]>
Commit | Line | Data |
---|---|---|
b49e97c9 | 1 | /* MIPS-specific support for ELF |
64543e1a | 2 | Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, |
77cfaee6 | 3 | 2003, 2004, 2005 Free Software Foundation, Inc. |
b49e97c9 TS |
4 | |
5 | Most of the information added by Ian Lance Taylor, Cygnus Support, | |
6 | <[email protected]>. | |
7 | N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC. | |
8 | <[email protected]> | |
9 | Traditional MIPS targets support added by Koundinya.K, Dansk Data | |
10 | Elektronik & Operations Research Group. <[email protected]> | |
11 | ||
ae9a127f | 12 | This file is part of BFD, the Binary File Descriptor library. |
b49e97c9 | 13 | |
ae9a127f NC |
14 | This program is free software; you can redistribute it and/or modify |
15 | it under the terms of the GNU General Public License as published by | |
16 | the Free Software Foundation; either version 2 of the License, or | |
17 | (at your option) any later version. | |
b49e97c9 | 18 | |
ae9a127f NC |
19 | This program is distributed in the hope that it will be useful, |
20 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
21 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
22 | GNU General Public License for more details. | |
b49e97c9 | 23 | |
ae9a127f NC |
24 | You should have received a copy of the GNU General Public License |
25 | along with this program; if not, write to the Free Software | |
3e110533 | 26 | Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ |
b49e97c9 TS |
27 | |
28 | /* This file handles functionality common to the different MIPS ABI's. */ | |
29 | ||
30 | #include "bfd.h" | |
31 | #include "sysdep.h" | |
32 | #include "libbfd.h" | |
64543e1a | 33 | #include "libiberty.h" |
b49e97c9 TS |
34 | #include "elf-bfd.h" |
35 | #include "elfxx-mips.h" | |
36 | #include "elf/mips.h" | |
37 | ||
38 | /* Get the ECOFF swapping routines. */ | |
39 | #include "coff/sym.h" | |
40 | #include "coff/symconst.h" | |
41 | #include "coff/ecoff.h" | |
42 | #include "coff/mips.h" | |
43 | ||
b15e6682 AO |
44 | #include "hashtab.h" |
45 | ||
46 | /* This structure is used to hold .got entries while estimating got | |
47 | sizes. */ | |
48 | struct mips_got_entry | |
49 | { | |
50 | /* The input bfd in which the symbol is defined. */ | |
51 | bfd *abfd; | |
f4416af6 AO |
52 | /* The index of the symbol, as stored in the relocation r_info, if |
53 | we have a local symbol; -1 otherwise. */ | |
54 | long symndx; | |
55 | union | |
56 | { | |
57 | /* If abfd == NULL, an address that must be stored in the got. */ | |
58 | bfd_vma address; | |
59 | /* If abfd != NULL && symndx != -1, the addend of the relocation | |
60 | that should be added to the symbol value. */ | |
61 | bfd_vma addend; | |
62 | /* If abfd != NULL && symndx == -1, the hash table entry | |
63 | corresponding to a global symbol in the got (or, local, if | |
64 | h->forced_local). */ | |
65 | struct mips_elf_link_hash_entry *h; | |
66 | } d; | |
0f20cc35 DJ |
67 | |
68 | /* The TLS types included in this GOT entry (specifically, GD and | |
69 | IE). The GD and IE flags can be added as we encounter new | |
70 | relocations. LDM can also be set; it will always be alone, not | |
71 | combined with any GD or IE flags. An LDM GOT entry will be | |
72 | a local symbol entry with r_symndx == 0. */ | |
73 | unsigned char tls_type; | |
74 | ||
b15e6682 | 75 | /* The offset from the beginning of the .got section to the entry |
f4416af6 AO |
76 | corresponding to this symbol+addend. If it's a global symbol |
77 | whose offset is yet to be decided, it's going to be -1. */ | |
78 | long gotidx; | |
b15e6682 AO |
79 | }; |
80 | ||
f0abc2a1 | 81 | /* This structure is used to hold .got information when linking. */ |
b49e97c9 TS |
82 | |
83 | struct mips_got_info | |
84 | { | |
85 | /* The global symbol in the GOT with the lowest index in the dynamic | |
86 | symbol table. */ | |
87 | struct elf_link_hash_entry *global_gotsym; | |
88 | /* The number of global .got entries. */ | |
89 | unsigned int global_gotno; | |
0f20cc35 DJ |
90 | /* The number of .got slots used for TLS. */ |
91 | unsigned int tls_gotno; | |
92 | /* The first unused TLS .got entry. Used only during | |
93 | mips_elf_initialize_tls_index. */ | |
94 | unsigned int tls_assigned_gotno; | |
b49e97c9 TS |
95 | /* The number of local .got entries. */ |
96 | unsigned int local_gotno; | |
97 | /* The number of local .got entries we have used. */ | |
98 | unsigned int assigned_gotno; | |
b15e6682 AO |
99 | /* A hash table holding members of the got. */ |
100 | struct htab *got_entries; | |
f4416af6 AO |
101 | /* A hash table mapping input bfds to other mips_got_info. NULL |
102 | unless multi-got was necessary. */ | |
103 | struct htab *bfd2got; | |
104 | /* In multi-got links, a pointer to the next got (err, rather, most | |
105 | of the time, it points to the previous got). */ | |
106 | struct mips_got_info *next; | |
0f20cc35 DJ |
107 | /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE |
108 | for none, or MINUS_TWO for not yet assigned. This is needed | |
109 | because a single-GOT link may have multiple hash table entries | |
110 | for the LDM. It does not get initialized in multi-GOT mode. */ | |
111 | bfd_vma tls_ldm_offset; | |
f4416af6 AO |
112 | }; |
113 | ||
114 | /* Map an input bfd to a got in a multi-got link. */ | |
115 | ||
116 | struct mips_elf_bfd2got_hash { | |
117 | bfd *bfd; | |
118 | struct mips_got_info *g; | |
119 | }; | |
120 | ||
121 | /* Structure passed when traversing the bfd2got hash table, used to | |
122 | create and merge bfd's gots. */ | |
123 | ||
124 | struct mips_elf_got_per_bfd_arg | |
125 | { | |
126 | /* A hashtable that maps bfds to gots. */ | |
127 | htab_t bfd2got; | |
128 | /* The output bfd. */ | |
129 | bfd *obfd; | |
130 | /* The link information. */ | |
131 | struct bfd_link_info *info; | |
132 | /* A pointer to the primary got, i.e., the one that's going to get | |
133 | the implicit relocations from DT_MIPS_LOCAL_GOTNO and | |
134 | DT_MIPS_GOTSYM. */ | |
135 | struct mips_got_info *primary; | |
136 | /* A non-primary got we're trying to merge with other input bfd's | |
137 | gots. */ | |
138 | struct mips_got_info *current; | |
139 | /* The maximum number of got entries that can be addressed with a | |
140 | 16-bit offset. */ | |
141 | unsigned int max_count; | |
142 | /* The number of local and global entries in the primary got. */ | |
143 | unsigned int primary_count; | |
144 | /* The number of local and global entries in the current got. */ | |
145 | unsigned int current_count; | |
0f20cc35 DJ |
146 | /* The total number of global entries which will live in the |
147 | primary got and be automatically relocated. This includes | |
148 | those not referenced by the primary GOT but included in | |
149 | the "master" GOT. */ | |
150 | unsigned int global_count; | |
f4416af6 AO |
151 | }; |
152 | ||
153 | /* Another structure used to pass arguments for got entries traversal. */ | |
154 | ||
155 | struct mips_elf_set_global_got_offset_arg | |
156 | { | |
157 | struct mips_got_info *g; | |
158 | int value; | |
159 | unsigned int needed_relocs; | |
160 | struct bfd_link_info *info; | |
b49e97c9 TS |
161 | }; |
162 | ||
0f20cc35 DJ |
163 | /* A structure used to count TLS relocations or GOT entries, for GOT |
164 | entry or ELF symbol table traversal. */ | |
165 | ||
166 | struct mips_elf_count_tls_arg | |
167 | { | |
168 | struct bfd_link_info *info; | |
169 | unsigned int needed; | |
170 | }; | |
171 | ||
f0abc2a1 AM |
172 | struct _mips_elf_section_data |
173 | { | |
174 | struct bfd_elf_section_data elf; | |
175 | union | |
176 | { | |
177 | struct mips_got_info *got_info; | |
178 | bfd_byte *tdata; | |
179 | } u; | |
180 | }; | |
181 | ||
182 | #define mips_elf_section_data(sec) \ | |
68bfbfcc | 183 | ((struct _mips_elf_section_data *) elf_section_data (sec)) |
f0abc2a1 | 184 | |
b49e97c9 TS |
185 | /* This structure is passed to mips_elf_sort_hash_table_f when sorting |
186 | the dynamic symbols. */ | |
187 | ||
188 | struct mips_elf_hash_sort_data | |
189 | { | |
190 | /* The symbol in the global GOT with the lowest dynamic symbol table | |
191 | index. */ | |
192 | struct elf_link_hash_entry *low; | |
0f20cc35 DJ |
193 | /* The least dynamic symbol table index corresponding to a non-TLS |
194 | symbol with a GOT entry. */ | |
b49e97c9 | 195 | long min_got_dynindx; |
f4416af6 AO |
196 | /* The greatest dynamic symbol table index corresponding to a symbol |
197 | with a GOT entry that is not referenced (e.g., a dynamic symbol | |
9e4aeb93 | 198 | with dynamic relocations pointing to it from non-primary GOTs). */ |
f4416af6 | 199 | long max_unref_got_dynindx; |
b49e97c9 TS |
200 | /* The greatest dynamic symbol table index not corresponding to a |
201 | symbol without a GOT entry. */ | |
202 | long max_non_got_dynindx; | |
203 | }; | |
204 | ||
205 | /* The MIPS ELF linker needs additional information for each symbol in | |
206 | the global hash table. */ | |
207 | ||
208 | struct mips_elf_link_hash_entry | |
209 | { | |
210 | struct elf_link_hash_entry root; | |
211 | ||
212 | /* External symbol information. */ | |
213 | EXTR esym; | |
214 | ||
215 | /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against | |
216 | this symbol. */ | |
217 | unsigned int possibly_dynamic_relocs; | |
218 | ||
219 | /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against | |
220 | a readonly section. */ | |
b34976b6 | 221 | bfd_boolean readonly_reloc; |
b49e97c9 | 222 | |
b49e97c9 TS |
223 | /* We must not create a stub for a symbol that has relocations |
224 | related to taking the function's address, i.e. any but | |
225 | R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition", | |
226 | p. 4-20. */ | |
b34976b6 | 227 | bfd_boolean no_fn_stub; |
b49e97c9 TS |
228 | |
229 | /* If there is a stub that 32 bit functions should use to call this | |
230 | 16 bit function, this points to the section containing the stub. */ | |
231 | asection *fn_stub; | |
232 | ||
233 | /* Whether we need the fn_stub; this is set if this symbol appears | |
234 | in any relocs other than a 16 bit call. */ | |
b34976b6 | 235 | bfd_boolean need_fn_stub; |
b49e97c9 TS |
236 | |
237 | /* If there is a stub that 16 bit functions should use to call this | |
238 | 32 bit function, this points to the section containing the stub. */ | |
239 | asection *call_stub; | |
240 | ||
241 | /* This is like the call_stub field, but it is used if the function | |
242 | being called returns a floating point value. */ | |
243 | asection *call_fp_stub; | |
7c5fcef7 | 244 | |
a008ac03 DJ |
245 | /* Are we forced local? This will only be set if we have converted |
246 | the initial global GOT entry to a local GOT entry. */ | |
b34976b6 | 247 | bfd_boolean forced_local; |
0f20cc35 DJ |
248 | |
249 | #define GOT_NORMAL 0 | |
250 | #define GOT_TLS_GD 1 | |
251 | #define GOT_TLS_LDM 2 | |
252 | #define GOT_TLS_IE 4 | |
253 | #define GOT_TLS_OFFSET_DONE 0x40 | |
254 | #define GOT_TLS_DONE 0x80 | |
255 | unsigned char tls_type; | |
256 | /* This is only used in single-GOT mode; in multi-GOT mode there | |
257 | is one mips_got_entry per GOT entry, so the offset is stored | |
258 | there. In single-GOT mode there may be many mips_got_entry | |
259 | structures all referring to the same GOT slot. It might be | |
260 | possible to use root.got.offset instead, but that field is | |
261 | overloaded already. */ | |
262 | bfd_vma tls_got_offset; | |
b49e97c9 TS |
263 | }; |
264 | ||
265 | /* MIPS ELF linker hash table. */ | |
266 | ||
267 | struct mips_elf_link_hash_table | |
268 | { | |
269 | struct elf_link_hash_table root; | |
270 | #if 0 | |
271 | /* We no longer use this. */ | |
272 | /* String section indices for the dynamic section symbols. */ | |
273 | bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES]; | |
274 | #endif | |
275 | /* The number of .rtproc entries. */ | |
276 | bfd_size_type procedure_count; | |
277 | /* The size of the .compact_rel section (if SGI_COMPAT). */ | |
278 | bfd_size_type compact_rel_size; | |
279 | /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic | |
8dc1a139 | 280 | entry is set to the address of __rld_obj_head as in IRIX5. */ |
b34976b6 | 281 | bfd_boolean use_rld_obj_head; |
b49e97c9 TS |
282 | /* This is the value of the __rld_map or __rld_obj_head symbol. */ |
283 | bfd_vma rld_value; | |
284 | /* This is set if we see any mips16 stub sections. */ | |
b34976b6 | 285 | bfd_boolean mips16_stubs_seen; |
b49e97c9 TS |
286 | }; |
287 | ||
0f20cc35 DJ |
288 | #define TLS_RELOC_P(r_type) \ |
289 | (r_type == R_MIPS_TLS_DTPMOD32 \ | |
290 | || r_type == R_MIPS_TLS_DTPMOD64 \ | |
291 | || r_type == R_MIPS_TLS_DTPREL32 \ | |
292 | || r_type == R_MIPS_TLS_DTPREL64 \ | |
293 | || r_type == R_MIPS_TLS_GD \ | |
294 | || r_type == R_MIPS_TLS_LDM \ | |
295 | || r_type == R_MIPS_TLS_DTPREL_HI16 \ | |
296 | || r_type == R_MIPS_TLS_DTPREL_LO16 \ | |
297 | || r_type == R_MIPS_TLS_GOTTPREL \ | |
298 | || r_type == R_MIPS_TLS_TPREL32 \ | |
299 | || r_type == R_MIPS_TLS_TPREL64 \ | |
300 | || r_type == R_MIPS_TLS_TPREL_HI16 \ | |
301 | || r_type == R_MIPS_TLS_TPREL_LO16) | |
302 | ||
b49e97c9 TS |
303 | /* Structure used to pass information to mips_elf_output_extsym. */ |
304 | ||
305 | struct extsym_info | |
306 | { | |
9e4aeb93 RS |
307 | bfd *abfd; |
308 | struct bfd_link_info *info; | |
b49e97c9 TS |
309 | struct ecoff_debug_info *debug; |
310 | const struct ecoff_debug_swap *swap; | |
b34976b6 | 311 | bfd_boolean failed; |
b49e97c9 TS |
312 | }; |
313 | ||
8dc1a139 | 314 | /* The names of the runtime procedure table symbols used on IRIX5. */ |
b49e97c9 TS |
315 | |
316 | static const char * const mips_elf_dynsym_rtproc_names[] = | |
317 | { | |
318 | "_procedure_table", | |
319 | "_procedure_string_table", | |
320 | "_procedure_table_size", | |
321 | NULL | |
322 | }; | |
323 | ||
324 | /* These structures are used to generate the .compact_rel section on | |
8dc1a139 | 325 | IRIX5. */ |
b49e97c9 TS |
326 | |
327 | typedef struct | |
328 | { | |
329 | unsigned long id1; /* Always one? */ | |
330 | unsigned long num; /* Number of compact relocation entries. */ | |
331 | unsigned long id2; /* Always two? */ | |
332 | unsigned long offset; /* The file offset of the first relocation. */ | |
333 | unsigned long reserved0; /* Zero? */ | |
334 | unsigned long reserved1; /* Zero? */ | |
335 | } Elf32_compact_rel; | |
336 | ||
337 | typedef struct | |
338 | { | |
339 | bfd_byte id1[4]; | |
340 | bfd_byte num[4]; | |
341 | bfd_byte id2[4]; | |
342 | bfd_byte offset[4]; | |
343 | bfd_byte reserved0[4]; | |
344 | bfd_byte reserved1[4]; | |
345 | } Elf32_External_compact_rel; | |
346 | ||
347 | typedef struct | |
348 | { | |
349 | unsigned int ctype : 1; /* 1: long 0: short format. See below. */ | |
350 | unsigned int rtype : 4; /* Relocation types. See below. */ | |
351 | unsigned int dist2to : 8; | |
352 | unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */ | |
353 | unsigned long konst; /* KONST field. See below. */ | |
354 | unsigned long vaddr; /* VADDR to be relocated. */ | |
355 | } Elf32_crinfo; | |
356 | ||
357 | typedef struct | |
358 | { | |
359 | unsigned int ctype : 1; /* 1: long 0: short format. See below. */ | |
360 | unsigned int rtype : 4; /* Relocation types. See below. */ | |
361 | unsigned int dist2to : 8; | |
362 | unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */ | |
363 | unsigned long konst; /* KONST field. See below. */ | |
364 | } Elf32_crinfo2; | |
365 | ||
366 | typedef struct | |
367 | { | |
368 | bfd_byte info[4]; | |
369 | bfd_byte konst[4]; | |
370 | bfd_byte vaddr[4]; | |
371 | } Elf32_External_crinfo; | |
372 | ||
373 | typedef struct | |
374 | { | |
375 | bfd_byte info[4]; | |
376 | bfd_byte konst[4]; | |
377 | } Elf32_External_crinfo2; | |
378 | ||
379 | /* These are the constants used to swap the bitfields in a crinfo. */ | |
380 | ||
381 | #define CRINFO_CTYPE (0x1) | |
382 | #define CRINFO_CTYPE_SH (31) | |
383 | #define CRINFO_RTYPE (0xf) | |
384 | #define CRINFO_RTYPE_SH (27) | |
385 | #define CRINFO_DIST2TO (0xff) | |
386 | #define CRINFO_DIST2TO_SH (19) | |
387 | #define CRINFO_RELVADDR (0x7ffff) | |
388 | #define CRINFO_RELVADDR_SH (0) | |
389 | ||
390 | /* A compact relocation info has long (3 words) or short (2 words) | |
391 | formats. A short format doesn't have VADDR field and relvaddr | |
392 | fields contains ((VADDR - vaddr of the previous entry) >> 2). */ | |
393 | #define CRF_MIPS_LONG 1 | |
394 | #define CRF_MIPS_SHORT 0 | |
395 | ||
396 | /* There are 4 types of compact relocation at least. The value KONST | |
397 | has different meaning for each type: | |
398 | ||
399 | (type) (konst) | |
400 | CT_MIPS_REL32 Address in data | |
401 | CT_MIPS_WORD Address in word (XXX) | |
402 | CT_MIPS_GPHI_LO GP - vaddr | |
403 | CT_MIPS_JMPAD Address to jump | |
404 | */ | |
405 | ||
406 | #define CRT_MIPS_REL32 0xa | |
407 | #define CRT_MIPS_WORD 0xb | |
408 | #define CRT_MIPS_GPHI_LO 0xc | |
409 | #define CRT_MIPS_JMPAD 0xd | |
410 | ||
411 | #define mips_elf_set_cr_format(x,format) ((x).ctype = (format)) | |
412 | #define mips_elf_set_cr_type(x,type) ((x).rtype = (type)) | |
413 | #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v)) | |
414 | #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2) | |
415 | \f | |
416 | /* The structure of the runtime procedure descriptor created by the | |
417 | loader for use by the static exception system. */ | |
418 | ||
419 | typedef struct runtime_pdr { | |
ae9a127f NC |
420 | bfd_vma adr; /* Memory address of start of procedure. */ |
421 | long regmask; /* Save register mask. */ | |
422 | long regoffset; /* Save register offset. */ | |
423 | long fregmask; /* Save floating point register mask. */ | |
424 | long fregoffset; /* Save floating point register offset. */ | |
425 | long frameoffset; /* Frame size. */ | |
426 | short framereg; /* Frame pointer register. */ | |
427 | short pcreg; /* Offset or reg of return pc. */ | |
428 | long irpss; /* Index into the runtime string table. */ | |
b49e97c9 | 429 | long reserved; |
ae9a127f | 430 | struct exception_info *exception_info;/* Pointer to exception array. */ |
b49e97c9 TS |
431 | } RPDR, *pRPDR; |
432 | #define cbRPDR sizeof (RPDR) | |
433 | #define rpdNil ((pRPDR) 0) | |
434 | \f | |
b15e6682 | 435 | static struct mips_got_entry *mips_elf_create_local_got_entry |
0f20cc35 DJ |
436 | (bfd *, bfd *, struct mips_got_info *, asection *, bfd_vma, unsigned long, |
437 | struct mips_elf_link_hash_entry *, int); | |
b34976b6 | 438 | static bfd_boolean mips_elf_sort_hash_table_f |
9719ad41 | 439 | (struct mips_elf_link_hash_entry *, void *); |
9719ad41 RS |
440 | static bfd_vma mips_elf_high |
441 | (bfd_vma); | |
b34976b6 | 442 | static bfd_boolean mips_elf_stub_section_p |
9719ad41 | 443 | (bfd *, asection *); |
b34976b6 | 444 | static bfd_boolean mips_elf_create_dynamic_relocation |
9719ad41 RS |
445 | (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *, |
446 | struct mips_elf_link_hash_entry *, asection *, bfd_vma, | |
447 | bfd_vma *, asection *); | |
9719ad41 RS |
448 | static hashval_t mips_elf_got_entry_hash |
449 | (const void *); | |
f4416af6 | 450 | static bfd_vma mips_elf_adjust_gp |
9719ad41 | 451 | (bfd *, struct mips_got_info *, bfd *); |
f4416af6 | 452 | static struct mips_got_info *mips_elf_got_for_ibfd |
9719ad41 | 453 | (struct mips_got_info *, bfd *); |
f4416af6 | 454 | |
b49e97c9 TS |
455 | /* This will be used when we sort the dynamic relocation records. */ |
456 | static bfd *reldyn_sorting_bfd; | |
457 | ||
458 | /* Nonzero if ABFD is using the N32 ABI. */ | |
0b25d3e6 | 459 | |
b49e97c9 TS |
460 | #define ABI_N32_P(abfd) \ |
461 | ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0) | |
462 | ||
4a14403c | 463 | /* Nonzero if ABFD is using the N64 ABI. */ |
b49e97c9 | 464 | #define ABI_64_P(abfd) \ |
141ff970 | 465 | (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64) |
b49e97c9 | 466 | |
4a14403c TS |
467 | /* Nonzero if ABFD is using NewABI conventions. */ |
468 | #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd)) | |
469 | ||
470 | /* The IRIX compatibility level we are striving for. */ | |
b49e97c9 TS |
471 | #define IRIX_COMPAT(abfd) \ |
472 | (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd)) | |
473 | ||
b49e97c9 TS |
474 | /* Whether we are trying to be compatible with IRIX at all. */ |
475 | #define SGI_COMPAT(abfd) \ | |
476 | (IRIX_COMPAT (abfd) != ict_none) | |
477 | ||
478 | /* The name of the options section. */ | |
479 | #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \ | |
d80dcc6a | 480 | (NEWABI_P (abfd) ? ".MIPS.options" : ".options") |
b49e97c9 | 481 | |
cc2e31b9 RS |
482 | /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section. |
483 | Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */ | |
484 | #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \ | |
485 | (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0) | |
486 | ||
b49e97c9 | 487 | /* The name of the stub section. */ |
ca07892d | 488 | #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs" |
b49e97c9 TS |
489 | |
490 | /* The size of an external REL relocation. */ | |
491 | #define MIPS_ELF_REL_SIZE(abfd) \ | |
492 | (get_elf_backend_data (abfd)->s->sizeof_rel) | |
493 | ||
494 | /* The size of an external dynamic table entry. */ | |
495 | #define MIPS_ELF_DYN_SIZE(abfd) \ | |
496 | (get_elf_backend_data (abfd)->s->sizeof_dyn) | |
497 | ||
498 | /* The size of a GOT entry. */ | |
499 | #define MIPS_ELF_GOT_SIZE(abfd) \ | |
500 | (get_elf_backend_data (abfd)->s->arch_size / 8) | |
501 | ||
502 | /* The size of a symbol-table entry. */ | |
503 | #define MIPS_ELF_SYM_SIZE(abfd) \ | |
504 | (get_elf_backend_data (abfd)->s->sizeof_sym) | |
505 | ||
506 | /* The default alignment for sections, as a power of two. */ | |
507 | #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \ | |
45d6a902 | 508 | (get_elf_backend_data (abfd)->s->log_file_align) |
b49e97c9 TS |
509 | |
510 | /* Get word-sized data. */ | |
511 | #define MIPS_ELF_GET_WORD(abfd, ptr) \ | |
512 | (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr)) | |
513 | ||
514 | /* Put out word-sized data. */ | |
515 | #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \ | |
516 | (ABI_64_P (abfd) \ | |
517 | ? bfd_put_64 (abfd, val, ptr) \ | |
518 | : bfd_put_32 (abfd, val, ptr)) | |
519 | ||
520 | /* Add a dynamic symbol table-entry. */ | |
9719ad41 | 521 | #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \ |
5a580b3a | 522 | _bfd_elf_add_dynamic_entry (info, tag, val) |
b49e97c9 TS |
523 | |
524 | #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \ | |
525 | (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela)) | |
526 | ||
4ffba85c AO |
527 | /* Determine whether the internal relocation of index REL_IDX is REL |
528 | (zero) or RELA (non-zero). The assumption is that, if there are | |
529 | two relocation sections for this section, one of them is REL and | |
530 | the other is RELA. If the index of the relocation we're testing is | |
531 | in range for the first relocation section, check that the external | |
532 | relocation size is that for RELA. It is also assumed that, if | |
533 | rel_idx is not in range for the first section, and this first | |
534 | section contains REL relocs, then the relocation is in the second | |
535 | section, that is RELA. */ | |
536 | #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \ | |
537 | ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \ | |
538 | * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \ | |
539 | > (bfd_vma)(rel_idx)) \ | |
540 | == (elf_section_data (sec)->rel_hdr.sh_entsize \ | |
541 | == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \ | |
542 | : sizeof (Elf32_External_Rela)))) | |
543 | ||
b49e97c9 TS |
544 | /* In case we're on a 32-bit machine, construct a 64-bit "-1" value |
545 | from smaller values. Start with zero, widen, *then* decrement. */ | |
546 | #define MINUS_ONE (((bfd_vma)0) - 1) | |
c5ae1840 | 547 | #define MINUS_TWO (((bfd_vma)0) - 2) |
b49e97c9 TS |
548 | |
549 | /* The number of local .got entries we reserve. */ | |
550 | #define MIPS_RESERVED_GOTNO (2) | |
551 | ||
f4416af6 AO |
552 | /* The offset of $gp from the beginning of the .got section. */ |
553 | #define ELF_MIPS_GP_OFFSET(abfd) (0x7ff0) | |
554 | ||
555 | /* The maximum size of the GOT for it to be addressable using 16-bit | |
556 | offsets from $gp. */ | |
557 | #define MIPS_ELF_GOT_MAX_SIZE(abfd) (ELF_MIPS_GP_OFFSET(abfd) + 0x7fff) | |
558 | ||
6a691779 | 559 | /* Instructions which appear in a stub. */ |
b49e97c9 | 560 | #define STUB_LW(abfd) \ |
f4416af6 AO |
561 | ((ABI_64_P (abfd) \ |
562 | ? 0xdf998010 /* ld t9,0x8010(gp) */ \ | |
563 | : 0x8f998010)) /* lw t9,0x8010(gp) */ | |
b49e97c9 | 564 | #define STUB_MOVE(abfd) \ |
6a691779 TS |
565 | ((ABI_64_P (abfd) \ |
566 | ? 0x03e0782d /* daddu t7,ra */ \ | |
567 | : 0x03e07821)) /* addu t7,ra */ | |
568 | #define STUB_JALR 0x0320f809 /* jalr t9,ra */ | |
b49e97c9 | 569 | #define STUB_LI16(abfd) \ |
6a691779 TS |
570 | ((ABI_64_P (abfd) \ |
571 | ? 0x64180000 /* daddiu t8,zero,0 */ \ | |
572 | : 0x24180000)) /* addiu t8,zero,0 */ | |
b49e97c9 TS |
573 | #define MIPS_FUNCTION_STUB_SIZE (16) |
574 | ||
575 | /* The name of the dynamic interpreter. This is put in the .interp | |
576 | section. */ | |
577 | ||
578 | #define ELF_DYNAMIC_INTERPRETER(abfd) \ | |
579 | (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \ | |
580 | : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \ | |
581 | : "/usr/lib/libc.so.1") | |
582 | ||
583 | #ifdef BFD64 | |
ee6423ed AO |
584 | #define MNAME(bfd,pre,pos) \ |
585 | (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos)) | |
b49e97c9 TS |
586 | #define ELF_R_SYM(bfd, i) \ |
587 | (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i)) | |
588 | #define ELF_R_TYPE(bfd, i) \ | |
589 | (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i)) | |
590 | #define ELF_R_INFO(bfd, s, t) \ | |
591 | (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t)) | |
592 | #else | |
ee6423ed | 593 | #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos) |
b49e97c9 TS |
594 | #define ELF_R_SYM(bfd, i) \ |
595 | (ELF32_R_SYM (i)) | |
596 | #define ELF_R_TYPE(bfd, i) \ | |
597 | (ELF32_R_TYPE (i)) | |
598 | #define ELF_R_INFO(bfd, s, t) \ | |
599 | (ELF32_R_INFO (s, t)) | |
600 | #endif | |
601 | \f | |
602 | /* The mips16 compiler uses a couple of special sections to handle | |
603 | floating point arguments. | |
604 | ||
605 | Section names that look like .mips16.fn.FNNAME contain stubs that | |
606 | copy floating point arguments from the fp regs to the gp regs and | |
607 | then jump to FNNAME. If any 32 bit function calls FNNAME, the | |
608 | call should be redirected to the stub instead. If no 32 bit | |
609 | function calls FNNAME, the stub should be discarded. We need to | |
610 | consider any reference to the function, not just a call, because | |
611 | if the address of the function is taken we will need the stub, | |
612 | since the address might be passed to a 32 bit function. | |
613 | ||
614 | Section names that look like .mips16.call.FNNAME contain stubs | |
615 | that copy floating point arguments from the gp regs to the fp | |
616 | regs and then jump to FNNAME. If FNNAME is a 32 bit function, | |
617 | then any 16 bit function that calls FNNAME should be redirected | |
618 | to the stub instead. If FNNAME is not a 32 bit function, the | |
619 | stub should be discarded. | |
620 | ||
621 | .mips16.call.fp.FNNAME sections are similar, but contain stubs | |
622 | which call FNNAME and then copy the return value from the fp regs | |
623 | to the gp regs. These stubs store the return value in $18 while | |
624 | calling FNNAME; any function which might call one of these stubs | |
625 | must arrange to save $18 around the call. (This case is not | |
626 | needed for 32 bit functions that call 16 bit functions, because | |
627 | 16 bit functions always return floating point values in both | |
628 | $f0/$f1 and $2/$3.) | |
629 | ||
630 | Note that in all cases FNNAME might be defined statically. | |
631 | Therefore, FNNAME is not used literally. Instead, the relocation | |
632 | information will indicate which symbol the section is for. | |
633 | ||
634 | We record any stubs that we find in the symbol table. */ | |
635 | ||
636 | #define FN_STUB ".mips16.fn." | |
637 | #define CALL_STUB ".mips16.call." | |
638 | #define CALL_FP_STUB ".mips16.call.fp." | |
639 | \f | |
640 | /* Look up an entry in a MIPS ELF linker hash table. */ | |
641 | ||
642 | #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \ | |
643 | ((struct mips_elf_link_hash_entry *) \ | |
644 | elf_link_hash_lookup (&(table)->root, (string), (create), \ | |
645 | (copy), (follow))) | |
646 | ||
647 | /* Traverse a MIPS ELF linker hash table. */ | |
648 | ||
649 | #define mips_elf_link_hash_traverse(table, func, info) \ | |
650 | (elf_link_hash_traverse \ | |
651 | (&(table)->root, \ | |
9719ad41 | 652 | (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \ |
b49e97c9 TS |
653 | (info))) |
654 | ||
655 | /* Get the MIPS ELF linker hash table from a link_info structure. */ | |
656 | ||
657 | #define mips_elf_hash_table(p) \ | |
658 | ((struct mips_elf_link_hash_table *) ((p)->hash)) | |
659 | ||
0f20cc35 DJ |
660 | /* Find the base offsets for thread-local storage in this object, |
661 | for GD/LD and IE/LE respectively. */ | |
662 | ||
663 | #define TP_OFFSET 0x7000 | |
664 | #define DTP_OFFSET 0x8000 | |
665 | ||
666 | static bfd_vma | |
667 | dtprel_base (struct bfd_link_info *info) | |
668 | { | |
669 | /* If tls_sec is NULL, we should have signalled an error already. */ | |
670 | if (elf_hash_table (info)->tls_sec == NULL) | |
671 | return 0; | |
672 | return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET; | |
673 | } | |
674 | ||
675 | static bfd_vma | |
676 | tprel_base (struct bfd_link_info *info) | |
677 | { | |
678 | /* If tls_sec is NULL, we should have signalled an error already. */ | |
679 | if (elf_hash_table (info)->tls_sec == NULL) | |
680 | return 0; | |
681 | return elf_hash_table (info)->tls_sec->vma + TP_OFFSET; | |
682 | } | |
683 | ||
b49e97c9 TS |
684 | /* Create an entry in a MIPS ELF linker hash table. */ |
685 | ||
686 | static struct bfd_hash_entry * | |
9719ad41 RS |
687 | mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry, |
688 | struct bfd_hash_table *table, const char *string) | |
b49e97c9 TS |
689 | { |
690 | struct mips_elf_link_hash_entry *ret = | |
691 | (struct mips_elf_link_hash_entry *) entry; | |
692 | ||
693 | /* Allocate the structure if it has not already been allocated by a | |
694 | subclass. */ | |
9719ad41 RS |
695 | if (ret == NULL) |
696 | ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry)); | |
697 | if (ret == NULL) | |
b49e97c9 TS |
698 | return (struct bfd_hash_entry *) ret; |
699 | ||
700 | /* Call the allocation method of the superclass. */ | |
701 | ret = ((struct mips_elf_link_hash_entry *) | |
702 | _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret, | |
703 | table, string)); | |
9719ad41 | 704 | if (ret != NULL) |
b49e97c9 TS |
705 | { |
706 | /* Set local fields. */ | |
707 | memset (&ret->esym, 0, sizeof (EXTR)); | |
708 | /* We use -2 as a marker to indicate that the information has | |
709 | not been set. -1 means there is no associated ifd. */ | |
710 | ret->esym.ifd = -2; | |
711 | ret->possibly_dynamic_relocs = 0; | |
b34976b6 | 712 | ret->readonly_reloc = FALSE; |
b34976b6 | 713 | ret->no_fn_stub = FALSE; |
b49e97c9 | 714 | ret->fn_stub = NULL; |
b34976b6 | 715 | ret->need_fn_stub = FALSE; |
b49e97c9 TS |
716 | ret->call_stub = NULL; |
717 | ret->call_fp_stub = NULL; | |
b34976b6 | 718 | ret->forced_local = FALSE; |
0f20cc35 | 719 | ret->tls_type = GOT_NORMAL; |
b49e97c9 TS |
720 | } |
721 | ||
722 | return (struct bfd_hash_entry *) ret; | |
723 | } | |
f0abc2a1 AM |
724 | |
725 | bfd_boolean | |
9719ad41 | 726 | _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec) |
f0abc2a1 AM |
727 | { |
728 | struct _mips_elf_section_data *sdata; | |
729 | bfd_size_type amt = sizeof (*sdata); | |
730 | ||
9719ad41 | 731 | sdata = bfd_zalloc (abfd, amt); |
f0abc2a1 AM |
732 | if (sdata == NULL) |
733 | return FALSE; | |
9719ad41 | 734 | sec->used_by_bfd = sdata; |
f0abc2a1 AM |
735 | |
736 | return _bfd_elf_new_section_hook (abfd, sec); | |
737 | } | |
b49e97c9 TS |
738 | \f |
739 | /* Read ECOFF debugging information from a .mdebug section into a | |
740 | ecoff_debug_info structure. */ | |
741 | ||
b34976b6 | 742 | bfd_boolean |
9719ad41 RS |
743 | _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section, |
744 | struct ecoff_debug_info *debug) | |
b49e97c9 TS |
745 | { |
746 | HDRR *symhdr; | |
747 | const struct ecoff_debug_swap *swap; | |
9719ad41 | 748 | char *ext_hdr; |
b49e97c9 TS |
749 | |
750 | swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; | |
751 | memset (debug, 0, sizeof (*debug)); | |
752 | ||
9719ad41 | 753 | ext_hdr = bfd_malloc (swap->external_hdr_size); |
b49e97c9 TS |
754 | if (ext_hdr == NULL && swap->external_hdr_size != 0) |
755 | goto error_return; | |
756 | ||
9719ad41 | 757 | if (! bfd_get_section_contents (abfd, section, ext_hdr, 0, |
82e51918 | 758 | swap->external_hdr_size)) |
b49e97c9 TS |
759 | goto error_return; |
760 | ||
761 | symhdr = &debug->symbolic_header; | |
762 | (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr); | |
763 | ||
764 | /* The symbolic header contains absolute file offsets and sizes to | |
765 | read. */ | |
766 | #define READ(ptr, offset, count, size, type) \ | |
767 | if (symhdr->count == 0) \ | |
768 | debug->ptr = NULL; \ | |
769 | else \ | |
770 | { \ | |
771 | bfd_size_type amt = (bfd_size_type) size * symhdr->count; \ | |
9719ad41 | 772 | debug->ptr = bfd_malloc (amt); \ |
b49e97c9 TS |
773 | if (debug->ptr == NULL) \ |
774 | goto error_return; \ | |
9719ad41 | 775 | if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \ |
b49e97c9 TS |
776 | || bfd_bread (debug->ptr, amt, abfd) != amt) \ |
777 | goto error_return; \ | |
778 | } | |
779 | ||
780 | READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *); | |
9719ad41 RS |
781 | READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *); |
782 | READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *); | |
783 | READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *); | |
784 | READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *); | |
b49e97c9 TS |
785 | READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext), |
786 | union aux_ext *); | |
787 | READ (ss, cbSsOffset, issMax, sizeof (char), char *); | |
788 | READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *); | |
9719ad41 RS |
789 | READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *); |
790 | READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *); | |
791 | READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *); | |
b49e97c9 TS |
792 | #undef READ |
793 | ||
794 | debug->fdr = NULL; | |
b49e97c9 | 795 | |
b34976b6 | 796 | return TRUE; |
b49e97c9 TS |
797 | |
798 | error_return: | |
799 | if (ext_hdr != NULL) | |
800 | free (ext_hdr); | |
801 | if (debug->line != NULL) | |
802 | free (debug->line); | |
803 | if (debug->external_dnr != NULL) | |
804 | free (debug->external_dnr); | |
805 | if (debug->external_pdr != NULL) | |
806 | free (debug->external_pdr); | |
807 | if (debug->external_sym != NULL) | |
808 | free (debug->external_sym); | |
809 | if (debug->external_opt != NULL) | |
810 | free (debug->external_opt); | |
811 | if (debug->external_aux != NULL) | |
812 | free (debug->external_aux); | |
813 | if (debug->ss != NULL) | |
814 | free (debug->ss); | |
815 | if (debug->ssext != NULL) | |
816 | free (debug->ssext); | |
817 | if (debug->external_fdr != NULL) | |
818 | free (debug->external_fdr); | |
819 | if (debug->external_rfd != NULL) | |
820 | free (debug->external_rfd); | |
821 | if (debug->external_ext != NULL) | |
822 | free (debug->external_ext); | |
b34976b6 | 823 | return FALSE; |
b49e97c9 TS |
824 | } |
825 | \f | |
826 | /* Swap RPDR (runtime procedure table entry) for output. */ | |
827 | ||
828 | static void | |
9719ad41 | 829 | ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex) |
b49e97c9 TS |
830 | { |
831 | H_PUT_S32 (abfd, in->adr, ex->p_adr); | |
832 | H_PUT_32 (abfd, in->regmask, ex->p_regmask); | |
833 | H_PUT_32 (abfd, in->regoffset, ex->p_regoffset); | |
834 | H_PUT_32 (abfd, in->fregmask, ex->p_fregmask); | |
835 | H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset); | |
836 | H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset); | |
837 | ||
838 | H_PUT_16 (abfd, in->framereg, ex->p_framereg); | |
839 | H_PUT_16 (abfd, in->pcreg, ex->p_pcreg); | |
840 | ||
841 | H_PUT_32 (abfd, in->irpss, ex->p_irpss); | |
b49e97c9 TS |
842 | } |
843 | ||
844 | /* Create a runtime procedure table from the .mdebug section. */ | |
845 | ||
b34976b6 | 846 | static bfd_boolean |
9719ad41 RS |
847 | mips_elf_create_procedure_table (void *handle, bfd *abfd, |
848 | struct bfd_link_info *info, asection *s, | |
849 | struct ecoff_debug_info *debug) | |
b49e97c9 TS |
850 | { |
851 | const struct ecoff_debug_swap *swap; | |
852 | HDRR *hdr = &debug->symbolic_header; | |
853 | RPDR *rpdr, *rp; | |
854 | struct rpdr_ext *erp; | |
9719ad41 | 855 | void *rtproc; |
b49e97c9 TS |
856 | struct pdr_ext *epdr; |
857 | struct sym_ext *esym; | |
858 | char *ss, **sv; | |
859 | char *str; | |
860 | bfd_size_type size; | |
861 | bfd_size_type count; | |
862 | unsigned long sindex; | |
863 | unsigned long i; | |
864 | PDR pdr; | |
865 | SYMR sym; | |
866 | const char *no_name_func = _("static procedure (no name)"); | |
867 | ||
868 | epdr = NULL; | |
869 | rpdr = NULL; | |
870 | esym = NULL; | |
871 | ss = NULL; | |
872 | sv = NULL; | |
873 | ||
874 | swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; | |
875 | ||
876 | sindex = strlen (no_name_func) + 1; | |
877 | count = hdr->ipdMax; | |
878 | if (count > 0) | |
879 | { | |
880 | size = swap->external_pdr_size; | |
881 | ||
9719ad41 | 882 | epdr = bfd_malloc (size * count); |
b49e97c9 TS |
883 | if (epdr == NULL) |
884 | goto error_return; | |
885 | ||
9719ad41 | 886 | if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr)) |
b49e97c9 TS |
887 | goto error_return; |
888 | ||
889 | size = sizeof (RPDR); | |
9719ad41 | 890 | rp = rpdr = bfd_malloc (size * count); |
b49e97c9 TS |
891 | if (rpdr == NULL) |
892 | goto error_return; | |
893 | ||
894 | size = sizeof (char *); | |
9719ad41 | 895 | sv = bfd_malloc (size * count); |
b49e97c9 TS |
896 | if (sv == NULL) |
897 | goto error_return; | |
898 | ||
899 | count = hdr->isymMax; | |
900 | size = swap->external_sym_size; | |
9719ad41 | 901 | esym = bfd_malloc (size * count); |
b49e97c9 TS |
902 | if (esym == NULL) |
903 | goto error_return; | |
904 | ||
9719ad41 | 905 | if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym)) |
b49e97c9 TS |
906 | goto error_return; |
907 | ||
908 | count = hdr->issMax; | |
9719ad41 | 909 | ss = bfd_malloc (count); |
b49e97c9 TS |
910 | if (ss == NULL) |
911 | goto error_return; | |
f075ee0c | 912 | if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss)) |
b49e97c9 TS |
913 | goto error_return; |
914 | ||
915 | count = hdr->ipdMax; | |
916 | for (i = 0; i < (unsigned long) count; i++, rp++) | |
917 | { | |
9719ad41 RS |
918 | (*swap->swap_pdr_in) (abfd, epdr + i, &pdr); |
919 | (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym); | |
b49e97c9 TS |
920 | rp->adr = sym.value; |
921 | rp->regmask = pdr.regmask; | |
922 | rp->regoffset = pdr.regoffset; | |
923 | rp->fregmask = pdr.fregmask; | |
924 | rp->fregoffset = pdr.fregoffset; | |
925 | rp->frameoffset = pdr.frameoffset; | |
926 | rp->framereg = pdr.framereg; | |
927 | rp->pcreg = pdr.pcreg; | |
928 | rp->irpss = sindex; | |
929 | sv[i] = ss + sym.iss; | |
930 | sindex += strlen (sv[i]) + 1; | |
931 | } | |
932 | } | |
933 | ||
934 | size = sizeof (struct rpdr_ext) * (count + 2) + sindex; | |
935 | size = BFD_ALIGN (size, 16); | |
9719ad41 | 936 | rtproc = bfd_alloc (abfd, size); |
b49e97c9 TS |
937 | if (rtproc == NULL) |
938 | { | |
939 | mips_elf_hash_table (info)->procedure_count = 0; | |
940 | goto error_return; | |
941 | } | |
942 | ||
943 | mips_elf_hash_table (info)->procedure_count = count + 2; | |
944 | ||
9719ad41 | 945 | erp = rtproc; |
b49e97c9 TS |
946 | memset (erp, 0, sizeof (struct rpdr_ext)); |
947 | erp++; | |
948 | str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2); | |
949 | strcpy (str, no_name_func); | |
950 | str += strlen (no_name_func) + 1; | |
951 | for (i = 0; i < count; i++) | |
952 | { | |
953 | ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i); | |
954 | strcpy (str, sv[i]); | |
955 | str += strlen (sv[i]) + 1; | |
956 | } | |
957 | H_PUT_S32 (abfd, -1, (erp + count)->p_adr); | |
958 | ||
959 | /* Set the size and contents of .rtproc section. */ | |
eea6121a | 960 | s->size = size; |
9719ad41 | 961 | s->contents = rtproc; |
b49e97c9 TS |
962 | |
963 | /* Skip this section later on (I don't think this currently | |
964 | matters, but someday it might). */ | |
8423293d | 965 | s->map_head.link_order = NULL; |
b49e97c9 TS |
966 | |
967 | if (epdr != NULL) | |
968 | free (epdr); | |
969 | if (rpdr != NULL) | |
970 | free (rpdr); | |
971 | if (esym != NULL) | |
972 | free (esym); | |
973 | if (ss != NULL) | |
974 | free (ss); | |
975 | if (sv != NULL) | |
976 | free (sv); | |
977 | ||
b34976b6 | 978 | return TRUE; |
b49e97c9 TS |
979 | |
980 | error_return: | |
981 | if (epdr != NULL) | |
982 | free (epdr); | |
983 | if (rpdr != NULL) | |
984 | free (rpdr); | |
985 | if (esym != NULL) | |
986 | free (esym); | |
987 | if (ss != NULL) | |
988 | free (ss); | |
989 | if (sv != NULL) | |
990 | free (sv); | |
b34976b6 | 991 | return FALSE; |
b49e97c9 TS |
992 | } |
993 | ||
994 | /* Check the mips16 stubs for a particular symbol, and see if we can | |
995 | discard them. */ | |
996 | ||
b34976b6 | 997 | static bfd_boolean |
9719ad41 RS |
998 | mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h, |
999 | void *data ATTRIBUTE_UNUSED) | |
b49e97c9 TS |
1000 | { |
1001 | if (h->root.root.type == bfd_link_hash_warning) | |
1002 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | |
1003 | ||
1004 | if (h->fn_stub != NULL | |
1005 | && ! h->need_fn_stub) | |
1006 | { | |
1007 | /* We don't need the fn_stub; the only references to this symbol | |
1008 | are 16 bit calls. Clobber the size to 0 to prevent it from | |
1009 | being included in the link. */ | |
eea6121a | 1010 | h->fn_stub->size = 0; |
b49e97c9 TS |
1011 | h->fn_stub->flags &= ~SEC_RELOC; |
1012 | h->fn_stub->reloc_count = 0; | |
1013 | h->fn_stub->flags |= SEC_EXCLUDE; | |
1014 | } | |
1015 | ||
1016 | if (h->call_stub != NULL | |
1017 | && h->root.other == STO_MIPS16) | |
1018 | { | |
1019 | /* We don't need the call_stub; this is a 16 bit function, so | |
1020 | calls from other 16 bit functions are OK. Clobber the size | |
1021 | to 0 to prevent it from being included in the link. */ | |
eea6121a | 1022 | h->call_stub->size = 0; |
b49e97c9 TS |
1023 | h->call_stub->flags &= ~SEC_RELOC; |
1024 | h->call_stub->reloc_count = 0; | |
1025 | h->call_stub->flags |= SEC_EXCLUDE; | |
1026 | } | |
1027 | ||
1028 | if (h->call_fp_stub != NULL | |
1029 | && h->root.other == STO_MIPS16) | |
1030 | { | |
1031 | /* We don't need the call_stub; this is a 16 bit function, so | |
1032 | calls from other 16 bit functions are OK. Clobber the size | |
1033 | to 0 to prevent it from being included in the link. */ | |
eea6121a | 1034 | h->call_fp_stub->size = 0; |
b49e97c9 TS |
1035 | h->call_fp_stub->flags &= ~SEC_RELOC; |
1036 | h->call_fp_stub->reloc_count = 0; | |
1037 | h->call_fp_stub->flags |= SEC_EXCLUDE; | |
1038 | } | |
1039 | ||
b34976b6 | 1040 | return TRUE; |
b49e97c9 TS |
1041 | } |
1042 | \f | |
d6f16593 MR |
1043 | /* R_MIPS16_26 is used for the mips16 jal and jalx instructions. |
1044 | Most mips16 instructions are 16 bits, but these instructions | |
1045 | are 32 bits. | |
1046 | ||
1047 | The format of these instructions is: | |
1048 | ||
1049 | +--------------+--------------------------------+ | |
1050 | | JALX | X| Imm 20:16 | Imm 25:21 | | |
1051 | +--------------+--------------------------------+ | |
1052 | | Immediate 15:0 | | |
1053 | +-----------------------------------------------+ | |
1054 | ||
1055 | JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx. | |
1056 | Note that the immediate value in the first word is swapped. | |
1057 | ||
1058 | When producing a relocatable object file, R_MIPS16_26 is | |
1059 | handled mostly like R_MIPS_26. In particular, the addend is | |
1060 | stored as a straight 26-bit value in a 32-bit instruction. | |
1061 | (gas makes life simpler for itself by never adjusting a | |
1062 | R_MIPS16_26 reloc to be against a section, so the addend is | |
1063 | always zero). However, the 32 bit instruction is stored as 2 | |
1064 | 16-bit values, rather than a single 32-bit value. In a | |
1065 | big-endian file, the result is the same; in a little-endian | |
1066 | file, the two 16-bit halves of the 32 bit value are swapped. | |
1067 | This is so that a disassembler can recognize the jal | |
1068 | instruction. | |
1069 | ||
1070 | When doing a final link, R_MIPS16_26 is treated as a 32 bit | |
1071 | instruction stored as two 16-bit values. The addend A is the | |
1072 | contents of the targ26 field. The calculation is the same as | |
1073 | R_MIPS_26. When storing the calculated value, reorder the | |
1074 | immediate value as shown above, and don't forget to store the | |
1075 | value as two 16-bit values. | |
1076 | ||
1077 | To put it in MIPS ABI terms, the relocation field is T-targ26-16, | |
1078 | defined as | |
1079 | ||
1080 | big-endian: | |
1081 | +--------+----------------------+ | |
1082 | | | | | |
1083 | | | targ26-16 | | |
1084 | |31 26|25 0| | |
1085 | +--------+----------------------+ | |
1086 | ||
1087 | little-endian: | |
1088 | +----------+------+-------------+ | |
1089 | | | | | | |
1090 | | sub1 | | sub2 | | |
1091 | |0 9|10 15|16 31| | |
1092 | +----------+--------------------+ | |
1093 | where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is | |
1094 | ((sub1 << 16) | sub2)). | |
1095 | ||
1096 | When producing a relocatable object file, the calculation is | |
1097 | (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2) | |
1098 | When producing a fully linked file, the calculation is | |
1099 | let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2) | |
1100 | ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) | |
1101 | ||
1102 | R_MIPS16_GPREL is used for GP-relative addressing in mips16 | |
1103 | mode. A typical instruction will have a format like this: | |
1104 | ||
1105 | +--------------+--------------------------------+ | |
1106 | | EXTEND | Imm 10:5 | Imm 15:11 | | |
1107 | +--------------+--------------------------------+ | |
1108 | | Major | rx | ry | Imm 4:0 | | |
1109 | +--------------+--------------------------------+ | |
1110 | ||
1111 | EXTEND is the five bit value 11110. Major is the instruction | |
1112 | opcode. | |
1113 | ||
1114 | This is handled exactly like R_MIPS_GPREL16, except that the | |
1115 | addend is retrieved and stored as shown in this diagram; that | |
1116 | is, the Imm fields above replace the V-rel16 field. | |
1117 | ||
1118 | All we need to do here is shuffle the bits appropriately. As | |
1119 | above, the two 16-bit halves must be swapped on a | |
1120 | little-endian system. | |
1121 | ||
1122 | R_MIPS16_HI16 and R_MIPS16_LO16 are used in mips16 mode to | |
1123 | access data when neither GP-relative nor PC-relative addressing | |
1124 | can be used. They are handled like R_MIPS_HI16 and R_MIPS_LO16, | |
1125 | except that the addend is retrieved and stored as shown above | |
1126 | for R_MIPS16_GPREL. | |
1127 | */ | |
1128 | void | |
1129 | _bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type, | |
1130 | bfd_boolean jal_shuffle, bfd_byte *data) | |
1131 | { | |
1132 | bfd_vma extend, insn, val; | |
1133 | ||
1134 | if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL | |
1135 | && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16) | |
1136 | return; | |
1137 | ||
1138 | /* Pick up the mips16 extend instruction and the real instruction. */ | |
1139 | extend = bfd_get_16 (abfd, data); | |
1140 | insn = bfd_get_16 (abfd, data + 2); | |
1141 | if (r_type == R_MIPS16_26) | |
1142 | { | |
1143 | if (jal_shuffle) | |
1144 | val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11) | |
1145 | | ((extend & 0x1f) << 21) | insn; | |
1146 | else | |
1147 | val = extend << 16 | insn; | |
1148 | } | |
1149 | else | |
1150 | val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11) | |
1151 | | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f); | |
1152 | bfd_put_32 (abfd, val, data); | |
1153 | } | |
1154 | ||
1155 | void | |
1156 | _bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type, | |
1157 | bfd_boolean jal_shuffle, bfd_byte *data) | |
1158 | { | |
1159 | bfd_vma extend, insn, val; | |
1160 | ||
1161 | if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL | |
1162 | && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16) | |
1163 | return; | |
1164 | ||
1165 | val = bfd_get_32 (abfd, data); | |
1166 | if (r_type == R_MIPS16_26) | |
1167 | { | |
1168 | if (jal_shuffle) | |
1169 | { | |
1170 | insn = val & 0xffff; | |
1171 | extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0) | |
1172 | | ((val >> 21) & 0x1f); | |
1173 | } | |
1174 | else | |
1175 | { | |
1176 | insn = val & 0xffff; | |
1177 | extend = val >> 16; | |
1178 | } | |
1179 | } | |
1180 | else | |
1181 | { | |
1182 | insn = ((val >> 11) & 0xffe0) | (val & 0x1f); | |
1183 | extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0); | |
1184 | } | |
1185 | bfd_put_16 (abfd, insn, data + 2); | |
1186 | bfd_put_16 (abfd, extend, data); | |
1187 | } | |
1188 | ||
b49e97c9 | 1189 | bfd_reloc_status_type |
9719ad41 RS |
1190 | _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol, |
1191 | arelent *reloc_entry, asection *input_section, | |
1192 | bfd_boolean relocatable, void *data, bfd_vma gp) | |
b49e97c9 TS |
1193 | { |
1194 | bfd_vma relocation; | |
a7ebbfdf | 1195 | bfd_signed_vma val; |
30ac9238 | 1196 | bfd_reloc_status_type status; |
b49e97c9 TS |
1197 | |
1198 | if (bfd_is_com_section (symbol->section)) | |
1199 | relocation = 0; | |
1200 | else | |
1201 | relocation = symbol->value; | |
1202 | ||
1203 | relocation += symbol->section->output_section->vma; | |
1204 | relocation += symbol->section->output_offset; | |
1205 | ||
07515404 | 1206 | if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) |
b49e97c9 TS |
1207 | return bfd_reloc_outofrange; |
1208 | ||
b49e97c9 | 1209 | /* Set val to the offset into the section or symbol. */ |
a7ebbfdf TS |
1210 | val = reloc_entry->addend; |
1211 | ||
30ac9238 | 1212 | _bfd_mips_elf_sign_extend (val, 16); |
a7ebbfdf | 1213 | |
b49e97c9 | 1214 | /* Adjust val for the final section location and GP value. If we |
1049f94e | 1215 | are producing relocatable output, we don't want to do this for |
b49e97c9 | 1216 | an external symbol. */ |
1049f94e | 1217 | if (! relocatable |
b49e97c9 TS |
1218 | || (symbol->flags & BSF_SECTION_SYM) != 0) |
1219 | val += relocation - gp; | |
1220 | ||
a7ebbfdf TS |
1221 | if (reloc_entry->howto->partial_inplace) |
1222 | { | |
30ac9238 RS |
1223 | status = _bfd_relocate_contents (reloc_entry->howto, abfd, val, |
1224 | (bfd_byte *) data | |
1225 | + reloc_entry->address); | |
1226 | if (status != bfd_reloc_ok) | |
1227 | return status; | |
a7ebbfdf TS |
1228 | } |
1229 | else | |
1230 | reloc_entry->addend = val; | |
b49e97c9 | 1231 | |
1049f94e | 1232 | if (relocatable) |
b49e97c9 | 1233 | reloc_entry->address += input_section->output_offset; |
30ac9238 RS |
1234 | |
1235 | return bfd_reloc_ok; | |
1236 | } | |
1237 | ||
1238 | /* Used to store a REL high-part relocation such as R_MIPS_HI16 or | |
1239 | R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section | |
1240 | that contains the relocation field and DATA points to the start of | |
1241 | INPUT_SECTION. */ | |
1242 | ||
1243 | struct mips_hi16 | |
1244 | { | |
1245 | struct mips_hi16 *next; | |
1246 | bfd_byte *data; | |
1247 | asection *input_section; | |
1248 | arelent rel; | |
1249 | }; | |
1250 | ||
1251 | /* FIXME: This should not be a static variable. */ | |
1252 | ||
1253 | static struct mips_hi16 *mips_hi16_list; | |
1254 | ||
1255 | /* A howto special_function for REL *HI16 relocations. We can only | |
1256 | calculate the correct value once we've seen the partnering | |
1257 | *LO16 relocation, so just save the information for later. | |
1258 | ||
1259 | The ABI requires that the *LO16 immediately follow the *HI16. | |
1260 | However, as a GNU extension, we permit an arbitrary number of | |
1261 | *HI16s to be associated with a single *LO16. This significantly | |
1262 | simplies the relocation handling in gcc. */ | |
1263 | ||
1264 | bfd_reloc_status_type | |
1265 | _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry, | |
1266 | asymbol *symbol ATTRIBUTE_UNUSED, void *data, | |
1267 | asection *input_section, bfd *output_bfd, | |
1268 | char **error_message ATTRIBUTE_UNUSED) | |
1269 | { | |
1270 | struct mips_hi16 *n; | |
1271 | ||
07515404 | 1272 | if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) |
30ac9238 RS |
1273 | return bfd_reloc_outofrange; |
1274 | ||
1275 | n = bfd_malloc (sizeof *n); | |
1276 | if (n == NULL) | |
1277 | return bfd_reloc_outofrange; | |
1278 | ||
1279 | n->next = mips_hi16_list; | |
1280 | n->data = data; | |
1281 | n->input_section = input_section; | |
1282 | n->rel = *reloc_entry; | |
1283 | mips_hi16_list = n; | |
1284 | ||
1285 | if (output_bfd != NULL) | |
1286 | reloc_entry->address += input_section->output_offset; | |
1287 | ||
1288 | return bfd_reloc_ok; | |
1289 | } | |
1290 | ||
1291 | /* A howto special_function for REL R_MIPS_GOT16 relocations. This is just | |
1292 | like any other 16-bit relocation when applied to global symbols, but is | |
1293 | treated in the same as R_MIPS_HI16 when applied to local symbols. */ | |
1294 | ||
1295 | bfd_reloc_status_type | |
1296 | _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol, | |
1297 | void *data, asection *input_section, | |
1298 | bfd *output_bfd, char **error_message) | |
1299 | { | |
1300 | if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0 | |
1301 | || bfd_is_und_section (bfd_get_section (symbol)) | |
1302 | || bfd_is_com_section (bfd_get_section (symbol))) | |
1303 | /* The relocation is against a global symbol. */ | |
1304 | return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data, | |
1305 | input_section, output_bfd, | |
1306 | error_message); | |
1307 | ||
1308 | return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data, | |
1309 | input_section, output_bfd, error_message); | |
1310 | } | |
1311 | ||
1312 | /* A howto special_function for REL *LO16 relocations. The *LO16 itself | |
1313 | is a straightforward 16 bit inplace relocation, but we must deal with | |
1314 | any partnering high-part relocations as well. */ | |
1315 | ||
1316 | bfd_reloc_status_type | |
1317 | _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol, | |
1318 | void *data, asection *input_section, | |
1319 | bfd *output_bfd, char **error_message) | |
1320 | { | |
1321 | bfd_vma vallo; | |
d6f16593 | 1322 | bfd_byte *location = (bfd_byte *) data + reloc_entry->address; |
30ac9238 | 1323 | |
07515404 | 1324 | if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) |
30ac9238 RS |
1325 | return bfd_reloc_outofrange; |
1326 | ||
d6f16593 MR |
1327 | _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE, |
1328 | location); | |
1329 | vallo = bfd_get_32 (abfd, location); | |
1330 | _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE, | |
1331 | location); | |
1332 | ||
30ac9238 RS |
1333 | while (mips_hi16_list != NULL) |
1334 | { | |
1335 | bfd_reloc_status_type ret; | |
1336 | struct mips_hi16 *hi; | |
1337 | ||
1338 | hi = mips_hi16_list; | |
1339 | ||
1340 | /* R_MIPS_GOT16 relocations are something of a special case. We | |
1341 | want to install the addend in the same way as for a R_MIPS_HI16 | |
1342 | relocation (with a rightshift of 16). However, since GOT16 | |
1343 | relocations can also be used with global symbols, their howto | |
1344 | has a rightshift of 0. */ | |
1345 | if (hi->rel.howto->type == R_MIPS_GOT16) | |
1346 | hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE); | |
1347 | ||
1348 | /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any | |
1349 | carry or borrow will induce a change of +1 or -1 in the high part. */ | |
1350 | hi->rel.addend += (vallo + 0x8000) & 0xffff; | |
1351 | ||
30ac9238 RS |
1352 | ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data, |
1353 | hi->input_section, output_bfd, | |
1354 | error_message); | |
1355 | if (ret != bfd_reloc_ok) | |
1356 | return ret; | |
1357 | ||
1358 | mips_hi16_list = hi->next; | |
1359 | free (hi); | |
1360 | } | |
1361 | ||
1362 | return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data, | |
1363 | input_section, output_bfd, | |
1364 | error_message); | |
1365 | } | |
1366 | ||
1367 | /* A generic howto special_function. This calculates and installs the | |
1368 | relocation itself, thus avoiding the oft-discussed problems in | |
1369 | bfd_perform_relocation and bfd_install_relocation. */ | |
1370 | ||
1371 | bfd_reloc_status_type | |
1372 | _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry, | |
1373 | asymbol *symbol, void *data ATTRIBUTE_UNUSED, | |
1374 | asection *input_section, bfd *output_bfd, | |
1375 | char **error_message ATTRIBUTE_UNUSED) | |
1376 | { | |
1377 | bfd_signed_vma val; | |
1378 | bfd_reloc_status_type status; | |
1379 | bfd_boolean relocatable; | |
1380 | ||
1381 | relocatable = (output_bfd != NULL); | |
1382 | ||
07515404 | 1383 | if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) |
30ac9238 RS |
1384 | return bfd_reloc_outofrange; |
1385 | ||
1386 | /* Build up the field adjustment in VAL. */ | |
1387 | val = 0; | |
1388 | if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0) | |
1389 | { | |
1390 | /* Either we're calculating the final field value or we have a | |
1391 | relocation against a section symbol. Add in the section's | |
1392 | offset or address. */ | |
1393 | val += symbol->section->output_section->vma; | |
1394 | val += symbol->section->output_offset; | |
1395 | } | |
1396 | ||
1397 | if (!relocatable) | |
1398 | { | |
1399 | /* We're calculating the final field value. Add in the symbol's value | |
1400 | and, if pc-relative, subtract the address of the field itself. */ | |
1401 | val += symbol->value; | |
1402 | if (reloc_entry->howto->pc_relative) | |
1403 | { | |
1404 | val -= input_section->output_section->vma; | |
1405 | val -= input_section->output_offset; | |
1406 | val -= reloc_entry->address; | |
1407 | } | |
1408 | } | |
1409 | ||
1410 | /* VAL is now the final adjustment. If we're keeping this relocation | |
1411 | in the output file, and if the relocation uses a separate addend, | |
1412 | we just need to add VAL to that addend. Otherwise we need to add | |
1413 | VAL to the relocation field itself. */ | |
1414 | if (relocatable && !reloc_entry->howto->partial_inplace) | |
1415 | reloc_entry->addend += val; | |
1416 | else | |
1417 | { | |
d6f16593 MR |
1418 | bfd_byte *location = (bfd_byte *) data + reloc_entry->address; |
1419 | ||
30ac9238 RS |
1420 | /* Add in the separate addend, if any. */ |
1421 | val += reloc_entry->addend; | |
1422 | ||
1423 | /* Add VAL to the relocation field. */ | |
d6f16593 MR |
1424 | _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE, |
1425 | location); | |
30ac9238 | 1426 | status = _bfd_relocate_contents (reloc_entry->howto, abfd, val, |
d6f16593 MR |
1427 | location); |
1428 | _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE, | |
1429 | location); | |
1430 | ||
30ac9238 RS |
1431 | if (status != bfd_reloc_ok) |
1432 | return status; | |
1433 | } | |
1434 | ||
1435 | if (relocatable) | |
1436 | reloc_entry->address += input_section->output_offset; | |
b49e97c9 TS |
1437 | |
1438 | return bfd_reloc_ok; | |
1439 | } | |
1440 | \f | |
1441 | /* Swap an entry in a .gptab section. Note that these routines rely | |
1442 | on the equivalence of the two elements of the union. */ | |
1443 | ||
1444 | static void | |
9719ad41 RS |
1445 | bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex, |
1446 | Elf32_gptab *in) | |
b49e97c9 TS |
1447 | { |
1448 | in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value); | |
1449 | in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes); | |
1450 | } | |
1451 | ||
1452 | static void | |
9719ad41 RS |
1453 | bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in, |
1454 | Elf32_External_gptab *ex) | |
b49e97c9 TS |
1455 | { |
1456 | H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value); | |
1457 | H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes); | |
1458 | } | |
1459 | ||
1460 | static void | |
9719ad41 RS |
1461 | bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in, |
1462 | Elf32_External_compact_rel *ex) | |
b49e97c9 TS |
1463 | { |
1464 | H_PUT_32 (abfd, in->id1, ex->id1); | |
1465 | H_PUT_32 (abfd, in->num, ex->num); | |
1466 | H_PUT_32 (abfd, in->id2, ex->id2); | |
1467 | H_PUT_32 (abfd, in->offset, ex->offset); | |
1468 | H_PUT_32 (abfd, in->reserved0, ex->reserved0); | |
1469 | H_PUT_32 (abfd, in->reserved1, ex->reserved1); | |
1470 | } | |
1471 | ||
1472 | static void | |
9719ad41 RS |
1473 | bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in, |
1474 | Elf32_External_crinfo *ex) | |
b49e97c9 TS |
1475 | { |
1476 | unsigned long l; | |
1477 | ||
1478 | l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH) | |
1479 | | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH) | |
1480 | | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH) | |
1481 | | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH)); | |
1482 | H_PUT_32 (abfd, l, ex->info); | |
1483 | H_PUT_32 (abfd, in->konst, ex->konst); | |
1484 | H_PUT_32 (abfd, in->vaddr, ex->vaddr); | |
1485 | } | |
b49e97c9 TS |
1486 | \f |
1487 | /* A .reginfo section holds a single Elf32_RegInfo structure. These | |
1488 | routines swap this structure in and out. They are used outside of | |
1489 | BFD, so they are globally visible. */ | |
1490 | ||
1491 | void | |
9719ad41 RS |
1492 | bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex, |
1493 | Elf32_RegInfo *in) | |
b49e97c9 TS |
1494 | { |
1495 | in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask); | |
1496 | in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]); | |
1497 | in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]); | |
1498 | in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]); | |
1499 | in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]); | |
1500 | in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value); | |
1501 | } | |
1502 | ||
1503 | void | |
9719ad41 RS |
1504 | bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in, |
1505 | Elf32_External_RegInfo *ex) | |
b49e97c9 TS |
1506 | { |
1507 | H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask); | |
1508 | H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]); | |
1509 | H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]); | |
1510 | H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]); | |
1511 | H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]); | |
1512 | H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value); | |
1513 | } | |
1514 | ||
1515 | /* In the 64 bit ABI, the .MIPS.options section holds register | |
1516 | information in an Elf64_Reginfo structure. These routines swap | |
1517 | them in and out. They are globally visible because they are used | |
1518 | outside of BFD. These routines are here so that gas can call them | |
1519 | without worrying about whether the 64 bit ABI has been included. */ | |
1520 | ||
1521 | void | |
9719ad41 RS |
1522 | bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex, |
1523 | Elf64_Internal_RegInfo *in) | |
b49e97c9 TS |
1524 | { |
1525 | in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask); | |
1526 | in->ri_pad = H_GET_32 (abfd, ex->ri_pad); | |
1527 | in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]); | |
1528 | in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]); | |
1529 | in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]); | |
1530 | in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]); | |
1531 | in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value); | |
1532 | } | |
1533 | ||
1534 | void | |
9719ad41 RS |
1535 | bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in, |
1536 | Elf64_External_RegInfo *ex) | |
b49e97c9 TS |
1537 | { |
1538 | H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask); | |
1539 | H_PUT_32 (abfd, in->ri_pad, ex->ri_pad); | |
1540 | H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]); | |
1541 | H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]); | |
1542 | H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]); | |
1543 | H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]); | |
1544 | H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value); | |
1545 | } | |
1546 | ||
1547 | /* Swap in an options header. */ | |
1548 | ||
1549 | void | |
9719ad41 RS |
1550 | bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex, |
1551 | Elf_Internal_Options *in) | |
b49e97c9 TS |
1552 | { |
1553 | in->kind = H_GET_8 (abfd, ex->kind); | |
1554 | in->size = H_GET_8 (abfd, ex->size); | |
1555 | in->section = H_GET_16 (abfd, ex->section); | |
1556 | in->info = H_GET_32 (abfd, ex->info); | |
1557 | } | |
1558 | ||
1559 | /* Swap out an options header. */ | |
1560 | ||
1561 | void | |
9719ad41 RS |
1562 | bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in, |
1563 | Elf_External_Options *ex) | |
b49e97c9 TS |
1564 | { |
1565 | H_PUT_8 (abfd, in->kind, ex->kind); | |
1566 | H_PUT_8 (abfd, in->size, ex->size); | |
1567 | H_PUT_16 (abfd, in->section, ex->section); | |
1568 | H_PUT_32 (abfd, in->info, ex->info); | |
1569 | } | |
1570 | \f | |
1571 | /* This function is called via qsort() to sort the dynamic relocation | |
1572 | entries by increasing r_symndx value. */ | |
1573 | ||
1574 | static int | |
9719ad41 | 1575 | sort_dynamic_relocs (const void *arg1, const void *arg2) |
b49e97c9 | 1576 | { |
947216bf AM |
1577 | Elf_Internal_Rela int_reloc1; |
1578 | Elf_Internal_Rela int_reloc2; | |
b49e97c9 | 1579 | |
947216bf AM |
1580 | bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1); |
1581 | bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2); | |
b49e97c9 | 1582 | |
947216bf | 1583 | return ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info); |
b49e97c9 TS |
1584 | } |
1585 | ||
f4416af6 AO |
1586 | /* Like sort_dynamic_relocs, but used for elf64 relocations. */ |
1587 | ||
1588 | static int | |
7e3102a7 AM |
1589 | sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED, |
1590 | const void *arg2 ATTRIBUTE_UNUSED) | |
f4416af6 | 1591 | { |
7e3102a7 | 1592 | #ifdef BFD64 |
f4416af6 AO |
1593 | Elf_Internal_Rela int_reloc1[3]; |
1594 | Elf_Internal_Rela int_reloc2[3]; | |
1595 | ||
1596 | (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in) | |
1597 | (reldyn_sorting_bfd, arg1, int_reloc1); | |
1598 | (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in) | |
1599 | (reldyn_sorting_bfd, arg2, int_reloc2); | |
1600 | ||
1601 | return (ELF64_R_SYM (int_reloc1[0].r_info) | |
1602 | - ELF64_R_SYM (int_reloc2[0].r_info)); | |
7e3102a7 AM |
1603 | #else |
1604 | abort (); | |
1605 | #endif | |
f4416af6 AO |
1606 | } |
1607 | ||
1608 | ||
b49e97c9 TS |
1609 | /* This routine is used to write out ECOFF debugging external symbol |
1610 | information. It is called via mips_elf_link_hash_traverse. The | |
1611 | ECOFF external symbol information must match the ELF external | |
1612 | symbol information. Unfortunately, at this point we don't know | |
1613 | whether a symbol is required by reloc information, so the two | |
1614 | tables may wind up being different. We must sort out the external | |
1615 | symbol information before we can set the final size of the .mdebug | |
1616 | section, and we must set the size of the .mdebug section before we | |
1617 | can relocate any sections, and we can't know which symbols are | |
1618 | required by relocation until we relocate the sections. | |
1619 | Fortunately, it is relatively unlikely that any symbol will be | |
1620 | stripped but required by a reloc. In particular, it can not happen | |
1621 | when generating a final executable. */ | |
1622 | ||
b34976b6 | 1623 | static bfd_boolean |
9719ad41 | 1624 | mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data) |
b49e97c9 | 1625 | { |
9719ad41 | 1626 | struct extsym_info *einfo = data; |
b34976b6 | 1627 | bfd_boolean strip; |
b49e97c9 TS |
1628 | asection *sec, *output_section; |
1629 | ||
1630 | if (h->root.root.type == bfd_link_hash_warning) | |
1631 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | |
1632 | ||
1633 | if (h->root.indx == -2) | |
b34976b6 | 1634 | strip = FALSE; |
f5385ebf | 1635 | else if ((h->root.def_dynamic |
77cfaee6 AM |
1636 | || h->root.ref_dynamic |
1637 | || h->root.type == bfd_link_hash_new) | |
f5385ebf AM |
1638 | && !h->root.def_regular |
1639 | && !h->root.ref_regular) | |
b34976b6 | 1640 | strip = TRUE; |
b49e97c9 TS |
1641 | else if (einfo->info->strip == strip_all |
1642 | || (einfo->info->strip == strip_some | |
1643 | && bfd_hash_lookup (einfo->info->keep_hash, | |
1644 | h->root.root.root.string, | |
b34976b6 AM |
1645 | FALSE, FALSE) == NULL)) |
1646 | strip = TRUE; | |
b49e97c9 | 1647 | else |
b34976b6 | 1648 | strip = FALSE; |
b49e97c9 TS |
1649 | |
1650 | if (strip) | |
b34976b6 | 1651 | return TRUE; |
b49e97c9 TS |
1652 | |
1653 | if (h->esym.ifd == -2) | |
1654 | { | |
1655 | h->esym.jmptbl = 0; | |
1656 | h->esym.cobol_main = 0; | |
1657 | h->esym.weakext = 0; | |
1658 | h->esym.reserved = 0; | |
1659 | h->esym.ifd = ifdNil; | |
1660 | h->esym.asym.value = 0; | |
1661 | h->esym.asym.st = stGlobal; | |
1662 | ||
1663 | if (h->root.root.type == bfd_link_hash_undefined | |
1664 | || h->root.root.type == bfd_link_hash_undefweak) | |
1665 | { | |
1666 | const char *name; | |
1667 | ||
1668 | /* Use undefined class. Also, set class and type for some | |
1669 | special symbols. */ | |
1670 | name = h->root.root.root.string; | |
1671 | if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0 | |
1672 | || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0) | |
1673 | { | |
1674 | h->esym.asym.sc = scData; | |
1675 | h->esym.asym.st = stLabel; | |
1676 | h->esym.asym.value = 0; | |
1677 | } | |
1678 | else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0) | |
1679 | { | |
1680 | h->esym.asym.sc = scAbs; | |
1681 | h->esym.asym.st = stLabel; | |
1682 | h->esym.asym.value = | |
1683 | mips_elf_hash_table (einfo->info)->procedure_count; | |
1684 | } | |
4a14403c | 1685 | else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd)) |
b49e97c9 TS |
1686 | { |
1687 | h->esym.asym.sc = scAbs; | |
1688 | h->esym.asym.st = stLabel; | |
1689 | h->esym.asym.value = elf_gp (einfo->abfd); | |
1690 | } | |
1691 | else | |
1692 | h->esym.asym.sc = scUndefined; | |
1693 | } | |
1694 | else if (h->root.root.type != bfd_link_hash_defined | |
1695 | && h->root.root.type != bfd_link_hash_defweak) | |
1696 | h->esym.asym.sc = scAbs; | |
1697 | else | |
1698 | { | |
1699 | const char *name; | |
1700 | ||
1701 | sec = h->root.root.u.def.section; | |
1702 | output_section = sec->output_section; | |
1703 | ||
1704 | /* When making a shared library and symbol h is the one from | |
1705 | the another shared library, OUTPUT_SECTION may be null. */ | |
1706 | if (output_section == NULL) | |
1707 | h->esym.asym.sc = scUndefined; | |
1708 | else | |
1709 | { | |
1710 | name = bfd_section_name (output_section->owner, output_section); | |
1711 | ||
1712 | if (strcmp (name, ".text") == 0) | |
1713 | h->esym.asym.sc = scText; | |
1714 | else if (strcmp (name, ".data") == 0) | |
1715 | h->esym.asym.sc = scData; | |
1716 | else if (strcmp (name, ".sdata") == 0) | |
1717 | h->esym.asym.sc = scSData; | |
1718 | else if (strcmp (name, ".rodata") == 0 | |
1719 | || strcmp (name, ".rdata") == 0) | |
1720 | h->esym.asym.sc = scRData; | |
1721 | else if (strcmp (name, ".bss") == 0) | |
1722 | h->esym.asym.sc = scBss; | |
1723 | else if (strcmp (name, ".sbss") == 0) | |
1724 | h->esym.asym.sc = scSBss; | |
1725 | else if (strcmp (name, ".init") == 0) | |
1726 | h->esym.asym.sc = scInit; | |
1727 | else if (strcmp (name, ".fini") == 0) | |
1728 | h->esym.asym.sc = scFini; | |
1729 | else | |
1730 | h->esym.asym.sc = scAbs; | |
1731 | } | |
1732 | } | |
1733 | ||
1734 | h->esym.asym.reserved = 0; | |
1735 | h->esym.asym.index = indexNil; | |
1736 | } | |
1737 | ||
1738 | if (h->root.root.type == bfd_link_hash_common) | |
1739 | h->esym.asym.value = h->root.root.u.c.size; | |
1740 | else if (h->root.root.type == bfd_link_hash_defined | |
1741 | || h->root.root.type == bfd_link_hash_defweak) | |
1742 | { | |
1743 | if (h->esym.asym.sc == scCommon) | |
1744 | h->esym.asym.sc = scBss; | |
1745 | else if (h->esym.asym.sc == scSCommon) | |
1746 | h->esym.asym.sc = scSBss; | |
1747 | ||
1748 | sec = h->root.root.u.def.section; | |
1749 | output_section = sec->output_section; | |
1750 | if (output_section != NULL) | |
1751 | h->esym.asym.value = (h->root.root.u.def.value | |
1752 | + sec->output_offset | |
1753 | + output_section->vma); | |
1754 | else | |
1755 | h->esym.asym.value = 0; | |
1756 | } | |
f5385ebf | 1757 | else if (h->root.needs_plt) |
b49e97c9 TS |
1758 | { |
1759 | struct mips_elf_link_hash_entry *hd = h; | |
b34976b6 | 1760 | bfd_boolean no_fn_stub = h->no_fn_stub; |
b49e97c9 TS |
1761 | |
1762 | while (hd->root.root.type == bfd_link_hash_indirect) | |
1763 | { | |
1764 | hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link; | |
1765 | no_fn_stub = no_fn_stub || hd->no_fn_stub; | |
1766 | } | |
1767 | ||
1768 | if (!no_fn_stub) | |
1769 | { | |
1770 | /* Set type and value for a symbol with a function stub. */ | |
1771 | h->esym.asym.st = stProc; | |
1772 | sec = hd->root.root.u.def.section; | |
1773 | if (sec == NULL) | |
1774 | h->esym.asym.value = 0; | |
1775 | else | |
1776 | { | |
1777 | output_section = sec->output_section; | |
1778 | if (output_section != NULL) | |
1779 | h->esym.asym.value = (hd->root.plt.offset | |
1780 | + sec->output_offset | |
1781 | + output_section->vma); | |
1782 | else | |
1783 | h->esym.asym.value = 0; | |
1784 | } | |
b49e97c9 TS |
1785 | } |
1786 | } | |
1787 | ||
1788 | if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap, | |
1789 | h->root.root.root.string, | |
1790 | &h->esym)) | |
1791 | { | |
b34976b6 AM |
1792 | einfo->failed = TRUE; |
1793 | return FALSE; | |
b49e97c9 TS |
1794 | } |
1795 | ||
b34976b6 | 1796 | return TRUE; |
b49e97c9 TS |
1797 | } |
1798 | ||
1799 | /* A comparison routine used to sort .gptab entries. */ | |
1800 | ||
1801 | static int | |
9719ad41 | 1802 | gptab_compare (const void *p1, const void *p2) |
b49e97c9 | 1803 | { |
9719ad41 RS |
1804 | const Elf32_gptab *a1 = p1; |
1805 | const Elf32_gptab *a2 = p2; | |
b49e97c9 TS |
1806 | |
1807 | return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value; | |
1808 | } | |
1809 | \f | |
b15e6682 | 1810 | /* Functions to manage the got entry hash table. */ |
f4416af6 AO |
1811 | |
1812 | /* Use all 64 bits of a bfd_vma for the computation of a 32-bit | |
1813 | hash number. */ | |
1814 | ||
1815 | static INLINE hashval_t | |
9719ad41 | 1816 | mips_elf_hash_bfd_vma (bfd_vma addr) |
f4416af6 AO |
1817 | { |
1818 | #ifdef BFD64 | |
1819 | return addr + (addr >> 32); | |
1820 | #else | |
1821 | return addr; | |
1822 | #endif | |
1823 | } | |
1824 | ||
1825 | /* got_entries only match if they're identical, except for gotidx, so | |
1826 | use all fields to compute the hash, and compare the appropriate | |
1827 | union members. */ | |
1828 | ||
b15e6682 | 1829 | static hashval_t |
9719ad41 | 1830 | mips_elf_got_entry_hash (const void *entry_) |
b15e6682 AO |
1831 | { |
1832 | const struct mips_got_entry *entry = (struct mips_got_entry *)entry_; | |
1833 | ||
38985a1c | 1834 | return entry->symndx |
0f20cc35 | 1835 | + ((entry->tls_type & GOT_TLS_LDM) << 17) |
f4416af6 | 1836 | + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address) |
38985a1c AO |
1837 | : entry->abfd->id |
1838 | + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend) | |
1839 | : entry->d.h->root.root.root.hash)); | |
b15e6682 AO |
1840 | } |
1841 | ||
1842 | static int | |
9719ad41 | 1843 | mips_elf_got_entry_eq (const void *entry1, const void *entry2) |
b15e6682 AO |
1844 | { |
1845 | const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1; | |
1846 | const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2; | |
1847 | ||
0f20cc35 DJ |
1848 | /* An LDM entry can only match another LDM entry. */ |
1849 | if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM) | |
1850 | return 0; | |
1851 | ||
b15e6682 | 1852 | return e1->abfd == e2->abfd && e1->symndx == e2->symndx |
f4416af6 AO |
1853 | && (! e1->abfd ? e1->d.address == e2->d.address |
1854 | : e1->symndx >= 0 ? e1->d.addend == e2->d.addend | |
1855 | : e1->d.h == e2->d.h); | |
1856 | } | |
1857 | ||
1858 | /* multi_got_entries are still a match in the case of global objects, | |
1859 | even if the input bfd in which they're referenced differs, so the | |
1860 | hash computation and compare functions are adjusted | |
1861 | accordingly. */ | |
1862 | ||
1863 | static hashval_t | |
9719ad41 | 1864 | mips_elf_multi_got_entry_hash (const void *entry_) |
f4416af6 AO |
1865 | { |
1866 | const struct mips_got_entry *entry = (struct mips_got_entry *)entry_; | |
1867 | ||
1868 | return entry->symndx | |
1869 | + (! entry->abfd | |
1870 | ? mips_elf_hash_bfd_vma (entry->d.address) | |
1871 | : entry->symndx >= 0 | |
0f20cc35 DJ |
1872 | ? ((entry->tls_type & GOT_TLS_LDM) |
1873 | ? (GOT_TLS_LDM << 17) | |
1874 | : (entry->abfd->id | |
1875 | + mips_elf_hash_bfd_vma (entry->d.addend))) | |
f4416af6 AO |
1876 | : entry->d.h->root.root.root.hash); |
1877 | } | |
1878 | ||
1879 | static int | |
9719ad41 | 1880 | mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2) |
f4416af6 AO |
1881 | { |
1882 | const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1; | |
1883 | const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2; | |
1884 | ||
0f20cc35 DJ |
1885 | /* Any two LDM entries match. */ |
1886 | if (e1->tls_type & e2->tls_type & GOT_TLS_LDM) | |
1887 | return 1; | |
1888 | ||
1889 | /* Nothing else matches an LDM entry. */ | |
1890 | if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM) | |
1891 | return 0; | |
1892 | ||
f4416af6 AO |
1893 | return e1->symndx == e2->symndx |
1894 | && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend | |
1895 | : e1->abfd == NULL || e2->abfd == NULL | |
1896 | ? e1->abfd == e2->abfd && e1->d.address == e2->d.address | |
1897 | : e1->d.h == e2->d.h); | |
b15e6682 AO |
1898 | } |
1899 | \f | |
f4416af6 AO |
1900 | /* Returns the dynamic relocation section for DYNOBJ. */ |
1901 | ||
1902 | static asection * | |
9719ad41 | 1903 | mips_elf_rel_dyn_section (bfd *dynobj, bfd_boolean create_p) |
f4416af6 AO |
1904 | { |
1905 | static const char dname[] = ".rel.dyn"; | |
1906 | asection *sreloc; | |
1907 | ||
1908 | sreloc = bfd_get_section_by_name (dynobj, dname); | |
1909 | if (sreloc == NULL && create_p) | |
1910 | { | |
3496cb2a L |
1911 | sreloc = bfd_make_section_with_flags (dynobj, dname, |
1912 | (SEC_ALLOC | |
1913 | | SEC_LOAD | |
1914 | | SEC_HAS_CONTENTS | |
1915 | | SEC_IN_MEMORY | |
1916 | | SEC_LINKER_CREATED | |
1917 | | SEC_READONLY)); | |
f4416af6 | 1918 | if (sreloc == NULL |
f4416af6 | 1919 | || ! bfd_set_section_alignment (dynobj, sreloc, |
d80dcc6a | 1920 | MIPS_ELF_LOG_FILE_ALIGN (dynobj))) |
f4416af6 AO |
1921 | return NULL; |
1922 | } | |
1923 | return sreloc; | |
1924 | } | |
1925 | ||
b49e97c9 TS |
1926 | /* Returns the GOT section for ABFD. */ |
1927 | ||
1928 | static asection * | |
9719ad41 | 1929 | mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded) |
b49e97c9 | 1930 | { |
f4416af6 AO |
1931 | asection *sgot = bfd_get_section_by_name (abfd, ".got"); |
1932 | if (sgot == NULL | |
1933 | || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0)) | |
1934 | return NULL; | |
1935 | return sgot; | |
b49e97c9 TS |
1936 | } |
1937 | ||
1938 | /* Returns the GOT information associated with the link indicated by | |
1939 | INFO. If SGOTP is non-NULL, it is filled in with the GOT | |
1940 | section. */ | |
1941 | ||
1942 | static struct mips_got_info * | |
9719ad41 | 1943 | mips_elf_got_info (bfd *abfd, asection **sgotp) |
b49e97c9 TS |
1944 | { |
1945 | asection *sgot; | |
1946 | struct mips_got_info *g; | |
1947 | ||
f4416af6 | 1948 | sgot = mips_elf_got_section (abfd, TRUE); |
b49e97c9 | 1949 | BFD_ASSERT (sgot != NULL); |
f0abc2a1 AM |
1950 | BFD_ASSERT (mips_elf_section_data (sgot) != NULL); |
1951 | g = mips_elf_section_data (sgot)->u.got_info; | |
b49e97c9 TS |
1952 | BFD_ASSERT (g != NULL); |
1953 | ||
1954 | if (sgotp) | |
f4416af6 AO |
1955 | *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL; |
1956 | ||
b49e97c9 TS |
1957 | return g; |
1958 | } | |
1959 | ||
0f20cc35 DJ |
1960 | /* Count the number of relocations needed for a TLS GOT entry, with |
1961 | access types from TLS_TYPE, and symbol H (or a local symbol if H | |
1962 | is NULL). */ | |
1963 | ||
1964 | static int | |
1965 | mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type, | |
1966 | struct elf_link_hash_entry *h) | |
1967 | { | |
1968 | int indx = 0; | |
1969 | int ret = 0; | |
1970 | bfd_boolean need_relocs = FALSE; | |
1971 | bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created; | |
1972 | ||
1973 | if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h) | |
1974 | && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h))) | |
1975 | indx = h->dynindx; | |
1976 | ||
1977 | if ((info->shared || indx != 0) | |
1978 | && (h == NULL | |
1979 | || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT | |
1980 | || h->root.type != bfd_link_hash_undefweak)) | |
1981 | need_relocs = TRUE; | |
1982 | ||
1983 | if (!need_relocs) | |
1984 | return FALSE; | |
1985 | ||
1986 | if (tls_type & GOT_TLS_GD) | |
1987 | { | |
1988 | ret++; | |
1989 | if (indx != 0) | |
1990 | ret++; | |
1991 | } | |
1992 | ||
1993 | if (tls_type & GOT_TLS_IE) | |
1994 | ret++; | |
1995 | ||
1996 | if ((tls_type & GOT_TLS_LDM) && info->shared) | |
1997 | ret++; | |
1998 | ||
1999 | return ret; | |
2000 | } | |
2001 | ||
2002 | /* Count the number of TLS relocations required for the GOT entry in | |
2003 | ARG1, if it describes a local symbol. */ | |
2004 | ||
2005 | static int | |
2006 | mips_elf_count_local_tls_relocs (void **arg1, void *arg2) | |
2007 | { | |
2008 | struct mips_got_entry *entry = * (struct mips_got_entry **) arg1; | |
2009 | struct mips_elf_count_tls_arg *arg = arg2; | |
2010 | ||
2011 | if (entry->abfd != NULL && entry->symndx != -1) | |
2012 | arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL); | |
2013 | ||
2014 | return 1; | |
2015 | } | |
2016 | ||
2017 | /* Count the number of TLS GOT entries required for the global (or | |
2018 | forced-local) symbol in ARG1. */ | |
2019 | ||
2020 | static int | |
2021 | mips_elf_count_global_tls_entries (void *arg1, void *arg2) | |
2022 | { | |
2023 | struct mips_elf_link_hash_entry *hm | |
2024 | = (struct mips_elf_link_hash_entry *) arg1; | |
2025 | struct mips_elf_count_tls_arg *arg = arg2; | |
2026 | ||
2027 | if (hm->tls_type & GOT_TLS_GD) | |
2028 | arg->needed += 2; | |
2029 | if (hm->tls_type & GOT_TLS_IE) | |
2030 | arg->needed += 1; | |
2031 | ||
2032 | return 1; | |
2033 | } | |
2034 | ||
2035 | /* Count the number of TLS relocations required for the global (or | |
2036 | forced-local) symbol in ARG1. */ | |
2037 | ||
2038 | static int | |
2039 | mips_elf_count_global_tls_relocs (void *arg1, void *arg2) | |
2040 | { | |
2041 | struct mips_elf_link_hash_entry *hm | |
2042 | = (struct mips_elf_link_hash_entry *) arg1; | |
2043 | struct mips_elf_count_tls_arg *arg = arg2; | |
2044 | ||
2045 | arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root); | |
2046 | ||
2047 | return 1; | |
2048 | } | |
2049 | ||
2050 | /* Output a simple dynamic relocation into SRELOC. */ | |
2051 | ||
2052 | static void | |
2053 | mips_elf_output_dynamic_relocation (bfd *output_bfd, | |
2054 | asection *sreloc, | |
2055 | unsigned long indx, | |
2056 | int r_type, | |
2057 | bfd_vma offset) | |
2058 | { | |
2059 | Elf_Internal_Rela rel[3]; | |
2060 | ||
2061 | memset (rel, 0, sizeof (rel)); | |
2062 | ||
2063 | rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type); | |
2064 | rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset; | |
2065 | ||
2066 | if (ABI_64_P (output_bfd)) | |
2067 | { | |
2068 | (*get_elf_backend_data (output_bfd)->s->swap_reloc_out) | |
2069 | (output_bfd, &rel[0], | |
2070 | (sreloc->contents | |
2071 | + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel))); | |
2072 | } | |
2073 | else | |
2074 | bfd_elf32_swap_reloc_out | |
2075 | (output_bfd, &rel[0], | |
2076 | (sreloc->contents | |
2077 | + sreloc->reloc_count * sizeof (Elf32_External_Rel))); | |
2078 | ++sreloc->reloc_count; | |
2079 | } | |
2080 | ||
2081 | /* Initialize a set of TLS GOT entries for one symbol. */ | |
2082 | ||
2083 | static void | |
2084 | mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset, | |
2085 | unsigned char *tls_type_p, | |
2086 | struct bfd_link_info *info, | |
2087 | struct mips_elf_link_hash_entry *h, | |
2088 | bfd_vma value) | |
2089 | { | |
2090 | int indx; | |
2091 | asection *sreloc, *sgot; | |
2092 | bfd_vma offset, offset2; | |
2093 | bfd *dynobj; | |
2094 | bfd_boolean need_relocs = FALSE; | |
2095 | ||
2096 | dynobj = elf_hash_table (info)->dynobj; | |
2097 | sgot = mips_elf_got_section (dynobj, FALSE); | |
2098 | ||
2099 | indx = 0; | |
2100 | if (h != NULL) | |
2101 | { | |
2102 | bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created; | |
2103 | ||
2104 | if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root) | |
2105 | && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root))) | |
2106 | indx = h->root.dynindx; | |
2107 | } | |
2108 | ||
2109 | if (*tls_type_p & GOT_TLS_DONE) | |
2110 | return; | |
2111 | ||
2112 | if ((info->shared || indx != 0) | |
2113 | && (h == NULL | |
2114 | || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT | |
2115 | || h->root.type != bfd_link_hash_undefweak)) | |
2116 | need_relocs = TRUE; | |
2117 | ||
2118 | /* MINUS_ONE means the symbol is not defined in this object. It may not | |
2119 | be defined at all; assume that the value doesn't matter in that | |
2120 | case. Otherwise complain if we would use the value. */ | |
2121 | BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs) | |
2122 | || h->root.root.type == bfd_link_hash_undefweak); | |
2123 | ||
2124 | /* Emit necessary relocations. */ | |
2125 | sreloc = mips_elf_rel_dyn_section (dynobj, FALSE); | |
2126 | ||
2127 | /* General Dynamic. */ | |
2128 | if (*tls_type_p & GOT_TLS_GD) | |
2129 | { | |
2130 | offset = got_offset; | |
2131 | offset2 = offset + MIPS_ELF_GOT_SIZE (abfd); | |
2132 | ||
2133 | if (need_relocs) | |
2134 | { | |
2135 | mips_elf_output_dynamic_relocation | |
2136 | (abfd, sreloc, indx, | |
2137 | ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32, | |
2138 | sgot->output_offset + sgot->output_section->vma + offset); | |
2139 | ||
2140 | if (indx) | |
2141 | mips_elf_output_dynamic_relocation | |
2142 | (abfd, sreloc, indx, | |
2143 | ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32, | |
2144 | sgot->output_offset + sgot->output_section->vma + offset2); | |
2145 | else | |
2146 | MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info), | |
2147 | sgot->contents + offset2); | |
2148 | } | |
2149 | else | |
2150 | { | |
2151 | MIPS_ELF_PUT_WORD (abfd, 1, | |
2152 | sgot->contents + offset); | |
2153 | MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info), | |
2154 | sgot->contents + offset2); | |
2155 | } | |
2156 | ||
2157 | got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd); | |
2158 | } | |
2159 | ||
2160 | /* Initial Exec model. */ | |
2161 | if (*tls_type_p & GOT_TLS_IE) | |
2162 | { | |
2163 | offset = got_offset; | |
2164 | ||
2165 | if (need_relocs) | |
2166 | { | |
2167 | if (indx == 0) | |
2168 | MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma, | |
2169 | sgot->contents + offset); | |
2170 | else | |
2171 | MIPS_ELF_PUT_WORD (abfd, 0, | |
2172 | sgot->contents + offset); | |
2173 | ||
2174 | mips_elf_output_dynamic_relocation | |
2175 | (abfd, sreloc, indx, | |
2176 | ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32, | |
2177 | sgot->output_offset + sgot->output_section->vma + offset); | |
2178 | } | |
2179 | else | |
2180 | MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info), | |
2181 | sgot->contents + offset); | |
2182 | } | |
2183 | ||
2184 | if (*tls_type_p & GOT_TLS_LDM) | |
2185 | { | |
2186 | /* The initial offset is zero, and the LD offsets will include the | |
2187 | bias by DTP_OFFSET. */ | |
2188 | MIPS_ELF_PUT_WORD (abfd, 0, | |
2189 | sgot->contents + got_offset | |
2190 | + MIPS_ELF_GOT_SIZE (abfd)); | |
2191 | ||
2192 | if (!info->shared) | |
2193 | MIPS_ELF_PUT_WORD (abfd, 1, | |
2194 | sgot->contents + got_offset); | |
2195 | else | |
2196 | mips_elf_output_dynamic_relocation | |
2197 | (abfd, sreloc, indx, | |
2198 | ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32, | |
2199 | sgot->output_offset + sgot->output_section->vma + got_offset); | |
2200 | } | |
2201 | ||
2202 | *tls_type_p |= GOT_TLS_DONE; | |
2203 | } | |
2204 | ||
2205 | /* Return the GOT index to use for a relocation of type R_TYPE against | |
2206 | a symbol accessed using TLS_TYPE models. The GOT entries for this | |
2207 | symbol in this GOT start at GOT_INDEX. This function initializes the | |
2208 | GOT entries and corresponding relocations. */ | |
2209 | ||
2210 | static bfd_vma | |
2211 | mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type, | |
2212 | int r_type, struct bfd_link_info *info, | |
2213 | struct mips_elf_link_hash_entry *h, bfd_vma symbol) | |
2214 | { | |
2215 | BFD_ASSERT (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS_TLS_GD | |
2216 | || r_type == R_MIPS_TLS_LDM); | |
2217 | ||
2218 | mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol); | |
2219 | ||
2220 | if (r_type == R_MIPS_TLS_GOTTPREL) | |
2221 | { | |
2222 | BFD_ASSERT (*tls_type & GOT_TLS_IE); | |
2223 | if (*tls_type & GOT_TLS_GD) | |
2224 | return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd); | |
2225 | else | |
2226 | return got_index; | |
2227 | } | |
2228 | ||
2229 | if (r_type == R_MIPS_TLS_GD) | |
2230 | { | |
2231 | BFD_ASSERT (*tls_type & GOT_TLS_GD); | |
2232 | return got_index; | |
2233 | } | |
2234 | ||
2235 | if (r_type == R_MIPS_TLS_LDM) | |
2236 | { | |
2237 | BFD_ASSERT (*tls_type & GOT_TLS_LDM); | |
2238 | return got_index; | |
2239 | } | |
2240 | ||
2241 | return got_index; | |
2242 | } | |
2243 | ||
b49e97c9 | 2244 | /* Returns the GOT offset at which the indicated address can be found. |
0f20cc35 DJ |
2245 | If there is not yet a GOT entry for this value, create one. If |
2246 | R_SYMNDX refers to a TLS symbol, create a TLS GOT entry instead. | |
2247 | Returns -1 if no satisfactory GOT offset can be found. */ | |
b49e97c9 TS |
2248 | |
2249 | static bfd_vma | |
9719ad41 | 2250 | mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info, |
0f20cc35 DJ |
2251 | bfd_vma value, unsigned long r_symndx, |
2252 | struct mips_elf_link_hash_entry *h, int r_type) | |
b49e97c9 TS |
2253 | { |
2254 | asection *sgot; | |
2255 | struct mips_got_info *g; | |
b15e6682 | 2256 | struct mips_got_entry *entry; |
b49e97c9 TS |
2257 | |
2258 | g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot); | |
2259 | ||
0f20cc35 DJ |
2260 | entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value, |
2261 | r_symndx, h, r_type); | |
2262 | if (!entry) | |
b15e6682 | 2263 | return MINUS_ONE; |
0f20cc35 DJ |
2264 | |
2265 | if (TLS_RELOC_P (r_type)) | |
2266 | return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type, r_type, | |
2267 | info, h, value); | |
2268 | else | |
2269 | return entry->gotidx; | |
b49e97c9 TS |
2270 | } |
2271 | ||
2272 | /* Returns the GOT index for the global symbol indicated by H. */ | |
2273 | ||
2274 | static bfd_vma | |
0f20cc35 DJ |
2275 | mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h, |
2276 | int r_type, struct bfd_link_info *info) | |
b49e97c9 TS |
2277 | { |
2278 | bfd_vma index; | |
2279 | asection *sgot; | |
f4416af6 | 2280 | struct mips_got_info *g, *gg; |
d0c7ff07 | 2281 | long global_got_dynindx = 0; |
b49e97c9 | 2282 | |
f4416af6 AO |
2283 | gg = g = mips_elf_got_info (abfd, &sgot); |
2284 | if (g->bfd2got && ibfd) | |
2285 | { | |
2286 | struct mips_got_entry e, *p; | |
143d77c5 | 2287 | |
f4416af6 AO |
2288 | BFD_ASSERT (h->dynindx >= 0); |
2289 | ||
2290 | g = mips_elf_got_for_ibfd (g, ibfd); | |
0f20cc35 | 2291 | if (g->next != gg || TLS_RELOC_P (r_type)) |
f4416af6 AO |
2292 | { |
2293 | e.abfd = ibfd; | |
2294 | e.symndx = -1; | |
2295 | e.d.h = (struct mips_elf_link_hash_entry *)h; | |
0f20cc35 | 2296 | e.tls_type = 0; |
f4416af6 | 2297 | |
9719ad41 | 2298 | p = htab_find (g->got_entries, &e); |
f4416af6 AO |
2299 | |
2300 | BFD_ASSERT (p->gotidx > 0); | |
0f20cc35 DJ |
2301 | |
2302 | if (TLS_RELOC_P (r_type)) | |
2303 | { | |
2304 | bfd_vma value = MINUS_ONE; | |
2305 | if ((h->root.type == bfd_link_hash_defined | |
2306 | || h->root.type == bfd_link_hash_defweak) | |
2307 | && h->root.u.def.section->output_section) | |
2308 | value = (h->root.u.def.value | |
2309 | + h->root.u.def.section->output_offset | |
2310 | + h->root.u.def.section->output_section->vma); | |
2311 | ||
2312 | return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type, | |
2313 | info, e.d.h, value); | |
2314 | } | |
2315 | else | |
2316 | return p->gotidx; | |
f4416af6 AO |
2317 | } |
2318 | } | |
2319 | ||
2320 | if (gg->global_gotsym != NULL) | |
2321 | global_got_dynindx = gg->global_gotsym->dynindx; | |
b49e97c9 | 2322 | |
0f20cc35 DJ |
2323 | if (TLS_RELOC_P (r_type)) |
2324 | { | |
2325 | struct mips_elf_link_hash_entry *hm | |
2326 | = (struct mips_elf_link_hash_entry *) h; | |
2327 | bfd_vma value = MINUS_ONE; | |
2328 | ||
2329 | if ((h->root.type == bfd_link_hash_defined | |
2330 | || h->root.type == bfd_link_hash_defweak) | |
2331 | && h->root.u.def.section->output_section) | |
2332 | value = (h->root.u.def.value | |
2333 | + h->root.u.def.section->output_offset | |
2334 | + h->root.u.def.section->output_section->vma); | |
2335 | ||
2336 | index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type, | |
2337 | r_type, info, hm, value); | |
2338 | } | |
2339 | else | |
2340 | { | |
2341 | /* Once we determine the global GOT entry with the lowest dynamic | |
2342 | symbol table index, we must put all dynamic symbols with greater | |
2343 | indices into the GOT. That makes it easy to calculate the GOT | |
2344 | offset. */ | |
2345 | BFD_ASSERT (h->dynindx >= global_got_dynindx); | |
2346 | index = ((h->dynindx - global_got_dynindx + g->local_gotno) | |
2347 | * MIPS_ELF_GOT_SIZE (abfd)); | |
2348 | } | |
eea6121a | 2349 | BFD_ASSERT (index < sgot->size); |
b49e97c9 TS |
2350 | |
2351 | return index; | |
2352 | } | |
2353 | ||
2354 | /* Find a GOT entry that is within 32KB of the VALUE. These entries | |
2355 | are supposed to be placed at small offsets in the GOT, i.e., | |
2356 | within 32KB of GP. Return the index into the GOT for this page, | |
2357 | and store the offset from this entry to the desired address in | |
2358 | OFFSETP, if it is non-NULL. */ | |
2359 | ||
2360 | static bfd_vma | |
9719ad41 RS |
2361 | mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info, |
2362 | bfd_vma value, bfd_vma *offsetp) | |
b49e97c9 TS |
2363 | { |
2364 | asection *sgot; | |
2365 | struct mips_got_info *g; | |
b15e6682 AO |
2366 | bfd_vma index; |
2367 | struct mips_got_entry *entry; | |
b49e97c9 TS |
2368 | |
2369 | g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot); | |
2370 | ||
f4416af6 | 2371 | entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, |
b15e6682 | 2372 | (value + 0x8000) |
0f20cc35 DJ |
2373 | & (~(bfd_vma)0xffff), 0, |
2374 | NULL, R_MIPS_GOT_PAGE); | |
b49e97c9 | 2375 | |
b15e6682 AO |
2376 | if (!entry) |
2377 | return MINUS_ONE; | |
143d77c5 | 2378 | |
b15e6682 | 2379 | index = entry->gotidx; |
b49e97c9 TS |
2380 | |
2381 | if (offsetp) | |
f4416af6 | 2382 | *offsetp = value - entry->d.address; |
b49e97c9 TS |
2383 | |
2384 | return index; | |
2385 | } | |
2386 | ||
2387 | /* Find a GOT entry whose higher-order 16 bits are the same as those | |
2388 | for value. Return the index into the GOT for this entry. */ | |
2389 | ||
2390 | static bfd_vma | |
9719ad41 RS |
2391 | mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info, |
2392 | bfd_vma value, bfd_boolean external) | |
b49e97c9 TS |
2393 | { |
2394 | asection *sgot; | |
2395 | struct mips_got_info *g; | |
b15e6682 | 2396 | struct mips_got_entry *entry; |
b49e97c9 TS |
2397 | |
2398 | if (! external) | |
2399 | { | |
2400 | /* Although the ABI says that it is "the high-order 16 bits" that we | |
2401 | want, it is really the %high value. The complete value is | |
2402 | calculated with a `addiu' of a LO16 relocation, just as with a | |
2403 | HI16/LO16 pair. */ | |
2404 | value = mips_elf_high (value) << 16; | |
2405 | } | |
2406 | ||
2407 | g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot); | |
2408 | ||
0f20cc35 DJ |
2409 | entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value, 0, NULL, |
2410 | R_MIPS_GOT16); | |
b15e6682 AO |
2411 | if (entry) |
2412 | return entry->gotidx; | |
2413 | else | |
2414 | return MINUS_ONE; | |
b49e97c9 TS |
2415 | } |
2416 | ||
2417 | /* Returns the offset for the entry at the INDEXth position | |
2418 | in the GOT. */ | |
2419 | ||
2420 | static bfd_vma | |
9719ad41 RS |
2421 | mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd, |
2422 | bfd *input_bfd, bfd_vma index) | |
b49e97c9 TS |
2423 | { |
2424 | asection *sgot; | |
2425 | bfd_vma gp; | |
f4416af6 | 2426 | struct mips_got_info *g; |
b49e97c9 | 2427 | |
f4416af6 AO |
2428 | g = mips_elf_got_info (dynobj, &sgot); |
2429 | gp = _bfd_get_gp_value (output_bfd) | |
2430 | + mips_elf_adjust_gp (output_bfd, g, input_bfd); | |
143d77c5 | 2431 | |
f4416af6 | 2432 | return sgot->output_section->vma + sgot->output_offset + index - gp; |
b49e97c9 TS |
2433 | } |
2434 | ||
2435 | /* Create a local GOT entry for VALUE. Return the index of the entry, | |
0f20cc35 DJ |
2436 | or -1 if it could not be created. If R_SYMNDX refers to a TLS symbol, |
2437 | create a TLS entry instead. */ | |
b49e97c9 | 2438 | |
b15e6682 | 2439 | static struct mips_got_entry * |
9719ad41 RS |
2440 | mips_elf_create_local_got_entry (bfd *abfd, bfd *ibfd, |
2441 | struct mips_got_info *gg, | |
0f20cc35 DJ |
2442 | asection *sgot, bfd_vma value, |
2443 | unsigned long r_symndx, | |
2444 | struct mips_elf_link_hash_entry *h, | |
2445 | int r_type) | |
b49e97c9 | 2446 | { |
b15e6682 | 2447 | struct mips_got_entry entry, **loc; |
f4416af6 | 2448 | struct mips_got_info *g; |
b15e6682 | 2449 | |
f4416af6 AO |
2450 | entry.abfd = NULL; |
2451 | entry.symndx = -1; | |
2452 | entry.d.address = value; | |
0f20cc35 | 2453 | entry.tls_type = 0; |
f4416af6 AO |
2454 | |
2455 | g = mips_elf_got_for_ibfd (gg, ibfd); | |
2456 | if (g == NULL) | |
2457 | { | |
2458 | g = mips_elf_got_for_ibfd (gg, abfd); | |
2459 | BFD_ASSERT (g != NULL); | |
2460 | } | |
b15e6682 | 2461 | |
0f20cc35 DJ |
2462 | /* We might have a symbol, H, if it has been forced local. Use the |
2463 | global entry then. It doesn't matter whether an entry is local | |
2464 | or global for TLS, since the dynamic linker does not | |
2465 | automatically relocate TLS GOT entries. */ | |
a008ac03 | 2466 | BFD_ASSERT (h == NULL || h->root.forced_local); |
0f20cc35 DJ |
2467 | if (TLS_RELOC_P (r_type)) |
2468 | { | |
2469 | struct mips_got_entry *p; | |
2470 | ||
2471 | entry.abfd = ibfd; | |
2472 | if (r_type == R_MIPS_TLS_LDM) | |
2473 | { | |
2474 | entry.tls_type = GOT_TLS_LDM; | |
2475 | entry.symndx = 0; | |
2476 | entry.d.addend = 0; | |
2477 | } | |
2478 | else if (h == NULL) | |
2479 | { | |
2480 | entry.symndx = r_symndx; | |
2481 | entry.d.addend = 0; | |
2482 | } | |
2483 | else | |
2484 | entry.d.h = h; | |
2485 | ||
2486 | p = (struct mips_got_entry *) | |
2487 | htab_find (g->got_entries, &entry); | |
2488 | ||
2489 | BFD_ASSERT (p); | |
2490 | return p; | |
2491 | } | |
2492 | ||
b15e6682 AO |
2493 | loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry, |
2494 | INSERT); | |
2495 | if (*loc) | |
2496 | return *loc; | |
143d77c5 | 2497 | |
b15e6682 | 2498 | entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++; |
0f20cc35 | 2499 | entry.tls_type = 0; |
b15e6682 AO |
2500 | |
2501 | *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry); | |
2502 | ||
2503 | if (! *loc) | |
2504 | return NULL; | |
143d77c5 | 2505 | |
b15e6682 AO |
2506 | memcpy (*loc, &entry, sizeof entry); |
2507 | ||
b49e97c9 TS |
2508 | if (g->assigned_gotno >= g->local_gotno) |
2509 | { | |
f4416af6 | 2510 | (*loc)->gotidx = -1; |
b49e97c9 TS |
2511 | /* We didn't allocate enough space in the GOT. */ |
2512 | (*_bfd_error_handler) | |
2513 | (_("not enough GOT space for local GOT entries")); | |
2514 | bfd_set_error (bfd_error_bad_value); | |
b15e6682 | 2515 | return NULL; |
b49e97c9 TS |
2516 | } |
2517 | ||
2518 | MIPS_ELF_PUT_WORD (abfd, value, | |
b15e6682 AO |
2519 | (sgot->contents + entry.gotidx)); |
2520 | ||
2521 | return *loc; | |
b49e97c9 TS |
2522 | } |
2523 | ||
2524 | /* Sort the dynamic symbol table so that symbols that need GOT entries | |
2525 | appear towards the end. This reduces the amount of GOT space | |
2526 | required. MAX_LOCAL is used to set the number of local symbols | |
2527 | known to be in the dynamic symbol table. During | |
2528 | _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the | |
2529 | section symbols are added and the count is higher. */ | |
2530 | ||
b34976b6 | 2531 | static bfd_boolean |
9719ad41 | 2532 | mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local) |
b49e97c9 TS |
2533 | { |
2534 | struct mips_elf_hash_sort_data hsd; | |
2535 | struct mips_got_info *g; | |
2536 | bfd *dynobj; | |
2537 | ||
2538 | dynobj = elf_hash_table (info)->dynobj; | |
2539 | ||
f4416af6 AO |
2540 | g = mips_elf_got_info (dynobj, NULL); |
2541 | ||
b49e97c9 | 2542 | hsd.low = NULL; |
143d77c5 | 2543 | hsd.max_unref_got_dynindx = |
f4416af6 AO |
2544 | hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount |
2545 | /* In the multi-got case, assigned_gotno of the master got_info | |
2546 | indicate the number of entries that aren't referenced in the | |
2547 | primary GOT, but that must have entries because there are | |
2548 | dynamic relocations that reference it. Since they aren't | |
2549 | referenced, we move them to the end of the GOT, so that they | |
2550 | don't prevent other entries that are referenced from getting | |
2551 | too large offsets. */ | |
2552 | - (g->next ? g->assigned_gotno : 0); | |
b49e97c9 TS |
2553 | hsd.max_non_got_dynindx = max_local; |
2554 | mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *) | |
2555 | elf_hash_table (info)), | |
2556 | mips_elf_sort_hash_table_f, | |
2557 | &hsd); | |
2558 | ||
2559 | /* There should have been enough room in the symbol table to | |
44c410de | 2560 | accommodate both the GOT and non-GOT symbols. */ |
b49e97c9 | 2561 | BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx); |
f4416af6 AO |
2562 | BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx |
2563 | <= elf_hash_table (info)->dynsymcount); | |
b49e97c9 TS |
2564 | |
2565 | /* Now we know which dynamic symbol has the lowest dynamic symbol | |
2566 | table index in the GOT. */ | |
b49e97c9 TS |
2567 | g->global_gotsym = hsd.low; |
2568 | ||
b34976b6 | 2569 | return TRUE; |
b49e97c9 TS |
2570 | } |
2571 | ||
2572 | /* If H needs a GOT entry, assign it the highest available dynamic | |
2573 | index. Otherwise, assign it the lowest available dynamic | |
2574 | index. */ | |
2575 | ||
b34976b6 | 2576 | static bfd_boolean |
9719ad41 | 2577 | mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data) |
b49e97c9 | 2578 | { |
9719ad41 | 2579 | struct mips_elf_hash_sort_data *hsd = data; |
b49e97c9 TS |
2580 | |
2581 | if (h->root.root.type == bfd_link_hash_warning) | |
2582 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | |
2583 | ||
2584 | /* Symbols without dynamic symbol table entries aren't interesting | |
2585 | at all. */ | |
2586 | if (h->root.dynindx == -1) | |
b34976b6 | 2587 | return TRUE; |
b49e97c9 | 2588 | |
f4416af6 AO |
2589 | /* Global symbols that need GOT entries that are not explicitly |
2590 | referenced are marked with got offset 2. Those that are | |
2591 | referenced get a 1, and those that don't need GOT entries get | |
2592 | -1. */ | |
2593 | if (h->root.got.offset == 2) | |
2594 | { | |
0f20cc35 DJ |
2595 | BFD_ASSERT (h->tls_type == GOT_NORMAL); |
2596 | ||
f4416af6 AO |
2597 | if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx) |
2598 | hsd->low = (struct elf_link_hash_entry *) h; | |
2599 | h->root.dynindx = hsd->max_unref_got_dynindx++; | |
2600 | } | |
2601 | else if (h->root.got.offset != 1) | |
b49e97c9 TS |
2602 | h->root.dynindx = hsd->max_non_got_dynindx++; |
2603 | else | |
2604 | { | |
0f20cc35 DJ |
2605 | BFD_ASSERT (h->tls_type == GOT_NORMAL); |
2606 | ||
b49e97c9 TS |
2607 | h->root.dynindx = --hsd->min_got_dynindx; |
2608 | hsd->low = (struct elf_link_hash_entry *) h; | |
2609 | } | |
2610 | ||
b34976b6 | 2611 | return TRUE; |
b49e97c9 TS |
2612 | } |
2613 | ||
2614 | /* If H is a symbol that needs a global GOT entry, but has a dynamic | |
2615 | symbol table index lower than any we've seen to date, record it for | |
2616 | posterity. */ | |
2617 | ||
b34976b6 | 2618 | static bfd_boolean |
9719ad41 RS |
2619 | mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h, |
2620 | bfd *abfd, struct bfd_link_info *info, | |
0f20cc35 DJ |
2621 | struct mips_got_info *g, |
2622 | unsigned char tls_flag) | |
b49e97c9 | 2623 | { |
f4416af6 AO |
2624 | struct mips_got_entry entry, **loc; |
2625 | ||
b49e97c9 TS |
2626 | /* A global symbol in the GOT must also be in the dynamic symbol |
2627 | table. */ | |
7c5fcef7 L |
2628 | if (h->dynindx == -1) |
2629 | { | |
2630 | switch (ELF_ST_VISIBILITY (h->other)) | |
2631 | { | |
2632 | case STV_INTERNAL: | |
2633 | case STV_HIDDEN: | |
b34976b6 | 2634 | _bfd_mips_elf_hide_symbol (info, h, TRUE); |
7c5fcef7 L |
2635 | break; |
2636 | } | |
c152c796 | 2637 | if (!bfd_elf_link_record_dynamic_symbol (info, h)) |
b34976b6 | 2638 | return FALSE; |
7c5fcef7 | 2639 | } |
b49e97c9 | 2640 | |
f4416af6 AO |
2641 | entry.abfd = abfd; |
2642 | entry.symndx = -1; | |
2643 | entry.d.h = (struct mips_elf_link_hash_entry *) h; | |
0f20cc35 | 2644 | entry.tls_type = 0; |
f4416af6 AO |
2645 | |
2646 | loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry, | |
2647 | INSERT); | |
2648 | ||
b49e97c9 TS |
2649 | /* If we've already marked this entry as needing GOT space, we don't |
2650 | need to do it again. */ | |
f4416af6 | 2651 | if (*loc) |
0f20cc35 DJ |
2652 | { |
2653 | (*loc)->tls_type |= tls_flag; | |
2654 | return TRUE; | |
2655 | } | |
f4416af6 AO |
2656 | |
2657 | *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry); | |
2658 | ||
2659 | if (! *loc) | |
2660 | return FALSE; | |
143d77c5 | 2661 | |
f4416af6 | 2662 | entry.gotidx = -1; |
0f20cc35 DJ |
2663 | entry.tls_type = tls_flag; |
2664 | ||
f4416af6 AO |
2665 | memcpy (*loc, &entry, sizeof entry); |
2666 | ||
b49e97c9 | 2667 | if (h->got.offset != MINUS_ONE) |
b34976b6 | 2668 | return TRUE; |
b49e97c9 TS |
2669 | |
2670 | /* By setting this to a value other than -1, we are indicating that | |
2671 | there needs to be a GOT entry for H. Avoid using zero, as the | |
2672 | generic ELF copy_indirect_symbol tests for <= 0. */ | |
0f20cc35 DJ |
2673 | if (tls_flag == 0) |
2674 | h->got.offset = 1; | |
b49e97c9 | 2675 | |
b34976b6 | 2676 | return TRUE; |
b49e97c9 | 2677 | } |
f4416af6 AO |
2678 | |
2679 | /* Reserve space in G for a GOT entry containing the value of symbol | |
2680 | SYMNDX in input bfd ABDF, plus ADDEND. */ | |
2681 | ||
2682 | static bfd_boolean | |
9719ad41 | 2683 | mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend, |
0f20cc35 DJ |
2684 | struct mips_got_info *g, |
2685 | unsigned char tls_flag) | |
f4416af6 AO |
2686 | { |
2687 | struct mips_got_entry entry, **loc; | |
2688 | ||
2689 | entry.abfd = abfd; | |
2690 | entry.symndx = symndx; | |
2691 | entry.d.addend = addend; | |
0f20cc35 | 2692 | entry.tls_type = tls_flag; |
f4416af6 AO |
2693 | loc = (struct mips_got_entry **) |
2694 | htab_find_slot (g->got_entries, &entry, INSERT); | |
2695 | ||
2696 | if (*loc) | |
0f20cc35 DJ |
2697 | { |
2698 | if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD)) | |
2699 | { | |
2700 | g->tls_gotno += 2; | |
2701 | (*loc)->tls_type |= tls_flag; | |
2702 | } | |
2703 | else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE)) | |
2704 | { | |
2705 | g->tls_gotno += 1; | |
2706 | (*loc)->tls_type |= tls_flag; | |
2707 | } | |
2708 | return TRUE; | |
2709 | } | |
f4416af6 | 2710 | |
0f20cc35 DJ |
2711 | if (tls_flag != 0) |
2712 | { | |
2713 | entry.gotidx = -1; | |
2714 | entry.tls_type = tls_flag; | |
2715 | if (tls_flag == GOT_TLS_IE) | |
2716 | g->tls_gotno += 1; | |
2717 | else if (tls_flag == GOT_TLS_GD) | |
2718 | g->tls_gotno += 2; | |
2719 | else if (g->tls_ldm_offset == MINUS_ONE) | |
2720 | { | |
2721 | g->tls_ldm_offset = MINUS_TWO; | |
2722 | g->tls_gotno += 2; | |
2723 | } | |
2724 | } | |
2725 | else | |
2726 | { | |
2727 | entry.gotidx = g->local_gotno++; | |
2728 | entry.tls_type = 0; | |
2729 | } | |
f4416af6 AO |
2730 | |
2731 | *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry); | |
2732 | ||
2733 | if (! *loc) | |
2734 | return FALSE; | |
143d77c5 | 2735 | |
f4416af6 AO |
2736 | memcpy (*loc, &entry, sizeof entry); |
2737 | ||
2738 | return TRUE; | |
2739 | } | |
2740 | \f | |
2741 | /* Compute the hash value of the bfd in a bfd2got hash entry. */ | |
2742 | ||
2743 | static hashval_t | |
9719ad41 | 2744 | mips_elf_bfd2got_entry_hash (const void *entry_) |
f4416af6 AO |
2745 | { |
2746 | const struct mips_elf_bfd2got_hash *entry | |
2747 | = (struct mips_elf_bfd2got_hash *)entry_; | |
2748 | ||
2749 | return entry->bfd->id; | |
2750 | } | |
2751 | ||
2752 | /* Check whether two hash entries have the same bfd. */ | |
2753 | ||
2754 | static int | |
9719ad41 | 2755 | mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2) |
f4416af6 AO |
2756 | { |
2757 | const struct mips_elf_bfd2got_hash *e1 | |
2758 | = (const struct mips_elf_bfd2got_hash *)entry1; | |
2759 | const struct mips_elf_bfd2got_hash *e2 | |
2760 | = (const struct mips_elf_bfd2got_hash *)entry2; | |
2761 | ||
2762 | return e1->bfd == e2->bfd; | |
2763 | } | |
2764 | ||
0b25d3e6 | 2765 | /* In a multi-got link, determine the GOT to be used for IBDF. G must |
f4416af6 AO |
2766 | be the master GOT data. */ |
2767 | ||
2768 | static struct mips_got_info * | |
9719ad41 | 2769 | mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd) |
f4416af6 AO |
2770 | { |
2771 | struct mips_elf_bfd2got_hash e, *p; | |
2772 | ||
2773 | if (! g->bfd2got) | |
2774 | return g; | |
2775 | ||
2776 | e.bfd = ibfd; | |
9719ad41 | 2777 | p = htab_find (g->bfd2got, &e); |
f4416af6 AO |
2778 | return p ? p->g : NULL; |
2779 | } | |
2780 | ||
2781 | /* Create one separate got for each bfd that has entries in the global | |
2782 | got, such that we can tell how many local and global entries each | |
2783 | bfd requires. */ | |
2784 | ||
2785 | static int | |
9719ad41 | 2786 | mips_elf_make_got_per_bfd (void **entryp, void *p) |
f4416af6 AO |
2787 | { |
2788 | struct mips_got_entry *entry = (struct mips_got_entry *)*entryp; | |
2789 | struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p; | |
2790 | htab_t bfd2got = arg->bfd2got; | |
2791 | struct mips_got_info *g; | |
2792 | struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot; | |
2793 | void **bfdgotp; | |
143d77c5 | 2794 | |
f4416af6 AO |
2795 | /* Find the got_info for this GOT entry's input bfd. Create one if |
2796 | none exists. */ | |
2797 | bfdgot_entry.bfd = entry->abfd; | |
2798 | bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT); | |
2799 | bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp; | |
2800 | ||
2801 | if (bfdgot != NULL) | |
2802 | g = bfdgot->g; | |
2803 | else | |
2804 | { | |
2805 | bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc | |
2806 | (arg->obfd, sizeof (struct mips_elf_bfd2got_hash)); | |
2807 | ||
2808 | if (bfdgot == NULL) | |
2809 | { | |
2810 | arg->obfd = 0; | |
2811 | return 0; | |
2812 | } | |
2813 | ||
2814 | *bfdgotp = bfdgot; | |
2815 | ||
2816 | bfdgot->bfd = entry->abfd; | |
2817 | bfdgot->g = g = (struct mips_got_info *) | |
2818 | bfd_alloc (arg->obfd, sizeof (struct mips_got_info)); | |
2819 | if (g == NULL) | |
2820 | { | |
2821 | arg->obfd = 0; | |
2822 | return 0; | |
2823 | } | |
2824 | ||
2825 | g->global_gotsym = NULL; | |
2826 | g->global_gotno = 0; | |
2827 | g->local_gotno = 0; | |
2828 | g->assigned_gotno = -1; | |
0f20cc35 DJ |
2829 | g->tls_gotno = 0; |
2830 | g->tls_assigned_gotno = 0; | |
2831 | g->tls_ldm_offset = MINUS_ONE; | |
f4416af6 | 2832 | g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash, |
9719ad41 | 2833 | mips_elf_multi_got_entry_eq, NULL); |
f4416af6 AO |
2834 | if (g->got_entries == NULL) |
2835 | { | |
2836 | arg->obfd = 0; | |
2837 | return 0; | |
2838 | } | |
2839 | ||
2840 | g->bfd2got = NULL; | |
2841 | g->next = NULL; | |
2842 | } | |
2843 | ||
2844 | /* Insert the GOT entry in the bfd's got entry hash table. */ | |
2845 | entryp = htab_find_slot (g->got_entries, entry, INSERT); | |
2846 | if (*entryp != NULL) | |
2847 | return 1; | |
143d77c5 | 2848 | |
f4416af6 AO |
2849 | *entryp = entry; |
2850 | ||
0f20cc35 DJ |
2851 | if (entry->tls_type) |
2852 | { | |
2853 | if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM)) | |
2854 | g->tls_gotno += 2; | |
2855 | if (entry->tls_type & GOT_TLS_IE) | |
2856 | g->tls_gotno += 1; | |
2857 | } | |
2858 | else if (entry->symndx >= 0 || entry->d.h->forced_local) | |
f4416af6 AO |
2859 | ++g->local_gotno; |
2860 | else | |
2861 | ++g->global_gotno; | |
2862 | ||
2863 | return 1; | |
2864 | } | |
2865 | ||
2866 | /* Attempt to merge gots of different input bfds. Try to use as much | |
2867 | as possible of the primary got, since it doesn't require explicit | |
2868 | dynamic relocations, but don't use bfds that would reference global | |
2869 | symbols out of the addressable range. Failing the primary got, | |
2870 | attempt to merge with the current got, or finish the current got | |
2871 | and then make make the new got current. */ | |
2872 | ||
2873 | static int | |
9719ad41 | 2874 | mips_elf_merge_gots (void **bfd2got_, void *p) |
f4416af6 AO |
2875 | { |
2876 | struct mips_elf_bfd2got_hash *bfd2got | |
2877 | = (struct mips_elf_bfd2got_hash *)*bfd2got_; | |
2878 | struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p; | |
2879 | unsigned int lcount = bfd2got->g->local_gotno; | |
2880 | unsigned int gcount = bfd2got->g->global_gotno; | |
0f20cc35 | 2881 | unsigned int tcount = bfd2got->g->tls_gotno; |
f4416af6 | 2882 | unsigned int maxcnt = arg->max_count; |
0f20cc35 DJ |
2883 | bfd_boolean too_many_for_tls = FALSE; |
2884 | ||
2885 | /* We place TLS GOT entries after both locals and globals. The globals | |
2886 | for the primary GOT may overflow the normal GOT size limit, so be | |
2887 | sure not to merge a GOT which requires TLS with the primary GOT in that | |
2888 | case. This doesn't affect non-primary GOTs. */ | |
2889 | if (tcount > 0) | |
2890 | { | |
2891 | unsigned int primary_total = lcount + tcount + arg->global_count; | |
2892 | if (primary_total * MIPS_ELF_GOT_SIZE (bfd2got->bfd) | |
2893 | >= MIPS_ELF_GOT_MAX_SIZE (bfd2got->bfd)) | |
2894 | too_many_for_tls = TRUE; | |
2895 | } | |
143d77c5 | 2896 | |
f4416af6 AO |
2897 | /* If we don't have a primary GOT and this is not too big, use it as |
2898 | a starting point for the primary GOT. */ | |
0f20cc35 DJ |
2899 | if (! arg->primary && lcount + gcount + tcount <= maxcnt |
2900 | && ! too_many_for_tls) | |
f4416af6 AO |
2901 | { |
2902 | arg->primary = bfd2got->g; | |
2903 | arg->primary_count = lcount + gcount; | |
2904 | } | |
2905 | /* If it looks like we can merge this bfd's entries with those of | |
2906 | the primary, merge them. The heuristics is conservative, but we | |
2907 | don't have to squeeze it too hard. */ | |
0f20cc35 DJ |
2908 | else if (arg->primary && ! too_many_for_tls |
2909 | && (arg->primary_count + lcount + gcount + tcount) <= maxcnt) | |
f4416af6 AO |
2910 | { |
2911 | struct mips_got_info *g = bfd2got->g; | |
2912 | int old_lcount = arg->primary->local_gotno; | |
2913 | int old_gcount = arg->primary->global_gotno; | |
0f20cc35 | 2914 | int old_tcount = arg->primary->tls_gotno; |
f4416af6 AO |
2915 | |
2916 | bfd2got->g = arg->primary; | |
2917 | ||
2918 | htab_traverse (g->got_entries, | |
2919 | mips_elf_make_got_per_bfd, | |
2920 | arg); | |
2921 | if (arg->obfd == NULL) | |
2922 | return 0; | |
2923 | ||
2924 | htab_delete (g->got_entries); | |
2925 | /* We don't have to worry about releasing memory of the actual | |
2926 | got entries, since they're all in the master got_entries hash | |
2927 | table anyway. */ | |
2928 | ||
caec41ff | 2929 | BFD_ASSERT (old_lcount + lcount >= arg->primary->local_gotno); |
f4416af6 | 2930 | BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno); |
0f20cc35 | 2931 | BFD_ASSERT (old_tcount + tcount >= arg->primary->tls_gotno); |
f4416af6 AO |
2932 | |
2933 | arg->primary_count = arg->primary->local_gotno | |
0f20cc35 | 2934 | + arg->primary->global_gotno + arg->primary->tls_gotno; |
f4416af6 AO |
2935 | } |
2936 | /* If we can merge with the last-created got, do it. */ | |
2937 | else if (arg->current | |
0f20cc35 | 2938 | && arg->current_count + lcount + gcount + tcount <= maxcnt) |
f4416af6 AO |
2939 | { |
2940 | struct mips_got_info *g = bfd2got->g; | |
2941 | int old_lcount = arg->current->local_gotno; | |
2942 | int old_gcount = arg->current->global_gotno; | |
0f20cc35 | 2943 | int old_tcount = arg->current->tls_gotno; |
f4416af6 AO |
2944 | |
2945 | bfd2got->g = arg->current; | |
2946 | ||
2947 | htab_traverse (g->got_entries, | |
2948 | mips_elf_make_got_per_bfd, | |
2949 | arg); | |
2950 | if (arg->obfd == NULL) | |
2951 | return 0; | |
2952 | ||
2953 | htab_delete (g->got_entries); | |
2954 | ||
caec41ff | 2955 | BFD_ASSERT (old_lcount + lcount >= arg->current->local_gotno); |
f4416af6 | 2956 | BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno); |
0f20cc35 | 2957 | BFD_ASSERT (old_tcount + tcount >= arg->current->tls_gotno); |
f4416af6 AO |
2958 | |
2959 | arg->current_count = arg->current->local_gotno | |
0f20cc35 | 2960 | + arg->current->global_gotno + arg->current->tls_gotno; |
f4416af6 AO |
2961 | } |
2962 | /* Well, we couldn't merge, so create a new GOT. Don't check if it | |
2963 | fits; if it turns out that it doesn't, we'll get relocation | |
2964 | overflows anyway. */ | |
2965 | else | |
2966 | { | |
2967 | bfd2got->g->next = arg->current; | |
2968 | arg->current = bfd2got->g; | |
143d77c5 | 2969 | |
0f20cc35 DJ |
2970 | arg->current_count = lcount + gcount + 2 * tcount; |
2971 | } | |
2972 | ||
2973 | return 1; | |
2974 | } | |
2975 | ||
2976 | /* Set the TLS GOT index for the GOT entry in ENTRYP. */ | |
2977 | ||
2978 | static int | |
2979 | mips_elf_initialize_tls_index (void **entryp, void *p) | |
2980 | { | |
2981 | struct mips_got_entry *entry = (struct mips_got_entry *)*entryp; | |
2982 | struct mips_got_info *g = p; | |
2983 | ||
2984 | /* We're only interested in TLS symbols. */ | |
2985 | if (entry->tls_type == 0) | |
2986 | return 1; | |
2987 | ||
2988 | if (entry->symndx == -1) | |
2989 | { | |
2990 | /* There may be multiple mips_got_entry structs for a global variable | |
2991 | if there is just one GOT. Just do this once. */ | |
2992 | if (g->next == NULL) | |
2993 | { | |
2994 | if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE) | |
2995 | return 1; | |
2996 | entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE; | |
2997 | } | |
2998 | } | |
2999 | else if (entry->tls_type & GOT_TLS_LDM) | |
3000 | { | |
3001 | /* Similarly, there may be multiple structs for the LDM entry. */ | |
3002 | if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE) | |
3003 | { | |
3004 | entry->gotidx = g->tls_ldm_offset; | |
3005 | return 1; | |
3006 | } | |
f4416af6 AO |
3007 | } |
3008 | ||
0f20cc35 DJ |
3009 | /* Initialize the GOT offset. */ |
3010 | entry->gotidx = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno; | |
3011 | if (g->next == NULL && entry->symndx == -1) | |
3012 | entry->d.h->tls_got_offset = entry->gotidx; | |
3013 | ||
3014 | if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM)) | |
3015 | g->tls_assigned_gotno += 2; | |
3016 | if (entry->tls_type & GOT_TLS_IE) | |
3017 | g->tls_assigned_gotno += 1; | |
3018 | ||
3019 | if (entry->tls_type & GOT_TLS_LDM) | |
3020 | g->tls_ldm_offset = entry->gotidx; | |
3021 | ||
f4416af6 AO |
3022 | return 1; |
3023 | } | |
3024 | ||
3025 | /* If passed a NULL mips_got_info in the argument, set the marker used | |
3026 | to tell whether a global symbol needs a got entry (in the primary | |
3027 | got) to the given VALUE. | |
3028 | ||
3029 | If passed a pointer G to a mips_got_info in the argument (it must | |
3030 | not be the primary GOT), compute the offset from the beginning of | |
3031 | the (primary) GOT section to the entry in G corresponding to the | |
3032 | global symbol. G's assigned_gotno must contain the index of the | |
3033 | first available global GOT entry in G. VALUE must contain the size | |
3034 | of a GOT entry in bytes. For each global GOT entry that requires a | |
3035 | dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is | |
4cc11e76 | 3036 | marked as not eligible for lazy resolution through a function |
f4416af6 AO |
3037 | stub. */ |
3038 | static int | |
9719ad41 | 3039 | mips_elf_set_global_got_offset (void **entryp, void *p) |
f4416af6 AO |
3040 | { |
3041 | struct mips_got_entry *entry = (struct mips_got_entry *)*entryp; | |
3042 | struct mips_elf_set_global_got_offset_arg *arg | |
3043 | = (struct mips_elf_set_global_got_offset_arg *)p; | |
3044 | struct mips_got_info *g = arg->g; | |
3045 | ||
0f20cc35 DJ |
3046 | if (g && entry->tls_type != GOT_NORMAL) |
3047 | arg->needed_relocs += | |
3048 | mips_tls_got_relocs (arg->info, entry->tls_type, | |
3049 | entry->symndx == -1 ? &entry->d.h->root : NULL); | |
3050 | ||
f4416af6 | 3051 | if (entry->abfd != NULL && entry->symndx == -1 |
0f20cc35 DJ |
3052 | && entry->d.h->root.dynindx != -1 |
3053 | && entry->d.h->tls_type == GOT_NORMAL) | |
f4416af6 AO |
3054 | { |
3055 | if (g) | |
3056 | { | |
3057 | BFD_ASSERT (g->global_gotsym == NULL); | |
3058 | ||
3059 | entry->gotidx = arg->value * (long) g->assigned_gotno++; | |
f4416af6 AO |
3060 | if (arg->info->shared |
3061 | || (elf_hash_table (arg->info)->dynamic_sections_created | |
f5385ebf AM |
3062 | && entry->d.h->root.def_dynamic |
3063 | && !entry->d.h->root.def_regular)) | |
f4416af6 AO |
3064 | ++arg->needed_relocs; |
3065 | } | |
3066 | else | |
3067 | entry->d.h->root.got.offset = arg->value; | |
3068 | } | |
3069 | ||
3070 | return 1; | |
3071 | } | |
3072 | ||
0626d451 RS |
3073 | /* Mark any global symbols referenced in the GOT we are iterating over |
3074 | as inelligible for lazy resolution stubs. */ | |
3075 | static int | |
9719ad41 | 3076 | mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED) |
0626d451 RS |
3077 | { |
3078 | struct mips_got_entry *entry = (struct mips_got_entry *)*entryp; | |
3079 | ||
3080 | if (entry->abfd != NULL | |
3081 | && entry->symndx == -1 | |
3082 | && entry->d.h->root.dynindx != -1) | |
3083 | entry->d.h->no_fn_stub = TRUE; | |
3084 | ||
3085 | return 1; | |
3086 | } | |
3087 | ||
f4416af6 AO |
3088 | /* Follow indirect and warning hash entries so that each got entry |
3089 | points to the final symbol definition. P must point to a pointer | |
3090 | to the hash table we're traversing. Since this traversal may | |
3091 | modify the hash table, we set this pointer to NULL to indicate | |
3092 | we've made a potentially-destructive change to the hash table, so | |
3093 | the traversal must be restarted. */ | |
3094 | static int | |
9719ad41 | 3095 | mips_elf_resolve_final_got_entry (void **entryp, void *p) |
f4416af6 AO |
3096 | { |
3097 | struct mips_got_entry *entry = (struct mips_got_entry *)*entryp; | |
3098 | htab_t got_entries = *(htab_t *)p; | |
3099 | ||
3100 | if (entry->abfd != NULL && entry->symndx == -1) | |
3101 | { | |
3102 | struct mips_elf_link_hash_entry *h = entry->d.h; | |
3103 | ||
3104 | while (h->root.root.type == bfd_link_hash_indirect | |
3105 | || h->root.root.type == bfd_link_hash_warning) | |
3106 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | |
3107 | ||
3108 | if (entry->d.h == h) | |
3109 | return 1; | |
143d77c5 | 3110 | |
f4416af6 AO |
3111 | entry->d.h = h; |
3112 | ||
3113 | /* If we can't find this entry with the new bfd hash, re-insert | |
3114 | it, and get the traversal restarted. */ | |
3115 | if (! htab_find (got_entries, entry)) | |
3116 | { | |
3117 | htab_clear_slot (got_entries, entryp); | |
3118 | entryp = htab_find_slot (got_entries, entry, INSERT); | |
3119 | if (! *entryp) | |
3120 | *entryp = entry; | |
3121 | /* Abort the traversal, since the whole table may have | |
3122 | moved, and leave it up to the parent to restart the | |
3123 | process. */ | |
3124 | *(htab_t *)p = NULL; | |
3125 | return 0; | |
3126 | } | |
3127 | /* We might want to decrement the global_gotno count, but it's | |
3128 | either too early or too late for that at this point. */ | |
3129 | } | |
143d77c5 | 3130 | |
f4416af6 AO |
3131 | return 1; |
3132 | } | |
3133 | ||
3134 | /* Turn indirect got entries in a got_entries table into their final | |
3135 | locations. */ | |
3136 | static void | |
9719ad41 | 3137 | mips_elf_resolve_final_got_entries (struct mips_got_info *g) |
f4416af6 AO |
3138 | { |
3139 | htab_t got_entries; | |
3140 | ||
3141 | do | |
3142 | { | |
3143 | got_entries = g->got_entries; | |
3144 | ||
3145 | htab_traverse (got_entries, | |
3146 | mips_elf_resolve_final_got_entry, | |
3147 | &got_entries); | |
3148 | } | |
3149 | while (got_entries == NULL); | |
3150 | } | |
3151 | ||
3152 | /* Return the offset of an input bfd IBFD's GOT from the beginning of | |
3153 | the primary GOT. */ | |
3154 | static bfd_vma | |
9719ad41 | 3155 | mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd) |
f4416af6 AO |
3156 | { |
3157 | if (g->bfd2got == NULL) | |
3158 | return 0; | |
3159 | ||
3160 | g = mips_elf_got_for_ibfd (g, ibfd); | |
3161 | if (! g) | |
3162 | return 0; | |
3163 | ||
3164 | BFD_ASSERT (g->next); | |
3165 | ||
3166 | g = g->next; | |
143d77c5 | 3167 | |
0f20cc35 DJ |
3168 | return (g->local_gotno + g->global_gotno + g->tls_gotno) |
3169 | * MIPS_ELF_GOT_SIZE (abfd); | |
f4416af6 AO |
3170 | } |
3171 | ||
3172 | /* Turn a single GOT that is too big for 16-bit addressing into | |
3173 | a sequence of GOTs, each one 16-bit addressable. */ | |
3174 | ||
3175 | static bfd_boolean | |
9719ad41 RS |
3176 | mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info, |
3177 | struct mips_got_info *g, asection *got, | |
3178 | bfd_size_type pages) | |
f4416af6 AO |
3179 | { |
3180 | struct mips_elf_got_per_bfd_arg got_per_bfd_arg; | |
3181 | struct mips_elf_set_global_got_offset_arg set_got_offset_arg; | |
3182 | struct mips_got_info *gg; | |
3183 | unsigned int assign; | |
3184 | ||
3185 | g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash, | |
9719ad41 | 3186 | mips_elf_bfd2got_entry_eq, NULL); |
f4416af6 AO |
3187 | if (g->bfd2got == NULL) |
3188 | return FALSE; | |
3189 | ||
3190 | got_per_bfd_arg.bfd2got = g->bfd2got; | |
3191 | got_per_bfd_arg.obfd = abfd; | |
3192 | got_per_bfd_arg.info = info; | |
3193 | ||
3194 | /* Count how many GOT entries each input bfd requires, creating a | |
3195 | map from bfd to got info while at that. */ | |
f4416af6 AO |
3196 | htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg); |
3197 | if (got_per_bfd_arg.obfd == NULL) | |
3198 | return FALSE; | |
3199 | ||
3200 | got_per_bfd_arg.current = NULL; | |
3201 | got_per_bfd_arg.primary = NULL; | |
3202 | /* Taking out PAGES entries is a worst-case estimate. We could | |
3203 | compute the maximum number of pages that each separate input bfd | |
3204 | uses, but it's probably not worth it. */ | |
3205 | got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (abfd) | |
3206 | / MIPS_ELF_GOT_SIZE (abfd)) | |
3207 | - MIPS_RESERVED_GOTNO - pages); | |
0f20cc35 DJ |
3208 | /* The number of globals that will be included in the primary GOT. |
3209 | See the calls to mips_elf_set_global_got_offset below for more | |
3210 | information. */ | |
3211 | got_per_bfd_arg.global_count = g->global_gotno; | |
f4416af6 AO |
3212 | |
3213 | /* Try to merge the GOTs of input bfds together, as long as they | |
3214 | don't seem to exceed the maximum GOT size, choosing one of them | |
3215 | to be the primary GOT. */ | |
3216 | htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg); | |
3217 | if (got_per_bfd_arg.obfd == NULL) | |
3218 | return FALSE; | |
3219 | ||
0f20cc35 | 3220 | /* If we do not find any suitable primary GOT, create an empty one. */ |
f4416af6 AO |
3221 | if (got_per_bfd_arg.primary == NULL) |
3222 | { | |
3223 | g->next = (struct mips_got_info *) | |
3224 | bfd_alloc (abfd, sizeof (struct mips_got_info)); | |
3225 | if (g->next == NULL) | |
3226 | return FALSE; | |
3227 | ||
3228 | g->next->global_gotsym = NULL; | |
3229 | g->next->global_gotno = 0; | |
3230 | g->next->local_gotno = 0; | |
0f20cc35 | 3231 | g->next->tls_gotno = 0; |
f4416af6 | 3232 | g->next->assigned_gotno = 0; |
0f20cc35 DJ |
3233 | g->next->tls_assigned_gotno = 0; |
3234 | g->next->tls_ldm_offset = MINUS_ONE; | |
f4416af6 AO |
3235 | g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash, |
3236 | mips_elf_multi_got_entry_eq, | |
9719ad41 | 3237 | NULL); |
f4416af6 AO |
3238 | if (g->next->got_entries == NULL) |
3239 | return FALSE; | |
3240 | g->next->bfd2got = NULL; | |
3241 | } | |
3242 | else | |
3243 | g->next = got_per_bfd_arg.primary; | |
3244 | g->next->next = got_per_bfd_arg.current; | |
3245 | ||
3246 | /* GG is now the master GOT, and G is the primary GOT. */ | |
3247 | gg = g; | |
3248 | g = g->next; | |
3249 | ||
3250 | /* Map the output bfd to the primary got. That's what we're going | |
3251 | to use for bfds that use GOT16 or GOT_PAGE relocations that we | |
3252 | didn't mark in check_relocs, and we want a quick way to find it. | |
3253 | We can't just use gg->next because we're going to reverse the | |
3254 | list. */ | |
3255 | { | |
3256 | struct mips_elf_bfd2got_hash *bfdgot; | |
3257 | void **bfdgotp; | |
143d77c5 | 3258 | |
f4416af6 AO |
3259 | bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc |
3260 | (abfd, sizeof (struct mips_elf_bfd2got_hash)); | |
3261 | ||
3262 | if (bfdgot == NULL) | |
3263 | return FALSE; | |
3264 | ||
3265 | bfdgot->bfd = abfd; | |
3266 | bfdgot->g = g; | |
3267 | bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT); | |
3268 | ||
3269 | BFD_ASSERT (*bfdgotp == NULL); | |
3270 | *bfdgotp = bfdgot; | |
3271 | } | |
3272 | ||
3273 | /* The IRIX dynamic linker requires every symbol that is referenced | |
3274 | in a dynamic relocation to be present in the primary GOT, so | |
3275 | arrange for them to appear after those that are actually | |
3276 | referenced. | |
3277 | ||
3278 | GNU/Linux could very well do without it, but it would slow down | |
3279 | the dynamic linker, since it would have to resolve every dynamic | |
3280 | symbol referenced in other GOTs more than once, without help from | |
3281 | the cache. Also, knowing that every external symbol has a GOT | |
3282 | helps speed up the resolution of local symbols too, so GNU/Linux | |
3283 | follows IRIX's practice. | |
143d77c5 | 3284 | |
f4416af6 AO |
3285 | The number 2 is used by mips_elf_sort_hash_table_f to count |
3286 | global GOT symbols that are unreferenced in the primary GOT, with | |
3287 | an initial dynamic index computed from gg->assigned_gotno, where | |
3288 | the number of unreferenced global entries in the primary GOT is | |
3289 | preserved. */ | |
3290 | if (1) | |
3291 | { | |
3292 | gg->assigned_gotno = gg->global_gotno - g->global_gotno; | |
3293 | g->global_gotno = gg->global_gotno; | |
3294 | set_got_offset_arg.value = 2; | |
3295 | } | |
3296 | else | |
3297 | { | |
3298 | /* This could be used for dynamic linkers that don't optimize | |
3299 | symbol resolution while applying relocations so as to use | |
3300 | primary GOT entries or assuming the symbol is locally-defined. | |
3301 | With this code, we assign lower dynamic indices to global | |
3302 | symbols that are not referenced in the primary GOT, so that | |
3303 | their entries can be omitted. */ | |
3304 | gg->assigned_gotno = 0; | |
3305 | set_got_offset_arg.value = -1; | |
3306 | } | |
3307 | ||
3308 | /* Reorder dynamic symbols as described above (which behavior | |
3309 | depends on the setting of VALUE). */ | |
3310 | set_got_offset_arg.g = NULL; | |
3311 | htab_traverse (gg->got_entries, mips_elf_set_global_got_offset, | |
3312 | &set_got_offset_arg); | |
3313 | set_got_offset_arg.value = 1; | |
3314 | htab_traverse (g->got_entries, mips_elf_set_global_got_offset, | |
3315 | &set_got_offset_arg); | |
3316 | if (! mips_elf_sort_hash_table (info, 1)) | |
3317 | return FALSE; | |
3318 | ||
3319 | /* Now go through the GOTs assigning them offset ranges. | |
3320 | [assigned_gotno, local_gotno[ will be set to the range of local | |
3321 | entries in each GOT. We can then compute the end of a GOT by | |
3322 | adding local_gotno to global_gotno. We reverse the list and make | |
3323 | it circular since then we'll be able to quickly compute the | |
3324 | beginning of a GOT, by computing the end of its predecessor. To | |
3325 | avoid special cases for the primary GOT, while still preserving | |
3326 | assertions that are valid for both single- and multi-got links, | |
3327 | we arrange for the main got struct to have the right number of | |
3328 | global entries, but set its local_gotno such that the initial | |
3329 | offset of the primary GOT is zero. Remember that the primary GOT | |
3330 | will become the last item in the circular linked list, so it | |
3331 | points back to the master GOT. */ | |
3332 | gg->local_gotno = -g->global_gotno; | |
3333 | gg->global_gotno = g->global_gotno; | |
0f20cc35 | 3334 | gg->tls_gotno = 0; |
f4416af6 AO |
3335 | assign = 0; |
3336 | gg->next = gg; | |
3337 | ||
3338 | do | |
3339 | { | |
3340 | struct mips_got_info *gn; | |
3341 | ||
3342 | assign += MIPS_RESERVED_GOTNO; | |
3343 | g->assigned_gotno = assign; | |
3344 | g->local_gotno += assign + pages; | |
0f20cc35 DJ |
3345 | assign = g->local_gotno + g->global_gotno + g->tls_gotno; |
3346 | ||
3347 | /* Set up any TLS entries. We always place the TLS entries after | |
3348 | all non-TLS entries. */ | |
3349 | g->tls_assigned_gotno = g->local_gotno + g->global_gotno; | |
3350 | htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g); | |
f4416af6 AO |
3351 | |
3352 | /* Take g out of the direct list, and push it onto the reversed | |
3353 | list that gg points to. */ | |
3354 | gn = g->next; | |
3355 | g->next = gg->next; | |
3356 | gg->next = g; | |
3357 | g = gn; | |
0626d451 RS |
3358 | |
3359 | /* Mark global symbols in every non-primary GOT as ineligible for | |
3360 | stubs. */ | |
3361 | if (g) | |
3362 | htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL); | |
f4416af6 AO |
3363 | } |
3364 | while (g); | |
3365 | ||
eea6121a | 3366 | got->size = (gg->next->local_gotno |
0f20cc35 DJ |
3367 | + gg->next->global_gotno |
3368 | + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd); | |
143d77c5 | 3369 | |
f4416af6 AO |
3370 | return TRUE; |
3371 | } | |
143d77c5 | 3372 | |
b49e97c9 TS |
3373 | \f |
3374 | /* Returns the first relocation of type r_type found, beginning with | |
3375 | RELOCATION. RELEND is one-past-the-end of the relocation table. */ | |
3376 | ||
3377 | static const Elf_Internal_Rela * | |
9719ad41 RS |
3378 | mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type, |
3379 | const Elf_Internal_Rela *relocation, | |
3380 | const Elf_Internal_Rela *relend) | |
b49e97c9 | 3381 | { |
b49e97c9 TS |
3382 | while (relocation < relend) |
3383 | { | |
3384 | if (ELF_R_TYPE (abfd, relocation->r_info) == r_type) | |
3385 | return relocation; | |
3386 | ||
3387 | ++relocation; | |
3388 | } | |
3389 | ||
3390 | /* We didn't find it. */ | |
3391 | bfd_set_error (bfd_error_bad_value); | |
3392 | return NULL; | |
3393 | } | |
3394 | ||
3395 | /* Return whether a relocation is against a local symbol. */ | |
3396 | ||
b34976b6 | 3397 | static bfd_boolean |
9719ad41 RS |
3398 | mips_elf_local_relocation_p (bfd *input_bfd, |
3399 | const Elf_Internal_Rela *relocation, | |
3400 | asection **local_sections, | |
3401 | bfd_boolean check_forced) | |
b49e97c9 TS |
3402 | { |
3403 | unsigned long r_symndx; | |
3404 | Elf_Internal_Shdr *symtab_hdr; | |
3405 | struct mips_elf_link_hash_entry *h; | |
3406 | size_t extsymoff; | |
3407 | ||
3408 | r_symndx = ELF_R_SYM (input_bfd, relocation->r_info); | |
3409 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | |
3410 | extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info; | |
3411 | ||
3412 | if (r_symndx < extsymoff) | |
b34976b6 | 3413 | return TRUE; |
b49e97c9 | 3414 | if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL) |
b34976b6 | 3415 | return TRUE; |
b49e97c9 TS |
3416 | |
3417 | if (check_forced) | |
3418 | { | |
3419 | /* Look up the hash table to check whether the symbol | |
3420 | was forced local. */ | |
3421 | h = (struct mips_elf_link_hash_entry *) | |
3422 | elf_sym_hashes (input_bfd) [r_symndx - extsymoff]; | |
3423 | /* Find the real hash-table entry for this symbol. */ | |
3424 | while (h->root.root.type == bfd_link_hash_indirect | |
3425 | || h->root.root.type == bfd_link_hash_warning) | |
3426 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | |
f5385ebf | 3427 | if (h->root.forced_local) |
b34976b6 | 3428 | return TRUE; |
b49e97c9 TS |
3429 | } |
3430 | ||
b34976b6 | 3431 | return FALSE; |
b49e97c9 TS |
3432 | } |
3433 | \f | |
3434 | /* Sign-extend VALUE, which has the indicated number of BITS. */ | |
3435 | ||
a7ebbfdf | 3436 | bfd_vma |
9719ad41 | 3437 | _bfd_mips_elf_sign_extend (bfd_vma value, int bits) |
b49e97c9 TS |
3438 | { |
3439 | if (value & ((bfd_vma) 1 << (bits - 1))) | |
3440 | /* VALUE is negative. */ | |
3441 | value |= ((bfd_vma) - 1) << bits; | |
3442 | ||
3443 | return value; | |
3444 | } | |
3445 | ||
3446 | /* Return non-zero if the indicated VALUE has overflowed the maximum | |
4cc11e76 | 3447 | range expressible by a signed number with the indicated number of |
b49e97c9 TS |
3448 | BITS. */ |
3449 | ||
b34976b6 | 3450 | static bfd_boolean |
9719ad41 | 3451 | mips_elf_overflow_p (bfd_vma value, int bits) |
b49e97c9 TS |
3452 | { |
3453 | bfd_signed_vma svalue = (bfd_signed_vma) value; | |
3454 | ||
3455 | if (svalue > (1 << (bits - 1)) - 1) | |
3456 | /* The value is too big. */ | |
b34976b6 | 3457 | return TRUE; |
b49e97c9 TS |
3458 | else if (svalue < -(1 << (bits - 1))) |
3459 | /* The value is too small. */ | |
b34976b6 | 3460 | return TRUE; |
b49e97c9 TS |
3461 | |
3462 | /* All is well. */ | |
b34976b6 | 3463 | return FALSE; |
b49e97c9 TS |
3464 | } |
3465 | ||
3466 | /* Calculate the %high function. */ | |
3467 | ||
3468 | static bfd_vma | |
9719ad41 | 3469 | mips_elf_high (bfd_vma value) |
b49e97c9 TS |
3470 | { |
3471 | return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff; | |
3472 | } | |
3473 | ||
3474 | /* Calculate the %higher function. */ | |
3475 | ||
3476 | static bfd_vma | |
9719ad41 | 3477 | mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED) |
b49e97c9 TS |
3478 | { |
3479 | #ifdef BFD64 | |
3480 | return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff; | |
3481 | #else | |
3482 | abort (); | |
c5ae1840 | 3483 | return MINUS_ONE; |
b49e97c9 TS |
3484 | #endif |
3485 | } | |
3486 | ||
3487 | /* Calculate the %highest function. */ | |
3488 | ||
3489 | static bfd_vma | |
9719ad41 | 3490 | mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED) |
b49e97c9 TS |
3491 | { |
3492 | #ifdef BFD64 | |
b15e6682 | 3493 | return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff; |
b49e97c9 TS |
3494 | #else |
3495 | abort (); | |
c5ae1840 | 3496 | return MINUS_ONE; |
b49e97c9 TS |
3497 | #endif |
3498 | } | |
3499 | \f | |
3500 | /* Create the .compact_rel section. */ | |
3501 | ||
b34976b6 | 3502 | static bfd_boolean |
9719ad41 RS |
3503 | mips_elf_create_compact_rel_section |
3504 | (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED) | |
b49e97c9 TS |
3505 | { |
3506 | flagword flags; | |
3507 | register asection *s; | |
3508 | ||
3509 | if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL) | |
3510 | { | |
3511 | flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED | |
3512 | | SEC_READONLY); | |
3513 | ||
3496cb2a | 3514 | s = bfd_make_section_with_flags (abfd, ".compact_rel", flags); |
b49e97c9 | 3515 | if (s == NULL |
b49e97c9 TS |
3516 | || ! bfd_set_section_alignment (abfd, s, |
3517 | MIPS_ELF_LOG_FILE_ALIGN (abfd))) | |
b34976b6 | 3518 | return FALSE; |
b49e97c9 | 3519 | |
eea6121a | 3520 | s->size = sizeof (Elf32_External_compact_rel); |
b49e97c9 TS |
3521 | } |
3522 | ||
b34976b6 | 3523 | return TRUE; |
b49e97c9 TS |
3524 | } |
3525 | ||
3526 | /* Create the .got section to hold the global offset table. */ | |
3527 | ||
b34976b6 | 3528 | static bfd_boolean |
9719ad41 RS |
3529 | mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info, |
3530 | bfd_boolean maybe_exclude) | |
b49e97c9 TS |
3531 | { |
3532 | flagword flags; | |
3533 | register asection *s; | |
3534 | struct elf_link_hash_entry *h; | |
14a793b2 | 3535 | struct bfd_link_hash_entry *bh; |
b49e97c9 TS |
3536 | struct mips_got_info *g; |
3537 | bfd_size_type amt; | |
3538 | ||
3539 | /* This function may be called more than once. */ | |
f4416af6 AO |
3540 | s = mips_elf_got_section (abfd, TRUE); |
3541 | if (s) | |
3542 | { | |
3543 | if (! maybe_exclude) | |
3544 | s->flags &= ~SEC_EXCLUDE; | |
3545 | return TRUE; | |
3546 | } | |
b49e97c9 TS |
3547 | |
3548 | flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | |
3549 | | SEC_LINKER_CREATED); | |
3550 | ||
f4416af6 AO |
3551 | if (maybe_exclude) |
3552 | flags |= SEC_EXCLUDE; | |
3553 | ||
72b4917c TS |
3554 | /* We have to use an alignment of 2**4 here because this is hardcoded |
3555 | in the function stub generation and in the linker script. */ | |
3496cb2a | 3556 | s = bfd_make_section_with_flags (abfd, ".got", flags); |
b49e97c9 | 3557 | if (s == NULL |
72b4917c | 3558 | || ! bfd_set_section_alignment (abfd, s, 4)) |
b34976b6 | 3559 | return FALSE; |
b49e97c9 TS |
3560 | |
3561 | /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the | |
3562 | linker script because we don't want to define the symbol if we | |
3563 | are not creating a global offset table. */ | |
14a793b2 | 3564 | bh = NULL; |
b49e97c9 TS |
3565 | if (! (_bfd_generic_link_add_one_symbol |
3566 | (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s, | |
9719ad41 | 3567 | 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh))) |
b34976b6 | 3568 | return FALSE; |
14a793b2 AM |
3569 | |
3570 | h = (struct elf_link_hash_entry *) bh; | |
f5385ebf AM |
3571 | h->non_elf = 0; |
3572 | h->def_regular = 1; | |
b49e97c9 TS |
3573 | h->type = STT_OBJECT; |
3574 | ||
3575 | if (info->shared | |
c152c796 | 3576 | && ! bfd_elf_link_record_dynamic_symbol (info, h)) |
b34976b6 | 3577 | return FALSE; |
b49e97c9 | 3578 | |
b49e97c9 | 3579 | amt = sizeof (struct mips_got_info); |
9719ad41 | 3580 | g = bfd_alloc (abfd, amt); |
b49e97c9 | 3581 | if (g == NULL) |
b34976b6 | 3582 | return FALSE; |
b49e97c9 | 3583 | g->global_gotsym = NULL; |
e3d54347 | 3584 | g->global_gotno = 0; |
0f20cc35 | 3585 | g->tls_gotno = 0; |
b49e97c9 TS |
3586 | g->local_gotno = MIPS_RESERVED_GOTNO; |
3587 | g->assigned_gotno = MIPS_RESERVED_GOTNO; | |
f4416af6 AO |
3588 | g->bfd2got = NULL; |
3589 | g->next = NULL; | |
0f20cc35 | 3590 | g->tls_ldm_offset = MINUS_ONE; |
b15e6682 | 3591 | g->got_entries = htab_try_create (1, mips_elf_got_entry_hash, |
9719ad41 | 3592 | mips_elf_got_entry_eq, NULL); |
b15e6682 AO |
3593 | if (g->got_entries == NULL) |
3594 | return FALSE; | |
f0abc2a1 AM |
3595 | mips_elf_section_data (s)->u.got_info = g; |
3596 | mips_elf_section_data (s)->elf.this_hdr.sh_flags | |
b49e97c9 TS |
3597 | |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL; |
3598 | ||
b34976b6 | 3599 | return TRUE; |
b49e97c9 | 3600 | } |
b49e97c9 TS |
3601 | \f |
3602 | /* Calculate the value produced by the RELOCATION (which comes from | |
3603 | the INPUT_BFD). The ADDEND is the addend to use for this | |
3604 | RELOCATION; RELOCATION->R_ADDEND is ignored. | |
3605 | ||
3606 | The result of the relocation calculation is stored in VALUEP. | |
3607 | REQUIRE_JALXP indicates whether or not the opcode used with this | |
3608 | relocation must be JALX. | |
3609 | ||
3610 | This function returns bfd_reloc_continue if the caller need take no | |
3611 | further action regarding this relocation, bfd_reloc_notsupported if | |
3612 | something goes dramatically wrong, bfd_reloc_overflow if an | |
3613 | overflow occurs, and bfd_reloc_ok to indicate success. */ | |
3614 | ||
3615 | static bfd_reloc_status_type | |
9719ad41 RS |
3616 | mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd, |
3617 | asection *input_section, | |
3618 | struct bfd_link_info *info, | |
3619 | const Elf_Internal_Rela *relocation, | |
3620 | bfd_vma addend, reloc_howto_type *howto, | |
3621 | Elf_Internal_Sym *local_syms, | |
3622 | asection **local_sections, bfd_vma *valuep, | |
3623 | const char **namep, bfd_boolean *require_jalxp, | |
3624 | bfd_boolean save_addend) | |
b49e97c9 TS |
3625 | { |
3626 | /* The eventual value we will return. */ | |
3627 | bfd_vma value; | |
3628 | /* The address of the symbol against which the relocation is | |
3629 | occurring. */ | |
3630 | bfd_vma symbol = 0; | |
3631 | /* The final GP value to be used for the relocatable, executable, or | |
3632 | shared object file being produced. */ | |
3633 | bfd_vma gp = MINUS_ONE; | |
3634 | /* The place (section offset or address) of the storage unit being | |
3635 | relocated. */ | |
3636 | bfd_vma p; | |
3637 | /* The value of GP used to create the relocatable object. */ | |
3638 | bfd_vma gp0 = MINUS_ONE; | |
3639 | /* The offset into the global offset table at which the address of | |
3640 | the relocation entry symbol, adjusted by the addend, resides | |
3641 | during execution. */ | |
3642 | bfd_vma g = MINUS_ONE; | |
3643 | /* The section in which the symbol referenced by the relocation is | |
3644 | located. */ | |
3645 | asection *sec = NULL; | |
3646 | struct mips_elf_link_hash_entry *h = NULL; | |
b34976b6 | 3647 | /* TRUE if the symbol referred to by this relocation is a local |
b49e97c9 | 3648 | symbol. */ |
b34976b6 AM |
3649 | bfd_boolean local_p, was_local_p; |
3650 | /* TRUE if the symbol referred to by this relocation is "_gp_disp". */ | |
3651 | bfd_boolean gp_disp_p = FALSE; | |
bbe506e8 TS |
3652 | /* TRUE if the symbol referred to by this relocation is |
3653 | "__gnu_local_gp". */ | |
3654 | bfd_boolean gnu_local_gp_p = FALSE; | |
b49e97c9 TS |
3655 | Elf_Internal_Shdr *symtab_hdr; |
3656 | size_t extsymoff; | |
3657 | unsigned long r_symndx; | |
3658 | int r_type; | |
b34976b6 | 3659 | /* TRUE if overflow occurred during the calculation of the |
b49e97c9 | 3660 | relocation value. */ |
b34976b6 AM |
3661 | bfd_boolean overflowed_p; |
3662 | /* TRUE if this relocation refers to a MIPS16 function. */ | |
3663 | bfd_boolean target_is_16_bit_code_p = FALSE; | |
b49e97c9 TS |
3664 | |
3665 | /* Parse the relocation. */ | |
3666 | r_symndx = ELF_R_SYM (input_bfd, relocation->r_info); | |
3667 | r_type = ELF_R_TYPE (input_bfd, relocation->r_info); | |
3668 | p = (input_section->output_section->vma | |
3669 | + input_section->output_offset | |
3670 | + relocation->r_offset); | |
3671 | ||
3672 | /* Assume that there will be no overflow. */ | |
b34976b6 | 3673 | overflowed_p = FALSE; |
b49e97c9 TS |
3674 | |
3675 | /* Figure out whether or not the symbol is local, and get the offset | |
3676 | used in the array of hash table entries. */ | |
3677 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | |
3678 | local_p = mips_elf_local_relocation_p (input_bfd, relocation, | |
b34976b6 | 3679 | local_sections, FALSE); |
bce03d3d | 3680 | was_local_p = local_p; |
b49e97c9 TS |
3681 | if (! elf_bad_symtab (input_bfd)) |
3682 | extsymoff = symtab_hdr->sh_info; | |
3683 | else | |
3684 | { | |
3685 | /* The symbol table does not follow the rule that local symbols | |
3686 | must come before globals. */ | |
3687 | extsymoff = 0; | |
3688 | } | |
3689 | ||
3690 | /* Figure out the value of the symbol. */ | |
3691 | if (local_p) | |
3692 | { | |
3693 | Elf_Internal_Sym *sym; | |
3694 | ||
3695 | sym = local_syms + r_symndx; | |
3696 | sec = local_sections[r_symndx]; | |
3697 | ||
3698 | symbol = sec->output_section->vma + sec->output_offset; | |
d4df96e6 L |
3699 | if (ELF_ST_TYPE (sym->st_info) != STT_SECTION |
3700 | || (sec->flags & SEC_MERGE)) | |
b49e97c9 | 3701 | symbol += sym->st_value; |
d4df96e6 L |
3702 | if ((sec->flags & SEC_MERGE) |
3703 | && ELF_ST_TYPE (sym->st_info) == STT_SECTION) | |
3704 | { | |
3705 | addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend); | |
3706 | addend -= symbol; | |
3707 | addend += sec->output_section->vma + sec->output_offset; | |
3708 | } | |
b49e97c9 TS |
3709 | |
3710 | /* MIPS16 text labels should be treated as odd. */ | |
3711 | if (sym->st_other == STO_MIPS16) | |
3712 | ++symbol; | |
3713 | ||
3714 | /* Record the name of this symbol, for our caller. */ | |
3715 | *namep = bfd_elf_string_from_elf_section (input_bfd, | |
3716 | symtab_hdr->sh_link, | |
3717 | sym->st_name); | |
3718 | if (*namep == '\0') | |
3719 | *namep = bfd_section_name (input_bfd, sec); | |
3720 | ||
3721 | target_is_16_bit_code_p = (sym->st_other == STO_MIPS16); | |
3722 | } | |
3723 | else | |
3724 | { | |
560e09e9 NC |
3725 | /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */ |
3726 | ||
b49e97c9 TS |
3727 | /* For global symbols we look up the symbol in the hash-table. */ |
3728 | h = ((struct mips_elf_link_hash_entry *) | |
3729 | elf_sym_hashes (input_bfd) [r_symndx - extsymoff]); | |
3730 | /* Find the real hash-table entry for this symbol. */ | |
3731 | while (h->root.root.type == bfd_link_hash_indirect | |
3732 | || h->root.root.type == bfd_link_hash_warning) | |
3733 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | |
3734 | ||
3735 | /* Record the name of this symbol, for our caller. */ | |
3736 | *namep = h->root.root.root.string; | |
3737 | ||
3738 | /* See if this is the special _gp_disp symbol. Note that such a | |
3739 | symbol must always be a global symbol. */ | |
560e09e9 | 3740 | if (strcmp (*namep, "_gp_disp") == 0 |
b49e97c9 TS |
3741 | && ! NEWABI_P (input_bfd)) |
3742 | { | |
3743 | /* Relocations against _gp_disp are permitted only with | |
3744 | R_MIPS_HI16 and R_MIPS_LO16 relocations. */ | |
d6f16593 MR |
3745 | if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16 |
3746 | && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16) | |
b49e97c9 TS |
3747 | return bfd_reloc_notsupported; |
3748 | ||
b34976b6 | 3749 | gp_disp_p = TRUE; |
b49e97c9 | 3750 | } |
bbe506e8 TS |
3751 | /* See if this is the special _gp symbol. Note that such a |
3752 | symbol must always be a global symbol. */ | |
3753 | else if (strcmp (*namep, "__gnu_local_gp") == 0) | |
3754 | gnu_local_gp_p = TRUE; | |
3755 | ||
3756 | ||
b49e97c9 TS |
3757 | /* If this symbol is defined, calculate its address. Note that |
3758 | _gp_disp is a magic symbol, always implicitly defined by the | |
3759 | linker, so it's inappropriate to check to see whether or not | |
3760 | its defined. */ | |
3761 | else if ((h->root.root.type == bfd_link_hash_defined | |
3762 | || h->root.root.type == bfd_link_hash_defweak) | |
3763 | && h->root.root.u.def.section) | |
3764 | { | |
3765 | sec = h->root.root.u.def.section; | |
3766 | if (sec->output_section) | |
3767 | symbol = (h->root.root.u.def.value | |
3768 | + sec->output_section->vma | |
3769 | + sec->output_offset); | |
3770 | else | |
3771 | symbol = h->root.root.u.def.value; | |
3772 | } | |
3773 | else if (h->root.root.type == bfd_link_hash_undefweak) | |
3774 | /* We allow relocations against undefined weak symbols, giving | |
3775 | it the value zero, so that you can undefined weak functions | |
3776 | and check to see if they exist by looking at their | |
3777 | addresses. */ | |
3778 | symbol = 0; | |
59c2e50f | 3779 | else if (info->unresolved_syms_in_objects == RM_IGNORE |
b49e97c9 TS |
3780 | && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT) |
3781 | symbol = 0; | |
a4d0f181 TS |
3782 | else if (strcmp (*namep, SGI_COMPAT (input_bfd) |
3783 | ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0) | |
b49e97c9 TS |
3784 | { |
3785 | /* If this is a dynamic link, we should have created a | |
3786 | _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol | |
3787 | in in _bfd_mips_elf_create_dynamic_sections. | |
3788 | Otherwise, we should define the symbol with a value of 0. | |
3789 | FIXME: It should probably get into the symbol table | |
3790 | somehow as well. */ | |
3791 | BFD_ASSERT (! info->shared); | |
3792 | BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL); | |
3793 | symbol = 0; | |
3794 | } | |
3795 | else | |
3796 | { | |
3797 | if (! ((*info->callbacks->undefined_symbol) | |
3798 | (info, h->root.root.root.string, input_bfd, | |
3799 | input_section, relocation->r_offset, | |
59c2e50f L |
3800 | (info->unresolved_syms_in_objects == RM_GENERATE_ERROR) |
3801 | || ELF_ST_VISIBILITY (h->root.other)))) | |
b49e97c9 TS |
3802 | return bfd_reloc_undefined; |
3803 | symbol = 0; | |
3804 | } | |
3805 | ||
3806 | target_is_16_bit_code_p = (h->root.other == STO_MIPS16); | |
3807 | } | |
3808 | ||
3809 | /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we | |
3810 | need to redirect the call to the stub, unless we're already *in* | |
3811 | a stub. */ | |
1049f94e | 3812 | if (r_type != R_MIPS16_26 && !info->relocatable |
b49e97c9 TS |
3813 | && ((h != NULL && h->fn_stub != NULL) |
3814 | || (local_p && elf_tdata (input_bfd)->local_stubs != NULL | |
3815 | && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL)) | |
3816 | && !mips_elf_stub_section_p (input_bfd, input_section)) | |
3817 | { | |
3818 | /* This is a 32- or 64-bit call to a 16-bit function. We should | |
3819 | have already noticed that we were going to need the | |
3820 | stub. */ | |
3821 | if (local_p) | |
3822 | sec = elf_tdata (input_bfd)->local_stubs[r_symndx]; | |
3823 | else | |
3824 | { | |
3825 | BFD_ASSERT (h->need_fn_stub); | |
3826 | sec = h->fn_stub; | |
3827 | } | |
3828 | ||
3829 | symbol = sec->output_section->vma + sec->output_offset; | |
3830 | } | |
3831 | /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we | |
3832 | need to redirect the call to the stub. */ | |
1049f94e | 3833 | else if (r_type == R_MIPS16_26 && !info->relocatable |
b49e97c9 TS |
3834 | && h != NULL |
3835 | && (h->call_stub != NULL || h->call_fp_stub != NULL) | |
3836 | && !target_is_16_bit_code_p) | |
3837 | { | |
3838 | /* If both call_stub and call_fp_stub are defined, we can figure | |
3839 | out which one to use by seeing which one appears in the input | |
3840 | file. */ | |
3841 | if (h->call_stub != NULL && h->call_fp_stub != NULL) | |
3842 | { | |
3843 | asection *o; | |
3844 | ||
3845 | sec = NULL; | |
3846 | for (o = input_bfd->sections; o != NULL; o = o->next) | |
3847 | { | |
3848 | if (strncmp (bfd_get_section_name (input_bfd, o), | |
3849 | CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0) | |
3850 | { | |
3851 | sec = h->call_fp_stub; | |
3852 | break; | |
3853 | } | |
3854 | } | |
3855 | if (sec == NULL) | |
3856 | sec = h->call_stub; | |
3857 | } | |
3858 | else if (h->call_stub != NULL) | |
3859 | sec = h->call_stub; | |
3860 | else | |
3861 | sec = h->call_fp_stub; | |
3862 | ||
eea6121a | 3863 | BFD_ASSERT (sec->size > 0); |
b49e97c9 TS |
3864 | symbol = sec->output_section->vma + sec->output_offset; |
3865 | } | |
3866 | ||
3867 | /* Calls from 16-bit code to 32-bit code and vice versa require the | |
3868 | special jalx instruction. */ | |
1049f94e | 3869 | *require_jalxp = (!info->relocatable |
b49e97c9 TS |
3870 | && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p) |
3871 | || ((r_type == R_MIPS_26) && target_is_16_bit_code_p))); | |
3872 | ||
3873 | local_p = mips_elf_local_relocation_p (input_bfd, relocation, | |
b34976b6 | 3874 | local_sections, TRUE); |
b49e97c9 TS |
3875 | |
3876 | /* If we haven't already determined the GOT offset, or the GP value, | |
3877 | and we're going to need it, get it now. */ | |
3878 | switch (r_type) | |
3879 | { | |
0fdc1bf1 | 3880 | case R_MIPS_GOT_PAGE: |
93a2b7ae | 3881 | case R_MIPS_GOT_OFST: |
d25aed71 RS |
3882 | /* We need to decay to GOT_DISP/addend if the symbol doesn't |
3883 | bind locally. */ | |
3884 | local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1); | |
93a2b7ae | 3885 | if (local_p || r_type == R_MIPS_GOT_OFST) |
0fdc1bf1 AO |
3886 | break; |
3887 | /* Fall through. */ | |
3888 | ||
b49e97c9 TS |
3889 | case R_MIPS_CALL16: |
3890 | case R_MIPS_GOT16: | |
3891 | case R_MIPS_GOT_DISP: | |
3892 | case R_MIPS_GOT_HI16: | |
3893 | case R_MIPS_CALL_HI16: | |
3894 | case R_MIPS_GOT_LO16: | |
3895 | case R_MIPS_CALL_LO16: | |
0f20cc35 DJ |
3896 | case R_MIPS_TLS_GD: |
3897 | case R_MIPS_TLS_GOTTPREL: | |
3898 | case R_MIPS_TLS_LDM: | |
b49e97c9 | 3899 | /* Find the index into the GOT where this value is located. */ |
0f20cc35 DJ |
3900 | if (r_type == R_MIPS_TLS_LDM) |
3901 | { | |
3902 | g = mips_elf_local_got_index (abfd, input_bfd, info, 0, 0, NULL, | |
3903 | r_type); | |
3904 | if (g == MINUS_ONE) | |
3905 | return bfd_reloc_outofrange; | |
3906 | } | |
3907 | else if (!local_p) | |
b49e97c9 | 3908 | { |
0fdc1bf1 AO |
3909 | /* GOT_PAGE may take a non-zero addend, that is ignored in a |
3910 | GOT_PAGE relocation that decays to GOT_DISP because the | |
3911 | symbol turns out to be global. The addend is then added | |
3912 | as GOT_OFST. */ | |
3913 | BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE); | |
b49e97c9 | 3914 | g = mips_elf_global_got_index (elf_hash_table (info)->dynobj, |
f4416af6 | 3915 | input_bfd, |
0f20cc35 DJ |
3916 | (struct elf_link_hash_entry *) h, |
3917 | r_type, info); | |
3918 | if (h->tls_type == GOT_NORMAL | |
3919 | && (! elf_hash_table(info)->dynamic_sections_created | |
3920 | || (info->shared | |
3921 | && (info->symbolic || h->root.dynindx == -1) | |
3922 | && h->root.def_regular))) | |
b49e97c9 TS |
3923 | { |
3924 | /* This is a static link or a -Bsymbolic link. The | |
3925 | symbol is defined locally, or was forced to be local. | |
3926 | We must initialize this entry in the GOT. */ | |
3927 | bfd *tmpbfd = elf_hash_table (info)->dynobj; | |
f4416af6 | 3928 | asection *sgot = mips_elf_got_section (tmpbfd, FALSE); |
0fdc1bf1 | 3929 | MIPS_ELF_PUT_WORD (tmpbfd, symbol, sgot->contents + g); |
b49e97c9 TS |
3930 | } |
3931 | } | |
3932 | else if (r_type == R_MIPS_GOT16 || r_type == R_MIPS_CALL16) | |
3933 | /* There's no need to create a local GOT entry here; the | |
3934 | calculation for a local GOT16 entry does not involve G. */ | |
3935 | break; | |
3936 | else | |
3937 | { | |
f4416af6 | 3938 | g = mips_elf_local_got_index (abfd, input_bfd, |
0f20cc35 DJ |
3939 | info, symbol + addend, r_symndx, h, |
3940 | r_type); | |
b49e97c9 TS |
3941 | if (g == MINUS_ONE) |
3942 | return bfd_reloc_outofrange; | |
3943 | } | |
3944 | ||
3945 | /* Convert GOT indices to actual offsets. */ | |
3946 | g = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj, | |
f4416af6 | 3947 | abfd, input_bfd, g); |
b49e97c9 TS |
3948 | break; |
3949 | ||
3950 | case R_MIPS_HI16: | |
3951 | case R_MIPS_LO16: | |
b49e97c9 TS |
3952 | case R_MIPS_GPREL16: |
3953 | case R_MIPS_GPREL32: | |
3954 | case R_MIPS_LITERAL: | |
d6f16593 MR |
3955 | case R_MIPS16_HI16: |
3956 | case R_MIPS16_LO16: | |
3957 | case R_MIPS16_GPREL: | |
b49e97c9 TS |
3958 | gp0 = _bfd_get_gp_value (input_bfd); |
3959 | gp = _bfd_get_gp_value (abfd); | |
f4416af6 AO |
3960 | if (elf_hash_table (info)->dynobj) |
3961 | gp += mips_elf_adjust_gp (abfd, | |
3962 | mips_elf_got_info | |
3963 | (elf_hash_table (info)->dynobj, NULL), | |
3964 | input_bfd); | |
b49e97c9 TS |
3965 | break; |
3966 | ||
3967 | default: | |
3968 | break; | |
3969 | } | |
3970 | ||
bbe506e8 TS |
3971 | if (gnu_local_gp_p) |
3972 | symbol = gp; | |
3973 | ||
b49e97c9 TS |
3974 | /* Figure out what kind of relocation is being performed. */ |
3975 | switch (r_type) | |
3976 | { | |
3977 | case R_MIPS_NONE: | |
3978 | return bfd_reloc_continue; | |
3979 | ||
3980 | case R_MIPS_16: | |
a7ebbfdf | 3981 | value = symbol + _bfd_mips_elf_sign_extend (addend, 16); |
b49e97c9 TS |
3982 | overflowed_p = mips_elf_overflow_p (value, 16); |
3983 | break; | |
3984 | ||
3985 | case R_MIPS_32: | |
3986 | case R_MIPS_REL32: | |
3987 | case R_MIPS_64: | |
3988 | if ((info->shared | |
3989 | || (elf_hash_table (info)->dynamic_sections_created | |
3990 | && h != NULL | |
f5385ebf AM |
3991 | && h->root.def_dynamic |
3992 | && !h->root.def_regular)) | |
b49e97c9 TS |
3993 | && r_symndx != 0 |
3994 | && (input_section->flags & SEC_ALLOC) != 0) | |
3995 | { | |
3996 | /* If we're creating a shared library, or this relocation is | |
3997 | against a symbol in a shared library, then we can't know | |
3998 | where the symbol will end up. So, we create a relocation | |
3999 | record in the output, and leave the job up to the dynamic | |
4000 | linker. */ | |
4001 | value = addend; | |
4002 | if (!mips_elf_create_dynamic_relocation (abfd, | |
4003 | info, | |
4004 | relocation, | |
4005 | h, | |
4006 | sec, | |
4007 | symbol, | |
4008 | &value, | |
4009 | input_section)) | |
4010 | return bfd_reloc_undefined; | |
4011 | } | |
4012 | else | |
4013 | { | |
4014 | if (r_type != R_MIPS_REL32) | |
4015 | value = symbol + addend; | |
4016 | else | |
4017 | value = addend; | |
4018 | } | |
4019 | value &= howto->dst_mask; | |
092dcd75 CD |
4020 | break; |
4021 | ||
4022 | case R_MIPS_PC32: | |
4023 | value = symbol + addend - p; | |
4024 | value &= howto->dst_mask; | |
b49e97c9 TS |
4025 | break; |
4026 | ||
0b25d3e6 | 4027 | case R_MIPS_GNU_REL16_S2: |
30ac9238 | 4028 | value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p; |
0b25d3e6 AO |
4029 | overflowed_p = mips_elf_overflow_p (value, 18); |
4030 | value = (value >> 2) & howto->dst_mask; | |
4031 | break; | |
4032 | ||
b49e97c9 TS |
4033 | case R_MIPS16_26: |
4034 | /* The calculation for R_MIPS16_26 is just the same as for an | |
4035 | R_MIPS_26. It's only the storage of the relocated field into | |
4036 | the output file that's different. That's handled in | |
4037 | mips_elf_perform_relocation. So, we just fall through to the | |
4038 | R_MIPS_26 case here. */ | |
4039 | case R_MIPS_26: | |
4040 | if (local_p) | |
30ac9238 | 4041 | value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2; |
b49e97c9 | 4042 | else |
728b2f21 ILT |
4043 | { |
4044 | value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2; | |
c314987d RS |
4045 | if (h->root.root.type != bfd_link_hash_undefweak) |
4046 | overflowed_p = (value >> 26) != ((p + 4) >> 28); | |
728b2f21 | 4047 | } |
b49e97c9 TS |
4048 | value &= howto->dst_mask; |
4049 | break; | |
4050 | ||
0f20cc35 DJ |
4051 | case R_MIPS_TLS_DTPREL_HI16: |
4052 | value = (mips_elf_high (addend + symbol - dtprel_base (info)) | |
4053 | & howto->dst_mask); | |
4054 | break; | |
4055 | ||
4056 | case R_MIPS_TLS_DTPREL_LO16: | |
4057 | value = (symbol + addend - dtprel_base (info)) & howto->dst_mask; | |
4058 | break; | |
4059 | ||
4060 | case R_MIPS_TLS_TPREL_HI16: | |
4061 | value = (mips_elf_high (addend + symbol - tprel_base (info)) | |
4062 | & howto->dst_mask); | |
4063 | break; | |
4064 | ||
4065 | case R_MIPS_TLS_TPREL_LO16: | |
4066 | value = (symbol + addend - tprel_base (info)) & howto->dst_mask; | |
4067 | break; | |
4068 | ||
b49e97c9 | 4069 | case R_MIPS_HI16: |
d6f16593 | 4070 | case R_MIPS16_HI16: |
b49e97c9 TS |
4071 | if (!gp_disp_p) |
4072 | { | |
4073 | value = mips_elf_high (addend + symbol); | |
4074 | value &= howto->dst_mask; | |
4075 | } | |
4076 | else | |
4077 | { | |
d6f16593 MR |
4078 | /* For MIPS16 ABI code we generate this sequence |
4079 | 0: li $v0,%hi(_gp_disp) | |
4080 | 4: addiupc $v1,%lo(_gp_disp) | |
4081 | 8: sll $v0,16 | |
4082 | 12: addu $v0,$v1 | |
4083 | 14: move $gp,$v0 | |
4084 | So the offsets of hi and lo relocs are the same, but the | |
4085 | $pc is four higher than $t9 would be, so reduce | |
4086 | both reloc addends by 4. */ | |
4087 | if (r_type == R_MIPS16_HI16) | |
4088 | value = mips_elf_high (addend + gp - p - 4); | |
4089 | else | |
4090 | value = mips_elf_high (addend + gp - p); | |
b49e97c9 TS |
4091 | overflowed_p = mips_elf_overflow_p (value, 16); |
4092 | } | |
4093 | break; | |
4094 | ||
4095 | case R_MIPS_LO16: | |
d6f16593 | 4096 | case R_MIPS16_LO16: |
b49e97c9 TS |
4097 | if (!gp_disp_p) |
4098 | value = (symbol + addend) & howto->dst_mask; | |
4099 | else | |
4100 | { | |
d6f16593 MR |
4101 | /* See the comment for R_MIPS16_HI16 above for the reason |
4102 | for this conditional. */ | |
4103 | if (r_type == R_MIPS16_LO16) | |
4104 | value = addend + gp - p; | |
4105 | else | |
4106 | value = addend + gp - p + 4; | |
b49e97c9 | 4107 | /* The MIPS ABI requires checking the R_MIPS_LO16 relocation |
8dc1a139 | 4108 | for overflow. But, on, say, IRIX5, relocations against |
b49e97c9 TS |
4109 | _gp_disp are normally generated from the .cpload |
4110 | pseudo-op. It generates code that normally looks like | |
4111 | this: | |
4112 | ||
4113 | lui $gp,%hi(_gp_disp) | |
4114 | addiu $gp,$gp,%lo(_gp_disp) | |
4115 | addu $gp,$gp,$t9 | |
4116 | ||
4117 | Here $t9 holds the address of the function being called, | |
4118 | as required by the MIPS ELF ABI. The R_MIPS_LO16 | |
4119 | relocation can easily overflow in this situation, but the | |
4120 | R_MIPS_HI16 relocation will handle the overflow. | |
4121 | Therefore, we consider this a bug in the MIPS ABI, and do | |
4122 | not check for overflow here. */ | |
4123 | } | |
4124 | break; | |
4125 | ||
4126 | case R_MIPS_LITERAL: | |
4127 | /* Because we don't merge literal sections, we can handle this | |
4128 | just like R_MIPS_GPREL16. In the long run, we should merge | |
4129 | shared literals, and then we will need to additional work | |
4130 | here. */ | |
4131 | ||
4132 | /* Fall through. */ | |
4133 | ||
4134 | case R_MIPS16_GPREL: | |
4135 | /* The R_MIPS16_GPREL performs the same calculation as | |
4136 | R_MIPS_GPREL16, but stores the relocated bits in a different | |
4137 | order. We don't need to do anything special here; the | |
4138 | differences are handled in mips_elf_perform_relocation. */ | |
4139 | case R_MIPS_GPREL16: | |
bce03d3d AO |
4140 | /* Only sign-extend the addend if it was extracted from the |
4141 | instruction. If the addend was separate, leave it alone, | |
4142 | otherwise we may lose significant bits. */ | |
4143 | if (howto->partial_inplace) | |
a7ebbfdf | 4144 | addend = _bfd_mips_elf_sign_extend (addend, 16); |
bce03d3d AO |
4145 | value = symbol + addend - gp; |
4146 | /* If the symbol was local, any earlier relocatable links will | |
4147 | have adjusted its addend with the gp offset, so compensate | |
4148 | for that now. Don't do it for symbols forced local in this | |
4149 | link, though, since they won't have had the gp offset applied | |
4150 | to them before. */ | |
4151 | if (was_local_p) | |
4152 | value += gp0; | |
b49e97c9 TS |
4153 | overflowed_p = mips_elf_overflow_p (value, 16); |
4154 | break; | |
4155 | ||
4156 | case R_MIPS_GOT16: | |
4157 | case R_MIPS_CALL16: | |
4158 | if (local_p) | |
4159 | { | |
b34976b6 | 4160 | bfd_boolean forced; |
b49e97c9 TS |
4161 | |
4162 | /* The special case is when the symbol is forced to be local. We | |
4163 | need the full address in the GOT since no R_MIPS_LO16 relocation | |
4164 | follows. */ | |
4165 | forced = ! mips_elf_local_relocation_p (input_bfd, relocation, | |
b34976b6 | 4166 | local_sections, FALSE); |
f4416af6 AO |
4167 | value = mips_elf_got16_entry (abfd, input_bfd, info, |
4168 | symbol + addend, forced); | |
b49e97c9 TS |
4169 | if (value == MINUS_ONE) |
4170 | return bfd_reloc_outofrange; | |
4171 | value | |
4172 | = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj, | |
f4416af6 | 4173 | abfd, input_bfd, value); |
b49e97c9 TS |
4174 | overflowed_p = mips_elf_overflow_p (value, 16); |
4175 | break; | |
4176 | } | |
4177 | ||
4178 | /* Fall through. */ | |
4179 | ||
0f20cc35 DJ |
4180 | case R_MIPS_TLS_GD: |
4181 | case R_MIPS_TLS_GOTTPREL: | |
4182 | case R_MIPS_TLS_LDM: | |
b49e97c9 | 4183 | case R_MIPS_GOT_DISP: |
0fdc1bf1 | 4184 | got_disp: |
b49e97c9 TS |
4185 | value = g; |
4186 | overflowed_p = mips_elf_overflow_p (value, 16); | |
4187 | break; | |
4188 | ||
4189 | case R_MIPS_GPREL32: | |
bce03d3d AO |
4190 | value = (addend + symbol + gp0 - gp); |
4191 | if (!save_addend) | |
4192 | value &= howto->dst_mask; | |
b49e97c9 TS |
4193 | break; |
4194 | ||
4195 | case R_MIPS_PC16: | |
a7ebbfdf | 4196 | value = _bfd_mips_elf_sign_extend (addend, 16) + symbol - p; |
0b25d3e6 | 4197 | overflowed_p = mips_elf_overflow_p (value, 16); |
b49e97c9 TS |
4198 | break; |
4199 | ||
4200 | case R_MIPS_GOT_HI16: | |
4201 | case R_MIPS_CALL_HI16: | |
4202 | /* We're allowed to handle these two relocations identically. | |
4203 | The dynamic linker is allowed to handle the CALL relocations | |
4204 | differently by creating a lazy evaluation stub. */ | |
4205 | value = g; | |
4206 | value = mips_elf_high (value); | |
4207 | value &= howto->dst_mask; | |
4208 | break; | |
4209 | ||
4210 | case R_MIPS_GOT_LO16: | |
4211 | case R_MIPS_CALL_LO16: | |
4212 | value = g & howto->dst_mask; | |
4213 | break; | |
4214 | ||
4215 | case R_MIPS_GOT_PAGE: | |
0fdc1bf1 AO |
4216 | /* GOT_PAGE relocations that reference non-local symbols decay |
4217 | to GOT_DISP. The corresponding GOT_OFST relocation decays to | |
4218 | 0. */ | |
93a2b7ae | 4219 | if (! local_p) |
0fdc1bf1 | 4220 | goto got_disp; |
f4416af6 | 4221 | value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL); |
b49e97c9 TS |
4222 | if (value == MINUS_ONE) |
4223 | return bfd_reloc_outofrange; | |
4224 | value = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj, | |
f4416af6 | 4225 | abfd, input_bfd, value); |
b49e97c9 TS |
4226 | overflowed_p = mips_elf_overflow_p (value, 16); |
4227 | break; | |
4228 | ||
4229 | case R_MIPS_GOT_OFST: | |
93a2b7ae | 4230 | if (local_p) |
0fdc1bf1 AO |
4231 | mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value); |
4232 | else | |
4233 | value = addend; | |
b49e97c9 TS |
4234 | overflowed_p = mips_elf_overflow_p (value, 16); |
4235 | break; | |
4236 | ||
4237 | case R_MIPS_SUB: | |
4238 | value = symbol - addend; | |
4239 | value &= howto->dst_mask; | |
4240 | break; | |
4241 | ||
4242 | case R_MIPS_HIGHER: | |
4243 | value = mips_elf_higher (addend + symbol); | |
4244 | value &= howto->dst_mask; | |
4245 | break; | |
4246 | ||
4247 | case R_MIPS_HIGHEST: | |
4248 | value = mips_elf_highest (addend + symbol); | |
4249 | value &= howto->dst_mask; | |
4250 | break; | |
4251 | ||
4252 | case R_MIPS_SCN_DISP: | |
4253 | value = symbol + addend - sec->output_offset; | |
4254 | value &= howto->dst_mask; | |
4255 | break; | |
4256 | ||
b49e97c9 | 4257 | case R_MIPS_JALR: |
1367d393 ILT |
4258 | /* This relocation is only a hint. In some cases, we optimize |
4259 | it into a bal instruction. But we don't try to optimize | |
4260 | branches to the PLT; that will wind up wasting time. */ | |
4261 | if (h != NULL && h->root.plt.offset != (bfd_vma) -1) | |
4262 | return bfd_reloc_continue; | |
4263 | value = symbol + addend; | |
4264 | break; | |
b49e97c9 | 4265 | |
1367d393 | 4266 | case R_MIPS_PJUMP: |
b49e97c9 TS |
4267 | case R_MIPS_GNU_VTINHERIT: |
4268 | case R_MIPS_GNU_VTENTRY: | |
4269 | /* We don't do anything with these at present. */ | |
4270 | return bfd_reloc_continue; | |
4271 | ||
4272 | default: | |
4273 | /* An unrecognized relocation type. */ | |
4274 | return bfd_reloc_notsupported; | |
4275 | } | |
4276 | ||
4277 | /* Store the VALUE for our caller. */ | |
4278 | *valuep = value; | |
4279 | return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok; | |
4280 | } | |
4281 | ||
4282 | /* Obtain the field relocated by RELOCATION. */ | |
4283 | ||
4284 | static bfd_vma | |
9719ad41 RS |
4285 | mips_elf_obtain_contents (reloc_howto_type *howto, |
4286 | const Elf_Internal_Rela *relocation, | |
4287 | bfd *input_bfd, bfd_byte *contents) | |
b49e97c9 TS |
4288 | { |
4289 | bfd_vma x; | |
4290 | bfd_byte *location = contents + relocation->r_offset; | |
4291 | ||
4292 | /* Obtain the bytes. */ | |
4293 | x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location); | |
4294 | ||
b49e97c9 TS |
4295 | return x; |
4296 | } | |
4297 | ||
4298 | /* It has been determined that the result of the RELOCATION is the | |
4299 | VALUE. Use HOWTO to place VALUE into the output file at the | |
4300 | appropriate position. The SECTION is the section to which the | |
b34976b6 | 4301 | relocation applies. If REQUIRE_JALX is TRUE, then the opcode used |
b49e97c9 TS |
4302 | for the relocation must be either JAL or JALX, and it is |
4303 | unconditionally converted to JALX. | |
4304 | ||
b34976b6 | 4305 | Returns FALSE if anything goes wrong. */ |
b49e97c9 | 4306 | |
b34976b6 | 4307 | static bfd_boolean |
9719ad41 RS |
4308 | mips_elf_perform_relocation (struct bfd_link_info *info, |
4309 | reloc_howto_type *howto, | |
4310 | const Elf_Internal_Rela *relocation, | |
4311 | bfd_vma value, bfd *input_bfd, | |
4312 | asection *input_section, bfd_byte *contents, | |
4313 | bfd_boolean require_jalx) | |
b49e97c9 TS |
4314 | { |
4315 | bfd_vma x; | |
4316 | bfd_byte *location; | |
4317 | int r_type = ELF_R_TYPE (input_bfd, relocation->r_info); | |
4318 | ||
4319 | /* Figure out where the relocation is occurring. */ | |
4320 | location = contents + relocation->r_offset; | |
4321 | ||
d6f16593 MR |
4322 | _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location); |
4323 | ||
b49e97c9 TS |
4324 | /* Obtain the current value. */ |
4325 | x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents); | |
4326 | ||
4327 | /* Clear the field we are setting. */ | |
4328 | x &= ~howto->dst_mask; | |
4329 | ||
b49e97c9 TS |
4330 | /* Set the field. */ |
4331 | x |= (value & howto->dst_mask); | |
4332 | ||
4333 | /* If required, turn JAL into JALX. */ | |
4334 | if (require_jalx) | |
4335 | { | |
b34976b6 | 4336 | bfd_boolean ok; |
b49e97c9 TS |
4337 | bfd_vma opcode = x >> 26; |
4338 | bfd_vma jalx_opcode; | |
4339 | ||
4340 | /* Check to see if the opcode is already JAL or JALX. */ | |
4341 | if (r_type == R_MIPS16_26) | |
4342 | { | |
4343 | ok = ((opcode == 0x6) || (opcode == 0x7)); | |
4344 | jalx_opcode = 0x7; | |
4345 | } | |
4346 | else | |
4347 | { | |
4348 | ok = ((opcode == 0x3) || (opcode == 0x1d)); | |
4349 | jalx_opcode = 0x1d; | |
4350 | } | |
4351 | ||
4352 | /* If the opcode is not JAL or JALX, there's a problem. */ | |
4353 | if (!ok) | |
4354 | { | |
4355 | (*_bfd_error_handler) | |
d003868e AM |
4356 | (_("%B: %A+0x%lx: jump to stub routine which is not jal"), |
4357 | input_bfd, | |
4358 | input_section, | |
b49e97c9 TS |
4359 | (unsigned long) relocation->r_offset); |
4360 | bfd_set_error (bfd_error_bad_value); | |
b34976b6 | 4361 | return FALSE; |
b49e97c9 TS |
4362 | } |
4363 | ||
4364 | /* Make this the JALX opcode. */ | |
4365 | x = (x & ~(0x3f << 26)) | (jalx_opcode << 26); | |
4366 | } | |
4367 | ||
1367d393 ILT |
4368 | /* On the RM9000, bal is faster than jal, because bal uses branch |
4369 | prediction hardware. If we are linking for the RM9000, and we | |
4370 | see jal, and bal fits, use it instead. Note that this | |
4371 | transformation should be safe for all architectures. */ | |
4372 | if (bfd_get_mach (input_bfd) == bfd_mach_mips9000 | |
4373 | && !info->relocatable | |
4374 | && !require_jalx | |
4375 | && ((r_type == R_MIPS_26 && (x >> 26) == 0x3) /* jal addr */ | |
4376 | || (r_type == R_MIPS_JALR && x == 0x0320f809))) /* jalr t9 */ | |
4377 | { | |
4378 | bfd_vma addr; | |
4379 | bfd_vma dest; | |
4380 | bfd_signed_vma off; | |
4381 | ||
4382 | addr = (input_section->output_section->vma | |
4383 | + input_section->output_offset | |
4384 | + relocation->r_offset | |
4385 | + 4); | |
4386 | if (r_type == R_MIPS_26) | |
4387 | dest = (value << 2) | ((addr >> 28) << 28); | |
4388 | else | |
4389 | dest = value; | |
4390 | off = dest - addr; | |
4391 | if (off <= 0x1ffff && off >= -0x20000) | |
4392 | x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */ | |
4393 | } | |
4394 | ||
b49e97c9 TS |
4395 | /* Put the value into the output. */ |
4396 | bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location); | |
d6f16593 MR |
4397 | |
4398 | _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable, | |
4399 | location); | |
4400 | ||
b34976b6 | 4401 | return TRUE; |
b49e97c9 TS |
4402 | } |
4403 | ||
b34976b6 | 4404 | /* Returns TRUE if SECTION is a MIPS16 stub section. */ |
b49e97c9 | 4405 | |
b34976b6 | 4406 | static bfd_boolean |
9719ad41 | 4407 | mips_elf_stub_section_p (bfd *abfd ATTRIBUTE_UNUSED, asection *section) |
b49e97c9 TS |
4408 | { |
4409 | const char *name = bfd_get_section_name (abfd, section); | |
4410 | ||
4411 | return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0 | |
4412 | || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0 | |
4413 | || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0); | |
4414 | } | |
4415 | \f | |
4416 | /* Add room for N relocations to the .rel.dyn section in ABFD. */ | |
4417 | ||
4418 | static void | |
9719ad41 | 4419 | mips_elf_allocate_dynamic_relocations (bfd *abfd, unsigned int n) |
b49e97c9 TS |
4420 | { |
4421 | asection *s; | |
4422 | ||
f4416af6 | 4423 | s = mips_elf_rel_dyn_section (abfd, FALSE); |
b49e97c9 TS |
4424 | BFD_ASSERT (s != NULL); |
4425 | ||
eea6121a | 4426 | if (s->size == 0) |
b49e97c9 TS |
4427 | { |
4428 | /* Make room for a null element. */ | |
eea6121a | 4429 | s->size += MIPS_ELF_REL_SIZE (abfd); |
b49e97c9 TS |
4430 | ++s->reloc_count; |
4431 | } | |
eea6121a | 4432 | s->size += n * MIPS_ELF_REL_SIZE (abfd); |
b49e97c9 TS |
4433 | } |
4434 | ||
4435 | /* Create a rel.dyn relocation for the dynamic linker to resolve. REL | |
4436 | is the original relocation, which is now being transformed into a | |
4437 | dynamic relocation. The ADDENDP is adjusted if necessary; the | |
4438 | caller should store the result in place of the original addend. */ | |
4439 | ||
b34976b6 | 4440 | static bfd_boolean |
9719ad41 RS |
4441 | mips_elf_create_dynamic_relocation (bfd *output_bfd, |
4442 | struct bfd_link_info *info, | |
4443 | const Elf_Internal_Rela *rel, | |
4444 | struct mips_elf_link_hash_entry *h, | |
4445 | asection *sec, bfd_vma symbol, | |
4446 | bfd_vma *addendp, asection *input_section) | |
b49e97c9 | 4447 | { |
947216bf | 4448 | Elf_Internal_Rela outrel[3]; |
b49e97c9 TS |
4449 | asection *sreloc; |
4450 | bfd *dynobj; | |
4451 | int r_type; | |
5d41f0b6 RS |
4452 | long indx; |
4453 | bfd_boolean defined_p; | |
b49e97c9 TS |
4454 | |
4455 | r_type = ELF_R_TYPE (output_bfd, rel->r_info); | |
4456 | dynobj = elf_hash_table (info)->dynobj; | |
f4416af6 | 4457 | sreloc = mips_elf_rel_dyn_section (dynobj, FALSE); |
b49e97c9 TS |
4458 | BFD_ASSERT (sreloc != NULL); |
4459 | BFD_ASSERT (sreloc->contents != NULL); | |
4460 | BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd) | |
eea6121a | 4461 | < sreloc->size); |
b49e97c9 | 4462 | |
b49e97c9 TS |
4463 | outrel[0].r_offset = |
4464 | _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset); | |
4465 | outrel[1].r_offset = | |
4466 | _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset); | |
4467 | outrel[2].r_offset = | |
4468 | _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset); | |
4469 | ||
c5ae1840 | 4470 | if (outrel[0].r_offset == MINUS_ONE) |
0d591ff7 | 4471 | /* The relocation field has been deleted. */ |
5d41f0b6 RS |
4472 | return TRUE; |
4473 | ||
4474 | if (outrel[0].r_offset == MINUS_TWO) | |
0d591ff7 RS |
4475 | { |
4476 | /* The relocation field has been converted into a relative value of | |
4477 | some sort. Functions like _bfd_elf_write_section_eh_frame expect | |
4478 | the field to be fully relocated, so add in the symbol's value. */ | |
0d591ff7 | 4479 | *addendp += symbol; |
5d41f0b6 | 4480 | return TRUE; |
0d591ff7 | 4481 | } |
b49e97c9 | 4482 | |
5d41f0b6 RS |
4483 | /* We must now calculate the dynamic symbol table index to use |
4484 | in the relocation. */ | |
4485 | if (h != NULL | |
4486 | && (! info->symbolic || !h->root.def_regular) | |
4487 | /* h->root.dynindx may be -1 if this symbol was marked to | |
4488 | become local. */ | |
4489 | && h->root.dynindx != -1) | |
4490 | { | |
4491 | indx = h->root.dynindx; | |
4492 | if (SGI_COMPAT (output_bfd)) | |
4493 | defined_p = h->root.def_regular; | |
4494 | else | |
4495 | /* ??? glibc's ld.so just adds the final GOT entry to the | |
4496 | relocation field. It therefore treats relocs against | |
4497 | defined symbols in the same way as relocs against | |
4498 | undefined symbols. */ | |
4499 | defined_p = FALSE; | |
4500 | } | |
b49e97c9 TS |
4501 | else |
4502 | { | |
5d41f0b6 RS |
4503 | if (sec != NULL && bfd_is_abs_section (sec)) |
4504 | indx = 0; | |
4505 | else if (sec == NULL || sec->owner == NULL) | |
fdd07405 | 4506 | { |
5d41f0b6 RS |
4507 | bfd_set_error (bfd_error_bad_value); |
4508 | return FALSE; | |
b49e97c9 TS |
4509 | } |
4510 | else | |
4511 | { | |
5d41f0b6 RS |
4512 | indx = elf_section_data (sec->output_section)->dynindx; |
4513 | if (indx == 0) | |
4514 | abort (); | |
b49e97c9 TS |
4515 | } |
4516 | ||
5d41f0b6 RS |
4517 | /* Instead of generating a relocation using the section |
4518 | symbol, we may as well make it a fully relative | |
4519 | relocation. We want to avoid generating relocations to | |
4520 | local symbols because we used to generate them | |
4521 | incorrectly, without adding the original symbol value, | |
4522 | which is mandated by the ABI for section symbols. In | |
4523 | order to give dynamic loaders and applications time to | |
4524 | phase out the incorrect use, we refrain from emitting | |
4525 | section-relative relocations. It's not like they're | |
4526 | useful, after all. This should be a bit more efficient | |
4527 | as well. */ | |
4528 | /* ??? Although this behavior is compatible with glibc's ld.so, | |
4529 | the ABI says that relocations against STN_UNDEF should have | |
4530 | a symbol value of 0. Irix rld honors this, so relocations | |
4531 | against STN_UNDEF have no effect. */ | |
4532 | if (!SGI_COMPAT (output_bfd)) | |
4533 | indx = 0; | |
4534 | defined_p = TRUE; | |
b49e97c9 TS |
4535 | } |
4536 | ||
5d41f0b6 RS |
4537 | /* If the relocation was previously an absolute relocation and |
4538 | this symbol will not be referred to by the relocation, we must | |
4539 | adjust it by the value we give it in the dynamic symbol table. | |
4540 | Otherwise leave the job up to the dynamic linker. */ | |
4541 | if (defined_p && r_type != R_MIPS_REL32) | |
4542 | *addendp += symbol; | |
4543 | ||
4544 | /* The relocation is always an REL32 relocation because we don't | |
4545 | know where the shared library will wind up at load-time. */ | |
4546 | outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx, | |
4547 | R_MIPS_REL32); | |
4548 | /* For strict adherence to the ABI specification, we should | |
4549 | generate a R_MIPS_64 relocation record by itself before the | |
4550 | _REL32/_64 record as well, such that the addend is read in as | |
4551 | a 64-bit value (REL32 is a 32-bit relocation, after all). | |
4552 | However, since none of the existing ELF64 MIPS dynamic | |
4553 | loaders seems to care, we don't waste space with these | |
4554 | artificial relocations. If this turns out to not be true, | |
4555 | mips_elf_allocate_dynamic_relocation() should be tweaked so | |
4556 | as to make room for a pair of dynamic relocations per | |
4557 | invocation if ABI_64_P, and here we should generate an | |
4558 | additional relocation record with R_MIPS_64 by itself for a | |
4559 | NULL symbol before this relocation record. */ | |
4560 | outrel[1].r_info = ELF_R_INFO (output_bfd, 0, | |
4561 | ABI_64_P (output_bfd) | |
4562 | ? R_MIPS_64 | |
4563 | : R_MIPS_NONE); | |
4564 | outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE); | |
4565 | ||
4566 | /* Adjust the output offset of the relocation to reference the | |
4567 | correct location in the output file. */ | |
4568 | outrel[0].r_offset += (input_section->output_section->vma | |
4569 | + input_section->output_offset); | |
4570 | outrel[1].r_offset += (input_section->output_section->vma | |
4571 | + input_section->output_offset); | |
4572 | outrel[2].r_offset += (input_section->output_section->vma | |
4573 | + input_section->output_offset); | |
4574 | ||
b49e97c9 TS |
4575 | /* Put the relocation back out. We have to use the special |
4576 | relocation outputter in the 64-bit case since the 64-bit | |
4577 | relocation format is non-standard. */ | |
4578 | if (ABI_64_P (output_bfd)) | |
4579 | { | |
4580 | (*get_elf_backend_data (output_bfd)->s->swap_reloc_out) | |
4581 | (output_bfd, &outrel[0], | |
4582 | (sreloc->contents | |
4583 | + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel))); | |
4584 | } | |
4585 | else | |
947216bf AM |
4586 | bfd_elf32_swap_reloc_out |
4587 | (output_bfd, &outrel[0], | |
4588 | (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel))); | |
b49e97c9 | 4589 | |
b49e97c9 TS |
4590 | /* We've now added another relocation. */ |
4591 | ++sreloc->reloc_count; | |
4592 | ||
4593 | /* Make sure the output section is writable. The dynamic linker | |
4594 | will be writing to it. */ | |
4595 | elf_section_data (input_section->output_section)->this_hdr.sh_flags | |
4596 | |= SHF_WRITE; | |
4597 | ||
4598 | /* On IRIX5, make an entry of compact relocation info. */ | |
5d41f0b6 | 4599 | if (IRIX_COMPAT (output_bfd) == ict_irix5) |
b49e97c9 TS |
4600 | { |
4601 | asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel"); | |
4602 | bfd_byte *cr; | |
4603 | ||
4604 | if (scpt) | |
4605 | { | |
4606 | Elf32_crinfo cptrel; | |
4607 | ||
4608 | mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG); | |
4609 | cptrel.vaddr = (rel->r_offset | |
4610 | + input_section->output_section->vma | |
4611 | + input_section->output_offset); | |
4612 | if (r_type == R_MIPS_REL32) | |
4613 | mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32); | |
4614 | else | |
4615 | mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD); | |
4616 | mips_elf_set_cr_dist2to (cptrel, 0); | |
4617 | cptrel.konst = *addendp; | |
4618 | ||
4619 | cr = (scpt->contents | |
4620 | + sizeof (Elf32_External_compact_rel)); | |
abc0f8d0 | 4621 | mips_elf_set_cr_relvaddr (cptrel, 0); |
b49e97c9 TS |
4622 | bfd_elf32_swap_crinfo_out (output_bfd, &cptrel, |
4623 | ((Elf32_External_crinfo *) cr | |
4624 | + scpt->reloc_count)); | |
4625 | ++scpt->reloc_count; | |
4626 | } | |
4627 | } | |
4628 | ||
b34976b6 | 4629 | return TRUE; |
b49e97c9 TS |
4630 | } |
4631 | \f | |
b49e97c9 TS |
4632 | /* Return the MACH for a MIPS e_flags value. */ |
4633 | ||
4634 | unsigned long | |
9719ad41 | 4635 | _bfd_elf_mips_mach (flagword flags) |
b49e97c9 TS |
4636 | { |
4637 | switch (flags & EF_MIPS_MACH) | |
4638 | { | |
4639 | case E_MIPS_MACH_3900: | |
4640 | return bfd_mach_mips3900; | |
4641 | ||
4642 | case E_MIPS_MACH_4010: | |
4643 | return bfd_mach_mips4010; | |
4644 | ||
4645 | case E_MIPS_MACH_4100: | |
4646 | return bfd_mach_mips4100; | |
4647 | ||
4648 | case E_MIPS_MACH_4111: | |
4649 | return bfd_mach_mips4111; | |
4650 | ||
00707a0e RS |
4651 | case E_MIPS_MACH_4120: |
4652 | return bfd_mach_mips4120; | |
4653 | ||
b49e97c9 TS |
4654 | case E_MIPS_MACH_4650: |
4655 | return bfd_mach_mips4650; | |
4656 | ||
00707a0e RS |
4657 | case E_MIPS_MACH_5400: |
4658 | return bfd_mach_mips5400; | |
4659 | ||
4660 | case E_MIPS_MACH_5500: | |
4661 | return bfd_mach_mips5500; | |
4662 | ||
0d2e43ed ILT |
4663 | case E_MIPS_MACH_9000: |
4664 | return bfd_mach_mips9000; | |
4665 | ||
b49e97c9 TS |
4666 | case E_MIPS_MACH_SB1: |
4667 | return bfd_mach_mips_sb1; | |
4668 | ||
4669 | default: | |
4670 | switch (flags & EF_MIPS_ARCH) | |
4671 | { | |
4672 | default: | |
4673 | case E_MIPS_ARCH_1: | |
4674 | return bfd_mach_mips3000; | |
4675 | break; | |
4676 | ||
4677 | case E_MIPS_ARCH_2: | |
4678 | return bfd_mach_mips6000; | |
4679 | break; | |
4680 | ||
4681 | case E_MIPS_ARCH_3: | |
4682 | return bfd_mach_mips4000; | |
4683 | break; | |
4684 | ||
4685 | case E_MIPS_ARCH_4: | |
4686 | return bfd_mach_mips8000; | |
4687 | break; | |
4688 | ||
4689 | case E_MIPS_ARCH_5: | |
4690 | return bfd_mach_mips5; | |
4691 | break; | |
4692 | ||
4693 | case E_MIPS_ARCH_32: | |
4694 | return bfd_mach_mipsisa32; | |
4695 | break; | |
4696 | ||
4697 | case E_MIPS_ARCH_64: | |
4698 | return bfd_mach_mipsisa64; | |
4699 | break; | |
af7ee8bf CD |
4700 | |
4701 | case E_MIPS_ARCH_32R2: | |
4702 | return bfd_mach_mipsisa32r2; | |
4703 | break; | |
5f74bc13 CD |
4704 | |
4705 | case E_MIPS_ARCH_64R2: | |
4706 | return bfd_mach_mipsisa64r2; | |
4707 | break; | |
b49e97c9 TS |
4708 | } |
4709 | } | |
4710 | ||
4711 | return 0; | |
4712 | } | |
4713 | ||
4714 | /* Return printable name for ABI. */ | |
4715 | ||
4716 | static INLINE char * | |
9719ad41 | 4717 | elf_mips_abi_name (bfd *abfd) |
b49e97c9 TS |
4718 | { |
4719 | flagword flags; | |
4720 | ||
4721 | flags = elf_elfheader (abfd)->e_flags; | |
4722 | switch (flags & EF_MIPS_ABI) | |
4723 | { | |
4724 | case 0: | |
4725 | if (ABI_N32_P (abfd)) | |
4726 | return "N32"; | |
4727 | else if (ABI_64_P (abfd)) | |
4728 | return "64"; | |
4729 | else | |
4730 | return "none"; | |
4731 | case E_MIPS_ABI_O32: | |
4732 | return "O32"; | |
4733 | case E_MIPS_ABI_O64: | |
4734 | return "O64"; | |
4735 | case E_MIPS_ABI_EABI32: | |
4736 | return "EABI32"; | |
4737 | case E_MIPS_ABI_EABI64: | |
4738 | return "EABI64"; | |
4739 | default: | |
4740 | return "unknown abi"; | |
4741 | } | |
4742 | } | |
4743 | \f | |
4744 | /* MIPS ELF uses two common sections. One is the usual one, and the | |
4745 | other is for small objects. All the small objects are kept | |
4746 | together, and then referenced via the gp pointer, which yields | |
4747 | faster assembler code. This is what we use for the small common | |
4748 | section. This approach is copied from ecoff.c. */ | |
4749 | static asection mips_elf_scom_section; | |
4750 | static asymbol mips_elf_scom_symbol; | |
4751 | static asymbol *mips_elf_scom_symbol_ptr; | |
4752 | ||
4753 | /* MIPS ELF also uses an acommon section, which represents an | |
4754 | allocated common symbol which may be overridden by a | |
4755 | definition in a shared library. */ | |
4756 | static asection mips_elf_acom_section; | |
4757 | static asymbol mips_elf_acom_symbol; | |
4758 | static asymbol *mips_elf_acom_symbol_ptr; | |
4759 | ||
4760 | /* Handle the special MIPS section numbers that a symbol may use. | |
4761 | This is used for both the 32-bit and the 64-bit ABI. */ | |
4762 | ||
4763 | void | |
9719ad41 | 4764 | _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym) |
b49e97c9 TS |
4765 | { |
4766 | elf_symbol_type *elfsym; | |
4767 | ||
4768 | elfsym = (elf_symbol_type *) asym; | |
4769 | switch (elfsym->internal_elf_sym.st_shndx) | |
4770 | { | |
4771 | case SHN_MIPS_ACOMMON: | |
4772 | /* This section is used in a dynamically linked executable file. | |
4773 | It is an allocated common section. The dynamic linker can | |
4774 | either resolve these symbols to something in a shared | |
4775 | library, or it can just leave them here. For our purposes, | |
4776 | we can consider these symbols to be in a new section. */ | |
4777 | if (mips_elf_acom_section.name == NULL) | |
4778 | { | |
4779 | /* Initialize the acommon section. */ | |
4780 | mips_elf_acom_section.name = ".acommon"; | |
4781 | mips_elf_acom_section.flags = SEC_ALLOC; | |
4782 | mips_elf_acom_section.output_section = &mips_elf_acom_section; | |
4783 | mips_elf_acom_section.symbol = &mips_elf_acom_symbol; | |
4784 | mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr; | |
4785 | mips_elf_acom_symbol.name = ".acommon"; | |
4786 | mips_elf_acom_symbol.flags = BSF_SECTION_SYM; | |
4787 | mips_elf_acom_symbol.section = &mips_elf_acom_section; | |
4788 | mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol; | |
4789 | } | |
4790 | asym->section = &mips_elf_acom_section; | |
4791 | break; | |
4792 | ||
4793 | case SHN_COMMON: | |
4794 | /* Common symbols less than the GP size are automatically | |
4795 | treated as SHN_MIPS_SCOMMON symbols on IRIX5. */ | |
4796 | if (asym->value > elf_gp_size (abfd) | |
4797 | || IRIX_COMPAT (abfd) == ict_irix6) | |
4798 | break; | |
4799 | /* Fall through. */ | |
4800 | case SHN_MIPS_SCOMMON: | |
4801 | if (mips_elf_scom_section.name == NULL) | |
4802 | { | |
4803 | /* Initialize the small common section. */ | |
4804 | mips_elf_scom_section.name = ".scommon"; | |
4805 | mips_elf_scom_section.flags = SEC_IS_COMMON; | |
4806 | mips_elf_scom_section.output_section = &mips_elf_scom_section; | |
4807 | mips_elf_scom_section.symbol = &mips_elf_scom_symbol; | |
4808 | mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr; | |
4809 | mips_elf_scom_symbol.name = ".scommon"; | |
4810 | mips_elf_scom_symbol.flags = BSF_SECTION_SYM; | |
4811 | mips_elf_scom_symbol.section = &mips_elf_scom_section; | |
4812 | mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol; | |
4813 | } | |
4814 | asym->section = &mips_elf_scom_section; | |
4815 | asym->value = elfsym->internal_elf_sym.st_size; | |
4816 | break; | |
4817 | ||
4818 | case SHN_MIPS_SUNDEFINED: | |
4819 | asym->section = bfd_und_section_ptr; | |
4820 | break; | |
4821 | ||
b49e97c9 | 4822 | case SHN_MIPS_TEXT: |
00b4930b TS |
4823 | { |
4824 | asection *section = bfd_get_section_by_name (abfd, ".text"); | |
4825 | ||
4826 | BFD_ASSERT (SGI_COMPAT (abfd)); | |
4827 | if (section != NULL) | |
4828 | { | |
4829 | asym->section = section; | |
4830 | /* MIPS_TEXT is a bit special, the address is not an offset | |
4831 | to the base of the .text section. So substract the section | |
4832 | base address to make it an offset. */ | |
4833 | asym->value -= section->vma; | |
4834 | } | |
4835 | } | |
b49e97c9 TS |
4836 | break; |
4837 | ||
4838 | case SHN_MIPS_DATA: | |
00b4930b TS |
4839 | { |
4840 | asection *section = bfd_get_section_by_name (abfd, ".data"); | |
4841 | ||
4842 | BFD_ASSERT (SGI_COMPAT (abfd)); | |
4843 | if (section != NULL) | |
4844 | { | |
4845 | asym->section = section; | |
4846 | /* MIPS_DATA is a bit special, the address is not an offset | |
4847 | to the base of the .data section. So substract the section | |
4848 | base address to make it an offset. */ | |
4849 | asym->value -= section->vma; | |
4850 | } | |
4851 | } | |
b49e97c9 | 4852 | break; |
b49e97c9 TS |
4853 | } |
4854 | } | |
4855 | \f | |
8c946ed5 RS |
4856 | /* Implement elf_backend_eh_frame_address_size. This differs from |
4857 | the default in the way it handles EABI64. | |
4858 | ||
4859 | EABI64 was originally specified as an LP64 ABI, and that is what | |
4860 | -mabi=eabi normally gives on a 64-bit target. However, gcc has | |
4861 | historically accepted the combination of -mabi=eabi and -mlong32, | |
4862 | and this ILP32 variation has become semi-official over time. | |
4863 | Both forms use elf32 and have pointer-sized FDE addresses. | |
4864 | ||
4865 | If an EABI object was generated by GCC 4.0 or above, it will have | |
4866 | an empty .gcc_compiled_longXX section, where XX is the size of longs | |
4867 | in bits. Unfortunately, ILP32 objects generated by earlier compilers | |
4868 | have no special marking to distinguish them from LP64 objects. | |
4869 | ||
4870 | We don't want users of the official LP64 ABI to be punished for the | |
4871 | existence of the ILP32 variant, but at the same time, we don't want | |
4872 | to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects. | |
4873 | We therefore take the following approach: | |
4874 | ||
4875 | - If ABFD contains a .gcc_compiled_longXX section, use it to | |
4876 | determine the pointer size. | |
4877 | ||
4878 | - Otherwise check the type of the first relocation. Assume that | |
4879 | the LP64 ABI is being used if the relocation is of type R_MIPS_64. | |
4880 | ||
4881 | - Otherwise punt. | |
4882 | ||
4883 | The second check is enough to detect LP64 objects generated by pre-4.0 | |
4884 | compilers because, in the kind of output generated by those compilers, | |
4885 | the first relocation will be associated with either a CIE personality | |
4886 | routine or an FDE start address. Furthermore, the compilers never | |
4887 | used a special (non-pointer) encoding for this ABI. | |
4888 | ||
4889 | Checking the relocation type should also be safe because there is no | |
4890 | reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never | |
4891 | did so. */ | |
4892 | ||
4893 | unsigned int | |
4894 | _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec) | |
4895 | { | |
4896 | if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64) | |
4897 | return 8; | |
4898 | if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64) | |
4899 | { | |
4900 | bfd_boolean long32_p, long64_p; | |
4901 | ||
4902 | long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0; | |
4903 | long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0; | |
4904 | if (long32_p && long64_p) | |
4905 | return 0; | |
4906 | if (long32_p) | |
4907 | return 4; | |
4908 | if (long64_p) | |
4909 | return 8; | |
4910 | ||
4911 | if (sec->reloc_count > 0 | |
4912 | && elf_section_data (sec)->relocs != NULL | |
4913 | && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info) | |
4914 | == R_MIPS_64)) | |
4915 | return 8; | |
4916 | ||
4917 | return 0; | |
4918 | } | |
4919 | return 4; | |
4920 | } | |
4921 | \f | |
174fd7f9 RS |
4922 | /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP |
4923 | relocations against two unnamed section symbols to resolve to the | |
4924 | same address. For example, if we have code like: | |
4925 | ||
4926 | lw $4,%got_disp(.data)($gp) | |
4927 | lw $25,%got_disp(.text)($gp) | |
4928 | jalr $25 | |
4929 | ||
4930 | then the linker will resolve both relocations to .data and the program | |
4931 | will jump there rather than to .text. | |
4932 | ||
4933 | We can work around this problem by giving names to local section symbols. | |
4934 | This is also what the MIPSpro tools do. */ | |
4935 | ||
4936 | bfd_boolean | |
4937 | _bfd_mips_elf_name_local_section_symbols (bfd *abfd) | |
4938 | { | |
4939 | return SGI_COMPAT (abfd); | |
4940 | } | |
4941 | \f | |
b49e97c9 TS |
4942 | /* Work over a section just before writing it out. This routine is |
4943 | used by both the 32-bit and the 64-bit ABI. FIXME: We recognize | |
4944 | sections that need the SHF_MIPS_GPREL flag by name; there has to be | |
4945 | a better way. */ | |
4946 | ||
b34976b6 | 4947 | bfd_boolean |
9719ad41 | 4948 | _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr) |
b49e97c9 TS |
4949 | { |
4950 | if (hdr->sh_type == SHT_MIPS_REGINFO | |
4951 | && hdr->sh_size > 0) | |
4952 | { | |
4953 | bfd_byte buf[4]; | |
4954 | ||
4955 | BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo)); | |
4956 | BFD_ASSERT (hdr->contents == NULL); | |
4957 | ||
4958 | if (bfd_seek (abfd, | |
4959 | hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4, | |
4960 | SEEK_SET) != 0) | |
b34976b6 | 4961 | return FALSE; |
b49e97c9 | 4962 | H_PUT_32 (abfd, elf_gp (abfd), buf); |
9719ad41 | 4963 | if (bfd_bwrite (buf, 4, abfd) != 4) |
b34976b6 | 4964 | return FALSE; |
b49e97c9 TS |
4965 | } |
4966 | ||
4967 | if (hdr->sh_type == SHT_MIPS_OPTIONS | |
4968 | && hdr->bfd_section != NULL | |
f0abc2a1 AM |
4969 | && mips_elf_section_data (hdr->bfd_section) != NULL |
4970 | && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL) | |
b49e97c9 TS |
4971 | { |
4972 | bfd_byte *contents, *l, *lend; | |
4973 | ||
f0abc2a1 AM |
4974 | /* We stored the section contents in the tdata field in the |
4975 | set_section_contents routine. We save the section contents | |
4976 | so that we don't have to read them again. | |
b49e97c9 TS |
4977 | At this point we know that elf_gp is set, so we can look |
4978 | through the section contents to see if there is an | |
4979 | ODK_REGINFO structure. */ | |
4980 | ||
f0abc2a1 | 4981 | contents = mips_elf_section_data (hdr->bfd_section)->u.tdata; |
b49e97c9 TS |
4982 | l = contents; |
4983 | lend = contents + hdr->sh_size; | |
4984 | while (l + sizeof (Elf_External_Options) <= lend) | |
4985 | { | |
4986 | Elf_Internal_Options intopt; | |
4987 | ||
4988 | bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l, | |
4989 | &intopt); | |
4990 | if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO) | |
4991 | { | |
4992 | bfd_byte buf[8]; | |
4993 | ||
4994 | if (bfd_seek (abfd, | |
4995 | (hdr->sh_offset | |
4996 | + (l - contents) | |
4997 | + sizeof (Elf_External_Options) | |
4998 | + (sizeof (Elf64_External_RegInfo) - 8)), | |
4999 | SEEK_SET) != 0) | |
b34976b6 | 5000 | return FALSE; |
b49e97c9 | 5001 | H_PUT_64 (abfd, elf_gp (abfd), buf); |
9719ad41 | 5002 | if (bfd_bwrite (buf, 8, abfd) != 8) |
b34976b6 | 5003 | return FALSE; |
b49e97c9 TS |
5004 | } |
5005 | else if (intopt.kind == ODK_REGINFO) | |
5006 | { | |
5007 | bfd_byte buf[4]; | |
5008 | ||
5009 | if (bfd_seek (abfd, | |
5010 | (hdr->sh_offset | |
5011 | + (l - contents) | |
5012 | + sizeof (Elf_External_Options) | |
5013 | + (sizeof (Elf32_External_RegInfo) - 4)), | |
5014 | SEEK_SET) != 0) | |
b34976b6 | 5015 | return FALSE; |
b49e97c9 | 5016 | H_PUT_32 (abfd, elf_gp (abfd), buf); |
9719ad41 | 5017 | if (bfd_bwrite (buf, 4, abfd) != 4) |
b34976b6 | 5018 | return FALSE; |
b49e97c9 TS |
5019 | } |
5020 | l += intopt.size; | |
5021 | } | |
5022 | } | |
5023 | ||
5024 | if (hdr->bfd_section != NULL) | |
5025 | { | |
5026 | const char *name = bfd_get_section_name (abfd, hdr->bfd_section); | |
5027 | ||
5028 | if (strcmp (name, ".sdata") == 0 | |
5029 | || strcmp (name, ".lit8") == 0 | |
5030 | || strcmp (name, ".lit4") == 0) | |
5031 | { | |
5032 | hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL; | |
5033 | hdr->sh_type = SHT_PROGBITS; | |
5034 | } | |
5035 | else if (strcmp (name, ".sbss") == 0) | |
5036 | { | |
5037 | hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL; | |
5038 | hdr->sh_type = SHT_NOBITS; | |
5039 | } | |
5040 | else if (strcmp (name, ".srdata") == 0) | |
5041 | { | |
5042 | hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL; | |
5043 | hdr->sh_type = SHT_PROGBITS; | |
5044 | } | |
5045 | else if (strcmp (name, ".compact_rel") == 0) | |
5046 | { | |
5047 | hdr->sh_flags = 0; | |
5048 | hdr->sh_type = SHT_PROGBITS; | |
5049 | } | |
5050 | else if (strcmp (name, ".rtproc") == 0) | |
5051 | { | |
5052 | if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0) | |
5053 | { | |
5054 | unsigned int adjust; | |
5055 | ||
5056 | adjust = hdr->sh_size % hdr->sh_addralign; | |
5057 | if (adjust != 0) | |
5058 | hdr->sh_size += hdr->sh_addralign - adjust; | |
5059 | } | |
5060 | } | |
5061 | } | |
5062 | ||
b34976b6 | 5063 | return TRUE; |
b49e97c9 TS |
5064 | } |
5065 | ||
5066 | /* Handle a MIPS specific section when reading an object file. This | |
5067 | is called when elfcode.h finds a section with an unknown type. | |
5068 | This routine supports both the 32-bit and 64-bit ELF ABI. | |
5069 | ||
5070 | FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure | |
5071 | how to. */ | |
5072 | ||
b34976b6 | 5073 | bfd_boolean |
6dc132d9 L |
5074 | _bfd_mips_elf_section_from_shdr (bfd *abfd, |
5075 | Elf_Internal_Shdr *hdr, | |
5076 | const char *name, | |
5077 | int shindex) | |
b49e97c9 TS |
5078 | { |
5079 | flagword flags = 0; | |
5080 | ||
5081 | /* There ought to be a place to keep ELF backend specific flags, but | |
5082 | at the moment there isn't one. We just keep track of the | |
5083 | sections by their name, instead. Fortunately, the ABI gives | |
5084 | suggested names for all the MIPS specific sections, so we will | |
5085 | probably get away with this. */ | |
5086 | switch (hdr->sh_type) | |
5087 | { | |
5088 | case SHT_MIPS_LIBLIST: | |
5089 | if (strcmp (name, ".liblist") != 0) | |
b34976b6 | 5090 | return FALSE; |
b49e97c9 TS |
5091 | break; |
5092 | case SHT_MIPS_MSYM: | |
5093 | if (strcmp (name, ".msym") != 0) | |
b34976b6 | 5094 | return FALSE; |
b49e97c9 TS |
5095 | break; |
5096 | case SHT_MIPS_CONFLICT: | |
5097 | if (strcmp (name, ".conflict") != 0) | |
b34976b6 | 5098 | return FALSE; |
b49e97c9 TS |
5099 | break; |
5100 | case SHT_MIPS_GPTAB: | |
5101 | if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0) | |
b34976b6 | 5102 | return FALSE; |
b49e97c9 TS |
5103 | break; |
5104 | case SHT_MIPS_UCODE: | |
5105 | if (strcmp (name, ".ucode") != 0) | |
b34976b6 | 5106 | return FALSE; |
b49e97c9 TS |
5107 | break; |
5108 | case SHT_MIPS_DEBUG: | |
5109 | if (strcmp (name, ".mdebug") != 0) | |
b34976b6 | 5110 | return FALSE; |
b49e97c9 TS |
5111 | flags = SEC_DEBUGGING; |
5112 | break; | |
5113 | case SHT_MIPS_REGINFO: | |
5114 | if (strcmp (name, ".reginfo") != 0 | |
5115 | || hdr->sh_size != sizeof (Elf32_External_RegInfo)) | |
b34976b6 | 5116 | return FALSE; |
b49e97c9 TS |
5117 | flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE); |
5118 | break; | |
5119 | case SHT_MIPS_IFACE: | |
5120 | if (strcmp (name, ".MIPS.interfaces") != 0) | |
b34976b6 | 5121 | return FALSE; |
b49e97c9 TS |
5122 | break; |
5123 | case SHT_MIPS_CONTENT: | |
5124 | if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0) | |
b34976b6 | 5125 | return FALSE; |
b49e97c9 TS |
5126 | break; |
5127 | case SHT_MIPS_OPTIONS: | |
cc2e31b9 | 5128 | if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name)) |
b34976b6 | 5129 | return FALSE; |
b49e97c9 TS |
5130 | break; |
5131 | case SHT_MIPS_DWARF: | |
5132 | if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0) | |
b34976b6 | 5133 | return FALSE; |
b49e97c9 TS |
5134 | break; |
5135 | case SHT_MIPS_SYMBOL_LIB: | |
5136 | if (strcmp (name, ".MIPS.symlib") != 0) | |
b34976b6 | 5137 | return FALSE; |
b49e97c9 TS |
5138 | break; |
5139 | case SHT_MIPS_EVENTS: | |
5140 | if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0 | |
5141 | && strncmp (name, ".MIPS.post_rel", | |
5142 | sizeof ".MIPS.post_rel" - 1) != 0) | |
b34976b6 | 5143 | return FALSE; |
b49e97c9 TS |
5144 | break; |
5145 | default: | |
cc2e31b9 | 5146 | break; |
b49e97c9 TS |
5147 | } |
5148 | ||
6dc132d9 | 5149 | if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex)) |
b34976b6 | 5150 | return FALSE; |
b49e97c9 TS |
5151 | |
5152 | if (flags) | |
5153 | { | |
5154 | if (! bfd_set_section_flags (abfd, hdr->bfd_section, | |
5155 | (bfd_get_section_flags (abfd, | |
5156 | hdr->bfd_section) | |
5157 | | flags))) | |
b34976b6 | 5158 | return FALSE; |
b49e97c9 TS |
5159 | } |
5160 | ||
5161 | /* FIXME: We should record sh_info for a .gptab section. */ | |
5162 | ||
5163 | /* For a .reginfo section, set the gp value in the tdata information | |
5164 | from the contents of this section. We need the gp value while | |
5165 | processing relocs, so we just get it now. The .reginfo section | |
5166 | is not used in the 64-bit MIPS ELF ABI. */ | |
5167 | if (hdr->sh_type == SHT_MIPS_REGINFO) | |
5168 | { | |
5169 | Elf32_External_RegInfo ext; | |
5170 | Elf32_RegInfo s; | |
5171 | ||
9719ad41 RS |
5172 | if (! bfd_get_section_contents (abfd, hdr->bfd_section, |
5173 | &ext, 0, sizeof ext)) | |
b34976b6 | 5174 | return FALSE; |
b49e97c9 TS |
5175 | bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s); |
5176 | elf_gp (abfd) = s.ri_gp_value; | |
5177 | } | |
5178 | ||
5179 | /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and | |
5180 | set the gp value based on what we find. We may see both | |
5181 | SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case, | |
5182 | they should agree. */ | |
5183 | if (hdr->sh_type == SHT_MIPS_OPTIONS) | |
5184 | { | |
5185 | bfd_byte *contents, *l, *lend; | |
5186 | ||
9719ad41 | 5187 | contents = bfd_malloc (hdr->sh_size); |
b49e97c9 | 5188 | if (contents == NULL) |
b34976b6 | 5189 | return FALSE; |
b49e97c9 | 5190 | if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents, |
9719ad41 | 5191 | 0, hdr->sh_size)) |
b49e97c9 TS |
5192 | { |
5193 | free (contents); | |
b34976b6 | 5194 | return FALSE; |
b49e97c9 TS |
5195 | } |
5196 | l = contents; | |
5197 | lend = contents + hdr->sh_size; | |
5198 | while (l + sizeof (Elf_External_Options) <= lend) | |
5199 | { | |
5200 | Elf_Internal_Options intopt; | |
5201 | ||
5202 | bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l, | |
5203 | &intopt); | |
5204 | if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO) | |
5205 | { | |
5206 | Elf64_Internal_RegInfo intreg; | |
5207 | ||
5208 | bfd_mips_elf64_swap_reginfo_in | |
5209 | (abfd, | |
5210 | ((Elf64_External_RegInfo *) | |
5211 | (l + sizeof (Elf_External_Options))), | |
5212 | &intreg); | |
5213 | elf_gp (abfd) = intreg.ri_gp_value; | |
5214 | } | |
5215 | else if (intopt.kind == ODK_REGINFO) | |
5216 | { | |
5217 | Elf32_RegInfo intreg; | |
5218 | ||
5219 | bfd_mips_elf32_swap_reginfo_in | |
5220 | (abfd, | |
5221 | ((Elf32_External_RegInfo *) | |
5222 | (l + sizeof (Elf_External_Options))), | |
5223 | &intreg); | |
5224 | elf_gp (abfd) = intreg.ri_gp_value; | |
5225 | } | |
5226 | l += intopt.size; | |
5227 | } | |
5228 | free (contents); | |
5229 | } | |
5230 | ||
b34976b6 | 5231 | return TRUE; |
b49e97c9 TS |
5232 | } |
5233 | ||
5234 | /* Set the correct type for a MIPS ELF section. We do this by the | |
5235 | section name, which is a hack, but ought to work. This routine is | |
5236 | used by both the 32-bit and the 64-bit ABI. */ | |
5237 | ||
b34976b6 | 5238 | bfd_boolean |
9719ad41 | 5239 | _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec) |
b49e97c9 TS |
5240 | { |
5241 | register const char *name; | |
5242 | ||
5243 | name = bfd_get_section_name (abfd, sec); | |
5244 | ||
5245 | if (strcmp (name, ".liblist") == 0) | |
5246 | { | |
5247 | hdr->sh_type = SHT_MIPS_LIBLIST; | |
eea6121a | 5248 | hdr->sh_info = sec->size / sizeof (Elf32_Lib); |
b49e97c9 TS |
5249 | /* The sh_link field is set in final_write_processing. */ |
5250 | } | |
5251 | else if (strcmp (name, ".conflict") == 0) | |
5252 | hdr->sh_type = SHT_MIPS_CONFLICT; | |
5253 | else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0) | |
5254 | { | |
5255 | hdr->sh_type = SHT_MIPS_GPTAB; | |
5256 | hdr->sh_entsize = sizeof (Elf32_External_gptab); | |
5257 | /* The sh_info field is set in final_write_processing. */ | |
5258 | } | |
5259 | else if (strcmp (name, ".ucode") == 0) | |
5260 | hdr->sh_type = SHT_MIPS_UCODE; | |
5261 | else if (strcmp (name, ".mdebug") == 0) | |
5262 | { | |
5263 | hdr->sh_type = SHT_MIPS_DEBUG; | |
8dc1a139 | 5264 | /* In a shared object on IRIX 5.3, the .mdebug section has an |
b49e97c9 TS |
5265 | entsize of 0. FIXME: Does this matter? */ |
5266 | if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0) | |
5267 | hdr->sh_entsize = 0; | |
5268 | else | |
5269 | hdr->sh_entsize = 1; | |
5270 | } | |
5271 | else if (strcmp (name, ".reginfo") == 0) | |
5272 | { | |
5273 | hdr->sh_type = SHT_MIPS_REGINFO; | |
8dc1a139 | 5274 | /* In a shared object on IRIX 5.3, the .reginfo section has an |
b49e97c9 TS |
5275 | entsize of 0x18. FIXME: Does this matter? */ |
5276 | if (SGI_COMPAT (abfd)) | |
5277 | { | |
5278 | if ((abfd->flags & DYNAMIC) != 0) | |
5279 | hdr->sh_entsize = sizeof (Elf32_External_RegInfo); | |
5280 | else | |
5281 | hdr->sh_entsize = 1; | |
5282 | } | |
5283 | else | |
5284 | hdr->sh_entsize = sizeof (Elf32_External_RegInfo); | |
5285 | } | |
5286 | else if (SGI_COMPAT (abfd) | |
5287 | && (strcmp (name, ".hash") == 0 | |
5288 | || strcmp (name, ".dynamic") == 0 | |
5289 | || strcmp (name, ".dynstr") == 0)) | |
5290 | { | |
5291 | if (SGI_COMPAT (abfd)) | |
5292 | hdr->sh_entsize = 0; | |
5293 | #if 0 | |
8dc1a139 | 5294 | /* This isn't how the IRIX6 linker behaves. */ |
b49e97c9 TS |
5295 | hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES; |
5296 | #endif | |
5297 | } | |
5298 | else if (strcmp (name, ".got") == 0 | |
5299 | || strcmp (name, ".srdata") == 0 | |
5300 | || strcmp (name, ".sdata") == 0 | |
5301 | || strcmp (name, ".sbss") == 0 | |
5302 | || strcmp (name, ".lit4") == 0 | |
5303 | || strcmp (name, ".lit8") == 0) | |
5304 | hdr->sh_flags |= SHF_MIPS_GPREL; | |
5305 | else if (strcmp (name, ".MIPS.interfaces") == 0) | |
5306 | { | |
5307 | hdr->sh_type = SHT_MIPS_IFACE; | |
5308 | hdr->sh_flags |= SHF_MIPS_NOSTRIP; | |
5309 | } | |
5310 | else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0) | |
5311 | { | |
5312 | hdr->sh_type = SHT_MIPS_CONTENT; | |
5313 | hdr->sh_flags |= SHF_MIPS_NOSTRIP; | |
5314 | /* The sh_info field is set in final_write_processing. */ | |
5315 | } | |
cc2e31b9 | 5316 | else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name)) |
b49e97c9 TS |
5317 | { |
5318 | hdr->sh_type = SHT_MIPS_OPTIONS; | |
5319 | hdr->sh_entsize = 1; | |
5320 | hdr->sh_flags |= SHF_MIPS_NOSTRIP; | |
5321 | } | |
5322 | else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0) | |
5323 | hdr->sh_type = SHT_MIPS_DWARF; | |
5324 | else if (strcmp (name, ".MIPS.symlib") == 0) | |
5325 | { | |
5326 | hdr->sh_type = SHT_MIPS_SYMBOL_LIB; | |
5327 | /* The sh_link and sh_info fields are set in | |
5328 | final_write_processing. */ | |
5329 | } | |
5330 | else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0 | |
5331 | || strncmp (name, ".MIPS.post_rel", | |
5332 | sizeof ".MIPS.post_rel" - 1) == 0) | |
5333 | { | |
5334 | hdr->sh_type = SHT_MIPS_EVENTS; | |
5335 | hdr->sh_flags |= SHF_MIPS_NOSTRIP; | |
5336 | /* The sh_link field is set in final_write_processing. */ | |
5337 | } | |
5338 | else if (strcmp (name, ".msym") == 0) | |
5339 | { | |
5340 | hdr->sh_type = SHT_MIPS_MSYM; | |
5341 | hdr->sh_flags |= SHF_ALLOC; | |
5342 | hdr->sh_entsize = 8; | |
5343 | } | |
5344 | ||
7a79a000 TS |
5345 | /* The generic elf_fake_sections will set up REL_HDR using the default |
5346 | kind of relocations. We used to set up a second header for the | |
5347 | non-default kind of relocations here, but only NewABI would use | |
5348 | these, and the IRIX ld doesn't like resulting empty RELA sections. | |
5349 | Thus we create those header only on demand now. */ | |
b49e97c9 | 5350 | |
b34976b6 | 5351 | return TRUE; |
b49e97c9 TS |
5352 | } |
5353 | ||
5354 | /* Given a BFD section, try to locate the corresponding ELF section | |
5355 | index. This is used by both the 32-bit and the 64-bit ABI. | |
5356 | Actually, it's not clear to me that the 64-bit ABI supports these, | |
5357 | but for non-PIC objects we will certainly want support for at least | |
5358 | the .scommon section. */ | |
5359 | ||
b34976b6 | 5360 | bfd_boolean |
9719ad41 RS |
5361 | _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED, |
5362 | asection *sec, int *retval) | |
b49e97c9 TS |
5363 | { |
5364 | if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0) | |
5365 | { | |
5366 | *retval = SHN_MIPS_SCOMMON; | |
b34976b6 | 5367 | return TRUE; |
b49e97c9 TS |
5368 | } |
5369 | if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0) | |
5370 | { | |
5371 | *retval = SHN_MIPS_ACOMMON; | |
b34976b6 | 5372 | return TRUE; |
b49e97c9 | 5373 | } |
b34976b6 | 5374 | return FALSE; |
b49e97c9 TS |
5375 | } |
5376 | \f | |
5377 | /* Hook called by the linker routine which adds symbols from an object | |
5378 | file. We must handle the special MIPS section numbers here. */ | |
5379 | ||
b34976b6 | 5380 | bfd_boolean |
9719ad41 | 5381 | _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info, |
555cd476 | 5382 | Elf_Internal_Sym *sym, const char **namep, |
9719ad41 RS |
5383 | flagword *flagsp ATTRIBUTE_UNUSED, |
5384 | asection **secp, bfd_vma *valp) | |
b49e97c9 TS |
5385 | { |
5386 | if (SGI_COMPAT (abfd) | |
5387 | && (abfd->flags & DYNAMIC) != 0 | |
5388 | && strcmp (*namep, "_rld_new_interface") == 0) | |
5389 | { | |
8dc1a139 | 5390 | /* Skip IRIX5 rld entry name. */ |
b49e97c9 | 5391 | *namep = NULL; |
b34976b6 | 5392 | return TRUE; |
b49e97c9 TS |
5393 | } |
5394 | ||
5395 | switch (sym->st_shndx) | |
5396 | { | |
5397 | case SHN_COMMON: | |
5398 | /* Common symbols less than the GP size are automatically | |
5399 | treated as SHN_MIPS_SCOMMON symbols. */ | |
5400 | if (sym->st_size > elf_gp_size (abfd) | |
5401 | || IRIX_COMPAT (abfd) == ict_irix6) | |
5402 | break; | |
5403 | /* Fall through. */ | |
5404 | case SHN_MIPS_SCOMMON: | |
5405 | *secp = bfd_make_section_old_way (abfd, ".scommon"); | |
5406 | (*secp)->flags |= SEC_IS_COMMON; | |
5407 | *valp = sym->st_size; | |
5408 | break; | |
5409 | ||
5410 | case SHN_MIPS_TEXT: | |
5411 | /* This section is used in a shared object. */ | |
5412 | if (elf_tdata (abfd)->elf_text_section == NULL) | |
5413 | { | |
5414 | asymbol *elf_text_symbol; | |
5415 | asection *elf_text_section; | |
5416 | bfd_size_type amt = sizeof (asection); | |
5417 | ||
5418 | elf_text_section = bfd_zalloc (abfd, amt); | |
5419 | if (elf_text_section == NULL) | |
b34976b6 | 5420 | return FALSE; |
b49e97c9 TS |
5421 | |
5422 | amt = sizeof (asymbol); | |
5423 | elf_text_symbol = bfd_zalloc (abfd, amt); | |
5424 | if (elf_text_symbol == NULL) | |
b34976b6 | 5425 | return FALSE; |
b49e97c9 TS |
5426 | |
5427 | /* Initialize the section. */ | |
5428 | ||
5429 | elf_tdata (abfd)->elf_text_section = elf_text_section; | |
5430 | elf_tdata (abfd)->elf_text_symbol = elf_text_symbol; | |
5431 | ||
5432 | elf_text_section->symbol = elf_text_symbol; | |
5433 | elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol; | |
5434 | ||
5435 | elf_text_section->name = ".text"; | |
5436 | elf_text_section->flags = SEC_NO_FLAGS; | |
5437 | elf_text_section->output_section = NULL; | |
5438 | elf_text_section->owner = abfd; | |
5439 | elf_text_symbol->name = ".text"; | |
5440 | elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC; | |
5441 | elf_text_symbol->section = elf_text_section; | |
5442 | } | |
5443 | /* This code used to do *secp = bfd_und_section_ptr if | |
5444 | info->shared. I don't know why, and that doesn't make sense, | |
5445 | so I took it out. */ | |
5446 | *secp = elf_tdata (abfd)->elf_text_section; | |
5447 | break; | |
5448 | ||
5449 | case SHN_MIPS_ACOMMON: | |
5450 | /* Fall through. XXX Can we treat this as allocated data? */ | |
5451 | case SHN_MIPS_DATA: | |
5452 | /* This section is used in a shared object. */ | |
5453 | if (elf_tdata (abfd)->elf_data_section == NULL) | |
5454 | { | |
5455 | asymbol *elf_data_symbol; | |
5456 | asection *elf_data_section; | |
5457 | bfd_size_type amt = sizeof (asection); | |
5458 | ||
5459 | elf_data_section = bfd_zalloc (abfd, amt); | |
5460 | if (elf_data_section == NULL) | |
b34976b6 | 5461 | return FALSE; |
b49e97c9 TS |
5462 | |
5463 | amt = sizeof (asymbol); | |
5464 | elf_data_symbol = bfd_zalloc (abfd, amt); | |
5465 | if (elf_data_symbol == NULL) | |
b34976b6 | 5466 | return FALSE; |
b49e97c9 TS |
5467 | |
5468 | /* Initialize the section. */ | |
5469 | ||
5470 | elf_tdata (abfd)->elf_data_section = elf_data_section; | |
5471 | elf_tdata (abfd)->elf_data_symbol = elf_data_symbol; | |
5472 | ||
5473 | elf_data_section->symbol = elf_data_symbol; | |
5474 | elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol; | |
5475 | ||
5476 | elf_data_section->name = ".data"; | |
5477 | elf_data_section->flags = SEC_NO_FLAGS; | |
5478 | elf_data_section->output_section = NULL; | |
5479 | elf_data_section->owner = abfd; | |
5480 | elf_data_symbol->name = ".data"; | |
5481 | elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC; | |
5482 | elf_data_symbol->section = elf_data_section; | |
5483 | } | |
5484 | /* This code used to do *secp = bfd_und_section_ptr if | |
5485 | info->shared. I don't know why, and that doesn't make sense, | |
5486 | so I took it out. */ | |
5487 | *secp = elf_tdata (abfd)->elf_data_section; | |
5488 | break; | |
5489 | ||
5490 | case SHN_MIPS_SUNDEFINED: | |
5491 | *secp = bfd_und_section_ptr; | |
5492 | break; | |
5493 | } | |
5494 | ||
5495 | if (SGI_COMPAT (abfd) | |
5496 | && ! info->shared | |
5497 | && info->hash->creator == abfd->xvec | |
5498 | && strcmp (*namep, "__rld_obj_head") == 0) | |
5499 | { | |
5500 | struct elf_link_hash_entry *h; | |
14a793b2 | 5501 | struct bfd_link_hash_entry *bh; |
b49e97c9 TS |
5502 | |
5503 | /* Mark __rld_obj_head as dynamic. */ | |
14a793b2 | 5504 | bh = NULL; |
b49e97c9 | 5505 | if (! (_bfd_generic_link_add_one_symbol |
9719ad41 | 5506 | (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE, |
14a793b2 | 5507 | get_elf_backend_data (abfd)->collect, &bh))) |
b34976b6 | 5508 | return FALSE; |
14a793b2 AM |
5509 | |
5510 | h = (struct elf_link_hash_entry *) bh; | |
f5385ebf AM |
5511 | h->non_elf = 0; |
5512 | h->def_regular = 1; | |
b49e97c9 TS |
5513 | h->type = STT_OBJECT; |
5514 | ||
c152c796 | 5515 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
b34976b6 | 5516 | return FALSE; |
b49e97c9 | 5517 | |
b34976b6 | 5518 | mips_elf_hash_table (info)->use_rld_obj_head = TRUE; |
b49e97c9 TS |
5519 | } |
5520 | ||
5521 | /* If this is a mips16 text symbol, add 1 to the value to make it | |
5522 | odd. This will cause something like .word SYM to come up with | |
5523 | the right value when it is loaded into the PC. */ | |
5524 | if (sym->st_other == STO_MIPS16) | |
5525 | ++*valp; | |
5526 | ||
b34976b6 | 5527 | return TRUE; |
b49e97c9 TS |
5528 | } |
5529 | ||
5530 | /* This hook function is called before the linker writes out a global | |
5531 | symbol. We mark symbols as small common if appropriate. This is | |
5532 | also where we undo the increment of the value for a mips16 symbol. */ | |
5533 | ||
b34976b6 | 5534 | bfd_boolean |
9719ad41 RS |
5535 | _bfd_mips_elf_link_output_symbol_hook |
5536 | (struct bfd_link_info *info ATTRIBUTE_UNUSED, | |
5537 | const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym, | |
5538 | asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED) | |
b49e97c9 TS |
5539 | { |
5540 | /* If we see a common symbol, which implies a relocatable link, then | |
5541 | if a symbol was small common in an input file, mark it as small | |
5542 | common in the output file. */ | |
5543 | if (sym->st_shndx == SHN_COMMON | |
5544 | && strcmp (input_sec->name, ".scommon") == 0) | |
5545 | sym->st_shndx = SHN_MIPS_SCOMMON; | |
5546 | ||
79cda7cf FF |
5547 | if (sym->st_other == STO_MIPS16) |
5548 | sym->st_value &= ~1; | |
b49e97c9 | 5549 | |
b34976b6 | 5550 | return TRUE; |
b49e97c9 TS |
5551 | } |
5552 | \f | |
5553 | /* Functions for the dynamic linker. */ | |
5554 | ||
5555 | /* Create dynamic sections when linking against a dynamic object. */ | |
5556 | ||
b34976b6 | 5557 | bfd_boolean |
9719ad41 | 5558 | _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info) |
b49e97c9 TS |
5559 | { |
5560 | struct elf_link_hash_entry *h; | |
14a793b2 | 5561 | struct bfd_link_hash_entry *bh; |
b49e97c9 TS |
5562 | flagword flags; |
5563 | register asection *s; | |
5564 | const char * const *namep; | |
5565 | ||
5566 | flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | |
5567 | | SEC_LINKER_CREATED | SEC_READONLY); | |
5568 | ||
5569 | /* Mips ABI requests the .dynamic section to be read only. */ | |
5570 | s = bfd_get_section_by_name (abfd, ".dynamic"); | |
5571 | if (s != NULL) | |
5572 | { | |
5573 | if (! bfd_set_section_flags (abfd, s, flags)) | |
b34976b6 | 5574 | return FALSE; |
b49e97c9 TS |
5575 | } |
5576 | ||
5577 | /* We need to create .got section. */ | |
f4416af6 AO |
5578 | if (! mips_elf_create_got_section (abfd, info, FALSE)) |
5579 | return FALSE; | |
5580 | ||
5581 | if (! mips_elf_rel_dyn_section (elf_hash_table (info)->dynobj, TRUE)) | |
b34976b6 | 5582 | return FALSE; |
b49e97c9 | 5583 | |
b49e97c9 TS |
5584 | /* Create .stub section. */ |
5585 | if (bfd_get_section_by_name (abfd, | |
5586 | MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL) | |
5587 | { | |
3496cb2a L |
5588 | s = bfd_make_section_with_flags (abfd, |
5589 | MIPS_ELF_STUB_SECTION_NAME (abfd), | |
5590 | flags | SEC_CODE); | |
b49e97c9 | 5591 | if (s == NULL |
b49e97c9 TS |
5592 | || ! bfd_set_section_alignment (abfd, s, |
5593 | MIPS_ELF_LOG_FILE_ALIGN (abfd))) | |
b34976b6 | 5594 | return FALSE; |
b49e97c9 TS |
5595 | } |
5596 | ||
5597 | if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none) | |
5598 | && !info->shared | |
5599 | && bfd_get_section_by_name (abfd, ".rld_map") == NULL) | |
5600 | { | |
3496cb2a L |
5601 | s = bfd_make_section_with_flags (abfd, ".rld_map", |
5602 | flags &~ (flagword) SEC_READONLY); | |
b49e97c9 | 5603 | if (s == NULL |
b49e97c9 TS |
5604 | || ! bfd_set_section_alignment (abfd, s, |
5605 | MIPS_ELF_LOG_FILE_ALIGN (abfd))) | |
b34976b6 | 5606 | return FALSE; |
b49e97c9 TS |
5607 | } |
5608 | ||
5609 | /* On IRIX5, we adjust add some additional symbols and change the | |
5610 | alignments of several sections. There is no ABI documentation | |
5611 | indicating that this is necessary on IRIX6, nor any evidence that | |
5612 | the linker takes such action. */ | |
5613 | if (IRIX_COMPAT (abfd) == ict_irix5) | |
5614 | { | |
5615 | for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++) | |
5616 | { | |
14a793b2 | 5617 | bh = NULL; |
b49e97c9 | 5618 | if (! (_bfd_generic_link_add_one_symbol |
9719ad41 RS |
5619 | (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0, |
5620 | NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh))) | |
b34976b6 | 5621 | return FALSE; |
14a793b2 AM |
5622 | |
5623 | h = (struct elf_link_hash_entry *) bh; | |
f5385ebf AM |
5624 | h->non_elf = 0; |
5625 | h->def_regular = 1; | |
b49e97c9 TS |
5626 | h->type = STT_SECTION; |
5627 | ||
c152c796 | 5628 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
b34976b6 | 5629 | return FALSE; |
b49e97c9 TS |
5630 | } |
5631 | ||
5632 | /* We need to create a .compact_rel section. */ | |
5633 | if (SGI_COMPAT (abfd)) | |
5634 | { | |
5635 | if (!mips_elf_create_compact_rel_section (abfd, info)) | |
b34976b6 | 5636 | return FALSE; |
b49e97c9 TS |
5637 | } |
5638 | ||
44c410de | 5639 | /* Change alignments of some sections. */ |
b49e97c9 TS |
5640 | s = bfd_get_section_by_name (abfd, ".hash"); |
5641 | if (s != NULL) | |
d80dcc6a | 5642 | bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); |
b49e97c9 TS |
5643 | s = bfd_get_section_by_name (abfd, ".dynsym"); |
5644 | if (s != NULL) | |
d80dcc6a | 5645 | bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); |
b49e97c9 TS |
5646 | s = bfd_get_section_by_name (abfd, ".dynstr"); |
5647 | if (s != NULL) | |
d80dcc6a | 5648 | bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); |
b49e97c9 TS |
5649 | s = bfd_get_section_by_name (abfd, ".reginfo"); |
5650 | if (s != NULL) | |
d80dcc6a | 5651 | bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); |
b49e97c9 TS |
5652 | s = bfd_get_section_by_name (abfd, ".dynamic"); |
5653 | if (s != NULL) | |
d80dcc6a | 5654 | bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); |
b49e97c9 TS |
5655 | } |
5656 | ||
5657 | if (!info->shared) | |
5658 | { | |
14a793b2 AM |
5659 | const char *name; |
5660 | ||
5661 | name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING"; | |
5662 | bh = NULL; | |
5663 | if (!(_bfd_generic_link_add_one_symbol | |
9719ad41 RS |
5664 | (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0, |
5665 | NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh))) | |
b34976b6 | 5666 | return FALSE; |
14a793b2 AM |
5667 | |
5668 | h = (struct elf_link_hash_entry *) bh; | |
f5385ebf AM |
5669 | h->non_elf = 0; |
5670 | h->def_regular = 1; | |
b49e97c9 TS |
5671 | h->type = STT_SECTION; |
5672 | ||
c152c796 | 5673 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
b34976b6 | 5674 | return FALSE; |
b49e97c9 TS |
5675 | |
5676 | if (! mips_elf_hash_table (info)->use_rld_obj_head) | |
5677 | { | |
5678 | /* __rld_map is a four byte word located in the .data section | |
5679 | and is filled in by the rtld to contain a pointer to | |
5680 | the _r_debug structure. Its symbol value will be set in | |
5681 | _bfd_mips_elf_finish_dynamic_symbol. */ | |
5682 | s = bfd_get_section_by_name (abfd, ".rld_map"); | |
5683 | BFD_ASSERT (s != NULL); | |
5684 | ||
14a793b2 AM |
5685 | name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP"; |
5686 | bh = NULL; | |
5687 | if (!(_bfd_generic_link_add_one_symbol | |
9719ad41 | 5688 | (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE, |
14a793b2 | 5689 | get_elf_backend_data (abfd)->collect, &bh))) |
b34976b6 | 5690 | return FALSE; |
14a793b2 AM |
5691 | |
5692 | h = (struct elf_link_hash_entry *) bh; | |
f5385ebf AM |
5693 | h->non_elf = 0; |
5694 | h->def_regular = 1; | |
b49e97c9 TS |
5695 | h->type = STT_OBJECT; |
5696 | ||
c152c796 | 5697 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
b34976b6 | 5698 | return FALSE; |
b49e97c9 TS |
5699 | } |
5700 | } | |
5701 | ||
b34976b6 | 5702 | return TRUE; |
b49e97c9 TS |
5703 | } |
5704 | \f | |
5705 | /* Look through the relocs for a section during the first phase, and | |
5706 | allocate space in the global offset table. */ | |
5707 | ||
b34976b6 | 5708 | bfd_boolean |
9719ad41 RS |
5709 | _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info, |
5710 | asection *sec, const Elf_Internal_Rela *relocs) | |
b49e97c9 TS |
5711 | { |
5712 | const char *name; | |
5713 | bfd *dynobj; | |
5714 | Elf_Internal_Shdr *symtab_hdr; | |
5715 | struct elf_link_hash_entry **sym_hashes; | |
5716 | struct mips_got_info *g; | |
5717 | size_t extsymoff; | |
5718 | const Elf_Internal_Rela *rel; | |
5719 | const Elf_Internal_Rela *rel_end; | |
5720 | asection *sgot; | |
5721 | asection *sreloc; | |
9c5bfbb7 | 5722 | const struct elf_backend_data *bed; |
b49e97c9 | 5723 | |
1049f94e | 5724 | if (info->relocatable) |
b34976b6 | 5725 | return TRUE; |
b49e97c9 TS |
5726 | |
5727 | dynobj = elf_hash_table (info)->dynobj; | |
5728 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
5729 | sym_hashes = elf_sym_hashes (abfd); | |
5730 | extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info; | |
5731 | ||
5732 | /* Check for the mips16 stub sections. */ | |
5733 | ||
5734 | name = bfd_get_section_name (abfd, sec); | |
5735 | if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0) | |
5736 | { | |
5737 | unsigned long r_symndx; | |
5738 | ||
5739 | /* Look at the relocation information to figure out which symbol | |
5740 | this is for. */ | |
5741 | ||
5742 | r_symndx = ELF_R_SYM (abfd, relocs->r_info); | |
5743 | ||
5744 | if (r_symndx < extsymoff | |
5745 | || sym_hashes[r_symndx - extsymoff] == NULL) | |
5746 | { | |
5747 | asection *o; | |
5748 | ||
5749 | /* This stub is for a local symbol. This stub will only be | |
5750 | needed if there is some relocation in this BFD, other | |
5751 | than a 16 bit function call, which refers to this symbol. */ | |
5752 | for (o = abfd->sections; o != NULL; o = o->next) | |
5753 | { | |
5754 | Elf_Internal_Rela *sec_relocs; | |
5755 | const Elf_Internal_Rela *r, *rend; | |
5756 | ||
5757 | /* We can ignore stub sections when looking for relocs. */ | |
5758 | if ((o->flags & SEC_RELOC) == 0 | |
5759 | || o->reloc_count == 0 | |
5760 | || strncmp (bfd_get_section_name (abfd, o), FN_STUB, | |
5761 | sizeof FN_STUB - 1) == 0 | |
5762 | || strncmp (bfd_get_section_name (abfd, o), CALL_STUB, | |
5763 | sizeof CALL_STUB - 1) == 0 | |
5764 | || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB, | |
5765 | sizeof CALL_FP_STUB - 1) == 0) | |
5766 | continue; | |
5767 | ||
45d6a902 | 5768 | sec_relocs |
9719ad41 | 5769 | = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL, |
45d6a902 | 5770 | info->keep_memory); |
b49e97c9 | 5771 | if (sec_relocs == NULL) |
b34976b6 | 5772 | return FALSE; |
b49e97c9 TS |
5773 | |
5774 | rend = sec_relocs + o->reloc_count; | |
5775 | for (r = sec_relocs; r < rend; r++) | |
5776 | if (ELF_R_SYM (abfd, r->r_info) == r_symndx | |
5777 | && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26) | |
5778 | break; | |
5779 | ||
6cdc0ccc | 5780 | if (elf_section_data (o)->relocs != sec_relocs) |
b49e97c9 TS |
5781 | free (sec_relocs); |
5782 | ||
5783 | if (r < rend) | |
5784 | break; | |
5785 | } | |
5786 | ||
5787 | if (o == NULL) | |
5788 | { | |
5789 | /* There is no non-call reloc for this stub, so we do | |
5790 | not need it. Since this function is called before | |
5791 | the linker maps input sections to output sections, we | |
5792 | can easily discard it by setting the SEC_EXCLUDE | |
5793 | flag. */ | |
5794 | sec->flags |= SEC_EXCLUDE; | |
b34976b6 | 5795 | return TRUE; |
b49e97c9 TS |
5796 | } |
5797 | ||
5798 | /* Record this stub in an array of local symbol stubs for | |
5799 | this BFD. */ | |
5800 | if (elf_tdata (abfd)->local_stubs == NULL) | |
5801 | { | |
5802 | unsigned long symcount; | |
5803 | asection **n; | |
5804 | bfd_size_type amt; | |
5805 | ||
5806 | if (elf_bad_symtab (abfd)) | |
5807 | symcount = NUM_SHDR_ENTRIES (symtab_hdr); | |
5808 | else | |
5809 | symcount = symtab_hdr->sh_info; | |
5810 | amt = symcount * sizeof (asection *); | |
9719ad41 | 5811 | n = bfd_zalloc (abfd, amt); |
b49e97c9 | 5812 | if (n == NULL) |
b34976b6 | 5813 | return FALSE; |
b49e97c9 TS |
5814 | elf_tdata (abfd)->local_stubs = n; |
5815 | } | |
5816 | ||
5817 | elf_tdata (abfd)->local_stubs[r_symndx] = sec; | |
5818 | ||
5819 | /* We don't need to set mips16_stubs_seen in this case. | |
5820 | That flag is used to see whether we need to look through | |
5821 | the global symbol table for stubs. We don't need to set | |
5822 | it here, because we just have a local stub. */ | |
5823 | } | |
5824 | else | |
5825 | { | |
5826 | struct mips_elf_link_hash_entry *h; | |
5827 | ||
5828 | h = ((struct mips_elf_link_hash_entry *) | |
5829 | sym_hashes[r_symndx - extsymoff]); | |
5830 | ||
5831 | /* H is the symbol this stub is for. */ | |
5832 | ||
5833 | h->fn_stub = sec; | |
b34976b6 | 5834 | mips_elf_hash_table (info)->mips16_stubs_seen = TRUE; |
b49e97c9 TS |
5835 | } |
5836 | } | |
5837 | else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0 | |
5838 | || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0) | |
5839 | { | |
5840 | unsigned long r_symndx; | |
5841 | struct mips_elf_link_hash_entry *h; | |
5842 | asection **loc; | |
5843 | ||
5844 | /* Look at the relocation information to figure out which symbol | |
5845 | this is for. */ | |
5846 | ||
5847 | r_symndx = ELF_R_SYM (abfd, relocs->r_info); | |
5848 | ||
5849 | if (r_symndx < extsymoff | |
5850 | || sym_hashes[r_symndx - extsymoff] == NULL) | |
5851 | { | |
5852 | /* This stub was actually built for a static symbol defined | |
5853 | in the same file. We assume that all static symbols in | |
5854 | mips16 code are themselves mips16, so we can simply | |
5855 | discard this stub. Since this function is called before | |
5856 | the linker maps input sections to output sections, we can | |
5857 | easily discard it by setting the SEC_EXCLUDE flag. */ | |
5858 | sec->flags |= SEC_EXCLUDE; | |
b34976b6 | 5859 | return TRUE; |
b49e97c9 TS |
5860 | } |
5861 | ||
5862 | h = ((struct mips_elf_link_hash_entry *) | |
5863 | sym_hashes[r_symndx - extsymoff]); | |
5864 | ||
5865 | /* H is the symbol this stub is for. */ | |
5866 | ||
5867 | if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0) | |
5868 | loc = &h->call_fp_stub; | |
5869 | else | |
5870 | loc = &h->call_stub; | |
5871 | ||
5872 | /* If we already have an appropriate stub for this function, we | |
5873 | don't need another one, so we can discard this one. Since | |
5874 | this function is called before the linker maps input sections | |
5875 | to output sections, we can easily discard it by setting the | |
5876 | SEC_EXCLUDE flag. We can also discard this section if we | |
5877 | happen to already know that this is a mips16 function; it is | |
5878 | not necessary to check this here, as it is checked later, but | |
5879 | it is slightly faster to check now. */ | |
5880 | if (*loc != NULL || h->root.other == STO_MIPS16) | |
5881 | { | |
5882 | sec->flags |= SEC_EXCLUDE; | |
b34976b6 | 5883 | return TRUE; |
b49e97c9 TS |
5884 | } |
5885 | ||
5886 | *loc = sec; | |
b34976b6 | 5887 | mips_elf_hash_table (info)->mips16_stubs_seen = TRUE; |
b49e97c9 TS |
5888 | } |
5889 | ||
5890 | if (dynobj == NULL) | |
5891 | { | |
5892 | sgot = NULL; | |
5893 | g = NULL; | |
5894 | } | |
5895 | else | |
5896 | { | |
f4416af6 | 5897 | sgot = mips_elf_got_section (dynobj, FALSE); |
b49e97c9 TS |
5898 | if (sgot == NULL) |
5899 | g = NULL; | |
5900 | else | |
5901 | { | |
f0abc2a1 AM |
5902 | BFD_ASSERT (mips_elf_section_data (sgot) != NULL); |
5903 | g = mips_elf_section_data (sgot)->u.got_info; | |
b49e97c9 TS |
5904 | BFD_ASSERT (g != NULL); |
5905 | } | |
5906 | } | |
5907 | ||
5908 | sreloc = NULL; | |
5909 | bed = get_elf_backend_data (abfd); | |
5910 | rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel; | |
5911 | for (rel = relocs; rel < rel_end; ++rel) | |
5912 | { | |
5913 | unsigned long r_symndx; | |
5914 | unsigned int r_type; | |
5915 | struct elf_link_hash_entry *h; | |
5916 | ||
5917 | r_symndx = ELF_R_SYM (abfd, rel->r_info); | |
5918 | r_type = ELF_R_TYPE (abfd, rel->r_info); | |
5919 | ||
5920 | if (r_symndx < extsymoff) | |
5921 | h = NULL; | |
5922 | else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr)) | |
5923 | { | |
5924 | (*_bfd_error_handler) | |
d003868e AM |
5925 | (_("%B: Malformed reloc detected for section %s"), |
5926 | abfd, name); | |
b49e97c9 | 5927 | bfd_set_error (bfd_error_bad_value); |
b34976b6 | 5928 | return FALSE; |
b49e97c9 TS |
5929 | } |
5930 | else | |
5931 | { | |
5932 | h = sym_hashes[r_symndx - extsymoff]; | |
5933 | ||
5934 | /* This may be an indirect symbol created because of a version. */ | |
5935 | if (h != NULL) | |
5936 | { | |
5937 | while (h->root.type == bfd_link_hash_indirect) | |
5938 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
5939 | } | |
5940 | } | |
5941 | ||
5942 | /* Some relocs require a global offset table. */ | |
5943 | if (dynobj == NULL || sgot == NULL) | |
5944 | { | |
5945 | switch (r_type) | |
5946 | { | |
5947 | case R_MIPS_GOT16: | |
5948 | case R_MIPS_CALL16: | |
5949 | case R_MIPS_CALL_HI16: | |
5950 | case R_MIPS_CALL_LO16: | |
5951 | case R_MIPS_GOT_HI16: | |
5952 | case R_MIPS_GOT_LO16: | |
5953 | case R_MIPS_GOT_PAGE: | |
5954 | case R_MIPS_GOT_OFST: | |
5955 | case R_MIPS_GOT_DISP: | |
0f20cc35 DJ |
5956 | case R_MIPS_TLS_GD: |
5957 | case R_MIPS_TLS_LDM: | |
b49e97c9 TS |
5958 | if (dynobj == NULL) |
5959 | elf_hash_table (info)->dynobj = dynobj = abfd; | |
f4416af6 | 5960 | if (! mips_elf_create_got_section (dynobj, info, FALSE)) |
b34976b6 | 5961 | return FALSE; |
b49e97c9 TS |
5962 | g = mips_elf_got_info (dynobj, &sgot); |
5963 | break; | |
5964 | ||
5965 | case R_MIPS_32: | |
5966 | case R_MIPS_REL32: | |
5967 | case R_MIPS_64: | |
5968 | if (dynobj == NULL | |
5969 | && (info->shared || h != NULL) | |
5970 | && (sec->flags & SEC_ALLOC) != 0) | |
5971 | elf_hash_table (info)->dynobj = dynobj = abfd; | |
5972 | break; | |
5973 | ||
5974 | default: | |
5975 | break; | |
5976 | } | |
5977 | } | |
5978 | ||
5979 | if (!h && (r_type == R_MIPS_CALL_LO16 | |
5980 | || r_type == R_MIPS_GOT_LO16 | |
5981 | || r_type == R_MIPS_GOT_DISP)) | |
5982 | { | |
5983 | /* We may need a local GOT entry for this relocation. We | |
5984 | don't count R_MIPS_GOT_PAGE because we can estimate the | |
5985 | maximum number of pages needed by looking at the size of | |
5986 | the segment. Similar comments apply to R_MIPS_GOT16 and | |
5987 | R_MIPS_CALL16. We don't count R_MIPS_GOT_HI16, or | |
5988 | R_MIPS_CALL_HI16 because these are always followed by an | |
b15e6682 | 5989 | R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */ |
f4416af6 | 5990 | if (! mips_elf_record_local_got_symbol (abfd, r_symndx, |
0f20cc35 | 5991 | rel->r_addend, g, 0)) |
f4416af6 | 5992 | return FALSE; |
b49e97c9 TS |
5993 | } |
5994 | ||
5995 | switch (r_type) | |
5996 | { | |
5997 | case R_MIPS_CALL16: | |
5998 | if (h == NULL) | |
5999 | { | |
6000 | (*_bfd_error_handler) | |
d003868e AM |
6001 | (_("%B: CALL16 reloc at 0x%lx not against global symbol"), |
6002 | abfd, (unsigned long) rel->r_offset); | |
b49e97c9 | 6003 | bfd_set_error (bfd_error_bad_value); |
b34976b6 | 6004 | return FALSE; |
b49e97c9 TS |
6005 | } |
6006 | /* Fall through. */ | |
6007 | ||
6008 | case R_MIPS_CALL_HI16: | |
6009 | case R_MIPS_CALL_LO16: | |
6010 | if (h != NULL) | |
6011 | { | |
6012 | /* This symbol requires a global offset table entry. */ | |
0f20cc35 | 6013 | if (! mips_elf_record_global_got_symbol (h, abfd, info, g, 0)) |
b34976b6 | 6014 | return FALSE; |
b49e97c9 TS |
6015 | |
6016 | /* We need a stub, not a plt entry for the undefined | |
6017 | function. But we record it as if it needs plt. See | |
c152c796 | 6018 | _bfd_elf_adjust_dynamic_symbol. */ |
f5385ebf | 6019 | h->needs_plt = 1; |
b49e97c9 TS |
6020 | h->type = STT_FUNC; |
6021 | } | |
6022 | break; | |
6023 | ||
0fdc1bf1 AO |
6024 | case R_MIPS_GOT_PAGE: |
6025 | /* If this is a global, overridable symbol, GOT_PAGE will | |
6026 | decay to GOT_DISP, so we'll need a GOT entry for it. */ | |
6027 | if (h == NULL) | |
6028 | break; | |
6029 | else | |
6030 | { | |
6031 | struct mips_elf_link_hash_entry *hmips = | |
6032 | (struct mips_elf_link_hash_entry *) h; | |
143d77c5 | 6033 | |
0fdc1bf1 AO |
6034 | while (hmips->root.root.type == bfd_link_hash_indirect |
6035 | || hmips->root.root.type == bfd_link_hash_warning) | |
6036 | hmips = (struct mips_elf_link_hash_entry *) | |
6037 | hmips->root.root.u.i.link; | |
143d77c5 | 6038 | |
f5385ebf | 6039 | if (hmips->root.def_regular |
0fdc1bf1 | 6040 | && ! (info->shared && ! info->symbolic |
f5385ebf | 6041 | && ! hmips->root.forced_local)) |
0fdc1bf1 AO |
6042 | break; |
6043 | } | |
6044 | /* Fall through. */ | |
6045 | ||
b49e97c9 TS |
6046 | case R_MIPS_GOT16: |
6047 | case R_MIPS_GOT_HI16: | |
6048 | case R_MIPS_GOT_LO16: | |
6049 | case R_MIPS_GOT_DISP: | |
0f20cc35 | 6050 | if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, 0)) |
b34976b6 | 6051 | return FALSE; |
b49e97c9 TS |
6052 | break; |
6053 | ||
0f20cc35 DJ |
6054 | case R_MIPS_TLS_GOTTPREL: |
6055 | if (info->shared) | |
6056 | info->flags |= DF_STATIC_TLS; | |
6057 | /* Fall through */ | |
6058 | ||
6059 | case R_MIPS_TLS_LDM: | |
6060 | if (r_type == R_MIPS_TLS_LDM) | |
6061 | { | |
6062 | r_symndx = 0; | |
6063 | h = NULL; | |
6064 | } | |
6065 | /* Fall through */ | |
6066 | ||
6067 | case R_MIPS_TLS_GD: | |
6068 | /* This symbol requires a global offset table entry, or two | |
6069 | for TLS GD relocations. */ | |
6070 | { | |
6071 | unsigned char flag = (r_type == R_MIPS_TLS_GD | |
6072 | ? GOT_TLS_GD | |
6073 | : r_type == R_MIPS_TLS_LDM | |
6074 | ? GOT_TLS_LDM | |
6075 | : GOT_TLS_IE); | |
6076 | if (h != NULL) | |
6077 | { | |
6078 | struct mips_elf_link_hash_entry *hmips = | |
6079 | (struct mips_elf_link_hash_entry *) h; | |
6080 | hmips->tls_type |= flag; | |
6081 | ||
6082 | if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, flag)) | |
6083 | return FALSE; | |
6084 | } | |
6085 | else | |
6086 | { | |
6087 | BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != 0); | |
6088 | ||
6089 | if (! mips_elf_record_local_got_symbol (abfd, r_symndx, | |
6090 | rel->r_addend, g, flag)) | |
6091 | return FALSE; | |
6092 | } | |
6093 | } | |
6094 | break; | |
6095 | ||
b49e97c9 TS |
6096 | case R_MIPS_32: |
6097 | case R_MIPS_REL32: | |
6098 | case R_MIPS_64: | |
6099 | if ((info->shared || h != NULL) | |
6100 | && (sec->flags & SEC_ALLOC) != 0) | |
6101 | { | |
6102 | if (sreloc == NULL) | |
6103 | { | |
f4416af6 | 6104 | sreloc = mips_elf_rel_dyn_section (dynobj, TRUE); |
b49e97c9 | 6105 | if (sreloc == NULL) |
f4416af6 | 6106 | return FALSE; |
b49e97c9 | 6107 | } |
82f0cfbd | 6108 | #define MIPS_READONLY_SECTION (SEC_ALLOC | SEC_LOAD | SEC_READONLY) |
b49e97c9 | 6109 | if (info->shared) |
82f0cfbd EC |
6110 | { |
6111 | /* When creating a shared object, we must copy these | |
6112 | reloc types into the output file as R_MIPS_REL32 | |
6113 | relocs. We make room for this reloc in the | |
6114 | .rel.dyn reloc section. */ | |
6115 | mips_elf_allocate_dynamic_relocations (dynobj, 1); | |
6116 | if ((sec->flags & MIPS_READONLY_SECTION) | |
6117 | == MIPS_READONLY_SECTION) | |
6118 | /* We tell the dynamic linker that there are | |
6119 | relocations against the text segment. */ | |
6120 | info->flags |= DF_TEXTREL; | |
6121 | } | |
b49e97c9 TS |
6122 | else |
6123 | { | |
6124 | struct mips_elf_link_hash_entry *hmips; | |
82f0cfbd | 6125 | |
b49e97c9 TS |
6126 | /* We only need to copy this reloc if the symbol is |
6127 | defined in a dynamic object. */ | |
6128 | hmips = (struct mips_elf_link_hash_entry *) h; | |
6129 | ++hmips->possibly_dynamic_relocs; | |
82f0cfbd EC |
6130 | if ((sec->flags & MIPS_READONLY_SECTION) |
6131 | == MIPS_READONLY_SECTION) | |
6132 | /* We need it to tell the dynamic linker if there | |
6133 | are relocations against the text segment. */ | |
6134 | hmips->readonly_reloc = TRUE; | |
b49e97c9 TS |
6135 | } |
6136 | ||
6137 | /* Even though we don't directly need a GOT entry for | |
6138 | this symbol, a symbol must have a dynamic symbol | |
6139 | table index greater that DT_MIPS_GOTSYM if there are | |
6140 | dynamic relocations against it. */ | |
f4416af6 AO |
6141 | if (h != NULL) |
6142 | { | |
6143 | if (dynobj == NULL) | |
6144 | elf_hash_table (info)->dynobj = dynobj = abfd; | |
6145 | if (! mips_elf_create_got_section (dynobj, info, TRUE)) | |
6146 | return FALSE; | |
6147 | g = mips_elf_got_info (dynobj, &sgot); | |
0f20cc35 | 6148 | if (! mips_elf_record_global_got_symbol (h, abfd, info, g, 0)) |
f4416af6 AO |
6149 | return FALSE; |
6150 | } | |
b49e97c9 TS |
6151 | } |
6152 | ||
6153 | if (SGI_COMPAT (abfd)) | |
6154 | mips_elf_hash_table (info)->compact_rel_size += | |
6155 | sizeof (Elf32_External_crinfo); | |
6156 | break; | |
6157 | ||
6158 | case R_MIPS_26: | |
6159 | case R_MIPS_GPREL16: | |
6160 | case R_MIPS_LITERAL: | |
6161 | case R_MIPS_GPREL32: | |
6162 | if (SGI_COMPAT (abfd)) | |
6163 | mips_elf_hash_table (info)->compact_rel_size += | |
6164 | sizeof (Elf32_External_crinfo); | |
6165 | break; | |
6166 | ||
6167 | /* This relocation describes the C++ object vtable hierarchy. | |
6168 | Reconstruct it for later use during GC. */ | |
6169 | case R_MIPS_GNU_VTINHERIT: | |
c152c796 | 6170 | if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) |
b34976b6 | 6171 | return FALSE; |
b49e97c9 TS |
6172 | break; |
6173 | ||
6174 | /* This relocation describes which C++ vtable entries are actually | |
6175 | used. Record for later use during GC. */ | |
6176 | case R_MIPS_GNU_VTENTRY: | |
c152c796 | 6177 | if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset)) |
b34976b6 | 6178 | return FALSE; |
b49e97c9 TS |
6179 | break; |
6180 | ||
6181 | default: | |
6182 | break; | |
6183 | } | |
6184 | ||
6185 | /* We must not create a stub for a symbol that has relocations | |
6186 | related to taking the function's address. */ | |
6187 | switch (r_type) | |
6188 | { | |
6189 | default: | |
6190 | if (h != NULL) | |
6191 | { | |
6192 | struct mips_elf_link_hash_entry *mh; | |
6193 | ||
6194 | mh = (struct mips_elf_link_hash_entry *) h; | |
b34976b6 | 6195 | mh->no_fn_stub = TRUE; |
b49e97c9 TS |
6196 | } |
6197 | break; | |
6198 | case R_MIPS_CALL16: | |
6199 | case R_MIPS_CALL_HI16: | |
6200 | case R_MIPS_CALL_LO16: | |
2b86c02e | 6201 | case R_MIPS_JALR: |
b49e97c9 TS |
6202 | break; |
6203 | } | |
6204 | ||
6205 | /* If this reloc is not a 16 bit call, and it has a global | |
6206 | symbol, then we will need the fn_stub if there is one. | |
6207 | References from a stub section do not count. */ | |
6208 | if (h != NULL | |
6209 | && r_type != R_MIPS16_26 | |
6210 | && strncmp (bfd_get_section_name (abfd, sec), FN_STUB, | |
6211 | sizeof FN_STUB - 1) != 0 | |
6212 | && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB, | |
6213 | sizeof CALL_STUB - 1) != 0 | |
6214 | && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB, | |
6215 | sizeof CALL_FP_STUB - 1) != 0) | |
6216 | { | |
6217 | struct mips_elf_link_hash_entry *mh; | |
6218 | ||
6219 | mh = (struct mips_elf_link_hash_entry *) h; | |
b34976b6 | 6220 | mh->need_fn_stub = TRUE; |
b49e97c9 TS |
6221 | } |
6222 | } | |
6223 | ||
b34976b6 | 6224 | return TRUE; |
b49e97c9 TS |
6225 | } |
6226 | \f | |
d0647110 | 6227 | bfd_boolean |
9719ad41 RS |
6228 | _bfd_mips_relax_section (bfd *abfd, asection *sec, |
6229 | struct bfd_link_info *link_info, | |
6230 | bfd_boolean *again) | |
d0647110 AO |
6231 | { |
6232 | Elf_Internal_Rela *internal_relocs; | |
6233 | Elf_Internal_Rela *irel, *irelend; | |
6234 | Elf_Internal_Shdr *symtab_hdr; | |
6235 | bfd_byte *contents = NULL; | |
d0647110 AO |
6236 | size_t extsymoff; |
6237 | bfd_boolean changed_contents = FALSE; | |
6238 | bfd_vma sec_start = sec->output_section->vma + sec->output_offset; | |
6239 | Elf_Internal_Sym *isymbuf = NULL; | |
6240 | ||
6241 | /* We are not currently changing any sizes, so only one pass. */ | |
6242 | *again = FALSE; | |
6243 | ||
1049f94e | 6244 | if (link_info->relocatable) |
d0647110 AO |
6245 | return TRUE; |
6246 | ||
9719ad41 | 6247 | internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, |
45d6a902 | 6248 | link_info->keep_memory); |
d0647110 AO |
6249 | if (internal_relocs == NULL) |
6250 | return TRUE; | |
6251 | ||
6252 | irelend = internal_relocs + sec->reloc_count | |
6253 | * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel; | |
6254 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
6255 | extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info; | |
6256 | ||
6257 | for (irel = internal_relocs; irel < irelend; irel++) | |
6258 | { | |
6259 | bfd_vma symval; | |
6260 | bfd_signed_vma sym_offset; | |
6261 | unsigned int r_type; | |
6262 | unsigned long r_symndx; | |
6263 | asection *sym_sec; | |
6264 | unsigned long instruction; | |
6265 | ||
6266 | /* Turn jalr into bgezal, and jr into beq, if they're marked | |
6267 | with a JALR relocation, that indicate where they jump to. | |
6268 | This saves some pipeline bubbles. */ | |
6269 | r_type = ELF_R_TYPE (abfd, irel->r_info); | |
6270 | if (r_type != R_MIPS_JALR) | |
6271 | continue; | |
6272 | ||
6273 | r_symndx = ELF_R_SYM (abfd, irel->r_info); | |
6274 | /* Compute the address of the jump target. */ | |
6275 | if (r_symndx >= extsymoff) | |
6276 | { | |
6277 | struct mips_elf_link_hash_entry *h | |
6278 | = ((struct mips_elf_link_hash_entry *) | |
6279 | elf_sym_hashes (abfd) [r_symndx - extsymoff]); | |
6280 | ||
6281 | while (h->root.root.type == bfd_link_hash_indirect | |
6282 | || h->root.root.type == bfd_link_hash_warning) | |
6283 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | |
143d77c5 | 6284 | |
d0647110 AO |
6285 | /* If a symbol is undefined, or if it may be overridden, |
6286 | skip it. */ | |
6287 | if (! ((h->root.root.type == bfd_link_hash_defined | |
6288 | || h->root.root.type == bfd_link_hash_defweak) | |
6289 | && h->root.root.u.def.section) | |
6290 | || (link_info->shared && ! link_info->symbolic | |
f5385ebf | 6291 | && !h->root.forced_local)) |
d0647110 AO |
6292 | continue; |
6293 | ||
6294 | sym_sec = h->root.root.u.def.section; | |
6295 | if (sym_sec->output_section) | |
6296 | symval = (h->root.root.u.def.value | |
6297 | + sym_sec->output_section->vma | |
6298 | + sym_sec->output_offset); | |
6299 | else | |
6300 | symval = h->root.root.u.def.value; | |
6301 | } | |
6302 | else | |
6303 | { | |
6304 | Elf_Internal_Sym *isym; | |
6305 | ||
6306 | /* Read this BFD's symbols if we haven't done so already. */ | |
6307 | if (isymbuf == NULL && symtab_hdr->sh_info != 0) | |
6308 | { | |
6309 | isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; | |
6310 | if (isymbuf == NULL) | |
6311 | isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr, | |
6312 | symtab_hdr->sh_info, 0, | |
6313 | NULL, NULL, NULL); | |
6314 | if (isymbuf == NULL) | |
6315 | goto relax_return; | |
6316 | } | |
6317 | ||
6318 | isym = isymbuf + r_symndx; | |
6319 | if (isym->st_shndx == SHN_UNDEF) | |
6320 | continue; | |
6321 | else if (isym->st_shndx == SHN_ABS) | |
6322 | sym_sec = bfd_abs_section_ptr; | |
6323 | else if (isym->st_shndx == SHN_COMMON) | |
6324 | sym_sec = bfd_com_section_ptr; | |
6325 | else | |
6326 | sym_sec | |
6327 | = bfd_section_from_elf_index (abfd, isym->st_shndx); | |
6328 | symval = isym->st_value | |
6329 | + sym_sec->output_section->vma | |
6330 | + sym_sec->output_offset; | |
6331 | } | |
6332 | ||
6333 | /* Compute branch offset, from delay slot of the jump to the | |
6334 | branch target. */ | |
6335 | sym_offset = (symval + irel->r_addend) | |
6336 | - (sec_start + irel->r_offset + 4); | |
6337 | ||
6338 | /* Branch offset must be properly aligned. */ | |
6339 | if ((sym_offset & 3) != 0) | |
6340 | continue; | |
6341 | ||
6342 | sym_offset >>= 2; | |
6343 | ||
6344 | /* Check that it's in range. */ | |
6345 | if (sym_offset < -0x8000 || sym_offset >= 0x8000) | |
6346 | continue; | |
143d77c5 | 6347 | |
d0647110 AO |
6348 | /* Get the section contents if we haven't done so already. */ |
6349 | if (contents == NULL) | |
6350 | { | |
6351 | /* Get cached copy if it exists. */ | |
6352 | if (elf_section_data (sec)->this_hdr.contents != NULL) | |
6353 | contents = elf_section_data (sec)->this_hdr.contents; | |
6354 | else | |
6355 | { | |
eea6121a | 6356 | if (!bfd_malloc_and_get_section (abfd, sec, &contents)) |
d0647110 AO |
6357 | goto relax_return; |
6358 | } | |
6359 | } | |
6360 | ||
6361 | instruction = bfd_get_32 (abfd, contents + irel->r_offset); | |
6362 | ||
6363 | /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */ | |
6364 | if ((instruction & 0xfc1fffff) == 0x0000f809) | |
6365 | instruction = 0x04110000; | |
6366 | /* If it was jr <reg>, turn it into b <target>. */ | |
6367 | else if ((instruction & 0xfc1fffff) == 0x00000008) | |
6368 | instruction = 0x10000000; | |
6369 | else | |
6370 | continue; | |
6371 | ||
6372 | instruction |= (sym_offset & 0xffff); | |
6373 | bfd_put_32 (abfd, instruction, contents + irel->r_offset); | |
6374 | changed_contents = TRUE; | |
6375 | } | |
6376 | ||
6377 | if (contents != NULL | |
6378 | && elf_section_data (sec)->this_hdr.contents != contents) | |
6379 | { | |
6380 | if (!changed_contents && !link_info->keep_memory) | |
6381 | free (contents); | |
6382 | else | |
6383 | { | |
6384 | /* Cache the section contents for elf_link_input_bfd. */ | |
6385 | elf_section_data (sec)->this_hdr.contents = contents; | |
6386 | } | |
6387 | } | |
6388 | return TRUE; | |
6389 | ||
143d77c5 | 6390 | relax_return: |
eea6121a AM |
6391 | if (contents != NULL |
6392 | && elf_section_data (sec)->this_hdr.contents != contents) | |
6393 | free (contents); | |
d0647110 AO |
6394 | return FALSE; |
6395 | } | |
6396 | \f | |
b49e97c9 TS |
6397 | /* Adjust a symbol defined by a dynamic object and referenced by a |
6398 | regular object. The current definition is in some section of the | |
6399 | dynamic object, but we're not including those sections. We have to | |
6400 | change the definition to something the rest of the link can | |
6401 | understand. */ | |
6402 | ||
b34976b6 | 6403 | bfd_boolean |
9719ad41 RS |
6404 | _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info, |
6405 | struct elf_link_hash_entry *h) | |
b49e97c9 TS |
6406 | { |
6407 | bfd *dynobj; | |
6408 | struct mips_elf_link_hash_entry *hmips; | |
6409 | asection *s; | |
6410 | ||
6411 | dynobj = elf_hash_table (info)->dynobj; | |
6412 | ||
6413 | /* Make sure we know what is going on here. */ | |
6414 | BFD_ASSERT (dynobj != NULL | |
f5385ebf | 6415 | && (h->needs_plt |
f6e332e6 | 6416 | || h->u.weakdef != NULL |
f5385ebf AM |
6417 | || (h->def_dynamic |
6418 | && h->ref_regular | |
6419 | && !h->def_regular))); | |
b49e97c9 TS |
6420 | |
6421 | /* If this symbol is defined in a dynamic object, we need to copy | |
6422 | any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output | |
6423 | file. */ | |
6424 | hmips = (struct mips_elf_link_hash_entry *) h; | |
1049f94e | 6425 | if (! info->relocatable |
b49e97c9 TS |
6426 | && hmips->possibly_dynamic_relocs != 0 |
6427 | && (h->root.type == bfd_link_hash_defweak | |
f5385ebf | 6428 | || !h->def_regular)) |
b49e97c9 TS |
6429 | { |
6430 | mips_elf_allocate_dynamic_relocations (dynobj, | |
6431 | hmips->possibly_dynamic_relocs); | |
82f0cfbd | 6432 | if (hmips->readonly_reloc) |
b49e97c9 TS |
6433 | /* We tell the dynamic linker that there are relocations |
6434 | against the text segment. */ | |
6435 | info->flags |= DF_TEXTREL; | |
6436 | } | |
6437 | ||
6438 | /* For a function, create a stub, if allowed. */ | |
6439 | if (! hmips->no_fn_stub | |
f5385ebf | 6440 | && h->needs_plt) |
b49e97c9 TS |
6441 | { |
6442 | if (! elf_hash_table (info)->dynamic_sections_created) | |
b34976b6 | 6443 | return TRUE; |
b49e97c9 TS |
6444 | |
6445 | /* If this symbol is not defined in a regular file, then set | |
6446 | the symbol to the stub location. This is required to make | |
6447 | function pointers compare as equal between the normal | |
6448 | executable and the shared library. */ | |
f5385ebf | 6449 | if (!h->def_regular) |
b49e97c9 TS |
6450 | { |
6451 | /* We need .stub section. */ | |
6452 | s = bfd_get_section_by_name (dynobj, | |
6453 | MIPS_ELF_STUB_SECTION_NAME (dynobj)); | |
6454 | BFD_ASSERT (s != NULL); | |
6455 | ||
6456 | h->root.u.def.section = s; | |
eea6121a | 6457 | h->root.u.def.value = s->size; |
b49e97c9 TS |
6458 | |
6459 | /* XXX Write this stub address somewhere. */ | |
eea6121a | 6460 | h->plt.offset = s->size; |
b49e97c9 TS |
6461 | |
6462 | /* Make room for this stub code. */ | |
eea6121a | 6463 | s->size += MIPS_FUNCTION_STUB_SIZE; |
b49e97c9 TS |
6464 | |
6465 | /* The last half word of the stub will be filled with the index | |
6466 | of this symbol in .dynsym section. */ | |
b34976b6 | 6467 | return TRUE; |
b49e97c9 TS |
6468 | } |
6469 | } | |
6470 | else if ((h->type == STT_FUNC) | |
f5385ebf | 6471 | && !h->needs_plt) |
b49e97c9 TS |
6472 | { |
6473 | /* This will set the entry for this symbol in the GOT to 0, and | |
6474 | the dynamic linker will take care of this. */ | |
6475 | h->root.u.def.value = 0; | |
b34976b6 | 6476 | return TRUE; |
b49e97c9 TS |
6477 | } |
6478 | ||
6479 | /* If this is a weak symbol, and there is a real definition, the | |
6480 | processor independent code will have arranged for us to see the | |
6481 | real definition first, and we can just use the same value. */ | |
f6e332e6 | 6482 | if (h->u.weakdef != NULL) |
b49e97c9 | 6483 | { |
f6e332e6 AM |
6484 | BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined |
6485 | || h->u.weakdef->root.type == bfd_link_hash_defweak); | |
6486 | h->root.u.def.section = h->u.weakdef->root.u.def.section; | |
6487 | h->root.u.def.value = h->u.weakdef->root.u.def.value; | |
b34976b6 | 6488 | return TRUE; |
b49e97c9 TS |
6489 | } |
6490 | ||
6491 | /* This is a reference to a symbol defined by a dynamic object which | |
6492 | is not a function. */ | |
6493 | ||
b34976b6 | 6494 | return TRUE; |
b49e97c9 TS |
6495 | } |
6496 | \f | |
6497 | /* This function is called after all the input files have been read, | |
6498 | and the input sections have been assigned to output sections. We | |
6499 | check for any mips16 stub sections that we can discard. */ | |
6500 | ||
b34976b6 | 6501 | bfd_boolean |
9719ad41 RS |
6502 | _bfd_mips_elf_always_size_sections (bfd *output_bfd, |
6503 | struct bfd_link_info *info) | |
b49e97c9 TS |
6504 | { |
6505 | asection *ri; | |
6506 | ||
f4416af6 AO |
6507 | bfd *dynobj; |
6508 | asection *s; | |
6509 | struct mips_got_info *g; | |
6510 | int i; | |
6511 | bfd_size_type loadable_size = 0; | |
6512 | bfd_size_type local_gotno; | |
6513 | bfd *sub; | |
0f20cc35 | 6514 | struct mips_elf_count_tls_arg count_tls_arg; |
f4416af6 | 6515 | |
b49e97c9 TS |
6516 | /* The .reginfo section has a fixed size. */ |
6517 | ri = bfd_get_section_by_name (output_bfd, ".reginfo"); | |
6518 | if (ri != NULL) | |
9719ad41 | 6519 | bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo)); |
b49e97c9 | 6520 | |
1049f94e | 6521 | if (! (info->relocatable |
f4416af6 AO |
6522 | || ! mips_elf_hash_table (info)->mips16_stubs_seen)) |
6523 | mips_elf_link_hash_traverse (mips_elf_hash_table (info), | |
9719ad41 | 6524 | mips_elf_check_mips16_stubs, NULL); |
f4416af6 AO |
6525 | |
6526 | dynobj = elf_hash_table (info)->dynobj; | |
6527 | if (dynobj == NULL) | |
6528 | /* Relocatable links don't have it. */ | |
6529 | return TRUE; | |
143d77c5 | 6530 | |
f4416af6 AO |
6531 | g = mips_elf_got_info (dynobj, &s); |
6532 | if (s == NULL) | |
b34976b6 | 6533 | return TRUE; |
b49e97c9 | 6534 | |
f4416af6 AO |
6535 | /* Calculate the total loadable size of the output. That |
6536 | will give us the maximum number of GOT_PAGE entries | |
6537 | required. */ | |
6538 | for (sub = info->input_bfds; sub; sub = sub->link_next) | |
6539 | { | |
6540 | asection *subsection; | |
6541 | ||
6542 | for (subsection = sub->sections; | |
6543 | subsection; | |
6544 | subsection = subsection->next) | |
6545 | { | |
6546 | if ((subsection->flags & SEC_ALLOC) == 0) | |
6547 | continue; | |
eea6121a | 6548 | loadable_size += ((subsection->size + 0xf) |
f4416af6 AO |
6549 | &~ (bfd_size_type) 0xf); |
6550 | } | |
6551 | } | |
6552 | ||
6553 | /* There has to be a global GOT entry for every symbol with | |
6554 | a dynamic symbol table index of DT_MIPS_GOTSYM or | |
6555 | higher. Therefore, it make sense to put those symbols | |
6556 | that need GOT entries at the end of the symbol table. We | |
6557 | do that here. */ | |
6558 | if (! mips_elf_sort_hash_table (info, 1)) | |
6559 | return FALSE; | |
6560 | ||
6561 | if (g->global_gotsym != NULL) | |
6562 | i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx; | |
6563 | else | |
6564 | /* If there are no global symbols, or none requiring | |
6565 | relocations, then GLOBAL_GOTSYM will be NULL. */ | |
6566 | i = 0; | |
6567 | ||
6568 | /* In the worst case, we'll get one stub per dynamic symbol, plus | |
6569 | one to account for the dummy entry at the end required by IRIX | |
6570 | rld. */ | |
6571 | loadable_size += MIPS_FUNCTION_STUB_SIZE * (i + 1); | |
6572 | ||
6573 | /* Assume there are two loadable segments consisting of | |
6574 | contiguous sections. Is 5 enough? */ | |
6575 | local_gotno = (loadable_size >> 16) + 5; | |
6576 | ||
6577 | g->local_gotno += local_gotno; | |
eea6121a | 6578 | s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd); |
f4416af6 AO |
6579 | |
6580 | g->global_gotno = i; | |
eea6121a | 6581 | s->size += i * MIPS_ELF_GOT_SIZE (output_bfd); |
f4416af6 | 6582 | |
0f20cc35 DJ |
6583 | /* We need to calculate tls_gotno for global symbols at this point |
6584 | instead of building it up earlier, to avoid doublecounting | |
6585 | entries for one global symbol from multiple input files. */ | |
6586 | count_tls_arg.info = info; | |
6587 | count_tls_arg.needed = 0; | |
6588 | elf_link_hash_traverse (elf_hash_table (info), | |
6589 | mips_elf_count_global_tls_entries, | |
6590 | &count_tls_arg); | |
6591 | g->tls_gotno += count_tls_arg.needed; | |
6592 | s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd); | |
6593 | ||
6594 | mips_elf_resolve_final_got_entries (g); | |
6595 | ||
6596 | if (s->size > MIPS_ELF_GOT_MAX_SIZE (output_bfd)) | |
6597 | { | |
6598 | if (! mips_elf_multi_got (output_bfd, info, g, s, local_gotno)) | |
6599 | return FALSE; | |
6600 | } | |
6601 | else | |
6602 | { | |
6603 | /* Set up TLS entries for the first GOT. */ | |
6604 | g->tls_assigned_gotno = g->global_gotno + g->local_gotno; | |
6605 | htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g); | |
6606 | } | |
b49e97c9 | 6607 | |
b34976b6 | 6608 | return TRUE; |
b49e97c9 TS |
6609 | } |
6610 | ||
6611 | /* Set the sizes of the dynamic sections. */ | |
6612 | ||
b34976b6 | 6613 | bfd_boolean |
9719ad41 RS |
6614 | _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd, |
6615 | struct bfd_link_info *info) | |
b49e97c9 TS |
6616 | { |
6617 | bfd *dynobj; | |
6618 | asection *s; | |
b34976b6 | 6619 | bfd_boolean reltext; |
b49e97c9 TS |
6620 | |
6621 | dynobj = elf_hash_table (info)->dynobj; | |
6622 | BFD_ASSERT (dynobj != NULL); | |
6623 | ||
6624 | if (elf_hash_table (info)->dynamic_sections_created) | |
6625 | { | |
6626 | /* Set the contents of the .interp section to the interpreter. */ | |
893c4fe2 | 6627 | if (info->executable) |
b49e97c9 TS |
6628 | { |
6629 | s = bfd_get_section_by_name (dynobj, ".interp"); | |
6630 | BFD_ASSERT (s != NULL); | |
eea6121a | 6631 | s->size |
b49e97c9 TS |
6632 | = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1; |
6633 | s->contents | |
6634 | = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd); | |
6635 | } | |
6636 | } | |
6637 | ||
6638 | /* The check_relocs and adjust_dynamic_symbol entry points have | |
6639 | determined the sizes of the various dynamic sections. Allocate | |
6640 | memory for them. */ | |
b34976b6 | 6641 | reltext = FALSE; |
b49e97c9 TS |
6642 | for (s = dynobj->sections; s != NULL; s = s->next) |
6643 | { | |
6644 | const char *name; | |
b34976b6 | 6645 | bfd_boolean strip; |
b49e97c9 TS |
6646 | |
6647 | /* It's OK to base decisions on the section name, because none | |
6648 | of the dynobj section names depend upon the input files. */ | |
6649 | name = bfd_get_section_name (dynobj, s); | |
6650 | ||
6651 | if ((s->flags & SEC_LINKER_CREATED) == 0) | |
6652 | continue; | |
6653 | ||
b34976b6 | 6654 | strip = FALSE; |
b49e97c9 TS |
6655 | |
6656 | if (strncmp (name, ".rel", 4) == 0) | |
6657 | { | |
eea6121a | 6658 | if (s->size == 0) |
b49e97c9 TS |
6659 | { |
6660 | /* We only strip the section if the output section name | |
6661 | has the same name. Otherwise, there might be several | |
6662 | input sections for this output section. FIXME: This | |
6663 | code is probably not needed these days anyhow, since | |
6664 | the linker now does not create empty output sections. */ | |
6665 | if (s->output_section != NULL | |
6666 | && strcmp (name, | |
6667 | bfd_get_section_name (s->output_section->owner, | |
6668 | s->output_section)) == 0) | |
b34976b6 | 6669 | strip = TRUE; |
b49e97c9 TS |
6670 | } |
6671 | else | |
6672 | { | |
6673 | const char *outname; | |
6674 | asection *target; | |
6675 | ||
6676 | /* If this relocation section applies to a read only | |
6677 | section, then we probably need a DT_TEXTREL entry. | |
6678 | If the relocation section is .rel.dyn, we always | |
6679 | assert a DT_TEXTREL entry rather than testing whether | |
6680 | there exists a relocation to a read only section or | |
6681 | not. */ | |
6682 | outname = bfd_get_section_name (output_bfd, | |
6683 | s->output_section); | |
6684 | target = bfd_get_section_by_name (output_bfd, outname + 4); | |
6685 | if ((target != NULL | |
6686 | && (target->flags & SEC_READONLY) != 0 | |
6687 | && (target->flags & SEC_ALLOC) != 0) | |
6688 | || strcmp (outname, ".rel.dyn") == 0) | |
b34976b6 | 6689 | reltext = TRUE; |
b49e97c9 TS |
6690 | |
6691 | /* We use the reloc_count field as a counter if we need | |
6692 | to copy relocs into the output file. */ | |
6693 | if (strcmp (name, ".rel.dyn") != 0) | |
6694 | s->reloc_count = 0; | |
f4416af6 AO |
6695 | |
6696 | /* If combreloc is enabled, elf_link_sort_relocs() will | |
6697 | sort relocations, but in a different way than we do, | |
6698 | and before we're done creating relocations. Also, it | |
6699 | will move them around between input sections' | |
6700 | relocation's contents, so our sorting would be | |
6701 | broken, so don't let it run. */ | |
6702 | info->combreloc = 0; | |
b49e97c9 TS |
6703 | } |
6704 | } | |
6705 | else if (strncmp (name, ".got", 4) == 0) | |
6706 | { | |
f4416af6 AO |
6707 | /* _bfd_mips_elf_always_size_sections() has already done |
6708 | most of the work, but some symbols may have been mapped | |
6709 | to versions that we must now resolve in the got_entries | |
6710 | hash tables. */ | |
6711 | struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL); | |
6712 | struct mips_got_info *g = gg; | |
6713 | struct mips_elf_set_global_got_offset_arg set_got_offset_arg; | |
6714 | unsigned int needed_relocs = 0; | |
143d77c5 | 6715 | |
f4416af6 | 6716 | if (gg->next) |
b49e97c9 | 6717 | { |
f4416af6 AO |
6718 | set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd); |
6719 | set_got_offset_arg.info = info; | |
b49e97c9 | 6720 | |
0f20cc35 DJ |
6721 | /* NOTE 2005-02-03: How can this call, or the next, ever |
6722 | find any indirect entries to resolve? They were all | |
6723 | resolved in mips_elf_multi_got. */ | |
f4416af6 AO |
6724 | mips_elf_resolve_final_got_entries (gg); |
6725 | for (g = gg->next; g && g->next != gg; g = g->next) | |
b49e97c9 | 6726 | { |
f4416af6 AO |
6727 | unsigned int save_assign; |
6728 | ||
6729 | mips_elf_resolve_final_got_entries (g); | |
6730 | ||
6731 | /* Assign offsets to global GOT entries. */ | |
6732 | save_assign = g->assigned_gotno; | |
6733 | g->assigned_gotno = g->local_gotno; | |
6734 | set_got_offset_arg.g = g; | |
6735 | set_got_offset_arg.needed_relocs = 0; | |
6736 | htab_traverse (g->got_entries, | |
6737 | mips_elf_set_global_got_offset, | |
6738 | &set_got_offset_arg); | |
6739 | needed_relocs += set_got_offset_arg.needed_relocs; | |
6740 | BFD_ASSERT (g->assigned_gotno - g->local_gotno | |
6741 | <= g->global_gotno); | |
6742 | ||
6743 | g->assigned_gotno = save_assign; | |
6744 | if (info->shared) | |
6745 | { | |
6746 | needed_relocs += g->local_gotno - g->assigned_gotno; | |
6747 | BFD_ASSERT (g->assigned_gotno == g->next->local_gotno | |
6748 | + g->next->global_gotno | |
0f20cc35 | 6749 | + g->next->tls_gotno |
f4416af6 AO |
6750 | + MIPS_RESERVED_GOTNO); |
6751 | } | |
b49e97c9 | 6752 | } |
0f20cc35 DJ |
6753 | } |
6754 | else | |
6755 | { | |
6756 | struct mips_elf_count_tls_arg arg; | |
6757 | arg.info = info; | |
6758 | arg.needed = 0; | |
b49e97c9 | 6759 | |
0f20cc35 DJ |
6760 | htab_traverse (gg->got_entries, mips_elf_count_local_tls_relocs, |
6761 | &arg); | |
6762 | elf_link_hash_traverse (elf_hash_table (info), | |
6763 | mips_elf_count_global_tls_relocs, | |
6764 | &arg); | |
6765 | ||
6766 | needed_relocs += arg.needed; | |
f4416af6 | 6767 | } |
0f20cc35 DJ |
6768 | |
6769 | if (needed_relocs) | |
6770 | mips_elf_allocate_dynamic_relocations (dynobj, needed_relocs); | |
b49e97c9 TS |
6771 | } |
6772 | else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0) | |
6773 | { | |
8dc1a139 | 6774 | /* IRIX rld assumes that the function stub isn't at the end |
b49e97c9 | 6775 | of .text section. So put a dummy. XXX */ |
eea6121a | 6776 | s->size += MIPS_FUNCTION_STUB_SIZE; |
b49e97c9 TS |
6777 | } |
6778 | else if (! info->shared | |
6779 | && ! mips_elf_hash_table (info)->use_rld_obj_head | |
6780 | && strncmp (name, ".rld_map", 8) == 0) | |
6781 | { | |
6782 | /* We add a room for __rld_map. It will be filled in by the | |
6783 | rtld to contain a pointer to the _r_debug structure. */ | |
eea6121a | 6784 | s->size += 4; |
b49e97c9 TS |
6785 | } |
6786 | else if (SGI_COMPAT (output_bfd) | |
6787 | && strncmp (name, ".compact_rel", 12) == 0) | |
eea6121a | 6788 | s->size += mips_elf_hash_table (info)->compact_rel_size; |
b49e97c9 TS |
6789 | else if (strncmp (name, ".init", 5) != 0) |
6790 | { | |
6791 | /* It's not one of our sections, so don't allocate space. */ | |
6792 | continue; | |
6793 | } | |
6794 | ||
6795 | if (strip) | |
6796 | { | |
8423293d | 6797 | s->flags |= SEC_EXCLUDE; |
b49e97c9 TS |
6798 | continue; |
6799 | } | |
6800 | ||
6801 | /* Allocate memory for the section contents. */ | |
eea6121a AM |
6802 | s->contents = bfd_zalloc (dynobj, s->size); |
6803 | if (s->contents == NULL && s->size != 0) | |
b49e97c9 TS |
6804 | { |
6805 | bfd_set_error (bfd_error_no_memory); | |
b34976b6 | 6806 | return FALSE; |
b49e97c9 TS |
6807 | } |
6808 | } | |
6809 | ||
6810 | if (elf_hash_table (info)->dynamic_sections_created) | |
6811 | { | |
6812 | /* Add some entries to the .dynamic section. We fill in the | |
6813 | values later, in _bfd_mips_elf_finish_dynamic_sections, but we | |
6814 | must add the entries now so that we get the correct size for | |
6815 | the .dynamic section. The DT_DEBUG entry is filled in by the | |
6816 | dynamic linker and used by the debugger. */ | |
6817 | if (! info->shared) | |
6818 | { | |
6819 | /* SGI object has the equivalence of DT_DEBUG in the | |
6820 | DT_MIPS_RLD_MAP entry. */ | |
6821 | if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0)) | |
b34976b6 | 6822 | return FALSE; |
b49e97c9 TS |
6823 | if (!SGI_COMPAT (output_bfd)) |
6824 | { | |
6825 | if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0)) | |
b34976b6 | 6826 | return FALSE; |
b49e97c9 TS |
6827 | } |
6828 | } | |
6829 | else | |
6830 | { | |
6831 | /* Shared libraries on traditional mips have DT_DEBUG. */ | |
6832 | if (!SGI_COMPAT (output_bfd)) | |
6833 | { | |
6834 | if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0)) | |
b34976b6 | 6835 | return FALSE; |
b49e97c9 TS |
6836 | } |
6837 | } | |
6838 | ||
6839 | if (reltext && SGI_COMPAT (output_bfd)) | |
6840 | info->flags |= DF_TEXTREL; | |
6841 | ||
6842 | if ((info->flags & DF_TEXTREL) != 0) | |
6843 | { | |
6844 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0)) | |
b34976b6 | 6845 | return FALSE; |
b49e97c9 TS |
6846 | } |
6847 | ||
6848 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0)) | |
b34976b6 | 6849 | return FALSE; |
b49e97c9 | 6850 | |
f4416af6 | 6851 | if (mips_elf_rel_dyn_section (dynobj, FALSE)) |
b49e97c9 TS |
6852 | { |
6853 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0)) | |
b34976b6 | 6854 | return FALSE; |
b49e97c9 TS |
6855 | |
6856 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0)) | |
b34976b6 | 6857 | return FALSE; |
b49e97c9 TS |
6858 | |
6859 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0)) | |
b34976b6 | 6860 | return FALSE; |
b49e97c9 TS |
6861 | } |
6862 | ||
b49e97c9 | 6863 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0)) |
b34976b6 | 6864 | return FALSE; |
b49e97c9 TS |
6865 | |
6866 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0)) | |
b34976b6 | 6867 | return FALSE; |
b49e97c9 | 6868 | |
b49e97c9 | 6869 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0)) |
b34976b6 | 6870 | return FALSE; |
b49e97c9 TS |
6871 | |
6872 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0)) | |
b34976b6 | 6873 | return FALSE; |
b49e97c9 TS |
6874 | |
6875 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0)) | |
b34976b6 | 6876 | return FALSE; |
b49e97c9 TS |
6877 | |
6878 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0)) | |
b34976b6 | 6879 | return FALSE; |
b49e97c9 TS |
6880 | |
6881 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0)) | |
b34976b6 | 6882 | return FALSE; |
b49e97c9 TS |
6883 | |
6884 | if (IRIX_COMPAT (dynobj) == ict_irix5 | |
6885 | && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0)) | |
b34976b6 | 6886 | return FALSE; |
b49e97c9 TS |
6887 | |
6888 | if (IRIX_COMPAT (dynobj) == ict_irix6 | |
6889 | && (bfd_get_section_by_name | |
6890 | (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj))) | |
6891 | && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0)) | |
b34976b6 | 6892 | return FALSE; |
b49e97c9 TS |
6893 | } |
6894 | ||
b34976b6 | 6895 | return TRUE; |
b49e97c9 TS |
6896 | } |
6897 | \f | |
6898 | /* Relocate a MIPS ELF section. */ | |
6899 | ||
b34976b6 | 6900 | bfd_boolean |
9719ad41 RS |
6901 | _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info, |
6902 | bfd *input_bfd, asection *input_section, | |
6903 | bfd_byte *contents, Elf_Internal_Rela *relocs, | |
6904 | Elf_Internal_Sym *local_syms, | |
6905 | asection **local_sections) | |
b49e97c9 TS |
6906 | { |
6907 | Elf_Internal_Rela *rel; | |
6908 | const Elf_Internal_Rela *relend; | |
6909 | bfd_vma addend = 0; | |
b34976b6 | 6910 | bfd_boolean use_saved_addend_p = FALSE; |
9c5bfbb7 | 6911 | const struct elf_backend_data *bed; |
b49e97c9 TS |
6912 | |
6913 | bed = get_elf_backend_data (output_bfd); | |
6914 | relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel; | |
6915 | for (rel = relocs; rel < relend; ++rel) | |
6916 | { | |
6917 | const char *name; | |
6918 | bfd_vma value; | |
6919 | reloc_howto_type *howto; | |
b34976b6 AM |
6920 | bfd_boolean require_jalx; |
6921 | /* TRUE if the relocation is a RELA relocation, rather than a | |
b49e97c9 | 6922 | REL relocation. */ |
b34976b6 | 6923 | bfd_boolean rela_relocation_p = TRUE; |
b49e97c9 | 6924 | unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info); |
9719ad41 | 6925 | const char *msg; |
b49e97c9 TS |
6926 | |
6927 | /* Find the relocation howto for this relocation. */ | |
4a14403c | 6928 | if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd)) |
b49e97c9 TS |
6929 | { |
6930 | /* Some 32-bit code uses R_MIPS_64. In particular, people use | |
6931 | 64-bit code, but make sure all their addresses are in the | |
6932 | lowermost or uppermost 32-bit section of the 64-bit address | |
6933 | space. Thus, when they use an R_MIPS_64 they mean what is | |
6934 | usually meant by R_MIPS_32, with the exception that the | |
6935 | stored value is sign-extended to 64 bits. */ | |
b34976b6 | 6936 | howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE); |
b49e97c9 TS |
6937 | |
6938 | /* On big-endian systems, we need to lie about the position | |
6939 | of the reloc. */ | |
6940 | if (bfd_big_endian (input_bfd)) | |
6941 | rel->r_offset += 4; | |
6942 | } | |
6943 | else | |
6944 | /* NewABI defaults to RELA relocations. */ | |
6945 | howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, | |
4ffba85c AO |
6946 | NEWABI_P (input_bfd) |
6947 | && (MIPS_RELOC_RELA_P | |
6948 | (input_bfd, input_section, | |
6949 | rel - relocs))); | |
b49e97c9 TS |
6950 | |
6951 | if (!use_saved_addend_p) | |
6952 | { | |
6953 | Elf_Internal_Shdr *rel_hdr; | |
6954 | ||
6955 | /* If these relocations were originally of the REL variety, | |
6956 | we must pull the addend out of the field that will be | |
6957 | relocated. Otherwise, we simply use the contents of the | |
6958 | RELA relocation. To determine which flavor or relocation | |
6959 | this is, we depend on the fact that the INPUT_SECTION's | |
6960 | REL_HDR is read before its REL_HDR2. */ | |
6961 | rel_hdr = &elf_section_data (input_section)->rel_hdr; | |
6962 | if ((size_t) (rel - relocs) | |
6963 | >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel)) | |
6964 | rel_hdr = elf_section_data (input_section)->rel_hdr2; | |
6965 | if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd)) | |
6966 | { | |
d6f16593 MR |
6967 | bfd_byte *location = contents + rel->r_offset; |
6968 | ||
b49e97c9 | 6969 | /* Note that this is a REL relocation. */ |
b34976b6 | 6970 | rela_relocation_p = FALSE; |
b49e97c9 TS |
6971 | |
6972 | /* Get the addend, which is stored in the input file. */ | |
d6f16593 MR |
6973 | _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, |
6974 | location); | |
b49e97c9 TS |
6975 | addend = mips_elf_obtain_contents (howto, rel, input_bfd, |
6976 | contents); | |
d6f16593 MR |
6977 | _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, FALSE, |
6978 | location); | |
6979 | ||
b49e97c9 TS |
6980 | addend &= howto->src_mask; |
6981 | ||
6982 | /* For some kinds of relocations, the ADDEND is a | |
6983 | combination of the addend stored in two different | |
6984 | relocations. */ | |
d6f16593 | 6985 | if (r_type == R_MIPS_HI16 || r_type == R_MIPS16_HI16 |
b49e97c9 TS |
6986 | || (r_type == R_MIPS_GOT16 |
6987 | && mips_elf_local_relocation_p (input_bfd, rel, | |
b34976b6 | 6988 | local_sections, FALSE))) |
b49e97c9 TS |
6989 | { |
6990 | bfd_vma l; | |
6991 | const Elf_Internal_Rela *lo16_relocation; | |
6992 | reloc_howto_type *lo16_howto; | |
d6f16593 MR |
6993 | bfd_byte *lo16_location; |
6994 | int lo16_type; | |
6995 | ||
6996 | if (r_type == R_MIPS16_HI16) | |
6997 | lo16_type = R_MIPS16_LO16; | |
6998 | else | |
6999 | lo16_type = R_MIPS_LO16; | |
b49e97c9 TS |
7000 | |
7001 | /* The combined value is the sum of the HI16 addend, | |
7002 | left-shifted by sixteen bits, and the LO16 | |
7003 | addend, sign extended. (Usually, the code does | |
7004 | a `lui' of the HI16 value, and then an `addiu' of | |
7005 | the LO16 value.) | |
7006 | ||
4030e8f6 CD |
7007 | Scan ahead to find a matching LO16 relocation. |
7008 | ||
7009 | According to the MIPS ELF ABI, the R_MIPS_LO16 | |
7010 | relocation must be immediately following. | |
7011 | However, for the IRIX6 ABI, the next relocation | |
7012 | may be a composed relocation consisting of | |
7013 | several relocations for the same address. In | |
7014 | that case, the R_MIPS_LO16 relocation may occur | |
7015 | as one of these. We permit a similar extension | |
7016 | in general, as that is useful for GCC. */ | |
7017 | lo16_relocation = mips_elf_next_relocation (input_bfd, | |
d6f16593 | 7018 | lo16_type, |
b49e97c9 TS |
7019 | rel, relend); |
7020 | if (lo16_relocation == NULL) | |
b34976b6 | 7021 | return FALSE; |
b49e97c9 | 7022 | |
d6f16593 MR |
7023 | lo16_location = contents + lo16_relocation->r_offset; |
7024 | ||
b49e97c9 | 7025 | /* Obtain the addend kept there. */ |
4030e8f6 | 7026 | lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, |
d6f16593 MR |
7027 | lo16_type, FALSE); |
7028 | _bfd_mips16_elf_reloc_unshuffle (input_bfd, lo16_type, FALSE, | |
7029 | lo16_location); | |
b49e97c9 TS |
7030 | l = mips_elf_obtain_contents (lo16_howto, lo16_relocation, |
7031 | input_bfd, contents); | |
d6f16593 MR |
7032 | _bfd_mips16_elf_reloc_shuffle (input_bfd, lo16_type, FALSE, |
7033 | lo16_location); | |
b49e97c9 | 7034 | l &= lo16_howto->src_mask; |
5a659663 | 7035 | l <<= lo16_howto->rightshift; |
a7ebbfdf | 7036 | l = _bfd_mips_elf_sign_extend (l, 16); |
b49e97c9 TS |
7037 | |
7038 | addend <<= 16; | |
7039 | ||
7040 | /* Compute the combined addend. */ | |
7041 | addend += l; | |
b49e97c9 | 7042 | } |
30ac9238 RS |
7043 | else |
7044 | addend <<= howto->rightshift; | |
b49e97c9 TS |
7045 | } |
7046 | else | |
7047 | addend = rel->r_addend; | |
7048 | } | |
7049 | ||
1049f94e | 7050 | if (info->relocatable) |
b49e97c9 TS |
7051 | { |
7052 | Elf_Internal_Sym *sym; | |
7053 | unsigned long r_symndx; | |
7054 | ||
4a14403c | 7055 | if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd) |
b49e97c9 TS |
7056 | && bfd_big_endian (input_bfd)) |
7057 | rel->r_offset -= 4; | |
7058 | ||
7059 | /* Since we're just relocating, all we need to do is copy | |
7060 | the relocations back out to the object file, unless | |
7061 | they're against a section symbol, in which case we need | |
7062 | to adjust by the section offset, or unless they're GP | |
7063 | relative in which case we need to adjust by the amount | |
1049f94e | 7064 | that we're adjusting GP in this relocatable object. */ |
b49e97c9 TS |
7065 | |
7066 | if (! mips_elf_local_relocation_p (input_bfd, rel, local_sections, | |
b34976b6 | 7067 | FALSE)) |
b49e97c9 TS |
7068 | /* There's nothing to do for non-local relocations. */ |
7069 | continue; | |
7070 | ||
7071 | if (r_type == R_MIPS16_GPREL | |
7072 | || r_type == R_MIPS_GPREL16 | |
7073 | || r_type == R_MIPS_GPREL32 | |
7074 | || r_type == R_MIPS_LITERAL) | |
7075 | addend -= (_bfd_get_gp_value (output_bfd) | |
7076 | - _bfd_get_gp_value (input_bfd)); | |
b49e97c9 TS |
7077 | |
7078 | r_symndx = ELF_R_SYM (output_bfd, rel->r_info); | |
7079 | sym = local_syms + r_symndx; | |
7080 | if (ELF_ST_TYPE (sym->st_info) == STT_SECTION) | |
7081 | /* Adjust the addend appropriately. */ | |
7082 | addend += local_sections[r_symndx]->output_offset; | |
7083 | ||
30ac9238 RS |
7084 | if (rela_relocation_p) |
7085 | /* If this is a RELA relocation, just update the addend. */ | |
7086 | rel->r_addend = addend; | |
7087 | else | |
5a659663 | 7088 | { |
30ac9238 | 7089 | if (r_type == R_MIPS_HI16 |
4030e8f6 | 7090 | || r_type == R_MIPS_GOT16) |
5a659663 TS |
7091 | addend = mips_elf_high (addend); |
7092 | else if (r_type == R_MIPS_HIGHER) | |
7093 | addend = mips_elf_higher (addend); | |
7094 | else if (r_type == R_MIPS_HIGHEST) | |
7095 | addend = mips_elf_highest (addend); | |
30ac9238 RS |
7096 | else |
7097 | addend >>= howto->rightshift; | |
b49e97c9 | 7098 | |
30ac9238 RS |
7099 | /* We use the source mask, rather than the destination |
7100 | mask because the place to which we are writing will be | |
7101 | source of the addend in the final link. */ | |
b49e97c9 TS |
7102 | addend &= howto->src_mask; |
7103 | ||
5a659663 | 7104 | if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)) |
b49e97c9 TS |
7105 | /* See the comment above about using R_MIPS_64 in the 32-bit |
7106 | ABI. Here, we need to update the addend. It would be | |
7107 | possible to get away with just using the R_MIPS_32 reloc | |
7108 | but for endianness. */ | |
7109 | { | |
7110 | bfd_vma sign_bits; | |
7111 | bfd_vma low_bits; | |
7112 | bfd_vma high_bits; | |
7113 | ||
7114 | if (addend & ((bfd_vma) 1 << 31)) | |
7115 | #ifdef BFD64 | |
7116 | sign_bits = ((bfd_vma) 1 << 32) - 1; | |
7117 | #else | |
7118 | sign_bits = -1; | |
7119 | #endif | |
7120 | else | |
7121 | sign_bits = 0; | |
7122 | ||
7123 | /* If we don't know that we have a 64-bit type, | |
7124 | do two separate stores. */ | |
7125 | if (bfd_big_endian (input_bfd)) | |
7126 | { | |
7127 | /* Store the sign-bits (which are most significant) | |
7128 | first. */ | |
7129 | low_bits = sign_bits; | |
7130 | high_bits = addend; | |
7131 | } | |
7132 | else | |
7133 | { | |
7134 | low_bits = addend; | |
7135 | high_bits = sign_bits; | |
7136 | } | |
7137 | bfd_put_32 (input_bfd, low_bits, | |
7138 | contents + rel->r_offset); | |
7139 | bfd_put_32 (input_bfd, high_bits, | |
7140 | contents + rel->r_offset + 4); | |
7141 | continue; | |
7142 | } | |
7143 | ||
7144 | if (! mips_elf_perform_relocation (info, howto, rel, addend, | |
7145 | input_bfd, input_section, | |
b34976b6 AM |
7146 | contents, FALSE)) |
7147 | return FALSE; | |
b49e97c9 TS |
7148 | } |
7149 | ||
7150 | /* Go on to the next relocation. */ | |
7151 | continue; | |
7152 | } | |
7153 | ||
7154 | /* In the N32 and 64-bit ABIs there may be multiple consecutive | |
7155 | relocations for the same offset. In that case we are | |
7156 | supposed to treat the output of each relocation as the addend | |
7157 | for the next. */ | |
7158 | if (rel + 1 < relend | |
7159 | && rel->r_offset == rel[1].r_offset | |
7160 | && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE) | |
b34976b6 | 7161 | use_saved_addend_p = TRUE; |
b49e97c9 | 7162 | else |
b34976b6 | 7163 | use_saved_addend_p = FALSE; |
b49e97c9 TS |
7164 | |
7165 | /* Figure out what value we are supposed to relocate. */ | |
7166 | switch (mips_elf_calculate_relocation (output_bfd, input_bfd, | |
7167 | input_section, info, rel, | |
7168 | addend, howto, local_syms, | |
7169 | local_sections, &value, | |
bce03d3d AO |
7170 | &name, &require_jalx, |
7171 | use_saved_addend_p)) | |
b49e97c9 TS |
7172 | { |
7173 | case bfd_reloc_continue: | |
7174 | /* There's nothing to do. */ | |
7175 | continue; | |
7176 | ||
7177 | case bfd_reloc_undefined: | |
7178 | /* mips_elf_calculate_relocation already called the | |
7179 | undefined_symbol callback. There's no real point in | |
7180 | trying to perform the relocation at this point, so we | |
7181 | just skip ahead to the next relocation. */ | |
7182 | continue; | |
7183 | ||
7184 | case bfd_reloc_notsupported: | |
7185 | msg = _("internal error: unsupported relocation error"); | |
7186 | info->callbacks->warning | |
7187 | (info, msg, name, input_bfd, input_section, rel->r_offset); | |
b34976b6 | 7188 | return FALSE; |
b49e97c9 TS |
7189 | |
7190 | case bfd_reloc_overflow: | |
7191 | if (use_saved_addend_p) | |
7192 | /* Ignore overflow until we reach the last relocation for | |
7193 | a given location. */ | |
7194 | ; | |
7195 | else | |
7196 | { | |
7197 | BFD_ASSERT (name != NULL); | |
7198 | if (! ((*info->callbacks->reloc_overflow) | |
dfeffb9f | 7199 | (info, NULL, name, howto->name, (bfd_vma) 0, |
b49e97c9 | 7200 | input_bfd, input_section, rel->r_offset))) |
b34976b6 | 7201 | return FALSE; |
b49e97c9 TS |
7202 | } |
7203 | break; | |
7204 | ||
7205 | case bfd_reloc_ok: | |
7206 | break; | |
7207 | ||
7208 | default: | |
7209 | abort (); | |
7210 | break; | |
7211 | } | |
7212 | ||
7213 | /* If we've got another relocation for the address, keep going | |
7214 | until we reach the last one. */ | |
7215 | if (use_saved_addend_p) | |
7216 | { | |
7217 | addend = value; | |
7218 | continue; | |
7219 | } | |
7220 | ||
4a14403c | 7221 | if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)) |
b49e97c9 TS |
7222 | /* See the comment above about using R_MIPS_64 in the 32-bit |
7223 | ABI. Until now, we've been using the HOWTO for R_MIPS_32; | |
7224 | that calculated the right value. Now, however, we | |
7225 | sign-extend the 32-bit result to 64-bits, and store it as a | |
7226 | 64-bit value. We are especially generous here in that we | |
7227 | go to extreme lengths to support this usage on systems with | |
7228 | only a 32-bit VMA. */ | |
7229 | { | |
7230 | bfd_vma sign_bits; | |
7231 | bfd_vma low_bits; | |
7232 | bfd_vma high_bits; | |
7233 | ||
7234 | if (value & ((bfd_vma) 1 << 31)) | |
7235 | #ifdef BFD64 | |
7236 | sign_bits = ((bfd_vma) 1 << 32) - 1; | |
7237 | #else | |
7238 | sign_bits = -1; | |
7239 | #endif | |
7240 | else | |
7241 | sign_bits = 0; | |
7242 | ||
7243 | /* If we don't know that we have a 64-bit type, | |
7244 | do two separate stores. */ | |
7245 | if (bfd_big_endian (input_bfd)) | |
7246 | { | |
7247 | /* Undo what we did above. */ | |
7248 | rel->r_offset -= 4; | |
7249 | /* Store the sign-bits (which are most significant) | |
7250 | first. */ | |
7251 | low_bits = sign_bits; | |
7252 | high_bits = value; | |
7253 | } | |
7254 | else | |
7255 | { | |
7256 | low_bits = value; | |
7257 | high_bits = sign_bits; | |
7258 | } | |
7259 | bfd_put_32 (input_bfd, low_bits, | |
7260 | contents + rel->r_offset); | |
7261 | bfd_put_32 (input_bfd, high_bits, | |
7262 | contents + rel->r_offset + 4); | |
7263 | continue; | |
7264 | } | |
7265 | ||
7266 | /* Actually perform the relocation. */ | |
7267 | if (! mips_elf_perform_relocation (info, howto, rel, value, | |
7268 | input_bfd, input_section, | |
7269 | contents, require_jalx)) | |
b34976b6 | 7270 | return FALSE; |
b49e97c9 TS |
7271 | } |
7272 | ||
b34976b6 | 7273 | return TRUE; |
b49e97c9 TS |
7274 | } |
7275 | \f | |
7276 | /* If NAME is one of the special IRIX6 symbols defined by the linker, | |
7277 | adjust it appropriately now. */ | |
7278 | ||
7279 | static void | |
9719ad41 RS |
7280 | mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED, |
7281 | const char *name, Elf_Internal_Sym *sym) | |
b49e97c9 TS |
7282 | { |
7283 | /* The linker script takes care of providing names and values for | |
7284 | these, but we must place them into the right sections. */ | |
7285 | static const char* const text_section_symbols[] = { | |
7286 | "_ftext", | |
7287 | "_etext", | |
7288 | "__dso_displacement", | |
7289 | "__elf_header", | |
7290 | "__program_header_table", | |
7291 | NULL | |
7292 | }; | |
7293 | ||
7294 | static const char* const data_section_symbols[] = { | |
7295 | "_fdata", | |
7296 | "_edata", | |
7297 | "_end", | |
7298 | "_fbss", | |
7299 | NULL | |
7300 | }; | |
7301 | ||
7302 | const char* const *p; | |
7303 | int i; | |
7304 | ||
7305 | for (i = 0; i < 2; ++i) | |
7306 | for (p = (i == 0) ? text_section_symbols : data_section_symbols; | |
7307 | *p; | |
7308 | ++p) | |
7309 | if (strcmp (*p, name) == 0) | |
7310 | { | |
7311 | /* All of these symbols are given type STT_SECTION by the | |
7312 | IRIX6 linker. */ | |
7313 | sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); | |
e10609d3 | 7314 | sym->st_other = STO_PROTECTED; |
b49e97c9 TS |
7315 | |
7316 | /* The IRIX linker puts these symbols in special sections. */ | |
7317 | if (i == 0) | |
7318 | sym->st_shndx = SHN_MIPS_TEXT; | |
7319 | else | |
7320 | sym->st_shndx = SHN_MIPS_DATA; | |
7321 | ||
7322 | break; | |
7323 | } | |
7324 | } | |
7325 | ||
7326 | /* Finish up dynamic symbol handling. We set the contents of various | |
7327 | dynamic sections here. */ | |
7328 | ||
b34976b6 | 7329 | bfd_boolean |
9719ad41 RS |
7330 | _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd, |
7331 | struct bfd_link_info *info, | |
7332 | struct elf_link_hash_entry *h, | |
7333 | Elf_Internal_Sym *sym) | |
b49e97c9 TS |
7334 | { |
7335 | bfd *dynobj; | |
b49e97c9 | 7336 | asection *sgot; |
f4416af6 | 7337 | struct mips_got_info *g, *gg; |
b49e97c9 | 7338 | const char *name; |
b49e97c9 TS |
7339 | |
7340 | dynobj = elf_hash_table (info)->dynobj; | |
b49e97c9 | 7341 | |
c5ae1840 | 7342 | if (h->plt.offset != MINUS_ONE) |
b49e97c9 TS |
7343 | { |
7344 | asection *s; | |
7345 | bfd_byte stub[MIPS_FUNCTION_STUB_SIZE]; | |
7346 | ||
7347 | /* This symbol has a stub. Set it up. */ | |
7348 | ||
7349 | BFD_ASSERT (h->dynindx != -1); | |
7350 | ||
7351 | s = bfd_get_section_by_name (dynobj, | |
7352 | MIPS_ELF_STUB_SECTION_NAME (dynobj)); | |
7353 | BFD_ASSERT (s != NULL); | |
7354 | ||
7355 | /* FIXME: Can h->dynindex be more than 64K? */ | |
7356 | if (h->dynindx & 0xffff0000) | |
b34976b6 | 7357 | return FALSE; |
b49e97c9 TS |
7358 | |
7359 | /* Fill the stub. */ | |
7360 | bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub); | |
7361 | bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + 4); | |
7362 | bfd_put_32 (output_bfd, STUB_JALR, stub + 8); | |
7363 | bfd_put_32 (output_bfd, STUB_LI16 (output_bfd) + h->dynindx, stub + 12); | |
7364 | ||
eea6121a | 7365 | BFD_ASSERT (h->plt.offset <= s->size); |
b49e97c9 TS |
7366 | memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE); |
7367 | ||
7368 | /* Mark the symbol as undefined. plt.offset != -1 occurs | |
7369 | only for the referenced symbol. */ | |
7370 | sym->st_shndx = SHN_UNDEF; | |
7371 | ||
7372 | /* The run-time linker uses the st_value field of the symbol | |
7373 | to reset the global offset table entry for this external | |
7374 | to its stub address when unlinking a shared object. */ | |
c5ae1840 TS |
7375 | sym->st_value = (s->output_section->vma + s->output_offset |
7376 | + h->plt.offset); | |
b49e97c9 TS |
7377 | } |
7378 | ||
7379 | BFD_ASSERT (h->dynindx != -1 | |
f5385ebf | 7380 | || h->forced_local); |
b49e97c9 | 7381 | |
f4416af6 | 7382 | sgot = mips_elf_got_section (dynobj, FALSE); |
b49e97c9 | 7383 | BFD_ASSERT (sgot != NULL); |
f4416af6 | 7384 | BFD_ASSERT (mips_elf_section_data (sgot) != NULL); |
f0abc2a1 | 7385 | g = mips_elf_section_data (sgot)->u.got_info; |
b49e97c9 TS |
7386 | BFD_ASSERT (g != NULL); |
7387 | ||
7388 | /* Run through the global symbol table, creating GOT entries for all | |
7389 | the symbols that need them. */ | |
7390 | if (g->global_gotsym != NULL | |
7391 | && h->dynindx >= g->global_gotsym->dynindx) | |
7392 | { | |
7393 | bfd_vma offset; | |
7394 | bfd_vma value; | |
7395 | ||
6eaa6adc | 7396 | value = sym->st_value; |
0f20cc35 | 7397 | offset = mips_elf_global_got_index (dynobj, output_bfd, h, R_MIPS_GOT16, info); |
b49e97c9 TS |
7398 | MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset); |
7399 | } | |
7400 | ||
0f20cc35 | 7401 | if (g->next && h->dynindx != -1 && h->type != STT_TLS) |
f4416af6 AO |
7402 | { |
7403 | struct mips_got_entry e, *p; | |
0626d451 | 7404 | bfd_vma entry; |
f4416af6 | 7405 | bfd_vma offset; |
f4416af6 AO |
7406 | |
7407 | gg = g; | |
7408 | ||
7409 | e.abfd = output_bfd; | |
7410 | e.symndx = -1; | |
7411 | e.d.h = (struct mips_elf_link_hash_entry *)h; | |
0f20cc35 | 7412 | e.tls_type = 0; |
143d77c5 | 7413 | |
f4416af6 AO |
7414 | for (g = g->next; g->next != gg; g = g->next) |
7415 | { | |
7416 | if (g->got_entries | |
7417 | && (p = (struct mips_got_entry *) htab_find (g->got_entries, | |
7418 | &e))) | |
7419 | { | |
7420 | offset = p->gotidx; | |
0626d451 RS |
7421 | if (info->shared |
7422 | || (elf_hash_table (info)->dynamic_sections_created | |
7423 | && p->d.h != NULL | |
f5385ebf AM |
7424 | && p->d.h->root.def_dynamic |
7425 | && !p->d.h->root.def_regular)) | |
0626d451 RS |
7426 | { |
7427 | /* Create an R_MIPS_REL32 relocation for this entry. Due to | |
7428 | the various compatibility problems, it's easier to mock | |
7429 | up an R_MIPS_32 or R_MIPS_64 relocation and leave | |
7430 | mips_elf_create_dynamic_relocation to calculate the | |
7431 | appropriate addend. */ | |
7432 | Elf_Internal_Rela rel[3]; | |
7433 | ||
7434 | memset (rel, 0, sizeof (rel)); | |
7435 | if (ABI_64_P (output_bfd)) | |
7436 | rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64); | |
7437 | else | |
7438 | rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32); | |
7439 | rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset; | |
7440 | ||
7441 | entry = 0; | |
7442 | if (! (mips_elf_create_dynamic_relocation | |
7443 | (output_bfd, info, rel, | |
7444 | e.d.h, NULL, sym->st_value, &entry, sgot))) | |
7445 | return FALSE; | |
7446 | } | |
7447 | else | |
7448 | entry = sym->st_value; | |
7449 | MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset); | |
f4416af6 AO |
7450 | } |
7451 | } | |
7452 | } | |
7453 | ||
b49e97c9 TS |
7454 | /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */ |
7455 | name = h->root.root.string; | |
7456 | if (strcmp (name, "_DYNAMIC") == 0 | |
7457 | || strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0) | |
7458 | sym->st_shndx = SHN_ABS; | |
7459 | else if (strcmp (name, "_DYNAMIC_LINK") == 0 | |
7460 | || strcmp (name, "_DYNAMIC_LINKING") == 0) | |
7461 | { | |
7462 | sym->st_shndx = SHN_ABS; | |
7463 | sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); | |
7464 | sym->st_value = 1; | |
7465 | } | |
4a14403c | 7466 | else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd)) |
b49e97c9 TS |
7467 | { |
7468 | sym->st_shndx = SHN_ABS; | |
7469 | sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); | |
7470 | sym->st_value = elf_gp (output_bfd); | |
7471 | } | |
7472 | else if (SGI_COMPAT (output_bfd)) | |
7473 | { | |
7474 | if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0 | |
7475 | || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0) | |
7476 | { | |
7477 | sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); | |
7478 | sym->st_other = STO_PROTECTED; | |
7479 | sym->st_value = 0; | |
7480 | sym->st_shndx = SHN_MIPS_DATA; | |
7481 | } | |
7482 | else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0) | |
7483 | { | |
7484 | sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); | |
7485 | sym->st_other = STO_PROTECTED; | |
7486 | sym->st_value = mips_elf_hash_table (info)->procedure_count; | |
7487 | sym->st_shndx = SHN_ABS; | |
7488 | } | |
7489 | else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS) | |
7490 | { | |
7491 | if (h->type == STT_FUNC) | |
7492 | sym->st_shndx = SHN_MIPS_TEXT; | |
7493 | else if (h->type == STT_OBJECT) | |
7494 | sym->st_shndx = SHN_MIPS_DATA; | |
7495 | } | |
7496 | } | |
7497 | ||
7498 | /* Handle the IRIX6-specific symbols. */ | |
7499 | if (IRIX_COMPAT (output_bfd) == ict_irix6) | |
7500 | mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym); | |
7501 | ||
7502 | if (! info->shared) | |
7503 | { | |
7504 | if (! mips_elf_hash_table (info)->use_rld_obj_head | |
7505 | && (strcmp (name, "__rld_map") == 0 | |
7506 | || strcmp (name, "__RLD_MAP") == 0)) | |
7507 | { | |
7508 | asection *s = bfd_get_section_by_name (dynobj, ".rld_map"); | |
7509 | BFD_ASSERT (s != NULL); | |
7510 | sym->st_value = s->output_section->vma + s->output_offset; | |
9719ad41 | 7511 | bfd_put_32 (output_bfd, 0, s->contents); |
b49e97c9 TS |
7512 | if (mips_elf_hash_table (info)->rld_value == 0) |
7513 | mips_elf_hash_table (info)->rld_value = sym->st_value; | |
7514 | } | |
7515 | else if (mips_elf_hash_table (info)->use_rld_obj_head | |
7516 | && strcmp (name, "__rld_obj_head") == 0) | |
7517 | { | |
7518 | /* IRIX6 does not use a .rld_map section. */ | |
7519 | if (IRIX_COMPAT (output_bfd) == ict_irix5 | |
7520 | || IRIX_COMPAT (output_bfd) == ict_none) | |
7521 | BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map") | |
7522 | != NULL); | |
7523 | mips_elf_hash_table (info)->rld_value = sym->st_value; | |
7524 | } | |
7525 | } | |
7526 | ||
7527 | /* If this is a mips16 symbol, force the value to be even. */ | |
79cda7cf FF |
7528 | if (sym->st_other == STO_MIPS16) |
7529 | sym->st_value &= ~1; | |
b49e97c9 | 7530 | |
b34976b6 | 7531 | return TRUE; |
b49e97c9 TS |
7532 | } |
7533 | ||
7534 | /* Finish up the dynamic sections. */ | |
7535 | ||
b34976b6 | 7536 | bfd_boolean |
9719ad41 RS |
7537 | _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd, |
7538 | struct bfd_link_info *info) | |
b49e97c9 TS |
7539 | { |
7540 | bfd *dynobj; | |
7541 | asection *sdyn; | |
7542 | asection *sgot; | |
f4416af6 | 7543 | struct mips_got_info *gg, *g; |
b49e97c9 TS |
7544 | |
7545 | dynobj = elf_hash_table (info)->dynobj; | |
7546 | ||
7547 | sdyn = bfd_get_section_by_name (dynobj, ".dynamic"); | |
7548 | ||
f4416af6 | 7549 | sgot = mips_elf_got_section (dynobj, FALSE); |
b49e97c9 | 7550 | if (sgot == NULL) |
f4416af6 | 7551 | gg = g = NULL; |
b49e97c9 TS |
7552 | else |
7553 | { | |
f4416af6 AO |
7554 | BFD_ASSERT (mips_elf_section_data (sgot) != NULL); |
7555 | gg = mips_elf_section_data (sgot)->u.got_info; | |
7556 | BFD_ASSERT (gg != NULL); | |
7557 | g = mips_elf_got_for_ibfd (gg, output_bfd); | |
b49e97c9 TS |
7558 | BFD_ASSERT (g != NULL); |
7559 | } | |
7560 | ||
7561 | if (elf_hash_table (info)->dynamic_sections_created) | |
7562 | { | |
7563 | bfd_byte *b; | |
7564 | ||
7565 | BFD_ASSERT (sdyn != NULL); | |
7566 | BFD_ASSERT (g != NULL); | |
7567 | ||
7568 | for (b = sdyn->contents; | |
eea6121a | 7569 | b < sdyn->contents + sdyn->size; |
b49e97c9 TS |
7570 | b += MIPS_ELF_DYN_SIZE (dynobj)) |
7571 | { | |
7572 | Elf_Internal_Dyn dyn; | |
7573 | const char *name; | |
7574 | size_t elemsize; | |
7575 | asection *s; | |
b34976b6 | 7576 | bfd_boolean swap_out_p; |
b49e97c9 TS |
7577 | |
7578 | /* Read in the current dynamic entry. */ | |
7579 | (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn); | |
7580 | ||
7581 | /* Assume that we're going to modify it and write it out. */ | |
b34976b6 | 7582 | swap_out_p = TRUE; |
b49e97c9 TS |
7583 | |
7584 | switch (dyn.d_tag) | |
7585 | { | |
7586 | case DT_RELENT: | |
f4416af6 | 7587 | s = mips_elf_rel_dyn_section (dynobj, FALSE); |
b49e97c9 TS |
7588 | BFD_ASSERT (s != NULL); |
7589 | dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj); | |
7590 | break; | |
7591 | ||
7592 | case DT_STRSZ: | |
7593 | /* Rewrite DT_STRSZ. */ | |
7594 | dyn.d_un.d_val = | |
7595 | _bfd_elf_strtab_size (elf_hash_table (info)->dynstr); | |
7596 | break; | |
7597 | ||
7598 | case DT_PLTGOT: | |
7599 | name = ".got"; | |
b49e97c9 TS |
7600 | s = bfd_get_section_by_name (output_bfd, name); |
7601 | BFD_ASSERT (s != NULL); | |
7602 | dyn.d_un.d_ptr = s->vma; | |
7603 | break; | |
7604 | ||
7605 | case DT_MIPS_RLD_VERSION: | |
7606 | dyn.d_un.d_val = 1; /* XXX */ | |
7607 | break; | |
7608 | ||
7609 | case DT_MIPS_FLAGS: | |
7610 | dyn.d_un.d_val = RHF_NOTPOT; /* XXX */ | |
7611 | break; | |
7612 | ||
b49e97c9 TS |
7613 | case DT_MIPS_TIME_STAMP: |
7614 | time ((time_t *) &dyn.d_un.d_val); | |
7615 | break; | |
7616 | ||
7617 | case DT_MIPS_ICHECKSUM: | |
7618 | /* XXX FIXME: */ | |
b34976b6 | 7619 | swap_out_p = FALSE; |
b49e97c9 TS |
7620 | break; |
7621 | ||
7622 | case DT_MIPS_IVERSION: | |
7623 | /* XXX FIXME: */ | |
b34976b6 | 7624 | swap_out_p = FALSE; |
b49e97c9 TS |
7625 | break; |
7626 | ||
7627 | case DT_MIPS_BASE_ADDRESS: | |
7628 | s = output_bfd->sections; | |
7629 | BFD_ASSERT (s != NULL); | |
7630 | dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff; | |
7631 | break; | |
7632 | ||
7633 | case DT_MIPS_LOCAL_GOTNO: | |
7634 | dyn.d_un.d_val = g->local_gotno; | |
7635 | break; | |
7636 | ||
7637 | case DT_MIPS_UNREFEXTNO: | |
7638 | /* The index into the dynamic symbol table which is the | |
7639 | entry of the first external symbol that is not | |
7640 | referenced within the same object. */ | |
7641 | dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1; | |
7642 | break; | |
7643 | ||
7644 | case DT_MIPS_GOTSYM: | |
f4416af6 | 7645 | if (gg->global_gotsym) |
b49e97c9 | 7646 | { |
f4416af6 | 7647 | dyn.d_un.d_val = gg->global_gotsym->dynindx; |
b49e97c9 TS |
7648 | break; |
7649 | } | |
7650 | /* In case if we don't have global got symbols we default | |
7651 | to setting DT_MIPS_GOTSYM to the same value as | |
7652 | DT_MIPS_SYMTABNO, so we just fall through. */ | |
7653 | ||
7654 | case DT_MIPS_SYMTABNO: | |
7655 | name = ".dynsym"; | |
7656 | elemsize = MIPS_ELF_SYM_SIZE (output_bfd); | |
7657 | s = bfd_get_section_by_name (output_bfd, name); | |
7658 | BFD_ASSERT (s != NULL); | |
7659 | ||
eea6121a | 7660 | dyn.d_un.d_val = s->size / elemsize; |
b49e97c9 TS |
7661 | break; |
7662 | ||
7663 | case DT_MIPS_HIPAGENO: | |
7664 | dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO; | |
7665 | break; | |
7666 | ||
7667 | case DT_MIPS_RLD_MAP: | |
7668 | dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value; | |
7669 | break; | |
7670 | ||
7671 | case DT_MIPS_OPTIONS: | |
7672 | s = (bfd_get_section_by_name | |
7673 | (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd))); | |
7674 | dyn.d_un.d_ptr = s->vma; | |
7675 | break; | |
7676 | ||
98a8deaf RS |
7677 | case DT_RELSZ: |
7678 | /* Reduce DT_RELSZ to account for any relocations we | |
7679 | decided not to make. This is for the n64 irix rld, | |
7680 | which doesn't seem to apply any relocations if there | |
7681 | are trailing null entries. */ | |
7682 | s = mips_elf_rel_dyn_section (dynobj, FALSE); | |
7683 | dyn.d_un.d_val = (s->reloc_count | |
7684 | * (ABI_64_P (output_bfd) | |
7685 | ? sizeof (Elf64_Mips_External_Rel) | |
7686 | : sizeof (Elf32_External_Rel))); | |
b49e97c9 TS |
7687 | break; |
7688 | ||
7689 | default: | |
b34976b6 | 7690 | swap_out_p = FALSE; |
b49e97c9 TS |
7691 | break; |
7692 | } | |
7693 | ||
7694 | if (swap_out_p) | |
7695 | (*get_elf_backend_data (dynobj)->s->swap_dyn_out) | |
7696 | (dynobj, &dyn, b); | |
7697 | } | |
7698 | } | |
7699 | ||
7700 | /* The first entry of the global offset table will be filled at | |
7701 | runtime. The second entry will be used by some runtime loaders. | |
8dc1a139 | 7702 | This isn't the case of IRIX rld. */ |
eea6121a | 7703 | if (sgot != NULL && sgot->size > 0) |
b49e97c9 | 7704 | { |
9719ad41 RS |
7705 | MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents); |
7706 | MIPS_ELF_PUT_WORD (output_bfd, 0x80000000, | |
b49e97c9 TS |
7707 | sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd)); |
7708 | } | |
7709 | ||
7710 | if (sgot != NULL) | |
7711 | elf_section_data (sgot->output_section)->this_hdr.sh_entsize | |
7712 | = MIPS_ELF_GOT_SIZE (output_bfd); | |
7713 | ||
f4416af6 AO |
7714 | /* Generate dynamic relocations for the non-primary gots. */ |
7715 | if (gg != NULL && gg->next) | |
7716 | { | |
7717 | Elf_Internal_Rela rel[3]; | |
7718 | bfd_vma addend = 0; | |
7719 | ||
7720 | memset (rel, 0, sizeof (rel)); | |
7721 | rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32); | |
7722 | ||
7723 | for (g = gg->next; g->next != gg; g = g->next) | |
7724 | { | |
0f20cc35 DJ |
7725 | bfd_vma index = g->next->local_gotno + g->next->global_gotno |
7726 | + g->next->tls_gotno; | |
f4416af6 | 7727 | |
9719ad41 | 7728 | MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents |
f4416af6 | 7729 | + index++ * MIPS_ELF_GOT_SIZE (output_bfd)); |
9719ad41 | 7730 | MIPS_ELF_PUT_WORD (output_bfd, 0x80000000, sgot->contents |
f4416af6 AO |
7731 | + index++ * MIPS_ELF_GOT_SIZE (output_bfd)); |
7732 | ||
7733 | if (! info->shared) | |
7734 | continue; | |
7735 | ||
7736 | while (index < g->assigned_gotno) | |
7737 | { | |
7738 | rel[0].r_offset = rel[1].r_offset = rel[2].r_offset | |
7739 | = index++ * MIPS_ELF_GOT_SIZE (output_bfd); | |
7740 | if (!(mips_elf_create_dynamic_relocation | |
7741 | (output_bfd, info, rel, NULL, | |
7742 | bfd_abs_section_ptr, | |
7743 | 0, &addend, sgot))) | |
7744 | return FALSE; | |
7745 | BFD_ASSERT (addend == 0); | |
7746 | } | |
7747 | } | |
7748 | } | |
7749 | ||
b49e97c9 | 7750 | { |
b49e97c9 TS |
7751 | asection *s; |
7752 | Elf32_compact_rel cpt; | |
7753 | ||
b49e97c9 TS |
7754 | if (SGI_COMPAT (output_bfd)) |
7755 | { | |
7756 | /* Write .compact_rel section out. */ | |
7757 | s = bfd_get_section_by_name (dynobj, ".compact_rel"); | |
7758 | if (s != NULL) | |
7759 | { | |
7760 | cpt.id1 = 1; | |
7761 | cpt.num = s->reloc_count; | |
7762 | cpt.id2 = 2; | |
7763 | cpt.offset = (s->output_section->filepos | |
7764 | + sizeof (Elf32_External_compact_rel)); | |
7765 | cpt.reserved0 = 0; | |
7766 | cpt.reserved1 = 0; | |
7767 | bfd_elf32_swap_compact_rel_out (output_bfd, &cpt, | |
7768 | ((Elf32_External_compact_rel *) | |
7769 | s->contents)); | |
7770 | ||
7771 | /* Clean up a dummy stub function entry in .text. */ | |
7772 | s = bfd_get_section_by_name (dynobj, | |
7773 | MIPS_ELF_STUB_SECTION_NAME (dynobj)); | |
7774 | if (s != NULL) | |
7775 | { | |
7776 | file_ptr dummy_offset; | |
7777 | ||
eea6121a AM |
7778 | BFD_ASSERT (s->size >= MIPS_FUNCTION_STUB_SIZE); |
7779 | dummy_offset = s->size - MIPS_FUNCTION_STUB_SIZE; | |
b49e97c9 TS |
7780 | memset (s->contents + dummy_offset, 0, |
7781 | MIPS_FUNCTION_STUB_SIZE); | |
7782 | } | |
7783 | } | |
7784 | } | |
7785 | ||
7786 | /* We need to sort the entries of the dynamic relocation section. */ | |
7787 | ||
f4416af6 AO |
7788 | s = mips_elf_rel_dyn_section (dynobj, FALSE); |
7789 | ||
7790 | if (s != NULL | |
eea6121a | 7791 | && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd)) |
b49e97c9 | 7792 | { |
f4416af6 | 7793 | reldyn_sorting_bfd = output_bfd; |
b49e97c9 | 7794 | |
f4416af6 | 7795 | if (ABI_64_P (output_bfd)) |
9719ad41 | 7796 | qsort ((Elf64_External_Rel *) s->contents + 1, s->reloc_count - 1, |
f4416af6 AO |
7797 | sizeof (Elf64_Mips_External_Rel), sort_dynamic_relocs_64); |
7798 | else | |
9719ad41 | 7799 | qsort ((Elf32_External_Rel *) s->contents + 1, s->reloc_count - 1, |
f4416af6 | 7800 | sizeof (Elf32_External_Rel), sort_dynamic_relocs); |
b49e97c9 | 7801 | } |
b49e97c9 TS |
7802 | } |
7803 | ||
b34976b6 | 7804 | return TRUE; |
b49e97c9 TS |
7805 | } |
7806 | ||
b49e97c9 | 7807 | |
64543e1a RS |
7808 | /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */ |
7809 | ||
7810 | static void | |
9719ad41 | 7811 | mips_set_isa_flags (bfd *abfd) |
b49e97c9 | 7812 | { |
64543e1a | 7813 | flagword val; |
b49e97c9 TS |
7814 | |
7815 | switch (bfd_get_mach (abfd)) | |
7816 | { | |
7817 | default: | |
7818 | case bfd_mach_mips3000: | |
7819 | val = E_MIPS_ARCH_1; | |
7820 | break; | |
7821 | ||
7822 | case bfd_mach_mips3900: | |
7823 | val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900; | |
7824 | break; | |
7825 | ||
7826 | case bfd_mach_mips6000: | |
7827 | val = E_MIPS_ARCH_2; | |
7828 | break; | |
7829 | ||
7830 | case bfd_mach_mips4000: | |
7831 | case bfd_mach_mips4300: | |
7832 | case bfd_mach_mips4400: | |
7833 | case bfd_mach_mips4600: | |
7834 | val = E_MIPS_ARCH_3; | |
7835 | break; | |
7836 | ||
7837 | case bfd_mach_mips4010: | |
7838 | val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010; | |
7839 | break; | |
7840 | ||
7841 | case bfd_mach_mips4100: | |
7842 | val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100; | |
7843 | break; | |
7844 | ||
7845 | case bfd_mach_mips4111: | |
7846 | val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111; | |
7847 | break; | |
7848 | ||
00707a0e RS |
7849 | case bfd_mach_mips4120: |
7850 | val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120; | |
7851 | break; | |
7852 | ||
b49e97c9 TS |
7853 | case bfd_mach_mips4650: |
7854 | val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650; | |
7855 | break; | |
7856 | ||
00707a0e RS |
7857 | case bfd_mach_mips5400: |
7858 | val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400; | |
7859 | break; | |
7860 | ||
7861 | case bfd_mach_mips5500: | |
7862 | val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500; | |
7863 | break; | |
7864 | ||
0d2e43ed ILT |
7865 | case bfd_mach_mips9000: |
7866 | val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000; | |
7867 | break; | |
7868 | ||
b49e97c9 | 7869 | case bfd_mach_mips5000: |
5a7ea749 | 7870 | case bfd_mach_mips7000: |
b49e97c9 TS |
7871 | case bfd_mach_mips8000: |
7872 | case bfd_mach_mips10000: | |
7873 | case bfd_mach_mips12000: | |
7874 | val = E_MIPS_ARCH_4; | |
7875 | break; | |
7876 | ||
7877 | case bfd_mach_mips5: | |
7878 | val = E_MIPS_ARCH_5; | |
7879 | break; | |
7880 | ||
7881 | case bfd_mach_mips_sb1: | |
7882 | val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1; | |
7883 | break; | |
7884 | ||
7885 | case bfd_mach_mipsisa32: | |
7886 | val = E_MIPS_ARCH_32; | |
7887 | break; | |
7888 | ||
7889 | case bfd_mach_mipsisa64: | |
7890 | val = E_MIPS_ARCH_64; | |
af7ee8bf CD |
7891 | break; |
7892 | ||
7893 | case bfd_mach_mipsisa32r2: | |
7894 | val = E_MIPS_ARCH_32R2; | |
7895 | break; | |
5f74bc13 CD |
7896 | |
7897 | case bfd_mach_mipsisa64r2: | |
7898 | val = E_MIPS_ARCH_64R2; | |
7899 | break; | |
b49e97c9 | 7900 | } |
b49e97c9 TS |
7901 | elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH); |
7902 | elf_elfheader (abfd)->e_flags |= val; | |
7903 | ||
64543e1a RS |
7904 | } |
7905 | ||
7906 | ||
7907 | /* The final processing done just before writing out a MIPS ELF object | |
7908 | file. This gets the MIPS architecture right based on the machine | |
7909 | number. This is used by both the 32-bit and the 64-bit ABI. */ | |
7910 | ||
7911 | void | |
9719ad41 RS |
7912 | _bfd_mips_elf_final_write_processing (bfd *abfd, |
7913 | bfd_boolean linker ATTRIBUTE_UNUSED) | |
64543e1a RS |
7914 | { |
7915 | unsigned int i; | |
7916 | Elf_Internal_Shdr **hdrpp; | |
7917 | const char *name; | |
7918 | asection *sec; | |
7919 | ||
7920 | /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former | |
7921 | is nonzero. This is for compatibility with old objects, which used | |
7922 | a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */ | |
7923 | if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0) | |
7924 | mips_set_isa_flags (abfd); | |
7925 | ||
b49e97c9 TS |
7926 | /* Set the sh_info field for .gptab sections and other appropriate |
7927 | info for each special section. */ | |
7928 | for (i = 1, hdrpp = elf_elfsections (abfd) + 1; | |
7929 | i < elf_numsections (abfd); | |
7930 | i++, hdrpp++) | |
7931 | { | |
7932 | switch ((*hdrpp)->sh_type) | |
7933 | { | |
7934 | case SHT_MIPS_MSYM: | |
7935 | case SHT_MIPS_LIBLIST: | |
7936 | sec = bfd_get_section_by_name (abfd, ".dynstr"); | |
7937 | if (sec != NULL) | |
7938 | (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; | |
7939 | break; | |
7940 | ||
7941 | case SHT_MIPS_GPTAB: | |
7942 | BFD_ASSERT ((*hdrpp)->bfd_section != NULL); | |
7943 | name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section); | |
7944 | BFD_ASSERT (name != NULL | |
7945 | && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0); | |
7946 | sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1); | |
7947 | BFD_ASSERT (sec != NULL); | |
7948 | (*hdrpp)->sh_info = elf_section_data (sec)->this_idx; | |
7949 | break; | |
7950 | ||
7951 | case SHT_MIPS_CONTENT: | |
7952 | BFD_ASSERT ((*hdrpp)->bfd_section != NULL); | |
7953 | name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section); | |
7954 | BFD_ASSERT (name != NULL | |
7955 | && strncmp (name, ".MIPS.content", | |
7956 | sizeof ".MIPS.content" - 1) == 0); | |
7957 | sec = bfd_get_section_by_name (abfd, | |
7958 | name + sizeof ".MIPS.content" - 1); | |
7959 | BFD_ASSERT (sec != NULL); | |
7960 | (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; | |
7961 | break; | |
7962 | ||
7963 | case SHT_MIPS_SYMBOL_LIB: | |
7964 | sec = bfd_get_section_by_name (abfd, ".dynsym"); | |
7965 | if (sec != NULL) | |
7966 | (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; | |
7967 | sec = bfd_get_section_by_name (abfd, ".liblist"); | |
7968 | if (sec != NULL) | |
7969 | (*hdrpp)->sh_info = elf_section_data (sec)->this_idx; | |
7970 | break; | |
7971 | ||
7972 | case SHT_MIPS_EVENTS: | |
7973 | BFD_ASSERT ((*hdrpp)->bfd_section != NULL); | |
7974 | name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section); | |
7975 | BFD_ASSERT (name != NULL); | |
7976 | if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0) | |
7977 | sec = bfd_get_section_by_name (abfd, | |
7978 | name + sizeof ".MIPS.events" - 1); | |
7979 | else | |
7980 | { | |
7981 | BFD_ASSERT (strncmp (name, ".MIPS.post_rel", | |
7982 | sizeof ".MIPS.post_rel" - 1) == 0); | |
7983 | sec = bfd_get_section_by_name (abfd, | |
7984 | (name | |
7985 | + sizeof ".MIPS.post_rel" - 1)); | |
7986 | } | |
7987 | BFD_ASSERT (sec != NULL); | |
7988 | (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; | |
7989 | break; | |
7990 | ||
7991 | } | |
7992 | } | |
7993 | } | |
7994 | \f | |
8dc1a139 | 7995 | /* When creating an IRIX5 executable, we need REGINFO and RTPROC |
b49e97c9 TS |
7996 | segments. */ |
7997 | ||
7998 | int | |
9719ad41 | 7999 | _bfd_mips_elf_additional_program_headers (bfd *abfd) |
b49e97c9 TS |
8000 | { |
8001 | asection *s; | |
8002 | int ret = 0; | |
8003 | ||
8004 | /* See if we need a PT_MIPS_REGINFO segment. */ | |
8005 | s = bfd_get_section_by_name (abfd, ".reginfo"); | |
8006 | if (s && (s->flags & SEC_LOAD)) | |
8007 | ++ret; | |
8008 | ||
8009 | /* See if we need a PT_MIPS_OPTIONS segment. */ | |
8010 | if (IRIX_COMPAT (abfd) == ict_irix6 | |
8011 | && bfd_get_section_by_name (abfd, | |
8012 | MIPS_ELF_OPTIONS_SECTION_NAME (abfd))) | |
8013 | ++ret; | |
8014 | ||
8015 | /* See if we need a PT_MIPS_RTPROC segment. */ | |
8016 | if (IRIX_COMPAT (abfd) == ict_irix5 | |
8017 | && bfd_get_section_by_name (abfd, ".dynamic") | |
8018 | && bfd_get_section_by_name (abfd, ".mdebug")) | |
8019 | ++ret; | |
8020 | ||
8021 | return ret; | |
8022 | } | |
8023 | ||
8dc1a139 | 8024 | /* Modify the segment map for an IRIX5 executable. */ |
b49e97c9 | 8025 | |
b34976b6 | 8026 | bfd_boolean |
9719ad41 RS |
8027 | _bfd_mips_elf_modify_segment_map (bfd *abfd, |
8028 | struct bfd_link_info *info ATTRIBUTE_UNUSED) | |
b49e97c9 TS |
8029 | { |
8030 | asection *s; | |
8031 | struct elf_segment_map *m, **pm; | |
8032 | bfd_size_type amt; | |
8033 | ||
8034 | /* If there is a .reginfo section, we need a PT_MIPS_REGINFO | |
8035 | segment. */ | |
8036 | s = bfd_get_section_by_name (abfd, ".reginfo"); | |
8037 | if (s != NULL && (s->flags & SEC_LOAD) != 0) | |
8038 | { | |
8039 | for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next) | |
8040 | if (m->p_type == PT_MIPS_REGINFO) | |
8041 | break; | |
8042 | if (m == NULL) | |
8043 | { | |
8044 | amt = sizeof *m; | |
9719ad41 | 8045 | m = bfd_zalloc (abfd, amt); |
b49e97c9 | 8046 | if (m == NULL) |
b34976b6 | 8047 | return FALSE; |
b49e97c9 TS |
8048 | |
8049 | m->p_type = PT_MIPS_REGINFO; | |
8050 | m->count = 1; | |
8051 | m->sections[0] = s; | |
8052 | ||
8053 | /* We want to put it after the PHDR and INTERP segments. */ | |
8054 | pm = &elf_tdata (abfd)->segment_map; | |
8055 | while (*pm != NULL | |
8056 | && ((*pm)->p_type == PT_PHDR | |
8057 | || (*pm)->p_type == PT_INTERP)) | |
8058 | pm = &(*pm)->next; | |
8059 | ||
8060 | m->next = *pm; | |
8061 | *pm = m; | |
8062 | } | |
8063 | } | |
8064 | ||
8065 | /* For IRIX 6, we don't have .mdebug sections, nor does anything but | |
8066 | .dynamic end up in PT_DYNAMIC. However, we do have to insert a | |
98a8deaf | 8067 | PT_MIPS_OPTIONS segment immediately following the program header |
b49e97c9 | 8068 | table. */ |
c1fd6598 AO |
8069 | if (NEWABI_P (abfd) |
8070 | /* On non-IRIX6 new abi, we'll have already created a segment | |
8071 | for this section, so don't create another. I'm not sure this | |
8072 | is not also the case for IRIX 6, but I can't test it right | |
8073 | now. */ | |
8074 | && IRIX_COMPAT (abfd) == ict_irix6) | |
b49e97c9 TS |
8075 | { |
8076 | for (s = abfd->sections; s; s = s->next) | |
8077 | if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS) | |
8078 | break; | |
8079 | ||
8080 | if (s) | |
8081 | { | |
8082 | struct elf_segment_map *options_segment; | |
8083 | ||
98a8deaf RS |
8084 | pm = &elf_tdata (abfd)->segment_map; |
8085 | while (*pm != NULL | |
8086 | && ((*pm)->p_type == PT_PHDR | |
8087 | || (*pm)->p_type == PT_INTERP)) | |
8088 | pm = &(*pm)->next; | |
b49e97c9 TS |
8089 | |
8090 | amt = sizeof (struct elf_segment_map); | |
8091 | options_segment = bfd_zalloc (abfd, amt); | |
8092 | options_segment->next = *pm; | |
8093 | options_segment->p_type = PT_MIPS_OPTIONS; | |
8094 | options_segment->p_flags = PF_R; | |
b34976b6 | 8095 | options_segment->p_flags_valid = TRUE; |
b49e97c9 TS |
8096 | options_segment->count = 1; |
8097 | options_segment->sections[0] = s; | |
8098 | *pm = options_segment; | |
8099 | } | |
8100 | } | |
8101 | else | |
8102 | { | |
8103 | if (IRIX_COMPAT (abfd) == ict_irix5) | |
8104 | { | |
8105 | /* If there are .dynamic and .mdebug sections, we make a room | |
8106 | for the RTPROC header. FIXME: Rewrite without section names. */ | |
8107 | if (bfd_get_section_by_name (abfd, ".interp") == NULL | |
8108 | && bfd_get_section_by_name (abfd, ".dynamic") != NULL | |
8109 | && bfd_get_section_by_name (abfd, ".mdebug") != NULL) | |
8110 | { | |
8111 | for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next) | |
8112 | if (m->p_type == PT_MIPS_RTPROC) | |
8113 | break; | |
8114 | if (m == NULL) | |
8115 | { | |
8116 | amt = sizeof *m; | |
9719ad41 | 8117 | m = bfd_zalloc (abfd, amt); |
b49e97c9 | 8118 | if (m == NULL) |
b34976b6 | 8119 | return FALSE; |
b49e97c9 TS |
8120 | |
8121 | m->p_type = PT_MIPS_RTPROC; | |
8122 | ||
8123 | s = bfd_get_section_by_name (abfd, ".rtproc"); | |
8124 | if (s == NULL) | |
8125 | { | |
8126 | m->count = 0; | |
8127 | m->p_flags = 0; | |
8128 | m->p_flags_valid = 1; | |
8129 | } | |
8130 | else | |
8131 | { | |
8132 | m->count = 1; | |
8133 | m->sections[0] = s; | |
8134 | } | |
8135 | ||
8136 | /* We want to put it after the DYNAMIC segment. */ | |
8137 | pm = &elf_tdata (abfd)->segment_map; | |
8138 | while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC) | |
8139 | pm = &(*pm)->next; | |
8140 | if (*pm != NULL) | |
8141 | pm = &(*pm)->next; | |
8142 | ||
8143 | m->next = *pm; | |
8144 | *pm = m; | |
8145 | } | |
8146 | } | |
8147 | } | |
8dc1a139 | 8148 | /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic, |
b49e97c9 TS |
8149 | .dynstr, .dynsym, and .hash sections, and everything in |
8150 | between. */ | |
8151 | for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; | |
8152 | pm = &(*pm)->next) | |
8153 | if ((*pm)->p_type == PT_DYNAMIC) | |
8154 | break; | |
8155 | m = *pm; | |
8156 | if (m != NULL && IRIX_COMPAT (abfd) == ict_none) | |
8157 | { | |
8158 | /* For a normal mips executable the permissions for the PT_DYNAMIC | |
8159 | segment are read, write and execute. We do that here since | |
8160 | the code in elf.c sets only the read permission. This matters | |
8161 | sometimes for the dynamic linker. */ | |
8162 | if (bfd_get_section_by_name (abfd, ".dynamic") != NULL) | |
8163 | { | |
8164 | m->p_flags = PF_R | PF_W | PF_X; | |
8165 | m->p_flags_valid = 1; | |
8166 | } | |
8167 | } | |
8168 | if (m != NULL | |
8169 | && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0) | |
8170 | { | |
8171 | static const char *sec_names[] = | |
8172 | { | |
8173 | ".dynamic", ".dynstr", ".dynsym", ".hash" | |
8174 | }; | |
8175 | bfd_vma low, high; | |
8176 | unsigned int i, c; | |
8177 | struct elf_segment_map *n; | |
8178 | ||
792b4a53 | 8179 | low = ~(bfd_vma) 0; |
b49e97c9 TS |
8180 | high = 0; |
8181 | for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++) | |
8182 | { | |
8183 | s = bfd_get_section_by_name (abfd, sec_names[i]); | |
8184 | if (s != NULL && (s->flags & SEC_LOAD) != 0) | |
8185 | { | |
8186 | bfd_size_type sz; | |
8187 | ||
8188 | if (low > s->vma) | |
8189 | low = s->vma; | |
eea6121a | 8190 | sz = s->size; |
b49e97c9 TS |
8191 | if (high < s->vma + sz) |
8192 | high = s->vma + sz; | |
8193 | } | |
8194 | } | |
8195 | ||
8196 | c = 0; | |
8197 | for (s = abfd->sections; s != NULL; s = s->next) | |
8198 | if ((s->flags & SEC_LOAD) != 0 | |
8199 | && s->vma >= low | |
eea6121a | 8200 | && s->vma + s->size <= high) |
b49e97c9 TS |
8201 | ++c; |
8202 | ||
8203 | amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *); | |
9719ad41 | 8204 | n = bfd_zalloc (abfd, amt); |
b49e97c9 | 8205 | if (n == NULL) |
b34976b6 | 8206 | return FALSE; |
b49e97c9 TS |
8207 | *n = *m; |
8208 | n->count = c; | |
8209 | ||
8210 | i = 0; | |
8211 | for (s = abfd->sections; s != NULL; s = s->next) | |
8212 | { | |
8213 | if ((s->flags & SEC_LOAD) != 0 | |
8214 | && s->vma >= low | |
eea6121a | 8215 | && s->vma + s->size <= high) |
b49e97c9 TS |
8216 | { |
8217 | n->sections[i] = s; | |
8218 | ++i; | |
8219 | } | |
8220 | } | |
8221 | ||
8222 | *pm = n; | |
8223 | } | |
8224 | } | |
8225 | ||
b34976b6 | 8226 | return TRUE; |
b49e97c9 TS |
8227 | } |
8228 | \f | |
8229 | /* Return the section that should be marked against GC for a given | |
8230 | relocation. */ | |
8231 | ||
8232 | asection * | |
9719ad41 RS |
8233 | _bfd_mips_elf_gc_mark_hook (asection *sec, |
8234 | struct bfd_link_info *info ATTRIBUTE_UNUSED, | |
8235 | Elf_Internal_Rela *rel, | |
8236 | struct elf_link_hash_entry *h, | |
8237 | Elf_Internal_Sym *sym) | |
b49e97c9 TS |
8238 | { |
8239 | /* ??? Do mips16 stub sections need to be handled special? */ | |
8240 | ||
8241 | if (h != NULL) | |
8242 | { | |
1e2f5b6e | 8243 | switch (ELF_R_TYPE (sec->owner, rel->r_info)) |
b49e97c9 TS |
8244 | { |
8245 | case R_MIPS_GNU_VTINHERIT: | |
8246 | case R_MIPS_GNU_VTENTRY: | |
8247 | break; | |
8248 | ||
8249 | default: | |
8250 | switch (h->root.type) | |
8251 | { | |
8252 | case bfd_link_hash_defined: | |
8253 | case bfd_link_hash_defweak: | |
8254 | return h->root.u.def.section; | |
8255 | ||
8256 | case bfd_link_hash_common: | |
8257 | return h->root.u.c.p->section; | |
8258 | ||
8259 | default: | |
8260 | break; | |
8261 | } | |
8262 | } | |
8263 | } | |
8264 | else | |
1e2f5b6e | 8265 | return bfd_section_from_elf_index (sec->owner, sym->st_shndx); |
b49e97c9 TS |
8266 | |
8267 | return NULL; | |
8268 | } | |
8269 | ||
8270 | /* Update the got entry reference counts for the section being removed. */ | |
8271 | ||
b34976b6 | 8272 | bfd_boolean |
9719ad41 RS |
8273 | _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED, |
8274 | struct bfd_link_info *info ATTRIBUTE_UNUSED, | |
8275 | asection *sec ATTRIBUTE_UNUSED, | |
8276 | const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED) | |
b49e97c9 TS |
8277 | { |
8278 | #if 0 | |
8279 | Elf_Internal_Shdr *symtab_hdr; | |
8280 | struct elf_link_hash_entry **sym_hashes; | |
8281 | bfd_signed_vma *local_got_refcounts; | |
8282 | const Elf_Internal_Rela *rel, *relend; | |
8283 | unsigned long r_symndx; | |
8284 | struct elf_link_hash_entry *h; | |
8285 | ||
8286 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
8287 | sym_hashes = elf_sym_hashes (abfd); | |
8288 | local_got_refcounts = elf_local_got_refcounts (abfd); | |
8289 | ||
8290 | relend = relocs + sec->reloc_count; | |
8291 | for (rel = relocs; rel < relend; rel++) | |
8292 | switch (ELF_R_TYPE (abfd, rel->r_info)) | |
8293 | { | |
8294 | case R_MIPS_GOT16: | |
8295 | case R_MIPS_CALL16: | |
8296 | case R_MIPS_CALL_HI16: | |
8297 | case R_MIPS_CALL_LO16: | |
8298 | case R_MIPS_GOT_HI16: | |
8299 | case R_MIPS_GOT_LO16: | |
4a14403c TS |
8300 | case R_MIPS_GOT_DISP: |
8301 | case R_MIPS_GOT_PAGE: | |
8302 | case R_MIPS_GOT_OFST: | |
b49e97c9 TS |
8303 | /* ??? It would seem that the existing MIPS code does no sort |
8304 | of reference counting or whatnot on its GOT and PLT entries, | |
8305 | so it is not possible to garbage collect them at this time. */ | |
8306 | break; | |
8307 | ||
8308 | default: | |
8309 | break; | |
8310 | } | |
8311 | #endif | |
8312 | ||
b34976b6 | 8313 | return TRUE; |
b49e97c9 TS |
8314 | } |
8315 | \f | |
8316 | /* Copy data from a MIPS ELF indirect symbol to its direct symbol, | |
8317 | hiding the old indirect symbol. Process additional relocation | |
8318 | information. Also called for weakdefs, in which case we just let | |
8319 | _bfd_elf_link_hash_copy_indirect copy the flags for us. */ | |
8320 | ||
8321 | void | |
9719ad41 RS |
8322 | _bfd_mips_elf_copy_indirect_symbol (const struct elf_backend_data *bed, |
8323 | struct elf_link_hash_entry *dir, | |
8324 | struct elf_link_hash_entry *ind) | |
b49e97c9 TS |
8325 | { |
8326 | struct mips_elf_link_hash_entry *dirmips, *indmips; | |
8327 | ||
b48fa14c | 8328 | _bfd_elf_link_hash_copy_indirect (bed, dir, ind); |
b49e97c9 TS |
8329 | |
8330 | if (ind->root.type != bfd_link_hash_indirect) | |
8331 | return; | |
8332 | ||
8333 | dirmips = (struct mips_elf_link_hash_entry *) dir; | |
8334 | indmips = (struct mips_elf_link_hash_entry *) ind; | |
8335 | dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs; | |
8336 | if (indmips->readonly_reloc) | |
b34976b6 | 8337 | dirmips->readonly_reloc = TRUE; |
b49e97c9 | 8338 | if (indmips->no_fn_stub) |
b34976b6 | 8339 | dirmips->no_fn_stub = TRUE; |
0f20cc35 DJ |
8340 | |
8341 | if (dirmips->tls_type == 0) | |
8342 | dirmips->tls_type = indmips->tls_type; | |
8343 | else | |
8344 | BFD_ASSERT (indmips->tls_type == 0); | |
b49e97c9 TS |
8345 | } |
8346 | ||
8347 | void | |
9719ad41 RS |
8348 | _bfd_mips_elf_hide_symbol (struct bfd_link_info *info, |
8349 | struct elf_link_hash_entry *entry, | |
8350 | bfd_boolean force_local) | |
b49e97c9 TS |
8351 | { |
8352 | bfd *dynobj; | |
8353 | asection *got; | |
8354 | struct mips_got_info *g; | |
8355 | struct mips_elf_link_hash_entry *h; | |
7c5fcef7 | 8356 | |
b49e97c9 | 8357 | h = (struct mips_elf_link_hash_entry *) entry; |
7c5fcef7 L |
8358 | if (h->forced_local) |
8359 | return; | |
4b555070 | 8360 | h->forced_local = force_local; |
7c5fcef7 | 8361 | |
b49e97c9 | 8362 | dynobj = elf_hash_table (info)->dynobj; |
0f20cc35 | 8363 | if (dynobj != NULL && force_local && h->root.type != STT_TLS) |
f4416af6 | 8364 | { |
c45a316a AM |
8365 | got = mips_elf_got_section (dynobj, FALSE); |
8366 | g = mips_elf_section_data (got)->u.got_info; | |
f4416af6 | 8367 | |
c45a316a AM |
8368 | if (g->next) |
8369 | { | |
8370 | struct mips_got_entry e; | |
8371 | struct mips_got_info *gg = g; | |
8372 | ||
8373 | /* Since we're turning what used to be a global symbol into a | |
8374 | local one, bump up the number of local entries of each GOT | |
8375 | that had an entry for it. This will automatically decrease | |
8376 | the number of global entries, since global_gotno is actually | |
8377 | the upper limit of global entries. */ | |
8378 | e.abfd = dynobj; | |
8379 | e.symndx = -1; | |
8380 | e.d.h = h; | |
0f20cc35 | 8381 | e.tls_type = 0; |
c45a316a AM |
8382 | |
8383 | for (g = g->next; g != gg; g = g->next) | |
8384 | if (htab_find (g->got_entries, &e)) | |
8385 | { | |
8386 | BFD_ASSERT (g->global_gotno > 0); | |
8387 | g->local_gotno++; | |
8388 | g->global_gotno--; | |
8389 | } | |
b49e97c9 | 8390 | |
c45a316a AM |
8391 | /* If this was a global symbol forced into the primary GOT, we |
8392 | no longer need an entry for it. We can't release the entry | |
8393 | at this point, but we must at least stop counting it as one | |
8394 | of the symbols that required a forced got entry. */ | |
8395 | if (h->root.got.offset == 2) | |
8396 | { | |
8397 | BFD_ASSERT (gg->assigned_gotno > 0); | |
8398 | gg->assigned_gotno--; | |
8399 | } | |
8400 | } | |
8401 | else if (g->global_gotno == 0 && g->global_gotsym == NULL) | |
8402 | /* If we haven't got through GOT allocation yet, just bump up the | |
8403 | number of local entries, as this symbol won't be counted as | |
8404 | global. */ | |
8405 | g->local_gotno++; | |
8406 | else if (h->root.got.offset == 1) | |
f4416af6 | 8407 | { |
c45a316a AM |
8408 | /* If we're past non-multi-GOT allocation and this symbol had |
8409 | been marked for a global got entry, give it a local entry | |
8410 | instead. */ | |
8411 | BFD_ASSERT (g->global_gotno > 0); | |
8412 | g->local_gotno++; | |
8413 | g->global_gotno--; | |
f4416af6 AO |
8414 | } |
8415 | } | |
f4416af6 AO |
8416 | |
8417 | _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local); | |
b49e97c9 TS |
8418 | } |
8419 | \f | |
d01414a5 TS |
8420 | #define PDR_SIZE 32 |
8421 | ||
b34976b6 | 8422 | bfd_boolean |
9719ad41 RS |
8423 | _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie, |
8424 | struct bfd_link_info *info) | |
d01414a5 TS |
8425 | { |
8426 | asection *o; | |
b34976b6 | 8427 | bfd_boolean ret = FALSE; |
d01414a5 TS |
8428 | unsigned char *tdata; |
8429 | size_t i, skip; | |
8430 | ||
8431 | o = bfd_get_section_by_name (abfd, ".pdr"); | |
8432 | if (! o) | |
b34976b6 | 8433 | return FALSE; |
eea6121a | 8434 | if (o->size == 0) |
b34976b6 | 8435 | return FALSE; |
eea6121a | 8436 | if (o->size % PDR_SIZE != 0) |
b34976b6 | 8437 | return FALSE; |
d01414a5 TS |
8438 | if (o->output_section != NULL |
8439 | && bfd_is_abs_section (o->output_section)) | |
b34976b6 | 8440 | return FALSE; |
d01414a5 | 8441 | |
eea6121a | 8442 | tdata = bfd_zmalloc (o->size / PDR_SIZE); |
d01414a5 | 8443 | if (! tdata) |
b34976b6 | 8444 | return FALSE; |
d01414a5 | 8445 | |
9719ad41 | 8446 | cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL, |
45d6a902 | 8447 | info->keep_memory); |
d01414a5 TS |
8448 | if (!cookie->rels) |
8449 | { | |
8450 | free (tdata); | |
b34976b6 | 8451 | return FALSE; |
d01414a5 TS |
8452 | } |
8453 | ||
8454 | cookie->rel = cookie->rels; | |
8455 | cookie->relend = cookie->rels + o->reloc_count; | |
8456 | ||
eea6121a | 8457 | for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++) |
d01414a5 | 8458 | { |
c152c796 | 8459 | if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie)) |
d01414a5 TS |
8460 | { |
8461 | tdata[i] = 1; | |
8462 | skip ++; | |
8463 | } | |
8464 | } | |
8465 | ||
8466 | if (skip != 0) | |
8467 | { | |
f0abc2a1 | 8468 | mips_elf_section_data (o)->u.tdata = tdata; |
eea6121a | 8469 | o->size -= skip * PDR_SIZE; |
b34976b6 | 8470 | ret = TRUE; |
d01414a5 TS |
8471 | } |
8472 | else | |
8473 | free (tdata); | |
8474 | ||
8475 | if (! info->keep_memory) | |
8476 | free (cookie->rels); | |
8477 | ||
8478 | return ret; | |
8479 | } | |
8480 | ||
b34976b6 | 8481 | bfd_boolean |
9719ad41 | 8482 | _bfd_mips_elf_ignore_discarded_relocs (asection *sec) |
53bfd6b4 MR |
8483 | { |
8484 | if (strcmp (sec->name, ".pdr") == 0) | |
b34976b6 AM |
8485 | return TRUE; |
8486 | return FALSE; | |
53bfd6b4 | 8487 | } |
d01414a5 | 8488 | |
b34976b6 | 8489 | bfd_boolean |
9719ad41 RS |
8490 | _bfd_mips_elf_write_section (bfd *output_bfd, asection *sec, |
8491 | bfd_byte *contents) | |
d01414a5 TS |
8492 | { |
8493 | bfd_byte *to, *from, *end; | |
8494 | int i; | |
8495 | ||
8496 | if (strcmp (sec->name, ".pdr") != 0) | |
b34976b6 | 8497 | return FALSE; |
d01414a5 | 8498 | |
f0abc2a1 | 8499 | if (mips_elf_section_data (sec)->u.tdata == NULL) |
b34976b6 | 8500 | return FALSE; |
d01414a5 TS |
8501 | |
8502 | to = contents; | |
eea6121a | 8503 | end = contents + sec->size; |
d01414a5 TS |
8504 | for (from = contents, i = 0; |
8505 | from < end; | |
8506 | from += PDR_SIZE, i++) | |
8507 | { | |
f0abc2a1 | 8508 | if ((mips_elf_section_data (sec)->u.tdata)[i] == 1) |
d01414a5 TS |
8509 | continue; |
8510 | if (to != from) | |
8511 | memcpy (to, from, PDR_SIZE); | |
8512 | to += PDR_SIZE; | |
8513 | } | |
8514 | bfd_set_section_contents (output_bfd, sec->output_section, contents, | |
eea6121a | 8515 | sec->output_offset, sec->size); |
b34976b6 | 8516 | return TRUE; |
d01414a5 | 8517 | } |
53bfd6b4 | 8518 | \f |
b49e97c9 TS |
8519 | /* MIPS ELF uses a special find_nearest_line routine in order the |
8520 | handle the ECOFF debugging information. */ | |
8521 | ||
8522 | struct mips_elf_find_line | |
8523 | { | |
8524 | struct ecoff_debug_info d; | |
8525 | struct ecoff_find_line i; | |
8526 | }; | |
8527 | ||
b34976b6 | 8528 | bfd_boolean |
9719ad41 RS |
8529 | _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section, |
8530 | asymbol **symbols, bfd_vma offset, | |
8531 | const char **filename_ptr, | |
8532 | const char **functionname_ptr, | |
8533 | unsigned int *line_ptr) | |
b49e97c9 TS |
8534 | { |
8535 | asection *msec; | |
8536 | ||
8537 | if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset, | |
8538 | filename_ptr, functionname_ptr, | |
8539 | line_ptr)) | |
b34976b6 | 8540 | return TRUE; |
b49e97c9 TS |
8541 | |
8542 | if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset, | |
8543 | filename_ptr, functionname_ptr, | |
9719ad41 | 8544 | line_ptr, ABI_64_P (abfd) ? 8 : 0, |
b49e97c9 | 8545 | &elf_tdata (abfd)->dwarf2_find_line_info)) |
b34976b6 | 8546 | return TRUE; |
b49e97c9 TS |
8547 | |
8548 | msec = bfd_get_section_by_name (abfd, ".mdebug"); | |
8549 | if (msec != NULL) | |
8550 | { | |
8551 | flagword origflags; | |
8552 | struct mips_elf_find_line *fi; | |
8553 | const struct ecoff_debug_swap * const swap = | |
8554 | get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; | |
8555 | ||
8556 | /* If we are called during a link, mips_elf_final_link may have | |
8557 | cleared the SEC_HAS_CONTENTS field. We force it back on here | |
8558 | if appropriate (which it normally will be). */ | |
8559 | origflags = msec->flags; | |
8560 | if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS) | |
8561 | msec->flags |= SEC_HAS_CONTENTS; | |
8562 | ||
8563 | fi = elf_tdata (abfd)->find_line_info; | |
8564 | if (fi == NULL) | |
8565 | { | |
8566 | bfd_size_type external_fdr_size; | |
8567 | char *fraw_src; | |
8568 | char *fraw_end; | |
8569 | struct fdr *fdr_ptr; | |
8570 | bfd_size_type amt = sizeof (struct mips_elf_find_line); | |
8571 | ||
9719ad41 | 8572 | fi = bfd_zalloc (abfd, amt); |
b49e97c9 TS |
8573 | if (fi == NULL) |
8574 | { | |
8575 | msec->flags = origflags; | |
b34976b6 | 8576 | return FALSE; |
b49e97c9 TS |
8577 | } |
8578 | ||
8579 | if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d)) | |
8580 | { | |
8581 | msec->flags = origflags; | |
b34976b6 | 8582 | return FALSE; |
b49e97c9 TS |
8583 | } |
8584 | ||
8585 | /* Swap in the FDR information. */ | |
8586 | amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr); | |
9719ad41 | 8587 | fi->d.fdr = bfd_alloc (abfd, amt); |
b49e97c9 TS |
8588 | if (fi->d.fdr == NULL) |
8589 | { | |
8590 | msec->flags = origflags; | |
b34976b6 | 8591 | return FALSE; |
b49e97c9 TS |
8592 | } |
8593 | external_fdr_size = swap->external_fdr_size; | |
8594 | fdr_ptr = fi->d.fdr; | |
8595 | fraw_src = (char *) fi->d.external_fdr; | |
8596 | fraw_end = (fraw_src | |
8597 | + fi->d.symbolic_header.ifdMax * external_fdr_size); | |
8598 | for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++) | |
9719ad41 | 8599 | (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr); |
b49e97c9 TS |
8600 | |
8601 | elf_tdata (abfd)->find_line_info = fi; | |
8602 | ||
8603 | /* Note that we don't bother to ever free this information. | |
8604 | find_nearest_line is either called all the time, as in | |
8605 | objdump -l, so the information should be saved, or it is | |
8606 | rarely called, as in ld error messages, so the memory | |
8607 | wasted is unimportant. Still, it would probably be a | |
8608 | good idea for free_cached_info to throw it away. */ | |
8609 | } | |
8610 | ||
8611 | if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap, | |
8612 | &fi->i, filename_ptr, functionname_ptr, | |
8613 | line_ptr)) | |
8614 | { | |
8615 | msec->flags = origflags; | |
b34976b6 | 8616 | return TRUE; |
b49e97c9 TS |
8617 | } |
8618 | ||
8619 | msec->flags = origflags; | |
8620 | } | |
8621 | ||
8622 | /* Fall back on the generic ELF find_nearest_line routine. */ | |
8623 | ||
8624 | return _bfd_elf_find_nearest_line (abfd, section, symbols, offset, | |
8625 | filename_ptr, functionname_ptr, | |
8626 | line_ptr); | |
8627 | } | |
4ab527b0 FF |
8628 | |
8629 | bfd_boolean | |
8630 | _bfd_mips_elf_find_inliner_info (bfd *abfd, | |
8631 | const char **filename_ptr, | |
8632 | const char **functionname_ptr, | |
8633 | unsigned int *line_ptr) | |
8634 | { | |
8635 | bfd_boolean found; | |
8636 | found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr, | |
8637 | functionname_ptr, line_ptr, | |
8638 | & elf_tdata (abfd)->dwarf2_find_line_info); | |
8639 | return found; | |
8640 | } | |
8641 | ||
b49e97c9 TS |
8642 | \f |
8643 | /* When are writing out the .options or .MIPS.options section, | |
8644 | remember the bytes we are writing out, so that we can install the | |
8645 | GP value in the section_processing routine. */ | |
8646 | ||
b34976b6 | 8647 | bfd_boolean |
9719ad41 RS |
8648 | _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section, |
8649 | const void *location, | |
8650 | file_ptr offset, bfd_size_type count) | |
b49e97c9 | 8651 | { |
cc2e31b9 | 8652 | if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name)) |
b49e97c9 TS |
8653 | { |
8654 | bfd_byte *c; | |
8655 | ||
8656 | if (elf_section_data (section) == NULL) | |
8657 | { | |
8658 | bfd_size_type amt = sizeof (struct bfd_elf_section_data); | |
9719ad41 | 8659 | section->used_by_bfd = bfd_zalloc (abfd, amt); |
b49e97c9 | 8660 | if (elf_section_data (section) == NULL) |
b34976b6 | 8661 | return FALSE; |
b49e97c9 | 8662 | } |
f0abc2a1 | 8663 | c = mips_elf_section_data (section)->u.tdata; |
b49e97c9 TS |
8664 | if (c == NULL) |
8665 | { | |
eea6121a | 8666 | c = bfd_zalloc (abfd, section->size); |
b49e97c9 | 8667 | if (c == NULL) |
b34976b6 | 8668 | return FALSE; |
f0abc2a1 | 8669 | mips_elf_section_data (section)->u.tdata = c; |
b49e97c9 TS |
8670 | } |
8671 | ||
9719ad41 | 8672 | memcpy (c + offset, location, count); |
b49e97c9 TS |
8673 | } |
8674 | ||
8675 | return _bfd_elf_set_section_contents (abfd, section, location, offset, | |
8676 | count); | |
8677 | } | |
8678 | ||
8679 | /* This is almost identical to bfd_generic_get_... except that some | |
8680 | MIPS relocations need to be handled specially. Sigh. */ | |
8681 | ||
8682 | bfd_byte * | |
9719ad41 RS |
8683 | _bfd_elf_mips_get_relocated_section_contents |
8684 | (bfd *abfd, | |
8685 | struct bfd_link_info *link_info, | |
8686 | struct bfd_link_order *link_order, | |
8687 | bfd_byte *data, | |
8688 | bfd_boolean relocatable, | |
8689 | asymbol **symbols) | |
b49e97c9 TS |
8690 | { |
8691 | /* Get enough memory to hold the stuff */ | |
8692 | bfd *input_bfd = link_order->u.indirect.section->owner; | |
8693 | asection *input_section = link_order->u.indirect.section; | |
eea6121a | 8694 | bfd_size_type sz; |
b49e97c9 TS |
8695 | |
8696 | long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section); | |
8697 | arelent **reloc_vector = NULL; | |
8698 | long reloc_count; | |
8699 | ||
8700 | if (reloc_size < 0) | |
8701 | goto error_return; | |
8702 | ||
9719ad41 | 8703 | reloc_vector = bfd_malloc (reloc_size); |
b49e97c9 TS |
8704 | if (reloc_vector == NULL && reloc_size != 0) |
8705 | goto error_return; | |
8706 | ||
8707 | /* read in the section */ | |
eea6121a AM |
8708 | sz = input_section->rawsize ? input_section->rawsize : input_section->size; |
8709 | if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz)) | |
b49e97c9 TS |
8710 | goto error_return; |
8711 | ||
b49e97c9 TS |
8712 | reloc_count = bfd_canonicalize_reloc (input_bfd, |
8713 | input_section, | |
8714 | reloc_vector, | |
8715 | symbols); | |
8716 | if (reloc_count < 0) | |
8717 | goto error_return; | |
8718 | ||
8719 | if (reloc_count > 0) | |
8720 | { | |
8721 | arelent **parent; | |
8722 | /* for mips */ | |
8723 | int gp_found; | |
8724 | bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */ | |
8725 | ||
8726 | { | |
8727 | struct bfd_hash_entry *h; | |
8728 | struct bfd_link_hash_entry *lh; | |
8729 | /* Skip all this stuff if we aren't mixing formats. */ | |
8730 | if (abfd && input_bfd | |
8731 | && abfd->xvec == input_bfd->xvec) | |
8732 | lh = 0; | |
8733 | else | |
8734 | { | |
b34976b6 | 8735 | h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE); |
b49e97c9 TS |
8736 | lh = (struct bfd_link_hash_entry *) h; |
8737 | } | |
8738 | lookup: | |
8739 | if (lh) | |
8740 | { | |
8741 | switch (lh->type) | |
8742 | { | |
8743 | case bfd_link_hash_undefined: | |
8744 | case bfd_link_hash_undefweak: | |
8745 | case bfd_link_hash_common: | |
8746 | gp_found = 0; | |
8747 | break; | |
8748 | case bfd_link_hash_defined: | |
8749 | case bfd_link_hash_defweak: | |
8750 | gp_found = 1; | |
8751 | gp = lh->u.def.value; | |
8752 | break; | |
8753 | case bfd_link_hash_indirect: | |
8754 | case bfd_link_hash_warning: | |
8755 | lh = lh->u.i.link; | |
8756 | /* @@FIXME ignoring warning for now */ | |
8757 | goto lookup; | |
8758 | case bfd_link_hash_new: | |
8759 | default: | |
8760 | abort (); | |
8761 | } | |
8762 | } | |
8763 | else | |
8764 | gp_found = 0; | |
8765 | } | |
8766 | /* end mips */ | |
9719ad41 | 8767 | for (parent = reloc_vector; *parent != NULL; parent++) |
b49e97c9 | 8768 | { |
9719ad41 | 8769 | char *error_message = NULL; |
b49e97c9 TS |
8770 | bfd_reloc_status_type r; |
8771 | ||
8772 | /* Specific to MIPS: Deal with relocation types that require | |
8773 | knowing the gp of the output bfd. */ | |
8774 | asymbol *sym = *(*parent)->sym_ptr_ptr; | |
b49e97c9 | 8775 | |
8236346f EC |
8776 | /* If we've managed to find the gp and have a special |
8777 | function for the relocation then go ahead, else default | |
8778 | to the generic handling. */ | |
8779 | if (gp_found | |
8780 | && (*parent)->howto->special_function | |
8781 | == _bfd_mips_elf32_gprel16_reloc) | |
8782 | r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent, | |
8783 | input_section, relocatable, | |
8784 | data, gp); | |
8785 | else | |
8786 | r = bfd_perform_relocation (input_bfd, *parent, data, | |
8787 | input_section, | |
8788 | relocatable ? abfd : NULL, | |
8789 | &error_message); | |
b49e97c9 | 8790 | |
1049f94e | 8791 | if (relocatable) |
b49e97c9 TS |
8792 | { |
8793 | asection *os = input_section->output_section; | |
8794 | ||
8795 | /* A partial link, so keep the relocs */ | |
8796 | os->orelocation[os->reloc_count] = *parent; | |
8797 | os->reloc_count++; | |
8798 | } | |
8799 | ||
8800 | if (r != bfd_reloc_ok) | |
8801 | { | |
8802 | switch (r) | |
8803 | { | |
8804 | case bfd_reloc_undefined: | |
8805 | if (!((*link_info->callbacks->undefined_symbol) | |
8806 | (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr), | |
8807 | input_bfd, input_section, (*parent)->address, | |
b34976b6 | 8808 | TRUE))) |
b49e97c9 TS |
8809 | goto error_return; |
8810 | break; | |
8811 | case bfd_reloc_dangerous: | |
9719ad41 | 8812 | BFD_ASSERT (error_message != NULL); |
b49e97c9 TS |
8813 | if (!((*link_info->callbacks->reloc_dangerous) |
8814 | (link_info, error_message, input_bfd, input_section, | |
8815 | (*parent)->address))) | |
8816 | goto error_return; | |
8817 | break; | |
8818 | case bfd_reloc_overflow: | |
8819 | if (!((*link_info->callbacks->reloc_overflow) | |
dfeffb9f L |
8820 | (link_info, NULL, |
8821 | bfd_asymbol_name (*(*parent)->sym_ptr_ptr), | |
b49e97c9 TS |
8822 | (*parent)->howto->name, (*parent)->addend, |
8823 | input_bfd, input_section, (*parent)->address))) | |
8824 | goto error_return; | |
8825 | break; | |
8826 | case bfd_reloc_outofrange: | |
8827 | default: | |
8828 | abort (); | |
8829 | break; | |
8830 | } | |
8831 | ||
8832 | } | |
8833 | } | |
8834 | } | |
8835 | if (reloc_vector != NULL) | |
8836 | free (reloc_vector); | |
8837 | return data; | |
8838 | ||
8839 | error_return: | |
8840 | if (reloc_vector != NULL) | |
8841 | free (reloc_vector); | |
8842 | return NULL; | |
8843 | } | |
8844 | \f | |
8845 | /* Create a MIPS ELF linker hash table. */ | |
8846 | ||
8847 | struct bfd_link_hash_table * | |
9719ad41 | 8848 | _bfd_mips_elf_link_hash_table_create (bfd *abfd) |
b49e97c9 TS |
8849 | { |
8850 | struct mips_elf_link_hash_table *ret; | |
8851 | bfd_size_type amt = sizeof (struct mips_elf_link_hash_table); | |
8852 | ||
9719ad41 RS |
8853 | ret = bfd_malloc (amt); |
8854 | if (ret == NULL) | |
b49e97c9 TS |
8855 | return NULL; |
8856 | ||
8857 | if (! _bfd_elf_link_hash_table_init (&ret->root, abfd, | |
8858 | mips_elf_link_hash_newfunc)) | |
8859 | { | |
e2d34d7d | 8860 | free (ret); |
b49e97c9 TS |
8861 | return NULL; |
8862 | } | |
8863 | ||
8864 | #if 0 | |
8865 | /* We no longer use this. */ | |
8866 | for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++) | |
8867 | ret->dynsym_sec_strindex[i] = (bfd_size_type) -1; | |
8868 | #endif | |
8869 | ret->procedure_count = 0; | |
8870 | ret->compact_rel_size = 0; | |
b34976b6 | 8871 | ret->use_rld_obj_head = FALSE; |
b49e97c9 | 8872 | ret->rld_value = 0; |
b34976b6 | 8873 | ret->mips16_stubs_seen = FALSE; |
b49e97c9 TS |
8874 | |
8875 | return &ret->root.root; | |
8876 | } | |
8877 | \f | |
8878 | /* We need to use a special link routine to handle the .reginfo and | |
8879 | the .mdebug sections. We need to merge all instances of these | |
8880 | sections together, not write them all out sequentially. */ | |
8881 | ||
b34976b6 | 8882 | bfd_boolean |
9719ad41 | 8883 | _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info) |
b49e97c9 | 8884 | { |
b49e97c9 TS |
8885 | asection *o; |
8886 | struct bfd_link_order *p; | |
8887 | asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec; | |
8888 | asection *rtproc_sec; | |
8889 | Elf32_RegInfo reginfo; | |
8890 | struct ecoff_debug_info debug; | |
7a2a6943 NC |
8891 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
8892 | const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap; | |
b49e97c9 | 8893 | HDRR *symhdr = &debug.symbolic_header; |
9719ad41 | 8894 | void *mdebug_handle = NULL; |
b49e97c9 TS |
8895 | asection *s; |
8896 | EXTR esym; | |
8897 | unsigned int i; | |
8898 | bfd_size_type amt; | |
8899 | ||
8900 | static const char * const secname[] = | |
8901 | { | |
8902 | ".text", ".init", ".fini", ".data", | |
8903 | ".rodata", ".sdata", ".sbss", ".bss" | |
8904 | }; | |
8905 | static const int sc[] = | |
8906 | { | |
8907 | scText, scInit, scFini, scData, | |
8908 | scRData, scSData, scSBss, scBss | |
8909 | }; | |
8910 | ||
b49e97c9 TS |
8911 | /* We'd carefully arranged the dynamic symbol indices, and then the |
8912 | generic size_dynamic_sections renumbered them out from under us. | |
8913 | Rather than trying somehow to prevent the renumbering, just do | |
8914 | the sort again. */ | |
8915 | if (elf_hash_table (info)->dynamic_sections_created) | |
8916 | { | |
8917 | bfd *dynobj; | |
8918 | asection *got; | |
8919 | struct mips_got_info *g; | |
7a2a6943 | 8920 | bfd_size_type dynsecsymcount; |
b49e97c9 TS |
8921 | |
8922 | /* When we resort, we must tell mips_elf_sort_hash_table what | |
8923 | the lowest index it may use is. That's the number of section | |
8924 | symbols we're going to add. The generic ELF linker only | |
8925 | adds these symbols when building a shared object. Note that | |
8926 | we count the sections after (possibly) removing the .options | |
8927 | section above. */ | |
7a2a6943 NC |
8928 | |
8929 | dynsecsymcount = 0; | |
8930 | if (info->shared) | |
8931 | { | |
8932 | asection * p; | |
8933 | ||
8934 | for (p = abfd->sections; p ; p = p->next) | |
8935 | if ((p->flags & SEC_EXCLUDE) == 0 | |
8936 | && (p->flags & SEC_ALLOC) != 0 | |
8937 | && !(*bed->elf_backend_omit_section_dynsym) (abfd, info, p)) | |
8938 | ++ dynsecsymcount; | |
8939 | } | |
8940 | ||
8941 | if (! mips_elf_sort_hash_table (info, dynsecsymcount + 1)) | |
b34976b6 | 8942 | return FALSE; |
b49e97c9 TS |
8943 | |
8944 | /* Make sure we didn't grow the global .got region. */ | |
8945 | dynobj = elf_hash_table (info)->dynobj; | |
f4416af6 | 8946 | got = mips_elf_got_section (dynobj, FALSE); |
f0abc2a1 | 8947 | g = mips_elf_section_data (got)->u.got_info; |
b49e97c9 TS |
8948 | |
8949 | if (g->global_gotsym != NULL) | |
8950 | BFD_ASSERT ((elf_hash_table (info)->dynsymcount | |
8951 | - g->global_gotsym->dynindx) | |
8952 | <= g->global_gotno); | |
8953 | } | |
8954 | ||
b49e97c9 TS |
8955 | /* Get a value for the GP register. */ |
8956 | if (elf_gp (abfd) == 0) | |
8957 | { | |
8958 | struct bfd_link_hash_entry *h; | |
8959 | ||
b34976b6 | 8960 | h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE); |
9719ad41 | 8961 | if (h != NULL && h->type == bfd_link_hash_defined) |
b49e97c9 TS |
8962 | elf_gp (abfd) = (h->u.def.value |
8963 | + h->u.def.section->output_section->vma | |
8964 | + h->u.def.section->output_offset); | |
1049f94e | 8965 | else if (info->relocatable) |
b49e97c9 TS |
8966 | { |
8967 | bfd_vma lo = MINUS_ONE; | |
8968 | ||
8969 | /* Find the GP-relative section with the lowest offset. */ | |
9719ad41 | 8970 | for (o = abfd->sections; o != NULL; o = o->next) |
b49e97c9 TS |
8971 | if (o->vma < lo |
8972 | && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL)) | |
8973 | lo = o->vma; | |
8974 | ||
8975 | /* And calculate GP relative to that. */ | |
8976 | elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (abfd); | |
8977 | } | |
8978 | else | |
8979 | { | |
8980 | /* If the relocate_section function needs to do a reloc | |
8981 | involving the GP value, it should make a reloc_dangerous | |
8982 | callback to warn that GP is not defined. */ | |
8983 | } | |
8984 | } | |
8985 | ||
8986 | /* Go through the sections and collect the .reginfo and .mdebug | |
8987 | information. */ | |
8988 | reginfo_sec = NULL; | |
8989 | mdebug_sec = NULL; | |
8990 | gptab_data_sec = NULL; | |
8991 | gptab_bss_sec = NULL; | |
9719ad41 | 8992 | for (o = abfd->sections; o != NULL; o = o->next) |
b49e97c9 TS |
8993 | { |
8994 | if (strcmp (o->name, ".reginfo") == 0) | |
8995 | { | |
8996 | memset (®info, 0, sizeof reginfo); | |
8997 | ||
8998 | /* We have found the .reginfo section in the output file. | |
8999 | Look through all the link_orders comprising it and merge | |
9000 | the information together. */ | |
8423293d | 9001 | for (p = o->map_head.link_order; p != NULL; p = p->next) |
b49e97c9 TS |
9002 | { |
9003 | asection *input_section; | |
9004 | bfd *input_bfd; | |
9005 | Elf32_External_RegInfo ext; | |
9006 | Elf32_RegInfo sub; | |
9007 | ||
9008 | if (p->type != bfd_indirect_link_order) | |
9009 | { | |
9010 | if (p->type == bfd_data_link_order) | |
9011 | continue; | |
9012 | abort (); | |
9013 | } | |
9014 | ||
9015 | input_section = p->u.indirect.section; | |
9016 | input_bfd = input_section->owner; | |
9017 | ||
b49e97c9 | 9018 | if (! bfd_get_section_contents (input_bfd, input_section, |
9719ad41 | 9019 | &ext, 0, sizeof ext)) |
b34976b6 | 9020 | return FALSE; |
b49e97c9 TS |
9021 | |
9022 | bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub); | |
9023 | ||
9024 | reginfo.ri_gprmask |= sub.ri_gprmask; | |
9025 | reginfo.ri_cprmask[0] |= sub.ri_cprmask[0]; | |
9026 | reginfo.ri_cprmask[1] |= sub.ri_cprmask[1]; | |
9027 | reginfo.ri_cprmask[2] |= sub.ri_cprmask[2]; | |
9028 | reginfo.ri_cprmask[3] |= sub.ri_cprmask[3]; | |
9029 | ||
9030 | /* ri_gp_value is set by the function | |
9031 | mips_elf32_section_processing when the section is | |
9032 | finally written out. */ | |
9033 | ||
9034 | /* Hack: reset the SEC_HAS_CONTENTS flag so that | |
9035 | elf_link_input_bfd ignores this section. */ | |
9036 | input_section->flags &= ~SEC_HAS_CONTENTS; | |
9037 | } | |
9038 | ||
9039 | /* Size has been set in _bfd_mips_elf_always_size_sections. */ | |
eea6121a | 9040 | BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo)); |
b49e97c9 TS |
9041 | |
9042 | /* Skip this section later on (I don't think this currently | |
9043 | matters, but someday it might). */ | |
8423293d | 9044 | o->map_head.link_order = NULL; |
b49e97c9 TS |
9045 | |
9046 | reginfo_sec = o; | |
9047 | } | |
9048 | ||
9049 | if (strcmp (o->name, ".mdebug") == 0) | |
9050 | { | |
9051 | struct extsym_info einfo; | |
9052 | bfd_vma last; | |
9053 | ||
9054 | /* We have found the .mdebug section in the output file. | |
9055 | Look through all the link_orders comprising it and merge | |
9056 | the information together. */ | |
9057 | symhdr->magic = swap->sym_magic; | |
9058 | /* FIXME: What should the version stamp be? */ | |
9059 | symhdr->vstamp = 0; | |
9060 | symhdr->ilineMax = 0; | |
9061 | symhdr->cbLine = 0; | |
9062 | symhdr->idnMax = 0; | |
9063 | symhdr->ipdMax = 0; | |
9064 | symhdr->isymMax = 0; | |
9065 | symhdr->ioptMax = 0; | |
9066 | symhdr->iauxMax = 0; | |
9067 | symhdr->issMax = 0; | |
9068 | symhdr->issExtMax = 0; | |
9069 | symhdr->ifdMax = 0; | |
9070 | symhdr->crfd = 0; | |
9071 | symhdr->iextMax = 0; | |
9072 | ||
9073 | /* We accumulate the debugging information itself in the | |
9074 | debug_info structure. */ | |
9075 | debug.line = NULL; | |
9076 | debug.external_dnr = NULL; | |
9077 | debug.external_pdr = NULL; | |
9078 | debug.external_sym = NULL; | |
9079 | debug.external_opt = NULL; | |
9080 | debug.external_aux = NULL; | |
9081 | debug.ss = NULL; | |
9082 | debug.ssext = debug.ssext_end = NULL; | |
9083 | debug.external_fdr = NULL; | |
9084 | debug.external_rfd = NULL; | |
9085 | debug.external_ext = debug.external_ext_end = NULL; | |
9086 | ||
9087 | mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info); | |
9719ad41 | 9088 | if (mdebug_handle == NULL) |
b34976b6 | 9089 | return FALSE; |
b49e97c9 TS |
9090 | |
9091 | esym.jmptbl = 0; | |
9092 | esym.cobol_main = 0; | |
9093 | esym.weakext = 0; | |
9094 | esym.reserved = 0; | |
9095 | esym.ifd = ifdNil; | |
9096 | esym.asym.iss = issNil; | |
9097 | esym.asym.st = stLocal; | |
9098 | esym.asym.reserved = 0; | |
9099 | esym.asym.index = indexNil; | |
9100 | last = 0; | |
9101 | for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++) | |
9102 | { | |
9103 | esym.asym.sc = sc[i]; | |
9104 | s = bfd_get_section_by_name (abfd, secname[i]); | |
9105 | if (s != NULL) | |
9106 | { | |
9107 | esym.asym.value = s->vma; | |
eea6121a | 9108 | last = s->vma + s->size; |
b49e97c9 TS |
9109 | } |
9110 | else | |
9111 | esym.asym.value = last; | |
9112 | if (!bfd_ecoff_debug_one_external (abfd, &debug, swap, | |
9113 | secname[i], &esym)) | |
b34976b6 | 9114 | return FALSE; |
b49e97c9 TS |
9115 | } |
9116 | ||
8423293d | 9117 | for (p = o->map_head.link_order; p != NULL; p = p->next) |
b49e97c9 TS |
9118 | { |
9119 | asection *input_section; | |
9120 | bfd *input_bfd; | |
9121 | const struct ecoff_debug_swap *input_swap; | |
9122 | struct ecoff_debug_info input_debug; | |
9123 | char *eraw_src; | |
9124 | char *eraw_end; | |
9125 | ||
9126 | if (p->type != bfd_indirect_link_order) | |
9127 | { | |
9128 | if (p->type == bfd_data_link_order) | |
9129 | continue; | |
9130 | abort (); | |
9131 | } | |
9132 | ||
9133 | input_section = p->u.indirect.section; | |
9134 | input_bfd = input_section->owner; | |
9135 | ||
9136 | if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour | |
9137 | || (get_elf_backend_data (input_bfd) | |
9138 | ->elf_backend_ecoff_debug_swap) == NULL) | |
9139 | { | |
9140 | /* I don't know what a non MIPS ELF bfd would be | |
9141 | doing with a .mdebug section, but I don't really | |
9142 | want to deal with it. */ | |
9143 | continue; | |
9144 | } | |
9145 | ||
9146 | input_swap = (get_elf_backend_data (input_bfd) | |
9147 | ->elf_backend_ecoff_debug_swap); | |
9148 | ||
eea6121a | 9149 | BFD_ASSERT (p->size == input_section->size); |
b49e97c9 TS |
9150 | |
9151 | /* The ECOFF linking code expects that we have already | |
9152 | read in the debugging information and set up an | |
9153 | ecoff_debug_info structure, so we do that now. */ | |
9154 | if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section, | |
9155 | &input_debug)) | |
b34976b6 | 9156 | return FALSE; |
b49e97c9 TS |
9157 | |
9158 | if (! (bfd_ecoff_debug_accumulate | |
9159 | (mdebug_handle, abfd, &debug, swap, input_bfd, | |
9160 | &input_debug, input_swap, info))) | |
b34976b6 | 9161 | return FALSE; |
b49e97c9 TS |
9162 | |
9163 | /* Loop through the external symbols. For each one with | |
9164 | interesting information, try to find the symbol in | |
9165 | the linker global hash table and save the information | |
9166 | for the output external symbols. */ | |
9167 | eraw_src = input_debug.external_ext; | |
9168 | eraw_end = (eraw_src | |
9169 | + (input_debug.symbolic_header.iextMax | |
9170 | * input_swap->external_ext_size)); | |
9171 | for (; | |
9172 | eraw_src < eraw_end; | |
9173 | eraw_src += input_swap->external_ext_size) | |
9174 | { | |
9175 | EXTR ext; | |
9176 | const char *name; | |
9177 | struct mips_elf_link_hash_entry *h; | |
9178 | ||
9719ad41 | 9179 | (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext); |
b49e97c9 TS |
9180 | if (ext.asym.sc == scNil |
9181 | || ext.asym.sc == scUndefined | |
9182 | || ext.asym.sc == scSUndefined) | |
9183 | continue; | |
9184 | ||
9185 | name = input_debug.ssext + ext.asym.iss; | |
9186 | h = mips_elf_link_hash_lookup (mips_elf_hash_table (info), | |
b34976b6 | 9187 | name, FALSE, FALSE, TRUE); |
b49e97c9 TS |
9188 | if (h == NULL || h->esym.ifd != -2) |
9189 | continue; | |
9190 | ||
9191 | if (ext.ifd != -1) | |
9192 | { | |
9193 | BFD_ASSERT (ext.ifd | |
9194 | < input_debug.symbolic_header.ifdMax); | |
9195 | ext.ifd = input_debug.ifdmap[ext.ifd]; | |
9196 | } | |
9197 | ||
9198 | h->esym = ext; | |
9199 | } | |
9200 | ||
9201 | /* Free up the information we just read. */ | |
9202 | free (input_debug.line); | |
9203 | free (input_debug.external_dnr); | |
9204 | free (input_debug.external_pdr); | |
9205 | free (input_debug.external_sym); | |
9206 | free (input_debug.external_opt); | |
9207 | free (input_debug.external_aux); | |
9208 | free (input_debug.ss); | |
9209 | free (input_debug.ssext); | |
9210 | free (input_debug.external_fdr); | |
9211 | free (input_debug.external_rfd); | |
9212 | free (input_debug.external_ext); | |
9213 | ||
9214 | /* Hack: reset the SEC_HAS_CONTENTS flag so that | |
9215 | elf_link_input_bfd ignores this section. */ | |
9216 | input_section->flags &= ~SEC_HAS_CONTENTS; | |
9217 | } | |
9218 | ||
9219 | if (SGI_COMPAT (abfd) && info->shared) | |
9220 | { | |
9221 | /* Create .rtproc section. */ | |
9222 | rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc"); | |
9223 | if (rtproc_sec == NULL) | |
9224 | { | |
9225 | flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | |
9226 | | SEC_LINKER_CREATED | SEC_READONLY); | |
9227 | ||
3496cb2a L |
9228 | rtproc_sec = bfd_make_section_with_flags (abfd, |
9229 | ".rtproc", | |
9230 | flags); | |
b49e97c9 | 9231 | if (rtproc_sec == NULL |
b49e97c9 | 9232 | || ! bfd_set_section_alignment (abfd, rtproc_sec, 4)) |
b34976b6 | 9233 | return FALSE; |
b49e97c9 TS |
9234 | } |
9235 | ||
9236 | if (! mips_elf_create_procedure_table (mdebug_handle, abfd, | |
9237 | info, rtproc_sec, | |
9238 | &debug)) | |
b34976b6 | 9239 | return FALSE; |
b49e97c9 TS |
9240 | } |
9241 | ||
9242 | /* Build the external symbol information. */ | |
9243 | einfo.abfd = abfd; | |
9244 | einfo.info = info; | |
9245 | einfo.debug = &debug; | |
9246 | einfo.swap = swap; | |
b34976b6 | 9247 | einfo.failed = FALSE; |
b49e97c9 | 9248 | mips_elf_link_hash_traverse (mips_elf_hash_table (info), |
9719ad41 | 9249 | mips_elf_output_extsym, &einfo); |
b49e97c9 | 9250 | if (einfo.failed) |
b34976b6 | 9251 | return FALSE; |
b49e97c9 TS |
9252 | |
9253 | /* Set the size of the .mdebug section. */ | |
eea6121a | 9254 | o->size = bfd_ecoff_debug_size (abfd, &debug, swap); |
b49e97c9 TS |
9255 | |
9256 | /* Skip this section later on (I don't think this currently | |
9257 | matters, but someday it might). */ | |
8423293d | 9258 | o->map_head.link_order = NULL; |
b49e97c9 TS |
9259 | |
9260 | mdebug_sec = o; | |
9261 | } | |
9262 | ||
9263 | if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0) | |
9264 | { | |
9265 | const char *subname; | |
9266 | unsigned int c; | |
9267 | Elf32_gptab *tab; | |
9268 | Elf32_External_gptab *ext_tab; | |
9269 | unsigned int j; | |
9270 | ||
9271 | /* The .gptab.sdata and .gptab.sbss sections hold | |
9272 | information describing how the small data area would | |
9273 | change depending upon the -G switch. These sections | |
9274 | not used in executables files. */ | |
1049f94e | 9275 | if (! info->relocatable) |
b49e97c9 | 9276 | { |
8423293d | 9277 | for (p = o->map_head.link_order; p != NULL; p = p->next) |
b49e97c9 TS |
9278 | { |
9279 | asection *input_section; | |
9280 | ||
9281 | if (p->type != bfd_indirect_link_order) | |
9282 | { | |
9283 | if (p->type == bfd_data_link_order) | |
9284 | continue; | |
9285 | abort (); | |
9286 | } | |
9287 | ||
9288 | input_section = p->u.indirect.section; | |
9289 | ||
9290 | /* Hack: reset the SEC_HAS_CONTENTS flag so that | |
9291 | elf_link_input_bfd ignores this section. */ | |
9292 | input_section->flags &= ~SEC_HAS_CONTENTS; | |
9293 | } | |
9294 | ||
9295 | /* Skip this section later on (I don't think this | |
9296 | currently matters, but someday it might). */ | |
8423293d | 9297 | o->map_head.link_order = NULL; |
b49e97c9 TS |
9298 | |
9299 | /* Really remove the section. */ | |
5daa8fe7 | 9300 | bfd_section_list_remove (abfd, o); |
b49e97c9 TS |
9301 | --abfd->section_count; |
9302 | ||
9303 | continue; | |
9304 | } | |
9305 | ||
9306 | /* There is one gptab for initialized data, and one for | |
9307 | uninitialized data. */ | |
9308 | if (strcmp (o->name, ".gptab.sdata") == 0) | |
9309 | gptab_data_sec = o; | |
9310 | else if (strcmp (o->name, ".gptab.sbss") == 0) | |
9311 | gptab_bss_sec = o; | |
9312 | else | |
9313 | { | |
9314 | (*_bfd_error_handler) | |
9315 | (_("%s: illegal section name `%s'"), | |
9316 | bfd_get_filename (abfd), o->name); | |
9317 | bfd_set_error (bfd_error_nonrepresentable_section); | |
b34976b6 | 9318 | return FALSE; |
b49e97c9 TS |
9319 | } |
9320 | ||
9321 | /* The linker script always combines .gptab.data and | |
9322 | .gptab.sdata into .gptab.sdata, and likewise for | |
9323 | .gptab.bss and .gptab.sbss. It is possible that there is | |
9324 | no .sdata or .sbss section in the output file, in which | |
9325 | case we must change the name of the output section. */ | |
9326 | subname = o->name + sizeof ".gptab" - 1; | |
9327 | if (bfd_get_section_by_name (abfd, subname) == NULL) | |
9328 | { | |
9329 | if (o == gptab_data_sec) | |
9330 | o->name = ".gptab.data"; | |
9331 | else | |
9332 | o->name = ".gptab.bss"; | |
9333 | subname = o->name + sizeof ".gptab" - 1; | |
9334 | BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL); | |
9335 | } | |
9336 | ||
9337 | /* Set up the first entry. */ | |
9338 | c = 1; | |
9339 | amt = c * sizeof (Elf32_gptab); | |
9719ad41 | 9340 | tab = bfd_malloc (amt); |
b49e97c9 | 9341 | if (tab == NULL) |
b34976b6 | 9342 | return FALSE; |
b49e97c9 TS |
9343 | tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd); |
9344 | tab[0].gt_header.gt_unused = 0; | |
9345 | ||
9346 | /* Combine the input sections. */ | |
8423293d | 9347 | for (p = o->map_head.link_order; p != NULL; p = p->next) |
b49e97c9 TS |
9348 | { |
9349 | asection *input_section; | |
9350 | bfd *input_bfd; | |
9351 | bfd_size_type size; | |
9352 | unsigned long last; | |
9353 | bfd_size_type gpentry; | |
9354 | ||
9355 | if (p->type != bfd_indirect_link_order) | |
9356 | { | |
9357 | if (p->type == bfd_data_link_order) | |
9358 | continue; | |
9359 | abort (); | |
9360 | } | |
9361 | ||
9362 | input_section = p->u.indirect.section; | |
9363 | input_bfd = input_section->owner; | |
9364 | ||
9365 | /* Combine the gptab entries for this input section one | |
9366 | by one. We know that the input gptab entries are | |
9367 | sorted by ascending -G value. */ | |
eea6121a | 9368 | size = input_section->size; |
b49e97c9 TS |
9369 | last = 0; |
9370 | for (gpentry = sizeof (Elf32_External_gptab); | |
9371 | gpentry < size; | |
9372 | gpentry += sizeof (Elf32_External_gptab)) | |
9373 | { | |
9374 | Elf32_External_gptab ext_gptab; | |
9375 | Elf32_gptab int_gptab; | |
9376 | unsigned long val; | |
9377 | unsigned long add; | |
b34976b6 | 9378 | bfd_boolean exact; |
b49e97c9 TS |
9379 | unsigned int look; |
9380 | ||
9381 | if (! (bfd_get_section_contents | |
9719ad41 RS |
9382 | (input_bfd, input_section, &ext_gptab, gpentry, |
9383 | sizeof (Elf32_External_gptab)))) | |
b49e97c9 TS |
9384 | { |
9385 | free (tab); | |
b34976b6 | 9386 | return FALSE; |
b49e97c9 TS |
9387 | } |
9388 | ||
9389 | bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab, | |
9390 | &int_gptab); | |
9391 | val = int_gptab.gt_entry.gt_g_value; | |
9392 | add = int_gptab.gt_entry.gt_bytes - last; | |
9393 | ||
b34976b6 | 9394 | exact = FALSE; |
b49e97c9 TS |
9395 | for (look = 1; look < c; look++) |
9396 | { | |
9397 | if (tab[look].gt_entry.gt_g_value >= val) | |
9398 | tab[look].gt_entry.gt_bytes += add; | |
9399 | ||
9400 | if (tab[look].gt_entry.gt_g_value == val) | |
b34976b6 | 9401 | exact = TRUE; |
b49e97c9 TS |
9402 | } |
9403 | ||
9404 | if (! exact) | |
9405 | { | |
9406 | Elf32_gptab *new_tab; | |
9407 | unsigned int max; | |
9408 | ||
9409 | /* We need a new table entry. */ | |
9410 | amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab); | |
9719ad41 | 9411 | new_tab = bfd_realloc (tab, amt); |
b49e97c9 TS |
9412 | if (new_tab == NULL) |
9413 | { | |
9414 | free (tab); | |
b34976b6 | 9415 | return FALSE; |
b49e97c9 TS |
9416 | } |
9417 | tab = new_tab; | |
9418 | tab[c].gt_entry.gt_g_value = val; | |
9419 | tab[c].gt_entry.gt_bytes = add; | |
9420 | ||
9421 | /* Merge in the size for the next smallest -G | |
9422 | value, since that will be implied by this new | |
9423 | value. */ | |
9424 | max = 0; | |
9425 | for (look = 1; look < c; look++) | |
9426 | { | |
9427 | if (tab[look].gt_entry.gt_g_value < val | |
9428 | && (max == 0 | |
9429 | || (tab[look].gt_entry.gt_g_value | |
9430 | > tab[max].gt_entry.gt_g_value))) | |
9431 | max = look; | |
9432 | } | |
9433 | if (max != 0) | |
9434 | tab[c].gt_entry.gt_bytes += | |
9435 | tab[max].gt_entry.gt_bytes; | |
9436 | ||
9437 | ++c; | |
9438 | } | |
9439 | ||
9440 | last = int_gptab.gt_entry.gt_bytes; | |
9441 | } | |
9442 | ||
9443 | /* Hack: reset the SEC_HAS_CONTENTS flag so that | |
9444 | elf_link_input_bfd ignores this section. */ | |
9445 | input_section->flags &= ~SEC_HAS_CONTENTS; | |
9446 | } | |
9447 | ||
9448 | /* The table must be sorted by -G value. */ | |
9449 | if (c > 2) | |
9450 | qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare); | |
9451 | ||
9452 | /* Swap out the table. */ | |
9453 | amt = (bfd_size_type) c * sizeof (Elf32_External_gptab); | |
9719ad41 | 9454 | ext_tab = bfd_alloc (abfd, amt); |
b49e97c9 TS |
9455 | if (ext_tab == NULL) |
9456 | { | |
9457 | free (tab); | |
b34976b6 | 9458 | return FALSE; |
b49e97c9 TS |
9459 | } |
9460 | ||
9461 | for (j = 0; j < c; j++) | |
9462 | bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j); | |
9463 | free (tab); | |
9464 | ||
eea6121a | 9465 | o->size = c * sizeof (Elf32_External_gptab); |
b49e97c9 TS |
9466 | o->contents = (bfd_byte *) ext_tab; |
9467 | ||
9468 | /* Skip this section later on (I don't think this currently | |
9469 | matters, but someday it might). */ | |
8423293d | 9470 | o->map_head.link_order = NULL; |
b49e97c9 TS |
9471 | } |
9472 | } | |
9473 | ||
9474 | /* Invoke the regular ELF backend linker to do all the work. */ | |
c152c796 | 9475 | if (!bfd_elf_final_link (abfd, info)) |
b34976b6 | 9476 | return FALSE; |
b49e97c9 TS |
9477 | |
9478 | /* Now write out the computed sections. */ | |
9479 | ||
9719ad41 | 9480 | if (reginfo_sec != NULL) |
b49e97c9 TS |
9481 | { |
9482 | Elf32_External_RegInfo ext; | |
9483 | ||
9484 | bfd_mips_elf32_swap_reginfo_out (abfd, ®info, &ext); | |
9719ad41 | 9485 | if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext)) |
b34976b6 | 9486 | return FALSE; |
b49e97c9 TS |
9487 | } |
9488 | ||
9719ad41 | 9489 | if (mdebug_sec != NULL) |
b49e97c9 TS |
9490 | { |
9491 | BFD_ASSERT (abfd->output_has_begun); | |
9492 | if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug, | |
9493 | swap, info, | |
9494 | mdebug_sec->filepos)) | |
b34976b6 | 9495 | return FALSE; |
b49e97c9 TS |
9496 | |
9497 | bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info); | |
9498 | } | |
9499 | ||
9719ad41 | 9500 | if (gptab_data_sec != NULL) |
b49e97c9 TS |
9501 | { |
9502 | if (! bfd_set_section_contents (abfd, gptab_data_sec, | |
9503 | gptab_data_sec->contents, | |
eea6121a | 9504 | 0, gptab_data_sec->size)) |
b34976b6 | 9505 | return FALSE; |
b49e97c9 TS |
9506 | } |
9507 | ||
9719ad41 | 9508 | if (gptab_bss_sec != NULL) |
b49e97c9 TS |
9509 | { |
9510 | if (! bfd_set_section_contents (abfd, gptab_bss_sec, | |
9511 | gptab_bss_sec->contents, | |
eea6121a | 9512 | 0, gptab_bss_sec->size)) |
b34976b6 | 9513 | return FALSE; |
b49e97c9 TS |
9514 | } |
9515 | ||
9516 | if (SGI_COMPAT (abfd)) | |
9517 | { | |
9518 | rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc"); | |
9519 | if (rtproc_sec != NULL) | |
9520 | { | |
9521 | if (! bfd_set_section_contents (abfd, rtproc_sec, | |
9522 | rtproc_sec->contents, | |
eea6121a | 9523 | 0, rtproc_sec->size)) |
b34976b6 | 9524 | return FALSE; |
b49e97c9 TS |
9525 | } |
9526 | } | |
9527 | ||
b34976b6 | 9528 | return TRUE; |
b49e97c9 TS |
9529 | } |
9530 | \f | |
64543e1a RS |
9531 | /* Structure for saying that BFD machine EXTENSION extends BASE. */ |
9532 | ||
9533 | struct mips_mach_extension { | |
9534 | unsigned long extension, base; | |
9535 | }; | |
9536 | ||
9537 | ||
9538 | /* An array describing how BFD machines relate to one another. The entries | |
9539 | are ordered topologically with MIPS I extensions listed last. */ | |
9540 | ||
9541 | static const struct mips_mach_extension mips_mach_extensions[] = { | |
9542 | /* MIPS64 extensions. */ | |
5f74bc13 | 9543 | { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 }, |
64543e1a RS |
9544 | { bfd_mach_mips_sb1, bfd_mach_mipsisa64 }, |
9545 | ||
9546 | /* MIPS V extensions. */ | |
9547 | { bfd_mach_mipsisa64, bfd_mach_mips5 }, | |
9548 | ||
9549 | /* R10000 extensions. */ | |
9550 | { bfd_mach_mips12000, bfd_mach_mips10000 }, | |
9551 | ||
9552 | /* R5000 extensions. Note: the vr5500 ISA is an extension of the core | |
9553 | vr5400 ISA, but doesn't include the multimedia stuff. It seems | |
9554 | better to allow vr5400 and vr5500 code to be merged anyway, since | |
9555 | many libraries will just use the core ISA. Perhaps we could add | |
9556 | some sort of ASE flag if this ever proves a problem. */ | |
9557 | { bfd_mach_mips5500, bfd_mach_mips5400 }, | |
9558 | { bfd_mach_mips5400, bfd_mach_mips5000 }, | |
9559 | ||
9560 | /* MIPS IV extensions. */ | |
9561 | { bfd_mach_mips5, bfd_mach_mips8000 }, | |
9562 | { bfd_mach_mips10000, bfd_mach_mips8000 }, | |
9563 | { bfd_mach_mips5000, bfd_mach_mips8000 }, | |
5a7ea749 | 9564 | { bfd_mach_mips7000, bfd_mach_mips8000 }, |
0d2e43ed | 9565 | { bfd_mach_mips9000, bfd_mach_mips8000 }, |
64543e1a RS |
9566 | |
9567 | /* VR4100 extensions. */ | |
9568 | { bfd_mach_mips4120, bfd_mach_mips4100 }, | |
9569 | { bfd_mach_mips4111, bfd_mach_mips4100 }, | |
9570 | ||
9571 | /* MIPS III extensions. */ | |
9572 | { bfd_mach_mips8000, bfd_mach_mips4000 }, | |
9573 | { bfd_mach_mips4650, bfd_mach_mips4000 }, | |
9574 | { bfd_mach_mips4600, bfd_mach_mips4000 }, | |
9575 | { bfd_mach_mips4400, bfd_mach_mips4000 }, | |
9576 | { bfd_mach_mips4300, bfd_mach_mips4000 }, | |
9577 | { bfd_mach_mips4100, bfd_mach_mips4000 }, | |
9578 | { bfd_mach_mips4010, bfd_mach_mips4000 }, | |
9579 | ||
9580 | /* MIPS32 extensions. */ | |
9581 | { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 }, | |
9582 | ||
9583 | /* MIPS II extensions. */ | |
9584 | { bfd_mach_mips4000, bfd_mach_mips6000 }, | |
9585 | { bfd_mach_mipsisa32, bfd_mach_mips6000 }, | |
9586 | ||
9587 | /* MIPS I extensions. */ | |
9588 | { bfd_mach_mips6000, bfd_mach_mips3000 }, | |
9589 | { bfd_mach_mips3900, bfd_mach_mips3000 } | |
9590 | }; | |
9591 | ||
9592 | ||
9593 | /* Return true if bfd machine EXTENSION is an extension of machine BASE. */ | |
9594 | ||
9595 | static bfd_boolean | |
9719ad41 | 9596 | mips_mach_extends_p (unsigned long base, unsigned long extension) |
64543e1a RS |
9597 | { |
9598 | size_t i; | |
9599 | ||
9600 | for (i = 0; extension != base && i < ARRAY_SIZE (mips_mach_extensions); i++) | |
9601 | if (extension == mips_mach_extensions[i].extension) | |
9602 | extension = mips_mach_extensions[i].base; | |
9603 | ||
9604 | return extension == base; | |
9605 | } | |
9606 | ||
9607 | ||
9608 | /* Return true if the given ELF header flags describe a 32-bit binary. */ | |
00707a0e | 9609 | |
b34976b6 | 9610 | static bfd_boolean |
9719ad41 | 9611 | mips_32bit_flags_p (flagword flags) |
00707a0e | 9612 | { |
64543e1a RS |
9613 | return ((flags & EF_MIPS_32BITMODE) != 0 |
9614 | || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32 | |
9615 | || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32 | |
9616 | || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1 | |
9617 | || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2 | |
9618 | || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32 | |
9619 | || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2); | |
00707a0e RS |
9620 | } |
9621 | ||
64543e1a | 9622 | |
b49e97c9 TS |
9623 | /* Merge backend specific data from an object file to the output |
9624 | object file when linking. */ | |
9625 | ||
b34976b6 | 9626 | bfd_boolean |
9719ad41 | 9627 | _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd) |
b49e97c9 TS |
9628 | { |
9629 | flagword old_flags; | |
9630 | flagword new_flags; | |
b34976b6 AM |
9631 | bfd_boolean ok; |
9632 | bfd_boolean null_input_bfd = TRUE; | |
b49e97c9 TS |
9633 | asection *sec; |
9634 | ||
9635 | /* Check if we have the same endianess */ | |
82e51918 | 9636 | if (! _bfd_generic_verify_endian_match (ibfd, obfd)) |
aa701218 AO |
9637 | { |
9638 | (*_bfd_error_handler) | |
d003868e AM |
9639 | (_("%B: endianness incompatible with that of the selected emulation"), |
9640 | ibfd); | |
aa701218 AO |
9641 | return FALSE; |
9642 | } | |
b49e97c9 TS |
9643 | |
9644 | if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour | |
9645 | || bfd_get_flavour (obfd) != bfd_target_elf_flavour) | |
b34976b6 | 9646 | return TRUE; |
b49e97c9 | 9647 | |
aa701218 AO |
9648 | if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0) |
9649 | { | |
9650 | (*_bfd_error_handler) | |
d003868e AM |
9651 | (_("%B: ABI is incompatible with that of the selected emulation"), |
9652 | ibfd); | |
aa701218 AO |
9653 | return FALSE; |
9654 | } | |
9655 | ||
b49e97c9 TS |
9656 | new_flags = elf_elfheader (ibfd)->e_flags; |
9657 | elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER; | |
9658 | old_flags = elf_elfheader (obfd)->e_flags; | |
9659 | ||
9660 | if (! elf_flags_init (obfd)) | |
9661 | { | |
b34976b6 | 9662 | elf_flags_init (obfd) = TRUE; |
b49e97c9 TS |
9663 | elf_elfheader (obfd)->e_flags = new_flags; |
9664 | elf_elfheader (obfd)->e_ident[EI_CLASS] | |
9665 | = elf_elfheader (ibfd)->e_ident[EI_CLASS]; | |
9666 | ||
9667 | if (bfd_get_arch (obfd) == bfd_get_arch (ibfd) | |
9668 | && bfd_get_arch_info (obfd)->the_default) | |
9669 | { | |
9670 | if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), | |
9671 | bfd_get_mach (ibfd))) | |
b34976b6 | 9672 | return FALSE; |
b49e97c9 TS |
9673 | } |
9674 | ||
b34976b6 | 9675 | return TRUE; |
b49e97c9 TS |
9676 | } |
9677 | ||
9678 | /* Check flag compatibility. */ | |
9679 | ||
9680 | new_flags &= ~EF_MIPS_NOREORDER; | |
9681 | old_flags &= ~EF_MIPS_NOREORDER; | |
9682 | ||
f4416af6 AO |
9683 | /* Some IRIX 6 BSD-compatibility objects have this bit set. It |
9684 | doesn't seem to matter. */ | |
9685 | new_flags &= ~EF_MIPS_XGOT; | |
9686 | old_flags &= ~EF_MIPS_XGOT; | |
9687 | ||
98a8deaf RS |
9688 | /* MIPSpro generates ucode info in n64 objects. Again, we should |
9689 | just be able to ignore this. */ | |
9690 | new_flags &= ~EF_MIPS_UCODE; | |
9691 | old_flags &= ~EF_MIPS_UCODE; | |
9692 | ||
b49e97c9 | 9693 | if (new_flags == old_flags) |
b34976b6 | 9694 | return TRUE; |
b49e97c9 TS |
9695 | |
9696 | /* Check to see if the input BFD actually contains any sections. | |
9697 | If not, its flags may not have been initialised either, but it cannot | |
9698 | actually cause any incompatibility. */ | |
9699 | for (sec = ibfd->sections; sec != NULL; sec = sec->next) | |
9700 | { | |
9701 | /* Ignore synthetic sections and empty .text, .data and .bss sections | |
9702 | which are automatically generated by gas. */ | |
9703 | if (strcmp (sec->name, ".reginfo") | |
9704 | && strcmp (sec->name, ".mdebug") | |
eea6121a | 9705 | && (sec->size != 0 |
d13d89fa NS |
9706 | || (strcmp (sec->name, ".text") |
9707 | && strcmp (sec->name, ".data") | |
9708 | && strcmp (sec->name, ".bss")))) | |
b49e97c9 | 9709 | { |
b34976b6 | 9710 | null_input_bfd = FALSE; |
b49e97c9 TS |
9711 | break; |
9712 | } | |
9713 | } | |
9714 | if (null_input_bfd) | |
b34976b6 | 9715 | return TRUE; |
b49e97c9 | 9716 | |
b34976b6 | 9717 | ok = TRUE; |
b49e97c9 | 9718 | |
143d77c5 EC |
9719 | if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0) |
9720 | != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)) | |
b49e97c9 | 9721 | { |
b49e97c9 | 9722 | (*_bfd_error_handler) |
d003868e AM |
9723 | (_("%B: warning: linking PIC files with non-PIC files"), |
9724 | ibfd); | |
143d77c5 | 9725 | ok = TRUE; |
b49e97c9 TS |
9726 | } |
9727 | ||
143d77c5 EC |
9728 | if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) |
9729 | elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC; | |
9730 | if (! (new_flags & EF_MIPS_PIC)) | |
9731 | elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC; | |
9732 | ||
9733 | new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC); | |
9734 | old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC); | |
b49e97c9 | 9735 | |
64543e1a RS |
9736 | /* Compare the ISAs. */ |
9737 | if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags)) | |
b49e97c9 | 9738 | { |
64543e1a | 9739 | (*_bfd_error_handler) |
d003868e AM |
9740 | (_("%B: linking 32-bit code with 64-bit code"), |
9741 | ibfd); | |
64543e1a RS |
9742 | ok = FALSE; |
9743 | } | |
9744 | else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd))) | |
9745 | { | |
9746 | /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */ | |
9747 | if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd))) | |
b49e97c9 | 9748 | { |
64543e1a RS |
9749 | /* Copy the architecture info from IBFD to OBFD. Also copy |
9750 | the 32-bit flag (if set) so that we continue to recognise | |
9751 | OBFD as a 32-bit binary. */ | |
9752 | bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd)); | |
9753 | elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH); | |
9754 | elf_elfheader (obfd)->e_flags | |
9755 | |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE); | |
9756 | ||
9757 | /* Copy across the ABI flags if OBFD doesn't use them | |
9758 | and if that was what caused us to treat IBFD as 32-bit. */ | |
9759 | if ((old_flags & EF_MIPS_ABI) == 0 | |
9760 | && mips_32bit_flags_p (new_flags) | |
9761 | && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI)) | |
9762 | elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI; | |
b49e97c9 TS |
9763 | } |
9764 | else | |
9765 | { | |
64543e1a | 9766 | /* The ISAs aren't compatible. */ |
b49e97c9 | 9767 | (*_bfd_error_handler) |
d003868e AM |
9768 | (_("%B: linking %s module with previous %s modules"), |
9769 | ibfd, | |
64543e1a RS |
9770 | bfd_printable_name (ibfd), |
9771 | bfd_printable_name (obfd)); | |
b34976b6 | 9772 | ok = FALSE; |
b49e97c9 | 9773 | } |
b49e97c9 TS |
9774 | } |
9775 | ||
64543e1a RS |
9776 | new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE); |
9777 | old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE); | |
9778 | ||
9779 | /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it | |
b49e97c9 TS |
9780 | does set EI_CLASS differently from any 32-bit ABI. */ |
9781 | if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI) | |
9782 | || (elf_elfheader (ibfd)->e_ident[EI_CLASS] | |
9783 | != elf_elfheader (obfd)->e_ident[EI_CLASS])) | |
9784 | { | |
9785 | /* Only error if both are set (to different values). */ | |
9786 | if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI)) | |
9787 | || (elf_elfheader (ibfd)->e_ident[EI_CLASS] | |
9788 | != elf_elfheader (obfd)->e_ident[EI_CLASS])) | |
9789 | { | |
9790 | (*_bfd_error_handler) | |
d003868e AM |
9791 | (_("%B: ABI mismatch: linking %s module with previous %s modules"), |
9792 | ibfd, | |
b49e97c9 TS |
9793 | elf_mips_abi_name (ibfd), |
9794 | elf_mips_abi_name (obfd)); | |
b34976b6 | 9795 | ok = FALSE; |
b49e97c9 TS |
9796 | } |
9797 | new_flags &= ~EF_MIPS_ABI; | |
9798 | old_flags &= ~EF_MIPS_ABI; | |
9799 | } | |
9800 | ||
fb39dac1 RS |
9801 | /* For now, allow arbitrary mixing of ASEs (retain the union). */ |
9802 | if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE)) | |
9803 | { | |
9804 | elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE; | |
9805 | ||
9806 | new_flags &= ~ EF_MIPS_ARCH_ASE; | |
9807 | old_flags &= ~ EF_MIPS_ARCH_ASE; | |
9808 | } | |
9809 | ||
b49e97c9 TS |
9810 | /* Warn about any other mismatches */ |
9811 | if (new_flags != old_flags) | |
9812 | { | |
9813 | (*_bfd_error_handler) | |
d003868e AM |
9814 | (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"), |
9815 | ibfd, (unsigned long) new_flags, | |
b49e97c9 | 9816 | (unsigned long) old_flags); |
b34976b6 | 9817 | ok = FALSE; |
b49e97c9 TS |
9818 | } |
9819 | ||
9820 | if (! ok) | |
9821 | { | |
9822 | bfd_set_error (bfd_error_bad_value); | |
b34976b6 | 9823 | return FALSE; |
b49e97c9 TS |
9824 | } |
9825 | ||
b34976b6 | 9826 | return TRUE; |
b49e97c9 TS |
9827 | } |
9828 | ||
9829 | /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */ | |
9830 | ||
b34976b6 | 9831 | bfd_boolean |
9719ad41 | 9832 | _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags) |
b49e97c9 TS |
9833 | { |
9834 | BFD_ASSERT (!elf_flags_init (abfd) | |
9835 | || elf_elfheader (abfd)->e_flags == flags); | |
9836 | ||
9837 | elf_elfheader (abfd)->e_flags = flags; | |
b34976b6 AM |
9838 | elf_flags_init (abfd) = TRUE; |
9839 | return TRUE; | |
b49e97c9 TS |
9840 | } |
9841 | ||
b34976b6 | 9842 | bfd_boolean |
9719ad41 | 9843 | _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr) |
b49e97c9 | 9844 | { |
9719ad41 | 9845 | FILE *file = ptr; |
b49e97c9 TS |
9846 | |
9847 | BFD_ASSERT (abfd != NULL && ptr != NULL); | |
9848 | ||
9849 | /* Print normal ELF private data. */ | |
9850 | _bfd_elf_print_private_bfd_data (abfd, ptr); | |
9851 | ||
9852 | /* xgettext:c-format */ | |
9853 | fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags); | |
9854 | ||
9855 | if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32) | |
9856 | fprintf (file, _(" [abi=O32]")); | |
9857 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64) | |
9858 | fprintf (file, _(" [abi=O64]")); | |
9859 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32) | |
9860 | fprintf (file, _(" [abi=EABI32]")); | |
9861 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64) | |
9862 | fprintf (file, _(" [abi=EABI64]")); | |
9863 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI)) | |
9864 | fprintf (file, _(" [abi unknown]")); | |
9865 | else if (ABI_N32_P (abfd)) | |
9866 | fprintf (file, _(" [abi=N32]")); | |
9867 | else if (ABI_64_P (abfd)) | |
9868 | fprintf (file, _(" [abi=64]")); | |
9869 | else | |
9870 | fprintf (file, _(" [no abi set]")); | |
9871 | ||
9872 | if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1) | |
9873 | fprintf (file, _(" [mips1]")); | |
9874 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2) | |
9875 | fprintf (file, _(" [mips2]")); | |
9876 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3) | |
9877 | fprintf (file, _(" [mips3]")); | |
9878 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4) | |
9879 | fprintf (file, _(" [mips4]")); | |
9880 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5) | |
9881 | fprintf (file, _(" [mips5]")); | |
9882 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32) | |
9883 | fprintf (file, _(" [mips32]")); | |
9884 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64) | |
9885 | fprintf (file, _(" [mips64]")); | |
af7ee8bf CD |
9886 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2) |
9887 | fprintf (file, _(" [mips32r2]")); | |
5f74bc13 CD |
9888 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2) |
9889 | fprintf (file, _(" [mips64r2]")); | |
b49e97c9 TS |
9890 | else |
9891 | fprintf (file, _(" [unknown ISA]")); | |
9892 | ||
40d32fc6 CD |
9893 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX) |
9894 | fprintf (file, _(" [mdmx]")); | |
9895 | ||
9896 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16) | |
9897 | fprintf (file, _(" [mips16]")); | |
9898 | ||
b49e97c9 TS |
9899 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE) |
9900 | fprintf (file, _(" [32bitmode]")); | |
9901 | else | |
9902 | fprintf (file, _(" [not 32bitmode]")); | |
9903 | ||
9904 | fputc ('\n', file); | |
9905 | ||
b34976b6 | 9906 | return TRUE; |
b49e97c9 | 9907 | } |
2f89ff8d | 9908 | |
7f4d3958 L |
9909 | static struct bfd_elf_special_section const |
9910 | mips_special_sections_l[]= | |
2f89ff8d | 9911 | { |
7dcb9820 AM |
9912 | { ".lit4", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, |
9913 | { ".lit8", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, | |
7f4d3958 L |
9914 | { NULL, 0, 0, 0, 0 } |
9915 | }; | |
9916 | ||
9917 | static struct bfd_elf_special_section const | |
9918 | mips_special_sections_m[]= | |
9919 | { | |
7dcb9820 AM |
9920 | { ".mdebug", 7, 0, SHT_MIPS_DEBUG, 0 }, |
9921 | { NULL, 0, 0, 0, 0 } | |
2f89ff8d | 9922 | }; |
7f4d3958 L |
9923 | |
9924 | static struct bfd_elf_special_section const | |
9925 | mips_special_sections_s[]= | |
9926 | { | |
9927 | { ".sdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, | |
9928 | { ".sbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, | |
9929 | }; | |
9930 | ||
9931 | static struct bfd_elf_special_section const | |
9932 | mips_special_sections_u[]= | |
9933 | { | |
9934 | { ".ucode", 6, 0, SHT_MIPS_UCODE, 0 }, | |
9935 | { NULL, 0, 0, 0, 0 } | |
9936 | }; | |
9937 | ||
9938 | struct bfd_elf_special_section const * | |
9939 | _bfd_mips_elf_special_sections[27] = | |
9940 | { | |
9941 | NULL, /* 'a' */ | |
9942 | NULL, /* 'b' */ | |
9943 | NULL, /* 'c' */ | |
9944 | NULL, /* 'd' */ | |
9945 | NULL, /* 'e' */ | |
9946 | NULL, /* 'f' */ | |
9947 | NULL, /* 'g' */ | |
9948 | NULL, /* 'h' */ | |
9949 | NULL, /* 'i' */ | |
9950 | NULL, /* 'j' */ | |
9951 | NULL, /* 'k' */ | |
9952 | mips_special_sections_l, /* 'l' */ | |
9953 | mips_special_sections_m, /* 'm' */ | |
9954 | NULL, /* 'n' */ | |
9955 | NULL, /* 'o' */ | |
9956 | NULL, /* 'p' */ | |
9957 | NULL, /* 'q' */ | |
9958 | NULL, /* 'r' */ | |
9959 | mips_special_sections_s, /* 'm' */ | |
9960 | NULL, /* 't' */ | |
9961 | mips_special_sections_u, /* 'u' */ | |
9962 | NULL, /* 'v' */ | |
9963 | NULL, /* 'w' */ | |
9964 | NULL, /* 'x' */ | |
9965 | NULL, /* 'y' */ | |
9966 | NULL, /* 'z' */ | |
9967 | NULL /* other */ | |
9968 | }; |