]>
Commit | Line | Data |
---|---|---|
b49e97c9 | 1 | /* MIPS-specific support for ELF |
64543e1a | 2 | Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, |
79cda7cf | 3 | 2003, 2004 Free Software Foundation, Inc. |
b49e97c9 TS |
4 | |
5 | Most of the information added by Ian Lance Taylor, Cygnus Support, | |
6 | <[email protected]>. | |
7 | N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC. | |
8 | <[email protected]> | |
9 | Traditional MIPS targets support added by Koundinya.K, Dansk Data | |
10 | Elektronik & Operations Research Group. <[email protected]> | |
11 | ||
ae9a127f | 12 | This file is part of BFD, the Binary File Descriptor library. |
b49e97c9 | 13 | |
ae9a127f NC |
14 | This program is free software; you can redistribute it and/or modify |
15 | it under the terms of the GNU General Public License as published by | |
16 | the Free Software Foundation; either version 2 of the License, or | |
17 | (at your option) any later version. | |
b49e97c9 | 18 | |
ae9a127f NC |
19 | This program is distributed in the hope that it will be useful, |
20 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
21 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
22 | GNU General Public License for more details. | |
b49e97c9 | 23 | |
ae9a127f NC |
24 | You should have received a copy of the GNU General Public License |
25 | along with this program; if not, write to the Free Software | |
26 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ | |
b49e97c9 TS |
27 | |
28 | /* This file handles functionality common to the different MIPS ABI's. */ | |
29 | ||
30 | #include "bfd.h" | |
31 | #include "sysdep.h" | |
32 | #include "libbfd.h" | |
64543e1a | 33 | #include "libiberty.h" |
b49e97c9 TS |
34 | #include "elf-bfd.h" |
35 | #include "elfxx-mips.h" | |
36 | #include "elf/mips.h" | |
37 | ||
38 | /* Get the ECOFF swapping routines. */ | |
39 | #include "coff/sym.h" | |
40 | #include "coff/symconst.h" | |
41 | #include "coff/ecoff.h" | |
42 | #include "coff/mips.h" | |
43 | ||
b15e6682 AO |
44 | #include "hashtab.h" |
45 | ||
46 | /* This structure is used to hold .got entries while estimating got | |
47 | sizes. */ | |
48 | struct mips_got_entry | |
49 | { | |
50 | /* The input bfd in which the symbol is defined. */ | |
51 | bfd *abfd; | |
f4416af6 AO |
52 | /* The index of the symbol, as stored in the relocation r_info, if |
53 | we have a local symbol; -1 otherwise. */ | |
54 | long symndx; | |
55 | union | |
56 | { | |
57 | /* If abfd == NULL, an address that must be stored in the got. */ | |
58 | bfd_vma address; | |
59 | /* If abfd != NULL && symndx != -1, the addend of the relocation | |
60 | that should be added to the symbol value. */ | |
61 | bfd_vma addend; | |
62 | /* If abfd != NULL && symndx == -1, the hash table entry | |
63 | corresponding to a global symbol in the got (or, local, if | |
64 | h->forced_local). */ | |
65 | struct mips_elf_link_hash_entry *h; | |
66 | } d; | |
b15e6682 | 67 | /* The offset from the beginning of the .got section to the entry |
f4416af6 AO |
68 | corresponding to this symbol+addend. If it's a global symbol |
69 | whose offset is yet to be decided, it's going to be -1. */ | |
70 | long gotidx; | |
b15e6682 AO |
71 | }; |
72 | ||
f0abc2a1 | 73 | /* This structure is used to hold .got information when linking. */ |
b49e97c9 TS |
74 | |
75 | struct mips_got_info | |
76 | { | |
77 | /* The global symbol in the GOT with the lowest index in the dynamic | |
78 | symbol table. */ | |
79 | struct elf_link_hash_entry *global_gotsym; | |
80 | /* The number of global .got entries. */ | |
81 | unsigned int global_gotno; | |
82 | /* The number of local .got entries. */ | |
83 | unsigned int local_gotno; | |
84 | /* The number of local .got entries we have used. */ | |
85 | unsigned int assigned_gotno; | |
b15e6682 AO |
86 | /* A hash table holding members of the got. */ |
87 | struct htab *got_entries; | |
f4416af6 AO |
88 | /* A hash table mapping input bfds to other mips_got_info. NULL |
89 | unless multi-got was necessary. */ | |
90 | struct htab *bfd2got; | |
91 | /* In multi-got links, a pointer to the next got (err, rather, most | |
92 | of the time, it points to the previous got). */ | |
93 | struct mips_got_info *next; | |
94 | }; | |
95 | ||
96 | /* Map an input bfd to a got in a multi-got link. */ | |
97 | ||
98 | struct mips_elf_bfd2got_hash { | |
99 | bfd *bfd; | |
100 | struct mips_got_info *g; | |
101 | }; | |
102 | ||
103 | /* Structure passed when traversing the bfd2got hash table, used to | |
104 | create and merge bfd's gots. */ | |
105 | ||
106 | struct mips_elf_got_per_bfd_arg | |
107 | { | |
108 | /* A hashtable that maps bfds to gots. */ | |
109 | htab_t bfd2got; | |
110 | /* The output bfd. */ | |
111 | bfd *obfd; | |
112 | /* The link information. */ | |
113 | struct bfd_link_info *info; | |
114 | /* A pointer to the primary got, i.e., the one that's going to get | |
115 | the implicit relocations from DT_MIPS_LOCAL_GOTNO and | |
116 | DT_MIPS_GOTSYM. */ | |
117 | struct mips_got_info *primary; | |
118 | /* A non-primary got we're trying to merge with other input bfd's | |
119 | gots. */ | |
120 | struct mips_got_info *current; | |
121 | /* The maximum number of got entries that can be addressed with a | |
122 | 16-bit offset. */ | |
123 | unsigned int max_count; | |
124 | /* The number of local and global entries in the primary got. */ | |
125 | unsigned int primary_count; | |
126 | /* The number of local and global entries in the current got. */ | |
127 | unsigned int current_count; | |
128 | }; | |
129 | ||
130 | /* Another structure used to pass arguments for got entries traversal. */ | |
131 | ||
132 | struct mips_elf_set_global_got_offset_arg | |
133 | { | |
134 | struct mips_got_info *g; | |
135 | int value; | |
136 | unsigned int needed_relocs; | |
137 | struct bfd_link_info *info; | |
b49e97c9 TS |
138 | }; |
139 | ||
f0abc2a1 AM |
140 | struct _mips_elf_section_data |
141 | { | |
142 | struct bfd_elf_section_data elf; | |
143 | union | |
144 | { | |
145 | struct mips_got_info *got_info; | |
146 | bfd_byte *tdata; | |
147 | } u; | |
148 | }; | |
149 | ||
150 | #define mips_elf_section_data(sec) \ | |
68bfbfcc | 151 | ((struct _mips_elf_section_data *) elf_section_data (sec)) |
f0abc2a1 | 152 | |
b49e97c9 TS |
153 | /* This structure is passed to mips_elf_sort_hash_table_f when sorting |
154 | the dynamic symbols. */ | |
155 | ||
156 | struct mips_elf_hash_sort_data | |
157 | { | |
158 | /* The symbol in the global GOT with the lowest dynamic symbol table | |
159 | index. */ | |
160 | struct elf_link_hash_entry *low; | |
161 | /* The least dynamic symbol table index corresponding to a symbol | |
162 | with a GOT entry. */ | |
163 | long min_got_dynindx; | |
f4416af6 AO |
164 | /* The greatest dynamic symbol table index corresponding to a symbol |
165 | with a GOT entry that is not referenced (e.g., a dynamic symbol | |
9e4aeb93 | 166 | with dynamic relocations pointing to it from non-primary GOTs). */ |
f4416af6 | 167 | long max_unref_got_dynindx; |
b49e97c9 TS |
168 | /* The greatest dynamic symbol table index not corresponding to a |
169 | symbol without a GOT entry. */ | |
170 | long max_non_got_dynindx; | |
171 | }; | |
172 | ||
173 | /* The MIPS ELF linker needs additional information for each symbol in | |
174 | the global hash table. */ | |
175 | ||
176 | struct mips_elf_link_hash_entry | |
177 | { | |
178 | struct elf_link_hash_entry root; | |
179 | ||
180 | /* External symbol information. */ | |
181 | EXTR esym; | |
182 | ||
183 | /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against | |
184 | this symbol. */ | |
185 | unsigned int possibly_dynamic_relocs; | |
186 | ||
187 | /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against | |
188 | a readonly section. */ | |
b34976b6 | 189 | bfd_boolean readonly_reloc; |
b49e97c9 | 190 | |
b49e97c9 TS |
191 | /* We must not create a stub for a symbol that has relocations |
192 | related to taking the function's address, i.e. any but | |
193 | R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition", | |
194 | p. 4-20. */ | |
b34976b6 | 195 | bfd_boolean no_fn_stub; |
b49e97c9 TS |
196 | |
197 | /* If there is a stub that 32 bit functions should use to call this | |
198 | 16 bit function, this points to the section containing the stub. */ | |
199 | asection *fn_stub; | |
200 | ||
201 | /* Whether we need the fn_stub; this is set if this symbol appears | |
202 | in any relocs other than a 16 bit call. */ | |
b34976b6 | 203 | bfd_boolean need_fn_stub; |
b49e97c9 TS |
204 | |
205 | /* If there is a stub that 16 bit functions should use to call this | |
206 | 32 bit function, this points to the section containing the stub. */ | |
207 | asection *call_stub; | |
208 | ||
209 | /* This is like the call_stub field, but it is used if the function | |
210 | being called returns a floating point value. */ | |
211 | asection *call_fp_stub; | |
7c5fcef7 L |
212 | |
213 | /* Are we forced local? .*/ | |
b34976b6 | 214 | bfd_boolean forced_local; |
b49e97c9 TS |
215 | }; |
216 | ||
217 | /* MIPS ELF linker hash table. */ | |
218 | ||
219 | struct mips_elf_link_hash_table | |
220 | { | |
221 | struct elf_link_hash_table root; | |
222 | #if 0 | |
223 | /* We no longer use this. */ | |
224 | /* String section indices for the dynamic section symbols. */ | |
225 | bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES]; | |
226 | #endif | |
227 | /* The number of .rtproc entries. */ | |
228 | bfd_size_type procedure_count; | |
229 | /* The size of the .compact_rel section (if SGI_COMPAT). */ | |
230 | bfd_size_type compact_rel_size; | |
231 | /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic | |
8dc1a139 | 232 | entry is set to the address of __rld_obj_head as in IRIX5. */ |
b34976b6 | 233 | bfd_boolean use_rld_obj_head; |
b49e97c9 TS |
234 | /* This is the value of the __rld_map or __rld_obj_head symbol. */ |
235 | bfd_vma rld_value; | |
236 | /* This is set if we see any mips16 stub sections. */ | |
b34976b6 | 237 | bfd_boolean mips16_stubs_seen; |
b49e97c9 TS |
238 | }; |
239 | ||
240 | /* Structure used to pass information to mips_elf_output_extsym. */ | |
241 | ||
242 | struct extsym_info | |
243 | { | |
9e4aeb93 RS |
244 | bfd *abfd; |
245 | struct bfd_link_info *info; | |
b49e97c9 TS |
246 | struct ecoff_debug_info *debug; |
247 | const struct ecoff_debug_swap *swap; | |
b34976b6 | 248 | bfd_boolean failed; |
b49e97c9 TS |
249 | }; |
250 | ||
8dc1a139 | 251 | /* The names of the runtime procedure table symbols used on IRIX5. */ |
b49e97c9 TS |
252 | |
253 | static const char * const mips_elf_dynsym_rtproc_names[] = | |
254 | { | |
255 | "_procedure_table", | |
256 | "_procedure_string_table", | |
257 | "_procedure_table_size", | |
258 | NULL | |
259 | }; | |
260 | ||
261 | /* These structures are used to generate the .compact_rel section on | |
8dc1a139 | 262 | IRIX5. */ |
b49e97c9 TS |
263 | |
264 | typedef struct | |
265 | { | |
266 | unsigned long id1; /* Always one? */ | |
267 | unsigned long num; /* Number of compact relocation entries. */ | |
268 | unsigned long id2; /* Always two? */ | |
269 | unsigned long offset; /* The file offset of the first relocation. */ | |
270 | unsigned long reserved0; /* Zero? */ | |
271 | unsigned long reserved1; /* Zero? */ | |
272 | } Elf32_compact_rel; | |
273 | ||
274 | typedef struct | |
275 | { | |
276 | bfd_byte id1[4]; | |
277 | bfd_byte num[4]; | |
278 | bfd_byte id2[4]; | |
279 | bfd_byte offset[4]; | |
280 | bfd_byte reserved0[4]; | |
281 | bfd_byte reserved1[4]; | |
282 | } Elf32_External_compact_rel; | |
283 | ||
284 | typedef struct | |
285 | { | |
286 | unsigned int ctype : 1; /* 1: long 0: short format. See below. */ | |
287 | unsigned int rtype : 4; /* Relocation types. See below. */ | |
288 | unsigned int dist2to : 8; | |
289 | unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */ | |
290 | unsigned long konst; /* KONST field. See below. */ | |
291 | unsigned long vaddr; /* VADDR to be relocated. */ | |
292 | } Elf32_crinfo; | |
293 | ||
294 | typedef struct | |
295 | { | |
296 | unsigned int ctype : 1; /* 1: long 0: short format. See below. */ | |
297 | unsigned int rtype : 4; /* Relocation types. See below. */ | |
298 | unsigned int dist2to : 8; | |
299 | unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */ | |
300 | unsigned long konst; /* KONST field. See below. */ | |
301 | } Elf32_crinfo2; | |
302 | ||
303 | typedef struct | |
304 | { | |
305 | bfd_byte info[4]; | |
306 | bfd_byte konst[4]; | |
307 | bfd_byte vaddr[4]; | |
308 | } Elf32_External_crinfo; | |
309 | ||
310 | typedef struct | |
311 | { | |
312 | bfd_byte info[4]; | |
313 | bfd_byte konst[4]; | |
314 | } Elf32_External_crinfo2; | |
315 | ||
316 | /* These are the constants used to swap the bitfields in a crinfo. */ | |
317 | ||
318 | #define CRINFO_CTYPE (0x1) | |
319 | #define CRINFO_CTYPE_SH (31) | |
320 | #define CRINFO_RTYPE (0xf) | |
321 | #define CRINFO_RTYPE_SH (27) | |
322 | #define CRINFO_DIST2TO (0xff) | |
323 | #define CRINFO_DIST2TO_SH (19) | |
324 | #define CRINFO_RELVADDR (0x7ffff) | |
325 | #define CRINFO_RELVADDR_SH (0) | |
326 | ||
327 | /* A compact relocation info has long (3 words) or short (2 words) | |
328 | formats. A short format doesn't have VADDR field and relvaddr | |
329 | fields contains ((VADDR - vaddr of the previous entry) >> 2). */ | |
330 | #define CRF_MIPS_LONG 1 | |
331 | #define CRF_MIPS_SHORT 0 | |
332 | ||
333 | /* There are 4 types of compact relocation at least. The value KONST | |
334 | has different meaning for each type: | |
335 | ||
336 | (type) (konst) | |
337 | CT_MIPS_REL32 Address in data | |
338 | CT_MIPS_WORD Address in word (XXX) | |
339 | CT_MIPS_GPHI_LO GP - vaddr | |
340 | CT_MIPS_JMPAD Address to jump | |
341 | */ | |
342 | ||
343 | #define CRT_MIPS_REL32 0xa | |
344 | #define CRT_MIPS_WORD 0xb | |
345 | #define CRT_MIPS_GPHI_LO 0xc | |
346 | #define CRT_MIPS_JMPAD 0xd | |
347 | ||
348 | #define mips_elf_set_cr_format(x,format) ((x).ctype = (format)) | |
349 | #define mips_elf_set_cr_type(x,type) ((x).rtype = (type)) | |
350 | #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v)) | |
351 | #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2) | |
352 | \f | |
353 | /* The structure of the runtime procedure descriptor created by the | |
354 | loader for use by the static exception system. */ | |
355 | ||
356 | typedef struct runtime_pdr { | |
ae9a127f NC |
357 | bfd_vma adr; /* Memory address of start of procedure. */ |
358 | long regmask; /* Save register mask. */ | |
359 | long regoffset; /* Save register offset. */ | |
360 | long fregmask; /* Save floating point register mask. */ | |
361 | long fregoffset; /* Save floating point register offset. */ | |
362 | long frameoffset; /* Frame size. */ | |
363 | short framereg; /* Frame pointer register. */ | |
364 | short pcreg; /* Offset or reg of return pc. */ | |
365 | long irpss; /* Index into the runtime string table. */ | |
b49e97c9 | 366 | long reserved; |
ae9a127f | 367 | struct exception_info *exception_info;/* Pointer to exception array. */ |
b49e97c9 TS |
368 | } RPDR, *pRPDR; |
369 | #define cbRPDR sizeof (RPDR) | |
370 | #define rpdNil ((pRPDR) 0) | |
371 | \f | |
372 | static struct bfd_hash_entry *mips_elf_link_hash_newfunc | |
9719ad41 | 373 | (struct bfd_hash_entry *, struct bfd_hash_table *, const char *); |
b49e97c9 | 374 | static void ecoff_swap_rpdr_out |
9719ad41 | 375 | (bfd *, const RPDR *, struct rpdr_ext *); |
b34976b6 | 376 | static bfd_boolean mips_elf_create_procedure_table |
9719ad41 RS |
377 | (void *, bfd *, struct bfd_link_info *, asection *, |
378 | struct ecoff_debug_info *); | |
b34976b6 | 379 | static bfd_boolean mips_elf_check_mips16_stubs |
9719ad41 | 380 | (struct mips_elf_link_hash_entry *, void *); |
b49e97c9 | 381 | static void bfd_mips_elf32_swap_gptab_in |
9719ad41 | 382 | (bfd *, const Elf32_External_gptab *, Elf32_gptab *); |
b49e97c9 | 383 | static void bfd_mips_elf32_swap_gptab_out |
9719ad41 | 384 | (bfd *, const Elf32_gptab *, Elf32_External_gptab *); |
b49e97c9 | 385 | static void bfd_elf32_swap_compact_rel_out |
9719ad41 | 386 | (bfd *, const Elf32_compact_rel *, Elf32_External_compact_rel *); |
b49e97c9 | 387 | static void bfd_elf32_swap_crinfo_out |
9719ad41 | 388 | (bfd *, const Elf32_crinfo *, Elf32_External_crinfo *); |
b49e97c9 | 389 | static int sort_dynamic_relocs |
9719ad41 | 390 | (const void *, const void *); |
f4416af6 | 391 | static int sort_dynamic_relocs_64 |
9719ad41 | 392 | (const void *, const void *); |
b34976b6 | 393 | static bfd_boolean mips_elf_output_extsym |
9719ad41 RS |
394 | (struct mips_elf_link_hash_entry *, void *); |
395 | static int gptab_compare | |
396 | (const void *, const void *); | |
397 | static asection *mips_elf_rel_dyn_section | |
398 | (bfd *, bfd_boolean); | |
399 | static asection *mips_elf_got_section | |
400 | (bfd *, bfd_boolean); | |
b49e97c9 | 401 | static struct mips_got_info *mips_elf_got_info |
9719ad41 | 402 | (bfd *, asection **); |
b49e97c9 | 403 | static bfd_vma mips_elf_local_got_index |
9719ad41 | 404 | (bfd *, bfd *, struct bfd_link_info *, bfd_vma); |
b49e97c9 | 405 | static bfd_vma mips_elf_global_got_index |
9719ad41 | 406 | (bfd *, bfd *, struct elf_link_hash_entry *); |
b49e97c9 | 407 | static bfd_vma mips_elf_got_page |
9719ad41 | 408 | (bfd *, bfd *, struct bfd_link_info *, bfd_vma, bfd_vma *); |
b49e97c9 | 409 | static bfd_vma mips_elf_got16_entry |
9719ad41 | 410 | (bfd *, bfd *, struct bfd_link_info *, bfd_vma, bfd_boolean); |
b49e97c9 | 411 | static bfd_vma mips_elf_got_offset_from_index |
9719ad41 | 412 | (bfd *, bfd *, bfd *, bfd_vma); |
b15e6682 | 413 | static struct mips_got_entry *mips_elf_create_local_got_entry |
9719ad41 | 414 | (bfd *, bfd *, struct mips_got_info *, asection *, bfd_vma); |
b34976b6 | 415 | static bfd_boolean mips_elf_sort_hash_table |
9719ad41 | 416 | (struct bfd_link_info *, unsigned long); |
b34976b6 | 417 | static bfd_boolean mips_elf_sort_hash_table_f |
9719ad41 | 418 | (struct mips_elf_link_hash_entry *, void *); |
f4416af6 | 419 | static bfd_boolean mips_elf_record_local_got_symbol |
9719ad41 | 420 | (bfd *, long, bfd_vma, struct mips_got_info *); |
b34976b6 | 421 | static bfd_boolean mips_elf_record_global_got_symbol |
9719ad41 RS |
422 | (struct elf_link_hash_entry *, bfd *, struct bfd_link_info *, |
423 | struct mips_got_info *); | |
b49e97c9 | 424 | static const Elf_Internal_Rela *mips_elf_next_relocation |
9719ad41 | 425 | (bfd *, unsigned int, const Elf_Internal_Rela *, const Elf_Internal_Rela *); |
b34976b6 | 426 | static bfd_boolean mips_elf_local_relocation_p |
9719ad41 RS |
427 | (bfd *, const Elf_Internal_Rela *, asection **, bfd_boolean); |
428 | static bfd_boolean mips_elf_overflow_p | |
429 | (bfd_vma, int); | |
430 | static bfd_vma mips_elf_high | |
431 | (bfd_vma); | |
432 | static bfd_vma mips_elf_higher | |
433 | (bfd_vma); | |
434 | static bfd_vma mips_elf_highest | |
435 | (bfd_vma); | |
b34976b6 | 436 | static bfd_boolean mips_elf_create_compact_rel_section |
9719ad41 | 437 | (bfd *, struct bfd_link_info *); |
b34976b6 | 438 | static bfd_boolean mips_elf_create_got_section |
9719ad41 | 439 | (bfd *, struct bfd_link_info *, bfd_boolean); |
b49e97c9 | 440 | static bfd_reloc_status_type mips_elf_calculate_relocation |
9719ad41 RS |
441 | (bfd *, bfd *, asection *, struct bfd_link_info *, |
442 | const Elf_Internal_Rela *, bfd_vma, reloc_howto_type *, | |
443 | Elf_Internal_Sym *, asection **, bfd_vma *, const char **, | |
444 | bfd_boolean *, bfd_boolean); | |
b49e97c9 | 445 | static bfd_vma mips_elf_obtain_contents |
9719ad41 | 446 | (reloc_howto_type *, const Elf_Internal_Rela *, bfd *, bfd_byte *); |
b34976b6 | 447 | static bfd_boolean mips_elf_perform_relocation |
9719ad41 RS |
448 | (struct bfd_link_info *, reloc_howto_type *, const Elf_Internal_Rela *, |
449 | bfd_vma, bfd *, asection *, bfd_byte *, bfd_boolean); | |
b34976b6 | 450 | static bfd_boolean mips_elf_stub_section_p |
9719ad41 | 451 | (bfd *, asection *); |
b49e97c9 | 452 | static void mips_elf_allocate_dynamic_relocations |
9719ad41 | 453 | (bfd *, unsigned int); |
b34976b6 | 454 | static bfd_boolean mips_elf_create_dynamic_relocation |
9719ad41 RS |
455 | (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *, |
456 | struct mips_elf_link_hash_entry *, asection *, bfd_vma, | |
457 | bfd_vma *, asection *); | |
458 | static void mips_set_isa_flags | |
459 | (bfd *); | |
460 | static INLINE char *elf_mips_abi_name | |
461 | (bfd *); | |
b49e97c9 | 462 | static void mips_elf_irix6_finish_dynamic_symbol |
9719ad41 RS |
463 | (bfd *, const char *, Elf_Internal_Sym *); |
464 | static bfd_boolean mips_mach_extends_p | |
465 | (unsigned long, unsigned long); | |
466 | static bfd_boolean mips_32bit_flags_p | |
467 | (flagword); | |
468 | static INLINE hashval_t mips_elf_hash_bfd_vma | |
469 | (bfd_vma); | |
470 | static hashval_t mips_elf_got_entry_hash | |
471 | (const void *); | |
472 | static int mips_elf_got_entry_eq | |
473 | (const void *, const void *); | |
b49e97c9 | 474 | |
f4416af6 | 475 | static bfd_boolean mips_elf_multi_got |
9719ad41 RS |
476 | (bfd *, struct bfd_link_info *, struct mips_got_info *, |
477 | asection *, bfd_size_type); | |
478 | static hashval_t mips_elf_multi_got_entry_hash | |
479 | (const void *); | |
480 | static int mips_elf_multi_got_entry_eq | |
481 | (const void *, const void *); | |
482 | static hashval_t mips_elf_bfd2got_entry_hash | |
483 | (const void *); | |
484 | static int mips_elf_bfd2got_entry_eq | |
485 | (const void *, const void *); | |
486 | static int mips_elf_make_got_per_bfd | |
487 | (void **, void *); | |
488 | static int mips_elf_merge_gots | |
489 | (void **, void *); | |
490 | static int mips_elf_set_global_got_offset | |
491 | (void **, void *); | |
492 | static int mips_elf_set_no_stub | |
493 | (void **, void *); | |
494 | static int mips_elf_resolve_final_got_entry | |
495 | (void **, void *); | |
f4416af6 | 496 | static void mips_elf_resolve_final_got_entries |
9719ad41 | 497 | (struct mips_got_info *); |
f4416af6 | 498 | static bfd_vma mips_elf_adjust_gp |
9719ad41 | 499 | (bfd *, struct mips_got_info *, bfd *); |
f4416af6 | 500 | static struct mips_got_info *mips_elf_got_for_ibfd |
9719ad41 | 501 | (struct mips_got_info *, bfd *); |
f4416af6 | 502 | |
b49e97c9 TS |
503 | /* This will be used when we sort the dynamic relocation records. */ |
504 | static bfd *reldyn_sorting_bfd; | |
505 | ||
506 | /* Nonzero if ABFD is using the N32 ABI. */ | |
0b25d3e6 | 507 | |
b49e97c9 TS |
508 | #define ABI_N32_P(abfd) \ |
509 | ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0) | |
510 | ||
4a14403c | 511 | /* Nonzero if ABFD is using the N64 ABI. */ |
b49e97c9 | 512 | #define ABI_64_P(abfd) \ |
141ff970 | 513 | (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64) |
b49e97c9 | 514 | |
4a14403c TS |
515 | /* Nonzero if ABFD is using NewABI conventions. */ |
516 | #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd)) | |
517 | ||
518 | /* The IRIX compatibility level we are striving for. */ | |
b49e97c9 TS |
519 | #define IRIX_COMPAT(abfd) \ |
520 | (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd)) | |
521 | ||
b49e97c9 TS |
522 | /* Whether we are trying to be compatible with IRIX at all. */ |
523 | #define SGI_COMPAT(abfd) \ | |
524 | (IRIX_COMPAT (abfd) != ict_none) | |
525 | ||
526 | /* The name of the options section. */ | |
527 | #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \ | |
d80dcc6a | 528 | (NEWABI_P (abfd) ? ".MIPS.options" : ".options") |
b49e97c9 TS |
529 | |
530 | /* The name of the stub section. */ | |
ca07892d | 531 | #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs" |
b49e97c9 TS |
532 | |
533 | /* The size of an external REL relocation. */ | |
534 | #define MIPS_ELF_REL_SIZE(abfd) \ | |
535 | (get_elf_backend_data (abfd)->s->sizeof_rel) | |
536 | ||
537 | /* The size of an external dynamic table entry. */ | |
538 | #define MIPS_ELF_DYN_SIZE(abfd) \ | |
539 | (get_elf_backend_data (abfd)->s->sizeof_dyn) | |
540 | ||
541 | /* The size of a GOT entry. */ | |
542 | #define MIPS_ELF_GOT_SIZE(abfd) \ | |
543 | (get_elf_backend_data (abfd)->s->arch_size / 8) | |
544 | ||
545 | /* The size of a symbol-table entry. */ | |
546 | #define MIPS_ELF_SYM_SIZE(abfd) \ | |
547 | (get_elf_backend_data (abfd)->s->sizeof_sym) | |
548 | ||
549 | /* The default alignment for sections, as a power of two. */ | |
550 | #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \ | |
45d6a902 | 551 | (get_elf_backend_data (abfd)->s->log_file_align) |
b49e97c9 TS |
552 | |
553 | /* Get word-sized data. */ | |
554 | #define MIPS_ELF_GET_WORD(abfd, ptr) \ | |
555 | (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr)) | |
556 | ||
557 | /* Put out word-sized data. */ | |
558 | #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \ | |
559 | (ABI_64_P (abfd) \ | |
560 | ? bfd_put_64 (abfd, val, ptr) \ | |
561 | : bfd_put_32 (abfd, val, ptr)) | |
562 | ||
563 | /* Add a dynamic symbol table-entry. */ | |
9719ad41 | 564 | #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \ |
5a580b3a | 565 | _bfd_elf_add_dynamic_entry (info, tag, val) |
b49e97c9 TS |
566 | |
567 | #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \ | |
568 | (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela)) | |
569 | ||
4ffba85c AO |
570 | /* Determine whether the internal relocation of index REL_IDX is REL |
571 | (zero) or RELA (non-zero). The assumption is that, if there are | |
572 | two relocation sections for this section, one of them is REL and | |
573 | the other is RELA. If the index of the relocation we're testing is | |
574 | in range for the first relocation section, check that the external | |
575 | relocation size is that for RELA. It is also assumed that, if | |
576 | rel_idx is not in range for the first section, and this first | |
577 | section contains REL relocs, then the relocation is in the second | |
578 | section, that is RELA. */ | |
579 | #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \ | |
580 | ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \ | |
581 | * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \ | |
582 | > (bfd_vma)(rel_idx)) \ | |
583 | == (elf_section_data (sec)->rel_hdr.sh_entsize \ | |
584 | == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \ | |
585 | : sizeof (Elf32_External_Rela)))) | |
586 | ||
b49e97c9 TS |
587 | /* In case we're on a 32-bit machine, construct a 64-bit "-1" value |
588 | from smaller values. Start with zero, widen, *then* decrement. */ | |
589 | #define MINUS_ONE (((bfd_vma)0) - 1) | |
590 | ||
591 | /* The number of local .got entries we reserve. */ | |
592 | #define MIPS_RESERVED_GOTNO (2) | |
593 | ||
f4416af6 AO |
594 | /* The offset of $gp from the beginning of the .got section. */ |
595 | #define ELF_MIPS_GP_OFFSET(abfd) (0x7ff0) | |
596 | ||
597 | /* The maximum size of the GOT for it to be addressable using 16-bit | |
598 | offsets from $gp. */ | |
599 | #define MIPS_ELF_GOT_MAX_SIZE(abfd) (ELF_MIPS_GP_OFFSET(abfd) + 0x7fff) | |
600 | ||
6a691779 | 601 | /* Instructions which appear in a stub. */ |
b49e97c9 | 602 | #define STUB_LW(abfd) \ |
f4416af6 AO |
603 | ((ABI_64_P (abfd) \ |
604 | ? 0xdf998010 /* ld t9,0x8010(gp) */ \ | |
605 | : 0x8f998010)) /* lw t9,0x8010(gp) */ | |
b49e97c9 | 606 | #define STUB_MOVE(abfd) \ |
6a691779 TS |
607 | ((ABI_64_P (abfd) \ |
608 | ? 0x03e0782d /* daddu t7,ra */ \ | |
609 | : 0x03e07821)) /* addu t7,ra */ | |
610 | #define STUB_JALR 0x0320f809 /* jalr t9,ra */ | |
b49e97c9 | 611 | #define STUB_LI16(abfd) \ |
6a691779 TS |
612 | ((ABI_64_P (abfd) \ |
613 | ? 0x64180000 /* daddiu t8,zero,0 */ \ | |
614 | : 0x24180000)) /* addiu t8,zero,0 */ | |
b49e97c9 TS |
615 | #define MIPS_FUNCTION_STUB_SIZE (16) |
616 | ||
617 | /* The name of the dynamic interpreter. This is put in the .interp | |
618 | section. */ | |
619 | ||
620 | #define ELF_DYNAMIC_INTERPRETER(abfd) \ | |
621 | (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \ | |
622 | : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \ | |
623 | : "/usr/lib/libc.so.1") | |
624 | ||
625 | #ifdef BFD64 | |
ee6423ed AO |
626 | #define MNAME(bfd,pre,pos) \ |
627 | (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos)) | |
b49e97c9 TS |
628 | #define ELF_R_SYM(bfd, i) \ |
629 | (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i)) | |
630 | #define ELF_R_TYPE(bfd, i) \ | |
631 | (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i)) | |
632 | #define ELF_R_INFO(bfd, s, t) \ | |
633 | (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t)) | |
634 | #else | |
ee6423ed | 635 | #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos) |
b49e97c9 TS |
636 | #define ELF_R_SYM(bfd, i) \ |
637 | (ELF32_R_SYM (i)) | |
638 | #define ELF_R_TYPE(bfd, i) \ | |
639 | (ELF32_R_TYPE (i)) | |
640 | #define ELF_R_INFO(bfd, s, t) \ | |
641 | (ELF32_R_INFO (s, t)) | |
642 | #endif | |
643 | \f | |
644 | /* The mips16 compiler uses a couple of special sections to handle | |
645 | floating point arguments. | |
646 | ||
647 | Section names that look like .mips16.fn.FNNAME contain stubs that | |
648 | copy floating point arguments from the fp regs to the gp regs and | |
649 | then jump to FNNAME. If any 32 bit function calls FNNAME, the | |
650 | call should be redirected to the stub instead. If no 32 bit | |
651 | function calls FNNAME, the stub should be discarded. We need to | |
652 | consider any reference to the function, not just a call, because | |
653 | if the address of the function is taken we will need the stub, | |
654 | since the address might be passed to a 32 bit function. | |
655 | ||
656 | Section names that look like .mips16.call.FNNAME contain stubs | |
657 | that copy floating point arguments from the gp regs to the fp | |
658 | regs and then jump to FNNAME. If FNNAME is a 32 bit function, | |
659 | then any 16 bit function that calls FNNAME should be redirected | |
660 | to the stub instead. If FNNAME is not a 32 bit function, the | |
661 | stub should be discarded. | |
662 | ||
663 | .mips16.call.fp.FNNAME sections are similar, but contain stubs | |
664 | which call FNNAME and then copy the return value from the fp regs | |
665 | to the gp regs. These stubs store the return value in $18 while | |
666 | calling FNNAME; any function which might call one of these stubs | |
667 | must arrange to save $18 around the call. (This case is not | |
668 | needed for 32 bit functions that call 16 bit functions, because | |
669 | 16 bit functions always return floating point values in both | |
670 | $f0/$f1 and $2/$3.) | |
671 | ||
672 | Note that in all cases FNNAME might be defined statically. | |
673 | Therefore, FNNAME is not used literally. Instead, the relocation | |
674 | information will indicate which symbol the section is for. | |
675 | ||
676 | We record any stubs that we find in the symbol table. */ | |
677 | ||
678 | #define FN_STUB ".mips16.fn." | |
679 | #define CALL_STUB ".mips16.call." | |
680 | #define CALL_FP_STUB ".mips16.call.fp." | |
681 | \f | |
682 | /* Look up an entry in a MIPS ELF linker hash table. */ | |
683 | ||
684 | #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \ | |
685 | ((struct mips_elf_link_hash_entry *) \ | |
686 | elf_link_hash_lookup (&(table)->root, (string), (create), \ | |
687 | (copy), (follow))) | |
688 | ||
689 | /* Traverse a MIPS ELF linker hash table. */ | |
690 | ||
691 | #define mips_elf_link_hash_traverse(table, func, info) \ | |
692 | (elf_link_hash_traverse \ | |
693 | (&(table)->root, \ | |
9719ad41 | 694 | (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \ |
b49e97c9 TS |
695 | (info))) |
696 | ||
697 | /* Get the MIPS ELF linker hash table from a link_info structure. */ | |
698 | ||
699 | #define mips_elf_hash_table(p) \ | |
700 | ((struct mips_elf_link_hash_table *) ((p)->hash)) | |
701 | ||
702 | /* Create an entry in a MIPS ELF linker hash table. */ | |
703 | ||
704 | static struct bfd_hash_entry * | |
9719ad41 RS |
705 | mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry, |
706 | struct bfd_hash_table *table, const char *string) | |
b49e97c9 TS |
707 | { |
708 | struct mips_elf_link_hash_entry *ret = | |
709 | (struct mips_elf_link_hash_entry *) entry; | |
710 | ||
711 | /* Allocate the structure if it has not already been allocated by a | |
712 | subclass. */ | |
9719ad41 RS |
713 | if (ret == NULL) |
714 | ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry)); | |
715 | if (ret == NULL) | |
b49e97c9 TS |
716 | return (struct bfd_hash_entry *) ret; |
717 | ||
718 | /* Call the allocation method of the superclass. */ | |
719 | ret = ((struct mips_elf_link_hash_entry *) | |
720 | _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret, | |
721 | table, string)); | |
9719ad41 | 722 | if (ret != NULL) |
b49e97c9 TS |
723 | { |
724 | /* Set local fields. */ | |
725 | memset (&ret->esym, 0, sizeof (EXTR)); | |
726 | /* We use -2 as a marker to indicate that the information has | |
727 | not been set. -1 means there is no associated ifd. */ | |
728 | ret->esym.ifd = -2; | |
729 | ret->possibly_dynamic_relocs = 0; | |
b34976b6 | 730 | ret->readonly_reloc = FALSE; |
b34976b6 | 731 | ret->no_fn_stub = FALSE; |
b49e97c9 | 732 | ret->fn_stub = NULL; |
b34976b6 | 733 | ret->need_fn_stub = FALSE; |
b49e97c9 TS |
734 | ret->call_stub = NULL; |
735 | ret->call_fp_stub = NULL; | |
b34976b6 | 736 | ret->forced_local = FALSE; |
b49e97c9 TS |
737 | } |
738 | ||
739 | return (struct bfd_hash_entry *) ret; | |
740 | } | |
f0abc2a1 AM |
741 | |
742 | bfd_boolean | |
9719ad41 | 743 | _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec) |
f0abc2a1 AM |
744 | { |
745 | struct _mips_elf_section_data *sdata; | |
746 | bfd_size_type amt = sizeof (*sdata); | |
747 | ||
9719ad41 | 748 | sdata = bfd_zalloc (abfd, amt); |
f0abc2a1 AM |
749 | if (sdata == NULL) |
750 | return FALSE; | |
9719ad41 | 751 | sec->used_by_bfd = sdata; |
f0abc2a1 AM |
752 | |
753 | return _bfd_elf_new_section_hook (abfd, sec); | |
754 | } | |
b49e97c9 TS |
755 | \f |
756 | /* Read ECOFF debugging information from a .mdebug section into a | |
757 | ecoff_debug_info structure. */ | |
758 | ||
b34976b6 | 759 | bfd_boolean |
9719ad41 RS |
760 | _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section, |
761 | struct ecoff_debug_info *debug) | |
b49e97c9 TS |
762 | { |
763 | HDRR *symhdr; | |
764 | const struct ecoff_debug_swap *swap; | |
9719ad41 | 765 | char *ext_hdr; |
b49e97c9 TS |
766 | |
767 | swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; | |
768 | memset (debug, 0, sizeof (*debug)); | |
769 | ||
9719ad41 | 770 | ext_hdr = bfd_malloc (swap->external_hdr_size); |
b49e97c9 TS |
771 | if (ext_hdr == NULL && swap->external_hdr_size != 0) |
772 | goto error_return; | |
773 | ||
9719ad41 | 774 | if (! bfd_get_section_contents (abfd, section, ext_hdr, 0, |
82e51918 | 775 | swap->external_hdr_size)) |
b49e97c9 TS |
776 | goto error_return; |
777 | ||
778 | symhdr = &debug->symbolic_header; | |
779 | (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr); | |
780 | ||
781 | /* The symbolic header contains absolute file offsets and sizes to | |
782 | read. */ | |
783 | #define READ(ptr, offset, count, size, type) \ | |
784 | if (symhdr->count == 0) \ | |
785 | debug->ptr = NULL; \ | |
786 | else \ | |
787 | { \ | |
788 | bfd_size_type amt = (bfd_size_type) size * symhdr->count; \ | |
9719ad41 | 789 | debug->ptr = bfd_malloc (amt); \ |
b49e97c9 TS |
790 | if (debug->ptr == NULL) \ |
791 | goto error_return; \ | |
9719ad41 | 792 | if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \ |
b49e97c9 TS |
793 | || bfd_bread (debug->ptr, amt, abfd) != amt) \ |
794 | goto error_return; \ | |
795 | } | |
796 | ||
797 | READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *); | |
9719ad41 RS |
798 | READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *); |
799 | READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *); | |
800 | READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *); | |
801 | READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *); | |
b49e97c9 TS |
802 | READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext), |
803 | union aux_ext *); | |
804 | READ (ss, cbSsOffset, issMax, sizeof (char), char *); | |
805 | READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *); | |
9719ad41 RS |
806 | READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *); |
807 | READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *); | |
808 | READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *); | |
b49e97c9 TS |
809 | #undef READ |
810 | ||
811 | debug->fdr = NULL; | |
b49e97c9 | 812 | |
b34976b6 | 813 | return TRUE; |
b49e97c9 TS |
814 | |
815 | error_return: | |
816 | if (ext_hdr != NULL) | |
817 | free (ext_hdr); | |
818 | if (debug->line != NULL) | |
819 | free (debug->line); | |
820 | if (debug->external_dnr != NULL) | |
821 | free (debug->external_dnr); | |
822 | if (debug->external_pdr != NULL) | |
823 | free (debug->external_pdr); | |
824 | if (debug->external_sym != NULL) | |
825 | free (debug->external_sym); | |
826 | if (debug->external_opt != NULL) | |
827 | free (debug->external_opt); | |
828 | if (debug->external_aux != NULL) | |
829 | free (debug->external_aux); | |
830 | if (debug->ss != NULL) | |
831 | free (debug->ss); | |
832 | if (debug->ssext != NULL) | |
833 | free (debug->ssext); | |
834 | if (debug->external_fdr != NULL) | |
835 | free (debug->external_fdr); | |
836 | if (debug->external_rfd != NULL) | |
837 | free (debug->external_rfd); | |
838 | if (debug->external_ext != NULL) | |
839 | free (debug->external_ext); | |
b34976b6 | 840 | return FALSE; |
b49e97c9 TS |
841 | } |
842 | \f | |
843 | /* Swap RPDR (runtime procedure table entry) for output. */ | |
844 | ||
845 | static void | |
9719ad41 | 846 | ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex) |
b49e97c9 TS |
847 | { |
848 | H_PUT_S32 (abfd, in->adr, ex->p_adr); | |
849 | H_PUT_32 (abfd, in->regmask, ex->p_regmask); | |
850 | H_PUT_32 (abfd, in->regoffset, ex->p_regoffset); | |
851 | H_PUT_32 (abfd, in->fregmask, ex->p_fregmask); | |
852 | H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset); | |
853 | H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset); | |
854 | ||
855 | H_PUT_16 (abfd, in->framereg, ex->p_framereg); | |
856 | H_PUT_16 (abfd, in->pcreg, ex->p_pcreg); | |
857 | ||
858 | H_PUT_32 (abfd, in->irpss, ex->p_irpss); | |
859 | #if 0 /* FIXME */ | |
860 | H_PUT_S32 (abfd, in->exception_info, ex->p_exception_info); | |
861 | #endif | |
862 | } | |
863 | ||
864 | /* Create a runtime procedure table from the .mdebug section. */ | |
865 | ||
b34976b6 | 866 | static bfd_boolean |
9719ad41 RS |
867 | mips_elf_create_procedure_table (void *handle, bfd *abfd, |
868 | struct bfd_link_info *info, asection *s, | |
869 | struct ecoff_debug_info *debug) | |
b49e97c9 TS |
870 | { |
871 | const struct ecoff_debug_swap *swap; | |
872 | HDRR *hdr = &debug->symbolic_header; | |
873 | RPDR *rpdr, *rp; | |
874 | struct rpdr_ext *erp; | |
9719ad41 | 875 | void *rtproc; |
b49e97c9 TS |
876 | struct pdr_ext *epdr; |
877 | struct sym_ext *esym; | |
878 | char *ss, **sv; | |
879 | char *str; | |
880 | bfd_size_type size; | |
881 | bfd_size_type count; | |
882 | unsigned long sindex; | |
883 | unsigned long i; | |
884 | PDR pdr; | |
885 | SYMR sym; | |
886 | const char *no_name_func = _("static procedure (no name)"); | |
887 | ||
888 | epdr = NULL; | |
889 | rpdr = NULL; | |
890 | esym = NULL; | |
891 | ss = NULL; | |
892 | sv = NULL; | |
893 | ||
894 | swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; | |
895 | ||
896 | sindex = strlen (no_name_func) + 1; | |
897 | count = hdr->ipdMax; | |
898 | if (count > 0) | |
899 | { | |
900 | size = swap->external_pdr_size; | |
901 | ||
9719ad41 | 902 | epdr = bfd_malloc (size * count); |
b49e97c9 TS |
903 | if (epdr == NULL) |
904 | goto error_return; | |
905 | ||
9719ad41 | 906 | if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr)) |
b49e97c9 TS |
907 | goto error_return; |
908 | ||
909 | size = sizeof (RPDR); | |
9719ad41 | 910 | rp = rpdr = bfd_malloc (size * count); |
b49e97c9 TS |
911 | if (rpdr == NULL) |
912 | goto error_return; | |
913 | ||
914 | size = sizeof (char *); | |
9719ad41 | 915 | sv = bfd_malloc (size * count); |
b49e97c9 TS |
916 | if (sv == NULL) |
917 | goto error_return; | |
918 | ||
919 | count = hdr->isymMax; | |
920 | size = swap->external_sym_size; | |
9719ad41 | 921 | esym = bfd_malloc (size * count); |
b49e97c9 TS |
922 | if (esym == NULL) |
923 | goto error_return; | |
924 | ||
9719ad41 | 925 | if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym)) |
b49e97c9 TS |
926 | goto error_return; |
927 | ||
928 | count = hdr->issMax; | |
9719ad41 | 929 | ss = bfd_malloc (count); |
b49e97c9 TS |
930 | if (ss == NULL) |
931 | goto error_return; | |
9719ad41 | 932 | if (! _bfd_ecoff_get_accumulated_ss (handle, ss)) |
b49e97c9 TS |
933 | goto error_return; |
934 | ||
935 | count = hdr->ipdMax; | |
936 | for (i = 0; i < (unsigned long) count; i++, rp++) | |
937 | { | |
9719ad41 RS |
938 | (*swap->swap_pdr_in) (abfd, epdr + i, &pdr); |
939 | (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym); | |
b49e97c9 TS |
940 | rp->adr = sym.value; |
941 | rp->regmask = pdr.regmask; | |
942 | rp->regoffset = pdr.regoffset; | |
943 | rp->fregmask = pdr.fregmask; | |
944 | rp->fregoffset = pdr.fregoffset; | |
945 | rp->frameoffset = pdr.frameoffset; | |
946 | rp->framereg = pdr.framereg; | |
947 | rp->pcreg = pdr.pcreg; | |
948 | rp->irpss = sindex; | |
949 | sv[i] = ss + sym.iss; | |
950 | sindex += strlen (sv[i]) + 1; | |
951 | } | |
952 | } | |
953 | ||
954 | size = sizeof (struct rpdr_ext) * (count + 2) + sindex; | |
955 | size = BFD_ALIGN (size, 16); | |
9719ad41 | 956 | rtproc = bfd_alloc (abfd, size); |
b49e97c9 TS |
957 | if (rtproc == NULL) |
958 | { | |
959 | mips_elf_hash_table (info)->procedure_count = 0; | |
960 | goto error_return; | |
961 | } | |
962 | ||
963 | mips_elf_hash_table (info)->procedure_count = count + 2; | |
964 | ||
9719ad41 | 965 | erp = rtproc; |
b49e97c9 TS |
966 | memset (erp, 0, sizeof (struct rpdr_ext)); |
967 | erp++; | |
968 | str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2); | |
969 | strcpy (str, no_name_func); | |
970 | str += strlen (no_name_func) + 1; | |
971 | for (i = 0; i < count; i++) | |
972 | { | |
973 | ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i); | |
974 | strcpy (str, sv[i]); | |
975 | str += strlen (sv[i]) + 1; | |
976 | } | |
977 | H_PUT_S32 (abfd, -1, (erp + count)->p_adr); | |
978 | ||
979 | /* Set the size and contents of .rtproc section. */ | |
980 | s->_raw_size = size; | |
9719ad41 | 981 | s->contents = rtproc; |
b49e97c9 TS |
982 | |
983 | /* Skip this section later on (I don't think this currently | |
984 | matters, but someday it might). */ | |
9719ad41 | 985 | s->link_order_head = NULL; |
b49e97c9 TS |
986 | |
987 | if (epdr != NULL) | |
988 | free (epdr); | |
989 | if (rpdr != NULL) | |
990 | free (rpdr); | |
991 | if (esym != NULL) | |
992 | free (esym); | |
993 | if (ss != NULL) | |
994 | free (ss); | |
995 | if (sv != NULL) | |
996 | free (sv); | |
997 | ||
b34976b6 | 998 | return TRUE; |
b49e97c9 TS |
999 | |
1000 | error_return: | |
1001 | if (epdr != NULL) | |
1002 | free (epdr); | |
1003 | if (rpdr != NULL) | |
1004 | free (rpdr); | |
1005 | if (esym != NULL) | |
1006 | free (esym); | |
1007 | if (ss != NULL) | |
1008 | free (ss); | |
1009 | if (sv != NULL) | |
1010 | free (sv); | |
b34976b6 | 1011 | return FALSE; |
b49e97c9 TS |
1012 | } |
1013 | ||
1014 | /* Check the mips16 stubs for a particular symbol, and see if we can | |
1015 | discard them. */ | |
1016 | ||
b34976b6 | 1017 | static bfd_boolean |
9719ad41 RS |
1018 | mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h, |
1019 | void *data ATTRIBUTE_UNUSED) | |
b49e97c9 TS |
1020 | { |
1021 | if (h->root.root.type == bfd_link_hash_warning) | |
1022 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | |
1023 | ||
1024 | if (h->fn_stub != NULL | |
1025 | && ! h->need_fn_stub) | |
1026 | { | |
1027 | /* We don't need the fn_stub; the only references to this symbol | |
1028 | are 16 bit calls. Clobber the size to 0 to prevent it from | |
1029 | being included in the link. */ | |
1030 | h->fn_stub->_raw_size = 0; | |
1031 | h->fn_stub->_cooked_size = 0; | |
1032 | h->fn_stub->flags &= ~SEC_RELOC; | |
1033 | h->fn_stub->reloc_count = 0; | |
1034 | h->fn_stub->flags |= SEC_EXCLUDE; | |
1035 | } | |
1036 | ||
1037 | if (h->call_stub != NULL | |
1038 | && h->root.other == STO_MIPS16) | |
1039 | { | |
1040 | /* We don't need the call_stub; this is a 16 bit function, so | |
1041 | calls from other 16 bit functions are OK. Clobber the size | |
1042 | to 0 to prevent it from being included in the link. */ | |
1043 | h->call_stub->_raw_size = 0; | |
1044 | h->call_stub->_cooked_size = 0; | |
1045 | h->call_stub->flags &= ~SEC_RELOC; | |
1046 | h->call_stub->reloc_count = 0; | |
1047 | h->call_stub->flags |= SEC_EXCLUDE; | |
1048 | } | |
1049 | ||
1050 | if (h->call_fp_stub != NULL | |
1051 | && h->root.other == STO_MIPS16) | |
1052 | { | |
1053 | /* We don't need the call_stub; this is a 16 bit function, so | |
1054 | calls from other 16 bit functions are OK. Clobber the size | |
1055 | to 0 to prevent it from being included in the link. */ | |
1056 | h->call_fp_stub->_raw_size = 0; | |
1057 | h->call_fp_stub->_cooked_size = 0; | |
1058 | h->call_fp_stub->flags &= ~SEC_RELOC; | |
1059 | h->call_fp_stub->reloc_count = 0; | |
1060 | h->call_fp_stub->flags |= SEC_EXCLUDE; | |
1061 | } | |
1062 | ||
b34976b6 | 1063 | return TRUE; |
b49e97c9 TS |
1064 | } |
1065 | \f | |
1066 | bfd_reloc_status_type | |
9719ad41 RS |
1067 | _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol, |
1068 | arelent *reloc_entry, asection *input_section, | |
1069 | bfd_boolean relocatable, void *data, bfd_vma gp) | |
b49e97c9 TS |
1070 | { |
1071 | bfd_vma relocation; | |
a7ebbfdf | 1072 | bfd_signed_vma val; |
30ac9238 | 1073 | bfd_reloc_status_type status; |
b49e97c9 TS |
1074 | |
1075 | if (bfd_is_com_section (symbol->section)) | |
1076 | relocation = 0; | |
1077 | else | |
1078 | relocation = symbol->value; | |
1079 | ||
1080 | relocation += symbol->section->output_section->vma; | |
1081 | relocation += symbol->section->output_offset; | |
1082 | ||
1083 | if (reloc_entry->address > input_section->_cooked_size) | |
1084 | return bfd_reloc_outofrange; | |
1085 | ||
b49e97c9 | 1086 | /* Set val to the offset into the section or symbol. */ |
a7ebbfdf TS |
1087 | val = reloc_entry->addend; |
1088 | ||
30ac9238 | 1089 | _bfd_mips_elf_sign_extend (val, 16); |
a7ebbfdf | 1090 | |
b49e97c9 | 1091 | /* Adjust val for the final section location and GP value. If we |
1049f94e | 1092 | are producing relocatable output, we don't want to do this for |
b49e97c9 | 1093 | an external symbol. */ |
1049f94e | 1094 | if (! relocatable |
b49e97c9 TS |
1095 | || (symbol->flags & BSF_SECTION_SYM) != 0) |
1096 | val += relocation - gp; | |
1097 | ||
a7ebbfdf TS |
1098 | if (reloc_entry->howto->partial_inplace) |
1099 | { | |
30ac9238 RS |
1100 | status = _bfd_relocate_contents (reloc_entry->howto, abfd, val, |
1101 | (bfd_byte *) data | |
1102 | + reloc_entry->address); | |
1103 | if (status != bfd_reloc_ok) | |
1104 | return status; | |
a7ebbfdf TS |
1105 | } |
1106 | else | |
1107 | reloc_entry->addend = val; | |
b49e97c9 | 1108 | |
1049f94e | 1109 | if (relocatable) |
b49e97c9 | 1110 | reloc_entry->address += input_section->output_offset; |
30ac9238 RS |
1111 | |
1112 | return bfd_reloc_ok; | |
1113 | } | |
1114 | ||
1115 | /* Used to store a REL high-part relocation such as R_MIPS_HI16 or | |
1116 | R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section | |
1117 | that contains the relocation field and DATA points to the start of | |
1118 | INPUT_SECTION. */ | |
1119 | ||
1120 | struct mips_hi16 | |
1121 | { | |
1122 | struct mips_hi16 *next; | |
1123 | bfd_byte *data; | |
1124 | asection *input_section; | |
1125 | arelent rel; | |
1126 | }; | |
1127 | ||
1128 | /* FIXME: This should not be a static variable. */ | |
1129 | ||
1130 | static struct mips_hi16 *mips_hi16_list; | |
1131 | ||
1132 | /* A howto special_function for REL *HI16 relocations. We can only | |
1133 | calculate the correct value once we've seen the partnering | |
1134 | *LO16 relocation, so just save the information for later. | |
1135 | ||
1136 | The ABI requires that the *LO16 immediately follow the *HI16. | |
1137 | However, as a GNU extension, we permit an arbitrary number of | |
1138 | *HI16s to be associated with a single *LO16. This significantly | |
1139 | simplies the relocation handling in gcc. */ | |
1140 | ||
1141 | bfd_reloc_status_type | |
1142 | _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry, | |
1143 | asymbol *symbol ATTRIBUTE_UNUSED, void *data, | |
1144 | asection *input_section, bfd *output_bfd, | |
1145 | char **error_message ATTRIBUTE_UNUSED) | |
1146 | { | |
1147 | struct mips_hi16 *n; | |
1148 | ||
1149 | if (reloc_entry->address > input_section->_cooked_size) | |
1150 | return bfd_reloc_outofrange; | |
1151 | ||
1152 | n = bfd_malloc (sizeof *n); | |
1153 | if (n == NULL) | |
1154 | return bfd_reloc_outofrange; | |
1155 | ||
1156 | n->next = mips_hi16_list; | |
1157 | n->data = data; | |
1158 | n->input_section = input_section; | |
1159 | n->rel = *reloc_entry; | |
1160 | mips_hi16_list = n; | |
1161 | ||
1162 | if (output_bfd != NULL) | |
1163 | reloc_entry->address += input_section->output_offset; | |
1164 | ||
1165 | return bfd_reloc_ok; | |
1166 | } | |
1167 | ||
1168 | /* A howto special_function for REL R_MIPS_GOT16 relocations. This is just | |
1169 | like any other 16-bit relocation when applied to global symbols, but is | |
1170 | treated in the same as R_MIPS_HI16 when applied to local symbols. */ | |
1171 | ||
1172 | bfd_reloc_status_type | |
1173 | _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol, | |
1174 | void *data, asection *input_section, | |
1175 | bfd *output_bfd, char **error_message) | |
1176 | { | |
1177 | if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0 | |
1178 | || bfd_is_und_section (bfd_get_section (symbol)) | |
1179 | || bfd_is_com_section (bfd_get_section (symbol))) | |
1180 | /* The relocation is against a global symbol. */ | |
1181 | return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data, | |
1182 | input_section, output_bfd, | |
1183 | error_message); | |
1184 | ||
1185 | return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data, | |
1186 | input_section, output_bfd, error_message); | |
1187 | } | |
1188 | ||
1189 | /* A howto special_function for REL *LO16 relocations. The *LO16 itself | |
1190 | is a straightforward 16 bit inplace relocation, but we must deal with | |
1191 | any partnering high-part relocations as well. */ | |
1192 | ||
1193 | bfd_reloc_status_type | |
1194 | _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol, | |
1195 | void *data, asection *input_section, | |
1196 | bfd *output_bfd, char **error_message) | |
1197 | { | |
1198 | bfd_vma vallo; | |
1199 | ||
1200 | if (reloc_entry->address > input_section->_cooked_size) | |
1201 | return bfd_reloc_outofrange; | |
1202 | ||
1203 | vallo = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address); | |
1204 | while (mips_hi16_list != NULL) | |
1205 | { | |
1206 | bfd_reloc_status_type ret; | |
1207 | struct mips_hi16 *hi; | |
1208 | ||
1209 | hi = mips_hi16_list; | |
1210 | ||
1211 | /* R_MIPS_GOT16 relocations are something of a special case. We | |
1212 | want to install the addend in the same way as for a R_MIPS_HI16 | |
1213 | relocation (with a rightshift of 16). However, since GOT16 | |
1214 | relocations can also be used with global symbols, their howto | |
1215 | has a rightshift of 0. */ | |
1216 | if (hi->rel.howto->type == R_MIPS_GOT16) | |
1217 | hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE); | |
1218 | ||
1219 | /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any | |
1220 | carry or borrow will induce a change of +1 or -1 in the high part. */ | |
1221 | hi->rel.addend += (vallo + 0x8000) & 0xffff; | |
1222 | ||
1223 | /* R_MIPS_GNU_REL_HI16 relocations are relative to the address of the | |
1224 | lo16 relocation, not their own address. If we're calculating the | |
1225 | final value, and hence subtracting the "PC", subtract the offset | |
1226 | of the lo16 relocation from here. */ | |
1227 | if (output_bfd == NULL && hi->rel.howto->type == R_MIPS_GNU_REL_HI16) | |
1228 | hi->rel.addend -= reloc_entry->address - hi->rel.address; | |
1229 | ||
1230 | ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data, | |
1231 | hi->input_section, output_bfd, | |
1232 | error_message); | |
1233 | if (ret != bfd_reloc_ok) | |
1234 | return ret; | |
1235 | ||
1236 | mips_hi16_list = hi->next; | |
1237 | free (hi); | |
1238 | } | |
1239 | ||
1240 | return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data, | |
1241 | input_section, output_bfd, | |
1242 | error_message); | |
1243 | } | |
1244 | ||
1245 | /* A generic howto special_function. This calculates and installs the | |
1246 | relocation itself, thus avoiding the oft-discussed problems in | |
1247 | bfd_perform_relocation and bfd_install_relocation. */ | |
1248 | ||
1249 | bfd_reloc_status_type | |
1250 | _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry, | |
1251 | asymbol *symbol, void *data ATTRIBUTE_UNUSED, | |
1252 | asection *input_section, bfd *output_bfd, | |
1253 | char **error_message ATTRIBUTE_UNUSED) | |
1254 | { | |
1255 | bfd_signed_vma val; | |
1256 | bfd_reloc_status_type status; | |
1257 | bfd_boolean relocatable; | |
1258 | ||
1259 | relocatable = (output_bfd != NULL); | |
1260 | ||
1261 | if (reloc_entry->address > input_section->_cooked_size) | |
1262 | return bfd_reloc_outofrange; | |
1263 | ||
1264 | /* Build up the field adjustment in VAL. */ | |
1265 | val = 0; | |
1266 | if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0) | |
1267 | { | |
1268 | /* Either we're calculating the final field value or we have a | |
1269 | relocation against a section symbol. Add in the section's | |
1270 | offset or address. */ | |
1271 | val += symbol->section->output_section->vma; | |
1272 | val += symbol->section->output_offset; | |
1273 | } | |
1274 | ||
1275 | if (!relocatable) | |
1276 | { | |
1277 | /* We're calculating the final field value. Add in the symbol's value | |
1278 | and, if pc-relative, subtract the address of the field itself. */ | |
1279 | val += symbol->value; | |
1280 | if (reloc_entry->howto->pc_relative) | |
1281 | { | |
1282 | val -= input_section->output_section->vma; | |
1283 | val -= input_section->output_offset; | |
1284 | val -= reloc_entry->address; | |
1285 | } | |
1286 | } | |
1287 | ||
1288 | /* VAL is now the final adjustment. If we're keeping this relocation | |
1289 | in the output file, and if the relocation uses a separate addend, | |
1290 | we just need to add VAL to that addend. Otherwise we need to add | |
1291 | VAL to the relocation field itself. */ | |
1292 | if (relocatable && !reloc_entry->howto->partial_inplace) | |
1293 | reloc_entry->addend += val; | |
1294 | else | |
1295 | { | |
1296 | /* Add in the separate addend, if any. */ | |
1297 | val += reloc_entry->addend; | |
1298 | ||
1299 | /* Add VAL to the relocation field. */ | |
1300 | status = _bfd_relocate_contents (reloc_entry->howto, abfd, val, | |
1301 | (bfd_byte *) data | |
1302 | + reloc_entry->address); | |
1303 | if (status != bfd_reloc_ok) | |
1304 | return status; | |
1305 | } | |
1306 | ||
1307 | if (relocatable) | |
1308 | reloc_entry->address += input_section->output_offset; | |
b49e97c9 TS |
1309 | |
1310 | return bfd_reloc_ok; | |
1311 | } | |
1312 | \f | |
1313 | /* Swap an entry in a .gptab section. Note that these routines rely | |
1314 | on the equivalence of the two elements of the union. */ | |
1315 | ||
1316 | static void | |
9719ad41 RS |
1317 | bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex, |
1318 | Elf32_gptab *in) | |
b49e97c9 TS |
1319 | { |
1320 | in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value); | |
1321 | in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes); | |
1322 | } | |
1323 | ||
1324 | static void | |
9719ad41 RS |
1325 | bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in, |
1326 | Elf32_External_gptab *ex) | |
b49e97c9 TS |
1327 | { |
1328 | H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value); | |
1329 | H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes); | |
1330 | } | |
1331 | ||
1332 | static void | |
9719ad41 RS |
1333 | bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in, |
1334 | Elf32_External_compact_rel *ex) | |
b49e97c9 TS |
1335 | { |
1336 | H_PUT_32 (abfd, in->id1, ex->id1); | |
1337 | H_PUT_32 (abfd, in->num, ex->num); | |
1338 | H_PUT_32 (abfd, in->id2, ex->id2); | |
1339 | H_PUT_32 (abfd, in->offset, ex->offset); | |
1340 | H_PUT_32 (abfd, in->reserved0, ex->reserved0); | |
1341 | H_PUT_32 (abfd, in->reserved1, ex->reserved1); | |
1342 | } | |
1343 | ||
1344 | static void | |
9719ad41 RS |
1345 | bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in, |
1346 | Elf32_External_crinfo *ex) | |
b49e97c9 TS |
1347 | { |
1348 | unsigned long l; | |
1349 | ||
1350 | l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH) | |
1351 | | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH) | |
1352 | | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH) | |
1353 | | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH)); | |
1354 | H_PUT_32 (abfd, l, ex->info); | |
1355 | H_PUT_32 (abfd, in->konst, ex->konst); | |
1356 | H_PUT_32 (abfd, in->vaddr, ex->vaddr); | |
1357 | } | |
b49e97c9 TS |
1358 | \f |
1359 | /* A .reginfo section holds a single Elf32_RegInfo structure. These | |
1360 | routines swap this structure in and out. They are used outside of | |
1361 | BFD, so they are globally visible. */ | |
1362 | ||
1363 | void | |
9719ad41 RS |
1364 | bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex, |
1365 | Elf32_RegInfo *in) | |
b49e97c9 TS |
1366 | { |
1367 | in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask); | |
1368 | in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]); | |
1369 | in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]); | |
1370 | in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]); | |
1371 | in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]); | |
1372 | in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value); | |
1373 | } | |
1374 | ||
1375 | void | |
9719ad41 RS |
1376 | bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in, |
1377 | Elf32_External_RegInfo *ex) | |
b49e97c9 TS |
1378 | { |
1379 | H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask); | |
1380 | H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]); | |
1381 | H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]); | |
1382 | H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]); | |
1383 | H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]); | |
1384 | H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value); | |
1385 | } | |
1386 | ||
1387 | /* In the 64 bit ABI, the .MIPS.options section holds register | |
1388 | information in an Elf64_Reginfo structure. These routines swap | |
1389 | them in and out. They are globally visible because they are used | |
1390 | outside of BFD. These routines are here so that gas can call them | |
1391 | without worrying about whether the 64 bit ABI has been included. */ | |
1392 | ||
1393 | void | |
9719ad41 RS |
1394 | bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex, |
1395 | Elf64_Internal_RegInfo *in) | |
b49e97c9 TS |
1396 | { |
1397 | in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask); | |
1398 | in->ri_pad = H_GET_32 (abfd, ex->ri_pad); | |
1399 | in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]); | |
1400 | in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]); | |
1401 | in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]); | |
1402 | in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]); | |
1403 | in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value); | |
1404 | } | |
1405 | ||
1406 | void | |
9719ad41 RS |
1407 | bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in, |
1408 | Elf64_External_RegInfo *ex) | |
b49e97c9 TS |
1409 | { |
1410 | H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask); | |
1411 | H_PUT_32 (abfd, in->ri_pad, ex->ri_pad); | |
1412 | H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]); | |
1413 | H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]); | |
1414 | H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]); | |
1415 | H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]); | |
1416 | H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value); | |
1417 | } | |
1418 | ||
1419 | /* Swap in an options header. */ | |
1420 | ||
1421 | void | |
9719ad41 RS |
1422 | bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex, |
1423 | Elf_Internal_Options *in) | |
b49e97c9 TS |
1424 | { |
1425 | in->kind = H_GET_8 (abfd, ex->kind); | |
1426 | in->size = H_GET_8 (abfd, ex->size); | |
1427 | in->section = H_GET_16 (abfd, ex->section); | |
1428 | in->info = H_GET_32 (abfd, ex->info); | |
1429 | } | |
1430 | ||
1431 | /* Swap out an options header. */ | |
1432 | ||
1433 | void | |
9719ad41 RS |
1434 | bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in, |
1435 | Elf_External_Options *ex) | |
b49e97c9 TS |
1436 | { |
1437 | H_PUT_8 (abfd, in->kind, ex->kind); | |
1438 | H_PUT_8 (abfd, in->size, ex->size); | |
1439 | H_PUT_16 (abfd, in->section, ex->section); | |
1440 | H_PUT_32 (abfd, in->info, ex->info); | |
1441 | } | |
1442 | \f | |
1443 | /* This function is called via qsort() to sort the dynamic relocation | |
1444 | entries by increasing r_symndx value. */ | |
1445 | ||
1446 | static int | |
9719ad41 | 1447 | sort_dynamic_relocs (const void *arg1, const void *arg2) |
b49e97c9 | 1448 | { |
947216bf AM |
1449 | Elf_Internal_Rela int_reloc1; |
1450 | Elf_Internal_Rela int_reloc2; | |
b49e97c9 | 1451 | |
947216bf AM |
1452 | bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1); |
1453 | bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2); | |
b49e97c9 | 1454 | |
947216bf | 1455 | return ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info); |
b49e97c9 TS |
1456 | } |
1457 | ||
f4416af6 AO |
1458 | /* Like sort_dynamic_relocs, but used for elf64 relocations. */ |
1459 | ||
1460 | static int | |
9719ad41 | 1461 | sort_dynamic_relocs_64 (const void *arg1, const void *arg2) |
f4416af6 AO |
1462 | { |
1463 | Elf_Internal_Rela int_reloc1[3]; | |
1464 | Elf_Internal_Rela int_reloc2[3]; | |
1465 | ||
1466 | (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in) | |
1467 | (reldyn_sorting_bfd, arg1, int_reloc1); | |
1468 | (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in) | |
1469 | (reldyn_sorting_bfd, arg2, int_reloc2); | |
1470 | ||
1471 | return (ELF64_R_SYM (int_reloc1[0].r_info) | |
1472 | - ELF64_R_SYM (int_reloc2[0].r_info)); | |
1473 | } | |
1474 | ||
1475 | ||
b49e97c9 TS |
1476 | /* This routine is used to write out ECOFF debugging external symbol |
1477 | information. It is called via mips_elf_link_hash_traverse. The | |
1478 | ECOFF external symbol information must match the ELF external | |
1479 | symbol information. Unfortunately, at this point we don't know | |
1480 | whether a symbol is required by reloc information, so the two | |
1481 | tables may wind up being different. We must sort out the external | |
1482 | symbol information before we can set the final size of the .mdebug | |
1483 | section, and we must set the size of the .mdebug section before we | |
1484 | can relocate any sections, and we can't know which symbols are | |
1485 | required by relocation until we relocate the sections. | |
1486 | Fortunately, it is relatively unlikely that any symbol will be | |
1487 | stripped but required by a reloc. In particular, it can not happen | |
1488 | when generating a final executable. */ | |
1489 | ||
b34976b6 | 1490 | static bfd_boolean |
9719ad41 | 1491 | mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data) |
b49e97c9 | 1492 | { |
9719ad41 | 1493 | struct extsym_info *einfo = data; |
b34976b6 | 1494 | bfd_boolean strip; |
b49e97c9 TS |
1495 | asection *sec, *output_section; |
1496 | ||
1497 | if (h->root.root.type == bfd_link_hash_warning) | |
1498 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | |
1499 | ||
1500 | if (h->root.indx == -2) | |
b34976b6 | 1501 | strip = FALSE; |
b49e97c9 TS |
1502 | else if (((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 |
1503 | || (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0) | |
1504 | && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0 | |
1505 | && (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0) | |
b34976b6 | 1506 | strip = TRUE; |
b49e97c9 TS |
1507 | else if (einfo->info->strip == strip_all |
1508 | || (einfo->info->strip == strip_some | |
1509 | && bfd_hash_lookup (einfo->info->keep_hash, | |
1510 | h->root.root.root.string, | |
b34976b6 AM |
1511 | FALSE, FALSE) == NULL)) |
1512 | strip = TRUE; | |
b49e97c9 | 1513 | else |
b34976b6 | 1514 | strip = FALSE; |
b49e97c9 TS |
1515 | |
1516 | if (strip) | |
b34976b6 | 1517 | return TRUE; |
b49e97c9 TS |
1518 | |
1519 | if (h->esym.ifd == -2) | |
1520 | { | |
1521 | h->esym.jmptbl = 0; | |
1522 | h->esym.cobol_main = 0; | |
1523 | h->esym.weakext = 0; | |
1524 | h->esym.reserved = 0; | |
1525 | h->esym.ifd = ifdNil; | |
1526 | h->esym.asym.value = 0; | |
1527 | h->esym.asym.st = stGlobal; | |
1528 | ||
1529 | if (h->root.root.type == bfd_link_hash_undefined | |
1530 | || h->root.root.type == bfd_link_hash_undefweak) | |
1531 | { | |
1532 | const char *name; | |
1533 | ||
1534 | /* Use undefined class. Also, set class and type for some | |
1535 | special symbols. */ | |
1536 | name = h->root.root.root.string; | |
1537 | if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0 | |
1538 | || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0) | |
1539 | { | |
1540 | h->esym.asym.sc = scData; | |
1541 | h->esym.asym.st = stLabel; | |
1542 | h->esym.asym.value = 0; | |
1543 | } | |
1544 | else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0) | |
1545 | { | |
1546 | h->esym.asym.sc = scAbs; | |
1547 | h->esym.asym.st = stLabel; | |
1548 | h->esym.asym.value = | |
1549 | mips_elf_hash_table (einfo->info)->procedure_count; | |
1550 | } | |
4a14403c | 1551 | else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd)) |
b49e97c9 TS |
1552 | { |
1553 | h->esym.asym.sc = scAbs; | |
1554 | h->esym.asym.st = stLabel; | |
1555 | h->esym.asym.value = elf_gp (einfo->abfd); | |
1556 | } | |
1557 | else | |
1558 | h->esym.asym.sc = scUndefined; | |
1559 | } | |
1560 | else if (h->root.root.type != bfd_link_hash_defined | |
1561 | && h->root.root.type != bfd_link_hash_defweak) | |
1562 | h->esym.asym.sc = scAbs; | |
1563 | else | |
1564 | { | |
1565 | const char *name; | |
1566 | ||
1567 | sec = h->root.root.u.def.section; | |
1568 | output_section = sec->output_section; | |
1569 | ||
1570 | /* When making a shared library and symbol h is the one from | |
1571 | the another shared library, OUTPUT_SECTION may be null. */ | |
1572 | if (output_section == NULL) | |
1573 | h->esym.asym.sc = scUndefined; | |
1574 | else | |
1575 | { | |
1576 | name = bfd_section_name (output_section->owner, output_section); | |
1577 | ||
1578 | if (strcmp (name, ".text") == 0) | |
1579 | h->esym.asym.sc = scText; | |
1580 | else if (strcmp (name, ".data") == 0) | |
1581 | h->esym.asym.sc = scData; | |
1582 | else if (strcmp (name, ".sdata") == 0) | |
1583 | h->esym.asym.sc = scSData; | |
1584 | else if (strcmp (name, ".rodata") == 0 | |
1585 | || strcmp (name, ".rdata") == 0) | |
1586 | h->esym.asym.sc = scRData; | |
1587 | else if (strcmp (name, ".bss") == 0) | |
1588 | h->esym.asym.sc = scBss; | |
1589 | else if (strcmp (name, ".sbss") == 0) | |
1590 | h->esym.asym.sc = scSBss; | |
1591 | else if (strcmp (name, ".init") == 0) | |
1592 | h->esym.asym.sc = scInit; | |
1593 | else if (strcmp (name, ".fini") == 0) | |
1594 | h->esym.asym.sc = scFini; | |
1595 | else | |
1596 | h->esym.asym.sc = scAbs; | |
1597 | } | |
1598 | } | |
1599 | ||
1600 | h->esym.asym.reserved = 0; | |
1601 | h->esym.asym.index = indexNil; | |
1602 | } | |
1603 | ||
1604 | if (h->root.root.type == bfd_link_hash_common) | |
1605 | h->esym.asym.value = h->root.root.u.c.size; | |
1606 | else if (h->root.root.type == bfd_link_hash_defined | |
1607 | || h->root.root.type == bfd_link_hash_defweak) | |
1608 | { | |
1609 | if (h->esym.asym.sc == scCommon) | |
1610 | h->esym.asym.sc = scBss; | |
1611 | else if (h->esym.asym.sc == scSCommon) | |
1612 | h->esym.asym.sc = scSBss; | |
1613 | ||
1614 | sec = h->root.root.u.def.section; | |
1615 | output_section = sec->output_section; | |
1616 | if (output_section != NULL) | |
1617 | h->esym.asym.value = (h->root.root.u.def.value | |
1618 | + sec->output_offset | |
1619 | + output_section->vma); | |
1620 | else | |
1621 | h->esym.asym.value = 0; | |
1622 | } | |
1623 | else if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0) | |
1624 | { | |
1625 | struct mips_elf_link_hash_entry *hd = h; | |
b34976b6 | 1626 | bfd_boolean no_fn_stub = h->no_fn_stub; |
b49e97c9 TS |
1627 | |
1628 | while (hd->root.root.type == bfd_link_hash_indirect) | |
1629 | { | |
1630 | hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link; | |
1631 | no_fn_stub = no_fn_stub || hd->no_fn_stub; | |
1632 | } | |
1633 | ||
1634 | if (!no_fn_stub) | |
1635 | { | |
1636 | /* Set type and value for a symbol with a function stub. */ | |
1637 | h->esym.asym.st = stProc; | |
1638 | sec = hd->root.root.u.def.section; | |
1639 | if (sec == NULL) | |
1640 | h->esym.asym.value = 0; | |
1641 | else | |
1642 | { | |
1643 | output_section = sec->output_section; | |
1644 | if (output_section != NULL) | |
1645 | h->esym.asym.value = (hd->root.plt.offset | |
1646 | + sec->output_offset | |
1647 | + output_section->vma); | |
1648 | else | |
1649 | h->esym.asym.value = 0; | |
1650 | } | |
1651 | #if 0 /* FIXME? */ | |
1652 | h->esym.ifd = 0; | |
1653 | #endif | |
1654 | } | |
1655 | } | |
1656 | ||
1657 | if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap, | |
1658 | h->root.root.root.string, | |
1659 | &h->esym)) | |
1660 | { | |
b34976b6 AM |
1661 | einfo->failed = TRUE; |
1662 | return FALSE; | |
b49e97c9 TS |
1663 | } |
1664 | ||
b34976b6 | 1665 | return TRUE; |
b49e97c9 TS |
1666 | } |
1667 | ||
1668 | /* A comparison routine used to sort .gptab entries. */ | |
1669 | ||
1670 | static int | |
9719ad41 | 1671 | gptab_compare (const void *p1, const void *p2) |
b49e97c9 | 1672 | { |
9719ad41 RS |
1673 | const Elf32_gptab *a1 = p1; |
1674 | const Elf32_gptab *a2 = p2; | |
b49e97c9 TS |
1675 | |
1676 | return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value; | |
1677 | } | |
1678 | \f | |
b15e6682 | 1679 | /* Functions to manage the got entry hash table. */ |
f4416af6 AO |
1680 | |
1681 | /* Use all 64 bits of a bfd_vma for the computation of a 32-bit | |
1682 | hash number. */ | |
1683 | ||
1684 | static INLINE hashval_t | |
9719ad41 | 1685 | mips_elf_hash_bfd_vma (bfd_vma addr) |
f4416af6 AO |
1686 | { |
1687 | #ifdef BFD64 | |
1688 | return addr + (addr >> 32); | |
1689 | #else | |
1690 | return addr; | |
1691 | #endif | |
1692 | } | |
1693 | ||
1694 | /* got_entries only match if they're identical, except for gotidx, so | |
1695 | use all fields to compute the hash, and compare the appropriate | |
1696 | union members. */ | |
1697 | ||
b15e6682 | 1698 | static hashval_t |
9719ad41 | 1699 | mips_elf_got_entry_hash (const void *entry_) |
b15e6682 AO |
1700 | { |
1701 | const struct mips_got_entry *entry = (struct mips_got_entry *)entry_; | |
1702 | ||
38985a1c | 1703 | return entry->symndx |
f4416af6 | 1704 | + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address) |
38985a1c AO |
1705 | : entry->abfd->id |
1706 | + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend) | |
1707 | : entry->d.h->root.root.root.hash)); | |
b15e6682 AO |
1708 | } |
1709 | ||
1710 | static int | |
9719ad41 | 1711 | mips_elf_got_entry_eq (const void *entry1, const void *entry2) |
b15e6682 AO |
1712 | { |
1713 | const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1; | |
1714 | const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2; | |
1715 | ||
1716 | return e1->abfd == e2->abfd && e1->symndx == e2->symndx | |
f4416af6 AO |
1717 | && (! e1->abfd ? e1->d.address == e2->d.address |
1718 | : e1->symndx >= 0 ? e1->d.addend == e2->d.addend | |
1719 | : e1->d.h == e2->d.h); | |
1720 | } | |
1721 | ||
1722 | /* multi_got_entries are still a match in the case of global objects, | |
1723 | even if the input bfd in which they're referenced differs, so the | |
1724 | hash computation and compare functions are adjusted | |
1725 | accordingly. */ | |
1726 | ||
1727 | static hashval_t | |
9719ad41 | 1728 | mips_elf_multi_got_entry_hash (const void *entry_) |
f4416af6 AO |
1729 | { |
1730 | const struct mips_got_entry *entry = (struct mips_got_entry *)entry_; | |
1731 | ||
1732 | return entry->symndx | |
1733 | + (! entry->abfd | |
1734 | ? mips_elf_hash_bfd_vma (entry->d.address) | |
1735 | : entry->symndx >= 0 | |
1736 | ? (entry->abfd->id | |
1737 | + mips_elf_hash_bfd_vma (entry->d.addend)) | |
1738 | : entry->d.h->root.root.root.hash); | |
1739 | } | |
1740 | ||
1741 | static int | |
9719ad41 | 1742 | mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2) |
f4416af6 AO |
1743 | { |
1744 | const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1; | |
1745 | const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2; | |
1746 | ||
1747 | return e1->symndx == e2->symndx | |
1748 | && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend | |
1749 | : e1->abfd == NULL || e2->abfd == NULL | |
1750 | ? e1->abfd == e2->abfd && e1->d.address == e2->d.address | |
1751 | : e1->d.h == e2->d.h); | |
b15e6682 AO |
1752 | } |
1753 | \f | |
f4416af6 AO |
1754 | /* Returns the dynamic relocation section for DYNOBJ. */ |
1755 | ||
1756 | static asection * | |
9719ad41 | 1757 | mips_elf_rel_dyn_section (bfd *dynobj, bfd_boolean create_p) |
f4416af6 AO |
1758 | { |
1759 | static const char dname[] = ".rel.dyn"; | |
1760 | asection *sreloc; | |
1761 | ||
1762 | sreloc = bfd_get_section_by_name (dynobj, dname); | |
1763 | if (sreloc == NULL && create_p) | |
1764 | { | |
1765 | sreloc = bfd_make_section (dynobj, dname); | |
1766 | if (sreloc == NULL | |
1767 | || ! bfd_set_section_flags (dynobj, sreloc, | |
1768 | (SEC_ALLOC | |
1769 | | SEC_LOAD | |
1770 | | SEC_HAS_CONTENTS | |
1771 | | SEC_IN_MEMORY | |
1772 | | SEC_LINKER_CREATED | |
1773 | | SEC_READONLY)) | |
1774 | || ! bfd_set_section_alignment (dynobj, sreloc, | |
d80dcc6a | 1775 | MIPS_ELF_LOG_FILE_ALIGN (dynobj))) |
f4416af6 AO |
1776 | return NULL; |
1777 | } | |
1778 | return sreloc; | |
1779 | } | |
1780 | ||
b49e97c9 TS |
1781 | /* Returns the GOT section for ABFD. */ |
1782 | ||
1783 | static asection * | |
9719ad41 | 1784 | mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded) |
b49e97c9 | 1785 | { |
f4416af6 AO |
1786 | asection *sgot = bfd_get_section_by_name (abfd, ".got"); |
1787 | if (sgot == NULL | |
1788 | || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0)) | |
1789 | return NULL; | |
1790 | return sgot; | |
b49e97c9 TS |
1791 | } |
1792 | ||
1793 | /* Returns the GOT information associated with the link indicated by | |
1794 | INFO. If SGOTP is non-NULL, it is filled in with the GOT | |
1795 | section. */ | |
1796 | ||
1797 | static struct mips_got_info * | |
9719ad41 | 1798 | mips_elf_got_info (bfd *abfd, asection **sgotp) |
b49e97c9 TS |
1799 | { |
1800 | asection *sgot; | |
1801 | struct mips_got_info *g; | |
1802 | ||
f4416af6 | 1803 | sgot = mips_elf_got_section (abfd, TRUE); |
b49e97c9 | 1804 | BFD_ASSERT (sgot != NULL); |
f0abc2a1 AM |
1805 | BFD_ASSERT (mips_elf_section_data (sgot) != NULL); |
1806 | g = mips_elf_section_data (sgot)->u.got_info; | |
b49e97c9 TS |
1807 | BFD_ASSERT (g != NULL); |
1808 | ||
1809 | if (sgotp) | |
f4416af6 AO |
1810 | *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL; |
1811 | ||
b49e97c9 TS |
1812 | return g; |
1813 | } | |
1814 | ||
1815 | /* Returns the GOT offset at which the indicated address can be found. | |
1816 | If there is not yet a GOT entry for this value, create one. Returns | |
1817 | -1 if no satisfactory GOT offset can be found. */ | |
1818 | ||
1819 | static bfd_vma | |
9719ad41 RS |
1820 | mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info, |
1821 | bfd_vma value) | |
b49e97c9 TS |
1822 | { |
1823 | asection *sgot; | |
1824 | struct mips_got_info *g; | |
b15e6682 | 1825 | struct mips_got_entry *entry; |
b49e97c9 TS |
1826 | |
1827 | g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot); | |
1828 | ||
f4416af6 | 1829 | entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value); |
b15e6682 AO |
1830 | if (entry) |
1831 | return entry->gotidx; | |
1832 | else | |
1833 | return MINUS_ONE; | |
b49e97c9 TS |
1834 | } |
1835 | ||
1836 | /* Returns the GOT index for the global symbol indicated by H. */ | |
1837 | ||
1838 | static bfd_vma | |
9719ad41 | 1839 | mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h) |
b49e97c9 TS |
1840 | { |
1841 | bfd_vma index; | |
1842 | asection *sgot; | |
f4416af6 | 1843 | struct mips_got_info *g, *gg; |
d0c7ff07 | 1844 | long global_got_dynindx = 0; |
b49e97c9 | 1845 | |
f4416af6 AO |
1846 | gg = g = mips_elf_got_info (abfd, &sgot); |
1847 | if (g->bfd2got && ibfd) | |
1848 | { | |
1849 | struct mips_got_entry e, *p; | |
143d77c5 | 1850 | |
f4416af6 AO |
1851 | BFD_ASSERT (h->dynindx >= 0); |
1852 | ||
1853 | g = mips_elf_got_for_ibfd (g, ibfd); | |
1854 | if (g->next != gg) | |
1855 | { | |
1856 | e.abfd = ibfd; | |
1857 | e.symndx = -1; | |
1858 | e.d.h = (struct mips_elf_link_hash_entry *)h; | |
1859 | ||
9719ad41 | 1860 | p = htab_find (g->got_entries, &e); |
f4416af6 AO |
1861 | |
1862 | BFD_ASSERT (p->gotidx > 0); | |
1863 | return p->gotidx; | |
1864 | } | |
1865 | } | |
1866 | ||
1867 | if (gg->global_gotsym != NULL) | |
1868 | global_got_dynindx = gg->global_gotsym->dynindx; | |
b49e97c9 TS |
1869 | |
1870 | /* Once we determine the global GOT entry with the lowest dynamic | |
1871 | symbol table index, we must put all dynamic symbols with greater | |
1872 | indices into the GOT. That makes it easy to calculate the GOT | |
1873 | offset. */ | |
d0c7ff07 TS |
1874 | BFD_ASSERT (h->dynindx >= global_got_dynindx); |
1875 | index = ((h->dynindx - global_got_dynindx + g->local_gotno) | |
b49e97c9 TS |
1876 | * MIPS_ELF_GOT_SIZE (abfd)); |
1877 | BFD_ASSERT (index < sgot->_raw_size); | |
1878 | ||
1879 | return index; | |
1880 | } | |
1881 | ||
1882 | /* Find a GOT entry that is within 32KB of the VALUE. These entries | |
1883 | are supposed to be placed at small offsets in the GOT, i.e., | |
1884 | within 32KB of GP. Return the index into the GOT for this page, | |
1885 | and store the offset from this entry to the desired address in | |
1886 | OFFSETP, if it is non-NULL. */ | |
1887 | ||
1888 | static bfd_vma | |
9719ad41 RS |
1889 | mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info, |
1890 | bfd_vma value, bfd_vma *offsetp) | |
b49e97c9 TS |
1891 | { |
1892 | asection *sgot; | |
1893 | struct mips_got_info *g; | |
b15e6682 AO |
1894 | bfd_vma index; |
1895 | struct mips_got_entry *entry; | |
b49e97c9 TS |
1896 | |
1897 | g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot); | |
1898 | ||
f4416af6 | 1899 | entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, |
b15e6682 AO |
1900 | (value + 0x8000) |
1901 | & (~(bfd_vma)0xffff)); | |
b49e97c9 | 1902 | |
b15e6682 AO |
1903 | if (!entry) |
1904 | return MINUS_ONE; | |
143d77c5 | 1905 | |
b15e6682 | 1906 | index = entry->gotidx; |
b49e97c9 TS |
1907 | |
1908 | if (offsetp) | |
f4416af6 | 1909 | *offsetp = value - entry->d.address; |
b49e97c9 TS |
1910 | |
1911 | return index; | |
1912 | } | |
1913 | ||
1914 | /* Find a GOT entry whose higher-order 16 bits are the same as those | |
1915 | for value. Return the index into the GOT for this entry. */ | |
1916 | ||
1917 | static bfd_vma | |
9719ad41 RS |
1918 | mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info, |
1919 | bfd_vma value, bfd_boolean external) | |
b49e97c9 TS |
1920 | { |
1921 | asection *sgot; | |
1922 | struct mips_got_info *g; | |
b15e6682 | 1923 | struct mips_got_entry *entry; |
b49e97c9 TS |
1924 | |
1925 | if (! external) | |
1926 | { | |
1927 | /* Although the ABI says that it is "the high-order 16 bits" that we | |
1928 | want, it is really the %high value. The complete value is | |
1929 | calculated with a `addiu' of a LO16 relocation, just as with a | |
1930 | HI16/LO16 pair. */ | |
1931 | value = mips_elf_high (value) << 16; | |
1932 | } | |
1933 | ||
1934 | g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot); | |
1935 | ||
f4416af6 | 1936 | entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value); |
b15e6682 AO |
1937 | if (entry) |
1938 | return entry->gotidx; | |
1939 | else | |
1940 | return MINUS_ONE; | |
b49e97c9 TS |
1941 | } |
1942 | ||
1943 | /* Returns the offset for the entry at the INDEXth position | |
1944 | in the GOT. */ | |
1945 | ||
1946 | static bfd_vma | |
9719ad41 RS |
1947 | mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd, |
1948 | bfd *input_bfd, bfd_vma index) | |
b49e97c9 TS |
1949 | { |
1950 | asection *sgot; | |
1951 | bfd_vma gp; | |
f4416af6 | 1952 | struct mips_got_info *g; |
b49e97c9 | 1953 | |
f4416af6 AO |
1954 | g = mips_elf_got_info (dynobj, &sgot); |
1955 | gp = _bfd_get_gp_value (output_bfd) | |
1956 | + mips_elf_adjust_gp (output_bfd, g, input_bfd); | |
143d77c5 | 1957 | |
f4416af6 | 1958 | return sgot->output_section->vma + sgot->output_offset + index - gp; |
b49e97c9 TS |
1959 | } |
1960 | ||
1961 | /* Create a local GOT entry for VALUE. Return the index of the entry, | |
1962 | or -1 if it could not be created. */ | |
1963 | ||
b15e6682 | 1964 | static struct mips_got_entry * |
9719ad41 RS |
1965 | mips_elf_create_local_got_entry (bfd *abfd, bfd *ibfd, |
1966 | struct mips_got_info *gg, | |
1967 | asection *sgot, bfd_vma value) | |
b49e97c9 | 1968 | { |
b15e6682 | 1969 | struct mips_got_entry entry, **loc; |
f4416af6 | 1970 | struct mips_got_info *g; |
b15e6682 | 1971 | |
f4416af6 AO |
1972 | entry.abfd = NULL; |
1973 | entry.symndx = -1; | |
1974 | entry.d.address = value; | |
1975 | ||
1976 | g = mips_elf_got_for_ibfd (gg, ibfd); | |
1977 | if (g == NULL) | |
1978 | { | |
1979 | g = mips_elf_got_for_ibfd (gg, abfd); | |
1980 | BFD_ASSERT (g != NULL); | |
1981 | } | |
b15e6682 AO |
1982 | |
1983 | loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry, | |
1984 | INSERT); | |
1985 | if (*loc) | |
1986 | return *loc; | |
143d77c5 | 1987 | |
b15e6682 AO |
1988 | entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++; |
1989 | ||
1990 | *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry); | |
1991 | ||
1992 | if (! *loc) | |
1993 | return NULL; | |
143d77c5 | 1994 | |
b15e6682 AO |
1995 | memcpy (*loc, &entry, sizeof entry); |
1996 | ||
b49e97c9 TS |
1997 | if (g->assigned_gotno >= g->local_gotno) |
1998 | { | |
f4416af6 | 1999 | (*loc)->gotidx = -1; |
b49e97c9 TS |
2000 | /* We didn't allocate enough space in the GOT. */ |
2001 | (*_bfd_error_handler) | |
2002 | (_("not enough GOT space for local GOT entries")); | |
2003 | bfd_set_error (bfd_error_bad_value); | |
b15e6682 | 2004 | return NULL; |
b49e97c9 TS |
2005 | } |
2006 | ||
2007 | MIPS_ELF_PUT_WORD (abfd, value, | |
b15e6682 AO |
2008 | (sgot->contents + entry.gotidx)); |
2009 | ||
2010 | return *loc; | |
b49e97c9 TS |
2011 | } |
2012 | ||
2013 | /* Sort the dynamic symbol table so that symbols that need GOT entries | |
2014 | appear towards the end. This reduces the amount of GOT space | |
2015 | required. MAX_LOCAL is used to set the number of local symbols | |
2016 | known to be in the dynamic symbol table. During | |
2017 | _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the | |
2018 | section symbols are added and the count is higher. */ | |
2019 | ||
b34976b6 | 2020 | static bfd_boolean |
9719ad41 | 2021 | mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local) |
b49e97c9 TS |
2022 | { |
2023 | struct mips_elf_hash_sort_data hsd; | |
2024 | struct mips_got_info *g; | |
2025 | bfd *dynobj; | |
2026 | ||
2027 | dynobj = elf_hash_table (info)->dynobj; | |
2028 | ||
f4416af6 AO |
2029 | g = mips_elf_got_info (dynobj, NULL); |
2030 | ||
b49e97c9 | 2031 | hsd.low = NULL; |
143d77c5 | 2032 | hsd.max_unref_got_dynindx = |
f4416af6 AO |
2033 | hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount |
2034 | /* In the multi-got case, assigned_gotno of the master got_info | |
2035 | indicate the number of entries that aren't referenced in the | |
2036 | primary GOT, but that must have entries because there are | |
2037 | dynamic relocations that reference it. Since they aren't | |
2038 | referenced, we move them to the end of the GOT, so that they | |
2039 | don't prevent other entries that are referenced from getting | |
2040 | too large offsets. */ | |
2041 | - (g->next ? g->assigned_gotno : 0); | |
b49e97c9 TS |
2042 | hsd.max_non_got_dynindx = max_local; |
2043 | mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *) | |
2044 | elf_hash_table (info)), | |
2045 | mips_elf_sort_hash_table_f, | |
2046 | &hsd); | |
2047 | ||
2048 | /* There should have been enough room in the symbol table to | |
44c410de | 2049 | accommodate both the GOT and non-GOT symbols. */ |
b49e97c9 | 2050 | BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx); |
f4416af6 AO |
2051 | BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx |
2052 | <= elf_hash_table (info)->dynsymcount); | |
b49e97c9 TS |
2053 | |
2054 | /* Now we know which dynamic symbol has the lowest dynamic symbol | |
2055 | table index in the GOT. */ | |
b49e97c9 TS |
2056 | g->global_gotsym = hsd.low; |
2057 | ||
b34976b6 | 2058 | return TRUE; |
b49e97c9 TS |
2059 | } |
2060 | ||
2061 | /* If H needs a GOT entry, assign it the highest available dynamic | |
2062 | index. Otherwise, assign it the lowest available dynamic | |
2063 | index. */ | |
2064 | ||
b34976b6 | 2065 | static bfd_boolean |
9719ad41 | 2066 | mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data) |
b49e97c9 | 2067 | { |
9719ad41 | 2068 | struct mips_elf_hash_sort_data *hsd = data; |
b49e97c9 TS |
2069 | |
2070 | if (h->root.root.type == bfd_link_hash_warning) | |
2071 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | |
2072 | ||
2073 | /* Symbols without dynamic symbol table entries aren't interesting | |
2074 | at all. */ | |
2075 | if (h->root.dynindx == -1) | |
b34976b6 | 2076 | return TRUE; |
b49e97c9 | 2077 | |
f4416af6 AO |
2078 | /* Global symbols that need GOT entries that are not explicitly |
2079 | referenced are marked with got offset 2. Those that are | |
2080 | referenced get a 1, and those that don't need GOT entries get | |
2081 | -1. */ | |
2082 | if (h->root.got.offset == 2) | |
2083 | { | |
2084 | if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx) | |
2085 | hsd->low = (struct elf_link_hash_entry *) h; | |
2086 | h->root.dynindx = hsd->max_unref_got_dynindx++; | |
2087 | } | |
2088 | else if (h->root.got.offset != 1) | |
b49e97c9 TS |
2089 | h->root.dynindx = hsd->max_non_got_dynindx++; |
2090 | else | |
2091 | { | |
2092 | h->root.dynindx = --hsd->min_got_dynindx; | |
2093 | hsd->low = (struct elf_link_hash_entry *) h; | |
2094 | } | |
2095 | ||
b34976b6 | 2096 | return TRUE; |
b49e97c9 TS |
2097 | } |
2098 | ||
2099 | /* If H is a symbol that needs a global GOT entry, but has a dynamic | |
2100 | symbol table index lower than any we've seen to date, record it for | |
2101 | posterity. */ | |
2102 | ||
b34976b6 | 2103 | static bfd_boolean |
9719ad41 RS |
2104 | mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h, |
2105 | bfd *abfd, struct bfd_link_info *info, | |
2106 | struct mips_got_info *g) | |
b49e97c9 | 2107 | { |
f4416af6 AO |
2108 | struct mips_got_entry entry, **loc; |
2109 | ||
b49e97c9 TS |
2110 | /* A global symbol in the GOT must also be in the dynamic symbol |
2111 | table. */ | |
7c5fcef7 L |
2112 | if (h->dynindx == -1) |
2113 | { | |
2114 | switch (ELF_ST_VISIBILITY (h->other)) | |
2115 | { | |
2116 | case STV_INTERNAL: | |
2117 | case STV_HIDDEN: | |
b34976b6 | 2118 | _bfd_mips_elf_hide_symbol (info, h, TRUE); |
7c5fcef7 L |
2119 | break; |
2120 | } | |
c152c796 | 2121 | if (!bfd_elf_link_record_dynamic_symbol (info, h)) |
b34976b6 | 2122 | return FALSE; |
7c5fcef7 | 2123 | } |
b49e97c9 | 2124 | |
f4416af6 AO |
2125 | entry.abfd = abfd; |
2126 | entry.symndx = -1; | |
2127 | entry.d.h = (struct mips_elf_link_hash_entry *) h; | |
2128 | ||
2129 | loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry, | |
2130 | INSERT); | |
2131 | ||
b49e97c9 TS |
2132 | /* If we've already marked this entry as needing GOT space, we don't |
2133 | need to do it again. */ | |
f4416af6 AO |
2134 | if (*loc) |
2135 | return TRUE; | |
2136 | ||
2137 | *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry); | |
2138 | ||
2139 | if (! *loc) | |
2140 | return FALSE; | |
143d77c5 | 2141 | |
f4416af6 AO |
2142 | entry.gotidx = -1; |
2143 | memcpy (*loc, &entry, sizeof entry); | |
2144 | ||
b49e97c9 | 2145 | if (h->got.offset != MINUS_ONE) |
b34976b6 | 2146 | return TRUE; |
b49e97c9 TS |
2147 | |
2148 | /* By setting this to a value other than -1, we are indicating that | |
2149 | there needs to be a GOT entry for H. Avoid using zero, as the | |
2150 | generic ELF copy_indirect_symbol tests for <= 0. */ | |
2151 | h->got.offset = 1; | |
2152 | ||
b34976b6 | 2153 | return TRUE; |
b49e97c9 | 2154 | } |
f4416af6 AO |
2155 | |
2156 | /* Reserve space in G for a GOT entry containing the value of symbol | |
2157 | SYMNDX in input bfd ABDF, plus ADDEND. */ | |
2158 | ||
2159 | static bfd_boolean | |
9719ad41 RS |
2160 | mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend, |
2161 | struct mips_got_info *g) | |
f4416af6 AO |
2162 | { |
2163 | struct mips_got_entry entry, **loc; | |
2164 | ||
2165 | entry.abfd = abfd; | |
2166 | entry.symndx = symndx; | |
2167 | entry.d.addend = addend; | |
2168 | loc = (struct mips_got_entry **) | |
2169 | htab_find_slot (g->got_entries, &entry, INSERT); | |
2170 | ||
2171 | if (*loc) | |
2172 | return TRUE; | |
2173 | ||
2174 | entry.gotidx = g->local_gotno++; | |
2175 | ||
2176 | *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry); | |
2177 | ||
2178 | if (! *loc) | |
2179 | return FALSE; | |
143d77c5 | 2180 | |
f4416af6 AO |
2181 | memcpy (*loc, &entry, sizeof entry); |
2182 | ||
2183 | return TRUE; | |
2184 | } | |
2185 | \f | |
2186 | /* Compute the hash value of the bfd in a bfd2got hash entry. */ | |
2187 | ||
2188 | static hashval_t | |
9719ad41 | 2189 | mips_elf_bfd2got_entry_hash (const void *entry_) |
f4416af6 AO |
2190 | { |
2191 | const struct mips_elf_bfd2got_hash *entry | |
2192 | = (struct mips_elf_bfd2got_hash *)entry_; | |
2193 | ||
2194 | return entry->bfd->id; | |
2195 | } | |
2196 | ||
2197 | /* Check whether two hash entries have the same bfd. */ | |
2198 | ||
2199 | static int | |
9719ad41 | 2200 | mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2) |
f4416af6 AO |
2201 | { |
2202 | const struct mips_elf_bfd2got_hash *e1 | |
2203 | = (const struct mips_elf_bfd2got_hash *)entry1; | |
2204 | const struct mips_elf_bfd2got_hash *e2 | |
2205 | = (const struct mips_elf_bfd2got_hash *)entry2; | |
2206 | ||
2207 | return e1->bfd == e2->bfd; | |
2208 | } | |
2209 | ||
0b25d3e6 | 2210 | /* In a multi-got link, determine the GOT to be used for IBDF. G must |
f4416af6 AO |
2211 | be the master GOT data. */ |
2212 | ||
2213 | static struct mips_got_info * | |
9719ad41 | 2214 | mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd) |
f4416af6 AO |
2215 | { |
2216 | struct mips_elf_bfd2got_hash e, *p; | |
2217 | ||
2218 | if (! g->bfd2got) | |
2219 | return g; | |
2220 | ||
2221 | e.bfd = ibfd; | |
9719ad41 | 2222 | p = htab_find (g->bfd2got, &e); |
f4416af6 AO |
2223 | return p ? p->g : NULL; |
2224 | } | |
2225 | ||
2226 | /* Create one separate got for each bfd that has entries in the global | |
2227 | got, such that we can tell how many local and global entries each | |
2228 | bfd requires. */ | |
2229 | ||
2230 | static int | |
9719ad41 | 2231 | mips_elf_make_got_per_bfd (void **entryp, void *p) |
f4416af6 AO |
2232 | { |
2233 | struct mips_got_entry *entry = (struct mips_got_entry *)*entryp; | |
2234 | struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p; | |
2235 | htab_t bfd2got = arg->bfd2got; | |
2236 | struct mips_got_info *g; | |
2237 | struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot; | |
2238 | void **bfdgotp; | |
143d77c5 | 2239 | |
f4416af6 AO |
2240 | /* Find the got_info for this GOT entry's input bfd. Create one if |
2241 | none exists. */ | |
2242 | bfdgot_entry.bfd = entry->abfd; | |
2243 | bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT); | |
2244 | bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp; | |
2245 | ||
2246 | if (bfdgot != NULL) | |
2247 | g = bfdgot->g; | |
2248 | else | |
2249 | { | |
2250 | bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc | |
2251 | (arg->obfd, sizeof (struct mips_elf_bfd2got_hash)); | |
2252 | ||
2253 | if (bfdgot == NULL) | |
2254 | { | |
2255 | arg->obfd = 0; | |
2256 | return 0; | |
2257 | } | |
2258 | ||
2259 | *bfdgotp = bfdgot; | |
2260 | ||
2261 | bfdgot->bfd = entry->abfd; | |
2262 | bfdgot->g = g = (struct mips_got_info *) | |
2263 | bfd_alloc (arg->obfd, sizeof (struct mips_got_info)); | |
2264 | if (g == NULL) | |
2265 | { | |
2266 | arg->obfd = 0; | |
2267 | return 0; | |
2268 | } | |
2269 | ||
2270 | g->global_gotsym = NULL; | |
2271 | g->global_gotno = 0; | |
2272 | g->local_gotno = 0; | |
2273 | g->assigned_gotno = -1; | |
2274 | g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash, | |
9719ad41 | 2275 | mips_elf_multi_got_entry_eq, NULL); |
f4416af6 AO |
2276 | if (g->got_entries == NULL) |
2277 | { | |
2278 | arg->obfd = 0; | |
2279 | return 0; | |
2280 | } | |
2281 | ||
2282 | g->bfd2got = NULL; | |
2283 | g->next = NULL; | |
2284 | } | |
2285 | ||
2286 | /* Insert the GOT entry in the bfd's got entry hash table. */ | |
2287 | entryp = htab_find_slot (g->got_entries, entry, INSERT); | |
2288 | if (*entryp != NULL) | |
2289 | return 1; | |
143d77c5 | 2290 | |
f4416af6 AO |
2291 | *entryp = entry; |
2292 | ||
2293 | if (entry->symndx >= 0 || entry->d.h->forced_local) | |
2294 | ++g->local_gotno; | |
2295 | else | |
2296 | ++g->global_gotno; | |
2297 | ||
2298 | return 1; | |
2299 | } | |
2300 | ||
2301 | /* Attempt to merge gots of different input bfds. Try to use as much | |
2302 | as possible of the primary got, since it doesn't require explicit | |
2303 | dynamic relocations, but don't use bfds that would reference global | |
2304 | symbols out of the addressable range. Failing the primary got, | |
2305 | attempt to merge with the current got, or finish the current got | |
2306 | and then make make the new got current. */ | |
2307 | ||
2308 | static int | |
9719ad41 | 2309 | mips_elf_merge_gots (void **bfd2got_, void *p) |
f4416af6 AO |
2310 | { |
2311 | struct mips_elf_bfd2got_hash *bfd2got | |
2312 | = (struct mips_elf_bfd2got_hash *)*bfd2got_; | |
2313 | struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p; | |
2314 | unsigned int lcount = bfd2got->g->local_gotno; | |
2315 | unsigned int gcount = bfd2got->g->global_gotno; | |
2316 | unsigned int maxcnt = arg->max_count; | |
143d77c5 | 2317 | |
f4416af6 AO |
2318 | /* If we don't have a primary GOT and this is not too big, use it as |
2319 | a starting point for the primary GOT. */ | |
2320 | if (! arg->primary && lcount + gcount <= maxcnt) | |
2321 | { | |
2322 | arg->primary = bfd2got->g; | |
2323 | arg->primary_count = lcount + gcount; | |
2324 | } | |
2325 | /* If it looks like we can merge this bfd's entries with those of | |
2326 | the primary, merge them. The heuristics is conservative, but we | |
2327 | don't have to squeeze it too hard. */ | |
2328 | else if (arg->primary | |
2329 | && (arg->primary_count + lcount + gcount) <= maxcnt) | |
2330 | { | |
2331 | struct mips_got_info *g = bfd2got->g; | |
2332 | int old_lcount = arg->primary->local_gotno; | |
2333 | int old_gcount = arg->primary->global_gotno; | |
2334 | ||
2335 | bfd2got->g = arg->primary; | |
2336 | ||
2337 | htab_traverse (g->got_entries, | |
2338 | mips_elf_make_got_per_bfd, | |
2339 | arg); | |
2340 | if (arg->obfd == NULL) | |
2341 | return 0; | |
2342 | ||
2343 | htab_delete (g->got_entries); | |
2344 | /* We don't have to worry about releasing memory of the actual | |
2345 | got entries, since they're all in the master got_entries hash | |
2346 | table anyway. */ | |
2347 | ||
caec41ff | 2348 | BFD_ASSERT (old_lcount + lcount >= arg->primary->local_gotno); |
f4416af6 AO |
2349 | BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno); |
2350 | ||
2351 | arg->primary_count = arg->primary->local_gotno | |
2352 | + arg->primary->global_gotno; | |
2353 | } | |
2354 | /* If we can merge with the last-created got, do it. */ | |
2355 | else if (arg->current | |
2356 | && arg->current_count + lcount + gcount <= maxcnt) | |
2357 | { | |
2358 | struct mips_got_info *g = bfd2got->g; | |
2359 | int old_lcount = arg->current->local_gotno; | |
2360 | int old_gcount = arg->current->global_gotno; | |
2361 | ||
2362 | bfd2got->g = arg->current; | |
2363 | ||
2364 | htab_traverse (g->got_entries, | |
2365 | mips_elf_make_got_per_bfd, | |
2366 | arg); | |
2367 | if (arg->obfd == NULL) | |
2368 | return 0; | |
2369 | ||
2370 | htab_delete (g->got_entries); | |
2371 | ||
caec41ff | 2372 | BFD_ASSERT (old_lcount + lcount >= arg->current->local_gotno); |
f4416af6 AO |
2373 | BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno); |
2374 | ||
2375 | arg->current_count = arg->current->local_gotno | |
2376 | + arg->current->global_gotno; | |
2377 | } | |
2378 | /* Well, we couldn't merge, so create a new GOT. Don't check if it | |
2379 | fits; if it turns out that it doesn't, we'll get relocation | |
2380 | overflows anyway. */ | |
2381 | else | |
2382 | { | |
2383 | bfd2got->g->next = arg->current; | |
2384 | arg->current = bfd2got->g; | |
143d77c5 | 2385 | |
f4416af6 AO |
2386 | arg->current_count = lcount + gcount; |
2387 | } | |
2388 | ||
2389 | return 1; | |
2390 | } | |
2391 | ||
2392 | /* If passed a NULL mips_got_info in the argument, set the marker used | |
2393 | to tell whether a global symbol needs a got entry (in the primary | |
2394 | got) to the given VALUE. | |
2395 | ||
2396 | If passed a pointer G to a mips_got_info in the argument (it must | |
2397 | not be the primary GOT), compute the offset from the beginning of | |
2398 | the (primary) GOT section to the entry in G corresponding to the | |
2399 | global symbol. G's assigned_gotno must contain the index of the | |
2400 | first available global GOT entry in G. VALUE must contain the size | |
2401 | of a GOT entry in bytes. For each global GOT entry that requires a | |
2402 | dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is | |
4cc11e76 | 2403 | marked as not eligible for lazy resolution through a function |
f4416af6 AO |
2404 | stub. */ |
2405 | static int | |
9719ad41 | 2406 | mips_elf_set_global_got_offset (void **entryp, void *p) |
f4416af6 AO |
2407 | { |
2408 | struct mips_got_entry *entry = (struct mips_got_entry *)*entryp; | |
2409 | struct mips_elf_set_global_got_offset_arg *arg | |
2410 | = (struct mips_elf_set_global_got_offset_arg *)p; | |
2411 | struct mips_got_info *g = arg->g; | |
2412 | ||
2413 | if (entry->abfd != NULL && entry->symndx == -1 | |
2414 | && entry->d.h->root.dynindx != -1) | |
2415 | { | |
2416 | if (g) | |
2417 | { | |
2418 | BFD_ASSERT (g->global_gotsym == NULL); | |
2419 | ||
2420 | entry->gotidx = arg->value * (long) g->assigned_gotno++; | |
f4416af6 AO |
2421 | if (arg->info->shared |
2422 | || (elf_hash_table (arg->info)->dynamic_sections_created | |
2423 | && ((entry->d.h->root.elf_link_hash_flags | |
2424 | & ELF_LINK_HASH_DEF_DYNAMIC) != 0) | |
2425 | && ((entry->d.h->root.elf_link_hash_flags | |
2426 | & ELF_LINK_HASH_DEF_REGULAR) == 0))) | |
2427 | ++arg->needed_relocs; | |
2428 | } | |
2429 | else | |
2430 | entry->d.h->root.got.offset = arg->value; | |
2431 | } | |
2432 | ||
2433 | return 1; | |
2434 | } | |
2435 | ||
0626d451 RS |
2436 | /* Mark any global symbols referenced in the GOT we are iterating over |
2437 | as inelligible for lazy resolution stubs. */ | |
2438 | static int | |
9719ad41 | 2439 | mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED) |
0626d451 RS |
2440 | { |
2441 | struct mips_got_entry *entry = (struct mips_got_entry *)*entryp; | |
2442 | ||
2443 | if (entry->abfd != NULL | |
2444 | && entry->symndx == -1 | |
2445 | && entry->d.h->root.dynindx != -1) | |
2446 | entry->d.h->no_fn_stub = TRUE; | |
2447 | ||
2448 | return 1; | |
2449 | } | |
2450 | ||
f4416af6 AO |
2451 | /* Follow indirect and warning hash entries so that each got entry |
2452 | points to the final symbol definition. P must point to a pointer | |
2453 | to the hash table we're traversing. Since this traversal may | |
2454 | modify the hash table, we set this pointer to NULL to indicate | |
2455 | we've made a potentially-destructive change to the hash table, so | |
2456 | the traversal must be restarted. */ | |
2457 | static int | |
9719ad41 | 2458 | mips_elf_resolve_final_got_entry (void **entryp, void *p) |
f4416af6 AO |
2459 | { |
2460 | struct mips_got_entry *entry = (struct mips_got_entry *)*entryp; | |
2461 | htab_t got_entries = *(htab_t *)p; | |
2462 | ||
2463 | if (entry->abfd != NULL && entry->symndx == -1) | |
2464 | { | |
2465 | struct mips_elf_link_hash_entry *h = entry->d.h; | |
2466 | ||
2467 | while (h->root.root.type == bfd_link_hash_indirect | |
2468 | || h->root.root.type == bfd_link_hash_warning) | |
2469 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | |
2470 | ||
2471 | if (entry->d.h == h) | |
2472 | return 1; | |
143d77c5 | 2473 | |
f4416af6 AO |
2474 | entry->d.h = h; |
2475 | ||
2476 | /* If we can't find this entry with the new bfd hash, re-insert | |
2477 | it, and get the traversal restarted. */ | |
2478 | if (! htab_find (got_entries, entry)) | |
2479 | { | |
2480 | htab_clear_slot (got_entries, entryp); | |
2481 | entryp = htab_find_slot (got_entries, entry, INSERT); | |
2482 | if (! *entryp) | |
2483 | *entryp = entry; | |
2484 | /* Abort the traversal, since the whole table may have | |
2485 | moved, and leave it up to the parent to restart the | |
2486 | process. */ | |
2487 | *(htab_t *)p = NULL; | |
2488 | return 0; | |
2489 | } | |
2490 | /* We might want to decrement the global_gotno count, but it's | |
2491 | either too early or too late for that at this point. */ | |
2492 | } | |
143d77c5 | 2493 | |
f4416af6 AO |
2494 | return 1; |
2495 | } | |
2496 | ||
2497 | /* Turn indirect got entries in a got_entries table into their final | |
2498 | locations. */ | |
2499 | static void | |
9719ad41 | 2500 | mips_elf_resolve_final_got_entries (struct mips_got_info *g) |
f4416af6 AO |
2501 | { |
2502 | htab_t got_entries; | |
2503 | ||
2504 | do | |
2505 | { | |
2506 | got_entries = g->got_entries; | |
2507 | ||
2508 | htab_traverse (got_entries, | |
2509 | mips_elf_resolve_final_got_entry, | |
2510 | &got_entries); | |
2511 | } | |
2512 | while (got_entries == NULL); | |
2513 | } | |
2514 | ||
2515 | /* Return the offset of an input bfd IBFD's GOT from the beginning of | |
2516 | the primary GOT. */ | |
2517 | static bfd_vma | |
9719ad41 | 2518 | mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd) |
f4416af6 AO |
2519 | { |
2520 | if (g->bfd2got == NULL) | |
2521 | return 0; | |
2522 | ||
2523 | g = mips_elf_got_for_ibfd (g, ibfd); | |
2524 | if (! g) | |
2525 | return 0; | |
2526 | ||
2527 | BFD_ASSERT (g->next); | |
2528 | ||
2529 | g = g->next; | |
143d77c5 | 2530 | |
f4416af6 AO |
2531 | return (g->local_gotno + g->global_gotno) * MIPS_ELF_GOT_SIZE (abfd); |
2532 | } | |
2533 | ||
2534 | /* Turn a single GOT that is too big for 16-bit addressing into | |
2535 | a sequence of GOTs, each one 16-bit addressable. */ | |
2536 | ||
2537 | static bfd_boolean | |
9719ad41 RS |
2538 | mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info, |
2539 | struct mips_got_info *g, asection *got, | |
2540 | bfd_size_type pages) | |
f4416af6 AO |
2541 | { |
2542 | struct mips_elf_got_per_bfd_arg got_per_bfd_arg; | |
2543 | struct mips_elf_set_global_got_offset_arg set_got_offset_arg; | |
2544 | struct mips_got_info *gg; | |
2545 | unsigned int assign; | |
2546 | ||
2547 | g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash, | |
9719ad41 | 2548 | mips_elf_bfd2got_entry_eq, NULL); |
f4416af6 AO |
2549 | if (g->bfd2got == NULL) |
2550 | return FALSE; | |
2551 | ||
2552 | got_per_bfd_arg.bfd2got = g->bfd2got; | |
2553 | got_per_bfd_arg.obfd = abfd; | |
2554 | got_per_bfd_arg.info = info; | |
2555 | ||
2556 | /* Count how many GOT entries each input bfd requires, creating a | |
2557 | map from bfd to got info while at that. */ | |
2558 | mips_elf_resolve_final_got_entries (g); | |
2559 | htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg); | |
2560 | if (got_per_bfd_arg.obfd == NULL) | |
2561 | return FALSE; | |
2562 | ||
2563 | got_per_bfd_arg.current = NULL; | |
2564 | got_per_bfd_arg.primary = NULL; | |
2565 | /* Taking out PAGES entries is a worst-case estimate. We could | |
2566 | compute the maximum number of pages that each separate input bfd | |
2567 | uses, but it's probably not worth it. */ | |
2568 | got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (abfd) | |
2569 | / MIPS_ELF_GOT_SIZE (abfd)) | |
2570 | - MIPS_RESERVED_GOTNO - pages); | |
2571 | ||
2572 | /* Try to merge the GOTs of input bfds together, as long as they | |
2573 | don't seem to exceed the maximum GOT size, choosing one of them | |
2574 | to be the primary GOT. */ | |
2575 | htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg); | |
2576 | if (got_per_bfd_arg.obfd == NULL) | |
2577 | return FALSE; | |
2578 | ||
2579 | /* If we find any suitable primary GOT, create an empty one. */ | |
2580 | if (got_per_bfd_arg.primary == NULL) | |
2581 | { | |
2582 | g->next = (struct mips_got_info *) | |
2583 | bfd_alloc (abfd, sizeof (struct mips_got_info)); | |
2584 | if (g->next == NULL) | |
2585 | return FALSE; | |
2586 | ||
2587 | g->next->global_gotsym = NULL; | |
2588 | g->next->global_gotno = 0; | |
2589 | g->next->local_gotno = 0; | |
2590 | g->next->assigned_gotno = 0; | |
2591 | g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash, | |
2592 | mips_elf_multi_got_entry_eq, | |
9719ad41 | 2593 | NULL); |
f4416af6 AO |
2594 | if (g->next->got_entries == NULL) |
2595 | return FALSE; | |
2596 | g->next->bfd2got = NULL; | |
2597 | } | |
2598 | else | |
2599 | g->next = got_per_bfd_arg.primary; | |
2600 | g->next->next = got_per_bfd_arg.current; | |
2601 | ||
2602 | /* GG is now the master GOT, and G is the primary GOT. */ | |
2603 | gg = g; | |
2604 | g = g->next; | |
2605 | ||
2606 | /* Map the output bfd to the primary got. That's what we're going | |
2607 | to use for bfds that use GOT16 or GOT_PAGE relocations that we | |
2608 | didn't mark in check_relocs, and we want a quick way to find it. | |
2609 | We can't just use gg->next because we're going to reverse the | |
2610 | list. */ | |
2611 | { | |
2612 | struct mips_elf_bfd2got_hash *bfdgot; | |
2613 | void **bfdgotp; | |
143d77c5 | 2614 | |
f4416af6 AO |
2615 | bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc |
2616 | (abfd, sizeof (struct mips_elf_bfd2got_hash)); | |
2617 | ||
2618 | if (bfdgot == NULL) | |
2619 | return FALSE; | |
2620 | ||
2621 | bfdgot->bfd = abfd; | |
2622 | bfdgot->g = g; | |
2623 | bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT); | |
2624 | ||
2625 | BFD_ASSERT (*bfdgotp == NULL); | |
2626 | *bfdgotp = bfdgot; | |
2627 | } | |
2628 | ||
2629 | /* The IRIX dynamic linker requires every symbol that is referenced | |
2630 | in a dynamic relocation to be present in the primary GOT, so | |
2631 | arrange for them to appear after those that are actually | |
2632 | referenced. | |
2633 | ||
2634 | GNU/Linux could very well do without it, but it would slow down | |
2635 | the dynamic linker, since it would have to resolve every dynamic | |
2636 | symbol referenced in other GOTs more than once, without help from | |
2637 | the cache. Also, knowing that every external symbol has a GOT | |
2638 | helps speed up the resolution of local symbols too, so GNU/Linux | |
2639 | follows IRIX's practice. | |
143d77c5 | 2640 | |
f4416af6 AO |
2641 | The number 2 is used by mips_elf_sort_hash_table_f to count |
2642 | global GOT symbols that are unreferenced in the primary GOT, with | |
2643 | an initial dynamic index computed from gg->assigned_gotno, where | |
2644 | the number of unreferenced global entries in the primary GOT is | |
2645 | preserved. */ | |
2646 | if (1) | |
2647 | { | |
2648 | gg->assigned_gotno = gg->global_gotno - g->global_gotno; | |
2649 | g->global_gotno = gg->global_gotno; | |
2650 | set_got_offset_arg.value = 2; | |
2651 | } | |
2652 | else | |
2653 | { | |
2654 | /* This could be used for dynamic linkers that don't optimize | |
2655 | symbol resolution while applying relocations so as to use | |
2656 | primary GOT entries or assuming the symbol is locally-defined. | |
2657 | With this code, we assign lower dynamic indices to global | |
2658 | symbols that are not referenced in the primary GOT, so that | |
2659 | their entries can be omitted. */ | |
2660 | gg->assigned_gotno = 0; | |
2661 | set_got_offset_arg.value = -1; | |
2662 | } | |
2663 | ||
2664 | /* Reorder dynamic symbols as described above (which behavior | |
2665 | depends on the setting of VALUE). */ | |
2666 | set_got_offset_arg.g = NULL; | |
2667 | htab_traverse (gg->got_entries, mips_elf_set_global_got_offset, | |
2668 | &set_got_offset_arg); | |
2669 | set_got_offset_arg.value = 1; | |
2670 | htab_traverse (g->got_entries, mips_elf_set_global_got_offset, | |
2671 | &set_got_offset_arg); | |
2672 | if (! mips_elf_sort_hash_table (info, 1)) | |
2673 | return FALSE; | |
2674 | ||
2675 | /* Now go through the GOTs assigning them offset ranges. | |
2676 | [assigned_gotno, local_gotno[ will be set to the range of local | |
2677 | entries in each GOT. We can then compute the end of a GOT by | |
2678 | adding local_gotno to global_gotno. We reverse the list and make | |
2679 | it circular since then we'll be able to quickly compute the | |
2680 | beginning of a GOT, by computing the end of its predecessor. To | |
2681 | avoid special cases for the primary GOT, while still preserving | |
2682 | assertions that are valid for both single- and multi-got links, | |
2683 | we arrange for the main got struct to have the right number of | |
2684 | global entries, but set its local_gotno such that the initial | |
2685 | offset of the primary GOT is zero. Remember that the primary GOT | |
2686 | will become the last item in the circular linked list, so it | |
2687 | points back to the master GOT. */ | |
2688 | gg->local_gotno = -g->global_gotno; | |
2689 | gg->global_gotno = g->global_gotno; | |
2690 | assign = 0; | |
2691 | gg->next = gg; | |
2692 | ||
2693 | do | |
2694 | { | |
2695 | struct mips_got_info *gn; | |
2696 | ||
2697 | assign += MIPS_RESERVED_GOTNO; | |
2698 | g->assigned_gotno = assign; | |
2699 | g->local_gotno += assign + pages; | |
2700 | assign = g->local_gotno + g->global_gotno; | |
2701 | ||
2702 | /* Take g out of the direct list, and push it onto the reversed | |
2703 | list that gg points to. */ | |
2704 | gn = g->next; | |
2705 | g->next = gg->next; | |
2706 | gg->next = g; | |
2707 | g = gn; | |
0626d451 RS |
2708 | |
2709 | /* Mark global symbols in every non-primary GOT as ineligible for | |
2710 | stubs. */ | |
2711 | if (g) | |
2712 | htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL); | |
f4416af6 AO |
2713 | } |
2714 | while (g); | |
2715 | ||
2716 | got->_raw_size = (gg->next->local_gotno | |
2717 | + gg->next->global_gotno) * MIPS_ELF_GOT_SIZE (abfd); | |
143d77c5 | 2718 | |
f4416af6 AO |
2719 | return TRUE; |
2720 | } | |
143d77c5 | 2721 | |
b49e97c9 TS |
2722 | \f |
2723 | /* Returns the first relocation of type r_type found, beginning with | |
2724 | RELOCATION. RELEND is one-past-the-end of the relocation table. */ | |
2725 | ||
2726 | static const Elf_Internal_Rela * | |
9719ad41 RS |
2727 | mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type, |
2728 | const Elf_Internal_Rela *relocation, | |
2729 | const Elf_Internal_Rela *relend) | |
b49e97c9 TS |
2730 | { |
2731 | /* According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must be | |
2732 | immediately following. However, for the IRIX6 ABI, the next | |
2733 | relocation may be a composed relocation consisting of several | |
2734 | relocations for the same address. In that case, the R_MIPS_LO16 | |
2735 | relocation may occur as one of these. We permit a similar | |
2736 | extension in general, as that is useful for GCC. */ | |
2737 | while (relocation < relend) | |
2738 | { | |
2739 | if (ELF_R_TYPE (abfd, relocation->r_info) == r_type) | |
2740 | return relocation; | |
2741 | ||
2742 | ++relocation; | |
2743 | } | |
2744 | ||
2745 | /* We didn't find it. */ | |
2746 | bfd_set_error (bfd_error_bad_value); | |
2747 | return NULL; | |
2748 | } | |
2749 | ||
2750 | /* Return whether a relocation is against a local symbol. */ | |
2751 | ||
b34976b6 | 2752 | static bfd_boolean |
9719ad41 RS |
2753 | mips_elf_local_relocation_p (bfd *input_bfd, |
2754 | const Elf_Internal_Rela *relocation, | |
2755 | asection **local_sections, | |
2756 | bfd_boolean check_forced) | |
b49e97c9 TS |
2757 | { |
2758 | unsigned long r_symndx; | |
2759 | Elf_Internal_Shdr *symtab_hdr; | |
2760 | struct mips_elf_link_hash_entry *h; | |
2761 | size_t extsymoff; | |
2762 | ||
2763 | r_symndx = ELF_R_SYM (input_bfd, relocation->r_info); | |
2764 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | |
2765 | extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info; | |
2766 | ||
2767 | if (r_symndx < extsymoff) | |
b34976b6 | 2768 | return TRUE; |
b49e97c9 | 2769 | if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL) |
b34976b6 | 2770 | return TRUE; |
b49e97c9 TS |
2771 | |
2772 | if (check_forced) | |
2773 | { | |
2774 | /* Look up the hash table to check whether the symbol | |
2775 | was forced local. */ | |
2776 | h = (struct mips_elf_link_hash_entry *) | |
2777 | elf_sym_hashes (input_bfd) [r_symndx - extsymoff]; | |
2778 | /* Find the real hash-table entry for this symbol. */ | |
2779 | while (h->root.root.type == bfd_link_hash_indirect | |
2780 | || h->root.root.type == bfd_link_hash_warning) | |
2781 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | |
2782 | if ((h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0) | |
b34976b6 | 2783 | return TRUE; |
b49e97c9 TS |
2784 | } |
2785 | ||
b34976b6 | 2786 | return FALSE; |
b49e97c9 TS |
2787 | } |
2788 | \f | |
2789 | /* Sign-extend VALUE, which has the indicated number of BITS. */ | |
2790 | ||
a7ebbfdf | 2791 | bfd_vma |
9719ad41 | 2792 | _bfd_mips_elf_sign_extend (bfd_vma value, int bits) |
b49e97c9 TS |
2793 | { |
2794 | if (value & ((bfd_vma) 1 << (bits - 1))) | |
2795 | /* VALUE is negative. */ | |
2796 | value |= ((bfd_vma) - 1) << bits; | |
2797 | ||
2798 | return value; | |
2799 | } | |
2800 | ||
2801 | /* Return non-zero if the indicated VALUE has overflowed the maximum | |
4cc11e76 | 2802 | range expressible by a signed number with the indicated number of |
b49e97c9 TS |
2803 | BITS. */ |
2804 | ||
b34976b6 | 2805 | static bfd_boolean |
9719ad41 | 2806 | mips_elf_overflow_p (bfd_vma value, int bits) |
b49e97c9 TS |
2807 | { |
2808 | bfd_signed_vma svalue = (bfd_signed_vma) value; | |
2809 | ||
2810 | if (svalue > (1 << (bits - 1)) - 1) | |
2811 | /* The value is too big. */ | |
b34976b6 | 2812 | return TRUE; |
b49e97c9 TS |
2813 | else if (svalue < -(1 << (bits - 1))) |
2814 | /* The value is too small. */ | |
b34976b6 | 2815 | return TRUE; |
b49e97c9 TS |
2816 | |
2817 | /* All is well. */ | |
b34976b6 | 2818 | return FALSE; |
b49e97c9 TS |
2819 | } |
2820 | ||
2821 | /* Calculate the %high function. */ | |
2822 | ||
2823 | static bfd_vma | |
9719ad41 | 2824 | mips_elf_high (bfd_vma value) |
b49e97c9 TS |
2825 | { |
2826 | return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff; | |
2827 | } | |
2828 | ||
2829 | /* Calculate the %higher function. */ | |
2830 | ||
2831 | static bfd_vma | |
9719ad41 | 2832 | mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED) |
b49e97c9 TS |
2833 | { |
2834 | #ifdef BFD64 | |
2835 | return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff; | |
2836 | #else | |
2837 | abort (); | |
2838 | return (bfd_vma) -1; | |
2839 | #endif | |
2840 | } | |
2841 | ||
2842 | /* Calculate the %highest function. */ | |
2843 | ||
2844 | static bfd_vma | |
9719ad41 | 2845 | mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED) |
b49e97c9 TS |
2846 | { |
2847 | #ifdef BFD64 | |
b15e6682 | 2848 | return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff; |
b49e97c9 TS |
2849 | #else |
2850 | abort (); | |
2851 | return (bfd_vma) -1; | |
2852 | #endif | |
2853 | } | |
2854 | \f | |
2855 | /* Create the .compact_rel section. */ | |
2856 | ||
b34976b6 | 2857 | static bfd_boolean |
9719ad41 RS |
2858 | mips_elf_create_compact_rel_section |
2859 | (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED) | |
b49e97c9 TS |
2860 | { |
2861 | flagword flags; | |
2862 | register asection *s; | |
2863 | ||
2864 | if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL) | |
2865 | { | |
2866 | flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED | |
2867 | | SEC_READONLY); | |
2868 | ||
2869 | s = bfd_make_section (abfd, ".compact_rel"); | |
2870 | if (s == NULL | |
2871 | || ! bfd_set_section_flags (abfd, s, flags) | |
2872 | || ! bfd_set_section_alignment (abfd, s, | |
2873 | MIPS_ELF_LOG_FILE_ALIGN (abfd))) | |
b34976b6 | 2874 | return FALSE; |
b49e97c9 TS |
2875 | |
2876 | s->_raw_size = sizeof (Elf32_External_compact_rel); | |
2877 | } | |
2878 | ||
b34976b6 | 2879 | return TRUE; |
b49e97c9 TS |
2880 | } |
2881 | ||
2882 | /* Create the .got section to hold the global offset table. */ | |
2883 | ||
b34976b6 | 2884 | static bfd_boolean |
9719ad41 RS |
2885 | mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info, |
2886 | bfd_boolean maybe_exclude) | |
b49e97c9 TS |
2887 | { |
2888 | flagword flags; | |
2889 | register asection *s; | |
2890 | struct elf_link_hash_entry *h; | |
14a793b2 | 2891 | struct bfd_link_hash_entry *bh; |
b49e97c9 TS |
2892 | struct mips_got_info *g; |
2893 | bfd_size_type amt; | |
2894 | ||
2895 | /* This function may be called more than once. */ | |
f4416af6 AO |
2896 | s = mips_elf_got_section (abfd, TRUE); |
2897 | if (s) | |
2898 | { | |
2899 | if (! maybe_exclude) | |
2900 | s->flags &= ~SEC_EXCLUDE; | |
2901 | return TRUE; | |
2902 | } | |
b49e97c9 TS |
2903 | |
2904 | flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | |
2905 | | SEC_LINKER_CREATED); | |
2906 | ||
f4416af6 AO |
2907 | if (maybe_exclude) |
2908 | flags |= SEC_EXCLUDE; | |
2909 | ||
72b4917c TS |
2910 | /* We have to use an alignment of 2**4 here because this is hardcoded |
2911 | in the function stub generation and in the linker script. */ | |
b49e97c9 TS |
2912 | s = bfd_make_section (abfd, ".got"); |
2913 | if (s == NULL | |
2914 | || ! bfd_set_section_flags (abfd, s, flags) | |
72b4917c | 2915 | || ! bfd_set_section_alignment (abfd, s, 4)) |
b34976b6 | 2916 | return FALSE; |
b49e97c9 TS |
2917 | |
2918 | /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the | |
2919 | linker script because we don't want to define the symbol if we | |
2920 | are not creating a global offset table. */ | |
14a793b2 | 2921 | bh = NULL; |
b49e97c9 TS |
2922 | if (! (_bfd_generic_link_add_one_symbol |
2923 | (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s, | |
9719ad41 | 2924 | 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh))) |
b34976b6 | 2925 | return FALSE; |
14a793b2 AM |
2926 | |
2927 | h = (struct elf_link_hash_entry *) bh; | |
b49e97c9 TS |
2928 | h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF; |
2929 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; | |
2930 | h->type = STT_OBJECT; | |
2931 | ||
2932 | if (info->shared | |
c152c796 | 2933 | && ! bfd_elf_link_record_dynamic_symbol (info, h)) |
b34976b6 | 2934 | return FALSE; |
b49e97c9 | 2935 | |
b49e97c9 | 2936 | amt = sizeof (struct mips_got_info); |
9719ad41 | 2937 | g = bfd_alloc (abfd, amt); |
b49e97c9 | 2938 | if (g == NULL) |
b34976b6 | 2939 | return FALSE; |
b49e97c9 | 2940 | g->global_gotsym = NULL; |
e3d54347 | 2941 | g->global_gotno = 0; |
b49e97c9 TS |
2942 | g->local_gotno = MIPS_RESERVED_GOTNO; |
2943 | g->assigned_gotno = MIPS_RESERVED_GOTNO; | |
f4416af6 AO |
2944 | g->bfd2got = NULL; |
2945 | g->next = NULL; | |
b15e6682 | 2946 | g->got_entries = htab_try_create (1, mips_elf_got_entry_hash, |
9719ad41 | 2947 | mips_elf_got_entry_eq, NULL); |
b15e6682 AO |
2948 | if (g->got_entries == NULL) |
2949 | return FALSE; | |
f0abc2a1 AM |
2950 | mips_elf_section_data (s)->u.got_info = g; |
2951 | mips_elf_section_data (s)->elf.this_hdr.sh_flags | |
b49e97c9 TS |
2952 | |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL; |
2953 | ||
b34976b6 | 2954 | return TRUE; |
b49e97c9 | 2955 | } |
b49e97c9 TS |
2956 | \f |
2957 | /* Calculate the value produced by the RELOCATION (which comes from | |
2958 | the INPUT_BFD). The ADDEND is the addend to use for this | |
2959 | RELOCATION; RELOCATION->R_ADDEND is ignored. | |
2960 | ||
2961 | The result of the relocation calculation is stored in VALUEP. | |
2962 | REQUIRE_JALXP indicates whether or not the opcode used with this | |
2963 | relocation must be JALX. | |
2964 | ||
2965 | This function returns bfd_reloc_continue if the caller need take no | |
2966 | further action regarding this relocation, bfd_reloc_notsupported if | |
2967 | something goes dramatically wrong, bfd_reloc_overflow if an | |
2968 | overflow occurs, and bfd_reloc_ok to indicate success. */ | |
2969 | ||
2970 | static bfd_reloc_status_type | |
9719ad41 RS |
2971 | mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd, |
2972 | asection *input_section, | |
2973 | struct bfd_link_info *info, | |
2974 | const Elf_Internal_Rela *relocation, | |
2975 | bfd_vma addend, reloc_howto_type *howto, | |
2976 | Elf_Internal_Sym *local_syms, | |
2977 | asection **local_sections, bfd_vma *valuep, | |
2978 | const char **namep, bfd_boolean *require_jalxp, | |
2979 | bfd_boolean save_addend) | |
b49e97c9 TS |
2980 | { |
2981 | /* The eventual value we will return. */ | |
2982 | bfd_vma value; | |
2983 | /* The address of the symbol against which the relocation is | |
2984 | occurring. */ | |
2985 | bfd_vma symbol = 0; | |
2986 | /* The final GP value to be used for the relocatable, executable, or | |
2987 | shared object file being produced. */ | |
2988 | bfd_vma gp = MINUS_ONE; | |
2989 | /* The place (section offset or address) of the storage unit being | |
2990 | relocated. */ | |
2991 | bfd_vma p; | |
2992 | /* The value of GP used to create the relocatable object. */ | |
2993 | bfd_vma gp0 = MINUS_ONE; | |
2994 | /* The offset into the global offset table at which the address of | |
2995 | the relocation entry symbol, adjusted by the addend, resides | |
2996 | during execution. */ | |
2997 | bfd_vma g = MINUS_ONE; | |
2998 | /* The section in which the symbol referenced by the relocation is | |
2999 | located. */ | |
3000 | asection *sec = NULL; | |
3001 | struct mips_elf_link_hash_entry *h = NULL; | |
b34976b6 | 3002 | /* TRUE if the symbol referred to by this relocation is a local |
b49e97c9 | 3003 | symbol. */ |
b34976b6 AM |
3004 | bfd_boolean local_p, was_local_p; |
3005 | /* TRUE if the symbol referred to by this relocation is "_gp_disp". */ | |
3006 | bfd_boolean gp_disp_p = FALSE; | |
b49e97c9 TS |
3007 | Elf_Internal_Shdr *symtab_hdr; |
3008 | size_t extsymoff; | |
3009 | unsigned long r_symndx; | |
3010 | int r_type; | |
b34976b6 | 3011 | /* TRUE if overflow occurred during the calculation of the |
b49e97c9 | 3012 | relocation value. */ |
b34976b6 AM |
3013 | bfd_boolean overflowed_p; |
3014 | /* TRUE if this relocation refers to a MIPS16 function. */ | |
3015 | bfd_boolean target_is_16_bit_code_p = FALSE; | |
b49e97c9 TS |
3016 | |
3017 | /* Parse the relocation. */ | |
3018 | r_symndx = ELF_R_SYM (input_bfd, relocation->r_info); | |
3019 | r_type = ELF_R_TYPE (input_bfd, relocation->r_info); | |
3020 | p = (input_section->output_section->vma | |
3021 | + input_section->output_offset | |
3022 | + relocation->r_offset); | |
3023 | ||
3024 | /* Assume that there will be no overflow. */ | |
b34976b6 | 3025 | overflowed_p = FALSE; |
b49e97c9 TS |
3026 | |
3027 | /* Figure out whether or not the symbol is local, and get the offset | |
3028 | used in the array of hash table entries. */ | |
3029 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | |
3030 | local_p = mips_elf_local_relocation_p (input_bfd, relocation, | |
b34976b6 | 3031 | local_sections, FALSE); |
bce03d3d | 3032 | was_local_p = local_p; |
b49e97c9 TS |
3033 | if (! elf_bad_symtab (input_bfd)) |
3034 | extsymoff = symtab_hdr->sh_info; | |
3035 | else | |
3036 | { | |
3037 | /* The symbol table does not follow the rule that local symbols | |
3038 | must come before globals. */ | |
3039 | extsymoff = 0; | |
3040 | } | |
3041 | ||
3042 | /* Figure out the value of the symbol. */ | |
3043 | if (local_p) | |
3044 | { | |
3045 | Elf_Internal_Sym *sym; | |
3046 | ||
3047 | sym = local_syms + r_symndx; | |
3048 | sec = local_sections[r_symndx]; | |
3049 | ||
3050 | symbol = sec->output_section->vma + sec->output_offset; | |
d4df96e6 L |
3051 | if (ELF_ST_TYPE (sym->st_info) != STT_SECTION |
3052 | || (sec->flags & SEC_MERGE)) | |
b49e97c9 | 3053 | symbol += sym->st_value; |
d4df96e6 L |
3054 | if ((sec->flags & SEC_MERGE) |
3055 | && ELF_ST_TYPE (sym->st_info) == STT_SECTION) | |
3056 | { | |
3057 | addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend); | |
3058 | addend -= symbol; | |
3059 | addend += sec->output_section->vma + sec->output_offset; | |
3060 | } | |
b49e97c9 TS |
3061 | |
3062 | /* MIPS16 text labels should be treated as odd. */ | |
3063 | if (sym->st_other == STO_MIPS16) | |
3064 | ++symbol; | |
3065 | ||
3066 | /* Record the name of this symbol, for our caller. */ | |
3067 | *namep = bfd_elf_string_from_elf_section (input_bfd, | |
3068 | symtab_hdr->sh_link, | |
3069 | sym->st_name); | |
3070 | if (*namep == '\0') | |
3071 | *namep = bfd_section_name (input_bfd, sec); | |
3072 | ||
3073 | target_is_16_bit_code_p = (sym->st_other == STO_MIPS16); | |
3074 | } | |
3075 | else | |
3076 | { | |
560e09e9 NC |
3077 | /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */ |
3078 | ||
b49e97c9 TS |
3079 | /* For global symbols we look up the symbol in the hash-table. */ |
3080 | h = ((struct mips_elf_link_hash_entry *) | |
3081 | elf_sym_hashes (input_bfd) [r_symndx - extsymoff]); | |
3082 | /* Find the real hash-table entry for this symbol. */ | |
3083 | while (h->root.root.type == bfd_link_hash_indirect | |
3084 | || h->root.root.type == bfd_link_hash_warning) | |
3085 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | |
3086 | ||
3087 | /* Record the name of this symbol, for our caller. */ | |
3088 | *namep = h->root.root.root.string; | |
3089 | ||
3090 | /* See if this is the special _gp_disp symbol. Note that such a | |
3091 | symbol must always be a global symbol. */ | |
560e09e9 | 3092 | if (strcmp (*namep, "_gp_disp") == 0 |
b49e97c9 TS |
3093 | && ! NEWABI_P (input_bfd)) |
3094 | { | |
3095 | /* Relocations against _gp_disp are permitted only with | |
3096 | R_MIPS_HI16 and R_MIPS_LO16 relocations. */ | |
3097 | if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16) | |
3098 | return bfd_reloc_notsupported; | |
3099 | ||
b34976b6 | 3100 | gp_disp_p = TRUE; |
b49e97c9 TS |
3101 | } |
3102 | /* If this symbol is defined, calculate its address. Note that | |
3103 | _gp_disp is a magic symbol, always implicitly defined by the | |
3104 | linker, so it's inappropriate to check to see whether or not | |
3105 | its defined. */ | |
3106 | else if ((h->root.root.type == bfd_link_hash_defined | |
3107 | || h->root.root.type == bfd_link_hash_defweak) | |
3108 | && h->root.root.u.def.section) | |
3109 | { | |
3110 | sec = h->root.root.u.def.section; | |
3111 | if (sec->output_section) | |
3112 | symbol = (h->root.root.u.def.value | |
3113 | + sec->output_section->vma | |
3114 | + sec->output_offset); | |
3115 | else | |
3116 | symbol = h->root.root.u.def.value; | |
3117 | } | |
3118 | else if (h->root.root.type == bfd_link_hash_undefweak) | |
3119 | /* We allow relocations against undefined weak symbols, giving | |
3120 | it the value zero, so that you can undefined weak functions | |
3121 | and check to see if they exist by looking at their | |
3122 | addresses. */ | |
3123 | symbol = 0; | |
59c2e50f | 3124 | else if (info->unresolved_syms_in_objects == RM_IGNORE |
b49e97c9 TS |
3125 | && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT) |
3126 | symbol = 0; | |
560e09e9 NC |
3127 | else if (strcmp (*namep, "_DYNAMIC_LINK") == 0 || |
3128 | strcmp (*namep, "_DYNAMIC_LINKING") == 0) | |
b49e97c9 TS |
3129 | { |
3130 | /* If this is a dynamic link, we should have created a | |
3131 | _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol | |
3132 | in in _bfd_mips_elf_create_dynamic_sections. | |
3133 | Otherwise, we should define the symbol with a value of 0. | |
3134 | FIXME: It should probably get into the symbol table | |
3135 | somehow as well. */ | |
3136 | BFD_ASSERT (! info->shared); | |
3137 | BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL); | |
3138 | symbol = 0; | |
3139 | } | |
3140 | else | |
3141 | { | |
3142 | if (! ((*info->callbacks->undefined_symbol) | |
3143 | (info, h->root.root.root.string, input_bfd, | |
3144 | input_section, relocation->r_offset, | |
59c2e50f L |
3145 | (info->unresolved_syms_in_objects == RM_GENERATE_ERROR) |
3146 | || ELF_ST_VISIBILITY (h->root.other)))) | |
b49e97c9 TS |
3147 | return bfd_reloc_undefined; |
3148 | symbol = 0; | |
3149 | } | |
3150 | ||
3151 | target_is_16_bit_code_p = (h->root.other == STO_MIPS16); | |
3152 | } | |
3153 | ||
3154 | /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we | |
3155 | need to redirect the call to the stub, unless we're already *in* | |
3156 | a stub. */ | |
1049f94e | 3157 | if (r_type != R_MIPS16_26 && !info->relocatable |
b49e97c9 TS |
3158 | && ((h != NULL && h->fn_stub != NULL) |
3159 | || (local_p && elf_tdata (input_bfd)->local_stubs != NULL | |
3160 | && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL)) | |
3161 | && !mips_elf_stub_section_p (input_bfd, input_section)) | |
3162 | { | |
3163 | /* This is a 32- or 64-bit call to a 16-bit function. We should | |
3164 | have already noticed that we were going to need the | |
3165 | stub. */ | |
3166 | if (local_p) | |
3167 | sec = elf_tdata (input_bfd)->local_stubs[r_symndx]; | |
3168 | else | |
3169 | { | |
3170 | BFD_ASSERT (h->need_fn_stub); | |
3171 | sec = h->fn_stub; | |
3172 | } | |
3173 | ||
3174 | symbol = sec->output_section->vma + sec->output_offset; | |
3175 | } | |
3176 | /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we | |
3177 | need to redirect the call to the stub. */ | |
1049f94e | 3178 | else if (r_type == R_MIPS16_26 && !info->relocatable |
b49e97c9 TS |
3179 | && h != NULL |
3180 | && (h->call_stub != NULL || h->call_fp_stub != NULL) | |
3181 | && !target_is_16_bit_code_p) | |
3182 | { | |
3183 | /* If both call_stub and call_fp_stub are defined, we can figure | |
3184 | out which one to use by seeing which one appears in the input | |
3185 | file. */ | |
3186 | if (h->call_stub != NULL && h->call_fp_stub != NULL) | |
3187 | { | |
3188 | asection *o; | |
3189 | ||
3190 | sec = NULL; | |
3191 | for (o = input_bfd->sections; o != NULL; o = o->next) | |
3192 | { | |
3193 | if (strncmp (bfd_get_section_name (input_bfd, o), | |
3194 | CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0) | |
3195 | { | |
3196 | sec = h->call_fp_stub; | |
3197 | break; | |
3198 | } | |
3199 | } | |
3200 | if (sec == NULL) | |
3201 | sec = h->call_stub; | |
3202 | } | |
3203 | else if (h->call_stub != NULL) | |
3204 | sec = h->call_stub; | |
3205 | else | |
3206 | sec = h->call_fp_stub; | |
3207 | ||
3208 | BFD_ASSERT (sec->_raw_size > 0); | |
3209 | symbol = sec->output_section->vma + sec->output_offset; | |
3210 | } | |
3211 | ||
3212 | /* Calls from 16-bit code to 32-bit code and vice versa require the | |
3213 | special jalx instruction. */ | |
1049f94e | 3214 | *require_jalxp = (!info->relocatable |
b49e97c9 TS |
3215 | && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p) |
3216 | || ((r_type == R_MIPS_26) && target_is_16_bit_code_p))); | |
3217 | ||
3218 | local_p = mips_elf_local_relocation_p (input_bfd, relocation, | |
b34976b6 | 3219 | local_sections, TRUE); |
b49e97c9 TS |
3220 | |
3221 | /* If we haven't already determined the GOT offset, or the GP value, | |
3222 | and we're going to need it, get it now. */ | |
3223 | switch (r_type) | |
3224 | { | |
0fdc1bf1 | 3225 | case R_MIPS_GOT_PAGE: |
93a2b7ae | 3226 | case R_MIPS_GOT_OFST: |
d25aed71 RS |
3227 | /* We need to decay to GOT_DISP/addend if the symbol doesn't |
3228 | bind locally. */ | |
3229 | local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1); | |
93a2b7ae | 3230 | if (local_p || r_type == R_MIPS_GOT_OFST) |
0fdc1bf1 AO |
3231 | break; |
3232 | /* Fall through. */ | |
3233 | ||
b49e97c9 TS |
3234 | case R_MIPS_CALL16: |
3235 | case R_MIPS_GOT16: | |
3236 | case R_MIPS_GOT_DISP: | |
3237 | case R_MIPS_GOT_HI16: | |
3238 | case R_MIPS_CALL_HI16: | |
3239 | case R_MIPS_GOT_LO16: | |
3240 | case R_MIPS_CALL_LO16: | |
3241 | /* Find the index into the GOT where this value is located. */ | |
3242 | if (!local_p) | |
3243 | { | |
0fdc1bf1 AO |
3244 | /* GOT_PAGE may take a non-zero addend, that is ignored in a |
3245 | GOT_PAGE relocation that decays to GOT_DISP because the | |
3246 | symbol turns out to be global. The addend is then added | |
3247 | as GOT_OFST. */ | |
3248 | BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE); | |
b49e97c9 | 3249 | g = mips_elf_global_got_index (elf_hash_table (info)->dynobj, |
f4416af6 | 3250 | input_bfd, |
b49e97c9 TS |
3251 | (struct elf_link_hash_entry *) h); |
3252 | if (! elf_hash_table(info)->dynamic_sections_created | |
3253 | || (info->shared | |
3254 | && (info->symbolic || h->root.dynindx == -1) | |
3255 | && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))) | |
3256 | { | |
3257 | /* This is a static link or a -Bsymbolic link. The | |
3258 | symbol is defined locally, or was forced to be local. | |
3259 | We must initialize this entry in the GOT. */ | |
3260 | bfd *tmpbfd = elf_hash_table (info)->dynobj; | |
f4416af6 | 3261 | asection *sgot = mips_elf_got_section (tmpbfd, FALSE); |
0fdc1bf1 | 3262 | MIPS_ELF_PUT_WORD (tmpbfd, symbol, sgot->contents + g); |
b49e97c9 TS |
3263 | } |
3264 | } | |
3265 | else if (r_type == R_MIPS_GOT16 || r_type == R_MIPS_CALL16) | |
3266 | /* There's no need to create a local GOT entry here; the | |
3267 | calculation for a local GOT16 entry does not involve G. */ | |
3268 | break; | |
3269 | else | |
3270 | { | |
f4416af6 AO |
3271 | g = mips_elf_local_got_index (abfd, input_bfd, |
3272 | info, symbol + addend); | |
b49e97c9 TS |
3273 | if (g == MINUS_ONE) |
3274 | return bfd_reloc_outofrange; | |
3275 | } | |
3276 | ||
3277 | /* Convert GOT indices to actual offsets. */ | |
3278 | g = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj, | |
f4416af6 | 3279 | abfd, input_bfd, g); |
b49e97c9 TS |
3280 | break; |
3281 | ||
3282 | case R_MIPS_HI16: | |
3283 | case R_MIPS_LO16: | |
3284 | case R_MIPS16_GPREL: | |
3285 | case R_MIPS_GPREL16: | |
3286 | case R_MIPS_GPREL32: | |
3287 | case R_MIPS_LITERAL: | |
3288 | gp0 = _bfd_get_gp_value (input_bfd); | |
3289 | gp = _bfd_get_gp_value (abfd); | |
f4416af6 AO |
3290 | if (elf_hash_table (info)->dynobj) |
3291 | gp += mips_elf_adjust_gp (abfd, | |
3292 | mips_elf_got_info | |
3293 | (elf_hash_table (info)->dynobj, NULL), | |
3294 | input_bfd); | |
b49e97c9 TS |
3295 | break; |
3296 | ||
3297 | default: | |
3298 | break; | |
3299 | } | |
3300 | ||
3301 | /* Figure out what kind of relocation is being performed. */ | |
3302 | switch (r_type) | |
3303 | { | |
3304 | case R_MIPS_NONE: | |
3305 | return bfd_reloc_continue; | |
3306 | ||
3307 | case R_MIPS_16: | |
a7ebbfdf | 3308 | value = symbol + _bfd_mips_elf_sign_extend (addend, 16); |
b49e97c9 TS |
3309 | overflowed_p = mips_elf_overflow_p (value, 16); |
3310 | break; | |
3311 | ||
3312 | case R_MIPS_32: | |
3313 | case R_MIPS_REL32: | |
3314 | case R_MIPS_64: | |
3315 | if ((info->shared | |
3316 | || (elf_hash_table (info)->dynamic_sections_created | |
3317 | && h != NULL | |
3318 | && ((h->root.elf_link_hash_flags | |
3319 | & ELF_LINK_HASH_DEF_DYNAMIC) != 0) | |
3320 | && ((h->root.elf_link_hash_flags | |
3321 | & ELF_LINK_HASH_DEF_REGULAR) == 0))) | |
3322 | && r_symndx != 0 | |
3323 | && (input_section->flags & SEC_ALLOC) != 0) | |
3324 | { | |
3325 | /* If we're creating a shared library, or this relocation is | |
3326 | against a symbol in a shared library, then we can't know | |
3327 | where the symbol will end up. So, we create a relocation | |
3328 | record in the output, and leave the job up to the dynamic | |
3329 | linker. */ | |
3330 | value = addend; | |
3331 | if (!mips_elf_create_dynamic_relocation (abfd, | |
3332 | info, | |
3333 | relocation, | |
3334 | h, | |
3335 | sec, | |
3336 | symbol, | |
3337 | &value, | |
3338 | input_section)) | |
3339 | return bfd_reloc_undefined; | |
3340 | } | |
3341 | else | |
3342 | { | |
3343 | if (r_type != R_MIPS_REL32) | |
3344 | value = symbol + addend; | |
3345 | else | |
3346 | value = addend; | |
3347 | } | |
3348 | value &= howto->dst_mask; | |
3349 | break; | |
3350 | ||
3351 | case R_MIPS_PC32: | |
3352 | case R_MIPS_PC64: | |
3353 | case R_MIPS_GNU_REL_LO16: | |
3354 | value = symbol + addend - p; | |
3355 | value &= howto->dst_mask; | |
3356 | break; | |
3357 | ||
0b25d3e6 | 3358 | case R_MIPS_GNU_REL16_S2: |
30ac9238 | 3359 | value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p; |
0b25d3e6 AO |
3360 | overflowed_p = mips_elf_overflow_p (value, 18); |
3361 | value = (value >> 2) & howto->dst_mask; | |
3362 | break; | |
3363 | ||
b49e97c9 TS |
3364 | case R_MIPS_GNU_REL_HI16: |
3365 | /* Instead of subtracting 'p' here, we should be subtracting the | |
3366 | equivalent value for the LO part of the reloc, since the value | |
3367 | here is relative to that address. Because that's not easy to do, | |
3368 | we adjust 'addend' in _bfd_mips_elf_relocate_section(). See also | |
3369 | the comment there for more information. */ | |
3370 | value = mips_elf_high (addend + symbol - p); | |
3371 | value &= howto->dst_mask; | |
3372 | break; | |
3373 | ||
3374 | case R_MIPS16_26: | |
3375 | /* The calculation for R_MIPS16_26 is just the same as for an | |
3376 | R_MIPS_26. It's only the storage of the relocated field into | |
3377 | the output file that's different. That's handled in | |
3378 | mips_elf_perform_relocation. So, we just fall through to the | |
3379 | R_MIPS_26 case here. */ | |
3380 | case R_MIPS_26: | |
3381 | if (local_p) | |
30ac9238 | 3382 | value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2; |
b49e97c9 | 3383 | else |
30ac9238 | 3384 | value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2; |
b49e97c9 TS |
3385 | value &= howto->dst_mask; |
3386 | break; | |
3387 | ||
3388 | case R_MIPS_HI16: | |
3389 | if (!gp_disp_p) | |
3390 | { | |
3391 | value = mips_elf_high (addend + symbol); | |
3392 | value &= howto->dst_mask; | |
3393 | } | |
3394 | else | |
3395 | { | |
3396 | value = mips_elf_high (addend + gp - p); | |
3397 | overflowed_p = mips_elf_overflow_p (value, 16); | |
3398 | } | |
3399 | break; | |
3400 | ||
3401 | case R_MIPS_LO16: | |
3402 | if (!gp_disp_p) | |
3403 | value = (symbol + addend) & howto->dst_mask; | |
3404 | else | |
3405 | { | |
3406 | value = addend + gp - p + 4; | |
3407 | /* The MIPS ABI requires checking the R_MIPS_LO16 relocation | |
8dc1a139 | 3408 | for overflow. But, on, say, IRIX5, relocations against |
b49e97c9 TS |
3409 | _gp_disp are normally generated from the .cpload |
3410 | pseudo-op. It generates code that normally looks like | |
3411 | this: | |
3412 | ||
3413 | lui $gp,%hi(_gp_disp) | |
3414 | addiu $gp,$gp,%lo(_gp_disp) | |
3415 | addu $gp,$gp,$t9 | |
3416 | ||
3417 | Here $t9 holds the address of the function being called, | |
3418 | as required by the MIPS ELF ABI. The R_MIPS_LO16 | |
3419 | relocation can easily overflow in this situation, but the | |
3420 | R_MIPS_HI16 relocation will handle the overflow. | |
3421 | Therefore, we consider this a bug in the MIPS ABI, and do | |
3422 | not check for overflow here. */ | |
3423 | } | |
3424 | break; | |
3425 | ||
3426 | case R_MIPS_LITERAL: | |
3427 | /* Because we don't merge literal sections, we can handle this | |
3428 | just like R_MIPS_GPREL16. In the long run, we should merge | |
3429 | shared literals, and then we will need to additional work | |
3430 | here. */ | |
3431 | ||
3432 | /* Fall through. */ | |
3433 | ||
3434 | case R_MIPS16_GPREL: | |
3435 | /* The R_MIPS16_GPREL performs the same calculation as | |
3436 | R_MIPS_GPREL16, but stores the relocated bits in a different | |
3437 | order. We don't need to do anything special here; the | |
3438 | differences are handled in mips_elf_perform_relocation. */ | |
3439 | case R_MIPS_GPREL16: | |
bce03d3d AO |
3440 | /* Only sign-extend the addend if it was extracted from the |
3441 | instruction. If the addend was separate, leave it alone, | |
3442 | otherwise we may lose significant bits. */ | |
3443 | if (howto->partial_inplace) | |
a7ebbfdf | 3444 | addend = _bfd_mips_elf_sign_extend (addend, 16); |
bce03d3d AO |
3445 | value = symbol + addend - gp; |
3446 | /* If the symbol was local, any earlier relocatable links will | |
3447 | have adjusted its addend with the gp offset, so compensate | |
3448 | for that now. Don't do it for symbols forced local in this | |
3449 | link, though, since they won't have had the gp offset applied | |
3450 | to them before. */ | |
3451 | if (was_local_p) | |
3452 | value += gp0; | |
b49e97c9 TS |
3453 | overflowed_p = mips_elf_overflow_p (value, 16); |
3454 | break; | |
3455 | ||
3456 | case R_MIPS_GOT16: | |
3457 | case R_MIPS_CALL16: | |
3458 | if (local_p) | |
3459 | { | |
b34976b6 | 3460 | bfd_boolean forced; |
b49e97c9 TS |
3461 | |
3462 | /* The special case is when the symbol is forced to be local. We | |
3463 | need the full address in the GOT since no R_MIPS_LO16 relocation | |
3464 | follows. */ | |
3465 | forced = ! mips_elf_local_relocation_p (input_bfd, relocation, | |
b34976b6 | 3466 | local_sections, FALSE); |
f4416af6 AO |
3467 | value = mips_elf_got16_entry (abfd, input_bfd, info, |
3468 | symbol + addend, forced); | |
b49e97c9 TS |
3469 | if (value == MINUS_ONE) |
3470 | return bfd_reloc_outofrange; | |
3471 | value | |
3472 | = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj, | |
f4416af6 | 3473 | abfd, input_bfd, value); |
b49e97c9 TS |
3474 | overflowed_p = mips_elf_overflow_p (value, 16); |
3475 | break; | |
3476 | } | |
3477 | ||
3478 | /* Fall through. */ | |
3479 | ||
3480 | case R_MIPS_GOT_DISP: | |
0fdc1bf1 | 3481 | got_disp: |
b49e97c9 TS |
3482 | value = g; |
3483 | overflowed_p = mips_elf_overflow_p (value, 16); | |
3484 | break; | |
3485 | ||
3486 | case R_MIPS_GPREL32: | |
bce03d3d AO |
3487 | value = (addend + symbol + gp0 - gp); |
3488 | if (!save_addend) | |
3489 | value &= howto->dst_mask; | |
b49e97c9 TS |
3490 | break; |
3491 | ||
3492 | case R_MIPS_PC16: | |
a7ebbfdf | 3493 | value = _bfd_mips_elf_sign_extend (addend, 16) + symbol - p; |
0b25d3e6 | 3494 | overflowed_p = mips_elf_overflow_p (value, 16); |
b49e97c9 TS |
3495 | break; |
3496 | ||
3497 | case R_MIPS_GOT_HI16: | |
3498 | case R_MIPS_CALL_HI16: | |
3499 | /* We're allowed to handle these two relocations identically. | |
3500 | The dynamic linker is allowed to handle the CALL relocations | |
3501 | differently by creating a lazy evaluation stub. */ | |
3502 | value = g; | |
3503 | value = mips_elf_high (value); | |
3504 | value &= howto->dst_mask; | |
3505 | break; | |
3506 | ||
3507 | case R_MIPS_GOT_LO16: | |
3508 | case R_MIPS_CALL_LO16: | |
3509 | value = g & howto->dst_mask; | |
3510 | break; | |
3511 | ||
3512 | case R_MIPS_GOT_PAGE: | |
0fdc1bf1 AO |
3513 | /* GOT_PAGE relocations that reference non-local symbols decay |
3514 | to GOT_DISP. The corresponding GOT_OFST relocation decays to | |
3515 | 0. */ | |
93a2b7ae | 3516 | if (! local_p) |
0fdc1bf1 | 3517 | goto got_disp; |
f4416af6 | 3518 | value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL); |
b49e97c9 TS |
3519 | if (value == MINUS_ONE) |
3520 | return bfd_reloc_outofrange; | |
3521 | value = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj, | |
f4416af6 | 3522 | abfd, input_bfd, value); |
b49e97c9 TS |
3523 | overflowed_p = mips_elf_overflow_p (value, 16); |
3524 | break; | |
3525 | ||
3526 | case R_MIPS_GOT_OFST: | |
93a2b7ae | 3527 | if (local_p) |
0fdc1bf1 AO |
3528 | mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value); |
3529 | else | |
3530 | value = addend; | |
b49e97c9 TS |
3531 | overflowed_p = mips_elf_overflow_p (value, 16); |
3532 | break; | |
3533 | ||
3534 | case R_MIPS_SUB: | |
3535 | value = symbol - addend; | |
3536 | value &= howto->dst_mask; | |
3537 | break; | |
3538 | ||
3539 | case R_MIPS_HIGHER: | |
3540 | value = mips_elf_higher (addend + symbol); | |
3541 | value &= howto->dst_mask; | |
3542 | break; | |
3543 | ||
3544 | case R_MIPS_HIGHEST: | |
3545 | value = mips_elf_highest (addend + symbol); | |
3546 | value &= howto->dst_mask; | |
3547 | break; | |
3548 | ||
3549 | case R_MIPS_SCN_DISP: | |
3550 | value = symbol + addend - sec->output_offset; | |
3551 | value &= howto->dst_mask; | |
3552 | break; | |
3553 | ||
3554 | case R_MIPS_PJUMP: | |
3555 | case R_MIPS_JALR: | |
3556 | /* Both of these may be ignored. R_MIPS_JALR is an optimization | |
3557 | hint; we could improve performance by honoring that hint. */ | |
3558 | return bfd_reloc_continue; | |
3559 | ||
3560 | case R_MIPS_GNU_VTINHERIT: | |
3561 | case R_MIPS_GNU_VTENTRY: | |
3562 | /* We don't do anything with these at present. */ | |
3563 | return bfd_reloc_continue; | |
3564 | ||
3565 | default: | |
3566 | /* An unrecognized relocation type. */ | |
3567 | return bfd_reloc_notsupported; | |
3568 | } | |
3569 | ||
3570 | /* Store the VALUE for our caller. */ | |
3571 | *valuep = value; | |
3572 | return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok; | |
3573 | } | |
3574 | ||
3575 | /* Obtain the field relocated by RELOCATION. */ | |
3576 | ||
3577 | static bfd_vma | |
9719ad41 RS |
3578 | mips_elf_obtain_contents (reloc_howto_type *howto, |
3579 | const Elf_Internal_Rela *relocation, | |
3580 | bfd *input_bfd, bfd_byte *contents) | |
b49e97c9 TS |
3581 | { |
3582 | bfd_vma x; | |
3583 | bfd_byte *location = contents + relocation->r_offset; | |
3584 | ||
3585 | /* Obtain the bytes. */ | |
3586 | x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location); | |
3587 | ||
3588 | if ((ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_26 | |
3589 | || ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_GPREL) | |
3590 | && bfd_little_endian (input_bfd)) | |
3591 | /* The two 16-bit words will be reversed on a little-endian system. | |
3592 | See mips_elf_perform_relocation for more details. */ | |
3593 | x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16)); | |
3594 | ||
3595 | return x; | |
3596 | } | |
3597 | ||
3598 | /* It has been determined that the result of the RELOCATION is the | |
3599 | VALUE. Use HOWTO to place VALUE into the output file at the | |
3600 | appropriate position. The SECTION is the section to which the | |
b34976b6 | 3601 | relocation applies. If REQUIRE_JALX is TRUE, then the opcode used |
b49e97c9 TS |
3602 | for the relocation must be either JAL or JALX, and it is |
3603 | unconditionally converted to JALX. | |
3604 | ||
b34976b6 | 3605 | Returns FALSE if anything goes wrong. */ |
b49e97c9 | 3606 | |
b34976b6 | 3607 | static bfd_boolean |
9719ad41 RS |
3608 | mips_elf_perform_relocation (struct bfd_link_info *info, |
3609 | reloc_howto_type *howto, | |
3610 | const Elf_Internal_Rela *relocation, | |
3611 | bfd_vma value, bfd *input_bfd, | |
3612 | asection *input_section, bfd_byte *contents, | |
3613 | bfd_boolean require_jalx) | |
b49e97c9 TS |
3614 | { |
3615 | bfd_vma x; | |
3616 | bfd_byte *location; | |
3617 | int r_type = ELF_R_TYPE (input_bfd, relocation->r_info); | |
3618 | ||
3619 | /* Figure out where the relocation is occurring. */ | |
3620 | location = contents + relocation->r_offset; | |
3621 | ||
3622 | /* Obtain the current value. */ | |
3623 | x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents); | |
3624 | ||
3625 | /* Clear the field we are setting. */ | |
3626 | x &= ~howto->dst_mask; | |
3627 | ||
3628 | /* If this is the R_MIPS16_26 relocation, we must store the | |
3629 | value in a funny way. */ | |
3630 | if (r_type == R_MIPS16_26) | |
3631 | { | |
3632 | /* R_MIPS16_26 is used for the mips16 jal and jalx instructions. | |
3633 | Most mips16 instructions are 16 bits, but these instructions | |
3634 | are 32 bits. | |
3635 | ||
3636 | The format of these instructions is: | |
3637 | ||
3638 | +--------------+--------------------------------+ | |
3639 | ! JALX ! X! Imm 20:16 ! Imm 25:21 ! | |
3640 | +--------------+--------------------------------+ | |
3641 | ! Immediate 15:0 ! | |
3642 | +-----------------------------------------------+ | |
3643 | ||
3644 | JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx. | |
3645 | Note that the immediate value in the first word is swapped. | |
3646 | ||
1049f94e | 3647 | When producing a relocatable object file, R_MIPS16_26 is |
b49e97c9 TS |
3648 | handled mostly like R_MIPS_26. In particular, the addend is |
3649 | stored as a straight 26-bit value in a 32-bit instruction. | |
3650 | (gas makes life simpler for itself by never adjusting a | |
3651 | R_MIPS16_26 reloc to be against a section, so the addend is | |
3652 | always zero). However, the 32 bit instruction is stored as 2 | |
3653 | 16-bit values, rather than a single 32-bit value. In a | |
3654 | big-endian file, the result is the same; in a little-endian | |
3655 | file, the two 16-bit halves of the 32 bit value are swapped. | |
3656 | This is so that a disassembler can recognize the jal | |
3657 | instruction. | |
3658 | ||
3659 | When doing a final link, R_MIPS16_26 is treated as a 32 bit | |
3660 | instruction stored as two 16-bit values. The addend A is the | |
3661 | contents of the targ26 field. The calculation is the same as | |
3662 | R_MIPS_26. When storing the calculated value, reorder the | |
3663 | immediate value as shown above, and don't forget to store the | |
3664 | value as two 16-bit values. | |
3665 | ||
3666 | To put it in MIPS ABI terms, the relocation field is T-targ26-16, | |
3667 | defined as | |
3668 | ||
3669 | big-endian: | |
3670 | +--------+----------------------+ | |
3671 | | | | | |
3672 | | | targ26-16 | | |
3673 | |31 26|25 0| | |
3674 | +--------+----------------------+ | |
3675 | ||
3676 | little-endian: | |
3677 | +----------+------+-------------+ | |
3678 | | | | | | |
3679 | | sub1 | | sub2 | | |
3680 | |0 9|10 15|16 31| | |
3681 | +----------+--------------------+ | |
3682 | where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is | |
3683 | ((sub1 << 16) | sub2)). | |
3684 | ||
1049f94e | 3685 | When producing a relocatable object file, the calculation is |
b49e97c9 TS |
3686 | (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2) |
3687 | When producing a fully linked file, the calculation is | |
3688 | let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2) | |
3689 | ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) */ | |
3690 | ||
1049f94e | 3691 | if (!info->relocatable) |
b49e97c9 TS |
3692 | /* Shuffle the bits according to the formula above. */ |
3693 | value = (((value & 0x1f0000) << 5) | |
3694 | | ((value & 0x3e00000) >> 5) | |
3695 | | (value & 0xffff)); | |
3696 | } | |
3697 | else if (r_type == R_MIPS16_GPREL) | |
3698 | { | |
3699 | /* R_MIPS16_GPREL is used for GP-relative addressing in mips16 | |
3700 | mode. A typical instruction will have a format like this: | |
3701 | ||
3702 | +--------------+--------------------------------+ | |
3703 | ! EXTEND ! Imm 10:5 ! Imm 15:11 ! | |
3704 | +--------------+--------------------------------+ | |
3705 | ! Major ! rx ! ry ! Imm 4:0 ! | |
3706 | +--------------+--------------------------------+ | |
3707 | ||
3708 | EXTEND is the five bit value 11110. Major is the instruction | |
3709 | opcode. | |
3710 | ||
3711 | This is handled exactly like R_MIPS_GPREL16, except that the | |
3712 | addend is retrieved and stored as shown in this diagram; that | |
3713 | is, the Imm fields above replace the V-rel16 field. | |
3714 | ||
3715 | All we need to do here is shuffle the bits appropriately. As | |
3716 | above, the two 16-bit halves must be swapped on a | |
3717 | little-endian system. */ | |
3718 | value = (((value & 0x7e0) << 16) | |
3719 | | ((value & 0xf800) << 5) | |
3720 | | (value & 0x1f)); | |
3721 | } | |
3722 | ||
3723 | /* Set the field. */ | |
3724 | x |= (value & howto->dst_mask); | |
3725 | ||
3726 | /* If required, turn JAL into JALX. */ | |
3727 | if (require_jalx) | |
3728 | { | |
b34976b6 | 3729 | bfd_boolean ok; |
b49e97c9 TS |
3730 | bfd_vma opcode = x >> 26; |
3731 | bfd_vma jalx_opcode; | |
3732 | ||
3733 | /* Check to see if the opcode is already JAL or JALX. */ | |
3734 | if (r_type == R_MIPS16_26) | |
3735 | { | |
3736 | ok = ((opcode == 0x6) || (opcode == 0x7)); | |
3737 | jalx_opcode = 0x7; | |
3738 | } | |
3739 | else | |
3740 | { | |
3741 | ok = ((opcode == 0x3) || (opcode == 0x1d)); | |
3742 | jalx_opcode = 0x1d; | |
3743 | } | |
3744 | ||
3745 | /* If the opcode is not JAL or JALX, there's a problem. */ | |
3746 | if (!ok) | |
3747 | { | |
3748 | (*_bfd_error_handler) | |
3749 | (_("%s: %s+0x%lx: jump to stub routine which is not jal"), | |
3750 | bfd_archive_filename (input_bfd), | |
3751 | input_section->name, | |
3752 | (unsigned long) relocation->r_offset); | |
3753 | bfd_set_error (bfd_error_bad_value); | |
b34976b6 | 3754 | return FALSE; |
b49e97c9 TS |
3755 | } |
3756 | ||
3757 | /* Make this the JALX opcode. */ | |
3758 | x = (x & ~(0x3f << 26)) | (jalx_opcode << 26); | |
3759 | } | |
3760 | ||
3761 | /* Swap the high- and low-order 16 bits on little-endian systems | |
3762 | when doing a MIPS16 relocation. */ | |
3763 | if ((r_type == R_MIPS16_GPREL || r_type == R_MIPS16_26) | |
3764 | && bfd_little_endian (input_bfd)) | |
3765 | x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16)); | |
3766 | ||
3767 | /* Put the value into the output. */ | |
3768 | bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location); | |
b34976b6 | 3769 | return TRUE; |
b49e97c9 TS |
3770 | } |
3771 | ||
b34976b6 | 3772 | /* Returns TRUE if SECTION is a MIPS16 stub section. */ |
b49e97c9 | 3773 | |
b34976b6 | 3774 | static bfd_boolean |
9719ad41 | 3775 | mips_elf_stub_section_p (bfd *abfd ATTRIBUTE_UNUSED, asection *section) |
b49e97c9 TS |
3776 | { |
3777 | const char *name = bfd_get_section_name (abfd, section); | |
3778 | ||
3779 | return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0 | |
3780 | || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0 | |
3781 | || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0); | |
3782 | } | |
3783 | \f | |
3784 | /* Add room for N relocations to the .rel.dyn section in ABFD. */ | |
3785 | ||
3786 | static void | |
9719ad41 | 3787 | mips_elf_allocate_dynamic_relocations (bfd *abfd, unsigned int n) |
b49e97c9 TS |
3788 | { |
3789 | asection *s; | |
3790 | ||
f4416af6 | 3791 | s = mips_elf_rel_dyn_section (abfd, FALSE); |
b49e97c9 TS |
3792 | BFD_ASSERT (s != NULL); |
3793 | ||
3794 | if (s->_raw_size == 0) | |
3795 | { | |
3796 | /* Make room for a null element. */ | |
3797 | s->_raw_size += MIPS_ELF_REL_SIZE (abfd); | |
3798 | ++s->reloc_count; | |
3799 | } | |
3800 | s->_raw_size += n * MIPS_ELF_REL_SIZE (abfd); | |
3801 | } | |
3802 | ||
3803 | /* Create a rel.dyn relocation for the dynamic linker to resolve. REL | |
3804 | is the original relocation, which is now being transformed into a | |
3805 | dynamic relocation. The ADDENDP is adjusted if necessary; the | |
3806 | caller should store the result in place of the original addend. */ | |
3807 | ||
b34976b6 | 3808 | static bfd_boolean |
9719ad41 RS |
3809 | mips_elf_create_dynamic_relocation (bfd *output_bfd, |
3810 | struct bfd_link_info *info, | |
3811 | const Elf_Internal_Rela *rel, | |
3812 | struct mips_elf_link_hash_entry *h, | |
3813 | asection *sec, bfd_vma symbol, | |
3814 | bfd_vma *addendp, asection *input_section) | |
b49e97c9 | 3815 | { |
947216bf | 3816 | Elf_Internal_Rela outrel[3]; |
b34976b6 | 3817 | bfd_boolean skip; |
b49e97c9 TS |
3818 | asection *sreloc; |
3819 | bfd *dynobj; | |
3820 | int r_type; | |
3821 | ||
3822 | r_type = ELF_R_TYPE (output_bfd, rel->r_info); | |
3823 | dynobj = elf_hash_table (info)->dynobj; | |
f4416af6 | 3824 | sreloc = mips_elf_rel_dyn_section (dynobj, FALSE); |
b49e97c9 TS |
3825 | BFD_ASSERT (sreloc != NULL); |
3826 | BFD_ASSERT (sreloc->contents != NULL); | |
3827 | BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd) | |
3828 | < sreloc->_raw_size); | |
3829 | ||
b34976b6 | 3830 | skip = FALSE; |
b49e97c9 TS |
3831 | outrel[0].r_offset = |
3832 | _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset); | |
3833 | outrel[1].r_offset = | |
3834 | _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset); | |
3835 | outrel[2].r_offset = | |
3836 | _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset); | |
3837 | ||
3838 | #if 0 | |
3839 | /* We begin by assuming that the offset for the dynamic relocation | |
3840 | is the same as for the original relocation. We'll adjust this | |
3841 | later to reflect the correct output offsets. */ | |
a7ebbfdf | 3842 | if (input_section->sec_info_type != ELF_INFO_TYPE_STABS) |
b49e97c9 TS |
3843 | { |
3844 | outrel[1].r_offset = rel[1].r_offset; | |
3845 | outrel[2].r_offset = rel[2].r_offset; | |
3846 | } | |
3847 | else | |
3848 | { | |
3849 | /* Except that in a stab section things are more complex. | |
3850 | Because we compress stab information, the offset given in the | |
3851 | relocation may not be the one we want; we must let the stabs | |
3852 | machinery tell us the offset. */ | |
3853 | outrel[1].r_offset = outrel[0].r_offset; | |
3854 | outrel[2].r_offset = outrel[0].r_offset; | |
3855 | /* If we didn't need the relocation at all, this value will be | |
3856 | -1. */ | |
3857 | if (outrel[0].r_offset == (bfd_vma) -1) | |
b34976b6 | 3858 | skip = TRUE; |
b49e97c9 TS |
3859 | } |
3860 | #endif | |
3861 | ||
0d591ff7 RS |
3862 | if (outrel[0].r_offset == (bfd_vma) -1) |
3863 | /* The relocation field has been deleted. */ | |
b34976b6 | 3864 | skip = TRUE; |
0d591ff7 RS |
3865 | else if (outrel[0].r_offset == (bfd_vma) -2) |
3866 | { | |
3867 | /* The relocation field has been converted into a relative value of | |
3868 | some sort. Functions like _bfd_elf_write_section_eh_frame expect | |
3869 | the field to be fully relocated, so add in the symbol's value. */ | |
3870 | skip = TRUE; | |
3871 | *addendp += symbol; | |
3872 | } | |
b49e97c9 TS |
3873 | |
3874 | /* If we've decided to skip this relocation, just output an empty | |
3875 | record. Note that R_MIPS_NONE == 0, so that this call to memset | |
3876 | is a way of setting R_TYPE to R_MIPS_NONE. */ | |
3877 | if (skip) | |
947216bf | 3878 | memset (outrel, 0, sizeof (Elf_Internal_Rela) * 3); |
b49e97c9 TS |
3879 | else |
3880 | { | |
3881 | long indx; | |
d2fba50d | 3882 | bfd_boolean defined_p; |
b49e97c9 TS |
3883 | |
3884 | /* We must now calculate the dynamic symbol table index to use | |
3885 | in the relocation. */ | |
3886 | if (h != NULL | |
3887 | && (! info->symbolic || (h->root.elf_link_hash_flags | |
fdd07405 | 3888 | & ELF_LINK_HASH_DEF_REGULAR) == 0) |
b49e97c9 TS |
3889 | /* h->root.dynindx may be -1 if this symbol was marked to |
3890 | become local. */ | |
fdd07405 RS |
3891 | && h->root.dynindx != -1) |
3892 | { | |
3893 | indx = h->root.dynindx; | |
d2fba50d RS |
3894 | if (SGI_COMPAT (output_bfd)) |
3895 | defined_p = ((h->root.elf_link_hash_flags | |
3896 | & ELF_LINK_HASH_DEF_REGULAR) != 0); | |
3897 | else | |
3898 | /* ??? glibc's ld.so just adds the final GOT entry to the | |
3899 | relocation field. It therefore treats relocs against | |
3900 | defined symbols in the same way as relocs against | |
3901 | undefined symbols. */ | |
3902 | defined_p = FALSE; | |
b49e97c9 TS |
3903 | } |
3904 | else | |
3905 | { | |
3906 | if (sec != NULL && bfd_is_abs_section (sec)) | |
3907 | indx = 0; | |
3908 | else if (sec == NULL || sec->owner == NULL) | |
3909 | { | |
3910 | bfd_set_error (bfd_error_bad_value); | |
b34976b6 | 3911 | return FALSE; |
b49e97c9 TS |
3912 | } |
3913 | else | |
3914 | { | |
3915 | indx = elf_section_data (sec->output_section)->dynindx; | |
3916 | if (indx == 0) | |
3917 | abort (); | |
3918 | } | |
3919 | ||
908488f1 AO |
3920 | /* Instead of generating a relocation using the section |
3921 | symbol, we may as well make it a fully relative | |
3922 | relocation. We want to avoid generating relocations to | |
3923 | local symbols because we used to generate them | |
3924 | incorrectly, without adding the original symbol value, | |
3925 | which is mandated by the ABI for section symbols. In | |
3926 | order to give dynamic loaders and applications time to | |
3927 | phase out the incorrect use, we refrain from emitting | |
3928 | section-relative relocations. It's not like they're | |
3929 | useful, after all. This should be a bit more efficient | |
3930 | as well. */ | |
fdd07405 RS |
3931 | /* ??? Although this behavior is compatible with glibc's ld.so, |
3932 | the ABI says that relocations against STN_UNDEF should have | |
3933 | a symbol value of 0. Irix rld honors this, so relocations | |
3934 | against STN_UNDEF have no effect. */ | |
3935 | if (!SGI_COMPAT (output_bfd)) | |
3936 | indx = 0; | |
d2fba50d | 3937 | defined_p = TRUE; |
b49e97c9 TS |
3938 | } |
3939 | ||
3940 | /* If the relocation was previously an absolute relocation and | |
3941 | this symbol will not be referred to by the relocation, we must | |
3942 | adjust it by the value we give it in the dynamic symbol table. | |
3943 | Otherwise leave the job up to the dynamic linker. */ | |
d2fba50d | 3944 | if (defined_p && r_type != R_MIPS_REL32) |
b49e97c9 TS |
3945 | *addendp += symbol; |
3946 | ||
3947 | /* The relocation is always an REL32 relocation because we don't | |
3948 | know where the shared library will wind up at load-time. */ | |
34ea4a36 TS |
3949 | outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx, |
3950 | R_MIPS_REL32); | |
908488f1 AO |
3951 | /* For strict adherence to the ABI specification, we should |
3952 | generate a R_MIPS_64 relocation record by itself before the | |
3953 | _REL32/_64 record as well, such that the addend is read in as | |
3954 | a 64-bit value (REL32 is a 32-bit relocation, after all). | |
3955 | However, since none of the existing ELF64 MIPS dynamic | |
3956 | loaders seems to care, we don't waste space with these | |
3957 | artificial relocations. If this turns out to not be true, | |
3958 | mips_elf_allocate_dynamic_relocation() should be tweaked so | |
3959 | as to make room for a pair of dynamic relocations per | |
3960 | invocation if ABI_64_P, and here we should generate an | |
3961 | additional relocation record with R_MIPS_64 by itself for a | |
3962 | NULL symbol before this relocation record. */ | |
9719ad41 | 3963 | outrel[1].r_info = ELF_R_INFO (output_bfd, 0, |
033fd5f9 AO |
3964 | ABI_64_P (output_bfd) |
3965 | ? R_MIPS_64 | |
3966 | : R_MIPS_NONE); | |
9719ad41 | 3967 | outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE); |
b49e97c9 TS |
3968 | |
3969 | /* Adjust the output offset of the relocation to reference the | |
3970 | correct location in the output file. */ | |
3971 | outrel[0].r_offset += (input_section->output_section->vma | |
3972 | + input_section->output_offset); | |
3973 | outrel[1].r_offset += (input_section->output_section->vma | |
3974 | + input_section->output_offset); | |
3975 | outrel[2].r_offset += (input_section->output_section->vma | |
3976 | + input_section->output_offset); | |
3977 | } | |
3978 | ||
3979 | /* Put the relocation back out. We have to use the special | |
3980 | relocation outputter in the 64-bit case since the 64-bit | |
3981 | relocation format is non-standard. */ | |
3982 | if (ABI_64_P (output_bfd)) | |
3983 | { | |
3984 | (*get_elf_backend_data (output_bfd)->s->swap_reloc_out) | |
3985 | (output_bfd, &outrel[0], | |
3986 | (sreloc->contents | |
3987 | + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel))); | |
3988 | } | |
3989 | else | |
947216bf AM |
3990 | bfd_elf32_swap_reloc_out |
3991 | (output_bfd, &outrel[0], | |
3992 | (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel))); | |
b49e97c9 | 3993 | |
b49e97c9 TS |
3994 | /* We've now added another relocation. */ |
3995 | ++sreloc->reloc_count; | |
3996 | ||
3997 | /* Make sure the output section is writable. The dynamic linker | |
3998 | will be writing to it. */ | |
3999 | elf_section_data (input_section->output_section)->this_hdr.sh_flags | |
4000 | |= SHF_WRITE; | |
4001 | ||
4002 | /* On IRIX5, make an entry of compact relocation info. */ | |
4003 | if (! skip && IRIX_COMPAT (output_bfd) == ict_irix5) | |
4004 | { | |
4005 | asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel"); | |
4006 | bfd_byte *cr; | |
4007 | ||
4008 | if (scpt) | |
4009 | { | |
4010 | Elf32_crinfo cptrel; | |
4011 | ||
4012 | mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG); | |
4013 | cptrel.vaddr = (rel->r_offset | |
4014 | + input_section->output_section->vma | |
4015 | + input_section->output_offset); | |
4016 | if (r_type == R_MIPS_REL32) | |
4017 | mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32); | |
4018 | else | |
4019 | mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD); | |
4020 | mips_elf_set_cr_dist2to (cptrel, 0); | |
4021 | cptrel.konst = *addendp; | |
4022 | ||
4023 | cr = (scpt->contents | |
4024 | + sizeof (Elf32_External_compact_rel)); | |
4025 | bfd_elf32_swap_crinfo_out (output_bfd, &cptrel, | |
4026 | ((Elf32_External_crinfo *) cr | |
4027 | + scpt->reloc_count)); | |
4028 | ++scpt->reloc_count; | |
4029 | } | |
4030 | } | |
4031 | ||
b34976b6 | 4032 | return TRUE; |
b49e97c9 TS |
4033 | } |
4034 | \f | |
b49e97c9 TS |
4035 | /* Return the MACH for a MIPS e_flags value. */ |
4036 | ||
4037 | unsigned long | |
9719ad41 | 4038 | _bfd_elf_mips_mach (flagword flags) |
b49e97c9 TS |
4039 | { |
4040 | switch (flags & EF_MIPS_MACH) | |
4041 | { | |
4042 | case E_MIPS_MACH_3900: | |
4043 | return bfd_mach_mips3900; | |
4044 | ||
4045 | case E_MIPS_MACH_4010: | |
4046 | return bfd_mach_mips4010; | |
4047 | ||
4048 | case E_MIPS_MACH_4100: | |
4049 | return bfd_mach_mips4100; | |
4050 | ||
4051 | case E_MIPS_MACH_4111: | |
4052 | return bfd_mach_mips4111; | |
4053 | ||
00707a0e RS |
4054 | case E_MIPS_MACH_4120: |
4055 | return bfd_mach_mips4120; | |
4056 | ||
b49e97c9 TS |
4057 | case E_MIPS_MACH_4650: |
4058 | return bfd_mach_mips4650; | |
4059 | ||
00707a0e RS |
4060 | case E_MIPS_MACH_5400: |
4061 | return bfd_mach_mips5400; | |
4062 | ||
4063 | case E_MIPS_MACH_5500: | |
4064 | return bfd_mach_mips5500; | |
4065 | ||
b49e97c9 TS |
4066 | case E_MIPS_MACH_SB1: |
4067 | return bfd_mach_mips_sb1; | |
4068 | ||
4069 | default: | |
4070 | switch (flags & EF_MIPS_ARCH) | |
4071 | { | |
4072 | default: | |
4073 | case E_MIPS_ARCH_1: | |
4074 | return bfd_mach_mips3000; | |
4075 | break; | |
4076 | ||
4077 | case E_MIPS_ARCH_2: | |
4078 | return bfd_mach_mips6000; | |
4079 | break; | |
4080 | ||
4081 | case E_MIPS_ARCH_3: | |
4082 | return bfd_mach_mips4000; | |
4083 | break; | |
4084 | ||
4085 | case E_MIPS_ARCH_4: | |
4086 | return bfd_mach_mips8000; | |
4087 | break; | |
4088 | ||
4089 | case E_MIPS_ARCH_5: | |
4090 | return bfd_mach_mips5; | |
4091 | break; | |
4092 | ||
4093 | case E_MIPS_ARCH_32: | |
4094 | return bfd_mach_mipsisa32; | |
4095 | break; | |
4096 | ||
4097 | case E_MIPS_ARCH_64: | |
4098 | return bfd_mach_mipsisa64; | |
4099 | break; | |
af7ee8bf CD |
4100 | |
4101 | case E_MIPS_ARCH_32R2: | |
4102 | return bfd_mach_mipsisa32r2; | |
4103 | break; | |
5f74bc13 CD |
4104 | |
4105 | case E_MIPS_ARCH_64R2: | |
4106 | return bfd_mach_mipsisa64r2; | |
4107 | break; | |
b49e97c9 TS |
4108 | } |
4109 | } | |
4110 | ||
4111 | return 0; | |
4112 | } | |
4113 | ||
4114 | /* Return printable name for ABI. */ | |
4115 | ||
4116 | static INLINE char * | |
9719ad41 | 4117 | elf_mips_abi_name (bfd *abfd) |
b49e97c9 TS |
4118 | { |
4119 | flagword flags; | |
4120 | ||
4121 | flags = elf_elfheader (abfd)->e_flags; | |
4122 | switch (flags & EF_MIPS_ABI) | |
4123 | { | |
4124 | case 0: | |
4125 | if (ABI_N32_P (abfd)) | |
4126 | return "N32"; | |
4127 | else if (ABI_64_P (abfd)) | |
4128 | return "64"; | |
4129 | else | |
4130 | return "none"; | |
4131 | case E_MIPS_ABI_O32: | |
4132 | return "O32"; | |
4133 | case E_MIPS_ABI_O64: | |
4134 | return "O64"; | |
4135 | case E_MIPS_ABI_EABI32: | |
4136 | return "EABI32"; | |
4137 | case E_MIPS_ABI_EABI64: | |
4138 | return "EABI64"; | |
4139 | default: | |
4140 | return "unknown abi"; | |
4141 | } | |
4142 | } | |
4143 | \f | |
4144 | /* MIPS ELF uses two common sections. One is the usual one, and the | |
4145 | other is for small objects. All the small objects are kept | |
4146 | together, and then referenced via the gp pointer, which yields | |
4147 | faster assembler code. This is what we use for the small common | |
4148 | section. This approach is copied from ecoff.c. */ | |
4149 | static asection mips_elf_scom_section; | |
4150 | static asymbol mips_elf_scom_symbol; | |
4151 | static asymbol *mips_elf_scom_symbol_ptr; | |
4152 | ||
4153 | /* MIPS ELF also uses an acommon section, which represents an | |
4154 | allocated common symbol which may be overridden by a | |
4155 | definition in a shared library. */ | |
4156 | static asection mips_elf_acom_section; | |
4157 | static asymbol mips_elf_acom_symbol; | |
4158 | static asymbol *mips_elf_acom_symbol_ptr; | |
4159 | ||
4160 | /* Handle the special MIPS section numbers that a symbol may use. | |
4161 | This is used for both the 32-bit and the 64-bit ABI. */ | |
4162 | ||
4163 | void | |
9719ad41 | 4164 | _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym) |
b49e97c9 TS |
4165 | { |
4166 | elf_symbol_type *elfsym; | |
4167 | ||
4168 | elfsym = (elf_symbol_type *) asym; | |
4169 | switch (elfsym->internal_elf_sym.st_shndx) | |
4170 | { | |
4171 | case SHN_MIPS_ACOMMON: | |
4172 | /* This section is used in a dynamically linked executable file. | |
4173 | It is an allocated common section. The dynamic linker can | |
4174 | either resolve these symbols to something in a shared | |
4175 | library, or it can just leave them here. For our purposes, | |
4176 | we can consider these symbols to be in a new section. */ | |
4177 | if (mips_elf_acom_section.name == NULL) | |
4178 | { | |
4179 | /* Initialize the acommon section. */ | |
4180 | mips_elf_acom_section.name = ".acommon"; | |
4181 | mips_elf_acom_section.flags = SEC_ALLOC; | |
4182 | mips_elf_acom_section.output_section = &mips_elf_acom_section; | |
4183 | mips_elf_acom_section.symbol = &mips_elf_acom_symbol; | |
4184 | mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr; | |
4185 | mips_elf_acom_symbol.name = ".acommon"; | |
4186 | mips_elf_acom_symbol.flags = BSF_SECTION_SYM; | |
4187 | mips_elf_acom_symbol.section = &mips_elf_acom_section; | |
4188 | mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol; | |
4189 | } | |
4190 | asym->section = &mips_elf_acom_section; | |
4191 | break; | |
4192 | ||
4193 | case SHN_COMMON: | |
4194 | /* Common symbols less than the GP size are automatically | |
4195 | treated as SHN_MIPS_SCOMMON symbols on IRIX5. */ | |
4196 | if (asym->value > elf_gp_size (abfd) | |
4197 | || IRIX_COMPAT (abfd) == ict_irix6) | |
4198 | break; | |
4199 | /* Fall through. */ | |
4200 | case SHN_MIPS_SCOMMON: | |
4201 | if (mips_elf_scom_section.name == NULL) | |
4202 | { | |
4203 | /* Initialize the small common section. */ | |
4204 | mips_elf_scom_section.name = ".scommon"; | |
4205 | mips_elf_scom_section.flags = SEC_IS_COMMON; | |
4206 | mips_elf_scom_section.output_section = &mips_elf_scom_section; | |
4207 | mips_elf_scom_section.symbol = &mips_elf_scom_symbol; | |
4208 | mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr; | |
4209 | mips_elf_scom_symbol.name = ".scommon"; | |
4210 | mips_elf_scom_symbol.flags = BSF_SECTION_SYM; | |
4211 | mips_elf_scom_symbol.section = &mips_elf_scom_section; | |
4212 | mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol; | |
4213 | } | |
4214 | asym->section = &mips_elf_scom_section; | |
4215 | asym->value = elfsym->internal_elf_sym.st_size; | |
4216 | break; | |
4217 | ||
4218 | case SHN_MIPS_SUNDEFINED: | |
4219 | asym->section = bfd_und_section_ptr; | |
4220 | break; | |
4221 | ||
4222 | #if 0 /* for SGI_COMPAT */ | |
4223 | case SHN_MIPS_TEXT: | |
4224 | asym->section = mips_elf_text_section_ptr; | |
4225 | break; | |
4226 | ||
4227 | case SHN_MIPS_DATA: | |
4228 | asym->section = mips_elf_data_section_ptr; | |
4229 | break; | |
4230 | #endif | |
4231 | } | |
4232 | } | |
4233 | \f | |
174fd7f9 RS |
4234 | /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP |
4235 | relocations against two unnamed section symbols to resolve to the | |
4236 | same address. For example, if we have code like: | |
4237 | ||
4238 | lw $4,%got_disp(.data)($gp) | |
4239 | lw $25,%got_disp(.text)($gp) | |
4240 | jalr $25 | |
4241 | ||
4242 | then the linker will resolve both relocations to .data and the program | |
4243 | will jump there rather than to .text. | |
4244 | ||
4245 | We can work around this problem by giving names to local section symbols. | |
4246 | This is also what the MIPSpro tools do. */ | |
4247 | ||
4248 | bfd_boolean | |
4249 | _bfd_mips_elf_name_local_section_symbols (bfd *abfd) | |
4250 | { | |
4251 | return SGI_COMPAT (abfd); | |
4252 | } | |
4253 | \f | |
b49e97c9 TS |
4254 | /* Work over a section just before writing it out. This routine is |
4255 | used by both the 32-bit and the 64-bit ABI. FIXME: We recognize | |
4256 | sections that need the SHF_MIPS_GPREL flag by name; there has to be | |
4257 | a better way. */ | |
4258 | ||
b34976b6 | 4259 | bfd_boolean |
9719ad41 | 4260 | _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr) |
b49e97c9 TS |
4261 | { |
4262 | if (hdr->sh_type == SHT_MIPS_REGINFO | |
4263 | && hdr->sh_size > 0) | |
4264 | { | |
4265 | bfd_byte buf[4]; | |
4266 | ||
4267 | BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo)); | |
4268 | BFD_ASSERT (hdr->contents == NULL); | |
4269 | ||
4270 | if (bfd_seek (abfd, | |
4271 | hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4, | |
4272 | SEEK_SET) != 0) | |
b34976b6 | 4273 | return FALSE; |
b49e97c9 | 4274 | H_PUT_32 (abfd, elf_gp (abfd), buf); |
9719ad41 | 4275 | if (bfd_bwrite (buf, 4, abfd) != 4) |
b34976b6 | 4276 | return FALSE; |
b49e97c9 TS |
4277 | } |
4278 | ||
4279 | if (hdr->sh_type == SHT_MIPS_OPTIONS | |
4280 | && hdr->bfd_section != NULL | |
f0abc2a1 AM |
4281 | && mips_elf_section_data (hdr->bfd_section) != NULL |
4282 | && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL) | |
b49e97c9 TS |
4283 | { |
4284 | bfd_byte *contents, *l, *lend; | |
4285 | ||
f0abc2a1 AM |
4286 | /* We stored the section contents in the tdata field in the |
4287 | set_section_contents routine. We save the section contents | |
4288 | so that we don't have to read them again. | |
b49e97c9 TS |
4289 | At this point we know that elf_gp is set, so we can look |
4290 | through the section contents to see if there is an | |
4291 | ODK_REGINFO structure. */ | |
4292 | ||
f0abc2a1 | 4293 | contents = mips_elf_section_data (hdr->bfd_section)->u.tdata; |
b49e97c9 TS |
4294 | l = contents; |
4295 | lend = contents + hdr->sh_size; | |
4296 | while (l + sizeof (Elf_External_Options) <= lend) | |
4297 | { | |
4298 | Elf_Internal_Options intopt; | |
4299 | ||
4300 | bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l, | |
4301 | &intopt); | |
4302 | if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO) | |
4303 | { | |
4304 | bfd_byte buf[8]; | |
4305 | ||
4306 | if (bfd_seek (abfd, | |
4307 | (hdr->sh_offset | |
4308 | + (l - contents) | |
4309 | + sizeof (Elf_External_Options) | |
4310 | + (sizeof (Elf64_External_RegInfo) - 8)), | |
4311 | SEEK_SET) != 0) | |
b34976b6 | 4312 | return FALSE; |
b49e97c9 | 4313 | H_PUT_64 (abfd, elf_gp (abfd), buf); |
9719ad41 | 4314 | if (bfd_bwrite (buf, 8, abfd) != 8) |
b34976b6 | 4315 | return FALSE; |
b49e97c9 TS |
4316 | } |
4317 | else if (intopt.kind == ODK_REGINFO) | |
4318 | { | |
4319 | bfd_byte buf[4]; | |
4320 | ||
4321 | if (bfd_seek (abfd, | |
4322 | (hdr->sh_offset | |
4323 | + (l - contents) | |
4324 | + sizeof (Elf_External_Options) | |
4325 | + (sizeof (Elf32_External_RegInfo) - 4)), | |
4326 | SEEK_SET) != 0) | |
b34976b6 | 4327 | return FALSE; |
b49e97c9 | 4328 | H_PUT_32 (abfd, elf_gp (abfd), buf); |
9719ad41 | 4329 | if (bfd_bwrite (buf, 4, abfd) != 4) |
b34976b6 | 4330 | return FALSE; |
b49e97c9 TS |
4331 | } |
4332 | l += intopt.size; | |
4333 | } | |
4334 | } | |
4335 | ||
4336 | if (hdr->bfd_section != NULL) | |
4337 | { | |
4338 | const char *name = bfd_get_section_name (abfd, hdr->bfd_section); | |
4339 | ||
4340 | if (strcmp (name, ".sdata") == 0 | |
4341 | || strcmp (name, ".lit8") == 0 | |
4342 | || strcmp (name, ".lit4") == 0) | |
4343 | { | |
4344 | hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL; | |
4345 | hdr->sh_type = SHT_PROGBITS; | |
4346 | } | |
4347 | else if (strcmp (name, ".sbss") == 0) | |
4348 | { | |
4349 | hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL; | |
4350 | hdr->sh_type = SHT_NOBITS; | |
4351 | } | |
4352 | else if (strcmp (name, ".srdata") == 0) | |
4353 | { | |
4354 | hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL; | |
4355 | hdr->sh_type = SHT_PROGBITS; | |
4356 | } | |
4357 | else if (strcmp (name, ".compact_rel") == 0) | |
4358 | { | |
4359 | hdr->sh_flags = 0; | |
4360 | hdr->sh_type = SHT_PROGBITS; | |
4361 | } | |
4362 | else if (strcmp (name, ".rtproc") == 0) | |
4363 | { | |
4364 | if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0) | |
4365 | { | |
4366 | unsigned int adjust; | |
4367 | ||
4368 | adjust = hdr->sh_size % hdr->sh_addralign; | |
4369 | if (adjust != 0) | |
4370 | hdr->sh_size += hdr->sh_addralign - adjust; | |
4371 | } | |
4372 | } | |
4373 | } | |
4374 | ||
b34976b6 | 4375 | return TRUE; |
b49e97c9 TS |
4376 | } |
4377 | ||
4378 | /* Handle a MIPS specific section when reading an object file. This | |
4379 | is called when elfcode.h finds a section with an unknown type. | |
4380 | This routine supports both the 32-bit and 64-bit ELF ABI. | |
4381 | ||
4382 | FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure | |
4383 | how to. */ | |
4384 | ||
b34976b6 | 4385 | bfd_boolean |
9719ad41 RS |
4386 | _bfd_mips_elf_section_from_shdr (bfd *abfd, Elf_Internal_Shdr *hdr, |
4387 | const char *name) | |
b49e97c9 TS |
4388 | { |
4389 | flagword flags = 0; | |
4390 | ||
4391 | /* There ought to be a place to keep ELF backend specific flags, but | |
4392 | at the moment there isn't one. We just keep track of the | |
4393 | sections by their name, instead. Fortunately, the ABI gives | |
4394 | suggested names for all the MIPS specific sections, so we will | |
4395 | probably get away with this. */ | |
4396 | switch (hdr->sh_type) | |
4397 | { | |
4398 | case SHT_MIPS_LIBLIST: | |
4399 | if (strcmp (name, ".liblist") != 0) | |
b34976b6 | 4400 | return FALSE; |
b49e97c9 TS |
4401 | break; |
4402 | case SHT_MIPS_MSYM: | |
4403 | if (strcmp (name, ".msym") != 0) | |
b34976b6 | 4404 | return FALSE; |
b49e97c9 TS |
4405 | break; |
4406 | case SHT_MIPS_CONFLICT: | |
4407 | if (strcmp (name, ".conflict") != 0) | |
b34976b6 | 4408 | return FALSE; |
b49e97c9 TS |
4409 | break; |
4410 | case SHT_MIPS_GPTAB: | |
4411 | if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0) | |
b34976b6 | 4412 | return FALSE; |
b49e97c9 TS |
4413 | break; |
4414 | case SHT_MIPS_UCODE: | |
4415 | if (strcmp (name, ".ucode") != 0) | |
b34976b6 | 4416 | return FALSE; |
b49e97c9 TS |
4417 | break; |
4418 | case SHT_MIPS_DEBUG: | |
4419 | if (strcmp (name, ".mdebug") != 0) | |
b34976b6 | 4420 | return FALSE; |
b49e97c9 TS |
4421 | flags = SEC_DEBUGGING; |
4422 | break; | |
4423 | case SHT_MIPS_REGINFO: | |
4424 | if (strcmp (name, ".reginfo") != 0 | |
4425 | || hdr->sh_size != sizeof (Elf32_External_RegInfo)) | |
b34976b6 | 4426 | return FALSE; |
b49e97c9 TS |
4427 | flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE); |
4428 | break; | |
4429 | case SHT_MIPS_IFACE: | |
4430 | if (strcmp (name, ".MIPS.interfaces") != 0) | |
b34976b6 | 4431 | return FALSE; |
b49e97c9 TS |
4432 | break; |
4433 | case SHT_MIPS_CONTENT: | |
4434 | if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0) | |
b34976b6 | 4435 | return FALSE; |
b49e97c9 TS |
4436 | break; |
4437 | case SHT_MIPS_OPTIONS: | |
4438 | if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) != 0) | |
b34976b6 | 4439 | return FALSE; |
b49e97c9 TS |
4440 | break; |
4441 | case SHT_MIPS_DWARF: | |
4442 | if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0) | |
b34976b6 | 4443 | return FALSE; |
b49e97c9 TS |
4444 | break; |
4445 | case SHT_MIPS_SYMBOL_LIB: | |
4446 | if (strcmp (name, ".MIPS.symlib") != 0) | |
b34976b6 | 4447 | return FALSE; |
b49e97c9 TS |
4448 | break; |
4449 | case SHT_MIPS_EVENTS: | |
4450 | if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0 | |
4451 | && strncmp (name, ".MIPS.post_rel", | |
4452 | sizeof ".MIPS.post_rel" - 1) != 0) | |
b34976b6 | 4453 | return FALSE; |
b49e97c9 TS |
4454 | break; |
4455 | default: | |
b34976b6 | 4456 | return FALSE; |
b49e97c9 TS |
4457 | } |
4458 | ||
4459 | if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name)) | |
b34976b6 | 4460 | return FALSE; |
b49e97c9 TS |
4461 | |
4462 | if (flags) | |
4463 | { | |
4464 | if (! bfd_set_section_flags (abfd, hdr->bfd_section, | |
4465 | (bfd_get_section_flags (abfd, | |
4466 | hdr->bfd_section) | |
4467 | | flags))) | |
b34976b6 | 4468 | return FALSE; |
b49e97c9 TS |
4469 | } |
4470 | ||
4471 | /* FIXME: We should record sh_info for a .gptab section. */ | |
4472 | ||
4473 | /* For a .reginfo section, set the gp value in the tdata information | |
4474 | from the contents of this section. We need the gp value while | |
4475 | processing relocs, so we just get it now. The .reginfo section | |
4476 | is not used in the 64-bit MIPS ELF ABI. */ | |
4477 | if (hdr->sh_type == SHT_MIPS_REGINFO) | |
4478 | { | |
4479 | Elf32_External_RegInfo ext; | |
4480 | Elf32_RegInfo s; | |
4481 | ||
9719ad41 RS |
4482 | if (! bfd_get_section_contents (abfd, hdr->bfd_section, |
4483 | &ext, 0, sizeof ext)) | |
b34976b6 | 4484 | return FALSE; |
b49e97c9 TS |
4485 | bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s); |
4486 | elf_gp (abfd) = s.ri_gp_value; | |
4487 | } | |
4488 | ||
4489 | /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and | |
4490 | set the gp value based on what we find. We may see both | |
4491 | SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case, | |
4492 | they should agree. */ | |
4493 | if (hdr->sh_type == SHT_MIPS_OPTIONS) | |
4494 | { | |
4495 | bfd_byte *contents, *l, *lend; | |
4496 | ||
9719ad41 | 4497 | contents = bfd_malloc (hdr->sh_size); |
b49e97c9 | 4498 | if (contents == NULL) |
b34976b6 | 4499 | return FALSE; |
b49e97c9 | 4500 | if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents, |
9719ad41 | 4501 | 0, hdr->sh_size)) |
b49e97c9 TS |
4502 | { |
4503 | free (contents); | |
b34976b6 | 4504 | return FALSE; |
b49e97c9 TS |
4505 | } |
4506 | l = contents; | |
4507 | lend = contents + hdr->sh_size; | |
4508 | while (l + sizeof (Elf_External_Options) <= lend) | |
4509 | { | |
4510 | Elf_Internal_Options intopt; | |
4511 | ||
4512 | bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l, | |
4513 | &intopt); | |
4514 | if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO) | |
4515 | { | |
4516 | Elf64_Internal_RegInfo intreg; | |
4517 | ||
4518 | bfd_mips_elf64_swap_reginfo_in | |
4519 | (abfd, | |
4520 | ((Elf64_External_RegInfo *) | |
4521 | (l + sizeof (Elf_External_Options))), | |
4522 | &intreg); | |
4523 | elf_gp (abfd) = intreg.ri_gp_value; | |
4524 | } | |
4525 | else if (intopt.kind == ODK_REGINFO) | |
4526 | { | |
4527 | Elf32_RegInfo intreg; | |
4528 | ||
4529 | bfd_mips_elf32_swap_reginfo_in | |
4530 | (abfd, | |
4531 | ((Elf32_External_RegInfo *) | |
4532 | (l + sizeof (Elf_External_Options))), | |
4533 | &intreg); | |
4534 | elf_gp (abfd) = intreg.ri_gp_value; | |
4535 | } | |
4536 | l += intopt.size; | |
4537 | } | |
4538 | free (contents); | |
4539 | } | |
4540 | ||
b34976b6 | 4541 | return TRUE; |
b49e97c9 TS |
4542 | } |
4543 | ||
4544 | /* Set the correct type for a MIPS ELF section. We do this by the | |
4545 | section name, which is a hack, but ought to work. This routine is | |
4546 | used by both the 32-bit and the 64-bit ABI. */ | |
4547 | ||
b34976b6 | 4548 | bfd_boolean |
9719ad41 | 4549 | _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec) |
b49e97c9 TS |
4550 | { |
4551 | register const char *name; | |
4552 | ||
4553 | name = bfd_get_section_name (abfd, sec); | |
4554 | ||
4555 | if (strcmp (name, ".liblist") == 0) | |
4556 | { | |
4557 | hdr->sh_type = SHT_MIPS_LIBLIST; | |
4558 | hdr->sh_info = sec->_raw_size / sizeof (Elf32_Lib); | |
4559 | /* The sh_link field is set in final_write_processing. */ | |
4560 | } | |
4561 | else if (strcmp (name, ".conflict") == 0) | |
4562 | hdr->sh_type = SHT_MIPS_CONFLICT; | |
4563 | else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0) | |
4564 | { | |
4565 | hdr->sh_type = SHT_MIPS_GPTAB; | |
4566 | hdr->sh_entsize = sizeof (Elf32_External_gptab); | |
4567 | /* The sh_info field is set in final_write_processing. */ | |
4568 | } | |
4569 | else if (strcmp (name, ".ucode") == 0) | |
4570 | hdr->sh_type = SHT_MIPS_UCODE; | |
4571 | else if (strcmp (name, ".mdebug") == 0) | |
4572 | { | |
4573 | hdr->sh_type = SHT_MIPS_DEBUG; | |
8dc1a139 | 4574 | /* In a shared object on IRIX 5.3, the .mdebug section has an |
b49e97c9 TS |
4575 | entsize of 0. FIXME: Does this matter? */ |
4576 | if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0) | |
4577 | hdr->sh_entsize = 0; | |
4578 | else | |
4579 | hdr->sh_entsize = 1; | |
4580 | } | |
4581 | else if (strcmp (name, ".reginfo") == 0) | |
4582 | { | |
4583 | hdr->sh_type = SHT_MIPS_REGINFO; | |
8dc1a139 | 4584 | /* In a shared object on IRIX 5.3, the .reginfo section has an |
b49e97c9 TS |
4585 | entsize of 0x18. FIXME: Does this matter? */ |
4586 | if (SGI_COMPAT (abfd)) | |
4587 | { | |
4588 | if ((abfd->flags & DYNAMIC) != 0) | |
4589 | hdr->sh_entsize = sizeof (Elf32_External_RegInfo); | |
4590 | else | |
4591 | hdr->sh_entsize = 1; | |
4592 | } | |
4593 | else | |
4594 | hdr->sh_entsize = sizeof (Elf32_External_RegInfo); | |
4595 | } | |
4596 | else if (SGI_COMPAT (abfd) | |
4597 | && (strcmp (name, ".hash") == 0 | |
4598 | || strcmp (name, ".dynamic") == 0 | |
4599 | || strcmp (name, ".dynstr") == 0)) | |
4600 | { | |
4601 | if (SGI_COMPAT (abfd)) | |
4602 | hdr->sh_entsize = 0; | |
4603 | #if 0 | |
8dc1a139 | 4604 | /* This isn't how the IRIX6 linker behaves. */ |
b49e97c9 TS |
4605 | hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES; |
4606 | #endif | |
4607 | } | |
4608 | else if (strcmp (name, ".got") == 0 | |
4609 | || strcmp (name, ".srdata") == 0 | |
4610 | || strcmp (name, ".sdata") == 0 | |
4611 | || strcmp (name, ".sbss") == 0 | |
4612 | || strcmp (name, ".lit4") == 0 | |
4613 | || strcmp (name, ".lit8") == 0) | |
4614 | hdr->sh_flags |= SHF_MIPS_GPREL; | |
4615 | else if (strcmp (name, ".MIPS.interfaces") == 0) | |
4616 | { | |
4617 | hdr->sh_type = SHT_MIPS_IFACE; | |
4618 | hdr->sh_flags |= SHF_MIPS_NOSTRIP; | |
4619 | } | |
4620 | else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0) | |
4621 | { | |
4622 | hdr->sh_type = SHT_MIPS_CONTENT; | |
4623 | hdr->sh_flags |= SHF_MIPS_NOSTRIP; | |
4624 | /* The sh_info field is set in final_write_processing. */ | |
4625 | } | |
4626 | else if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0) | |
4627 | { | |
4628 | hdr->sh_type = SHT_MIPS_OPTIONS; | |
4629 | hdr->sh_entsize = 1; | |
4630 | hdr->sh_flags |= SHF_MIPS_NOSTRIP; | |
4631 | } | |
4632 | else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0) | |
4633 | hdr->sh_type = SHT_MIPS_DWARF; | |
4634 | else if (strcmp (name, ".MIPS.symlib") == 0) | |
4635 | { | |
4636 | hdr->sh_type = SHT_MIPS_SYMBOL_LIB; | |
4637 | /* The sh_link and sh_info fields are set in | |
4638 | final_write_processing. */ | |
4639 | } | |
4640 | else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0 | |
4641 | || strncmp (name, ".MIPS.post_rel", | |
4642 | sizeof ".MIPS.post_rel" - 1) == 0) | |
4643 | { | |
4644 | hdr->sh_type = SHT_MIPS_EVENTS; | |
4645 | hdr->sh_flags |= SHF_MIPS_NOSTRIP; | |
4646 | /* The sh_link field is set in final_write_processing. */ | |
4647 | } | |
4648 | else if (strcmp (name, ".msym") == 0) | |
4649 | { | |
4650 | hdr->sh_type = SHT_MIPS_MSYM; | |
4651 | hdr->sh_flags |= SHF_ALLOC; | |
4652 | hdr->sh_entsize = 8; | |
4653 | } | |
4654 | ||
7a79a000 TS |
4655 | /* The generic elf_fake_sections will set up REL_HDR using the default |
4656 | kind of relocations. We used to set up a second header for the | |
4657 | non-default kind of relocations here, but only NewABI would use | |
4658 | these, and the IRIX ld doesn't like resulting empty RELA sections. | |
4659 | Thus we create those header only on demand now. */ | |
b49e97c9 | 4660 | |
b34976b6 | 4661 | return TRUE; |
b49e97c9 TS |
4662 | } |
4663 | ||
4664 | /* Given a BFD section, try to locate the corresponding ELF section | |
4665 | index. This is used by both the 32-bit and the 64-bit ABI. | |
4666 | Actually, it's not clear to me that the 64-bit ABI supports these, | |
4667 | but for non-PIC objects we will certainly want support for at least | |
4668 | the .scommon section. */ | |
4669 | ||
b34976b6 | 4670 | bfd_boolean |
9719ad41 RS |
4671 | _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED, |
4672 | asection *sec, int *retval) | |
b49e97c9 TS |
4673 | { |
4674 | if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0) | |
4675 | { | |
4676 | *retval = SHN_MIPS_SCOMMON; | |
b34976b6 | 4677 | return TRUE; |
b49e97c9 TS |
4678 | } |
4679 | if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0) | |
4680 | { | |
4681 | *retval = SHN_MIPS_ACOMMON; | |
b34976b6 | 4682 | return TRUE; |
b49e97c9 | 4683 | } |
b34976b6 | 4684 | return FALSE; |
b49e97c9 TS |
4685 | } |
4686 | \f | |
4687 | /* Hook called by the linker routine which adds symbols from an object | |
4688 | file. We must handle the special MIPS section numbers here. */ | |
4689 | ||
b34976b6 | 4690 | bfd_boolean |
9719ad41 | 4691 | _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info, |
555cd476 | 4692 | Elf_Internal_Sym *sym, const char **namep, |
9719ad41 RS |
4693 | flagword *flagsp ATTRIBUTE_UNUSED, |
4694 | asection **secp, bfd_vma *valp) | |
b49e97c9 TS |
4695 | { |
4696 | if (SGI_COMPAT (abfd) | |
4697 | && (abfd->flags & DYNAMIC) != 0 | |
4698 | && strcmp (*namep, "_rld_new_interface") == 0) | |
4699 | { | |
8dc1a139 | 4700 | /* Skip IRIX5 rld entry name. */ |
b49e97c9 | 4701 | *namep = NULL; |
b34976b6 | 4702 | return TRUE; |
b49e97c9 TS |
4703 | } |
4704 | ||
4705 | switch (sym->st_shndx) | |
4706 | { | |
4707 | case SHN_COMMON: | |
4708 | /* Common symbols less than the GP size are automatically | |
4709 | treated as SHN_MIPS_SCOMMON symbols. */ | |
4710 | if (sym->st_size > elf_gp_size (abfd) | |
4711 | || IRIX_COMPAT (abfd) == ict_irix6) | |
4712 | break; | |
4713 | /* Fall through. */ | |
4714 | case SHN_MIPS_SCOMMON: | |
4715 | *secp = bfd_make_section_old_way (abfd, ".scommon"); | |
4716 | (*secp)->flags |= SEC_IS_COMMON; | |
4717 | *valp = sym->st_size; | |
4718 | break; | |
4719 | ||
4720 | case SHN_MIPS_TEXT: | |
4721 | /* This section is used in a shared object. */ | |
4722 | if (elf_tdata (abfd)->elf_text_section == NULL) | |
4723 | { | |
4724 | asymbol *elf_text_symbol; | |
4725 | asection *elf_text_section; | |
4726 | bfd_size_type amt = sizeof (asection); | |
4727 | ||
4728 | elf_text_section = bfd_zalloc (abfd, amt); | |
4729 | if (elf_text_section == NULL) | |
b34976b6 | 4730 | return FALSE; |
b49e97c9 TS |
4731 | |
4732 | amt = sizeof (asymbol); | |
4733 | elf_text_symbol = bfd_zalloc (abfd, amt); | |
4734 | if (elf_text_symbol == NULL) | |
b34976b6 | 4735 | return FALSE; |
b49e97c9 TS |
4736 | |
4737 | /* Initialize the section. */ | |
4738 | ||
4739 | elf_tdata (abfd)->elf_text_section = elf_text_section; | |
4740 | elf_tdata (abfd)->elf_text_symbol = elf_text_symbol; | |
4741 | ||
4742 | elf_text_section->symbol = elf_text_symbol; | |
4743 | elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol; | |
4744 | ||
4745 | elf_text_section->name = ".text"; | |
4746 | elf_text_section->flags = SEC_NO_FLAGS; | |
4747 | elf_text_section->output_section = NULL; | |
4748 | elf_text_section->owner = abfd; | |
4749 | elf_text_symbol->name = ".text"; | |
4750 | elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC; | |
4751 | elf_text_symbol->section = elf_text_section; | |
4752 | } | |
4753 | /* This code used to do *secp = bfd_und_section_ptr if | |
4754 | info->shared. I don't know why, and that doesn't make sense, | |
4755 | so I took it out. */ | |
4756 | *secp = elf_tdata (abfd)->elf_text_section; | |
4757 | break; | |
4758 | ||
4759 | case SHN_MIPS_ACOMMON: | |
4760 | /* Fall through. XXX Can we treat this as allocated data? */ | |
4761 | case SHN_MIPS_DATA: | |
4762 | /* This section is used in a shared object. */ | |
4763 | if (elf_tdata (abfd)->elf_data_section == NULL) | |
4764 | { | |
4765 | asymbol *elf_data_symbol; | |
4766 | asection *elf_data_section; | |
4767 | bfd_size_type amt = sizeof (asection); | |
4768 | ||
4769 | elf_data_section = bfd_zalloc (abfd, amt); | |
4770 | if (elf_data_section == NULL) | |
b34976b6 | 4771 | return FALSE; |
b49e97c9 TS |
4772 | |
4773 | amt = sizeof (asymbol); | |
4774 | elf_data_symbol = bfd_zalloc (abfd, amt); | |
4775 | if (elf_data_symbol == NULL) | |
b34976b6 | 4776 | return FALSE; |
b49e97c9 TS |
4777 | |
4778 | /* Initialize the section. */ | |
4779 | ||
4780 | elf_tdata (abfd)->elf_data_section = elf_data_section; | |
4781 | elf_tdata (abfd)->elf_data_symbol = elf_data_symbol; | |
4782 | ||
4783 | elf_data_section->symbol = elf_data_symbol; | |
4784 | elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol; | |
4785 | ||
4786 | elf_data_section->name = ".data"; | |
4787 | elf_data_section->flags = SEC_NO_FLAGS; | |
4788 | elf_data_section->output_section = NULL; | |
4789 | elf_data_section->owner = abfd; | |
4790 | elf_data_symbol->name = ".data"; | |
4791 | elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC; | |
4792 | elf_data_symbol->section = elf_data_section; | |
4793 | } | |
4794 | /* This code used to do *secp = bfd_und_section_ptr if | |
4795 | info->shared. I don't know why, and that doesn't make sense, | |
4796 | so I took it out. */ | |
4797 | *secp = elf_tdata (abfd)->elf_data_section; | |
4798 | break; | |
4799 | ||
4800 | case SHN_MIPS_SUNDEFINED: | |
4801 | *secp = bfd_und_section_ptr; | |
4802 | break; | |
4803 | } | |
4804 | ||
4805 | if (SGI_COMPAT (abfd) | |
4806 | && ! info->shared | |
4807 | && info->hash->creator == abfd->xvec | |
4808 | && strcmp (*namep, "__rld_obj_head") == 0) | |
4809 | { | |
4810 | struct elf_link_hash_entry *h; | |
14a793b2 | 4811 | struct bfd_link_hash_entry *bh; |
b49e97c9 TS |
4812 | |
4813 | /* Mark __rld_obj_head as dynamic. */ | |
14a793b2 | 4814 | bh = NULL; |
b49e97c9 | 4815 | if (! (_bfd_generic_link_add_one_symbol |
9719ad41 | 4816 | (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE, |
14a793b2 | 4817 | get_elf_backend_data (abfd)->collect, &bh))) |
b34976b6 | 4818 | return FALSE; |
14a793b2 AM |
4819 | |
4820 | h = (struct elf_link_hash_entry *) bh; | |
b49e97c9 TS |
4821 | h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF; |
4822 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; | |
4823 | h->type = STT_OBJECT; | |
4824 | ||
c152c796 | 4825 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
b34976b6 | 4826 | return FALSE; |
b49e97c9 | 4827 | |
b34976b6 | 4828 | mips_elf_hash_table (info)->use_rld_obj_head = TRUE; |
b49e97c9 TS |
4829 | } |
4830 | ||
4831 | /* If this is a mips16 text symbol, add 1 to the value to make it | |
4832 | odd. This will cause something like .word SYM to come up with | |
4833 | the right value when it is loaded into the PC. */ | |
4834 | if (sym->st_other == STO_MIPS16) | |
4835 | ++*valp; | |
4836 | ||
b34976b6 | 4837 | return TRUE; |
b49e97c9 TS |
4838 | } |
4839 | ||
4840 | /* This hook function is called before the linker writes out a global | |
4841 | symbol. We mark symbols as small common if appropriate. This is | |
4842 | also where we undo the increment of the value for a mips16 symbol. */ | |
4843 | ||
b34976b6 | 4844 | bfd_boolean |
9719ad41 RS |
4845 | _bfd_mips_elf_link_output_symbol_hook |
4846 | (struct bfd_link_info *info ATTRIBUTE_UNUSED, | |
4847 | const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym, | |
4848 | asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED) | |
b49e97c9 TS |
4849 | { |
4850 | /* If we see a common symbol, which implies a relocatable link, then | |
4851 | if a symbol was small common in an input file, mark it as small | |
4852 | common in the output file. */ | |
4853 | if (sym->st_shndx == SHN_COMMON | |
4854 | && strcmp (input_sec->name, ".scommon") == 0) | |
4855 | sym->st_shndx = SHN_MIPS_SCOMMON; | |
4856 | ||
79cda7cf FF |
4857 | if (sym->st_other == STO_MIPS16) |
4858 | sym->st_value &= ~1; | |
b49e97c9 | 4859 | |
b34976b6 | 4860 | return TRUE; |
b49e97c9 TS |
4861 | } |
4862 | \f | |
4863 | /* Functions for the dynamic linker. */ | |
4864 | ||
4865 | /* Create dynamic sections when linking against a dynamic object. */ | |
4866 | ||
b34976b6 | 4867 | bfd_boolean |
9719ad41 | 4868 | _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info) |
b49e97c9 TS |
4869 | { |
4870 | struct elf_link_hash_entry *h; | |
14a793b2 | 4871 | struct bfd_link_hash_entry *bh; |
b49e97c9 TS |
4872 | flagword flags; |
4873 | register asection *s; | |
4874 | const char * const *namep; | |
4875 | ||
4876 | flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | |
4877 | | SEC_LINKER_CREATED | SEC_READONLY); | |
4878 | ||
4879 | /* Mips ABI requests the .dynamic section to be read only. */ | |
4880 | s = bfd_get_section_by_name (abfd, ".dynamic"); | |
4881 | if (s != NULL) | |
4882 | { | |
4883 | if (! bfd_set_section_flags (abfd, s, flags)) | |
b34976b6 | 4884 | return FALSE; |
b49e97c9 TS |
4885 | } |
4886 | ||
4887 | /* We need to create .got section. */ | |
f4416af6 AO |
4888 | if (! mips_elf_create_got_section (abfd, info, FALSE)) |
4889 | return FALSE; | |
4890 | ||
4891 | if (! mips_elf_rel_dyn_section (elf_hash_table (info)->dynobj, TRUE)) | |
b34976b6 | 4892 | return FALSE; |
b49e97c9 | 4893 | |
b49e97c9 TS |
4894 | /* Create .stub section. */ |
4895 | if (bfd_get_section_by_name (abfd, | |
4896 | MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL) | |
4897 | { | |
4898 | s = bfd_make_section (abfd, MIPS_ELF_STUB_SECTION_NAME (abfd)); | |
4899 | if (s == NULL | |
4900 | || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE) | |
4901 | || ! bfd_set_section_alignment (abfd, s, | |
4902 | MIPS_ELF_LOG_FILE_ALIGN (abfd))) | |
b34976b6 | 4903 | return FALSE; |
b49e97c9 TS |
4904 | } |
4905 | ||
4906 | if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none) | |
4907 | && !info->shared | |
4908 | && bfd_get_section_by_name (abfd, ".rld_map") == NULL) | |
4909 | { | |
4910 | s = bfd_make_section (abfd, ".rld_map"); | |
4911 | if (s == NULL | |
4912 | || ! bfd_set_section_flags (abfd, s, flags &~ (flagword) SEC_READONLY) | |
4913 | || ! bfd_set_section_alignment (abfd, s, | |
4914 | MIPS_ELF_LOG_FILE_ALIGN (abfd))) | |
b34976b6 | 4915 | return FALSE; |
b49e97c9 TS |
4916 | } |
4917 | ||
4918 | /* On IRIX5, we adjust add some additional symbols and change the | |
4919 | alignments of several sections. There is no ABI documentation | |
4920 | indicating that this is necessary on IRIX6, nor any evidence that | |
4921 | the linker takes such action. */ | |
4922 | if (IRIX_COMPAT (abfd) == ict_irix5) | |
4923 | { | |
4924 | for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++) | |
4925 | { | |
14a793b2 | 4926 | bh = NULL; |
b49e97c9 | 4927 | if (! (_bfd_generic_link_add_one_symbol |
9719ad41 RS |
4928 | (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0, |
4929 | NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh))) | |
b34976b6 | 4930 | return FALSE; |
14a793b2 AM |
4931 | |
4932 | h = (struct elf_link_hash_entry *) bh; | |
b49e97c9 TS |
4933 | h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF; |
4934 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; | |
4935 | h->type = STT_SECTION; | |
4936 | ||
c152c796 | 4937 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
b34976b6 | 4938 | return FALSE; |
b49e97c9 TS |
4939 | } |
4940 | ||
4941 | /* We need to create a .compact_rel section. */ | |
4942 | if (SGI_COMPAT (abfd)) | |
4943 | { | |
4944 | if (!mips_elf_create_compact_rel_section (abfd, info)) | |
b34976b6 | 4945 | return FALSE; |
b49e97c9 TS |
4946 | } |
4947 | ||
44c410de | 4948 | /* Change alignments of some sections. */ |
b49e97c9 TS |
4949 | s = bfd_get_section_by_name (abfd, ".hash"); |
4950 | if (s != NULL) | |
d80dcc6a | 4951 | bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); |
b49e97c9 TS |
4952 | s = bfd_get_section_by_name (abfd, ".dynsym"); |
4953 | if (s != NULL) | |
d80dcc6a | 4954 | bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); |
b49e97c9 TS |
4955 | s = bfd_get_section_by_name (abfd, ".dynstr"); |
4956 | if (s != NULL) | |
d80dcc6a | 4957 | bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); |
b49e97c9 TS |
4958 | s = bfd_get_section_by_name (abfd, ".reginfo"); |
4959 | if (s != NULL) | |
d80dcc6a | 4960 | bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); |
b49e97c9 TS |
4961 | s = bfd_get_section_by_name (abfd, ".dynamic"); |
4962 | if (s != NULL) | |
d80dcc6a | 4963 | bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); |
b49e97c9 TS |
4964 | } |
4965 | ||
4966 | if (!info->shared) | |
4967 | { | |
14a793b2 AM |
4968 | const char *name; |
4969 | ||
4970 | name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING"; | |
4971 | bh = NULL; | |
4972 | if (!(_bfd_generic_link_add_one_symbol | |
9719ad41 RS |
4973 | (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0, |
4974 | NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh))) | |
b34976b6 | 4975 | return FALSE; |
14a793b2 AM |
4976 | |
4977 | h = (struct elf_link_hash_entry *) bh; | |
b49e97c9 TS |
4978 | h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF; |
4979 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; | |
4980 | h->type = STT_SECTION; | |
4981 | ||
c152c796 | 4982 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
b34976b6 | 4983 | return FALSE; |
b49e97c9 TS |
4984 | |
4985 | if (! mips_elf_hash_table (info)->use_rld_obj_head) | |
4986 | { | |
4987 | /* __rld_map is a four byte word located in the .data section | |
4988 | and is filled in by the rtld to contain a pointer to | |
4989 | the _r_debug structure. Its symbol value will be set in | |
4990 | _bfd_mips_elf_finish_dynamic_symbol. */ | |
4991 | s = bfd_get_section_by_name (abfd, ".rld_map"); | |
4992 | BFD_ASSERT (s != NULL); | |
4993 | ||
14a793b2 AM |
4994 | name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP"; |
4995 | bh = NULL; | |
4996 | if (!(_bfd_generic_link_add_one_symbol | |
9719ad41 | 4997 | (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE, |
14a793b2 | 4998 | get_elf_backend_data (abfd)->collect, &bh))) |
b34976b6 | 4999 | return FALSE; |
14a793b2 AM |
5000 | |
5001 | h = (struct elf_link_hash_entry *) bh; | |
b49e97c9 TS |
5002 | h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF; |
5003 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; | |
5004 | h->type = STT_OBJECT; | |
5005 | ||
c152c796 | 5006 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
b34976b6 | 5007 | return FALSE; |
b49e97c9 TS |
5008 | } |
5009 | } | |
5010 | ||
b34976b6 | 5011 | return TRUE; |
b49e97c9 TS |
5012 | } |
5013 | \f | |
5014 | /* Look through the relocs for a section during the first phase, and | |
5015 | allocate space in the global offset table. */ | |
5016 | ||
b34976b6 | 5017 | bfd_boolean |
9719ad41 RS |
5018 | _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info, |
5019 | asection *sec, const Elf_Internal_Rela *relocs) | |
b49e97c9 TS |
5020 | { |
5021 | const char *name; | |
5022 | bfd *dynobj; | |
5023 | Elf_Internal_Shdr *symtab_hdr; | |
5024 | struct elf_link_hash_entry **sym_hashes; | |
5025 | struct mips_got_info *g; | |
5026 | size_t extsymoff; | |
5027 | const Elf_Internal_Rela *rel; | |
5028 | const Elf_Internal_Rela *rel_end; | |
5029 | asection *sgot; | |
5030 | asection *sreloc; | |
9c5bfbb7 | 5031 | const struct elf_backend_data *bed; |
b49e97c9 | 5032 | |
1049f94e | 5033 | if (info->relocatable) |
b34976b6 | 5034 | return TRUE; |
b49e97c9 TS |
5035 | |
5036 | dynobj = elf_hash_table (info)->dynobj; | |
5037 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
5038 | sym_hashes = elf_sym_hashes (abfd); | |
5039 | extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info; | |
5040 | ||
5041 | /* Check for the mips16 stub sections. */ | |
5042 | ||
5043 | name = bfd_get_section_name (abfd, sec); | |
5044 | if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0) | |
5045 | { | |
5046 | unsigned long r_symndx; | |
5047 | ||
5048 | /* Look at the relocation information to figure out which symbol | |
5049 | this is for. */ | |
5050 | ||
5051 | r_symndx = ELF_R_SYM (abfd, relocs->r_info); | |
5052 | ||
5053 | if (r_symndx < extsymoff | |
5054 | || sym_hashes[r_symndx - extsymoff] == NULL) | |
5055 | { | |
5056 | asection *o; | |
5057 | ||
5058 | /* This stub is for a local symbol. This stub will only be | |
5059 | needed if there is some relocation in this BFD, other | |
5060 | than a 16 bit function call, which refers to this symbol. */ | |
5061 | for (o = abfd->sections; o != NULL; o = o->next) | |
5062 | { | |
5063 | Elf_Internal_Rela *sec_relocs; | |
5064 | const Elf_Internal_Rela *r, *rend; | |
5065 | ||
5066 | /* We can ignore stub sections when looking for relocs. */ | |
5067 | if ((o->flags & SEC_RELOC) == 0 | |
5068 | || o->reloc_count == 0 | |
5069 | || strncmp (bfd_get_section_name (abfd, o), FN_STUB, | |
5070 | sizeof FN_STUB - 1) == 0 | |
5071 | || strncmp (bfd_get_section_name (abfd, o), CALL_STUB, | |
5072 | sizeof CALL_STUB - 1) == 0 | |
5073 | || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB, | |
5074 | sizeof CALL_FP_STUB - 1) == 0) | |
5075 | continue; | |
5076 | ||
45d6a902 | 5077 | sec_relocs |
9719ad41 | 5078 | = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL, |
45d6a902 | 5079 | info->keep_memory); |
b49e97c9 | 5080 | if (sec_relocs == NULL) |
b34976b6 | 5081 | return FALSE; |
b49e97c9 TS |
5082 | |
5083 | rend = sec_relocs + o->reloc_count; | |
5084 | for (r = sec_relocs; r < rend; r++) | |
5085 | if (ELF_R_SYM (abfd, r->r_info) == r_symndx | |
5086 | && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26) | |
5087 | break; | |
5088 | ||
6cdc0ccc | 5089 | if (elf_section_data (o)->relocs != sec_relocs) |
b49e97c9 TS |
5090 | free (sec_relocs); |
5091 | ||
5092 | if (r < rend) | |
5093 | break; | |
5094 | } | |
5095 | ||
5096 | if (o == NULL) | |
5097 | { | |
5098 | /* There is no non-call reloc for this stub, so we do | |
5099 | not need it. Since this function is called before | |
5100 | the linker maps input sections to output sections, we | |
5101 | can easily discard it by setting the SEC_EXCLUDE | |
5102 | flag. */ | |
5103 | sec->flags |= SEC_EXCLUDE; | |
b34976b6 | 5104 | return TRUE; |
b49e97c9 TS |
5105 | } |
5106 | ||
5107 | /* Record this stub in an array of local symbol stubs for | |
5108 | this BFD. */ | |
5109 | if (elf_tdata (abfd)->local_stubs == NULL) | |
5110 | { | |
5111 | unsigned long symcount; | |
5112 | asection **n; | |
5113 | bfd_size_type amt; | |
5114 | ||
5115 | if (elf_bad_symtab (abfd)) | |
5116 | symcount = NUM_SHDR_ENTRIES (symtab_hdr); | |
5117 | else | |
5118 | symcount = symtab_hdr->sh_info; | |
5119 | amt = symcount * sizeof (asection *); | |
9719ad41 | 5120 | n = bfd_zalloc (abfd, amt); |
b49e97c9 | 5121 | if (n == NULL) |
b34976b6 | 5122 | return FALSE; |
b49e97c9 TS |
5123 | elf_tdata (abfd)->local_stubs = n; |
5124 | } | |
5125 | ||
5126 | elf_tdata (abfd)->local_stubs[r_symndx] = sec; | |
5127 | ||
5128 | /* We don't need to set mips16_stubs_seen in this case. | |
5129 | That flag is used to see whether we need to look through | |
5130 | the global symbol table for stubs. We don't need to set | |
5131 | it here, because we just have a local stub. */ | |
5132 | } | |
5133 | else | |
5134 | { | |
5135 | struct mips_elf_link_hash_entry *h; | |
5136 | ||
5137 | h = ((struct mips_elf_link_hash_entry *) | |
5138 | sym_hashes[r_symndx - extsymoff]); | |
5139 | ||
5140 | /* H is the symbol this stub is for. */ | |
5141 | ||
5142 | h->fn_stub = sec; | |
b34976b6 | 5143 | mips_elf_hash_table (info)->mips16_stubs_seen = TRUE; |
b49e97c9 TS |
5144 | } |
5145 | } | |
5146 | else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0 | |
5147 | || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0) | |
5148 | { | |
5149 | unsigned long r_symndx; | |
5150 | struct mips_elf_link_hash_entry *h; | |
5151 | asection **loc; | |
5152 | ||
5153 | /* Look at the relocation information to figure out which symbol | |
5154 | this is for. */ | |
5155 | ||
5156 | r_symndx = ELF_R_SYM (abfd, relocs->r_info); | |
5157 | ||
5158 | if (r_symndx < extsymoff | |
5159 | || sym_hashes[r_symndx - extsymoff] == NULL) | |
5160 | { | |
5161 | /* This stub was actually built for a static symbol defined | |
5162 | in the same file. We assume that all static symbols in | |
5163 | mips16 code are themselves mips16, so we can simply | |
5164 | discard this stub. Since this function is called before | |
5165 | the linker maps input sections to output sections, we can | |
5166 | easily discard it by setting the SEC_EXCLUDE flag. */ | |
5167 | sec->flags |= SEC_EXCLUDE; | |
b34976b6 | 5168 | return TRUE; |
b49e97c9 TS |
5169 | } |
5170 | ||
5171 | h = ((struct mips_elf_link_hash_entry *) | |
5172 | sym_hashes[r_symndx - extsymoff]); | |
5173 | ||
5174 | /* H is the symbol this stub is for. */ | |
5175 | ||
5176 | if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0) | |
5177 | loc = &h->call_fp_stub; | |
5178 | else | |
5179 | loc = &h->call_stub; | |
5180 | ||
5181 | /* If we already have an appropriate stub for this function, we | |
5182 | don't need another one, so we can discard this one. Since | |
5183 | this function is called before the linker maps input sections | |
5184 | to output sections, we can easily discard it by setting the | |
5185 | SEC_EXCLUDE flag. We can also discard this section if we | |
5186 | happen to already know that this is a mips16 function; it is | |
5187 | not necessary to check this here, as it is checked later, but | |
5188 | it is slightly faster to check now. */ | |
5189 | if (*loc != NULL || h->root.other == STO_MIPS16) | |
5190 | { | |
5191 | sec->flags |= SEC_EXCLUDE; | |
b34976b6 | 5192 | return TRUE; |
b49e97c9 TS |
5193 | } |
5194 | ||
5195 | *loc = sec; | |
b34976b6 | 5196 | mips_elf_hash_table (info)->mips16_stubs_seen = TRUE; |
b49e97c9 TS |
5197 | } |
5198 | ||
5199 | if (dynobj == NULL) | |
5200 | { | |
5201 | sgot = NULL; | |
5202 | g = NULL; | |
5203 | } | |
5204 | else | |
5205 | { | |
f4416af6 | 5206 | sgot = mips_elf_got_section (dynobj, FALSE); |
b49e97c9 TS |
5207 | if (sgot == NULL) |
5208 | g = NULL; | |
5209 | else | |
5210 | { | |
f0abc2a1 AM |
5211 | BFD_ASSERT (mips_elf_section_data (sgot) != NULL); |
5212 | g = mips_elf_section_data (sgot)->u.got_info; | |
b49e97c9 TS |
5213 | BFD_ASSERT (g != NULL); |
5214 | } | |
5215 | } | |
5216 | ||
5217 | sreloc = NULL; | |
5218 | bed = get_elf_backend_data (abfd); | |
5219 | rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel; | |
5220 | for (rel = relocs; rel < rel_end; ++rel) | |
5221 | { | |
5222 | unsigned long r_symndx; | |
5223 | unsigned int r_type; | |
5224 | struct elf_link_hash_entry *h; | |
5225 | ||
5226 | r_symndx = ELF_R_SYM (abfd, rel->r_info); | |
5227 | r_type = ELF_R_TYPE (abfd, rel->r_info); | |
5228 | ||
5229 | if (r_symndx < extsymoff) | |
5230 | h = NULL; | |
5231 | else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr)) | |
5232 | { | |
5233 | (*_bfd_error_handler) | |
5234 | (_("%s: Malformed reloc detected for section %s"), | |
5235 | bfd_archive_filename (abfd), name); | |
5236 | bfd_set_error (bfd_error_bad_value); | |
b34976b6 | 5237 | return FALSE; |
b49e97c9 TS |
5238 | } |
5239 | else | |
5240 | { | |
5241 | h = sym_hashes[r_symndx - extsymoff]; | |
5242 | ||
5243 | /* This may be an indirect symbol created because of a version. */ | |
5244 | if (h != NULL) | |
5245 | { | |
5246 | while (h->root.type == bfd_link_hash_indirect) | |
5247 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
5248 | } | |
5249 | } | |
5250 | ||
5251 | /* Some relocs require a global offset table. */ | |
5252 | if (dynobj == NULL || sgot == NULL) | |
5253 | { | |
5254 | switch (r_type) | |
5255 | { | |
5256 | case R_MIPS_GOT16: | |
5257 | case R_MIPS_CALL16: | |
5258 | case R_MIPS_CALL_HI16: | |
5259 | case R_MIPS_CALL_LO16: | |
5260 | case R_MIPS_GOT_HI16: | |
5261 | case R_MIPS_GOT_LO16: | |
5262 | case R_MIPS_GOT_PAGE: | |
5263 | case R_MIPS_GOT_OFST: | |
5264 | case R_MIPS_GOT_DISP: | |
5265 | if (dynobj == NULL) | |
5266 | elf_hash_table (info)->dynobj = dynobj = abfd; | |
f4416af6 | 5267 | if (! mips_elf_create_got_section (dynobj, info, FALSE)) |
b34976b6 | 5268 | return FALSE; |
b49e97c9 TS |
5269 | g = mips_elf_got_info (dynobj, &sgot); |
5270 | break; | |
5271 | ||
5272 | case R_MIPS_32: | |
5273 | case R_MIPS_REL32: | |
5274 | case R_MIPS_64: | |
5275 | if (dynobj == NULL | |
5276 | && (info->shared || h != NULL) | |
5277 | && (sec->flags & SEC_ALLOC) != 0) | |
5278 | elf_hash_table (info)->dynobj = dynobj = abfd; | |
5279 | break; | |
5280 | ||
5281 | default: | |
5282 | break; | |
5283 | } | |
5284 | } | |
5285 | ||
5286 | if (!h && (r_type == R_MIPS_CALL_LO16 | |
5287 | || r_type == R_MIPS_GOT_LO16 | |
5288 | || r_type == R_MIPS_GOT_DISP)) | |
5289 | { | |
5290 | /* We may need a local GOT entry for this relocation. We | |
5291 | don't count R_MIPS_GOT_PAGE because we can estimate the | |
5292 | maximum number of pages needed by looking at the size of | |
5293 | the segment. Similar comments apply to R_MIPS_GOT16 and | |
5294 | R_MIPS_CALL16. We don't count R_MIPS_GOT_HI16, or | |
5295 | R_MIPS_CALL_HI16 because these are always followed by an | |
b15e6682 | 5296 | R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */ |
f4416af6 AO |
5297 | if (! mips_elf_record_local_got_symbol (abfd, r_symndx, |
5298 | rel->r_addend, g)) | |
5299 | return FALSE; | |
b49e97c9 TS |
5300 | } |
5301 | ||
5302 | switch (r_type) | |
5303 | { | |
5304 | case R_MIPS_CALL16: | |
5305 | if (h == NULL) | |
5306 | { | |
5307 | (*_bfd_error_handler) | |
5308 | (_("%s: CALL16 reloc at 0x%lx not against global symbol"), | |
5309 | bfd_archive_filename (abfd), (unsigned long) rel->r_offset); | |
5310 | bfd_set_error (bfd_error_bad_value); | |
b34976b6 | 5311 | return FALSE; |
b49e97c9 TS |
5312 | } |
5313 | /* Fall through. */ | |
5314 | ||
5315 | case R_MIPS_CALL_HI16: | |
5316 | case R_MIPS_CALL_LO16: | |
5317 | if (h != NULL) | |
5318 | { | |
5319 | /* This symbol requires a global offset table entry. */ | |
f4416af6 | 5320 | if (! mips_elf_record_global_got_symbol (h, abfd, info, g)) |
b34976b6 | 5321 | return FALSE; |
b49e97c9 TS |
5322 | |
5323 | /* We need a stub, not a plt entry for the undefined | |
5324 | function. But we record it as if it needs plt. See | |
c152c796 | 5325 | _bfd_elf_adjust_dynamic_symbol. */ |
b49e97c9 TS |
5326 | h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT; |
5327 | h->type = STT_FUNC; | |
5328 | } | |
5329 | break; | |
5330 | ||
0fdc1bf1 AO |
5331 | case R_MIPS_GOT_PAGE: |
5332 | /* If this is a global, overridable symbol, GOT_PAGE will | |
5333 | decay to GOT_DISP, so we'll need a GOT entry for it. */ | |
5334 | if (h == NULL) | |
5335 | break; | |
5336 | else | |
5337 | { | |
5338 | struct mips_elf_link_hash_entry *hmips = | |
5339 | (struct mips_elf_link_hash_entry *) h; | |
143d77c5 | 5340 | |
0fdc1bf1 AO |
5341 | while (hmips->root.root.type == bfd_link_hash_indirect |
5342 | || hmips->root.root.type == bfd_link_hash_warning) | |
5343 | hmips = (struct mips_elf_link_hash_entry *) | |
5344 | hmips->root.root.u.i.link; | |
143d77c5 | 5345 | |
d25aed71 | 5346 | if ((hmips->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) |
0fdc1bf1 AO |
5347 | && ! (info->shared && ! info->symbolic |
5348 | && ! (hmips->root.elf_link_hash_flags | |
d25aed71 | 5349 | & ELF_LINK_FORCED_LOCAL))) |
0fdc1bf1 AO |
5350 | break; |
5351 | } | |
5352 | /* Fall through. */ | |
5353 | ||
b49e97c9 TS |
5354 | case R_MIPS_GOT16: |
5355 | case R_MIPS_GOT_HI16: | |
5356 | case R_MIPS_GOT_LO16: | |
5357 | case R_MIPS_GOT_DISP: | |
5358 | /* This symbol requires a global offset table entry. */ | |
f4416af6 | 5359 | if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g)) |
b34976b6 | 5360 | return FALSE; |
b49e97c9 TS |
5361 | break; |
5362 | ||
5363 | case R_MIPS_32: | |
5364 | case R_MIPS_REL32: | |
5365 | case R_MIPS_64: | |
5366 | if ((info->shared || h != NULL) | |
5367 | && (sec->flags & SEC_ALLOC) != 0) | |
5368 | { | |
5369 | if (sreloc == NULL) | |
5370 | { | |
f4416af6 | 5371 | sreloc = mips_elf_rel_dyn_section (dynobj, TRUE); |
b49e97c9 | 5372 | if (sreloc == NULL) |
f4416af6 | 5373 | return FALSE; |
b49e97c9 TS |
5374 | } |
5375 | #define MIPS_READONLY_SECTION (SEC_ALLOC | SEC_LOAD | SEC_READONLY) | |
5376 | if (info->shared) | |
5377 | { | |
5378 | /* When creating a shared object, we must copy these | |
5379 | reloc types into the output file as R_MIPS_REL32 | |
5380 | relocs. We make room for this reloc in the | |
5381 | .rel.dyn reloc section. */ | |
5382 | mips_elf_allocate_dynamic_relocations (dynobj, 1); | |
5383 | if ((sec->flags & MIPS_READONLY_SECTION) | |
5384 | == MIPS_READONLY_SECTION) | |
5385 | /* We tell the dynamic linker that there are | |
5386 | relocations against the text segment. */ | |
5387 | info->flags |= DF_TEXTREL; | |
5388 | } | |
5389 | else | |
5390 | { | |
5391 | struct mips_elf_link_hash_entry *hmips; | |
5392 | ||
5393 | /* We only need to copy this reloc if the symbol is | |
5394 | defined in a dynamic object. */ | |
5395 | hmips = (struct mips_elf_link_hash_entry *) h; | |
5396 | ++hmips->possibly_dynamic_relocs; | |
5397 | if ((sec->flags & MIPS_READONLY_SECTION) | |
5398 | == MIPS_READONLY_SECTION) | |
5399 | /* We need it to tell the dynamic linker if there | |
5400 | are relocations against the text segment. */ | |
b34976b6 | 5401 | hmips->readonly_reloc = TRUE; |
b49e97c9 TS |
5402 | } |
5403 | ||
5404 | /* Even though we don't directly need a GOT entry for | |
5405 | this symbol, a symbol must have a dynamic symbol | |
5406 | table index greater that DT_MIPS_GOTSYM if there are | |
5407 | dynamic relocations against it. */ | |
f4416af6 AO |
5408 | if (h != NULL) |
5409 | { | |
5410 | if (dynobj == NULL) | |
5411 | elf_hash_table (info)->dynobj = dynobj = abfd; | |
5412 | if (! mips_elf_create_got_section (dynobj, info, TRUE)) | |
5413 | return FALSE; | |
5414 | g = mips_elf_got_info (dynobj, &sgot); | |
5415 | if (! mips_elf_record_global_got_symbol (h, abfd, info, g)) | |
5416 | return FALSE; | |
5417 | } | |
b49e97c9 TS |
5418 | } |
5419 | ||
5420 | if (SGI_COMPAT (abfd)) | |
5421 | mips_elf_hash_table (info)->compact_rel_size += | |
5422 | sizeof (Elf32_External_crinfo); | |
5423 | break; | |
5424 | ||
5425 | case R_MIPS_26: | |
5426 | case R_MIPS_GPREL16: | |
5427 | case R_MIPS_LITERAL: | |
5428 | case R_MIPS_GPREL32: | |
5429 | if (SGI_COMPAT (abfd)) | |
5430 | mips_elf_hash_table (info)->compact_rel_size += | |
5431 | sizeof (Elf32_External_crinfo); | |
5432 | break; | |
5433 | ||
5434 | /* This relocation describes the C++ object vtable hierarchy. | |
5435 | Reconstruct it for later use during GC. */ | |
5436 | case R_MIPS_GNU_VTINHERIT: | |
c152c796 | 5437 | if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) |
b34976b6 | 5438 | return FALSE; |
b49e97c9 TS |
5439 | break; |
5440 | ||
5441 | /* This relocation describes which C++ vtable entries are actually | |
5442 | used. Record for later use during GC. */ | |
5443 | case R_MIPS_GNU_VTENTRY: | |
c152c796 | 5444 | if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset)) |
b34976b6 | 5445 | return FALSE; |
b49e97c9 TS |
5446 | break; |
5447 | ||
5448 | default: | |
5449 | break; | |
5450 | } | |
5451 | ||
5452 | /* We must not create a stub for a symbol that has relocations | |
5453 | related to taking the function's address. */ | |
5454 | switch (r_type) | |
5455 | { | |
5456 | default: | |
5457 | if (h != NULL) | |
5458 | { | |
5459 | struct mips_elf_link_hash_entry *mh; | |
5460 | ||
5461 | mh = (struct mips_elf_link_hash_entry *) h; | |
b34976b6 | 5462 | mh->no_fn_stub = TRUE; |
b49e97c9 TS |
5463 | } |
5464 | break; | |
5465 | case R_MIPS_CALL16: | |
5466 | case R_MIPS_CALL_HI16: | |
5467 | case R_MIPS_CALL_LO16: | |
2b86c02e | 5468 | case R_MIPS_JALR: |
b49e97c9 TS |
5469 | break; |
5470 | } | |
5471 | ||
5472 | /* If this reloc is not a 16 bit call, and it has a global | |
5473 | symbol, then we will need the fn_stub if there is one. | |
5474 | References from a stub section do not count. */ | |
5475 | if (h != NULL | |
5476 | && r_type != R_MIPS16_26 | |
5477 | && strncmp (bfd_get_section_name (abfd, sec), FN_STUB, | |
5478 | sizeof FN_STUB - 1) != 0 | |
5479 | && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB, | |
5480 | sizeof CALL_STUB - 1) != 0 | |
5481 | && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB, | |
5482 | sizeof CALL_FP_STUB - 1) != 0) | |
5483 | { | |
5484 | struct mips_elf_link_hash_entry *mh; | |
5485 | ||
5486 | mh = (struct mips_elf_link_hash_entry *) h; | |
b34976b6 | 5487 | mh->need_fn_stub = TRUE; |
b49e97c9 TS |
5488 | } |
5489 | } | |
5490 | ||
b34976b6 | 5491 | return TRUE; |
b49e97c9 TS |
5492 | } |
5493 | \f | |
d0647110 | 5494 | bfd_boolean |
9719ad41 RS |
5495 | _bfd_mips_relax_section (bfd *abfd, asection *sec, |
5496 | struct bfd_link_info *link_info, | |
5497 | bfd_boolean *again) | |
d0647110 AO |
5498 | { |
5499 | Elf_Internal_Rela *internal_relocs; | |
5500 | Elf_Internal_Rela *irel, *irelend; | |
5501 | Elf_Internal_Shdr *symtab_hdr; | |
5502 | bfd_byte *contents = NULL; | |
5503 | bfd_byte *free_contents = NULL; | |
5504 | size_t extsymoff; | |
5505 | bfd_boolean changed_contents = FALSE; | |
5506 | bfd_vma sec_start = sec->output_section->vma + sec->output_offset; | |
5507 | Elf_Internal_Sym *isymbuf = NULL; | |
5508 | ||
5509 | /* We are not currently changing any sizes, so only one pass. */ | |
5510 | *again = FALSE; | |
5511 | ||
1049f94e | 5512 | if (link_info->relocatable) |
d0647110 AO |
5513 | return TRUE; |
5514 | ||
9719ad41 | 5515 | internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, |
45d6a902 | 5516 | link_info->keep_memory); |
d0647110 AO |
5517 | if (internal_relocs == NULL) |
5518 | return TRUE; | |
5519 | ||
5520 | irelend = internal_relocs + sec->reloc_count | |
5521 | * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel; | |
5522 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
5523 | extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info; | |
5524 | ||
5525 | for (irel = internal_relocs; irel < irelend; irel++) | |
5526 | { | |
5527 | bfd_vma symval; | |
5528 | bfd_signed_vma sym_offset; | |
5529 | unsigned int r_type; | |
5530 | unsigned long r_symndx; | |
5531 | asection *sym_sec; | |
5532 | unsigned long instruction; | |
5533 | ||
5534 | /* Turn jalr into bgezal, and jr into beq, if they're marked | |
5535 | with a JALR relocation, that indicate where they jump to. | |
5536 | This saves some pipeline bubbles. */ | |
5537 | r_type = ELF_R_TYPE (abfd, irel->r_info); | |
5538 | if (r_type != R_MIPS_JALR) | |
5539 | continue; | |
5540 | ||
5541 | r_symndx = ELF_R_SYM (abfd, irel->r_info); | |
5542 | /* Compute the address of the jump target. */ | |
5543 | if (r_symndx >= extsymoff) | |
5544 | { | |
5545 | struct mips_elf_link_hash_entry *h | |
5546 | = ((struct mips_elf_link_hash_entry *) | |
5547 | elf_sym_hashes (abfd) [r_symndx - extsymoff]); | |
5548 | ||
5549 | while (h->root.root.type == bfd_link_hash_indirect | |
5550 | || h->root.root.type == bfd_link_hash_warning) | |
5551 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | |
143d77c5 | 5552 | |
d0647110 AO |
5553 | /* If a symbol is undefined, or if it may be overridden, |
5554 | skip it. */ | |
5555 | if (! ((h->root.root.type == bfd_link_hash_defined | |
5556 | || h->root.root.type == bfd_link_hash_defweak) | |
5557 | && h->root.root.u.def.section) | |
5558 | || (link_info->shared && ! link_info->symbolic | |
5559 | && ! (h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))) | |
5560 | continue; | |
5561 | ||
5562 | sym_sec = h->root.root.u.def.section; | |
5563 | if (sym_sec->output_section) | |
5564 | symval = (h->root.root.u.def.value | |
5565 | + sym_sec->output_section->vma | |
5566 | + sym_sec->output_offset); | |
5567 | else | |
5568 | symval = h->root.root.u.def.value; | |
5569 | } | |
5570 | else | |
5571 | { | |
5572 | Elf_Internal_Sym *isym; | |
5573 | ||
5574 | /* Read this BFD's symbols if we haven't done so already. */ | |
5575 | if (isymbuf == NULL && symtab_hdr->sh_info != 0) | |
5576 | { | |
5577 | isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; | |
5578 | if (isymbuf == NULL) | |
5579 | isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr, | |
5580 | symtab_hdr->sh_info, 0, | |
5581 | NULL, NULL, NULL); | |
5582 | if (isymbuf == NULL) | |
5583 | goto relax_return; | |
5584 | } | |
5585 | ||
5586 | isym = isymbuf + r_symndx; | |
5587 | if (isym->st_shndx == SHN_UNDEF) | |
5588 | continue; | |
5589 | else if (isym->st_shndx == SHN_ABS) | |
5590 | sym_sec = bfd_abs_section_ptr; | |
5591 | else if (isym->st_shndx == SHN_COMMON) | |
5592 | sym_sec = bfd_com_section_ptr; | |
5593 | else | |
5594 | sym_sec | |
5595 | = bfd_section_from_elf_index (abfd, isym->st_shndx); | |
5596 | symval = isym->st_value | |
5597 | + sym_sec->output_section->vma | |
5598 | + sym_sec->output_offset; | |
5599 | } | |
5600 | ||
5601 | /* Compute branch offset, from delay slot of the jump to the | |
5602 | branch target. */ | |
5603 | sym_offset = (symval + irel->r_addend) | |
5604 | - (sec_start + irel->r_offset + 4); | |
5605 | ||
5606 | /* Branch offset must be properly aligned. */ | |
5607 | if ((sym_offset & 3) != 0) | |
5608 | continue; | |
5609 | ||
5610 | sym_offset >>= 2; | |
5611 | ||
5612 | /* Check that it's in range. */ | |
5613 | if (sym_offset < -0x8000 || sym_offset >= 0x8000) | |
5614 | continue; | |
143d77c5 | 5615 | |
d0647110 AO |
5616 | /* Get the section contents if we haven't done so already. */ |
5617 | if (contents == NULL) | |
5618 | { | |
5619 | /* Get cached copy if it exists. */ | |
5620 | if (elf_section_data (sec)->this_hdr.contents != NULL) | |
5621 | contents = elf_section_data (sec)->this_hdr.contents; | |
5622 | else | |
5623 | { | |
9719ad41 | 5624 | contents = bfd_malloc (sec->_raw_size); |
d0647110 AO |
5625 | if (contents == NULL) |
5626 | goto relax_return; | |
5627 | ||
5628 | free_contents = contents; | |
5629 | if (! bfd_get_section_contents (abfd, sec, contents, | |
9719ad41 | 5630 | 0, sec->_raw_size)) |
d0647110 AO |
5631 | goto relax_return; |
5632 | } | |
5633 | } | |
5634 | ||
5635 | instruction = bfd_get_32 (abfd, contents + irel->r_offset); | |
5636 | ||
5637 | /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */ | |
5638 | if ((instruction & 0xfc1fffff) == 0x0000f809) | |
5639 | instruction = 0x04110000; | |
5640 | /* If it was jr <reg>, turn it into b <target>. */ | |
5641 | else if ((instruction & 0xfc1fffff) == 0x00000008) | |
5642 | instruction = 0x10000000; | |
5643 | else | |
5644 | continue; | |
5645 | ||
5646 | instruction |= (sym_offset & 0xffff); | |
5647 | bfd_put_32 (abfd, instruction, contents + irel->r_offset); | |
5648 | changed_contents = TRUE; | |
5649 | } | |
5650 | ||
5651 | if (contents != NULL | |
5652 | && elf_section_data (sec)->this_hdr.contents != contents) | |
5653 | { | |
5654 | if (!changed_contents && !link_info->keep_memory) | |
5655 | free (contents); | |
5656 | else | |
5657 | { | |
5658 | /* Cache the section contents for elf_link_input_bfd. */ | |
5659 | elf_section_data (sec)->this_hdr.contents = contents; | |
5660 | } | |
5661 | } | |
5662 | return TRUE; | |
5663 | ||
143d77c5 | 5664 | relax_return: |
d0647110 AO |
5665 | if (free_contents != NULL) |
5666 | free (free_contents); | |
5667 | return FALSE; | |
5668 | } | |
5669 | \f | |
b49e97c9 TS |
5670 | /* Adjust a symbol defined by a dynamic object and referenced by a |
5671 | regular object. The current definition is in some section of the | |
5672 | dynamic object, but we're not including those sections. We have to | |
5673 | change the definition to something the rest of the link can | |
5674 | understand. */ | |
5675 | ||
b34976b6 | 5676 | bfd_boolean |
9719ad41 RS |
5677 | _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info, |
5678 | struct elf_link_hash_entry *h) | |
b49e97c9 TS |
5679 | { |
5680 | bfd *dynobj; | |
5681 | struct mips_elf_link_hash_entry *hmips; | |
5682 | asection *s; | |
5683 | ||
5684 | dynobj = elf_hash_table (info)->dynobj; | |
5685 | ||
5686 | /* Make sure we know what is going on here. */ | |
5687 | BFD_ASSERT (dynobj != NULL | |
5688 | && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) | |
5689 | || h->weakdef != NULL | |
5690 | || ((h->elf_link_hash_flags | |
5691 | & ELF_LINK_HASH_DEF_DYNAMIC) != 0 | |
5692 | && (h->elf_link_hash_flags | |
5693 | & ELF_LINK_HASH_REF_REGULAR) != 0 | |
5694 | && (h->elf_link_hash_flags | |
5695 | & ELF_LINK_HASH_DEF_REGULAR) == 0))); | |
5696 | ||
5697 | /* If this symbol is defined in a dynamic object, we need to copy | |
5698 | any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output | |
5699 | file. */ | |
5700 | hmips = (struct mips_elf_link_hash_entry *) h; | |
1049f94e | 5701 | if (! info->relocatable |
b49e97c9 TS |
5702 | && hmips->possibly_dynamic_relocs != 0 |
5703 | && (h->root.type == bfd_link_hash_defweak | |
5704 | || (h->elf_link_hash_flags | |
5705 | & ELF_LINK_HASH_DEF_REGULAR) == 0)) | |
5706 | { | |
5707 | mips_elf_allocate_dynamic_relocations (dynobj, | |
5708 | hmips->possibly_dynamic_relocs); | |
5709 | if (hmips->readonly_reloc) | |
5710 | /* We tell the dynamic linker that there are relocations | |
5711 | against the text segment. */ | |
5712 | info->flags |= DF_TEXTREL; | |
5713 | } | |
5714 | ||
5715 | /* For a function, create a stub, if allowed. */ | |
5716 | if (! hmips->no_fn_stub | |
5717 | && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0) | |
5718 | { | |
5719 | if (! elf_hash_table (info)->dynamic_sections_created) | |
b34976b6 | 5720 | return TRUE; |
b49e97c9 TS |
5721 | |
5722 | /* If this symbol is not defined in a regular file, then set | |
5723 | the symbol to the stub location. This is required to make | |
5724 | function pointers compare as equal between the normal | |
5725 | executable and the shared library. */ | |
5726 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) | |
5727 | { | |
5728 | /* We need .stub section. */ | |
5729 | s = bfd_get_section_by_name (dynobj, | |
5730 | MIPS_ELF_STUB_SECTION_NAME (dynobj)); | |
5731 | BFD_ASSERT (s != NULL); | |
5732 | ||
5733 | h->root.u.def.section = s; | |
5734 | h->root.u.def.value = s->_raw_size; | |
5735 | ||
5736 | /* XXX Write this stub address somewhere. */ | |
5737 | h->plt.offset = s->_raw_size; | |
5738 | ||
5739 | /* Make room for this stub code. */ | |
5740 | s->_raw_size += MIPS_FUNCTION_STUB_SIZE; | |
5741 | ||
5742 | /* The last half word of the stub will be filled with the index | |
5743 | of this symbol in .dynsym section. */ | |
b34976b6 | 5744 | return TRUE; |
b49e97c9 TS |
5745 | } |
5746 | } | |
5747 | else if ((h->type == STT_FUNC) | |
5748 | && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0) | |
5749 | { | |
5750 | /* This will set the entry for this symbol in the GOT to 0, and | |
5751 | the dynamic linker will take care of this. */ | |
5752 | h->root.u.def.value = 0; | |
b34976b6 | 5753 | return TRUE; |
b49e97c9 TS |
5754 | } |
5755 | ||
5756 | /* If this is a weak symbol, and there is a real definition, the | |
5757 | processor independent code will have arranged for us to see the | |
5758 | real definition first, and we can just use the same value. */ | |
5759 | if (h->weakdef != NULL) | |
5760 | { | |
5761 | BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined | |
5762 | || h->weakdef->root.type == bfd_link_hash_defweak); | |
5763 | h->root.u.def.section = h->weakdef->root.u.def.section; | |
5764 | h->root.u.def.value = h->weakdef->root.u.def.value; | |
b34976b6 | 5765 | return TRUE; |
b49e97c9 TS |
5766 | } |
5767 | ||
5768 | /* This is a reference to a symbol defined by a dynamic object which | |
5769 | is not a function. */ | |
5770 | ||
b34976b6 | 5771 | return TRUE; |
b49e97c9 TS |
5772 | } |
5773 | \f | |
5774 | /* This function is called after all the input files have been read, | |
5775 | and the input sections have been assigned to output sections. We | |
5776 | check for any mips16 stub sections that we can discard. */ | |
5777 | ||
b34976b6 | 5778 | bfd_boolean |
9719ad41 RS |
5779 | _bfd_mips_elf_always_size_sections (bfd *output_bfd, |
5780 | struct bfd_link_info *info) | |
b49e97c9 TS |
5781 | { |
5782 | asection *ri; | |
5783 | ||
f4416af6 AO |
5784 | bfd *dynobj; |
5785 | asection *s; | |
5786 | struct mips_got_info *g; | |
5787 | int i; | |
5788 | bfd_size_type loadable_size = 0; | |
5789 | bfd_size_type local_gotno; | |
5790 | bfd *sub; | |
5791 | ||
b49e97c9 TS |
5792 | /* The .reginfo section has a fixed size. */ |
5793 | ri = bfd_get_section_by_name (output_bfd, ".reginfo"); | |
5794 | if (ri != NULL) | |
9719ad41 | 5795 | bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo)); |
b49e97c9 | 5796 | |
1049f94e | 5797 | if (! (info->relocatable |
f4416af6 AO |
5798 | || ! mips_elf_hash_table (info)->mips16_stubs_seen)) |
5799 | mips_elf_link_hash_traverse (mips_elf_hash_table (info), | |
9719ad41 | 5800 | mips_elf_check_mips16_stubs, NULL); |
f4416af6 AO |
5801 | |
5802 | dynobj = elf_hash_table (info)->dynobj; | |
5803 | if (dynobj == NULL) | |
5804 | /* Relocatable links don't have it. */ | |
5805 | return TRUE; | |
143d77c5 | 5806 | |
f4416af6 AO |
5807 | g = mips_elf_got_info (dynobj, &s); |
5808 | if (s == NULL) | |
b34976b6 | 5809 | return TRUE; |
b49e97c9 | 5810 | |
f4416af6 AO |
5811 | /* Calculate the total loadable size of the output. That |
5812 | will give us the maximum number of GOT_PAGE entries | |
5813 | required. */ | |
5814 | for (sub = info->input_bfds; sub; sub = sub->link_next) | |
5815 | { | |
5816 | asection *subsection; | |
5817 | ||
5818 | for (subsection = sub->sections; | |
5819 | subsection; | |
5820 | subsection = subsection->next) | |
5821 | { | |
5822 | if ((subsection->flags & SEC_ALLOC) == 0) | |
5823 | continue; | |
5824 | loadable_size += ((subsection->_raw_size + 0xf) | |
5825 | &~ (bfd_size_type) 0xf); | |
5826 | } | |
5827 | } | |
5828 | ||
5829 | /* There has to be a global GOT entry for every symbol with | |
5830 | a dynamic symbol table index of DT_MIPS_GOTSYM or | |
5831 | higher. Therefore, it make sense to put those symbols | |
5832 | that need GOT entries at the end of the symbol table. We | |
5833 | do that here. */ | |
5834 | if (! mips_elf_sort_hash_table (info, 1)) | |
5835 | return FALSE; | |
5836 | ||
5837 | if (g->global_gotsym != NULL) | |
5838 | i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx; | |
5839 | else | |
5840 | /* If there are no global symbols, or none requiring | |
5841 | relocations, then GLOBAL_GOTSYM will be NULL. */ | |
5842 | i = 0; | |
5843 | ||
5844 | /* In the worst case, we'll get one stub per dynamic symbol, plus | |
5845 | one to account for the dummy entry at the end required by IRIX | |
5846 | rld. */ | |
5847 | loadable_size += MIPS_FUNCTION_STUB_SIZE * (i + 1); | |
5848 | ||
5849 | /* Assume there are two loadable segments consisting of | |
5850 | contiguous sections. Is 5 enough? */ | |
5851 | local_gotno = (loadable_size >> 16) + 5; | |
5852 | ||
5853 | g->local_gotno += local_gotno; | |
5854 | s->_raw_size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd); | |
5855 | ||
5856 | g->global_gotno = i; | |
5857 | s->_raw_size += i * MIPS_ELF_GOT_SIZE (output_bfd); | |
5858 | ||
5859 | if (s->_raw_size > MIPS_ELF_GOT_MAX_SIZE (output_bfd) | |
5860 | && ! mips_elf_multi_got (output_bfd, info, g, s, local_gotno)) | |
5861 | return FALSE; | |
b49e97c9 | 5862 | |
b34976b6 | 5863 | return TRUE; |
b49e97c9 TS |
5864 | } |
5865 | ||
5866 | /* Set the sizes of the dynamic sections. */ | |
5867 | ||
b34976b6 | 5868 | bfd_boolean |
9719ad41 RS |
5869 | _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd, |
5870 | struct bfd_link_info *info) | |
b49e97c9 TS |
5871 | { |
5872 | bfd *dynobj; | |
5873 | asection *s; | |
b34976b6 | 5874 | bfd_boolean reltext; |
b49e97c9 TS |
5875 | |
5876 | dynobj = elf_hash_table (info)->dynobj; | |
5877 | BFD_ASSERT (dynobj != NULL); | |
5878 | ||
5879 | if (elf_hash_table (info)->dynamic_sections_created) | |
5880 | { | |
5881 | /* Set the contents of the .interp section to the interpreter. */ | |
893c4fe2 | 5882 | if (info->executable) |
b49e97c9 TS |
5883 | { |
5884 | s = bfd_get_section_by_name (dynobj, ".interp"); | |
5885 | BFD_ASSERT (s != NULL); | |
5886 | s->_raw_size | |
5887 | = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1; | |
5888 | s->contents | |
5889 | = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd); | |
5890 | } | |
5891 | } | |
5892 | ||
5893 | /* The check_relocs and adjust_dynamic_symbol entry points have | |
5894 | determined the sizes of the various dynamic sections. Allocate | |
5895 | memory for them. */ | |
b34976b6 | 5896 | reltext = FALSE; |
b49e97c9 TS |
5897 | for (s = dynobj->sections; s != NULL; s = s->next) |
5898 | { | |
5899 | const char *name; | |
b34976b6 | 5900 | bfd_boolean strip; |
b49e97c9 TS |
5901 | |
5902 | /* It's OK to base decisions on the section name, because none | |
5903 | of the dynobj section names depend upon the input files. */ | |
5904 | name = bfd_get_section_name (dynobj, s); | |
5905 | ||
5906 | if ((s->flags & SEC_LINKER_CREATED) == 0) | |
5907 | continue; | |
5908 | ||
b34976b6 | 5909 | strip = FALSE; |
b49e97c9 TS |
5910 | |
5911 | if (strncmp (name, ".rel", 4) == 0) | |
5912 | { | |
5913 | if (s->_raw_size == 0) | |
5914 | { | |
5915 | /* We only strip the section if the output section name | |
5916 | has the same name. Otherwise, there might be several | |
5917 | input sections for this output section. FIXME: This | |
5918 | code is probably not needed these days anyhow, since | |
5919 | the linker now does not create empty output sections. */ | |
5920 | if (s->output_section != NULL | |
5921 | && strcmp (name, | |
5922 | bfd_get_section_name (s->output_section->owner, | |
5923 | s->output_section)) == 0) | |
b34976b6 | 5924 | strip = TRUE; |
b49e97c9 TS |
5925 | } |
5926 | else | |
5927 | { | |
5928 | const char *outname; | |
5929 | asection *target; | |
5930 | ||
5931 | /* If this relocation section applies to a read only | |
5932 | section, then we probably need a DT_TEXTREL entry. | |
5933 | If the relocation section is .rel.dyn, we always | |
5934 | assert a DT_TEXTREL entry rather than testing whether | |
5935 | there exists a relocation to a read only section or | |
5936 | not. */ | |
5937 | outname = bfd_get_section_name (output_bfd, | |
5938 | s->output_section); | |
5939 | target = bfd_get_section_by_name (output_bfd, outname + 4); | |
5940 | if ((target != NULL | |
5941 | && (target->flags & SEC_READONLY) != 0 | |
5942 | && (target->flags & SEC_ALLOC) != 0) | |
5943 | || strcmp (outname, ".rel.dyn") == 0) | |
b34976b6 | 5944 | reltext = TRUE; |
b49e97c9 TS |
5945 | |
5946 | /* We use the reloc_count field as a counter if we need | |
5947 | to copy relocs into the output file. */ | |
5948 | if (strcmp (name, ".rel.dyn") != 0) | |
5949 | s->reloc_count = 0; | |
f4416af6 AO |
5950 | |
5951 | /* If combreloc is enabled, elf_link_sort_relocs() will | |
5952 | sort relocations, but in a different way than we do, | |
5953 | and before we're done creating relocations. Also, it | |
5954 | will move them around between input sections' | |
5955 | relocation's contents, so our sorting would be | |
5956 | broken, so don't let it run. */ | |
5957 | info->combreloc = 0; | |
b49e97c9 TS |
5958 | } |
5959 | } | |
5960 | else if (strncmp (name, ".got", 4) == 0) | |
5961 | { | |
f4416af6 AO |
5962 | /* _bfd_mips_elf_always_size_sections() has already done |
5963 | most of the work, but some symbols may have been mapped | |
5964 | to versions that we must now resolve in the got_entries | |
5965 | hash tables. */ | |
5966 | struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL); | |
5967 | struct mips_got_info *g = gg; | |
5968 | struct mips_elf_set_global_got_offset_arg set_got_offset_arg; | |
5969 | unsigned int needed_relocs = 0; | |
143d77c5 | 5970 | |
f4416af6 | 5971 | if (gg->next) |
b49e97c9 | 5972 | { |
f4416af6 AO |
5973 | set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd); |
5974 | set_got_offset_arg.info = info; | |
b49e97c9 | 5975 | |
f4416af6 AO |
5976 | mips_elf_resolve_final_got_entries (gg); |
5977 | for (g = gg->next; g && g->next != gg; g = g->next) | |
b49e97c9 | 5978 | { |
f4416af6 AO |
5979 | unsigned int save_assign; |
5980 | ||
5981 | mips_elf_resolve_final_got_entries (g); | |
5982 | ||
5983 | /* Assign offsets to global GOT entries. */ | |
5984 | save_assign = g->assigned_gotno; | |
5985 | g->assigned_gotno = g->local_gotno; | |
5986 | set_got_offset_arg.g = g; | |
5987 | set_got_offset_arg.needed_relocs = 0; | |
5988 | htab_traverse (g->got_entries, | |
5989 | mips_elf_set_global_got_offset, | |
5990 | &set_got_offset_arg); | |
5991 | needed_relocs += set_got_offset_arg.needed_relocs; | |
5992 | BFD_ASSERT (g->assigned_gotno - g->local_gotno | |
5993 | <= g->global_gotno); | |
5994 | ||
5995 | g->assigned_gotno = save_assign; | |
5996 | if (info->shared) | |
5997 | { | |
5998 | needed_relocs += g->local_gotno - g->assigned_gotno; | |
5999 | BFD_ASSERT (g->assigned_gotno == g->next->local_gotno | |
6000 | + g->next->global_gotno | |
6001 | + MIPS_RESERVED_GOTNO); | |
6002 | } | |
b49e97c9 | 6003 | } |
b49e97c9 | 6004 | |
f4416af6 AO |
6005 | if (needed_relocs) |
6006 | mips_elf_allocate_dynamic_relocations (dynobj, needed_relocs); | |
6007 | } | |
b49e97c9 TS |
6008 | } |
6009 | else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0) | |
6010 | { | |
8dc1a139 | 6011 | /* IRIX rld assumes that the function stub isn't at the end |
b49e97c9 TS |
6012 | of .text section. So put a dummy. XXX */ |
6013 | s->_raw_size += MIPS_FUNCTION_STUB_SIZE; | |
6014 | } | |
6015 | else if (! info->shared | |
6016 | && ! mips_elf_hash_table (info)->use_rld_obj_head | |
6017 | && strncmp (name, ".rld_map", 8) == 0) | |
6018 | { | |
6019 | /* We add a room for __rld_map. It will be filled in by the | |
6020 | rtld to contain a pointer to the _r_debug structure. */ | |
6021 | s->_raw_size += 4; | |
6022 | } | |
6023 | else if (SGI_COMPAT (output_bfd) | |
6024 | && strncmp (name, ".compact_rel", 12) == 0) | |
6025 | s->_raw_size += mips_elf_hash_table (info)->compact_rel_size; | |
b49e97c9 TS |
6026 | else if (strncmp (name, ".init", 5) != 0) |
6027 | { | |
6028 | /* It's not one of our sections, so don't allocate space. */ | |
6029 | continue; | |
6030 | } | |
6031 | ||
6032 | if (strip) | |
6033 | { | |
6034 | _bfd_strip_section_from_output (info, s); | |
6035 | continue; | |
6036 | } | |
6037 | ||
6038 | /* Allocate memory for the section contents. */ | |
9719ad41 | 6039 | s->contents = bfd_zalloc (dynobj, s->_raw_size); |
b49e97c9 TS |
6040 | if (s->contents == NULL && s->_raw_size != 0) |
6041 | { | |
6042 | bfd_set_error (bfd_error_no_memory); | |
b34976b6 | 6043 | return FALSE; |
b49e97c9 TS |
6044 | } |
6045 | } | |
6046 | ||
6047 | if (elf_hash_table (info)->dynamic_sections_created) | |
6048 | { | |
6049 | /* Add some entries to the .dynamic section. We fill in the | |
6050 | values later, in _bfd_mips_elf_finish_dynamic_sections, but we | |
6051 | must add the entries now so that we get the correct size for | |
6052 | the .dynamic section. The DT_DEBUG entry is filled in by the | |
6053 | dynamic linker and used by the debugger. */ | |
6054 | if (! info->shared) | |
6055 | { | |
6056 | /* SGI object has the equivalence of DT_DEBUG in the | |
6057 | DT_MIPS_RLD_MAP entry. */ | |
6058 | if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0)) | |
b34976b6 | 6059 | return FALSE; |
b49e97c9 TS |
6060 | if (!SGI_COMPAT (output_bfd)) |
6061 | { | |
6062 | if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0)) | |
b34976b6 | 6063 | return FALSE; |
b49e97c9 TS |
6064 | } |
6065 | } | |
6066 | else | |
6067 | { | |
6068 | /* Shared libraries on traditional mips have DT_DEBUG. */ | |
6069 | if (!SGI_COMPAT (output_bfd)) | |
6070 | { | |
6071 | if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0)) | |
b34976b6 | 6072 | return FALSE; |
b49e97c9 TS |
6073 | } |
6074 | } | |
6075 | ||
6076 | if (reltext && SGI_COMPAT (output_bfd)) | |
6077 | info->flags |= DF_TEXTREL; | |
6078 | ||
6079 | if ((info->flags & DF_TEXTREL) != 0) | |
6080 | { | |
6081 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0)) | |
b34976b6 | 6082 | return FALSE; |
b49e97c9 TS |
6083 | } |
6084 | ||
6085 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0)) | |
b34976b6 | 6086 | return FALSE; |
b49e97c9 | 6087 | |
f4416af6 | 6088 | if (mips_elf_rel_dyn_section (dynobj, FALSE)) |
b49e97c9 TS |
6089 | { |
6090 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0)) | |
b34976b6 | 6091 | return FALSE; |
b49e97c9 TS |
6092 | |
6093 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0)) | |
b34976b6 | 6094 | return FALSE; |
b49e97c9 TS |
6095 | |
6096 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0)) | |
b34976b6 | 6097 | return FALSE; |
b49e97c9 TS |
6098 | } |
6099 | ||
b49e97c9 | 6100 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0)) |
b34976b6 | 6101 | return FALSE; |
b49e97c9 TS |
6102 | |
6103 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0)) | |
b34976b6 | 6104 | return FALSE; |
b49e97c9 TS |
6105 | |
6106 | #if 0 | |
6107 | /* Time stamps in executable files are a bad idea. */ | |
6108 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_TIME_STAMP, 0)) | |
b34976b6 | 6109 | return FALSE; |
b49e97c9 TS |
6110 | #endif |
6111 | ||
6112 | #if 0 /* FIXME */ | |
6113 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_ICHECKSUM, 0)) | |
b34976b6 | 6114 | return FALSE; |
b49e97c9 TS |
6115 | #endif |
6116 | ||
6117 | #if 0 /* FIXME */ | |
6118 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_IVERSION, 0)) | |
b34976b6 | 6119 | return FALSE; |
b49e97c9 TS |
6120 | #endif |
6121 | ||
6122 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0)) | |
b34976b6 | 6123 | return FALSE; |
b49e97c9 TS |
6124 | |
6125 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0)) | |
b34976b6 | 6126 | return FALSE; |
b49e97c9 TS |
6127 | |
6128 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0)) | |
b34976b6 | 6129 | return FALSE; |
b49e97c9 TS |
6130 | |
6131 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0)) | |
b34976b6 | 6132 | return FALSE; |
b49e97c9 TS |
6133 | |
6134 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0)) | |
b34976b6 | 6135 | return FALSE; |
b49e97c9 TS |
6136 | |
6137 | if (IRIX_COMPAT (dynobj) == ict_irix5 | |
6138 | && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0)) | |
b34976b6 | 6139 | return FALSE; |
b49e97c9 TS |
6140 | |
6141 | if (IRIX_COMPAT (dynobj) == ict_irix6 | |
6142 | && (bfd_get_section_by_name | |
6143 | (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj))) | |
6144 | && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0)) | |
b34976b6 | 6145 | return FALSE; |
b49e97c9 TS |
6146 | } |
6147 | ||
b34976b6 | 6148 | return TRUE; |
b49e97c9 TS |
6149 | } |
6150 | \f | |
6151 | /* Relocate a MIPS ELF section. */ | |
6152 | ||
b34976b6 | 6153 | bfd_boolean |
9719ad41 RS |
6154 | _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info, |
6155 | bfd *input_bfd, asection *input_section, | |
6156 | bfd_byte *contents, Elf_Internal_Rela *relocs, | |
6157 | Elf_Internal_Sym *local_syms, | |
6158 | asection **local_sections) | |
b49e97c9 TS |
6159 | { |
6160 | Elf_Internal_Rela *rel; | |
6161 | const Elf_Internal_Rela *relend; | |
6162 | bfd_vma addend = 0; | |
b34976b6 | 6163 | bfd_boolean use_saved_addend_p = FALSE; |
9c5bfbb7 | 6164 | const struct elf_backend_data *bed; |
b49e97c9 TS |
6165 | |
6166 | bed = get_elf_backend_data (output_bfd); | |
6167 | relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel; | |
6168 | for (rel = relocs; rel < relend; ++rel) | |
6169 | { | |
6170 | const char *name; | |
6171 | bfd_vma value; | |
6172 | reloc_howto_type *howto; | |
b34976b6 AM |
6173 | bfd_boolean require_jalx; |
6174 | /* TRUE if the relocation is a RELA relocation, rather than a | |
b49e97c9 | 6175 | REL relocation. */ |
b34976b6 | 6176 | bfd_boolean rela_relocation_p = TRUE; |
b49e97c9 | 6177 | unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info); |
9719ad41 | 6178 | const char *msg; |
b49e97c9 TS |
6179 | |
6180 | /* Find the relocation howto for this relocation. */ | |
4a14403c | 6181 | if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd)) |
b49e97c9 TS |
6182 | { |
6183 | /* Some 32-bit code uses R_MIPS_64. In particular, people use | |
6184 | 64-bit code, but make sure all their addresses are in the | |
6185 | lowermost or uppermost 32-bit section of the 64-bit address | |
6186 | space. Thus, when they use an R_MIPS_64 they mean what is | |
6187 | usually meant by R_MIPS_32, with the exception that the | |
6188 | stored value is sign-extended to 64 bits. */ | |
b34976b6 | 6189 | howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE); |
b49e97c9 TS |
6190 | |
6191 | /* On big-endian systems, we need to lie about the position | |
6192 | of the reloc. */ | |
6193 | if (bfd_big_endian (input_bfd)) | |
6194 | rel->r_offset += 4; | |
6195 | } | |
6196 | else | |
6197 | /* NewABI defaults to RELA relocations. */ | |
6198 | howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, | |
4ffba85c AO |
6199 | NEWABI_P (input_bfd) |
6200 | && (MIPS_RELOC_RELA_P | |
6201 | (input_bfd, input_section, | |
6202 | rel - relocs))); | |
b49e97c9 TS |
6203 | |
6204 | if (!use_saved_addend_p) | |
6205 | { | |
6206 | Elf_Internal_Shdr *rel_hdr; | |
6207 | ||
6208 | /* If these relocations were originally of the REL variety, | |
6209 | we must pull the addend out of the field that will be | |
6210 | relocated. Otherwise, we simply use the contents of the | |
6211 | RELA relocation. To determine which flavor or relocation | |
6212 | this is, we depend on the fact that the INPUT_SECTION's | |
6213 | REL_HDR is read before its REL_HDR2. */ | |
6214 | rel_hdr = &elf_section_data (input_section)->rel_hdr; | |
6215 | if ((size_t) (rel - relocs) | |
6216 | >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel)) | |
6217 | rel_hdr = elf_section_data (input_section)->rel_hdr2; | |
6218 | if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd)) | |
6219 | { | |
6220 | /* Note that this is a REL relocation. */ | |
b34976b6 | 6221 | rela_relocation_p = FALSE; |
b49e97c9 TS |
6222 | |
6223 | /* Get the addend, which is stored in the input file. */ | |
6224 | addend = mips_elf_obtain_contents (howto, rel, input_bfd, | |
6225 | contents); | |
6226 | addend &= howto->src_mask; | |
6227 | ||
6228 | /* For some kinds of relocations, the ADDEND is a | |
6229 | combination of the addend stored in two different | |
6230 | relocations. */ | |
6231 | if (r_type == R_MIPS_HI16 | |
6232 | || r_type == R_MIPS_GNU_REL_HI16 | |
6233 | || (r_type == R_MIPS_GOT16 | |
6234 | && mips_elf_local_relocation_p (input_bfd, rel, | |
b34976b6 | 6235 | local_sections, FALSE))) |
b49e97c9 TS |
6236 | { |
6237 | bfd_vma l; | |
6238 | const Elf_Internal_Rela *lo16_relocation; | |
6239 | reloc_howto_type *lo16_howto; | |
6240 | unsigned int lo; | |
6241 | ||
6242 | /* The combined value is the sum of the HI16 addend, | |
6243 | left-shifted by sixteen bits, and the LO16 | |
6244 | addend, sign extended. (Usually, the code does | |
6245 | a `lui' of the HI16 value, and then an `addiu' of | |
6246 | the LO16 value.) | |
6247 | ||
6248 | Scan ahead to find a matching LO16 relocation. */ | |
6249 | if (r_type == R_MIPS_GNU_REL_HI16) | |
6250 | lo = R_MIPS_GNU_REL_LO16; | |
6251 | else | |
6252 | lo = R_MIPS_LO16; | |
6253 | lo16_relocation = mips_elf_next_relocation (input_bfd, lo, | |
6254 | rel, relend); | |
6255 | if (lo16_relocation == NULL) | |
b34976b6 | 6256 | return FALSE; |
b49e97c9 TS |
6257 | |
6258 | /* Obtain the addend kept there. */ | |
b34976b6 | 6259 | lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, lo, FALSE); |
b49e97c9 TS |
6260 | l = mips_elf_obtain_contents (lo16_howto, lo16_relocation, |
6261 | input_bfd, contents); | |
6262 | l &= lo16_howto->src_mask; | |
5a659663 | 6263 | l <<= lo16_howto->rightshift; |
a7ebbfdf | 6264 | l = _bfd_mips_elf_sign_extend (l, 16); |
b49e97c9 TS |
6265 | |
6266 | addend <<= 16; | |
6267 | ||
6268 | /* Compute the combined addend. */ | |
6269 | addend += l; | |
6270 | ||
6271 | /* If PC-relative, subtract the difference between the | |
6272 | address of the LO part of the reloc and the address of | |
6273 | the HI part. The relocation is relative to the LO | |
6274 | part, but mips_elf_calculate_relocation() doesn't | |
6275 | know its address or the difference from the HI part, so | |
6276 | we subtract that difference here. See also the | |
6277 | comment in mips_elf_calculate_relocation(). */ | |
6278 | if (r_type == R_MIPS_GNU_REL_HI16) | |
6279 | addend -= (lo16_relocation->r_offset - rel->r_offset); | |
6280 | } | |
6281 | else if (r_type == R_MIPS16_GPREL) | |
6282 | { | |
6283 | /* The addend is scrambled in the object file. See | |
6284 | mips_elf_perform_relocation for details on the | |
6285 | format. */ | |
6286 | addend = (((addend & 0x1f0000) >> 5) | |
6287 | | ((addend & 0x7e00000) >> 16) | |
6288 | | (addend & 0x1f)); | |
6289 | } | |
30ac9238 RS |
6290 | else |
6291 | addend <<= howto->rightshift; | |
b49e97c9 TS |
6292 | } |
6293 | else | |
6294 | addend = rel->r_addend; | |
6295 | } | |
6296 | ||
1049f94e | 6297 | if (info->relocatable) |
b49e97c9 TS |
6298 | { |
6299 | Elf_Internal_Sym *sym; | |
6300 | unsigned long r_symndx; | |
6301 | ||
4a14403c | 6302 | if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd) |
b49e97c9 TS |
6303 | && bfd_big_endian (input_bfd)) |
6304 | rel->r_offset -= 4; | |
6305 | ||
6306 | /* Since we're just relocating, all we need to do is copy | |
6307 | the relocations back out to the object file, unless | |
6308 | they're against a section symbol, in which case we need | |
6309 | to adjust by the section offset, or unless they're GP | |
6310 | relative in which case we need to adjust by the amount | |
1049f94e | 6311 | that we're adjusting GP in this relocatable object. */ |
b49e97c9 TS |
6312 | |
6313 | if (! mips_elf_local_relocation_p (input_bfd, rel, local_sections, | |
b34976b6 | 6314 | FALSE)) |
b49e97c9 TS |
6315 | /* There's nothing to do for non-local relocations. */ |
6316 | continue; | |
6317 | ||
6318 | if (r_type == R_MIPS16_GPREL | |
6319 | || r_type == R_MIPS_GPREL16 | |
6320 | || r_type == R_MIPS_GPREL32 | |
6321 | || r_type == R_MIPS_LITERAL) | |
6322 | addend -= (_bfd_get_gp_value (output_bfd) | |
6323 | - _bfd_get_gp_value (input_bfd)); | |
b49e97c9 TS |
6324 | |
6325 | r_symndx = ELF_R_SYM (output_bfd, rel->r_info); | |
6326 | sym = local_syms + r_symndx; | |
6327 | if (ELF_ST_TYPE (sym->st_info) == STT_SECTION) | |
6328 | /* Adjust the addend appropriately. */ | |
6329 | addend += local_sections[r_symndx]->output_offset; | |
6330 | ||
30ac9238 RS |
6331 | if (rela_relocation_p) |
6332 | /* If this is a RELA relocation, just update the addend. */ | |
6333 | rel->r_addend = addend; | |
6334 | else | |
5a659663 | 6335 | { |
30ac9238 RS |
6336 | if (r_type == R_MIPS_HI16 |
6337 | || r_type == R_MIPS_GOT16 | |
5a659663 TS |
6338 | || r_type == R_MIPS_GNU_REL_HI16) |
6339 | addend = mips_elf_high (addend); | |
6340 | else if (r_type == R_MIPS_HIGHER) | |
6341 | addend = mips_elf_higher (addend); | |
6342 | else if (r_type == R_MIPS_HIGHEST) | |
6343 | addend = mips_elf_highest (addend); | |
30ac9238 RS |
6344 | else |
6345 | addend >>= howto->rightshift; | |
b49e97c9 | 6346 | |
30ac9238 RS |
6347 | /* We use the source mask, rather than the destination |
6348 | mask because the place to which we are writing will be | |
6349 | source of the addend in the final link. */ | |
b49e97c9 TS |
6350 | addend &= howto->src_mask; |
6351 | ||
5a659663 | 6352 | if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)) |
b49e97c9 TS |
6353 | /* See the comment above about using R_MIPS_64 in the 32-bit |
6354 | ABI. Here, we need to update the addend. It would be | |
6355 | possible to get away with just using the R_MIPS_32 reloc | |
6356 | but for endianness. */ | |
6357 | { | |
6358 | bfd_vma sign_bits; | |
6359 | bfd_vma low_bits; | |
6360 | bfd_vma high_bits; | |
6361 | ||
6362 | if (addend & ((bfd_vma) 1 << 31)) | |
6363 | #ifdef BFD64 | |
6364 | sign_bits = ((bfd_vma) 1 << 32) - 1; | |
6365 | #else | |
6366 | sign_bits = -1; | |
6367 | #endif | |
6368 | else | |
6369 | sign_bits = 0; | |
6370 | ||
6371 | /* If we don't know that we have a 64-bit type, | |
6372 | do two separate stores. */ | |
6373 | if (bfd_big_endian (input_bfd)) | |
6374 | { | |
6375 | /* Store the sign-bits (which are most significant) | |
6376 | first. */ | |
6377 | low_bits = sign_bits; | |
6378 | high_bits = addend; | |
6379 | } | |
6380 | else | |
6381 | { | |
6382 | low_bits = addend; | |
6383 | high_bits = sign_bits; | |
6384 | } | |
6385 | bfd_put_32 (input_bfd, low_bits, | |
6386 | contents + rel->r_offset); | |
6387 | bfd_put_32 (input_bfd, high_bits, | |
6388 | contents + rel->r_offset + 4); | |
6389 | continue; | |
6390 | } | |
6391 | ||
6392 | if (! mips_elf_perform_relocation (info, howto, rel, addend, | |
6393 | input_bfd, input_section, | |
b34976b6 AM |
6394 | contents, FALSE)) |
6395 | return FALSE; | |
b49e97c9 TS |
6396 | } |
6397 | ||
6398 | /* Go on to the next relocation. */ | |
6399 | continue; | |
6400 | } | |
6401 | ||
6402 | /* In the N32 and 64-bit ABIs there may be multiple consecutive | |
6403 | relocations for the same offset. In that case we are | |
6404 | supposed to treat the output of each relocation as the addend | |
6405 | for the next. */ | |
6406 | if (rel + 1 < relend | |
6407 | && rel->r_offset == rel[1].r_offset | |
6408 | && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE) | |
b34976b6 | 6409 | use_saved_addend_p = TRUE; |
b49e97c9 | 6410 | else |
b34976b6 | 6411 | use_saved_addend_p = FALSE; |
b49e97c9 TS |
6412 | |
6413 | /* Figure out what value we are supposed to relocate. */ | |
6414 | switch (mips_elf_calculate_relocation (output_bfd, input_bfd, | |
6415 | input_section, info, rel, | |
6416 | addend, howto, local_syms, | |
6417 | local_sections, &value, | |
bce03d3d AO |
6418 | &name, &require_jalx, |
6419 | use_saved_addend_p)) | |
b49e97c9 TS |
6420 | { |
6421 | case bfd_reloc_continue: | |
6422 | /* There's nothing to do. */ | |
6423 | continue; | |
6424 | ||
6425 | case bfd_reloc_undefined: | |
6426 | /* mips_elf_calculate_relocation already called the | |
6427 | undefined_symbol callback. There's no real point in | |
6428 | trying to perform the relocation at this point, so we | |
6429 | just skip ahead to the next relocation. */ | |
6430 | continue; | |
6431 | ||
6432 | case bfd_reloc_notsupported: | |
6433 | msg = _("internal error: unsupported relocation error"); | |
6434 | info->callbacks->warning | |
6435 | (info, msg, name, input_bfd, input_section, rel->r_offset); | |
b34976b6 | 6436 | return FALSE; |
b49e97c9 TS |
6437 | |
6438 | case bfd_reloc_overflow: | |
6439 | if (use_saved_addend_p) | |
6440 | /* Ignore overflow until we reach the last relocation for | |
6441 | a given location. */ | |
6442 | ; | |
6443 | else | |
6444 | { | |
6445 | BFD_ASSERT (name != NULL); | |
6446 | if (! ((*info->callbacks->reloc_overflow) | |
9719ad41 | 6447 | (info, name, howto->name, 0, |
b49e97c9 | 6448 | input_bfd, input_section, rel->r_offset))) |
b34976b6 | 6449 | return FALSE; |
b49e97c9 TS |
6450 | } |
6451 | break; | |
6452 | ||
6453 | case bfd_reloc_ok: | |
6454 | break; | |
6455 | ||
6456 | default: | |
6457 | abort (); | |
6458 | break; | |
6459 | } | |
6460 | ||
6461 | /* If we've got another relocation for the address, keep going | |
6462 | until we reach the last one. */ | |
6463 | if (use_saved_addend_p) | |
6464 | { | |
6465 | addend = value; | |
6466 | continue; | |
6467 | } | |
6468 | ||
4a14403c | 6469 | if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)) |
b49e97c9 TS |
6470 | /* See the comment above about using R_MIPS_64 in the 32-bit |
6471 | ABI. Until now, we've been using the HOWTO for R_MIPS_32; | |
6472 | that calculated the right value. Now, however, we | |
6473 | sign-extend the 32-bit result to 64-bits, and store it as a | |
6474 | 64-bit value. We are especially generous here in that we | |
6475 | go to extreme lengths to support this usage on systems with | |
6476 | only a 32-bit VMA. */ | |
6477 | { | |
6478 | bfd_vma sign_bits; | |
6479 | bfd_vma low_bits; | |
6480 | bfd_vma high_bits; | |
6481 | ||
6482 | if (value & ((bfd_vma) 1 << 31)) | |
6483 | #ifdef BFD64 | |
6484 | sign_bits = ((bfd_vma) 1 << 32) - 1; | |
6485 | #else | |
6486 | sign_bits = -1; | |
6487 | #endif | |
6488 | else | |
6489 | sign_bits = 0; | |
6490 | ||
6491 | /* If we don't know that we have a 64-bit type, | |
6492 | do two separate stores. */ | |
6493 | if (bfd_big_endian (input_bfd)) | |
6494 | { | |
6495 | /* Undo what we did above. */ | |
6496 | rel->r_offset -= 4; | |
6497 | /* Store the sign-bits (which are most significant) | |
6498 | first. */ | |
6499 | low_bits = sign_bits; | |
6500 | high_bits = value; | |
6501 | } | |
6502 | else | |
6503 | { | |
6504 | low_bits = value; | |
6505 | high_bits = sign_bits; | |
6506 | } | |
6507 | bfd_put_32 (input_bfd, low_bits, | |
6508 | contents + rel->r_offset); | |
6509 | bfd_put_32 (input_bfd, high_bits, | |
6510 | contents + rel->r_offset + 4); | |
6511 | continue; | |
6512 | } | |
6513 | ||
6514 | /* Actually perform the relocation. */ | |
6515 | if (! mips_elf_perform_relocation (info, howto, rel, value, | |
6516 | input_bfd, input_section, | |
6517 | contents, require_jalx)) | |
b34976b6 | 6518 | return FALSE; |
b49e97c9 TS |
6519 | } |
6520 | ||
b34976b6 | 6521 | return TRUE; |
b49e97c9 TS |
6522 | } |
6523 | \f | |
6524 | /* If NAME is one of the special IRIX6 symbols defined by the linker, | |
6525 | adjust it appropriately now. */ | |
6526 | ||
6527 | static void | |
9719ad41 RS |
6528 | mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED, |
6529 | const char *name, Elf_Internal_Sym *sym) | |
b49e97c9 TS |
6530 | { |
6531 | /* The linker script takes care of providing names and values for | |
6532 | these, but we must place them into the right sections. */ | |
6533 | static const char* const text_section_symbols[] = { | |
6534 | "_ftext", | |
6535 | "_etext", | |
6536 | "__dso_displacement", | |
6537 | "__elf_header", | |
6538 | "__program_header_table", | |
6539 | NULL | |
6540 | }; | |
6541 | ||
6542 | static const char* const data_section_symbols[] = { | |
6543 | "_fdata", | |
6544 | "_edata", | |
6545 | "_end", | |
6546 | "_fbss", | |
6547 | NULL | |
6548 | }; | |
6549 | ||
6550 | const char* const *p; | |
6551 | int i; | |
6552 | ||
6553 | for (i = 0; i < 2; ++i) | |
6554 | for (p = (i == 0) ? text_section_symbols : data_section_symbols; | |
6555 | *p; | |
6556 | ++p) | |
6557 | if (strcmp (*p, name) == 0) | |
6558 | { | |
6559 | /* All of these symbols are given type STT_SECTION by the | |
6560 | IRIX6 linker. */ | |
6561 | sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); | |
e10609d3 | 6562 | sym->st_other = STO_PROTECTED; |
b49e97c9 TS |
6563 | |
6564 | /* The IRIX linker puts these symbols in special sections. */ | |
6565 | if (i == 0) | |
6566 | sym->st_shndx = SHN_MIPS_TEXT; | |
6567 | else | |
6568 | sym->st_shndx = SHN_MIPS_DATA; | |
6569 | ||
6570 | break; | |
6571 | } | |
6572 | } | |
6573 | ||
6574 | /* Finish up dynamic symbol handling. We set the contents of various | |
6575 | dynamic sections here. */ | |
6576 | ||
b34976b6 | 6577 | bfd_boolean |
9719ad41 RS |
6578 | _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd, |
6579 | struct bfd_link_info *info, | |
6580 | struct elf_link_hash_entry *h, | |
6581 | Elf_Internal_Sym *sym) | |
b49e97c9 TS |
6582 | { |
6583 | bfd *dynobj; | |
6584 | bfd_vma gval; | |
6585 | asection *sgot; | |
f4416af6 | 6586 | struct mips_got_info *g, *gg; |
b49e97c9 | 6587 | const char *name; |
b49e97c9 TS |
6588 | |
6589 | dynobj = elf_hash_table (info)->dynobj; | |
6590 | gval = sym->st_value; | |
b49e97c9 TS |
6591 | |
6592 | if (h->plt.offset != (bfd_vma) -1) | |
6593 | { | |
6594 | asection *s; | |
6595 | bfd_byte stub[MIPS_FUNCTION_STUB_SIZE]; | |
6596 | ||
6597 | /* This symbol has a stub. Set it up. */ | |
6598 | ||
6599 | BFD_ASSERT (h->dynindx != -1); | |
6600 | ||
6601 | s = bfd_get_section_by_name (dynobj, | |
6602 | MIPS_ELF_STUB_SECTION_NAME (dynobj)); | |
6603 | BFD_ASSERT (s != NULL); | |
6604 | ||
6605 | /* FIXME: Can h->dynindex be more than 64K? */ | |
6606 | if (h->dynindx & 0xffff0000) | |
b34976b6 | 6607 | return FALSE; |
b49e97c9 TS |
6608 | |
6609 | /* Fill the stub. */ | |
6610 | bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub); | |
6611 | bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + 4); | |
6612 | bfd_put_32 (output_bfd, STUB_JALR, stub + 8); | |
6613 | bfd_put_32 (output_bfd, STUB_LI16 (output_bfd) + h->dynindx, stub + 12); | |
6614 | ||
6615 | BFD_ASSERT (h->plt.offset <= s->_raw_size); | |
6616 | memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE); | |
6617 | ||
6618 | /* Mark the symbol as undefined. plt.offset != -1 occurs | |
6619 | only for the referenced symbol. */ | |
6620 | sym->st_shndx = SHN_UNDEF; | |
6621 | ||
6622 | /* The run-time linker uses the st_value field of the symbol | |
6623 | to reset the global offset table entry for this external | |
6624 | to its stub address when unlinking a shared object. */ | |
6625 | gval = s->output_section->vma + s->output_offset + h->plt.offset; | |
6626 | sym->st_value = gval; | |
6627 | } | |
6628 | ||
6629 | BFD_ASSERT (h->dynindx != -1 | |
6630 | || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0); | |
6631 | ||
f4416af6 | 6632 | sgot = mips_elf_got_section (dynobj, FALSE); |
b49e97c9 | 6633 | BFD_ASSERT (sgot != NULL); |
f4416af6 | 6634 | BFD_ASSERT (mips_elf_section_data (sgot) != NULL); |
f0abc2a1 | 6635 | g = mips_elf_section_data (sgot)->u.got_info; |
b49e97c9 TS |
6636 | BFD_ASSERT (g != NULL); |
6637 | ||
6638 | /* Run through the global symbol table, creating GOT entries for all | |
6639 | the symbols that need them. */ | |
6640 | if (g->global_gotsym != NULL | |
6641 | && h->dynindx >= g->global_gotsym->dynindx) | |
6642 | { | |
6643 | bfd_vma offset; | |
6644 | bfd_vma value; | |
6645 | ||
6eaa6adc | 6646 | value = sym->st_value; |
f4416af6 | 6647 | offset = mips_elf_global_got_index (dynobj, output_bfd, h); |
b49e97c9 TS |
6648 | MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset); |
6649 | } | |
6650 | ||
f4416af6 AO |
6651 | if (g->next && h->dynindx != -1) |
6652 | { | |
6653 | struct mips_got_entry e, *p; | |
0626d451 | 6654 | bfd_vma entry; |
f4416af6 | 6655 | bfd_vma offset; |
f4416af6 AO |
6656 | |
6657 | gg = g; | |
6658 | ||
6659 | e.abfd = output_bfd; | |
6660 | e.symndx = -1; | |
6661 | e.d.h = (struct mips_elf_link_hash_entry *)h; | |
143d77c5 | 6662 | |
f4416af6 AO |
6663 | for (g = g->next; g->next != gg; g = g->next) |
6664 | { | |
6665 | if (g->got_entries | |
6666 | && (p = (struct mips_got_entry *) htab_find (g->got_entries, | |
6667 | &e))) | |
6668 | { | |
6669 | offset = p->gotidx; | |
0626d451 RS |
6670 | if (info->shared |
6671 | || (elf_hash_table (info)->dynamic_sections_created | |
6672 | && p->d.h != NULL | |
6673 | && ((p->d.h->root.elf_link_hash_flags | |
6674 | & ELF_LINK_HASH_DEF_DYNAMIC) != 0) | |
6675 | && ((p->d.h->root.elf_link_hash_flags | |
6676 | & ELF_LINK_HASH_DEF_REGULAR) == 0))) | |
6677 | { | |
6678 | /* Create an R_MIPS_REL32 relocation for this entry. Due to | |
6679 | the various compatibility problems, it's easier to mock | |
6680 | up an R_MIPS_32 or R_MIPS_64 relocation and leave | |
6681 | mips_elf_create_dynamic_relocation to calculate the | |
6682 | appropriate addend. */ | |
6683 | Elf_Internal_Rela rel[3]; | |
6684 | ||
6685 | memset (rel, 0, sizeof (rel)); | |
6686 | if (ABI_64_P (output_bfd)) | |
6687 | rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64); | |
6688 | else | |
6689 | rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32); | |
6690 | rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset; | |
6691 | ||
6692 | entry = 0; | |
6693 | if (! (mips_elf_create_dynamic_relocation | |
6694 | (output_bfd, info, rel, | |
6695 | e.d.h, NULL, sym->st_value, &entry, sgot))) | |
6696 | return FALSE; | |
6697 | } | |
6698 | else | |
6699 | entry = sym->st_value; | |
6700 | MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset); | |
f4416af6 AO |
6701 | } |
6702 | } | |
6703 | } | |
6704 | ||
b49e97c9 TS |
6705 | /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */ |
6706 | name = h->root.root.string; | |
6707 | if (strcmp (name, "_DYNAMIC") == 0 | |
6708 | || strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0) | |
6709 | sym->st_shndx = SHN_ABS; | |
6710 | else if (strcmp (name, "_DYNAMIC_LINK") == 0 | |
6711 | || strcmp (name, "_DYNAMIC_LINKING") == 0) | |
6712 | { | |
6713 | sym->st_shndx = SHN_ABS; | |
6714 | sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); | |
6715 | sym->st_value = 1; | |
6716 | } | |
4a14403c | 6717 | else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd)) |
b49e97c9 TS |
6718 | { |
6719 | sym->st_shndx = SHN_ABS; | |
6720 | sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); | |
6721 | sym->st_value = elf_gp (output_bfd); | |
6722 | } | |
6723 | else if (SGI_COMPAT (output_bfd)) | |
6724 | { | |
6725 | if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0 | |
6726 | || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0) | |
6727 | { | |
6728 | sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); | |
6729 | sym->st_other = STO_PROTECTED; | |
6730 | sym->st_value = 0; | |
6731 | sym->st_shndx = SHN_MIPS_DATA; | |
6732 | } | |
6733 | else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0) | |
6734 | { | |
6735 | sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); | |
6736 | sym->st_other = STO_PROTECTED; | |
6737 | sym->st_value = mips_elf_hash_table (info)->procedure_count; | |
6738 | sym->st_shndx = SHN_ABS; | |
6739 | } | |
6740 | else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS) | |
6741 | { | |
6742 | if (h->type == STT_FUNC) | |
6743 | sym->st_shndx = SHN_MIPS_TEXT; | |
6744 | else if (h->type == STT_OBJECT) | |
6745 | sym->st_shndx = SHN_MIPS_DATA; | |
6746 | } | |
6747 | } | |
6748 | ||
6749 | /* Handle the IRIX6-specific symbols. */ | |
6750 | if (IRIX_COMPAT (output_bfd) == ict_irix6) | |
6751 | mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym); | |
6752 | ||
6753 | if (! info->shared) | |
6754 | { | |
6755 | if (! mips_elf_hash_table (info)->use_rld_obj_head | |
6756 | && (strcmp (name, "__rld_map") == 0 | |
6757 | || strcmp (name, "__RLD_MAP") == 0)) | |
6758 | { | |
6759 | asection *s = bfd_get_section_by_name (dynobj, ".rld_map"); | |
6760 | BFD_ASSERT (s != NULL); | |
6761 | sym->st_value = s->output_section->vma + s->output_offset; | |
9719ad41 | 6762 | bfd_put_32 (output_bfd, 0, s->contents); |
b49e97c9 TS |
6763 | if (mips_elf_hash_table (info)->rld_value == 0) |
6764 | mips_elf_hash_table (info)->rld_value = sym->st_value; | |
6765 | } | |
6766 | else if (mips_elf_hash_table (info)->use_rld_obj_head | |
6767 | && strcmp (name, "__rld_obj_head") == 0) | |
6768 | { | |
6769 | /* IRIX6 does not use a .rld_map section. */ | |
6770 | if (IRIX_COMPAT (output_bfd) == ict_irix5 | |
6771 | || IRIX_COMPAT (output_bfd) == ict_none) | |
6772 | BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map") | |
6773 | != NULL); | |
6774 | mips_elf_hash_table (info)->rld_value = sym->st_value; | |
6775 | } | |
6776 | } | |
6777 | ||
6778 | /* If this is a mips16 symbol, force the value to be even. */ | |
79cda7cf FF |
6779 | if (sym->st_other == STO_MIPS16) |
6780 | sym->st_value &= ~1; | |
b49e97c9 | 6781 | |
b34976b6 | 6782 | return TRUE; |
b49e97c9 TS |
6783 | } |
6784 | ||
6785 | /* Finish up the dynamic sections. */ | |
6786 | ||
b34976b6 | 6787 | bfd_boolean |
9719ad41 RS |
6788 | _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd, |
6789 | struct bfd_link_info *info) | |
b49e97c9 TS |
6790 | { |
6791 | bfd *dynobj; | |
6792 | asection *sdyn; | |
6793 | asection *sgot; | |
f4416af6 | 6794 | struct mips_got_info *gg, *g; |
b49e97c9 TS |
6795 | |
6796 | dynobj = elf_hash_table (info)->dynobj; | |
6797 | ||
6798 | sdyn = bfd_get_section_by_name (dynobj, ".dynamic"); | |
6799 | ||
f4416af6 | 6800 | sgot = mips_elf_got_section (dynobj, FALSE); |
b49e97c9 | 6801 | if (sgot == NULL) |
f4416af6 | 6802 | gg = g = NULL; |
b49e97c9 TS |
6803 | else |
6804 | { | |
f4416af6 AO |
6805 | BFD_ASSERT (mips_elf_section_data (sgot) != NULL); |
6806 | gg = mips_elf_section_data (sgot)->u.got_info; | |
6807 | BFD_ASSERT (gg != NULL); | |
6808 | g = mips_elf_got_for_ibfd (gg, output_bfd); | |
b49e97c9 TS |
6809 | BFD_ASSERT (g != NULL); |
6810 | } | |
6811 | ||
6812 | if (elf_hash_table (info)->dynamic_sections_created) | |
6813 | { | |
6814 | bfd_byte *b; | |
6815 | ||
6816 | BFD_ASSERT (sdyn != NULL); | |
6817 | BFD_ASSERT (g != NULL); | |
6818 | ||
6819 | for (b = sdyn->contents; | |
6820 | b < sdyn->contents + sdyn->_raw_size; | |
6821 | b += MIPS_ELF_DYN_SIZE (dynobj)) | |
6822 | { | |
6823 | Elf_Internal_Dyn dyn; | |
6824 | const char *name; | |
6825 | size_t elemsize; | |
6826 | asection *s; | |
b34976b6 | 6827 | bfd_boolean swap_out_p; |
b49e97c9 TS |
6828 | |
6829 | /* Read in the current dynamic entry. */ | |
6830 | (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn); | |
6831 | ||
6832 | /* Assume that we're going to modify it and write it out. */ | |
b34976b6 | 6833 | swap_out_p = TRUE; |
b49e97c9 TS |
6834 | |
6835 | switch (dyn.d_tag) | |
6836 | { | |
6837 | case DT_RELENT: | |
f4416af6 | 6838 | s = mips_elf_rel_dyn_section (dynobj, FALSE); |
b49e97c9 TS |
6839 | BFD_ASSERT (s != NULL); |
6840 | dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj); | |
6841 | break; | |
6842 | ||
6843 | case DT_STRSZ: | |
6844 | /* Rewrite DT_STRSZ. */ | |
6845 | dyn.d_un.d_val = | |
6846 | _bfd_elf_strtab_size (elf_hash_table (info)->dynstr); | |
6847 | break; | |
6848 | ||
6849 | case DT_PLTGOT: | |
6850 | name = ".got"; | |
b49e97c9 TS |
6851 | s = bfd_get_section_by_name (output_bfd, name); |
6852 | BFD_ASSERT (s != NULL); | |
6853 | dyn.d_un.d_ptr = s->vma; | |
6854 | break; | |
6855 | ||
6856 | case DT_MIPS_RLD_VERSION: | |
6857 | dyn.d_un.d_val = 1; /* XXX */ | |
6858 | break; | |
6859 | ||
6860 | case DT_MIPS_FLAGS: | |
6861 | dyn.d_un.d_val = RHF_NOTPOT; /* XXX */ | |
6862 | break; | |
6863 | ||
b49e97c9 TS |
6864 | case DT_MIPS_TIME_STAMP: |
6865 | time ((time_t *) &dyn.d_un.d_val); | |
6866 | break; | |
6867 | ||
6868 | case DT_MIPS_ICHECKSUM: | |
6869 | /* XXX FIXME: */ | |
b34976b6 | 6870 | swap_out_p = FALSE; |
b49e97c9 TS |
6871 | break; |
6872 | ||
6873 | case DT_MIPS_IVERSION: | |
6874 | /* XXX FIXME: */ | |
b34976b6 | 6875 | swap_out_p = FALSE; |
b49e97c9 TS |
6876 | break; |
6877 | ||
6878 | case DT_MIPS_BASE_ADDRESS: | |
6879 | s = output_bfd->sections; | |
6880 | BFD_ASSERT (s != NULL); | |
6881 | dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff; | |
6882 | break; | |
6883 | ||
6884 | case DT_MIPS_LOCAL_GOTNO: | |
6885 | dyn.d_un.d_val = g->local_gotno; | |
6886 | break; | |
6887 | ||
6888 | case DT_MIPS_UNREFEXTNO: | |
6889 | /* The index into the dynamic symbol table which is the | |
6890 | entry of the first external symbol that is not | |
6891 | referenced within the same object. */ | |
6892 | dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1; | |
6893 | break; | |
6894 | ||
6895 | case DT_MIPS_GOTSYM: | |
f4416af6 | 6896 | if (gg->global_gotsym) |
b49e97c9 | 6897 | { |
f4416af6 | 6898 | dyn.d_un.d_val = gg->global_gotsym->dynindx; |
b49e97c9 TS |
6899 | break; |
6900 | } | |
6901 | /* In case if we don't have global got symbols we default | |
6902 | to setting DT_MIPS_GOTSYM to the same value as | |
6903 | DT_MIPS_SYMTABNO, so we just fall through. */ | |
6904 | ||
6905 | case DT_MIPS_SYMTABNO: | |
6906 | name = ".dynsym"; | |
6907 | elemsize = MIPS_ELF_SYM_SIZE (output_bfd); | |
6908 | s = bfd_get_section_by_name (output_bfd, name); | |
6909 | BFD_ASSERT (s != NULL); | |
6910 | ||
6911 | if (s->_cooked_size != 0) | |
6912 | dyn.d_un.d_val = s->_cooked_size / elemsize; | |
6913 | else | |
6914 | dyn.d_un.d_val = s->_raw_size / elemsize; | |
6915 | break; | |
6916 | ||
6917 | case DT_MIPS_HIPAGENO: | |
6918 | dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO; | |
6919 | break; | |
6920 | ||
6921 | case DT_MIPS_RLD_MAP: | |
6922 | dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value; | |
6923 | break; | |
6924 | ||
6925 | case DT_MIPS_OPTIONS: | |
6926 | s = (bfd_get_section_by_name | |
6927 | (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd))); | |
6928 | dyn.d_un.d_ptr = s->vma; | |
6929 | break; | |
6930 | ||
98a8deaf RS |
6931 | case DT_RELSZ: |
6932 | /* Reduce DT_RELSZ to account for any relocations we | |
6933 | decided not to make. This is for the n64 irix rld, | |
6934 | which doesn't seem to apply any relocations if there | |
6935 | are trailing null entries. */ | |
6936 | s = mips_elf_rel_dyn_section (dynobj, FALSE); | |
6937 | dyn.d_un.d_val = (s->reloc_count | |
6938 | * (ABI_64_P (output_bfd) | |
6939 | ? sizeof (Elf64_Mips_External_Rel) | |
6940 | : sizeof (Elf32_External_Rel))); | |
b49e97c9 TS |
6941 | break; |
6942 | ||
6943 | default: | |
b34976b6 | 6944 | swap_out_p = FALSE; |
b49e97c9 TS |
6945 | break; |
6946 | } | |
6947 | ||
6948 | if (swap_out_p) | |
6949 | (*get_elf_backend_data (dynobj)->s->swap_dyn_out) | |
6950 | (dynobj, &dyn, b); | |
6951 | } | |
6952 | } | |
6953 | ||
6954 | /* The first entry of the global offset table will be filled at | |
6955 | runtime. The second entry will be used by some runtime loaders. | |
8dc1a139 | 6956 | This isn't the case of IRIX rld. */ |
b49e97c9 TS |
6957 | if (sgot != NULL && sgot->_raw_size > 0) |
6958 | { | |
9719ad41 RS |
6959 | MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents); |
6960 | MIPS_ELF_PUT_WORD (output_bfd, 0x80000000, | |
b49e97c9 TS |
6961 | sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd)); |
6962 | } | |
6963 | ||
6964 | if (sgot != NULL) | |
6965 | elf_section_data (sgot->output_section)->this_hdr.sh_entsize | |
6966 | = MIPS_ELF_GOT_SIZE (output_bfd); | |
6967 | ||
f4416af6 AO |
6968 | /* Generate dynamic relocations for the non-primary gots. */ |
6969 | if (gg != NULL && gg->next) | |
6970 | { | |
6971 | Elf_Internal_Rela rel[3]; | |
6972 | bfd_vma addend = 0; | |
6973 | ||
6974 | memset (rel, 0, sizeof (rel)); | |
6975 | rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32); | |
6976 | ||
6977 | for (g = gg->next; g->next != gg; g = g->next) | |
6978 | { | |
6979 | bfd_vma index = g->next->local_gotno + g->next->global_gotno; | |
6980 | ||
9719ad41 | 6981 | MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents |
f4416af6 | 6982 | + index++ * MIPS_ELF_GOT_SIZE (output_bfd)); |
9719ad41 | 6983 | MIPS_ELF_PUT_WORD (output_bfd, 0x80000000, sgot->contents |
f4416af6 AO |
6984 | + index++ * MIPS_ELF_GOT_SIZE (output_bfd)); |
6985 | ||
6986 | if (! info->shared) | |
6987 | continue; | |
6988 | ||
6989 | while (index < g->assigned_gotno) | |
6990 | { | |
6991 | rel[0].r_offset = rel[1].r_offset = rel[2].r_offset | |
6992 | = index++ * MIPS_ELF_GOT_SIZE (output_bfd); | |
6993 | if (!(mips_elf_create_dynamic_relocation | |
6994 | (output_bfd, info, rel, NULL, | |
6995 | bfd_abs_section_ptr, | |
6996 | 0, &addend, sgot))) | |
6997 | return FALSE; | |
6998 | BFD_ASSERT (addend == 0); | |
6999 | } | |
7000 | } | |
7001 | } | |
7002 | ||
b49e97c9 | 7003 | { |
b49e97c9 TS |
7004 | asection *s; |
7005 | Elf32_compact_rel cpt; | |
7006 | ||
b49e97c9 TS |
7007 | if (SGI_COMPAT (output_bfd)) |
7008 | { | |
7009 | /* Write .compact_rel section out. */ | |
7010 | s = bfd_get_section_by_name (dynobj, ".compact_rel"); | |
7011 | if (s != NULL) | |
7012 | { | |
7013 | cpt.id1 = 1; | |
7014 | cpt.num = s->reloc_count; | |
7015 | cpt.id2 = 2; | |
7016 | cpt.offset = (s->output_section->filepos | |
7017 | + sizeof (Elf32_External_compact_rel)); | |
7018 | cpt.reserved0 = 0; | |
7019 | cpt.reserved1 = 0; | |
7020 | bfd_elf32_swap_compact_rel_out (output_bfd, &cpt, | |
7021 | ((Elf32_External_compact_rel *) | |
7022 | s->contents)); | |
7023 | ||
7024 | /* Clean up a dummy stub function entry in .text. */ | |
7025 | s = bfd_get_section_by_name (dynobj, | |
7026 | MIPS_ELF_STUB_SECTION_NAME (dynobj)); | |
7027 | if (s != NULL) | |
7028 | { | |
7029 | file_ptr dummy_offset; | |
7030 | ||
7031 | BFD_ASSERT (s->_raw_size >= MIPS_FUNCTION_STUB_SIZE); | |
7032 | dummy_offset = s->_raw_size - MIPS_FUNCTION_STUB_SIZE; | |
7033 | memset (s->contents + dummy_offset, 0, | |
7034 | MIPS_FUNCTION_STUB_SIZE); | |
7035 | } | |
7036 | } | |
7037 | } | |
7038 | ||
7039 | /* We need to sort the entries of the dynamic relocation section. */ | |
7040 | ||
f4416af6 AO |
7041 | s = mips_elf_rel_dyn_section (dynobj, FALSE); |
7042 | ||
7043 | if (s != NULL | |
7044 | && s->_raw_size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd)) | |
b49e97c9 | 7045 | { |
f4416af6 | 7046 | reldyn_sorting_bfd = output_bfd; |
b49e97c9 | 7047 | |
f4416af6 | 7048 | if (ABI_64_P (output_bfd)) |
9719ad41 | 7049 | qsort ((Elf64_External_Rel *) s->contents + 1, s->reloc_count - 1, |
f4416af6 AO |
7050 | sizeof (Elf64_Mips_External_Rel), sort_dynamic_relocs_64); |
7051 | else | |
9719ad41 | 7052 | qsort ((Elf32_External_Rel *) s->contents + 1, s->reloc_count - 1, |
f4416af6 | 7053 | sizeof (Elf32_External_Rel), sort_dynamic_relocs); |
b49e97c9 | 7054 | } |
b49e97c9 TS |
7055 | } |
7056 | ||
b34976b6 | 7057 | return TRUE; |
b49e97c9 TS |
7058 | } |
7059 | ||
b49e97c9 | 7060 | |
64543e1a RS |
7061 | /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */ |
7062 | ||
7063 | static void | |
9719ad41 | 7064 | mips_set_isa_flags (bfd *abfd) |
b49e97c9 | 7065 | { |
64543e1a | 7066 | flagword val; |
b49e97c9 TS |
7067 | |
7068 | switch (bfd_get_mach (abfd)) | |
7069 | { | |
7070 | default: | |
7071 | case bfd_mach_mips3000: | |
7072 | val = E_MIPS_ARCH_1; | |
7073 | break; | |
7074 | ||
7075 | case bfd_mach_mips3900: | |
7076 | val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900; | |
7077 | break; | |
7078 | ||
7079 | case bfd_mach_mips6000: | |
7080 | val = E_MIPS_ARCH_2; | |
7081 | break; | |
7082 | ||
7083 | case bfd_mach_mips4000: | |
7084 | case bfd_mach_mips4300: | |
7085 | case bfd_mach_mips4400: | |
7086 | case bfd_mach_mips4600: | |
7087 | val = E_MIPS_ARCH_3; | |
7088 | break; | |
7089 | ||
7090 | case bfd_mach_mips4010: | |
7091 | val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010; | |
7092 | break; | |
7093 | ||
7094 | case bfd_mach_mips4100: | |
7095 | val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100; | |
7096 | break; | |
7097 | ||
7098 | case bfd_mach_mips4111: | |
7099 | val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111; | |
7100 | break; | |
7101 | ||
00707a0e RS |
7102 | case bfd_mach_mips4120: |
7103 | val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120; | |
7104 | break; | |
7105 | ||
b49e97c9 TS |
7106 | case bfd_mach_mips4650: |
7107 | val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650; | |
7108 | break; | |
7109 | ||
00707a0e RS |
7110 | case bfd_mach_mips5400: |
7111 | val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400; | |
7112 | break; | |
7113 | ||
7114 | case bfd_mach_mips5500: | |
7115 | val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500; | |
7116 | break; | |
7117 | ||
b49e97c9 | 7118 | case bfd_mach_mips5000: |
5a7ea749 | 7119 | case bfd_mach_mips7000: |
b49e97c9 TS |
7120 | case bfd_mach_mips8000: |
7121 | case bfd_mach_mips10000: | |
7122 | case bfd_mach_mips12000: | |
7123 | val = E_MIPS_ARCH_4; | |
7124 | break; | |
7125 | ||
7126 | case bfd_mach_mips5: | |
7127 | val = E_MIPS_ARCH_5; | |
7128 | break; | |
7129 | ||
7130 | case bfd_mach_mips_sb1: | |
7131 | val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1; | |
7132 | break; | |
7133 | ||
7134 | case bfd_mach_mipsisa32: | |
7135 | val = E_MIPS_ARCH_32; | |
7136 | break; | |
7137 | ||
7138 | case bfd_mach_mipsisa64: | |
7139 | val = E_MIPS_ARCH_64; | |
af7ee8bf CD |
7140 | break; |
7141 | ||
7142 | case bfd_mach_mipsisa32r2: | |
7143 | val = E_MIPS_ARCH_32R2; | |
7144 | break; | |
5f74bc13 CD |
7145 | |
7146 | case bfd_mach_mipsisa64r2: | |
7147 | val = E_MIPS_ARCH_64R2; | |
7148 | break; | |
b49e97c9 | 7149 | } |
b49e97c9 TS |
7150 | elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH); |
7151 | elf_elfheader (abfd)->e_flags |= val; | |
7152 | ||
64543e1a RS |
7153 | } |
7154 | ||
7155 | ||
7156 | /* The final processing done just before writing out a MIPS ELF object | |
7157 | file. This gets the MIPS architecture right based on the machine | |
7158 | number. This is used by both the 32-bit and the 64-bit ABI. */ | |
7159 | ||
7160 | void | |
9719ad41 RS |
7161 | _bfd_mips_elf_final_write_processing (bfd *abfd, |
7162 | bfd_boolean linker ATTRIBUTE_UNUSED) | |
64543e1a RS |
7163 | { |
7164 | unsigned int i; | |
7165 | Elf_Internal_Shdr **hdrpp; | |
7166 | const char *name; | |
7167 | asection *sec; | |
7168 | ||
7169 | /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former | |
7170 | is nonzero. This is for compatibility with old objects, which used | |
7171 | a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */ | |
7172 | if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0) | |
7173 | mips_set_isa_flags (abfd); | |
7174 | ||
b49e97c9 TS |
7175 | /* Set the sh_info field for .gptab sections and other appropriate |
7176 | info for each special section. */ | |
7177 | for (i = 1, hdrpp = elf_elfsections (abfd) + 1; | |
7178 | i < elf_numsections (abfd); | |
7179 | i++, hdrpp++) | |
7180 | { | |
7181 | switch ((*hdrpp)->sh_type) | |
7182 | { | |
7183 | case SHT_MIPS_MSYM: | |
7184 | case SHT_MIPS_LIBLIST: | |
7185 | sec = bfd_get_section_by_name (abfd, ".dynstr"); | |
7186 | if (sec != NULL) | |
7187 | (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; | |
7188 | break; | |
7189 | ||
7190 | case SHT_MIPS_GPTAB: | |
7191 | BFD_ASSERT ((*hdrpp)->bfd_section != NULL); | |
7192 | name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section); | |
7193 | BFD_ASSERT (name != NULL | |
7194 | && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0); | |
7195 | sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1); | |
7196 | BFD_ASSERT (sec != NULL); | |
7197 | (*hdrpp)->sh_info = elf_section_data (sec)->this_idx; | |
7198 | break; | |
7199 | ||
7200 | case SHT_MIPS_CONTENT: | |
7201 | BFD_ASSERT ((*hdrpp)->bfd_section != NULL); | |
7202 | name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section); | |
7203 | BFD_ASSERT (name != NULL | |
7204 | && strncmp (name, ".MIPS.content", | |
7205 | sizeof ".MIPS.content" - 1) == 0); | |
7206 | sec = bfd_get_section_by_name (abfd, | |
7207 | name + sizeof ".MIPS.content" - 1); | |
7208 | BFD_ASSERT (sec != NULL); | |
7209 | (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; | |
7210 | break; | |
7211 | ||
7212 | case SHT_MIPS_SYMBOL_LIB: | |
7213 | sec = bfd_get_section_by_name (abfd, ".dynsym"); | |
7214 | if (sec != NULL) | |
7215 | (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; | |
7216 | sec = bfd_get_section_by_name (abfd, ".liblist"); | |
7217 | if (sec != NULL) | |
7218 | (*hdrpp)->sh_info = elf_section_data (sec)->this_idx; | |
7219 | break; | |
7220 | ||
7221 | case SHT_MIPS_EVENTS: | |
7222 | BFD_ASSERT ((*hdrpp)->bfd_section != NULL); | |
7223 | name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section); | |
7224 | BFD_ASSERT (name != NULL); | |
7225 | if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0) | |
7226 | sec = bfd_get_section_by_name (abfd, | |
7227 | name + sizeof ".MIPS.events" - 1); | |
7228 | else | |
7229 | { | |
7230 | BFD_ASSERT (strncmp (name, ".MIPS.post_rel", | |
7231 | sizeof ".MIPS.post_rel" - 1) == 0); | |
7232 | sec = bfd_get_section_by_name (abfd, | |
7233 | (name | |
7234 | + sizeof ".MIPS.post_rel" - 1)); | |
7235 | } | |
7236 | BFD_ASSERT (sec != NULL); | |
7237 | (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; | |
7238 | break; | |
7239 | ||
7240 | } | |
7241 | } | |
7242 | } | |
7243 | \f | |
8dc1a139 | 7244 | /* When creating an IRIX5 executable, we need REGINFO and RTPROC |
b49e97c9 TS |
7245 | segments. */ |
7246 | ||
7247 | int | |
9719ad41 | 7248 | _bfd_mips_elf_additional_program_headers (bfd *abfd) |
b49e97c9 TS |
7249 | { |
7250 | asection *s; | |
7251 | int ret = 0; | |
7252 | ||
7253 | /* See if we need a PT_MIPS_REGINFO segment. */ | |
7254 | s = bfd_get_section_by_name (abfd, ".reginfo"); | |
7255 | if (s && (s->flags & SEC_LOAD)) | |
7256 | ++ret; | |
7257 | ||
7258 | /* See if we need a PT_MIPS_OPTIONS segment. */ | |
7259 | if (IRIX_COMPAT (abfd) == ict_irix6 | |
7260 | && bfd_get_section_by_name (abfd, | |
7261 | MIPS_ELF_OPTIONS_SECTION_NAME (abfd))) | |
7262 | ++ret; | |
7263 | ||
7264 | /* See if we need a PT_MIPS_RTPROC segment. */ | |
7265 | if (IRIX_COMPAT (abfd) == ict_irix5 | |
7266 | && bfd_get_section_by_name (abfd, ".dynamic") | |
7267 | && bfd_get_section_by_name (abfd, ".mdebug")) | |
7268 | ++ret; | |
7269 | ||
7270 | return ret; | |
7271 | } | |
7272 | ||
8dc1a139 | 7273 | /* Modify the segment map for an IRIX5 executable. */ |
b49e97c9 | 7274 | |
b34976b6 | 7275 | bfd_boolean |
9719ad41 RS |
7276 | _bfd_mips_elf_modify_segment_map (bfd *abfd, |
7277 | struct bfd_link_info *info ATTRIBUTE_UNUSED) | |
b49e97c9 TS |
7278 | { |
7279 | asection *s; | |
7280 | struct elf_segment_map *m, **pm; | |
7281 | bfd_size_type amt; | |
7282 | ||
7283 | /* If there is a .reginfo section, we need a PT_MIPS_REGINFO | |
7284 | segment. */ | |
7285 | s = bfd_get_section_by_name (abfd, ".reginfo"); | |
7286 | if (s != NULL && (s->flags & SEC_LOAD) != 0) | |
7287 | { | |
7288 | for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next) | |
7289 | if (m->p_type == PT_MIPS_REGINFO) | |
7290 | break; | |
7291 | if (m == NULL) | |
7292 | { | |
7293 | amt = sizeof *m; | |
9719ad41 | 7294 | m = bfd_zalloc (abfd, amt); |
b49e97c9 | 7295 | if (m == NULL) |
b34976b6 | 7296 | return FALSE; |
b49e97c9 TS |
7297 | |
7298 | m->p_type = PT_MIPS_REGINFO; | |
7299 | m->count = 1; | |
7300 | m->sections[0] = s; | |
7301 | ||
7302 | /* We want to put it after the PHDR and INTERP segments. */ | |
7303 | pm = &elf_tdata (abfd)->segment_map; | |
7304 | while (*pm != NULL | |
7305 | && ((*pm)->p_type == PT_PHDR | |
7306 | || (*pm)->p_type == PT_INTERP)) | |
7307 | pm = &(*pm)->next; | |
7308 | ||
7309 | m->next = *pm; | |
7310 | *pm = m; | |
7311 | } | |
7312 | } | |
7313 | ||
7314 | /* For IRIX 6, we don't have .mdebug sections, nor does anything but | |
7315 | .dynamic end up in PT_DYNAMIC. However, we do have to insert a | |
98a8deaf | 7316 | PT_MIPS_OPTIONS segment immediately following the program header |
b49e97c9 | 7317 | table. */ |
c1fd6598 AO |
7318 | if (NEWABI_P (abfd) |
7319 | /* On non-IRIX6 new abi, we'll have already created a segment | |
7320 | for this section, so don't create another. I'm not sure this | |
7321 | is not also the case for IRIX 6, but I can't test it right | |
7322 | now. */ | |
7323 | && IRIX_COMPAT (abfd) == ict_irix6) | |
b49e97c9 TS |
7324 | { |
7325 | for (s = abfd->sections; s; s = s->next) | |
7326 | if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS) | |
7327 | break; | |
7328 | ||
7329 | if (s) | |
7330 | { | |
7331 | struct elf_segment_map *options_segment; | |
7332 | ||
98a8deaf RS |
7333 | pm = &elf_tdata (abfd)->segment_map; |
7334 | while (*pm != NULL | |
7335 | && ((*pm)->p_type == PT_PHDR | |
7336 | || (*pm)->p_type == PT_INTERP)) | |
7337 | pm = &(*pm)->next; | |
b49e97c9 TS |
7338 | |
7339 | amt = sizeof (struct elf_segment_map); | |
7340 | options_segment = bfd_zalloc (abfd, amt); | |
7341 | options_segment->next = *pm; | |
7342 | options_segment->p_type = PT_MIPS_OPTIONS; | |
7343 | options_segment->p_flags = PF_R; | |
b34976b6 | 7344 | options_segment->p_flags_valid = TRUE; |
b49e97c9 TS |
7345 | options_segment->count = 1; |
7346 | options_segment->sections[0] = s; | |
7347 | *pm = options_segment; | |
7348 | } | |
7349 | } | |
7350 | else | |
7351 | { | |
7352 | if (IRIX_COMPAT (abfd) == ict_irix5) | |
7353 | { | |
7354 | /* If there are .dynamic and .mdebug sections, we make a room | |
7355 | for the RTPROC header. FIXME: Rewrite without section names. */ | |
7356 | if (bfd_get_section_by_name (abfd, ".interp") == NULL | |
7357 | && bfd_get_section_by_name (abfd, ".dynamic") != NULL | |
7358 | && bfd_get_section_by_name (abfd, ".mdebug") != NULL) | |
7359 | { | |
7360 | for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next) | |
7361 | if (m->p_type == PT_MIPS_RTPROC) | |
7362 | break; | |
7363 | if (m == NULL) | |
7364 | { | |
7365 | amt = sizeof *m; | |
9719ad41 | 7366 | m = bfd_zalloc (abfd, amt); |
b49e97c9 | 7367 | if (m == NULL) |
b34976b6 | 7368 | return FALSE; |
b49e97c9 TS |
7369 | |
7370 | m->p_type = PT_MIPS_RTPROC; | |
7371 | ||
7372 | s = bfd_get_section_by_name (abfd, ".rtproc"); | |
7373 | if (s == NULL) | |
7374 | { | |
7375 | m->count = 0; | |
7376 | m->p_flags = 0; | |
7377 | m->p_flags_valid = 1; | |
7378 | } | |
7379 | else | |
7380 | { | |
7381 | m->count = 1; | |
7382 | m->sections[0] = s; | |
7383 | } | |
7384 | ||
7385 | /* We want to put it after the DYNAMIC segment. */ | |
7386 | pm = &elf_tdata (abfd)->segment_map; | |
7387 | while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC) | |
7388 | pm = &(*pm)->next; | |
7389 | if (*pm != NULL) | |
7390 | pm = &(*pm)->next; | |
7391 | ||
7392 | m->next = *pm; | |
7393 | *pm = m; | |
7394 | } | |
7395 | } | |
7396 | } | |
8dc1a139 | 7397 | /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic, |
b49e97c9 TS |
7398 | .dynstr, .dynsym, and .hash sections, and everything in |
7399 | between. */ | |
7400 | for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; | |
7401 | pm = &(*pm)->next) | |
7402 | if ((*pm)->p_type == PT_DYNAMIC) | |
7403 | break; | |
7404 | m = *pm; | |
7405 | if (m != NULL && IRIX_COMPAT (abfd) == ict_none) | |
7406 | { | |
7407 | /* For a normal mips executable the permissions for the PT_DYNAMIC | |
7408 | segment are read, write and execute. We do that here since | |
7409 | the code in elf.c sets only the read permission. This matters | |
7410 | sometimes for the dynamic linker. */ | |
7411 | if (bfd_get_section_by_name (abfd, ".dynamic") != NULL) | |
7412 | { | |
7413 | m->p_flags = PF_R | PF_W | PF_X; | |
7414 | m->p_flags_valid = 1; | |
7415 | } | |
7416 | } | |
7417 | if (m != NULL | |
7418 | && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0) | |
7419 | { | |
7420 | static const char *sec_names[] = | |
7421 | { | |
7422 | ".dynamic", ".dynstr", ".dynsym", ".hash" | |
7423 | }; | |
7424 | bfd_vma low, high; | |
7425 | unsigned int i, c; | |
7426 | struct elf_segment_map *n; | |
7427 | ||
792b4a53 | 7428 | low = ~(bfd_vma) 0; |
b49e97c9 TS |
7429 | high = 0; |
7430 | for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++) | |
7431 | { | |
7432 | s = bfd_get_section_by_name (abfd, sec_names[i]); | |
7433 | if (s != NULL && (s->flags & SEC_LOAD) != 0) | |
7434 | { | |
7435 | bfd_size_type sz; | |
7436 | ||
7437 | if (low > s->vma) | |
7438 | low = s->vma; | |
7439 | sz = s->_cooked_size; | |
7440 | if (sz == 0) | |
7441 | sz = s->_raw_size; | |
7442 | if (high < s->vma + sz) | |
7443 | high = s->vma + sz; | |
7444 | } | |
7445 | } | |
7446 | ||
7447 | c = 0; | |
7448 | for (s = abfd->sections; s != NULL; s = s->next) | |
7449 | if ((s->flags & SEC_LOAD) != 0 | |
7450 | && s->vma >= low | |
7451 | && ((s->vma | |
7452 | + (s->_cooked_size != | |
7453 | 0 ? s->_cooked_size : s->_raw_size)) <= high)) | |
7454 | ++c; | |
7455 | ||
7456 | amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *); | |
9719ad41 | 7457 | n = bfd_zalloc (abfd, amt); |
b49e97c9 | 7458 | if (n == NULL) |
b34976b6 | 7459 | return FALSE; |
b49e97c9 TS |
7460 | *n = *m; |
7461 | n->count = c; | |
7462 | ||
7463 | i = 0; | |
7464 | for (s = abfd->sections; s != NULL; s = s->next) | |
7465 | { | |
7466 | if ((s->flags & SEC_LOAD) != 0 | |
7467 | && s->vma >= low | |
7468 | && ((s->vma | |
7469 | + (s->_cooked_size != 0 ? | |
7470 | s->_cooked_size : s->_raw_size)) <= high)) | |
7471 | { | |
7472 | n->sections[i] = s; | |
7473 | ++i; | |
7474 | } | |
7475 | } | |
7476 | ||
7477 | *pm = n; | |
7478 | } | |
7479 | } | |
7480 | ||
b34976b6 | 7481 | return TRUE; |
b49e97c9 TS |
7482 | } |
7483 | \f | |
7484 | /* Return the section that should be marked against GC for a given | |
7485 | relocation. */ | |
7486 | ||
7487 | asection * | |
9719ad41 RS |
7488 | _bfd_mips_elf_gc_mark_hook (asection *sec, |
7489 | struct bfd_link_info *info ATTRIBUTE_UNUSED, | |
7490 | Elf_Internal_Rela *rel, | |
7491 | struct elf_link_hash_entry *h, | |
7492 | Elf_Internal_Sym *sym) | |
b49e97c9 TS |
7493 | { |
7494 | /* ??? Do mips16 stub sections need to be handled special? */ | |
7495 | ||
7496 | if (h != NULL) | |
7497 | { | |
1e2f5b6e | 7498 | switch (ELF_R_TYPE (sec->owner, rel->r_info)) |
b49e97c9 TS |
7499 | { |
7500 | case R_MIPS_GNU_VTINHERIT: | |
7501 | case R_MIPS_GNU_VTENTRY: | |
7502 | break; | |
7503 | ||
7504 | default: | |
7505 | switch (h->root.type) | |
7506 | { | |
7507 | case bfd_link_hash_defined: | |
7508 | case bfd_link_hash_defweak: | |
7509 | return h->root.u.def.section; | |
7510 | ||
7511 | case bfd_link_hash_common: | |
7512 | return h->root.u.c.p->section; | |
7513 | ||
7514 | default: | |
7515 | break; | |
7516 | } | |
7517 | } | |
7518 | } | |
7519 | else | |
1e2f5b6e | 7520 | return bfd_section_from_elf_index (sec->owner, sym->st_shndx); |
b49e97c9 TS |
7521 | |
7522 | return NULL; | |
7523 | } | |
7524 | ||
7525 | /* Update the got entry reference counts for the section being removed. */ | |
7526 | ||
b34976b6 | 7527 | bfd_boolean |
9719ad41 RS |
7528 | _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED, |
7529 | struct bfd_link_info *info ATTRIBUTE_UNUSED, | |
7530 | asection *sec ATTRIBUTE_UNUSED, | |
7531 | const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED) | |
b49e97c9 TS |
7532 | { |
7533 | #if 0 | |
7534 | Elf_Internal_Shdr *symtab_hdr; | |
7535 | struct elf_link_hash_entry **sym_hashes; | |
7536 | bfd_signed_vma *local_got_refcounts; | |
7537 | const Elf_Internal_Rela *rel, *relend; | |
7538 | unsigned long r_symndx; | |
7539 | struct elf_link_hash_entry *h; | |
7540 | ||
7541 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
7542 | sym_hashes = elf_sym_hashes (abfd); | |
7543 | local_got_refcounts = elf_local_got_refcounts (abfd); | |
7544 | ||
7545 | relend = relocs + sec->reloc_count; | |
7546 | for (rel = relocs; rel < relend; rel++) | |
7547 | switch (ELF_R_TYPE (abfd, rel->r_info)) | |
7548 | { | |
7549 | case R_MIPS_GOT16: | |
7550 | case R_MIPS_CALL16: | |
7551 | case R_MIPS_CALL_HI16: | |
7552 | case R_MIPS_CALL_LO16: | |
7553 | case R_MIPS_GOT_HI16: | |
7554 | case R_MIPS_GOT_LO16: | |
4a14403c TS |
7555 | case R_MIPS_GOT_DISP: |
7556 | case R_MIPS_GOT_PAGE: | |
7557 | case R_MIPS_GOT_OFST: | |
b49e97c9 TS |
7558 | /* ??? It would seem that the existing MIPS code does no sort |
7559 | of reference counting or whatnot on its GOT and PLT entries, | |
7560 | so it is not possible to garbage collect them at this time. */ | |
7561 | break; | |
7562 | ||
7563 | default: | |
7564 | break; | |
7565 | } | |
7566 | #endif | |
7567 | ||
b34976b6 | 7568 | return TRUE; |
b49e97c9 TS |
7569 | } |
7570 | \f | |
7571 | /* Copy data from a MIPS ELF indirect symbol to its direct symbol, | |
7572 | hiding the old indirect symbol. Process additional relocation | |
7573 | information. Also called for weakdefs, in which case we just let | |
7574 | _bfd_elf_link_hash_copy_indirect copy the flags for us. */ | |
7575 | ||
7576 | void | |
9719ad41 RS |
7577 | _bfd_mips_elf_copy_indirect_symbol (const struct elf_backend_data *bed, |
7578 | struct elf_link_hash_entry *dir, | |
7579 | struct elf_link_hash_entry *ind) | |
b49e97c9 TS |
7580 | { |
7581 | struct mips_elf_link_hash_entry *dirmips, *indmips; | |
7582 | ||
b48fa14c | 7583 | _bfd_elf_link_hash_copy_indirect (bed, dir, ind); |
b49e97c9 TS |
7584 | |
7585 | if (ind->root.type != bfd_link_hash_indirect) | |
7586 | return; | |
7587 | ||
7588 | dirmips = (struct mips_elf_link_hash_entry *) dir; | |
7589 | indmips = (struct mips_elf_link_hash_entry *) ind; | |
7590 | dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs; | |
7591 | if (indmips->readonly_reloc) | |
b34976b6 | 7592 | dirmips->readonly_reloc = TRUE; |
b49e97c9 | 7593 | if (indmips->no_fn_stub) |
b34976b6 | 7594 | dirmips->no_fn_stub = TRUE; |
b49e97c9 TS |
7595 | } |
7596 | ||
7597 | void | |
9719ad41 RS |
7598 | _bfd_mips_elf_hide_symbol (struct bfd_link_info *info, |
7599 | struct elf_link_hash_entry *entry, | |
7600 | bfd_boolean force_local) | |
b49e97c9 TS |
7601 | { |
7602 | bfd *dynobj; | |
7603 | asection *got; | |
7604 | struct mips_got_info *g; | |
7605 | struct mips_elf_link_hash_entry *h; | |
7c5fcef7 | 7606 | |
b49e97c9 | 7607 | h = (struct mips_elf_link_hash_entry *) entry; |
7c5fcef7 L |
7608 | if (h->forced_local) |
7609 | return; | |
4b555070 | 7610 | h->forced_local = force_local; |
7c5fcef7 | 7611 | |
b49e97c9 | 7612 | dynobj = elf_hash_table (info)->dynobj; |
4b555070 | 7613 | if (dynobj != NULL && force_local) |
f4416af6 | 7614 | { |
c45a316a AM |
7615 | got = mips_elf_got_section (dynobj, FALSE); |
7616 | g = mips_elf_section_data (got)->u.got_info; | |
f4416af6 | 7617 | |
c45a316a AM |
7618 | if (g->next) |
7619 | { | |
7620 | struct mips_got_entry e; | |
7621 | struct mips_got_info *gg = g; | |
7622 | ||
7623 | /* Since we're turning what used to be a global symbol into a | |
7624 | local one, bump up the number of local entries of each GOT | |
7625 | that had an entry for it. This will automatically decrease | |
7626 | the number of global entries, since global_gotno is actually | |
7627 | the upper limit of global entries. */ | |
7628 | e.abfd = dynobj; | |
7629 | e.symndx = -1; | |
7630 | e.d.h = h; | |
7631 | ||
7632 | for (g = g->next; g != gg; g = g->next) | |
7633 | if (htab_find (g->got_entries, &e)) | |
7634 | { | |
7635 | BFD_ASSERT (g->global_gotno > 0); | |
7636 | g->local_gotno++; | |
7637 | g->global_gotno--; | |
7638 | } | |
b49e97c9 | 7639 | |
c45a316a AM |
7640 | /* If this was a global symbol forced into the primary GOT, we |
7641 | no longer need an entry for it. We can't release the entry | |
7642 | at this point, but we must at least stop counting it as one | |
7643 | of the symbols that required a forced got entry. */ | |
7644 | if (h->root.got.offset == 2) | |
7645 | { | |
7646 | BFD_ASSERT (gg->assigned_gotno > 0); | |
7647 | gg->assigned_gotno--; | |
7648 | } | |
7649 | } | |
7650 | else if (g->global_gotno == 0 && g->global_gotsym == NULL) | |
7651 | /* If we haven't got through GOT allocation yet, just bump up the | |
7652 | number of local entries, as this symbol won't be counted as | |
7653 | global. */ | |
7654 | g->local_gotno++; | |
7655 | else if (h->root.got.offset == 1) | |
f4416af6 | 7656 | { |
c45a316a AM |
7657 | /* If we're past non-multi-GOT allocation and this symbol had |
7658 | been marked for a global got entry, give it a local entry | |
7659 | instead. */ | |
7660 | BFD_ASSERT (g->global_gotno > 0); | |
7661 | g->local_gotno++; | |
7662 | g->global_gotno--; | |
f4416af6 AO |
7663 | } |
7664 | } | |
f4416af6 AO |
7665 | |
7666 | _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local); | |
b49e97c9 TS |
7667 | } |
7668 | \f | |
d01414a5 TS |
7669 | #define PDR_SIZE 32 |
7670 | ||
b34976b6 | 7671 | bfd_boolean |
9719ad41 RS |
7672 | _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie, |
7673 | struct bfd_link_info *info) | |
d01414a5 TS |
7674 | { |
7675 | asection *o; | |
b34976b6 | 7676 | bfd_boolean ret = FALSE; |
d01414a5 TS |
7677 | unsigned char *tdata; |
7678 | size_t i, skip; | |
7679 | ||
7680 | o = bfd_get_section_by_name (abfd, ".pdr"); | |
7681 | if (! o) | |
b34976b6 | 7682 | return FALSE; |
d01414a5 | 7683 | if (o->_raw_size == 0) |
b34976b6 | 7684 | return FALSE; |
d01414a5 | 7685 | if (o->_raw_size % PDR_SIZE != 0) |
b34976b6 | 7686 | return FALSE; |
d01414a5 TS |
7687 | if (o->output_section != NULL |
7688 | && bfd_is_abs_section (o->output_section)) | |
b34976b6 | 7689 | return FALSE; |
d01414a5 TS |
7690 | |
7691 | tdata = bfd_zmalloc (o->_raw_size / PDR_SIZE); | |
7692 | if (! tdata) | |
b34976b6 | 7693 | return FALSE; |
d01414a5 | 7694 | |
9719ad41 | 7695 | cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL, |
45d6a902 | 7696 | info->keep_memory); |
d01414a5 TS |
7697 | if (!cookie->rels) |
7698 | { | |
7699 | free (tdata); | |
b34976b6 | 7700 | return FALSE; |
d01414a5 TS |
7701 | } |
7702 | ||
7703 | cookie->rel = cookie->rels; | |
7704 | cookie->relend = cookie->rels + o->reloc_count; | |
7705 | ||
c9c27aad | 7706 | for (i = 0, skip = 0; i < o->_raw_size / PDR_SIZE; i ++) |
d01414a5 | 7707 | { |
c152c796 | 7708 | if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie)) |
d01414a5 TS |
7709 | { |
7710 | tdata[i] = 1; | |
7711 | skip ++; | |
7712 | } | |
7713 | } | |
7714 | ||
7715 | if (skip != 0) | |
7716 | { | |
f0abc2a1 | 7717 | mips_elf_section_data (o)->u.tdata = tdata; |
d01414a5 | 7718 | o->_cooked_size = o->_raw_size - skip * PDR_SIZE; |
b34976b6 | 7719 | ret = TRUE; |
d01414a5 TS |
7720 | } |
7721 | else | |
7722 | free (tdata); | |
7723 | ||
7724 | if (! info->keep_memory) | |
7725 | free (cookie->rels); | |
7726 | ||
7727 | return ret; | |
7728 | } | |
7729 | ||
b34976b6 | 7730 | bfd_boolean |
9719ad41 | 7731 | _bfd_mips_elf_ignore_discarded_relocs (asection *sec) |
53bfd6b4 MR |
7732 | { |
7733 | if (strcmp (sec->name, ".pdr") == 0) | |
b34976b6 AM |
7734 | return TRUE; |
7735 | return FALSE; | |
53bfd6b4 | 7736 | } |
d01414a5 | 7737 | |
b34976b6 | 7738 | bfd_boolean |
9719ad41 RS |
7739 | _bfd_mips_elf_write_section (bfd *output_bfd, asection *sec, |
7740 | bfd_byte *contents) | |
d01414a5 TS |
7741 | { |
7742 | bfd_byte *to, *from, *end; | |
7743 | int i; | |
7744 | ||
7745 | if (strcmp (sec->name, ".pdr") != 0) | |
b34976b6 | 7746 | return FALSE; |
d01414a5 | 7747 | |
f0abc2a1 | 7748 | if (mips_elf_section_data (sec)->u.tdata == NULL) |
b34976b6 | 7749 | return FALSE; |
d01414a5 TS |
7750 | |
7751 | to = contents; | |
7752 | end = contents + sec->_raw_size; | |
7753 | for (from = contents, i = 0; | |
7754 | from < end; | |
7755 | from += PDR_SIZE, i++) | |
7756 | { | |
f0abc2a1 | 7757 | if ((mips_elf_section_data (sec)->u.tdata)[i] == 1) |
d01414a5 TS |
7758 | continue; |
7759 | if (to != from) | |
7760 | memcpy (to, from, PDR_SIZE); | |
7761 | to += PDR_SIZE; | |
7762 | } | |
7763 | bfd_set_section_contents (output_bfd, sec->output_section, contents, | |
9719ad41 | 7764 | sec->output_offset, sec->_cooked_size); |
b34976b6 | 7765 | return TRUE; |
d01414a5 | 7766 | } |
53bfd6b4 | 7767 | \f |
b49e97c9 TS |
7768 | /* MIPS ELF uses a special find_nearest_line routine in order the |
7769 | handle the ECOFF debugging information. */ | |
7770 | ||
7771 | struct mips_elf_find_line | |
7772 | { | |
7773 | struct ecoff_debug_info d; | |
7774 | struct ecoff_find_line i; | |
7775 | }; | |
7776 | ||
b34976b6 | 7777 | bfd_boolean |
9719ad41 RS |
7778 | _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section, |
7779 | asymbol **symbols, bfd_vma offset, | |
7780 | const char **filename_ptr, | |
7781 | const char **functionname_ptr, | |
7782 | unsigned int *line_ptr) | |
b49e97c9 TS |
7783 | { |
7784 | asection *msec; | |
7785 | ||
7786 | if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset, | |
7787 | filename_ptr, functionname_ptr, | |
7788 | line_ptr)) | |
b34976b6 | 7789 | return TRUE; |
b49e97c9 TS |
7790 | |
7791 | if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset, | |
7792 | filename_ptr, functionname_ptr, | |
9719ad41 | 7793 | line_ptr, ABI_64_P (abfd) ? 8 : 0, |
b49e97c9 | 7794 | &elf_tdata (abfd)->dwarf2_find_line_info)) |
b34976b6 | 7795 | return TRUE; |
b49e97c9 TS |
7796 | |
7797 | msec = bfd_get_section_by_name (abfd, ".mdebug"); | |
7798 | if (msec != NULL) | |
7799 | { | |
7800 | flagword origflags; | |
7801 | struct mips_elf_find_line *fi; | |
7802 | const struct ecoff_debug_swap * const swap = | |
7803 | get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; | |
7804 | ||
7805 | /* If we are called during a link, mips_elf_final_link may have | |
7806 | cleared the SEC_HAS_CONTENTS field. We force it back on here | |
7807 | if appropriate (which it normally will be). */ | |
7808 | origflags = msec->flags; | |
7809 | if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS) | |
7810 | msec->flags |= SEC_HAS_CONTENTS; | |
7811 | ||
7812 | fi = elf_tdata (abfd)->find_line_info; | |
7813 | if (fi == NULL) | |
7814 | { | |
7815 | bfd_size_type external_fdr_size; | |
7816 | char *fraw_src; | |
7817 | char *fraw_end; | |
7818 | struct fdr *fdr_ptr; | |
7819 | bfd_size_type amt = sizeof (struct mips_elf_find_line); | |
7820 | ||
9719ad41 | 7821 | fi = bfd_zalloc (abfd, amt); |
b49e97c9 TS |
7822 | if (fi == NULL) |
7823 | { | |
7824 | msec->flags = origflags; | |
b34976b6 | 7825 | return FALSE; |
b49e97c9 TS |
7826 | } |
7827 | ||
7828 | if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d)) | |
7829 | { | |
7830 | msec->flags = origflags; | |
b34976b6 | 7831 | return FALSE; |
b49e97c9 TS |
7832 | } |
7833 | ||
7834 | /* Swap in the FDR information. */ | |
7835 | amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr); | |
9719ad41 | 7836 | fi->d.fdr = bfd_alloc (abfd, amt); |
b49e97c9 TS |
7837 | if (fi->d.fdr == NULL) |
7838 | { | |
7839 | msec->flags = origflags; | |
b34976b6 | 7840 | return FALSE; |
b49e97c9 TS |
7841 | } |
7842 | external_fdr_size = swap->external_fdr_size; | |
7843 | fdr_ptr = fi->d.fdr; | |
7844 | fraw_src = (char *) fi->d.external_fdr; | |
7845 | fraw_end = (fraw_src | |
7846 | + fi->d.symbolic_header.ifdMax * external_fdr_size); | |
7847 | for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++) | |
9719ad41 | 7848 | (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr); |
b49e97c9 TS |
7849 | |
7850 | elf_tdata (abfd)->find_line_info = fi; | |
7851 | ||
7852 | /* Note that we don't bother to ever free this information. | |
7853 | find_nearest_line is either called all the time, as in | |
7854 | objdump -l, so the information should be saved, or it is | |
7855 | rarely called, as in ld error messages, so the memory | |
7856 | wasted is unimportant. Still, it would probably be a | |
7857 | good idea for free_cached_info to throw it away. */ | |
7858 | } | |
7859 | ||
7860 | if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap, | |
7861 | &fi->i, filename_ptr, functionname_ptr, | |
7862 | line_ptr)) | |
7863 | { | |
7864 | msec->flags = origflags; | |
b34976b6 | 7865 | return TRUE; |
b49e97c9 TS |
7866 | } |
7867 | ||
7868 | msec->flags = origflags; | |
7869 | } | |
7870 | ||
7871 | /* Fall back on the generic ELF find_nearest_line routine. */ | |
7872 | ||
7873 | return _bfd_elf_find_nearest_line (abfd, section, symbols, offset, | |
7874 | filename_ptr, functionname_ptr, | |
7875 | line_ptr); | |
7876 | } | |
7877 | \f | |
7878 | /* When are writing out the .options or .MIPS.options section, | |
7879 | remember the bytes we are writing out, so that we can install the | |
7880 | GP value in the section_processing routine. */ | |
7881 | ||
b34976b6 | 7882 | bfd_boolean |
9719ad41 RS |
7883 | _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section, |
7884 | const void *location, | |
7885 | file_ptr offset, bfd_size_type count) | |
b49e97c9 TS |
7886 | { |
7887 | if (strcmp (section->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0) | |
7888 | { | |
7889 | bfd_byte *c; | |
7890 | ||
7891 | if (elf_section_data (section) == NULL) | |
7892 | { | |
7893 | bfd_size_type amt = sizeof (struct bfd_elf_section_data); | |
9719ad41 | 7894 | section->used_by_bfd = bfd_zalloc (abfd, amt); |
b49e97c9 | 7895 | if (elf_section_data (section) == NULL) |
b34976b6 | 7896 | return FALSE; |
b49e97c9 | 7897 | } |
f0abc2a1 | 7898 | c = mips_elf_section_data (section)->u.tdata; |
b49e97c9 TS |
7899 | if (c == NULL) |
7900 | { | |
7901 | bfd_size_type size; | |
7902 | ||
7903 | if (section->_cooked_size != 0) | |
7904 | size = section->_cooked_size; | |
7905 | else | |
7906 | size = section->_raw_size; | |
9719ad41 | 7907 | c = bfd_zalloc (abfd, size); |
b49e97c9 | 7908 | if (c == NULL) |
b34976b6 | 7909 | return FALSE; |
f0abc2a1 | 7910 | mips_elf_section_data (section)->u.tdata = c; |
b49e97c9 TS |
7911 | } |
7912 | ||
9719ad41 | 7913 | memcpy (c + offset, location, count); |
b49e97c9 TS |
7914 | } |
7915 | ||
7916 | return _bfd_elf_set_section_contents (abfd, section, location, offset, | |
7917 | count); | |
7918 | } | |
7919 | ||
7920 | /* This is almost identical to bfd_generic_get_... except that some | |
7921 | MIPS relocations need to be handled specially. Sigh. */ | |
7922 | ||
7923 | bfd_byte * | |
9719ad41 RS |
7924 | _bfd_elf_mips_get_relocated_section_contents |
7925 | (bfd *abfd, | |
7926 | struct bfd_link_info *link_info, | |
7927 | struct bfd_link_order *link_order, | |
7928 | bfd_byte *data, | |
7929 | bfd_boolean relocatable, | |
7930 | asymbol **symbols) | |
b49e97c9 TS |
7931 | { |
7932 | /* Get enough memory to hold the stuff */ | |
7933 | bfd *input_bfd = link_order->u.indirect.section->owner; | |
7934 | asection *input_section = link_order->u.indirect.section; | |
7935 | ||
7936 | long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section); | |
7937 | arelent **reloc_vector = NULL; | |
7938 | long reloc_count; | |
7939 | ||
7940 | if (reloc_size < 0) | |
7941 | goto error_return; | |
7942 | ||
9719ad41 | 7943 | reloc_vector = bfd_malloc (reloc_size); |
b49e97c9 TS |
7944 | if (reloc_vector == NULL && reloc_size != 0) |
7945 | goto error_return; | |
7946 | ||
7947 | /* read in the section */ | |
9719ad41 | 7948 | if (!bfd_get_section_contents (input_bfd, input_section, data, 0, |
b49e97c9 TS |
7949 | input_section->_raw_size)) |
7950 | goto error_return; | |
7951 | ||
7952 | /* We're not relaxing the section, so just copy the size info */ | |
7953 | input_section->_cooked_size = input_section->_raw_size; | |
b34976b6 | 7954 | input_section->reloc_done = TRUE; |
b49e97c9 TS |
7955 | |
7956 | reloc_count = bfd_canonicalize_reloc (input_bfd, | |
7957 | input_section, | |
7958 | reloc_vector, | |
7959 | symbols); | |
7960 | if (reloc_count < 0) | |
7961 | goto error_return; | |
7962 | ||
7963 | if (reloc_count > 0) | |
7964 | { | |
7965 | arelent **parent; | |
7966 | /* for mips */ | |
7967 | int gp_found; | |
7968 | bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */ | |
7969 | ||
7970 | { | |
7971 | struct bfd_hash_entry *h; | |
7972 | struct bfd_link_hash_entry *lh; | |
7973 | /* Skip all this stuff if we aren't mixing formats. */ | |
7974 | if (abfd && input_bfd | |
7975 | && abfd->xvec == input_bfd->xvec) | |
7976 | lh = 0; | |
7977 | else | |
7978 | { | |
b34976b6 | 7979 | h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE); |
b49e97c9 TS |
7980 | lh = (struct bfd_link_hash_entry *) h; |
7981 | } | |
7982 | lookup: | |
7983 | if (lh) | |
7984 | { | |
7985 | switch (lh->type) | |
7986 | { | |
7987 | case bfd_link_hash_undefined: | |
7988 | case bfd_link_hash_undefweak: | |
7989 | case bfd_link_hash_common: | |
7990 | gp_found = 0; | |
7991 | break; | |
7992 | case bfd_link_hash_defined: | |
7993 | case bfd_link_hash_defweak: | |
7994 | gp_found = 1; | |
7995 | gp = lh->u.def.value; | |
7996 | break; | |
7997 | case bfd_link_hash_indirect: | |
7998 | case bfd_link_hash_warning: | |
7999 | lh = lh->u.i.link; | |
8000 | /* @@FIXME ignoring warning for now */ | |
8001 | goto lookup; | |
8002 | case bfd_link_hash_new: | |
8003 | default: | |
8004 | abort (); | |
8005 | } | |
8006 | } | |
8007 | else | |
8008 | gp_found = 0; | |
8009 | } | |
8010 | /* end mips */ | |
9719ad41 | 8011 | for (parent = reloc_vector; *parent != NULL; parent++) |
b49e97c9 | 8012 | { |
9719ad41 | 8013 | char *error_message = NULL; |
b49e97c9 TS |
8014 | bfd_reloc_status_type r; |
8015 | ||
8016 | /* Specific to MIPS: Deal with relocation types that require | |
8017 | knowing the gp of the output bfd. */ | |
8018 | asymbol *sym = *(*parent)->sym_ptr_ptr; | |
8019 | if (bfd_is_abs_section (sym->section) && abfd) | |
8020 | { | |
44c410de | 8021 | /* The special_function wouldn't get called anyway. */ |
b49e97c9 TS |
8022 | } |
8023 | else if (!gp_found) | |
8024 | { | |
8025 | /* The gp isn't there; let the special function code | |
8026 | fall over on its own. */ | |
8027 | } | |
8028 | else if ((*parent)->howto->special_function | |
8029 | == _bfd_mips_elf32_gprel16_reloc) | |
8030 | { | |
8031 | /* bypass special_function call */ | |
8032 | r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent, | |
1049f94e | 8033 | input_section, relocatable, |
9719ad41 | 8034 | data, gp); |
b49e97c9 TS |
8035 | goto skip_bfd_perform_relocation; |
8036 | } | |
8037 | /* end mips specific stuff */ | |
8038 | ||
9719ad41 RS |
8039 | r = bfd_perform_relocation (input_bfd, *parent, data, input_section, |
8040 | relocatable ? abfd : NULL, | |
b49e97c9 TS |
8041 | &error_message); |
8042 | skip_bfd_perform_relocation: | |
8043 | ||
1049f94e | 8044 | if (relocatable) |
b49e97c9 TS |
8045 | { |
8046 | asection *os = input_section->output_section; | |
8047 | ||
8048 | /* A partial link, so keep the relocs */ | |
8049 | os->orelocation[os->reloc_count] = *parent; | |
8050 | os->reloc_count++; | |
8051 | } | |
8052 | ||
8053 | if (r != bfd_reloc_ok) | |
8054 | { | |
8055 | switch (r) | |
8056 | { | |
8057 | case bfd_reloc_undefined: | |
8058 | if (!((*link_info->callbacks->undefined_symbol) | |
8059 | (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr), | |
8060 | input_bfd, input_section, (*parent)->address, | |
b34976b6 | 8061 | TRUE))) |
b49e97c9 TS |
8062 | goto error_return; |
8063 | break; | |
8064 | case bfd_reloc_dangerous: | |
9719ad41 | 8065 | BFD_ASSERT (error_message != NULL); |
b49e97c9 TS |
8066 | if (!((*link_info->callbacks->reloc_dangerous) |
8067 | (link_info, error_message, input_bfd, input_section, | |
8068 | (*parent)->address))) | |
8069 | goto error_return; | |
8070 | break; | |
8071 | case bfd_reloc_overflow: | |
8072 | if (!((*link_info->callbacks->reloc_overflow) | |
8073 | (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr), | |
8074 | (*parent)->howto->name, (*parent)->addend, | |
8075 | input_bfd, input_section, (*parent)->address))) | |
8076 | goto error_return; | |
8077 | break; | |
8078 | case bfd_reloc_outofrange: | |
8079 | default: | |
8080 | abort (); | |
8081 | break; | |
8082 | } | |
8083 | ||
8084 | } | |
8085 | } | |
8086 | } | |
8087 | if (reloc_vector != NULL) | |
8088 | free (reloc_vector); | |
8089 | return data; | |
8090 | ||
8091 | error_return: | |
8092 | if (reloc_vector != NULL) | |
8093 | free (reloc_vector); | |
8094 | return NULL; | |
8095 | } | |
8096 | \f | |
8097 | /* Create a MIPS ELF linker hash table. */ | |
8098 | ||
8099 | struct bfd_link_hash_table * | |
9719ad41 | 8100 | _bfd_mips_elf_link_hash_table_create (bfd *abfd) |
b49e97c9 TS |
8101 | { |
8102 | struct mips_elf_link_hash_table *ret; | |
8103 | bfd_size_type amt = sizeof (struct mips_elf_link_hash_table); | |
8104 | ||
9719ad41 RS |
8105 | ret = bfd_malloc (amt); |
8106 | if (ret == NULL) | |
b49e97c9 TS |
8107 | return NULL; |
8108 | ||
8109 | if (! _bfd_elf_link_hash_table_init (&ret->root, abfd, | |
8110 | mips_elf_link_hash_newfunc)) | |
8111 | { | |
e2d34d7d | 8112 | free (ret); |
b49e97c9 TS |
8113 | return NULL; |
8114 | } | |
8115 | ||
8116 | #if 0 | |
8117 | /* We no longer use this. */ | |
8118 | for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++) | |
8119 | ret->dynsym_sec_strindex[i] = (bfd_size_type) -1; | |
8120 | #endif | |
8121 | ret->procedure_count = 0; | |
8122 | ret->compact_rel_size = 0; | |
b34976b6 | 8123 | ret->use_rld_obj_head = FALSE; |
b49e97c9 | 8124 | ret->rld_value = 0; |
b34976b6 | 8125 | ret->mips16_stubs_seen = FALSE; |
b49e97c9 TS |
8126 | |
8127 | return &ret->root.root; | |
8128 | } | |
8129 | \f | |
8130 | /* We need to use a special link routine to handle the .reginfo and | |
8131 | the .mdebug sections. We need to merge all instances of these | |
8132 | sections together, not write them all out sequentially. */ | |
8133 | ||
b34976b6 | 8134 | bfd_boolean |
9719ad41 | 8135 | _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info) |
b49e97c9 TS |
8136 | { |
8137 | asection **secpp; | |
8138 | asection *o; | |
8139 | struct bfd_link_order *p; | |
8140 | asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec; | |
8141 | asection *rtproc_sec; | |
8142 | Elf32_RegInfo reginfo; | |
8143 | struct ecoff_debug_info debug; | |
8144 | const struct ecoff_debug_swap *swap | |
8145 | = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; | |
8146 | HDRR *symhdr = &debug.symbolic_header; | |
9719ad41 | 8147 | void *mdebug_handle = NULL; |
b49e97c9 TS |
8148 | asection *s; |
8149 | EXTR esym; | |
8150 | unsigned int i; | |
8151 | bfd_size_type amt; | |
8152 | ||
8153 | static const char * const secname[] = | |
8154 | { | |
8155 | ".text", ".init", ".fini", ".data", | |
8156 | ".rodata", ".sdata", ".sbss", ".bss" | |
8157 | }; | |
8158 | static const int sc[] = | |
8159 | { | |
8160 | scText, scInit, scFini, scData, | |
8161 | scRData, scSData, scSBss, scBss | |
8162 | }; | |
8163 | ||
b49e97c9 TS |
8164 | /* We'd carefully arranged the dynamic symbol indices, and then the |
8165 | generic size_dynamic_sections renumbered them out from under us. | |
8166 | Rather than trying somehow to prevent the renumbering, just do | |
8167 | the sort again. */ | |
8168 | if (elf_hash_table (info)->dynamic_sections_created) | |
8169 | { | |
8170 | bfd *dynobj; | |
8171 | asection *got; | |
8172 | struct mips_got_info *g; | |
8173 | ||
8174 | /* When we resort, we must tell mips_elf_sort_hash_table what | |
8175 | the lowest index it may use is. That's the number of section | |
8176 | symbols we're going to add. The generic ELF linker only | |
8177 | adds these symbols when building a shared object. Note that | |
8178 | we count the sections after (possibly) removing the .options | |
8179 | section above. */ | |
8180 | if (! mips_elf_sort_hash_table (info, (info->shared | |
8181 | ? bfd_count_sections (abfd) + 1 | |
8182 | : 1))) | |
b34976b6 | 8183 | return FALSE; |
b49e97c9 TS |
8184 | |
8185 | /* Make sure we didn't grow the global .got region. */ | |
8186 | dynobj = elf_hash_table (info)->dynobj; | |
f4416af6 | 8187 | got = mips_elf_got_section (dynobj, FALSE); |
f0abc2a1 | 8188 | g = mips_elf_section_data (got)->u.got_info; |
b49e97c9 TS |
8189 | |
8190 | if (g->global_gotsym != NULL) | |
8191 | BFD_ASSERT ((elf_hash_table (info)->dynsymcount | |
8192 | - g->global_gotsym->dynindx) | |
8193 | <= g->global_gotno); | |
8194 | } | |
8195 | ||
a902ee94 SC |
8196 | #if 0 |
8197 | /* We want to set the GP value for ld -r. */ | |
b49e97c9 TS |
8198 | /* On IRIX5, we omit the .options section. On IRIX6, however, we |
8199 | include it, even though we don't process it quite right. (Some | |
8200 | entries are supposed to be merged.) Empirically, we seem to be | |
8201 | better off including it then not. */ | |
8202 | if (IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none) | |
8203 | for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next) | |
8204 | { | |
8205 | if (strcmp ((*secpp)->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0) | |
8206 | { | |
8207 | for (p = (*secpp)->link_order_head; p != NULL; p = p->next) | |
8208 | if (p->type == bfd_indirect_link_order) | |
8209 | p->u.indirect.section->flags &= ~SEC_HAS_CONTENTS; | |
8210 | (*secpp)->link_order_head = NULL; | |
8211 | bfd_section_list_remove (abfd, secpp); | |
8212 | --abfd->section_count; | |
8213 | ||
8214 | break; | |
8215 | } | |
8216 | } | |
8217 | ||
8218 | /* We include .MIPS.options, even though we don't process it quite right. | |
8219 | (Some entries are supposed to be merged.) At IRIX6 empirically we seem | |
8220 | to be better off including it than not. */ | |
8221 | for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next) | |
8222 | { | |
8223 | if (strcmp ((*secpp)->name, ".MIPS.options") == 0) | |
8224 | { | |
8225 | for (p = (*secpp)->link_order_head; p != NULL; p = p->next) | |
8226 | if (p->type == bfd_indirect_link_order) | |
8227 | p->u.indirect.section->flags &=~ SEC_HAS_CONTENTS; | |
8228 | (*secpp)->link_order_head = NULL; | |
8229 | bfd_section_list_remove (abfd, secpp); | |
8230 | --abfd->section_count; | |
b34976b6 | 8231 | |
b49e97c9 TS |
8232 | break; |
8233 | } | |
8234 | } | |
a902ee94 | 8235 | #endif |
b49e97c9 TS |
8236 | |
8237 | /* Get a value for the GP register. */ | |
8238 | if (elf_gp (abfd) == 0) | |
8239 | { | |
8240 | struct bfd_link_hash_entry *h; | |
8241 | ||
b34976b6 | 8242 | h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE); |
9719ad41 | 8243 | if (h != NULL && h->type == bfd_link_hash_defined) |
b49e97c9 TS |
8244 | elf_gp (abfd) = (h->u.def.value |
8245 | + h->u.def.section->output_section->vma | |
8246 | + h->u.def.section->output_offset); | |
1049f94e | 8247 | else if (info->relocatable) |
b49e97c9 TS |
8248 | { |
8249 | bfd_vma lo = MINUS_ONE; | |
8250 | ||
8251 | /* Find the GP-relative section with the lowest offset. */ | |
9719ad41 | 8252 | for (o = abfd->sections; o != NULL; o = o->next) |
b49e97c9 TS |
8253 | if (o->vma < lo |
8254 | && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL)) | |
8255 | lo = o->vma; | |
8256 | ||
8257 | /* And calculate GP relative to that. */ | |
8258 | elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (abfd); | |
8259 | } | |
8260 | else | |
8261 | { | |
8262 | /* If the relocate_section function needs to do a reloc | |
8263 | involving the GP value, it should make a reloc_dangerous | |
8264 | callback to warn that GP is not defined. */ | |
8265 | } | |
8266 | } | |
8267 | ||
8268 | /* Go through the sections and collect the .reginfo and .mdebug | |
8269 | information. */ | |
8270 | reginfo_sec = NULL; | |
8271 | mdebug_sec = NULL; | |
8272 | gptab_data_sec = NULL; | |
8273 | gptab_bss_sec = NULL; | |
9719ad41 | 8274 | for (o = abfd->sections; o != NULL; o = o->next) |
b49e97c9 TS |
8275 | { |
8276 | if (strcmp (o->name, ".reginfo") == 0) | |
8277 | { | |
8278 | memset (®info, 0, sizeof reginfo); | |
8279 | ||
8280 | /* We have found the .reginfo section in the output file. | |
8281 | Look through all the link_orders comprising it and merge | |
8282 | the information together. */ | |
9719ad41 | 8283 | for (p = o->link_order_head; p != NULL; p = p->next) |
b49e97c9 TS |
8284 | { |
8285 | asection *input_section; | |
8286 | bfd *input_bfd; | |
8287 | Elf32_External_RegInfo ext; | |
8288 | Elf32_RegInfo sub; | |
8289 | ||
8290 | if (p->type != bfd_indirect_link_order) | |
8291 | { | |
8292 | if (p->type == bfd_data_link_order) | |
8293 | continue; | |
8294 | abort (); | |
8295 | } | |
8296 | ||
8297 | input_section = p->u.indirect.section; | |
8298 | input_bfd = input_section->owner; | |
8299 | ||
8300 | /* The linker emulation code has probably clobbered the | |
8301 | size to be zero bytes. */ | |
8302 | if (input_section->_raw_size == 0) | |
8303 | input_section->_raw_size = sizeof (Elf32_External_RegInfo); | |
8304 | ||
8305 | if (! bfd_get_section_contents (input_bfd, input_section, | |
9719ad41 | 8306 | &ext, 0, sizeof ext)) |
b34976b6 | 8307 | return FALSE; |
b49e97c9 TS |
8308 | |
8309 | bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub); | |
8310 | ||
8311 | reginfo.ri_gprmask |= sub.ri_gprmask; | |
8312 | reginfo.ri_cprmask[0] |= sub.ri_cprmask[0]; | |
8313 | reginfo.ri_cprmask[1] |= sub.ri_cprmask[1]; | |
8314 | reginfo.ri_cprmask[2] |= sub.ri_cprmask[2]; | |
8315 | reginfo.ri_cprmask[3] |= sub.ri_cprmask[3]; | |
8316 | ||
8317 | /* ri_gp_value is set by the function | |
8318 | mips_elf32_section_processing when the section is | |
8319 | finally written out. */ | |
8320 | ||
8321 | /* Hack: reset the SEC_HAS_CONTENTS flag so that | |
8322 | elf_link_input_bfd ignores this section. */ | |
8323 | input_section->flags &= ~SEC_HAS_CONTENTS; | |
8324 | } | |
8325 | ||
8326 | /* Size has been set in _bfd_mips_elf_always_size_sections. */ | |
8327 | BFD_ASSERT(o->_raw_size == sizeof (Elf32_External_RegInfo)); | |
8328 | ||
8329 | /* Skip this section later on (I don't think this currently | |
8330 | matters, but someday it might). */ | |
9719ad41 | 8331 | o->link_order_head = NULL; |
b49e97c9 TS |
8332 | |
8333 | reginfo_sec = o; | |
8334 | } | |
8335 | ||
8336 | if (strcmp (o->name, ".mdebug") == 0) | |
8337 | { | |
8338 | struct extsym_info einfo; | |
8339 | bfd_vma last; | |
8340 | ||
8341 | /* We have found the .mdebug section in the output file. | |
8342 | Look through all the link_orders comprising it and merge | |
8343 | the information together. */ | |
8344 | symhdr->magic = swap->sym_magic; | |
8345 | /* FIXME: What should the version stamp be? */ | |
8346 | symhdr->vstamp = 0; | |
8347 | symhdr->ilineMax = 0; | |
8348 | symhdr->cbLine = 0; | |
8349 | symhdr->idnMax = 0; | |
8350 | symhdr->ipdMax = 0; | |
8351 | symhdr->isymMax = 0; | |
8352 | symhdr->ioptMax = 0; | |
8353 | symhdr->iauxMax = 0; | |
8354 | symhdr->issMax = 0; | |
8355 | symhdr->issExtMax = 0; | |
8356 | symhdr->ifdMax = 0; | |
8357 | symhdr->crfd = 0; | |
8358 | symhdr->iextMax = 0; | |
8359 | ||
8360 | /* We accumulate the debugging information itself in the | |
8361 | debug_info structure. */ | |
8362 | debug.line = NULL; | |
8363 | debug.external_dnr = NULL; | |
8364 | debug.external_pdr = NULL; | |
8365 | debug.external_sym = NULL; | |
8366 | debug.external_opt = NULL; | |
8367 | debug.external_aux = NULL; | |
8368 | debug.ss = NULL; | |
8369 | debug.ssext = debug.ssext_end = NULL; | |
8370 | debug.external_fdr = NULL; | |
8371 | debug.external_rfd = NULL; | |
8372 | debug.external_ext = debug.external_ext_end = NULL; | |
8373 | ||
8374 | mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info); | |
9719ad41 | 8375 | if (mdebug_handle == NULL) |
b34976b6 | 8376 | return FALSE; |
b49e97c9 TS |
8377 | |
8378 | esym.jmptbl = 0; | |
8379 | esym.cobol_main = 0; | |
8380 | esym.weakext = 0; | |
8381 | esym.reserved = 0; | |
8382 | esym.ifd = ifdNil; | |
8383 | esym.asym.iss = issNil; | |
8384 | esym.asym.st = stLocal; | |
8385 | esym.asym.reserved = 0; | |
8386 | esym.asym.index = indexNil; | |
8387 | last = 0; | |
8388 | for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++) | |
8389 | { | |
8390 | esym.asym.sc = sc[i]; | |
8391 | s = bfd_get_section_by_name (abfd, secname[i]); | |
8392 | if (s != NULL) | |
8393 | { | |
8394 | esym.asym.value = s->vma; | |
8395 | last = s->vma + s->_raw_size; | |
8396 | } | |
8397 | else | |
8398 | esym.asym.value = last; | |
8399 | if (!bfd_ecoff_debug_one_external (abfd, &debug, swap, | |
8400 | secname[i], &esym)) | |
b34976b6 | 8401 | return FALSE; |
b49e97c9 TS |
8402 | } |
8403 | ||
9719ad41 | 8404 | for (p = o->link_order_head; p != NULL; p = p->next) |
b49e97c9 TS |
8405 | { |
8406 | asection *input_section; | |
8407 | bfd *input_bfd; | |
8408 | const struct ecoff_debug_swap *input_swap; | |
8409 | struct ecoff_debug_info input_debug; | |
8410 | char *eraw_src; | |
8411 | char *eraw_end; | |
8412 | ||
8413 | if (p->type != bfd_indirect_link_order) | |
8414 | { | |
8415 | if (p->type == bfd_data_link_order) | |
8416 | continue; | |
8417 | abort (); | |
8418 | } | |
8419 | ||
8420 | input_section = p->u.indirect.section; | |
8421 | input_bfd = input_section->owner; | |
8422 | ||
8423 | if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour | |
8424 | || (get_elf_backend_data (input_bfd) | |
8425 | ->elf_backend_ecoff_debug_swap) == NULL) | |
8426 | { | |
8427 | /* I don't know what a non MIPS ELF bfd would be | |
8428 | doing with a .mdebug section, but I don't really | |
8429 | want to deal with it. */ | |
8430 | continue; | |
8431 | } | |
8432 | ||
8433 | input_swap = (get_elf_backend_data (input_bfd) | |
8434 | ->elf_backend_ecoff_debug_swap); | |
8435 | ||
8436 | BFD_ASSERT (p->size == input_section->_raw_size); | |
8437 | ||
8438 | /* The ECOFF linking code expects that we have already | |
8439 | read in the debugging information and set up an | |
8440 | ecoff_debug_info structure, so we do that now. */ | |
8441 | if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section, | |
8442 | &input_debug)) | |
b34976b6 | 8443 | return FALSE; |
b49e97c9 TS |
8444 | |
8445 | if (! (bfd_ecoff_debug_accumulate | |
8446 | (mdebug_handle, abfd, &debug, swap, input_bfd, | |
8447 | &input_debug, input_swap, info))) | |
b34976b6 | 8448 | return FALSE; |
b49e97c9 TS |
8449 | |
8450 | /* Loop through the external symbols. For each one with | |
8451 | interesting information, try to find the symbol in | |
8452 | the linker global hash table and save the information | |
8453 | for the output external symbols. */ | |
8454 | eraw_src = input_debug.external_ext; | |
8455 | eraw_end = (eraw_src | |
8456 | + (input_debug.symbolic_header.iextMax | |
8457 | * input_swap->external_ext_size)); | |
8458 | for (; | |
8459 | eraw_src < eraw_end; | |
8460 | eraw_src += input_swap->external_ext_size) | |
8461 | { | |
8462 | EXTR ext; | |
8463 | const char *name; | |
8464 | struct mips_elf_link_hash_entry *h; | |
8465 | ||
9719ad41 | 8466 | (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext); |
b49e97c9 TS |
8467 | if (ext.asym.sc == scNil |
8468 | || ext.asym.sc == scUndefined | |
8469 | || ext.asym.sc == scSUndefined) | |
8470 | continue; | |
8471 | ||
8472 | name = input_debug.ssext + ext.asym.iss; | |
8473 | h = mips_elf_link_hash_lookup (mips_elf_hash_table (info), | |
b34976b6 | 8474 | name, FALSE, FALSE, TRUE); |
b49e97c9 TS |
8475 | if (h == NULL || h->esym.ifd != -2) |
8476 | continue; | |
8477 | ||
8478 | if (ext.ifd != -1) | |
8479 | { | |
8480 | BFD_ASSERT (ext.ifd | |
8481 | < input_debug.symbolic_header.ifdMax); | |
8482 | ext.ifd = input_debug.ifdmap[ext.ifd]; | |
8483 | } | |
8484 | ||
8485 | h->esym = ext; | |
8486 | } | |
8487 | ||
8488 | /* Free up the information we just read. */ | |
8489 | free (input_debug.line); | |
8490 | free (input_debug.external_dnr); | |
8491 | free (input_debug.external_pdr); | |
8492 | free (input_debug.external_sym); | |
8493 | free (input_debug.external_opt); | |
8494 | free (input_debug.external_aux); | |
8495 | free (input_debug.ss); | |
8496 | free (input_debug.ssext); | |
8497 | free (input_debug.external_fdr); | |
8498 | free (input_debug.external_rfd); | |
8499 | free (input_debug.external_ext); | |
8500 | ||
8501 | /* Hack: reset the SEC_HAS_CONTENTS flag so that | |
8502 | elf_link_input_bfd ignores this section. */ | |
8503 | input_section->flags &= ~SEC_HAS_CONTENTS; | |
8504 | } | |
8505 | ||
8506 | if (SGI_COMPAT (abfd) && info->shared) | |
8507 | { | |
8508 | /* Create .rtproc section. */ | |
8509 | rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc"); | |
8510 | if (rtproc_sec == NULL) | |
8511 | { | |
8512 | flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | |
8513 | | SEC_LINKER_CREATED | SEC_READONLY); | |
8514 | ||
8515 | rtproc_sec = bfd_make_section (abfd, ".rtproc"); | |
8516 | if (rtproc_sec == NULL | |
8517 | || ! bfd_set_section_flags (abfd, rtproc_sec, flags) | |
8518 | || ! bfd_set_section_alignment (abfd, rtproc_sec, 4)) | |
b34976b6 | 8519 | return FALSE; |
b49e97c9 TS |
8520 | } |
8521 | ||
8522 | if (! mips_elf_create_procedure_table (mdebug_handle, abfd, | |
8523 | info, rtproc_sec, | |
8524 | &debug)) | |
b34976b6 | 8525 | return FALSE; |
b49e97c9 TS |
8526 | } |
8527 | ||
8528 | /* Build the external symbol information. */ | |
8529 | einfo.abfd = abfd; | |
8530 | einfo.info = info; | |
8531 | einfo.debug = &debug; | |
8532 | einfo.swap = swap; | |
b34976b6 | 8533 | einfo.failed = FALSE; |
b49e97c9 | 8534 | mips_elf_link_hash_traverse (mips_elf_hash_table (info), |
9719ad41 | 8535 | mips_elf_output_extsym, &einfo); |
b49e97c9 | 8536 | if (einfo.failed) |
b34976b6 | 8537 | return FALSE; |
b49e97c9 TS |
8538 | |
8539 | /* Set the size of the .mdebug section. */ | |
8540 | o->_raw_size = bfd_ecoff_debug_size (abfd, &debug, swap); | |
8541 | ||
8542 | /* Skip this section later on (I don't think this currently | |
8543 | matters, but someday it might). */ | |
9719ad41 | 8544 | o->link_order_head = NULL; |
b49e97c9 TS |
8545 | |
8546 | mdebug_sec = o; | |
8547 | } | |
8548 | ||
8549 | if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0) | |
8550 | { | |
8551 | const char *subname; | |
8552 | unsigned int c; | |
8553 | Elf32_gptab *tab; | |
8554 | Elf32_External_gptab *ext_tab; | |
8555 | unsigned int j; | |
8556 | ||
8557 | /* The .gptab.sdata and .gptab.sbss sections hold | |
8558 | information describing how the small data area would | |
8559 | change depending upon the -G switch. These sections | |
8560 | not used in executables files. */ | |
1049f94e | 8561 | if (! info->relocatable) |
b49e97c9 | 8562 | { |
9719ad41 | 8563 | for (p = o->link_order_head; p != NULL; p = p->next) |
b49e97c9 TS |
8564 | { |
8565 | asection *input_section; | |
8566 | ||
8567 | if (p->type != bfd_indirect_link_order) | |
8568 | { | |
8569 | if (p->type == bfd_data_link_order) | |
8570 | continue; | |
8571 | abort (); | |
8572 | } | |
8573 | ||
8574 | input_section = p->u.indirect.section; | |
8575 | ||
8576 | /* Hack: reset the SEC_HAS_CONTENTS flag so that | |
8577 | elf_link_input_bfd ignores this section. */ | |
8578 | input_section->flags &= ~SEC_HAS_CONTENTS; | |
8579 | } | |
8580 | ||
8581 | /* Skip this section later on (I don't think this | |
8582 | currently matters, but someday it might). */ | |
9719ad41 | 8583 | o->link_order_head = NULL; |
b49e97c9 TS |
8584 | |
8585 | /* Really remove the section. */ | |
8586 | for (secpp = &abfd->sections; | |
8587 | *secpp != o; | |
8588 | secpp = &(*secpp)->next) | |
8589 | ; | |
8590 | bfd_section_list_remove (abfd, secpp); | |
8591 | --abfd->section_count; | |
8592 | ||
8593 | continue; | |
8594 | } | |
8595 | ||
8596 | /* There is one gptab for initialized data, and one for | |
8597 | uninitialized data. */ | |
8598 | if (strcmp (o->name, ".gptab.sdata") == 0) | |
8599 | gptab_data_sec = o; | |
8600 | else if (strcmp (o->name, ".gptab.sbss") == 0) | |
8601 | gptab_bss_sec = o; | |
8602 | else | |
8603 | { | |
8604 | (*_bfd_error_handler) | |
8605 | (_("%s: illegal section name `%s'"), | |
8606 | bfd_get_filename (abfd), o->name); | |
8607 | bfd_set_error (bfd_error_nonrepresentable_section); | |
b34976b6 | 8608 | return FALSE; |
b49e97c9 TS |
8609 | } |
8610 | ||
8611 | /* The linker script always combines .gptab.data and | |
8612 | .gptab.sdata into .gptab.sdata, and likewise for | |
8613 | .gptab.bss and .gptab.sbss. It is possible that there is | |
8614 | no .sdata or .sbss section in the output file, in which | |
8615 | case we must change the name of the output section. */ | |
8616 | subname = o->name + sizeof ".gptab" - 1; | |
8617 | if (bfd_get_section_by_name (abfd, subname) == NULL) | |
8618 | { | |
8619 | if (o == gptab_data_sec) | |
8620 | o->name = ".gptab.data"; | |
8621 | else | |
8622 | o->name = ".gptab.bss"; | |
8623 | subname = o->name + sizeof ".gptab" - 1; | |
8624 | BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL); | |
8625 | } | |
8626 | ||
8627 | /* Set up the first entry. */ | |
8628 | c = 1; | |
8629 | amt = c * sizeof (Elf32_gptab); | |
9719ad41 | 8630 | tab = bfd_malloc (amt); |
b49e97c9 | 8631 | if (tab == NULL) |
b34976b6 | 8632 | return FALSE; |
b49e97c9 TS |
8633 | tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd); |
8634 | tab[0].gt_header.gt_unused = 0; | |
8635 | ||
8636 | /* Combine the input sections. */ | |
9719ad41 | 8637 | for (p = o->link_order_head; p != NULL; p = p->next) |
b49e97c9 TS |
8638 | { |
8639 | asection *input_section; | |
8640 | bfd *input_bfd; | |
8641 | bfd_size_type size; | |
8642 | unsigned long last; | |
8643 | bfd_size_type gpentry; | |
8644 | ||
8645 | if (p->type != bfd_indirect_link_order) | |
8646 | { | |
8647 | if (p->type == bfd_data_link_order) | |
8648 | continue; | |
8649 | abort (); | |
8650 | } | |
8651 | ||
8652 | input_section = p->u.indirect.section; | |
8653 | input_bfd = input_section->owner; | |
8654 | ||
8655 | /* Combine the gptab entries for this input section one | |
8656 | by one. We know that the input gptab entries are | |
8657 | sorted by ascending -G value. */ | |
8658 | size = bfd_section_size (input_bfd, input_section); | |
8659 | last = 0; | |
8660 | for (gpentry = sizeof (Elf32_External_gptab); | |
8661 | gpentry < size; | |
8662 | gpentry += sizeof (Elf32_External_gptab)) | |
8663 | { | |
8664 | Elf32_External_gptab ext_gptab; | |
8665 | Elf32_gptab int_gptab; | |
8666 | unsigned long val; | |
8667 | unsigned long add; | |
b34976b6 | 8668 | bfd_boolean exact; |
b49e97c9 TS |
8669 | unsigned int look; |
8670 | ||
8671 | if (! (bfd_get_section_contents | |
9719ad41 RS |
8672 | (input_bfd, input_section, &ext_gptab, gpentry, |
8673 | sizeof (Elf32_External_gptab)))) | |
b49e97c9 TS |
8674 | { |
8675 | free (tab); | |
b34976b6 | 8676 | return FALSE; |
b49e97c9 TS |
8677 | } |
8678 | ||
8679 | bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab, | |
8680 | &int_gptab); | |
8681 | val = int_gptab.gt_entry.gt_g_value; | |
8682 | add = int_gptab.gt_entry.gt_bytes - last; | |
8683 | ||
b34976b6 | 8684 | exact = FALSE; |
b49e97c9 TS |
8685 | for (look = 1; look < c; look++) |
8686 | { | |
8687 | if (tab[look].gt_entry.gt_g_value >= val) | |
8688 | tab[look].gt_entry.gt_bytes += add; | |
8689 | ||
8690 | if (tab[look].gt_entry.gt_g_value == val) | |
b34976b6 | 8691 | exact = TRUE; |
b49e97c9 TS |
8692 | } |
8693 | ||
8694 | if (! exact) | |
8695 | { | |
8696 | Elf32_gptab *new_tab; | |
8697 | unsigned int max; | |
8698 | ||
8699 | /* We need a new table entry. */ | |
8700 | amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab); | |
9719ad41 | 8701 | new_tab = bfd_realloc (tab, amt); |
b49e97c9 TS |
8702 | if (new_tab == NULL) |
8703 | { | |
8704 | free (tab); | |
b34976b6 | 8705 | return FALSE; |
b49e97c9 TS |
8706 | } |
8707 | tab = new_tab; | |
8708 | tab[c].gt_entry.gt_g_value = val; | |
8709 | tab[c].gt_entry.gt_bytes = add; | |
8710 | ||
8711 | /* Merge in the size for the next smallest -G | |
8712 | value, since that will be implied by this new | |
8713 | value. */ | |
8714 | max = 0; | |
8715 | for (look = 1; look < c; look++) | |
8716 | { | |
8717 | if (tab[look].gt_entry.gt_g_value < val | |
8718 | && (max == 0 | |
8719 | || (tab[look].gt_entry.gt_g_value | |
8720 | > tab[max].gt_entry.gt_g_value))) | |
8721 | max = look; | |
8722 | } | |
8723 | if (max != 0) | |
8724 | tab[c].gt_entry.gt_bytes += | |
8725 | tab[max].gt_entry.gt_bytes; | |
8726 | ||
8727 | ++c; | |
8728 | } | |
8729 | ||
8730 | last = int_gptab.gt_entry.gt_bytes; | |
8731 | } | |
8732 | ||
8733 | /* Hack: reset the SEC_HAS_CONTENTS flag so that | |
8734 | elf_link_input_bfd ignores this section. */ | |
8735 | input_section->flags &= ~SEC_HAS_CONTENTS; | |
8736 | } | |
8737 | ||
8738 | /* The table must be sorted by -G value. */ | |
8739 | if (c > 2) | |
8740 | qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare); | |
8741 | ||
8742 | /* Swap out the table. */ | |
8743 | amt = (bfd_size_type) c * sizeof (Elf32_External_gptab); | |
9719ad41 | 8744 | ext_tab = bfd_alloc (abfd, amt); |
b49e97c9 TS |
8745 | if (ext_tab == NULL) |
8746 | { | |
8747 | free (tab); | |
b34976b6 | 8748 | return FALSE; |
b49e97c9 TS |
8749 | } |
8750 | ||
8751 | for (j = 0; j < c; j++) | |
8752 | bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j); | |
8753 | free (tab); | |
8754 | ||
8755 | o->_raw_size = c * sizeof (Elf32_External_gptab); | |
8756 | o->contents = (bfd_byte *) ext_tab; | |
8757 | ||
8758 | /* Skip this section later on (I don't think this currently | |
8759 | matters, but someday it might). */ | |
9719ad41 | 8760 | o->link_order_head = NULL; |
b49e97c9 TS |
8761 | } |
8762 | } | |
8763 | ||
8764 | /* Invoke the regular ELF backend linker to do all the work. */ | |
c152c796 | 8765 | if (!bfd_elf_final_link (abfd, info)) |
b34976b6 | 8766 | return FALSE; |
b49e97c9 TS |
8767 | |
8768 | /* Now write out the computed sections. */ | |
8769 | ||
9719ad41 | 8770 | if (reginfo_sec != NULL) |
b49e97c9 TS |
8771 | { |
8772 | Elf32_External_RegInfo ext; | |
8773 | ||
8774 | bfd_mips_elf32_swap_reginfo_out (abfd, ®info, &ext); | |
9719ad41 | 8775 | if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext)) |
b34976b6 | 8776 | return FALSE; |
b49e97c9 TS |
8777 | } |
8778 | ||
9719ad41 | 8779 | if (mdebug_sec != NULL) |
b49e97c9 TS |
8780 | { |
8781 | BFD_ASSERT (abfd->output_has_begun); | |
8782 | if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug, | |
8783 | swap, info, | |
8784 | mdebug_sec->filepos)) | |
b34976b6 | 8785 | return FALSE; |
b49e97c9 TS |
8786 | |
8787 | bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info); | |
8788 | } | |
8789 | ||
9719ad41 | 8790 | if (gptab_data_sec != NULL) |
b49e97c9 TS |
8791 | { |
8792 | if (! bfd_set_section_contents (abfd, gptab_data_sec, | |
8793 | gptab_data_sec->contents, | |
9719ad41 | 8794 | 0, gptab_data_sec->_raw_size)) |
b34976b6 | 8795 | return FALSE; |
b49e97c9 TS |
8796 | } |
8797 | ||
9719ad41 | 8798 | if (gptab_bss_sec != NULL) |
b49e97c9 TS |
8799 | { |
8800 | if (! bfd_set_section_contents (abfd, gptab_bss_sec, | |
8801 | gptab_bss_sec->contents, | |
9719ad41 | 8802 | 0, gptab_bss_sec->_raw_size)) |
b34976b6 | 8803 | return FALSE; |
b49e97c9 TS |
8804 | } |
8805 | ||
8806 | if (SGI_COMPAT (abfd)) | |
8807 | { | |
8808 | rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc"); | |
8809 | if (rtproc_sec != NULL) | |
8810 | { | |
8811 | if (! bfd_set_section_contents (abfd, rtproc_sec, | |
8812 | rtproc_sec->contents, | |
9719ad41 | 8813 | 0, rtproc_sec->_raw_size)) |
b34976b6 | 8814 | return FALSE; |
b49e97c9 TS |
8815 | } |
8816 | } | |
8817 | ||
b34976b6 | 8818 | return TRUE; |
b49e97c9 TS |
8819 | } |
8820 | \f | |
64543e1a RS |
8821 | /* Structure for saying that BFD machine EXTENSION extends BASE. */ |
8822 | ||
8823 | struct mips_mach_extension { | |
8824 | unsigned long extension, base; | |
8825 | }; | |
8826 | ||
8827 | ||
8828 | /* An array describing how BFD machines relate to one another. The entries | |
8829 | are ordered topologically with MIPS I extensions listed last. */ | |
8830 | ||
8831 | static const struct mips_mach_extension mips_mach_extensions[] = { | |
8832 | /* MIPS64 extensions. */ | |
5f74bc13 | 8833 | { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 }, |
64543e1a RS |
8834 | { bfd_mach_mips_sb1, bfd_mach_mipsisa64 }, |
8835 | ||
8836 | /* MIPS V extensions. */ | |
8837 | { bfd_mach_mipsisa64, bfd_mach_mips5 }, | |
8838 | ||
8839 | /* R10000 extensions. */ | |
8840 | { bfd_mach_mips12000, bfd_mach_mips10000 }, | |
8841 | ||
8842 | /* R5000 extensions. Note: the vr5500 ISA is an extension of the core | |
8843 | vr5400 ISA, but doesn't include the multimedia stuff. It seems | |
8844 | better to allow vr5400 and vr5500 code to be merged anyway, since | |
8845 | many libraries will just use the core ISA. Perhaps we could add | |
8846 | some sort of ASE flag if this ever proves a problem. */ | |
8847 | { bfd_mach_mips5500, bfd_mach_mips5400 }, | |
8848 | { bfd_mach_mips5400, bfd_mach_mips5000 }, | |
8849 | ||
8850 | /* MIPS IV extensions. */ | |
8851 | { bfd_mach_mips5, bfd_mach_mips8000 }, | |
8852 | { bfd_mach_mips10000, bfd_mach_mips8000 }, | |
8853 | { bfd_mach_mips5000, bfd_mach_mips8000 }, | |
5a7ea749 | 8854 | { bfd_mach_mips7000, bfd_mach_mips8000 }, |
64543e1a RS |
8855 | |
8856 | /* VR4100 extensions. */ | |
8857 | { bfd_mach_mips4120, bfd_mach_mips4100 }, | |
8858 | { bfd_mach_mips4111, bfd_mach_mips4100 }, | |
8859 | ||
8860 | /* MIPS III extensions. */ | |
8861 | { bfd_mach_mips8000, bfd_mach_mips4000 }, | |
8862 | { bfd_mach_mips4650, bfd_mach_mips4000 }, | |
8863 | { bfd_mach_mips4600, bfd_mach_mips4000 }, | |
8864 | { bfd_mach_mips4400, bfd_mach_mips4000 }, | |
8865 | { bfd_mach_mips4300, bfd_mach_mips4000 }, | |
8866 | { bfd_mach_mips4100, bfd_mach_mips4000 }, | |
8867 | { bfd_mach_mips4010, bfd_mach_mips4000 }, | |
8868 | ||
8869 | /* MIPS32 extensions. */ | |
8870 | { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 }, | |
8871 | ||
8872 | /* MIPS II extensions. */ | |
8873 | { bfd_mach_mips4000, bfd_mach_mips6000 }, | |
8874 | { bfd_mach_mipsisa32, bfd_mach_mips6000 }, | |
8875 | ||
8876 | /* MIPS I extensions. */ | |
8877 | { bfd_mach_mips6000, bfd_mach_mips3000 }, | |
8878 | { bfd_mach_mips3900, bfd_mach_mips3000 } | |
8879 | }; | |
8880 | ||
8881 | ||
8882 | /* Return true if bfd machine EXTENSION is an extension of machine BASE. */ | |
8883 | ||
8884 | static bfd_boolean | |
9719ad41 | 8885 | mips_mach_extends_p (unsigned long base, unsigned long extension) |
64543e1a RS |
8886 | { |
8887 | size_t i; | |
8888 | ||
8889 | for (i = 0; extension != base && i < ARRAY_SIZE (mips_mach_extensions); i++) | |
8890 | if (extension == mips_mach_extensions[i].extension) | |
8891 | extension = mips_mach_extensions[i].base; | |
8892 | ||
8893 | return extension == base; | |
8894 | } | |
8895 | ||
8896 | ||
8897 | /* Return true if the given ELF header flags describe a 32-bit binary. */ | |
00707a0e | 8898 | |
b34976b6 | 8899 | static bfd_boolean |
9719ad41 | 8900 | mips_32bit_flags_p (flagword flags) |
00707a0e | 8901 | { |
64543e1a RS |
8902 | return ((flags & EF_MIPS_32BITMODE) != 0 |
8903 | || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32 | |
8904 | || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32 | |
8905 | || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1 | |
8906 | || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2 | |
8907 | || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32 | |
8908 | || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2); | |
00707a0e RS |
8909 | } |
8910 | ||
64543e1a | 8911 | |
b49e97c9 TS |
8912 | /* Merge backend specific data from an object file to the output |
8913 | object file when linking. */ | |
8914 | ||
b34976b6 | 8915 | bfd_boolean |
9719ad41 | 8916 | _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd) |
b49e97c9 TS |
8917 | { |
8918 | flagword old_flags; | |
8919 | flagword new_flags; | |
b34976b6 AM |
8920 | bfd_boolean ok; |
8921 | bfd_boolean null_input_bfd = TRUE; | |
b49e97c9 TS |
8922 | asection *sec; |
8923 | ||
8924 | /* Check if we have the same endianess */ | |
82e51918 | 8925 | if (! _bfd_generic_verify_endian_match (ibfd, obfd)) |
aa701218 AO |
8926 | { |
8927 | (*_bfd_error_handler) | |
8928 | (_("%s: endianness incompatible with that of the selected emulation"), | |
8929 | bfd_archive_filename (ibfd)); | |
8930 | return FALSE; | |
8931 | } | |
b49e97c9 TS |
8932 | |
8933 | if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour | |
8934 | || bfd_get_flavour (obfd) != bfd_target_elf_flavour) | |
b34976b6 | 8935 | return TRUE; |
b49e97c9 | 8936 | |
aa701218 AO |
8937 | if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0) |
8938 | { | |
8939 | (*_bfd_error_handler) | |
8940 | (_("%s: ABI is incompatible with that of the selected emulation"), | |
8941 | bfd_archive_filename (ibfd)); | |
8942 | return FALSE; | |
8943 | } | |
8944 | ||
b49e97c9 TS |
8945 | new_flags = elf_elfheader (ibfd)->e_flags; |
8946 | elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER; | |
8947 | old_flags = elf_elfheader (obfd)->e_flags; | |
8948 | ||
8949 | if (! elf_flags_init (obfd)) | |
8950 | { | |
b34976b6 | 8951 | elf_flags_init (obfd) = TRUE; |
b49e97c9 TS |
8952 | elf_elfheader (obfd)->e_flags = new_flags; |
8953 | elf_elfheader (obfd)->e_ident[EI_CLASS] | |
8954 | = elf_elfheader (ibfd)->e_ident[EI_CLASS]; | |
8955 | ||
8956 | if (bfd_get_arch (obfd) == bfd_get_arch (ibfd) | |
8957 | && bfd_get_arch_info (obfd)->the_default) | |
8958 | { | |
8959 | if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), | |
8960 | bfd_get_mach (ibfd))) | |
b34976b6 | 8961 | return FALSE; |
b49e97c9 TS |
8962 | } |
8963 | ||
b34976b6 | 8964 | return TRUE; |
b49e97c9 TS |
8965 | } |
8966 | ||
8967 | /* Check flag compatibility. */ | |
8968 | ||
8969 | new_flags &= ~EF_MIPS_NOREORDER; | |
8970 | old_flags &= ~EF_MIPS_NOREORDER; | |
8971 | ||
f4416af6 AO |
8972 | /* Some IRIX 6 BSD-compatibility objects have this bit set. It |
8973 | doesn't seem to matter. */ | |
8974 | new_flags &= ~EF_MIPS_XGOT; | |
8975 | old_flags &= ~EF_MIPS_XGOT; | |
8976 | ||
98a8deaf RS |
8977 | /* MIPSpro generates ucode info in n64 objects. Again, we should |
8978 | just be able to ignore this. */ | |
8979 | new_flags &= ~EF_MIPS_UCODE; | |
8980 | old_flags &= ~EF_MIPS_UCODE; | |
8981 | ||
b49e97c9 | 8982 | if (new_flags == old_flags) |
b34976b6 | 8983 | return TRUE; |
b49e97c9 TS |
8984 | |
8985 | /* Check to see if the input BFD actually contains any sections. | |
8986 | If not, its flags may not have been initialised either, but it cannot | |
8987 | actually cause any incompatibility. */ | |
8988 | for (sec = ibfd->sections; sec != NULL; sec = sec->next) | |
8989 | { | |
8990 | /* Ignore synthetic sections and empty .text, .data and .bss sections | |
8991 | which are automatically generated by gas. */ | |
8992 | if (strcmp (sec->name, ".reginfo") | |
8993 | && strcmp (sec->name, ".mdebug") | |
d13d89fa NS |
8994 | && (sec->_raw_size != 0 |
8995 | || (strcmp (sec->name, ".text") | |
8996 | && strcmp (sec->name, ".data") | |
8997 | && strcmp (sec->name, ".bss")))) | |
b49e97c9 | 8998 | { |
b34976b6 | 8999 | null_input_bfd = FALSE; |
b49e97c9 TS |
9000 | break; |
9001 | } | |
9002 | } | |
9003 | if (null_input_bfd) | |
b34976b6 | 9004 | return TRUE; |
b49e97c9 | 9005 | |
b34976b6 | 9006 | ok = TRUE; |
b49e97c9 | 9007 | |
143d77c5 EC |
9008 | if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0) |
9009 | != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)) | |
b49e97c9 | 9010 | { |
b49e97c9 | 9011 | (*_bfd_error_handler) |
143d77c5 | 9012 | (_("%s: warning: linking PIC files with non-PIC files"), |
b49e97c9 | 9013 | bfd_archive_filename (ibfd)); |
143d77c5 | 9014 | ok = TRUE; |
b49e97c9 TS |
9015 | } |
9016 | ||
143d77c5 EC |
9017 | if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) |
9018 | elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC; | |
9019 | if (! (new_flags & EF_MIPS_PIC)) | |
9020 | elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC; | |
9021 | ||
9022 | new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC); | |
9023 | old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC); | |
b49e97c9 | 9024 | |
64543e1a RS |
9025 | /* Compare the ISAs. */ |
9026 | if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags)) | |
b49e97c9 | 9027 | { |
64543e1a RS |
9028 | (*_bfd_error_handler) |
9029 | (_("%s: linking 32-bit code with 64-bit code"), | |
9030 | bfd_archive_filename (ibfd)); | |
9031 | ok = FALSE; | |
9032 | } | |
9033 | else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd))) | |
9034 | { | |
9035 | /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */ | |
9036 | if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd))) | |
b49e97c9 | 9037 | { |
64543e1a RS |
9038 | /* Copy the architecture info from IBFD to OBFD. Also copy |
9039 | the 32-bit flag (if set) so that we continue to recognise | |
9040 | OBFD as a 32-bit binary. */ | |
9041 | bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd)); | |
9042 | elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH); | |
9043 | elf_elfheader (obfd)->e_flags | |
9044 | |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE); | |
9045 | ||
9046 | /* Copy across the ABI flags if OBFD doesn't use them | |
9047 | and if that was what caused us to treat IBFD as 32-bit. */ | |
9048 | if ((old_flags & EF_MIPS_ABI) == 0 | |
9049 | && mips_32bit_flags_p (new_flags) | |
9050 | && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI)) | |
9051 | elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI; | |
b49e97c9 TS |
9052 | } |
9053 | else | |
9054 | { | |
64543e1a | 9055 | /* The ISAs aren't compatible. */ |
b49e97c9 | 9056 | (*_bfd_error_handler) |
64543e1a | 9057 | (_("%s: linking %s module with previous %s modules"), |
b49e97c9 | 9058 | bfd_archive_filename (ibfd), |
64543e1a RS |
9059 | bfd_printable_name (ibfd), |
9060 | bfd_printable_name (obfd)); | |
b34976b6 | 9061 | ok = FALSE; |
b49e97c9 | 9062 | } |
b49e97c9 TS |
9063 | } |
9064 | ||
64543e1a RS |
9065 | new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE); |
9066 | old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE); | |
9067 | ||
9068 | /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it | |
b49e97c9 TS |
9069 | does set EI_CLASS differently from any 32-bit ABI. */ |
9070 | if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI) | |
9071 | || (elf_elfheader (ibfd)->e_ident[EI_CLASS] | |
9072 | != elf_elfheader (obfd)->e_ident[EI_CLASS])) | |
9073 | { | |
9074 | /* Only error if both are set (to different values). */ | |
9075 | if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI)) | |
9076 | || (elf_elfheader (ibfd)->e_ident[EI_CLASS] | |
9077 | != elf_elfheader (obfd)->e_ident[EI_CLASS])) | |
9078 | { | |
9079 | (*_bfd_error_handler) | |
9080 | (_("%s: ABI mismatch: linking %s module with previous %s modules"), | |
9081 | bfd_archive_filename (ibfd), | |
9082 | elf_mips_abi_name (ibfd), | |
9083 | elf_mips_abi_name (obfd)); | |
b34976b6 | 9084 | ok = FALSE; |
b49e97c9 TS |
9085 | } |
9086 | new_flags &= ~EF_MIPS_ABI; | |
9087 | old_flags &= ~EF_MIPS_ABI; | |
9088 | } | |
9089 | ||
fb39dac1 RS |
9090 | /* For now, allow arbitrary mixing of ASEs (retain the union). */ |
9091 | if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE)) | |
9092 | { | |
9093 | elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE; | |
9094 | ||
9095 | new_flags &= ~ EF_MIPS_ARCH_ASE; | |
9096 | old_flags &= ~ EF_MIPS_ARCH_ASE; | |
9097 | } | |
9098 | ||
b49e97c9 TS |
9099 | /* Warn about any other mismatches */ |
9100 | if (new_flags != old_flags) | |
9101 | { | |
9102 | (*_bfd_error_handler) | |
9103 | (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"), | |
9104 | bfd_archive_filename (ibfd), (unsigned long) new_flags, | |
9105 | (unsigned long) old_flags); | |
b34976b6 | 9106 | ok = FALSE; |
b49e97c9 TS |
9107 | } |
9108 | ||
9109 | if (! ok) | |
9110 | { | |
9111 | bfd_set_error (bfd_error_bad_value); | |
b34976b6 | 9112 | return FALSE; |
b49e97c9 TS |
9113 | } |
9114 | ||
b34976b6 | 9115 | return TRUE; |
b49e97c9 TS |
9116 | } |
9117 | ||
9118 | /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */ | |
9119 | ||
b34976b6 | 9120 | bfd_boolean |
9719ad41 | 9121 | _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags) |
b49e97c9 TS |
9122 | { |
9123 | BFD_ASSERT (!elf_flags_init (abfd) | |
9124 | || elf_elfheader (abfd)->e_flags == flags); | |
9125 | ||
9126 | elf_elfheader (abfd)->e_flags = flags; | |
b34976b6 AM |
9127 | elf_flags_init (abfd) = TRUE; |
9128 | return TRUE; | |
b49e97c9 TS |
9129 | } |
9130 | ||
b34976b6 | 9131 | bfd_boolean |
9719ad41 | 9132 | _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr) |
b49e97c9 | 9133 | { |
9719ad41 | 9134 | FILE *file = ptr; |
b49e97c9 TS |
9135 | |
9136 | BFD_ASSERT (abfd != NULL && ptr != NULL); | |
9137 | ||
9138 | /* Print normal ELF private data. */ | |
9139 | _bfd_elf_print_private_bfd_data (abfd, ptr); | |
9140 | ||
9141 | /* xgettext:c-format */ | |
9142 | fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags); | |
9143 | ||
9144 | if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32) | |
9145 | fprintf (file, _(" [abi=O32]")); | |
9146 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64) | |
9147 | fprintf (file, _(" [abi=O64]")); | |
9148 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32) | |
9149 | fprintf (file, _(" [abi=EABI32]")); | |
9150 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64) | |
9151 | fprintf (file, _(" [abi=EABI64]")); | |
9152 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI)) | |
9153 | fprintf (file, _(" [abi unknown]")); | |
9154 | else if (ABI_N32_P (abfd)) | |
9155 | fprintf (file, _(" [abi=N32]")); | |
9156 | else if (ABI_64_P (abfd)) | |
9157 | fprintf (file, _(" [abi=64]")); | |
9158 | else | |
9159 | fprintf (file, _(" [no abi set]")); | |
9160 | ||
9161 | if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1) | |
9162 | fprintf (file, _(" [mips1]")); | |
9163 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2) | |
9164 | fprintf (file, _(" [mips2]")); | |
9165 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3) | |
9166 | fprintf (file, _(" [mips3]")); | |
9167 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4) | |
9168 | fprintf (file, _(" [mips4]")); | |
9169 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5) | |
9170 | fprintf (file, _(" [mips5]")); | |
9171 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32) | |
9172 | fprintf (file, _(" [mips32]")); | |
9173 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64) | |
9174 | fprintf (file, _(" [mips64]")); | |
af7ee8bf CD |
9175 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2) |
9176 | fprintf (file, _(" [mips32r2]")); | |
5f74bc13 CD |
9177 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2) |
9178 | fprintf (file, _(" [mips64r2]")); | |
b49e97c9 TS |
9179 | else |
9180 | fprintf (file, _(" [unknown ISA]")); | |
9181 | ||
40d32fc6 CD |
9182 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX) |
9183 | fprintf (file, _(" [mdmx]")); | |
9184 | ||
9185 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16) | |
9186 | fprintf (file, _(" [mips16]")); | |
9187 | ||
b49e97c9 TS |
9188 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE) |
9189 | fprintf (file, _(" [32bitmode]")); | |
9190 | else | |
9191 | fprintf (file, _(" [not 32bitmode]")); | |
9192 | ||
9193 | fputc ('\n', file); | |
9194 | ||
b34976b6 | 9195 | return TRUE; |
b49e97c9 | 9196 | } |
2f89ff8d L |
9197 | |
9198 | struct bfd_elf_special_section const _bfd_mips_elf_special_sections[]= | |
9199 | { | |
7dcb9820 AM |
9200 | { ".sdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, |
9201 | { ".sbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, | |
9202 | { ".lit4", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, | |
9203 | { ".lit8", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, | |
9204 | { ".ucode", 6, 0, SHT_MIPS_UCODE, 0 }, | |
9205 | { ".mdebug", 7, 0, SHT_MIPS_DEBUG, 0 }, | |
9206 | { NULL, 0, 0, 0, 0 } | |
2f89ff8d | 9207 | }; |