]>
Commit | Line | Data |
---|---|---|
b49e97c9 | 1 | /* MIPS-specific support for ELF |
64543e1a | 2 | Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, |
66eb6687 | 3 | 2003, 2004, 2005, 2006 Free Software Foundation, Inc. |
b49e97c9 TS |
4 | |
5 | Most of the information added by Ian Lance Taylor, Cygnus Support, | |
6 | <[email protected]>. | |
7 | N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC. | |
8 | <[email protected]> | |
9 | Traditional MIPS targets support added by Koundinya.K, Dansk Data | |
10 | Elektronik & Operations Research Group. <[email protected]> | |
11 | ||
ae9a127f | 12 | This file is part of BFD, the Binary File Descriptor library. |
b49e97c9 | 13 | |
ae9a127f NC |
14 | This program is free software; you can redistribute it and/or modify |
15 | it under the terms of the GNU General Public License as published by | |
16 | the Free Software Foundation; either version 2 of the License, or | |
17 | (at your option) any later version. | |
b49e97c9 | 18 | |
ae9a127f NC |
19 | This program is distributed in the hope that it will be useful, |
20 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
21 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
22 | GNU General Public License for more details. | |
b49e97c9 | 23 | |
ae9a127f NC |
24 | You should have received a copy of the GNU General Public License |
25 | along with this program; if not, write to the Free Software | |
3e110533 | 26 | Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ |
b49e97c9 TS |
27 | |
28 | /* This file handles functionality common to the different MIPS ABI's. */ | |
29 | ||
30 | #include "bfd.h" | |
31 | #include "sysdep.h" | |
32 | #include "libbfd.h" | |
64543e1a | 33 | #include "libiberty.h" |
b49e97c9 TS |
34 | #include "elf-bfd.h" |
35 | #include "elfxx-mips.h" | |
36 | #include "elf/mips.h" | |
0a44bf69 | 37 | #include "elf-vxworks.h" |
b49e97c9 TS |
38 | |
39 | /* Get the ECOFF swapping routines. */ | |
40 | #include "coff/sym.h" | |
41 | #include "coff/symconst.h" | |
42 | #include "coff/ecoff.h" | |
43 | #include "coff/mips.h" | |
44 | ||
b15e6682 AO |
45 | #include "hashtab.h" |
46 | ||
ead49a57 RS |
47 | /* This structure is used to hold information about one GOT entry. |
48 | There are three types of entry: | |
49 | ||
50 | (1) absolute addresses | |
51 | (abfd == NULL) | |
52 | (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd | |
53 | (abfd != NULL, symndx >= 0) | |
54 | (3) global and forced-local symbols | |
55 | (abfd != NULL, symndx == -1) | |
56 | ||
57 | Type (3) entries are treated differently for different types of GOT. | |
58 | In the "master" GOT -- i.e. the one that describes every GOT | |
59 | reference needed in the link -- the mips_got_entry is keyed on both | |
60 | the symbol and the input bfd that references it. If it turns out | |
61 | that we need multiple GOTs, we can then use this information to | |
62 | create separate GOTs for each input bfd. | |
63 | ||
64 | However, we want each of these separate GOTs to have at most one | |
65 | entry for a given symbol, so their type (3) entries are keyed only | |
66 | on the symbol. The input bfd given by the "abfd" field is somewhat | |
67 | arbitrary in this case. | |
68 | ||
69 | This means that when there are multiple GOTs, each GOT has a unique | |
70 | mips_got_entry for every symbol within it. We can therefore use the | |
71 | mips_got_entry fields (tls_type and gotidx) to track the symbol's | |
72 | GOT index. | |
73 | ||
74 | However, if it turns out that we need only a single GOT, we continue | |
75 | to use the master GOT to describe it. There may therefore be several | |
76 | mips_got_entries for the same symbol, each with a different input bfd. | |
77 | We want to make sure that each symbol gets a unique GOT entry, so when | |
78 | there's a single GOT, we use the symbol's hash entry, not the | |
79 | mips_got_entry fields, to track a symbol's GOT index. */ | |
b15e6682 AO |
80 | struct mips_got_entry |
81 | { | |
82 | /* The input bfd in which the symbol is defined. */ | |
83 | bfd *abfd; | |
f4416af6 AO |
84 | /* The index of the symbol, as stored in the relocation r_info, if |
85 | we have a local symbol; -1 otherwise. */ | |
86 | long symndx; | |
87 | union | |
88 | { | |
89 | /* If abfd == NULL, an address that must be stored in the got. */ | |
90 | bfd_vma address; | |
91 | /* If abfd != NULL && symndx != -1, the addend of the relocation | |
92 | that should be added to the symbol value. */ | |
93 | bfd_vma addend; | |
94 | /* If abfd != NULL && symndx == -1, the hash table entry | |
95 | corresponding to a global symbol in the got (or, local, if | |
96 | h->forced_local). */ | |
97 | struct mips_elf_link_hash_entry *h; | |
98 | } d; | |
0f20cc35 DJ |
99 | |
100 | /* The TLS types included in this GOT entry (specifically, GD and | |
101 | IE). The GD and IE flags can be added as we encounter new | |
102 | relocations. LDM can also be set; it will always be alone, not | |
103 | combined with any GD or IE flags. An LDM GOT entry will be | |
104 | a local symbol entry with r_symndx == 0. */ | |
105 | unsigned char tls_type; | |
106 | ||
b15e6682 | 107 | /* The offset from the beginning of the .got section to the entry |
f4416af6 AO |
108 | corresponding to this symbol+addend. If it's a global symbol |
109 | whose offset is yet to be decided, it's going to be -1. */ | |
110 | long gotidx; | |
b15e6682 AO |
111 | }; |
112 | ||
f0abc2a1 | 113 | /* This structure is used to hold .got information when linking. */ |
b49e97c9 TS |
114 | |
115 | struct mips_got_info | |
116 | { | |
117 | /* The global symbol in the GOT with the lowest index in the dynamic | |
118 | symbol table. */ | |
119 | struct elf_link_hash_entry *global_gotsym; | |
120 | /* The number of global .got entries. */ | |
121 | unsigned int global_gotno; | |
0f20cc35 DJ |
122 | /* The number of .got slots used for TLS. */ |
123 | unsigned int tls_gotno; | |
124 | /* The first unused TLS .got entry. Used only during | |
125 | mips_elf_initialize_tls_index. */ | |
126 | unsigned int tls_assigned_gotno; | |
b49e97c9 TS |
127 | /* The number of local .got entries. */ |
128 | unsigned int local_gotno; | |
129 | /* The number of local .got entries we have used. */ | |
130 | unsigned int assigned_gotno; | |
b15e6682 AO |
131 | /* A hash table holding members of the got. */ |
132 | struct htab *got_entries; | |
f4416af6 AO |
133 | /* A hash table mapping input bfds to other mips_got_info. NULL |
134 | unless multi-got was necessary. */ | |
135 | struct htab *bfd2got; | |
136 | /* In multi-got links, a pointer to the next got (err, rather, most | |
137 | of the time, it points to the previous got). */ | |
138 | struct mips_got_info *next; | |
0f20cc35 DJ |
139 | /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE |
140 | for none, or MINUS_TWO for not yet assigned. This is needed | |
141 | because a single-GOT link may have multiple hash table entries | |
142 | for the LDM. It does not get initialized in multi-GOT mode. */ | |
143 | bfd_vma tls_ldm_offset; | |
f4416af6 AO |
144 | }; |
145 | ||
146 | /* Map an input bfd to a got in a multi-got link. */ | |
147 | ||
148 | struct mips_elf_bfd2got_hash { | |
149 | bfd *bfd; | |
150 | struct mips_got_info *g; | |
151 | }; | |
152 | ||
153 | /* Structure passed when traversing the bfd2got hash table, used to | |
154 | create and merge bfd's gots. */ | |
155 | ||
156 | struct mips_elf_got_per_bfd_arg | |
157 | { | |
158 | /* A hashtable that maps bfds to gots. */ | |
159 | htab_t bfd2got; | |
160 | /* The output bfd. */ | |
161 | bfd *obfd; | |
162 | /* The link information. */ | |
163 | struct bfd_link_info *info; | |
164 | /* A pointer to the primary got, i.e., the one that's going to get | |
165 | the implicit relocations from DT_MIPS_LOCAL_GOTNO and | |
166 | DT_MIPS_GOTSYM. */ | |
167 | struct mips_got_info *primary; | |
168 | /* A non-primary got we're trying to merge with other input bfd's | |
169 | gots. */ | |
170 | struct mips_got_info *current; | |
171 | /* The maximum number of got entries that can be addressed with a | |
172 | 16-bit offset. */ | |
173 | unsigned int max_count; | |
174 | /* The number of local and global entries in the primary got. */ | |
175 | unsigned int primary_count; | |
176 | /* The number of local and global entries in the current got. */ | |
177 | unsigned int current_count; | |
0f20cc35 DJ |
178 | /* The total number of global entries which will live in the |
179 | primary got and be automatically relocated. This includes | |
180 | those not referenced by the primary GOT but included in | |
181 | the "master" GOT. */ | |
182 | unsigned int global_count; | |
f4416af6 AO |
183 | }; |
184 | ||
185 | /* Another structure used to pass arguments for got entries traversal. */ | |
186 | ||
187 | struct mips_elf_set_global_got_offset_arg | |
188 | { | |
189 | struct mips_got_info *g; | |
190 | int value; | |
191 | unsigned int needed_relocs; | |
192 | struct bfd_link_info *info; | |
b49e97c9 TS |
193 | }; |
194 | ||
0f20cc35 DJ |
195 | /* A structure used to count TLS relocations or GOT entries, for GOT |
196 | entry or ELF symbol table traversal. */ | |
197 | ||
198 | struct mips_elf_count_tls_arg | |
199 | { | |
200 | struct bfd_link_info *info; | |
201 | unsigned int needed; | |
202 | }; | |
203 | ||
f0abc2a1 AM |
204 | struct _mips_elf_section_data |
205 | { | |
206 | struct bfd_elf_section_data elf; | |
207 | union | |
208 | { | |
209 | struct mips_got_info *got_info; | |
210 | bfd_byte *tdata; | |
211 | } u; | |
212 | }; | |
213 | ||
214 | #define mips_elf_section_data(sec) \ | |
68bfbfcc | 215 | ((struct _mips_elf_section_data *) elf_section_data (sec)) |
f0abc2a1 | 216 | |
b49e97c9 TS |
217 | /* This structure is passed to mips_elf_sort_hash_table_f when sorting |
218 | the dynamic symbols. */ | |
219 | ||
220 | struct mips_elf_hash_sort_data | |
221 | { | |
222 | /* The symbol in the global GOT with the lowest dynamic symbol table | |
223 | index. */ | |
224 | struct elf_link_hash_entry *low; | |
0f20cc35 DJ |
225 | /* The least dynamic symbol table index corresponding to a non-TLS |
226 | symbol with a GOT entry. */ | |
b49e97c9 | 227 | long min_got_dynindx; |
f4416af6 AO |
228 | /* The greatest dynamic symbol table index corresponding to a symbol |
229 | with a GOT entry that is not referenced (e.g., a dynamic symbol | |
9e4aeb93 | 230 | with dynamic relocations pointing to it from non-primary GOTs). */ |
f4416af6 | 231 | long max_unref_got_dynindx; |
b49e97c9 TS |
232 | /* The greatest dynamic symbol table index not corresponding to a |
233 | symbol without a GOT entry. */ | |
234 | long max_non_got_dynindx; | |
235 | }; | |
236 | ||
237 | /* The MIPS ELF linker needs additional information for each symbol in | |
238 | the global hash table. */ | |
239 | ||
240 | struct mips_elf_link_hash_entry | |
241 | { | |
242 | struct elf_link_hash_entry root; | |
243 | ||
244 | /* External symbol information. */ | |
245 | EXTR esym; | |
246 | ||
247 | /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against | |
248 | this symbol. */ | |
249 | unsigned int possibly_dynamic_relocs; | |
250 | ||
251 | /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against | |
252 | a readonly section. */ | |
b34976b6 | 253 | bfd_boolean readonly_reloc; |
b49e97c9 | 254 | |
b49e97c9 TS |
255 | /* We must not create a stub for a symbol that has relocations |
256 | related to taking the function's address, i.e. any but | |
257 | R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition", | |
258 | p. 4-20. */ | |
b34976b6 | 259 | bfd_boolean no_fn_stub; |
b49e97c9 TS |
260 | |
261 | /* If there is a stub that 32 bit functions should use to call this | |
262 | 16 bit function, this points to the section containing the stub. */ | |
263 | asection *fn_stub; | |
264 | ||
265 | /* Whether we need the fn_stub; this is set if this symbol appears | |
266 | in any relocs other than a 16 bit call. */ | |
b34976b6 | 267 | bfd_boolean need_fn_stub; |
b49e97c9 TS |
268 | |
269 | /* If there is a stub that 16 bit functions should use to call this | |
270 | 32 bit function, this points to the section containing the stub. */ | |
271 | asection *call_stub; | |
272 | ||
273 | /* This is like the call_stub field, but it is used if the function | |
274 | being called returns a floating point value. */ | |
275 | asection *call_fp_stub; | |
7c5fcef7 | 276 | |
a008ac03 DJ |
277 | /* Are we forced local? This will only be set if we have converted |
278 | the initial global GOT entry to a local GOT entry. */ | |
b34976b6 | 279 | bfd_boolean forced_local; |
0f20cc35 | 280 | |
0a44bf69 RS |
281 | /* Are we referenced by some kind of relocation? */ |
282 | bfd_boolean is_relocation_target; | |
283 | ||
284 | /* Are we referenced by branch relocations? */ | |
285 | bfd_boolean is_branch_target; | |
286 | ||
0f20cc35 DJ |
287 | #define GOT_NORMAL 0 |
288 | #define GOT_TLS_GD 1 | |
289 | #define GOT_TLS_LDM 2 | |
290 | #define GOT_TLS_IE 4 | |
291 | #define GOT_TLS_OFFSET_DONE 0x40 | |
292 | #define GOT_TLS_DONE 0x80 | |
293 | unsigned char tls_type; | |
294 | /* This is only used in single-GOT mode; in multi-GOT mode there | |
295 | is one mips_got_entry per GOT entry, so the offset is stored | |
296 | there. In single-GOT mode there may be many mips_got_entry | |
297 | structures all referring to the same GOT slot. It might be | |
298 | possible to use root.got.offset instead, but that field is | |
299 | overloaded already. */ | |
300 | bfd_vma tls_got_offset; | |
b49e97c9 TS |
301 | }; |
302 | ||
303 | /* MIPS ELF linker hash table. */ | |
304 | ||
305 | struct mips_elf_link_hash_table | |
306 | { | |
307 | struct elf_link_hash_table root; | |
308 | #if 0 | |
309 | /* We no longer use this. */ | |
310 | /* String section indices for the dynamic section symbols. */ | |
311 | bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES]; | |
312 | #endif | |
313 | /* The number of .rtproc entries. */ | |
314 | bfd_size_type procedure_count; | |
315 | /* The size of the .compact_rel section (if SGI_COMPAT). */ | |
316 | bfd_size_type compact_rel_size; | |
317 | /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic | |
8dc1a139 | 318 | entry is set to the address of __rld_obj_head as in IRIX5. */ |
b34976b6 | 319 | bfd_boolean use_rld_obj_head; |
b49e97c9 TS |
320 | /* This is the value of the __rld_map or __rld_obj_head symbol. */ |
321 | bfd_vma rld_value; | |
322 | /* This is set if we see any mips16 stub sections. */ | |
b34976b6 | 323 | bfd_boolean mips16_stubs_seen; |
0a44bf69 RS |
324 | /* True if we're generating code for VxWorks. */ |
325 | bfd_boolean is_vxworks; | |
326 | /* Shortcuts to some dynamic sections, or NULL if they are not | |
327 | being used. */ | |
328 | asection *srelbss; | |
329 | asection *sdynbss; | |
330 | asection *srelplt; | |
331 | asection *srelplt2; | |
332 | asection *sgotplt; | |
333 | asection *splt; | |
334 | /* The size of the PLT header in bytes (VxWorks only). */ | |
335 | bfd_vma plt_header_size; | |
336 | /* The size of a PLT entry in bytes (VxWorks only). */ | |
337 | bfd_vma plt_entry_size; | |
5108fc1b RS |
338 | /* The size of a function stub entry in bytes. */ |
339 | bfd_vma function_stub_size; | |
b49e97c9 TS |
340 | }; |
341 | ||
0f20cc35 DJ |
342 | #define TLS_RELOC_P(r_type) \ |
343 | (r_type == R_MIPS_TLS_DTPMOD32 \ | |
344 | || r_type == R_MIPS_TLS_DTPMOD64 \ | |
345 | || r_type == R_MIPS_TLS_DTPREL32 \ | |
346 | || r_type == R_MIPS_TLS_DTPREL64 \ | |
347 | || r_type == R_MIPS_TLS_GD \ | |
348 | || r_type == R_MIPS_TLS_LDM \ | |
349 | || r_type == R_MIPS_TLS_DTPREL_HI16 \ | |
350 | || r_type == R_MIPS_TLS_DTPREL_LO16 \ | |
351 | || r_type == R_MIPS_TLS_GOTTPREL \ | |
352 | || r_type == R_MIPS_TLS_TPREL32 \ | |
353 | || r_type == R_MIPS_TLS_TPREL64 \ | |
354 | || r_type == R_MIPS_TLS_TPREL_HI16 \ | |
355 | || r_type == R_MIPS_TLS_TPREL_LO16) | |
356 | ||
b49e97c9 TS |
357 | /* Structure used to pass information to mips_elf_output_extsym. */ |
358 | ||
359 | struct extsym_info | |
360 | { | |
9e4aeb93 RS |
361 | bfd *abfd; |
362 | struct bfd_link_info *info; | |
b49e97c9 TS |
363 | struct ecoff_debug_info *debug; |
364 | const struct ecoff_debug_swap *swap; | |
b34976b6 | 365 | bfd_boolean failed; |
b49e97c9 TS |
366 | }; |
367 | ||
8dc1a139 | 368 | /* The names of the runtime procedure table symbols used on IRIX5. */ |
b49e97c9 TS |
369 | |
370 | static const char * const mips_elf_dynsym_rtproc_names[] = | |
371 | { | |
372 | "_procedure_table", | |
373 | "_procedure_string_table", | |
374 | "_procedure_table_size", | |
375 | NULL | |
376 | }; | |
377 | ||
378 | /* These structures are used to generate the .compact_rel section on | |
8dc1a139 | 379 | IRIX5. */ |
b49e97c9 TS |
380 | |
381 | typedef struct | |
382 | { | |
383 | unsigned long id1; /* Always one? */ | |
384 | unsigned long num; /* Number of compact relocation entries. */ | |
385 | unsigned long id2; /* Always two? */ | |
386 | unsigned long offset; /* The file offset of the first relocation. */ | |
387 | unsigned long reserved0; /* Zero? */ | |
388 | unsigned long reserved1; /* Zero? */ | |
389 | } Elf32_compact_rel; | |
390 | ||
391 | typedef struct | |
392 | { | |
393 | bfd_byte id1[4]; | |
394 | bfd_byte num[4]; | |
395 | bfd_byte id2[4]; | |
396 | bfd_byte offset[4]; | |
397 | bfd_byte reserved0[4]; | |
398 | bfd_byte reserved1[4]; | |
399 | } Elf32_External_compact_rel; | |
400 | ||
401 | typedef struct | |
402 | { | |
403 | unsigned int ctype : 1; /* 1: long 0: short format. See below. */ | |
404 | unsigned int rtype : 4; /* Relocation types. See below. */ | |
405 | unsigned int dist2to : 8; | |
406 | unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */ | |
407 | unsigned long konst; /* KONST field. See below. */ | |
408 | unsigned long vaddr; /* VADDR to be relocated. */ | |
409 | } Elf32_crinfo; | |
410 | ||
411 | typedef struct | |
412 | { | |
413 | unsigned int ctype : 1; /* 1: long 0: short format. See below. */ | |
414 | unsigned int rtype : 4; /* Relocation types. See below. */ | |
415 | unsigned int dist2to : 8; | |
416 | unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */ | |
417 | unsigned long konst; /* KONST field. See below. */ | |
418 | } Elf32_crinfo2; | |
419 | ||
420 | typedef struct | |
421 | { | |
422 | bfd_byte info[4]; | |
423 | bfd_byte konst[4]; | |
424 | bfd_byte vaddr[4]; | |
425 | } Elf32_External_crinfo; | |
426 | ||
427 | typedef struct | |
428 | { | |
429 | bfd_byte info[4]; | |
430 | bfd_byte konst[4]; | |
431 | } Elf32_External_crinfo2; | |
432 | ||
433 | /* These are the constants used to swap the bitfields in a crinfo. */ | |
434 | ||
435 | #define CRINFO_CTYPE (0x1) | |
436 | #define CRINFO_CTYPE_SH (31) | |
437 | #define CRINFO_RTYPE (0xf) | |
438 | #define CRINFO_RTYPE_SH (27) | |
439 | #define CRINFO_DIST2TO (0xff) | |
440 | #define CRINFO_DIST2TO_SH (19) | |
441 | #define CRINFO_RELVADDR (0x7ffff) | |
442 | #define CRINFO_RELVADDR_SH (0) | |
443 | ||
444 | /* A compact relocation info has long (3 words) or short (2 words) | |
445 | formats. A short format doesn't have VADDR field and relvaddr | |
446 | fields contains ((VADDR - vaddr of the previous entry) >> 2). */ | |
447 | #define CRF_MIPS_LONG 1 | |
448 | #define CRF_MIPS_SHORT 0 | |
449 | ||
450 | /* There are 4 types of compact relocation at least. The value KONST | |
451 | has different meaning for each type: | |
452 | ||
453 | (type) (konst) | |
454 | CT_MIPS_REL32 Address in data | |
455 | CT_MIPS_WORD Address in word (XXX) | |
456 | CT_MIPS_GPHI_LO GP - vaddr | |
457 | CT_MIPS_JMPAD Address to jump | |
458 | */ | |
459 | ||
460 | #define CRT_MIPS_REL32 0xa | |
461 | #define CRT_MIPS_WORD 0xb | |
462 | #define CRT_MIPS_GPHI_LO 0xc | |
463 | #define CRT_MIPS_JMPAD 0xd | |
464 | ||
465 | #define mips_elf_set_cr_format(x,format) ((x).ctype = (format)) | |
466 | #define mips_elf_set_cr_type(x,type) ((x).rtype = (type)) | |
467 | #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v)) | |
468 | #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2) | |
469 | \f | |
470 | /* The structure of the runtime procedure descriptor created by the | |
471 | loader for use by the static exception system. */ | |
472 | ||
473 | typedef struct runtime_pdr { | |
ae9a127f NC |
474 | bfd_vma adr; /* Memory address of start of procedure. */ |
475 | long regmask; /* Save register mask. */ | |
476 | long regoffset; /* Save register offset. */ | |
477 | long fregmask; /* Save floating point register mask. */ | |
478 | long fregoffset; /* Save floating point register offset. */ | |
479 | long frameoffset; /* Frame size. */ | |
480 | short framereg; /* Frame pointer register. */ | |
481 | short pcreg; /* Offset or reg of return pc. */ | |
482 | long irpss; /* Index into the runtime string table. */ | |
b49e97c9 | 483 | long reserved; |
ae9a127f | 484 | struct exception_info *exception_info;/* Pointer to exception array. */ |
b49e97c9 TS |
485 | } RPDR, *pRPDR; |
486 | #define cbRPDR sizeof (RPDR) | |
487 | #define rpdNil ((pRPDR) 0) | |
488 | \f | |
b15e6682 | 489 | static struct mips_got_entry *mips_elf_create_local_got_entry |
0a44bf69 RS |
490 | (bfd *, struct bfd_link_info *, bfd *, struct mips_got_info *, asection *, |
491 | asection *, bfd_vma, unsigned long, struct mips_elf_link_hash_entry *, int); | |
b34976b6 | 492 | static bfd_boolean mips_elf_sort_hash_table_f |
9719ad41 | 493 | (struct mips_elf_link_hash_entry *, void *); |
9719ad41 RS |
494 | static bfd_vma mips_elf_high |
495 | (bfd_vma); | |
b34976b6 | 496 | static bfd_boolean mips_elf_stub_section_p |
9719ad41 | 497 | (bfd *, asection *); |
b34976b6 | 498 | static bfd_boolean mips_elf_create_dynamic_relocation |
9719ad41 RS |
499 | (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *, |
500 | struct mips_elf_link_hash_entry *, asection *, bfd_vma, | |
501 | bfd_vma *, asection *); | |
9719ad41 RS |
502 | static hashval_t mips_elf_got_entry_hash |
503 | (const void *); | |
f4416af6 | 504 | static bfd_vma mips_elf_adjust_gp |
9719ad41 | 505 | (bfd *, struct mips_got_info *, bfd *); |
f4416af6 | 506 | static struct mips_got_info *mips_elf_got_for_ibfd |
9719ad41 | 507 | (struct mips_got_info *, bfd *); |
f4416af6 | 508 | |
b49e97c9 TS |
509 | /* This will be used when we sort the dynamic relocation records. */ |
510 | static bfd *reldyn_sorting_bfd; | |
511 | ||
512 | /* Nonzero if ABFD is using the N32 ABI. */ | |
b49e97c9 TS |
513 | #define ABI_N32_P(abfd) \ |
514 | ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0) | |
515 | ||
4a14403c | 516 | /* Nonzero if ABFD is using the N64 ABI. */ |
b49e97c9 | 517 | #define ABI_64_P(abfd) \ |
141ff970 | 518 | (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64) |
b49e97c9 | 519 | |
4a14403c TS |
520 | /* Nonzero if ABFD is using NewABI conventions. */ |
521 | #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd)) | |
522 | ||
523 | /* The IRIX compatibility level we are striving for. */ | |
b49e97c9 TS |
524 | #define IRIX_COMPAT(abfd) \ |
525 | (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd)) | |
526 | ||
b49e97c9 TS |
527 | /* Whether we are trying to be compatible with IRIX at all. */ |
528 | #define SGI_COMPAT(abfd) \ | |
529 | (IRIX_COMPAT (abfd) != ict_none) | |
530 | ||
531 | /* The name of the options section. */ | |
532 | #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \ | |
d80dcc6a | 533 | (NEWABI_P (abfd) ? ".MIPS.options" : ".options") |
b49e97c9 | 534 | |
cc2e31b9 RS |
535 | /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section. |
536 | Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */ | |
537 | #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \ | |
538 | (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0) | |
539 | ||
943284cc DJ |
540 | /* Whether the section is readonly. */ |
541 | #define MIPS_ELF_READONLY_SECTION(sec) \ | |
542 | ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \ | |
543 | == (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) | |
544 | ||
b49e97c9 | 545 | /* The name of the stub section. */ |
ca07892d | 546 | #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs" |
b49e97c9 TS |
547 | |
548 | /* The size of an external REL relocation. */ | |
549 | #define MIPS_ELF_REL_SIZE(abfd) \ | |
550 | (get_elf_backend_data (abfd)->s->sizeof_rel) | |
551 | ||
0a44bf69 RS |
552 | /* The size of an external RELA relocation. */ |
553 | #define MIPS_ELF_RELA_SIZE(abfd) \ | |
554 | (get_elf_backend_data (abfd)->s->sizeof_rela) | |
555 | ||
b49e97c9 TS |
556 | /* The size of an external dynamic table entry. */ |
557 | #define MIPS_ELF_DYN_SIZE(abfd) \ | |
558 | (get_elf_backend_data (abfd)->s->sizeof_dyn) | |
559 | ||
560 | /* The size of a GOT entry. */ | |
561 | #define MIPS_ELF_GOT_SIZE(abfd) \ | |
562 | (get_elf_backend_data (abfd)->s->arch_size / 8) | |
563 | ||
564 | /* The size of a symbol-table entry. */ | |
565 | #define MIPS_ELF_SYM_SIZE(abfd) \ | |
566 | (get_elf_backend_data (abfd)->s->sizeof_sym) | |
567 | ||
568 | /* The default alignment for sections, as a power of two. */ | |
569 | #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \ | |
45d6a902 | 570 | (get_elf_backend_data (abfd)->s->log_file_align) |
b49e97c9 TS |
571 | |
572 | /* Get word-sized data. */ | |
573 | #define MIPS_ELF_GET_WORD(abfd, ptr) \ | |
574 | (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr)) | |
575 | ||
576 | /* Put out word-sized data. */ | |
577 | #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \ | |
578 | (ABI_64_P (abfd) \ | |
579 | ? bfd_put_64 (abfd, val, ptr) \ | |
580 | : bfd_put_32 (abfd, val, ptr)) | |
581 | ||
582 | /* Add a dynamic symbol table-entry. */ | |
9719ad41 | 583 | #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \ |
5a580b3a | 584 | _bfd_elf_add_dynamic_entry (info, tag, val) |
b49e97c9 TS |
585 | |
586 | #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \ | |
587 | (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela)) | |
588 | ||
4ffba85c AO |
589 | /* Determine whether the internal relocation of index REL_IDX is REL |
590 | (zero) or RELA (non-zero). The assumption is that, if there are | |
591 | two relocation sections for this section, one of them is REL and | |
592 | the other is RELA. If the index of the relocation we're testing is | |
593 | in range for the first relocation section, check that the external | |
594 | relocation size is that for RELA. It is also assumed that, if | |
595 | rel_idx is not in range for the first section, and this first | |
596 | section contains REL relocs, then the relocation is in the second | |
597 | section, that is RELA. */ | |
598 | #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \ | |
599 | ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \ | |
600 | * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \ | |
601 | > (bfd_vma)(rel_idx)) \ | |
602 | == (elf_section_data (sec)->rel_hdr.sh_entsize \ | |
603 | == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \ | |
604 | : sizeof (Elf32_External_Rela)))) | |
605 | ||
0a44bf69 RS |
606 | /* The name of the dynamic relocation section. */ |
607 | #define MIPS_ELF_REL_DYN_NAME(INFO) \ | |
608 | (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn") | |
609 | ||
b49e97c9 TS |
610 | /* In case we're on a 32-bit machine, construct a 64-bit "-1" value |
611 | from smaller values. Start with zero, widen, *then* decrement. */ | |
612 | #define MINUS_ONE (((bfd_vma)0) - 1) | |
c5ae1840 | 613 | #define MINUS_TWO (((bfd_vma)0) - 2) |
b49e97c9 TS |
614 | |
615 | /* The number of local .got entries we reserve. */ | |
0a44bf69 RS |
616 | #define MIPS_RESERVED_GOTNO(INFO) \ |
617 | (mips_elf_hash_table (INFO)->is_vxworks ? 3 : 2) | |
b49e97c9 | 618 | |
f4416af6 | 619 | /* The offset of $gp from the beginning of the .got section. */ |
0a44bf69 RS |
620 | #define ELF_MIPS_GP_OFFSET(INFO) \ |
621 | (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0) | |
f4416af6 AO |
622 | |
623 | /* The maximum size of the GOT for it to be addressable using 16-bit | |
624 | offsets from $gp. */ | |
0a44bf69 | 625 | #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff) |
f4416af6 | 626 | |
6a691779 | 627 | /* Instructions which appear in a stub. */ |
3d6746ca DD |
628 | #define STUB_LW(abfd) \ |
629 | ((ABI_64_P (abfd) \ | |
630 | ? 0xdf998010 /* ld t9,0x8010(gp) */ \ | |
631 | : 0x8f998010)) /* lw t9,0x8010(gp) */ | |
632 | #define STUB_MOVE(abfd) \ | |
633 | ((ABI_64_P (abfd) \ | |
634 | ? 0x03e0782d /* daddu t7,ra */ \ | |
635 | : 0x03e07821)) /* addu t7,ra */ | |
636 | #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */ | |
637 | #define STUB_JALR 0x0320f809 /* jalr t9,ra */ | |
5108fc1b RS |
638 | #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */ |
639 | #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */ | |
3d6746ca DD |
640 | #define STUB_LI16S(abfd, VAL) \ |
641 | ((ABI_64_P (abfd) \ | |
642 | ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \ | |
643 | : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */ | |
644 | ||
5108fc1b RS |
645 | #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16 |
646 | #define MIPS_FUNCTION_STUB_BIG_SIZE 20 | |
b49e97c9 TS |
647 | |
648 | /* The name of the dynamic interpreter. This is put in the .interp | |
649 | section. */ | |
650 | ||
651 | #define ELF_DYNAMIC_INTERPRETER(abfd) \ | |
652 | (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \ | |
653 | : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \ | |
654 | : "/usr/lib/libc.so.1") | |
655 | ||
656 | #ifdef BFD64 | |
ee6423ed AO |
657 | #define MNAME(bfd,pre,pos) \ |
658 | (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos)) | |
b49e97c9 TS |
659 | #define ELF_R_SYM(bfd, i) \ |
660 | (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i)) | |
661 | #define ELF_R_TYPE(bfd, i) \ | |
662 | (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i)) | |
663 | #define ELF_R_INFO(bfd, s, t) \ | |
664 | (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t)) | |
665 | #else | |
ee6423ed | 666 | #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos) |
b49e97c9 TS |
667 | #define ELF_R_SYM(bfd, i) \ |
668 | (ELF32_R_SYM (i)) | |
669 | #define ELF_R_TYPE(bfd, i) \ | |
670 | (ELF32_R_TYPE (i)) | |
671 | #define ELF_R_INFO(bfd, s, t) \ | |
672 | (ELF32_R_INFO (s, t)) | |
673 | #endif | |
674 | \f | |
675 | /* The mips16 compiler uses a couple of special sections to handle | |
676 | floating point arguments. | |
677 | ||
678 | Section names that look like .mips16.fn.FNNAME contain stubs that | |
679 | copy floating point arguments from the fp regs to the gp regs and | |
680 | then jump to FNNAME. If any 32 bit function calls FNNAME, the | |
681 | call should be redirected to the stub instead. If no 32 bit | |
682 | function calls FNNAME, the stub should be discarded. We need to | |
683 | consider any reference to the function, not just a call, because | |
684 | if the address of the function is taken we will need the stub, | |
685 | since the address might be passed to a 32 bit function. | |
686 | ||
687 | Section names that look like .mips16.call.FNNAME contain stubs | |
688 | that copy floating point arguments from the gp regs to the fp | |
689 | regs and then jump to FNNAME. If FNNAME is a 32 bit function, | |
690 | then any 16 bit function that calls FNNAME should be redirected | |
691 | to the stub instead. If FNNAME is not a 32 bit function, the | |
692 | stub should be discarded. | |
693 | ||
694 | .mips16.call.fp.FNNAME sections are similar, but contain stubs | |
695 | which call FNNAME and then copy the return value from the fp regs | |
696 | to the gp regs. These stubs store the return value in $18 while | |
697 | calling FNNAME; any function which might call one of these stubs | |
698 | must arrange to save $18 around the call. (This case is not | |
699 | needed for 32 bit functions that call 16 bit functions, because | |
700 | 16 bit functions always return floating point values in both | |
701 | $f0/$f1 and $2/$3.) | |
702 | ||
703 | Note that in all cases FNNAME might be defined statically. | |
704 | Therefore, FNNAME is not used literally. Instead, the relocation | |
705 | information will indicate which symbol the section is for. | |
706 | ||
707 | We record any stubs that we find in the symbol table. */ | |
708 | ||
709 | #define FN_STUB ".mips16.fn." | |
710 | #define CALL_STUB ".mips16.call." | |
711 | #define CALL_FP_STUB ".mips16.call.fp." | |
712 | \f | |
0a44bf69 RS |
713 | /* The format of the first PLT entry in a VxWorks executable. */ |
714 | static const bfd_vma mips_vxworks_exec_plt0_entry[] = { | |
715 | 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */ | |
716 | 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */ | |
717 | 0x8f390008, /* lw t9, 8(t9) */ | |
718 | 0x00000000, /* nop */ | |
719 | 0x03200008, /* jr t9 */ | |
720 | 0x00000000 /* nop */ | |
721 | }; | |
722 | ||
723 | /* The format of subsequent PLT entries. */ | |
724 | static const bfd_vma mips_vxworks_exec_plt_entry[] = { | |
725 | 0x10000000, /* b .PLT_resolver */ | |
726 | 0x24180000, /* li t8, <pltindex> */ | |
727 | 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */ | |
728 | 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */ | |
729 | 0x8f390000, /* lw t9, 0(t9) */ | |
730 | 0x00000000, /* nop */ | |
731 | 0x03200008, /* jr t9 */ | |
732 | 0x00000000 /* nop */ | |
733 | }; | |
734 | ||
735 | /* The format of the first PLT entry in a VxWorks shared object. */ | |
736 | static const bfd_vma mips_vxworks_shared_plt0_entry[] = { | |
737 | 0x8f990008, /* lw t9, 8(gp) */ | |
738 | 0x00000000, /* nop */ | |
739 | 0x03200008, /* jr t9 */ | |
740 | 0x00000000, /* nop */ | |
741 | 0x00000000, /* nop */ | |
742 | 0x00000000 /* nop */ | |
743 | }; | |
744 | ||
745 | /* The format of subsequent PLT entries. */ | |
746 | static const bfd_vma mips_vxworks_shared_plt_entry[] = { | |
747 | 0x10000000, /* b .PLT_resolver */ | |
748 | 0x24180000 /* li t8, <pltindex> */ | |
749 | }; | |
750 | \f | |
b49e97c9 TS |
751 | /* Look up an entry in a MIPS ELF linker hash table. */ |
752 | ||
753 | #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \ | |
754 | ((struct mips_elf_link_hash_entry *) \ | |
755 | elf_link_hash_lookup (&(table)->root, (string), (create), \ | |
756 | (copy), (follow))) | |
757 | ||
758 | /* Traverse a MIPS ELF linker hash table. */ | |
759 | ||
760 | #define mips_elf_link_hash_traverse(table, func, info) \ | |
761 | (elf_link_hash_traverse \ | |
762 | (&(table)->root, \ | |
9719ad41 | 763 | (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \ |
b49e97c9 TS |
764 | (info))) |
765 | ||
766 | /* Get the MIPS ELF linker hash table from a link_info structure. */ | |
767 | ||
768 | #define mips_elf_hash_table(p) \ | |
769 | ((struct mips_elf_link_hash_table *) ((p)->hash)) | |
770 | ||
0f20cc35 DJ |
771 | /* Find the base offsets for thread-local storage in this object, |
772 | for GD/LD and IE/LE respectively. */ | |
773 | ||
774 | #define TP_OFFSET 0x7000 | |
775 | #define DTP_OFFSET 0x8000 | |
776 | ||
777 | static bfd_vma | |
778 | dtprel_base (struct bfd_link_info *info) | |
779 | { | |
780 | /* If tls_sec is NULL, we should have signalled an error already. */ | |
781 | if (elf_hash_table (info)->tls_sec == NULL) | |
782 | return 0; | |
783 | return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET; | |
784 | } | |
785 | ||
786 | static bfd_vma | |
787 | tprel_base (struct bfd_link_info *info) | |
788 | { | |
789 | /* If tls_sec is NULL, we should have signalled an error already. */ | |
790 | if (elf_hash_table (info)->tls_sec == NULL) | |
791 | return 0; | |
792 | return elf_hash_table (info)->tls_sec->vma + TP_OFFSET; | |
793 | } | |
794 | ||
b49e97c9 TS |
795 | /* Create an entry in a MIPS ELF linker hash table. */ |
796 | ||
797 | static struct bfd_hash_entry * | |
9719ad41 RS |
798 | mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry, |
799 | struct bfd_hash_table *table, const char *string) | |
b49e97c9 TS |
800 | { |
801 | struct mips_elf_link_hash_entry *ret = | |
802 | (struct mips_elf_link_hash_entry *) entry; | |
803 | ||
804 | /* Allocate the structure if it has not already been allocated by a | |
805 | subclass. */ | |
9719ad41 RS |
806 | if (ret == NULL) |
807 | ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry)); | |
808 | if (ret == NULL) | |
b49e97c9 TS |
809 | return (struct bfd_hash_entry *) ret; |
810 | ||
811 | /* Call the allocation method of the superclass. */ | |
812 | ret = ((struct mips_elf_link_hash_entry *) | |
813 | _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret, | |
814 | table, string)); | |
9719ad41 | 815 | if (ret != NULL) |
b49e97c9 TS |
816 | { |
817 | /* Set local fields. */ | |
818 | memset (&ret->esym, 0, sizeof (EXTR)); | |
819 | /* We use -2 as a marker to indicate that the information has | |
820 | not been set. -1 means there is no associated ifd. */ | |
821 | ret->esym.ifd = -2; | |
822 | ret->possibly_dynamic_relocs = 0; | |
b34976b6 | 823 | ret->readonly_reloc = FALSE; |
b34976b6 | 824 | ret->no_fn_stub = FALSE; |
b49e97c9 | 825 | ret->fn_stub = NULL; |
b34976b6 | 826 | ret->need_fn_stub = FALSE; |
b49e97c9 TS |
827 | ret->call_stub = NULL; |
828 | ret->call_fp_stub = NULL; | |
b34976b6 | 829 | ret->forced_local = FALSE; |
0a44bf69 RS |
830 | ret->is_branch_target = FALSE; |
831 | ret->is_relocation_target = FALSE; | |
0f20cc35 | 832 | ret->tls_type = GOT_NORMAL; |
b49e97c9 TS |
833 | } |
834 | ||
835 | return (struct bfd_hash_entry *) ret; | |
836 | } | |
f0abc2a1 AM |
837 | |
838 | bfd_boolean | |
9719ad41 | 839 | _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec) |
f0abc2a1 | 840 | { |
f592407e AM |
841 | if (!sec->used_by_bfd) |
842 | { | |
843 | struct _mips_elf_section_data *sdata; | |
844 | bfd_size_type amt = sizeof (*sdata); | |
f0abc2a1 | 845 | |
f592407e AM |
846 | sdata = bfd_zalloc (abfd, amt); |
847 | if (sdata == NULL) | |
848 | return FALSE; | |
849 | sec->used_by_bfd = sdata; | |
850 | } | |
f0abc2a1 AM |
851 | |
852 | return _bfd_elf_new_section_hook (abfd, sec); | |
853 | } | |
b49e97c9 TS |
854 | \f |
855 | /* Read ECOFF debugging information from a .mdebug section into a | |
856 | ecoff_debug_info structure. */ | |
857 | ||
b34976b6 | 858 | bfd_boolean |
9719ad41 RS |
859 | _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section, |
860 | struct ecoff_debug_info *debug) | |
b49e97c9 TS |
861 | { |
862 | HDRR *symhdr; | |
863 | const struct ecoff_debug_swap *swap; | |
9719ad41 | 864 | char *ext_hdr; |
b49e97c9 TS |
865 | |
866 | swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; | |
867 | memset (debug, 0, sizeof (*debug)); | |
868 | ||
9719ad41 | 869 | ext_hdr = bfd_malloc (swap->external_hdr_size); |
b49e97c9 TS |
870 | if (ext_hdr == NULL && swap->external_hdr_size != 0) |
871 | goto error_return; | |
872 | ||
9719ad41 | 873 | if (! bfd_get_section_contents (abfd, section, ext_hdr, 0, |
82e51918 | 874 | swap->external_hdr_size)) |
b49e97c9 TS |
875 | goto error_return; |
876 | ||
877 | symhdr = &debug->symbolic_header; | |
878 | (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr); | |
879 | ||
880 | /* The symbolic header contains absolute file offsets and sizes to | |
881 | read. */ | |
882 | #define READ(ptr, offset, count, size, type) \ | |
883 | if (symhdr->count == 0) \ | |
884 | debug->ptr = NULL; \ | |
885 | else \ | |
886 | { \ | |
887 | bfd_size_type amt = (bfd_size_type) size * symhdr->count; \ | |
9719ad41 | 888 | debug->ptr = bfd_malloc (amt); \ |
b49e97c9 TS |
889 | if (debug->ptr == NULL) \ |
890 | goto error_return; \ | |
9719ad41 | 891 | if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \ |
b49e97c9 TS |
892 | || bfd_bread (debug->ptr, amt, abfd) != amt) \ |
893 | goto error_return; \ | |
894 | } | |
895 | ||
896 | READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *); | |
9719ad41 RS |
897 | READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *); |
898 | READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *); | |
899 | READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *); | |
900 | READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *); | |
b49e97c9 TS |
901 | READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext), |
902 | union aux_ext *); | |
903 | READ (ss, cbSsOffset, issMax, sizeof (char), char *); | |
904 | READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *); | |
9719ad41 RS |
905 | READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *); |
906 | READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *); | |
907 | READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *); | |
b49e97c9 TS |
908 | #undef READ |
909 | ||
910 | debug->fdr = NULL; | |
b49e97c9 | 911 | |
b34976b6 | 912 | return TRUE; |
b49e97c9 TS |
913 | |
914 | error_return: | |
915 | if (ext_hdr != NULL) | |
916 | free (ext_hdr); | |
917 | if (debug->line != NULL) | |
918 | free (debug->line); | |
919 | if (debug->external_dnr != NULL) | |
920 | free (debug->external_dnr); | |
921 | if (debug->external_pdr != NULL) | |
922 | free (debug->external_pdr); | |
923 | if (debug->external_sym != NULL) | |
924 | free (debug->external_sym); | |
925 | if (debug->external_opt != NULL) | |
926 | free (debug->external_opt); | |
927 | if (debug->external_aux != NULL) | |
928 | free (debug->external_aux); | |
929 | if (debug->ss != NULL) | |
930 | free (debug->ss); | |
931 | if (debug->ssext != NULL) | |
932 | free (debug->ssext); | |
933 | if (debug->external_fdr != NULL) | |
934 | free (debug->external_fdr); | |
935 | if (debug->external_rfd != NULL) | |
936 | free (debug->external_rfd); | |
937 | if (debug->external_ext != NULL) | |
938 | free (debug->external_ext); | |
b34976b6 | 939 | return FALSE; |
b49e97c9 TS |
940 | } |
941 | \f | |
942 | /* Swap RPDR (runtime procedure table entry) for output. */ | |
943 | ||
944 | static void | |
9719ad41 | 945 | ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex) |
b49e97c9 TS |
946 | { |
947 | H_PUT_S32 (abfd, in->adr, ex->p_adr); | |
948 | H_PUT_32 (abfd, in->regmask, ex->p_regmask); | |
949 | H_PUT_32 (abfd, in->regoffset, ex->p_regoffset); | |
950 | H_PUT_32 (abfd, in->fregmask, ex->p_fregmask); | |
951 | H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset); | |
952 | H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset); | |
953 | ||
954 | H_PUT_16 (abfd, in->framereg, ex->p_framereg); | |
955 | H_PUT_16 (abfd, in->pcreg, ex->p_pcreg); | |
956 | ||
957 | H_PUT_32 (abfd, in->irpss, ex->p_irpss); | |
b49e97c9 TS |
958 | } |
959 | ||
960 | /* Create a runtime procedure table from the .mdebug section. */ | |
961 | ||
b34976b6 | 962 | static bfd_boolean |
9719ad41 RS |
963 | mips_elf_create_procedure_table (void *handle, bfd *abfd, |
964 | struct bfd_link_info *info, asection *s, | |
965 | struct ecoff_debug_info *debug) | |
b49e97c9 TS |
966 | { |
967 | const struct ecoff_debug_swap *swap; | |
968 | HDRR *hdr = &debug->symbolic_header; | |
969 | RPDR *rpdr, *rp; | |
970 | struct rpdr_ext *erp; | |
9719ad41 | 971 | void *rtproc; |
b49e97c9 TS |
972 | struct pdr_ext *epdr; |
973 | struct sym_ext *esym; | |
974 | char *ss, **sv; | |
975 | char *str; | |
976 | bfd_size_type size; | |
977 | bfd_size_type count; | |
978 | unsigned long sindex; | |
979 | unsigned long i; | |
980 | PDR pdr; | |
981 | SYMR sym; | |
982 | const char *no_name_func = _("static procedure (no name)"); | |
983 | ||
984 | epdr = NULL; | |
985 | rpdr = NULL; | |
986 | esym = NULL; | |
987 | ss = NULL; | |
988 | sv = NULL; | |
989 | ||
990 | swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; | |
991 | ||
992 | sindex = strlen (no_name_func) + 1; | |
993 | count = hdr->ipdMax; | |
994 | if (count > 0) | |
995 | { | |
996 | size = swap->external_pdr_size; | |
997 | ||
9719ad41 | 998 | epdr = bfd_malloc (size * count); |
b49e97c9 TS |
999 | if (epdr == NULL) |
1000 | goto error_return; | |
1001 | ||
9719ad41 | 1002 | if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr)) |
b49e97c9 TS |
1003 | goto error_return; |
1004 | ||
1005 | size = sizeof (RPDR); | |
9719ad41 | 1006 | rp = rpdr = bfd_malloc (size * count); |
b49e97c9 TS |
1007 | if (rpdr == NULL) |
1008 | goto error_return; | |
1009 | ||
1010 | size = sizeof (char *); | |
9719ad41 | 1011 | sv = bfd_malloc (size * count); |
b49e97c9 TS |
1012 | if (sv == NULL) |
1013 | goto error_return; | |
1014 | ||
1015 | count = hdr->isymMax; | |
1016 | size = swap->external_sym_size; | |
9719ad41 | 1017 | esym = bfd_malloc (size * count); |
b49e97c9 TS |
1018 | if (esym == NULL) |
1019 | goto error_return; | |
1020 | ||
9719ad41 | 1021 | if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym)) |
b49e97c9 TS |
1022 | goto error_return; |
1023 | ||
1024 | count = hdr->issMax; | |
9719ad41 | 1025 | ss = bfd_malloc (count); |
b49e97c9 TS |
1026 | if (ss == NULL) |
1027 | goto error_return; | |
f075ee0c | 1028 | if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss)) |
b49e97c9 TS |
1029 | goto error_return; |
1030 | ||
1031 | count = hdr->ipdMax; | |
1032 | for (i = 0; i < (unsigned long) count; i++, rp++) | |
1033 | { | |
9719ad41 RS |
1034 | (*swap->swap_pdr_in) (abfd, epdr + i, &pdr); |
1035 | (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym); | |
b49e97c9 TS |
1036 | rp->adr = sym.value; |
1037 | rp->regmask = pdr.regmask; | |
1038 | rp->regoffset = pdr.regoffset; | |
1039 | rp->fregmask = pdr.fregmask; | |
1040 | rp->fregoffset = pdr.fregoffset; | |
1041 | rp->frameoffset = pdr.frameoffset; | |
1042 | rp->framereg = pdr.framereg; | |
1043 | rp->pcreg = pdr.pcreg; | |
1044 | rp->irpss = sindex; | |
1045 | sv[i] = ss + sym.iss; | |
1046 | sindex += strlen (sv[i]) + 1; | |
1047 | } | |
1048 | } | |
1049 | ||
1050 | size = sizeof (struct rpdr_ext) * (count + 2) + sindex; | |
1051 | size = BFD_ALIGN (size, 16); | |
9719ad41 | 1052 | rtproc = bfd_alloc (abfd, size); |
b49e97c9 TS |
1053 | if (rtproc == NULL) |
1054 | { | |
1055 | mips_elf_hash_table (info)->procedure_count = 0; | |
1056 | goto error_return; | |
1057 | } | |
1058 | ||
1059 | mips_elf_hash_table (info)->procedure_count = count + 2; | |
1060 | ||
9719ad41 | 1061 | erp = rtproc; |
b49e97c9 TS |
1062 | memset (erp, 0, sizeof (struct rpdr_ext)); |
1063 | erp++; | |
1064 | str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2); | |
1065 | strcpy (str, no_name_func); | |
1066 | str += strlen (no_name_func) + 1; | |
1067 | for (i = 0; i < count; i++) | |
1068 | { | |
1069 | ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i); | |
1070 | strcpy (str, sv[i]); | |
1071 | str += strlen (sv[i]) + 1; | |
1072 | } | |
1073 | H_PUT_S32 (abfd, -1, (erp + count)->p_adr); | |
1074 | ||
1075 | /* Set the size and contents of .rtproc section. */ | |
eea6121a | 1076 | s->size = size; |
9719ad41 | 1077 | s->contents = rtproc; |
b49e97c9 TS |
1078 | |
1079 | /* Skip this section later on (I don't think this currently | |
1080 | matters, but someday it might). */ | |
8423293d | 1081 | s->map_head.link_order = NULL; |
b49e97c9 TS |
1082 | |
1083 | if (epdr != NULL) | |
1084 | free (epdr); | |
1085 | if (rpdr != NULL) | |
1086 | free (rpdr); | |
1087 | if (esym != NULL) | |
1088 | free (esym); | |
1089 | if (ss != NULL) | |
1090 | free (ss); | |
1091 | if (sv != NULL) | |
1092 | free (sv); | |
1093 | ||
b34976b6 | 1094 | return TRUE; |
b49e97c9 TS |
1095 | |
1096 | error_return: | |
1097 | if (epdr != NULL) | |
1098 | free (epdr); | |
1099 | if (rpdr != NULL) | |
1100 | free (rpdr); | |
1101 | if (esym != NULL) | |
1102 | free (esym); | |
1103 | if (ss != NULL) | |
1104 | free (ss); | |
1105 | if (sv != NULL) | |
1106 | free (sv); | |
b34976b6 | 1107 | return FALSE; |
b49e97c9 TS |
1108 | } |
1109 | ||
1110 | /* Check the mips16 stubs for a particular symbol, and see if we can | |
1111 | discard them. */ | |
1112 | ||
b34976b6 | 1113 | static bfd_boolean |
9719ad41 RS |
1114 | mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h, |
1115 | void *data ATTRIBUTE_UNUSED) | |
b49e97c9 TS |
1116 | { |
1117 | if (h->root.root.type == bfd_link_hash_warning) | |
1118 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | |
1119 | ||
1120 | if (h->fn_stub != NULL | |
1121 | && ! h->need_fn_stub) | |
1122 | { | |
1123 | /* We don't need the fn_stub; the only references to this symbol | |
1124 | are 16 bit calls. Clobber the size to 0 to prevent it from | |
1125 | being included in the link. */ | |
eea6121a | 1126 | h->fn_stub->size = 0; |
b49e97c9 TS |
1127 | h->fn_stub->flags &= ~SEC_RELOC; |
1128 | h->fn_stub->reloc_count = 0; | |
1129 | h->fn_stub->flags |= SEC_EXCLUDE; | |
1130 | } | |
1131 | ||
1132 | if (h->call_stub != NULL | |
1133 | && h->root.other == STO_MIPS16) | |
1134 | { | |
1135 | /* We don't need the call_stub; this is a 16 bit function, so | |
1136 | calls from other 16 bit functions are OK. Clobber the size | |
1137 | to 0 to prevent it from being included in the link. */ | |
eea6121a | 1138 | h->call_stub->size = 0; |
b49e97c9 TS |
1139 | h->call_stub->flags &= ~SEC_RELOC; |
1140 | h->call_stub->reloc_count = 0; | |
1141 | h->call_stub->flags |= SEC_EXCLUDE; | |
1142 | } | |
1143 | ||
1144 | if (h->call_fp_stub != NULL | |
1145 | && h->root.other == STO_MIPS16) | |
1146 | { | |
1147 | /* We don't need the call_stub; this is a 16 bit function, so | |
1148 | calls from other 16 bit functions are OK. Clobber the size | |
1149 | to 0 to prevent it from being included in the link. */ | |
eea6121a | 1150 | h->call_fp_stub->size = 0; |
b49e97c9 TS |
1151 | h->call_fp_stub->flags &= ~SEC_RELOC; |
1152 | h->call_fp_stub->reloc_count = 0; | |
1153 | h->call_fp_stub->flags |= SEC_EXCLUDE; | |
1154 | } | |
1155 | ||
b34976b6 | 1156 | return TRUE; |
b49e97c9 TS |
1157 | } |
1158 | \f | |
d6f16593 MR |
1159 | /* R_MIPS16_26 is used for the mips16 jal and jalx instructions. |
1160 | Most mips16 instructions are 16 bits, but these instructions | |
1161 | are 32 bits. | |
1162 | ||
1163 | The format of these instructions is: | |
1164 | ||
1165 | +--------------+--------------------------------+ | |
1166 | | JALX | X| Imm 20:16 | Imm 25:21 | | |
1167 | +--------------+--------------------------------+ | |
1168 | | Immediate 15:0 | | |
1169 | +-----------------------------------------------+ | |
1170 | ||
1171 | JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx. | |
1172 | Note that the immediate value in the first word is swapped. | |
1173 | ||
1174 | When producing a relocatable object file, R_MIPS16_26 is | |
1175 | handled mostly like R_MIPS_26. In particular, the addend is | |
1176 | stored as a straight 26-bit value in a 32-bit instruction. | |
1177 | (gas makes life simpler for itself by never adjusting a | |
1178 | R_MIPS16_26 reloc to be against a section, so the addend is | |
1179 | always zero). However, the 32 bit instruction is stored as 2 | |
1180 | 16-bit values, rather than a single 32-bit value. In a | |
1181 | big-endian file, the result is the same; in a little-endian | |
1182 | file, the two 16-bit halves of the 32 bit value are swapped. | |
1183 | This is so that a disassembler can recognize the jal | |
1184 | instruction. | |
1185 | ||
1186 | When doing a final link, R_MIPS16_26 is treated as a 32 bit | |
1187 | instruction stored as two 16-bit values. The addend A is the | |
1188 | contents of the targ26 field. The calculation is the same as | |
1189 | R_MIPS_26. When storing the calculated value, reorder the | |
1190 | immediate value as shown above, and don't forget to store the | |
1191 | value as two 16-bit values. | |
1192 | ||
1193 | To put it in MIPS ABI terms, the relocation field is T-targ26-16, | |
1194 | defined as | |
1195 | ||
1196 | big-endian: | |
1197 | +--------+----------------------+ | |
1198 | | | | | |
1199 | | | targ26-16 | | |
1200 | |31 26|25 0| | |
1201 | +--------+----------------------+ | |
1202 | ||
1203 | little-endian: | |
1204 | +----------+------+-------------+ | |
1205 | | | | | | |
1206 | | sub1 | | sub2 | | |
1207 | |0 9|10 15|16 31| | |
1208 | +----------+--------------------+ | |
1209 | where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is | |
1210 | ((sub1 << 16) | sub2)). | |
1211 | ||
1212 | When producing a relocatable object file, the calculation is | |
1213 | (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2) | |
1214 | When producing a fully linked file, the calculation is | |
1215 | let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2) | |
1216 | ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) | |
1217 | ||
1218 | R_MIPS16_GPREL is used for GP-relative addressing in mips16 | |
1219 | mode. A typical instruction will have a format like this: | |
1220 | ||
1221 | +--------------+--------------------------------+ | |
1222 | | EXTEND | Imm 10:5 | Imm 15:11 | | |
1223 | +--------------+--------------------------------+ | |
1224 | | Major | rx | ry | Imm 4:0 | | |
1225 | +--------------+--------------------------------+ | |
1226 | ||
1227 | EXTEND is the five bit value 11110. Major is the instruction | |
1228 | opcode. | |
1229 | ||
1230 | This is handled exactly like R_MIPS_GPREL16, except that the | |
1231 | addend is retrieved and stored as shown in this diagram; that | |
1232 | is, the Imm fields above replace the V-rel16 field. | |
1233 | ||
1234 | All we need to do here is shuffle the bits appropriately. As | |
1235 | above, the two 16-bit halves must be swapped on a | |
1236 | little-endian system. | |
1237 | ||
1238 | R_MIPS16_HI16 and R_MIPS16_LO16 are used in mips16 mode to | |
1239 | access data when neither GP-relative nor PC-relative addressing | |
1240 | can be used. They are handled like R_MIPS_HI16 and R_MIPS_LO16, | |
1241 | except that the addend is retrieved and stored as shown above | |
1242 | for R_MIPS16_GPREL. | |
1243 | */ | |
1244 | void | |
1245 | _bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type, | |
1246 | bfd_boolean jal_shuffle, bfd_byte *data) | |
1247 | { | |
1248 | bfd_vma extend, insn, val; | |
1249 | ||
1250 | if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL | |
1251 | && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16) | |
1252 | return; | |
1253 | ||
1254 | /* Pick up the mips16 extend instruction and the real instruction. */ | |
1255 | extend = bfd_get_16 (abfd, data); | |
1256 | insn = bfd_get_16 (abfd, data + 2); | |
1257 | if (r_type == R_MIPS16_26) | |
1258 | { | |
1259 | if (jal_shuffle) | |
1260 | val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11) | |
1261 | | ((extend & 0x1f) << 21) | insn; | |
1262 | else | |
1263 | val = extend << 16 | insn; | |
1264 | } | |
1265 | else | |
1266 | val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11) | |
1267 | | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f); | |
1268 | bfd_put_32 (abfd, val, data); | |
1269 | } | |
1270 | ||
1271 | void | |
1272 | _bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type, | |
1273 | bfd_boolean jal_shuffle, bfd_byte *data) | |
1274 | { | |
1275 | bfd_vma extend, insn, val; | |
1276 | ||
1277 | if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL | |
1278 | && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16) | |
1279 | return; | |
1280 | ||
1281 | val = bfd_get_32 (abfd, data); | |
1282 | if (r_type == R_MIPS16_26) | |
1283 | { | |
1284 | if (jal_shuffle) | |
1285 | { | |
1286 | insn = val & 0xffff; | |
1287 | extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0) | |
1288 | | ((val >> 21) & 0x1f); | |
1289 | } | |
1290 | else | |
1291 | { | |
1292 | insn = val & 0xffff; | |
1293 | extend = val >> 16; | |
1294 | } | |
1295 | } | |
1296 | else | |
1297 | { | |
1298 | insn = ((val >> 11) & 0xffe0) | (val & 0x1f); | |
1299 | extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0); | |
1300 | } | |
1301 | bfd_put_16 (abfd, insn, data + 2); | |
1302 | bfd_put_16 (abfd, extend, data); | |
1303 | } | |
1304 | ||
b49e97c9 | 1305 | bfd_reloc_status_type |
9719ad41 RS |
1306 | _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol, |
1307 | arelent *reloc_entry, asection *input_section, | |
1308 | bfd_boolean relocatable, void *data, bfd_vma gp) | |
b49e97c9 TS |
1309 | { |
1310 | bfd_vma relocation; | |
a7ebbfdf | 1311 | bfd_signed_vma val; |
30ac9238 | 1312 | bfd_reloc_status_type status; |
b49e97c9 TS |
1313 | |
1314 | if (bfd_is_com_section (symbol->section)) | |
1315 | relocation = 0; | |
1316 | else | |
1317 | relocation = symbol->value; | |
1318 | ||
1319 | relocation += symbol->section->output_section->vma; | |
1320 | relocation += symbol->section->output_offset; | |
1321 | ||
07515404 | 1322 | if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) |
b49e97c9 TS |
1323 | return bfd_reloc_outofrange; |
1324 | ||
b49e97c9 | 1325 | /* Set val to the offset into the section or symbol. */ |
a7ebbfdf TS |
1326 | val = reloc_entry->addend; |
1327 | ||
30ac9238 | 1328 | _bfd_mips_elf_sign_extend (val, 16); |
a7ebbfdf | 1329 | |
b49e97c9 | 1330 | /* Adjust val for the final section location and GP value. If we |
1049f94e | 1331 | are producing relocatable output, we don't want to do this for |
b49e97c9 | 1332 | an external symbol. */ |
1049f94e | 1333 | if (! relocatable |
b49e97c9 TS |
1334 | || (symbol->flags & BSF_SECTION_SYM) != 0) |
1335 | val += relocation - gp; | |
1336 | ||
a7ebbfdf TS |
1337 | if (reloc_entry->howto->partial_inplace) |
1338 | { | |
30ac9238 RS |
1339 | status = _bfd_relocate_contents (reloc_entry->howto, abfd, val, |
1340 | (bfd_byte *) data | |
1341 | + reloc_entry->address); | |
1342 | if (status != bfd_reloc_ok) | |
1343 | return status; | |
a7ebbfdf TS |
1344 | } |
1345 | else | |
1346 | reloc_entry->addend = val; | |
b49e97c9 | 1347 | |
1049f94e | 1348 | if (relocatable) |
b49e97c9 | 1349 | reloc_entry->address += input_section->output_offset; |
30ac9238 RS |
1350 | |
1351 | return bfd_reloc_ok; | |
1352 | } | |
1353 | ||
1354 | /* Used to store a REL high-part relocation such as R_MIPS_HI16 or | |
1355 | R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section | |
1356 | that contains the relocation field and DATA points to the start of | |
1357 | INPUT_SECTION. */ | |
1358 | ||
1359 | struct mips_hi16 | |
1360 | { | |
1361 | struct mips_hi16 *next; | |
1362 | bfd_byte *data; | |
1363 | asection *input_section; | |
1364 | arelent rel; | |
1365 | }; | |
1366 | ||
1367 | /* FIXME: This should not be a static variable. */ | |
1368 | ||
1369 | static struct mips_hi16 *mips_hi16_list; | |
1370 | ||
1371 | /* A howto special_function for REL *HI16 relocations. We can only | |
1372 | calculate the correct value once we've seen the partnering | |
1373 | *LO16 relocation, so just save the information for later. | |
1374 | ||
1375 | The ABI requires that the *LO16 immediately follow the *HI16. | |
1376 | However, as a GNU extension, we permit an arbitrary number of | |
1377 | *HI16s to be associated with a single *LO16. This significantly | |
1378 | simplies the relocation handling in gcc. */ | |
1379 | ||
1380 | bfd_reloc_status_type | |
1381 | _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry, | |
1382 | asymbol *symbol ATTRIBUTE_UNUSED, void *data, | |
1383 | asection *input_section, bfd *output_bfd, | |
1384 | char **error_message ATTRIBUTE_UNUSED) | |
1385 | { | |
1386 | struct mips_hi16 *n; | |
1387 | ||
07515404 | 1388 | if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) |
30ac9238 RS |
1389 | return bfd_reloc_outofrange; |
1390 | ||
1391 | n = bfd_malloc (sizeof *n); | |
1392 | if (n == NULL) | |
1393 | return bfd_reloc_outofrange; | |
1394 | ||
1395 | n->next = mips_hi16_list; | |
1396 | n->data = data; | |
1397 | n->input_section = input_section; | |
1398 | n->rel = *reloc_entry; | |
1399 | mips_hi16_list = n; | |
1400 | ||
1401 | if (output_bfd != NULL) | |
1402 | reloc_entry->address += input_section->output_offset; | |
1403 | ||
1404 | return bfd_reloc_ok; | |
1405 | } | |
1406 | ||
1407 | /* A howto special_function for REL R_MIPS_GOT16 relocations. This is just | |
1408 | like any other 16-bit relocation when applied to global symbols, but is | |
1409 | treated in the same as R_MIPS_HI16 when applied to local symbols. */ | |
1410 | ||
1411 | bfd_reloc_status_type | |
1412 | _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol, | |
1413 | void *data, asection *input_section, | |
1414 | bfd *output_bfd, char **error_message) | |
1415 | { | |
1416 | if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0 | |
1417 | || bfd_is_und_section (bfd_get_section (symbol)) | |
1418 | || bfd_is_com_section (bfd_get_section (symbol))) | |
1419 | /* The relocation is against a global symbol. */ | |
1420 | return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data, | |
1421 | input_section, output_bfd, | |
1422 | error_message); | |
1423 | ||
1424 | return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data, | |
1425 | input_section, output_bfd, error_message); | |
1426 | } | |
1427 | ||
1428 | /* A howto special_function for REL *LO16 relocations. The *LO16 itself | |
1429 | is a straightforward 16 bit inplace relocation, but we must deal with | |
1430 | any partnering high-part relocations as well. */ | |
1431 | ||
1432 | bfd_reloc_status_type | |
1433 | _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol, | |
1434 | void *data, asection *input_section, | |
1435 | bfd *output_bfd, char **error_message) | |
1436 | { | |
1437 | bfd_vma vallo; | |
d6f16593 | 1438 | bfd_byte *location = (bfd_byte *) data + reloc_entry->address; |
30ac9238 | 1439 | |
07515404 | 1440 | if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) |
30ac9238 RS |
1441 | return bfd_reloc_outofrange; |
1442 | ||
d6f16593 MR |
1443 | _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE, |
1444 | location); | |
1445 | vallo = bfd_get_32 (abfd, location); | |
1446 | _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE, | |
1447 | location); | |
1448 | ||
30ac9238 RS |
1449 | while (mips_hi16_list != NULL) |
1450 | { | |
1451 | bfd_reloc_status_type ret; | |
1452 | struct mips_hi16 *hi; | |
1453 | ||
1454 | hi = mips_hi16_list; | |
1455 | ||
1456 | /* R_MIPS_GOT16 relocations are something of a special case. We | |
1457 | want to install the addend in the same way as for a R_MIPS_HI16 | |
1458 | relocation (with a rightshift of 16). However, since GOT16 | |
1459 | relocations can also be used with global symbols, their howto | |
1460 | has a rightshift of 0. */ | |
1461 | if (hi->rel.howto->type == R_MIPS_GOT16) | |
1462 | hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE); | |
1463 | ||
1464 | /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any | |
1465 | carry or borrow will induce a change of +1 or -1 in the high part. */ | |
1466 | hi->rel.addend += (vallo + 0x8000) & 0xffff; | |
1467 | ||
30ac9238 RS |
1468 | ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data, |
1469 | hi->input_section, output_bfd, | |
1470 | error_message); | |
1471 | if (ret != bfd_reloc_ok) | |
1472 | return ret; | |
1473 | ||
1474 | mips_hi16_list = hi->next; | |
1475 | free (hi); | |
1476 | } | |
1477 | ||
1478 | return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data, | |
1479 | input_section, output_bfd, | |
1480 | error_message); | |
1481 | } | |
1482 | ||
1483 | /* A generic howto special_function. This calculates and installs the | |
1484 | relocation itself, thus avoiding the oft-discussed problems in | |
1485 | bfd_perform_relocation and bfd_install_relocation. */ | |
1486 | ||
1487 | bfd_reloc_status_type | |
1488 | _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry, | |
1489 | asymbol *symbol, void *data ATTRIBUTE_UNUSED, | |
1490 | asection *input_section, bfd *output_bfd, | |
1491 | char **error_message ATTRIBUTE_UNUSED) | |
1492 | { | |
1493 | bfd_signed_vma val; | |
1494 | bfd_reloc_status_type status; | |
1495 | bfd_boolean relocatable; | |
1496 | ||
1497 | relocatable = (output_bfd != NULL); | |
1498 | ||
07515404 | 1499 | if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) |
30ac9238 RS |
1500 | return bfd_reloc_outofrange; |
1501 | ||
1502 | /* Build up the field adjustment in VAL. */ | |
1503 | val = 0; | |
1504 | if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0) | |
1505 | { | |
1506 | /* Either we're calculating the final field value or we have a | |
1507 | relocation against a section symbol. Add in the section's | |
1508 | offset or address. */ | |
1509 | val += symbol->section->output_section->vma; | |
1510 | val += symbol->section->output_offset; | |
1511 | } | |
1512 | ||
1513 | if (!relocatable) | |
1514 | { | |
1515 | /* We're calculating the final field value. Add in the symbol's value | |
1516 | and, if pc-relative, subtract the address of the field itself. */ | |
1517 | val += symbol->value; | |
1518 | if (reloc_entry->howto->pc_relative) | |
1519 | { | |
1520 | val -= input_section->output_section->vma; | |
1521 | val -= input_section->output_offset; | |
1522 | val -= reloc_entry->address; | |
1523 | } | |
1524 | } | |
1525 | ||
1526 | /* VAL is now the final adjustment. If we're keeping this relocation | |
1527 | in the output file, and if the relocation uses a separate addend, | |
1528 | we just need to add VAL to that addend. Otherwise we need to add | |
1529 | VAL to the relocation field itself. */ | |
1530 | if (relocatable && !reloc_entry->howto->partial_inplace) | |
1531 | reloc_entry->addend += val; | |
1532 | else | |
1533 | { | |
d6f16593 MR |
1534 | bfd_byte *location = (bfd_byte *) data + reloc_entry->address; |
1535 | ||
30ac9238 RS |
1536 | /* Add in the separate addend, if any. */ |
1537 | val += reloc_entry->addend; | |
1538 | ||
1539 | /* Add VAL to the relocation field. */ | |
d6f16593 MR |
1540 | _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE, |
1541 | location); | |
30ac9238 | 1542 | status = _bfd_relocate_contents (reloc_entry->howto, abfd, val, |
d6f16593 MR |
1543 | location); |
1544 | _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE, | |
1545 | location); | |
1546 | ||
30ac9238 RS |
1547 | if (status != bfd_reloc_ok) |
1548 | return status; | |
1549 | } | |
1550 | ||
1551 | if (relocatable) | |
1552 | reloc_entry->address += input_section->output_offset; | |
b49e97c9 TS |
1553 | |
1554 | return bfd_reloc_ok; | |
1555 | } | |
1556 | \f | |
1557 | /* Swap an entry in a .gptab section. Note that these routines rely | |
1558 | on the equivalence of the two elements of the union. */ | |
1559 | ||
1560 | static void | |
9719ad41 RS |
1561 | bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex, |
1562 | Elf32_gptab *in) | |
b49e97c9 TS |
1563 | { |
1564 | in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value); | |
1565 | in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes); | |
1566 | } | |
1567 | ||
1568 | static void | |
9719ad41 RS |
1569 | bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in, |
1570 | Elf32_External_gptab *ex) | |
b49e97c9 TS |
1571 | { |
1572 | H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value); | |
1573 | H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes); | |
1574 | } | |
1575 | ||
1576 | static void | |
9719ad41 RS |
1577 | bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in, |
1578 | Elf32_External_compact_rel *ex) | |
b49e97c9 TS |
1579 | { |
1580 | H_PUT_32 (abfd, in->id1, ex->id1); | |
1581 | H_PUT_32 (abfd, in->num, ex->num); | |
1582 | H_PUT_32 (abfd, in->id2, ex->id2); | |
1583 | H_PUT_32 (abfd, in->offset, ex->offset); | |
1584 | H_PUT_32 (abfd, in->reserved0, ex->reserved0); | |
1585 | H_PUT_32 (abfd, in->reserved1, ex->reserved1); | |
1586 | } | |
1587 | ||
1588 | static void | |
9719ad41 RS |
1589 | bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in, |
1590 | Elf32_External_crinfo *ex) | |
b49e97c9 TS |
1591 | { |
1592 | unsigned long l; | |
1593 | ||
1594 | l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH) | |
1595 | | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH) | |
1596 | | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH) | |
1597 | | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH)); | |
1598 | H_PUT_32 (abfd, l, ex->info); | |
1599 | H_PUT_32 (abfd, in->konst, ex->konst); | |
1600 | H_PUT_32 (abfd, in->vaddr, ex->vaddr); | |
1601 | } | |
b49e97c9 TS |
1602 | \f |
1603 | /* A .reginfo section holds a single Elf32_RegInfo structure. These | |
1604 | routines swap this structure in and out. They are used outside of | |
1605 | BFD, so they are globally visible. */ | |
1606 | ||
1607 | void | |
9719ad41 RS |
1608 | bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex, |
1609 | Elf32_RegInfo *in) | |
b49e97c9 TS |
1610 | { |
1611 | in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask); | |
1612 | in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]); | |
1613 | in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]); | |
1614 | in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]); | |
1615 | in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]); | |
1616 | in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value); | |
1617 | } | |
1618 | ||
1619 | void | |
9719ad41 RS |
1620 | bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in, |
1621 | Elf32_External_RegInfo *ex) | |
b49e97c9 TS |
1622 | { |
1623 | H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask); | |
1624 | H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]); | |
1625 | H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]); | |
1626 | H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]); | |
1627 | H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]); | |
1628 | H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value); | |
1629 | } | |
1630 | ||
1631 | /* In the 64 bit ABI, the .MIPS.options section holds register | |
1632 | information in an Elf64_Reginfo structure. These routines swap | |
1633 | them in and out. They are globally visible because they are used | |
1634 | outside of BFD. These routines are here so that gas can call them | |
1635 | without worrying about whether the 64 bit ABI has been included. */ | |
1636 | ||
1637 | void | |
9719ad41 RS |
1638 | bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex, |
1639 | Elf64_Internal_RegInfo *in) | |
b49e97c9 TS |
1640 | { |
1641 | in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask); | |
1642 | in->ri_pad = H_GET_32 (abfd, ex->ri_pad); | |
1643 | in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]); | |
1644 | in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]); | |
1645 | in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]); | |
1646 | in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]); | |
1647 | in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value); | |
1648 | } | |
1649 | ||
1650 | void | |
9719ad41 RS |
1651 | bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in, |
1652 | Elf64_External_RegInfo *ex) | |
b49e97c9 TS |
1653 | { |
1654 | H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask); | |
1655 | H_PUT_32 (abfd, in->ri_pad, ex->ri_pad); | |
1656 | H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]); | |
1657 | H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]); | |
1658 | H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]); | |
1659 | H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]); | |
1660 | H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value); | |
1661 | } | |
1662 | ||
1663 | /* Swap in an options header. */ | |
1664 | ||
1665 | void | |
9719ad41 RS |
1666 | bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex, |
1667 | Elf_Internal_Options *in) | |
b49e97c9 TS |
1668 | { |
1669 | in->kind = H_GET_8 (abfd, ex->kind); | |
1670 | in->size = H_GET_8 (abfd, ex->size); | |
1671 | in->section = H_GET_16 (abfd, ex->section); | |
1672 | in->info = H_GET_32 (abfd, ex->info); | |
1673 | } | |
1674 | ||
1675 | /* Swap out an options header. */ | |
1676 | ||
1677 | void | |
9719ad41 RS |
1678 | bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in, |
1679 | Elf_External_Options *ex) | |
b49e97c9 TS |
1680 | { |
1681 | H_PUT_8 (abfd, in->kind, ex->kind); | |
1682 | H_PUT_8 (abfd, in->size, ex->size); | |
1683 | H_PUT_16 (abfd, in->section, ex->section); | |
1684 | H_PUT_32 (abfd, in->info, ex->info); | |
1685 | } | |
1686 | \f | |
1687 | /* This function is called via qsort() to sort the dynamic relocation | |
1688 | entries by increasing r_symndx value. */ | |
1689 | ||
1690 | static int | |
9719ad41 | 1691 | sort_dynamic_relocs (const void *arg1, const void *arg2) |
b49e97c9 | 1692 | { |
947216bf AM |
1693 | Elf_Internal_Rela int_reloc1; |
1694 | Elf_Internal_Rela int_reloc2; | |
b49e97c9 | 1695 | |
947216bf AM |
1696 | bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1); |
1697 | bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2); | |
b49e97c9 | 1698 | |
947216bf | 1699 | return ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info); |
b49e97c9 TS |
1700 | } |
1701 | ||
f4416af6 AO |
1702 | /* Like sort_dynamic_relocs, but used for elf64 relocations. */ |
1703 | ||
1704 | static int | |
7e3102a7 AM |
1705 | sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED, |
1706 | const void *arg2 ATTRIBUTE_UNUSED) | |
f4416af6 | 1707 | { |
7e3102a7 | 1708 | #ifdef BFD64 |
f4416af6 AO |
1709 | Elf_Internal_Rela int_reloc1[3]; |
1710 | Elf_Internal_Rela int_reloc2[3]; | |
1711 | ||
1712 | (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in) | |
1713 | (reldyn_sorting_bfd, arg1, int_reloc1); | |
1714 | (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in) | |
1715 | (reldyn_sorting_bfd, arg2, int_reloc2); | |
1716 | ||
1717 | return (ELF64_R_SYM (int_reloc1[0].r_info) | |
1718 | - ELF64_R_SYM (int_reloc2[0].r_info)); | |
7e3102a7 AM |
1719 | #else |
1720 | abort (); | |
1721 | #endif | |
f4416af6 AO |
1722 | } |
1723 | ||
1724 | ||
b49e97c9 TS |
1725 | /* This routine is used to write out ECOFF debugging external symbol |
1726 | information. It is called via mips_elf_link_hash_traverse. The | |
1727 | ECOFF external symbol information must match the ELF external | |
1728 | symbol information. Unfortunately, at this point we don't know | |
1729 | whether a symbol is required by reloc information, so the two | |
1730 | tables may wind up being different. We must sort out the external | |
1731 | symbol information before we can set the final size of the .mdebug | |
1732 | section, and we must set the size of the .mdebug section before we | |
1733 | can relocate any sections, and we can't know which symbols are | |
1734 | required by relocation until we relocate the sections. | |
1735 | Fortunately, it is relatively unlikely that any symbol will be | |
1736 | stripped but required by a reloc. In particular, it can not happen | |
1737 | when generating a final executable. */ | |
1738 | ||
b34976b6 | 1739 | static bfd_boolean |
9719ad41 | 1740 | mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data) |
b49e97c9 | 1741 | { |
9719ad41 | 1742 | struct extsym_info *einfo = data; |
b34976b6 | 1743 | bfd_boolean strip; |
b49e97c9 TS |
1744 | asection *sec, *output_section; |
1745 | ||
1746 | if (h->root.root.type == bfd_link_hash_warning) | |
1747 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | |
1748 | ||
1749 | if (h->root.indx == -2) | |
b34976b6 | 1750 | strip = FALSE; |
f5385ebf | 1751 | else if ((h->root.def_dynamic |
77cfaee6 AM |
1752 | || h->root.ref_dynamic |
1753 | || h->root.type == bfd_link_hash_new) | |
f5385ebf AM |
1754 | && !h->root.def_regular |
1755 | && !h->root.ref_regular) | |
b34976b6 | 1756 | strip = TRUE; |
b49e97c9 TS |
1757 | else if (einfo->info->strip == strip_all |
1758 | || (einfo->info->strip == strip_some | |
1759 | && bfd_hash_lookup (einfo->info->keep_hash, | |
1760 | h->root.root.root.string, | |
b34976b6 AM |
1761 | FALSE, FALSE) == NULL)) |
1762 | strip = TRUE; | |
b49e97c9 | 1763 | else |
b34976b6 | 1764 | strip = FALSE; |
b49e97c9 TS |
1765 | |
1766 | if (strip) | |
b34976b6 | 1767 | return TRUE; |
b49e97c9 TS |
1768 | |
1769 | if (h->esym.ifd == -2) | |
1770 | { | |
1771 | h->esym.jmptbl = 0; | |
1772 | h->esym.cobol_main = 0; | |
1773 | h->esym.weakext = 0; | |
1774 | h->esym.reserved = 0; | |
1775 | h->esym.ifd = ifdNil; | |
1776 | h->esym.asym.value = 0; | |
1777 | h->esym.asym.st = stGlobal; | |
1778 | ||
1779 | if (h->root.root.type == bfd_link_hash_undefined | |
1780 | || h->root.root.type == bfd_link_hash_undefweak) | |
1781 | { | |
1782 | const char *name; | |
1783 | ||
1784 | /* Use undefined class. Also, set class and type for some | |
1785 | special symbols. */ | |
1786 | name = h->root.root.root.string; | |
1787 | if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0 | |
1788 | || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0) | |
1789 | { | |
1790 | h->esym.asym.sc = scData; | |
1791 | h->esym.asym.st = stLabel; | |
1792 | h->esym.asym.value = 0; | |
1793 | } | |
1794 | else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0) | |
1795 | { | |
1796 | h->esym.asym.sc = scAbs; | |
1797 | h->esym.asym.st = stLabel; | |
1798 | h->esym.asym.value = | |
1799 | mips_elf_hash_table (einfo->info)->procedure_count; | |
1800 | } | |
4a14403c | 1801 | else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd)) |
b49e97c9 TS |
1802 | { |
1803 | h->esym.asym.sc = scAbs; | |
1804 | h->esym.asym.st = stLabel; | |
1805 | h->esym.asym.value = elf_gp (einfo->abfd); | |
1806 | } | |
1807 | else | |
1808 | h->esym.asym.sc = scUndefined; | |
1809 | } | |
1810 | else if (h->root.root.type != bfd_link_hash_defined | |
1811 | && h->root.root.type != bfd_link_hash_defweak) | |
1812 | h->esym.asym.sc = scAbs; | |
1813 | else | |
1814 | { | |
1815 | const char *name; | |
1816 | ||
1817 | sec = h->root.root.u.def.section; | |
1818 | output_section = sec->output_section; | |
1819 | ||
1820 | /* When making a shared library and symbol h is the one from | |
1821 | the another shared library, OUTPUT_SECTION may be null. */ | |
1822 | if (output_section == NULL) | |
1823 | h->esym.asym.sc = scUndefined; | |
1824 | else | |
1825 | { | |
1826 | name = bfd_section_name (output_section->owner, output_section); | |
1827 | ||
1828 | if (strcmp (name, ".text") == 0) | |
1829 | h->esym.asym.sc = scText; | |
1830 | else if (strcmp (name, ".data") == 0) | |
1831 | h->esym.asym.sc = scData; | |
1832 | else if (strcmp (name, ".sdata") == 0) | |
1833 | h->esym.asym.sc = scSData; | |
1834 | else if (strcmp (name, ".rodata") == 0 | |
1835 | || strcmp (name, ".rdata") == 0) | |
1836 | h->esym.asym.sc = scRData; | |
1837 | else if (strcmp (name, ".bss") == 0) | |
1838 | h->esym.asym.sc = scBss; | |
1839 | else if (strcmp (name, ".sbss") == 0) | |
1840 | h->esym.asym.sc = scSBss; | |
1841 | else if (strcmp (name, ".init") == 0) | |
1842 | h->esym.asym.sc = scInit; | |
1843 | else if (strcmp (name, ".fini") == 0) | |
1844 | h->esym.asym.sc = scFini; | |
1845 | else | |
1846 | h->esym.asym.sc = scAbs; | |
1847 | } | |
1848 | } | |
1849 | ||
1850 | h->esym.asym.reserved = 0; | |
1851 | h->esym.asym.index = indexNil; | |
1852 | } | |
1853 | ||
1854 | if (h->root.root.type == bfd_link_hash_common) | |
1855 | h->esym.asym.value = h->root.root.u.c.size; | |
1856 | else if (h->root.root.type == bfd_link_hash_defined | |
1857 | || h->root.root.type == bfd_link_hash_defweak) | |
1858 | { | |
1859 | if (h->esym.asym.sc == scCommon) | |
1860 | h->esym.asym.sc = scBss; | |
1861 | else if (h->esym.asym.sc == scSCommon) | |
1862 | h->esym.asym.sc = scSBss; | |
1863 | ||
1864 | sec = h->root.root.u.def.section; | |
1865 | output_section = sec->output_section; | |
1866 | if (output_section != NULL) | |
1867 | h->esym.asym.value = (h->root.root.u.def.value | |
1868 | + sec->output_offset | |
1869 | + output_section->vma); | |
1870 | else | |
1871 | h->esym.asym.value = 0; | |
1872 | } | |
f5385ebf | 1873 | else if (h->root.needs_plt) |
b49e97c9 TS |
1874 | { |
1875 | struct mips_elf_link_hash_entry *hd = h; | |
b34976b6 | 1876 | bfd_boolean no_fn_stub = h->no_fn_stub; |
b49e97c9 TS |
1877 | |
1878 | while (hd->root.root.type == bfd_link_hash_indirect) | |
1879 | { | |
1880 | hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link; | |
1881 | no_fn_stub = no_fn_stub || hd->no_fn_stub; | |
1882 | } | |
1883 | ||
1884 | if (!no_fn_stub) | |
1885 | { | |
1886 | /* Set type and value for a symbol with a function stub. */ | |
1887 | h->esym.asym.st = stProc; | |
1888 | sec = hd->root.root.u.def.section; | |
1889 | if (sec == NULL) | |
1890 | h->esym.asym.value = 0; | |
1891 | else | |
1892 | { | |
1893 | output_section = sec->output_section; | |
1894 | if (output_section != NULL) | |
1895 | h->esym.asym.value = (hd->root.plt.offset | |
1896 | + sec->output_offset | |
1897 | + output_section->vma); | |
1898 | else | |
1899 | h->esym.asym.value = 0; | |
1900 | } | |
b49e97c9 TS |
1901 | } |
1902 | } | |
1903 | ||
1904 | if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap, | |
1905 | h->root.root.root.string, | |
1906 | &h->esym)) | |
1907 | { | |
b34976b6 AM |
1908 | einfo->failed = TRUE; |
1909 | return FALSE; | |
b49e97c9 TS |
1910 | } |
1911 | ||
b34976b6 | 1912 | return TRUE; |
b49e97c9 TS |
1913 | } |
1914 | ||
1915 | /* A comparison routine used to sort .gptab entries. */ | |
1916 | ||
1917 | static int | |
9719ad41 | 1918 | gptab_compare (const void *p1, const void *p2) |
b49e97c9 | 1919 | { |
9719ad41 RS |
1920 | const Elf32_gptab *a1 = p1; |
1921 | const Elf32_gptab *a2 = p2; | |
b49e97c9 TS |
1922 | |
1923 | return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value; | |
1924 | } | |
1925 | \f | |
b15e6682 | 1926 | /* Functions to manage the got entry hash table. */ |
f4416af6 AO |
1927 | |
1928 | /* Use all 64 bits of a bfd_vma for the computation of a 32-bit | |
1929 | hash number. */ | |
1930 | ||
1931 | static INLINE hashval_t | |
9719ad41 | 1932 | mips_elf_hash_bfd_vma (bfd_vma addr) |
f4416af6 AO |
1933 | { |
1934 | #ifdef BFD64 | |
1935 | return addr + (addr >> 32); | |
1936 | #else | |
1937 | return addr; | |
1938 | #endif | |
1939 | } | |
1940 | ||
1941 | /* got_entries only match if they're identical, except for gotidx, so | |
1942 | use all fields to compute the hash, and compare the appropriate | |
1943 | union members. */ | |
1944 | ||
b15e6682 | 1945 | static hashval_t |
9719ad41 | 1946 | mips_elf_got_entry_hash (const void *entry_) |
b15e6682 AO |
1947 | { |
1948 | const struct mips_got_entry *entry = (struct mips_got_entry *)entry_; | |
1949 | ||
38985a1c | 1950 | return entry->symndx |
0f20cc35 | 1951 | + ((entry->tls_type & GOT_TLS_LDM) << 17) |
f4416af6 | 1952 | + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address) |
38985a1c AO |
1953 | : entry->abfd->id |
1954 | + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend) | |
1955 | : entry->d.h->root.root.root.hash)); | |
b15e6682 AO |
1956 | } |
1957 | ||
1958 | static int | |
9719ad41 | 1959 | mips_elf_got_entry_eq (const void *entry1, const void *entry2) |
b15e6682 AO |
1960 | { |
1961 | const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1; | |
1962 | const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2; | |
1963 | ||
0f20cc35 DJ |
1964 | /* An LDM entry can only match another LDM entry. */ |
1965 | if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM) | |
1966 | return 0; | |
1967 | ||
b15e6682 | 1968 | return e1->abfd == e2->abfd && e1->symndx == e2->symndx |
f4416af6 AO |
1969 | && (! e1->abfd ? e1->d.address == e2->d.address |
1970 | : e1->symndx >= 0 ? e1->d.addend == e2->d.addend | |
1971 | : e1->d.h == e2->d.h); | |
1972 | } | |
1973 | ||
1974 | /* multi_got_entries are still a match in the case of global objects, | |
1975 | even if the input bfd in which they're referenced differs, so the | |
1976 | hash computation and compare functions are adjusted | |
1977 | accordingly. */ | |
1978 | ||
1979 | static hashval_t | |
9719ad41 | 1980 | mips_elf_multi_got_entry_hash (const void *entry_) |
f4416af6 AO |
1981 | { |
1982 | const struct mips_got_entry *entry = (struct mips_got_entry *)entry_; | |
1983 | ||
1984 | return entry->symndx | |
1985 | + (! entry->abfd | |
1986 | ? mips_elf_hash_bfd_vma (entry->d.address) | |
1987 | : entry->symndx >= 0 | |
0f20cc35 DJ |
1988 | ? ((entry->tls_type & GOT_TLS_LDM) |
1989 | ? (GOT_TLS_LDM << 17) | |
1990 | : (entry->abfd->id | |
1991 | + mips_elf_hash_bfd_vma (entry->d.addend))) | |
f4416af6 AO |
1992 | : entry->d.h->root.root.root.hash); |
1993 | } | |
1994 | ||
1995 | static int | |
9719ad41 | 1996 | mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2) |
f4416af6 AO |
1997 | { |
1998 | const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1; | |
1999 | const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2; | |
2000 | ||
0f20cc35 DJ |
2001 | /* Any two LDM entries match. */ |
2002 | if (e1->tls_type & e2->tls_type & GOT_TLS_LDM) | |
2003 | return 1; | |
2004 | ||
2005 | /* Nothing else matches an LDM entry. */ | |
2006 | if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM) | |
2007 | return 0; | |
2008 | ||
f4416af6 AO |
2009 | return e1->symndx == e2->symndx |
2010 | && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend | |
2011 | : e1->abfd == NULL || e2->abfd == NULL | |
2012 | ? e1->abfd == e2->abfd && e1->d.address == e2->d.address | |
2013 | : e1->d.h == e2->d.h); | |
b15e6682 AO |
2014 | } |
2015 | \f | |
0a44bf69 RS |
2016 | /* Return the dynamic relocation section. If it doesn't exist, try to |
2017 | create a new it if CREATE_P, otherwise return NULL. Also return NULL | |
2018 | if creation fails. */ | |
f4416af6 AO |
2019 | |
2020 | static asection * | |
0a44bf69 | 2021 | mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p) |
f4416af6 | 2022 | { |
0a44bf69 | 2023 | const char *dname; |
f4416af6 | 2024 | asection *sreloc; |
0a44bf69 | 2025 | bfd *dynobj; |
f4416af6 | 2026 | |
0a44bf69 RS |
2027 | dname = MIPS_ELF_REL_DYN_NAME (info); |
2028 | dynobj = elf_hash_table (info)->dynobj; | |
f4416af6 AO |
2029 | sreloc = bfd_get_section_by_name (dynobj, dname); |
2030 | if (sreloc == NULL && create_p) | |
2031 | { | |
3496cb2a L |
2032 | sreloc = bfd_make_section_with_flags (dynobj, dname, |
2033 | (SEC_ALLOC | |
2034 | | SEC_LOAD | |
2035 | | SEC_HAS_CONTENTS | |
2036 | | SEC_IN_MEMORY | |
2037 | | SEC_LINKER_CREATED | |
2038 | | SEC_READONLY)); | |
f4416af6 | 2039 | if (sreloc == NULL |
f4416af6 | 2040 | || ! bfd_set_section_alignment (dynobj, sreloc, |
d80dcc6a | 2041 | MIPS_ELF_LOG_FILE_ALIGN (dynobj))) |
f4416af6 AO |
2042 | return NULL; |
2043 | } | |
2044 | return sreloc; | |
2045 | } | |
2046 | ||
b49e97c9 TS |
2047 | /* Returns the GOT section for ABFD. */ |
2048 | ||
2049 | static asection * | |
9719ad41 | 2050 | mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded) |
b49e97c9 | 2051 | { |
f4416af6 AO |
2052 | asection *sgot = bfd_get_section_by_name (abfd, ".got"); |
2053 | if (sgot == NULL | |
2054 | || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0)) | |
2055 | return NULL; | |
2056 | return sgot; | |
b49e97c9 TS |
2057 | } |
2058 | ||
2059 | /* Returns the GOT information associated with the link indicated by | |
2060 | INFO. If SGOTP is non-NULL, it is filled in with the GOT | |
2061 | section. */ | |
2062 | ||
2063 | static struct mips_got_info * | |
9719ad41 | 2064 | mips_elf_got_info (bfd *abfd, asection **sgotp) |
b49e97c9 TS |
2065 | { |
2066 | asection *sgot; | |
2067 | struct mips_got_info *g; | |
2068 | ||
f4416af6 | 2069 | sgot = mips_elf_got_section (abfd, TRUE); |
b49e97c9 | 2070 | BFD_ASSERT (sgot != NULL); |
f0abc2a1 AM |
2071 | BFD_ASSERT (mips_elf_section_data (sgot) != NULL); |
2072 | g = mips_elf_section_data (sgot)->u.got_info; | |
b49e97c9 TS |
2073 | BFD_ASSERT (g != NULL); |
2074 | ||
2075 | if (sgotp) | |
f4416af6 AO |
2076 | *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL; |
2077 | ||
b49e97c9 TS |
2078 | return g; |
2079 | } | |
2080 | ||
0f20cc35 DJ |
2081 | /* Count the number of relocations needed for a TLS GOT entry, with |
2082 | access types from TLS_TYPE, and symbol H (or a local symbol if H | |
2083 | is NULL). */ | |
2084 | ||
2085 | static int | |
2086 | mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type, | |
2087 | struct elf_link_hash_entry *h) | |
2088 | { | |
2089 | int indx = 0; | |
2090 | int ret = 0; | |
2091 | bfd_boolean need_relocs = FALSE; | |
2092 | bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created; | |
2093 | ||
2094 | if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h) | |
2095 | && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h))) | |
2096 | indx = h->dynindx; | |
2097 | ||
2098 | if ((info->shared || indx != 0) | |
2099 | && (h == NULL | |
2100 | || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT | |
2101 | || h->root.type != bfd_link_hash_undefweak)) | |
2102 | need_relocs = TRUE; | |
2103 | ||
2104 | if (!need_relocs) | |
2105 | return FALSE; | |
2106 | ||
2107 | if (tls_type & GOT_TLS_GD) | |
2108 | { | |
2109 | ret++; | |
2110 | if (indx != 0) | |
2111 | ret++; | |
2112 | } | |
2113 | ||
2114 | if (tls_type & GOT_TLS_IE) | |
2115 | ret++; | |
2116 | ||
2117 | if ((tls_type & GOT_TLS_LDM) && info->shared) | |
2118 | ret++; | |
2119 | ||
2120 | return ret; | |
2121 | } | |
2122 | ||
2123 | /* Count the number of TLS relocations required for the GOT entry in | |
2124 | ARG1, if it describes a local symbol. */ | |
2125 | ||
2126 | static int | |
2127 | mips_elf_count_local_tls_relocs (void **arg1, void *arg2) | |
2128 | { | |
2129 | struct mips_got_entry *entry = * (struct mips_got_entry **) arg1; | |
2130 | struct mips_elf_count_tls_arg *arg = arg2; | |
2131 | ||
2132 | if (entry->abfd != NULL && entry->symndx != -1) | |
2133 | arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL); | |
2134 | ||
2135 | return 1; | |
2136 | } | |
2137 | ||
2138 | /* Count the number of TLS GOT entries required for the global (or | |
2139 | forced-local) symbol in ARG1. */ | |
2140 | ||
2141 | static int | |
2142 | mips_elf_count_global_tls_entries (void *arg1, void *arg2) | |
2143 | { | |
2144 | struct mips_elf_link_hash_entry *hm | |
2145 | = (struct mips_elf_link_hash_entry *) arg1; | |
2146 | struct mips_elf_count_tls_arg *arg = arg2; | |
2147 | ||
2148 | if (hm->tls_type & GOT_TLS_GD) | |
2149 | arg->needed += 2; | |
2150 | if (hm->tls_type & GOT_TLS_IE) | |
2151 | arg->needed += 1; | |
2152 | ||
2153 | return 1; | |
2154 | } | |
2155 | ||
2156 | /* Count the number of TLS relocations required for the global (or | |
2157 | forced-local) symbol in ARG1. */ | |
2158 | ||
2159 | static int | |
2160 | mips_elf_count_global_tls_relocs (void *arg1, void *arg2) | |
2161 | { | |
2162 | struct mips_elf_link_hash_entry *hm | |
2163 | = (struct mips_elf_link_hash_entry *) arg1; | |
2164 | struct mips_elf_count_tls_arg *arg = arg2; | |
2165 | ||
2166 | arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root); | |
2167 | ||
2168 | return 1; | |
2169 | } | |
2170 | ||
2171 | /* Output a simple dynamic relocation into SRELOC. */ | |
2172 | ||
2173 | static void | |
2174 | mips_elf_output_dynamic_relocation (bfd *output_bfd, | |
2175 | asection *sreloc, | |
2176 | unsigned long indx, | |
2177 | int r_type, | |
2178 | bfd_vma offset) | |
2179 | { | |
2180 | Elf_Internal_Rela rel[3]; | |
2181 | ||
2182 | memset (rel, 0, sizeof (rel)); | |
2183 | ||
2184 | rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type); | |
2185 | rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset; | |
2186 | ||
2187 | if (ABI_64_P (output_bfd)) | |
2188 | { | |
2189 | (*get_elf_backend_data (output_bfd)->s->swap_reloc_out) | |
2190 | (output_bfd, &rel[0], | |
2191 | (sreloc->contents | |
2192 | + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel))); | |
2193 | } | |
2194 | else | |
2195 | bfd_elf32_swap_reloc_out | |
2196 | (output_bfd, &rel[0], | |
2197 | (sreloc->contents | |
2198 | + sreloc->reloc_count * sizeof (Elf32_External_Rel))); | |
2199 | ++sreloc->reloc_count; | |
2200 | } | |
2201 | ||
2202 | /* Initialize a set of TLS GOT entries for one symbol. */ | |
2203 | ||
2204 | static void | |
2205 | mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset, | |
2206 | unsigned char *tls_type_p, | |
2207 | struct bfd_link_info *info, | |
2208 | struct mips_elf_link_hash_entry *h, | |
2209 | bfd_vma value) | |
2210 | { | |
2211 | int indx; | |
2212 | asection *sreloc, *sgot; | |
2213 | bfd_vma offset, offset2; | |
2214 | bfd *dynobj; | |
2215 | bfd_boolean need_relocs = FALSE; | |
2216 | ||
2217 | dynobj = elf_hash_table (info)->dynobj; | |
2218 | sgot = mips_elf_got_section (dynobj, FALSE); | |
2219 | ||
2220 | indx = 0; | |
2221 | if (h != NULL) | |
2222 | { | |
2223 | bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created; | |
2224 | ||
2225 | if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root) | |
2226 | && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root))) | |
2227 | indx = h->root.dynindx; | |
2228 | } | |
2229 | ||
2230 | if (*tls_type_p & GOT_TLS_DONE) | |
2231 | return; | |
2232 | ||
2233 | if ((info->shared || indx != 0) | |
2234 | && (h == NULL | |
2235 | || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT | |
2236 | || h->root.type != bfd_link_hash_undefweak)) | |
2237 | need_relocs = TRUE; | |
2238 | ||
2239 | /* MINUS_ONE means the symbol is not defined in this object. It may not | |
2240 | be defined at all; assume that the value doesn't matter in that | |
2241 | case. Otherwise complain if we would use the value. */ | |
2242 | BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs) | |
2243 | || h->root.root.type == bfd_link_hash_undefweak); | |
2244 | ||
2245 | /* Emit necessary relocations. */ | |
0a44bf69 | 2246 | sreloc = mips_elf_rel_dyn_section (info, FALSE); |
0f20cc35 DJ |
2247 | |
2248 | /* General Dynamic. */ | |
2249 | if (*tls_type_p & GOT_TLS_GD) | |
2250 | { | |
2251 | offset = got_offset; | |
2252 | offset2 = offset + MIPS_ELF_GOT_SIZE (abfd); | |
2253 | ||
2254 | if (need_relocs) | |
2255 | { | |
2256 | mips_elf_output_dynamic_relocation | |
2257 | (abfd, sreloc, indx, | |
2258 | ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32, | |
2259 | sgot->output_offset + sgot->output_section->vma + offset); | |
2260 | ||
2261 | if (indx) | |
2262 | mips_elf_output_dynamic_relocation | |
2263 | (abfd, sreloc, indx, | |
2264 | ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32, | |
2265 | sgot->output_offset + sgot->output_section->vma + offset2); | |
2266 | else | |
2267 | MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info), | |
2268 | sgot->contents + offset2); | |
2269 | } | |
2270 | else | |
2271 | { | |
2272 | MIPS_ELF_PUT_WORD (abfd, 1, | |
2273 | sgot->contents + offset); | |
2274 | MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info), | |
2275 | sgot->contents + offset2); | |
2276 | } | |
2277 | ||
2278 | got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd); | |
2279 | } | |
2280 | ||
2281 | /* Initial Exec model. */ | |
2282 | if (*tls_type_p & GOT_TLS_IE) | |
2283 | { | |
2284 | offset = got_offset; | |
2285 | ||
2286 | if (need_relocs) | |
2287 | { | |
2288 | if (indx == 0) | |
2289 | MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma, | |
2290 | sgot->contents + offset); | |
2291 | else | |
2292 | MIPS_ELF_PUT_WORD (abfd, 0, | |
2293 | sgot->contents + offset); | |
2294 | ||
2295 | mips_elf_output_dynamic_relocation | |
2296 | (abfd, sreloc, indx, | |
2297 | ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32, | |
2298 | sgot->output_offset + sgot->output_section->vma + offset); | |
2299 | } | |
2300 | else | |
2301 | MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info), | |
2302 | sgot->contents + offset); | |
2303 | } | |
2304 | ||
2305 | if (*tls_type_p & GOT_TLS_LDM) | |
2306 | { | |
2307 | /* The initial offset is zero, and the LD offsets will include the | |
2308 | bias by DTP_OFFSET. */ | |
2309 | MIPS_ELF_PUT_WORD (abfd, 0, | |
2310 | sgot->contents + got_offset | |
2311 | + MIPS_ELF_GOT_SIZE (abfd)); | |
2312 | ||
2313 | if (!info->shared) | |
2314 | MIPS_ELF_PUT_WORD (abfd, 1, | |
2315 | sgot->contents + got_offset); | |
2316 | else | |
2317 | mips_elf_output_dynamic_relocation | |
2318 | (abfd, sreloc, indx, | |
2319 | ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32, | |
2320 | sgot->output_offset + sgot->output_section->vma + got_offset); | |
2321 | } | |
2322 | ||
2323 | *tls_type_p |= GOT_TLS_DONE; | |
2324 | } | |
2325 | ||
2326 | /* Return the GOT index to use for a relocation of type R_TYPE against | |
2327 | a symbol accessed using TLS_TYPE models. The GOT entries for this | |
2328 | symbol in this GOT start at GOT_INDEX. This function initializes the | |
2329 | GOT entries and corresponding relocations. */ | |
2330 | ||
2331 | static bfd_vma | |
2332 | mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type, | |
2333 | int r_type, struct bfd_link_info *info, | |
2334 | struct mips_elf_link_hash_entry *h, bfd_vma symbol) | |
2335 | { | |
2336 | BFD_ASSERT (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS_TLS_GD | |
2337 | || r_type == R_MIPS_TLS_LDM); | |
2338 | ||
2339 | mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol); | |
2340 | ||
2341 | if (r_type == R_MIPS_TLS_GOTTPREL) | |
2342 | { | |
2343 | BFD_ASSERT (*tls_type & GOT_TLS_IE); | |
2344 | if (*tls_type & GOT_TLS_GD) | |
2345 | return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd); | |
2346 | else | |
2347 | return got_index; | |
2348 | } | |
2349 | ||
2350 | if (r_type == R_MIPS_TLS_GD) | |
2351 | { | |
2352 | BFD_ASSERT (*tls_type & GOT_TLS_GD); | |
2353 | return got_index; | |
2354 | } | |
2355 | ||
2356 | if (r_type == R_MIPS_TLS_LDM) | |
2357 | { | |
2358 | BFD_ASSERT (*tls_type & GOT_TLS_LDM); | |
2359 | return got_index; | |
2360 | } | |
2361 | ||
2362 | return got_index; | |
2363 | } | |
2364 | ||
0a44bf69 RS |
2365 | /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry |
2366 | for global symbol H. .got.plt comes before the GOT, so the offset | |
2367 | will be negative. */ | |
2368 | ||
2369 | static bfd_vma | |
2370 | mips_elf_gotplt_index (struct bfd_link_info *info, | |
2371 | struct elf_link_hash_entry *h) | |
2372 | { | |
2373 | bfd_vma plt_index, got_address, got_value; | |
2374 | struct mips_elf_link_hash_table *htab; | |
2375 | ||
2376 | htab = mips_elf_hash_table (info); | |
2377 | BFD_ASSERT (h->plt.offset != (bfd_vma) -1); | |
2378 | ||
2379 | /* Calculate the index of the symbol's PLT entry. */ | |
2380 | plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size; | |
2381 | ||
2382 | /* Calculate the address of the associated .got.plt entry. */ | |
2383 | got_address = (htab->sgotplt->output_section->vma | |
2384 | + htab->sgotplt->output_offset | |
2385 | + plt_index * 4); | |
2386 | ||
2387 | /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */ | |
2388 | got_value = (htab->root.hgot->root.u.def.section->output_section->vma | |
2389 | + htab->root.hgot->root.u.def.section->output_offset | |
2390 | + htab->root.hgot->root.u.def.value); | |
2391 | ||
2392 | return got_address - got_value; | |
2393 | } | |
2394 | ||
2395 | /* Return the GOT offset for address VALUE, which was derived from | |
2396 | a symbol belonging to INPUT_SECTION. If there is not yet a GOT | |
2397 | entry for this value, create one. If R_SYMNDX refers to a TLS symbol, | |
2398 | create a TLS GOT entry instead. Return -1 if no satisfactory GOT | |
2399 | offset can be found. */ | |
b49e97c9 TS |
2400 | |
2401 | static bfd_vma | |
9719ad41 | 2402 | mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info, |
0a44bf69 RS |
2403 | asection *input_section, bfd_vma value, |
2404 | unsigned long r_symndx, | |
0f20cc35 | 2405 | struct mips_elf_link_hash_entry *h, int r_type) |
b49e97c9 TS |
2406 | { |
2407 | asection *sgot; | |
2408 | struct mips_got_info *g; | |
b15e6682 | 2409 | struct mips_got_entry *entry; |
b49e97c9 TS |
2410 | |
2411 | g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot); | |
2412 | ||
0a44bf69 RS |
2413 | entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot, |
2414 | input_section, value, | |
0f20cc35 DJ |
2415 | r_symndx, h, r_type); |
2416 | if (!entry) | |
b15e6682 | 2417 | return MINUS_ONE; |
0f20cc35 DJ |
2418 | |
2419 | if (TLS_RELOC_P (r_type)) | |
ead49a57 RS |
2420 | { |
2421 | if (entry->symndx == -1 && g->next == NULL) | |
2422 | /* A type (3) entry in the single-GOT case. We use the symbol's | |
2423 | hash table entry to track the index. */ | |
2424 | return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type, | |
2425 | r_type, info, h, value); | |
2426 | else | |
2427 | return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type, | |
2428 | r_type, info, h, value); | |
2429 | } | |
0f20cc35 DJ |
2430 | else |
2431 | return entry->gotidx; | |
b49e97c9 TS |
2432 | } |
2433 | ||
2434 | /* Returns the GOT index for the global symbol indicated by H. */ | |
2435 | ||
2436 | static bfd_vma | |
0f20cc35 DJ |
2437 | mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h, |
2438 | int r_type, struct bfd_link_info *info) | |
b49e97c9 TS |
2439 | { |
2440 | bfd_vma index; | |
2441 | asection *sgot; | |
f4416af6 | 2442 | struct mips_got_info *g, *gg; |
d0c7ff07 | 2443 | long global_got_dynindx = 0; |
b49e97c9 | 2444 | |
f4416af6 AO |
2445 | gg = g = mips_elf_got_info (abfd, &sgot); |
2446 | if (g->bfd2got && ibfd) | |
2447 | { | |
2448 | struct mips_got_entry e, *p; | |
143d77c5 | 2449 | |
f4416af6 AO |
2450 | BFD_ASSERT (h->dynindx >= 0); |
2451 | ||
2452 | g = mips_elf_got_for_ibfd (g, ibfd); | |
0f20cc35 | 2453 | if (g->next != gg || TLS_RELOC_P (r_type)) |
f4416af6 AO |
2454 | { |
2455 | e.abfd = ibfd; | |
2456 | e.symndx = -1; | |
2457 | e.d.h = (struct mips_elf_link_hash_entry *)h; | |
0f20cc35 | 2458 | e.tls_type = 0; |
f4416af6 | 2459 | |
9719ad41 | 2460 | p = htab_find (g->got_entries, &e); |
f4416af6 AO |
2461 | |
2462 | BFD_ASSERT (p->gotidx > 0); | |
0f20cc35 DJ |
2463 | |
2464 | if (TLS_RELOC_P (r_type)) | |
2465 | { | |
2466 | bfd_vma value = MINUS_ONE; | |
2467 | if ((h->root.type == bfd_link_hash_defined | |
2468 | || h->root.type == bfd_link_hash_defweak) | |
2469 | && h->root.u.def.section->output_section) | |
2470 | value = (h->root.u.def.value | |
2471 | + h->root.u.def.section->output_offset | |
2472 | + h->root.u.def.section->output_section->vma); | |
2473 | ||
2474 | return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type, | |
2475 | info, e.d.h, value); | |
2476 | } | |
2477 | else | |
2478 | return p->gotidx; | |
f4416af6 AO |
2479 | } |
2480 | } | |
2481 | ||
2482 | if (gg->global_gotsym != NULL) | |
2483 | global_got_dynindx = gg->global_gotsym->dynindx; | |
b49e97c9 | 2484 | |
0f20cc35 DJ |
2485 | if (TLS_RELOC_P (r_type)) |
2486 | { | |
2487 | struct mips_elf_link_hash_entry *hm | |
2488 | = (struct mips_elf_link_hash_entry *) h; | |
2489 | bfd_vma value = MINUS_ONE; | |
2490 | ||
2491 | if ((h->root.type == bfd_link_hash_defined | |
2492 | || h->root.type == bfd_link_hash_defweak) | |
2493 | && h->root.u.def.section->output_section) | |
2494 | value = (h->root.u.def.value | |
2495 | + h->root.u.def.section->output_offset | |
2496 | + h->root.u.def.section->output_section->vma); | |
2497 | ||
2498 | index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type, | |
2499 | r_type, info, hm, value); | |
2500 | } | |
2501 | else | |
2502 | { | |
2503 | /* Once we determine the global GOT entry with the lowest dynamic | |
2504 | symbol table index, we must put all dynamic symbols with greater | |
2505 | indices into the GOT. That makes it easy to calculate the GOT | |
2506 | offset. */ | |
2507 | BFD_ASSERT (h->dynindx >= global_got_dynindx); | |
2508 | index = ((h->dynindx - global_got_dynindx + g->local_gotno) | |
2509 | * MIPS_ELF_GOT_SIZE (abfd)); | |
2510 | } | |
eea6121a | 2511 | BFD_ASSERT (index < sgot->size); |
b49e97c9 TS |
2512 | |
2513 | return index; | |
2514 | } | |
2515 | ||
0a44bf69 RS |
2516 | /* Find a GOT page entry that points to within 32KB of VALUE, which was |
2517 | calculated from a symbol belonging to INPUT_SECTION. These entries | |
2518 | are supposed to be placed at small offsets in the GOT, i.e., within | |
2519 | 32KB of GP. Return the index of the GOT entry, or -1 if no entry | |
2520 | could be created. If OFFSETP is nonnull, use it to return the | |
2521 | offset of the GOT entry from VALUE. */ | |
b49e97c9 TS |
2522 | |
2523 | static bfd_vma | |
9719ad41 | 2524 | mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info, |
0a44bf69 | 2525 | asection *input_section, bfd_vma value, bfd_vma *offsetp) |
b49e97c9 TS |
2526 | { |
2527 | asection *sgot; | |
2528 | struct mips_got_info *g; | |
0a44bf69 | 2529 | bfd_vma page, index; |
b15e6682 | 2530 | struct mips_got_entry *entry; |
b49e97c9 TS |
2531 | |
2532 | g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot); | |
2533 | ||
0a44bf69 RS |
2534 | page = (value + 0x8000) & ~(bfd_vma) 0xffff; |
2535 | entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot, | |
2536 | input_section, page, 0, | |
0f20cc35 | 2537 | NULL, R_MIPS_GOT_PAGE); |
b49e97c9 | 2538 | |
b15e6682 AO |
2539 | if (!entry) |
2540 | return MINUS_ONE; | |
143d77c5 | 2541 | |
b15e6682 | 2542 | index = entry->gotidx; |
b49e97c9 TS |
2543 | |
2544 | if (offsetp) | |
f4416af6 | 2545 | *offsetp = value - entry->d.address; |
b49e97c9 TS |
2546 | |
2547 | return index; | |
2548 | } | |
2549 | ||
0a44bf69 RS |
2550 | /* Find a local GOT entry for an R_MIPS_GOT16 relocation against VALUE, |
2551 | which was calculated from a symbol belonging to INPUT_SECTION. | |
2552 | EXTERNAL is true if the relocation was against a global symbol | |
2553 | that has been forced local. */ | |
b49e97c9 TS |
2554 | |
2555 | static bfd_vma | |
9719ad41 | 2556 | mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info, |
0a44bf69 RS |
2557 | asection *input_section, bfd_vma value, |
2558 | bfd_boolean external) | |
b49e97c9 TS |
2559 | { |
2560 | asection *sgot; | |
2561 | struct mips_got_info *g; | |
b15e6682 | 2562 | struct mips_got_entry *entry; |
b49e97c9 | 2563 | |
0a44bf69 RS |
2564 | /* GOT16 relocations against local symbols are followed by a LO16 |
2565 | relocation; those against global symbols are not. Thus if the | |
2566 | symbol was originally local, the GOT16 relocation should load the | |
2567 | equivalent of %hi(VALUE), otherwise it should load VALUE itself. */ | |
b49e97c9 | 2568 | if (! external) |
0a44bf69 | 2569 | value = mips_elf_high (value) << 16; |
b49e97c9 TS |
2570 | |
2571 | g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot); | |
2572 | ||
0a44bf69 RS |
2573 | entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot, |
2574 | input_section, value, 0, | |
2575 | NULL, R_MIPS_GOT16); | |
b15e6682 AO |
2576 | if (entry) |
2577 | return entry->gotidx; | |
2578 | else | |
2579 | return MINUS_ONE; | |
b49e97c9 TS |
2580 | } |
2581 | ||
2582 | /* Returns the offset for the entry at the INDEXth position | |
2583 | in the GOT. */ | |
2584 | ||
2585 | static bfd_vma | |
9719ad41 RS |
2586 | mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd, |
2587 | bfd *input_bfd, bfd_vma index) | |
b49e97c9 TS |
2588 | { |
2589 | asection *sgot; | |
2590 | bfd_vma gp; | |
f4416af6 | 2591 | struct mips_got_info *g; |
b49e97c9 | 2592 | |
f4416af6 AO |
2593 | g = mips_elf_got_info (dynobj, &sgot); |
2594 | gp = _bfd_get_gp_value (output_bfd) | |
2595 | + mips_elf_adjust_gp (output_bfd, g, input_bfd); | |
143d77c5 | 2596 | |
f4416af6 | 2597 | return sgot->output_section->vma + sgot->output_offset + index - gp; |
b49e97c9 TS |
2598 | } |
2599 | ||
0a44bf69 RS |
2600 | /* Create and return a local GOT entry for VALUE, which was calculated |
2601 | from a symbol belonging to INPUT_SECTON. Return NULL if it could not | |
2602 | be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry | |
2603 | instead. */ | |
b49e97c9 | 2604 | |
b15e6682 | 2605 | static struct mips_got_entry * |
0a44bf69 RS |
2606 | mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info, |
2607 | bfd *ibfd, struct mips_got_info *gg, | |
2608 | asection *sgot, asection *input_section, | |
2609 | bfd_vma value, unsigned long r_symndx, | |
0f20cc35 DJ |
2610 | struct mips_elf_link_hash_entry *h, |
2611 | int r_type) | |
b49e97c9 | 2612 | { |
b15e6682 | 2613 | struct mips_got_entry entry, **loc; |
f4416af6 | 2614 | struct mips_got_info *g; |
0a44bf69 RS |
2615 | struct mips_elf_link_hash_table *htab; |
2616 | ||
2617 | htab = mips_elf_hash_table (info); | |
b15e6682 | 2618 | |
f4416af6 AO |
2619 | entry.abfd = NULL; |
2620 | entry.symndx = -1; | |
2621 | entry.d.address = value; | |
0f20cc35 | 2622 | entry.tls_type = 0; |
f4416af6 AO |
2623 | |
2624 | g = mips_elf_got_for_ibfd (gg, ibfd); | |
2625 | if (g == NULL) | |
2626 | { | |
2627 | g = mips_elf_got_for_ibfd (gg, abfd); | |
2628 | BFD_ASSERT (g != NULL); | |
2629 | } | |
b15e6682 | 2630 | |
0f20cc35 DJ |
2631 | /* We might have a symbol, H, if it has been forced local. Use the |
2632 | global entry then. It doesn't matter whether an entry is local | |
2633 | or global for TLS, since the dynamic linker does not | |
2634 | automatically relocate TLS GOT entries. */ | |
a008ac03 | 2635 | BFD_ASSERT (h == NULL || h->root.forced_local); |
0f20cc35 DJ |
2636 | if (TLS_RELOC_P (r_type)) |
2637 | { | |
2638 | struct mips_got_entry *p; | |
2639 | ||
2640 | entry.abfd = ibfd; | |
2641 | if (r_type == R_MIPS_TLS_LDM) | |
2642 | { | |
2643 | entry.tls_type = GOT_TLS_LDM; | |
2644 | entry.symndx = 0; | |
2645 | entry.d.addend = 0; | |
2646 | } | |
2647 | else if (h == NULL) | |
2648 | { | |
2649 | entry.symndx = r_symndx; | |
2650 | entry.d.addend = 0; | |
2651 | } | |
2652 | else | |
2653 | entry.d.h = h; | |
2654 | ||
2655 | p = (struct mips_got_entry *) | |
2656 | htab_find (g->got_entries, &entry); | |
2657 | ||
2658 | BFD_ASSERT (p); | |
2659 | return p; | |
2660 | } | |
2661 | ||
b15e6682 AO |
2662 | loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry, |
2663 | INSERT); | |
2664 | if (*loc) | |
2665 | return *loc; | |
143d77c5 | 2666 | |
b15e6682 | 2667 | entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++; |
0f20cc35 | 2668 | entry.tls_type = 0; |
b15e6682 AO |
2669 | |
2670 | *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry); | |
2671 | ||
2672 | if (! *loc) | |
2673 | return NULL; | |
143d77c5 | 2674 | |
b15e6682 AO |
2675 | memcpy (*loc, &entry, sizeof entry); |
2676 | ||
b49e97c9 TS |
2677 | if (g->assigned_gotno >= g->local_gotno) |
2678 | { | |
f4416af6 | 2679 | (*loc)->gotidx = -1; |
b49e97c9 TS |
2680 | /* We didn't allocate enough space in the GOT. */ |
2681 | (*_bfd_error_handler) | |
2682 | (_("not enough GOT space for local GOT entries")); | |
2683 | bfd_set_error (bfd_error_bad_value); | |
b15e6682 | 2684 | return NULL; |
b49e97c9 TS |
2685 | } |
2686 | ||
2687 | MIPS_ELF_PUT_WORD (abfd, value, | |
b15e6682 AO |
2688 | (sgot->contents + entry.gotidx)); |
2689 | ||
0a44bf69 RS |
2690 | /* These GOT entries need a dynamic relocation on VxWorks. Because |
2691 | the offset between segments is not fixed, the relocation must be | |
2692 | against a symbol in the same segment as the original symbol. | |
2693 | The easiest way to do this is to take INPUT_SECTION's output | |
2694 | section and emit a relocation against its section symbol. */ | |
2695 | if (htab->is_vxworks) | |
2696 | { | |
2697 | Elf_Internal_Rela outrel; | |
2698 | asection *s, *output_section; | |
2699 | bfd_byte *loc; | |
2700 | bfd_vma got_address; | |
2701 | int dynindx; | |
2702 | ||
2703 | s = mips_elf_rel_dyn_section (info, FALSE); | |
2704 | output_section = input_section->output_section; | |
2705 | dynindx = elf_section_data (output_section)->dynindx; | |
2706 | got_address = (sgot->output_section->vma | |
2707 | + sgot->output_offset | |
2708 | + entry.gotidx); | |
2709 | ||
2710 | loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela)); | |
2711 | outrel.r_offset = got_address; | |
2712 | outrel.r_info = ELF32_R_INFO (dynindx, R_MIPS_32); | |
2713 | outrel.r_addend = value - output_section->vma; | |
2714 | bfd_elf32_swap_reloca_out (abfd, &outrel, loc); | |
2715 | } | |
2716 | ||
b15e6682 | 2717 | return *loc; |
b49e97c9 TS |
2718 | } |
2719 | ||
2720 | /* Sort the dynamic symbol table so that symbols that need GOT entries | |
2721 | appear towards the end. This reduces the amount of GOT space | |
2722 | required. MAX_LOCAL is used to set the number of local symbols | |
2723 | known to be in the dynamic symbol table. During | |
2724 | _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the | |
2725 | section symbols are added and the count is higher. */ | |
2726 | ||
b34976b6 | 2727 | static bfd_boolean |
9719ad41 | 2728 | mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local) |
b49e97c9 TS |
2729 | { |
2730 | struct mips_elf_hash_sort_data hsd; | |
2731 | struct mips_got_info *g; | |
2732 | bfd *dynobj; | |
2733 | ||
2734 | dynobj = elf_hash_table (info)->dynobj; | |
2735 | ||
f4416af6 AO |
2736 | g = mips_elf_got_info (dynobj, NULL); |
2737 | ||
b49e97c9 | 2738 | hsd.low = NULL; |
143d77c5 | 2739 | hsd.max_unref_got_dynindx = |
f4416af6 AO |
2740 | hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount |
2741 | /* In the multi-got case, assigned_gotno of the master got_info | |
2742 | indicate the number of entries that aren't referenced in the | |
2743 | primary GOT, but that must have entries because there are | |
2744 | dynamic relocations that reference it. Since they aren't | |
2745 | referenced, we move them to the end of the GOT, so that they | |
2746 | don't prevent other entries that are referenced from getting | |
2747 | too large offsets. */ | |
2748 | - (g->next ? g->assigned_gotno : 0); | |
b49e97c9 TS |
2749 | hsd.max_non_got_dynindx = max_local; |
2750 | mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *) | |
2751 | elf_hash_table (info)), | |
2752 | mips_elf_sort_hash_table_f, | |
2753 | &hsd); | |
2754 | ||
2755 | /* There should have been enough room in the symbol table to | |
44c410de | 2756 | accommodate both the GOT and non-GOT symbols. */ |
b49e97c9 | 2757 | BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx); |
f4416af6 AO |
2758 | BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx |
2759 | <= elf_hash_table (info)->dynsymcount); | |
b49e97c9 TS |
2760 | |
2761 | /* Now we know which dynamic symbol has the lowest dynamic symbol | |
2762 | table index in the GOT. */ | |
b49e97c9 TS |
2763 | g->global_gotsym = hsd.low; |
2764 | ||
b34976b6 | 2765 | return TRUE; |
b49e97c9 TS |
2766 | } |
2767 | ||
2768 | /* If H needs a GOT entry, assign it the highest available dynamic | |
2769 | index. Otherwise, assign it the lowest available dynamic | |
2770 | index. */ | |
2771 | ||
b34976b6 | 2772 | static bfd_boolean |
9719ad41 | 2773 | mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data) |
b49e97c9 | 2774 | { |
9719ad41 | 2775 | struct mips_elf_hash_sort_data *hsd = data; |
b49e97c9 TS |
2776 | |
2777 | if (h->root.root.type == bfd_link_hash_warning) | |
2778 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | |
2779 | ||
2780 | /* Symbols without dynamic symbol table entries aren't interesting | |
2781 | at all. */ | |
2782 | if (h->root.dynindx == -1) | |
b34976b6 | 2783 | return TRUE; |
b49e97c9 | 2784 | |
f4416af6 AO |
2785 | /* Global symbols that need GOT entries that are not explicitly |
2786 | referenced are marked with got offset 2. Those that are | |
2787 | referenced get a 1, and those that don't need GOT entries get | |
2788 | -1. */ | |
2789 | if (h->root.got.offset == 2) | |
2790 | { | |
0f20cc35 DJ |
2791 | BFD_ASSERT (h->tls_type == GOT_NORMAL); |
2792 | ||
f4416af6 AO |
2793 | if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx) |
2794 | hsd->low = (struct elf_link_hash_entry *) h; | |
2795 | h->root.dynindx = hsd->max_unref_got_dynindx++; | |
2796 | } | |
2797 | else if (h->root.got.offset != 1) | |
b49e97c9 TS |
2798 | h->root.dynindx = hsd->max_non_got_dynindx++; |
2799 | else | |
2800 | { | |
0f20cc35 DJ |
2801 | BFD_ASSERT (h->tls_type == GOT_NORMAL); |
2802 | ||
b49e97c9 TS |
2803 | h->root.dynindx = --hsd->min_got_dynindx; |
2804 | hsd->low = (struct elf_link_hash_entry *) h; | |
2805 | } | |
2806 | ||
b34976b6 | 2807 | return TRUE; |
b49e97c9 TS |
2808 | } |
2809 | ||
2810 | /* If H is a symbol that needs a global GOT entry, but has a dynamic | |
2811 | symbol table index lower than any we've seen to date, record it for | |
2812 | posterity. */ | |
2813 | ||
b34976b6 | 2814 | static bfd_boolean |
9719ad41 RS |
2815 | mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h, |
2816 | bfd *abfd, struct bfd_link_info *info, | |
0f20cc35 DJ |
2817 | struct mips_got_info *g, |
2818 | unsigned char tls_flag) | |
b49e97c9 | 2819 | { |
f4416af6 AO |
2820 | struct mips_got_entry entry, **loc; |
2821 | ||
b49e97c9 TS |
2822 | /* A global symbol in the GOT must also be in the dynamic symbol |
2823 | table. */ | |
7c5fcef7 L |
2824 | if (h->dynindx == -1) |
2825 | { | |
2826 | switch (ELF_ST_VISIBILITY (h->other)) | |
2827 | { | |
2828 | case STV_INTERNAL: | |
2829 | case STV_HIDDEN: | |
b34976b6 | 2830 | _bfd_mips_elf_hide_symbol (info, h, TRUE); |
7c5fcef7 L |
2831 | break; |
2832 | } | |
c152c796 | 2833 | if (!bfd_elf_link_record_dynamic_symbol (info, h)) |
b34976b6 | 2834 | return FALSE; |
7c5fcef7 | 2835 | } |
b49e97c9 | 2836 | |
86324f90 EC |
2837 | /* Make sure we have a GOT to put this entry into. */ |
2838 | BFD_ASSERT (g != NULL); | |
2839 | ||
f4416af6 AO |
2840 | entry.abfd = abfd; |
2841 | entry.symndx = -1; | |
2842 | entry.d.h = (struct mips_elf_link_hash_entry *) h; | |
0f20cc35 | 2843 | entry.tls_type = 0; |
f4416af6 AO |
2844 | |
2845 | loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry, | |
2846 | INSERT); | |
2847 | ||
b49e97c9 TS |
2848 | /* If we've already marked this entry as needing GOT space, we don't |
2849 | need to do it again. */ | |
f4416af6 | 2850 | if (*loc) |
0f20cc35 DJ |
2851 | { |
2852 | (*loc)->tls_type |= tls_flag; | |
2853 | return TRUE; | |
2854 | } | |
f4416af6 AO |
2855 | |
2856 | *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry); | |
2857 | ||
2858 | if (! *loc) | |
2859 | return FALSE; | |
143d77c5 | 2860 | |
f4416af6 | 2861 | entry.gotidx = -1; |
0f20cc35 DJ |
2862 | entry.tls_type = tls_flag; |
2863 | ||
f4416af6 AO |
2864 | memcpy (*loc, &entry, sizeof entry); |
2865 | ||
b49e97c9 | 2866 | if (h->got.offset != MINUS_ONE) |
b34976b6 | 2867 | return TRUE; |
b49e97c9 TS |
2868 | |
2869 | /* By setting this to a value other than -1, we are indicating that | |
2870 | there needs to be a GOT entry for H. Avoid using zero, as the | |
2871 | generic ELF copy_indirect_symbol tests for <= 0. */ | |
0f20cc35 DJ |
2872 | if (tls_flag == 0) |
2873 | h->got.offset = 1; | |
b49e97c9 | 2874 | |
b34976b6 | 2875 | return TRUE; |
b49e97c9 | 2876 | } |
f4416af6 AO |
2877 | |
2878 | /* Reserve space in G for a GOT entry containing the value of symbol | |
2879 | SYMNDX in input bfd ABDF, plus ADDEND. */ | |
2880 | ||
2881 | static bfd_boolean | |
9719ad41 | 2882 | mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend, |
0f20cc35 DJ |
2883 | struct mips_got_info *g, |
2884 | unsigned char tls_flag) | |
f4416af6 AO |
2885 | { |
2886 | struct mips_got_entry entry, **loc; | |
2887 | ||
2888 | entry.abfd = abfd; | |
2889 | entry.symndx = symndx; | |
2890 | entry.d.addend = addend; | |
0f20cc35 | 2891 | entry.tls_type = tls_flag; |
f4416af6 AO |
2892 | loc = (struct mips_got_entry **) |
2893 | htab_find_slot (g->got_entries, &entry, INSERT); | |
2894 | ||
2895 | if (*loc) | |
0f20cc35 DJ |
2896 | { |
2897 | if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD)) | |
2898 | { | |
2899 | g->tls_gotno += 2; | |
2900 | (*loc)->tls_type |= tls_flag; | |
2901 | } | |
2902 | else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE)) | |
2903 | { | |
2904 | g->tls_gotno += 1; | |
2905 | (*loc)->tls_type |= tls_flag; | |
2906 | } | |
2907 | return TRUE; | |
2908 | } | |
f4416af6 | 2909 | |
0f20cc35 DJ |
2910 | if (tls_flag != 0) |
2911 | { | |
2912 | entry.gotidx = -1; | |
2913 | entry.tls_type = tls_flag; | |
2914 | if (tls_flag == GOT_TLS_IE) | |
2915 | g->tls_gotno += 1; | |
2916 | else if (tls_flag == GOT_TLS_GD) | |
2917 | g->tls_gotno += 2; | |
2918 | else if (g->tls_ldm_offset == MINUS_ONE) | |
2919 | { | |
2920 | g->tls_ldm_offset = MINUS_TWO; | |
2921 | g->tls_gotno += 2; | |
2922 | } | |
2923 | } | |
2924 | else | |
2925 | { | |
2926 | entry.gotidx = g->local_gotno++; | |
2927 | entry.tls_type = 0; | |
2928 | } | |
f4416af6 AO |
2929 | |
2930 | *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry); | |
2931 | ||
2932 | if (! *loc) | |
2933 | return FALSE; | |
143d77c5 | 2934 | |
f4416af6 AO |
2935 | memcpy (*loc, &entry, sizeof entry); |
2936 | ||
2937 | return TRUE; | |
2938 | } | |
2939 | \f | |
2940 | /* Compute the hash value of the bfd in a bfd2got hash entry. */ | |
2941 | ||
2942 | static hashval_t | |
9719ad41 | 2943 | mips_elf_bfd2got_entry_hash (const void *entry_) |
f4416af6 AO |
2944 | { |
2945 | const struct mips_elf_bfd2got_hash *entry | |
2946 | = (struct mips_elf_bfd2got_hash *)entry_; | |
2947 | ||
2948 | return entry->bfd->id; | |
2949 | } | |
2950 | ||
2951 | /* Check whether two hash entries have the same bfd. */ | |
2952 | ||
2953 | static int | |
9719ad41 | 2954 | mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2) |
f4416af6 AO |
2955 | { |
2956 | const struct mips_elf_bfd2got_hash *e1 | |
2957 | = (const struct mips_elf_bfd2got_hash *)entry1; | |
2958 | const struct mips_elf_bfd2got_hash *e2 | |
2959 | = (const struct mips_elf_bfd2got_hash *)entry2; | |
2960 | ||
2961 | return e1->bfd == e2->bfd; | |
2962 | } | |
2963 | ||
bad36eac | 2964 | /* In a multi-got link, determine the GOT to be used for IBFD. G must |
f4416af6 AO |
2965 | be the master GOT data. */ |
2966 | ||
2967 | static struct mips_got_info * | |
9719ad41 | 2968 | mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd) |
f4416af6 AO |
2969 | { |
2970 | struct mips_elf_bfd2got_hash e, *p; | |
2971 | ||
2972 | if (! g->bfd2got) | |
2973 | return g; | |
2974 | ||
2975 | e.bfd = ibfd; | |
9719ad41 | 2976 | p = htab_find (g->bfd2got, &e); |
f4416af6 AO |
2977 | return p ? p->g : NULL; |
2978 | } | |
2979 | ||
2980 | /* Create one separate got for each bfd that has entries in the global | |
2981 | got, such that we can tell how many local and global entries each | |
2982 | bfd requires. */ | |
2983 | ||
2984 | static int | |
9719ad41 | 2985 | mips_elf_make_got_per_bfd (void **entryp, void *p) |
f4416af6 AO |
2986 | { |
2987 | struct mips_got_entry *entry = (struct mips_got_entry *)*entryp; | |
2988 | struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p; | |
2989 | htab_t bfd2got = arg->bfd2got; | |
2990 | struct mips_got_info *g; | |
2991 | struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot; | |
2992 | void **bfdgotp; | |
143d77c5 | 2993 | |
f4416af6 AO |
2994 | /* Find the got_info for this GOT entry's input bfd. Create one if |
2995 | none exists. */ | |
2996 | bfdgot_entry.bfd = entry->abfd; | |
2997 | bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT); | |
2998 | bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp; | |
2999 | ||
3000 | if (bfdgot != NULL) | |
3001 | g = bfdgot->g; | |
3002 | else | |
3003 | { | |
3004 | bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc | |
3005 | (arg->obfd, sizeof (struct mips_elf_bfd2got_hash)); | |
3006 | ||
3007 | if (bfdgot == NULL) | |
3008 | { | |
3009 | arg->obfd = 0; | |
3010 | return 0; | |
3011 | } | |
3012 | ||
3013 | *bfdgotp = bfdgot; | |
3014 | ||
3015 | bfdgot->bfd = entry->abfd; | |
3016 | bfdgot->g = g = (struct mips_got_info *) | |
3017 | bfd_alloc (arg->obfd, sizeof (struct mips_got_info)); | |
3018 | if (g == NULL) | |
3019 | { | |
3020 | arg->obfd = 0; | |
3021 | return 0; | |
3022 | } | |
3023 | ||
3024 | g->global_gotsym = NULL; | |
3025 | g->global_gotno = 0; | |
3026 | g->local_gotno = 0; | |
3027 | g->assigned_gotno = -1; | |
0f20cc35 DJ |
3028 | g->tls_gotno = 0; |
3029 | g->tls_assigned_gotno = 0; | |
3030 | g->tls_ldm_offset = MINUS_ONE; | |
f4416af6 | 3031 | g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash, |
9719ad41 | 3032 | mips_elf_multi_got_entry_eq, NULL); |
f4416af6 AO |
3033 | if (g->got_entries == NULL) |
3034 | { | |
3035 | arg->obfd = 0; | |
3036 | return 0; | |
3037 | } | |
3038 | ||
3039 | g->bfd2got = NULL; | |
3040 | g->next = NULL; | |
3041 | } | |
3042 | ||
3043 | /* Insert the GOT entry in the bfd's got entry hash table. */ | |
3044 | entryp = htab_find_slot (g->got_entries, entry, INSERT); | |
3045 | if (*entryp != NULL) | |
3046 | return 1; | |
143d77c5 | 3047 | |
f4416af6 AO |
3048 | *entryp = entry; |
3049 | ||
0f20cc35 DJ |
3050 | if (entry->tls_type) |
3051 | { | |
3052 | if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM)) | |
3053 | g->tls_gotno += 2; | |
3054 | if (entry->tls_type & GOT_TLS_IE) | |
3055 | g->tls_gotno += 1; | |
3056 | } | |
3057 | else if (entry->symndx >= 0 || entry->d.h->forced_local) | |
f4416af6 AO |
3058 | ++g->local_gotno; |
3059 | else | |
3060 | ++g->global_gotno; | |
3061 | ||
3062 | return 1; | |
3063 | } | |
3064 | ||
3065 | /* Attempt to merge gots of different input bfds. Try to use as much | |
3066 | as possible of the primary got, since it doesn't require explicit | |
3067 | dynamic relocations, but don't use bfds that would reference global | |
3068 | symbols out of the addressable range. Failing the primary got, | |
3069 | attempt to merge with the current got, or finish the current got | |
3070 | and then make make the new got current. */ | |
3071 | ||
3072 | static int | |
9719ad41 | 3073 | mips_elf_merge_gots (void **bfd2got_, void *p) |
f4416af6 AO |
3074 | { |
3075 | struct mips_elf_bfd2got_hash *bfd2got | |
3076 | = (struct mips_elf_bfd2got_hash *)*bfd2got_; | |
3077 | struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p; | |
3078 | unsigned int lcount = bfd2got->g->local_gotno; | |
3079 | unsigned int gcount = bfd2got->g->global_gotno; | |
0f20cc35 | 3080 | unsigned int tcount = bfd2got->g->tls_gotno; |
f4416af6 | 3081 | unsigned int maxcnt = arg->max_count; |
0f20cc35 DJ |
3082 | bfd_boolean too_many_for_tls = FALSE; |
3083 | ||
3084 | /* We place TLS GOT entries after both locals and globals. The globals | |
3085 | for the primary GOT may overflow the normal GOT size limit, so be | |
3086 | sure not to merge a GOT which requires TLS with the primary GOT in that | |
3087 | case. This doesn't affect non-primary GOTs. */ | |
3088 | if (tcount > 0) | |
3089 | { | |
3090 | unsigned int primary_total = lcount + tcount + arg->global_count; | |
3091 | if (primary_total * MIPS_ELF_GOT_SIZE (bfd2got->bfd) | |
0a44bf69 | 3092 | >= MIPS_ELF_GOT_MAX_SIZE (arg->info)) |
0f20cc35 DJ |
3093 | too_many_for_tls = TRUE; |
3094 | } | |
143d77c5 | 3095 | |
f4416af6 AO |
3096 | /* If we don't have a primary GOT and this is not too big, use it as |
3097 | a starting point for the primary GOT. */ | |
0f20cc35 DJ |
3098 | if (! arg->primary && lcount + gcount + tcount <= maxcnt |
3099 | && ! too_many_for_tls) | |
f4416af6 AO |
3100 | { |
3101 | arg->primary = bfd2got->g; | |
3102 | arg->primary_count = lcount + gcount; | |
3103 | } | |
3104 | /* If it looks like we can merge this bfd's entries with those of | |
3105 | the primary, merge them. The heuristics is conservative, but we | |
3106 | don't have to squeeze it too hard. */ | |
0f20cc35 DJ |
3107 | else if (arg->primary && ! too_many_for_tls |
3108 | && (arg->primary_count + lcount + gcount + tcount) <= maxcnt) | |
f4416af6 AO |
3109 | { |
3110 | struct mips_got_info *g = bfd2got->g; | |
3111 | int old_lcount = arg->primary->local_gotno; | |
3112 | int old_gcount = arg->primary->global_gotno; | |
0f20cc35 | 3113 | int old_tcount = arg->primary->tls_gotno; |
f4416af6 AO |
3114 | |
3115 | bfd2got->g = arg->primary; | |
3116 | ||
3117 | htab_traverse (g->got_entries, | |
3118 | mips_elf_make_got_per_bfd, | |
3119 | arg); | |
3120 | if (arg->obfd == NULL) | |
3121 | return 0; | |
3122 | ||
3123 | htab_delete (g->got_entries); | |
3124 | /* We don't have to worry about releasing memory of the actual | |
3125 | got entries, since they're all in the master got_entries hash | |
3126 | table anyway. */ | |
3127 | ||
caec41ff | 3128 | BFD_ASSERT (old_lcount + lcount >= arg->primary->local_gotno); |
f4416af6 | 3129 | BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno); |
0f20cc35 | 3130 | BFD_ASSERT (old_tcount + tcount >= arg->primary->tls_gotno); |
f4416af6 AO |
3131 | |
3132 | arg->primary_count = arg->primary->local_gotno | |
0f20cc35 | 3133 | + arg->primary->global_gotno + arg->primary->tls_gotno; |
f4416af6 AO |
3134 | } |
3135 | /* If we can merge with the last-created got, do it. */ | |
3136 | else if (arg->current | |
0f20cc35 | 3137 | && arg->current_count + lcount + gcount + tcount <= maxcnt) |
f4416af6 AO |
3138 | { |
3139 | struct mips_got_info *g = bfd2got->g; | |
3140 | int old_lcount = arg->current->local_gotno; | |
3141 | int old_gcount = arg->current->global_gotno; | |
0f20cc35 | 3142 | int old_tcount = arg->current->tls_gotno; |
f4416af6 AO |
3143 | |
3144 | bfd2got->g = arg->current; | |
3145 | ||
3146 | htab_traverse (g->got_entries, | |
3147 | mips_elf_make_got_per_bfd, | |
3148 | arg); | |
3149 | if (arg->obfd == NULL) | |
3150 | return 0; | |
3151 | ||
3152 | htab_delete (g->got_entries); | |
3153 | ||
caec41ff | 3154 | BFD_ASSERT (old_lcount + lcount >= arg->current->local_gotno); |
f4416af6 | 3155 | BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno); |
0f20cc35 | 3156 | BFD_ASSERT (old_tcount + tcount >= arg->current->tls_gotno); |
f4416af6 AO |
3157 | |
3158 | arg->current_count = arg->current->local_gotno | |
0f20cc35 | 3159 | + arg->current->global_gotno + arg->current->tls_gotno; |
f4416af6 AO |
3160 | } |
3161 | /* Well, we couldn't merge, so create a new GOT. Don't check if it | |
3162 | fits; if it turns out that it doesn't, we'll get relocation | |
3163 | overflows anyway. */ | |
3164 | else | |
3165 | { | |
3166 | bfd2got->g->next = arg->current; | |
3167 | arg->current = bfd2got->g; | |
143d77c5 | 3168 | |
0f20cc35 DJ |
3169 | arg->current_count = lcount + gcount + 2 * tcount; |
3170 | } | |
3171 | ||
3172 | return 1; | |
3173 | } | |
3174 | ||
ead49a57 RS |
3175 | /* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field |
3176 | is null iff there is just a single GOT. */ | |
0f20cc35 DJ |
3177 | |
3178 | static int | |
3179 | mips_elf_initialize_tls_index (void **entryp, void *p) | |
3180 | { | |
3181 | struct mips_got_entry *entry = (struct mips_got_entry *)*entryp; | |
3182 | struct mips_got_info *g = p; | |
ead49a57 | 3183 | bfd_vma next_index; |
0f20cc35 DJ |
3184 | |
3185 | /* We're only interested in TLS symbols. */ | |
3186 | if (entry->tls_type == 0) | |
3187 | return 1; | |
3188 | ||
ead49a57 RS |
3189 | next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno; |
3190 | ||
3191 | if (entry->symndx == -1 && g->next == NULL) | |
0f20cc35 | 3192 | { |
ead49a57 RS |
3193 | /* A type (3) got entry in the single-GOT case. We use the symbol's |
3194 | hash table entry to track its index. */ | |
3195 | if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE) | |
3196 | return 1; | |
3197 | entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE; | |
3198 | entry->d.h->tls_got_offset = next_index; | |
3199 | } | |
3200 | else | |
3201 | { | |
3202 | if (entry->tls_type & GOT_TLS_LDM) | |
0f20cc35 | 3203 | { |
ead49a57 RS |
3204 | /* There are separate mips_got_entry objects for each input bfd |
3205 | that requires an LDM entry. Make sure that all LDM entries in | |
3206 | a GOT resolve to the same index. */ | |
3207 | if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE) | |
4005427f | 3208 | { |
ead49a57 | 3209 | entry->gotidx = g->tls_ldm_offset; |
4005427f RS |
3210 | return 1; |
3211 | } | |
ead49a57 | 3212 | g->tls_ldm_offset = next_index; |
0f20cc35 | 3213 | } |
ead49a57 | 3214 | entry->gotidx = next_index; |
f4416af6 AO |
3215 | } |
3216 | ||
ead49a57 | 3217 | /* Account for the entries we've just allocated. */ |
0f20cc35 DJ |
3218 | if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM)) |
3219 | g->tls_assigned_gotno += 2; | |
3220 | if (entry->tls_type & GOT_TLS_IE) | |
3221 | g->tls_assigned_gotno += 1; | |
3222 | ||
f4416af6 AO |
3223 | return 1; |
3224 | } | |
3225 | ||
3226 | /* If passed a NULL mips_got_info in the argument, set the marker used | |
3227 | to tell whether a global symbol needs a got entry (in the primary | |
3228 | got) to the given VALUE. | |
3229 | ||
3230 | If passed a pointer G to a mips_got_info in the argument (it must | |
3231 | not be the primary GOT), compute the offset from the beginning of | |
3232 | the (primary) GOT section to the entry in G corresponding to the | |
3233 | global symbol. G's assigned_gotno must contain the index of the | |
3234 | first available global GOT entry in G. VALUE must contain the size | |
3235 | of a GOT entry in bytes. For each global GOT entry that requires a | |
3236 | dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is | |
4cc11e76 | 3237 | marked as not eligible for lazy resolution through a function |
f4416af6 AO |
3238 | stub. */ |
3239 | static int | |
9719ad41 | 3240 | mips_elf_set_global_got_offset (void **entryp, void *p) |
f4416af6 AO |
3241 | { |
3242 | struct mips_got_entry *entry = (struct mips_got_entry *)*entryp; | |
3243 | struct mips_elf_set_global_got_offset_arg *arg | |
3244 | = (struct mips_elf_set_global_got_offset_arg *)p; | |
3245 | struct mips_got_info *g = arg->g; | |
3246 | ||
0f20cc35 DJ |
3247 | if (g && entry->tls_type != GOT_NORMAL) |
3248 | arg->needed_relocs += | |
3249 | mips_tls_got_relocs (arg->info, entry->tls_type, | |
3250 | entry->symndx == -1 ? &entry->d.h->root : NULL); | |
3251 | ||
f4416af6 | 3252 | if (entry->abfd != NULL && entry->symndx == -1 |
0f20cc35 DJ |
3253 | && entry->d.h->root.dynindx != -1 |
3254 | && entry->d.h->tls_type == GOT_NORMAL) | |
f4416af6 AO |
3255 | { |
3256 | if (g) | |
3257 | { | |
3258 | BFD_ASSERT (g->global_gotsym == NULL); | |
3259 | ||
3260 | entry->gotidx = arg->value * (long) g->assigned_gotno++; | |
f4416af6 AO |
3261 | if (arg->info->shared |
3262 | || (elf_hash_table (arg->info)->dynamic_sections_created | |
f5385ebf AM |
3263 | && entry->d.h->root.def_dynamic |
3264 | && !entry->d.h->root.def_regular)) | |
f4416af6 AO |
3265 | ++arg->needed_relocs; |
3266 | } | |
3267 | else | |
3268 | entry->d.h->root.got.offset = arg->value; | |
3269 | } | |
3270 | ||
3271 | return 1; | |
3272 | } | |
3273 | ||
0626d451 RS |
3274 | /* Mark any global symbols referenced in the GOT we are iterating over |
3275 | as inelligible for lazy resolution stubs. */ | |
3276 | static int | |
9719ad41 | 3277 | mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED) |
0626d451 RS |
3278 | { |
3279 | struct mips_got_entry *entry = (struct mips_got_entry *)*entryp; | |
3280 | ||
3281 | if (entry->abfd != NULL | |
3282 | && entry->symndx == -1 | |
3283 | && entry->d.h->root.dynindx != -1) | |
3284 | entry->d.h->no_fn_stub = TRUE; | |
3285 | ||
3286 | return 1; | |
3287 | } | |
3288 | ||
f4416af6 AO |
3289 | /* Follow indirect and warning hash entries so that each got entry |
3290 | points to the final symbol definition. P must point to a pointer | |
3291 | to the hash table we're traversing. Since this traversal may | |
3292 | modify the hash table, we set this pointer to NULL to indicate | |
3293 | we've made a potentially-destructive change to the hash table, so | |
3294 | the traversal must be restarted. */ | |
3295 | static int | |
9719ad41 | 3296 | mips_elf_resolve_final_got_entry (void **entryp, void *p) |
f4416af6 AO |
3297 | { |
3298 | struct mips_got_entry *entry = (struct mips_got_entry *)*entryp; | |
3299 | htab_t got_entries = *(htab_t *)p; | |
3300 | ||
3301 | if (entry->abfd != NULL && entry->symndx == -1) | |
3302 | { | |
3303 | struct mips_elf_link_hash_entry *h = entry->d.h; | |
3304 | ||
3305 | while (h->root.root.type == bfd_link_hash_indirect | |
3306 | || h->root.root.type == bfd_link_hash_warning) | |
3307 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | |
3308 | ||
3309 | if (entry->d.h == h) | |
3310 | return 1; | |
143d77c5 | 3311 | |
f4416af6 AO |
3312 | entry->d.h = h; |
3313 | ||
3314 | /* If we can't find this entry with the new bfd hash, re-insert | |
3315 | it, and get the traversal restarted. */ | |
3316 | if (! htab_find (got_entries, entry)) | |
3317 | { | |
3318 | htab_clear_slot (got_entries, entryp); | |
3319 | entryp = htab_find_slot (got_entries, entry, INSERT); | |
3320 | if (! *entryp) | |
3321 | *entryp = entry; | |
3322 | /* Abort the traversal, since the whole table may have | |
3323 | moved, and leave it up to the parent to restart the | |
3324 | process. */ | |
3325 | *(htab_t *)p = NULL; | |
3326 | return 0; | |
3327 | } | |
3328 | /* We might want to decrement the global_gotno count, but it's | |
3329 | either too early or too late for that at this point. */ | |
3330 | } | |
143d77c5 | 3331 | |
f4416af6 AO |
3332 | return 1; |
3333 | } | |
3334 | ||
3335 | /* Turn indirect got entries in a got_entries table into their final | |
3336 | locations. */ | |
3337 | static void | |
9719ad41 | 3338 | mips_elf_resolve_final_got_entries (struct mips_got_info *g) |
f4416af6 AO |
3339 | { |
3340 | htab_t got_entries; | |
3341 | ||
3342 | do | |
3343 | { | |
3344 | got_entries = g->got_entries; | |
3345 | ||
3346 | htab_traverse (got_entries, | |
3347 | mips_elf_resolve_final_got_entry, | |
3348 | &got_entries); | |
3349 | } | |
3350 | while (got_entries == NULL); | |
3351 | } | |
3352 | ||
3353 | /* Return the offset of an input bfd IBFD's GOT from the beginning of | |
3354 | the primary GOT. */ | |
3355 | static bfd_vma | |
9719ad41 | 3356 | mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd) |
f4416af6 AO |
3357 | { |
3358 | if (g->bfd2got == NULL) | |
3359 | return 0; | |
3360 | ||
3361 | g = mips_elf_got_for_ibfd (g, ibfd); | |
3362 | if (! g) | |
3363 | return 0; | |
3364 | ||
3365 | BFD_ASSERT (g->next); | |
3366 | ||
3367 | g = g->next; | |
143d77c5 | 3368 | |
0f20cc35 DJ |
3369 | return (g->local_gotno + g->global_gotno + g->tls_gotno) |
3370 | * MIPS_ELF_GOT_SIZE (abfd); | |
f4416af6 AO |
3371 | } |
3372 | ||
3373 | /* Turn a single GOT that is too big for 16-bit addressing into | |
3374 | a sequence of GOTs, each one 16-bit addressable. */ | |
3375 | ||
3376 | static bfd_boolean | |
9719ad41 RS |
3377 | mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info, |
3378 | struct mips_got_info *g, asection *got, | |
3379 | bfd_size_type pages) | |
f4416af6 AO |
3380 | { |
3381 | struct mips_elf_got_per_bfd_arg got_per_bfd_arg; | |
3382 | struct mips_elf_set_global_got_offset_arg set_got_offset_arg; | |
3383 | struct mips_got_info *gg; | |
3384 | unsigned int assign; | |
3385 | ||
3386 | g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash, | |
9719ad41 | 3387 | mips_elf_bfd2got_entry_eq, NULL); |
f4416af6 AO |
3388 | if (g->bfd2got == NULL) |
3389 | return FALSE; | |
3390 | ||
3391 | got_per_bfd_arg.bfd2got = g->bfd2got; | |
3392 | got_per_bfd_arg.obfd = abfd; | |
3393 | got_per_bfd_arg.info = info; | |
3394 | ||
3395 | /* Count how many GOT entries each input bfd requires, creating a | |
3396 | map from bfd to got info while at that. */ | |
f4416af6 AO |
3397 | htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg); |
3398 | if (got_per_bfd_arg.obfd == NULL) | |
3399 | return FALSE; | |
3400 | ||
3401 | got_per_bfd_arg.current = NULL; | |
3402 | got_per_bfd_arg.primary = NULL; | |
3403 | /* Taking out PAGES entries is a worst-case estimate. We could | |
3404 | compute the maximum number of pages that each separate input bfd | |
3405 | uses, but it's probably not worth it. */ | |
0a44bf69 | 3406 | got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info) |
f4416af6 | 3407 | / MIPS_ELF_GOT_SIZE (abfd)) |
0a44bf69 | 3408 | - MIPS_RESERVED_GOTNO (info) - pages); |
0f20cc35 DJ |
3409 | /* The number of globals that will be included in the primary GOT. |
3410 | See the calls to mips_elf_set_global_got_offset below for more | |
3411 | information. */ | |
3412 | got_per_bfd_arg.global_count = g->global_gotno; | |
f4416af6 AO |
3413 | |
3414 | /* Try to merge the GOTs of input bfds together, as long as they | |
3415 | don't seem to exceed the maximum GOT size, choosing one of them | |
3416 | to be the primary GOT. */ | |
3417 | htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg); | |
3418 | if (got_per_bfd_arg.obfd == NULL) | |
3419 | return FALSE; | |
3420 | ||
0f20cc35 | 3421 | /* If we do not find any suitable primary GOT, create an empty one. */ |
f4416af6 AO |
3422 | if (got_per_bfd_arg.primary == NULL) |
3423 | { | |
3424 | g->next = (struct mips_got_info *) | |
3425 | bfd_alloc (abfd, sizeof (struct mips_got_info)); | |
3426 | if (g->next == NULL) | |
3427 | return FALSE; | |
3428 | ||
3429 | g->next->global_gotsym = NULL; | |
3430 | g->next->global_gotno = 0; | |
3431 | g->next->local_gotno = 0; | |
0f20cc35 | 3432 | g->next->tls_gotno = 0; |
f4416af6 | 3433 | g->next->assigned_gotno = 0; |
0f20cc35 DJ |
3434 | g->next->tls_assigned_gotno = 0; |
3435 | g->next->tls_ldm_offset = MINUS_ONE; | |
f4416af6 AO |
3436 | g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash, |
3437 | mips_elf_multi_got_entry_eq, | |
9719ad41 | 3438 | NULL); |
f4416af6 AO |
3439 | if (g->next->got_entries == NULL) |
3440 | return FALSE; | |
3441 | g->next->bfd2got = NULL; | |
3442 | } | |
3443 | else | |
3444 | g->next = got_per_bfd_arg.primary; | |
3445 | g->next->next = got_per_bfd_arg.current; | |
3446 | ||
3447 | /* GG is now the master GOT, and G is the primary GOT. */ | |
3448 | gg = g; | |
3449 | g = g->next; | |
3450 | ||
3451 | /* Map the output bfd to the primary got. That's what we're going | |
3452 | to use for bfds that use GOT16 or GOT_PAGE relocations that we | |
3453 | didn't mark in check_relocs, and we want a quick way to find it. | |
3454 | We can't just use gg->next because we're going to reverse the | |
3455 | list. */ | |
3456 | { | |
3457 | struct mips_elf_bfd2got_hash *bfdgot; | |
3458 | void **bfdgotp; | |
143d77c5 | 3459 | |
f4416af6 AO |
3460 | bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc |
3461 | (abfd, sizeof (struct mips_elf_bfd2got_hash)); | |
3462 | ||
3463 | if (bfdgot == NULL) | |
3464 | return FALSE; | |
3465 | ||
3466 | bfdgot->bfd = abfd; | |
3467 | bfdgot->g = g; | |
3468 | bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT); | |
3469 | ||
3470 | BFD_ASSERT (*bfdgotp == NULL); | |
3471 | *bfdgotp = bfdgot; | |
3472 | } | |
3473 | ||
3474 | /* The IRIX dynamic linker requires every symbol that is referenced | |
3475 | in a dynamic relocation to be present in the primary GOT, so | |
3476 | arrange for them to appear after those that are actually | |
3477 | referenced. | |
3478 | ||
3479 | GNU/Linux could very well do without it, but it would slow down | |
3480 | the dynamic linker, since it would have to resolve every dynamic | |
3481 | symbol referenced in other GOTs more than once, without help from | |
3482 | the cache. Also, knowing that every external symbol has a GOT | |
3483 | helps speed up the resolution of local symbols too, so GNU/Linux | |
3484 | follows IRIX's practice. | |
143d77c5 | 3485 | |
f4416af6 AO |
3486 | The number 2 is used by mips_elf_sort_hash_table_f to count |
3487 | global GOT symbols that are unreferenced in the primary GOT, with | |
3488 | an initial dynamic index computed from gg->assigned_gotno, where | |
3489 | the number of unreferenced global entries in the primary GOT is | |
3490 | preserved. */ | |
3491 | if (1) | |
3492 | { | |
3493 | gg->assigned_gotno = gg->global_gotno - g->global_gotno; | |
3494 | g->global_gotno = gg->global_gotno; | |
3495 | set_got_offset_arg.value = 2; | |
3496 | } | |
3497 | else | |
3498 | { | |
3499 | /* This could be used for dynamic linkers that don't optimize | |
3500 | symbol resolution while applying relocations so as to use | |
3501 | primary GOT entries or assuming the symbol is locally-defined. | |
3502 | With this code, we assign lower dynamic indices to global | |
3503 | symbols that are not referenced in the primary GOT, so that | |
3504 | their entries can be omitted. */ | |
3505 | gg->assigned_gotno = 0; | |
3506 | set_got_offset_arg.value = -1; | |
3507 | } | |
3508 | ||
3509 | /* Reorder dynamic symbols as described above (which behavior | |
3510 | depends on the setting of VALUE). */ | |
3511 | set_got_offset_arg.g = NULL; | |
3512 | htab_traverse (gg->got_entries, mips_elf_set_global_got_offset, | |
3513 | &set_got_offset_arg); | |
3514 | set_got_offset_arg.value = 1; | |
3515 | htab_traverse (g->got_entries, mips_elf_set_global_got_offset, | |
3516 | &set_got_offset_arg); | |
3517 | if (! mips_elf_sort_hash_table (info, 1)) | |
3518 | return FALSE; | |
3519 | ||
3520 | /* Now go through the GOTs assigning them offset ranges. | |
3521 | [assigned_gotno, local_gotno[ will be set to the range of local | |
3522 | entries in each GOT. We can then compute the end of a GOT by | |
3523 | adding local_gotno to global_gotno. We reverse the list and make | |
3524 | it circular since then we'll be able to quickly compute the | |
3525 | beginning of a GOT, by computing the end of its predecessor. To | |
3526 | avoid special cases for the primary GOT, while still preserving | |
3527 | assertions that are valid for both single- and multi-got links, | |
3528 | we arrange for the main got struct to have the right number of | |
3529 | global entries, but set its local_gotno such that the initial | |
3530 | offset of the primary GOT is zero. Remember that the primary GOT | |
3531 | will become the last item in the circular linked list, so it | |
3532 | points back to the master GOT. */ | |
3533 | gg->local_gotno = -g->global_gotno; | |
3534 | gg->global_gotno = g->global_gotno; | |
0f20cc35 | 3535 | gg->tls_gotno = 0; |
f4416af6 AO |
3536 | assign = 0; |
3537 | gg->next = gg; | |
3538 | ||
3539 | do | |
3540 | { | |
3541 | struct mips_got_info *gn; | |
3542 | ||
0a44bf69 | 3543 | assign += MIPS_RESERVED_GOTNO (info); |
f4416af6 AO |
3544 | g->assigned_gotno = assign; |
3545 | g->local_gotno += assign + pages; | |
0f20cc35 DJ |
3546 | assign = g->local_gotno + g->global_gotno + g->tls_gotno; |
3547 | ||
ead49a57 RS |
3548 | /* Take g out of the direct list, and push it onto the reversed |
3549 | list that gg points to. g->next is guaranteed to be nonnull after | |
3550 | this operation, as required by mips_elf_initialize_tls_index. */ | |
3551 | gn = g->next; | |
3552 | g->next = gg->next; | |
3553 | gg->next = g; | |
3554 | ||
0f20cc35 DJ |
3555 | /* Set up any TLS entries. We always place the TLS entries after |
3556 | all non-TLS entries. */ | |
3557 | g->tls_assigned_gotno = g->local_gotno + g->global_gotno; | |
3558 | htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g); | |
f4416af6 | 3559 | |
ead49a57 | 3560 | /* Move onto the next GOT. It will be a secondary GOT if nonull. */ |
f4416af6 | 3561 | g = gn; |
0626d451 RS |
3562 | |
3563 | /* Mark global symbols in every non-primary GOT as ineligible for | |
3564 | stubs. */ | |
3565 | if (g) | |
3566 | htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL); | |
f4416af6 AO |
3567 | } |
3568 | while (g); | |
3569 | ||
eea6121a | 3570 | got->size = (gg->next->local_gotno |
0f20cc35 DJ |
3571 | + gg->next->global_gotno |
3572 | + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd); | |
143d77c5 | 3573 | |
f4416af6 AO |
3574 | return TRUE; |
3575 | } | |
143d77c5 | 3576 | |
b49e97c9 TS |
3577 | \f |
3578 | /* Returns the first relocation of type r_type found, beginning with | |
3579 | RELOCATION. RELEND is one-past-the-end of the relocation table. */ | |
3580 | ||
3581 | static const Elf_Internal_Rela * | |
9719ad41 RS |
3582 | mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type, |
3583 | const Elf_Internal_Rela *relocation, | |
3584 | const Elf_Internal_Rela *relend) | |
b49e97c9 | 3585 | { |
c000e262 TS |
3586 | unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info); |
3587 | ||
b49e97c9 TS |
3588 | while (relocation < relend) |
3589 | { | |
c000e262 TS |
3590 | if (ELF_R_TYPE (abfd, relocation->r_info) == r_type |
3591 | && ELF_R_SYM (abfd, relocation->r_info) == r_symndx) | |
b49e97c9 TS |
3592 | return relocation; |
3593 | ||
3594 | ++relocation; | |
3595 | } | |
3596 | ||
3597 | /* We didn't find it. */ | |
3598 | bfd_set_error (bfd_error_bad_value); | |
3599 | return NULL; | |
3600 | } | |
3601 | ||
3602 | /* Return whether a relocation is against a local symbol. */ | |
3603 | ||
b34976b6 | 3604 | static bfd_boolean |
9719ad41 RS |
3605 | mips_elf_local_relocation_p (bfd *input_bfd, |
3606 | const Elf_Internal_Rela *relocation, | |
3607 | asection **local_sections, | |
3608 | bfd_boolean check_forced) | |
b49e97c9 TS |
3609 | { |
3610 | unsigned long r_symndx; | |
3611 | Elf_Internal_Shdr *symtab_hdr; | |
3612 | struct mips_elf_link_hash_entry *h; | |
3613 | size_t extsymoff; | |
3614 | ||
3615 | r_symndx = ELF_R_SYM (input_bfd, relocation->r_info); | |
3616 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | |
3617 | extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info; | |
3618 | ||
3619 | if (r_symndx < extsymoff) | |
b34976b6 | 3620 | return TRUE; |
b49e97c9 | 3621 | if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL) |
b34976b6 | 3622 | return TRUE; |
b49e97c9 TS |
3623 | |
3624 | if (check_forced) | |
3625 | { | |
3626 | /* Look up the hash table to check whether the symbol | |
3627 | was forced local. */ | |
3628 | h = (struct mips_elf_link_hash_entry *) | |
3629 | elf_sym_hashes (input_bfd) [r_symndx - extsymoff]; | |
3630 | /* Find the real hash-table entry for this symbol. */ | |
3631 | while (h->root.root.type == bfd_link_hash_indirect | |
3632 | || h->root.root.type == bfd_link_hash_warning) | |
3633 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | |
f5385ebf | 3634 | if (h->root.forced_local) |
b34976b6 | 3635 | return TRUE; |
b49e97c9 TS |
3636 | } |
3637 | ||
b34976b6 | 3638 | return FALSE; |
b49e97c9 TS |
3639 | } |
3640 | \f | |
3641 | /* Sign-extend VALUE, which has the indicated number of BITS. */ | |
3642 | ||
a7ebbfdf | 3643 | bfd_vma |
9719ad41 | 3644 | _bfd_mips_elf_sign_extend (bfd_vma value, int bits) |
b49e97c9 TS |
3645 | { |
3646 | if (value & ((bfd_vma) 1 << (bits - 1))) | |
3647 | /* VALUE is negative. */ | |
3648 | value |= ((bfd_vma) - 1) << bits; | |
3649 | ||
3650 | return value; | |
3651 | } | |
3652 | ||
3653 | /* Return non-zero if the indicated VALUE has overflowed the maximum | |
4cc11e76 | 3654 | range expressible by a signed number with the indicated number of |
b49e97c9 TS |
3655 | BITS. */ |
3656 | ||
b34976b6 | 3657 | static bfd_boolean |
9719ad41 | 3658 | mips_elf_overflow_p (bfd_vma value, int bits) |
b49e97c9 TS |
3659 | { |
3660 | bfd_signed_vma svalue = (bfd_signed_vma) value; | |
3661 | ||
3662 | if (svalue > (1 << (bits - 1)) - 1) | |
3663 | /* The value is too big. */ | |
b34976b6 | 3664 | return TRUE; |
b49e97c9 TS |
3665 | else if (svalue < -(1 << (bits - 1))) |
3666 | /* The value is too small. */ | |
b34976b6 | 3667 | return TRUE; |
b49e97c9 TS |
3668 | |
3669 | /* All is well. */ | |
b34976b6 | 3670 | return FALSE; |
b49e97c9 TS |
3671 | } |
3672 | ||
3673 | /* Calculate the %high function. */ | |
3674 | ||
3675 | static bfd_vma | |
9719ad41 | 3676 | mips_elf_high (bfd_vma value) |
b49e97c9 TS |
3677 | { |
3678 | return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff; | |
3679 | } | |
3680 | ||
3681 | /* Calculate the %higher function. */ | |
3682 | ||
3683 | static bfd_vma | |
9719ad41 | 3684 | mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED) |
b49e97c9 TS |
3685 | { |
3686 | #ifdef BFD64 | |
3687 | return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff; | |
3688 | #else | |
3689 | abort (); | |
c5ae1840 | 3690 | return MINUS_ONE; |
b49e97c9 TS |
3691 | #endif |
3692 | } | |
3693 | ||
3694 | /* Calculate the %highest function. */ | |
3695 | ||
3696 | static bfd_vma | |
9719ad41 | 3697 | mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED) |
b49e97c9 TS |
3698 | { |
3699 | #ifdef BFD64 | |
b15e6682 | 3700 | return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff; |
b49e97c9 TS |
3701 | #else |
3702 | abort (); | |
c5ae1840 | 3703 | return MINUS_ONE; |
b49e97c9 TS |
3704 | #endif |
3705 | } | |
3706 | \f | |
3707 | /* Create the .compact_rel section. */ | |
3708 | ||
b34976b6 | 3709 | static bfd_boolean |
9719ad41 RS |
3710 | mips_elf_create_compact_rel_section |
3711 | (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED) | |
b49e97c9 TS |
3712 | { |
3713 | flagword flags; | |
3714 | register asection *s; | |
3715 | ||
3716 | if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL) | |
3717 | { | |
3718 | flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED | |
3719 | | SEC_READONLY); | |
3720 | ||
3496cb2a | 3721 | s = bfd_make_section_with_flags (abfd, ".compact_rel", flags); |
b49e97c9 | 3722 | if (s == NULL |
b49e97c9 TS |
3723 | || ! bfd_set_section_alignment (abfd, s, |
3724 | MIPS_ELF_LOG_FILE_ALIGN (abfd))) | |
b34976b6 | 3725 | return FALSE; |
b49e97c9 | 3726 | |
eea6121a | 3727 | s->size = sizeof (Elf32_External_compact_rel); |
b49e97c9 TS |
3728 | } |
3729 | ||
b34976b6 | 3730 | return TRUE; |
b49e97c9 TS |
3731 | } |
3732 | ||
3733 | /* Create the .got section to hold the global offset table. */ | |
3734 | ||
b34976b6 | 3735 | static bfd_boolean |
9719ad41 RS |
3736 | mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info, |
3737 | bfd_boolean maybe_exclude) | |
b49e97c9 TS |
3738 | { |
3739 | flagword flags; | |
3740 | register asection *s; | |
3741 | struct elf_link_hash_entry *h; | |
14a793b2 | 3742 | struct bfd_link_hash_entry *bh; |
b49e97c9 TS |
3743 | struct mips_got_info *g; |
3744 | bfd_size_type amt; | |
0a44bf69 RS |
3745 | struct mips_elf_link_hash_table *htab; |
3746 | ||
3747 | htab = mips_elf_hash_table (info); | |
b49e97c9 TS |
3748 | |
3749 | /* This function may be called more than once. */ | |
f4416af6 AO |
3750 | s = mips_elf_got_section (abfd, TRUE); |
3751 | if (s) | |
3752 | { | |
3753 | if (! maybe_exclude) | |
3754 | s->flags &= ~SEC_EXCLUDE; | |
3755 | return TRUE; | |
3756 | } | |
b49e97c9 TS |
3757 | |
3758 | flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | |
3759 | | SEC_LINKER_CREATED); | |
3760 | ||
f4416af6 AO |
3761 | if (maybe_exclude) |
3762 | flags |= SEC_EXCLUDE; | |
3763 | ||
72b4917c TS |
3764 | /* We have to use an alignment of 2**4 here because this is hardcoded |
3765 | in the function stub generation and in the linker script. */ | |
3496cb2a | 3766 | s = bfd_make_section_with_flags (abfd, ".got", flags); |
b49e97c9 | 3767 | if (s == NULL |
72b4917c | 3768 | || ! bfd_set_section_alignment (abfd, s, 4)) |
b34976b6 | 3769 | return FALSE; |
b49e97c9 TS |
3770 | |
3771 | /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the | |
3772 | linker script because we don't want to define the symbol if we | |
3773 | are not creating a global offset table. */ | |
14a793b2 | 3774 | bh = NULL; |
b49e97c9 TS |
3775 | if (! (_bfd_generic_link_add_one_symbol |
3776 | (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s, | |
9719ad41 | 3777 | 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh))) |
b34976b6 | 3778 | return FALSE; |
14a793b2 AM |
3779 | |
3780 | h = (struct elf_link_hash_entry *) bh; | |
f5385ebf AM |
3781 | h->non_elf = 0; |
3782 | h->def_regular = 1; | |
b49e97c9 | 3783 | h->type = STT_OBJECT; |
d329bcd1 | 3784 | elf_hash_table (info)->hgot = h; |
b49e97c9 TS |
3785 | |
3786 | if (info->shared | |
c152c796 | 3787 | && ! bfd_elf_link_record_dynamic_symbol (info, h)) |
b34976b6 | 3788 | return FALSE; |
b49e97c9 | 3789 | |
b49e97c9 | 3790 | amt = sizeof (struct mips_got_info); |
9719ad41 | 3791 | g = bfd_alloc (abfd, amt); |
b49e97c9 | 3792 | if (g == NULL) |
b34976b6 | 3793 | return FALSE; |
b49e97c9 | 3794 | g->global_gotsym = NULL; |
e3d54347 | 3795 | g->global_gotno = 0; |
0f20cc35 | 3796 | g->tls_gotno = 0; |
0a44bf69 RS |
3797 | g->local_gotno = MIPS_RESERVED_GOTNO (info); |
3798 | g->assigned_gotno = MIPS_RESERVED_GOTNO (info); | |
f4416af6 AO |
3799 | g->bfd2got = NULL; |
3800 | g->next = NULL; | |
0f20cc35 | 3801 | g->tls_ldm_offset = MINUS_ONE; |
b15e6682 | 3802 | g->got_entries = htab_try_create (1, mips_elf_got_entry_hash, |
9719ad41 | 3803 | mips_elf_got_entry_eq, NULL); |
b15e6682 AO |
3804 | if (g->got_entries == NULL) |
3805 | return FALSE; | |
f0abc2a1 AM |
3806 | mips_elf_section_data (s)->u.got_info = g; |
3807 | mips_elf_section_data (s)->elf.this_hdr.sh_flags | |
b49e97c9 TS |
3808 | |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL; |
3809 | ||
0a44bf69 RS |
3810 | /* VxWorks also needs a .got.plt section. */ |
3811 | if (htab->is_vxworks) | |
3812 | { | |
3813 | s = bfd_make_section_with_flags (abfd, ".got.plt", | |
3814 | SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | |
3815 | | SEC_IN_MEMORY | SEC_LINKER_CREATED); | |
3816 | if (s == NULL || !bfd_set_section_alignment (abfd, s, 4)) | |
3817 | return FALSE; | |
3818 | ||
3819 | htab->sgotplt = s; | |
3820 | } | |
b34976b6 | 3821 | return TRUE; |
b49e97c9 | 3822 | } |
b49e97c9 | 3823 | \f |
0a44bf69 RS |
3824 | /* Return true if H refers to the special VxWorks __GOTT_BASE__ or |
3825 | __GOTT_INDEX__ symbols. These symbols are only special for | |
3826 | shared objects; they are not used in executables. */ | |
3827 | ||
3828 | static bfd_boolean | |
3829 | is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h) | |
3830 | { | |
3831 | return (mips_elf_hash_table (info)->is_vxworks | |
3832 | && info->shared | |
3833 | && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0 | |
3834 | || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0)); | |
3835 | } | |
3836 | \f | |
b49e97c9 TS |
3837 | /* Calculate the value produced by the RELOCATION (which comes from |
3838 | the INPUT_BFD). The ADDEND is the addend to use for this | |
3839 | RELOCATION; RELOCATION->R_ADDEND is ignored. | |
3840 | ||
3841 | The result of the relocation calculation is stored in VALUEP. | |
3842 | REQUIRE_JALXP indicates whether or not the opcode used with this | |
3843 | relocation must be JALX. | |
3844 | ||
3845 | This function returns bfd_reloc_continue if the caller need take no | |
3846 | further action regarding this relocation, bfd_reloc_notsupported if | |
3847 | something goes dramatically wrong, bfd_reloc_overflow if an | |
3848 | overflow occurs, and bfd_reloc_ok to indicate success. */ | |
3849 | ||
3850 | static bfd_reloc_status_type | |
9719ad41 RS |
3851 | mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd, |
3852 | asection *input_section, | |
3853 | struct bfd_link_info *info, | |
3854 | const Elf_Internal_Rela *relocation, | |
3855 | bfd_vma addend, reloc_howto_type *howto, | |
3856 | Elf_Internal_Sym *local_syms, | |
3857 | asection **local_sections, bfd_vma *valuep, | |
3858 | const char **namep, bfd_boolean *require_jalxp, | |
3859 | bfd_boolean save_addend) | |
b49e97c9 TS |
3860 | { |
3861 | /* The eventual value we will return. */ | |
3862 | bfd_vma value; | |
3863 | /* The address of the symbol against which the relocation is | |
3864 | occurring. */ | |
3865 | bfd_vma symbol = 0; | |
3866 | /* The final GP value to be used for the relocatable, executable, or | |
3867 | shared object file being produced. */ | |
3868 | bfd_vma gp = MINUS_ONE; | |
3869 | /* The place (section offset or address) of the storage unit being | |
3870 | relocated. */ | |
3871 | bfd_vma p; | |
3872 | /* The value of GP used to create the relocatable object. */ | |
3873 | bfd_vma gp0 = MINUS_ONE; | |
3874 | /* The offset into the global offset table at which the address of | |
3875 | the relocation entry symbol, adjusted by the addend, resides | |
3876 | during execution. */ | |
3877 | bfd_vma g = MINUS_ONE; | |
3878 | /* The section in which the symbol referenced by the relocation is | |
3879 | located. */ | |
3880 | asection *sec = NULL; | |
3881 | struct mips_elf_link_hash_entry *h = NULL; | |
b34976b6 | 3882 | /* TRUE if the symbol referred to by this relocation is a local |
b49e97c9 | 3883 | symbol. */ |
b34976b6 AM |
3884 | bfd_boolean local_p, was_local_p; |
3885 | /* TRUE if the symbol referred to by this relocation is "_gp_disp". */ | |
3886 | bfd_boolean gp_disp_p = FALSE; | |
bbe506e8 TS |
3887 | /* TRUE if the symbol referred to by this relocation is |
3888 | "__gnu_local_gp". */ | |
3889 | bfd_boolean gnu_local_gp_p = FALSE; | |
b49e97c9 TS |
3890 | Elf_Internal_Shdr *symtab_hdr; |
3891 | size_t extsymoff; | |
3892 | unsigned long r_symndx; | |
3893 | int r_type; | |
b34976b6 | 3894 | /* TRUE if overflow occurred during the calculation of the |
b49e97c9 | 3895 | relocation value. */ |
b34976b6 AM |
3896 | bfd_boolean overflowed_p; |
3897 | /* TRUE if this relocation refers to a MIPS16 function. */ | |
3898 | bfd_boolean target_is_16_bit_code_p = FALSE; | |
0a44bf69 RS |
3899 | struct mips_elf_link_hash_table *htab; |
3900 | bfd *dynobj; | |
3901 | ||
3902 | dynobj = elf_hash_table (info)->dynobj; | |
3903 | htab = mips_elf_hash_table (info); | |
b49e97c9 TS |
3904 | |
3905 | /* Parse the relocation. */ | |
3906 | r_symndx = ELF_R_SYM (input_bfd, relocation->r_info); | |
3907 | r_type = ELF_R_TYPE (input_bfd, relocation->r_info); | |
3908 | p = (input_section->output_section->vma | |
3909 | + input_section->output_offset | |
3910 | + relocation->r_offset); | |
3911 | ||
3912 | /* Assume that there will be no overflow. */ | |
b34976b6 | 3913 | overflowed_p = FALSE; |
b49e97c9 TS |
3914 | |
3915 | /* Figure out whether or not the symbol is local, and get the offset | |
3916 | used in the array of hash table entries. */ | |
3917 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | |
3918 | local_p = mips_elf_local_relocation_p (input_bfd, relocation, | |
b34976b6 | 3919 | local_sections, FALSE); |
bce03d3d | 3920 | was_local_p = local_p; |
b49e97c9 TS |
3921 | if (! elf_bad_symtab (input_bfd)) |
3922 | extsymoff = symtab_hdr->sh_info; | |
3923 | else | |
3924 | { | |
3925 | /* The symbol table does not follow the rule that local symbols | |
3926 | must come before globals. */ | |
3927 | extsymoff = 0; | |
3928 | } | |
3929 | ||
3930 | /* Figure out the value of the symbol. */ | |
3931 | if (local_p) | |
3932 | { | |
3933 | Elf_Internal_Sym *sym; | |
3934 | ||
3935 | sym = local_syms + r_symndx; | |
3936 | sec = local_sections[r_symndx]; | |
3937 | ||
3938 | symbol = sec->output_section->vma + sec->output_offset; | |
d4df96e6 L |
3939 | if (ELF_ST_TYPE (sym->st_info) != STT_SECTION |
3940 | || (sec->flags & SEC_MERGE)) | |
b49e97c9 | 3941 | symbol += sym->st_value; |
d4df96e6 L |
3942 | if ((sec->flags & SEC_MERGE) |
3943 | && ELF_ST_TYPE (sym->st_info) == STT_SECTION) | |
3944 | { | |
3945 | addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend); | |
3946 | addend -= symbol; | |
3947 | addend += sec->output_section->vma + sec->output_offset; | |
3948 | } | |
b49e97c9 TS |
3949 | |
3950 | /* MIPS16 text labels should be treated as odd. */ | |
3951 | if (sym->st_other == STO_MIPS16) | |
3952 | ++symbol; | |
3953 | ||
3954 | /* Record the name of this symbol, for our caller. */ | |
3955 | *namep = bfd_elf_string_from_elf_section (input_bfd, | |
3956 | symtab_hdr->sh_link, | |
3957 | sym->st_name); | |
3958 | if (*namep == '\0') | |
3959 | *namep = bfd_section_name (input_bfd, sec); | |
3960 | ||
3961 | target_is_16_bit_code_p = (sym->st_other == STO_MIPS16); | |
3962 | } | |
3963 | else | |
3964 | { | |
560e09e9 NC |
3965 | /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */ |
3966 | ||
b49e97c9 TS |
3967 | /* For global symbols we look up the symbol in the hash-table. */ |
3968 | h = ((struct mips_elf_link_hash_entry *) | |
3969 | elf_sym_hashes (input_bfd) [r_symndx - extsymoff]); | |
3970 | /* Find the real hash-table entry for this symbol. */ | |
3971 | while (h->root.root.type == bfd_link_hash_indirect | |
3972 | || h->root.root.type == bfd_link_hash_warning) | |
3973 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | |
3974 | ||
3975 | /* Record the name of this symbol, for our caller. */ | |
3976 | *namep = h->root.root.root.string; | |
3977 | ||
3978 | /* See if this is the special _gp_disp symbol. Note that such a | |
3979 | symbol must always be a global symbol. */ | |
560e09e9 | 3980 | if (strcmp (*namep, "_gp_disp") == 0 |
b49e97c9 TS |
3981 | && ! NEWABI_P (input_bfd)) |
3982 | { | |
3983 | /* Relocations against _gp_disp are permitted only with | |
3984 | R_MIPS_HI16 and R_MIPS_LO16 relocations. */ | |
d6f16593 MR |
3985 | if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16 |
3986 | && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16) | |
b49e97c9 TS |
3987 | return bfd_reloc_notsupported; |
3988 | ||
b34976b6 | 3989 | gp_disp_p = TRUE; |
b49e97c9 | 3990 | } |
bbe506e8 TS |
3991 | /* See if this is the special _gp symbol. Note that such a |
3992 | symbol must always be a global symbol. */ | |
3993 | else if (strcmp (*namep, "__gnu_local_gp") == 0) | |
3994 | gnu_local_gp_p = TRUE; | |
3995 | ||
3996 | ||
b49e97c9 TS |
3997 | /* If this symbol is defined, calculate its address. Note that |
3998 | _gp_disp is a magic symbol, always implicitly defined by the | |
3999 | linker, so it's inappropriate to check to see whether or not | |
4000 | its defined. */ | |
4001 | else if ((h->root.root.type == bfd_link_hash_defined | |
4002 | || h->root.root.type == bfd_link_hash_defweak) | |
4003 | && h->root.root.u.def.section) | |
4004 | { | |
4005 | sec = h->root.root.u.def.section; | |
4006 | if (sec->output_section) | |
4007 | symbol = (h->root.root.u.def.value | |
4008 | + sec->output_section->vma | |
4009 | + sec->output_offset); | |
4010 | else | |
4011 | symbol = h->root.root.u.def.value; | |
4012 | } | |
4013 | else if (h->root.root.type == bfd_link_hash_undefweak) | |
4014 | /* We allow relocations against undefined weak symbols, giving | |
4015 | it the value zero, so that you can undefined weak functions | |
4016 | and check to see if they exist by looking at their | |
4017 | addresses. */ | |
4018 | symbol = 0; | |
59c2e50f | 4019 | else if (info->unresolved_syms_in_objects == RM_IGNORE |
b49e97c9 TS |
4020 | && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT) |
4021 | symbol = 0; | |
a4d0f181 TS |
4022 | else if (strcmp (*namep, SGI_COMPAT (input_bfd) |
4023 | ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0) | |
b49e97c9 TS |
4024 | { |
4025 | /* If this is a dynamic link, we should have created a | |
4026 | _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol | |
4027 | in in _bfd_mips_elf_create_dynamic_sections. | |
4028 | Otherwise, we should define the symbol with a value of 0. | |
4029 | FIXME: It should probably get into the symbol table | |
4030 | somehow as well. */ | |
4031 | BFD_ASSERT (! info->shared); | |
4032 | BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL); | |
4033 | symbol = 0; | |
4034 | } | |
5e2b0d47 NC |
4035 | else if (ELF_MIPS_IS_OPTIONAL (h->root.other)) |
4036 | { | |
4037 | /* This is an optional symbol - an Irix specific extension to the | |
4038 | ELF spec. Ignore it for now. | |
4039 | XXX - FIXME - there is more to the spec for OPTIONAL symbols | |
4040 | than simply ignoring them, but we do not handle this for now. | |
4041 | For information see the "64-bit ELF Object File Specification" | |
4042 | which is available from here: | |
4043 | http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */ | |
4044 | symbol = 0; | |
4045 | } | |
b49e97c9 TS |
4046 | else |
4047 | { | |
4048 | if (! ((*info->callbacks->undefined_symbol) | |
4049 | (info, h->root.root.root.string, input_bfd, | |
4050 | input_section, relocation->r_offset, | |
59c2e50f L |
4051 | (info->unresolved_syms_in_objects == RM_GENERATE_ERROR) |
4052 | || ELF_ST_VISIBILITY (h->root.other)))) | |
b49e97c9 TS |
4053 | return bfd_reloc_undefined; |
4054 | symbol = 0; | |
4055 | } | |
4056 | ||
4057 | target_is_16_bit_code_p = (h->root.other == STO_MIPS16); | |
4058 | } | |
4059 | ||
4060 | /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we | |
4061 | need to redirect the call to the stub, unless we're already *in* | |
4062 | a stub. */ | |
1049f94e | 4063 | if (r_type != R_MIPS16_26 && !info->relocatable |
b49e97c9 TS |
4064 | && ((h != NULL && h->fn_stub != NULL) |
4065 | || (local_p && elf_tdata (input_bfd)->local_stubs != NULL | |
4066 | && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL)) | |
4067 | && !mips_elf_stub_section_p (input_bfd, input_section)) | |
4068 | { | |
4069 | /* This is a 32- or 64-bit call to a 16-bit function. We should | |
4070 | have already noticed that we were going to need the | |
4071 | stub. */ | |
4072 | if (local_p) | |
4073 | sec = elf_tdata (input_bfd)->local_stubs[r_symndx]; | |
4074 | else | |
4075 | { | |
4076 | BFD_ASSERT (h->need_fn_stub); | |
4077 | sec = h->fn_stub; | |
4078 | } | |
4079 | ||
4080 | symbol = sec->output_section->vma + sec->output_offset; | |
f38c2df5 TS |
4081 | /* The target is 16-bit, but the stub isn't. */ |
4082 | target_is_16_bit_code_p = FALSE; | |
b49e97c9 TS |
4083 | } |
4084 | /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we | |
4085 | need to redirect the call to the stub. */ | |
1049f94e | 4086 | else if (r_type == R_MIPS16_26 && !info->relocatable |
b49e97c9 TS |
4087 | && h != NULL |
4088 | && (h->call_stub != NULL || h->call_fp_stub != NULL) | |
4089 | && !target_is_16_bit_code_p) | |
4090 | { | |
4091 | /* If both call_stub and call_fp_stub are defined, we can figure | |
4092 | out which one to use by seeing which one appears in the input | |
4093 | file. */ | |
4094 | if (h->call_stub != NULL && h->call_fp_stub != NULL) | |
4095 | { | |
4096 | asection *o; | |
4097 | ||
4098 | sec = NULL; | |
4099 | for (o = input_bfd->sections; o != NULL; o = o->next) | |
4100 | { | |
0112cd26 NC |
4101 | if (CONST_STRNEQ (bfd_get_section_name (input_bfd, o), |
4102 | CALL_FP_STUB)) | |
b49e97c9 TS |
4103 | { |
4104 | sec = h->call_fp_stub; | |
4105 | break; | |
4106 | } | |
4107 | } | |
4108 | if (sec == NULL) | |
4109 | sec = h->call_stub; | |
4110 | } | |
4111 | else if (h->call_stub != NULL) | |
4112 | sec = h->call_stub; | |
4113 | else | |
4114 | sec = h->call_fp_stub; | |
4115 | ||
eea6121a | 4116 | BFD_ASSERT (sec->size > 0); |
b49e97c9 TS |
4117 | symbol = sec->output_section->vma + sec->output_offset; |
4118 | } | |
4119 | ||
4120 | /* Calls from 16-bit code to 32-bit code and vice versa require the | |
4121 | special jalx instruction. */ | |
1049f94e | 4122 | *require_jalxp = (!info->relocatable |
b49e97c9 TS |
4123 | && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p) |
4124 | || ((r_type == R_MIPS_26) && target_is_16_bit_code_p))); | |
4125 | ||
4126 | local_p = mips_elf_local_relocation_p (input_bfd, relocation, | |
b34976b6 | 4127 | local_sections, TRUE); |
b49e97c9 TS |
4128 | |
4129 | /* If we haven't already determined the GOT offset, or the GP value, | |
4130 | and we're going to need it, get it now. */ | |
4131 | switch (r_type) | |
4132 | { | |
0fdc1bf1 | 4133 | case R_MIPS_GOT_PAGE: |
93a2b7ae | 4134 | case R_MIPS_GOT_OFST: |
d25aed71 RS |
4135 | /* We need to decay to GOT_DISP/addend if the symbol doesn't |
4136 | bind locally. */ | |
4137 | local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1); | |
93a2b7ae | 4138 | if (local_p || r_type == R_MIPS_GOT_OFST) |
0fdc1bf1 AO |
4139 | break; |
4140 | /* Fall through. */ | |
4141 | ||
b49e97c9 TS |
4142 | case R_MIPS_CALL16: |
4143 | case R_MIPS_GOT16: | |
4144 | case R_MIPS_GOT_DISP: | |
4145 | case R_MIPS_GOT_HI16: | |
4146 | case R_MIPS_CALL_HI16: | |
4147 | case R_MIPS_GOT_LO16: | |
4148 | case R_MIPS_CALL_LO16: | |
0f20cc35 DJ |
4149 | case R_MIPS_TLS_GD: |
4150 | case R_MIPS_TLS_GOTTPREL: | |
4151 | case R_MIPS_TLS_LDM: | |
b49e97c9 | 4152 | /* Find the index into the GOT where this value is located. */ |
0f20cc35 DJ |
4153 | if (r_type == R_MIPS_TLS_LDM) |
4154 | { | |
0a44bf69 RS |
4155 | g = mips_elf_local_got_index (abfd, input_bfd, info, |
4156 | sec, 0, 0, NULL, r_type); | |
0f20cc35 DJ |
4157 | if (g == MINUS_ONE) |
4158 | return bfd_reloc_outofrange; | |
4159 | } | |
4160 | else if (!local_p) | |
b49e97c9 | 4161 | { |
0a44bf69 RS |
4162 | /* On VxWorks, CALL relocations should refer to the .got.plt |
4163 | entry, which is initialized to point at the PLT stub. */ | |
4164 | if (htab->is_vxworks | |
4165 | && (r_type == R_MIPS_CALL_HI16 | |
4166 | || r_type == R_MIPS_CALL_LO16 | |
4167 | || r_type == R_MIPS_CALL16)) | |
4168 | { | |
4169 | BFD_ASSERT (addend == 0); | |
4170 | BFD_ASSERT (h->root.needs_plt); | |
4171 | g = mips_elf_gotplt_index (info, &h->root); | |
4172 | } | |
4173 | else | |
b49e97c9 | 4174 | { |
0a44bf69 RS |
4175 | /* GOT_PAGE may take a non-zero addend, that is ignored in a |
4176 | GOT_PAGE relocation that decays to GOT_DISP because the | |
4177 | symbol turns out to be global. The addend is then added | |
4178 | as GOT_OFST. */ | |
4179 | BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE); | |
4180 | g = mips_elf_global_got_index (dynobj, input_bfd, | |
4181 | &h->root, r_type, info); | |
4182 | if (h->tls_type == GOT_NORMAL | |
4183 | && (! elf_hash_table(info)->dynamic_sections_created | |
4184 | || (info->shared | |
4185 | && (info->symbolic || h->root.forced_local) | |
4186 | && h->root.def_regular))) | |
4187 | { | |
4188 | /* This is a static link or a -Bsymbolic link. The | |
4189 | symbol is defined locally, or was forced to be local. | |
4190 | We must initialize this entry in the GOT. */ | |
4191 | asection *sgot = mips_elf_got_section (dynobj, FALSE); | |
4192 | MIPS_ELF_PUT_WORD (dynobj, symbol, sgot->contents + g); | |
4193 | } | |
b49e97c9 TS |
4194 | } |
4195 | } | |
0a44bf69 RS |
4196 | else if (!htab->is_vxworks |
4197 | && (r_type == R_MIPS_CALL16 || (r_type == R_MIPS_GOT16))) | |
4198 | /* The calculation below does not involve "g". */ | |
b49e97c9 TS |
4199 | break; |
4200 | else | |
4201 | { | |
0a44bf69 RS |
4202 | g = mips_elf_local_got_index (abfd, input_bfd, info, sec, |
4203 | symbol + addend, r_symndx, h, r_type); | |
b49e97c9 TS |
4204 | if (g == MINUS_ONE) |
4205 | return bfd_reloc_outofrange; | |
4206 | } | |
4207 | ||
4208 | /* Convert GOT indices to actual offsets. */ | |
0a44bf69 | 4209 | g = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, g); |
b49e97c9 TS |
4210 | break; |
4211 | ||
4212 | case R_MIPS_HI16: | |
4213 | case R_MIPS_LO16: | |
b49e97c9 TS |
4214 | case R_MIPS_GPREL16: |
4215 | case R_MIPS_GPREL32: | |
4216 | case R_MIPS_LITERAL: | |
d6f16593 MR |
4217 | case R_MIPS16_HI16: |
4218 | case R_MIPS16_LO16: | |
4219 | case R_MIPS16_GPREL: | |
b49e97c9 TS |
4220 | gp0 = _bfd_get_gp_value (input_bfd); |
4221 | gp = _bfd_get_gp_value (abfd); | |
0a44bf69 RS |
4222 | if (dynobj) |
4223 | gp += mips_elf_adjust_gp (abfd, mips_elf_got_info (dynobj, NULL), | |
f4416af6 | 4224 | input_bfd); |
b49e97c9 TS |
4225 | break; |
4226 | ||
4227 | default: | |
4228 | break; | |
4229 | } | |
4230 | ||
bbe506e8 TS |
4231 | if (gnu_local_gp_p) |
4232 | symbol = gp; | |
86324f90 | 4233 | |
0a44bf69 RS |
4234 | /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__ |
4235 | symbols are resolved by the loader. Add them to .rela.dyn. */ | |
4236 | if (h != NULL && is_gott_symbol (info, &h->root)) | |
4237 | { | |
4238 | Elf_Internal_Rela outrel; | |
4239 | bfd_byte *loc; | |
4240 | asection *s; | |
4241 | ||
4242 | s = mips_elf_rel_dyn_section (info, FALSE); | |
4243 | loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela); | |
4244 | ||
4245 | outrel.r_offset = (input_section->output_section->vma | |
4246 | + input_section->output_offset | |
4247 | + relocation->r_offset); | |
4248 | outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type); | |
4249 | outrel.r_addend = addend; | |
4250 | bfd_elf32_swap_reloca_out (abfd, &outrel, loc); | |
4251 | *valuep = 0; | |
4252 | return bfd_reloc_ok; | |
4253 | } | |
4254 | ||
b49e97c9 TS |
4255 | /* Figure out what kind of relocation is being performed. */ |
4256 | switch (r_type) | |
4257 | { | |
4258 | case R_MIPS_NONE: | |
4259 | return bfd_reloc_continue; | |
4260 | ||
4261 | case R_MIPS_16: | |
a7ebbfdf | 4262 | value = symbol + _bfd_mips_elf_sign_extend (addend, 16); |
b49e97c9 TS |
4263 | overflowed_p = mips_elf_overflow_p (value, 16); |
4264 | break; | |
4265 | ||
4266 | case R_MIPS_32: | |
4267 | case R_MIPS_REL32: | |
4268 | case R_MIPS_64: | |
4269 | if ((info->shared | |
0a44bf69 RS |
4270 | || (!htab->is_vxworks |
4271 | && htab->root.dynamic_sections_created | |
b49e97c9 | 4272 | && h != NULL |
f5385ebf AM |
4273 | && h->root.def_dynamic |
4274 | && !h->root.def_regular)) | |
b49e97c9 TS |
4275 | && r_symndx != 0 |
4276 | && (input_section->flags & SEC_ALLOC) != 0) | |
4277 | { | |
4278 | /* If we're creating a shared library, or this relocation is | |
4279 | against a symbol in a shared library, then we can't know | |
4280 | where the symbol will end up. So, we create a relocation | |
4281 | record in the output, and leave the job up to the dynamic | |
0a44bf69 RS |
4282 | linker. |
4283 | ||
4284 | In VxWorks executables, references to external symbols | |
4285 | are handled using copy relocs or PLT stubs, so there's | |
4286 | no need to add a dynamic relocation here. */ | |
b49e97c9 TS |
4287 | value = addend; |
4288 | if (!mips_elf_create_dynamic_relocation (abfd, | |
4289 | info, | |
4290 | relocation, | |
4291 | h, | |
4292 | sec, | |
4293 | symbol, | |
4294 | &value, | |
4295 | input_section)) | |
4296 | return bfd_reloc_undefined; | |
4297 | } | |
4298 | else | |
4299 | { | |
4300 | if (r_type != R_MIPS_REL32) | |
4301 | value = symbol + addend; | |
4302 | else | |
4303 | value = addend; | |
4304 | } | |
4305 | value &= howto->dst_mask; | |
092dcd75 CD |
4306 | break; |
4307 | ||
4308 | case R_MIPS_PC32: | |
4309 | value = symbol + addend - p; | |
4310 | value &= howto->dst_mask; | |
b49e97c9 TS |
4311 | break; |
4312 | ||
b49e97c9 TS |
4313 | case R_MIPS16_26: |
4314 | /* The calculation for R_MIPS16_26 is just the same as for an | |
4315 | R_MIPS_26. It's only the storage of the relocated field into | |
4316 | the output file that's different. That's handled in | |
4317 | mips_elf_perform_relocation. So, we just fall through to the | |
4318 | R_MIPS_26 case here. */ | |
4319 | case R_MIPS_26: | |
4320 | if (local_p) | |
30ac9238 | 4321 | value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2; |
b49e97c9 | 4322 | else |
728b2f21 ILT |
4323 | { |
4324 | value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2; | |
c314987d RS |
4325 | if (h->root.root.type != bfd_link_hash_undefweak) |
4326 | overflowed_p = (value >> 26) != ((p + 4) >> 28); | |
728b2f21 | 4327 | } |
b49e97c9 TS |
4328 | value &= howto->dst_mask; |
4329 | break; | |
4330 | ||
0f20cc35 DJ |
4331 | case R_MIPS_TLS_DTPREL_HI16: |
4332 | value = (mips_elf_high (addend + symbol - dtprel_base (info)) | |
4333 | & howto->dst_mask); | |
4334 | break; | |
4335 | ||
4336 | case R_MIPS_TLS_DTPREL_LO16: | |
4337 | value = (symbol + addend - dtprel_base (info)) & howto->dst_mask; | |
4338 | break; | |
4339 | ||
4340 | case R_MIPS_TLS_TPREL_HI16: | |
4341 | value = (mips_elf_high (addend + symbol - tprel_base (info)) | |
4342 | & howto->dst_mask); | |
4343 | break; | |
4344 | ||
4345 | case R_MIPS_TLS_TPREL_LO16: | |
4346 | value = (symbol + addend - tprel_base (info)) & howto->dst_mask; | |
4347 | break; | |
4348 | ||
b49e97c9 | 4349 | case R_MIPS_HI16: |
d6f16593 | 4350 | case R_MIPS16_HI16: |
b49e97c9 TS |
4351 | if (!gp_disp_p) |
4352 | { | |
4353 | value = mips_elf_high (addend + symbol); | |
4354 | value &= howto->dst_mask; | |
4355 | } | |
4356 | else | |
4357 | { | |
d6f16593 MR |
4358 | /* For MIPS16 ABI code we generate this sequence |
4359 | 0: li $v0,%hi(_gp_disp) | |
4360 | 4: addiupc $v1,%lo(_gp_disp) | |
4361 | 8: sll $v0,16 | |
4362 | 12: addu $v0,$v1 | |
4363 | 14: move $gp,$v0 | |
4364 | So the offsets of hi and lo relocs are the same, but the | |
4365 | $pc is four higher than $t9 would be, so reduce | |
4366 | both reloc addends by 4. */ | |
4367 | if (r_type == R_MIPS16_HI16) | |
4368 | value = mips_elf_high (addend + gp - p - 4); | |
4369 | else | |
4370 | value = mips_elf_high (addend + gp - p); | |
b49e97c9 TS |
4371 | overflowed_p = mips_elf_overflow_p (value, 16); |
4372 | } | |
4373 | break; | |
4374 | ||
4375 | case R_MIPS_LO16: | |
d6f16593 | 4376 | case R_MIPS16_LO16: |
b49e97c9 TS |
4377 | if (!gp_disp_p) |
4378 | value = (symbol + addend) & howto->dst_mask; | |
4379 | else | |
4380 | { | |
d6f16593 MR |
4381 | /* See the comment for R_MIPS16_HI16 above for the reason |
4382 | for this conditional. */ | |
4383 | if (r_type == R_MIPS16_LO16) | |
4384 | value = addend + gp - p; | |
4385 | else | |
4386 | value = addend + gp - p + 4; | |
b49e97c9 | 4387 | /* The MIPS ABI requires checking the R_MIPS_LO16 relocation |
8dc1a139 | 4388 | for overflow. But, on, say, IRIX5, relocations against |
b49e97c9 TS |
4389 | _gp_disp are normally generated from the .cpload |
4390 | pseudo-op. It generates code that normally looks like | |
4391 | this: | |
4392 | ||
4393 | lui $gp,%hi(_gp_disp) | |
4394 | addiu $gp,$gp,%lo(_gp_disp) | |
4395 | addu $gp,$gp,$t9 | |
4396 | ||
4397 | Here $t9 holds the address of the function being called, | |
4398 | as required by the MIPS ELF ABI. The R_MIPS_LO16 | |
4399 | relocation can easily overflow in this situation, but the | |
4400 | R_MIPS_HI16 relocation will handle the overflow. | |
4401 | Therefore, we consider this a bug in the MIPS ABI, and do | |
4402 | not check for overflow here. */ | |
4403 | } | |
4404 | break; | |
4405 | ||
4406 | case R_MIPS_LITERAL: | |
4407 | /* Because we don't merge literal sections, we can handle this | |
4408 | just like R_MIPS_GPREL16. In the long run, we should merge | |
4409 | shared literals, and then we will need to additional work | |
4410 | here. */ | |
4411 | ||
4412 | /* Fall through. */ | |
4413 | ||
4414 | case R_MIPS16_GPREL: | |
4415 | /* The R_MIPS16_GPREL performs the same calculation as | |
4416 | R_MIPS_GPREL16, but stores the relocated bits in a different | |
4417 | order. We don't need to do anything special here; the | |
4418 | differences are handled in mips_elf_perform_relocation. */ | |
4419 | case R_MIPS_GPREL16: | |
bce03d3d AO |
4420 | /* Only sign-extend the addend if it was extracted from the |
4421 | instruction. If the addend was separate, leave it alone, | |
4422 | otherwise we may lose significant bits. */ | |
4423 | if (howto->partial_inplace) | |
a7ebbfdf | 4424 | addend = _bfd_mips_elf_sign_extend (addend, 16); |
bce03d3d AO |
4425 | value = symbol + addend - gp; |
4426 | /* If the symbol was local, any earlier relocatable links will | |
4427 | have adjusted its addend with the gp offset, so compensate | |
4428 | for that now. Don't do it for symbols forced local in this | |
4429 | link, though, since they won't have had the gp offset applied | |
4430 | to them before. */ | |
4431 | if (was_local_p) | |
4432 | value += gp0; | |
b49e97c9 TS |
4433 | overflowed_p = mips_elf_overflow_p (value, 16); |
4434 | break; | |
4435 | ||
4436 | case R_MIPS_GOT16: | |
4437 | case R_MIPS_CALL16: | |
0a44bf69 RS |
4438 | /* VxWorks does not have separate local and global semantics for |
4439 | R_MIPS_GOT16; every relocation evaluates to "G". */ | |
4440 | if (!htab->is_vxworks && local_p) | |
b49e97c9 | 4441 | { |
b34976b6 | 4442 | bfd_boolean forced; |
b49e97c9 | 4443 | |
b49e97c9 | 4444 | forced = ! mips_elf_local_relocation_p (input_bfd, relocation, |
b34976b6 | 4445 | local_sections, FALSE); |
0a44bf69 | 4446 | value = mips_elf_got16_entry (abfd, input_bfd, info, sec, |
f4416af6 | 4447 | symbol + addend, forced); |
b49e97c9 TS |
4448 | if (value == MINUS_ONE) |
4449 | return bfd_reloc_outofrange; | |
4450 | value | |
0a44bf69 | 4451 | = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value); |
b49e97c9 TS |
4452 | overflowed_p = mips_elf_overflow_p (value, 16); |
4453 | break; | |
4454 | } | |
4455 | ||
4456 | /* Fall through. */ | |
4457 | ||
0f20cc35 DJ |
4458 | case R_MIPS_TLS_GD: |
4459 | case R_MIPS_TLS_GOTTPREL: | |
4460 | case R_MIPS_TLS_LDM: | |
b49e97c9 | 4461 | case R_MIPS_GOT_DISP: |
0fdc1bf1 | 4462 | got_disp: |
b49e97c9 TS |
4463 | value = g; |
4464 | overflowed_p = mips_elf_overflow_p (value, 16); | |
4465 | break; | |
4466 | ||
4467 | case R_MIPS_GPREL32: | |
bce03d3d AO |
4468 | value = (addend + symbol + gp0 - gp); |
4469 | if (!save_addend) | |
4470 | value &= howto->dst_mask; | |
b49e97c9 TS |
4471 | break; |
4472 | ||
4473 | case R_MIPS_PC16: | |
bad36eac DJ |
4474 | case R_MIPS_GNU_REL16_S2: |
4475 | value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p; | |
4476 | overflowed_p = mips_elf_overflow_p (value, 18); | |
37caec6b TS |
4477 | value >>= howto->rightshift; |
4478 | value &= howto->dst_mask; | |
b49e97c9 TS |
4479 | break; |
4480 | ||
4481 | case R_MIPS_GOT_HI16: | |
4482 | case R_MIPS_CALL_HI16: | |
4483 | /* We're allowed to handle these two relocations identically. | |
4484 | The dynamic linker is allowed to handle the CALL relocations | |
4485 | differently by creating a lazy evaluation stub. */ | |
4486 | value = g; | |
4487 | value = mips_elf_high (value); | |
4488 | value &= howto->dst_mask; | |
4489 | break; | |
4490 | ||
4491 | case R_MIPS_GOT_LO16: | |
4492 | case R_MIPS_CALL_LO16: | |
4493 | value = g & howto->dst_mask; | |
4494 | break; | |
4495 | ||
4496 | case R_MIPS_GOT_PAGE: | |
0fdc1bf1 AO |
4497 | /* GOT_PAGE relocations that reference non-local symbols decay |
4498 | to GOT_DISP. The corresponding GOT_OFST relocation decays to | |
4499 | 0. */ | |
93a2b7ae | 4500 | if (! local_p) |
0fdc1bf1 | 4501 | goto got_disp; |
0a44bf69 RS |
4502 | value = mips_elf_got_page (abfd, input_bfd, info, sec, |
4503 | symbol + addend, NULL); | |
b49e97c9 TS |
4504 | if (value == MINUS_ONE) |
4505 | return bfd_reloc_outofrange; | |
0a44bf69 | 4506 | value = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value); |
b49e97c9 TS |
4507 | overflowed_p = mips_elf_overflow_p (value, 16); |
4508 | break; | |
4509 | ||
4510 | case R_MIPS_GOT_OFST: | |
93a2b7ae | 4511 | if (local_p) |
0a44bf69 RS |
4512 | mips_elf_got_page (abfd, input_bfd, info, sec, |
4513 | symbol + addend, &value); | |
0fdc1bf1 AO |
4514 | else |
4515 | value = addend; | |
b49e97c9 TS |
4516 | overflowed_p = mips_elf_overflow_p (value, 16); |
4517 | break; | |
4518 | ||
4519 | case R_MIPS_SUB: | |
4520 | value = symbol - addend; | |
4521 | value &= howto->dst_mask; | |
4522 | break; | |
4523 | ||
4524 | case R_MIPS_HIGHER: | |
4525 | value = mips_elf_higher (addend + symbol); | |
4526 | value &= howto->dst_mask; | |
4527 | break; | |
4528 | ||
4529 | case R_MIPS_HIGHEST: | |
4530 | value = mips_elf_highest (addend + symbol); | |
4531 | value &= howto->dst_mask; | |
4532 | break; | |
4533 | ||
4534 | case R_MIPS_SCN_DISP: | |
4535 | value = symbol + addend - sec->output_offset; | |
4536 | value &= howto->dst_mask; | |
4537 | break; | |
4538 | ||
b49e97c9 | 4539 | case R_MIPS_JALR: |
1367d393 ILT |
4540 | /* This relocation is only a hint. In some cases, we optimize |
4541 | it into a bal instruction. But we don't try to optimize | |
4542 | branches to the PLT; that will wind up wasting time. */ | |
4543 | if (h != NULL && h->root.plt.offset != (bfd_vma) -1) | |
4544 | return bfd_reloc_continue; | |
4545 | value = symbol + addend; | |
4546 | break; | |
b49e97c9 | 4547 | |
1367d393 | 4548 | case R_MIPS_PJUMP: |
b49e97c9 TS |
4549 | case R_MIPS_GNU_VTINHERIT: |
4550 | case R_MIPS_GNU_VTENTRY: | |
4551 | /* We don't do anything with these at present. */ | |
4552 | return bfd_reloc_continue; | |
4553 | ||
4554 | default: | |
4555 | /* An unrecognized relocation type. */ | |
4556 | return bfd_reloc_notsupported; | |
4557 | } | |
4558 | ||
4559 | /* Store the VALUE for our caller. */ | |
4560 | *valuep = value; | |
4561 | return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok; | |
4562 | } | |
4563 | ||
4564 | /* Obtain the field relocated by RELOCATION. */ | |
4565 | ||
4566 | static bfd_vma | |
9719ad41 RS |
4567 | mips_elf_obtain_contents (reloc_howto_type *howto, |
4568 | const Elf_Internal_Rela *relocation, | |
4569 | bfd *input_bfd, bfd_byte *contents) | |
b49e97c9 TS |
4570 | { |
4571 | bfd_vma x; | |
4572 | bfd_byte *location = contents + relocation->r_offset; | |
4573 | ||
4574 | /* Obtain the bytes. */ | |
4575 | x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location); | |
4576 | ||
b49e97c9 TS |
4577 | return x; |
4578 | } | |
4579 | ||
4580 | /* It has been determined that the result of the RELOCATION is the | |
4581 | VALUE. Use HOWTO to place VALUE into the output file at the | |
4582 | appropriate position. The SECTION is the section to which the | |
b34976b6 | 4583 | relocation applies. If REQUIRE_JALX is TRUE, then the opcode used |
b49e97c9 TS |
4584 | for the relocation must be either JAL or JALX, and it is |
4585 | unconditionally converted to JALX. | |
4586 | ||
b34976b6 | 4587 | Returns FALSE if anything goes wrong. */ |
b49e97c9 | 4588 | |
b34976b6 | 4589 | static bfd_boolean |
9719ad41 RS |
4590 | mips_elf_perform_relocation (struct bfd_link_info *info, |
4591 | reloc_howto_type *howto, | |
4592 | const Elf_Internal_Rela *relocation, | |
4593 | bfd_vma value, bfd *input_bfd, | |
4594 | asection *input_section, bfd_byte *contents, | |
4595 | bfd_boolean require_jalx) | |
b49e97c9 TS |
4596 | { |
4597 | bfd_vma x; | |
4598 | bfd_byte *location; | |
4599 | int r_type = ELF_R_TYPE (input_bfd, relocation->r_info); | |
4600 | ||
4601 | /* Figure out where the relocation is occurring. */ | |
4602 | location = contents + relocation->r_offset; | |
4603 | ||
d6f16593 MR |
4604 | _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location); |
4605 | ||
b49e97c9 TS |
4606 | /* Obtain the current value. */ |
4607 | x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents); | |
4608 | ||
4609 | /* Clear the field we are setting. */ | |
4610 | x &= ~howto->dst_mask; | |
4611 | ||
b49e97c9 TS |
4612 | /* Set the field. */ |
4613 | x |= (value & howto->dst_mask); | |
4614 | ||
4615 | /* If required, turn JAL into JALX. */ | |
4616 | if (require_jalx) | |
4617 | { | |
b34976b6 | 4618 | bfd_boolean ok; |
b49e97c9 TS |
4619 | bfd_vma opcode = x >> 26; |
4620 | bfd_vma jalx_opcode; | |
4621 | ||
4622 | /* Check to see if the opcode is already JAL or JALX. */ | |
4623 | if (r_type == R_MIPS16_26) | |
4624 | { | |
4625 | ok = ((opcode == 0x6) || (opcode == 0x7)); | |
4626 | jalx_opcode = 0x7; | |
4627 | } | |
4628 | else | |
4629 | { | |
4630 | ok = ((opcode == 0x3) || (opcode == 0x1d)); | |
4631 | jalx_opcode = 0x1d; | |
4632 | } | |
4633 | ||
4634 | /* If the opcode is not JAL or JALX, there's a problem. */ | |
4635 | if (!ok) | |
4636 | { | |
4637 | (*_bfd_error_handler) | |
d003868e AM |
4638 | (_("%B: %A+0x%lx: jump to stub routine which is not jal"), |
4639 | input_bfd, | |
4640 | input_section, | |
b49e97c9 TS |
4641 | (unsigned long) relocation->r_offset); |
4642 | bfd_set_error (bfd_error_bad_value); | |
b34976b6 | 4643 | return FALSE; |
b49e97c9 TS |
4644 | } |
4645 | ||
4646 | /* Make this the JALX opcode. */ | |
4647 | x = (x & ~(0x3f << 26)) | (jalx_opcode << 26); | |
4648 | } | |
4649 | ||
1367d393 ILT |
4650 | /* On the RM9000, bal is faster than jal, because bal uses branch |
4651 | prediction hardware. If we are linking for the RM9000, and we | |
4652 | see jal, and bal fits, use it instead. Note that this | |
4653 | transformation should be safe for all architectures. */ | |
4654 | if (bfd_get_mach (input_bfd) == bfd_mach_mips9000 | |
4655 | && !info->relocatable | |
4656 | && !require_jalx | |
4657 | && ((r_type == R_MIPS_26 && (x >> 26) == 0x3) /* jal addr */ | |
4658 | || (r_type == R_MIPS_JALR && x == 0x0320f809))) /* jalr t9 */ | |
4659 | { | |
4660 | bfd_vma addr; | |
4661 | bfd_vma dest; | |
4662 | bfd_signed_vma off; | |
4663 | ||
4664 | addr = (input_section->output_section->vma | |
4665 | + input_section->output_offset | |
4666 | + relocation->r_offset | |
4667 | + 4); | |
4668 | if (r_type == R_MIPS_26) | |
4669 | dest = (value << 2) | ((addr >> 28) << 28); | |
4670 | else | |
4671 | dest = value; | |
4672 | off = dest - addr; | |
4673 | if (off <= 0x1ffff && off >= -0x20000) | |
4674 | x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */ | |
4675 | } | |
4676 | ||
b49e97c9 TS |
4677 | /* Put the value into the output. */ |
4678 | bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location); | |
d6f16593 MR |
4679 | |
4680 | _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable, | |
4681 | location); | |
4682 | ||
b34976b6 | 4683 | return TRUE; |
b49e97c9 TS |
4684 | } |
4685 | ||
b34976b6 | 4686 | /* Returns TRUE if SECTION is a MIPS16 stub section. */ |
b49e97c9 | 4687 | |
b34976b6 | 4688 | static bfd_boolean |
9719ad41 | 4689 | mips_elf_stub_section_p (bfd *abfd ATTRIBUTE_UNUSED, asection *section) |
b49e97c9 TS |
4690 | { |
4691 | const char *name = bfd_get_section_name (abfd, section); | |
4692 | ||
0112cd26 NC |
4693 | return (CONST_STRNEQ (name, FN_STUB) |
4694 | || CONST_STRNEQ (name, CALL_STUB) | |
4695 | || CONST_STRNEQ (name, CALL_FP_STUB)); | |
b49e97c9 TS |
4696 | } |
4697 | \f | |
0a44bf69 | 4698 | /* Add room for N relocations to the .rel(a).dyn section in ABFD. */ |
b49e97c9 TS |
4699 | |
4700 | static void | |
0a44bf69 RS |
4701 | mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info, |
4702 | unsigned int n) | |
b49e97c9 TS |
4703 | { |
4704 | asection *s; | |
0a44bf69 | 4705 | struct mips_elf_link_hash_table *htab; |
b49e97c9 | 4706 | |
0a44bf69 RS |
4707 | htab = mips_elf_hash_table (info); |
4708 | s = mips_elf_rel_dyn_section (info, FALSE); | |
b49e97c9 TS |
4709 | BFD_ASSERT (s != NULL); |
4710 | ||
0a44bf69 RS |
4711 | if (htab->is_vxworks) |
4712 | s->size += n * MIPS_ELF_RELA_SIZE (abfd); | |
4713 | else | |
b49e97c9 | 4714 | { |
0a44bf69 RS |
4715 | if (s->size == 0) |
4716 | { | |
4717 | /* Make room for a null element. */ | |
4718 | s->size += MIPS_ELF_REL_SIZE (abfd); | |
4719 | ++s->reloc_count; | |
4720 | } | |
4721 | s->size += n * MIPS_ELF_REL_SIZE (abfd); | |
b49e97c9 | 4722 | } |
b49e97c9 TS |
4723 | } |
4724 | ||
4725 | /* Create a rel.dyn relocation for the dynamic linker to resolve. REL | |
4726 | is the original relocation, which is now being transformed into a | |
4727 | dynamic relocation. The ADDENDP is adjusted if necessary; the | |
4728 | caller should store the result in place of the original addend. */ | |
4729 | ||
b34976b6 | 4730 | static bfd_boolean |
9719ad41 RS |
4731 | mips_elf_create_dynamic_relocation (bfd *output_bfd, |
4732 | struct bfd_link_info *info, | |
4733 | const Elf_Internal_Rela *rel, | |
4734 | struct mips_elf_link_hash_entry *h, | |
4735 | asection *sec, bfd_vma symbol, | |
4736 | bfd_vma *addendp, asection *input_section) | |
b49e97c9 | 4737 | { |
947216bf | 4738 | Elf_Internal_Rela outrel[3]; |
b49e97c9 TS |
4739 | asection *sreloc; |
4740 | bfd *dynobj; | |
4741 | int r_type; | |
5d41f0b6 RS |
4742 | long indx; |
4743 | bfd_boolean defined_p; | |
0a44bf69 | 4744 | struct mips_elf_link_hash_table *htab; |
b49e97c9 | 4745 | |
0a44bf69 | 4746 | htab = mips_elf_hash_table (info); |
b49e97c9 TS |
4747 | r_type = ELF_R_TYPE (output_bfd, rel->r_info); |
4748 | dynobj = elf_hash_table (info)->dynobj; | |
0a44bf69 | 4749 | sreloc = mips_elf_rel_dyn_section (info, FALSE); |
b49e97c9 TS |
4750 | BFD_ASSERT (sreloc != NULL); |
4751 | BFD_ASSERT (sreloc->contents != NULL); | |
4752 | BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd) | |
eea6121a | 4753 | < sreloc->size); |
b49e97c9 | 4754 | |
b49e97c9 TS |
4755 | outrel[0].r_offset = |
4756 | _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset); | |
4757 | outrel[1].r_offset = | |
4758 | _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset); | |
4759 | outrel[2].r_offset = | |
4760 | _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset); | |
4761 | ||
c5ae1840 | 4762 | if (outrel[0].r_offset == MINUS_ONE) |
0d591ff7 | 4763 | /* The relocation field has been deleted. */ |
5d41f0b6 RS |
4764 | return TRUE; |
4765 | ||
4766 | if (outrel[0].r_offset == MINUS_TWO) | |
0d591ff7 RS |
4767 | { |
4768 | /* The relocation field has been converted into a relative value of | |
4769 | some sort. Functions like _bfd_elf_write_section_eh_frame expect | |
4770 | the field to be fully relocated, so add in the symbol's value. */ | |
0d591ff7 | 4771 | *addendp += symbol; |
5d41f0b6 | 4772 | return TRUE; |
0d591ff7 | 4773 | } |
b49e97c9 | 4774 | |
5d41f0b6 RS |
4775 | /* We must now calculate the dynamic symbol table index to use |
4776 | in the relocation. */ | |
4777 | if (h != NULL | |
6ece8836 TS |
4778 | && (!h->root.def_regular |
4779 | || (info->shared && !info->symbolic && !h->root.forced_local))) | |
5d41f0b6 RS |
4780 | { |
4781 | indx = h->root.dynindx; | |
4782 | if (SGI_COMPAT (output_bfd)) | |
4783 | defined_p = h->root.def_regular; | |
4784 | else | |
4785 | /* ??? glibc's ld.so just adds the final GOT entry to the | |
4786 | relocation field. It therefore treats relocs against | |
4787 | defined symbols in the same way as relocs against | |
4788 | undefined symbols. */ | |
4789 | defined_p = FALSE; | |
4790 | } | |
b49e97c9 TS |
4791 | else |
4792 | { | |
5d41f0b6 RS |
4793 | if (sec != NULL && bfd_is_abs_section (sec)) |
4794 | indx = 0; | |
4795 | else if (sec == NULL || sec->owner == NULL) | |
fdd07405 | 4796 | { |
5d41f0b6 RS |
4797 | bfd_set_error (bfd_error_bad_value); |
4798 | return FALSE; | |
b49e97c9 TS |
4799 | } |
4800 | else | |
4801 | { | |
5d41f0b6 RS |
4802 | indx = elf_section_data (sec->output_section)->dynindx; |
4803 | if (indx == 0) | |
4804 | abort (); | |
b49e97c9 TS |
4805 | } |
4806 | ||
5d41f0b6 RS |
4807 | /* Instead of generating a relocation using the section |
4808 | symbol, we may as well make it a fully relative | |
4809 | relocation. We want to avoid generating relocations to | |
4810 | local symbols because we used to generate them | |
4811 | incorrectly, without adding the original symbol value, | |
4812 | which is mandated by the ABI for section symbols. In | |
4813 | order to give dynamic loaders and applications time to | |
4814 | phase out the incorrect use, we refrain from emitting | |
4815 | section-relative relocations. It's not like they're | |
4816 | useful, after all. This should be a bit more efficient | |
4817 | as well. */ | |
4818 | /* ??? Although this behavior is compatible with glibc's ld.so, | |
4819 | the ABI says that relocations against STN_UNDEF should have | |
4820 | a symbol value of 0. Irix rld honors this, so relocations | |
4821 | against STN_UNDEF have no effect. */ | |
4822 | if (!SGI_COMPAT (output_bfd)) | |
4823 | indx = 0; | |
4824 | defined_p = TRUE; | |
b49e97c9 TS |
4825 | } |
4826 | ||
5d41f0b6 RS |
4827 | /* If the relocation was previously an absolute relocation and |
4828 | this symbol will not be referred to by the relocation, we must | |
4829 | adjust it by the value we give it in the dynamic symbol table. | |
4830 | Otherwise leave the job up to the dynamic linker. */ | |
4831 | if (defined_p && r_type != R_MIPS_REL32) | |
4832 | *addendp += symbol; | |
4833 | ||
0a44bf69 RS |
4834 | if (htab->is_vxworks) |
4835 | /* VxWorks uses non-relative relocations for this. */ | |
4836 | outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32); | |
4837 | else | |
4838 | /* The relocation is always an REL32 relocation because we don't | |
4839 | know where the shared library will wind up at load-time. */ | |
4840 | outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx, | |
4841 | R_MIPS_REL32); | |
4842 | ||
5d41f0b6 RS |
4843 | /* For strict adherence to the ABI specification, we should |
4844 | generate a R_MIPS_64 relocation record by itself before the | |
4845 | _REL32/_64 record as well, such that the addend is read in as | |
4846 | a 64-bit value (REL32 is a 32-bit relocation, after all). | |
4847 | However, since none of the existing ELF64 MIPS dynamic | |
4848 | loaders seems to care, we don't waste space with these | |
4849 | artificial relocations. If this turns out to not be true, | |
4850 | mips_elf_allocate_dynamic_relocation() should be tweaked so | |
4851 | as to make room for a pair of dynamic relocations per | |
4852 | invocation if ABI_64_P, and here we should generate an | |
4853 | additional relocation record with R_MIPS_64 by itself for a | |
4854 | NULL symbol before this relocation record. */ | |
4855 | outrel[1].r_info = ELF_R_INFO (output_bfd, 0, | |
4856 | ABI_64_P (output_bfd) | |
4857 | ? R_MIPS_64 | |
4858 | : R_MIPS_NONE); | |
4859 | outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE); | |
4860 | ||
4861 | /* Adjust the output offset of the relocation to reference the | |
4862 | correct location in the output file. */ | |
4863 | outrel[0].r_offset += (input_section->output_section->vma | |
4864 | + input_section->output_offset); | |
4865 | outrel[1].r_offset += (input_section->output_section->vma | |
4866 | + input_section->output_offset); | |
4867 | outrel[2].r_offset += (input_section->output_section->vma | |
4868 | + input_section->output_offset); | |
4869 | ||
b49e97c9 TS |
4870 | /* Put the relocation back out. We have to use the special |
4871 | relocation outputter in the 64-bit case since the 64-bit | |
4872 | relocation format is non-standard. */ | |
4873 | if (ABI_64_P (output_bfd)) | |
4874 | { | |
4875 | (*get_elf_backend_data (output_bfd)->s->swap_reloc_out) | |
4876 | (output_bfd, &outrel[0], | |
4877 | (sreloc->contents | |
4878 | + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel))); | |
4879 | } | |
0a44bf69 RS |
4880 | else if (htab->is_vxworks) |
4881 | { | |
4882 | /* VxWorks uses RELA rather than REL dynamic relocations. */ | |
4883 | outrel[0].r_addend = *addendp; | |
4884 | bfd_elf32_swap_reloca_out | |
4885 | (output_bfd, &outrel[0], | |
4886 | (sreloc->contents | |
4887 | + sreloc->reloc_count * sizeof (Elf32_External_Rela))); | |
4888 | } | |
b49e97c9 | 4889 | else |
947216bf AM |
4890 | bfd_elf32_swap_reloc_out |
4891 | (output_bfd, &outrel[0], | |
4892 | (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel))); | |
b49e97c9 | 4893 | |
b49e97c9 TS |
4894 | /* We've now added another relocation. */ |
4895 | ++sreloc->reloc_count; | |
4896 | ||
4897 | /* Make sure the output section is writable. The dynamic linker | |
4898 | will be writing to it. */ | |
4899 | elf_section_data (input_section->output_section)->this_hdr.sh_flags | |
4900 | |= SHF_WRITE; | |
4901 | ||
4902 | /* On IRIX5, make an entry of compact relocation info. */ | |
5d41f0b6 | 4903 | if (IRIX_COMPAT (output_bfd) == ict_irix5) |
b49e97c9 TS |
4904 | { |
4905 | asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel"); | |
4906 | bfd_byte *cr; | |
4907 | ||
4908 | if (scpt) | |
4909 | { | |
4910 | Elf32_crinfo cptrel; | |
4911 | ||
4912 | mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG); | |
4913 | cptrel.vaddr = (rel->r_offset | |
4914 | + input_section->output_section->vma | |
4915 | + input_section->output_offset); | |
4916 | if (r_type == R_MIPS_REL32) | |
4917 | mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32); | |
4918 | else | |
4919 | mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD); | |
4920 | mips_elf_set_cr_dist2to (cptrel, 0); | |
4921 | cptrel.konst = *addendp; | |
4922 | ||
4923 | cr = (scpt->contents | |
4924 | + sizeof (Elf32_External_compact_rel)); | |
abc0f8d0 | 4925 | mips_elf_set_cr_relvaddr (cptrel, 0); |
b49e97c9 TS |
4926 | bfd_elf32_swap_crinfo_out (output_bfd, &cptrel, |
4927 | ((Elf32_External_crinfo *) cr | |
4928 | + scpt->reloc_count)); | |
4929 | ++scpt->reloc_count; | |
4930 | } | |
4931 | } | |
4932 | ||
943284cc DJ |
4933 | /* If we've written this relocation for a readonly section, |
4934 | we need to set DF_TEXTREL again, so that we do not delete the | |
4935 | DT_TEXTREL tag. */ | |
4936 | if (MIPS_ELF_READONLY_SECTION (input_section)) | |
4937 | info->flags |= DF_TEXTREL; | |
4938 | ||
b34976b6 | 4939 | return TRUE; |
b49e97c9 TS |
4940 | } |
4941 | \f | |
b49e97c9 TS |
4942 | /* Return the MACH for a MIPS e_flags value. */ |
4943 | ||
4944 | unsigned long | |
9719ad41 | 4945 | _bfd_elf_mips_mach (flagword flags) |
b49e97c9 TS |
4946 | { |
4947 | switch (flags & EF_MIPS_MACH) | |
4948 | { | |
4949 | case E_MIPS_MACH_3900: | |
4950 | return bfd_mach_mips3900; | |
4951 | ||
4952 | case E_MIPS_MACH_4010: | |
4953 | return bfd_mach_mips4010; | |
4954 | ||
4955 | case E_MIPS_MACH_4100: | |
4956 | return bfd_mach_mips4100; | |
4957 | ||
4958 | case E_MIPS_MACH_4111: | |
4959 | return bfd_mach_mips4111; | |
4960 | ||
00707a0e RS |
4961 | case E_MIPS_MACH_4120: |
4962 | return bfd_mach_mips4120; | |
4963 | ||
b49e97c9 TS |
4964 | case E_MIPS_MACH_4650: |
4965 | return bfd_mach_mips4650; | |
4966 | ||
00707a0e RS |
4967 | case E_MIPS_MACH_5400: |
4968 | return bfd_mach_mips5400; | |
4969 | ||
4970 | case E_MIPS_MACH_5500: | |
4971 | return bfd_mach_mips5500; | |
4972 | ||
0d2e43ed ILT |
4973 | case E_MIPS_MACH_9000: |
4974 | return bfd_mach_mips9000; | |
4975 | ||
b49e97c9 TS |
4976 | case E_MIPS_MACH_SB1: |
4977 | return bfd_mach_mips_sb1; | |
4978 | ||
4979 | default: | |
4980 | switch (flags & EF_MIPS_ARCH) | |
4981 | { | |
4982 | default: | |
4983 | case E_MIPS_ARCH_1: | |
4984 | return bfd_mach_mips3000; | |
b49e97c9 TS |
4985 | |
4986 | case E_MIPS_ARCH_2: | |
4987 | return bfd_mach_mips6000; | |
b49e97c9 TS |
4988 | |
4989 | case E_MIPS_ARCH_3: | |
4990 | return bfd_mach_mips4000; | |
b49e97c9 TS |
4991 | |
4992 | case E_MIPS_ARCH_4: | |
4993 | return bfd_mach_mips8000; | |
b49e97c9 TS |
4994 | |
4995 | case E_MIPS_ARCH_5: | |
4996 | return bfd_mach_mips5; | |
b49e97c9 TS |
4997 | |
4998 | case E_MIPS_ARCH_32: | |
4999 | return bfd_mach_mipsisa32; | |
b49e97c9 TS |
5000 | |
5001 | case E_MIPS_ARCH_64: | |
5002 | return bfd_mach_mipsisa64; | |
af7ee8bf CD |
5003 | |
5004 | case E_MIPS_ARCH_32R2: | |
5005 | return bfd_mach_mipsisa32r2; | |
5f74bc13 CD |
5006 | |
5007 | case E_MIPS_ARCH_64R2: | |
5008 | return bfd_mach_mipsisa64r2; | |
b49e97c9 TS |
5009 | } |
5010 | } | |
5011 | ||
5012 | return 0; | |
5013 | } | |
5014 | ||
5015 | /* Return printable name for ABI. */ | |
5016 | ||
5017 | static INLINE char * | |
9719ad41 | 5018 | elf_mips_abi_name (bfd *abfd) |
b49e97c9 TS |
5019 | { |
5020 | flagword flags; | |
5021 | ||
5022 | flags = elf_elfheader (abfd)->e_flags; | |
5023 | switch (flags & EF_MIPS_ABI) | |
5024 | { | |
5025 | case 0: | |
5026 | if (ABI_N32_P (abfd)) | |
5027 | return "N32"; | |
5028 | else if (ABI_64_P (abfd)) | |
5029 | return "64"; | |
5030 | else | |
5031 | return "none"; | |
5032 | case E_MIPS_ABI_O32: | |
5033 | return "O32"; | |
5034 | case E_MIPS_ABI_O64: | |
5035 | return "O64"; | |
5036 | case E_MIPS_ABI_EABI32: | |
5037 | return "EABI32"; | |
5038 | case E_MIPS_ABI_EABI64: | |
5039 | return "EABI64"; | |
5040 | default: | |
5041 | return "unknown abi"; | |
5042 | } | |
5043 | } | |
5044 | \f | |
5045 | /* MIPS ELF uses two common sections. One is the usual one, and the | |
5046 | other is for small objects. All the small objects are kept | |
5047 | together, and then referenced via the gp pointer, which yields | |
5048 | faster assembler code. This is what we use for the small common | |
5049 | section. This approach is copied from ecoff.c. */ | |
5050 | static asection mips_elf_scom_section; | |
5051 | static asymbol mips_elf_scom_symbol; | |
5052 | static asymbol *mips_elf_scom_symbol_ptr; | |
5053 | ||
5054 | /* MIPS ELF also uses an acommon section, which represents an | |
5055 | allocated common symbol which may be overridden by a | |
5056 | definition in a shared library. */ | |
5057 | static asection mips_elf_acom_section; | |
5058 | static asymbol mips_elf_acom_symbol; | |
5059 | static asymbol *mips_elf_acom_symbol_ptr; | |
5060 | ||
5061 | /* Handle the special MIPS section numbers that a symbol may use. | |
5062 | This is used for both the 32-bit and the 64-bit ABI. */ | |
5063 | ||
5064 | void | |
9719ad41 | 5065 | _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym) |
b49e97c9 TS |
5066 | { |
5067 | elf_symbol_type *elfsym; | |
5068 | ||
5069 | elfsym = (elf_symbol_type *) asym; | |
5070 | switch (elfsym->internal_elf_sym.st_shndx) | |
5071 | { | |
5072 | case SHN_MIPS_ACOMMON: | |
5073 | /* This section is used in a dynamically linked executable file. | |
5074 | It is an allocated common section. The dynamic linker can | |
5075 | either resolve these symbols to something in a shared | |
5076 | library, or it can just leave them here. For our purposes, | |
5077 | we can consider these symbols to be in a new section. */ | |
5078 | if (mips_elf_acom_section.name == NULL) | |
5079 | { | |
5080 | /* Initialize the acommon section. */ | |
5081 | mips_elf_acom_section.name = ".acommon"; | |
5082 | mips_elf_acom_section.flags = SEC_ALLOC; | |
5083 | mips_elf_acom_section.output_section = &mips_elf_acom_section; | |
5084 | mips_elf_acom_section.symbol = &mips_elf_acom_symbol; | |
5085 | mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr; | |
5086 | mips_elf_acom_symbol.name = ".acommon"; | |
5087 | mips_elf_acom_symbol.flags = BSF_SECTION_SYM; | |
5088 | mips_elf_acom_symbol.section = &mips_elf_acom_section; | |
5089 | mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol; | |
5090 | } | |
5091 | asym->section = &mips_elf_acom_section; | |
5092 | break; | |
5093 | ||
5094 | case SHN_COMMON: | |
5095 | /* Common symbols less than the GP size are automatically | |
5096 | treated as SHN_MIPS_SCOMMON symbols on IRIX5. */ | |
5097 | if (asym->value > elf_gp_size (abfd) | |
b59eed79 | 5098 | || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS |
b49e97c9 TS |
5099 | || IRIX_COMPAT (abfd) == ict_irix6) |
5100 | break; | |
5101 | /* Fall through. */ | |
5102 | case SHN_MIPS_SCOMMON: | |
5103 | if (mips_elf_scom_section.name == NULL) | |
5104 | { | |
5105 | /* Initialize the small common section. */ | |
5106 | mips_elf_scom_section.name = ".scommon"; | |
5107 | mips_elf_scom_section.flags = SEC_IS_COMMON; | |
5108 | mips_elf_scom_section.output_section = &mips_elf_scom_section; | |
5109 | mips_elf_scom_section.symbol = &mips_elf_scom_symbol; | |
5110 | mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr; | |
5111 | mips_elf_scom_symbol.name = ".scommon"; | |
5112 | mips_elf_scom_symbol.flags = BSF_SECTION_SYM; | |
5113 | mips_elf_scom_symbol.section = &mips_elf_scom_section; | |
5114 | mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol; | |
5115 | } | |
5116 | asym->section = &mips_elf_scom_section; | |
5117 | asym->value = elfsym->internal_elf_sym.st_size; | |
5118 | break; | |
5119 | ||
5120 | case SHN_MIPS_SUNDEFINED: | |
5121 | asym->section = bfd_und_section_ptr; | |
5122 | break; | |
5123 | ||
b49e97c9 | 5124 | case SHN_MIPS_TEXT: |
00b4930b TS |
5125 | { |
5126 | asection *section = bfd_get_section_by_name (abfd, ".text"); | |
5127 | ||
5128 | BFD_ASSERT (SGI_COMPAT (abfd)); | |
5129 | if (section != NULL) | |
5130 | { | |
5131 | asym->section = section; | |
5132 | /* MIPS_TEXT is a bit special, the address is not an offset | |
5133 | to the base of the .text section. So substract the section | |
5134 | base address to make it an offset. */ | |
5135 | asym->value -= section->vma; | |
5136 | } | |
5137 | } | |
b49e97c9 TS |
5138 | break; |
5139 | ||
5140 | case SHN_MIPS_DATA: | |
00b4930b TS |
5141 | { |
5142 | asection *section = bfd_get_section_by_name (abfd, ".data"); | |
5143 | ||
5144 | BFD_ASSERT (SGI_COMPAT (abfd)); | |
5145 | if (section != NULL) | |
5146 | { | |
5147 | asym->section = section; | |
5148 | /* MIPS_DATA is a bit special, the address is not an offset | |
5149 | to the base of the .data section. So substract the section | |
5150 | base address to make it an offset. */ | |
5151 | asym->value -= section->vma; | |
5152 | } | |
5153 | } | |
b49e97c9 | 5154 | break; |
b49e97c9 TS |
5155 | } |
5156 | } | |
5157 | \f | |
8c946ed5 RS |
5158 | /* Implement elf_backend_eh_frame_address_size. This differs from |
5159 | the default in the way it handles EABI64. | |
5160 | ||
5161 | EABI64 was originally specified as an LP64 ABI, and that is what | |
5162 | -mabi=eabi normally gives on a 64-bit target. However, gcc has | |
5163 | historically accepted the combination of -mabi=eabi and -mlong32, | |
5164 | and this ILP32 variation has become semi-official over time. | |
5165 | Both forms use elf32 and have pointer-sized FDE addresses. | |
5166 | ||
5167 | If an EABI object was generated by GCC 4.0 or above, it will have | |
5168 | an empty .gcc_compiled_longXX section, where XX is the size of longs | |
5169 | in bits. Unfortunately, ILP32 objects generated by earlier compilers | |
5170 | have no special marking to distinguish them from LP64 objects. | |
5171 | ||
5172 | We don't want users of the official LP64 ABI to be punished for the | |
5173 | existence of the ILP32 variant, but at the same time, we don't want | |
5174 | to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects. | |
5175 | We therefore take the following approach: | |
5176 | ||
5177 | - If ABFD contains a .gcc_compiled_longXX section, use it to | |
5178 | determine the pointer size. | |
5179 | ||
5180 | - Otherwise check the type of the first relocation. Assume that | |
5181 | the LP64 ABI is being used if the relocation is of type R_MIPS_64. | |
5182 | ||
5183 | - Otherwise punt. | |
5184 | ||
5185 | The second check is enough to detect LP64 objects generated by pre-4.0 | |
5186 | compilers because, in the kind of output generated by those compilers, | |
5187 | the first relocation will be associated with either a CIE personality | |
5188 | routine or an FDE start address. Furthermore, the compilers never | |
5189 | used a special (non-pointer) encoding for this ABI. | |
5190 | ||
5191 | Checking the relocation type should also be safe because there is no | |
5192 | reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never | |
5193 | did so. */ | |
5194 | ||
5195 | unsigned int | |
5196 | _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec) | |
5197 | { | |
5198 | if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64) | |
5199 | return 8; | |
5200 | if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64) | |
5201 | { | |
5202 | bfd_boolean long32_p, long64_p; | |
5203 | ||
5204 | long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0; | |
5205 | long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0; | |
5206 | if (long32_p && long64_p) | |
5207 | return 0; | |
5208 | if (long32_p) | |
5209 | return 4; | |
5210 | if (long64_p) | |
5211 | return 8; | |
5212 | ||
5213 | if (sec->reloc_count > 0 | |
5214 | && elf_section_data (sec)->relocs != NULL | |
5215 | && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info) | |
5216 | == R_MIPS_64)) | |
5217 | return 8; | |
5218 | ||
5219 | return 0; | |
5220 | } | |
5221 | return 4; | |
5222 | } | |
5223 | \f | |
174fd7f9 RS |
5224 | /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP |
5225 | relocations against two unnamed section symbols to resolve to the | |
5226 | same address. For example, if we have code like: | |
5227 | ||
5228 | lw $4,%got_disp(.data)($gp) | |
5229 | lw $25,%got_disp(.text)($gp) | |
5230 | jalr $25 | |
5231 | ||
5232 | then the linker will resolve both relocations to .data and the program | |
5233 | will jump there rather than to .text. | |
5234 | ||
5235 | We can work around this problem by giving names to local section symbols. | |
5236 | This is also what the MIPSpro tools do. */ | |
5237 | ||
5238 | bfd_boolean | |
5239 | _bfd_mips_elf_name_local_section_symbols (bfd *abfd) | |
5240 | { | |
5241 | return SGI_COMPAT (abfd); | |
5242 | } | |
5243 | \f | |
b49e97c9 TS |
5244 | /* Work over a section just before writing it out. This routine is |
5245 | used by both the 32-bit and the 64-bit ABI. FIXME: We recognize | |
5246 | sections that need the SHF_MIPS_GPREL flag by name; there has to be | |
5247 | a better way. */ | |
5248 | ||
b34976b6 | 5249 | bfd_boolean |
9719ad41 | 5250 | _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr) |
b49e97c9 TS |
5251 | { |
5252 | if (hdr->sh_type == SHT_MIPS_REGINFO | |
5253 | && hdr->sh_size > 0) | |
5254 | { | |
5255 | bfd_byte buf[4]; | |
5256 | ||
5257 | BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo)); | |
5258 | BFD_ASSERT (hdr->contents == NULL); | |
5259 | ||
5260 | if (bfd_seek (abfd, | |
5261 | hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4, | |
5262 | SEEK_SET) != 0) | |
b34976b6 | 5263 | return FALSE; |
b49e97c9 | 5264 | H_PUT_32 (abfd, elf_gp (abfd), buf); |
9719ad41 | 5265 | if (bfd_bwrite (buf, 4, abfd) != 4) |
b34976b6 | 5266 | return FALSE; |
b49e97c9 TS |
5267 | } |
5268 | ||
5269 | if (hdr->sh_type == SHT_MIPS_OPTIONS | |
5270 | && hdr->bfd_section != NULL | |
f0abc2a1 AM |
5271 | && mips_elf_section_data (hdr->bfd_section) != NULL |
5272 | && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL) | |
b49e97c9 TS |
5273 | { |
5274 | bfd_byte *contents, *l, *lend; | |
5275 | ||
f0abc2a1 AM |
5276 | /* We stored the section contents in the tdata field in the |
5277 | set_section_contents routine. We save the section contents | |
5278 | so that we don't have to read them again. | |
b49e97c9 TS |
5279 | At this point we know that elf_gp is set, so we can look |
5280 | through the section contents to see if there is an | |
5281 | ODK_REGINFO structure. */ | |
5282 | ||
f0abc2a1 | 5283 | contents = mips_elf_section_data (hdr->bfd_section)->u.tdata; |
b49e97c9 TS |
5284 | l = contents; |
5285 | lend = contents + hdr->sh_size; | |
5286 | while (l + sizeof (Elf_External_Options) <= lend) | |
5287 | { | |
5288 | Elf_Internal_Options intopt; | |
5289 | ||
5290 | bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l, | |
5291 | &intopt); | |
1bc8074d MR |
5292 | if (intopt.size < sizeof (Elf_External_Options)) |
5293 | { | |
5294 | (*_bfd_error_handler) | |
5295 | (_("%B: Warning: bad `%s' option size %u smaller than its header"), | |
5296 | abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size); | |
5297 | break; | |
5298 | } | |
b49e97c9 TS |
5299 | if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO) |
5300 | { | |
5301 | bfd_byte buf[8]; | |
5302 | ||
5303 | if (bfd_seek (abfd, | |
5304 | (hdr->sh_offset | |
5305 | + (l - contents) | |
5306 | + sizeof (Elf_External_Options) | |
5307 | + (sizeof (Elf64_External_RegInfo) - 8)), | |
5308 | SEEK_SET) != 0) | |
b34976b6 | 5309 | return FALSE; |
b49e97c9 | 5310 | H_PUT_64 (abfd, elf_gp (abfd), buf); |
9719ad41 | 5311 | if (bfd_bwrite (buf, 8, abfd) != 8) |
b34976b6 | 5312 | return FALSE; |
b49e97c9 TS |
5313 | } |
5314 | else if (intopt.kind == ODK_REGINFO) | |
5315 | { | |
5316 | bfd_byte buf[4]; | |
5317 | ||
5318 | if (bfd_seek (abfd, | |
5319 | (hdr->sh_offset | |
5320 | + (l - contents) | |
5321 | + sizeof (Elf_External_Options) | |
5322 | + (sizeof (Elf32_External_RegInfo) - 4)), | |
5323 | SEEK_SET) != 0) | |
b34976b6 | 5324 | return FALSE; |
b49e97c9 | 5325 | H_PUT_32 (abfd, elf_gp (abfd), buf); |
9719ad41 | 5326 | if (bfd_bwrite (buf, 4, abfd) != 4) |
b34976b6 | 5327 | return FALSE; |
b49e97c9 TS |
5328 | } |
5329 | l += intopt.size; | |
5330 | } | |
5331 | } | |
5332 | ||
5333 | if (hdr->bfd_section != NULL) | |
5334 | { | |
5335 | const char *name = bfd_get_section_name (abfd, hdr->bfd_section); | |
5336 | ||
5337 | if (strcmp (name, ".sdata") == 0 | |
5338 | || strcmp (name, ".lit8") == 0 | |
5339 | || strcmp (name, ".lit4") == 0) | |
5340 | { | |
5341 | hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL; | |
5342 | hdr->sh_type = SHT_PROGBITS; | |
5343 | } | |
5344 | else if (strcmp (name, ".sbss") == 0) | |
5345 | { | |
5346 | hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL; | |
5347 | hdr->sh_type = SHT_NOBITS; | |
5348 | } | |
5349 | else if (strcmp (name, ".srdata") == 0) | |
5350 | { | |
5351 | hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL; | |
5352 | hdr->sh_type = SHT_PROGBITS; | |
5353 | } | |
5354 | else if (strcmp (name, ".compact_rel") == 0) | |
5355 | { | |
5356 | hdr->sh_flags = 0; | |
5357 | hdr->sh_type = SHT_PROGBITS; | |
5358 | } | |
5359 | else if (strcmp (name, ".rtproc") == 0) | |
5360 | { | |
5361 | if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0) | |
5362 | { | |
5363 | unsigned int adjust; | |
5364 | ||
5365 | adjust = hdr->sh_size % hdr->sh_addralign; | |
5366 | if (adjust != 0) | |
5367 | hdr->sh_size += hdr->sh_addralign - adjust; | |
5368 | } | |
5369 | } | |
5370 | } | |
5371 | ||
b34976b6 | 5372 | return TRUE; |
b49e97c9 TS |
5373 | } |
5374 | ||
5375 | /* Handle a MIPS specific section when reading an object file. This | |
5376 | is called when elfcode.h finds a section with an unknown type. | |
5377 | This routine supports both the 32-bit and 64-bit ELF ABI. | |
5378 | ||
5379 | FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure | |
5380 | how to. */ | |
5381 | ||
b34976b6 | 5382 | bfd_boolean |
6dc132d9 L |
5383 | _bfd_mips_elf_section_from_shdr (bfd *abfd, |
5384 | Elf_Internal_Shdr *hdr, | |
5385 | const char *name, | |
5386 | int shindex) | |
b49e97c9 TS |
5387 | { |
5388 | flagword flags = 0; | |
5389 | ||
5390 | /* There ought to be a place to keep ELF backend specific flags, but | |
5391 | at the moment there isn't one. We just keep track of the | |
5392 | sections by their name, instead. Fortunately, the ABI gives | |
5393 | suggested names for all the MIPS specific sections, so we will | |
5394 | probably get away with this. */ | |
5395 | switch (hdr->sh_type) | |
5396 | { | |
5397 | case SHT_MIPS_LIBLIST: | |
5398 | if (strcmp (name, ".liblist") != 0) | |
b34976b6 | 5399 | return FALSE; |
b49e97c9 TS |
5400 | break; |
5401 | case SHT_MIPS_MSYM: | |
5402 | if (strcmp (name, ".msym") != 0) | |
b34976b6 | 5403 | return FALSE; |
b49e97c9 TS |
5404 | break; |
5405 | case SHT_MIPS_CONFLICT: | |
5406 | if (strcmp (name, ".conflict") != 0) | |
b34976b6 | 5407 | return FALSE; |
b49e97c9 TS |
5408 | break; |
5409 | case SHT_MIPS_GPTAB: | |
0112cd26 | 5410 | if (! CONST_STRNEQ (name, ".gptab.")) |
b34976b6 | 5411 | return FALSE; |
b49e97c9 TS |
5412 | break; |
5413 | case SHT_MIPS_UCODE: | |
5414 | if (strcmp (name, ".ucode") != 0) | |
b34976b6 | 5415 | return FALSE; |
b49e97c9 TS |
5416 | break; |
5417 | case SHT_MIPS_DEBUG: | |
5418 | if (strcmp (name, ".mdebug") != 0) | |
b34976b6 | 5419 | return FALSE; |
b49e97c9 TS |
5420 | flags = SEC_DEBUGGING; |
5421 | break; | |
5422 | case SHT_MIPS_REGINFO: | |
5423 | if (strcmp (name, ".reginfo") != 0 | |
5424 | || hdr->sh_size != sizeof (Elf32_External_RegInfo)) | |
b34976b6 | 5425 | return FALSE; |
b49e97c9 TS |
5426 | flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE); |
5427 | break; | |
5428 | case SHT_MIPS_IFACE: | |
5429 | if (strcmp (name, ".MIPS.interfaces") != 0) | |
b34976b6 | 5430 | return FALSE; |
b49e97c9 TS |
5431 | break; |
5432 | case SHT_MIPS_CONTENT: | |
0112cd26 | 5433 | if (! CONST_STRNEQ (name, ".MIPS.content")) |
b34976b6 | 5434 | return FALSE; |
b49e97c9 TS |
5435 | break; |
5436 | case SHT_MIPS_OPTIONS: | |
cc2e31b9 | 5437 | if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name)) |
b34976b6 | 5438 | return FALSE; |
b49e97c9 TS |
5439 | break; |
5440 | case SHT_MIPS_DWARF: | |
0112cd26 | 5441 | if (! CONST_STRNEQ (name, ".debug_")) |
b34976b6 | 5442 | return FALSE; |
b49e97c9 TS |
5443 | break; |
5444 | case SHT_MIPS_SYMBOL_LIB: | |
5445 | if (strcmp (name, ".MIPS.symlib") != 0) | |
b34976b6 | 5446 | return FALSE; |
b49e97c9 TS |
5447 | break; |
5448 | case SHT_MIPS_EVENTS: | |
0112cd26 NC |
5449 | if (! CONST_STRNEQ (name, ".MIPS.events") |
5450 | && ! CONST_STRNEQ (name, ".MIPS.post_rel")) | |
b34976b6 | 5451 | return FALSE; |
b49e97c9 TS |
5452 | break; |
5453 | default: | |
cc2e31b9 | 5454 | break; |
b49e97c9 TS |
5455 | } |
5456 | ||
6dc132d9 | 5457 | if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex)) |
b34976b6 | 5458 | return FALSE; |
b49e97c9 TS |
5459 | |
5460 | if (flags) | |
5461 | { | |
5462 | if (! bfd_set_section_flags (abfd, hdr->bfd_section, | |
5463 | (bfd_get_section_flags (abfd, | |
5464 | hdr->bfd_section) | |
5465 | | flags))) | |
b34976b6 | 5466 | return FALSE; |
b49e97c9 TS |
5467 | } |
5468 | ||
5469 | /* FIXME: We should record sh_info for a .gptab section. */ | |
5470 | ||
5471 | /* For a .reginfo section, set the gp value in the tdata information | |
5472 | from the contents of this section. We need the gp value while | |
5473 | processing relocs, so we just get it now. The .reginfo section | |
5474 | is not used in the 64-bit MIPS ELF ABI. */ | |
5475 | if (hdr->sh_type == SHT_MIPS_REGINFO) | |
5476 | { | |
5477 | Elf32_External_RegInfo ext; | |
5478 | Elf32_RegInfo s; | |
5479 | ||
9719ad41 RS |
5480 | if (! bfd_get_section_contents (abfd, hdr->bfd_section, |
5481 | &ext, 0, sizeof ext)) | |
b34976b6 | 5482 | return FALSE; |
b49e97c9 TS |
5483 | bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s); |
5484 | elf_gp (abfd) = s.ri_gp_value; | |
5485 | } | |
5486 | ||
5487 | /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and | |
5488 | set the gp value based on what we find. We may see both | |
5489 | SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case, | |
5490 | they should agree. */ | |
5491 | if (hdr->sh_type == SHT_MIPS_OPTIONS) | |
5492 | { | |
5493 | bfd_byte *contents, *l, *lend; | |
5494 | ||
9719ad41 | 5495 | contents = bfd_malloc (hdr->sh_size); |
b49e97c9 | 5496 | if (contents == NULL) |
b34976b6 | 5497 | return FALSE; |
b49e97c9 | 5498 | if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents, |
9719ad41 | 5499 | 0, hdr->sh_size)) |
b49e97c9 TS |
5500 | { |
5501 | free (contents); | |
b34976b6 | 5502 | return FALSE; |
b49e97c9 TS |
5503 | } |
5504 | l = contents; | |
5505 | lend = contents + hdr->sh_size; | |
5506 | while (l + sizeof (Elf_External_Options) <= lend) | |
5507 | { | |
5508 | Elf_Internal_Options intopt; | |
5509 | ||
5510 | bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l, | |
5511 | &intopt); | |
1bc8074d MR |
5512 | if (intopt.size < sizeof (Elf_External_Options)) |
5513 | { | |
5514 | (*_bfd_error_handler) | |
5515 | (_("%B: Warning: bad `%s' option size %u smaller than its header"), | |
5516 | abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size); | |
5517 | break; | |
5518 | } | |
b49e97c9 TS |
5519 | if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO) |
5520 | { | |
5521 | Elf64_Internal_RegInfo intreg; | |
5522 | ||
5523 | bfd_mips_elf64_swap_reginfo_in | |
5524 | (abfd, | |
5525 | ((Elf64_External_RegInfo *) | |
5526 | (l + sizeof (Elf_External_Options))), | |
5527 | &intreg); | |
5528 | elf_gp (abfd) = intreg.ri_gp_value; | |
5529 | } | |
5530 | else if (intopt.kind == ODK_REGINFO) | |
5531 | { | |
5532 | Elf32_RegInfo intreg; | |
5533 | ||
5534 | bfd_mips_elf32_swap_reginfo_in | |
5535 | (abfd, | |
5536 | ((Elf32_External_RegInfo *) | |
5537 | (l + sizeof (Elf_External_Options))), | |
5538 | &intreg); | |
5539 | elf_gp (abfd) = intreg.ri_gp_value; | |
5540 | } | |
5541 | l += intopt.size; | |
5542 | } | |
5543 | free (contents); | |
5544 | } | |
5545 | ||
b34976b6 | 5546 | return TRUE; |
b49e97c9 TS |
5547 | } |
5548 | ||
5549 | /* Set the correct type for a MIPS ELF section. We do this by the | |
5550 | section name, which is a hack, but ought to work. This routine is | |
5551 | used by both the 32-bit and the 64-bit ABI. */ | |
5552 | ||
b34976b6 | 5553 | bfd_boolean |
9719ad41 | 5554 | _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec) |
b49e97c9 TS |
5555 | { |
5556 | register const char *name; | |
1bc8074d | 5557 | unsigned int sh_type; |
b49e97c9 TS |
5558 | |
5559 | name = bfd_get_section_name (abfd, sec); | |
1bc8074d | 5560 | sh_type = hdr->sh_type; |
b49e97c9 TS |
5561 | |
5562 | if (strcmp (name, ".liblist") == 0) | |
5563 | { | |
5564 | hdr->sh_type = SHT_MIPS_LIBLIST; | |
eea6121a | 5565 | hdr->sh_info = sec->size / sizeof (Elf32_Lib); |
b49e97c9 TS |
5566 | /* The sh_link field is set in final_write_processing. */ |
5567 | } | |
5568 | else if (strcmp (name, ".conflict") == 0) | |
5569 | hdr->sh_type = SHT_MIPS_CONFLICT; | |
0112cd26 | 5570 | else if (CONST_STRNEQ (name, ".gptab.")) |
b49e97c9 TS |
5571 | { |
5572 | hdr->sh_type = SHT_MIPS_GPTAB; | |
5573 | hdr->sh_entsize = sizeof (Elf32_External_gptab); | |
5574 | /* The sh_info field is set in final_write_processing. */ | |
5575 | } | |
5576 | else if (strcmp (name, ".ucode") == 0) | |
5577 | hdr->sh_type = SHT_MIPS_UCODE; | |
5578 | else if (strcmp (name, ".mdebug") == 0) | |
5579 | { | |
5580 | hdr->sh_type = SHT_MIPS_DEBUG; | |
8dc1a139 | 5581 | /* In a shared object on IRIX 5.3, the .mdebug section has an |
b49e97c9 TS |
5582 | entsize of 0. FIXME: Does this matter? */ |
5583 | if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0) | |
5584 | hdr->sh_entsize = 0; | |
5585 | else | |
5586 | hdr->sh_entsize = 1; | |
5587 | } | |
5588 | else if (strcmp (name, ".reginfo") == 0) | |
5589 | { | |
5590 | hdr->sh_type = SHT_MIPS_REGINFO; | |
8dc1a139 | 5591 | /* In a shared object on IRIX 5.3, the .reginfo section has an |
b49e97c9 TS |
5592 | entsize of 0x18. FIXME: Does this matter? */ |
5593 | if (SGI_COMPAT (abfd)) | |
5594 | { | |
5595 | if ((abfd->flags & DYNAMIC) != 0) | |
5596 | hdr->sh_entsize = sizeof (Elf32_External_RegInfo); | |
5597 | else | |
5598 | hdr->sh_entsize = 1; | |
5599 | } | |
5600 | else | |
5601 | hdr->sh_entsize = sizeof (Elf32_External_RegInfo); | |
5602 | } | |
5603 | else if (SGI_COMPAT (abfd) | |
5604 | && (strcmp (name, ".hash") == 0 | |
5605 | || strcmp (name, ".dynamic") == 0 | |
5606 | || strcmp (name, ".dynstr") == 0)) | |
5607 | { | |
5608 | if (SGI_COMPAT (abfd)) | |
5609 | hdr->sh_entsize = 0; | |
5610 | #if 0 | |
8dc1a139 | 5611 | /* This isn't how the IRIX6 linker behaves. */ |
b49e97c9 TS |
5612 | hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES; |
5613 | #endif | |
5614 | } | |
5615 | else if (strcmp (name, ".got") == 0 | |
5616 | || strcmp (name, ".srdata") == 0 | |
5617 | || strcmp (name, ".sdata") == 0 | |
5618 | || strcmp (name, ".sbss") == 0 | |
5619 | || strcmp (name, ".lit4") == 0 | |
5620 | || strcmp (name, ".lit8") == 0) | |
5621 | hdr->sh_flags |= SHF_MIPS_GPREL; | |
5622 | else if (strcmp (name, ".MIPS.interfaces") == 0) | |
5623 | { | |
5624 | hdr->sh_type = SHT_MIPS_IFACE; | |
5625 | hdr->sh_flags |= SHF_MIPS_NOSTRIP; | |
5626 | } | |
0112cd26 | 5627 | else if (CONST_STRNEQ (name, ".MIPS.content")) |
b49e97c9 TS |
5628 | { |
5629 | hdr->sh_type = SHT_MIPS_CONTENT; | |
5630 | hdr->sh_flags |= SHF_MIPS_NOSTRIP; | |
5631 | /* The sh_info field is set in final_write_processing. */ | |
5632 | } | |
cc2e31b9 | 5633 | else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name)) |
b49e97c9 TS |
5634 | { |
5635 | hdr->sh_type = SHT_MIPS_OPTIONS; | |
5636 | hdr->sh_entsize = 1; | |
5637 | hdr->sh_flags |= SHF_MIPS_NOSTRIP; | |
5638 | } | |
0112cd26 | 5639 | else if (CONST_STRNEQ (name, ".debug_")) |
b49e97c9 TS |
5640 | hdr->sh_type = SHT_MIPS_DWARF; |
5641 | else if (strcmp (name, ".MIPS.symlib") == 0) | |
5642 | { | |
5643 | hdr->sh_type = SHT_MIPS_SYMBOL_LIB; | |
5644 | /* The sh_link and sh_info fields are set in | |
5645 | final_write_processing. */ | |
5646 | } | |
0112cd26 NC |
5647 | else if (CONST_STRNEQ (name, ".MIPS.events") |
5648 | || CONST_STRNEQ (name, ".MIPS.post_rel")) | |
b49e97c9 TS |
5649 | { |
5650 | hdr->sh_type = SHT_MIPS_EVENTS; | |
5651 | hdr->sh_flags |= SHF_MIPS_NOSTRIP; | |
5652 | /* The sh_link field is set in final_write_processing. */ | |
5653 | } | |
5654 | else if (strcmp (name, ".msym") == 0) | |
5655 | { | |
5656 | hdr->sh_type = SHT_MIPS_MSYM; | |
5657 | hdr->sh_flags |= SHF_ALLOC; | |
5658 | hdr->sh_entsize = 8; | |
5659 | } | |
5660 | ||
1bc8074d MR |
5661 | /* In the unlikely event a special section is empty it has to lose its |
5662 | special meaning. This may happen e.g. when using `strip' with the | |
5663 | "--only-keep-debug" option. */ | |
5664 | if (sec->size > 0 && !(sec->flags & SEC_HAS_CONTENTS)) | |
5665 | hdr->sh_type = sh_type; | |
5666 | ||
7a79a000 TS |
5667 | /* The generic elf_fake_sections will set up REL_HDR using the default |
5668 | kind of relocations. We used to set up a second header for the | |
5669 | non-default kind of relocations here, but only NewABI would use | |
5670 | these, and the IRIX ld doesn't like resulting empty RELA sections. | |
5671 | Thus we create those header only on demand now. */ | |
b49e97c9 | 5672 | |
b34976b6 | 5673 | return TRUE; |
b49e97c9 TS |
5674 | } |
5675 | ||
5676 | /* Given a BFD section, try to locate the corresponding ELF section | |
5677 | index. This is used by both the 32-bit and the 64-bit ABI. | |
5678 | Actually, it's not clear to me that the 64-bit ABI supports these, | |
5679 | but for non-PIC objects we will certainly want support for at least | |
5680 | the .scommon section. */ | |
5681 | ||
b34976b6 | 5682 | bfd_boolean |
9719ad41 RS |
5683 | _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED, |
5684 | asection *sec, int *retval) | |
b49e97c9 TS |
5685 | { |
5686 | if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0) | |
5687 | { | |
5688 | *retval = SHN_MIPS_SCOMMON; | |
b34976b6 | 5689 | return TRUE; |
b49e97c9 TS |
5690 | } |
5691 | if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0) | |
5692 | { | |
5693 | *retval = SHN_MIPS_ACOMMON; | |
b34976b6 | 5694 | return TRUE; |
b49e97c9 | 5695 | } |
b34976b6 | 5696 | return FALSE; |
b49e97c9 TS |
5697 | } |
5698 | \f | |
5699 | /* Hook called by the linker routine which adds symbols from an object | |
5700 | file. We must handle the special MIPS section numbers here. */ | |
5701 | ||
b34976b6 | 5702 | bfd_boolean |
9719ad41 | 5703 | _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info, |
555cd476 | 5704 | Elf_Internal_Sym *sym, const char **namep, |
9719ad41 RS |
5705 | flagword *flagsp ATTRIBUTE_UNUSED, |
5706 | asection **secp, bfd_vma *valp) | |
b49e97c9 TS |
5707 | { |
5708 | if (SGI_COMPAT (abfd) | |
5709 | && (abfd->flags & DYNAMIC) != 0 | |
5710 | && strcmp (*namep, "_rld_new_interface") == 0) | |
5711 | { | |
8dc1a139 | 5712 | /* Skip IRIX5 rld entry name. */ |
b49e97c9 | 5713 | *namep = NULL; |
b34976b6 | 5714 | return TRUE; |
b49e97c9 TS |
5715 | } |
5716 | ||
eedecc07 DD |
5717 | /* Shared objects may have a dynamic symbol '_gp_disp' defined as |
5718 | a SECTION *ABS*. This causes ld to think it can resolve _gp_disp | |
5719 | by setting a DT_NEEDED for the shared object. Since _gp_disp is | |
5720 | a magic symbol resolved by the linker, we ignore this bogus definition | |
5721 | of _gp_disp. New ABI objects do not suffer from this problem so this | |
5722 | is not done for them. */ | |
5723 | if (!NEWABI_P(abfd) | |
5724 | && (sym->st_shndx == SHN_ABS) | |
5725 | && (strcmp (*namep, "_gp_disp") == 0)) | |
5726 | { | |
5727 | *namep = NULL; | |
5728 | return TRUE; | |
5729 | } | |
5730 | ||
b49e97c9 TS |
5731 | switch (sym->st_shndx) |
5732 | { | |
5733 | case SHN_COMMON: | |
5734 | /* Common symbols less than the GP size are automatically | |
5735 | treated as SHN_MIPS_SCOMMON symbols. */ | |
5736 | if (sym->st_size > elf_gp_size (abfd) | |
b59eed79 | 5737 | || ELF_ST_TYPE (sym->st_info) == STT_TLS |
b49e97c9 TS |
5738 | || IRIX_COMPAT (abfd) == ict_irix6) |
5739 | break; | |
5740 | /* Fall through. */ | |
5741 | case SHN_MIPS_SCOMMON: | |
5742 | *secp = bfd_make_section_old_way (abfd, ".scommon"); | |
5743 | (*secp)->flags |= SEC_IS_COMMON; | |
5744 | *valp = sym->st_size; | |
5745 | break; | |
5746 | ||
5747 | case SHN_MIPS_TEXT: | |
5748 | /* This section is used in a shared object. */ | |
5749 | if (elf_tdata (abfd)->elf_text_section == NULL) | |
5750 | { | |
5751 | asymbol *elf_text_symbol; | |
5752 | asection *elf_text_section; | |
5753 | bfd_size_type amt = sizeof (asection); | |
5754 | ||
5755 | elf_text_section = bfd_zalloc (abfd, amt); | |
5756 | if (elf_text_section == NULL) | |
b34976b6 | 5757 | return FALSE; |
b49e97c9 TS |
5758 | |
5759 | amt = sizeof (asymbol); | |
5760 | elf_text_symbol = bfd_zalloc (abfd, amt); | |
5761 | if (elf_text_symbol == NULL) | |
b34976b6 | 5762 | return FALSE; |
b49e97c9 TS |
5763 | |
5764 | /* Initialize the section. */ | |
5765 | ||
5766 | elf_tdata (abfd)->elf_text_section = elf_text_section; | |
5767 | elf_tdata (abfd)->elf_text_symbol = elf_text_symbol; | |
5768 | ||
5769 | elf_text_section->symbol = elf_text_symbol; | |
5770 | elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol; | |
5771 | ||
5772 | elf_text_section->name = ".text"; | |
5773 | elf_text_section->flags = SEC_NO_FLAGS; | |
5774 | elf_text_section->output_section = NULL; | |
5775 | elf_text_section->owner = abfd; | |
5776 | elf_text_symbol->name = ".text"; | |
5777 | elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC; | |
5778 | elf_text_symbol->section = elf_text_section; | |
5779 | } | |
5780 | /* This code used to do *secp = bfd_und_section_ptr if | |
5781 | info->shared. I don't know why, and that doesn't make sense, | |
5782 | so I took it out. */ | |
5783 | *secp = elf_tdata (abfd)->elf_text_section; | |
5784 | break; | |
5785 | ||
5786 | case SHN_MIPS_ACOMMON: | |
5787 | /* Fall through. XXX Can we treat this as allocated data? */ | |
5788 | case SHN_MIPS_DATA: | |
5789 | /* This section is used in a shared object. */ | |
5790 | if (elf_tdata (abfd)->elf_data_section == NULL) | |
5791 | { | |
5792 | asymbol *elf_data_symbol; | |
5793 | asection *elf_data_section; | |
5794 | bfd_size_type amt = sizeof (asection); | |
5795 | ||
5796 | elf_data_section = bfd_zalloc (abfd, amt); | |
5797 | if (elf_data_section == NULL) | |
b34976b6 | 5798 | return FALSE; |
b49e97c9 TS |
5799 | |
5800 | amt = sizeof (asymbol); | |
5801 | elf_data_symbol = bfd_zalloc (abfd, amt); | |
5802 | if (elf_data_symbol == NULL) | |
b34976b6 | 5803 | return FALSE; |
b49e97c9 TS |
5804 | |
5805 | /* Initialize the section. */ | |
5806 | ||
5807 | elf_tdata (abfd)->elf_data_section = elf_data_section; | |
5808 | elf_tdata (abfd)->elf_data_symbol = elf_data_symbol; | |
5809 | ||
5810 | elf_data_section->symbol = elf_data_symbol; | |
5811 | elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol; | |
5812 | ||
5813 | elf_data_section->name = ".data"; | |
5814 | elf_data_section->flags = SEC_NO_FLAGS; | |
5815 | elf_data_section->output_section = NULL; | |
5816 | elf_data_section->owner = abfd; | |
5817 | elf_data_symbol->name = ".data"; | |
5818 | elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC; | |
5819 | elf_data_symbol->section = elf_data_section; | |
5820 | } | |
5821 | /* This code used to do *secp = bfd_und_section_ptr if | |
5822 | info->shared. I don't know why, and that doesn't make sense, | |
5823 | so I took it out. */ | |
5824 | *secp = elf_tdata (abfd)->elf_data_section; | |
5825 | break; | |
5826 | ||
5827 | case SHN_MIPS_SUNDEFINED: | |
5828 | *secp = bfd_und_section_ptr; | |
5829 | break; | |
5830 | } | |
5831 | ||
5832 | if (SGI_COMPAT (abfd) | |
5833 | && ! info->shared | |
5834 | && info->hash->creator == abfd->xvec | |
5835 | && strcmp (*namep, "__rld_obj_head") == 0) | |
5836 | { | |
5837 | struct elf_link_hash_entry *h; | |
14a793b2 | 5838 | struct bfd_link_hash_entry *bh; |
b49e97c9 TS |
5839 | |
5840 | /* Mark __rld_obj_head as dynamic. */ | |
14a793b2 | 5841 | bh = NULL; |
b49e97c9 | 5842 | if (! (_bfd_generic_link_add_one_symbol |
9719ad41 | 5843 | (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE, |
14a793b2 | 5844 | get_elf_backend_data (abfd)->collect, &bh))) |
b34976b6 | 5845 | return FALSE; |
14a793b2 AM |
5846 | |
5847 | h = (struct elf_link_hash_entry *) bh; | |
f5385ebf AM |
5848 | h->non_elf = 0; |
5849 | h->def_regular = 1; | |
b49e97c9 TS |
5850 | h->type = STT_OBJECT; |
5851 | ||
c152c796 | 5852 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
b34976b6 | 5853 | return FALSE; |
b49e97c9 | 5854 | |
b34976b6 | 5855 | mips_elf_hash_table (info)->use_rld_obj_head = TRUE; |
b49e97c9 TS |
5856 | } |
5857 | ||
5858 | /* If this is a mips16 text symbol, add 1 to the value to make it | |
5859 | odd. This will cause something like .word SYM to come up with | |
5860 | the right value when it is loaded into the PC. */ | |
5861 | if (sym->st_other == STO_MIPS16) | |
5862 | ++*valp; | |
5863 | ||
b34976b6 | 5864 | return TRUE; |
b49e97c9 TS |
5865 | } |
5866 | ||
5867 | /* This hook function is called before the linker writes out a global | |
5868 | symbol. We mark symbols as small common if appropriate. This is | |
5869 | also where we undo the increment of the value for a mips16 symbol. */ | |
5870 | ||
b34976b6 | 5871 | bfd_boolean |
9719ad41 RS |
5872 | _bfd_mips_elf_link_output_symbol_hook |
5873 | (struct bfd_link_info *info ATTRIBUTE_UNUSED, | |
5874 | const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym, | |
5875 | asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED) | |
b49e97c9 TS |
5876 | { |
5877 | /* If we see a common symbol, which implies a relocatable link, then | |
5878 | if a symbol was small common in an input file, mark it as small | |
5879 | common in the output file. */ | |
5880 | if (sym->st_shndx == SHN_COMMON | |
5881 | && strcmp (input_sec->name, ".scommon") == 0) | |
5882 | sym->st_shndx = SHN_MIPS_SCOMMON; | |
5883 | ||
79cda7cf FF |
5884 | if (sym->st_other == STO_MIPS16) |
5885 | sym->st_value &= ~1; | |
b49e97c9 | 5886 | |
b34976b6 | 5887 | return TRUE; |
b49e97c9 TS |
5888 | } |
5889 | \f | |
5890 | /* Functions for the dynamic linker. */ | |
5891 | ||
5892 | /* Create dynamic sections when linking against a dynamic object. */ | |
5893 | ||
b34976b6 | 5894 | bfd_boolean |
9719ad41 | 5895 | _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info) |
b49e97c9 TS |
5896 | { |
5897 | struct elf_link_hash_entry *h; | |
14a793b2 | 5898 | struct bfd_link_hash_entry *bh; |
b49e97c9 TS |
5899 | flagword flags; |
5900 | register asection *s; | |
5901 | const char * const *namep; | |
0a44bf69 | 5902 | struct mips_elf_link_hash_table *htab; |
b49e97c9 | 5903 | |
0a44bf69 | 5904 | htab = mips_elf_hash_table (info); |
b49e97c9 TS |
5905 | flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY |
5906 | | SEC_LINKER_CREATED | SEC_READONLY); | |
5907 | ||
0a44bf69 RS |
5908 | /* The psABI requires a read-only .dynamic section, but the VxWorks |
5909 | EABI doesn't. */ | |
5910 | if (!htab->is_vxworks) | |
b49e97c9 | 5911 | { |
0a44bf69 RS |
5912 | s = bfd_get_section_by_name (abfd, ".dynamic"); |
5913 | if (s != NULL) | |
5914 | { | |
5915 | if (! bfd_set_section_flags (abfd, s, flags)) | |
5916 | return FALSE; | |
5917 | } | |
b49e97c9 TS |
5918 | } |
5919 | ||
5920 | /* We need to create .got section. */ | |
f4416af6 AO |
5921 | if (! mips_elf_create_got_section (abfd, info, FALSE)) |
5922 | return FALSE; | |
5923 | ||
0a44bf69 | 5924 | if (! mips_elf_rel_dyn_section (info, TRUE)) |
b34976b6 | 5925 | return FALSE; |
b49e97c9 | 5926 | |
b49e97c9 TS |
5927 | /* Create .stub section. */ |
5928 | if (bfd_get_section_by_name (abfd, | |
5929 | MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL) | |
5930 | { | |
3496cb2a L |
5931 | s = bfd_make_section_with_flags (abfd, |
5932 | MIPS_ELF_STUB_SECTION_NAME (abfd), | |
5933 | flags | SEC_CODE); | |
b49e97c9 | 5934 | if (s == NULL |
b49e97c9 TS |
5935 | || ! bfd_set_section_alignment (abfd, s, |
5936 | MIPS_ELF_LOG_FILE_ALIGN (abfd))) | |
b34976b6 | 5937 | return FALSE; |
b49e97c9 TS |
5938 | } |
5939 | ||
5940 | if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none) | |
5941 | && !info->shared | |
5942 | && bfd_get_section_by_name (abfd, ".rld_map") == NULL) | |
5943 | { | |
3496cb2a L |
5944 | s = bfd_make_section_with_flags (abfd, ".rld_map", |
5945 | flags &~ (flagword) SEC_READONLY); | |
b49e97c9 | 5946 | if (s == NULL |
b49e97c9 TS |
5947 | || ! bfd_set_section_alignment (abfd, s, |
5948 | MIPS_ELF_LOG_FILE_ALIGN (abfd))) | |
b34976b6 | 5949 | return FALSE; |
b49e97c9 TS |
5950 | } |
5951 | ||
5952 | /* On IRIX5, we adjust add some additional symbols and change the | |
5953 | alignments of several sections. There is no ABI documentation | |
5954 | indicating that this is necessary on IRIX6, nor any evidence that | |
5955 | the linker takes such action. */ | |
5956 | if (IRIX_COMPAT (abfd) == ict_irix5) | |
5957 | { | |
5958 | for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++) | |
5959 | { | |
14a793b2 | 5960 | bh = NULL; |
b49e97c9 | 5961 | if (! (_bfd_generic_link_add_one_symbol |
9719ad41 RS |
5962 | (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0, |
5963 | NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh))) | |
b34976b6 | 5964 | return FALSE; |
14a793b2 AM |
5965 | |
5966 | h = (struct elf_link_hash_entry *) bh; | |
f5385ebf AM |
5967 | h->non_elf = 0; |
5968 | h->def_regular = 1; | |
b49e97c9 TS |
5969 | h->type = STT_SECTION; |
5970 | ||
c152c796 | 5971 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
b34976b6 | 5972 | return FALSE; |
b49e97c9 TS |
5973 | } |
5974 | ||
5975 | /* We need to create a .compact_rel section. */ | |
5976 | if (SGI_COMPAT (abfd)) | |
5977 | { | |
5978 | if (!mips_elf_create_compact_rel_section (abfd, info)) | |
b34976b6 | 5979 | return FALSE; |
b49e97c9 TS |
5980 | } |
5981 | ||
44c410de | 5982 | /* Change alignments of some sections. */ |
b49e97c9 TS |
5983 | s = bfd_get_section_by_name (abfd, ".hash"); |
5984 | if (s != NULL) | |
d80dcc6a | 5985 | bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); |
b49e97c9 TS |
5986 | s = bfd_get_section_by_name (abfd, ".dynsym"); |
5987 | if (s != NULL) | |
d80dcc6a | 5988 | bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); |
b49e97c9 TS |
5989 | s = bfd_get_section_by_name (abfd, ".dynstr"); |
5990 | if (s != NULL) | |
d80dcc6a | 5991 | bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); |
b49e97c9 TS |
5992 | s = bfd_get_section_by_name (abfd, ".reginfo"); |
5993 | if (s != NULL) | |
d80dcc6a | 5994 | bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); |
b49e97c9 TS |
5995 | s = bfd_get_section_by_name (abfd, ".dynamic"); |
5996 | if (s != NULL) | |
d80dcc6a | 5997 | bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); |
b49e97c9 TS |
5998 | } |
5999 | ||
6000 | if (!info->shared) | |
6001 | { | |
14a793b2 AM |
6002 | const char *name; |
6003 | ||
6004 | name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING"; | |
6005 | bh = NULL; | |
6006 | if (!(_bfd_generic_link_add_one_symbol | |
9719ad41 RS |
6007 | (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0, |
6008 | NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh))) | |
b34976b6 | 6009 | return FALSE; |
14a793b2 AM |
6010 | |
6011 | h = (struct elf_link_hash_entry *) bh; | |
f5385ebf AM |
6012 | h->non_elf = 0; |
6013 | h->def_regular = 1; | |
b49e97c9 TS |
6014 | h->type = STT_SECTION; |
6015 | ||
c152c796 | 6016 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
b34976b6 | 6017 | return FALSE; |
b49e97c9 TS |
6018 | |
6019 | if (! mips_elf_hash_table (info)->use_rld_obj_head) | |
6020 | { | |
6021 | /* __rld_map is a four byte word located in the .data section | |
6022 | and is filled in by the rtld to contain a pointer to | |
6023 | the _r_debug structure. Its symbol value will be set in | |
6024 | _bfd_mips_elf_finish_dynamic_symbol. */ | |
6025 | s = bfd_get_section_by_name (abfd, ".rld_map"); | |
6026 | BFD_ASSERT (s != NULL); | |
6027 | ||
14a793b2 AM |
6028 | name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP"; |
6029 | bh = NULL; | |
6030 | if (!(_bfd_generic_link_add_one_symbol | |
9719ad41 | 6031 | (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE, |
14a793b2 | 6032 | get_elf_backend_data (abfd)->collect, &bh))) |
b34976b6 | 6033 | return FALSE; |
14a793b2 AM |
6034 | |
6035 | h = (struct elf_link_hash_entry *) bh; | |
f5385ebf AM |
6036 | h->non_elf = 0; |
6037 | h->def_regular = 1; | |
b49e97c9 TS |
6038 | h->type = STT_OBJECT; |
6039 | ||
c152c796 | 6040 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
b34976b6 | 6041 | return FALSE; |
b49e97c9 TS |
6042 | } |
6043 | } | |
6044 | ||
0a44bf69 RS |
6045 | if (htab->is_vxworks) |
6046 | { | |
6047 | /* Create the .plt, .rela.plt, .dynbss and .rela.bss sections. | |
6048 | Also create the _PROCEDURE_LINKAGE_TABLE symbol. */ | |
6049 | if (!_bfd_elf_create_dynamic_sections (abfd, info)) | |
6050 | return FALSE; | |
6051 | ||
6052 | /* Cache the sections created above. */ | |
6053 | htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss"); | |
6054 | htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss"); | |
6055 | htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt"); | |
6056 | htab->splt = bfd_get_section_by_name (abfd, ".plt"); | |
6057 | if (!htab->sdynbss | |
6058 | || (!htab->srelbss && !info->shared) | |
6059 | || !htab->srelplt | |
6060 | || !htab->splt) | |
6061 | abort (); | |
6062 | ||
6063 | /* Do the usual VxWorks handling. */ | |
6064 | if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2)) | |
6065 | return FALSE; | |
6066 | ||
6067 | /* Work out the PLT sizes. */ | |
6068 | if (info->shared) | |
6069 | { | |
6070 | htab->plt_header_size | |
6071 | = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry); | |
6072 | htab->plt_entry_size | |
6073 | = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry); | |
6074 | } | |
6075 | else | |
6076 | { | |
6077 | htab->plt_header_size | |
6078 | = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry); | |
6079 | htab->plt_entry_size | |
6080 | = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry); | |
6081 | } | |
6082 | } | |
6083 | ||
b34976b6 | 6084 | return TRUE; |
b49e97c9 TS |
6085 | } |
6086 | \f | |
6087 | /* Look through the relocs for a section during the first phase, and | |
6088 | allocate space in the global offset table. */ | |
6089 | ||
b34976b6 | 6090 | bfd_boolean |
9719ad41 RS |
6091 | _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info, |
6092 | asection *sec, const Elf_Internal_Rela *relocs) | |
b49e97c9 TS |
6093 | { |
6094 | const char *name; | |
6095 | bfd *dynobj; | |
6096 | Elf_Internal_Shdr *symtab_hdr; | |
6097 | struct elf_link_hash_entry **sym_hashes; | |
6098 | struct mips_got_info *g; | |
6099 | size_t extsymoff; | |
6100 | const Elf_Internal_Rela *rel; | |
6101 | const Elf_Internal_Rela *rel_end; | |
6102 | asection *sgot; | |
6103 | asection *sreloc; | |
9c5bfbb7 | 6104 | const struct elf_backend_data *bed; |
0a44bf69 | 6105 | struct mips_elf_link_hash_table *htab; |
b49e97c9 | 6106 | |
1049f94e | 6107 | if (info->relocatable) |
b34976b6 | 6108 | return TRUE; |
b49e97c9 | 6109 | |
0a44bf69 | 6110 | htab = mips_elf_hash_table (info); |
b49e97c9 TS |
6111 | dynobj = elf_hash_table (info)->dynobj; |
6112 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
6113 | sym_hashes = elf_sym_hashes (abfd); | |
6114 | extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info; | |
6115 | ||
6116 | /* Check for the mips16 stub sections. */ | |
6117 | ||
6118 | name = bfd_get_section_name (abfd, sec); | |
0112cd26 | 6119 | if (CONST_STRNEQ (name, FN_STUB)) |
b49e97c9 TS |
6120 | { |
6121 | unsigned long r_symndx; | |
6122 | ||
6123 | /* Look at the relocation information to figure out which symbol | |
6124 | this is for. */ | |
6125 | ||
6126 | r_symndx = ELF_R_SYM (abfd, relocs->r_info); | |
6127 | ||
6128 | if (r_symndx < extsymoff | |
6129 | || sym_hashes[r_symndx - extsymoff] == NULL) | |
6130 | { | |
6131 | asection *o; | |
6132 | ||
6133 | /* This stub is for a local symbol. This stub will only be | |
6134 | needed if there is some relocation in this BFD, other | |
6135 | than a 16 bit function call, which refers to this symbol. */ | |
6136 | for (o = abfd->sections; o != NULL; o = o->next) | |
6137 | { | |
6138 | Elf_Internal_Rela *sec_relocs; | |
6139 | const Elf_Internal_Rela *r, *rend; | |
6140 | ||
6141 | /* We can ignore stub sections when looking for relocs. */ | |
6142 | if ((o->flags & SEC_RELOC) == 0 | |
6143 | || o->reloc_count == 0 | |
0112cd26 NC |
6144 | || CONST_STRNEQ (bfd_get_section_name (abfd, o), FN_STUB) |
6145 | || CONST_STRNEQ (bfd_get_section_name (abfd, o), CALL_STUB) | |
6146 | || CONST_STRNEQ (bfd_get_section_name (abfd, o), CALL_FP_STUB)) | |
b49e97c9 TS |
6147 | continue; |
6148 | ||
45d6a902 | 6149 | sec_relocs |
9719ad41 | 6150 | = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL, |
45d6a902 | 6151 | info->keep_memory); |
b49e97c9 | 6152 | if (sec_relocs == NULL) |
b34976b6 | 6153 | return FALSE; |
b49e97c9 TS |
6154 | |
6155 | rend = sec_relocs + o->reloc_count; | |
6156 | for (r = sec_relocs; r < rend; r++) | |
6157 | if (ELF_R_SYM (abfd, r->r_info) == r_symndx | |
6158 | && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26) | |
6159 | break; | |
6160 | ||
6cdc0ccc | 6161 | if (elf_section_data (o)->relocs != sec_relocs) |
b49e97c9 TS |
6162 | free (sec_relocs); |
6163 | ||
6164 | if (r < rend) | |
6165 | break; | |
6166 | } | |
6167 | ||
6168 | if (o == NULL) | |
6169 | { | |
6170 | /* There is no non-call reloc for this stub, so we do | |
6171 | not need it. Since this function is called before | |
6172 | the linker maps input sections to output sections, we | |
6173 | can easily discard it by setting the SEC_EXCLUDE | |
6174 | flag. */ | |
6175 | sec->flags |= SEC_EXCLUDE; | |
b34976b6 | 6176 | return TRUE; |
b49e97c9 TS |
6177 | } |
6178 | ||
6179 | /* Record this stub in an array of local symbol stubs for | |
6180 | this BFD. */ | |
6181 | if (elf_tdata (abfd)->local_stubs == NULL) | |
6182 | { | |
6183 | unsigned long symcount; | |
6184 | asection **n; | |
6185 | bfd_size_type amt; | |
6186 | ||
6187 | if (elf_bad_symtab (abfd)) | |
6188 | symcount = NUM_SHDR_ENTRIES (symtab_hdr); | |
6189 | else | |
6190 | symcount = symtab_hdr->sh_info; | |
6191 | amt = symcount * sizeof (asection *); | |
9719ad41 | 6192 | n = bfd_zalloc (abfd, amt); |
b49e97c9 | 6193 | if (n == NULL) |
b34976b6 | 6194 | return FALSE; |
b49e97c9 TS |
6195 | elf_tdata (abfd)->local_stubs = n; |
6196 | } | |
6197 | ||
6198 | elf_tdata (abfd)->local_stubs[r_symndx] = sec; | |
6199 | ||
6200 | /* We don't need to set mips16_stubs_seen in this case. | |
6201 | That flag is used to see whether we need to look through | |
6202 | the global symbol table for stubs. We don't need to set | |
6203 | it here, because we just have a local stub. */ | |
6204 | } | |
6205 | else | |
6206 | { | |
6207 | struct mips_elf_link_hash_entry *h; | |
6208 | ||
6209 | h = ((struct mips_elf_link_hash_entry *) | |
6210 | sym_hashes[r_symndx - extsymoff]); | |
6211 | ||
973a3492 L |
6212 | while (h->root.root.type == bfd_link_hash_indirect |
6213 | || h->root.root.type == bfd_link_hash_warning) | |
6214 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | |
6215 | ||
b49e97c9 TS |
6216 | /* H is the symbol this stub is for. */ |
6217 | ||
6218 | h->fn_stub = sec; | |
b34976b6 | 6219 | mips_elf_hash_table (info)->mips16_stubs_seen = TRUE; |
b49e97c9 TS |
6220 | } |
6221 | } | |
0112cd26 NC |
6222 | else if (CONST_STRNEQ (name, CALL_STUB) |
6223 | || CONST_STRNEQ (name, CALL_FP_STUB)) | |
b49e97c9 TS |
6224 | { |
6225 | unsigned long r_symndx; | |
6226 | struct mips_elf_link_hash_entry *h; | |
6227 | asection **loc; | |
6228 | ||
6229 | /* Look at the relocation information to figure out which symbol | |
6230 | this is for. */ | |
6231 | ||
6232 | r_symndx = ELF_R_SYM (abfd, relocs->r_info); | |
6233 | ||
6234 | if (r_symndx < extsymoff | |
6235 | || sym_hashes[r_symndx - extsymoff] == NULL) | |
6236 | { | |
6237 | /* This stub was actually built for a static symbol defined | |
6238 | in the same file. We assume that all static symbols in | |
6239 | mips16 code are themselves mips16, so we can simply | |
6240 | discard this stub. Since this function is called before | |
6241 | the linker maps input sections to output sections, we can | |
6242 | easily discard it by setting the SEC_EXCLUDE flag. */ | |
6243 | sec->flags |= SEC_EXCLUDE; | |
b34976b6 | 6244 | return TRUE; |
b49e97c9 TS |
6245 | } |
6246 | ||
6247 | h = ((struct mips_elf_link_hash_entry *) | |
6248 | sym_hashes[r_symndx - extsymoff]); | |
6249 | ||
6250 | /* H is the symbol this stub is for. */ | |
6251 | ||
0112cd26 | 6252 | if (CONST_STRNEQ (name, CALL_FP_STUB)) |
b49e97c9 TS |
6253 | loc = &h->call_fp_stub; |
6254 | else | |
6255 | loc = &h->call_stub; | |
6256 | ||
6257 | /* If we already have an appropriate stub for this function, we | |
6258 | don't need another one, so we can discard this one. Since | |
6259 | this function is called before the linker maps input sections | |
6260 | to output sections, we can easily discard it by setting the | |
6261 | SEC_EXCLUDE flag. We can also discard this section if we | |
6262 | happen to already know that this is a mips16 function; it is | |
6263 | not necessary to check this here, as it is checked later, but | |
6264 | it is slightly faster to check now. */ | |
6265 | if (*loc != NULL || h->root.other == STO_MIPS16) | |
6266 | { | |
6267 | sec->flags |= SEC_EXCLUDE; | |
b34976b6 | 6268 | return TRUE; |
b49e97c9 TS |
6269 | } |
6270 | ||
6271 | *loc = sec; | |
b34976b6 | 6272 | mips_elf_hash_table (info)->mips16_stubs_seen = TRUE; |
b49e97c9 TS |
6273 | } |
6274 | ||
6275 | if (dynobj == NULL) | |
6276 | { | |
6277 | sgot = NULL; | |
6278 | g = NULL; | |
6279 | } | |
6280 | else | |
6281 | { | |
f4416af6 | 6282 | sgot = mips_elf_got_section (dynobj, FALSE); |
b49e97c9 TS |
6283 | if (sgot == NULL) |
6284 | g = NULL; | |
6285 | else | |
6286 | { | |
f0abc2a1 AM |
6287 | BFD_ASSERT (mips_elf_section_data (sgot) != NULL); |
6288 | g = mips_elf_section_data (sgot)->u.got_info; | |
b49e97c9 TS |
6289 | BFD_ASSERT (g != NULL); |
6290 | } | |
6291 | } | |
6292 | ||
6293 | sreloc = NULL; | |
6294 | bed = get_elf_backend_data (abfd); | |
6295 | rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel; | |
6296 | for (rel = relocs; rel < rel_end; ++rel) | |
6297 | { | |
6298 | unsigned long r_symndx; | |
6299 | unsigned int r_type; | |
6300 | struct elf_link_hash_entry *h; | |
6301 | ||
6302 | r_symndx = ELF_R_SYM (abfd, rel->r_info); | |
6303 | r_type = ELF_R_TYPE (abfd, rel->r_info); | |
6304 | ||
6305 | if (r_symndx < extsymoff) | |
6306 | h = NULL; | |
6307 | else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr)) | |
6308 | { | |
6309 | (*_bfd_error_handler) | |
d003868e AM |
6310 | (_("%B: Malformed reloc detected for section %s"), |
6311 | abfd, name); | |
b49e97c9 | 6312 | bfd_set_error (bfd_error_bad_value); |
b34976b6 | 6313 | return FALSE; |
b49e97c9 TS |
6314 | } |
6315 | else | |
6316 | { | |
6317 | h = sym_hashes[r_symndx - extsymoff]; | |
6318 | ||
6319 | /* This may be an indirect symbol created because of a version. */ | |
6320 | if (h != NULL) | |
6321 | { | |
6322 | while (h->root.type == bfd_link_hash_indirect) | |
6323 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
6324 | } | |
6325 | } | |
6326 | ||
6327 | /* Some relocs require a global offset table. */ | |
6328 | if (dynobj == NULL || sgot == NULL) | |
6329 | { | |
6330 | switch (r_type) | |
6331 | { | |
6332 | case R_MIPS_GOT16: | |
6333 | case R_MIPS_CALL16: | |
6334 | case R_MIPS_CALL_HI16: | |
6335 | case R_MIPS_CALL_LO16: | |
6336 | case R_MIPS_GOT_HI16: | |
6337 | case R_MIPS_GOT_LO16: | |
6338 | case R_MIPS_GOT_PAGE: | |
6339 | case R_MIPS_GOT_OFST: | |
6340 | case R_MIPS_GOT_DISP: | |
86324f90 | 6341 | case R_MIPS_TLS_GOTTPREL: |
0f20cc35 DJ |
6342 | case R_MIPS_TLS_GD: |
6343 | case R_MIPS_TLS_LDM: | |
b49e97c9 TS |
6344 | if (dynobj == NULL) |
6345 | elf_hash_table (info)->dynobj = dynobj = abfd; | |
f4416af6 | 6346 | if (! mips_elf_create_got_section (dynobj, info, FALSE)) |
b34976b6 | 6347 | return FALSE; |
b49e97c9 | 6348 | g = mips_elf_got_info (dynobj, &sgot); |
0a44bf69 RS |
6349 | if (htab->is_vxworks && !info->shared) |
6350 | { | |
6351 | (*_bfd_error_handler) | |
6352 | (_("%B: GOT reloc at 0x%lx not expected in executables"), | |
6353 | abfd, (unsigned long) rel->r_offset); | |
6354 | bfd_set_error (bfd_error_bad_value); | |
6355 | return FALSE; | |
6356 | } | |
b49e97c9 TS |
6357 | break; |
6358 | ||
6359 | case R_MIPS_32: | |
6360 | case R_MIPS_REL32: | |
6361 | case R_MIPS_64: | |
0a44bf69 RS |
6362 | /* In VxWorks executables, references to external symbols |
6363 | are handled using copy relocs or PLT stubs, so there's | |
6364 | no need to add a dynamic relocation here. */ | |
b49e97c9 | 6365 | if (dynobj == NULL |
0a44bf69 | 6366 | && (info->shared || (h != NULL && !htab->is_vxworks)) |
b49e97c9 TS |
6367 | && (sec->flags & SEC_ALLOC) != 0) |
6368 | elf_hash_table (info)->dynobj = dynobj = abfd; | |
6369 | break; | |
6370 | ||
6371 | default: | |
6372 | break; | |
6373 | } | |
6374 | } | |
6375 | ||
0a44bf69 RS |
6376 | if (h) |
6377 | { | |
6378 | ((struct mips_elf_link_hash_entry *) h)->is_relocation_target = TRUE; | |
6379 | ||
6380 | /* Relocations against the special VxWorks __GOTT_BASE__ and | |
6381 | __GOTT_INDEX__ symbols must be left to the loader. Allocate | |
6382 | room for them in .rela.dyn. */ | |
6383 | if (is_gott_symbol (info, h)) | |
6384 | { | |
6385 | if (sreloc == NULL) | |
6386 | { | |
6387 | sreloc = mips_elf_rel_dyn_section (info, TRUE); | |
6388 | if (sreloc == NULL) | |
6389 | return FALSE; | |
6390 | } | |
6391 | mips_elf_allocate_dynamic_relocations (dynobj, info, 1); | |
6392 | } | |
6393 | } | |
6394 | else if (r_type == R_MIPS_CALL_LO16 | |
6395 | || r_type == R_MIPS_GOT_LO16 | |
6396 | || r_type == R_MIPS_GOT_DISP | |
6397 | || (r_type == R_MIPS_GOT16 && htab->is_vxworks)) | |
b49e97c9 TS |
6398 | { |
6399 | /* We may need a local GOT entry for this relocation. We | |
6400 | don't count R_MIPS_GOT_PAGE because we can estimate the | |
6401 | maximum number of pages needed by looking at the size of | |
6402 | the segment. Similar comments apply to R_MIPS_GOT16 and | |
0a44bf69 RS |
6403 | R_MIPS_CALL16, except on VxWorks, where GOT relocations |
6404 | always evaluate to "G". We don't count R_MIPS_GOT_HI16, or | |
b49e97c9 | 6405 | R_MIPS_CALL_HI16 because these are always followed by an |
b15e6682 | 6406 | R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */ |
f4416af6 | 6407 | if (! mips_elf_record_local_got_symbol (abfd, r_symndx, |
0f20cc35 | 6408 | rel->r_addend, g, 0)) |
f4416af6 | 6409 | return FALSE; |
b49e97c9 TS |
6410 | } |
6411 | ||
6412 | switch (r_type) | |
6413 | { | |
6414 | case R_MIPS_CALL16: | |
6415 | if (h == NULL) | |
6416 | { | |
6417 | (*_bfd_error_handler) | |
d003868e AM |
6418 | (_("%B: CALL16 reloc at 0x%lx not against global symbol"), |
6419 | abfd, (unsigned long) rel->r_offset); | |
b49e97c9 | 6420 | bfd_set_error (bfd_error_bad_value); |
b34976b6 | 6421 | return FALSE; |
b49e97c9 TS |
6422 | } |
6423 | /* Fall through. */ | |
6424 | ||
6425 | case R_MIPS_CALL_HI16: | |
6426 | case R_MIPS_CALL_LO16: | |
6427 | if (h != NULL) | |
6428 | { | |
0a44bf69 RS |
6429 | /* VxWorks call relocations point the function's .got.plt |
6430 | entry, which will be allocated by adjust_dynamic_symbol. | |
6431 | Otherwise, this symbol requires a global GOT entry. */ | |
6432 | if (!htab->is_vxworks | |
6433 | && !mips_elf_record_global_got_symbol (h, abfd, info, g, 0)) | |
b34976b6 | 6434 | return FALSE; |
b49e97c9 TS |
6435 | |
6436 | /* We need a stub, not a plt entry for the undefined | |
6437 | function. But we record it as if it needs plt. See | |
c152c796 | 6438 | _bfd_elf_adjust_dynamic_symbol. */ |
f5385ebf | 6439 | h->needs_plt = 1; |
b49e97c9 TS |
6440 | h->type = STT_FUNC; |
6441 | } | |
6442 | break; | |
6443 | ||
0fdc1bf1 AO |
6444 | case R_MIPS_GOT_PAGE: |
6445 | /* If this is a global, overridable symbol, GOT_PAGE will | |
6446 | decay to GOT_DISP, so we'll need a GOT entry for it. */ | |
6447 | if (h == NULL) | |
6448 | break; | |
6449 | else | |
6450 | { | |
6451 | struct mips_elf_link_hash_entry *hmips = | |
6452 | (struct mips_elf_link_hash_entry *) h; | |
143d77c5 | 6453 | |
0fdc1bf1 AO |
6454 | while (hmips->root.root.type == bfd_link_hash_indirect |
6455 | || hmips->root.root.type == bfd_link_hash_warning) | |
6456 | hmips = (struct mips_elf_link_hash_entry *) | |
6457 | hmips->root.root.u.i.link; | |
143d77c5 | 6458 | |
f5385ebf | 6459 | if (hmips->root.def_regular |
0fdc1bf1 | 6460 | && ! (info->shared && ! info->symbolic |
f5385ebf | 6461 | && ! hmips->root.forced_local)) |
0fdc1bf1 AO |
6462 | break; |
6463 | } | |
6464 | /* Fall through. */ | |
6465 | ||
b49e97c9 TS |
6466 | case R_MIPS_GOT16: |
6467 | case R_MIPS_GOT_HI16: | |
6468 | case R_MIPS_GOT_LO16: | |
6469 | case R_MIPS_GOT_DISP: | |
0f20cc35 | 6470 | if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, 0)) |
b34976b6 | 6471 | return FALSE; |
b49e97c9 TS |
6472 | break; |
6473 | ||
0f20cc35 DJ |
6474 | case R_MIPS_TLS_GOTTPREL: |
6475 | if (info->shared) | |
6476 | info->flags |= DF_STATIC_TLS; | |
6477 | /* Fall through */ | |
6478 | ||
6479 | case R_MIPS_TLS_LDM: | |
6480 | if (r_type == R_MIPS_TLS_LDM) | |
6481 | { | |
6482 | r_symndx = 0; | |
6483 | h = NULL; | |
6484 | } | |
6485 | /* Fall through */ | |
6486 | ||
6487 | case R_MIPS_TLS_GD: | |
6488 | /* This symbol requires a global offset table entry, or two | |
6489 | for TLS GD relocations. */ | |
6490 | { | |
6491 | unsigned char flag = (r_type == R_MIPS_TLS_GD | |
6492 | ? GOT_TLS_GD | |
6493 | : r_type == R_MIPS_TLS_LDM | |
6494 | ? GOT_TLS_LDM | |
6495 | : GOT_TLS_IE); | |
6496 | if (h != NULL) | |
6497 | { | |
6498 | struct mips_elf_link_hash_entry *hmips = | |
6499 | (struct mips_elf_link_hash_entry *) h; | |
6500 | hmips->tls_type |= flag; | |
6501 | ||
6502 | if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, flag)) | |
6503 | return FALSE; | |
6504 | } | |
6505 | else | |
6506 | { | |
6507 | BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != 0); | |
6508 | ||
6509 | if (! mips_elf_record_local_got_symbol (abfd, r_symndx, | |
6510 | rel->r_addend, g, flag)) | |
6511 | return FALSE; | |
6512 | } | |
6513 | } | |
6514 | break; | |
6515 | ||
b49e97c9 TS |
6516 | case R_MIPS_32: |
6517 | case R_MIPS_REL32: | |
6518 | case R_MIPS_64: | |
0a44bf69 RS |
6519 | /* In VxWorks executables, references to external symbols |
6520 | are handled using copy relocs or PLT stubs, so there's | |
6521 | no need to add a .rela.dyn entry for this relocation. */ | |
6522 | if ((info->shared || (h != NULL && !htab->is_vxworks)) | |
b49e97c9 TS |
6523 | && (sec->flags & SEC_ALLOC) != 0) |
6524 | { | |
6525 | if (sreloc == NULL) | |
6526 | { | |
0a44bf69 | 6527 | sreloc = mips_elf_rel_dyn_section (info, TRUE); |
b49e97c9 | 6528 | if (sreloc == NULL) |
f4416af6 | 6529 | return FALSE; |
b49e97c9 | 6530 | } |
b49e97c9 | 6531 | if (info->shared) |
82f0cfbd EC |
6532 | { |
6533 | /* When creating a shared object, we must copy these | |
6534 | reloc types into the output file as R_MIPS_REL32 | |
0a44bf69 RS |
6535 | relocs. Make room for this reloc in .rel(a).dyn. */ |
6536 | mips_elf_allocate_dynamic_relocations (dynobj, info, 1); | |
943284cc | 6537 | if (MIPS_ELF_READONLY_SECTION (sec)) |
82f0cfbd EC |
6538 | /* We tell the dynamic linker that there are |
6539 | relocations against the text segment. */ | |
6540 | info->flags |= DF_TEXTREL; | |
6541 | } | |
b49e97c9 TS |
6542 | else |
6543 | { | |
6544 | struct mips_elf_link_hash_entry *hmips; | |
82f0cfbd | 6545 | |
b49e97c9 TS |
6546 | /* We only need to copy this reloc if the symbol is |
6547 | defined in a dynamic object. */ | |
6548 | hmips = (struct mips_elf_link_hash_entry *) h; | |
6549 | ++hmips->possibly_dynamic_relocs; | |
943284cc | 6550 | if (MIPS_ELF_READONLY_SECTION (sec)) |
82f0cfbd EC |
6551 | /* We need it to tell the dynamic linker if there |
6552 | are relocations against the text segment. */ | |
6553 | hmips->readonly_reloc = TRUE; | |
b49e97c9 TS |
6554 | } |
6555 | ||
6556 | /* Even though we don't directly need a GOT entry for | |
6557 | this symbol, a symbol must have a dynamic symbol | |
6558 | table index greater that DT_MIPS_GOTSYM if there are | |
0a44bf69 RS |
6559 | dynamic relocations against it. This does not apply |
6560 | to VxWorks, which does not have the usual coupling | |
6561 | between global GOT entries and .dynsym entries. */ | |
6562 | if (h != NULL && !htab->is_vxworks) | |
f4416af6 AO |
6563 | { |
6564 | if (dynobj == NULL) | |
6565 | elf_hash_table (info)->dynobj = dynobj = abfd; | |
6566 | if (! mips_elf_create_got_section (dynobj, info, TRUE)) | |
6567 | return FALSE; | |
6568 | g = mips_elf_got_info (dynobj, &sgot); | |
0f20cc35 | 6569 | if (! mips_elf_record_global_got_symbol (h, abfd, info, g, 0)) |
f4416af6 AO |
6570 | return FALSE; |
6571 | } | |
b49e97c9 TS |
6572 | } |
6573 | ||
6574 | if (SGI_COMPAT (abfd)) | |
6575 | mips_elf_hash_table (info)->compact_rel_size += | |
6576 | sizeof (Elf32_External_crinfo); | |
6577 | break; | |
6578 | ||
0a44bf69 RS |
6579 | case R_MIPS_PC16: |
6580 | if (h) | |
6581 | ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE; | |
6582 | break; | |
6583 | ||
b49e97c9 | 6584 | case R_MIPS_26: |
0a44bf69 RS |
6585 | if (h) |
6586 | ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE; | |
6587 | /* Fall through. */ | |
6588 | ||
b49e97c9 TS |
6589 | case R_MIPS_GPREL16: |
6590 | case R_MIPS_LITERAL: | |
6591 | case R_MIPS_GPREL32: | |
6592 | if (SGI_COMPAT (abfd)) | |
6593 | mips_elf_hash_table (info)->compact_rel_size += | |
6594 | sizeof (Elf32_External_crinfo); | |
6595 | break; | |
6596 | ||
6597 | /* This relocation describes the C++ object vtable hierarchy. | |
6598 | Reconstruct it for later use during GC. */ | |
6599 | case R_MIPS_GNU_VTINHERIT: | |
c152c796 | 6600 | if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) |
b34976b6 | 6601 | return FALSE; |
b49e97c9 TS |
6602 | break; |
6603 | ||
6604 | /* This relocation describes which C++ vtable entries are actually | |
6605 | used. Record for later use during GC. */ | |
6606 | case R_MIPS_GNU_VTENTRY: | |
c152c796 | 6607 | if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset)) |
b34976b6 | 6608 | return FALSE; |
b49e97c9 TS |
6609 | break; |
6610 | ||
6611 | default: | |
6612 | break; | |
6613 | } | |
6614 | ||
6615 | /* We must not create a stub for a symbol that has relocations | |
0a44bf69 RS |
6616 | related to taking the function's address. This doesn't apply to |
6617 | VxWorks, where CALL relocs refer to a .got.plt entry instead of | |
6618 | a normal .got entry. */ | |
6619 | if (!htab->is_vxworks && h != NULL) | |
6620 | switch (r_type) | |
6621 | { | |
6622 | default: | |
6623 | ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE; | |
6624 | break; | |
6625 | case R_MIPS_CALL16: | |
6626 | case R_MIPS_CALL_HI16: | |
6627 | case R_MIPS_CALL_LO16: | |
6628 | case R_MIPS_JALR: | |
6629 | break; | |
6630 | } | |
b49e97c9 TS |
6631 | |
6632 | /* If this reloc is not a 16 bit call, and it has a global | |
6633 | symbol, then we will need the fn_stub if there is one. | |
6634 | References from a stub section do not count. */ | |
6635 | if (h != NULL | |
6636 | && r_type != R_MIPS16_26 | |
0112cd26 NC |
6637 | && ! CONST_STRNEQ (bfd_get_section_name (abfd, sec), FN_STUB) |
6638 | && ! CONST_STRNEQ (bfd_get_section_name (abfd, sec), CALL_STUB) | |
6639 | && ! CONST_STRNEQ (bfd_get_section_name (abfd, sec), CALL_FP_STUB)) | |
b49e97c9 TS |
6640 | { |
6641 | struct mips_elf_link_hash_entry *mh; | |
6642 | ||
6643 | mh = (struct mips_elf_link_hash_entry *) h; | |
b34976b6 | 6644 | mh->need_fn_stub = TRUE; |
b49e97c9 TS |
6645 | } |
6646 | } | |
6647 | ||
b34976b6 | 6648 | return TRUE; |
b49e97c9 TS |
6649 | } |
6650 | \f | |
d0647110 | 6651 | bfd_boolean |
9719ad41 RS |
6652 | _bfd_mips_relax_section (bfd *abfd, asection *sec, |
6653 | struct bfd_link_info *link_info, | |
6654 | bfd_boolean *again) | |
d0647110 AO |
6655 | { |
6656 | Elf_Internal_Rela *internal_relocs; | |
6657 | Elf_Internal_Rela *irel, *irelend; | |
6658 | Elf_Internal_Shdr *symtab_hdr; | |
6659 | bfd_byte *contents = NULL; | |
d0647110 AO |
6660 | size_t extsymoff; |
6661 | bfd_boolean changed_contents = FALSE; | |
6662 | bfd_vma sec_start = sec->output_section->vma + sec->output_offset; | |
6663 | Elf_Internal_Sym *isymbuf = NULL; | |
6664 | ||
6665 | /* We are not currently changing any sizes, so only one pass. */ | |
6666 | *again = FALSE; | |
6667 | ||
1049f94e | 6668 | if (link_info->relocatable) |
d0647110 AO |
6669 | return TRUE; |
6670 | ||
9719ad41 | 6671 | internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, |
45d6a902 | 6672 | link_info->keep_memory); |
d0647110 AO |
6673 | if (internal_relocs == NULL) |
6674 | return TRUE; | |
6675 | ||
6676 | irelend = internal_relocs + sec->reloc_count | |
6677 | * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel; | |
6678 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
6679 | extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info; | |
6680 | ||
6681 | for (irel = internal_relocs; irel < irelend; irel++) | |
6682 | { | |
6683 | bfd_vma symval; | |
6684 | bfd_signed_vma sym_offset; | |
6685 | unsigned int r_type; | |
6686 | unsigned long r_symndx; | |
6687 | asection *sym_sec; | |
6688 | unsigned long instruction; | |
6689 | ||
6690 | /* Turn jalr into bgezal, and jr into beq, if they're marked | |
6691 | with a JALR relocation, that indicate where they jump to. | |
6692 | This saves some pipeline bubbles. */ | |
6693 | r_type = ELF_R_TYPE (abfd, irel->r_info); | |
6694 | if (r_type != R_MIPS_JALR) | |
6695 | continue; | |
6696 | ||
6697 | r_symndx = ELF_R_SYM (abfd, irel->r_info); | |
6698 | /* Compute the address of the jump target. */ | |
6699 | if (r_symndx >= extsymoff) | |
6700 | { | |
6701 | struct mips_elf_link_hash_entry *h | |
6702 | = ((struct mips_elf_link_hash_entry *) | |
6703 | elf_sym_hashes (abfd) [r_symndx - extsymoff]); | |
6704 | ||
6705 | while (h->root.root.type == bfd_link_hash_indirect | |
6706 | || h->root.root.type == bfd_link_hash_warning) | |
6707 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | |
143d77c5 | 6708 | |
d0647110 AO |
6709 | /* If a symbol is undefined, or if it may be overridden, |
6710 | skip it. */ | |
6711 | if (! ((h->root.root.type == bfd_link_hash_defined | |
6712 | || h->root.root.type == bfd_link_hash_defweak) | |
6713 | && h->root.root.u.def.section) | |
6714 | || (link_info->shared && ! link_info->symbolic | |
f5385ebf | 6715 | && !h->root.forced_local)) |
d0647110 AO |
6716 | continue; |
6717 | ||
6718 | sym_sec = h->root.root.u.def.section; | |
6719 | if (sym_sec->output_section) | |
6720 | symval = (h->root.root.u.def.value | |
6721 | + sym_sec->output_section->vma | |
6722 | + sym_sec->output_offset); | |
6723 | else | |
6724 | symval = h->root.root.u.def.value; | |
6725 | } | |
6726 | else | |
6727 | { | |
6728 | Elf_Internal_Sym *isym; | |
6729 | ||
6730 | /* Read this BFD's symbols if we haven't done so already. */ | |
6731 | if (isymbuf == NULL && symtab_hdr->sh_info != 0) | |
6732 | { | |
6733 | isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; | |
6734 | if (isymbuf == NULL) | |
6735 | isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr, | |
6736 | symtab_hdr->sh_info, 0, | |
6737 | NULL, NULL, NULL); | |
6738 | if (isymbuf == NULL) | |
6739 | goto relax_return; | |
6740 | } | |
6741 | ||
6742 | isym = isymbuf + r_symndx; | |
6743 | if (isym->st_shndx == SHN_UNDEF) | |
6744 | continue; | |
6745 | else if (isym->st_shndx == SHN_ABS) | |
6746 | sym_sec = bfd_abs_section_ptr; | |
6747 | else if (isym->st_shndx == SHN_COMMON) | |
6748 | sym_sec = bfd_com_section_ptr; | |
6749 | else | |
6750 | sym_sec | |
6751 | = bfd_section_from_elf_index (abfd, isym->st_shndx); | |
6752 | symval = isym->st_value | |
6753 | + sym_sec->output_section->vma | |
6754 | + sym_sec->output_offset; | |
6755 | } | |
6756 | ||
6757 | /* Compute branch offset, from delay slot of the jump to the | |
6758 | branch target. */ | |
6759 | sym_offset = (symval + irel->r_addend) | |
6760 | - (sec_start + irel->r_offset + 4); | |
6761 | ||
6762 | /* Branch offset must be properly aligned. */ | |
6763 | if ((sym_offset & 3) != 0) | |
6764 | continue; | |
6765 | ||
6766 | sym_offset >>= 2; | |
6767 | ||
6768 | /* Check that it's in range. */ | |
6769 | if (sym_offset < -0x8000 || sym_offset >= 0x8000) | |
6770 | continue; | |
143d77c5 | 6771 | |
d0647110 AO |
6772 | /* Get the section contents if we haven't done so already. */ |
6773 | if (contents == NULL) | |
6774 | { | |
6775 | /* Get cached copy if it exists. */ | |
6776 | if (elf_section_data (sec)->this_hdr.contents != NULL) | |
6777 | contents = elf_section_data (sec)->this_hdr.contents; | |
6778 | else | |
6779 | { | |
eea6121a | 6780 | if (!bfd_malloc_and_get_section (abfd, sec, &contents)) |
d0647110 AO |
6781 | goto relax_return; |
6782 | } | |
6783 | } | |
6784 | ||
6785 | instruction = bfd_get_32 (abfd, contents + irel->r_offset); | |
6786 | ||
6787 | /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */ | |
6788 | if ((instruction & 0xfc1fffff) == 0x0000f809) | |
6789 | instruction = 0x04110000; | |
6790 | /* If it was jr <reg>, turn it into b <target>. */ | |
6791 | else if ((instruction & 0xfc1fffff) == 0x00000008) | |
6792 | instruction = 0x10000000; | |
6793 | else | |
6794 | continue; | |
6795 | ||
6796 | instruction |= (sym_offset & 0xffff); | |
6797 | bfd_put_32 (abfd, instruction, contents + irel->r_offset); | |
6798 | changed_contents = TRUE; | |
6799 | } | |
6800 | ||
6801 | if (contents != NULL | |
6802 | && elf_section_data (sec)->this_hdr.contents != contents) | |
6803 | { | |
6804 | if (!changed_contents && !link_info->keep_memory) | |
6805 | free (contents); | |
6806 | else | |
6807 | { | |
6808 | /* Cache the section contents for elf_link_input_bfd. */ | |
6809 | elf_section_data (sec)->this_hdr.contents = contents; | |
6810 | } | |
6811 | } | |
6812 | return TRUE; | |
6813 | ||
143d77c5 | 6814 | relax_return: |
eea6121a AM |
6815 | if (contents != NULL |
6816 | && elf_section_data (sec)->this_hdr.contents != contents) | |
6817 | free (contents); | |
d0647110 AO |
6818 | return FALSE; |
6819 | } | |
6820 | \f | |
b49e97c9 TS |
6821 | /* Adjust a symbol defined by a dynamic object and referenced by a |
6822 | regular object. The current definition is in some section of the | |
6823 | dynamic object, but we're not including those sections. We have to | |
6824 | change the definition to something the rest of the link can | |
6825 | understand. */ | |
6826 | ||
b34976b6 | 6827 | bfd_boolean |
9719ad41 RS |
6828 | _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info, |
6829 | struct elf_link_hash_entry *h) | |
b49e97c9 TS |
6830 | { |
6831 | bfd *dynobj; | |
6832 | struct mips_elf_link_hash_entry *hmips; | |
6833 | asection *s; | |
5108fc1b | 6834 | struct mips_elf_link_hash_table *htab; |
b49e97c9 | 6835 | |
5108fc1b | 6836 | htab = mips_elf_hash_table (info); |
b49e97c9 TS |
6837 | dynobj = elf_hash_table (info)->dynobj; |
6838 | ||
6839 | /* Make sure we know what is going on here. */ | |
6840 | BFD_ASSERT (dynobj != NULL | |
f5385ebf | 6841 | && (h->needs_plt |
f6e332e6 | 6842 | || h->u.weakdef != NULL |
f5385ebf AM |
6843 | || (h->def_dynamic |
6844 | && h->ref_regular | |
6845 | && !h->def_regular))); | |
b49e97c9 TS |
6846 | |
6847 | /* If this symbol is defined in a dynamic object, we need to copy | |
6848 | any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output | |
6849 | file. */ | |
6850 | hmips = (struct mips_elf_link_hash_entry *) h; | |
1049f94e | 6851 | if (! info->relocatable |
b49e97c9 TS |
6852 | && hmips->possibly_dynamic_relocs != 0 |
6853 | && (h->root.type == bfd_link_hash_defweak | |
f5385ebf | 6854 | || !h->def_regular)) |
b49e97c9 | 6855 | { |
0a44bf69 RS |
6856 | mips_elf_allocate_dynamic_relocations |
6857 | (dynobj, info, hmips->possibly_dynamic_relocs); | |
82f0cfbd | 6858 | if (hmips->readonly_reloc) |
b49e97c9 TS |
6859 | /* We tell the dynamic linker that there are relocations |
6860 | against the text segment. */ | |
6861 | info->flags |= DF_TEXTREL; | |
6862 | } | |
6863 | ||
6864 | /* For a function, create a stub, if allowed. */ | |
6865 | if (! hmips->no_fn_stub | |
f5385ebf | 6866 | && h->needs_plt) |
b49e97c9 TS |
6867 | { |
6868 | if (! elf_hash_table (info)->dynamic_sections_created) | |
b34976b6 | 6869 | return TRUE; |
b49e97c9 TS |
6870 | |
6871 | /* If this symbol is not defined in a regular file, then set | |
6872 | the symbol to the stub location. This is required to make | |
6873 | function pointers compare as equal between the normal | |
6874 | executable and the shared library. */ | |
f5385ebf | 6875 | if (!h->def_regular) |
b49e97c9 TS |
6876 | { |
6877 | /* We need .stub section. */ | |
6878 | s = bfd_get_section_by_name (dynobj, | |
6879 | MIPS_ELF_STUB_SECTION_NAME (dynobj)); | |
6880 | BFD_ASSERT (s != NULL); | |
6881 | ||
6882 | h->root.u.def.section = s; | |
eea6121a | 6883 | h->root.u.def.value = s->size; |
b49e97c9 TS |
6884 | |
6885 | /* XXX Write this stub address somewhere. */ | |
eea6121a | 6886 | h->plt.offset = s->size; |
b49e97c9 TS |
6887 | |
6888 | /* Make room for this stub code. */ | |
5108fc1b | 6889 | s->size += htab->function_stub_size; |
b49e97c9 TS |
6890 | |
6891 | /* The last half word of the stub will be filled with the index | |
6892 | of this symbol in .dynsym section. */ | |
b34976b6 | 6893 | return TRUE; |
b49e97c9 TS |
6894 | } |
6895 | } | |
6896 | else if ((h->type == STT_FUNC) | |
f5385ebf | 6897 | && !h->needs_plt) |
b49e97c9 TS |
6898 | { |
6899 | /* This will set the entry for this symbol in the GOT to 0, and | |
6900 | the dynamic linker will take care of this. */ | |
6901 | h->root.u.def.value = 0; | |
b34976b6 | 6902 | return TRUE; |
b49e97c9 TS |
6903 | } |
6904 | ||
6905 | /* If this is a weak symbol, and there is a real definition, the | |
6906 | processor independent code will have arranged for us to see the | |
6907 | real definition first, and we can just use the same value. */ | |
f6e332e6 | 6908 | if (h->u.weakdef != NULL) |
b49e97c9 | 6909 | { |
f6e332e6 AM |
6910 | BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined |
6911 | || h->u.weakdef->root.type == bfd_link_hash_defweak); | |
6912 | h->root.u.def.section = h->u.weakdef->root.u.def.section; | |
6913 | h->root.u.def.value = h->u.weakdef->root.u.def.value; | |
b34976b6 | 6914 | return TRUE; |
b49e97c9 TS |
6915 | } |
6916 | ||
6917 | /* This is a reference to a symbol defined by a dynamic object which | |
6918 | is not a function. */ | |
6919 | ||
b34976b6 | 6920 | return TRUE; |
b49e97c9 | 6921 | } |
0a44bf69 RS |
6922 | |
6923 | /* Likewise, for VxWorks. */ | |
6924 | ||
6925 | bfd_boolean | |
6926 | _bfd_mips_vxworks_adjust_dynamic_symbol (struct bfd_link_info *info, | |
6927 | struct elf_link_hash_entry *h) | |
6928 | { | |
6929 | bfd *dynobj; | |
6930 | struct mips_elf_link_hash_entry *hmips; | |
6931 | struct mips_elf_link_hash_table *htab; | |
6932 | unsigned int power_of_two; | |
6933 | ||
6934 | htab = mips_elf_hash_table (info); | |
6935 | dynobj = elf_hash_table (info)->dynobj; | |
6936 | hmips = (struct mips_elf_link_hash_entry *) h; | |
6937 | ||
6938 | /* Make sure we know what is going on here. */ | |
6939 | BFD_ASSERT (dynobj != NULL | |
6940 | && (h->needs_plt | |
6941 | || h->needs_copy | |
6942 | || h->u.weakdef != NULL | |
6943 | || (h->def_dynamic | |
6944 | && h->ref_regular | |
6945 | && !h->def_regular))); | |
6946 | ||
6947 | /* If the symbol is defined by a dynamic object, we need a PLT stub if | |
6948 | either (a) we want to branch to the symbol or (b) we're linking an | |
6949 | executable that needs a canonical function address. In the latter | |
6950 | case, the canonical address will be the address of the executable's | |
6951 | load stub. */ | |
6952 | if ((hmips->is_branch_target | |
6953 | || (!info->shared | |
6954 | && h->type == STT_FUNC | |
6955 | && hmips->is_relocation_target)) | |
6956 | && h->def_dynamic | |
6957 | && h->ref_regular | |
6958 | && !h->def_regular | |
6959 | && !h->forced_local) | |
6960 | h->needs_plt = 1; | |
6961 | ||
6962 | /* Locally-binding symbols do not need a PLT stub; we can refer to | |
6963 | the functions directly. */ | |
6964 | else if (h->needs_plt | |
6965 | && (SYMBOL_CALLS_LOCAL (info, h) | |
6966 | || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT | |
6967 | && h->root.type == bfd_link_hash_undefweak))) | |
6968 | { | |
6969 | h->needs_plt = 0; | |
6970 | return TRUE; | |
6971 | } | |
6972 | ||
6973 | if (h->needs_plt) | |
6974 | { | |
6975 | /* If this is the first symbol to need a PLT entry, allocate room | |
6976 | for the header, and for the header's .rela.plt.unloaded entries. */ | |
6977 | if (htab->splt->size == 0) | |
6978 | { | |
6979 | htab->splt->size += htab->plt_header_size; | |
6980 | if (!info->shared) | |
6981 | htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela); | |
6982 | } | |
6983 | ||
6984 | /* Assign the next .plt entry to this symbol. */ | |
6985 | h->plt.offset = htab->splt->size; | |
6986 | htab->splt->size += htab->plt_entry_size; | |
6987 | ||
6988 | /* If the output file has no definition of the symbol, set the | |
6989 | symbol's value to the address of the stub. For executables, | |
6990 | point at the PLT load stub rather than the lazy resolution stub; | |
6991 | this stub will become the canonical function address. */ | |
6992 | if (!h->def_regular) | |
6993 | { | |
6994 | h->root.u.def.section = htab->splt; | |
6995 | h->root.u.def.value = h->plt.offset; | |
6996 | if (!info->shared) | |
6997 | h->root.u.def.value += 8; | |
6998 | } | |
6999 | ||
7000 | /* Make room for the .got.plt entry and the R_JUMP_SLOT relocation. */ | |
7001 | htab->sgotplt->size += 4; | |
7002 | htab->srelplt->size += sizeof (Elf32_External_Rela); | |
7003 | ||
7004 | /* Make room for the .rela.plt.unloaded relocations. */ | |
7005 | if (!info->shared) | |
7006 | htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela); | |
7007 | ||
7008 | return TRUE; | |
7009 | } | |
7010 | ||
7011 | /* If a function symbol is defined by a dynamic object, and we do not | |
7012 | need a PLT stub for it, the symbol's value should be zero. */ | |
7013 | if (h->type == STT_FUNC | |
7014 | && h->def_dynamic | |
7015 | && h->ref_regular | |
7016 | && !h->def_regular) | |
7017 | { | |
7018 | h->root.u.def.value = 0; | |
7019 | return TRUE; | |
7020 | } | |
7021 | ||
7022 | /* If this is a weak symbol, and there is a real definition, the | |
7023 | processor independent code will have arranged for us to see the | |
7024 | real definition first, and we can just use the same value. */ | |
7025 | if (h->u.weakdef != NULL) | |
7026 | { | |
7027 | BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined | |
7028 | || h->u.weakdef->root.type == bfd_link_hash_defweak); | |
7029 | h->root.u.def.section = h->u.weakdef->root.u.def.section; | |
7030 | h->root.u.def.value = h->u.weakdef->root.u.def.value; | |
7031 | return TRUE; | |
7032 | } | |
7033 | ||
7034 | /* This is a reference to a symbol defined by a dynamic object which | |
7035 | is not a function. */ | |
7036 | if (info->shared) | |
7037 | return TRUE; | |
7038 | ||
7039 | /* We must allocate the symbol in our .dynbss section, which will | |
7040 | become part of the .bss section of the executable. There will be | |
7041 | an entry for this symbol in the .dynsym section. The dynamic | |
7042 | object will contain position independent code, so all references | |
7043 | from the dynamic object to this symbol will go through the global | |
7044 | offset table. The dynamic linker will use the .dynsym entry to | |
7045 | determine the address it must put in the global offset table, so | |
7046 | both the dynamic object and the regular object will refer to the | |
7047 | same memory location for the variable. */ | |
7048 | ||
7049 | if ((h->root.u.def.section->flags & SEC_ALLOC) != 0) | |
7050 | { | |
7051 | htab->srelbss->size += sizeof (Elf32_External_Rela); | |
7052 | h->needs_copy = 1; | |
7053 | } | |
7054 | ||
7055 | /* We need to figure out the alignment required for this symbol. */ | |
7056 | power_of_two = bfd_log2 (h->size); | |
7057 | if (power_of_two > 4) | |
7058 | power_of_two = 4; | |
7059 | ||
7060 | /* Apply the required alignment. */ | |
7061 | htab->sdynbss->size = BFD_ALIGN (htab->sdynbss->size, | |
7062 | (bfd_size_type) 1 << power_of_two); | |
7063 | if (power_of_two > bfd_get_section_alignment (dynobj, htab->sdynbss) | |
7064 | && !bfd_set_section_alignment (dynobj, htab->sdynbss, power_of_two)) | |
7065 | return FALSE; | |
7066 | ||
7067 | /* Define the symbol as being at this point in the section. */ | |
7068 | h->root.u.def.section = htab->sdynbss; | |
7069 | h->root.u.def.value = htab->sdynbss->size; | |
7070 | ||
7071 | /* Increment the section size to make room for the symbol. */ | |
7072 | htab->sdynbss->size += h->size; | |
7073 | ||
7074 | return TRUE; | |
7075 | } | |
b49e97c9 | 7076 | \f |
5108fc1b RS |
7077 | /* Return the number of dynamic section symbols required by OUTPUT_BFD. |
7078 | The number might be exact or a worst-case estimate, depending on how | |
7079 | much information is available to elf_backend_omit_section_dynsym at | |
7080 | the current linking stage. */ | |
7081 | ||
7082 | static bfd_size_type | |
7083 | count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info) | |
7084 | { | |
7085 | bfd_size_type count; | |
7086 | ||
7087 | count = 0; | |
7088 | if (info->shared || elf_hash_table (info)->is_relocatable_executable) | |
7089 | { | |
7090 | asection *p; | |
7091 | const struct elf_backend_data *bed; | |
7092 | ||
7093 | bed = get_elf_backend_data (output_bfd); | |
7094 | for (p = output_bfd->sections; p ; p = p->next) | |
7095 | if ((p->flags & SEC_EXCLUDE) == 0 | |
7096 | && (p->flags & SEC_ALLOC) != 0 | |
7097 | && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p)) | |
7098 | ++count; | |
7099 | } | |
7100 | return count; | |
7101 | } | |
7102 | ||
b49e97c9 TS |
7103 | /* This function is called after all the input files have been read, |
7104 | and the input sections have been assigned to output sections. We | |
7105 | check for any mips16 stub sections that we can discard. */ | |
7106 | ||
b34976b6 | 7107 | bfd_boolean |
9719ad41 RS |
7108 | _bfd_mips_elf_always_size_sections (bfd *output_bfd, |
7109 | struct bfd_link_info *info) | |
b49e97c9 TS |
7110 | { |
7111 | asection *ri; | |
7112 | ||
f4416af6 AO |
7113 | bfd *dynobj; |
7114 | asection *s; | |
7115 | struct mips_got_info *g; | |
7116 | int i; | |
7117 | bfd_size_type loadable_size = 0; | |
7118 | bfd_size_type local_gotno; | |
5108fc1b | 7119 | bfd_size_type dynsymcount; |
f4416af6 | 7120 | bfd *sub; |
0f20cc35 | 7121 | struct mips_elf_count_tls_arg count_tls_arg; |
0a44bf69 RS |
7122 | struct mips_elf_link_hash_table *htab; |
7123 | ||
7124 | htab = mips_elf_hash_table (info); | |
f4416af6 | 7125 | |
b49e97c9 TS |
7126 | /* The .reginfo section has a fixed size. */ |
7127 | ri = bfd_get_section_by_name (output_bfd, ".reginfo"); | |
7128 | if (ri != NULL) | |
9719ad41 | 7129 | bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo)); |
b49e97c9 | 7130 | |
1049f94e | 7131 | if (! (info->relocatable |
f4416af6 AO |
7132 | || ! mips_elf_hash_table (info)->mips16_stubs_seen)) |
7133 | mips_elf_link_hash_traverse (mips_elf_hash_table (info), | |
9719ad41 | 7134 | mips_elf_check_mips16_stubs, NULL); |
f4416af6 AO |
7135 | |
7136 | dynobj = elf_hash_table (info)->dynobj; | |
7137 | if (dynobj == NULL) | |
7138 | /* Relocatable links don't have it. */ | |
7139 | return TRUE; | |
143d77c5 | 7140 | |
f4416af6 AO |
7141 | g = mips_elf_got_info (dynobj, &s); |
7142 | if (s == NULL) | |
b34976b6 | 7143 | return TRUE; |
b49e97c9 | 7144 | |
f4416af6 AO |
7145 | /* Calculate the total loadable size of the output. That |
7146 | will give us the maximum number of GOT_PAGE entries | |
7147 | required. */ | |
7148 | for (sub = info->input_bfds; sub; sub = sub->link_next) | |
7149 | { | |
7150 | asection *subsection; | |
7151 | ||
7152 | for (subsection = sub->sections; | |
7153 | subsection; | |
7154 | subsection = subsection->next) | |
7155 | { | |
7156 | if ((subsection->flags & SEC_ALLOC) == 0) | |
7157 | continue; | |
eea6121a | 7158 | loadable_size += ((subsection->size + 0xf) |
f4416af6 AO |
7159 | &~ (bfd_size_type) 0xf); |
7160 | } | |
7161 | } | |
7162 | ||
7163 | /* There has to be a global GOT entry for every symbol with | |
7164 | a dynamic symbol table index of DT_MIPS_GOTSYM or | |
7165 | higher. Therefore, it make sense to put those symbols | |
7166 | that need GOT entries at the end of the symbol table. We | |
7167 | do that here. */ | |
7168 | if (! mips_elf_sort_hash_table (info, 1)) | |
7169 | return FALSE; | |
7170 | ||
7171 | if (g->global_gotsym != NULL) | |
7172 | i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx; | |
7173 | else | |
7174 | /* If there are no global symbols, or none requiring | |
7175 | relocations, then GLOBAL_GOTSYM will be NULL. */ | |
7176 | i = 0; | |
7177 | ||
5108fc1b RS |
7178 | /* Get a worst-case estimate of the number of dynamic symbols needed. |
7179 | At this point, dynsymcount does not account for section symbols | |
7180 | and count_section_dynsyms may overestimate the number that will | |
7181 | be needed. */ | |
7182 | dynsymcount = (elf_hash_table (info)->dynsymcount | |
7183 | + count_section_dynsyms (output_bfd, info)); | |
7184 | ||
7185 | /* Determine the size of one stub entry. */ | |
7186 | htab->function_stub_size = (dynsymcount > 0x10000 | |
7187 | ? MIPS_FUNCTION_STUB_BIG_SIZE | |
7188 | : MIPS_FUNCTION_STUB_NORMAL_SIZE); | |
7189 | ||
f4416af6 AO |
7190 | /* In the worst case, we'll get one stub per dynamic symbol, plus |
7191 | one to account for the dummy entry at the end required by IRIX | |
7192 | rld. */ | |
5108fc1b | 7193 | loadable_size += htab->function_stub_size * (i + 1); |
f4416af6 | 7194 | |
0a44bf69 RS |
7195 | if (htab->is_vxworks) |
7196 | /* There's no need to allocate page entries for VxWorks; R_MIPS_GOT16 | |
7197 | relocations against local symbols evaluate to "G", and the EABI does | |
7198 | not include R_MIPS_GOT_PAGE. */ | |
7199 | local_gotno = 0; | |
7200 | else | |
7201 | /* Assume there are two loadable segments consisting of contiguous | |
7202 | sections. Is 5 enough? */ | |
7203 | local_gotno = (loadable_size >> 16) + 5; | |
f4416af6 AO |
7204 | |
7205 | g->local_gotno += local_gotno; | |
eea6121a | 7206 | s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd); |
f4416af6 AO |
7207 | |
7208 | g->global_gotno = i; | |
eea6121a | 7209 | s->size += i * MIPS_ELF_GOT_SIZE (output_bfd); |
f4416af6 | 7210 | |
0f20cc35 DJ |
7211 | /* We need to calculate tls_gotno for global symbols at this point |
7212 | instead of building it up earlier, to avoid doublecounting | |
7213 | entries for one global symbol from multiple input files. */ | |
7214 | count_tls_arg.info = info; | |
7215 | count_tls_arg.needed = 0; | |
7216 | elf_link_hash_traverse (elf_hash_table (info), | |
7217 | mips_elf_count_global_tls_entries, | |
7218 | &count_tls_arg); | |
7219 | g->tls_gotno += count_tls_arg.needed; | |
7220 | s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd); | |
7221 | ||
7222 | mips_elf_resolve_final_got_entries (g); | |
7223 | ||
0a44bf69 RS |
7224 | /* VxWorks does not support multiple GOTs. It initializes $gp to |
7225 | __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the | |
7226 | dynamic loader. */ | |
7227 | if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info)) | |
0f20cc35 DJ |
7228 | { |
7229 | if (! mips_elf_multi_got (output_bfd, info, g, s, local_gotno)) | |
7230 | return FALSE; | |
7231 | } | |
7232 | else | |
7233 | { | |
7234 | /* Set up TLS entries for the first GOT. */ | |
7235 | g->tls_assigned_gotno = g->global_gotno + g->local_gotno; | |
7236 | htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g); | |
7237 | } | |
b49e97c9 | 7238 | |
b34976b6 | 7239 | return TRUE; |
b49e97c9 TS |
7240 | } |
7241 | ||
7242 | /* Set the sizes of the dynamic sections. */ | |
7243 | ||
b34976b6 | 7244 | bfd_boolean |
9719ad41 RS |
7245 | _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd, |
7246 | struct bfd_link_info *info) | |
b49e97c9 TS |
7247 | { |
7248 | bfd *dynobj; | |
0a44bf69 | 7249 | asection *s, *sreldyn; |
b34976b6 | 7250 | bfd_boolean reltext; |
0a44bf69 | 7251 | struct mips_elf_link_hash_table *htab; |
b49e97c9 | 7252 | |
0a44bf69 | 7253 | htab = mips_elf_hash_table (info); |
b49e97c9 TS |
7254 | dynobj = elf_hash_table (info)->dynobj; |
7255 | BFD_ASSERT (dynobj != NULL); | |
7256 | ||
7257 | if (elf_hash_table (info)->dynamic_sections_created) | |
7258 | { | |
7259 | /* Set the contents of the .interp section to the interpreter. */ | |
893c4fe2 | 7260 | if (info->executable) |
b49e97c9 TS |
7261 | { |
7262 | s = bfd_get_section_by_name (dynobj, ".interp"); | |
7263 | BFD_ASSERT (s != NULL); | |
eea6121a | 7264 | s->size |
b49e97c9 TS |
7265 | = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1; |
7266 | s->contents | |
7267 | = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd); | |
7268 | } | |
7269 | } | |
7270 | ||
7271 | /* The check_relocs and adjust_dynamic_symbol entry points have | |
7272 | determined the sizes of the various dynamic sections. Allocate | |
7273 | memory for them. */ | |
b34976b6 | 7274 | reltext = FALSE; |
0a44bf69 | 7275 | sreldyn = NULL; |
b49e97c9 TS |
7276 | for (s = dynobj->sections; s != NULL; s = s->next) |
7277 | { | |
7278 | const char *name; | |
b49e97c9 TS |
7279 | |
7280 | /* It's OK to base decisions on the section name, because none | |
7281 | of the dynobj section names depend upon the input files. */ | |
7282 | name = bfd_get_section_name (dynobj, s); | |
7283 | ||
7284 | if ((s->flags & SEC_LINKER_CREATED) == 0) | |
7285 | continue; | |
7286 | ||
0112cd26 | 7287 | if (CONST_STRNEQ (name, ".rel")) |
b49e97c9 | 7288 | { |
c456f082 | 7289 | if (s->size != 0) |
b49e97c9 TS |
7290 | { |
7291 | const char *outname; | |
7292 | asection *target; | |
7293 | ||
7294 | /* If this relocation section applies to a read only | |
7295 | section, then we probably need a DT_TEXTREL entry. | |
0a44bf69 | 7296 | If the relocation section is .rel(a).dyn, we always |
b49e97c9 TS |
7297 | assert a DT_TEXTREL entry rather than testing whether |
7298 | there exists a relocation to a read only section or | |
7299 | not. */ | |
7300 | outname = bfd_get_section_name (output_bfd, | |
7301 | s->output_section); | |
7302 | target = bfd_get_section_by_name (output_bfd, outname + 4); | |
7303 | if ((target != NULL | |
7304 | && (target->flags & SEC_READONLY) != 0 | |
7305 | && (target->flags & SEC_ALLOC) != 0) | |
0a44bf69 | 7306 | || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0) |
b34976b6 | 7307 | reltext = TRUE; |
b49e97c9 TS |
7308 | |
7309 | /* We use the reloc_count field as a counter if we need | |
7310 | to copy relocs into the output file. */ | |
0a44bf69 | 7311 | if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0) |
b49e97c9 | 7312 | s->reloc_count = 0; |
f4416af6 AO |
7313 | |
7314 | /* If combreloc is enabled, elf_link_sort_relocs() will | |
7315 | sort relocations, but in a different way than we do, | |
7316 | and before we're done creating relocations. Also, it | |
7317 | will move them around between input sections' | |
7318 | relocation's contents, so our sorting would be | |
7319 | broken, so don't let it run. */ | |
7320 | info->combreloc = 0; | |
b49e97c9 TS |
7321 | } |
7322 | } | |
0a44bf69 RS |
7323 | else if (htab->is_vxworks && strcmp (name, ".got") == 0) |
7324 | { | |
7325 | /* Executables do not need a GOT. */ | |
7326 | if (info->shared) | |
7327 | { | |
7328 | /* Allocate relocations for all but the reserved entries. */ | |
7329 | struct mips_got_info *g; | |
7330 | unsigned int count; | |
7331 | ||
7332 | g = mips_elf_got_info (dynobj, NULL); | |
7333 | count = (g->global_gotno | |
7334 | + g->local_gotno | |
7335 | - MIPS_RESERVED_GOTNO (info)); | |
7336 | mips_elf_allocate_dynamic_relocations (dynobj, info, count); | |
7337 | } | |
7338 | } | |
0112cd26 | 7339 | else if (!htab->is_vxworks && CONST_STRNEQ (name, ".got")) |
b49e97c9 | 7340 | { |
f4416af6 AO |
7341 | /* _bfd_mips_elf_always_size_sections() has already done |
7342 | most of the work, but some symbols may have been mapped | |
7343 | to versions that we must now resolve in the got_entries | |
7344 | hash tables. */ | |
7345 | struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL); | |
7346 | struct mips_got_info *g = gg; | |
7347 | struct mips_elf_set_global_got_offset_arg set_got_offset_arg; | |
7348 | unsigned int needed_relocs = 0; | |
143d77c5 | 7349 | |
f4416af6 | 7350 | if (gg->next) |
b49e97c9 | 7351 | { |
f4416af6 AO |
7352 | set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd); |
7353 | set_got_offset_arg.info = info; | |
b49e97c9 | 7354 | |
0f20cc35 DJ |
7355 | /* NOTE 2005-02-03: How can this call, or the next, ever |
7356 | find any indirect entries to resolve? They were all | |
7357 | resolved in mips_elf_multi_got. */ | |
f4416af6 AO |
7358 | mips_elf_resolve_final_got_entries (gg); |
7359 | for (g = gg->next; g && g->next != gg; g = g->next) | |
b49e97c9 | 7360 | { |
f4416af6 AO |
7361 | unsigned int save_assign; |
7362 | ||
7363 | mips_elf_resolve_final_got_entries (g); | |
7364 | ||
7365 | /* Assign offsets to global GOT entries. */ | |
7366 | save_assign = g->assigned_gotno; | |
7367 | g->assigned_gotno = g->local_gotno; | |
7368 | set_got_offset_arg.g = g; | |
7369 | set_got_offset_arg.needed_relocs = 0; | |
7370 | htab_traverse (g->got_entries, | |
7371 | mips_elf_set_global_got_offset, | |
7372 | &set_got_offset_arg); | |
7373 | needed_relocs += set_got_offset_arg.needed_relocs; | |
7374 | BFD_ASSERT (g->assigned_gotno - g->local_gotno | |
7375 | <= g->global_gotno); | |
7376 | ||
7377 | g->assigned_gotno = save_assign; | |
7378 | if (info->shared) | |
7379 | { | |
7380 | needed_relocs += g->local_gotno - g->assigned_gotno; | |
7381 | BFD_ASSERT (g->assigned_gotno == g->next->local_gotno | |
7382 | + g->next->global_gotno | |
0f20cc35 | 7383 | + g->next->tls_gotno |
0a44bf69 | 7384 | + MIPS_RESERVED_GOTNO (info)); |
f4416af6 | 7385 | } |
b49e97c9 | 7386 | } |
0f20cc35 DJ |
7387 | } |
7388 | else | |
7389 | { | |
7390 | struct mips_elf_count_tls_arg arg; | |
7391 | arg.info = info; | |
7392 | arg.needed = 0; | |
b49e97c9 | 7393 | |
0f20cc35 DJ |
7394 | htab_traverse (gg->got_entries, mips_elf_count_local_tls_relocs, |
7395 | &arg); | |
7396 | elf_link_hash_traverse (elf_hash_table (info), | |
7397 | mips_elf_count_global_tls_relocs, | |
7398 | &arg); | |
7399 | ||
7400 | needed_relocs += arg.needed; | |
f4416af6 | 7401 | } |
0f20cc35 DJ |
7402 | |
7403 | if (needed_relocs) | |
0a44bf69 RS |
7404 | mips_elf_allocate_dynamic_relocations (dynobj, info, |
7405 | needed_relocs); | |
b49e97c9 TS |
7406 | } |
7407 | else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0) | |
7408 | { | |
8dc1a139 | 7409 | /* IRIX rld assumes that the function stub isn't at the end |
5108fc1b RS |
7410 | of .text section. So put a dummy. XXX */ |
7411 | s->size += htab->function_stub_size; | |
b49e97c9 TS |
7412 | } |
7413 | else if (! info->shared | |
7414 | && ! mips_elf_hash_table (info)->use_rld_obj_head | |
0112cd26 | 7415 | && CONST_STRNEQ (name, ".rld_map")) |
b49e97c9 | 7416 | { |
5108fc1b | 7417 | /* We add a room for __rld_map. It will be filled in by the |
b49e97c9 | 7418 | rtld to contain a pointer to the _r_debug structure. */ |
eea6121a | 7419 | s->size += 4; |
b49e97c9 TS |
7420 | } |
7421 | else if (SGI_COMPAT (output_bfd) | |
0112cd26 | 7422 | && CONST_STRNEQ (name, ".compact_rel")) |
eea6121a | 7423 | s->size += mips_elf_hash_table (info)->compact_rel_size; |
0112cd26 | 7424 | else if (! CONST_STRNEQ (name, ".init") |
0a44bf69 RS |
7425 | && s != htab->sgotplt |
7426 | && s != htab->splt) | |
b49e97c9 TS |
7427 | { |
7428 | /* It's not one of our sections, so don't allocate space. */ | |
7429 | continue; | |
7430 | } | |
7431 | ||
c456f082 | 7432 | if (s->size == 0) |
b49e97c9 | 7433 | { |
8423293d | 7434 | s->flags |= SEC_EXCLUDE; |
b49e97c9 TS |
7435 | continue; |
7436 | } | |
7437 | ||
c456f082 AM |
7438 | if ((s->flags & SEC_HAS_CONTENTS) == 0) |
7439 | continue; | |
7440 | ||
0a44bf69 RS |
7441 | /* Allocate memory for this section last, since we may increase its |
7442 | size above. */ | |
7443 | if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) == 0) | |
7444 | { | |
7445 | sreldyn = s; | |
7446 | continue; | |
7447 | } | |
7448 | ||
b49e97c9 | 7449 | /* Allocate memory for the section contents. */ |
eea6121a | 7450 | s->contents = bfd_zalloc (dynobj, s->size); |
c456f082 | 7451 | if (s->contents == NULL) |
b49e97c9 TS |
7452 | { |
7453 | bfd_set_error (bfd_error_no_memory); | |
b34976b6 | 7454 | return FALSE; |
b49e97c9 TS |
7455 | } |
7456 | } | |
7457 | ||
0a44bf69 RS |
7458 | /* Allocate memory for the .rel(a).dyn section. */ |
7459 | if (sreldyn != NULL) | |
7460 | { | |
7461 | sreldyn->contents = bfd_zalloc (dynobj, sreldyn->size); | |
7462 | if (sreldyn->contents == NULL) | |
7463 | { | |
7464 | bfd_set_error (bfd_error_no_memory); | |
7465 | return FALSE; | |
7466 | } | |
7467 | } | |
7468 | ||
b49e97c9 TS |
7469 | if (elf_hash_table (info)->dynamic_sections_created) |
7470 | { | |
7471 | /* Add some entries to the .dynamic section. We fill in the | |
7472 | values later, in _bfd_mips_elf_finish_dynamic_sections, but we | |
7473 | must add the entries now so that we get the correct size for | |
7474 | the .dynamic section. The DT_DEBUG entry is filled in by the | |
7475 | dynamic linker and used by the debugger. */ | |
7476 | if (! info->shared) | |
7477 | { | |
7478 | /* SGI object has the equivalence of DT_DEBUG in the | |
7479 | DT_MIPS_RLD_MAP entry. */ | |
7480 | if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0)) | |
b34976b6 | 7481 | return FALSE; |
b49e97c9 TS |
7482 | if (!SGI_COMPAT (output_bfd)) |
7483 | { | |
7484 | if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0)) | |
b34976b6 | 7485 | return FALSE; |
b49e97c9 TS |
7486 | } |
7487 | } | |
7488 | else | |
7489 | { | |
7490 | /* Shared libraries on traditional mips have DT_DEBUG. */ | |
7491 | if (!SGI_COMPAT (output_bfd)) | |
7492 | { | |
7493 | if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0)) | |
b34976b6 | 7494 | return FALSE; |
b49e97c9 TS |
7495 | } |
7496 | } | |
7497 | ||
0a44bf69 | 7498 | if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks)) |
b49e97c9 TS |
7499 | info->flags |= DF_TEXTREL; |
7500 | ||
7501 | if ((info->flags & DF_TEXTREL) != 0) | |
7502 | { | |
7503 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0)) | |
b34976b6 | 7504 | return FALSE; |
943284cc DJ |
7505 | |
7506 | /* Clear the DF_TEXTREL flag. It will be set again if we | |
7507 | write out an actual text relocation; we may not, because | |
7508 | at this point we do not know whether e.g. any .eh_frame | |
7509 | absolute relocations have been converted to PC-relative. */ | |
7510 | info->flags &= ~DF_TEXTREL; | |
b49e97c9 TS |
7511 | } |
7512 | ||
7513 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0)) | |
b34976b6 | 7514 | return FALSE; |
b49e97c9 | 7515 | |
0a44bf69 | 7516 | if (htab->is_vxworks) |
b49e97c9 | 7517 | { |
0a44bf69 RS |
7518 | /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not |
7519 | use any of the DT_MIPS_* tags. */ | |
7520 | if (mips_elf_rel_dyn_section (info, FALSE)) | |
7521 | { | |
7522 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0)) | |
7523 | return FALSE; | |
b49e97c9 | 7524 | |
0a44bf69 RS |
7525 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0)) |
7526 | return FALSE; | |
b49e97c9 | 7527 | |
0a44bf69 RS |
7528 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0)) |
7529 | return FALSE; | |
7530 | } | |
7531 | if (htab->splt->size > 0) | |
7532 | { | |
7533 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0)) | |
7534 | return FALSE; | |
7535 | ||
7536 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0)) | |
7537 | return FALSE; | |
7538 | ||
7539 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0)) | |
7540 | return FALSE; | |
7541 | } | |
b49e97c9 | 7542 | } |
0a44bf69 RS |
7543 | else |
7544 | { | |
7545 | if (mips_elf_rel_dyn_section (info, FALSE)) | |
7546 | { | |
7547 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0)) | |
7548 | return FALSE; | |
b49e97c9 | 7549 | |
0a44bf69 RS |
7550 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0)) |
7551 | return FALSE; | |
b49e97c9 | 7552 | |
0a44bf69 RS |
7553 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0)) |
7554 | return FALSE; | |
7555 | } | |
b49e97c9 | 7556 | |
0a44bf69 RS |
7557 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0)) |
7558 | return FALSE; | |
b49e97c9 | 7559 | |
0a44bf69 RS |
7560 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0)) |
7561 | return FALSE; | |
b49e97c9 | 7562 | |
0a44bf69 RS |
7563 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0)) |
7564 | return FALSE; | |
b49e97c9 | 7565 | |
0a44bf69 RS |
7566 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0)) |
7567 | return FALSE; | |
b49e97c9 | 7568 | |
0a44bf69 RS |
7569 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0)) |
7570 | return FALSE; | |
b49e97c9 | 7571 | |
0a44bf69 RS |
7572 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0)) |
7573 | return FALSE; | |
b49e97c9 | 7574 | |
0a44bf69 RS |
7575 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0)) |
7576 | return FALSE; | |
7577 | ||
7578 | if (IRIX_COMPAT (dynobj) == ict_irix5 | |
7579 | && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0)) | |
7580 | return FALSE; | |
7581 | ||
7582 | if (IRIX_COMPAT (dynobj) == ict_irix6 | |
7583 | && (bfd_get_section_by_name | |
7584 | (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj))) | |
7585 | && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0)) | |
7586 | return FALSE; | |
7587 | } | |
b49e97c9 TS |
7588 | } |
7589 | ||
b34976b6 | 7590 | return TRUE; |
b49e97c9 TS |
7591 | } |
7592 | \f | |
81d43bff RS |
7593 | /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD. |
7594 | Adjust its R_ADDEND field so that it is correct for the output file. | |
7595 | LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols | |
7596 | and sections respectively; both use symbol indexes. */ | |
7597 | ||
7598 | static void | |
7599 | mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info, | |
7600 | bfd *input_bfd, Elf_Internal_Sym *local_syms, | |
7601 | asection **local_sections, Elf_Internal_Rela *rel) | |
7602 | { | |
7603 | unsigned int r_type, r_symndx; | |
7604 | Elf_Internal_Sym *sym; | |
7605 | asection *sec; | |
7606 | ||
7607 | if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE)) | |
7608 | { | |
7609 | r_type = ELF_R_TYPE (output_bfd, rel->r_info); | |
7610 | if (r_type == R_MIPS16_GPREL | |
7611 | || r_type == R_MIPS_GPREL16 | |
7612 | || r_type == R_MIPS_GPREL32 | |
7613 | || r_type == R_MIPS_LITERAL) | |
7614 | { | |
7615 | rel->r_addend += _bfd_get_gp_value (input_bfd); | |
7616 | rel->r_addend -= _bfd_get_gp_value (output_bfd); | |
7617 | } | |
7618 | ||
7619 | r_symndx = ELF_R_SYM (output_bfd, rel->r_info); | |
7620 | sym = local_syms + r_symndx; | |
7621 | ||
7622 | /* Adjust REL's addend to account for section merging. */ | |
7623 | if (!info->relocatable) | |
7624 | { | |
7625 | sec = local_sections[r_symndx]; | |
7626 | _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); | |
7627 | } | |
7628 | ||
7629 | /* This would normally be done by the rela_normal code in elflink.c. */ | |
7630 | if (ELF_ST_TYPE (sym->st_info) == STT_SECTION) | |
7631 | rel->r_addend += local_sections[r_symndx]->output_offset; | |
7632 | } | |
7633 | } | |
7634 | ||
b49e97c9 TS |
7635 | /* Relocate a MIPS ELF section. */ |
7636 | ||
b34976b6 | 7637 | bfd_boolean |
9719ad41 RS |
7638 | _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info, |
7639 | bfd *input_bfd, asection *input_section, | |
7640 | bfd_byte *contents, Elf_Internal_Rela *relocs, | |
7641 | Elf_Internal_Sym *local_syms, | |
7642 | asection **local_sections) | |
b49e97c9 TS |
7643 | { |
7644 | Elf_Internal_Rela *rel; | |
7645 | const Elf_Internal_Rela *relend; | |
7646 | bfd_vma addend = 0; | |
b34976b6 | 7647 | bfd_boolean use_saved_addend_p = FALSE; |
9c5bfbb7 | 7648 | const struct elf_backend_data *bed; |
b49e97c9 TS |
7649 | |
7650 | bed = get_elf_backend_data (output_bfd); | |
7651 | relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel; | |
7652 | for (rel = relocs; rel < relend; ++rel) | |
7653 | { | |
7654 | const char *name; | |
c9adbffe | 7655 | bfd_vma value = 0; |
b49e97c9 | 7656 | reloc_howto_type *howto; |
b34976b6 AM |
7657 | bfd_boolean require_jalx; |
7658 | /* TRUE if the relocation is a RELA relocation, rather than a | |
b49e97c9 | 7659 | REL relocation. */ |
b34976b6 | 7660 | bfd_boolean rela_relocation_p = TRUE; |
b49e97c9 | 7661 | unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info); |
9719ad41 | 7662 | const char *msg; |
b49e97c9 TS |
7663 | |
7664 | /* Find the relocation howto for this relocation. */ | |
4a14403c | 7665 | if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd)) |
b49e97c9 TS |
7666 | { |
7667 | /* Some 32-bit code uses R_MIPS_64. In particular, people use | |
7668 | 64-bit code, but make sure all their addresses are in the | |
7669 | lowermost or uppermost 32-bit section of the 64-bit address | |
7670 | space. Thus, when they use an R_MIPS_64 they mean what is | |
7671 | usually meant by R_MIPS_32, with the exception that the | |
7672 | stored value is sign-extended to 64 bits. */ | |
b34976b6 | 7673 | howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE); |
b49e97c9 TS |
7674 | |
7675 | /* On big-endian systems, we need to lie about the position | |
7676 | of the reloc. */ | |
7677 | if (bfd_big_endian (input_bfd)) | |
7678 | rel->r_offset += 4; | |
7679 | } | |
7680 | else | |
7681 | /* NewABI defaults to RELA relocations. */ | |
7682 | howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, | |
4ffba85c AO |
7683 | NEWABI_P (input_bfd) |
7684 | && (MIPS_RELOC_RELA_P | |
7685 | (input_bfd, input_section, | |
7686 | rel - relocs))); | |
b49e97c9 TS |
7687 | |
7688 | if (!use_saved_addend_p) | |
7689 | { | |
7690 | Elf_Internal_Shdr *rel_hdr; | |
7691 | ||
7692 | /* If these relocations were originally of the REL variety, | |
7693 | we must pull the addend out of the field that will be | |
7694 | relocated. Otherwise, we simply use the contents of the | |
7695 | RELA relocation. To determine which flavor or relocation | |
7696 | this is, we depend on the fact that the INPUT_SECTION's | |
7697 | REL_HDR is read before its REL_HDR2. */ | |
7698 | rel_hdr = &elf_section_data (input_section)->rel_hdr; | |
7699 | if ((size_t) (rel - relocs) | |
7700 | >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel)) | |
7701 | rel_hdr = elf_section_data (input_section)->rel_hdr2; | |
7702 | if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd)) | |
7703 | { | |
d6f16593 MR |
7704 | bfd_byte *location = contents + rel->r_offset; |
7705 | ||
b49e97c9 | 7706 | /* Note that this is a REL relocation. */ |
b34976b6 | 7707 | rela_relocation_p = FALSE; |
b49e97c9 TS |
7708 | |
7709 | /* Get the addend, which is stored in the input file. */ | |
d6f16593 MR |
7710 | _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, |
7711 | location); | |
b49e97c9 TS |
7712 | addend = mips_elf_obtain_contents (howto, rel, input_bfd, |
7713 | contents); | |
d6f16593 MR |
7714 | _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, FALSE, |
7715 | location); | |
7716 | ||
b49e97c9 TS |
7717 | addend &= howto->src_mask; |
7718 | ||
7719 | /* For some kinds of relocations, the ADDEND is a | |
7720 | combination of the addend stored in two different | |
7721 | relocations. */ | |
d6f16593 | 7722 | if (r_type == R_MIPS_HI16 || r_type == R_MIPS16_HI16 |
b49e97c9 TS |
7723 | || (r_type == R_MIPS_GOT16 |
7724 | && mips_elf_local_relocation_p (input_bfd, rel, | |
b34976b6 | 7725 | local_sections, FALSE))) |
b49e97c9 TS |
7726 | { |
7727 | bfd_vma l; | |
7728 | const Elf_Internal_Rela *lo16_relocation; | |
7729 | reloc_howto_type *lo16_howto; | |
d6f16593 MR |
7730 | bfd_byte *lo16_location; |
7731 | int lo16_type; | |
7732 | ||
7733 | if (r_type == R_MIPS16_HI16) | |
7734 | lo16_type = R_MIPS16_LO16; | |
7735 | else | |
7736 | lo16_type = R_MIPS_LO16; | |
b49e97c9 TS |
7737 | |
7738 | /* The combined value is the sum of the HI16 addend, | |
7739 | left-shifted by sixteen bits, and the LO16 | |
7740 | addend, sign extended. (Usually, the code does | |
7741 | a `lui' of the HI16 value, and then an `addiu' of | |
7742 | the LO16 value.) | |
7743 | ||
4030e8f6 CD |
7744 | Scan ahead to find a matching LO16 relocation. |
7745 | ||
7746 | According to the MIPS ELF ABI, the R_MIPS_LO16 | |
7747 | relocation must be immediately following. | |
7748 | However, for the IRIX6 ABI, the next relocation | |
7749 | may be a composed relocation consisting of | |
7750 | several relocations for the same address. In | |
7751 | that case, the R_MIPS_LO16 relocation may occur | |
7752 | as one of these. We permit a similar extension | |
7753 | in general, as that is useful for GCC. */ | |
7754 | lo16_relocation = mips_elf_next_relocation (input_bfd, | |
d6f16593 | 7755 | lo16_type, |
b49e97c9 TS |
7756 | rel, relend); |
7757 | if (lo16_relocation == NULL) | |
b34976b6 | 7758 | return FALSE; |
b49e97c9 | 7759 | |
d6f16593 MR |
7760 | lo16_location = contents + lo16_relocation->r_offset; |
7761 | ||
b49e97c9 | 7762 | /* Obtain the addend kept there. */ |
4030e8f6 | 7763 | lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, |
d6f16593 MR |
7764 | lo16_type, FALSE); |
7765 | _bfd_mips16_elf_reloc_unshuffle (input_bfd, lo16_type, FALSE, | |
7766 | lo16_location); | |
b49e97c9 TS |
7767 | l = mips_elf_obtain_contents (lo16_howto, lo16_relocation, |
7768 | input_bfd, contents); | |
d6f16593 MR |
7769 | _bfd_mips16_elf_reloc_shuffle (input_bfd, lo16_type, FALSE, |
7770 | lo16_location); | |
b49e97c9 | 7771 | l &= lo16_howto->src_mask; |
5a659663 | 7772 | l <<= lo16_howto->rightshift; |
a7ebbfdf | 7773 | l = _bfd_mips_elf_sign_extend (l, 16); |
b49e97c9 TS |
7774 | |
7775 | addend <<= 16; | |
7776 | ||
7777 | /* Compute the combined addend. */ | |
7778 | addend += l; | |
b49e97c9 | 7779 | } |
30ac9238 RS |
7780 | else |
7781 | addend <<= howto->rightshift; | |
b49e97c9 TS |
7782 | } |
7783 | else | |
7784 | addend = rel->r_addend; | |
81d43bff RS |
7785 | mips_elf_adjust_addend (output_bfd, info, input_bfd, |
7786 | local_syms, local_sections, rel); | |
b49e97c9 TS |
7787 | } |
7788 | ||
1049f94e | 7789 | if (info->relocatable) |
b49e97c9 | 7790 | { |
4a14403c | 7791 | if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd) |
b49e97c9 TS |
7792 | && bfd_big_endian (input_bfd)) |
7793 | rel->r_offset -= 4; | |
7794 | ||
81d43bff | 7795 | if (!rela_relocation_p && rel->r_addend) |
5a659663 | 7796 | { |
81d43bff | 7797 | addend += rel->r_addend; |
30ac9238 | 7798 | if (r_type == R_MIPS_HI16 |
4030e8f6 | 7799 | || r_type == R_MIPS_GOT16) |
5a659663 TS |
7800 | addend = mips_elf_high (addend); |
7801 | else if (r_type == R_MIPS_HIGHER) | |
7802 | addend = mips_elf_higher (addend); | |
7803 | else if (r_type == R_MIPS_HIGHEST) | |
7804 | addend = mips_elf_highest (addend); | |
30ac9238 RS |
7805 | else |
7806 | addend >>= howto->rightshift; | |
b49e97c9 | 7807 | |
30ac9238 RS |
7808 | /* We use the source mask, rather than the destination |
7809 | mask because the place to which we are writing will be | |
7810 | source of the addend in the final link. */ | |
b49e97c9 TS |
7811 | addend &= howto->src_mask; |
7812 | ||
5a659663 | 7813 | if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)) |
b49e97c9 TS |
7814 | /* See the comment above about using R_MIPS_64 in the 32-bit |
7815 | ABI. Here, we need to update the addend. It would be | |
7816 | possible to get away with just using the R_MIPS_32 reloc | |
7817 | but for endianness. */ | |
7818 | { | |
7819 | bfd_vma sign_bits; | |
7820 | bfd_vma low_bits; | |
7821 | bfd_vma high_bits; | |
7822 | ||
7823 | if (addend & ((bfd_vma) 1 << 31)) | |
7824 | #ifdef BFD64 | |
7825 | sign_bits = ((bfd_vma) 1 << 32) - 1; | |
7826 | #else | |
7827 | sign_bits = -1; | |
7828 | #endif | |
7829 | else | |
7830 | sign_bits = 0; | |
7831 | ||
7832 | /* If we don't know that we have a 64-bit type, | |
7833 | do two separate stores. */ | |
7834 | if (bfd_big_endian (input_bfd)) | |
7835 | { | |
7836 | /* Store the sign-bits (which are most significant) | |
7837 | first. */ | |
7838 | low_bits = sign_bits; | |
7839 | high_bits = addend; | |
7840 | } | |
7841 | else | |
7842 | { | |
7843 | low_bits = addend; | |
7844 | high_bits = sign_bits; | |
7845 | } | |
7846 | bfd_put_32 (input_bfd, low_bits, | |
7847 | contents + rel->r_offset); | |
7848 | bfd_put_32 (input_bfd, high_bits, | |
7849 | contents + rel->r_offset + 4); | |
7850 | continue; | |
7851 | } | |
7852 | ||
7853 | if (! mips_elf_perform_relocation (info, howto, rel, addend, | |
7854 | input_bfd, input_section, | |
b34976b6 AM |
7855 | contents, FALSE)) |
7856 | return FALSE; | |
b49e97c9 TS |
7857 | } |
7858 | ||
7859 | /* Go on to the next relocation. */ | |
7860 | continue; | |
7861 | } | |
7862 | ||
7863 | /* In the N32 and 64-bit ABIs there may be multiple consecutive | |
7864 | relocations for the same offset. In that case we are | |
7865 | supposed to treat the output of each relocation as the addend | |
7866 | for the next. */ | |
7867 | if (rel + 1 < relend | |
7868 | && rel->r_offset == rel[1].r_offset | |
7869 | && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE) | |
b34976b6 | 7870 | use_saved_addend_p = TRUE; |
b49e97c9 | 7871 | else |
b34976b6 | 7872 | use_saved_addend_p = FALSE; |
b49e97c9 TS |
7873 | |
7874 | /* Figure out what value we are supposed to relocate. */ | |
7875 | switch (mips_elf_calculate_relocation (output_bfd, input_bfd, | |
7876 | input_section, info, rel, | |
7877 | addend, howto, local_syms, | |
7878 | local_sections, &value, | |
bce03d3d AO |
7879 | &name, &require_jalx, |
7880 | use_saved_addend_p)) | |
b49e97c9 TS |
7881 | { |
7882 | case bfd_reloc_continue: | |
7883 | /* There's nothing to do. */ | |
7884 | continue; | |
7885 | ||
7886 | case bfd_reloc_undefined: | |
7887 | /* mips_elf_calculate_relocation already called the | |
7888 | undefined_symbol callback. There's no real point in | |
7889 | trying to perform the relocation at this point, so we | |
7890 | just skip ahead to the next relocation. */ | |
7891 | continue; | |
7892 | ||
7893 | case bfd_reloc_notsupported: | |
7894 | msg = _("internal error: unsupported relocation error"); | |
7895 | info->callbacks->warning | |
7896 | (info, msg, name, input_bfd, input_section, rel->r_offset); | |
b34976b6 | 7897 | return FALSE; |
b49e97c9 TS |
7898 | |
7899 | case bfd_reloc_overflow: | |
7900 | if (use_saved_addend_p) | |
7901 | /* Ignore overflow until we reach the last relocation for | |
7902 | a given location. */ | |
7903 | ; | |
7904 | else | |
7905 | { | |
7906 | BFD_ASSERT (name != NULL); | |
7907 | if (! ((*info->callbacks->reloc_overflow) | |
dfeffb9f | 7908 | (info, NULL, name, howto->name, (bfd_vma) 0, |
b49e97c9 | 7909 | input_bfd, input_section, rel->r_offset))) |
b34976b6 | 7910 | return FALSE; |
b49e97c9 TS |
7911 | } |
7912 | break; | |
7913 | ||
7914 | case bfd_reloc_ok: | |
7915 | break; | |
7916 | ||
7917 | default: | |
7918 | abort (); | |
7919 | break; | |
7920 | } | |
7921 | ||
7922 | /* If we've got another relocation for the address, keep going | |
7923 | until we reach the last one. */ | |
7924 | if (use_saved_addend_p) | |
7925 | { | |
7926 | addend = value; | |
7927 | continue; | |
7928 | } | |
7929 | ||
4a14403c | 7930 | if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)) |
b49e97c9 TS |
7931 | /* See the comment above about using R_MIPS_64 in the 32-bit |
7932 | ABI. Until now, we've been using the HOWTO for R_MIPS_32; | |
7933 | that calculated the right value. Now, however, we | |
7934 | sign-extend the 32-bit result to 64-bits, and store it as a | |
7935 | 64-bit value. We are especially generous here in that we | |
7936 | go to extreme lengths to support this usage on systems with | |
7937 | only a 32-bit VMA. */ | |
7938 | { | |
7939 | bfd_vma sign_bits; | |
7940 | bfd_vma low_bits; | |
7941 | bfd_vma high_bits; | |
7942 | ||
7943 | if (value & ((bfd_vma) 1 << 31)) | |
7944 | #ifdef BFD64 | |
7945 | sign_bits = ((bfd_vma) 1 << 32) - 1; | |
7946 | #else | |
7947 | sign_bits = -1; | |
7948 | #endif | |
7949 | else | |
7950 | sign_bits = 0; | |
7951 | ||
7952 | /* If we don't know that we have a 64-bit type, | |
7953 | do two separate stores. */ | |
7954 | if (bfd_big_endian (input_bfd)) | |
7955 | { | |
7956 | /* Undo what we did above. */ | |
7957 | rel->r_offset -= 4; | |
7958 | /* Store the sign-bits (which are most significant) | |
7959 | first. */ | |
7960 | low_bits = sign_bits; | |
7961 | high_bits = value; | |
7962 | } | |
7963 | else | |
7964 | { | |
7965 | low_bits = value; | |
7966 | high_bits = sign_bits; | |
7967 | } | |
7968 | bfd_put_32 (input_bfd, low_bits, | |
7969 | contents + rel->r_offset); | |
7970 | bfd_put_32 (input_bfd, high_bits, | |
7971 | contents + rel->r_offset + 4); | |
7972 | continue; | |
7973 | } | |
7974 | ||
7975 | /* Actually perform the relocation. */ | |
7976 | if (! mips_elf_perform_relocation (info, howto, rel, value, | |
7977 | input_bfd, input_section, | |
7978 | contents, require_jalx)) | |
b34976b6 | 7979 | return FALSE; |
b49e97c9 TS |
7980 | } |
7981 | ||
b34976b6 | 7982 | return TRUE; |
b49e97c9 TS |
7983 | } |
7984 | \f | |
7985 | /* If NAME is one of the special IRIX6 symbols defined by the linker, | |
7986 | adjust it appropriately now. */ | |
7987 | ||
7988 | static void | |
9719ad41 RS |
7989 | mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED, |
7990 | const char *name, Elf_Internal_Sym *sym) | |
b49e97c9 TS |
7991 | { |
7992 | /* The linker script takes care of providing names and values for | |
7993 | these, but we must place them into the right sections. */ | |
7994 | static const char* const text_section_symbols[] = { | |
7995 | "_ftext", | |
7996 | "_etext", | |
7997 | "__dso_displacement", | |
7998 | "__elf_header", | |
7999 | "__program_header_table", | |
8000 | NULL | |
8001 | }; | |
8002 | ||
8003 | static const char* const data_section_symbols[] = { | |
8004 | "_fdata", | |
8005 | "_edata", | |
8006 | "_end", | |
8007 | "_fbss", | |
8008 | NULL | |
8009 | }; | |
8010 | ||
8011 | const char* const *p; | |
8012 | int i; | |
8013 | ||
8014 | for (i = 0; i < 2; ++i) | |
8015 | for (p = (i == 0) ? text_section_symbols : data_section_symbols; | |
8016 | *p; | |
8017 | ++p) | |
8018 | if (strcmp (*p, name) == 0) | |
8019 | { | |
8020 | /* All of these symbols are given type STT_SECTION by the | |
8021 | IRIX6 linker. */ | |
8022 | sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); | |
e10609d3 | 8023 | sym->st_other = STO_PROTECTED; |
b49e97c9 TS |
8024 | |
8025 | /* The IRIX linker puts these symbols in special sections. */ | |
8026 | if (i == 0) | |
8027 | sym->st_shndx = SHN_MIPS_TEXT; | |
8028 | else | |
8029 | sym->st_shndx = SHN_MIPS_DATA; | |
8030 | ||
8031 | break; | |
8032 | } | |
8033 | } | |
8034 | ||
8035 | /* Finish up dynamic symbol handling. We set the contents of various | |
8036 | dynamic sections here. */ | |
8037 | ||
b34976b6 | 8038 | bfd_boolean |
9719ad41 RS |
8039 | _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd, |
8040 | struct bfd_link_info *info, | |
8041 | struct elf_link_hash_entry *h, | |
8042 | Elf_Internal_Sym *sym) | |
b49e97c9 TS |
8043 | { |
8044 | bfd *dynobj; | |
b49e97c9 | 8045 | asection *sgot; |
f4416af6 | 8046 | struct mips_got_info *g, *gg; |
b49e97c9 | 8047 | const char *name; |
3d6746ca | 8048 | int idx; |
5108fc1b | 8049 | struct mips_elf_link_hash_table *htab; |
b49e97c9 | 8050 | |
5108fc1b | 8051 | htab = mips_elf_hash_table (info); |
b49e97c9 | 8052 | dynobj = elf_hash_table (info)->dynobj; |
b49e97c9 | 8053 | |
c5ae1840 | 8054 | if (h->plt.offset != MINUS_ONE) |
b49e97c9 TS |
8055 | { |
8056 | asection *s; | |
5108fc1b | 8057 | bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE]; |
b49e97c9 TS |
8058 | |
8059 | /* This symbol has a stub. Set it up. */ | |
8060 | ||
8061 | BFD_ASSERT (h->dynindx != -1); | |
8062 | ||
8063 | s = bfd_get_section_by_name (dynobj, | |
8064 | MIPS_ELF_STUB_SECTION_NAME (dynobj)); | |
8065 | BFD_ASSERT (s != NULL); | |
8066 | ||
5108fc1b RS |
8067 | BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE) |
8068 | || (h->dynindx <= 0xffff)); | |
3d6746ca DD |
8069 | |
8070 | /* Values up to 2^31 - 1 are allowed. Larger values would cause | |
5108fc1b RS |
8071 | sign extension at runtime in the stub, resulting in a negative |
8072 | index value. */ | |
8073 | if (h->dynindx & ~0x7fffffff) | |
b34976b6 | 8074 | return FALSE; |
b49e97c9 TS |
8075 | |
8076 | /* Fill the stub. */ | |
3d6746ca DD |
8077 | idx = 0; |
8078 | bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx); | |
8079 | idx += 4; | |
8080 | bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx); | |
8081 | idx += 4; | |
5108fc1b | 8082 | if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE) |
3d6746ca | 8083 | { |
5108fc1b | 8084 | bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff), |
3d6746ca DD |
8085 | stub + idx); |
8086 | idx += 4; | |
8087 | } | |
8088 | bfd_put_32 (output_bfd, STUB_JALR, stub + idx); | |
8089 | idx += 4; | |
b49e97c9 | 8090 | |
3d6746ca DD |
8091 | /* If a large stub is not required and sign extension is not a |
8092 | problem, then use legacy code in the stub. */ | |
5108fc1b RS |
8093 | if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE) |
8094 | bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx); | |
8095 | else if (h->dynindx & ~0x7fff) | |
3d6746ca DD |
8096 | bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx); |
8097 | else | |
5108fc1b RS |
8098 | bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx), |
8099 | stub + idx); | |
8100 | ||
eea6121a | 8101 | BFD_ASSERT (h->plt.offset <= s->size); |
5108fc1b | 8102 | memcpy (s->contents + h->plt.offset, stub, htab->function_stub_size); |
b49e97c9 TS |
8103 | |
8104 | /* Mark the symbol as undefined. plt.offset != -1 occurs | |
8105 | only for the referenced symbol. */ | |
8106 | sym->st_shndx = SHN_UNDEF; | |
8107 | ||
8108 | /* The run-time linker uses the st_value field of the symbol | |
8109 | to reset the global offset table entry for this external | |
8110 | to its stub address when unlinking a shared object. */ | |
c5ae1840 TS |
8111 | sym->st_value = (s->output_section->vma + s->output_offset |
8112 | + h->plt.offset); | |
b49e97c9 TS |
8113 | } |
8114 | ||
8115 | BFD_ASSERT (h->dynindx != -1 | |
f5385ebf | 8116 | || h->forced_local); |
b49e97c9 | 8117 | |
f4416af6 | 8118 | sgot = mips_elf_got_section (dynobj, FALSE); |
b49e97c9 | 8119 | BFD_ASSERT (sgot != NULL); |
f4416af6 | 8120 | BFD_ASSERT (mips_elf_section_data (sgot) != NULL); |
f0abc2a1 | 8121 | g = mips_elf_section_data (sgot)->u.got_info; |
b49e97c9 TS |
8122 | BFD_ASSERT (g != NULL); |
8123 | ||
8124 | /* Run through the global symbol table, creating GOT entries for all | |
8125 | the symbols that need them. */ | |
8126 | if (g->global_gotsym != NULL | |
8127 | && h->dynindx >= g->global_gotsym->dynindx) | |
8128 | { | |
8129 | bfd_vma offset; | |
8130 | bfd_vma value; | |
8131 | ||
6eaa6adc | 8132 | value = sym->st_value; |
0f20cc35 | 8133 | offset = mips_elf_global_got_index (dynobj, output_bfd, h, R_MIPS_GOT16, info); |
b49e97c9 TS |
8134 | MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset); |
8135 | } | |
8136 | ||
0f20cc35 | 8137 | if (g->next && h->dynindx != -1 && h->type != STT_TLS) |
f4416af6 AO |
8138 | { |
8139 | struct mips_got_entry e, *p; | |
0626d451 | 8140 | bfd_vma entry; |
f4416af6 | 8141 | bfd_vma offset; |
f4416af6 AO |
8142 | |
8143 | gg = g; | |
8144 | ||
8145 | e.abfd = output_bfd; | |
8146 | e.symndx = -1; | |
8147 | e.d.h = (struct mips_elf_link_hash_entry *)h; | |
0f20cc35 | 8148 | e.tls_type = 0; |
143d77c5 | 8149 | |
f4416af6 AO |
8150 | for (g = g->next; g->next != gg; g = g->next) |
8151 | { | |
8152 | if (g->got_entries | |
8153 | && (p = (struct mips_got_entry *) htab_find (g->got_entries, | |
8154 | &e))) | |
8155 | { | |
8156 | offset = p->gotidx; | |
0626d451 RS |
8157 | if (info->shared |
8158 | || (elf_hash_table (info)->dynamic_sections_created | |
8159 | && p->d.h != NULL | |
f5385ebf AM |
8160 | && p->d.h->root.def_dynamic |
8161 | && !p->d.h->root.def_regular)) | |
0626d451 RS |
8162 | { |
8163 | /* Create an R_MIPS_REL32 relocation for this entry. Due to | |
8164 | the various compatibility problems, it's easier to mock | |
8165 | up an R_MIPS_32 or R_MIPS_64 relocation and leave | |
8166 | mips_elf_create_dynamic_relocation to calculate the | |
8167 | appropriate addend. */ | |
8168 | Elf_Internal_Rela rel[3]; | |
8169 | ||
8170 | memset (rel, 0, sizeof (rel)); | |
8171 | if (ABI_64_P (output_bfd)) | |
8172 | rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64); | |
8173 | else | |
8174 | rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32); | |
8175 | rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset; | |
8176 | ||
8177 | entry = 0; | |
8178 | if (! (mips_elf_create_dynamic_relocation | |
8179 | (output_bfd, info, rel, | |
8180 | e.d.h, NULL, sym->st_value, &entry, sgot))) | |
8181 | return FALSE; | |
8182 | } | |
8183 | else | |
8184 | entry = sym->st_value; | |
8185 | MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset); | |
f4416af6 AO |
8186 | } |
8187 | } | |
8188 | } | |
8189 | ||
b49e97c9 TS |
8190 | /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */ |
8191 | name = h->root.root.string; | |
8192 | if (strcmp (name, "_DYNAMIC") == 0 | |
22edb2f1 | 8193 | || h == elf_hash_table (info)->hgot) |
b49e97c9 TS |
8194 | sym->st_shndx = SHN_ABS; |
8195 | else if (strcmp (name, "_DYNAMIC_LINK") == 0 | |
8196 | || strcmp (name, "_DYNAMIC_LINKING") == 0) | |
8197 | { | |
8198 | sym->st_shndx = SHN_ABS; | |
8199 | sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); | |
8200 | sym->st_value = 1; | |
8201 | } | |
4a14403c | 8202 | else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd)) |
b49e97c9 TS |
8203 | { |
8204 | sym->st_shndx = SHN_ABS; | |
8205 | sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); | |
8206 | sym->st_value = elf_gp (output_bfd); | |
8207 | } | |
8208 | else if (SGI_COMPAT (output_bfd)) | |
8209 | { | |
8210 | if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0 | |
8211 | || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0) | |
8212 | { | |
8213 | sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); | |
8214 | sym->st_other = STO_PROTECTED; | |
8215 | sym->st_value = 0; | |
8216 | sym->st_shndx = SHN_MIPS_DATA; | |
8217 | } | |
8218 | else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0) | |
8219 | { | |
8220 | sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); | |
8221 | sym->st_other = STO_PROTECTED; | |
8222 | sym->st_value = mips_elf_hash_table (info)->procedure_count; | |
8223 | sym->st_shndx = SHN_ABS; | |
8224 | } | |
8225 | else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS) | |
8226 | { | |
8227 | if (h->type == STT_FUNC) | |
8228 | sym->st_shndx = SHN_MIPS_TEXT; | |
8229 | else if (h->type == STT_OBJECT) | |
8230 | sym->st_shndx = SHN_MIPS_DATA; | |
8231 | } | |
8232 | } | |
8233 | ||
8234 | /* Handle the IRIX6-specific symbols. */ | |
8235 | if (IRIX_COMPAT (output_bfd) == ict_irix6) | |
8236 | mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym); | |
8237 | ||
8238 | if (! info->shared) | |
8239 | { | |
8240 | if (! mips_elf_hash_table (info)->use_rld_obj_head | |
8241 | && (strcmp (name, "__rld_map") == 0 | |
8242 | || strcmp (name, "__RLD_MAP") == 0)) | |
8243 | { | |
8244 | asection *s = bfd_get_section_by_name (dynobj, ".rld_map"); | |
8245 | BFD_ASSERT (s != NULL); | |
8246 | sym->st_value = s->output_section->vma + s->output_offset; | |
9719ad41 | 8247 | bfd_put_32 (output_bfd, 0, s->contents); |
b49e97c9 TS |
8248 | if (mips_elf_hash_table (info)->rld_value == 0) |
8249 | mips_elf_hash_table (info)->rld_value = sym->st_value; | |
8250 | } | |
8251 | else if (mips_elf_hash_table (info)->use_rld_obj_head | |
8252 | && strcmp (name, "__rld_obj_head") == 0) | |
8253 | { | |
8254 | /* IRIX6 does not use a .rld_map section. */ | |
8255 | if (IRIX_COMPAT (output_bfd) == ict_irix5 | |
8256 | || IRIX_COMPAT (output_bfd) == ict_none) | |
8257 | BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map") | |
8258 | != NULL); | |
8259 | mips_elf_hash_table (info)->rld_value = sym->st_value; | |
8260 | } | |
8261 | } | |
8262 | ||
8263 | /* If this is a mips16 symbol, force the value to be even. */ | |
79cda7cf FF |
8264 | if (sym->st_other == STO_MIPS16) |
8265 | sym->st_value &= ~1; | |
b49e97c9 | 8266 | |
b34976b6 | 8267 | return TRUE; |
b49e97c9 TS |
8268 | } |
8269 | ||
0a44bf69 RS |
8270 | /* Likewise, for VxWorks. */ |
8271 | ||
8272 | bfd_boolean | |
8273 | _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd, | |
8274 | struct bfd_link_info *info, | |
8275 | struct elf_link_hash_entry *h, | |
8276 | Elf_Internal_Sym *sym) | |
8277 | { | |
8278 | bfd *dynobj; | |
8279 | asection *sgot; | |
8280 | struct mips_got_info *g; | |
8281 | struct mips_elf_link_hash_table *htab; | |
8282 | ||
8283 | htab = mips_elf_hash_table (info); | |
8284 | dynobj = elf_hash_table (info)->dynobj; | |
8285 | ||
8286 | if (h->plt.offset != (bfd_vma) -1) | |
8287 | { | |
6d79d2ed | 8288 | bfd_byte *loc; |
0a44bf69 RS |
8289 | bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset; |
8290 | Elf_Internal_Rela rel; | |
8291 | static const bfd_vma *plt_entry; | |
8292 | ||
8293 | BFD_ASSERT (h->dynindx != -1); | |
8294 | BFD_ASSERT (htab->splt != NULL); | |
8295 | BFD_ASSERT (h->plt.offset <= htab->splt->size); | |
8296 | ||
8297 | /* Calculate the address of the .plt entry. */ | |
8298 | plt_address = (htab->splt->output_section->vma | |
8299 | + htab->splt->output_offset | |
8300 | + h->plt.offset); | |
8301 | ||
8302 | /* Calculate the index of the entry. */ | |
8303 | plt_index = ((h->plt.offset - htab->plt_header_size) | |
8304 | / htab->plt_entry_size); | |
8305 | ||
8306 | /* Calculate the address of the .got.plt entry. */ | |
8307 | got_address = (htab->sgotplt->output_section->vma | |
8308 | + htab->sgotplt->output_offset | |
8309 | + plt_index * 4); | |
8310 | ||
8311 | /* Calculate the offset of the .got.plt entry from | |
8312 | _GLOBAL_OFFSET_TABLE_. */ | |
8313 | got_offset = mips_elf_gotplt_index (info, h); | |
8314 | ||
8315 | /* Calculate the offset for the branch at the start of the PLT | |
8316 | entry. The branch jumps to the beginning of .plt. */ | |
8317 | branch_offset = -(h->plt.offset / 4 + 1) & 0xffff; | |
8318 | ||
8319 | /* Fill in the initial value of the .got.plt entry. */ | |
8320 | bfd_put_32 (output_bfd, plt_address, | |
8321 | htab->sgotplt->contents + plt_index * 4); | |
8322 | ||
8323 | /* Find out where the .plt entry should go. */ | |
8324 | loc = htab->splt->contents + h->plt.offset; | |
8325 | ||
8326 | if (info->shared) | |
8327 | { | |
8328 | plt_entry = mips_vxworks_shared_plt_entry; | |
8329 | bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc); | |
8330 | bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4); | |
8331 | } | |
8332 | else | |
8333 | { | |
8334 | bfd_vma got_address_high, got_address_low; | |
8335 | ||
8336 | plt_entry = mips_vxworks_exec_plt_entry; | |
8337 | got_address_high = ((got_address + 0x8000) >> 16) & 0xffff; | |
8338 | got_address_low = got_address & 0xffff; | |
8339 | ||
8340 | bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc); | |
8341 | bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4); | |
8342 | bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8); | |
8343 | bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12); | |
8344 | bfd_put_32 (output_bfd, plt_entry[4], loc + 16); | |
8345 | bfd_put_32 (output_bfd, plt_entry[5], loc + 20); | |
8346 | bfd_put_32 (output_bfd, plt_entry[6], loc + 24); | |
8347 | bfd_put_32 (output_bfd, plt_entry[7], loc + 28); | |
8348 | ||
8349 | loc = (htab->srelplt2->contents | |
8350 | + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela)); | |
8351 | ||
8352 | /* Emit a relocation for the .got.plt entry. */ | |
8353 | rel.r_offset = got_address; | |
8354 | rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32); | |
8355 | rel.r_addend = h->plt.offset; | |
8356 | bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); | |
8357 | ||
8358 | /* Emit a relocation for the lui of %hi(<.got.plt slot>). */ | |
8359 | loc += sizeof (Elf32_External_Rela); | |
8360 | rel.r_offset = plt_address + 8; | |
8361 | rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16); | |
8362 | rel.r_addend = got_offset; | |
8363 | bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); | |
8364 | ||
8365 | /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */ | |
8366 | loc += sizeof (Elf32_External_Rela); | |
8367 | rel.r_offset += 4; | |
8368 | rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16); | |
8369 | bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); | |
8370 | } | |
8371 | ||
8372 | /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */ | |
8373 | loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela); | |
8374 | rel.r_offset = got_address; | |
8375 | rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT); | |
8376 | rel.r_addend = 0; | |
8377 | bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); | |
8378 | ||
8379 | if (!h->def_regular) | |
8380 | sym->st_shndx = SHN_UNDEF; | |
8381 | } | |
8382 | ||
8383 | BFD_ASSERT (h->dynindx != -1 || h->forced_local); | |
8384 | ||
8385 | sgot = mips_elf_got_section (dynobj, FALSE); | |
8386 | BFD_ASSERT (sgot != NULL); | |
8387 | BFD_ASSERT (mips_elf_section_data (sgot) != NULL); | |
8388 | g = mips_elf_section_data (sgot)->u.got_info; | |
8389 | BFD_ASSERT (g != NULL); | |
8390 | ||
8391 | /* See if this symbol has an entry in the GOT. */ | |
8392 | if (g->global_gotsym != NULL | |
8393 | && h->dynindx >= g->global_gotsym->dynindx) | |
8394 | { | |
8395 | bfd_vma offset; | |
8396 | Elf_Internal_Rela outrel; | |
8397 | bfd_byte *loc; | |
8398 | asection *s; | |
8399 | ||
8400 | /* Install the symbol value in the GOT. */ | |
8401 | offset = mips_elf_global_got_index (dynobj, output_bfd, h, | |
8402 | R_MIPS_GOT16, info); | |
8403 | MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset); | |
8404 | ||
8405 | /* Add a dynamic relocation for it. */ | |
8406 | s = mips_elf_rel_dyn_section (info, FALSE); | |
8407 | loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela)); | |
8408 | outrel.r_offset = (sgot->output_section->vma | |
8409 | + sgot->output_offset | |
8410 | + offset); | |
8411 | outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32); | |
8412 | outrel.r_addend = 0; | |
8413 | bfd_elf32_swap_reloca_out (dynobj, &outrel, loc); | |
8414 | } | |
8415 | ||
8416 | /* Emit a copy reloc, if needed. */ | |
8417 | if (h->needs_copy) | |
8418 | { | |
8419 | Elf_Internal_Rela rel; | |
8420 | ||
8421 | BFD_ASSERT (h->dynindx != -1); | |
8422 | ||
8423 | rel.r_offset = (h->root.u.def.section->output_section->vma | |
8424 | + h->root.u.def.section->output_offset | |
8425 | + h->root.u.def.value); | |
8426 | rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY); | |
8427 | rel.r_addend = 0; | |
8428 | bfd_elf32_swap_reloca_out (output_bfd, &rel, | |
8429 | htab->srelbss->contents | |
8430 | + (htab->srelbss->reloc_count | |
8431 | * sizeof (Elf32_External_Rela))); | |
8432 | ++htab->srelbss->reloc_count; | |
8433 | } | |
8434 | ||
8435 | /* If this is a mips16 symbol, force the value to be even. */ | |
8436 | if (sym->st_other == STO_MIPS16) | |
8437 | sym->st_value &= ~1; | |
8438 | ||
8439 | return TRUE; | |
8440 | } | |
8441 | ||
8442 | /* Install the PLT header for a VxWorks executable and finalize the | |
8443 | contents of .rela.plt.unloaded. */ | |
8444 | ||
8445 | static void | |
8446 | mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info) | |
8447 | { | |
8448 | Elf_Internal_Rela rela; | |
8449 | bfd_byte *loc; | |
8450 | bfd_vma got_value, got_value_high, got_value_low, plt_address; | |
8451 | static const bfd_vma *plt_entry; | |
8452 | struct mips_elf_link_hash_table *htab; | |
8453 | ||
8454 | htab = mips_elf_hash_table (info); | |
8455 | plt_entry = mips_vxworks_exec_plt0_entry; | |
8456 | ||
8457 | /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */ | |
8458 | got_value = (htab->root.hgot->root.u.def.section->output_section->vma | |
8459 | + htab->root.hgot->root.u.def.section->output_offset | |
8460 | + htab->root.hgot->root.u.def.value); | |
8461 | ||
8462 | got_value_high = ((got_value + 0x8000) >> 16) & 0xffff; | |
8463 | got_value_low = got_value & 0xffff; | |
8464 | ||
8465 | /* Calculate the address of the PLT header. */ | |
8466 | plt_address = htab->splt->output_section->vma + htab->splt->output_offset; | |
8467 | ||
8468 | /* Install the PLT header. */ | |
8469 | loc = htab->splt->contents; | |
8470 | bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc); | |
8471 | bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4); | |
8472 | bfd_put_32 (output_bfd, plt_entry[2], loc + 8); | |
8473 | bfd_put_32 (output_bfd, plt_entry[3], loc + 12); | |
8474 | bfd_put_32 (output_bfd, plt_entry[4], loc + 16); | |
8475 | bfd_put_32 (output_bfd, plt_entry[5], loc + 20); | |
8476 | ||
8477 | /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */ | |
8478 | loc = htab->srelplt2->contents; | |
8479 | rela.r_offset = plt_address; | |
8480 | rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16); | |
8481 | rela.r_addend = 0; | |
8482 | bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); | |
8483 | loc += sizeof (Elf32_External_Rela); | |
8484 | ||
8485 | /* Output the relocation for the following addiu of | |
8486 | %lo(_GLOBAL_OFFSET_TABLE_). */ | |
8487 | rela.r_offset += 4; | |
8488 | rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16); | |
8489 | bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); | |
8490 | loc += sizeof (Elf32_External_Rela); | |
8491 | ||
8492 | /* Fix up the remaining relocations. They may have the wrong | |
8493 | symbol index for _G_O_T_ or _P_L_T_ depending on the order | |
8494 | in which symbols were output. */ | |
8495 | while (loc < htab->srelplt2->contents + htab->srelplt2->size) | |
8496 | { | |
8497 | Elf_Internal_Rela rel; | |
8498 | ||
8499 | bfd_elf32_swap_reloca_in (output_bfd, loc, &rel); | |
8500 | rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32); | |
8501 | bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); | |
8502 | loc += sizeof (Elf32_External_Rela); | |
8503 | ||
8504 | bfd_elf32_swap_reloca_in (output_bfd, loc, &rel); | |
8505 | rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16); | |
8506 | bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); | |
8507 | loc += sizeof (Elf32_External_Rela); | |
8508 | ||
8509 | bfd_elf32_swap_reloca_in (output_bfd, loc, &rel); | |
8510 | rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16); | |
8511 | bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); | |
8512 | loc += sizeof (Elf32_External_Rela); | |
8513 | } | |
8514 | } | |
8515 | ||
8516 | /* Install the PLT header for a VxWorks shared library. */ | |
8517 | ||
8518 | static void | |
8519 | mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info) | |
8520 | { | |
8521 | unsigned int i; | |
8522 | struct mips_elf_link_hash_table *htab; | |
8523 | ||
8524 | htab = mips_elf_hash_table (info); | |
8525 | ||
8526 | /* We just need to copy the entry byte-by-byte. */ | |
8527 | for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++) | |
8528 | bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i], | |
8529 | htab->splt->contents + i * 4); | |
8530 | } | |
8531 | ||
b49e97c9 TS |
8532 | /* Finish up the dynamic sections. */ |
8533 | ||
b34976b6 | 8534 | bfd_boolean |
9719ad41 RS |
8535 | _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd, |
8536 | struct bfd_link_info *info) | |
b49e97c9 TS |
8537 | { |
8538 | bfd *dynobj; | |
8539 | asection *sdyn; | |
8540 | asection *sgot; | |
f4416af6 | 8541 | struct mips_got_info *gg, *g; |
0a44bf69 | 8542 | struct mips_elf_link_hash_table *htab; |
b49e97c9 | 8543 | |
0a44bf69 | 8544 | htab = mips_elf_hash_table (info); |
b49e97c9 TS |
8545 | dynobj = elf_hash_table (info)->dynobj; |
8546 | ||
8547 | sdyn = bfd_get_section_by_name (dynobj, ".dynamic"); | |
8548 | ||
f4416af6 | 8549 | sgot = mips_elf_got_section (dynobj, FALSE); |
b49e97c9 | 8550 | if (sgot == NULL) |
f4416af6 | 8551 | gg = g = NULL; |
b49e97c9 TS |
8552 | else |
8553 | { | |
f4416af6 AO |
8554 | BFD_ASSERT (mips_elf_section_data (sgot) != NULL); |
8555 | gg = mips_elf_section_data (sgot)->u.got_info; | |
8556 | BFD_ASSERT (gg != NULL); | |
8557 | g = mips_elf_got_for_ibfd (gg, output_bfd); | |
b49e97c9 TS |
8558 | BFD_ASSERT (g != NULL); |
8559 | } | |
8560 | ||
8561 | if (elf_hash_table (info)->dynamic_sections_created) | |
8562 | { | |
8563 | bfd_byte *b; | |
943284cc | 8564 | int dyn_to_skip = 0, dyn_skipped = 0; |
b49e97c9 TS |
8565 | |
8566 | BFD_ASSERT (sdyn != NULL); | |
8567 | BFD_ASSERT (g != NULL); | |
8568 | ||
8569 | for (b = sdyn->contents; | |
eea6121a | 8570 | b < sdyn->contents + sdyn->size; |
b49e97c9 TS |
8571 | b += MIPS_ELF_DYN_SIZE (dynobj)) |
8572 | { | |
8573 | Elf_Internal_Dyn dyn; | |
8574 | const char *name; | |
8575 | size_t elemsize; | |
8576 | asection *s; | |
b34976b6 | 8577 | bfd_boolean swap_out_p; |
b49e97c9 TS |
8578 | |
8579 | /* Read in the current dynamic entry. */ | |
8580 | (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn); | |
8581 | ||
8582 | /* Assume that we're going to modify it and write it out. */ | |
b34976b6 | 8583 | swap_out_p = TRUE; |
b49e97c9 TS |
8584 | |
8585 | switch (dyn.d_tag) | |
8586 | { | |
8587 | case DT_RELENT: | |
b49e97c9 TS |
8588 | dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj); |
8589 | break; | |
8590 | ||
0a44bf69 RS |
8591 | case DT_RELAENT: |
8592 | BFD_ASSERT (htab->is_vxworks); | |
8593 | dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj); | |
8594 | break; | |
8595 | ||
b49e97c9 TS |
8596 | case DT_STRSZ: |
8597 | /* Rewrite DT_STRSZ. */ | |
8598 | dyn.d_un.d_val = | |
8599 | _bfd_elf_strtab_size (elf_hash_table (info)->dynstr); | |
8600 | break; | |
8601 | ||
8602 | case DT_PLTGOT: | |
8603 | name = ".got"; | |
0a44bf69 RS |
8604 | if (htab->is_vxworks) |
8605 | { | |
8606 | /* _GLOBAL_OFFSET_TABLE_ is defined to be the beginning | |
8607 | of the ".got" section in DYNOBJ. */ | |
8608 | s = bfd_get_section_by_name (dynobj, name); | |
8609 | BFD_ASSERT (s != NULL); | |
8610 | dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; | |
8611 | } | |
8612 | else | |
8613 | { | |
8614 | s = bfd_get_section_by_name (output_bfd, name); | |
8615 | BFD_ASSERT (s != NULL); | |
8616 | dyn.d_un.d_ptr = s->vma; | |
8617 | } | |
b49e97c9 TS |
8618 | break; |
8619 | ||
8620 | case DT_MIPS_RLD_VERSION: | |
8621 | dyn.d_un.d_val = 1; /* XXX */ | |
8622 | break; | |
8623 | ||
8624 | case DT_MIPS_FLAGS: | |
8625 | dyn.d_un.d_val = RHF_NOTPOT; /* XXX */ | |
8626 | break; | |
8627 | ||
b49e97c9 | 8628 | case DT_MIPS_TIME_STAMP: |
6edfbbad DJ |
8629 | { |
8630 | time_t t; | |
8631 | time (&t); | |
8632 | dyn.d_un.d_val = t; | |
8633 | } | |
b49e97c9 TS |
8634 | break; |
8635 | ||
8636 | case DT_MIPS_ICHECKSUM: | |
8637 | /* XXX FIXME: */ | |
b34976b6 | 8638 | swap_out_p = FALSE; |
b49e97c9 TS |
8639 | break; |
8640 | ||
8641 | case DT_MIPS_IVERSION: | |
8642 | /* XXX FIXME: */ | |
b34976b6 | 8643 | swap_out_p = FALSE; |
b49e97c9 TS |
8644 | break; |
8645 | ||
8646 | case DT_MIPS_BASE_ADDRESS: | |
8647 | s = output_bfd->sections; | |
8648 | BFD_ASSERT (s != NULL); | |
8649 | dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff; | |
8650 | break; | |
8651 | ||
8652 | case DT_MIPS_LOCAL_GOTNO: | |
8653 | dyn.d_un.d_val = g->local_gotno; | |
8654 | break; | |
8655 | ||
8656 | case DT_MIPS_UNREFEXTNO: | |
8657 | /* The index into the dynamic symbol table which is the | |
8658 | entry of the first external symbol that is not | |
8659 | referenced within the same object. */ | |
8660 | dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1; | |
8661 | break; | |
8662 | ||
8663 | case DT_MIPS_GOTSYM: | |
f4416af6 | 8664 | if (gg->global_gotsym) |
b49e97c9 | 8665 | { |
f4416af6 | 8666 | dyn.d_un.d_val = gg->global_gotsym->dynindx; |
b49e97c9 TS |
8667 | break; |
8668 | } | |
8669 | /* In case if we don't have global got symbols we default | |
8670 | to setting DT_MIPS_GOTSYM to the same value as | |
8671 | DT_MIPS_SYMTABNO, so we just fall through. */ | |
8672 | ||
8673 | case DT_MIPS_SYMTABNO: | |
8674 | name = ".dynsym"; | |
8675 | elemsize = MIPS_ELF_SYM_SIZE (output_bfd); | |
8676 | s = bfd_get_section_by_name (output_bfd, name); | |
8677 | BFD_ASSERT (s != NULL); | |
8678 | ||
eea6121a | 8679 | dyn.d_un.d_val = s->size / elemsize; |
b49e97c9 TS |
8680 | break; |
8681 | ||
8682 | case DT_MIPS_HIPAGENO: | |
0a44bf69 | 8683 | dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO (info); |
b49e97c9 TS |
8684 | break; |
8685 | ||
8686 | case DT_MIPS_RLD_MAP: | |
8687 | dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value; | |
8688 | break; | |
8689 | ||
8690 | case DT_MIPS_OPTIONS: | |
8691 | s = (bfd_get_section_by_name | |
8692 | (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd))); | |
8693 | dyn.d_un.d_ptr = s->vma; | |
8694 | break; | |
8695 | ||
0a44bf69 RS |
8696 | case DT_RELASZ: |
8697 | BFD_ASSERT (htab->is_vxworks); | |
8698 | /* The count does not include the JUMP_SLOT relocations. */ | |
8699 | if (htab->srelplt) | |
8700 | dyn.d_un.d_val -= htab->srelplt->size; | |
8701 | break; | |
8702 | ||
8703 | case DT_PLTREL: | |
8704 | BFD_ASSERT (htab->is_vxworks); | |
8705 | dyn.d_un.d_val = DT_RELA; | |
8706 | break; | |
8707 | ||
8708 | case DT_PLTRELSZ: | |
8709 | BFD_ASSERT (htab->is_vxworks); | |
8710 | dyn.d_un.d_val = htab->srelplt->size; | |
8711 | break; | |
8712 | ||
8713 | case DT_JMPREL: | |
8714 | BFD_ASSERT (htab->is_vxworks); | |
8715 | dyn.d_un.d_val = (htab->srelplt->output_section->vma | |
8716 | + htab->srelplt->output_offset); | |
8717 | break; | |
8718 | ||
943284cc DJ |
8719 | case DT_TEXTREL: |
8720 | /* If we didn't need any text relocations after all, delete | |
8721 | the dynamic tag. */ | |
8722 | if (!(info->flags & DF_TEXTREL)) | |
8723 | { | |
8724 | dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj); | |
8725 | swap_out_p = FALSE; | |
8726 | } | |
8727 | break; | |
8728 | ||
8729 | case DT_FLAGS: | |
8730 | /* If we didn't need any text relocations after all, clear | |
8731 | DF_TEXTREL from DT_FLAGS. */ | |
8732 | if (!(info->flags & DF_TEXTREL)) | |
8733 | dyn.d_un.d_val &= ~DF_TEXTREL; | |
8734 | else | |
8735 | swap_out_p = FALSE; | |
8736 | break; | |
8737 | ||
b49e97c9 | 8738 | default: |
b34976b6 | 8739 | swap_out_p = FALSE; |
b49e97c9 TS |
8740 | break; |
8741 | } | |
8742 | ||
943284cc | 8743 | if (swap_out_p || dyn_skipped) |
b49e97c9 | 8744 | (*get_elf_backend_data (dynobj)->s->swap_dyn_out) |
943284cc DJ |
8745 | (dynobj, &dyn, b - dyn_skipped); |
8746 | ||
8747 | if (dyn_to_skip) | |
8748 | { | |
8749 | dyn_skipped += dyn_to_skip; | |
8750 | dyn_to_skip = 0; | |
8751 | } | |
b49e97c9 | 8752 | } |
943284cc DJ |
8753 | |
8754 | /* Wipe out any trailing entries if we shifted down a dynamic tag. */ | |
8755 | if (dyn_skipped > 0) | |
8756 | memset (b - dyn_skipped, 0, dyn_skipped); | |
b49e97c9 TS |
8757 | } |
8758 | ||
eea6121a | 8759 | if (sgot != NULL && sgot->size > 0) |
b49e97c9 | 8760 | { |
0a44bf69 RS |
8761 | if (htab->is_vxworks) |
8762 | { | |
8763 | /* The first entry of the global offset table points to the | |
8764 | ".dynamic" section. The second is initialized by the | |
8765 | loader and contains the shared library identifier. | |
8766 | The third is also initialized by the loader and points | |
8767 | to the lazy resolution stub. */ | |
8768 | MIPS_ELF_PUT_WORD (output_bfd, | |
8769 | sdyn->output_offset + sdyn->output_section->vma, | |
8770 | sgot->contents); | |
8771 | MIPS_ELF_PUT_WORD (output_bfd, 0, | |
8772 | sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd)); | |
8773 | MIPS_ELF_PUT_WORD (output_bfd, 0, | |
8774 | sgot->contents | |
8775 | + 2 * MIPS_ELF_GOT_SIZE (output_bfd)); | |
8776 | } | |
8777 | else | |
8778 | { | |
8779 | /* The first entry of the global offset table will be filled at | |
8780 | runtime. The second entry will be used by some runtime loaders. | |
8781 | This isn't the case of IRIX rld. */ | |
8782 | MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents); | |
8783 | MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000, | |
8784 | sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd)); | |
8785 | } | |
b49e97c9 | 8786 | |
54938e2a TS |
8787 | elf_section_data (sgot->output_section)->this_hdr.sh_entsize |
8788 | = MIPS_ELF_GOT_SIZE (output_bfd); | |
8789 | } | |
b49e97c9 | 8790 | |
f4416af6 AO |
8791 | /* Generate dynamic relocations for the non-primary gots. */ |
8792 | if (gg != NULL && gg->next) | |
8793 | { | |
8794 | Elf_Internal_Rela rel[3]; | |
8795 | bfd_vma addend = 0; | |
8796 | ||
8797 | memset (rel, 0, sizeof (rel)); | |
8798 | rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32); | |
8799 | ||
8800 | for (g = gg->next; g->next != gg; g = g->next) | |
8801 | { | |
0f20cc35 DJ |
8802 | bfd_vma index = g->next->local_gotno + g->next->global_gotno |
8803 | + g->next->tls_gotno; | |
f4416af6 | 8804 | |
9719ad41 | 8805 | MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents |
f4416af6 | 8806 | + index++ * MIPS_ELF_GOT_SIZE (output_bfd)); |
9719ad41 | 8807 | MIPS_ELF_PUT_WORD (output_bfd, 0x80000000, sgot->contents |
f4416af6 AO |
8808 | + index++ * MIPS_ELF_GOT_SIZE (output_bfd)); |
8809 | ||
8810 | if (! info->shared) | |
8811 | continue; | |
8812 | ||
8813 | while (index < g->assigned_gotno) | |
8814 | { | |
8815 | rel[0].r_offset = rel[1].r_offset = rel[2].r_offset | |
8816 | = index++ * MIPS_ELF_GOT_SIZE (output_bfd); | |
8817 | if (!(mips_elf_create_dynamic_relocation | |
8818 | (output_bfd, info, rel, NULL, | |
8819 | bfd_abs_section_ptr, | |
8820 | 0, &addend, sgot))) | |
8821 | return FALSE; | |
8822 | BFD_ASSERT (addend == 0); | |
8823 | } | |
8824 | } | |
8825 | } | |
8826 | ||
3133ddbf DJ |
8827 | /* The generation of dynamic relocations for the non-primary gots |
8828 | adds more dynamic relocations. We cannot count them until | |
8829 | here. */ | |
8830 | ||
8831 | if (elf_hash_table (info)->dynamic_sections_created) | |
8832 | { | |
8833 | bfd_byte *b; | |
8834 | bfd_boolean swap_out_p; | |
8835 | ||
8836 | BFD_ASSERT (sdyn != NULL); | |
8837 | ||
8838 | for (b = sdyn->contents; | |
8839 | b < sdyn->contents + sdyn->size; | |
8840 | b += MIPS_ELF_DYN_SIZE (dynobj)) | |
8841 | { | |
8842 | Elf_Internal_Dyn dyn; | |
8843 | asection *s; | |
8844 | ||
8845 | /* Read in the current dynamic entry. */ | |
8846 | (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn); | |
8847 | ||
8848 | /* Assume that we're going to modify it and write it out. */ | |
8849 | swap_out_p = TRUE; | |
8850 | ||
8851 | switch (dyn.d_tag) | |
8852 | { | |
8853 | case DT_RELSZ: | |
8854 | /* Reduce DT_RELSZ to account for any relocations we | |
8855 | decided not to make. This is for the n64 irix rld, | |
8856 | which doesn't seem to apply any relocations if there | |
8857 | are trailing null entries. */ | |
0a44bf69 | 8858 | s = mips_elf_rel_dyn_section (info, FALSE); |
3133ddbf DJ |
8859 | dyn.d_un.d_val = (s->reloc_count |
8860 | * (ABI_64_P (output_bfd) | |
8861 | ? sizeof (Elf64_Mips_External_Rel) | |
8862 | : sizeof (Elf32_External_Rel))); | |
8863 | break; | |
8864 | ||
8865 | default: | |
8866 | swap_out_p = FALSE; | |
8867 | break; | |
8868 | } | |
8869 | ||
8870 | if (swap_out_p) | |
8871 | (*get_elf_backend_data (dynobj)->s->swap_dyn_out) | |
8872 | (dynobj, &dyn, b); | |
8873 | } | |
8874 | } | |
8875 | ||
b49e97c9 | 8876 | { |
b49e97c9 TS |
8877 | asection *s; |
8878 | Elf32_compact_rel cpt; | |
8879 | ||
b49e97c9 TS |
8880 | if (SGI_COMPAT (output_bfd)) |
8881 | { | |
8882 | /* Write .compact_rel section out. */ | |
8883 | s = bfd_get_section_by_name (dynobj, ".compact_rel"); | |
8884 | if (s != NULL) | |
8885 | { | |
8886 | cpt.id1 = 1; | |
8887 | cpt.num = s->reloc_count; | |
8888 | cpt.id2 = 2; | |
8889 | cpt.offset = (s->output_section->filepos | |
8890 | + sizeof (Elf32_External_compact_rel)); | |
8891 | cpt.reserved0 = 0; | |
8892 | cpt.reserved1 = 0; | |
8893 | bfd_elf32_swap_compact_rel_out (output_bfd, &cpt, | |
8894 | ((Elf32_External_compact_rel *) | |
8895 | s->contents)); | |
8896 | ||
8897 | /* Clean up a dummy stub function entry in .text. */ | |
8898 | s = bfd_get_section_by_name (dynobj, | |
8899 | MIPS_ELF_STUB_SECTION_NAME (dynobj)); | |
8900 | if (s != NULL) | |
8901 | { | |
8902 | file_ptr dummy_offset; | |
8903 | ||
5108fc1b RS |
8904 | BFD_ASSERT (s->size >= htab->function_stub_size); |
8905 | dummy_offset = s->size - htab->function_stub_size; | |
b49e97c9 | 8906 | memset (s->contents + dummy_offset, 0, |
5108fc1b | 8907 | htab->function_stub_size); |
b49e97c9 TS |
8908 | } |
8909 | } | |
8910 | } | |
8911 | ||
0a44bf69 RS |
8912 | /* The psABI says that the dynamic relocations must be sorted in |
8913 | increasing order of r_symndx. The VxWorks EABI doesn't require | |
8914 | this, and because the code below handles REL rather than RELA | |
8915 | relocations, using it for VxWorks would be outright harmful. */ | |
8916 | if (!htab->is_vxworks) | |
b49e97c9 | 8917 | { |
0a44bf69 RS |
8918 | s = mips_elf_rel_dyn_section (info, FALSE); |
8919 | if (s != NULL | |
8920 | && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd)) | |
8921 | { | |
8922 | reldyn_sorting_bfd = output_bfd; | |
b49e97c9 | 8923 | |
0a44bf69 RS |
8924 | if (ABI_64_P (output_bfd)) |
8925 | qsort ((Elf64_External_Rel *) s->contents + 1, | |
8926 | s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel), | |
8927 | sort_dynamic_relocs_64); | |
8928 | else | |
8929 | qsort ((Elf32_External_Rel *) s->contents + 1, | |
8930 | s->reloc_count - 1, sizeof (Elf32_External_Rel), | |
8931 | sort_dynamic_relocs); | |
8932 | } | |
b49e97c9 | 8933 | } |
b49e97c9 TS |
8934 | } |
8935 | ||
0a44bf69 RS |
8936 | if (htab->is_vxworks && htab->splt->size > 0) |
8937 | { | |
8938 | if (info->shared) | |
8939 | mips_vxworks_finish_shared_plt (output_bfd, info); | |
8940 | else | |
8941 | mips_vxworks_finish_exec_plt (output_bfd, info); | |
8942 | } | |
b34976b6 | 8943 | return TRUE; |
b49e97c9 TS |
8944 | } |
8945 | ||
b49e97c9 | 8946 | |
64543e1a RS |
8947 | /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */ |
8948 | ||
8949 | static void | |
9719ad41 | 8950 | mips_set_isa_flags (bfd *abfd) |
b49e97c9 | 8951 | { |
64543e1a | 8952 | flagword val; |
b49e97c9 TS |
8953 | |
8954 | switch (bfd_get_mach (abfd)) | |
8955 | { | |
8956 | default: | |
8957 | case bfd_mach_mips3000: | |
8958 | val = E_MIPS_ARCH_1; | |
8959 | break; | |
8960 | ||
8961 | case bfd_mach_mips3900: | |
8962 | val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900; | |
8963 | break; | |
8964 | ||
8965 | case bfd_mach_mips6000: | |
8966 | val = E_MIPS_ARCH_2; | |
8967 | break; | |
8968 | ||
8969 | case bfd_mach_mips4000: | |
8970 | case bfd_mach_mips4300: | |
8971 | case bfd_mach_mips4400: | |
8972 | case bfd_mach_mips4600: | |
8973 | val = E_MIPS_ARCH_3; | |
8974 | break; | |
8975 | ||
8976 | case bfd_mach_mips4010: | |
8977 | val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010; | |
8978 | break; | |
8979 | ||
8980 | case bfd_mach_mips4100: | |
8981 | val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100; | |
8982 | break; | |
8983 | ||
8984 | case bfd_mach_mips4111: | |
8985 | val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111; | |
8986 | break; | |
8987 | ||
00707a0e RS |
8988 | case bfd_mach_mips4120: |
8989 | val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120; | |
8990 | break; | |
8991 | ||
b49e97c9 TS |
8992 | case bfd_mach_mips4650: |
8993 | val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650; | |
8994 | break; | |
8995 | ||
00707a0e RS |
8996 | case bfd_mach_mips5400: |
8997 | val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400; | |
8998 | break; | |
8999 | ||
9000 | case bfd_mach_mips5500: | |
9001 | val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500; | |
9002 | break; | |
9003 | ||
0d2e43ed ILT |
9004 | case bfd_mach_mips9000: |
9005 | val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000; | |
9006 | break; | |
9007 | ||
b49e97c9 | 9008 | case bfd_mach_mips5000: |
5a7ea749 | 9009 | case bfd_mach_mips7000: |
b49e97c9 TS |
9010 | case bfd_mach_mips8000: |
9011 | case bfd_mach_mips10000: | |
9012 | case bfd_mach_mips12000: | |
9013 | val = E_MIPS_ARCH_4; | |
9014 | break; | |
9015 | ||
9016 | case bfd_mach_mips5: | |
9017 | val = E_MIPS_ARCH_5; | |
9018 | break; | |
9019 | ||
9020 | case bfd_mach_mips_sb1: | |
9021 | val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1; | |
9022 | break; | |
9023 | ||
9024 | case bfd_mach_mipsisa32: | |
9025 | val = E_MIPS_ARCH_32; | |
9026 | break; | |
9027 | ||
9028 | case bfd_mach_mipsisa64: | |
9029 | val = E_MIPS_ARCH_64; | |
af7ee8bf CD |
9030 | break; |
9031 | ||
9032 | case bfd_mach_mipsisa32r2: | |
9033 | val = E_MIPS_ARCH_32R2; | |
9034 | break; | |
5f74bc13 CD |
9035 | |
9036 | case bfd_mach_mipsisa64r2: | |
9037 | val = E_MIPS_ARCH_64R2; | |
9038 | break; | |
b49e97c9 | 9039 | } |
b49e97c9 TS |
9040 | elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH); |
9041 | elf_elfheader (abfd)->e_flags |= val; | |
9042 | ||
64543e1a RS |
9043 | } |
9044 | ||
9045 | ||
9046 | /* The final processing done just before writing out a MIPS ELF object | |
9047 | file. This gets the MIPS architecture right based on the machine | |
9048 | number. This is used by both the 32-bit and the 64-bit ABI. */ | |
9049 | ||
9050 | void | |
9719ad41 RS |
9051 | _bfd_mips_elf_final_write_processing (bfd *abfd, |
9052 | bfd_boolean linker ATTRIBUTE_UNUSED) | |
64543e1a RS |
9053 | { |
9054 | unsigned int i; | |
9055 | Elf_Internal_Shdr **hdrpp; | |
9056 | const char *name; | |
9057 | asection *sec; | |
9058 | ||
9059 | /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former | |
9060 | is nonzero. This is for compatibility with old objects, which used | |
9061 | a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */ | |
9062 | if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0) | |
9063 | mips_set_isa_flags (abfd); | |
9064 | ||
b49e97c9 TS |
9065 | /* Set the sh_info field for .gptab sections and other appropriate |
9066 | info for each special section. */ | |
9067 | for (i = 1, hdrpp = elf_elfsections (abfd) + 1; | |
9068 | i < elf_numsections (abfd); | |
9069 | i++, hdrpp++) | |
9070 | { | |
9071 | switch ((*hdrpp)->sh_type) | |
9072 | { | |
9073 | case SHT_MIPS_MSYM: | |
9074 | case SHT_MIPS_LIBLIST: | |
9075 | sec = bfd_get_section_by_name (abfd, ".dynstr"); | |
9076 | if (sec != NULL) | |
9077 | (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; | |
9078 | break; | |
9079 | ||
9080 | case SHT_MIPS_GPTAB: | |
9081 | BFD_ASSERT ((*hdrpp)->bfd_section != NULL); | |
9082 | name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section); | |
9083 | BFD_ASSERT (name != NULL | |
0112cd26 | 9084 | && CONST_STRNEQ (name, ".gptab.")); |
b49e97c9 TS |
9085 | sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1); |
9086 | BFD_ASSERT (sec != NULL); | |
9087 | (*hdrpp)->sh_info = elf_section_data (sec)->this_idx; | |
9088 | break; | |
9089 | ||
9090 | case SHT_MIPS_CONTENT: | |
9091 | BFD_ASSERT ((*hdrpp)->bfd_section != NULL); | |
9092 | name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section); | |
9093 | BFD_ASSERT (name != NULL | |
0112cd26 | 9094 | && CONST_STRNEQ (name, ".MIPS.content")); |
b49e97c9 TS |
9095 | sec = bfd_get_section_by_name (abfd, |
9096 | name + sizeof ".MIPS.content" - 1); | |
9097 | BFD_ASSERT (sec != NULL); | |
9098 | (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; | |
9099 | break; | |
9100 | ||
9101 | case SHT_MIPS_SYMBOL_LIB: | |
9102 | sec = bfd_get_section_by_name (abfd, ".dynsym"); | |
9103 | if (sec != NULL) | |
9104 | (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; | |
9105 | sec = bfd_get_section_by_name (abfd, ".liblist"); | |
9106 | if (sec != NULL) | |
9107 | (*hdrpp)->sh_info = elf_section_data (sec)->this_idx; | |
9108 | break; | |
9109 | ||
9110 | case SHT_MIPS_EVENTS: | |
9111 | BFD_ASSERT ((*hdrpp)->bfd_section != NULL); | |
9112 | name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section); | |
9113 | BFD_ASSERT (name != NULL); | |
0112cd26 | 9114 | if (CONST_STRNEQ (name, ".MIPS.events")) |
b49e97c9 TS |
9115 | sec = bfd_get_section_by_name (abfd, |
9116 | name + sizeof ".MIPS.events" - 1); | |
9117 | else | |
9118 | { | |
0112cd26 | 9119 | BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel")); |
b49e97c9 TS |
9120 | sec = bfd_get_section_by_name (abfd, |
9121 | (name | |
9122 | + sizeof ".MIPS.post_rel" - 1)); | |
9123 | } | |
9124 | BFD_ASSERT (sec != NULL); | |
9125 | (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; | |
9126 | break; | |
9127 | ||
9128 | } | |
9129 | } | |
9130 | } | |
9131 | \f | |
8dc1a139 | 9132 | /* When creating an IRIX5 executable, we need REGINFO and RTPROC |
b49e97c9 TS |
9133 | segments. */ |
9134 | ||
9135 | int | |
a6b96beb AM |
9136 | _bfd_mips_elf_additional_program_headers (bfd *abfd, |
9137 | struct bfd_link_info *info ATTRIBUTE_UNUSED) | |
b49e97c9 TS |
9138 | { |
9139 | asection *s; | |
9140 | int ret = 0; | |
9141 | ||
9142 | /* See if we need a PT_MIPS_REGINFO segment. */ | |
9143 | s = bfd_get_section_by_name (abfd, ".reginfo"); | |
9144 | if (s && (s->flags & SEC_LOAD)) | |
9145 | ++ret; | |
9146 | ||
9147 | /* See if we need a PT_MIPS_OPTIONS segment. */ | |
9148 | if (IRIX_COMPAT (abfd) == ict_irix6 | |
9149 | && bfd_get_section_by_name (abfd, | |
9150 | MIPS_ELF_OPTIONS_SECTION_NAME (abfd))) | |
9151 | ++ret; | |
9152 | ||
9153 | /* See if we need a PT_MIPS_RTPROC segment. */ | |
9154 | if (IRIX_COMPAT (abfd) == ict_irix5 | |
9155 | && bfd_get_section_by_name (abfd, ".dynamic") | |
9156 | && bfd_get_section_by_name (abfd, ".mdebug")) | |
9157 | ++ret; | |
9158 | ||
9159 | return ret; | |
9160 | } | |
9161 | ||
8dc1a139 | 9162 | /* Modify the segment map for an IRIX5 executable. */ |
b49e97c9 | 9163 | |
b34976b6 | 9164 | bfd_boolean |
9719ad41 RS |
9165 | _bfd_mips_elf_modify_segment_map (bfd *abfd, |
9166 | struct bfd_link_info *info ATTRIBUTE_UNUSED) | |
b49e97c9 TS |
9167 | { |
9168 | asection *s; | |
9169 | struct elf_segment_map *m, **pm; | |
9170 | bfd_size_type amt; | |
9171 | ||
9172 | /* If there is a .reginfo section, we need a PT_MIPS_REGINFO | |
9173 | segment. */ | |
9174 | s = bfd_get_section_by_name (abfd, ".reginfo"); | |
9175 | if (s != NULL && (s->flags & SEC_LOAD) != 0) | |
9176 | { | |
9177 | for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next) | |
9178 | if (m->p_type == PT_MIPS_REGINFO) | |
9179 | break; | |
9180 | if (m == NULL) | |
9181 | { | |
9182 | amt = sizeof *m; | |
9719ad41 | 9183 | m = bfd_zalloc (abfd, amt); |
b49e97c9 | 9184 | if (m == NULL) |
b34976b6 | 9185 | return FALSE; |
b49e97c9 TS |
9186 | |
9187 | m->p_type = PT_MIPS_REGINFO; | |
9188 | m->count = 1; | |
9189 | m->sections[0] = s; | |
9190 | ||
9191 | /* We want to put it after the PHDR and INTERP segments. */ | |
9192 | pm = &elf_tdata (abfd)->segment_map; | |
9193 | while (*pm != NULL | |
9194 | && ((*pm)->p_type == PT_PHDR | |
9195 | || (*pm)->p_type == PT_INTERP)) | |
9196 | pm = &(*pm)->next; | |
9197 | ||
9198 | m->next = *pm; | |
9199 | *pm = m; | |
9200 | } | |
9201 | } | |
9202 | ||
9203 | /* For IRIX 6, we don't have .mdebug sections, nor does anything but | |
9204 | .dynamic end up in PT_DYNAMIC. However, we do have to insert a | |
98a8deaf | 9205 | PT_MIPS_OPTIONS segment immediately following the program header |
b49e97c9 | 9206 | table. */ |
c1fd6598 AO |
9207 | if (NEWABI_P (abfd) |
9208 | /* On non-IRIX6 new abi, we'll have already created a segment | |
9209 | for this section, so don't create another. I'm not sure this | |
9210 | is not also the case for IRIX 6, but I can't test it right | |
9211 | now. */ | |
9212 | && IRIX_COMPAT (abfd) == ict_irix6) | |
b49e97c9 TS |
9213 | { |
9214 | for (s = abfd->sections; s; s = s->next) | |
9215 | if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS) | |
9216 | break; | |
9217 | ||
9218 | if (s) | |
9219 | { | |
9220 | struct elf_segment_map *options_segment; | |
9221 | ||
98a8deaf RS |
9222 | pm = &elf_tdata (abfd)->segment_map; |
9223 | while (*pm != NULL | |
9224 | && ((*pm)->p_type == PT_PHDR | |
9225 | || (*pm)->p_type == PT_INTERP)) | |
9226 | pm = &(*pm)->next; | |
b49e97c9 | 9227 | |
8ded5a0f AM |
9228 | if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS) |
9229 | { | |
9230 | amt = sizeof (struct elf_segment_map); | |
9231 | options_segment = bfd_zalloc (abfd, amt); | |
9232 | options_segment->next = *pm; | |
9233 | options_segment->p_type = PT_MIPS_OPTIONS; | |
9234 | options_segment->p_flags = PF_R; | |
9235 | options_segment->p_flags_valid = TRUE; | |
9236 | options_segment->count = 1; | |
9237 | options_segment->sections[0] = s; | |
9238 | *pm = options_segment; | |
9239 | } | |
b49e97c9 TS |
9240 | } |
9241 | } | |
9242 | else | |
9243 | { | |
9244 | if (IRIX_COMPAT (abfd) == ict_irix5) | |
9245 | { | |
9246 | /* If there are .dynamic and .mdebug sections, we make a room | |
9247 | for the RTPROC header. FIXME: Rewrite without section names. */ | |
9248 | if (bfd_get_section_by_name (abfd, ".interp") == NULL | |
9249 | && bfd_get_section_by_name (abfd, ".dynamic") != NULL | |
9250 | && bfd_get_section_by_name (abfd, ".mdebug") != NULL) | |
9251 | { | |
9252 | for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next) | |
9253 | if (m->p_type == PT_MIPS_RTPROC) | |
9254 | break; | |
9255 | if (m == NULL) | |
9256 | { | |
9257 | amt = sizeof *m; | |
9719ad41 | 9258 | m = bfd_zalloc (abfd, amt); |
b49e97c9 | 9259 | if (m == NULL) |
b34976b6 | 9260 | return FALSE; |
b49e97c9 TS |
9261 | |
9262 | m->p_type = PT_MIPS_RTPROC; | |
9263 | ||
9264 | s = bfd_get_section_by_name (abfd, ".rtproc"); | |
9265 | if (s == NULL) | |
9266 | { | |
9267 | m->count = 0; | |
9268 | m->p_flags = 0; | |
9269 | m->p_flags_valid = 1; | |
9270 | } | |
9271 | else | |
9272 | { | |
9273 | m->count = 1; | |
9274 | m->sections[0] = s; | |
9275 | } | |
9276 | ||
9277 | /* We want to put it after the DYNAMIC segment. */ | |
9278 | pm = &elf_tdata (abfd)->segment_map; | |
9279 | while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC) | |
9280 | pm = &(*pm)->next; | |
9281 | if (*pm != NULL) | |
9282 | pm = &(*pm)->next; | |
9283 | ||
9284 | m->next = *pm; | |
9285 | *pm = m; | |
9286 | } | |
9287 | } | |
9288 | } | |
8dc1a139 | 9289 | /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic, |
b49e97c9 TS |
9290 | .dynstr, .dynsym, and .hash sections, and everything in |
9291 | between. */ | |
9292 | for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; | |
9293 | pm = &(*pm)->next) | |
9294 | if ((*pm)->p_type == PT_DYNAMIC) | |
9295 | break; | |
9296 | m = *pm; | |
9297 | if (m != NULL && IRIX_COMPAT (abfd) == ict_none) | |
9298 | { | |
9299 | /* For a normal mips executable the permissions for the PT_DYNAMIC | |
9300 | segment are read, write and execute. We do that here since | |
9301 | the code in elf.c sets only the read permission. This matters | |
9302 | sometimes for the dynamic linker. */ | |
9303 | if (bfd_get_section_by_name (abfd, ".dynamic") != NULL) | |
9304 | { | |
9305 | m->p_flags = PF_R | PF_W | PF_X; | |
9306 | m->p_flags_valid = 1; | |
9307 | } | |
9308 | } | |
9309 | if (m != NULL | |
9310 | && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0) | |
9311 | { | |
9312 | static const char *sec_names[] = | |
9313 | { | |
9314 | ".dynamic", ".dynstr", ".dynsym", ".hash" | |
9315 | }; | |
9316 | bfd_vma low, high; | |
9317 | unsigned int i, c; | |
9318 | struct elf_segment_map *n; | |
9319 | ||
792b4a53 | 9320 | low = ~(bfd_vma) 0; |
b49e97c9 TS |
9321 | high = 0; |
9322 | for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++) | |
9323 | { | |
9324 | s = bfd_get_section_by_name (abfd, sec_names[i]); | |
9325 | if (s != NULL && (s->flags & SEC_LOAD) != 0) | |
9326 | { | |
9327 | bfd_size_type sz; | |
9328 | ||
9329 | if (low > s->vma) | |
9330 | low = s->vma; | |
eea6121a | 9331 | sz = s->size; |
b49e97c9 TS |
9332 | if (high < s->vma + sz) |
9333 | high = s->vma + sz; | |
9334 | } | |
9335 | } | |
9336 | ||
9337 | c = 0; | |
9338 | for (s = abfd->sections; s != NULL; s = s->next) | |
9339 | if ((s->flags & SEC_LOAD) != 0 | |
9340 | && s->vma >= low | |
eea6121a | 9341 | && s->vma + s->size <= high) |
b49e97c9 TS |
9342 | ++c; |
9343 | ||
9344 | amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *); | |
9719ad41 | 9345 | n = bfd_zalloc (abfd, amt); |
b49e97c9 | 9346 | if (n == NULL) |
b34976b6 | 9347 | return FALSE; |
b49e97c9 TS |
9348 | *n = *m; |
9349 | n->count = c; | |
9350 | ||
9351 | i = 0; | |
9352 | for (s = abfd->sections; s != NULL; s = s->next) | |
9353 | { | |
9354 | if ((s->flags & SEC_LOAD) != 0 | |
9355 | && s->vma >= low | |
eea6121a | 9356 | && s->vma + s->size <= high) |
b49e97c9 TS |
9357 | { |
9358 | n->sections[i] = s; | |
9359 | ++i; | |
9360 | } | |
9361 | } | |
9362 | ||
9363 | *pm = n; | |
9364 | } | |
9365 | } | |
9366 | ||
b34976b6 | 9367 | return TRUE; |
b49e97c9 TS |
9368 | } |
9369 | \f | |
9370 | /* Return the section that should be marked against GC for a given | |
9371 | relocation. */ | |
9372 | ||
9373 | asection * | |
9719ad41 RS |
9374 | _bfd_mips_elf_gc_mark_hook (asection *sec, |
9375 | struct bfd_link_info *info ATTRIBUTE_UNUSED, | |
9376 | Elf_Internal_Rela *rel, | |
9377 | struct elf_link_hash_entry *h, | |
9378 | Elf_Internal_Sym *sym) | |
b49e97c9 TS |
9379 | { |
9380 | /* ??? Do mips16 stub sections need to be handled special? */ | |
9381 | ||
9382 | if (h != NULL) | |
9383 | { | |
1e2f5b6e | 9384 | switch (ELF_R_TYPE (sec->owner, rel->r_info)) |
b49e97c9 TS |
9385 | { |
9386 | case R_MIPS_GNU_VTINHERIT: | |
9387 | case R_MIPS_GNU_VTENTRY: | |
9388 | break; | |
9389 | ||
9390 | default: | |
9391 | switch (h->root.type) | |
9392 | { | |
9393 | case bfd_link_hash_defined: | |
9394 | case bfd_link_hash_defweak: | |
9395 | return h->root.u.def.section; | |
9396 | ||
9397 | case bfd_link_hash_common: | |
9398 | return h->root.u.c.p->section; | |
9399 | ||
9400 | default: | |
9401 | break; | |
9402 | } | |
9403 | } | |
9404 | } | |
9405 | else | |
1e2f5b6e | 9406 | return bfd_section_from_elf_index (sec->owner, sym->st_shndx); |
b49e97c9 TS |
9407 | |
9408 | return NULL; | |
9409 | } | |
9410 | ||
9411 | /* Update the got entry reference counts for the section being removed. */ | |
9412 | ||
b34976b6 | 9413 | bfd_boolean |
9719ad41 RS |
9414 | _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED, |
9415 | struct bfd_link_info *info ATTRIBUTE_UNUSED, | |
9416 | asection *sec ATTRIBUTE_UNUSED, | |
9417 | const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED) | |
b49e97c9 TS |
9418 | { |
9419 | #if 0 | |
9420 | Elf_Internal_Shdr *symtab_hdr; | |
9421 | struct elf_link_hash_entry **sym_hashes; | |
9422 | bfd_signed_vma *local_got_refcounts; | |
9423 | const Elf_Internal_Rela *rel, *relend; | |
9424 | unsigned long r_symndx; | |
9425 | struct elf_link_hash_entry *h; | |
9426 | ||
9427 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
9428 | sym_hashes = elf_sym_hashes (abfd); | |
9429 | local_got_refcounts = elf_local_got_refcounts (abfd); | |
9430 | ||
9431 | relend = relocs + sec->reloc_count; | |
9432 | for (rel = relocs; rel < relend; rel++) | |
9433 | switch (ELF_R_TYPE (abfd, rel->r_info)) | |
9434 | { | |
9435 | case R_MIPS_GOT16: | |
9436 | case R_MIPS_CALL16: | |
9437 | case R_MIPS_CALL_HI16: | |
9438 | case R_MIPS_CALL_LO16: | |
9439 | case R_MIPS_GOT_HI16: | |
9440 | case R_MIPS_GOT_LO16: | |
4a14403c TS |
9441 | case R_MIPS_GOT_DISP: |
9442 | case R_MIPS_GOT_PAGE: | |
9443 | case R_MIPS_GOT_OFST: | |
b49e97c9 TS |
9444 | /* ??? It would seem that the existing MIPS code does no sort |
9445 | of reference counting or whatnot on its GOT and PLT entries, | |
9446 | so it is not possible to garbage collect them at this time. */ | |
9447 | break; | |
9448 | ||
9449 | default: | |
9450 | break; | |
9451 | } | |
9452 | #endif | |
9453 | ||
b34976b6 | 9454 | return TRUE; |
b49e97c9 TS |
9455 | } |
9456 | \f | |
9457 | /* Copy data from a MIPS ELF indirect symbol to its direct symbol, | |
9458 | hiding the old indirect symbol. Process additional relocation | |
9459 | information. Also called for weakdefs, in which case we just let | |
9460 | _bfd_elf_link_hash_copy_indirect copy the flags for us. */ | |
9461 | ||
9462 | void | |
fcfa13d2 | 9463 | _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info, |
9719ad41 RS |
9464 | struct elf_link_hash_entry *dir, |
9465 | struct elf_link_hash_entry *ind) | |
b49e97c9 TS |
9466 | { |
9467 | struct mips_elf_link_hash_entry *dirmips, *indmips; | |
9468 | ||
fcfa13d2 | 9469 | _bfd_elf_link_hash_copy_indirect (info, dir, ind); |
b49e97c9 TS |
9470 | |
9471 | if (ind->root.type != bfd_link_hash_indirect) | |
9472 | return; | |
9473 | ||
9474 | dirmips = (struct mips_elf_link_hash_entry *) dir; | |
9475 | indmips = (struct mips_elf_link_hash_entry *) ind; | |
9476 | dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs; | |
9477 | if (indmips->readonly_reloc) | |
b34976b6 | 9478 | dirmips->readonly_reloc = TRUE; |
b49e97c9 | 9479 | if (indmips->no_fn_stub) |
b34976b6 | 9480 | dirmips->no_fn_stub = TRUE; |
0f20cc35 DJ |
9481 | |
9482 | if (dirmips->tls_type == 0) | |
9483 | dirmips->tls_type = indmips->tls_type; | |
b49e97c9 TS |
9484 | } |
9485 | ||
9486 | void | |
9719ad41 RS |
9487 | _bfd_mips_elf_hide_symbol (struct bfd_link_info *info, |
9488 | struct elf_link_hash_entry *entry, | |
9489 | bfd_boolean force_local) | |
b49e97c9 TS |
9490 | { |
9491 | bfd *dynobj; | |
9492 | asection *got; | |
9493 | struct mips_got_info *g; | |
9494 | struct mips_elf_link_hash_entry *h; | |
7c5fcef7 | 9495 | |
b49e97c9 | 9496 | h = (struct mips_elf_link_hash_entry *) entry; |
7c5fcef7 L |
9497 | if (h->forced_local) |
9498 | return; | |
4b555070 | 9499 | h->forced_local = force_local; |
7c5fcef7 | 9500 | |
b49e97c9 | 9501 | dynobj = elf_hash_table (info)->dynobj; |
8d1d654f | 9502 | if (dynobj != NULL && force_local && h->root.type != STT_TLS |
003b8e1d | 9503 | && (got = mips_elf_got_section (dynobj, TRUE)) != NULL |
8d1d654f | 9504 | && (g = mips_elf_section_data (got)->u.got_info) != NULL) |
f4416af6 | 9505 | { |
c45a316a AM |
9506 | if (g->next) |
9507 | { | |
9508 | struct mips_got_entry e; | |
9509 | struct mips_got_info *gg = g; | |
9510 | ||
9511 | /* Since we're turning what used to be a global symbol into a | |
9512 | local one, bump up the number of local entries of each GOT | |
9513 | that had an entry for it. This will automatically decrease | |
9514 | the number of global entries, since global_gotno is actually | |
9515 | the upper limit of global entries. */ | |
9516 | e.abfd = dynobj; | |
9517 | e.symndx = -1; | |
9518 | e.d.h = h; | |
0f20cc35 | 9519 | e.tls_type = 0; |
c45a316a AM |
9520 | |
9521 | for (g = g->next; g != gg; g = g->next) | |
9522 | if (htab_find (g->got_entries, &e)) | |
9523 | { | |
9524 | BFD_ASSERT (g->global_gotno > 0); | |
9525 | g->local_gotno++; | |
9526 | g->global_gotno--; | |
9527 | } | |
b49e97c9 | 9528 | |
c45a316a AM |
9529 | /* If this was a global symbol forced into the primary GOT, we |
9530 | no longer need an entry for it. We can't release the entry | |
9531 | at this point, but we must at least stop counting it as one | |
9532 | of the symbols that required a forced got entry. */ | |
9533 | if (h->root.got.offset == 2) | |
9534 | { | |
9535 | BFD_ASSERT (gg->assigned_gotno > 0); | |
9536 | gg->assigned_gotno--; | |
9537 | } | |
9538 | } | |
9539 | else if (g->global_gotno == 0 && g->global_gotsym == NULL) | |
9540 | /* If we haven't got through GOT allocation yet, just bump up the | |
9541 | number of local entries, as this symbol won't be counted as | |
9542 | global. */ | |
9543 | g->local_gotno++; | |
9544 | else if (h->root.got.offset == 1) | |
f4416af6 | 9545 | { |
c45a316a AM |
9546 | /* If we're past non-multi-GOT allocation and this symbol had |
9547 | been marked for a global got entry, give it a local entry | |
9548 | instead. */ | |
9549 | BFD_ASSERT (g->global_gotno > 0); | |
9550 | g->local_gotno++; | |
9551 | g->global_gotno--; | |
f4416af6 AO |
9552 | } |
9553 | } | |
f4416af6 AO |
9554 | |
9555 | _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local); | |
b49e97c9 TS |
9556 | } |
9557 | \f | |
d01414a5 TS |
9558 | #define PDR_SIZE 32 |
9559 | ||
b34976b6 | 9560 | bfd_boolean |
9719ad41 RS |
9561 | _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie, |
9562 | struct bfd_link_info *info) | |
d01414a5 TS |
9563 | { |
9564 | asection *o; | |
b34976b6 | 9565 | bfd_boolean ret = FALSE; |
d01414a5 TS |
9566 | unsigned char *tdata; |
9567 | size_t i, skip; | |
9568 | ||
9569 | o = bfd_get_section_by_name (abfd, ".pdr"); | |
9570 | if (! o) | |
b34976b6 | 9571 | return FALSE; |
eea6121a | 9572 | if (o->size == 0) |
b34976b6 | 9573 | return FALSE; |
eea6121a | 9574 | if (o->size % PDR_SIZE != 0) |
b34976b6 | 9575 | return FALSE; |
d01414a5 TS |
9576 | if (o->output_section != NULL |
9577 | && bfd_is_abs_section (o->output_section)) | |
b34976b6 | 9578 | return FALSE; |
d01414a5 | 9579 | |
eea6121a | 9580 | tdata = bfd_zmalloc (o->size / PDR_SIZE); |
d01414a5 | 9581 | if (! tdata) |
b34976b6 | 9582 | return FALSE; |
d01414a5 | 9583 | |
9719ad41 | 9584 | cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL, |
45d6a902 | 9585 | info->keep_memory); |
d01414a5 TS |
9586 | if (!cookie->rels) |
9587 | { | |
9588 | free (tdata); | |
b34976b6 | 9589 | return FALSE; |
d01414a5 TS |
9590 | } |
9591 | ||
9592 | cookie->rel = cookie->rels; | |
9593 | cookie->relend = cookie->rels + o->reloc_count; | |
9594 | ||
eea6121a | 9595 | for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++) |
d01414a5 | 9596 | { |
c152c796 | 9597 | if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie)) |
d01414a5 TS |
9598 | { |
9599 | tdata[i] = 1; | |
9600 | skip ++; | |
9601 | } | |
9602 | } | |
9603 | ||
9604 | if (skip != 0) | |
9605 | { | |
f0abc2a1 | 9606 | mips_elf_section_data (o)->u.tdata = tdata; |
eea6121a | 9607 | o->size -= skip * PDR_SIZE; |
b34976b6 | 9608 | ret = TRUE; |
d01414a5 TS |
9609 | } |
9610 | else | |
9611 | free (tdata); | |
9612 | ||
9613 | if (! info->keep_memory) | |
9614 | free (cookie->rels); | |
9615 | ||
9616 | return ret; | |
9617 | } | |
9618 | ||
b34976b6 | 9619 | bfd_boolean |
9719ad41 | 9620 | _bfd_mips_elf_ignore_discarded_relocs (asection *sec) |
53bfd6b4 MR |
9621 | { |
9622 | if (strcmp (sec->name, ".pdr") == 0) | |
b34976b6 AM |
9623 | return TRUE; |
9624 | return FALSE; | |
53bfd6b4 | 9625 | } |
d01414a5 | 9626 | |
b34976b6 | 9627 | bfd_boolean |
9719ad41 RS |
9628 | _bfd_mips_elf_write_section (bfd *output_bfd, asection *sec, |
9629 | bfd_byte *contents) | |
d01414a5 TS |
9630 | { |
9631 | bfd_byte *to, *from, *end; | |
9632 | int i; | |
9633 | ||
9634 | if (strcmp (sec->name, ".pdr") != 0) | |
b34976b6 | 9635 | return FALSE; |
d01414a5 | 9636 | |
f0abc2a1 | 9637 | if (mips_elf_section_data (sec)->u.tdata == NULL) |
b34976b6 | 9638 | return FALSE; |
d01414a5 TS |
9639 | |
9640 | to = contents; | |
eea6121a | 9641 | end = contents + sec->size; |
d01414a5 TS |
9642 | for (from = contents, i = 0; |
9643 | from < end; | |
9644 | from += PDR_SIZE, i++) | |
9645 | { | |
f0abc2a1 | 9646 | if ((mips_elf_section_data (sec)->u.tdata)[i] == 1) |
d01414a5 TS |
9647 | continue; |
9648 | if (to != from) | |
9649 | memcpy (to, from, PDR_SIZE); | |
9650 | to += PDR_SIZE; | |
9651 | } | |
9652 | bfd_set_section_contents (output_bfd, sec->output_section, contents, | |
eea6121a | 9653 | sec->output_offset, sec->size); |
b34976b6 | 9654 | return TRUE; |
d01414a5 | 9655 | } |
53bfd6b4 | 9656 | \f |
b49e97c9 TS |
9657 | /* MIPS ELF uses a special find_nearest_line routine in order the |
9658 | handle the ECOFF debugging information. */ | |
9659 | ||
9660 | struct mips_elf_find_line | |
9661 | { | |
9662 | struct ecoff_debug_info d; | |
9663 | struct ecoff_find_line i; | |
9664 | }; | |
9665 | ||
b34976b6 | 9666 | bfd_boolean |
9719ad41 RS |
9667 | _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section, |
9668 | asymbol **symbols, bfd_vma offset, | |
9669 | const char **filename_ptr, | |
9670 | const char **functionname_ptr, | |
9671 | unsigned int *line_ptr) | |
b49e97c9 TS |
9672 | { |
9673 | asection *msec; | |
9674 | ||
9675 | if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset, | |
9676 | filename_ptr, functionname_ptr, | |
9677 | line_ptr)) | |
b34976b6 | 9678 | return TRUE; |
b49e97c9 TS |
9679 | |
9680 | if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset, | |
9681 | filename_ptr, functionname_ptr, | |
9719ad41 | 9682 | line_ptr, ABI_64_P (abfd) ? 8 : 0, |
b49e97c9 | 9683 | &elf_tdata (abfd)->dwarf2_find_line_info)) |
b34976b6 | 9684 | return TRUE; |
b49e97c9 TS |
9685 | |
9686 | msec = bfd_get_section_by_name (abfd, ".mdebug"); | |
9687 | if (msec != NULL) | |
9688 | { | |
9689 | flagword origflags; | |
9690 | struct mips_elf_find_line *fi; | |
9691 | const struct ecoff_debug_swap * const swap = | |
9692 | get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; | |
9693 | ||
9694 | /* If we are called during a link, mips_elf_final_link may have | |
9695 | cleared the SEC_HAS_CONTENTS field. We force it back on here | |
9696 | if appropriate (which it normally will be). */ | |
9697 | origflags = msec->flags; | |
9698 | if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS) | |
9699 | msec->flags |= SEC_HAS_CONTENTS; | |
9700 | ||
9701 | fi = elf_tdata (abfd)->find_line_info; | |
9702 | if (fi == NULL) | |
9703 | { | |
9704 | bfd_size_type external_fdr_size; | |
9705 | char *fraw_src; | |
9706 | char *fraw_end; | |
9707 | struct fdr *fdr_ptr; | |
9708 | bfd_size_type amt = sizeof (struct mips_elf_find_line); | |
9709 | ||
9719ad41 | 9710 | fi = bfd_zalloc (abfd, amt); |
b49e97c9 TS |
9711 | if (fi == NULL) |
9712 | { | |
9713 | msec->flags = origflags; | |
b34976b6 | 9714 | return FALSE; |
b49e97c9 TS |
9715 | } |
9716 | ||
9717 | if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d)) | |
9718 | { | |
9719 | msec->flags = origflags; | |
b34976b6 | 9720 | return FALSE; |
b49e97c9 TS |
9721 | } |
9722 | ||
9723 | /* Swap in the FDR information. */ | |
9724 | amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr); | |
9719ad41 | 9725 | fi->d.fdr = bfd_alloc (abfd, amt); |
b49e97c9 TS |
9726 | if (fi->d.fdr == NULL) |
9727 | { | |
9728 | msec->flags = origflags; | |
b34976b6 | 9729 | return FALSE; |
b49e97c9 TS |
9730 | } |
9731 | external_fdr_size = swap->external_fdr_size; | |
9732 | fdr_ptr = fi->d.fdr; | |
9733 | fraw_src = (char *) fi->d.external_fdr; | |
9734 | fraw_end = (fraw_src | |
9735 | + fi->d.symbolic_header.ifdMax * external_fdr_size); | |
9736 | for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++) | |
9719ad41 | 9737 | (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr); |
b49e97c9 TS |
9738 | |
9739 | elf_tdata (abfd)->find_line_info = fi; | |
9740 | ||
9741 | /* Note that we don't bother to ever free this information. | |
9742 | find_nearest_line is either called all the time, as in | |
9743 | objdump -l, so the information should be saved, or it is | |
9744 | rarely called, as in ld error messages, so the memory | |
9745 | wasted is unimportant. Still, it would probably be a | |
9746 | good idea for free_cached_info to throw it away. */ | |
9747 | } | |
9748 | ||
9749 | if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap, | |
9750 | &fi->i, filename_ptr, functionname_ptr, | |
9751 | line_ptr)) | |
9752 | { | |
9753 | msec->flags = origflags; | |
b34976b6 | 9754 | return TRUE; |
b49e97c9 TS |
9755 | } |
9756 | ||
9757 | msec->flags = origflags; | |
9758 | } | |
9759 | ||
9760 | /* Fall back on the generic ELF find_nearest_line routine. */ | |
9761 | ||
9762 | return _bfd_elf_find_nearest_line (abfd, section, symbols, offset, | |
9763 | filename_ptr, functionname_ptr, | |
9764 | line_ptr); | |
9765 | } | |
4ab527b0 FF |
9766 | |
9767 | bfd_boolean | |
9768 | _bfd_mips_elf_find_inliner_info (bfd *abfd, | |
9769 | const char **filename_ptr, | |
9770 | const char **functionname_ptr, | |
9771 | unsigned int *line_ptr) | |
9772 | { | |
9773 | bfd_boolean found; | |
9774 | found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr, | |
9775 | functionname_ptr, line_ptr, | |
9776 | & elf_tdata (abfd)->dwarf2_find_line_info); | |
9777 | return found; | |
9778 | } | |
9779 | ||
b49e97c9 TS |
9780 | \f |
9781 | /* When are writing out the .options or .MIPS.options section, | |
9782 | remember the bytes we are writing out, so that we can install the | |
9783 | GP value in the section_processing routine. */ | |
9784 | ||
b34976b6 | 9785 | bfd_boolean |
9719ad41 RS |
9786 | _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section, |
9787 | const void *location, | |
9788 | file_ptr offset, bfd_size_type count) | |
b49e97c9 | 9789 | { |
cc2e31b9 | 9790 | if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name)) |
b49e97c9 TS |
9791 | { |
9792 | bfd_byte *c; | |
9793 | ||
9794 | if (elf_section_data (section) == NULL) | |
9795 | { | |
9796 | bfd_size_type amt = sizeof (struct bfd_elf_section_data); | |
9719ad41 | 9797 | section->used_by_bfd = bfd_zalloc (abfd, amt); |
b49e97c9 | 9798 | if (elf_section_data (section) == NULL) |
b34976b6 | 9799 | return FALSE; |
b49e97c9 | 9800 | } |
f0abc2a1 | 9801 | c = mips_elf_section_data (section)->u.tdata; |
b49e97c9 TS |
9802 | if (c == NULL) |
9803 | { | |
eea6121a | 9804 | c = bfd_zalloc (abfd, section->size); |
b49e97c9 | 9805 | if (c == NULL) |
b34976b6 | 9806 | return FALSE; |
f0abc2a1 | 9807 | mips_elf_section_data (section)->u.tdata = c; |
b49e97c9 TS |
9808 | } |
9809 | ||
9719ad41 | 9810 | memcpy (c + offset, location, count); |
b49e97c9 TS |
9811 | } |
9812 | ||
9813 | return _bfd_elf_set_section_contents (abfd, section, location, offset, | |
9814 | count); | |
9815 | } | |
9816 | ||
9817 | /* This is almost identical to bfd_generic_get_... except that some | |
9818 | MIPS relocations need to be handled specially. Sigh. */ | |
9819 | ||
9820 | bfd_byte * | |
9719ad41 RS |
9821 | _bfd_elf_mips_get_relocated_section_contents |
9822 | (bfd *abfd, | |
9823 | struct bfd_link_info *link_info, | |
9824 | struct bfd_link_order *link_order, | |
9825 | bfd_byte *data, | |
9826 | bfd_boolean relocatable, | |
9827 | asymbol **symbols) | |
b49e97c9 TS |
9828 | { |
9829 | /* Get enough memory to hold the stuff */ | |
9830 | bfd *input_bfd = link_order->u.indirect.section->owner; | |
9831 | asection *input_section = link_order->u.indirect.section; | |
eea6121a | 9832 | bfd_size_type sz; |
b49e97c9 TS |
9833 | |
9834 | long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section); | |
9835 | arelent **reloc_vector = NULL; | |
9836 | long reloc_count; | |
9837 | ||
9838 | if (reloc_size < 0) | |
9839 | goto error_return; | |
9840 | ||
9719ad41 | 9841 | reloc_vector = bfd_malloc (reloc_size); |
b49e97c9 TS |
9842 | if (reloc_vector == NULL && reloc_size != 0) |
9843 | goto error_return; | |
9844 | ||
9845 | /* read in the section */ | |
eea6121a AM |
9846 | sz = input_section->rawsize ? input_section->rawsize : input_section->size; |
9847 | if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz)) | |
b49e97c9 TS |
9848 | goto error_return; |
9849 | ||
b49e97c9 TS |
9850 | reloc_count = bfd_canonicalize_reloc (input_bfd, |
9851 | input_section, | |
9852 | reloc_vector, | |
9853 | symbols); | |
9854 | if (reloc_count < 0) | |
9855 | goto error_return; | |
9856 | ||
9857 | if (reloc_count > 0) | |
9858 | { | |
9859 | arelent **parent; | |
9860 | /* for mips */ | |
9861 | int gp_found; | |
9862 | bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */ | |
9863 | ||
9864 | { | |
9865 | struct bfd_hash_entry *h; | |
9866 | struct bfd_link_hash_entry *lh; | |
9867 | /* Skip all this stuff if we aren't mixing formats. */ | |
9868 | if (abfd && input_bfd | |
9869 | && abfd->xvec == input_bfd->xvec) | |
9870 | lh = 0; | |
9871 | else | |
9872 | { | |
b34976b6 | 9873 | h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE); |
b49e97c9 TS |
9874 | lh = (struct bfd_link_hash_entry *) h; |
9875 | } | |
9876 | lookup: | |
9877 | if (lh) | |
9878 | { | |
9879 | switch (lh->type) | |
9880 | { | |
9881 | case bfd_link_hash_undefined: | |
9882 | case bfd_link_hash_undefweak: | |
9883 | case bfd_link_hash_common: | |
9884 | gp_found = 0; | |
9885 | break; | |
9886 | case bfd_link_hash_defined: | |
9887 | case bfd_link_hash_defweak: | |
9888 | gp_found = 1; | |
9889 | gp = lh->u.def.value; | |
9890 | break; | |
9891 | case bfd_link_hash_indirect: | |
9892 | case bfd_link_hash_warning: | |
9893 | lh = lh->u.i.link; | |
9894 | /* @@FIXME ignoring warning for now */ | |
9895 | goto lookup; | |
9896 | case bfd_link_hash_new: | |
9897 | default: | |
9898 | abort (); | |
9899 | } | |
9900 | } | |
9901 | else | |
9902 | gp_found = 0; | |
9903 | } | |
9904 | /* end mips */ | |
9719ad41 | 9905 | for (parent = reloc_vector; *parent != NULL; parent++) |
b49e97c9 | 9906 | { |
9719ad41 | 9907 | char *error_message = NULL; |
b49e97c9 TS |
9908 | bfd_reloc_status_type r; |
9909 | ||
9910 | /* Specific to MIPS: Deal with relocation types that require | |
9911 | knowing the gp of the output bfd. */ | |
9912 | asymbol *sym = *(*parent)->sym_ptr_ptr; | |
b49e97c9 | 9913 | |
8236346f EC |
9914 | /* If we've managed to find the gp and have a special |
9915 | function for the relocation then go ahead, else default | |
9916 | to the generic handling. */ | |
9917 | if (gp_found | |
9918 | && (*parent)->howto->special_function | |
9919 | == _bfd_mips_elf32_gprel16_reloc) | |
9920 | r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent, | |
9921 | input_section, relocatable, | |
9922 | data, gp); | |
9923 | else | |
86324f90 | 9924 | r = bfd_perform_relocation (input_bfd, *parent, data, |
8236346f EC |
9925 | input_section, |
9926 | relocatable ? abfd : NULL, | |
9927 | &error_message); | |
b49e97c9 | 9928 | |
1049f94e | 9929 | if (relocatable) |
b49e97c9 TS |
9930 | { |
9931 | asection *os = input_section->output_section; | |
9932 | ||
9933 | /* A partial link, so keep the relocs */ | |
9934 | os->orelocation[os->reloc_count] = *parent; | |
9935 | os->reloc_count++; | |
9936 | } | |
9937 | ||
9938 | if (r != bfd_reloc_ok) | |
9939 | { | |
9940 | switch (r) | |
9941 | { | |
9942 | case bfd_reloc_undefined: | |
9943 | if (!((*link_info->callbacks->undefined_symbol) | |
9944 | (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr), | |
5e2b0d47 | 9945 | input_bfd, input_section, (*parent)->address, TRUE))) |
b49e97c9 TS |
9946 | goto error_return; |
9947 | break; | |
9948 | case bfd_reloc_dangerous: | |
9719ad41 | 9949 | BFD_ASSERT (error_message != NULL); |
b49e97c9 TS |
9950 | if (!((*link_info->callbacks->reloc_dangerous) |
9951 | (link_info, error_message, input_bfd, input_section, | |
9952 | (*parent)->address))) | |
9953 | goto error_return; | |
9954 | break; | |
9955 | case bfd_reloc_overflow: | |
9956 | if (!((*link_info->callbacks->reloc_overflow) | |
dfeffb9f L |
9957 | (link_info, NULL, |
9958 | bfd_asymbol_name (*(*parent)->sym_ptr_ptr), | |
b49e97c9 TS |
9959 | (*parent)->howto->name, (*parent)->addend, |
9960 | input_bfd, input_section, (*parent)->address))) | |
9961 | goto error_return; | |
9962 | break; | |
9963 | case bfd_reloc_outofrange: | |
9964 | default: | |
9965 | abort (); | |
9966 | break; | |
9967 | } | |
9968 | ||
9969 | } | |
9970 | } | |
9971 | } | |
9972 | if (reloc_vector != NULL) | |
9973 | free (reloc_vector); | |
9974 | return data; | |
9975 | ||
9976 | error_return: | |
9977 | if (reloc_vector != NULL) | |
9978 | free (reloc_vector); | |
9979 | return NULL; | |
9980 | } | |
9981 | \f | |
9982 | /* Create a MIPS ELF linker hash table. */ | |
9983 | ||
9984 | struct bfd_link_hash_table * | |
9719ad41 | 9985 | _bfd_mips_elf_link_hash_table_create (bfd *abfd) |
b49e97c9 TS |
9986 | { |
9987 | struct mips_elf_link_hash_table *ret; | |
9988 | bfd_size_type amt = sizeof (struct mips_elf_link_hash_table); | |
9989 | ||
9719ad41 RS |
9990 | ret = bfd_malloc (amt); |
9991 | if (ret == NULL) | |
b49e97c9 TS |
9992 | return NULL; |
9993 | ||
66eb6687 AM |
9994 | if (!_bfd_elf_link_hash_table_init (&ret->root, abfd, |
9995 | mips_elf_link_hash_newfunc, | |
9996 | sizeof (struct mips_elf_link_hash_entry))) | |
b49e97c9 | 9997 | { |
e2d34d7d | 9998 | free (ret); |
b49e97c9 TS |
9999 | return NULL; |
10000 | } | |
10001 | ||
10002 | #if 0 | |
10003 | /* We no longer use this. */ | |
10004 | for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++) | |
10005 | ret->dynsym_sec_strindex[i] = (bfd_size_type) -1; | |
10006 | #endif | |
10007 | ret->procedure_count = 0; | |
10008 | ret->compact_rel_size = 0; | |
b34976b6 | 10009 | ret->use_rld_obj_head = FALSE; |
b49e97c9 | 10010 | ret->rld_value = 0; |
b34976b6 | 10011 | ret->mips16_stubs_seen = FALSE; |
0a44bf69 RS |
10012 | ret->is_vxworks = FALSE; |
10013 | ret->srelbss = NULL; | |
10014 | ret->sdynbss = NULL; | |
10015 | ret->srelplt = NULL; | |
10016 | ret->srelplt2 = NULL; | |
10017 | ret->sgotplt = NULL; | |
10018 | ret->splt = NULL; | |
10019 | ret->plt_header_size = 0; | |
10020 | ret->plt_entry_size = 0; | |
5108fc1b | 10021 | ret->function_stub_size = 0; |
b49e97c9 TS |
10022 | |
10023 | return &ret->root.root; | |
10024 | } | |
0a44bf69 RS |
10025 | |
10026 | /* Likewise, but indicate that the target is VxWorks. */ | |
10027 | ||
10028 | struct bfd_link_hash_table * | |
10029 | _bfd_mips_vxworks_link_hash_table_create (bfd *abfd) | |
10030 | { | |
10031 | struct bfd_link_hash_table *ret; | |
10032 | ||
10033 | ret = _bfd_mips_elf_link_hash_table_create (abfd); | |
10034 | if (ret) | |
10035 | { | |
10036 | struct mips_elf_link_hash_table *htab; | |
10037 | ||
10038 | htab = (struct mips_elf_link_hash_table *) ret; | |
10039 | htab->is_vxworks = 1; | |
10040 | } | |
10041 | return ret; | |
10042 | } | |
b49e97c9 TS |
10043 | \f |
10044 | /* We need to use a special link routine to handle the .reginfo and | |
10045 | the .mdebug sections. We need to merge all instances of these | |
10046 | sections together, not write them all out sequentially. */ | |
10047 | ||
b34976b6 | 10048 | bfd_boolean |
9719ad41 | 10049 | _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info) |
b49e97c9 | 10050 | { |
b49e97c9 TS |
10051 | asection *o; |
10052 | struct bfd_link_order *p; | |
10053 | asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec; | |
10054 | asection *rtproc_sec; | |
10055 | Elf32_RegInfo reginfo; | |
10056 | struct ecoff_debug_info debug; | |
7a2a6943 NC |
10057 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
10058 | const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap; | |
b49e97c9 | 10059 | HDRR *symhdr = &debug.symbolic_header; |
9719ad41 | 10060 | void *mdebug_handle = NULL; |
b49e97c9 TS |
10061 | asection *s; |
10062 | EXTR esym; | |
10063 | unsigned int i; | |
10064 | bfd_size_type amt; | |
0a44bf69 | 10065 | struct mips_elf_link_hash_table *htab; |
b49e97c9 TS |
10066 | |
10067 | static const char * const secname[] = | |
10068 | { | |
10069 | ".text", ".init", ".fini", ".data", | |
10070 | ".rodata", ".sdata", ".sbss", ".bss" | |
10071 | }; | |
10072 | static const int sc[] = | |
10073 | { | |
10074 | scText, scInit, scFini, scData, | |
10075 | scRData, scSData, scSBss, scBss | |
10076 | }; | |
10077 | ||
b49e97c9 TS |
10078 | /* We'd carefully arranged the dynamic symbol indices, and then the |
10079 | generic size_dynamic_sections renumbered them out from under us. | |
10080 | Rather than trying somehow to prevent the renumbering, just do | |
10081 | the sort again. */ | |
0a44bf69 | 10082 | htab = mips_elf_hash_table (info); |
b49e97c9 TS |
10083 | if (elf_hash_table (info)->dynamic_sections_created) |
10084 | { | |
10085 | bfd *dynobj; | |
10086 | asection *got; | |
10087 | struct mips_got_info *g; | |
7a2a6943 | 10088 | bfd_size_type dynsecsymcount; |
b49e97c9 TS |
10089 | |
10090 | /* When we resort, we must tell mips_elf_sort_hash_table what | |
10091 | the lowest index it may use is. That's the number of section | |
10092 | symbols we're going to add. The generic ELF linker only | |
10093 | adds these symbols when building a shared object. Note that | |
10094 | we count the sections after (possibly) removing the .options | |
10095 | section above. */ | |
7a2a6943 | 10096 | |
5108fc1b | 10097 | dynsecsymcount = count_section_dynsyms (abfd, info); |
7a2a6943 | 10098 | if (! mips_elf_sort_hash_table (info, dynsecsymcount + 1)) |
b34976b6 | 10099 | return FALSE; |
b49e97c9 TS |
10100 | |
10101 | /* Make sure we didn't grow the global .got region. */ | |
10102 | dynobj = elf_hash_table (info)->dynobj; | |
f4416af6 | 10103 | got = mips_elf_got_section (dynobj, FALSE); |
f0abc2a1 | 10104 | g = mips_elf_section_data (got)->u.got_info; |
b49e97c9 TS |
10105 | |
10106 | if (g->global_gotsym != NULL) | |
10107 | BFD_ASSERT ((elf_hash_table (info)->dynsymcount | |
10108 | - g->global_gotsym->dynindx) | |
10109 | <= g->global_gotno); | |
10110 | } | |
10111 | ||
b49e97c9 TS |
10112 | /* Get a value for the GP register. */ |
10113 | if (elf_gp (abfd) == 0) | |
10114 | { | |
10115 | struct bfd_link_hash_entry *h; | |
10116 | ||
b34976b6 | 10117 | h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE); |
9719ad41 | 10118 | if (h != NULL && h->type == bfd_link_hash_defined) |
b49e97c9 TS |
10119 | elf_gp (abfd) = (h->u.def.value |
10120 | + h->u.def.section->output_section->vma | |
10121 | + h->u.def.section->output_offset); | |
0a44bf69 RS |
10122 | else if (htab->is_vxworks |
10123 | && (h = bfd_link_hash_lookup (info->hash, | |
10124 | "_GLOBAL_OFFSET_TABLE_", | |
10125 | FALSE, FALSE, TRUE)) | |
10126 | && h->type == bfd_link_hash_defined) | |
10127 | elf_gp (abfd) = (h->u.def.section->output_section->vma | |
10128 | + h->u.def.section->output_offset | |
10129 | + h->u.def.value); | |
1049f94e | 10130 | else if (info->relocatable) |
b49e97c9 TS |
10131 | { |
10132 | bfd_vma lo = MINUS_ONE; | |
10133 | ||
10134 | /* Find the GP-relative section with the lowest offset. */ | |
9719ad41 | 10135 | for (o = abfd->sections; o != NULL; o = o->next) |
b49e97c9 TS |
10136 | if (o->vma < lo |
10137 | && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL)) | |
10138 | lo = o->vma; | |
10139 | ||
10140 | /* And calculate GP relative to that. */ | |
0a44bf69 | 10141 | elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info); |
b49e97c9 TS |
10142 | } |
10143 | else | |
10144 | { | |
10145 | /* If the relocate_section function needs to do a reloc | |
10146 | involving the GP value, it should make a reloc_dangerous | |
10147 | callback to warn that GP is not defined. */ | |
10148 | } | |
10149 | } | |
10150 | ||
10151 | /* Go through the sections and collect the .reginfo and .mdebug | |
10152 | information. */ | |
10153 | reginfo_sec = NULL; | |
10154 | mdebug_sec = NULL; | |
10155 | gptab_data_sec = NULL; | |
10156 | gptab_bss_sec = NULL; | |
9719ad41 | 10157 | for (o = abfd->sections; o != NULL; o = o->next) |
b49e97c9 TS |
10158 | { |
10159 | if (strcmp (o->name, ".reginfo") == 0) | |
10160 | { | |
10161 | memset (®info, 0, sizeof reginfo); | |
10162 | ||
10163 | /* We have found the .reginfo section in the output file. | |
10164 | Look through all the link_orders comprising it and merge | |
10165 | the information together. */ | |
8423293d | 10166 | for (p = o->map_head.link_order; p != NULL; p = p->next) |
b49e97c9 TS |
10167 | { |
10168 | asection *input_section; | |
10169 | bfd *input_bfd; | |
10170 | Elf32_External_RegInfo ext; | |
10171 | Elf32_RegInfo sub; | |
10172 | ||
10173 | if (p->type != bfd_indirect_link_order) | |
10174 | { | |
10175 | if (p->type == bfd_data_link_order) | |
10176 | continue; | |
10177 | abort (); | |
10178 | } | |
10179 | ||
10180 | input_section = p->u.indirect.section; | |
10181 | input_bfd = input_section->owner; | |
10182 | ||
b49e97c9 | 10183 | if (! bfd_get_section_contents (input_bfd, input_section, |
9719ad41 | 10184 | &ext, 0, sizeof ext)) |
b34976b6 | 10185 | return FALSE; |
b49e97c9 TS |
10186 | |
10187 | bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub); | |
10188 | ||
10189 | reginfo.ri_gprmask |= sub.ri_gprmask; | |
10190 | reginfo.ri_cprmask[0] |= sub.ri_cprmask[0]; | |
10191 | reginfo.ri_cprmask[1] |= sub.ri_cprmask[1]; | |
10192 | reginfo.ri_cprmask[2] |= sub.ri_cprmask[2]; | |
10193 | reginfo.ri_cprmask[3] |= sub.ri_cprmask[3]; | |
10194 | ||
10195 | /* ri_gp_value is set by the function | |
10196 | mips_elf32_section_processing when the section is | |
10197 | finally written out. */ | |
10198 | ||
10199 | /* Hack: reset the SEC_HAS_CONTENTS flag so that | |
10200 | elf_link_input_bfd ignores this section. */ | |
10201 | input_section->flags &= ~SEC_HAS_CONTENTS; | |
10202 | } | |
10203 | ||
10204 | /* Size has been set in _bfd_mips_elf_always_size_sections. */ | |
eea6121a | 10205 | BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo)); |
b49e97c9 TS |
10206 | |
10207 | /* Skip this section later on (I don't think this currently | |
10208 | matters, but someday it might). */ | |
8423293d | 10209 | o->map_head.link_order = NULL; |
b49e97c9 TS |
10210 | |
10211 | reginfo_sec = o; | |
10212 | } | |
10213 | ||
10214 | if (strcmp (o->name, ".mdebug") == 0) | |
10215 | { | |
10216 | struct extsym_info einfo; | |
10217 | bfd_vma last; | |
10218 | ||
10219 | /* We have found the .mdebug section in the output file. | |
10220 | Look through all the link_orders comprising it and merge | |
10221 | the information together. */ | |
10222 | symhdr->magic = swap->sym_magic; | |
10223 | /* FIXME: What should the version stamp be? */ | |
10224 | symhdr->vstamp = 0; | |
10225 | symhdr->ilineMax = 0; | |
10226 | symhdr->cbLine = 0; | |
10227 | symhdr->idnMax = 0; | |
10228 | symhdr->ipdMax = 0; | |
10229 | symhdr->isymMax = 0; | |
10230 | symhdr->ioptMax = 0; | |
10231 | symhdr->iauxMax = 0; | |
10232 | symhdr->issMax = 0; | |
10233 | symhdr->issExtMax = 0; | |
10234 | symhdr->ifdMax = 0; | |
10235 | symhdr->crfd = 0; | |
10236 | symhdr->iextMax = 0; | |
10237 | ||
10238 | /* We accumulate the debugging information itself in the | |
10239 | debug_info structure. */ | |
10240 | debug.line = NULL; | |
10241 | debug.external_dnr = NULL; | |
10242 | debug.external_pdr = NULL; | |
10243 | debug.external_sym = NULL; | |
10244 | debug.external_opt = NULL; | |
10245 | debug.external_aux = NULL; | |
10246 | debug.ss = NULL; | |
10247 | debug.ssext = debug.ssext_end = NULL; | |
10248 | debug.external_fdr = NULL; | |
10249 | debug.external_rfd = NULL; | |
10250 | debug.external_ext = debug.external_ext_end = NULL; | |
10251 | ||
10252 | mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info); | |
9719ad41 | 10253 | if (mdebug_handle == NULL) |
b34976b6 | 10254 | return FALSE; |
b49e97c9 TS |
10255 | |
10256 | esym.jmptbl = 0; | |
10257 | esym.cobol_main = 0; | |
10258 | esym.weakext = 0; | |
10259 | esym.reserved = 0; | |
10260 | esym.ifd = ifdNil; | |
10261 | esym.asym.iss = issNil; | |
10262 | esym.asym.st = stLocal; | |
10263 | esym.asym.reserved = 0; | |
10264 | esym.asym.index = indexNil; | |
10265 | last = 0; | |
10266 | for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++) | |
10267 | { | |
10268 | esym.asym.sc = sc[i]; | |
10269 | s = bfd_get_section_by_name (abfd, secname[i]); | |
10270 | if (s != NULL) | |
10271 | { | |
10272 | esym.asym.value = s->vma; | |
eea6121a | 10273 | last = s->vma + s->size; |
b49e97c9 TS |
10274 | } |
10275 | else | |
10276 | esym.asym.value = last; | |
10277 | if (!bfd_ecoff_debug_one_external (abfd, &debug, swap, | |
10278 | secname[i], &esym)) | |
b34976b6 | 10279 | return FALSE; |
b49e97c9 TS |
10280 | } |
10281 | ||
8423293d | 10282 | for (p = o->map_head.link_order; p != NULL; p = p->next) |
b49e97c9 TS |
10283 | { |
10284 | asection *input_section; | |
10285 | bfd *input_bfd; | |
10286 | const struct ecoff_debug_swap *input_swap; | |
10287 | struct ecoff_debug_info input_debug; | |
10288 | char *eraw_src; | |
10289 | char *eraw_end; | |
10290 | ||
10291 | if (p->type != bfd_indirect_link_order) | |
10292 | { | |
10293 | if (p->type == bfd_data_link_order) | |
10294 | continue; | |
10295 | abort (); | |
10296 | } | |
10297 | ||
10298 | input_section = p->u.indirect.section; | |
10299 | input_bfd = input_section->owner; | |
10300 | ||
10301 | if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour | |
10302 | || (get_elf_backend_data (input_bfd) | |
10303 | ->elf_backend_ecoff_debug_swap) == NULL) | |
10304 | { | |
10305 | /* I don't know what a non MIPS ELF bfd would be | |
10306 | doing with a .mdebug section, but I don't really | |
10307 | want to deal with it. */ | |
10308 | continue; | |
10309 | } | |
10310 | ||
10311 | input_swap = (get_elf_backend_data (input_bfd) | |
10312 | ->elf_backend_ecoff_debug_swap); | |
10313 | ||
eea6121a | 10314 | BFD_ASSERT (p->size == input_section->size); |
b49e97c9 TS |
10315 | |
10316 | /* The ECOFF linking code expects that we have already | |
10317 | read in the debugging information and set up an | |
10318 | ecoff_debug_info structure, so we do that now. */ | |
10319 | if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section, | |
10320 | &input_debug)) | |
b34976b6 | 10321 | return FALSE; |
b49e97c9 TS |
10322 | |
10323 | if (! (bfd_ecoff_debug_accumulate | |
10324 | (mdebug_handle, abfd, &debug, swap, input_bfd, | |
10325 | &input_debug, input_swap, info))) | |
b34976b6 | 10326 | return FALSE; |
b49e97c9 TS |
10327 | |
10328 | /* Loop through the external symbols. For each one with | |
10329 | interesting information, try to find the symbol in | |
10330 | the linker global hash table and save the information | |
10331 | for the output external symbols. */ | |
10332 | eraw_src = input_debug.external_ext; | |
10333 | eraw_end = (eraw_src | |
10334 | + (input_debug.symbolic_header.iextMax | |
10335 | * input_swap->external_ext_size)); | |
10336 | for (; | |
10337 | eraw_src < eraw_end; | |
10338 | eraw_src += input_swap->external_ext_size) | |
10339 | { | |
10340 | EXTR ext; | |
10341 | const char *name; | |
10342 | struct mips_elf_link_hash_entry *h; | |
10343 | ||
9719ad41 | 10344 | (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext); |
b49e97c9 TS |
10345 | if (ext.asym.sc == scNil |
10346 | || ext.asym.sc == scUndefined | |
10347 | || ext.asym.sc == scSUndefined) | |
10348 | continue; | |
10349 | ||
10350 | name = input_debug.ssext + ext.asym.iss; | |
10351 | h = mips_elf_link_hash_lookup (mips_elf_hash_table (info), | |
b34976b6 | 10352 | name, FALSE, FALSE, TRUE); |
b49e97c9 TS |
10353 | if (h == NULL || h->esym.ifd != -2) |
10354 | continue; | |
10355 | ||
10356 | if (ext.ifd != -1) | |
10357 | { | |
10358 | BFD_ASSERT (ext.ifd | |
10359 | < input_debug.symbolic_header.ifdMax); | |
10360 | ext.ifd = input_debug.ifdmap[ext.ifd]; | |
10361 | } | |
10362 | ||
10363 | h->esym = ext; | |
10364 | } | |
10365 | ||
10366 | /* Free up the information we just read. */ | |
10367 | free (input_debug.line); | |
10368 | free (input_debug.external_dnr); | |
10369 | free (input_debug.external_pdr); | |
10370 | free (input_debug.external_sym); | |
10371 | free (input_debug.external_opt); | |
10372 | free (input_debug.external_aux); | |
10373 | free (input_debug.ss); | |
10374 | free (input_debug.ssext); | |
10375 | free (input_debug.external_fdr); | |
10376 | free (input_debug.external_rfd); | |
10377 | free (input_debug.external_ext); | |
10378 | ||
10379 | /* Hack: reset the SEC_HAS_CONTENTS flag so that | |
10380 | elf_link_input_bfd ignores this section. */ | |
10381 | input_section->flags &= ~SEC_HAS_CONTENTS; | |
10382 | } | |
10383 | ||
10384 | if (SGI_COMPAT (abfd) && info->shared) | |
10385 | { | |
10386 | /* Create .rtproc section. */ | |
10387 | rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc"); | |
10388 | if (rtproc_sec == NULL) | |
10389 | { | |
10390 | flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | |
10391 | | SEC_LINKER_CREATED | SEC_READONLY); | |
10392 | ||
3496cb2a L |
10393 | rtproc_sec = bfd_make_section_with_flags (abfd, |
10394 | ".rtproc", | |
10395 | flags); | |
b49e97c9 | 10396 | if (rtproc_sec == NULL |
b49e97c9 | 10397 | || ! bfd_set_section_alignment (abfd, rtproc_sec, 4)) |
b34976b6 | 10398 | return FALSE; |
b49e97c9 TS |
10399 | } |
10400 | ||
10401 | if (! mips_elf_create_procedure_table (mdebug_handle, abfd, | |
10402 | info, rtproc_sec, | |
10403 | &debug)) | |
b34976b6 | 10404 | return FALSE; |
b49e97c9 TS |
10405 | } |
10406 | ||
10407 | /* Build the external symbol information. */ | |
10408 | einfo.abfd = abfd; | |
10409 | einfo.info = info; | |
10410 | einfo.debug = &debug; | |
10411 | einfo.swap = swap; | |
b34976b6 | 10412 | einfo.failed = FALSE; |
b49e97c9 | 10413 | mips_elf_link_hash_traverse (mips_elf_hash_table (info), |
9719ad41 | 10414 | mips_elf_output_extsym, &einfo); |
b49e97c9 | 10415 | if (einfo.failed) |
b34976b6 | 10416 | return FALSE; |
b49e97c9 TS |
10417 | |
10418 | /* Set the size of the .mdebug section. */ | |
eea6121a | 10419 | o->size = bfd_ecoff_debug_size (abfd, &debug, swap); |
b49e97c9 TS |
10420 | |
10421 | /* Skip this section later on (I don't think this currently | |
10422 | matters, but someday it might). */ | |
8423293d | 10423 | o->map_head.link_order = NULL; |
b49e97c9 TS |
10424 | |
10425 | mdebug_sec = o; | |
10426 | } | |
10427 | ||
0112cd26 | 10428 | if (CONST_STRNEQ (o->name, ".gptab.")) |
b49e97c9 TS |
10429 | { |
10430 | const char *subname; | |
10431 | unsigned int c; | |
10432 | Elf32_gptab *tab; | |
10433 | Elf32_External_gptab *ext_tab; | |
10434 | unsigned int j; | |
10435 | ||
10436 | /* The .gptab.sdata and .gptab.sbss sections hold | |
10437 | information describing how the small data area would | |
10438 | change depending upon the -G switch. These sections | |
10439 | not used in executables files. */ | |
1049f94e | 10440 | if (! info->relocatable) |
b49e97c9 | 10441 | { |
8423293d | 10442 | for (p = o->map_head.link_order; p != NULL; p = p->next) |
b49e97c9 TS |
10443 | { |
10444 | asection *input_section; | |
10445 | ||
10446 | if (p->type != bfd_indirect_link_order) | |
10447 | { | |
10448 | if (p->type == bfd_data_link_order) | |
10449 | continue; | |
10450 | abort (); | |
10451 | } | |
10452 | ||
10453 | input_section = p->u.indirect.section; | |
10454 | ||
10455 | /* Hack: reset the SEC_HAS_CONTENTS flag so that | |
10456 | elf_link_input_bfd ignores this section. */ | |
10457 | input_section->flags &= ~SEC_HAS_CONTENTS; | |
10458 | } | |
10459 | ||
10460 | /* Skip this section later on (I don't think this | |
10461 | currently matters, but someday it might). */ | |
8423293d | 10462 | o->map_head.link_order = NULL; |
b49e97c9 TS |
10463 | |
10464 | /* Really remove the section. */ | |
5daa8fe7 | 10465 | bfd_section_list_remove (abfd, o); |
b49e97c9 TS |
10466 | --abfd->section_count; |
10467 | ||
10468 | continue; | |
10469 | } | |
10470 | ||
10471 | /* There is one gptab for initialized data, and one for | |
10472 | uninitialized data. */ | |
10473 | if (strcmp (o->name, ".gptab.sdata") == 0) | |
10474 | gptab_data_sec = o; | |
10475 | else if (strcmp (o->name, ".gptab.sbss") == 0) | |
10476 | gptab_bss_sec = o; | |
10477 | else | |
10478 | { | |
10479 | (*_bfd_error_handler) | |
10480 | (_("%s: illegal section name `%s'"), | |
10481 | bfd_get_filename (abfd), o->name); | |
10482 | bfd_set_error (bfd_error_nonrepresentable_section); | |
b34976b6 | 10483 | return FALSE; |
b49e97c9 TS |
10484 | } |
10485 | ||
10486 | /* The linker script always combines .gptab.data and | |
10487 | .gptab.sdata into .gptab.sdata, and likewise for | |
10488 | .gptab.bss and .gptab.sbss. It is possible that there is | |
10489 | no .sdata or .sbss section in the output file, in which | |
10490 | case we must change the name of the output section. */ | |
10491 | subname = o->name + sizeof ".gptab" - 1; | |
10492 | if (bfd_get_section_by_name (abfd, subname) == NULL) | |
10493 | { | |
10494 | if (o == gptab_data_sec) | |
10495 | o->name = ".gptab.data"; | |
10496 | else | |
10497 | o->name = ".gptab.bss"; | |
10498 | subname = o->name + sizeof ".gptab" - 1; | |
10499 | BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL); | |
10500 | } | |
10501 | ||
10502 | /* Set up the first entry. */ | |
10503 | c = 1; | |
10504 | amt = c * sizeof (Elf32_gptab); | |
9719ad41 | 10505 | tab = bfd_malloc (amt); |
b49e97c9 | 10506 | if (tab == NULL) |
b34976b6 | 10507 | return FALSE; |
b49e97c9 TS |
10508 | tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd); |
10509 | tab[0].gt_header.gt_unused = 0; | |
10510 | ||
10511 | /* Combine the input sections. */ | |
8423293d | 10512 | for (p = o->map_head.link_order; p != NULL; p = p->next) |
b49e97c9 TS |
10513 | { |
10514 | asection *input_section; | |
10515 | bfd *input_bfd; | |
10516 | bfd_size_type size; | |
10517 | unsigned long last; | |
10518 | bfd_size_type gpentry; | |
10519 | ||
10520 | if (p->type != bfd_indirect_link_order) | |
10521 | { | |
10522 | if (p->type == bfd_data_link_order) | |
10523 | continue; | |
10524 | abort (); | |
10525 | } | |
10526 | ||
10527 | input_section = p->u.indirect.section; | |
10528 | input_bfd = input_section->owner; | |
10529 | ||
10530 | /* Combine the gptab entries for this input section one | |
10531 | by one. We know that the input gptab entries are | |
10532 | sorted by ascending -G value. */ | |
eea6121a | 10533 | size = input_section->size; |
b49e97c9 TS |
10534 | last = 0; |
10535 | for (gpentry = sizeof (Elf32_External_gptab); | |
10536 | gpentry < size; | |
10537 | gpentry += sizeof (Elf32_External_gptab)) | |
10538 | { | |
10539 | Elf32_External_gptab ext_gptab; | |
10540 | Elf32_gptab int_gptab; | |
10541 | unsigned long val; | |
10542 | unsigned long add; | |
b34976b6 | 10543 | bfd_boolean exact; |
b49e97c9 TS |
10544 | unsigned int look; |
10545 | ||
10546 | if (! (bfd_get_section_contents | |
9719ad41 RS |
10547 | (input_bfd, input_section, &ext_gptab, gpentry, |
10548 | sizeof (Elf32_External_gptab)))) | |
b49e97c9 TS |
10549 | { |
10550 | free (tab); | |
b34976b6 | 10551 | return FALSE; |
b49e97c9 TS |
10552 | } |
10553 | ||
10554 | bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab, | |
10555 | &int_gptab); | |
10556 | val = int_gptab.gt_entry.gt_g_value; | |
10557 | add = int_gptab.gt_entry.gt_bytes - last; | |
10558 | ||
b34976b6 | 10559 | exact = FALSE; |
b49e97c9 TS |
10560 | for (look = 1; look < c; look++) |
10561 | { | |
10562 | if (tab[look].gt_entry.gt_g_value >= val) | |
10563 | tab[look].gt_entry.gt_bytes += add; | |
10564 | ||
10565 | if (tab[look].gt_entry.gt_g_value == val) | |
b34976b6 | 10566 | exact = TRUE; |
b49e97c9 TS |
10567 | } |
10568 | ||
10569 | if (! exact) | |
10570 | { | |
10571 | Elf32_gptab *new_tab; | |
10572 | unsigned int max; | |
10573 | ||
10574 | /* We need a new table entry. */ | |
10575 | amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab); | |
9719ad41 | 10576 | new_tab = bfd_realloc (tab, amt); |
b49e97c9 TS |
10577 | if (new_tab == NULL) |
10578 | { | |
10579 | free (tab); | |
b34976b6 | 10580 | return FALSE; |
b49e97c9 TS |
10581 | } |
10582 | tab = new_tab; | |
10583 | tab[c].gt_entry.gt_g_value = val; | |
10584 | tab[c].gt_entry.gt_bytes = add; | |
10585 | ||
10586 | /* Merge in the size for the next smallest -G | |
10587 | value, since that will be implied by this new | |
10588 | value. */ | |
10589 | max = 0; | |
10590 | for (look = 1; look < c; look++) | |
10591 | { | |
10592 | if (tab[look].gt_entry.gt_g_value < val | |
10593 | && (max == 0 | |
10594 | || (tab[look].gt_entry.gt_g_value | |
10595 | > tab[max].gt_entry.gt_g_value))) | |
10596 | max = look; | |
10597 | } | |
10598 | if (max != 0) | |
10599 | tab[c].gt_entry.gt_bytes += | |
10600 | tab[max].gt_entry.gt_bytes; | |
10601 | ||
10602 | ++c; | |
10603 | } | |
10604 | ||
10605 | last = int_gptab.gt_entry.gt_bytes; | |
10606 | } | |
10607 | ||
10608 | /* Hack: reset the SEC_HAS_CONTENTS flag so that | |
10609 | elf_link_input_bfd ignores this section. */ | |
10610 | input_section->flags &= ~SEC_HAS_CONTENTS; | |
10611 | } | |
10612 | ||
10613 | /* The table must be sorted by -G value. */ | |
10614 | if (c > 2) | |
10615 | qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare); | |
10616 | ||
10617 | /* Swap out the table. */ | |
10618 | amt = (bfd_size_type) c * sizeof (Elf32_External_gptab); | |
9719ad41 | 10619 | ext_tab = bfd_alloc (abfd, amt); |
b49e97c9 TS |
10620 | if (ext_tab == NULL) |
10621 | { | |
10622 | free (tab); | |
b34976b6 | 10623 | return FALSE; |
b49e97c9 TS |
10624 | } |
10625 | ||
10626 | for (j = 0; j < c; j++) | |
10627 | bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j); | |
10628 | free (tab); | |
10629 | ||
eea6121a | 10630 | o->size = c * sizeof (Elf32_External_gptab); |
b49e97c9 TS |
10631 | o->contents = (bfd_byte *) ext_tab; |
10632 | ||
10633 | /* Skip this section later on (I don't think this currently | |
10634 | matters, but someday it might). */ | |
8423293d | 10635 | o->map_head.link_order = NULL; |
b49e97c9 TS |
10636 | } |
10637 | } | |
10638 | ||
10639 | /* Invoke the regular ELF backend linker to do all the work. */ | |
c152c796 | 10640 | if (!bfd_elf_final_link (abfd, info)) |
b34976b6 | 10641 | return FALSE; |
b49e97c9 TS |
10642 | |
10643 | /* Now write out the computed sections. */ | |
10644 | ||
9719ad41 | 10645 | if (reginfo_sec != NULL) |
b49e97c9 TS |
10646 | { |
10647 | Elf32_External_RegInfo ext; | |
10648 | ||
10649 | bfd_mips_elf32_swap_reginfo_out (abfd, ®info, &ext); | |
9719ad41 | 10650 | if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext)) |
b34976b6 | 10651 | return FALSE; |
b49e97c9 TS |
10652 | } |
10653 | ||
9719ad41 | 10654 | if (mdebug_sec != NULL) |
b49e97c9 TS |
10655 | { |
10656 | BFD_ASSERT (abfd->output_has_begun); | |
10657 | if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug, | |
10658 | swap, info, | |
10659 | mdebug_sec->filepos)) | |
b34976b6 | 10660 | return FALSE; |
b49e97c9 TS |
10661 | |
10662 | bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info); | |
10663 | } | |
10664 | ||
9719ad41 | 10665 | if (gptab_data_sec != NULL) |
b49e97c9 TS |
10666 | { |
10667 | if (! bfd_set_section_contents (abfd, gptab_data_sec, | |
10668 | gptab_data_sec->contents, | |
eea6121a | 10669 | 0, gptab_data_sec->size)) |
b34976b6 | 10670 | return FALSE; |
b49e97c9 TS |
10671 | } |
10672 | ||
9719ad41 | 10673 | if (gptab_bss_sec != NULL) |
b49e97c9 TS |
10674 | { |
10675 | if (! bfd_set_section_contents (abfd, gptab_bss_sec, | |
10676 | gptab_bss_sec->contents, | |
eea6121a | 10677 | 0, gptab_bss_sec->size)) |
b34976b6 | 10678 | return FALSE; |
b49e97c9 TS |
10679 | } |
10680 | ||
10681 | if (SGI_COMPAT (abfd)) | |
10682 | { | |
10683 | rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc"); | |
10684 | if (rtproc_sec != NULL) | |
10685 | { | |
10686 | if (! bfd_set_section_contents (abfd, rtproc_sec, | |
10687 | rtproc_sec->contents, | |
eea6121a | 10688 | 0, rtproc_sec->size)) |
b34976b6 | 10689 | return FALSE; |
b49e97c9 TS |
10690 | } |
10691 | } | |
10692 | ||
b34976b6 | 10693 | return TRUE; |
b49e97c9 TS |
10694 | } |
10695 | \f | |
64543e1a RS |
10696 | /* Structure for saying that BFD machine EXTENSION extends BASE. */ |
10697 | ||
10698 | struct mips_mach_extension { | |
10699 | unsigned long extension, base; | |
10700 | }; | |
10701 | ||
10702 | ||
10703 | /* An array describing how BFD machines relate to one another. The entries | |
10704 | are ordered topologically with MIPS I extensions listed last. */ | |
10705 | ||
10706 | static const struct mips_mach_extension mips_mach_extensions[] = { | |
10707 | /* MIPS64 extensions. */ | |
5f74bc13 | 10708 | { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 }, |
64543e1a RS |
10709 | { bfd_mach_mips_sb1, bfd_mach_mipsisa64 }, |
10710 | ||
10711 | /* MIPS V extensions. */ | |
10712 | { bfd_mach_mipsisa64, bfd_mach_mips5 }, | |
10713 | ||
10714 | /* R10000 extensions. */ | |
10715 | { bfd_mach_mips12000, bfd_mach_mips10000 }, | |
10716 | ||
10717 | /* R5000 extensions. Note: the vr5500 ISA is an extension of the core | |
10718 | vr5400 ISA, but doesn't include the multimedia stuff. It seems | |
10719 | better to allow vr5400 and vr5500 code to be merged anyway, since | |
10720 | many libraries will just use the core ISA. Perhaps we could add | |
10721 | some sort of ASE flag if this ever proves a problem. */ | |
10722 | { bfd_mach_mips5500, bfd_mach_mips5400 }, | |
10723 | { bfd_mach_mips5400, bfd_mach_mips5000 }, | |
10724 | ||
10725 | /* MIPS IV extensions. */ | |
10726 | { bfd_mach_mips5, bfd_mach_mips8000 }, | |
10727 | { bfd_mach_mips10000, bfd_mach_mips8000 }, | |
10728 | { bfd_mach_mips5000, bfd_mach_mips8000 }, | |
5a7ea749 | 10729 | { bfd_mach_mips7000, bfd_mach_mips8000 }, |
0d2e43ed | 10730 | { bfd_mach_mips9000, bfd_mach_mips8000 }, |
64543e1a RS |
10731 | |
10732 | /* VR4100 extensions. */ | |
10733 | { bfd_mach_mips4120, bfd_mach_mips4100 }, | |
10734 | { bfd_mach_mips4111, bfd_mach_mips4100 }, | |
10735 | ||
10736 | /* MIPS III extensions. */ | |
10737 | { bfd_mach_mips8000, bfd_mach_mips4000 }, | |
10738 | { bfd_mach_mips4650, bfd_mach_mips4000 }, | |
10739 | { bfd_mach_mips4600, bfd_mach_mips4000 }, | |
10740 | { bfd_mach_mips4400, bfd_mach_mips4000 }, | |
10741 | { bfd_mach_mips4300, bfd_mach_mips4000 }, | |
10742 | { bfd_mach_mips4100, bfd_mach_mips4000 }, | |
10743 | { bfd_mach_mips4010, bfd_mach_mips4000 }, | |
10744 | ||
10745 | /* MIPS32 extensions. */ | |
10746 | { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 }, | |
10747 | ||
10748 | /* MIPS II extensions. */ | |
10749 | { bfd_mach_mips4000, bfd_mach_mips6000 }, | |
10750 | { bfd_mach_mipsisa32, bfd_mach_mips6000 }, | |
10751 | ||
10752 | /* MIPS I extensions. */ | |
10753 | { bfd_mach_mips6000, bfd_mach_mips3000 }, | |
10754 | { bfd_mach_mips3900, bfd_mach_mips3000 } | |
10755 | }; | |
10756 | ||
10757 | ||
10758 | /* Return true if bfd machine EXTENSION is an extension of machine BASE. */ | |
10759 | ||
10760 | static bfd_boolean | |
9719ad41 | 10761 | mips_mach_extends_p (unsigned long base, unsigned long extension) |
64543e1a RS |
10762 | { |
10763 | size_t i; | |
10764 | ||
c5211a54 RS |
10765 | if (extension == base) |
10766 | return TRUE; | |
10767 | ||
10768 | if (base == bfd_mach_mipsisa32 | |
10769 | && mips_mach_extends_p (bfd_mach_mipsisa64, extension)) | |
10770 | return TRUE; | |
10771 | ||
10772 | if (base == bfd_mach_mipsisa32r2 | |
10773 | && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension)) | |
10774 | return TRUE; | |
10775 | ||
10776 | for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++) | |
64543e1a | 10777 | if (extension == mips_mach_extensions[i].extension) |
c5211a54 RS |
10778 | { |
10779 | extension = mips_mach_extensions[i].base; | |
10780 | if (extension == base) | |
10781 | return TRUE; | |
10782 | } | |
64543e1a | 10783 | |
c5211a54 | 10784 | return FALSE; |
64543e1a RS |
10785 | } |
10786 | ||
10787 | ||
10788 | /* Return true if the given ELF header flags describe a 32-bit binary. */ | |
00707a0e | 10789 | |
b34976b6 | 10790 | static bfd_boolean |
9719ad41 | 10791 | mips_32bit_flags_p (flagword flags) |
00707a0e | 10792 | { |
64543e1a RS |
10793 | return ((flags & EF_MIPS_32BITMODE) != 0 |
10794 | || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32 | |
10795 | || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32 | |
10796 | || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1 | |
10797 | || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2 | |
10798 | || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32 | |
10799 | || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2); | |
00707a0e RS |
10800 | } |
10801 | ||
64543e1a | 10802 | |
b49e97c9 TS |
10803 | /* Merge backend specific data from an object file to the output |
10804 | object file when linking. */ | |
10805 | ||
b34976b6 | 10806 | bfd_boolean |
9719ad41 | 10807 | _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd) |
b49e97c9 TS |
10808 | { |
10809 | flagword old_flags; | |
10810 | flagword new_flags; | |
b34976b6 AM |
10811 | bfd_boolean ok; |
10812 | bfd_boolean null_input_bfd = TRUE; | |
b49e97c9 TS |
10813 | asection *sec; |
10814 | ||
10815 | /* Check if we have the same endianess */ | |
82e51918 | 10816 | if (! _bfd_generic_verify_endian_match (ibfd, obfd)) |
aa701218 AO |
10817 | { |
10818 | (*_bfd_error_handler) | |
d003868e AM |
10819 | (_("%B: endianness incompatible with that of the selected emulation"), |
10820 | ibfd); | |
aa701218 AO |
10821 | return FALSE; |
10822 | } | |
b49e97c9 TS |
10823 | |
10824 | if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour | |
10825 | || bfd_get_flavour (obfd) != bfd_target_elf_flavour) | |
b34976b6 | 10826 | return TRUE; |
b49e97c9 | 10827 | |
aa701218 AO |
10828 | if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0) |
10829 | { | |
10830 | (*_bfd_error_handler) | |
d003868e AM |
10831 | (_("%B: ABI is incompatible with that of the selected emulation"), |
10832 | ibfd); | |
aa701218 AO |
10833 | return FALSE; |
10834 | } | |
10835 | ||
b49e97c9 TS |
10836 | new_flags = elf_elfheader (ibfd)->e_flags; |
10837 | elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER; | |
10838 | old_flags = elf_elfheader (obfd)->e_flags; | |
10839 | ||
10840 | if (! elf_flags_init (obfd)) | |
10841 | { | |
b34976b6 | 10842 | elf_flags_init (obfd) = TRUE; |
b49e97c9 TS |
10843 | elf_elfheader (obfd)->e_flags = new_flags; |
10844 | elf_elfheader (obfd)->e_ident[EI_CLASS] | |
10845 | = elf_elfheader (ibfd)->e_ident[EI_CLASS]; | |
10846 | ||
10847 | if (bfd_get_arch (obfd) == bfd_get_arch (ibfd) | |
2907b861 TS |
10848 | && (bfd_get_arch_info (obfd)->the_default |
10849 | || mips_mach_extends_p (bfd_get_mach (obfd), | |
10850 | bfd_get_mach (ibfd)))) | |
b49e97c9 TS |
10851 | { |
10852 | if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), | |
10853 | bfd_get_mach (ibfd))) | |
b34976b6 | 10854 | return FALSE; |
b49e97c9 TS |
10855 | } |
10856 | ||
b34976b6 | 10857 | return TRUE; |
b49e97c9 TS |
10858 | } |
10859 | ||
10860 | /* Check flag compatibility. */ | |
10861 | ||
10862 | new_flags &= ~EF_MIPS_NOREORDER; | |
10863 | old_flags &= ~EF_MIPS_NOREORDER; | |
10864 | ||
f4416af6 AO |
10865 | /* Some IRIX 6 BSD-compatibility objects have this bit set. It |
10866 | doesn't seem to matter. */ | |
10867 | new_flags &= ~EF_MIPS_XGOT; | |
10868 | old_flags &= ~EF_MIPS_XGOT; | |
10869 | ||
98a8deaf RS |
10870 | /* MIPSpro generates ucode info in n64 objects. Again, we should |
10871 | just be able to ignore this. */ | |
10872 | new_flags &= ~EF_MIPS_UCODE; | |
10873 | old_flags &= ~EF_MIPS_UCODE; | |
10874 | ||
0a44bf69 RS |
10875 | /* Don't care about the PIC flags from dynamic objects; they are |
10876 | PIC by design. */ | |
10877 | if ((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0 | |
10878 | && (ibfd->flags & DYNAMIC) != 0) | |
10879 | new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC); | |
10880 | ||
b49e97c9 | 10881 | if (new_flags == old_flags) |
b34976b6 | 10882 | return TRUE; |
b49e97c9 TS |
10883 | |
10884 | /* Check to see if the input BFD actually contains any sections. | |
10885 | If not, its flags may not have been initialised either, but it cannot | |
10886 | actually cause any incompatibility. */ | |
10887 | for (sec = ibfd->sections; sec != NULL; sec = sec->next) | |
10888 | { | |
10889 | /* Ignore synthetic sections and empty .text, .data and .bss sections | |
10890 | which are automatically generated by gas. */ | |
10891 | if (strcmp (sec->name, ".reginfo") | |
10892 | && strcmp (sec->name, ".mdebug") | |
eea6121a | 10893 | && (sec->size != 0 |
d13d89fa NS |
10894 | || (strcmp (sec->name, ".text") |
10895 | && strcmp (sec->name, ".data") | |
10896 | && strcmp (sec->name, ".bss")))) | |
b49e97c9 | 10897 | { |
b34976b6 | 10898 | null_input_bfd = FALSE; |
b49e97c9 TS |
10899 | break; |
10900 | } | |
10901 | } | |
10902 | if (null_input_bfd) | |
b34976b6 | 10903 | return TRUE; |
b49e97c9 | 10904 | |
b34976b6 | 10905 | ok = TRUE; |
b49e97c9 | 10906 | |
143d77c5 EC |
10907 | if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0) |
10908 | != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)) | |
b49e97c9 | 10909 | { |
b49e97c9 | 10910 | (*_bfd_error_handler) |
d003868e AM |
10911 | (_("%B: warning: linking PIC files with non-PIC files"), |
10912 | ibfd); | |
143d77c5 | 10913 | ok = TRUE; |
b49e97c9 TS |
10914 | } |
10915 | ||
143d77c5 EC |
10916 | if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) |
10917 | elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC; | |
10918 | if (! (new_flags & EF_MIPS_PIC)) | |
10919 | elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC; | |
10920 | ||
10921 | new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC); | |
10922 | old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC); | |
b49e97c9 | 10923 | |
64543e1a RS |
10924 | /* Compare the ISAs. */ |
10925 | if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags)) | |
b49e97c9 | 10926 | { |
64543e1a | 10927 | (*_bfd_error_handler) |
d003868e AM |
10928 | (_("%B: linking 32-bit code with 64-bit code"), |
10929 | ibfd); | |
64543e1a RS |
10930 | ok = FALSE; |
10931 | } | |
10932 | else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd))) | |
10933 | { | |
10934 | /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */ | |
10935 | if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd))) | |
b49e97c9 | 10936 | { |
64543e1a RS |
10937 | /* Copy the architecture info from IBFD to OBFD. Also copy |
10938 | the 32-bit flag (if set) so that we continue to recognise | |
10939 | OBFD as a 32-bit binary. */ | |
10940 | bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd)); | |
10941 | elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH); | |
10942 | elf_elfheader (obfd)->e_flags | |
10943 | |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE); | |
10944 | ||
10945 | /* Copy across the ABI flags if OBFD doesn't use them | |
10946 | and if that was what caused us to treat IBFD as 32-bit. */ | |
10947 | if ((old_flags & EF_MIPS_ABI) == 0 | |
10948 | && mips_32bit_flags_p (new_flags) | |
10949 | && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI)) | |
10950 | elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI; | |
b49e97c9 TS |
10951 | } |
10952 | else | |
10953 | { | |
64543e1a | 10954 | /* The ISAs aren't compatible. */ |
b49e97c9 | 10955 | (*_bfd_error_handler) |
d003868e AM |
10956 | (_("%B: linking %s module with previous %s modules"), |
10957 | ibfd, | |
64543e1a RS |
10958 | bfd_printable_name (ibfd), |
10959 | bfd_printable_name (obfd)); | |
b34976b6 | 10960 | ok = FALSE; |
b49e97c9 | 10961 | } |
b49e97c9 TS |
10962 | } |
10963 | ||
64543e1a RS |
10964 | new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE); |
10965 | old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE); | |
10966 | ||
10967 | /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it | |
b49e97c9 TS |
10968 | does set EI_CLASS differently from any 32-bit ABI. */ |
10969 | if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI) | |
10970 | || (elf_elfheader (ibfd)->e_ident[EI_CLASS] | |
10971 | != elf_elfheader (obfd)->e_ident[EI_CLASS])) | |
10972 | { | |
10973 | /* Only error if both are set (to different values). */ | |
10974 | if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI)) | |
10975 | || (elf_elfheader (ibfd)->e_ident[EI_CLASS] | |
10976 | != elf_elfheader (obfd)->e_ident[EI_CLASS])) | |
10977 | { | |
10978 | (*_bfd_error_handler) | |
d003868e AM |
10979 | (_("%B: ABI mismatch: linking %s module with previous %s modules"), |
10980 | ibfd, | |
b49e97c9 TS |
10981 | elf_mips_abi_name (ibfd), |
10982 | elf_mips_abi_name (obfd)); | |
b34976b6 | 10983 | ok = FALSE; |
b49e97c9 TS |
10984 | } |
10985 | new_flags &= ~EF_MIPS_ABI; | |
10986 | old_flags &= ~EF_MIPS_ABI; | |
10987 | } | |
10988 | ||
fb39dac1 RS |
10989 | /* For now, allow arbitrary mixing of ASEs (retain the union). */ |
10990 | if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE)) | |
10991 | { | |
10992 | elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE; | |
10993 | ||
10994 | new_flags &= ~ EF_MIPS_ARCH_ASE; | |
10995 | old_flags &= ~ EF_MIPS_ARCH_ASE; | |
10996 | } | |
10997 | ||
b49e97c9 TS |
10998 | /* Warn about any other mismatches */ |
10999 | if (new_flags != old_flags) | |
11000 | { | |
11001 | (*_bfd_error_handler) | |
d003868e AM |
11002 | (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"), |
11003 | ibfd, (unsigned long) new_flags, | |
b49e97c9 | 11004 | (unsigned long) old_flags); |
b34976b6 | 11005 | ok = FALSE; |
b49e97c9 TS |
11006 | } |
11007 | ||
11008 | if (! ok) | |
11009 | { | |
11010 | bfd_set_error (bfd_error_bad_value); | |
b34976b6 | 11011 | return FALSE; |
b49e97c9 TS |
11012 | } |
11013 | ||
b34976b6 | 11014 | return TRUE; |
b49e97c9 TS |
11015 | } |
11016 | ||
11017 | /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */ | |
11018 | ||
b34976b6 | 11019 | bfd_boolean |
9719ad41 | 11020 | _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags) |
b49e97c9 TS |
11021 | { |
11022 | BFD_ASSERT (!elf_flags_init (abfd) | |
11023 | || elf_elfheader (abfd)->e_flags == flags); | |
11024 | ||
11025 | elf_elfheader (abfd)->e_flags = flags; | |
b34976b6 AM |
11026 | elf_flags_init (abfd) = TRUE; |
11027 | return TRUE; | |
b49e97c9 TS |
11028 | } |
11029 | ||
b34976b6 | 11030 | bfd_boolean |
9719ad41 | 11031 | _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr) |
b49e97c9 | 11032 | { |
9719ad41 | 11033 | FILE *file = ptr; |
b49e97c9 TS |
11034 | |
11035 | BFD_ASSERT (abfd != NULL && ptr != NULL); | |
11036 | ||
11037 | /* Print normal ELF private data. */ | |
11038 | _bfd_elf_print_private_bfd_data (abfd, ptr); | |
11039 | ||
11040 | /* xgettext:c-format */ | |
11041 | fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags); | |
11042 | ||
11043 | if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32) | |
11044 | fprintf (file, _(" [abi=O32]")); | |
11045 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64) | |
11046 | fprintf (file, _(" [abi=O64]")); | |
11047 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32) | |
11048 | fprintf (file, _(" [abi=EABI32]")); | |
11049 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64) | |
11050 | fprintf (file, _(" [abi=EABI64]")); | |
11051 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI)) | |
11052 | fprintf (file, _(" [abi unknown]")); | |
11053 | else if (ABI_N32_P (abfd)) | |
11054 | fprintf (file, _(" [abi=N32]")); | |
11055 | else if (ABI_64_P (abfd)) | |
11056 | fprintf (file, _(" [abi=64]")); | |
11057 | else | |
11058 | fprintf (file, _(" [no abi set]")); | |
11059 | ||
11060 | if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1) | |
11061 | fprintf (file, _(" [mips1]")); | |
11062 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2) | |
11063 | fprintf (file, _(" [mips2]")); | |
11064 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3) | |
11065 | fprintf (file, _(" [mips3]")); | |
11066 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4) | |
11067 | fprintf (file, _(" [mips4]")); | |
11068 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5) | |
11069 | fprintf (file, _(" [mips5]")); | |
11070 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32) | |
11071 | fprintf (file, _(" [mips32]")); | |
11072 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64) | |
11073 | fprintf (file, _(" [mips64]")); | |
af7ee8bf CD |
11074 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2) |
11075 | fprintf (file, _(" [mips32r2]")); | |
5f74bc13 CD |
11076 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2) |
11077 | fprintf (file, _(" [mips64r2]")); | |
b49e97c9 TS |
11078 | else |
11079 | fprintf (file, _(" [unknown ISA]")); | |
11080 | ||
40d32fc6 CD |
11081 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX) |
11082 | fprintf (file, _(" [mdmx]")); | |
11083 | ||
11084 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16) | |
11085 | fprintf (file, _(" [mips16]")); | |
11086 | ||
b49e97c9 TS |
11087 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE) |
11088 | fprintf (file, _(" [32bitmode]")); | |
11089 | else | |
11090 | fprintf (file, _(" [not 32bitmode]")); | |
11091 | ||
11092 | fputc ('\n', file); | |
11093 | ||
b34976b6 | 11094 | return TRUE; |
b49e97c9 | 11095 | } |
2f89ff8d | 11096 | |
b35d266b | 11097 | const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] = |
2f89ff8d | 11098 | { |
0112cd26 NC |
11099 | { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, |
11100 | { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, | |
11101 | { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 }, | |
11102 | { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, | |
11103 | { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, | |
11104 | { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 }, | |
11105 | { NULL, 0, 0, 0, 0 } | |
2f89ff8d | 11106 | }; |
5e2b0d47 | 11107 | |
8992f0d7 TS |
11108 | /* Merge non visibility st_other attributes. Ensure that the |
11109 | STO_OPTIONAL flag is copied into h->other, even if this is not a | |
11110 | definiton of the symbol. */ | |
5e2b0d47 NC |
11111 | void |
11112 | _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h, | |
11113 | const Elf_Internal_Sym *isym, | |
11114 | bfd_boolean definition, | |
11115 | bfd_boolean dynamic ATTRIBUTE_UNUSED) | |
11116 | { | |
8992f0d7 TS |
11117 | if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0) |
11118 | { | |
11119 | unsigned char other; | |
11120 | ||
11121 | other = (definition ? isym->st_other : h->other); | |
11122 | other &= ~ELF_ST_VISIBILITY (-1); | |
11123 | h->other = other | ELF_ST_VISIBILITY (h->other); | |
11124 | } | |
11125 | ||
11126 | if (!definition | |
5e2b0d47 NC |
11127 | && ELF_MIPS_IS_OPTIONAL (isym->st_other)) |
11128 | h->other |= STO_OPTIONAL; | |
11129 | } | |
12ac1cf5 NC |
11130 | |
11131 | /* Decide whether an undefined symbol is special and can be ignored. | |
11132 | This is the case for OPTIONAL symbols on IRIX. */ | |
11133 | bfd_boolean | |
11134 | _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h) | |
11135 | { | |
11136 | return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE; | |
11137 | } | |
e0764319 NC |
11138 | |
11139 | bfd_boolean | |
11140 | _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym) | |
11141 | { | |
11142 | return (sym->st_shndx == SHN_COMMON | |
11143 | || sym->st_shndx == SHN_MIPS_ACOMMON | |
11144 | || sym->st_shndx == SHN_MIPS_SCOMMON); | |
11145 | } |