonerefs[nr_zones++]); | |
070f8032 | 2874 | check_highest_zone(zone_type); |
1da177e4 | 2875 | } |
02a68a5e | 2876 | |
2f6726e5 | 2877 | } while (zone_type); |
070f8032 | 2878 | return nr_zones; |
1da177e4 LT |
2879 | } |
2880 | ||
f0c0b2b8 KH |
2881 | |
2882 | /* | |
2883 | * zonelist_order: | |
2884 | * 0 = automatic detection of better ordering. | |
2885 | * 1 = order by ([node] distance, -zonetype) | |
2886 | * 2 = order by (-zonetype, [node] distance) | |
2887 | * | |
2888 | * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create | |
2889 | * the same zonelist. So only NUMA can configure this param. | |
2890 | */ | |
2891 | #define ZONELIST_ORDER_DEFAULT 0 | |
2892 | #define ZONELIST_ORDER_NODE 1 | |
2893 | #define ZONELIST_ORDER_ZONE 2 | |
2894 | ||
2895 | /* zonelist order in the kernel. | |
2896 | * set_zonelist_order() will set this to NODE or ZONE. | |
2897 | */ | |
2898 | static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; | |
2899 | static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; | |
2900 | ||
2901 | ||
1da177e4 | 2902 | #ifdef CONFIG_NUMA |
f0c0b2b8 KH |
2903 | /* The value user specified ....changed by config */ |
2904 | static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; | |
2905 | /* string for sysctl */ | |
2906 | #define NUMA_ZONELIST_ORDER_LEN 16 | |
2907 | char numa_zonelist_order[16] = "default"; | |
2908 | ||
2909 | /* | |
2910 | * interface for configure zonelist ordering. | |
2911 | * command line option "numa_zonelist_order" | |
2912 | * = "[dD]efault - default, automatic configuration. | |
2913 | * = "[nN]ode - order by node locality, then by zone within node | |
2914 | * = "[zZ]one - order by zone, then by locality within zone | |
2915 | */ | |
2916 | ||
2917 | static int __parse_numa_zonelist_order(char *s) | |
2918 | { | |
2919 | if (*s == 'd' || *s == 'D') { | |
2920 | user_zonelist_order = ZONELIST_ORDER_DEFAULT; | |
2921 | } else if (*s == 'n' || *s == 'N') { | |
2922 | user_zonelist_order = ZONELIST_ORDER_NODE; | |
2923 | } else if (*s == 'z' || *s == 'Z') { | |
2924 | user_zonelist_order = ZONELIST_ORDER_ZONE; | |
2925 | } else { | |
2926 | printk(KERN_WARNING | |
2927 | "Ignoring invalid numa_zonelist_order value: " | |
2928 | "%s\n", s); | |
2929 | return -EINVAL; | |
2930 | } | |
2931 | return 0; | |
2932 | } | |
2933 | ||
2934 | static __init int setup_numa_zonelist_order(char *s) | |
2935 | { | |
ecb256f8 VL |
2936 | int ret; |
2937 | ||
2938 | if (!s) | |
2939 | return 0; | |
2940 | ||
2941 | ret = __parse_numa_zonelist_order(s); | |
2942 | if (ret == 0) | |
2943 | strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN); | |
2944 | ||
2945 | return ret; | |
f0c0b2b8 KH |
2946 | } |
2947 | early_param("numa_zonelist_order", setup_numa_zonelist_order); | |
2948 | ||
2949 | /* | |
2950 | * sysctl handler for numa_zonelist_order | |
2951 | */ | |
2952 | int numa_zonelist_order_handler(ctl_table *table, int write, | |
8d65af78 | 2953 | void __user *buffer, size_t *length, |
f0c0b2b8 KH |
2954 | loff_t *ppos) |
2955 | { | |
2956 | char saved_string[NUMA_ZONELIST_ORDER_LEN]; | |
2957 | int ret; | |
443c6f14 | 2958 | static DEFINE_MUTEX(zl_order_mutex); |
f0c0b2b8 | 2959 | |
443c6f14 | 2960 | mutex_lock(&zl_order_mutex); |
f0c0b2b8 | 2961 | if (write) |
443c6f14 | 2962 | strcpy(saved_string, (char*)table->data); |
8d65af78 | 2963 | ret = proc_dostring(table, write, buffer, length, ppos); |
f0c0b2b8 | 2964 | if (ret) |
443c6f14 | 2965 | goto out; |
f0c0b2b8 KH |
2966 | if (write) { |
2967 | int oldval = user_zonelist_order; | |
2968 | if (__parse_numa_zonelist_order((char*)table->data)) { | |
2969 | /* | |
2970 | * bogus value. restore saved string | |
2971 | */ | |
2972 | strncpy((char*)table->data, saved_string, | |
2973 | NUMA_ZONELIST_ORDER_LEN); | |
2974 | user_zonelist_order = oldval; | |
4eaf3f64 HL |
2975 | } else if (oldval != user_zonelist_order) { |
2976 | mutex_lock(&zonelists_mutex); | |
1f522509 | 2977 | build_all_zonelists(NULL); |
4eaf3f64 HL |
2978 | mutex_unlock(&zonelists_mutex); |
2979 | } | |
f0c0b2b8 | 2980 | } |
443c6f14 AK |
2981 | out: |
2982 | mutex_unlock(&zl_order_mutex); | |
2983 | return ret; | |
f0c0b2b8 KH |
2984 | } |
2985 | ||
2986 | ||
62bc62a8 | 2987 | #define MAX_NODE_LOAD (nr_online_nodes) |
f0c0b2b8 KH |
2988 | static int node_load[MAX_NUMNODES]; |
2989 | ||
1da177e4 | 2990 | /** |
4dc3b16b | 2991 | * find_next_best_node - find the next node that should appear in a given node's fallback list |
1da177e4 LT |
2992 | * @node: node whose fallback list we're appending |
2993 | * @used_node_mask: nodemask_t of already used nodes | |
2994 | * | |
2995 | * We use a number of factors to determine which is the next node that should | |
2996 | * appear on a given node's fallback list. The node should not have appeared | |
2997 | * already in @node's fallback list, and it should be the next closest node | |
2998 | * according to the distance array (which contains arbitrary distance values | |
2999 | * from each node to each node in the system), and should also prefer nodes | |
3000 | * with no CPUs, since presumably they'll have very little allocation pressure | |
3001 | * on them otherwise. | |
3002 | * It returns -1 if no node is found. | |
3003 | */ | |
f0c0b2b8 | 3004 | static int find_next_best_node(int node, nodemask_t *used_node_mask) |
1da177e4 | 3005 | { |
4cf808eb | 3006 | int n, val; |
1da177e4 LT |
3007 | int min_val = INT_MAX; |
3008 | int best_node = -1; | |
a70f7302 | 3009 | const struct cpumask *tmp = cpumask_of_node(0); |
1da177e4 | 3010 | |
4cf808eb LT |
3011 | /* Use the local node if we haven't already */ |
3012 | if (!node_isset(node, *used_node_mask)) { | |
3013 | node_set(node, *used_node_mask); | |
3014 | return node; | |
3015 | } | |
1da177e4 | 3016 | |
37b07e41 | 3017 | for_each_node_state(n, N_HIGH_MEMORY) { |
1da177e4 LT |
3018 | |
3019 | /* Don't want a node to appear more than once */ | |
3020 | if (node_isset(n, *used_node_mask)) | |
3021 | continue; | |
3022 | ||
1da177e4 LT |
3023 | /* Use the distance array to find the distance */ |
3024 | val = node_distance(node, n); | |
3025 | ||
4cf808eb LT |
3026 | /* Penalize nodes under us ("prefer the next node") */ |
3027 | val += (n < node); | |
3028 | ||
1da177e4 | 3029 | /* Give preference to headless and unused nodes */ |
a70f7302 RR |
3030 | tmp = cpumask_of_node(n); |
3031 | if (!cpumask_empty(tmp)) | |
1da177e4 LT |
3032 | val += PENALTY_FOR_NODE_WITH_CPUS; |
3033 | ||
3034 | /* Slight preference for less loaded node */ | |
3035 | val *= (MAX_NODE_LOAD*MAX_NUMNODES); | |
3036 | val += node_load[n]; | |
3037 | ||
3038 | if (val < min_val) { | |
3039 | min_val = val; | |
3040 | best_node = n; | |
3041 | } | |
3042 | } | |
3043 | ||
3044 | if (best_node >= 0) | |
3045 | node_set(best_node, *used_node_mask); | |
3046 | ||
3047 | return best_node; | |
3048 | } | |
3049 | ||
f0c0b2b8 KH |
3050 | |
3051 | /* | |
3052 | * Build zonelists ordered by node and zones within node. | |
3053 | * This results in maximum locality--normal zone overflows into local | |
3054 | * DMA zone, if any--but risks exhausting DMA zone. | |
3055 | */ | |
3056 | static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) | |
1da177e4 | 3057 | { |
f0c0b2b8 | 3058 | int j; |
1da177e4 | 3059 | struct zonelist *zonelist; |
f0c0b2b8 | 3060 | |
54a6eb5c | 3061 | zonelist = &pgdat->node_zonelists[0]; |
dd1a239f | 3062 | for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) |
54a6eb5c MG |
3063 | ; |
3064 | j = build_zonelists_node(NODE_DATA(node), zonelist, j, | |
3065 | MAX_NR_ZONES - 1); | |
dd1a239f MG |
3066 | zonelist->_zonerefs[j].zone = NULL; |
3067 | zonelist->_zonerefs[j].zone_idx = 0; | |
f0c0b2b8 KH |
3068 | } |
3069 | ||
523b9458 CL |
3070 | /* |
3071 | * Build gfp_thisnode zonelists | |
3072 | */ | |
3073 | static void build_thisnode_zonelists(pg_data_t *pgdat) | |
3074 | { | |
523b9458 CL |
3075 | int j; |
3076 | struct zonelist *zonelist; | |
3077 | ||
54a6eb5c MG |
3078 | zonelist = &pgdat->node_zonelists[1]; |
3079 | j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); | |
dd1a239f MG |
3080 | zonelist->_zonerefs[j].zone = NULL; |
3081 | zonelist->_zonerefs[j].zone_idx = 0; | |
523b9458 CL |
3082 | } |
3083 | ||
f0c0b2b8 KH |
3084 | /* |
3085 | * Build zonelists ordered by zone and nodes within zones. | |
3086 | * This results in conserving DMA zone[s] until all Normal memory is | |
3087 | * exhausted, but results in overflowing to remote node while memory | |
3088 | * may still exist in local DMA zone. | |
3089 | */ | |
3090 | static int node_order[MAX_NUMNODES]; | |
3091 | ||
3092 | static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) | |
3093 | { | |
f0c0b2b8 KH |
3094 | int pos, j, node; |
3095 | int zone_type; /* needs to be signed */ | |
3096 | struct zone *z; | |
3097 | struct zonelist *zonelist; | |
3098 | ||
54a6eb5c MG |
3099 | zonelist = &pgdat->node_zonelists[0]; |
3100 | pos = 0; | |
3101 | for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { | |
3102 | for (j = 0; j < nr_nodes; j++) { | |
3103 | node = node_order[j]; | |
3104 | z = &NODE_DATA(node)->node_zones[zone_type]; | |
3105 | if (populated_zone(z)) { | |
dd1a239f MG |
3106 | zoneref_set_zone(z, |
3107 | &zonelist->_zonerefs[pos++]); | |
54a6eb5c | 3108 | check_highest_zone(zone_type); |
f0c0b2b8 KH |
3109 | } |
3110 | } | |
f0c0b2b8 | 3111 | } |
dd1a239f MG |
3112 | zonelist->_zonerefs[pos].zone = NULL; |
3113 | zonelist->_zonerefs[pos].zone_idx = 0; | |
f0c0b2b8 KH |
3114 | } |
3115 | ||
3116 | static int default_zonelist_order(void) | |
3117 | { | |
3118 | int nid, zone_type; | |
3119 | unsigned long low_kmem_size,total_size; | |
3120 | struct zone *z; | |
3121 | int average_size; | |
3122 | /* | |
88393161 | 3123 | * ZONE_DMA and ZONE_DMA32 can be very small area in the system. |
f0c0b2b8 KH |
3124 | * If they are really small and used heavily, the system can fall |
3125 | * into OOM very easily. | |
e325c90f | 3126 | * This function detect ZONE_DMA/DMA32 size and configures zone order. |
f0c0b2b8 KH |
3127 | */ |
3128 | /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */ | |
3129 | low_kmem_size = 0; | |
3130 | total_size = 0; | |
3131 | for_each_online_node(nid) { | |
3132 | for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { | |
3133 | z = &NODE_DATA(nid)->node_zones[zone_type]; | |
3134 | if (populated_zone(z)) { | |
3135 | if (zone_type < ZONE_NORMAL) | |
3136 | low_kmem_size += z->present_pages; | |
3137 | total_size += z->present_pages; | |
e325c90f DR |
3138 | } else if (zone_type == ZONE_NORMAL) { |
3139 | /* | |
3140 | * If any node has only lowmem, then node order | |
3141 | * is preferred to allow kernel allocations | |
3142 | * locally; otherwise, they can easily infringe | |
3143 | * on other nodes when there is an abundance of | |
3144 | * lowmem available to allocate from. | |
3145 | */ | |
3146 | return ZONELIST_ORDER_NODE; | |
f0c0b2b8 KH |
3147 | } |
3148 | } | |
3149 | } | |
3150 | if (!low_kmem_size || /* there are no DMA area. */ | |
3151 | low_kmem_size > total_size/2) /* DMA/DMA32 is big. */ | |
3152 | return ZONELIST_ORDER_NODE; | |
3153 | /* | |
3154 | * look into each node's config. | |
3155 | * If there is a node whose DMA/DMA32 memory is very big area on | |
3156 | * local memory, NODE_ORDER may be suitable. | |
3157 | */ | |
37b07e41 LS |
3158 | average_size = total_size / |
3159 | (nodes_weight(node_states[N_HIGH_MEMORY]) + 1); | |
f0c0b2b8 KH |
3160 | for_each_online_node(nid) { |
3161 | low_kmem_size = 0; | |
3162 | total_size = 0; | |
3163 | for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { | |
3164 | z = &NODE_DATA(nid)->node_zones[zone_type]; | |
3165 | if (populated_zone(z)) { | |
3166 | if (zone_type < ZONE_NORMAL) | |
3167 | low_kmem_size += z->present_pages; | |
3168 | total_size += z->present_pages; | |
3169 | } | |
3170 | } | |
3171 | if (low_kmem_size && | |
3172 | total_size > average_size && /* ignore small node */ | |
3173 | low_kmem_size > total_size * 70/100) | |
3174 | return ZONELIST_ORDER_NODE; | |
3175 | } | |
3176 | return ZONELIST_ORDER_ZONE; | |
3177 | } | |
3178 | ||
3179 | static void set_zonelist_order(void) | |
3180 | { | |
3181 | if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) | |
3182 | current_zonelist_order = default_zonelist_order(); | |
3183 | else | |
3184 | current_zonelist_order = user_zonelist_order; | |
3185 | } | |
3186 | ||
3187 | static void build_zonelists(pg_data_t *pgdat) | |
3188 | { | |
3189 | int j, node, load; | |
3190 | enum zone_type i; | |
1da177e4 | 3191 | nodemask_t used_mask; |
f0c0b2b8 KH |
3192 | int local_node, prev_node; |
3193 | struct zonelist *zonelist; | |
3194 | int order = current_zonelist_order; | |
1da177e4 LT |
3195 | |
3196 | /* initialize zonelists */ | |
523b9458 | 3197 | for (i = 0; i < MAX_ZONELISTS; i++) { |
1da177e4 | 3198 | zonelist = pgdat->node_zonelists + i; |
dd1a239f MG |
3199 | zonelist->_zonerefs[0].zone = NULL; |
3200 | zonelist->_zonerefs[0].zone_idx = 0; | |
1da177e4 LT |
3201 | } |
3202 | ||
3203 | /* NUMA-aware ordering of nodes */ | |
3204 | local_node = pgdat->node_id; | |
62bc62a8 | 3205 | load = nr_online_nodes; |
1da177e4 LT |
3206 | prev_node = local_node; |
3207 | nodes_clear(used_mask); | |
f0c0b2b8 | 3208 | |
f0c0b2b8 KH |
3209 | memset(node_order, 0, sizeof(node_order)); |
3210 | j = 0; | |
3211 | ||
1da177e4 | 3212 | while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { |
9eeff239 CL |
3213 | int distance = node_distance(local_node, node); |
3214 | ||
3215 | /* | |
3216 | * If another node is sufficiently far away then it is better | |
3217 | * to reclaim pages in a zone before going off node. | |
3218 | */ | |
3219 | if (distance > RECLAIM_DISTANCE) | |
3220 | zone_reclaim_mode = 1; | |
3221 | ||
1da177e4 LT |
3222 | /* |
3223 | * We don't want to pressure a particular node. | |
3224 | * So adding penalty to the first node in same | |
3225 | * distance group to make it round-robin. | |
3226 | */ | |
9eeff239 | 3227 | if (distance != node_distance(local_node, prev_node)) |
f0c0b2b8 KH |
3228 | node_load[node] = load; |
3229 | ||
1da177e4 LT |
3230 | prev_node = node; |
3231 | load--; | |
f0c0b2b8 KH |
3232 | if (order == ZONELIST_ORDER_NODE) |
3233 | build_zonelists_in_node_order(pgdat, node); | |
3234 | else | |
3235 | node_order[j++] = node; /* remember order */ | |
3236 | } | |
1da177e4 | 3237 | |
f0c0b2b8 KH |
3238 | if (order == ZONELIST_ORDER_ZONE) { |
3239 | /* calculate node order -- i.e., DMA last! */ | |
3240 | build_zonelists_in_zone_order(pgdat, j); | |
1da177e4 | 3241 | } |
523b9458 CL |
3242 | |
3243 | build_thisnode_zonelists(pgdat); | |
1da177e4 LT |
3244 | } |
3245 | ||
9276b1bc | 3246 | /* Construct the zonelist performance cache - see further mmzone.h */ |
f0c0b2b8 | 3247 | static void build_zonelist_cache(pg_data_t *pgdat) |
9276b1bc | 3248 | { |
54a6eb5c MG |
3249 | struct zonelist *zonelist; |
3250 | struct zonelist_cache *zlc; | |
dd1a239f | 3251 | struct zoneref *z; |
9276b1bc | 3252 | |
54a6eb5c MG |
3253 | zonelist = &pgdat->node_zonelists[0]; |
3254 | zonelist->zlcache_ptr = zlc = &zonelist->zlcache; | |
3255 | bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); | |
dd1a239f MG |
3256 | for (z = zonelist->_zonerefs; z->zone; z++) |
3257 | zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); | |
9276b1bc PJ |
3258 | } |
3259 | ||
7aac7898 LS |
3260 | #ifdef CONFIG_HAVE_MEMORYLESS_NODES |
3261 | /* | |
3262 | * Return node id of node used for "local" allocations. | |
3263 | * I.e., first node id of first zone in arg node's generic zonelist. | |
3264 | * Used for initializing percpu 'numa_mem', which is used primarily | |
3265 | * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. | |
3266 | */ | |
3267 | int local_memory_node(int node) | |
3268 | { | |
3269 | struct zone *zone; | |
3270 | ||
3271 | (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL), | |
3272 | gfp_zone(GFP_KERNEL), | |
3273 | NULL, | |
3274 | &zone); | |
3275 | return zone->node; | |
3276 | } | |
3277 | #endif | |
f0c0b2b8 | 3278 | |
1da177e4 LT |
3279 | #else /* CONFIG_NUMA */ |
3280 | ||
f0c0b2b8 KH |
3281 | static void set_zonelist_order(void) |
3282 | { | |
3283 | current_zonelist_order = ZONELIST_ORDER_ZONE; | |
3284 | } | |
3285 | ||
3286 | static void build_zonelists(pg_data_t *pgdat) | |
1da177e4 | 3287 | { |
19655d34 | 3288 | int node, local_node; |
54a6eb5c MG |
3289 | enum zone_type j; |
3290 | struct zonelist *zonelist; | |
1da177e4 LT |
3291 | |
3292 | local_node = pgdat->node_id; | |
1da177e4 | 3293 | |
54a6eb5c MG |
3294 | zonelist = &pgdat->node_zonelists[0]; |
3295 | j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); | |
1da177e4 | 3296 | |
54a6eb5c MG |
3297 | /* |
3298 | * Now we build the zonelist so that it contains the zones | |
3299 | * of all the other nodes. | |
3300 | * We don't want to pressure a particular node, so when | |
3301 | * building the zones for node N, we make sure that the | |
3302 | * zones coming right after the local ones are those from | |
3303 | * node N+1 (modulo N) | |
3304 | */ | |
3305 | for (node = local_node + 1; node < MAX_NUMNODES; node++) { | |
3306 | if (!node_online(node)) | |
3307 | continue; | |
3308 | j = build_zonelists_node(NODE_DATA(node), zonelist, j, | |
3309 | MAX_NR_ZONES - 1); | |
1da177e4 | 3310 | } |
54a6eb5c MG |
3311 | for (node = 0; node < local_node; node++) { |
3312 | if (!node_online(node)) | |
3313 | continue; | |
3314 | j = build_zonelists_node(NODE_DATA(node), zonelist, j, | |
3315 | MAX_NR_ZONES - 1); | |
3316 | } | |
3317 | ||
dd1a239f MG |
3318 | zonelist->_zonerefs[j].zone = NULL; |
3319 | zonelist->_zonerefs[j].zone_idx = 0; | |
1da177e4 LT |
3320 | } |
3321 | ||
9276b1bc | 3322 | /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ |
f0c0b2b8 | 3323 | static void build_zonelist_cache(pg_data_t *pgdat) |
9276b1bc | 3324 | { |
54a6eb5c | 3325 | pgdat->node_zonelists[0].zlcache_ptr = NULL; |
9276b1bc PJ |
3326 | } |
3327 | ||
1da177e4 LT |
3328 | #endif /* CONFIG_NUMA */ |
3329 | ||
99dcc3e5 CL |
3330 | /* |
3331 | * Boot pageset table. One per cpu which is going to be used for all | |
3332 | * zones and all nodes. The parameters will be set in such a way | |
3333 | * that an item put on a list will immediately be handed over to | |
3334 | * the buddy list. This is safe since pageset manipulation is done | |
3335 | * with interrupts disabled. | |
3336 | * | |
3337 | * The boot_pagesets must be kept even after bootup is complete for | |
3338 | * unused processors and/or zones. They do play a role for bootstrapping | |
3339 | * hotplugged processors. | |
3340 | * | |
3341 | * zoneinfo_show() and maybe other functions do | |
3342 | * not check if the processor is online before following the pageset pointer. | |
3343 | * Other parts of the kernel may not check if the zone is available. | |
3344 | */ | |
3345 | static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); | |
3346 | static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); | |
1f522509 | 3347 | static void setup_zone_pageset(struct zone *zone); |
99dcc3e5 | 3348 | |
4eaf3f64 HL |
3349 | /* |
3350 | * Global mutex to protect against size modification of zonelists | |
3351 | * as well as to serialize pageset setup for the new populated zone. | |
3352 | */ | |
3353 | DEFINE_MUTEX(zonelists_mutex); | |
3354 | ||
9b1a4d38 | 3355 | /* return values int ....just for stop_machine() */ |
1f522509 | 3356 | static __init_refok int __build_all_zonelists(void *data) |
1da177e4 | 3357 | { |
6811378e | 3358 | int nid; |
99dcc3e5 | 3359 | int cpu; |
9276b1bc | 3360 | |
7f9cfb31 BL |
3361 | #ifdef CONFIG_NUMA |
3362 | memset(node_load, 0, sizeof(node_load)); | |
3363 | #endif | |
9276b1bc | 3364 | for_each_online_node(nid) { |
7ea1530a CL |
3365 | pg_data_t *pgdat = NODE_DATA(nid); |
3366 | ||
3367 | build_zonelists(pgdat); | |
3368 | build_zonelist_cache(pgdat); | |
9276b1bc | 3369 | } |
99dcc3e5 CL |
3370 | |
3371 | /* | |
3372 | * Initialize the boot_pagesets that are going to be used | |
3373 | * for bootstrapping processors. The real pagesets for | |
3374 | * each zone will be allocated later when the per cpu | |
3375 | * allocator is available. | |
3376 | * | |
3377 | * boot_pagesets are used also for bootstrapping offline | |
3378 | * cpus if the system is already booted because the pagesets | |
3379 | * are needed to initialize allocators on a specific cpu too. | |
3380 | * F.e. the percpu allocator needs the page allocator which | |
3381 | * needs the percpu allocator in order to allocate its pagesets | |
3382 | * (a chicken-egg dilemma). | |
3383 | */ | |
7aac7898 | 3384 | for_each_possible_cpu(cpu) { |
99dcc3e5 CL |
3385 | setup_pageset(&per_cpu(boot_pageset, cpu), 0); |
3386 | ||
7aac7898 LS |
3387 | #ifdef CONFIG_HAVE_MEMORYLESS_NODES |
3388 | /* | |
3389 | * We now know the "local memory node" for each node-- | |
3390 | * i.e., the node of the first zone in the generic zonelist. | |
3391 | * Set up numa_mem percpu variable for on-line cpus. During | |
3392 | * boot, only the boot cpu should be on-line; we'll init the | |
3393 | * secondary cpus' numa_mem as they come on-line. During | |
3394 | * node/memory hotplug, we'll fixup all on-line cpus. | |
3395 | */ | |
3396 | if (cpu_online(cpu)) | |
3397 | set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); | |
3398 | #endif | |
3399 | } | |
3400 | ||
6811378e YG |
3401 | return 0; |
3402 | } | |
3403 | ||
4eaf3f64 HL |
3404 | /* |
3405 | * Called with zonelists_mutex held always | |
3406 | * unless system_state == SYSTEM_BOOTING. | |
3407 | */ | |
9f6ae448 | 3408 | void __ref build_all_zonelists(void *data) |
6811378e | 3409 | { |
f0c0b2b8 KH |
3410 | set_zonelist_order(); |
3411 | ||
6811378e | 3412 | if (system_state == SYSTEM_BOOTING) { |
423b41d7 | 3413 | __build_all_zonelists(NULL); |
68ad8df4 | 3414 | mminit_verify_zonelist(); |
6811378e YG |
3415 | cpuset_init_current_mems_allowed(); |
3416 | } else { | |
183ff22b | 3417 | /* we have to stop all cpus to guarantee there is no user |
6811378e | 3418 | of zonelist */ |
e9959f0f KH |
3419 | #ifdef CONFIG_MEMORY_HOTPLUG |
3420 | if (data) | |
3421 | setup_zone_pageset((struct zone *)data); | |
3422 | #endif | |
3423 | stop_machine(__build_all_zonelists, NULL, NULL); | |
6811378e YG |
3424 | /* cpuset refresh routine should be here */ |
3425 | } | |
bd1e22b8 | 3426 | vm_total_pages = nr_free_pagecache_pages(); |
9ef9acb0 MG |
3427 | /* |
3428 | * Disable grouping by mobility if the number of pages in the | |
3429 | * system is too low to allow the mechanism to work. It would be | |
3430 | * more accurate, but expensive to check per-zone. This check is | |
3431 | * made on memory-hotadd so a system can start with mobility | |
3432 | * disabled and enable it later | |
3433 | */ | |
d9c23400 | 3434 | if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) |
9ef9acb0 MG |
3435 | page_group_by_mobility_disabled = 1; |
3436 | else | |
3437 | page_group_by_mobility_disabled = 0; | |
3438 | ||
3439 | printk("Built %i zonelists in %s order, mobility grouping %s. " | |
3440 | "Total pages: %ld\n", | |
62bc62a8 | 3441 | nr_online_nodes, |
f0c0b2b8 | 3442 | zonelist_order_name[current_zonelist_order], |
9ef9acb0 | 3443 | page_group_by_mobility_disabled ? "off" : "on", |
f0c0b2b8 KH |
3444 | vm_total_pages); |
3445 | #ifdef CONFIG_NUMA | |
3446 | printk("Policy zone: %s\n", zone_names[policy_zone]); | |
3447 | #endif | |
1da177e4 LT |
3448 | } |
3449 | ||
3450 | /* | |
3451 | * Helper functions to size the waitqueue hash table. | |
3452 | * Essentially these want to choose hash table sizes sufficiently | |
3453 | * large so that collisions trying to wait on pages are rare. | |
3454 | * But in fact, the number of active page waitqueues on typical | |
3455 | * systems is ridiculously low, less than 200. So this is even | |
3456 | * conservative, even though it seems large. | |
3457 | * | |
3458 | * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to | |
3459 | * waitqueues, i.e. the size of the waitq table given the number of pages. | |
3460 | */ | |
3461 | #define PAGES_PER_WAITQUEUE 256 | |
3462 | ||
cca448fe | 3463 | #ifndef CONFIG_MEMORY_HOTPLUG |
02b694de | 3464 | static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) |
1da177e4 LT |
3465 | { |
3466 | unsigned long size = 1; | |
3467 | ||
3468 | pages /= PAGES_PER_WAITQUEUE; | |
3469 | ||
3470 | while (size < pages) | |
3471 | size <<= 1; | |
3472 | ||
3473 | /* | |
3474 | * Once we have dozens or even hundreds of threads sleeping | |
3475 | * on IO we've got bigger problems than wait queue collision. | |
3476 | * Limit the size of the wait table to a reasonable size. | |
3477 | */ | |
3478 | size = min(size, 4096UL); | |
3479 | ||
3480 | return max(size, 4UL); | |
3481 | } | |
cca448fe YG |
3482 | #else |
3483 | /* | |
3484 | * A zone's size might be changed by hot-add, so it is not possible to determine | |
3485 | * a suitable size for its wait_table. So we use the maximum size now. | |
3486 | * | |
3487 | * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: | |
3488 | * | |
3489 | * i386 (preemption config) : 4096 x 16 = 64Kbyte. | |
3490 | * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. | |
3491 | * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. | |
3492 | * | |
3493 | * The maximum entries are prepared when a zone's memory is (512K + 256) pages | |
3494 | * or more by the traditional way. (See above). It equals: | |
3495 | * | |
3496 | * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. | |
3497 | * ia64(16K page size) : = ( 8G + 4M)byte. | |
3498 | * powerpc (64K page size) : = (32G +16M)byte. | |
3499 | */ | |
3500 | static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) | |
3501 | { | |
3502 | return 4096UL; | |
3503 | } | |
3504 | #endif | |
1da177e4 LT |
3505 | |
3506 | /* | |
3507 | * This is an integer logarithm so that shifts can be used later | |
3508 | * to extract the more random high bits from the multiplicative | |
3509 | * hash function before the remainder is taken. | |
3510 | */ | |
3511 | static inline unsigned long wait_table_bits(unsigned long size) | |
3512 | { | |
3513 | return ffz(~size); | |
3514 | } | |
3515 | ||
3516 | #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) | |
3517 | ||
6d3163ce AH |
3518 | /* |
3519 | * Check if a pageblock contains reserved pages | |
3520 | */ | |
3521 | static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn) | |
3522 | { | |
3523 | unsigned long pfn; | |
3524 | ||
3525 | for (pfn = start_pfn; pfn < end_pfn; pfn++) { | |
3526 | if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn))) | |
3527 | return 1; | |
3528 | } | |
3529 | return 0; | |
3530 | } | |
3531 | ||
56fd56b8 | 3532 | /* |
d9c23400 | 3533 | * Mark a number of pageblocks as MIGRATE_RESERVE. The number |
41858966 MG |
3534 | * of blocks reserved is based on min_wmark_pages(zone). The memory within |
3535 | * the reserve will tend to store contiguous free pages. Setting min_free_kbytes | |
56fd56b8 MG |
3536 | * higher will lead to a bigger reserve which will get freed as contiguous |
3537 | * blocks as reclaim kicks in | |
3538 | */ | |
3539 | static void setup_zone_migrate_reserve(struct zone *zone) | |
3540 | { | |
6d3163ce | 3541 | unsigned long start_pfn, pfn, end_pfn, block_end_pfn; |
56fd56b8 | 3542 | struct page *page; |
78986a67 MG |
3543 | unsigned long block_migratetype; |
3544 | int reserve; | |
56fd56b8 | 3545 | |
d0215638 MH |
3546 | /* |
3547 | * Get the start pfn, end pfn and the number of blocks to reserve | |
3548 | * We have to be careful to be aligned to pageblock_nr_pages to | |
3549 | * make sure that we always check pfn_valid for the first page in | |
3550 | * the block. | |
3551 | */ | |
56fd56b8 MG |
3552 | start_pfn = zone->zone_start_pfn; |
3553 | end_pfn = start_pfn + zone->spanned_pages; | |
d0215638 | 3554 | start_pfn = roundup(start_pfn, pageblock_nr_pages); |
41858966 | 3555 | reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >> |
d9c23400 | 3556 | pageblock_order; |
56fd56b8 | 3557 | |
78986a67 MG |
3558 | /* |
3559 | * Reserve blocks are generally in place to help high-order atomic | |
3560 | * allocations that are short-lived. A min_free_kbytes value that | |
3561 | * would result in more than 2 reserve blocks for atomic allocations | |
3562 | * is assumed to be in place to help anti-fragmentation for the | |
3563 | * future allocation of hugepages at runtime. | |
3564 | */ | |
3565 | reserve = min(2, reserve); | |
3566 | ||
d9c23400 | 3567 | for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { |
56fd56b8 MG |
3568 | if (!pfn_valid(pfn)) |
3569 | continue; | |
3570 | page = pfn_to_page(pfn); | |
3571 | ||
344c790e AL |
3572 | /* Watch out for overlapping nodes */ |
3573 | if (page_to_nid(page) != zone_to_nid(zone)) | |
3574 | continue; | |
3575 | ||
56fd56b8 MG |
3576 | block_migratetype = get_pageblock_migratetype(page); |
3577 | ||
938929f1 MG |
3578 | /* Only test what is necessary when the reserves are not met */ |
3579 | if (reserve > 0) { | |
3580 | /* | |
3581 | * Blocks with reserved pages will never free, skip | |
3582 | * them. | |
3583 | */ | |
3584 | block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn); | |
3585 | if (pageblock_is_reserved(pfn, block_end_pfn)) | |
3586 | continue; | |
56fd56b8 | 3587 | |
938929f1 MG |
3588 | /* If this block is reserved, account for it */ |
3589 | if (block_migratetype == MIGRATE_RESERVE) { | |
3590 | reserve--; | |
3591 | continue; | |
3592 | } | |
3593 | ||
3594 | /* Suitable for reserving if this block is movable */ | |
3595 | if (block_migratetype == MIGRATE_MOVABLE) { | |
3596 | set_pageblock_migratetype(page, | |
3597 | MIGRATE_RESERVE); | |
3598 | move_freepages_block(zone, page, | |
3599 | MIGRATE_RESERVE); | |
3600 | reserve--; | |
3601 | continue; | |
3602 | } | |
56fd56b8 MG |
3603 | } |
3604 | ||
3605 | /* | |
3606 | * If the reserve is met and this is a previous reserved block, | |
3607 | * take it back | |
3608 | */ | |
3609 | if (block_migratetype == MIGRATE_RESERVE) { | |
3610 | set_pageblock_migratetype(page, MIGRATE_MOVABLE); | |
3611 | move_freepages_block(zone, page, MIGRATE_MOVABLE); | |
3612 | } | |
3613 | } | |
3614 | } | |
ac0e5b7a | 3615 | |
1da177e4 LT |
3616 | /* |
3617 | * Initially all pages are reserved - free ones are freed | |
3618 | * up by free_all_bootmem() once the early boot process is | |
3619 | * done. Non-atomic initialization, single-pass. | |
3620 | */ | |
c09b4240 | 3621 | void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, |
a2f3aa02 | 3622 | unsigned long start_pfn, enum memmap_context context) |
1da177e4 | 3623 | { |
1da177e4 | 3624 | struct page *page; |
29751f69 AW |
3625 | unsigned long end_pfn = start_pfn + size; |
3626 | unsigned long pfn; | |
86051ca5 | 3627 | struct zone *z; |
1da177e4 | 3628 | |
22b31eec HD |
3629 | if (highest_memmap_pfn < end_pfn - 1) |
3630 | highest_memmap_pfn = end_pfn - 1; | |
3631 | ||
86051ca5 | 3632 | z = &NODE_DATA(nid)->node_zones[zone]; |
cbe8dd4a | 3633 | for (pfn = start_pfn; pfn < end_pfn; pfn++) { |
a2f3aa02 DH |
3634 | /* |
3635 | * There can be holes in boot-time mem_map[]s | |
3636 | * handed to this function. They do not | |
3637 | * exist on hotplugged memory. | |
3638 | */ | |
3639 | if (context == MEMMAP_EARLY) { | |
3640 | if (!early_pfn_valid(pfn)) | |
3641 | continue; | |
3642 | if (!early_pfn_in_nid(pfn, nid)) | |
3643 | continue; | |
3644 | } | |
d41dee36 AW |
3645 | page = pfn_to_page(pfn); |
3646 | set_page_links(page, zone, nid, pfn); | |
708614e6 | 3647 | mminit_verify_page_links(page, zone, nid, pfn); |
7835e98b | 3648 | init_page_count(page); |
1da177e4 LT |
3649 | reset_page_mapcount(page); |
3650 | SetPageReserved(page); | |
b2a0ac88 MG |
3651 | /* |
3652 | * Mark the block movable so that blocks are reserved for | |
3653 | * movable at startup. This will force kernel allocations | |
3654 | * to reserve their blocks rather than leaking throughout | |
3655 | * the address space during boot when many long-lived | |
56fd56b8 MG |
3656 | * kernel allocations are made. Later some blocks near |
3657 | * the start are marked MIGRATE_RESERVE by | |
3658 | * setup_zone_migrate_reserve() | |
86051ca5 KH |
3659 | * |
3660 | * bitmap is created for zone's valid pfn range. but memmap | |
3661 | * can be created for invalid pages (for alignment) | |
3662 | * check here not to call set_pageblock_migratetype() against | |
3663 | * pfn out of zone. | |
b2a0ac88 | 3664 | */ |
86051ca5 KH |
3665 | if ((z->zone_start_pfn <= pfn) |
3666 | && (pfn < z->zone_start_pfn + z->spanned_pages) | |
3667 | && !(pfn & (pageblock_nr_pages - 1))) | |
56fd56b8 | 3668 | set_pageblock_migratetype(page, MIGRATE_MOVABLE); |
b2a0ac88 | 3669 | |
1da177e4 LT |
3670 | INIT_LIST_HEAD(&page->lru); |
3671 | #ifdef WANT_PAGE_VIRTUAL | |
3672 | /* The shift won't overflow because ZONE_NORMAL is below 4G. */ | |
3673 | if (!is_highmem_idx(zone)) | |
3212c6be | 3674 | set_page_address(page, __va(pfn << PAGE_SHIFT)); |
1da177e4 | 3675 | #endif |
1da177e4 LT |
3676 | } |
3677 | } | |
3678 | ||
1e548deb | 3679 | static void __meminit zone_init_free_lists(struct zone *zone) |
1da177e4 | 3680 | { |
b2a0ac88 MG |
3681 | int order, t; |
3682 | for_each_migratetype_order(order, t) { | |
3683 | INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); | |
1da177e4 LT |
3684 | zone->free_area[order].nr_free = 0; |
3685 | } | |
3686 | } | |
3687 | ||
3688 | #ifndef __HAVE_ARCH_MEMMAP_INIT | |
3689 | #define memmap_init(size, nid, zone, start_pfn) \ | |
a2f3aa02 | 3690 | memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) |
1da177e4 LT |
3691 | #endif |
3692 | ||
1d6f4e60 | 3693 | static int zone_batchsize(struct zone *zone) |
e7c8d5c9 | 3694 | { |
3a6be87f | 3695 | #ifdef CONFIG_MMU |
e7c8d5c9 CL |
3696 | int batch; |
3697 | ||
3698 | /* | |
3699 | * The per-cpu-pages pools are set to around 1000th of the | |
ba56e91c | 3700 | * size of the zone. But no more than 1/2 of a meg. |
e7c8d5c9 CL |
3701 | * |
3702 | * OK, so we don't know how big the cache is. So guess. | |
3703 | */ | |
3704 | batch = zone->present_pages / 1024; | |
ba56e91c SR |
3705 | if (batch * PAGE_SIZE > 512 * 1024) |
3706 | batch = (512 * 1024) / PAGE_SIZE; | |
e7c8d5c9 CL |
3707 | batch /= 4; /* We effectively *= 4 below */ |
3708 | if (batch < 1) | |
3709 | batch = 1; | |
3710 | ||
3711 | /* | |
0ceaacc9 NP |
3712 | * Clamp the batch to a 2^n - 1 value. Having a power |
3713 | * of 2 value was found to be more likely to have | |
3714 | * suboptimal cache aliasing properties in some cases. | |
e7c8d5c9 | 3715 | * |
0ceaacc9 NP |
3716 | * For example if 2 tasks are alternately allocating |
3717 | * batches of pages, one task can end up with a lot | |
3718 | * of pages of one half of the possible page colors | |
3719 | * and the other with pages of the other colors. | |
e7c8d5c9 | 3720 | */ |
9155203a | 3721 | batch = rounddown_pow_of_two(batch + batch/2) - 1; |
ba56e91c | 3722 | |
e7c8d5c9 | 3723 | return batch; |
3a6be87f DH |
3724 | |
3725 | #else | |
3726 | /* The deferral and batching of frees should be suppressed under NOMMU | |
3727 | * conditions. | |
3728 | * | |
3729 | * The problem is that NOMMU needs to be able to allocate large chunks | |
3730 | * of contiguous memory as there's no hardware page translation to | |
3731 | * assemble apparent contiguous memory from discontiguous pages. | |
3732 | * | |
3733 | * Queueing large contiguous runs of pages for batching, however, | |
3734 | * causes the pages to actually be freed in smaller chunks. As there | |
3735 | * can be a significant delay between the individual batches being | |
3736 | * recycled, this leads to the once large chunks of space being | |
3737 | * fragmented and becoming unavailable for high-order allocations. | |
3738 | */ | |
3739 | return 0; | |
3740 | #endif | |
e7c8d5c9 CL |
3741 | } |
3742 | ||
b69a7288 | 3743 | static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) |
2caaad41 CL |
3744 | { |
3745 | struct per_cpu_pages *pcp; | |
5f8dcc21 | 3746 | int migratetype; |
2caaad41 | 3747 | |
1c6fe946 MD |
3748 | memset(p, 0, sizeof(*p)); |
3749 | ||
3dfa5721 | 3750 | pcp = &p->pcp; |
2caaad41 | 3751 | pcp->count = 0; |
2caaad41 CL |
3752 | pcp->high = 6 * batch; |
3753 | pcp->batch = max(1UL, 1 * batch); | |
5f8dcc21 MG |
3754 | for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) |
3755 | INIT_LIST_HEAD(&pcp->lists[migratetype]); | |
2caaad41 CL |
3756 | } |
3757 | ||
8ad4b1fb RS |
3758 | /* |
3759 | * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist | |
3760 | * to the value high for the pageset p. | |
3761 | */ | |
3762 | ||
3763 | static void setup_pagelist_highmark(struct per_cpu_pageset *p, | |
3764 | unsigned long high) | |
3765 | { | |
3766 | struct per_cpu_pages *pcp; | |
3767 | ||
3dfa5721 | 3768 | pcp = &p->pcp; |
8ad4b1fb RS |
3769 | pcp->high = high; |
3770 | pcp->batch = max(1UL, high/4); | |
3771 | if ((high/4) > (PAGE_SHIFT * 8)) | |
3772 | pcp->batch = PAGE_SHIFT * 8; | |
3773 | } | |
3774 | ||
58c2ee40 | 3775 | static void setup_zone_pageset(struct zone *zone) |
319774e2 WF |
3776 | { |
3777 | int cpu; | |
3778 | ||
3779 | zone->pageset = alloc_percpu(struct per_cpu_pageset); | |
3780 | ||
3781 | for_each_possible_cpu(cpu) { | |
3782 | struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); | |
3783 | ||
3784 | setup_pageset(pcp, zone_batchsize(zone)); | |
3785 | ||
3786 | if (percpu_pagelist_fraction) | |
3787 | setup_pagelist_highmark(pcp, | |
3788 | (zone->present_pages / | |
3789 | percpu_pagelist_fraction)); | |
3790 | } | |
3791 | } | |
3792 | ||
2caaad41 | 3793 | /* |
99dcc3e5 CL |
3794 | * Allocate per cpu pagesets and initialize them. |
3795 | * Before this call only boot pagesets were available. | |
e7c8d5c9 | 3796 | */ |
99dcc3e5 | 3797 | void __init setup_per_cpu_pageset(void) |
e7c8d5c9 | 3798 | { |
99dcc3e5 | 3799 | struct zone *zone; |
e7c8d5c9 | 3800 | |
319774e2 WF |
3801 | for_each_populated_zone(zone) |
3802 | setup_zone_pageset(zone); | |
e7c8d5c9 CL |
3803 | } |
3804 | ||
577a32f6 | 3805 | static noinline __init_refok |
cca448fe | 3806 | int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) |
ed8ece2e DH |
3807 | { |
3808 | int i; | |
3809 | struct pglist_data *pgdat = zone->zone_pgdat; | |
cca448fe | 3810 | size_t alloc_size; |
ed8ece2e DH |
3811 | |
3812 | /* | |
3813 | * The per-page waitqueue mechanism uses hashed waitqueues | |
3814 | * per zone. | |
3815 | */ | |
02b694de YG |
3816 | zone->wait_table_hash_nr_entries = |
3817 | wait_table_hash_nr_entries(zone_size_pages); | |
3818 | zone->wait_table_bits = | |
3819 | wait_table_bits(zone->wait_table_hash_nr_entries); | |
cca448fe YG |
3820 | alloc_size = zone->wait_table_hash_nr_entries |
3821 | * sizeof(wait_queue_head_t); | |
3822 | ||
cd94b9db | 3823 | if (!slab_is_available()) { |
cca448fe | 3824 | zone->wait_table = (wait_queue_head_t *) |
8f389a99 | 3825 | alloc_bootmem_node_nopanic(pgdat, alloc_size); |
cca448fe YG |
3826 | } else { |
3827 | /* | |
3828 | * This case means that a zone whose size was 0 gets new memory | |
3829 | * via memory hot-add. | |
3830 | * But it may be the case that a new node was hot-added. In | |
3831 | * this case vmalloc() will not be able to use this new node's | |
3832 | * memory - this wait_table must be initialized to use this new | |
3833 | * node itself as well. | |
3834 | * To use this new node's memory, further consideration will be | |
3835 | * necessary. | |
3836 | */ | |
8691f3a7 | 3837 | zone->wait_table = vmalloc(alloc_size); |
cca448fe YG |
3838 | } |
3839 | if (!zone->wait_table) | |
3840 | return -ENOMEM; | |
ed8ece2e | 3841 | |
02b694de | 3842 | for(i = 0; i < zone->wait_table_hash_nr_entries; ++i) |
ed8ece2e | 3843 | init_waitqueue_head(zone->wait_table + i); |
cca448fe YG |
3844 | |
3845 | return 0; | |
ed8ece2e DH |
3846 | } |
3847 | ||
112067f0 SL |
3848 | static int __zone_pcp_update(void *data) |
3849 | { | |
3850 | struct zone *zone = data; | |
3851 | int cpu; | |
3852 | unsigned long batch = zone_batchsize(zone), flags; | |
3853 | ||
2d30a1f6 | 3854 | for_each_possible_cpu(cpu) { |
112067f0 SL |
3855 | struct per_cpu_pageset *pset; |
3856 | struct per_cpu_pages *pcp; | |
3857 | ||
99dcc3e5 | 3858 | pset = per_cpu_ptr(zone->pageset, cpu); |
112067f0 SL |
3859 | pcp = &pset->pcp; |
3860 | ||
3861 | local_irq_save(flags); | |
5f8dcc21 | 3862 | free_pcppages_bulk(zone, pcp->count, pcp); |
112067f0 SL |
3863 | setup_pageset(pset, batch); |
3864 | local_irq_restore(flags); | |
3865 | } | |
3866 | return 0; | |
3867 | } | |
3868 | ||
3869 | void zone_pcp_update(struct zone *zone) | |
3870 | { | |
3871 | stop_machine(__zone_pcp_update, zone, NULL); | |
3872 | } | |
3873 | ||
c09b4240 | 3874 | static __meminit void zone_pcp_init(struct zone *zone) |
ed8ece2e | 3875 | { |
99dcc3e5 CL |
3876 | /* |
3877 | * per cpu subsystem is not up at this point. The following code | |
3878 | * relies on the ability of the linker to provide the | |
3879 | * offset of a (static) per cpu variable into the per cpu area. | |
3880 | */ | |
3881 | zone->pageset = &boot_pageset; | |
ed8ece2e | 3882 | |
f5335c0f | 3883 | if (zone->present_pages) |
99dcc3e5 CL |
3884 | printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", |
3885 | zone->name, zone->present_pages, | |
3886 | zone_batchsize(zone)); | |
ed8ece2e DH |
3887 | } |
3888 | ||
718127cc YG |
3889 | __meminit int init_currently_empty_zone(struct zone *zone, |
3890 | unsigned long zone_start_pfn, | |
a2f3aa02 DH |
3891 | unsigned long size, |
3892 | enum memmap_context context) | |
ed8ece2e DH |
3893 | { |
3894 | struct pglist_data *pgdat = zone->zone_pgdat; | |
cca448fe YG |
3895 | int ret; |
3896 | ret = zone_wait_table_init(zone, size); | |
3897 | if (ret) | |
3898 | return ret; | |
ed8ece2e DH |
3899 | pgdat->nr_zones = zone_idx(zone) + 1; |
3900 | ||
ed8ece2e DH |
3901 | zone->zone_start_pfn = zone_start_pfn; |
3902 | ||
708614e6 MG |
3903 | mminit_dprintk(MMINIT_TRACE, "memmap_init", |
3904 | "Initialising map node %d zone %lu pfns %lu -> %lu\n", | |
3905 | pgdat->node_id, | |
3906 | (unsigned long)zone_idx(zone), | |
3907 | zone_start_pfn, (zone_start_pfn + size)); | |
3908 | ||
1e548deb | 3909 | zone_init_free_lists(zone); |
718127cc YG |
3910 | |
3911 | return 0; | |
ed8ece2e DH |
3912 | } |
3913 | ||
0ee332c1 | 3914 | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP |
c713216d MG |
3915 | #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID |
3916 | /* | |
3917 | * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. | |
3918 | * Architectures may implement their own version but if add_active_range() | |
3919 | * was used and there are no special requirements, this is a convenient | |
3920 | * alternative | |
3921 | */ | |
f2dbcfa7 | 3922 | int __meminit __early_pfn_to_nid(unsigned long pfn) |
c713216d | 3923 | { |
c13291a5 TH |
3924 | unsigned long start_pfn, end_pfn; |
3925 | int i, nid; | |
c713216d | 3926 | |
c13291a5 | 3927 | for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) |
c713216d | 3928 | if (start_pfn <= pfn && pfn < end_pfn) |
c13291a5 | 3929 | return nid; |
cc2559bc KH |
3930 | /* This is a memory hole */ |
3931 | return -1; | |
c713216d MG |
3932 | } |
3933 | #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ | |
3934 | ||
f2dbcfa7 KH |
3935 | int __meminit early_pfn_to_nid(unsigned long pfn) |
3936 | { | |
cc2559bc KH |
3937 | int nid; |
3938 | ||
3939 | nid = __early_pfn_to_nid(pfn); | |
3940 | if (nid >= 0) | |
3941 | return nid; | |
3942 | /* just returns 0 */ | |
3943 | return 0; | |
f2dbcfa7 KH |
3944 | } |
3945 | ||
cc2559bc KH |
3946 | #ifdef CONFIG_NODES_SPAN_OTHER_NODES |
3947 | bool __meminit early_pfn_in_nid(unsigned long pfn, int node) | |
3948 | { | |
3949 | int nid; | |
3950 | ||
3951 | nid = __early_pfn_to_nid(pfn); | |
3952 | if (nid >= 0 && nid != node) | |
3953 | return false; | |
3954 | return true; | |
3955 | } | |
3956 | #endif | |
f2dbcfa7 | 3957 | |
c713216d MG |
3958 | /** |
3959 | * free_bootmem_with_active_regions - Call free_bootmem_node for each active range | |
88ca3b94 RD |
3960 | * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. |
3961 | * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node | |
c713216d MG |
3962 | * |
3963 | * If an architecture guarantees that all ranges registered with | |
3964 | * add_active_ranges() contain no holes and may be freed, this | |
3965 | * this function may be used instead of calling free_bootmem() manually. | |
3966 | */ | |
c13291a5 | 3967 | void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) |
cc289894 | 3968 | { |
c13291a5 TH |
3969 | unsigned long start_pfn, end_pfn; |
3970 | int i, this_nid; | |
edbe7d23 | 3971 | |
c13291a5 TH |
3972 | for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { |
3973 | start_pfn = min(start_pfn, max_low_pfn); | |
3974 | end_pfn = min(end_pfn, max_low_pfn); | |
edbe7d23 | 3975 | |
c13291a5 TH |
3976 | if (start_pfn < end_pfn) |
3977 | free_bootmem_node(NODE_DATA(this_nid), | |
3978 | PFN_PHYS(start_pfn), | |
3979 | (end_pfn - start_pfn) << PAGE_SHIFT); | |
edbe7d23 | 3980 | } |
edbe7d23 | 3981 | } |
edbe7d23 | 3982 | |
c713216d MG |
3983 | /** |
3984 | * sparse_memory_present_with_active_regions - Call memory_present for each active range | |
88ca3b94 | 3985 | * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. |
c713216d MG |
3986 | * |
3987 | * If an architecture guarantees that all ranges registered with | |
3988 | * add_active_ranges() contain no holes and may be freed, this | |
88ca3b94 | 3989 | * function may be used instead of calling memory_present() manually. |
c713216d MG |
3990 | */ |
3991 | void __init sparse_memory_present_with_active_regions(int nid) | |
3992 | { | |
c13291a5 TH |
3993 | unsigned long start_pfn, end_pfn; |
3994 | int i, this_nid; | |
c713216d | 3995 | |
c13291a5 TH |
3996 | for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) |
3997 | memory_present(this_nid, start_pfn, end_pfn); | |
c713216d MG |
3998 | } |
3999 | ||
4000 | /** | |
4001 | * get_pfn_range_for_nid - Return the start and end page frames for a node | |
88ca3b94 RD |
4002 | * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. |
4003 | * @start_pfn: Passed by reference. On return, it will have the node start_pfn. | |
4004 | * @end_pfn: Passed by reference. On return, it will have the node end_pfn. | |
c713216d MG |
4005 | * |
4006 | * It returns the start and end page frame of a node based on information | |
4007 | * provided by an arch calling add_active_range(). If called for a node | |
4008 | * with no available memory, a warning is printed and the start and end | |
88ca3b94 | 4009 | * PFNs will be 0. |
c713216d | 4010 | */ |
a3142c8e | 4011 | void __meminit get_pfn_range_for_nid(unsigned int nid, |
c713216d MG |
4012 | unsigned long *start_pfn, unsigned long *end_pfn) |
4013 | { | |
c13291a5 | 4014 | unsigned long this_start_pfn, this_end_pfn; |
c713216d | 4015 | int i; |
c13291a5 | 4016 | |
c713216d MG |
4017 | *start_pfn = -1UL; |
4018 | *end_pfn = 0; | |
4019 | ||
c13291a5 TH |
4020 | for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { |
4021 | *start_pfn = min(*start_pfn, this_start_pfn); | |
4022 | *end_pfn = max(*end_pfn, this_end_pfn); | |
c713216d MG |
4023 | } |
4024 | ||
633c0666 | 4025 | if (*start_pfn == -1UL) |
c713216d | 4026 | *start_pfn = 0; |
c713216d MG |
4027 | } |
4028 | ||
2a1e274a MG |
4029 | /* |
4030 | * This finds a zone that can be used for ZONE_MOVABLE pages. The | |
4031 | * assumption is made that zones within a node are ordered in monotonic | |
4032 | * increasing memory addresses so that the "highest" populated zone is used | |
4033 | */ | |
b69a7288 | 4034 | static void __init find_usable_zone_for_movable(void) |
2a1e274a MG |
4035 | { |
4036 | int zone_index; | |
4037 | for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { | |
4038 | if (zone_index == ZONE_MOVABLE) | |
4039 | continue; | |
4040 | ||
4041 | if (arch_zone_highest_possible_pfn[zone_index] > | |
4042 | arch_zone_lowest_possible_pfn[zone_index]) | |
4043 | break; | |
4044 | } | |
4045 | ||
4046 | VM_BUG_ON(zone_index == -1); | |
4047 | movable_zone = zone_index; | |
4048 | } | |
4049 | ||
4050 | /* | |
4051 | * The zone ranges provided by the architecture do not include ZONE_MOVABLE | |
25985edc | 4052 | * because it is sized independent of architecture. Unlike the other zones, |
2a1e274a MG |
4053 | * the starting point for ZONE_MOVABLE is not fixed. It may be different |
4054 | * in each node depending on the size of each node and how evenly kernelcore | |
4055 | * is distributed. This helper function adjusts the zone ranges | |
4056 | * provided by the architecture for a given node by using the end of the | |
4057 | * highest usable zone for ZONE_MOVABLE. This preserves the assumption that | |
4058 | * zones within a node are in order of monotonic increases memory addresses | |
4059 | */ | |
b69a7288 | 4060 | static void __meminit adjust_zone_range_for_zone_movable(int nid, |
2a1e274a MG |
4061 | unsigned long zone_type, |
4062 | unsigned long node_start_pfn, | |
4063 | unsigned long node_end_pfn, | |
4064 | unsigned long *zone_start_pfn, | |
4065 | unsigned long *zone_end_pfn) | |
4066 | { | |
4067 | /* Only adjust if ZONE_MOVABLE is on this node */ | |
4068 | if (zone_movable_pfn[nid]) { | |
4069 | /* Size ZONE_MOVABLE */ | |
4070 | if (zone_type == ZONE_MOVABLE) { | |
4071 | *zone_start_pfn = zone_movable_pfn[nid]; | |
4072 | *zone_end_pfn = min(node_end_pfn, | |
4073 | arch_zone_highest_possible_pfn[movable_zone]); | |
4074 | ||
4075 | /* Adjust for ZONE_MOVABLE starting within this range */ | |
4076 | } else if (*zone_start_pfn < zone_movable_pfn[nid] && | |
4077 | *zone_end_pfn > zone_movable_pfn[nid]) { | |
4078 | *zone_end_pfn = zone_movable_pfn[nid]; | |
4079 | ||
4080 | /* Check if this whole range is within ZONE_MOVABLE */ | |
4081 | } else if (*zone_start_pfn >= zone_movable_pfn[nid]) | |
4082 | *zone_start_pfn = *zone_end_pfn; | |
4083 | } | |
4084 | } | |
4085 | ||
c713216d MG |
4086 | /* |
4087 | * Return the number of pages a zone spans in a node, including holes | |
4088 | * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() | |
4089 | */ | |
6ea6e688 | 4090 | static unsigned long __meminit zone_spanned_pages_in_node(int nid, |
c713216d MG |
4091 | unsigned long zone_type, |
4092 | unsigned long *ignored) | |
4093 | { | |
4094 | unsigned long node_start_pfn, node_end_pfn; | |
4095 | unsigned long zone_start_pfn, zone_end_pfn; | |
4096 | ||
4097 | /* Get the start and end of the node and zone */ | |
4098 | get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); | |
4099 | zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; | |
4100 | zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; | |
2a1e274a MG |
4101 | adjust_zone_range_for_zone_movable(nid, zone_type, |
4102 | node_start_pfn, node_end_pfn, | |
4103 | &zone_start_pfn, &zone_end_pfn); | |
c713216d MG |
4104 | |
4105 | /* Check that this node has pages within the zone's required range */ | |
4106 | if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) | |
4107 | return 0; | |
4108 | ||
4109 | /* Move the zone boundaries inside the node if necessary */ | |
4110 | zone_end_pfn = min(zone_end_pfn, node_end_pfn); | |
4111 | zone_start_pfn = max(zone_start_pfn, node_start_pfn); | |
4112 | ||
4113 | /* Return the spanned pages */ | |
4114 | return zone_end_pfn - zone_start_pfn; | |
4115 | } | |
4116 | ||
4117 | /* | |
4118 | * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, | |
88ca3b94 | 4119 | * then all holes in the requested range will be accounted for. |
c713216d | 4120 | */ |
32996250 | 4121 | unsigned long __meminit __absent_pages_in_range(int nid, |
c713216d MG |
4122 | unsigned long range_start_pfn, |
4123 | unsigned long range_end_pfn) | |
4124 | { | |
96e907d1 TH |
4125 | unsigned long nr_absent = range_end_pfn - range_start_pfn; |
4126 | unsigned long start_pfn, end_pfn; | |
4127 | int i; | |
c713216d | 4128 | |
96e907d1 TH |
4129 | for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { |
4130 | start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); | |
4131 | end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); | |
4132 | nr_absent -= end_pfn - start_pfn; | |
c713216d | 4133 | } |
96e907d1 | 4134 | return nr_absent; |
c713216d MG |
4135 | } |
4136 | ||
4137 | /** | |
4138 | * absent_pages_in_range - Return number of page frames in holes within a range | |
4139 | * @start_pfn: The start PFN to start searching for holes | |
4140 | * @end_pfn: The end PFN to stop searching for holes | |
4141 | * | |
88ca3b94 | 4142 | * It returns the number of pages frames in memory holes within a range. |
c713216d MG |
4143 | */ |
4144 | unsigned long __init absent_pages_in_range(unsigned long start_pfn, | |
4145 | unsigned long end_pfn) | |
4146 | { | |
4147 | return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); | |
4148 | } | |
4149 | ||
4150 | /* Return the number of page frames in holes in a zone on a node */ | |
6ea6e688 | 4151 | static unsigned long __meminit zone_absent_pages_in_node(int nid, |
c713216d MG |
4152 | unsigned long zone_type, |
4153 | unsigned long *ignored) | |
4154 | { | |
96e907d1 TH |
4155 | unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; |
4156 | unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; | |
9c7cd687 MG |
4157 | unsigned long node_start_pfn, node_end_pfn; |
4158 | unsigned long zone_start_pfn, zone_end_pfn; | |
4159 | ||
4160 | get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); | |
96e907d1 TH |
4161 | zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); |
4162 | zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); | |
9c7cd687 | 4163 | |
2a1e274a MG |
4164 | adjust_zone_range_for_zone_movable(nid, zone_type, |
4165 | node_start_pfn, node_end_pfn, | |
4166 | &zone_start_pfn, &zone_end_pfn); | |
9c7cd687 | 4167 | return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); |
c713216d | 4168 | } |
0e0b864e | 4169 | |
0ee332c1 | 4170 | #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ |
6ea6e688 | 4171 | static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, |
c713216d MG |
4172 | unsigned long zone_type, |
4173 | unsigned long *zones_size) | |
4174 | { | |
4175 | return zones_size[zone_type]; | |
4176 | } | |
4177 | ||
6ea6e688 | 4178 | static inline unsigned long __meminit zone_absent_pages_in_node(int nid, |
c713216d MG |
4179 | unsigned long zone_type, |
4180 | unsigned long *zholes_size) | |
4181 | { | |
4182 | if (!zholes_size) | |
4183 | return 0; | |
4184 | ||
4185 | return zholes_size[zone_type]; | |
4186 | } | |
0e0b864e | 4187 | |
0ee332c1 | 4188 | #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ |
c713216d | 4189 | |
a3142c8e | 4190 | static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, |
c713216d MG |
4191 | unsigned long *zones_size, unsigned long *zholes_size) |
4192 | { | |
4193 | unsigned long realtotalpages, totalpages = 0; | |
4194 | enum zone_type i; | |
4195 | ||
4196 | for (i = 0; i < MAX_NR_ZONES; i++) | |
4197 | totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, | |
4198 | zones_size); | |
4199 | pgdat->node_spanned_pages = totalpages; | |
4200 | ||
4201 | realtotalpages = totalpages; | |
4202 | for (i = 0; i < MAX_NR_ZONES; i++) | |
4203 | realtotalpages -= | |
4204 | zone_absent_pages_in_node(pgdat->node_id, i, | |
4205 | zholes_size); | |
4206 | pgdat->node_present_pages = realtotalpages; | |
4207 | printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, | |
4208 | realtotalpages); | |
4209 | } | |
4210 | ||
835c134e MG |
4211 | #ifndef CONFIG_SPARSEMEM |
4212 | /* | |
4213 | * Calculate the size of the zone->blockflags rounded to an unsigned long | |
d9c23400 MG |
4214 | * Start by making sure zonesize is a multiple of pageblock_order by rounding |
4215 | * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally | |
835c134e MG |
4216 | * round what is now in bits to nearest long in bits, then return it in |
4217 | * bytes. | |
4218 | */ | |
4219 | static unsigned long __init usemap_size(unsigned long zonesize) | |
4220 | { | |
4221 | unsigned long usemapsize; | |
4222 | ||
d9c23400 MG |
4223 | usemapsize = roundup(zonesize, pageblock_nr_pages); |
4224 | usemapsize = usemapsize >> pageblock_order; | |
835c134e MG |
4225 | usemapsize *= NR_PAGEBLOCK_BITS; |
4226 | usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); | |
4227 | ||
4228 | return usemapsize / 8; | |
4229 | } | |
4230 | ||
4231 | static void __init setup_usemap(struct pglist_data *pgdat, | |
4232 | struct zone *zone, unsigned long zonesize) | |
4233 | { | |
4234 | unsigned long usemapsize = usemap_size(zonesize); | |
4235 | zone->pageblock_flags = NULL; | |
58a01a45 | 4236 | if (usemapsize) |
8f389a99 YL |
4237 | zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat, |
4238 | usemapsize); | |
835c134e MG |
4239 | } |
4240 | #else | |
fa9f90be | 4241 | static inline void setup_usemap(struct pglist_data *pgdat, |
835c134e MG |
4242 | struct zone *zone, unsigned long zonesize) {} |
4243 | #endif /* CONFIG_SPARSEMEM */ | |
4244 | ||
d9c23400 | 4245 | #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE |
ba72cb8c MG |
4246 | |
4247 | /* Return a sensible default order for the pageblock size. */ | |
4248 | static inline int pageblock_default_order(void) | |
4249 | { | |
4250 | if (HPAGE_SHIFT > PAGE_SHIFT) | |
4251 | return HUGETLB_PAGE_ORDER; | |
4252 | ||
4253 | return MAX_ORDER-1; | |
4254 | } | |
4255 | ||
d9c23400 MG |
4256 | /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ |
4257 | static inline void __init set_pageblock_order(unsigned int order) | |
4258 | { | |
4259 | /* Check that pageblock_nr_pages has not already been setup */ | |
4260 | if (pageblock_order) | |
4261 | return; | |
4262 | ||
4263 | /* | |
4264 | * Assume the largest contiguous order of interest is a huge page. | |
4265 | * This value may be variable depending on boot parameters on IA64 | |
4266 | */ | |
4267 | pageblock_order = order; | |
4268 | } | |
4269 | #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ | |
4270 | ||
ba72cb8c MG |
4271 | /* |
4272 | * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() | |
4273 | * and pageblock_default_order() are unused as pageblock_order is set | |
4274 | * at compile-time. See include/linux/pageblock-flags.h for the values of | |
4275 | * pageblock_order based on the kernel config | |
4276 | */ | |
4277 | static inline int pageblock_default_order(unsigned int order) | |
4278 | { | |
4279 | return MAX_ORDER-1; | |
4280 | } | |
d9c23400 MG |
4281 | #define set_pageblock_order(x) do {} while (0) |
4282 | ||
4283 | #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ | |
4284 | ||
1da177e4 LT |
4285 | /* |
4286 | * Set up the zone data structures: | |
4287 | * - mark all pages reserved | |
4288 | * - mark all memory queues empty | |
4289 | * - clear the memory bitmaps | |
4290 | */ | |
b5a0e011 | 4291 | static void __paginginit free_area_init_core(struct pglist_data *pgdat, |
1da177e4 LT |
4292 | unsigned long *zones_size, unsigned long *zholes_size) |
4293 | { | |
2f1b6248 | 4294 | enum zone_type j; |
ed8ece2e | 4295 | int nid = pgdat->node_id; |
1da177e4 | 4296 | unsigned long zone_start_pfn = pgdat->node_start_pfn; |
718127cc | 4297 | int ret; |
1da177e4 | 4298 | |
208d54e5 | 4299 | pgdat_resize_init(pgdat); |
1da177e4 LT |
4300 | pgdat->nr_zones = 0; |
4301 | init_waitqueue_head(&pgdat->kswapd_wait); | |
4302 | pgdat->kswapd_max_order = 0; | |
52d4b9ac | 4303 | pgdat_page_cgroup_init(pgdat); |
1da177e4 LT |
4304 | |
4305 | for (j = 0; j < MAX_NR_ZONES; j++) { | |
4306 | struct zone *zone = pgdat->node_zones + j; | |
0e0b864e | 4307 | unsigned long size, realsize, memmap_pages; |
4111304d | 4308 | enum lru_list lru; |
1da177e4 | 4309 | |
c713216d MG |
4310 | size = zone_spanned_pages_in_node(nid, j, zones_size); |
4311 | realsize = size - zone_absent_pages_in_node(nid, j, | |
4312 | zholes_size); | |
1da177e4 | 4313 | |
0e0b864e MG |
4314 | /* |
4315 | * Adjust realsize so that it accounts for how much memory | |
4316 | * is used by this zone for memmap. This affects the watermark | |
4317 | * and per-cpu initialisations | |
4318 | */ | |
f7232154 JW |
4319 | memmap_pages = |
4320 | PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT; | |
0e0b864e MG |
4321 | if (realsize >= memmap_pages) { |
4322 | realsize -= memmap_pages; | |
5594c8c8 YL |
4323 | if (memmap_pages) |
4324 | printk(KERN_DEBUG | |
4325 | " %s zone: %lu pages used for memmap\n", | |
4326 | zone_names[j], memmap_pages); | |
0e0b864e MG |
4327 | } else |
4328 | printk(KERN_WARNING | |
4329 | " %s zone: %lu pages exceeds realsize %lu\n", | |
4330 | zone_names[j], memmap_pages, realsize); | |
4331 | ||
6267276f CL |
4332 | /* Account for reserved pages */ |
4333 | if (j == 0 && realsize > dma_reserve) { | |
0e0b864e | 4334 | realsize -= dma_reserve; |
d903ef9f | 4335 | printk(KERN_DEBUG " %s zone: %lu pages reserved\n", |
6267276f | 4336 | zone_names[0], dma_reserve); |
0e0b864e MG |
4337 | } |
4338 | ||
98d2b0eb | 4339 | if (!is_highmem_idx(j)) |
1da177e4 LT |
4340 | nr_kernel_pages += realsize; |
4341 | nr_all_pages += realsize; | |
4342 | ||
4343 | zone->spanned_pages = size; | |
4344 | zone->present_pages = realsize; | |
9614634f | 4345 | #ifdef CONFIG_NUMA |
d5f541ed | 4346 | zone->node = nid; |
8417bba4 | 4347 | zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio) |
9614634f | 4348 | / 100; |
0ff38490 | 4349 | zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100; |
9614634f | 4350 | #endif |
1da177e4 LT |
4351 | zone->name = zone_names[j]; |
4352 | spin_lock_init(&zone->lock); | |
4353 | spin_lock_init(&zone->lru_lock); | |
bdc8cb98 | 4354 | zone_seqlock_init(zone); |
1da177e4 | 4355 | zone->zone_pgdat = pgdat; |
1da177e4 | 4356 | |
ed8ece2e | 4357 | zone_pcp_init(zone); |
4111304d HD |
4358 | for_each_lru(lru) |
4359 | INIT_LIST_HEAD(&zone->lruvec.lists[lru]); | |
6e901571 KM |
4360 | zone->reclaim_stat.recent_rotated[0] = 0; |
4361 | zone->reclaim_stat.recent_rotated[1] = 0; | |
4362 | zone->reclaim_stat.recent_scanned[0] = 0; | |
4363 | zone->reclaim_stat.recent_scanned[1] = 0; | |
2244b95a | 4364 | zap_zone_vm_stats(zone); |
e815af95 | 4365 | zone->flags = 0; |
1da177e4 LT |
4366 | if (!size) |
4367 | continue; | |
4368 | ||
ba72cb8c | 4369 | set_pageblock_order(pageblock_default_order()); |
835c134e | 4370 | setup_usemap(pgdat, zone, size); |
a2f3aa02 DH |
4371 | ret = init_currently_empty_zone(zone, zone_start_pfn, |
4372 | size, MEMMAP_EARLY); | |
718127cc | 4373 | BUG_ON(ret); |
76cdd58e | 4374 | memmap_init(size, nid, j, zone_start_pfn); |
1da177e4 | 4375 | zone_start_pfn += size; |
1da177e4 LT |
4376 | } |
4377 | } | |
4378 | ||
577a32f6 | 4379 | static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) |
1da177e4 | 4380 | { |
1da177e4 LT |
4381 | /* Skip empty nodes */ |
4382 | if (!pgdat->node_spanned_pages) | |
4383 | return; | |
4384 | ||
d41dee36 | 4385 | #ifdef CONFIG_FLAT_NODE_MEM_MAP |
1da177e4 LT |
4386 | /* ia64 gets its own node_mem_map, before this, without bootmem */ |
4387 | if (!pgdat->node_mem_map) { | |
e984bb43 | 4388 | unsigned long size, start, end; |
d41dee36 AW |
4389 | struct page *map; |
4390 | ||
e984bb43 BP |
4391 | /* |
4392 | * The zone's endpoints aren't required to be MAX_ORDER | |
4393 | * aligned but the node_mem_map endpoints must be in order | |
4394 | * for the buddy allocator to function correctly. | |
4395 | */ | |
4396 | start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); | |
4397 | end = pgdat->node_start_pfn + pgdat->node_spanned_pages; | |
4398 | end = ALIGN(end, MAX_ORDER_NR_PAGES); | |
4399 | size = (end - start) * sizeof(struct page); | |
6f167ec7 DH |
4400 | map = alloc_remap(pgdat->node_id, size); |
4401 | if (!map) | |
8f389a99 | 4402 | map = alloc_bootmem_node_nopanic(pgdat, size); |
e984bb43 | 4403 | pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); |
1da177e4 | 4404 | } |
12d810c1 | 4405 | #ifndef CONFIG_NEED_MULTIPLE_NODES |
1da177e4 LT |
4406 | /* |
4407 | * With no DISCONTIG, the global mem_map is just set as node 0's | |
4408 | */ | |
c713216d | 4409 | if (pgdat == NODE_DATA(0)) { |
1da177e4 | 4410 | mem_map = NODE_DATA(0)->node_mem_map; |
0ee332c1 | 4411 | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP |
c713216d | 4412 | if (page_to_pfn(mem_map) != pgdat->node_start_pfn) |
467bc461 | 4413 | mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); |
0ee332c1 | 4414 | #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ |
c713216d | 4415 | } |
1da177e4 | 4416 | #endif |
d41dee36 | 4417 | #endif /* CONFIG_FLAT_NODE_MEM_MAP */ |
1da177e4 LT |
4418 | } |
4419 | ||
9109fb7b JW |
4420 | void __paginginit free_area_init_node(int nid, unsigned long *zones_size, |
4421 | unsigned long node_start_pfn, unsigned long *zholes_size) | |
1da177e4 | 4422 | { |
9109fb7b JW |
4423 | pg_data_t *pgdat = NODE_DATA(nid); |
4424 | ||
1da177e4 LT |
4425 | pgdat->node_id = nid; |
4426 | pgdat->node_start_pfn = node_start_pfn; | |
c713216d | 4427 | calculate_node_totalpages(pgdat, zones_size, zholes_size); |
1da177e4 LT |
4428 | |
4429 | alloc_node_mem_map(pgdat); | |
e8c27ac9 YL |
4430 | #ifdef CONFIG_FLAT_NODE_MEM_MAP |
4431 | printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", | |
4432 | nid, (unsigned long)pgdat, | |
4433 | (unsigned long)pgdat->node_mem_map); | |
4434 | #endif | |
1da177e4 LT |
4435 | |
4436 | free_area_init_core(pgdat, zones_size, zholes_size); | |
4437 | } | |
4438 | ||
0ee332c1 | 4439 | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP |
418508c1 MS |
4440 | |
4441 | #if MAX_NUMNODES > 1 | |
4442 | /* | |
4443 | * Figure out the number of possible node ids. | |
4444 | */ | |
4445 | static void __init setup_nr_node_ids(void) | |
4446 | { | |
4447 | unsigned int node; | |
4448 | unsigned int highest = 0; | |
4449 | ||
4450 | for_each_node_mask(node, node_possible_map) | |
4451 | highest = node; | |
4452 | nr_node_ids = highest + 1; | |
4453 | } | |
4454 | #else | |
4455 | static inline void setup_nr_node_ids(void) | |
4456 | { | |
4457 | } | |
4458 | #endif | |
4459 | ||
1e01979c TH |
4460 | /** |
4461 | * node_map_pfn_alignment - determine the maximum internode alignment | |
4462 | * | |
4463 | * This function should be called after node map is populated and sorted. | |
4464 | * It calculates the maximum power of two alignment which can distinguish | |
4465 | * all the nodes. | |
4466 | * | |
4467 | * For example, if all nodes are 1GiB and aligned to 1GiB, the return value | |
4468 | * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the | |
4469 | * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is | |
4470 | * shifted, 1GiB is enough and this function will indicate so. | |
4471 | * | |
4472 | * This is used to test whether pfn -> nid mapping of the chosen memory | |
4473 | * model has fine enough granularity to avoid incorrect mapping for the | |
4474 | * populated node map. | |
4475 | * | |
4476 | * Returns the determined alignment in pfn's. 0 if there is no alignment | |
4477 | * requirement (single node). | |
4478 | */ | |
4479 | unsigned long __init node_map_pfn_alignment(void) | |
4480 | { | |
4481 | unsigned long accl_mask = 0, last_end = 0; | |
c13291a5 | 4482 | unsigned long start, end, mask; |
1e01979c | 4483 | int last_nid = -1; |
c13291a5 | 4484 | int i, nid; |
1e01979c | 4485 | |
c13291a5 | 4486 | for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { |
1e01979c TH |
4487 | if (!start || last_nid < 0 || last_nid == nid) { |
4488 | last_nid = nid; | |
4489 | last_end = end; | |
4490 | continue; | |
4491 | } | |
4492 | ||
4493 | /* | |
4494 | * Start with a mask granular enough to pin-point to the | |
4495 | * start pfn and tick off bits one-by-one until it becomes | |
4496 | * too coarse to separate the current node from the last. | |
4497 | */ | |
4498 | mask = ~((1 << __ffs(start)) - 1); | |
4499 | while (mask && last_end <= (start & (mask << 1))) | |
4500 | mask <<= 1; | |
4501 | ||
4502 | /* accumulate all internode masks */ | |
4503 | accl_mask |= mask; | |
4504 | } | |
4505 | ||
4506 | /* convert mask to number of pages */ | |
4507 | return ~accl_mask + 1; | |
4508 | } | |
4509 | ||
a6af2bc3 | 4510 | /* Find the lowest pfn for a node */ |
b69a7288 | 4511 | static unsigned long __init find_min_pfn_for_node(int nid) |
c713216d | 4512 | { |
a6af2bc3 | 4513 | unsigned long min_pfn = ULONG_MAX; |
c13291a5 TH |
4514 | unsigned long start_pfn; |
4515 | int i; | |
1abbfb41 | 4516 | |
c13291a5 TH |
4517 | for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) |
4518 | min_pfn = min(min_pfn, start_pfn); | |
c713216d | 4519 | |
a6af2bc3 MG |
4520 | if (min_pfn == ULONG_MAX) { |
4521 | printk(KERN_WARNING | |
2bc0d261 | 4522 | "Could not find start_pfn for node %d\n", nid); |
a6af2bc3 MG |
4523 | return 0; |
4524 | } | |
4525 | ||
4526 | return min_pfn; | |
c713216d MG |
4527 | } |
4528 | ||
4529 | /** | |
4530 | * find_min_pfn_with_active_regions - Find the minimum PFN registered | |
4531 | * | |
4532 | * It returns the minimum PFN based on information provided via | |
88ca3b94 | 4533 | * add_active_range(). |
c713216d MG |
4534 | */ |
4535 | unsigned long __init find_min_pfn_with_active_regions(void) | |
4536 | { | |
4537 | return find_min_pfn_for_node(MAX_NUMNODES); | |
4538 | } | |
4539 | ||
37b07e41 LS |
4540 | /* |
4541 | * early_calculate_totalpages() | |
4542 | * Sum pages in active regions for movable zone. | |
4543 | * Populate N_HIGH_MEMORY for calculating usable_nodes. | |
4544 | */ | |
484f51f8 | 4545 | static unsigned long __init early_calculate_totalpages(void) |
7e63efef | 4546 | { |
7e63efef | 4547 | unsigned long totalpages = 0; |
c13291a5 TH |
4548 | unsigned long start_pfn, end_pfn; |
4549 | int i, nid; | |
4550 | ||
4551 | for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { | |
4552 | unsigned long pages = end_pfn - start_pfn; | |
7e63efef | 4553 | |
37b07e41 LS |
4554 | totalpages += pages; |
4555 | if (pages) | |
c13291a5 | 4556 | node_set_state(nid, N_HIGH_MEMORY); |
37b07e41 LS |
4557 | } |
4558 | return totalpages; | |
7e63efef MG |
4559 | } |
4560 | ||
2a1e274a MG |
4561 | /* |
4562 | * Find the PFN the Movable zone begins in each node. Kernel memory | |
4563 | * is spread evenly between nodes as long as the nodes have enough | |
4564 | * memory. When they don't, some nodes will have more kernelcore than | |
4565 | * others | |
4566 | */ | |
b224ef85 | 4567 | static void __init find_zone_movable_pfns_for_nodes(void) |
2a1e274a MG |
4568 | { |
4569 | int i, nid; | |
4570 | unsigned long usable_startpfn; | |
4571 | unsigned long kernelcore_node, kernelcore_remaining; | |
66918dcd YL |
4572 | /* save the state before borrow the nodemask */ |
4573 | nodemask_t saved_node_state = node_states[N_HIGH_MEMORY]; | |
37b07e41 LS |
4574 | unsigned long totalpages = early_calculate_totalpages(); |
4575 | int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]); | |
2a1e274a | 4576 | |
7e63efef MG |
4577 | /* |
4578 | * If movablecore was specified, calculate what size of | |
4579 | * kernelcore that corresponds so that memory usable for | |
4580 | * any allocation type is evenly spread. If both kernelcore | |
4581 | * and movablecore are specified, then the value of kernelcore | |
4582 | * will be used for required_kernelcore if it's greater than | |
4583 | * what movablecore would have allowed. | |
4584 | */ | |
4585 | if (required_movablecore) { | |
7e63efef MG |
4586 | unsigned long corepages; |
4587 | ||
4588 | /* | |
4589 | * Round-up so that ZONE_MOVABLE is at least as large as what | |
4590 | * was requested by the user | |
4591 | */ | |
4592 | required_movablecore = | |
4593 | roundup(required_movablecore, MAX_ORDER_NR_PAGES); | |
4594 | corepages = totalpages - required_movablecore; | |
4595 | ||
4596 | required_kernelcore = max(required_kernelcore, corepages); | |
4597 | } | |
4598 | ||
2a1e274a MG |
4599 | /* If kernelcore was not specified, there is no ZONE_MOVABLE */ |
4600 | if (!required_kernelcore) | |
66918dcd | 4601 | goto out; |
2a1e274a MG |
4602 | |
4603 | /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ | |
4604 | find_usable_zone_for_movable(); | |
4605 | usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; | |
4606 | ||
4607 | restart: | |
4608 | /* Spread kernelcore memory as evenly as possible throughout nodes */ | |
4609 | kernelcore_node = required_kernelcore / usable_nodes; | |
37b07e41 | 4610 | for_each_node_state(nid, N_HIGH_MEMORY) { |
c13291a5 TH |
4611 | unsigned long start_pfn, end_pfn; |
4612 | ||
2a1e274a MG |
4613 | /* |
4614 | * Recalculate kernelcore_node if the division per node | |
4615 | * now exceeds what is necessary to satisfy the requested | |
4616 | * amount of memory for the kernel | |
4617 | */ | |
4618 | if (required_kernelcore < kernelcore_node) | |
4619 | kernelcore_node = required_kernelcore / usable_nodes; | |
4620 | ||
4621 | /* | |
4622 | * As the map is walked, we track how much memory is usable | |
4623 | * by the kernel using kernelcore_remaining. When it is | |
4624 | * 0, the rest of the node is usable by ZONE_MOVABLE | |
4625 | */ | |
4626 | kernelcore_remaining = kernelcore_node; | |
4627 | ||
4628 | /* Go through each range of PFNs within this node */ | |
c13291a5 | 4629 | for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { |
2a1e274a MG |
4630 | unsigned long size_pages; |
4631 | ||
c13291a5 | 4632 | start_pfn = max(start_pfn, zone_movable_pfn[nid]); |
2a1e274a MG |
4633 | if (start_pfn >= end_pfn) |
4634 | continue; | |
4635 | ||
4636 | /* Account for what is only usable for kernelcore */ | |
4637 | if (start_pfn < usable_startpfn) { | |
4638 | unsigned long kernel_pages; | |
4639 | kernel_pages = min(end_pfn, usable_startpfn) | |
4640 | - start_pfn; | |
4641 | ||
4642 | kernelcore_remaining -= min(kernel_pages, | |
4643 | kernelcore_remaining); | |
4644 | required_kernelcore -= min(kernel_pages, | |
4645 | required_kernelcore); | |
4646 | ||
4647 | /* Continue if range is now fully accounted */ | |
4648 | if (end_pfn <= usable_startpfn) { | |
4649 | ||
4650 | /* | |
4651 | * Push zone_movable_pfn to the end so | |
4652 | * that if we have to rebalance | |
4653 | * kernelcore across nodes, we will | |
4654 | * not double account here | |
4655 | */ | |
4656 | zone_movable_pfn[nid] = end_pfn; | |
4657 | continue; | |
4658 | } | |
4659 | start_pfn = usable_startpfn; | |
4660 | } | |
4661 | ||
4662 | /* | |
4663 | * The usable PFN range for ZONE_MOVABLE is from | |
4664 | * start_pfn->end_pfn. Calculate size_pages as the | |
4665 | * number of pages used as kernelcore | |
4666 | */ | |
4667 | size_pages = end_pfn - start_pfn; | |
4668 | if (size_pages > kernelcore_remaining) | |
4669 | size_pages = kernelcore_remaining; | |
4670 | zone_movable_pfn[nid] = start_pfn + size_pages; | |
4671 | ||
4672 | /* | |
4673 | * Some kernelcore has been met, update counts and | |
4674 | * break if the kernelcore for this node has been | |
4675 | * satisified | |
4676 | */ | |
4677 | required_kernelcore -= min(required_kernelcore, | |
4678 | size_pages); | |
4679 | kernelcore_remaining -= size_pages; | |
4680 | if (!kernelcore_remaining) | |
4681 | break; | |
4682 | } | |
4683 | } | |
4684 | ||
4685 | /* | |
4686 | * If there is still required_kernelcore, we do another pass with one | |
4687 | * less node in the count. This will push zone_movable_pfn[nid] further | |
4688 | * along on the nodes that still have memory until kernelcore is | |
4689 | * satisified | |
4690 | */ | |
4691 | usable_nodes--; | |
4692 | if (usable_nodes && required_kernelcore > usable_nodes) | |
4693 | goto restart; | |
4694 | ||
4695 | /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ | |
4696 | for (nid = 0; nid < MAX_NUMNODES; nid++) | |
4697 | zone_movable_pfn[nid] = | |
4698 | roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); | |
66918dcd YL |
4699 | |
4700 | out: | |
4701 | /* restore the node_state */ | |
4702 | node_states[N_HIGH_MEMORY] = saved_node_state; | |
2a1e274a MG |
4703 | } |
4704 | ||
37b07e41 LS |
4705 | /* Any regular memory on that node ? */ |
4706 | static void check_for_regular_memory(pg_data_t *pgdat) | |
4707 | { | |
4708 | #ifdef CONFIG_HIGHMEM | |
4709 | enum zone_type zone_type; | |
4710 | ||
4711 | for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) { | |
4712 | struct zone *zone = &pgdat->node_zones[zone_type]; | |
d0048b0e | 4713 | if (zone->present_pages) { |
37b07e41 | 4714 | node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY); |
d0048b0e BL |
4715 | break; |
4716 | } | |
37b07e41 LS |
4717 | } |
4718 | #endif | |
4719 | } | |
4720 | ||
c713216d MG |
4721 | /** |
4722 | * free_area_init_nodes - Initialise all pg_data_t and zone data | |
88ca3b94 | 4723 | * @max_zone_pfn: an array of max PFNs for each zone |
c713216d MG |
4724 | * |
4725 | * This will call free_area_init_node() for each active node in the system. | |
4726 | * Using the page ranges provided by add_active_range(), the size of each | |
4727 | * zone in each node and their holes is calculated. If the maximum PFN | |
4728 | * between two adjacent zones match, it is assumed that the zone is empty. | |
4729 | * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed | |
4730 | * that arch_max_dma32_pfn has no pages. It is also assumed that a zone | |
4731 | * starts where the previous one ended. For example, ZONE_DMA32 starts | |
4732 | * at arch_max_dma_pfn. | |
4733 | */ | |
4734 | void __init free_area_init_nodes(unsigned long *max_zone_pfn) | |
4735 | { | |
c13291a5 TH |
4736 | unsigned long start_pfn, end_pfn; |
4737 | int i, nid; | |
a6af2bc3 | 4738 | |
c713216d MG |
4739 | /* Record where the zone boundaries are */ |
4740 | memset(arch_zone_lowest_possible_pfn, 0, | |
4741 | sizeof(arch_zone_lowest_possible_pfn)); | |
4742 | memset(arch_zone_highest_possible_pfn, 0, | |
4743 | sizeof(arch_zone_highest_possible_pfn)); | |
4744 | arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); | |
4745 | arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; | |
4746 | for (i = 1; i < MAX_NR_ZONES; i++) { | |
2a1e274a MG |
4747 | if (i == ZONE_MOVABLE) |
4748 | continue; | |
c713216d MG |
4749 | arch_zone_lowest_possible_pfn[i] = |
4750 | arch_zone_highest_possible_pfn[i-1]; | |
4751 | arch_zone_highest_possible_pfn[i] = | |
4752 | max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); | |
4753 | } | |
2a1e274a MG |
4754 | arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; |
4755 | arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; | |
4756 | ||
4757 | /* Find the PFNs that ZONE_MOVABLE begins at in each node */ | |
4758 | memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); | |
b224ef85 | 4759 | find_zone_movable_pfns_for_nodes(); |
c713216d | 4760 | |
c713216d MG |
4761 | /* Print out the zone ranges */ |
4762 | printk("Zone PFN ranges:\n"); | |
2a1e274a MG |
4763 | for (i = 0; i < MAX_NR_ZONES; i++) { |
4764 | if (i == ZONE_MOVABLE) | |
4765 | continue; | |
72f0ba02 DR |
4766 | printk(" %-8s ", zone_names[i]); |
4767 | if (arch_zone_lowest_possible_pfn[i] == | |
4768 | arch_zone_highest_possible_pfn[i]) | |
4769 | printk("empty\n"); | |
4770 | else | |
4771 | printk("%0#10lx -> %0#10lx\n", | |
c713216d MG |
4772 | arch_zone_lowest_possible_pfn[i], |
4773 | arch_zone_highest_possible_pfn[i]); | |
2a1e274a MG |
4774 | } |
4775 | ||
4776 | /* Print out the PFNs ZONE_MOVABLE begins at in each node */ | |
4777 | printk("Movable zone start PFN for each node\n"); | |
4778 | for (i = 0; i < MAX_NUMNODES; i++) { | |
4779 | if (zone_movable_pfn[i]) | |
4780 | printk(" Node %d: %lu\n", i, zone_movable_pfn[i]); | |
4781 | } | |
c713216d MG |
4782 | |
4783 | /* Print out the early_node_map[] */ | |
c13291a5 TH |
4784 | printk("Early memory PFN ranges\n"); |
4785 | for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) | |
4786 | printk(" %3d: %0#10lx -> %0#10lx\n", nid, start_pfn, end_pfn); | |
c713216d MG |
4787 | |
4788 | /* Initialise every node */ | |
708614e6 | 4789 | mminit_verify_pageflags_layout(); |
8ef82866 | 4790 | setup_nr_node_ids(); |
c713216d MG |
4791 | for_each_online_node(nid) { |
4792 | pg_data_t *pgdat = NODE_DATA(nid); | |
9109fb7b | 4793 | free_area_init_node(nid, NULL, |
c713216d | 4794 | find_min_pfn_for_node(nid), NULL); |
37b07e41 LS |
4795 | |
4796 | /* Any memory on that node */ | |
4797 | if (pgdat->node_present_pages) | |
4798 | node_set_state(nid, N_HIGH_MEMORY); | |
4799 | check_for_regular_memory(pgdat); | |
c713216d MG |
4800 | } |
4801 | } | |
2a1e274a | 4802 | |
7e63efef | 4803 | static int __init cmdline_parse_core(char *p, unsigned long *core) |
2a1e274a MG |
4804 | { |
4805 | unsigned long long coremem; | |
4806 | if (!p) | |
4807 | return -EINVAL; | |
4808 | ||
4809 | coremem = memparse(p, &p); | |
7e63efef | 4810 | *core = coremem >> PAGE_SHIFT; |
2a1e274a | 4811 | |
7e63efef | 4812 | /* Paranoid check that UL is enough for the coremem value */ |
2a1e274a MG |
4813 | WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); |
4814 | ||
4815 | return 0; | |
4816 | } | |
ed7ed365 | 4817 | |
7e63efef MG |
4818 | /* |
4819 | * kernelcore=size sets the amount of memory for use for allocations that | |
4820 | * cannot be reclaimed or migrated. | |
4821 | */ | |
4822 | static int __init cmdline_parse_kernelcore(char *p) | |
4823 | { | |
4824 | return cmdline_parse_core(p, &required_kernelcore); | |
4825 | } | |
4826 | ||
4827 | /* | |
4828 | * movablecore=size sets the amount of memory for use for allocations that | |
4829 | * can be reclaimed or migrated. | |
4830 | */ | |
4831 | static int __init cmdline_parse_movablecore(char *p) | |
4832 | { | |
4833 | return cmdline_parse_core(p, &required_movablecore); | |
4834 | } | |
4835 | ||
ed7ed365 | 4836 | early_param("kernelcore", cmdline_parse_kernelcore); |
7e63efef | 4837 | early_param("movablecore", cmdline_parse_movablecore); |
ed7ed365 | 4838 | |
0ee332c1 | 4839 | #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ |
c713216d | 4840 | |
0e0b864e | 4841 | /** |
88ca3b94 RD |
4842 | * set_dma_reserve - set the specified number of pages reserved in the first zone |
4843 | * @new_dma_reserve: The number of pages to mark reserved | |
0e0b864e MG |
4844 | * |
4845 | * The per-cpu batchsize and zone watermarks are determined by present_pages. | |
4846 | * In the DMA zone, a significant percentage may be consumed by kernel image | |
4847 | * and other unfreeable allocations which can skew the watermarks badly. This | |
88ca3b94 RD |
4848 | * function may optionally be used to account for unfreeable pages in the |
4849 | * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and | |
4850 | * smaller per-cpu batchsize. | |
0e0b864e MG |
4851 | */ |
4852 | void __init set_dma_reserve(unsigned long new_dma_reserve) | |
4853 | { | |
4854 | dma_reserve = new_dma_reserve; | |
4855 | } | |
4856 | ||
1da177e4 LT |
4857 | void __init free_area_init(unsigned long *zones_size) |
4858 | { | |
9109fb7b | 4859 | free_area_init_node(0, zones_size, |
1da177e4 LT |
4860 | __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); |
4861 | } | |
1da177e4 | 4862 | |
1da177e4 LT |
4863 | static int page_alloc_cpu_notify(struct notifier_block *self, |
4864 | unsigned long action, void *hcpu) | |
4865 | { | |
4866 | int cpu = (unsigned long)hcpu; | |
1da177e4 | 4867 | |
8bb78442 | 4868 | if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { |
f0cb3c76 | 4869 | lru_add_drain_cpu(cpu); |
9f8f2172 CL |
4870 | drain_pages(cpu); |
4871 | ||
4872 | /* | |
4873 | * Spill the event counters of the dead processor | |
4874 | * into the current processors event counters. | |
4875 | * This artificially elevates the count of the current | |
4876 | * processor. | |
4877 | */ | |
f8891e5e | 4878 | vm_events_fold_cpu(cpu); |
9f8f2172 CL |
4879 | |
4880 | /* | |
4881 | * Zero the differential counters of the dead processor | |
4882 | * so that the vm statistics are consistent. | |
4883 | * | |
4884 | * This is only okay since the processor is dead and cannot | |
4885 | * race with what we are doing. | |
4886 | */ | |
2244b95a | 4887 | refresh_cpu_vm_stats(cpu); |
1da177e4 LT |
4888 | } |
4889 | return NOTIFY_OK; | |
4890 | } | |
1da177e4 LT |
4891 | |
4892 | void __init page_alloc_init(void) | |
4893 | { | |
4894 | hotcpu_notifier(page_alloc_cpu_notify, 0); | |
4895 | } | |
4896 | ||
cb45b0e9 HA |
4897 | /* |
4898 | * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio | |
4899 | * or min_free_kbytes changes. | |
4900 | */ | |
4901 | static void calculate_totalreserve_pages(void) | |
4902 | { | |
4903 | struct pglist_data *pgdat; | |
4904 | unsigned long reserve_pages = 0; | |
2f6726e5 | 4905 | enum zone_type i, j; |
cb45b0e9 HA |
4906 | |
4907 | for_each_online_pgdat(pgdat) { | |
4908 | for (i = 0; i < MAX_NR_ZONES; i++) { | |
4909 | struct zone *zone = pgdat->node_zones + i; | |
4910 | unsigned long max = 0; | |
4911 | ||
4912 | /* Find valid and maximum lowmem_reserve in the zone */ | |
4913 | for (j = i; j < MAX_NR_ZONES; j++) { | |
4914 | if (zone->lowmem_reserve[j] > max) | |
4915 | max = zone->lowmem_reserve[j]; | |
4916 | } | |
4917 | ||
41858966 MG |
4918 | /* we treat the high watermark as reserved pages. */ |
4919 | max += high_wmark_pages(zone); | |
cb45b0e9 HA |
4920 | |
4921 | if (max > zone->present_pages) | |
4922 | max = zone->present_pages; | |
4923 | reserve_pages += max; | |
ab8fabd4 JW |
4924 | /* |
4925 | * Lowmem reserves are not available to | |
4926 | * GFP_HIGHUSER page cache allocations and | |
4927 | * kswapd tries to balance zones to their high | |
4928 | * watermark. As a result, neither should be | |
4929 | * regarded as dirtyable memory, to prevent a | |
4930 | * situation where reclaim has to clean pages | |
4931 | * in order to balance the zones. | |
4932 | */ | |
4933 | zone->dirty_balance_reserve = max; | |
cb45b0e9 HA |
4934 | } |
4935 | } | |
ab8fabd4 | 4936 | dirty_balance_reserve = reserve_pages; |
cb45b0e9 HA |
4937 | totalreserve_pages = reserve_pages; |
4938 | } | |
4939 | ||
1da177e4 LT |
4940 | /* |
4941 | * setup_per_zone_lowmem_reserve - called whenever | |
4942 | * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone | |
4943 | * has a correct pages reserved value, so an adequate number of | |
4944 | * pages are left in the zone after a successful __alloc_pages(). | |
4945 | */ | |
4946 | static void setup_per_zone_lowmem_reserve(void) | |
4947 | { | |
4948 | struct pglist_data *pgdat; | |
2f6726e5 | 4949 | enum zone_type j, idx; |
1da177e4 | 4950 | |
ec936fc5 | 4951 | for_each_online_pgdat(pgdat) { |
1da177e4 LT |
4952 | for (j = 0; j < MAX_NR_ZONES; j++) { |
4953 | struct zone *zone = pgdat->node_zones + j; | |
4954 | unsigned long present_pages = zone->present_pages; | |
4955 | ||
4956 | zone->lowmem_reserve[j] = 0; | |
4957 | ||
2f6726e5 CL |
4958 | idx = j; |
4959 | while (idx) { | |
1da177e4 LT |
4960 | struct zone *lower_zone; |
4961 | ||
2f6726e5 CL |
4962 | idx--; |
4963 | ||
1da177e4 LT |
4964 | if (sysctl_lowmem_reserve_ratio[idx] < 1) |
4965 | sysctl_lowmem_reserve_ratio[idx] = 1; | |
4966 | ||
4967 | lower_zone = pgdat->node_zones + idx; | |
4968 | lower_zone->lowmem_reserve[j] = present_pages / | |
4969 | sysctl_lowmem_reserve_ratio[idx]; | |
4970 | present_pages += lower_zone->present_pages; | |
4971 | } | |
4972 | } | |
4973 | } | |
cb45b0e9 HA |
4974 | |
4975 | /* update totalreserve_pages */ | |
4976 | calculate_totalreserve_pages(); | |
1da177e4 LT |
4977 | } |
4978 | ||
88ca3b94 | 4979 | /** |
bc75d33f | 4980 | * setup_per_zone_wmarks - called when min_free_kbytes changes |
bce7394a | 4981 | * or when memory is hot-{added|removed} |
88ca3b94 | 4982 | * |
bc75d33f MK |
4983 | * Ensures that the watermark[min,low,high] values for each zone are set |
4984 | * correctly with respect to min_free_kbytes. | |
1da177e4 | 4985 | */ |
bc75d33f | 4986 | void setup_per_zone_wmarks(void) |
1da177e4 LT |
4987 | { |
4988 | unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); | |
4989 | unsigned long lowmem_pages = 0; | |
4990 | struct zone *zone; | |
4991 | unsigned long flags; | |
4992 | ||
4993 | /* Calculate total number of !ZONE_HIGHMEM pages */ | |
4994 | for_each_zone(zone) { | |
4995 | if (!is_highmem(zone)) | |
4996 | lowmem_pages += zone->present_pages; | |
4997 | } | |
4998 | ||
4999 | for_each_zone(zone) { | |
ac924c60 AM |
5000 | u64 tmp; |
5001 | ||
1125b4e3 | 5002 | spin_lock_irqsave(&zone->lock, flags); |
ac924c60 AM |
5003 | tmp = (u64)pages_min * zone->present_pages; |
5004 | do_div(tmp, lowmem_pages); | |
1da177e4 LT |
5005 | if (is_highmem(zone)) { |
5006 | /* | |
669ed175 NP |
5007 | * __GFP_HIGH and PF_MEMALLOC allocations usually don't |
5008 | * need highmem pages, so cap pages_min to a small | |
5009 | * value here. | |
5010 | * | |
41858966 | 5011 | * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) |
669ed175 NP |
5012 | * deltas controls asynch page reclaim, and so should |
5013 | * not be capped for highmem. | |
1da177e4 LT |
5014 | */ |
5015 | int min_pages; | |
5016 | ||
5017 | min_pages = zone->present_pages / 1024; | |
5018 | if (min_pages < SWAP_CLUSTER_MAX) | |
5019 | min_pages = SWAP_CLUSTER_MAX; | |
5020 | if (min_pages > 128) | |
5021 | min_pages = 128; | |
41858966 | 5022 | zone->watermark[WMARK_MIN] = min_pages; |
1da177e4 | 5023 | } else { |
669ed175 NP |
5024 | /* |
5025 | * If it's a lowmem zone, reserve a number of pages | |
1da177e4 LT |
5026 | * proportionate to the zone's size. |
5027 | */ | |
41858966 | 5028 | zone->watermark[WMARK_MIN] = tmp; |
1da177e4 LT |
5029 | } |
5030 | ||
41858966 MG |
5031 | zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2); |
5032 | zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1); | |
56fd56b8 | 5033 | setup_zone_migrate_reserve(zone); |
1125b4e3 | 5034 | spin_unlock_irqrestore(&zone->lock, flags); |
1da177e4 | 5035 | } |
cb45b0e9 HA |
5036 | |
5037 | /* update totalreserve_pages */ | |
5038 | calculate_totalreserve_pages(); | |
1da177e4 LT |
5039 | } |
5040 | ||
55a4462a | 5041 | /* |
556adecb RR |
5042 | * The inactive anon list should be small enough that the VM never has to |
5043 | * do too much work, but large enough that each inactive page has a chance | |
5044 | * to be referenced again before it is swapped out. | |
5045 | * | |
5046 | * The inactive_anon ratio is the target ratio of ACTIVE_ANON to | |
5047 | * INACTIVE_ANON pages on this zone's LRU, maintained by the | |
5048 | * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of | |
5049 | * the anonymous pages are kept on the inactive list. | |
5050 | * | |
5051 | * total target max | |
5052 | * memory ratio inactive anon | |
5053 | * ------------------------------------- | |
5054 | * 10MB 1 5MB | |
5055 | * 100MB 1 50MB | |
5056 | * 1GB 3 250MB | |
5057 | * 10GB 10 0.9GB | |
5058 | * 100GB 31 3GB | |
5059 | * 1TB 101 10GB | |
5060 | * 10TB 320 32GB | |
5061 | */ | |
1b79acc9 | 5062 | static void __meminit calculate_zone_inactive_ratio(struct zone *zone) |
556adecb | 5063 | { |
96cb4df5 | 5064 | unsigned int gb, ratio; |
556adecb | 5065 | |
96cb4df5 MK |
5066 | /* Zone size in gigabytes */ |
5067 | gb = zone->present_pages >> (30 - PAGE_SHIFT); | |
5068 | if (gb) | |
556adecb | 5069 | ratio = int_sqrt(10 * gb); |
96cb4df5 MK |
5070 | else |
5071 | ratio = 1; | |
556adecb | 5072 | |
96cb4df5 MK |
5073 | zone->inactive_ratio = ratio; |
5074 | } | |
556adecb | 5075 | |
839a4fcc | 5076 | static void __meminit setup_per_zone_inactive_ratio(void) |
96cb4df5 MK |
5077 | { |
5078 | struct zone *zone; | |
5079 | ||
5080 | for_each_zone(zone) | |
5081 | calculate_zone_inactive_ratio(zone); | |
556adecb RR |
5082 | } |
5083 | ||
1da177e4 LT |
5084 | /* |
5085 | * Initialise min_free_kbytes. | |
5086 | * | |
5087 | * For small machines we want it small (128k min). For large machines | |
5088 | * we want it large (64MB max). But it is not linear, because network | |
5089 | * bandwidth does not increase linearly with machine size. We use | |
5090 | * | |
5091 | * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: | |
5092 | * min_free_kbytes = sqrt(lowmem_kbytes * 16) | |
5093 | * | |
5094 | * which yields | |
5095 | * | |
5096 | * 16MB: 512k | |
5097 | * 32MB: 724k | |
5098 | * 64MB: 1024k | |
5099 | * 128MB: 1448k | |
5100 | * 256MB: 2048k | |
5101 | * 512MB: 2896k | |
5102 | * 1024MB: 4096k | |
5103 | * 2048MB: 5792k | |
5104 | * 4096MB: 8192k | |
5105 | * 8192MB: 11584k | |
5106 | * 16384MB: 16384k | |
5107 | */ | |
1b79acc9 | 5108 | int __meminit init_per_zone_wmark_min(void) |
1da177e4 LT |
5109 | { |
5110 | unsigned long lowmem_kbytes; | |
5111 | ||
5112 | lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); | |
5113 | ||
5114 | min_free_kbytes = int_sqrt(lowmem_kbytes * 16); | |
5115 | if (min_free_kbytes < 128) | |
5116 | min_free_kbytes = 128; | |
5117 | if (min_free_kbytes > 65536) | |
5118 | min_free_kbytes = 65536; | |
bc75d33f | 5119 | setup_per_zone_wmarks(); |
a6cccdc3 | 5120 | refresh_zone_stat_thresholds(); |
1da177e4 | 5121 | setup_per_zone_lowmem_reserve(); |
556adecb | 5122 | setup_per_zone_inactive_ratio(); |
1da177e4 LT |
5123 | return 0; |
5124 | } | |
bc75d33f | 5125 | module_init(init_per_zone_wmark_min) |
1da177e4 LT |
5126 | |
5127 | /* | |
5128 | * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so | |
5129 | * that we can call two helper functions whenever min_free_kbytes | |
5130 | * changes. | |
5131 | */ | |
5132 | int min_free_kbytes_sysctl_handler(ctl_table *table, int write, | |
8d65af78 | 5133 | void __user *buffer, size_t *length, loff_t *ppos) |
1da177e4 | 5134 | { |
8d65af78 | 5135 | proc_dointvec(table, write, buffer, length, ppos); |
3b1d92c5 | 5136 | if (write) |
bc75d33f | 5137 | setup_per_zone_wmarks(); |
1da177e4 LT |
5138 | return 0; |
5139 | } | |
5140 | ||
9614634f CL |
5141 | #ifdef CONFIG_NUMA |
5142 | int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write, | |
8d65af78 | 5143 | void __user *buffer, size_t *length, loff_t *ppos) |
9614634f CL |
5144 | { |
5145 | struct zone *zone; | |
5146 | int rc; | |
5147 | ||
8d65af78 | 5148 | rc = proc_dointvec_minmax(table, write, buffer, length, ppos); |
9614634f CL |
5149 | if (rc) |
5150 | return rc; | |
5151 | ||
5152 | for_each_zone(zone) | |
8417bba4 | 5153 | zone->min_unmapped_pages = (zone->present_pages * |
9614634f CL |
5154 | sysctl_min_unmapped_ratio) / 100; |
5155 | return 0; | |
5156 | } | |
0ff38490 CL |
5157 | |
5158 | int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write, | |
8d65af78 | 5159 | void __user *buffer, size_t *length, loff_t *ppos) |
0ff38490 CL |
5160 | { |
5161 | struct zone *zone; | |
5162 | int rc; | |
5163 | ||
8d65af78 | 5164 | rc = proc_dointvec_minmax(table, write, buffer, length, ppos); |
0ff38490 CL |
5165 | if (rc) |
5166 | return rc; | |
5167 | ||
5168 | for_each_zone(zone) | |
5169 | zone->min_slab_pages = (zone->present_pages * | |
5170 | sysctl_min_slab_ratio) / 100; | |
5171 | return 0; | |
5172 | } | |
9614634f CL |
5173 | #endif |
5174 | ||
1da177e4 LT |
5175 | /* |
5176 | * lowmem_reserve_ratio_sysctl_handler - just a wrapper around | |
5177 | * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() | |
5178 | * whenever sysctl_lowmem_reserve_ratio changes. | |
5179 | * | |
5180 | * The reserve ratio obviously has absolutely no relation with the | |
41858966 | 5181 | * minimum watermarks. The lowmem reserve ratio can only make sense |
1da177e4 LT |
5182 | * if in function of the boot time zone sizes. |
5183 | */ | |
5184 | int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, | |
8d65af78 | 5185 | void __user *buffer, size_t *length, loff_t *ppos) |
1da177e4 | 5186 | { |
8d65af78 | 5187 | proc_dointvec_minmax(table, write, buffer, length, ppos); |
1da177e4 LT |
5188 | setup_per_zone_lowmem_reserve(); |
5189 | return 0; | |
5190 | } | |
5191 | ||
8ad4b1fb RS |
5192 | /* |
5193 | * percpu_pagelist_fraction - changes the pcp->high for each zone on each | |
5194 | * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist | |
5195 | * can have before it gets flushed back to buddy allocator. | |
5196 | */ | |
5197 | ||
5198 | int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, | |
8d65af78 | 5199 | void __user *buffer, size_t *length, loff_t *ppos) |
8ad4b1fb RS |
5200 | { |
5201 | struct zone *zone; | |
5202 | unsigned int cpu; | |
5203 | int ret; | |
5204 | ||
8d65af78 | 5205 | ret = proc_dointvec_minmax(table, write, buffer, length, ppos); |
93278814 | 5206 | if (!write || (ret < 0)) |
8ad4b1fb | 5207 | return ret; |
364df0eb | 5208 | for_each_populated_zone(zone) { |
99dcc3e5 | 5209 | for_each_possible_cpu(cpu) { |
8ad4b1fb RS |
5210 | unsigned long high; |
5211 | high = zone->present_pages / percpu_pagelist_fraction; | |
99dcc3e5 CL |
5212 | setup_pagelist_highmark( |
5213 | per_cpu_ptr(zone->pageset, cpu), high); | |
8ad4b1fb RS |
5214 | } |
5215 | } | |
5216 | return 0; | |
5217 | } | |
5218 | ||
f034b5d4 | 5219 | int hashdist = HASHDIST_DEFAULT; |
1da177e4 LT |
5220 | |
5221 | #ifdef CONFIG_NUMA | |
5222 | static int __init set_hashdist(char *str) | |
5223 | { | |
5224 | if (!str) | |
5225 | return 0; | |
5226 | hashdist = simple_strtoul(str, &str, 0); | |
5227 | return 1; | |
5228 | } | |
5229 | __setup("hashdist=", set_hashdist); | |
5230 | #endif | |
5231 | ||
5232 | /* | |
5233 | * allocate a large system hash table from bootmem | |
5234 | * - it is assumed that the hash table must contain an exact power-of-2 | |
5235 | * quantity of entries | |
5236 | * - limit is the number of hash buckets, not the total allocation size | |
5237 | */ | |
5238 | void *__init alloc_large_system_hash(const char *tablename, | |
5239 | unsigned long bucketsize, | |
5240 | unsigned long numentries, | |
5241 | int scale, | |
5242 | int flags, | |
5243 | unsigned int *_hash_shift, | |
5244 | unsigned int *_hash_mask, | |
5245 | unsigned long limit) | |
5246 | { | |
5247 | unsigned long long max = limit; | |
5248 | unsigned long log2qty, size; | |
5249 | void *table = NULL; | |
5250 | ||
5251 | /* allow the kernel cmdline to have a say */ | |
5252 | if (!numentries) { | |
5253 | /* round applicable memory size up to nearest megabyte */ | |
04903664 | 5254 | numentries = nr_kernel_pages; |
1da177e4 LT |
5255 | numentries += (1UL << (20 - PAGE_SHIFT)) - 1; |
5256 | numentries >>= 20 - PAGE_SHIFT; | |
5257 | numentries <<= 20 - PAGE_SHIFT; | |
5258 | ||
5259 | /* limit to 1 bucket per 2^scale bytes of low memory */ | |
5260 | if (scale > PAGE_SHIFT) | |
5261 | numentries >>= (scale - PAGE_SHIFT); | |
5262 | else | |
5263 | numentries <<= (PAGE_SHIFT - scale); | |
9ab37b8f PM |
5264 | |
5265 | /* Make sure we've got at least a 0-order allocation.. */ | |
2c85f51d JB |
5266 | if (unlikely(flags & HASH_SMALL)) { |
5267 | /* Makes no sense without HASH_EARLY */ | |
5268 | WARN_ON(!(flags & HASH_EARLY)); | |
5269 | if (!(numentries >> *_hash_shift)) { | |
5270 | numentries = 1UL << *_hash_shift; | |
5271 | BUG_ON(!numentries); | |
5272 | } | |
5273 | } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) | |
9ab37b8f | 5274 | numentries = PAGE_SIZE / bucketsize; |
1da177e4 | 5275 | } |
6e692ed3 | 5276 | numentries = roundup_pow_of_two(numentries); |
1da177e4 LT |
5277 | |
5278 | /* limit allocation size to 1/16 total memory by default */ | |
5279 | if (max == 0) { | |
5280 | max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; | |
5281 | do_div(max, bucketsize); | |
5282 | } | |
074b8517 | 5283 | max = min(max, 0x80000000ULL); |
1da177e4 LT |
5284 | |
5285 | if (numentries > max) | |
5286 | numentries = max; | |
5287 | ||
f0d1b0b3 | 5288 | log2qty = ilog2(numentries); |
1da177e4 LT |
5289 | |
5290 | do { | |
5291 | size = bucketsize << log2qty; | |
5292 | if (flags & HASH_EARLY) | |
74768ed8 | 5293 | table = alloc_bootmem_nopanic(size); |
1da177e4 LT |
5294 | else if (hashdist) |
5295 | table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); | |
5296 | else { | |
1037b83b ED |
5297 | /* |
5298 | * If bucketsize is not a power-of-two, we may free | |
a1dd268c MG |
5299 | * some pages at the end of hash table which |
5300 | * alloc_pages_exact() automatically does | |
1037b83b | 5301 | */ |
264ef8a9 | 5302 | if (get_order(size) < MAX_ORDER) { |
a1dd268c | 5303 | table = alloc_pages_exact(size, GFP_ATOMIC); |
264ef8a9 CM |
5304 | kmemleak_alloc(table, size, 1, GFP_ATOMIC); |
5305 | } | |
1da177e4 LT |
5306 | } |
5307 | } while (!table && size > PAGE_SIZE && --log2qty); | |
5308 | ||
5309 | if (!table) | |
5310 | panic("Failed to allocate %s hash table\n", tablename); | |
5311 | ||
f241e660 | 5312 | printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n", |
1da177e4 | 5313 | tablename, |
f241e660 | 5314 | (1UL << log2qty), |
f0d1b0b3 | 5315 | ilog2(size) - PAGE_SHIFT, |
1da177e4 LT |
5316 | size); |
5317 | ||
5318 | if (_hash_shift) | |
5319 | *_hash_shift = log2qty; | |
5320 | if (_hash_mask) | |
5321 | *_hash_mask = (1 << log2qty) - 1; | |
5322 | ||
5323 | return table; | |
5324 | } | |
a117e66e | 5325 | |
835c134e MG |
5326 | /* Return a pointer to the bitmap storing bits affecting a block of pages */ |
5327 | static inline unsigned long *get_pageblock_bitmap(struct zone *zone, | |
5328 | unsigned long pfn) | |
5329 | { | |
5330 | #ifdef CONFIG_SPARSEMEM | |
5331 | return __pfn_to_section(pfn)->pageblock_flags; | |
5332 | #else | |
5333 | return zone->pageblock_flags; | |
5334 | #endif /* CONFIG_SPARSEMEM */ | |
5335 | } | |
5336 | ||
5337 | static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) | |
5338 | { | |
5339 | #ifdef CONFIG_SPARSEMEM | |
5340 | pfn &= (PAGES_PER_SECTION-1); | |
d9c23400 | 5341 | return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; |
835c134e MG |
5342 | #else |
5343 | pfn = pfn - zone->zone_start_pfn; | |
d9c23400 | 5344 | return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; |
835c134e MG |
5345 | #endif /* CONFIG_SPARSEMEM */ |
5346 | } | |
5347 | ||
5348 | /** | |
d9c23400 | 5349 | * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages |
835c134e MG |
5350 | * @page: The page within the block of interest |
5351 | * @start_bitidx: The first bit of interest to retrieve | |
5352 | * @end_bitidx: The last bit of interest | |
5353 | * returns pageblock_bits flags | |
5354 | */ | |
5355 | unsigned long get_pageblock_flags_group(struct page *page, | |
5356 | int start_bitidx, int end_bitidx) | |
5357 | { | |
5358 | struct zone *zone; | |
5359 | unsigned long *bitmap; | |
5360 | unsigned long pfn, bitidx; | |
5361 | unsigned long flags = 0; | |
5362 | unsigned long value = 1; | |
5363 | ||
5364 | zone = page_zone(page); | |
5365 | pfn = page_to_pfn(page); | |
5366 | bitmap = get_pageblock_bitmap(zone, pfn); | |
5367 | bitidx = pfn_to_bitidx(zone, pfn); | |
5368 | ||
5369 | for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) | |
5370 | if (test_bit(bitidx + start_bitidx, bitmap)) | |
5371 | flags |= value; | |
6220ec78 | 5372 | |
835c134e MG |
5373 | return flags; |
5374 | } | |
5375 | ||
5376 | /** | |
d9c23400 | 5377 | * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages |
835c134e MG |
5378 | * @page: The page within the block of interest |
5379 | * @start_bitidx: The first bit of interest | |
5380 | * @end_bitidx: The last bit of interest | |
5381 | * @flags: The flags to set | |
5382 | */ | |
5383 | void set_pageblock_flags_group(struct page *page, unsigned long flags, | |
5384 | int start_bitidx, int end_bitidx) | |
5385 | { | |
5386 | struct zone *zone; | |
5387 | unsigned long *bitmap; | |
5388 | unsigned long pfn, bitidx; | |
5389 | unsigned long value = 1; | |
5390 | ||
5391 | zone = page_zone(page); | |
5392 | pfn = page_to_pfn(page); | |
5393 | bitmap = get_pageblock_bitmap(zone, pfn); | |
5394 | bitidx = pfn_to_bitidx(zone, pfn); | |
86051ca5 KH |
5395 | VM_BUG_ON(pfn < zone->zone_start_pfn); |
5396 | VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages); | |
835c134e MG |
5397 | |
5398 | for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) | |
5399 | if (flags & value) | |
5400 | __set_bit(bitidx + start_bitidx, bitmap); | |
5401 | else | |
5402 | __clear_bit(bitidx + start_bitidx, bitmap); | |
5403 | } | |
a5d76b54 KH |
5404 | |
5405 | /* | |
5406 | * This is designed as sub function...plz see page_isolation.c also. | |
5407 | * set/clear page block's type to be ISOLATE. | |
5408 | * page allocater never alloc memory from ISOLATE block. | |
5409 | */ | |
5410 | ||
49ac8255 KH |
5411 | static int |
5412 | __count_immobile_pages(struct zone *zone, struct page *page, int count) | |
5413 | { | |
5414 | unsigned long pfn, iter, found; | |
5415 | /* | |
5416 | * For avoiding noise data, lru_add_drain_all() should be called | |
5417 | * If ZONE_MOVABLE, the zone never contains immobile pages | |
5418 | */ | |
5419 | if (zone_idx(zone) == ZONE_MOVABLE) | |
5420 | return true; | |
5421 | ||
5422 | if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE) | |
5423 | return true; | |
5424 | ||
5425 | pfn = page_to_pfn(page); | |
5426 | for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { | |
5427 | unsigned long check = pfn + iter; | |
5428 | ||
29723fcc | 5429 | if (!pfn_valid_within(check)) |
49ac8255 | 5430 | continue; |
29723fcc | 5431 | |
49ac8255 KH |
5432 | page = pfn_to_page(check); |
5433 | if (!page_count(page)) { | |
5434 | if (PageBuddy(page)) | |
5435 | iter += (1 << page_order(page)) - 1; | |
5436 | continue; | |
5437 | } | |
5438 | if (!PageLRU(page)) | |
5439 | found++; | |
5440 | /* | |
5441 | * If there are RECLAIMABLE pages, we need to check it. | |
5442 | * But now, memory offline itself doesn't call shrink_slab() | |
5443 | * and it still to be fixed. | |
5444 | */ | |
5445 | /* | |
5446 | * If the page is not RAM, page_count()should be 0. | |
5447 | * we don't need more check. This is an _used_ not-movable page. | |
5448 | * | |
5449 | * The problematic thing here is PG_reserved pages. PG_reserved | |
5450 | * is set to both of a memory hole page and a _used_ kernel | |
5451 | * page at boot. | |
5452 | */ | |
5453 | if (found > count) | |
5454 | return false; | |
5455 | } | |
5456 | return true; | |
5457 | } | |
5458 | ||
5459 | bool is_pageblock_removable_nolock(struct page *page) | |
5460 | { | |
656a0706 MH |
5461 | struct zone *zone; |
5462 | unsigned long pfn; | |
687875fb MH |
5463 | |
5464 | /* | |
5465 | * We have to be careful here because we are iterating over memory | |
5466 | * sections which are not zone aware so we might end up outside of | |
5467 | * the zone but still within the section. | |
656a0706 MH |
5468 | * We have to take care about the node as well. If the node is offline |
5469 | * its NODE_DATA will be NULL - see page_zone. | |
687875fb | 5470 | */ |
656a0706 MH |
5471 | if (!node_online(page_to_nid(page))) |
5472 | return false; | |
5473 | ||
5474 | zone = page_zone(page); | |
5475 | pfn = page_to_pfn(page); | |
5476 | if (zone->zone_start_pfn > pfn || | |
687875fb MH |
5477 | zone->zone_start_pfn + zone->spanned_pages <= pfn) |
5478 | return false; | |
5479 | ||
49ac8255 KH |
5480 | return __count_immobile_pages(zone, page, 0); |
5481 | } | |
5482 | ||
a5d76b54 KH |
5483 | int set_migratetype_isolate(struct page *page) |
5484 | { | |
5485 | struct zone *zone; | |
49ac8255 | 5486 | unsigned long flags, pfn; |
925cc71e RJ |
5487 | struct memory_isolate_notify arg; |
5488 | int notifier_ret; | |
a5d76b54 KH |
5489 | int ret = -EBUSY; |
5490 | ||
5491 | zone = page_zone(page); | |
925cc71e | 5492 | |
a5d76b54 | 5493 | spin_lock_irqsave(&zone->lock, flags); |
925cc71e RJ |
5494 | |
5495 | pfn = page_to_pfn(page); | |
5496 | arg.start_pfn = pfn; | |
5497 | arg.nr_pages = pageblock_nr_pages; | |
5498 | arg.pages_found = 0; | |
5499 | ||
a5d76b54 | 5500 | /* |
925cc71e RJ |
5501 | * It may be possible to isolate a pageblock even if the |
5502 | * migratetype is not MIGRATE_MOVABLE. The memory isolation | |
5503 | * notifier chain is used by balloon drivers to return the | |
5504 | * number of pages in a range that are held by the balloon | |
5505 | * driver to shrink memory. If all the pages are accounted for | |
5506 | * by balloons, are free, or on the LRU, isolation can continue. | |
5507 | * Later, for example, when memory hotplug notifier runs, these | |
5508 | * pages reported as "can be isolated" should be isolated(freed) | |
5509 | * by the balloon driver through the memory notifier chain. | |
a5d76b54 | 5510 | */ |
925cc71e RJ |
5511 | notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg); |
5512 | notifier_ret = notifier_to_errno(notifier_ret); | |
4b20477f | 5513 | if (notifier_ret) |
a5d76b54 | 5514 | goto out; |
49ac8255 KH |
5515 | /* |
5516 | * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself. | |
5517 | * We just check MOVABLE pages. | |
5518 | */ | |
5519 | if (__count_immobile_pages(zone, page, arg.pages_found)) | |
925cc71e RJ |
5520 | ret = 0; |
5521 | ||
49ac8255 KH |
5522 | /* |
5523 | * immobile means "not-on-lru" paes. If immobile is larger than | |
5524 | * removable-by-driver pages reported by notifier, we'll fail. | |
5525 | */ | |
5526 | ||
a5d76b54 | 5527 | out: |
925cc71e RJ |
5528 | if (!ret) { |
5529 | set_pageblock_migratetype(page, MIGRATE_ISOLATE); | |
5530 | move_freepages_block(zone, page, MIGRATE_ISOLATE); | |
5531 | } | |
5532 | ||
a5d76b54 KH |
5533 | spin_unlock_irqrestore(&zone->lock, flags); |
5534 | if (!ret) | |
9f8f2172 | 5535 | drain_all_pages(); |
a5d76b54 KH |
5536 | return ret; |
5537 | } | |
5538 | ||
5539 | void unset_migratetype_isolate(struct page *page) | |
5540 | { | |
5541 | struct zone *zone; | |
5542 | unsigned long flags; | |
5543 | zone = page_zone(page); | |
5544 | spin_lock_irqsave(&zone->lock, flags); | |
5545 | if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE) | |
5546 | goto out; | |
5547 | set_pageblock_migratetype(page, MIGRATE_MOVABLE); | |
5548 | move_freepages_block(zone, page, MIGRATE_MOVABLE); | |
5549 | out: | |
5550 | spin_unlock_irqrestore(&zone->lock, flags); | |
5551 | } | |
0c0e6195 KH |
5552 | |
5553 | #ifdef CONFIG_MEMORY_HOTREMOVE | |
5554 | /* | |
5555 | * All pages in the range must be isolated before calling this. | |
5556 | */ | |
5557 | void | |
5558 | __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) | |
5559 | { | |
5560 | struct page *page; | |
5561 | struct zone *zone; | |
5562 | int order, i; | |
5563 | unsigned long pfn; | |
5564 | unsigned long flags; | |
5565 | /* find the first valid pfn */ | |
5566 | for (pfn = start_pfn; pfn < end_pfn; pfn++) | |
5567 | if (pfn_valid(pfn)) | |
5568 | break; | |
5569 | if (pfn == end_pfn) | |
5570 | return; | |
5571 | zone = page_zone(pfn_to_page(pfn)); | |
5572 | spin_lock_irqsave(&zone->lock, flags); | |
5573 | pfn = start_pfn; | |
5574 | while (pfn < end_pfn) { | |
5575 | if (!pfn_valid(pfn)) { | |
5576 | pfn++; | |
5577 | continue; | |
5578 | } | |
5579 | page = pfn_to_page(pfn); | |
5580 | BUG_ON(page_count(page)); | |
5581 | BUG_ON(!PageBuddy(page)); | |
5582 | order = page_order(page); | |
5583 | #ifdef CONFIG_DEBUG_VM | |
5584 | printk(KERN_INFO "remove from free list %lx %d %lx\n", | |
5585 | pfn, 1 << order, end_pfn); | |
5586 | #endif | |
5587 | list_del(&page->lru); | |
5588 | rmv_page_order(page); | |
5589 | zone->free_area[order].nr_free--; | |
5590 | __mod_zone_page_state(zone, NR_FREE_PAGES, | |
5591 | - (1UL << order)); | |
5592 | for (i = 0; i < (1 << order); i++) | |
5593 | SetPageReserved((page+i)); | |
5594 | pfn += (1 << order); | |
5595 | } | |
5596 | spin_unlock_irqrestore(&zone->lock, flags); | |
5597 | } | |
5598 | #endif | |
8d22ba1b WF |
5599 | |
5600 | #ifdef CONFIG_MEMORY_FAILURE | |
5601 | bool is_free_buddy_page(struct page *page) | |
5602 | { | |
5603 | struct zone *zone = page_zone(page); | |
5604 | unsigned long pfn = page_to_pfn(page); | |
5605 | unsigned long flags; | |
5606 | int order; | |
5607 | ||
5608 | spin_lock_irqsave(&zone->lock, flags); | |
5609 | for (order = 0; order < MAX_ORDER; order++) { | |
5610 | struct page *page_head = page - (pfn & ((1 << order) - 1)); | |
5611 | ||
5612 | if (PageBuddy(page_head) && page_order(page_head) >= order) | |
5613 | break; | |
5614 | } | |
5615 | spin_unlock_irqrestore(&zone->lock, flags); | |
5616 | ||
5617 | return order < MAX_ORDER; | |
5618 | } | |
5619 | #endif | |
718a3821 WF |
5620 | |
5621 | static struct trace_print_flags pageflag_names[] = { | |
5622 | {1UL << PG_locked, "locked" }, | |
5623 | {1UL << PG_error, "error" }, | |
5624 | {1UL << PG_referenced, "referenced" }, | |
5625 | {1UL << PG_uptodate, "uptodate" }, | |
5626 | {1UL << PG_dirty, "dirty" }, | |
5627 | {1UL << PG_lru, "lru" }, | |
5628 | {1UL << PG_active, "active" }, | |
5629 | {1UL << PG_slab, "slab" }, | |
5630 | {1UL << PG_owner_priv_1, "owner_priv_1" }, | |
5631 | {1UL << PG_arch_1, "arch_1" }, | |
5632 | {1UL << PG_reserved, "reserved" }, | |
5633 | {1UL << PG_private, "private" }, | |
5634 | {1UL << PG_private_2, "private_2" }, | |
5635 | {1UL << PG_writeback, "writeback" }, | |
5636 | #ifdef CONFIG_PAGEFLAGS_EXTENDED | |
5637 | {1UL << PG_head, "head" }, | |
5638 | {1UL << PG_tail, "tail" }, | |
5639 | #else | |
5640 | {1UL << PG_compound, "compound" }, | |
5641 | #endif | |
5642 | {1UL << PG_swapcache, "swapcache" }, | |
5643 | {1UL << PG_mappedtodisk, "mappedtodisk" }, | |
5644 | {1UL << PG_reclaim, "reclaim" }, | |
718a3821 WF |
5645 | {1UL << PG_swapbacked, "swapbacked" }, |
5646 | {1UL << PG_unevictable, "unevictable" }, | |
5647 | #ifdef CONFIG_MMU | |
5648 | {1UL << PG_mlocked, "mlocked" }, | |
5649 | #endif | |
5650 | #ifdef CONFIG_ARCH_USES_PG_UNCACHED | |
5651 | {1UL << PG_uncached, "uncached" }, | |
5652 | #endif | |
5653 | #ifdef CONFIG_MEMORY_FAILURE | |
5654 | {1UL << PG_hwpoison, "hwpoison" }, | |
5655 | #endif | |
5656 | {-1UL, NULL }, | |
5657 | }; | |
5658 | ||
5659 | static void dump_page_flags(unsigned long flags) | |
5660 | { | |
5661 | const char *delim = ""; | |
5662 | unsigned long mask; | |
5663 | int i; | |
5664 | ||
5665 | printk(KERN_ALERT "page flags: %#lx(", flags); | |
5666 | ||
5667 | /* remove zone id */ | |
5668 | flags &= (1UL << NR_PAGEFLAGS) - 1; | |
5669 | ||
5670 | for (i = 0; pageflag_names[i].name && flags; i++) { | |
5671 | ||
5672 | mask = pageflag_names[i].mask; | |
5673 | if ((flags & mask) != mask) | |
5674 | continue; | |
5675 | ||
5676 | flags &= ~mask; | |
5677 | printk("%s%s", delim, pageflag_names[i].name); | |
5678 | delim = "|"; | |
5679 | } | |
5680 | ||
5681 | /* check for left over flags */ | |
5682 | if (flags) | |
5683 | printk("%s%#lx", delim, flags); | |
5684 | ||
5685 | printk(")\n"); | |
5686 | } | |
5687 | ||
5688 | void dump_page(struct page *page) | |
5689 | { | |
5690 | printk(KERN_ALERT | |
5691 | "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n", | |
4e9f64c4 | 5692 | page, atomic_read(&page->_count), page_mapcount(page), |
718a3821 WF |
5693 | page->mapping, page->index); |
5694 | dump_page_flags(page->flags); | |
f212ad7c | 5695 | mem_cgroup_print_bad_page(page); |
718a3821 | 5696 | } |