]>
Commit | Line | Data |
---|---|---|
b49e97c9 | 1 | /* MIPS-specific support for ELF |
64543e1a | 2 | Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, |
77cfaee6 | 3 | 2003, 2004, 2005 Free Software Foundation, Inc. |
b49e97c9 TS |
4 | |
5 | Most of the information added by Ian Lance Taylor, Cygnus Support, | |
6 | <[email protected]>. | |
7 | N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC. | |
8 | <[email protected]> | |
9 | Traditional MIPS targets support added by Koundinya.K, Dansk Data | |
10 | Elektronik & Operations Research Group. <[email protected]> | |
11 | ||
ae9a127f | 12 | This file is part of BFD, the Binary File Descriptor library. |
b49e97c9 | 13 | |
ae9a127f NC |
14 | This program is free software; you can redistribute it and/or modify |
15 | it under the terms of the GNU General Public License as published by | |
16 | the Free Software Foundation; either version 2 of the License, or | |
17 | (at your option) any later version. | |
b49e97c9 | 18 | |
ae9a127f NC |
19 | This program is distributed in the hope that it will be useful, |
20 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
21 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
22 | GNU General Public License for more details. | |
b49e97c9 | 23 | |
ae9a127f NC |
24 | You should have received a copy of the GNU General Public License |
25 | along with this program; if not, write to the Free Software | |
26 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ | |
b49e97c9 TS |
27 | |
28 | /* This file handles functionality common to the different MIPS ABI's. */ | |
29 | ||
30 | #include "bfd.h" | |
31 | #include "sysdep.h" | |
32 | #include "libbfd.h" | |
64543e1a | 33 | #include "libiberty.h" |
b49e97c9 TS |
34 | #include "elf-bfd.h" |
35 | #include "elfxx-mips.h" | |
36 | #include "elf/mips.h" | |
37 | ||
38 | /* Get the ECOFF swapping routines. */ | |
39 | #include "coff/sym.h" | |
40 | #include "coff/symconst.h" | |
41 | #include "coff/ecoff.h" | |
42 | #include "coff/mips.h" | |
43 | ||
b15e6682 AO |
44 | #include "hashtab.h" |
45 | ||
46 | /* This structure is used to hold .got entries while estimating got | |
47 | sizes. */ | |
48 | struct mips_got_entry | |
49 | { | |
50 | /* The input bfd in which the symbol is defined. */ | |
51 | bfd *abfd; | |
f4416af6 AO |
52 | /* The index of the symbol, as stored in the relocation r_info, if |
53 | we have a local symbol; -1 otherwise. */ | |
54 | long symndx; | |
55 | union | |
56 | { | |
57 | /* If abfd == NULL, an address that must be stored in the got. */ | |
58 | bfd_vma address; | |
59 | /* If abfd != NULL && symndx != -1, the addend of the relocation | |
60 | that should be added to the symbol value. */ | |
61 | bfd_vma addend; | |
62 | /* If abfd != NULL && symndx == -1, the hash table entry | |
63 | corresponding to a global symbol in the got (or, local, if | |
64 | h->forced_local). */ | |
65 | struct mips_elf_link_hash_entry *h; | |
66 | } d; | |
0f20cc35 DJ |
67 | |
68 | /* The TLS types included in this GOT entry (specifically, GD and | |
69 | IE). The GD and IE flags can be added as we encounter new | |
70 | relocations. LDM can also be set; it will always be alone, not | |
71 | combined with any GD or IE flags. An LDM GOT entry will be | |
72 | a local symbol entry with r_symndx == 0. */ | |
73 | unsigned char tls_type; | |
74 | ||
b15e6682 | 75 | /* The offset from the beginning of the .got section to the entry |
f4416af6 AO |
76 | corresponding to this symbol+addend. If it's a global symbol |
77 | whose offset is yet to be decided, it's going to be -1. */ | |
78 | long gotidx; | |
b15e6682 AO |
79 | }; |
80 | ||
f0abc2a1 | 81 | /* This structure is used to hold .got information when linking. */ |
b49e97c9 TS |
82 | |
83 | struct mips_got_info | |
84 | { | |
85 | /* The global symbol in the GOT with the lowest index in the dynamic | |
86 | symbol table. */ | |
87 | struct elf_link_hash_entry *global_gotsym; | |
88 | /* The number of global .got entries. */ | |
89 | unsigned int global_gotno; | |
0f20cc35 DJ |
90 | /* The number of .got slots used for TLS. */ |
91 | unsigned int tls_gotno; | |
92 | /* The first unused TLS .got entry. Used only during | |
93 | mips_elf_initialize_tls_index. */ | |
94 | unsigned int tls_assigned_gotno; | |
b49e97c9 TS |
95 | /* The number of local .got entries. */ |
96 | unsigned int local_gotno; | |
97 | /* The number of local .got entries we have used. */ | |
98 | unsigned int assigned_gotno; | |
b15e6682 AO |
99 | /* A hash table holding members of the got. */ |
100 | struct htab *got_entries; | |
f4416af6 AO |
101 | /* A hash table mapping input bfds to other mips_got_info. NULL |
102 | unless multi-got was necessary. */ | |
103 | struct htab *bfd2got; | |
104 | /* In multi-got links, a pointer to the next got (err, rather, most | |
105 | of the time, it points to the previous got). */ | |
106 | struct mips_got_info *next; | |
0f20cc35 DJ |
107 | /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE |
108 | for none, or MINUS_TWO for not yet assigned. This is needed | |
109 | because a single-GOT link may have multiple hash table entries | |
110 | for the LDM. It does not get initialized in multi-GOT mode. */ | |
111 | bfd_vma tls_ldm_offset; | |
f4416af6 AO |
112 | }; |
113 | ||
114 | /* Map an input bfd to a got in a multi-got link. */ | |
115 | ||
116 | struct mips_elf_bfd2got_hash { | |
117 | bfd *bfd; | |
118 | struct mips_got_info *g; | |
119 | }; | |
120 | ||
121 | /* Structure passed when traversing the bfd2got hash table, used to | |
122 | create and merge bfd's gots. */ | |
123 | ||
124 | struct mips_elf_got_per_bfd_arg | |
125 | { | |
126 | /* A hashtable that maps bfds to gots. */ | |
127 | htab_t bfd2got; | |
128 | /* The output bfd. */ | |
129 | bfd *obfd; | |
130 | /* The link information. */ | |
131 | struct bfd_link_info *info; | |
132 | /* A pointer to the primary got, i.e., the one that's going to get | |
133 | the implicit relocations from DT_MIPS_LOCAL_GOTNO and | |
134 | DT_MIPS_GOTSYM. */ | |
135 | struct mips_got_info *primary; | |
136 | /* A non-primary got we're trying to merge with other input bfd's | |
137 | gots. */ | |
138 | struct mips_got_info *current; | |
139 | /* The maximum number of got entries that can be addressed with a | |
140 | 16-bit offset. */ | |
141 | unsigned int max_count; | |
142 | /* The number of local and global entries in the primary got. */ | |
143 | unsigned int primary_count; | |
144 | /* The number of local and global entries in the current got. */ | |
145 | unsigned int current_count; | |
0f20cc35 DJ |
146 | /* The total number of global entries which will live in the |
147 | primary got and be automatically relocated. This includes | |
148 | those not referenced by the primary GOT but included in | |
149 | the "master" GOT. */ | |
150 | unsigned int global_count; | |
f4416af6 AO |
151 | }; |
152 | ||
153 | /* Another structure used to pass arguments for got entries traversal. */ | |
154 | ||
155 | struct mips_elf_set_global_got_offset_arg | |
156 | { | |
157 | struct mips_got_info *g; | |
158 | int value; | |
159 | unsigned int needed_relocs; | |
160 | struct bfd_link_info *info; | |
b49e97c9 TS |
161 | }; |
162 | ||
0f20cc35 DJ |
163 | /* A structure used to count TLS relocations or GOT entries, for GOT |
164 | entry or ELF symbol table traversal. */ | |
165 | ||
166 | struct mips_elf_count_tls_arg | |
167 | { | |
168 | struct bfd_link_info *info; | |
169 | unsigned int needed; | |
170 | }; | |
171 | ||
f0abc2a1 AM |
172 | struct _mips_elf_section_data |
173 | { | |
174 | struct bfd_elf_section_data elf; | |
175 | union | |
176 | { | |
177 | struct mips_got_info *got_info; | |
178 | bfd_byte *tdata; | |
179 | } u; | |
180 | }; | |
181 | ||
182 | #define mips_elf_section_data(sec) \ | |
68bfbfcc | 183 | ((struct _mips_elf_section_data *) elf_section_data (sec)) |
f0abc2a1 | 184 | |
b49e97c9 TS |
185 | /* This structure is passed to mips_elf_sort_hash_table_f when sorting |
186 | the dynamic symbols. */ | |
187 | ||
188 | struct mips_elf_hash_sort_data | |
189 | { | |
190 | /* The symbol in the global GOT with the lowest dynamic symbol table | |
191 | index. */ | |
192 | struct elf_link_hash_entry *low; | |
0f20cc35 DJ |
193 | /* The least dynamic symbol table index corresponding to a non-TLS |
194 | symbol with a GOT entry. */ | |
b49e97c9 | 195 | long min_got_dynindx; |
f4416af6 AO |
196 | /* The greatest dynamic symbol table index corresponding to a symbol |
197 | with a GOT entry that is not referenced (e.g., a dynamic symbol | |
9e4aeb93 | 198 | with dynamic relocations pointing to it from non-primary GOTs). */ |
f4416af6 | 199 | long max_unref_got_dynindx; |
b49e97c9 TS |
200 | /* The greatest dynamic symbol table index not corresponding to a |
201 | symbol without a GOT entry. */ | |
202 | long max_non_got_dynindx; | |
203 | }; | |
204 | ||
205 | /* The MIPS ELF linker needs additional information for each symbol in | |
206 | the global hash table. */ | |
207 | ||
208 | struct mips_elf_link_hash_entry | |
209 | { | |
210 | struct elf_link_hash_entry root; | |
211 | ||
212 | /* External symbol information. */ | |
213 | EXTR esym; | |
214 | ||
215 | /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against | |
216 | this symbol. */ | |
217 | unsigned int possibly_dynamic_relocs; | |
218 | ||
219 | /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against | |
220 | a readonly section. */ | |
b34976b6 | 221 | bfd_boolean readonly_reloc; |
b49e97c9 | 222 | |
b49e97c9 TS |
223 | /* We must not create a stub for a symbol that has relocations |
224 | related to taking the function's address, i.e. any but | |
225 | R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition", | |
226 | p. 4-20. */ | |
b34976b6 | 227 | bfd_boolean no_fn_stub; |
b49e97c9 TS |
228 | |
229 | /* If there is a stub that 32 bit functions should use to call this | |
230 | 16 bit function, this points to the section containing the stub. */ | |
231 | asection *fn_stub; | |
232 | ||
233 | /* Whether we need the fn_stub; this is set if this symbol appears | |
234 | in any relocs other than a 16 bit call. */ | |
b34976b6 | 235 | bfd_boolean need_fn_stub; |
b49e97c9 TS |
236 | |
237 | /* If there is a stub that 16 bit functions should use to call this | |
238 | 32 bit function, this points to the section containing the stub. */ | |
239 | asection *call_stub; | |
240 | ||
241 | /* This is like the call_stub field, but it is used if the function | |
242 | being called returns a floating point value. */ | |
243 | asection *call_fp_stub; | |
7c5fcef7 L |
244 | |
245 | /* Are we forced local? .*/ | |
b34976b6 | 246 | bfd_boolean forced_local; |
0f20cc35 DJ |
247 | |
248 | #define GOT_NORMAL 0 | |
249 | #define GOT_TLS_GD 1 | |
250 | #define GOT_TLS_LDM 2 | |
251 | #define GOT_TLS_IE 4 | |
252 | #define GOT_TLS_OFFSET_DONE 0x40 | |
253 | #define GOT_TLS_DONE 0x80 | |
254 | unsigned char tls_type; | |
255 | /* This is only used in single-GOT mode; in multi-GOT mode there | |
256 | is one mips_got_entry per GOT entry, so the offset is stored | |
257 | there. In single-GOT mode there may be many mips_got_entry | |
258 | structures all referring to the same GOT slot. It might be | |
259 | possible to use root.got.offset instead, but that field is | |
260 | overloaded already. */ | |
261 | bfd_vma tls_got_offset; | |
b49e97c9 TS |
262 | }; |
263 | ||
264 | /* MIPS ELF linker hash table. */ | |
265 | ||
266 | struct mips_elf_link_hash_table | |
267 | { | |
268 | struct elf_link_hash_table root; | |
269 | #if 0 | |
270 | /* We no longer use this. */ | |
271 | /* String section indices for the dynamic section symbols. */ | |
272 | bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES]; | |
273 | #endif | |
274 | /* The number of .rtproc entries. */ | |
275 | bfd_size_type procedure_count; | |
276 | /* The size of the .compact_rel section (if SGI_COMPAT). */ | |
277 | bfd_size_type compact_rel_size; | |
278 | /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic | |
8dc1a139 | 279 | entry is set to the address of __rld_obj_head as in IRIX5. */ |
b34976b6 | 280 | bfd_boolean use_rld_obj_head; |
b49e97c9 TS |
281 | /* This is the value of the __rld_map or __rld_obj_head symbol. */ |
282 | bfd_vma rld_value; | |
283 | /* This is set if we see any mips16 stub sections. */ | |
b34976b6 | 284 | bfd_boolean mips16_stubs_seen; |
b49e97c9 TS |
285 | }; |
286 | ||
0f20cc35 DJ |
287 | #define TLS_RELOC_P(r_type) \ |
288 | (r_type == R_MIPS_TLS_DTPMOD32 \ | |
289 | || r_type == R_MIPS_TLS_DTPMOD64 \ | |
290 | || r_type == R_MIPS_TLS_DTPREL32 \ | |
291 | || r_type == R_MIPS_TLS_DTPREL64 \ | |
292 | || r_type == R_MIPS_TLS_GD \ | |
293 | || r_type == R_MIPS_TLS_LDM \ | |
294 | || r_type == R_MIPS_TLS_DTPREL_HI16 \ | |
295 | || r_type == R_MIPS_TLS_DTPREL_LO16 \ | |
296 | || r_type == R_MIPS_TLS_GOTTPREL \ | |
297 | || r_type == R_MIPS_TLS_TPREL32 \ | |
298 | || r_type == R_MIPS_TLS_TPREL64 \ | |
299 | || r_type == R_MIPS_TLS_TPREL_HI16 \ | |
300 | || r_type == R_MIPS_TLS_TPREL_LO16) | |
301 | ||
b49e97c9 TS |
302 | /* Structure used to pass information to mips_elf_output_extsym. */ |
303 | ||
304 | struct extsym_info | |
305 | { | |
9e4aeb93 RS |
306 | bfd *abfd; |
307 | struct bfd_link_info *info; | |
b49e97c9 TS |
308 | struct ecoff_debug_info *debug; |
309 | const struct ecoff_debug_swap *swap; | |
b34976b6 | 310 | bfd_boolean failed; |
b49e97c9 TS |
311 | }; |
312 | ||
8dc1a139 | 313 | /* The names of the runtime procedure table symbols used on IRIX5. */ |
b49e97c9 TS |
314 | |
315 | static const char * const mips_elf_dynsym_rtproc_names[] = | |
316 | { | |
317 | "_procedure_table", | |
318 | "_procedure_string_table", | |
319 | "_procedure_table_size", | |
320 | NULL | |
321 | }; | |
322 | ||
323 | /* These structures are used to generate the .compact_rel section on | |
8dc1a139 | 324 | IRIX5. */ |
b49e97c9 TS |
325 | |
326 | typedef struct | |
327 | { | |
328 | unsigned long id1; /* Always one? */ | |
329 | unsigned long num; /* Number of compact relocation entries. */ | |
330 | unsigned long id2; /* Always two? */ | |
331 | unsigned long offset; /* The file offset of the first relocation. */ | |
332 | unsigned long reserved0; /* Zero? */ | |
333 | unsigned long reserved1; /* Zero? */ | |
334 | } Elf32_compact_rel; | |
335 | ||
336 | typedef struct | |
337 | { | |
338 | bfd_byte id1[4]; | |
339 | bfd_byte num[4]; | |
340 | bfd_byte id2[4]; | |
341 | bfd_byte offset[4]; | |
342 | bfd_byte reserved0[4]; | |
343 | bfd_byte reserved1[4]; | |
344 | } Elf32_External_compact_rel; | |
345 | ||
346 | typedef struct | |
347 | { | |
348 | unsigned int ctype : 1; /* 1: long 0: short format. See below. */ | |
349 | unsigned int rtype : 4; /* Relocation types. See below. */ | |
350 | unsigned int dist2to : 8; | |
351 | unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */ | |
352 | unsigned long konst; /* KONST field. See below. */ | |
353 | unsigned long vaddr; /* VADDR to be relocated. */ | |
354 | } Elf32_crinfo; | |
355 | ||
356 | typedef struct | |
357 | { | |
358 | unsigned int ctype : 1; /* 1: long 0: short format. See below. */ | |
359 | unsigned int rtype : 4; /* Relocation types. See below. */ | |
360 | unsigned int dist2to : 8; | |
361 | unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */ | |
362 | unsigned long konst; /* KONST field. See below. */ | |
363 | } Elf32_crinfo2; | |
364 | ||
365 | typedef struct | |
366 | { | |
367 | bfd_byte info[4]; | |
368 | bfd_byte konst[4]; | |
369 | bfd_byte vaddr[4]; | |
370 | } Elf32_External_crinfo; | |
371 | ||
372 | typedef struct | |
373 | { | |
374 | bfd_byte info[4]; | |
375 | bfd_byte konst[4]; | |
376 | } Elf32_External_crinfo2; | |
377 | ||
378 | /* These are the constants used to swap the bitfields in a crinfo. */ | |
379 | ||
380 | #define CRINFO_CTYPE (0x1) | |
381 | #define CRINFO_CTYPE_SH (31) | |
382 | #define CRINFO_RTYPE (0xf) | |
383 | #define CRINFO_RTYPE_SH (27) | |
384 | #define CRINFO_DIST2TO (0xff) | |
385 | #define CRINFO_DIST2TO_SH (19) | |
386 | #define CRINFO_RELVADDR (0x7ffff) | |
387 | #define CRINFO_RELVADDR_SH (0) | |
388 | ||
389 | /* A compact relocation info has long (3 words) or short (2 words) | |
390 | formats. A short format doesn't have VADDR field and relvaddr | |
391 | fields contains ((VADDR - vaddr of the previous entry) >> 2). */ | |
392 | #define CRF_MIPS_LONG 1 | |
393 | #define CRF_MIPS_SHORT 0 | |
394 | ||
395 | /* There are 4 types of compact relocation at least. The value KONST | |
396 | has different meaning for each type: | |
397 | ||
398 | (type) (konst) | |
399 | CT_MIPS_REL32 Address in data | |
400 | CT_MIPS_WORD Address in word (XXX) | |
401 | CT_MIPS_GPHI_LO GP - vaddr | |
402 | CT_MIPS_JMPAD Address to jump | |
403 | */ | |
404 | ||
405 | #define CRT_MIPS_REL32 0xa | |
406 | #define CRT_MIPS_WORD 0xb | |
407 | #define CRT_MIPS_GPHI_LO 0xc | |
408 | #define CRT_MIPS_JMPAD 0xd | |
409 | ||
410 | #define mips_elf_set_cr_format(x,format) ((x).ctype = (format)) | |
411 | #define mips_elf_set_cr_type(x,type) ((x).rtype = (type)) | |
412 | #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v)) | |
413 | #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2) | |
414 | \f | |
415 | /* The structure of the runtime procedure descriptor created by the | |
416 | loader for use by the static exception system. */ | |
417 | ||
418 | typedef struct runtime_pdr { | |
ae9a127f NC |
419 | bfd_vma adr; /* Memory address of start of procedure. */ |
420 | long regmask; /* Save register mask. */ | |
421 | long regoffset; /* Save register offset. */ | |
422 | long fregmask; /* Save floating point register mask. */ | |
423 | long fregoffset; /* Save floating point register offset. */ | |
424 | long frameoffset; /* Frame size. */ | |
425 | short framereg; /* Frame pointer register. */ | |
426 | short pcreg; /* Offset or reg of return pc. */ | |
427 | long irpss; /* Index into the runtime string table. */ | |
b49e97c9 | 428 | long reserved; |
ae9a127f | 429 | struct exception_info *exception_info;/* Pointer to exception array. */ |
b49e97c9 TS |
430 | } RPDR, *pRPDR; |
431 | #define cbRPDR sizeof (RPDR) | |
432 | #define rpdNil ((pRPDR) 0) | |
433 | \f | |
b15e6682 | 434 | static struct mips_got_entry *mips_elf_create_local_got_entry |
0f20cc35 DJ |
435 | (bfd *, bfd *, struct mips_got_info *, asection *, bfd_vma, unsigned long, |
436 | struct mips_elf_link_hash_entry *, int); | |
b34976b6 | 437 | static bfd_boolean mips_elf_sort_hash_table_f |
9719ad41 | 438 | (struct mips_elf_link_hash_entry *, void *); |
9719ad41 RS |
439 | static bfd_vma mips_elf_high |
440 | (bfd_vma); | |
b34976b6 | 441 | static bfd_boolean mips_elf_stub_section_p |
9719ad41 | 442 | (bfd *, asection *); |
b34976b6 | 443 | static bfd_boolean mips_elf_create_dynamic_relocation |
9719ad41 RS |
444 | (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *, |
445 | struct mips_elf_link_hash_entry *, asection *, bfd_vma, | |
446 | bfd_vma *, asection *); | |
9719ad41 RS |
447 | static hashval_t mips_elf_got_entry_hash |
448 | (const void *); | |
f4416af6 | 449 | static bfd_vma mips_elf_adjust_gp |
9719ad41 | 450 | (bfd *, struct mips_got_info *, bfd *); |
f4416af6 | 451 | static struct mips_got_info *mips_elf_got_for_ibfd |
9719ad41 | 452 | (struct mips_got_info *, bfd *); |
f4416af6 | 453 | |
b49e97c9 TS |
454 | /* This will be used when we sort the dynamic relocation records. */ |
455 | static bfd *reldyn_sorting_bfd; | |
456 | ||
457 | /* Nonzero if ABFD is using the N32 ABI. */ | |
0b25d3e6 | 458 | |
b49e97c9 TS |
459 | #define ABI_N32_P(abfd) \ |
460 | ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0) | |
461 | ||
4a14403c | 462 | /* Nonzero if ABFD is using the N64 ABI. */ |
b49e97c9 | 463 | #define ABI_64_P(abfd) \ |
141ff970 | 464 | (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64) |
b49e97c9 | 465 | |
4a14403c TS |
466 | /* Nonzero if ABFD is using NewABI conventions. */ |
467 | #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd)) | |
468 | ||
469 | /* The IRIX compatibility level we are striving for. */ | |
b49e97c9 TS |
470 | #define IRIX_COMPAT(abfd) \ |
471 | (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd)) | |
472 | ||
b49e97c9 TS |
473 | /* Whether we are trying to be compatible with IRIX at all. */ |
474 | #define SGI_COMPAT(abfd) \ | |
475 | (IRIX_COMPAT (abfd) != ict_none) | |
476 | ||
477 | /* The name of the options section. */ | |
478 | #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \ | |
d80dcc6a | 479 | (NEWABI_P (abfd) ? ".MIPS.options" : ".options") |
b49e97c9 TS |
480 | |
481 | /* The name of the stub section. */ | |
ca07892d | 482 | #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs" |
b49e97c9 TS |
483 | |
484 | /* The size of an external REL relocation. */ | |
485 | #define MIPS_ELF_REL_SIZE(abfd) \ | |
486 | (get_elf_backend_data (abfd)->s->sizeof_rel) | |
487 | ||
488 | /* The size of an external dynamic table entry. */ | |
489 | #define MIPS_ELF_DYN_SIZE(abfd) \ | |
490 | (get_elf_backend_data (abfd)->s->sizeof_dyn) | |
491 | ||
492 | /* The size of a GOT entry. */ | |
493 | #define MIPS_ELF_GOT_SIZE(abfd) \ | |
494 | (get_elf_backend_data (abfd)->s->arch_size / 8) | |
495 | ||
496 | /* The size of a symbol-table entry. */ | |
497 | #define MIPS_ELF_SYM_SIZE(abfd) \ | |
498 | (get_elf_backend_data (abfd)->s->sizeof_sym) | |
499 | ||
500 | /* The default alignment for sections, as a power of two. */ | |
501 | #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \ | |
45d6a902 | 502 | (get_elf_backend_data (abfd)->s->log_file_align) |
b49e97c9 TS |
503 | |
504 | /* Get word-sized data. */ | |
505 | #define MIPS_ELF_GET_WORD(abfd, ptr) \ | |
506 | (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr)) | |
507 | ||
508 | /* Put out word-sized data. */ | |
509 | #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \ | |
510 | (ABI_64_P (abfd) \ | |
511 | ? bfd_put_64 (abfd, val, ptr) \ | |
512 | : bfd_put_32 (abfd, val, ptr)) | |
513 | ||
514 | /* Add a dynamic symbol table-entry. */ | |
9719ad41 | 515 | #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \ |
5a580b3a | 516 | _bfd_elf_add_dynamic_entry (info, tag, val) |
b49e97c9 TS |
517 | |
518 | #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \ | |
519 | (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela)) | |
520 | ||
4ffba85c AO |
521 | /* Determine whether the internal relocation of index REL_IDX is REL |
522 | (zero) or RELA (non-zero). The assumption is that, if there are | |
523 | two relocation sections for this section, one of them is REL and | |
524 | the other is RELA. If the index of the relocation we're testing is | |
525 | in range for the first relocation section, check that the external | |
526 | relocation size is that for RELA. It is also assumed that, if | |
527 | rel_idx is not in range for the first section, and this first | |
528 | section contains REL relocs, then the relocation is in the second | |
529 | section, that is RELA. */ | |
530 | #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \ | |
531 | ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \ | |
532 | * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \ | |
533 | > (bfd_vma)(rel_idx)) \ | |
534 | == (elf_section_data (sec)->rel_hdr.sh_entsize \ | |
535 | == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \ | |
536 | : sizeof (Elf32_External_Rela)))) | |
537 | ||
b49e97c9 TS |
538 | /* In case we're on a 32-bit machine, construct a 64-bit "-1" value |
539 | from smaller values. Start with zero, widen, *then* decrement. */ | |
540 | #define MINUS_ONE (((bfd_vma)0) - 1) | |
c5ae1840 | 541 | #define MINUS_TWO (((bfd_vma)0) - 2) |
b49e97c9 TS |
542 | |
543 | /* The number of local .got entries we reserve. */ | |
544 | #define MIPS_RESERVED_GOTNO (2) | |
545 | ||
f4416af6 AO |
546 | /* The offset of $gp from the beginning of the .got section. */ |
547 | #define ELF_MIPS_GP_OFFSET(abfd) (0x7ff0) | |
548 | ||
549 | /* The maximum size of the GOT for it to be addressable using 16-bit | |
550 | offsets from $gp. */ | |
551 | #define MIPS_ELF_GOT_MAX_SIZE(abfd) (ELF_MIPS_GP_OFFSET(abfd) + 0x7fff) | |
552 | ||
6a691779 | 553 | /* Instructions which appear in a stub. */ |
b49e97c9 | 554 | #define STUB_LW(abfd) \ |
f4416af6 AO |
555 | ((ABI_64_P (abfd) \ |
556 | ? 0xdf998010 /* ld t9,0x8010(gp) */ \ | |
557 | : 0x8f998010)) /* lw t9,0x8010(gp) */ | |
b49e97c9 | 558 | #define STUB_MOVE(abfd) \ |
6a691779 TS |
559 | ((ABI_64_P (abfd) \ |
560 | ? 0x03e0782d /* daddu t7,ra */ \ | |
561 | : 0x03e07821)) /* addu t7,ra */ | |
562 | #define STUB_JALR 0x0320f809 /* jalr t9,ra */ | |
b49e97c9 | 563 | #define STUB_LI16(abfd) \ |
6a691779 TS |
564 | ((ABI_64_P (abfd) \ |
565 | ? 0x64180000 /* daddiu t8,zero,0 */ \ | |
566 | : 0x24180000)) /* addiu t8,zero,0 */ | |
b49e97c9 TS |
567 | #define MIPS_FUNCTION_STUB_SIZE (16) |
568 | ||
569 | /* The name of the dynamic interpreter. This is put in the .interp | |
570 | section. */ | |
571 | ||
572 | #define ELF_DYNAMIC_INTERPRETER(abfd) \ | |
573 | (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \ | |
574 | : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \ | |
575 | : "/usr/lib/libc.so.1") | |
576 | ||
577 | #ifdef BFD64 | |
ee6423ed AO |
578 | #define MNAME(bfd,pre,pos) \ |
579 | (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos)) | |
b49e97c9 TS |
580 | #define ELF_R_SYM(bfd, i) \ |
581 | (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i)) | |
582 | #define ELF_R_TYPE(bfd, i) \ | |
583 | (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i)) | |
584 | #define ELF_R_INFO(bfd, s, t) \ | |
585 | (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t)) | |
586 | #else | |
ee6423ed | 587 | #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos) |
b49e97c9 TS |
588 | #define ELF_R_SYM(bfd, i) \ |
589 | (ELF32_R_SYM (i)) | |
590 | #define ELF_R_TYPE(bfd, i) \ | |
591 | (ELF32_R_TYPE (i)) | |
592 | #define ELF_R_INFO(bfd, s, t) \ | |
593 | (ELF32_R_INFO (s, t)) | |
594 | #endif | |
595 | \f | |
596 | /* The mips16 compiler uses a couple of special sections to handle | |
597 | floating point arguments. | |
598 | ||
599 | Section names that look like .mips16.fn.FNNAME contain stubs that | |
600 | copy floating point arguments from the fp regs to the gp regs and | |
601 | then jump to FNNAME. If any 32 bit function calls FNNAME, the | |
602 | call should be redirected to the stub instead. If no 32 bit | |
603 | function calls FNNAME, the stub should be discarded. We need to | |
604 | consider any reference to the function, not just a call, because | |
605 | if the address of the function is taken we will need the stub, | |
606 | since the address might be passed to a 32 bit function. | |
607 | ||
608 | Section names that look like .mips16.call.FNNAME contain stubs | |
609 | that copy floating point arguments from the gp regs to the fp | |
610 | regs and then jump to FNNAME. If FNNAME is a 32 bit function, | |
611 | then any 16 bit function that calls FNNAME should be redirected | |
612 | to the stub instead. If FNNAME is not a 32 bit function, the | |
613 | stub should be discarded. | |
614 | ||
615 | .mips16.call.fp.FNNAME sections are similar, but contain stubs | |
616 | which call FNNAME and then copy the return value from the fp regs | |
617 | to the gp regs. These stubs store the return value in $18 while | |
618 | calling FNNAME; any function which might call one of these stubs | |
619 | must arrange to save $18 around the call. (This case is not | |
620 | needed for 32 bit functions that call 16 bit functions, because | |
621 | 16 bit functions always return floating point values in both | |
622 | $f0/$f1 and $2/$3.) | |
623 | ||
624 | Note that in all cases FNNAME might be defined statically. | |
625 | Therefore, FNNAME is not used literally. Instead, the relocation | |
626 | information will indicate which symbol the section is for. | |
627 | ||
628 | We record any stubs that we find in the symbol table. */ | |
629 | ||
630 | #define FN_STUB ".mips16.fn." | |
631 | #define CALL_STUB ".mips16.call." | |
632 | #define CALL_FP_STUB ".mips16.call.fp." | |
633 | \f | |
634 | /* Look up an entry in a MIPS ELF linker hash table. */ | |
635 | ||
636 | #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \ | |
637 | ((struct mips_elf_link_hash_entry *) \ | |
638 | elf_link_hash_lookup (&(table)->root, (string), (create), \ | |
639 | (copy), (follow))) | |
640 | ||
641 | /* Traverse a MIPS ELF linker hash table. */ | |
642 | ||
643 | #define mips_elf_link_hash_traverse(table, func, info) \ | |
644 | (elf_link_hash_traverse \ | |
645 | (&(table)->root, \ | |
9719ad41 | 646 | (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \ |
b49e97c9 TS |
647 | (info))) |
648 | ||
649 | /* Get the MIPS ELF linker hash table from a link_info structure. */ | |
650 | ||
651 | #define mips_elf_hash_table(p) \ | |
652 | ((struct mips_elf_link_hash_table *) ((p)->hash)) | |
653 | ||
0f20cc35 DJ |
654 | /* Find the base offsets for thread-local storage in this object, |
655 | for GD/LD and IE/LE respectively. */ | |
656 | ||
657 | #define TP_OFFSET 0x7000 | |
658 | #define DTP_OFFSET 0x8000 | |
659 | ||
660 | static bfd_vma | |
661 | dtprel_base (struct bfd_link_info *info) | |
662 | { | |
663 | /* If tls_sec is NULL, we should have signalled an error already. */ | |
664 | if (elf_hash_table (info)->tls_sec == NULL) | |
665 | return 0; | |
666 | return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET; | |
667 | } | |
668 | ||
669 | static bfd_vma | |
670 | tprel_base (struct bfd_link_info *info) | |
671 | { | |
672 | /* If tls_sec is NULL, we should have signalled an error already. */ | |
673 | if (elf_hash_table (info)->tls_sec == NULL) | |
674 | return 0; | |
675 | return elf_hash_table (info)->tls_sec->vma + TP_OFFSET; | |
676 | } | |
677 | ||
b49e97c9 TS |
678 | /* Create an entry in a MIPS ELF linker hash table. */ |
679 | ||
680 | static struct bfd_hash_entry * | |
9719ad41 RS |
681 | mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry, |
682 | struct bfd_hash_table *table, const char *string) | |
b49e97c9 TS |
683 | { |
684 | struct mips_elf_link_hash_entry *ret = | |
685 | (struct mips_elf_link_hash_entry *) entry; | |
686 | ||
687 | /* Allocate the structure if it has not already been allocated by a | |
688 | subclass. */ | |
9719ad41 RS |
689 | if (ret == NULL) |
690 | ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry)); | |
691 | if (ret == NULL) | |
b49e97c9 TS |
692 | return (struct bfd_hash_entry *) ret; |
693 | ||
694 | /* Call the allocation method of the superclass. */ | |
695 | ret = ((struct mips_elf_link_hash_entry *) | |
696 | _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret, | |
697 | table, string)); | |
9719ad41 | 698 | if (ret != NULL) |
b49e97c9 TS |
699 | { |
700 | /* Set local fields. */ | |
701 | memset (&ret->esym, 0, sizeof (EXTR)); | |
702 | /* We use -2 as a marker to indicate that the information has | |
703 | not been set. -1 means there is no associated ifd. */ | |
704 | ret->esym.ifd = -2; | |
705 | ret->possibly_dynamic_relocs = 0; | |
b34976b6 | 706 | ret->readonly_reloc = FALSE; |
b34976b6 | 707 | ret->no_fn_stub = FALSE; |
b49e97c9 | 708 | ret->fn_stub = NULL; |
b34976b6 | 709 | ret->need_fn_stub = FALSE; |
b49e97c9 TS |
710 | ret->call_stub = NULL; |
711 | ret->call_fp_stub = NULL; | |
b34976b6 | 712 | ret->forced_local = FALSE; |
0f20cc35 | 713 | ret->tls_type = GOT_NORMAL; |
b49e97c9 TS |
714 | } |
715 | ||
716 | return (struct bfd_hash_entry *) ret; | |
717 | } | |
f0abc2a1 AM |
718 | |
719 | bfd_boolean | |
9719ad41 | 720 | _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec) |
f0abc2a1 AM |
721 | { |
722 | struct _mips_elf_section_data *sdata; | |
723 | bfd_size_type amt = sizeof (*sdata); | |
724 | ||
9719ad41 | 725 | sdata = bfd_zalloc (abfd, amt); |
f0abc2a1 AM |
726 | if (sdata == NULL) |
727 | return FALSE; | |
9719ad41 | 728 | sec->used_by_bfd = sdata; |
f0abc2a1 AM |
729 | |
730 | return _bfd_elf_new_section_hook (abfd, sec); | |
731 | } | |
b49e97c9 TS |
732 | \f |
733 | /* Read ECOFF debugging information from a .mdebug section into a | |
734 | ecoff_debug_info structure. */ | |
735 | ||
b34976b6 | 736 | bfd_boolean |
9719ad41 RS |
737 | _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section, |
738 | struct ecoff_debug_info *debug) | |
b49e97c9 TS |
739 | { |
740 | HDRR *symhdr; | |
741 | const struct ecoff_debug_swap *swap; | |
9719ad41 | 742 | char *ext_hdr; |
b49e97c9 TS |
743 | |
744 | swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; | |
745 | memset (debug, 0, sizeof (*debug)); | |
746 | ||
9719ad41 | 747 | ext_hdr = bfd_malloc (swap->external_hdr_size); |
b49e97c9 TS |
748 | if (ext_hdr == NULL && swap->external_hdr_size != 0) |
749 | goto error_return; | |
750 | ||
9719ad41 | 751 | if (! bfd_get_section_contents (abfd, section, ext_hdr, 0, |
82e51918 | 752 | swap->external_hdr_size)) |
b49e97c9 TS |
753 | goto error_return; |
754 | ||
755 | symhdr = &debug->symbolic_header; | |
756 | (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr); | |
757 | ||
758 | /* The symbolic header contains absolute file offsets and sizes to | |
759 | read. */ | |
760 | #define READ(ptr, offset, count, size, type) \ | |
761 | if (symhdr->count == 0) \ | |
762 | debug->ptr = NULL; \ | |
763 | else \ | |
764 | { \ | |
765 | bfd_size_type amt = (bfd_size_type) size * symhdr->count; \ | |
9719ad41 | 766 | debug->ptr = bfd_malloc (amt); \ |
b49e97c9 TS |
767 | if (debug->ptr == NULL) \ |
768 | goto error_return; \ | |
9719ad41 | 769 | if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \ |
b49e97c9 TS |
770 | || bfd_bread (debug->ptr, amt, abfd) != amt) \ |
771 | goto error_return; \ | |
772 | } | |
773 | ||
774 | READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *); | |
9719ad41 RS |
775 | READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *); |
776 | READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *); | |
777 | READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *); | |
778 | READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *); | |
b49e97c9 TS |
779 | READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext), |
780 | union aux_ext *); | |
781 | READ (ss, cbSsOffset, issMax, sizeof (char), char *); | |
782 | READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *); | |
9719ad41 RS |
783 | READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *); |
784 | READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *); | |
785 | READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *); | |
b49e97c9 TS |
786 | #undef READ |
787 | ||
788 | debug->fdr = NULL; | |
b49e97c9 | 789 | |
b34976b6 | 790 | return TRUE; |
b49e97c9 TS |
791 | |
792 | error_return: | |
793 | if (ext_hdr != NULL) | |
794 | free (ext_hdr); | |
795 | if (debug->line != NULL) | |
796 | free (debug->line); | |
797 | if (debug->external_dnr != NULL) | |
798 | free (debug->external_dnr); | |
799 | if (debug->external_pdr != NULL) | |
800 | free (debug->external_pdr); | |
801 | if (debug->external_sym != NULL) | |
802 | free (debug->external_sym); | |
803 | if (debug->external_opt != NULL) | |
804 | free (debug->external_opt); | |
805 | if (debug->external_aux != NULL) | |
806 | free (debug->external_aux); | |
807 | if (debug->ss != NULL) | |
808 | free (debug->ss); | |
809 | if (debug->ssext != NULL) | |
810 | free (debug->ssext); | |
811 | if (debug->external_fdr != NULL) | |
812 | free (debug->external_fdr); | |
813 | if (debug->external_rfd != NULL) | |
814 | free (debug->external_rfd); | |
815 | if (debug->external_ext != NULL) | |
816 | free (debug->external_ext); | |
b34976b6 | 817 | return FALSE; |
b49e97c9 TS |
818 | } |
819 | \f | |
820 | /* Swap RPDR (runtime procedure table entry) for output. */ | |
821 | ||
822 | static void | |
9719ad41 | 823 | ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex) |
b49e97c9 TS |
824 | { |
825 | H_PUT_S32 (abfd, in->adr, ex->p_adr); | |
826 | H_PUT_32 (abfd, in->regmask, ex->p_regmask); | |
827 | H_PUT_32 (abfd, in->regoffset, ex->p_regoffset); | |
828 | H_PUT_32 (abfd, in->fregmask, ex->p_fregmask); | |
829 | H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset); | |
830 | H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset); | |
831 | ||
832 | H_PUT_16 (abfd, in->framereg, ex->p_framereg); | |
833 | H_PUT_16 (abfd, in->pcreg, ex->p_pcreg); | |
834 | ||
835 | H_PUT_32 (abfd, in->irpss, ex->p_irpss); | |
b49e97c9 TS |
836 | } |
837 | ||
838 | /* Create a runtime procedure table from the .mdebug section. */ | |
839 | ||
b34976b6 | 840 | static bfd_boolean |
9719ad41 RS |
841 | mips_elf_create_procedure_table (void *handle, bfd *abfd, |
842 | struct bfd_link_info *info, asection *s, | |
843 | struct ecoff_debug_info *debug) | |
b49e97c9 TS |
844 | { |
845 | const struct ecoff_debug_swap *swap; | |
846 | HDRR *hdr = &debug->symbolic_header; | |
847 | RPDR *rpdr, *rp; | |
848 | struct rpdr_ext *erp; | |
9719ad41 | 849 | void *rtproc; |
b49e97c9 TS |
850 | struct pdr_ext *epdr; |
851 | struct sym_ext *esym; | |
852 | char *ss, **sv; | |
853 | char *str; | |
854 | bfd_size_type size; | |
855 | bfd_size_type count; | |
856 | unsigned long sindex; | |
857 | unsigned long i; | |
858 | PDR pdr; | |
859 | SYMR sym; | |
860 | const char *no_name_func = _("static procedure (no name)"); | |
861 | ||
862 | epdr = NULL; | |
863 | rpdr = NULL; | |
864 | esym = NULL; | |
865 | ss = NULL; | |
866 | sv = NULL; | |
867 | ||
868 | swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; | |
869 | ||
870 | sindex = strlen (no_name_func) + 1; | |
871 | count = hdr->ipdMax; | |
872 | if (count > 0) | |
873 | { | |
874 | size = swap->external_pdr_size; | |
875 | ||
9719ad41 | 876 | epdr = bfd_malloc (size * count); |
b49e97c9 TS |
877 | if (epdr == NULL) |
878 | goto error_return; | |
879 | ||
9719ad41 | 880 | if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr)) |
b49e97c9 TS |
881 | goto error_return; |
882 | ||
883 | size = sizeof (RPDR); | |
9719ad41 | 884 | rp = rpdr = bfd_malloc (size * count); |
b49e97c9 TS |
885 | if (rpdr == NULL) |
886 | goto error_return; | |
887 | ||
888 | size = sizeof (char *); | |
9719ad41 | 889 | sv = bfd_malloc (size * count); |
b49e97c9 TS |
890 | if (sv == NULL) |
891 | goto error_return; | |
892 | ||
893 | count = hdr->isymMax; | |
894 | size = swap->external_sym_size; | |
9719ad41 | 895 | esym = bfd_malloc (size * count); |
b49e97c9 TS |
896 | if (esym == NULL) |
897 | goto error_return; | |
898 | ||
9719ad41 | 899 | if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym)) |
b49e97c9 TS |
900 | goto error_return; |
901 | ||
902 | count = hdr->issMax; | |
9719ad41 | 903 | ss = bfd_malloc (count); |
b49e97c9 TS |
904 | if (ss == NULL) |
905 | goto error_return; | |
f075ee0c | 906 | if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss)) |
b49e97c9 TS |
907 | goto error_return; |
908 | ||
909 | count = hdr->ipdMax; | |
910 | for (i = 0; i < (unsigned long) count; i++, rp++) | |
911 | { | |
9719ad41 RS |
912 | (*swap->swap_pdr_in) (abfd, epdr + i, &pdr); |
913 | (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym); | |
b49e97c9 TS |
914 | rp->adr = sym.value; |
915 | rp->regmask = pdr.regmask; | |
916 | rp->regoffset = pdr.regoffset; | |
917 | rp->fregmask = pdr.fregmask; | |
918 | rp->fregoffset = pdr.fregoffset; | |
919 | rp->frameoffset = pdr.frameoffset; | |
920 | rp->framereg = pdr.framereg; | |
921 | rp->pcreg = pdr.pcreg; | |
922 | rp->irpss = sindex; | |
923 | sv[i] = ss + sym.iss; | |
924 | sindex += strlen (sv[i]) + 1; | |
925 | } | |
926 | } | |
927 | ||
928 | size = sizeof (struct rpdr_ext) * (count + 2) + sindex; | |
929 | size = BFD_ALIGN (size, 16); | |
9719ad41 | 930 | rtproc = bfd_alloc (abfd, size); |
b49e97c9 TS |
931 | if (rtproc == NULL) |
932 | { | |
933 | mips_elf_hash_table (info)->procedure_count = 0; | |
934 | goto error_return; | |
935 | } | |
936 | ||
937 | mips_elf_hash_table (info)->procedure_count = count + 2; | |
938 | ||
9719ad41 | 939 | erp = rtproc; |
b49e97c9 TS |
940 | memset (erp, 0, sizeof (struct rpdr_ext)); |
941 | erp++; | |
942 | str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2); | |
943 | strcpy (str, no_name_func); | |
944 | str += strlen (no_name_func) + 1; | |
945 | for (i = 0; i < count; i++) | |
946 | { | |
947 | ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i); | |
948 | strcpy (str, sv[i]); | |
949 | str += strlen (sv[i]) + 1; | |
950 | } | |
951 | H_PUT_S32 (abfd, -1, (erp + count)->p_adr); | |
952 | ||
953 | /* Set the size and contents of .rtproc section. */ | |
eea6121a | 954 | s->size = size; |
9719ad41 | 955 | s->contents = rtproc; |
b49e97c9 TS |
956 | |
957 | /* Skip this section later on (I don't think this currently | |
958 | matters, but someday it might). */ | |
9719ad41 | 959 | s->link_order_head = NULL; |
b49e97c9 TS |
960 | |
961 | if (epdr != NULL) | |
962 | free (epdr); | |
963 | if (rpdr != NULL) | |
964 | free (rpdr); | |
965 | if (esym != NULL) | |
966 | free (esym); | |
967 | if (ss != NULL) | |
968 | free (ss); | |
969 | if (sv != NULL) | |
970 | free (sv); | |
971 | ||
b34976b6 | 972 | return TRUE; |
b49e97c9 TS |
973 | |
974 | error_return: | |
975 | if (epdr != NULL) | |
976 | free (epdr); | |
977 | if (rpdr != NULL) | |
978 | free (rpdr); | |
979 | if (esym != NULL) | |
980 | free (esym); | |
981 | if (ss != NULL) | |
982 | free (ss); | |
983 | if (sv != NULL) | |
984 | free (sv); | |
b34976b6 | 985 | return FALSE; |
b49e97c9 TS |
986 | } |
987 | ||
988 | /* Check the mips16 stubs for a particular symbol, and see if we can | |
989 | discard them. */ | |
990 | ||
b34976b6 | 991 | static bfd_boolean |
9719ad41 RS |
992 | mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h, |
993 | void *data ATTRIBUTE_UNUSED) | |
b49e97c9 TS |
994 | { |
995 | if (h->root.root.type == bfd_link_hash_warning) | |
996 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | |
997 | ||
998 | if (h->fn_stub != NULL | |
999 | && ! h->need_fn_stub) | |
1000 | { | |
1001 | /* We don't need the fn_stub; the only references to this symbol | |
1002 | are 16 bit calls. Clobber the size to 0 to prevent it from | |
1003 | being included in the link. */ | |
eea6121a | 1004 | h->fn_stub->size = 0; |
b49e97c9 TS |
1005 | h->fn_stub->flags &= ~SEC_RELOC; |
1006 | h->fn_stub->reloc_count = 0; | |
1007 | h->fn_stub->flags |= SEC_EXCLUDE; | |
1008 | } | |
1009 | ||
1010 | if (h->call_stub != NULL | |
1011 | && h->root.other == STO_MIPS16) | |
1012 | { | |
1013 | /* We don't need the call_stub; this is a 16 bit function, so | |
1014 | calls from other 16 bit functions are OK. Clobber the size | |
1015 | to 0 to prevent it from being included in the link. */ | |
eea6121a | 1016 | h->call_stub->size = 0; |
b49e97c9 TS |
1017 | h->call_stub->flags &= ~SEC_RELOC; |
1018 | h->call_stub->reloc_count = 0; | |
1019 | h->call_stub->flags |= SEC_EXCLUDE; | |
1020 | } | |
1021 | ||
1022 | if (h->call_fp_stub != NULL | |
1023 | && h->root.other == STO_MIPS16) | |
1024 | { | |
1025 | /* We don't need the call_stub; this is a 16 bit function, so | |
1026 | calls from other 16 bit functions are OK. Clobber the size | |
1027 | to 0 to prevent it from being included in the link. */ | |
eea6121a | 1028 | h->call_fp_stub->size = 0; |
b49e97c9 TS |
1029 | h->call_fp_stub->flags &= ~SEC_RELOC; |
1030 | h->call_fp_stub->reloc_count = 0; | |
1031 | h->call_fp_stub->flags |= SEC_EXCLUDE; | |
1032 | } | |
1033 | ||
b34976b6 | 1034 | return TRUE; |
b49e97c9 TS |
1035 | } |
1036 | \f | |
d6f16593 MR |
1037 | /* R_MIPS16_26 is used for the mips16 jal and jalx instructions. |
1038 | Most mips16 instructions are 16 bits, but these instructions | |
1039 | are 32 bits. | |
1040 | ||
1041 | The format of these instructions is: | |
1042 | ||
1043 | +--------------+--------------------------------+ | |
1044 | | JALX | X| Imm 20:16 | Imm 25:21 | | |
1045 | +--------------+--------------------------------+ | |
1046 | | Immediate 15:0 | | |
1047 | +-----------------------------------------------+ | |
1048 | ||
1049 | JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx. | |
1050 | Note that the immediate value in the first word is swapped. | |
1051 | ||
1052 | When producing a relocatable object file, R_MIPS16_26 is | |
1053 | handled mostly like R_MIPS_26. In particular, the addend is | |
1054 | stored as a straight 26-bit value in a 32-bit instruction. | |
1055 | (gas makes life simpler for itself by never adjusting a | |
1056 | R_MIPS16_26 reloc to be against a section, so the addend is | |
1057 | always zero). However, the 32 bit instruction is stored as 2 | |
1058 | 16-bit values, rather than a single 32-bit value. In a | |
1059 | big-endian file, the result is the same; in a little-endian | |
1060 | file, the two 16-bit halves of the 32 bit value are swapped. | |
1061 | This is so that a disassembler can recognize the jal | |
1062 | instruction. | |
1063 | ||
1064 | When doing a final link, R_MIPS16_26 is treated as a 32 bit | |
1065 | instruction stored as two 16-bit values. The addend A is the | |
1066 | contents of the targ26 field. The calculation is the same as | |
1067 | R_MIPS_26. When storing the calculated value, reorder the | |
1068 | immediate value as shown above, and don't forget to store the | |
1069 | value as two 16-bit values. | |
1070 | ||
1071 | To put it in MIPS ABI terms, the relocation field is T-targ26-16, | |
1072 | defined as | |
1073 | ||
1074 | big-endian: | |
1075 | +--------+----------------------+ | |
1076 | | | | | |
1077 | | | targ26-16 | | |
1078 | |31 26|25 0| | |
1079 | +--------+----------------------+ | |
1080 | ||
1081 | little-endian: | |
1082 | +----------+------+-------------+ | |
1083 | | | | | | |
1084 | | sub1 | | sub2 | | |
1085 | |0 9|10 15|16 31| | |
1086 | +----------+--------------------+ | |
1087 | where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is | |
1088 | ((sub1 << 16) | sub2)). | |
1089 | ||
1090 | When producing a relocatable object file, the calculation is | |
1091 | (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2) | |
1092 | When producing a fully linked file, the calculation is | |
1093 | let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2) | |
1094 | ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) | |
1095 | ||
1096 | R_MIPS16_GPREL is used for GP-relative addressing in mips16 | |
1097 | mode. A typical instruction will have a format like this: | |
1098 | ||
1099 | +--------------+--------------------------------+ | |
1100 | | EXTEND | Imm 10:5 | Imm 15:11 | | |
1101 | +--------------+--------------------------------+ | |
1102 | | Major | rx | ry | Imm 4:0 | | |
1103 | +--------------+--------------------------------+ | |
1104 | ||
1105 | EXTEND is the five bit value 11110. Major is the instruction | |
1106 | opcode. | |
1107 | ||
1108 | This is handled exactly like R_MIPS_GPREL16, except that the | |
1109 | addend is retrieved and stored as shown in this diagram; that | |
1110 | is, the Imm fields above replace the V-rel16 field. | |
1111 | ||
1112 | All we need to do here is shuffle the bits appropriately. As | |
1113 | above, the two 16-bit halves must be swapped on a | |
1114 | little-endian system. | |
1115 | ||
1116 | R_MIPS16_HI16 and R_MIPS16_LO16 are used in mips16 mode to | |
1117 | access data when neither GP-relative nor PC-relative addressing | |
1118 | can be used. They are handled like R_MIPS_HI16 and R_MIPS_LO16, | |
1119 | except that the addend is retrieved and stored as shown above | |
1120 | for R_MIPS16_GPREL. | |
1121 | */ | |
1122 | void | |
1123 | _bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type, | |
1124 | bfd_boolean jal_shuffle, bfd_byte *data) | |
1125 | { | |
1126 | bfd_vma extend, insn, val; | |
1127 | ||
1128 | if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL | |
1129 | && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16) | |
1130 | return; | |
1131 | ||
1132 | /* Pick up the mips16 extend instruction and the real instruction. */ | |
1133 | extend = bfd_get_16 (abfd, data); | |
1134 | insn = bfd_get_16 (abfd, data + 2); | |
1135 | if (r_type == R_MIPS16_26) | |
1136 | { | |
1137 | if (jal_shuffle) | |
1138 | val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11) | |
1139 | | ((extend & 0x1f) << 21) | insn; | |
1140 | else | |
1141 | val = extend << 16 | insn; | |
1142 | } | |
1143 | else | |
1144 | val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11) | |
1145 | | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f); | |
1146 | bfd_put_32 (abfd, val, data); | |
1147 | } | |
1148 | ||
1149 | void | |
1150 | _bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type, | |
1151 | bfd_boolean jal_shuffle, bfd_byte *data) | |
1152 | { | |
1153 | bfd_vma extend, insn, val; | |
1154 | ||
1155 | if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL | |
1156 | && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16) | |
1157 | return; | |
1158 | ||
1159 | val = bfd_get_32 (abfd, data); | |
1160 | if (r_type == R_MIPS16_26) | |
1161 | { | |
1162 | if (jal_shuffle) | |
1163 | { | |
1164 | insn = val & 0xffff; | |
1165 | extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0) | |
1166 | | ((val >> 21) & 0x1f); | |
1167 | } | |
1168 | else | |
1169 | { | |
1170 | insn = val & 0xffff; | |
1171 | extend = val >> 16; | |
1172 | } | |
1173 | } | |
1174 | else | |
1175 | { | |
1176 | insn = ((val >> 11) & 0xffe0) | (val & 0x1f); | |
1177 | extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0); | |
1178 | } | |
1179 | bfd_put_16 (abfd, insn, data + 2); | |
1180 | bfd_put_16 (abfd, extend, data); | |
1181 | } | |
1182 | ||
b49e97c9 | 1183 | bfd_reloc_status_type |
9719ad41 RS |
1184 | _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol, |
1185 | arelent *reloc_entry, asection *input_section, | |
1186 | bfd_boolean relocatable, void *data, bfd_vma gp) | |
b49e97c9 TS |
1187 | { |
1188 | bfd_vma relocation; | |
a7ebbfdf | 1189 | bfd_signed_vma val; |
30ac9238 | 1190 | bfd_reloc_status_type status; |
b49e97c9 TS |
1191 | |
1192 | if (bfd_is_com_section (symbol->section)) | |
1193 | relocation = 0; | |
1194 | else | |
1195 | relocation = symbol->value; | |
1196 | ||
1197 | relocation += symbol->section->output_section->vma; | |
1198 | relocation += symbol->section->output_offset; | |
1199 | ||
07515404 | 1200 | if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) |
b49e97c9 TS |
1201 | return bfd_reloc_outofrange; |
1202 | ||
b49e97c9 | 1203 | /* Set val to the offset into the section or symbol. */ |
a7ebbfdf TS |
1204 | val = reloc_entry->addend; |
1205 | ||
30ac9238 | 1206 | _bfd_mips_elf_sign_extend (val, 16); |
a7ebbfdf | 1207 | |
b49e97c9 | 1208 | /* Adjust val for the final section location and GP value. If we |
1049f94e | 1209 | are producing relocatable output, we don't want to do this for |
b49e97c9 | 1210 | an external symbol. */ |
1049f94e | 1211 | if (! relocatable |
b49e97c9 TS |
1212 | || (symbol->flags & BSF_SECTION_SYM) != 0) |
1213 | val += relocation - gp; | |
1214 | ||
a7ebbfdf TS |
1215 | if (reloc_entry->howto->partial_inplace) |
1216 | { | |
30ac9238 RS |
1217 | status = _bfd_relocate_contents (reloc_entry->howto, abfd, val, |
1218 | (bfd_byte *) data | |
1219 | + reloc_entry->address); | |
1220 | if (status != bfd_reloc_ok) | |
1221 | return status; | |
a7ebbfdf TS |
1222 | } |
1223 | else | |
1224 | reloc_entry->addend = val; | |
b49e97c9 | 1225 | |
1049f94e | 1226 | if (relocatable) |
b49e97c9 | 1227 | reloc_entry->address += input_section->output_offset; |
30ac9238 RS |
1228 | |
1229 | return bfd_reloc_ok; | |
1230 | } | |
1231 | ||
1232 | /* Used to store a REL high-part relocation such as R_MIPS_HI16 or | |
1233 | R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section | |
1234 | that contains the relocation field and DATA points to the start of | |
1235 | INPUT_SECTION. */ | |
1236 | ||
1237 | struct mips_hi16 | |
1238 | { | |
1239 | struct mips_hi16 *next; | |
1240 | bfd_byte *data; | |
1241 | asection *input_section; | |
1242 | arelent rel; | |
1243 | }; | |
1244 | ||
1245 | /* FIXME: This should not be a static variable. */ | |
1246 | ||
1247 | static struct mips_hi16 *mips_hi16_list; | |
1248 | ||
1249 | /* A howto special_function for REL *HI16 relocations. We can only | |
1250 | calculate the correct value once we've seen the partnering | |
1251 | *LO16 relocation, so just save the information for later. | |
1252 | ||
1253 | The ABI requires that the *LO16 immediately follow the *HI16. | |
1254 | However, as a GNU extension, we permit an arbitrary number of | |
1255 | *HI16s to be associated with a single *LO16. This significantly | |
1256 | simplies the relocation handling in gcc. */ | |
1257 | ||
1258 | bfd_reloc_status_type | |
1259 | _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry, | |
1260 | asymbol *symbol ATTRIBUTE_UNUSED, void *data, | |
1261 | asection *input_section, bfd *output_bfd, | |
1262 | char **error_message ATTRIBUTE_UNUSED) | |
1263 | { | |
1264 | struct mips_hi16 *n; | |
1265 | ||
07515404 | 1266 | if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) |
30ac9238 RS |
1267 | return bfd_reloc_outofrange; |
1268 | ||
1269 | n = bfd_malloc (sizeof *n); | |
1270 | if (n == NULL) | |
1271 | return bfd_reloc_outofrange; | |
1272 | ||
1273 | n->next = mips_hi16_list; | |
1274 | n->data = data; | |
1275 | n->input_section = input_section; | |
1276 | n->rel = *reloc_entry; | |
1277 | mips_hi16_list = n; | |
1278 | ||
1279 | if (output_bfd != NULL) | |
1280 | reloc_entry->address += input_section->output_offset; | |
1281 | ||
1282 | return bfd_reloc_ok; | |
1283 | } | |
1284 | ||
1285 | /* A howto special_function for REL R_MIPS_GOT16 relocations. This is just | |
1286 | like any other 16-bit relocation when applied to global symbols, but is | |
1287 | treated in the same as R_MIPS_HI16 when applied to local symbols. */ | |
1288 | ||
1289 | bfd_reloc_status_type | |
1290 | _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol, | |
1291 | void *data, asection *input_section, | |
1292 | bfd *output_bfd, char **error_message) | |
1293 | { | |
1294 | if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0 | |
1295 | || bfd_is_und_section (bfd_get_section (symbol)) | |
1296 | || bfd_is_com_section (bfd_get_section (symbol))) | |
1297 | /* The relocation is against a global symbol. */ | |
1298 | return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data, | |
1299 | input_section, output_bfd, | |
1300 | error_message); | |
1301 | ||
1302 | return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data, | |
1303 | input_section, output_bfd, error_message); | |
1304 | } | |
1305 | ||
1306 | /* A howto special_function for REL *LO16 relocations. The *LO16 itself | |
1307 | is a straightforward 16 bit inplace relocation, but we must deal with | |
1308 | any partnering high-part relocations as well. */ | |
1309 | ||
1310 | bfd_reloc_status_type | |
1311 | _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol, | |
1312 | void *data, asection *input_section, | |
1313 | bfd *output_bfd, char **error_message) | |
1314 | { | |
1315 | bfd_vma vallo; | |
d6f16593 | 1316 | bfd_byte *location = (bfd_byte *) data + reloc_entry->address; |
30ac9238 | 1317 | |
07515404 | 1318 | if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) |
30ac9238 RS |
1319 | return bfd_reloc_outofrange; |
1320 | ||
d6f16593 MR |
1321 | _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE, |
1322 | location); | |
1323 | vallo = bfd_get_32 (abfd, location); | |
1324 | _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE, | |
1325 | location); | |
1326 | ||
30ac9238 RS |
1327 | while (mips_hi16_list != NULL) |
1328 | { | |
1329 | bfd_reloc_status_type ret; | |
1330 | struct mips_hi16 *hi; | |
1331 | ||
1332 | hi = mips_hi16_list; | |
1333 | ||
1334 | /* R_MIPS_GOT16 relocations are something of a special case. We | |
1335 | want to install the addend in the same way as for a R_MIPS_HI16 | |
1336 | relocation (with a rightshift of 16). However, since GOT16 | |
1337 | relocations can also be used with global symbols, their howto | |
1338 | has a rightshift of 0. */ | |
1339 | if (hi->rel.howto->type == R_MIPS_GOT16) | |
1340 | hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE); | |
1341 | ||
1342 | /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any | |
1343 | carry or borrow will induce a change of +1 or -1 in the high part. */ | |
1344 | hi->rel.addend += (vallo + 0x8000) & 0xffff; | |
1345 | ||
30ac9238 RS |
1346 | ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data, |
1347 | hi->input_section, output_bfd, | |
1348 | error_message); | |
1349 | if (ret != bfd_reloc_ok) | |
1350 | return ret; | |
1351 | ||
1352 | mips_hi16_list = hi->next; | |
1353 | free (hi); | |
1354 | } | |
1355 | ||
1356 | return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data, | |
1357 | input_section, output_bfd, | |
1358 | error_message); | |
1359 | } | |
1360 | ||
1361 | /* A generic howto special_function. This calculates and installs the | |
1362 | relocation itself, thus avoiding the oft-discussed problems in | |
1363 | bfd_perform_relocation and bfd_install_relocation. */ | |
1364 | ||
1365 | bfd_reloc_status_type | |
1366 | _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry, | |
1367 | asymbol *symbol, void *data ATTRIBUTE_UNUSED, | |
1368 | asection *input_section, bfd *output_bfd, | |
1369 | char **error_message ATTRIBUTE_UNUSED) | |
1370 | { | |
1371 | bfd_signed_vma val; | |
1372 | bfd_reloc_status_type status; | |
1373 | bfd_boolean relocatable; | |
1374 | ||
1375 | relocatable = (output_bfd != NULL); | |
1376 | ||
07515404 | 1377 | if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) |
30ac9238 RS |
1378 | return bfd_reloc_outofrange; |
1379 | ||
1380 | /* Build up the field adjustment in VAL. */ | |
1381 | val = 0; | |
1382 | if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0) | |
1383 | { | |
1384 | /* Either we're calculating the final field value or we have a | |
1385 | relocation against a section symbol. Add in the section's | |
1386 | offset or address. */ | |
1387 | val += symbol->section->output_section->vma; | |
1388 | val += symbol->section->output_offset; | |
1389 | } | |
1390 | ||
1391 | if (!relocatable) | |
1392 | { | |
1393 | /* We're calculating the final field value. Add in the symbol's value | |
1394 | and, if pc-relative, subtract the address of the field itself. */ | |
1395 | val += symbol->value; | |
1396 | if (reloc_entry->howto->pc_relative) | |
1397 | { | |
1398 | val -= input_section->output_section->vma; | |
1399 | val -= input_section->output_offset; | |
1400 | val -= reloc_entry->address; | |
1401 | } | |
1402 | } | |
1403 | ||
1404 | /* VAL is now the final adjustment. If we're keeping this relocation | |
1405 | in the output file, and if the relocation uses a separate addend, | |
1406 | we just need to add VAL to that addend. Otherwise we need to add | |
1407 | VAL to the relocation field itself. */ | |
1408 | if (relocatable && !reloc_entry->howto->partial_inplace) | |
1409 | reloc_entry->addend += val; | |
1410 | else | |
1411 | { | |
d6f16593 MR |
1412 | bfd_byte *location = (bfd_byte *) data + reloc_entry->address; |
1413 | ||
30ac9238 RS |
1414 | /* Add in the separate addend, if any. */ |
1415 | val += reloc_entry->addend; | |
1416 | ||
1417 | /* Add VAL to the relocation field. */ | |
d6f16593 MR |
1418 | _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE, |
1419 | location); | |
30ac9238 | 1420 | status = _bfd_relocate_contents (reloc_entry->howto, abfd, val, |
d6f16593 MR |
1421 | location); |
1422 | _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE, | |
1423 | location); | |
1424 | ||
30ac9238 RS |
1425 | if (status != bfd_reloc_ok) |
1426 | return status; | |
1427 | } | |
1428 | ||
1429 | if (relocatable) | |
1430 | reloc_entry->address += input_section->output_offset; | |
b49e97c9 TS |
1431 | |
1432 | return bfd_reloc_ok; | |
1433 | } | |
1434 | \f | |
1435 | /* Swap an entry in a .gptab section. Note that these routines rely | |
1436 | on the equivalence of the two elements of the union. */ | |
1437 | ||
1438 | static void | |
9719ad41 RS |
1439 | bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex, |
1440 | Elf32_gptab *in) | |
b49e97c9 TS |
1441 | { |
1442 | in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value); | |
1443 | in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes); | |
1444 | } | |
1445 | ||
1446 | static void | |
9719ad41 RS |
1447 | bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in, |
1448 | Elf32_External_gptab *ex) | |
b49e97c9 TS |
1449 | { |
1450 | H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value); | |
1451 | H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes); | |
1452 | } | |
1453 | ||
1454 | static void | |
9719ad41 RS |
1455 | bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in, |
1456 | Elf32_External_compact_rel *ex) | |
b49e97c9 TS |
1457 | { |
1458 | H_PUT_32 (abfd, in->id1, ex->id1); | |
1459 | H_PUT_32 (abfd, in->num, ex->num); | |
1460 | H_PUT_32 (abfd, in->id2, ex->id2); | |
1461 | H_PUT_32 (abfd, in->offset, ex->offset); | |
1462 | H_PUT_32 (abfd, in->reserved0, ex->reserved0); | |
1463 | H_PUT_32 (abfd, in->reserved1, ex->reserved1); | |
1464 | } | |
1465 | ||
1466 | static void | |
9719ad41 RS |
1467 | bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in, |
1468 | Elf32_External_crinfo *ex) | |
b49e97c9 TS |
1469 | { |
1470 | unsigned long l; | |
1471 | ||
1472 | l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH) | |
1473 | | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH) | |
1474 | | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH) | |
1475 | | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH)); | |
1476 | H_PUT_32 (abfd, l, ex->info); | |
1477 | H_PUT_32 (abfd, in->konst, ex->konst); | |
1478 | H_PUT_32 (abfd, in->vaddr, ex->vaddr); | |
1479 | } | |
b49e97c9 TS |
1480 | \f |
1481 | /* A .reginfo section holds a single Elf32_RegInfo structure. These | |
1482 | routines swap this structure in and out. They are used outside of | |
1483 | BFD, so they are globally visible. */ | |
1484 | ||
1485 | void | |
9719ad41 RS |
1486 | bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex, |
1487 | Elf32_RegInfo *in) | |
b49e97c9 TS |
1488 | { |
1489 | in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask); | |
1490 | in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]); | |
1491 | in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]); | |
1492 | in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]); | |
1493 | in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]); | |
1494 | in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value); | |
1495 | } | |
1496 | ||
1497 | void | |
9719ad41 RS |
1498 | bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in, |
1499 | Elf32_External_RegInfo *ex) | |
b49e97c9 TS |
1500 | { |
1501 | H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask); | |
1502 | H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]); | |
1503 | H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]); | |
1504 | H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]); | |
1505 | H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]); | |
1506 | H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value); | |
1507 | } | |
1508 | ||
1509 | /* In the 64 bit ABI, the .MIPS.options section holds register | |
1510 | information in an Elf64_Reginfo structure. These routines swap | |
1511 | them in and out. They are globally visible because they are used | |
1512 | outside of BFD. These routines are here so that gas can call them | |
1513 | without worrying about whether the 64 bit ABI has been included. */ | |
1514 | ||
1515 | void | |
9719ad41 RS |
1516 | bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex, |
1517 | Elf64_Internal_RegInfo *in) | |
b49e97c9 TS |
1518 | { |
1519 | in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask); | |
1520 | in->ri_pad = H_GET_32 (abfd, ex->ri_pad); | |
1521 | in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]); | |
1522 | in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]); | |
1523 | in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]); | |
1524 | in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]); | |
1525 | in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value); | |
1526 | } | |
1527 | ||
1528 | void | |
9719ad41 RS |
1529 | bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in, |
1530 | Elf64_External_RegInfo *ex) | |
b49e97c9 TS |
1531 | { |
1532 | H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask); | |
1533 | H_PUT_32 (abfd, in->ri_pad, ex->ri_pad); | |
1534 | H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]); | |
1535 | H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]); | |
1536 | H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]); | |
1537 | H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]); | |
1538 | H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value); | |
1539 | } | |
1540 | ||
1541 | /* Swap in an options header. */ | |
1542 | ||
1543 | void | |
9719ad41 RS |
1544 | bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex, |
1545 | Elf_Internal_Options *in) | |
b49e97c9 TS |
1546 | { |
1547 | in->kind = H_GET_8 (abfd, ex->kind); | |
1548 | in->size = H_GET_8 (abfd, ex->size); | |
1549 | in->section = H_GET_16 (abfd, ex->section); | |
1550 | in->info = H_GET_32 (abfd, ex->info); | |
1551 | } | |
1552 | ||
1553 | /* Swap out an options header. */ | |
1554 | ||
1555 | void | |
9719ad41 RS |
1556 | bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in, |
1557 | Elf_External_Options *ex) | |
b49e97c9 TS |
1558 | { |
1559 | H_PUT_8 (abfd, in->kind, ex->kind); | |
1560 | H_PUT_8 (abfd, in->size, ex->size); | |
1561 | H_PUT_16 (abfd, in->section, ex->section); | |
1562 | H_PUT_32 (abfd, in->info, ex->info); | |
1563 | } | |
1564 | \f | |
1565 | /* This function is called via qsort() to sort the dynamic relocation | |
1566 | entries by increasing r_symndx value. */ | |
1567 | ||
1568 | static int | |
9719ad41 | 1569 | sort_dynamic_relocs (const void *arg1, const void *arg2) |
b49e97c9 | 1570 | { |
947216bf AM |
1571 | Elf_Internal_Rela int_reloc1; |
1572 | Elf_Internal_Rela int_reloc2; | |
b49e97c9 | 1573 | |
947216bf AM |
1574 | bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1); |
1575 | bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2); | |
b49e97c9 | 1576 | |
947216bf | 1577 | return ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info); |
b49e97c9 TS |
1578 | } |
1579 | ||
f4416af6 AO |
1580 | /* Like sort_dynamic_relocs, but used for elf64 relocations. */ |
1581 | ||
1582 | static int | |
7e3102a7 AM |
1583 | sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED, |
1584 | const void *arg2 ATTRIBUTE_UNUSED) | |
f4416af6 | 1585 | { |
7e3102a7 | 1586 | #ifdef BFD64 |
f4416af6 AO |
1587 | Elf_Internal_Rela int_reloc1[3]; |
1588 | Elf_Internal_Rela int_reloc2[3]; | |
1589 | ||
1590 | (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in) | |
1591 | (reldyn_sorting_bfd, arg1, int_reloc1); | |
1592 | (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in) | |
1593 | (reldyn_sorting_bfd, arg2, int_reloc2); | |
1594 | ||
1595 | return (ELF64_R_SYM (int_reloc1[0].r_info) | |
1596 | - ELF64_R_SYM (int_reloc2[0].r_info)); | |
7e3102a7 AM |
1597 | #else |
1598 | abort (); | |
1599 | #endif | |
f4416af6 AO |
1600 | } |
1601 | ||
1602 | ||
b49e97c9 TS |
1603 | /* This routine is used to write out ECOFF debugging external symbol |
1604 | information. It is called via mips_elf_link_hash_traverse. The | |
1605 | ECOFF external symbol information must match the ELF external | |
1606 | symbol information. Unfortunately, at this point we don't know | |
1607 | whether a symbol is required by reloc information, so the two | |
1608 | tables may wind up being different. We must sort out the external | |
1609 | symbol information before we can set the final size of the .mdebug | |
1610 | section, and we must set the size of the .mdebug section before we | |
1611 | can relocate any sections, and we can't know which symbols are | |
1612 | required by relocation until we relocate the sections. | |
1613 | Fortunately, it is relatively unlikely that any symbol will be | |
1614 | stripped but required by a reloc. In particular, it can not happen | |
1615 | when generating a final executable. */ | |
1616 | ||
b34976b6 | 1617 | static bfd_boolean |
9719ad41 | 1618 | mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data) |
b49e97c9 | 1619 | { |
9719ad41 | 1620 | struct extsym_info *einfo = data; |
b34976b6 | 1621 | bfd_boolean strip; |
b49e97c9 TS |
1622 | asection *sec, *output_section; |
1623 | ||
1624 | if (h->root.root.type == bfd_link_hash_warning) | |
1625 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | |
1626 | ||
1627 | if (h->root.indx == -2) | |
b34976b6 | 1628 | strip = FALSE; |
f5385ebf | 1629 | else if ((h->root.def_dynamic |
77cfaee6 AM |
1630 | || h->root.ref_dynamic |
1631 | || h->root.type == bfd_link_hash_new) | |
f5385ebf AM |
1632 | && !h->root.def_regular |
1633 | && !h->root.ref_regular) | |
b34976b6 | 1634 | strip = TRUE; |
b49e97c9 TS |
1635 | else if (einfo->info->strip == strip_all |
1636 | || (einfo->info->strip == strip_some | |
1637 | && bfd_hash_lookup (einfo->info->keep_hash, | |
1638 | h->root.root.root.string, | |
b34976b6 AM |
1639 | FALSE, FALSE) == NULL)) |
1640 | strip = TRUE; | |
b49e97c9 | 1641 | else |
b34976b6 | 1642 | strip = FALSE; |
b49e97c9 TS |
1643 | |
1644 | if (strip) | |
b34976b6 | 1645 | return TRUE; |
b49e97c9 TS |
1646 | |
1647 | if (h->esym.ifd == -2) | |
1648 | { | |
1649 | h->esym.jmptbl = 0; | |
1650 | h->esym.cobol_main = 0; | |
1651 | h->esym.weakext = 0; | |
1652 | h->esym.reserved = 0; | |
1653 | h->esym.ifd = ifdNil; | |
1654 | h->esym.asym.value = 0; | |
1655 | h->esym.asym.st = stGlobal; | |
1656 | ||
1657 | if (h->root.root.type == bfd_link_hash_undefined | |
1658 | || h->root.root.type == bfd_link_hash_undefweak) | |
1659 | { | |
1660 | const char *name; | |
1661 | ||
1662 | /* Use undefined class. Also, set class and type for some | |
1663 | special symbols. */ | |
1664 | name = h->root.root.root.string; | |
1665 | if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0 | |
1666 | || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0) | |
1667 | { | |
1668 | h->esym.asym.sc = scData; | |
1669 | h->esym.asym.st = stLabel; | |
1670 | h->esym.asym.value = 0; | |
1671 | } | |
1672 | else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0) | |
1673 | { | |
1674 | h->esym.asym.sc = scAbs; | |
1675 | h->esym.asym.st = stLabel; | |
1676 | h->esym.asym.value = | |
1677 | mips_elf_hash_table (einfo->info)->procedure_count; | |
1678 | } | |
4a14403c | 1679 | else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd)) |
b49e97c9 TS |
1680 | { |
1681 | h->esym.asym.sc = scAbs; | |
1682 | h->esym.asym.st = stLabel; | |
1683 | h->esym.asym.value = elf_gp (einfo->abfd); | |
1684 | } | |
1685 | else | |
1686 | h->esym.asym.sc = scUndefined; | |
1687 | } | |
1688 | else if (h->root.root.type != bfd_link_hash_defined | |
1689 | && h->root.root.type != bfd_link_hash_defweak) | |
1690 | h->esym.asym.sc = scAbs; | |
1691 | else | |
1692 | { | |
1693 | const char *name; | |
1694 | ||
1695 | sec = h->root.root.u.def.section; | |
1696 | output_section = sec->output_section; | |
1697 | ||
1698 | /* When making a shared library and symbol h is the one from | |
1699 | the another shared library, OUTPUT_SECTION may be null. */ | |
1700 | if (output_section == NULL) | |
1701 | h->esym.asym.sc = scUndefined; | |
1702 | else | |
1703 | { | |
1704 | name = bfd_section_name (output_section->owner, output_section); | |
1705 | ||
1706 | if (strcmp (name, ".text") == 0) | |
1707 | h->esym.asym.sc = scText; | |
1708 | else if (strcmp (name, ".data") == 0) | |
1709 | h->esym.asym.sc = scData; | |
1710 | else if (strcmp (name, ".sdata") == 0) | |
1711 | h->esym.asym.sc = scSData; | |
1712 | else if (strcmp (name, ".rodata") == 0 | |
1713 | || strcmp (name, ".rdata") == 0) | |
1714 | h->esym.asym.sc = scRData; | |
1715 | else if (strcmp (name, ".bss") == 0) | |
1716 | h->esym.asym.sc = scBss; | |
1717 | else if (strcmp (name, ".sbss") == 0) | |
1718 | h->esym.asym.sc = scSBss; | |
1719 | else if (strcmp (name, ".init") == 0) | |
1720 | h->esym.asym.sc = scInit; | |
1721 | else if (strcmp (name, ".fini") == 0) | |
1722 | h->esym.asym.sc = scFini; | |
1723 | else | |
1724 | h->esym.asym.sc = scAbs; | |
1725 | } | |
1726 | } | |
1727 | ||
1728 | h->esym.asym.reserved = 0; | |
1729 | h->esym.asym.index = indexNil; | |
1730 | } | |
1731 | ||
1732 | if (h->root.root.type == bfd_link_hash_common) | |
1733 | h->esym.asym.value = h->root.root.u.c.size; | |
1734 | else if (h->root.root.type == bfd_link_hash_defined | |
1735 | || h->root.root.type == bfd_link_hash_defweak) | |
1736 | { | |
1737 | if (h->esym.asym.sc == scCommon) | |
1738 | h->esym.asym.sc = scBss; | |
1739 | else if (h->esym.asym.sc == scSCommon) | |
1740 | h->esym.asym.sc = scSBss; | |
1741 | ||
1742 | sec = h->root.root.u.def.section; | |
1743 | output_section = sec->output_section; | |
1744 | if (output_section != NULL) | |
1745 | h->esym.asym.value = (h->root.root.u.def.value | |
1746 | + sec->output_offset | |
1747 | + output_section->vma); | |
1748 | else | |
1749 | h->esym.asym.value = 0; | |
1750 | } | |
f5385ebf | 1751 | else if (h->root.needs_plt) |
b49e97c9 TS |
1752 | { |
1753 | struct mips_elf_link_hash_entry *hd = h; | |
b34976b6 | 1754 | bfd_boolean no_fn_stub = h->no_fn_stub; |
b49e97c9 TS |
1755 | |
1756 | while (hd->root.root.type == bfd_link_hash_indirect) | |
1757 | { | |
1758 | hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link; | |
1759 | no_fn_stub = no_fn_stub || hd->no_fn_stub; | |
1760 | } | |
1761 | ||
1762 | if (!no_fn_stub) | |
1763 | { | |
1764 | /* Set type and value for a symbol with a function stub. */ | |
1765 | h->esym.asym.st = stProc; | |
1766 | sec = hd->root.root.u.def.section; | |
1767 | if (sec == NULL) | |
1768 | h->esym.asym.value = 0; | |
1769 | else | |
1770 | { | |
1771 | output_section = sec->output_section; | |
1772 | if (output_section != NULL) | |
1773 | h->esym.asym.value = (hd->root.plt.offset | |
1774 | + sec->output_offset | |
1775 | + output_section->vma); | |
1776 | else | |
1777 | h->esym.asym.value = 0; | |
1778 | } | |
b49e97c9 TS |
1779 | } |
1780 | } | |
1781 | ||
1782 | if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap, | |
1783 | h->root.root.root.string, | |
1784 | &h->esym)) | |
1785 | { | |
b34976b6 AM |
1786 | einfo->failed = TRUE; |
1787 | return FALSE; | |
b49e97c9 TS |
1788 | } |
1789 | ||
b34976b6 | 1790 | return TRUE; |
b49e97c9 TS |
1791 | } |
1792 | ||
1793 | /* A comparison routine used to sort .gptab entries. */ | |
1794 | ||
1795 | static int | |
9719ad41 | 1796 | gptab_compare (const void *p1, const void *p2) |
b49e97c9 | 1797 | { |
9719ad41 RS |
1798 | const Elf32_gptab *a1 = p1; |
1799 | const Elf32_gptab *a2 = p2; | |
b49e97c9 TS |
1800 | |
1801 | return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value; | |
1802 | } | |
1803 | \f | |
b15e6682 | 1804 | /* Functions to manage the got entry hash table. */ |
f4416af6 AO |
1805 | |
1806 | /* Use all 64 bits of a bfd_vma for the computation of a 32-bit | |
1807 | hash number. */ | |
1808 | ||
1809 | static INLINE hashval_t | |
9719ad41 | 1810 | mips_elf_hash_bfd_vma (bfd_vma addr) |
f4416af6 AO |
1811 | { |
1812 | #ifdef BFD64 | |
1813 | return addr + (addr >> 32); | |
1814 | #else | |
1815 | return addr; | |
1816 | #endif | |
1817 | } | |
1818 | ||
1819 | /* got_entries only match if they're identical, except for gotidx, so | |
1820 | use all fields to compute the hash, and compare the appropriate | |
1821 | union members. */ | |
1822 | ||
b15e6682 | 1823 | static hashval_t |
9719ad41 | 1824 | mips_elf_got_entry_hash (const void *entry_) |
b15e6682 AO |
1825 | { |
1826 | const struct mips_got_entry *entry = (struct mips_got_entry *)entry_; | |
1827 | ||
38985a1c | 1828 | return entry->symndx |
0f20cc35 | 1829 | + ((entry->tls_type & GOT_TLS_LDM) << 17) |
f4416af6 | 1830 | + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address) |
38985a1c AO |
1831 | : entry->abfd->id |
1832 | + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend) | |
1833 | : entry->d.h->root.root.root.hash)); | |
b15e6682 AO |
1834 | } |
1835 | ||
1836 | static int | |
9719ad41 | 1837 | mips_elf_got_entry_eq (const void *entry1, const void *entry2) |
b15e6682 AO |
1838 | { |
1839 | const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1; | |
1840 | const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2; | |
1841 | ||
0f20cc35 DJ |
1842 | /* An LDM entry can only match another LDM entry. */ |
1843 | if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM) | |
1844 | return 0; | |
1845 | ||
b15e6682 | 1846 | return e1->abfd == e2->abfd && e1->symndx == e2->symndx |
f4416af6 AO |
1847 | && (! e1->abfd ? e1->d.address == e2->d.address |
1848 | : e1->symndx >= 0 ? e1->d.addend == e2->d.addend | |
1849 | : e1->d.h == e2->d.h); | |
1850 | } | |
1851 | ||
1852 | /* multi_got_entries are still a match in the case of global objects, | |
1853 | even if the input bfd in which they're referenced differs, so the | |
1854 | hash computation and compare functions are adjusted | |
1855 | accordingly. */ | |
1856 | ||
1857 | static hashval_t | |
9719ad41 | 1858 | mips_elf_multi_got_entry_hash (const void *entry_) |
f4416af6 AO |
1859 | { |
1860 | const struct mips_got_entry *entry = (struct mips_got_entry *)entry_; | |
1861 | ||
1862 | return entry->symndx | |
1863 | + (! entry->abfd | |
1864 | ? mips_elf_hash_bfd_vma (entry->d.address) | |
1865 | : entry->symndx >= 0 | |
0f20cc35 DJ |
1866 | ? ((entry->tls_type & GOT_TLS_LDM) |
1867 | ? (GOT_TLS_LDM << 17) | |
1868 | : (entry->abfd->id | |
1869 | + mips_elf_hash_bfd_vma (entry->d.addend))) | |
f4416af6 AO |
1870 | : entry->d.h->root.root.root.hash); |
1871 | } | |
1872 | ||
1873 | static int | |
9719ad41 | 1874 | mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2) |
f4416af6 AO |
1875 | { |
1876 | const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1; | |
1877 | const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2; | |
1878 | ||
0f20cc35 DJ |
1879 | /* Any two LDM entries match. */ |
1880 | if (e1->tls_type & e2->tls_type & GOT_TLS_LDM) | |
1881 | return 1; | |
1882 | ||
1883 | /* Nothing else matches an LDM entry. */ | |
1884 | if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM) | |
1885 | return 0; | |
1886 | ||
f4416af6 AO |
1887 | return e1->symndx == e2->symndx |
1888 | && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend | |
1889 | : e1->abfd == NULL || e2->abfd == NULL | |
1890 | ? e1->abfd == e2->abfd && e1->d.address == e2->d.address | |
1891 | : e1->d.h == e2->d.h); | |
b15e6682 AO |
1892 | } |
1893 | \f | |
f4416af6 AO |
1894 | /* Returns the dynamic relocation section for DYNOBJ. */ |
1895 | ||
1896 | static asection * | |
9719ad41 | 1897 | mips_elf_rel_dyn_section (bfd *dynobj, bfd_boolean create_p) |
f4416af6 AO |
1898 | { |
1899 | static const char dname[] = ".rel.dyn"; | |
1900 | asection *sreloc; | |
1901 | ||
1902 | sreloc = bfd_get_section_by_name (dynobj, dname); | |
1903 | if (sreloc == NULL && create_p) | |
1904 | { | |
1905 | sreloc = bfd_make_section (dynobj, dname); | |
1906 | if (sreloc == NULL | |
1907 | || ! bfd_set_section_flags (dynobj, sreloc, | |
1908 | (SEC_ALLOC | |
1909 | | SEC_LOAD | |
1910 | | SEC_HAS_CONTENTS | |
1911 | | SEC_IN_MEMORY | |
1912 | | SEC_LINKER_CREATED | |
1913 | | SEC_READONLY)) | |
1914 | || ! bfd_set_section_alignment (dynobj, sreloc, | |
d80dcc6a | 1915 | MIPS_ELF_LOG_FILE_ALIGN (dynobj))) |
f4416af6 AO |
1916 | return NULL; |
1917 | } | |
1918 | return sreloc; | |
1919 | } | |
1920 | ||
b49e97c9 TS |
1921 | /* Returns the GOT section for ABFD. */ |
1922 | ||
1923 | static asection * | |
9719ad41 | 1924 | mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded) |
b49e97c9 | 1925 | { |
f4416af6 AO |
1926 | asection *sgot = bfd_get_section_by_name (abfd, ".got"); |
1927 | if (sgot == NULL | |
1928 | || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0)) | |
1929 | return NULL; | |
1930 | return sgot; | |
b49e97c9 TS |
1931 | } |
1932 | ||
1933 | /* Returns the GOT information associated with the link indicated by | |
1934 | INFO. If SGOTP is non-NULL, it is filled in with the GOT | |
1935 | section. */ | |
1936 | ||
1937 | static struct mips_got_info * | |
9719ad41 | 1938 | mips_elf_got_info (bfd *abfd, asection **sgotp) |
b49e97c9 TS |
1939 | { |
1940 | asection *sgot; | |
1941 | struct mips_got_info *g; | |
1942 | ||
f4416af6 | 1943 | sgot = mips_elf_got_section (abfd, TRUE); |
b49e97c9 | 1944 | BFD_ASSERT (sgot != NULL); |
f0abc2a1 AM |
1945 | BFD_ASSERT (mips_elf_section_data (sgot) != NULL); |
1946 | g = mips_elf_section_data (sgot)->u.got_info; | |
b49e97c9 TS |
1947 | BFD_ASSERT (g != NULL); |
1948 | ||
1949 | if (sgotp) | |
f4416af6 AO |
1950 | *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL; |
1951 | ||
b49e97c9 TS |
1952 | return g; |
1953 | } | |
1954 | ||
0f20cc35 DJ |
1955 | /* Count the number of relocations needed for a TLS GOT entry, with |
1956 | access types from TLS_TYPE, and symbol H (or a local symbol if H | |
1957 | is NULL). */ | |
1958 | ||
1959 | static int | |
1960 | mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type, | |
1961 | struct elf_link_hash_entry *h) | |
1962 | { | |
1963 | int indx = 0; | |
1964 | int ret = 0; | |
1965 | bfd_boolean need_relocs = FALSE; | |
1966 | bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created; | |
1967 | ||
1968 | if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h) | |
1969 | && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h))) | |
1970 | indx = h->dynindx; | |
1971 | ||
1972 | if ((info->shared || indx != 0) | |
1973 | && (h == NULL | |
1974 | || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT | |
1975 | || h->root.type != bfd_link_hash_undefweak)) | |
1976 | need_relocs = TRUE; | |
1977 | ||
1978 | if (!need_relocs) | |
1979 | return FALSE; | |
1980 | ||
1981 | if (tls_type & GOT_TLS_GD) | |
1982 | { | |
1983 | ret++; | |
1984 | if (indx != 0) | |
1985 | ret++; | |
1986 | } | |
1987 | ||
1988 | if (tls_type & GOT_TLS_IE) | |
1989 | ret++; | |
1990 | ||
1991 | if ((tls_type & GOT_TLS_LDM) && info->shared) | |
1992 | ret++; | |
1993 | ||
1994 | return ret; | |
1995 | } | |
1996 | ||
1997 | /* Count the number of TLS relocations required for the GOT entry in | |
1998 | ARG1, if it describes a local symbol. */ | |
1999 | ||
2000 | static int | |
2001 | mips_elf_count_local_tls_relocs (void **arg1, void *arg2) | |
2002 | { | |
2003 | struct mips_got_entry *entry = * (struct mips_got_entry **) arg1; | |
2004 | struct mips_elf_count_tls_arg *arg = arg2; | |
2005 | ||
2006 | if (entry->abfd != NULL && entry->symndx != -1) | |
2007 | arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL); | |
2008 | ||
2009 | return 1; | |
2010 | } | |
2011 | ||
2012 | /* Count the number of TLS GOT entries required for the global (or | |
2013 | forced-local) symbol in ARG1. */ | |
2014 | ||
2015 | static int | |
2016 | mips_elf_count_global_tls_entries (void *arg1, void *arg2) | |
2017 | { | |
2018 | struct mips_elf_link_hash_entry *hm | |
2019 | = (struct mips_elf_link_hash_entry *) arg1; | |
2020 | struct mips_elf_count_tls_arg *arg = arg2; | |
2021 | ||
2022 | if (hm->tls_type & GOT_TLS_GD) | |
2023 | arg->needed += 2; | |
2024 | if (hm->tls_type & GOT_TLS_IE) | |
2025 | arg->needed += 1; | |
2026 | ||
2027 | return 1; | |
2028 | } | |
2029 | ||
2030 | /* Count the number of TLS relocations required for the global (or | |
2031 | forced-local) symbol in ARG1. */ | |
2032 | ||
2033 | static int | |
2034 | mips_elf_count_global_tls_relocs (void *arg1, void *arg2) | |
2035 | { | |
2036 | struct mips_elf_link_hash_entry *hm | |
2037 | = (struct mips_elf_link_hash_entry *) arg1; | |
2038 | struct mips_elf_count_tls_arg *arg = arg2; | |
2039 | ||
2040 | arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root); | |
2041 | ||
2042 | return 1; | |
2043 | } | |
2044 | ||
2045 | /* Output a simple dynamic relocation into SRELOC. */ | |
2046 | ||
2047 | static void | |
2048 | mips_elf_output_dynamic_relocation (bfd *output_bfd, | |
2049 | asection *sreloc, | |
2050 | unsigned long indx, | |
2051 | int r_type, | |
2052 | bfd_vma offset) | |
2053 | { | |
2054 | Elf_Internal_Rela rel[3]; | |
2055 | ||
2056 | memset (rel, 0, sizeof (rel)); | |
2057 | ||
2058 | rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type); | |
2059 | rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset; | |
2060 | ||
2061 | if (ABI_64_P (output_bfd)) | |
2062 | { | |
2063 | (*get_elf_backend_data (output_bfd)->s->swap_reloc_out) | |
2064 | (output_bfd, &rel[0], | |
2065 | (sreloc->contents | |
2066 | + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel))); | |
2067 | } | |
2068 | else | |
2069 | bfd_elf32_swap_reloc_out | |
2070 | (output_bfd, &rel[0], | |
2071 | (sreloc->contents | |
2072 | + sreloc->reloc_count * sizeof (Elf32_External_Rel))); | |
2073 | ++sreloc->reloc_count; | |
2074 | } | |
2075 | ||
2076 | /* Initialize a set of TLS GOT entries for one symbol. */ | |
2077 | ||
2078 | static void | |
2079 | mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset, | |
2080 | unsigned char *tls_type_p, | |
2081 | struct bfd_link_info *info, | |
2082 | struct mips_elf_link_hash_entry *h, | |
2083 | bfd_vma value) | |
2084 | { | |
2085 | int indx; | |
2086 | asection *sreloc, *sgot; | |
2087 | bfd_vma offset, offset2; | |
2088 | bfd *dynobj; | |
2089 | bfd_boolean need_relocs = FALSE; | |
2090 | ||
2091 | dynobj = elf_hash_table (info)->dynobj; | |
2092 | sgot = mips_elf_got_section (dynobj, FALSE); | |
2093 | ||
2094 | indx = 0; | |
2095 | if (h != NULL) | |
2096 | { | |
2097 | bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created; | |
2098 | ||
2099 | if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root) | |
2100 | && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root))) | |
2101 | indx = h->root.dynindx; | |
2102 | } | |
2103 | ||
2104 | if (*tls_type_p & GOT_TLS_DONE) | |
2105 | return; | |
2106 | ||
2107 | if ((info->shared || indx != 0) | |
2108 | && (h == NULL | |
2109 | || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT | |
2110 | || h->root.type != bfd_link_hash_undefweak)) | |
2111 | need_relocs = TRUE; | |
2112 | ||
2113 | /* MINUS_ONE means the symbol is not defined in this object. It may not | |
2114 | be defined at all; assume that the value doesn't matter in that | |
2115 | case. Otherwise complain if we would use the value. */ | |
2116 | BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs) | |
2117 | || h->root.root.type == bfd_link_hash_undefweak); | |
2118 | ||
2119 | /* Emit necessary relocations. */ | |
2120 | sreloc = mips_elf_rel_dyn_section (dynobj, FALSE); | |
2121 | ||
2122 | /* General Dynamic. */ | |
2123 | if (*tls_type_p & GOT_TLS_GD) | |
2124 | { | |
2125 | offset = got_offset; | |
2126 | offset2 = offset + MIPS_ELF_GOT_SIZE (abfd); | |
2127 | ||
2128 | if (need_relocs) | |
2129 | { | |
2130 | mips_elf_output_dynamic_relocation | |
2131 | (abfd, sreloc, indx, | |
2132 | ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32, | |
2133 | sgot->output_offset + sgot->output_section->vma + offset); | |
2134 | ||
2135 | if (indx) | |
2136 | mips_elf_output_dynamic_relocation | |
2137 | (abfd, sreloc, indx, | |
2138 | ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32, | |
2139 | sgot->output_offset + sgot->output_section->vma + offset2); | |
2140 | else | |
2141 | MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info), | |
2142 | sgot->contents + offset2); | |
2143 | } | |
2144 | else | |
2145 | { | |
2146 | MIPS_ELF_PUT_WORD (abfd, 1, | |
2147 | sgot->contents + offset); | |
2148 | MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info), | |
2149 | sgot->contents + offset2); | |
2150 | } | |
2151 | ||
2152 | got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd); | |
2153 | } | |
2154 | ||
2155 | /* Initial Exec model. */ | |
2156 | if (*tls_type_p & GOT_TLS_IE) | |
2157 | { | |
2158 | offset = got_offset; | |
2159 | ||
2160 | if (need_relocs) | |
2161 | { | |
2162 | if (indx == 0) | |
2163 | MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma, | |
2164 | sgot->contents + offset); | |
2165 | else | |
2166 | MIPS_ELF_PUT_WORD (abfd, 0, | |
2167 | sgot->contents + offset); | |
2168 | ||
2169 | mips_elf_output_dynamic_relocation | |
2170 | (abfd, sreloc, indx, | |
2171 | ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32, | |
2172 | sgot->output_offset + sgot->output_section->vma + offset); | |
2173 | } | |
2174 | else | |
2175 | MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info), | |
2176 | sgot->contents + offset); | |
2177 | } | |
2178 | ||
2179 | if (*tls_type_p & GOT_TLS_LDM) | |
2180 | { | |
2181 | /* The initial offset is zero, and the LD offsets will include the | |
2182 | bias by DTP_OFFSET. */ | |
2183 | MIPS_ELF_PUT_WORD (abfd, 0, | |
2184 | sgot->contents + got_offset | |
2185 | + MIPS_ELF_GOT_SIZE (abfd)); | |
2186 | ||
2187 | if (!info->shared) | |
2188 | MIPS_ELF_PUT_WORD (abfd, 1, | |
2189 | sgot->contents + got_offset); | |
2190 | else | |
2191 | mips_elf_output_dynamic_relocation | |
2192 | (abfd, sreloc, indx, | |
2193 | ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32, | |
2194 | sgot->output_offset + sgot->output_section->vma + got_offset); | |
2195 | } | |
2196 | ||
2197 | *tls_type_p |= GOT_TLS_DONE; | |
2198 | } | |
2199 | ||
2200 | /* Return the GOT index to use for a relocation of type R_TYPE against | |
2201 | a symbol accessed using TLS_TYPE models. The GOT entries for this | |
2202 | symbol in this GOT start at GOT_INDEX. This function initializes the | |
2203 | GOT entries and corresponding relocations. */ | |
2204 | ||
2205 | static bfd_vma | |
2206 | mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type, | |
2207 | int r_type, struct bfd_link_info *info, | |
2208 | struct mips_elf_link_hash_entry *h, bfd_vma symbol) | |
2209 | { | |
2210 | BFD_ASSERT (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS_TLS_GD | |
2211 | || r_type == R_MIPS_TLS_LDM); | |
2212 | ||
2213 | mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol); | |
2214 | ||
2215 | if (r_type == R_MIPS_TLS_GOTTPREL) | |
2216 | { | |
2217 | BFD_ASSERT (*tls_type & GOT_TLS_IE); | |
2218 | if (*tls_type & GOT_TLS_GD) | |
2219 | return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd); | |
2220 | else | |
2221 | return got_index; | |
2222 | } | |
2223 | ||
2224 | if (r_type == R_MIPS_TLS_GD) | |
2225 | { | |
2226 | BFD_ASSERT (*tls_type & GOT_TLS_GD); | |
2227 | return got_index; | |
2228 | } | |
2229 | ||
2230 | if (r_type == R_MIPS_TLS_LDM) | |
2231 | { | |
2232 | BFD_ASSERT (*tls_type & GOT_TLS_LDM); | |
2233 | return got_index; | |
2234 | } | |
2235 | ||
2236 | return got_index; | |
2237 | } | |
2238 | ||
b49e97c9 | 2239 | /* Returns the GOT offset at which the indicated address can be found. |
0f20cc35 DJ |
2240 | If there is not yet a GOT entry for this value, create one. If |
2241 | R_SYMNDX refers to a TLS symbol, create a TLS GOT entry instead. | |
2242 | Returns -1 if no satisfactory GOT offset can be found. */ | |
b49e97c9 TS |
2243 | |
2244 | static bfd_vma | |
9719ad41 | 2245 | mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info, |
0f20cc35 DJ |
2246 | bfd_vma value, unsigned long r_symndx, |
2247 | struct mips_elf_link_hash_entry *h, int r_type) | |
b49e97c9 TS |
2248 | { |
2249 | asection *sgot; | |
2250 | struct mips_got_info *g; | |
b15e6682 | 2251 | struct mips_got_entry *entry; |
b49e97c9 TS |
2252 | |
2253 | g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot); | |
2254 | ||
0f20cc35 DJ |
2255 | entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value, |
2256 | r_symndx, h, r_type); | |
2257 | if (!entry) | |
b15e6682 | 2258 | return MINUS_ONE; |
0f20cc35 DJ |
2259 | |
2260 | if (TLS_RELOC_P (r_type)) | |
2261 | return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type, r_type, | |
2262 | info, h, value); | |
2263 | else | |
2264 | return entry->gotidx; | |
b49e97c9 TS |
2265 | } |
2266 | ||
2267 | /* Returns the GOT index for the global symbol indicated by H. */ | |
2268 | ||
2269 | static bfd_vma | |
0f20cc35 DJ |
2270 | mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h, |
2271 | int r_type, struct bfd_link_info *info) | |
b49e97c9 TS |
2272 | { |
2273 | bfd_vma index; | |
2274 | asection *sgot; | |
f4416af6 | 2275 | struct mips_got_info *g, *gg; |
d0c7ff07 | 2276 | long global_got_dynindx = 0; |
b49e97c9 | 2277 | |
f4416af6 AO |
2278 | gg = g = mips_elf_got_info (abfd, &sgot); |
2279 | if (g->bfd2got && ibfd) | |
2280 | { | |
2281 | struct mips_got_entry e, *p; | |
143d77c5 | 2282 | |
f4416af6 AO |
2283 | BFD_ASSERT (h->dynindx >= 0); |
2284 | ||
2285 | g = mips_elf_got_for_ibfd (g, ibfd); | |
0f20cc35 | 2286 | if (g->next != gg || TLS_RELOC_P (r_type)) |
f4416af6 AO |
2287 | { |
2288 | e.abfd = ibfd; | |
2289 | e.symndx = -1; | |
2290 | e.d.h = (struct mips_elf_link_hash_entry *)h; | |
0f20cc35 | 2291 | e.tls_type = 0; |
f4416af6 | 2292 | |
9719ad41 | 2293 | p = htab_find (g->got_entries, &e); |
f4416af6 AO |
2294 | |
2295 | BFD_ASSERT (p->gotidx > 0); | |
0f20cc35 DJ |
2296 | |
2297 | if (TLS_RELOC_P (r_type)) | |
2298 | { | |
2299 | bfd_vma value = MINUS_ONE; | |
2300 | if ((h->root.type == bfd_link_hash_defined | |
2301 | || h->root.type == bfd_link_hash_defweak) | |
2302 | && h->root.u.def.section->output_section) | |
2303 | value = (h->root.u.def.value | |
2304 | + h->root.u.def.section->output_offset | |
2305 | + h->root.u.def.section->output_section->vma); | |
2306 | ||
2307 | return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type, | |
2308 | info, e.d.h, value); | |
2309 | } | |
2310 | else | |
2311 | return p->gotidx; | |
f4416af6 AO |
2312 | } |
2313 | } | |
2314 | ||
2315 | if (gg->global_gotsym != NULL) | |
2316 | global_got_dynindx = gg->global_gotsym->dynindx; | |
b49e97c9 | 2317 | |
0f20cc35 DJ |
2318 | if (TLS_RELOC_P (r_type)) |
2319 | { | |
2320 | struct mips_elf_link_hash_entry *hm | |
2321 | = (struct mips_elf_link_hash_entry *) h; | |
2322 | bfd_vma value = MINUS_ONE; | |
2323 | ||
2324 | if ((h->root.type == bfd_link_hash_defined | |
2325 | || h->root.type == bfd_link_hash_defweak) | |
2326 | && h->root.u.def.section->output_section) | |
2327 | value = (h->root.u.def.value | |
2328 | + h->root.u.def.section->output_offset | |
2329 | + h->root.u.def.section->output_section->vma); | |
2330 | ||
2331 | index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type, | |
2332 | r_type, info, hm, value); | |
2333 | } | |
2334 | else | |
2335 | { | |
2336 | /* Once we determine the global GOT entry with the lowest dynamic | |
2337 | symbol table index, we must put all dynamic symbols with greater | |
2338 | indices into the GOT. That makes it easy to calculate the GOT | |
2339 | offset. */ | |
2340 | BFD_ASSERT (h->dynindx >= global_got_dynindx); | |
2341 | index = ((h->dynindx - global_got_dynindx + g->local_gotno) | |
2342 | * MIPS_ELF_GOT_SIZE (abfd)); | |
2343 | } | |
eea6121a | 2344 | BFD_ASSERT (index < sgot->size); |
b49e97c9 TS |
2345 | |
2346 | return index; | |
2347 | } | |
2348 | ||
2349 | /* Find a GOT entry that is within 32KB of the VALUE. These entries | |
2350 | are supposed to be placed at small offsets in the GOT, i.e., | |
2351 | within 32KB of GP. Return the index into the GOT for this page, | |
2352 | and store the offset from this entry to the desired address in | |
2353 | OFFSETP, if it is non-NULL. */ | |
2354 | ||
2355 | static bfd_vma | |
9719ad41 RS |
2356 | mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info, |
2357 | bfd_vma value, bfd_vma *offsetp) | |
b49e97c9 TS |
2358 | { |
2359 | asection *sgot; | |
2360 | struct mips_got_info *g; | |
b15e6682 AO |
2361 | bfd_vma index; |
2362 | struct mips_got_entry *entry; | |
b49e97c9 TS |
2363 | |
2364 | g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot); | |
2365 | ||
f4416af6 | 2366 | entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, |
b15e6682 | 2367 | (value + 0x8000) |
0f20cc35 DJ |
2368 | & (~(bfd_vma)0xffff), 0, |
2369 | NULL, R_MIPS_GOT_PAGE); | |
b49e97c9 | 2370 | |
b15e6682 AO |
2371 | if (!entry) |
2372 | return MINUS_ONE; | |
143d77c5 | 2373 | |
b15e6682 | 2374 | index = entry->gotidx; |
b49e97c9 TS |
2375 | |
2376 | if (offsetp) | |
f4416af6 | 2377 | *offsetp = value - entry->d.address; |
b49e97c9 TS |
2378 | |
2379 | return index; | |
2380 | } | |
2381 | ||
2382 | /* Find a GOT entry whose higher-order 16 bits are the same as those | |
2383 | for value. Return the index into the GOT for this entry. */ | |
2384 | ||
2385 | static bfd_vma | |
9719ad41 RS |
2386 | mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info, |
2387 | bfd_vma value, bfd_boolean external) | |
b49e97c9 TS |
2388 | { |
2389 | asection *sgot; | |
2390 | struct mips_got_info *g; | |
b15e6682 | 2391 | struct mips_got_entry *entry; |
b49e97c9 TS |
2392 | |
2393 | if (! external) | |
2394 | { | |
2395 | /* Although the ABI says that it is "the high-order 16 bits" that we | |
2396 | want, it is really the %high value. The complete value is | |
2397 | calculated with a `addiu' of a LO16 relocation, just as with a | |
2398 | HI16/LO16 pair. */ | |
2399 | value = mips_elf_high (value) << 16; | |
2400 | } | |
2401 | ||
2402 | g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot); | |
2403 | ||
0f20cc35 DJ |
2404 | entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value, 0, NULL, |
2405 | R_MIPS_GOT16); | |
b15e6682 AO |
2406 | if (entry) |
2407 | return entry->gotidx; | |
2408 | else | |
2409 | return MINUS_ONE; | |
b49e97c9 TS |
2410 | } |
2411 | ||
2412 | /* Returns the offset for the entry at the INDEXth position | |
2413 | in the GOT. */ | |
2414 | ||
2415 | static bfd_vma | |
9719ad41 RS |
2416 | mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd, |
2417 | bfd *input_bfd, bfd_vma index) | |
b49e97c9 TS |
2418 | { |
2419 | asection *sgot; | |
2420 | bfd_vma gp; | |
f4416af6 | 2421 | struct mips_got_info *g; |
b49e97c9 | 2422 | |
f4416af6 AO |
2423 | g = mips_elf_got_info (dynobj, &sgot); |
2424 | gp = _bfd_get_gp_value (output_bfd) | |
2425 | + mips_elf_adjust_gp (output_bfd, g, input_bfd); | |
143d77c5 | 2426 | |
f4416af6 | 2427 | return sgot->output_section->vma + sgot->output_offset + index - gp; |
b49e97c9 TS |
2428 | } |
2429 | ||
2430 | /* Create a local GOT entry for VALUE. Return the index of the entry, | |
0f20cc35 DJ |
2431 | or -1 if it could not be created. If R_SYMNDX refers to a TLS symbol, |
2432 | create a TLS entry instead. */ | |
b49e97c9 | 2433 | |
b15e6682 | 2434 | static struct mips_got_entry * |
9719ad41 RS |
2435 | mips_elf_create_local_got_entry (bfd *abfd, bfd *ibfd, |
2436 | struct mips_got_info *gg, | |
0f20cc35 DJ |
2437 | asection *sgot, bfd_vma value, |
2438 | unsigned long r_symndx, | |
2439 | struct mips_elf_link_hash_entry *h, | |
2440 | int r_type) | |
b49e97c9 | 2441 | { |
b15e6682 | 2442 | struct mips_got_entry entry, **loc; |
f4416af6 | 2443 | struct mips_got_info *g; |
b15e6682 | 2444 | |
f4416af6 AO |
2445 | entry.abfd = NULL; |
2446 | entry.symndx = -1; | |
2447 | entry.d.address = value; | |
0f20cc35 | 2448 | entry.tls_type = 0; |
f4416af6 AO |
2449 | |
2450 | g = mips_elf_got_for_ibfd (gg, ibfd); | |
2451 | if (g == NULL) | |
2452 | { | |
2453 | g = mips_elf_got_for_ibfd (gg, abfd); | |
2454 | BFD_ASSERT (g != NULL); | |
2455 | } | |
b15e6682 | 2456 | |
0f20cc35 DJ |
2457 | /* We might have a symbol, H, if it has been forced local. Use the |
2458 | global entry then. It doesn't matter whether an entry is local | |
2459 | or global for TLS, since the dynamic linker does not | |
2460 | automatically relocate TLS GOT entries. */ | |
2461 | BFD_ASSERT (h == NULL || h->forced_local); | |
2462 | if (TLS_RELOC_P (r_type)) | |
2463 | { | |
2464 | struct mips_got_entry *p; | |
2465 | ||
2466 | entry.abfd = ibfd; | |
2467 | if (r_type == R_MIPS_TLS_LDM) | |
2468 | { | |
2469 | entry.tls_type = GOT_TLS_LDM; | |
2470 | entry.symndx = 0; | |
2471 | entry.d.addend = 0; | |
2472 | } | |
2473 | else if (h == NULL) | |
2474 | { | |
2475 | entry.symndx = r_symndx; | |
2476 | entry.d.addend = 0; | |
2477 | } | |
2478 | else | |
2479 | entry.d.h = h; | |
2480 | ||
2481 | p = (struct mips_got_entry *) | |
2482 | htab_find (g->got_entries, &entry); | |
2483 | ||
2484 | BFD_ASSERT (p); | |
2485 | return p; | |
2486 | } | |
2487 | ||
b15e6682 AO |
2488 | loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry, |
2489 | INSERT); | |
2490 | if (*loc) | |
2491 | return *loc; | |
143d77c5 | 2492 | |
b15e6682 | 2493 | entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++; |
0f20cc35 | 2494 | entry.tls_type = 0; |
b15e6682 AO |
2495 | |
2496 | *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry); | |
2497 | ||
2498 | if (! *loc) | |
2499 | return NULL; | |
143d77c5 | 2500 | |
b15e6682 AO |
2501 | memcpy (*loc, &entry, sizeof entry); |
2502 | ||
b49e97c9 TS |
2503 | if (g->assigned_gotno >= g->local_gotno) |
2504 | { | |
f4416af6 | 2505 | (*loc)->gotidx = -1; |
b49e97c9 TS |
2506 | /* We didn't allocate enough space in the GOT. */ |
2507 | (*_bfd_error_handler) | |
2508 | (_("not enough GOT space for local GOT entries")); | |
2509 | bfd_set_error (bfd_error_bad_value); | |
b15e6682 | 2510 | return NULL; |
b49e97c9 TS |
2511 | } |
2512 | ||
2513 | MIPS_ELF_PUT_WORD (abfd, value, | |
b15e6682 AO |
2514 | (sgot->contents + entry.gotidx)); |
2515 | ||
2516 | return *loc; | |
b49e97c9 TS |
2517 | } |
2518 | ||
2519 | /* Sort the dynamic symbol table so that symbols that need GOT entries | |
2520 | appear towards the end. This reduces the amount of GOT space | |
2521 | required. MAX_LOCAL is used to set the number of local symbols | |
2522 | known to be in the dynamic symbol table. During | |
2523 | _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the | |
2524 | section symbols are added and the count is higher. */ | |
2525 | ||
b34976b6 | 2526 | static bfd_boolean |
9719ad41 | 2527 | mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local) |
b49e97c9 TS |
2528 | { |
2529 | struct mips_elf_hash_sort_data hsd; | |
2530 | struct mips_got_info *g; | |
2531 | bfd *dynobj; | |
2532 | ||
2533 | dynobj = elf_hash_table (info)->dynobj; | |
2534 | ||
f4416af6 AO |
2535 | g = mips_elf_got_info (dynobj, NULL); |
2536 | ||
b49e97c9 | 2537 | hsd.low = NULL; |
143d77c5 | 2538 | hsd.max_unref_got_dynindx = |
f4416af6 AO |
2539 | hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount |
2540 | /* In the multi-got case, assigned_gotno of the master got_info | |
2541 | indicate the number of entries that aren't referenced in the | |
2542 | primary GOT, but that must have entries because there are | |
2543 | dynamic relocations that reference it. Since they aren't | |
2544 | referenced, we move them to the end of the GOT, so that they | |
2545 | don't prevent other entries that are referenced from getting | |
2546 | too large offsets. */ | |
2547 | - (g->next ? g->assigned_gotno : 0); | |
b49e97c9 TS |
2548 | hsd.max_non_got_dynindx = max_local; |
2549 | mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *) | |
2550 | elf_hash_table (info)), | |
2551 | mips_elf_sort_hash_table_f, | |
2552 | &hsd); | |
2553 | ||
2554 | /* There should have been enough room in the symbol table to | |
44c410de | 2555 | accommodate both the GOT and non-GOT symbols. */ |
b49e97c9 | 2556 | BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx); |
f4416af6 AO |
2557 | BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx |
2558 | <= elf_hash_table (info)->dynsymcount); | |
b49e97c9 TS |
2559 | |
2560 | /* Now we know which dynamic symbol has the lowest dynamic symbol | |
2561 | table index in the GOT. */ | |
b49e97c9 TS |
2562 | g->global_gotsym = hsd.low; |
2563 | ||
b34976b6 | 2564 | return TRUE; |
b49e97c9 TS |
2565 | } |
2566 | ||
2567 | /* If H needs a GOT entry, assign it the highest available dynamic | |
2568 | index. Otherwise, assign it the lowest available dynamic | |
2569 | index. */ | |
2570 | ||
b34976b6 | 2571 | static bfd_boolean |
9719ad41 | 2572 | mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data) |
b49e97c9 | 2573 | { |
9719ad41 | 2574 | struct mips_elf_hash_sort_data *hsd = data; |
b49e97c9 TS |
2575 | |
2576 | if (h->root.root.type == bfd_link_hash_warning) | |
2577 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | |
2578 | ||
2579 | /* Symbols without dynamic symbol table entries aren't interesting | |
2580 | at all. */ | |
2581 | if (h->root.dynindx == -1) | |
b34976b6 | 2582 | return TRUE; |
b49e97c9 | 2583 | |
f4416af6 AO |
2584 | /* Global symbols that need GOT entries that are not explicitly |
2585 | referenced are marked with got offset 2. Those that are | |
2586 | referenced get a 1, and those that don't need GOT entries get | |
2587 | -1. */ | |
2588 | if (h->root.got.offset == 2) | |
2589 | { | |
0f20cc35 DJ |
2590 | BFD_ASSERT (h->tls_type == GOT_NORMAL); |
2591 | ||
f4416af6 AO |
2592 | if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx) |
2593 | hsd->low = (struct elf_link_hash_entry *) h; | |
2594 | h->root.dynindx = hsd->max_unref_got_dynindx++; | |
2595 | } | |
2596 | else if (h->root.got.offset != 1) | |
b49e97c9 TS |
2597 | h->root.dynindx = hsd->max_non_got_dynindx++; |
2598 | else | |
2599 | { | |
0f20cc35 DJ |
2600 | BFD_ASSERT (h->tls_type == GOT_NORMAL); |
2601 | ||
b49e97c9 TS |
2602 | h->root.dynindx = --hsd->min_got_dynindx; |
2603 | hsd->low = (struct elf_link_hash_entry *) h; | |
2604 | } | |
2605 | ||
b34976b6 | 2606 | return TRUE; |
b49e97c9 TS |
2607 | } |
2608 | ||
2609 | /* If H is a symbol that needs a global GOT entry, but has a dynamic | |
2610 | symbol table index lower than any we've seen to date, record it for | |
2611 | posterity. */ | |
2612 | ||
b34976b6 | 2613 | static bfd_boolean |
9719ad41 RS |
2614 | mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h, |
2615 | bfd *abfd, struct bfd_link_info *info, | |
0f20cc35 DJ |
2616 | struct mips_got_info *g, |
2617 | unsigned char tls_flag) | |
b49e97c9 | 2618 | { |
f4416af6 AO |
2619 | struct mips_got_entry entry, **loc; |
2620 | ||
b49e97c9 TS |
2621 | /* A global symbol in the GOT must also be in the dynamic symbol |
2622 | table. */ | |
7c5fcef7 L |
2623 | if (h->dynindx == -1) |
2624 | { | |
2625 | switch (ELF_ST_VISIBILITY (h->other)) | |
2626 | { | |
2627 | case STV_INTERNAL: | |
2628 | case STV_HIDDEN: | |
b34976b6 | 2629 | _bfd_mips_elf_hide_symbol (info, h, TRUE); |
7c5fcef7 L |
2630 | break; |
2631 | } | |
c152c796 | 2632 | if (!bfd_elf_link_record_dynamic_symbol (info, h)) |
b34976b6 | 2633 | return FALSE; |
7c5fcef7 | 2634 | } |
b49e97c9 | 2635 | |
f4416af6 AO |
2636 | entry.abfd = abfd; |
2637 | entry.symndx = -1; | |
2638 | entry.d.h = (struct mips_elf_link_hash_entry *) h; | |
0f20cc35 | 2639 | entry.tls_type = 0; |
f4416af6 AO |
2640 | |
2641 | loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry, | |
2642 | INSERT); | |
2643 | ||
b49e97c9 TS |
2644 | /* If we've already marked this entry as needing GOT space, we don't |
2645 | need to do it again. */ | |
f4416af6 | 2646 | if (*loc) |
0f20cc35 DJ |
2647 | { |
2648 | (*loc)->tls_type |= tls_flag; | |
2649 | return TRUE; | |
2650 | } | |
f4416af6 AO |
2651 | |
2652 | *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry); | |
2653 | ||
2654 | if (! *loc) | |
2655 | return FALSE; | |
143d77c5 | 2656 | |
f4416af6 | 2657 | entry.gotidx = -1; |
0f20cc35 DJ |
2658 | entry.tls_type = tls_flag; |
2659 | ||
f4416af6 AO |
2660 | memcpy (*loc, &entry, sizeof entry); |
2661 | ||
b49e97c9 | 2662 | if (h->got.offset != MINUS_ONE) |
b34976b6 | 2663 | return TRUE; |
b49e97c9 TS |
2664 | |
2665 | /* By setting this to a value other than -1, we are indicating that | |
2666 | there needs to be a GOT entry for H. Avoid using zero, as the | |
2667 | generic ELF copy_indirect_symbol tests for <= 0. */ | |
0f20cc35 DJ |
2668 | if (tls_flag == 0) |
2669 | h->got.offset = 1; | |
b49e97c9 | 2670 | |
b34976b6 | 2671 | return TRUE; |
b49e97c9 | 2672 | } |
f4416af6 AO |
2673 | |
2674 | /* Reserve space in G for a GOT entry containing the value of symbol | |
2675 | SYMNDX in input bfd ABDF, plus ADDEND. */ | |
2676 | ||
2677 | static bfd_boolean | |
9719ad41 | 2678 | mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend, |
0f20cc35 DJ |
2679 | struct mips_got_info *g, |
2680 | unsigned char tls_flag) | |
f4416af6 AO |
2681 | { |
2682 | struct mips_got_entry entry, **loc; | |
2683 | ||
2684 | entry.abfd = abfd; | |
2685 | entry.symndx = symndx; | |
2686 | entry.d.addend = addend; | |
0f20cc35 | 2687 | entry.tls_type = tls_flag; |
f4416af6 AO |
2688 | loc = (struct mips_got_entry **) |
2689 | htab_find_slot (g->got_entries, &entry, INSERT); | |
2690 | ||
2691 | if (*loc) | |
0f20cc35 DJ |
2692 | { |
2693 | if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD)) | |
2694 | { | |
2695 | g->tls_gotno += 2; | |
2696 | (*loc)->tls_type |= tls_flag; | |
2697 | } | |
2698 | else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE)) | |
2699 | { | |
2700 | g->tls_gotno += 1; | |
2701 | (*loc)->tls_type |= tls_flag; | |
2702 | } | |
2703 | return TRUE; | |
2704 | } | |
f4416af6 | 2705 | |
0f20cc35 DJ |
2706 | if (tls_flag != 0) |
2707 | { | |
2708 | entry.gotidx = -1; | |
2709 | entry.tls_type = tls_flag; | |
2710 | if (tls_flag == GOT_TLS_IE) | |
2711 | g->tls_gotno += 1; | |
2712 | else if (tls_flag == GOT_TLS_GD) | |
2713 | g->tls_gotno += 2; | |
2714 | else if (g->tls_ldm_offset == MINUS_ONE) | |
2715 | { | |
2716 | g->tls_ldm_offset = MINUS_TWO; | |
2717 | g->tls_gotno += 2; | |
2718 | } | |
2719 | } | |
2720 | else | |
2721 | { | |
2722 | entry.gotidx = g->local_gotno++; | |
2723 | entry.tls_type = 0; | |
2724 | } | |
f4416af6 AO |
2725 | |
2726 | *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry); | |
2727 | ||
2728 | if (! *loc) | |
2729 | return FALSE; | |
143d77c5 | 2730 | |
f4416af6 AO |
2731 | memcpy (*loc, &entry, sizeof entry); |
2732 | ||
2733 | return TRUE; | |
2734 | } | |
2735 | \f | |
2736 | /* Compute the hash value of the bfd in a bfd2got hash entry. */ | |
2737 | ||
2738 | static hashval_t | |
9719ad41 | 2739 | mips_elf_bfd2got_entry_hash (const void *entry_) |
f4416af6 AO |
2740 | { |
2741 | const struct mips_elf_bfd2got_hash *entry | |
2742 | = (struct mips_elf_bfd2got_hash *)entry_; | |
2743 | ||
2744 | return entry->bfd->id; | |
2745 | } | |
2746 | ||
2747 | /* Check whether two hash entries have the same bfd. */ | |
2748 | ||
2749 | static int | |
9719ad41 | 2750 | mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2) |
f4416af6 AO |
2751 | { |
2752 | const struct mips_elf_bfd2got_hash *e1 | |
2753 | = (const struct mips_elf_bfd2got_hash *)entry1; | |
2754 | const struct mips_elf_bfd2got_hash *e2 | |
2755 | = (const struct mips_elf_bfd2got_hash *)entry2; | |
2756 | ||
2757 | return e1->bfd == e2->bfd; | |
2758 | } | |
2759 | ||
0b25d3e6 | 2760 | /* In a multi-got link, determine the GOT to be used for IBDF. G must |
f4416af6 AO |
2761 | be the master GOT data. */ |
2762 | ||
2763 | static struct mips_got_info * | |
9719ad41 | 2764 | mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd) |
f4416af6 AO |
2765 | { |
2766 | struct mips_elf_bfd2got_hash e, *p; | |
2767 | ||
2768 | if (! g->bfd2got) | |
2769 | return g; | |
2770 | ||
2771 | e.bfd = ibfd; | |
9719ad41 | 2772 | p = htab_find (g->bfd2got, &e); |
f4416af6 AO |
2773 | return p ? p->g : NULL; |
2774 | } | |
2775 | ||
2776 | /* Create one separate got for each bfd that has entries in the global | |
2777 | got, such that we can tell how many local and global entries each | |
2778 | bfd requires. */ | |
2779 | ||
2780 | static int | |
9719ad41 | 2781 | mips_elf_make_got_per_bfd (void **entryp, void *p) |
f4416af6 AO |
2782 | { |
2783 | struct mips_got_entry *entry = (struct mips_got_entry *)*entryp; | |
2784 | struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p; | |
2785 | htab_t bfd2got = arg->bfd2got; | |
2786 | struct mips_got_info *g; | |
2787 | struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot; | |
2788 | void **bfdgotp; | |
143d77c5 | 2789 | |
f4416af6 AO |
2790 | /* Find the got_info for this GOT entry's input bfd. Create one if |
2791 | none exists. */ | |
2792 | bfdgot_entry.bfd = entry->abfd; | |
2793 | bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT); | |
2794 | bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp; | |
2795 | ||
2796 | if (bfdgot != NULL) | |
2797 | g = bfdgot->g; | |
2798 | else | |
2799 | { | |
2800 | bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc | |
2801 | (arg->obfd, sizeof (struct mips_elf_bfd2got_hash)); | |
2802 | ||
2803 | if (bfdgot == NULL) | |
2804 | { | |
2805 | arg->obfd = 0; | |
2806 | return 0; | |
2807 | } | |
2808 | ||
2809 | *bfdgotp = bfdgot; | |
2810 | ||
2811 | bfdgot->bfd = entry->abfd; | |
2812 | bfdgot->g = g = (struct mips_got_info *) | |
2813 | bfd_alloc (arg->obfd, sizeof (struct mips_got_info)); | |
2814 | if (g == NULL) | |
2815 | { | |
2816 | arg->obfd = 0; | |
2817 | return 0; | |
2818 | } | |
2819 | ||
2820 | g->global_gotsym = NULL; | |
2821 | g->global_gotno = 0; | |
2822 | g->local_gotno = 0; | |
2823 | g->assigned_gotno = -1; | |
0f20cc35 DJ |
2824 | g->tls_gotno = 0; |
2825 | g->tls_assigned_gotno = 0; | |
2826 | g->tls_ldm_offset = MINUS_ONE; | |
f4416af6 | 2827 | g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash, |
9719ad41 | 2828 | mips_elf_multi_got_entry_eq, NULL); |
f4416af6 AO |
2829 | if (g->got_entries == NULL) |
2830 | { | |
2831 | arg->obfd = 0; | |
2832 | return 0; | |
2833 | } | |
2834 | ||
2835 | g->bfd2got = NULL; | |
2836 | g->next = NULL; | |
2837 | } | |
2838 | ||
2839 | /* Insert the GOT entry in the bfd's got entry hash table. */ | |
2840 | entryp = htab_find_slot (g->got_entries, entry, INSERT); | |
2841 | if (*entryp != NULL) | |
2842 | return 1; | |
143d77c5 | 2843 | |
f4416af6 AO |
2844 | *entryp = entry; |
2845 | ||
0f20cc35 DJ |
2846 | if (entry->tls_type) |
2847 | { | |
2848 | if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM)) | |
2849 | g->tls_gotno += 2; | |
2850 | if (entry->tls_type & GOT_TLS_IE) | |
2851 | g->tls_gotno += 1; | |
2852 | } | |
2853 | else if (entry->symndx >= 0 || entry->d.h->forced_local) | |
f4416af6 AO |
2854 | ++g->local_gotno; |
2855 | else | |
2856 | ++g->global_gotno; | |
2857 | ||
2858 | return 1; | |
2859 | } | |
2860 | ||
2861 | /* Attempt to merge gots of different input bfds. Try to use as much | |
2862 | as possible of the primary got, since it doesn't require explicit | |
2863 | dynamic relocations, but don't use bfds that would reference global | |
2864 | symbols out of the addressable range. Failing the primary got, | |
2865 | attempt to merge with the current got, or finish the current got | |
2866 | and then make make the new got current. */ | |
2867 | ||
2868 | static int | |
9719ad41 | 2869 | mips_elf_merge_gots (void **bfd2got_, void *p) |
f4416af6 AO |
2870 | { |
2871 | struct mips_elf_bfd2got_hash *bfd2got | |
2872 | = (struct mips_elf_bfd2got_hash *)*bfd2got_; | |
2873 | struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p; | |
2874 | unsigned int lcount = bfd2got->g->local_gotno; | |
2875 | unsigned int gcount = bfd2got->g->global_gotno; | |
0f20cc35 | 2876 | unsigned int tcount = bfd2got->g->tls_gotno; |
f4416af6 | 2877 | unsigned int maxcnt = arg->max_count; |
0f20cc35 DJ |
2878 | bfd_boolean too_many_for_tls = FALSE; |
2879 | ||
2880 | /* We place TLS GOT entries after both locals and globals. The globals | |
2881 | for the primary GOT may overflow the normal GOT size limit, so be | |
2882 | sure not to merge a GOT which requires TLS with the primary GOT in that | |
2883 | case. This doesn't affect non-primary GOTs. */ | |
2884 | if (tcount > 0) | |
2885 | { | |
2886 | unsigned int primary_total = lcount + tcount + arg->global_count; | |
2887 | if (primary_total * MIPS_ELF_GOT_SIZE (bfd2got->bfd) | |
2888 | >= MIPS_ELF_GOT_MAX_SIZE (bfd2got->bfd)) | |
2889 | too_many_for_tls = TRUE; | |
2890 | } | |
143d77c5 | 2891 | |
f4416af6 AO |
2892 | /* If we don't have a primary GOT and this is not too big, use it as |
2893 | a starting point for the primary GOT. */ | |
0f20cc35 DJ |
2894 | if (! arg->primary && lcount + gcount + tcount <= maxcnt |
2895 | && ! too_many_for_tls) | |
f4416af6 AO |
2896 | { |
2897 | arg->primary = bfd2got->g; | |
2898 | arg->primary_count = lcount + gcount; | |
2899 | } | |
2900 | /* If it looks like we can merge this bfd's entries with those of | |
2901 | the primary, merge them. The heuristics is conservative, but we | |
2902 | don't have to squeeze it too hard. */ | |
0f20cc35 DJ |
2903 | else if (arg->primary && ! too_many_for_tls |
2904 | && (arg->primary_count + lcount + gcount + tcount) <= maxcnt) | |
f4416af6 AO |
2905 | { |
2906 | struct mips_got_info *g = bfd2got->g; | |
2907 | int old_lcount = arg->primary->local_gotno; | |
2908 | int old_gcount = arg->primary->global_gotno; | |
0f20cc35 | 2909 | int old_tcount = arg->primary->tls_gotno; |
f4416af6 AO |
2910 | |
2911 | bfd2got->g = arg->primary; | |
2912 | ||
2913 | htab_traverse (g->got_entries, | |
2914 | mips_elf_make_got_per_bfd, | |
2915 | arg); | |
2916 | if (arg->obfd == NULL) | |
2917 | return 0; | |
2918 | ||
2919 | htab_delete (g->got_entries); | |
2920 | /* We don't have to worry about releasing memory of the actual | |
2921 | got entries, since they're all in the master got_entries hash | |
2922 | table anyway. */ | |
2923 | ||
caec41ff | 2924 | BFD_ASSERT (old_lcount + lcount >= arg->primary->local_gotno); |
f4416af6 | 2925 | BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno); |
0f20cc35 | 2926 | BFD_ASSERT (old_tcount + tcount >= arg->primary->tls_gotno); |
f4416af6 AO |
2927 | |
2928 | arg->primary_count = arg->primary->local_gotno | |
0f20cc35 | 2929 | + arg->primary->global_gotno + arg->primary->tls_gotno; |
f4416af6 AO |
2930 | } |
2931 | /* If we can merge with the last-created got, do it. */ | |
2932 | else if (arg->current | |
0f20cc35 | 2933 | && arg->current_count + lcount + gcount + tcount <= maxcnt) |
f4416af6 AO |
2934 | { |
2935 | struct mips_got_info *g = bfd2got->g; | |
2936 | int old_lcount = arg->current->local_gotno; | |
2937 | int old_gcount = arg->current->global_gotno; | |
0f20cc35 | 2938 | int old_tcount = arg->current->tls_gotno; |
f4416af6 AO |
2939 | |
2940 | bfd2got->g = arg->current; | |
2941 | ||
2942 | htab_traverse (g->got_entries, | |
2943 | mips_elf_make_got_per_bfd, | |
2944 | arg); | |
2945 | if (arg->obfd == NULL) | |
2946 | return 0; | |
2947 | ||
2948 | htab_delete (g->got_entries); | |
2949 | ||
caec41ff | 2950 | BFD_ASSERT (old_lcount + lcount >= arg->current->local_gotno); |
f4416af6 | 2951 | BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno); |
0f20cc35 | 2952 | BFD_ASSERT (old_tcount + tcount >= arg->current->tls_gotno); |
f4416af6 AO |
2953 | |
2954 | arg->current_count = arg->current->local_gotno | |
0f20cc35 | 2955 | + arg->current->global_gotno + arg->current->tls_gotno; |
f4416af6 AO |
2956 | } |
2957 | /* Well, we couldn't merge, so create a new GOT. Don't check if it | |
2958 | fits; if it turns out that it doesn't, we'll get relocation | |
2959 | overflows anyway. */ | |
2960 | else | |
2961 | { | |
2962 | bfd2got->g->next = arg->current; | |
2963 | arg->current = bfd2got->g; | |
143d77c5 | 2964 | |
0f20cc35 DJ |
2965 | arg->current_count = lcount + gcount + 2 * tcount; |
2966 | } | |
2967 | ||
2968 | return 1; | |
2969 | } | |
2970 | ||
2971 | /* Set the TLS GOT index for the GOT entry in ENTRYP. */ | |
2972 | ||
2973 | static int | |
2974 | mips_elf_initialize_tls_index (void **entryp, void *p) | |
2975 | { | |
2976 | struct mips_got_entry *entry = (struct mips_got_entry *)*entryp; | |
2977 | struct mips_got_info *g = p; | |
2978 | ||
2979 | /* We're only interested in TLS symbols. */ | |
2980 | if (entry->tls_type == 0) | |
2981 | return 1; | |
2982 | ||
2983 | if (entry->symndx == -1) | |
2984 | { | |
2985 | /* There may be multiple mips_got_entry structs for a global variable | |
2986 | if there is just one GOT. Just do this once. */ | |
2987 | if (g->next == NULL) | |
2988 | { | |
2989 | if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE) | |
2990 | return 1; | |
2991 | entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE; | |
2992 | } | |
2993 | } | |
2994 | else if (entry->tls_type & GOT_TLS_LDM) | |
2995 | { | |
2996 | /* Similarly, there may be multiple structs for the LDM entry. */ | |
2997 | if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE) | |
2998 | { | |
2999 | entry->gotidx = g->tls_ldm_offset; | |
3000 | return 1; | |
3001 | } | |
f4416af6 AO |
3002 | } |
3003 | ||
0f20cc35 DJ |
3004 | /* Initialize the GOT offset. */ |
3005 | entry->gotidx = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno; | |
3006 | if (g->next == NULL && entry->symndx == -1) | |
3007 | entry->d.h->tls_got_offset = entry->gotidx; | |
3008 | ||
3009 | if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM)) | |
3010 | g->tls_assigned_gotno += 2; | |
3011 | if (entry->tls_type & GOT_TLS_IE) | |
3012 | g->tls_assigned_gotno += 1; | |
3013 | ||
3014 | if (entry->tls_type & GOT_TLS_LDM) | |
3015 | g->tls_ldm_offset = entry->gotidx; | |
3016 | ||
f4416af6 AO |
3017 | return 1; |
3018 | } | |
3019 | ||
3020 | /* If passed a NULL mips_got_info in the argument, set the marker used | |
3021 | to tell whether a global symbol needs a got entry (in the primary | |
3022 | got) to the given VALUE. | |
3023 | ||
3024 | If passed a pointer G to a mips_got_info in the argument (it must | |
3025 | not be the primary GOT), compute the offset from the beginning of | |
3026 | the (primary) GOT section to the entry in G corresponding to the | |
3027 | global symbol. G's assigned_gotno must contain the index of the | |
3028 | first available global GOT entry in G. VALUE must contain the size | |
3029 | of a GOT entry in bytes. For each global GOT entry that requires a | |
3030 | dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is | |
4cc11e76 | 3031 | marked as not eligible for lazy resolution through a function |
f4416af6 AO |
3032 | stub. */ |
3033 | static int | |
9719ad41 | 3034 | mips_elf_set_global_got_offset (void **entryp, void *p) |
f4416af6 AO |
3035 | { |
3036 | struct mips_got_entry *entry = (struct mips_got_entry *)*entryp; | |
3037 | struct mips_elf_set_global_got_offset_arg *arg | |
3038 | = (struct mips_elf_set_global_got_offset_arg *)p; | |
3039 | struct mips_got_info *g = arg->g; | |
3040 | ||
0f20cc35 DJ |
3041 | if (g && entry->tls_type != GOT_NORMAL) |
3042 | arg->needed_relocs += | |
3043 | mips_tls_got_relocs (arg->info, entry->tls_type, | |
3044 | entry->symndx == -1 ? &entry->d.h->root : NULL); | |
3045 | ||
f4416af6 | 3046 | if (entry->abfd != NULL && entry->symndx == -1 |
0f20cc35 DJ |
3047 | && entry->d.h->root.dynindx != -1 |
3048 | && entry->d.h->tls_type == GOT_NORMAL) | |
f4416af6 AO |
3049 | { |
3050 | if (g) | |
3051 | { | |
3052 | BFD_ASSERT (g->global_gotsym == NULL); | |
3053 | ||
3054 | entry->gotidx = arg->value * (long) g->assigned_gotno++; | |
f4416af6 AO |
3055 | if (arg->info->shared |
3056 | || (elf_hash_table (arg->info)->dynamic_sections_created | |
f5385ebf AM |
3057 | && entry->d.h->root.def_dynamic |
3058 | && !entry->d.h->root.def_regular)) | |
f4416af6 AO |
3059 | ++arg->needed_relocs; |
3060 | } | |
3061 | else | |
3062 | entry->d.h->root.got.offset = arg->value; | |
3063 | } | |
3064 | ||
3065 | return 1; | |
3066 | } | |
3067 | ||
0626d451 RS |
3068 | /* Mark any global symbols referenced in the GOT we are iterating over |
3069 | as inelligible for lazy resolution stubs. */ | |
3070 | static int | |
9719ad41 | 3071 | mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED) |
0626d451 RS |
3072 | { |
3073 | struct mips_got_entry *entry = (struct mips_got_entry *)*entryp; | |
3074 | ||
3075 | if (entry->abfd != NULL | |
3076 | && entry->symndx == -1 | |
3077 | && entry->d.h->root.dynindx != -1) | |
3078 | entry->d.h->no_fn_stub = TRUE; | |
3079 | ||
3080 | return 1; | |
3081 | } | |
3082 | ||
f4416af6 AO |
3083 | /* Follow indirect and warning hash entries so that each got entry |
3084 | points to the final symbol definition. P must point to a pointer | |
3085 | to the hash table we're traversing. Since this traversal may | |
3086 | modify the hash table, we set this pointer to NULL to indicate | |
3087 | we've made a potentially-destructive change to the hash table, so | |
3088 | the traversal must be restarted. */ | |
3089 | static int | |
9719ad41 | 3090 | mips_elf_resolve_final_got_entry (void **entryp, void *p) |
f4416af6 AO |
3091 | { |
3092 | struct mips_got_entry *entry = (struct mips_got_entry *)*entryp; | |
3093 | htab_t got_entries = *(htab_t *)p; | |
3094 | ||
3095 | if (entry->abfd != NULL && entry->symndx == -1) | |
3096 | { | |
3097 | struct mips_elf_link_hash_entry *h = entry->d.h; | |
3098 | ||
3099 | while (h->root.root.type == bfd_link_hash_indirect | |
3100 | || h->root.root.type == bfd_link_hash_warning) | |
3101 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | |
3102 | ||
3103 | if (entry->d.h == h) | |
3104 | return 1; | |
143d77c5 | 3105 | |
f4416af6 AO |
3106 | entry->d.h = h; |
3107 | ||
3108 | /* If we can't find this entry with the new bfd hash, re-insert | |
3109 | it, and get the traversal restarted. */ | |
3110 | if (! htab_find (got_entries, entry)) | |
3111 | { | |
3112 | htab_clear_slot (got_entries, entryp); | |
3113 | entryp = htab_find_slot (got_entries, entry, INSERT); | |
3114 | if (! *entryp) | |
3115 | *entryp = entry; | |
3116 | /* Abort the traversal, since the whole table may have | |
3117 | moved, and leave it up to the parent to restart the | |
3118 | process. */ | |
3119 | *(htab_t *)p = NULL; | |
3120 | return 0; | |
3121 | } | |
3122 | /* We might want to decrement the global_gotno count, but it's | |
3123 | either too early or too late for that at this point. */ | |
3124 | } | |
143d77c5 | 3125 | |
f4416af6 AO |
3126 | return 1; |
3127 | } | |
3128 | ||
3129 | /* Turn indirect got entries in a got_entries table into their final | |
3130 | locations. */ | |
3131 | static void | |
9719ad41 | 3132 | mips_elf_resolve_final_got_entries (struct mips_got_info *g) |
f4416af6 AO |
3133 | { |
3134 | htab_t got_entries; | |
3135 | ||
3136 | do | |
3137 | { | |
3138 | got_entries = g->got_entries; | |
3139 | ||
3140 | htab_traverse (got_entries, | |
3141 | mips_elf_resolve_final_got_entry, | |
3142 | &got_entries); | |
3143 | } | |
3144 | while (got_entries == NULL); | |
3145 | } | |
3146 | ||
3147 | /* Return the offset of an input bfd IBFD's GOT from the beginning of | |
3148 | the primary GOT. */ | |
3149 | static bfd_vma | |
9719ad41 | 3150 | mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd) |
f4416af6 AO |
3151 | { |
3152 | if (g->bfd2got == NULL) | |
3153 | return 0; | |
3154 | ||
3155 | g = mips_elf_got_for_ibfd (g, ibfd); | |
3156 | if (! g) | |
3157 | return 0; | |
3158 | ||
3159 | BFD_ASSERT (g->next); | |
3160 | ||
3161 | g = g->next; | |
143d77c5 | 3162 | |
0f20cc35 DJ |
3163 | return (g->local_gotno + g->global_gotno + g->tls_gotno) |
3164 | * MIPS_ELF_GOT_SIZE (abfd); | |
f4416af6 AO |
3165 | } |
3166 | ||
3167 | /* Turn a single GOT that is too big for 16-bit addressing into | |
3168 | a sequence of GOTs, each one 16-bit addressable. */ | |
3169 | ||
3170 | static bfd_boolean | |
9719ad41 RS |
3171 | mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info, |
3172 | struct mips_got_info *g, asection *got, | |
3173 | bfd_size_type pages) | |
f4416af6 AO |
3174 | { |
3175 | struct mips_elf_got_per_bfd_arg got_per_bfd_arg; | |
3176 | struct mips_elf_set_global_got_offset_arg set_got_offset_arg; | |
3177 | struct mips_got_info *gg; | |
3178 | unsigned int assign; | |
3179 | ||
3180 | g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash, | |
9719ad41 | 3181 | mips_elf_bfd2got_entry_eq, NULL); |
f4416af6 AO |
3182 | if (g->bfd2got == NULL) |
3183 | return FALSE; | |
3184 | ||
3185 | got_per_bfd_arg.bfd2got = g->bfd2got; | |
3186 | got_per_bfd_arg.obfd = abfd; | |
3187 | got_per_bfd_arg.info = info; | |
3188 | ||
3189 | /* Count how many GOT entries each input bfd requires, creating a | |
3190 | map from bfd to got info while at that. */ | |
f4416af6 AO |
3191 | htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg); |
3192 | if (got_per_bfd_arg.obfd == NULL) | |
3193 | return FALSE; | |
3194 | ||
3195 | got_per_bfd_arg.current = NULL; | |
3196 | got_per_bfd_arg.primary = NULL; | |
3197 | /* Taking out PAGES entries is a worst-case estimate. We could | |
3198 | compute the maximum number of pages that each separate input bfd | |
3199 | uses, but it's probably not worth it. */ | |
3200 | got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (abfd) | |
3201 | / MIPS_ELF_GOT_SIZE (abfd)) | |
3202 | - MIPS_RESERVED_GOTNO - pages); | |
0f20cc35 DJ |
3203 | /* The number of globals that will be included in the primary GOT. |
3204 | See the calls to mips_elf_set_global_got_offset below for more | |
3205 | information. */ | |
3206 | got_per_bfd_arg.global_count = g->global_gotno; | |
f4416af6 AO |
3207 | |
3208 | /* Try to merge the GOTs of input bfds together, as long as they | |
3209 | don't seem to exceed the maximum GOT size, choosing one of them | |
3210 | to be the primary GOT. */ | |
3211 | htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg); | |
3212 | if (got_per_bfd_arg.obfd == NULL) | |
3213 | return FALSE; | |
3214 | ||
0f20cc35 | 3215 | /* If we do not find any suitable primary GOT, create an empty one. */ |
f4416af6 AO |
3216 | if (got_per_bfd_arg.primary == NULL) |
3217 | { | |
3218 | g->next = (struct mips_got_info *) | |
3219 | bfd_alloc (abfd, sizeof (struct mips_got_info)); | |
3220 | if (g->next == NULL) | |
3221 | return FALSE; | |
3222 | ||
3223 | g->next->global_gotsym = NULL; | |
3224 | g->next->global_gotno = 0; | |
3225 | g->next->local_gotno = 0; | |
0f20cc35 | 3226 | g->next->tls_gotno = 0; |
f4416af6 | 3227 | g->next->assigned_gotno = 0; |
0f20cc35 DJ |
3228 | g->next->tls_assigned_gotno = 0; |
3229 | g->next->tls_ldm_offset = MINUS_ONE; | |
f4416af6 AO |
3230 | g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash, |
3231 | mips_elf_multi_got_entry_eq, | |
9719ad41 | 3232 | NULL); |
f4416af6 AO |
3233 | if (g->next->got_entries == NULL) |
3234 | return FALSE; | |
3235 | g->next->bfd2got = NULL; | |
3236 | } | |
3237 | else | |
3238 | g->next = got_per_bfd_arg.primary; | |
3239 | g->next->next = got_per_bfd_arg.current; | |
3240 | ||
3241 | /* GG is now the master GOT, and G is the primary GOT. */ | |
3242 | gg = g; | |
3243 | g = g->next; | |
3244 | ||
3245 | /* Map the output bfd to the primary got. That's what we're going | |
3246 | to use for bfds that use GOT16 or GOT_PAGE relocations that we | |
3247 | didn't mark in check_relocs, and we want a quick way to find it. | |
3248 | We can't just use gg->next because we're going to reverse the | |
3249 | list. */ | |
3250 | { | |
3251 | struct mips_elf_bfd2got_hash *bfdgot; | |
3252 | void **bfdgotp; | |
143d77c5 | 3253 | |
f4416af6 AO |
3254 | bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc |
3255 | (abfd, sizeof (struct mips_elf_bfd2got_hash)); | |
3256 | ||
3257 | if (bfdgot == NULL) | |
3258 | return FALSE; | |
3259 | ||
3260 | bfdgot->bfd = abfd; | |
3261 | bfdgot->g = g; | |
3262 | bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT); | |
3263 | ||
3264 | BFD_ASSERT (*bfdgotp == NULL); | |
3265 | *bfdgotp = bfdgot; | |
3266 | } | |
3267 | ||
3268 | /* The IRIX dynamic linker requires every symbol that is referenced | |
3269 | in a dynamic relocation to be present in the primary GOT, so | |
3270 | arrange for them to appear after those that are actually | |
3271 | referenced. | |
3272 | ||
3273 | GNU/Linux could very well do without it, but it would slow down | |
3274 | the dynamic linker, since it would have to resolve every dynamic | |
3275 | symbol referenced in other GOTs more than once, without help from | |
3276 | the cache. Also, knowing that every external symbol has a GOT | |
3277 | helps speed up the resolution of local symbols too, so GNU/Linux | |
3278 | follows IRIX's practice. | |
143d77c5 | 3279 | |
f4416af6 AO |
3280 | The number 2 is used by mips_elf_sort_hash_table_f to count |
3281 | global GOT symbols that are unreferenced in the primary GOT, with | |
3282 | an initial dynamic index computed from gg->assigned_gotno, where | |
3283 | the number of unreferenced global entries in the primary GOT is | |
3284 | preserved. */ | |
3285 | if (1) | |
3286 | { | |
3287 | gg->assigned_gotno = gg->global_gotno - g->global_gotno; | |
3288 | g->global_gotno = gg->global_gotno; | |
3289 | set_got_offset_arg.value = 2; | |
3290 | } | |
3291 | else | |
3292 | { | |
3293 | /* This could be used for dynamic linkers that don't optimize | |
3294 | symbol resolution while applying relocations so as to use | |
3295 | primary GOT entries or assuming the symbol is locally-defined. | |
3296 | With this code, we assign lower dynamic indices to global | |
3297 | symbols that are not referenced in the primary GOT, so that | |
3298 | their entries can be omitted. */ | |
3299 | gg->assigned_gotno = 0; | |
3300 | set_got_offset_arg.value = -1; | |
3301 | } | |
3302 | ||
3303 | /* Reorder dynamic symbols as described above (which behavior | |
3304 | depends on the setting of VALUE). */ | |
3305 | set_got_offset_arg.g = NULL; | |
3306 | htab_traverse (gg->got_entries, mips_elf_set_global_got_offset, | |
3307 | &set_got_offset_arg); | |
3308 | set_got_offset_arg.value = 1; | |
3309 | htab_traverse (g->got_entries, mips_elf_set_global_got_offset, | |
3310 | &set_got_offset_arg); | |
3311 | if (! mips_elf_sort_hash_table (info, 1)) | |
3312 | return FALSE; | |
3313 | ||
3314 | /* Now go through the GOTs assigning them offset ranges. | |
3315 | [assigned_gotno, local_gotno[ will be set to the range of local | |
3316 | entries in each GOT. We can then compute the end of a GOT by | |
3317 | adding local_gotno to global_gotno. We reverse the list and make | |
3318 | it circular since then we'll be able to quickly compute the | |
3319 | beginning of a GOT, by computing the end of its predecessor. To | |
3320 | avoid special cases for the primary GOT, while still preserving | |
3321 | assertions that are valid for both single- and multi-got links, | |
3322 | we arrange for the main got struct to have the right number of | |
3323 | global entries, but set its local_gotno such that the initial | |
3324 | offset of the primary GOT is zero. Remember that the primary GOT | |
3325 | will become the last item in the circular linked list, so it | |
3326 | points back to the master GOT. */ | |
3327 | gg->local_gotno = -g->global_gotno; | |
3328 | gg->global_gotno = g->global_gotno; | |
0f20cc35 | 3329 | gg->tls_gotno = 0; |
f4416af6 AO |
3330 | assign = 0; |
3331 | gg->next = gg; | |
3332 | ||
3333 | do | |
3334 | { | |
3335 | struct mips_got_info *gn; | |
3336 | ||
3337 | assign += MIPS_RESERVED_GOTNO; | |
3338 | g->assigned_gotno = assign; | |
3339 | g->local_gotno += assign + pages; | |
0f20cc35 DJ |
3340 | assign = g->local_gotno + g->global_gotno + g->tls_gotno; |
3341 | ||
3342 | /* Set up any TLS entries. We always place the TLS entries after | |
3343 | all non-TLS entries. */ | |
3344 | g->tls_assigned_gotno = g->local_gotno + g->global_gotno; | |
3345 | htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g); | |
f4416af6 AO |
3346 | |
3347 | /* Take g out of the direct list, and push it onto the reversed | |
3348 | list that gg points to. */ | |
3349 | gn = g->next; | |
3350 | g->next = gg->next; | |
3351 | gg->next = g; | |
3352 | g = gn; | |
0626d451 RS |
3353 | |
3354 | /* Mark global symbols in every non-primary GOT as ineligible for | |
3355 | stubs. */ | |
3356 | if (g) | |
3357 | htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL); | |
f4416af6 AO |
3358 | } |
3359 | while (g); | |
3360 | ||
eea6121a | 3361 | got->size = (gg->next->local_gotno |
0f20cc35 DJ |
3362 | + gg->next->global_gotno |
3363 | + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd); | |
143d77c5 | 3364 | |
f4416af6 AO |
3365 | return TRUE; |
3366 | } | |
143d77c5 | 3367 | |
b49e97c9 TS |
3368 | \f |
3369 | /* Returns the first relocation of type r_type found, beginning with | |
3370 | RELOCATION. RELEND is one-past-the-end of the relocation table. */ | |
3371 | ||
3372 | static const Elf_Internal_Rela * | |
9719ad41 RS |
3373 | mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type, |
3374 | const Elf_Internal_Rela *relocation, | |
3375 | const Elf_Internal_Rela *relend) | |
b49e97c9 | 3376 | { |
b49e97c9 TS |
3377 | while (relocation < relend) |
3378 | { | |
3379 | if (ELF_R_TYPE (abfd, relocation->r_info) == r_type) | |
3380 | return relocation; | |
3381 | ||
3382 | ++relocation; | |
3383 | } | |
3384 | ||
3385 | /* We didn't find it. */ | |
3386 | bfd_set_error (bfd_error_bad_value); | |
3387 | return NULL; | |
3388 | } | |
3389 | ||
3390 | /* Return whether a relocation is against a local symbol. */ | |
3391 | ||
b34976b6 | 3392 | static bfd_boolean |
9719ad41 RS |
3393 | mips_elf_local_relocation_p (bfd *input_bfd, |
3394 | const Elf_Internal_Rela *relocation, | |
3395 | asection **local_sections, | |
3396 | bfd_boolean check_forced) | |
b49e97c9 TS |
3397 | { |
3398 | unsigned long r_symndx; | |
3399 | Elf_Internal_Shdr *symtab_hdr; | |
3400 | struct mips_elf_link_hash_entry *h; | |
3401 | size_t extsymoff; | |
3402 | ||
3403 | r_symndx = ELF_R_SYM (input_bfd, relocation->r_info); | |
3404 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | |
3405 | extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info; | |
3406 | ||
3407 | if (r_symndx < extsymoff) | |
b34976b6 | 3408 | return TRUE; |
b49e97c9 | 3409 | if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL) |
b34976b6 | 3410 | return TRUE; |
b49e97c9 TS |
3411 | |
3412 | if (check_forced) | |
3413 | { | |
3414 | /* Look up the hash table to check whether the symbol | |
3415 | was forced local. */ | |
3416 | h = (struct mips_elf_link_hash_entry *) | |
3417 | elf_sym_hashes (input_bfd) [r_symndx - extsymoff]; | |
3418 | /* Find the real hash-table entry for this symbol. */ | |
3419 | while (h->root.root.type == bfd_link_hash_indirect | |
3420 | || h->root.root.type == bfd_link_hash_warning) | |
3421 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | |
f5385ebf | 3422 | if (h->root.forced_local) |
b34976b6 | 3423 | return TRUE; |
b49e97c9 TS |
3424 | } |
3425 | ||
b34976b6 | 3426 | return FALSE; |
b49e97c9 TS |
3427 | } |
3428 | \f | |
3429 | /* Sign-extend VALUE, which has the indicated number of BITS. */ | |
3430 | ||
a7ebbfdf | 3431 | bfd_vma |
9719ad41 | 3432 | _bfd_mips_elf_sign_extend (bfd_vma value, int bits) |
b49e97c9 TS |
3433 | { |
3434 | if (value & ((bfd_vma) 1 << (bits - 1))) | |
3435 | /* VALUE is negative. */ | |
3436 | value |= ((bfd_vma) - 1) << bits; | |
3437 | ||
3438 | return value; | |
3439 | } | |
3440 | ||
3441 | /* Return non-zero if the indicated VALUE has overflowed the maximum | |
4cc11e76 | 3442 | range expressible by a signed number with the indicated number of |
b49e97c9 TS |
3443 | BITS. */ |
3444 | ||
b34976b6 | 3445 | static bfd_boolean |
9719ad41 | 3446 | mips_elf_overflow_p (bfd_vma value, int bits) |
b49e97c9 TS |
3447 | { |
3448 | bfd_signed_vma svalue = (bfd_signed_vma) value; | |
3449 | ||
3450 | if (svalue > (1 << (bits - 1)) - 1) | |
3451 | /* The value is too big. */ | |
b34976b6 | 3452 | return TRUE; |
b49e97c9 TS |
3453 | else if (svalue < -(1 << (bits - 1))) |
3454 | /* The value is too small. */ | |
b34976b6 | 3455 | return TRUE; |
b49e97c9 TS |
3456 | |
3457 | /* All is well. */ | |
b34976b6 | 3458 | return FALSE; |
b49e97c9 TS |
3459 | } |
3460 | ||
3461 | /* Calculate the %high function. */ | |
3462 | ||
3463 | static bfd_vma | |
9719ad41 | 3464 | mips_elf_high (bfd_vma value) |
b49e97c9 TS |
3465 | { |
3466 | return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff; | |
3467 | } | |
3468 | ||
3469 | /* Calculate the %higher function. */ | |
3470 | ||
3471 | static bfd_vma | |
9719ad41 | 3472 | mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED) |
b49e97c9 TS |
3473 | { |
3474 | #ifdef BFD64 | |
3475 | return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff; | |
3476 | #else | |
3477 | abort (); | |
c5ae1840 | 3478 | return MINUS_ONE; |
b49e97c9 TS |
3479 | #endif |
3480 | } | |
3481 | ||
3482 | /* Calculate the %highest function. */ | |
3483 | ||
3484 | static bfd_vma | |
9719ad41 | 3485 | mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED) |
b49e97c9 TS |
3486 | { |
3487 | #ifdef BFD64 | |
b15e6682 | 3488 | return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff; |
b49e97c9 TS |
3489 | #else |
3490 | abort (); | |
c5ae1840 | 3491 | return MINUS_ONE; |
b49e97c9 TS |
3492 | #endif |
3493 | } | |
3494 | \f | |
3495 | /* Create the .compact_rel section. */ | |
3496 | ||
b34976b6 | 3497 | static bfd_boolean |
9719ad41 RS |
3498 | mips_elf_create_compact_rel_section |
3499 | (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED) | |
b49e97c9 TS |
3500 | { |
3501 | flagword flags; | |
3502 | register asection *s; | |
3503 | ||
3504 | if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL) | |
3505 | { | |
3506 | flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED | |
3507 | | SEC_READONLY); | |
3508 | ||
3509 | s = bfd_make_section (abfd, ".compact_rel"); | |
3510 | if (s == NULL | |
3511 | || ! bfd_set_section_flags (abfd, s, flags) | |
3512 | || ! bfd_set_section_alignment (abfd, s, | |
3513 | MIPS_ELF_LOG_FILE_ALIGN (abfd))) | |
b34976b6 | 3514 | return FALSE; |
b49e97c9 | 3515 | |
eea6121a | 3516 | s->size = sizeof (Elf32_External_compact_rel); |
b49e97c9 TS |
3517 | } |
3518 | ||
b34976b6 | 3519 | return TRUE; |
b49e97c9 TS |
3520 | } |
3521 | ||
3522 | /* Create the .got section to hold the global offset table. */ | |
3523 | ||
b34976b6 | 3524 | static bfd_boolean |
9719ad41 RS |
3525 | mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info, |
3526 | bfd_boolean maybe_exclude) | |
b49e97c9 TS |
3527 | { |
3528 | flagword flags; | |
3529 | register asection *s; | |
3530 | struct elf_link_hash_entry *h; | |
14a793b2 | 3531 | struct bfd_link_hash_entry *bh; |
b49e97c9 TS |
3532 | struct mips_got_info *g; |
3533 | bfd_size_type amt; | |
3534 | ||
3535 | /* This function may be called more than once. */ | |
f4416af6 AO |
3536 | s = mips_elf_got_section (abfd, TRUE); |
3537 | if (s) | |
3538 | { | |
3539 | if (! maybe_exclude) | |
3540 | s->flags &= ~SEC_EXCLUDE; | |
3541 | return TRUE; | |
3542 | } | |
b49e97c9 TS |
3543 | |
3544 | flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | |
3545 | | SEC_LINKER_CREATED); | |
3546 | ||
f4416af6 AO |
3547 | if (maybe_exclude) |
3548 | flags |= SEC_EXCLUDE; | |
3549 | ||
72b4917c TS |
3550 | /* We have to use an alignment of 2**4 here because this is hardcoded |
3551 | in the function stub generation and in the linker script. */ | |
b49e97c9 TS |
3552 | s = bfd_make_section (abfd, ".got"); |
3553 | if (s == NULL | |
3554 | || ! bfd_set_section_flags (abfd, s, flags) | |
72b4917c | 3555 | || ! bfd_set_section_alignment (abfd, s, 4)) |
b34976b6 | 3556 | return FALSE; |
b49e97c9 TS |
3557 | |
3558 | /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the | |
3559 | linker script because we don't want to define the symbol if we | |
3560 | are not creating a global offset table. */ | |
14a793b2 | 3561 | bh = NULL; |
b49e97c9 TS |
3562 | if (! (_bfd_generic_link_add_one_symbol |
3563 | (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s, | |
9719ad41 | 3564 | 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh))) |
b34976b6 | 3565 | return FALSE; |
14a793b2 AM |
3566 | |
3567 | h = (struct elf_link_hash_entry *) bh; | |
f5385ebf AM |
3568 | h->non_elf = 0; |
3569 | h->def_regular = 1; | |
b49e97c9 TS |
3570 | h->type = STT_OBJECT; |
3571 | ||
3572 | if (info->shared | |
c152c796 | 3573 | && ! bfd_elf_link_record_dynamic_symbol (info, h)) |
b34976b6 | 3574 | return FALSE; |
b49e97c9 | 3575 | |
b49e97c9 | 3576 | amt = sizeof (struct mips_got_info); |
9719ad41 | 3577 | g = bfd_alloc (abfd, amt); |
b49e97c9 | 3578 | if (g == NULL) |
b34976b6 | 3579 | return FALSE; |
b49e97c9 | 3580 | g->global_gotsym = NULL; |
e3d54347 | 3581 | g->global_gotno = 0; |
0f20cc35 | 3582 | g->tls_gotno = 0; |
b49e97c9 TS |
3583 | g->local_gotno = MIPS_RESERVED_GOTNO; |
3584 | g->assigned_gotno = MIPS_RESERVED_GOTNO; | |
f4416af6 AO |
3585 | g->bfd2got = NULL; |
3586 | g->next = NULL; | |
0f20cc35 | 3587 | g->tls_ldm_offset = MINUS_ONE; |
b15e6682 | 3588 | g->got_entries = htab_try_create (1, mips_elf_got_entry_hash, |
9719ad41 | 3589 | mips_elf_got_entry_eq, NULL); |
b15e6682 AO |
3590 | if (g->got_entries == NULL) |
3591 | return FALSE; | |
f0abc2a1 AM |
3592 | mips_elf_section_data (s)->u.got_info = g; |
3593 | mips_elf_section_data (s)->elf.this_hdr.sh_flags | |
b49e97c9 TS |
3594 | |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL; |
3595 | ||
b34976b6 | 3596 | return TRUE; |
b49e97c9 | 3597 | } |
b49e97c9 TS |
3598 | \f |
3599 | /* Calculate the value produced by the RELOCATION (which comes from | |
3600 | the INPUT_BFD). The ADDEND is the addend to use for this | |
3601 | RELOCATION; RELOCATION->R_ADDEND is ignored. | |
3602 | ||
3603 | The result of the relocation calculation is stored in VALUEP. | |
3604 | REQUIRE_JALXP indicates whether or not the opcode used with this | |
3605 | relocation must be JALX. | |
3606 | ||
3607 | This function returns bfd_reloc_continue if the caller need take no | |
3608 | further action regarding this relocation, bfd_reloc_notsupported if | |
3609 | something goes dramatically wrong, bfd_reloc_overflow if an | |
3610 | overflow occurs, and bfd_reloc_ok to indicate success. */ | |
3611 | ||
3612 | static bfd_reloc_status_type | |
9719ad41 RS |
3613 | mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd, |
3614 | asection *input_section, | |
3615 | struct bfd_link_info *info, | |
3616 | const Elf_Internal_Rela *relocation, | |
3617 | bfd_vma addend, reloc_howto_type *howto, | |
3618 | Elf_Internal_Sym *local_syms, | |
3619 | asection **local_sections, bfd_vma *valuep, | |
3620 | const char **namep, bfd_boolean *require_jalxp, | |
3621 | bfd_boolean save_addend) | |
b49e97c9 TS |
3622 | { |
3623 | /* The eventual value we will return. */ | |
3624 | bfd_vma value; | |
3625 | /* The address of the symbol against which the relocation is | |
3626 | occurring. */ | |
3627 | bfd_vma symbol = 0; | |
3628 | /* The final GP value to be used for the relocatable, executable, or | |
3629 | shared object file being produced. */ | |
3630 | bfd_vma gp = MINUS_ONE; | |
3631 | /* The place (section offset or address) of the storage unit being | |
3632 | relocated. */ | |
3633 | bfd_vma p; | |
3634 | /* The value of GP used to create the relocatable object. */ | |
3635 | bfd_vma gp0 = MINUS_ONE; | |
3636 | /* The offset into the global offset table at which the address of | |
3637 | the relocation entry symbol, adjusted by the addend, resides | |
3638 | during execution. */ | |
3639 | bfd_vma g = MINUS_ONE; | |
3640 | /* The section in which the symbol referenced by the relocation is | |
3641 | located. */ | |
3642 | asection *sec = NULL; | |
3643 | struct mips_elf_link_hash_entry *h = NULL; | |
b34976b6 | 3644 | /* TRUE if the symbol referred to by this relocation is a local |
b49e97c9 | 3645 | symbol. */ |
b34976b6 AM |
3646 | bfd_boolean local_p, was_local_p; |
3647 | /* TRUE if the symbol referred to by this relocation is "_gp_disp". */ | |
3648 | bfd_boolean gp_disp_p = FALSE; | |
bbe506e8 TS |
3649 | /* TRUE if the symbol referred to by this relocation is |
3650 | "__gnu_local_gp". */ | |
3651 | bfd_boolean gnu_local_gp_p = FALSE; | |
b49e97c9 TS |
3652 | Elf_Internal_Shdr *symtab_hdr; |
3653 | size_t extsymoff; | |
3654 | unsigned long r_symndx; | |
3655 | int r_type; | |
b34976b6 | 3656 | /* TRUE if overflow occurred during the calculation of the |
b49e97c9 | 3657 | relocation value. */ |
b34976b6 AM |
3658 | bfd_boolean overflowed_p; |
3659 | /* TRUE if this relocation refers to a MIPS16 function. */ | |
3660 | bfd_boolean target_is_16_bit_code_p = FALSE; | |
b49e97c9 TS |
3661 | |
3662 | /* Parse the relocation. */ | |
3663 | r_symndx = ELF_R_SYM (input_bfd, relocation->r_info); | |
3664 | r_type = ELF_R_TYPE (input_bfd, relocation->r_info); | |
3665 | p = (input_section->output_section->vma | |
3666 | + input_section->output_offset | |
3667 | + relocation->r_offset); | |
3668 | ||
3669 | /* Assume that there will be no overflow. */ | |
b34976b6 | 3670 | overflowed_p = FALSE; |
b49e97c9 TS |
3671 | |
3672 | /* Figure out whether or not the symbol is local, and get the offset | |
3673 | used in the array of hash table entries. */ | |
3674 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | |
3675 | local_p = mips_elf_local_relocation_p (input_bfd, relocation, | |
b34976b6 | 3676 | local_sections, FALSE); |
bce03d3d | 3677 | was_local_p = local_p; |
b49e97c9 TS |
3678 | if (! elf_bad_symtab (input_bfd)) |
3679 | extsymoff = symtab_hdr->sh_info; | |
3680 | else | |
3681 | { | |
3682 | /* The symbol table does not follow the rule that local symbols | |
3683 | must come before globals. */ | |
3684 | extsymoff = 0; | |
3685 | } | |
3686 | ||
3687 | /* Figure out the value of the symbol. */ | |
3688 | if (local_p) | |
3689 | { | |
3690 | Elf_Internal_Sym *sym; | |
3691 | ||
3692 | sym = local_syms + r_symndx; | |
3693 | sec = local_sections[r_symndx]; | |
3694 | ||
3695 | symbol = sec->output_section->vma + sec->output_offset; | |
d4df96e6 L |
3696 | if (ELF_ST_TYPE (sym->st_info) != STT_SECTION |
3697 | || (sec->flags & SEC_MERGE)) | |
b49e97c9 | 3698 | symbol += sym->st_value; |
d4df96e6 L |
3699 | if ((sec->flags & SEC_MERGE) |
3700 | && ELF_ST_TYPE (sym->st_info) == STT_SECTION) | |
3701 | { | |
3702 | addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend); | |
3703 | addend -= symbol; | |
3704 | addend += sec->output_section->vma + sec->output_offset; | |
3705 | } | |
b49e97c9 TS |
3706 | |
3707 | /* MIPS16 text labels should be treated as odd. */ | |
3708 | if (sym->st_other == STO_MIPS16) | |
3709 | ++symbol; | |
3710 | ||
3711 | /* Record the name of this symbol, for our caller. */ | |
3712 | *namep = bfd_elf_string_from_elf_section (input_bfd, | |
3713 | symtab_hdr->sh_link, | |
3714 | sym->st_name); | |
3715 | if (*namep == '\0') | |
3716 | *namep = bfd_section_name (input_bfd, sec); | |
3717 | ||
3718 | target_is_16_bit_code_p = (sym->st_other == STO_MIPS16); | |
3719 | } | |
3720 | else | |
3721 | { | |
560e09e9 NC |
3722 | /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */ |
3723 | ||
b49e97c9 TS |
3724 | /* For global symbols we look up the symbol in the hash-table. */ |
3725 | h = ((struct mips_elf_link_hash_entry *) | |
3726 | elf_sym_hashes (input_bfd) [r_symndx - extsymoff]); | |
3727 | /* Find the real hash-table entry for this symbol. */ | |
3728 | while (h->root.root.type == bfd_link_hash_indirect | |
3729 | || h->root.root.type == bfd_link_hash_warning) | |
3730 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | |
3731 | ||
3732 | /* Record the name of this symbol, for our caller. */ | |
3733 | *namep = h->root.root.root.string; | |
3734 | ||
3735 | /* See if this is the special _gp_disp symbol. Note that such a | |
3736 | symbol must always be a global symbol. */ | |
560e09e9 | 3737 | if (strcmp (*namep, "_gp_disp") == 0 |
b49e97c9 TS |
3738 | && ! NEWABI_P (input_bfd)) |
3739 | { | |
3740 | /* Relocations against _gp_disp are permitted only with | |
3741 | R_MIPS_HI16 and R_MIPS_LO16 relocations. */ | |
d6f16593 MR |
3742 | if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16 |
3743 | && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16) | |
b49e97c9 TS |
3744 | return bfd_reloc_notsupported; |
3745 | ||
b34976b6 | 3746 | gp_disp_p = TRUE; |
b49e97c9 | 3747 | } |
bbe506e8 TS |
3748 | /* See if this is the special _gp symbol. Note that such a |
3749 | symbol must always be a global symbol. */ | |
3750 | else if (strcmp (*namep, "__gnu_local_gp") == 0) | |
3751 | gnu_local_gp_p = TRUE; | |
3752 | ||
3753 | ||
b49e97c9 TS |
3754 | /* If this symbol is defined, calculate its address. Note that |
3755 | _gp_disp is a magic symbol, always implicitly defined by the | |
3756 | linker, so it's inappropriate to check to see whether or not | |
3757 | its defined. */ | |
3758 | else if ((h->root.root.type == bfd_link_hash_defined | |
3759 | || h->root.root.type == bfd_link_hash_defweak) | |
3760 | && h->root.root.u.def.section) | |
3761 | { | |
3762 | sec = h->root.root.u.def.section; | |
3763 | if (sec->output_section) | |
3764 | symbol = (h->root.root.u.def.value | |
3765 | + sec->output_section->vma | |
3766 | + sec->output_offset); | |
3767 | else | |
3768 | symbol = h->root.root.u.def.value; | |
3769 | } | |
3770 | else if (h->root.root.type == bfd_link_hash_undefweak) | |
3771 | /* We allow relocations against undefined weak symbols, giving | |
3772 | it the value zero, so that you can undefined weak functions | |
3773 | and check to see if they exist by looking at their | |
3774 | addresses. */ | |
3775 | symbol = 0; | |
59c2e50f | 3776 | else if (info->unresolved_syms_in_objects == RM_IGNORE |
b49e97c9 TS |
3777 | && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT) |
3778 | symbol = 0; | |
a4d0f181 TS |
3779 | else if (strcmp (*namep, SGI_COMPAT (input_bfd) |
3780 | ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0) | |
b49e97c9 TS |
3781 | { |
3782 | /* If this is a dynamic link, we should have created a | |
3783 | _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol | |
3784 | in in _bfd_mips_elf_create_dynamic_sections. | |
3785 | Otherwise, we should define the symbol with a value of 0. | |
3786 | FIXME: It should probably get into the symbol table | |
3787 | somehow as well. */ | |
3788 | BFD_ASSERT (! info->shared); | |
3789 | BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL); | |
3790 | symbol = 0; | |
3791 | } | |
3792 | else | |
3793 | { | |
3794 | if (! ((*info->callbacks->undefined_symbol) | |
3795 | (info, h->root.root.root.string, input_bfd, | |
3796 | input_section, relocation->r_offset, | |
59c2e50f L |
3797 | (info->unresolved_syms_in_objects == RM_GENERATE_ERROR) |
3798 | || ELF_ST_VISIBILITY (h->root.other)))) | |
b49e97c9 TS |
3799 | return bfd_reloc_undefined; |
3800 | symbol = 0; | |
3801 | } | |
3802 | ||
3803 | target_is_16_bit_code_p = (h->root.other == STO_MIPS16); | |
3804 | } | |
3805 | ||
3806 | /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we | |
3807 | need to redirect the call to the stub, unless we're already *in* | |
3808 | a stub. */ | |
1049f94e | 3809 | if (r_type != R_MIPS16_26 && !info->relocatable |
b49e97c9 TS |
3810 | && ((h != NULL && h->fn_stub != NULL) |
3811 | || (local_p && elf_tdata (input_bfd)->local_stubs != NULL | |
3812 | && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL)) | |
3813 | && !mips_elf_stub_section_p (input_bfd, input_section)) | |
3814 | { | |
3815 | /* This is a 32- or 64-bit call to a 16-bit function. We should | |
3816 | have already noticed that we were going to need the | |
3817 | stub. */ | |
3818 | if (local_p) | |
3819 | sec = elf_tdata (input_bfd)->local_stubs[r_symndx]; | |
3820 | else | |
3821 | { | |
3822 | BFD_ASSERT (h->need_fn_stub); | |
3823 | sec = h->fn_stub; | |
3824 | } | |
3825 | ||
3826 | symbol = sec->output_section->vma + sec->output_offset; | |
3827 | } | |
3828 | /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we | |
3829 | need to redirect the call to the stub. */ | |
1049f94e | 3830 | else if (r_type == R_MIPS16_26 && !info->relocatable |
b49e97c9 TS |
3831 | && h != NULL |
3832 | && (h->call_stub != NULL || h->call_fp_stub != NULL) | |
3833 | && !target_is_16_bit_code_p) | |
3834 | { | |
3835 | /* If both call_stub and call_fp_stub are defined, we can figure | |
3836 | out which one to use by seeing which one appears in the input | |
3837 | file. */ | |
3838 | if (h->call_stub != NULL && h->call_fp_stub != NULL) | |
3839 | { | |
3840 | asection *o; | |
3841 | ||
3842 | sec = NULL; | |
3843 | for (o = input_bfd->sections; o != NULL; o = o->next) | |
3844 | { | |
3845 | if (strncmp (bfd_get_section_name (input_bfd, o), | |
3846 | CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0) | |
3847 | { | |
3848 | sec = h->call_fp_stub; | |
3849 | break; | |
3850 | } | |
3851 | } | |
3852 | if (sec == NULL) | |
3853 | sec = h->call_stub; | |
3854 | } | |
3855 | else if (h->call_stub != NULL) | |
3856 | sec = h->call_stub; | |
3857 | else | |
3858 | sec = h->call_fp_stub; | |
3859 | ||
eea6121a | 3860 | BFD_ASSERT (sec->size > 0); |
b49e97c9 TS |
3861 | symbol = sec->output_section->vma + sec->output_offset; |
3862 | } | |
3863 | ||
3864 | /* Calls from 16-bit code to 32-bit code and vice versa require the | |
3865 | special jalx instruction. */ | |
1049f94e | 3866 | *require_jalxp = (!info->relocatable |
b49e97c9 TS |
3867 | && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p) |
3868 | || ((r_type == R_MIPS_26) && target_is_16_bit_code_p))); | |
3869 | ||
3870 | local_p = mips_elf_local_relocation_p (input_bfd, relocation, | |
b34976b6 | 3871 | local_sections, TRUE); |
b49e97c9 TS |
3872 | |
3873 | /* If we haven't already determined the GOT offset, or the GP value, | |
3874 | and we're going to need it, get it now. */ | |
3875 | switch (r_type) | |
3876 | { | |
0fdc1bf1 | 3877 | case R_MIPS_GOT_PAGE: |
93a2b7ae | 3878 | case R_MIPS_GOT_OFST: |
d25aed71 RS |
3879 | /* We need to decay to GOT_DISP/addend if the symbol doesn't |
3880 | bind locally. */ | |
3881 | local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1); | |
93a2b7ae | 3882 | if (local_p || r_type == R_MIPS_GOT_OFST) |
0fdc1bf1 AO |
3883 | break; |
3884 | /* Fall through. */ | |
3885 | ||
b49e97c9 TS |
3886 | case R_MIPS_CALL16: |
3887 | case R_MIPS_GOT16: | |
3888 | case R_MIPS_GOT_DISP: | |
3889 | case R_MIPS_GOT_HI16: | |
3890 | case R_MIPS_CALL_HI16: | |
3891 | case R_MIPS_GOT_LO16: | |
3892 | case R_MIPS_CALL_LO16: | |
0f20cc35 DJ |
3893 | case R_MIPS_TLS_GD: |
3894 | case R_MIPS_TLS_GOTTPREL: | |
3895 | case R_MIPS_TLS_LDM: | |
b49e97c9 | 3896 | /* Find the index into the GOT where this value is located. */ |
0f20cc35 DJ |
3897 | if (r_type == R_MIPS_TLS_LDM) |
3898 | { | |
3899 | g = mips_elf_local_got_index (abfd, input_bfd, info, 0, 0, NULL, | |
3900 | r_type); | |
3901 | if (g == MINUS_ONE) | |
3902 | return bfd_reloc_outofrange; | |
3903 | } | |
3904 | else if (!local_p) | |
b49e97c9 | 3905 | { |
0fdc1bf1 AO |
3906 | /* GOT_PAGE may take a non-zero addend, that is ignored in a |
3907 | GOT_PAGE relocation that decays to GOT_DISP because the | |
3908 | symbol turns out to be global. The addend is then added | |
3909 | as GOT_OFST. */ | |
3910 | BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE); | |
b49e97c9 | 3911 | g = mips_elf_global_got_index (elf_hash_table (info)->dynobj, |
f4416af6 | 3912 | input_bfd, |
0f20cc35 DJ |
3913 | (struct elf_link_hash_entry *) h, |
3914 | r_type, info); | |
3915 | if (h->tls_type == GOT_NORMAL | |
3916 | && (! elf_hash_table(info)->dynamic_sections_created | |
3917 | || (info->shared | |
3918 | && (info->symbolic || h->root.dynindx == -1) | |
3919 | && h->root.def_regular))) | |
b49e97c9 TS |
3920 | { |
3921 | /* This is a static link or a -Bsymbolic link. The | |
3922 | symbol is defined locally, or was forced to be local. | |
3923 | We must initialize this entry in the GOT. */ | |
3924 | bfd *tmpbfd = elf_hash_table (info)->dynobj; | |
f4416af6 | 3925 | asection *sgot = mips_elf_got_section (tmpbfd, FALSE); |
0fdc1bf1 | 3926 | MIPS_ELF_PUT_WORD (tmpbfd, symbol, sgot->contents + g); |
b49e97c9 TS |
3927 | } |
3928 | } | |
3929 | else if (r_type == R_MIPS_GOT16 || r_type == R_MIPS_CALL16) | |
3930 | /* There's no need to create a local GOT entry here; the | |
3931 | calculation for a local GOT16 entry does not involve G. */ | |
3932 | break; | |
3933 | else | |
3934 | { | |
f4416af6 | 3935 | g = mips_elf_local_got_index (abfd, input_bfd, |
0f20cc35 DJ |
3936 | info, symbol + addend, r_symndx, h, |
3937 | r_type); | |
b49e97c9 TS |
3938 | if (g == MINUS_ONE) |
3939 | return bfd_reloc_outofrange; | |
3940 | } | |
3941 | ||
3942 | /* Convert GOT indices to actual offsets. */ | |
3943 | g = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj, | |
f4416af6 | 3944 | abfd, input_bfd, g); |
b49e97c9 TS |
3945 | break; |
3946 | ||
3947 | case R_MIPS_HI16: | |
3948 | case R_MIPS_LO16: | |
b49e97c9 TS |
3949 | case R_MIPS_GPREL16: |
3950 | case R_MIPS_GPREL32: | |
3951 | case R_MIPS_LITERAL: | |
d6f16593 MR |
3952 | case R_MIPS16_HI16: |
3953 | case R_MIPS16_LO16: | |
3954 | case R_MIPS16_GPREL: | |
b49e97c9 TS |
3955 | gp0 = _bfd_get_gp_value (input_bfd); |
3956 | gp = _bfd_get_gp_value (abfd); | |
f4416af6 AO |
3957 | if (elf_hash_table (info)->dynobj) |
3958 | gp += mips_elf_adjust_gp (abfd, | |
3959 | mips_elf_got_info | |
3960 | (elf_hash_table (info)->dynobj, NULL), | |
3961 | input_bfd); | |
b49e97c9 TS |
3962 | break; |
3963 | ||
3964 | default: | |
3965 | break; | |
3966 | } | |
3967 | ||
bbe506e8 TS |
3968 | if (gnu_local_gp_p) |
3969 | symbol = gp; | |
3970 | ||
b49e97c9 TS |
3971 | /* Figure out what kind of relocation is being performed. */ |
3972 | switch (r_type) | |
3973 | { | |
3974 | case R_MIPS_NONE: | |
3975 | return bfd_reloc_continue; | |
3976 | ||
3977 | case R_MIPS_16: | |
a7ebbfdf | 3978 | value = symbol + _bfd_mips_elf_sign_extend (addend, 16); |
b49e97c9 TS |
3979 | overflowed_p = mips_elf_overflow_p (value, 16); |
3980 | break; | |
3981 | ||
3982 | case R_MIPS_32: | |
3983 | case R_MIPS_REL32: | |
3984 | case R_MIPS_64: | |
3985 | if ((info->shared | |
3986 | || (elf_hash_table (info)->dynamic_sections_created | |
3987 | && h != NULL | |
f5385ebf AM |
3988 | && h->root.def_dynamic |
3989 | && !h->root.def_regular)) | |
b49e97c9 TS |
3990 | && r_symndx != 0 |
3991 | && (input_section->flags & SEC_ALLOC) != 0) | |
3992 | { | |
3993 | /* If we're creating a shared library, or this relocation is | |
3994 | against a symbol in a shared library, then we can't know | |
3995 | where the symbol will end up. So, we create a relocation | |
3996 | record in the output, and leave the job up to the dynamic | |
3997 | linker. */ | |
3998 | value = addend; | |
3999 | if (!mips_elf_create_dynamic_relocation (abfd, | |
4000 | info, | |
4001 | relocation, | |
4002 | h, | |
4003 | sec, | |
4004 | symbol, | |
4005 | &value, | |
4006 | input_section)) | |
4007 | return bfd_reloc_undefined; | |
4008 | } | |
4009 | else | |
4010 | { | |
4011 | if (r_type != R_MIPS_REL32) | |
4012 | value = symbol + addend; | |
4013 | else | |
4014 | value = addend; | |
4015 | } | |
4016 | value &= howto->dst_mask; | |
092dcd75 CD |
4017 | break; |
4018 | ||
4019 | case R_MIPS_PC32: | |
4020 | value = symbol + addend - p; | |
4021 | value &= howto->dst_mask; | |
b49e97c9 TS |
4022 | break; |
4023 | ||
0b25d3e6 | 4024 | case R_MIPS_GNU_REL16_S2: |
30ac9238 | 4025 | value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p; |
0b25d3e6 AO |
4026 | overflowed_p = mips_elf_overflow_p (value, 18); |
4027 | value = (value >> 2) & howto->dst_mask; | |
4028 | break; | |
4029 | ||
b49e97c9 TS |
4030 | case R_MIPS16_26: |
4031 | /* The calculation for R_MIPS16_26 is just the same as for an | |
4032 | R_MIPS_26. It's only the storage of the relocated field into | |
4033 | the output file that's different. That's handled in | |
4034 | mips_elf_perform_relocation. So, we just fall through to the | |
4035 | R_MIPS_26 case here. */ | |
4036 | case R_MIPS_26: | |
4037 | if (local_p) | |
30ac9238 | 4038 | value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2; |
b49e97c9 | 4039 | else |
728b2f21 ILT |
4040 | { |
4041 | value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2; | |
c314987d RS |
4042 | if (h->root.root.type != bfd_link_hash_undefweak) |
4043 | overflowed_p = (value >> 26) != ((p + 4) >> 28); | |
728b2f21 | 4044 | } |
b49e97c9 TS |
4045 | value &= howto->dst_mask; |
4046 | break; | |
4047 | ||
0f20cc35 DJ |
4048 | case R_MIPS_TLS_DTPREL_HI16: |
4049 | value = (mips_elf_high (addend + symbol - dtprel_base (info)) | |
4050 | & howto->dst_mask); | |
4051 | break; | |
4052 | ||
4053 | case R_MIPS_TLS_DTPREL_LO16: | |
4054 | value = (symbol + addend - dtprel_base (info)) & howto->dst_mask; | |
4055 | break; | |
4056 | ||
4057 | case R_MIPS_TLS_TPREL_HI16: | |
4058 | value = (mips_elf_high (addend + symbol - tprel_base (info)) | |
4059 | & howto->dst_mask); | |
4060 | break; | |
4061 | ||
4062 | case R_MIPS_TLS_TPREL_LO16: | |
4063 | value = (symbol + addend - tprel_base (info)) & howto->dst_mask; | |
4064 | break; | |
4065 | ||
b49e97c9 | 4066 | case R_MIPS_HI16: |
d6f16593 | 4067 | case R_MIPS16_HI16: |
b49e97c9 TS |
4068 | if (!gp_disp_p) |
4069 | { | |
4070 | value = mips_elf_high (addend + symbol); | |
4071 | value &= howto->dst_mask; | |
4072 | } | |
4073 | else | |
4074 | { | |
d6f16593 MR |
4075 | /* For MIPS16 ABI code we generate this sequence |
4076 | 0: li $v0,%hi(_gp_disp) | |
4077 | 4: addiupc $v1,%lo(_gp_disp) | |
4078 | 8: sll $v0,16 | |
4079 | 12: addu $v0,$v1 | |
4080 | 14: move $gp,$v0 | |
4081 | So the offsets of hi and lo relocs are the same, but the | |
4082 | $pc is four higher than $t9 would be, so reduce | |
4083 | both reloc addends by 4. */ | |
4084 | if (r_type == R_MIPS16_HI16) | |
4085 | value = mips_elf_high (addend + gp - p - 4); | |
4086 | else | |
4087 | value = mips_elf_high (addend + gp - p); | |
b49e97c9 TS |
4088 | overflowed_p = mips_elf_overflow_p (value, 16); |
4089 | } | |
4090 | break; | |
4091 | ||
4092 | case R_MIPS_LO16: | |
d6f16593 | 4093 | case R_MIPS16_LO16: |
b49e97c9 TS |
4094 | if (!gp_disp_p) |
4095 | value = (symbol + addend) & howto->dst_mask; | |
4096 | else | |
4097 | { | |
d6f16593 MR |
4098 | /* See the comment for R_MIPS16_HI16 above for the reason |
4099 | for this conditional. */ | |
4100 | if (r_type == R_MIPS16_LO16) | |
4101 | value = addend + gp - p; | |
4102 | else | |
4103 | value = addend + gp - p + 4; | |
b49e97c9 | 4104 | /* The MIPS ABI requires checking the R_MIPS_LO16 relocation |
8dc1a139 | 4105 | for overflow. But, on, say, IRIX5, relocations against |
b49e97c9 TS |
4106 | _gp_disp are normally generated from the .cpload |
4107 | pseudo-op. It generates code that normally looks like | |
4108 | this: | |
4109 | ||
4110 | lui $gp,%hi(_gp_disp) | |
4111 | addiu $gp,$gp,%lo(_gp_disp) | |
4112 | addu $gp,$gp,$t9 | |
4113 | ||
4114 | Here $t9 holds the address of the function being called, | |
4115 | as required by the MIPS ELF ABI. The R_MIPS_LO16 | |
4116 | relocation can easily overflow in this situation, but the | |
4117 | R_MIPS_HI16 relocation will handle the overflow. | |
4118 | Therefore, we consider this a bug in the MIPS ABI, and do | |
4119 | not check for overflow here. */ | |
4120 | } | |
4121 | break; | |
4122 | ||
4123 | case R_MIPS_LITERAL: | |
4124 | /* Because we don't merge literal sections, we can handle this | |
4125 | just like R_MIPS_GPREL16. In the long run, we should merge | |
4126 | shared literals, and then we will need to additional work | |
4127 | here. */ | |
4128 | ||
4129 | /* Fall through. */ | |
4130 | ||
4131 | case R_MIPS16_GPREL: | |
4132 | /* The R_MIPS16_GPREL performs the same calculation as | |
4133 | R_MIPS_GPREL16, but stores the relocated bits in a different | |
4134 | order. We don't need to do anything special here; the | |
4135 | differences are handled in mips_elf_perform_relocation. */ | |
4136 | case R_MIPS_GPREL16: | |
bce03d3d AO |
4137 | /* Only sign-extend the addend if it was extracted from the |
4138 | instruction. If the addend was separate, leave it alone, | |
4139 | otherwise we may lose significant bits. */ | |
4140 | if (howto->partial_inplace) | |
a7ebbfdf | 4141 | addend = _bfd_mips_elf_sign_extend (addend, 16); |
bce03d3d AO |
4142 | value = symbol + addend - gp; |
4143 | /* If the symbol was local, any earlier relocatable links will | |
4144 | have adjusted its addend with the gp offset, so compensate | |
4145 | for that now. Don't do it for symbols forced local in this | |
4146 | link, though, since they won't have had the gp offset applied | |
4147 | to them before. */ | |
4148 | if (was_local_p) | |
4149 | value += gp0; | |
b49e97c9 TS |
4150 | overflowed_p = mips_elf_overflow_p (value, 16); |
4151 | break; | |
4152 | ||
4153 | case R_MIPS_GOT16: | |
4154 | case R_MIPS_CALL16: | |
4155 | if (local_p) | |
4156 | { | |
b34976b6 | 4157 | bfd_boolean forced; |
b49e97c9 TS |
4158 | |
4159 | /* The special case is when the symbol is forced to be local. We | |
4160 | need the full address in the GOT since no R_MIPS_LO16 relocation | |
4161 | follows. */ | |
4162 | forced = ! mips_elf_local_relocation_p (input_bfd, relocation, | |
b34976b6 | 4163 | local_sections, FALSE); |
f4416af6 AO |
4164 | value = mips_elf_got16_entry (abfd, input_bfd, info, |
4165 | symbol + addend, forced); | |
b49e97c9 TS |
4166 | if (value == MINUS_ONE) |
4167 | return bfd_reloc_outofrange; | |
4168 | value | |
4169 | = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj, | |
f4416af6 | 4170 | abfd, input_bfd, value); |
b49e97c9 TS |
4171 | overflowed_p = mips_elf_overflow_p (value, 16); |
4172 | break; | |
4173 | } | |
4174 | ||
4175 | /* Fall through. */ | |
4176 | ||
0f20cc35 DJ |
4177 | case R_MIPS_TLS_GD: |
4178 | case R_MIPS_TLS_GOTTPREL: | |
4179 | case R_MIPS_TLS_LDM: | |
b49e97c9 | 4180 | case R_MIPS_GOT_DISP: |
0fdc1bf1 | 4181 | got_disp: |
b49e97c9 TS |
4182 | value = g; |
4183 | overflowed_p = mips_elf_overflow_p (value, 16); | |
4184 | break; | |
4185 | ||
4186 | case R_MIPS_GPREL32: | |
bce03d3d AO |
4187 | value = (addend + symbol + gp0 - gp); |
4188 | if (!save_addend) | |
4189 | value &= howto->dst_mask; | |
b49e97c9 TS |
4190 | break; |
4191 | ||
4192 | case R_MIPS_PC16: | |
a7ebbfdf | 4193 | value = _bfd_mips_elf_sign_extend (addend, 16) + symbol - p; |
0b25d3e6 | 4194 | overflowed_p = mips_elf_overflow_p (value, 16); |
b49e97c9 TS |
4195 | break; |
4196 | ||
4197 | case R_MIPS_GOT_HI16: | |
4198 | case R_MIPS_CALL_HI16: | |
4199 | /* We're allowed to handle these two relocations identically. | |
4200 | The dynamic linker is allowed to handle the CALL relocations | |
4201 | differently by creating a lazy evaluation stub. */ | |
4202 | value = g; | |
4203 | value = mips_elf_high (value); | |
4204 | value &= howto->dst_mask; | |
4205 | break; | |
4206 | ||
4207 | case R_MIPS_GOT_LO16: | |
4208 | case R_MIPS_CALL_LO16: | |
4209 | value = g & howto->dst_mask; | |
4210 | break; | |
4211 | ||
4212 | case R_MIPS_GOT_PAGE: | |
0fdc1bf1 AO |
4213 | /* GOT_PAGE relocations that reference non-local symbols decay |
4214 | to GOT_DISP. The corresponding GOT_OFST relocation decays to | |
4215 | 0. */ | |
93a2b7ae | 4216 | if (! local_p) |
0fdc1bf1 | 4217 | goto got_disp; |
f4416af6 | 4218 | value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL); |
b49e97c9 TS |
4219 | if (value == MINUS_ONE) |
4220 | return bfd_reloc_outofrange; | |
4221 | value = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj, | |
f4416af6 | 4222 | abfd, input_bfd, value); |
b49e97c9 TS |
4223 | overflowed_p = mips_elf_overflow_p (value, 16); |
4224 | break; | |
4225 | ||
4226 | case R_MIPS_GOT_OFST: | |
93a2b7ae | 4227 | if (local_p) |
0fdc1bf1 AO |
4228 | mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value); |
4229 | else | |
4230 | value = addend; | |
b49e97c9 TS |
4231 | overflowed_p = mips_elf_overflow_p (value, 16); |
4232 | break; | |
4233 | ||
4234 | case R_MIPS_SUB: | |
4235 | value = symbol - addend; | |
4236 | value &= howto->dst_mask; | |
4237 | break; | |
4238 | ||
4239 | case R_MIPS_HIGHER: | |
4240 | value = mips_elf_higher (addend + symbol); | |
4241 | value &= howto->dst_mask; | |
4242 | break; | |
4243 | ||
4244 | case R_MIPS_HIGHEST: | |
4245 | value = mips_elf_highest (addend + symbol); | |
4246 | value &= howto->dst_mask; | |
4247 | break; | |
4248 | ||
4249 | case R_MIPS_SCN_DISP: | |
4250 | value = symbol + addend - sec->output_offset; | |
4251 | value &= howto->dst_mask; | |
4252 | break; | |
4253 | ||
b49e97c9 | 4254 | case R_MIPS_JALR: |
1367d393 ILT |
4255 | /* This relocation is only a hint. In some cases, we optimize |
4256 | it into a bal instruction. But we don't try to optimize | |
4257 | branches to the PLT; that will wind up wasting time. */ | |
4258 | if (h != NULL && h->root.plt.offset != (bfd_vma) -1) | |
4259 | return bfd_reloc_continue; | |
4260 | value = symbol + addend; | |
4261 | break; | |
b49e97c9 | 4262 | |
1367d393 | 4263 | case R_MIPS_PJUMP: |
b49e97c9 TS |
4264 | case R_MIPS_GNU_VTINHERIT: |
4265 | case R_MIPS_GNU_VTENTRY: | |
4266 | /* We don't do anything with these at present. */ | |
4267 | return bfd_reloc_continue; | |
4268 | ||
4269 | default: | |
4270 | /* An unrecognized relocation type. */ | |
4271 | return bfd_reloc_notsupported; | |
4272 | } | |
4273 | ||
4274 | /* Store the VALUE for our caller. */ | |
4275 | *valuep = value; | |
4276 | return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok; | |
4277 | } | |
4278 | ||
4279 | /* Obtain the field relocated by RELOCATION. */ | |
4280 | ||
4281 | static bfd_vma | |
9719ad41 RS |
4282 | mips_elf_obtain_contents (reloc_howto_type *howto, |
4283 | const Elf_Internal_Rela *relocation, | |
4284 | bfd *input_bfd, bfd_byte *contents) | |
b49e97c9 TS |
4285 | { |
4286 | bfd_vma x; | |
4287 | bfd_byte *location = contents + relocation->r_offset; | |
4288 | ||
4289 | /* Obtain the bytes. */ | |
4290 | x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location); | |
4291 | ||
b49e97c9 TS |
4292 | return x; |
4293 | } | |
4294 | ||
4295 | /* It has been determined that the result of the RELOCATION is the | |
4296 | VALUE. Use HOWTO to place VALUE into the output file at the | |
4297 | appropriate position. The SECTION is the section to which the | |
b34976b6 | 4298 | relocation applies. If REQUIRE_JALX is TRUE, then the opcode used |
b49e97c9 TS |
4299 | for the relocation must be either JAL or JALX, and it is |
4300 | unconditionally converted to JALX. | |
4301 | ||
b34976b6 | 4302 | Returns FALSE if anything goes wrong. */ |
b49e97c9 | 4303 | |
b34976b6 | 4304 | static bfd_boolean |
9719ad41 RS |
4305 | mips_elf_perform_relocation (struct bfd_link_info *info, |
4306 | reloc_howto_type *howto, | |
4307 | const Elf_Internal_Rela *relocation, | |
4308 | bfd_vma value, bfd *input_bfd, | |
4309 | asection *input_section, bfd_byte *contents, | |
4310 | bfd_boolean require_jalx) | |
b49e97c9 TS |
4311 | { |
4312 | bfd_vma x; | |
4313 | bfd_byte *location; | |
4314 | int r_type = ELF_R_TYPE (input_bfd, relocation->r_info); | |
4315 | ||
4316 | /* Figure out where the relocation is occurring. */ | |
4317 | location = contents + relocation->r_offset; | |
4318 | ||
d6f16593 MR |
4319 | _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location); |
4320 | ||
b49e97c9 TS |
4321 | /* Obtain the current value. */ |
4322 | x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents); | |
4323 | ||
4324 | /* Clear the field we are setting. */ | |
4325 | x &= ~howto->dst_mask; | |
4326 | ||
b49e97c9 TS |
4327 | /* Set the field. */ |
4328 | x |= (value & howto->dst_mask); | |
4329 | ||
4330 | /* If required, turn JAL into JALX. */ | |
4331 | if (require_jalx) | |
4332 | { | |
b34976b6 | 4333 | bfd_boolean ok; |
b49e97c9 TS |
4334 | bfd_vma opcode = x >> 26; |
4335 | bfd_vma jalx_opcode; | |
4336 | ||
4337 | /* Check to see if the opcode is already JAL or JALX. */ | |
4338 | if (r_type == R_MIPS16_26) | |
4339 | { | |
4340 | ok = ((opcode == 0x6) || (opcode == 0x7)); | |
4341 | jalx_opcode = 0x7; | |
4342 | } | |
4343 | else | |
4344 | { | |
4345 | ok = ((opcode == 0x3) || (opcode == 0x1d)); | |
4346 | jalx_opcode = 0x1d; | |
4347 | } | |
4348 | ||
4349 | /* If the opcode is not JAL or JALX, there's a problem. */ | |
4350 | if (!ok) | |
4351 | { | |
4352 | (*_bfd_error_handler) | |
d003868e AM |
4353 | (_("%B: %A+0x%lx: jump to stub routine which is not jal"), |
4354 | input_bfd, | |
4355 | input_section, | |
b49e97c9 TS |
4356 | (unsigned long) relocation->r_offset); |
4357 | bfd_set_error (bfd_error_bad_value); | |
b34976b6 | 4358 | return FALSE; |
b49e97c9 TS |
4359 | } |
4360 | ||
4361 | /* Make this the JALX opcode. */ | |
4362 | x = (x & ~(0x3f << 26)) | (jalx_opcode << 26); | |
4363 | } | |
4364 | ||
1367d393 ILT |
4365 | /* On the RM9000, bal is faster than jal, because bal uses branch |
4366 | prediction hardware. If we are linking for the RM9000, and we | |
4367 | see jal, and bal fits, use it instead. Note that this | |
4368 | transformation should be safe for all architectures. */ | |
4369 | if (bfd_get_mach (input_bfd) == bfd_mach_mips9000 | |
4370 | && !info->relocatable | |
4371 | && !require_jalx | |
4372 | && ((r_type == R_MIPS_26 && (x >> 26) == 0x3) /* jal addr */ | |
4373 | || (r_type == R_MIPS_JALR && x == 0x0320f809))) /* jalr t9 */ | |
4374 | { | |
4375 | bfd_vma addr; | |
4376 | bfd_vma dest; | |
4377 | bfd_signed_vma off; | |
4378 | ||
4379 | addr = (input_section->output_section->vma | |
4380 | + input_section->output_offset | |
4381 | + relocation->r_offset | |
4382 | + 4); | |
4383 | if (r_type == R_MIPS_26) | |
4384 | dest = (value << 2) | ((addr >> 28) << 28); | |
4385 | else | |
4386 | dest = value; | |
4387 | off = dest - addr; | |
4388 | if (off <= 0x1ffff && off >= -0x20000) | |
4389 | x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */ | |
4390 | } | |
4391 | ||
b49e97c9 TS |
4392 | /* Put the value into the output. */ |
4393 | bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location); | |
d6f16593 MR |
4394 | |
4395 | _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable, | |
4396 | location); | |
4397 | ||
b34976b6 | 4398 | return TRUE; |
b49e97c9 TS |
4399 | } |
4400 | ||
b34976b6 | 4401 | /* Returns TRUE if SECTION is a MIPS16 stub section. */ |
b49e97c9 | 4402 | |
b34976b6 | 4403 | static bfd_boolean |
9719ad41 | 4404 | mips_elf_stub_section_p (bfd *abfd ATTRIBUTE_UNUSED, asection *section) |
b49e97c9 TS |
4405 | { |
4406 | const char *name = bfd_get_section_name (abfd, section); | |
4407 | ||
4408 | return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0 | |
4409 | || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0 | |
4410 | || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0); | |
4411 | } | |
4412 | \f | |
4413 | /* Add room for N relocations to the .rel.dyn section in ABFD. */ | |
4414 | ||
4415 | static void | |
9719ad41 | 4416 | mips_elf_allocate_dynamic_relocations (bfd *abfd, unsigned int n) |
b49e97c9 TS |
4417 | { |
4418 | asection *s; | |
4419 | ||
f4416af6 | 4420 | s = mips_elf_rel_dyn_section (abfd, FALSE); |
b49e97c9 TS |
4421 | BFD_ASSERT (s != NULL); |
4422 | ||
eea6121a | 4423 | if (s->size == 0) |
b49e97c9 TS |
4424 | { |
4425 | /* Make room for a null element. */ | |
eea6121a | 4426 | s->size += MIPS_ELF_REL_SIZE (abfd); |
b49e97c9 TS |
4427 | ++s->reloc_count; |
4428 | } | |
eea6121a | 4429 | s->size += n * MIPS_ELF_REL_SIZE (abfd); |
b49e97c9 TS |
4430 | } |
4431 | ||
4432 | /* Create a rel.dyn relocation for the dynamic linker to resolve. REL | |
4433 | is the original relocation, which is now being transformed into a | |
4434 | dynamic relocation. The ADDENDP is adjusted if necessary; the | |
4435 | caller should store the result in place of the original addend. */ | |
4436 | ||
b34976b6 | 4437 | static bfd_boolean |
9719ad41 RS |
4438 | mips_elf_create_dynamic_relocation (bfd *output_bfd, |
4439 | struct bfd_link_info *info, | |
4440 | const Elf_Internal_Rela *rel, | |
4441 | struct mips_elf_link_hash_entry *h, | |
4442 | asection *sec, bfd_vma symbol, | |
4443 | bfd_vma *addendp, asection *input_section) | |
b49e97c9 | 4444 | { |
947216bf | 4445 | Elf_Internal_Rela outrel[3]; |
b49e97c9 TS |
4446 | asection *sreloc; |
4447 | bfd *dynobj; | |
4448 | int r_type; | |
5d41f0b6 RS |
4449 | long indx; |
4450 | bfd_boolean defined_p; | |
b49e97c9 TS |
4451 | |
4452 | r_type = ELF_R_TYPE (output_bfd, rel->r_info); | |
4453 | dynobj = elf_hash_table (info)->dynobj; | |
f4416af6 | 4454 | sreloc = mips_elf_rel_dyn_section (dynobj, FALSE); |
b49e97c9 TS |
4455 | BFD_ASSERT (sreloc != NULL); |
4456 | BFD_ASSERT (sreloc->contents != NULL); | |
4457 | BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd) | |
eea6121a | 4458 | < sreloc->size); |
b49e97c9 | 4459 | |
b49e97c9 TS |
4460 | outrel[0].r_offset = |
4461 | _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset); | |
4462 | outrel[1].r_offset = | |
4463 | _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset); | |
4464 | outrel[2].r_offset = | |
4465 | _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset); | |
4466 | ||
c5ae1840 | 4467 | if (outrel[0].r_offset == MINUS_ONE) |
0d591ff7 | 4468 | /* The relocation field has been deleted. */ |
5d41f0b6 RS |
4469 | return TRUE; |
4470 | ||
4471 | if (outrel[0].r_offset == MINUS_TWO) | |
0d591ff7 RS |
4472 | { |
4473 | /* The relocation field has been converted into a relative value of | |
4474 | some sort. Functions like _bfd_elf_write_section_eh_frame expect | |
4475 | the field to be fully relocated, so add in the symbol's value. */ | |
0d591ff7 | 4476 | *addendp += symbol; |
5d41f0b6 | 4477 | return TRUE; |
0d591ff7 | 4478 | } |
b49e97c9 | 4479 | |
5d41f0b6 RS |
4480 | /* We must now calculate the dynamic symbol table index to use |
4481 | in the relocation. */ | |
4482 | if (h != NULL | |
4483 | && (! info->symbolic || !h->root.def_regular) | |
4484 | /* h->root.dynindx may be -1 if this symbol was marked to | |
4485 | become local. */ | |
4486 | && h->root.dynindx != -1) | |
4487 | { | |
4488 | indx = h->root.dynindx; | |
4489 | if (SGI_COMPAT (output_bfd)) | |
4490 | defined_p = h->root.def_regular; | |
4491 | else | |
4492 | /* ??? glibc's ld.so just adds the final GOT entry to the | |
4493 | relocation field. It therefore treats relocs against | |
4494 | defined symbols in the same way as relocs against | |
4495 | undefined symbols. */ | |
4496 | defined_p = FALSE; | |
4497 | } | |
b49e97c9 TS |
4498 | else |
4499 | { | |
5d41f0b6 RS |
4500 | if (sec != NULL && bfd_is_abs_section (sec)) |
4501 | indx = 0; | |
4502 | else if (sec == NULL || sec->owner == NULL) | |
fdd07405 | 4503 | { |
5d41f0b6 RS |
4504 | bfd_set_error (bfd_error_bad_value); |
4505 | return FALSE; | |
b49e97c9 TS |
4506 | } |
4507 | else | |
4508 | { | |
5d41f0b6 RS |
4509 | indx = elf_section_data (sec->output_section)->dynindx; |
4510 | if (indx == 0) | |
4511 | abort (); | |
b49e97c9 TS |
4512 | } |
4513 | ||
5d41f0b6 RS |
4514 | /* Instead of generating a relocation using the section |
4515 | symbol, we may as well make it a fully relative | |
4516 | relocation. We want to avoid generating relocations to | |
4517 | local symbols because we used to generate them | |
4518 | incorrectly, without adding the original symbol value, | |
4519 | which is mandated by the ABI for section symbols. In | |
4520 | order to give dynamic loaders and applications time to | |
4521 | phase out the incorrect use, we refrain from emitting | |
4522 | section-relative relocations. It's not like they're | |
4523 | useful, after all. This should be a bit more efficient | |
4524 | as well. */ | |
4525 | /* ??? Although this behavior is compatible with glibc's ld.so, | |
4526 | the ABI says that relocations against STN_UNDEF should have | |
4527 | a symbol value of 0. Irix rld honors this, so relocations | |
4528 | against STN_UNDEF have no effect. */ | |
4529 | if (!SGI_COMPAT (output_bfd)) | |
4530 | indx = 0; | |
4531 | defined_p = TRUE; | |
b49e97c9 TS |
4532 | } |
4533 | ||
5d41f0b6 RS |
4534 | /* If the relocation was previously an absolute relocation and |
4535 | this symbol will not be referred to by the relocation, we must | |
4536 | adjust it by the value we give it in the dynamic symbol table. | |
4537 | Otherwise leave the job up to the dynamic linker. */ | |
4538 | if (defined_p && r_type != R_MIPS_REL32) | |
4539 | *addendp += symbol; | |
4540 | ||
4541 | /* The relocation is always an REL32 relocation because we don't | |
4542 | know where the shared library will wind up at load-time. */ | |
4543 | outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx, | |
4544 | R_MIPS_REL32); | |
4545 | /* For strict adherence to the ABI specification, we should | |
4546 | generate a R_MIPS_64 relocation record by itself before the | |
4547 | _REL32/_64 record as well, such that the addend is read in as | |
4548 | a 64-bit value (REL32 is a 32-bit relocation, after all). | |
4549 | However, since none of the existing ELF64 MIPS dynamic | |
4550 | loaders seems to care, we don't waste space with these | |
4551 | artificial relocations. If this turns out to not be true, | |
4552 | mips_elf_allocate_dynamic_relocation() should be tweaked so | |
4553 | as to make room for a pair of dynamic relocations per | |
4554 | invocation if ABI_64_P, and here we should generate an | |
4555 | additional relocation record with R_MIPS_64 by itself for a | |
4556 | NULL symbol before this relocation record. */ | |
4557 | outrel[1].r_info = ELF_R_INFO (output_bfd, 0, | |
4558 | ABI_64_P (output_bfd) | |
4559 | ? R_MIPS_64 | |
4560 | : R_MIPS_NONE); | |
4561 | outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE); | |
4562 | ||
4563 | /* Adjust the output offset of the relocation to reference the | |
4564 | correct location in the output file. */ | |
4565 | outrel[0].r_offset += (input_section->output_section->vma | |
4566 | + input_section->output_offset); | |
4567 | outrel[1].r_offset += (input_section->output_section->vma | |
4568 | + input_section->output_offset); | |
4569 | outrel[2].r_offset += (input_section->output_section->vma | |
4570 | + input_section->output_offset); | |
4571 | ||
b49e97c9 TS |
4572 | /* Put the relocation back out. We have to use the special |
4573 | relocation outputter in the 64-bit case since the 64-bit | |
4574 | relocation format is non-standard. */ | |
4575 | if (ABI_64_P (output_bfd)) | |
4576 | { | |
4577 | (*get_elf_backend_data (output_bfd)->s->swap_reloc_out) | |
4578 | (output_bfd, &outrel[0], | |
4579 | (sreloc->contents | |
4580 | + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel))); | |
4581 | } | |
4582 | else | |
947216bf AM |
4583 | bfd_elf32_swap_reloc_out |
4584 | (output_bfd, &outrel[0], | |
4585 | (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel))); | |
b49e97c9 | 4586 | |
b49e97c9 TS |
4587 | /* We've now added another relocation. */ |
4588 | ++sreloc->reloc_count; | |
4589 | ||
4590 | /* Make sure the output section is writable. The dynamic linker | |
4591 | will be writing to it. */ | |
4592 | elf_section_data (input_section->output_section)->this_hdr.sh_flags | |
4593 | |= SHF_WRITE; | |
4594 | ||
4595 | /* On IRIX5, make an entry of compact relocation info. */ | |
5d41f0b6 | 4596 | if (IRIX_COMPAT (output_bfd) == ict_irix5) |
b49e97c9 TS |
4597 | { |
4598 | asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel"); | |
4599 | bfd_byte *cr; | |
4600 | ||
4601 | if (scpt) | |
4602 | { | |
4603 | Elf32_crinfo cptrel; | |
4604 | ||
4605 | mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG); | |
4606 | cptrel.vaddr = (rel->r_offset | |
4607 | + input_section->output_section->vma | |
4608 | + input_section->output_offset); | |
4609 | if (r_type == R_MIPS_REL32) | |
4610 | mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32); | |
4611 | else | |
4612 | mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD); | |
4613 | mips_elf_set_cr_dist2to (cptrel, 0); | |
4614 | cptrel.konst = *addendp; | |
4615 | ||
4616 | cr = (scpt->contents | |
4617 | + sizeof (Elf32_External_compact_rel)); | |
abc0f8d0 | 4618 | mips_elf_set_cr_relvaddr (cptrel, 0); |
b49e97c9 TS |
4619 | bfd_elf32_swap_crinfo_out (output_bfd, &cptrel, |
4620 | ((Elf32_External_crinfo *) cr | |
4621 | + scpt->reloc_count)); | |
4622 | ++scpt->reloc_count; | |
4623 | } | |
4624 | } | |
4625 | ||
b34976b6 | 4626 | return TRUE; |
b49e97c9 TS |
4627 | } |
4628 | \f | |
b49e97c9 TS |
4629 | /* Return the MACH for a MIPS e_flags value. */ |
4630 | ||
4631 | unsigned long | |
9719ad41 | 4632 | _bfd_elf_mips_mach (flagword flags) |
b49e97c9 TS |
4633 | { |
4634 | switch (flags & EF_MIPS_MACH) | |
4635 | { | |
4636 | case E_MIPS_MACH_3900: | |
4637 | return bfd_mach_mips3900; | |
4638 | ||
4639 | case E_MIPS_MACH_4010: | |
4640 | return bfd_mach_mips4010; | |
4641 | ||
4642 | case E_MIPS_MACH_4100: | |
4643 | return bfd_mach_mips4100; | |
4644 | ||
4645 | case E_MIPS_MACH_4111: | |
4646 | return bfd_mach_mips4111; | |
4647 | ||
00707a0e RS |
4648 | case E_MIPS_MACH_4120: |
4649 | return bfd_mach_mips4120; | |
4650 | ||
b49e97c9 TS |
4651 | case E_MIPS_MACH_4650: |
4652 | return bfd_mach_mips4650; | |
4653 | ||
00707a0e RS |
4654 | case E_MIPS_MACH_5400: |
4655 | return bfd_mach_mips5400; | |
4656 | ||
4657 | case E_MIPS_MACH_5500: | |
4658 | return bfd_mach_mips5500; | |
4659 | ||
0d2e43ed ILT |
4660 | case E_MIPS_MACH_9000: |
4661 | return bfd_mach_mips9000; | |
4662 | ||
b49e97c9 TS |
4663 | case E_MIPS_MACH_SB1: |
4664 | return bfd_mach_mips_sb1; | |
4665 | ||
4666 | default: | |
4667 | switch (flags & EF_MIPS_ARCH) | |
4668 | { | |
4669 | default: | |
4670 | case E_MIPS_ARCH_1: | |
4671 | return bfd_mach_mips3000; | |
4672 | break; | |
4673 | ||
4674 | case E_MIPS_ARCH_2: | |
4675 | return bfd_mach_mips6000; | |
4676 | break; | |
4677 | ||
4678 | case E_MIPS_ARCH_3: | |
4679 | return bfd_mach_mips4000; | |
4680 | break; | |
4681 | ||
4682 | case E_MIPS_ARCH_4: | |
4683 | return bfd_mach_mips8000; | |
4684 | break; | |
4685 | ||
4686 | case E_MIPS_ARCH_5: | |
4687 | return bfd_mach_mips5; | |
4688 | break; | |
4689 | ||
4690 | case E_MIPS_ARCH_32: | |
4691 | return bfd_mach_mipsisa32; | |
4692 | break; | |
4693 | ||
4694 | case E_MIPS_ARCH_64: | |
4695 | return bfd_mach_mipsisa64; | |
4696 | break; | |
af7ee8bf CD |
4697 | |
4698 | case E_MIPS_ARCH_32R2: | |
4699 | return bfd_mach_mipsisa32r2; | |
4700 | break; | |
5f74bc13 CD |
4701 | |
4702 | case E_MIPS_ARCH_64R2: | |
4703 | return bfd_mach_mipsisa64r2; | |
4704 | break; | |
b49e97c9 TS |
4705 | } |
4706 | } | |
4707 | ||
4708 | return 0; | |
4709 | } | |
4710 | ||
4711 | /* Return printable name for ABI. */ | |
4712 | ||
4713 | static INLINE char * | |
9719ad41 | 4714 | elf_mips_abi_name (bfd *abfd) |
b49e97c9 TS |
4715 | { |
4716 | flagword flags; | |
4717 | ||
4718 | flags = elf_elfheader (abfd)->e_flags; | |
4719 | switch (flags & EF_MIPS_ABI) | |
4720 | { | |
4721 | case 0: | |
4722 | if (ABI_N32_P (abfd)) | |
4723 | return "N32"; | |
4724 | else if (ABI_64_P (abfd)) | |
4725 | return "64"; | |
4726 | else | |
4727 | return "none"; | |
4728 | case E_MIPS_ABI_O32: | |
4729 | return "O32"; | |
4730 | case E_MIPS_ABI_O64: | |
4731 | return "O64"; | |
4732 | case E_MIPS_ABI_EABI32: | |
4733 | return "EABI32"; | |
4734 | case E_MIPS_ABI_EABI64: | |
4735 | return "EABI64"; | |
4736 | default: | |
4737 | return "unknown abi"; | |
4738 | } | |
4739 | } | |
4740 | \f | |
4741 | /* MIPS ELF uses two common sections. One is the usual one, and the | |
4742 | other is for small objects. All the small objects are kept | |
4743 | together, and then referenced via the gp pointer, which yields | |
4744 | faster assembler code. This is what we use for the small common | |
4745 | section. This approach is copied from ecoff.c. */ | |
4746 | static asection mips_elf_scom_section; | |
4747 | static asymbol mips_elf_scom_symbol; | |
4748 | static asymbol *mips_elf_scom_symbol_ptr; | |
4749 | ||
4750 | /* MIPS ELF also uses an acommon section, which represents an | |
4751 | allocated common symbol which may be overridden by a | |
4752 | definition in a shared library. */ | |
4753 | static asection mips_elf_acom_section; | |
4754 | static asymbol mips_elf_acom_symbol; | |
4755 | static asymbol *mips_elf_acom_symbol_ptr; | |
4756 | ||
4757 | /* Handle the special MIPS section numbers that a symbol may use. | |
4758 | This is used for both the 32-bit and the 64-bit ABI. */ | |
4759 | ||
4760 | void | |
9719ad41 | 4761 | _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym) |
b49e97c9 TS |
4762 | { |
4763 | elf_symbol_type *elfsym; | |
4764 | ||
4765 | elfsym = (elf_symbol_type *) asym; | |
4766 | switch (elfsym->internal_elf_sym.st_shndx) | |
4767 | { | |
4768 | case SHN_MIPS_ACOMMON: | |
4769 | /* This section is used in a dynamically linked executable file. | |
4770 | It is an allocated common section. The dynamic linker can | |
4771 | either resolve these symbols to something in a shared | |
4772 | library, or it can just leave them here. For our purposes, | |
4773 | we can consider these symbols to be in a new section. */ | |
4774 | if (mips_elf_acom_section.name == NULL) | |
4775 | { | |
4776 | /* Initialize the acommon section. */ | |
4777 | mips_elf_acom_section.name = ".acommon"; | |
4778 | mips_elf_acom_section.flags = SEC_ALLOC; | |
4779 | mips_elf_acom_section.output_section = &mips_elf_acom_section; | |
4780 | mips_elf_acom_section.symbol = &mips_elf_acom_symbol; | |
4781 | mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr; | |
4782 | mips_elf_acom_symbol.name = ".acommon"; | |
4783 | mips_elf_acom_symbol.flags = BSF_SECTION_SYM; | |
4784 | mips_elf_acom_symbol.section = &mips_elf_acom_section; | |
4785 | mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol; | |
4786 | } | |
4787 | asym->section = &mips_elf_acom_section; | |
4788 | break; | |
4789 | ||
4790 | case SHN_COMMON: | |
4791 | /* Common symbols less than the GP size are automatically | |
4792 | treated as SHN_MIPS_SCOMMON symbols on IRIX5. */ | |
4793 | if (asym->value > elf_gp_size (abfd) | |
4794 | || IRIX_COMPAT (abfd) == ict_irix6) | |
4795 | break; | |
4796 | /* Fall through. */ | |
4797 | case SHN_MIPS_SCOMMON: | |
4798 | if (mips_elf_scom_section.name == NULL) | |
4799 | { | |
4800 | /* Initialize the small common section. */ | |
4801 | mips_elf_scom_section.name = ".scommon"; | |
4802 | mips_elf_scom_section.flags = SEC_IS_COMMON; | |
4803 | mips_elf_scom_section.output_section = &mips_elf_scom_section; | |
4804 | mips_elf_scom_section.symbol = &mips_elf_scom_symbol; | |
4805 | mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr; | |
4806 | mips_elf_scom_symbol.name = ".scommon"; | |
4807 | mips_elf_scom_symbol.flags = BSF_SECTION_SYM; | |
4808 | mips_elf_scom_symbol.section = &mips_elf_scom_section; | |
4809 | mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol; | |
4810 | } | |
4811 | asym->section = &mips_elf_scom_section; | |
4812 | asym->value = elfsym->internal_elf_sym.st_size; | |
4813 | break; | |
4814 | ||
4815 | case SHN_MIPS_SUNDEFINED: | |
4816 | asym->section = bfd_und_section_ptr; | |
4817 | break; | |
4818 | ||
b49e97c9 | 4819 | case SHN_MIPS_TEXT: |
00b4930b TS |
4820 | { |
4821 | asection *section = bfd_get_section_by_name (abfd, ".text"); | |
4822 | ||
4823 | BFD_ASSERT (SGI_COMPAT (abfd)); | |
4824 | if (section != NULL) | |
4825 | { | |
4826 | asym->section = section; | |
4827 | /* MIPS_TEXT is a bit special, the address is not an offset | |
4828 | to the base of the .text section. So substract the section | |
4829 | base address to make it an offset. */ | |
4830 | asym->value -= section->vma; | |
4831 | } | |
4832 | } | |
b49e97c9 TS |
4833 | break; |
4834 | ||
4835 | case SHN_MIPS_DATA: | |
00b4930b TS |
4836 | { |
4837 | asection *section = bfd_get_section_by_name (abfd, ".data"); | |
4838 | ||
4839 | BFD_ASSERT (SGI_COMPAT (abfd)); | |
4840 | if (section != NULL) | |
4841 | { | |
4842 | asym->section = section; | |
4843 | /* MIPS_DATA is a bit special, the address is not an offset | |
4844 | to the base of the .data section. So substract the section | |
4845 | base address to make it an offset. */ | |
4846 | asym->value -= section->vma; | |
4847 | } | |
4848 | } | |
b49e97c9 | 4849 | break; |
b49e97c9 TS |
4850 | } |
4851 | } | |
4852 | \f | |
8c946ed5 RS |
4853 | /* Implement elf_backend_eh_frame_address_size. This differs from |
4854 | the default in the way it handles EABI64. | |
4855 | ||
4856 | EABI64 was originally specified as an LP64 ABI, and that is what | |
4857 | -mabi=eabi normally gives on a 64-bit target. However, gcc has | |
4858 | historically accepted the combination of -mabi=eabi and -mlong32, | |
4859 | and this ILP32 variation has become semi-official over time. | |
4860 | Both forms use elf32 and have pointer-sized FDE addresses. | |
4861 | ||
4862 | If an EABI object was generated by GCC 4.0 or above, it will have | |
4863 | an empty .gcc_compiled_longXX section, where XX is the size of longs | |
4864 | in bits. Unfortunately, ILP32 objects generated by earlier compilers | |
4865 | have no special marking to distinguish them from LP64 objects. | |
4866 | ||
4867 | We don't want users of the official LP64 ABI to be punished for the | |
4868 | existence of the ILP32 variant, but at the same time, we don't want | |
4869 | to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects. | |
4870 | We therefore take the following approach: | |
4871 | ||
4872 | - If ABFD contains a .gcc_compiled_longXX section, use it to | |
4873 | determine the pointer size. | |
4874 | ||
4875 | - Otherwise check the type of the first relocation. Assume that | |
4876 | the LP64 ABI is being used if the relocation is of type R_MIPS_64. | |
4877 | ||
4878 | - Otherwise punt. | |
4879 | ||
4880 | The second check is enough to detect LP64 objects generated by pre-4.0 | |
4881 | compilers because, in the kind of output generated by those compilers, | |
4882 | the first relocation will be associated with either a CIE personality | |
4883 | routine or an FDE start address. Furthermore, the compilers never | |
4884 | used a special (non-pointer) encoding for this ABI. | |
4885 | ||
4886 | Checking the relocation type should also be safe because there is no | |
4887 | reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never | |
4888 | did so. */ | |
4889 | ||
4890 | unsigned int | |
4891 | _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec) | |
4892 | { | |
4893 | if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64) | |
4894 | return 8; | |
4895 | if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64) | |
4896 | { | |
4897 | bfd_boolean long32_p, long64_p; | |
4898 | ||
4899 | long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0; | |
4900 | long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0; | |
4901 | if (long32_p && long64_p) | |
4902 | return 0; | |
4903 | if (long32_p) | |
4904 | return 4; | |
4905 | if (long64_p) | |
4906 | return 8; | |
4907 | ||
4908 | if (sec->reloc_count > 0 | |
4909 | && elf_section_data (sec)->relocs != NULL | |
4910 | && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info) | |
4911 | == R_MIPS_64)) | |
4912 | return 8; | |
4913 | ||
4914 | return 0; | |
4915 | } | |
4916 | return 4; | |
4917 | } | |
4918 | \f | |
174fd7f9 RS |
4919 | /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP |
4920 | relocations against two unnamed section symbols to resolve to the | |
4921 | same address. For example, if we have code like: | |
4922 | ||
4923 | lw $4,%got_disp(.data)($gp) | |
4924 | lw $25,%got_disp(.text)($gp) | |
4925 | jalr $25 | |
4926 | ||
4927 | then the linker will resolve both relocations to .data and the program | |
4928 | will jump there rather than to .text. | |
4929 | ||
4930 | We can work around this problem by giving names to local section symbols. | |
4931 | This is also what the MIPSpro tools do. */ | |
4932 | ||
4933 | bfd_boolean | |
4934 | _bfd_mips_elf_name_local_section_symbols (bfd *abfd) | |
4935 | { | |
4936 | return SGI_COMPAT (abfd); | |
4937 | } | |
4938 | \f | |
b49e97c9 TS |
4939 | /* Work over a section just before writing it out. This routine is |
4940 | used by both the 32-bit and the 64-bit ABI. FIXME: We recognize | |
4941 | sections that need the SHF_MIPS_GPREL flag by name; there has to be | |
4942 | a better way. */ | |
4943 | ||
b34976b6 | 4944 | bfd_boolean |
9719ad41 | 4945 | _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr) |
b49e97c9 TS |
4946 | { |
4947 | if (hdr->sh_type == SHT_MIPS_REGINFO | |
4948 | && hdr->sh_size > 0) | |
4949 | { | |
4950 | bfd_byte buf[4]; | |
4951 | ||
4952 | BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo)); | |
4953 | BFD_ASSERT (hdr->contents == NULL); | |
4954 | ||
4955 | if (bfd_seek (abfd, | |
4956 | hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4, | |
4957 | SEEK_SET) != 0) | |
b34976b6 | 4958 | return FALSE; |
b49e97c9 | 4959 | H_PUT_32 (abfd, elf_gp (abfd), buf); |
9719ad41 | 4960 | if (bfd_bwrite (buf, 4, abfd) != 4) |
b34976b6 | 4961 | return FALSE; |
b49e97c9 TS |
4962 | } |
4963 | ||
4964 | if (hdr->sh_type == SHT_MIPS_OPTIONS | |
4965 | && hdr->bfd_section != NULL | |
f0abc2a1 AM |
4966 | && mips_elf_section_data (hdr->bfd_section) != NULL |
4967 | && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL) | |
b49e97c9 TS |
4968 | { |
4969 | bfd_byte *contents, *l, *lend; | |
4970 | ||
f0abc2a1 AM |
4971 | /* We stored the section contents in the tdata field in the |
4972 | set_section_contents routine. We save the section contents | |
4973 | so that we don't have to read them again. | |
b49e97c9 TS |
4974 | At this point we know that elf_gp is set, so we can look |
4975 | through the section contents to see if there is an | |
4976 | ODK_REGINFO structure. */ | |
4977 | ||
f0abc2a1 | 4978 | contents = mips_elf_section_data (hdr->bfd_section)->u.tdata; |
b49e97c9 TS |
4979 | l = contents; |
4980 | lend = contents + hdr->sh_size; | |
4981 | while (l + sizeof (Elf_External_Options) <= lend) | |
4982 | { | |
4983 | Elf_Internal_Options intopt; | |
4984 | ||
4985 | bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l, | |
4986 | &intopt); | |
4987 | if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO) | |
4988 | { | |
4989 | bfd_byte buf[8]; | |
4990 | ||
4991 | if (bfd_seek (abfd, | |
4992 | (hdr->sh_offset | |
4993 | + (l - contents) | |
4994 | + sizeof (Elf_External_Options) | |
4995 | + (sizeof (Elf64_External_RegInfo) - 8)), | |
4996 | SEEK_SET) != 0) | |
b34976b6 | 4997 | return FALSE; |
b49e97c9 | 4998 | H_PUT_64 (abfd, elf_gp (abfd), buf); |
9719ad41 | 4999 | if (bfd_bwrite (buf, 8, abfd) != 8) |
b34976b6 | 5000 | return FALSE; |
b49e97c9 TS |
5001 | } |
5002 | else if (intopt.kind == ODK_REGINFO) | |
5003 | { | |
5004 | bfd_byte buf[4]; | |
5005 | ||
5006 | if (bfd_seek (abfd, | |
5007 | (hdr->sh_offset | |
5008 | + (l - contents) | |
5009 | + sizeof (Elf_External_Options) | |
5010 | + (sizeof (Elf32_External_RegInfo) - 4)), | |
5011 | SEEK_SET) != 0) | |
b34976b6 | 5012 | return FALSE; |
b49e97c9 | 5013 | H_PUT_32 (abfd, elf_gp (abfd), buf); |
9719ad41 | 5014 | if (bfd_bwrite (buf, 4, abfd) != 4) |
b34976b6 | 5015 | return FALSE; |
b49e97c9 TS |
5016 | } |
5017 | l += intopt.size; | |
5018 | } | |
5019 | } | |
5020 | ||
5021 | if (hdr->bfd_section != NULL) | |
5022 | { | |
5023 | const char *name = bfd_get_section_name (abfd, hdr->bfd_section); | |
5024 | ||
5025 | if (strcmp (name, ".sdata") == 0 | |
5026 | || strcmp (name, ".lit8") == 0 | |
5027 | || strcmp (name, ".lit4") == 0) | |
5028 | { | |
5029 | hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL; | |
5030 | hdr->sh_type = SHT_PROGBITS; | |
5031 | } | |
5032 | else if (strcmp (name, ".sbss") == 0) | |
5033 | { | |
5034 | hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL; | |
5035 | hdr->sh_type = SHT_NOBITS; | |
5036 | } | |
5037 | else if (strcmp (name, ".srdata") == 0) | |
5038 | { | |
5039 | hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL; | |
5040 | hdr->sh_type = SHT_PROGBITS; | |
5041 | } | |
5042 | else if (strcmp (name, ".compact_rel") == 0) | |
5043 | { | |
5044 | hdr->sh_flags = 0; | |
5045 | hdr->sh_type = SHT_PROGBITS; | |
5046 | } | |
5047 | else if (strcmp (name, ".rtproc") == 0) | |
5048 | { | |
5049 | if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0) | |
5050 | { | |
5051 | unsigned int adjust; | |
5052 | ||
5053 | adjust = hdr->sh_size % hdr->sh_addralign; | |
5054 | if (adjust != 0) | |
5055 | hdr->sh_size += hdr->sh_addralign - adjust; | |
5056 | } | |
5057 | } | |
5058 | } | |
5059 | ||
b34976b6 | 5060 | return TRUE; |
b49e97c9 TS |
5061 | } |
5062 | ||
5063 | /* Handle a MIPS specific section when reading an object file. This | |
5064 | is called when elfcode.h finds a section with an unknown type. | |
5065 | This routine supports both the 32-bit and 64-bit ELF ABI. | |
5066 | ||
5067 | FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure | |
5068 | how to. */ | |
5069 | ||
b34976b6 | 5070 | bfd_boolean |
9719ad41 RS |
5071 | _bfd_mips_elf_section_from_shdr (bfd *abfd, Elf_Internal_Shdr *hdr, |
5072 | const char *name) | |
b49e97c9 TS |
5073 | { |
5074 | flagword flags = 0; | |
5075 | ||
5076 | /* There ought to be a place to keep ELF backend specific flags, but | |
5077 | at the moment there isn't one. We just keep track of the | |
5078 | sections by their name, instead. Fortunately, the ABI gives | |
5079 | suggested names for all the MIPS specific sections, so we will | |
5080 | probably get away with this. */ | |
5081 | switch (hdr->sh_type) | |
5082 | { | |
5083 | case SHT_MIPS_LIBLIST: | |
5084 | if (strcmp (name, ".liblist") != 0) | |
b34976b6 | 5085 | return FALSE; |
b49e97c9 TS |
5086 | break; |
5087 | case SHT_MIPS_MSYM: | |
5088 | if (strcmp (name, ".msym") != 0) | |
b34976b6 | 5089 | return FALSE; |
b49e97c9 TS |
5090 | break; |
5091 | case SHT_MIPS_CONFLICT: | |
5092 | if (strcmp (name, ".conflict") != 0) | |
b34976b6 | 5093 | return FALSE; |
b49e97c9 TS |
5094 | break; |
5095 | case SHT_MIPS_GPTAB: | |
5096 | if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0) | |
b34976b6 | 5097 | return FALSE; |
b49e97c9 TS |
5098 | break; |
5099 | case SHT_MIPS_UCODE: | |
5100 | if (strcmp (name, ".ucode") != 0) | |
b34976b6 | 5101 | return FALSE; |
b49e97c9 TS |
5102 | break; |
5103 | case SHT_MIPS_DEBUG: | |
5104 | if (strcmp (name, ".mdebug") != 0) | |
b34976b6 | 5105 | return FALSE; |
b49e97c9 TS |
5106 | flags = SEC_DEBUGGING; |
5107 | break; | |
5108 | case SHT_MIPS_REGINFO: | |
5109 | if (strcmp (name, ".reginfo") != 0 | |
5110 | || hdr->sh_size != sizeof (Elf32_External_RegInfo)) | |
b34976b6 | 5111 | return FALSE; |
b49e97c9 TS |
5112 | flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE); |
5113 | break; | |
5114 | case SHT_MIPS_IFACE: | |
5115 | if (strcmp (name, ".MIPS.interfaces") != 0) | |
b34976b6 | 5116 | return FALSE; |
b49e97c9 TS |
5117 | break; |
5118 | case SHT_MIPS_CONTENT: | |
5119 | if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0) | |
b34976b6 | 5120 | return FALSE; |
b49e97c9 TS |
5121 | break; |
5122 | case SHT_MIPS_OPTIONS: | |
5123 | if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) != 0) | |
b34976b6 | 5124 | return FALSE; |
b49e97c9 TS |
5125 | break; |
5126 | case SHT_MIPS_DWARF: | |
5127 | if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0) | |
b34976b6 | 5128 | return FALSE; |
b49e97c9 TS |
5129 | break; |
5130 | case SHT_MIPS_SYMBOL_LIB: | |
5131 | if (strcmp (name, ".MIPS.symlib") != 0) | |
b34976b6 | 5132 | return FALSE; |
b49e97c9 TS |
5133 | break; |
5134 | case SHT_MIPS_EVENTS: | |
5135 | if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0 | |
5136 | && strncmp (name, ".MIPS.post_rel", | |
5137 | sizeof ".MIPS.post_rel" - 1) != 0) | |
b34976b6 | 5138 | return FALSE; |
b49e97c9 TS |
5139 | break; |
5140 | default: | |
b34976b6 | 5141 | return FALSE; |
b49e97c9 TS |
5142 | } |
5143 | ||
5144 | if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name)) | |
b34976b6 | 5145 | return FALSE; |
b49e97c9 TS |
5146 | |
5147 | if (flags) | |
5148 | { | |
5149 | if (! bfd_set_section_flags (abfd, hdr->bfd_section, | |
5150 | (bfd_get_section_flags (abfd, | |
5151 | hdr->bfd_section) | |
5152 | | flags))) | |
b34976b6 | 5153 | return FALSE; |
b49e97c9 TS |
5154 | } |
5155 | ||
5156 | /* FIXME: We should record sh_info for a .gptab section. */ | |
5157 | ||
5158 | /* For a .reginfo section, set the gp value in the tdata information | |
5159 | from the contents of this section. We need the gp value while | |
5160 | processing relocs, so we just get it now. The .reginfo section | |
5161 | is not used in the 64-bit MIPS ELF ABI. */ | |
5162 | if (hdr->sh_type == SHT_MIPS_REGINFO) | |
5163 | { | |
5164 | Elf32_External_RegInfo ext; | |
5165 | Elf32_RegInfo s; | |
5166 | ||
9719ad41 RS |
5167 | if (! bfd_get_section_contents (abfd, hdr->bfd_section, |
5168 | &ext, 0, sizeof ext)) | |
b34976b6 | 5169 | return FALSE; |
b49e97c9 TS |
5170 | bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s); |
5171 | elf_gp (abfd) = s.ri_gp_value; | |
5172 | } | |
5173 | ||
5174 | /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and | |
5175 | set the gp value based on what we find. We may see both | |
5176 | SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case, | |
5177 | they should agree. */ | |
5178 | if (hdr->sh_type == SHT_MIPS_OPTIONS) | |
5179 | { | |
5180 | bfd_byte *contents, *l, *lend; | |
5181 | ||
9719ad41 | 5182 | contents = bfd_malloc (hdr->sh_size); |
b49e97c9 | 5183 | if (contents == NULL) |
b34976b6 | 5184 | return FALSE; |
b49e97c9 | 5185 | if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents, |
9719ad41 | 5186 | 0, hdr->sh_size)) |
b49e97c9 TS |
5187 | { |
5188 | free (contents); | |
b34976b6 | 5189 | return FALSE; |
b49e97c9 TS |
5190 | } |
5191 | l = contents; | |
5192 | lend = contents + hdr->sh_size; | |
5193 | while (l + sizeof (Elf_External_Options) <= lend) | |
5194 | { | |
5195 | Elf_Internal_Options intopt; | |
5196 | ||
5197 | bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l, | |
5198 | &intopt); | |
5199 | if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO) | |
5200 | { | |
5201 | Elf64_Internal_RegInfo intreg; | |
5202 | ||
5203 | bfd_mips_elf64_swap_reginfo_in | |
5204 | (abfd, | |
5205 | ((Elf64_External_RegInfo *) | |
5206 | (l + sizeof (Elf_External_Options))), | |
5207 | &intreg); | |
5208 | elf_gp (abfd) = intreg.ri_gp_value; | |
5209 | } | |
5210 | else if (intopt.kind == ODK_REGINFO) | |
5211 | { | |
5212 | Elf32_RegInfo intreg; | |
5213 | ||
5214 | bfd_mips_elf32_swap_reginfo_in | |
5215 | (abfd, | |
5216 | ((Elf32_External_RegInfo *) | |
5217 | (l + sizeof (Elf_External_Options))), | |
5218 | &intreg); | |
5219 | elf_gp (abfd) = intreg.ri_gp_value; | |
5220 | } | |
5221 | l += intopt.size; | |
5222 | } | |
5223 | free (contents); | |
5224 | } | |
5225 | ||
b34976b6 | 5226 | return TRUE; |
b49e97c9 TS |
5227 | } |
5228 | ||
5229 | /* Set the correct type for a MIPS ELF section. We do this by the | |
5230 | section name, which is a hack, but ought to work. This routine is | |
5231 | used by both the 32-bit and the 64-bit ABI. */ | |
5232 | ||
b34976b6 | 5233 | bfd_boolean |
9719ad41 | 5234 | _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec) |
b49e97c9 TS |
5235 | { |
5236 | register const char *name; | |
5237 | ||
5238 | name = bfd_get_section_name (abfd, sec); | |
5239 | ||
5240 | if (strcmp (name, ".liblist") == 0) | |
5241 | { | |
5242 | hdr->sh_type = SHT_MIPS_LIBLIST; | |
eea6121a | 5243 | hdr->sh_info = sec->size / sizeof (Elf32_Lib); |
b49e97c9 TS |
5244 | /* The sh_link field is set in final_write_processing. */ |
5245 | } | |
5246 | else if (strcmp (name, ".conflict") == 0) | |
5247 | hdr->sh_type = SHT_MIPS_CONFLICT; | |
5248 | else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0) | |
5249 | { | |
5250 | hdr->sh_type = SHT_MIPS_GPTAB; | |
5251 | hdr->sh_entsize = sizeof (Elf32_External_gptab); | |
5252 | /* The sh_info field is set in final_write_processing. */ | |
5253 | } | |
5254 | else if (strcmp (name, ".ucode") == 0) | |
5255 | hdr->sh_type = SHT_MIPS_UCODE; | |
5256 | else if (strcmp (name, ".mdebug") == 0) | |
5257 | { | |
5258 | hdr->sh_type = SHT_MIPS_DEBUG; | |
8dc1a139 | 5259 | /* In a shared object on IRIX 5.3, the .mdebug section has an |
b49e97c9 TS |
5260 | entsize of 0. FIXME: Does this matter? */ |
5261 | if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0) | |
5262 | hdr->sh_entsize = 0; | |
5263 | else | |
5264 | hdr->sh_entsize = 1; | |
5265 | } | |
5266 | else if (strcmp (name, ".reginfo") == 0) | |
5267 | { | |
5268 | hdr->sh_type = SHT_MIPS_REGINFO; | |
8dc1a139 | 5269 | /* In a shared object on IRIX 5.3, the .reginfo section has an |
b49e97c9 TS |
5270 | entsize of 0x18. FIXME: Does this matter? */ |
5271 | if (SGI_COMPAT (abfd)) | |
5272 | { | |
5273 | if ((abfd->flags & DYNAMIC) != 0) | |
5274 | hdr->sh_entsize = sizeof (Elf32_External_RegInfo); | |
5275 | else | |
5276 | hdr->sh_entsize = 1; | |
5277 | } | |
5278 | else | |
5279 | hdr->sh_entsize = sizeof (Elf32_External_RegInfo); | |
5280 | } | |
5281 | else if (SGI_COMPAT (abfd) | |
5282 | && (strcmp (name, ".hash") == 0 | |
5283 | || strcmp (name, ".dynamic") == 0 | |
5284 | || strcmp (name, ".dynstr") == 0)) | |
5285 | { | |
5286 | if (SGI_COMPAT (abfd)) | |
5287 | hdr->sh_entsize = 0; | |
5288 | #if 0 | |
8dc1a139 | 5289 | /* This isn't how the IRIX6 linker behaves. */ |
b49e97c9 TS |
5290 | hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES; |
5291 | #endif | |
5292 | } | |
5293 | else if (strcmp (name, ".got") == 0 | |
5294 | || strcmp (name, ".srdata") == 0 | |
5295 | || strcmp (name, ".sdata") == 0 | |
5296 | || strcmp (name, ".sbss") == 0 | |
5297 | || strcmp (name, ".lit4") == 0 | |
5298 | || strcmp (name, ".lit8") == 0) | |
5299 | hdr->sh_flags |= SHF_MIPS_GPREL; | |
5300 | else if (strcmp (name, ".MIPS.interfaces") == 0) | |
5301 | { | |
5302 | hdr->sh_type = SHT_MIPS_IFACE; | |
5303 | hdr->sh_flags |= SHF_MIPS_NOSTRIP; | |
5304 | } | |
5305 | else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0) | |
5306 | { | |
5307 | hdr->sh_type = SHT_MIPS_CONTENT; | |
5308 | hdr->sh_flags |= SHF_MIPS_NOSTRIP; | |
5309 | /* The sh_info field is set in final_write_processing. */ | |
5310 | } | |
5311 | else if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0) | |
5312 | { | |
5313 | hdr->sh_type = SHT_MIPS_OPTIONS; | |
5314 | hdr->sh_entsize = 1; | |
5315 | hdr->sh_flags |= SHF_MIPS_NOSTRIP; | |
5316 | } | |
5317 | else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0) | |
5318 | hdr->sh_type = SHT_MIPS_DWARF; | |
5319 | else if (strcmp (name, ".MIPS.symlib") == 0) | |
5320 | { | |
5321 | hdr->sh_type = SHT_MIPS_SYMBOL_LIB; | |
5322 | /* The sh_link and sh_info fields are set in | |
5323 | final_write_processing. */ | |
5324 | } | |
5325 | else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0 | |
5326 | || strncmp (name, ".MIPS.post_rel", | |
5327 | sizeof ".MIPS.post_rel" - 1) == 0) | |
5328 | { | |
5329 | hdr->sh_type = SHT_MIPS_EVENTS; | |
5330 | hdr->sh_flags |= SHF_MIPS_NOSTRIP; | |
5331 | /* The sh_link field is set in final_write_processing. */ | |
5332 | } | |
5333 | else if (strcmp (name, ".msym") == 0) | |
5334 | { | |
5335 | hdr->sh_type = SHT_MIPS_MSYM; | |
5336 | hdr->sh_flags |= SHF_ALLOC; | |
5337 | hdr->sh_entsize = 8; | |
5338 | } | |
5339 | ||
7a79a000 TS |
5340 | /* The generic elf_fake_sections will set up REL_HDR using the default |
5341 | kind of relocations. We used to set up a second header for the | |
5342 | non-default kind of relocations here, but only NewABI would use | |
5343 | these, and the IRIX ld doesn't like resulting empty RELA sections. | |
5344 | Thus we create those header only on demand now. */ | |
b49e97c9 | 5345 | |
b34976b6 | 5346 | return TRUE; |
b49e97c9 TS |
5347 | } |
5348 | ||
5349 | /* Given a BFD section, try to locate the corresponding ELF section | |
5350 | index. This is used by both the 32-bit and the 64-bit ABI. | |
5351 | Actually, it's not clear to me that the 64-bit ABI supports these, | |
5352 | but for non-PIC objects we will certainly want support for at least | |
5353 | the .scommon section. */ | |
5354 | ||
b34976b6 | 5355 | bfd_boolean |
9719ad41 RS |
5356 | _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED, |
5357 | asection *sec, int *retval) | |
b49e97c9 TS |
5358 | { |
5359 | if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0) | |
5360 | { | |
5361 | *retval = SHN_MIPS_SCOMMON; | |
b34976b6 | 5362 | return TRUE; |
b49e97c9 TS |
5363 | } |
5364 | if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0) | |
5365 | { | |
5366 | *retval = SHN_MIPS_ACOMMON; | |
b34976b6 | 5367 | return TRUE; |
b49e97c9 | 5368 | } |
b34976b6 | 5369 | return FALSE; |
b49e97c9 TS |
5370 | } |
5371 | \f | |
5372 | /* Hook called by the linker routine which adds symbols from an object | |
5373 | file. We must handle the special MIPS section numbers here. */ | |
5374 | ||
b34976b6 | 5375 | bfd_boolean |
9719ad41 | 5376 | _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info, |
555cd476 | 5377 | Elf_Internal_Sym *sym, const char **namep, |
9719ad41 RS |
5378 | flagword *flagsp ATTRIBUTE_UNUSED, |
5379 | asection **secp, bfd_vma *valp) | |
b49e97c9 TS |
5380 | { |
5381 | if (SGI_COMPAT (abfd) | |
5382 | && (abfd->flags & DYNAMIC) != 0 | |
5383 | && strcmp (*namep, "_rld_new_interface") == 0) | |
5384 | { | |
8dc1a139 | 5385 | /* Skip IRIX5 rld entry name. */ |
b49e97c9 | 5386 | *namep = NULL; |
b34976b6 | 5387 | return TRUE; |
b49e97c9 TS |
5388 | } |
5389 | ||
5390 | switch (sym->st_shndx) | |
5391 | { | |
5392 | case SHN_COMMON: | |
5393 | /* Common symbols less than the GP size are automatically | |
5394 | treated as SHN_MIPS_SCOMMON symbols. */ | |
5395 | if (sym->st_size > elf_gp_size (abfd) | |
5396 | || IRIX_COMPAT (abfd) == ict_irix6) | |
5397 | break; | |
5398 | /* Fall through. */ | |
5399 | case SHN_MIPS_SCOMMON: | |
5400 | *secp = bfd_make_section_old_way (abfd, ".scommon"); | |
5401 | (*secp)->flags |= SEC_IS_COMMON; | |
5402 | *valp = sym->st_size; | |
5403 | break; | |
5404 | ||
5405 | case SHN_MIPS_TEXT: | |
5406 | /* This section is used in a shared object. */ | |
5407 | if (elf_tdata (abfd)->elf_text_section == NULL) | |
5408 | { | |
5409 | asymbol *elf_text_symbol; | |
5410 | asection *elf_text_section; | |
5411 | bfd_size_type amt = sizeof (asection); | |
5412 | ||
5413 | elf_text_section = bfd_zalloc (abfd, amt); | |
5414 | if (elf_text_section == NULL) | |
b34976b6 | 5415 | return FALSE; |
b49e97c9 TS |
5416 | |
5417 | amt = sizeof (asymbol); | |
5418 | elf_text_symbol = bfd_zalloc (abfd, amt); | |
5419 | if (elf_text_symbol == NULL) | |
b34976b6 | 5420 | return FALSE; |
b49e97c9 TS |
5421 | |
5422 | /* Initialize the section. */ | |
5423 | ||
5424 | elf_tdata (abfd)->elf_text_section = elf_text_section; | |
5425 | elf_tdata (abfd)->elf_text_symbol = elf_text_symbol; | |
5426 | ||
5427 | elf_text_section->symbol = elf_text_symbol; | |
5428 | elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol; | |
5429 | ||
5430 | elf_text_section->name = ".text"; | |
5431 | elf_text_section->flags = SEC_NO_FLAGS; | |
5432 | elf_text_section->output_section = NULL; | |
5433 | elf_text_section->owner = abfd; | |
5434 | elf_text_symbol->name = ".text"; | |
5435 | elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC; | |
5436 | elf_text_symbol->section = elf_text_section; | |
5437 | } | |
5438 | /* This code used to do *secp = bfd_und_section_ptr if | |
5439 | info->shared. I don't know why, and that doesn't make sense, | |
5440 | so I took it out. */ | |
5441 | *secp = elf_tdata (abfd)->elf_text_section; | |
5442 | break; | |
5443 | ||
5444 | case SHN_MIPS_ACOMMON: | |
5445 | /* Fall through. XXX Can we treat this as allocated data? */ | |
5446 | case SHN_MIPS_DATA: | |
5447 | /* This section is used in a shared object. */ | |
5448 | if (elf_tdata (abfd)->elf_data_section == NULL) | |
5449 | { | |
5450 | asymbol *elf_data_symbol; | |
5451 | asection *elf_data_section; | |
5452 | bfd_size_type amt = sizeof (asection); | |
5453 | ||
5454 | elf_data_section = bfd_zalloc (abfd, amt); | |
5455 | if (elf_data_section == NULL) | |
b34976b6 | 5456 | return FALSE; |
b49e97c9 TS |
5457 | |
5458 | amt = sizeof (asymbol); | |
5459 | elf_data_symbol = bfd_zalloc (abfd, amt); | |
5460 | if (elf_data_symbol == NULL) | |
b34976b6 | 5461 | return FALSE; |
b49e97c9 TS |
5462 | |
5463 | /* Initialize the section. */ | |
5464 | ||
5465 | elf_tdata (abfd)->elf_data_section = elf_data_section; | |
5466 | elf_tdata (abfd)->elf_data_symbol = elf_data_symbol; | |
5467 | ||
5468 | elf_data_section->symbol = elf_data_symbol; | |
5469 | elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol; | |
5470 | ||
5471 | elf_data_section->name = ".data"; | |
5472 | elf_data_section->flags = SEC_NO_FLAGS; | |
5473 | elf_data_section->output_section = NULL; | |
5474 | elf_data_section->owner = abfd; | |
5475 | elf_data_symbol->name = ".data"; | |
5476 | elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC; | |
5477 | elf_data_symbol->section = elf_data_section; | |
5478 | } | |
5479 | /* This code used to do *secp = bfd_und_section_ptr if | |
5480 | info->shared. I don't know why, and that doesn't make sense, | |
5481 | so I took it out. */ | |
5482 | *secp = elf_tdata (abfd)->elf_data_section; | |
5483 | break; | |
5484 | ||
5485 | case SHN_MIPS_SUNDEFINED: | |
5486 | *secp = bfd_und_section_ptr; | |
5487 | break; | |
5488 | } | |
5489 | ||
5490 | if (SGI_COMPAT (abfd) | |
5491 | && ! info->shared | |
5492 | && info->hash->creator == abfd->xvec | |
5493 | && strcmp (*namep, "__rld_obj_head") == 0) | |
5494 | { | |
5495 | struct elf_link_hash_entry *h; | |
14a793b2 | 5496 | struct bfd_link_hash_entry *bh; |
b49e97c9 TS |
5497 | |
5498 | /* Mark __rld_obj_head as dynamic. */ | |
14a793b2 | 5499 | bh = NULL; |
b49e97c9 | 5500 | if (! (_bfd_generic_link_add_one_symbol |
9719ad41 | 5501 | (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE, |
14a793b2 | 5502 | get_elf_backend_data (abfd)->collect, &bh))) |
b34976b6 | 5503 | return FALSE; |
14a793b2 AM |
5504 | |
5505 | h = (struct elf_link_hash_entry *) bh; | |
f5385ebf AM |
5506 | h->non_elf = 0; |
5507 | h->def_regular = 1; | |
b49e97c9 TS |
5508 | h->type = STT_OBJECT; |
5509 | ||
c152c796 | 5510 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
b34976b6 | 5511 | return FALSE; |
b49e97c9 | 5512 | |
b34976b6 | 5513 | mips_elf_hash_table (info)->use_rld_obj_head = TRUE; |
b49e97c9 TS |
5514 | } |
5515 | ||
5516 | /* If this is a mips16 text symbol, add 1 to the value to make it | |
5517 | odd. This will cause something like .word SYM to come up with | |
5518 | the right value when it is loaded into the PC. */ | |
5519 | if (sym->st_other == STO_MIPS16) | |
5520 | ++*valp; | |
5521 | ||
b34976b6 | 5522 | return TRUE; |
b49e97c9 TS |
5523 | } |
5524 | ||
5525 | /* This hook function is called before the linker writes out a global | |
5526 | symbol. We mark symbols as small common if appropriate. This is | |
5527 | also where we undo the increment of the value for a mips16 symbol. */ | |
5528 | ||
b34976b6 | 5529 | bfd_boolean |
9719ad41 RS |
5530 | _bfd_mips_elf_link_output_symbol_hook |
5531 | (struct bfd_link_info *info ATTRIBUTE_UNUSED, | |
5532 | const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym, | |
5533 | asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED) | |
b49e97c9 TS |
5534 | { |
5535 | /* If we see a common symbol, which implies a relocatable link, then | |
5536 | if a symbol was small common in an input file, mark it as small | |
5537 | common in the output file. */ | |
5538 | if (sym->st_shndx == SHN_COMMON | |
5539 | && strcmp (input_sec->name, ".scommon") == 0) | |
5540 | sym->st_shndx = SHN_MIPS_SCOMMON; | |
5541 | ||
79cda7cf FF |
5542 | if (sym->st_other == STO_MIPS16) |
5543 | sym->st_value &= ~1; | |
b49e97c9 | 5544 | |
b34976b6 | 5545 | return TRUE; |
b49e97c9 TS |
5546 | } |
5547 | \f | |
5548 | /* Functions for the dynamic linker. */ | |
5549 | ||
5550 | /* Create dynamic sections when linking against a dynamic object. */ | |
5551 | ||
b34976b6 | 5552 | bfd_boolean |
9719ad41 | 5553 | _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info) |
b49e97c9 TS |
5554 | { |
5555 | struct elf_link_hash_entry *h; | |
14a793b2 | 5556 | struct bfd_link_hash_entry *bh; |
b49e97c9 TS |
5557 | flagword flags; |
5558 | register asection *s; | |
5559 | const char * const *namep; | |
5560 | ||
5561 | flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | |
5562 | | SEC_LINKER_CREATED | SEC_READONLY); | |
5563 | ||
5564 | /* Mips ABI requests the .dynamic section to be read only. */ | |
5565 | s = bfd_get_section_by_name (abfd, ".dynamic"); | |
5566 | if (s != NULL) | |
5567 | { | |
5568 | if (! bfd_set_section_flags (abfd, s, flags)) | |
b34976b6 | 5569 | return FALSE; |
b49e97c9 TS |
5570 | } |
5571 | ||
5572 | /* We need to create .got section. */ | |
f4416af6 AO |
5573 | if (! mips_elf_create_got_section (abfd, info, FALSE)) |
5574 | return FALSE; | |
5575 | ||
5576 | if (! mips_elf_rel_dyn_section (elf_hash_table (info)->dynobj, TRUE)) | |
b34976b6 | 5577 | return FALSE; |
b49e97c9 | 5578 | |
b49e97c9 TS |
5579 | /* Create .stub section. */ |
5580 | if (bfd_get_section_by_name (abfd, | |
5581 | MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL) | |
5582 | { | |
5583 | s = bfd_make_section (abfd, MIPS_ELF_STUB_SECTION_NAME (abfd)); | |
5584 | if (s == NULL | |
5585 | || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE) | |
5586 | || ! bfd_set_section_alignment (abfd, s, | |
5587 | MIPS_ELF_LOG_FILE_ALIGN (abfd))) | |
b34976b6 | 5588 | return FALSE; |
b49e97c9 TS |
5589 | } |
5590 | ||
5591 | if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none) | |
5592 | && !info->shared | |
5593 | && bfd_get_section_by_name (abfd, ".rld_map") == NULL) | |
5594 | { | |
5595 | s = bfd_make_section (abfd, ".rld_map"); | |
5596 | if (s == NULL | |
5597 | || ! bfd_set_section_flags (abfd, s, flags &~ (flagword) SEC_READONLY) | |
5598 | || ! bfd_set_section_alignment (abfd, s, | |
5599 | MIPS_ELF_LOG_FILE_ALIGN (abfd))) | |
b34976b6 | 5600 | return FALSE; |
b49e97c9 TS |
5601 | } |
5602 | ||
5603 | /* On IRIX5, we adjust add some additional symbols and change the | |
5604 | alignments of several sections. There is no ABI documentation | |
5605 | indicating that this is necessary on IRIX6, nor any evidence that | |
5606 | the linker takes such action. */ | |
5607 | if (IRIX_COMPAT (abfd) == ict_irix5) | |
5608 | { | |
5609 | for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++) | |
5610 | { | |
14a793b2 | 5611 | bh = NULL; |
b49e97c9 | 5612 | if (! (_bfd_generic_link_add_one_symbol |
9719ad41 RS |
5613 | (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0, |
5614 | NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh))) | |
b34976b6 | 5615 | return FALSE; |
14a793b2 AM |
5616 | |
5617 | h = (struct elf_link_hash_entry *) bh; | |
f5385ebf AM |
5618 | h->non_elf = 0; |
5619 | h->def_regular = 1; | |
b49e97c9 TS |
5620 | h->type = STT_SECTION; |
5621 | ||
c152c796 | 5622 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
b34976b6 | 5623 | return FALSE; |
b49e97c9 TS |
5624 | } |
5625 | ||
5626 | /* We need to create a .compact_rel section. */ | |
5627 | if (SGI_COMPAT (abfd)) | |
5628 | { | |
5629 | if (!mips_elf_create_compact_rel_section (abfd, info)) | |
b34976b6 | 5630 | return FALSE; |
b49e97c9 TS |
5631 | } |
5632 | ||
44c410de | 5633 | /* Change alignments of some sections. */ |
b49e97c9 TS |
5634 | s = bfd_get_section_by_name (abfd, ".hash"); |
5635 | if (s != NULL) | |
d80dcc6a | 5636 | bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); |
b49e97c9 TS |
5637 | s = bfd_get_section_by_name (abfd, ".dynsym"); |
5638 | if (s != NULL) | |
d80dcc6a | 5639 | bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); |
b49e97c9 TS |
5640 | s = bfd_get_section_by_name (abfd, ".dynstr"); |
5641 | if (s != NULL) | |
d80dcc6a | 5642 | bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); |
b49e97c9 TS |
5643 | s = bfd_get_section_by_name (abfd, ".reginfo"); |
5644 | if (s != NULL) | |
d80dcc6a | 5645 | bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); |
b49e97c9 TS |
5646 | s = bfd_get_section_by_name (abfd, ".dynamic"); |
5647 | if (s != NULL) | |
d80dcc6a | 5648 | bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); |
b49e97c9 TS |
5649 | } |
5650 | ||
5651 | if (!info->shared) | |
5652 | { | |
14a793b2 AM |
5653 | const char *name; |
5654 | ||
5655 | name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING"; | |
5656 | bh = NULL; | |
5657 | if (!(_bfd_generic_link_add_one_symbol | |
9719ad41 RS |
5658 | (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0, |
5659 | NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh))) | |
b34976b6 | 5660 | return FALSE; |
14a793b2 AM |
5661 | |
5662 | h = (struct elf_link_hash_entry *) bh; | |
f5385ebf AM |
5663 | h->non_elf = 0; |
5664 | h->def_regular = 1; | |
b49e97c9 TS |
5665 | h->type = STT_SECTION; |
5666 | ||
c152c796 | 5667 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
b34976b6 | 5668 | return FALSE; |
b49e97c9 TS |
5669 | |
5670 | if (! mips_elf_hash_table (info)->use_rld_obj_head) | |
5671 | { | |
5672 | /* __rld_map is a four byte word located in the .data section | |
5673 | and is filled in by the rtld to contain a pointer to | |
5674 | the _r_debug structure. Its symbol value will be set in | |
5675 | _bfd_mips_elf_finish_dynamic_symbol. */ | |
5676 | s = bfd_get_section_by_name (abfd, ".rld_map"); | |
5677 | BFD_ASSERT (s != NULL); | |
5678 | ||
14a793b2 AM |
5679 | name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP"; |
5680 | bh = NULL; | |
5681 | if (!(_bfd_generic_link_add_one_symbol | |
9719ad41 | 5682 | (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE, |
14a793b2 | 5683 | get_elf_backend_data (abfd)->collect, &bh))) |
b34976b6 | 5684 | return FALSE; |
14a793b2 AM |
5685 | |
5686 | h = (struct elf_link_hash_entry *) bh; | |
f5385ebf AM |
5687 | h->non_elf = 0; |
5688 | h->def_regular = 1; | |
b49e97c9 TS |
5689 | h->type = STT_OBJECT; |
5690 | ||
c152c796 | 5691 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
b34976b6 | 5692 | return FALSE; |
b49e97c9 TS |
5693 | } |
5694 | } | |
5695 | ||
b34976b6 | 5696 | return TRUE; |
b49e97c9 TS |
5697 | } |
5698 | \f | |
5699 | /* Look through the relocs for a section during the first phase, and | |
5700 | allocate space in the global offset table. */ | |
5701 | ||
b34976b6 | 5702 | bfd_boolean |
9719ad41 RS |
5703 | _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info, |
5704 | asection *sec, const Elf_Internal_Rela *relocs) | |
b49e97c9 TS |
5705 | { |
5706 | const char *name; | |
5707 | bfd *dynobj; | |
5708 | Elf_Internal_Shdr *symtab_hdr; | |
5709 | struct elf_link_hash_entry **sym_hashes; | |
5710 | struct mips_got_info *g; | |
5711 | size_t extsymoff; | |
5712 | const Elf_Internal_Rela *rel; | |
5713 | const Elf_Internal_Rela *rel_end; | |
5714 | asection *sgot; | |
5715 | asection *sreloc; | |
9c5bfbb7 | 5716 | const struct elf_backend_data *bed; |
b49e97c9 | 5717 | |
1049f94e | 5718 | if (info->relocatable) |
b34976b6 | 5719 | return TRUE; |
b49e97c9 TS |
5720 | |
5721 | dynobj = elf_hash_table (info)->dynobj; | |
5722 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
5723 | sym_hashes = elf_sym_hashes (abfd); | |
5724 | extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info; | |
5725 | ||
5726 | /* Check for the mips16 stub sections. */ | |
5727 | ||
5728 | name = bfd_get_section_name (abfd, sec); | |
5729 | if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0) | |
5730 | { | |
5731 | unsigned long r_symndx; | |
5732 | ||
5733 | /* Look at the relocation information to figure out which symbol | |
5734 | this is for. */ | |
5735 | ||
5736 | r_symndx = ELF_R_SYM (abfd, relocs->r_info); | |
5737 | ||
5738 | if (r_symndx < extsymoff | |
5739 | || sym_hashes[r_symndx - extsymoff] == NULL) | |
5740 | { | |
5741 | asection *o; | |
5742 | ||
5743 | /* This stub is for a local symbol. This stub will only be | |
5744 | needed if there is some relocation in this BFD, other | |
5745 | than a 16 bit function call, which refers to this symbol. */ | |
5746 | for (o = abfd->sections; o != NULL; o = o->next) | |
5747 | { | |
5748 | Elf_Internal_Rela *sec_relocs; | |
5749 | const Elf_Internal_Rela *r, *rend; | |
5750 | ||
5751 | /* We can ignore stub sections when looking for relocs. */ | |
5752 | if ((o->flags & SEC_RELOC) == 0 | |
5753 | || o->reloc_count == 0 | |
5754 | || strncmp (bfd_get_section_name (abfd, o), FN_STUB, | |
5755 | sizeof FN_STUB - 1) == 0 | |
5756 | || strncmp (bfd_get_section_name (abfd, o), CALL_STUB, | |
5757 | sizeof CALL_STUB - 1) == 0 | |
5758 | || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB, | |
5759 | sizeof CALL_FP_STUB - 1) == 0) | |
5760 | continue; | |
5761 | ||
45d6a902 | 5762 | sec_relocs |
9719ad41 | 5763 | = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL, |
45d6a902 | 5764 | info->keep_memory); |
b49e97c9 | 5765 | if (sec_relocs == NULL) |
b34976b6 | 5766 | return FALSE; |
b49e97c9 TS |
5767 | |
5768 | rend = sec_relocs + o->reloc_count; | |
5769 | for (r = sec_relocs; r < rend; r++) | |
5770 | if (ELF_R_SYM (abfd, r->r_info) == r_symndx | |
5771 | && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26) | |
5772 | break; | |
5773 | ||
6cdc0ccc | 5774 | if (elf_section_data (o)->relocs != sec_relocs) |
b49e97c9 TS |
5775 | free (sec_relocs); |
5776 | ||
5777 | if (r < rend) | |
5778 | break; | |
5779 | } | |
5780 | ||
5781 | if (o == NULL) | |
5782 | { | |
5783 | /* There is no non-call reloc for this stub, so we do | |
5784 | not need it. Since this function is called before | |
5785 | the linker maps input sections to output sections, we | |
5786 | can easily discard it by setting the SEC_EXCLUDE | |
5787 | flag. */ | |
5788 | sec->flags |= SEC_EXCLUDE; | |
b34976b6 | 5789 | return TRUE; |
b49e97c9 TS |
5790 | } |
5791 | ||
5792 | /* Record this stub in an array of local symbol stubs for | |
5793 | this BFD. */ | |
5794 | if (elf_tdata (abfd)->local_stubs == NULL) | |
5795 | { | |
5796 | unsigned long symcount; | |
5797 | asection **n; | |
5798 | bfd_size_type amt; | |
5799 | ||
5800 | if (elf_bad_symtab (abfd)) | |
5801 | symcount = NUM_SHDR_ENTRIES (symtab_hdr); | |
5802 | else | |
5803 | symcount = symtab_hdr->sh_info; | |
5804 | amt = symcount * sizeof (asection *); | |
9719ad41 | 5805 | n = bfd_zalloc (abfd, amt); |
b49e97c9 | 5806 | if (n == NULL) |
b34976b6 | 5807 | return FALSE; |
b49e97c9 TS |
5808 | elf_tdata (abfd)->local_stubs = n; |
5809 | } | |
5810 | ||
5811 | elf_tdata (abfd)->local_stubs[r_symndx] = sec; | |
5812 | ||
5813 | /* We don't need to set mips16_stubs_seen in this case. | |
5814 | That flag is used to see whether we need to look through | |
5815 | the global symbol table for stubs. We don't need to set | |
5816 | it here, because we just have a local stub. */ | |
5817 | } | |
5818 | else | |
5819 | { | |
5820 | struct mips_elf_link_hash_entry *h; | |
5821 | ||
5822 | h = ((struct mips_elf_link_hash_entry *) | |
5823 | sym_hashes[r_symndx - extsymoff]); | |
5824 | ||
5825 | /* H is the symbol this stub is for. */ | |
5826 | ||
5827 | h->fn_stub = sec; | |
b34976b6 | 5828 | mips_elf_hash_table (info)->mips16_stubs_seen = TRUE; |
b49e97c9 TS |
5829 | } |
5830 | } | |
5831 | else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0 | |
5832 | || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0) | |
5833 | { | |
5834 | unsigned long r_symndx; | |
5835 | struct mips_elf_link_hash_entry *h; | |
5836 | asection **loc; | |
5837 | ||
5838 | /* Look at the relocation information to figure out which symbol | |
5839 | this is for. */ | |
5840 | ||
5841 | r_symndx = ELF_R_SYM (abfd, relocs->r_info); | |
5842 | ||
5843 | if (r_symndx < extsymoff | |
5844 | || sym_hashes[r_symndx - extsymoff] == NULL) | |
5845 | { | |
5846 | /* This stub was actually built for a static symbol defined | |
5847 | in the same file. We assume that all static symbols in | |
5848 | mips16 code are themselves mips16, so we can simply | |
5849 | discard this stub. Since this function is called before | |
5850 | the linker maps input sections to output sections, we can | |
5851 | easily discard it by setting the SEC_EXCLUDE flag. */ | |
5852 | sec->flags |= SEC_EXCLUDE; | |
b34976b6 | 5853 | return TRUE; |
b49e97c9 TS |
5854 | } |
5855 | ||
5856 | h = ((struct mips_elf_link_hash_entry *) | |
5857 | sym_hashes[r_symndx - extsymoff]); | |
5858 | ||
5859 | /* H is the symbol this stub is for. */ | |
5860 | ||
5861 | if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0) | |
5862 | loc = &h->call_fp_stub; | |
5863 | else | |
5864 | loc = &h->call_stub; | |
5865 | ||
5866 | /* If we already have an appropriate stub for this function, we | |
5867 | don't need another one, so we can discard this one. Since | |
5868 | this function is called before the linker maps input sections | |
5869 | to output sections, we can easily discard it by setting the | |
5870 | SEC_EXCLUDE flag. We can also discard this section if we | |
5871 | happen to already know that this is a mips16 function; it is | |
5872 | not necessary to check this here, as it is checked later, but | |
5873 | it is slightly faster to check now. */ | |
5874 | if (*loc != NULL || h->root.other == STO_MIPS16) | |
5875 | { | |
5876 | sec->flags |= SEC_EXCLUDE; | |
b34976b6 | 5877 | return TRUE; |
b49e97c9 TS |
5878 | } |
5879 | ||
5880 | *loc = sec; | |
b34976b6 | 5881 | mips_elf_hash_table (info)->mips16_stubs_seen = TRUE; |
b49e97c9 TS |
5882 | } |
5883 | ||
5884 | if (dynobj == NULL) | |
5885 | { | |
5886 | sgot = NULL; | |
5887 | g = NULL; | |
5888 | } | |
5889 | else | |
5890 | { | |
f4416af6 | 5891 | sgot = mips_elf_got_section (dynobj, FALSE); |
b49e97c9 TS |
5892 | if (sgot == NULL) |
5893 | g = NULL; | |
5894 | else | |
5895 | { | |
f0abc2a1 AM |
5896 | BFD_ASSERT (mips_elf_section_data (sgot) != NULL); |
5897 | g = mips_elf_section_data (sgot)->u.got_info; | |
b49e97c9 TS |
5898 | BFD_ASSERT (g != NULL); |
5899 | } | |
5900 | } | |
5901 | ||
5902 | sreloc = NULL; | |
5903 | bed = get_elf_backend_data (abfd); | |
5904 | rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel; | |
5905 | for (rel = relocs; rel < rel_end; ++rel) | |
5906 | { | |
5907 | unsigned long r_symndx; | |
5908 | unsigned int r_type; | |
5909 | struct elf_link_hash_entry *h; | |
5910 | ||
5911 | r_symndx = ELF_R_SYM (abfd, rel->r_info); | |
5912 | r_type = ELF_R_TYPE (abfd, rel->r_info); | |
5913 | ||
5914 | if (r_symndx < extsymoff) | |
5915 | h = NULL; | |
5916 | else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr)) | |
5917 | { | |
5918 | (*_bfd_error_handler) | |
d003868e AM |
5919 | (_("%B: Malformed reloc detected for section %s"), |
5920 | abfd, name); | |
b49e97c9 | 5921 | bfd_set_error (bfd_error_bad_value); |
b34976b6 | 5922 | return FALSE; |
b49e97c9 TS |
5923 | } |
5924 | else | |
5925 | { | |
5926 | h = sym_hashes[r_symndx - extsymoff]; | |
5927 | ||
5928 | /* This may be an indirect symbol created because of a version. */ | |
5929 | if (h != NULL) | |
5930 | { | |
5931 | while (h->root.type == bfd_link_hash_indirect) | |
5932 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
5933 | } | |
5934 | } | |
5935 | ||
5936 | /* Some relocs require a global offset table. */ | |
5937 | if (dynobj == NULL || sgot == NULL) | |
5938 | { | |
5939 | switch (r_type) | |
5940 | { | |
5941 | case R_MIPS_GOT16: | |
5942 | case R_MIPS_CALL16: | |
5943 | case R_MIPS_CALL_HI16: | |
5944 | case R_MIPS_CALL_LO16: | |
5945 | case R_MIPS_GOT_HI16: | |
5946 | case R_MIPS_GOT_LO16: | |
5947 | case R_MIPS_GOT_PAGE: | |
5948 | case R_MIPS_GOT_OFST: | |
5949 | case R_MIPS_GOT_DISP: | |
0f20cc35 DJ |
5950 | case R_MIPS_TLS_GD: |
5951 | case R_MIPS_TLS_LDM: | |
b49e97c9 TS |
5952 | if (dynobj == NULL) |
5953 | elf_hash_table (info)->dynobj = dynobj = abfd; | |
f4416af6 | 5954 | if (! mips_elf_create_got_section (dynobj, info, FALSE)) |
b34976b6 | 5955 | return FALSE; |
b49e97c9 TS |
5956 | g = mips_elf_got_info (dynobj, &sgot); |
5957 | break; | |
5958 | ||
5959 | case R_MIPS_32: | |
5960 | case R_MIPS_REL32: | |
5961 | case R_MIPS_64: | |
5962 | if (dynobj == NULL | |
5963 | && (info->shared || h != NULL) | |
5964 | && (sec->flags & SEC_ALLOC) != 0) | |
5965 | elf_hash_table (info)->dynobj = dynobj = abfd; | |
5966 | break; | |
5967 | ||
5968 | default: | |
5969 | break; | |
5970 | } | |
5971 | } | |
5972 | ||
5973 | if (!h && (r_type == R_MIPS_CALL_LO16 | |
5974 | || r_type == R_MIPS_GOT_LO16 | |
5975 | || r_type == R_MIPS_GOT_DISP)) | |
5976 | { | |
5977 | /* We may need a local GOT entry for this relocation. We | |
5978 | don't count R_MIPS_GOT_PAGE because we can estimate the | |
5979 | maximum number of pages needed by looking at the size of | |
5980 | the segment. Similar comments apply to R_MIPS_GOT16 and | |
5981 | R_MIPS_CALL16. We don't count R_MIPS_GOT_HI16, or | |
5982 | R_MIPS_CALL_HI16 because these are always followed by an | |
b15e6682 | 5983 | R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */ |
f4416af6 | 5984 | if (! mips_elf_record_local_got_symbol (abfd, r_symndx, |
0f20cc35 | 5985 | rel->r_addend, g, 0)) |
f4416af6 | 5986 | return FALSE; |
b49e97c9 TS |
5987 | } |
5988 | ||
5989 | switch (r_type) | |
5990 | { | |
5991 | case R_MIPS_CALL16: | |
5992 | if (h == NULL) | |
5993 | { | |
5994 | (*_bfd_error_handler) | |
d003868e AM |
5995 | (_("%B: CALL16 reloc at 0x%lx not against global symbol"), |
5996 | abfd, (unsigned long) rel->r_offset); | |
b49e97c9 | 5997 | bfd_set_error (bfd_error_bad_value); |
b34976b6 | 5998 | return FALSE; |
b49e97c9 TS |
5999 | } |
6000 | /* Fall through. */ | |
6001 | ||
6002 | case R_MIPS_CALL_HI16: | |
6003 | case R_MIPS_CALL_LO16: | |
6004 | if (h != NULL) | |
6005 | { | |
6006 | /* This symbol requires a global offset table entry. */ | |
0f20cc35 | 6007 | if (! mips_elf_record_global_got_symbol (h, abfd, info, g, 0)) |
b34976b6 | 6008 | return FALSE; |
b49e97c9 TS |
6009 | |
6010 | /* We need a stub, not a plt entry for the undefined | |
6011 | function. But we record it as if it needs plt. See | |
c152c796 | 6012 | _bfd_elf_adjust_dynamic_symbol. */ |
f5385ebf | 6013 | h->needs_plt = 1; |
b49e97c9 TS |
6014 | h->type = STT_FUNC; |
6015 | } | |
6016 | break; | |
6017 | ||
0fdc1bf1 AO |
6018 | case R_MIPS_GOT_PAGE: |
6019 | /* If this is a global, overridable symbol, GOT_PAGE will | |
6020 | decay to GOT_DISP, so we'll need a GOT entry for it. */ | |
6021 | if (h == NULL) | |
6022 | break; | |
6023 | else | |
6024 | { | |
6025 | struct mips_elf_link_hash_entry *hmips = | |
6026 | (struct mips_elf_link_hash_entry *) h; | |
143d77c5 | 6027 | |
0fdc1bf1 AO |
6028 | while (hmips->root.root.type == bfd_link_hash_indirect |
6029 | || hmips->root.root.type == bfd_link_hash_warning) | |
6030 | hmips = (struct mips_elf_link_hash_entry *) | |
6031 | hmips->root.root.u.i.link; | |
143d77c5 | 6032 | |
f5385ebf | 6033 | if (hmips->root.def_regular |
0fdc1bf1 | 6034 | && ! (info->shared && ! info->symbolic |
f5385ebf | 6035 | && ! hmips->root.forced_local)) |
0fdc1bf1 AO |
6036 | break; |
6037 | } | |
6038 | /* Fall through. */ | |
6039 | ||
b49e97c9 TS |
6040 | case R_MIPS_GOT16: |
6041 | case R_MIPS_GOT_HI16: | |
6042 | case R_MIPS_GOT_LO16: | |
6043 | case R_MIPS_GOT_DISP: | |
0f20cc35 | 6044 | if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, 0)) |
b34976b6 | 6045 | return FALSE; |
b49e97c9 TS |
6046 | break; |
6047 | ||
0f20cc35 DJ |
6048 | case R_MIPS_TLS_GOTTPREL: |
6049 | if (info->shared) | |
6050 | info->flags |= DF_STATIC_TLS; | |
6051 | /* Fall through */ | |
6052 | ||
6053 | case R_MIPS_TLS_LDM: | |
6054 | if (r_type == R_MIPS_TLS_LDM) | |
6055 | { | |
6056 | r_symndx = 0; | |
6057 | h = NULL; | |
6058 | } | |
6059 | /* Fall through */ | |
6060 | ||
6061 | case R_MIPS_TLS_GD: | |
6062 | /* This symbol requires a global offset table entry, or two | |
6063 | for TLS GD relocations. */ | |
6064 | { | |
6065 | unsigned char flag = (r_type == R_MIPS_TLS_GD | |
6066 | ? GOT_TLS_GD | |
6067 | : r_type == R_MIPS_TLS_LDM | |
6068 | ? GOT_TLS_LDM | |
6069 | : GOT_TLS_IE); | |
6070 | if (h != NULL) | |
6071 | { | |
6072 | struct mips_elf_link_hash_entry *hmips = | |
6073 | (struct mips_elf_link_hash_entry *) h; | |
6074 | hmips->tls_type |= flag; | |
6075 | ||
6076 | if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, flag)) | |
6077 | return FALSE; | |
6078 | } | |
6079 | else | |
6080 | { | |
6081 | BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != 0); | |
6082 | ||
6083 | if (! mips_elf_record_local_got_symbol (abfd, r_symndx, | |
6084 | rel->r_addend, g, flag)) | |
6085 | return FALSE; | |
6086 | } | |
6087 | } | |
6088 | break; | |
6089 | ||
b49e97c9 TS |
6090 | case R_MIPS_32: |
6091 | case R_MIPS_REL32: | |
6092 | case R_MIPS_64: | |
6093 | if ((info->shared || h != NULL) | |
6094 | && (sec->flags & SEC_ALLOC) != 0) | |
6095 | { | |
6096 | if (sreloc == NULL) | |
6097 | { | |
f4416af6 | 6098 | sreloc = mips_elf_rel_dyn_section (dynobj, TRUE); |
b49e97c9 | 6099 | if (sreloc == NULL) |
f4416af6 | 6100 | return FALSE; |
b49e97c9 TS |
6101 | } |
6102 | #define MIPS_READONLY_SECTION (SEC_ALLOC | SEC_LOAD | SEC_READONLY) | |
6103 | if (info->shared) | |
6104 | { | |
6105 | /* When creating a shared object, we must copy these | |
6106 | reloc types into the output file as R_MIPS_REL32 | |
6107 | relocs. We make room for this reloc in the | |
6108 | .rel.dyn reloc section. */ | |
6109 | mips_elf_allocate_dynamic_relocations (dynobj, 1); | |
6110 | if ((sec->flags & MIPS_READONLY_SECTION) | |
6111 | == MIPS_READONLY_SECTION) | |
6112 | /* We tell the dynamic linker that there are | |
6113 | relocations against the text segment. */ | |
6114 | info->flags |= DF_TEXTREL; | |
6115 | } | |
6116 | else | |
6117 | { | |
6118 | struct mips_elf_link_hash_entry *hmips; | |
6119 | ||
6120 | /* We only need to copy this reloc if the symbol is | |
6121 | defined in a dynamic object. */ | |
6122 | hmips = (struct mips_elf_link_hash_entry *) h; | |
6123 | ++hmips->possibly_dynamic_relocs; | |
6124 | if ((sec->flags & MIPS_READONLY_SECTION) | |
6125 | == MIPS_READONLY_SECTION) | |
6126 | /* We need it to tell the dynamic linker if there | |
6127 | are relocations against the text segment. */ | |
b34976b6 | 6128 | hmips->readonly_reloc = TRUE; |
b49e97c9 TS |
6129 | } |
6130 | ||
6131 | /* Even though we don't directly need a GOT entry for | |
6132 | this symbol, a symbol must have a dynamic symbol | |
6133 | table index greater that DT_MIPS_GOTSYM if there are | |
6134 | dynamic relocations against it. */ | |
f4416af6 AO |
6135 | if (h != NULL) |
6136 | { | |
6137 | if (dynobj == NULL) | |
6138 | elf_hash_table (info)->dynobj = dynobj = abfd; | |
6139 | if (! mips_elf_create_got_section (dynobj, info, TRUE)) | |
6140 | return FALSE; | |
6141 | g = mips_elf_got_info (dynobj, &sgot); | |
0f20cc35 | 6142 | if (! mips_elf_record_global_got_symbol (h, abfd, info, g, 0)) |
f4416af6 AO |
6143 | return FALSE; |
6144 | } | |
b49e97c9 TS |
6145 | } |
6146 | ||
6147 | if (SGI_COMPAT (abfd)) | |
6148 | mips_elf_hash_table (info)->compact_rel_size += | |
6149 | sizeof (Elf32_External_crinfo); | |
6150 | break; | |
6151 | ||
6152 | case R_MIPS_26: | |
6153 | case R_MIPS_GPREL16: | |
6154 | case R_MIPS_LITERAL: | |
6155 | case R_MIPS_GPREL32: | |
6156 | if (SGI_COMPAT (abfd)) | |
6157 | mips_elf_hash_table (info)->compact_rel_size += | |
6158 | sizeof (Elf32_External_crinfo); | |
6159 | break; | |
6160 | ||
6161 | /* This relocation describes the C++ object vtable hierarchy. | |
6162 | Reconstruct it for later use during GC. */ | |
6163 | case R_MIPS_GNU_VTINHERIT: | |
c152c796 | 6164 | if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) |
b34976b6 | 6165 | return FALSE; |
b49e97c9 TS |
6166 | break; |
6167 | ||
6168 | /* This relocation describes which C++ vtable entries are actually | |
6169 | used. Record for later use during GC. */ | |
6170 | case R_MIPS_GNU_VTENTRY: | |
c152c796 | 6171 | if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset)) |
b34976b6 | 6172 | return FALSE; |
b49e97c9 TS |
6173 | break; |
6174 | ||
6175 | default: | |
6176 | break; | |
6177 | } | |
6178 | ||
6179 | /* We must not create a stub for a symbol that has relocations | |
6180 | related to taking the function's address. */ | |
6181 | switch (r_type) | |
6182 | { | |
6183 | default: | |
6184 | if (h != NULL) | |
6185 | { | |
6186 | struct mips_elf_link_hash_entry *mh; | |
6187 | ||
6188 | mh = (struct mips_elf_link_hash_entry *) h; | |
b34976b6 | 6189 | mh->no_fn_stub = TRUE; |
b49e97c9 TS |
6190 | } |
6191 | break; | |
6192 | case R_MIPS_CALL16: | |
6193 | case R_MIPS_CALL_HI16: | |
6194 | case R_MIPS_CALL_LO16: | |
2b86c02e | 6195 | case R_MIPS_JALR: |
b49e97c9 TS |
6196 | break; |
6197 | } | |
6198 | ||
6199 | /* If this reloc is not a 16 bit call, and it has a global | |
6200 | symbol, then we will need the fn_stub if there is one. | |
6201 | References from a stub section do not count. */ | |
6202 | if (h != NULL | |
6203 | && r_type != R_MIPS16_26 | |
6204 | && strncmp (bfd_get_section_name (abfd, sec), FN_STUB, | |
6205 | sizeof FN_STUB - 1) != 0 | |
6206 | && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB, | |
6207 | sizeof CALL_STUB - 1) != 0 | |
6208 | && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB, | |
6209 | sizeof CALL_FP_STUB - 1) != 0) | |
6210 | { | |
6211 | struct mips_elf_link_hash_entry *mh; | |
6212 | ||
6213 | mh = (struct mips_elf_link_hash_entry *) h; | |
b34976b6 | 6214 | mh->need_fn_stub = TRUE; |
b49e97c9 TS |
6215 | } |
6216 | } | |
6217 | ||
b34976b6 | 6218 | return TRUE; |
b49e97c9 TS |
6219 | } |
6220 | \f | |
d0647110 | 6221 | bfd_boolean |
9719ad41 RS |
6222 | _bfd_mips_relax_section (bfd *abfd, asection *sec, |
6223 | struct bfd_link_info *link_info, | |
6224 | bfd_boolean *again) | |
d0647110 AO |
6225 | { |
6226 | Elf_Internal_Rela *internal_relocs; | |
6227 | Elf_Internal_Rela *irel, *irelend; | |
6228 | Elf_Internal_Shdr *symtab_hdr; | |
6229 | bfd_byte *contents = NULL; | |
d0647110 AO |
6230 | size_t extsymoff; |
6231 | bfd_boolean changed_contents = FALSE; | |
6232 | bfd_vma sec_start = sec->output_section->vma + sec->output_offset; | |
6233 | Elf_Internal_Sym *isymbuf = NULL; | |
6234 | ||
6235 | /* We are not currently changing any sizes, so only one pass. */ | |
6236 | *again = FALSE; | |
6237 | ||
1049f94e | 6238 | if (link_info->relocatable) |
d0647110 AO |
6239 | return TRUE; |
6240 | ||
9719ad41 | 6241 | internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, |
45d6a902 | 6242 | link_info->keep_memory); |
d0647110 AO |
6243 | if (internal_relocs == NULL) |
6244 | return TRUE; | |
6245 | ||
6246 | irelend = internal_relocs + sec->reloc_count | |
6247 | * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel; | |
6248 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
6249 | extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info; | |
6250 | ||
6251 | for (irel = internal_relocs; irel < irelend; irel++) | |
6252 | { | |
6253 | bfd_vma symval; | |
6254 | bfd_signed_vma sym_offset; | |
6255 | unsigned int r_type; | |
6256 | unsigned long r_symndx; | |
6257 | asection *sym_sec; | |
6258 | unsigned long instruction; | |
6259 | ||
6260 | /* Turn jalr into bgezal, and jr into beq, if they're marked | |
6261 | with a JALR relocation, that indicate where they jump to. | |
6262 | This saves some pipeline bubbles. */ | |
6263 | r_type = ELF_R_TYPE (abfd, irel->r_info); | |
6264 | if (r_type != R_MIPS_JALR) | |
6265 | continue; | |
6266 | ||
6267 | r_symndx = ELF_R_SYM (abfd, irel->r_info); | |
6268 | /* Compute the address of the jump target. */ | |
6269 | if (r_symndx >= extsymoff) | |
6270 | { | |
6271 | struct mips_elf_link_hash_entry *h | |
6272 | = ((struct mips_elf_link_hash_entry *) | |
6273 | elf_sym_hashes (abfd) [r_symndx - extsymoff]); | |
6274 | ||
6275 | while (h->root.root.type == bfd_link_hash_indirect | |
6276 | || h->root.root.type == bfd_link_hash_warning) | |
6277 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | |
143d77c5 | 6278 | |
d0647110 AO |
6279 | /* If a symbol is undefined, or if it may be overridden, |
6280 | skip it. */ | |
6281 | if (! ((h->root.root.type == bfd_link_hash_defined | |
6282 | || h->root.root.type == bfd_link_hash_defweak) | |
6283 | && h->root.root.u.def.section) | |
6284 | || (link_info->shared && ! link_info->symbolic | |
f5385ebf | 6285 | && !h->root.forced_local)) |
d0647110 AO |
6286 | continue; |
6287 | ||
6288 | sym_sec = h->root.root.u.def.section; | |
6289 | if (sym_sec->output_section) | |
6290 | symval = (h->root.root.u.def.value | |
6291 | + sym_sec->output_section->vma | |
6292 | + sym_sec->output_offset); | |
6293 | else | |
6294 | symval = h->root.root.u.def.value; | |
6295 | } | |
6296 | else | |
6297 | { | |
6298 | Elf_Internal_Sym *isym; | |
6299 | ||
6300 | /* Read this BFD's symbols if we haven't done so already. */ | |
6301 | if (isymbuf == NULL && symtab_hdr->sh_info != 0) | |
6302 | { | |
6303 | isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; | |
6304 | if (isymbuf == NULL) | |
6305 | isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr, | |
6306 | symtab_hdr->sh_info, 0, | |
6307 | NULL, NULL, NULL); | |
6308 | if (isymbuf == NULL) | |
6309 | goto relax_return; | |
6310 | } | |
6311 | ||
6312 | isym = isymbuf + r_symndx; | |
6313 | if (isym->st_shndx == SHN_UNDEF) | |
6314 | continue; | |
6315 | else if (isym->st_shndx == SHN_ABS) | |
6316 | sym_sec = bfd_abs_section_ptr; | |
6317 | else if (isym->st_shndx == SHN_COMMON) | |
6318 | sym_sec = bfd_com_section_ptr; | |
6319 | else | |
6320 | sym_sec | |
6321 | = bfd_section_from_elf_index (abfd, isym->st_shndx); | |
6322 | symval = isym->st_value | |
6323 | + sym_sec->output_section->vma | |
6324 | + sym_sec->output_offset; | |
6325 | } | |
6326 | ||
6327 | /* Compute branch offset, from delay slot of the jump to the | |
6328 | branch target. */ | |
6329 | sym_offset = (symval + irel->r_addend) | |
6330 | - (sec_start + irel->r_offset + 4); | |
6331 | ||
6332 | /* Branch offset must be properly aligned. */ | |
6333 | if ((sym_offset & 3) != 0) | |
6334 | continue; | |
6335 | ||
6336 | sym_offset >>= 2; | |
6337 | ||
6338 | /* Check that it's in range. */ | |
6339 | if (sym_offset < -0x8000 || sym_offset >= 0x8000) | |
6340 | continue; | |
143d77c5 | 6341 | |
d0647110 AO |
6342 | /* Get the section contents if we haven't done so already. */ |
6343 | if (contents == NULL) | |
6344 | { | |
6345 | /* Get cached copy if it exists. */ | |
6346 | if (elf_section_data (sec)->this_hdr.contents != NULL) | |
6347 | contents = elf_section_data (sec)->this_hdr.contents; | |
6348 | else | |
6349 | { | |
eea6121a | 6350 | if (!bfd_malloc_and_get_section (abfd, sec, &contents)) |
d0647110 AO |
6351 | goto relax_return; |
6352 | } | |
6353 | } | |
6354 | ||
6355 | instruction = bfd_get_32 (abfd, contents + irel->r_offset); | |
6356 | ||
6357 | /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */ | |
6358 | if ((instruction & 0xfc1fffff) == 0x0000f809) | |
6359 | instruction = 0x04110000; | |
6360 | /* If it was jr <reg>, turn it into b <target>. */ | |
6361 | else if ((instruction & 0xfc1fffff) == 0x00000008) | |
6362 | instruction = 0x10000000; | |
6363 | else | |
6364 | continue; | |
6365 | ||
6366 | instruction |= (sym_offset & 0xffff); | |
6367 | bfd_put_32 (abfd, instruction, contents + irel->r_offset); | |
6368 | changed_contents = TRUE; | |
6369 | } | |
6370 | ||
6371 | if (contents != NULL | |
6372 | && elf_section_data (sec)->this_hdr.contents != contents) | |
6373 | { | |
6374 | if (!changed_contents && !link_info->keep_memory) | |
6375 | free (contents); | |
6376 | else | |
6377 | { | |
6378 | /* Cache the section contents for elf_link_input_bfd. */ | |
6379 | elf_section_data (sec)->this_hdr.contents = contents; | |
6380 | } | |
6381 | } | |
6382 | return TRUE; | |
6383 | ||
143d77c5 | 6384 | relax_return: |
eea6121a AM |
6385 | if (contents != NULL |
6386 | && elf_section_data (sec)->this_hdr.contents != contents) | |
6387 | free (contents); | |
d0647110 AO |
6388 | return FALSE; |
6389 | } | |
6390 | \f | |
b49e97c9 TS |
6391 | /* Adjust a symbol defined by a dynamic object and referenced by a |
6392 | regular object. The current definition is in some section of the | |
6393 | dynamic object, but we're not including those sections. We have to | |
6394 | change the definition to something the rest of the link can | |
6395 | understand. */ | |
6396 | ||
b34976b6 | 6397 | bfd_boolean |
9719ad41 RS |
6398 | _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info, |
6399 | struct elf_link_hash_entry *h) | |
b49e97c9 TS |
6400 | { |
6401 | bfd *dynobj; | |
6402 | struct mips_elf_link_hash_entry *hmips; | |
6403 | asection *s; | |
6404 | ||
6405 | dynobj = elf_hash_table (info)->dynobj; | |
6406 | ||
6407 | /* Make sure we know what is going on here. */ | |
6408 | BFD_ASSERT (dynobj != NULL | |
f5385ebf | 6409 | && (h->needs_plt |
f6e332e6 | 6410 | || h->u.weakdef != NULL |
f5385ebf AM |
6411 | || (h->def_dynamic |
6412 | && h->ref_regular | |
6413 | && !h->def_regular))); | |
b49e97c9 TS |
6414 | |
6415 | /* If this symbol is defined in a dynamic object, we need to copy | |
6416 | any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output | |
6417 | file. */ | |
6418 | hmips = (struct mips_elf_link_hash_entry *) h; | |
1049f94e | 6419 | if (! info->relocatable |
b49e97c9 TS |
6420 | && hmips->possibly_dynamic_relocs != 0 |
6421 | && (h->root.type == bfd_link_hash_defweak | |
f5385ebf | 6422 | || !h->def_regular)) |
b49e97c9 TS |
6423 | { |
6424 | mips_elf_allocate_dynamic_relocations (dynobj, | |
6425 | hmips->possibly_dynamic_relocs); | |
6426 | if (hmips->readonly_reloc) | |
6427 | /* We tell the dynamic linker that there are relocations | |
6428 | against the text segment. */ | |
6429 | info->flags |= DF_TEXTREL; | |
6430 | } | |
6431 | ||
6432 | /* For a function, create a stub, if allowed. */ | |
6433 | if (! hmips->no_fn_stub | |
f5385ebf | 6434 | && h->needs_plt) |
b49e97c9 TS |
6435 | { |
6436 | if (! elf_hash_table (info)->dynamic_sections_created) | |
b34976b6 | 6437 | return TRUE; |
b49e97c9 TS |
6438 | |
6439 | /* If this symbol is not defined in a regular file, then set | |
6440 | the symbol to the stub location. This is required to make | |
6441 | function pointers compare as equal between the normal | |
6442 | executable and the shared library. */ | |
f5385ebf | 6443 | if (!h->def_regular) |
b49e97c9 TS |
6444 | { |
6445 | /* We need .stub section. */ | |
6446 | s = bfd_get_section_by_name (dynobj, | |
6447 | MIPS_ELF_STUB_SECTION_NAME (dynobj)); | |
6448 | BFD_ASSERT (s != NULL); | |
6449 | ||
6450 | h->root.u.def.section = s; | |
eea6121a | 6451 | h->root.u.def.value = s->size; |
b49e97c9 TS |
6452 | |
6453 | /* XXX Write this stub address somewhere. */ | |
eea6121a | 6454 | h->plt.offset = s->size; |
b49e97c9 TS |
6455 | |
6456 | /* Make room for this stub code. */ | |
eea6121a | 6457 | s->size += MIPS_FUNCTION_STUB_SIZE; |
b49e97c9 TS |
6458 | |
6459 | /* The last half word of the stub will be filled with the index | |
6460 | of this symbol in .dynsym section. */ | |
b34976b6 | 6461 | return TRUE; |
b49e97c9 TS |
6462 | } |
6463 | } | |
6464 | else if ((h->type == STT_FUNC) | |
f5385ebf | 6465 | && !h->needs_plt) |
b49e97c9 TS |
6466 | { |
6467 | /* This will set the entry for this symbol in the GOT to 0, and | |
6468 | the dynamic linker will take care of this. */ | |
6469 | h->root.u.def.value = 0; | |
b34976b6 | 6470 | return TRUE; |
b49e97c9 TS |
6471 | } |
6472 | ||
6473 | /* If this is a weak symbol, and there is a real definition, the | |
6474 | processor independent code will have arranged for us to see the | |
6475 | real definition first, and we can just use the same value. */ | |
f6e332e6 | 6476 | if (h->u.weakdef != NULL) |
b49e97c9 | 6477 | { |
f6e332e6 AM |
6478 | BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined |
6479 | || h->u.weakdef->root.type == bfd_link_hash_defweak); | |
6480 | h->root.u.def.section = h->u.weakdef->root.u.def.section; | |
6481 | h->root.u.def.value = h->u.weakdef->root.u.def.value; | |
b34976b6 | 6482 | return TRUE; |
b49e97c9 TS |
6483 | } |
6484 | ||
6485 | /* This is a reference to a symbol defined by a dynamic object which | |
6486 | is not a function. */ | |
6487 | ||
b34976b6 | 6488 | return TRUE; |
b49e97c9 TS |
6489 | } |
6490 | \f | |
6491 | /* This function is called after all the input files have been read, | |
6492 | and the input sections have been assigned to output sections. We | |
6493 | check for any mips16 stub sections that we can discard. */ | |
6494 | ||
b34976b6 | 6495 | bfd_boolean |
9719ad41 RS |
6496 | _bfd_mips_elf_always_size_sections (bfd *output_bfd, |
6497 | struct bfd_link_info *info) | |
b49e97c9 TS |
6498 | { |
6499 | asection *ri; | |
6500 | ||
f4416af6 AO |
6501 | bfd *dynobj; |
6502 | asection *s; | |
6503 | struct mips_got_info *g; | |
6504 | int i; | |
6505 | bfd_size_type loadable_size = 0; | |
6506 | bfd_size_type local_gotno; | |
6507 | bfd *sub; | |
0f20cc35 | 6508 | struct mips_elf_count_tls_arg count_tls_arg; |
f4416af6 | 6509 | |
b49e97c9 TS |
6510 | /* The .reginfo section has a fixed size. */ |
6511 | ri = bfd_get_section_by_name (output_bfd, ".reginfo"); | |
6512 | if (ri != NULL) | |
9719ad41 | 6513 | bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo)); |
b49e97c9 | 6514 | |
1049f94e | 6515 | if (! (info->relocatable |
f4416af6 AO |
6516 | || ! mips_elf_hash_table (info)->mips16_stubs_seen)) |
6517 | mips_elf_link_hash_traverse (mips_elf_hash_table (info), | |
9719ad41 | 6518 | mips_elf_check_mips16_stubs, NULL); |
f4416af6 AO |
6519 | |
6520 | dynobj = elf_hash_table (info)->dynobj; | |
6521 | if (dynobj == NULL) | |
6522 | /* Relocatable links don't have it. */ | |
6523 | return TRUE; | |
143d77c5 | 6524 | |
f4416af6 AO |
6525 | g = mips_elf_got_info (dynobj, &s); |
6526 | if (s == NULL) | |
b34976b6 | 6527 | return TRUE; |
b49e97c9 | 6528 | |
f4416af6 AO |
6529 | /* Calculate the total loadable size of the output. That |
6530 | will give us the maximum number of GOT_PAGE entries | |
6531 | required. */ | |
6532 | for (sub = info->input_bfds; sub; sub = sub->link_next) | |
6533 | { | |
6534 | asection *subsection; | |
6535 | ||
6536 | for (subsection = sub->sections; | |
6537 | subsection; | |
6538 | subsection = subsection->next) | |
6539 | { | |
6540 | if ((subsection->flags & SEC_ALLOC) == 0) | |
6541 | continue; | |
eea6121a | 6542 | loadable_size += ((subsection->size + 0xf) |
f4416af6 AO |
6543 | &~ (bfd_size_type) 0xf); |
6544 | } | |
6545 | } | |
6546 | ||
6547 | /* There has to be a global GOT entry for every symbol with | |
6548 | a dynamic symbol table index of DT_MIPS_GOTSYM or | |
6549 | higher. Therefore, it make sense to put those symbols | |
6550 | that need GOT entries at the end of the symbol table. We | |
6551 | do that here. */ | |
6552 | if (! mips_elf_sort_hash_table (info, 1)) | |
6553 | return FALSE; | |
6554 | ||
6555 | if (g->global_gotsym != NULL) | |
6556 | i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx; | |
6557 | else | |
6558 | /* If there are no global symbols, or none requiring | |
6559 | relocations, then GLOBAL_GOTSYM will be NULL. */ | |
6560 | i = 0; | |
6561 | ||
6562 | /* In the worst case, we'll get one stub per dynamic symbol, plus | |
6563 | one to account for the dummy entry at the end required by IRIX | |
6564 | rld. */ | |
6565 | loadable_size += MIPS_FUNCTION_STUB_SIZE * (i + 1); | |
6566 | ||
6567 | /* Assume there are two loadable segments consisting of | |
6568 | contiguous sections. Is 5 enough? */ | |
6569 | local_gotno = (loadable_size >> 16) + 5; | |
6570 | ||
6571 | g->local_gotno += local_gotno; | |
eea6121a | 6572 | s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd); |
f4416af6 AO |
6573 | |
6574 | g->global_gotno = i; | |
eea6121a | 6575 | s->size += i * MIPS_ELF_GOT_SIZE (output_bfd); |
f4416af6 | 6576 | |
0f20cc35 DJ |
6577 | /* We need to calculate tls_gotno for global symbols at this point |
6578 | instead of building it up earlier, to avoid doublecounting | |
6579 | entries for one global symbol from multiple input files. */ | |
6580 | count_tls_arg.info = info; | |
6581 | count_tls_arg.needed = 0; | |
6582 | elf_link_hash_traverse (elf_hash_table (info), | |
6583 | mips_elf_count_global_tls_entries, | |
6584 | &count_tls_arg); | |
6585 | g->tls_gotno += count_tls_arg.needed; | |
6586 | s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd); | |
6587 | ||
6588 | mips_elf_resolve_final_got_entries (g); | |
6589 | ||
6590 | if (s->size > MIPS_ELF_GOT_MAX_SIZE (output_bfd)) | |
6591 | { | |
6592 | if (! mips_elf_multi_got (output_bfd, info, g, s, local_gotno)) | |
6593 | return FALSE; | |
6594 | } | |
6595 | else | |
6596 | { | |
6597 | /* Set up TLS entries for the first GOT. */ | |
6598 | g->tls_assigned_gotno = g->global_gotno + g->local_gotno; | |
6599 | htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g); | |
6600 | } | |
b49e97c9 | 6601 | |
b34976b6 | 6602 | return TRUE; |
b49e97c9 TS |
6603 | } |
6604 | ||
6605 | /* Set the sizes of the dynamic sections. */ | |
6606 | ||
b34976b6 | 6607 | bfd_boolean |
9719ad41 RS |
6608 | _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd, |
6609 | struct bfd_link_info *info) | |
b49e97c9 TS |
6610 | { |
6611 | bfd *dynobj; | |
6612 | asection *s; | |
b34976b6 | 6613 | bfd_boolean reltext; |
b49e97c9 TS |
6614 | |
6615 | dynobj = elf_hash_table (info)->dynobj; | |
6616 | BFD_ASSERT (dynobj != NULL); | |
6617 | ||
6618 | if (elf_hash_table (info)->dynamic_sections_created) | |
6619 | { | |
6620 | /* Set the contents of the .interp section to the interpreter. */ | |
893c4fe2 | 6621 | if (info->executable) |
b49e97c9 TS |
6622 | { |
6623 | s = bfd_get_section_by_name (dynobj, ".interp"); | |
6624 | BFD_ASSERT (s != NULL); | |
eea6121a | 6625 | s->size |
b49e97c9 TS |
6626 | = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1; |
6627 | s->contents | |
6628 | = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd); | |
6629 | } | |
6630 | } | |
6631 | ||
6632 | /* The check_relocs and adjust_dynamic_symbol entry points have | |
6633 | determined the sizes of the various dynamic sections. Allocate | |
6634 | memory for them. */ | |
b34976b6 | 6635 | reltext = FALSE; |
b49e97c9 TS |
6636 | for (s = dynobj->sections; s != NULL; s = s->next) |
6637 | { | |
6638 | const char *name; | |
b34976b6 | 6639 | bfd_boolean strip; |
b49e97c9 TS |
6640 | |
6641 | /* It's OK to base decisions on the section name, because none | |
6642 | of the dynobj section names depend upon the input files. */ | |
6643 | name = bfd_get_section_name (dynobj, s); | |
6644 | ||
6645 | if ((s->flags & SEC_LINKER_CREATED) == 0) | |
6646 | continue; | |
6647 | ||
b34976b6 | 6648 | strip = FALSE; |
b49e97c9 TS |
6649 | |
6650 | if (strncmp (name, ".rel", 4) == 0) | |
6651 | { | |
eea6121a | 6652 | if (s->size == 0) |
b49e97c9 TS |
6653 | { |
6654 | /* We only strip the section if the output section name | |
6655 | has the same name. Otherwise, there might be several | |
6656 | input sections for this output section. FIXME: This | |
6657 | code is probably not needed these days anyhow, since | |
6658 | the linker now does not create empty output sections. */ | |
6659 | if (s->output_section != NULL | |
6660 | && strcmp (name, | |
6661 | bfd_get_section_name (s->output_section->owner, | |
6662 | s->output_section)) == 0) | |
b34976b6 | 6663 | strip = TRUE; |
b49e97c9 TS |
6664 | } |
6665 | else | |
6666 | { | |
6667 | const char *outname; | |
6668 | asection *target; | |
6669 | ||
6670 | /* If this relocation section applies to a read only | |
6671 | section, then we probably need a DT_TEXTREL entry. | |
6672 | If the relocation section is .rel.dyn, we always | |
6673 | assert a DT_TEXTREL entry rather than testing whether | |
6674 | there exists a relocation to a read only section or | |
6675 | not. */ | |
6676 | outname = bfd_get_section_name (output_bfd, | |
6677 | s->output_section); | |
6678 | target = bfd_get_section_by_name (output_bfd, outname + 4); | |
6679 | if ((target != NULL | |
6680 | && (target->flags & SEC_READONLY) != 0 | |
6681 | && (target->flags & SEC_ALLOC) != 0) | |
6682 | || strcmp (outname, ".rel.dyn") == 0) | |
b34976b6 | 6683 | reltext = TRUE; |
b49e97c9 TS |
6684 | |
6685 | /* We use the reloc_count field as a counter if we need | |
6686 | to copy relocs into the output file. */ | |
6687 | if (strcmp (name, ".rel.dyn") != 0) | |
6688 | s->reloc_count = 0; | |
f4416af6 AO |
6689 | |
6690 | /* If combreloc is enabled, elf_link_sort_relocs() will | |
6691 | sort relocations, but in a different way than we do, | |
6692 | and before we're done creating relocations. Also, it | |
6693 | will move them around between input sections' | |
6694 | relocation's contents, so our sorting would be | |
6695 | broken, so don't let it run. */ | |
6696 | info->combreloc = 0; | |
b49e97c9 TS |
6697 | } |
6698 | } | |
6699 | else if (strncmp (name, ".got", 4) == 0) | |
6700 | { | |
f4416af6 AO |
6701 | /* _bfd_mips_elf_always_size_sections() has already done |
6702 | most of the work, but some symbols may have been mapped | |
6703 | to versions that we must now resolve in the got_entries | |
6704 | hash tables. */ | |
6705 | struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL); | |
6706 | struct mips_got_info *g = gg; | |
6707 | struct mips_elf_set_global_got_offset_arg set_got_offset_arg; | |
6708 | unsigned int needed_relocs = 0; | |
143d77c5 | 6709 | |
f4416af6 | 6710 | if (gg->next) |
b49e97c9 | 6711 | { |
f4416af6 AO |
6712 | set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd); |
6713 | set_got_offset_arg.info = info; | |
b49e97c9 | 6714 | |
0f20cc35 DJ |
6715 | /* NOTE 2005-02-03: How can this call, or the next, ever |
6716 | find any indirect entries to resolve? They were all | |
6717 | resolved in mips_elf_multi_got. */ | |
f4416af6 AO |
6718 | mips_elf_resolve_final_got_entries (gg); |
6719 | for (g = gg->next; g && g->next != gg; g = g->next) | |
b49e97c9 | 6720 | { |
f4416af6 AO |
6721 | unsigned int save_assign; |
6722 | ||
6723 | mips_elf_resolve_final_got_entries (g); | |
6724 | ||
6725 | /* Assign offsets to global GOT entries. */ | |
6726 | save_assign = g->assigned_gotno; | |
6727 | g->assigned_gotno = g->local_gotno; | |
6728 | set_got_offset_arg.g = g; | |
6729 | set_got_offset_arg.needed_relocs = 0; | |
6730 | htab_traverse (g->got_entries, | |
6731 | mips_elf_set_global_got_offset, | |
6732 | &set_got_offset_arg); | |
6733 | needed_relocs += set_got_offset_arg.needed_relocs; | |
6734 | BFD_ASSERT (g->assigned_gotno - g->local_gotno | |
6735 | <= g->global_gotno); | |
6736 | ||
6737 | g->assigned_gotno = save_assign; | |
6738 | if (info->shared) | |
6739 | { | |
6740 | needed_relocs += g->local_gotno - g->assigned_gotno; | |
6741 | BFD_ASSERT (g->assigned_gotno == g->next->local_gotno | |
6742 | + g->next->global_gotno | |
0f20cc35 | 6743 | + g->next->tls_gotno |
f4416af6 AO |
6744 | + MIPS_RESERVED_GOTNO); |
6745 | } | |
b49e97c9 | 6746 | } |
0f20cc35 DJ |
6747 | } |
6748 | else | |
6749 | { | |
6750 | struct mips_elf_count_tls_arg arg; | |
6751 | arg.info = info; | |
6752 | arg.needed = 0; | |
b49e97c9 | 6753 | |
0f20cc35 DJ |
6754 | htab_traverse (gg->got_entries, mips_elf_count_local_tls_relocs, |
6755 | &arg); | |
6756 | elf_link_hash_traverse (elf_hash_table (info), | |
6757 | mips_elf_count_global_tls_relocs, | |
6758 | &arg); | |
6759 | ||
6760 | needed_relocs += arg.needed; | |
f4416af6 | 6761 | } |
0f20cc35 DJ |
6762 | |
6763 | if (needed_relocs) | |
6764 | mips_elf_allocate_dynamic_relocations (dynobj, needed_relocs); | |
b49e97c9 TS |
6765 | } |
6766 | else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0) | |
6767 | { | |
8dc1a139 | 6768 | /* IRIX rld assumes that the function stub isn't at the end |
b49e97c9 | 6769 | of .text section. So put a dummy. XXX */ |
eea6121a | 6770 | s->size += MIPS_FUNCTION_STUB_SIZE; |
b49e97c9 TS |
6771 | } |
6772 | else if (! info->shared | |
6773 | && ! mips_elf_hash_table (info)->use_rld_obj_head | |
6774 | && strncmp (name, ".rld_map", 8) == 0) | |
6775 | { | |
6776 | /* We add a room for __rld_map. It will be filled in by the | |
6777 | rtld to contain a pointer to the _r_debug structure. */ | |
eea6121a | 6778 | s->size += 4; |
b49e97c9 TS |
6779 | } |
6780 | else if (SGI_COMPAT (output_bfd) | |
6781 | && strncmp (name, ".compact_rel", 12) == 0) | |
eea6121a | 6782 | s->size += mips_elf_hash_table (info)->compact_rel_size; |
b49e97c9 TS |
6783 | else if (strncmp (name, ".init", 5) != 0) |
6784 | { | |
6785 | /* It's not one of our sections, so don't allocate space. */ | |
6786 | continue; | |
6787 | } | |
6788 | ||
6789 | if (strip) | |
6790 | { | |
6791 | _bfd_strip_section_from_output (info, s); | |
6792 | continue; | |
6793 | } | |
6794 | ||
6795 | /* Allocate memory for the section contents. */ | |
eea6121a AM |
6796 | s->contents = bfd_zalloc (dynobj, s->size); |
6797 | if (s->contents == NULL && s->size != 0) | |
b49e97c9 TS |
6798 | { |
6799 | bfd_set_error (bfd_error_no_memory); | |
b34976b6 | 6800 | return FALSE; |
b49e97c9 TS |
6801 | } |
6802 | } | |
6803 | ||
6804 | if (elf_hash_table (info)->dynamic_sections_created) | |
6805 | { | |
6806 | /* Add some entries to the .dynamic section. We fill in the | |
6807 | values later, in _bfd_mips_elf_finish_dynamic_sections, but we | |
6808 | must add the entries now so that we get the correct size for | |
6809 | the .dynamic section. The DT_DEBUG entry is filled in by the | |
6810 | dynamic linker and used by the debugger. */ | |
6811 | if (! info->shared) | |
6812 | { | |
6813 | /* SGI object has the equivalence of DT_DEBUG in the | |
6814 | DT_MIPS_RLD_MAP entry. */ | |
6815 | if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0)) | |
b34976b6 | 6816 | return FALSE; |
b49e97c9 TS |
6817 | if (!SGI_COMPAT (output_bfd)) |
6818 | { | |
6819 | if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0)) | |
b34976b6 | 6820 | return FALSE; |
b49e97c9 TS |
6821 | } |
6822 | } | |
6823 | else | |
6824 | { | |
6825 | /* Shared libraries on traditional mips have DT_DEBUG. */ | |
6826 | if (!SGI_COMPAT (output_bfd)) | |
6827 | { | |
6828 | if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0)) | |
b34976b6 | 6829 | return FALSE; |
b49e97c9 TS |
6830 | } |
6831 | } | |
6832 | ||
6833 | if (reltext && SGI_COMPAT (output_bfd)) | |
6834 | info->flags |= DF_TEXTREL; | |
6835 | ||
6836 | if ((info->flags & DF_TEXTREL) != 0) | |
6837 | { | |
6838 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0)) | |
b34976b6 | 6839 | return FALSE; |
b49e97c9 TS |
6840 | } |
6841 | ||
6842 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0)) | |
b34976b6 | 6843 | return FALSE; |
b49e97c9 | 6844 | |
f4416af6 | 6845 | if (mips_elf_rel_dyn_section (dynobj, FALSE)) |
b49e97c9 TS |
6846 | { |
6847 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0)) | |
b34976b6 | 6848 | return FALSE; |
b49e97c9 TS |
6849 | |
6850 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0)) | |
b34976b6 | 6851 | return FALSE; |
b49e97c9 TS |
6852 | |
6853 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0)) | |
b34976b6 | 6854 | return FALSE; |
b49e97c9 TS |
6855 | } |
6856 | ||
b49e97c9 | 6857 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0)) |
b34976b6 | 6858 | return FALSE; |
b49e97c9 TS |
6859 | |
6860 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0)) | |
b34976b6 | 6861 | return FALSE; |
b49e97c9 | 6862 | |
b49e97c9 | 6863 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0)) |
b34976b6 | 6864 | return FALSE; |
b49e97c9 TS |
6865 | |
6866 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0)) | |
b34976b6 | 6867 | return FALSE; |
b49e97c9 TS |
6868 | |
6869 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0)) | |
b34976b6 | 6870 | return FALSE; |
b49e97c9 TS |
6871 | |
6872 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0)) | |
b34976b6 | 6873 | return FALSE; |
b49e97c9 TS |
6874 | |
6875 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0)) | |
b34976b6 | 6876 | return FALSE; |
b49e97c9 TS |
6877 | |
6878 | if (IRIX_COMPAT (dynobj) == ict_irix5 | |
6879 | && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0)) | |
b34976b6 | 6880 | return FALSE; |
b49e97c9 TS |
6881 | |
6882 | if (IRIX_COMPAT (dynobj) == ict_irix6 | |
6883 | && (bfd_get_section_by_name | |
6884 | (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj))) | |
6885 | && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0)) | |
b34976b6 | 6886 | return FALSE; |
b49e97c9 TS |
6887 | } |
6888 | ||
b34976b6 | 6889 | return TRUE; |
b49e97c9 TS |
6890 | } |
6891 | \f | |
6892 | /* Relocate a MIPS ELF section. */ | |
6893 | ||
b34976b6 | 6894 | bfd_boolean |
9719ad41 RS |
6895 | _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info, |
6896 | bfd *input_bfd, asection *input_section, | |
6897 | bfd_byte *contents, Elf_Internal_Rela *relocs, | |
6898 | Elf_Internal_Sym *local_syms, | |
6899 | asection **local_sections) | |
b49e97c9 TS |
6900 | { |
6901 | Elf_Internal_Rela *rel; | |
6902 | const Elf_Internal_Rela *relend; | |
6903 | bfd_vma addend = 0; | |
b34976b6 | 6904 | bfd_boolean use_saved_addend_p = FALSE; |
9c5bfbb7 | 6905 | const struct elf_backend_data *bed; |
b49e97c9 TS |
6906 | |
6907 | bed = get_elf_backend_data (output_bfd); | |
6908 | relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel; | |
6909 | for (rel = relocs; rel < relend; ++rel) | |
6910 | { | |
6911 | const char *name; | |
6912 | bfd_vma value; | |
6913 | reloc_howto_type *howto; | |
b34976b6 AM |
6914 | bfd_boolean require_jalx; |
6915 | /* TRUE if the relocation is a RELA relocation, rather than a | |
b49e97c9 | 6916 | REL relocation. */ |
b34976b6 | 6917 | bfd_boolean rela_relocation_p = TRUE; |
b49e97c9 | 6918 | unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info); |
9719ad41 | 6919 | const char *msg; |
b49e97c9 TS |
6920 | |
6921 | /* Find the relocation howto for this relocation. */ | |
4a14403c | 6922 | if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd)) |
b49e97c9 TS |
6923 | { |
6924 | /* Some 32-bit code uses R_MIPS_64. In particular, people use | |
6925 | 64-bit code, but make sure all their addresses are in the | |
6926 | lowermost or uppermost 32-bit section of the 64-bit address | |
6927 | space. Thus, when they use an R_MIPS_64 they mean what is | |
6928 | usually meant by R_MIPS_32, with the exception that the | |
6929 | stored value is sign-extended to 64 bits. */ | |
b34976b6 | 6930 | howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE); |
b49e97c9 TS |
6931 | |
6932 | /* On big-endian systems, we need to lie about the position | |
6933 | of the reloc. */ | |
6934 | if (bfd_big_endian (input_bfd)) | |
6935 | rel->r_offset += 4; | |
6936 | } | |
6937 | else | |
6938 | /* NewABI defaults to RELA relocations. */ | |
6939 | howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, | |
4ffba85c AO |
6940 | NEWABI_P (input_bfd) |
6941 | && (MIPS_RELOC_RELA_P | |
6942 | (input_bfd, input_section, | |
6943 | rel - relocs))); | |
b49e97c9 TS |
6944 | |
6945 | if (!use_saved_addend_p) | |
6946 | { | |
6947 | Elf_Internal_Shdr *rel_hdr; | |
6948 | ||
6949 | /* If these relocations were originally of the REL variety, | |
6950 | we must pull the addend out of the field that will be | |
6951 | relocated. Otherwise, we simply use the contents of the | |
6952 | RELA relocation. To determine which flavor or relocation | |
6953 | this is, we depend on the fact that the INPUT_SECTION's | |
6954 | REL_HDR is read before its REL_HDR2. */ | |
6955 | rel_hdr = &elf_section_data (input_section)->rel_hdr; | |
6956 | if ((size_t) (rel - relocs) | |
6957 | >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel)) | |
6958 | rel_hdr = elf_section_data (input_section)->rel_hdr2; | |
6959 | if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd)) | |
6960 | { | |
d6f16593 MR |
6961 | bfd_byte *location = contents + rel->r_offset; |
6962 | ||
b49e97c9 | 6963 | /* Note that this is a REL relocation. */ |
b34976b6 | 6964 | rela_relocation_p = FALSE; |
b49e97c9 TS |
6965 | |
6966 | /* Get the addend, which is stored in the input file. */ | |
d6f16593 MR |
6967 | _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, |
6968 | location); | |
b49e97c9 TS |
6969 | addend = mips_elf_obtain_contents (howto, rel, input_bfd, |
6970 | contents); | |
d6f16593 MR |
6971 | _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, FALSE, |
6972 | location); | |
6973 | ||
b49e97c9 TS |
6974 | addend &= howto->src_mask; |
6975 | ||
6976 | /* For some kinds of relocations, the ADDEND is a | |
6977 | combination of the addend stored in two different | |
6978 | relocations. */ | |
d6f16593 | 6979 | if (r_type == R_MIPS_HI16 || r_type == R_MIPS16_HI16 |
b49e97c9 TS |
6980 | || (r_type == R_MIPS_GOT16 |
6981 | && mips_elf_local_relocation_p (input_bfd, rel, | |
b34976b6 | 6982 | local_sections, FALSE))) |
b49e97c9 TS |
6983 | { |
6984 | bfd_vma l; | |
6985 | const Elf_Internal_Rela *lo16_relocation; | |
6986 | reloc_howto_type *lo16_howto; | |
d6f16593 MR |
6987 | bfd_byte *lo16_location; |
6988 | int lo16_type; | |
6989 | ||
6990 | if (r_type == R_MIPS16_HI16) | |
6991 | lo16_type = R_MIPS16_LO16; | |
6992 | else | |
6993 | lo16_type = R_MIPS_LO16; | |
b49e97c9 TS |
6994 | |
6995 | /* The combined value is the sum of the HI16 addend, | |
6996 | left-shifted by sixteen bits, and the LO16 | |
6997 | addend, sign extended. (Usually, the code does | |
6998 | a `lui' of the HI16 value, and then an `addiu' of | |
6999 | the LO16 value.) | |
7000 | ||
4030e8f6 CD |
7001 | Scan ahead to find a matching LO16 relocation. |
7002 | ||
7003 | According to the MIPS ELF ABI, the R_MIPS_LO16 | |
7004 | relocation must be immediately following. | |
7005 | However, for the IRIX6 ABI, the next relocation | |
7006 | may be a composed relocation consisting of | |
7007 | several relocations for the same address. In | |
7008 | that case, the R_MIPS_LO16 relocation may occur | |
7009 | as one of these. We permit a similar extension | |
7010 | in general, as that is useful for GCC. */ | |
7011 | lo16_relocation = mips_elf_next_relocation (input_bfd, | |
d6f16593 | 7012 | lo16_type, |
b49e97c9 TS |
7013 | rel, relend); |
7014 | if (lo16_relocation == NULL) | |
b34976b6 | 7015 | return FALSE; |
b49e97c9 | 7016 | |
d6f16593 MR |
7017 | lo16_location = contents + lo16_relocation->r_offset; |
7018 | ||
b49e97c9 | 7019 | /* Obtain the addend kept there. */ |
4030e8f6 | 7020 | lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, |
d6f16593 MR |
7021 | lo16_type, FALSE); |
7022 | _bfd_mips16_elf_reloc_unshuffle (input_bfd, lo16_type, FALSE, | |
7023 | lo16_location); | |
b49e97c9 TS |
7024 | l = mips_elf_obtain_contents (lo16_howto, lo16_relocation, |
7025 | input_bfd, contents); | |
d6f16593 MR |
7026 | _bfd_mips16_elf_reloc_shuffle (input_bfd, lo16_type, FALSE, |
7027 | lo16_location); | |
b49e97c9 | 7028 | l &= lo16_howto->src_mask; |
5a659663 | 7029 | l <<= lo16_howto->rightshift; |
a7ebbfdf | 7030 | l = _bfd_mips_elf_sign_extend (l, 16); |
b49e97c9 TS |
7031 | |
7032 | addend <<= 16; | |
7033 | ||
7034 | /* Compute the combined addend. */ | |
7035 | addend += l; | |
b49e97c9 | 7036 | } |
30ac9238 RS |
7037 | else |
7038 | addend <<= howto->rightshift; | |
b49e97c9 TS |
7039 | } |
7040 | else | |
7041 | addend = rel->r_addend; | |
7042 | } | |
7043 | ||
1049f94e | 7044 | if (info->relocatable) |
b49e97c9 TS |
7045 | { |
7046 | Elf_Internal_Sym *sym; | |
7047 | unsigned long r_symndx; | |
7048 | ||
4a14403c | 7049 | if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd) |
b49e97c9 TS |
7050 | && bfd_big_endian (input_bfd)) |
7051 | rel->r_offset -= 4; | |
7052 | ||
7053 | /* Since we're just relocating, all we need to do is copy | |
7054 | the relocations back out to the object file, unless | |
7055 | they're against a section symbol, in which case we need | |
7056 | to adjust by the section offset, or unless they're GP | |
7057 | relative in which case we need to adjust by the amount | |
1049f94e | 7058 | that we're adjusting GP in this relocatable object. */ |
b49e97c9 TS |
7059 | |
7060 | if (! mips_elf_local_relocation_p (input_bfd, rel, local_sections, | |
b34976b6 | 7061 | FALSE)) |
b49e97c9 TS |
7062 | /* There's nothing to do for non-local relocations. */ |
7063 | continue; | |
7064 | ||
7065 | if (r_type == R_MIPS16_GPREL | |
7066 | || r_type == R_MIPS_GPREL16 | |
7067 | || r_type == R_MIPS_GPREL32 | |
7068 | || r_type == R_MIPS_LITERAL) | |
7069 | addend -= (_bfd_get_gp_value (output_bfd) | |
7070 | - _bfd_get_gp_value (input_bfd)); | |
b49e97c9 TS |
7071 | |
7072 | r_symndx = ELF_R_SYM (output_bfd, rel->r_info); | |
7073 | sym = local_syms + r_symndx; | |
7074 | if (ELF_ST_TYPE (sym->st_info) == STT_SECTION) | |
7075 | /* Adjust the addend appropriately. */ | |
7076 | addend += local_sections[r_symndx]->output_offset; | |
7077 | ||
30ac9238 RS |
7078 | if (rela_relocation_p) |
7079 | /* If this is a RELA relocation, just update the addend. */ | |
7080 | rel->r_addend = addend; | |
7081 | else | |
5a659663 | 7082 | { |
30ac9238 | 7083 | if (r_type == R_MIPS_HI16 |
4030e8f6 | 7084 | || r_type == R_MIPS_GOT16) |
5a659663 TS |
7085 | addend = mips_elf_high (addend); |
7086 | else if (r_type == R_MIPS_HIGHER) | |
7087 | addend = mips_elf_higher (addend); | |
7088 | else if (r_type == R_MIPS_HIGHEST) | |
7089 | addend = mips_elf_highest (addend); | |
30ac9238 RS |
7090 | else |
7091 | addend >>= howto->rightshift; | |
b49e97c9 | 7092 | |
30ac9238 RS |
7093 | /* We use the source mask, rather than the destination |
7094 | mask because the place to which we are writing will be | |
7095 | source of the addend in the final link. */ | |
b49e97c9 TS |
7096 | addend &= howto->src_mask; |
7097 | ||
5a659663 | 7098 | if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)) |
b49e97c9 TS |
7099 | /* See the comment above about using R_MIPS_64 in the 32-bit |
7100 | ABI. Here, we need to update the addend. It would be | |
7101 | possible to get away with just using the R_MIPS_32 reloc | |
7102 | but for endianness. */ | |
7103 | { | |
7104 | bfd_vma sign_bits; | |
7105 | bfd_vma low_bits; | |
7106 | bfd_vma high_bits; | |
7107 | ||
7108 | if (addend & ((bfd_vma) 1 << 31)) | |
7109 | #ifdef BFD64 | |
7110 | sign_bits = ((bfd_vma) 1 << 32) - 1; | |
7111 | #else | |
7112 | sign_bits = -1; | |
7113 | #endif | |
7114 | else | |
7115 | sign_bits = 0; | |
7116 | ||
7117 | /* If we don't know that we have a 64-bit type, | |
7118 | do two separate stores. */ | |
7119 | if (bfd_big_endian (input_bfd)) | |
7120 | { | |
7121 | /* Store the sign-bits (which are most significant) | |
7122 | first. */ | |
7123 | low_bits = sign_bits; | |
7124 | high_bits = addend; | |
7125 | } | |
7126 | else | |
7127 | { | |
7128 | low_bits = addend; | |
7129 | high_bits = sign_bits; | |
7130 | } | |
7131 | bfd_put_32 (input_bfd, low_bits, | |
7132 | contents + rel->r_offset); | |
7133 | bfd_put_32 (input_bfd, high_bits, | |
7134 | contents + rel->r_offset + 4); | |
7135 | continue; | |
7136 | } | |
7137 | ||
7138 | if (! mips_elf_perform_relocation (info, howto, rel, addend, | |
7139 | input_bfd, input_section, | |
b34976b6 AM |
7140 | contents, FALSE)) |
7141 | return FALSE; | |
b49e97c9 TS |
7142 | } |
7143 | ||
7144 | /* Go on to the next relocation. */ | |
7145 | continue; | |
7146 | } | |
7147 | ||
7148 | /* In the N32 and 64-bit ABIs there may be multiple consecutive | |
7149 | relocations for the same offset. In that case we are | |
7150 | supposed to treat the output of each relocation as the addend | |
7151 | for the next. */ | |
7152 | if (rel + 1 < relend | |
7153 | && rel->r_offset == rel[1].r_offset | |
7154 | && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE) | |
b34976b6 | 7155 | use_saved_addend_p = TRUE; |
b49e97c9 | 7156 | else |
b34976b6 | 7157 | use_saved_addend_p = FALSE; |
b49e97c9 TS |
7158 | |
7159 | /* Figure out what value we are supposed to relocate. */ | |
7160 | switch (mips_elf_calculate_relocation (output_bfd, input_bfd, | |
7161 | input_section, info, rel, | |
7162 | addend, howto, local_syms, | |
7163 | local_sections, &value, | |
bce03d3d AO |
7164 | &name, &require_jalx, |
7165 | use_saved_addend_p)) | |
b49e97c9 TS |
7166 | { |
7167 | case bfd_reloc_continue: | |
7168 | /* There's nothing to do. */ | |
7169 | continue; | |
7170 | ||
7171 | case bfd_reloc_undefined: | |
7172 | /* mips_elf_calculate_relocation already called the | |
7173 | undefined_symbol callback. There's no real point in | |
7174 | trying to perform the relocation at this point, so we | |
7175 | just skip ahead to the next relocation. */ | |
7176 | continue; | |
7177 | ||
7178 | case bfd_reloc_notsupported: | |
7179 | msg = _("internal error: unsupported relocation error"); | |
7180 | info->callbacks->warning | |
7181 | (info, msg, name, input_bfd, input_section, rel->r_offset); | |
b34976b6 | 7182 | return FALSE; |
b49e97c9 TS |
7183 | |
7184 | case bfd_reloc_overflow: | |
7185 | if (use_saved_addend_p) | |
7186 | /* Ignore overflow until we reach the last relocation for | |
7187 | a given location. */ | |
7188 | ; | |
7189 | else | |
7190 | { | |
7191 | BFD_ASSERT (name != NULL); | |
7192 | if (! ((*info->callbacks->reloc_overflow) | |
dfeffb9f | 7193 | (info, NULL, name, howto->name, (bfd_vma) 0, |
b49e97c9 | 7194 | input_bfd, input_section, rel->r_offset))) |
b34976b6 | 7195 | return FALSE; |
b49e97c9 TS |
7196 | } |
7197 | break; | |
7198 | ||
7199 | case bfd_reloc_ok: | |
7200 | break; | |
7201 | ||
7202 | default: | |
7203 | abort (); | |
7204 | break; | |
7205 | } | |
7206 | ||
7207 | /* If we've got another relocation for the address, keep going | |
7208 | until we reach the last one. */ | |
7209 | if (use_saved_addend_p) | |
7210 | { | |
7211 | addend = value; | |
7212 | continue; | |
7213 | } | |
7214 | ||
4a14403c | 7215 | if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)) |
b49e97c9 TS |
7216 | /* See the comment above about using R_MIPS_64 in the 32-bit |
7217 | ABI. Until now, we've been using the HOWTO for R_MIPS_32; | |
7218 | that calculated the right value. Now, however, we | |
7219 | sign-extend the 32-bit result to 64-bits, and store it as a | |
7220 | 64-bit value. We are especially generous here in that we | |
7221 | go to extreme lengths to support this usage on systems with | |
7222 | only a 32-bit VMA. */ | |
7223 | { | |
7224 | bfd_vma sign_bits; | |
7225 | bfd_vma low_bits; | |
7226 | bfd_vma high_bits; | |
7227 | ||
7228 | if (value & ((bfd_vma) 1 << 31)) | |
7229 | #ifdef BFD64 | |
7230 | sign_bits = ((bfd_vma) 1 << 32) - 1; | |
7231 | #else | |
7232 | sign_bits = -1; | |
7233 | #endif | |
7234 | else | |
7235 | sign_bits = 0; | |
7236 | ||
7237 | /* If we don't know that we have a 64-bit type, | |
7238 | do two separate stores. */ | |
7239 | if (bfd_big_endian (input_bfd)) | |
7240 | { | |
7241 | /* Undo what we did above. */ | |
7242 | rel->r_offset -= 4; | |
7243 | /* Store the sign-bits (which are most significant) | |
7244 | first. */ | |
7245 | low_bits = sign_bits; | |
7246 | high_bits = value; | |
7247 | } | |
7248 | else | |
7249 | { | |
7250 | low_bits = value; | |
7251 | high_bits = sign_bits; | |
7252 | } | |
7253 | bfd_put_32 (input_bfd, low_bits, | |
7254 | contents + rel->r_offset); | |
7255 | bfd_put_32 (input_bfd, high_bits, | |
7256 | contents + rel->r_offset + 4); | |
7257 | continue; | |
7258 | } | |
7259 | ||
7260 | /* Actually perform the relocation. */ | |
7261 | if (! mips_elf_perform_relocation (info, howto, rel, value, | |
7262 | input_bfd, input_section, | |
7263 | contents, require_jalx)) | |
b34976b6 | 7264 | return FALSE; |
b49e97c9 TS |
7265 | } |
7266 | ||
b34976b6 | 7267 | return TRUE; |
b49e97c9 TS |
7268 | } |
7269 | \f | |
7270 | /* If NAME is one of the special IRIX6 symbols defined by the linker, | |
7271 | adjust it appropriately now. */ | |
7272 | ||
7273 | static void | |
9719ad41 RS |
7274 | mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED, |
7275 | const char *name, Elf_Internal_Sym *sym) | |
b49e97c9 TS |
7276 | { |
7277 | /* The linker script takes care of providing names and values for | |
7278 | these, but we must place them into the right sections. */ | |
7279 | static const char* const text_section_symbols[] = { | |
7280 | "_ftext", | |
7281 | "_etext", | |
7282 | "__dso_displacement", | |
7283 | "__elf_header", | |
7284 | "__program_header_table", | |
7285 | NULL | |
7286 | }; | |
7287 | ||
7288 | static const char* const data_section_symbols[] = { | |
7289 | "_fdata", | |
7290 | "_edata", | |
7291 | "_end", | |
7292 | "_fbss", | |
7293 | NULL | |
7294 | }; | |
7295 | ||
7296 | const char* const *p; | |
7297 | int i; | |
7298 | ||
7299 | for (i = 0; i < 2; ++i) | |
7300 | for (p = (i == 0) ? text_section_symbols : data_section_symbols; | |
7301 | *p; | |
7302 | ++p) | |
7303 | if (strcmp (*p, name) == 0) | |
7304 | { | |
7305 | /* All of these symbols are given type STT_SECTION by the | |
7306 | IRIX6 linker. */ | |
7307 | sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); | |
e10609d3 | 7308 | sym->st_other = STO_PROTECTED; |
b49e97c9 TS |
7309 | |
7310 | /* The IRIX linker puts these symbols in special sections. */ | |
7311 | if (i == 0) | |
7312 | sym->st_shndx = SHN_MIPS_TEXT; | |
7313 | else | |
7314 | sym->st_shndx = SHN_MIPS_DATA; | |
7315 | ||
7316 | break; | |
7317 | } | |
7318 | } | |
7319 | ||
7320 | /* Finish up dynamic symbol handling. We set the contents of various | |
7321 | dynamic sections here. */ | |
7322 | ||
b34976b6 | 7323 | bfd_boolean |
9719ad41 RS |
7324 | _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd, |
7325 | struct bfd_link_info *info, | |
7326 | struct elf_link_hash_entry *h, | |
7327 | Elf_Internal_Sym *sym) | |
b49e97c9 TS |
7328 | { |
7329 | bfd *dynobj; | |
b49e97c9 | 7330 | asection *sgot; |
f4416af6 | 7331 | struct mips_got_info *g, *gg; |
b49e97c9 | 7332 | const char *name; |
b49e97c9 TS |
7333 | |
7334 | dynobj = elf_hash_table (info)->dynobj; | |
b49e97c9 | 7335 | |
c5ae1840 | 7336 | if (h->plt.offset != MINUS_ONE) |
b49e97c9 TS |
7337 | { |
7338 | asection *s; | |
7339 | bfd_byte stub[MIPS_FUNCTION_STUB_SIZE]; | |
7340 | ||
7341 | /* This symbol has a stub. Set it up. */ | |
7342 | ||
7343 | BFD_ASSERT (h->dynindx != -1); | |
7344 | ||
7345 | s = bfd_get_section_by_name (dynobj, | |
7346 | MIPS_ELF_STUB_SECTION_NAME (dynobj)); | |
7347 | BFD_ASSERT (s != NULL); | |
7348 | ||
7349 | /* FIXME: Can h->dynindex be more than 64K? */ | |
7350 | if (h->dynindx & 0xffff0000) | |
b34976b6 | 7351 | return FALSE; |
b49e97c9 TS |
7352 | |
7353 | /* Fill the stub. */ | |
7354 | bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub); | |
7355 | bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + 4); | |
7356 | bfd_put_32 (output_bfd, STUB_JALR, stub + 8); | |
7357 | bfd_put_32 (output_bfd, STUB_LI16 (output_bfd) + h->dynindx, stub + 12); | |
7358 | ||
eea6121a | 7359 | BFD_ASSERT (h->plt.offset <= s->size); |
b49e97c9 TS |
7360 | memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE); |
7361 | ||
7362 | /* Mark the symbol as undefined. plt.offset != -1 occurs | |
7363 | only for the referenced symbol. */ | |
7364 | sym->st_shndx = SHN_UNDEF; | |
7365 | ||
7366 | /* The run-time linker uses the st_value field of the symbol | |
7367 | to reset the global offset table entry for this external | |
7368 | to its stub address when unlinking a shared object. */ | |
c5ae1840 TS |
7369 | sym->st_value = (s->output_section->vma + s->output_offset |
7370 | + h->plt.offset); | |
b49e97c9 TS |
7371 | } |
7372 | ||
7373 | BFD_ASSERT (h->dynindx != -1 | |
f5385ebf | 7374 | || h->forced_local); |
b49e97c9 | 7375 | |
f4416af6 | 7376 | sgot = mips_elf_got_section (dynobj, FALSE); |
b49e97c9 | 7377 | BFD_ASSERT (sgot != NULL); |
f4416af6 | 7378 | BFD_ASSERT (mips_elf_section_data (sgot) != NULL); |
f0abc2a1 | 7379 | g = mips_elf_section_data (sgot)->u.got_info; |
b49e97c9 TS |
7380 | BFD_ASSERT (g != NULL); |
7381 | ||
7382 | /* Run through the global symbol table, creating GOT entries for all | |
7383 | the symbols that need them. */ | |
7384 | if (g->global_gotsym != NULL | |
7385 | && h->dynindx >= g->global_gotsym->dynindx) | |
7386 | { | |
7387 | bfd_vma offset; | |
7388 | bfd_vma value; | |
7389 | ||
6eaa6adc | 7390 | value = sym->st_value; |
0f20cc35 | 7391 | offset = mips_elf_global_got_index (dynobj, output_bfd, h, R_MIPS_GOT16, info); |
b49e97c9 TS |
7392 | MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset); |
7393 | } | |
7394 | ||
0f20cc35 | 7395 | if (g->next && h->dynindx != -1 && h->type != STT_TLS) |
f4416af6 AO |
7396 | { |
7397 | struct mips_got_entry e, *p; | |
0626d451 | 7398 | bfd_vma entry; |
f4416af6 | 7399 | bfd_vma offset; |
f4416af6 AO |
7400 | |
7401 | gg = g; | |
7402 | ||
7403 | e.abfd = output_bfd; | |
7404 | e.symndx = -1; | |
7405 | e.d.h = (struct mips_elf_link_hash_entry *)h; | |
0f20cc35 | 7406 | e.tls_type = 0; |
143d77c5 | 7407 | |
f4416af6 AO |
7408 | for (g = g->next; g->next != gg; g = g->next) |
7409 | { | |
7410 | if (g->got_entries | |
7411 | && (p = (struct mips_got_entry *) htab_find (g->got_entries, | |
7412 | &e))) | |
7413 | { | |
7414 | offset = p->gotidx; | |
0626d451 RS |
7415 | if (info->shared |
7416 | || (elf_hash_table (info)->dynamic_sections_created | |
7417 | && p->d.h != NULL | |
f5385ebf AM |
7418 | && p->d.h->root.def_dynamic |
7419 | && !p->d.h->root.def_regular)) | |
0626d451 RS |
7420 | { |
7421 | /* Create an R_MIPS_REL32 relocation for this entry. Due to | |
7422 | the various compatibility problems, it's easier to mock | |
7423 | up an R_MIPS_32 or R_MIPS_64 relocation and leave | |
7424 | mips_elf_create_dynamic_relocation to calculate the | |
7425 | appropriate addend. */ | |
7426 | Elf_Internal_Rela rel[3]; | |
7427 | ||
7428 | memset (rel, 0, sizeof (rel)); | |
7429 | if (ABI_64_P (output_bfd)) | |
7430 | rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64); | |
7431 | else | |
7432 | rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32); | |
7433 | rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset; | |
7434 | ||
7435 | entry = 0; | |
7436 | if (! (mips_elf_create_dynamic_relocation | |
7437 | (output_bfd, info, rel, | |
7438 | e.d.h, NULL, sym->st_value, &entry, sgot))) | |
7439 | return FALSE; | |
7440 | } | |
7441 | else | |
7442 | entry = sym->st_value; | |
7443 | MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset); | |
f4416af6 AO |
7444 | } |
7445 | } | |
7446 | } | |
7447 | ||
b49e97c9 TS |
7448 | /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */ |
7449 | name = h->root.root.string; | |
7450 | if (strcmp (name, "_DYNAMIC") == 0 | |
7451 | || strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0) | |
7452 | sym->st_shndx = SHN_ABS; | |
7453 | else if (strcmp (name, "_DYNAMIC_LINK") == 0 | |
7454 | || strcmp (name, "_DYNAMIC_LINKING") == 0) | |
7455 | { | |
7456 | sym->st_shndx = SHN_ABS; | |
7457 | sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); | |
7458 | sym->st_value = 1; | |
7459 | } | |
4a14403c | 7460 | else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd)) |
b49e97c9 TS |
7461 | { |
7462 | sym->st_shndx = SHN_ABS; | |
7463 | sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); | |
7464 | sym->st_value = elf_gp (output_bfd); | |
7465 | } | |
7466 | else if (SGI_COMPAT (output_bfd)) | |
7467 | { | |
7468 | if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0 | |
7469 | || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0) | |
7470 | { | |
7471 | sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); | |
7472 | sym->st_other = STO_PROTECTED; | |
7473 | sym->st_value = 0; | |
7474 | sym->st_shndx = SHN_MIPS_DATA; | |
7475 | } | |
7476 | else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0) | |
7477 | { | |
7478 | sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); | |
7479 | sym->st_other = STO_PROTECTED; | |
7480 | sym->st_value = mips_elf_hash_table (info)->procedure_count; | |
7481 | sym->st_shndx = SHN_ABS; | |
7482 | } | |
7483 | else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS) | |
7484 | { | |
7485 | if (h->type == STT_FUNC) | |
7486 | sym->st_shndx = SHN_MIPS_TEXT; | |
7487 | else if (h->type == STT_OBJECT) | |
7488 | sym->st_shndx = SHN_MIPS_DATA; | |
7489 | } | |
7490 | } | |
7491 | ||
7492 | /* Handle the IRIX6-specific symbols. */ | |
7493 | if (IRIX_COMPAT (output_bfd) == ict_irix6) | |
7494 | mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym); | |
7495 | ||
7496 | if (! info->shared) | |
7497 | { | |
7498 | if (! mips_elf_hash_table (info)->use_rld_obj_head | |
7499 | && (strcmp (name, "__rld_map") == 0 | |
7500 | || strcmp (name, "__RLD_MAP") == 0)) | |
7501 | { | |
7502 | asection *s = bfd_get_section_by_name (dynobj, ".rld_map"); | |
7503 | BFD_ASSERT (s != NULL); | |
7504 | sym->st_value = s->output_section->vma + s->output_offset; | |
9719ad41 | 7505 | bfd_put_32 (output_bfd, 0, s->contents); |
b49e97c9 TS |
7506 | if (mips_elf_hash_table (info)->rld_value == 0) |
7507 | mips_elf_hash_table (info)->rld_value = sym->st_value; | |
7508 | } | |
7509 | else if (mips_elf_hash_table (info)->use_rld_obj_head | |
7510 | && strcmp (name, "__rld_obj_head") == 0) | |
7511 | { | |
7512 | /* IRIX6 does not use a .rld_map section. */ | |
7513 | if (IRIX_COMPAT (output_bfd) == ict_irix5 | |
7514 | || IRIX_COMPAT (output_bfd) == ict_none) | |
7515 | BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map") | |
7516 | != NULL); | |
7517 | mips_elf_hash_table (info)->rld_value = sym->st_value; | |
7518 | } | |
7519 | } | |
7520 | ||
7521 | /* If this is a mips16 symbol, force the value to be even. */ | |
79cda7cf FF |
7522 | if (sym->st_other == STO_MIPS16) |
7523 | sym->st_value &= ~1; | |
b49e97c9 | 7524 | |
b34976b6 | 7525 | return TRUE; |
b49e97c9 TS |
7526 | } |
7527 | ||
7528 | /* Finish up the dynamic sections. */ | |
7529 | ||
b34976b6 | 7530 | bfd_boolean |
9719ad41 RS |
7531 | _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd, |
7532 | struct bfd_link_info *info) | |
b49e97c9 TS |
7533 | { |
7534 | bfd *dynobj; | |
7535 | asection *sdyn; | |
7536 | asection *sgot; | |
f4416af6 | 7537 | struct mips_got_info *gg, *g; |
b49e97c9 TS |
7538 | |
7539 | dynobj = elf_hash_table (info)->dynobj; | |
7540 | ||
7541 | sdyn = bfd_get_section_by_name (dynobj, ".dynamic"); | |
7542 | ||
f4416af6 | 7543 | sgot = mips_elf_got_section (dynobj, FALSE); |
b49e97c9 | 7544 | if (sgot == NULL) |
f4416af6 | 7545 | gg = g = NULL; |
b49e97c9 TS |
7546 | else |
7547 | { | |
f4416af6 AO |
7548 | BFD_ASSERT (mips_elf_section_data (sgot) != NULL); |
7549 | gg = mips_elf_section_data (sgot)->u.got_info; | |
7550 | BFD_ASSERT (gg != NULL); | |
7551 | g = mips_elf_got_for_ibfd (gg, output_bfd); | |
b49e97c9 TS |
7552 | BFD_ASSERT (g != NULL); |
7553 | } | |
7554 | ||
7555 | if (elf_hash_table (info)->dynamic_sections_created) | |
7556 | { | |
7557 | bfd_byte *b; | |
7558 | ||
7559 | BFD_ASSERT (sdyn != NULL); | |
7560 | BFD_ASSERT (g != NULL); | |
7561 | ||
7562 | for (b = sdyn->contents; | |
eea6121a | 7563 | b < sdyn->contents + sdyn->size; |
b49e97c9 TS |
7564 | b += MIPS_ELF_DYN_SIZE (dynobj)) |
7565 | { | |
7566 | Elf_Internal_Dyn dyn; | |
7567 | const char *name; | |
7568 | size_t elemsize; | |
7569 | asection *s; | |
b34976b6 | 7570 | bfd_boolean swap_out_p; |
b49e97c9 TS |
7571 | |
7572 | /* Read in the current dynamic entry. */ | |
7573 | (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn); | |
7574 | ||
7575 | /* Assume that we're going to modify it and write it out. */ | |
b34976b6 | 7576 | swap_out_p = TRUE; |
b49e97c9 TS |
7577 | |
7578 | switch (dyn.d_tag) | |
7579 | { | |
7580 | case DT_RELENT: | |
f4416af6 | 7581 | s = mips_elf_rel_dyn_section (dynobj, FALSE); |
b49e97c9 TS |
7582 | BFD_ASSERT (s != NULL); |
7583 | dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj); | |
7584 | break; | |
7585 | ||
7586 | case DT_STRSZ: | |
7587 | /* Rewrite DT_STRSZ. */ | |
7588 | dyn.d_un.d_val = | |
7589 | _bfd_elf_strtab_size (elf_hash_table (info)->dynstr); | |
7590 | break; | |
7591 | ||
7592 | case DT_PLTGOT: | |
7593 | name = ".got"; | |
b49e97c9 TS |
7594 | s = bfd_get_section_by_name (output_bfd, name); |
7595 | BFD_ASSERT (s != NULL); | |
7596 | dyn.d_un.d_ptr = s->vma; | |
7597 | break; | |
7598 | ||
7599 | case DT_MIPS_RLD_VERSION: | |
7600 | dyn.d_un.d_val = 1; /* XXX */ | |
7601 | break; | |
7602 | ||
7603 | case DT_MIPS_FLAGS: | |
7604 | dyn.d_un.d_val = RHF_NOTPOT; /* XXX */ | |
7605 | break; | |
7606 | ||
b49e97c9 TS |
7607 | case DT_MIPS_TIME_STAMP: |
7608 | time ((time_t *) &dyn.d_un.d_val); | |
7609 | break; | |
7610 | ||
7611 | case DT_MIPS_ICHECKSUM: | |
7612 | /* XXX FIXME: */ | |
b34976b6 | 7613 | swap_out_p = FALSE; |
b49e97c9 TS |
7614 | break; |
7615 | ||
7616 | case DT_MIPS_IVERSION: | |
7617 | /* XXX FIXME: */ | |
b34976b6 | 7618 | swap_out_p = FALSE; |
b49e97c9 TS |
7619 | break; |
7620 | ||
7621 | case DT_MIPS_BASE_ADDRESS: | |
7622 | s = output_bfd->sections; | |
7623 | BFD_ASSERT (s != NULL); | |
7624 | dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff; | |
7625 | break; | |
7626 | ||
7627 | case DT_MIPS_LOCAL_GOTNO: | |
7628 | dyn.d_un.d_val = g->local_gotno; | |
7629 | break; | |
7630 | ||
7631 | case DT_MIPS_UNREFEXTNO: | |
7632 | /* The index into the dynamic symbol table which is the | |
7633 | entry of the first external symbol that is not | |
7634 | referenced within the same object. */ | |
7635 | dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1; | |
7636 | break; | |
7637 | ||
7638 | case DT_MIPS_GOTSYM: | |
f4416af6 | 7639 | if (gg->global_gotsym) |
b49e97c9 | 7640 | { |
f4416af6 | 7641 | dyn.d_un.d_val = gg->global_gotsym->dynindx; |
b49e97c9 TS |
7642 | break; |
7643 | } | |
7644 | /* In case if we don't have global got symbols we default | |
7645 | to setting DT_MIPS_GOTSYM to the same value as | |
7646 | DT_MIPS_SYMTABNO, so we just fall through. */ | |
7647 | ||
7648 | case DT_MIPS_SYMTABNO: | |
7649 | name = ".dynsym"; | |
7650 | elemsize = MIPS_ELF_SYM_SIZE (output_bfd); | |
7651 | s = bfd_get_section_by_name (output_bfd, name); | |
7652 | BFD_ASSERT (s != NULL); | |
7653 | ||
eea6121a | 7654 | dyn.d_un.d_val = s->size / elemsize; |
b49e97c9 TS |
7655 | break; |
7656 | ||
7657 | case DT_MIPS_HIPAGENO: | |
7658 | dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO; | |
7659 | break; | |
7660 | ||
7661 | case DT_MIPS_RLD_MAP: | |
7662 | dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value; | |
7663 | break; | |
7664 | ||
7665 | case DT_MIPS_OPTIONS: | |
7666 | s = (bfd_get_section_by_name | |
7667 | (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd))); | |
7668 | dyn.d_un.d_ptr = s->vma; | |
7669 | break; | |
7670 | ||
98a8deaf RS |
7671 | case DT_RELSZ: |
7672 | /* Reduce DT_RELSZ to account for any relocations we | |
7673 | decided not to make. This is for the n64 irix rld, | |
7674 | which doesn't seem to apply any relocations if there | |
7675 | are trailing null entries. */ | |
7676 | s = mips_elf_rel_dyn_section (dynobj, FALSE); | |
7677 | dyn.d_un.d_val = (s->reloc_count | |
7678 | * (ABI_64_P (output_bfd) | |
7679 | ? sizeof (Elf64_Mips_External_Rel) | |
7680 | : sizeof (Elf32_External_Rel))); | |
b49e97c9 TS |
7681 | break; |
7682 | ||
7683 | default: | |
b34976b6 | 7684 | swap_out_p = FALSE; |
b49e97c9 TS |
7685 | break; |
7686 | } | |
7687 | ||
7688 | if (swap_out_p) | |
7689 | (*get_elf_backend_data (dynobj)->s->swap_dyn_out) | |
7690 | (dynobj, &dyn, b); | |
7691 | } | |
7692 | } | |
7693 | ||
7694 | /* The first entry of the global offset table will be filled at | |
7695 | runtime. The second entry will be used by some runtime loaders. | |
8dc1a139 | 7696 | This isn't the case of IRIX rld. */ |
eea6121a | 7697 | if (sgot != NULL && sgot->size > 0) |
b49e97c9 | 7698 | { |
9719ad41 RS |
7699 | MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents); |
7700 | MIPS_ELF_PUT_WORD (output_bfd, 0x80000000, | |
b49e97c9 TS |
7701 | sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd)); |
7702 | } | |
7703 | ||
7704 | if (sgot != NULL) | |
7705 | elf_section_data (sgot->output_section)->this_hdr.sh_entsize | |
7706 | = MIPS_ELF_GOT_SIZE (output_bfd); | |
7707 | ||
f4416af6 AO |
7708 | /* Generate dynamic relocations for the non-primary gots. */ |
7709 | if (gg != NULL && gg->next) | |
7710 | { | |
7711 | Elf_Internal_Rela rel[3]; | |
7712 | bfd_vma addend = 0; | |
7713 | ||
7714 | memset (rel, 0, sizeof (rel)); | |
7715 | rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32); | |
7716 | ||
7717 | for (g = gg->next; g->next != gg; g = g->next) | |
7718 | { | |
0f20cc35 DJ |
7719 | bfd_vma index = g->next->local_gotno + g->next->global_gotno |
7720 | + g->next->tls_gotno; | |
f4416af6 | 7721 | |
9719ad41 | 7722 | MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents |
f4416af6 | 7723 | + index++ * MIPS_ELF_GOT_SIZE (output_bfd)); |
9719ad41 | 7724 | MIPS_ELF_PUT_WORD (output_bfd, 0x80000000, sgot->contents |
f4416af6 AO |
7725 | + index++ * MIPS_ELF_GOT_SIZE (output_bfd)); |
7726 | ||
7727 | if (! info->shared) | |
7728 | continue; | |
7729 | ||
7730 | while (index < g->assigned_gotno) | |
7731 | { | |
7732 | rel[0].r_offset = rel[1].r_offset = rel[2].r_offset | |
7733 | = index++ * MIPS_ELF_GOT_SIZE (output_bfd); | |
7734 | if (!(mips_elf_create_dynamic_relocation | |
7735 | (output_bfd, info, rel, NULL, | |
7736 | bfd_abs_section_ptr, | |
7737 | 0, &addend, sgot))) | |
7738 | return FALSE; | |
7739 | BFD_ASSERT (addend == 0); | |
7740 | } | |
7741 | } | |
7742 | } | |
7743 | ||
b49e97c9 | 7744 | { |
b49e97c9 TS |
7745 | asection *s; |
7746 | Elf32_compact_rel cpt; | |
7747 | ||
b49e97c9 TS |
7748 | if (SGI_COMPAT (output_bfd)) |
7749 | { | |
7750 | /* Write .compact_rel section out. */ | |
7751 | s = bfd_get_section_by_name (dynobj, ".compact_rel"); | |
7752 | if (s != NULL) | |
7753 | { | |
7754 | cpt.id1 = 1; | |
7755 | cpt.num = s->reloc_count; | |
7756 | cpt.id2 = 2; | |
7757 | cpt.offset = (s->output_section->filepos | |
7758 | + sizeof (Elf32_External_compact_rel)); | |
7759 | cpt.reserved0 = 0; | |
7760 | cpt.reserved1 = 0; | |
7761 | bfd_elf32_swap_compact_rel_out (output_bfd, &cpt, | |
7762 | ((Elf32_External_compact_rel *) | |
7763 | s->contents)); | |
7764 | ||
7765 | /* Clean up a dummy stub function entry in .text. */ | |
7766 | s = bfd_get_section_by_name (dynobj, | |
7767 | MIPS_ELF_STUB_SECTION_NAME (dynobj)); | |
7768 | if (s != NULL) | |
7769 | { | |
7770 | file_ptr dummy_offset; | |
7771 | ||
eea6121a AM |
7772 | BFD_ASSERT (s->size >= MIPS_FUNCTION_STUB_SIZE); |
7773 | dummy_offset = s->size - MIPS_FUNCTION_STUB_SIZE; | |
b49e97c9 TS |
7774 | memset (s->contents + dummy_offset, 0, |
7775 | MIPS_FUNCTION_STUB_SIZE); | |
7776 | } | |
7777 | } | |
7778 | } | |
7779 | ||
7780 | /* We need to sort the entries of the dynamic relocation section. */ | |
7781 | ||
f4416af6 AO |
7782 | s = mips_elf_rel_dyn_section (dynobj, FALSE); |
7783 | ||
7784 | if (s != NULL | |
eea6121a | 7785 | && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd)) |
b49e97c9 | 7786 | { |
f4416af6 | 7787 | reldyn_sorting_bfd = output_bfd; |
b49e97c9 | 7788 | |
f4416af6 | 7789 | if (ABI_64_P (output_bfd)) |
9719ad41 | 7790 | qsort ((Elf64_External_Rel *) s->contents + 1, s->reloc_count - 1, |
f4416af6 AO |
7791 | sizeof (Elf64_Mips_External_Rel), sort_dynamic_relocs_64); |
7792 | else | |
9719ad41 | 7793 | qsort ((Elf32_External_Rel *) s->contents + 1, s->reloc_count - 1, |
f4416af6 | 7794 | sizeof (Elf32_External_Rel), sort_dynamic_relocs); |
b49e97c9 | 7795 | } |
b49e97c9 TS |
7796 | } |
7797 | ||
b34976b6 | 7798 | return TRUE; |
b49e97c9 TS |
7799 | } |
7800 | ||
b49e97c9 | 7801 | |
64543e1a RS |
7802 | /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */ |
7803 | ||
7804 | static void | |
9719ad41 | 7805 | mips_set_isa_flags (bfd *abfd) |
b49e97c9 | 7806 | { |
64543e1a | 7807 | flagword val; |
b49e97c9 TS |
7808 | |
7809 | switch (bfd_get_mach (abfd)) | |
7810 | { | |
7811 | default: | |
7812 | case bfd_mach_mips3000: | |
7813 | val = E_MIPS_ARCH_1; | |
7814 | break; | |
7815 | ||
7816 | case bfd_mach_mips3900: | |
7817 | val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900; | |
7818 | break; | |
7819 | ||
7820 | case bfd_mach_mips6000: | |
7821 | val = E_MIPS_ARCH_2; | |
7822 | break; | |
7823 | ||
7824 | case bfd_mach_mips4000: | |
7825 | case bfd_mach_mips4300: | |
7826 | case bfd_mach_mips4400: | |
7827 | case bfd_mach_mips4600: | |
7828 | val = E_MIPS_ARCH_3; | |
7829 | break; | |
7830 | ||
7831 | case bfd_mach_mips4010: | |
7832 | val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010; | |
7833 | break; | |
7834 | ||
7835 | case bfd_mach_mips4100: | |
7836 | val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100; | |
7837 | break; | |
7838 | ||
7839 | case bfd_mach_mips4111: | |
7840 | val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111; | |
7841 | break; | |
7842 | ||
00707a0e RS |
7843 | case bfd_mach_mips4120: |
7844 | val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120; | |
7845 | break; | |
7846 | ||
b49e97c9 TS |
7847 | case bfd_mach_mips4650: |
7848 | val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650; | |
7849 | break; | |
7850 | ||
00707a0e RS |
7851 | case bfd_mach_mips5400: |
7852 | val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400; | |
7853 | break; | |
7854 | ||
7855 | case bfd_mach_mips5500: | |
7856 | val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500; | |
7857 | break; | |
7858 | ||
0d2e43ed ILT |
7859 | case bfd_mach_mips9000: |
7860 | val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000; | |
7861 | break; | |
7862 | ||
b49e97c9 | 7863 | case bfd_mach_mips5000: |
5a7ea749 | 7864 | case bfd_mach_mips7000: |
b49e97c9 TS |
7865 | case bfd_mach_mips8000: |
7866 | case bfd_mach_mips10000: | |
7867 | case bfd_mach_mips12000: | |
7868 | val = E_MIPS_ARCH_4; | |
7869 | break; | |
7870 | ||
7871 | case bfd_mach_mips5: | |
7872 | val = E_MIPS_ARCH_5; | |
7873 | break; | |
7874 | ||
7875 | case bfd_mach_mips_sb1: | |
7876 | val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1; | |
7877 | break; | |
7878 | ||
7879 | case bfd_mach_mipsisa32: | |
7880 | val = E_MIPS_ARCH_32; | |
7881 | break; | |
7882 | ||
7883 | case bfd_mach_mipsisa64: | |
7884 | val = E_MIPS_ARCH_64; | |
af7ee8bf CD |
7885 | break; |
7886 | ||
7887 | case bfd_mach_mipsisa32r2: | |
7888 | val = E_MIPS_ARCH_32R2; | |
7889 | break; | |
5f74bc13 CD |
7890 | |
7891 | case bfd_mach_mipsisa64r2: | |
7892 | val = E_MIPS_ARCH_64R2; | |
7893 | break; | |
b49e97c9 | 7894 | } |
b49e97c9 TS |
7895 | elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH); |
7896 | elf_elfheader (abfd)->e_flags |= val; | |
7897 | ||
64543e1a RS |
7898 | } |
7899 | ||
7900 | ||
7901 | /* The final processing done just before writing out a MIPS ELF object | |
7902 | file. This gets the MIPS architecture right based on the machine | |
7903 | number. This is used by both the 32-bit and the 64-bit ABI. */ | |
7904 | ||
7905 | void | |
9719ad41 RS |
7906 | _bfd_mips_elf_final_write_processing (bfd *abfd, |
7907 | bfd_boolean linker ATTRIBUTE_UNUSED) | |
64543e1a RS |
7908 | { |
7909 | unsigned int i; | |
7910 | Elf_Internal_Shdr **hdrpp; | |
7911 | const char *name; | |
7912 | asection *sec; | |
7913 | ||
7914 | /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former | |
7915 | is nonzero. This is for compatibility with old objects, which used | |
7916 | a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */ | |
7917 | if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0) | |
7918 | mips_set_isa_flags (abfd); | |
7919 | ||
b49e97c9 TS |
7920 | /* Set the sh_info field for .gptab sections and other appropriate |
7921 | info for each special section. */ | |
7922 | for (i = 1, hdrpp = elf_elfsections (abfd) + 1; | |
7923 | i < elf_numsections (abfd); | |
7924 | i++, hdrpp++) | |
7925 | { | |
7926 | switch ((*hdrpp)->sh_type) | |
7927 | { | |
7928 | case SHT_MIPS_MSYM: | |
7929 | case SHT_MIPS_LIBLIST: | |
7930 | sec = bfd_get_section_by_name (abfd, ".dynstr"); | |
7931 | if (sec != NULL) | |
7932 | (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; | |
7933 | break; | |
7934 | ||
7935 | case SHT_MIPS_GPTAB: | |
7936 | BFD_ASSERT ((*hdrpp)->bfd_section != NULL); | |
7937 | name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section); | |
7938 | BFD_ASSERT (name != NULL | |
7939 | && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0); | |
7940 | sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1); | |
7941 | BFD_ASSERT (sec != NULL); | |
7942 | (*hdrpp)->sh_info = elf_section_data (sec)->this_idx; | |
7943 | break; | |
7944 | ||
7945 | case SHT_MIPS_CONTENT: | |
7946 | BFD_ASSERT ((*hdrpp)->bfd_section != NULL); | |
7947 | name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section); | |
7948 | BFD_ASSERT (name != NULL | |
7949 | && strncmp (name, ".MIPS.content", | |
7950 | sizeof ".MIPS.content" - 1) == 0); | |
7951 | sec = bfd_get_section_by_name (abfd, | |
7952 | name + sizeof ".MIPS.content" - 1); | |
7953 | BFD_ASSERT (sec != NULL); | |
7954 | (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; | |
7955 | break; | |
7956 | ||
7957 | case SHT_MIPS_SYMBOL_LIB: | |
7958 | sec = bfd_get_section_by_name (abfd, ".dynsym"); | |
7959 | if (sec != NULL) | |
7960 | (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; | |
7961 | sec = bfd_get_section_by_name (abfd, ".liblist"); | |
7962 | if (sec != NULL) | |
7963 | (*hdrpp)->sh_info = elf_section_data (sec)->this_idx; | |
7964 | break; | |
7965 | ||
7966 | case SHT_MIPS_EVENTS: | |
7967 | BFD_ASSERT ((*hdrpp)->bfd_section != NULL); | |
7968 | name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section); | |
7969 | BFD_ASSERT (name != NULL); | |
7970 | if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0) | |
7971 | sec = bfd_get_section_by_name (abfd, | |
7972 | name + sizeof ".MIPS.events" - 1); | |
7973 | else | |
7974 | { | |
7975 | BFD_ASSERT (strncmp (name, ".MIPS.post_rel", | |
7976 | sizeof ".MIPS.post_rel" - 1) == 0); | |
7977 | sec = bfd_get_section_by_name (abfd, | |
7978 | (name | |
7979 | + sizeof ".MIPS.post_rel" - 1)); | |
7980 | } | |
7981 | BFD_ASSERT (sec != NULL); | |
7982 | (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; | |
7983 | break; | |
7984 | ||
7985 | } | |
7986 | } | |
7987 | } | |
7988 | \f | |
8dc1a139 | 7989 | /* When creating an IRIX5 executable, we need REGINFO and RTPROC |
b49e97c9 TS |
7990 | segments. */ |
7991 | ||
7992 | int | |
9719ad41 | 7993 | _bfd_mips_elf_additional_program_headers (bfd *abfd) |
b49e97c9 TS |
7994 | { |
7995 | asection *s; | |
7996 | int ret = 0; | |
7997 | ||
7998 | /* See if we need a PT_MIPS_REGINFO segment. */ | |
7999 | s = bfd_get_section_by_name (abfd, ".reginfo"); | |
8000 | if (s && (s->flags & SEC_LOAD)) | |
8001 | ++ret; | |
8002 | ||
8003 | /* See if we need a PT_MIPS_OPTIONS segment. */ | |
8004 | if (IRIX_COMPAT (abfd) == ict_irix6 | |
8005 | && bfd_get_section_by_name (abfd, | |
8006 | MIPS_ELF_OPTIONS_SECTION_NAME (abfd))) | |
8007 | ++ret; | |
8008 | ||
8009 | /* See if we need a PT_MIPS_RTPROC segment. */ | |
8010 | if (IRIX_COMPAT (abfd) == ict_irix5 | |
8011 | && bfd_get_section_by_name (abfd, ".dynamic") | |
8012 | && bfd_get_section_by_name (abfd, ".mdebug")) | |
8013 | ++ret; | |
8014 | ||
8015 | return ret; | |
8016 | } | |
8017 | ||
8dc1a139 | 8018 | /* Modify the segment map for an IRIX5 executable. */ |
b49e97c9 | 8019 | |
b34976b6 | 8020 | bfd_boolean |
9719ad41 RS |
8021 | _bfd_mips_elf_modify_segment_map (bfd *abfd, |
8022 | struct bfd_link_info *info ATTRIBUTE_UNUSED) | |
b49e97c9 TS |
8023 | { |
8024 | asection *s; | |
8025 | struct elf_segment_map *m, **pm; | |
8026 | bfd_size_type amt; | |
8027 | ||
8028 | /* If there is a .reginfo section, we need a PT_MIPS_REGINFO | |
8029 | segment. */ | |
8030 | s = bfd_get_section_by_name (abfd, ".reginfo"); | |
8031 | if (s != NULL && (s->flags & SEC_LOAD) != 0) | |
8032 | { | |
8033 | for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next) | |
8034 | if (m->p_type == PT_MIPS_REGINFO) | |
8035 | break; | |
8036 | if (m == NULL) | |
8037 | { | |
8038 | amt = sizeof *m; | |
9719ad41 | 8039 | m = bfd_zalloc (abfd, amt); |
b49e97c9 | 8040 | if (m == NULL) |
b34976b6 | 8041 | return FALSE; |
b49e97c9 TS |
8042 | |
8043 | m->p_type = PT_MIPS_REGINFO; | |
8044 | m->count = 1; | |
8045 | m->sections[0] = s; | |
8046 | ||
8047 | /* We want to put it after the PHDR and INTERP segments. */ | |
8048 | pm = &elf_tdata (abfd)->segment_map; | |
8049 | while (*pm != NULL | |
8050 | && ((*pm)->p_type == PT_PHDR | |
8051 | || (*pm)->p_type == PT_INTERP)) | |
8052 | pm = &(*pm)->next; | |
8053 | ||
8054 | m->next = *pm; | |
8055 | *pm = m; | |
8056 | } | |
8057 | } | |
8058 | ||
8059 | /* For IRIX 6, we don't have .mdebug sections, nor does anything but | |
8060 | .dynamic end up in PT_DYNAMIC. However, we do have to insert a | |
98a8deaf | 8061 | PT_MIPS_OPTIONS segment immediately following the program header |
b49e97c9 | 8062 | table. */ |
c1fd6598 AO |
8063 | if (NEWABI_P (abfd) |
8064 | /* On non-IRIX6 new abi, we'll have already created a segment | |
8065 | for this section, so don't create another. I'm not sure this | |
8066 | is not also the case for IRIX 6, but I can't test it right | |
8067 | now. */ | |
8068 | && IRIX_COMPAT (abfd) == ict_irix6) | |
b49e97c9 TS |
8069 | { |
8070 | for (s = abfd->sections; s; s = s->next) | |
8071 | if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS) | |
8072 | break; | |
8073 | ||
8074 | if (s) | |
8075 | { | |
8076 | struct elf_segment_map *options_segment; | |
8077 | ||
98a8deaf RS |
8078 | pm = &elf_tdata (abfd)->segment_map; |
8079 | while (*pm != NULL | |
8080 | && ((*pm)->p_type == PT_PHDR | |
8081 | || (*pm)->p_type == PT_INTERP)) | |
8082 | pm = &(*pm)->next; | |
b49e97c9 TS |
8083 | |
8084 | amt = sizeof (struct elf_segment_map); | |
8085 | options_segment = bfd_zalloc (abfd, amt); | |
8086 | options_segment->next = *pm; | |
8087 | options_segment->p_type = PT_MIPS_OPTIONS; | |
8088 | options_segment->p_flags = PF_R; | |
b34976b6 | 8089 | options_segment->p_flags_valid = TRUE; |
b49e97c9 TS |
8090 | options_segment->count = 1; |
8091 | options_segment->sections[0] = s; | |
8092 | *pm = options_segment; | |
8093 | } | |
8094 | } | |
8095 | else | |
8096 | { | |
8097 | if (IRIX_COMPAT (abfd) == ict_irix5) | |
8098 | { | |
8099 | /* If there are .dynamic and .mdebug sections, we make a room | |
8100 | for the RTPROC header. FIXME: Rewrite without section names. */ | |
8101 | if (bfd_get_section_by_name (abfd, ".interp") == NULL | |
8102 | && bfd_get_section_by_name (abfd, ".dynamic") != NULL | |
8103 | && bfd_get_section_by_name (abfd, ".mdebug") != NULL) | |
8104 | { | |
8105 | for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next) | |
8106 | if (m->p_type == PT_MIPS_RTPROC) | |
8107 | break; | |
8108 | if (m == NULL) | |
8109 | { | |
8110 | amt = sizeof *m; | |
9719ad41 | 8111 | m = bfd_zalloc (abfd, amt); |
b49e97c9 | 8112 | if (m == NULL) |
b34976b6 | 8113 | return FALSE; |
b49e97c9 TS |
8114 | |
8115 | m->p_type = PT_MIPS_RTPROC; | |
8116 | ||
8117 | s = bfd_get_section_by_name (abfd, ".rtproc"); | |
8118 | if (s == NULL) | |
8119 | { | |
8120 | m->count = 0; | |
8121 | m->p_flags = 0; | |
8122 | m->p_flags_valid = 1; | |
8123 | } | |
8124 | else | |
8125 | { | |
8126 | m->count = 1; | |
8127 | m->sections[0] = s; | |
8128 | } | |
8129 | ||
8130 | /* We want to put it after the DYNAMIC segment. */ | |
8131 | pm = &elf_tdata (abfd)->segment_map; | |
8132 | while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC) | |
8133 | pm = &(*pm)->next; | |
8134 | if (*pm != NULL) | |
8135 | pm = &(*pm)->next; | |
8136 | ||
8137 | m->next = *pm; | |
8138 | *pm = m; | |
8139 | } | |
8140 | } | |
8141 | } | |
8dc1a139 | 8142 | /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic, |
b49e97c9 TS |
8143 | .dynstr, .dynsym, and .hash sections, and everything in |
8144 | between. */ | |
8145 | for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; | |
8146 | pm = &(*pm)->next) | |
8147 | if ((*pm)->p_type == PT_DYNAMIC) | |
8148 | break; | |
8149 | m = *pm; | |
8150 | if (m != NULL && IRIX_COMPAT (abfd) == ict_none) | |
8151 | { | |
8152 | /* For a normal mips executable the permissions for the PT_DYNAMIC | |
8153 | segment are read, write and execute. We do that here since | |
8154 | the code in elf.c sets only the read permission. This matters | |
8155 | sometimes for the dynamic linker. */ | |
8156 | if (bfd_get_section_by_name (abfd, ".dynamic") != NULL) | |
8157 | { | |
8158 | m->p_flags = PF_R | PF_W | PF_X; | |
8159 | m->p_flags_valid = 1; | |
8160 | } | |
8161 | } | |
8162 | if (m != NULL | |
8163 | && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0) | |
8164 | { | |
8165 | static const char *sec_names[] = | |
8166 | { | |
8167 | ".dynamic", ".dynstr", ".dynsym", ".hash" | |
8168 | }; | |
8169 | bfd_vma low, high; | |
8170 | unsigned int i, c; | |
8171 | struct elf_segment_map *n; | |
8172 | ||
792b4a53 | 8173 | low = ~(bfd_vma) 0; |
b49e97c9 TS |
8174 | high = 0; |
8175 | for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++) | |
8176 | { | |
8177 | s = bfd_get_section_by_name (abfd, sec_names[i]); | |
8178 | if (s != NULL && (s->flags & SEC_LOAD) != 0) | |
8179 | { | |
8180 | bfd_size_type sz; | |
8181 | ||
8182 | if (low > s->vma) | |
8183 | low = s->vma; | |
eea6121a | 8184 | sz = s->size; |
b49e97c9 TS |
8185 | if (high < s->vma + sz) |
8186 | high = s->vma + sz; | |
8187 | } | |
8188 | } | |
8189 | ||
8190 | c = 0; | |
8191 | for (s = abfd->sections; s != NULL; s = s->next) | |
8192 | if ((s->flags & SEC_LOAD) != 0 | |
8193 | && s->vma >= low | |
eea6121a | 8194 | && s->vma + s->size <= high) |
b49e97c9 TS |
8195 | ++c; |
8196 | ||
8197 | amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *); | |
9719ad41 | 8198 | n = bfd_zalloc (abfd, amt); |
b49e97c9 | 8199 | if (n == NULL) |
b34976b6 | 8200 | return FALSE; |
b49e97c9 TS |
8201 | *n = *m; |
8202 | n->count = c; | |
8203 | ||
8204 | i = 0; | |
8205 | for (s = abfd->sections; s != NULL; s = s->next) | |
8206 | { | |
8207 | if ((s->flags & SEC_LOAD) != 0 | |
8208 | && s->vma >= low | |
eea6121a | 8209 | && s->vma + s->size <= high) |
b49e97c9 TS |
8210 | { |
8211 | n->sections[i] = s; | |
8212 | ++i; | |
8213 | } | |
8214 | } | |
8215 | ||
8216 | *pm = n; | |
8217 | } | |
8218 | } | |
8219 | ||
b34976b6 | 8220 | return TRUE; |
b49e97c9 TS |
8221 | } |
8222 | \f | |
8223 | /* Return the section that should be marked against GC for a given | |
8224 | relocation. */ | |
8225 | ||
8226 | asection * | |
9719ad41 RS |
8227 | _bfd_mips_elf_gc_mark_hook (asection *sec, |
8228 | struct bfd_link_info *info ATTRIBUTE_UNUSED, | |
8229 | Elf_Internal_Rela *rel, | |
8230 | struct elf_link_hash_entry *h, | |
8231 | Elf_Internal_Sym *sym) | |
b49e97c9 TS |
8232 | { |
8233 | /* ??? Do mips16 stub sections need to be handled special? */ | |
8234 | ||
8235 | if (h != NULL) | |
8236 | { | |
1e2f5b6e | 8237 | switch (ELF_R_TYPE (sec->owner, rel->r_info)) |
b49e97c9 TS |
8238 | { |
8239 | case R_MIPS_GNU_VTINHERIT: | |
8240 | case R_MIPS_GNU_VTENTRY: | |
8241 | break; | |
8242 | ||
8243 | default: | |
8244 | switch (h->root.type) | |
8245 | { | |
8246 | case bfd_link_hash_defined: | |
8247 | case bfd_link_hash_defweak: | |
8248 | return h->root.u.def.section; | |
8249 | ||
8250 | case bfd_link_hash_common: | |
8251 | return h->root.u.c.p->section; | |
8252 | ||
8253 | default: | |
8254 | break; | |
8255 | } | |
8256 | } | |
8257 | } | |
8258 | else | |
1e2f5b6e | 8259 | return bfd_section_from_elf_index (sec->owner, sym->st_shndx); |
b49e97c9 TS |
8260 | |
8261 | return NULL; | |
8262 | } | |
8263 | ||
8264 | /* Update the got entry reference counts for the section being removed. */ | |
8265 | ||
b34976b6 | 8266 | bfd_boolean |
9719ad41 RS |
8267 | _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED, |
8268 | struct bfd_link_info *info ATTRIBUTE_UNUSED, | |
8269 | asection *sec ATTRIBUTE_UNUSED, | |
8270 | const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED) | |
b49e97c9 TS |
8271 | { |
8272 | #if 0 | |
8273 | Elf_Internal_Shdr *symtab_hdr; | |
8274 | struct elf_link_hash_entry **sym_hashes; | |
8275 | bfd_signed_vma *local_got_refcounts; | |
8276 | const Elf_Internal_Rela *rel, *relend; | |
8277 | unsigned long r_symndx; | |
8278 | struct elf_link_hash_entry *h; | |
8279 | ||
8280 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
8281 | sym_hashes = elf_sym_hashes (abfd); | |
8282 | local_got_refcounts = elf_local_got_refcounts (abfd); | |
8283 | ||
8284 | relend = relocs + sec->reloc_count; | |
8285 | for (rel = relocs; rel < relend; rel++) | |
8286 | switch (ELF_R_TYPE (abfd, rel->r_info)) | |
8287 | { | |
8288 | case R_MIPS_GOT16: | |
8289 | case R_MIPS_CALL16: | |
8290 | case R_MIPS_CALL_HI16: | |
8291 | case R_MIPS_CALL_LO16: | |
8292 | case R_MIPS_GOT_HI16: | |
8293 | case R_MIPS_GOT_LO16: | |
4a14403c TS |
8294 | case R_MIPS_GOT_DISP: |
8295 | case R_MIPS_GOT_PAGE: | |
8296 | case R_MIPS_GOT_OFST: | |
b49e97c9 TS |
8297 | /* ??? It would seem that the existing MIPS code does no sort |
8298 | of reference counting or whatnot on its GOT and PLT entries, | |
8299 | so it is not possible to garbage collect them at this time. */ | |
8300 | break; | |
8301 | ||
8302 | default: | |
8303 | break; | |
8304 | } | |
8305 | #endif | |
8306 | ||
b34976b6 | 8307 | return TRUE; |
b49e97c9 TS |
8308 | } |
8309 | \f | |
8310 | /* Copy data from a MIPS ELF indirect symbol to its direct symbol, | |
8311 | hiding the old indirect symbol. Process additional relocation | |
8312 | information. Also called for weakdefs, in which case we just let | |
8313 | _bfd_elf_link_hash_copy_indirect copy the flags for us. */ | |
8314 | ||
8315 | void | |
9719ad41 RS |
8316 | _bfd_mips_elf_copy_indirect_symbol (const struct elf_backend_data *bed, |
8317 | struct elf_link_hash_entry *dir, | |
8318 | struct elf_link_hash_entry *ind) | |
b49e97c9 TS |
8319 | { |
8320 | struct mips_elf_link_hash_entry *dirmips, *indmips; | |
8321 | ||
b48fa14c | 8322 | _bfd_elf_link_hash_copy_indirect (bed, dir, ind); |
b49e97c9 TS |
8323 | |
8324 | if (ind->root.type != bfd_link_hash_indirect) | |
8325 | return; | |
8326 | ||
8327 | dirmips = (struct mips_elf_link_hash_entry *) dir; | |
8328 | indmips = (struct mips_elf_link_hash_entry *) ind; | |
8329 | dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs; | |
8330 | if (indmips->readonly_reloc) | |
b34976b6 | 8331 | dirmips->readonly_reloc = TRUE; |
b49e97c9 | 8332 | if (indmips->no_fn_stub) |
b34976b6 | 8333 | dirmips->no_fn_stub = TRUE; |
0f20cc35 DJ |
8334 | |
8335 | if (dirmips->tls_type == 0) | |
8336 | dirmips->tls_type = indmips->tls_type; | |
8337 | else | |
8338 | BFD_ASSERT (indmips->tls_type == 0); | |
b49e97c9 TS |
8339 | } |
8340 | ||
8341 | void | |
9719ad41 RS |
8342 | _bfd_mips_elf_hide_symbol (struct bfd_link_info *info, |
8343 | struct elf_link_hash_entry *entry, | |
8344 | bfd_boolean force_local) | |
b49e97c9 TS |
8345 | { |
8346 | bfd *dynobj; | |
8347 | asection *got; | |
8348 | struct mips_got_info *g; | |
8349 | struct mips_elf_link_hash_entry *h; | |
7c5fcef7 | 8350 | |
b49e97c9 | 8351 | h = (struct mips_elf_link_hash_entry *) entry; |
7c5fcef7 L |
8352 | if (h->forced_local) |
8353 | return; | |
4b555070 | 8354 | h->forced_local = force_local; |
7c5fcef7 | 8355 | |
b49e97c9 | 8356 | dynobj = elf_hash_table (info)->dynobj; |
0f20cc35 | 8357 | if (dynobj != NULL && force_local && h->root.type != STT_TLS) |
f4416af6 | 8358 | { |
c45a316a AM |
8359 | got = mips_elf_got_section (dynobj, FALSE); |
8360 | g = mips_elf_section_data (got)->u.got_info; | |
f4416af6 | 8361 | |
c45a316a AM |
8362 | if (g->next) |
8363 | { | |
8364 | struct mips_got_entry e; | |
8365 | struct mips_got_info *gg = g; | |
8366 | ||
8367 | /* Since we're turning what used to be a global symbol into a | |
8368 | local one, bump up the number of local entries of each GOT | |
8369 | that had an entry for it. This will automatically decrease | |
8370 | the number of global entries, since global_gotno is actually | |
8371 | the upper limit of global entries. */ | |
8372 | e.abfd = dynobj; | |
8373 | e.symndx = -1; | |
8374 | e.d.h = h; | |
0f20cc35 | 8375 | e.tls_type = 0; |
c45a316a AM |
8376 | |
8377 | for (g = g->next; g != gg; g = g->next) | |
8378 | if (htab_find (g->got_entries, &e)) | |
8379 | { | |
8380 | BFD_ASSERT (g->global_gotno > 0); | |
8381 | g->local_gotno++; | |
8382 | g->global_gotno--; | |
8383 | } | |
b49e97c9 | 8384 | |
c45a316a AM |
8385 | /* If this was a global symbol forced into the primary GOT, we |
8386 | no longer need an entry for it. We can't release the entry | |
8387 | at this point, but we must at least stop counting it as one | |
8388 | of the symbols that required a forced got entry. */ | |
8389 | if (h->root.got.offset == 2) | |
8390 | { | |
8391 | BFD_ASSERT (gg->assigned_gotno > 0); | |
8392 | gg->assigned_gotno--; | |
8393 | } | |
8394 | } | |
8395 | else if (g->global_gotno == 0 && g->global_gotsym == NULL) | |
8396 | /* If we haven't got through GOT allocation yet, just bump up the | |
8397 | number of local entries, as this symbol won't be counted as | |
8398 | global. */ | |
8399 | g->local_gotno++; | |
8400 | else if (h->root.got.offset == 1) | |
f4416af6 | 8401 | { |
c45a316a AM |
8402 | /* If we're past non-multi-GOT allocation and this symbol had |
8403 | been marked for a global got entry, give it a local entry | |
8404 | instead. */ | |
8405 | BFD_ASSERT (g->global_gotno > 0); | |
8406 | g->local_gotno++; | |
8407 | g->global_gotno--; | |
f4416af6 AO |
8408 | } |
8409 | } | |
f4416af6 AO |
8410 | |
8411 | _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local); | |
b49e97c9 TS |
8412 | } |
8413 | \f | |
d01414a5 TS |
8414 | #define PDR_SIZE 32 |
8415 | ||
b34976b6 | 8416 | bfd_boolean |
9719ad41 RS |
8417 | _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie, |
8418 | struct bfd_link_info *info) | |
d01414a5 TS |
8419 | { |
8420 | asection *o; | |
b34976b6 | 8421 | bfd_boolean ret = FALSE; |
d01414a5 TS |
8422 | unsigned char *tdata; |
8423 | size_t i, skip; | |
8424 | ||
8425 | o = bfd_get_section_by_name (abfd, ".pdr"); | |
8426 | if (! o) | |
b34976b6 | 8427 | return FALSE; |
eea6121a | 8428 | if (o->size == 0) |
b34976b6 | 8429 | return FALSE; |
eea6121a | 8430 | if (o->size % PDR_SIZE != 0) |
b34976b6 | 8431 | return FALSE; |
d01414a5 TS |
8432 | if (o->output_section != NULL |
8433 | && bfd_is_abs_section (o->output_section)) | |
b34976b6 | 8434 | return FALSE; |
d01414a5 | 8435 | |
eea6121a | 8436 | tdata = bfd_zmalloc (o->size / PDR_SIZE); |
d01414a5 | 8437 | if (! tdata) |
b34976b6 | 8438 | return FALSE; |
d01414a5 | 8439 | |
9719ad41 | 8440 | cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL, |
45d6a902 | 8441 | info->keep_memory); |
d01414a5 TS |
8442 | if (!cookie->rels) |
8443 | { | |
8444 | free (tdata); | |
b34976b6 | 8445 | return FALSE; |
d01414a5 TS |
8446 | } |
8447 | ||
8448 | cookie->rel = cookie->rels; | |
8449 | cookie->relend = cookie->rels + o->reloc_count; | |
8450 | ||
eea6121a | 8451 | for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++) |
d01414a5 | 8452 | { |
c152c796 | 8453 | if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie)) |
d01414a5 TS |
8454 | { |
8455 | tdata[i] = 1; | |
8456 | skip ++; | |
8457 | } | |
8458 | } | |
8459 | ||
8460 | if (skip != 0) | |
8461 | { | |
f0abc2a1 | 8462 | mips_elf_section_data (o)->u.tdata = tdata; |
eea6121a | 8463 | o->size -= skip * PDR_SIZE; |
b34976b6 | 8464 | ret = TRUE; |
d01414a5 TS |
8465 | } |
8466 | else | |
8467 | free (tdata); | |
8468 | ||
8469 | if (! info->keep_memory) | |
8470 | free (cookie->rels); | |
8471 | ||
8472 | return ret; | |
8473 | } | |
8474 | ||
b34976b6 | 8475 | bfd_boolean |
9719ad41 | 8476 | _bfd_mips_elf_ignore_discarded_relocs (asection *sec) |
53bfd6b4 MR |
8477 | { |
8478 | if (strcmp (sec->name, ".pdr") == 0) | |
b34976b6 AM |
8479 | return TRUE; |
8480 | return FALSE; | |
53bfd6b4 | 8481 | } |
d01414a5 | 8482 | |
b34976b6 | 8483 | bfd_boolean |
9719ad41 RS |
8484 | _bfd_mips_elf_write_section (bfd *output_bfd, asection *sec, |
8485 | bfd_byte *contents) | |
d01414a5 TS |
8486 | { |
8487 | bfd_byte *to, *from, *end; | |
8488 | int i; | |
8489 | ||
8490 | if (strcmp (sec->name, ".pdr") != 0) | |
b34976b6 | 8491 | return FALSE; |
d01414a5 | 8492 | |
f0abc2a1 | 8493 | if (mips_elf_section_data (sec)->u.tdata == NULL) |
b34976b6 | 8494 | return FALSE; |
d01414a5 TS |
8495 | |
8496 | to = contents; | |
eea6121a | 8497 | end = contents + sec->size; |
d01414a5 TS |
8498 | for (from = contents, i = 0; |
8499 | from < end; | |
8500 | from += PDR_SIZE, i++) | |
8501 | { | |
f0abc2a1 | 8502 | if ((mips_elf_section_data (sec)->u.tdata)[i] == 1) |
d01414a5 TS |
8503 | continue; |
8504 | if (to != from) | |
8505 | memcpy (to, from, PDR_SIZE); | |
8506 | to += PDR_SIZE; | |
8507 | } | |
8508 | bfd_set_section_contents (output_bfd, sec->output_section, contents, | |
eea6121a | 8509 | sec->output_offset, sec->size); |
b34976b6 | 8510 | return TRUE; |
d01414a5 | 8511 | } |
53bfd6b4 | 8512 | \f |
b49e97c9 TS |
8513 | /* MIPS ELF uses a special find_nearest_line routine in order the |
8514 | handle the ECOFF debugging information. */ | |
8515 | ||
8516 | struct mips_elf_find_line | |
8517 | { | |
8518 | struct ecoff_debug_info d; | |
8519 | struct ecoff_find_line i; | |
8520 | }; | |
8521 | ||
b34976b6 | 8522 | bfd_boolean |
9719ad41 RS |
8523 | _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section, |
8524 | asymbol **symbols, bfd_vma offset, | |
8525 | const char **filename_ptr, | |
8526 | const char **functionname_ptr, | |
8527 | unsigned int *line_ptr) | |
b49e97c9 TS |
8528 | { |
8529 | asection *msec; | |
8530 | ||
8531 | if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset, | |
8532 | filename_ptr, functionname_ptr, | |
8533 | line_ptr)) | |
b34976b6 | 8534 | return TRUE; |
b49e97c9 TS |
8535 | |
8536 | if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset, | |
8537 | filename_ptr, functionname_ptr, | |
9719ad41 | 8538 | line_ptr, ABI_64_P (abfd) ? 8 : 0, |
b49e97c9 | 8539 | &elf_tdata (abfd)->dwarf2_find_line_info)) |
b34976b6 | 8540 | return TRUE; |
b49e97c9 TS |
8541 | |
8542 | msec = bfd_get_section_by_name (abfd, ".mdebug"); | |
8543 | if (msec != NULL) | |
8544 | { | |
8545 | flagword origflags; | |
8546 | struct mips_elf_find_line *fi; | |
8547 | const struct ecoff_debug_swap * const swap = | |
8548 | get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; | |
8549 | ||
8550 | /* If we are called during a link, mips_elf_final_link may have | |
8551 | cleared the SEC_HAS_CONTENTS field. We force it back on here | |
8552 | if appropriate (which it normally will be). */ | |
8553 | origflags = msec->flags; | |
8554 | if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS) | |
8555 | msec->flags |= SEC_HAS_CONTENTS; | |
8556 | ||
8557 | fi = elf_tdata (abfd)->find_line_info; | |
8558 | if (fi == NULL) | |
8559 | { | |
8560 | bfd_size_type external_fdr_size; | |
8561 | char *fraw_src; | |
8562 | char *fraw_end; | |
8563 | struct fdr *fdr_ptr; | |
8564 | bfd_size_type amt = sizeof (struct mips_elf_find_line); | |
8565 | ||
9719ad41 | 8566 | fi = bfd_zalloc (abfd, amt); |
b49e97c9 TS |
8567 | if (fi == NULL) |
8568 | { | |
8569 | msec->flags = origflags; | |
b34976b6 | 8570 | return FALSE; |
b49e97c9 TS |
8571 | } |
8572 | ||
8573 | if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d)) | |
8574 | { | |
8575 | msec->flags = origflags; | |
b34976b6 | 8576 | return FALSE; |
b49e97c9 TS |
8577 | } |
8578 | ||
8579 | /* Swap in the FDR information. */ | |
8580 | amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr); | |
9719ad41 | 8581 | fi->d.fdr = bfd_alloc (abfd, amt); |
b49e97c9 TS |
8582 | if (fi->d.fdr == NULL) |
8583 | { | |
8584 | msec->flags = origflags; | |
b34976b6 | 8585 | return FALSE; |
b49e97c9 TS |
8586 | } |
8587 | external_fdr_size = swap->external_fdr_size; | |
8588 | fdr_ptr = fi->d.fdr; | |
8589 | fraw_src = (char *) fi->d.external_fdr; | |
8590 | fraw_end = (fraw_src | |
8591 | + fi->d.symbolic_header.ifdMax * external_fdr_size); | |
8592 | for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++) | |
9719ad41 | 8593 | (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr); |
b49e97c9 TS |
8594 | |
8595 | elf_tdata (abfd)->find_line_info = fi; | |
8596 | ||
8597 | /* Note that we don't bother to ever free this information. | |
8598 | find_nearest_line is either called all the time, as in | |
8599 | objdump -l, so the information should be saved, or it is | |
8600 | rarely called, as in ld error messages, so the memory | |
8601 | wasted is unimportant. Still, it would probably be a | |
8602 | good idea for free_cached_info to throw it away. */ | |
8603 | } | |
8604 | ||
8605 | if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap, | |
8606 | &fi->i, filename_ptr, functionname_ptr, | |
8607 | line_ptr)) | |
8608 | { | |
8609 | msec->flags = origflags; | |
b34976b6 | 8610 | return TRUE; |
b49e97c9 TS |
8611 | } |
8612 | ||
8613 | msec->flags = origflags; | |
8614 | } | |
8615 | ||
8616 | /* Fall back on the generic ELF find_nearest_line routine. */ | |
8617 | ||
8618 | return _bfd_elf_find_nearest_line (abfd, section, symbols, offset, | |
8619 | filename_ptr, functionname_ptr, | |
8620 | line_ptr); | |
8621 | } | |
8622 | \f | |
8623 | /* When are writing out the .options or .MIPS.options section, | |
8624 | remember the bytes we are writing out, so that we can install the | |
8625 | GP value in the section_processing routine. */ | |
8626 | ||
b34976b6 | 8627 | bfd_boolean |
9719ad41 RS |
8628 | _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section, |
8629 | const void *location, | |
8630 | file_ptr offset, bfd_size_type count) | |
b49e97c9 TS |
8631 | { |
8632 | if (strcmp (section->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0) | |
8633 | { | |
8634 | bfd_byte *c; | |
8635 | ||
8636 | if (elf_section_data (section) == NULL) | |
8637 | { | |
8638 | bfd_size_type amt = sizeof (struct bfd_elf_section_data); | |
9719ad41 | 8639 | section->used_by_bfd = bfd_zalloc (abfd, amt); |
b49e97c9 | 8640 | if (elf_section_data (section) == NULL) |
b34976b6 | 8641 | return FALSE; |
b49e97c9 | 8642 | } |
f0abc2a1 | 8643 | c = mips_elf_section_data (section)->u.tdata; |
b49e97c9 TS |
8644 | if (c == NULL) |
8645 | { | |
eea6121a | 8646 | c = bfd_zalloc (abfd, section->size); |
b49e97c9 | 8647 | if (c == NULL) |
b34976b6 | 8648 | return FALSE; |
f0abc2a1 | 8649 | mips_elf_section_data (section)->u.tdata = c; |
b49e97c9 TS |
8650 | } |
8651 | ||
9719ad41 | 8652 | memcpy (c + offset, location, count); |
b49e97c9 TS |
8653 | } |
8654 | ||
8655 | return _bfd_elf_set_section_contents (abfd, section, location, offset, | |
8656 | count); | |
8657 | } | |
8658 | ||
8659 | /* This is almost identical to bfd_generic_get_... except that some | |
8660 | MIPS relocations need to be handled specially. Sigh. */ | |
8661 | ||
8662 | bfd_byte * | |
9719ad41 RS |
8663 | _bfd_elf_mips_get_relocated_section_contents |
8664 | (bfd *abfd, | |
8665 | struct bfd_link_info *link_info, | |
8666 | struct bfd_link_order *link_order, | |
8667 | bfd_byte *data, | |
8668 | bfd_boolean relocatable, | |
8669 | asymbol **symbols) | |
b49e97c9 TS |
8670 | { |
8671 | /* Get enough memory to hold the stuff */ | |
8672 | bfd *input_bfd = link_order->u.indirect.section->owner; | |
8673 | asection *input_section = link_order->u.indirect.section; | |
eea6121a | 8674 | bfd_size_type sz; |
b49e97c9 TS |
8675 | |
8676 | long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section); | |
8677 | arelent **reloc_vector = NULL; | |
8678 | long reloc_count; | |
8679 | ||
8680 | if (reloc_size < 0) | |
8681 | goto error_return; | |
8682 | ||
9719ad41 | 8683 | reloc_vector = bfd_malloc (reloc_size); |
b49e97c9 TS |
8684 | if (reloc_vector == NULL && reloc_size != 0) |
8685 | goto error_return; | |
8686 | ||
8687 | /* read in the section */ | |
eea6121a AM |
8688 | sz = input_section->rawsize ? input_section->rawsize : input_section->size; |
8689 | if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz)) | |
b49e97c9 TS |
8690 | goto error_return; |
8691 | ||
b49e97c9 TS |
8692 | reloc_count = bfd_canonicalize_reloc (input_bfd, |
8693 | input_section, | |
8694 | reloc_vector, | |
8695 | symbols); | |
8696 | if (reloc_count < 0) | |
8697 | goto error_return; | |
8698 | ||
8699 | if (reloc_count > 0) | |
8700 | { | |
8701 | arelent **parent; | |
8702 | /* for mips */ | |
8703 | int gp_found; | |
8704 | bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */ | |
8705 | ||
8706 | { | |
8707 | struct bfd_hash_entry *h; | |
8708 | struct bfd_link_hash_entry *lh; | |
8709 | /* Skip all this stuff if we aren't mixing formats. */ | |
8710 | if (abfd && input_bfd | |
8711 | && abfd->xvec == input_bfd->xvec) | |
8712 | lh = 0; | |
8713 | else | |
8714 | { | |
b34976b6 | 8715 | h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE); |
b49e97c9 TS |
8716 | lh = (struct bfd_link_hash_entry *) h; |
8717 | } | |
8718 | lookup: | |
8719 | if (lh) | |
8720 | { | |
8721 | switch (lh->type) | |
8722 | { | |
8723 | case bfd_link_hash_undefined: | |
8724 | case bfd_link_hash_undefweak: | |
8725 | case bfd_link_hash_common: | |
8726 | gp_found = 0; | |
8727 | break; | |
8728 | case bfd_link_hash_defined: | |
8729 | case bfd_link_hash_defweak: | |
8730 | gp_found = 1; | |
8731 | gp = lh->u.def.value; | |
8732 | break; | |
8733 | case bfd_link_hash_indirect: | |
8734 | case bfd_link_hash_warning: | |
8735 | lh = lh->u.i.link; | |
8736 | /* @@FIXME ignoring warning for now */ | |
8737 | goto lookup; | |
8738 | case bfd_link_hash_new: | |
8739 | default: | |
8740 | abort (); | |
8741 | } | |
8742 | } | |
8743 | else | |
8744 | gp_found = 0; | |
8745 | } | |
8746 | /* end mips */ | |
9719ad41 | 8747 | for (parent = reloc_vector; *parent != NULL; parent++) |
b49e97c9 | 8748 | { |
9719ad41 | 8749 | char *error_message = NULL; |
b49e97c9 TS |
8750 | bfd_reloc_status_type r; |
8751 | ||
8752 | /* Specific to MIPS: Deal with relocation types that require | |
8753 | knowing the gp of the output bfd. */ | |
8754 | asymbol *sym = *(*parent)->sym_ptr_ptr; | |
8755 | if (bfd_is_abs_section (sym->section) && abfd) | |
8756 | { | |
44c410de | 8757 | /* The special_function wouldn't get called anyway. */ |
b49e97c9 TS |
8758 | } |
8759 | else if (!gp_found) | |
8760 | { | |
8761 | /* The gp isn't there; let the special function code | |
8762 | fall over on its own. */ | |
8763 | } | |
8764 | else if ((*parent)->howto->special_function | |
8765 | == _bfd_mips_elf32_gprel16_reloc) | |
8766 | { | |
8767 | /* bypass special_function call */ | |
8768 | r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent, | |
1049f94e | 8769 | input_section, relocatable, |
9719ad41 | 8770 | data, gp); |
b49e97c9 TS |
8771 | goto skip_bfd_perform_relocation; |
8772 | } | |
8773 | /* end mips specific stuff */ | |
8774 | ||
9719ad41 RS |
8775 | r = bfd_perform_relocation (input_bfd, *parent, data, input_section, |
8776 | relocatable ? abfd : NULL, | |
b49e97c9 TS |
8777 | &error_message); |
8778 | skip_bfd_perform_relocation: | |
8779 | ||
1049f94e | 8780 | if (relocatable) |
b49e97c9 TS |
8781 | { |
8782 | asection *os = input_section->output_section; | |
8783 | ||
8784 | /* A partial link, so keep the relocs */ | |
8785 | os->orelocation[os->reloc_count] = *parent; | |
8786 | os->reloc_count++; | |
8787 | } | |
8788 | ||
8789 | if (r != bfd_reloc_ok) | |
8790 | { | |
8791 | switch (r) | |
8792 | { | |
8793 | case bfd_reloc_undefined: | |
8794 | if (!((*link_info->callbacks->undefined_symbol) | |
8795 | (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr), | |
8796 | input_bfd, input_section, (*parent)->address, | |
b34976b6 | 8797 | TRUE))) |
b49e97c9 TS |
8798 | goto error_return; |
8799 | break; | |
8800 | case bfd_reloc_dangerous: | |
9719ad41 | 8801 | BFD_ASSERT (error_message != NULL); |
b49e97c9 TS |
8802 | if (!((*link_info->callbacks->reloc_dangerous) |
8803 | (link_info, error_message, input_bfd, input_section, | |
8804 | (*parent)->address))) | |
8805 | goto error_return; | |
8806 | break; | |
8807 | case bfd_reloc_overflow: | |
8808 | if (!((*link_info->callbacks->reloc_overflow) | |
dfeffb9f L |
8809 | (link_info, NULL, |
8810 | bfd_asymbol_name (*(*parent)->sym_ptr_ptr), | |
b49e97c9 TS |
8811 | (*parent)->howto->name, (*parent)->addend, |
8812 | input_bfd, input_section, (*parent)->address))) | |
8813 | goto error_return; | |
8814 | break; | |
8815 | case bfd_reloc_outofrange: | |
8816 | default: | |
8817 | abort (); | |
8818 | break; | |
8819 | } | |
8820 | ||
8821 | } | |
8822 | } | |
8823 | } | |
8824 | if (reloc_vector != NULL) | |
8825 | free (reloc_vector); | |
8826 | return data; | |
8827 | ||
8828 | error_return: | |
8829 | if (reloc_vector != NULL) | |
8830 | free (reloc_vector); | |
8831 | return NULL; | |
8832 | } | |
8833 | \f | |
8834 | /* Create a MIPS ELF linker hash table. */ | |
8835 | ||
8836 | struct bfd_link_hash_table * | |
9719ad41 | 8837 | _bfd_mips_elf_link_hash_table_create (bfd *abfd) |
b49e97c9 TS |
8838 | { |
8839 | struct mips_elf_link_hash_table *ret; | |
8840 | bfd_size_type amt = sizeof (struct mips_elf_link_hash_table); | |
8841 | ||
9719ad41 RS |
8842 | ret = bfd_malloc (amt); |
8843 | if (ret == NULL) | |
b49e97c9 TS |
8844 | return NULL; |
8845 | ||
8846 | if (! _bfd_elf_link_hash_table_init (&ret->root, abfd, | |
8847 | mips_elf_link_hash_newfunc)) | |
8848 | { | |
e2d34d7d | 8849 | free (ret); |
b49e97c9 TS |
8850 | return NULL; |
8851 | } | |
8852 | ||
8853 | #if 0 | |
8854 | /* We no longer use this. */ | |
8855 | for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++) | |
8856 | ret->dynsym_sec_strindex[i] = (bfd_size_type) -1; | |
8857 | #endif | |
8858 | ret->procedure_count = 0; | |
8859 | ret->compact_rel_size = 0; | |
b34976b6 | 8860 | ret->use_rld_obj_head = FALSE; |
b49e97c9 | 8861 | ret->rld_value = 0; |
b34976b6 | 8862 | ret->mips16_stubs_seen = FALSE; |
b49e97c9 TS |
8863 | |
8864 | return &ret->root.root; | |
8865 | } | |
8866 | \f | |
8867 | /* We need to use a special link routine to handle the .reginfo and | |
8868 | the .mdebug sections. We need to merge all instances of these | |
8869 | sections together, not write them all out sequentially. */ | |
8870 | ||
b34976b6 | 8871 | bfd_boolean |
9719ad41 | 8872 | _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info) |
b49e97c9 TS |
8873 | { |
8874 | asection **secpp; | |
8875 | asection *o; | |
8876 | struct bfd_link_order *p; | |
8877 | asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec; | |
8878 | asection *rtproc_sec; | |
8879 | Elf32_RegInfo reginfo; | |
8880 | struct ecoff_debug_info debug; | |
7a2a6943 NC |
8881 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
8882 | const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap; | |
b49e97c9 | 8883 | HDRR *symhdr = &debug.symbolic_header; |
9719ad41 | 8884 | void *mdebug_handle = NULL; |
b49e97c9 TS |
8885 | asection *s; |
8886 | EXTR esym; | |
8887 | unsigned int i; | |
8888 | bfd_size_type amt; | |
8889 | ||
8890 | static const char * const secname[] = | |
8891 | { | |
8892 | ".text", ".init", ".fini", ".data", | |
8893 | ".rodata", ".sdata", ".sbss", ".bss" | |
8894 | }; | |
8895 | static const int sc[] = | |
8896 | { | |
8897 | scText, scInit, scFini, scData, | |
8898 | scRData, scSData, scSBss, scBss | |
8899 | }; | |
8900 | ||
b49e97c9 TS |
8901 | /* We'd carefully arranged the dynamic symbol indices, and then the |
8902 | generic size_dynamic_sections renumbered them out from under us. | |
8903 | Rather than trying somehow to prevent the renumbering, just do | |
8904 | the sort again. */ | |
8905 | if (elf_hash_table (info)->dynamic_sections_created) | |
8906 | { | |
8907 | bfd *dynobj; | |
8908 | asection *got; | |
8909 | struct mips_got_info *g; | |
7a2a6943 | 8910 | bfd_size_type dynsecsymcount; |
b49e97c9 TS |
8911 | |
8912 | /* When we resort, we must tell mips_elf_sort_hash_table what | |
8913 | the lowest index it may use is. That's the number of section | |
8914 | symbols we're going to add. The generic ELF linker only | |
8915 | adds these symbols when building a shared object. Note that | |
8916 | we count the sections after (possibly) removing the .options | |
8917 | section above. */ | |
7a2a6943 NC |
8918 | |
8919 | dynsecsymcount = 0; | |
8920 | if (info->shared) | |
8921 | { | |
8922 | asection * p; | |
8923 | ||
8924 | for (p = abfd->sections; p ; p = p->next) | |
8925 | if ((p->flags & SEC_EXCLUDE) == 0 | |
8926 | && (p->flags & SEC_ALLOC) != 0 | |
8927 | && !(*bed->elf_backend_omit_section_dynsym) (abfd, info, p)) | |
8928 | ++ dynsecsymcount; | |
8929 | } | |
8930 | ||
8931 | if (! mips_elf_sort_hash_table (info, dynsecsymcount + 1)) | |
b34976b6 | 8932 | return FALSE; |
b49e97c9 TS |
8933 | |
8934 | /* Make sure we didn't grow the global .got region. */ | |
8935 | dynobj = elf_hash_table (info)->dynobj; | |
f4416af6 | 8936 | got = mips_elf_got_section (dynobj, FALSE); |
f0abc2a1 | 8937 | g = mips_elf_section_data (got)->u.got_info; |
b49e97c9 TS |
8938 | |
8939 | if (g->global_gotsym != NULL) | |
8940 | BFD_ASSERT ((elf_hash_table (info)->dynsymcount | |
8941 | - g->global_gotsym->dynindx) | |
8942 | <= g->global_gotno); | |
8943 | } | |
8944 | ||
b49e97c9 TS |
8945 | /* Get a value for the GP register. */ |
8946 | if (elf_gp (abfd) == 0) | |
8947 | { | |
8948 | struct bfd_link_hash_entry *h; | |
8949 | ||
b34976b6 | 8950 | h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE); |
9719ad41 | 8951 | if (h != NULL && h->type == bfd_link_hash_defined) |
b49e97c9 TS |
8952 | elf_gp (abfd) = (h->u.def.value |
8953 | + h->u.def.section->output_section->vma | |
8954 | + h->u.def.section->output_offset); | |
1049f94e | 8955 | else if (info->relocatable) |
b49e97c9 TS |
8956 | { |
8957 | bfd_vma lo = MINUS_ONE; | |
8958 | ||
8959 | /* Find the GP-relative section with the lowest offset. */ | |
9719ad41 | 8960 | for (o = abfd->sections; o != NULL; o = o->next) |
b49e97c9 TS |
8961 | if (o->vma < lo |
8962 | && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL)) | |
8963 | lo = o->vma; | |
8964 | ||
8965 | /* And calculate GP relative to that. */ | |
8966 | elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (abfd); | |
8967 | } | |
8968 | else | |
8969 | { | |
8970 | /* If the relocate_section function needs to do a reloc | |
8971 | involving the GP value, it should make a reloc_dangerous | |
8972 | callback to warn that GP is not defined. */ | |
8973 | } | |
8974 | } | |
8975 | ||
8976 | /* Go through the sections and collect the .reginfo and .mdebug | |
8977 | information. */ | |
8978 | reginfo_sec = NULL; | |
8979 | mdebug_sec = NULL; | |
8980 | gptab_data_sec = NULL; | |
8981 | gptab_bss_sec = NULL; | |
9719ad41 | 8982 | for (o = abfd->sections; o != NULL; o = o->next) |
b49e97c9 TS |
8983 | { |
8984 | if (strcmp (o->name, ".reginfo") == 0) | |
8985 | { | |
8986 | memset (®info, 0, sizeof reginfo); | |
8987 | ||
8988 | /* We have found the .reginfo section in the output file. | |
8989 | Look through all the link_orders comprising it and merge | |
8990 | the information together. */ | |
9719ad41 | 8991 | for (p = o->link_order_head; p != NULL; p = p->next) |
b49e97c9 TS |
8992 | { |
8993 | asection *input_section; | |
8994 | bfd *input_bfd; | |
8995 | Elf32_External_RegInfo ext; | |
8996 | Elf32_RegInfo sub; | |
8997 | ||
8998 | if (p->type != bfd_indirect_link_order) | |
8999 | { | |
9000 | if (p->type == bfd_data_link_order) | |
9001 | continue; | |
9002 | abort (); | |
9003 | } | |
9004 | ||
9005 | input_section = p->u.indirect.section; | |
9006 | input_bfd = input_section->owner; | |
9007 | ||
b49e97c9 | 9008 | if (! bfd_get_section_contents (input_bfd, input_section, |
9719ad41 | 9009 | &ext, 0, sizeof ext)) |
b34976b6 | 9010 | return FALSE; |
b49e97c9 TS |
9011 | |
9012 | bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub); | |
9013 | ||
9014 | reginfo.ri_gprmask |= sub.ri_gprmask; | |
9015 | reginfo.ri_cprmask[0] |= sub.ri_cprmask[0]; | |
9016 | reginfo.ri_cprmask[1] |= sub.ri_cprmask[1]; | |
9017 | reginfo.ri_cprmask[2] |= sub.ri_cprmask[2]; | |
9018 | reginfo.ri_cprmask[3] |= sub.ri_cprmask[3]; | |
9019 | ||
9020 | /* ri_gp_value is set by the function | |
9021 | mips_elf32_section_processing when the section is | |
9022 | finally written out. */ | |
9023 | ||
9024 | /* Hack: reset the SEC_HAS_CONTENTS flag so that | |
9025 | elf_link_input_bfd ignores this section. */ | |
9026 | input_section->flags &= ~SEC_HAS_CONTENTS; | |
9027 | } | |
9028 | ||
9029 | /* Size has been set in _bfd_mips_elf_always_size_sections. */ | |
eea6121a | 9030 | BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo)); |
b49e97c9 TS |
9031 | |
9032 | /* Skip this section later on (I don't think this currently | |
9033 | matters, but someday it might). */ | |
9719ad41 | 9034 | o->link_order_head = NULL; |
b49e97c9 TS |
9035 | |
9036 | reginfo_sec = o; | |
9037 | } | |
9038 | ||
9039 | if (strcmp (o->name, ".mdebug") == 0) | |
9040 | { | |
9041 | struct extsym_info einfo; | |
9042 | bfd_vma last; | |
9043 | ||
9044 | /* We have found the .mdebug section in the output file. | |
9045 | Look through all the link_orders comprising it and merge | |
9046 | the information together. */ | |
9047 | symhdr->magic = swap->sym_magic; | |
9048 | /* FIXME: What should the version stamp be? */ | |
9049 | symhdr->vstamp = 0; | |
9050 | symhdr->ilineMax = 0; | |
9051 | symhdr->cbLine = 0; | |
9052 | symhdr->idnMax = 0; | |
9053 | symhdr->ipdMax = 0; | |
9054 | symhdr->isymMax = 0; | |
9055 | symhdr->ioptMax = 0; | |
9056 | symhdr->iauxMax = 0; | |
9057 | symhdr->issMax = 0; | |
9058 | symhdr->issExtMax = 0; | |
9059 | symhdr->ifdMax = 0; | |
9060 | symhdr->crfd = 0; | |
9061 | symhdr->iextMax = 0; | |
9062 | ||
9063 | /* We accumulate the debugging information itself in the | |
9064 | debug_info structure. */ | |
9065 | debug.line = NULL; | |
9066 | debug.external_dnr = NULL; | |
9067 | debug.external_pdr = NULL; | |
9068 | debug.external_sym = NULL; | |
9069 | debug.external_opt = NULL; | |
9070 | debug.external_aux = NULL; | |
9071 | debug.ss = NULL; | |
9072 | debug.ssext = debug.ssext_end = NULL; | |
9073 | debug.external_fdr = NULL; | |
9074 | debug.external_rfd = NULL; | |
9075 | debug.external_ext = debug.external_ext_end = NULL; | |
9076 | ||
9077 | mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info); | |
9719ad41 | 9078 | if (mdebug_handle == NULL) |
b34976b6 | 9079 | return FALSE; |
b49e97c9 TS |
9080 | |
9081 | esym.jmptbl = 0; | |
9082 | esym.cobol_main = 0; | |
9083 | esym.weakext = 0; | |
9084 | esym.reserved = 0; | |
9085 | esym.ifd = ifdNil; | |
9086 | esym.asym.iss = issNil; | |
9087 | esym.asym.st = stLocal; | |
9088 | esym.asym.reserved = 0; | |
9089 | esym.asym.index = indexNil; | |
9090 | last = 0; | |
9091 | for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++) | |
9092 | { | |
9093 | esym.asym.sc = sc[i]; | |
9094 | s = bfd_get_section_by_name (abfd, secname[i]); | |
9095 | if (s != NULL) | |
9096 | { | |
9097 | esym.asym.value = s->vma; | |
eea6121a | 9098 | last = s->vma + s->size; |
b49e97c9 TS |
9099 | } |
9100 | else | |
9101 | esym.asym.value = last; | |
9102 | if (!bfd_ecoff_debug_one_external (abfd, &debug, swap, | |
9103 | secname[i], &esym)) | |
b34976b6 | 9104 | return FALSE; |
b49e97c9 TS |
9105 | } |
9106 | ||
9719ad41 | 9107 | for (p = o->link_order_head; p != NULL; p = p->next) |
b49e97c9 TS |
9108 | { |
9109 | asection *input_section; | |
9110 | bfd *input_bfd; | |
9111 | const struct ecoff_debug_swap *input_swap; | |
9112 | struct ecoff_debug_info input_debug; | |
9113 | char *eraw_src; | |
9114 | char *eraw_end; | |
9115 | ||
9116 | if (p->type != bfd_indirect_link_order) | |
9117 | { | |
9118 | if (p->type == bfd_data_link_order) | |
9119 | continue; | |
9120 | abort (); | |
9121 | } | |
9122 | ||
9123 | input_section = p->u.indirect.section; | |
9124 | input_bfd = input_section->owner; | |
9125 | ||
9126 | if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour | |
9127 | || (get_elf_backend_data (input_bfd) | |
9128 | ->elf_backend_ecoff_debug_swap) == NULL) | |
9129 | { | |
9130 | /* I don't know what a non MIPS ELF bfd would be | |
9131 | doing with a .mdebug section, but I don't really | |
9132 | want to deal with it. */ | |
9133 | continue; | |
9134 | } | |
9135 | ||
9136 | input_swap = (get_elf_backend_data (input_bfd) | |
9137 | ->elf_backend_ecoff_debug_swap); | |
9138 | ||
eea6121a | 9139 | BFD_ASSERT (p->size == input_section->size); |
b49e97c9 TS |
9140 | |
9141 | /* The ECOFF linking code expects that we have already | |
9142 | read in the debugging information and set up an | |
9143 | ecoff_debug_info structure, so we do that now. */ | |
9144 | if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section, | |
9145 | &input_debug)) | |
b34976b6 | 9146 | return FALSE; |
b49e97c9 TS |
9147 | |
9148 | if (! (bfd_ecoff_debug_accumulate | |
9149 | (mdebug_handle, abfd, &debug, swap, input_bfd, | |
9150 | &input_debug, input_swap, info))) | |
b34976b6 | 9151 | return FALSE; |
b49e97c9 TS |
9152 | |
9153 | /* Loop through the external symbols. For each one with | |
9154 | interesting information, try to find the symbol in | |
9155 | the linker global hash table and save the information | |
9156 | for the output external symbols. */ | |
9157 | eraw_src = input_debug.external_ext; | |
9158 | eraw_end = (eraw_src | |
9159 | + (input_debug.symbolic_header.iextMax | |
9160 | * input_swap->external_ext_size)); | |
9161 | for (; | |
9162 | eraw_src < eraw_end; | |
9163 | eraw_src += input_swap->external_ext_size) | |
9164 | { | |
9165 | EXTR ext; | |
9166 | const char *name; | |
9167 | struct mips_elf_link_hash_entry *h; | |
9168 | ||
9719ad41 | 9169 | (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext); |
b49e97c9 TS |
9170 | if (ext.asym.sc == scNil |
9171 | || ext.asym.sc == scUndefined | |
9172 | || ext.asym.sc == scSUndefined) | |
9173 | continue; | |
9174 | ||
9175 | name = input_debug.ssext + ext.asym.iss; | |
9176 | h = mips_elf_link_hash_lookup (mips_elf_hash_table (info), | |
b34976b6 | 9177 | name, FALSE, FALSE, TRUE); |
b49e97c9 TS |
9178 | if (h == NULL || h->esym.ifd != -2) |
9179 | continue; | |
9180 | ||
9181 | if (ext.ifd != -1) | |
9182 | { | |
9183 | BFD_ASSERT (ext.ifd | |
9184 | < input_debug.symbolic_header.ifdMax); | |
9185 | ext.ifd = input_debug.ifdmap[ext.ifd]; | |
9186 | } | |
9187 | ||
9188 | h->esym = ext; | |
9189 | } | |
9190 | ||
9191 | /* Free up the information we just read. */ | |
9192 | free (input_debug.line); | |
9193 | free (input_debug.external_dnr); | |
9194 | free (input_debug.external_pdr); | |
9195 | free (input_debug.external_sym); | |
9196 | free (input_debug.external_opt); | |
9197 | free (input_debug.external_aux); | |
9198 | free (input_debug.ss); | |
9199 | free (input_debug.ssext); | |
9200 | free (input_debug.external_fdr); | |
9201 | free (input_debug.external_rfd); | |
9202 | free (input_debug.external_ext); | |
9203 | ||
9204 | /* Hack: reset the SEC_HAS_CONTENTS flag so that | |
9205 | elf_link_input_bfd ignores this section. */ | |
9206 | input_section->flags &= ~SEC_HAS_CONTENTS; | |
9207 | } | |
9208 | ||
9209 | if (SGI_COMPAT (abfd) && info->shared) | |
9210 | { | |
9211 | /* Create .rtproc section. */ | |
9212 | rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc"); | |
9213 | if (rtproc_sec == NULL) | |
9214 | { | |
9215 | flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | |
9216 | | SEC_LINKER_CREATED | SEC_READONLY); | |
9217 | ||
9218 | rtproc_sec = bfd_make_section (abfd, ".rtproc"); | |
9219 | if (rtproc_sec == NULL | |
9220 | || ! bfd_set_section_flags (abfd, rtproc_sec, flags) | |
9221 | || ! bfd_set_section_alignment (abfd, rtproc_sec, 4)) | |
b34976b6 | 9222 | return FALSE; |
b49e97c9 TS |
9223 | } |
9224 | ||
9225 | if (! mips_elf_create_procedure_table (mdebug_handle, abfd, | |
9226 | info, rtproc_sec, | |
9227 | &debug)) | |
b34976b6 | 9228 | return FALSE; |
b49e97c9 TS |
9229 | } |
9230 | ||
9231 | /* Build the external symbol information. */ | |
9232 | einfo.abfd = abfd; | |
9233 | einfo.info = info; | |
9234 | einfo.debug = &debug; | |
9235 | einfo.swap = swap; | |
b34976b6 | 9236 | einfo.failed = FALSE; |
b49e97c9 | 9237 | mips_elf_link_hash_traverse (mips_elf_hash_table (info), |
9719ad41 | 9238 | mips_elf_output_extsym, &einfo); |
b49e97c9 | 9239 | if (einfo.failed) |
b34976b6 | 9240 | return FALSE; |
b49e97c9 TS |
9241 | |
9242 | /* Set the size of the .mdebug section. */ | |
eea6121a | 9243 | o->size = bfd_ecoff_debug_size (abfd, &debug, swap); |
b49e97c9 TS |
9244 | |
9245 | /* Skip this section later on (I don't think this currently | |
9246 | matters, but someday it might). */ | |
9719ad41 | 9247 | o->link_order_head = NULL; |
b49e97c9 TS |
9248 | |
9249 | mdebug_sec = o; | |
9250 | } | |
9251 | ||
9252 | if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0) | |
9253 | { | |
9254 | const char *subname; | |
9255 | unsigned int c; | |
9256 | Elf32_gptab *tab; | |
9257 | Elf32_External_gptab *ext_tab; | |
9258 | unsigned int j; | |
9259 | ||
9260 | /* The .gptab.sdata and .gptab.sbss sections hold | |
9261 | information describing how the small data area would | |
9262 | change depending upon the -G switch. These sections | |
9263 | not used in executables files. */ | |
1049f94e | 9264 | if (! info->relocatable) |
b49e97c9 | 9265 | { |
9719ad41 | 9266 | for (p = o->link_order_head; p != NULL; p = p->next) |
b49e97c9 TS |
9267 | { |
9268 | asection *input_section; | |
9269 | ||
9270 | if (p->type != bfd_indirect_link_order) | |
9271 | { | |
9272 | if (p->type == bfd_data_link_order) | |
9273 | continue; | |
9274 | abort (); | |
9275 | } | |
9276 | ||
9277 | input_section = p->u.indirect.section; | |
9278 | ||
9279 | /* Hack: reset the SEC_HAS_CONTENTS flag so that | |
9280 | elf_link_input_bfd ignores this section. */ | |
9281 | input_section->flags &= ~SEC_HAS_CONTENTS; | |
9282 | } | |
9283 | ||
9284 | /* Skip this section later on (I don't think this | |
9285 | currently matters, but someday it might). */ | |
9719ad41 | 9286 | o->link_order_head = NULL; |
b49e97c9 TS |
9287 | |
9288 | /* Really remove the section. */ | |
9289 | for (secpp = &abfd->sections; | |
9290 | *secpp != o; | |
9291 | secpp = &(*secpp)->next) | |
9292 | ; | |
9293 | bfd_section_list_remove (abfd, secpp); | |
9294 | --abfd->section_count; | |
9295 | ||
9296 | continue; | |
9297 | } | |
9298 | ||
9299 | /* There is one gptab for initialized data, and one for | |
9300 | uninitialized data. */ | |
9301 | if (strcmp (o->name, ".gptab.sdata") == 0) | |
9302 | gptab_data_sec = o; | |
9303 | else if (strcmp (o->name, ".gptab.sbss") == 0) | |
9304 | gptab_bss_sec = o; | |
9305 | else | |
9306 | { | |
9307 | (*_bfd_error_handler) | |
9308 | (_("%s: illegal section name `%s'"), | |
9309 | bfd_get_filename (abfd), o->name); | |
9310 | bfd_set_error (bfd_error_nonrepresentable_section); | |
b34976b6 | 9311 | return FALSE; |
b49e97c9 TS |
9312 | } |
9313 | ||
9314 | /* The linker script always combines .gptab.data and | |
9315 | .gptab.sdata into .gptab.sdata, and likewise for | |
9316 | .gptab.bss and .gptab.sbss. It is possible that there is | |
9317 | no .sdata or .sbss section in the output file, in which | |
9318 | case we must change the name of the output section. */ | |
9319 | subname = o->name + sizeof ".gptab" - 1; | |
9320 | if (bfd_get_section_by_name (abfd, subname) == NULL) | |
9321 | { | |
9322 | if (o == gptab_data_sec) | |
9323 | o->name = ".gptab.data"; | |
9324 | else | |
9325 | o->name = ".gptab.bss"; | |
9326 | subname = o->name + sizeof ".gptab" - 1; | |
9327 | BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL); | |
9328 | } | |
9329 | ||
9330 | /* Set up the first entry. */ | |
9331 | c = 1; | |
9332 | amt = c * sizeof (Elf32_gptab); | |
9719ad41 | 9333 | tab = bfd_malloc (amt); |
b49e97c9 | 9334 | if (tab == NULL) |
b34976b6 | 9335 | return FALSE; |
b49e97c9 TS |
9336 | tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd); |
9337 | tab[0].gt_header.gt_unused = 0; | |
9338 | ||
9339 | /* Combine the input sections. */ | |
9719ad41 | 9340 | for (p = o->link_order_head; p != NULL; p = p->next) |
b49e97c9 TS |
9341 | { |
9342 | asection *input_section; | |
9343 | bfd *input_bfd; | |
9344 | bfd_size_type size; | |
9345 | unsigned long last; | |
9346 | bfd_size_type gpentry; | |
9347 | ||
9348 | if (p->type != bfd_indirect_link_order) | |
9349 | { | |
9350 | if (p->type == bfd_data_link_order) | |
9351 | continue; | |
9352 | abort (); | |
9353 | } | |
9354 | ||
9355 | input_section = p->u.indirect.section; | |
9356 | input_bfd = input_section->owner; | |
9357 | ||
9358 | /* Combine the gptab entries for this input section one | |
9359 | by one. We know that the input gptab entries are | |
9360 | sorted by ascending -G value. */ | |
eea6121a | 9361 | size = input_section->size; |
b49e97c9 TS |
9362 | last = 0; |
9363 | for (gpentry = sizeof (Elf32_External_gptab); | |
9364 | gpentry < size; | |
9365 | gpentry += sizeof (Elf32_External_gptab)) | |
9366 | { | |
9367 | Elf32_External_gptab ext_gptab; | |
9368 | Elf32_gptab int_gptab; | |
9369 | unsigned long val; | |
9370 | unsigned long add; | |
b34976b6 | 9371 | bfd_boolean exact; |
b49e97c9 TS |
9372 | unsigned int look; |
9373 | ||
9374 | if (! (bfd_get_section_contents | |
9719ad41 RS |
9375 | (input_bfd, input_section, &ext_gptab, gpentry, |
9376 | sizeof (Elf32_External_gptab)))) | |
b49e97c9 TS |
9377 | { |
9378 | free (tab); | |
b34976b6 | 9379 | return FALSE; |
b49e97c9 TS |
9380 | } |
9381 | ||
9382 | bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab, | |
9383 | &int_gptab); | |
9384 | val = int_gptab.gt_entry.gt_g_value; | |
9385 | add = int_gptab.gt_entry.gt_bytes - last; | |
9386 | ||
b34976b6 | 9387 | exact = FALSE; |
b49e97c9 TS |
9388 | for (look = 1; look < c; look++) |
9389 | { | |
9390 | if (tab[look].gt_entry.gt_g_value >= val) | |
9391 | tab[look].gt_entry.gt_bytes += add; | |
9392 | ||
9393 | if (tab[look].gt_entry.gt_g_value == val) | |
b34976b6 | 9394 | exact = TRUE; |
b49e97c9 TS |
9395 | } |
9396 | ||
9397 | if (! exact) | |
9398 | { | |
9399 | Elf32_gptab *new_tab; | |
9400 | unsigned int max; | |
9401 | ||
9402 | /* We need a new table entry. */ | |
9403 | amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab); | |
9719ad41 | 9404 | new_tab = bfd_realloc (tab, amt); |
b49e97c9 TS |
9405 | if (new_tab == NULL) |
9406 | { | |
9407 | free (tab); | |
b34976b6 | 9408 | return FALSE; |
b49e97c9 TS |
9409 | } |
9410 | tab = new_tab; | |
9411 | tab[c].gt_entry.gt_g_value = val; | |
9412 | tab[c].gt_entry.gt_bytes = add; | |
9413 | ||
9414 | /* Merge in the size for the next smallest -G | |
9415 | value, since that will be implied by this new | |
9416 | value. */ | |
9417 | max = 0; | |
9418 | for (look = 1; look < c; look++) | |
9419 | { | |
9420 | if (tab[look].gt_entry.gt_g_value < val | |
9421 | && (max == 0 | |
9422 | || (tab[look].gt_entry.gt_g_value | |
9423 | > tab[max].gt_entry.gt_g_value))) | |
9424 | max = look; | |
9425 | } | |
9426 | if (max != 0) | |
9427 | tab[c].gt_entry.gt_bytes += | |
9428 | tab[max].gt_entry.gt_bytes; | |
9429 | ||
9430 | ++c; | |
9431 | } | |
9432 | ||
9433 | last = int_gptab.gt_entry.gt_bytes; | |
9434 | } | |
9435 | ||
9436 | /* Hack: reset the SEC_HAS_CONTENTS flag so that | |
9437 | elf_link_input_bfd ignores this section. */ | |
9438 | input_section->flags &= ~SEC_HAS_CONTENTS; | |
9439 | } | |
9440 | ||
9441 | /* The table must be sorted by -G value. */ | |
9442 | if (c > 2) | |
9443 | qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare); | |
9444 | ||
9445 | /* Swap out the table. */ | |
9446 | amt = (bfd_size_type) c * sizeof (Elf32_External_gptab); | |
9719ad41 | 9447 | ext_tab = bfd_alloc (abfd, amt); |
b49e97c9 TS |
9448 | if (ext_tab == NULL) |
9449 | { | |
9450 | free (tab); | |
b34976b6 | 9451 | return FALSE; |
b49e97c9 TS |
9452 | } |
9453 | ||
9454 | for (j = 0; j < c; j++) | |
9455 | bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j); | |
9456 | free (tab); | |
9457 | ||
eea6121a | 9458 | o->size = c * sizeof (Elf32_External_gptab); |
b49e97c9 TS |
9459 | o->contents = (bfd_byte *) ext_tab; |
9460 | ||
9461 | /* Skip this section later on (I don't think this currently | |
9462 | matters, but someday it might). */ | |
9719ad41 | 9463 | o->link_order_head = NULL; |
b49e97c9 TS |
9464 | } |
9465 | } | |
9466 | ||
9467 | /* Invoke the regular ELF backend linker to do all the work. */ | |
c152c796 | 9468 | if (!bfd_elf_final_link (abfd, info)) |
b34976b6 | 9469 | return FALSE; |
b49e97c9 TS |
9470 | |
9471 | /* Now write out the computed sections. */ | |
9472 | ||
9719ad41 | 9473 | if (reginfo_sec != NULL) |
b49e97c9 TS |
9474 | { |
9475 | Elf32_External_RegInfo ext; | |
9476 | ||
9477 | bfd_mips_elf32_swap_reginfo_out (abfd, ®info, &ext); | |
9719ad41 | 9478 | if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext)) |
b34976b6 | 9479 | return FALSE; |
b49e97c9 TS |
9480 | } |
9481 | ||
9719ad41 | 9482 | if (mdebug_sec != NULL) |
b49e97c9 TS |
9483 | { |
9484 | BFD_ASSERT (abfd->output_has_begun); | |
9485 | if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug, | |
9486 | swap, info, | |
9487 | mdebug_sec->filepos)) | |
b34976b6 | 9488 | return FALSE; |
b49e97c9 TS |
9489 | |
9490 | bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info); | |
9491 | } | |
9492 | ||
9719ad41 | 9493 | if (gptab_data_sec != NULL) |
b49e97c9 TS |
9494 | { |
9495 | if (! bfd_set_section_contents (abfd, gptab_data_sec, | |
9496 | gptab_data_sec->contents, | |
eea6121a | 9497 | 0, gptab_data_sec->size)) |
b34976b6 | 9498 | return FALSE; |
b49e97c9 TS |
9499 | } |
9500 | ||
9719ad41 | 9501 | if (gptab_bss_sec != NULL) |
b49e97c9 TS |
9502 | { |
9503 | if (! bfd_set_section_contents (abfd, gptab_bss_sec, | |
9504 | gptab_bss_sec->contents, | |
eea6121a | 9505 | 0, gptab_bss_sec->size)) |
b34976b6 | 9506 | return FALSE; |
b49e97c9 TS |
9507 | } |
9508 | ||
9509 | if (SGI_COMPAT (abfd)) | |
9510 | { | |
9511 | rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc"); | |
9512 | if (rtproc_sec != NULL) | |
9513 | { | |
9514 | if (! bfd_set_section_contents (abfd, rtproc_sec, | |
9515 | rtproc_sec->contents, | |
eea6121a | 9516 | 0, rtproc_sec->size)) |
b34976b6 | 9517 | return FALSE; |
b49e97c9 TS |
9518 | } |
9519 | } | |
9520 | ||
b34976b6 | 9521 | return TRUE; |
b49e97c9 TS |
9522 | } |
9523 | \f | |
64543e1a RS |
9524 | /* Structure for saying that BFD machine EXTENSION extends BASE. */ |
9525 | ||
9526 | struct mips_mach_extension { | |
9527 | unsigned long extension, base; | |
9528 | }; | |
9529 | ||
9530 | ||
9531 | /* An array describing how BFD machines relate to one another. The entries | |
9532 | are ordered topologically with MIPS I extensions listed last. */ | |
9533 | ||
9534 | static const struct mips_mach_extension mips_mach_extensions[] = { | |
9535 | /* MIPS64 extensions. */ | |
5f74bc13 | 9536 | { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 }, |
64543e1a RS |
9537 | { bfd_mach_mips_sb1, bfd_mach_mipsisa64 }, |
9538 | ||
9539 | /* MIPS V extensions. */ | |
9540 | { bfd_mach_mipsisa64, bfd_mach_mips5 }, | |
9541 | ||
9542 | /* R10000 extensions. */ | |
9543 | { bfd_mach_mips12000, bfd_mach_mips10000 }, | |
9544 | ||
9545 | /* R5000 extensions. Note: the vr5500 ISA is an extension of the core | |
9546 | vr5400 ISA, but doesn't include the multimedia stuff. It seems | |
9547 | better to allow vr5400 and vr5500 code to be merged anyway, since | |
9548 | many libraries will just use the core ISA. Perhaps we could add | |
9549 | some sort of ASE flag if this ever proves a problem. */ | |
9550 | { bfd_mach_mips5500, bfd_mach_mips5400 }, | |
9551 | { bfd_mach_mips5400, bfd_mach_mips5000 }, | |
9552 | ||
9553 | /* MIPS IV extensions. */ | |
9554 | { bfd_mach_mips5, bfd_mach_mips8000 }, | |
9555 | { bfd_mach_mips10000, bfd_mach_mips8000 }, | |
9556 | { bfd_mach_mips5000, bfd_mach_mips8000 }, | |
5a7ea749 | 9557 | { bfd_mach_mips7000, bfd_mach_mips8000 }, |
0d2e43ed | 9558 | { bfd_mach_mips9000, bfd_mach_mips8000 }, |
64543e1a RS |
9559 | |
9560 | /* VR4100 extensions. */ | |
9561 | { bfd_mach_mips4120, bfd_mach_mips4100 }, | |
9562 | { bfd_mach_mips4111, bfd_mach_mips4100 }, | |
9563 | ||
9564 | /* MIPS III extensions. */ | |
9565 | { bfd_mach_mips8000, bfd_mach_mips4000 }, | |
9566 | { bfd_mach_mips4650, bfd_mach_mips4000 }, | |
9567 | { bfd_mach_mips4600, bfd_mach_mips4000 }, | |
9568 | { bfd_mach_mips4400, bfd_mach_mips4000 }, | |
9569 | { bfd_mach_mips4300, bfd_mach_mips4000 }, | |
9570 | { bfd_mach_mips4100, bfd_mach_mips4000 }, | |
9571 | { bfd_mach_mips4010, bfd_mach_mips4000 }, | |
9572 | ||
9573 | /* MIPS32 extensions. */ | |
9574 | { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 }, | |
9575 | ||
9576 | /* MIPS II extensions. */ | |
9577 | { bfd_mach_mips4000, bfd_mach_mips6000 }, | |
9578 | { bfd_mach_mipsisa32, bfd_mach_mips6000 }, | |
9579 | ||
9580 | /* MIPS I extensions. */ | |
9581 | { bfd_mach_mips6000, bfd_mach_mips3000 }, | |
9582 | { bfd_mach_mips3900, bfd_mach_mips3000 } | |
9583 | }; | |
9584 | ||
9585 | ||
9586 | /* Return true if bfd machine EXTENSION is an extension of machine BASE. */ | |
9587 | ||
9588 | static bfd_boolean | |
9719ad41 | 9589 | mips_mach_extends_p (unsigned long base, unsigned long extension) |
64543e1a RS |
9590 | { |
9591 | size_t i; | |
9592 | ||
9593 | for (i = 0; extension != base && i < ARRAY_SIZE (mips_mach_extensions); i++) | |
9594 | if (extension == mips_mach_extensions[i].extension) | |
9595 | extension = mips_mach_extensions[i].base; | |
9596 | ||
9597 | return extension == base; | |
9598 | } | |
9599 | ||
9600 | ||
9601 | /* Return true if the given ELF header flags describe a 32-bit binary. */ | |
00707a0e | 9602 | |
b34976b6 | 9603 | static bfd_boolean |
9719ad41 | 9604 | mips_32bit_flags_p (flagword flags) |
00707a0e | 9605 | { |
64543e1a RS |
9606 | return ((flags & EF_MIPS_32BITMODE) != 0 |
9607 | || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32 | |
9608 | || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32 | |
9609 | || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1 | |
9610 | || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2 | |
9611 | || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32 | |
9612 | || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2); | |
00707a0e RS |
9613 | } |
9614 | ||
64543e1a | 9615 | |
b49e97c9 TS |
9616 | /* Merge backend specific data from an object file to the output |
9617 | object file when linking. */ | |
9618 | ||
b34976b6 | 9619 | bfd_boolean |
9719ad41 | 9620 | _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd) |
b49e97c9 TS |
9621 | { |
9622 | flagword old_flags; | |
9623 | flagword new_flags; | |
b34976b6 AM |
9624 | bfd_boolean ok; |
9625 | bfd_boolean null_input_bfd = TRUE; | |
b49e97c9 TS |
9626 | asection *sec; |
9627 | ||
9628 | /* Check if we have the same endianess */ | |
82e51918 | 9629 | if (! _bfd_generic_verify_endian_match (ibfd, obfd)) |
aa701218 AO |
9630 | { |
9631 | (*_bfd_error_handler) | |
d003868e AM |
9632 | (_("%B: endianness incompatible with that of the selected emulation"), |
9633 | ibfd); | |
aa701218 AO |
9634 | return FALSE; |
9635 | } | |
b49e97c9 TS |
9636 | |
9637 | if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour | |
9638 | || bfd_get_flavour (obfd) != bfd_target_elf_flavour) | |
b34976b6 | 9639 | return TRUE; |
b49e97c9 | 9640 | |
aa701218 AO |
9641 | if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0) |
9642 | { | |
9643 | (*_bfd_error_handler) | |
d003868e AM |
9644 | (_("%B: ABI is incompatible with that of the selected emulation"), |
9645 | ibfd); | |
aa701218 AO |
9646 | return FALSE; |
9647 | } | |
9648 | ||
b49e97c9 TS |
9649 | new_flags = elf_elfheader (ibfd)->e_flags; |
9650 | elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER; | |
9651 | old_flags = elf_elfheader (obfd)->e_flags; | |
9652 | ||
9653 | if (! elf_flags_init (obfd)) | |
9654 | { | |
b34976b6 | 9655 | elf_flags_init (obfd) = TRUE; |
b49e97c9 TS |
9656 | elf_elfheader (obfd)->e_flags = new_flags; |
9657 | elf_elfheader (obfd)->e_ident[EI_CLASS] | |
9658 | = elf_elfheader (ibfd)->e_ident[EI_CLASS]; | |
9659 | ||
9660 | if (bfd_get_arch (obfd) == bfd_get_arch (ibfd) | |
9661 | && bfd_get_arch_info (obfd)->the_default) | |
9662 | { | |
9663 | if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), | |
9664 | bfd_get_mach (ibfd))) | |
b34976b6 | 9665 | return FALSE; |
b49e97c9 TS |
9666 | } |
9667 | ||
b34976b6 | 9668 | return TRUE; |
b49e97c9 TS |
9669 | } |
9670 | ||
9671 | /* Check flag compatibility. */ | |
9672 | ||
9673 | new_flags &= ~EF_MIPS_NOREORDER; | |
9674 | old_flags &= ~EF_MIPS_NOREORDER; | |
9675 | ||
f4416af6 AO |
9676 | /* Some IRIX 6 BSD-compatibility objects have this bit set. It |
9677 | doesn't seem to matter. */ | |
9678 | new_flags &= ~EF_MIPS_XGOT; | |
9679 | old_flags &= ~EF_MIPS_XGOT; | |
9680 | ||
98a8deaf RS |
9681 | /* MIPSpro generates ucode info in n64 objects. Again, we should |
9682 | just be able to ignore this. */ | |
9683 | new_flags &= ~EF_MIPS_UCODE; | |
9684 | old_flags &= ~EF_MIPS_UCODE; | |
9685 | ||
b49e97c9 | 9686 | if (new_flags == old_flags) |
b34976b6 | 9687 | return TRUE; |
b49e97c9 TS |
9688 | |
9689 | /* Check to see if the input BFD actually contains any sections. | |
9690 | If not, its flags may not have been initialised either, but it cannot | |
9691 | actually cause any incompatibility. */ | |
9692 | for (sec = ibfd->sections; sec != NULL; sec = sec->next) | |
9693 | { | |
9694 | /* Ignore synthetic sections and empty .text, .data and .bss sections | |
9695 | which are automatically generated by gas. */ | |
9696 | if (strcmp (sec->name, ".reginfo") | |
9697 | && strcmp (sec->name, ".mdebug") | |
eea6121a | 9698 | && (sec->size != 0 |
d13d89fa NS |
9699 | || (strcmp (sec->name, ".text") |
9700 | && strcmp (sec->name, ".data") | |
9701 | && strcmp (sec->name, ".bss")))) | |
b49e97c9 | 9702 | { |
b34976b6 | 9703 | null_input_bfd = FALSE; |
b49e97c9 TS |
9704 | break; |
9705 | } | |
9706 | } | |
9707 | if (null_input_bfd) | |
b34976b6 | 9708 | return TRUE; |
b49e97c9 | 9709 | |
b34976b6 | 9710 | ok = TRUE; |
b49e97c9 | 9711 | |
143d77c5 EC |
9712 | if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0) |
9713 | != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)) | |
b49e97c9 | 9714 | { |
b49e97c9 | 9715 | (*_bfd_error_handler) |
d003868e AM |
9716 | (_("%B: warning: linking PIC files with non-PIC files"), |
9717 | ibfd); | |
143d77c5 | 9718 | ok = TRUE; |
b49e97c9 TS |
9719 | } |
9720 | ||
143d77c5 EC |
9721 | if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) |
9722 | elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC; | |
9723 | if (! (new_flags & EF_MIPS_PIC)) | |
9724 | elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC; | |
9725 | ||
9726 | new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC); | |
9727 | old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC); | |
b49e97c9 | 9728 | |
64543e1a RS |
9729 | /* Compare the ISAs. */ |
9730 | if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags)) | |
b49e97c9 | 9731 | { |
64543e1a | 9732 | (*_bfd_error_handler) |
d003868e AM |
9733 | (_("%B: linking 32-bit code with 64-bit code"), |
9734 | ibfd); | |
64543e1a RS |
9735 | ok = FALSE; |
9736 | } | |
9737 | else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd))) | |
9738 | { | |
9739 | /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */ | |
9740 | if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd))) | |
b49e97c9 | 9741 | { |
64543e1a RS |
9742 | /* Copy the architecture info from IBFD to OBFD. Also copy |
9743 | the 32-bit flag (if set) so that we continue to recognise | |
9744 | OBFD as a 32-bit binary. */ | |
9745 | bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd)); | |
9746 | elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH); | |
9747 | elf_elfheader (obfd)->e_flags | |
9748 | |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE); | |
9749 | ||
9750 | /* Copy across the ABI flags if OBFD doesn't use them | |
9751 | and if that was what caused us to treat IBFD as 32-bit. */ | |
9752 | if ((old_flags & EF_MIPS_ABI) == 0 | |
9753 | && mips_32bit_flags_p (new_flags) | |
9754 | && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI)) | |
9755 | elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI; | |
b49e97c9 TS |
9756 | } |
9757 | else | |
9758 | { | |
64543e1a | 9759 | /* The ISAs aren't compatible. */ |
b49e97c9 | 9760 | (*_bfd_error_handler) |
d003868e AM |
9761 | (_("%B: linking %s module with previous %s modules"), |
9762 | ibfd, | |
64543e1a RS |
9763 | bfd_printable_name (ibfd), |
9764 | bfd_printable_name (obfd)); | |
b34976b6 | 9765 | ok = FALSE; |
b49e97c9 | 9766 | } |
b49e97c9 TS |
9767 | } |
9768 | ||
64543e1a RS |
9769 | new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE); |
9770 | old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE); | |
9771 | ||
9772 | /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it | |
b49e97c9 TS |
9773 | does set EI_CLASS differently from any 32-bit ABI. */ |
9774 | if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI) | |
9775 | || (elf_elfheader (ibfd)->e_ident[EI_CLASS] | |
9776 | != elf_elfheader (obfd)->e_ident[EI_CLASS])) | |
9777 | { | |
9778 | /* Only error if both are set (to different values). */ | |
9779 | if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI)) | |
9780 | || (elf_elfheader (ibfd)->e_ident[EI_CLASS] | |
9781 | != elf_elfheader (obfd)->e_ident[EI_CLASS])) | |
9782 | { | |
9783 | (*_bfd_error_handler) | |
d003868e AM |
9784 | (_("%B: ABI mismatch: linking %s module with previous %s modules"), |
9785 | ibfd, | |
b49e97c9 TS |
9786 | elf_mips_abi_name (ibfd), |
9787 | elf_mips_abi_name (obfd)); | |
b34976b6 | 9788 | ok = FALSE; |
b49e97c9 TS |
9789 | } |
9790 | new_flags &= ~EF_MIPS_ABI; | |
9791 | old_flags &= ~EF_MIPS_ABI; | |
9792 | } | |
9793 | ||
fb39dac1 RS |
9794 | /* For now, allow arbitrary mixing of ASEs (retain the union). */ |
9795 | if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE)) | |
9796 | { | |
9797 | elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE; | |
9798 | ||
9799 | new_flags &= ~ EF_MIPS_ARCH_ASE; | |
9800 | old_flags &= ~ EF_MIPS_ARCH_ASE; | |
9801 | } | |
9802 | ||
b49e97c9 TS |
9803 | /* Warn about any other mismatches */ |
9804 | if (new_flags != old_flags) | |
9805 | { | |
9806 | (*_bfd_error_handler) | |
d003868e AM |
9807 | (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"), |
9808 | ibfd, (unsigned long) new_flags, | |
b49e97c9 | 9809 | (unsigned long) old_flags); |
b34976b6 | 9810 | ok = FALSE; |
b49e97c9 TS |
9811 | } |
9812 | ||
9813 | if (! ok) | |
9814 | { | |
9815 | bfd_set_error (bfd_error_bad_value); | |
b34976b6 | 9816 | return FALSE; |
b49e97c9 TS |
9817 | } |
9818 | ||
b34976b6 | 9819 | return TRUE; |
b49e97c9 TS |
9820 | } |
9821 | ||
9822 | /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */ | |
9823 | ||
b34976b6 | 9824 | bfd_boolean |
9719ad41 | 9825 | _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags) |
b49e97c9 TS |
9826 | { |
9827 | BFD_ASSERT (!elf_flags_init (abfd) | |
9828 | || elf_elfheader (abfd)->e_flags == flags); | |
9829 | ||
9830 | elf_elfheader (abfd)->e_flags = flags; | |
b34976b6 AM |
9831 | elf_flags_init (abfd) = TRUE; |
9832 | return TRUE; | |
b49e97c9 TS |
9833 | } |
9834 | ||
b34976b6 | 9835 | bfd_boolean |
9719ad41 | 9836 | _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr) |
b49e97c9 | 9837 | { |
9719ad41 | 9838 | FILE *file = ptr; |
b49e97c9 TS |
9839 | |
9840 | BFD_ASSERT (abfd != NULL && ptr != NULL); | |
9841 | ||
9842 | /* Print normal ELF private data. */ | |
9843 | _bfd_elf_print_private_bfd_data (abfd, ptr); | |
9844 | ||
9845 | /* xgettext:c-format */ | |
9846 | fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags); | |
9847 | ||
9848 | if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32) | |
9849 | fprintf (file, _(" [abi=O32]")); | |
9850 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64) | |
9851 | fprintf (file, _(" [abi=O64]")); | |
9852 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32) | |
9853 | fprintf (file, _(" [abi=EABI32]")); | |
9854 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64) | |
9855 | fprintf (file, _(" [abi=EABI64]")); | |
9856 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI)) | |
9857 | fprintf (file, _(" [abi unknown]")); | |
9858 | else if (ABI_N32_P (abfd)) | |
9859 | fprintf (file, _(" [abi=N32]")); | |
9860 | else if (ABI_64_P (abfd)) | |
9861 | fprintf (file, _(" [abi=64]")); | |
9862 | else | |
9863 | fprintf (file, _(" [no abi set]")); | |
9864 | ||
9865 | if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1) | |
9866 | fprintf (file, _(" [mips1]")); | |
9867 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2) | |
9868 | fprintf (file, _(" [mips2]")); | |
9869 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3) | |
9870 | fprintf (file, _(" [mips3]")); | |
9871 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4) | |
9872 | fprintf (file, _(" [mips4]")); | |
9873 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5) | |
9874 | fprintf (file, _(" [mips5]")); | |
9875 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32) | |
9876 | fprintf (file, _(" [mips32]")); | |
9877 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64) | |
9878 | fprintf (file, _(" [mips64]")); | |
af7ee8bf CD |
9879 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2) |
9880 | fprintf (file, _(" [mips32r2]")); | |
5f74bc13 CD |
9881 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2) |
9882 | fprintf (file, _(" [mips64r2]")); | |
b49e97c9 TS |
9883 | else |
9884 | fprintf (file, _(" [unknown ISA]")); | |
9885 | ||
40d32fc6 CD |
9886 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX) |
9887 | fprintf (file, _(" [mdmx]")); | |
9888 | ||
9889 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16) | |
9890 | fprintf (file, _(" [mips16]")); | |
9891 | ||
b49e97c9 TS |
9892 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE) |
9893 | fprintf (file, _(" [32bitmode]")); | |
9894 | else | |
9895 | fprintf (file, _(" [not 32bitmode]")); | |
9896 | ||
9897 | fputc ('\n', file); | |
9898 | ||
b34976b6 | 9899 | return TRUE; |
b49e97c9 | 9900 | } |
2f89ff8d L |
9901 | |
9902 | struct bfd_elf_special_section const _bfd_mips_elf_special_sections[]= | |
9903 | { | |
7dcb9820 AM |
9904 | { ".sdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, |
9905 | { ".sbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, | |
9906 | { ".lit4", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, | |
9907 | { ".lit8", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, | |
9908 | { ".ucode", 6, 0, SHT_MIPS_UCODE, 0 }, | |
9909 | { ".mdebug", 7, 0, SHT_MIPS_DEBUG, 0 }, | |
9910 | { NULL, 0, 0, 0, 0 } | |
2f89ff8d | 9911 | }; |