]>
Commit | Line | Data |
---|---|---|
b49e97c9 TS |
1 | /* MIPS-specific support for ELF |
2 | Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002 | |
3 | Free Software Foundation, Inc. | |
4 | ||
5 | Most of the information added by Ian Lance Taylor, Cygnus Support, | |
6 | <[email protected]>. | |
7 | N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC. | |
8 | <[email protected]> | |
9 | Traditional MIPS targets support added by Koundinya.K, Dansk Data | |
10 | Elektronik & Operations Research Group. <[email protected]> | |
11 | ||
12 | This file is part of BFD, the Binary File Descriptor library. | |
13 | ||
14 | This program is free software; you can redistribute it and/or modify | |
15 | it under the terms of the GNU General Public License as published by | |
16 | the Free Software Foundation; either version 2 of the License, or | |
17 | (at your option) any later version. | |
18 | ||
19 | This program is distributed in the hope that it will be useful, | |
20 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
21 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
22 | GNU General Public License for more details. | |
23 | ||
24 | You should have received a copy of the GNU General Public License | |
25 | along with this program; if not, write to the Free Software | |
26 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ | |
27 | ||
28 | /* This file handles functionality common to the different MIPS ABI's. */ | |
29 | ||
30 | #include "bfd.h" | |
31 | #include "sysdep.h" | |
32 | #include "libbfd.h" | |
33 | #include "elf-bfd.h" | |
34 | #include "elfxx-mips.h" | |
35 | #include "elf/mips.h" | |
36 | ||
37 | /* Get the ECOFF swapping routines. */ | |
38 | #include "coff/sym.h" | |
39 | #include "coff/symconst.h" | |
40 | #include "coff/ecoff.h" | |
41 | #include "coff/mips.h" | |
42 | ||
43 | /* This structure is used to hold .got information when linking. It | |
44 | is stored in the tdata field of the bfd_elf_section_data structure. */ | |
45 | ||
46 | struct mips_got_info | |
47 | { | |
48 | /* The global symbol in the GOT with the lowest index in the dynamic | |
49 | symbol table. */ | |
50 | struct elf_link_hash_entry *global_gotsym; | |
51 | /* The number of global .got entries. */ | |
52 | unsigned int global_gotno; | |
53 | /* The number of local .got entries. */ | |
54 | unsigned int local_gotno; | |
55 | /* The number of local .got entries we have used. */ | |
56 | unsigned int assigned_gotno; | |
57 | }; | |
58 | ||
59 | /* This structure is passed to mips_elf_sort_hash_table_f when sorting | |
60 | the dynamic symbols. */ | |
61 | ||
62 | struct mips_elf_hash_sort_data | |
63 | { | |
64 | /* The symbol in the global GOT with the lowest dynamic symbol table | |
65 | index. */ | |
66 | struct elf_link_hash_entry *low; | |
67 | /* The least dynamic symbol table index corresponding to a symbol | |
68 | with a GOT entry. */ | |
69 | long min_got_dynindx; | |
70 | /* The greatest dynamic symbol table index not corresponding to a | |
71 | symbol without a GOT entry. */ | |
72 | long max_non_got_dynindx; | |
73 | }; | |
74 | ||
75 | /* The MIPS ELF linker needs additional information for each symbol in | |
76 | the global hash table. */ | |
77 | ||
78 | struct mips_elf_link_hash_entry | |
79 | { | |
80 | struct elf_link_hash_entry root; | |
81 | ||
82 | /* External symbol information. */ | |
83 | EXTR esym; | |
84 | ||
85 | /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against | |
86 | this symbol. */ | |
87 | unsigned int possibly_dynamic_relocs; | |
88 | ||
89 | /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against | |
90 | a readonly section. */ | |
91 | boolean readonly_reloc; | |
92 | ||
93 | /* The index of the first dynamic relocation (in the .rel.dyn | |
94 | section) against this symbol. */ | |
95 | unsigned int min_dyn_reloc_index; | |
96 | ||
97 | /* We must not create a stub for a symbol that has relocations | |
98 | related to taking the function's address, i.e. any but | |
99 | R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition", | |
100 | p. 4-20. */ | |
101 | boolean no_fn_stub; | |
102 | ||
103 | /* If there is a stub that 32 bit functions should use to call this | |
104 | 16 bit function, this points to the section containing the stub. */ | |
105 | asection *fn_stub; | |
106 | ||
107 | /* Whether we need the fn_stub; this is set if this symbol appears | |
108 | in any relocs other than a 16 bit call. */ | |
109 | boolean need_fn_stub; | |
110 | ||
111 | /* If there is a stub that 16 bit functions should use to call this | |
112 | 32 bit function, this points to the section containing the stub. */ | |
113 | asection *call_stub; | |
114 | ||
115 | /* This is like the call_stub field, but it is used if the function | |
116 | being called returns a floating point value. */ | |
117 | asection *call_fp_stub; | |
7c5fcef7 L |
118 | |
119 | /* Are we forced local? .*/ | |
120 | boolean forced_local; | |
b49e97c9 TS |
121 | }; |
122 | ||
123 | /* MIPS ELF linker hash table. */ | |
124 | ||
125 | struct mips_elf_link_hash_table | |
126 | { | |
127 | struct elf_link_hash_table root; | |
128 | #if 0 | |
129 | /* We no longer use this. */ | |
130 | /* String section indices for the dynamic section symbols. */ | |
131 | bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES]; | |
132 | #endif | |
133 | /* The number of .rtproc entries. */ | |
134 | bfd_size_type procedure_count; | |
135 | /* The size of the .compact_rel section (if SGI_COMPAT). */ | |
136 | bfd_size_type compact_rel_size; | |
137 | /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic | |
8dc1a139 | 138 | entry is set to the address of __rld_obj_head as in IRIX5. */ |
b49e97c9 TS |
139 | boolean use_rld_obj_head; |
140 | /* This is the value of the __rld_map or __rld_obj_head symbol. */ | |
141 | bfd_vma rld_value; | |
142 | /* This is set if we see any mips16 stub sections. */ | |
143 | boolean mips16_stubs_seen; | |
144 | }; | |
145 | ||
146 | /* Structure used to pass information to mips_elf_output_extsym. */ | |
147 | ||
148 | struct extsym_info | |
149 | { | |
150 | bfd *abfd; | |
151 | struct bfd_link_info *info; | |
152 | struct ecoff_debug_info *debug; | |
153 | const struct ecoff_debug_swap *swap; | |
154 | boolean failed; | |
155 | }; | |
156 | ||
8dc1a139 | 157 | /* The names of the runtime procedure table symbols used on IRIX5. */ |
b49e97c9 TS |
158 | |
159 | static const char * const mips_elf_dynsym_rtproc_names[] = | |
160 | { | |
161 | "_procedure_table", | |
162 | "_procedure_string_table", | |
163 | "_procedure_table_size", | |
164 | NULL | |
165 | }; | |
166 | ||
167 | /* These structures are used to generate the .compact_rel section on | |
8dc1a139 | 168 | IRIX5. */ |
b49e97c9 TS |
169 | |
170 | typedef struct | |
171 | { | |
172 | unsigned long id1; /* Always one? */ | |
173 | unsigned long num; /* Number of compact relocation entries. */ | |
174 | unsigned long id2; /* Always two? */ | |
175 | unsigned long offset; /* The file offset of the first relocation. */ | |
176 | unsigned long reserved0; /* Zero? */ | |
177 | unsigned long reserved1; /* Zero? */ | |
178 | } Elf32_compact_rel; | |
179 | ||
180 | typedef struct | |
181 | { | |
182 | bfd_byte id1[4]; | |
183 | bfd_byte num[4]; | |
184 | bfd_byte id2[4]; | |
185 | bfd_byte offset[4]; | |
186 | bfd_byte reserved0[4]; | |
187 | bfd_byte reserved1[4]; | |
188 | } Elf32_External_compact_rel; | |
189 | ||
190 | typedef struct | |
191 | { | |
192 | unsigned int ctype : 1; /* 1: long 0: short format. See below. */ | |
193 | unsigned int rtype : 4; /* Relocation types. See below. */ | |
194 | unsigned int dist2to : 8; | |
195 | unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */ | |
196 | unsigned long konst; /* KONST field. See below. */ | |
197 | unsigned long vaddr; /* VADDR to be relocated. */ | |
198 | } Elf32_crinfo; | |
199 | ||
200 | typedef struct | |
201 | { | |
202 | unsigned int ctype : 1; /* 1: long 0: short format. See below. */ | |
203 | unsigned int rtype : 4; /* Relocation types. See below. */ | |
204 | unsigned int dist2to : 8; | |
205 | unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */ | |
206 | unsigned long konst; /* KONST field. See below. */ | |
207 | } Elf32_crinfo2; | |
208 | ||
209 | typedef struct | |
210 | { | |
211 | bfd_byte info[4]; | |
212 | bfd_byte konst[4]; | |
213 | bfd_byte vaddr[4]; | |
214 | } Elf32_External_crinfo; | |
215 | ||
216 | typedef struct | |
217 | { | |
218 | bfd_byte info[4]; | |
219 | bfd_byte konst[4]; | |
220 | } Elf32_External_crinfo2; | |
221 | ||
222 | /* These are the constants used to swap the bitfields in a crinfo. */ | |
223 | ||
224 | #define CRINFO_CTYPE (0x1) | |
225 | #define CRINFO_CTYPE_SH (31) | |
226 | #define CRINFO_RTYPE (0xf) | |
227 | #define CRINFO_RTYPE_SH (27) | |
228 | #define CRINFO_DIST2TO (0xff) | |
229 | #define CRINFO_DIST2TO_SH (19) | |
230 | #define CRINFO_RELVADDR (0x7ffff) | |
231 | #define CRINFO_RELVADDR_SH (0) | |
232 | ||
233 | /* A compact relocation info has long (3 words) or short (2 words) | |
234 | formats. A short format doesn't have VADDR field and relvaddr | |
235 | fields contains ((VADDR - vaddr of the previous entry) >> 2). */ | |
236 | #define CRF_MIPS_LONG 1 | |
237 | #define CRF_MIPS_SHORT 0 | |
238 | ||
239 | /* There are 4 types of compact relocation at least. The value KONST | |
240 | has different meaning for each type: | |
241 | ||
242 | (type) (konst) | |
243 | CT_MIPS_REL32 Address in data | |
244 | CT_MIPS_WORD Address in word (XXX) | |
245 | CT_MIPS_GPHI_LO GP - vaddr | |
246 | CT_MIPS_JMPAD Address to jump | |
247 | */ | |
248 | ||
249 | #define CRT_MIPS_REL32 0xa | |
250 | #define CRT_MIPS_WORD 0xb | |
251 | #define CRT_MIPS_GPHI_LO 0xc | |
252 | #define CRT_MIPS_JMPAD 0xd | |
253 | ||
254 | #define mips_elf_set_cr_format(x,format) ((x).ctype = (format)) | |
255 | #define mips_elf_set_cr_type(x,type) ((x).rtype = (type)) | |
256 | #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v)) | |
257 | #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2) | |
258 | \f | |
259 | /* The structure of the runtime procedure descriptor created by the | |
260 | loader for use by the static exception system. */ | |
261 | ||
262 | typedef struct runtime_pdr { | |
263 | bfd_vma adr; /* memory address of start of procedure */ | |
264 | long regmask; /* save register mask */ | |
265 | long regoffset; /* save register offset */ | |
266 | long fregmask; /* save floating point register mask */ | |
267 | long fregoffset; /* save floating point register offset */ | |
268 | long frameoffset; /* frame size */ | |
269 | short framereg; /* frame pointer register */ | |
270 | short pcreg; /* offset or reg of return pc */ | |
271 | long irpss; /* index into the runtime string table */ | |
272 | long reserved; | |
273 | struct exception_info *exception_info;/* pointer to exception array */ | |
274 | } RPDR, *pRPDR; | |
275 | #define cbRPDR sizeof (RPDR) | |
276 | #define rpdNil ((pRPDR) 0) | |
277 | \f | |
278 | static struct bfd_hash_entry *mips_elf_link_hash_newfunc | |
279 | PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *)); | |
280 | static void ecoff_swap_rpdr_out | |
281 | PARAMS ((bfd *, const RPDR *, struct rpdr_ext *)); | |
282 | static boolean mips_elf_create_procedure_table | |
283 | PARAMS ((PTR, bfd *, struct bfd_link_info *, asection *, | |
284 | struct ecoff_debug_info *)); | |
285 | static boolean mips_elf_check_mips16_stubs | |
286 | PARAMS ((struct mips_elf_link_hash_entry *, PTR)); | |
287 | static void bfd_mips_elf32_swap_gptab_in | |
288 | PARAMS ((bfd *, const Elf32_External_gptab *, Elf32_gptab *)); | |
289 | static void bfd_mips_elf32_swap_gptab_out | |
290 | PARAMS ((bfd *, const Elf32_gptab *, Elf32_External_gptab *)); | |
291 | static void bfd_elf32_swap_compact_rel_out | |
292 | PARAMS ((bfd *, const Elf32_compact_rel *, Elf32_External_compact_rel *)); | |
293 | static void bfd_elf32_swap_crinfo_out | |
294 | PARAMS ((bfd *, const Elf32_crinfo *, Elf32_External_crinfo *)); | |
295 | #if 0 | |
296 | static void bfd_mips_elf_swap_msym_in | |
297 | PARAMS ((bfd *, const Elf32_External_Msym *, Elf32_Internal_Msym *)); | |
298 | #endif | |
299 | static void bfd_mips_elf_swap_msym_out | |
300 | PARAMS ((bfd *, const Elf32_Internal_Msym *, Elf32_External_Msym *)); | |
301 | static int sort_dynamic_relocs | |
302 | PARAMS ((const void *, const void *)); | |
303 | static boolean mips_elf_output_extsym | |
304 | PARAMS ((struct mips_elf_link_hash_entry *, PTR)); | |
305 | static int gptab_compare PARAMS ((const void *, const void *)); | |
306 | static asection * mips_elf_got_section PARAMS ((bfd *)); | |
307 | static struct mips_got_info *mips_elf_got_info | |
308 | PARAMS ((bfd *, asection **)); | |
309 | static bfd_vma mips_elf_local_got_index | |
310 | PARAMS ((bfd *, struct bfd_link_info *, bfd_vma)); | |
311 | static bfd_vma mips_elf_global_got_index | |
312 | PARAMS ((bfd *, struct elf_link_hash_entry *)); | |
313 | static bfd_vma mips_elf_got_page | |
314 | PARAMS ((bfd *, struct bfd_link_info *, bfd_vma, bfd_vma *)); | |
315 | static bfd_vma mips_elf_got16_entry | |
316 | PARAMS ((bfd *, struct bfd_link_info *, bfd_vma, boolean)); | |
317 | static bfd_vma mips_elf_got_offset_from_index | |
318 | PARAMS ((bfd *, bfd *, bfd_vma)); | |
319 | static bfd_vma mips_elf_create_local_got_entry | |
320 | PARAMS ((bfd *, struct mips_got_info *, asection *, bfd_vma)); | |
321 | static boolean mips_elf_sort_hash_table | |
322 | PARAMS ((struct bfd_link_info *, unsigned long)); | |
323 | static boolean mips_elf_sort_hash_table_f | |
324 | PARAMS ((struct mips_elf_link_hash_entry *, PTR)); | |
325 | static boolean mips_elf_record_global_got_symbol | |
326 | PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *, | |
327 | struct mips_got_info *)); | |
328 | static const Elf_Internal_Rela *mips_elf_next_relocation | |
329 | PARAMS ((bfd *, unsigned int, const Elf_Internal_Rela *, | |
330 | const Elf_Internal_Rela *)); | |
331 | static boolean mips_elf_local_relocation_p | |
332 | PARAMS ((bfd *, const Elf_Internal_Rela *, asection **, boolean)); | |
333 | static bfd_vma mips_elf_sign_extend PARAMS ((bfd_vma, int)); | |
334 | static boolean mips_elf_overflow_p PARAMS ((bfd_vma, int)); | |
335 | static bfd_vma mips_elf_high PARAMS ((bfd_vma)); | |
336 | static bfd_vma mips_elf_higher PARAMS ((bfd_vma)); | |
337 | static bfd_vma mips_elf_highest PARAMS ((bfd_vma)); | |
338 | static boolean mips_elf_create_compact_rel_section | |
339 | PARAMS ((bfd *, struct bfd_link_info *)); | |
340 | static boolean mips_elf_create_got_section | |
341 | PARAMS ((bfd *, struct bfd_link_info *)); | |
342 | static asection *mips_elf_create_msym_section | |
343 | PARAMS ((bfd *)); | |
344 | static bfd_reloc_status_type mips_elf_calculate_relocation | |
345 | PARAMS ((bfd *, bfd *, asection *, struct bfd_link_info *, | |
346 | const Elf_Internal_Rela *, bfd_vma, reloc_howto_type *, | |
347 | Elf_Internal_Sym *, asection **, bfd_vma *, const char **, | |
348 | boolean *)); | |
349 | static bfd_vma mips_elf_obtain_contents | |
350 | PARAMS ((reloc_howto_type *, const Elf_Internal_Rela *, bfd *, bfd_byte *)); | |
351 | static boolean mips_elf_perform_relocation | |
352 | PARAMS ((struct bfd_link_info *, reloc_howto_type *, | |
353 | const Elf_Internal_Rela *, bfd_vma, bfd *, asection *, bfd_byte *, | |
354 | boolean)); | |
355 | static boolean mips_elf_stub_section_p | |
356 | PARAMS ((bfd *, asection *)); | |
357 | static void mips_elf_allocate_dynamic_relocations | |
358 | PARAMS ((bfd *, unsigned int)); | |
359 | static boolean mips_elf_create_dynamic_relocation | |
360 | PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Rela *, | |
361 | struct mips_elf_link_hash_entry *, asection *, | |
362 | bfd_vma, bfd_vma *, asection *)); | |
363 | static INLINE int elf_mips_isa PARAMS ((flagword)); | |
364 | static INLINE char* elf_mips_abi_name PARAMS ((bfd *)); | |
365 | static void mips_elf_irix6_finish_dynamic_symbol | |
366 | PARAMS ((bfd *, const char *, Elf_Internal_Sym *)); | |
367 | ||
368 | /* This will be used when we sort the dynamic relocation records. */ | |
369 | static bfd *reldyn_sorting_bfd; | |
370 | ||
371 | /* Nonzero if ABFD is using the N32 ABI. */ | |
372 | ||
373 | #define ABI_N32_P(abfd) \ | |
374 | ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0) | |
375 | ||
4a14403c | 376 | /* Nonzero if ABFD is using the N64 ABI. */ |
b49e97c9 | 377 | #define ABI_64_P(abfd) \ |
141ff970 | 378 | (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64) |
b49e97c9 | 379 | |
4a14403c TS |
380 | /* Nonzero if ABFD is using NewABI conventions. */ |
381 | #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd)) | |
382 | ||
383 | /* The IRIX compatibility level we are striving for. */ | |
b49e97c9 TS |
384 | #define IRIX_COMPAT(abfd) \ |
385 | (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd)) | |
386 | ||
b49e97c9 TS |
387 | /* Whether we are trying to be compatible with IRIX at all. */ |
388 | #define SGI_COMPAT(abfd) \ | |
389 | (IRIX_COMPAT (abfd) != ict_none) | |
390 | ||
391 | /* The name of the options section. */ | |
392 | #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \ | |
4a14403c | 393 | (ABI_64_P (abfd) ? ".MIPS.options" : ".options") |
b49e97c9 TS |
394 | |
395 | /* The name of the stub section. */ | |
396 | #define MIPS_ELF_STUB_SECTION_NAME(abfd) \ | |
4a14403c | 397 | (ABI_64_P (abfd) ? ".MIPS.stubs" : ".stub") |
b49e97c9 TS |
398 | |
399 | /* The size of an external REL relocation. */ | |
400 | #define MIPS_ELF_REL_SIZE(abfd) \ | |
401 | (get_elf_backend_data (abfd)->s->sizeof_rel) | |
402 | ||
403 | /* The size of an external dynamic table entry. */ | |
404 | #define MIPS_ELF_DYN_SIZE(abfd) \ | |
405 | (get_elf_backend_data (abfd)->s->sizeof_dyn) | |
406 | ||
407 | /* The size of a GOT entry. */ | |
408 | #define MIPS_ELF_GOT_SIZE(abfd) \ | |
409 | (get_elf_backend_data (abfd)->s->arch_size / 8) | |
410 | ||
411 | /* The size of a symbol-table entry. */ | |
412 | #define MIPS_ELF_SYM_SIZE(abfd) \ | |
413 | (get_elf_backend_data (abfd)->s->sizeof_sym) | |
414 | ||
415 | /* The default alignment for sections, as a power of two. */ | |
416 | #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \ | |
417 | (get_elf_backend_data (abfd)->s->file_align == 8 ? 3 : 2) | |
418 | ||
419 | /* Get word-sized data. */ | |
420 | #define MIPS_ELF_GET_WORD(abfd, ptr) \ | |
421 | (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr)) | |
422 | ||
423 | /* Put out word-sized data. */ | |
424 | #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \ | |
425 | (ABI_64_P (abfd) \ | |
426 | ? bfd_put_64 (abfd, val, ptr) \ | |
427 | : bfd_put_32 (abfd, val, ptr)) | |
428 | ||
429 | /* Add a dynamic symbol table-entry. */ | |
430 | #ifdef BFD64 | |
431 | #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \ | |
432 | (ABI_64_P (elf_hash_table (info)->dynobj) \ | |
433 | ? bfd_elf64_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val) \ | |
434 | : bfd_elf32_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val)) | |
435 | #else | |
436 | #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \ | |
437 | (ABI_64_P (elf_hash_table (info)->dynobj) \ | |
438 | ? (boolean) (abort (), false) \ | |
439 | : bfd_elf32_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val)) | |
440 | #endif | |
441 | ||
442 | #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \ | |
443 | (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela)) | |
444 | ||
445 | /* In case we're on a 32-bit machine, construct a 64-bit "-1" value | |
446 | from smaller values. Start with zero, widen, *then* decrement. */ | |
447 | #define MINUS_ONE (((bfd_vma)0) - 1) | |
448 | ||
449 | /* The number of local .got entries we reserve. */ | |
450 | #define MIPS_RESERVED_GOTNO (2) | |
451 | ||
452 | /* Instructions which appear in a stub. For some reason the stub is | |
453 | slightly different on an SGI system. */ | |
454 | #define ELF_MIPS_GP_OFFSET(abfd) (SGI_COMPAT (abfd) ? 0x7ff0 : 0x8000) | |
455 | #define STUB_LW(abfd) \ | |
456 | (SGI_COMPAT (abfd) \ | |
457 | ? (ABI_64_P (abfd) \ | |
458 | ? 0xdf998010 /* ld t9,0x8010(gp) */ \ | |
459 | : 0x8f998010) /* lw t9,0x8010(gp) */ \ | |
460 | : 0x8f998010) /* lw t9,0x8000(gp) */ | |
461 | #define STUB_MOVE(abfd) \ | |
462 | (SGI_COMPAT (abfd) ? 0x03e07825 : 0x03e07821) /* move t7,ra */ | |
463 | #define STUB_JALR 0x0320f809 /* jal t9 */ | |
464 | #define STUB_LI16(abfd) \ | |
465 | (SGI_COMPAT (abfd) ? 0x34180000 : 0x24180000) /* ori t8,zero,0 */ | |
466 | #define MIPS_FUNCTION_STUB_SIZE (16) | |
467 | ||
468 | /* The name of the dynamic interpreter. This is put in the .interp | |
469 | section. */ | |
470 | ||
471 | #define ELF_DYNAMIC_INTERPRETER(abfd) \ | |
472 | (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \ | |
473 | : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \ | |
474 | : "/usr/lib/libc.so.1") | |
475 | ||
476 | #ifdef BFD64 | |
477 | #define ELF_R_SYM(bfd, i) \ | |
478 | (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i)) | |
479 | #define ELF_R_TYPE(bfd, i) \ | |
480 | (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i)) | |
481 | #define ELF_R_INFO(bfd, s, t) \ | |
482 | (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t)) | |
483 | #else | |
484 | #define ELF_R_SYM(bfd, i) \ | |
485 | (ELF32_R_SYM (i)) | |
486 | #define ELF_R_TYPE(bfd, i) \ | |
487 | (ELF32_R_TYPE (i)) | |
488 | #define ELF_R_INFO(bfd, s, t) \ | |
489 | (ELF32_R_INFO (s, t)) | |
490 | #endif | |
491 | \f | |
492 | /* The mips16 compiler uses a couple of special sections to handle | |
493 | floating point arguments. | |
494 | ||
495 | Section names that look like .mips16.fn.FNNAME contain stubs that | |
496 | copy floating point arguments from the fp regs to the gp regs and | |
497 | then jump to FNNAME. If any 32 bit function calls FNNAME, the | |
498 | call should be redirected to the stub instead. If no 32 bit | |
499 | function calls FNNAME, the stub should be discarded. We need to | |
500 | consider any reference to the function, not just a call, because | |
501 | if the address of the function is taken we will need the stub, | |
502 | since the address might be passed to a 32 bit function. | |
503 | ||
504 | Section names that look like .mips16.call.FNNAME contain stubs | |
505 | that copy floating point arguments from the gp regs to the fp | |
506 | regs and then jump to FNNAME. If FNNAME is a 32 bit function, | |
507 | then any 16 bit function that calls FNNAME should be redirected | |
508 | to the stub instead. If FNNAME is not a 32 bit function, the | |
509 | stub should be discarded. | |
510 | ||
511 | .mips16.call.fp.FNNAME sections are similar, but contain stubs | |
512 | which call FNNAME and then copy the return value from the fp regs | |
513 | to the gp regs. These stubs store the return value in $18 while | |
514 | calling FNNAME; any function which might call one of these stubs | |
515 | must arrange to save $18 around the call. (This case is not | |
516 | needed for 32 bit functions that call 16 bit functions, because | |
517 | 16 bit functions always return floating point values in both | |
518 | $f0/$f1 and $2/$3.) | |
519 | ||
520 | Note that in all cases FNNAME might be defined statically. | |
521 | Therefore, FNNAME is not used literally. Instead, the relocation | |
522 | information will indicate which symbol the section is for. | |
523 | ||
524 | We record any stubs that we find in the symbol table. */ | |
525 | ||
526 | #define FN_STUB ".mips16.fn." | |
527 | #define CALL_STUB ".mips16.call." | |
528 | #define CALL_FP_STUB ".mips16.call.fp." | |
529 | \f | |
530 | /* Look up an entry in a MIPS ELF linker hash table. */ | |
531 | ||
532 | #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \ | |
533 | ((struct mips_elf_link_hash_entry *) \ | |
534 | elf_link_hash_lookup (&(table)->root, (string), (create), \ | |
535 | (copy), (follow))) | |
536 | ||
537 | /* Traverse a MIPS ELF linker hash table. */ | |
538 | ||
539 | #define mips_elf_link_hash_traverse(table, func, info) \ | |
540 | (elf_link_hash_traverse \ | |
541 | (&(table)->root, \ | |
542 | (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \ | |
543 | (info))) | |
544 | ||
545 | /* Get the MIPS ELF linker hash table from a link_info structure. */ | |
546 | ||
547 | #define mips_elf_hash_table(p) \ | |
548 | ((struct mips_elf_link_hash_table *) ((p)->hash)) | |
549 | ||
550 | /* Create an entry in a MIPS ELF linker hash table. */ | |
551 | ||
552 | static struct bfd_hash_entry * | |
553 | mips_elf_link_hash_newfunc (entry, table, string) | |
554 | struct bfd_hash_entry *entry; | |
555 | struct bfd_hash_table *table; | |
556 | const char *string; | |
557 | { | |
558 | struct mips_elf_link_hash_entry *ret = | |
559 | (struct mips_elf_link_hash_entry *) entry; | |
560 | ||
561 | /* Allocate the structure if it has not already been allocated by a | |
562 | subclass. */ | |
563 | if (ret == (struct mips_elf_link_hash_entry *) NULL) | |
564 | ret = ((struct mips_elf_link_hash_entry *) | |
565 | bfd_hash_allocate (table, | |
566 | sizeof (struct mips_elf_link_hash_entry))); | |
567 | if (ret == (struct mips_elf_link_hash_entry *) NULL) | |
568 | return (struct bfd_hash_entry *) ret; | |
569 | ||
570 | /* Call the allocation method of the superclass. */ | |
571 | ret = ((struct mips_elf_link_hash_entry *) | |
572 | _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret, | |
573 | table, string)); | |
574 | if (ret != (struct mips_elf_link_hash_entry *) NULL) | |
575 | { | |
576 | /* Set local fields. */ | |
577 | memset (&ret->esym, 0, sizeof (EXTR)); | |
578 | /* We use -2 as a marker to indicate that the information has | |
579 | not been set. -1 means there is no associated ifd. */ | |
580 | ret->esym.ifd = -2; | |
581 | ret->possibly_dynamic_relocs = 0; | |
582 | ret->readonly_reloc = false; | |
583 | ret->min_dyn_reloc_index = 0; | |
584 | ret->no_fn_stub = false; | |
585 | ret->fn_stub = NULL; | |
586 | ret->need_fn_stub = false; | |
587 | ret->call_stub = NULL; | |
588 | ret->call_fp_stub = NULL; | |
7c5fcef7 | 589 | ret->forced_local = false; |
b49e97c9 TS |
590 | } |
591 | ||
592 | return (struct bfd_hash_entry *) ret; | |
593 | } | |
594 | \f | |
595 | /* Read ECOFF debugging information from a .mdebug section into a | |
596 | ecoff_debug_info structure. */ | |
597 | ||
598 | boolean | |
599 | _bfd_mips_elf_read_ecoff_info (abfd, section, debug) | |
600 | bfd *abfd; | |
601 | asection *section; | |
602 | struct ecoff_debug_info *debug; | |
603 | { | |
604 | HDRR *symhdr; | |
605 | const struct ecoff_debug_swap *swap; | |
606 | char *ext_hdr = NULL; | |
607 | ||
608 | swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; | |
609 | memset (debug, 0, sizeof (*debug)); | |
610 | ||
611 | ext_hdr = (char *) bfd_malloc (swap->external_hdr_size); | |
612 | if (ext_hdr == NULL && swap->external_hdr_size != 0) | |
613 | goto error_return; | |
614 | ||
82e51918 AM |
615 | if (! bfd_get_section_contents (abfd, section, ext_hdr, (file_ptr) 0, |
616 | swap->external_hdr_size)) | |
b49e97c9 TS |
617 | goto error_return; |
618 | ||
619 | symhdr = &debug->symbolic_header; | |
620 | (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr); | |
621 | ||
622 | /* The symbolic header contains absolute file offsets and sizes to | |
623 | read. */ | |
624 | #define READ(ptr, offset, count, size, type) \ | |
625 | if (symhdr->count == 0) \ | |
626 | debug->ptr = NULL; \ | |
627 | else \ | |
628 | { \ | |
629 | bfd_size_type amt = (bfd_size_type) size * symhdr->count; \ | |
630 | debug->ptr = (type) bfd_malloc (amt); \ | |
631 | if (debug->ptr == NULL) \ | |
632 | goto error_return; \ | |
633 | if (bfd_seek (abfd, (file_ptr) symhdr->offset, SEEK_SET) != 0 \ | |
634 | || bfd_bread (debug->ptr, amt, abfd) != amt) \ | |
635 | goto error_return; \ | |
636 | } | |
637 | ||
638 | READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *); | |
639 | READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, PTR); | |
640 | READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, PTR); | |
641 | READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, PTR); | |
642 | READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, PTR); | |
643 | READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext), | |
644 | union aux_ext *); | |
645 | READ (ss, cbSsOffset, issMax, sizeof (char), char *); | |
646 | READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *); | |
647 | READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, PTR); | |
648 | READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, PTR); | |
649 | READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, PTR); | |
650 | #undef READ | |
651 | ||
652 | debug->fdr = NULL; | |
653 | debug->adjust = NULL; | |
654 | ||
655 | return true; | |
656 | ||
657 | error_return: | |
658 | if (ext_hdr != NULL) | |
659 | free (ext_hdr); | |
660 | if (debug->line != NULL) | |
661 | free (debug->line); | |
662 | if (debug->external_dnr != NULL) | |
663 | free (debug->external_dnr); | |
664 | if (debug->external_pdr != NULL) | |
665 | free (debug->external_pdr); | |
666 | if (debug->external_sym != NULL) | |
667 | free (debug->external_sym); | |
668 | if (debug->external_opt != NULL) | |
669 | free (debug->external_opt); | |
670 | if (debug->external_aux != NULL) | |
671 | free (debug->external_aux); | |
672 | if (debug->ss != NULL) | |
673 | free (debug->ss); | |
674 | if (debug->ssext != NULL) | |
675 | free (debug->ssext); | |
676 | if (debug->external_fdr != NULL) | |
677 | free (debug->external_fdr); | |
678 | if (debug->external_rfd != NULL) | |
679 | free (debug->external_rfd); | |
680 | if (debug->external_ext != NULL) | |
681 | free (debug->external_ext); | |
682 | return false; | |
683 | } | |
684 | \f | |
685 | /* Swap RPDR (runtime procedure table entry) for output. */ | |
686 | ||
687 | static void | |
688 | ecoff_swap_rpdr_out (abfd, in, ex) | |
689 | bfd *abfd; | |
690 | const RPDR *in; | |
691 | struct rpdr_ext *ex; | |
692 | { | |
693 | H_PUT_S32 (abfd, in->adr, ex->p_adr); | |
694 | H_PUT_32 (abfd, in->regmask, ex->p_regmask); | |
695 | H_PUT_32 (abfd, in->regoffset, ex->p_regoffset); | |
696 | H_PUT_32 (abfd, in->fregmask, ex->p_fregmask); | |
697 | H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset); | |
698 | H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset); | |
699 | ||
700 | H_PUT_16 (abfd, in->framereg, ex->p_framereg); | |
701 | H_PUT_16 (abfd, in->pcreg, ex->p_pcreg); | |
702 | ||
703 | H_PUT_32 (abfd, in->irpss, ex->p_irpss); | |
704 | #if 0 /* FIXME */ | |
705 | H_PUT_S32 (abfd, in->exception_info, ex->p_exception_info); | |
706 | #endif | |
707 | } | |
708 | ||
709 | /* Create a runtime procedure table from the .mdebug section. */ | |
710 | ||
711 | static boolean | |
712 | mips_elf_create_procedure_table (handle, abfd, info, s, debug) | |
713 | PTR handle; | |
714 | bfd *abfd; | |
715 | struct bfd_link_info *info; | |
716 | asection *s; | |
717 | struct ecoff_debug_info *debug; | |
718 | { | |
719 | const struct ecoff_debug_swap *swap; | |
720 | HDRR *hdr = &debug->symbolic_header; | |
721 | RPDR *rpdr, *rp; | |
722 | struct rpdr_ext *erp; | |
723 | PTR rtproc; | |
724 | struct pdr_ext *epdr; | |
725 | struct sym_ext *esym; | |
726 | char *ss, **sv; | |
727 | char *str; | |
728 | bfd_size_type size; | |
729 | bfd_size_type count; | |
730 | unsigned long sindex; | |
731 | unsigned long i; | |
732 | PDR pdr; | |
733 | SYMR sym; | |
734 | const char *no_name_func = _("static procedure (no name)"); | |
735 | ||
736 | epdr = NULL; | |
737 | rpdr = NULL; | |
738 | esym = NULL; | |
739 | ss = NULL; | |
740 | sv = NULL; | |
741 | ||
742 | swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; | |
743 | ||
744 | sindex = strlen (no_name_func) + 1; | |
745 | count = hdr->ipdMax; | |
746 | if (count > 0) | |
747 | { | |
748 | size = swap->external_pdr_size; | |
749 | ||
750 | epdr = (struct pdr_ext *) bfd_malloc (size * count); | |
751 | if (epdr == NULL) | |
752 | goto error_return; | |
753 | ||
754 | if (! _bfd_ecoff_get_accumulated_pdr (handle, (PTR) epdr)) | |
755 | goto error_return; | |
756 | ||
757 | size = sizeof (RPDR); | |
758 | rp = rpdr = (RPDR *) bfd_malloc (size * count); | |
759 | if (rpdr == NULL) | |
760 | goto error_return; | |
761 | ||
762 | size = sizeof (char *); | |
763 | sv = (char **) bfd_malloc (size * count); | |
764 | if (sv == NULL) | |
765 | goto error_return; | |
766 | ||
767 | count = hdr->isymMax; | |
768 | size = swap->external_sym_size; | |
769 | esym = (struct sym_ext *) bfd_malloc (size * count); | |
770 | if (esym == NULL) | |
771 | goto error_return; | |
772 | ||
773 | if (! _bfd_ecoff_get_accumulated_sym (handle, (PTR) esym)) | |
774 | goto error_return; | |
775 | ||
776 | count = hdr->issMax; | |
777 | ss = (char *) bfd_malloc (count); | |
778 | if (ss == NULL) | |
779 | goto error_return; | |
780 | if (! _bfd_ecoff_get_accumulated_ss (handle, (PTR) ss)) | |
781 | goto error_return; | |
782 | ||
783 | count = hdr->ipdMax; | |
784 | for (i = 0; i < (unsigned long) count; i++, rp++) | |
785 | { | |
786 | (*swap->swap_pdr_in) (abfd, (PTR) (epdr + i), &pdr); | |
787 | (*swap->swap_sym_in) (abfd, (PTR) &esym[pdr.isym], &sym); | |
788 | rp->adr = sym.value; | |
789 | rp->regmask = pdr.regmask; | |
790 | rp->regoffset = pdr.regoffset; | |
791 | rp->fregmask = pdr.fregmask; | |
792 | rp->fregoffset = pdr.fregoffset; | |
793 | rp->frameoffset = pdr.frameoffset; | |
794 | rp->framereg = pdr.framereg; | |
795 | rp->pcreg = pdr.pcreg; | |
796 | rp->irpss = sindex; | |
797 | sv[i] = ss + sym.iss; | |
798 | sindex += strlen (sv[i]) + 1; | |
799 | } | |
800 | } | |
801 | ||
802 | size = sizeof (struct rpdr_ext) * (count + 2) + sindex; | |
803 | size = BFD_ALIGN (size, 16); | |
804 | rtproc = (PTR) bfd_alloc (abfd, size); | |
805 | if (rtproc == NULL) | |
806 | { | |
807 | mips_elf_hash_table (info)->procedure_count = 0; | |
808 | goto error_return; | |
809 | } | |
810 | ||
811 | mips_elf_hash_table (info)->procedure_count = count + 2; | |
812 | ||
813 | erp = (struct rpdr_ext *) rtproc; | |
814 | memset (erp, 0, sizeof (struct rpdr_ext)); | |
815 | erp++; | |
816 | str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2); | |
817 | strcpy (str, no_name_func); | |
818 | str += strlen (no_name_func) + 1; | |
819 | for (i = 0; i < count; i++) | |
820 | { | |
821 | ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i); | |
822 | strcpy (str, sv[i]); | |
823 | str += strlen (sv[i]) + 1; | |
824 | } | |
825 | H_PUT_S32 (abfd, -1, (erp + count)->p_adr); | |
826 | ||
827 | /* Set the size and contents of .rtproc section. */ | |
828 | s->_raw_size = size; | |
829 | s->contents = (bfd_byte *) rtproc; | |
830 | ||
831 | /* Skip this section later on (I don't think this currently | |
832 | matters, but someday it might). */ | |
833 | s->link_order_head = (struct bfd_link_order *) NULL; | |
834 | ||
835 | if (epdr != NULL) | |
836 | free (epdr); | |
837 | if (rpdr != NULL) | |
838 | free (rpdr); | |
839 | if (esym != NULL) | |
840 | free (esym); | |
841 | if (ss != NULL) | |
842 | free (ss); | |
843 | if (sv != NULL) | |
844 | free (sv); | |
845 | ||
846 | return true; | |
847 | ||
848 | error_return: | |
849 | if (epdr != NULL) | |
850 | free (epdr); | |
851 | if (rpdr != NULL) | |
852 | free (rpdr); | |
853 | if (esym != NULL) | |
854 | free (esym); | |
855 | if (ss != NULL) | |
856 | free (ss); | |
857 | if (sv != NULL) | |
858 | free (sv); | |
859 | return false; | |
860 | } | |
861 | ||
862 | /* Check the mips16 stubs for a particular symbol, and see if we can | |
863 | discard them. */ | |
864 | ||
865 | static boolean | |
866 | mips_elf_check_mips16_stubs (h, data) | |
867 | struct mips_elf_link_hash_entry *h; | |
868 | PTR data ATTRIBUTE_UNUSED; | |
869 | { | |
870 | if (h->root.root.type == bfd_link_hash_warning) | |
871 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | |
872 | ||
873 | if (h->fn_stub != NULL | |
874 | && ! h->need_fn_stub) | |
875 | { | |
876 | /* We don't need the fn_stub; the only references to this symbol | |
877 | are 16 bit calls. Clobber the size to 0 to prevent it from | |
878 | being included in the link. */ | |
879 | h->fn_stub->_raw_size = 0; | |
880 | h->fn_stub->_cooked_size = 0; | |
881 | h->fn_stub->flags &= ~SEC_RELOC; | |
882 | h->fn_stub->reloc_count = 0; | |
883 | h->fn_stub->flags |= SEC_EXCLUDE; | |
884 | } | |
885 | ||
886 | if (h->call_stub != NULL | |
887 | && h->root.other == STO_MIPS16) | |
888 | { | |
889 | /* We don't need the call_stub; this is a 16 bit function, so | |
890 | calls from other 16 bit functions are OK. Clobber the size | |
891 | to 0 to prevent it from being included in the link. */ | |
892 | h->call_stub->_raw_size = 0; | |
893 | h->call_stub->_cooked_size = 0; | |
894 | h->call_stub->flags &= ~SEC_RELOC; | |
895 | h->call_stub->reloc_count = 0; | |
896 | h->call_stub->flags |= SEC_EXCLUDE; | |
897 | } | |
898 | ||
899 | if (h->call_fp_stub != NULL | |
900 | && h->root.other == STO_MIPS16) | |
901 | { | |
902 | /* We don't need the call_stub; this is a 16 bit function, so | |
903 | calls from other 16 bit functions are OK. Clobber the size | |
904 | to 0 to prevent it from being included in the link. */ | |
905 | h->call_fp_stub->_raw_size = 0; | |
906 | h->call_fp_stub->_cooked_size = 0; | |
907 | h->call_fp_stub->flags &= ~SEC_RELOC; | |
908 | h->call_fp_stub->reloc_count = 0; | |
909 | h->call_fp_stub->flags |= SEC_EXCLUDE; | |
910 | } | |
911 | ||
912 | return true; | |
913 | } | |
914 | \f | |
915 | bfd_reloc_status_type | |
916 | _bfd_mips_elf_gprel16_with_gp (abfd, symbol, reloc_entry, input_section, | |
917 | relocateable, data, gp) | |
918 | bfd *abfd; | |
919 | asymbol *symbol; | |
920 | arelent *reloc_entry; | |
921 | asection *input_section; | |
922 | boolean relocateable; | |
923 | PTR data; | |
924 | bfd_vma gp; | |
925 | { | |
926 | bfd_vma relocation; | |
927 | unsigned long insn; | |
928 | unsigned long val; | |
929 | ||
930 | if (bfd_is_com_section (symbol->section)) | |
931 | relocation = 0; | |
932 | else | |
933 | relocation = symbol->value; | |
934 | ||
935 | relocation += symbol->section->output_section->vma; | |
936 | relocation += symbol->section->output_offset; | |
937 | ||
938 | if (reloc_entry->address > input_section->_cooked_size) | |
939 | return bfd_reloc_outofrange; | |
940 | ||
941 | insn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address); | |
942 | ||
943 | /* Set val to the offset into the section or symbol. */ | |
944 | if (reloc_entry->howto->src_mask == 0) | |
945 | { | |
946 | /* This case occurs with the 64-bit MIPS ELF ABI. */ | |
947 | val = reloc_entry->addend; | |
948 | } | |
949 | else | |
950 | { | |
951 | val = ((insn & 0xffff) + reloc_entry->addend) & 0xffff; | |
952 | if (val & 0x8000) | |
953 | val -= 0x10000; | |
954 | } | |
955 | ||
956 | /* Adjust val for the final section location and GP value. If we | |
957 | are producing relocateable output, we don't want to do this for | |
958 | an external symbol. */ | |
959 | if (! relocateable | |
960 | || (symbol->flags & BSF_SECTION_SYM) != 0) | |
961 | val += relocation - gp; | |
962 | ||
963 | insn = (insn & ~0xffff) | (val & 0xffff); | |
964 | bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address); | |
965 | ||
966 | if (relocateable) | |
967 | reloc_entry->address += input_section->output_offset; | |
968 | ||
969 | else if ((long) val >= 0x8000 || (long) val < -0x8000) | |
970 | return bfd_reloc_overflow; | |
971 | ||
972 | return bfd_reloc_ok; | |
973 | } | |
974 | \f | |
975 | /* Swap an entry in a .gptab section. Note that these routines rely | |
976 | on the equivalence of the two elements of the union. */ | |
977 | ||
978 | static void | |
979 | bfd_mips_elf32_swap_gptab_in (abfd, ex, in) | |
980 | bfd *abfd; | |
981 | const Elf32_External_gptab *ex; | |
982 | Elf32_gptab *in; | |
983 | { | |
984 | in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value); | |
985 | in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes); | |
986 | } | |
987 | ||
988 | static void | |
989 | bfd_mips_elf32_swap_gptab_out (abfd, in, ex) | |
990 | bfd *abfd; | |
991 | const Elf32_gptab *in; | |
992 | Elf32_External_gptab *ex; | |
993 | { | |
994 | H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value); | |
995 | H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes); | |
996 | } | |
997 | ||
998 | static void | |
999 | bfd_elf32_swap_compact_rel_out (abfd, in, ex) | |
1000 | bfd *abfd; | |
1001 | const Elf32_compact_rel *in; | |
1002 | Elf32_External_compact_rel *ex; | |
1003 | { | |
1004 | H_PUT_32 (abfd, in->id1, ex->id1); | |
1005 | H_PUT_32 (abfd, in->num, ex->num); | |
1006 | H_PUT_32 (abfd, in->id2, ex->id2); | |
1007 | H_PUT_32 (abfd, in->offset, ex->offset); | |
1008 | H_PUT_32 (abfd, in->reserved0, ex->reserved0); | |
1009 | H_PUT_32 (abfd, in->reserved1, ex->reserved1); | |
1010 | } | |
1011 | ||
1012 | static void | |
1013 | bfd_elf32_swap_crinfo_out (abfd, in, ex) | |
1014 | bfd *abfd; | |
1015 | const Elf32_crinfo *in; | |
1016 | Elf32_External_crinfo *ex; | |
1017 | { | |
1018 | unsigned long l; | |
1019 | ||
1020 | l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH) | |
1021 | | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH) | |
1022 | | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH) | |
1023 | | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH)); | |
1024 | H_PUT_32 (abfd, l, ex->info); | |
1025 | H_PUT_32 (abfd, in->konst, ex->konst); | |
1026 | H_PUT_32 (abfd, in->vaddr, ex->vaddr); | |
1027 | } | |
1028 | ||
1029 | #if 0 | |
1030 | /* Swap in an MSYM entry. */ | |
1031 | ||
1032 | static void | |
1033 | bfd_mips_elf_swap_msym_in (abfd, ex, in) | |
1034 | bfd *abfd; | |
1035 | const Elf32_External_Msym *ex; | |
1036 | Elf32_Internal_Msym *in; | |
1037 | { | |
1038 | in->ms_hash_value = H_GET_32 (abfd, ex->ms_hash_value); | |
1039 | in->ms_info = H_GET_32 (abfd, ex->ms_info); | |
1040 | } | |
1041 | #endif | |
1042 | /* Swap out an MSYM entry. */ | |
1043 | ||
1044 | static void | |
1045 | bfd_mips_elf_swap_msym_out (abfd, in, ex) | |
1046 | bfd *abfd; | |
1047 | const Elf32_Internal_Msym *in; | |
1048 | Elf32_External_Msym *ex; | |
1049 | { | |
1050 | H_PUT_32 (abfd, in->ms_hash_value, ex->ms_hash_value); | |
1051 | H_PUT_32 (abfd, in->ms_info, ex->ms_info); | |
1052 | } | |
1053 | \f | |
1054 | /* A .reginfo section holds a single Elf32_RegInfo structure. These | |
1055 | routines swap this structure in and out. They are used outside of | |
1056 | BFD, so they are globally visible. */ | |
1057 | ||
1058 | void | |
1059 | bfd_mips_elf32_swap_reginfo_in (abfd, ex, in) | |
1060 | bfd *abfd; | |
1061 | const Elf32_External_RegInfo *ex; | |
1062 | Elf32_RegInfo *in; | |
1063 | { | |
1064 | in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask); | |
1065 | in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]); | |
1066 | in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]); | |
1067 | in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]); | |
1068 | in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]); | |
1069 | in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value); | |
1070 | } | |
1071 | ||
1072 | void | |
1073 | bfd_mips_elf32_swap_reginfo_out (abfd, in, ex) | |
1074 | bfd *abfd; | |
1075 | const Elf32_RegInfo *in; | |
1076 | Elf32_External_RegInfo *ex; | |
1077 | { | |
1078 | H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask); | |
1079 | H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]); | |
1080 | H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]); | |
1081 | H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]); | |
1082 | H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]); | |
1083 | H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value); | |
1084 | } | |
1085 | ||
1086 | /* In the 64 bit ABI, the .MIPS.options section holds register | |
1087 | information in an Elf64_Reginfo structure. These routines swap | |
1088 | them in and out. They are globally visible because they are used | |
1089 | outside of BFD. These routines are here so that gas can call them | |
1090 | without worrying about whether the 64 bit ABI has been included. */ | |
1091 | ||
1092 | void | |
1093 | bfd_mips_elf64_swap_reginfo_in (abfd, ex, in) | |
1094 | bfd *abfd; | |
1095 | const Elf64_External_RegInfo *ex; | |
1096 | Elf64_Internal_RegInfo *in; | |
1097 | { | |
1098 | in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask); | |
1099 | in->ri_pad = H_GET_32 (abfd, ex->ri_pad); | |
1100 | in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]); | |
1101 | in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]); | |
1102 | in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]); | |
1103 | in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]); | |
1104 | in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value); | |
1105 | } | |
1106 | ||
1107 | void | |
1108 | bfd_mips_elf64_swap_reginfo_out (abfd, in, ex) | |
1109 | bfd *abfd; | |
1110 | const Elf64_Internal_RegInfo *in; | |
1111 | Elf64_External_RegInfo *ex; | |
1112 | { | |
1113 | H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask); | |
1114 | H_PUT_32 (abfd, in->ri_pad, ex->ri_pad); | |
1115 | H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]); | |
1116 | H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]); | |
1117 | H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]); | |
1118 | H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]); | |
1119 | H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value); | |
1120 | } | |
1121 | ||
1122 | /* Swap in an options header. */ | |
1123 | ||
1124 | void | |
1125 | bfd_mips_elf_swap_options_in (abfd, ex, in) | |
1126 | bfd *abfd; | |
1127 | const Elf_External_Options *ex; | |
1128 | Elf_Internal_Options *in; | |
1129 | { | |
1130 | in->kind = H_GET_8 (abfd, ex->kind); | |
1131 | in->size = H_GET_8 (abfd, ex->size); | |
1132 | in->section = H_GET_16 (abfd, ex->section); | |
1133 | in->info = H_GET_32 (abfd, ex->info); | |
1134 | } | |
1135 | ||
1136 | /* Swap out an options header. */ | |
1137 | ||
1138 | void | |
1139 | bfd_mips_elf_swap_options_out (abfd, in, ex) | |
1140 | bfd *abfd; | |
1141 | const Elf_Internal_Options *in; | |
1142 | Elf_External_Options *ex; | |
1143 | { | |
1144 | H_PUT_8 (abfd, in->kind, ex->kind); | |
1145 | H_PUT_8 (abfd, in->size, ex->size); | |
1146 | H_PUT_16 (abfd, in->section, ex->section); | |
1147 | H_PUT_32 (abfd, in->info, ex->info); | |
1148 | } | |
1149 | \f | |
1150 | /* This function is called via qsort() to sort the dynamic relocation | |
1151 | entries by increasing r_symndx value. */ | |
1152 | ||
1153 | static int | |
1154 | sort_dynamic_relocs (arg1, arg2) | |
1155 | const PTR arg1; | |
1156 | const PTR arg2; | |
1157 | { | |
1158 | const Elf32_External_Rel *ext_reloc1 = (const Elf32_External_Rel *) arg1; | |
1159 | const Elf32_External_Rel *ext_reloc2 = (const Elf32_External_Rel *) arg2; | |
1160 | ||
1161 | Elf_Internal_Rel int_reloc1; | |
1162 | Elf_Internal_Rel int_reloc2; | |
1163 | ||
1164 | bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, ext_reloc1, &int_reloc1); | |
1165 | bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, ext_reloc2, &int_reloc2); | |
1166 | ||
1167 | return (ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info)); | |
1168 | } | |
1169 | ||
1170 | /* This routine is used to write out ECOFF debugging external symbol | |
1171 | information. It is called via mips_elf_link_hash_traverse. The | |
1172 | ECOFF external symbol information must match the ELF external | |
1173 | symbol information. Unfortunately, at this point we don't know | |
1174 | whether a symbol is required by reloc information, so the two | |
1175 | tables may wind up being different. We must sort out the external | |
1176 | symbol information before we can set the final size of the .mdebug | |
1177 | section, and we must set the size of the .mdebug section before we | |
1178 | can relocate any sections, and we can't know which symbols are | |
1179 | required by relocation until we relocate the sections. | |
1180 | Fortunately, it is relatively unlikely that any symbol will be | |
1181 | stripped but required by a reloc. In particular, it can not happen | |
1182 | when generating a final executable. */ | |
1183 | ||
1184 | static boolean | |
1185 | mips_elf_output_extsym (h, data) | |
1186 | struct mips_elf_link_hash_entry *h; | |
1187 | PTR data; | |
1188 | { | |
1189 | struct extsym_info *einfo = (struct extsym_info *) data; | |
1190 | boolean strip; | |
1191 | asection *sec, *output_section; | |
1192 | ||
1193 | if (h->root.root.type == bfd_link_hash_warning) | |
1194 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | |
1195 | ||
1196 | if (h->root.indx == -2) | |
1197 | strip = false; | |
1198 | else if (((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 | |
1199 | || (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0) | |
1200 | && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0 | |
1201 | && (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0) | |
1202 | strip = true; | |
1203 | else if (einfo->info->strip == strip_all | |
1204 | || (einfo->info->strip == strip_some | |
1205 | && bfd_hash_lookup (einfo->info->keep_hash, | |
1206 | h->root.root.root.string, | |
1207 | false, false) == NULL)) | |
1208 | strip = true; | |
1209 | else | |
1210 | strip = false; | |
1211 | ||
1212 | if (strip) | |
1213 | return true; | |
1214 | ||
1215 | if (h->esym.ifd == -2) | |
1216 | { | |
1217 | h->esym.jmptbl = 0; | |
1218 | h->esym.cobol_main = 0; | |
1219 | h->esym.weakext = 0; | |
1220 | h->esym.reserved = 0; | |
1221 | h->esym.ifd = ifdNil; | |
1222 | h->esym.asym.value = 0; | |
1223 | h->esym.asym.st = stGlobal; | |
1224 | ||
1225 | if (h->root.root.type == bfd_link_hash_undefined | |
1226 | || h->root.root.type == bfd_link_hash_undefweak) | |
1227 | { | |
1228 | const char *name; | |
1229 | ||
1230 | /* Use undefined class. Also, set class and type for some | |
1231 | special symbols. */ | |
1232 | name = h->root.root.root.string; | |
1233 | if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0 | |
1234 | || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0) | |
1235 | { | |
1236 | h->esym.asym.sc = scData; | |
1237 | h->esym.asym.st = stLabel; | |
1238 | h->esym.asym.value = 0; | |
1239 | } | |
1240 | else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0) | |
1241 | { | |
1242 | h->esym.asym.sc = scAbs; | |
1243 | h->esym.asym.st = stLabel; | |
1244 | h->esym.asym.value = | |
1245 | mips_elf_hash_table (einfo->info)->procedure_count; | |
1246 | } | |
4a14403c | 1247 | else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd)) |
b49e97c9 TS |
1248 | { |
1249 | h->esym.asym.sc = scAbs; | |
1250 | h->esym.asym.st = stLabel; | |
1251 | h->esym.asym.value = elf_gp (einfo->abfd); | |
1252 | } | |
1253 | else | |
1254 | h->esym.asym.sc = scUndefined; | |
1255 | } | |
1256 | else if (h->root.root.type != bfd_link_hash_defined | |
1257 | && h->root.root.type != bfd_link_hash_defweak) | |
1258 | h->esym.asym.sc = scAbs; | |
1259 | else | |
1260 | { | |
1261 | const char *name; | |
1262 | ||
1263 | sec = h->root.root.u.def.section; | |
1264 | output_section = sec->output_section; | |
1265 | ||
1266 | /* When making a shared library and symbol h is the one from | |
1267 | the another shared library, OUTPUT_SECTION may be null. */ | |
1268 | if (output_section == NULL) | |
1269 | h->esym.asym.sc = scUndefined; | |
1270 | else | |
1271 | { | |
1272 | name = bfd_section_name (output_section->owner, output_section); | |
1273 | ||
1274 | if (strcmp (name, ".text") == 0) | |
1275 | h->esym.asym.sc = scText; | |
1276 | else if (strcmp (name, ".data") == 0) | |
1277 | h->esym.asym.sc = scData; | |
1278 | else if (strcmp (name, ".sdata") == 0) | |
1279 | h->esym.asym.sc = scSData; | |
1280 | else if (strcmp (name, ".rodata") == 0 | |
1281 | || strcmp (name, ".rdata") == 0) | |
1282 | h->esym.asym.sc = scRData; | |
1283 | else if (strcmp (name, ".bss") == 0) | |
1284 | h->esym.asym.sc = scBss; | |
1285 | else if (strcmp (name, ".sbss") == 0) | |
1286 | h->esym.asym.sc = scSBss; | |
1287 | else if (strcmp (name, ".init") == 0) | |
1288 | h->esym.asym.sc = scInit; | |
1289 | else if (strcmp (name, ".fini") == 0) | |
1290 | h->esym.asym.sc = scFini; | |
1291 | else | |
1292 | h->esym.asym.sc = scAbs; | |
1293 | } | |
1294 | } | |
1295 | ||
1296 | h->esym.asym.reserved = 0; | |
1297 | h->esym.asym.index = indexNil; | |
1298 | } | |
1299 | ||
1300 | if (h->root.root.type == bfd_link_hash_common) | |
1301 | h->esym.asym.value = h->root.root.u.c.size; | |
1302 | else if (h->root.root.type == bfd_link_hash_defined | |
1303 | || h->root.root.type == bfd_link_hash_defweak) | |
1304 | { | |
1305 | if (h->esym.asym.sc == scCommon) | |
1306 | h->esym.asym.sc = scBss; | |
1307 | else if (h->esym.asym.sc == scSCommon) | |
1308 | h->esym.asym.sc = scSBss; | |
1309 | ||
1310 | sec = h->root.root.u.def.section; | |
1311 | output_section = sec->output_section; | |
1312 | if (output_section != NULL) | |
1313 | h->esym.asym.value = (h->root.root.u.def.value | |
1314 | + sec->output_offset | |
1315 | + output_section->vma); | |
1316 | else | |
1317 | h->esym.asym.value = 0; | |
1318 | } | |
1319 | else if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0) | |
1320 | { | |
1321 | struct mips_elf_link_hash_entry *hd = h; | |
1322 | boolean no_fn_stub = h->no_fn_stub; | |
1323 | ||
1324 | while (hd->root.root.type == bfd_link_hash_indirect) | |
1325 | { | |
1326 | hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link; | |
1327 | no_fn_stub = no_fn_stub || hd->no_fn_stub; | |
1328 | } | |
1329 | ||
1330 | if (!no_fn_stub) | |
1331 | { | |
1332 | /* Set type and value for a symbol with a function stub. */ | |
1333 | h->esym.asym.st = stProc; | |
1334 | sec = hd->root.root.u.def.section; | |
1335 | if (sec == NULL) | |
1336 | h->esym.asym.value = 0; | |
1337 | else | |
1338 | { | |
1339 | output_section = sec->output_section; | |
1340 | if (output_section != NULL) | |
1341 | h->esym.asym.value = (hd->root.plt.offset | |
1342 | + sec->output_offset | |
1343 | + output_section->vma); | |
1344 | else | |
1345 | h->esym.asym.value = 0; | |
1346 | } | |
1347 | #if 0 /* FIXME? */ | |
1348 | h->esym.ifd = 0; | |
1349 | #endif | |
1350 | } | |
1351 | } | |
1352 | ||
1353 | if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap, | |
1354 | h->root.root.root.string, | |
1355 | &h->esym)) | |
1356 | { | |
1357 | einfo->failed = true; | |
1358 | return false; | |
1359 | } | |
1360 | ||
1361 | return true; | |
1362 | } | |
1363 | ||
1364 | /* A comparison routine used to sort .gptab entries. */ | |
1365 | ||
1366 | static int | |
1367 | gptab_compare (p1, p2) | |
1368 | const PTR p1; | |
1369 | const PTR p2; | |
1370 | { | |
1371 | const Elf32_gptab *a1 = (const Elf32_gptab *) p1; | |
1372 | const Elf32_gptab *a2 = (const Elf32_gptab *) p2; | |
1373 | ||
1374 | return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value; | |
1375 | } | |
1376 | \f | |
1377 | /* Returns the GOT section for ABFD. */ | |
1378 | ||
1379 | static asection * | |
1380 | mips_elf_got_section (abfd) | |
1381 | bfd *abfd; | |
1382 | { | |
1383 | return bfd_get_section_by_name (abfd, ".got"); | |
1384 | } | |
1385 | ||
1386 | /* Returns the GOT information associated with the link indicated by | |
1387 | INFO. If SGOTP is non-NULL, it is filled in with the GOT | |
1388 | section. */ | |
1389 | ||
1390 | static struct mips_got_info * | |
1391 | mips_elf_got_info (abfd, sgotp) | |
1392 | bfd *abfd; | |
1393 | asection **sgotp; | |
1394 | { | |
1395 | asection *sgot; | |
1396 | struct mips_got_info *g; | |
1397 | ||
1398 | sgot = mips_elf_got_section (abfd); | |
1399 | BFD_ASSERT (sgot != NULL); | |
1400 | BFD_ASSERT (elf_section_data (sgot) != NULL); | |
1401 | g = (struct mips_got_info *) elf_section_data (sgot)->tdata; | |
1402 | BFD_ASSERT (g != NULL); | |
1403 | ||
1404 | if (sgotp) | |
1405 | *sgotp = sgot; | |
1406 | return g; | |
1407 | } | |
1408 | ||
1409 | /* Returns the GOT offset at which the indicated address can be found. | |
1410 | If there is not yet a GOT entry for this value, create one. Returns | |
1411 | -1 if no satisfactory GOT offset can be found. */ | |
1412 | ||
1413 | static bfd_vma | |
1414 | mips_elf_local_got_index (abfd, info, value) | |
1415 | bfd *abfd; | |
1416 | struct bfd_link_info *info; | |
1417 | bfd_vma value; | |
1418 | { | |
1419 | asection *sgot; | |
1420 | struct mips_got_info *g; | |
1421 | bfd_byte *entry; | |
1422 | ||
1423 | g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot); | |
1424 | ||
1425 | /* Look to see if we already have an appropriate entry. */ | |
1426 | for (entry = (sgot->contents | |
1427 | + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO); | |
1428 | entry != sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno; | |
1429 | entry += MIPS_ELF_GOT_SIZE (abfd)) | |
1430 | { | |
1431 | bfd_vma address = MIPS_ELF_GET_WORD (abfd, entry); | |
1432 | if (address == value) | |
1433 | return entry - sgot->contents; | |
1434 | } | |
1435 | ||
1436 | return mips_elf_create_local_got_entry (abfd, g, sgot, value); | |
1437 | } | |
1438 | ||
1439 | /* Returns the GOT index for the global symbol indicated by H. */ | |
1440 | ||
1441 | static bfd_vma | |
1442 | mips_elf_global_got_index (abfd, h) | |
1443 | bfd *abfd; | |
1444 | struct elf_link_hash_entry *h; | |
1445 | { | |
1446 | bfd_vma index; | |
1447 | asection *sgot; | |
1448 | struct mips_got_info *g; | |
d0c7ff07 | 1449 | long global_got_dynindx = 0; |
b49e97c9 TS |
1450 | |
1451 | g = mips_elf_got_info (abfd, &sgot); | |
d0c7ff07 TS |
1452 | if (g->global_gotsym != NULL) |
1453 | global_got_dynindx = g->global_gotsym->dynindx; | |
b49e97c9 TS |
1454 | |
1455 | /* Once we determine the global GOT entry with the lowest dynamic | |
1456 | symbol table index, we must put all dynamic symbols with greater | |
1457 | indices into the GOT. That makes it easy to calculate the GOT | |
1458 | offset. */ | |
d0c7ff07 TS |
1459 | BFD_ASSERT (h->dynindx >= global_got_dynindx); |
1460 | index = ((h->dynindx - global_got_dynindx + g->local_gotno) | |
b49e97c9 TS |
1461 | * MIPS_ELF_GOT_SIZE (abfd)); |
1462 | BFD_ASSERT (index < sgot->_raw_size); | |
1463 | ||
1464 | return index; | |
1465 | } | |
1466 | ||
1467 | /* Find a GOT entry that is within 32KB of the VALUE. These entries | |
1468 | are supposed to be placed at small offsets in the GOT, i.e., | |
1469 | within 32KB of GP. Return the index into the GOT for this page, | |
1470 | and store the offset from this entry to the desired address in | |
1471 | OFFSETP, if it is non-NULL. */ | |
1472 | ||
1473 | static bfd_vma | |
1474 | mips_elf_got_page (abfd, info, value, offsetp) | |
1475 | bfd *abfd; | |
1476 | struct bfd_link_info *info; | |
1477 | bfd_vma value; | |
1478 | bfd_vma *offsetp; | |
1479 | { | |
1480 | asection *sgot; | |
1481 | struct mips_got_info *g; | |
1482 | bfd_byte *entry; | |
1483 | bfd_byte *last_entry; | |
1484 | bfd_vma index = 0; | |
1485 | bfd_vma address; | |
1486 | ||
1487 | g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot); | |
1488 | ||
44c410de | 1489 | /* Look to see if we already have an appropriate entry. */ |
b49e97c9 TS |
1490 | last_entry = sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno; |
1491 | for (entry = (sgot->contents | |
1492 | + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO); | |
1493 | entry != last_entry; | |
1494 | entry += MIPS_ELF_GOT_SIZE (abfd)) | |
1495 | { | |
1496 | address = MIPS_ELF_GET_WORD (abfd, entry); | |
1497 | ||
1498 | if (!mips_elf_overflow_p (value - address, 16)) | |
1499 | { | |
1500 | /* This entry will serve as the page pointer. We can add a | |
1501 | 16-bit number to it to get the actual address. */ | |
1502 | index = entry - sgot->contents; | |
1503 | break; | |
1504 | } | |
1505 | } | |
1506 | ||
1507 | /* If we didn't have an appropriate entry, we create one now. */ | |
1508 | if (entry == last_entry) | |
1509 | index = mips_elf_create_local_got_entry (abfd, g, sgot, value); | |
1510 | ||
1511 | if (offsetp) | |
1512 | { | |
1513 | address = MIPS_ELF_GET_WORD (abfd, entry); | |
1514 | *offsetp = value - address; | |
1515 | } | |
1516 | ||
1517 | return index; | |
1518 | } | |
1519 | ||
1520 | /* Find a GOT entry whose higher-order 16 bits are the same as those | |
1521 | for value. Return the index into the GOT for this entry. */ | |
1522 | ||
1523 | static bfd_vma | |
1524 | mips_elf_got16_entry (abfd, info, value, external) | |
1525 | bfd *abfd; | |
1526 | struct bfd_link_info *info; | |
1527 | bfd_vma value; | |
1528 | boolean external; | |
1529 | { | |
1530 | asection *sgot; | |
1531 | struct mips_got_info *g; | |
1532 | bfd_byte *entry; | |
1533 | bfd_byte *last_entry; | |
1534 | bfd_vma index = 0; | |
1535 | bfd_vma address; | |
1536 | ||
1537 | if (! external) | |
1538 | { | |
1539 | /* Although the ABI says that it is "the high-order 16 bits" that we | |
1540 | want, it is really the %high value. The complete value is | |
1541 | calculated with a `addiu' of a LO16 relocation, just as with a | |
1542 | HI16/LO16 pair. */ | |
1543 | value = mips_elf_high (value) << 16; | |
1544 | } | |
1545 | ||
1546 | g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot); | |
1547 | ||
1548 | /* Look to see if we already have an appropriate entry. */ | |
1549 | last_entry = sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno; | |
1550 | for (entry = (sgot->contents | |
1551 | + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO); | |
1552 | entry != last_entry; | |
1553 | entry += MIPS_ELF_GOT_SIZE (abfd)) | |
1554 | { | |
1555 | address = MIPS_ELF_GET_WORD (abfd, entry); | |
1556 | if (address == value) | |
1557 | { | |
1558 | /* This entry has the right high-order 16 bits, and the low-order | |
1559 | 16 bits are set to zero. */ | |
1560 | index = entry - sgot->contents; | |
1561 | break; | |
1562 | } | |
1563 | } | |
1564 | ||
1565 | /* If we didn't have an appropriate entry, we create one now. */ | |
1566 | if (entry == last_entry) | |
1567 | index = mips_elf_create_local_got_entry (abfd, g, sgot, value); | |
1568 | ||
1569 | return index; | |
1570 | } | |
1571 | ||
1572 | /* Returns the offset for the entry at the INDEXth position | |
1573 | in the GOT. */ | |
1574 | ||
1575 | static bfd_vma | |
1576 | mips_elf_got_offset_from_index (dynobj, output_bfd, index) | |
1577 | bfd *dynobj; | |
1578 | bfd *output_bfd; | |
1579 | bfd_vma index; | |
1580 | { | |
1581 | asection *sgot; | |
1582 | bfd_vma gp; | |
1583 | ||
1584 | sgot = mips_elf_got_section (dynobj); | |
1585 | gp = _bfd_get_gp_value (output_bfd); | |
1586 | return (sgot->output_section->vma + sgot->output_offset + index - | |
1587 | gp); | |
1588 | } | |
1589 | ||
1590 | /* Create a local GOT entry for VALUE. Return the index of the entry, | |
1591 | or -1 if it could not be created. */ | |
1592 | ||
1593 | static bfd_vma | |
1594 | mips_elf_create_local_got_entry (abfd, g, sgot, value) | |
1595 | bfd *abfd; | |
1596 | struct mips_got_info *g; | |
1597 | asection *sgot; | |
1598 | bfd_vma value; | |
1599 | { | |
1600 | if (g->assigned_gotno >= g->local_gotno) | |
1601 | { | |
1602 | /* We didn't allocate enough space in the GOT. */ | |
1603 | (*_bfd_error_handler) | |
1604 | (_("not enough GOT space for local GOT entries")); | |
1605 | bfd_set_error (bfd_error_bad_value); | |
1606 | return (bfd_vma) -1; | |
1607 | } | |
1608 | ||
1609 | MIPS_ELF_PUT_WORD (abfd, value, | |
1610 | (sgot->contents | |
1611 | + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno)); | |
1612 | return MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++; | |
1613 | } | |
1614 | ||
1615 | /* Sort the dynamic symbol table so that symbols that need GOT entries | |
1616 | appear towards the end. This reduces the amount of GOT space | |
1617 | required. MAX_LOCAL is used to set the number of local symbols | |
1618 | known to be in the dynamic symbol table. During | |
1619 | _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the | |
1620 | section symbols are added and the count is higher. */ | |
1621 | ||
1622 | static boolean | |
1623 | mips_elf_sort_hash_table (info, max_local) | |
1624 | struct bfd_link_info *info; | |
1625 | unsigned long max_local; | |
1626 | { | |
1627 | struct mips_elf_hash_sort_data hsd; | |
1628 | struct mips_got_info *g; | |
1629 | bfd *dynobj; | |
1630 | ||
1631 | dynobj = elf_hash_table (info)->dynobj; | |
1632 | ||
1633 | hsd.low = NULL; | |
1634 | hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount; | |
1635 | hsd.max_non_got_dynindx = max_local; | |
1636 | mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *) | |
1637 | elf_hash_table (info)), | |
1638 | mips_elf_sort_hash_table_f, | |
1639 | &hsd); | |
1640 | ||
1641 | /* There should have been enough room in the symbol table to | |
44c410de | 1642 | accommodate both the GOT and non-GOT symbols. */ |
b49e97c9 TS |
1643 | BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx); |
1644 | ||
1645 | /* Now we know which dynamic symbol has the lowest dynamic symbol | |
1646 | table index in the GOT. */ | |
1647 | g = mips_elf_got_info (dynobj, NULL); | |
1648 | g->global_gotsym = hsd.low; | |
1649 | ||
1650 | return true; | |
1651 | } | |
1652 | ||
1653 | /* If H needs a GOT entry, assign it the highest available dynamic | |
1654 | index. Otherwise, assign it the lowest available dynamic | |
1655 | index. */ | |
1656 | ||
1657 | static boolean | |
1658 | mips_elf_sort_hash_table_f (h, data) | |
1659 | struct mips_elf_link_hash_entry *h; | |
1660 | PTR data; | |
1661 | { | |
1662 | struct mips_elf_hash_sort_data *hsd | |
1663 | = (struct mips_elf_hash_sort_data *) data; | |
1664 | ||
1665 | if (h->root.root.type == bfd_link_hash_warning) | |
1666 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | |
1667 | ||
1668 | /* Symbols without dynamic symbol table entries aren't interesting | |
1669 | at all. */ | |
1670 | if (h->root.dynindx == -1) | |
1671 | return true; | |
1672 | ||
1673 | if (h->root.got.offset != 1) | |
1674 | h->root.dynindx = hsd->max_non_got_dynindx++; | |
1675 | else | |
1676 | { | |
1677 | h->root.dynindx = --hsd->min_got_dynindx; | |
1678 | hsd->low = (struct elf_link_hash_entry *) h; | |
1679 | } | |
1680 | ||
1681 | return true; | |
1682 | } | |
1683 | ||
1684 | /* If H is a symbol that needs a global GOT entry, but has a dynamic | |
1685 | symbol table index lower than any we've seen to date, record it for | |
1686 | posterity. */ | |
1687 | ||
1688 | static boolean | |
1689 | mips_elf_record_global_got_symbol (h, info, g) | |
1690 | struct elf_link_hash_entry *h; | |
1691 | struct bfd_link_info *info; | |
1692 | struct mips_got_info *g ATTRIBUTE_UNUSED; | |
1693 | { | |
1694 | /* A global symbol in the GOT must also be in the dynamic symbol | |
1695 | table. */ | |
7c5fcef7 L |
1696 | if (h->dynindx == -1) |
1697 | { | |
1698 | switch (ELF_ST_VISIBILITY (h->other)) | |
1699 | { | |
1700 | case STV_INTERNAL: | |
1701 | case STV_HIDDEN: | |
1702 | _bfd_mips_elf_hide_symbol (info, h, true); | |
1703 | break; | |
1704 | } | |
1705 | if (!bfd_elf32_link_record_dynamic_symbol (info, h)) | |
1706 | return false; | |
1707 | } | |
b49e97c9 TS |
1708 | |
1709 | /* If we've already marked this entry as needing GOT space, we don't | |
1710 | need to do it again. */ | |
1711 | if (h->got.offset != MINUS_ONE) | |
1712 | return true; | |
1713 | ||
1714 | /* By setting this to a value other than -1, we are indicating that | |
1715 | there needs to be a GOT entry for H. Avoid using zero, as the | |
1716 | generic ELF copy_indirect_symbol tests for <= 0. */ | |
1717 | h->got.offset = 1; | |
1718 | ||
1719 | return true; | |
1720 | } | |
1721 | \f | |
1722 | /* Returns the first relocation of type r_type found, beginning with | |
1723 | RELOCATION. RELEND is one-past-the-end of the relocation table. */ | |
1724 | ||
1725 | static const Elf_Internal_Rela * | |
1726 | mips_elf_next_relocation (abfd, r_type, relocation, relend) | |
1727 | bfd *abfd ATTRIBUTE_UNUSED; | |
1728 | unsigned int r_type; | |
1729 | const Elf_Internal_Rela *relocation; | |
1730 | const Elf_Internal_Rela *relend; | |
1731 | { | |
1732 | /* According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must be | |
1733 | immediately following. However, for the IRIX6 ABI, the next | |
1734 | relocation may be a composed relocation consisting of several | |
1735 | relocations for the same address. In that case, the R_MIPS_LO16 | |
1736 | relocation may occur as one of these. We permit a similar | |
1737 | extension in general, as that is useful for GCC. */ | |
1738 | while (relocation < relend) | |
1739 | { | |
1740 | if (ELF_R_TYPE (abfd, relocation->r_info) == r_type) | |
1741 | return relocation; | |
1742 | ||
1743 | ++relocation; | |
1744 | } | |
1745 | ||
1746 | /* We didn't find it. */ | |
1747 | bfd_set_error (bfd_error_bad_value); | |
1748 | return NULL; | |
1749 | } | |
1750 | ||
1751 | /* Return whether a relocation is against a local symbol. */ | |
1752 | ||
1753 | static boolean | |
1754 | mips_elf_local_relocation_p (input_bfd, relocation, local_sections, | |
1755 | check_forced) | |
1756 | bfd *input_bfd; | |
1757 | const Elf_Internal_Rela *relocation; | |
1758 | asection **local_sections; | |
1759 | boolean check_forced; | |
1760 | { | |
1761 | unsigned long r_symndx; | |
1762 | Elf_Internal_Shdr *symtab_hdr; | |
1763 | struct mips_elf_link_hash_entry *h; | |
1764 | size_t extsymoff; | |
1765 | ||
1766 | r_symndx = ELF_R_SYM (input_bfd, relocation->r_info); | |
1767 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | |
1768 | extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info; | |
1769 | ||
1770 | if (r_symndx < extsymoff) | |
1771 | return true; | |
1772 | if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL) | |
1773 | return true; | |
1774 | ||
1775 | if (check_forced) | |
1776 | { | |
1777 | /* Look up the hash table to check whether the symbol | |
1778 | was forced local. */ | |
1779 | h = (struct mips_elf_link_hash_entry *) | |
1780 | elf_sym_hashes (input_bfd) [r_symndx - extsymoff]; | |
1781 | /* Find the real hash-table entry for this symbol. */ | |
1782 | while (h->root.root.type == bfd_link_hash_indirect | |
1783 | || h->root.root.type == bfd_link_hash_warning) | |
1784 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | |
1785 | if ((h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0) | |
1786 | return true; | |
1787 | } | |
1788 | ||
1789 | return false; | |
1790 | } | |
1791 | \f | |
1792 | /* Sign-extend VALUE, which has the indicated number of BITS. */ | |
1793 | ||
1794 | static bfd_vma | |
1795 | mips_elf_sign_extend (value, bits) | |
1796 | bfd_vma value; | |
1797 | int bits; | |
1798 | { | |
1799 | if (value & ((bfd_vma) 1 << (bits - 1))) | |
1800 | /* VALUE is negative. */ | |
1801 | value |= ((bfd_vma) - 1) << bits; | |
1802 | ||
1803 | return value; | |
1804 | } | |
1805 | ||
1806 | /* Return non-zero if the indicated VALUE has overflowed the maximum | |
1807 | range expressable by a signed number with the indicated number of | |
1808 | BITS. */ | |
1809 | ||
1810 | static boolean | |
1811 | mips_elf_overflow_p (value, bits) | |
1812 | bfd_vma value; | |
1813 | int bits; | |
1814 | { | |
1815 | bfd_signed_vma svalue = (bfd_signed_vma) value; | |
1816 | ||
1817 | if (svalue > (1 << (bits - 1)) - 1) | |
1818 | /* The value is too big. */ | |
1819 | return true; | |
1820 | else if (svalue < -(1 << (bits - 1))) | |
1821 | /* The value is too small. */ | |
1822 | return true; | |
1823 | ||
1824 | /* All is well. */ | |
1825 | return false; | |
1826 | } | |
1827 | ||
1828 | /* Calculate the %high function. */ | |
1829 | ||
1830 | static bfd_vma | |
1831 | mips_elf_high (value) | |
1832 | bfd_vma value; | |
1833 | { | |
1834 | return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff; | |
1835 | } | |
1836 | ||
1837 | /* Calculate the %higher function. */ | |
1838 | ||
1839 | static bfd_vma | |
1840 | mips_elf_higher (value) | |
1841 | bfd_vma value ATTRIBUTE_UNUSED; | |
1842 | { | |
1843 | #ifdef BFD64 | |
1844 | return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff; | |
1845 | #else | |
1846 | abort (); | |
1847 | return (bfd_vma) -1; | |
1848 | #endif | |
1849 | } | |
1850 | ||
1851 | /* Calculate the %highest function. */ | |
1852 | ||
1853 | static bfd_vma | |
1854 | mips_elf_highest (value) | |
1855 | bfd_vma value ATTRIBUTE_UNUSED; | |
1856 | { | |
1857 | #ifdef BFD64 | |
1858 | return ((value + (bfd_vma) 0x800080008000) >> 48) & 0xffff; | |
1859 | #else | |
1860 | abort (); | |
1861 | return (bfd_vma) -1; | |
1862 | #endif | |
1863 | } | |
1864 | \f | |
1865 | /* Create the .compact_rel section. */ | |
1866 | ||
1867 | static boolean | |
1868 | mips_elf_create_compact_rel_section (abfd, info) | |
1869 | bfd *abfd; | |
1870 | struct bfd_link_info *info ATTRIBUTE_UNUSED; | |
1871 | { | |
1872 | flagword flags; | |
1873 | register asection *s; | |
1874 | ||
1875 | if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL) | |
1876 | { | |
1877 | flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED | |
1878 | | SEC_READONLY); | |
1879 | ||
1880 | s = bfd_make_section (abfd, ".compact_rel"); | |
1881 | if (s == NULL | |
1882 | || ! bfd_set_section_flags (abfd, s, flags) | |
1883 | || ! bfd_set_section_alignment (abfd, s, | |
1884 | MIPS_ELF_LOG_FILE_ALIGN (abfd))) | |
1885 | return false; | |
1886 | ||
1887 | s->_raw_size = sizeof (Elf32_External_compact_rel); | |
1888 | } | |
1889 | ||
1890 | return true; | |
1891 | } | |
1892 | ||
1893 | /* Create the .got section to hold the global offset table. */ | |
1894 | ||
1895 | static boolean | |
1896 | mips_elf_create_got_section (abfd, info) | |
1897 | bfd *abfd; | |
1898 | struct bfd_link_info *info; | |
1899 | { | |
1900 | flagword flags; | |
1901 | register asection *s; | |
1902 | struct elf_link_hash_entry *h; | |
1903 | struct mips_got_info *g; | |
1904 | bfd_size_type amt; | |
1905 | ||
1906 | /* This function may be called more than once. */ | |
1907 | if (mips_elf_got_section (abfd)) | |
1908 | return true; | |
1909 | ||
1910 | flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | |
1911 | | SEC_LINKER_CREATED); | |
1912 | ||
1913 | s = bfd_make_section (abfd, ".got"); | |
1914 | if (s == NULL | |
1915 | || ! bfd_set_section_flags (abfd, s, flags) | |
1916 | || ! bfd_set_section_alignment (abfd, s, 4)) | |
1917 | return false; | |
1918 | ||
1919 | /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the | |
1920 | linker script because we don't want to define the symbol if we | |
1921 | are not creating a global offset table. */ | |
1922 | h = NULL; | |
1923 | if (! (_bfd_generic_link_add_one_symbol | |
1924 | (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s, | |
1925 | (bfd_vma) 0, (const char *) NULL, false, | |
1926 | get_elf_backend_data (abfd)->collect, | |
1927 | (struct bfd_link_hash_entry **) &h))) | |
1928 | return false; | |
1929 | h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF; | |
1930 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; | |
1931 | h->type = STT_OBJECT; | |
1932 | ||
1933 | if (info->shared | |
1934 | && ! bfd_elf32_link_record_dynamic_symbol (info, h)) | |
1935 | return false; | |
1936 | ||
1937 | /* The first several global offset table entries are reserved. */ | |
1938 | s->_raw_size = MIPS_RESERVED_GOTNO * MIPS_ELF_GOT_SIZE (abfd); | |
1939 | ||
1940 | amt = sizeof (struct mips_got_info); | |
1941 | g = (struct mips_got_info *) bfd_alloc (abfd, amt); | |
1942 | if (g == NULL) | |
1943 | return false; | |
1944 | g->global_gotsym = NULL; | |
1945 | g->local_gotno = MIPS_RESERVED_GOTNO; | |
1946 | g->assigned_gotno = MIPS_RESERVED_GOTNO; | |
1947 | if (elf_section_data (s) == NULL) | |
1948 | { | |
1949 | amt = sizeof (struct bfd_elf_section_data); | |
1950 | s->used_by_bfd = (PTR) bfd_zalloc (abfd, amt); | |
1951 | if (elf_section_data (s) == NULL) | |
1952 | return false; | |
1953 | } | |
1954 | elf_section_data (s)->tdata = (PTR) g; | |
1955 | elf_section_data (s)->this_hdr.sh_flags | |
1956 | |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL; | |
1957 | ||
1958 | return true; | |
1959 | } | |
1960 | ||
1961 | /* Returns the .msym section for ABFD, creating it if it does not | |
1962 | already exist. Returns NULL to indicate error. */ | |
1963 | ||
1964 | static asection * | |
1965 | mips_elf_create_msym_section (abfd) | |
1966 | bfd *abfd; | |
1967 | { | |
1968 | asection *s; | |
1969 | ||
1970 | s = bfd_get_section_by_name (abfd, ".msym"); | |
1971 | if (!s) | |
1972 | { | |
1973 | s = bfd_make_section (abfd, ".msym"); | |
1974 | if (!s | |
1975 | || !bfd_set_section_flags (abfd, s, | |
1976 | SEC_ALLOC | |
1977 | | SEC_LOAD | |
1978 | | SEC_HAS_CONTENTS | |
1979 | | SEC_LINKER_CREATED | |
1980 | | SEC_READONLY) | |
1981 | || !bfd_set_section_alignment (abfd, s, | |
1982 | MIPS_ELF_LOG_FILE_ALIGN (abfd))) | |
1983 | return NULL; | |
1984 | } | |
1985 | ||
1986 | return s; | |
1987 | } | |
1988 | \f | |
1989 | /* Calculate the value produced by the RELOCATION (which comes from | |
1990 | the INPUT_BFD). The ADDEND is the addend to use for this | |
1991 | RELOCATION; RELOCATION->R_ADDEND is ignored. | |
1992 | ||
1993 | The result of the relocation calculation is stored in VALUEP. | |
1994 | REQUIRE_JALXP indicates whether or not the opcode used with this | |
1995 | relocation must be JALX. | |
1996 | ||
1997 | This function returns bfd_reloc_continue if the caller need take no | |
1998 | further action regarding this relocation, bfd_reloc_notsupported if | |
1999 | something goes dramatically wrong, bfd_reloc_overflow if an | |
2000 | overflow occurs, and bfd_reloc_ok to indicate success. */ | |
2001 | ||
2002 | static bfd_reloc_status_type | |
2003 | mips_elf_calculate_relocation (abfd, input_bfd, input_section, info, | |
2004 | relocation, addend, howto, local_syms, | |
2005 | local_sections, valuep, namep, | |
2006 | require_jalxp) | |
2007 | bfd *abfd; | |
2008 | bfd *input_bfd; | |
2009 | asection *input_section; | |
2010 | struct bfd_link_info *info; | |
2011 | const Elf_Internal_Rela *relocation; | |
2012 | bfd_vma addend; | |
2013 | reloc_howto_type *howto; | |
2014 | Elf_Internal_Sym *local_syms; | |
2015 | asection **local_sections; | |
2016 | bfd_vma *valuep; | |
2017 | const char **namep; | |
2018 | boolean *require_jalxp; | |
2019 | { | |
2020 | /* The eventual value we will return. */ | |
2021 | bfd_vma value; | |
2022 | /* The address of the symbol against which the relocation is | |
2023 | occurring. */ | |
2024 | bfd_vma symbol = 0; | |
2025 | /* The final GP value to be used for the relocatable, executable, or | |
2026 | shared object file being produced. */ | |
2027 | bfd_vma gp = MINUS_ONE; | |
2028 | /* The place (section offset or address) of the storage unit being | |
2029 | relocated. */ | |
2030 | bfd_vma p; | |
2031 | /* The value of GP used to create the relocatable object. */ | |
2032 | bfd_vma gp0 = MINUS_ONE; | |
2033 | /* The offset into the global offset table at which the address of | |
2034 | the relocation entry symbol, adjusted by the addend, resides | |
2035 | during execution. */ | |
2036 | bfd_vma g = MINUS_ONE; | |
2037 | /* The section in which the symbol referenced by the relocation is | |
2038 | located. */ | |
2039 | asection *sec = NULL; | |
2040 | struct mips_elf_link_hash_entry *h = NULL; | |
2041 | /* True if the symbol referred to by this relocation is a local | |
2042 | symbol. */ | |
2043 | boolean local_p; | |
2044 | /* True if the symbol referred to by this relocation is "_gp_disp". */ | |
2045 | boolean gp_disp_p = false; | |
2046 | Elf_Internal_Shdr *symtab_hdr; | |
2047 | size_t extsymoff; | |
2048 | unsigned long r_symndx; | |
2049 | int r_type; | |
2050 | /* True if overflow occurred during the calculation of the | |
2051 | relocation value. */ | |
2052 | boolean overflowed_p; | |
2053 | /* True if this relocation refers to a MIPS16 function. */ | |
2054 | boolean target_is_16_bit_code_p = false; | |
2055 | ||
2056 | /* Parse the relocation. */ | |
2057 | r_symndx = ELF_R_SYM (input_bfd, relocation->r_info); | |
2058 | r_type = ELF_R_TYPE (input_bfd, relocation->r_info); | |
2059 | p = (input_section->output_section->vma | |
2060 | + input_section->output_offset | |
2061 | + relocation->r_offset); | |
2062 | ||
2063 | /* Assume that there will be no overflow. */ | |
2064 | overflowed_p = false; | |
2065 | ||
2066 | /* Figure out whether or not the symbol is local, and get the offset | |
2067 | used in the array of hash table entries. */ | |
2068 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | |
2069 | local_p = mips_elf_local_relocation_p (input_bfd, relocation, | |
2070 | local_sections, false); | |
2071 | if (! elf_bad_symtab (input_bfd)) | |
2072 | extsymoff = symtab_hdr->sh_info; | |
2073 | else | |
2074 | { | |
2075 | /* The symbol table does not follow the rule that local symbols | |
2076 | must come before globals. */ | |
2077 | extsymoff = 0; | |
2078 | } | |
2079 | ||
2080 | /* Figure out the value of the symbol. */ | |
2081 | if (local_p) | |
2082 | { | |
2083 | Elf_Internal_Sym *sym; | |
2084 | ||
2085 | sym = local_syms + r_symndx; | |
2086 | sec = local_sections[r_symndx]; | |
2087 | ||
2088 | symbol = sec->output_section->vma + sec->output_offset; | |
d4df96e6 L |
2089 | if (ELF_ST_TYPE (sym->st_info) != STT_SECTION |
2090 | || (sec->flags & SEC_MERGE)) | |
b49e97c9 | 2091 | symbol += sym->st_value; |
d4df96e6 L |
2092 | if ((sec->flags & SEC_MERGE) |
2093 | && ELF_ST_TYPE (sym->st_info) == STT_SECTION) | |
2094 | { | |
2095 | addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend); | |
2096 | addend -= symbol; | |
2097 | addend += sec->output_section->vma + sec->output_offset; | |
2098 | } | |
b49e97c9 TS |
2099 | |
2100 | /* MIPS16 text labels should be treated as odd. */ | |
2101 | if (sym->st_other == STO_MIPS16) | |
2102 | ++symbol; | |
2103 | ||
2104 | /* Record the name of this symbol, for our caller. */ | |
2105 | *namep = bfd_elf_string_from_elf_section (input_bfd, | |
2106 | symtab_hdr->sh_link, | |
2107 | sym->st_name); | |
2108 | if (*namep == '\0') | |
2109 | *namep = bfd_section_name (input_bfd, sec); | |
2110 | ||
2111 | target_is_16_bit_code_p = (sym->st_other == STO_MIPS16); | |
2112 | } | |
2113 | else | |
2114 | { | |
2115 | /* For global symbols we look up the symbol in the hash-table. */ | |
2116 | h = ((struct mips_elf_link_hash_entry *) | |
2117 | elf_sym_hashes (input_bfd) [r_symndx - extsymoff]); | |
2118 | /* Find the real hash-table entry for this symbol. */ | |
2119 | while (h->root.root.type == bfd_link_hash_indirect | |
2120 | || h->root.root.type == bfd_link_hash_warning) | |
2121 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | |
2122 | ||
2123 | /* Record the name of this symbol, for our caller. */ | |
2124 | *namep = h->root.root.root.string; | |
2125 | ||
2126 | /* See if this is the special _gp_disp symbol. Note that such a | |
2127 | symbol must always be a global symbol. */ | |
2128 | if (strcmp (h->root.root.root.string, "_gp_disp") == 0 | |
2129 | && ! NEWABI_P (input_bfd)) | |
2130 | { | |
2131 | /* Relocations against _gp_disp are permitted only with | |
2132 | R_MIPS_HI16 and R_MIPS_LO16 relocations. */ | |
2133 | if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16) | |
2134 | return bfd_reloc_notsupported; | |
2135 | ||
2136 | gp_disp_p = true; | |
2137 | } | |
2138 | /* If this symbol is defined, calculate its address. Note that | |
2139 | _gp_disp is a magic symbol, always implicitly defined by the | |
2140 | linker, so it's inappropriate to check to see whether or not | |
2141 | its defined. */ | |
2142 | else if ((h->root.root.type == bfd_link_hash_defined | |
2143 | || h->root.root.type == bfd_link_hash_defweak) | |
2144 | && h->root.root.u.def.section) | |
2145 | { | |
2146 | sec = h->root.root.u.def.section; | |
2147 | if (sec->output_section) | |
2148 | symbol = (h->root.root.u.def.value | |
2149 | + sec->output_section->vma | |
2150 | + sec->output_offset); | |
2151 | else | |
2152 | symbol = h->root.root.u.def.value; | |
2153 | } | |
2154 | else if (h->root.root.type == bfd_link_hash_undefweak) | |
2155 | /* We allow relocations against undefined weak symbols, giving | |
2156 | it the value zero, so that you can undefined weak functions | |
2157 | and check to see if they exist by looking at their | |
2158 | addresses. */ | |
2159 | symbol = 0; | |
2160 | else if (info->shared | |
2161 | && (!info->symbolic || info->allow_shlib_undefined) | |
2162 | && !info->no_undefined | |
2163 | && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT) | |
2164 | symbol = 0; | |
2165 | else if (strcmp (h->root.root.root.string, "_DYNAMIC_LINK") == 0 || | |
2166 | strcmp (h->root.root.root.string, "_DYNAMIC_LINKING") == 0) | |
2167 | { | |
2168 | /* If this is a dynamic link, we should have created a | |
2169 | _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol | |
2170 | in in _bfd_mips_elf_create_dynamic_sections. | |
2171 | Otherwise, we should define the symbol with a value of 0. | |
2172 | FIXME: It should probably get into the symbol table | |
2173 | somehow as well. */ | |
2174 | BFD_ASSERT (! info->shared); | |
2175 | BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL); | |
2176 | symbol = 0; | |
2177 | } | |
2178 | else | |
2179 | { | |
2180 | if (! ((*info->callbacks->undefined_symbol) | |
2181 | (info, h->root.root.root.string, input_bfd, | |
2182 | input_section, relocation->r_offset, | |
2183 | (!info->shared || info->no_undefined | |
2184 | || ELF_ST_VISIBILITY (h->root.other))))) | |
2185 | return bfd_reloc_undefined; | |
2186 | symbol = 0; | |
2187 | } | |
2188 | ||
2189 | target_is_16_bit_code_p = (h->root.other == STO_MIPS16); | |
2190 | } | |
2191 | ||
2192 | /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we | |
2193 | need to redirect the call to the stub, unless we're already *in* | |
2194 | a stub. */ | |
2195 | if (r_type != R_MIPS16_26 && !info->relocateable | |
2196 | && ((h != NULL && h->fn_stub != NULL) | |
2197 | || (local_p && elf_tdata (input_bfd)->local_stubs != NULL | |
2198 | && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL)) | |
2199 | && !mips_elf_stub_section_p (input_bfd, input_section)) | |
2200 | { | |
2201 | /* This is a 32- or 64-bit call to a 16-bit function. We should | |
2202 | have already noticed that we were going to need the | |
2203 | stub. */ | |
2204 | if (local_p) | |
2205 | sec = elf_tdata (input_bfd)->local_stubs[r_symndx]; | |
2206 | else | |
2207 | { | |
2208 | BFD_ASSERT (h->need_fn_stub); | |
2209 | sec = h->fn_stub; | |
2210 | } | |
2211 | ||
2212 | symbol = sec->output_section->vma + sec->output_offset; | |
2213 | } | |
2214 | /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we | |
2215 | need to redirect the call to the stub. */ | |
2216 | else if (r_type == R_MIPS16_26 && !info->relocateable | |
2217 | && h != NULL | |
2218 | && (h->call_stub != NULL || h->call_fp_stub != NULL) | |
2219 | && !target_is_16_bit_code_p) | |
2220 | { | |
2221 | /* If both call_stub and call_fp_stub are defined, we can figure | |
2222 | out which one to use by seeing which one appears in the input | |
2223 | file. */ | |
2224 | if (h->call_stub != NULL && h->call_fp_stub != NULL) | |
2225 | { | |
2226 | asection *o; | |
2227 | ||
2228 | sec = NULL; | |
2229 | for (o = input_bfd->sections; o != NULL; o = o->next) | |
2230 | { | |
2231 | if (strncmp (bfd_get_section_name (input_bfd, o), | |
2232 | CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0) | |
2233 | { | |
2234 | sec = h->call_fp_stub; | |
2235 | break; | |
2236 | } | |
2237 | } | |
2238 | if (sec == NULL) | |
2239 | sec = h->call_stub; | |
2240 | } | |
2241 | else if (h->call_stub != NULL) | |
2242 | sec = h->call_stub; | |
2243 | else | |
2244 | sec = h->call_fp_stub; | |
2245 | ||
2246 | BFD_ASSERT (sec->_raw_size > 0); | |
2247 | symbol = sec->output_section->vma + sec->output_offset; | |
2248 | } | |
2249 | ||
2250 | /* Calls from 16-bit code to 32-bit code and vice versa require the | |
2251 | special jalx instruction. */ | |
2252 | *require_jalxp = (!info->relocateable | |
2253 | && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p) | |
2254 | || ((r_type == R_MIPS_26) && target_is_16_bit_code_p))); | |
2255 | ||
2256 | local_p = mips_elf_local_relocation_p (input_bfd, relocation, | |
2257 | local_sections, true); | |
2258 | ||
2259 | /* If we haven't already determined the GOT offset, or the GP value, | |
2260 | and we're going to need it, get it now. */ | |
2261 | switch (r_type) | |
2262 | { | |
2263 | case R_MIPS_CALL16: | |
2264 | case R_MIPS_GOT16: | |
2265 | case R_MIPS_GOT_DISP: | |
2266 | case R_MIPS_GOT_HI16: | |
2267 | case R_MIPS_CALL_HI16: | |
2268 | case R_MIPS_GOT_LO16: | |
2269 | case R_MIPS_CALL_LO16: | |
2270 | /* Find the index into the GOT where this value is located. */ | |
2271 | if (!local_p) | |
2272 | { | |
2273 | BFD_ASSERT (addend == 0); | |
2274 | g = mips_elf_global_got_index (elf_hash_table (info)->dynobj, | |
2275 | (struct elf_link_hash_entry *) h); | |
2276 | if (! elf_hash_table(info)->dynamic_sections_created | |
2277 | || (info->shared | |
2278 | && (info->symbolic || h->root.dynindx == -1) | |
2279 | && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))) | |
2280 | { | |
2281 | /* This is a static link or a -Bsymbolic link. The | |
2282 | symbol is defined locally, or was forced to be local. | |
2283 | We must initialize this entry in the GOT. */ | |
2284 | bfd *tmpbfd = elf_hash_table (info)->dynobj; | |
2285 | asection *sgot = mips_elf_got_section(tmpbfd); | |
2286 | MIPS_ELF_PUT_WORD (tmpbfd, symbol + addend, sgot->contents + g); | |
2287 | } | |
2288 | } | |
2289 | else if (r_type == R_MIPS_GOT16 || r_type == R_MIPS_CALL16) | |
2290 | /* There's no need to create a local GOT entry here; the | |
2291 | calculation for a local GOT16 entry does not involve G. */ | |
2292 | break; | |
2293 | else | |
2294 | { | |
2295 | g = mips_elf_local_got_index (abfd, info, symbol + addend); | |
2296 | if (g == MINUS_ONE) | |
2297 | return bfd_reloc_outofrange; | |
2298 | } | |
2299 | ||
2300 | /* Convert GOT indices to actual offsets. */ | |
2301 | g = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj, | |
2302 | abfd, g); | |
2303 | break; | |
2304 | ||
2305 | case R_MIPS_HI16: | |
2306 | case R_MIPS_LO16: | |
2307 | case R_MIPS16_GPREL: | |
2308 | case R_MIPS_GPREL16: | |
2309 | case R_MIPS_GPREL32: | |
2310 | case R_MIPS_LITERAL: | |
2311 | gp0 = _bfd_get_gp_value (input_bfd); | |
2312 | gp = _bfd_get_gp_value (abfd); | |
2313 | break; | |
2314 | ||
2315 | default: | |
2316 | break; | |
2317 | } | |
2318 | ||
2319 | /* Figure out what kind of relocation is being performed. */ | |
2320 | switch (r_type) | |
2321 | { | |
2322 | case R_MIPS_NONE: | |
2323 | return bfd_reloc_continue; | |
2324 | ||
2325 | case R_MIPS_16: | |
2326 | value = symbol + mips_elf_sign_extend (addend, 16); | |
2327 | overflowed_p = mips_elf_overflow_p (value, 16); | |
2328 | break; | |
2329 | ||
2330 | case R_MIPS_32: | |
2331 | case R_MIPS_REL32: | |
2332 | case R_MIPS_64: | |
2333 | if ((info->shared | |
2334 | || (elf_hash_table (info)->dynamic_sections_created | |
2335 | && h != NULL | |
2336 | && ((h->root.elf_link_hash_flags | |
2337 | & ELF_LINK_HASH_DEF_DYNAMIC) != 0) | |
2338 | && ((h->root.elf_link_hash_flags | |
2339 | & ELF_LINK_HASH_DEF_REGULAR) == 0))) | |
2340 | && r_symndx != 0 | |
2341 | && (input_section->flags & SEC_ALLOC) != 0) | |
2342 | { | |
2343 | /* If we're creating a shared library, or this relocation is | |
2344 | against a symbol in a shared library, then we can't know | |
2345 | where the symbol will end up. So, we create a relocation | |
2346 | record in the output, and leave the job up to the dynamic | |
2347 | linker. */ | |
2348 | value = addend; | |
2349 | if (!mips_elf_create_dynamic_relocation (abfd, | |
2350 | info, | |
2351 | relocation, | |
2352 | h, | |
2353 | sec, | |
2354 | symbol, | |
2355 | &value, | |
2356 | input_section)) | |
2357 | return bfd_reloc_undefined; | |
2358 | } | |
2359 | else | |
2360 | { | |
2361 | if (r_type != R_MIPS_REL32) | |
2362 | value = symbol + addend; | |
2363 | else | |
2364 | value = addend; | |
2365 | } | |
2366 | value &= howto->dst_mask; | |
2367 | break; | |
2368 | ||
2369 | case R_MIPS_PC32: | |
2370 | case R_MIPS_PC64: | |
2371 | case R_MIPS_GNU_REL_LO16: | |
2372 | value = symbol + addend - p; | |
2373 | value &= howto->dst_mask; | |
2374 | break; | |
2375 | ||
2376 | case R_MIPS_GNU_REL16_S2: | |
2377 | value = symbol + mips_elf_sign_extend (addend << 2, 18) - p; | |
2378 | overflowed_p = mips_elf_overflow_p (value, 18); | |
2379 | value = (value >> 2) & howto->dst_mask; | |
2380 | break; | |
2381 | ||
2382 | case R_MIPS_GNU_REL_HI16: | |
2383 | /* Instead of subtracting 'p' here, we should be subtracting the | |
2384 | equivalent value for the LO part of the reloc, since the value | |
2385 | here is relative to that address. Because that's not easy to do, | |
2386 | we adjust 'addend' in _bfd_mips_elf_relocate_section(). See also | |
2387 | the comment there for more information. */ | |
2388 | value = mips_elf_high (addend + symbol - p); | |
2389 | value &= howto->dst_mask; | |
2390 | break; | |
2391 | ||
2392 | case R_MIPS16_26: | |
2393 | /* The calculation for R_MIPS16_26 is just the same as for an | |
2394 | R_MIPS_26. It's only the storage of the relocated field into | |
2395 | the output file that's different. That's handled in | |
2396 | mips_elf_perform_relocation. So, we just fall through to the | |
2397 | R_MIPS_26 case here. */ | |
2398 | case R_MIPS_26: | |
2399 | if (local_p) | |
2400 | value = (((addend << 2) | ((p + 4) & 0xf0000000)) + symbol) >> 2; | |
2401 | else | |
2402 | value = (mips_elf_sign_extend (addend << 2, 28) + symbol) >> 2; | |
2403 | value &= howto->dst_mask; | |
2404 | break; | |
2405 | ||
2406 | case R_MIPS_HI16: | |
2407 | if (!gp_disp_p) | |
2408 | { | |
2409 | value = mips_elf_high (addend + symbol); | |
2410 | value &= howto->dst_mask; | |
2411 | } | |
2412 | else | |
2413 | { | |
2414 | value = mips_elf_high (addend + gp - p); | |
2415 | overflowed_p = mips_elf_overflow_p (value, 16); | |
2416 | } | |
2417 | break; | |
2418 | ||
2419 | case R_MIPS_LO16: | |
2420 | if (!gp_disp_p) | |
2421 | value = (symbol + addend) & howto->dst_mask; | |
2422 | else | |
2423 | { | |
2424 | value = addend + gp - p + 4; | |
2425 | /* The MIPS ABI requires checking the R_MIPS_LO16 relocation | |
8dc1a139 | 2426 | for overflow. But, on, say, IRIX5, relocations against |
b49e97c9 TS |
2427 | _gp_disp are normally generated from the .cpload |
2428 | pseudo-op. It generates code that normally looks like | |
2429 | this: | |
2430 | ||
2431 | lui $gp,%hi(_gp_disp) | |
2432 | addiu $gp,$gp,%lo(_gp_disp) | |
2433 | addu $gp,$gp,$t9 | |
2434 | ||
2435 | Here $t9 holds the address of the function being called, | |
2436 | as required by the MIPS ELF ABI. The R_MIPS_LO16 | |
2437 | relocation can easily overflow in this situation, but the | |
2438 | R_MIPS_HI16 relocation will handle the overflow. | |
2439 | Therefore, we consider this a bug in the MIPS ABI, and do | |
2440 | not check for overflow here. */ | |
2441 | } | |
2442 | break; | |
2443 | ||
2444 | case R_MIPS_LITERAL: | |
2445 | /* Because we don't merge literal sections, we can handle this | |
2446 | just like R_MIPS_GPREL16. In the long run, we should merge | |
2447 | shared literals, and then we will need to additional work | |
2448 | here. */ | |
2449 | ||
2450 | /* Fall through. */ | |
2451 | ||
2452 | case R_MIPS16_GPREL: | |
2453 | /* The R_MIPS16_GPREL performs the same calculation as | |
2454 | R_MIPS_GPREL16, but stores the relocated bits in a different | |
2455 | order. We don't need to do anything special here; the | |
2456 | differences are handled in mips_elf_perform_relocation. */ | |
2457 | case R_MIPS_GPREL16: | |
2458 | if (local_p) | |
2459 | value = mips_elf_sign_extend (addend, 16) + symbol + gp0 - gp; | |
2460 | else | |
2461 | value = mips_elf_sign_extend (addend, 16) + symbol - gp; | |
2462 | overflowed_p = mips_elf_overflow_p (value, 16); | |
2463 | break; | |
2464 | ||
2465 | case R_MIPS_GOT16: | |
2466 | case R_MIPS_CALL16: | |
2467 | if (local_p) | |
2468 | { | |
2469 | boolean forced; | |
2470 | ||
2471 | /* The special case is when the symbol is forced to be local. We | |
2472 | need the full address in the GOT since no R_MIPS_LO16 relocation | |
2473 | follows. */ | |
2474 | forced = ! mips_elf_local_relocation_p (input_bfd, relocation, | |
2475 | local_sections, false); | |
2476 | value = mips_elf_got16_entry (abfd, info, symbol + addend, forced); | |
2477 | if (value == MINUS_ONE) | |
2478 | return bfd_reloc_outofrange; | |
2479 | value | |
2480 | = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj, | |
4a14403c | 2481 | abfd, value); |
b49e97c9 TS |
2482 | overflowed_p = mips_elf_overflow_p (value, 16); |
2483 | break; | |
2484 | } | |
2485 | ||
2486 | /* Fall through. */ | |
2487 | ||
2488 | case R_MIPS_GOT_DISP: | |
2489 | value = g; | |
2490 | overflowed_p = mips_elf_overflow_p (value, 16); | |
2491 | break; | |
2492 | ||
2493 | case R_MIPS_GPREL32: | |
2494 | value = (addend + symbol + gp0 - gp) & howto->dst_mask; | |
2495 | break; | |
2496 | ||
2497 | case R_MIPS_PC16: | |
2498 | value = mips_elf_sign_extend (addend, 16) + symbol - p; | |
2499 | overflowed_p = mips_elf_overflow_p (value, 16); | |
2500 | value = (bfd_vma) ((bfd_signed_vma) value / 4); | |
2501 | break; | |
2502 | ||
2503 | case R_MIPS_GOT_HI16: | |
2504 | case R_MIPS_CALL_HI16: | |
2505 | /* We're allowed to handle these two relocations identically. | |
2506 | The dynamic linker is allowed to handle the CALL relocations | |
2507 | differently by creating a lazy evaluation stub. */ | |
2508 | value = g; | |
2509 | value = mips_elf_high (value); | |
2510 | value &= howto->dst_mask; | |
2511 | break; | |
2512 | ||
2513 | case R_MIPS_GOT_LO16: | |
2514 | case R_MIPS_CALL_LO16: | |
2515 | value = g & howto->dst_mask; | |
2516 | break; | |
2517 | ||
2518 | case R_MIPS_GOT_PAGE: | |
2519 | value = mips_elf_got_page (abfd, info, symbol + addend, NULL); | |
2520 | if (value == MINUS_ONE) | |
2521 | return bfd_reloc_outofrange; | |
2522 | value = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj, | |
4a14403c | 2523 | abfd, value); |
b49e97c9 TS |
2524 | overflowed_p = mips_elf_overflow_p (value, 16); |
2525 | break; | |
2526 | ||
2527 | case R_MIPS_GOT_OFST: | |
2528 | mips_elf_got_page (abfd, info, symbol + addend, &value); | |
2529 | overflowed_p = mips_elf_overflow_p (value, 16); | |
2530 | break; | |
2531 | ||
2532 | case R_MIPS_SUB: | |
2533 | value = symbol - addend; | |
2534 | value &= howto->dst_mask; | |
2535 | break; | |
2536 | ||
2537 | case R_MIPS_HIGHER: | |
2538 | value = mips_elf_higher (addend + symbol); | |
2539 | value &= howto->dst_mask; | |
2540 | break; | |
2541 | ||
2542 | case R_MIPS_HIGHEST: | |
2543 | value = mips_elf_highest (addend + symbol); | |
2544 | value &= howto->dst_mask; | |
2545 | break; | |
2546 | ||
2547 | case R_MIPS_SCN_DISP: | |
2548 | value = symbol + addend - sec->output_offset; | |
2549 | value &= howto->dst_mask; | |
2550 | break; | |
2551 | ||
2552 | case R_MIPS_PJUMP: | |
2553 | case R_MIPS_JALR: | |
2554 | /* Both of these may be ignored. R_MIPS_JALR is an optimization | |
2555 | hint; we could improve performance by honoring that hint. */ | |
2556 | return bfd_reloc_continue; | |
2557 | ||
2558 | case R_MIPS_GNU_VTINHERIT: | |
2559 | case R_MIPS_GNU_VTENTRY: | |
2560 | /* We don't do anything with these at present. */ | |
2561 | return bfd_reloc_continue; | |
2562 | ||
2563 | default: | |
2564 | /* An unrecognized relocation type. */ | |
2565 | return bfd_reloc_notsupported; | |
2566 | } | |
2567 | ||
2568 | /* Store the VALUE for our caller. */ | |
2569 | *valuep = value; | |
2570 | return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok; | |
2571 | } | |
2572 | ||
2573 | /* Obtain the field relocated by RELOCATION. */ | |
2574 | ||
2575 | static bfd_vma | |
2576 | mips_elf_obtain_contents (howto, relocation, input_bfd, contents) | |
2577 | reloc_howto_type *howto; | |
2578 | const Elf_Internal_Rela *relocation; | |
2579 | bfd *input_bfd; | |
2580 | bfd_byte *contents; | |
2581 | { | |
2582 | bfd_vma x; | |
2583 | bfd_byte *location = contents + relocation->r_offset; | |
2584 | ||
2585 | /* Obtain the bytes. */ | |
2586 | x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location); | |
2587 | ||
2588 | if ((ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_26 | |
2589 | || ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_GPREL) | |
2590 | && bfd_little_endian (input_bfd)) | |
2591 | /* The two 16-bit words will be reversed on a little-endian system. | |
2592 | See mips_elf_perform_relocation for more details. */ | |
2593 | x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16)); | |
2594 | ||
2595 | return x; | |
2596 | } | |
2597 | ||
2598 | /* It has been determined that the result of the RELOCATION is the | |
2599 | VALUE. Use HOWTO to place VALUE into the output file at the | |
2600 | appropriate position. The SECTION is the section to which the | |
2601 | relocation applies. If REQUIRE_JALX is true, then the opcode used | |
2602 | for the relocation must be either JAL or JALX, and it is | |
2603 | unconditionally converted to JALX. | |
2604 | ||
2605 | Returns false if anything goes wrong. */ | |
2606 | ||
2607 | static boolean | |
2608 | mips_elf_perform_relocation (info, howto, relocation, value, input_bfd, | |
2609 | input_section, contents, require_jalx) | |
2610 | struct bfd_link_info *info; | |
2611 | reloc_howto_type *howto; | |
2612 | const Elf_Internal_Rela *relocation; | |
2613 | bfd_vma value; | |
2614 | bfd *input_bfd; | |
2615 | asection *input_section; | |
2616 | bfd_byte *contents; | |
2617 | boolean require_jalx; | |
2618 | { | |
2619 | bfd_vma x; | |
2620 | bfd_byte *location; | |
2621 | int r_type = ELF_R_TYPE (input_bfd, relocation->r_info); | |
2622 | ||
2623 | /* Figure out where the relocation is occurring. */ | |
2624 | location = contents + relocation->r_offset; | |
2625 | ||
2626 | /* Obtain the current value. */ | |
2627 | x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents); | |
2628 | ||
2629 | /* Clear the field we are setting. */ | |
2630 | x &= ~howto->dst_mask; | |
2631 | ||
2632 | /* If this is the R_MIPS16_26 relocation, we must store the | |
2633 | value in a funny way. */ | |
2634 | if (r_type == R_MIPS16_26) | |
2635 | { | |
2636 | /* R_MIPS16_26 is used for the mips16 jal and jalx instructions. | |
2637 | Most mips16 instructions are 16 bits, but these instructions | |
2638 | are 32 bits. | |
2639 | ||
2640 | The format of these instructions is: | |
2641 | ||
2642 | +--------------+--------------------------------+ | |
2643 | ! JALX ! X! Imm 20:16 ! Imm 25:21 ! | |
2644 | +--------------+--------------------------------+ | |
2645 | ! Immediate 15:0 ! | |
2646 | +-----------------------------------------------+ | |
2647 | ||
2648 | JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx. | |
2649 | Note that the immediate value in the first word is swapped. | |
2650 | ||
2651 | When producing a relocateable object file, R_MIPS16_26 is | |
2652 | handled mostly like R_MIPS_26. In particular, the addend is | |
2653 | stored as a straight 26-bit value in a 32-bit instruction. | |
2654 | (gas makes life simpler for itself by never adjusting a | |
2655 | R_MIPS16_26 reloc to be against a section, so the addend is | |
2656 | always zero). However, the 32 bit instruction is stored as 2 | |
2657 | 16-bit values, rather than a single 32-bit value. In a | |
2658 | big-endian file, the result is the same; in a little-endian | |
2659 | file, the two 16-bit halves of the 32 bit value are swapped. | |
2660 | This is so that a disassembler can recognize the jal | |
2661 | instruction. | |
2662 | ||
2663 | When doing a final link, R_MIPS16_26 is treated as a 32 bit | |
2664 | instruction stored as two 16-bit values. The addend A is the | |
2665 | contents of the targ26 field. The calculation is the same as | |
2666 | R_MIPS_26. When storing the calculated value, reorder the | |
2667 | immediate value as shown above, and don't forget to store the | |
2668 | value as two 16-bit values. | |
2669 | ||
2670 | To put it in MIPS ABI terms, the relocation field is T-targ26-16, | |
2671 | defined as | |
2672 | ||
2673 | big-endian: | |
2674 | +--------+----------------------+ | |
2675 | | | | | |
2676 | | | targ26-16 | | |
2677 | |31 26|25 0| | |
2678 | +--------+----------------------+ | |
2679 | ||
2680 | little-endian: | |
2681 | +----------+------+-------------+ | |
2682 | | | | | | |
2683 | | sub1 | | sub2 | | |
2684 | |0 9|10 15|16 31| | |
2685 | +----------+--------------------+ | |
2686 | where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is | |
2687 | ((sub1 << 16) | sub2)). | |
2688 | ||
2689 | When producing a relocateable object file, the calculation is | |
2690 | (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2) | |
2691 | When producing a fully linked file, the calculation is | |
2692 | let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2) | |
2693 | ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) */ | |
2694 | ||
2695 | if (!info->relocateable) | |
2696 | /* Shuffle the bits according to the formula above. */ | |
2697 | value = (((value & 0x1f0000) << 5) | |
2698 | | ((value & 0x3e00000) >> 5) | |
2699 | | (value & 0xffff)); | |
2700 | } | |
2701 | else if (r_type == R_MIPS16_GPREL) | |
2702 | { | |
2703 | /* R_MIPS16_GPREL is used for GP-relative addressing in mips16 | |
2704 | mode. A typical instruction will have a format like this: | |
2705 | ||
2706 | +--------------+--------------------------------+ | |
2707 | ! EXTEND ! Imm 10:5 ! Imm 15:11 ! | |
2708 | +--------------+--------------------------------+ | |
2709 | ! Major ! rx ! ry ! Imm 4:0 ! | |
2710 | +--------------+--------------------------------+ | |
2711 | ||
2712 | EXTEND is the five bit value 11110. Major is the instruction | |
2713 | opcode. | |
2714 | ||
2715 | This is handled exactly like R_MIPS_GPREL16, except that the | |
2716 | addend is retrieved and stored as shown in this diagram; that | |
2717 | is, the Imm fields above replace the V-rel16 field. | |
2718 | ||
2719 | All we need to do here is shuffle the bits appropriately. As | |
2720 | above, the two 16-bit halves must be swapped on a | |
2721 | little-endian system. */ | |
2722 | value = (((value & 0x7e0) << 16) | |
2723 | | ((value & 0xf800) << 5) | |
2724 | | (value & 0x1f)); | |
2725 | } | |
2726 | ||
2727 | /* Set the field. */ | |
2728 | x |= (value & howto->dst_mask); | |
2729 | ||
2730 | /* If required, turn JAL into JALX. */ | |
2731 | if (require_jalx) | |
2732 | { | |
2733 | boolean ok; | |
2734 | bfd_vma opcode = x >> 26; | |
2735 | bfd_vma jalx_opcode; | |
2736 | ||
2737 | /* Check to see if the opcode is already JAL or JALX. */ | |
2738 | if (r_type == R_MIPS16_26) | |
2739 | { | |
2740 | ok = ((opcode == 0x6) || (opcode == 0x7)); | |
2741 | jalx_opcode = 0x7; | |
2742 | } | |
2743 | else | |
2744 | { | |
2745 | ok = ((opcode == 0x3) || (opcode == 0x1d)); | |
2746 | jalx_opcode = 0x1d; | |
2747 | } | |
2748 | ||
2749 | /* If the opcode is not JAL or JALX, there's a problem. */ | |
2750 | if (!ok) | |
2751 | { | |
2752 | (*_bfd_error_handler) | |
2753 | (_("%s: %s+0x%lx: jump to stub routine which is not jal"), | |
2754 | bfd_archive_filename (input_bfd), | |
2755 | input_section->name, | |
2756 | (unsigned long) relocation->r_offset); | |
2757 | bfd_set_error (bfd_error_bad_value); | |
2758 | return false; | |
2759 | } | |
2760 | ||
2761 | /* Make this the JALX opcode. */ | |
2762 | x = (x & ~(0x3f << 26)) | (jalx_opcode << 26); | |
2763 | } | |
2764 | ||
2765 | /* Swap the high- and low-order 16 bits on little-endian systems | |
2766 | when doing a MIPS16 relocation. */ | |
2767 | if ((r_type == R_MIPS16_GPREL || r_type == R_MIPS16_26) | |
2768 | && bfd_little_endian (input_bfd)) | |
2769 | x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16)); | |
2770 | ||
2771 | /* Put the value into the output. */ | |
2772 | bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location); | |
2773 | return true; | |
2774 | } | |
2775 | ||
2776 | /* Returns true if SECTION is a MIPS16 stub section. */ | |
2777 | ||
2778 | static boolean | |
2779 | mips_elf_stub_section_p (abfd, section) | |
2780 | bfd *abfd ATTRIBUTE_UNUSED; | |
2781 | asection *section; | |
2782 | { | |
2783 | const char *name = bfd_get_section_name (abfd, section); | |
2784 | ||
2785 | return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0 | |
2786 | || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0 | |
2787 | || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0); | |
2788 | } | |
2789 | \f | |
2790 | /* Add room for N relocations to the .rel.dyn section in ABFD. */ | |
2791 | ||
2792 | static void | |
2793 | mips_elf_allocate_dynamic_relocations (abfd, n) | |
2794 | bfd *abfd; | |
2795 | unsigned int n; | |
2796 | { | |
2797 | asection *s; | |
2798 | ||
2799 | s = bfd_get_section_by_name (abfd, ".rel.dyn"); | |
2800 | BFD_ASSERT (s != NULL); | |
2801 | ||
2802 | if (s->_raw_size == 0) | |
2803 | { | |
2804 | /* Make room for a null element. */ | |
2805 | s->_raw_size += MIPS_ELF_REL_SIZE (abfd); | |
2806 | ++s->reloc_count; | |
2807 | } | |
2808 | s->_raw_size += n * MIPS_ELF_REL_SIZE (abfd); | |
2809 | } | |
2810 | ||
2811 | /* Create a rel.dyn relocation for the dynamic linker to resolve. REL | |
2812 | is the original relocation, which is now being transformed into a | |
2813 | dynamic relocation. The ADDENDP is adjusted if necessary; the | |
2814 | caller should store the result in place of the original addend. */ | |
2815 | ||
2816 | static boolean | |
2817 | mips_elf_create_dynamic_relocation (output_bfd, info, rel, h, sec, | |
2818 | symbol, addendp, input_section) | |
2819 | bfd *output_bfd; | |
2820 | struct bfd_link_info *info; | |
2821 | const Elf_Internal_Rela *rel; | |
2822 | struct mips_elf_link_hash_entry *h; | |
2823 | asection *sec; | |
2824 | bfd_vma symbol; | |
2825 | bfd_vma *addendp; | |
2826 | asection *input_section; | |
2827 | { | |
2828 | Elf_Internal_Rel outrel[3]; | |
2829 | boolean skip; | |
2830 | asection *sreloc; | |
2831 | bfd *dynobj; | |
2832 | int r_type; | |
2833 | ||
2834 | r_type = ELF_R_TYPE (output_bfd, rel->r_info); | |
2835 | dynobj = elf_hash_table (info)->dynobj; | |
4a14403c | 2836 | sreloc = bfd_get_section_by_name (dynobj, ".rel.dyn"); |
b49e97c9 TS |
2837 | BFD_ASSERT (sreloc != NULL); |
2838 | BFD_ASSERT (sreloc->contents != NULL); | |
2839 | BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd) | |
2840 | < sreloc->_raw_size); | |
2841 | ||
2842 | skip = false; | |
2843 | outrel[0].r_offset = | |
2844 | _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset); | |
2845 | outrel[1].r_offset = | |
2846 | _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset); | |
2847 | outrel[2].r_offset = | |
2848 | _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset); | |
2849 | ||
2850 | #if 0 | |
2851 | /* We begin by assuming that the offset for the dynamic relocation | |
2852 | is the same as for the original relocation. We'll adjust this | |
2853 | later to reflect the correct output offsets. */ | |
2854 | if (elf_section_data (input_section)->sec_info_type != ELF_INFO_TYPE_STABS) | |
2855 | { | |
2856 | outrel[1].r_offset = rel[1].r_offset; | |
2857 | outrel[2].r_offset = rel[2].r_offset; | |
2858 | } | |
2859 | else | |
2860 | { | |
2861 | /* Except that in a stab section things are more complex. | |
2862 | Because we compress stab information, the offset given in the | |
2863 | relocation may not be the one we want; we must let the stabs | |
2864 | machinery tell us the offset. */ | |
2865 | outrel[1].r_offset = outrel[0].r_offset; | |
2866 | outrel[2].r_offset = outrel[0].r_offset; | |
2867 | /* If we didn't need the relocation at all, this value will be | |
2868 | -1. */ | |
2869 | if (outrel[0].r_offset == (bfd_vma) -1) | |
2870 | skip = true; | |
2871 | } | |
2872 | #endif | |
2873 | ||
2874 | if (outrel[0].r_offset == (bfd_vma) -1) | |
2875 | skip = true; | |
2876 | /* FIXME: For -2 runtime relocation needs to be skipped, but | |
2877 | properly resolved statically and installed. */ | |
2878 | BFD_ASSERT (outrel[0].r_offset != (bfd_vma) -2); | |
2879 | ||
2880 | /* If we've decided to skip this relocation, just output an empty | |
2881 | record. Note that R_MIPS_NONE == 0, so that this call to memset | |
2882 | is a way of setting R_TYPE to R_MIPS_NONE. */ | |
2883 | if (skip) | |
2884 | memset (outrel, 0, sizeof (Elf_Internal_Rel) * 3); | |
2885 | else | |
2886 | { | |
2887 | long indx; | |
2888 | bfd_vma section_offset; | |
2889 | ||
2890 | /* We must now calculate the dynamic symbol table index to use | |
2891 | in the relocation. */ | |
2892 | if (h != NULL | |
2893 | && (! info->symbolic || (h->root.elf_link_hash_flags | |
2894 | & ELF_LINK_HASH_DEF_REGULAR) == 0)) | |
2895 | { | |
2896 | indx = h->root.dynindx; | |
2897 | /* h->root.dynindx may be -1 if this symbol was marked to | |
2898 | become local. */ | |
2899 | if (indx == -1) | |
2900 | indx = 0; | |
2901 | } | |
2902 | else | |
2903 | { | |
2904 | if (sec != NULL && bfd_is_abs_section (sec)) | |
2905 | indx = 0; | |
2906 | else if (sec == NULL || sec->owner == NULL) | |
2907 | { | |
2908 | bfd_set_error (bfd_error_bad_value); | |
2909 | return false; | |
2910 | } | |
2911 | else | |
2912 | { | |
2913 | indx = elf_section_data (sec->output_section)->dynindx; | |
2914 | if (indx == 0) | |
2915 | abort (); | |
2916 | } | |
2917 | ||
2918 | /* Figure out how far the target of the relocation is from | |
2919 | the beginning of its section. */ | |
2920 | section_offset = symbol - sec->output_section->vma; | |
2921 | /* The relocation we're building is section-relative. | |
2922 | Therefore, the original addend must be adjusted by the | |
2923 | section offset. */ | |
2924 | *addendp += section_offset; | |
2925 | /* Now, the relocation is just against the section. */ | |
2926 | symbol = sec->output_section->vma; | |
2927 | } | |
2928 | ||
2929 | /* If the relocation was previously an absolute relocation and | |
2930 | this symbol will not be referred to by the relocation, we must | |
2931 | adjust it by the value we give it in the dynamic symbol table. | |
2932 | Otherwise leave the job up to the dynamic linker. */ | |
2933 | if (!indx && r_type != R_MIPS_REL32) | |
2934 | *addendp += symbol; | |
2935 | ||
2936 | /* The relocation is always an REL32 relocation because we don't | |
2937 | know where the shared library will wind up at load-time. */ | |
34ea4a36 TS |
2938 | outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx, |
2939 | R_MIPS_REL32); | |
b49e97c9 TS |
2940 | |
2941 | /* Adjust the output offset of the relocation to reference the | |
2942 | correct location in the output file. */ | |
2943 | outrel[0].r_offset += (input_section->output_section->vma | |
2944 | + input_section->output_offset); | |
2945 | outrel[1].r_offset += (input_section->output_section->vma | |
2946 | + input_section->output_offset); | |
2947 | outrel[2].r_offset += (input_section->output_section->vma | |
2948 | + input_section->output_offset); | |
2949 | } | |
2950 | ||
2951 | /* Put the relocation back out. We have to use the special | |
2952 | relocation outputter in the 64-bit case since the 64-bit | |
2953 | relocation format is non-standard. */ | |
2954 | if (ABI_64_P (output_bfd)) | |
2955 | { | |
2956 | (*get_elf_backend_data (output_bfd)->s->swap_reloc_out) | |
2957 | (output_bfd, &outrel[0], | |
2958 | (sreloc->contents | |
2959 | + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel))); | |
2960 | } | |
2961 | else | |
2962 | bfd_elf32_swap_reloc_out (output_bfd, &outrel[0], | |
2963 | (((Elf32_External_Rel *) | |
2964 | sreloc->contents) | |
2965 | + sreloc->reloc_count)); | |
2966 | ||
2967 | /* Record the index of the first relocation referencing H. This | |
2968 | information is later emitted in the .msym section. */ | |
2969 | if (h != NULL | |
2970 | && (h->min_dyn_reloc_index == 0 | |
2971 | || sreloc->reloc_count < h->min_dyn_reloc_index)) | |
2972 | h->min_dyn_reloc_index = sreloc->reloc_count; | |
2973 | ||
2974 | /* We've now added another relocation. */ | |
2975 | ++sreloc->reloc_count; | |
2976 | ||
2977 | /* Make sure the output section is writable. The dynamic linker | |
2978 | will be writing to it. */ | |
2979 | elf_section_data (input_section->output_section)->this_hdr.sh_flags | |
2980 | |= SHF_WRITE; | |
2981 | ||
2982 | /* On IRIX5, make an entry of compact relocation info. */ | |
2983 | if (! skip && IRIX_COMPAT (output_bfd) == ict_irix5) | |
2984 | { | |
2985 | asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel"); | |
2986 | bfd_byte *cr; | |
2987 | ||
2988 | if (scpt) | |
2989 | { | |
2990 | Elf32_crinfo cptrel; | |
2991 | ||
2992 | mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG); | |
2993 | cptrel.vaddr = (rel->r_offset | |
2994 | + input_section->output_section->vma | |
2995 | + input_section->output_offset); | |
2996 | if (r_type == R_MIPS_REL32) | |
2997 | mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32); | |
2998 | else | |
2999 | mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD); | |
3000 | mips_elf_set_cr_dist2to (cptrel, 0); | |
3001 | cptrel.konst = *addendp; | |
3002 | ||
3003 | cr = (scpt->contents | |
3004 | + sizeof (Elf32_External_compact_rel)); | |
3005 | bfd_elf32_swap_crinfo_out (output_bfd, &cptrel, | |
3006 | ((Elf32_External_crinfo *) cr | |
3007 | + scpt->reloc_count)); | |
3008 | ++scpt->reloc_count; | |
3009 | } | |
3010 | } | |
3011 | ||
3012 | return true; | |
3013 | } | |
3014 | \f | |
3015 | /* Return the ISA for a MIPS e_flags value. */ | |
3016 | ||
3017 | static INLINE int | |
3018 | elf_mips_isa (flags) | |
3019 | flagword flags; | |
3020 | { | |
3021 | switch (flags & EF_MIPS_ARCH) | |
3022 | { | |
3023 | case E_MIPS_ARCH_1: | |
3024 | return 1; | |
3025 | case E_MIPS_ARCH_2: | |
3026 | return 2; | |
3027 | case E_MIPS_ARCH_3: | |
3028 | return 3; | |
3029 | case E_MIPS_ARCH_4: | |
3030 | return 4; | |
3031 | case E_MIPS_ARCH_5: | |
3032 | return 5; | |
3033 | case E_MIPS_ARCH_32: | |
3034 | return 32; | |
3035 | case E_MIPS_ARCH_64: | |
3036 | return 64; | |
3037 | } | |
3038 | return 4; | |
3039 | } | |
3040 | ||
3041 | /* Return the MACH for a MIPS e_flags value. */ | |
3042 | ||
3043 | unsigned long | |
3044 | _bfd_elf_mips_mach (flags) | |
3045 | flagword flags; | |
3046 | { | |
3047 | switch (flags & EF_MIPS_MACH) | |
3048 | { | |
3049 | case E_MIPS_MACH_3900: | |
3050 | return bfd_mach_mips3900; | |
3051 | ||
3052 | case E_MIPS_MACH_4010: | |
3053 | return bfd_mach_mips4010; | |
3054 | ||
3055 | case E_MIPS_MACH_4100: | |
3056 | return bfd_mach_mips4100; | |
3057 | ||
3058 | case E_MIPS_MACH_4111: | |
3059 | return bfd_mach_mips4111; | |
3060 | ||
3061 | case E_MIPS_MACH_4650: | |
3062 | return bfd_mach_mips4650; | |
3063 | ||
3064 | case E_MIPS_MACH_SB1: | |
3065 | return bfd_mach_mips_sb1; | |
3066 | ||
3067 | default: | |
3068 | switch (flags & EF_MIPS_ARCH) | |
3069 | { | |
3070 | default: | |
3071 | case E_MIPS_ARCH_1: | |
3072 | return bfd_mach_mips3000; | |
3073 | break; | |
3074 | ||
3075 | case E_MIPS_ARCH_2: | |
3076 | return bfd_mach_mips6000; | |
3077 | break; | |
3078 | ||
3079 | case E_MIPS_ARCH_3: | |
3080 | return bfd_mach_mips4000; | |
3081 | break; | |
3082 | ||
3083 | case E_MIPS_ARCH_4: | |
3084 | return bfd_mach_mips8000; | |
3085 | break; | |
3086 | ||
3087 | case E_MIPS_ARCH_5: | |
3088 | return bfd_mach_mips5; | |
3089 | break; | |
3090 | ||
3091 | case E_MIPS_ARCH_32: | |
3092 | return bfd_mach_mipsisa32; | |
3093 | break; | |
3094 | ||
3095 | case E_MIPS_ARCH_64: | |
3096 | return bfd_mach_mipsisa64; | |
3097 | break; | |
3098 | } | |
3099 | } | |
3100 | ||
3101 | return 0; | |
3102 | } | |
3103 | ||
3104 | /* Return printable name for ABI. */ | |
3105 | ||
3106 | static INLINE char * | |
3107 | elf_mips_abi_name (abfd) | |
3108 | bfd *abfd; | |
3109 | { | |
3110 | flagword flags; | |
3111 | ||
3112 | flags = elf_elfheader (abfd)->e_flags; | |
3113 | switch (flags & EF_MIPS_ABI) | |
3114 | { | |
3115 | case 0: | |
3116 | if (ABI_N32_P (abfd)) | |
3117 | return "N32"; | |
3118 | else if (ABI_64_P (abfd)) | |
3119 | return "64"; | |
3120 | else | |
3121 | return "none"; | |
3122 | case E_MIPS_ABI_O32: | |
3123 | return "O32"; | |
3124 | case E_MIPS_ABI_O64: | |
3125 | return "O64"; | |
3126 | case E_MIPS_ABI_EABI32: | |
3127 | return "EABI32"; | |
3128 | case E_MIPS_ABI_EABI64: | |
3129 | return "EABI64"; | |
3130 | default: | |
3131 | return "unknown abi"; | |
3132 | } | |
3133 | } | |
3134 | \f | |
3135 | /* MIPS ELF uses two common sections. One is the usual one, and the | |
3136 | other is for small objects. All the small objects are kept | |
3137 | together, and then referenced via the gp pointer, which yields | |
3138 | faster assembler code. This is what we use for the small common | |
3139 | section. This approach is copied from ecoff.c. */ | |
3140 | static asection mips_elf_scom_section; | |
3141 | static asymbol mips_elf_scom_symbol; | |
3142 | static asymbol *mips_elf_scom_symbol_ptr; | |
3143 | ||
3144 | /* MIPS ELF also uses an acommon section, which represents an | |
3145 | allocated common symbol which may be overridden by a | |
3146 | definition in a shared library. */ | |
3147 | static asection mips_elf_acom_section; | |
3148 | static asymbol mips_elf_acom_symbol; | |
3149 | static asymbol *mips_elf_acom_symbol_ptr; | |
3150 | ||
3151 | /* Handle the special MIPS section numbers that a symbol may use. | |
3152 | This is used for both the 32-bit and the 64-bit ABI. */ | |
3153 | ||
3154 | void | |
3155 | _bfd_mips_elf_symbol_processing (abfd, asym) | |
3156 | bfd *abfd; | |
3157 | asymbol *asym; | |
3158 | { | |
3159 | elf_symbol_type *elfsym; | |
3160 | ||
3161 | elfsym = (elf_symbol_type *) asym; | |
3162 | switch (elfsym->internal_elf_sym.st_shndx) | |
3163 | { | |
3164 | case SHN_MIPS_ACOMMON: | |
3165 | /* This section is used in a dynamically linked executable file. | |
3166 | It is an allocated common section. The dynamic linker can | |
3167 | either resolve these symbols to something in a shared | |
3168 | library, or it can just leave them here. For our purposes, | |
3169 | we can consider these symbols to be in a new section. */ | |
3170 | if (mips_elf_acom_section.name == NULL) | |
3171 | { | |
3172 | /* Initialize the acommon section. */ | |
3173 | mips_elf_acom_section.name = ".acommon"; | |
3174 | mips_elf_acom_section.flags = SEC_ALLOC; | |
3175 | mips_elf_acom_section.output_section = &mips_elf_acom_section; | |
3176 | mips_elf_acom_section.symbol = &mips_elf_acom_symbol; | |
3177 | mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr; | |
3178 | mips_elf_acom_symbol.name = ".acommon"; | |
3179 | mips_elf_acom_symbol.flags = BSF_SECTION_SYM; | |
3180 | mips_elf_acom_symbol.section = &mips_elf_acom_section; | |
3181 | mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol; | |
3182 | } | |
3183 | asym->section = &mips_elf_acom_section; | |
3184 | break; | |
3185 | ||
3186 | case SHN_COMMON: | |
3187 | /* Common symbols less than the GP size are automatically | |
3188 | treated as SHN_MIPS_SCOMMON symbols on IRIX5. */ | |
3189 | if (asym->value > elf_gp_size (abfd) | |
3190 | || IRIX_COMPAT (abfd) == ict_irix6) | |
3191 | break; | |
3192 | /* Fall through. */ | |
3193 | case SHN_MIPS_SCOMMON: | |
3194 | if (mips_elf_scom_section.name == NULL) | |
3195 | { | |
3196 | /* Initialize the small common section. */ | |
3197 | mips_elf_scom_section.name = ".scommon"; | |
3198 | mips_elf_scom_section.flags = SEC_IS_COMMON; | |
3199 | mips_elf_scom_section.output_section = &mips_elf_scom_section; | |
3200 | mips_elf_scom_section.symbol = &mips_elf_scom_symbol; | |
3201 | mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr; | |
3202 | mips_elf_scom_symbol.name = ".scommon"; | |
3203 | mips_elf_scom_symbol.flags = BSF_SECTION_SYM; | |
3204 | mips_elf_scom_symbol.section = &mips_elf_scom_section; | |
3205 | mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol; | |
3206 | } | |
3207 | asym->section = &mips_elf_scom_section; | |
3208 | asym->value = elfsym->internal_elf_sym.st_size; | |
3209 | break; | |
3210 | ||
3211 | case SHN_MIPS_SUNDEFINED: | |
3212 | asym->section = bfd_und_section_ptr; | |
3213 | break; | |
3214 | ||
3215 | #if 0 /* for SGI_COMPAT */ | |
3216 | case SHN_MIPS_TEXT: | |
3217 | asym->section = mips_elf_text_section_ptr; | |
3218 | break; | |
3219 | ||
3220 | case SHN_MIPS_DATA: | |
3221 | asym->section = mips_elf_data_section_ptr; | |
3222 | break; | |
3223 | #endif | |
3224 | } | |
3225 | } | |
3226 | \f | |
3227 | /* Work over a section just before writing it out. This routine is | |
3228 | used by both the 32-bit and the 64-bit ABI. FIXME: We recognize | |
3229 | sections that need the SHF_MIPS_GPREL flag by name; there has to be | |
3230 | a better way. */ | |
3231 | ||
3232 | boolean | |
3233 | _bfd_mips_elf_section_processing (abfd, hdr) | |
3234 | bfd *abfd; | |
3235 | Elf_Internal_Shdr *hdr; | |
3236 | { | |
3237 | if (hdr->sh_type == SHT_MIPS_REGINFO | |
3238 | && hdr->sh_size > 0) | |
3239 | { | |
3240 | bfd_byte buf[4]; | |
3241 | ||
3242 | BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo)); | |
3243 | BFD_ASSERT (hdr->contents == NULL); | |
3244 | ||
3245 | if (bfd_seek (abfd, | |
3246 | hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4, | |
3247 | SEEK_SET) != 0) | |
3248 | return false; | |
3249 | H_PUT_32 (abfd, elf_gp (abfd), buf); | |
3250 | if (bfd_bwrite (buf, (bfd_size_type) 4, abfd) != 4) | |
3251 | return false; | |
3252 | } | |
3253 | ||
3254 | if (hdr->sh_type == SHT_MIPS_OPTIONS | |
3255 | && hdr->bfd_section != NULL | |
3256 | && elf_section_data (hdr->bfd_section) != NULL | |
3257 | && elf_section_data (hdr->bfd_section)->tdata != NULL) | |
3258 | { | |
3259 | bfd_byte *contents, *l, *lend; | |
3260 | ||
3261 | /* We stored the section contents in the elf_section_data tdata | |
3262 | field in the set_section_contents routine. We save the | |
3263 | section contents so that we don't have to read them again. | |
3264 | At this point we know that elf_gp is set, so we can look | |
3265 | through the section contents to see if there is an | |
3266 | ODK_REGINFO structure. */ | |
3267 | ||
3268 | contents = (bfd_byte *) elf_section_data (hdr->bfd_section)->tdata; | |
3269 | l = contents; | |
3270 | lend = contents + hdr->sh_size; | |
3271 | while (l + sizeof (Elf_External_Options) <= lend) | |
3272 | { | |
3273 | Elf_Internal_Options intopt; | |
3274 | ||
3275 | bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l, | |
3276 | &intopt); | |
3277 | if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO) | |
3278 | { | |
3279 | bfd_byte buf[8]; | |
3280 | ||
3281 | if (bfd_seek (abfd, | |
3282 | (hdr->sh_offset | |
3283 | + (l - contents) | |
3284 | + sizeof (Elf_External_Options) | |
3285 | + (sizeof (Elf64_External_RegInfo) - 8)), | |
3286 | SEEK_SET) != 0) | |
3287 | return false; | |
3288 | H_PUT_64 (abfd, elf_gp (abfd), buf); | |
3289 | if (bfd_bwrite (buf, (bfd_size_type) 8, abfd) != 8) | |
3290 | return false; | |
3291 | } | |
3292 | else if (intopt.kind == ODK_REGINFO) | |
3293 | { | |
3294 | bfd_byte buf[4]; | |
3295 | ||
3296 | if (bfd_seek (abfd, | |
3297 | (hdr->sh_offset | |
3298 | + (l - contents) | |
3299 | + sizeof (Elf_External_Options) | |
3300 | + (sizeof (Elf32_External_RegInfo) - 4)), | |
3301 | SEEK_SET) != 0) | |
3302 | return false; | |
3303 | H_PUT_32 (abfd, elf_gp (abfd), buf); | |
3304 | if (bfd_bwrite (buf, (bfd_size_type) 4, abfd) != 4) | |
3305 | return false; | |
3306 | } | |
3307 | l += intopt.size; | |
3308 | } | |
3309 | } | |
3310 | ||
3311 | if (hdr->bfd_section != NULL) | |
3312 | { | |
3313 | const char *name = bfd_get_section_name (abfd, hdr->bfd_section); | |
3314 | ||
3315 | if (strcmp (name, ".sdata") == 0 | |
3316 | || strcmp (name, ".lit8") == 0 | |
3317 | || strcmp (name, ".lit4") == 0) | |
3318 | { | |
3319 | hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL; | |
3320 | hdr->sh_type = SHT_PROGBITS; | |
3321 | } | |
3322 | else if (strcmp (name, ".sbss") == 0) | |
3323 | { | |
3324 | hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL; | |
3325 | hdr->sh_type = SHT_NOBITS; | |
3326 | } | |
3327 | else if (strcmp (name, ".srdata") == 0) | |
3328 | { | |
3329 | hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL; | |
3330 | hdr->sh_type = SHT_PROGBITS; | |
3331 | } | |
3332 | else if (strcmp (name, ".compact_rel") == 0) | |
3333 | { | |
3334 | hdr->sh_flags = 0; | |
3335 | hdr->sh_type = SHT_PROGBITS; | |
3336 | } | |
3337 | else if (strcmp (name, ".rtproc") == 0) | |
3338 | { | |
3339 | if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0) | |
3340 | { | |
3341 | unsigned int adjust; | |
3342 | ||
3343 | adjust = hdr->sh_size % hdr->sh_addralign; | |
3344 | if (adjust != 0) | |
3345 | hdr->sh_size += hdr->sh_addralign - adjust; | |
3346 | } | |
3347 | } | |
3348 | } | |
3349 | ||
3350 | return true; | |
3351 | } | |
3352 | ||
3353 | /* Handle a MIPS specific section when reading an object file. This | |
3354 | is called when elfcode.h finds a section with an unknown type. | |
3355 | This routine supports both the 32-bit and 64-bit ELF ABI. | |
3356 | ||
3357 | FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure | |
3358 | how to. */ | |
3359 | ||
3360 | boolean | |
3361 | _bfd_mips_elf_section_from_shdr (abfd, hdr, name) | |
3362 | bfd *abfd; | |
3363 | Elf_Internal_Shdr *hdr; | |
90937f86 | 3364 | const char *name; |
b49e97c9 TS |
3365 | { |
3366 | flagword flags = 0; | |
3367 | ||
3368 | /* There ought to be a place to keep ELF backend specific flags, but | |
3369 | at the moment there isn't one. We just keep track of the | |
3370 | sections by their name, instead. Fortunately, the ABI gives | |
3371 | suggested names for all the MIPS specific sections, so we will | |
3372 | probably get away with this. */ | |
3373 | switch (hdr->sh_type) | |
3374 | { | |
3375 | case SHT_MIPS_LIBLIST: | |
3376 | if (strcmp (name, ".liblist") != 0) | |
3377 | return false; | |
3378 | break; | |
3379 | case SHT_MIPS_MSYM: | |
3380 | if (strcmp (name, ".msym") != 0) | |
3381 | return false; | |
3382 | break; | |
3383 | case SHT_MIPS_CONFLICT: | |
3384 | if (strcmp (name, ".conflict") != 0) | |
3385 | return false; | |
3386 | break; | |
3387 | case SHT_MIPS_GPTAB: | |
3388 | if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0) | |
3389 | return false; | |
3390 | break; | |
3391 | case SHT_MIPS_UCODE: | |
3392 | if (strcmp (name, ".ucode") != 0) | |
3393 | return false; | |
3394 | break; | |
3395 | case SHT_MIPS_DEBUG: | |
3396 | if (strcmp (name, ".mdebug") != 0) | |
3397 | return false; | |
3398 | flags = SEC_DEBUGGING; | |
3399 | break; | |
3400 | case SHT_MIPS_REGINFO: | |
3401 | if (strcmp (name, ".reginfo") != 0 | |
3402 | || hdr->sh_size != sizeof (Elf32_External_RegInfo)) | |
3403 | return false; | |
3404 | flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE); | |
3405 | break; | |
3406 | case SHT_MIPS_IFACE: | |
3407 | if (strcmp (name, ".MIPS.interfaces") != 0) | |
3408 | return false; | |
3409 | break; | |
3410 | case SHT_MIPS_CONTENT: | |
3411 | if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0) | |
3412 | return false; | |
3413 | break; | |
3414 | case SHT_MIPS_OPTIONS: | |
3415 | if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) != 0) | |
3416 | return false; | |
3417 | break; | |
3418 | case SHT_MIPS_DWARF: | |
3419 | if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0) | |
3420 | return false; | |
3421 | break; | |
3422 | case SHT_MIPS_SYMBOL_LIB: | |
3423 | if (strcmp (name, ".MIPS.symlib") != 0) | |
3424 | return false; | |
3425 | break; | |
3426 | case SHT_MIPS_EVENTS: | |
3427 | if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0 | |
3428 | && strncmp (name, ".MIPS.post_rel", | |
3429 | sizeof ".MIPS.post_rel" - 1) != 0) | |
3430 | return false; | |
3431 | break; | |
3432 | default: | |
3433 | return false; | |
3434 | } | |
3435 | ||
3436 | if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name)) | |
3437 | return false; | |
3438 | ||
3439 | if (flags) | |
3440 | { | |
3441 | if (! bfd_set_section_flags (abfd, hdr->bfd_section, | |
3442 | (bfd_get_section_flags (abfd, | |
3443 | hdr->bfd_section) | |
3444 | | flags))) | |
3445 | return false; | |
3446 | } | |
3447 | ||
3448 | /* FIXME: We should record sh_info for a .gptab section. */ | |
3449 | ||
3450 | /* For a .reginfo section, set the gp value in the tdata information | |
3451 | from the contents of this section. We need the gp value while | |
3452 | processing relocs, so we just get it now. The .reginfo section | |
3453 | is not used in the 64-bit MIPS ELF ABI. */ | |
3454 | if (hdr->sh_type == SHT_MIPS_REGINFO) | |
3455 | { | |
3456 | Elf32_External_RegInfo ext; | |
3457 | Elf32_RegInfo s; | |
3458 | ||
3459 | if (! bfd_get_section_contents (abfd, hdr->bfd_section, (PTR) &ext, | |
3460 | (file_ptr) 0, | |
3461 | (bfd_size_type) sizeof ext)) | |
3462 | return false; | |
3463 | bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s); | |
3464 | elf_gp (abfd) = s.ri_gp_value; | |
3465 | } | |
3466 | ||
3467 | /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and | |
3468 | set the gp value based on what we find. We may see both | |
3469 | SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case, | |
3470 | they should agree. */ | |
3471 | if (hdr->sh_type == SHT_MIPS_OPTIONS) | |
3472 | { | |
3473 | bfd_byte *contents, *l, *lend; | |
3474 | ||
3475 | contents = (bfd_byte *) bfd_malloc (hdr->sh_size); | |
3476 | if (contents == NULL) | |
3477 | return false; | |
3478 | if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents, | |
3479 | (file_ptr) 0, hdr->sh_size)) | |
3480 | { | |
3481 | free (contents); | |
3482 | return false; | |
3483 | } | |
3484 | l = contents; | |
3485 | lend = contents + hdr->sh_size; | |
3486 | while (l + sizeof (Elf_External_Options) <= lend) | |
3487 | { | |
3488 | Elf_Internal_Options intopt; | |
3489 | ||
3490 | bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l, | |
3491 | &intopt); | |
3492 | if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO) | |
3493 | { | |
3494 | Elf64_Internal_RegInfo intreg; | |
3495 | ||
3496 | bfd_mips_elf64_swap_reginfo_in | |
3497 | (abfd, | |
3498 | ((Elf64_External_RegInfo *) | |
3499 | (l + sizeof (Elf_External_Options))), | |
3500 | &intreg); | |
3501 | elf_gp (abfd) = intreg.ri_gp_value; | |
3502 | } | |
3503 | else if (intopt.kind == ODK_REGINFO) | |
3504 | { | |
3505 | Elf32_RegInfo intreg; | |
3506 | ||
3507 | bfd_mips_elf32_swap_reginfo_in | |
3508 | (abfd, | |
3509 | ((Elf32_External_RegInfo *) | |
3510 | (l + sizeof (Elf_External_Options))), | |
3511 | &intreg); | |
3512 | elf_gp (abfd) = intreg.ri_gp_value; | |
3513 | } | |
3514 | l += intopt.size; | |
3515 | } | |
3516 | free (contents); | |
3517 | } | |
3518 | ||
3519 | return true; | |
3520 | } | |
3521 | ||
3522 | /* Set the correct type for a MIPS ELF section. We do this by the | |
3523 | section name, which is a hack, but ought to work. This routine is | |
3524 | used by both the 32-bit and the 64-bit ABI. */ | |
3525 | ||
3526 | boolean | |
3527 | _bfd_mips_elf_fake_sections (abfd, hdr, sec) | |
3528 | bfd *abfd; | |
3529 | Elf32_Internal_Shdr *hdr; | |
3530 | asection *sec; | |
3531 | { | |
3532 | register const char *name; | |
3533 | ||
3534 | name = bfd_get_section_name (abfd, sec); | |
3535 | ||
3536 | if (strcmp (name, ".liblist") == 0) | |
3537 | { | |
3538 | hdr->sh_type = SHT_MIPS_LIBLIST; | |
3539 | hdr->sh_info = sec->_raw_size / sizeof (Elf32_Lib); | |
3540 | /* The sh_link field is set in final_write_processing. */ | |
3541 | } | |
3542 | else if (strcmp (name, ".conflict") == 0) | |
3543 | hdr->sh_type = SHT_MIPS_CONFLICT; | |
3544 | else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0) | |
3545 | { | |
3546 | hdr->sh_type = SHT_MIPS_GPTAB; | |
3547 | hdr->sh_entsize = sizeof (Elf32_External_gptab); | |
3548 | /* The sh_info field is set in final_write_processing. */ | |
3549 | } | |
3550 | else if (strcmp (name, ".ucode") == 0) | |
3551 | hdr->sh_type = SHT_MIPS_UCODE; | |
3552 | else if (strcmp (name, ".mdebug") == 0) | |
3553 | { | |
3554 | hdr->sh_type = SHT_MIPS_DEBUG; | |
8dc1a139 | 3555 | /* In a shared object on IRIX 5.3, the .mdebug section has an |
b49e97c9 TS |
3556 | entsize of 0. FIXME: Does this matter? */ |
3557 | if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0) | |
3558 | hdr->sh_entsize = 0; | |
3559 | else | |
3560 | hdr->sh_entsize = 1; | |
3561 | } | |
3562 | else if (strcmp (name, ".reginfo") == 0) | |
3563 | { | |
3564 | hdr->sh_type = SHT_MIPS_REGINFO; | |
8dc1a139 | 3565 | /* In a shared object on IRIX 5.3, the .reginfo section has an |
b49e97c9 TS |
3566 | entsize of 0x18. FIXME: Does this matter? */ |
3567 | if (SGI_COMPAT (abfd)) | |
3568 | { | |
3569 | if ((abfd->flags & DYNAMIC) != 0) | |
3570 | hdr->sh_entsize = sizeof (Elf32_External_RegInfo); | |
3571 | else | |
3572 | hdr->sh_entsize = 1; | |
3573 | } | |
3574 | else | |
3575 | hdr->sh_entsize = sizeof (Elf32_External_RegInfo); | |
3576 | } | |
3577 | else if (SGI_COMPAT (abfd) | |
3578 | && (strcmp (name, ".hash") == 0 | |
3579 | || strcmp (name, ".dynamic") == 0 | |
3580 | || strcmp (name, ".dynstr") == 0)) | |
3581 | { | |
3582 | if (SGI_COMPAT (abfd)) | |
3583 | hdr->sh_entsize = 0; | |
3584 | #if 0 | |
8dc1a139 | 3585 | /* This isn't how the IRIX6 linker behaves. */ |
b49e97c9 TS |
3586 | hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES; |
3587 | #endif | |
3588 | } | |
3589 | else if (strcmp (name, ".got") == 0 | |
3590 | || strcmp (name, ".srdata") == 0 | |
3591 | || strcmp (name, ".sdata") == 0 | |
3592 | || strcmp (name, ".sbss") == 0 | |
3593 | || strcmp (name, ".lit4") == 0 | |
3594 | || strcmp (name, ".lit8") == 0) | |
3595 | hdr->sh_flags |= SHF_MIPS_GPREL; | |
3596 | else if (strcmp (name, ".MIPS.interfaces") == 0) | |
3597 | { | |
3598 | hdr->sh_type = SHT_MIPS_IFACE; | |
3599 | hdr->sh_flags |= SHF_MIPS_NOSTRIP; | |
3600 | } | |
3601 | else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0) | |
3602 | { | |
3603 | hdr->sh_type = SHT_MIPS_CONTENT; | |
3604 | hdr->sh_flags |= SHF_MIPS_NOSTRIP; | |
3605 | /* The sh_info field is set in final_write_processing. */ | |
3606 | } | |
3607 | else if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0) | |
3608 | { | |
3609 | hdr->sh_type = SHT_MIPS_OPTIONS; | |
3610 | hdr->sh_entsize = 1; | |
3611 | hdr->sh_flags |= SHF_MIPS_NOSTRIP; | |
3612 | } | |
3613 | else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0) | |
3614 | hdr->sh_type = SHT_MIPS_DWARF; | |
3615 | else if (strcmp (name, ".MIPS.symlib") == 0) | |
3616 | { | |
3617 | hdr->sh_type = SHT_MIPS_SYMBOL_LIB; | |
3618 | /* The sh_link and sh_info fields are set in | |
3619 | final_write_processing. */ | |
3620 | } | |
3621 | else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0 | |
3622 | || strncmp (name, ".MIPS.post_rel", | |
3623 | sizeof ".MIPS.post_rel" - 1) == 0) | |
3624 | { | |
3625 | hdr->sh_type = SHT_MIPS_EVENTS; | |
3626 | hdr->sh_flags |= SHF_MIPS_NOSTRIP; | |
3627 | /* The sh_link field is set in final_write_processing. */ | |
3628 | } | |
3629 | else if (strcmp (name, ".msym") == 0) | |
3630 | { | |
3631 | hdr->sh_type = SHT_MIPS_MSYM; | |
3632 | hdr->sh_flags |= SHF_ALLOC; | |
3633 | hdr->sh_entsize = 8; | |
3634 | } | |
3635 | ||
3636 | /* The generic elf_fake_sections will set up REL_HDR using the | |
3637 | default kind of relocations. But, we may actually need both | |
3638 | kinds of relocations, so we set up the second header here. | |
3639 | ||
3640 | This is not necessary for the O32 ABI since that only uses Elf32_Rel | |
3641 | relocations (cf. System V ABI, MIPS RISC Processor Supplement, | |
3642 | 3rd Edition, p. 4-17). It breaks the IRIX 5/6 32-bit ld, since one | |
3643 | of the resulting empty .rela.<section> sections starts with | |
3644 | sh_offset == object size, and ld doesn't allow that. While the check | |
3645 | is arguably bogus for empty or SHT_NOBITS sections, it can easily be | |
3646 | avoided by not emitting those useless sections in the first place. */ | |
14366460 | 3647 | if (! SGI_COMPAT (abfd) && ! NEWABI_P(abfd) |
4a14403c | 3648 | && (sec->flags & SEC_RELOC) != 0) |
b49e97c9 TS |
3649 | { |
3650 | struct bfd_elf_section_data *esd; | |
3651 | bfd_size_type amt = sizeof (Elf_Internal_Shdr); | |
3652 | ||
3653 | esd = elf_section_data (sec); | |
3654 | BFD_ASSERT (esd->rel_hdr2 == NULL); | |
3655 | esd->rel_hdr2 = (Elf_Internal_Shdr *) bfd_zalloc (abfd, amt); | |
3656 | if (!esd->rel_hdr2) | |
3657 | return false; | |
3658 | _bfd_elf_init_reloc_shdr (abfd, esd->rel_hdr2, sec, | |
3659 | !elf_section_data (sec)->use_rela_p); | |
3660 | } | |
3661 | ||
3662 | return true; | |
3663 | } | |
3664 | ||
3665 | /* Given a BFD section, try to locate the corresponding ELF section | |
3666 | index. This is used by both the 32-bit and the 64-bit ABI. | |
3667 | Actually, it's not clear to me that the 64-bit ABI supports these, | |
3668 | but for non-PIC objects we will certainly want support for at least | |
3669 | the .scommon section. */ | |
3670 | ||
3671 | boolean | |
3672 | _bfd_mips_elf_section_from_bfd_section (abfd, sec, retval) | |
3673 | bfd *abfd ATTRIBUTE_UNUSED; | |
3674 | asection *sec; | |
3675 | int *retval; | |
3676 | { | |
3677 | if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0) | |
3678 | { | |
3679 | *retval = SHN_MIPS_SCOMMON; | |
3680 | return true; | |
3681 | } | |
3682 | if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0) | |
3683 | { | |
3684 | *retval = SHN_MIPS_ACOMMON; | |
3685 | return true; | |
3686 | } | |
3687 | return false; | |
3688 | } | |
3689 | \f | |
3690 | /* Hook called by the linker routine which adds symbols from an object | |
3691 | file. We must handle the special MIPS section numbers here. */ | |
3692 | ||
3693 | boolean | |
3694 | _bfd_mips_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp) | |
3695 | bfd *abfd; | |
3696 | struct bfd_link_info *info; | |
3697 | const Elf_Internal_Sym *sym; | |
3698 | const char **namep; | |
3699 | flagword *flagsp ATTRIBUTE_UNUSED; | |
3700 | asection **secp; | |
3701 | bfd_vma *valp; | |
3702 | { | |
3703 | if (SGI_COMPAT (abfd) | |
3704 | && (abfd->flags & DYNAMIC) != 0 | |
3705 | && strcmp (*namep, "_rld_new_interface") == 0) | |
3706 | { | |
8dc1a139 | 3707 | /* Skip IRIX5 rld entry name. */ |
b49e97c9 TS |
3708 | *namep = NULL; |
3709 | return true; | |
3710 | } | |
3711 | ||
3712 | switch (sym->st_shndx) | |
3713 | { | |
3714 | case SHN_COMMON: | |
3715 | /* Common symbols less than the GP size are automatically | |
3716 | treated as SHN_MIPS_SCOMMON symbols. */ | |
3717 | if (sym->st_size > elf_gp_size (abfd) | |
3718 | || IRIX_COMPAT (abfd) == ict_irix6) | |
3719 | break; | |
3720 | /* Fall through. */ | |
3721 | case SHN_MIPS_SCOMMON: | |
3722 | *secp = bfd_make_section_old_way (abfd, ".scommon"); | |
3723 | (*secp)->flags |= SEC_IS_COMMON; | |
3724 | *valp = sym->st_size; | |
3725 | break; | |
3726 | ||
3727 | case SHN_MIPS_TEXT: | |
3728 | /* This section is used in a shared object. */ | |
3729 | if (elf_tdata (abfd)->elf_text_section == NULL) | |
3730 | { | |
3731 | asymbol *elf_text_symbol; | |
3732 | asection *elf_text_section; | |
3733 | bfd_size_type amt = sizeof (asection); | |
3734 | ||
3735 | elf_text_section = bfd_zalloc (abfd, amt); | |
3736 | if (elf_text_section == NULL) | |
3737 | return false; | |
3738 | ||
3739 | amt = sizeof (asymbol); | |
3740 | elf_text_symbol = bfd_zalloc (abfd, amt); | |
3741 | if (elf_text_symbol == NULL) | |
3742 | return false; | |
3743 | ||
3744 | /* Initialize the section. */ | |
3745 | ||
3746 | elf_tdata (abfd)->elf_text_section = elf_text_section; | |
3747 | elf_tdata (abfd)->elf_text_symbol = elf_text_symbol; | |
3748 | ||
3749 | elf_text_section->symbol = elf_text_symbol; | |
3750 | elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol; | |
3751 | ||
3752 | elf_text_section->name = ".text"; | |
3753 | elf_text_section->flags = SEC_NO_FLAGS; | |
3754 | elf_text_section->output_section = NULL; | |
3755 | elf_text_section->owner = abfd; | |
3756 | elf_text_symbol->name = ".text"; | |
3757 | elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC; | |
3758 | elf_text_symbol->section = elf_text_section; | |
3759 | } | |
3760 | /* This code used to do *secp = bfd_und_section_ptr if | |
3761 | info->shared. I don't know why, and that doesn't make sense, | |
3762 | so I took it out. */ | |
3763 | *secp = elf_tdata (abfd)->elf_text_section; | |
3764 | break; | |
3765 | ||
3766 | case SHN_MIPS_ACOMMON: | |
3767 | /* Fall through. XXX Can we treat this as allocated data? */ | |
3768 | case SHN_MIPS_DATA: | |
3769 | /* This section is used in a shared object. */ | |
3770 | if (elf_tdata (abfd)->elf_data_section == NULL) | |
3771 | { | |
3772 | asymbol *elf_data_symbol; | |
3773 | asection *elf_data_section; | |
3774 | bfd_size_type amt = sizeof (asection); | |
3775 | ||
3776 | elf_data_section = bfd_zalloc (abfd, amt); | |
3777 | if (elf_data_section == NULL) | |
3778 | return false; | |
3779 | ||
3780 | amt = sizeof (asymbol); | |
3781 | elf_data_symbol = bfd_zalloc (abfd, amt); | |
3782 | if (elf_data_symbol == NULL) | |
3783 | return false; | |
3784 | ||
3785 | /* Initialize the section. */ | |
3786 | ||
3787 | elf_tdata (abfd)->elf_data_section = elf_data_section; | |
3788 | elf_tdata (abfd)->elf_data_symbol = elf_data_symbol; | |
3789 | ||
3790 | elf_data_section->symbol = elf_data_symbol; | |
3791 | elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol; | |
3792 | ||
3793 | elf_data_section->name = ".data"; | |
3794 | elf_data_section->flags = SEC_NO_FLAGS; | |
3795 | elf_data_section->output_section = NULL; | |
3796 | elf_data_section->owner = abfd; | |
3797 | elf_data_symbol->name = ".data"; | |
3798 | elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC; | |
3799 | elf_data_symbol->section = elf_data_section; | |
3800 | } | |
3801 | /* This code used to do *secp = bfd_und_section_ptr if | |
3802 | info->shared. I don't know why, and that doesn't make sense, | |
3803 | so I took it out. */ | |
3804 | *secp = elf_tdata (abfd)->elf_data_section; | |
3805 | break; | |
3806 | ||
3807 | case SHN_MIPS_SUNDEFINED: | |
3808 | *secp = bfd_und_section_ptr; | |
3809 | break; | |
3810 | } | |
3811 | ||
3812 | if (SGI_COMPAT (abfd) | |
3813 | && ! info->shared | |
3814 | && info->hash->creator == abfd->xvec | |
3815 | && strcmp (*namep, "__rld_obj_head") == 0) | |
3816 | { | |
3817 | struct elf_link_hash_entry *h; | |
3818 | ||
3819 | /* Mark __rld_obj_head as dynamic. */ | |
3820 | h = NULL; | |
3821 | if (! (_bfd_generic_link_add_one_symbol | |
3822 | (info, abfd, *namep, BSF_GLOBAL, *secp, | |
3823 | (bfd_vma) *valp, (const char *) NULL, false, | |
3824 | get_elf_backend_data (abfd)->collect, | |
3825 | (struct bfd_link_hash_entry **) &h))) | |
3826 | return false; | |
3827 | h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF; | |
3828 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; | |
3829 | h->type = STT_OBJECT; | |
3830 | ||
3831 | if (! bfd_elf32_link_record_dynamic_symbol (info, h)) | |
3832 | return false; | |
3833 | ||
3834 | mips_elf_hash_table (info)->use_rld_obj_head = true; | |
3835 | } | |
3836 | ||
3837 | /* If this is a mips16 text symbol, add 1 to the value to make it | |
3838 | odd. This will cause something like .word SYM to come up with | |
3839 | the right value when it is loaded into the PC. */ | |
3840 | if (sym->st_other == STO_MIPS16) | |
3841 | ++*valp; | |
3842 | ||
3843 | return true; | |
3844 | } | |
3845 | ||
3846 | /* This hook function is called before the linker writes out a global | |
3847 | symbol. We mark symbols as small common if appropriate. This is | |
3848 | also where we undo the increment of the value for a mips16 symbol. */ | |
3849 | ||
3850 | boolean | |
3851 | _bfd_mips_elf_link_output_symbol_hook (abfd, info, name, sym, input_sec) | |
3852 | bfd *abfd ATTRIBUTE_UNUSED; | |
3853 | struct bfd_link_info *info ATTRIBUTE_UNUSED; | |
3854 | const char *name ATTRIBUTE_UNUSED; | |
3855 | Elf_Internal_Sym *sym; | |
3856 | asection *input_sec; | |
3857 | { | |
3858 | /* If we see a common symbol, which implies a relocatable link, then | |
3859 | if a symbol was small common in an input file, mark it as small | |
3860 | common in the output file. */ | |
3861 | if (sym->st_shndx == SHN_COMMON | |
3862 | && strcmp (input_sec->name, ".scommon") == 0) | |
3863 | sym->st_shndx = SHN_MIPS_SCOMMON; | |
3864 | ||
3865 | if (sym->st_other == STO_MIPS16 | |
3866 | && (sym->st_value & 1) != 0) | |
3867 | --sym->st_value; | |
3868 | ||
3869 | return true; | |
3870 | } | |
3871 | \f | |
3872 | /* Functions for the dynamic linker. */ | |
3873 | ||
3874 | /* Create dynamic sections when linking against a dynamic object. */ | |
3875 | ||
3876 | boolean | |
3877 | _bfd_mips_elf_create_dynamic_sections (abfd, info) | |
3878 | bfd *abfd; | |
3879 | struct bfd_link_info *info; | |
3880 | { | |
3881 | struct elf_link_hash_entry *h; | |
3882 | flagword flags; | |
3883 | register asection *s; | |
3884 | const char * const *namep; | |
3885 | ||
3886 | flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | |
3887 | | SEC_LINKER_CREATED | SEC_READONLY); | |
3888 | ||
3889 | /* Mips ABI requests the .dynamic section to be read only. */ | |
3890 | s = bfd_get_section_by_name (abfd, ".dynamic"); | |
3891 | if (s != NULL) | |
3892 | { | |
3893 | if (! bfd_set_section_flags (abfd, s, flags)) | |
3894 | return false; | |
3895 | } | |
3896 | ||
3897 | /* We need to create .got section. */ | |
3898 | if (! mips_elf_create_got_section (abfd, info)) | |
3899 | return false; | |
3900 | ||
3901 | /* Create the .msym section on IRIX6. It is used by the dynamic | |
3902 | linker to speed up dynamic relocations, and to avoid computing | |
3903 | the ELF hash for symbols. */ | |
3904 | if (IRIX_COMPAT (abfd) == ict_irix6 | |
3905 | && !mips_elf_create_msym_section (abfd)) | |
3906 | return false; | |
3907 | ||
3908 | /* Create .stub section. */ | |
3909 | if (bfd_get_section_by_name (abfd, | |
3910 | MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL) | |
3911 | { | |
3912 | s = bfd_make_section (abfd, MIPS_ELF_STUB_SECTION_NAME (abfd)); | |
3913 | if (s == NULL | |
3914 | || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE) | |
3915 | || ! bfd_set_section_alignment (abfd, s, | |
3916 | MIPS_ELF_LOG_FILE_ALIGN (abfd))) | |
3917 | return false; | |
3918 | } | |
3919 | ||
3920 | if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none) | |
3921 | && !info->shared | |
3922 | && bfd_get_section_by_name (abfd, ".rld_map") == NULL) | |
3923 | { | |
3924 | s = bfd_make_section (abfd, ".rld_map"); | |
3925 | if (s == NULL | |
3926 | || ! bfd_set_section_flags (abfd, s, flags &~ (flagword) SEC_READONLY) | |
3927 | || ! bfd_set_section_alignment (abfd, s, | |
3928 | MIPS_ELF_LOG_FILE_ALIGN (abfd))) | |
3929 | return false; | |
3930 | } | |
3931 | ||
3932 | /* On IRIX5, we adjust add some additional symbols and change the | |
3933 | alignments of several sections. There is no ABI documentation | |
3934 | indicating that this is necessary on IRIX6, nor any evidence that | |
3935 | the linker takes such action. */ | |
3936 | if (IRIX_COMPAT (abfd) == ict_irix5) | |
3937 | { | |
3938 | for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++) | |
3939 | { | |
3940 | h = NULL; | |
3941 | if (! (_bfd_generic_link_add_one_symbol | |
3942 | (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, | |
3943 | (bfd_vma) 0, (const char *) NULL, false, | |
3944 | get_elf_backend_data (abfd)->collect, | |
3945 | (struct bfd_link_hash_entry **) &h))) | |
3946 | return false; | |
3947 | h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF; | |
3948 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; | |
3949 | h->type = STT_SECTION; | |
3950 | ||
3951 | if (! bfd_elf32_link_record_dynamic_symbol (info, h)) | |
3952 | return false; | |
3953 | } | |
3954 | ||
3955 | /* We need to create a .compact_rel section. */ | |
3956 | if (SGI_COMPAT (abfd)) | |
3957 | { | |
3958 | if (!mips_elf_create_compact_rel_section (abfd, info)) | |
3959 | return false; | |
3960 | } | |
3961 | ||
44c410de | 3962 | /* Change alignments of some sections. */ |
b49e97c9 TS |
3963 | s = bfd_get_section_by_name (abfd, ".hash"); |
3964 | if (s != NULL) | |
3965 | bfd_set_section_alignment (abfd, s, 4); | |
3966 | s = bfd_get_section_by_name (abfd, ".dynsym"); | |
3967 | if (s != NULL) | |
3968 | bfd_set_section_alignment (abfd, s, 4); | |
3969 | s = bfd_get_section_by_name (abfd, ".dynstr"); | |
3970 | if (s != NULL) | |
3971 | bfd_set_section_alignment (abfd, s, 4); | |
3972 | s = bfd_get_section_by_name (abfd, ".reginfo"); | |
3973 | if (s != NULL) | |
3974 | bfd_set_section_alignment (abfd, s, 4); | |
3975 | s = bfd_get_section_by_name (abfd, ".dynamic"); | |
3976 | if (s != NULL) | |
3977 | bfd_set_section_alignment (abfd, s, 4); | |
3978 | } | |
3979 | ||
3980 | if (!info->shared) | |
3981 | { | |
3982 | h = NULL; | |
3983 | if (SGI_COMPAT (abfd)) | |
3984 | { | |
3985 | if (!(_bfd_generic_link_add_one_symbol | |
3986 | (info, abfd, "_DYNAMIC_LINK", BSF_GLOBAL, bfd_abs_section_ptr, | |
3987 | (bfd_vma) 0, (const char *) NULL, false, | |
3988 | get_elf_backend_data (abfd)->collect, | |
3989 | (struct bfd_link_hash_entry **) &h))) | |
3990 | return false; | |
3991 | } | |
3992 | else | |
3993 | { | |
3994 | /* For normal mips it is _DYNAMIC_LINKING. */ | |
3995 | if (!(_bfd_generic_link_add_one_symbol | |
3996 | (info, abfd, "_DYNAMIC_LINKING", BSF_GLOBAL, | |
3997 | bfd_abs_section_ptr, (bfd_vma) 0, (const char *) NULL, false, | |
3998 | get_elf_backend_data (abfd)->collect, | |
3999 | (struct bfd_link_hash_entry **) &h))) | |
4000 | return false; | |
4001 | } | |
4002 | h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF; | |
4003 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; | |
4004 | h->type = STT_SECTION; | |
4005 | ||
4006 | if (! bfd_elf32_link_record_dynamic_symbol (info, h)) | |
4007 | return false; | |
4008 | ||
4009 | if (! mips_elf_hash_table (info)->use_rld_obj_head) | |
4010 | { | |
4011 | /* __rld_map is a four byte word located in the .data section | |
4012 | and is filled in by the rtld to contain a pointer to | |
4013 | the _r_debug structure. Its symbol value will be set in | |
4014 | _bfd_mips_elf_finish_dynamic_symbol. */ | |
4015 | s = bfd_get_section_by_name (abfd, ".rld_map"); | |
4016 | BFD_ASSERT (s != NULL); | |
4017 | ||
4018 | h = NULL; | |
4019 | if (SGI_COMPAT (abfd)) | |
4020 | { | |
4021 | if (!(_bfd_generic_link_add_one_symbol | |
4022 | (info, abfd, "__rld_map", BSF_GLOBAL, s, | |
4023 | (bfd_vma) 0, (const char *) NULL, false, | |
4024 | get_elf_backend_data (abfd)->collect, | |
4025 | (struct bfd_link_hash_entry **) &h))) | |
4026 | return false; | |
4027 | } | |
4028 | else | |
4029 | { | |
4030 | /* For normal mips the symbol is __RLD_MAP. */ | |
4031 | if (!(_bfd_generic_link_add_one_symbol | |
4032 | (info, abfd, "__RLD_MAP", BSF_GLOBAL, s, | |
4033 | (bfd_vma) 0, (const char *) NULL, false, | |
4034 | get_elf_backend_data (abfd)->collect, | |
4035 | (struct bfd_link_hash_entry **) &h))) | |
4036 | return false; | |
4037 | } | |
4038 | h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF; | |
4039 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; | |
4040 | h->type = STT_OBJECT; | |
4041 | ||
4042 | if (! bfd_elf32_link_record_dynamic_symbol (info, h)) | |
4043 | return false; | |
4044 | } | |
4045 | } | |
4046 | ||
4047 | return true; | |
4048 | } | |
4049 | \f | |
4050 | /* Look through the relocs for a section during the first phase, and | |
4051 | allocate space in the global offset table. */ | |
4052 | ||
4053 | boolean | |
4054 | _bfd_mips_elf_check_relocs (abfd, info, sec, relocs) | |
4055 | bfd *abfd; | |
4056 | struct bfd_link_info *info; | |
4057 | asection *sec; | |
4058 | const Elf_Internal_Rela *relocs; | |
4059 | { | |
4060 | const char *name; | |
4061 | bfd *dynobj; | |
4062 | Elf_Internal_Shdr *symtab_hdr; | |
4063 | struct elf_link_hash_entry **sym_hashes; | |
4064 | struct mips_got_info *g; | |
4065 | size_t extsymoff; | |
4066 | const Elf_Internal_Rela *rel; | |
4067 | const Elf_Internal_Rela *rel_end; | |
4068 | asection *sgot; | |
4069 | asection *sreloc; | |
4070 | struct elf_backend_data *bed; | |
4071 | ||
4072 | if (info->relocateable) | |
4073 | return true; | |
4074 | ||
4075 | dynobj = elf_hash_table (info)->dynobj; | |
4076 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
4077 | sym_hashes = elf_sym_hashes (abfd); | |
4078 | extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info; | |
4079 | ||
4080 | /* Check for the mips16 stub sections. */ | |
4081 | ||
4082 | name = bfd_get_section_name (abfd, sec); | |
4083 | if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0) | |
4084 | { | |
4085 | unsigned long r_symndx; | |
4086 | ||
4087 | /* Look at the relocation information to figure out which symbol | |
4088 | this is for. */ | |
4089 | ||
4090 | r_symndx = ELF_R_SYM (abfd, relocs->r_info); | |
4091 | ||
4092 | if (r_symndx < extsymoff | |
4093 | || sym_hashes[r_symndx - extsymoff] == NULL) | |
4094 | { | |
4095 | asection *o; | |
4096 | ||
4097 | /* This stub is for a local symbol. This stub will only be | |
4098 | needed if there is some relocation in this BFD, other | |
4099 | than a 16 bit function call, which refers to this symbol. */ | |
4100 | for (o = abfd->sections; o != NULL; o = o->next) | |
4101 | { | |
4102 | Elf_Internal_Rela *sec_relocs; | |
4103 | const Elf_Internal_Rela *r, *rend; | |
4104 | ||
4105 | /* We can ignore stub sections when looking for relocs. */ | |
4106 | if ((o->flags & SEC_RELOC) == 0 | |
4107 | || o->reloc_count == 0 | |
4108 | || strncmp (bfd_get_section_name (abfd, o), FN_STUB, | |
4109 | sizeof FN_STUB - 1) == 0 | |
4110 | || strncmp (bfd_get_section_name (abfd, o), CALL_STUB, | |
4111 | sizeof CALL_STUB - 1) == 0 | |
4112 | || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB, | |
4113 | sizeof CALL_FP_STUB - 1) == 0) | |
4114 | continue; | |
4115 | ||
4116 | sec_relocs = (_bfd_elf32_link_read_relocs | |
4117 | (abfd, o, (PTR) NULL, | |
4118 | (Elf_Internal_Rela *) NULL, | |
4119 | info->keep_memory)); | |
4120 | if (sec_relocs == NULL) | |
4121 | return false; | |
4122 | ||
4123 | rend = sec_relocs + o->reloc_count; | |
4124 | for (r = sec_relocs; r < rend; r++) | |
4125 | if (ELF_R_SYM (abfd, r->r_info) == r_symndx | |
4126 | && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26) | |
4127 | break; | |
4128 | ||
6cdc0ccc | 4129 | if (elf_section_data (o)->relocs != sec_relocs) |
b49e97c9 TS |
4130 | free (sec_relocs); |
4131 | ||
4132 | if (r < rend) | |
4133 | break; | |
4134 | } | |
4135 | ||
4136 | if (o == NULL) | |
4137 | { | |
4138 | /* There is no non-call reloc for this stub, so we do | |
4139 | not need it. Since this function is called before | |
4140 | the linker maps input sections to output sections, we | |
4141 | can easily discard it by setting the SEC_EXCLUDE | |
4142 | flag. */ | |
4143 | sec->flags |= SEC_EXCLUDE; | |
4144 | return true; | |
4145 | } | |
4146 | ||
4147 | /* Record this stub in an array of local symbol stubs for | |
4148 | this BFD. */ | |
4149 | if (elf_tdata (abfd)->local_stubs == NULL) | |
4150 | { | |
4151 | unsigned long symcount; | |
4152 | asection **n; | |
4153 | bfd_size_type amt; | |
4154 | ||
4155 | if (elf_bad_symtab (abfd)) | |
4156 | symcount = NUM_SHDR_ENTRIES (symtab_hdr); | |
4157 | else | |
4158 | symcount = symtab_hdr->sh_info; | |
4159 | amt = symcount * sizeof (asection *); | |
4160 | n = (asection **) bfd_zalloc (abfd, amt); | |
4161 | if (n == NULL) | |
4162 | return false; | |
4163 | elf_tdata (abfd)->local_stubs = n; | |
4164 | } | |
4165 | ||
4166 | elf_tdata (abfd)->local_stubs[r_symndx] = sec; | |
4167 | ||
4168 | /* We don't need to set mips16_stubs_seen in this case. | |
4169 | That flag is used to see whether we need to look through | |
4170 | the global symbol table for stubs. We don't need to set | |
4171 | it here, because we just have a local stub. */ | |
4172 | } | |
4173 | else | |
4174 | { | |
4175 | struct mips_elf_link_hash_entry *h; | |
4176 | ||
4177 | h = ((struct mips_elf_link_hash_entry *) | |
4178 | sym_hashes[r_symndx - extsymoff]); | |
4179 | ||
4180 | /* H is the symbol this stub is for. */ | |
4181 | ||
4182 | h->fn_stub = sec; | |
4183 | mips_elf_hash_table (info)->mips16_stubs_seen = true; | |
4184 | } | |
4185 | } | |
4186 | else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0 | |
4187 | || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0) | |
4188 | { | |
4189 | unsigned long r_symndx; | |
4190 | struct mips_elf_link_hash_entry *h; | |
4191 | asection **loc; | |
4192 | ||
4193 | /* Look at the relocation information to figure out which symbol | |
4194 | this is for. */ | |
4195 | ||
4196 | r_symndx = ELF_R_SYM (abfd, relocs->r_info); | |
4197 | ||
4198 | if (r_symndx < extsymoff | |
4199 | || sym_hashes[r_symndx - extsymoff] == NULL) | |
4200 | { | |
4201 | /* This stub was actually built for a static symbol defined | |
4202 | in the same file. We assume that all static symbols in | |
4203 | mips16 code are themselves mips16, so we can simply | |
4204 | discard this stub. Since this function is called before | |
4205 | the linker maps input sections to output sections, we can | |
4206 | easily discard it by setting the SEC_EXCLUDE flag. */ | |
4207 | sec->flags |= SEC_EXCLUDE; | |
4208 | return true; | |
4209 | } | |
4210 | ||
4211 | h = ((struct mips_elf_link_hash_entry *) | |
4212 | sym_hashes[r_symndx - extsymoff]); | |
4213 | ||
4214 | /* H is the symbol this stub is for. */ | |
4215 | ||
4216 | if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0) | |
4217 | loc = &h->call_fp_stub; | |
4218 | else | |
4219 | loc = &h->call_stub; | |
4220 | ||
4221 | /* If we already have an appropriate stub for this function, we | |
4222 | don't need another one, so we can discard this one. Since | |
4223 | this function is called before the linker maps input sections | |
4224 | to output sections, we can easily discard it by setting the | |
4225 | SEC_EXCLUDE flag. We can also discard this section if we | |
4226 | happen to already know that this is a mips16 function; it is | |
4227 | not necessary to check this here, as it is checked later, but | |
4228 | it is slightly faster to check now. */ | |
4229 | if (*loc != NULL || h->root.other == STO_MIPS16) | |
4230 | { | |
4231 | sec->flags |= SEC_EXCLUDE; | |
4232 | return true; | |
4233 | } | |
4234 | ||
4235 | *loc = sec; | |
4236 | mips_elf_hash_table (info)->mips16_stubs_seen = true; | |
4237 | } | |
4238 | ||
4239 | if (dynobj == NULL) | |
4240 | { | |
4241 | sgot = NULL; | |
4242 | g = NULL; | |
4243 | } | |
4244 | else | |
4245 | { | |
4246 | sgot = mips_elf_got_section (dynobj); | |
4247 | if (sgot == NULL) | |
4248 | g = NULL; | |
4249 | else | |
4250 | { | |
4251 | BFD_ASSERT (elf_section_data (sgot) != NULL); | |
4252 | g = (struct mips_got_info *) elf_section_data (sgot)->tdata; | |
4253 | BFD_ASSERT (g != NULL); | |
4254 | } | |
4255 | } | |
4256 | ||
4257 | sreloc = NULL; | |
4258 | bed = get_elf_backend_data (abfd); | |
4259 | rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel; | |
4260 | for (rel = relocs; rel < rel_end; ++rel) | |
4261 | { | |
4262 | unsigned long r_symndx; | |
4263 | unsigned int r_type; | |
4264 | struct elf_link_hash_entry *h; | |
4265 | ||
4266 | r_symndx = ELF_R_SYM (abfd, rel->r_info); | |
4267 | r_type = ELF_R_TYPE (abfd, rel->r_info); | |
4268 | ||
4269 | if (r_symndx < extsymoff) | |
4270 | h = NULL; | |
4271 | else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr)) | |
4272 | { | |
4273 | (*_bfd_error_handler) | |
4274 | (_("%s: Malformed reloc detected for section %s"), | |
4275 | bfd_archive_filename (abfd), name); | |
4276 | bfd_set_error (bfd_error_bad_value); | |
4277 | return false; | |
4278 | } | |
4279 | else | |
4280 | { | |
4281 | h = sym_hashes[r_symndx - extsymoff]; | |
4282 | ||
4283 | /* This may be an indirect symbol created because of a version. */ | |
4284 | if (h != NULL) | |
4285 | { | |
4286 | while (h->root.type == bfd_link_hash_indirect) | |
4287 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
4288 | } | |
4289 | } | |
4290 | ||
4291 | /* Some relocs require a global offset table. */ | |
4292 | if (dynobj == NULL || sgot == NULL) | |
4293 | { | |
4294 | switch (r_type) | |
4295 | { | |
4296 | case R_MIPS_GOT16: | |
4297 | case R_MIPS_CALL16: | |
4298 | case R_MIPS_CALL_HI16: | |
4299 | case R_MIPS_CALL_LO16: | |
4300 | case R_MIPS_GOT_HI16: | |
4301 | case R_MIPS_GOT_LO16: | |
4302 | case R_MIPS_GOT_PAGE: | |
4303 | case R_MIPS_GOT_OFST: | |
4304 | case R_MIPS_GOT_DISP: | |
4305 | if (dynobj == NULL) | |
4306 | elf_hash_table (info)->dynobj = dynobj = abfd; | |
4307 | if (! mips_elf_create_got_section (dynobj, info)) | |
4308 | return false; | |
4309 | g = mips_elf_got_info (dynobj, &sgot); | |
4310 | break; | |
4311 | ||
4312 | case R_MIPS_32: | |
4313 | case R_MIPS_REL32: | |
4314 | case R_MIPS_64: | |
4315 | if (dynobj == NULL | |
4316 | && (info->shared || h != NULL) | |
4317 | && (sec->flags & SEC_ALLOC) != 0) | |
4318 | elf_hash_table (info)->dynobj = dynobj = abfd; | |
4319 | break; | |
4320 | ||
4321 | default: | |
4322 | break; | |
4323 | } | |
4324 | } | |
4325 | ||
4326 | if (!h && (r_type == R_MIPS_CALL_LO16 | |
4327 | || r_type == R_MIPS_GOT_LO16 | |
4328 | || r_type == R_MIPS_GOT_DISP)) | |
4329 | { | |
4330 | /* We may need a local GOT entry for this relocation. We | |
4331 | don't count R_MIPS_GOT_PAGE because we can estimate the | |
4332 | maximum number of pages needed by looking at the size of | |
4333 | the segment. Similar comments apply to R_MIPS_GOT16 and | |
4334 | R_MIPS_CALL16. We don't count R_MIPS_GOT_HI16, or | |
4335 | R_MIPS_CALL_HI16 because these are always followed by an | |
4336 | R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. | |
4337 | ||
4338 | This estimation is very conservative since we can merge | |
4339 | duplicate entries in the GOT. In order to be less | |
4340 | conservative, we could actually build the GOT here, | |
4341 | rather than in relocate_section. */ | |
4342 | g->local_gotno++; | |
4343 | sgot->_raw_size += MIPS_ELF_GOT_SIZE (dynobj); | |
4344 | } | |
4345 | ||
4346 | switch (r_type) | |
4347 | { | |
4348 | case R_MIPS_CALL16: | |
4349 | if (h == NULL) | |
4350 | { | |
4351 | (*_bfd_error_handler) | |
4352 | (_("%s: CALL16 reloc at 0x%lx not against global symbol"), | |
4353 | bfd_archive_filename (abfd), (unsigned long) rel->r_offset); | |
4354 | bfd_set_error (bfd_error_bad_value); | |
4355 | return false; | |
4356 | } | |
4357 | /* Fall through. */ | |
4358 | ||
4359 | case R_MIPS_CALL_HI16: | |
4360 | case R_MIPS_CALL_LO16: | |
4361 | if (h != NULL) | |
4362 | { | |
4363 | /* This symbol requires a global offset table entry. */ | |
4364 | if (! mips_elf_record_global_got_symbol (h, info, g)) | |
4365 | return false; | |
4366 | ||
4367 | /* We need a stub, not a plt entry for the undefined | |
4368 | function. But we record it as if it needs plt. See | |
4369 | elf_adjust_dynamic_symbol in elflink.h. */ | |
4370 | h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT; | |
4371 | h->type = STT_FUNC; | |
4372 | } | |
4373 | break; | |
4374 | ||
4375 | case R_MIPS_GOT16: | |
4376 | case R_MIPS_GOT_HI16: | |
4377 | case R_MIPS_GOT_LO16: | |
4378 | case R_MIPS_GOT_DISP: | |
4379 | /* This symbol requires a global offset table entry. */ | |
4380 | if (h && ! mips_elf_record_global_got_symbol (h, info, g)) | |
4381 | return false; | |
4382 | break; | |
4383 | ||
4384 | case R_MIPS_32: | |
4385 | case R_MIPS_REL32: | |
4386 | case R_MIPS_64: | |
4387 | if ((info->shared || h != NULL) | |
4388 | && (sec->flags & SEC_ALLOC) != 0) | |
4389 | { | |
4390 | if (sreloc == NULL) | |
4391 | { | |
4392 | const char *dname = ".rel.dyn"; | |
4393 | ||
4394 | sreloc = bfd_get_section_by_name (dynobj, dname); | |
4395 | if (sreloc == NULL) | |
4396 | { | |
4397 | sreloc = bfd_make_section (dynobj, dname); | |
4398 | if (sreloc == NULL | |
4399 | || ! bfd_set_section_flags (dynobj, sreloc, | |
4400 | (SEC_ALLOC | |
4401 | | SEC_LOAD | |
4402 | | SEC_HAS_CONTENTS | |
4403 | | SEC_IN_MEMORY | |
4404 | | SEC_LINKER_CREATED | |
4405 | | SEC_READONLY)) | |
4406 | || ! bfd_set_section_alignment (dynobj, sreloc, | |
4407 | 4)) | |
4408 | return false; | |
4409 | } | |
4410 | } | |
4411 | #define MIPS_READONLY_SECTION (SEC_ALLOC | SEC_LOAD | SEC_READONLY) | |
4412 | if (info->shared) | |
4413 | { | |
4414 | /* When creating a shared object, we must copy these | |
4415 | reloc types into the output file as R_MIPS_REL32 | |
4416 | relocs. We make room for this reloc in the | |
4417 | .rel.dyn reloc section. */ | |
4418 | mips_elf_allocate_dynamic_relocations (dynobj, 1); | |
4419 | if ((sec->flags & MIPS_READONLY_SECTION) | |
4420 | == MIPS_READONLY_SECTION) | |
4421 | /* We tell the dynamic linker that there are | |
4422 | relocations against the text segment. */ | |
4423 | info->flags |= DF_TEXTREL; | |
4424 | } | |
4425 | else | |
4426 | { | |
4427 | struct mips_elf_link_hash_entry *hmips; | |
4428 | ||
4429 | /* We only need to copy this reloc if the symbol is | |
4430 | defined in a dynamic object. */ | |
4431 | hmips = (struct mips_elf_link_hash_entry *) h; | |
4432 | ++hmips->possibly_dynamic_relocs; | |
4433 | if ((sec->flags & MIPS_READONLY_SECTION) | |
4434 | == MIPS_READONLY_SECTION) | |
4435 | /* We need it to tell the dynamic linker if there | |
4436 | are relocations against the text segment. */ | |
4437 | hmips->readonly_reloc = true; | |
4438 | } | |
4439 | ||
4440 | /* Even though we don't directly need a GOT entry for | |
4441 | this symbol, a symbol must have a dynamic symbol | |
4442 | table index greater that DT_MIPS_GOTSYM if there are | |
4443 | dynamic relocations against it. */ | |
4444 | if (h != NULL | |
4445 | && ! mips_elf_record_global_got_symbol (h, info, g)) | |
4446 | return false; | |
4447 | } | |
4448 | ||
4449 | if (SGI_COMPAT (abfd)) | |
4450 | mips_elf_hash_table (info)->compact_rel_size += | |
4451 | sizeof (Elf32_External_crinfo); | |
4452 | break; | |
4453 | ||
4454 | case R_MIPS_26: | |
4455 | case R_MIPS_GPREL16: | |
4456 | case R_MIPS_LITERAL: | |
4457 | case R_MIPS_GPREL32: | |
4458 | if (SGI_COMPAT (abfd)) | |
4459 | mips_elf_hash_table (info)->compact_rel_size += | |
4460 | sizeof (Elf32_External_crinfo); | |
4461 | break; | |
4462 | ||
4463 | /* This relocation describes the C++ object vtable hierarchy. | |
4464 | Reconstruct it for later use during GC. */ | |
4465 | case R_MIPS_GNU_VTINHERIT: | |
4466 | if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) | |
4467 | return false; | |
4468 | break; | |
4469 | ||
4470 | /* This relocation describes which C++ vtable entries are actually | |
4471 | used. Record for later use during GC. */ | |
4472 | case R_MIPS_GNU_VTENTRY: | |
4473 | if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset)) | |
4474 | return false; | |
4475 | break; | |
4476 | ||
4477 | default: | |
4478 | break; | |
4479 | } | |
4480 | ||
4481 | /* We must not create a stub for a symbol that has relocations | |
4482 | related to taking the function's address. */ | |
4483 | switch (r_type) | |
4484 | { | |
4485 | default: | |
4486 | if (h != NULL) | |
4487 | { | |
4488 | struct mips_elf_link_hash_entry *mh; | |
4489 | ||
4490 | mh = (struct mips_elf_link_hash_entry *) h; | |
4491 | mh->no_fn_stub = true; | |
4492 | } | |
4493 | break; | |
4494 | case R_MIPS_CALL16: | |
4495 | case R_MIPS_CALL_HI16: | |
4496 | case R_MIPS_CALL_LO16: | |
4497 | break; | |
4498 | } | |
4499 | ||
4500 | /* If this reloc is not a 16 bit call, and it has a global | |
4501 | symbol, then we will need the fn_stub if there is one. | |
4502 | References from a stub section do not count. */ | |
4503 | if (h != NULL | |
4504 | && r_type != R_MIPS16_26 | |
4505 | && strncmp (bfd_get_section_name (abfd, sec), FN_STUB, | |
4506 | sizeof FN_STUB - 1) != 0 | |
4507 | && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB, | |
4508 | sizeof CALL_STUB - 1) != 0 | |
4509 | && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB, | |
4510 | sizeof CALL_FP_STUB - 1) != 0) | |
4511 | { | |
4512 | struct mips_elf_link_hash_entry *mh; | |
4513 | ||
4514 | mh = (struct mips_elf_link_hash_entry *) h; | |
4515 | mh->need_fn_stub = true; | |
4516 | } | |
4517 | } | |
4518 | ||
4519 | return true; | |
4520 | } | |
4521 | \f | |
4522 | /* Adjust a symbol defined by a dynamic object and referenced by a | |
4523 | regular object. The current definition is in some section of the | |
4524 | dynamic object, but we're not including those sections. We have to | |
4525 | change the definition to something the rest of the link can | |
4526 | understand. */ | |
4527 | ||
4528 | boolean | |
4529 | _bfd_mips_elf_adjust_dynamic_symbol (info, h) | |
4530 | struct bfd_link_info *info; | |
4531 | struct elf_link_hash_entry *h; | |
4532 | { | |
4533 | bfd *dynobj; | |
4534 | struct mips_elf_link_hash_entry *hmips; | |
4535 | asection *s; | |
4536 | ||
4537 | dynobj = elf_hash_table (info)->dynobj; | |
4538 | ||
4539 | /* Make sure we know what is going on here. */ | |
4540 | BFD_ASSERT (dynobj != NULL | |
4541 | && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) | |
4542 | || h->weakdef != NULL | |
4543 | || ((h->elf_link_hash_flags | |
4544 | & ELF_LINK_HASH_DEF_DYNAMIC) != 0 | |
4545 | && (h->elf_link_hash_flags | |
4546 | & ELF_LINK_HASH_REF_REGULAR) != 0 | |
4547 | && (h->elf_link_hash_flags | |
4548 | & ELF_LINK_HASH_DEF_REGULAR) == 0))); | |
4549 | ||
4550 | /* If this symbol is defined in a dynamic object, we need to copy | |
4551 | any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output | |
4552 | file. */ | |
4553 | hmips = (struct mips_elf_link_hash_entry *) h; | |
4554 | if (! info->relocateable | |
4555 | && hmips->possibly_dynamic_relocs != 0 | |
4556 | && (h->root.type == bfd_link_hash_defweak | |
4557 | || (h->elf_link_hash_flags | |
4558 | & ELF_LINK_HASH_DEF_REGULAR) == 0)) | |
4559 | { | |
4560 | mips_elf_allocate_dynamic_relocations (dynobj, | |
4561 | hmips->possibly_dynamic_relocs); | |
4562 | if (hmips->readonly_reloc) | |
4563 | /* We tell the dynamic linker that there are relocations | |
4564 | against the text segment. */ | |
4565 | info->flags |= DF_TEXTREL; | |
4566 | } | |
4567 | ||
4568 | /* For a function, create a stub, if allowed. */ | |
4569 | if (! hmips->no_fn_stub | |
4570 | && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0) | |
4571 | { | |
4572 | if (! elf_hash_table (info)->dynamic_sections_created) | |
4573 | return true; | |
4574 | ||
4575 | /* If this symbol is not defined in a regular file, then set | |
4576 | the symbol to the stub location. This is required to make | |
4577 | function pointers compare as equal between the normal | |
4578 | executable and the shared library. */ | |
4579 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) | |
4580 | { | |
4581 | /* We need .stub section. */ | |
4582 | s = bfd_get_section_by_name (dynobj, | |
4583 | MIPS_ELF_STUB_SECTION_NAME (dynobj)); | |
4584 | BFD_ASSERT (s != NULL); | |
4585 | ||
4586 | h->root.u.def.section = s; | |
4587 | h->root.u.def.value = s->_raw_size; | |
4588 | ||
4589 | /* XXX Write this stub address somewhere. */ | |
4590 | h->plt.offset = s->_raw_size; | |
4591 | ||
4592 | /* Make room for this stub code. */ | |
4593 | s->_raw_size += MIPS_FUNCTION_STUB_SIZE; | |
4594 | ||
4595 | /* The last half word of the stub will be filled with the index | |
4596 | of this symbol in .dynsym section. */ | |
4597 | return true; | |
4598 | } | |
4599 | } | |
4600 | else if ((h->type == STT_FUNC) | |
4601 | && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0) | |
4602 | { | |
4603 | /* This will set the entry for this symbol in the GOT to 0, and | |
4604 | the dynamic linker will take care of this. */ | |
4605 | h->root.u.def.value = 0; | |
4606 | return true; | |
4607 | } | |
4608 | ||
4609 | /* If this is a weak symbol, and there is a real definition, the | |
4610 | processor independent code will have arranged for us to see the | |
4611 | real definition first, and we can just use the same value. */ | |
4612 | if (h->weakdef != NULL) | |
4613 | { | |
4614 | BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined | |
4615 | || h->weakdef->root.type == bfd_link_hash_defweak); | |
4616 | h->root.u.def.section = h->weakdef->root.u.def.section; | |
4617 | h->root.u.def.value = h->weakdef->root.u.def.value; | |
4618 | return true; | |
4619 | } | |
4620 | ||
4621 | /* This is a reference to a symbol defined by a dynamic object which | |
4622 | is not a function. */ | |
4623 | ||
4624 | return true; | |
4625 | } | |
4626 | \f | |
4627 | /* This function is called after all the input files have been read, | |
4628 | and the input sections have been assigned to output sections. We | |
4629 | check for any mips16 stub sections that we can discard. */ | |
4630 | ||
4631 | boolean | |
4632 | _bfd_mips_elf_always_size_sections (output_bfd, info) | |
4633 | bfd *output_bfd; | |
4634 | struct bfd_link_info *info; | |
4635 | { | |
4636 | asection *ri; | |
4637 | ||
4638 | /* The .reginfo section has a fixed size. */ | |
4639 | ri = bfd_get_section_by_name (output_bfd, ".reginfo"); | |
4640 | if (ri != NULL) | |
4641 | bfd_set_section_size (output_bfd, ri, | |
4642 | (bfd_size_type) sizeof (Elf32_External_RegInfo)); | |
4643 | ||
4644 | if (info->relocateable | |
4645 | || ! mips_elf_hash_table (info)->mips16_stubs_seen) | |
4646 | return true; | |
4647 | ||
4648 | mips_elf_link_hash_traverse (mips_elf_hash_table (info), | |
4649 | mips_elf_check_mips16_stubs, | |
4650 | (PTR) NULL); | |
4651 | ||
4652 | return true; | |
4653 | } | |
4654 | ||
4655 | /* Set the sizes of the dynamic sections. */ | |
4656 | ||
4657 | boolean | |
4658 | _bfd_mips_elf_size_dynamic_sections (output_bfd, info) | |
4659 | bfd *output_bfd; | |
4660 | struct bfd_link_info *info; | |
4661 | { | |
4662 | bfd *dynobj; | |
4663 | asection *s; | |
4664 | boolean reltext; | |
4665 | struct mips_got_info *g = NULL; | |
4666 | ||
4667 | dynobj = elf_hash_table (info)->dynobj; | |
4668 | BFD_ASSERT (dynobj != NULL); | |
4669 | ||
4670 | if (elf_hash_table (info)->dynamic_sections_created) | |
4671 | { | |
4672 | /* Set the contents of the .interp section to the interpreter. */ | |
4673 | if (! info->shared) | |
4674 | { | |
4675 | s = bfd_get_section_by_name (dynobj, ".interp"); | |
4676 | BFD_ASSERT (s != NULL); | |
4677 | s->_raw_size | |
4678 | = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1; | |
4679 | s->contents | |
4680 | = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd); | |
4681 | } | |
4682 | } | |
4683 | ||
4684 | /* The check_relocs and adjust_dynamic_symbol entry points have | |
4685 | determined the sizes of the various dynamic sections. Allocate | |
4686 | memory for them. */ | |
4687 | reltext = false; | |
4688 | for (s = dynobj->sections; s != NULL; s = s->next) | |
4689 | { | |
4690 | const char *name; | |
4691 | boolean strip; | |
4692 | ||
4693 | /* It's OK to base decisions on the section name, because none | |
4694 | of the dynobj section names depend upon the input files. */ | |
4695 | name = bfd_get_section_name (dynobj, s); | |
4696 | ||
4697 | if ((s->flags & SEC_LINKER_CREATED) == 0) | |
4698 | continue; | |
4699 | ||
4700 | strip = false; | |
4701 | ||
4702 | if (strncmp (name, ".rel", 4) == 0) | |
4703 | { | |
4704 | if (s->_raw_size == 0) | |
4705 | { | |
4706 | /* We only strip the section if the output section name | |
4707 | has the same name. Otherwise, there might be several | |
4708 | input sections for this output section. FIXME: This | |
4709 | code is probably not needed these days anyhow, since | |
4710 | the linker now does not create empty output sections. */ | |
4711 | if (s->output_section != NULL | |
4712 | && strcmp (name, | |
4713 | bfd_get_section_name (s->output_section->owner, | |
4714 | s->output_section)) == 0) | |
4715 | strip = true; | |
4716 | } | |
4717 | else | |
4718 | { | |
4719 | const char *outname; | |
4720 | asection *target; | |
4721 | ||
4722 | /* If this relocation section applies to a read only | |
4723 | section, then we probably need a DT_TEXTREL entry. | |
4724 | If the relocation section is .rel.dyn, we always | |
4725 | assert a DT_TEXTREL entry rather than testing whether | |
4726 | there exists a relocation to a read only section or | |
4727 | not. */ | |
4728 | outname = bfd_get_section_name (output_bfd, | |
4729 | s->output_section); | |
4730 | target = bfd_get_section_by_name (output_bfd, outname + 4); | |
4731 | if ((target != NULL | |
4732 | && (target->flags & SEC_READONLY) != 0 | |
4733 | && (target->flags & SEC_ALLOC) != 0) | |
4734 | || strcmp (outname, ".rel.dyn") == 0) | |
4735 | reltext = true; | |
4736 | ||
4737 | /* We use the reloc_count field as a counter if we need | |
4738 | to copy relocs into the output file. */ | |
4739 | if (strcmp (name, ".rel.dyn") != 0) | |
4740 | s->reloc_count = 0; | |
4741 | } | |
4742 | } | |
4743 | else if (strncmp (name, ".got", 4) == 0) | |
4744 | { | |
4745 | int i; | |
4746 | bfd_size_type loadable_size = 0; | |
4747 | bfd_size_type local_gotno; | |
4748 | bfd *sub; | |
4749 | ||
4750 | BFD_ASSERT (elf_section_data (s) != NULL); | |
4751 | g = (struct mips_got_info *) elf_section_data (s)->tdata; | |
4752 | BFD_ASSERT (g != NULL); | |
4753 | ||
4754 | /* Calculate the total loadable size of the output. That | |
4755 | will give us the maximum number of GOT_PAGE entries | |
4756 | required. */ | |
4757 | for (sub = info->input_bfds; sub; sub = sub->link_next) | |
4758 | { | |
4759 | asection *subsection; | |
4760 | ||
4761 | for (subsection = sub->sections; | |
4762 | subsection; | |
4763 | subsection = subsection->next) | |
4764 | { | |
4765 | if ((subsection->flags & SEC_ALLOC) == 0) | |
4766 | continue; | |
4767 | loadable_size += ((subsection->_raw_size + 0xf) | |
4768 | &~ (bfd_size_type) 0xf); | |
4769 | } | |
4770 | } | |
4771 | loadable_size += MIPS_FUNCTION_STUB_SIZE; | |
4772 | ||
4773 | /* Assume there are two loadable segments consisting of | |
4774 | contiguous sections. Is 5 enough? */ | |
4775 | local_gotno = (loadable_size >> 16) + 5; | |
4a14403c | 4776 | if (NEWABI_P (output_bfd)) |
b49e97c9 TS |
4777 | /* It's possible we will need GOT_PAGE entries as well as |
4778 | GOT16 entries. Often, these will be able to share GOT | |
4779 | entries, but not always. */ | |
4780 | local_gotno *= 2; | |
4781 | ||
4782 | g->local_gotno += local_gotno; | |
4783 | s->_raw_size += local_gotno * MIPS_ELF_GOT_SIZE (dynobj); | |
4784 | ||
4785 | /* There has to be a global GOT entry for every symbol with | |
4786 | a dynamic symbol table index of DT_MIPS_GOTSYM or | |
4787 | higher. Therefore, it make sense to put those symbols | |
4788 | that need GOT entries at the end of the symbol table. We | |
4789 | do that here. */ | |
4790 | if (! mips_elf_sort_hash_table (info, 1)) | |
4791 | return false; | |
4792 | ||
4793 | if (g->global_gotsym != NULL) | |
4794 | i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx; | |
4795 | else | |
4796 | /* If there are no global symbols, or none requiring | |
4797 | relocations, then GLOBAL_GOTSYM will be NULL. */ | |
4798 | i = 0; | |
4799 | g->global_gotno = i; | |
4800 | s->_raw_size += i * MIPS_ELF_GOT_SIZE (dynobj); | |
4801 | } | |
4802 | else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0) | |
4803 | { | |
8dc1a139 | 4804 | /* IRIX rld assumes that the function stub isn't at the end |
b49e97c9 TS |
4805 | of .text section. So put a dummy. XXX */ |
4806 | s->_raw_size += MIPS_FUNCTION_STUB_SIZE; | |
4807 | } | |
4808 | else if (! info->shared | |
4809 | && ! mips_elf_hash_table (info)->use_rld_obj_head | |
4810 | && strncmp (name, ".rld_map", 8) == 0) | |
4811 | { | |
4812 | /* We add a room for __rld_map. It will be filled in by the | |
4813 | rtld to contain a pointer to the _r_debug structure. */ | |
4814 | s->_raw_size += 4; | |
4815 | } | |
4816 | else if (SGI_COMPAT (output_bfd) | |
4817 | && strncmp (name, ".compact_rel", 12) == 0) | |
4818 | s->_raw_size += mips_elf_hash_table (info)->compact_rel_size; | |
4819 | else if (strcmp (name, ".msym") == 0) | |
4820 | s->_raw_size = (sizeof (Elf32_External_Msym) | |
4821 | * (elf_hash_table (info)->dynsymcount | |
4822 | + bfd_count_sections (output_bfd))); | |
4823 | else if (strncmp (name, ".init", 5) != 0) | |
4824 | { | |
4825 | /* It's not one of our sections, so don't allocate space. */ | |
4826 | continue; | |
4827 | } | |
4828 | ||
4829 | if (strip) | |
4830 | { | |
4831 | _bfd_strip_section_from_output (info, s); | |
4832 | continue; | |
4833 | } | |
4834 | ||
4835 | /* Allocate memory for the section contents. */ | |
4836 | s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size); | |
4837 | if (s->contents == NULL && s->_raw_size != 0) | |
4838 | { | |
4839 | bfd_set_error (bfd_error_no_memory); | |
4840 | return false; | |
4841 | } | |
4842 | } | |
4843 | ||
4844 | if (elf_hash_table (info)->dynamic_sections_created) | |
4845 | { | |
4846 | /* Add some entries to the .dynamic section. We fill in the | |
4847 | values later, in _bfd_mips_elf_finish_dynamic_sections, but we | |
4848 | must add the entries now so that we get the correct size for | |
4849 | the .dynamic section. The DT_DEBUG entry is filled in by the | |
4850 | dynamic linker and used by the debugger. */ | |
4851 | if (! info->shared) | |
4852 | { | |
4853 | /* SGI object has the equivalence of DT_DEBUG in the | |
4854 | DT_MIPS_RLD_MAP entry. */ | |
4855 | if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0)) | |
4856 | return false; | |
4857 | if (!SGI_COMPAT (output_bfd)) | |
4858 | { | |
4859 | if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0)) | |
4860 | return false; | |
4861 | } | |
4862 | } | |
4863 | else | |
4864 | { | |
4865 | /* Shared libraries on traditional mips have DT_DEBUG. */ | |
4866 | if (!SGI_COMPAT (output_bfd)) | |
4867 | { | |
4868 | if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0)) | |
4869 | return false; | |
4870 | } | |
4871 | } | |
4872 | ||
4873 | if (reltext && SGI_COMPAT (output_bfd)) | |
4874 | info->flags |= DF_TEXTREL; | |
4875 | ||
4876 | if ((info->flags & DF_TEXTREL) != 0) | |
4877 | { | |
4878 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0)) | |
4879 | return false; | |
4880 | } | |
4881 | ||
4882 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0)) | |
4883 | return false; | |
4884 | ||
4885 | if (bfd_get_section_by_name (dynobj, ".rel.dyn")) | |
4886 | { | |
4887 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0)) | |
4888 | return false; | |
4889 | ||
4890 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0)) | |
4891 | return false; | |
4892 | ||
4893 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0)) | |
4894 | return false; | |
4895 | } | |
4896 | ||
4897 | if (SGI_COMPAT (output_bfd)) | |
4898 | { | |
4899 | if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICTNO, 0)) | |
4900 | return false; | |
4901 | } | |
4902 | ||
4903 | if (SGI_COMPAT (output_bfd)) | |
4904 | { | |
4905 | if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLISTNO, 0)) | |
4906 | return false; | |
4907 | } | |
4908 | ||
4909 | if (bfd_get_section_by_name (dynobj, ".conflict") != NULL) | |
4910 | { | |
4911 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICT, 0)) | |
4912 | return false; | |
4913 | ||
4914 | s = bfd_get_section_by_name (dynobj, ".liblist"); | |
4915 | BFD_ASSERT (s != NULL); | |
4916 | ||
4917 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLIST, 0)) | |
4918 | return false; | |
4919 | } | |
4920 | ||
4921 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0)) | |
4922 | return false; | |
4923 | ||
4924 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0)) | |
4925 | return false; | |
4926 | ||
4927 | #if 0 | |
4928 | /* Time stamps in executable files are a bad idea. */ | |
4929 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_TIME_STAMP, 0)) | |
4930 | return false; | |
4931 | #endif | |
4932 | ||
4933 | #if 0 /* FIXME */ | |
4934 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_ICHECKSUM, 0)) | |
4935 | return false; | |
4936 | #endif | |
4937 | ||
4938 | #if 0 /* FIXME */ | |
4939 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_IVERSION, 0)) | |
4940 | return false; | |
4941 | #endif | |
4942 | ||
4943 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0)) | |
4944 | return false; | |
4945 | ||
4946 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0)) | |
4947 | return false; | |
4948 | ||
4949 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0)) | |
4950 | return false; | |
4951 | ||
4952 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0)) | |
4953 | return false; | |
4954 | ||
4955 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0)) | |
4956 | return false; | |
4957 | ||
4958 | if (IRIX_COMPAT (dynobj) == ict_irix5 | |
4959 | && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0)) | |
4960 | return false; | |
4961 | ||
4962 | if (IRIX_COMPAT (dynobj) == ict_irix6 | |
4963 | && (bfd_get_section_by_name | |
4964 | (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj))) | |
4965 | && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0)) | |
4966 | return false; | |
4967 | ||
4968 | if (bfd_get_section_by_name (dynobj, ".msym") | |
4969 | && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_MSYM, 0)) | |
4970 | return false; | |
4971 | } | |
4972 | ||
4973 | return true; | |
4974 | } | |
4975 | \f | |
4976 | /* Relocate a MIPS ELF section. */ | |
4977 | ||
4978 | boolean | |
4979 | _bfd_mips_elf_relocate_section (output_bfd, info, input_bfd, input_section, | |
4980 | contents, relocs, local_syms, local_sections) | |
4981 | bfd *output_bfd; | |
4982 | struct bfd_link_info *info; | |
4983 | bfd *input_bfd; | |
4984 | asection *input_section; | |
4985 | bfd_byte *contents; | |
4986 | Elf_Internal_Rela *relocs; | |
4987 | Elf_Internal_Sym *local_syms; | |
4988 | asection **local_sections; | |
4989 | { | |
4990 | Elf_Internal_Rela *rel; | |
4991 | const Elf_Internal_Rela *relend; | |
4992 | bfd_vma addend = 0; | |
4993 | boolean use_saved_addend_p = false; | |
4994 | struct elf_backend_data *bed; | |
4995 | ||
4996 | bed = get_elf_backend_data (output_bfd); | |
4997 | relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel; | |
4998 | for (rel = relocs; rel < relend; ++rel) | |
4999 | { | |
5000 | const char *name; | |
5001 | bfd_vma value; | |
5002 | reloc_howto_type *howto; | |
5003 | boolean require_jalx; | |
5004 | /* True if the relocation is a RELA relocation, rather than a | |
5005 | REL relocation. */ | |
5006 | boolean rela_relocation_p = true; | |
5007 | unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info); | |
5008 | const char * msg = (const char *) NULL; | |
5009 | ||
5010 | /* Find the relocation howto for this relocation. */ | |
4a14403c | 5011 | if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd)) |
b49e97c9 TS |
5012 | { |
5013 | /* Some 32-bit code uses R_MIPS_64. In particular, people use | |
5014 | 64-bit code, but make sure all their addresses are in the | |
5015 | lowermost or uppermost 32-bit section of the 64-bit address | |
5016 | space. Thus, when they use an R_MIPS_64 they mean what is | |
5017 | usually meant by R_MIPS_32, with the exception that the | |
5018 | stored value is sign-extended to 64 bits. */ | |
5a659663 | 5019 | howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, false); |
b49e97c9 TS |
5020 | |
5021 | /* On big-endian systems, we need to lie about the position | |
5022 | of the reloc. */ | |
5023 | if (bfd_big_endian (input_bfd)) | |
5024 | rel->r_offset += 4; | |
5025 | } | |
5026 | else | |
5027 | /* NewABI defaults to RELA relocations. */ | |
5028 | howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, | |
5029 | NEWABI_P (input_bfd)); | |
5030 | ||
5031 | if (!use_saved_addend_p) | |
5032 | { | |
5033 | Elf_Internal_Shdr *rel_hdr; | |
5034 | ||
5035 | /* If these relocations were originally of the REL variety, | |
5036 | we must pull the addend out of the field that will be | |
5037 | relocated. Otherwise, we simply use the contents of the | |
5038 | RELA relocation. To determine which flavor or relocation | |
5039 | this is, we depend on the fact that the INPUT_SECTION's | |
5040 | REL_HDR is read before its REL_HDR2. */ | |
5041 | rel_hdr = &elf_section_data (input_section)->rel_hdr; | |
5042 | if ((size_t) (rel - relocs) | |
5043 | >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel)) | |
5044 | rel_hdr = elf_section_data (input_section)->rel_hdr2; | |
5045 | if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd)) | |
5046 | { | |
5047 | /* Note that this is a REL relocation. */ | |
5048 | rela_relocation_p = false; | |
5049 | ||
5050 | /* Get the addend, which is stored in the input file. */ | |
5051 | addend = mips_elf_obtain_contents (howto, rel, input_bfd, | |
5052 | contents); | |
5053 | addend &= howto->src_mask; | |
5a659663 | 5054 | addend <<= howto->rightshift; |
b49e97c9 TS |
5055 | |
5056 | /* For some kinds of relocations, the ADDEND is a | |
5057 | combination of the addend stored in two different | |
5058 | relocations. */ | |
5059 | if (r_type == R_MIPS_HI16 | |
5060 | || r_type == R_MIPS_GNU_REL_HI16 | |
5061 | || (r_type == R_MIPS_GOT16 | |
5062 | && mips_elf_local_relocation_p (input_bfd, rel, | |
5063 | local_sections, false))) | |
5064 | { | |
5065 | bfd_vma l; | |
5066 | const Elf_Internal_Rela *lo16_relocation; | |
5067 | reloc_howto_type *lo16_howto; | |
5068 | unsigned int lo; | |
5069 | ||
5070 | /* The combined value is the sum of the HI16 addend, | |
5071 | left-shifted by sixteen bits, and the LO16 | |
5072 | addend, sign extended. (Usually, the code does | |
5073 | a `lui' of the HI16 value, and then an `addiu' of | |
5074 | the LO16 value.) | |
5075 | ||
5076 | Scan ahead to find a matching LO16 relocation. */ | |
5077 | if (r_type == R_MIPS_GNU_REL_HI16) | |
5078 | lo = R_MIPS_GNU_REL_LO16; | |
5079 | else | |
5080 | lo = R_MIPS_LO16; | |
5081 | lo16_relocation = mips_elf_next_relocation (input_bfd, lo, | |
5082 | rel, relend); | |
5083 | if (lo16_relocation == NULL) | |
5084 | return false; | |
5085 | ||
5086 | /* Obtain the addend kept there. */ | |
5a659663 | 5087 | lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, lo, false); |
b49e97c9 TS |
5088 | l = mips_elf_obtain_contents (lo16_howto, lo16_relocation, |
5089 | input_bfd, contents); | |
5090 | l &= lo16_howto->src_mask; | |
5a659663 | 5091 | l <<= lo16_howto->rightshift; |
b49e97c9 TS |
5092 | l = mips_elf_sign_extend (l, 16); |
5093 | ||
5094 | addend <<= 16; | |
5095 | ||
5096 | /* Compute the combined addend. */ | |
5097 | addend += l; | |
5098 | ||
5099 | /* If PC-relative, subtract the difference between the | |
5100 | address of the LO part of the reloc and the address of | |
5101 | the HI part. The relocation is relative to the LO | |
5102 | part, but mips_elf_calculate_relocation() doesn't | |
5103 | know its address or the difference from the HI part, so | |
5104 | we subtract that difference here. See also the | |
5105 | comment in mips_elf_calculate_relocation(). */ | |
5106 | if (r_type == R_MIPS_GNU_REL_HI16) | |
5107 | addend -= (lo16_relocation->r_offset - rel->r_offset); | |
5108 | } | |
5109 | else if (r_type == R_MIPS16_GPREL) | |
5110 | { | |
5111 | /* The addend is scrambled in the object file. See | |
5112 | mips_elf_perform_relocation for details on the | |
5113 | format. */ | |
5114 | addend = (((addend & 0x1f0000) >> 5) | |
5115 | | ((addend & 0x7e00000) >> 16) | |
5116 | | (addend & 0x1f)); | |
5117 | } | |
5118 | } | |
5119 | else | |
5120 | addend = rel->r_addend; | |
5121 | } | |
5122 | ||
5123 | if (info->relocateable) | |
5124 | { | |
5125 | Elf_Internal_Sym *sym; | |
5126 | unsigned long r_symndx; | |
5127 | ||
4a14403c | 5128 | if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd) |
b49e97c9 TS |
5129 | && bfd_big_endian (input_bfd)) |
5130 | rel->r_offset -= 4; | |
5131 | ||
5132 | /* Since we're just relocating, all we need to do is copy | |
5133 | the relocations back out to the object file, unless | |
5134 | they're against a section symbol, in which case we need | |
5135 | to adjust by the section offset, or unless they're GP | |
5136 | relative in which case we need to adjust by the amount | |
5137 | that we're adjusting GP in this relocateable object. */ | |
5138 | ||
5139 | if (! mips_elf_local_relocation_p (input_bfd, rel, local_sections, | |
5140 | false)) | |
5141 | /* There's nothing to do for non-local relocations. */ | |
5142 | continue; | |
5143 | ||
5144 | if (r_type == R_MIPS16_GPREL | |
5145 | || r_type == R_MIPS_GPREL16 | |
5146 | || r_type == R_MIPS_GPREL32 | |
5147 | || r_type == R_MIPS_LITERAL) | |
5148 | addend -= (_bfd_get_gp_value (output_bfd) | |
5149 | - _bfd_get_gp_value (input_bfd)); | |
b49e97c9 TS |
5150 | |
5151 | r_symndx = ELF_R_SYM (output_bfd, rel->r_info); | |
5152 | sym = local_syms + r_symndx; | |
5153 | if (ELF_ST_TYPE (sym->st_info) == STT_SECTION) | |
5154 | /* Adjust the addend appropriately. */ | |
5155 | addend += local_sections[r_symndx]->output_offset; | |
5156 | ||
5a659663 TS |
5157 | if (howto->partial_inplace) |
5158 | { | |
5159 | /* If the relocation is for a R_MIPS_HI16 or R_MIPS_GOT16, | |
5160 | then we only want to write out the high-order 16 bits. | |
5161 | The subsequent R_MIPS_LO16 will handle the low-order bits. | |
5162 | */ | |
5163 | if (r_type == R_MIPS_HI16 || r_type == R_MIPS_GOT16 | |
5164 | || r_type == R_MIPS_GNU_REL_HI16) | |
5165 | addend = mips_elf_high (addend); | |
5166 | else if (r_type == R_MIPS_HIGHER) | |
5167 | addend = mips_elf_higher (addend); | |
5168 | else if (r_type == R_MIPS_HIGHEST) | |
5169 | addend = mips_elf_highest (addend); | |
5170 | } | |
b49e97c9 TS |
5171 | |
5172 | if (rela_relocation_p) | |
5173 | /* If this is a RELA relocation, just update the addend. | |
5174 | We have to cast away constness for REL. */ | |
5175 | rel->r_addend = addend; | |
5176 | else | |
5177 | { | |
5178 | /* Otherwise, we have to write the value back out. Note | |
5179 | that we use the source mask, rather than the | |
5180 | destination mask because the place to which we are | |
5181 | writing will be source of the addend in the final | |
5182 | link. */ | |
5a659663 | 5183 | addend >>= howto->rightshift; |
b49e97c9 TS |
5184 | addend &= howto->src_mask; |
5185 | ||
5a659663 | 5186 | if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)) |
b49e97c9 TS |
5187 | /* See the comment above about using R_MIPS_64 in the 32-bit |
5188 | ABI. Here, we need to update the addend. It would be | |
5189 | possible to get away with just using the R_MIPS_32 reloc | |
5190 | but for endianness. */ | |
5191 | { | |
5192 | bfd_vma sign_bits; | |
5193 | bfd_vma low_bits; | |
5194 | bfd_vma high_bits; | |
5195 | ||
5196 | if (addend & ((bfd_vma) 1 << 31)) | |
5197 | #ifdef BFD64 | |
5198 | sign_bits = ((bfd_vma) 1 << 32) - 1; | |
5199 | #else | |
5200 | sign_bits = -1; | |
5201 | #endif | |
5202 | else | |
5203 | sign_bits = 0; | |
5204 | ||
5205 | /* If we don't know that we have a 64-bit type, | |
5206 | do two separate stores. */ | |
5207 | if (bfd_big_endian (input_bfd)) | |
5208 | { | |
5209 | /* Store the sign-bits (which are most significant) | |
5210 | first. */ | |
5211 | low_bits = sign_bits; | |
5212 | high_bits = addend; | |
5213 | } | |
5214 | else | |
5215 | { | |
5216 | low_bits = addend; | |
5217 | high_bits = sign_bits; | |
5218 | } | |
5219 | bfd_put_32 (input_bfd, low_bits, | |
5220 | contents + rel->r_offset); | |
5221 | bfd_put_32 (input_bfd, high_bits, | |
5222 | contents + rel->r_offset + 4); | |
5223 | continue; | |
5224 | } | |
5225 | ||
5226 | if (! mips_elf_perform_relocation (info, howto, rel, addend, | |
5227 | input_bfd, input_section, | |
5228 | contents, false)) | |
5229 | return false; | |
5230 | } | |
5231 | ||
5232 | /* Go on to the next relocation. */ | |
5233 | continue; | |
5234 | } | |
5235 | ||
5236 | /* In the N32 and 64-bit ABIs there may be multiple consecutive | |
5237 | relocations for the same offset. In that case we are | |
5238 | supposed to treat the output of each relocation as the addend | |
5239 | for the next. */ | |
5240 | if (rel + 1 < relend | |
5241 | && rel->r_offset == rel[1].r_offset | |
5242 | && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE) | |
5243 | use_saved_addend_p = true; | |
5244 | else | |
5245 | use_saved_addend_p = false; | |
5246 | ||
5a659663 TS |
5247 | addend >>= howto->rightshift; |
5248 | ||
b49e97c9 TS |
5249 | /* Figure out what value we are supposed to relocate. */ |
5250 | switch (mips_elf_calculate_relocation (output_bfd, input_bfd, | |
5251 | input_section, info, rel, | |
5252 | addend, howto, local_syms, | |
5253 | local_sections, &value, | |
5254 | &name, &require_jalx)) | |
5255 | { | |
5256 | case bfd_reloc_continue: | |
5257 | /* There's nothing to do. */ | |
5258 | continue; | |
5259 | ||
5260 | case bfd_reloc_undefined: | |
5261 | /* mips_elf_calculate_relocation already called the | |
5262 | undefined_symbol callback. There's no real point in | |
5263 | trying to perform the relocation at this point, so we | |
5264 | just skip ahead to the next relocation. */ | |
5265 | continue; | |
5266 | ||
5267 | case bfd_reloc_notsupported: | |
5268 | msg = _("internal error: unsupported relocation error"); | |
5269 | info->callbacks->warning | |
5270 | (info, msg, name, input_bfd, input_section, rel->r_offset); | |
5271 | return false; | |
5272 | ||
5273 | case bfd_reloc_overflow: | |
5274 | if (use_saved_addend_p) | |
5275 | /* Ignore overflow until we reach the last relocation for | |
5276 | a given location. */ | |
5277 | ; | |
5278 | else | |
5279 | { | |
5280 | BFD_ASSERT (name != NULL); | |
5281 | if (! ((*info->callbacks->reloc_overflow) | |
5282 | (info, name, howto->name, (bfd_vma) 0, | |
5283 | input_bfd, input_section, rel->r_offset))) | |
5284 | return false; | |
5285 | } | |
5286 | break; | |
5287 | ||
5288 | case bfd_reloc_ok: | |
5289 | break; | |
5290 | ||
5291 | default: | |
5292 | abort (); | |
5293 | break; | |
5294 | } | |
5295 | ||
5296 | /* If we've got another relocation for the address, keep going | |
5297 | until we reach the last one. */ | |
5298 | if (use_saved_addend_p) | |
5299 | { | |
5300 | addend = value; | |
5301 | continue; | |
5302 | } | |
5303 | ||
4a14403c | 5304 | if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)) |
b49e97c9 TS |
5305 | /* See the comment above about using R_MIPS_64 in the 32-bit |
5306 | ABI. Until now, we've been using the HOWTO for R_MIPS_32; | |
5307 | that calculated the right value. Now, however, we | |
5308 | sign-extend the 32-bit result to 64-bits, and store it as a | |
5309 | 64-bit value. We are especially generous here in that we | |
5310 | go to extreme lengths to support this usage on systems with | |
5311 | only a 32-bit VMA. */ | |
5312 | { | |
5313 | bfd_vma sign_bits; | |
5314 | bfd_vma low_bits; | |
5315 | bfd_vma high_bits; | |
5316 | ||
5317 | if (value & ((bfd_vma) 1 << 31)) | |
5318 | #ifdef BFD64 | |
5319 | sign_bits = ((bfd_vma) 1 << 32) - 1; | |
5320 | #else | |
5321 | sign_bits = -1; | |
5322 | #endif | |
5323 | else | |
5324 | sign_bits = 0; | |
5325 | ||
5326 | /* If we don't know that we have a 64-bit type, | |
5327 | do two separate stores. */ | |
5328 | if (bfd_big_endian (input_bfd)) | |
5329 | { | |
5330 | /* Undo what we did above. */ | |
5331 | rel->r_offset -= 4; | |
5332 | /* Store the sign-bits (which are most significant) | |
5333 | first. */ | |
5334 | low_bits = sign_bits; | |
5335 | high_bits = value; | |
5336 | } | |
5337 | else | |
5338 | { | |
5339 | low_bits = value; | |
5340 | high_bits = sign_bits; | |
5341 | } | |
5342 | bfd_put_32 (input_bfd, low_bits, | |
5343 | contents + rel->r_offset); | |
5344 | bfd_put_32 (input_bfd, high_bits, | |
5345 | contents + rel->r_offset + 4); | |
5346 | continue; | |
5347 | } | |
5348 | ||
5349 | /* Actually perform the relocation. */ | |
5350 | if (! mips_elf_perform_relocation (info, howto, rel, value, | |
5351 | input_bfd, input_section, | |
5352 | contents, require_jalx)) | |
5353 | return false; | |
5354 | } | |
5355 | ||
5356 | return true; | |
5357 | } | |
5358 | \f | |
5359 | /* If NAME is one of the special IRIX6 symbols defined by the linker, | |
5360 | adjust it appropriately now. */ | |
5361 | ||
5362 | static void | |
5363 | mips_elf_irix6_finish_dynamic_symbol (abfd, name, sym) | |
5364 | bfd *abfd ATTRIBUTE_UNUSED; | |
5365 | const char *name; | |
5366 | Elf_Internal_Sym *sym; | |
5367 | { | |
5368 | /* The linker script takes care of providing names and values for | |
5369 | these, but we must place them into the right sections. */ | |
5370 | static const char* const text_section_symbols[] = { | |
5371 | "_ftext", | |
5372 | "_etext", | |
5373 | "__dso_displacement", | |
5374 | "__elf_header", | |
5375 | "__program_header_table", | |
5376 | NULL | |
5377 | }; | |
5378 | ||
5379 | static const char* const data_section_symbols[] = { | |
5380 | "_fdata", | |
5381 | "_edata", | |
5382 | "_end", | |
5383 | "_fbss", | |
5384 | NULL | |
5385 | }; | |
5386 | ||
5387 | const char* const *p; | |
5388 | int i; | |
5389 | ||
5390 | for (i = 0; i < 2; ++i) | |
5391 | for (p = (i == 0) ? text_section_symbols : data_section_symbols; | |
5392 | *p; | |
5393 | ++p) | |
5394 | if (strcmp (*p, name) == 0) | |
5395 | { | |
5396 | /* All of these symbols are given type STT_SECTION by the | |
5397 | IRIX6 linker. */ | |
5398 | sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); | |
5399 | ||
5400 | /* The IRIX linker puts these symbols in special sections. */ | |
5401 | if (i == 0) | |
5402 | sym->st_shndx = SHN_MIPS_TEXT; | |
5403 | else | |
5404 | sym->st_shndx = SHN_MIPS_DATA; | |
5405 | ||
5406 | break; | |
5407 | } | |
5408 | } | |
5409 | ||
5410 | /* Finish up dynamic symbol handling. We set the contents of various | |
5411 | dynamic sections here. */ | |
5412 | ||
5413 | boolean | |
5414 | _bfd_mips_elf_finish_dynamic_symbol (output_bfd, info, h, sym) | |
5415 | bfd *output_bfd; | |
5416 | struct bfd_link_info *info; | |
5417 | struct elf_link_hash_entry *h; | |
5418 | Elf_Internal_Sym *sym; | |
5419 | { | |
5420 | bfd *dynobj; | |
5421 | bfd_vma gval; | |
5422 | asection *sgot; | |
5423 | asection *smsym; | |
5424 | struct mips_got_info *g; | |
5425 | const char *name; | |
5426 | struct mips_elf_link_hash_entry *mh; | |
5427 | ||
5428 | dynobj = elf_hash_table (info)->dynobj; | |
5429 | gval = sym->st_value; | |
5430 | mh = (struct mips_elf_link_hash_entry *) h; | |
5431 | ||
5432 | if (h->plt.offset != (bfd_vma) -1) | |
5433 | { | |
5434 | asection *s; | |
5435 | bfd_byte stub[MIPS_FUNCTION_STUB_SIZE]; | |
5436 | ||
5437 | /* This symbol has a stub. Set it up. */ | |
5438 | ||
5439 | BFD_ASSERT (h->dynindx != -1); | |
5440 | ||
5441 | s = bfd_get_section_by_name (dynobj, | |
5442 | MIPS_ELF_STUB_SECTION_NAME (dynobj)); | |
5443 | BFD_ASSERT (s != NULL); | |
5444 | ||
5445 | /* FIXME: Can h->dynindex be more than 64K? */ | |
5446 | if (h->dynindx & 0xffff0000) | |
5447 | return false; | |
5448 | ||
5449 | /* Fill the stub. */ | |
5450 | bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub); | |
5451 | bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + 4); | |
5452 | bfd_put_32 (output_bfd, STUB_JALR, stub + 8); | |
5453 | bfd_put_32 (output_bfd, STUB_LI16 (output_bfd) + h->dynindx, stub + 12); | |
5454 | ||
5455 | BFD_ASSERT (h->plt.offset <= s->_raw_size); | |
5456 | memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE); | |
5457 | ||
5458 | /* Mark the symbol as undefined. plt.offset != -1 occurs | |
5459 | only for the referenced symbol. */ | |
5460 | sym->st_shndx = SHN_UNDEF; | |
5461 | ||
5462 | /* The run-time linker uses the st_value field of the symbol | |
5463 | to reset the global offset table entry for this external | |
5464 | to its stub address when unlinking a shared object. */ | |
5465 | gval = s->output_section->vma + s->output_offset + h->plt.offset; | |
5466 | sym->st_value = gval; | |
5467 | } | |
5468 | ||
5469 | BFD_ASSERT (h->dynindx != -1 | |
5470 | || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0); | |
5471 | ||
5472 | sgot = mips_elf_got_section (dynobj); | |
5473 | BFD_ASSERT (sgot != NULL); | |
5474 | BFD_ASSERT (elf_section_data (sgot) != NULL); | |
5475 | g = (struct mips_got_info *) elf_section_data (sgot)->tdata; | |
5476 | BFD_ASSERT (g != NULL); | |
5477 | ||
5478 | /* Run through the global symbol table, creating GOT entries for all | |
5479 | the symbols that need them. */ | |
5480 | if (g->global_gotsym != NULL | |
5481 | && h->dynindx >= g->global_gotsym->dynindx) | |
5482 | { | |
5483 | bfd_vma offset; | |
5484 | bfd_vma value; | |
5485 | ||
5486 | if (sym->st_value) | |
5487 | value = sym->st_value; | |
5488 | else | |
5489 | { | |
5490 | /* For an entity defined in a shared object, this will be | |
5491 | NULL. (For functions in shared objects for | |
5492 | which we have created stubs, ST_VALUE will be non-NULL. | |
5493 | That's because such the functions are now no longer defined | |
5494 | in a shared object.) */ | |
5495 | ||
5496 | if (info->shared && h->root.type == bfd_link_hash_undefined) | |
5497 | value = 0; | |
5498 | else | |
5499 | value = h->root.u.def.value; | |
5500 | } | |
5501 | offset = mips_elf_global_got_index (dynobj, h); | |
5502 | MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset); | |
5503 | } | |
5504 | ||
5505 | /* Create a .msym entry, if appropriate. */ | |
5506 | smsym = bfd_get_section_by_name (dynobj, ".msym"); | |
5507 | if (smsym) | |
5508 | { | |
5509 | Elf32_Internal_Msym msym; | |
5510 | ||
5511 | msym.ms_hash_value = bfd_elf_hash (h->root.root.string); | |
5512 | /* It is undocumented what the `1' indicates, but IRIX6 uses | |
5513 | this value. */ | |
5514 | msym.ms_info = ELF32_MS_INFO (mh->min_dyn_reloc_index, 1); | |
5515 | bfd_mips_elf_swap_msym_out | |
5516 | (dynobj, &msym, | |
5517 | ((Elf32_External_Msym *) smsym->contents) + h->dynindx); | |
5518 | } | |
5519 | ||
5520 | /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */ | |
5521 | name = h->root.root.string; | |
5522 | if (strcmp (name, "_DYNAMIC") == 0 | |
5523 | || strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0) | |
5524 | sym->st_shndx = SHN_ABS; | |
5525 | else if (strcmp (name, "_DYNAMIC_LINK") == 0 | |
5526 | || strcmp (name, "_DYNAMIC_LINKING") == 0) | |
5527 | { | |
5528 | sym->st_shndx = SHN_ABS; | |
5529 | sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); | |
5530 | sym->st_value = 1; | |
5531 | } | |
4a14403c | 5532 | else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd)) |
b49e97c9 TS |
5533 | { |
5534 | sym->st_shndx = SHN_ABS; | |
5535 | sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); | |
5536 | sym->st_value = elf_gp (output_bfd); | |
5537 | } | |
5538 | else if (SGI_COMPAT (output_bfd)) | |
5539 | { | |
5540 | if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0 | |
5541 | || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0) | |
5542 | { | |
5543 | sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); | |
5544 | sym->st_other = STO_PROTECTED; | |
5545 | sym->st_value = 0; | |
5546 | sym->st_shndx = SHN_MIPS_DATA; | |
5547 | } | |
5548 | else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0) | |
5549 | { | |
5550 | sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); | |
5551 | sym->st_other = STO_PROTECTED; | |
5552 | sym->st_value = mips_elf_hash_table (info)->procedure_count; | |
5553 | sym->st_shndx = SHN_ABS; | |
5554 | } | |
5555 | else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS) | |
5556 | { | |
5557 | if (h->type == STT_FUNC) | |
5558 | sym->st_shndx = SHN_MIPS_TEXT; | |
5559 | else if (h->type == STT_OBJECT) | |
5560 | sym->st_shndx = SHN_MIPS_DATA; | |
5561 | } | |
5562 | } | |
5563 | ||
5564 | /* Handle the IRIX6-specific symbols. */ | |
5565 | if (IRIX_COMPAT (output_bfd) == ict_irix6) | |
5566 | mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym); | |
5567 | ||
5568 | if (! info->shared) | |
5569 | { | |
5570 | if (! mips_elf_hash_table (info)->use_rld_obj_head | |
5571 | && (strcmp (name, "__rld_map") == 0 | |
5572 | || strcmp (name, "__RLD_MAP") == 0)) | |
5573 | { | |
5574 | asection *s = bfd_get_section_by_name (dynobj, ".rld_map"); | |
5575 | BFD_ASSERT (s != NULL); | |
5576 | sym->st_value = s->output_section->vma + s->output_offset; | |
5577 | bfd_put_32 (output_bfd, (bfd_vma) 0, s->contents); | |
5578 | if (mips_elf_hash_table (info)->rld_value == 0) | |
5579 | mips_elf_hash_table (info)->rld_value = sym->st_value; | |
5580 | } | |
5581 | else if (mips_elf_hash_table (info)->use_rld_obj_head | |
5582 | && strcmp (name, "__rld_obj_head") == 0) | |
5583 | { | |
5584 | /* IRIX6 does not use a .rld_map section. */ | |
5585 | if (IRIX_COMPAT (output_bfd) == ict_irix5 | |
5586 | || IRIX_COMPAT (output_bfd) == ict_none) | |
5587 | BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map") | |
5588 | != NULL); | |
5589 | mips_elf_hash_table (info)->rld_value = sym->st_value; | |
5590 | } | |
5591 | } | |
5592 | ||
5593 | /* If this is a mips16 symbol, force the value to be even. */ | |
5594 | if (sym->st_other == STO_MIPS16 | |
5595 | && (sym->st_value & 1) != 0) | |
5596 | --sym->st_value; | |
5597 | ||
5598 | return true; | |
5599 | } | |
5600 | ||
5601 | /* Finish up the dynamic sections. */ | |
5602 | ||
5603 | boolean | |
5604 | _bfd_mips_elf_finish_dynamic_sections (output_bfd, info) | |
5605 | bfd *output_bfd; | |
5606 | struct bfd_link_info *info; | |
5607 | { | |
5608 | bfd *dynobj; | |
5609 | asection *sdyn; | |
5610 | asection *sgot; | |
5611 | struct mips_got_info *g; | |
5612 | ||
5613 | dynobj = elf_hash_table (info)->dynobj; | |
5614 | ||
5615 | sdyn = bfd_get_section_by_name (dynobj, ".dynamic"); | |
5616 | ||
5617 | sgot = bfd_get_section_by_name (dynobj, ".got"); | |
5618 | if (sgot == NULL) | |
5619 | g = NULL; | |
5620 | else | |
5621 | { | |
5622 | BFD_ASSERT (elf_section_data (sgot) != NULL); | |
5623 | g = (struct mips_got_info *) elf_section_data (sgot)->tdata; | |
5624 | BFD_ASSERT (g != NULL); | |
5625 | } | |
5626 | ||
5627 | if (elf_hash_table (info)->dynamic_sections_created) | |
5628 | { | |
5629 | bfd_byte *b; | |
5630 | ||
5631 | BFD_ASSERT (sdyn != NULL); | |
5632 | BFD_ASSERT (g != NULL); | |
5633 | ||
5634 | for (b = sdyn->contents; | |
5635 | b < sdyn->contents + sdyn->_raw_size; | |
5636 | b += MIPS_ELF_DYN_SIZE (dynobj)) | |
5637 | { | |
5638 | Elf_Internal_Dyn dyn; | |
5639 | const char *name; | |
5640 | size_t elemsize; | |
5641 | asection *s; | |
5642 | boolean swap_out_p; | |
5643 | ||
5644 | /* Read in the current dynamic entry. */ | |
5645 | (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn); | |
5646 | ||
5647 | /* Assume that we're going to modify it and write it out. */ | |
5648 | swap_out_p = true; | |
5649 | ||
5650 | switch (dyn.d_tag) | |
5651 | { | |
5652 | case DT_RELENT: | |
5653 | s = (bfd_get_section_by_name (dynobj, ".rel.dyn")); | |
5654 | BFD_ASSERT (s != NULL); | |
5655 | dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj); | |
5656 | break; | |
5657 | ||
5658 | case DT_STRSZ: | |
5659 | /* Rewrite DT_STRSZ. */ | |
5660 | dyn.d_un.d_val = | |
5661 | _bfd_elf_strtab_size (elf_hash_table (info)->dynstr); | |
5662 | break; | |
5663 | ||
5664 | case DT_PLTGOT: | |
5665 | name = ".got"; | |
5666 | goto get_vma; | |
5667 | case DT_MIPS_CONFLICT: | |
5668 | name = ".conflict"; | |
5669 | goto get_vma; | |
5670 | case DT_MIPS_LIBLIST: | |
5671 | name = ".liblist"; | |
5672 | get_vma: | |
5673 | s = bfd_get_section_by_name (output_bfd, name); | |
5674 | BFD_ASSERT (s != NULL); | |
5675 | dyn.d_un.d_ptr = s->vma; | |
5676 | break; | |
5677 | ||
5678 | case DT_MIPS_RLD_VERSION: | |
5679 | dyn.d_un.d_val = 1; /* XXX */ | |
5680 | break; | |
5681 | ||
5682 | case DT_MIPS_FLAGS: | |
5683 | dyn.d_un.d_val = RHF_NOTPOT; /* XXX */ | |
5684 | break; | |
5685 | ||
5686 | case DT_MIPS_CONFLICTNO: | |
5687 | name = ".conflict"; | |
5688 | elemsize = sizeof (Elf32_Conflict); | |
5689 | goto set_elemno; | |
5690 | ||
5691 | case DT_MIPS_LIBLISTNO: | |
5692 | name = ".liblist"; | |
5693 | elemsize = sizeof (Elf32_Lib); | |
5694 | set_elemno: | |
5695 | s = bfd_get_section_by_name (output_bfd, name); | |
5696 | if (s != NULL) | |
5697 | { | |
5698 | if (s->_cooked_size != 0) | |
5699 | dyn.d_un.d_val = s->_cooked_size / elemsize; | |
5700 | else | |
5701 | dyn.d_un.d_val = s->_raw_size / elemsize; | |
5702 | } | |
5703 | else | |
5704 | dyn.d_un.d_val = 0; | |
5705 | break; | |
5706 | ||
5707 | case DT_MIPS_TIME_STAMP: | |
5708 | time ((time_t *) &dyn.d_un.d_val); | |
5709 | break; | |
5710 | ||
5711 | case DT_MIPS_ICHECKSUM: | |
5712 | /* XXX FIXME: */ | |
5713 | swap_out_p = false; | |
5714 | break; | |
5715 | ||
5716 | case DT_MIPS_IVERSION: | |
5717 | /* XXX FIXME: */ | |
5718 | swap_out_p = false; | |
5719 | break; | |
5720 | ||
5721 | case DT_MIPS_BASE_ADDRESS: | |
5722 | s = output_bfd->sections; | |
5723 | BFD_ASSERT (s != NULL); | |
5724 | dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff; | |
5725 | break; | |
5726 | ||
5727 | case DT_MIPS_LOCAL_GOTNO: | |
5728 | dyn.d_un.d_val = g->local_gotno; | |
5729 | break; | |
5730 | ||
5731 | case DT_MIPS_UNREFEXTNO: | |
5732 | /* The index into the dynamic symbol table which is the | |
5733 | entry of the first external symbol that is not | |
5734 | referenced within the same object. */ | |
5735 | dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1; | |
5736 | break; | |
5737 | ||
5738 | case DT_MIPS_GOTSYM: | |
5739 | if (g->global_gotsym) | |
5740 | { | |
5741 | dyn.d_un.d_val = g->global_gotsym->dynindx; | |
5742 | break; | |
5743 | } | |
5744 | /* In case if we don't have global got symbols we default | |
5745 | to setting DT_MIPS_GOTSYM to the same value as | |
5746 | DT_MIPS_SYMTABNO, so we just fall through. */ | |
5747 | ||
5748 | case DT_MIPS_SYMTABNO: | |
5749 | name = ".dynsym"; | |
5750 | elemsize = MIPS_ELF_SYM_SIZE (output_bfd); | |
5751 | s = bfd_get_section_by_name (output_bfd, name); | |
5752 | BFD_ASSERT (s != NULL); | |
5753 | ||
5754 | if (s->_cooked_size != 0) | |
5755 | dyn.d_un.d_val = s->_cooked_size / elemsize; | |
5756 | else | |
5757 | dyn.d_un.d_val = s->_raw_size / elemsize; | |
5758 | break; | |
5759 | ||
5760 | case DT_MIPS_HIPAGENO: | |
5761 | dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO; | |
5762 | break; | |
5763 | ||
5764 | case DT_MIPS_RLD_MAP: | |
5765 | dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value; | |
5766 | break; | |
5767 | ||
5768 | case DT_MIPS_OPTIONS: | |
5769 | s = (bfd_get_section_by_name | |
5770 | (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd))); | |
5771 | dyn.d_un.d_ptr = s->vma; | |
5772 | break; | |
5773 | ||
5774 | case DT_MIPS_MSYM: | |
5775 | s = (bfd_get_section_by_name (output_bfd, ".msym")); | |
5776 | dyn.d_un.d_ptr = s->vma; | |
5777 | break; | |
5778 | ||
5779 | default: | |
5780 | swap_out_p = false; | |
5781 | break; | |
5782 | } | |
5783 | ||
5784 | if (swap_out_p) | |
5785 | (*get_elf_backend_data (dynobj)->s->swap_dyn_out) | |
5786 | (dynobj, &dyn, b); | |
5787 | } | |
5788 | } | |
5789 | ||
5790 | /* The first entry of the global offset table will be filled at | |
5791 | runtime. The second entry will be used by some runtime loaders. | |
8dc1a139 | 5792 | This isn't the case of IRIX rld. */ |
b49e97c9 TS |
5793 | if (sgot != NULL && sgot->_raw_size > 0) |
5794 | { | |
5795 | MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents); | |
5796 | MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000, | |
5797 | sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd)); | |
5798 | } | |
5799 | ||
5800 | if (sgot != NULL) | |
5801 | elf_section_data (sgot->output_section)->this_hdr.sh_entsize | |
5802 | = MIPS_ELF_GOT_SIZE (output_bfd); | |
5803 | ||
5804 | { | |
5805 | asection *smsym; | |
5806 | asection *s; | |
5807 | Elf32_compact_rel cpt; | |
5808 | ||
5809 | /* ??? The section symbols for the output sections were set up in | |
5810 | _bfd_elf_final_link. SGI sets the STT_NOTYPE attribute for these | |
5811 | symbols. Should we do so? */ | |
5812 | ||
5813 | smsym = bfd_get_section_by_name (dynobj, ".msym"); | |
5814 | if (smsym != NULL) | |
5815 | { | |
5816 | Elf32_Internal_Msym msym; | |
5817 | ||
5818 | msym.ms_hash_value = 0; | |
5819 | msym.ms_info = ELF32_MS_INFO (0, 1); | |
5820 | ||
5821 | for (s = output_bfd->sections; s != NULL; s = s->next) | |
5822 | { | |
5823 | long dynindx = elf_section_data (s)->dynindx; | |
5824 | ||
5825 | bfd_mips_elf_swap_msym_out | |
5826 | (output_bfd, &msym, | |
5827 | (((Elf32_External_Msym *) smsym->contents) | |
5828 | + dynindx)); | |
5829 | } | |
5830 | } | |
5831 | ||
5832 | if (SGI_COMPAT (output_bfd)) | |
5833 | { | |
5834 | /* Write .compact_rel section out. */ | |
5835 | s = bfd_get_section_by_name (dynobj, ".compact_rel"); | |
5836 | if (s != NULL) | |
5837 | { | |
5838 | cpt.id1 = 1; | |
5839 | cpt.num = s->reloc_count; | |
5840 | cpt.id2 = 2; | |
5841 | cpt.offset = (s->output_section->filepos | |
5842 | + sizeof (Elf32_External_compact_rel)); | |
5843 | cpt.reserved0 = 0; | |
5844 | cpt.reserved1 = 0; | |
5845 | bfd_elf32_swap_compact_rel_out (output_bfd, &cpt, | |
5846 | ((Elf32_External_compact_rel *) | |
5847 | s->contents)); | |
5848 | ||
5849 | /* Clean up a dummy stub function entry in .text. */ | |
5850 | s = bfd_get_section_by_name (dynobj, | |
5851 | MIPS_ELF_STUB_SECTION_NAME (dynobj)); | |
5852 | if (s != NULL) | |
5853 | { | |
5854 | file_ptr dummy_offset; | |
5855 | ||
5856 | BFD_ASSERT (s->_raw_size >= MIPS_FUNCTION_STUB_SIZE); | |
5857 | dummy_offset = s->_raw_size - MIPS_FUNCTION_STUB_SIZE; | |
5858 | memset (s->contents + dummy_offset, 0, | |
5859 | MIPS_FUNCTION_STUB_SIZE); | |
5860 | } | |
5861 | } | |
5862 | } | |
5863 | ||
5864 | /* We need to sort the entries of the dynamic relocation section. */ | |
5865 | ||
5866 | if (!ABI_64_P (output_bfd)) | |
5867 | { | |
5868 | asection *reldyn; | |
5869 | ||
5870 | reldyn = bfd_get_section_by_name (dynobj, ".rel.dyn"); | |
5871 | if (reldyn != NULL && reldyn->reloc_count > 2) | |
5872 | { | |
5873 | reldyn_sorting_bfd = output_bfd; | |
5874 | qsort ((Elf32_External_Rel *) reldyn->contents + 1, | |
5875 | (size_t) reldyn->reloc_count - 1, | |
5876 | sizeof (Elf32_External_Rel), sort_dynamic_relocs); | |
5877 | } | |
5878 | } | |
5879 | ||
5880 | /* Clean up a first relocation in .rel.dyn. */ | |
5881 | s = bfd_get_section_by_name (dynobj, ".rel.dyn"); | |
5882 | if (s != NULL && s->_raw_size > 0) | |
5883 | memset (s->contents, 0, MIPS_ELF_REL_SIZE (dynobj)); | |
5884 | } | |
5885 | ||
5886 | return true; | |
5887 | } | |
5888 | ||
5889 | /* The final processing done just before writing out a MIPS ELF object | |
5890 | file. This gets the MIPS architecture right based on the machine | |
5891 | number. This is used by both the 32-bit and the 64-bit ABI. */ | |
5892 | ||
5893 | void | |
5894 | _bfd_mips_elf_final_write_processing (abfd, linker) | |
5895 | bfd *abfd; | |
5896 | boolean linker ATTRIBUTE_UNUSED; | |
5897 | { | |
5898 | unsigned long val; | |
5899 | unsigned int i; | |
5900 | Elf_Internal_Shdr **hdrpp; | |
5901 | const char *name; | |
5902 | asection *sec; | |
5903 | ||
5904 | switch (bfd_get_mach (abfd)) | |
5905 | { | |
5906 | default: | |
5907 | case bfd_mach_mips3000: | |
5908 | val = E_MIPS_ARCH_1; | |
5909 | break; | |
5910 | ||
5911 | case bfd_mach_mips3900: | |
5912 | val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900; | |
5913 | break; | |
5914 | ||
5915 | case bfd_mach_mips6000: | |
5916 | val = E_MIPS_ARCH_2; | |
5917 | break; | |
5918 | ||
5919 | case bfd_mach_mips4000: | |
5920 | case bfd_mach_mips4300: | |
5921 | case bfd_mach_mips4400: | |
5922 | case bfd_mach_mips4600: | |
5923 | val = E_MIPS_ARCH_3; | |
5924 | break; | |
5925 | ||
5926 | case bfd_mach_mips4010: | |
5927 | val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010; | |
5928 | break; | |
5929 | ||
5930 | case bfd_mach_mips4100: | |
5931 | val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100; | |
5932 | break; | |
5933 | ||
5934 | case bfd_mach_mips4111: | |
5935 | val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111; | |
5936 | break; | |
5937 | ||
5938 | case bfd_mach_mips4650: | |
5939 | val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650; | |
5940 | break; | |
5941 | ||
5942 | case bfd_mach_mips5000: | |
5943 | case bfd_mach_mips8000: | |
5944 | case bfd_mach_mips10000: | |
5945 | case bfd_mach_mips12000: | |
5946 | val = E_MIPS_ARCH_4; | |
5947 | break; | |
5948 | ||
5949 | case bfd_mach_mips5: | |
5950 | val = E_MIPS_ARCH_5; | |
5951 | break; | |
5952 | ||
5953 | case bfd_mach_mips_sb1: | |
5954 | val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1; | |
5955 | break; | |
5956 | ||
5957 | case bfd_mach_mipsisa32: | |
5958 | val = E_MIPS_ARCH_32; | |
5959 | break; | |
5960 | ||
5961 | case bfd_mach_mipsisa64: | |
5962 | val = E_MIPS_ARCH_64; | |
5963 | } | |
5964 | ||
5965 | elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH); | |
5966 | elf_elfheader (abfd)->e_flags |= val; | |
5967 | ||
5968 | /* Set the sh_info field for .gptab sections and other appropriate | |
5969 | info for each special section. */ | |
5970 | for (i = 1, hdrpp = elf_elfsections (abfd) + 1; | |
5971 | i < elf_numsections (abfd); | |
5972 | i++, hdrpp++) | |
5973 | { | |
5974 | switch ((*hdrpp)->sh_type) | |
5975 | { | |
5976 | case SHT_MIPS_MSYM: | |
5977 | case SHT_MIPS_LIBLIST: | |
5978 | sec = bfd_get_section_by_name (abfd, ".dynstr"); | |
5979 | if (sec != NULL) | |
5980 | (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; | |
5981 | break; | |
5982 | ||
5983 | case SHT_MIPS_GPTAB: | |
5984 | BFD_ASSERT ((*hdrpp)->bfd_section != NULL); | |
5985 | name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section); | |
5986 | BFD_ASSERT (name != NULL | |
5987 | && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0); | |
5988 | sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1); | |
5989 | BFD_ASSERT (sec != NULL); | |
5990 | (*hdrpp)->sh_info = elf_section_data (sec)->this_idx; | |
5991 | break; | |
5992 | ||
5993 | case SHT_MIPS_CONTENT: | |
5994 | BFD_ASSERT ((*hdrpp)->bfd_section != NULL); | |
5995 | name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section); | |
5996 | BFD_ASSERT (name != NULL | |
5997 | && strncmp (name, ".MIPS.content", | |
5998 | sizeof ".MIPS.content" - 1) == 0); | |
5999 | sec = bfd_get_section_by_name (abfd, | |
6000 | name + sizeof ".MIPS.content" - 1); | |
6001 | BFD_ASSERT (sec != NULL); | |
6002 | (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; | |
6003 | break; | |
6004 | ||
6005 | case SHT_MIPS_SYMBOL_LIB: | |
6006 | sec = bfd_get_section_by_name (abfd, ".dynsym"); | |
6007 | if (sec != NULL) | |
6008 | (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; | |
6009 | sec = bfd_get_section_by_name (abfd, ".liblist"); | |
6010 | if (sec != NULL) | |
6011 | (*hdrpp)->sh_info = elf_section_data (sec)->this_idx; | |
6012 | break; | |
6013 | ||
6014 | case SHT_MIPS_EVENTS: | |
6015 | BFD_ASSERT ((*hdrpp)->bfd_section != NULL); | |
6016 | name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section); | |
6017 | BFD_ASSERT (name != NULL); | |
6018 | if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0) | |
6019 | sec = bfd_get_section_by_name (abfd, | |
6020 | name + sizeof ".MIPS.events" - 1); | |
6021 | else | |
6022 | { | |
6023 | BFD_ASSERT (strncmp (name, ".MIPS.post_rel", | |
6024 | sizeof ".MIPS.post_rel" - 1) == 0); | |
6025 | sec = bfd_get_section_by_name (abfd, | |
6026 | (name | |
6027 | + sizeof ".MIPS.post_rel" - 1)); | |
6028 | } | |
6029 | BFD_ASSERT (sec != NULL); | |
6030 | (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; | |
6031 | break; | |
6032 | ||
6033 | } | |
6034 | } | |
6035 | } | |
6036 | \f | |
8dc1a139 | 6037 | /* When creating an IRIX5 executable, we need REGINFO and RTPROC |
b49e97c9 TS |
6038 | segments. */ |
6039 | ||
6040 | int | |
6041 | _bfd_mips_elf_additional_program_headers (abfd) | |
6042 | bfd *abfd; | |
6043 | { | |
6044 | asection *s; | |
6045 | int ret = 0; | |
6046 | ||
6047 | /* See if we need a PT_MIPS_REGINFO segment. */ | |
6048 | s = bfd_get_section_by_name (abfd, ".reginfo"); | |
6049 | if (s && (s->flags & SEC_LOAD)) | |
6050 | ++ret; | |
6051 | ||
6052 | /* See if we need a PT_MIPS_OPTIONS segment. */ | |
6053 | if (IRIX_COMPAT (abfd) == ict_irix6 | |
6054 | && bfd_get_section_by_name (abfd, | |
6055 | MIPS_ELF_OPTIONS_SECTION_NAME (abfd))) | |
6056 | ++ret; | |
6057 | ||
6058 | /* See if we need a PT_MIPS_RTPROC segment. */ | |
6059 | if (IRIX_COMPAT (abfd) == ict_irix5 | |
6060 | && bfd_get_section_by_name (abfd, ".dynamic") | |
6061 | && bfd_get_section_by_name (abfd, ".mdebug")) | |
6062 | ++ret; | |
6063 | ||
6064 | return ret; | |
6065 | } | |
6066 | ||
8dc1a139 | 6067 | /* Modify the segment map for an IRIX5 executable. */ |
b49e97c9 TS |
6068 | |
6069 | boolean | |
6070 | _bfd_mips_elf_modify_segment_map (abfd) | |
6071 | bfd *abfd; | |
6072 | { | |
6073 | asection *s; | |
6074 | struct elf_segment_map *m, **pm; | |
6075 | bfd_size_type amt; | |
6076 | ||
6077 | /* If there is a .reginfo section, we need a PT_MIPS_REGINFO | |
6078 | segment. */ | |
6079 | s = bfd_get_section_by_name (abfd, ".reginfo"); | |
6080 | if (s != NULL && (s->flags & SEC_LOAD) != 0) | |
6081 | { | |
6082 | for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next) | |
6083 | if (m->p_type == PT_MIPS_REGINFO) | |
6084 | break; | |
6085 | if (m == NULL) | |
6086 | { | |
6087 | amt = sizeof *m; | |
6088 | m = (struct elf_segment_map *) bfd_zalloc (abfd, amt); | |
6089 | if (m == NULL) | |
6090 | return false; | |
6091 | ||
6092 | m->p_type = PT_MIPS_REGINFO; | |
6093 | m->count = 1; | |
6094 | m->sections[0] = s; | |
6095 | ||
6096 | /* We want to put it after the PHDR and INTERP segments. */ | |
6097 | pm = &elf_tdata (abfd)->segment_map; | |
6098 | while (*pm != NULL | |
6099 | && ((*pm)->p_type == PT_PHDR | |
6100 | || (*pm)->p_type == PT_INTERP)) | |
6101 | pm = &(*pm)->next; | |
6102 | ||
6103 | m->next = *pm; | |
6104 | *pm = m; | |
6105 | } | |
6106 | } | |
6107 | ||
6108 | /* For IRIX 6, we don't have .mdebug sections, nor does anything but | |
6109 | .dynamic end up in PT_DYNAMIC. However, we do have to insert a | |
44c410de | 6110 | PT_OPTIONS segment immediately following the program header |
b49e97c9 | 6111 | table. */ |
44c410de | 6112 | if (NEWABI_P (abfd)) |
b49e97c9 TS |
6113 | { |
6114 | for (s = abfd->sections; s; s = s->next) | |
6115 | if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS) | |
6116 | break; | |
6117 | ||
6118 | if (s) | |
6119 | { | |
6120 | struct elf_segment_map *options_segment; | |
6121 | ||
6122 | /* Usually, there's a program header table. But, sometimes | |
6123 | there's not (like when running the `ld' testsuite). So, | |
6124 | if there's no program header table, we just put the | |
44c410de | 6125 | options segment at the end. */ |
b49e97c9 TS |
6126 | for (pm = &elf_tdata (abfd)->segment_map; |
6127 | *pm != NULL; | |
6128 | pm = &(*pm)->next) | |
6129 | if ((*pm)->p_type == PT_PHDR) | |
6130 | break; | |
6131 | ||
6132 | amt = sizeof (struct elf_segment_map); | |
6133 | options_segment = bfd_zalloc (abfd, amt); | |
6134 | options_segment->next = *pm; | |
6135 | options_segment->p_type = PT_MIPS_OPTIONS; | |
6136 | options_segment->p_flags = PF_R; | |
6137 | options_segment->p_flags_valid = true; | |
6138 | options_segment->count = 1; | |
6139 | options_segment->sections[0] = s; | |
6140 | *pm = options_segment; | |
6141 | } | |
6142 | } | |
6143 | else | |
6144 | { | |
6145 | if (IRIX_COMPAT (abfd) == ict_irix5) | |
6146 | { | |
6147 | /* If there are .dynamic and .mdebug sections, we make a room | |
6148 | for the RTPROC header. FIXME: Rewrite without section names. */ | |
6149 | if (bfd_get_section_by_name (abfd, ".interp") == NULL | |
6150 | && bfd_get_section_by_name (abfd, ".dynamic") != NULL | |
6151 | && bfd_get_section_by_name (abfd, ".mdebug") != NULL) | |
6152 | { | |
6153 | for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next) | |
6154 | if (m->p_type == PT_MIPS_RTPROC) | |
6155 | break; | |
6156 | if (m == NULL) | |
6157 | { | |
6158 | amt = sizeof *m; | |
6159 | m = (struct elf_segment_map *) bfd_zalloc (abfd, amt); | |
6160 | if (m == NULL) | |
6161 | return false; | |
6162 | ||
6163 | m->p_type = PT_MIPS_RTPROC; | |
6164 | ||
6165 | s = bfd_get_section_by_name (abfd, ".rtproc"); | |
6166 | if (s == NULL) | |
6167 | { | |
6168 | m->count = 0; | |
6169 | m->p_flags = 0; | |
6170 | m->p_flags_valid = 1; | |
6171 | } | |
6172 | else | |
6173 | { | |
6174 | m->count = 1; | |
6175 | m->sections[0] = s; | |
6176 | } | |
6177 | ||
6178 | /* We want to put it after the DYNAMIC segment. */ | |
6179 | pm = &elf_tdata (abfd)->segment_map; | |
6180 | while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC) | |
6181 | pm = &(*pm)->next; | |
6182 | if (*pm != NULL) | |
6183 | pm = &(*pm)->next; | |
6184 | ||
6185 | m->next = *pm; | |
6186 | *pm = m; | |
6187 | } | |
6188 | } | |
6189 | } | |
8dc1a139 | 6190 | /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic, |
b49e97c9 TS |
6191 | .dynstr, .dynsym, and .hash sections, and everything in |
6192 | between. */ | |
6193 | for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; | |
6194 | pm = &(*pm)->next) | |
6195 | if ((*pm)->p_type == PT_DYNAMIC) | |
6196 | break; | |
6197 | m = *pm; | |
6198 | if (m != NULL && IRIX_COMPAT (abfd) == ict_none) | |
6199 | { | |
6200 | /* For a normal mips executable the permissions for the PT_DYNAMIC | |
6201 | segment are read, write and execute. We do that here since | |
6202 | the code in elf.c sets only the read permission. This matters | |
6203 | sometimes for the dynamic linker. */ | |
6204 | if (bfd_get_section_by_name (abfd, ".dynamic") != NULL) | |
6205 | { | |
6206 | m->p_flags = PF_R | PF_W | PF_X; | |
6207 | m->p_flags_valid = 1; | |
6208 | } | |
6209 | } | |
6210 | if (m != NULL | |
6211 | && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0) | |
6212 | { | |
6213 | static const char *sec_names[] = | |
6214 | { | |
6215 | ".dynamic", ".dynstr", ".dynsym", ".hash" | |
6216 | }; | |
6217 | bfd_vma low, high; | |
6218 | unsigned int i, c; | |
6219 | struct elf_segment_map *n; | |
6220 | ||
6221 | low = 0xffffffff; | |
6222 | high = 0; | |
6223 | for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++) | |
6224 | { | |
6225 | s = bfd_get_section_by_name (abfd, sec_names[i]); | |
6226 | if (s != NULL && (s->flags & SEC_LOAD) != 0) | |
6227 | { | |
6228 | bfd_size_type sz; | |
6229 | ||
6230 | if (low > s->vma) | |
6231 | low = s->vma; | |
6232 | sz = s->_cooked_size; | |
6233 | if (sz == 0) | |
6234 | sz = s->_raw_size; | |
6235 | if (high < s->vma + sz) | |
6236 | high = s->vma + sz; | |
6237 | } | |
6238 | } | |
6239 | ||
6240 | c = 0; | |
6241 | for (s = abfd->sections; s != NULL; s = s->next) | |
6242 | if ((s->flags & SEC_LOAD) != 0 | |
6243 | && s->vma >= low | |
6244 | && ((s->vma | |
6245 | + (s->_cooked_size != | |
6246 | 0 ? s->_cooked_size : s->_raw_size)) <= high)) | |
6247 | ++c; | |
6248 | ||
6249 | amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *); | |
6250 | n = (struct elf_segment_map *) bfd_zalloc (abfd, amt); | |
6251 | if (n == NULL) | |
6252 | return false; | |
6253 | *n = *m; | |
6254 | n->count = c; | |
6255 | ||
6256 | i = 0; | |
6257 | for (s = abfd->sections; s != NULL; s = s->next) | |
6258 | { | |
6259 | if ((s->flags & SEC_LOAD) != 0 | |
6260 | && s->vma >= low | |
6261 | && ((s->vma | |
6262 | + (s->_cooked_size != 0 ? | |
6263 | s->_cooked_size : s->_raw_size)) <= high)) | |
6264 | { | |
6265 | n->sections[i] = s; | |
6266 | ++i; | |
6267 | } | |
6268 | } | |
6269 | ||
6270 | *pm = n; | |
6271 | } | |
6272 | } | |
6273 | ||
6274 | return true; | |
6275 | } | |
6276 | \f | |
6277 | /* Return the section that should be marked against GC for a given | |
6278 | relocation. */ | |
6279 | ||
6280 | asection * | |
1e2f5b6e AM |
6281 | _bfd_mips_elf_gc_mark_hook (sec, info, rel, h, sym) |
6282 | asection *sec; | |
b49e97c9 TS |
6283 | struct bfd_link_info *info ATTRIBUTE_UNUSED; |
6284 | Elf_Internal_Rela *rel; | |
6285 | struct elf_link_hash_entry *h; | |
6286 | Elf_Internal_Sym *sym; | |
6287 | { | |
6288 | /* ??? Do mips16 stub sections need to be handled special? */ | |
6289 | ||
6290 | if (h != NULL) | |
6291 | { | |
1e2f5b6e | 6292 | switch (ELF_R_TYPE (sec->owner, rel->r_info)) |
b49e97c9 TS |
6293 | { |
6294 | case R_MIPS_GNU_VTINHERIT: | |
6295 | case R_MIPS_GNU_VTENTRY: | |
6296 | break; | |
6297 | ||
6298 | default: | |
6299 | switch (h->root.type) | |
6300 | { | |
6301 | case bfd_link_hash_defined: | |
6302 | case bfd_link_hash_defweak: | |
6303 | return h->root.u.def.section; | |
6304 | ||
6305 | case bfd_link_hash_common: | |
6306 | return h->root.u.c.p->section; | |
6307 | ||
6308 | default: | |
6309 | break; | |
6310 | } | |
6311 | } | |
6312 | } | |
6313 | else | |
1e2f5b6e | 6314 | return bfd_section_from_elf_index (sec->owner, sym->st_shndx); |
b49e97c9 TS |
6315 | |
6316 | return NULL; | |
6317 | } | |
6318 | ||
6319 | /* Update the got entry reference counts for the section being removed. */ | |
6320 | ||
6321 | boolean | |
6322 | _bfd_mips_elf_gc_sweep_hook (abfd, info, sec, relocs) | |
6323 | bfd *abfd ATTRIBUTE_UNUSED; | |
6324 | struct bfd_link_info *info ATTRIBUTE_UNUSED; | |
6325 | asection *sec ATTRIBUTE_UNUSED; | |
6326 | const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED; | |
6327 | { | |
6328 | #if 0 | |
6329 | Elf_Internal_Shdr *symtab_hdr; | |
6330 | struct elf_link_hash_entry **sym_hashes; | |
6331 | bfd_signed_vma *local_got_refcounts; | |
6332 | const Elf_Internal_Rela *rel, *relend; | |
6333 | unsigned long r_symndx; | |
6334 | struct elf_link_hash_entry *h; | |
6335 | ||
6336 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
6337 | sym_hashes = elf_sym_hashes (abfd); | |
6338 | local_got_refcounts = elf_local_got_refcounts (abfd); | |
6339 | ||
6340 | relend = relocs + sec->reloc_count; | |
6341 | for (rel = relocs; rel < relend; rel++) | |
6342 | switch (ELF_R_TYPE (abfd, rel->r_info)) | |
6343 | { | |
6344 | case R_MIPS_GOT16: | |
6345 | case R_MIPS_CALL16: | |
6346 | case R_MIPS_CALL_HI16: | |
6347 | case R_MIPS_CALL_LO16: | |
6348 | case R_MIPS_GOT_HI16: | |
6349 | case R_MIPS_GOT_LO16: | |
4a14403c TS |
6350 | case R_MIPS_GOT_DISP: |
6351 | case R_MIPS_GOT_PAGE: | |
6352 | case R_MIPS_GOT_OFST: | |
b49e97c9 TS |
6353 | /* ??? It would seem that the existing MIPS code does no sort |
6354 | of reference counting or whatnot on its GOT and PLT entries, | |
6355 | so it is not possible to garbage collect them at this time. */ | |
6356 | break; | |
6357 | ||
6358 | default: | |
6359 | break; | |
6360 | } | |
6361 | #endif | |
6362 | ||
6363 | return true; | |
6364 | } | |
6365 | \f | |
6366 | /* Copy data from a MIPS ELF indirect symbol to its direct symbol, | |
6367 | hiding the old indirect symbol. Process additional relocation | |
6368 | information. Also called for weakdefs, in which case we just let | |
6369 | _bfd_elf_link_hash_copy_indirect copy the flags for us. */ | |
6370 | ||
6371 | void | |
b48fa14c AM |
6372 | _bfd_mips_elf_copy_indirect_symbol (bed, dir, ind) |
6373 | struct elf_backend_data *bed; | |
b49e97c9 TS |
6374 | struct elf_link_hash_entry *dir, *ind; |
6375 | { | |
6376 | struct mips_elf_link_hash_entry *dirmips, *indmips; | |
6377 | ||
b48fa14c | 6378 | _bfd_elf_link_hash_copy_indirect (bed, dir, ind); |
b49e97c9 TS |
6379 | |
6380 | if (ind->root.type != bfd_link_hash_indirect) | |
6381 | return; | |
6382 | ||
6383 | dirmips = (struct mips_elf_link_hash_entry *) dir; | |
6384 | indmips = (struct mips_elf_link_hash_entry *) ind; | |
6385 | dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs; | |
6386 | if (indmips->readonly_reloc) | |
6387 | dirmips->readonly_reloc = true; | |
6388 | if (dirmips->min_dyn_reloc_index == 0 | |
6389 | || (indmips->min_dyn_reloc_index != 0 | |
6390 | && indmips->min_dyn_reloc_index < dirmips->min_dyn_reloc_index)) | |
6391 | dirmips->min_dyn_reloc_index = indmips->min_dyn_reloc_index; | |
6392 | if (indmips->no_fn_stub) | |
6393 | dirmips->no_fn_stub = true; | |
6394 | } | |
6395 | ||
6396 | void | |
6397 | _bfd_mips_elf_hide_symbol (info, entry, force_local) | |
6398 | struct bfd_link_info *info; | |
6399 | struct elf_link_hash_entry *entry; | |
6400 | boolean force_local; | |
6401 | { | |
6402 | bfd *dynobj; | |
6403 | asection *got; | |
6404 | struct mips_got_info *g; | |
6405 | struct mips_elf_link_hash_entry *h; | |
7c5fcef7 | 6406 | |
b49e97c9 | 6407 | h = (struct mips_elf_link_hash_entry *) entry; |
7c5fcef7 L |
6408 | if (h->forced_local) |
6409 | return; | |
6410 | h->forced_local = true; | |
6411 | ||
b49e97c9 TS |
6412 | dynobj = elf_hash_table (info)->dynobj; |
6413 | got = bfd_get_section_by_name (dynobj, ".got"); | |
6414 | g = (struct mips_got_info *) elf_section_data (got)->tdata; | |
6415 | ||
6416 | _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local); | |
6417 | ||
6418 | /* FIXME: Do we allocate too much GOT space here? */ | |
6419 | g->local_gotno++; | |
6420 | got->_raw_size += MIPS_ELF_GOT_SIZE (dynobj); | |
6421 | } | |
6422 | \f | |
d01414a5 TS |
6423 | #define PDR_SIZE 32 |
6424 | ||
6425 | boolean | |
6426 | _bfd_mips_elf_discard_info (abfd, cookie, info) | |
6427 | bfd *abfd; | |
6428 | struct elf_reloc_cookie *cookie; | |
6429 | struct bfd_link_info *info; | |
6430 | { | |
6431 | asection *o; | |
6432 | boolean ret = false; | |
6433 | unsigned char *tdata; | |
6434 | size_t i, skip; | |
6435 | ||
6436 | o = bfd_get_section_by_name (abfd, ".pdr"); | |
6437 | if (! o) | |
6438 | return false; | |
6439 | if (o->_raw_size == 0) | |
6440 | return false; | |
6441 | if (o->_raw_size % PDR_SIZE != 0) | |
6442 | return false; | |
6443 | if (o->output_section != NULL | |
6444 | && bfd_is_abs_section (o->output_section)) | |
6445 | return false; | |
6446 | ||
6447 | tdata = bfd_zmalloc (o->_raw_size / PDR_SIZE); | |
6448 | if (! tdata) | |
6449 | return false; | |
6450 | ||
6451 | cookie->rels = _bfd_elf32_link_read_relocs (abfd, o, (PTR) NULL, | |
6452 | (Elf_Internal_Rela *) NULL, | |
6453 | info->keep_memory); | |
6454 | if (!cookie->rels) | |
6455 | { | |
6456 | free (tdata); | |
6457 | return false; | |
6458 | } | |
6459 | ||
6460 | cookie->rel = cookie->rels; | |
6461 | cookie->relend = cookie->rels + o->reloc_count; | |
6462 | ||
6463 | for (i = 0, skip = 0; i < o->_raw_size; i ++) | |
6464 | { | |
6465 | if (_bfd_elf32_reloc_symbol_deleted_p (i * PDR_SIZE, cookie)) | |
6466 | { | |
6467 | tdata[i] = 1; | |
6468 | skip ++; | |
6469 | } | |
6470 | } | |
6471 | ||
6472 | if (skip != 0) | |
6473 | { | |
6474 | elf_section_data (o)->tdata = tdata; | |
6475 | o->_cooked_size = o->_raw_size - skip * PDR_SIZE; | |
6476 | ret = true; | |
6477 | } | |
6478 | else | |
6479 | free (tdata); | |
6480 | ||
6481 | if (! info->keep_memory) | |
6482 | free (cookie->rels); | |
6483 | ||
6484 | return ret; | |
6485 | } | |
6486 | ||
53bfd6b4 MR |
6487 | boolean |
6488 | _bfd_mips_elf_ignore_discarded_relocs (sec) | |
6489 | asection *sec; | |
6490 | { | |
6491 | if (strcmp (sec->name, ".pdr") == 0) | |
6492 | return true; | |
6493 | return false; | |
6494 | } | |
d01414a5 TS |
6495 | |
6496 | boolean | |
6497 | _bfd_mips_elf_write_section (output_bfd, sec, contents) | |
6498 | bfd *output_bfd; | |
6499 | asection *sec; | |
6500 | bfd_byte *contents; | |
6501 | { | |
6502 | bfd_byte *to, *from, *end; | |
6503 | int i; | |
6504 | ||
6505 | if (strcmp (sec->name, ".pdr") != 0) | |
6506 | return false; | |
6507 | ||
6508 | if (elf_section_data (sec)->tdata == NULL) | |
6509 | return false; | |
6510 | ||
6511 | to = contents; | |
6512 | end = contents + sec->_raw_size; | |
6513 | for (from = contents, i = 0; | |
6514 | from < end; | |
6515 | from += PDR_SIZE, i++) | |
6516 | { | |
6517 | if (((unsigned char *) elf_section_data (sec)->tdata)[i] == 1) | |
6518 | continue; | |
6519 | if (to != from) | |
6520 | memcpy (to, from, PDR_SIZE); | |
6521 | to += PDR_SIZE; | |
6522 | } | |
6523 | bfd_set_section_contents (output_bfd, sec->output_section, contents, | |
6524 | (file_ptr) sec->output_offset, | |
6525 | sec->_cooked_size); | |
6526 | return true; | |
6527 | } | |
53bfd6b4 | 6528 | \f |
b49e97c9 TS |
6529 | /* MIPS ELF uses a special find_nearest_line routine in order the |
6530 | handle the ECOFF debugging information. */ | |
6531 | ||
6532 | struct mips_elf_find_line | |
6533 | { | |
6534 | struct ecoff_debug_info d; | |
6535 | struct ecoff_find_line i; | |
6536 | }; | |
6537 | ||
6538 | boolean | |
6539 | _bfd_mips_elf_find_nearest_line (abfd, section, symbols, offset, filename_ptr, | |
6540 | functionname_ptr, line_ptr) | |
6541 | bfd *abfd; | |
6542 | asection *section; | |
6543 | asymbol **symbols; | |
6544 | bfd_vma offset; | |
6545 | const char **filename_ptr; | |
6546 | const char **functionname_ptr; | |
6547 | unsigned int *line_ptr; | |
6548 | { | |
6549 | asection *msec; | |
6550 | ||
6551 | if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset, | |
6552 | filename_ptr, functionname_ptr, | |
6553 | line_ptr)) | |
6554 | return true; | |
6555 | ||
6556 | if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset, | |
6557 | filename_ptr, functionname_ptr, | |
6558 | line_ptr, | |
6559 | (unsigned) (ABI_64_P (abfd) ? 8 : 0), | |
6560 | &elf_tdata (abfd)->dwarf2_find_line_info)) | |
6561 | return true; | |
6562 | ||
6563 | msec = bfd_get_section_by_name (abfd, ".mdebug"); | |
6564 | if (msec != NULL) | |
6565 | { | |
6566 | flagword origflags; | |
6567 | struct mips_elf_find_line *fi; | |
6568 | const struct ecoff_debug_swap * const swap = | |
6569 | get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; | |
6570 | ||
6571 | /* If we are called during a link, mips_elf_final_link may have | |
6572 | cleared the SEC_HAS_CONTENTS field. We force it back on here | |
6573 | if appropriate (which it normally will be). */ | |
6574 | origflags = msec->flags; | |
6575 | if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS) | |
6576 | msec->flags |= SEC_HAS_CONTENTS; | |
6577 | ||
6578 | fi = elf_tdata (abfd)->find_line_info; | |
6579 | if (fi == NULL) | |
6580 | { | |
6581 | bfd_size_type external_fdr_size; | |
6582 | char *fraw_src; | |
6583 | char *fraw_end; | |
6584 | struct fdr *fdr_ptr; | |
6585 | bfd_size_type amt = sizeof (struct mips_elf_find_line); | |
6586 | ||
6587 | fi = (struct mips_elf_find_line *) bfd_zalloc (abfd, amt); | |
6588 | if (fi == NULL) | |
6589 | { | |
6590 | msec->flags = origflags; | |
6591 | return false; | |
6592 | } | |
6593 | ||
6594 | if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d)) | |
6595 | { | |
6596 | msec->flags = origflags; | |
6597 | return false; | |
6598 | } | |
6599 | ||
6600 | /* Swap in the FDR information. */ | |
6601 | amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr); | |
6602 | fi->d.fdr = (struct fdr *) bfd_alloc (abfd, amt); | |
6603 | if (fi->d.fdr == NULL) | |
6604 | { | |
6605 | msec->flags = origflags; | |
6606 | return false; | |
6607 | } | |
6608 | external_fdr_size = swap->external_fdr_size; | |
6609 | fdr_ptr = fi->d.fdr; | |
6610 | fraw_src = (char *) fi->d.external_fdr; | |
6611 | fraw_end = (fraw_src | |
6612 | + fi->d.symbolic_header.ifdMax * external_fdr_size); | |
6613 | for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++) | |
6614 | (*swap->swap_fdr_in) (abfd, (PTR) fraw_src, fdr_ptr); | |
6615 | ||
6616 | elf_tdata (abfd)->find_line_info = fi; | |
6617 | ||
6618 | /* Note that we don't bother to ever free this information. | |
6619 | find_nearest_line is either called all the time, as in | |
6620 | objdump -l, so the information should be saved, or it is | |
6621 | rarely called, as in ld error messages, so the memory | |
6622 | wasted is unimportant. Still, it would probably be a | |
6623 | good idea for free_cached_info to throw it away. */ | |
6624 | } | |
6625 | ||
6626 | if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap, | |
6627 | &fi->i, filename_ptr, functionname_ptr, | |
6628 | line_ptr)) | |
6629 | { | |
6630 | msec->flags = origflags; | |
6631 | return true; | |
6632 | } | |
6633 | ||
6634 | msec->flags = origflags; | |
6635 | } | |
6636 | ||
6637 | /* Fall back on the generic ELF find_nearest_line routine. */ | |
6638 | ||
6639 | return _bfd_elf_find_nearest_line (abfd, section, symbols, offset, | |
6640 | filename_ptr, functionname_ptr, | |
6641 | line_ptr); | |
6642 | } | |
6643 | \f | |
6644 | /* When are writing out the .options or .MIPS.options section, | |
6645 | remember the bytes we are writing out, so that we can install the | |
6646 | GP value in the section_processing routine. */ | |
6647 | ||
6648 | boolean | |
6649 | _bfd_mips_elf_set_section_contents (abfd, section, location, offset, count) | |
6650 | bfd *abfd; | |
6651 | sec_ptr section; | |
6652 | PTR location; | |
6653 | file_ptr offset; | |
6654 | bfd_size_type count; | |
6655 | { | |
6656 | if (strcmp (section->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0) | |
6657 | { | |
6658 | bfd_byte *c; | |
6659 | ||
6660 | if (elf_section_data (section) == NULL) | |
6661 | { | |
6662 | bfd_size_type amt = sizeof (struct bfd_elf_section_data); | |
6663 | section->used_by_bfd = (PTR) bfd_zalloc (abfd, amt); | |
6664 | if (elf_section_data (section) == NULL) | |
6665 | return false; | |
6666 | } | |
6667 | c = (bfd_byte *) elf_section_data (section)->tdata; | |
6668 | if (c == NULL) | |
6669 | { | |
6670 | bfd_size_type size; | |
6671 | ||
6672 | if (section->_cooked_size != 0) | |
6673 | size = section->_cooked_size; | |
6674 | else | |
6675 | size = section->_raw_size; | |
6676 | c = (bfd_byte *) bfd_zalloc (abfd, size); | |
6677 | if (c == NULL) | |
6678 | return false; | |
6679 | elf_section_data (section)->tdata = (PTR) c; | |
6680 | } | |
6681 | ||
6682 | memcpy (c + offset, location, (size_t) count); | |
6683 | } | |
6684 | ||
6685 | return _bfd_elf_set_section_contents (abfd, section, location, offset, | |
6686 | count); | |
6687 | } | |
6688 | ||
6689 | /* This is almost identical to bfd_generic_get_... except that some | |
6690 | MIPS relocations need to be handled specially. Sigh. */ | |
6691 | ||
6692 | bfd_byte * | |
6693 | _bfd_elf_mips_get_relocated_section_contents (abfd, link_info, link_order, | |
6694 | data, relocateable, symbols) | |
6695 | bfd *abfd; | |
6696 | struct bfd_link_info *link_info; | |
6697 | struct bfd_link_order *link_order; | |
6698 | bfd_byte *data; | |
6699 | boolean relocateable; | |
6700 | asymbol **symbols; | |
6701 | { | |
6702 | /* Get enough memory to hold the stuff */ | |
6703 | bfd *input_bfd = link_order->u.indirect.section->owner; | |
6704 | asection *input_section = link_order->u.indirect.section; | |
6705 | ||
6706 | long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section); | |
6707 | arelent **reloc_vector = NULL; | |
6708 | long reloc_count; | |
6709 | ||
6710 | if (reloc_size < 0) | |
6711 | goto error_return; | |
6712 | ||
6713 | reloc_vector = (arelent **) bfd_malloc ((bfd_size_type) reloc_size); | |
6714 | if (reloc_vector == NULL && reloc_size != 0) | |
6715 | goto error_return; | |
6716 | ||
6717 | /* read in the section */ | |
6718 | if (!bfd_get_section_contents (input_bfd, | |
6719 | input_section, | |
6720 | (PTR) data, | |
6721 | (file_ptr) 0, | |
6722 | input_section->_raw_size)) | |
6723 | goto error_return; | |
6724 | ||
6725 | /* We're not relaxing the section, so just copy the size info */ | |
6726 | input_section->_cooked_size = input_section->_raw_size; | |
6727 | input_section->reloc_done = true; | |
6728 | ||
6729 | reloc_count = bfd_canonicalize_reloc (input_bfd, | |
6730 | input_section, | |
6731 | reloc_vector, | |
6732 | symbols); | |
6733 | if (reloc_count < 0) | |
6734 | goto error_return; | |
6735 | ||
6736 | if (reloc_count > 0) | |
6737 | { | |
6738 | arelent **parent; | |
6739 | /* for mips */ | |
6740 | int gp_found; | |
6741 | bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */ | |
6742 | ||
6743 | { | |
6744 | struct bfd_hash_entry *h; | |
6745 | struct bfd_link_hash_entry *lh; | |
6746 | /* Skip all this stuff if we aren't mixing formats. */ | |
6747 | if (abfd && input_bfd | |
6748 | && abfd->xvec == input_bfd->xvec) | |
6749 | lh = 0; | |
6750 | else | |
6751 | { | |
6752 | h = bfd_hash_lookup (&link_info->hash->table, "_gp", false, false); | |
6753 | lh = (struct bfd_link_hash_entry *) h; | |
6754 | } | |
6755 | lookup: | |
6756 | if (lh) | |
6757 | { | |
6758 | switch (lh->type) | |
6759 | { | |
6760 | case bfd_link_hash_undefined: | |
6761 | case bfd_link_hash_undefweak: | |
6762 | case bfd_link_hash_common: | |
6763 | gp_found = 0; | |
6764 | break; | |
6765 | case bfd_link_hash_defined: | |
6766 | case bfd_link_hash_defweak: | |
6767 | gp_found = 1; | |
6768 | gp = lh->u.def.value; | |
6769 | break; | |
6770 | case bfd_link_hash_indirect: | |
6771 | case bfd_link_hash_warning: | |
6772 | lh = lh->u.i.link; | |
6773 | /* @@FIXME ignoring warning for now */ | |
6774 | goto lookup; | |
6775 | case bfd_link_hash_new: | |
6776 | default: | |
6777 | abort (); | |
6778 | } | |
6779 | } | |
6780 | else | |
6781 | gp_found = 0; | |
6782 | } | |
6783 | /* end mips */ | |
6784 | for (parent = reloc_vector; *parent != (arelent *) NULL; | |
6785 | parent++) | |
6786 | { | |
6787 | char *error_message = (char *) NULL; | |
6788 | bfd_reloc_status_type r; | |
6789 | ||
6790 | /* Specific to MIPS: Deal with relocation types that require | |
6791 | knowing the gp of the output bfd. */ | |
6792 | asymbol *sym = *(*parent)->sym_ptr_ptr; | |
6793 | if (bfd_is_abs_section (sym->section) && abfd) | |
6794 | { | |
44c410de | 6795 | /* The special_function wouldn't get called anyway. */ |
b49e97c9 TS |
6796 | } |
6797 | else if (!gp_found) | |
6798 | { | |
6799 | /* The gp isn't there; let the special function code | |
6800 | fall over on its own. */ | |
6801 | } | |
6802 | else if ((*parent)->howto->special_function | |
6803 | == _bfd_mips_elf32_gprel16_reloc) | |
6804 | { | |
6805 | /* bypass special_function call */ | |
6806 | r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent, | |
6807 | input_section, relocateable, | |
6808 | (PTR) data, gp); | |
6809 | goto skip_bfd_perform_relocation; | |
6810 | } | |
6811 | /* end mips specific stuff */ | |
6812 | ||
6813 | r = bfd_perform_relocation (input_bfd, | |
6814 | *parent, | |
6815 | (PTR) data, | |
6816 | input_section, | |
6817 | relocateable ? abfd : (bfd *) NULL, | |
6818 | &error_message); | |
6819 | skip_bfd_perform_relocation: | |
6820 | ||
6821 | if (relocateable) | |
6822 | { | |
6823 | asection *os = input_section->output_section; | |
6824 | ||
6825 | /* A partial link, so keep the relocs */ | |
6826 | os->orelocation[os->reloc_count] = *parent; | |
6827 | os->reloc_count++; | |
6828 | } | |
6829 | ||
6830 | if (r != bfd_reloc_ok) | |
6831 | { | |
6832 | switch (r) | |
6833 | { | |
6834 | case bfd_reloc_undefined: | |
6835 | if (!((*link_info->callbacks->undefined_symbol) | |
6836 | (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr), | |
6837 | input_bfd, input_section, (*parent)->address, | |
6838 | true))) | |
6839 | goto error_return; | |
6840 | break; | |
6841 | case bfd_reloc_dangerous: | |
6842 | BFD_ASSERT (error_message != (char *) NULL); | |
6843 | if (!((*link_info->callbacks->reloc_dangerous) | |
6844 | (link_info, error_message, input_bfd, input_section, | |
6845 | (*parent)->address))) | |
6846 | goto error_return; | |
6847 | break; | |
6848 | case bfd_reloc_overflow: | |
6849 | if (!((*link_info->callbacks->reloc_overflow) | |
6850 | (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr), | |
6851 | (*parent)->howto->name, (*parent)->addend, | |
6852 | input_bfd, input_section, (*parent)->address))) | |
6853 | goto error_return; | |
6854 | break; | |
6855 | case bfd_reloc_outofrange: | |
6856 | default: | |
6857 | abort (); | |
6858 | break; | |
6859 | } | |
6860 | ||
6861 | } | |
6862 | } | |
6863 | } | |
6864 | if (reloc_vector != NULL) | |
6865 | free (reloc_vector); | |
6866 | return data; | |
6867 | ||
6868 | error_return: | |
6869 | if (reloc_vector != NULL) | |
6870 | free (reloc_vector); | |
6871 | return NULL; | |
6872 | } | |
6873 | \f | |
6874 | /* Create a MIPS ELF linker hash table. */ | |
6875 | ||
6876 | struct bfd_link_hash_table * | |
6877 | _bfd_mips_elf_link_hash_table_create (abfd) | |
6878 | bfd *abfd; | |
6879 | { | |
6880 | struct mips_elf_link_hash_table *ret; | |
6881 | bfd_size_type amt = sizeof (struct mips_elf_link_hash_table); | |
6882 | ||
e2d34d7d | 6883 | ret = (struct mips_elf_link_hash_table *) bfd_malloc (amt); |
b49e97c9 TS |
6884 | if (ret == (struct mips_elf_link_hash_table *) NULL) |
6885 | return NULL; | |
6886 | ||
6887 | if (! _bfd_elf_link_hash_table_init (&ret->root, abfd, | |
6888 | mips_elf_link_hash_newfunc)) | |
6889 | { | |
e2d34d7d | 6890 | free (ret); |
b49e97c9 TS |
6891 | return NULL; |
6892 | } | |
6893 | ||
6894 | #if 0 | |
6895 | /* We no longer use this. */ | |
6896 | for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++) | |
6897 | ret->dynsym_sec_strindex[i] = (bfd_size_type) -1; | |
6898 | #endif | |
6899 | ret->procedure_count = 0; | |
6900 | ret->compact_rel_size = 0; | |
6901 | ret->use_rld_obj_head = false; | |
6902 | ret->rld_value = 0; | |
6903 | ret->mips16_stubs_seen = false; | |
6904 | ||
6905 | return &ret->root.root; | |
6906 | } | |
6907 | \f | |
6908 | /* We need to use a special link routine to handle the .reginfo and | |
6909 | the .mdebug sections. We need to merge all instances of these | |
6910 | sections together, not write them all out sequentially. */ | |
6911 | ||
6912 | boolean | |
6913 | _bfd_mips_elf_final_link (abfd, info) | |
6914 | bfd *abfd; | |
6915 | struct bfd_link_info *info; | |
6916 | { | |
6917 | asection **secpp; | |
6918 | asection *o; | |
6919 | struct bfd_link_order *p; | |
6920 | asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec; | |
6921 | asection *rtproc_sec; | |
6922 | Elf32_RegInfo reginfo; | |
6923 | struct ecoff_debug_info debug; | |
6924 | const struct ecoff_debug_swap *swap | |
6925 | = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; | |
6926 | HDRR *symhdr = &debug.symbolic_header; | |
6927 | PTR mdebug_handle = NULL; | |
6928 | asection *s; | |
6929 | EXTR esym; | |
6930 | unsigned int i; | |
6931 | bfd_size_type amt; | |
6932 | ||
6933 | static const char * const secname[] = | |
6934 | { | |
6935 | ".text", ".init", ".fini", ".data", | |
6936 | ".rodata", ".sdata", ".sbss", ".bss" | |
6937 | }; | |
6938 | static const int sc[] = | |
6939 | { | |
6940 | scText, scInit, scFini, scData, | |
6941 | scRData, scSData, scSBss, scBss | |
6942 | }; | |
6943 | ||
6944 | /* If all the things we linked together were PIC, but we're | |
6945 | producing an executable (rather than a shared object), then the | |
6946 | resulting file is CPIC (i.e., it calls PIC code.) */ | |
6947 | if (!info->shared | |
6948 | && !info->relocateable | |
6949 | && elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) | |
6950 | { | |
6951 | elf_elfheader (abfd)->e_flags &= ~EF_MIPS_PIC; | |
6952 | elf_elfheader (abfd)->e_flags |= EF_MIPS_CPIC; | |
6953 | } | |
6954 | ||
6955 | /* We'd carefully arranged the dynamic symbol indices, and then the | |
6956 | generic size_dynamic_sections renumbered them out from under us. | |
6957 | Rather than trying somehow to prevent the renumbering, just do | |
6958 | the sort again. */ | |
6959 | if (elf_hash_table (info)->dynamic_sections_created) | |
6960 | { | |
6961 | bfd *dynobj; | |
6962 | asection *got; | |
6963 | struct mips_got_info *g; | |
6964 | ||
6965 | /* When we resort, we must tell mips_elf_sort_hash_table what | |
6966 | the lowest index it may use is. That's the number of section | |
6967 | symbols we're going to add. The generic ELF linker only | |
6968 | adds these symbols when building a shared object. Note that | |
6969 | we count the sections after (possibly) removing the .options | |
6970 | section above. */ | |
6971 | if (! mips_elf_sort_hash_table (info, (info->shared | |
6972 | ? bfd_count_sections (abfd) + 1 | |
6973 | : 1))) | |
6974 | return false; | |
6975 | ||
6976 | /* Make sure we didn't grow the global .got region. */ | |
6977 | dynobj = elf_hash_table (info)->dynobj; | |
6978 | got = bfd_get_section_by_name (dynobj, ".got"); | |
6979 | g = (struct mips_got_info *) elf_section_data (got)->tdata; | |
6980 | ||
6981 | if (g->global_gotsym != NULL) | |
6982 | BFD_ASSERT ((elf_hash_table (info)->dynsymcount | |
6983 | - g->global_gotsym->dynindx) | |
6984 | <= g->global_gotno); | |
6985 | } | |
6986 | ||
a902ee94 SC |
6987 | #if 0 |
6988 | /* We want to set the GP value for ld -r. */ | |
b49e97c9 TS |
6989 | /* On IRIX5, we omit the .options section. On IRIX6, however, we |
6990 | include it, even though we don't process it quite right. (Some | |
6991 | entries are supposed to be merged.) Empirically, we seem to be | |
6992 | better off including it then not. */ | |
6993 | if (IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none) | |
6994 | for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next) | |
6995 | { | |
6996 | if (strcmp ((*secpp)->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0) | |
6997 | { | |
6998 | for (p = (*secpp)->link_order_head; p != NULL; p = p->next) | |
6999 | if (p->type == bfd_indirect_link_order) | |
7000 | p->u.indirect.section->flags &= ~SEC_HAS_CONTENTS; | |
7001 | (*secpp)->link_order_head = NULL; | |
7002 | bfd_section_list_remove (abfd, secpp); | |
7003 | --abfd->section_count; | |
7004 | ||
7005 | break; | |
7006 | } | |
7007 | } | |
7008 | ||
7009 | /* We include .MIPS.options, even though we don't process it quite right. | |
7010 | (Some entries are supposed to be merged.) At IRIX6 empirically we seem | |
7011 | to be better off including it than not. */ | |
7012 | for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next) | |
7013 | { | |
7014 | if (strcmp ((*secpp)->name, ".MIPS.options") == 0) | |
7015 | { | |
7016 | for (p = (*secpp)->link_order_head; p != NULL; p = p->next) | |
7017 | if (p->type == bfd_indirect_link_order) | |
7018 | p->u.indirect.section->flags &=~ SEC_HAS_CONTENTS; | |
7019 | (*secpp)->link_order_head = NULL; | |
7020 | bfd_section_list_remove (abfd, secpp); | |
7021 | --abfd->section_count; | |
7022 | ||
7023 | break; | |
7024 | } | |
7025 | } | |
a902ee94 | 7026 | #endif |
b49e97c9 TS |
7027 | |
7028 | /* Get a value for the GP register. */ | |
7029 | if (elf_gp (abfd) == 0) | |
7030 | { | |
7031 | struct bfd_link_hash_entry *h; | |
7032 | ||
7033 | h = bfd_link_hash_lookup (info->hash, "_gp", false, false, true); | |
7034 | if (h != (struct bfd_link_hash_entry *) NULL | |
7035 | && h->type == bfd_link_hash_defined) | |
7036 | elf_gp (abfd) = (h->u.def.value | |
7037 | + h->u.def.section->output_section->vma | |
7038 | + h->u.def.section->output_offset); | |
7039 | else if (info->relocateable) | |
7040 | { | |
7041 | bfd_vma lo = MINUS_ONE; | |
7042 | ||
7043 | /* Find the GP-relative section with the lowest offset. */ | |
7044 | for (o = abfd->sections; o != (asection *) NULL; o = o->next) | |
7045 | if (o->vma < lo | |
7046 | && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL)) | |
7047 | lo = o->vma; | |
7048 | ||
7049 | /* And calculate GP relative to that. */ | |
7050 | elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (abfd); | |
7051 | } | |
7052 | else | |
7053 | { | |
7054 | /* If the relocate_section function needs to do a reloc | |
7055 | involving the GP value, it should make a reloc_dangerous | |
7056 | callback to warn that GP is not defined. */ | |
7057 | } | |
7058 | } | |
7059 | ||
7060 | /* Go through the sections and collect the .reginfo and .mdebug | |
7061 | information. */ | |
7062 | reginfo_sec = NULL; | |
7063 | mdebug_sec = NULL; | |
7064 | gptab_data_sec = NULL; | |
7065 | gptab_bss_sec = NULL; | |
7066 | for (o = abfd->sections; o != (asection *) NULL; o = o->next) | |
7067 | { | |
7068 | if (strcmp (o->name, ".reginfo") == 0) | |
7069 | { | |
7070 | memset (®info, 0, sizeof reginfo); | |
7071 | ||
7072 | /* We have found the .reginfo section in the output file. | |
7073 | Look through all the link_orders comprising it and merge | |
7074 | the information together. */ | |
7075 | for (p = o->link_order_head; | |
7076 | p != (struct bfd_link_order *) NULL; | |
7077 | p = p->next) | |
7078 | { | |
7079 | asection *input_section; | |
7080 | bfd *input_bfd; | |
7081 | Elf32_External_RegInfo ext; | |
7082 | Elf32_RegInfo sub; | |
7083 | ||
7084 | if (p->type != bfd_indirect_link_order) | |
7085 | { | |
7086 | if (p->type == bfd_data_link_order) | |
7087 | continue; | |
7088 | abort (); | |
7089 | } | |
7090 | ||
7091 | input_section = p->u.indirect.section; | |
7092 | input_bfd = input_section->owner; | |
7093 | ||
7094 | /* The linker emulation code has probably clobbered the | |
7095 | size to be zero bytes. */ | |
7096 | if (input_section->_raw_size == 0) | |
7097 | input_section->_raw_size = sizeof (Elf32_External_RegInfo); | |
7098 | ||
7099 | if (! bfd_get_section_contents (input_bfd, input_section, | |
7100 | (PTR) &ext, | |
7101 | (file_ptr) 0, | |
7102 | (bfd_size_type) sizeof ext)) | |
7103 | return false; | |
7104 | ||
7105 | bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub); | |
7106 | ||
7107 | reginfo.ri_gprmask |= sub.ri_gprmask; | |
7108 | reginfo.ri_cprmask[0] |= sub.ri_cprmask[0]; | |
7109 | reginfo.ri_cprmask[1] |= sub.ri_cprmask[1]; | |
7110 | reginfo.ri_cprmask[2] |= sub.ri_cprmask[2]; | |
7111 | reginfo.ri_cprmask[3] |= sub.ri_cprmask[3]; | |
7112 | ||
7113 | /* ri_gp_value is set by the function | |
7114 | mips_elf32_section_processing when the section is | |
7115 | finally written out. */ | |
7116 | ||
7117 | /* Hack: reset the SEC_HAS_CONTENTS flag so that | |
7118 | elf_link_input_bfd ignores this section. */ | |
7119 | input_section->flags &= ~SEC_HAS_CONTENTS; | |
7120 | } | |
7121 | ||
7122 | /* Size has been set in _bfd_mips_elf_always_size_sections. */ | |
7123 | BFD_ASSERT(o->_raw_size == sizeof (Elf32_External_RegInfo)); | |
7124 | ||
7125 | /* Skip this section later on (I don't think this currently | |
7126 | matters, but someday it might). */ | |
7127 | o->link_order_head = (struct bfd_link_order *) NULL; | |
7128 | ||
7129 | reginfo_sec = o; | |
7130 | } | |
7131 | ||
7132 | if (strcmp (o->name, ".mdebug") == 0) | |
7133 | { | |
7134 | struct extsym_info einfo; | |
7135 | bfd_vma last; | |
7136 | ||
7137 | /* We have found the .mdebug section in the output file. | |
7138 | Look through all the link_orders comprising it and merge | |
7139 | the information together. */ | |
7140 | symhdr->magic = swap->sym_magic; | |
7141 | /* FIXME: What should the version stamp be? */ | |
7142 | symhdr->vstamp = 0; | |
7143 | symhdr->ilineMax = 0; | |
7144 | symhdr->cbLine = 0; | |
7145 | symhdr->idnMax = 0; | |
7146 | symhdr->ipdMax = 0; | |
7147 | symhdr->isymMax = 0; | |
7148 | symhdr->ioptMax = 0; | |
7149 | symhdr->iauxMax = 0; | |
7150 | symhdr->issMax = 0; | |
7151 | symhdr->issExtMax = 0; | |
7152 | symhdr->ifdMax = 0; | |
7153 | symhdr->crfd = 0; | |
7154 | symhdr->iextMax = 0; | |
7155 | ||
7156 | /* We accumulate the debugging information itself in the | |
7157 | debug_info structure. */ | |
7158 | debug.line = NULL; | |
7159 | debug.external_dnr = NULL; | |
7160 | debug.external_pdr = NULL; | |
7161 | debug.external_sym = NULL; | |
7162 | debug.external_opt = NULL; | |
7163 | debug.external_aux = NULL; | |
7164 | debug.ss = NULL; | |
7165 | debug.ssext = debug.ssext_end = NULL; | |
7166 | debug.external_fdr = NULL; | |
7167 | debug.external_rfd = NULL; | |
7168 | debug.external_ext = debug.external_ext_end = NULL; | |
7169 | ||
7170 | mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info); | |
7171 | if (mdebug_handle == (PTR) NULL) | |
7172 | return false; | |
7173 | ||
7174 | esym.jmptbl = 0; | |
7175 | esym.cobol_main = 0; | |
7176 | esym.weakext = 0; | |
7177 | esym.reserved = 0; | |
7178 | esym.ifd = ifdNil; | |
7179 | esym.asym.iss = issNil; | |
7180 | esym.asym.st = stLocal; | |
7181 | esym.asym.reserved = 0; | |
7182 | esym.asym.index = indexNil; | |
7183 | last = 0; | |
7184 | for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++) | |
7185 | { | |
7186 | esym.asym.sc = sc[i]; | |
7187 | s = bfd_get_section_by_name (abfd, secname[i]); | |
7188 | if (s != NULL) | |
7189 | { | |
7190 | esym.asym.value = s->vma; | |
7191 | last = s->vma + s->_raw_size; | |
7192 | } | |
7193 | else | |
7194 | esym.asym.value = last; | |
7195 | if (!bfd_ecoff_debug_one_external (abfd, &debug, swap, | |
7196 | secname[i], &esym)) | |
7197 | return false; | |
7198 | } | |
7199 | ||
7200 | for (p = o->link_order_head; | |
7201 | p != (struct bfd_link_order *) NULL; | |
7202 | p = p->next) | |
7203 | { | |
7204 | asection *input_section; | |
7205 | bfd *input_bfd; | |
7206 | const struct ecoff_debug_swap *input_swap; | |
7207 | struct ecoff_debug_info input_debug; | |
7208 | char *eraw_src; | |
7209 | char *eraw_end; | |
7210 | ||
7211 | if (p->type != bfd_indirect_link_order) | |
7212 | { | |
7213 | if (p->type == bfd_data_link_order) | |
7214 | continue; | |
7215 | abort (); | |
7216 | } | |
7217 | ||
7218 | input_section = p->u.indirect.section; | |
7219 | input_bfd = input_section->owner; | |
7220 | ||
7221 | if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour | |
7222 | || (get_elf_backend_data (input_bfd) | |
7223 | ->elf_backend_ecoff_debug_swap) == NULL) | |
7224 | { | |
7225 | /* I don't know what a non MIPS ELF bfd would be | |
7226 | doing with a .mdebug section, but I don't really | |
7227 | want to deal with it. */ | |
7228 | continue; | |
7229 | } | |
7230 | ||
7231 | input_swap = (get_elf_backend_data (input_bfd) | |
7232 | ->elf_backend_ecoff_debug_swap); | |
7233 | ||
7234 | BFD_ASSERT (p->size == input_section->_raw_size); | |
7235 | ||
7236 | /* The ECOFF linking code expects that we have already | |
7237 | read in the debugging information and set up an | |
7238 | ecoff_debug_info structure, so we do that now. */ | |
7239 | if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section, | |
7240 | &input_debug)) | |
7241 | return false; | |
7242 | ||
7243 | if (! (bfd_ecoff_debug_accumulate | |
7244 | (mdebug_handle, abfd, &debug, swap, input_bfd, | |
7245 | &input_debug, input_swap, info))) | |
7246 | return false; | |
7247 | ||
7248 | /* Loop through the external symbols. For each one with | |
7249 | interesting information, try to find the symbol in | |
7250 | the linker global hash table and save the information | |
7251 | for the output external symbols. */ | |
7252 | eraw_src = input_debug.external_ext; | |
7253 | eraw_end = (eraw_src | |
7254 | + (input_debug.symbolic_header.iextMax | |
7255 | * input_swap->external_ext_size)); | |
7256 | for (; | |
7257 | eraw_src < eraw_end; | |
7258 | eraw_src += input_swap->external_ext_size) | |
7259 | { | |
7260 | EXTR ext; | |
7261 | const char *name; | |
7262 | struct mips_elf_link_hash_entry *h; | |
7263 | ||
7264 | (*input_swap->swap_ext_in) (input_bfd, (PTR) eraw_src, &ext); | |
7265 | if (ext.asym.sc == scNil | |
7266 | || ext.asym.sc == scUndefined | |
7267 | || ext.asym.sc == scSUndefined) | |
7268 | continue; | |
7269 | ||
7270 | name = input_debug.ssext + ext.asym.iss; | |
7271 | h = mips_elf_link_hash_lookup (mips_elf_hash_table (info), | |
7272 | name, false, false, true); | |
7273 | if (h == NULL || h->esym.ifd != -2) | |
7274 | continue; | |
7275 | ||
7276 | if (ext.ifd != -1) | |
7277 | { | |
7278 | BFD_ASSERT (ext.ifd | |
7279 | < input_debug.symbolic_header.ifdMax); | |
7280 | ext.ifd = input_debug.ifdmap[ext.ifd]; | |
7281 | } | |
7282 | ||
7283 | h->esym = ext; | |
7284 | } | |
7285 | ||
7286 | /* Free up the information we just read. */ | |
7287 | free (input_debug.line); | |
7288 | free (input_debug.external_dnr); | |
7289 | free (input_debug.external_pdr); | |
7290 | free (input_debug.external_sym); | |
7291 | free (input_debug.external_opt); | |
7292 | free (input_debug.external_aux); | |
7293 | free (input_debug.ss); | |
7294 | free (input_debug.ssext); | |
7295 | free (input_debug.external_fdr); | |
7296 | free (input_debug.external_rfd); | |
7297 | free (input_debug.external_ext); | |
7298 | ||
7299 | /* Hack: reset the SEC_HAS_CONTENTS flag so that | |
7300 | elf_link_input_bfd ignores this section. */ | |
7301 | input_section->flags &= ~SEC_HAS_CONTENTS; | |
7302 | } | |
7303 | ||
7304 | if (SGI_COMPAT (abfd) && info->shared) | |
7305 | { | |
7306 | /* Create .rtproc section. */ | |
7307 | rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc"); | |
7308 | if (rtproc_sec == NULL) | |
7309 | { | |
7310 | flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | |
7311 | | SEC_LINKER_CREATED | SEC_READONLY); | |
7312 | ||
7313 | rtproc_sec = bfd_make_section (abfd, ".rtproc"); | |
7314 | if (rtproc_sec == NULL | |
7315 | || ! bfd_set_section_flags (abfd, rtproc_sec, flags) | |
7316 | || ! bfd_set_section_alignment (abfd, rtproc_sec, 4)) | |
7317 | return false; | |
7318 | } | |
7319 | ||
7320 | if (! mips_elf_create_procedure_table (mdebug_handle, abfd, | |
7321 | info, rtproc_sec, | |
7322 | &debug)) | |
7323 | return false; | |
7324 | } | |
7325 | ||
7326 | /* Build the external symbol information. */ | |
7327 | einfo.abfd = abfd; | |
7328 | einfo.info = info; | |
7329 | einfo.debug = &debug; | |
7330 | einfo.swap = swap; | |
7331 | einfo.failed = false; | |
7332 | mips_elf_link_hash_traverse (mips_elf_hash_table (info), | |
7333 | mips_elf_output_extsym, | |
7334 | (PTR) &einfo); | |
7335 | if (einfo.failed) | |
7336 | return false; | |
7337 | ||
7338 | /* Set the size of the .mdebug section. */ | |
7339 | o->_raw_size = bfd_ecoff_debug_size (abfd, &debug, swap); | |
7340 | ||
7341 | /* Skip this section later on (I don't think this currently | |
7342 | matters, but someday it might). */ | |
7343 | o->link_order_head = (struct bfd_link_order *) NULL; | |
7344 | ||
7345 | mdebug_sec = o; | |
7346 | } | |
7347 | ||
7348 | if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0) | |
7349 | { | |
7350 | const char *subname; | |
7351 | unsigned int c; | |
7352 | Elf32_gptab *tab; | |
7353 | Elf32_External_gptab *ext_tab; | |
7354 | unsigned int j; | |
7355 | ||
7356 | /* The .gptab.sdata and .gptab.sbss sections hold | |
7357 | information describing how the small data area would | |
7358 | change depending upon the -G switch. These sections | |
7359 | not used in executables files. */ | |
7360 | if (! info->relocateable) | |
7361 | { | |
7362 | for (p = o->link_order_head; | |
7363 | p != (struct bfd_link_order *) NULL; | |
7364 | p = p->next) | |
7365 | { | |
7366 | asection *input_section; | |
7367 | ||
7368 | if (p->type != bfd_indirect_link_order) | |
7369 | { | |
7370 | if (p->type == bfd_data_link_order) | |
7371 | continue; | |
7372 | abort (); | |
7373 | } | |
7374 | ||
7375 | input_section = p->u.indirect.section; | |
7376 | ||
7377 | /* Hack: reset the SEC_HAS_CONTENTS flag so that | |
7378 | elf_link_input_bfd ignores this section. */ | |
7379 | input_section->flags &= ~SEC_HAS_CONTENTS; | |
7380 | } | |
7381 | ||
7382 | /* Skip this section later on (I don't think this | |
7383 | currently matters, but someday it might). */ | |
7384 | o->link_order_head = (struct bfd_link_order *) NULL; | |
7385 | ||
7386 | /* Really remove the section. */ | |
7387 | for (secpp = &abfd->sections; | |
7388 | *secpp != o; | |
7389 | secpp = &(*secpp)->next) | |
7390 | ; | |
7391 | bfd_section_list_remove (abfd, secpp); | |
7392 | --abfd->section_count; | |
7393 | ||
7394 | continue; | |
7395 | } | |
7396 | ||
7397 | /* There is one gptab for initialized data, and one for | |
7398 | uninitialized data. */ | |
7399 | if (strcmp (o->name, ".gptab.sdata") == 0) | |
7400 | gptab_data_sec = o; | |
7401 | else if (strcmp (o->name, ".gptab.sbss") == 0) | |
7402 | gptab_bss_sec = o; | |
7403 | else | |
7404 | { | |
7405 | (*_bfd_error_handler) | |
7406 | (_("%s: illegal section name `%s'"), | |
7407 | bfd_get_filename (abfd), o->name); | |
7408 | bfd_set_error (bfd_error_nonrepresentable_section); | |
7409 | return false; | |
7410 | } | |
7411 | ||
7412 | /* The linker script always combines .gptab.data and | |
7413 | .gptab.sdata into .gptab.sdata, and likewise for | |
7414 | .gptab.bss and .gptab.sbss. It is possible that there is | |
7415 | no .sdata or .sbss section in the output file, in which | |
7416 | case we must change the name of the output section. */ | |
7417 | subname = o->name + sizeof ".gptab" - 1; | |
7418 | if (bfd_get_section_by_name (abfd, subname) == NULL) | |
7419 | { | |
7420 | if (o == gptab_data_sec) | |
7421 | o->name = ".gptab.data"; | |
7422 | else | |
7423 | o->name = ".gptab.bss"; | |
7424 | subname = o->name + sizeof ".gptab" - 1; | |
7425 | BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL); | |
7426 | } | |
7427 | ||
7428 | /* Set up the first entry. */ | |
7429 | c = 1; | |
7430 | amt = c * sizeof (Elf32_gptab); | |
7431 | tab = (Elf32_gptab *) bfd_malloc (amt); | |
7432 | if (tab == NULL) | |
7433 | return false; | |
7434 | tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd); | |
7435 | tab[0].gt_header.gt_unused = 0; | |
7436 | ||
7437 | /* Combine the input sections. */ | |
7438 | for (p = o->link_order_head; | |
7439 | p != (struct bfd_link_order *) NULL; | |
7440 | p = p->next) | |
7441 | { | |
7442 | asection *input_section; | |
7443 | bfd *input_bfd; | |
7444 | bfd_size_type size; | |
7445 | unsigned long last; | |
7446 | bfd_size_type gpentry; | |
7447 | ||
7448 | if (p->type != bfd_indirect_link_order) | |
7449 | { | |
7450 | if (p->type == bfd_data_link_order) | |
7451 | continue; | |
7452 | abort (); | |
7453 | } | |
7454 | ||
7455 | input_section = p->u.indirect.section; | |
7456 | input_bfd = input_section->owner; | |
7457 | ||
7458 | /* Combine the gptab entries for this input section one | |
7459 | by one. We know that the input gptab entries are | |
7460 | sorted by ascending -G value. */ | |
7461 | size = bfd_section_size (input_bfd, input_section); | |
7462 | last = 0; | |
7463 | for (gpentry = sizeof (Elf32_External_gptab); | |
7464 | gpentry < size; | |
7465 | gpentry += sizeof (Elf32_External_gptab)) | |
7466 | { | |
7467 | Elf32_External_gptab ext_gptab; | |
7468 | Elf32_gptab int_gptab; | |
7469 | unsigned long val; | |
7470 | unsigned long add; | |
7471 | boolean exact; | |
7472 | unsigned int look; | |
7473 | ||
7474 | if (! (bfd_get_section_contents | |
7475 | (input_bfd, input_section, (PTR) &ext_gptab, | |
7476 | (file_ptr) gpentry, | |
7477 | (bfd_size_type) sizeof (Elf32_External_gptab)))) | |
7478 | { | |
7479 | free (tab); | |
7480 | return false; | |
7481 | } | |
7482 | ||
7483 | bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab, | |
7484 | &int_gptab); | |
7485 | val = int_gptab.gt_entry.gt_g_value; | |
7486 | add = int_gptab.gt_entry.gt_bytes - last; | |
7487 | ||
7488 | exact = false; | |
7489 | for (look = 1; look < c; look++) | |
7490 | { | |
7491 | if (tab[look].gt_entry.gt_g_value >= val) | |
7492 | tab[look].gt_entry.gt_bytes += add; | |
7493 | ||
7494 | if (tab[look].gt_entry.gt_g_value == val) | |
7495 | exact = true; | |
7496 | } | |
7497 | ||
7498 | if (! exact) | |
7499 | { | |
7500 | Elf32_gptab *new_tab; | |
7501 | unsigned int max; | |
7502 | ||
7503 | /* We need a new table entry. */ | |
7504 | amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab); | |
7505 | new_tab = (Elf32_gptab *) bfd_realloc ((PTR) tab, amt); | |
7506 | if (new_tab == NULL) | |
7507 | { | |
7508 | free (tab); | |
7509 | return false; | |
7510 | } | |
7511 | tab = new_tab; | |
7512 | tab[c].gt_entry.gt_g_value = val; | |
7513 | tab[c].gt_entry.gt_bytes = add; | |
7514 | ||
7515 | /* Merge in the size for the next smallest -G | |
7516 | value, since that will be implied by this new | |
7517 | value. */ | |
7518 | max = 0; | |
7519 | for (look = 1; look < c; look++) | |
7520 | { | |
7521 | if (tab[look].gt_entry.gt_g_value < val | |
7522 | && (max == 0 | |
7523 | || (tab[look].gt_entry.gt_g_value | |
7524 | > tab[max].gt_entry.gt_g_value))) | |
7525 | max = look; | |
7526 | } | |
7527 | if (max != 0) | |
7528 | tab[c].gt_entry.gt_bytes += | |
7529 | tab[max].gt_entry.gt_bytes; | |
7530 | ||
7531 | ++c; | |
7532 | } | |
7533 | ||
7534 | last = int_gptab.gt_entry.gt_bytes; | |
7535 | } | |
7536 | ||
7537 | /* Hack: reset the SEC_HAS_CONTENTS flag so that | |
7538 | elf_link_input_bfd ignores this section. */ | |
7539 | input_section->flags &= ~SEC_HAS_CONTENTS; | |
7540 | } | |
7541 | ||
7542 | /* The table must be sorted by -G value. */ | |
7543 | if (c > 2) | |
7544 | qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare); | |
7545 | ||
7546 | /* Swap out the table. */ | |
7547 | amt = (bfd_size_type) c * sizeof (Elf32_External_gptab); | |
7548 | ext_tab = (Elf32_External_gptab *) bfd_alloc (abfd, amt); | |
7549 | if (ext_tab == NULL) | |
7550 | { | |
7551 | free (tab); | |
7552 | return false; | |
7553 | } | |
7554 | ||
7555 | for (j = 0; j < c; j++) | |
7556 | bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j); | |
7557 | free (tab); | |
7558 | ||
7559 | o->_raw_size = c * sizeof (Elf32_External_gptab); | |
7560 | o->contents = (bfd_byte *) ext_tab; | |
7561 | ||
7562 | /* Skip this section later on (I don't think this currently | |
7563 | matters, but someday it might). */ | |
7564 | o->link_order_head = (struct bfd_link_order *) NULL; | |
7565 | } | |
7566 | } | |
7567 | ||
7568 | /* Invoke the regular ELF backend linker to do all the work. */ | |
7569 | if (ABI_64_P (abfd)) | |
7570 | { | |
7571 | #ifdef BFD64 | |
7572 | if (!bfd_elf64_bfd_final_link (abfd, info)) | |
7573 | return false; | |
7574 | #else | |
7575 | abort (); | |
7576 | return false; | |
7577 | #endif /* BFD64 */ | |
7578 | } | |
7579 | else if (!bfd_elf32_bfd_final_link (abfd, info)) | |
7580 | return false; | |
7581 | ||
7582 | /* Now write out the computed sections. */ | |
7583 | ||
7584 | if (reginfo_sec != (asection *) NULL) | |
7585 | { | |
7586 | Elf32_External_RegInfo ext; | |
7587 | ||
7588 | bfd_mips_elf32_swap_reginfo_out (abfd, ®info, &ext); | |
7589 | if (! bfd_set_section_contents (abfd, reginfo_sec, (PTR) &ext, | |
7590 | (file_ptr) 0, | |
7591 | (bfd_size_type) sizeof ext)) | |
7592 | return false; | |
7593 | } | |
7594 | ||
7595 | if (mdebug_sec != (asection *) NULL) | |
7596 | { | |
7597 | BFD_ASSERT (abfd->output_has_begun); | |
7598 | if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug, | |
7599 | swap, info, | |
7600 | mdebug_sec->filepos)) | |
7601 | return false; | |
7602 | ||
7603 | bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info); | |
7604 | } | |
7605 | ||
7606 | if (gptab_data_sec != (asection *) NULL) | |
7607 | { | |
7608 | if (! bfd_set_section_contents (abfd, gptab_data_sec, | |
7609 | gptab_data_sec->contents, | |
7610 | (file_ptr) 0, | |
7611 | gptab_data_sec->_raw_size)) | |
7612 | return false; | |
7613 | } | |
7614 | ||
7615 | if (gptab_bss_sec != (asection *) NULL) | |
7616 | { | |
7617 | if (! bfd_set_section_contents (abfd, gptab_bss_sec, | |
7618 | gptab_bss_sec->contents, | |
7619 | (file_ptr) 0, | |
7620 | gptab_bss_sec->_raw_size)) | |
7621 | return false; | |
7622 | } | |
7623 | ||
7624 | if (SGI_COMPAT (abfd)) | |
7625 | { | |
7626 | rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc"); | |
7627 | if (rtproc_sec != NULL) | |
7628 | { | |
7629 | if (! bfd_set_section_contents (abfd, rtproc_sec, | |
7630 | rtproc_sec->contents, | |
7631 | (file_ptr) 0, | |
7632 | rtproc_sec->_raw_size)) | |
7633 | return false; | |
7634 | } | |
7635 | } | |
7636 | ||
7637 | return true; | |
7638 | } | |
7639 | \f | |
7640 | /* Merge backend specific data from an object file to the output | |
7641 | object file when linking. */ | |
7642 | ||
7643 | boolean | |
7644 | _bfd_mips_elf_merge_private_bfd_data (ibfd, obfd) | |
7645 | bfd *ibfd; | |
7646 | bfd *obfd; | |
7647 | { | |
7648 | flagword old_flags; | |
7649 | flagword new_flags; | |
7650 | boolean ok; | |
7651 | boolean null_input_bfd = true; | |
7652 | asection *sec; | |
7653 | ||
7654 | /* Check if we have the same endianess */ | |
82e51918 | 7655 | if (! _bfd_generic_verify_endian_match (ibfd, obfd)) |
b49e97c9 TS |
7656 | return false; |
7657 | ||
7658 | if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour | |
7659 | || bfd_get_flavour (obfd) != bfd_target_elf_flavour) | |
7660 | return true; | |
7661 | ||
7662 | new_flags = elf_elfheader (ibfd)->e_flags; | |
7663 | elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER; | |
7664 | old_flags = elf_elfheader (obfd)->e_flags; | |
7665 | ||
7666 | if (! elf_flags_init (obfd)) | |
7667 | { | |
7668 | elf_flags_init (obfd) = true; | |
7669 | elf_elfheader (obfd)->e_flags = new_flags; | |
7670 | elf_elfheader (obfd)->e_ident[EI_CLASS] | |
7671 | = elf_elfheader (ibfd)->e_ident[EI_CLASS]; | |
7672 | ||
7673 | if (bfd_get_arch (obfd) == bfd_get_arch (ibfd) | |
7674 | && bfd_get_arch_info (obfd)->the_default) | |
7675 | { | |
7676 | if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), | |
7677 | bfd_get_mach (ibfd))) | |
7678 | return false; | |
7679 | } | |
7680 | ||
7681 | return true; | |
7682 | } | |
7683 | ||
7684 | /* Check flag compatibility. */ | |
7685 | ||
7686 | new_flags &= ~EF_MIPS_NOREORDER; | |
7687 | old_flags &= ~EF_MIPS_NOREORDER; | |
7688 | ||
7689 | if (new_flags == old_flags) | |
7690 | return true; | |
7691 | ||
7692 | /* Check to see if the input BFD actually contains any sections. | |
7693 | If not, its flags may not have been initialised either, but it cannot | |
7694 | actually cause any incompatibility. */ | |
7695 | for (sec = ibfd->sections; sec != NULL; sec = sec->next) | |
7696 | { | |
7697 | /* Ignore synthetic sections and empty .text, .data and .bss sections | |
7698 | which are automatically generated by gas. */ | |
7699 | if (strcmp (sec->name, ".reginfo") | |
7700 | && strcmp (sec->name, ".mdebug") | |
7701 | && ((!strcmp (sec->name, ".text") | |
7702 | || !strcmp (sec->name, ".data") | |
7703 | || !strcmp (sec->name, ".bss")) | |
7704 | && sec->_raw_size != 0)) | |
7705 | { | |
7706 | null_input_bfd = false; | |
7707 | break; | |
7708 | } | |
7709 | } | |
7710 | if (null_input_bfd) | |
7711 | return true; | |
7712 | ||
7713 | ok = true; | |
7714 | ||
7715 | if ((new_flags & EF_MIPS_PIC) != (old_flags & EF_MIPS_PIC)) | |
7716 | { | |
7717 | new_flags &= ~EF_MIPS_PIC; | |
7718 | old_flags &= ~EF_MIPS_PIC; | |
7719 | (*_bfd_error_handler) | |
7720 | (_("%s: linking PIC files with non-PIC files"), | |
7721 | bfd_archive_filename (ibfd)); | |
7722 | ok = false; | |
7723 | } | |
7724 | ||
7725 | if ((new_flags & EF_MIPS_CPIC) != (old_flags & EF_MIPS_CPIC)) | |
7726 | { | |
7727 | new_flags &= ~EF_MIPS_CPIC; | |
7728 | old_flags &= ~EF_MIPS_CPIC; | |
7729 | (*_bfd_error_handler) | |
7730 | (_("%s: linking abicalls files with non-abicalls files"), | |
7731 | bfd_archive_filename (ibfd)); | |
7732 | ok = false; | |
7733 | } | |
7734 | ||
7735 | /* Compare the ISA's. */ | |
7736 | if ((new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH)) | |
7737 | != (old_flags & (EF_MIPS_ARCH | EF_MIPS_MACH))) | |
7738 | { | |
7739 | int new_mach = new_flags & EF_MIPS_MACH; | |
7740 | int old_mach = old_flags & EF_MIPS_MACH; | |
7741 | int new_isa = elf_mips_isa (new_flags); | |
7742 | int old_isa = elf_mips_isa (old_flags); | |
7743 | ||
7744 | /* If either has no machine specified, just compare the general isa's. | |
7745 | Some combinations of machines are ok, if the isa's match. */ | |
7746 | if (! new_mach | |
7747 | || ! old_mach | |
7748 | || new_mach == old_mach | |
7749 | ) | |
7750 | { | |
7751 | /* Don't warn about mixing code using 32-bit ISAs, or mixing code | |
7752 | using 64-bit ISAs. They will normally use the same data sizes | |
7753 | and calling conventions. */ | |
7754 | ||
7755 | if (( (new_isa == 1 || new_isa == 2 || new_isa == 32) | |
7756 | ^ (old_isa == 1 || old_isa == 2 || old_isa == 32)) != 0) | |
7757 | { | |
7758 | (*_bfd_error_handler) | |
7759 | (_("%s: ISA mismatch (-mips%d) with previous modules (-mips%d)"), | |
7760 | bfd_archive_filename (ibfd), new_isa, old_isa); | |
7761 | ok = false; | |
7762 | } | |
7763 | else | |
7764 | { | |
7765 | /* Do we need to update the mach field? */ | |
7766 | if (old_mach == 0 && new_mach != 0) | |
7767 | elf_elfheader (obfd)->e_flags |= new_mach; | |
7768 | ||
7769 | /* Do we need to update the ISA field? */ | |
7770 | if (new_isa > old_isa) | |
7771 | { | |
7772 | elf_elfheader (obfd)->e_flags &= ~EF_MIPS_ARCH; | |
7773 | elf_elfheader (obfd)->e_flags | |
7774 | |= new_flags & EF_MIPS_ARCH; | |
7775 | } | |
7776 | } | |
7777 | } | |
7778 | else | |
7779 | { | |
7780 | (*_bfd_error_handler) | |
7781 | (_("%s: ISA mismatch (%d) with previous modules (%d)"), | |
7782 | bfd_archive_filename (ibfd), | |
7783 | _bfd_elf_mips_mach (new_flags), | |
7784 | _bfd_elf_mips_mach (old_flags)); | |
7785 | ok = false; | |
7786 | } | |
7787 | ||
7788 | new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH); | |
7789 | old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH); | |
7790 | } | |
7791 | ||
7792 | /* Compare ABI's. The 64-bit ABI does not use EF_MIPS_ABI. But, it | |
7793 | does set EI_CLASS differently from any 32-bit ABI. */ | |
7794 | if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI) | |
7795 | || (elf_elfheader (ibfd)->e_ident[EI_CLASS] | |
7796 | != elf_elfheader (obfd)->e_ident[EI_CLASS])) | |
7797 | { | |
7798 | /* Only error if both are set (to different values). */ | |
7799 | if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI)) | |
7800 | || (elf_elfheader (ibfd)->e_ident[EI_CLASS] | |
7801 | != elf_elfheader (obfd)->e_ident[EI_CLASS])) | |
7802 | { | |
7803 | (*_bfd_error_handler) | |
7804 | (_("%s: ABI mismatch: linking %s module with previous %s modules"), | |
7805 | bfd_archive_filename (ibfd), | |
7806 | elf_mips_abi_name (ibfd), | |
7807 | elf_mips_abi_name (obfd)); | |
7808 | ok = false; | |
7809 | } | |
7810 | new_flags &= ~EF_MIPS_ABI; | |
7811 | old_flags &= ~EF_MIPS_ABI; | |
7812 | } | |
7813 | ||
fb39dac1 RS |
7814 | /* For now, allow arbitrary mixing of ASEs (retain the union). */ |
7815 | if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE)) | |
7816 | { | |
7817 | elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE; | |
7818 | ||
7819 | new_flags &= ~ EF_MIPS_ARCH_ASE; | |
7820 | old_flags &= ~ EF_MIPS_ARCH_ASE; | |
7821 | } | |
7822 | ||
b49e97c9 TS |
7823 | /* Warn about any other mismatches */ |
7824 | if (new_flags != old_flags) | |
7825 | { | |
7826 | (*_bfd_error_handler) | |
7827 | (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"), | |
7828 | bfd_archive_filename (ibfd), (unsigned long) new_flags, | |
7829 | (unsigned long) old_flags); | |
7830 | ok = false; | |
7831 | } | |
7832 | ||
7833 | if (! ok) | |
7834 | { | |
7835 | bfd_set_error (bfd_error_bad_value); | |
7836 | return false; | |
7837 | } | |
7838 | ||
7839 | return true; | |
7840 | } | |
7841 | ||
7842 | /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */ | |
7843 | ||
7844 | boolean | |
7845 | _bfd_mips_elf_set_private_flags (abfd, flags) | |
7846 | bfd *abfd; | |
7847 | flagword flags; | |
7848 | { | |
7849 | BFD_ASSERT (!elf_flags_init (abfd) | |
7850 | || elf_elfheader (abfd)->e_flags == flags); | |
7851 | ||
7852 | elf_elfheader (abfd)->e_flags = flags; | |
7853 | elf_flags_init (abfd) = true; | |
7854 | return true; | |
7855 | } | |
7856 | ||
7857 | boolean | |
7858 | _bfd_mips_elf_print_private_bfd_data (abfd, ptr) | |
7859 | bfd *abfd; | |
7860 | PTR ptr; | |
7861 | { | |
7862 | FILE *file = (FILE *) ptr; | |
7863 | ||
7864 | BFD_ASSERT (abfd != NULL && ptr != NULL); | |
7865 | ||
7866 | /* Print normal ELF private data. */ | |
7867 | _bfd_elf_print_private_bfd_data (abfd, ptr); | |
7868 | ||
7869 | /* xgettext:c-format */ | |
7870 | fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags); | |
7871 | ||
7872 | if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32) | |
7873 | fprintf (file, _(" [abi=O32]")); | |
7874 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64) | |
7875 | fprintf (file, _(" [abi=O64]")); | |
7876 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32) | |
7877 | fprintf (file, _(" [abi=EABI32]")); | |
7878 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64) | |
7879 | fprintf (file, _(" [abi=EABI64]")); | |
7880 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI)) | |
7881 | fprintf (file, _(" [abi unknown]")); | |
7882 | else if (ABI_N32_P (abfd)) | |
7883 | fprintf (file, _(" [abi=N32]")); | |
7884 | else if (ABI_64_P (abfd)) | |
7885 | fprintf (file, _(" [abi=64]")); | |
7886 | else | |
7887 | fprintf (file, _(" [no abi set]")); | |
7888 | ||
7889 | if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1) | |
7890 | fprintf (file, _(" [mips1]")); | |
7891 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2) | |
7892 | fprintf (file, _(" [mips2]")); | |
7893 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3) | |
7894 | fprintf (file, _(" [mips3]")); | |
7895 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4) | |
7896 | fprintf (file, _(" [mips4]")); | |
7897 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5) | |
7898 | fprintf (file, _(" [mips5]")); | |
7899 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32) | |
7900 | fprintf (file, _(" [mips32]")); | |
7901 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64) | |
7902 | fprintf (file, _(" [mips64]")); | |
7903 | else | |
7904 | fprintf (file, _(" [unknown ISA]")); | |
7905 | ||
40d32fc6 CD |
7906 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX) |
7907 | fprintf (file, _(" [mdmx]")); | |
7908 | ||
7909 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16) | |
7910 | fprintf (file, _(" [mips16]")); | |
7911 | ||
b49e97c9 TS |
7912 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE) |
7913 | fprintf (file, _(" [32bitmode]")); | |
7914 | else | |
7915 | fprintf (file, _(" [not 32bitmode]")); | |
7916 | ||
7917 | fputc ('\n', file); | |
7918 | ||
7919 | return true; | |
7920 | } |