]>
Commit | Line | Data |
---|---|---|
b49e97c9 | 1 | /* MIPS-specific support for ELF |
64543e1a | 2 | Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, |
66eb6687 | 3 | 2003, 2004, 2005, 2006 Free Software Foundation, Inc. |
b49e97c9 TS |
4 | |
5 | Most of the information added by Ian Lance Taylor, Cygnus Support, | |
6 | <[email protected]>. | |
7 | N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC. | |
8 | <[email protected]> | |
9 | Traditional MIPS targets support added by Koundinya.K, Dansk Data | |
10 | Elektronik & Operations Research Group. <[email protected]> | |
11 | ||
ae9a127f | 12 | This file is part of BFD, the Binary File Descriptor library. |
b49e97c9 | 13 | |
ae9a127f NC |
14 | This program is free software; you can redistribute it and/or modify |
15 | it under the terms of the GNU General Public License as published by | |
16 | the Free Software Foundation; either version 2 of the License, or | |
17 | (at your option) any later version. | |
b49e97c9 | 18 | |
ae9a127f NC |
19 | This program is distributed in the hope that it will be useful, |
20 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
21 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
22 | GNU General Public License for more details. | |
b49e97c9 | 23 | |
ae9a127f NC |
24 | You should have received a copy of the GNU General Public License |
25 | along with this program; if not, write to the Free Software | |
3e110533 | 26 | Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ |
b49e97c9 TS |
27 | |
28 | /* This file handles functionality common to the different MIPS ABI's. */ | |
29 | ||
30 | #include "bfd.h" | |
31 | #include "sysdep.h" | |
32 | #include "libbfd.h" | |
64543e1a | 33 | #include "libiberty.h" |
b49e97c9 TS |
34 | #include "elf-bfd.h" |
35 | #include "elfxx-mips.h" | |
36 | #include "elf/mips.h" | |
0a44bf69 | 37 | #include "elf-vxworks.h" |
b49e97c9 TS |
38 | |
39 | /* Get the ECOFF swapping routines. */ | |
40 | #include "coff/sym.h" | |
41 | #include "coff/symconst.h" | |
42 | #include "coff/ecoff.h" | |
43 | #include "coff/mips.h" | |
44 | ||
b15e6682 AO |
45 | #include "hashtab.h" |
46 | ||
ead49a57 RS |
47 | /* This structure is used to hold information about one GOT entry. |
48 | There are three types of entry: | |
49 | ||
50 | (1) absolute addresses | |
51 | (abfd == NULL) | |
52 | (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd | |
53 | (abfd != NULL, symndx >= 0) | |
54 | (3) global and forced-local symbols | |
55 | (abfd != NULL, symndx == -1) | |
56 | ||
57 | Type (3) entries are treated differently for different types of GOT. | |
58 | In the "master" GOT -- i.e. the one that describes every GOT | |
59 | reference needed in the link -- the mips_got_entry is keyed on both | |
60 | the symbol and the input bfd that references it. If it turns out | |
61 | that we need multiple GOTs, we can then use this information to | |
62 | create separate GOTs for each input bfd. | |
63 | ||
64 | However, we want each of these separate GOTs to have at most one | |
65 | entry for a given symbol, so their type (3) entries are keyed only | |
66 | on the symbol. The input bfd given by the "abfd" field is somewhat | |
67 | arbitrary in this case. | |
68 | ||
69 | This means that when there are multiple GOTs, each GOT has a unique | |
70 | mips_got_entry for every symbol within it. We can therefore use the | |
71 | mips_got_entry fields (tls_type and gotidx) to track the symbol's | |
72 | GOT index. | |
73 | ||
74 | However, if it turns out that we need only a single GOT, we continue | |
75 | to use the master GOT to describe it. There may therefore be several | |
76 | mips_got_entries for the same symbol, each with a different input bfd. | |
77 | We want to make sure that each symbol gets a unique GOT entry, so when | |
78 | there's a single GOT, we use the symbol's hash entry, not the | |
79 | mips_got_entry fields, to track a symbol's GOT index. */ | |
b15e6682 AO |
80 | struct mips_got_entry |
81 | { | |
82 | /* The input bfd in which the symbol is defined. */ | |
83 | bfd *abfd; | |
f4416af6 AO |
84 | /* The index of the symbol, as stored in the relocation r_info, if |
85 | we have a local symbol; -1 otherwise. */ | |
86 | long symndx; | |
87 | union | |
88 | { | |
89 | /* If abfd == NULL, an address that must be stored in the got. */ | |
90 | bfd_vma address; | |
91 | /* If abfd != NULL && symndx != -1, the addend of the relocation | |
92 | that should be added to the symbol value. */ | |
93 | bfd_vma addend; | |
94 | /* If abfd != NULL && symndx == -1, the hash table entry | |
95 | corresponding to a global symbol in the got (or, local, if | |
96 | h->forced_local). */ | |
97 | struct mips_elf_link_hash_entry *h; | |
98 | } d; | |
0f20cc35 DJ |
99 | |
100 | /* The TLS types included in this GOT entry (specifically, GD and | |
101 | IE). The GD and IE flags can be added as we encounter new | |
102 | relocations. LDM can also be set; it will always be alone, not | |
103 | combined with any GD or IE flags. An LDM GOT entry will be | |
104 | a local symbol entry with r_symndx == 0. */ | |
105 | unsigned char tls_type; | |
106 | ||
b15e6682 | 107 | /* The offset from the beginning of the .got section to the entry |
f4416af6 AO |
108 | corresponding to this symbol+addend. If it's a global symbol |
109 | whose offset is yet to be decided, it's going to be -1. */ | |
110 | long gotidx; | |
b15e6682 AO |
111 | }; |
112 | ||
f0abc2a1 | 113 | /* This structure is used to hold .got information when linking. */ |
b49e97c9 TS |
114 | |
115 | struct mips_got_info | |
116 | { | |
117 | /* The global symbol in the GOT with the lowest index in the dynamic | |
118 | symbol table. */ | |
119 | struct elf_link_hash_entry *global_gotsym; | |
120 | /* The number of global .got entries. */ | |
121 | unsigned int global_gotno; | |
0f20cc35 DJ |
122 | /* The number of .got slots used for TLS. */ |
123 | unsigned int tls_gotno; | |
124 | /* The first unused TLS .got entry. Used only during | |
125 | mips_elf_initialize_tls_index. */ | |
126 | unsigned int tls_assigned_gotno; | |
b49e97c9 TS |
127 | /* The number of local .got entries. */ |
128 | unsigned int local_gotno; | |
129 | /* The number of local .got entries we have used. */ | |
130 | unsigned int assigned_gotno; | |
b15e6682 AO |
131 | /* A hash table holding members of the got. */ |
132 | struct htab *got_entries; | |
f4416af6 AO |
133 | /* A hash table mapping input bfds to other mips_got_info. NULL |
134 | unless multi-got was necessary. */ | |
135 | struct htab *bfd2got; | |
136 | /* In multi-got links, a pointer to the next got (err, rather, most | |
137 | of the time, it points to the previous got). */ | |
138 | struct mips_got_info *next; | |
0f20cc35 DJ |
139 | /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE |
140 | for none, or MINUS_TWO for not yet assigned. This is needed | |
141 | because a single-GOT link may have multiple hash table entries | |
142 | for the LDM. It does not get initialized in multi-GOT mode. */ | |
143 | bfd_vma tls_ldm_offset; | |
f4416af6 AO |
144 | }; |
145 | ||
146 | /* Map an input bfd to a got in a multi-got link. */ | |
147 | ||
148 | struct mips_elf_bfd2got_hash { | |
149 | bfd *bfd; | |
150 | struct mips_got_info *g; | |
151 | }; | |
152 | ||
153 | /* Structure passed when traversing the bfd2got hash table, used to | |
154 | create and merge bfd's gots. */ | |
155 | ||
156 | struct mips_elf_got_per_bfd_arg | |
157 | { | |
158 | /* A hashtable that maps bfds to gots. */ | |
159 | htab_t bfd2got; | |
160 | /* The output bfd. */ | |
161 | bfd *obfd; | |
162 | /* The link information. */ | |
163 | struct bfd_link_info *info; | |
164 | /* A pointer to the primary got, i.e., the one that's going to get | |
165 | the implicit relocations from DT_MIPS_LOCAL_GOTNO and | |
166 | DT_MIPS_GOTSYM. */ | |
167 | struct mips_got_info *primary; | |
168 | /* A non-primary got we're trying to merge with other input bfd's | |
169 | gots. */ | |
170 | struct mips_got_info *current; | |
171 | /* The maximum number of got entries that can be addressed with a | |
172 | 16-bit offset. */ | |
173 | unsigned int max_count; | |
174 | /* The number of local and global entries in the primary got. */ | |
175 | unsigned int primary_count; | |
176 | /* The number of local and global entries in the current got. */ | |
177 | unsigned int current_count; | |
0f20cc35 DJ |
178 | /* The total number of global entries which will live in the |
179 | primary got and be automatically relocated. This includes | |
180 | those not referenced by the primary GOT but included in | |
181 | the "master" GOT. */ | |
182 | unsigned int global_count; | |
f4416af6 AO |
183 | }; |
184 | ||
185 | /* Another structure used to pass arguments for got entries traversal. */ | |
186 | ||
187 | struct mips_elf_set_global_got_offset_arg | |
188 | { | |
189 | struct mips_got_info *g; | |
190 | int value; | |
191 | unsigned int needed_relocs; | |
192 | struct bfd_link_info *info; | |
b49e97c9 TS |
193 | }; |
194 | ||
0f20cc35 DJ |
195 | /* A structure used to count TLS relocations or GOT entries, for GOT |
196 | entry or ELF symbol table traversal. */ | |
197 | ||
198 | struct mips_elf_count_tls_arg | |
199 | { | |
200 | struct bfd_link_info *info; | |
201 | unsigned int needed; | |
202 | }; | |
203 | ||
f0abc2a1 AM |
204 | struct _mips_elf_section_data |
205 | { | |
206 | struct bfd_elf_section_data elf; | |
207 | union | |
208 | { | |
209 | struct mips_got_info *got_info; | |
210 | bfd_byte *tdata; | |
211 | } u; | |
212 | }; | |
213 | ||
214 | #define mips_elf_section_data(sec) \ | |
68bfbfcc | 215 | ((struct _mips_elf_section_data *) elf_section_data (sec)) |
f0abc2a1 | 216 | |
b49e97c9 TS |
217 | /* This structure is passed to mips_elf_sort_hash_table_f when sorting |
218 | the dynamic symbols. */ | |
219 | ||
220 | struct mips_elf_hash_sort_data | |
221 | { | |
222 | /* The symbol in the global GOT with the lowest dynamic symbol table | |
223 | index. */ | |
224 | struct elf_link_hash_entry *low; | |
0f20cc35 DJ |
225 | /* The least dynamic symbol table index corresponding to a non-TLS |
226 | symbol with a GOT entry. */ | |
b49e97c9 | 227 | long min_got_dynindx; |
f4416af6 AO |
228 | /* The greatest dynamic symbol table index corresponding to a symbol |
229 | with a GOT entry that is not referenced (e.g., a dynamic symbol | |
9e4aeb93 | 230 | with dynamic relocations pointing to it from non-primary GOTs). */ |
f4416af6 | 231 | long max_unref_got_dynindx; |
b49e97c9 TS |
232 | /* The greatest dynamic symbol table index not corresponding to a |
233 | symbol without a GOT entry. */ | |
234 | long max_non_got_dynindx; | |
235 | }; | |
236 | ||
237 | /* The MIPS ELF linker needs additional information for each symbol in | |
238 | the global hash table. */ | |
239 | ||
240 | struct mips_elf_link_hash_entry | |
241 | { | |
242 | struct elf_link_hash_entry root; | |
243 | ||
244 | /* External symbol information. */ | |
245 | EXTR esym; | |
246 | ||
247 | /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against | |
248 | this symbol. */ | |
249 | unsigned int possibly_dynamic_relocs; | |
250 | ||
251 | /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against | |
252 | a readonly section. */ | |
b34976b6 | 253 | bfd_boolean readonly_reloc; |
b49e97c9 | 254 | |
b49e97c9 TS |
255 | /* We must not create a stub for a symbol that has relocations |
256 | related to taking the function's address, i.e. any but | |
257 | R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition", | |
258 | p. 4-20. */ | |
b34976b6 | 259 | bfd_boolean no_fn_stub; |
b49e97c9 TS |
260 | |
261 | /* If there is a stub that 32 bit functions should use to call this | |
262 | 16 bit function, this points to the section containing the stub. */ | |
263 | asection *fn_stub; | |
264 | ||
265 | /* Whether we need the fn_stub; this is set if this symbol appears | |
266 | in any relocs other than a 16 bit call. */ | |
b34976b6 | 267 | bfd_boolean need_fn_stub; |
b49e97c9 TS |
268 | |
269 | /* If there is a stub that 16 bit functions should use to call this | |
270 | 32 bit function, this points to the section containing the stub. */ | |
271 | asection *call_stub; | |
272 | ||
273 | /* This is like the call_stub field, but it is used if the function | |
274 | being called returns a floating point value. */ | |
275 | asection *call_fp_stub; | |
7c5fcef7 | 276 | |
a008ac03 DJ |
277 | /* Are we forced local? This will only be set if we have converted |
278 | the initial global GOT entry to a local GOT entry. */ | |
b34976b6 | 279 | bfd_boolean forced_local; |
0f20cc35 | 280 | |
0a44bf69 RS |
281 | /* Are we referenced by some kind of relocation? */ |
282 | bfd_boolean is_relocation_target; | |
283 | ||
284 | /* Are we referenced by branch relocations? */ | |
285 | bfd_boolean is_branch_target; | |
286 | ||
0f20cc35 DJ |
287 | #define GOT_NORMAL 0 |
288 | #define GOT_TLS_GD 1 | |
289 | #define GOT_TLS_LDM 2 | |
290 | #define GOT_TLS_IE 4 | |
291 | #define GOT_TLS_OFFSET_DONE 0x40 | |
292 | #define GOT_TLS_DONE 0x80 | |
293 | unsigned char tls_type; | |
294 | /* This is only used in single-GOT mode; in multi-GOT mode there | |
295 | is one mips_got_entry per GOT entry, so the offset is stored | |
296 | there. In single-GOT mode there may be many mips_got_entry | |
297 | structures all referring to the same GOT slot. It might be | |
298 | possible to use root.got.offset instead, but that field is | |
299 | overloaded already. */ | |
300 | bfd_vma tls_got_offset; | |
b49e97c9 TS |
301 | }; |
302 | ||
303 | /* MIPS ELF linker hash table. */ | |
304 | ||
305 | struct mips_elf_link_hash_table | |
306 | { | |
307 | struct elf_link_hash_table root; | |
308 | #if 0 | |
309 | /* We no longer use this. */ | |
310 | /* String section indices for the dynamic section symbols. */ | |
311 | bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES]; | |
312 | #endif | |
313 | /* The number of .rtproc entries. */ | |
314 | bfd_size_type procedure_count; | |
315 | /* The size of the .compact_rel section (if SGI_COMPAT). */ | |
316 | bfd_size_type compact_rel_size; | |
317 | /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic | |
8dc1a139 | 318 | entry is set to the address of __rld_obj_head as in IRIX5. */ |
b34976b6 | 319 | bfd_boolean use_rld_obj_head; |
b49e97c9 TS |
320 | /* This is the value of the __rld_map or __rld_obj_head symbol. */ |
321 | bfd_vma rld_value; | |
322 | /* This is set if we see any mips16 stub sections. */ | |
b34976b6 | 323 | bfd_boolean mips16_stubs_seen; |
0a44bf69 RS |
324 | /* True if we're generating code for VxWorks. */ |
325 | bfd_boolean is_vxworks; | |
326 | /* Shortcuts to some dynamic sections, or NULL if they are not | |
327 | being used. */ | |
328 | asection *srelbss; | |
329 | asection *sdynbss; | |
330 | asection *srelplt; | |
331 | asection *srelplt2; | |
332 | asection *sgotplt; | |
333 | asection *splt; | |
334 | /* The size of the PLT header in bytes (VxWorks only). */ | |
335 | bfd_vma plt_header_size; | |
336 | /* The size of a PLT entry in bytes (VxWorks only). */ | |
337 | bfd_vma plt_entry_size; | |
b49e97c9 TS |
338 | }; |
339 | ||
0f20cc35 DJ |
340 | #define TLS_RELOC_P(r_type) \ |
341 | (r_type == R_MIPS_TLS_DTPMOD32 \ | |
342 | || r_type == R_MIPS_TLS_DTPMOD64 \ | |
343 | || r_type == R_MIPS_TLS_DTPREL32 \ | |
344 | || r_type == R_MIPS_TLS_DTPREL64 \ | |
345 | || r_type == R_MIPS_TLS_GD \ | |
346 | || r_type == R_MIPS_TLS_LDM \ | |
347 | || r_type == R_MIPS_TLS_DTPREL_HI16 \ | |
348 | || r_type == R_MIPS_TLS_DTPREL_LO16 \ | |
349 | || r_type == R_MIPS_TLS_GOTTPREL \ | |
350 | || r_type == R_MIPS_TLS_TPREL32 \ | |
351 | || r_type == R_MIPS_TLS_TPREL64 \ | |
352 | || r_type == R_MIPS_TLS_TPREL_HI16 \ | |
353 | || r_type == R_MIPS_TLS_TPREL_LO16) | |
354 | ||
b49e97c9 TS |
355 | /* Structure used to pass information to mips_elf_output_extsym. */ |
356 | ||
357 | struct extsym_info | |
358 | { | |
9e4aeb93 RS |
359 | bfd *abfd; |
360 | struct bfd_link_info *info; | |
b49e97c9 TS |
361 | struct ecoff_debug_info *debug; |
362 | const struct ecoff_debug_swap *swap; | |
b34976b6 | 363 | bfd_boolean failed; |
b49e97c9 TS |
364 | }; |
365 | ||
8dc1a139 | 366 | /* The names of the runtime procedure table symbols used on IRIX5. */ |
b49e97c9 TS |
367 | |
368 | static const char * const mips_elf_dynsym_rtproc_names[] = | |
369 | { | |
370 | "_procedure_table", | |
371 | "_procedure_string_table", | |
372 | "_procedure_table_size", | |
373 | NULL | |
374 | }; | |
375 | ||
376 | /* These structures are used to generate the .compact_rel section on | |
8dc1a139 | 377 | IRIX5. */ |
b49e97c9 TS |
378 | |
379 | typedef struct | |
380 | { | |
381 | unsigned long id1; /* Always one? */ | |
382 | unsigned long num; /* Number of compact relocation entries. */ | |
383 | unsigned long id2; /* Always two? */ | |
384 | unsigned long offset; /* The file offset of the first relocation. */ | |
385 | unsigned long reserved0; /* Zero? */ | |
386 | unsigned long reserved1; /* Zero? */ | |
387 | } Elf32_compact_rel; | |
388 | ||
389 | typedef struct | |
390 | { | |
391 | bfd_byte id1[4]; | |
392 | bfd_byte num[4]; | |
393 | bfd_byte id2[4]; | |
394 | bfd_byte offset[4]; | |
395 | bfd_byte reserved0[4]; | |
396 | bfd_byte reserved1[4]; | |
397 | } Elf32_External_compact_rel; | |
398 | ||
399 | typedef struct | |
400 | { | |
401 | unsigned int ctype : 1; /* 1: long 0: short format. See below. */ | |
402 | unsigned int rtype : 4; /* Relocation types. See below. */ | |
403 | unsigned int dist2to : 8; | |
404 | unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */ | |
405 | unsigned long konst; /* KONST field. See below. */ | |
406 | unsigned long vaddr; /* VADDR to be relocated. */ | |
407 | } Elf32_crinfo; | |
408 | ||
409 | typedef struct | |
410 | { | |
411 | unsigned int ctype : 1; /* 1: long 0: short format. See below. */ | |
412 | unsigned int rtype : 4; /* Relocation types. See below. */ | |
413 | unsigned int dist2to : 8; | |
414 | unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */ | |
415 | unsigned long konst; /* KONST field. See below. */ | |
416 | } Elf32_crinfo2; | |
417 | ||
418 | typedef struct | |
419 | { | |
420 | bfd_byte info[4]; | |
421 | bfd_byte konst[4]; | |
422 | bfd_byte vaddr[4]; | |
423 | } Elf32_External_crinfo; | |
424 | ||
425 | typedef struct | |
426 | { | |
427 | bfd_byte info[4]; | |
428 | bfd_byte konst[4]; | |
429 | } Elf32_External_crinfo2; | |
430 | ||
431 | /* These are the constants used to swap the bitfields in a crinfo. */ | |
432 | ||
433 | #define CRINFO_CTYPE (0x1) | |
434 | #define CRINFO_CTYPE_SH (31) | |
435 | #define CRINFO_RTYPE (0xf) | |
436 | #define CRINFO_RTYPE_SH (27) | |
437 | #define CRINFO_DIST2TO (0xff) | |
438 | #define CRINFO_DIST2TO_SH (19) | |
439 | #define CRINFO_RELVADDR (0x7ffff) | |
440 | #define CRINFO_RELVADDR_SH (0) | |
441 | ||
442 | /* A compact relocation info has long (3 words) or short (2 words) | |
443 | formats. A short format doesn't have VADDR field and relvaddr | |
444 | fields contains ((VADDR - vaddr of the previous entry) >> 2). */ | |
445 | #define CRF_MIPS_LONG 1 | |
446 | #define CRF_MIPS_SHORT 0 | |
447 | ||
448 | /* There are 4 types of compact relocation at least. The value KONST | |
449 | has different meaning for each type: | |
450 | ||
451 | (type) (konst) | |
452 | CT_MIPS_REL32 Address in data | |
453 | CT_MIPS_WORD Address in word (XXX) | |
454 | CT_MIPS_GPHI_LO GP - vaddr | |
455 | CT_MIPS_JMPAD Address to jump | |
456 | */ | |
457 | ||
458 | #define CRT_MIPS_REL32 0xa | |
459 | #define CRT_MIPS_WORD 0xb | |
460 | #define CRT_MIPS_GPHI_LO 0xc | |
461 | #define CRT_MIPS_JMPAD 0xd | |
462 | ||
463 | #define mips_elf_set_cr_format(x,format) ((x).ctype = (format)) | |
464 | #define mips_elf_set_cr_type(x,type) ((x).rtype = (type)) | |
465 | #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v)) | |
466 | #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2) | |
467 | \f | |
468 | /* The structure of the runtime procedure descriptor created by the | |
469 | loader for use by the static exception system. */ | |
470 | ||
471 | typedef struct runtime_pdr { | |
ae9a127f NC |
472 | bfd_vma adr; /* Memory address of start of procedure. */ |
473 | long regmask; /* Save register mask. */ | |
474 | long regoffset; /* Save register offset. */ | |
475 | long fregmask; /* Save floating point register mask. */ | |
476 | long fregoffset; /* Save floating point register offset. */ | |
477 | long frameoffset; /* Frame size. */ | |
478 | short framereg; /* Frame pointer register. */ | |
479 | short pcreg; /* Offset or reg of return pc. */ | |
480 | long irpss; /* Index into the runtime string table. */ | |
b49e97c9 | 481 | long reserved; |
ae9a127f | 482 | struct exception_info *exception_info;/* Pointer to exception array. */ |
b49e97c9 TS |
483 | } RPDR, *pRPDR; |
484 | #define cbRPDR sizeof (RPDR) | |
485 | #define rpdNil ((pRPDR) 0) | |
486 | \f | |
b15e6682 | 487 | static struct mips_got_entry *mips_elf_create_local_got_entry |
0a44bf69 RS |
488 | (bfd *, struct bfd_link_info *, bfd *, struct mips_got_info *, asection *, |
489 | asection *, bfd_vma, unsigned long, struct mips_elf_link_hash_entry *, int); | |
b34976b6 | 490 | static bfd_boolean mips_elf_sort_hash_table_f |
9719ad41 | 491 | (struct mips_elf_link_hash_entry *, void *); |
9719ad41 RS |
492 | static bfd_vma mips_elf_high |
493 | (bfd_vma); | |
b34976b6 | 494 | static bfd_boolean mips_elf_stub_section_p |
9719ad41 | 495 | (bfd *, asection *); |
b34976b6 | 496 | static bfd_boolean mips_elf_create_dynamic_relocation |
9719ad41 RS |
497 | (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *, |
498 | struct mips_elf_link_hash_entry *, asection *, bfd_vma, | |
499 | bfd_vma *, asection *); | |
9719ad41 RS |
500 | static hashval_t mips_elf_got_entry_hash |
501 | (const void *); | |
f4416af6 | 502 | static bfd_vma mips_elf_adjust_gp |
9719ad41 | 503 | (bfd *, struct mips_got_info *, bfd *); |
f4416af6 | 504 | static struct mips_got_info *mips_elf_got_for_ibfd |
9719ad41 | 505 | (struct mips_got_info *, bfd *); |
f4416af6 | 506 | |
b49e97c9 TS |
507 | /* This will be used when we sort the dynamic relocation records. */ |
508 | static bfd *reldyn_sorting_bfd; | |
509 | ||
510 | /* Nonzero if ABFD is using the N32 ABI. */ | |
b49e97c9 TS |
511 | #define ABI_N32_P(abfd) \ |
512 | ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0) | |
513 | ||
4a14403c | 514 | /* Nonzero if ABFD is using the N64 ABI. */ |
b49e97c9 | 515 | #define ABI_64_P(abfd) \ |
141ff970 | 516 | (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64) |
b49e97c9 | 517 | |
4a14403c TS |
518 | /* Nonzero if ABFD is using NewABI conventions. */ |
519 | #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd)) | |
520 | ||
521 | /* The IRIX compatibility level we are striving for. */ | |
b49e97c9 TS |
522 | #define IRIX_COMPAT(abfd) \ |
523 | (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd)) | |
524 | ||
b49e97c9 TS |
525 | /* Whether we are trying to be compatible with IRIX at all. */ |
526 | #define SGI_COMPAT(abfd) \ | |
527 | (IRIX_COMPAT (abfd) != ict_none) | |
528 | ||
529 | /* The name of the options section. */ | |
530 | #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \ | |
d80dcc6a | 531 | (NEWABI_P (abfd) ? ".MIPS.options" : ".options") |
b49e97c9 | 532 | |
cc2e31b9 RS |
533 | /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section. |
534 | Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */ | |
535 | #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \ | |
536 | (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0) | |
537 | ||
b49e97c9 | 538 | /* The name of the stub section. */ |
ca07892d | 539 | #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs" |
b49e97c9 TS |
540 | |
541 | /* The size of an external REL relocation. */ | |
542 | #define MIPS_ELF_REL_SIZE(abfd) \ | |
543 | (get_elf_backend_data (abfd)->s->sizeof_rel) | |
544 | ||
0a44bf69 RS |
545 | /* The size of an external RELA relocation. */ |
546 | #define MIPS_ELF_RELA_SIZE(abfd) \ | |
547 | (get_elf_backend_data (abfd)->s->sizeof_rela) | |
548 | ||
b49e97c9 TS |
549 | /* The size of an external dynamic table entry. */ |
550 | #define MIPS_ELF_DYN_SIZE(abfd) \ | |
551 | (get_elf_backend_data (abfd)->s->sizeof_dyn) | |
552 | ||
553 | /* The size of a GOT entry. */ | |
554 | #define MIPS_ELF_GOT_SIZE(abfd) \ | |
555 | (get_elf_backend_data (abfd)->s->arch_size / 8) | |
556 | ||
557 | /* The size of a symbol-table entry. */ | |
558 | #define MIPS_ELF_SYM_SIZE(abfd) \ | |
559 | (get_elf_backend_data (abfd)->s->sizeof_sym) | |
560 | ||
561 | /* The default alignment for sections, as a power of two. */ | |
562 | #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \ | |
45d6a902 | 563 | (get_elf_backend_data (abfd)->s->log_file_align) |
b49e97c9 TS |
564 | |
565 | /* Get word-sized data. */ | |
566 | #define MIPS_ELF_GET_WORD(abfd, ptr) \ | |
567 | (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr)) | |
568 | ||
569 | /* Put out word-sized data. */ | |
570 | #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \ | |
571 | (ABI_64_P (abfd) \ | |
572 | ? bfd_put_64 (abfd, val, ptr) \ | |
573 | : bfd_put_32 (abfd, val, ptr)) | |
574 | ||
575 | /* Add a dynamic symbol table-entry. */ | |
9719ad41 | 576 | #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \ |
5a580b3a | 577 | _bfd_elf_add_dynamic_entry (info, tag, val) |
b49e97c9 TS |
578 | |
579 | #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \ | |
580 | (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela)) | |
581 | ||
4ffba85c AO |
582 | /* Determine whether the internal relocation of index REL_IDX is REL |
583 | (zero) or RELA (non-zero). The assumption is that, if there are | |
584 | two relocation sections for this section, one of them is REL and | |
585 | the other is RELA. If the index of the relocation we're testing is | |
586 | in range for the first relocation section, check that the external | |
587 | relocation size is that for RELA. It is also assumed that, if | |
588 | rel_idx is not in range for the first section, and this first | |
589 | section contains REL relocs, then the relocation is in the second | |
590 | section, that is RELA. */ | |
591 | #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \ | |
592 | ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \ | |
593 | * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \ | |
594 | > (bfd_vma)(rel_idx)) \ | |
595 | == (elf_section_data (sec)->rel_hdr.sh_entsize \ | |
596 | == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \ | |
597 | : sizeof (Elf32_External_Rela)))) | |
598 | ||
0a44bf69 RS |
599 | /* The name of the dynamic relocation section. */ |
600 | #define MIPS_ELF_REL_DYN_NAME(INFO) \ | |
601 | (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn") | |
602 | ||
b49e97c9 TS |
603 | /* In case we're on a 32-bit machine, construct a 64-bit "-1" value |
604 | from smaller values. Start with zero, widen, *then* decrement. */ | |
605 | #define MINUS_ONE (((bfd_vma)0) - 1) | |
c5ae1840 | 606 | #define MINUS_TWO (((bfd_vma)0) - 2) |
b49e97c9 TS |
607 | |
608 | /* The number of local .got entries we reserve. */ | |
0a44bf69 RS |
609 | #define MIPS_RESERVED_GOTNO(INFO) \ |
610 | (mips_elf_hash_table (INFO)->is_vxworks ? 3 : 2) | |
b49e97c9 | 611 | |
f4416af6 | 612 | /* The offset of $gp from the beginning of the .got section. */ |
0a44bf69 RS |
613 | #define ELF_MIPS_GP_OFFSET(INFO) \ |
614 | (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0) | |
f4416af6 AO |
615 | |
616 | /* The maximum size of the GOT for it to be addressable using 16-bit | |
617 | offsets from $gp. */ | |
0a44bf69 | 618 | #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff) |
f4416af6 | 619 | |
6a691779 | 620 | /* Instructions which appear in a stub. */ |
b49e97c9 | 621 | #define STUB_LW(abfd) \ |
f4416af6 AO |
622 | ((ABI_64_P (abfd) \ |
623 | ? 0xdf998010 /* ld t9,0x8010(gp) */ \ | |
624 | : 0x8f998010)) /* lw t9,0x8010(gp) */ | |
b49e97c9 | 625 | #define STUB_MOVE(abfd) \ |
6a691779 TS |
626 | ((ABI_64_P (abfd) \ |
627 | ? 0x03e0782d /* daddu t7,ra */ \ | |
628 | : 0x03e07821)) /* addu t7,ra */ | |
629 | #define STUB_JALR 0x0320f809 /* jalr t9,ra */ | |
b49e97c9 | 630 | #define STUB_LI16(abfd) \ |
6a691779 TS |
631 | ((ABI_64_P (abfd) \ |
632 | ? 0x64180000 /* daddiu t8,zero,0 */ \ | |
633 | : 0x24180000)) /* addiu t8,zero,0 */ | |
b49e97c9 TS |
634 | #define MIPS_FUNCTION_STUB_SIZE (16) |
635 | ||
636 | /* The name of the dynamic interpreter. This is put in the .interp | |
637 | section. */ | |
638 | ||
639 | #define ELF_DYNAMIC_INTERPRETER(abfd) \ | |
640 | (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \ | |
641 | : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \ | |
642 | : "/usr/lib/libc.so.1") | |
643 | ||
644 | #ifdef BFD64 | |
ee6423ed AO |
645 | #define MNAME(bfd,pre,pos) \ |
646 | (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos)) | |
b49e97c9 TS |
647 | #define ELF_R_SYM(bfd, i) \ |
648 | (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i)) | |
649 | #define ELF_R_TYPE(bfd, i) \ | |
650 | (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i)) | |
651 | #define ELF_R_INFO(bfd, s, t) \ | |
652 | (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t)) | |
653 | #else | |
ee6423ed | 654 | #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos) |
b49e97c9 TS |
655 | #define ELF_R_SYM(bfd, i) \ |
656 | (ELF32_R_SYM (i)) | |
657 | #define ELF_R_TYPE(bfd, i) \ | |
658 | (ELF32_R_TYPE (i)) | |
659 | #define ELF_R_INFO(bfd, s, t) \ | |
660 | (ELF32_R_INFO (s, t)) | |
661 | #endif | |
662 | \f | |
663 | /* The mips16 compiler uses a couple of special sections to handle | |
664 | floating point arguments. | |
665 | ||
666 | Section names that look like .mips16.fn.FNNAME contain stubs that | |
667 | copy floating point arguments from the fp regs to the gp regs and | |
668 | then jump to FNNAME. If any 32 bit function calls FNNAME, the | |
669 | call should be redirected to the stub instead. If no 32 bit | |
670 | function calls FNNAME, the stub should be discarded. We need to | |
671 | consider any reference to the function, not just a call, because | |
672 | if the address of the function is taken we will need the stub, | |
673 | since the address might be passed to a 32 bit function. | |
674 | ||
675 | Section names that look like .mips16.call.FNNAME contain stubs | |
676 | that copy floating point arguments from the gp regs to the fp | |
677 | regs and then jump to FNNAME. If FNNAME is a 32 bit function, | |
678 | then any 16 bit function that calls FNNAME should be redirected | |
679 | to the stub instead. If FNNAME is not a 32 bit function, the | |
680 | stub should be discarded. | |
681 | ||
682 | .mips16.call.fp.FNNAME sections are similar, but contain stubs | |
683 | which call FNNAME and then copy the return value from the fp regs | |
684 | to the gp regs. These stubs store the return value in $18 while | |
685 | calling FNNAME; any function which might call one of these stubs | |
686 | must arrange to save $18 around the call. (This case is not | |
687 | needed for 32 bit functions that call 16 bit functions, because | |
688 | 16 bit functions always return floating point values in both | |
689 | $f0/$f1 and $2/$3.) | |
690 | ||
691 | Note that in all cases FNNAME might be defined statically. | |
692 | Therefore, FNNAME is not used literally. Instead, the relocation | |
693 | information will indicate which symbol the section is for. | |
694 | ||
695 | We record any stubs that we find in the symbol table. */ | |
696 | ||
697 | #define FN_STUB ".mips16.fn." | |
698 | #define CALL_STUB ".mips16.call." | |
699 | #define CALL_FP_STUB ".mips16.call.fp." | |
700 | \f | |
0a44bf69 RS |
701 | /* The format of the first PLT entry in a VxWorks executable. */ |
702 | static const bfd_vma mips_vxworks_exec_plt0_entry[] = { | |
703 | 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */ | |
704 | 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */ | |
705 | 0x8f390008, /* lw t9, 8(t9) */ | |
706 | 0x00000000, /* nop */ | |
707 | 0x03200008, /* jr t9 */ | |
708 | 0x00000000 /* nop */ | |
709 | }; | |
710 | ||
711 | /* The format of subsequent PLT entries. */ | |
712 | static const bfd_vma mips_vxworks_exec_plt_entry[] = { | |
713 | 0x10000000, /* b .PLT_resolver */ | |
714 | 0x24180000, /* li t8, <pltindex> */ | |
715 | 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */ | |
716 | 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */ | |
717 | 0x8f390000, /* lw t9, 0(t9) */ | |
718 | 0x00000000, /* nop */ | |
719 | 0x03200008, /* jr t9 */ | |
720 | 0x00000000 /* nop */ | |
721 | }; | |
722 | ||
723 | /* The format of the first PLT entry in a VxWorks shared object. */ | |
724 | static const bfd_vma mips_vxworks_shared_plt0_entry[] = { | |
725 | 0x8f990008, /* lw t9, 8(gp) */ | |
726 | 0x00000000, /* nop */ | |
727 | 0x03200008, /* jr t9 */ | |
728 | 0x00000000, /* nop */ | |
729 | 0x00000000, /* nop */ | |
730 | 0x00000000 /* nop */ | |
731 | }; | |
732 | ||
733 | /* The format of subsequent PLT entries. */ | |
734 | static const bfd_vma mips_vxworks_shared_plt_entry[] = { | |
735 | 0x10000000, /* b .PLT_resolver */ | |
736 | 0x24180000 /* li t8, <pltindex> */ | |
737 | }; | |
738 | \f | |
b49e97c9 TS |
739 | /* Look up an entry in a MIPS ELF linker hash table. */ |
740 | ||
741 | #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \ | |
742 | ((struct mips_elf_link_hash_entry *) \ | |
743 | elf_link_hash_lookup (&(table)->root, (string), (create), \ | |
744 | (copy), (follow))) | |
745 | ||
746 | /* Traverse a MIPS ELF linker hash table. */ | |
747 | ||
748 | #define mips_elf_link_hash_traverse(table, func, info) \ | |
749 | (elf_link_hash_traverse \ | |
750 | (&(table)->root, \ | |
9719ad41 | 751 | (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \ |
b49e97c9 TS |
752 | (info))) |
753 | ||
754 | /* Get the MIPS ELF linker hash table from a link_info structure. */ | |
755 | ||
756 | #define mips_elf_hash_table(p) \ | |
757 | ((struct mips_elf_link_hash_table *) ((p)->hash)) | |
758 | ||
0f20cc35 DJ |
759 | /* Find the base offsets for thread-local storage in this object, |
760 | for GD/LD and IE/LE respectively. */ | |
761 | ||
762 | #define TP_OFFSET 0x7000 | |
763 | #define DTP_OFFSET 0x8000 | |
764 | ||
765 | static bfd_vma | |
766 | dtprel_base (struct bfd_link_info *info) | |
767 | { | |
768 | /* If tls_sec is NULL, we should have signalled an error already. */ | |
769 | if (elf_hash_table (info)->tls_sec == NULL) | |
770 | return 0; | |
771 | return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET; | |
772 | } | |
773 | ||
774 | static bfd_vma | |
775 | tprel_base (struct bfd_link_info *info) | |
776 | { | |
777 | /* If tls_sec is NULL, we should have signalled an error already. */ | |
778 | if (elf_hash_table (info)->tls_sec == NULL) | |
779 | return 0; | |
780 | return elf_hash_table (info)->tls_sec->vma + TP_OFFSET; | |
781 | } | |
782 | ||
b49e97c9 TS |
783 | /* Create an entry in a MIPS ELF linker hash table. */ |
784 | ||
785 | static struct bfd_hash_entry * | |
9719ad41 RS |
786 | mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry, |
787 | struct bfd_hash_table *table, const char *string) | |
b49e97c9 TS |
788 | { |
789 | struct mips_elf_link_hash_entry *ret = | |
790 | (struct mips_elf_link_hash_entry *) entry; | |
791 | ||
792 | /* Allocate the structure if it has not already been allocated by a | |
793 | subclass. */ | |
9719ad41 RS |
794 | if (ret == NULL) |
795 | ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry)); | |
796 | if (ret == NULL) | |
b49e97c9 TS |
797 | return (struct bfd_hash_entry *) ret; |
798 | ||
799 | /* Call the allocation method of the superclass. */ | |
800 | ret = ((struct mips_elf_link_hash_entry *) | |
801 | _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret, | |
802 | table, string)); | |
9719ad41 | 803 | if (ret != NULL) |
b49e97c9 TS |
804 | { |
805 | /* Set local fields. */ | |
806 | memset (&ret->esym, 0, sizeof (EXTR)); | |
807 | /* We use -2 as a marker to indicate that the information has | |
808 | not been set. -1 means there is no associated ifd. */ | |
809 | ret->esym.ifd = -2; | |
810 | ret->possibly_dynamic_relocs = 0; | |
b34976b6 | 811 | ret->readonly_reloc = FALSE; |
b34976b6 | 812 | ret->no_fn_stub = FALSE; |
b49e97c9 | 813 | ret->fn_stub = NULL; |
b34976b6 | 814 | ret->need_fn_stub = FALSE; |
b49e97c9 TS |
815 | ret->call_stub = NULL; |
816 | ret->call_fp_stub = NULL; | |
b34976b6 | 817 | ret->forced_local = FALSE; |
0a44bf69 RS |
818 | ret->is_branch_target = FALSE; |
819 | ret->is_relocation_target = FALSE; | |
0f20cc35 | 820 | ret->tls_type = GOT_NORMAL; |
b49e97c9 TS |
821 | } |
822 | ||
823 | return (struct bfd_hash_entry *) ret; | |
824 | } | |
f0abc2a1 AM |
825 | |
826 | bfd_boolean | |
9719ad41 | 827 | _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec) |
f0abc2a1 AM |
828 | { |
829 | struct _mips_elf_section_data *sdata; | |
830 | bfd_size_type amt = sizeof (*sdata); | |
831 | ||
9719ad41 | 832 | sdata = bfd_zalloc (abfd, amt); |
f0abc2a1 AM |
833 | if (sdata == NULL) |
834 | return FALSE; | |
9719ad41 | 835 | sec->used_by_bfd = sdata; |
f0abc2a1 AM |
836 | |
837 | return _bfd_elf_new_section_hook (abfd, sec); | |
838 | } | |
b49e97c9 TS |
839 | \f |
840 | /* Read ECOFF debugging information from a .mdebug section into a | |
841 | ecoff_debug_info structure. */ | |
842 | ||
b34976b6 | 843 | bfd_boolean |
9719ad41 RS |
844 | _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section, |
845 | struct ecoff_debug_info *debug) | |
b49e97c9 TS |
846 | { |
847 | HDRR *symhdr; | |
848 | const struct ecoff_debug_swap *swap; | |
9719ad41 | 849 | char *ext_hdr; |
b49e97c9 TS |
850 | |
851 | swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; | |
852 | memset (debug, 0, sizeof (*debug)); | |
853 | ||
9719ad41 | 854 | ext_hdr = bfd_malloc (swap->external_hdr_size); |
b49e97c9 TS |
855 | if (ext_hdr == NULL && swap->external_hdr_size != 0) |
856 | goto error_return; | |
857 | ||
9719ad41 | 858 | if (! bfd_get_section_contents (abfd, section, ext_hdr, 0, |
82e51918 | 859 | swap->external_hdr_size)) |
b49e97c9 TS |
860 | goto error_return; |
861 | ||
862 | symhdr = &debug->symbolic_header; | |
863 | (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr); | |
864 | ||
865 | /* The symbolic header contains absolute file offsets and sizes to | |
866 | read. */ | |
867 | #define READ(ptr, offset, count, size, type) \ | |
868 | if (symhdr->count == 0) \ | |
869 | debug->ptr = NULL; \ | |
870 | else \ | |
871 | { \ | |
872 | bfd_size_type amt = (bfd_size_type) size * symhdr->count; \ | |
9719ad41 | 873 | debug->ptr = bfd_malloc (amt); \ |
b49e97c9 TS |
874 | if (debug->ptr == NULL) \ |
875 | goto error_return; \ | |
9719ad41 | 876 | if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \ |
b49e97c9 TS |
877 | || bfd_bread (debug->ptr, amt, abfd) != amt) \ |
878 | goto error_return; \ | |
879 | } | |
880 | ||
881 | READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *); | |
9719ad41 RS |
882 | READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *); |
883 | READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *); | |
884 | READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *); | |
885 | READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *); | |
b49e97c9 TS |
886 | READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext), |
887 | union aux_ext *); | |
888 | READ (ss, cbSsOffset, issMax, sizeof (char), char *); | |
889 | READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *); | |
9719ad41 RS |
890 | READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *); |
891 | READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *); | |
892 | READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *); | |
b49e97c9 TS |
893 | #undef READ |
894 | ||
895 | debug->fdr = NULL; | |
b49e97c9 | 896 | |
b34976b6 | 897 | return TRUE; |
b49e97c9 TS |
898 | |
899 | error_return: | |
900 | if (ext_hdr != NULL) | |
901 | free (ext_hdr); | |
902 | if (debug->line != NULL) | |
903 | free (debug->line); | |
904 | if (debug->external_dnr != NULL) | |
905 | free (debug->external_dnr); | |
906 | if (debug->external_pdr != NULL) | |
907 | free (debug->external_pdr); | |
908 | if (debug->external_sym != NULL) | |
909 | free (debug->external_sym); | |
910 | if (debug->external_opt != NULL) | |
911 | free (debug->external_opt); | |
912 | if (debug->external_aux != NULL) | |
913 | free (debug->external_aux); | |
914 | if (debug->ss != NULL) | |
915 | free (debug->ss); | |
916 | if (debug->ssext != NULL) | |
917 | free (debug->ssext); | |
918 | if (debug->external_fdr != NULL) | |
919 | free (debug->external_fdr); | |
920 | if (debug->external_rfd != NULL) | |
921 | free (debug->external_rfd); | |
922 | if (debug->external_ext != NULL) | |
923 | free (debug->external_ext); | |
b34976b6 | 924 | return FALSE; |
b49e97c9 TS |
925 | } |
926 | \f | |
927 | /* Swap RPDR (runtime procedure table entry) for output. */ | |
928 | ||
929 | static void | |
9719ad41 | 930 | ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex) |
b49e97c9 TS |
931 | { |
932 | H_PUT_S32 (abfd, in->adr, ex->p_adr); | |
933 | H_PUT_32 (abfd, in->regmask, ex->p_regmask); | |
934 | H_PUT_32 (abfd, in->regoffset, ex->p_regoffset); | |
935 | H_PUT_32 (abfd, in->fregmask, ex->p_fregmask); | |
936 | H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset); | |
937 | H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset); | |
938 | ||
939 | H_PUT_16 (abfd, in->framereg, ex->p_framereg); | |
940 | H_PUT_16 (abfd, in->pcreg, ex->p_pcreg); | |
941 | ||
942 | H_PUT_32 (abfd, in->irpss, ex->p_irpss); | |
b49e97c9 TS |
943 | } |
944 | ||
945 | /* Create a runtime procedure table from the .mdebug section. */ | |
946 | ||
b34976b6 | 947 | static bfd_boolean |
9719ad41 RS |
948 | mips_elf_create_procedure_table (void *handle, bfd *abfd, |
949 | struct bfd_link_info *info, asection *s, | |
950 | struct ecoff_debug_info *debug) | |
b49e97c9 TS |
951 | { |
952 | const struct ecoff_debug_swap *swap; | |
953 | HDRR *hdr = &debug->symbolic_header; | |
954 | RPDR *rpdr, *rp; | |
955 | struct rpdr_ext *erp; | |
9719ad41 | 956 | void *rtproc; |
b49e97c9 TS |
957 | struct pdr_ext *epdr; |
958 | struct sym_ext *esym; | |
959 | char *ss, **sv; | |
960 | char *str; | |
961 | bfd_size_type size; | |
962 | bfd_size_type count; | |
963 | unsigned long sindex; | |
964 | unsigned long i; | |
965 | PDR pdr; | |
966 | SYMR sym; | |
967 | const char *no_name_func = _("static procedure (no name)"); | |
968 | ||
969 | epdr = NULL; | |
970 | rpdr = NULL; | |
971 | esym = NULL; | |
972 | ss = NULL; | |
973 | sv = NULL; | |
974 | ||
975 | swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; | |
976 | ||
977 | sindex = strlen (no_name_func) + 1; | |
978 | count = hdr->ipdMax; | |
979 | if (count > 0) | |
980 | { | |
981 | size = swap->external_pdr_size; | |
982 | ||
9719ad41 | 983 | epdr = bfd_malloc (size * count); |
b49e97c9 TS |
984 | if (epdr == NULL) |
985 | goto error_return; | |
986 | ||
9719ad41 | 987 | if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr)) |
b49e97c9 TS |
988 | goto error_return; |
989 | ||
990 | size = sizeof (RPDR); | |
9719ad41 | 991 | rp = rpdr = bfd_malloc (size * count); |
b49e97c9 TS |
992 | if (rpdr == NULL) |
993 | goto error_return; | |
994 | ||
995 | size = sizeof (char *); | |
9719ad41 | 996 | sv = bfd_malloc (size * count); |
b49e97c9 TS |
997 | if (sv == NULL) |
998 | goto error_return; | |
999 | ||
1000 | count = hdr->isymMax; | |
1001 | size = swap->external_sym_size; | |
9719ad41 | 1002 | esym = bfd_malloc (size * count); |
b49e97c9 TS |
1003 | if (esym == NULL) |
1004 | goto error_return; | |
1005 | ||
9719ad41 | 1006 | if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym)) |
b49e97c9 TS |
1007 | goto error_return; |
1008 | ||
1009 | count = hdr->issMax; | |
9719ad41 | 1010 | ss = bfd_malloc (count); |
b49e97c9 TS |
1011 | if (ss == NULL) |
1012 | goto error_return; | |
f075ee0c | 1013 | if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss)) |
b49e97c9 TS |
1014 | goto error_return; |
1015 | ||
1016 | count = hdr->ipdMax; | |
1017 | for (i = 0; i < (unsigned long) count; i++, rp++) | |
1018 | { | |
9719ad41 RS |
1019 | (*swap->swap_pdr_in) (abfd, epdr + i, &pdr); |
1020 | (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym); | |
b49e97c9 TS |
1021 | rp->adr = sym.value; |
1022 | rp->regmask = pdr.regmask; | |
1023 | rp->regoffset = pdr.regoffset; | |
1024 | rp->fregmask = pdr.fregmask; | |
1025 | rp->fregoffset = pdr.fregoffset; | |
1026 | rp->frameoffset = pdr.frameoffset; | |
1027 | rp->framereg = pdr.framereg; | |
1028 | rp->pcreg = pdr.pcreg; | |
1029 | rp->irpss = sindex; | |
1030 | sv[i] = ss + sym.iss; | |
1031 | sindex += strlen (sv[i]) + 1; | |
1032 | } | |
1033 | } | |
1034 | ||
1035 | size = sizeof (struct rpdr_ext) * (count + 2) + sindex; | |
1036 | size = BFD_ALIGN (size, 16); | |
9719ad41 | 1037 | rtproc = bfd_alloc (abfd, size); |
b49e97c9 TS |
1038 | if (rtproc == NULL) |
1039 | { | |
1040 | mips_elf_hash_table (info)->procedure_count = 0; | |
1041 | goto error_return; | |
1042 | } | |
1043 | ||
1044 | mips_elf_hash_table (info)->procedure_count = count + 2; | |
1045 | ||
9719ad41 | 1046 | erp = rtproc; |
b49e97c9 TS |
1047 | memset (erp, 0, sizeof (struct rpdr_ext)); |
1048 | erp++; | |
1049 | str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2); | |
1050 | strcpy (str, no_name_func); | |
1051 | str += strlen (no_name_func) + 1; | |
1052 | for (i = 0; i < count; i++) | |
1053 | { | |
1054 | ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i); | |
1055 | strcpy (str, sv[i]); | |
1056 | str += strlen (sv[i]) + 1; | |
1057 | } | |
1058 | H_PUT_S32 (abfd, -1, (erp + count)->p_adr); | |
1059 | ||
1060 | /* Set the size and contents of .rtproc section. */ | |
eea6121a | 1061 | s->size = size; |
9719ad41 | 1062 | s->contents = rtproc; |
b49e97c9 TS |
1063 | |
1064 | /* Skip this section later on (I don't think this currently | |
1065 | matters, but someday it might). */ | |
8423293d | 1066 | s->map_head.link_order = NULL; |
b49e97c9 TS |
1067 | |
1068 | if (epdr != NULL) | |
1069 | free (epdr); | |
1070 | if (rpdr != NULL) | |
1071 | free (rpdr); | |
1072 | if (esym != NULL) | |
1073 | free (esym); | |
1074 | if (ss != NULL) | |
1075 | free (ss); | |
1076 | if (sv != NULL) | |
1077 | free (sv); | |
1078 | ||
b34976b6 | 1079 | return TRUE; |
b49e97c9 TS |
1080 | |
1081 | error_return: | |
1082 | if (epdr != NULL) | |
1083 | free (epdr); | |
1084 | if (rpdr != NULL) | |
1085 | free (rpdr); | |
1086 | if (esym != NULL) | |
1087 | free (esym); | |
1088 | if (ss != NULL) | |
1089 | free (ss); | |
1090 | if (sv != NULL) | |
1091 | free (sv); | |
b34976b6 | 1092 | return FALSE; |
b49e97c9 TS |
1093 | } |
1094 | ||
1095 | /* Check the mips16 stubs for a particular symbol, and see if we can | |
1096 | discard them. */ | |
1097 | ||
b34976b6 | 1098 | static bfd_boolean |
9719ad41 RS |
1099 | mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h, |
1100 | void *data ATTRIBUTE_UNUSED) | |
b49e97c9 TS |
1101 | { |
1102 | if (h->root.root.type == bfd_link_hash_warning) | |
1103 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | |
1104 | ||
1105 | if (h->fn_stub != NULL | |
1106 | && ! h->need_fn_stub) | |
1107 | { | |
1108 | /* We don't need the fn_stub; the only references to this symbol | |
1109 | are 16 bit calls. Clobber the size to 0 to prevent it from | |
1110 | being included in the link. */ | |
eea6121a | 1111 | h->fn_stub->size = 0; |
b49e97c9 TS |
1112 | h->fn_stub->flags &= ~SEC_RELOC; |
1113 | h->fn_stub->reloc_count = 0; | |
1114 | h->fn_stub->flags |= SEC_EXCLUDE; | |
1115 | } | |
1116 | ||
1117 | if (h->call_stub != NULL | |
1118 | && h->root.other == STO_MIPS16) | |
1119 | { | |
1120 | /* We don't need the call_stub; this is a 16 bit function, so | |
1121 | calls from other 16 bit functions are OK. Clobber the size | |
1122 | to 0 to prevent it from being included in the link. */ | |
eea6121a | 1123 | h->call_stub->size = 0; |
b49e97c9 TS |
1124 | h->call_stub->flags &= ~SEC_RELOC; |
1125 | h->call_stub->reloc_count = 0; | |
1126 | h->call_stub->flags |= SEC_EXCLUDE; | |
1127 | } | |
1128 | ||
1129 | if (h->call_fp_stub != NULL | |
1130 | && h->root.other == STO_MIPS16) | |
1131 | { | |
1132 | /* We don't need the call_stub; this is a 16 bit function, so | |
1133 | calls from other 16 bit functions are OK. Clobber the size | |
1134 | to 0 to prevent it from being included in the link. */ | |
eea6121a | 1135 | h->call_fp_stub->size = 0; |
b49e97c9 TS |
1136 | h->call_fp_stub->flags &= ~SEC_RELOC; |
1137 | h->call_fp_stub->reloc_count = 0; | |
1138 | h->call_fp_stub->flags |= SEC_EXCLUDE; | |
1139 | } | |
1140 | ||
b34976b6 | 1141 | return TRUE; |
b49e97c9 TS |
1142 | } |
1143 | \f | |
d6f16593 MR |
1144 | /* R_MIPS16_26 is used for the mips16 jal and jalx instructions. |
1145 | Most mips16 instructions are 16 bits, but these instructions | |
1146 | are 32 bits. | |
1147 | ||
1148 | The format of these instructions is: | |
1149 | ||
1150 | +--------------+--------------------------------+ | |
1151 | | JALX | X| Imm 20:16 | Imm 25:21 | | |
1152 | +--------------+--------------------------------+ | |
1153 | | Immediate 15:0 | | |
1154 | +-----------------------------------------------+ | |
1155 | ||
1156 | JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx. | |
1157 | Note that the immediate value in the first word is swapped. | |
1158 | ||
1159 | When producing a relocatable object file, R_MIPS16_26 is | |
1160 | handled mostly like R_MIPS_26. In particular, the addend is | |
1161 | stored as a straight 26-bit value in a 32-bit instruction. | |
1162 | (gas makes life simpler for itself by never adjusting a | |
1163 | R_MIPS16_26 reloc to be against a section, so the addend is | |
1164 | always zero). However, the 32 bit instruction is stored as 2 | |
1165 | 16-bit values, rather than a single 32-bit value. In a | |
1166 | big-endian file, the result is the same; in a little-endian | |
1167 | file, the two 16-bit halves of the 32 bit value are swapped. | |
1168 | This is so that a disassembler can recognize the jal | |
1169 | instruction. | |
1170 | ||
1171 | When doing a final link, R_MIPS16_26 is treated as a 32 bit | |
1172 | instruction stored as two 16-bit values. The addend A is the | |
1173 | contents of the targ26 field. The calculation is the same as | |
1174 | R_MIPS_26. When storing the calculated value, reorder the | |
1175 | immediate value as shown above, and don't forget to store the | |
1176 | value as two 16-bit values. | |
1177 | ||
1178 | To put it in MIPS ABI terms, the relocation field is T-targ26-16, | |
1179 | defined as | |
1180 | ||
1181 | big-endian: | |
1182 | +--------+----------------------+ | |
1183 | | | | | |
1184 | | | targ26-16 | | |
1185 | |31 26|25 0| | |
1186 | +--------+----------------------+ | |
1187 | ||
1188 | little-endian: | |
1189 | +----------+------+-------------+ | |
1190 | | | | | | |
1191 | | sub1 | | sub2 | | |
1192 | |0 9|10 15|16 31| | |
1193 | +----------+--------------------+ | |
1194 | where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is | |
1195 | ((sub1 << 16) | sub2)). | |
1196 | ||
1197 | When producing a relocatable object file, the calculation is | |
1198 | (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2) | |
1199 | When producing a fully linked file, the calculation is | |
1200 | let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2) | |
1201 | ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) | |
1202 | ||
1203 | R_MIPS16_GPREL is used for GP-relative addressing in mips16 | |
1204 | mode. A typical instruction will have a format like this: | |
1205 | ||
1206 | +--------------+--------------------------------+ | |
1207 | | EXTEND | Imm 10:5 | Imm 15:11 | | |
1208 | +--------------+--------------------------------+ | |
1209 | | Major | rx | ry | Imm 4:0 | | |
1210 | +--------------+--------------------------------+ | |
1211 | ||
1212 | EXTEND is the five bit value 11110. Major is the instruction | |
1213 | opcode. | |
1214 | ||
1215 | This is handled exactly like R_MIPS_GPREL16, except that the | |
1216 | addend is retrieved and stored as shown in this diagram; that | |
1217 | is, the Imm fields above replace the V-rel16 field. | |
1218 | ||
1219 | All we need to do here is shuffle the bits appropriately. As | |
1220 | above, the two 16-bit halves must be swapped on a | |
1221 | little-endian system. | |
1222 | ||
1223 | R_MIPS16_HI16 and R_MIPS16_LO16 are used in mips16 mode to | |
1224 | access data when neither GP-relative nor PC-relative addressing | |
1225 | can be used. They are handled like R_MIPS_HI16 and R_MIPS_LO16, | |
1226 | except that the addend is retrieved and stored as shown above | |
1227 | for R_MIPS16_GPREL. | |
1228 | */ | |
1229 | void | |
1230 | _bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type, | |
1231 | bfd_boolean jal_shuffle, bfd_byte *data) | |
1232 | { | |
1233 | bfd_vma extend, insn, val; | |
1234 | ||
1235 | if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL | |
1236 | && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16) | |
1237 | return; | |
1238 | ||
1239 | /* Pick up the mips16 extend instruction and the real instruction. */ | |
1240 | extend = bfd_get_16 (abfd, data); | |
1241 | insn = bfd_get_16 (abfd, data + 2); | |
1242 | if (r_type == R_MIPS16_26) | |
1243 | { | |
1244 | if (jal_shuffle) | |
1245 | val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11) | |
1246 | | ((extend & 0x1f) << 21) | insn; | |
1247 | else | |
1248 | val = extend << 16 | insn; | |
1249 | } | |
1250 | else | |
1251 | val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11) | |
1252 | | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f); | |
1253 | bfd_put_32 (abfd, val, data); | |
1254 | } | |
1255 | ||
1256 | void | |
1257 | _bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type, | |
1258 | bfd_boolean jal_shuffle, bfd_byte *data) | |
1259 | { | |
1260 | bfd_vma extend, insn, val; | |
1261 | ||
1262 | if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL | |
1263 | && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16) | |
1264 | return; | |
1265 | ||
1266 | val = bfd_get_32 (abfd, data); | |
1267 | if (r_type == R_MIPS16_26) | |
1268 | { | |
1269 | if (jal_shuffle) | |
1270 | { | |
1271 | insn = val & 0xffff; | |
1272 | extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0) | |
1273 | | ((val >> 21) & 0x1f); | |
1274 | } | |
1275 | else | |
1276 | { | |
1277 | insn = val & 0xffff; | |
1278 | extend = val >> 16; | |
1279 | } | |
1280 | } | |
1281 | else | |
1282 | { | |
1283 | insn = ((val >> 11) & 0xffe0) | (val & 0x1f); | |
1284 | extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0); | |
1285 | } | |
1286 | bfd_put_16 (abfd, insn, data + 2); | |
1287 | bfd_put_16 (abfd, extend, data); | |
1288 | } | |
1289 | ||
b49e97c9 | 1290 | bfd_reloc_status_type |
9719ad41 RS |
1291 | _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol, |
1292 | arelent *reloc_entry, asection *input_section, | |
1293 | bfd_boolean relocatable, void *data, bfd_vma gp) | |
b49e97c9 TS |
1294 | { |
1295 | bfd_vma relocation; | |
a7ebbfdf | 1296 | bfd_signed_vma val; |
30ac9238 | 1297 | bfd_reloc_status_type status; |
b49e97c9 TS |
1298 | |
1299 | if (bfd_is_com_section (symbol->section)) | |
1300 | relocation = 0; | |
1301 | else | |
1302 | relocation = symbol->value; | |
1303 | ||
1304 | relocation += symbol->section->output_section->vma; | |
1305 | relocation += symbol->section->output_offset; | |
1306 | ||
07515404 | 1307 | if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) |
b49e97c9 TS |
1308 | return bfd_reloc_outofrange; |
1309 | ||
b49e97c9 | 1310 | /* Set val to the offset into the section or symbol. */ |
a7ebbfdf TS |
1311 | val = reloc_entry->addend; |
1312 | ||
30ac9238 | 1313 | _bfd_mips_elf_sign_extend (val, 16); |
a7ebbfdf | 1314 | |
b49e97c9 | 1315 | /* Adjust val for the final section location and GP value. If we |
1049f94e | 1316 | are producing relocatable output, we don't want to do this for |
b49e97c9 | 1317 | an external symbol. */ |
1049f94e | 1318 | if (! relocatable |
b49e97c9 TS |
1319 | || (symbol->flags & BSF_SECTION_SYM) != 0) |
1320 | val += relocation - gp; | |
1321 | ||
a7ebbfdf TS |
1322 | if (reloc_entry->howto->partial_inplace) |
1323 | { | |
30ac9238 RS |
1324 | status = _bfd_relocate_contents (reloc_entry->howto, abfd, val, |
1325 | (bfd_byte *) data | |
1326 | + reloc_entry->address); | |
1327 | if (status != bfd_reloc_ok) | |
1328 | return status; | |
a7ebbfdf TS |
1329 | } |
1330 | else | |
1331 | reloc_entry->addend = val; | |
b49e97c9 | 1332 | |
1049f94e | 1333 | if (relocatable) |
b49e97c9 | 1334 | reloc_entry->address += input_section->output_offset; |
30ac9238 RS |
1335 | |
1336 | return bfd_reloc_ok; | |
1337 | } | |
1338 | ||
1339 | /* Used to store a REL high-part relocation such as R_MIPS_HI16 or | |
1340 | R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section | |
1341 | that contains the relocation field and DATA points to the start of | |
1342 | INPUT_SECTION. */ | |
1343 | ||
1344 | struct mips_hi16 | |
1345 | { | |
1346 | struct mips_hi16 *next; | |
1347 | bfd_byte *data; | |
1348 | asection *input_section; | |
1349 | arelent rel; | |
1350 | }; | |
1351 | ||
1352 | /* FIXME: This should not be a static variable. */ | |
1353 | ||
1354 | static struct mips_hi16 *mips_hi16_list; | |
1355 | ||
1356 | /* A howto special_function for REL *HI16 relocations. We can only | |
1357 | calculate the correct value once we've seen the partnering | |
1358 | *LO16 relocation, so just save the information for later. | |
1359 | ||
1360 | The ABI requires that the *LO16 immediately follow the *HI16. | |
1361 | However, as a GNU extension, we permit an arbitrary number of | |
1362 | *HI16s to be associated with a single *LO16. This significantly | |
1363 | simplies the relocation handling in gcc. */ | |
1364 | ||
1365 | bfd_reloc_status_type | |
1366 | _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry, | |
1367 | asymbol *symbol ATTRIBUTE_UNUSED, void *data, | |
1368 | asection *input_section, bfd *output_bfd, | |
1369 | char **error_message ATTRIBUTE_UNUSED) | |
1370 | { | |
1371 | struct mips_hi16 *n; | |
1372 | ||
07515404 | 1373 | if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) |
30ac9238 RS |
1374 | return bfd_reloc_outofrange; |
1375 | ||
1376 | n = bfd_malloc (sizeof *n); | |
1377 | if (n == NULL) | |
1378 | return bfd_reloc_outofrange; | |
1379 | ||
1380 | n->next = mips_hi16_list; | |
1381 | n->data = data; | |
1382 | n->input_section = input_section; | |
1383 | n->rel = *reloc_entry; | |
1384 | mips_hi16_list = n; | |
1385 | ||
1386 | if (output_bfd != NULL) | |
1387 | reloc_entry->address += input_section->output_offset; | |
1388 | ||
1389 | return bfd_reloc_ok; | |
1390 | } | |
1391 | ||
1392 | /* A howto special_function for REL R_MIPS_GOT16 relocations. This is just | |
1393 | like any other 16-bit relocation when applied to global symbols, but is | |
1394 | treated in the same as R_MIPS_HI16 when applied to local symbols. */ | |
1395 | ||
1396 | bfd_reloc_status_type | |
1397 | _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol, | |
1398 | void *data, asection *input_section, | |
1399 | bfd *output_bfd, char **error_message) | |
1400 | { | |
1401 | if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0 | |
1402 | || bfd_is_und_section (bfd_get_section (symbol)) | |
1403 | || bfd_is_com_section (bfd_get_section (symbol))) | |
1404 | /* The relocation is against a global symbol. */ | |
1405 | return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data, | |
1406 | input_section, output_bfd, | |
1407 | error_message); | |
1408 | ||
1409 | return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data, | |
1410 | input_section, output_bfd, error_message); | |
1411 | } | |
1412 | ||
1413 | /* A howto special_function for REL *LO16 relocations. The *LO16 itself | |
1414 | is a straightforward 16 bit inplace relocation, but we must deal with | |
1415 | any partnering high-part relocations as well. */ | |
1416 | ||
1417 | bfd_reloc_status_type | |
1418 | _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol, | |
1419 | void *data, asection *input_section, | |
1420 | bfd *output_bfd, char **error_message) | |
1421 | { | |
1422 | bfd_vma vallo; | |
d6f16593 | 1423 | bfd_byte *location = (bfd_byte *) data + reloc_entry->address; |
30ac9238 | 1424 | |
07515404 | 1425 | if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) |
30ac9238 RS |
1426 | return bfd_reloc_outofrange; |
1427 | ||
d6f16593 MR |
1428 | _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE, |
1429 | location); | |
1430 | vallo = bfd_get_32 (abfd, location); | |
1431 | _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE, | |
1432 | location); | |
1433 | ||
30ac9238 RS |
1434 | while (mips_hi16_list != NULL) |
1435 | { | |
1436 | bfd_reloc_status_type ret; | |
1437 | struct mips_hi16 *hi; | |
1438 | ||
1439 | hi = mips_hi16_list; | |
1440 | ||
1441 | /* R_MIPS_GOT16 relocations are something of a special case. We | |
1442 | want to install the addend in the same way as for a R_MIPS_HI16 | |
1443 | relocation (with a rightshift of 16). However, since GOT16 | |
1444 | relocations can also be used with global symbols, their howto | |
1445 | has a rightshift of 0. */ | |
1446 | if (hi->rel.howto->type == R_MIPS_GOT16) | |
1447 | hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE); | |
1448 | ||
1449 | /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any | |
1450 | carry or borrow will induce a change of +1 or -1 in the high part. */ | |
1451 | hi->rel.addend += (vallo + 0x8000) & 0xffff; | |
1452 | ||
30ac9238 RS |
1453 | ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data, |
1454 | hi->input_section, output_bfd, | |
1455 | error_message); | |
1456 | if (ret != bfd_reloc_ok) | |
1457 | return ret; | |
1458 | ||
1459 | mips_hi16_list = hi->next; | |
1460 | free (hi); | |
1461 | } | |
1462 | ||
1463 | return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data, | |
1464 | input_section, output_bfd, | |
1465 | error_message); | |
1466 | } | |
1467 | ||
1468 | /* A generic howto special_function. This calculates and installs the | |
1469 | relocation itself, thus avoiding the oft-discussed problems in | |
1470 | bfd_perform_relocation and bfd_install_relocation. */ | |
1471 | ||
1472 | bfd_reloc_status_type | |
1473 | _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry, | |
1474 | asymbol *symbol, void *data ATTRIBUTE_UNUSED, | |
1475 | asection *input_section, bfd *output_bfd, | |
1476 | char **error_message ATTRIBUTE_UNUSED) | |
1477 | { | |
1478 | bfd_signed_vma val; | |
1479 | bfd_reloc_status_type status; | |
1480 | bfd_boolean relocatable; | |
1481 | ||
1482 | relocatable = (output_bfd != NULL); | |
1483 | ||
07515404 | 1484 | if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) |
30ac9238 RS |
1485 | return bfd_reloc_outofrange; |
1486 | ||
1487 | /* Build up the field adjustment in VAL. */ | |
1488 | val = 0; | |
1489 | if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0) | |
1490 | { | |
1491 | /* Either we're calculating the final field value or we have a | |
1492 | relocation against a section symbol. Add in the section's | |
1493 | offset or address. */ | |
1494 | val += symbol->section->output_section->vma; | |
1495 | val += symbol->section->output_offset; | |
1496 | } | |
1497 | ||
1498 | if (!relocatable) | |
1499 | { | |
1500 | /* We're calculating the final field value. Add in the symbol's value | |
1501 | and, if pc-relative, subtract the address of the field itself. */ | |
1502 | val += symbol->value; | |
1503 | if (reloc_entry->howto->pc_relative) | |
1504 | { | |
1505 | val -= input_section->output_section->vma; | |
1506 | val -= input_section->output_offset; | |
1507 | val -= reloc_entry->address; | |
1508 | } | |
1509 | } | |
1510 | ||
1511 | /* VAL is now the final adjustment. If we're keeping this relocation | |
1512 | in the output file, and if the relocation uses a separate addend, | |
1513 | we just need to add VAL to that addend. Otherwise we need to add | |
1514 | VAL to the relocation field itself. */ | |
1515 | if (relocatable && !reloc_entry->howto->partial_inplace) | |
1516 | reloc_entry->addend += val; | |
1517 | else | |
1518 | { | |
d6f16593 MR |
1519 | bfd_byte *location = (bfd_byte *) data + reloc_entry->address; |
1520 | ||
30ac9238 RS |
1521 | /* Add in the separate addend, if any. */ |
1522 | val += reloc_entry->addend; | |
1523 | ||
1524 | /* Add VAL to the relocation field. */ | |
d6f16593 MR |
1525 | _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE, |
1526 | location); | |
30ac9238 | 1527 | status = _bfd_relocate_contents (reloc_entry->howto, abfd, val, |
d6f16593 MR |
1528 | location); |
1529 | _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE, | |
1530 | location); | |
1531 | ||
30ac9238 RS |
1532 | if (status != bfd_reloc_ok) |
1533 | return status; | |
1534 | } | |
1535 | ||
1536 | if (relocatable) | |
1537 | reloc_entry->address += input_section->output_offset; | |
b49e97c9 TS |
1538 | |
1539 | return bfd_reloc_ok; | |
1540 | } | |
1541 | \f | |
1542 | /* Swap an entry in a .gptab section. Note that these routines rely | |
1543 | on the equivalence of the two elements of the union. */ | |
1544 | ||
1545 | static void | |
9719ad41 RS |
1546 | bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex, |
1547 | Elf32_gptab *in) | |
b49e97c9 TS |
1548 | { |
1549 | in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value); | |
1550 | in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes); | |
1551 | } | |
1552 | ||
1553 | static void | |
9719ad41 RS |
1554 | bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in, |
1555 | Elf32_External_gptab *ex) | |
b49e97c9 TS |
1556 | { |
1557 | H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value); | |
1558 | H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes); | |
1559 | } | |
1560 | ||
1561 | static void | |
9719ad41 RS |
1562 | bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in, |
1563 | Elf32_External_compact_rel *ex) | |
b49e97c9 TS |
1564 | { |
1565 | H_PUT_32 (abfd, in->id1, ex->id1); | |
1566 | H_PUT_32 (abfd, in->num, ex->num); | |
1567 | H_PUT_32 (abfd, in->id2, ex->id2); | |
1568 | H_PUT_32 (abfd, in->offset, ex->offset); | |
1569 | H_PUT_32 (abfd, in->reserved0, ex->reserved0); | |
1570 | H_PUT_32 (abfd, in->reserved1, ex->reserved1); | |
1571 | } | |
1572 | ||
1573 | static void | |
9719ad41 RS |
1574 | bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in, |
1575 | Elf32_External_crinfo *ex) | |
b49e97c9 TS |
1576 | { |
1577 | unsigned long l; | |
1578 | ||
1579 | l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH) | |
1580 | | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH) | |
1581 | | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH) | |
1582 | | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH)); | |
1583 | H_PUT_32 (abfd, l, ex->info); | |
1584 | H_PUT_32 (abfd, in->konst, ex->konst); | |
1585 | H_PUT_32 (abfd, in->vaddr, ex->vaddr); | |
1586 | } | |
b49e97c9 TS |
1587 | \f |
1588 | /* A .reginfo section holds a single Elf32_RegInfo structure. These | |
1589 | routines swap this structure in and out. They are used outside of | |
1590 | BFD, so they are globally visible. */ | |
1591 | ||
1592 | void | |
9719ad41 RS |
1593 | bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex, |
1594 | Elf32_RegInfo *in) | |
b49e97c9 TS |
1595 | { |
1596 | in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask); | |
1597 | in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]); | |
1598 | in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]); | |
1599 | in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]); | |
1600 | in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]); | |
1601 | in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value); | |
1602 | } | |
1603 | ||
1604 | void | |
9719ad41 RS |
1605 | bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in, |
1606 | Elf32_External_RegInfo *ex) | |
b49e97c9 TS |
1607 | { |
1608 | H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask); | |
1609 | H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]); | |
1610 | H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]); | |
1611 | H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]); | |
1612 | H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]); | |
1613 | H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value); | |
1614 | } | |
1615 | ||
1616 | /* In the 64 bit ABI, the .MIPS.options section holds register | |
1617 | information in an Elf64_Reginfo structure. These routines swap | |
1618 | them in and out. They are globally visible because they are used | |
1619 | outside of BFD. These routines are here so that gas can call them | |
1620 | without worrying about whether the 64 bit ABI has been included. */ | |
1621 | ||
1622 | void | |
9719ad41 RS |
1623 | bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex, |
1624 | Elf64_Internal_RegInfo *in) | |
b49e97c9 TS |
1625 | { |
1626 | in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask); | |
1627 | in->ri_pad = H_GET_32 (abfd, ex->ri_pad); | |
1628 | in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]); | |
1629 | in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]); | |
1630 | in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]); | |
1631 | in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]); | |
1632 | in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value); | |
1633 | } | |
1634 | ||
1635 | void | |
9719ad41 RS |
1636 | bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in, |
1637 | Elf64_External_RegInfo *ex) | |
b49e97c9 TS |
1638 | { |
1639 | H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask); | |
1640 | H_PUT_32 (abfd, in->ri_pad, ex->ri_pad); | |
1641 | H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]); | |
1642 | H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]); | |
1643 | H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]); | |
1644 | H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]); | |
1645 | H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value); | |
1646 | } | |
1647 | ||
1648 | /* Swap in an options header. */ | |
1649 | ||
1650 | void | |
9719ad41 RS |
1651 | bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex, |
1652 | Elf_Internal_Options *in) | |
b49e97c9 TS |
1653 | { |
1654 | in->kind = H_GET_8 (abfd, ex->kind); | |
1655 | in->size = H_GET_8 (abfd, ex->size); | |
1656 | in->section = H_GET_16 (abfd, ex->section); | |
1657 | in->info = H_GET_32 (abfd, ex->info); | |
1658 | } | |
1659 | ||
1660 | /* Swap out an options header. */ | |
1661 | ||
1662 | void | |
9719ad41 RS |
1663 | bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in, |
1664 | Elf_External_Options *ex) | |
b49e97c9 TS |
1665 | { |
1666 | H_PUT_8 (abfd, in->kind, ex->kind); | |
1667 | H_PUT_8 (abfd, in->size, ex->size); | |
1668 | H_PUT_16 (abfd, in->section, ex->section); | |
1669 | H_PUT_32 (abfd, in->info, ex->info); | |
1670 | } | |
1671 | \f | |
1672 | /* This function is called via qsort() to sort the dynamic relocation | |
1673 | entries by increasing r_symndx value. */ | |
1674 | ||
1675 | static int | |
9719ad41 | 1676 | sort_dynamic_relocs (const void *arg1, const void *arg2) |
b49e97c9 | 1677 | { |
947216bf AM |
1678 | Elf_Internal_Rela int_reloc1; |
1679 | Elf_Internal_Rela int_reloc2; | |
b49e97c9 | 1680 | |
947216bf AM |
1681 | bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1); |
1682 | bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2); | |
b49e97c9 | 1683 | |
947216bf | 1684 | return ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info); |
b49e97c9 TS |
1685 | } |
1686 | ||
f4416af6 AO |
1687 | /* Like sort_dynamic_relocs, but used for elf64 relocations. */ |
1688 | ||
1689 | static int | |
7e3102a7 AM |
1690 | sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED, |
1691 | const void *arg2 ATTRIBUTE_UNUSED) | |
f4416af6 | 1692 | { |
7e3102a7 | 1693 | #ifdef BFD64 |
f4416af6 AO |
1694 | Elf_Internal_Rela int_reloc1[3]; |
1695 | Elf_Internal_Rela int_reloc2[3]; | |
1696 | ||
1697 | (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in) | |
1698 | (reldyn_sorting_bfd, arg1, int_reloc1); | |
1699 | (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in) | |
1700 | (reldyn_sorting_bfd, arg2, int_reloc2); | |
1701 | ||
1702 | return (ELF64_R_SYM (int_reloc1[0].r_info) | |
1703 | - ELF64_R_SYM (int_reloc2[0].r_info)); | |
7e3102a7 AM |
1704 | #else |
1705 | abort (); | |
1706 | #endif | |
f4416af6 AO |
1707 | } |
1708 | ||
1709 | ||
b49e97c9 TS |
1710 | /* This routine is used to write out ECOFF debugging external symbol |
1711 | information. It is called via mips_elf_link_hash_traverse. The | |
1712 | ECOFF external symbol information must match the ELF external | |
1713 | symbol information. Unfortunately, at this point we don't know | |
1714 | whether a symbol is required by reloc information, so the two | |
1715 | tables may wind up being different. We must sort out the external | |
1716 | symbol information before we can set the final size of the .mdebug | |
1717 | section, and we must set the size of the .mdebug section before we | |
1718 | can relocate any sections, and we can't know which symbols are | |
1719 | required by relocation until we relocate the sections. | |
1720 | Fortunately, it is relatively unlikely that any symbol will be | |
1721 | stripped but required by a reloc. In particular, it can not happen | |
1722 | when generating a final executable. */ | |
1723 | ||
b34976b6 | 1724 | static bfd_boolean |
9719ad41 | 1725 | mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data) |
b49e97c9 | 1726 | { |
9719ad41 | 1727 | struct extsym_info *einfo = data; |
b34976b6 | 1728 | bfd_boolean strip; |
b49e97c9 TS |
1729 | asection *sec, *output_section; |
1730 | ||
1731 | if (h->root.root.type == bfd_link_hash_warning) | |
1732 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | |
1733 | ||
1734 | if (h->root.indx == -2) | |
b34976b6 | 1735 | strip = FALSE; |
f5385ebf | 1736 | else if ((h->root.def_dynamic |
77cfaee6 AM |
1737 | || h->root.ref_dynamic |
1738 | || h->root.type == bfd_link_hash_new) | |
f5385ebf AM |
1739 | && !h->root.def_regular |
1740 | && !h->root.ref_regular) | |
b34976b6 | 1741 | strip = TRUE; |
b49e97c9 TS |
1742 | else if (einfo->info->strip == strip_all |
1743 | || (einfo->info->strip == strip_some | |
1744 | && bfd_hash_lookup (einfo->info->keep_hash, | |
1745 | h->root.root.root.string, | |
b34976b6 AM |
1746 | FALSE, FALSE) == NULL)) |
1747 | strip = TRUE; | |
b49e97c9 | 1748 | else |
b34976b6 | 1749 | strip = FALSE; |
b49e97c9 TS |
1750 | |
1751 | if (strip) | |
b34976b6 | 1752 | return TRUE; |
b49e97c9 TS |
1753 | |
1754 | if (h->esym.ifd == -2) | |
1755 | { | |
1756 | h->esym.jmptbl = 0; | |
1757 | h->esym.cobol_main = 0; | |
1758 | h->esym.weakext = 0; | |
1759 | h->esym.reserved = 0; | |
1760 | h->esym.ifd = ifdNil; | |
1761 | h->esym.asym.value = 0; | |
1762 | h->esym.asym.st = stGlobal; | |
1763 | ||
1764 | if (h->root.root.type == bfd_link_hash_undefined | |
1765 | || h->root.root.type == bfd_link_hash_undefweak) | |
1766 | { | |
1767 | const char *name; | |
1768 | ||
1769 | /* Use undefined class. Also, set class and type for some | |
1770 | special symbols. */ | |
1771 | name = h->root.root.root.string; | |
1772 | if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0 | |
1773 | || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0) | |
1774 | { | |
1775 | h->esym.asym.sc = scData; | |
1776 | h->esym.asym.st = stLabel; | |
1777 | h->esym.asym.value = 0; | |
1778 | } | |
1779 | else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0) | |
1780 | { | |
1781 | h->esym.asym.sc = scAbs; | |
1782 | h->esym.asym.st = stLabel; | |
1783 | h->esym.asym.value = | |
1784 | mips_elf_hash_table (einfo->info)->procedure_count; | |
1785 | } | |
4a14403c | 1786 | else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd)) |
b49e97c9 TS |
1787 | { |
1788 | h->esym.asym.sc = scAbs; | |
1789 | h->esym.asym.st = stLabel; | |
1790 | h->esym.asym.value = elf_gp (einfo->abfd); | |
1791 | } | |
1792 | else | |
1793 | h->esym.asym.sc = scUndefined; | |
1794 | } | |
1795 | else if (h->root.root.type != bfd_link_hash_defined | |
1796 | && h->root.root.type != bfd_link_hash_defweak) | |
1797 | h->esym.asym.sc = scAbs; | |
1798 | else | |
1799 | { | |
1800 | const char *name; | |
1801 | ||
1802 | sec = h->root.root.u.def.section; | |
1803 | output_section = sec->output_section; | |
1804 | ||
1805 | /* When making a shared library and symbol h is the one from | |
1806 | the another shared library, OUTPUT_SECTION may be null. */ | |
1807 | if (output_section == NULL) | |
1808 | h->esym.asym.sc = scUndefined; | |
1809 | else | |
1810 | { | |
1811 | name = bfd_section_name (output_section->owner, output_section); | |
1812 | ||
1813 | if (strcmp (name, ".text") == 0) | |
1814 | h->esym.asym.sc = scText; | |
1815 | else if (strcmp (name, ".data") == 0) | |
1816 | h->esym.asym.sc = scData; | |
1817 | else if (strcmp (name, ".sdata") == 0) | |
1818 | h->esym.asym.sc = scSData; | |
1819 | else if (strcmp (name, ".rodata") == 0 | |
1820 | || strcmp (name, ".rdata") == 0) | |
1821 | h->esym.asym.sc = scRData; | |
1822 | else if (strcmp (name, ".bss") == 0) | |
1823 | h->esym.asym.sc = scBss; | |
1824 | else if (strcmp (name, ".sbss") == 0) | |
1825 | h->esym.asym.sc = scSBss; | |
1826 | else if (strcmp (name, ".init") == 0) | |
1827 | h->esym.asym.sc = scInit; | |
1828 | else if (strcmp (name, ".fini") == 0) | |
1829 | h->esym.asym.sc = scFini; | |
1830 | else | |
1831 | h->esym.asym.sc = scAbs; | |
1832 | } | |
1833 | } | |
1834 | ||
1835 | h->esym.asym.reserved = 0; | |
1836 | h->esym.asym.index = indexNil; | |
1837 | } | |
1838 | ||
1839 | if (h->root.root.type == bfd_link_hash_common) | |
1840 | h->esym.asym.value = h->root.root.u.c.size; | |
1841 | else if (h->root.root.type == bfd_link_hash_defined | |
1842 | || h->root.root.type == bfd_link_hash_defweak) | |
1843 | { | |
1844 | if (h->esym.asym.sc == scCommon) | |
1845 | h->esym.asym.sc = scBss; | |
1846 | else if (h->esym.asym.sc == scSCommon) | |
1847 | h->esym.asym.sc = scSBss; | |
1848 | ||
1849 | sec = h->root.root.u.def.section; | |
1850 | output_section = sec->output_section; | |
1851 | if (output_section != NULL) | |
1852 | h->esym.asym.value = (h->root.root.u.def.value | |
1853 | + sec->output_offset | |
1854 | + output_section->vma); | |
1855 | else | |
1856 | h->esym.asym.value = 0; | |
1857 | } | |
f5385ebf | 1858 | else if (h->root.needs_plt) |
b49e97c9 TS |
1859 | { |
1860 | struct mips_elf_link_hash_entry *hd = h; | |
b34976b6 | 1861 | bfd_boolean no_fn_stub = h->no_fn_stub; |
b49e97c9 TS |
1862 | |
1863 | while (hd->root.root.type == bfd_link_hash_indirect) | |
1864 | { | |
1865 | hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link; | |
1866 | no_fn_stub = no_fn_stub || hd->no_fn_stub; | |
1867 | } | |
1868 | ||
1869 | if (!no_fn_stub) | |
1870 | { | |
1871 | /* Set type and value for a symbol with a function stub. */ | |
1872 | h->esym.asym.st = stProc; | |
1873 | sec = hd->root.root.u.def.section; | |
1874 | if (sec == NULL) | |
1875 | h->esym.asym.value = 0; | |
1876 | else | |
1877 | { | |
1878 | output_section = sec->output_section; | |
1879 | if (output_section != NULL) | |
1880 | h->esym.asym.value = (hd->root.plt.offset | |
1881 | + sec->output_offset | |
1882 | + output_section->vma); | |
1883 | else | |
1884 | h->esym.asym.value = 0; | |
1885 | } | |
b49e97c9 TS |
1886 | } |
1887 | } | |
1888 | ||
1889 | if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap, | |
1890 | h->root.root.root.string, | |
1891 | &h->esym)) | |
1892 | { | |
b34976b6 AM |
1893 | einfo->failed = TRUE; |
1894 | return FALSE; | |
b49e97c9 TS |
1895 | } |
1896 | ||
b34976b6 | 1897 | return TRUE; |
b49e97c9 TS |
1898 | } |
1899 | ||
1900 | /* A comparison routine used to sort .gptab entries. */ | |
1901 | ||
1902 | static int | |
9719ad41 | 1903 | gptab_compare (const void *p1, const void *p2) |
b49e97c9 | 1904 | { |
9719ad41 RS |
1905 | const Elf32_gptab *a1 = p1; |
1906 | const Elf32_gptab *a2 = p2; | |
b49e97c9 TS |
1907 | |
1908 | return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value; | |
1909 | } | |
1910 | \f | |
b15e6682 | 1911 | /* Functions to manage the got entry hash table. */ |
f4416af6 AO |
1912 | |
1913 | /* Use all 64 bits of a bfd_vma for the computation of a 32-bit | |
1914 | hash number. */ | |
1915 | ||
1916 | static INLINE hashval_t | |
9719ad41 | 1917 | mips_elf_hash_bfd_vma (bfd_vma addr) |
f4416af6 AO |
1918 | { |
1919 | #ifdef BFD64 | |
1920 | return addr + (addr >> 32); | |
1921 | #else | |
1922 | return addr; | |
1923 | #endif | |
1924 | } | |
1925 | ||
1926 | /* got_entries only match if they're identical, except for gotidx, so | |
1927 | use all fields to compute the hash, and compare the appropriate | |
1928 | union members. */ | |
1929 | ||
b15e6682 | 1930 | static hashval_t |
9719ad41 | 1931 | mips_elf_got_entry_hash (const void *entry_) |
b15e6682 AO |
1932 | { |
1933 | const struct mips_got_entry *entry = (struct mips_got_entry *)entry_; | |
1934 | ||
38985a1c | 1935 | return entry->symndx |
0f20cc35 | 1936 | + ((entry->tls_type & GOT_TLS_LDM) << 17) |
f4416af6 | 1937 | + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address) |
38985a1c AO |
1938 | : entry->abfd->id |
1939 | + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend) | |
1940 | : entry->d.h->root.root.root.hash)); | |
b15e6682 AO |
1941 | } |
1942 | ||
1943 | static int | |
9719ad41 | 1944 | mips_elf_got_entry_eq (const void *entry1, const void *entry2) |
b15e6682 AO |
1945 | { |
1946 | const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1; | |
1947 | const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2; | |
1948 | ||
0f20cc35 DJ |
1949 | /* An LDM entry can only match another LDM entry. */ |
1950 | if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM) | |
1951 | return 0; | |
1952 | ||
b15e6682 | 1953 | return e1->abfd == e2->abfd && e1->symndx == e2->symndx |
f4416af6 AO |
1954 | && (! e1->abfd ? e1->d.address == e2->d.address |
1955 | : e1->symndx >= 0 ? e1->d.addend == e2->d.addend | |
1956 | : e1->d.h == e2->d.h); | |
1957 | } | |
1958 | ||
1959 | /* multi_got_entries are still a match in the case of global objects, | |
1960 | even if the input bfd in which they're referenced differs, so the | |
1961 | hash computation and compare functions are adjusted | |
1962 | accordingly. */ | |
1963 | ||
1964 | static hashval_t | |
9719ad41 | 1965 | mips_elf_multi_got_entry_hash (const void *entry_) |
f4416af6 AO |
1966 | { |
1967 | const struct mips_got_entry *entry = (struct mips_got_entry *)entry_; | |
1968 | ||
1969 | return entry->symndx | |
1970 | + (! entry->abfd | |
1971 | ? mips_elf_hash_bfd_vma (entry->d.address) | |
1972 | : entry->symndx >= 0 | |
0f20cc35 DJ |
1973 | ? ((entry->tls_type & GOT_TLS_LDM) |
1974 | ? (GOT_TLS_LDM << 17) | |
1975 | : (entry->abfd->id | |
1976 | + mips_elf_hash_bfd_vma (entry->d.addend))) | |
f4416af6 AO |
1977 | : entry->d.h->root.root.root.hash); |
1978 | } | |
1979 | ||
1980 | static int | |
9719ad41 | 1981 | mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2) |
f4416af6 AO |
1982 | { |
1983 | const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1; | |
1984 | const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2; | |
1985 | ||
0f20cc35 DJ |
1986 | /* Any two LDM entries match. */ |
1987 | if (e1->tls_type & e2->tls_type & GOT_TLS_LDM) | |
1988 | return 1; | |
1989 | ||
1990 | /* Nothing else matches an LDM entry. */ | |
1991 | if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM) | |
1992 | return 0; | |
1993 | ||
f4416af6 AO |
1994 | return e1->symndx == e2->symndx |
1995 | && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend | |
1996 | : e1->abfd == NULL || e2->abfd == NULL | |
1997 | ? e1->abfd == e2->abfd && e1->d.address == e2->d.address | |
1998 | : e1->d.h == e2->d.h); | |
b15e6682 AO |
1999 | } |
2000 | \f | |
0a44bf69 RS |
2001 | /* Return the dynamic relocation section. If it doesn't exist, try to |
2002 | create a new it if CREATE_P, otherwise return NULL. Also return NULL | |
2003 | if creation fails. */ | |
f4416af6 AO |
2004 | |
2005 | static asection * | |
0a44bf69 | 2006 | mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p) |
f4416af6 | 2007 | { |
0a44bf69 | 2008 | const char *dname; |
f4416af6 | 2009 | asection *sreloc; |
0a44bf69 | 2010 | bfd *dynobj; |
f4416af6 | 2011 | |
0a44bf69 RS |
2012 | dname = MIPS_ELF_REL_DYN_NAME (info); |
2013 | dynobj = elf_hash_table (info)->dynobj; | |
f4416af6 AO |
2014 | sreloc = bfd_get_section_by_name (dynobj, dname); |
2015 | if (sreloc == NULL && create_p) | |
2016 | { | |
3496cb2a L |
2017 | sreloc = bfd_make_section_with_flags (dynobj, dname, |
2018 | (SEC_ALLOC | |
2019 | | SEC_LOAD | |
2020 | | SEC_HAS_CONTENTS | |
2021 | | SEC_IN_MEMORY | |
2022 | | SEC_LINKER_CREATED | |
2023 | | SEC_READONLY)); | |
f4416af6 | 2024 | if (sreloc == NULL |
f4416af6 | 2025 | || ! bfd_set_section_alignment (dynobj, sreloc, |
d80dcc6a | 2026 | MIPS_ELF_LOG_FILE_ALIGN (dynobj))) |
f4416af6 AO |
2027 | return NULL; |
2028 | } | |
2029 | return sreloc; | |
2030 | } | |
2031 | ||
b49e97c9 TS |
2032 | /* Returns the GOT section for ABFD. */ |
2033 | ||
2034 | static asection * | |
9719ad41 | 2035 | mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded) |
b49e97c9 | 2036 | { |
f4416af6 AO |
2037 | asection *sgot = bfd_get_section_by_name (abfd, ".got"); |
2038 | if (sgot == NULL | |
2039 | || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0)) | |
2040 | return NULL; | |
2041 | return sgot; | |
b49e97c9 TS |
2042 | } |
2043 | ||
2044 | /* Returns the GOT information associated with the link indicated by | |
2045 | INFO. If SGOTP is non-NULL, it is filled in with the GOT | |
2046 | section. */ | |
2047 | ||
2048 | static struct mips_got_info * | |
9719ad41 | 2049 | mips_elf_got_info (bfd *abfd, asection **sgotp) |
b49e97c9 TS |
2050 | { |
2051 | asection *sgot; | |
2052 | struct mips_got_info *g; | |
2053 | ||
f4416af6 | 2054 | sgot = mips_elf_got_section (abfd, TRUE); |
b49e97c9 | 2055 | BFD_ASSERT (sgot != NULL); |
f0abc2a1 AM |
2056 | BFD_ASSERT (mips_elf_section_data (sgot) != NULL); |
2057 | g = mips_elf_section_data (sgot)->u.got_info; | |
b49e97c9 TS |
2058 | BFD_ASSERT (g != NULL); |
2059 | ||
2060 | if (sgotp) | |
f4416af6 AO |
2061 | *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL; |
2062 | ||
b49e97c9 TS |
2063 | return g; |
2064 | } | |
2065 | ||
0f20cc35 DJ |
2066 | /* Count the number of relocations needed for a TLS GOT entry, with |
2067 | access types from TLS_TYPE, and symbol H (or a local symbol if H | |
2068 | is NULL). */ | |
2069 | ||
2070 | static int | |
2071 | mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type, | |
2072 | struct elf_link_hash_entry *h) | |
2073 | { | |
2074 | int indx = 0; | |
2075 | int ret = 0; | |
2076 | bfd_boolean need_relocs = FALSE; | |
2077 | bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created; | |
2078 | ||
2079 | if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h) | |
2080 | && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h))) | |
2081 | indx = h->dynindx; | |
2082 | ||
2083 | if ((info->shared || indx != 0) | |
2084 | && (h == NULL | |
2085 | || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT | |
2086 | || h->root.type != bfd_link_hash_undefweak)) | |
2087 | need_relocs = TRUE; | |
2088 | ||
2089 | if (!need_relocs) | |
2090 | return FALSE; | |
2091 | ||
2092 | if (tls_type & GOT_TLS_GD) | |
2093 | { | |
2094 | ret++; | |
2095 | if (indx != 0) | |
2096 | ret++; | |
2097 | } | |
2098 | ||
2099 | if (tls_type & GOT_TLS_IE) | |
2100 | ret++; | |
2101 | ||
2102 | if ((tls_type & GOT_TLS_LDM) && info->shared) | |
2103 | ret++; | |
2104 | ||
2105 | return ret; | |
2106 | } | |
2107 | ||
2108 | /* Count the number of TLS relocations required for the GOT entry in | |
2109 | ARG1, if it describes a local symbol. */ | |
2110 | ||
2111 | static int | |
2112 | mips_elf_count_local_tls_relocs (void **arg1, void *arg2) | |
2113 | { | |
2114 | struct mips_got_entry *entry = * (struct mips_got_entry **) arg1; | |
2115 | struct mips_elf_count_tls_arg *arg = arg2; | |
2116 | ||
2117 | if (entry->abfd != NULL && entry->symndx != -1) | |
2118 | arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL); | |
2119 | ||
2120 | return 1; | |
2121 | } | |
2122 | ||
2123 | /* Count the number of TLS GOT entries required for the global (or | |
2124 | forced-local) symbol in ARG1. */ | |
2125 | ||
2126 | static int | |
2127 | mips_elf_count_global_tls_entries (void *arg1, void *arg2) | |
2128 | { | |
2129 | struct mips_elf_link_hash_entry *hm | |
2130 | = (struct mips_elf_link_hash_entry *) arg1; | |
2131 | struct mips_elf_count_tls_arg *arg = arg2; | |
2132 | ||
2133 | if (hm->tls_type & GOT_TLS_GD) | |
2134 | arg->needed += 2; | |
2135 | if (hm->tls_type & GOT_TLS_IE) | |
2136 | arg->needed += 1; | |
2137 | ||
2138 | return 1; | |
2139 | } | |
2140 | ||
2141 | /* Count the number of TLS relocations required for the global (or | |
2142 | forced-local) symbol in ARG1. */ | |
2143 | ||
2144 | static int | |
2145 | mips_elf_count_global_tls_relocs (void *arg1, void *arg2) | |
2146 | { | |
2147 | struct mips_elf_link_hash_entry *hm | |
2148 | = (struct mips_elf_link_hash_entry *) arg1; | |
2149 | struct mips_elf_count_tls_arg *arg = arg2; | |
2150 | ||
2151 | arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root); | |
2152 | ||
2153 | return 1; | |
2154 | } | |
2155 | ||
2156 | /* Output a simple dynamic relocation into SRELOC. */ | |
2157 | ||
2158 | static void | |
2159 | mips_elf_output_dynamic_relocation (bfd *output_bfd, | |
2160 | asection *sreloc, | |
2161 | unsigned long indx, | |
2162 | int r_type, | |
2163 | bfd_vma offset) | |
2164 | { | |
2165 | Elf_Internal_Rela rel[3]; | |
2166 | ||
2167 | memset (rel, 0, sizeof (rel)); | |
2168 | ||
2169 | rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type); | |
2170 | rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset; | |
2171 | ||
2172 | if (ABI_64_P (output_bfd)) | |
2173 | { | |
2174 | (*get_elf_backend_data (output_bfd)->s->swap_reloc_out) | |
2175 | (output_bfd, &rel[0], | |
2176 | (sreloc->contents | |
2177 | + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel))); | |
2178 | } | |
2179 | else | |
2180 | bfd_elf32_swap_reloc_out | |
2181 | (output_bfd, &rel[0], | |
2182 | (sreloc->contents | |
2183 | + sreloc->reloc_count * sizeof (Elf32_External_Rel))); | |
2184 | ++sreloc->reloc_count; | |
2185 | } | |
2186 | ||
2187 | /* Initialize a set of TLS GOT entries for one symbol. */ | |
2188 | ||
2189 | static void | |
2190 | mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset, | |
2191 | unsigned char *tls_type_p, | |
2192 | struct bfd_link_info *info, | |
2193 | struct mips_elf_link_hash_entry *h, | |
2194 | bfd_vma value) | |
2195 | { | |
2196 | int indx; | |
2197 | asection *sreloc, *sgot; | |
2198 | bfd_vma offset, offset2; | |
2199 | bfd *dynobj; | |
2200 | bfd_boolean need_relocs = FALSE; | |
2201 | ||
2202 | dynobj = elf_hash_table (info)->dynobj; | |
2203 | sgot = mips_elf_got_section (dynobj, FALSE); | |
2204 | ||
2205 | indx = 0; | |
2206 | if (h != NULL) | |
2207 | { | |
2208 | bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created; | |
2209 | ||
2210 | if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root) | |
2211 | && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root))) | |
2212 | indx = h->root.dynindx; | |
2213 | } | |
2214 | ||
2215 | if (*tls_type_p & GOT_TLS_DONE) | |
2216 | return; | |
2217 | ||
2218 | if ((info->shared || indx != 0) | |
2219 | && (h == NULL | |
2220 | || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT | |
2221 | || h->root.type != bfd_link_hash_undefweak)) | |
2222 | need_relocs = TRUE; | |
2223 | ||
2224 | /* MINUS_ONE means the symbol is not defined in this object. It may not | |
2225 | be defined at all; assume that the value doesn't matter in that | |
2226 | case. Otherwise complain if we would use the value. */ | |
2227 | BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs) | |
2228 | || h->root.root.type == bfd_link_hash_undefweak); | |
2229 | ||
2230 | /* Emit necessary relocations. */ | |
0a44bf69 | 2231 | sreloc = mips_elf_rel_dyn_section (info, FALSE); |
0f20cc35 DJ |
2232 | |
2233 | /* General Dynamic. */ | |
2234 | if (*tls_type_p & GOT_TLS_GD) | |
2235 | { | |
2236 | offset = got_offset; | |
2237 | offset2 = offset + MIPS_ELF_GOT_SIZE (abfd); | |
2238 | ||
2239 | if (need_relocs) | |
2240 | { | |
2241 | mips_elf_output_dynamic_relocation | |
2242 | (abfd, sreloc, indx, | |
2243 | ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32, | |
2244 | sgot->output_offset + sgot->output_section->vma + offset); | |
2245 | ||
2246 | if (indx) | |
2247 | mips_elf_output_dynamic_relocation | |
2248 | (abfd, sreloc, indx, | |
2249 | ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32, | |
2250 | sgot->output_offset + sgot->output_section->vma + offset2); | |
2251 | else | |
2252 | MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info), | |
2253 | sgot->contents + offset2); | |
2254 | } | |
2255 | else | |
2256 | { | |
2257 | MIPS_ELF_PUT_WORD (abfd, 1, | |
2258 | sgot->contents + offset); | |
2259 | MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info), | |
2260 | sgot->contents + offset2); | |
2261 | } | |
2262 | ||
2263 | got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd); | |
2264 | } | |
2265 | ||
2266 | /* Initial Exec model. */ | |
2267 | if (*tls_type_p & GOT_TLS_IE) | |
2268 | { | |
2269 | offset = got_offset; | |
2270 | ||
2271 | if (need_relocs) | |
2272 | { | |
2273 | if (indx == 0) | |
2274 | MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma, | |
2275 | sgot->contents + offset); | |
2276 | else | |
2277 | MIPS_ELF_PUT_WORD (abfd, 0, | |
2278 | sgot->contents + offset); | |
2279 | ||
2280 | mips_elf_output_dynamic_relocation | |
2281 | (abfd, sreloc, indx, | |
2282 | ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32, | |
2283 | sgot->output_offset + sgot->output_section->vma + offset); | |
2284 | } | |
2285 | else | |
2286 | MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info), | |
2287 | sgot->contents + offset); | |
2288 | } | |
2289 | ||
2290 | if (*tls_type_p & GOT_TLS_LDM) | |
2291 | { | |
2292 | /* The initial offset is zero, and the LD offsets will include the | |
2293 | bias by DTP_OFFSET. */ | |
2294 | MIPS_ELF_PUT_WORD (abfd, 0, | |
2295 | sgot->contents + got_offset | |
2296 | + MIPS_ELF_GOT_SIZE (abfd)); | |
2297 | ||
2298 | if (!info->shared) | |
2299 | MIPS_ELF_PUT_WORD (abfd, 1, | |
2300 | sgot->contents + got_offset); | |
2301 | else | |
2302 | mips_elf_output_dynamic_relocation | |
2303 | (abfd, sreloc, indx, | |
2304 | ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32, | |
2305 | sgot->output_offset + sgot->output_section->vma + got_offset); | |
2306 | } | |
2307 | ||
2308 | *tls_type_p |= GOT_TLS_DONE; | |
2309 | } | |
2310 | ||
2311 | /* Return the GOT index to use for a relocation of type R_TYPE against | |
2312 | a symbol accessed using TLS_TYPE models. The GOT entries for this | |
2313 | symbol in this GOT start at GOT_INDEX. This function initializes the | |
2314 | GOT entries and corresponding relocations. */ | |
2315 | ||
2316 | static bfd_vma | |
2317 | mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type, | |
2318 | int r_type, struct bfd_link_info *info, | |
2319 | struct mips_elf_link_hash_entry *h, bfd_vma symbol) | |
2320 | { | |
2321 | BFD_ASSERT (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS_TLS_GD | |
2322 | || r_type == R_MIPS_TLS_LDM); | |
2323 | ||
2324 | mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol); | |
2325 | ||
2326 | if (r_type == R_MIPS_TLS_GOTTPREL) | |
2327 | { | |
2328 | BFD_ASSERT (*tls_type & GOT_TLS_IE); | |
2329 | if (*tls_type & GOT_TLS_GD) | |
2330 | return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd); | |
2331 | else | |
2332 | return got_index; | |
2333 | } | |
2334 | ||
2335 | if (r_type == R_MIPS_TLS_GD) | |
2336 | { | |
2337 | BFD_ASSERT (*tls_type & GOT_TLS_GD); | |
2338 | return got_index; | |
2339 | } | |
2340 | ||
2341 | if (r_type == R_MIPS_TLS_LDM) | |
2342 | { | |
2343 | BFD_ASSERT (*tls_type & GOT_TLS_LDM); | |
2344 | return got_index; | |
2345 | } | |
2346 | ||
2347 | return got_index; | |
2348 | } | |
2349 | ||
0a44bf69 RS |
2350 | /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry |
2351 | for global symbol H. .got.plt comes before the GOT, so the offset | |
2352 | will be negative. */ | |
2353 | ||
2354 | static bfd_vma | |
2355 | mips_elf_gotplt_index (struct bfd_link_info *info, | |
2356 | struct elf_link_hash_entry *h) | |
2357 | { | |
2358 | bfd_vma plt_index, got_address, got_value; | |
2359 | struct mips_elf_link_hash_table *htab; | |
2360 | ||
2361 | htab = mips_elf_hash_table (info); | |
2362 | BFD_ASSERT (h->plt.offset != (bfd_vma) -1); | |
2363 | ||
2364 | /* Calculate the index of the symbol's PLT entry. */ | |
2365 | plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size; | |
2366 | ||
2367 | /* Calculate the address of the associated .got.plt entry. */ | |
2368 | got_address = (htab->sgotplt->output_section->vma | |
2369 | + htab->sgotplt->output_offset | |
2370 | + plt_index * 4); | |
2371 | ||
2372 | /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */ | |
2373 | got_value = (htab->root.hgot->root.u.def.section->output_section->vma | |
2374 | + htab->root.hgot->root.u.def.section->output_offset | |
2375 | + htab->root.hgot->root.u.def.value); | |
2376 | ||
2377 | return got_address - got_value; | |
2378 | } | |
2379 | ||
2380 | /* Return the GOT offset for address VALUE, which was derived from | |
2381 | a symbol belonging to INPUT_SECTION. If there is not yet a GOT | |
2382 | entry for this value, create one. If R_SYMNDX refers to a TLS symbol, | |
2383 | create a TLS GOT entry instead. Return -1 if no satisfactory GOT | |
2384 | offset can be found. */ | |
b49e97c9 TS |
2385 | |
2386 | static bfd_vma | |
9719ad41 | 2387 | mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info, |
0a44bf69 RS |
2388 | asection *input_section, bfd_vma value, |
2389 | unsigned long r_symndx, | |
0f20cc35 | 2390 | struct mips_elf_link_hash_entry *h, int r_type) |
b49e97c9 TS |
2391 | { |
2392 | asection *sgot; | |
2393 | struct mips_got_info *g; | |
b15e6682 | 2394 | struct mips_got_entry *entry; |
b49e97c9 TS |
2395 | |
2396 | g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot); | |
2397 | ||
0a44bf69 RS |
2398 | entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot, |
2399 | input_section, value, | |
0f20cc35 DJ |
2400 | r_symndx, h, r_type); |
2401 | if (!entry) | |
b15e6682 | 2402 | return MINUS_ONE; |
0f20cc35 DJ |
2403 | |
2404 | if (TLS_RELOC_P (r_type)) | |
ead49a57 RS |
2405 | { |
2406 | if (entry->symndx == -1 && g->next == NULL) | |
2407 | /* A type (3) entry in the single-GOT case. We use the symbol's | |
2408 | hash table entry to track the index. */ | |
2409 | return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type, | |
2410 | r_type, info, h, value); | |
2411 | else | |
2412 | return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type, | |
2413 | r_type, info, h, value); | |
2414 | } | |
0f20cc35 DJ |
2415 | else |
2416 | return entry->gotidx; | |
b49e97c9 TS |
2417 | } |
2418 | ||
2419 | /* Returns the GOT index for the global symbol indicated by H. */ | |
2420 | ||
2421 | static bfd_vma | |
0f20cc35 DJ |
2422 | mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h, |
2423 | int r_type, struct bfd_link_info *info) | |
b49e97c9 TS |
2424 | { |
2425 | bfd_vma index; | |
2426 | asection *sgot; | |
f4416af6 | 2427 | struct mips_got_info *g, *gg; |
d0c7ff07 | 2428 | long global_got_dynindx = 0; |
b49e97c9 | 2429 | |
f4416af6 AO |
2430 | gg = g = mips_elf_got_info (abfd, &sgot); |
2431 | if (g->bfd2got && ibfd) | |
2432 | { | |
2433 | struct mips_got_entry e, *p; | |
143d77c5 | 2434 | |
f4416af6 AO |
2435 | BFD_ASSERT (h->dynindx >= 0); |
2436 | ||
2437 | g = mips_elf_got_for_ibfd (g, ibfd); | |
0f20cc35 | 2438 | if (g->next != gg || TLS_RELOC_P (r_type)) |
f4416af6 AO |
2439 | { |
2440 | e.abfd = ibfd; | |
2441 | e.symndx = -1; | |
2442 | e.d.h = (struct mips_elf_link_hash_entry *)h; | |
0f20cc35 | 2443 | e.tls_type = 0; |
f4416af6 | 2444 | |
9719ad41 | 2445 | p = htab_find (g->got_entries, &e); |
f4416af6 AO |
2446 | |
2447 | BFD_ASSERT (p->gotidx > 0); | |
0f20cc35 DJ |
2448 | |
2449 | if (TLS_RELOC_P (r_type)) | |
2450 | { | |
2451 | bfd_vma value = MINUS_ONE; | |
2452 | if ((h->root.type == bfd_link_hash_defined | |
2453 | || h->root.type == bfd_link_hash_defweak) | |
2454 | && h->root.u.def.section->output_section) | |
2455 | value = (h->root.u.def.value | |
2456 | + h->root.u.def.section->output_offset | |
2457 | + h->root.u.def.section->output_section->vma); | |
2458 | ||
2459 | return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type, | |
2460 | info, e.d.h, value); | |
2461 | } | |
2462 | else | |
2463 | return p->gotidx; | |
f4416af6 AO |
2464 | } |
2465 | } | |
2466 | ||
2467 | if (gg->global_gotsym != NULL) | |
2468 | global_got_dynindx = gg->global_gotsym->dynindx; | |
b49e97c9 | 2469 | |
0f20cc35 DJ |
2470 | if (TLS_RELOC_P (r_type)) |
2471 | { | |
2472 | struct mips_elf_link_hash_entry *hm | |
2473 | = (struct mips_elf_link_hash_entry *) h; | |
2474 | bfd_vma value = MINUS_ONE; | |
2475 | ||
2476 | if ((h->root.type == bfd_link_hash_defined | |
2477 | || h->root.type == bfd_link_hash_defweak) | |
2478 | && h->root.u.def.section->output_section) | |
2479 | value = (h->root.u.def.value | |
2480 | + h->root.u.def.section->output_offset | |
2481 | + h->root.u.def.section->output_section->vma); | |
2482 | ||
2483 | index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type, | |
2484 | r_type, info, hm, value); | |
2485 | } | |
2486 | else | |
2487 | { | |
2488 | /* Once we determine the global GOT entry with the lowest dynamic | |
2489 | symbol table index, we must put all dynamic symbols with greater | |
2490 | indices into the GOT. That makes it easy to calculate the GOT | |
2491 | offset. */ | |
2492 | BFD_ASSERT (h->dynindx >= global_got_dynindx); | |
2493 | index = ((h->dynindx - global_got_dynindx + g->local_gotno) | |
2494 | * MIPS_ELF_GOT_SIZE (abfd)); | |
2495 | } | |
eea6121a | 2496 | BFD_ASSERT (index < sgot->size); |
b49e97c9 TS |
2497 | |
2498 | return index; | |
2499 | } | |
2500 | ||
0a44bf69 RS |
2501 | /* Find a GOT page entry that points to within 32KB of VALUE, which was |
2502 | calculated from a symbol belonging to INPUT_SECTION. These entries | |
2503 | are supposed to be placed at small offsets in the GOT, i.e., within | |
2504 | 32KB of GP. Return the index of the GOT entry, or -1 if no entry | |
2505 | could be created. If OFFSETP is nonnull, use it to return the | |
2506 | offset of the GOT entry from VALUE. */ | |
b49e97c9 TS |
2507 | |
2508 | static bfd_vma | |
9719ad41 | 2509 | mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info, |
0a44bf69 | 2510 | asection *input_section, bfd_vma value, bfd_vma *offsetp) |
b49e97c9 TS |
2511 | { |
2512 | asection *sgot; | |
2513 | struct mips_got_info *g; | |
0a44bf69 | 2514 | bfd_vma page, index; |
b15e6682 | 2515 | struct mips_got_entry *entry; |
b49e97c9 TS |
2516 | |
2517 | g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot); | |
2518 | ||
0a44bf69 RS |
2519 | page = (value + 0x8000) & ~(bfd_vma) 0xffff; |
2520 | entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot, | |
2521 | input_section, page, 0, | |
0f20cc35 | 2522 | NULL, R_MIPS_GOT_PAGE); |
b49e97c9 | 2523 | |
b15e6682 AO |
2524 | if (!entry) |
2525 | return MINUS_ONE; | |
143d77c5 | 2526 | |
b15e6682 | 2527 | index = entry->gotidx; |
b49e97c9 TS |
2528 | |
2529 | if (offsetp) | |
f4416af6 | 2530 | *offsetp = value - entry->d.address; |
b49e97c9 TS |
2531 | |
2532 | return index; | |
2533 | } | |
2534 | ||
0a44bf69 RS |
2535 | /* Find a local GOT entry for an R_MIPS_GOT16 relocation against VALUE, |
2536 | which was calculated from a symbol belonging to INPUT_SECTION. | |
2537 | EXTERNAL is true if the relocation was against a global symbol | |
2538 | that has been forced local. */ | |
b49e97c9 TS |
2539 | |
2540 | static bfd_vma | |
9719ad41 | 2541 | mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info, |
0a44bf69 RS |
2542 | asection *input_section, bfd_vma value, |
2543 | bfd_boolean external) | |
b49e97c9 TS |
2544 | { |
2545 | asection *sgot; | |
2546 | struct mips_got_info *g; | |
b15e6682 | 2547 | struct mips_got_entry *entry; |
b49e97c9 | 2548 | |
0a44bf69 RS |
2549 | /* GOT16 relocations against local symbols are followed by a LO16 |
2550 | relocation; those against global symbols are not. Thus if the | |
2551 | symbol was originally local, the GOT16 relocation should load the | |
2552 | equivalent of %hi(VALUE), otherwise it should load VALUE itself. */ | |
b49e97c9 | 2553 | if (! external) |
0a44bf69 | 2554 | value = mips_elf_high (value) << 16; |
b49e97c9 TS |
2555 | |
2556 | g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot); | |
2557 | ||
0a44bf69 RS |
2558 | entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot, |
2559 | input_section, value, 0, | |
2560 | NULL, R_MIPS_GOT16); | |
b15e6682 AO |
2561 | if (entry) |
2562 | return entry->gotidx; | |
2563 | else | |
2564 | return MINUS_ONE; | |
b49e97c9 TS |
2565 | } |
2566 | ||
2567 | /* Returns the offset for the entry at the INDEXth position | |
2568 | in the GOT. */ | |
2569 | ||
2570 | static bfd_vma | |
9719ad41 RS |
2571 | mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd, |
2572 | bfd *input_bfd, bfd_vma index) | |
b49e97c9 TS |
2573 | { |
2574 | asection *sgot; | |
2575 | bfd_vma gp; | |
f4416af6 | 2576 | struct mips_got_info *g; |
b49e97c9 | 2577 | |
f4416af6 AO |
2578 | g = mips_elf_got_info (dynobj, &sgot); |
2579 | gp = _bfd_get_gp_value (output_bfd) | |
2580 | + mips_elf_adjust_gp (output_bfd, g, input_bfd); | |
143d77c5 | 2581 | |
f4416af6 | 2582 | return sgot->output_section->vma + sgot->output_offset + index - gp; |
b49e97c9 TS |
2583 | } |
2584 | ||
0a44bf69 RS |
2585 | /* Create and return a local GOT entry for VALUE, which was calculated |
2586 | from a symbol belonging to INPUT_SECTON. Return NULL if it could not | |
2587 | be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry | |
2588 | instead. */ | |
b49e97c9 | 2589 | |
b15e6682 | 2590 | static struct mips_got_entry * |
0a44bf69 RS |
2591 | mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info, |
2592 | bfd *ibfd, struct mips_got_info *gg, | |
2593 | asection *sgot, asection *input_section, | |
2594 | bfd_vma value, unsigned long r_symndx, | |
0f20cc35 DJ |
2595 | struct mips_elf_link_hash_entry *h, |
2596 | int r_type) | |
b49e97c9 | 2597 | { |
b15e6682 | 2598 | struct mips_got_entry entry, **loc; |
f4416af6 | 2599 | struct mips_got_info *g; |
0a44bf69 RS |
2600 | struct mips_elf_link_hash_table *htab; |
2601 | ||
2602 | htab = mips_elf_hash_table (info); | |
b15e6682 | 2603 | |
f4416af6 AO |
2604 | entry.abfd = NULL; |
2605 | entry.symndx = -1; | |
2606 | entry.d.address = value; | |
0f20cc35 | 2607 | entry.tls_type = 0; |
f4416af6 AO |
2608 | |
2609 | g = mips_elf_got_for_ibfd (gg, ibfd); | |
2610 | if (g == NULL) | |
2611 | { | |
2612 | g = mips_elf_got_for_ibfd (gg, abfd); | |
2613 | BFD_ASSERT (g != NULL); | |
2614 | } | |
b15e6682 | 2615 | |
0f20cc35 DJ |
2616 | /* We might have a symbol, H, if it has been forced local. Use the |
2617 | global entry then. It doesn't matter whether an entry is local | |
2618 | or global for TLS, since the dynamic linker does not | |
2619 | automatically relocate TLS GOT entries. */ | |
a008ac03 | 2620 | BFD_ASSERT (h == NULL || h->root.forced_local); |
0f20cc35 DJ |
2621 | if (TLS_RELOC_P (r_type)) |
2622 | { | |
2623 | struct mips_got_entry *p; | |
2624 | ||
2625 | entry.abfd = ibfd; | |
2626 | if (r_type == R_MIPS_TLS_LDM) | |
2627 | { | |
2628 | entry.tls_type = GOT_TLS_LDM; | |
2629 | entry.symndx = 0; | |
2630 | entry.d.addend = 0; | |
2631 | } | |
2632 | else if (h == NULL) | |
2633 | { | |
2634 | entry.symndx = r_symndx; | |
2635 | entry.d.addend = 0; | |
2636 | } | |
2637 | else | |
2638 | entry.d.h = h; | |
2639 | ||
2640 | p = (struct mips_got_entry *) | |
2641 | htab_find (g->got_entries, &entry); | |
2642 | ||
2643 | BFD_ASSERT (p); | |
2644 | return p; | |
2645 | } | |
2646 | ||
b15e6682 AO |
2647 | loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry, |
2648 | INSERT); | |
2649 | if (*loc) | |
2650 | return *loc; | |
143d77c5 | 2651 | |
b15e6682 | 2652 | entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++; |
0f20cc35 | 2653 | entry.tls_type = 0; |
b15e6682 AO |
2654 | |
2655 | *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry); | |
2656 | ||
2657 | if (! *loc) | |
2658 | return NULL; | |
143d77c5 | 2659 | |
b15e6682 AO |
2660 | memcpy (*loc, &entry, sizeof entry); |
2661 | ||
b49e97c9 TS |
2662 | if (g->assigned_gotno >= g->local_gotno) |
2663 | { | |
f4416af6 | 2664 | (*loc)->gotidx = -1; |
b49e97c9 TS |
2665 | /* We didn't allocate enough space in the GOT. */ |
2666 | (*_bfd_error_handler) | |
2667 | (_("not enough GOT space for local GOT entries")); | |
2668 | bfd_set_error (bfd_error_bad_value); | |
b15e6682 | 2669 | return NULL; |
b49e97c9 TS |
2670 | } |
2671 | ||
2672 | MIPS_ELF_PUT_WORD (abfd, value, | |
b15e6682 AO |
2673 | (sgot->contents + entry.gotidx)); |
2674 | ||
0a44bf69 RS |
2675 | /* These GOT entries need a dynamic relocation on VxWorks. Because |
2676 | the offset between segments is not fixed, the relocation must be | |
2677 | against a symbol in the same segment as the original symbol. | |
2678 | The easiest way to do this is to take INPUT_SECTION's output | |
2679 | section and emit a relocation against its section symbol. */ | |
2680 | if (htab->is_vxworks) | |
2681 | { | |
2682 | Elf_Internal_Rela outrel; | |
2683 | asection *s, *output_section; | |
2684 | bfd_byte *loc; | |
2685 | bfd_vma got_address; | |
2686 | int dynindx; | |
2687 | ||
2688 | s = mips_elf_rel_dyn_section (info, FALSE); | |
2689 | output_section = input_section->output_section; | |
2690 | dynindx = elf_section_data (output_section)->dynindx; | |
2691 | got_address = (sgot->output_section->vma | |
2692 | + sgot->output_offset | |
2693 | + entry.gotidx); | |
2694 | ||
2695 | loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela)); | |
2696 | outrel.r_offset = got_address; | |
2697 | outrel.r_info = ELF32_R_INFO (dynindx, R_MIPS_32); | |
2698 | outrel.r_addend = value - output_section->vma; | |
2699 | bfd_elf32_swap_reloca_out (abfd, &outrel, loc); | |
2700 | } | |
2701 | ||
b15e6682 | 2702 | return *loc; |
b49e97c9 TS |
2703 | } |
2704 | ||
2705 | /* Sort the dynamic symbol table so that symbols that need GOT entries | |
2706 | appear towards the end. This reduces the amount of GOT space | |
2707 | required. MAX_LOCAL is used to set the number of local symbols | |
2708 | known to be in the dynamic symbol table. During | |
2709 | _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the | |
2710 | section symbols are added and the count is higher. */ | |
2711 | ||
b34976b6 | 2712 | static bfd_boolean |
9719ad41 | 2713 | mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local) |
b49e97c9 TS |
2714 | { |
2715 | struct mips_elf_hash_sort_data hsd; | |
2716 | struct mips_got_info *g; | |
2717 | bfd *dynobj; | |
2718 | ||
2719 | dynobj = elf_hash_table (info)->dynobj; | |
2720 | ||
f4416af6 AO |
2721 | g = mips_elf_got_info (dynobj, NULL); |
2722 | ||
b49e97c9 | 2723 | hsd.low = NULL; |
143d77c5 | 2724 | hsd.max_unref_got_dynindx = |
f4416af6 AO |
2725 | hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount |
2726 | /* In the multi-got case, assigned_gotno of the master got_info | |
2727 | indicate the number of entries that aren't referenced in the | |
2728 | primary GOT, but that must have entries because there are | |
2729 | dynamic relocations that reference it. Since they aren't | |
2730 | referenced, we move them to the end of the GOT, so that they | |
2731 | don't prevent other entries that are referenced from getting | |
2732 | too large offsets. */ | |
2733 | - (g->next ? g->assigned_gotno : 0); | |
b49e97c9 TS |
2734 | hsd.max_non_got_dynindx = max_local; |
2735 | mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *) | |
2736 | elf_hash_table (info)), | |
2737 | mips_elf_sort_hash_table_f, | |
2738 | &hsd); | |
2739 | ||
2740 | /* There should have been enough room in the symbol table to | |
44c410de | 2741 | accommodate both the GOT and non-GOT symbols. */ |
b49e97c9 | 2742 | BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx); |
f4416af6 AO |
2743 | BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx |
2744 | <= elf_hash_table (info)->dynsymcount); | |
b49e97c9 TS |
2745 | |
2746 | /* Now we know which dynamic symbol has the lowest dynamic symbol | |
2747 | table index in the GOT. */ | |
b49e97c9 TS |
2748 | g->global_gotsym = hsd.low; |
2749 | ||
b34976b6 | 2750 | return TRUE; |
b49e97c9 TS |
2751 | } |
2752 | ||
2753 | /* If H needs a GOT entry, assign it the highest available dynamic | |
2754 | index. Otherwise, assign it the lowest available dynamic | |
2755 | index. */ | |
2756 | ||
b34976b6 | 2757 | static bfd_boolean |
9719ad41 | 2758 | mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data) |
b49e97c9 | 2759 | { |
9719ad41 | 2760 | struct mips_elf_hash_sort_data *hsd = data; |
b49e97c9 TS |
2761 | |
2762 | if (h->root.root.type == bfd_link_hash_warning) | |
2763 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | |
2764 | ||
2765 | /* Symbols without dynamic symbol table entries aren't interesting | |
2766 | at all. */ | |
2767 | if (h->root.dynindx == -1) | |
b34976b6 | 2768 | return TRUE; |
b49e97c9 | 2769 | |
f4416af6 AO |
2770 | /* Global symbols that need GOT entries that are not explicitly |
2771 | referenced are marked with got offset 2. Those that are | |
2772 | referenced get a 1, and those that don't need GOT entries get | |
2773 | -1. */ | |
2774 | if (h->root.got.offset == 2) | |
2775 | { | |
0f20cc35 DJ |
2776 | BFD_ASSERT (h->tls_type == GOT_NORMAL); |
2777 | ||
f4416af6 AO |
2778 | if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx) |
2779 | hsd->low = (struct elf_link_hash_entry *) h; | |
2780 | h->root.dynindx = hsd->max_unref_got_dynindx++; | |
2781 | } | |
2782 | else if (h->root.got.offset != 1) | |
b49e97c9 TS |
2783 | h->root.dynindx = hsd->max_non_got_dynindx++; |
2784 | else | |
2785 | { | |
0f20cc35 DJ |
2786 | BFD_ASSERT (h->tls_type == GOT_NORMAL); |
2787 | ||
b49e97c9 TS |
2788 | h->root.dynindx = --hsd->min_got_dynindx; |
2789 | hsd->low = (struct elf_link_hash_entry *) h; | |
2790 | } | |
2791 | ||
b34976b6 | 2792 | return TRUE; |
b49e97c9 TS |
2793 | } |
2794 | ||
2795 | /* If H is a symbol that needs a global GOT entry, but has a dynamic | |
2796 | symbol table index lower than any we've seen to date, record it for | |
2797 | posterity. */ | |
2798 | ||
b34976b6 | 2799 | static bfd_boolean |
9719ad41 RS |
2800 | mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h, |
2801 | bfd *abfd, struct bfd_link_info *info, | |
0f20cc35 DJ |
2802 | struct mips_got_info *g, |
2803 | unsigned char tls_flag) | |
b49e97c9 | 2804 | { |
f4416af6 AO |
2805 | struct mips_got_entry entry, **loc; |
2806 | ||
b49e97c9 TS |
2807 | /* A global symbol in the GOT must also be in the dynamic symbol |
2808 | table. */ | |
7c5fcef7 L |
2809 | if (h->dynindx == -1) |
2810 | { | |
2811 | switch (ELF_ST_VISIBILITY (h->other)) | |
2812 | { | |
2813 | case STV_INTERNAL: | |
2814 | case STV_HIDDEN: | |
b34976b6 | 2815 | _bfd_mips_elf_hide_symbol (info, h, TRUE); |
7c5fcef7 L |
2816 | break; |
2817 | } | |
c152c796 | 2818 | if (!bfd_elf_link_record_dynamic_symbol (info, h)) |
b34976b6 | 2819 | return FALSE; |
7c5fcef7 | 2820 | } |
b49e97c9 | 2821 | |
86324f90 EC |
2822 | /* Make sure we have a GOT to put this entry into. */ |
2823 | BFD_ASSERT (g != NULL); | |
2824 | ||
f4416af6 AO |
2825 | entry.abfd = abfd; |
2826 | entry.symndx = -1; | |
2827 | entry.d.h = (struct mips_elf_link_hash_entry *) h; | |
0f20cc35 | 2828 | entry.tls_type = 0; |
f4416af6 AO |
2829 | |
2830 | loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry, | |
2831 | INSERT); | |
2832 | ||
b49e97c9 TS |
2833 | /* If we've already marked this entry as needing GOT space, we don't |
2834 | need to do it again. */ | |
f4416af6 | 2835 | if (*loc) |
0f20cc35 DJ |
2836 | { |
2837 | (*loc)->tls_type |= tls_flag; | |
2838 | return TRUE; | |
2839 | } | |
f4416af6 AO |
2840 | |
2841 | *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry); | |
2842 | ||
2843 | if (! *loc) | |
2844 | return FALSE; | |
143d77c5 | 2845 | |
f4416af6 | 2846 | entry.gotidx = -1; |
0f20cc35 DJ |
2847 | entry.tls_type = tls_flag; |
2848 | ||
f4416af6 AO |
2849 | memcpy (*loc, &entry, sizeof entry); |
2850 | ||
b49e97c9 | 2851 | if (h->got.offset != MINUS_ONE) |
b34976b6 | 2852 | return TRUE; |
b49e97c9 TS |
2853 | |
2854 | /* By setting this to a value other than -1, we are indicating that | |
2855 | there needs to be a GOT entry for H. Avoid using zero, as the | |
2856 | generic ELF copy_indirect_symbol tests for <= 0. */ | |
0f20cc35 DJ |
2857 | if (tls_flag == 0) |
2858 | h->got.offset = 1; | |
b49e97c9 | 2859 | |
b34976b6 | 2860 | return TRUE; |
b49e97c9 | 2861 | } |
f4416af6 AO |
2862 | |
2863 | /* Reserve space in G for a GOT entry containing the value of symbol | |
2864 | SYMNDX in input bfd ABDF, plus ADDEND. */ | |
2865 | ||
2866 | static bfd_boolean | |
9719ad41 | 2867 | mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend, |
0f20cc35 DJ |
2868 | struct mips_got_info *g, |
2869 | unsigned char tls_flag) | |
f4416af6 AO |
2870 | { |
2871 | struct mips_got_entry entry, **loc; | |
2872 | ||
2873 | entry.abfd = abfd; | |
2874 | entry.symndx = symndx; | |
2875 | entry.d.addend = addend; | |
0f20cc35 | 2876 | entry.tls_type = tls_flag; |
f4416af6 AO |
2877 | loc = (struct mips_got_entry **) |
2878 | htab_find_slot (g->got_entries, &entry, INSERT); | |
2879 | ||
2880 | if (*loc) | |
0f20cc35 DJ |
2881 | { |
2882 | if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD)) | |
2883 | { | |
2884 | g->tls_gotno += 2; | |
2885 | (*loc)->tls_type |= tls_flag; | |
2886 | } | |
2887 | else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE)) | |
2888 | { | |
2889 | g->tls_gotno += 1; | |
2890 | (*loc)->tls_type |= tls_flag; | |
2891 | } | |
2892 | return TRUE; | |
2893 | } | |
f4416af6 | 2894 | |
0f20cc35 DJ |
2895 | if (tls_flag != 0) |
2896 | { | |
2897 | entry.gotidx = -1; | |
2898 | entry.tls_type = tls_flag; | |
2899 | if (tls_flag == GOT_TLS_IE) | |
2900 | g->tls_gotno += 1; | |
2901 | else if (tls_flag == GOT_TLS_GD) | |
2902 | g->tls_gotno += 2; | |
2903 | else if (g->tls_ldm_offset == MINUS_ONE) | |
2904 | { | |
2905 | g->tls_ldm_offset = MINUS_TWO; | |
2906 | g->tls_gotno += 2; | |
2907 | } | |
2908 | } | |
2909 | else | |
2910 | { | |
2911 | entry.gotidx = g->local_gotno++; | |
2912 | entry.tls_type = 0; | |
2913 | } | |
f4416af6 AO |
2914 | |
2915 | *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry); | |
2916 | ||
2917 | if (! *loc) | |
2918 | return FALSE; | |
143d77c5 | 2919 | |
f4416af6 AO |
2920 | memcpy (*loc, &entry, sizeof entry); |
2921 | ||
2922 | return TRUE; | |
2923 | } | |
2924 | \f | |
2925 | /* Compute the hash value of the bfd in a bfd2got hash entry. */ | |
2926 | ||
2927 | static hashval_t | |
9719ad41 | 2928 | mips_elf_bfd2got_entry_hash (const void *entry_) |
f4416af6 AO |
2929 | { |
2930 | const struct mips_elf_bfd2got_hash *entry | |
2931 | = (struct mips_elf_bfd2got_hash *)entry_; | |
2932 | ||
2933 | return entry->bfd->id; | |
2934 | } | |
2935 | ||
2936 | /* Check whether two hash entries have the same bfd. */ | |
2937 | ||
2938 | static int | |
9719ad41 | 2939 | mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2) |
f4416af6 AO |
2940 | { |
2941 | const struct mips_elf_bfd2got_hash *e1 | |
2942 | = (const struct mips_elf_bfd2got_hash *)entry1; | |
2943 | const struct mips_elf_bfd2got_hash *e2 | |
2944 | = (const struct mips_elf_bfd2got_hash *)entry2; | |
2945 | ||
2946 | return e1->bfd == e2->bfd; | |
2947 | } | |
2948 | ||
bad36eac | 2949 | /* In a multi-got link, determine the GOT to be used for IBFD. G must |
f4416af6 AO |
2950 | be the master GOT data. */ |
2951 | ||
2952 | static struct mips_got_info * | |
9719ad41 | 2953 | mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd) |
f4416af6 AO |
2954 | { |
2955 | struct mips_elf_bfd2got_hash e, *p; | |
2956 | ||
2957 | if (! g->bfd2got) | |
2958 | return g; | |
2959 | ||
2960 | e.bfd = ibfd; | |
9719ad41 | 2961 | p = htab_find (g->bfd2got, &e); |
f4416af6 AO |
2962 | return p ? p->g : NULL; |
2963 | } | |
2964 | ||
2965 | /* Create one separate got for each bfd that has entries in the global | |
2966 | got, such that we can tell how many local and global entries each | |
2967 | bfd requires. */ | |
2968 | ||
2969 | static int | |
9719ad41 | 2970 | mips_elf_make_got_per_bfd (void **entryp, void *p) |
f4416af6 AO |
2971 | { |
2972 | struct mips_got_entry *entry = (struct mips_got_entry *)*entryp; | |
2973 | struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p; | |
2974 | htab_t bfd2got = arg->bfd2got; | |
2975 | struct mips_got_info *g; | |
2976 | struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot; | |
2977 | void **bfdgotp; | |
143d77c5 | 2978 | |
f4416af6 AO |
2979 | /* Find the got_info for this GOT entry's input bfd. Create one if |
2980 | none exists. */ | |
2981 | bfdgot_entry.bfd = entry->abfd; | |
2982 | bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT); | |
2983 | bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp; | |
2984 | ||
2985 | if (bfdgot != NULL) | |
2986 | g = bfdgot->g; | |
2987 | else | |
2988 | { | |
2989 | bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc | |
2990 | (arg->obfd, sizeof (struct mips_elf_bfd2got_hash)); | |
2991 | ||
2992 | if (bfdgot == NULL) | |
2993 | { | |
2994 | arg->obfd = 0; | |
2995 | return 0; | |
2996 | } | |
2997 | ||
2998 | *bfdgotp = bfdgot; | |
2999 | ||
3000 | bfdgot->bfd = entry->abfd; | |
3001 | bfdgot->g = g = (struct mips_got_info *) | |
3002 | bfd_alloc (arg->obfd, sizeof (struct mips_got_info)); | |
3003 | if (g == NULL) | |
3004 | { | |
3005 | arg->obfd = 0; | |
3006 | return 0; | |
3007 | } | |
3008 | ||
3009 | g->global_gotsym = NULL; | |
3010 | g->global_gotno = 0; | |
3011 | g->local_gotno = 0; | |
3012 | g->assigned_gotno = -1; | |
0f20cc35 DJ |
3013 | g->tls_gotno = 0; |
3014 | g->tls_assigned_gotno = 0; | |
3015 | g->tls_ldm_offset = MINUS_ONE; | |
f4416af6 | 3016 | g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash, |
9719ad41 | 3017 | mips_elf_multi_got_entry_eq, NULL); |
f4416af6 AO |
3018 | if (g->got_entries == NULL) |
3019 | { | |
3020 | arg->obfd = 0; | |
3021 | return 0; | |
3022 | } | |
3023 | ||
3024 | g->bfd2got = NULL; | |
3025 | g->next = NULL; | |
3026 | } | |
3027 | ||
3028 | /* Insert the GOT entry in the bfd's got entry hash table. */ | |
3029 | entryp = htab_find_slot (g->got_entries, entry, INSERT); | |
3030 | if (*entryp != NULL) | |
3031 | return 1; | |
143d77c5 | 3032 | |
f4416af6 AO |
3033 | *entryp = entry; |
3034 | ||
0f20cc35 DJ |
3035 | if (entry->tls_type) |
3036 | { | |
3037 | if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM)) | |
3038 | g->tls_gotno += 2; | |
3039 | if (entry->tls_type & GOT_TLS_IE) | |
3040 | g->tls_gotno += 1; | |
3041 | } | |
3042 | else if (entry->symndx >= 0 || entry->d.h->forced_local) | |
f4416af6 AO |
3043 | ++g->local_gotno; |
3044 | else | |
3045 | ++g->global_gotno; | |
3046 | ||
3047 | return 1; | |
3048 | } | |
3049 | ||
3050 | /* Attempt to merge gots of different input bfds. Try to use as much | |
3051 | as possible of the primary got, since it doesn't require explicit | |
3052 | dynamic relocations, but don't use bfds that would reference global | |
3053 | symbols out of the addressable range. Failing the primary got, | |
3054 | attempt to merge with the current got, or finish the current got | |
3055 | and then make make the new got current. */ | |
3056 | ||
3057 | static int | |
9719ad41 | 3058 | mips_elf_merge_gots (void **bfd2got_, void *p) |
f4416af6 AO |
3059 | { |
3060 | struct mips_elf_bfd2got_hash *bfd2got | |
3061 | = (struct mips_elf_bfd2got_hash *)*bfd2got_; | |
3062 | struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p; | |
3063 | unsigned int lcount = bfd2got->g->local_gotno; | |
3064 | unsigned int gcount = bfd2got->g->global_gotno; | |
0f20cc35 | 3065 | unsigned int tcount = bfd2got->g->tls_gotno; |
f4416af6 | 3066 | unsigned int maxcnt = arg->max_count; |
0f20cc35 DJ |
3067 | bfd_boolean too_many_for_tls = FALSE; |
3068 | ||
3069 | /* We place TLS GOT entries after both locals and globals. The globals | |
3070 | for the primary GOT may overflow the normal GOT size limit, so be | |
3071 | sure not to merge a GOT which requires TLS with the primary GOT in that | |
3072 | case. This doesn't affect non-primary GOTs. */ | |
3073 | if (tcount > 0) | |
3074 | { | |
3075 | unsigned int primary_total = lcount + tcount + arg->global_count; | |
3076 | if (primary_total * MIPS_ELF_GOT_SIZE (bfd2got->bfd) | |
0a44bf69 | 3077 | >= MIPS_ELF_GOT_MAX_SIZE (arg->info)) |
0f20cc35 DJ |
3078 | too_many_for_tls = TRUE; |
3079 | } | |
143d77c5 | 3080 | |
f4416af6 AO |
3081 | /* If we don't have a primary GOT and this is not too big, use it as |
3082 | a starting point for the primary GOT. */ | |
0f20cc35 DJ |
3083 | if (! arg->primary && lcount + gcount + tcount <= maxcnt |
3084 | && ! too_many_for_tls) | |
f4416af6 AO |
3085 | { |
3086 | arg->primary = bfd2got->g; | |
3087 | arg->primary_count = lcount + gcount; | |
3088 | } | |
3089 | /* If it looks like we can merge this bfd's entries with those of | |
3090 | the primary, merge them. The heuristics is conservative, but we | |
3091 | don't have to squeeze it too hard. */ | |
0f20cc35 DJ |
3092 | else if (arg->primary && ! too_many_for_tls |
3093 | && (arg->primary_count + lcount + gcount + tcount) <= maxcnt) | |
f4416af6 AO |
3094 | { |
3095 | struct mips_got_info *g = bfd2got->g; | |
3096 | int old_lcount = arg->primary->local_gotno; | |
3097 | int old_gcount = arg->primary->global_gotno; | |
0f20cc35 | 3098 | int old_tcount = arg->primary->tls_gotno; |
f4416af6 AO |
3099 | |
3100 | bfd2got->g = arg->primary; | |
3101 | ||
3102 | htab_traverse (g->got_entries, | |
3103 | mips_elf_make_got_per_bfd, | |
3104 | arg); | |
3105 | if (arg->obfd == NULL) | |
3106 | return 0; | |
3107 | ||
3108 | htab_delete (g->got_entries); | |
3109 | /* We don't have to worry about releasing memory of the actual | |
3110 | got entries, since they're all in the master got_entries hash | |
3111 | table anyway. */ | |
3112 | ||
caec41ff | 3113 | BFD_ASSERT (old_lcount + lcount >= arg->primary->local_gotno); |
f4416af6 | 3114 | BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno); |
0f20cc35 | 3115 | BFD_ASSERT (old_tcount + tcount >= arg->primary->tls_gotno); |
f4416af6 AO |
3116 | |
3117 | arg->primary_count = arg->primary->local_gotno | |
0f20cc35 | 3118 | + arg->primary->global_gotno + arg->primary->tls_gotno; |
f4416af6 AO |
3119 | } |
3120 | /* If we can merge with the last-created got, do it. */ | |
3121 | else if (arg->current | |
0f20cc35 | 3122 | && arg->current_count + lcount + gcount + tcount <= maxcnt) |
f4416af6 AO |
3123 | { |
3124 | struct mips_got_info *g = bfd2got->g; | |
3125 | int old_lcount = arg->current->local_gotno; | |
3126 | int old_gcount = arg->current->global_gotno; | |
0f20cc35 | 3127 | int old_tcount = arg->current->tls_gotno; |
f4416af6 AO |
3128 | |
3129 | bfd2got->g = arg->current; | |
3130 | ||
3131 | htab_traverse (g->got_entries, | |
3132 | mips_elf_make_got_per_bfd, | |
3133 | arg); | |
3134 | if (arg->obfd == NULL) | |
3135 | return 0; | |
3136 | ||
3137 | htab_delete (g->got_entries); | |
3138 | ||
caec41ff | 3139 | BFD_ASSERT (old_lcount + lcount >= arg->current->local_gotno); |
f4416af6 | 3140 | BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno); |
0f20cc35 | 3141 | BFD_ASSERT (old_tcount + tcount >= arg->current->tls_gotno); |
f4416af6 AO |
3142 | |
3143 | arg->current_count = arg->current->local_gotno | |
0f20cc35 | 3144 | + arg->current->global_gotno + arg->current->tls_gotno; |
f4416af6 AO |
3145 | } |
3146 | /* Well, we couldn't merge, so create a new GOT. Don't check if it | |
3147 | fits; if it turns out that it doesn't, we'll get relocation | |
3148 | overflows anyway. */ | |
3149 | else | |
3150 | { | |
3151 | bfd2got->g->next = arg->current; | |
3152 | arg->current = bfd2got->g; | |
143d77c5 | 3153 | |
0f20cc35 DJ |
3154 | arg->current_count = lcount + gcount + 2 * tcount; |
3155 | } | |
3156 | ||
3157 | return 1; | |
3158 | } | |
3159 | ||
ead49a57 RS |
3160 | /* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field |
3161 | is null iff there is just a single GOT. */ | |
0f20cc35 DJ |
3162 | |
3163 | static int | |
3164 | mips_elf_initialize_tls_index (void **entryp, void *p) | |
3165 | { | |
3166 | struct mips_got_entry *entry = (struct mips_got_entry *)*entryp; | |
3167 | struct mips_got_info *g = p; | |
ead49a57 | 3168 | bfd_vma next_index; |
0f20cc35 DJ |
3169 | |
3170 | /* We're only interested in TLS symbols. */ | |
3171 | if (entry->tls_type == 0) | |
3172 | return 1; | |
3173 | ||
ead49a57 RS |
3174 | next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno; |
3175 | ||
3176 | if (entry->symndx == -1 && g->next == NULL) | |
0f20cc35 | 3177 | { |
ead49a57 RS |
3178 | /* A type (3) got entry in the single-GOT case. We use the symbol's |
3179 | hash table entry to track its index. */ | |
3180 | if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE) | |
3181 | return 1; | |
3182 | entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE; | |
3183 | entry->d.h->tls_got_offset = next_index; | |
3184 | } | |
3185 | else | |
3186 | { | |
3187 | if (entry->tls_type & GOT_TLS_LDM) | |
0f20cc35 | 3188 | { |
ead49a57 RS |
3189 | /* There are separate mips_got_entry objects for each input bfd |
3190 | that requires an LDM entry. Make sure that all LDM entries in | |
3191 | a GOT resolve to the same index. */ | |
3192 | if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE) | |
4005427f | 3193 | { |
ead49a57 | 3194 | entry->gotidx = g->tls_ldm_offset; |
4005427f RS |
3195 | return 1; |
3196 | } | |
ead49a57 | 3197 | g->tls_ldm_offset = next_index; |
0f20cc35 | 3198 | } |
ead49a57 | 3199 | entry->gotidx = next_index; |
f4416af6 AO |
3200 | } |
3201 | ||
ead49a57 | 3202 | /* Account for the entries we've just allocated. */ |
0f20cc35 DJ |
3203 | if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM)) |
3204 | g->tls_assigned_gotno += 2; | |
3205 | if (entry->tls_type & GOT_TLS_IE) | |
3206 | g->tls_assigned_gotno += 1; | |
3207 | ||
f4416af6 AO |
3208 | return 1; |
3209 | } | |
3210 | ||
3211 | /* If passed a NULL mips_got_info in the argument, set the marker used | |
3212 | to tell whether a global symbol needs a got entry (in the primary | |
3213 | got) to the given VALUE. | |
3214 | ||
3215 | If passed a pointer G to a mips_got_info in the argument (it must | |
3216 | not be the primary GOT), compute the offset from the beginning of | |
3217 | the (primary) GOT section to the entry in G corresponding to the | |
3218 | global symbol. G's assigned_gotno must contain the index of the | |
3219 | first available global GOT entry in G. VALUE must contain the size | |
3220 | of a GOT entry in bytes. For each global GOT entry that requires a | |
3221 | dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is | |
4cc11e76 | 3222 | marked as not eligible for lazy resolution through a function |
f4416af6 AO |
3223 | stub. */ |
3224 | static int | |
9719ad41 | 3225 | mips_elf_set_global_got_offset (void **entryp, void *p) |
f4416af6 AO |
3226 | { |
3227 | struct mips_got_entry *entry = (struct mips_got_entry *)*entryp; | |
3228 | struct mips_elf_set_global_got_offset_arg *arg | |
3229 | = (struct mips_elf_set_global_got_offset_arg *)p; | |
3230 | struct mips_got_info *g = arg->g; | |
3231 | ||
0f20cc35 DJ |
3232 | if (g && entry->tls_type != GOT_NORMAL) |
3233 | arg->needed_relocs += | |
3234 | mips_tls_got_relocs (arg->info, entry->tls_type, | |
3235 | entry->symndx == -1 ? &entry->d.h->root : NULL); | |
3236 | ||
f4416af6 | 3237 | if (entry->abfd != NULL && entry->symndx == -1 |
0f20cc35 DJ |
3238 | && entry->d.h->root.dynindx != -1 |
3239 | && entry->d.h->tls_type == GOT_NORMAL) | |
f4416af6 AO |
3240 | { |
3241 | if (g) | |
3242 | { | |
3243 | BFD_ASSERT (g->global_gotsym == NULL); | |
3244 | ||
3245 | entry->gotidx = arg->value * (long) g->assigned_gotno++; | |
f4416af6 AO |
3246 | if (arg->info->shared |
3247 | || (elf_hash_table (arg->info)->dynamic_sections_created | |
f5385ebf AM |
3248 | && entry->d.h->root.def_dynamic |
3249 | && !entry->d.h->root.def_regular)) | |
f4416af6 AO |
3250 | ++arg->needed_relocs; |
3251 | } | |
3252 | else | |
3253 | entry->d.h->root.got.offset = arg->value; | |
3254 | } | |
3255 | ||
3256 | return 1; | |
3257 | } | |
3258 | ||
0626d451 RS |
3259 | /* Mark any global symbols referenced in the GOT we are iterating over |
3260 | as inelligible for lazy resolution stubs. */ | |
3261 | static int | |
9719ad41 | 3262 | mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED) |
0626d451 RS |
3263 | { |
3264 | struct mips_got_entry *entry = (struct mips_got_entry *)*entryp; | |
3265 | ||
3266 | if (entry->abfd != NULL | |
3267 | && entry->symndx == -1 | |
3268 | && entry->d.h->root.dynindx != -1) | |
3269 | entry->d.h->no_fn_stub = TRUE; | |
3270 | ||
3271 | return 1; | |
3272 | } | |
3273 | ||
f4416af6 AO |
3274 | /* Follow indirect and warning hash entries so that each got entry |
3275 | points to the final symbol definition. P must point to a pointer | |
3276 | to the hash table we're traversing. Since this traversal may | |
3277 | modify the hash table, we set this pointer to NULL to indicate | |
3278 | we've made a potentially-destructive change to the hash table, so | |
3279 | the traversal must be restarted. */ | |
3280 | static int | |
9719ad41 | 3281 | mips_elf_resolve_final_got_entry (void **entryp, void *p) |
f4416af6 AO |
3282 | { |
3283 | struct mips_got_entry *entry = (struct mips_got_entry *)*entryp; | |
3284 | htab_t got_entries = *(htab_t *)p; | |
3285 | ||
3286 | if (entry->abfd != NULL && entry->symndx == -1) | |
3287 | { | |
3288 | struct mips_elf_link_hash_entry *h = entry->d.h; | |
3289 | ||
3290 | while (h->root.root.type == bfd_link_hash_indirect | |
3291 | || h->root.root.type == bfd_link_hash_warning) | |
3292 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | |
3293 | ||
3294 | if (entry->d.h == h) | |
3295 | return 1; | |
143d77c5 | 3296 | |
f4416af6 AO |
3297 | entry->d.h = h; |
3298 | ||
3299 | /* If we can't find this entry with the new bfd hash, re-insert | |
3300 | it, and get the traversal restarted. */ | |
3301 | if (! htab_find (got_entries, entry)) | |
3302 | { | |
3303 | htab_clear_slot (got_entries, entryp); | |
3304 | entryp = htab_find_slot (got_entries, entry, INSERT); | |
3305 | if (! *entryp) | |
3306 | *entryp = entry; | |
3307 | /* Abort the traversal, since the whole table may have | |
3308 | moved, and leave it up to the parent to restart the | |
3309 | process. */ | |
3310 | *(htab_t *)p = NULL; | |
3311 | return 0; | |
3312 | } | |
3313 | /* We might want to decrement the global_gotno count, but it's | |
3314 | either too early or too late for that at this point. */ | |
3315 | } | |
143d77c5 | 3316 | |
f4416af6 AO |
3317 | return 1; |
3318 | } | |
3319 | ||
3320 | /* Turn indirect got entries in a got_entries table into their final | |
3321 | locations. */ | |
3322 | static void | |
9719ad41 | 3323 | mips_elf_resolve_final_got_entries (struct mips_got_info *g) |
f4416af6 AO |
3324 | { |
3325 | htab_t got_entries; | |
3326 | ||
3327 | do | |
3328 | { | |
3329 | got_entries = g->got_entries; | |
3330 | ||
3331 | htab_traverse (got_entries, | |
3332 | mips_elf_resolve_final_got_entry, | |
3333 | &got_entries); | |
3334 | } | |
3335 | while (got_entries == NULL); | |
3336 | } | |
3337 | ||
3338 | /* Return the offset of an input bfd IBFD's GOT from the beginning of | |
3339 | the primary GOT. */ | |
3340 | static bfd_vma | |
9719ad41 | 3341 | mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd) |
f4416af6 AO |
3342 | { |
3343 | if (g->bfd2got == NULL) | |
3344 | return 0; | |
3345 | ||
3346 | g = mips_elf_got_for_ibfd (g, ibfd); | |
3347 | if (! g) | |
3348 | return 0; | |
3349 | ||
3350 | BFD_ASSERT (g->next); | |
3351 | ||
3352 | g = g->next; | |
143d77c5 | 3353 | |
0f20cc35 DJ |
3354 | return (g->local_gotno + g->global_gotno + g->tls_gotno) |
3355 | * MIPS_ELF_GOT_SIZE (abfd); | |
f4416af6 AO |
3356 | } |
3357 | ||
3358 | /* Turn a single GOT that is too big for 16-bit addressing into | |
3359 | a sequence of GOTs, each one 16-bit addressable. */ | |
3360 | ||
3361 | static bfd_boolean | |
9719ad41 RS |
3362 | mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info, |
3363 | struct mips_got_info *g, asection *got, | |
3364 | bfd_size_type pages) | |
f4416af6 AO |
3365 | { |
3366 | struct mips_elf_got_per_bfd_arg got_per_bfd_arg; | |
3367 | struct mips_elf_set_global_got_offset_arg set_got_offset_arg; | |
3368 | struct mips_got_info *gg; | |
3369 | unsigned int assign; | |
3370 | ||
3371 | g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash, | |
9719ad41 | 3372 | mips_elf_bfd2got_entry_eq, NULL); |
f4416af6 AO |
3373 | if (g->bfd2got == NULL) |
3374 | return FALSE; | |
3375 | ||
3376 | got_per_bfd_arg.bfd2got = g->bfd2got; | |
3377 | got_per_bfd_arg.obfd = abfd; | |
3378 | got_per_bfd_arg.info = info; | |
3379 | ||
3380 | /* Count how many GOT entries each input bfd requires, creating a | |
3381 | map from bfd to got info while at that. */ | |
f4416af6 AO |
3382 | htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg); |
3383 | if (got_per_bfd_arg.obfd == NULL) | |
3384 | return FALSE; | |
3385 | ||
3386 | got_per_bfd_arg.current = NULL; | |
3387 | got_per_bfd_arg.primary = NULL; | |
3388 | /* Taking out PAGES entries is a worst-case estimate. We could | |
3389 | compute the maximum number of pages that each separate input bfd | |
3390 | uses, but it's probably not worth it. */ | |
0a44bf69 | 3391 | got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info) |
f4416af6 | 3392 | / MIPS_ELF_GOT_SIZE (abfd)) |
0a44bf69 | 3393 | - MIPS_RESERVED_GOTNO (info) - pages); |
0f20cc35 DJ |
3394 | /* The number of globals that will be included in the primary GOT. |
3395 | See the calls to mips_elf_set_global_got_offset below for more | |
3396 | information. */ | |
3397 | got_per_bfd_arg.global_count = g->global_gotno; | |
f4416af6 AO |
3398 | |
3399 | /* Try to merge the GOTs of input bfds together, as long as they | |
3400 | don't seem to exceed the maximum GOT size, choosing one of them | |
3401 | to be the primary GOT. */ | |
3402 | htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg); | |
3403 | if (got_per_bfd_arg.obfd == NULL) | |
3404 | return FALSE; | |
3405 | ||
0f20cc35 | 3406 | /* If we do not find any suitable primary GOT, create an empty one. */ |
f4416af6 AO |
3407 | if (got_per_bfd_arg.primary == NULL) |
3408 | { | |
3409 | g->next = (struct mips_got_info *) | |
3410 | bfd_alloc (abfd, sizeof (struct mips_got_info)); | |
3411 | if (g->next == NULL) | |
3412 | return FALSE; | |
3413 | ||
3414 | g->next->global_gotsym = NULL; | |
3415 | g->next->global_gotno = 0; | |
3416 | g->next->local_gotno = 0; | |
0f20cc35 | 3417 | g->next->tls_gotno = 0; |
f4416af6 | 3418 | g->next->assigned_gotno = 0; |
0f20cc35 DJ |
3419 | g->next->tls_assigned_gotno = 0; |
3420 | g->next->tls_ldm_offset = MINUS_ONE; | |
f4416af6 AO |
3421 | g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash, |
3422 | mips_elf_multi_got_entry_eq, | |
9719ad41 | 3423 | NULL); |
f4416af6 AO |
3424 | if (g->next->got_entries == NULL) |
3425 | return FALSE; | |
3426 | g->next->bfd2got = NULL; | |
3427 | } | |
3428 | else | |
3429 | g->next = got_per_bfd_arg.primary; | |
3430 | g->next->next = got_per_bfd_arg.current; | |
3431 | ||
3432 | /* GG is now the master GOT, and G is the primary GOT. */ | |
3433 | gg = g; | |
3434 | g = g->next; | |
3435 | ||
3436 | /* Map the output bfd to the primary got. That's what we're going | |
3437 | to use for bfds that use GOT16 or GOT_PAGE relocations that we | |
3438 | didn't mark in check_relocs, and we want a quick way to find it. | |
3439 | We can't just use gg->next because we're going to reverse the | |
3440 | list. */ | |
3441 | { | |
3442 | struct mips_elf_bfd2got_hash *bfdgot; | |
3443 | void **bfdgotp; | |
143d77c5 | 3444 | |
f4416af6 AO |
3445 | bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc |
3446 | (abfd, sizeof (struct mips_elf_bfd2got_hash)); | |
3447 | ||
3448 | if (bfdgot == NULL) | |
3449 | return FALSE; | |
3450 | ||
3451 | bfdgot->bfd = abfd; | |
3452 | bfdgot->g = g; | |
3453 | bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT); | |
3454 | ||
3455 | BFD_ASSERT (*bfdgotp == NULL); | |
3456 | *bfdgotp = bfdgot; | |
3457 | } | |
3458 | ||
3459 | /* The IRIX dynamic linker requires every symbol that is referenced | |
3460 | in a dynamic relocation to be present in the primary GOT, so | |
3461 | arrange for them to appear after those that are actually | |
3462 | referenced. | |
3463 | ||
3464 | GNU/Linux could very well do without it, but it would slow down | |
3465 | the dynamic linker, since it would have to resolve every dynamic | |
3466 | symbol referenced in other GOTs more than once, without help from | |
3467 | the cache. Also, knowing that every external symbol has a GOT | |
3468 | helps speed up the resolution of local symbols too, so GNU/Linux | |
3469 | follows IRIX's practice. | |
143d77c5 | 3470 | |
f4416af6 AO |
3471 | The number 2 is used by mips_elf_sort_hash_table_f to count |
3472 | global GOT symbols that are unreferenced in the primary GOT, with | |
3473 | an initial dynamic index computed from gg->assigned_gotno, where | |
3474 | the number of unreferenced global entries in the primary GOT is | |
3475 | preserved. */ | |
3476 | if (1) | |
3477 | { | |
3478 | gg->assigned_gotno = gg->global_gotno - g->global_gotno; | |
3479 | g->global_gotno = gg->global_gotno; | |
3480 | set_got_offset_arg.value = 2; | |
3481 | } | |
3482 | else | |
3483 | { | |
3484 | /* This could be used for dynamic linkers that don't optimize | |
3485 | symbol resolution while applying relocations so as to use | |
3486 | primary GOT entries or assuming the symbol is locally-defined. | |
3487 | With this code, we assign lower dynamic indices to global | |
3488 | symbols that are not referenced in the primary GOT, so that | |
3489 | their entries can be omitted. */ | |
3490 | gg->assigned_gotno = 0; | |
3491 | set_got_offset_arg.value = -1; | |
3492 | } | |
3493 | ||
3494 | /* Reorder dynamic symbols as described above (which behavior | |
3495 | depends on the setting of VALUE). */ | |
3496 | set_got_offset_arg.g = NULL; | |
3497 | htab_traverse (gg->got_entries, mips_elf_set_global_got_offset, | |
3498 | &set_got_offset_arg); | |
3499 | set_got_offset_arg.value = 1; | |
3500 | htab_traverse (g->got_entries, mips_elf_set_global_got_offset, | |
3501 | &set_got_offset_arg); | |
3502 | if (! mips_elf_sort_hash_table (info, 1)) | |
3503 | return FALSE; | |
3504 | ||
3505 | /* Now go through the GOTs assigning them offset ranges. | |
3506 | [assigned_gotno, local_gotno[ will be set to the range of local | |
3507 | entries in each GOT. We can then compute the end of a GOT by | |
3508 | adding local_gotno to global_gotno. We reverse the list and make | |
3509 | it circular since then we'll be able to quickly compute the | |
3510 | beginning of a GOT, by computing the end of its predecessor. To | |
3511 | avoid special cases for the primary GOT, while still preserving | |
3512 | assertions that are valid for both single- and multi-got links, | |
3513 | we arrange for the main got struct to have the right number of | |
3514 | global entries, but set its local_gotno such that the initial | |
3515 | offset of the primary GOT is zero. Remember that the primary GOT | |
3516 | will become the last item in the circular linked list, so it | |
3517 | points back to the master GOT. */ | |
3518 | gg->local_gotno = -g->global_gotno; | |
3519 | gg->global_gotno = g->global_gotno; | |
0f20cc35 | 3520 | gg->tls_gotno = 0; |
f4416af6 AO |
3521 | assign = 0; |
3522 | gg->next = gg; | |
3523 | ||
3524 | do | |
3525 | { | |
3526 | struct mips_got_info *gn; | |
3527 | ||
0a44bf69 | 3528 | assign += MIPS_RESERVED_GOTNO (info); |
f4416af6 AO |
3529 | g->assigned_gotno = assign; |
3530 | g->local_gotno += assign + pages; | |
0f20cc35 DJ |
3531 | assign = g->local_gotno + g->global_gotno + g->tls_gotno; |
3532 | ||
ead49a57 RS |
3533 | /* Take g out of the direct list, and push it onto the reversed |
3534 | list that gg points to. g->next is guaranteed to be nonnull after | |
3535 | this operation, as required by mips_elf_initialize_tls_index. */ | |
3536 | gn = g->next; | |
3537 | g->next = gg->next; | |
3538 | gg->next = g; | |
3539 | ||
0f20cc35 DJ |
3540 | /* Set up any TLS entries. We always place the TLS entries after |
3541 | all non-TLS entries. */ | |
3542 | g->tls_assigned_gotno = g->local_gotno + g->global_gotno; | |
3543 | htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g); | |
f4416af6 | 3544 | |
ead49a57 | 3545 | /* Move onto the next GOT. It will be a secondary GOT if nonull. */ |
f4416af6 | 3546 | g = gn; |
0626d451 RS |
3547 | |
3548 | /* Mark global symbols in every non-primary GOT as ineligible for | |
3549 | stubs. */ | |
3550 | if (g) | |
3551 | htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL); | |
f4416af6 AO |
3552 | } |
3553 | while (g); | |
3554 | ||
eea6121a | 3555 | got->size = (gg->next->local_gotno |
0f20cc35 DJ |
3556 | + gg->next->global_gotno |
3557 | + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd); | |
143d77c5 | 3558 | |
f4416af6 AO |
3559 | return TRUE; |
3560 | } | |
143d77c5 | 3561 | |
b49e97c9 TS |
3562 | \f |
3563 | /* Returns the first relocation of type r_type found, beginning with | |
3564 | RELOCATION. RELEND is one-past-the-end of the relocation table. */ | |
3565 | ||
3566 | static const Elf_Internal_Rela * | |
9719ad41 RS |
3567 | mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type, |
3568 | const Elf_Internal_Rela *relocation, | |
3569 | const Elf_Internal_Rela *relend) | |
b49e97c9 | 3570 | { |
b49e97c9 TS |
3571 | while (relocation < relend) |
3572 | { | |
3573 | if (ELF_R_TYPE (abfd, relocation->r_info) == r_type) | |
3574 | return relocation; | |
3575 | ||
3576 | ++relocation; | |
3577 | } | |
3578 | ||
3579 | /* We didn't find it. */ | |
3580 | bfd_set_error (bfd_error_bad_value); | |
3581 | return NULL; | |
3582 | } | |
3583 | ||
3584 | /* Return whether a relocation is against a local symbol. */ | |
3585 | ||
b34976b6 | 3586 | static bfd_boolean |
9719ad41 RS |
3587 | mips_elf_local_relocation_p (bfd *input_bfd, |
3588 | const Elf_Internal_Rela *relocation, | |
3589 | asection **local_sections, | |
3590 | bfd_boolean check_forced) | |
b49e97c9 TS |
3591 | { |
3592 | unsigned long r_symndx; | |
3593 | Elf_Internal_Shdr *symtab_hdr; | |
3594 | struct mips_elf_link_hash_entry *h; | |
3595 | size_t extsymoff; | |
3596 | ||
3597 | r_symndx = ELF_R_SYM (input_bfd, relocation->r_info); | |
3598 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | |
3599 | extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info; | |
3600 | ||
3601 | if (r_symndx < extsymoff) | |
b34976b6 | 3602 | return TRUE; |
b49e97c9 | 3603 | if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL) |
b34976b6 | 3604 | return TRUE; |
b49e97c9 TS |
3605 | |
3606 | if (check_forced) | |
3607 | { | |
3608 | /* Look up the hash table to check whether the symbol | |
3609 | was forced local. */ | |
3610 | h = (struct mips_elf_link_hash_entry *) | |
3611 | elf_sym_hashes (input_bfd) [r_symndx - extsymoff]; | |
3612 | /* Find the real hash-table entry for this symbol. */ | |
3613 | while (h->root.root.type == bfd_link_hash_indirect | |
3614 | || h->root.root.type == bfd_link_hash_warning) | |
3615 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | |
f5385ebf | 3616 | if (h->root.forced_local) |
b34976b6 | 3617 | return TRUE; |
b49e97c9 TS |
3618 | } |
3619 | ||
b34976b6 | 3620 | return FALSE; |
b49e97c9 TS |
3621 | } |
3622 | \f | |
3623 | /* Sign-extend VALUE, which has the indicated number of BITS. */ | |
3624 | ||
a7ebbfdf | 3625 | bfd_vma |
9719ad41 | 3626 | _bfd_mips_elf_sign_extend (bfd_vma value, int bits) |
b49e97c9 TS |
3627 | { |
3628 | if (value & ((bfd_vma) 1 << (bits - 1))) | |
3629 | /* VALUE is negative. */ | |
3630 | value |= ((bfd_vma) - 1) << bits; | |
3631 | ||
3632 | return value; | |
3633 | } | |
3634 | ||
3635 | /* Return non-zero if the indicated VALUE has overflowed the maximum | |
4cc11e76 | 3636 | range expressible by a signed number with the indicated number of |
b49e97c9 TS |
3637 | BITS. */ |
3638 | ||
b34976b6 | 3639 | static bfd_boolean |
9719ad41 | 3640 | mips_elf_overflow_p (bfd_vma value, int bits) |
b49e97c9 TS |
3641 | { |
3642 | bfd_signed_vma svalue = (bfd_signed_vma) value; | |
3643 | ||
3644 | if (svalue > (1 << (bits - 1)) - 1) | |
3645 | /* The value is too big. */ | |
b34976b6 | 3646 | return TRUE; |
b49e97c9 TS |
3647 | else if (svalue < -(1 << (bits - 1))) |
3648 | /* The value is too small. */ | |
b34976b6 | 3649 | return TRUE; |
b49e97c9 TS |
3650 | |
3651 | /* All is well. */ | |
b34976b6 | 3652 | return FALSE; |
b49e97c9 TS |
3653 | } |
3654 | ||
3655 | /* Calculate the %high function. */ | |
3656 | ||
3657 | static bfd_vma | |
9719ad41 | 3658 | mips_elf_high (bfd_vma value) |
b49e97c9 TS |
3659 | { |
3660 | return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff; | |
3661 | } | |
3662 | ||
3663 | /* Calculate the %higher function. */ | |
3664 | ||
3665 | static bfd_vma | |
9719ad41 | 3666 | mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED) |
b49e97c9 TS |
3667 | { |
3668 | #ifdef BFD64 | |
3669 | return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff; | |
3670 | #else | |
3671 | abort (); | |
c5ae1840 | 3672 | return MINUS_ONE; |
b49e97c9 TS |
3673 | #endif |
3674 | } | |
3675 | ||
3676 | /* Calculate the %highest function. */ | |
3677 | ||
3678 | static bfd_vma | |
9719ad41 | 3679 | mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED) |
b49e97c9 TS |
3680 | { |
3681 | #ifdef BFD64 | |
b15e6682 | 3682 | return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff; |
b49e97c9 TS |
3683 | #else |
3684 | abort (); | |
c5ae1840 | 3685 | return MINUS_ONE; |
b49e97c9 TS |
3686 | #endif |
3687 | } | |
3688 | \f | |
3689 | /* Create the .compact_rel section. */ | |
3690 | ||
b34976b6 | 3691 | static bfd_boolean |
9719ad41 RS |
3692 | mips_elf_create_compact_rel_section |
3693 | (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED) | |
b49e97c9 TS |
3694 | { |
3695 | flagword flags; | |
3696 | register asection *s; | |
3697 | ||
3698 | if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL) | |
3699 | { | |
3700 | flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED | |
3701 | | SEC_READONLY); | |
3702 | ||
3496cb2a | 3703 | s = bfd_make_section_with_flags (abfd, ".compact_rel", flags); |
b49e97c9 | 3704 | if (s == NULL |
b49e97c9 TS |
3705 | || ! bfd_set_section_alignment (abfd, s, |
3706 | MIPS_ELF_LOG_FILE_ALIGN (abfd))) | |
b34976b6 | 3707 | return FALSE; |
b49e97c9 | 3708 | |
eea6121a | 3709 | s->size = sizeof (Elf32_External_compact_rel); |
b49e97c9 TS |
3710 | } |
3711 | ||
b34976b6 | 3712 | return TRUE; |
b49e97c9 TS |
3713 | } |
3714 | ||
3715 | /* Create the .got section to hold the global offset table. */ | |
3716 | ||
b34976b6 | 3717 | static bfd_boolean |
9719ad41 RS |
3718 | mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info, |
3719 | bfd_boolean maybe_exclude) | |
b49e97c9 TS |
3720 | { |
3721 | flagword flags; | |
3722 | register asection *s; | |
3723 | struct elf_link_hash_entry *h; | |
14a793b2 | 3724 | struct bfd_link_hash_entry *bh; |
b49e97c9 TS |
3725 | struct mips_got_info *g; |
3726 | bfd_size_type amt; | |
0a44bf69 RS |
3727 | struct mips_elf_link_hash_table *htab; |
3728 | ||
3729 | htab = mips_elf_hash_table (info); | |
b49e97c9 TS |
3730 | |
3731 | /* This function may be called more than once. */ | |
f4416af6 AO |
3732 | s = mips_elf_got_section (abfd, TRUE); |
3733 | if (s) | |
3734 | { | |
3735 | if (! maybe_exclude) | |
3736 | s->flags &= ~SEC_EXCLUDE; | |
3737 | return TRUE; | |
3738 | } | |
b49e97c9 TS |
3739 | |
3740 | flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | |
3741 | | SEC_LINKER_CREATED); | |
3742 | ||
f4416af6 AO |
3743 | if (maybe_exclude) |
3744 | flags |= SEC_EXCLUDE; | |
3745 | ||
72b4917c TS |
3746 | /* We have to use an alignment of 2**4 here because this is hardcoded |
3747 | in the function stub generation and in the linker script. */ | |
3496cb2a | 3748 | s = bfd_make_section_with_flags (abfd, ".got", flags); |
b49e97c9 | 3749 | if (s == NULL |
72b4917c | 3750 | || ! bfd_set_section_alignment (abfd, s, 4)) |
b34976b6 | 3751 | return FALSE; |
b49e97c9 TS |
3752 | |
3753 | /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the | |
3754 | linker script because we don't want to define the symbol if we | |
3755 | are not creating a global offset table. */ | |
14a793b2 | 3756 | bh = NULL; |
b49e97c9 TS |
3757 | if (! (_bfd_generic_link_add_one_symbol |
3758 | (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s, | |
9719ad41 | 3759 | 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh))) |
b34976b6 | 3760 | return FALSE; |
14a793b2 AM |
3761 | |
3762 | h = (struct elf_link_hash_entry *) bh; | |
f5385ebf AM |
3763 | h->non_elf = 0; |
3764 | h->def_regular = 1; | |
b49e97c9 | 3765 | h->type = STT_OBJECT; |
d329bcd1 | 3766 | elf_hash_table (info)->hgot = h; |
b49e97c9 TS |
3767 | |
3768 | if (info->shared | |
c152c796 | 3769 | && ! bfd_elf_link_record_dynamic_symbol (info, h)) |
b34976b6 | 3770 | return FALSE; |
b49e97c9 | 3771 | |
b49e97c9 | 3772 | amt = sizeof (struct mips_got_info); |
9719ad41 | 3773 | g = bfd_alloc (abfd, amt); |
b49e97c9 | 3774 | if (g == NULL) |
b34976b6 | 3775 | return FALSE; |
b49e97c9 | 3776 | g->global_gotsym = NULL; |
e3d54347 | 3777 | g->global_gotno = 0; |
0f20cc35 | 3778 | g->tls_gotno = 0; |
0a44bf69 RS |
3779 | g->local_gotno = MIPS_RESERVED_GOTNO (info); |
3780 | g->assigned_gotno = MIPS_RESERVED_GOTNO (info); | |
f4416af6 AO |
3781 | g->bfd2got = NULL; |
3782 | g->next = NULL; | |
0f20cc35 | 3783 | g->tls_ldm_offset = MINUS_ONE; |
b15e6682 | 3784 | g->got_entries = htab_try_create (1, mips_elf_got_entry_hash, |
9719ad41 | 3785 | mips_elf_got_entry_eq, NULL); |
b15e6682 AO |
3786 | if (g->got_entries == NULL) |
3787 | return FALSE; | |
f0abc2a1 AM |
3788 | mips_elf_section_data (s)->u.got_info = g; |
3789 | mips_elf_section_data (s)->elf.this_hdr.sh_flags | |
b49e97c9 TS |
3790 | |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL; |
3791 | ||
0a44bf69 RS |
3792 | /* VxWorks also needs a .got.plt section. */ |
3793 | if (htab->is_vxworks) | |
3794 | { | |
3795 | s = bfd_make_section_with_flags (abfd, ".got.plt", | |
3796 | SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | |
3797 | | SEC_IN_MEMORY | SEC_LINKER_CREATED); | |
3798 | if (s == NULL || !bfd_set_section_alignment (abfd, s, 4)) | |
3799 | return FALSE; | |
3800 | ||
3801 | htab->sgotplt = s; | |
3802 | } | |
b34976b6 | 3803 | return TRUE; |
b49e97c9 | 3804 | } |
b49e97c9 | 3805 | \f |
0a44bf69 RS |
3806 | /* Return true if H refers to the special VxWorks __GOTT_BASE__ or |
3807 | __GOTT_INDEX__ symbols. These symbols are only special for | |
3808 | shared objects; they are not used in executables. */ | |
3809 | ||
3810 | static bfd_boolean | |
3811 | is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h) | |
3812 | { | |
3813 | return (mips_elf_hash_table (info)->is_vxworks | |
3814 | && info->shared | |
3815 | && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0 | |
3816 | || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0)); | |
3817 | } | |
3818 | \f | |
b49e97c9 TS |
3819 | /* Calculate the value produced by the RELOCATION (which comes from |
3820 | the INPUT_BFD). The ADDEND is the addend to use for this | |
3821 | RELOCATION; RELOCATION->R_ADDEND is ignored. | |
3822 | ||
3823 | The result of the relocation calculation is stored in VALUEP. | |
3824 | REQUIRE_JALXP indicates whether or not the opcode used with this | |
3825 | relocation must be JALX. | |
3826 | ||
3827 | This function returns bfd_reloc_continue if the caller need take no | |
3828 | further action regarding this relocation, bfd_reloc_notsupported if | |
3829 | something goes dramatically wrong, bfd_reloc_overflow if an | |
3830 | overflow occurs, and bfd_reloc_ok to indicate success. */ | |
3831 | ||
3832 | static bfd_reloc_status_type | |
9719ad41 RS |
3833 | mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd, |
3834 | asection *input_section, | |
3835 | struct bfd_link_info *info, | |
3836 | const Elf_Internal_Rela *relocation, | |
3837 | bfd_vma addend, reloc_howto_type *howto, | |
3838 | Elf_Internal_Sym *local_syms, | |
3839 | asection **local_sections, bfd_vma *valuep, | |
3840 | const char **namep, bfd_boolean *require_jalxp, | |
3841 | bfd_boolean save_addend) | |
b49e97c9 TS |
3842 | { |
3843 | /* The eventual value we will return. */ | |
3844 | bfd_vma value; | |
3845 | /* The address of the symbol against which the relocation is | |
3846 | occurring. */ | |
3847 | bfd_vma symbol = 0; | |
3848 | /* The final GP value to be used for the relocatable, executable, or | |
3849 | shared object file being produced. */ | |
3850 | bfd_vma gp = MINUS_ONE; | |
3851 | /* The place (section offset or address) of the storage unit being | |
3852 | relocated. */ | |
3853 | bfd_vma p; | |
3854 | /* The value of GP used to create the relocatable object. */ | |
3855 | bfd_vma gp0 = MINUS_ONE; | |
3856 | /* The offset into the global offset table at which the address of | |
3857 | the relocation entry symbol, adjusted by the addend, resides | |
3858 | during execution. */ | |
3859 | bfd_vma g = MINUS_ONE; | |
3860 | /* The section in which the symbol referenced by the relocation is | |
3861 | located. */ | |
3862 | asection *sec = NULL; | |
3863 | struct mips_elf_link_hash_entry *h = NULL; | |
b34976b6 | 3864 | /* TRUE if the symbol referred to by this relocation is a local |
b49e97c9 | 3865 | symbol. */ |
b34976b6 AM |
3866 | bfd_boolean local_p, was_local_p; |
3867 | /* TRUE if the symbol referred to by this relocation is "_gp_disp". */ | |
3868 | bfd_boolean gp_disp_p = FALSE; | |
bbe506e8 TS |
3869 | /* TRUE if the symbol referred to by this relocation is |
3870 | "__gnu_local_gp". */ | |
3871 | bfd_boolean gnu_local_gp_p = FALSE; | |
b49e97c9 TS |
3872 | Elf_Internal_Shdr *symtab_hdr; |
3873 | size_t extsymoff; | |
3874 | unsigned long r_symndx; | |
3875 | int r_type; | |
b34976b6 | 3876 | /* TRUE if overflow occurred during the calculation of the |
b49e97c9 | 3877 | relocation value. */ |
b34976b6 AM |
3878 | bfd_boolean overflowed_p; |
3879 | /* TRUE if this relocation refers to a MIPS16 function. */ | |
3880 | bfd_boolean target_is_16_bit_code_p = FALSE; | |
0a44bf69 RS |
3881 | struct mips_elf_link_hash_table *htab; |
3882 | bfd *dynobj; | |
3883 | ||
3884 | dynobj = elf_hash_table (info)->dynobj; | |
3885 | htab = mips_elf_hash_table (info); | |
b49e97c9 TS |
3886 | |
3887 | /* Parse the relocation. */ | |
3888 | r_symndx = ELF_R_SYM (input_bfd, relocation->r_info); | |
3889 | r_type = ELF_R_TYPE (input_bfd, relocation->r_info); | |
3890 | p = (input_section->output_section->vma | |
3891 | + input_section->output_offset | |
3892 | + relocation->r_offset); | |
3893 | ||
3894 | /* Assume that there will be no overflow. */ | |
b34976b6 | 3895 | overflowed_p = FALSE; |
b49e97c9 TS |
3896 | |
3897 | /* Figure out whether or not the symbol is local, and get the offset | |
3898 | used in the array of hash table entries. */ | |
3899 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | |
3900 | local_p = mips_elf_local_relocation_p (input_bfd, relocation, | |
b34976b6 | 3901 | local_sections, FALSE); |
bce03d3d | 3902 | was_local_p = local_p; |
b49e97c9 TS |
3903 | if (! elf_bad_symtab (input_bfd)) |
3904 | extsymoff = symtab_hdr->sh_info; | |
3905 | else | |
3906 | { | |
3907 | /* The symbol table does not follow the rule that local symbols | |
3908 | must come before globals. */ | |
3909 | extsymoff = 0; | |
3910 | } | |
3911 | ||
3912 | /* Figure out the value of the symbol. */ | |
3913 | if (local_p) | |
3914 | { | |
3915 | Elf_Internal_Sym *sym; | |
3916 | ||
3917 | sym = local_syms + r_symndx; | |
3918 | sec = local_sections[r_symndx]; | |
3919 | ||
3920 | symbol = sec->output_section->vma + sec->output_offset; | |
d4df96e6 L |
3921 | if (ELF_ST_TYPE (sym->st_info) != STT_SECTION |
3922 | || (sec->flags & SEC_MERGE)) | |
b49e97c9 | 3923 | symbol += sym->st_value; |
d4df96e6 L |
3924 | if ((sec->flags & SEC_MERGE) |
3925 | && ELF_ST_TYPE (sym->st_info) == STT_SECTION) | |
3926 | { | |
3927 | addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend); | |
3928 | addend -= symbol; | |
3929 | addend += sec->output_section->vma + sec->output_offset; | |
3930 | } | |
b49e97c9 TS |
3931 | |
3932 | /* MIPS16 text labels should be treated as odd. */ | |
3933 | if (sym->st_other == STO_MIPS16) | |
3934 | ++symbol; | |
3935 | ||
3936 | /* Record the name of this symbol, for our caller. */ | |
3937 | *namep = bfd_elf_string_from_elf_section (input_bfd, | |
3938 | symtab_hdr->sh_link, | |
3939 | sym->st_name); | |
3940 | if (*namep == '\0') | |
3941 | *namep = bfd_section_name (input_bfd, sec); | |
3942 | ||
3943 | target_is_16_bit_code_p = (sym->st_other == STO_MIPS16); | |
3944 | } | |
3945 | else | |
3946 | { | |
560e09e9 NC |
3947 | /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */ |
3948 | ||
b49e97c9 TS |
3949 | /* For global symbols we look up the symbol in the hash-table. */ |
3950 | h = ((struct mips_elf_link_hash_entry *) | |
3951 | elf_sym_hashes (input_bfd) [r_symndx - extsymoff]); | |
3952 | /* Find the real hash-table entry for this symbol. */ | |
3953 | while (h->root.root.type == bfd_link_hash_indirect | |
3954 | || h->root.root.type == bfd_link_hash_warning) | |
3955 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | |
3956 | ||
3957 | /* Record the name of this symbol, for our caller. */ | |
3958 | *namep = h->root.root.root.string; | |
3959 | ||
3960 | /* See if this is the special _gp_disp symbol. Note that such a | |
3961 | symbol must always be a global symbol. */ | |
560e09e9 | 3962 | if (strcmp (*namep, "_gp_disp") == 0 |
b49e97c9 TS |
3963 | && ! NEWABI_P (input_bfd)) |
3964 | { | |
3965 | /* Relocations against _gp_disp are permitted only with | |
3966 | R_MIPS_HI16 and R_MIPS_LO16 relocations. */ | |
d6f16593 MR |
3967 | if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16 |
3968 | && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16) | |
b49e97c9 TS |
3969 | return bfd_reloc_notsupported; |
3970 | ||
b34976b6 | 3971 | gp_disp_p = TRUE; |
b49e97c9 | 3972 | } |
bbe506e8 TS |
3973 | /* See if this is the special _gp symbol. Note that such a |
3974 | symbol must always be a global symbol. */ | |
3975 | else if (strcmp (*namep, "__gnu_local_gp") == 0) | |
3976 | gnu_local_gp_p = TRUE; | |
3977 | ||
3978 | ||
b49e97c9 TS |
3979 | /* If this symbol is defined, calculate its address. Note that |
3980 | _gp_disp is a magic symbol, always implicitly defined by the | |
3981 | linker, so it's inappropriate to check to see whether or not | |
3982 | its defined. */ | |
3983 | else if ((h->root.root.type == bfd_link_hash_defined | |
3984 | || h->root.root.type == bfd_link_hash_defweak) | |
3985 | && h->root.root.u.def.section) | |
3986 | { | |
3987 | sec = h->root.root.u.def.section; | |
3988 | if (sec->output_section) | |
3989 | symbol = (h->root.root.u.def.value | |
3990 | + sec->output_section->vma | |
3991 | + sec->output_offset); | |
3992 | else | |
3993 | symbol = h->root.root.u.def.value; | |
3994 | } | |
3995 | else if (h->root.root.type == bfd_link_hash_undefweak) | |
3996 | /* We allow relocations against undefined weak symbols, giving | |
3997 | it the value zero, so that you can undefined weak functions | |
3998 | and check to see if they exist by looking at their | |
3999 | addresses. */ | |
4000 | symbol = 0; | |
59c2e50f | 4001 | else if (info->unresolved_syms_in_objects == RM_IGNORE |
b49e97c9 TS |
4002 | && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT) |
4003 | symbol = 0; | |
a4d0f181 TS |
4004 | else if (strcmp (*namep, SGI_COMPAT (input_bfd) |
4005 | ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0) | |
b49e97c9 TS |
4006 | { |
4007 | /* If this is a dynamic link, we should have created a | |
4008 | _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol | |
4009 | in in _bfd_mips_elf_create_dynamic_sections. | |
4010 | Otherwise, we should define the symbol with a value of 0. | |
4011 | FIXME: It should probably get into the symbol table | |
4012 | somehow as well. */ | |
4013 | BFD_ASSERT (! info->shared); | |
4014 | BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL); | |
4015 | symbol = 0; | |
4016 | } | |
5e2b0d47 NC |
4017 | else if (ELF_MIPS_IS_OPTIONAL (h->root.other)) |
4018 | { | |
4019 | /* This is an optional symbol - an Irix specific extension to the | |
4020 | ELF spec. Ignore it for now. | |
4021 | XXX - FIXME - there is more to the spec for OPTIONAL symbols | |
4022 | than simply ignoring them, but we do not handle this for now. | |
4023 | For information see the "64-bit ELF Object File Specification" | |
4024 | which is available from here: | |
4025 | http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */ | |
4026 | symbol = 0; | |
4027 | } | |
b49e97c9 TS |
4028 | else |
4029 | { | |
4030 | if (! ((*info->callbacks->undefined_symbol) | |
4031 | (info, h->root.root.root.string, input_bfd, | |
4032 | input_section, relocation->r_offset, | |
59c2e50f L |
4033 | (info->unresolved_syms_in_objects == RM_GENERATE_ERROR) |
4034 | || ELF_ST_VISIBILITY (h->root.other)))) | |
b49e97c9 TS |
4035 | return bfd_reloc_undefined; |
4036 | symbol = 0; | |
4037 | } | |
4038 | ||
4039 | target_is_16_bit_code_p = (h->root.other == STO_MIPS16); | |
4040 | } | |
4041 | ||
4042 | /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we | |
4043 | need to redirect the call to the stub, unless we're already *in* | |
4044 | a stub. */ | |
1049f94e | 4045 | if (r_type != R_MIPS16_26 && !info->relocatable |
b49e97c9 TS |
4046 | && ((h != NULL && h->fn_stub != NULL) |
4047 | || (local_p && elf_tdata (input_bfd)->local_stubs != NULL | |
4048 | && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL)) | |
4049 | && !mips_elf_stub_section_p (input_bfd, input_section)) | |
4050 | { | |
4051 | /* This is a 32- or 64-bit call to a 16-bit function. We should | |
4052 | have already noticed that we were going to need the | |
4053 | stub. */ | |
4054 | if (local_p) | |
4055 | sec = elf_tdata (input_bfd)->local_stubs[r_symndx]; | |
4056 | else | |
4057 | { | |
4058 | BFD_ASSERT (h->need_fn_stub); | |
4059 | sec = h->fn_stub; | |
4060 | } | |
4061 | ||
4062 | symbol = sec->output_section->vma + sec->output_offset; | |
4063 | } | |
4064 | /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we | |
4065 | need to redirect the call to the stub. */ | |
1049f94e | 4066 | else if (r_type == R_MIPS16_26 && !info->relocatable |
b49e97c9 TS |
4067 | && h != NULL |
4068 | && (h->call_stub != NULL || h->call_fp_stub != NULL) | |
4069 | && !target_is_16_bit_code_p) | |
4070 | { | |
4071 | /* If both call_stub and call_fp_stub are defined, we can figure | |
4072 | out which one to use by seeing which one appears in the input | |
4073 | file. */ | |
4074 | if (h->call_stub != NULL && h->call_fp_stub != NULL) | |
4075 | { | |
4076 | asection *o; | |
4077 | ||
4078 | sec = NULL; | |
4079 | for (o = input_bfd->sections; o != NULL; o = o->next) | |
4080 | { | |
4081 | if (strncmp (bfd_get_section_name (input_bfd, o), | |
4082 | CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0) | |
4083 | { | |
4084 | sec = h->call_fp_stub; | |
4085 | break; | |
4086 | } | |
4087 | } | |
4088 | if (sec == NULL) | |
4089 | sec = h->call_stub; | |
4090 | } | |
4091 | else if (h->call_stub != NULL) | |
4092 | sec = h->call_stub; | |
4093 | else | |
4094 | sec = h->call_fp_stub; | |
4095 | ||
eea6121a | 4096 | BFD_ASSERT (sec->size > 0); |
b49e97c9 TS |
4097 | symbol = sec->output_section->vma + sec->output_offset; |
4098 | } | |
4099 | ||
4100 | /* Calls from 16-bit code to 32-bit code and vice versa require the | |
4101 | special jalx instruction. */ | |
1049f94e | 4102 | *require_jalxp = (!info->relocatable |
b49e97c9 TS |
4103 | && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p) |
4104 | || ((r_type == R_MIPS_26) && target_is_16_bit_code_p))); | |
4105 | ||
4106 | local_p = mips_elf_local_relocation_p (input_bfd, relocation, | |
b34976b6 | 4107 | local_sections, TRUE); |
b49e97c9 TS |
4108 | |
4109 | /* If we haven't already determined the GOT offset, or the GP value, | |
4110 | and we're going to need it, get it now. */ | |
4111 | switch (r_type) | |
4112 | { | |
0fdc1bf1 | 4113 | case R_MIPS_GOT_PAGE: |
93a2b7ae | 4114 | case R_MIPS_GOT_OFST: |
d25aed71 RS |
4115 | /* We need to decay to GOT_DISP/addend if the symbol doesn't |
4116 | bind locally. */ | |
4117 | local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1); | |
93a2b7ae | 4118 | if (local_p || r_type == R_MIPS_GOT_OFST) |
0fdc1bf1 AO |
4119 | break; |
4120 | /* Fall through. */ | |
4121 | ||
b49e97c9 TS |
4122 | case R_MIPS_CALL16: |
4123 | case R_MIPS_GOT16: | |
4124 | case R_MIPS_GOT_DISP: | |
4125 | case R_MIPS_GOT_HI16: | |
4126 | case R_MIPS_CALL_HI16: | |
4127 | case R_MIPS_GOT_LO16: | |
4128 | case R_MIPS_CALL_LO16: | |
0f20cc35 DJ |
4129 | case R_MIPS_TLS_GD: |
4130 | case R_MIPS_TLS_GOTTPREL: | |
4131 | case R_MIPS_TLS_LDM: | |
b49e97c9 | 4132 | /* Find the index into the GOT where this value is located. */ |
0f20cc35 DJ |
4133 | if (r_type == R_MIPS_TLS_LDM) |
4134 | { | |
0a44bf69 RS |
4135 | g = mips_elf_local_got_index (abfd, input_bfd, info, |
4136 | sec, 0, 0, NULL, r_type); | |
0f20cc35 DJ |
4137 | if (g == MINUS_ONE) |
4138 | return bfd_reloc_outofrange; | |
4139 | } | |
4140 | else if (!local_p) | |
b49e97c9 | 4141 | { |
0a44bf69 RS |
4142 | /* On VxWorks, CALL relocations should refer to the .got.plt |
4143 | entry, which is initialized to point at the PLT stub. */ | |
4144 | if (htab->is_vxworks | |
4145 | && (r_type == R_MIPS_CALL_HI16 | |
4146 | || r_type == R_MIPS_CALL_LO16 | |
4147 | || r_type == R_MIPS_CALL16)) | |
4148 | { | |
4149 | BFD_ASSERT (addend == 0); | |
4150 | BFD_ASSERT (h->root.needs_plt); | |
4151 | g = mips_elf_gotplt_index (info, &h->root); | |
4152 | } | |
4153 | else | |
b49e97c9 | 4154 | { |
0a44bf69 RS |
4155 | /* GOT_PAGE may take a non-zero addend, that is ignored in a |
4156 | GOT_PAGE relocation that decays to GOT_DISP because the | |
4157 | symbol turns out to be global. The addend is then added | |
4158 | as GOT_OFST. */ | |
4159 | BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE); | |
4160 | g = mips_elf_global_got_index (dynobj, input_bfd, | |
4161 | &h->root, r_type, info); | |
4162 | if (h->tls_type == GOT_NORMAL | |
4163 | && (! elf_hash_table(info)->dynamic_sections_created | |
4164 | || (info->shared | |
4165 | && (info->symbolic || h->root.forced_local) | |
4166 | && h->root.def_regular))) | |
4167 | { | |
4168 | /* This is a static link or a -Bsymbolic link. The | |
4169 | symbol is defined locally, or was forced to be local. | |
4170 | We must initialize this entry in the GOT. */ | |
4171 | asection *sgot = mips_elf_got_section (dynobj, FALSE); | |
4172 | MIPS_ELF_PUT_WORD (dynobj, symbol, sgot->contents + g); | |
4173 | } | |
b49e97c9 TS |
4174 | } |
4175 | } | |
0a44bf69 RS |
4176 | else if (!htab->is_vxworks |
4177 | && (r_type == R_MIPS_CALL16 || (r_type == R_MIPS_GOT16))) | |
4178 | /* The calculation below does not involve "g". */ | |
b49e97c9 TS |
4179 | break; |
4180 | else | |
4181 | { | |
0a44bf69 RS |
4182 | g = mips_elf_local_got_index (abfd, input_bfd, info, sec, |
4183 | symbol + addend, r_symndx, h, r_type); | |
b49e97c9 TS |
4184 | if (g == MINUS_ONE) |
4185 | return bfd_reloc_outofrange; | |
4186 | } | |
4187 | ||
4188 | /* Convert GOT indices to actual offsets. */ | |
0a44bf69 | 4189 | g = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, g); |
b49e97c9 TS |
4190 | break; |
4191 | ||
4192 | case R_MIPS_HI16: | |
4193 | case R_MIPS_LO16: | |
b49e97c9 TS |
4194 | case R_MIPS_GPREL16: |
4195 | case R_MIPS_GPREL32: | |
4196 | case R_MIPS_LITERAL: | |
d6f16593 MR |
4197 | case R_MIPS16_HI16: |
4198 | case R_MIPS16_LO16: | |
4199 | case R_MIPS16_GPREL: | |
b49e97c9 TS |
4200 | gp0 = _bfd_get_gp_value (input_bfd); |
4201 | gp = _bfd_get_gp_value (abfd); | |
0a44bf69 RS |
4202 | if (dynobj) |
4203 | gp += mips_elf_adjust_gp (abfd, mips_elf_got_info (dynobj, NULL), | |
f4416af6 | 4204 | input_bfd); |
b49e97c9 TS |
4205 | break; |
4206 | ||
4207 | default: | |
4208 | break; | |
4209 | } | |
4210 | ||
bbe506e8 TS |
4211 | if (gnu_local_gp_p) |
4212 | symbol = gp; | |
86324f90 | 4213 | |
0a44bf69 RS |
4214 | /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__ |
4215 | symbols are resolved by the loader. Add them to .rela.dyn. */ | |
4216 | if (h != NULL && is_gott_symbol (info, &h->root)) | |
4217 | { | |
4218 | Elf_Internal_Rela outrel; | |
4219 | bfd_byte *loc; | |
4220 | asection *s; | |
4221 | ||
4222 | s = mips_elf_rel_dyn_section (info, FALSE); | |
4223 | loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela); | |
4224 | ||
4225 | outrel.r_offset = (input_section->output_section->vma | |
4226 | + input_section->output_offset | |
4227 | + relocation->r_offset); | |
4228 | outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type); | |
4229 | outrel.r_addend = addend; | |
4230 | bfd_elf32_swap_reloca_out (abfd, &outrel, loc); | |
4231 | *valuep = 0; | |
4232 | return bfd_reloc_ok; | |
4233 | } | |
4234 | ||
b49e97c9 TS |
4235 | /* Figure out what kind of relocation is being performed. */ |
4236 | switch (r_type) | |
4237 | { | |
4238 | case R_MIPS_NONE: | |
4239 | return bfd_reloc_continue; | |
4240 | ||
4241 | case R_MIPS_16: | |
a7ebbfdf | 4242 | value = symbol + _bfd_mips_elf_sign_extend (addend, 16); |
b49e97c9 TS |
4243 | overflowed_p = mips_elf_overflow_p (value, 16); |
4244 | break; | |
4245 | ||
4246 | case R_MIPS_32: | |
4247 | case R_MIPS_REL32: | |
4248 | case R_MIPS_64: | |
4249 | if ((info->shared | |
0a44bf69 RS |
4250 | || (!htab->is_vxworks |
4251 | && htab->root.dynamic_sections_created | |
b49e97c9 | 4252 | && h != NULL |
f5385ebf AM |
4253 | && h->root.def_dynamic |
4254 | && !h->root.def_regular)) | |
b49e97c9 TS |
4255 | && r_symndx != 0 |
4256 | && (input_section->flags & SEC_ALLOC) != 0) | |
4257 | { | |
4258 | /* If we're creating a shared library, or this relocation is | |
4259 | against a symbol in a shared library, then we can't know | |
4260 | where the symbol will end up. So, we create a relocation | |
4261 | record in the output, and leave the job up to the dynamic | |
0a44bf69 RS |
4262 | linker. |
4263 | ||
4264 | In VxWorks executables, references to external symbols | |
4265 | are handled using copy relocs or PLT stubs, so there's | |
4266 | no need to add a dynamic relocation here. */ | |
b49e97c9 TS |
4267 | value = addend; |
4268 | if (!mips_elf_create_dynamic_relocation (abfd, | |
4269 | info, | |
4270 | relocation, | |
4271 | h, | |
4272 | sec, | |
4273 | symbol, | |
4274 | &value, | |
4275 | input_section)) | |
4276 | return bfd_reloc_undefined; | |
4277 | } | |
4278 | else | |
4279 | { | |
4280 | if (r_type != R_MIPS_REL32) | |
4281 | value = symbol + addend; | |
4282 | else | |
4283 | value = addend; | |
4284 | } | |
4285 | value &= howto->dst_mask; | |
092dcd75 CD |
4286 | break; |
4287 | ||
4288 | case R_MIPS_PC32: | |
4289 | value = symbol + addend - p; | |
4290 | value &= howto->dst_mask; | |
b49e97c9 TS |
4291 | break; |
4292 | ||
b49e97c9 TS |
4293 | case R_MIPS16_26: |
4294 | /* The calculation for R_MIPS16_26 is just the same as for an | |
4295 | R_MIPS_26. It's only the storage of the relocated field into | |
4296 | the output file that's different. That's handled in | |
4297 | mips_elf_perform_relocation. So, we just fall through to the | |
4298 | R_MIPS_26 case here. */ | |
4299 | case R_MIPS_26: | |
4300 | if (local_p) | |
30ac9238 | 4301 | value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2; |
b49e97c9 | 4302 | else |
728b2f21 ILT |
4303 | { |
4304 | value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2; | |
c314987d RS |
4305 | if (h->root.root.type != bfd_link_hash_undefweak) |
4306 | overflowed_p = (value >> 26) != ((p + 4) >> 28); | |
728b2f21 | 4307 | } |
b49e97c9 TS |
4308 | value &= howto->dst_mask; |
4309 | break; | |
4310 | ||
0f20cc35 DJ |
4311 | case R_MIPS_TLS_DTPREL_HI16: |
4312 | value = (mips_elf_high (addend + symbol - dtprel_base (info)) | |
4313 | & howto->dst_mask); | |
4314 | break; | |
4315 | ||
4316 | case R_MIPS_TLS_DTPREL_LO16: | |
4317 | value = (symbol + addend - dtprel_base (info)) & howto->dst_mask; | |
4318 | break; | |
4319 | ||
4320 | case R_MIPS_TLS_TPREL_HI16: | |
4321 | value = (mips_elf_high (addend + symbol - tprel_base (info)) | |
4322 | & howto->dst_mask); | |
4323 | break; | |
4324 | ||
4325 | case R_MIPS_TLS_TPREL_LO16: | |
4326 | value = (symbol + addend - tprel_base (info)) & howto->dst_mask; | |
4327 | break; | |
4328 | ||
b49e97c9 | 4329 | case R_MIPS_HI16: |
d6f16593 | 4330 | case R_MIPS16_HI16: |
b49e97c9 TS |
4331 | if (!gp_disp_p) |
4332 | { | |
4333 | value = mips_elf_high (addend + symbol); | |
4334 | value &= howto->dst_mask; | |
4335 | } | |
4336 | else | |
4337 | { | |
d6f16593 MR |
4338 | /* For MIPS16 ABI code we generate this sequence |
4339 | 0: li $v0,%hi(_gp_disp) | |
4340 | 4: addiupc $v1,%lo(_gp_disp) | |
4341 | 8: sll $v0,16 | |
4342 | 12: addu $v0,$v1 | |
4343 | 14: move $gp,$v0 | |
4344 | So the offsets of hi and lo relocs are the same, but the | |
4345 | $pc is four higher than $t9 would be, so reduce | |
4346 | both reloc addends by 4. */ | |
4347 | if (r_type == R_MIPS16_HI16) | |
4348 | value = mips_elf_high (addend + gp - p - 4); | |
4349 | else | |
4350 | value = mips_elf_high (addend + gp - p); | |
b49e97c9 TS |
4351 | overflowed_p = mips_elf_overflow_p (value, 16); |
4352 | } | |
4353 | break; | |
4354 | ||
4355 | case R_MIPS_LO16: | |
d6f16593 | 4356 | case R_MIPS16_LO16: |
b49e97c9 TS |
4357 | if (!gp_disp_p) |
4358 | value = (symbol + addend) & howto->dst_mask; | |
4359 | else | |
4360 | { | |
d6f16593 MR |
4361 | /* See the comment for R_MIPS16_HI16 above for the reason |
4362 | for this conditional. */ | |
4363 | if (r_type == R_MIPS16_LO16) | |
4364 | value = addend + gp - p; | |
4365 | else | |
4366 | value = addend + gp - p + 4; | |
b49e97c9 | 4367 | /* The MIPS ABI requires checking the R_MIPS_LO16 relocation |
8dc1a139 | 4368 | for overflow. But, on, say, IRIX5, relocations against |
b49e97c9 TS |
4369 | _gp_disp are normally generated from the .cpload |
4370 | pseudo-op. It generates code that normally looks like | |
4371 | this: | |
4372 | ||
4373 | lui $gp,%hi(_gp_disp) | |
4374 | addiu $gp,$gp,%lo(_gp_disp) | |
4375 | addu $gp,$gp,$t9 | |
4376 | ||
4377 | Here $t9 holds the address of the function being called, | |
4378 | as required by the MIPS ELF ABI. The R_MIPS_LO16 | |
4379 | relocation can easily overflow in this situation, but the | |
4380 | R_MIPS_HI16 relocation will handle the overflow. | |
4381 | Therefore, we consider this a bug in the MIPS ABI, and do | |
4382 | not check for overflow here. */ | |
4383 | } | |
4384 | break; | |
4385 | ||
4386 | case R_MIPS_LITERAL: | |
4387 | /* Because we don't merge literal sections, we can handle this | |
4388 | just like R_MIPS_GPREL16. In the long run, we should merge | |
4389 | shared literals, and then we will need to additional work | |
4390 | here. */ | |
4391 | ||
4392 | /* Fall through. */ | |
4393 | ||
4394 | case R_MIPS16_GPREL: | |
4395 | /* The R_MIPS16_GPREL performs the same calculation as | |
4396 | R_MIPS_GPREL16, but stores the relocated bits in a different | |
4397 | order. We don't need to do anything special here; the | |
4398 | differences are handled in mips_elf_perform_relocation. */ | |
4399 | case R_MIPS_GPREL16: | |
bce03d3d AO |
4400 | /* Only sign-extend the addend if it was extracted from the |
4401 | instruction. If the addend was separate, leave it alone, | |
4402 | otherwise we may lose significant bits. */ | |
4403 | if (howto->partial_inplace) | |
a7ebbfdf | 4404 | addend = _bfd_mips_elf_sign_extend (addend, 16); |
bce03d3d AO |
4405 | value = symbol + addend - gp; |
4406 | /* If the symbol was local, any earlier relocatable links will | |
4407 | have adjusted its addend with the gp offset, so compensate | |
4408 | for that now. Don't do it for symbols forced local in this | |
4409 | link, though, since they won't have had the gp offset applied | |
4410 | to them before. */ | |
4411 | if (was_local_p) | |
4412 | value += gp0; | |
b49e97c9 TS |
4413 | overflowed_p = mips_elf_overflow_p (value, 16); |
4414 | break; | |
4415 | ||
4416 | case R_MIPS_GOT16: | |
4417 | case R_MIPS_CALL16: | |
0a44bf69 RS |
4418 | /* VxWorks does not have separate local and global semantics for |
4419 | R_MIPS_GOT16; every relocation evaluates to "G". */ | |
4420 | if (!htab->is_vxworks && local_p) | |
b49e97c9 | 4421 | { |
b34976b6 | 4422 | bfd_boolean forced; |
b49e97c9 | 4423 | |
b49e97c9 | 4424 | forced = ! mips_elf_local_relocation_p (input_bfd, relocation, |
b34976b6 | 4425 | local_sections, FALSE); |
0a44bf69 | 4426 | value = mips_elf_got16_entry (abfd, input_bfd, info, sec, |
f4416af6 | 4427 | symbol + addend, forced); |
b49e97c9 TS |
4428 | if (value == MINUS_ONE) |
4429 | return bfd_reloc_outofrange; | |
4430 | value | |
0a44bf69 | 4431 | = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value); |
b49e97c9 TS |
4432 | overflowed_p = mips_elf_overflow_p (value, 16); |
4433 | break; | |
4434 | } | |
4435 | ||
4436 | /* Fall through. */ | |
4437 | ||
0f20cc35 DJ |
4438 | case R_MIPS_TLS_GD: |
4439 | case R_MIPS_TLS_GOTTPREL: | |
4440 | case R_MIPS_TLS_LDM: | |
b49e97c9 | 4441 | case R_MIPS_GOT_DISP: |
0fdc1bf1 | 4442 | got_disp: |
b49e97c9 TS |
4443 | value = g; |
4444 | overflowed_p = mips_elf_overflow_p (value, 16); | |
4445 | break; | |
4446 | ||
4447 | case R_MIPS_GPREL32: | |
bce03d3d AO |
4448 | value = (addend + symbol + gp0 - gp); |
4449 | if (!save_addend) | |
4450 | value &= howto->dst_mask; | |
b49e97c9 TS |
4451 | break; |
4452 | ||
4453 | case R_MIPS_PC16: | |
bad36eac DJ |
4454 | case R_MIPS_GNU_REL16_S2: |
4455 | value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p; | |
4456 | overflowed_p = mips_elf_overflow_p (value, 18); | |
4457 | value = (value >> 2) & howto->dst_mask; | |
b49e97c9 TS |
4458 | break; |
4459 | ||
4460 | case R_MIPS_GOT_HI16: | |
4461 | case R_MIPS_CALL_HI16: | |
4462 | /* We're allowed to handle these two relocations identically. | |
4463 | The dynamic linker is allowed to handle the CALL relocations | |
4464 | differently by creating a lazy evaluation stub. */ | |
4465 | value = g; | |
4466 | value = mips_elf_high (value); | |
4467 | value &= howto->dst_mask; | |
4468 | break; | |
4469 | ||
4470 | case R_MIPS_GOT_LO16: | |
4471 | case R_MIPS_CALL_LO16: | |
4472 | value = g & howto->dst_mask; | |
4473 | break; | |
4474 | ||
4475 | case R_MIPS_GOT_PAGE: | |
0fdc1bf1 AO |
4476 | /* GOT_PAGE relocations that reference non-local symbols decay |
4477 | to GOT_DISP. The corresponding GOT_OFST relocation decays to | |
4478 | 0. */ | |
93a2b7ae | 4479 | if (! local_p) |
0fdc1bf1 | 4480 | goto got_disp; |
0a44bf69 RS |
4481 | value = mips_elf_got_page (abfd, input_bfd, info, sec, |
4482 | symbol + addend, NULL); | |
b49e97c9 TS |
4483 | if (value == MINUS_ONE) |
4484 | return bfd_reloc_outofrange; | |
0a44bf69 | 4485 | value = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value); |
b49e97c9 TS |
4486 | overflowed_p = mips_elf_overflow_p (value, 16); |
4487 | break; | |
4488 | ||
4489 | case R_MIPS_GOT_OFST: | |
93a2b7ae | 4490 | if (local_p) |
0a44bf69 RS |
4491 | mips_elf_got_page (abfd, input_bfd, info, sec, |
4492 | symbol + addend, &value); | |
0fdc1bf1 AO |
4493 | else |
4494 | value = addend; | |
b49e97c9 TS |
4495 | overflowed_p = mips_elf_overflow_p (value, 16); |
4496 | break; | |
4497 | ||
4498 | case R_MIPS_SUB: | |
4499 | value = symbol - addend; | |
4500 | value &= howto->dst_mask; | |
4501 | break; | |
4502 | ||
4503 | case R_MIPS_HIGHER: | |
4504 | value = mips_elf_higher (addend + symbol); | |
4505 | value &= howto->dst_mask; | |
4506 | break; | |
4507 | ||
4508 | case R_MIPS_HIGHEST: | |
4509 | value = mips_elf_highest (addend + symbol); | |
4510 | value &= howto->dst_mask; | |
4511 | break; | |
4512 | ||
4513 | case R_MIPS_SCN_DISP: | |
4514 | value = symbol + addend - sec->output_offset; | |
4515 | value &= howto->dst_mask; | |
4516 | break; | |
4517 | ||
b49e97c9 | 4518 | case R_MIPS_JALR: |
1367d393 ILT |
4519 | /* This relocation is only a hint. In some cases, we optimize |
4520 | it into a bal instruction. But we don't try to optimize | |
4521 | branches to the PLT; that will wind up wasting time. */ | |
4522 | if (h != NULL && h->root.plt.offset != (bfd_vma) -1) | |
4523 | return bfd_reloc_continue; | |
4524 | value = symbol + addend; | |
4525 | break; | |
b49e97c9 | 4526 | |
1367d393 | 4527 | case R_MIPS_PJUMP: |
b49e97c9 TS |
4528 | case R_MIPS_GNU_VTINHERIT: |
4529 | case R_MIPS_GNU_VTENTRY: | |
4530 | /* We don't do anything with these at present. */ | |
4531 | return bfd_reloc_continue; | |
4532 | ||
4533 | default: | |
4534 | /* An unrecognized relocation type. */ | |
4535 | return bfd_reloc_notsupported; | |
4536 | } | |
4537 | ||
4538 | /* Store the VALUE for our caller. */ | |
4539 | *valuep = value; | |
4540 | return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok; | |
4541 | } | |
4542 | ||
4543 | /* Obtain the field relocated by RELOCATION. */ | |
4544 | ||
4545 | static bfd_vma | |
9719ad41 RS |
4546 | mips_elf_obtain_contents (reloc_howto_type *howto, |
4547 | const Elf_Internal_Rela *relocation, | |
4548 | bfd *input_bfd, bfd_byte *contents) | |
b49e97c9 TS |
4549 | { |
4550 | bfd_vma x; | |
4551 | bfd_byte *location = contents + relocation->r_offset; | |
4552 | ||
4553 | /* Obtain the bytes. */ | |
4554 | x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location); | |
4555 | ||
b49e97c9 TS |
4556 | return x; |
4557 | } | |
4558 | ||
4559 | /* It has been determined that the result of the RELOCATION is the | |
4560 | VALUE. Use HOWTO to place VALUE into the output file at the | |
4561 | appropriate position. The SECTION is the section to which the | |
b34976b6 | 4562 | relocation applies. If REQUIRE_JALX is TRUE, then the opcode used |
b49e97c9 TS |
4563 | for the relocation must be either JAL or JALX, and it is |
4564 | unconditionally converted to JALX. | |
4565 | ||
b34976b6 | 4566 | Returns FALSE if anything goes wrong. */ |
b49e97c9 | 4567 | |
b34976b6 | 4568 | static bfd_boolean |
9719ad41 RS |
4569 | mips_elf_perform_relocation (struct bfd_link_info *info, |
4570 | reloc_howto_type *howto, | |
4571 | const Elf_Internal_Rela *relocation, | |
4572 | bfd_vma value, bfd *input_bfd, | |
4573 | asection *input_section, bfd_byte *contents, | |
4574 | bfd_boolean require_jalx) | |
b49e97c9 TS |
4575 | { |
4576 | bfd_vma x; | |
4577 | bfd_byte *location; | |
4578 | int r_type = ELF_R_TYPE (input_bfd, relocation->r_info); | |
4579 | ||
4580 | /* Figure out where the relocation is occurring. */ | |
4581 | location = contents + relocation->r_offset; | |
4582 | ||
d6f16593 MR |
4583 | _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location); |
4584 | ||
b49e97c9 TS |
4585 | /* Obtain the current value. */ |
4586 | x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents); | |
4587 | ||
4588 | /* Clear the field we are setting. */ | |
4589 | x &= ~howto->dst_mask; | |
4590 | ||
b49e97c9 TS |
4591 | /* Set the field. */ |
4592 | x |= (value & howto->dst_mask); | |
4593 | ||
4594 | /* If required, turn JAL into JALX. */ | |
4595 | if (require_jalx) | |
4596 | { | |
b34976b6 | 4597 | bfd_boolean ok; |
b49e97c9 TS |
4598 | bfd_vma opcode = x >> 26; |
4599 | bfd_vma jalx_opcode; | |
4600 | ||
4601 | /* Check to see if the opcode is already JAL or JALX. */ | |
4602 | if (r_type == R_MIPS16_26) | |
4603 | { | |
4604 | ok = ((opcode == 0x6) || (opcode == 0x7)); | |
4605 | jalx_opcode = 0x7; | |
4606 | } | |
4607 | else | |
4608 | { | |
4609 | ok = ((opcode == 0x3) || (opcode == 0x1d)); | |
4610 | jalx_opcode = 0x1d; | |
4611 | } | |
4612 | ||
4613 | /* If the opcode is not JAL or JALX, there's a problem. */ | |
4614 | if (!ok) | |
4615 | { | |
4616 | (*_bfd_error_handler) | |
d003868e AM |
4617 | (_("%B: %A+0x%lx: jump to stub routine which is not jal"), |
4618 | input_bfd, | |
4619 | input_section, | |
b49e97c9 TS |
4620 | (unsigned long) relocation->r_offset); |
4621 | bfd_set_error (bfd_error_bad_value); | |
b34976b6 | 4622 | return FALSE; |
b49e97c9 TS |
4623 | } |
4624 | ||
4625 | /* Make this the JALX opcode. */ | |
4626 | x = (x & ~(0x3f << 26)) | (jalx_opcode << 26); | |
4627 | } | |
4628 | ||
1367d393 ILT |
4629 | /* On the RM9000, bal is faster than jal, because bal uses branch |
4630 | prediction hardware. If we are linking for the RM9000, and we | |
4631 | see jal, and bal fits, use it instead. Note that this | |
4632 | transformation should be safe for all architectures. */ | |
4633 | if (bfd_get_mach (input_bfd) == bfd_mach_mips9000 | |
4634 | && !info->relocatable | |
4635 | && !require_jalx | |
4636 | && ((r_type == R_MIPS_26 && (x >> 26) == 0x3) /* jal addr */ | |
4637 | || (r_type == R_MIPS_JALR && x == 0x0320f809))) /* jalr t9 */ | |
4638 | { | |
4639 | bfd_vma addr; | |
4640 | bfd_vma dest; | |
4641 | bfd_signed_vma off; | |
4642 | ||
4643 | addr = (input_section->output_section->vma | |
4644 | + input_section->output_offset | |
4645 | + relocation->r_offset | |
4646 | + 4); | |
4647 | if (r_type == R_MIPS_26) | |
4648 | dest = (value << 2) | ((addr >> 28) << 28); | |
4649 | else | |
4650 | dest = value; | |
4651 | off = dest - addr; | |
4652 | if (off <= 0x1ffff && off >= -0x20000) | |
4653 | x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */ | |
4654 | } | |
4655 | ||
b49e97c9 TS |
4656 | /* Put the value into the output. */ |
4657 | bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location); | |
d6f16593 MR |
4658 | |
4659 | _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable, | |
4660 | location); | |
4661 | ||
b34976b6 | 4662 | return TRUE; |
b49e97c9 TS |
4663 | } |
4664 | ||
b34976b6 | 4665 | /* Returns TRUE if SECTION is a MIPS16 stub section. */ |
b49e97c9 | 4666 | |
b34976b6 | 4667 | static bfd_boolean |
9719ad41 | 4668 | mips_elf_stub_section_p (bfd *abfd ATTRIBUTE_UNUSED, asection *section) |
b49e97c9 TS |
4669 | { |
4670 | const char *name = bfd_get_section_name (abfd, section); | |
4671 | ||
4672 | return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0 | |
4673 | || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0 | |
4674 | || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0); | |
4675 | } | |
4676 | \f | |
0a44bf69 | 4677 | /* Add room for N relocations to the .rel(a).dyn section in ABFD. */ |
b49e97c9 TS |
4678 | |
4679 | static void | |
0a44bf69 RS |
4680 | mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info, |
4681 | unsigned int n) | |
b49e97c9 TS |
4682 | { |
4683 | asection *s; | |
0a44bf69 | 4684 | struct mips_elf_link_hash_table *htab; |
b49e97c9 | 4685 | |
0a44bf69 RS |
4686 | htab = mips_elf_hash_table (info); |
4687 | s = mips_elf_rel_dyn_section (info, FALSE); | |
b49e97c9 TS |
4688 | BFD_ASSERT (s != NULL); |
4689 | ||
0a44bf69 RS |
4690 | if (htab->is_vxworks) |
4691 | s->size += n * MIPS_ELF_RELA_SIZE (abfd); | |
4692 | else | |
b49e97c9 | 4693 | { |
0a44bf69 RS |
4694 | if (s->size == 0) |
4695 | { | |
4696 | /* Make room for a null element. */ | |
4697 | s->size += MIPS_ELF_REL_SIZE (abfd); | |
4698 | ++s->reloc_count; | |
4699 | } | |
4700 | s->size += n * MIPS_ELF_REL_SIZE (abfd); | |
b49e97c9 | 4701 | } |
b49e97c9 TS |
4702 | } |
4703 | ||
4704 | /* Create a rel.dyn relocation for the dynamic linker to resolve. REL | |
4705 | is the original relocation, which is now being transformed into a | |
4706 | dynamic relocation. The ADDENDP is adjusted if necessary; the | |
4707 | caller should store the result in place of the original addend. */ | |
4708 | ||
b34976b6 | 4709 | static bfd_boolean |
9719ad41 RS |
4710 | mips_elf_create_dynamic_relocation (bfd *output_bfd, |
4711 | struct bfd_link_info *info, | |
4712 | const Elf_Internal_Rela *rel, | |
4713 | struct mips_elf_link_hash_entry *h, | |
4714 | asection *sec, bfd_vma symbol, | |
4715 | bfd_vma *addendp, asection *input_section) | |
b49e97c9 | 4716 | { |
947216bf | 4717 | Elf_Internal_Rela outrel[3]; |
b49e97c9 TS |
4718 | asection *sreloc; |
4719 | bfd *dynobj; | |
4720 | int r_type; | |
5d41f0b6 RS |
4721 | long indx; |
4722 | bfd_boolean defined_p; | |
0a44bf69 | 4723 | struct mips_elf_link_hash_table *htab; |
b49e97c9 | 4724 | |
0a44bf69 | 4725 | htab = mips_elf_hash_table (info); |
b49e97c9 TS |
4726 | r_type = ELF_R_TYPE (output_bfd, rel->r_info); |
4727 | dynobj = elf_hash_table (info)->dynobj; | |
0a44bf69 | 4728 | sreloc = mips_elf_rel_dyn_section (info, FALSE); |
b49e97c9 TS |
4729 | BFD_ASSERT (sreloc != NULL); |
4730 | BFD_ASSERT (sreloc->contents != NULL); | |
4731 | BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd) | |
eea6121a | 4732 | < sreloc->size); |
b49e97c9 | 4733 | |
b49e97c9 TS |
4734 | outrel[0].r_offset = |
4735 | _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset); | |
4736 | outrel[1].r_offset = | |
4737 | _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset); | |
4738 | outrel[2].r_offset = | |
4739 | _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset); | |
4740 | ||
c5ae1840 | 4741 | if (outrel[0].r_offset == MINUS_ONE) |
0d591ff7 | 4742 | /* The relocation field has been deleted. */ |
5d41f0b6 RS |
4743 | return TRUE; |
4744 | ||
4745 | if (outrel[0].r_offset == MINUS_TWO) | |
0d591ff7 RS |
4746 | { |
4747 | /* The relocation field has been converted into a relative value of | |
4748 | some sort. Functions like _bfd_elf_write_section_eh_frame expect | |
4749 | the field to be fully relocated, so add in the symbol's value. */ | |
0d591ff7 | 4750 | *addendp += symbol; |
5d41f0b6 | 4751 | return TRUE; |
0d591ff7 | 4752 | } |
b49e97c9 | 4753 | |
5d41f0b6 RS |
4754 | /* We must now calculate the dynamic symbol table index to use |
4755 | in the relocation. */ | |
4756 | if (h != NULL | |
6ece8836 TS |
4757 | && (!h->root.def_regular |
4758 | || (info->shared && !info->symbolic && !h->root.forced_local))) | |
5d41f0b6 RS |
4759 | { |
4760 | indx = h->root.dynindx; | |
4761 | if (SGI_COMPAT (output_bfd)) | |
4762 | defined_p = h->root.def_regular; | |
4763 | else | |
4764 | /* ??? glibc's ld.so just adds the final GOT entry to the | |
4765 | relocation field. It therefore treats relocs against | |
4766 | defined symbols in the same way as relocs against | |
4767 | undefined symbols. */ | |
4768 | defined_p = FALSE; | |
4769 | } | |
b49e97c9 TS |
4770 | else |
4771 | { | |
5d41f0b6 RS |
4772 | if (sec != NULL && bfd_is_abs_section (sec)) |
4773 | indx = 0; | |
4774 | else if (sec == NULL || sec->owner == NULL) | |
fdd07405 | 4775 | { |
5d41f0b6 RS |
4776 | bfd_set_error (bfd_error_bad_value); |
4777 | return FALSE; | |
b49e97c9 TS |
4778 | } |
4779 | else | |
4780 | { | |
5d41f0b6 RS |
4781 | indx = elf_section_data (sec->output_section)->dynindx; |
4782 | if (indx == 0) | |
4783 | abort (); | |
b49e97c9 TS |
4784 | } |
4785 | ||
5d41f0b6 RS |
4786 | /* Instead of generating a relocation using the section |
4787 | symbol, we may as well make it a fully relative | |
4788 | relocation. We want to avoid generating relocations to | |
4789 | local symbols because we used to generate them | |
4790 | incorrectly, without adding the original symbol value, | |
4791 | which is mandated by the ABI for section symbols. In | |
4792 | order to give dynamic loaders and applications time to | |
4793 | phase out the incorrect use, we refrain from emitting | |
4794 | section-relative relocations. It's not like they're | |
4795 | useful, after all. This should be a bit more efficient | |
4796 | as well. */ | |
4797 | /* ??? Although this behavior is compatible with glibc's ld.so, | |
4798 | the ABI says that relocations against STN_UNDEF should have | |
4799 | a symbol value of 0. Irix rld honors this, so relocations | |
4800 | against STN_UNDEF have no effect. */ | |
4801 | if (!SGI_COMPAT (output_bfd)) | |
4802 | indx = 0; | |
4803 | defined_p = TRUE; | |
b49e97c9 TS |
4804 | } |
4805 | ||
5d41f0b6 RS |
4806 | /* If the relocation was previously an absolute relocation and |
4807 | this symbol will not be referred to by the relocation, we must | |
4808 | adjust it by the value we give it in the dynamic symbol table. | |
4809 | Otherwise leave the job up to the dynamic linker. */ | |
4810 | if (defined_p && r_type != R_MIPS_REL32) | |
4811 | *addendp += symbol; | |
4812 | ||
0a44bf69 RS |
4813 | if (htab->is_vxworks) |
4814 | /* VxWorks uses non-relative relocations for this. */ | |
4815 | outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32); | |
4816 | else | |
4817 | /* The relocation is always an REL32 relocation because we don't | |
4818 | know where the shared library will wind up at load-time. */ | |
4819 | outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx, | |
4820 | R_MIPS_REL32); | |
4821 | ||
5d41f0b6 RS |
4822 | /* For strict adherence to the ABI specification, we should |
4823 | generate a R_MIPS_64 relocation record by itself before the | |
4824 | _REL32/_64 record as well, such that the addend is read in as | |
4825 | a 64-bit value (REL32 is a 32-bit relocation, after all). | |
4826 | However, since none of the existing ELF64 MIPS dynamic | |
4827 | loaders seems to care, we don't waste space with these | |
4828 | artificial relocations. If this turns out to not be true, | |
4829 | mips_elf_allocate_dynamic_relocation() should be tweaked so | |
4830 | as to make room for a pair of dynamic relocations per | |
4831 | invocation if ABI_64_P, and here we should generate an | |
4832 | additional relocation record with R_MIPS_64 by itself for a | |
4833 | NULL symbol before this relocation record. */ | |
4834 | outrel[1].r_info = ELF_R_INFO (output_bfd, 0, | |
4835 | ABI_64_P (output_bfd) | |
4836 | ? R_MIPS_64 | |
4837 | : R_MIPS_NONE); | |
4838 | outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE); | |
4839 | ||
4840 | /* Adjust the output offset of the relocation to reference the | |
4841 | correct location in the output file. */ | |
4842 | outrel[0].r_offset += (input_section->output_section->vma | |
4843 | + input_section->output_offset); | |
4844 | outrel[1].r_offset += (input_section->output_section->vma | |
4845 | + input_section->output_offset); | |
4846 | outrel[2].r_offset += (input_section->output_section->vma | |
4847 | + input_section->output_offset); | |
4848 | ||
b49e97c9 TS |
4849 | /* Put the relocation back out. We have to use the special |
4850 | relocation outputter in the 64-bit case since the 64-bit | |
4851 | relocation format is non-standard. */ | |
4852 | if (ABI_64_P (output_bfd)) | |
4853 | { | |
4854 | (*get_elf_backend_data (output_bfd)->s->swap_reloc_out) | |
4855 | (output_bfd, &outrel[0], | |
4856 | (sreloc->contents | |
4857 | + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel))); | |
4858 | } | |
0a44bf69 RS |
4859 | else if (htab->is_vxworks) |
4860 | { | |
4861 | /* VxWorks uses RELA rather than REL dynamic relocations. */ | |
4862 | outrel[0].r_addend = *addendp; | |
4863 | bfd_elf32_swap_reloca_out | |
4864 | (output_bfd, &outrel[0], | |
4865 | (sreloc->contents | |
4866 | + sreloc->reloc_count * sizeof (Elf32_External_Rela))); | |
4867 | } | |
b49e97c9 | 4868 | else |
947216bf AM |
4869 | bfd_elf32_swap_reloc_out |
4870 | (output_bfd, &outrel[0], | |
4871 | (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel))); | |
b49e97c9 | 4872 | |
b49e97c9 TS |
4873 | /* We've now added another relocation. */ |
4874 | ++sreloc->reloc_count; | |
4875 | ||
4876 | /* Make sure the output section is writable. The dynamic linker | |
4877 | will be writing to it. */ | |
4878 | elf_section_data (input_section->output_section)->this_hdr.sh_flags | |
4879 | |= SHF_WRITE; | |
4880 | ||
4881 | /* On IRIX5, make an entry of compact relocation info. */ | |
5d41f0b6 | 4882 | if (IRIX_COMPAT (output_bfd) == ict_irix5) |
b49e97c9 TS |
4883 | { |
4884 | asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel"); | |
4885 | bfd_byte *cr; | |
4886 | ||
4887 | if (scpt) | |
4888 | { | |
4889 | Elf32_crinfo cptrel; | |
4890 | ||
4891 | mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG); | |
4892 | cptrel.vaddr = (rel->r_offset | |
4893 | + input_section->output_section->vma | |
4894 | + input_section->output_offset); | |
4895 | if (r_type == R_MIPS_REL32) | |
4896 | mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32); | |
4897 | else | |
4898 | mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD); | |
4899 | mips_elf_set_cr_dist2to (cptrel, 0); | |
4900 | cptrel.konst = *addendp; | |
4901 | ||
4902 | cr = (scpt->contents | |
4903 | + sizeof (Elf32_External_compact_rel)); | |
abc0f8d0 | 4904 | mips_elf_set_cr_relvaddr (cptrel, 0); |
b49e97c9 TS |
4905 | bfd_elf32_swap_crinfo_out (output_bfd, &cptrel, |
4906 | ((Elf32_External_crinfo *) cr | |
4907 | + scpt->reloc_count)); | |
4908 | ++scpt->reloc_count; | |
4909 | } | |
4910 | } | |
4911 | ||
b34976b6 | 4912 | return TRUE; |
b49e97c9 TS |
4913 | } |
4914 | \f | |
b49e97c9 TS |
4915 | /* Return the MACH for a MIPS e_flags value. */ |
4916 | ||
4917 | unsigned long | |
9719ad41 | 4918 | _bfd_elf_mips_mach (flagword flags) |
b49e97c9 TS |
4919 | { |
4920 | switch (flags & EF_MIPS_MACH) | |
4921 | { | |
4922 | case E_MIPS_MACH_3900: | |
4923 | return bfd_mach_mips3900; | |
4924 | ||
4925 | case E_MIPS_MACH_4010: | |
4926 | return bfd_mach_mips4010; | |
4927 | ||
4928 | case E_MIPS_MACH_4100: | |
4929 | return bfd_mach_mips4100; | |
4930 | ||
4931 | case E_MIPS_MACH_4111: | |
4932 | return bfd_mach_mips4111; | |
4933 | ||
00707a0e RS |
4934 | case E_MIPS_MACH_4120: |
4935 | return bfd_mach_mips4120; | |
4936 | ||
b49e97c9 TS |
4937 | case E_MIPS_MACH_4650: |
4938 | return bfd_mach_mips4650; | |
4939 | ||
00707a0e RS |
4940 | case E_MIPS_MACH_5400: |
4941 | return bfd_mach_mips5400; | |
4942 | ||
4943 | case E_MIPS_MACH_5500: | |
4944 | return bfd_mach_mips5500; | |
4945 | ||
0d2e43ed ILT |
4946 | case E_MIPS_MACH_9000: |
4947 | return bfd_mach_mips9000; | |
4948 | ||
b49e97c9 TS |
4949 | case E_MIPS_MACH_SB1: |
4950 | return bfd_mach_mips_sb1; | |
4951 | ||
4952 | default: | |
4953 | switch (flags & EF_MIPS_ARCH) | |
4954 | { | |
4955 | default: | |
4956 | case E_MIPS_ARCH_1: | |
4957 | return bfd_mach_mips3000; | |
b49e97c9 TS |
4958 | |
4959 | case E_MIPS_ARCH_2: | |
4960 | return bfd_mach_mips6000; | |
b49e97c9 TS |
4961 | |
4962 | case E_MIPS_ARCH_3: | |
4963 | return bfd_mach_mips4000; | |
b49e97c9 TS |
4964 | |
4965 | case E_MIPS_ARCH_4: | |
4966 | return bfd_mach_mips8000; | |
b49e97c9 TS |
4967 | |
4968 | case E_MIPS_ARCH_5: | |
4969 | return bfd_mach_mips5; | |
b49e97c9 TS |
4970 | |
4971 | case E_MIPS_ARCH_32: | |
4972 | return bfd_mach_mipsisa32; | |
b49e97c9 TS |
4973 | |
4974 | case E_MIPS_ARCH_64: | |
4975 | return bfd_mach_mipsisa64; | |
af7ee8bf CD |
4976 | |
4977 | case E_MIPS_ARCH_32R2: | |
4978 | return bfd_mach_mipsisa32r2; | |
5f74bc13 CD |
4979 | |
4980 | case E_MIPS_ARCH_64R2: | |
4981 | return bfd_mach_mipsisa64r2; | |
b49e97c9 TS |
4982 | } |
4983 | } | |
4984 | ||
4985 | return 0; | |
4986 | } | |
4987 | ||
4988 | /* Return printable name for ABI. */ | |
4989 | ||
4990 | static INLINE char * | |
9719ad41 | 4991 | elf_mips_abi_name (bfd *abfd) |
b49e97c9 TS |
4992 | { |
4993 | flagword flags; | |
4994 | ||
4995 | flags = elf_elfheader (abfd)->e_flags; | |
4996 | switch (flags & EF_MIPS_ABI) | |
4997 | { | |
4998 | case 0: | |
4999 | if (ABI_N32_P (abfd)) | |
5000 | return "N32"; | |
5001 | else if (ABI_64_P (abfd)) | |
5002 | return "64"; | |
5003 | else | |
5004 | return "none"; | |
5005 | case E_MIPS_ABI_O32: | |
5006 | return "O32"; | |
5007 | case E_MIPS_ABI_O64: | |
5008 | return "O64"; | |
5009 | case E_MIPS_ABI_EABI32: | |
5010 | return "EABI32"; | |
5011 | case E_MIPS_ABI_EABI64: | |
5012 | return "EABI64"; | |
5013 | default: | |
5014 | return "unknown abi"; | |
5015 | } | |
5016 | } | |
5017 | \f | |
5018 | /* MIPS ELF uses two common sections. One is the usual one, and the | |
5019 | other is for small objects. All the small objects are kept | |
5020 | together, and then referenced via the gp pointer, which yields | |
5021 | faster assembler code. This is what we use for the small common | |
5022 | section. This approach is copied from ecoff.c. */ | |
5023 | static asection mips_elf_scom_section; | |
5024 | static asymbol mips_elf_scom_symbol; | |
5025 | static asymbol *mips_elf_scom_symbol_ptr; | |
5026 | ||
5027 | /* MIPS ELF also uses an acommon section, which represents an | |
5028 | allocated common symbol which may be overridden by a | |
5029 | definition in a shared library. */ | |
5030 | static asection mips_elf_acom_section; | |
5031 | static asymbol mips_elf_acom_symbol; | |
5032 | static asymbol *mips_elf_acom_symbol_ptr; | |
5033 | ||
5034 | /* Handle the special MIPS section numbers that a symbol may use. | |
5035 | This is used for both the 32-bit and the 64-bit ABI. */ | |
5036 | ||
5037 | void | |
9719ad41 | 5038 | _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym) |
b49e97c9 TS |
5039 | { |
5040 | elf_symbol_type *elfsym; | |
5041 | ||
5042 | elfsym = (elf_symbol_type *) asym; | |
5043 | switch (elfsym->internal_elf_sym.st_shndx) | |
5044 | { | |
5045 | case SHN_MIPS_ACOMMON: | |
5046 | /* This section is used in a dynamically linked executable file. | |
5047 | It is an allocated common section. The dynamic linker can | |
5048 | either resolve these symbols to something in a shared | |
5049 | library, or it can just leave them here. For our purposes, | |
5050 | we can consider these symbols to be in a new section. */ | |
5051 | if (mips_elf_acom_section.name == NULL) | |
5052 | { | |
5053 | /* Initialize the acommon section. */ | |
5054 | mips_elf_acom_section.name = ".acommon"; | |
5055 | mips_elf_acom_section.flags = SEC_ALLOC; | |
5056 | mips_elf_acom_section.output_section = &mips_elf_acom_section; | |
5057 | mips_elf_acom_section.symbol = &mips_elf_acom_symbol; | |
5058 | mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr; | |
5059 | mips_elf_acom_symbol.name = ".acommon"; | |
5060 | mips_elf_acom_symbol.flags = BSF_SECTION_SYM; | |
5061 | mips_elf_acom_symbol.section = &mips_elf_acom_section; | |
5062 | mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol; | |
5063 | } | |
5064 | asym->section = &mips_elf_acom_section; | |
5065 | break; | |
5066 | ||
5067 | case SHN_COMMON: | |
5068 | /* Common symbols less than the GP size are automatically | |
5069 | treated as SHN_MIPS_SCOMMON symbols on IRIX5. */ | |
5070 | if (asym->value > elf_gp_size (abfd) | |
5071 | || IRIX_COMPAT (abfd) == ict_irix6) | |
5072 | break; | |
5073 | /* Fall through. */ | |
5074 | case SHN_MIPS_SCOMMON: | |
5075 | if (mips_elf_scom_section.name == NULL) | |
5076 | { | |
5077 | /* Initialize the small common section. */ | |
5078 | mips_elf_scom_section.name = ".scommon"; | |
5079 | mips_elf_scom_section.flags = SEC_IS_COMMON; | |
5080 | mips_elf_scom_section.output_section = &mips_elf_scom_section; | |
5081 | mips_elf_scom_section.symbol = &mips_elf_scom_symbol; | |
5082 | mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr; | |
5083 | mips_elf_scom_symbol.name = ".scommon"; | |
5084 | mips_elf_scom_symbol.flags = BSF_SECTION_SYM; | |
5085 | mips_elf_scom_symbol.section = &mips_elf_scom_section; | |
5086 | mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol; | |
5087 | } | |
5088 | asym->section = &mips_elf_scom_section; | |
5089 | asym->value = elfsym->internal_elf_sym.st_size; | |
5090 | break; | |
5091 | ||
5092 | case SHN_MIPS_SUNDEFINED: | |
5093 | asym->section = bfd_und_section_ptr; | |
5094 | break; | |
5095 | ||
b49e97c9 | 5096 | case SHN_MIPS_TEXT: |
00b4930b TS |
5097 | { |
5098 | asection *section = bfd_get_section_by_name (abfd, ".text"); | |
5099 | ||
5100 | BFD_ASSERT (SGI_COMPAT (abfd)); | |
5101 | if (section != NULL) | |
5102 | { | |
5103 | asym->section = section; | |
5104 | /* MIPS_TEXT is a bit special, the address is not an offset | |
5105 | to the base of the .text section. So substract the section | |
5106 | base address to make it an offset. */ | |
5107 | asym->value -= section->vma; | |
5108 | } | |
5109 | } | |
b49e97c9 TS |
5110 | break; |
5111 | ||
5112 | case SHN_MIPS_DATA: | |
00b4930b TS |
5113 | { |
5114 | asection *section = bfd_get_section_by_name (abfd, ".data"); | |
5115 | ||
5116 | BFD_ASSERT (SGI_COMPAT (abfd)); | |
5117 | if (section != NULL) | |
5118 | { | |
5119 | asym->section = section; | |
5120 | /* MIPS_DATA is a bit special, the address is not an offset | |
5121 | to the base of the .data section. So substract the section | |
5122 | base address to make it an offset. */ | |
5123 | asym->value -= section->vma; | |
5124 | } | |
5125 | } | |
b49e97c9 | 5126 | break; |
b49e97c9 TS |
5127 | } |
5128 | } | |
5129 | \f | |
8c946ed5 RS |
5130 | /* Implement elf_backend_eh_frame_address_size. This differs from |
5131 | the default in the way it handles EABI64. | |
5132 | ||
5133 | EABI64 was originally specified as an LP64 ABI, and that is what | |
5134 | -mabi=eabi normally gives on a 64-bit target. However, gcc has | |
5135 | historically accepted the combination of -mabi=eabi and -mlong32, | |
5136 | and this ILP32 variation has become semi-official over time. | |
5137 | Both forms use elf32 and have pointer-sized FDE addresses. | |
5138 | ||
5139 | If an EABI object was generated by GCC 4.0 or above, it will have | |
5140 | an empty .gcc_compiled_longXX section, where XX is the size of longs | |
5141 | in bits. Unfortunately, ILP32 objects generated by earlier compilers | |
5142 | have no special marking to distinguish them from LP64 objects. | |
5143 | ||
5144 | We don't want users of the official LP64 ABI to be punished for the | |
5145 | existence of the ILP32 variant, but at the same time, we don't want | |
5146 | to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects. | |
5147 | We therefore take the following approach: | |
5148 | ||
5149 | - If ABFD contains a .gcc_compiled_longXX section, use it to | |
5150 | determine the pointer size. | |
5151 | ||
5152 | - Otherwise check the type of the first relocation. Assume that | |
5153 | the LP64 ABI is being used if the relocation is of type R_MIPS_64. | |
5154 | ||
5155 | - Otherwise punt. | |
5156 | ||
5157 | The second check is enough to detect LP64 objects generated by pre-4.0 | |
5158 | compilers because, in the kind of output generated by those compilers, | |
5159 | the first relocation will be associated with either a CIE personality | |
5160 | routine or an FDE start address. Furthermore, the compilers never | |
5161 | used a special (non-pointer) encoding for this ABI. | |
5162 | ||
5163 | Checking the relocation type should also be safe because there is no | |
5164 | reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never | |
5165 | did so. */ | |
5166 | ||
5167 | unsigned int | |
5168 | _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec) | |
5169 | { | |
5170 | if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64) | |
5171 | return 8; | |
5172 | if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64) | |
5173 | { | |
5174 | bfd_boolean long32_p, long64_p; | |
5175 | ||
5176 | long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0; | |
5177 | long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0; | |
5178 | if (long32_p && long64_p) | |
5179 | return 0; | |
5180 | if (long32_p) | |
5181 | return 4; | |
5182 | if (long64_p) | |
5183 | return 8; | |
5184 | ||
5185 | if (sec->reloc_count > 0 | |
5186 | && elf_section_data (sec)->relocs != NULL | |
5187 | && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info) | |
5188 | == R_MIPS_64)) | |
5189 | return 8; | |
5190 | ||
5191 | return 0; | |
5192 | } | |
5193 | return 4; | |
5194 | } | |
5195 | \f | |
174fd7f9 RS |
5196 | /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP |
5197 | relocations against two unnamed section symbols to resolve to the | |
5198 | same address. For example, if we have code like: | |
5199 | ||
5200 | lw $4,%got_disp(.data)($gp) | |
5201 | lw $25,%got_disp(.text)($gp) | |
5202 | jalr $25 | |
5203 | ||
5204 | then the linker will resolve both relocations to .data and the program | |
5205 | will jump there rather than to .text. | |
5206 | ||
5207 | We can work around this problem by giving names to local section symbols. | |
5208 | This is also what the MIPSpro tools do. */ | |
5209 | ||
5210 | bfd_boolean | |
5211 | _bfd_mips_elf_name_local_section_symbols (bfd *abfd) | |
5212 | { | |
5213 | return SGI_COMPAT (abfd); | |
5214 | } | |
5215 | \f | |
b49e97c9 TS |
5216 | /* Work over a section just before writing it out. This routine is |
5217 | used by both the 32-bit and the 64-bit ABI. FIXME: We recognize | |
5218 | sections that need the SHF_MIPS_GPREL flag by name; there has to be | |
5219 | a better way. */ | |
5220 | ||
b34976b6 | 5221 | bfd_boolean |
9719ad41 | 5222 | _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr) |
b49e97c9 TS |
5223 | { |
5224 | if (hdr->sh_type == SHT_MIPS_REGINFO | |
5225 | && hdr->sh_size > 0) | |
5226 | { | |
5227 | bfd_byte buf[4]; | |
5228 | ||
5229 | BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo)); | |
5230 | BFD_ASSERT (hdr->contents == NULL); | |
5231 | ||
5232 | if (bfd_seek (abfd, | |
5233 | hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4, | |
5234 | SEEK_SET) != 0) | |
b34976b6 | 5235 | return FALSE; |
b49e97c9 | 5236 | H_PUT_32 (abfd, elf_gp (abfd), buf); |
9719ad41 | 5237 | if (bfd_bwrite (buf, 4, abfd) != 4) |
b34976b6 | 5238 | return FALSE; |
b49e97c9 TS |
5239 | } |
5240 | ||
5241 | if (hdr->sh_type == SHT_MIPS_OPTIONS | |
5242 | && hdr->bfd_section != NULL | |
f0abc2a1 AM |
5243 | && mips_elf_section_data (hdr->bfd_section) != NULL |
5244 | && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL) | |
b49e97c9 TS |
5245 | { |
5246 | bfd_byte *contents, *l, *lend; | |
5247 | ||
f0abc2a1 AM |
5248 | /* We stored the section contents in the tdata field in the |
5249 | set_section_contents routine. We save the section contents | |
5250 | so that we don't have to read them again. | |
b49e97c9 TS |
5251 | At this point we know that elf_gp is set, so we can look |
5252 | through the section contents to see if there is an | |
5253 | ODK_REGINFO structure. */ | |
5254 | ||
f0abc2a1 | 5255 | contents = mips_elf_section_data (hdr->bfd_section)->u.tdata; |
b49e97c9 TS |
5256 | l = contents; |
5257 | lend = contents + hdr->sh_size; | |
5258 | while (l + sizeof (Elf_External_Options) <= lend) | |
5259 | { | |
5260 | Elf_Internal_Options intopt; | |
5261 | ||
5262 | bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l, | |
5263 | &intopt); | |
1bc8074d MR |
5264 | if (intopt.size < sizeof (Elf_External_Options)) |
5265 | { | |
5266 | (*_bfd_error_handler) | |
5267 | (_("%B: Warning: bad `%s' option size %u smaller than its header"), | |
5268 | abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size); | |
5269 | break; | |
5270 | } | |
b49e97c9 TS |
5271 | if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO) |
5272 | { | |
5273 | bfd_byte buf[8]; | |
5274 | ||
5275 | if (bfd_seek (abfd, | |
5276 | (hdr->sh_offset | |
5277 | + (l - contents) | |
5278 | + sizeof (Elf_External_Options) | |
5279 | + (sizeof (Elf64_External_RegInfo) - 8)), | |
5280 | SEEK_SET) != 0) | |
b34976b6 | 5281 | return FALSE; |
b49e97c9 | 5282 | H_PUT_64 (abfd, elf_gp (abfd), buf); |
9719ad41 | 5283 | if (bfd_bwrite (buf, 8, abfd) != 8) |
b34976b6 | 5284 | return FALSE; |
b49e97c9 TS |
5285 | } |
5286 | else if (intopt.kind == ODK_REGINFO) | |
5287 | { | |
5288 | bfd_byte buf[4]; | |
5289 | ||
5290 | if (bfd_seek (abfd, | |
5291 | (hdr->sh_offset | |
5292 | + (l - contents) | |
5293 | + sizeof (Elf_External_Options) | |
5294 | + (sizeof (Elf32_External_RegInfo) - 4)), | |
5295 | SEEK_SET) != 0) | |
b34976b6 | 5296 | return FALSE; |
b49e97c9 | 5297 | H_PUT_32 (abfd, elf_gp (abfd), buf); |
9719ad41 | 5298 | if (bfd_bwrite (buf, 4, abfd) != 4) |
b34976b6 | 5299 | return FALSE; |
b49e97c9 TS |
5300 | } |
5301 | l += intopt.size; | |
5302 | } | |
5303 | } | |
5304 | ||
5305 | if (hdr->bfd_section != NULL) | |
5306 | { | |
5307 | const char *name = bfd_get_section_name (abfd, hdr->bfd_section); | |
5308 | ||
5309 | if (strcmp (name, ".sdata") == 0 | |
5310 | || strcmp (name, ".lit8") == 0 | |
5311 | || strcmp (name, ".lit4") == 0) | |
5312 | { | |
5313 | hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL; | |
5314 | hdr->sh_type = SHT_PROGBITS; | |
5315 | } | |
5316 | else if (strcmp (name, ".sbss") == 0) | |
5317 | { | |
5318 | hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL; | |
5319 | hdr->sh_type = SHT_NOBITS; | |
5320 | } | |
5321 | else if (strcmp (name, ".srdata") == 0) | |
5322 | { | |
5323 | hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL; | |
5324 | hdr->sh_type = SHT_PROGBITS; | |
5325 | } | |
5326 | else if (strcmp (name, ".compact_rel") == 0) | |
5327 | { | |
5328 | hdr->sh_flags = 0; | |
5329 | hdr->sh_type = SHT_PROGBITS; | |
5330 | } | |
5331 | else if (strcmp (name, ".rtproc") == 0) | |
5332 | { | |
5333 | if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0) | |
5334 | { | |
5335 | unsigned int adjust; | |
5336 | ||
5337 | adjust = hdr->sh_size % hdr->sh_addralign; | |
5338 | if (adjust != 0) | |
5339 | hdr->sh_size += hdr->sh_addralign - adjust; | |
5340 | } | |
5341 | } | |
5342 | } | |
5343 | ||
b34976b6 | 5344 | return TRUE; |
b49e97c9 TS |
5345 | } |
5346 | ||
5347 | /* Handle a MIPS specific section when reading an object file. This | |
5348 | is called when elfcode.h finds a section with an unknown type. | |
5349 | This routine supports both the 32-bit and 64-bit ELF ABI. | |
5350 | ||
5351 | FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure | |
5352 | how to. */ | |
5353 | ||
b34976b6 | 5354 | bfd_boolean |
6dc132d9 L |
5355 | _bfd_mips_elf_section_from_shdr (bfd *abfd, |
5356 | Elf_Internal_Shdr *hdr, | |
5357 | const char *name, | |
5358 | int shindex) | |
b49e97c9 TS |
5359 | { |
5360 | flagword flags = 0; | |
5361 | ||
5362 | /* There ought to be a place to keep ELF backend specific flags, but | |
5363 | at the moment there isn't one. We just keep track of the | |
5364 | sections by their name, instead. Fortunately, the ABI gives | |
5365 | suggested names for all the MIPS specific sections, so we will | |
5366 | probably get away with this. */ | |
5367 | switch (hdr->sh_type) | |
5368 | { | |
5369 | case SHT_MIPS_LIBLIST: | |
5370 | if (strcmp (name, ".liblist") != 0) | |
b34976b6 | 5371 | return FALSE; |
b49e97c9 TS |
5372 | break; |
5373 | case SHT_MIPS_MSYM: | |
5374 | if (strcmp (name, ".msym") != 0) | |
b34976b6 | 5375 | return FALSE; |
b49e97c9 TS |
5376 | break; |
5377 | case SHT_MIPS_CONFLICT: | |
5378 | if (strcmp (name, ".conflict") != 0) | |
b34976b6 | 5379 | return FALSE; |
b49e97c9 TS |
5380 | break; |
5381 | case SHT_MIPS_GPTAB: | |
5382 | if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0) | |
b34976b6 | 5383 | return FALSE; |
b49e97c9 TS |
5384 | break; |
5385 | case SHT_MIPS_UCODE: | |
5386 | if (strcmp (name, ".ucode") != 0) | |
b34976b6 | 5387 | return FALSE; |
b49e97c9 TS |
5388 | break; |
5389 | case SHT_MIPS_DEBUG: | |
5390 | if (strcmp (name, ".mdebug") != 0) | |
b34976b6 | 5391 | return FALSE; |
b49e97c9 TS |
5392 | flags = SEC_DEBUGGING; |
5393 | break; | |
5394 | case SHT_MIPS_REGINFO: | |
5395 | if (strcmp (name, ".reginfo") != 0 | |
5396 | || hdr->sh_size != sizeof (Elf32_External_RegInfo)) | |
b34976b6 | 5397 | return FALSE; |
b49e97c9 TS |
5398 | flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE); |
5399 | break; | |
5400 | case SHT_MIPS_IFACE: | |
5401 | if (strcmp (name, ".MIPS.interfaces") != 0) | |
b34976b6 | 5402 | return FALSE; |
b49e97c9 TS |
5403 | break; |
5404 | case SHT_MIPS_CONTENT: | |
5405 | if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0) | |
b34976b6 | 5406 | return FALSE; |
b49e97c9 TS |
5407 | break; |
5408 | case SHT_MIPS_OPTIONS: | |
cc2e31b9 | 5409 | if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name)) |
b34976b6 | 5410 | return FALSE; |
b49e97c9 TS |
5411 | break; |
5412 | case SHT_MIPS_DWARF: | |
5413 | if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0) | |
b34976b6 | 5414 | return FALSE; |
b49e97c9 TS |
5415 | break; |
5416 | case SHT_MIPS_SYMBOL_LIB: | |
5417 | if (strcmp (name, ".MIPS.symlib") != 0) | |
b34976b6 | 5418 | return FALSE; |
b49e97c9 TS |
5419 | break; |
5420 | case SHT_MIPS_EVENTS: | |
5421 | if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0 | |
5422 | && strncmp (name, ".MIPS.post_rel", | |
5423 | sizeof ".MIPS.post_rel" - 1) != 0) | |
b34976b6 | 5424 | return FALSE; |
b49e97c9 TS |
5425 | break; |
5426 | default: | |
cc2e31b9 | 5427 | break; |
b49e97c9 TS |
5428 | } |
5429 | ||
6dc132d9 | 5430 | if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex)) |
b34976b6 | 5431 | return FALSE; |
b49e97c9 TS |
5432 | |
5433 | if (flags) | |
5434 | { | |
5435 | if (! bfd_set_section_flags (abfd, hdr->bfd_section, | |
5436 | (bfd_get_section_flags (abfd, | |
5437 | hdr->bfd_section) | |
5438 | | flags))) | |
b34976b6 | 5439 | return FALSE; |
b49e97c9 TS |
5440 | } |
5441 | ||
5442 | /* FIXME: We should record sh_info for a .gptab section. */ | |
5443 | ||
5444 | /* For a .reginfo section, set the gp value in the tdata information | |
5445 | from the contents of this section. We need the gp value while | |
5446 | processing relocs, so we just get it now. The .reginfo section | |
5447 | is not used in the 64-bit MIPS ELF ABI. */ | |
5448 | if (hdr->sh_type == SHT_MIPS_REGINFO) | |
5449 | { | |
5450 | Elf32_External_RegInfo ext; | |
5451 | Elf32_RegInfo s; | |
5452 | ||
9719ad41 RS |
5453 | if (! bfd_get_section_contents (abfd, hdr->bfd_section, |
5454 | &ext, 0, sizeof ext)) | |
b34976b6 | 5455 | return FALSE; |
b49e97c9 TS |
5456 | bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s); |
5457 | elf_gp (abfd) = s.ri_gp_value; | |
5458 | } | |
5459 | ||
5460 | /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and | |
5461 | set the gp value based on what we find. We may see both | |
5462 | SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case, | |
5463 | they should agree. */ | |
5464 | if (hdr->sh_type == SHT_MIPS_OPTIONS) | |
5465 | { | |
5466 | bfd_byte *contents, *l, *lend; | |
5467 | ||
9719ad41 | 5468 | contents = bfd_malloc (hdr->sh_size); |
b49e97c9 | 5469 | if (contents == NULL) |
b34976b6 | 5470 | return FALSE; |
b49e97c9 | 5471 | if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents, |
9719ad41 | 5472 | 0, hdr->sh_size)) |
b49e97c9 TS |
5473 | { |
5474 | free (contents); | |
b34976b6 | 5475 | return FALSE; |
b49e97c9 TS |
5476 | } |
5477 | l = contents; | |
5478 | lend = contents + hdr->sh_size; | |
5479 | while (l + sizeof (Elf_External_Options) <= lend) | |
5480 | { | |
5481 | Elf_Internal_Options intopt; | |
5482 | ||
5483 | bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l, | |
5484 | &intopt); | |
1bc8074d MR |
5485 | if (intopt.size < sizeof (Elf_External_Options)) |
5486 | { | |
5487 | (*_bfd_error_handler) | |
5488 | (_("%B: Warning: bad `%s' option size %u smaller than its header"), | |
5489 | abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size); | |
5490 | break; | |
5491 | } | |
b49e97c9 TS |
5492 | if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO) |
5493 | { | |
5494 | Elf64_Internal_RegInfo intreg; | |
5495 | ||
5496 | bfd_mips_elf64_swap_reginfo_in | |
5497 | (abfd, | |
5498 | ((Elf64_External_RegInfo *) | |
5499 | (l + sizeof (Elf_External_Options))), | |
5500 | &intreg); | |
5501 | elf_gp (abfd) = intreg.ri_gp_value; | |
5502 | } | |
5503 | else if (intopt.kind == ODK_REGINFO) | |
5504 | { | |
5505 | Elf32_RegInfo intreg; | |
5506 | ||
5507 | bfd_mips_elf32_swap_reginfo_in | |
5508 | (abfd, | |
5509 | ((Elf32_External_RegInfo *) | |
5510 | (l + sizeof (Elf_External_Options))), | |
5511 | &intreg); | |
5512 | elf_gp (abfd) = intreg.ri_gp_value; | |
5513 | } | |
5514 | l += intopt.size; | |
5515 | } | |
5516 | free (contents); | |
5517 | } | |
5518 | ||
b34976b6 | 5519 | return TRUE; |
b49e97c9 TS |
5520 | } |
5521 | ||
5522 | /* Set the correct type for a MIPS ELF section. We do this by the | |
5523 | section name, which is a hack, but ought to work. This routine is | |
5524 | used by both the 32-bit and the 64-bit ABI. */ | |
5525 | ||
b34976b6 | 5526 | bfd_boolean |
9719ad41 | 5527 | _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec) |
b49e97c9 TS |
5528 | { |
5529 | register const char *name; | |
1bc8074d | 5530 | unsigned int sh_type; |
b49e97c9 TS |
5531 | |
5532 | name = bfd_get_section_name (abfd, sec); | |
1bc8074d | 5533 | sh_type = hdr->sh_type; |
b49e97c9 TS |
5534 | |
5535 | if (strcmp (name, ".liblist") == 0) | |
5536 | { | |
5537 | hdr->sh_type = SHT_MIPS_LIBLIST; | |
eea6121a | 5538 | hdr->sh_info = sec->size / sizeof (Elf32_Lib); |
b49e97c9 TS |
5539 | /* The sh_link field is set in final_write_processing. */ |
5540 | } | |
5541 | else if (strcmp (name, ".conflict") == 0) | |
5542 | hdr->sh_type = SHT_MIPS_CONFLICT; | |
5543 | else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0) | |
5544 | { | |
5545 | hdr->sh_type = SHT_MIPS_GPTAB; | |
5546 | hdr->sh_entsize = sizeof (Elf32_External_gptab); | |
5547 | /* The sh_info field is set in final_write_processing. */ | |
5548 | } | |
5549 | else if (strcmp (name, ".ucode") == 0) | |
5550 | hdr->sh_type = SHT_MIPS_UCODE; | |
5551 | else if (strcmp (name, ".mdebug") == 0) | |
5552 | { | |
5553 | hdr->sh_type = SHT_MIPS_DEBUG; | |
8dc1a139 | 5554 | /* In a shared object on IRIX 5.3, the .mdebug section has an |
b49e97c9 TS |
5555 | entsize of 0. FIXME: Does this matter? */ |
5556 | if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0) | |
5557 | hdr->sh_entsize = 0; | |
5558 | else | |
5559 | hdr->sh_entsize = 1; | |
5560 | } | |
5561 | else if (strcmp (name, ".reginfo") == 0) | |
5562 | { | |
5563 | hdr->sh_type = SHT_MIPS_REGINFO; | |
8dc1a139 | 5564 | /* In a shared object on IRIX 5.3, the .reginfo section has an |
b49e97c9 TS |
5565 | entsize of 0x18. FIXME: Does this matter? */ |
5566 | if (SGI_COMPAT (abfd)) | |
5567 | { | |
5568 | if ((abfd->flags & DYNAMIC) != 0) | |
5569 | hdr->sh_entsize = sizeof (Elf32_External_RegInfo); | |
5570 | else | |
5571 | hdr->sh_entsize = 1; | |
5572 | } | |
5573 | else | |
5574 | hdr->sh_entsize = sizeof (Elf32_External_RegInfo); | |
5575 | } | |
5576 | else if (SGI_COMPAT (abfd) | |
5577 | && (strcmp (name, ".hash") == 0 | |
5578 | || strcmp (name, ".dynamic") == 0 | |
5579 | || strcmp (name, ".dynstr") == 0)) | |
5580 | { | |
5581 | if (SGI_COMPAT (abfd)) | |
5582 | hdr->sh_entsize = 0; | |
5583 | #if 0 | |
8dc1a139 | 5584 | /* This isn't how the IRIX6 linker behaves. */ |
b49e97c9 TS |
5585 | hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES; |
5586 | #endif | |
5587 | } | |
5588 | else if (strcmp (name, ".got") == 0 | |
5589 | || strcmp (name, ".srdata") == 0 | |
5590 | || strcmp (name, ".sdata") == 0 | |
5591 | || strcmp (name, ".sbss") == 0 | |
5592 | || strcmp (name, ".lit4") == 0 | |
5593 | || strcmp (name, ".lit8") == 0) | |
5594 | hdr->sh_flags |= SHF_MIPS_GPREL; | |
5595 | else if (strcmp (name, ".MIPS.interfaces") == 0) | |
5596 | { | |
5597 | hdr->sh_type = SHT_MIPS_IFACE; | |
5598 | hdr->sh_flags |= SHF_MIPS_NOSTRIP; | |
5599 | } | |
5600 | else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0) | |
5601 | { | |
5602 | hdr->sh_type = SHT_MIPS_CONTENT; | |
5603 | hdr->sh_flags |= SHF_MIPS_NOSTRIP; | |
5604 | /* The sh_info field is set in final_write_processing. */ | |
5605 | } | |
cc2e31b9 | 5606 | else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name)) |
b49e97c9 TS |
5607 | { |
5608 | hdr->sh_type = SHT_MIPS_OPTIONS; | |
5609 | hdr->sh_entsize = 1; | |
5610 | hdr->sh_flags |= SHF_MIPS_NOSTRIP; | |
5611 | } | |
5612 | else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0) | |
5613 | hdr->sh_type = SHT_MIPS_DWARF; | |
5614 | else if (strcmp (name, ".MIPS.symlib") == 0) | |
5615 | { | |
5616 | hdr->sh_type = SHT_MIPS_SYMBOL_LIB; | |
5617 | /* The sh_link and sh_info fields are set in | |
5618 | final_write_processing. */ | |
5619 | } | |
5620 | else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0 | |
5621 | || strncmp (name, ".MIPS.post_rel", | |
5622 | sizeof ".MIPS.post_rel" - 1) == 0) | |
5623 | { | |
5624 | hdr->sh_type = SHT_MIPS_EVENTS; | |
5625 | hdr->sh_flags |= SHF_MIPS_NOSTRIP; | |
5626 | /* The sh_link field is set in final_write_processing. */ | |
5627 | } | |
5628 | else if (strcmp (name, ".msym") == 0) | |
5629 | { | |
5630 | hdr->sh_type = SHT_MIPS_MSYM; | |
5631 | hdr->sh_flags |= SHF_ALLOC; | |
5632 | hdr->sh_entsize = 8; | |
5633 | } | |
5634 | ||
1bc8074d MR |
5635 | /* In the unlikely event a special section is empty it has to lose its |
5636 | special meaning. This may happen e.g. when using `strip' with the | |
5637 | "--only-keep-debug" option. */ | |
5638 | if (sec->size > 0 && !(sec->flags & SEC_HAS_CONTENTS)) | |
5639 | hdr->sh_type = sh_type; | |
5640 | ||
7a79a000 TS |
5641 | /* The generic elf_fake_sections will set up REL_HDR using the default |
5642 | kind of relocations. We used to set up a second header for the | |
5643 | non-default kind of relocations here, but only NewABI would use | |
5644 | these, and the IRIX ld doesn't like resulting empty RELA sections. | |
5645 | Thus we create those header only on demand now. */ | |
b49e97c9 | 5646 | |
b34976b6 | 5647 | return TRUE; |
b49e97c9 TS |
5648 | } |
5649 | ||
5650 | /* Given a BFD section, try to locate the corresponding ELF section | |
5651 | index. This is used by both the 32-bit and the 64-bit ABI. | |
5652 | Actually, it's not clear to me that the 64-bit ABI supports these, | |
5653 | but for non-PIC objects we will certainly want support for at least | |
5654 | the .scommon section. */ | |
5655 | ||
b34976b6 | 5656 | bfd_boolean |
9719ad41 RS |
5657 | _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED, |
5658 | asection *sec, int *retval) | |
b49e97c9 TS |
5659 | { |
5660 | if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0) | |
5661 | { | |
5662 | *retval = SHN_MIPS_SCOMMON; | |
b34976b6 | 5663 | return TRUE; |
b49e97c9 TS |
5664 | } |
5665 | if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0) | |
5666 | { | |
5667 | *retval = SHN_MIPS_ACOMMON; | |
b34976b6 | 5668 | return TRUE; |
b49e97c9 | 5669 | } |
b34976b6 | 5670 | return FALSE; |
b49e97c9 TS |
5671 | } |
5672 | \f | |
5673 | /* Hook called by the linker routine which adds symbols from an object | |
5674 | file. We must handle the special MIPS section numbers here. */ | |
5675 | ||
b34976b6 | 5676 | bfd_boolean |
9719ad41 | 5677 | _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info, |
555cd476 | 5678 | Elf_Internal_Sym *sym, const char **namep, |
9719ad41 RS |
5679 | flagword *flagsp ATTRIBUTE_UNUSED, |
5680 | asection **secp, bfd_vma *valp) | |
b49e97c9 TS |
5681 | { |
5682 | if (SGI_COMPAT (abfd) | |
5683 | && (abfd->flags & DYNAMIC) != 0 | |
5684 | && strcmp (*namep, "_rld_new_interface") == 0) | |
5685 | { | |
8dc1a139 | 5686 | /* Skip IRIX5 rld entry name. */ |
b49e97c9 | 5687 | *namep = NULL; |
b34976b6 | 5688 | return TRUE; |
b49e97c9 TS |
5689 | } |
5690 | ||
eedecc07 DD |
5691 | /* Shared objects may have a dynamic symbol '_gp_disp' defined as |
5692 | a SECTION *ABS*. This causes ld to think it can resolve _gp_disp | |
5693 | by setting a DT_NEEDED for the shared object. Since _gp_disp is | |
5694 | a magic symbol resolved by the linker, we ignore this bogus definition | |
5695 | of _gp_disp. New ABI objects do not suffer from this problem so this | |
5696 | is not done for them. */ | |
5697 | if (!NEWABI_P(abfd) | |
5698 | && (sym->st_shndx == SHN_ABS) | |
5699 | && (strcmp (*namep, "_gp_disp") == 0)) | |
5700 | { | |
5701 | *namep = NULL; | |
5702 | return TRUE; | |
5703 | } | |
5704 | ||
b49e97c9 TS |
5705 | switch (sym->st_shndx) |
5706 | { | |
5707 | case SHN_COMMON: | |
5708 | /* Common symbols less than the GP size are automatically | |
5709 | treated as SHN_MIPS_SCOMMON symbols. */ | |
5710 | if (sym->st_size > elf_gp_size (abfd) | |
5711 | || IRIX_COMPAT (abfd) == ict_irix6) | |
5712 | break; | |
5713 | /* Fall through. */ | |
5714 | case SHN_MIPS_SCOMMON: | |
5715 | *secp = bfd_make_section_old_way (abfd, ".scommon"); | |
5716 | (*secp)->flags |= SEC_IS_COMMON; | |
5717 | *valp = sym->st_size; | |
5718 | break; | |
5719 | ||
5720 | case SHN_MIPS_TEXT: | |
5721 | /* This section is used in a shared object. */ | |
5722 | if (elf_tdata (abfd)->elf_text_section == NULL) | |
5723 | { | |
5724 | asymbol *elf_text_symbol; | |
5725 | asection *elf_text_section; | |
5726 | bfd_size_type amt = sizeof (asection); | |
5727 | ||
5728 | elf_text_section = bfd_zalloc (abfd, amt); | |
5729 | if (elf_text_section == NULL) | |
b34976b6 | 5730 | return FALSE; |
b49e97c9 TS |
5731 | |
5732 | amt = sizeof (asymbol); | |
5733 | elf_text_symbol = bfd_zalloc (abfd, amt); | |
5734 | if (elf_text_symbol == NULL) | |
b34976b6 | 5735 | return FALSE; |
b49e97c9 TS |
5736 | |
5737 | /* Initialize the section. */ | |
5738 | ||
5739 | elf_tdata (abfd)->elf_text_section = elf_text_section; | |
5740 | elf_tdata (abfd)->elf_text_symbol = elf_text_symbol; | |
5741 | ||
5742 | elf_text_section->symbol = elf_text_symbol; | |
5743 | elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol; | |
5744 | ||
5745 | elf_text_section->name = ".text"; | |
5746 | elf_text_section->flags = SEC_NO_FLAGS; | |
5747 | elf_text_section->output_section = NULL; | |
5748 | elf_text_section->owner = abfd; | |
5749 | elf_text_symbol->name = ".text"; | |
5750 | elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC; | |
5751 | elf_text_symbol->section = elf_text_section; | |
5752 | } | |
5753 | /* This code used to do *secp = bfd_und_section_ptr if | |
5754 | info->shared. I don't know why, and that doesn't make sense, | |
5755 | so I took it out. */ | |
5756 | *secp = elf_tdata (abfd)->elf_text_section; | |
5757 | break; | |
5758 | ||
5759 | case SHN_MIPS_ACOMMON: | |
5760 | /* Fall through. XXX Can we treat this as allocated data? */ | |
5761 | case SHN_MIPS_DATA: | |
5762 | /* This section is used in a shared object. */ | |
5763 | if (elf_tdata (abfd)->elf_data_section == NULL) | |
5764 | { | |
5765 | asymbol *elf_data_symbol; | |
5766 | asection *elf_data_section; | |
5767 | bfd_size_type amt = sizeof (asection); | |
5768 | ||
5769 | elf_data_section = bfd_zalloc (abfd, amt); | |
5770 | if (elf_data_section == NULL) | |
b34976b6 | 5771 | return FALSE; |
b49e97c9 TS |
5772 | |
5773 | amt = sizeof (asymbol); | |
5774 | elf_data_symbol = bfd_zalloc (abfd, amt); | |
5775 | if (elf_data_symbol == NULL) | |
b34976b6 | 5776 | return FALSE; |
b49e97c9 TS |
5777 | |
5778 | /* Initialize the section. */ | |
5779 | ||
5780 | elf_tdata (abfd)->elf_data_section = elf_data_section; | |
5781 | elf_tdata (abfd)->elf_data_symbol = elf_data_symbol; | |
5782 | ||
5783 | elf_data_section->symbol = elf_data_symbol; | |
5784 | elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol; | |
5785 | ||
5786 | elf_data_section->name = ".data"; | |
5787 | elf_data_section->flags = SEC_NO_FLAGS; | |
5788 | elf_data_section->output_section = NULL; | |
5789 | elf_data_section->owner = abfd; | |
5790 | elf_data_symbol->name = ".data"; | |
5791 | elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC; | |
5792 | elf_data_symbol->section = elf_data_section; | |
5793 | } | |
5794 | /* This code used to do *secp = bfd_und_section_ptr if | |
5795 | info->shared. I don't know why, and that doesn't make sense, | |
5796 | so I took it out. */ | |
5797 | *secp = elf_tdata (abfd)->elf_data_section; | |
5798 | break; | |
5799 | ||
5800 | case SHN_MIPS_SUNDEFINED: | |
5801 | *secp = bfd_und_section_ptr; | |
5802 | break; | |
5803 | } | |
5804 | ||
5805 | if (SGI_COMPAT (abfd) | |
5806 | && ! info->shared | |
5807 | && info->hash->creator == abfd->xvec | |
5808 | && strcmp (*namep, "__rld_obj_head") == 0) | |
5809 | { | |
5810 | struct elf_link_hash_entry *h; | |
14a793b2 | 5811 | struct bfd_link_hash_entry *bh; |
b49e97c9 TS |
5812 | |
5813 | /* Mark __rld_obj_head as dynamic. */ | |
14a793b2 | 5814 | bh = NULL; |
b49e97c9 | 5815 | if (! (_bfd_generic_link_add_one_symbol |
9719ad41 | 5816 | (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE, |
14a793b2 | 5817 | get_elf_backend_data (abfd)->collect, &bh))) |
b34976b6 | 5818 | return FALSE; |
14a793b2 AM |
5819 | |
5820 | h = (struct elf_link_hash_entry *) bh; | |
f5385ebf AM |
5821 | h->non_elf = 0; |
5822 | h->def_regular = 1; | |
b49e97c9 TS |
5823 | h->type = STT_OBJECT; |
5824 | ||
c152c796 | 5825 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
b34976b6 | 5826 | return FALSE; |
b49e97c9 | 5827 | |
b34976b6 | 5828 | mips_elf_hash_table (info)->use_rld_obj_head = TRUE; |
b49e97c9 TS |
5829 | } |
5830 | ||
5831 | /* If this is a mips16 text symbol, add 1 to the value to make it | |
5832 | odd. This will cause something like .word SYM to come up with | |
5833 | the right value when it is loaded into the PC. */ | |
5834 | if (sym->st_other == STO_MIPS16) | |
5835 | ++*valp; | |
5836 | ||
b34976b6 | 5837 | return TRUE; |
b49e97c9 TS |
5838 | } |
5839 | ||
5840 | /* This hook function is called before the linker writes out a global | |
5841 | symbol. We mark symbols as small common if appropriate. This is | |
5842 | also where we undo the increment of the value for a mips16 symbol. */ | |
5843 | ||
b34976b6 | 5844 | bfd_boolean |
9719ad41 RS |
5845 | _bfd_mips_elf_link_output_symbol_hook |
5846 | (struct bfd_link_info *info ATTRIBUTE_UNUSED, | |
5847 | const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym, | |
5848 | asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED) | |
b49e97c9 TS |
5849 | { |
5850 | /* If we see a common symbol, which implies a relocatable link, then | |
5851 | if a symbol was small common in an input file, mark it as small | |
5852 | common in the output file. */ | |
5853 | if (sym->st_shndx == SHN_COMMON | |
5854 | && strcmp (input_sec->name, ".scommon") == 0) | |
5855 | sym->st_shndx = SHN_MIPS_SCOMMON; | |
5856 | ||
79cda7cf FF |
5857 | if (sym->st_other == STO_MIPS16) |
5858 | sym->st_value &= ~1; | |
b49e97c9 | 5859 | |
b34976b6 | 5860 | return TRUE; |
b49e97c9 TS |
5861 | } |
5862 | \f | |
5863 | /* Functions for the dynamic linker. */ | |
5864 | ||
5865 | /* Create dynamic sections when linking against a dynamic object. */ | |
5866 | ||
b34976b6 | 5867 | bfd_boolean |
9719ad41 | 5868 | _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info) |
b49e97c9 TS |
5869 | { |
5870 | struct elf_link_hash_entry *h; | |
14a793b2 | 5871 | struct bfd_link_hash_entry *bh; |
b49e97c9 TS |
5872 | flagword flags; |
5873 | register asection *s; | |
5874 | const char * const *namep; | |
0a44bf69 | 5875 | struct mips_elf_link_hash_table *htab; |
b49e97c9 | 5876 | |
0a44bf69 | 5877 | htab = mips_elf_hash_table (info); |
b49e97c9 TS |
5878 | flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY |
5879 | | SEC_LINKER_CREATED | SEC_READONLY); | |
5880 | ||
0a44bf69 RS |
5881 | /* The psABI requires a read-only .dynamic section, but the VxWorks |
5882 | EABI doesn't. */ | |
5883 | if (!htab->is_vxworks) | |
b49e97c9 | 5884 | { |
0a44bf69 RS |
5885 | s = bfd_get_section_by_name (abfd, ".dynamic"); |
5886 | if (s != NULL) | |
5887 | { | |
5888 | if (! bfd_set_section_flags (abfd, s, flags)) | |
5889 | return FALSE; | |
5890 | } | |
b49e97c9 TS |
5891 | } |
5892 | ||
5893 | /* We need to create .got section. */ | |
f4416af6 AO |
5894 | if (! mips_elf_create_got_section (abfd, info, FALSE)) |
5895 | return FALSE; | |
5896 | ||
0a44bf69 | 5897 | if (! mips_elf_rel_dyn_section (info, TRUE)) |
b34976b6 | 5898 | return FALSE; |
b49e97c9 | 5899 | |
b49e97c9 TS |
5900 | /* Create .stub section. */ |
5901 | if (bfd_get_section_by_name (abfd, | |
5902 | MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL) | |
5903 | { | |
3496cb2a L |
5904 | s = bfd_make_section_with_flags (abfd, |
5905 | MIPS_ELF_STUB_SECTION_NAME (abfd), | |
5906 | flags | SEC_CODE); | |
b49e97c9 | 5907 | if (s == NULL |
b49e97c9 TS |
5908 | || ! bfd_set_section_alignment (abfd, s, |
5909 | MIPS_ELF_LOG_FILE_ALIGN (abfd))) | |
b34976b6 | 5910 | return FALSE; |
b49e97c9 TS |
5911 | } |
5912 | ||
5913 | if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none) | |
5914 | && !info->shared | |
5915 | && bfd_get_section_by_name (abfd, ".rld_map") == NULL) | |
5916 | { | |
3496cb2a L |
5917 | s = bfd_make_section_with_flags (abfd, ".rld_map", |
5918 | flags &~ (flagword) SEC_READONLY); | |
b49e97c9 | 5919 | if (s == NULL |
b49e97c9 TS |
5920 | || ! bfd_set_section_alignment (abfd, s, |
5921 | MIPS_ELF_LOG_FILE_ALIGN (abfd))) | |
b34976b6 | 5922 | return FALSE; |
b49e97c9 TS |
5923 | } |
5924 | ||
5925 | /* On IRIX5, we adjust add some additional symbols and change the | |
5926 | alignments of several sections. There is no ABI documentation | |
5927 | indicating that this is necessary on IRIX6, nor any evidence that | |
5928 | the linker takes such action. */ | |
5929 | if (IRIX_COMPAT (abfd) == ict_irix5) | |
5930 | { | |
5931 | for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++) | |
5932 | { | |
14a793b2 | 5933 | bh = NULL; |
b49e97c9 | 5934 | if (! (_bfd_generic_link_add_one_symbol |
9719ad41 RS |
5935 | (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0, |
5936 | NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh))) | |
b34976b6 | 5937 | return FALSE; |
14a793b2 AM |
5938 | |
5939 | h = (struct elf_link_hash_entry *) bh; | |
f5385ebf AM |
5940 | h->non_elf = 0; |
5941 | h->def_regular = 1; | |
b49e97c9 TS |
5942 | h->type = STT_SECTION; |
5943 | ||
c152c796 | 5944 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
b34976b6 | 5945 | return FALSE; |
b49e97c9 TS |
5946 | } |
5947 | ||
5948 | /* We need to create a .compact_rel section. */ | |
5949 | if (SGI_COMPAT (abfd)) | |
5950 | { | |
5951 | if (!mips_elf_create_compact_rel_section (abfd, info)) | |
b34976b6 | 5952 | return FALSE; |
b49e97c9 TS |
5953 | } |
5954 | ||
44c410de | 5955 | /* Change alignments of some sections. */ |
b49e97c9 TS |
5956 | s = bfd_get_section_by_name (abfd, ".hash"); |
5957 | if (s != NULL) | |
d80dcc6a | 5958 | bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); |
b49e97c9 TS |
5959 | s = bfd_get_section_by_name (abfd, ".dynsym"); |
5960 | if (s != NULL) | |
d80dcc6a | 5961 | bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); |
b49e97c9 TS |
5962 | s = bfd_get_section_by_name (abfd, ".dynstr"); |
5963 | if (s != NULL) | |
d80dcc6a | 5964 | bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); |
b49e97c9 TS |
5965 | s = bfd_get_section_by_name (abfd, ".reginfo"); |
5966 | if (s != NULL) | |
d80dcc6a | 5967 | bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); |
b49e97c9 TS |
5968 | s = bfd_get_section_by_name (abfd, ".dynamic"); |
5969 | if (s != NULL) | |
d80dcc6a | 5970 | bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); |
b49e97c9 TS |
5971 | } |
5972 | ||
5973 | if (!info->shared) | |
5974 | { | |
14a793b2 AM |
5975 | const char *name; |
5976 | ||
5977 | name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING"; | |
5978 | bh = NULL; | |
5979 | if (!(_bfd_generic_link_add_one_symbol | |
9719ad41 RS |
5980 | (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0, |
5981 | NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh))) | |
b34976b6 | 5982 | return FALSE; |
14a793b2 AM |
5983 | |
5984 | h = (struct elf_link_hash_entry *) bh; | |
f5385ebf AM |
5985 | h->non_elf = 0; |
5986 | h->def_regular = 1; | |
b49e97c9 TS |
5987 | h->type = STT_SECTION; |
5988 | ||
c152c796 | 5989 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
b34976b6 | 5990 | return FALSE; |
b49e97c9 TS |
5991 | |
5992 | if (! mips_elf_hash_table (info)->use_rld_obj_head) | |
5993 | { | |
5994 | /* __rld_map is a four byte word located in the .data section | |
5995 | and is filled in by the rtld to contain a pointer to | |
5996 | the _r_debug structure. Its symbol value will be set in | |
5997 | _bfd_mips_elf_finish_dynamic_symbol. */ | |
5998 | s = bfd_get_section_by_name (abfd, ".rld_map"); | |
5999 | BFD_ASSERT (s != NULL); | |
6000 | ||
14a793b2 AM |
6001 | name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP"; |
6002 | bh = NULL; | |
6003 | if (!(_bfd_generic_link_add_one_symbol | |
9719ad41 | 6004 | (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE, |
14a793b2 | 6005 | get_elf_backend_data (abfd)->collect, &bh))) |
b34976b6 | 6006 | return FALSE; |
14a793b2 AM |
6007 | |
6008 | h = (struct elf_link_hash_entry *) bh; | |
f5385ebf AM |
6009 | h->non_elf = 0; |
6010 | h->def_regular = 1; | |
b49e97c9 TS |
6011 | h->type = STT_OBJECT; |
6012 | ||
c152c796 | 6013 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
b34976b6 | 6014 | return FALSE; |
b49e97c9 TS |
6015 | } |
6016 | } | |
6017 | ||
0a44bf69 RS |
6018 | if (htab->is_vxworks) |
6019 | { | |
6020 | /* Create the .plt, .rela.plt, .dynbss and .rela.bss sections. | |
6021 | Also create the _PROCEDURE_LINKAGE_TABLE symbol. */ | |
6022 | if (!_bfd_elf_create_dynamic_sections (abfd, info)) | |
6023 | return FALSE; | |
6024 | ||
6025 | /* Cache the sections created above. */ | |
6026 | htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss"); | |
6027 | htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss"); | |
6028 | htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt"); | |
6029 | htab->splt = bfd_get_section_by_name (abfd, ".plt"); | |
6030 | if (!htab->sdynbss | |
6031 | || (!htab->srelbss && !info->shared) | |
6032 | || !htab->srelplt | |
6033 | || !htab->splt) | |
6034 | abort (); | |
6035 | ||
6036 | /* Do the usual VxWorks handling. */ | |
6037 | if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2)) | |
6038 | return FALSE; | |
6039 | ||
6040 | /* Work out the PLT sizes. */ | |
6041 | if (info->shared) | |
6042 | { | |
6043 | htab->plt_header_size | |
6044 | = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry); | |
6045 | htab->plt_entry_size | |
6046 | = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry); | |
6047 | } | |
6048 | else | |
6049 | { | |
6050 | htab->plt_header_size | |
6051 | = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry); | |
6052 | htab->plt_entry_size | |
6053 | = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry); | |
6054 | } | |
6055 | } | |
6056 | ||
b34976b6 | 6057 | return TRUE; |
b49e97c9 TS |
6058 | } |
6059 | \f | |
6060 | /* Look through the relocs for a section during the first phase, and | |
6061 | allocate space in the global offset table. */ | |
6062 | ||
b34976b6 | 6063 | bfd_boolean |
9719ad41 RS |
6064 | _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info, |
6065 | asection *sec, const Elf_Internal_Rela *relocs) | |
b49e97c9 TS |
6066 | { |
6067 | const char *name; | |
6068 | bfd *dynobj; | |
6069 | Elf_Internal_Shdr *symtab_hdr; | |
6070 | struct elf_link_hash_entry **sym_hashes; | |
6071 | struct mips_got_info *g; | |
6072 | size_t extsymoff; | |
6073 | const Elf_Internal_Rela *rel; | |
6074 | const Elf_Internal_Rela *rel_end; | |
6075 | asection *sgot; | |
6076 | asection *sreloc; | |
9c5bfbb7 | 6077 | const struct elf_backend_data *bed; |
0a44bf69 | 6078 | struct mips_elf_link_hash_table *htab; |
b49e97c9 | 6079 | |
1049f94e | 6080 | if (info->relocatable) |
b34976b6 | 6081 | return TRUE; |
b49e97c9 | 6082 | |
0a44bf69 | 6083 | htab = mips_elf_hash_table (info); |
b49e97c9 TS |
6084 | dynobj = elf_hash_table (info)->dynobj; |
6085 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
6086 | sym_hashes = elf_sym_hashes (abfd); | |
6087 | extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info; | |
6088 | ||
6089 | /* Check for the mips16 stub sections. */ | |
6090 | ||
6091 | name = bfd_get_section_name (abfd, sec); | |
6092 | if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0) | |
6093 | { | |
6094 | unsigned long r_symndx; | |
6095 | ||
6096 | /* Look at the relocation information to figure out which symbol | |
6097 | this is for. */ | |
6098 | ||
6099 | r_symndx = ELF_R_SYM (abfd, relocs->r_info); | |
6100 | ||
6101 | if (r_symndx < extsymoff | |
6102 | || sym_hashes[r_symndx - extsymoff] == NULL) | |
6103 | { | |
6104 | asection *o; | |
6105 | ||
6106 | /* This stub is for a local symbol. This stub will only be | |
6107 | needed if there is some relocation in this BFD, other | |
6108 | than a 16 bit function call, which refers to this symbol. */ | |
6109 | for (o = abfd->sections; o != NULL; o = o->next) | |
6110 | { | |
6111 | Elf_Internal_Rela *sec_relocs; | |
6112 | const Elf_Internal_Rela *r, *rend; | |
6113 | ||
6114 | /* We can ignore stub sections when looking for relocs. */ | |
6115 | if ((o->flags & SEC_RELOC) == 0 | |
6116 | || o->reloc_count == 0 | |
6117 | || strncmp (bfd_get_section_name (abfd, o), FN_STUB, | |
6118 | sizeof FN_STUB - 1) == 0 | |
6119 | || strncmp (bfd_get_section_name (abfd, o), CALL_STUB, | |
6120 | sizeof CALL_STUB - 1) == 0 | |
6121 | || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB, | |
6122 | sizeof CALL_FP_STUB - 1) == 0) | |
6123 | continue; | |
6124 | ||
45d6a902 | 6125 | sec_relocs |
9719ad41 | 6126 | = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL, |
45d6a902 | 6127 | info->keep_memory); |
b49e97c9 | 6128 | if (sec_relocs == NULL) |
b34976b6 | 6129 | return FALSE; |
b49e97c9 TS |
6130 | |
6131 | rend = sec_relocs + o->reloc_count; | |
6132 | for (r = sec_relocs; r < rend; r++) | |
6133 | if (ELF_R_SYM (abfd, r->r_info) == r_symndx | |
6134 | && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26) | |
6135 | break; | |
6136 | ||
6cdc0ccc | 6137 | if (elf_section_data (o)->relocs != sec_relocs) |
b49e97c9 TS |
6138 | free (sec_relocs); |
6139 | ||
6140 | if (r < rend) | |
6141 | break; | |
6142 | } | |
6143 | ||
6144 | if (o == NULL) | |
6145 | { | |
6146 | /* There is no non-call reloc for this stub, so we do | |
6147 | not need it. Since this function is called before | |
6148 | the linker maps input sections to output sections, we | |
6149 | can easily discard it by setting the SEC_EXCLUDE | |
6150 | flag. */ | |
6151 | sec->flags |= SEC_EXCLUDE; | |
b34976b6 | 6152 | return TRUE; |
b49e97c9 TS |
6153 | } |
6154 | ||
6155 | /* Record this stub in an array of local symbol stubs for | |
6156 | this BFD. */ | |
6157 | if (elf_tdata (abfd)->local_stubs == NULL) | |
6158 | { | |
6159 | unsigned long symcount; | |
6160 | asection **n; | |
6161 | bfd_size_type amt; | |
6162 | ||
6163 | if (elf_bad_symtab (abfd)) | |
6164 | symcount = NUM_SHDR_ENTRIES (symtab_hdr); | |
6165 | else | |
6166 | symcount = symtab_hdr->sh_info; | |
6167 | amt = symcount * sizeof (asection *); | |
9719ad41 | 6168 | n = bfd_zalloc (abfd, amt); |
b49e97c9 | 6169 | if (n == NULL) |
b34976b6 | 6170 | return FALSE; |
b49e97c9 TS |
6171 | elf_tdata (abfd)->local_stubs = n; |
6172 | } | |
6173 | ||
6174 | elf_tdata (abfd)->local_stubs[r_symndx] = sec; | |
6175 | ||
6176 | /* We don't need to set mips16_stubs_seen in this case. | |
6177 | That flag is used to see whether we need to look through | |
6178 | the global symbol table for stubs. We don't need to set | |
6179 | it here, because we just have a local stub. */ | |
6180 | } | |
6181 | else | |
6182 | { | |
6183 | struct mips_elf_link_hash_entry *h; | |
6184 | ||
6185 | h = ((struct mips_elf_link_hash_entry *) | |
6186 | sym_hashes[r_symndx - extsymoff]); | |
6187 | ||
973a3492 L |
6188 | while (h->root.root.type == bfd_link_hash_indirect |
6189 | || h->root.root.type == bfd_link_hash_warning) | |
6190 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | |
6191 | ||
b49e97c9 TS |
6192 | /* H is the symbol this stub is for. */ |
6193 | ||
6194 | h->fn_stub = sec; | |
b34976b6 | 6195 | mips_elf_hash_table (info)->mips16_stubs_seen = TRUE; |
b49e97c9 TS |
6196 | } |
6197 | } | |
6198 | else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0 | |
6199 | || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0) | |
6200 | { | |
6201 | unsigned long r_symndx; | |
6202 | struct mips_elf_link_hash_entry *h; | |
6203 | asection **loc; | |
6204 | ||
6205 | /* Look at the relocation information to figure out which symbol | |
6206 | this is for. */ | |
6207 | ||
6208 | r_symndx = ELF_R_SYM (abfd, relocs->r_info); | |
6209 | ||
6210 | if (r_symndx < extsymoff | |
6211 | || sym_hashes[r_symndx - extsymoff] == NULL) | |
6212 | { | |
6213 | /* This stub was actually built for a static symbol defined | |
6214 | in the same file. We assume that all static symbols in | |
6215 | mips16 code are themselves mips16, so we can simply | |
6216 | discard this stub. Since this function is called before | |
6217 | the linker maps input sections to output sections, we can | |
6218 | easily discard it by setting the SEC_EXCLUDE flag. */ | |
6219 | sec->flags |= SEC_EXCLUDE; | |
b34976b6 | 6220 | return TRUE; |
b49e97c9 TS |
6221 | } |
6222 | ||
6223 | h = ((struct mips_elf_link_hash_entry *) | |
6224 | sym_hashes[r_symndx - extsymoff]); | |
6225 | ||
6226 | /* H is the symbol this stub is for. */ | |
6227 | ||
6228 | if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0) | |
6229 | loc = &h->call_fp_stub; | |
6230 | else | |
6231 | loc = &h->call_stub; | |
6232 | ||
6233 | /* If we already have an appropriate stub for this function, we | |
6234 | don't need another one, so we can discard this one. Since | |
6235 | this function is called before the linker maps input sections | |
6236 | to output sections, we can easily discard it by setting the | |
6237 | SEC_EXCLUDE flag. We can also discard this section if we | |
6238 | happen to already know that this is a mips16 function; it is | |
6239 | not necessary to check this here, as it is checked later, but | |
6240 | it is slightly faster to check now. */ | |
6241 | if (*loc != NULL || h->root.other == STO_MIPS16) | |
6242 | { | |
6243 | sec->flags |= SEC_EXCLUDE; | |
b34976b6 | 6244 | return TRUE; |
b49e97c9 TS |
6245 | } |
6246 | ||
6247 | *loc = sec; | |
b34976b6 | 6248 | mips_elf_hash_table (info)->mips16_stubs_seen = TRUE; |
b49e97c9 TS |
6249 | } |
6250 | ||
6251 | if (dynobj == NULL) | |
6252 | { | |
6253 | sgot = NULL; | |
6254 | g = NULL; | |
6255 | } | |
6256 | else | |
6257 | { | |
f4416af6 | 6258 | sgot = mips_elf_got_section (dynobj, FALSE); |
b49e97c9 TS |
6259 | if (sgot == NULL) |
6260 | g = NULL; | |
6261 | else | |
6262 | { | |
f0abc2a1 AM |
6263 | BFD_ASSERT (mips_elf_section_data (sgot) != NULL); |
6264 | g = mips_elf_section_data (sgot)->u.got_info; | |
b49e97c9 TS |
6265 | BFD_ASSERT (g != NULL); |
6266 | } | |
6267 | } | |
6268 | ||
6269 | sreloc = NULL; | |
6270 | bed = get_elf_backend_data (abfd); | |
6271 | rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel; | |
6272 | for (rel = relocs; rel < rel_end; ++rel) | |
6273 | { | |
6274 | unsigned long r_symndx; | |
6275 | unsigned int r_type; | |
6276 | struct elf_link_hash_entry *h; | |
6277 | ||
6278 | r_symndx = ELF_R_SYM (abfd, rel->r_info); | |
6279 | r_type = ELF_R_TYPE (abfd, rel->r_info); | |
6280 | ||
6281 | if (r_symndx < extsymoff) | |
6282 | h = NULL; | |
6283 | else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr)) | |
6284 | { | |
6285 | (*_bfd_error_handler) | |
d003868e AM |
6286 | (_("%B: Malformed reloc detected for section %s"), |
6287 | abfd, name); | |
b49e97c9 | 6288 | bfd_set_error (bfd_error_bad_value); |
b34976b6 | 6289 | return FALSE; |
b49e97c9 TS |
6290 | } |
6291 | else | |
6292 | { | |
6293 | h = sym_hashes[r_symndx - extsymoff]; | |
6294 | ||
6295 | /* This may be an indirect symbol created because of a version. */ | |
6296 | if (h != NULL) | |
6297 | { | |
6298 | while (h->root.type == bfd_link_hash_indirect) | |
6299 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
6300 | } | |
6301 | } | |
6302 | ||
6303 | /* Some relocs require a global offset table. */ | |
6304 | if (dynobj == NULL || sgot == NULL) | |
6305 | { | |
6306 | switch (r_type) | |
6307 | { | |
6308 | case R_MIPS_GOT16: | |
6309 | case R_MIPS_CALL16: | |
6310 | case R_MIPS_CALL_HI16: | |
6311 | case R_MIPS_CALL_LO16: | |
6312 | case R_MIPS_GOT_HI16: | |
6313 | case R_MIPS_GOT_LO16: | |
6314 | case R_MIPS_GOT_PAGE: | |
6315 | case R_MIPS_GOT_OFST: | |
6316 | case R_MIPS_GOT_DISP: | |
86324f90 | 6317 | case R_MIPS_TLS_GOTTPREL: |
0f20cc35 DJ |
6318 | case R_MIPS_TLS_GD: |
6319 | case R_MIPS_TLS_LDM: | |
b49e97c9 TS |
6320 | if (dynobj == NULL) |
6321 | elf_hash_table (info)->dynobj = dynobj = abfd; | |
f4416af6 | 6322 | if (! mips_elf_create_got_section (dynobj, info, FALSE)) |
b34976b6 | 6323 | return FALSE; |
b49e97c9 | 6324 | g = mips_elf_got_info (dynobj, &sgot); |
0a44bf69 RS |
6325 | if (htab->is_vxworks && !info->shared) |
6326 | { | |
6327 | (*_bfd_error_handler) | |
6328 | (_("%B: GOT reloc at 0x%lx not expected in executables"), | |
6329 | abfd, (unsigned long) rel->r_offset); | |
6330 | bfd_set_error (bfd_error_bad_value); | |
6331 | return FALSE; | |
6332 | } | |
b49e97c9 TS |
6333 | break; |
6334 | ||
6335 | case R_MIPS_32: | |
6336 | case R_MIPS_REL32: | |
6337 | case R_MIPS_64: | |
0a44bf69 RS |
6338 | /* In VxWorks executables, references to external symbols |
6339 | are handled using copy relocs or PLT stubs, so there's | |
6340 | no need to add a dynamic relocation here. */ | |
b49e97c9 | 6341 | if (dynobj == NULL |
0a44bf69 | 6342 | && (info->shared || (h != NULL && !htab->is_vxworks)) |
b49e97c9 TS |
6343 | && (sec->flags & SEC_ALLOC) != 0) |
6344 | elf_hash_table (info)->dynobj = dynobj = abfd; | |
6345 | break; | |
6346 | ||
6347 | default: | |
6348 | break; | |
6349 | } | |
6350 | } | |
6351 | ||
0a44bf69 RS |
6352 | if (h) |
6353 | { | |
6354 | ((struct mips_elf_link_hash_entry *) h)->is_relocation_target = TRUE; | |
6355 | ||
6356 | /* Relocations against the special VxWorks __GOTT_BASE__ and | |
6357 | __GOTT_INDEX__ symbols must be left to the loader. Allocate | |
6358 | room for them in .rela.dyn. */ | |
6359 | if (is_gott_symbol (info, h)) | |
6360 | { | |
6361 | if (sreloc == NULL) | |
6362 | { | |
6363 | sreloc = mips_elf_rel_dyn_section (info, TRUE); | |
6364 | if (sreloc == NULL) | |
6365 | return FALSE; | |
6366 | } | |
6367 | mips_elf_allocate_dynamic_relocations (dynobj, info, 1); | |
6368 | } | |
6369 | } | |
6370 | else if (r_type == R_MIPS_CALL_LO16 | |
6371 | || r_type == R_MIPS_GOT_LO16 | |
6372 | || r_type == R_MIPS_GOT_DISP | |
6373 | || (r_type == R_MIPS_GOT16 && htab->is_vxworks)) | |
b49e97c9 TS |
6374 | { |
6375 | /* We may need a local GOT entry for this relocation. We | |
6376 | don't count R_MIPS_GOT_PAGE because we can estimate the | |
6377 | maximum number of pages needed by looking at the size of | |
6378 | the segment. Similar comments apply to R_MIPS_GOT16 and | |
0a44bf69 RS |
6379 | R_MIPS_CALL16, except on VxWorks, where GOT relocations |
6380 | always evaluate to "G". We don't count R_MIPS_GOT_HI16, or | |
b49e97c9 | 6381 | R_MIPS_CALL_HI16 because these are always followed by an |
b15e6682 | 6382 | R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */ |
f4416af6 | 6383 | if (! mips_elf_record_local_got_symbol (abfd, r_symndx, |
0f20cc35 | 6384 | rel->r_addend, g, 0)) |
f4416af6 | 6385 | return FALSE; |
b49e97c9 TS |
6386 | } |
6387 | ||
6388 | switch (r_type) | |
6389 | { | |
6390 | case R_MIPS_CALL16: | |
6391 | if (h == NULL) | |
6392 | { | |
6393 | (*_bfd_error_handler) | |
d003868e AM |
6394 | (_("%B: CALL16 reloc at 0x%lx not against global symbol"), |
6395 | abfd, (unsigned long) rel->r_offset); | |
b49e97c9 | 6396 | bfd_set_error (bfd_error_bad_value); |
b34976b6 | 6397 | return FALSE; |
b49e97c9 TS |
6398 | } |
6399 | /* Fall through. */ | |
6400 | ||
6401 | case R_MIPS_CALL_HI16: | |
6402 | case R_MIPS_CALL_LO16: | |
6403 | if (h != NULL) | |
6404 | { | |
0a44bf69 RS |
6405 | /* VxWorks call relocations point the function's .got.plt |
6406 | entry, which will be allocated by adjust_dynamic_symbol. | |
6407 | Otherwise, this symbol requires a global GOT entry. */ | |
6408 | if (!htab->is_vxworks | |
6409 | && !mips_elf_record_global_got_symbol (h, abfd, info, g, 0)) | |
b34976b6 | 6410 | return FALSE; |
b49e97c9 TS |
6411 | |
6412 | /* We need a stub, not a plt entry for the undefined | |
6413 | function. But we record it as if it needs plt. See | |
c152c796 | 6414 | _bfd_elf_adjust_dynamic_symbol. */ |
f5385ebf | 6415 | h->needs_plt = 1; |
b49e97c9 TS |
6416 | h->type = STT_FUNC; |
6417 | } | |
6418 | break; | |
6419 | ||
0fdc1bf1 AO |
6420 | case R_MIPS_GOT_PAGE: |
6421 | /* If this is a global, overridable symbol, GOT_PAGE will | |
6422 | decay to GOT_DISP, so we'll need a GOT entry for it. */ | |
6423 | if (h == NULL) | |
6424 | break; | |
6425 | else | |
6426 | { | |
6427 | struct mips_elf_link_hash_entry *hmips = | |
6428 | (struct mips_elf_link_hash_entry *) h; | |
143d77c5 | 6429 | |
0fdc1bf1 AO |
6430 | while (hmips->root.root.type == bfd_link_hash_indirect |
6431 | || hmips->root.root.type == bfd_link_hash_warning) | |
6432 | hmips = (struct mips_elf_link_hash_entry *) | |
6433 | hmips->root.root.u.i.link; | |
143d77c5 | 6434 | |
f5385ebf | 6435 | if (hmips->root.def_regular |
0fdc1bf1 | 6436 | && ! (info->shared && ! info->symbolic |
f5385ebf | 6437 | && ! hmips->root.forced_local)) |
0fdc1bf1 AO |
6438 | break; |
6439 | } | |
6440 | /* Fall through. */ | |
6441 | ||
b49e97c9 TS |
6442 | case R_MIPS_GOT16: |
6443 | case R_MIPS_GOT_HI16: | |
6444 | case R_MIPS_GOT_LO16: | |
6445 | case R_MIPS_GOT_DISP: | |
0f20cc35 | 6446 | if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, 0)) |
b34976b6 | 6447 | return FALSE; |
b49e97c9 TS |
6448 | break; |
6449 | ||
0f20cc35 DJ |
6450 | case R_MIPS_TLS_GOTTPREL: |
6451 | if (info->shared) | |
6452 | info->flags |= DF_STATIC_TLS; | |
6453 | /* Fall through */ | |
6454 | ||
6455 | case R_MIPS_TLS_LDM: | |
6456 | if (r_type == R_MIPS_TLS_LDM) | |
6457 | { | |
6458 | r_symndx = 0; | |
6459 | h = NULL; | |
6460 | } | |
6461 | /* Fall through */ | |
6462 | ||
6463 | case R_MIPS_TLS_GD: | |
6464 | /* This symbol requires a global offset table entry, or two | |
6465 | for TLS GD relocations. */ | |
6466 | { | |
6467 | unsigned char flag = (r_type == R_MIPS_TLS_GD | |
6468 | ? GOT_TLS_GD | |
6469 | : r_type == R_MIPS_TLS_LDM | |
6470 | ? GOT_TLS_LDM | |
6471 | : GOT_TLS_IE); | |
6472 | if (h != NULL) | |
6473 | { | |
6474 | struct mips_elf_link_hash_entry *hmips = | |
6475 | (struct mips_elf_link_hash_entry *) h; | |
6476 | hmips->tls_type |= flag; | |
6477 | ||
6478 | if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, flag)) | |
6479 | return FALSE; | |
6480 | } | |
6481 | else | |
6482 | { | |
6483 | BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != 0); | |
6484 | ||
6485 | if (! mips_elf_record_local_got_symbol (abfd, r_symndx, | |
6486 | rel->r_addend, g, flag)) | |
6487 | return FALSE; | |
6488 | } | |
6489 | } | |
6490 | break; | |
6491 | ||
b49e97c9 TS |
6492 | case R_MIPS_32: |
6493 | case R_MIPS_REL32: | |
6494 | case R_MIPS_64: | |
0a44bf69 RS |
6495 | /* In VxWorks executables, references to external symbols |
6496 | are handled using copy relocs or PLT stubs, so there's | |
6497 | no need to add a .rela.dyn entry for this relocation. */ | |
6498 | if ((info->shared || (h != NULL && !htab->is_vxworks)) | |
b49e97c9 TS |
6499 | && (sec->flags & SEC_ALLOC) != 0) |
6500 | { | |
6501 | if (sreloc == NULL) | |
6502 | { | |
0a44bf69 | 6503 | sreloc = mips_elf_rel_dyn_section (info, TRUE); |
b49e97c9 | 6504 | if (sreloc == NULL) |
f4416af6 | 6505 | return FALSE; |
b49e97c9 | 6506 | } |
82f0cfbd | 6507 | #define MIPS_READONLY_SECTION (SEC_ALLOC | SEC_LOAD | SEC_READONLY) |
b49e97c9 | 6508 | if (info->shared) |
82f0cfbd EC |
6509 | { |
6510 | /* When creating a shared object, we must copy these | |
6511 | reloc types into the output file as R_MIPS_REL32 | |
0a44bf69 RS |
6512 | relocs. Make room for this reloc in .rel(a).dyn. */ |
6513 | mips_elf_allocate_dynamic_relocations (dynobj, info, 1); | |
82f0cfbd EC |
6514 | if ((sec->flags & MIPS_READONLY_SECTION) |
6515 | == MIPS_READONLY_SECTION) | |
6516 | /* We tell the dynamic linker that there are | |
6517 | relocations against the text segment. */ | |
6518 | info->flags |= DF_TEXTREL; | |
6519 | } | |
b49e97c9 TS |
6520 | else |
6521 | { | |
6522 | struct mips_elf_link_hash_entry *hmips; | |
82f0cfbd | 6523 | |
b49e97c9 TS |
6524 | /* We only need to copy this reloc if the symbol is |
6525 | defined in a dynamic object. */ | |
6526 | hmips = (struct mips_elf_link_hash_entry *) h; | |
6527 | ++hmips->possibly_dynamic_relocs; | |
82f0cfbd EC |
6528 | if ((sec->flags & MIPS_READONLY_SECTION) |
6529 | == MIPS_READONLY_SECTION) | |
6530 | /* We need it to tell the dynamic linker if there | |
6531 | are relocations against the text segment. */ | |
6532 | hmips->readonly_reloc = TRUE; | |
b49e97c9 TS |
6533 | } |
6534 | ||
6535 | /* Even though we don't directly need a GOT entry for | |
6536 | this symbol, a symbol must have a dynamic symbol | |
6537 | table index greater that DT_MIPS_GOTSYM if there are | |
0a44bf69 RS |
6538 | dynamic relocations against it. This does not apply |
6539 | to VxWorks, which does not have the usual coupling | |
6540 | between global GOT entries and .dynsym entries. */ | |
6541 | if (h != NULL && !htab->is_vxworks) | |
f4416af6 AO |
6542 | { |
6543 | if (dynobj == NULL) | |
6544 | elf_hash_table (info)->dynobj = dynobj = abfd; | |
6545 | if (! mips_elf_create_got_section (dynobj, info, TRUE)) | |
6546 | return FALSE; | |
6547 | g = mips_elf_got_info (dynobj, &sgot); | |
0f20cc35 | 6548 | if (! mips_elf_record_global_got_symbol (h, abfd, info, g, 0)) |
f4416af6 AO |
6549 | return FALSE; |
6550 | } | |
b49e97c9 TS |
6551 | } |
6552 | ||
6553 | if (SGI_COMPAT (abfd)) | |
6554 | mips_elf_hash_table (info)->compact_rel_size += | |
6555 | sizeof (Elf32_External_crinfo); | |
6556 | break; | |
6557 | ||
0a44bf69 RS |
6558 | case R_MIPS_PC16: |
6559 | if (h) | |
6560 | ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE; | |
6561 | break; | |
6562 | ||
b49e97c9 | 6563 | case R_MIPS_26: |
0a44bf69 RS |
6564 | if (h) |
6565 | ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE; | |
6566 | /* Fall through. */ | |
6567 | ||
b49e97c9 TS |
6568 | case R_MIPS_GPREL16: |
6569 | case R_MIPS_LITERAL: | |
6570 | case R_MIPS_GPREL32: | |
6571 | if (SGI_COMPAT (abfd)) | |
6572 | mips_elf_hash_table (info)->compact_rel_size += | |
6573 | sizeof (Elf32_External_crinfo); | |
6574 | break; | |
6575 | ||
6576 | /* This relocation describes the C++ object vtable hierarchy. | |
6577 | Reconstruct it for later use during GC. */ | |
6578 | case R_MIPS_GNU_VTINHERIT: | |
c152c796 | 6579 | if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) |
b34976b6 | 6580 | return FALSE; |
b49e97c9 TS |
6581 | break; |
6582 | ||
6583 | /* This relocation describes which C++ vtable entries are actually | |
6584 | used. Record for later use during GC. */ | |
6585 | case R_MIPS_GNU_VTENTRY: | |
c152c796 | 6586 | if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset)) |
b34976b6 | 6587 | return FALSE; |
b49e97c9 TS |
6588 | break; |
6589 | ||
6590 | default: | |
6591 | break; | |
6592 | } | |
6593 | ||
6594 | /* We must not create a stub for a symbol that has relocations | |
0a44bf69 RS |
6595 | related to taking the function's address. This doesn't apply to |
6596 | VxWorks, where CALL relocs refer to a .got.plt entry instead of | |
6597 | a normal .got entry. */ | |
6598 | if (!htab->is_vxworks && h != NULL) | |
6599 | switch (r_type) | |
6600 | { | |
6601 | default: | |
6602 | ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE; | |
6603 | break; | |
6604 | case R_MIPS_CALL16: | |
6605 | case R_MIPS_CALL_HI16: | |
6606 | case R_MIPS_CALL_LO16: | |
6607 | case R_MIPS_JALR: | |
6608 | break; | |
6609 | } | |
b49e97c9 TS |
6610 | |
6611 | /* If this reloc is not a 16 bit call, and it has a global | |
6612 | symbol, then we will need the fn_stub if there is one. | |
6613 | References from a stub section do not count. */ | |
6614 | if (h != NULL | |
6615 | && r_type != R_MIPS16_26 | |
6616 | && strncmp (bfd_get_section_name (abfd, sec), FN_STUB, | |
6617 | sizeof FN_STUB - 1) != 0 | |
6618 | && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB, | |
6619 | sizeof CALL_STUB - 1) != 0 | |
6620 | && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB, | |
6621 | sizeof CALL_FP_STUB - 1) != 0) | |
6622 | { | |
6623 | struct mips_elf_link_hash_entry *mh; | |
6624 | ||
6625 | mh = (struct mips_elf_link_hash_entry *) h; | |
b34976b6 | 6626 | mh->need_fn_stub = TRUE; |
b49e97c9 TS |
6627 | } |
6628 | } | |
6629 | ||
b34976b6 | 6630 | return TRUE; |
b49e97c9 TS |
6631 | } |
6632 | \f | |
d0647110 | 6633 | bfd_boolean |
9719ad41 RS |
6634 | _bfd_mips_relax_section (bfd *abfd, asection *sec, |
6635 | struct bfd_link_info *link_info, | |
6636 | bfd_boolean *again) | |
d0647110 AO |
6637 | { |
6638 | Elf_Internal_Rela *internal_relocs; | |
6639 | Elf_Internal_Rela *irel, *irelend; | |
6640 | Elf_Internal_Shdr *symtab_hdr; | |
6641 | bfd_byte *contents = NULL; | |
d0647110 AO |
6642 | size_t extsymoff; |
6643 | bfd_boolean changed_contents = FALSE; | |
6644 | bfd_vma sec_start = sec->output_section->vma + sec->output_offset; | |
6645 | Elf_Internal_Sym *isymbuf = NULL; | |
6646 | ||
6647 | /* We are not currently changing any sizes, so only one pass. */ | |
6648 | *again = FALSE; | |
6649 | ||
1049f94e | 6650 | if (link_info->relocatable) |
d0647110 AO |
6651 | return TRUE; |
6652 | ||
9719ad41 | 6653 | internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, |
45d6a902 | 6654 | link_info->keep_memory); |
d0647110 AO |
6655 | if (internal_relocs == NULL) |
6656 | return TRUE; | |
6657 | ||
6658 | irelend = internal_relocs + sec->reloc_count | |
6659 | * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel; | |
6660 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
6661 | extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info; | |
6662 | ||
6663 | for (irel = internal_relocs; irel < irelend; irel++) | |
6664 | { | |
6665 | bfd_vma symval; | |
6666 | bfd_signed_vma sym_offset; | |
6667 | unsigned int r_type; | |
6668 | unsigned long r_symndx; | |
6669 | asection *sym_sec; | |
6670 | unsigned long instruction; | |
6671 | ||
6672 | /* Turn jalr into bgezal, and jr into beq, if they're marked | |
6673 | with a JALR relocation, that indicate where they jump to. | |
6674 | This saves some pipeline bubbles. */ | |
6675 | r_type = ELF_R_TYPE (abfd, irel->r_info); | |
6676 | if (r_type != R_MIPS_JALR) | |
6677 | continue; | |
6678 | ||
6679 | r_symndx = ELF_R_SYM (abfd, irel->r_info); | |
6680 | /* Compute the address of the jump target. */ | |
6681 | if (r_symndx >= extsymoff) | |
6682 | { | |
6683 | struct mips_elf_link_hash_entry *h | |
6684 | = ((struct mips_elf_link_hash_entry *) | |
6685 | elf_sym_hashes (abfd) [r_symndx - extsymoff]); | |
6686 | ||
6687 | while (h->root.root.type == bfd_link_hash_indirect | |
6688 | || h->root.root.type == bfd_link_hash_warning) | |
6689 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | |
143d77c5 | 6690 | |
d0647110 AO |
6691 | /* If a symbol is undefined, or if it may be overridden, |
6692 | skip it. */ | |
6693 | if (! ((h->root.root.type == bfd_link_hash_defined | |
6694 | || h->root.root.type == bfd_link_hash_defweak) | |
6695 | && h->root.root.u.def.section) | |
6696 | || (link_info->shared && ! link_info->symbolic | |
f5385ebf | 6697 | && !h->root.forced_local)) |
d0647110 AO |
6698 | continue; |
6699 | ||
6700 | sym_sec = h->root.root.u.def.section; | |
6701 | if (sym_sec->output_section) | |
6702 | symval = (h->root.root.u.def.value | |
6703 | + sym_sec->output_section->vma | |
6704 | + sym_sec->output_offset); | |
6705 | else | |
6706 | symval = h->root.root.u.def.value; | |
6707 | } | |
6708 | else | |
6709 | { | |
6710 | Elf_Internal_Sym *isym; | |
6711 | ||
6712 | /* Read this BFD's symbols if we haven't done so already. */ | |
6713 | if (isymbuf == NULL && symtab_hdr->sh_info != 0) | |
6714 | { | |
6715 | isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; | |
6716 | if (isymbuf == NULL) | |
6717 | isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr, | |
6718 | symtab_hdr->sh_info, 0, | |
6719 | NULL, NULL, NULL); | |
6720 | if (isymbuf == NULL) | |
6721 | goto relax_return; | |
6722 | } | |
6723 | ||
6724 | isym = isymbuf + r_symndx; | |
6725 | if (isym->st_shndx == SHN_UNDEF) | |
6726 | continue; | |
6727 | else if (isym->st_shndx == SHN_ABS) | |
6728 | sym_sec = bfd_abs_section_ptr; | |
6729 | else if (isym->st_shndx == SHN_COMMON) | |
6730 | sym_sec = bfd_com_section_ptr; | |
6731 | else | |
6732 | sym_sec | |
6733 | = bfd_section_from_elf_index (abfd, isym->st_shndx); | |
6734 | symval = isym->st_value | |
6735 | + sym_sec->output_section->vma | |
6736 | + sym_sec->output_offset; | |
6737 | } | |
6738 | ||
6739 | /* Compute branch offset, from delay slot of the jump to the | |
6740 | branch target. */ | |
6741 | sym_offset = (symval + irel->r_addend) | |
6742 | - (sec_start + irel->r_offset + 4); | |
6743 | ||
6744 | /* Branch offset must be properly aligned. */ | |
6745 | if ((sym_offset & 3) != 0) | |
6746 | continue; | |
6747 | ||
6748 | sym_offset >>= 2; | |
6749 | ||
6750 | /* Check that it's in range. */ | |
6751 | if (sym_offset < -0x8000 || sym_offset >= 0x8000) | |
6752 | continue; | |
143d77c5 | 6753 | |
d0647110 AO |
6754 | /* Get the section contents if we haven't done so already. */ |
6755 | if (contents == NULL) | |
6756 | { | |
6757 | /* Get cached copy if it exists. */ | |
6758 | if (elf_section_data (sec)->this_hdr.contents != NULL) | |
6759 | contents = elf_section_data (sec)->this_hdr.contents; | |
6760 | else | |
6761 | { | |
eea6121a | 6762 | if (!bfd_malloc_and_get_section (abfd, sec, &contents)) |
d0647110 AO |
6763 | goto relax_return; |
6764 | } | |
6765 | } | |
6766 | ||
6767 | instruction = bfd_get_32 (abfd, contents + irel->r_offset); | |
6768 | ||
6769 | /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */ | |
6770 | if ((instruction & 0xfc1fffff) == 0x0000f809) | |
6771 | instruction = 0x04110000; | |
6772 | /* If it was jr <reg>, turn it into b <target>. */ | |
6773 | else if ((instruction & 0xfc1fffff) == 0x00000008) | |
6774 | instruction = 0x10000000; | |
6775 | else | |
6776 | continue; | |
6777 | ||
6778 | instruction |= (sym_offset & 0xffff); | |
6779 | bfd_put_32 (abfd, instruction, contents + irel->r_offset); | |
6780 | changed_contents = TRUE; | |
6781 | } | |
6782 | ||
6783 | if (contents != NULL | |
6784 | && elf_section_data (sec)->this_hdr.contents != contents) | |
6785 | { | |
6786 | if (!changed_contents && !link_info->keep_memory) | |
6787 | free (contents); | |
6788 | else | |
6789 | { | |
6790 | /* Cache the section contents for elf_link_input_bfd. */ | |
6791 | elf_section_data (sec)->this_hdr.contents = contents; | |
6792 | } | |
6793 | } | |
6794 | return TRUE; | |
6795 | ||
143d77c5 | 6796 | relax_return: |
eea6121a AM |
6797 | if (contents != NULL |
6798 | && elf_section_data (sec)->this_hdr.contents != contents) | |
6799 | free (contents); | |
d0647110 AO |
6800 | return FALSE; |
6801 | } | |
6802 | \f | |
b49e97c9 TS |
6803 | /* Adjust a symbol defined by a dynamic object and referenced by a |
6804 | regular object. The current definition is in some section of the | |
6805 | dynamic object, but we're not including those sections. We have to | |
6806 | change the definition to something the rest of the link can | |
6807 | understand. */ | |
6808 | ||
b34976b6 | 6809 | bfd_boolean |
9719ad41 RS |
6810 | _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info, |
6811 | struct elf_link_hash_entry *h) | |
b49e97c9 TS |
6812 | { |
6813 | bfd *dynobj; | |
6814 | struct mips_elf_link_hash_entry *hmips; | |
6815 | asection *s; | |
6816 | ||
6817 | dynobj = elf_hash_table (info)->dynobj; | |
6818 | ||
6819 | /* Make sure we know what is going on here. */ | |
6820 | BFD_ASSERT (dynobj != NULL | |
f5385ebf | 6821 | && (h->needs_plt |
f6e332e6 | 6822 | || h->u.weakdef != NULL |
f5385ebf AM |
6823 | || (h->def_dynamic |
6824 | && h->ref_regular | |
6825 | && !h->def_regular))); | |
b49e97c9 TS |
6826 | |
6827 | /* If this symbol is defined in a dynamic object, we need to copy | |
6828 | any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output | |
6829 | file. */ | |
6830 | hmips = (struct mips_elf_link_hash_entry *) h; | |
1049f94e | 6831 | if (! info->relocatable |
b49e97c9 TS |
6832 | && hmips->possibly_dynamic_relocs != 0 |
6833 | && (h->root.type == bfd_link_hash_defweak | |
f5385ebf | 6834 | || !h->def_regular)) |
b49e97c9 | 6835 | { |
0a44bf69 RS |
6836 | mips_elf_allocate_dynamic_relocations |
6837 | (dynobj, info, hmips->possibly_dynamic_relocs); | |
82f0cfbd | 6838 | if (hmips->readonly_reloc) |
b49e97c9 TS |
6839 | /* We tell the dynamic linker that there are relocations |
6840 | against the text segment. */ | |
6841 | info->flags |= DF_TEXTREL; | |
6842 | } | |
6843 | ||
6844 | /* For a function, create a stub, if allowed. */ | |
6845 | if (! hmips->no_fn_stub | |
f5385ebf | 6846 | && h->needs_plt) |
b49e97c9 TS |
6847 | { |
6848 | if (! elf_hash_table (info)->dynamic_sections_created) | |
b34976b6 | 6849 | return TRUE; |
b49e97c9 TS |
6850 | |
6851 | /* If this symbol is not defined in a regular file, then set | |
6852 | the symbol to the stub location. This is required to make | |
6853 | function pointers compare as equal between the normal | |
6854 | executable and the shared library. */ | |
f5385ebf | 6855 | if (!h->def_regular) |
b49e97c9 TS |
6856 | { |
6857 | /* We need .stub section. */ | |
6858 | s = bfd_get_section_by_name (dynobj, | |
6859 | MIPS_ELF_STUB_SECTION_NAME (dynobj)); | |
6860 | BFD_ASSERT (s != NULL); | |
6861 | ||
6862 | h->root.u.def.section = s; | |
eea6121a | 6863 | h->root.u.def.value = s->size; |
b49e97c9 TS |
6864 | |
6865 | /* XXX Write this stub address somewhere. */ | |
eea6121a | 6866 | h->plt.offset = s->size; |
b49e97c9 TS |
6867 | |
6868 | /* Make room for this stub code. */ | |
eea6121a | 6869 | s->size += MIPS_FUNCTION_STUB_SIZE; |
b49e97c9 TS |
6870 | |
6871 | /* The last half word of the stub will be filled with the index | |
6872 | of this symbol in .dynsym section. */ | |
b34976b6 | 6873 | return TRUE; |
b49e97c9 TS |
6874 | } |
6875 | } | |
6876 | else if ((h->type == STT_FUNC) | |
f5385ebf | 6877 | && !h->needs_plt) |
b49e97c9 TS |
6878 | { |
6879 | /* This will set the entry for this symbol in the GOT to 0, and | |
6880 | the dynamic linker will take care of this. */ | |
6881 | h->root.u.def.value = 0; | |
b34976b6 | 6882 | return TRUE; |
b49e97c9 TS |
6883 | } |
6884 | ||
6885 | /* If this is a weak symbol, and there is a real definition, the | |
6886 | processor independent code will have arranged for us to see the | |
6887 | real definition first, and we can just use the same value. */ | |
f6e332e6 | 6888 | if (h->u.weakdef != NULL) |
b49e97c9 | 6889 | { |
f6e332e6 AM |
6890 | BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined |
6891 | || h->u.weakdef->root.type == bfd_link_hash_defweak); | |
6892 | h->root.u.def.section = h->u.weakdef->root.u.def.section; | |
6893 | h->root.u.def.value = h->u.weakdef->root.u.def.value; | |
b34976b6 | 6894 | return TRUE; |
b49e97c9 TS |
6895 | } |
6896 | ||
6897 | /* This is a reference to a symbol defined by a dynamic object which | |
6898 | is not a function. */ | |
6899 | ||
b34976b6 | 6900 | return TRUE; |
b49e97c9 | 6901 | } |
0a44bf69 RS |
6902 | |
6903 | /* Likewise, for VxWorks. */ | |
6904 | ||
6905 | bfd_boolean | |
6906 | _bfd_mips_vxworks_adjust_dynamic_symbol (struct bfd_link_info *info, | |
6907 | struct elf_link_hash_entry *h) | |
6908 | { | |
6909 | bfd *dynobj; | |
6910 | struct mips_elf_link_hash_entry *hmips; | |
6911 | struct mips_elf_link_hash_table *htab; | |
6912 | unsigned int power_of_two; | |
6913 | ||
6914 | htab = mips_elf_hash_table (info); | |
6915 | dynobj = elf_hash_table (info)->dynobj; | |
6916 | hmips = (struct mips_elf_link_hash_entry *) h; | |
6917 | ||
6918 | /* Make sure we know what is going on here. */ | |
6919 | BFD_ASSERT (dynobj != NULL | |
6920 | && (h->needs_plt | |
6921 | || h->needs_copy | |
6922 | || h->u.weakdef != NULL | |
6923 | || (h->def_dynamic | |
6924 | && h->ref_regular | |
6925 | && !h->def_regular))); | |
6926 | ||
6927 | /* If the symbol is defined by a dynamic object, we need a PLT stub if | |
6928 | either (a) we want to branch to the symbol or (b) we're linking an | |
6929 | executable that needs a canonical function address. In the latter | |
6930 | case, the canonical address will be the address of the executable's | |
6931 | load stub. */ | |
6932 | if ((hmips->is_branch_target | |
6933 | || (!info->shared | |
6934 | && h->type == STT_FUNC | |
6935 | && hmips->is_relocation_target)) | |
6936 | && h->def_dynamic | |
6937 | && h->ref_regular | |
6938 | && !h->def_regular | |
6939 | && !h->forced_local) | |
6940 | h->needs_plt = 1; | |
6941 | ||
6942 | /* Locally-binding symbols do not need a PLT stub; we can refer to | |
6943 | the functions directly. */ | |
6944 | else if (h->needs_plt | |
6945 | && (SYMBOL_CALLS_LOCAL (info, h) | |
6946 | || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT | |
6947 | && h->root.type == bfd_link_hash_undefweak))) | |
6948 | { | |
6949 | h->needs_plt = 0; | |
6950 | return TRUE; | |
6951 | } | |
6952 | ||
6953 | if (h->needs_plt) | |
6954 | { | |
6955 | /* If this is the first symbol to need a PLT entry, allocate room | |
6956 | for the header, and for the header's .rela.plt.unloaded entries. */ | |
6957 | if (htab->splt->size == 0) | |
6958 | { | |
6959 | htab->splt->size += htab->plt_header_size; | |
6960 | if (!info->shared) | |
6961 | htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela); | |
6962 | } | |
6963 | ||
6964 | /* Assign the next .plt entry to this symbol. */ | |
6965 | h->plt.offset = htab->splt->size; | |
6966 | htab->splt->size += htab->plt_entry_size; | |
6967 | ||
6968 | /* If the output file has no definition of the symbol, set the | |
6969 | symbol's value to the address of the stub. For executables, | |
6970 | point at the PLT load stub rather than the lazy resolution stub; | |
6971 | this stub will become the canonical function address. */ | |
6972 | if (!h->def_regular) | |
6973 | { | |
6974 | h->root.u.def.section = htab->splt; | |
6975 | h->root.u.def.value = h->plt.offset; | |
6976 | if (!info->shared) | |
6977 | h->root.u.def.value += 8; | |
6978 | } | |
6979 | ||
6980 | /* Make room for the .got.plt entry and the R_JUMP_SLOT relocation. */ | |
6981 | htab->sgotplt->size += 4; | |
6982 | htab->srelplt->size += sizeof (Elf32_External_Rela); | |
6983 | ||
6984 | /* Make room for the .rela.plt.unloaded relocations. */ | |
6985 | if (!info->shared) | |
6986 | htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela); | |
6987 | ||
6988 | return TRUE; | |
6989 | } | |
6990 | ||
6991 | /* If a function symbol is defined by a dynamic object, and we do not | |
6992 | need a PLT stub for it, the symbol's value should be zero. */ | |
6993 | if (h->type == STT_FUNC | |
6994 | && h->def_dynamic | |
6995 | && h->ref_regular | |
6996 | && !h->def_regular) | |
6997 | { | |
6998 | h->root.u.def.value = 0; | |
6999 | return TRUE; | |
7000 | } | |
7001 | ||
7002 | /* If this is a weak symbol, and there is a real definition, the | |
7003 | processor independent code will have arranged for us to see the | |
7004 | real definition first, and we can just use the same value. */ | |
7005 | if (h->u.weakdef != NULL) | |
7006 | { | |
7007 | BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined | |
7008 | || h->u.weakdef->root.type == bfd_link_hash_defweak); | |
7009 | h->root.u.def.section = h->u.weakdef->root.u.def.section; | |
7010 | h->root.u.def.value = h->u.weakdef->root.u.def.value; | |
7011 | return TRUE; | |
7012 | } | |
7013 | ||
7014 | /* This is a reference to a symbol defined by a dynamic object which | |
7015 | is not a function. */ | |
7016 | if (info->shared) | |
7017 | return TRUE; | |
7018 | ||
7019 | /* We must allocate the symbol in our .dynbss section, which will | |
7020 | become part of the .bss section of the executable. There will be | |
7021 | an entry for this symbol in the .dynsym section. The dynamic | |
7022 | object will contain position independent code, so all references | |
7023 | from the dynamic object to this symbol will go through the global | |
7024 | offset table. The dynamic linker will use the .dynsym entry to | |
7025 | determine the address it must put in the global offset table, so | |
7026 | both the dynamic object and the regular object will refer to the | |
7027 | same memory location for the variable. */ | |
7028 | ||
7029 | if ((h->root.u.def.section->flags & SEC_ALLOC) != 0) | |
7030 | { | |
7031 | htab->srelbss->size += sizeof (Elf32_External_Rela); | |
7032 | h->needs_copy = 1; | |
7033 | } | |
7034 | ||
7035 | /* We need to figure out the alignment required for this symbol. */ | |
7036 | power_of_two = bfd_log2 (h->size); | |
7037 | if (power_of_two > 4) | |
7038 | power_of_two = 4; | |
7039 | ||
7040 | /* Apply the required alignment. */ | |
7041 | htab->sdynbss->size = BFD_ALIGN (htab->sdynbss->size, | |
7042 | (bfd_size_type) 1 << power_of_two); | |
7043 | if (power_of_two > bfd_get_section_alignment (dynobj, htab->sdynbss) | |
7044 | && !bfd_set_section_alignment (dynobj, htab->sdynbss, power_of_two)) | |
7045 | return FALSE; | |
7046 | ||
7047 | /* Define the symbol as being at this point in the section. */ | |
7048 | h->root.u.def.section = htab->sdynbss; | |
7049 | h->root.u.def.value = htab->sdynbss->size; | |
7050 | ||
7051 | /* Increment the section size to make room for the symbol. */ | |
7052 | htab->sdynbss->size += h->size; | |
7053 | ||
7054 | return TRUE; | |
7055 | } | |
b49e97c9 TS |
7056 | \f |
7057 | /* This function is called after all the input files have been read, | |
7058 | and the input sections have been assigned to output sections. We | |
7059 | check for any mips16 stub sections that we can discard. */ | |
7060 | ||
b34976b6 | 7061 | bfd_boolean |
9719ad41 RS |
7062 | _bfd_mips_elf_always_size_sections (bfd *output_bfd, |
7063 | struct bfd_link_info *info) | |
b49e97c9 TS |
7064 | { |
7065 | asection *ri; | |
7066 | ||
f4416af6 AO |
7067 | bfd *dynobj; |
7068 | asection *s; | |
7069 | struct mips_got_info *g; | |
7070 | int i; | |
7071 | bfd_size_type loadable_size = 0; | |
7072 | bfd_size_type local_gotno; | |
7073 | bfd *sub; | |
0f20cc35 | 7074 | struct mips_elf_count_tls_arg count_tls_arg; |
0a44bf69 RS |
7075 | struct mips_elf_link_hash_table *htab; |
7076 | ||
7077 | htab = mips_elf_hash_table (info); | |
f4416af6 | 7078 | |
b49e97c9 TS |
7079 | /* The .reginfo section has a fixed size. */ |
7080 | ri = bfd_get_section_by_name (output_bfd, ".reginfo"); | |
7081 | if (ri != NULL) | |
9719ad41 | 7082 | bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo)); |
b49e97c9 | 7083 | |
1049f94e | 7084 | if (! (info->relocatable |
f4416af6 AO |
7085 | || ! mips_elf_hash_table (info)->mips16_stubs_seen)) |
7086 | mips_elf_link_hash_traverse (mips_elf_hash_table (info), | |
9719ad41 | 7087 | mips_elf_check_mips16_stubs, NULL); |
f4416af6 AO |
7088 | |
7089 | dynobj = elf_hash_table (info)->dynobj; | |
7090 | if (dynobj == NULL) | |
7091 | /* Relocatable links don't have it. */ | |
7092 | return TRUE; | |
143d77c5 | 7093 | |
f4416af6 AO |
7094 | g = mips_elf_got_info (dynobj, &s); |
7095 | if (s == NULL) | |
b34976b6 | 7096 | return TRUE; |
b49e97c9 | 7097 | |
f4416af6 AO |
7098 | /* Calculate the total loadable size of the output. That |
7099 | will give us the maximum number of GOT_PAGE entries | |
7100 | required. */ | |
7101 | for (sub = info->input_bfds; sub; sub = sub->link_next) | |
7102 | { | |
7103 | asection *subsection; | |
7104 | ||
7105 | for (subsection = sub->sections; | |
7106 | subsection; | |
7107 | subsection = subsection->next) | |
7108 | { | |
7109 | if ((subsection->flags & SEC_ALLOC) == 0) | |
7110 | continue; | |
eea6121a | 7111 | loadable_size += ((subsection->size + 0xf) |
f4416af6 AO |
7112 | &~ (bfd_size_type) 0xf); |
7113 | } | |
7114 | } | |
7115 | ||
7116 | /* There has to be a global GOT entry for every symbol with | |
7117 | a dynamic symbol table index of DT_MIPS_GOTSYM or | |
7118 | higher. Therefore, it make sense to put those symbols | |
7119 | that need GOT entries at the end of the symbol table. We | |
7120 | do that here. */ | |
7121 | if (! mips_elf_sort_hash_table (info, 1)) | |
7122 | return FALSE; | |
7123 | ||
7124 | if (g->global_gotsym != NULL) | |
7125 | i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx; | |
7126 | else | |
7127 | /* If there are no global symbols, or none requiring | |
7128 | relocations, then GLOBAL_GOTSYM will be NULL. */ | |
7129 | i = 0; | |
7130 | ||
7131 | /* In the worst case, we'll get one stub per dynamic symbol, plus | |
7132 | one to account for the dummy entry at the end required by IRIX | |
7133 | rld. */ | |
7134 | loadable_size += MIPS_FUNCTION_STUB_SIZE * (i + 1); | |
7135 | ||
0a44bf69 RS |
7136 | if (htab->is_vxworks) |
7137 | /* There's no need to allocate page entries for VxWorks; R_MIPS_GOT16 | |
7138 | relocations against local symbols evaluate to "G", and the EABI does | |
7139 | not include R_MIPS_GOT_PAGE. */ | |
7140 | local_gotno = 0; | |
7141 | else | |
7142 | /* Assume there are two loadable segments consisting of contiguous | |
7143 | sections. Is 5 enough? */ | |
7144 | local_gotno = (loadable_size >> 16) + 5; | |
f4416af6 AO |
7145 | |
7146 | g->local_gotno += local_gotno; | |
eea6121a | 7147 | s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd); |
f4416af6 AO |
7148 | |
7149 | g->global_gotno = i; | |
eea6121a | 7150 | s->size += i * MIPS_ELF_GOT_SIZE (output_bfd); |
f4416af6 | 7151 | |
0f20cc35 DJ |
7152 | /* We need to calculate tls_gotno for global symbols at this point |
7153 | instead of building it up earlier, to avoid doublecounting | |
7154 | entries for one global symbol from multiple input files. */ | |
7155 | count_tls_arg.info = info; | |
7156 | count_tls_arg.needed = 0; | |
7157 | elf_link_hash_traverse (elf_hash_table (info), | |
7158 | mips_elf_count_global_tls_entries, | |
7159 | &count_tls_arg); | |
7160 | g->tls_gotno += count_tls_arg.needed; | |
7161 | s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd); | |
7162 | ||
7163 | mips_elf_resolve_final_got_entries (g); | |
7164 | ||
0a44bf69 RS |
7165 | /* VxWorks does not support multiple GOTs. It initializes $gp to |
7166 | __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the | |
7167 | dynamic loader. */ | |
7168 | if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info)) | |
0f20cc35 DJ |
7169 | { |
7170 | if (! mips_elf_multi_got (output_bfd, info, g, s, local_gotno)) | |
7171 | return FALSE; | |
7172 | } | |
7173 | else | |
7174 | { | |
7175 | /* Set up TLS entries for the first GOT. */ | |
7176 | g->tls_assigned_gotno = g->global_gotno + g->local_gotno; | |
7177 | htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g); | |
7178 | } | |
b49e97c9 | 7179 | |
b34976b6 | 7180 | return TRUE; |
b49e97c9 TS |
7181 | } |
7182 | ||
7183 | /* Set the sizes of the dynamic sections. */ | |
7184 | ||
b34976b6 | 7185 | bfd_boolean |
9719ad41 RS |
7186 | _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd, |
7187 | struct bfd_link_info *info) | |
b49e97c9 TS |
7188 | { |
7189 | bfd *dynobj; | |
0a44bf69 | 7190 | asection *s, *sreldyn; |
b34976b6 | 7191 | bfd_boolean reltext; |
0a44bf69 | 7192 | struct mips_elf_link_hash_table *htab; |
b49e97c9 | 7193 | |
0a44bf69 | 7194 | htab = mips_elf_hash_table (info); |
b49e97c9 TS |
7195 | dynobj = elf_hash_table (info)->dynobj; |
7196 | BFD_ASSERT (dynobj != NULL); | |
7197 | ||
7198 | if (elf_hash_table (info)->dynamic_sections_created) | |
7199 | { | |
7200 | /* Set the contents of the .interp section to the interpreter. */ | |
893c4fe2 | 7201 | if (info->executable) |
b49e97c9 TS |
7202 | { |
7203 | s = bfd_get_section_by_name (dynobj, ".interp"); | |
7204 | BFD_ASSERT (s != NULL); | |
eea6121a | 7205 | s->size |
b49e97c9 TS |
7206 | = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1; |
7207 | s->contents | |
7208 | = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd); | |
7209 | } | |
7210 | } | |
7211 | ||
7212 | /* The check_relocs and adjust_dynamic_symbol entry points have | |
7213 | determined the sizes of the various dynamic sections. Allocate | |
7214 | memory for them. */ | |
b34976b6 | 7215 | reltext = FALSE; |
0a44bf69 | 7216 | sreldyn = NULL; |
b49e97c9 TS |
7217 | for (s = dynobj->sections; s != NULL; s = s->next) |
7218 | { | |
7219 | const char *name; | |
b49e97c9 TS |
7220 | |
7221 | /* It's OK to base decisions on the section name, because none | |
7222 | of the dynobj section names depend upon the input files. */ | |
7223 | name = bfd_get_section_name (dynobj, s); | |
7224 | ||
7225 | if ((s->flags & SEC_LINKER_CREATED) == 0) | |
7226 | continue; | |
7227 | ||
b49e97c9 TS |
7228 | if (strncmp (name, ".rel", 4) == 0) |
7229 | { | |
c456f082 | 7230 | if (s->size != 0) |
b49e97c9 TS |
7231 | { |
7232 | const char *outname; | |
7233 | asection *target; | |
7234 | ||
7235 | /* If this relocation section applies to a read only | |
7236 | section, then we probably need a DT_TEXTREL entry. | |
0a44bf69 | 7237 | If the relocation section is .rel(a).dyn, we always |
b49e97c9 TS |
7238 | assert a DT_TEXTREL entry rather than testing whether |
7239 | there exists a relocation to a read only section or | |
7240 | not. */ | |
7241 | outname = bfd_get_section_name (output_bfd, | |
7242 | s->output_section); | |
7243 | target = bfd_get_section_by_name (output_bfd, outname + 4); | |
7244 | if ((target != NULL | |
7245 | && (target->flags & SEC_READONLY) != 0 | |
7246 | && (target->flags & SEC_ALLOC) != 0) | |
0a44bf69 | 7247 | || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0) |
b34976b6 | 7248 | reltext = TRUE; |
b49e97c9 TS |
7249 | |
7250 | /* We use the reloc_count field as a counter if we need | |
7251 | to copy relocs into the output file. */ | |
0a44bf69 | 7252 | if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0) |
b49e97c9 | 7253 | s->reloc_count = 0; |
f4416af6 AO |
7254 | |
7255 | /* If combreloc is enabled, elf_link_sort_relocs() will | |
7256 | sort relocations, but in a different way than we do, | |
7257 | and before we're done creating relocations. Also, it | |
7258 | will move them around between input sections' | |
7259 | relocation's contents, so our sorting would be | |
7260 | broken, so don't let it run. */ | |
7261 | info->combreloc = 0; | |
b49e97c9 TS |
7262 | } |
7263 | } | |
0a44bf69 RS |
7264 | else if (htab->is_vxworks && strcmp (name, ".got") == 0) |
7265 | { | |
7266 | /* Executables do not need a GOT. */ | |
7267 | if (info->shared) | |
7268 | { | |
7269 | /* Allocate relocations for all but the reserved entries. */ | |
7270 | struct mips_got_info *g; | |
7271 | unsigned int count; | |
7272 | ||
7273 | g = mips_elf_got_info (dynobj, NULL); | |
7274 | count = (g->global_gotno | |
7275 | + g->local_gotno | |
7276 | - MIPS_RESERVED_GOTNO (info)); | |
7277 | mips_elf_allocate_dynamic_relocations (dynobj, info, count); | |
7278 | } | |
7279 | } | |
7280 | else if (!htab->is_vxworks && strncmp (name, ".got", 4) == 0) | |
b49e97c9 | 7281 | { |
f4416af6 AO |
7282 | /* _bfd_mips_elf_always_size_sections() has already done |
7283 | most of the work, but some symbols may have been mapped | |
7284 | to versions that we must now resolve in the got_entries | |
7285 | hash tables. */ | |
7286 | struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL); | |
7287 | struct mips_got_info *g = gg; | |
7288 | struct mips_elf_set_global_got_offset_arg set_got_offset_arg; | |
7289 | unsigned int needed_relocs = 0; | |
143d77c5 | 7290 | |
f4416af6 | 7291 | if (gg->next) |
b49e97c9 | 7292 | { |
f4416af6 AO |
7293 | set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd); |
7294 | set_got_offset_arg.info = info; | |
b49e97c9 | 7295 | |
0f20cc35 DJ |
7296 | /* NOTE 2005-02-03: How can this call, or the next, ever |
7297 | find any indirect entries to resolve? They were all | |
7298 | resolved in mips_elf_multi_got. */ | |
f4416af6 AO |
7299 | mips_elf_resolve_final_got_entries (gg); |
7300 | for (g = gg->next; g && g->next != gg; g = g->next) | |
b49e97c9 | 7301 | { |
f4416af6 AO |
7302 | unsigned int save_assign; |
7303 | ||
7304 | mips_elf_resolve_final_got_entries (g); | |
7305 | ||
7306 | /* Assign offsets to global GOT entries. */ | |
7307 | save_assign = g->assigned_gotno; | |
7308 | g->assigned_gotno = g->local_gotno; | |
7309 | set_got_offset_arg.g = g; | |
7310 | set_got_offset_arg.needed_relocs = 0; | |
7311 | htab_traverse (g->got_entries, | |
7312 | mips_elf_set_global_got_offset, | |
7313 | &set_got_offset_arg); | |
7314 | needed_relocs += set_got_offset_arg.needed_relocs; | |
7315 | BFD_ASSERT (g->assigned_gotno - g->local_gotno | |
7316 | <= g->global_gotno); | |
7317 | ||
7318 | g->assigned_gotno = save_assign; | |
7319 | if (info->shared) | |
7320 | { | |
7321 | needed_relocs += g->local_gotno - g->assigned_gotno; | |
7322 | BFD_ASSERT (g->assigned_gotno == g->next->local_gotno | |
7323 | + g->next->global_gotno | |
0f20cc35 | 7324 | + g->next->tls_gotno |
0a44bf69 | 7325 | + MIPS_RESERVED_GOTNO (info)); |
f4416af6 | 7326 | } |
b49e97c9 | 7327 | } |
0f20cc35 DJ |
7328 | } |
7329 | else | |
7330 | { | |
7331 | struct mips_elf_count_tls_arg arg; | |
7332 | arg.info = info; | |
7333 | arg.needed = 0; | |
b49e97c9 | 7334 | |
0f20cc35 DJ |
7335 | htab_traverse (gg->got_entries, mips_elf_count_local_tls_relocs, |
7336 | &arg); | |
7337 | elf_link_hash_traverse (elf_hash_table (info), | |
7338 | mips_elf_count_global_tls_relocs, | |
7339 | &arg); | |
7340 | ||
7341 | needed_relocs += arg.needed; | |
f4416af6 | 7342 | } |
0f20cc35 DJ |
7343 | |
7344 | if (needed_relocs) | |
0a44bf69 RS |
7345 | mips_elf_allocate_dynamic_relocations (dynobj, info, |
7346 | needed_relocs); | |
b49e97c9 TS |
7347 | } |
7348 | else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0) | |
7349 | { | |
8dc1a139 | 7350 | /* IRIX rld assumes that the function stub isn't at the end |
b49e97c9 | 7351 | of .text section. So put a dummy. XXX */ |
eea6121a | 7352 | s->size += MIPS_FUNCTION_STUB_SIZE; |
b49e97c9 TS |
7353 | } |
7354 | else if (! info->shared | |
7355 | && ! mips_elf_hash_table (info)->use_rld_obj_head | |
7356 | && strncmp (name, ".rld_map", 8) == 0) | |
7357 | { | |
7358 | /* We add a room for __rld_map. It will be filled in by the | |
7359 | rtld to contain a pointer to the _r_debug structure. */ | |
eea6121a | 7360 | s->size += 4; |
b49e97c9 TS |
7361 | } |
7362 | else if (SGI_COMPAT (output_bfd) | |
7363 | && strncmp (name, ".compact_rel", 12) == 0) | |
eea6121a | 7364 | s->size += mips_elf_hash_table (info)->compact_rel_size; |
0a44bf69 RS |
7365 | else if (strncmp (name, ".init", 5) != 0 |
7366 | && s != htab->sgotplt | |
7367 | && s != htab->splt) | |
b49e97c9 TS |
7368 | { |
7369 | /* It's not one of our sections, so don't allocate space. */ | |
7370 | continue; | |
7371 | } | |
7372 | ||
c456f082 | 7373 | if (s->size == 0) |
b49e97c9 | 7374 | { |
8423293d | 7375 | s->flags |= SEC_EXCLUDE; |
b49e97c9 TS |
7376 | continue; |
7377 | } | |
7378 | ||
c456f082 AM |
7379 | if ((s->flags & SEC_HAS_CONTENTS) == 0) |
7380 | continue; | |
7381 | ||
0a44bf69 RS |
7382 | /* Allocate memory for this section last, since we may increase its |
7383 | size above. */ | |
7384 | if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) == 0) | |
7385 | { | |
7386 | sreldyn = s; | |
7387 | continue; | |
7388 | } | |
7389 | ||
b49e97c9 | 7390 | /* Allocate memory for the section contents. */ |
eea6121a | 7391 | s->contents = bfd_zalloc (dynobj, s->size); |
c456f082 | 7392 | if (s->contents == NULL) |
b49e97c9 TS |
7393 | { |
7394 | bfd_set_error (bfd_error_no_memory); | |
b34976b6 | 7395 | return FALSE; |
b49e97c9 TS |
7396 | } |
7397 | } | |
7398 | ||
0a44bf69 RS |
7399 | /* Allocate memory for the .rel(a).dyn section. */ |
7400 | if (sreldyn != NULL) | |
7401 | { | |
7402 | sreldyn->contents = bfd_zalloc (dynobj, sreldyn->size); | |
7403 | if (sreldyn->contents == NULL) | |
7404 | { | |
7405 | bfd_set_error (bfd_error_no_memory); | |
7406 | return FALSE; | |
7407 | } | |
7408 | } | |
7409 | ||
b49e97c9 TS |
7410 | if (elf_hash_table (info)->dynamic_sections_created) |
7411 | { | |
7412 | /* Add some entries to the .dynamic section. We fill in the | |
7413 | values later, in _bfd_mips_elf_finish_dynamic_sections, but we | |
7414 | must add the entries now so that we get the correct size for | |
7415 | the .dynamic section. The DT_DEBUG entry is filled in by the | |
7416 | dynamic linker and used by the debugger. */ | |
7417 | if (! info->shared) | |
7418 | { | |
7419 | /* SGI object has the equivalence of DT_DEBUG in the | |
7420 | DT_MIPS_RLD_MAP entry. */ | |
7421 | if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0)) | |
b34976b6 | 7422 | return FALSE; |
b49e97c9 TS |
7423 | if (!SGI_COMPAT (output_bfd)) |
7424 | { | |
7425 | if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0)) | |
b34976b6 | 7426 | return FALSE; |
b49e97c9 TS |
7427 | } |
7428 | } | |
7429 | else | |
7430 | { | |
7431 | /* Shared libraries on traditional mips have DT_DEBUG. */ | |
7432 | if (!SGI_COMPAT (output_bfd)) | |
7433 | { | |
7434 | if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0)) | |
b34976b6 | 7435 | return FALSE; |
b49e97c9 TS |
7436 | } |
7437 | } | |
7438 | ||
0a44bf69 | 7439 | if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks)) |
b49e97c9 TS |
7440 | info->flags |= DF_TEXTREL; |
7441 | ||
7442 | if ((info->flags & DF_TEXTREL) != 0) | |
7443 | { | |
7444 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0)) | |
b34976b6 | 7445 | return FALSE; |
b49e97c9 TS |
7446 | } |
7447 | ||
7448 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0)) | |
b34976b6 | 7449 | return FALSE; |
b49e97c9 | 7450 | |
0a44bf69 | 7451 | if (htab->is_vxworks) |
b49e97c9 | 7452 | { |
0a44bf69 RS |
7453 | /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not |
7454 | use any of the DT_MIPS_* tags. */ | |
7455 | if (mips_elf_rel_dyn_section (info, FALSE)) | |
7456 | { | |
7457 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0)) | |
7458 | return FALSE; | |
b49e97c9 | 7459 | |
0a44bf69 RS |
7460 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0)) |
7461 | return FALSE; | |
b49e97c9 | 7462 | |
0a44bf69 RS |
7463 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0)) |
7464 | return FALSE; | |
7465 | } | |
7466 | if (htab->splt->size > 0) | |
7467 | { | |
7468 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0)) | |
7469 | return FALSE; | |
7470 | ||
7471 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0)) | |
7472 | return FALSE; | |
7473 | ||
7474 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0)) | |
7475 | return FALSE; | |
7476 | } | |
b49e97c9 | 7477 | } |
0a44bf69 RS |
7478 | else |
7479 | { | |
7480 | if (mips_elf_rel_dyn_section (info, FALSE)) | |
7481 | { | |
7482 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0)) | |
7483 | return FALSE; | |
b49e97c9 | 7484 | |
0a44bf69 RS |
7485 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0)) |
7486 | return FALSE; | |
b49e97c9 | 7487 | |
0a44bf69 RS |
7488 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0)) |
7489 | return FALSE; | |
7490 | } | |
b49e97c9 | 7491 | |
0a44bf69 RS |
7492 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0)) |
7493 | return FALSE; | |
b49e97c9 | 7494 | |
0a44bf69 RS |
7495 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0)) |
7496 | return FALSE; | |
b49e97c9 | 7497 | |
0a44bf69 RS |
7498 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0)) |
7499 | return FALSE; | |
b49e97c9 | 7500 | |
0a44bf69 RS |
7501 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0)) |
7502 | return FALSE; | |
b49e97c9 | 7503 | |
0a44bf69 RS |
7504 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0)) |
7505 | return FALSE; | |
b49e97c9 | 7506 | |
0a44bf69 RS |
7507 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0)) |
7508 | return FALSE; | |
b49e97c9 | 7509 | |
0a44bf69 RS |
7510 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0)) |
7511 | return FALSE; | |
7512 | ||
7513 | if (IRIX_COMPAT (dynobj) == ict_irix5 | |
7514 | && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0)) | |
7515 | return FALSE; | |
7516 | ||
7517 | if (IRIX_COMPAT (dynobj) == ict_irix6 | |
7518 | && (bfd_get_section_by_name | |
7519 | (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj))) | |
7520 | && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0)) | |
7521 | return FALSE; | |
7522 | } | |
b49e97c9 TS |
7523 | } |
7524 | ||
b34976b6 | 7525 | return TRUE; |
b49e97c9 TS |
7526 | } |
7527 | \f | |
81d43bff RS |
7528 | /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD. |
7529 | Adjust its R_ADDEND field so that it is correct for the output file. | |
7530 | LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols | |
7531 | and sections respectively; both use symbol indexes. */ | |
7532 | ||
7533 | static void | |
7534 | mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info, | |
7535 | bfd *input_bfd, Elf_Internal_Sym *local_syms, | |
7536 | asection **local_sections, Elf_Internal_Rela *rel) | |
7537 | { | |
7538 | unsigned int r_type, r_symndx; | |
7539 | Elf_Internal_Sym *sym; | |
7540 | asection *sec; | |
7541 | ||
7542 | if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE)) | |
7543 | { | |
7544 | r_type = ELF_R_TYPE (output_bfd, rel->r_info); | |
7545 | if (r_type == R_MIPS16_GPREL | |
7546 | || r_type == R_MIPS_GPREL16 | |
7547 | || r_type == R_MIPS_GPREL32 | |
7548 | || r_type == R_MIPS_LITERAL) | |
7549 | { | |
7550 | rel->r_addend += _bfd_get_gp_value (input_bfd); | |
7551 | rel->r_addend -= _bfd_get_gp_value (output_bfd); | |
7552 | } | |
7553 | ||
7554 | r_symndx = ELF_R_SYM (output_bfd, rel->r_info); | |
7555 | sym = local_syms + r_symndx; | |
7556 | ||
7557 | /* Adjust REL's addend to account for section merging. */ | |
7558 | if (!info->relocatable) | |
7559 | { | |
7560 | sec = local_sections[r_symndx]; | |
7561 | _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); | |
7562 | } | |
7563 | ||
7564 | /* This would normally be done by the rela_normal code in elflink.c. */ | |
7565 | if (ELF_ST_TYPE (sym->st_info) == STT_SECTION) | |
7566 | rel->r_addend += local_sections[r_symndx]->output_offset; | |
7567 | } | |
7568 | } | |
7569 | ||
b49e97c9 TS |
7570 | /* Relocate a MIPS ELF section. */ |
7571 | ||
b34976b6 | 7572 | bfd_boolean |
9719ad41 RS |
7573 | _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info, |
7574 | bfd *input_bfd, asection *input_section, | |
7575 | bfd_byte *contents, Elf_Internal_Rela *relocs, | |
7576 | Elf_Internal_Sym *local_syms, | |
7577 | asection **local_sections) | |
b49e97c9 TS |
7578 | { |
7579 | Elf_Internal_Rela *rel; | |
7580 | const Elf_Internal_Rela *relend; | |
7581 | bfd_vma addend = 0; | |
b34976b6 | 7582 | bfd_boolean use_saved_addend_p = FALSE; |
9c5bfbb7 | 7583 | const struct elf_backend_data *bed; |
b49e97c9 TS |
7584 | |
7585 | bed = get_elf_backend_data (output_bfd); | |
7586 | relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel; | |
7587 | for (rel = relocs; rel < relend; ++rel) | |
7588 | { | |
7589 | const char *name; | |
c9adbffe | 7590 | bfd_vma value = 0; |
b49e97c9 | 7591 | reloc_howto_type *howto; |
b34976b6 AM |
7592 | bfd_boolean require_jalx; |
7593 | /* TRUE if the relocation is a RELA relocation, rather than a | |
b49e97c9 | 7594 | REL relocation. */ |
b34976b6 | 7595 | bfd_boolean rela_relocation_p = TRUE; |
b49e97c9 | 7596 | unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info); |
9719ad41 | 7597 | const char *msg; |
b49e97c9 TS |
7598 | |
7599 | /* Find the relocation howto for this relocation. */ | |
4a14403c | 7600 | if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd)) |
b49e97c9 TS |
7601 | { |
7602 | /* Some 32-bit code uses R_MIPS_64. In particular, people use | |
7603 | 64-bit code, but make sure all their addresses are in the | |
7604 | lowermost or uppermost 32-bit section of the 64-bit address | |
7605 | space. Thus, when they use an R_MIPS_64 they mean what is | |
7606 | usually meant by R_MIPS_32, with the exception that the | |
7607 | stored value is sign-extended to 64 bits. */ | |
b34976b6 | 7608 | howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE); |
b49e97c9 TS |
7609 | |
7610 | /* On big-endian systems, we need to lie about the position | |
7611 | of the reloc. */ | |
7612 | if (bfd_big_endian (input_bfd)) | |
7613 | rel->r_offset += 4; | |
7614 | } | |
7615 | else | |
7616 | /* NewABI defaults to RELA relocations. */ | |
7617 | howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, | |
4ffba85c AO |
7618 | NEWABI_P (input_bfd) |
7619 | && (MIPS_RELOC_RELA_P | |
7620 | (input_bfd, input_section, | |
7621 | rel - relocs))); | |
b49e97c9 TS |
7622 | |
7623 | if (!use_saved_addend_p) | |
7624 | { | |
7625 | Elf_Internal_Shdr *rel_hdr; | |
7626 | ||
7627 | /* If these relocations were originally of the REL variety, | |
7628 | we must pull the addend out of the field that will be | |
7629 | relocated. Otherwise, we simply use the contents of the | |
7630 | RELA relocation. To determine which flavor or relocation | |
7631 | this is, we depend on the fact that the INPUT_SECTION's | |
7632 | REL_HDR is read before its REL_HDR2. */ | |
7633 | rel_hdr = &elf_section_data (input_section)->rel_hdr; | |
7634 | if ((size_t) (rel - relocs) | |
7635 | >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel)) | |
7636 | rel_hdr = elf_section_data (input_section)->rel_hdr2; | |
7637 | if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd)) | |
7638 | { | |
d6f16593 MR |
7639 | bfd_byte *location = contents + rel->r_offset; |
7640 | ||
b49e97c9 | 7641 | /* Note that this is a REL relocation. */ |
b34976b6 | 7642 | rela_relocation_p = FALSE; |
b49e97c9 TS |
7643 | |
7644 | /* Get the addend, which is stored in the input file. */ | |
d6f16593 MR |
7645 | _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, |
7646 | location); | |
b49e97c9 TS |
7647 | addend = mips_elf_obtain_contents (howto, rel, input_bfd, |
7648 | contents); | |
d6f16593 MR |
7649 | _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, FALSE, |
7650 | location); | |
7651 | ||
b49e97c9 TS |
7652 | addend &= howto->src_mask; |
7653 | ||
7654 | /* For some kinds of relocations, the ADDEND is a | |
7655 | combination of the addend stored in two different | |
7656 | relocations. */ | |
d6f16593 | 7657 | if (r_type == R_MIPS_HI16 || r_type == R_MIPS16_HI16 |
b49e97c9 TS |
7658 | || (r_type == R_MIPS_GOT16 |
7659 | && mips_elf_local_relocation_p (input_bfd, rel, | |
b34976b6 | 7660 | local_sections, FALSE))) |
b49e97c9 TS |
7661 | { |
7662 | bfd_vma l; | |
7663 | const Elf_Internal_Rela *lo16_relocation; | |
7664 | reloc_howto_type *lo16_howto; | |
d6f16593 MR |
7665 | bfd_byte *lo16_location; |
7666 | int lo16_type; | |
7667 | ||
7668 | if (r_type == R_MIPS16_HI16) | |
7669 | lo16_type = R_MIPS16_LO16; | |
7670 | else | |
7671 | lo16_type = R_MIPS_LO16; | |
b49e97c9 TS |
7672 | |
7673 | /* The combined value is the sum of the HI16 addend, | |
7674 | left-shifted by sixteen bits, and the LO16 | |
7675 | addend, sign extended. (Usually, the code does | |
7676 | a `lui' of the HI16 value, and then an `addiu' of | |
7677 | the LO16 value.) | |
7678 | ||
4030e8f6 CD |
7679 | Scan ahead to find a matching LO16 relocation. |
7680 | ||
7681 | According to the MIPS ELF ABI, the R_MIPS_LO16 | |
7682 | relocation must be immediately following. | |
7683 | However, for the IRIX6 ABI, the next relocation | |
7684 | may be a composed relocation consisting of | |
7685 | several relocations for the same address. In | |
7686 | that case, the R_MIPS_LO16 relocation may occur | |
7687 | as one of these. We permit a similar extension | |
7688 | in general, as that is useful for GCC. */ | |
7689 | lo16_relocation = mips_elf_next_relocation (input_bfd, | |
d6f16593 | 7690 | lo16_type, |
b49e97c9 TS |
7691 | rel, relend); |
7692 | if (lo16_relocation == NULL) | |
b34976b6 | 7693 | return FALSE; |
b49e97c9 | 7694 | |
d6f16593 MR |
7695 | lo16_location = contents + lo16_relocation->r_offset; |
7696 | ||
b49e97c9 | 7697 | /* Obtain the addend kept there. */ |
4030e8f6 | 7698 | lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, |
d6f16593 MR |
7699 | lo16_type, FALSE); |
7700 | _bfd_mips16_elf_reloc_unshuffle (input_bfd, lo16_type, FALSE, | |
7701 | lo16_location); | |
b49e97c9 TS |
7702 | l = mips_elf_obtain_contents (lo16_howto, lo16_relocation, |
7703 | input_bfd, contents); | |
d6f16593 MR |
7704 | _bfd_mips16_elf_reloc_shuffle (input_bfd, lo16_type, FALSE, |
7705 | lo16_location); | |
b49e97c9 | 7706 | l &= lo16_howto->src_mask; |
5a659663 | 7707 | l <<= lo16_howto->rightshift; |
a7ebbfdf | 7708 | l = _bfd_mips_elf_sign_extend (l, 16); |
b49e97c9 TS |
7709 | |
7710 | addend <<= 16; | |
7711 | ||
7712 | /* Compute the combined addend. */ | |
7713 | addend += l; | |
b49e97c9 | 7714 | } |
30ac9238 RS |
7715 | else |
7716 | addend <<= howto->rightshift; | |
b49e97c9 TS |
7717 | } |
7718 | else | |
7719 | addend = rel->r_addend; | |
81d43bff RS |
7720 | mips_elf_adjust_addend (output_bfd, info, input_bfd, |
7721 | local_syms, local_sections, rel); | |
b49e97c9 TS |
7722 | } |
7723 | ||
1049f94e | 7724 | if (info->relocatable) |
b49e97c9 | 7725 | { |
4a14403c | 7726 | if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd) |
b49e97c9 TS |
7727 | && bfd_big_endian (input_bfd)) |
7728 | rel->r_offset -= 4; | |
7729 | ||
81d43bff | 7730 | if (!rela_relocation_p && rel->r_addend) |
5a659663 | 7731 | { |
81d43bff | 7732 | addend += rel->r_addend; |
30ac9238 | 7733 | if (r_type == R_MIPS_HI16 |
4030e8f6 | 7734 | || r_type == R_MIPS_GOT16) |
5a659663 TS |
7735 | addend = mips_elf_high (addend); |
7736 | else if (r_type == R_MIPS_HIGHER) | |
7737 | addend = mips_elf_higher (addend); | |
7738 | else if (r_type == R_MIPS_HIGHEST) | |
7739 | addend = mips_elf_highest (addend); | |
30ac9238 RS |
7740 | else |
7741 | addend >>= howto->rightshift; | |
b49e97c9 | 7742 | |
30ac9238 RS |
7743 | /* We use the source mask, rather than the destination |
7744 | mask because the place to which we are writing will be | |
7745 | source of the addend in the final link. */ | |
b49e97c9 TS |
7746 | addend &= howto->src_mask; |
7747 | ||
5a659663 | 7748 | if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)) |
b49e97c9 TS |
7749 | /* See the comment above about using R_MIPS_64 in the 32-bit |
7750 | ABI. Here, we need to update the addend. It would be | |
7751 | possible to get away with just using the R_MIPS_32 reloc | |
7752 | but for endianness. */ | |
7753 | { | |
7754 | bfd_vma sign_bits; | |
7755 | bfd_vma low_bits; | |
7756 | bfd_vma high_bits; | |
7757 | ||
7758 | if (addend & ((bfd_vma) 1 << 31)) | |
7759 | #ifdef BFD64 | |
7760 | sign_bits = ((bfd_vma) 1 << 32) - 1; | |
7761 | #else | |
7762 | sign_bits = -1; | |
7763 | #endif | |
7764 | else | |
7765 | sign_bits = 0; | |
7766 | ||
7767 | /* If we don't know that we have a 64-bit type, | |
7768 | do two separate stores. */ | |
7769 | if (bfd_big_endian (input_bfd)) | |
7770 | { | |
7771 | /* Store the sign-bits (which are most significant) | |
7772 | first. */ | |
7773 | low_bits = sign_bits; | |
7774 | high_bits = addend; | |
7775 | } | |
7776 | else | |
7777 | { | |
7778 | low_bits = addend; | |
7779 | high_bits = sign_bits; | |
7780 | } | |
7781 | bfd_put_32 (input_bfd, low_bits, | |
7782 | contents + rel->r_offset); | |
7783 | bfd_put_32 (input_bfd, high_bits, | |
7784 | contents + rel->r_offset + 4); | |
7785 | continue; | |
7786 | } | |
7787 | ||
7788 | if (! mips_elf_perform_relocation (info, howto, rel, addend, | |
7789 | input_bfd, input_section, | |
b34976b6 AM |
7790 | contents, FALSE)) |
7791 | return FALSE; | |
b49e97c9 TS |
7792 | } |
7793 | ||
7794 | /* Go on to the next relocation. */ | |
7795 | continue; | |
7796 | } | |
7797 | ||
7798 | /* In the N32 and 64-bit ABIs there may be multiple consecutive | |
7799 | relocations for the same offset. In that case we are | |
7800 | supposed to treat the output of each relocation as the addend | |
7801 | for the next. */ | |
7802 | if (rel + 1 < relend | |
7803 | && rel->r_offset == rel[1].r_offset | |
7804 | && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE) | |
b34976b6 | 7805 | use_saved_addend_p = TRUE; |
b49e97c9 | 7806 | else |
b34976b6 | 7807 | use_saved_addend_p = FALSE; |
b49e97c9 TS |
7808 | |
7809 | /* Figure out what value we are supposed to relocate. */ | |
7810 | switch (mips_elf_calculate_relocation (output_bfd, input_bfd, | |
7811 | input_section, info, rel, | |
7812 | addend, howto, local_syms, | |
7813 | local_sections, &value, | |
bce03d3d AO |
7814 | &name, &require_jalx, |
7815 | use_saved_addend_p)) | |
b49e97c9 TS |
7816 | { |
7817 | case bfd_reloc_continue: | |
7818 | /* There's nothing to do. */ | |
7819 | continue; | |
7820 | ||
7821 | case bfd_reloc_undefined: | |
7822 | /* mips_elf_calculate_relocation already called the | |
7823 | undefined_symbol callback. There's no real point in | |
7824 | trying to perform the relocation at this point, so we | |
7825 | just skip ahead to the next relocation. */ | |
7826 | continue; | |
7827 | ||
7828 | case bfd_reloc_notsupported: | |
7829 | msg = _("internal error: unsupported relocation error"); | |
7830 | info->callbacks->warning | |
7831 | (info, msg, name, input_bfd, input_section, rel->r_offset); | |
b34976b6 | 7832 | return FALSE; |
b49e97c9 TS |
7833 | |
7834 | case bfd_reloc_overflow: | |
7835 | if (use_saved_addend_p) | |
7836 | /* Ignore overflow until we reach the last relocation for | |
7837 | a given location. */ | |
7838 | ; | |
7839 | else | |
7840 | { | |
7841 | BFD_ASSERT (name != NULL); | |
7842 | if (! ((*info->callbacks->reloc_overflow) | |
dfeffb9f | 7843 | (info, NULL, name, howto->name, (bfd_vma) 0, |
b49e97c9 | 7844 | input_bfd, input_section, rel->r_offset))) |
b34976b6 | 7845 | return FALSE; |
b49e97c9 TS |
7846 | } |
7847 | break; | |
7848 | ||
7849 | case bfd_reloc_ok: | |
7850 | break; | |
7851 | ||
7852 | default: | |
7853 | abort (); | |
7854 | break; | |
7855 | } | |
7856 | ||
7857 | /* If we've got another relocation for the address, keep going | |
7858 | until we reach the last one. */ | |
7859 | if (use_saved_addend_p) | |
7860 | { | |
7861 | addend = value; | |
7862 | continue; | |
7863 | } | |
7864 | ||
4a14403c | 7865 | if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)) |
b49e97c9 TS |
7866 | /* See the comment above about using R_MIPS_64 in the 32-bit |
7867 | ABI. Until now, we've been using the HOWTO for R_MIPS_32; | |
7868 | that calculated the right value. Now, however, we | |
7869 | sign-extend the 32-bit result to 64-bits, and store it as a | |
7870 | 64-bit value. We are especially generous here in that we | |
7871 | go to extreme lengths to support this usage on systems with | |
7872 | only a 32-bit VMA. */ | |
7873 | { | |
7874 | bfd_vma sign_bits; | |
7875 | bfd_vma low_bits; | |
7876 | bfd_vma high_bits; | |
7877 | ||
7878 | if (value & ((bfd_vma) 1 << 31)) | |
7879 | #ifdef BFD64 | |
7880 | sign_bits = ((bfd_vma) 1 << 32) - 1; | |
7881 | #else | |
7882 | sign_bits = -1; | |
7883 | #endif | |
7884 | else | |
7885 | sign_bits = 0; | |
7886 | ||
7887 | /* If we don't know that we have a 64-bit type, | |
7888 | do two separate stores. */ | |
7889 | if (bfd_big_endian (input_bfd)) | |
7890 | { | |
7891 | /* Undo what we did above. */ | |
7892 | rel->r_offset -= 4; | |
7893 | /* Store the sign-bits (which are most significant) | |
7894 | first. */ | |
7895 | low_bits = sign_bits; | |
7896 | high_bits = value; | |
7897 | } | |
7898 | else | |
7899 | { | |
7900 | low_bits = value; | |
7901 | high_bits = sign_bits; | |
7902 | } | |
7903 | bfd_put_32 (input_bfd, low_bits, | |
7904 | contents + rel->r_offset); | |
7905 | bfd_put_32 (input_bfd, high_bits, | |
7906 | contents + rel->r_offset + 4); | |
7907 | continue; | |
7908 | } | |
7909 | ||
7910 | /* Actually perform the relocation. */ | |
7911 | if (! mips_elf_perform_relocation (info, howto, rel, value, | |
7912 | input_bfd, input_section, | |
7913 | contents, require_jalx)) | |
b34976b6 | 7914 | return FALSE; |
b49e97c9 TS |
7915 | } |
7916 | ||
b34976b6 | 7917 | return TRUE; |
b49e97c9 TS |
7918 | } |
7919 | \f | |
7920 | /* If NAME is one of the special IRIX6 symbols defined by the linker, | |
7921 | adjust it appropriately now. */ | |
7922 | ||
7923 | static void | |
9719ad41 RS |
7924 | mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED, |
7925 | const char *name, Elf_Internal_Sym *sym) | |
b49e97c9 TS |
7926 | { |
7927 | /* The linker script takes care of providing names and values for | |
7928 | these, but we must place them into the right sections. */ | |
7929 | static const char* const text_section_symbols[] = { | |
7930 | "_ftext", | |
7931 | "_etext", | |
7932 | "__dso_displacement", | |
7933 | "__elf_header", | |
7934 | "__program_header_table", | |
7935 | NULL | |
7936 | }; | |
7937 | ||
7938 | static const char* const data_section_symbols[] = { | |
7939 | "_fdata", | |
7940 | "_edata", | |
7941 | "_end", | |
7942 | "_fbss", | |
7943 | NULL | |
7944 | }; | |
7945 | ||
7946 | const char* const *p; | |
7947 | int i; | |
7948 | ||
7949 | for (i = 0; i < 2; ++i) | |
7950 | for (p = (i == 0) ? text_section_symbols : data_section_symbols; | |
7951 | *p; | |
7952 | ++p) | |
7953 | if (strcmp (*p, name) == 0) | |
7954 | { | |
7955 | /* All of these symbols are given type STT_SECTION by the | |
7956 | IRIX6 linker. */ | |
7957 | sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); | |
e10609d3 | 7958 | sym->st_other = STO_PROTECTED; |
b49e97c9 TS |
7959 | |
7960 | /* The IRIX linker puts these symbols in special sections. */ | |
7961 | if (i == 0) | |
7962 | sym->st_shndx = SHN_MIPS_TEXT; | |
7963 | else | |
7964 | sym->st_shndx = SHN_MIPS_DATA; | |
7965 | ||
7966 | break; | |
7967 | } | |
7968 | } | |
7969 | ||
7970 | /* Finish up dynamic symbol handling. We set the contents of various | |
7971 | dynamic sections here. */ | |
7972 | ||
b34976b6 | 7973 | bfd_boolean |
9719ad41 RS |
7974 | _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd, |
7975 | struct bfd_link_info *info, | |
7976 | struct elf_link_hash_entry *h, | |
7977 | Elf_Internal_Sym *sym) | |
b49e97c9 TS |
7978 | { |
7979 | bfd *dynobj; | |
b49e97c9 | 7980 | asection *sgot; |
f4416af6 | 7981 | struct mips_got_info *g, *gg; |
b49e97c9 | 7982 | const char *name; |
b49e97c9 TS |
7983 | |
7984 | dynobj = elf_hash_table (info)->dynobj; | |
b49e97c9 | 7985 | |
c5ae1840 | 7986 | if (h->plt.offset != MINUS_ONE) |
b49e97c9 TS |
7987 | { |
7988 | asection *s; | |
7989 | bfd_byte stub[MIPS_FUNCTION_STUB_SIZE]; | |
7990 | ||
7991 | /* This symbol has a stub. Set it up. */ | |
7992 | ||
7993 | BFD_ASSERT (h->dynindx != -1); | |
7994 | ||
7995 | s = bfd_get_section_by_name (dynobj, | |
7996 | MIPS_ELF_STUB_SECTION_NAME (dynobj)); | |
7997 | BFD_ASSERT (s != NULL); | |
7998 | ||
6ece8836 | 7999 | /* FIXME: Can h->dynindx be more than 64K? */ |
b49e97c9 | 8000 | if (h->dynindx & 0xffff0000) |
b34976b6 | 8001 | return FALSE; |
b49e97c9 TS |
8002 | |
8003 | /* Fill the stub. */ | |
8004 | bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub); | |
8005 | bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + 4); | |
8006 | bfd_put_32 (output_bfd, STUB_JALR, stub + 8); | |
8007 | bfd_put_32 (output_bfd, STUB_LI16 (output_bfd) + h->dynindx, stub + 12); | |
8008 | ||
eea6121a | 8009 | BFD_ASSERT (h->plt.offset <= s->size); |
b49e97c9 TS |
8010 | memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE); |
8011 | ||
8012 | /* Mark the symbol as undefined. plt.offset != -1 occurs | |
8013 | only for the referenced symbol. */ | |
8014 | sym->st_shndx = SHN_UNDEF; | |
8015 | ||
8016 | /* The run-time linker uses the st_value field of the symbol | |
8017 | to reset the global offset table entry for this external | |
8018 | to its stub address when unlinking a shared object. */ | |
c5ae1840 TS |
8019 | sym->st_value = (s->output_section->vma + s->output_offset |
8020 | + h->plt.offset); | |
b49e97c9 TS |
8021 | } |
8022 | ||
8023 | BFD_ASSERT (h->dynindx != -1 | |
f5385ebf | 8024 | || h->forced_local); |
b49e97c9 | 8025 | |
f4416af6 | 8026 | sgot = mips_elf_got_section (dynobj, FALSE); |
b49e97c9 | 8027 | BFD_ASSERT (sgot != NULL); |
f4416af6 | 8028 | BFD_ASSERT (mips_elf_section_data (sgot) != NULL); |
f0abc2a1 | 8029 | g = mips_elf_section_data (sgot)->u.got_info; |
b49e97c9 TS |
8030 | BFD_ASSERT (g != NULL); |
8031 | ||
8032 | /* Run through the global symbol table, creating GOT entries for all | |
8033 | the symbols that need them. */ | |
8034 | if (g->global_gotsym != NULL | |
8035 | && h->dynindx >= g->global_gotsym->dynindx) | |
8036 | { | |
8037 | bfd_vma offset; | |
8038 | bfd_vma value; | |
8039 | ||
6eaa6adc | 8040 | value = sym->st_value; |
0f20cc35 | 8041 | offset = mips_elf_global_got_index (dynobj, output_bfd, h, R_MIPS_GOT16, info); |
b49e97c9 TS |
8042 | MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset); |
8043 | } | |
8044 | ||
0f20cc35 | 8045 | if (g->next && h->dynindx != -1 && h->type != STT_TLS) |
f4416af6 AO |
8046 | { |
8047 | struct mips_got_entry e, *p; | |
0626d451 | 8048 | bfd_vma entry; |
f4416af6 | 8049 | bfd_vma offset; |
f4416af6 AO |
8050 | |
8051 | gg = g; | |
8052 | ||
8053 | e.abfd = output_bfd; | |
8054 | e.symndx = -1; | |
8055 | e.d.h = (struct mips_elf_link_hash_entry *)h; | |
0f20cc35 | 8056 | e.tls_type = 0; |
143d77c5 | 8057 | |
f4416af6 AO |
8058 | for (g = g->next; g->next != gg; g = g->next) |
8059 | { | |
8060 | if (g->got_entries | |
8061 | && (p = (struct mips_got_entry *) htab_find (g->got_entries, | |
8062 | &e))) | |
8063 | { | |
8064 | offset = p->gotidx; | |
0626d451 RS |
8065 | if (info->shared |
8066 | || (elf_hash_table (info)->dynamic_sections_created | |
8067 | && p->d.h != NULL | |
f5385ebf AM |
8068 | && p->d.h->root.def_dynamic |
8069 | && !p->d.h->root.def_regular)) | |
0626d451 RS |
8070 | { |
8071 | /* Create an R_MIPS_REL32 relocation for this entry. Due to | |
8072 | the various compatibility problems, it's easier to mock | |
8073 | up an R_MIPS_32 or R_MIPS_64 relocation and leave | |
8074 | mips_elf_create_dynamic_relocation to calculate the | |
8075 | appropriate addend. */ | |
8076 | Elf_Internal_Rela rel[3]; | |
8077 | ||
8078 | memset (rel, 0, sizeof (rel)); | |
8079 | if (ABI_64_P (output_bfd)) | |
8080 | rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64); | |
8081 | else | |
8082 | rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32); | |
8083 | rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset; | |
8084 | ||
8085 | entry = 0; | |
8086 | if (! (mips_elf_create_dynamic_relocation | |
8087 | (output_bfd, info, rel, | |
8088 | e.d.h, NULL, sym->st_value, &entry, sgot))) | |
8089 | return FALSE; | |
8090 | } | |
8091 | else | |
8092 | entry = sym->st_value; | |
8093 | MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset); | |
f4416af6 AO |
8094 | } |
8095 | } | |
8096 | } | |
8097 | ||
b49e97c9 TS |
8098 | /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */ |
8099 | name = h->root.root.string; | |
8100 | if (strcmp (name, "_DYNAMIC") == 0 | |
22edb2f1 | 8101 | || h == elf_hash_table (info)->hgot) |
b49e97c9 TS |
8102 | sym->st_shndx = SHN_ABS; |
8103 | else if (strcmp (name, "_DYNAMIC_LINK") == 0 | |
8104 | || strcmp (name, "_DYNAMIC_LINKING") == 0) | |
8105 | { | |
8106 | sym->st_shndx = SHN_ABS; | |
8107 | sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); | |
8108 | sym->st_value = 1; | |
8109 | } | |
4a14403c | 8110 | else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd)) |
b49e97c9 TS |
8111 | { |
8112 | sym->st_shndx = SHN_ABS; | |
8113 | sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); | |
8114 | sym->st_value = elf_gp (output_bfd); | |
8115 | } | |
8116 | else if (SGI_COMPAT (output_bfd)) | |
8117 | { | |
8118 | if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0 | |
8119 | || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0) | |
8120 | { | |
8121 | sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); | |
8122 | sym->st_other = STO_PROTECTED; | |
8123 | sym->st_value = 0; | |
8124 | sym->st_shndx = SHN_MIPS_DATA; | |
8125 | } | |
8126 | else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0) | |
8127 | { | |
8128 | sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); | |
8129 | sym->st_other = STO_PROTECTED; | |
8130 | sym->st_value = mips_elf_hash_table (info)->procedure_count; | |
8131 | sym->st_shndx = SHN_ABS; | |
8132 | } | |
8133 | else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS) | |
8134 | { | |
8135 | if (h->type == STT_FUNC) | |
8136 | sym->st_shndx = SHN_MIPS_TEXT; | |
8137 | else if (h->type == STT_OBJECT) | |
8138 | sym->st_shndx = SHN_MIPS_DATA; | |
8139 | } | |
8140 | } | |
8141 | ||
8142 | /* Handle the IRIX6-specific symbols. */ | |
8143 | if (IRIX_COMPAT (output_bfd) == ict_irix6) | |
8144 | mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym); | |
8145 | ||
8146 | if (! info->shared) | |
8147 | { | |
8148 | if (! mips_elf_hash_table (info)->use_rld_obj_head | |
8149 | && (strcmp (name, "__rld_map") == 0 | |
8150 | || strcmp (name, "__RLD_MAP") == 0)) | |
8151 | { | |
8152 | asection *s = bfd_get_section_by_name (dynobj, ".rld_map"); | |
8153 | BFD_ASSERT (s != NULL); | |
8154 | sym->st_value = s->output_section->vma + s->output_offset; | |
9719ad41 | 8155 | bfd_put_32 (output_bfd, 0, s->contents); |
b49e97c9 TS |
8156 | if (mips_elf_hash_table (info)->rld_value == 0) |
8157 | mips_elf_hash_table (info)->rld_value = sym->st_value; | |
8158 | } | |
8159 | else if (mips_elf_hash_table (info)->use_rld_obj_head | |
8160 | && strcmp (name, "__rld_obj_head") == 0) | |
8161 | { | |
8162 | /* IRIX6 does not use a .rld_map section. */ | |
8163 | if (IRIX_COMPAT (output_bfd) == ict_irix5 | |
8164 | || IRIX_COMPAT (output_bfd) == ict_none) | |
8165 | BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map") | |
8166 | != NULL); | |
8167 | mips_elf_hash_table (info)->rld_value = sym->st_value; | |
8168 | } | |
8169 | } | |
8170 | ||
8171 | /* If this is a mips16 symbol, force the value to be even. */ | |
79cda7cf FF |
8172 | if (sym->st_other == STO_MIPS16) |
8173 | sym->st_value &= ~1; | |
b49e97c9 | 8174 | |
b34976b6 | 8175 | return TRUE; |
b49e97c9 TS |
8176 | } |
8177 | ||
0a44bf69 RS |
8178 | /* Likewise, for VxWorks. */ |
8179 | ||
8180 | bfd_boolean | |
8181 | _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd, | |
8182 | struct bfd_link_info *info, | |
8183 | struct elf_link_hash_entry *h, | |
8184 | Elf_Internal_Sym *sym) | |
8185 | { | |
8186 | bfd *dynobj; | |
8187 | asection *sgot; | |
8188 | struct mips_got_info *g; | |
8189 | struct mips_elf_link_hash_table *htab; | |
8190 | ||
8191 | htab = mips_elf_hash_table (info); | |
8192 | dynobj = elf_hash_table (info)->dynobj; | |
8193 | ||
8194 | if (h->plt.offset != (bfd_vma) -1) | |
8195 | { | |
6d79d2ed | 8196 | bfd_byte *loc; |
0a44bf69 RS |
8197 | bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset; |
8198 | Elf_Internal_Rela rel; | |
8199 | static const bfd_vma *plt_entry; | |
8200 | ||
8201 | BFD_ASSERT (h->dynindx != -1); | |
8202 | BFD_ASSERT (htab->splt != NULL); | |
8203 | BFD_ASSERT (h->plt.offset <= htab->splt->size); | |
8204 | ||
8205 | /* Calculate the address of the .plt entry. */ | |
8206 | plt_address = (htab->splt->output_section->vma | |
8207 | + htab->splt->output_offset | |
8208 | + h->plt.offset); | |
8209 | ||
8210 | /* Calculate the index of the entry. */ | |
8211 | plt_index = ((h->plt.offset - htab->plt_header_size) | |
8212 | / htab->plt_entry_size); | |
8213 | ||
8214 | /* Calculate the address of the .got.plt entry. */ | |
8215 | got_address = (htab->sgotplt->output_section->vma | |
8216 | + htab->sgotplt->output_offset | |
8217 | + plt_index * 4); | |
8218 | ||
8219 | /* Calculate the offset of the .got.plt entry from | |
8220 | _GLOBAL_OFFSET_TABLE_. */ | |
8221 | got_offset = mips_elf_gotplt_index (info, h); | |
8222 | ||
8223 | /* Calculate the offset for the branch at the start of the PLT | |
8224 | entry. The branch jumps to the beginning of .plt. */ | |
8225 | branch_offset = -(h->plt.offset / 4 + 1) & 0xffff; | |
8226 | ||
8227 | /* Fill in the initial value of the .got.plt entry. */ | |
8228 | bfd_put_32 (output_bfd, plt_address, | |
8229 | htab->sgotplt->contents + plt_index * 4); | |
8230 | ||
8231 | /* Find out where the .plt entry should go. */ | |
8232 | loc = htab->splt->contents + h->plt.offset; | |
8233 | ||
8234 | if (info->shared) | |
8235 | { | |
8236 | plt_entry = mips_vxworks_shared_plt_entry; | |
8237 | bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc); | |
8238 | bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4); | |
8239 | } | |
8240 | else | |
8241 | { | |
8242 | bfd_vma got_address_high, got_address_low; | |
8243 | ||
8244 | plt_entry = mips_vxworks_exec_plt_entry; | |
8245 | got_address_high = ((got_address + 0x8000) >> 16) & 0xffff; | |
8246 | got_address_low = got_address & 0xffff; | |
8247 | ||
8248 | bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc); | |
8249 | bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4); | |
8250 | bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8); | |
8251 | bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12); | |
8252 | bfd_put_32 (output_bfd, plt_entry[4], loc + 16); | |
8253 | bfd_put_32 (output_bfd, plt_entry[5], loc + 20); | |
8254 | bfd_put_32 (output_bfd, plt_entry[6], loc + 24); | |
8255 | bfd_put_32 (output_bfd, plt_entry[7], loc + 28); | |
8256 | ||
8257 | loc = (htab->srelplt2->contents | |
8258 | + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela)); | |
8259 | ||
8260 | /* Emit a relocation for the .got.plt entry. */ | |
8261 | rel.r_offset = got_address; | |
8262 | rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32); | |
8263 | rel.r_addend = h->plt.offset; | |
8264 | bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); | |
8265 | ||
8266 | /* Emit a relocation for the lui of %hi(<.got.plt slot>). */ | |
8267 | loc += sizeof (Elf32_External_Rela); | |
8268 | rel.r_offset = plt_address + 8; | |
8269 | rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16); | |
8270 | rel.r_addend = got_offset; | |
8271 | bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); | |
8272 | ||
8273 | /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */ | |
8274 | loc += sizeof (Elf32_External_Rela); | |
8275 | rel.r_offset += 4; | |
8276 | rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16); | |
8277 | bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); | |
8278 | } | |
8279 | ||
8280 | /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */ | |
8281 | loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela); | |
8282 | rel.r_offset = got_address; | |
8283 | rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT); | |
8284 | rel.r_addend = 0; | |
8285 | bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); | |
8286 | ||
8287 | if (!h->def_regular) | |
8288 | sym->st_shndx = SHN_UNDEF; | |
8289 | } | |
8290 | ||
8291 | BFD_ASSERT (h->dynindx != -1 || h->forced_local); | |
8292 | ||
8293 | sgot = mips_elf_got_section (dynobj, FALSE); | |
8294 | BFD_ASSERT (sgot != NULL); | |
8295 | BFD_ASSERT (mips_elf_section_data (sgot) != NULL); | |
8296 | g = mips_elf_section_data (sgot)->u.got_info; | |
8297 | BFD_ASSERT (g != NULL); | |
8298 | ||
8299 | /* See if this symbol has an entry in the GOT. */ | |
8300 | if (g->global_gotsym != NULL | |
8301 | && h->dynindx >= g->global_gotsym->dynindx) | |
8302 | { | |
8303 | bfd_vma offset; | |
8304 | Elf_Internal_Rela outrel; | |
8305 | bfd_byte *loc; | |
8306 | asection *s; | |
8307 | ||
8308 | /* Install the symbol value in the GOT. */ | |
8309 | offset = mips_elf_global_got_index (dynobj, output_bfd, h, | |
8310 | R_MIPS_GOT16, info); | |
8311 | MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset); | |
8312 | ||
8313 | /* Add a dynamic relocation for it. */ | |
8314 | s = mips_elf_rel_dyn_section (info, FALSE); | |
8315 | loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela)); | |
8316 | outrel.r_offset = (sgot->output_section->vma | |
8317 | + sgot->output_offset | |
8318 | + offset); | |
8319 | outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32); | |
8320 | outrel.r_addend = 0; | |
8321 | bfd_elf32_swap_reloca_out (dynobj, &outrel, loc); | |
8322 | } | |
8323 | ||
8324 | /* Emit a copy reloc, if needed. */ | |
8325 | if (h->needs_copy) | |
8326 | { | |
8327 | Elf_Internal_Rela rel; | |
8328 | ||
8329 | BFD_ASSERT (h->dynindx != -1); | |
8330 | ||
8331 | rel.r_offset = (h->root.u.def.section->output_section->vma | |
8332 | + h->root.u.def.section->output_offset | |
8333 | + h->root.u.def.value); | |
8334 | rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY); | |
8335 | rel.r_addend = 0; | |
8336 | bfd_elf32_swap_reloca_out (output_bfd, &rel, | |
8337 | htab->srelbss->contents | |
8338 | + (htab->srelbss->reloc_count | |
8339 | * sizeof (Elf32_External_Rela))); | |
8340 | ++htab->srelbss->reloc_count; | |
8341 | } | |
8342 | ||
8343 | /* If this is a mips16 symbol, force the value to be even. */ | |
8344 | if (sym->st_other == STO_MIPS16) | |
8345 | sym->st_value &= ~1; | |
8346 | ||
8347 | return TRUE; | |
8348 | } | |
8349 | ||
8350 | /* Install the PLT header for a VxWorks executable and finalize the | |
8351 | contents of .rela.plt.unloaded. */ | |
8352 | ||
8353 | static void | |
8354 | mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info) | |
8355 | { | |
8356 | Elf_Internal_Rela rela; | |
8357 | bfd_byte *loc; | |
8358 | bfd_vma got_value, got_value_high, got_value_low, plt_address; | |
8359 | static const bfd_vma *plt_entry; | |
8360 | struct mips_elf_link_hash_table *htab; | |
8361 | ||
8362 | htab = mips_elf_hash_table (info); | |
8363 | plt_entry = mips_vxworks_exec_plt0_entry; | |
8364 | ||
8365 | /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */ | |
8366 | got_value = (htab->root.hgot->root.u.def.section->output_section->vma | |
8367 | + htab->root.hgot->root.u.def.section->output_offset | |
8368 | + htab->root.hgot->root.u.def.value); | |
8369 | ||
8370 | got_value_high = ((got_value + 0x8000) >> 16) & 0xffff; | |
8371 | got_value_low = got_value & 0xffff; | |
8372 | ||
8373 | /* Calculate the address of the PLT header. */ | |
8374 | plt_address = htab->splt->output_section->vma + htab->splt->output_offset; | |
8375 | ||
8376 | /* Install the PLT header. */ | |
8377 | loc = htab->splt->contents; | |
8378 | bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc); | |
8379 | bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4); | |
8380 | bfd_put_32 (output_bfd, plt_entry[2], loc + 8); | |
8381 | bfd_put_32 (output_bfd, plt_entry[3], loc + 12); | |
8382 | bfd_put_32 (output_bfd, plt_entry[4], loc + 16); | |
8383 | bfd_put_32 (output_bfd, plt_entry[5], loc + 20); | |
8384 | ||
8385 | /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */ | |
8386 | loc = htab->srelplt2->contents; | |
8387 | rela.r_offset = plt_address; | |
8388 | rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16); | |
8389 | rela.r_addend = 0; | |
8390 | bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); | |
8391 | loc += sizeof (Elf32_External_Rela); | |
8392 | ||
8393 | /* Output the relocation for the following addiu of | |
8394 | %lo(_GLOBAL_OFFSET_TABLE_). */ | |
8395 | rela.r_offset += 4; | |
8396 | rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16); | |
8397 | bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); | |
8398 | loc += sizeof (Elf32_External_Rela); | |
8399 | ||
8400 | /* Fix up the remaining relocations. They may have the wrong | |
8401 | symbol index for _G_O_T_ or _P_L_T_ depending on the order | |
8402 | in which symbols were output. */ | |
8403 | while (loc < htab->srelplt2->contents + htab->srelplt2->size) | |
8404 | { | |
8405 | Elf_Internal_Rela rel; | |
8406 | ||
8407 | bfd_elf32_swap_reloca_in (output_bfd, loc, &rel); | |
8408 | rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32); | |
8409 | bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); | |
8410 | loc += sizeof (Elf32_External_Rela); | |
8411 | ||
8412 | bfd_elf32_swap_reloca_in (output_bfd, loc, &rel); | |
8413 | rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16); | |
8414 | bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); | |
8415 | loc += sizeof (Elf32_External_Rela); | |
8416 | ||
8417 | bfd_elf32_swap_reloca_in (output_bfd, loc, &rel); | |
8418 | rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16); | |
8419 | bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); | |
8420 | loc += sizeof (Elf32_External_Rela); | |
8421 | } | |
8422 | } | |
8423 | ||
8424 | /* Install the PLT header for a VxWorks shared library. */ | |
8425 | ||
8426 | static void | |
8427 | mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info) | |
8428 | { | |
8429 | unsigned int i; | |
8430 | struct mips_elf_link_hash_table *htab; | |
8431 | ||
8432 | htab = mips_elf_hash_table (info); | |
8433 | ||
8434 | /* We just need to copy the entry byte-by-byte. */ | |
8435 | for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++) | |
8436 | bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i], | |
8437 | htab->splt->contents + i * 4); | |
8438 | } | |
8439 | ||
b49e97c9 TS |
8440 | /* Finish up the dynamic sections. */ |
8441 | ||
b34976b6 | 8442 | bfd_boolean |
9719ad41 RS |
8443 | _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd, |
8444 | struct bfd_link_info *info) | |
b49e97c9 TS |
8445 | { |
8446 | bfd *dynobj; | |
8447 | asection *sdyn; | |
8448 | asection *sgot; | |
f4416af6 | 8449 | struct mips_got_info *gg, *g; |
0a44bf69 | 8450 | struct mips_elf_link_hash_table *htab; |
b49e97c9 | 8451 | |
0a44bf69 | 8452 | htab = mips_elf_hash_table (info); |
b49e97c9 TS |
8453 | dynobj = elf_hash_table (info)->dynobj; |
8454 | ||
8455 | sdyn = bfd_get_section_by_name (dynobj, ".dynamic"); | |
8456 | ||
f4416af6 | 8457 | sgot = mips_elf_got_section (dynobj, FALSE); |
b49e97c9 | 8458 | if (sgot == NULL) |
f4416af6 | 8459 | gg = g = NULL; |
b49e97c9 TS |
8460 | else |
8461 | { | |
f4416af6 AO |
8462 | BFD_ASSERT (mips_elf_section_data (sgot) != NULL); |
8463 | gg = mips_elf_section_data (sgot)->u.got_info; | |
8464 | BFD_ASSERT (gg != NULL); | |
8465 | g = mips_elf_got_for_ibfd (gg, output_bfd); | |
b49e97c9 TS |
8466 | BFD_ASSERT (g != NULL); |
8467 | } | |
8468 | ||
8469 | if (elf_hash_table (info)->dynamic_sections_created) | |
8470 | { | |
8471 | bfd_byte *b; | |
8472 | ||
8473 | BFD_ASSERT (sdyn != NULL); | |
8474 | BFD_ASSERT (g != NULL); | |
8475 | ||
8476 | for (b = sdyn->contents; | |
eea6121a | 8477 | b < sdyn->contents + sdyn->size; |
b49e97c9 TS |
8478 | b += MIPS_ELF_DYN_SIZE (dynobj)) |
8479 | { | |
8480 | Elf_Internal_Dyn dyn; | |
8481 | const char *name; | |
8482 | size_t elemsize; | |
8483 | asection *s; | |
b34976b6 | 8484 | bfd_boolean swap_out_p; |
b49e97c9 TS |
8485 | |
8486 | /* Read in the current dynamic entry. */ | |
8487 | (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn); | |
8488 | ||
8489 | /* Assume that we're going to modify it and write it out. */ | |
b34976b6 | 8490 | swap_out_p = TRUE; |
b49e97c9 TS |
8491 | |
8492 | switch (dyn.d_tag) | |
8493 | { | |
8494 | case DT_RELENT: | |
b49e97c9 TS |
8495 | dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj); |
8496 | break; | |
8497 | ||
0a44bf69 RS |
8498 | case DT_RELAENT: |
8499 | BFD_ASSERT (htab->is_vxworks); | |
8500 | dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj); | |
8501 | break; | |
8502 | ||
b49e97c9 TS |
8503 | case DT_STRSZ: |
8504 | /* Rewrite DT_STRSZ. */ | |
8505 | dyn.d_un.d_val = | |
8506 | _bfd_elf_strtab_size (elf_hash_table (info)->dynstr); | |
8507 | break; | |
8508 | ||
8509 | case DT_PLTGOT: | |
8510 | name = ".got"; | |
0a44bf69 RS |
8511 | if (htab->is_vxworks) |
8512 | { | |
8513 | /* _GLOBAL_OFFSET_TABLE_ is defined to be the beginning | |
8514 | of the ".got" section in DYNOBJ. */ | |
8515 | s = bfd_get_section_by_name (dynobj, name); | |
8516 | BFD_ASSERT (s != NULL); | |
8517 | dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; | |
8518 | } | |
8519 | else | |
8520 | { | |
8521 | s = bfd_get_section_by_name (output_bfd, name); | |
8522 | BFD_ASSERT (s != NULL); | |
8523 | dyn.d_un.d_ptr = s->vma; | |
8524 | } | |
b49e97c9 TS |
8525 | break; |
8526 | ||
8527 | case DT_MIPS_RLD_VERSION: | |
8528 | dyn.d_un.d_val = 1; /* XXX */ | |
8529 | break; | |
8530 | ||
8531 | case DT_MIPS_FLAGS: | |
8532 | dyn.d_un.d_val = RHF_NOTPOT; /* XXX */ | |
8533 | break; | |
8534 | ||
b49e97c9 | 8535 | case DT_MIPS_TIME_STAMP: |
6edfbbad DJ |
8536 | { |
8537 | time_t t; | |
8538 | time (&t); | |
8539 | dyn.d_un.d_val = t; | |
8540 | } | |
b49e97c9 TS |
8541 | break; |
8542 | ||
8543 | case DT_MIPS_ICHECKSUM: | |
8544 | /* XXX FIXME: */ | |
b34976b6 | 8545 | swap_out_p = FALSE; |
b49e97c9 TS |
8546 | break; |
8547 | ||
8548 | case DT_MIPS_IVERSION: | |
8549 | /* XXX FIXME: */ | |
b34976b6 | 8550 | swap_out_p = FALSE; |
b49e97c9 TS |
8551 | break; |
8552 | ||
8553 | case DT_MIPS_BASE_ADDRESS: | |
8554 | s = output_bfd->sections; | |
8555 | BFD_ASSERT (s != NULL); | |
8556 | dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff; | |
8557 | break; | |
8558 | ||
8559 | case DT_MIPS_LOCAL_GOTNO: | |
8560 | dyn.d_un.d_val = g->local_gotno; | |
8561 | break; | |
8562 | ||
8563 | case DT_MIPS_UNREFEXTNO: | |
8564 | /* The index into the dynamic symbol table which is the | |
8565 | entry of the first external symbol that is not | |
8566 | referenced within the same object. */ | |
8567 | dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1; | |
8568 | break; | |
8569 | ||
8570 | case DT_MIPS_GOTSYM: | |
f4416af6 | 8571 | if (gg->global_gotsym) |
b49e97c9 | 8572 | { |
f4416af6 | 8573 | dyn.d_un.d_val = gg->global_gotsym->dynindx; |
b49e97c9 TS |
8574 | break; |
8575 | } | |
8576 | /* In case if we don't have global got symbols we default | |
8577 | to setting DT_MIPS_GOTSYM to the same value as | |
8578 | DT_MIPS_SYMTABNO, so we just fall through. */ | |
8579 | ||
8580 | case DT_MIPS_SYMTABNO: | |
8581 | name = ".dynsym"; | |
8582 | elemsize = MIPS_ELF_SYM_SIZE (output_bfd); | |
8583 | s = bfd_get_section_by_name (output_bfd, name); | |
8584 | BFD_ASSERT (s != NULL); | |
8585 | ||
eea6121a | 8586 | dyn.d_un.d_val = s->size / elemsize; |
b49e97c9 TS |
8587 | break; |
8588 | ||
8589 | case DT_MIPS_HIPAGENO: | |
0a44bf69 | 8590 | dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO (info); |
b49e97c9 TS |
8591 | break; |
8592 | ||
8593 | case DT_MIPS_RLD_MAP: | |
8594 | dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value; | |
8595 | break; | |
8596 | ||
8597 | case DT_MIPS_OPTIONS: | |
8598 | s = (bfd_get_section_by_name | |
8599 | (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd))); | |
8600 | dyn.d_un.d_ptr = s->vma; | |
8601 | break; | |
8602 | ||
0a44bf69 RS |
8603 | case DT_RELASZ: |
8604 | BFD_ASSERT (htab->is_vxworks); | |
8605 | /* The count does not include the JUMP_SLOT relocations. */ | |
8606 | if (htab->srelplt) | |
8607 | dyn.d_un.d_val -= htab->srelplt->size; | |
8608 | break; | |
8609 | ||
8610 | case DT_PLTREL: | |
8611 | BFD_ASSERT (htab->is_vxworks); | |
8612 | dyn.d_un.d_val = DT_RELA; | |
8613 | break; | |
8614 | ||
8615 | case DT_PLTRELSZ: | |
8616 | BFD_ASSERT (htab->is_vxworks); | |
8617 | dyn.d_un.d_val = htab->srelplt->size; | |
8618 | break; | |
8619 | ||
8620 | case DT_JMPREL: | |
8621 | BFD_ASSERT (htab->is_vxworks); | |
8622 | dyn.d_un.d_val = (htab->srelplt->output_section->vma | |
8623 | + htab->srelplt->output_offset); | |
8624 | break; | |
8625 | ||
b49e97c9 | 8626 | default: |
b34976b6 | 8627 | swap_out_p = FALSE; |
b49e97c9 TS |
8628 | break; |
8629 | } | |
8630 | ||
8631 | if (swap_out_p) | |
8632 | (*get_elf_backend_data (dynobj)->s->swap_dyn_out) | |
8633 | (dynobj, &dyn, b); | |
8634 | } | |
8635 | } | |
8636 | ||
eea6121a | 8637 | if (sgot != NULL && sgot->size > 0) |
b49e97c9 | 8638 | { |
0a44bf69 RS |
8639 | if (htab->is_vxworks) |
8640 | { | |
8641 | /* The first entry of the global offset table points to the | |
8642 | ".dynamic" section. The second is initialized by the | |
8643 | loader and contains the shared library identifier. | |
8644 | The third is also initialized by the loader and points | |
8645 | to the lazy resolution stub. */ | |
8646 | MIPS_ELF_PUT_WORD (output_bfd, | |
8647 | sdyn->output_offset + sdyn->output_section->vma, | |
8648 | sgot->contents); | |
8649 | MIPS_ELF_PUT_WORD (output_bfd, 0, | |
8650 | sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd)); | |
8651 | MIPS_ELF_PUT_WORD (output_bfd, 0, | |
8652 | sgot->contents | |
8653 | + 2 * MIPS_ELF_GOT_SIZE (output_bfd)); | |
8654 | } | |
8655 | else | |
8656 | { | |
8657 | /* The first entry of the global offset table will be filled at | |
8658 | runtime. The second entry will be used by some runtime loaders. | |
8659 | This isn't the case of IRIX rld. */ | |
8660 | MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents); | |
8661 | MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000, | |
8662 | sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd)); | |
8663 | } | |
b49e97c9 TS |
8664 | } |
8665 | ||
8666 | if (sgot != NULL) | |
8667 | elf_section_data (sgot->output_section)->this_hdr.sh_entsize | |
8668 | = MIPS_ELF_GOT_SIZE (output_bfd); | |
8669 | ||
f4416af6 AO |
8670 | /* Generate dynamic relocations for the non-primary gots. */ |
8671 | if (gg != NULL && gg->next) | |
8672 | { | |
8673 | Elf_Internal_Rela rel[3]; | |
8674 | bfd_vma addend = 0; | |
8675 | ||
8676 | memset (rel, 0, sizeof (rel)); | |
8677 | rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32); | |
8678 | ||
8679 | for (g = gg->next; g->next != gg; g = g->next) | |
8680 | { | |
0f20cc35 DJ |
8681 | bfd_vma index = g->next->local_gotno + g->next->global_gotno |
8682 | + g->next->tls_gotno; | |
f4416af6 | 8683 | |
9719ad41 | 8684 | MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents |
f4416af6 | 8685 | + index++ * MIPS_ELF_GOT_SIZE (output_bfd)); |
9719ad41 | 8686 | MIPS_ELF_PUT_WORD (output_bfd, 0x80000000, sgot->contents |
f4416af6 AO |
8687 | + index++ * MIPS_ELF_GOT_SIZE (output_bfd)); |
8688 | ||
8689 | if (! info->shared) | |
8690 | continue; | |
8691 | ||
8692 | while (index < g->assigned_gotno) | |
8693 | { | |
8694 | rel[0].r_offset = rel[1].r_offset = rel[2].r_offset | |
8695 | = index++ * MIPS_ELF_GOT_SIZE (output_bfd); | |
8696 | if (!(mips_elf_create_dynamic_relocation | |
8697 | (output_bfd, info, rel, NULL, | |
8698 | bfd_abs_section_ptr, | |
8699 | 0, &addend, sgot))) | |
8700 | return FALSE; | |
8701 | BFD_ASSERT (addend == 0); | |
8702 | } | |
8703 | } | |
8704 | } | |
8705 | ||
3133ddbf DJ |
8706 | /* The generation of dynamic relocations for the non-primary gots |
8707 | adds more dynamic relocations. We cannot count them until | |
8708 | here. */ | |
8709 | ||
8710 | if (elf_hash_table (info)->dynamic_sections_created) | |
8711 | { | |
8712 | bfd_byte *b; | |
8713 | bfd_boolean swap_out_p; | |
8714 | ||
8715 | BFD_ASSERT (sdyn != NULL); | |
8716 | ||
8717 | for (b = sdyn->contents; | |
8718 | b < sdyn->contents + sdyn->size; | |
8719 | b += MIPS_ELF_DYN_SIZE (dynobj)) | |
8720 | { | |
8721 | Elf_Internal_Dyn dyn; | |
8722 | asection *s; | |
8723 | ||
8724 | /* Read in the current dynamic entry. */ | |
8725 | (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn); | |
8726 | ||
8727 | /* Assume that we're going to modify it and write it out. */ | |
8728 | swap_out_p = TRUE; | |
8729 | ||
8730 | switch (dyn.d_tag) | |
8731 | { | |
8732 | case DT_RELSZ: | |
8733 | /* Reduce DT_RELSZ to account for any relocations we | |
8734 | decided not to make. This is for the n64 irix rld, | |
8735 | which doesn't seem to apply any relocations if there | |
8736 | are trailing null entries. */ | |
0a44bf69 | 8737 | s = mips_elf_rel_dyn_section (info, FALSE); |
3133ddbf DJ |
8738 | dyn.d_un.d_val = (s->reloc_count |
8739 | * (ABI_64_P (output_bfd) | |
8740 | ? sizeof (Elf64_Mips_External_Rel) | |
8741 | : sizeof (Elf32_External_Rel))); | |
8742 | break; | |
8743 | ||
8744 | default: | |
8745 | swap_out_p = FALSE; | |
8746 | break; | |
8747 | } | |
8748 | ||
8749 | if (swap_out_p) | |
8750 | (*get_elf_backend_data (dynobj)->s->swap_dyn_out) | |
8751 | (dynobj, &dyn, b); | |
8752 | } | |
8753 | } | |
8754 | ||
b49e97c9 | 8755 | { |
b49e97c9 TS |
8756 | asection *s; |
8757 | Elf32_compact_rel cpt; | |
8758 | ||
b49e97c9 TS |
8759 | if (SGI_COMPAT (output_bfd)) |
8760 | { | |
8761 | /* Write .compact_rel section out. */ | |
8762 | s = bfd_get_section_by_name (dynobj, ".compact_rel"); | |
8763 | if (s != NULL) | |
8764 | { | |
8765 | cpt.id1 = 1; | |
8766 | cpt.num = s->reloc_count; | |
8767 | cpt.id2 = 2; | |
8768 | cpt.offset = (s->output_section->filepos | |
8769 | + sizeof (Elf32_External_compact_rel)); | |
8770 | cpt.reserved0 = 0; | |
8771 | cpt.reserved1 = 0; | |
8772 | bfd_elf32_swap_compact_rel_out (output_bfd, &cpt, | |
8773 | ((Elf32_External_compact_rel *) | |
8774 | s->contents)); | |
8775 | ||
8776 | /* Clean up a dummy stub function entry in .text. */ | |
8777 | s = bfd_get_section_by_name (dynobj, | |
8778 | MIPS_ELF_STUB_SECTION_NAME (dynobj)); | |
8779 | if (s != NULL) | |
8780 | { | |
8781 | file_ptr dummy_offset; | |
8782 | ||
eea6121a AM |
8783 | BFD_ASSERT (s->size >= MIPS_FUNCTION_STUB_SIZE); |
8784 | dummy_offset = s->size - MIPS_FUNCTION_STUB_SIZE; | |
b49e97c9 TS |
8785 | memset (s->contents + dummy_offset, 0, |
8786 | MIPS_FUNCTION_STUB_SIZE); | |
8787 | } | |
8788 | } | |
8789 | } | |
8790 | ||
0a44bf69 RS |
8791 | /* The psABI says that the dynamic relocations must be sorted in |
8792 | increasing order of r_symndx. The VxWorks EABI doesn't require | |
8793 | this, and because the code below handles REL rather than RELA | |
8794 | relocations, using it for VxWorks would be outright harmful. */ | |
8795 | if (!htab->is_vxworks) | |
b49e97c9 | 8796 | { |
0a44bf69 RS |
8797 | s = mips_elf_rel_dyn_section (info, FALSE); |
8798 | if (s != NULL | |
8799 | && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd)) | |
8800 | { | |
8801 | reldyn_sorting_bfd = output_bfd; | |
b49e97c9 | 8802 | |
0a44bf69 RS |
8803 | if (ABI_64_P (output_bfd)) |
8804 | qsort ((Elf64_External_Rel *) s->contents + 1, | |
8805 | s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel), | |
8806 | sort_dynamic_relocs_64); | |
8807 | else | |
8808 | qsort ((Elf32_External_Rel *) s->contents + 1, | |
8809 | s->reloc_count - 1, sizeof (Elf32_External_Rel), | |
8810 | sort_dynamic_relocs); | |
8811 | } | |
b49e97c9 | 8812 | } |
b49e97c9 TS |
8813 | } |
8814 | ||
0a44bf69 RS |
8815 | if (htab->is_vxworks && htab->splt->size > 0) |
8816 | { | |
8817 | if (info->shared) | |
8818 | mips_vxworks_finish_shared_plt (output_bfd, info); | |
8819 | else | |
8820 | mips_vxworks_finish_exec_plt (output_bfd, info); | |
8821 | } | |
b34976b6 | 8822 | return TRUE; |
b49e97c9 TS |
8823 | } |
8824 | ||
b49e97c9 | 8825 | |
64543e1a RS |
8826 | /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */ |
8827 | ||
8828 | static void | |
9719ad41 | 8829 | mips_set_isa_flags (bfd *abfd) |
b49e97c9 | 8830 | { |
64543e1a | 8831 | flagword val; |
b49e97c9 TS |
8832 | |
8833 | switch (bfd_get_mach (abfd)) | |
8834 | { | |
8835 | default: | |
8836 | case bfd_mach_mips3000: | |
8837 | val = E_MIPS_ARCH_1; | |
8838 | break; | |
8839 | ||
8840 | case bfd_mach_mips3900: | |
8841 | val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900; | |
8842 | break; | |
8843 | ||
8844 | case bfd_mach_mips6000: | |
8845 | val = E_MIPS_ARCH_2; | |
8846 | break; | |
8847 | ||
8848 | case bfd_mach_mips4000: | |
8849 | case bfd_mach_mips4300: | |
8850 | case bfd_mach_mips4400: | |
8851 | case bfd_mach_mips4600: | |
8852 | val = E_MIPS_ARCH_3; | |
8853 | break; | |
8854 | ||
8855 | case bfd_mach_mips4010: | |
8856 | val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010; | |
8857 | break; | |
8858 | ||
8859 | case bfd_mach_mips4100: | |
8860 | val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100; | |
8861 | break; | |
8862 | ||
8863 | case bfd_mach_mips4111: | |
8864 | val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111; | |
8865 | break; | |
8866 | ||
00707a0e RS |
8867 | case bfd_mach_mips4120: |
8868 | val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120; | |
8869 | break; | |
8870 | ||
b49e97c9 TS |
8871 | case bfd_mach_mips4650: |
8872 | val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650; | |
8873 | break; | |
8874 | ||
00707a0e RS |
8875 | case bfd_mach_mips5400: |
8876 | val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400; | |
8877 | break; | |
8878 | ||
8879 | case bfd_mach_mips5500: | |
8880 | val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500; | |
8881 | break; | |
8882 | ||
0d2e43ed ILT |
8883 | case bfd_mach_mips9000: |
8884 | val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000; | |
8885 | break; | |
8886 | ||
b49e97c9 | 8887 | case bfd_mach_mips5000: |
5a7ea749 | 8888 | case bfd_mach_mips7000: |
b49e97c9 TS |
8889 | case bfd_mach_mips8000: |
8890 | case bfd_mach_mips10000: | |
8891 | case bfd_mach_mips12000: | |
8892 | val = E_MIPS_ARCH_4; | |
8893 | break; | |
8894 | ||
8895 | case bfd_mach_mips5: | |
8896 | val = E_MIPS_ARCH_5; | |
8897 | break; | |
8898 | ||
8899 | case bfd_mach_mips_sb1: | |
8900 | val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1; | |
8901 | break; | |
8902 | ||
8903 | case bfd_mach_mipsisa32: | |
8904 | val = E_MIPS_ARCH_32; | |
8905 | break; | |
8906 | ||
8907 | case bfd_mach_mipsisa64: | |
8908 | val = E_MIPS_ARCH_64; | |
af7ee8bf CD |
8909 | break; |
8910 | ||
8911 | case bfd_mach_mipsisa32r2: | |
8912 | val = E_MIPS_ARCH_32R2; | |
8913 | break; | |
5f74bc13 CD |
8914 | |
8915 | case bfd_mach_mipsisa64r2: | |
8916 | val = E_MIPS_ARCH_64R2; | |
8917 | break; | |
b49e97c9 | 8918 | } |
b49e97c9 TS |
8919 | elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH); |
8920 | elf_elfheader (abfd)->e_flags |= val; | |
8921 | ||
64543e1a RS |
8922 | } |
8923 | ||
8924 | ||
8925 | /* The final processing done just before writing out a MIPS ELF object | |
8926 | file. This gets the MIPS architecture right based on the machine | |
8927 | number. This is used by both the 32-bit and the 64-bit ABI. */ | |
8928 | ||
8929 | void | |
9719ad41 RS |
8930 | _bfd_mips_elf_final_write_processing (bfd *abfd, |
8931 | bfd_boolean linker ATTRIBUTE_UNUSED) | |
64543e1a RS |
8932 | { |
8933 | unsigned int i; | |
8934 | Elf_Internal_Shdr **hdrpp; | |
8935 | const char *name; | |
8936 | asection *sec; | |
8937 | ||
8938 | /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former | |
8939 | is nonzero. This is for compatibility with old objects, which used | |
8940 | a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */ | |
8941 | if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0) | |
8942 | mips_set_isa_flags (abfd); | |
8943 | ||
b49e97c9 TS |
8944 | /* Set the sh_info field for .gptab sections and other appropriate |
8945 | info for each special section. */ | |
8946 | for (i = 1, hdrpp = elf_elfsections (abfd) + 1; | |
8947 | i < elf_numsections (abfd); | |
8948 | i++, hdrpp++) | |
8949 | { | |
8950 | switch ((*hdrpp)->sh_type) | |
8951 | { | |
8952 | case SHT_MIPS_MSYM: | |
8953 | case SHT_MIPS_LIBLIST: | |
8954 | sec = bfd_get_section_by_name (abfd, ".dynstr"); | |
8955 | if (sec != NULL) | |
8956 | (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; | |
8957 | break; | |
8958 | ||
8959 | case SHT_MIPS_GPTAB: | |
8960 | BFD_ASSERT ((*hdrpp)->bfd_section != NULL); | |
8961 | name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section); | |
8962 | BFD_ASSERT (name != NULL | |
8963 | && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0); | |
8964 | sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1); | |
8965 | BFD_ASSERT (sec != NULL); | |
8966 | (*hdrpp)->sh_info = elf_section_data (sec)->this_idx; | |
8967 | break; | |
8968 | ||
8969 | case SHT_MIPS_CONTENT: | |
8970 | BFD_ASSERT ((*hdrpp)->bfd_section != NULL); | |
8971 | name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section); | |
8972 | BFD_ASSERT (name != NULL | |
8973 | && strncmp (name, ".MIPS.content", | |
8974 | sizeof ".MIPS.content" - 1) == 0); | |
8975 | sec = bfd_get_section_by_name (abfd, | |
8976 | name + sizeof ".MIPS.content" - 1); | |
8977 | BFD_ASSERT (sec != NULL); | |
8978 | (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; | |
8979 | break; | |
8980 | ||
8981 | case SHT_MIPS_SYMBOL_LIB: | |
8982 | sec = bfd_get_section_by_name (abfd, ".dynsym"); | |
8983 | if (sec != NULL) | |
8984 | (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; | |
8985 | sec = bfd_get_section_by_name (abfd, ".liblist"); | |
8986 | if (sec != NULL) | |
8987 | (*hdrpp)->sh_info = elf_section_data (sec)->this_idx; | |
8988 | break; | |
8989 | ||
8990 | case SHT_MIPS_EVENTS: | |
8991 | BFD_ASSERT ((*hdrpp)->bfd_section != NULL); | |
8992 | name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section); | |
8993 | BFD_ASSERT (name != NULL); | |
8994 | if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0) | |
8995 | sec = bfd_get_section_by_name (abfd, | |
8996 | name + sizeof ".MIPS.events" - 1); | |
8997 | else | |
8998 | { | |
8999 | BFD_ASSERT (strncmp (name, ".MIPS.post_rel", | |
9000 | sizeof ".MIPS.post_rel" - 1) == 0); | |
9001 | sec = bfd_get_section_by_name (abfd, | |
9002 | (name | |
9003 | + sizeof ".MIPS.post_rel" - 1)); | |
9004 | } | |
9005 | BFD_ASSERT (sec != NULL); | |
9006 | (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; | |
9007 | break; | |
9008 | ||
9009 | } | |
9010 | } | |
9011 | } | |
9012 | \f | |
8dc1a139 | 9013 | /* When creating an IRIX5 executable, we need REGINFO and RTPROC |
b49e97c9 TS |
9014 | segments. */ |
9015 | ||
9016 | int | |
9719ad41 | 9017 | _bfd_mips_elf_additional_program_headers (bfd *abfd) |
b49e97c9 TS |
9018 | { |
9019 | asection *s; | |
9020 | int ret = 0; | |
9021 | ||
9022 | /* See if we need a PT_MIPS_REGINFO segment. */ | |
9023 | s = bfd_get_section_by_name (abfd, ".reginfo"); | |
9024 | if (s && (s->flags & SEC_LOAD)) | |
9025 | ++ret; | |
9026 | ||
9027 | /* See if we need a PT_MIPS_OPTIONS segment. */ | |
9028 | if (IRIX_COMPAT (abfd) == ict_irix6 | |
9029 | && bfd_get_section_by_name (abfd, | |
9030 | MIPS_ELF_OPTIONS_SECTION_NAME (abfd))) | |
9031 | ++ret; | |
9032 | ||
9033 | /* See if we need a PT_MIPS_RTPROC segment. */ | |
9034 | if (IRIX_COMPAT (abfd) == ict_irix5 | |
9035 | && bfd_get_section_by_name (abfd, ".dynamic") | |
9036 | && bfd_get_section_by_name (abfd, ".mdebug")) | |
9037 | ++ret; | |
9038 | ||
9039 | return ret; | |
9040 | } | |
9041 | ||
8dc1a139 | 9042 | /* Modify the segment map for an IRIX5 executable. */ |
b49e97c9 | 9043 | |
b34976b6 | 9044 | bfd_boolean |
9719ad41 RS |
9045 | _bfd_mips_elf_modify_segment_map (bfd *abfd, |
9046 | struct bfd_link_info *info ATTRIBUTE_UNUSED) | |
b49e97c9 TS |
9047 | { |
9048 | asection *s; | |
9049 | struct elf_segment_map *m, **pm; | |
9050 | bfd_size_type amt; | |
9051 | ||
9052 | /* If there is a .reginfo section, we need a PT_MIPS_REGINFO | |
9053 | segment. */ | |
9054 | s = bfd_get_section_by_name (abfd, ".reginfo"); | |
9055 | if (s != NULL && (s->flags & SEC_LOAD) != 0) | |
9056 | { | |
9057 | for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next) | |
9058 | if (m->p_type == PT_MIPS_REGINFO) | |
9059 | break; | |
9060 | if (m == NULL) | |
9061 | { | |
9062 | amt = sizeof *m; | |
9719ad41 | 9063 | m = bfd_zalloc (abfd, amt); |
b49e97c9 | 9064 | if (m == NULL) |
b34976b6 | 9065 | return FALSE; |
b49e97c9 TS |
9066 | |
9067 | m->p_type = PT_MIPS_REGINFO; | |
9068 | m->count = 1; | |
9069 | m->sections[0] = s; | |
9070 | ||
9071 | /* We want to put it after the PHDR and INTERP segments. */ | |
9072 | pm = &elf_tdata (abfd)->segment_map; | |
9073 | while (*pm != NULL | |
9074 | && ((*pm)->p_type == PT_PHDR | |
9075 | || (*pm)->p_type == PT_INTERP)) | |
9076 | pm = &(*pm)->next; | |
9077 | ||
9078 | m->next = *pm; | |
9079 | *pm = m; | |
9080 | } | |
9081 | } | |
9082 | ||
9083 | /* For IRIX 6, we don't have .mdebug sections, nor does anything but | |
9084 | .dynamic end up in PT_DYNAMIC. However, we do have to insert a | |
98a8deaf | 9085 | PT_MIPS_OPTIONS segment immediately following the program header |
b49e97c9 | 9086 | table. */ |
c1fd6598 AO |
9087 | if (NEWABI_P (abfd) |
9088 | /* On non-IRIX6 new abi, we'll have already created a segment | |
9089 | for this section, so don't create another. I'm not sure this | |
9090 | is not also the case for IRIX 6, but I can't test it right | |
9091 | now. */ | |
9092 | && IRIX_COMPAT (abfd) == ict_irix6) | |
b49e97c9 TS |
9093 | { |
9094 | for (s = abfd->sections; s; s = s->next) | |
9095 | if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS) | |
9096 | break; | |
9097 | ||
9098 | if (s) | |
9099 | { | |
9100 | struct elf_segment_map *options_segment; | |
9101 | ||
98a8deaf RS |
9102 | pm = &elf_tdata (abfd)->segment_map; |
9103 | while (*pm != NULL | |
9104 | && ((*pm)->p_type == PT_PHDR | |
9105 | || (*pm)->p_type == PT_INTERP)) | |
9106 | pm = &(*pm)->next; | |
b49e97c9 TS |
9107 | |
9108 | amt = sizeof (struct elf_segment_map); | |
9109 | options_segment = bfd_zalloc (abfd, amt); | |
9110 | options_segment->next = *pm; | |
9111 | options_segment->p_type = PT_MIPS_OPTIONS; | |
9112 | options_segment->p_flags = PF_R; | |
b34976b6 | 9113 | options_segment->p_flags_valid = TRUE; |
b49e97c9 TS |
9114 | options_segment->count = 1; |
9115 | options_segment->sections[0] = s; | |
9116 | *pm = options_segment; | |
9117 | } | |
9118 | } | |
9119 | else | |
9120 | { | |
9121 | if (IRIX_COMPAT (abfd) == ict_irix5) | |
9122 | { | |
9123 | /* If there are .dynamic and .mdebug sections, we make a room | |
9124 | for the RTPROC header. FIXME: Rewrite without section names. */ | |
9125 | if (bfd_get_section_by_name (abfd, ".interp") == NULL | |
9126 | && bfd_get_section_by_name (abfd, ".dynamic") != NULL | |
9127 | && bfd_get_section_by_name (abfd, ".mdebug") != NULL) | |
9128 | { | |
9129 | for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next) | |
9130 | if (m->p_type == PT_MIPS_RTPROC) | |
9131 | break; | |
9132 | if (m == NULL) | |
9133 | { | |
9134 | amt = sizeof *m; | |
9719ad41 | 9135 | m = bfd_zalloc (abfd, amt); |
b49e97c9 | 9136 | if (m == NULL) |
b34976b6 | 9137 | return FALSE; |
b49e97c9 TS |
9138 | |
9139 | m->p_type = PT_MIPS_RTPROC; | |
9140 | ||
9141 | s = bfd_get_section_by_name (abfd, ".rtproc"); | |
9142 | if (s == NULL) | |
9143 | { | |
9144 | m->count = 0; | |
9145 | m->p_flags = 0; | |
9146 | m->p_flags_valid = 1; | |
9147 | } | |
9148 | else | |
9149 | { | |
9150 | m->count = 1; | |
9151 | m->sections[0] = s; | |
9152 | } | |
9153 | ||
9154 | /* We want to put it after the DYNAMIC segment. */ | |
9155 | pm = &elf_tdata (abfd)->segment_map; | |
9156 | while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC) | |
9157 | pm = &(*pm)->next; | |
9158 | if (*pm != NULL) | |
9159 | pm = &(*pm)->next; | |
9160 | ||
9161 | m->next = *pm; | |
9162 | *pm = m; | |
9163 | } | |
9164 | } | |
9165 | } | |
8dc1a139 | 9166 | /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic, |
b49e97c9 TS |
9167 | .dynstr, .dynsym, and .hash sections, and everything in |
9168 | between. */ | |
9169 | for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; | |
9170 | pm = &(*pm)->next) | |
9171 | if ((*pm)->p_type == PT_DYNAMIC) | |
9172 | break; | |
9173 | m = *pm; | |
9174 | if (m != NULL && IRIX_COMPAT (abfd) == ict_none) | |
9175 | { | |
9176 | /* For a normal mips executable the permissions for the PT_DYNAMIC | |
9177 | segment are read, write and execute. We do that here since | |
9178 | the code in elf.c sets only the read permission. This matters | |
9179 | sometimes for the dynamic linker. */ | |
9180 | if (bfd_get_section_by_name (abfd, ".dynamic") != NULL) | |
9181 | { | |
9182 | m->p_flags = PF_R | PF_W | PF_X; | |
9183 | m->p_flags_valid = 1; | |
9184 | } | |
9185 | } | |
9186 | if (m != NULL | |
9187 | && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0) | |
9188 | { | |
9189 | static const char *sec_names[] = | |
9190 | { | |
9191 | ".dynamic", ".dynstr", ".dynsym", ".hash" | |
9192 | }; | |
9193 | bfd_vma low, high; | |
9194 | unsigned int i, c; | |
9195 | struct elf_segment_map *n; | |
9196 | ||
792b4a53 | 9197 | low = ~(bfd_vma) 0; |
b49e97c9 TS |
9198 | high = 0; |
9199 | for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++) | |
9200 | { | |
9201 | s = bfd_get_section_by_name (abfd, sec_names[i]); | |
9202 | if (s != NULL && (s->flags & SEC_LOAD) != 0) | |
9203 | { | |
9204 | bfd_size_type sz; | |
9205 | ||
9206 | if (low > s->vma) | |
9207 | low = s->vma; | |
eea6121a | 9208 | sz = s->size; |
b49e97c9 TS |
9209 | if (high < s->vma + sz) |
9210 | high = s->vma + sz; | |
9211 | } | |
9212 | } | |
9213 | ||
9214 | c = 0; | |
9215 | for (s = abfd->sections; s != NULL; s = s->next) | |
9216 | if ((s->flags & SEC_LOAD) != 0 | |
9217 | && s->vma >= low | |
eea6121a | 9218 | && s->vma + s->size <= high) |
b49e97c9 TS |
9219 | ++c; |
9220 | ||
9221 | amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *); | |
9719ad41 | 9222 | n = bfd_zalloc (abfd, amt); |
b49e97c9 | 9223 | if (n == NULL) |
b34976b6 | 9224 | return FALSE; |
b49e97c9 TS |
9225 | *n = *m; |
9226 | n->count = c; | |
9227 | ||
9228 | i = 0; | |
9229 | for (s = abfd->sections; s != NULL; s = s->next) | |
9230 | { | |
9231 | if ((s->flags & SEC_LOAD) != 0 | |
9232 | && s->vma >= low | |
eea6121a | 9233 | && s->vma + s->size <= high) |
b49e97c9 TS |
9234 | { |
9235 | n->sections[i] = s; | |
9236 | ++i; | |
9237 | } | |
9238 | } | |
9239 | ||
9240 | *pm = n; | |
9241 | } | |
9242 | } | |
9243 | ||
b34976b6 | 9244 | return TRUE; |
b49e97c9 TS |
9245 | } |
9246 | \f | |
9247 | /* Return the section that should be marked against GC for a given | |
9248 | relocation. */ | |
9249 | ||
9250 | asection * | |
9719ad41 RS |
9251 | _bfd_mips_elf_gc_mark_hook (asection *sec, |
9252 | struct bfd_link_info *info ATTRIBUTE_UNUSED, | |
9253 | Elf_Internal_Rela *rel, | |
9254 | struct elf_link_hash_entry *h, | |
9255 | Elf_Internal_Sym *sym) | |
b49e97c9 TS |
9256 | { |
9257 | /* ??? Do mips16 stub sections need to be handled special? */ | |
9258 | ||
9259 | if (h != NULL) | |
9260 | { | |
1e2f5b6e | 9261 | switch (ELF_R_TYPE (sec->owner, rel->r_info)) |
b49e97c9 TS |
9262 | { |
9263 | case R_MIPS_GNU_VTINHERIT: | |
9264 | case R_MIPS_GNU_VTENTRY: | |
9265 | break; | |
9266 | ||
9267 | default: | |
9268 | switch (h->root.type) | |
9269 | { | |
9270 | case bfd_link_hash_defined: | |
9271 | case bfd_link_hash_defweak: | |
9272 | return h->root.u.def.section; | |
9273 | ||
9274 | case bfd_link_hash_common: | |
9275 | return h->root.u.c.p->section; | |
9276 | ||
9277 | default: | |
9278 | break; | |
9279 | } | |
9280 | } | |
9281 | } | |
9282 | else | |
1e2f5b6e | 9283 | return bfd_section_from_elf_index (sec->owner, sym->st_shndx); |
b49e97c9 TS |
9284 | |
9285 | return NULL; | |
9286 | } | |
9287 | ||
9288 | /* Update the got entry reference counts for the section being removed. */ | |
9289 | ||
b34976b6 | 9290 | bfd_boolean |
9719ad41 RS |
9291 | _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED, |
9292 | struct bfd_link_info *info ATTRIBUTE_UNUSED, | |
9293 | asection *sec ATTRIBUTE_UNUSED, | |
9294 | const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED) | |
b49e97c9 TS |
9295 | { |
9296 | #if 0 | |
9297 | Elf_Internal_Shdr *symtab_hdr; | |
9298 | struct elf_link_hash_entry **sym_hashes; | |
9299 | bfd_signed_vma *local_got_refcounts; | |
9300 | const Elf_Internal_Rela *rel, *relend; | |
9301 | unsigned long r_symndx; | |
9302 | struct elf_link_hash_entry *h; | |
9303 | ||
9304 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
9305 | sym_hashes = elf_sym_hashes (abfd); | |
9306 | local_got_refcounts = elf_local_got_refcounts (abfd); | |
9307 | ||
9308 | relend = relocs + sec->reloc_count; | |
9309 | for (rel = relocs; rel < relend; rel++) | |
9310 | switch (ELF_R_TYPE (abfd, rel->r_info)) | |
9311 | { | |
9312 | case R_MIPS_GOT16: | |
9313 | case R_MIPS_CALL16: | |
9314 | case R_MIPS_CALL_HI16: | |
9315 | case R_MIPS_CALL_LO16: | |
9316 | case R_MIPS_GOT_HI16: | |
9317 | case R_MIPS_GOT_LO16: | |
4a14403c TS |
9318 | case R_MIPS_GOT_DISP: |
9319 | case R_MIPS_GOT_PAGE: | |
9320 | case R_MIPS_GOT_OFST: | |
b49e97c9 TS |
9321 | /* ??? It would seem that the existing MIPS code does no sort |
9322 | of reference counting or whatnot on its GOT and PLT entries, | |
9323 | so it is not possible to garbage collect them at this time. */ | |
9324 | break; | |
9325 | ||
9326 | default: | |
9327 | break; | |
9328 | } | |
9329 | #endif | |
9330 | ||
b34976b6 | 9331 | return TRUE; |
b49e97c9 TS |
9332 | } |
9333 | \f | |
9334 | /* Copy data from a MIPS ELF indirect symbol to its direct symbol, | |
9335 | hiding the old indirect symbol. Process additional relocation | |
9336 | information. Also called for weakdefs, in which case we just let | |
9337 | _bfd_elf_link_hash_copy_indirect copy the flags for us. */ | |
9338 | ||
9339 | void | |
fcfa13d2 | 9340 | _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info, |
9719ad41 RS |
9341 | struct elf_link_hash_entry *dir, |
9342 | struct elf_link_hash_entry *ind) | |
b49e97c9 TS |
9343 | { |
9344 | struct mips_elf_link_hash_entry *dirmips, *indmips; | |
9345 | ||
fcfa13d2 | 9346 | _bfd_elf_link_hash_copy_indirect (info, dir, ind); |
b49e97c9 TS |
9347 | |
9348 | if (ind->root.type != bfd_link_hash_indirect) | |
9349 | return; | |
9350 | ||
9351 | dirmips = (struct mips_elf_link_hash_entry *) dir; | |
9352 | indmips = (struct mips_elf_link_hash_entry *) ind; | |
9353 | dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs; | |
9354 | if (indmips->readonly_reloc) | |
b34976b6 | 9355 | dirmips->readonly_reloc = TRUE; |
b49e97c9 | 9356 | if (indmips->no_fn_stub) |
b34976b6 | 9357 | dirmips->no_fn_stub = TRUE; |
0f20cc35 DJ |
9358 | |
9359 | if (dirmips->tls_type == 0) | |
9360 | dirmips->tls_type = indmips->tls_type; | |
b49e97c9 TS |
9361 | } |
9362 | ||
9363 | void | |
9719ad41 RS |
9364 | _bfd_mips_elf_hide_symbol (struct bfd_link_info *info, |
9365 | struct elf_link_hash_entry *entry, | |
9366 | bfd_boolean force_local) | |
b49e97c9 TS |
9367 | { |
9368 | bfd *dynobj; | |
9369 | asection *got; | |
9370 | struct mips_got_info *g; | |
9371 | struct mips_elf_link_hash_entry *h; | |
7c5fcef7 | 9372 | |
b49e97c9 | 9373 | h = (struct mips_elf_link_hash_entry *) entry; |
7c5fcef7 L |
9374 | if (h->forced_local) |
9375 | return; | |
4b555070 | 9376 | h->forced_local = force_local; |
7c5fcef7 | 9377 | |
b49e97c9 | 9378 | dynobj = elf_hash_table (info)->dynobj; |
8d1d654f AM |
9379 | if (dynobj != NULL && force_local && h->root.type != STT_TLS |
9380 | && (got = mips_elf_got_section (dynobj, FALSE)) != NULL | |
9381 | && (g = mips_elf_section_data (got)->u.got_info) != NULL) | |
f4416af6 | 9382 | { |
c45a316a AM |
9383 | if (g->next) |
9384 | { | |
9385 | struct mips_got_entry e; | |
9386 | struct mips_got_info *gg = g; | |
9387 | ||
9388 | /* Since we're turning what used to be a global symbol into a | |
9389 | local one, bump up the number of local entries of each GOT | |
9390 | that had an entry for it. This will automatically decrease | |
9391 | the number of global entries, since global_gotno is actually | |
9392 | the upper limit of global entries. */ | |
9393 | e.abfd = dynobj; | |
9394 | e.symndx = -1; | |
9395 | e.d.h = h; | |
0f20cc35 | 9396 | e.tls_type = 0; |
c45a316a AM |
9397 | |
9398 | for (g = g->next; g != gg; g = g->next) | |
9399 | if (htab_find (g->got_entries, &e)) | |
9400 | { | |
9401 | BFD_ASSERT (g->global_gotno > 0); | |
9402 | g->local_gotno++; | |
9403 | g->global_gotno--; | |
9404 | } | |
b49e97c9 | 9405 | |
c45a316a AM |
9406 | /* If this was a global symbol forced into the primary GOT, we |
9407 | no longer need an entry for it. We can't release the entry | |
9408 | at this point, but we must at least stop counting it as one | |
9409 | of the symbols that required a forced got entry. */ | |
9410 | if (h->root.got.offset == 2) | |
9411 | { | |
9412 | BFD_ASSERT (gg->assigned_gotno > 0); | |
9413 | gg->assigned_gotno--; | |
9414 | } | |
9415 | } | |
9416 | else if (g->global_gotno == 0 && g->global_gotsym == NULL) | |
9417 | /* If we haven't got through GOT allocation yet, just bump up the | |
9418 | number of local entries, as this symbol won't be counted as | |
9419 | global. */ | |
9420 | g->local_gotno++; | |
9421 | else if (h->root.got.offset == 1) | |
f4416af6 | 9422 | { |
c45a316a AM |
9423 | /* If we're past non-multi-GOT allocation and this symbol had |
9424 | been marked for a global got entry, give it a local entry | |
9425 | instead. */ | |
9426 | BFD_ASSERT (g->global_gotno > 0); | |
9427 | g->local_gotno++; | |
9428 | g->global_gotno--; | |
f4416af6 AO |
9429 | } |
9430 | } | |
f4416af6 AO |
9431 | |
9432 | _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local); | |
b49e97c9 TS |
9433 | } |
9434 | \f | |
d01414a5 TS |
9435 | #define PDR_SIZE 32 |
9436 | ||
b34976b6 | 9437 | bfd_boolean |
9719ad41 RS |
9438 | _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie, |
9439 | struct bfd_link_info *info) | |
d01414a5 TS |
9440 | { |
9441 | asection *o; | |
b34976b6 | 9442 | bfd_boolean ret = FALSE; |
d01414a5 TS |
9443 | unsigned char *tdata; |
9444 | size_t i, skip; | |
9445 | ||
9446 | o = bfd_get_section_by_name (abfd, ".pdr"); | |
9447 | if (! o) | |
b34976b6 | 9448 | return FALSE; |
eea6121a | 9449 | if (o->size == 0) |
b34976b6 | 9450 | return FALSE; |
eea6121a | 9451 | if (o->size % PDR_SIZE != 0) |
b34976b6 | 9452 | return FALSE; |
d01414a5 TS |
9453 | if (o->output_section != NULL |
9454 | && bfd_is_abs_section (o->output_section)) | |
b34976b6 | 9455 | return FALSE; |
d01414a5 | 9456 | |
eea6121a | 9457 | tdata = bfd_zmalloc (o->size / PDR_SIZE); |
d01414a5 | 9458 | if (! tdata) |
b34976b6 | 9459 | return FALSE; |
d01414a5 | 9460 | |
9719ad41 | 9461 | cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL, |
45d6a902 | 9462 | info->keep_memory); |
d01414a5 TS |
9463 | if (!cookie->rels) |
9464 | { | |
9465 | free (tdata); | |
b34976b6 | 9466 | return FALSE; |
d01414a5 TS |
9467 | } |
9468 | ||
9469 | cookie->rel = cookie->rels; | |
9470 | cookie->relend = cookie->rels + o->reloc_count; | |
9471 | ||
eea6121a | 9472 | for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++) |
d01414a5 | 9473 | { |
c152c796 | 9474 | if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie)) |
d01414a5 TS |
9475 | { |
9476 | tdata[i] = 1; | |
9477 | skip ++; | |
9478 | } | |
9479 | } | |
9480 | ||
9481 | if (skip != 0) | |
9482 | { | |
f0abc2a1 | 9483 | mips_elf_section_data (o)->u.tdata = tdata; |
eea6121a | 9484 | o->size -= skip * PDR_SIZE; |
b34976b6 | 9485 | ret = TRUE; |
d01414a5 TS |
9486 | } |
9487 | else | |
9488 | free (tdata); | |
9489 | ||
9490 | if (! info->keep_memory) | |
9491 | free (cookie->rels); | |
9492 | ||
9493 | return ret; | |
9494 | } | |
9495 | ||
b34976b6 | 9496 | bfd_boolean |
9719ad41 | 9497 | _bfd_mips_elf_ignore_discarded_relocs (asection *sec) |
53bfd6b4 MR |
9498 | { |
9499 | if (strcmp (sec->name, ".pdr") == 0) | |
b34976b6 AM |
9500 | return TRUE; |
9501 | return FALSE; | |
53bfd6b4 | 9502 | } |
d01414a5 | 9503 | |
b34976b6 | 9504 | bfd_boolean |
9719ad41 RS |
9505 | _bfd_mips_elf_write_section (bfd *output_bfd, asection *sec, |
9506 | bfd_byte *contents) | |
d01414a5 TS |
9507 | { |
9508 | bfd_byte *to, *from, *end; | |
9509 | int i; | |
9510 | ||
9511 | if (strcmp (sec->name, ".pdr") != 0) | |
b34976b6 | 9512 | return FALSE; |
d01414a5 | 9513 | |
f0abc2a1 | 9514 | if (mips_elf_section_data (sec)->u.tdata == NULL) |
b34976b6 | 9515 | return FALSE; |
d01414a5 TS |
9516 | |
9517 | to = contents; | |
eea6121a | 9518 | end = contents + sec->size; |
d01414a5 TS |
9519 | for (from = contents, i = 0; |
9520 | from < end; | |
9521 | from += PDR_SIZE, i++) | |
9522 | { | |
f0abc2a1 | 9523 | if ((mips_elf_section_data (sec)->u.tdata)[i] == 1) |
d01414a5 TS |
9524 | continue; |
9525 | if (to != from) | |
9526 | memcpy (to, from, PDR_SIZE); | |
9527 | to += PDR_SIZE; | |
9528 | } | |
9529 | bfd_set_section_contents (output_bfd, sec->output_section, contents, | |
eea6121a | 9530 | sec->output_offset, sec->size); |
b34976b6 | 9531 | return TRUE; |
d01414a5 | 9532 | } |
53bfd6b4 | 9533 | \f |
b49e97c9 TS |
9534 | /* MIPS ELF uses a special find_nearest_line routine in order the |
9535 | handle the ECOFF debugging information. */ | |
9536 | ||
9537 | struct mips_elf_find_line | |
9538 | { | |
9539 | struct ecoff_debug_info d; | |
9540 | struct ecoff_find_line i; | |
9541 | }; | |
9542 | ||
b34976b6 | 9543 | bfd_boolean |
9719ad41 RS |
9544 | _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section, |
9545 | asymbol **symbols, bfd_vma offset, | |
9546 | const char **filename_ptr, | |
9547 | const char **functionname_ptr, | |
9548 | unsigned int *line_ptr) | |
b49e97c9 TS |
9549 | { |
9550 | asection *msec; | |
9551 | ||
9552 | if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset, | |
9553 | filename_ptr, functionname_ptr, | |
9554 | line_ptr)) | |
b34976b6 | 9555 | return TRUE; |
b49e97c9 TS |
9556 | |
9557 | if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset, | |
9558 | filename_ptr, functionname_ptr, | |
9719ad41 | 9559 | line_ptr, ABI_64_P (abfd) ? 8 : 0, |
b49e97c9 | 9560 | &elf_tdata (abfd)->dwarf2_find_line_info)) |
b34976b6 | 9561 | return TRUE; |
b49e97c9 TS |
9562 | |
9563 | msec = bfd_get_section_by_name (abfd, ".mdebug"); | |
9564 | if (msec != NULL) | |
9565 | { | |
9566 | flagword origflags; | |
9567 | struct mips_elf_find_line *fi; | |
9568 | const struct ecoff_debug_swap * const swap = | |
9569 | get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; | |
9570 | ||
9571 | /* If we are called during a link, mips_elf_final_link may have | |
9572 | cleared the SEC_HAS_CONTENTS field. We force it back on here | |
9573 | if appropriate (which it normally will be). */ | |
9574 | origflags = msec->flags; | |
9575 | if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS) | |
9576 | msec->flags |= SEC_HAS_CONTENTS; | |
9577 | ||
9578 | fi = elf_tdata (abfd)->find_line_info; | |
9579 | if (fi == NULL) | |
9580 | { | |
9581 | bfd_size_type external_fdr_size; | |
9582 | char *fraw_src; | |
9583 | char *fraw_end; | |
9584 | struct fdr *fdr_ptr; | |
9585 | bfd_size_type amt = sizeof (struct mips_elf_find_line); | |
9586 | ||
9719ad41 | 9587 | fi = bfd_zalloc (abfd, amt); |
b49e97c9 TS |
9588 | if (fi == NULL) |
9589 | { | |
9590 | msec->flags = origflags; | |
b34976b6 | 9591 | return FALSE; |
b49e97c9 TS |
9592 | } |
9593 | ||
9594 | if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d)) | |
9595 | { | |
9596 | msec->flags = origflags; | |
b34976b6 | 9597 | return FALSE; |
b49e97c9 TS |
9598 | } |
9599 | ||
9600 | /* Swap in the FDR information. */ | |
9601 | amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr); | |
9719ad41 | 9602 | fi->d.fdr = bfd_alloc (abfd, amt); |
b49e97c9 TS |
9603 | if (fi->d.fdr == NULL) |
9604 | { | |
9605 | msec->flags = origflags; | |
b34976b6 | 9606 | return FALSE; |
b49e97c9 TS |
9607 | } |
9608 | external_fdr_size = swap->external_fdr_size; | |
9609 | fdr_ptr = fi->d.fdr; | |
9610 | fraw_src = (char *) fi->d.external_fdr; | |
9611 | fraw_end = (fraw_src | |
9612 | + fi->d.symbolic_header.ifdMax * external_fdr_size); | |
9613 | for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++) | |
9719ad41 | 9614 | (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr); |
b49e97c9 TS |
9615 | |
9616 | elf_tdata (abfd)->find_line_info = fi; | |
9617 | ||
9618 | /* Note that we don't bother to ever free this information. | |
9619 | find_nearest_line is either called all the time, as in | |
9620 | objdump -l, so the information should be saved, or it is | |
9621 | rarely called, as in ld error messages, so the memory | |
9622 | wasted is unimportant. Still, it would probably be a | |
9623 | good idea for free_cached_info to throw it away. */ | |
9624 | } | |
9625 | ||
9626 | if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap, | |
9627 | &fi->i, filename_ptr, functionname_ptr, | |
9628 | line_ptr)) | |
9629 | { | |
9630 | msec->flags = origflags; | |
b34976b6 | 9631 | return TRUE; |
b49e97c9 TS |
9632 | } |
9633 | ||
9634 | msec->flags = origflags; | |
9635 | } | |
9636 | ||
9637 | /* Fall back on the generic ELF find_nearest_line routine. */ | |
9638 | ||
9639 | return _bfd_elf_find_nearest_line (abfd, section, symbols, offset, | |
9640 | filename_ptr, functionname_ptr, | |
9641 | line_ptr); | |
9642 | } | |
4ab527b0 FF |
9643 | |
9644 | bfd_boolean | |
9645 | _bfd_mips_elf_find_inliner_info (bfd *abfd, | |
9646 | const char **filename_ptr, | |
9647 | const char **functionname_ptr, | |
9648 | unsigned int *line_ptr) | |
9649 | { | |
9650 | bfd_boolean found; | |
9651 | found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr, | |
9652 | functionname_ptr, line_ptr, | |
9653 | & elf_tdata (abfd)->dwarf2_find_line_info); | |
9654 | return found; | |
9655 | } | |
9656 | ||
b49e97c9 TS |
9657 | \f |
9658 | /* When are writing out the .options or .MIPS.options section, | |
9659 | remember the bytes we are writing out, so that we can install the | |
9660 | GP value in the section_processing routine. */ | |
9661 | ||
b34976b6 | 9662 | bfd_boolean |
9719ad41 RS |
9663 | _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section, |
9664 | const void *location, | |
9665 | file_ptr offset, bfd_size_type count) | |
b49e97c9 | 9666 | { |
cc2e31b9 | 9667 | if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name)) |
b49e97c9 TS |
9668 | { |
9669 | bfd_byte *c; | |
9670 | ||
9671 | if (elf_section_data (section) == NULL) | |
9672 | { | |
9673 | bfd_size_type amt = sizeof (struct bfd_elf_section_data); | |
9719ad41 | 9674 | section->used_by_bfd = bfd_zalloc (abfd, amt); |
b49e97c9 | 9675 | if (elf_section_data (section) == NULL) |
b34976b6 | 9676 | return FALSE; |
b49e97c9 | 9677 | } |
f0abc2a1 | 9678 | c = mips_elf_section_data (section)->u.tdata; |
b49e97c9 TS |
9679 | if (c == NULL) |
9680 | { | |
eea6121a | 9681 | c = bfd_zalloc (abfd, section->size); |
b49e97c9 | 9682 | if (c == NULL) |
b34976b6 | 9683 | return FALSE; |
f0abc2a1 | 9684 | mips_elf_section_data (section)->u.tdata = c; |
b49e97c9 TS |
9685 | } |
9686 | ||
9719ad41 | 9687 | memcpy (c + offset, location, count); |
b49e97c9 TS |
9688 | } |
9689 | ||
9690 | return _bfd_elf_set_section_contents (abfd, section, location, offset, | |
9691 | count); | |
9692 | } | |
9693 | ||
9694 | /* This is almost identical to bfd_generic_get_... except that some | |
9695 | MIPS relocations need to be handled specially. Sigh. */ | |
9696 | ||
9697 | bfd_byte * | |
9719ad41 RS |
9698 | _bfd_elf_mips_get_relocated_section_contents |
9699 | (bfd *abfd, | |
9700 | struct bfd_link_info *link_info, | |
9701 | struct bfd_link_order *link_order, | |
9702 | bfd_byte *data, | |
9703 | bfd_boolean relocatable, | |
9704 | asymbol **symbols) | |
b49e97c9 TS |
9705 | { |
9706 | /* Get enough memory to hold the stuff */ | |
9707 | bfd *input_bfd = link_order->u.indirect.section->owner; | |
9708 | asection *input_section = link_order->u.indirect.section; | |
eea6121a | 9709 | bfd_size_type sz; |
b49e97c9 TS |
9710 | |
9711 | long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section); | |
9712 | arelent **reloc_vector = NULL; | |
9713 | long reloc_count; | |
9714 | ||
9715 | if (reloc_size < 0) | |
9716 | goto error_return; | |
9717 | ||
9719ad41 | 9718 | reloc_vector = bfd_malloc (reloc_size); |
b49e97c9 TS |
9719 | if (reloc_vector == NULL && reloc_size != 0) |
9720 | goto error_return; | |
9721 | ||
9722 | /* read in the section */ | |
eea6121a AM |
9723 | sz = input_section->rawsize ? input_section->rawsize : input_section->size; |
9724 | if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz)) | |
b49e97c9 TS |
9725 | goto error_return; |
9726 | ||
b49e97c9 TS |
9727 | reloc_count = bfd_canonicalize_reloc (input_bfd, |
9728 | input_section, | |
9729 | reloc_vector, | |
9730 | symbols); | |
9731 | if (reloc_count < 0) | |
9732 | goto error_return; | |
9733 | ||
9734 | if (reloc_count > 0) | |
9735 | { | |
9736 | arelent **parent; | |
9737 | /* for mips */ | |
9738 | int gp_found; | |
9739 | bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */ | |
9740 | ||
9741 | { | |
9742 | struct bfd_hash_entry *h; | |
9743 | struct bfd_link_hash_entry *lh; | |
9744 | /* Skip all this stuff if we aren't mixing formats. */ | |
9745 | if (abfd && input_bfd | |
9746 | && abfd->xvec == input_bfd->xvec) | |
9747 | lh = 0; | |
9748 | else | |
9749 | { | |
b34976b6 | 9750 | h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE); |
b49e97c9 TS |
9751 | lh = (struct bfd_link_hash_entry *) h; |
9752 | } | |
9753 | lookup: | |
9754 | if (lh) | |
9755 | { | |
9756 | switch (lh->type) | |
9757 | { | |
9758 | case bfd_link_hash_undefined: | |
9759 | case bfd_link_hash_undefweak: | |
9760 | case bfd_link_hash_common: | |
9761 | gp_found = 0; | |
9762 | break; | |
9763 | case bfd_link_hash_defined: | |
9764 | case bfd_link_hash_defweak: | |
9765 | gp_found = 1; | |
9766 | gp = lh->u.def.value; | |
9767 | break; | |
9768 | case bfd_link_hash_indirect: | |
9769 | case bfd_link_hash_warning: | |
9770 | lh = lh->u.i.link; | |
9771 | /* @@FIXME ignoring warning for now */ | |
9772 | goto lookup; | |
9773 | case bfd_link_hash_new: | |
9774 | default: | |
9775 | abort (); | |
9776 | } | |
9777 | } | |
9778 | else | |
9779 | gp_found = 0; | |
9780 | } | |
9781 | /* end mips */ | |
9719ad41 | 9782 | for (parent = reloc_vector; *parent != NULL; parent++) |
b49e97c9 | 9783 | { |
9719ad41 | 9784 | char *error_message = NULL; |
b49e97c9 TS |
9785 | bfd_reloc_status_type r; |
9786 | ||
9787 | /* Specific to MIPS: Deal with relocation types that require | |
9788 | knowing the gp of the output bfd. */ | |
9789 | asymbol *sym = *(*parent)->sym_ptr_ptr; | |
b49e97c9 | 9790 | |
8236346f EC |
9791 | /* If we've managed to find the gp and have a special |
9792 | function for the relocation then go ahead, else default | |
9793 | to the generic handling. */ | |
9794 | if (gp_found | |
9795 | && (*parent)->howto->special_function | |
9796 | == _bfd_mips_elf32_gprel16_reloc) | |
9797 | r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent, | |
9798 | input_section, relocatable, | |
9799 | data, gp); | |
9800 | else | |
86324f90 | 9801 | r = bfd_perform_relocation (input_bfd, *parent, data, |
8236346f EC |
9802 | input_section, |
9803 | relocatable ? abfd : NULL, | |
9804 | &error_message); | |
b49e97c9 | 9805 | |
1049f94e | 9806 | if (relocatable) |
b49e97c9 TS |
9807 | { |
9808 | asection *os = input_section->output_section; | |
9809 | ||
9810 | /* A partial link, so keep the relocs */ | |
9811 | os->orelocation[os->reloc_count] = *parent; | |
9812 | os->reloc_count++; | |
9813 | } | |
9814 | ||
9815 | if (r != bfd_reloc_ok) | |
9816 | { | |
9817 | switch (r) | |
9818 | { | |
9819 | case bfd_reloc_undefined: | |
9820 | if (!((*link_info->callbacks->undefined_symbol) | |
9821 | (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr), | |
5e2b0d47 | 9822 | input_bfd, input_section, (*parent)->address, TRUE))) |
b49e97c9 TS |
9823 | goto error_return; |
9824 | break; | |
9825 | case bfd_reloc_dangerous: | |
9719ad41 | 9826 | BFD_ASSERT (error_message != NULL); |
b49e97c9 TS |
9827 | if (!((*link_info->callbacks->reloc_dangerous) |
9828 | (link_info, error_message, input_bfd, input_section, | |
9829 | (*parent)->address))) | |
9830 | goto error_return; | |
9831 | break; | |
9832 | case bfd_reloc_overflow: | |
9833 | if (!((*link_info->callbacks->reloc_overflow) | |
dfeffb9f L |
9834 | (link_info, NULL, |
9835 | bfd_asymbol_name (*(*parent)->sym_ptr_ptr), | |
b49e97c9 TS |
9836 | (*parent)->howto->name, (*parent)->addend, |
9837 | input_bfd, input_section, (*parent)->address))) | |
9838 | goto error_return; | |
9839 | break; | |
9840 | case bfd_reloc_outofrange: | |
9841 | default: | |
9842 | abort (); | |
9843 | break; | |
9844 | } | |
9845 | ||
9846 | } | |
9847 | } | |
9848 | } | |
9849 | if (reloc_vector != NULL) | |
9850 | free (reloc_vector); | |
9851 | return data; | |
9852 | ||
9853 | error_return: | |
9854 | if (reloc_vector != NULL) | |
9855 | free (reloc_vector); | |
9856 | return NULL; | |
9857 | } | |
9858 | \f | |
9859 | /* Create a MIPS ELF linker hash table. */ | |
9860 | ||
9861 | struct bfd_link_hash_table * | |
9719ad41 | 9862 | _bfd_mips_elf_link_hash_table_create (bfd *abfd) |
b49e97c9 TS |
9863 | { |
9864 | struct mips_elf_link_hash_table *ret; | |
9865 | bfd_size_type amt = sizeof (struct mips_elf_link_hash_table); | |
9866 | ||
9719ad41 RS |
9867 | ret = bfd_malloc (amt); |
9868 | if (ret == NULL) | |
b49e97c9 TS |
9869 | return NULL; |
9870 | ||
66eb6687 AM |
9871 | if (!_bfd_elf_link_hash_table_init (&ret->root, abfd, |
9872 | mips_elf_link_hash_newfunc, | |
9873 | sizeof (struct mips_elf_link_hash_entry))) | |
b49e97c9 | 9874 | { |
e2d34d7d | 9875 | free (ret); |
b49e97c9 TS |
9876 | return NULL; |
9877 | } | |
9878 | ||
9879 | #if 0 | |
9880 | /* We no longer use this. */ | |
9881 | for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++) | |
9882 | ret->dynsym_sec_strindex[i] = (bfd_size_type) -1; | |
9883 | #endif | |
9884 | ret->procedure_count = 0; | |
9885 | ret->compact_rel_size = 0; | |
b34976b6 | 9886 | ret->use_rld_obj_head = FALSE; |
b49e97c9 | 9887 | ret->rld_value = 0; |
b34976b6 | 9888 | ret->mips16_stubs_seen = FALSE; |
0a44bf69 RS |
9889 | ret->is_vxworks = FALSE; |
9890 | ret->srelbss = NULL; | |
9891 | ret->sdynbss = NULL; | |
9892 | ret->srelplt = NULL; | |
9893 | ret->srelplt2 = NULL; | |
9894 | ret->sgotplt = NULL; | |
9895 | ret->splt = NULL; | |
9896 | ret->plt_header_size = 0; | |
9897 | ret->plt_entry_size = 0; | |
b49e97c9 TS |
9898 | |
9899 | return &ret->root.root; | |
9900 | } | |
0a44bf69 RS |
9901 | |
9902 | /* Likewise, but indicate that the target is VxWorks. */ | |
9903 | ||
9904 | struct bfd_link_hash_table * | |
9905 | _bfd_mips_vxworks_link_hash_table_create (bfd *abfd) | |
9906 | { | |
9907 | struct bfd_link_hash_table *ret; | |
9908 | ||
9909 | ret = _bfd_mips_elf_link_hash_table_create (abfd); | |
9910 | if (ret) | |
9911 | { | |
9912 | struct mips_elf_link_hash_table *htab; | |
9913 | ||
9914 | htab = (struct mips_elf_link_hash_table *) ret; | |
9915 | htab->is_vxworks = 1; | |
9916 | } | |
9917 | return ret; | |
9918 | } | |
b49e97c9 TS |
9919 | \f |
9920 | /* We need to use a special link routine to handle the .reginfo and | |
9921 | the .mdebug sections. We need to merge all instances of these | |
9922 | sections together, not write them all out sequentially. */ | |
9923 | ||
b34976b6 | 9924 | bfd_boolean |
9719ad41 | 9925 | _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info) |
b49e97c9 | 9926 | { |
b49e97c9 TS |
9927 | asection *o; |
9928 | struct bfd_link_order *p; | |
9929 | asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec; | |
9930 | asection *rtproc_sec; | |
9931 | Elf32_RegInfo reginfo; | |
9932 | struct ecoff_debug_info debug; | |
7a2a6943 NC |
9933 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
9934 | const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap; | |
b49e97c9 | 9935 | HDRR *symhdr = &debug.symbolic_header; |
9719ad41 | 9936 | void *mdebug_handle = NULL; |
b49e97c9 TS |
9937 | asection *s; |
9938 | EXTR esym; | |
9939 | unsigned int i; | |
9940 | bfd_size_type amt; | |
0a44bf69 | 9941 | struct mips_elf_link_hash_table *htab; |
b49e97c9 TS |
9942 | |
9943 | static const char * const secname[] = | |
9944 | { | |
9945 | ".text", ".init", ".fini", ".data", | |
9946 | ".rodata", ".sdata", ".sbss", ".bss" | |
9947 | }; | |
9948 | static const int sc[] = | |
9949 | { | |
9950 | scText, scInit, scFini, scData, | |
9951 | scRData, scSData, scSBss, scBss | |
9952 | }; | |
9953 | ||
b49e97c9 TS |
9954 | /* We'd carefully arranged the dynamic symbol indices, and then the |
9955 | generic size_dynamic_sections renumbered them out from under us. | |
9956 | Rather than trying somehow to prevent the renumbering, just do | |
9957 | the sort again. */ | |
0a44bf69 | 9958 | htab = mips_elf_hash_table (info); |
b49e97c9 TS |
9959 | if (elf_hash_table (info)->dynamic_sections_created) |
9960 | { | |
9961 | bfd *dynobj; | |
9962 | asection *got; | |
9963 | struct mips_got_info *g; | |
7a2a6943 | 9964 | bfd_size_type dynsecsymcount; |
b49e97c9 TS |
9965 | |
9966 | /* When we resort, we must tell mips_elf_sort_hash_table what | |
9967 | the lowest index it may use is. That's the number of section | |
9968 | symbols we're going to add. The generic ELF linker only | |
9969 | adds these symbols when building a shared object. Note that | |
9970 | we count the sections after (possibly) removing the .options | |
9971 | section above. */ | |
7a2a6943 NC |
9972 | |
9973 | dynsecsymcount = 0; | |
9974 | if (info->shared) | |
9975 | { | |
9976 | asection * p; | |
9977 | ||
9978 | for (p = abfd->sections; p ; p = p->next) | |
9979 | if ((p->flags & SEC_EXCLUDE) == 0 | |
9980 | && (p->flags & SEC_ALLOC) != 0 | |
9981 | && !(*bed->elf_backend_omit_section_dynsym) (abfd, info, p)) | |
9982 | ++ dynsecsymcount; | |
9983 | } | |
86324f90 | 9984 | |
7a2a6943 | 9985 | if (! mips_elf_sort_hash_table (info, dynsecsymcount + 1)) |
b34976b6 | 9986 | return FALSE; |
b49e97c9 TS |
9987 | |
9988 | /* Make sure we didn't grow the global .got region. */ | |
9989 | dynobj = elf_hash_table (info)->dynobj; | |
f4416af6 | 9990 | got = mips_elf_got_section (dynobj, FALSE); |
f0abc2a1 | 9991 | g = mips_elf_section_data (got)->u.got_info; |
b49e97c9 TS |
9992 | |
9993 | if (g->global_gotsym != NULL) | |
9994 | BFD_ASSERT ((elf_hash_table (info)->dynsymcount | |
9995 | - g->global_gotsym->dynindx) | |
9996 | <= g->global_gotno); | |
9997 | } | |
9998 | ||
b49e97c9 TS |
9999 | /* Get a value for the GP register. */ |
10000 | if (elf_gp (abfd) == 0) | |
10001 | { | |
10002 | struct bfd_link_hash_entry *h; | |
10003 | ||
b34976b6 | 10004 | h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE); |
9719ad41 | 10005 | if (h != NULL && h->type == bfd_link_hash_defined) |
b49e97c9 TS |
10006 | elf_gp (abfd) = (h->u.def.value |
10007 | + h->u.def.section->output_section->vma | |
10008 | + h->u.def.section->output_offset); | |
0a44bf69 RS |
10009 | else if (htab->is_vxworks |
10010 | && (h = bfd_link_hash_lookup (info->hash, | |
10011 | "_GLOBAL_OFFSET_TABLE_", | |
10012 | FALSE, FALSE, TRUE)) | |
10013 | && h->type == bfd_link_hash_defined) | |
10014 | elf_gp (abfd) = (h->u.def.section->output_section->vma | |
10015 | + h->u.def.section->output_offset | |
10016 | + h->u.def.value); | |
1049f94e | 10017 | else if (info->relocatable) |
b49e97c9 TS |
10018 | { |
10019 | bfd_vma lo = MINUS_ONE; | |
10020 | ||
10021 | /* Find the GP-relative section with the lowest offset. */ | |
9719ad41 | 10022 | for (o = abfd->sections; o != NULL; o = o->next) |
b49e97c9 TS |
10023 | if (o->vma < lo |
10024 | && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL)) | |
10025 | lo = o->vma; | |
10026 | ||
10027 | /* And calculate GP relative to that. */ | |
0a44bf69 | 10028 | elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info); |
b49e97c9 TS |
10029 | } |
10030 | else | |
10031 | { | |
10032 | /* If the relocate_section function needs to do a reloc | |
10033 | involving the GP value, it should make a reloc_dangerous | |
10034 | callback to warn that GP is not defined. */ | |
10035 | } | |
10036 | } | |
10037 | ||
10038 | /* Go through the sections and collect the .reginfo and .mdebug | |
10039 | information. */ | |
10040 | reginfo_sec = NULL; | |
10041 | mdebug_sec = NULL; | |
10042 | gptab_data_sec = NULL; | |
10043 | gptab_bss_sec = NULL; | |
9719ad41 | 10044 | for (o = abfd->sections; o != NULL; o = o->next) |
b49e97c9 TS |
10045 | { |
10046 | if (strcmp (o->name, ".reginfo") == 0) | |
10047 | { | |
10048 | memset (®info, 0, sizeof reginfo); | |
10049 | ||
10050 | /* We have found the .reginfo section in the output file. | |
10051 | Look through all the link_orders comprising it and merge | |
10052 | the information together. */ | |
8423293d | 10053 | for (p = o->map_head.link_order; p != NULL; p = p->next) |
b49e97c9 TS |
10054 | { |
10055 | asection *input_section; | |
10056 | bfd *input_bfd; | |
10057 | Elf32_External_RegInfo ext; | |
10058 | Elf32_RegInfo sub; | |
10059 | ||
10060 | if (p->type != bfd_indirect_link_order) | |
10061 | { | |
10062 | if (p->type == bfd_data_link_order) | |
10063 | continue; | |
10064 | abort (); | |
10065 | } | |
10066 | ||
10067 | input_section = p->u.indirect.section; | |
10068 | input_bfd = input_section->owner; | |
10069 | ||
b49e97c9 | 10070 | if (! bfd_get_section_contents (input_bfd, input_section, |
9719ad41 | 10071 | &ext, 0, sizeof ext)) |
b34976b6 | 10072 | return FALSE; |
b49e97c9 TS |
10073 | |
10074 | bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub); | |
10075 | ||
10076 | reginfo.ri_gprmask |= sub.ri_gprmask; | |
10077 | reginfo.ri_cprmask[0] |= sub.ri_cprmask[0]; | |
10078 | reginfo.ri_cprmask[1] |= sub.ri_cprmask[1]; | |
10079 | reginfo.ri_cprmask[2] |= sub.ri_cprmask[2]; | |
10080 | reginfo.ri_cprmask[3] |= sub.ri_cprmask[3]; | |
10081 | ||
10082 | /* ri_gp_value is set by the function | |
10083 | mips_elf32_section_processing when the section is | |
10084 | finally written out. */ | |
10085 | ||
10086 | /* Hack: reset the SEC_HAS_CONTENTS flag so that | |
10087 | elf_link_input_bfd ignores this section. */ | |
10088 | input_section->flags &= ~SEC_HAS_CONTENTS; | |
10089 | } | |
10090 | ||
10091 | /* Size has been set in _bfd_mips_elf_always_size_sections. */ | |
eea6121a | 10092 | BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo)); |
b49e97c9 TS |
10093 | |
10094 | /* Skip this section later on (I don't think this currently | |
10095 | matters, but someday it might). */ | |
8423293d | 10096 | o->map_head.link_order = NULL; |
b49e97c9 TS |
10097 | |
10098 | reginfo_sec = o; | |
10099 | } | |
10100 | ||
10101 | if (strcmp (o->name, ".mdebug") == 0) | |
10102 | { | |
10103 | struct extsym_info einfo; | |
10104 | bfd_vma last; | |
10105 | ||
10106 | /* We have found the .mdebug section in the output file. | |
10107 | Look through all the link_orders comprising it and merge | |
10108 | the information together. */ | |
10109 | symhdr->magic = swap->sym_magic; | |
10110 | /* FIXME: What should the version stamp be? */ | |
10111 | symhdr->vstamp = 0; | |
10112 | symhdr->ilineMax = 0; | |
10113 | symhdr->cbLine = 0; | |
10114 | symhdr->idnMax = 0; | |
10115 | symhdr->ipdMax = 0; | |
10116 | symhdr->isymMax = 0; | |
10117 | symhdr->ioptMax = 0; | |
10118 | symhdr->iauxMax = 0; | |
10119 | symhdr->issMax = 0; | |
10120 | symhdr->issExtMax = 0; | |
10121 | symhdr->ifdMax = 0; | |
10122 | symhdr->crfd = 0; | |
10123 | symhdr->iextMax = 0; | |
10124 | ||
10125 | /* We accumulate the debugging information itself in the | |
10126 | debug_info structure. */ | |
10127 | debug.line = NULL; | |
10128 | debug.external_dnr = NULL; | |
10129 | debug.external_pdr = NULL; | |
10130 | debug.external_sym = NULL; | |
10131 | debug.external_opt = NULL; | |
10132 | debug.external_aux = NULL; | |
10133 | debug.ss = NULL; | |
10134 | debug.ssext = debug.ssext_end = NULL; | |
10135 | debug.external_fdr = NULL; | |
10136 | debug.external_rfd = NULL; | |
10137 | debug.external_ext = debug.external_ext_end = NULL; | |
10138 | ||
10139 | mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info); | |
9719ad41 | 10140 | if (mdebug_handle == NULL) |
b34976b6 | 10141 | return FALSE; |
b49e97c9 TS |
10142 | |
10143 | esym.jmptbl = 0; | |
10144 | esym.cobol_main = 0; | |
10145 | esym.weakext = 0; | |
10146 | esym.reserved = 0; | |
10147 | esym.ifd = ifdNil; | |
10148 | esym.asym.iss = issNil; | |
10149 | esym.asym.st = stLocal; | |
10150 | esym.asym.reserved = 0; | |
10151 | esym.asym.index = indexNil; | |
10152 | last = 0; | |
10153 | for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++) | |
10154 | { | |
10155 | esym.asym.sc = sc[i]; | |
10156 | s = bfd_get_section_by_name (abfd, secname[i]); | |
10157 | if (s != NULL) | |
10158 | { | |
10159 | esym.asym.value = s->vma; | |
eea6121a | 10160 | last = s->vma + s->size; |
b49e97c9 TS |
10161 | } |
10162 | else | |
10163 | esym.asym.value = last; | |
10164 | if (!bfd_ecoff_debug_one_external (abfd, &debug, swap, | |
10165 | secname[i], &esym)) | |
b34976b6 | 10166 | return FALSE; |
b49e97c9 TS |
10167 | } |
10168 | ||
8423293d | 10169 | for (p = o->map_head.link_order; p != NULL; p = p->next) |
b49e97c9 TS |
10170 | { |
10171 | asection *input_section; | |
10172 | bfd *input_bfd; | |
10173 | const struct ecoff_debug_swap *input_swap; | |
10174 | struct ecoff_debug_info input_debug; | |
10175 | char *eraw_src; | |
10176 | char *eraw_end; | |
10177 | ||
10178 | if (p->type != bfd_indirect_link_order) | |
10179 | { | |
10180 | if (p->type == bfd_data_link_order) | |
10181 | continue; | |
10182 | abort (); | |
10183 | } | |
10184 | ||
10185 | input_section = p->u.indirect.section; | |
10186 | input_bfd = input_section->owner; | |
10187 | ||
10188 | if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour | |
10189 | || (get_elf_backend_data (input_bfd) | |
10190 | ->elf_backend_ecoff_debug_swap) == NULL) | |
10191 | { | |
10192 | /* I don't know what a non MIPS ELF bfd would be | |
10193 | doing with a .mdebug section, but I don't really | |
10194 | want to deal with it. */ | |
10195 | continue; | |
10196 | } | |
10197 | ||
10198 | input_swap = (get_elf_backend_data (input_bfd) | |
10199 | ->elf_backend_ecoff_debug_swap); | |
10200 | ||
eea6121a | 10201 | BFD_ASSERT (p->size == input_section->size); |
b49e97c9 TS |
10202 | |
10203 | /* The ECOFF linking code expects that we have already | |
10204 | read in the debugging information and set up an | |
10205 | ecoff_debug_info structure, so we do that now. */ | |
10206 | if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section, | |
10207 | &input_debug)) | |
b34976b6 | 10208 | return FALSE; |
b49e97c9 TS |
10209 | |
10210 | if (! (bfd_ecoff_debug_accumulate | |
10211 | (mdebug_handle, abfd, &debug, swap, input_bfd, | |
10212 | &input_debug, input_swap, info))) | |
b34976b6 | 10213 | return FALSE; |
b49e97c9 TS |
10214 | |
10215 | /* Loop through the external symbols. For each one with | |
10216 | interesting information, try to find the symbol in | |
10217 | the linker global hash table and save the information | |
10218 | for the output external symbols. */ | |
10219 | eraw_src = input_debug.external_ext; | |
10220 | eraw_end = (eraw_src | |
10221 | + (input_debug.symbolic_header.iextMax | |
10222 | * input_swap->external_ext_size)); | |
10223 | for (; | |
10224 | eraw_src < eraw_end; | |
10225 | eraw_src += input_swap->external_ext_size) | |
10226 | { | |
10227 | EXTR ext; | |
10228 | const char *name; | |
10229 | struct mips_elf_link_hash_entry *h; | |
10230 | ||
9719ad41 | 10231 | (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext); |
b49e97c9 TS |
10232 | if (ext.asym.sc == scNil |
10233 | || ext.asym.sc == scUndefined | |
10234 | || ext.asym.sc == scSUndefined) | |
10235 | continue; | |
10236 | ||
10237 | name = input_debug.ssext + ext.asym.iss; | |
10238 | h = mips_elf_link_hash_lookup (mips_elf_hash_table (info), | |
b34976b6 | 10239 | name, FALSE, FALSE, TRUE); |
b49e97c9 TS |
10240 | if (h == NULL || h->esym.ifd != -2) |
10241 | continue; | |
10242 | ||
10243 | if (ext.ifd != -1) | |
10244 | { | |
10245 | BFD_ASSERT (ext.ifd | |
10246 | < input_debug.symbolic_header.ifdMax); | |
10247 | ext.ifd = input_debug.ifdmap[ext.ifd]; | |
10248 | } | |
10249 | ||
10250 | h->esym = ext; | |
10251 | } | |
10252 | ||
10253 | /* Free up the information we just read. */ | |
10254 | free (input_debug.line); | |
10255 | free (input_debug.external_dnr); | |
10256 | free (input_debug.external_pdr); | |
10257 | free (input_debug.external_sym); | |
10258 | free (input_debug.external_opt); | |
10259 | free (input_debug.external_aux); | |
10260 | free (input_debug.ss); | |
10261 | free (input_debug.ssext); | |
10262 | free (input_debug.external_fdr); | |
10263 | free (input_debug.external_rfd); | |
10264 | free (input_debug.external_ext); | |
10265 | ||
10266 | /* Hack: reset the SEC_HAS_CONTENTS flag so that | |
10267 | elf_link_input_bfd ignores this section. */ | |
10268 | input_section->flags &= ~SEC_HAS_CONTENTS; | |
10269 | } | |
10270 | ||
10271 | if (SGI_COMPAT (abfd) && info->shared) | |
10272 | { | |
10273 | /* Create .rtproc section. */ | |
10274 | rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc"); | |
10275 | if (rtproc_sec == NULL) | |
10276 | { | |
10277 | flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | |
10278 | | SEC_LINKER_CREATED | SEC_READONLY); | |
10279 | ||
3496cb2a L |
10280 | rtproc_sec = bfd_make_section_with_flags (abfd, |
10281 | ".rtproc", | |
10282 | flags); | |
b49e97c9 | 10283 | if (rtproc_sec == NULL |
b49e97c9 | 10284 | || ! bfd_set_section_alignment (abfd, rtproc_sec, 4)) |
b34976b6 | 10285 | return FALSE; |
b49e97c9 TS |
10286 | } |
10287 | ||
10288 | if (! mips_elf_create_procedure_table (mdebug_handle, abfd, | |
10289 | info, rtproc_sec, | |
10290 | &debug)) | |
b34976b6 | 10291 | return FALSE; |
b49e97c9 TS |
10292 | } |
10293 | ||
10294 | /* Build the external symbol information. */ | |
10295 | einfo.abfd = abfd; | |
10296 | einfo.info = info; | |
10297 | einfo.debug = &debug; | |
10298 | einfo.swap = swap; | |
b34976b6 | 10299 | einfo.failed = FALSE; |
b49e97c9 | 10300 | mips_elf_link_hash_traverse (mips_elf_hash_table (info), |
9719ad41 | 10301 | mips_elf_output_extsym, &einfo); |
b49e97c9 | 10302 | if (einfo.failed) |
b34976b6 | 10303 | return FALSE; |
b49e97c9 TS |
10304 | |
10305 | /* Set the size of the .mdebug section. */ | |
eea6121a | 10306 | o->size = bfd_ecoff_debug_size (abfd, &debug, swap); |
b49e97c9 TS |
10307 | |
10308 | /* Skip this section later on (I don't think this currently | |
10309 | matters, but someday it might). */ | |
8423293d | 10310 | o->map_head.link_order = NULL; |
b49e97c9 TS |
10311 | |
10312 | mdebug_sec = o; | |
10313 | } | |
10314 | ||
10315 | if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0) | |
10316 | { | |
10317 | const char *subname; | |
10318 | unsigned int c; | |
10319 | Elf32_gptab *tab; | |
10320 | Elf32_External_gptab *ext_tab; | |
10321 | unsigned int j; | |
10322 | ||
10323 | /* The .gptab.sdata and .gptab.sbss sections hold | |
10324 | information describing how the small data area would | |
10325 | change depending upon the -G switch. These sections | |
10326 | not used in executables files. */ | |
1049f94e | 10327 | if (! info->relocatable) |
b49e97c9 | 10328 | { |
8423293d | 10329 | for (p = o->map_head.link_order; p != NULL; p = p->next) |
b49e97c9 TS |
10330 | { |
10331 | asection *input_section; | |
10332 | ||
10333 | if (p->type != bfd_indirect_link_order) | |
10334 | { | |
10335 | if (p->type == bfd_data_link_order) | |
10336 | continue; | |
10337 | abort (); | |
10338 | } | |
10339 | ||
10340 | input_section = p->u.indirect.section; | |
10341 | ||
10342 | /* Hack: reset the SEC_HAS_CONTENTS flag so that | |
10343 | elf_link_input_bfd ignores this section. */ | |
10344 | input_section->flags &= ~SEC_HAS_CONTENTS; | |
10345 | } | |
10346 | ||
10347 | /* Skip this section later on (I don't think this | |
10348 | currently matters, but someday it might). */ | |
8423293d | 10349 | o->map_head.link_order = NULL; |
b49e97c9 TS |
10350 | |
10351 | /* Really remove the section. */ | |
5daa8fe7 | 10352 | bfd_section_list_remove (abfd, o); |
b49e97c9 TS |
10353 | --abfd->section_count; |
10354 | ||
10355 | continue; | |
10356 | } | |
10357 | ||
10358 | /* There is one gptab for initialized data, and one for | |
10359 | uninitialized data. */ | |
10360 | if (strcmp (o->name, ".gptab.sdata") == 0) | |
10361 | gptab_data_sec = o; | |
10362 | else if (strcmp (o->name, ".gptab.sbss") == 0) | |
10363 | gptab_bss_sec = o; | |
10364 | else | |
10365 | { | |
10366 | (*_bfd_error_handler) | |
10367 | (_("%s: illegal section name `%s'"), | |
10368 | bfd_get_filename (abfd), o->name); | |
10369 | bfd_set_error (bfd_error_nonrepresentable_section); | |
b34976b6 | 10370 | return FALSE; |
b49e97c9 TS |
10371 | } |
10372 | ||
10373 | /* The linker script always combines .gptab.data and | |
10374 | .gptab.sdata into .gptab.sdata, and likewise for | |
10375 | .gptab.bss and .gptab.sbss. It is possible that there is | |
10376 | no .sdata or .sbss section in the output file, in which | |
10377 | case we must change the name of the output section. */ | |
10378 | subname = o->name + sizeof ".gptab" - 1; | |
10379 | if (bfd_get_section_by_name (abfd, subname) == NULL) | |
10380 | { | |
10381 | if (o == gptab_data_sec) | |
10382 | o->name = ".gptab.data"; | |
10383 | else | |
10384 | o->name = ".gptab.bss"; | |
10385 | subname = o->name + sizeof ".gptab" - 1; | |
10386 | BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL); | |
10387 | } | |
10388 | ||
10389 | /* Set up the first entry. */ | |
10390 | c = 1; | |
10391 | amt = c * sizeof (Elf32_gptab); | |
9719ad41 | 10392 | tab = bfd_malloc (amt); |
b49e97c9 | 10393 | if (tab == NULL) |
b34976b6 | 10394 | return FALSE; |
b49e97c9 TS |
10395 | tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd); |
10396 | tab[0].gt_header.gt_unused = 0; | |
10397 | ||
10398 | /* Combine the input sections. */ | |
8423293d | 10399 | for (p = o->map_head.link_order; p != NULL; p = p->next) |
b49e97c9 TS |
10400 | { |
10401 | asection *input_section; | |
10402 | bfd *input_bfd; | |
10403 | bfd_size_type size; | |
10404 | unsigned long last; | |
10405 | bfd_size_type gpentry; | |
10406 | ||
10407 | if (p->type != bfd_indirect_link_order) | |
10408 | { | |
10409 | if (p->type == bfd_data_link_order) | |
10410 | continue; | |
10411 | abort (); | |
10412 | } | |
10413 | ||
10414 | input_section = p->u.indirect.section; | |
10415 | input_bfd = input_section->owner; | |
10416 | ||
10417 | /* Combine the gptab entries for this input section one | |
10418 | by one. We know that the input gptab entries are | |
10419 | sorted by ascending -G value. */ | |
eea6121a | 10420 | size = input_section->size; |
b49e97c9 TS |
10421 | last = 0; |
10422 | for (gpentry = sizeof (Elf32_External_gptab); | |
10423 | gpentry < size; | |
10424 | gpentry += sizeof (Elf32_External_gptab)) | |
10425 | { | |
10426 | Elf32_External_gptab ext_gptab; | |
10427 | Elf32_gptab int_gptab; | |
10428 | unsigned long val; | |
10429 | unsigned long add; | |
b34976b6 | 10430 | bfd_boolean exact; |
b49e97c9 TS |
10431 | unsigned int look; |
10432 | ||
10433 | if (! (bfd_get_section_contents | |
9719ad41 RS |
10434 | (input_bfd, input_section, &ext_gptab, gpentry, |
10435 | sizeof (Elf32_External_gptab)))) | |
b49e97c9 TS |
10436 | { |
10437 | free (tab); | |
b34976b6 | 10438 | return FALSE; |
b49e97c9 TS |
10439 | } |
10440 | ||
10441 | bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab, | |
10442 | &int_gptab); | |
10443 | val = int_gptab.gt_entry.gt_g_value; | |
10444 | add = int_gptab.gt_entry.gt_bytes - last; | |
10445 | ||
b34976b6 | 10446 | exact = FALSE; |
b49e97c9 TS |
10447 | for (look = 1; look < c; look++) |
10448 | { | |
10449 | if (tab[look].gt_entry.gt_g_value >= val) | |
10450 | tab[look].gt_entry.gt_bytes += add; | |
10451 | ||
10452 | if (tab[look].gt_entry.gt_g_value == val) | |
b34976b6 | 10453 | exact = TRUE; |
b49e97c9 TS |
10454 | } |
10455 | ||
10456 | if (! exact) | |
10457 | { | |
10458 | Elf32_gptab *new_tab; | |
10459 | unsigned int max; | |
10460 | ||
10461 | /* We need a new table entry. */ | |
10462 | amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab); | |
9719ad41 | 10463 | new_tab = bfd_realloc (tab, amt); |
b49e97c9 TS |
10464 | if (new_tab == NULL) |
10465 | { | |
10466 | free (tab); | |
b34976b6 | 10467 | return FALSE; |
b49e97c9 TS |
10468 | } |
10469 | tab = new_tab; | |
10470 | tab[c].gt_entry.gt_g_value = val; | |
10471 | tab[c].gt_entry.gt_bytes = add; | |
10472 | ||
10473 | /* Merge in the size for the next smallest -G | |
10474 | value, since that will be implied by this new | |
10475 | value. */ | |
10476 | max = 0; | |
10477 | for (look = 1; look < c; look++) | |
10478 | { | |
10479 | if (tab[look].gt_entry.gt_g_value < val | |
10480 | && (max == 0 | |
10481 | || (tab[look].gt_entry.gt_g_value | |
10482 | > tab[max].gt_entry.gt_g_value))) | |
10483 | max = look; | |
10484 | } | |
10485 | if (max != 0) | |
10486 | tab[c].gt_entry.gt_bytes += | |
10487 | tab[max].gt_entry.gt_bytes; | |
10488 | ||
10489 | ++c; | |
10490 | } | |
10491 | ||
10492 | last = int_gptab.gt_entry.gt_bytes; | |
10493 | } | |
10494 | ||
10495 | /* Hack: reset the SEC_HAS_CONTENTS flag so that | |
10496 | elf_link_input_bfd ignores this section. */ | |
10497 | input_section->flags &= ~SEC_HAS_CONTENTS; | |
10498 | } | |
10499 | ||
10500 | /* The table must be sorted by -G value. */ | |
10501 | if (c > 2) | |
10502 | qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare); | |
10503 | ||
10504 | /* Swap out the table. */ | |
10505 | amt = (bfd_size_type) c * sizeof (Elf32_External_gptab); | |
9719ad41 | 10506 | ext_tab = bfd_alloc (abfd, amt); |
b49e97c9 TS |
10507 | if (ext_tab == NULL) |
10508 | { | |
10509 | free (tab); | |
b34976b6 | 10510 | return FALSE; |
b49e97c9 TS |
10511 | } |
10512 | ||
10513 | for (j = 0; j < c; j++) | |
10514 | bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j); | |
10515 | free (tab); | |
10516 | ||
eea6121a | 10517 | o->size = c * sizeof (Elf32_External_gptab); |
b49e97c9 TS |
10518 | o->contents = (bfd_byte *) ext_tab; |
10519 | ||
10520 | /* Skip this section later on (I don't think this currently | |
10521 | matters, but someday it might). */ | |
8423293d | 10522 | o->map_head.link_order = NULL; |
b49e97c9 TS |
10523 | } |
10524 | } | |
10525 | ||
10526 | /* Invoke the regular ELF backend linker to do all the work. */ | |
c152c796 | 10527 | if (!bfd_elf_final_link (abfd, info)) |
b34976b6 | 10528 | return FALSE; |
b49e97c9 TS |
10529 | |
10530 | /* Now write out the computed sections. */ | |
10531 | ||
9719ad41 | 10532 | if (reginfo_sec != NULL) |
b49e97c9 TS |
10533 | { |
10534 | Elf32_External_RegInfo ext; | |
10535 | ||
10536 | bfd_mips_elf32_swap_reginfo_out (abfd, ®info, &ext); | |
9719ad41 | 10537 | if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext)) |
b34976b6 | 10538 | return FALSE; |
b49e97c9 TS |
10539 | } |
10540 | ||
9719ad41 | 10541 | if (mdebug_sec != NULL) |
b49e97c9 TS |
10542 | { |
10543 | BFD_ASSERT (abfd->output_has_begun); | |
10544 | if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug, | |
10545 | swap, info, | |
10546 | mdebug_sec->filepos)) | |
b34976b6 | 10547 | return FALSE; |
b49e97c9 TS |
10548 | |
10549 | bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info); | |
10550 | } | |
10551 | ||
9719ad41 | 10552 | if (gptab_data_sec != NULL) |
b49e97c9 TS |
10553 | { |
10554 | if (! bfd_set_section_contents (abfd, gptab_data_sec, | |
10555 | gptab_data_sec->contents, | |
eea6121a | 10556 | 0, gptab_data_sec->size)) |
b34976b6 | 10557 | return FALSE; |
b49e97c9 TS |
10558 | } |
10559 | ||
9719ad41 | 10560 | if (gptab_bss_sec != NULL) |
b49e97c9 TS |
10561 | { |
10562 | if (! bfd_set_section_contents (abfd, gptab_bss_sec, | |
10563 | gptab_bss_sec->contents, | |
eea6121a | 10564 | 0, gptab_bss_sec->size)) |
b34976b6 | 10565 | return FALSE; |
b49e97c9 TS |
10566 | } |
10567 | ||
10568 | if (SGI_COMPAT (abfd)) | |
10569 | { | |
10570 | rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc"); | |
10571 | if (rtproc_sec != NULL) | |
10572 | { | |
10573 | if (! bfd_set_section_contents (abfd, rtproc_sec, | |
10574 | rtproc_sec->contents, | |
eea6121a | 10575 | 0, rtproc_sec->size)) |
b34976b6 | 10576 | return FALSE; |
b49e97c9 TS |
10577 | } |
10578 | } | |
10579 | ||
b34976b6 | 10580 | return TRUE; |
b49e97c9 TS |
10581 | } |
10582 | \f | |
64543e1a RS |
10583 | /* Structure for saying that BFD machine EXTENSION extends BASE. */ |
10584 | ||
10585 | struct mips_mach_extension { | |
10586 | unsigned long extension, base; | |
10587 | }; | |
10588 | ||
10589 | ||
10590 | /* An array describing how BFD machines relate to one another. The entries | |
10591 | are ordered topologically with MIPS I extensions listed last. */ | |
10592 | ||
10593 | static const struct mips_mach_extension mips_mach_extensions[] = { | |
10594 | /* MIPS64 extensions. */ | |
5f74bc13 | 10595 | { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 }, |
64543e1a RS |
10596 | { bfd_mach_mips_sb1, bfd_mach_mipsisa64 }, |
10597 | ||
10598 | /* MIPS V extensions. */ | |
10599 | { bfd_mach_mipsisa64, bfd_mach_mips5 }, | |
10600 | ||
10601 | /* R10000 extensions. */ | |
10602 | { bfd_mach_mips12000, bfd_mach_mips10000 }, | |
10603 | ||
10604 | /* R5000 extensions. Note: the vr5500 ISA is an extension of the core | |
10605 | vr5400 ISA, but doesn't include the multimedia stuff. It seems | |
10606 | better to allow vr5400 and vr5500 code to be merged anyway, since | |
10607 | many libraries will just use the core ISA. Perhaps we could add | |
10608 | some sort of ASE flag if this ever proves a problem. */ | |
10609 | { bfd_mach_mips5500, bfd_mach_mips5400 }, | |
10610 | { bfd_mach_mips5400, bfd_mach_mips5000 }, | |
10611 | ||
10612 | /* MIPS IV extensions. */ | |
10613 | { bfd_mach_mips5, bfd_mach_mips8000 }, | |
10614 | { bfd_mach_mips10000, bfd_mach_mips8000 }, | |
10615 | { bfd_mach_mips5000, bfd_mach_mips8000 }, | |
5a7ea749 | 10616 | { bfd_mach_mips7000, bfd_mach_mips8000 }, |
0d2e43ed | 10617 | { bfd_mach_mips9000, bfd_mach_mips8000 }, |
64543e1a RS |
10618 | |
10619 | /* VR4100 extensions. */ | |
10620 | { bfd_mach_mips4120, bfd_mach_mips4100 }, | |
10621 | { bfd_mach_mips4111, bfd_mach_mips4100 }, | |
10622 | ||
10623 | /* MIPS III extensions. */ | |
10624 | { bfd_mach_mips8000, bfd_mach_mips4000 }, | |
10625 | { bfd_mach_mips4650, bfd_mach_mips4000 }, | |
10626 | { bfd_mach_mips4600, bfd_mach_mips4000 }, | |
10627 | { bfd_mach_mips4400, bfd_mach_mips4000 }, | |
10628 | { bfd_mach_mips4300, bfd_mach_mips4000 }, | |
10629 | { bfd_mach_mips4100, bfd_mach_mips4000 }, | |
10630 | { bfd_mach_mips4010, bfd_mach_mips4000 }, | |
10631 | ||
10632 | /* MIPS32 extensions. */ | |
10633 | { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 }, | |
10634 | ||
10635 | /* MIPS II extensions. */ | |
10636 | { bfd_mach_mips4000, bfd_mach_mips6000 }, | |
10637 | { bfd_mach_mipsisa32, bfd_mach_mips6000 }, | |
10638 | ||
10639 | /* MIPS I extensions. */ | |
10640 | { bfd_mach_mips6000, bfd_mach_mips3000 }, | |
10641 | { bfd_mach_mips3900, bfd_mach_mips3000 } | |
10642 | }; | |
10643 | ||
10644 | ||
10645 | /* Return true if bfd machine EXTENSION is an extension of machine BASE. */ | |
10646 | ||
10647 | static bfd_boolean | |
9719ad41 | 10648 | mips_mach_extends_p (unsigned long base, unsigned long extension) |
64543e1a RS |
10649 | { |
10650 | size_t i; | |
10651 | ||
c5211a54 RS |
10652 | if (extension == base) |
10653 | return TRUE; | |
10654 | ||
10655 | if (base == bfd_mach_mipsisa32 | |
10656 | && mips_mach_extends_p (bfd_mach_mipsisa64, extension)) | |
10657 | return TRUE; | |
10658 | ||
10659 | if (base == bfd_mach_mipsisa32r2 | |
10660 | && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension)) | |
10661 | return TRUE; | |
10662 | ||
10663 | for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++) | |
64543e1a | 10664 | if (extension == mips_mach_extensions[i].extension) |
c5211a54 RS |
10665 | { |
10666 | extension = mips_mach_extensions[i].base; | |
10667 | if (extension == base) | |
10668 | return TRUE; | |
10669 | } | |
64543e1a | 10670 | |
c5211a54 | 10671 | return FALSE; |
64543e1a RS |
10672 | } |
10673 | ||
10674 | ||
10675 | /* Return true if the given ELF header flags describe a 32-bit binary. */ | |
00707a0e | 10676 | |
b34976b6 | 10677 | static bfd_boolean |
9719ad41 | 10678 | mips_32bit_flags_p (flagword flags) |
00707a0e | 10679 | { |
64543e1a RS |
10680 | return ((flags & EF_MIPS_32BITMODE) != 0 |
10681 | || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32 | |
10682 | || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32 | |
10683 | || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1 | |
10684 | || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2 | |
10685 | || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32 | |
10686 | || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2); | |
00707a0e RS |
10687 | } |
10688 | ||
64543e1a | 10689 | |
b49e97c9 TS |
10690 | /* Merge backend specific data from an object file to the output |
10691 | object file when linking. */ | |
10692 | ||
b34976b6 | 10693 | bfd_boolean |
9719ad41 | 10694 | _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd) |
b49e97c9 TS |
10695 | { |
10696 | flagword old_flags; | |
10697 | flagword new_flags; | |
b34976b6 AM |
10698 | bfd_boolean ok; |
10699 | bfd_boolean null_input_bfd = TRUE; | |
b49e97c9 TS |
10700 | asection *sec; |
10701 | ||
10702 | /* Check if we have the same endianess */ | |
82e51918 | 10703 | if (! _bfd_generic_verify_endian_match (ibfd, obfd)) |
aa701218 AO |
10704 | { |
10705 | (*_bfd_error_handler) | |
d003868e AM |
10706 | (_("%B: endianness incompatible with that of the selected emulation"), |
10707 | ibfd); | |
aa701218 AO |
10708 | return FALSE; |
10709 | } | |
b49e97c9 TS |
10710 | |
10711 | if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour | |
10712 | || bfd_get_flavour (obfd) != bfd_target_elf_flavour) | |
b34976b6 | 10713 | return TRUE; |
b49e97c9 | 10714 | |
aa701218 AO |
10715 | if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0) |
10716 | { | |
10717 | (*_bfd_error_handler) | |
d003868e AM |
10718 | (_("%B: ABI is incompatible with that of the selected emulation"), |
10719 | ibfd); | |
aa701218 AO |
10720 | return FALSE; |
10721 | } | |
10722 | ||
b49e97c9 TS |
10723 | new_flags = elf_elfheader (ibfd)->e_flags; |
10724 | elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER; | |
10725 | old_flags = elf_elfheader (obfd)->e_flags; | |
10726 | ||
10727 | if (! elf_flags_init (obfd)) | |
10728 | { | |
b34976b6 | 10729 | elf_flags_init (obfd) = TRUE; |
b49e97c9 TS |
10730 | elf_elfheader (obfd)->e_flags = new_flags; |
10731 | elf_elfheader (obfd)->e_ident[EI_CLASS] | |
10732 | = elf_elfheader (ibfd)->e_ident[EI_CLASS]; | |
10733 | ||
10734 | if (bfd_get_arch (obfd) == bfd_get_arch (ibfd) | |
10735 | && bfd_get_arch_info (obfd)->the_default) | |
10736 | { | |
10737 | if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), | |
10738 | bfd_get_mach (ibfd))) | |
b34976b6 | 10739 | return FALSE; |
b49e97c9 TS |
10740 | } |
10741 | ||
b34976b6 | 10742 | return TRUE; |
b49e97c9 TS |
10743 | } |
10744 | ||
10745 | /* Check flag compatibility. */ | |
10746 | ||
10747 | new_flags &= ~EF_MIPS_NOREORDER; | |
10748 | old_flags &= ~EF_MIPS_NOREORDER; | |
10749 | ||
f4416af6 AO |
10750 | /* Some IRIX 6 BSD-compatibility objects have this bit set. It |
10751 | doesn't seem to matter. */ | |
10752 | new_flags &= ~EF_MIPS_XGOT; | |
10753 | old_flags &= ~EF_MIPS_XGOT; | |
10754 | ||
98a8deaf RS |
10755 | /* MIPSpro generates ucode info in n64 objects. Again, we should |
10756 | just be able to ignore this. */ | |
10757 | new_flags &= ~EF_MIPS_UCODE; | |
10758 | old_flags &= ~EF_MIPS_UCODE; | |
10759 | ||
0a44bf69 RS |
10760 | /* Don't care about the PIC flags from dynamic objects; they are |
10761 | PIC by design. */ | |
10762 | if ((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0 | |
10763 | && (ibfd->flags & DYNAMIC) != 0) | |
10764 | new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC); | |
10765 | ||
b49e97c9 | 10766 | if (new_flags == old_flags) |
b34976b6 | 10767 | return TRUE; |
b49e97c9 TS |
10768 | |
10769 | /* Check to see if the input BFD actually contains any sections. | |
10770 | If not, its flags may not have been initialised either, but it cannot | |
10771 | actually cause any incompatibility. */ | |
10772 | for (sec = ibfd->sections; sec != NULL; sec = sec->next) | |
10773 | { | |
10774 | /* Ignore synthetic sections and empty .text, .data and .bss sections | |
10775 | which are automatically generated by gas. */ | |
10776 | if (strcmp (sec->name, ".reginfo") | |
10777 | && strcmp (sec->name, ".mdebug") | |
eea6121a | 10778 | && (sec->size != 0 |
d13d89fa NS |
10779 | || (strcmp (sec->name, ".text") |
10780 | && strcmp (sec->name, ".data") | |
10781 | && strcmp (sec->name, ".bss")))) | |
b49e97c9 | 10782 | { |
b34976b6 | 10783 | null_input_bfd = FALSE; |
b49e97c9 TS |
10784 | break; |
10785 | } | |
10786 | } | |
10787 | if (null_input_bfd) | |
b34976b6 | 10788 | return TRUE; |
b49e97c9 | 10789 | |
b34976b6 | 10790 | ok = TRUE; |
b49e97c9 | 10791 | |
143d77c5 EC |
10792 | if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0) |
10793 | != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)) | |
b49e97c9 | 10794 | { |
b49e97c9 | 10795 | (*_bfd_error_handler) |
d003868e AM |
10796 | (_("%B: warning: linking PIC files with non-PIC files"), |
10797 | ibfd); | |
143d77c5 | 10798 | ok = TRUE; |
b49e97c9 TS |
10799 | } |
10800 | ||
143d77c5 EC |
10801 | if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) |
10802 | elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC; | |
10803 | if (! (new_flags & EF_MIPS_PIC)) | |
10804 | elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC; | |
10805 | ||
10806 | new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC); | |
10807 | old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC); | |
b49e97c9 | 10808 | |
64543e1a RS |
10809 | /* Compare the ISAs. */ |
10810 | if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags)) | |
b49e97c9 | 10811 | { |
64543e1a | 10812 | (*_bfd_error_handler) |
d003868e AM |
10813 | (_("%B: linking 32-bit code with 64-bit code"), |
10814 | ibfd); | |
64543e1a RS |
10815 | ok = FALSE; |
10816 | } | |
10817 | else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd))) | |
10818 | { | |
10819 | /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */ | |
10820 | if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd))) | |
b49e97c9 | 10821 | { |
64543e1a RS |
10822 | /* Copy the architecture info from IBFD to OBFD. Also copy |
10823 | the 32-bit flag (if set) so that we continue to recognise | |
10824 | OBFD as a 32-bit binary. */ | |
10825 | bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd)); | |
10826 | elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH); | |
10827 | elf_elfheader (obfd)->e_flags | |
10828 | |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE); | |
10829 | ||
10830 | /* Copy across the ABI flags if OBFD doesn't use them | |
10831 | and if that was what caused us to treat IBFD as 32-bit. */ | |
10832 | if ((old_flags & EF_MIPS_ABI) == 0 | |
10833 | && mips_32bit_flags_p (new_flags) | |
10834 | && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI)) | |
10835 | elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI; | |
b49e97c9 TS |
10836 | } |
10837 | else | |
10838 | { | |
64543e1a | 10839 | /* The ISAs aren't compatible. */ |
b49e97c9 | 10840 | (*_bfd_error_handler) |
d003868e AM |
10841 | (_("%B: linking %s module with previous %s modules"), |
10842 | ibfd, | |
64543e1a RS |
10843 | bfd_printable_name (ibfd), |
10844 | bfd_printable_name (obfd)); | |
b34976b6 | 10845 | ok = FALSE; |
b49e97c9 | 10846 | } |
b49e97c9 TS |
10847 | } |
10848 | ||
64543e1a RS |
10849 | new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE); |
10850 | old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE); | |
10851 | ||
10852 | /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it | |
b49e97c9 TS |
10853 | does set EI_CLASS differently from any 32-bit ABI. */ |
10854 | if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI) | |
10855 | || (elf_elfheader (ibfd)->e_ident[EI_CLASS] | |
10856 | != elf_elfheader (obfd)->e_ident[EI_CLASS])) | |
10857 | { | |
10858 | /* Only error if both are set (to different values). */ | |
10859 | if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI)) | |
10860 | || (elf_elfheader (ibfd)->e_ident[EI_CLASS] | |
10861 | != elf_elfheader (obfd)->e_ident[EI_CLASS])) | |
10862 | { | |
10863 | (*_bfd_error_handler) | |
d003868e AM |
10864 | (_("%B: ABI mismatch: linking %s module with previous %s modules"), |
10865 | ibfd, | |
b49e97c9 TS |
10866 | elf_mips_abi_name (ibfd), |
10867 | elf_mips_abi_name (obfd)); | |
b34976b6 | 10868 | ok = FALSE; |
b49e97c9 TS |
10869 | } |
10870 | new_flags &= ~EF_MIPS_ABI; | |
10871 | old_flags &= ~EF_MIPS_ABI; | |
10872 | } | |
10873 | ||
fb39dac1 RS |
10874 | /* For now, allow arbitrary mixing of ASEs (retain the union). */ |
10875 | if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE)) | |
10876 | { | |
10877 | elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE; | |
10878 | ||
10879 | new_flags &= ~ EF_MIPS_ARCH_ASE; | |
10880 | old_flags &= ~ EF_MIPS_ARCH_ASE; | |
10881 | } | |
10882 | ||
b49e97c9 TS |
10883 | /* Warn about any other mismatches */ |
10884 | if (new_flags != old_flags) | |
10885 | { | |
10886 | (*_bfd_error_handler) | |
d003868e AM |
10887 | (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"), |
10888 | ibfd, (unsigned long) new_flags, | |
b49e97c9 | 10889 | (unsigned long) old_flags); |
b34976b6 | 10890 | ok = FALSE; |
b49e97c9 TS |
10891 | } |
10892 | ||
10893 | if (! ok) | |
10894 | { | |
10895 | bfd_set_error (bfd_error_bad_value); | |
b34976b6 | 10896 | return FALSE; |
b49e97c9 TS |
10897 | } |
10898 | ||
b34976b6 | 10899 | return TRUE; |
b49e97c9 TS |
10900 | } |
10901 | ||
10902 | /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */ | |
10903 | ||
b34976b6 | 10904 | bfd_boolean |
9719ad41 | 10905 | _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags) |
b49e97c9 TS |
10906 | { |
10907 | BFD_ASSERT (!elf_flags_init (abfd) | |
10908 | || elf_elfheader (abfd)->e_flags == flags); | |
10909 | ||
10910 | elf_elfheader (abfd)->e_flags = flags; | |
b34976b6 AM |
10911 | elf_flags_init (abfd) = TRUE; |
10912 | return TRUE; | |
b49e97c9 TS |
10913 | } |
10914 | ||
b34976b6 | 10915 | bfd_boolean |
9719ad41 | 10916 | _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr) |
b49e97c9 | 10917 | { |
9719ad41 | 10918 | FILE *file = ptr; |
b49e97c9 TS |
10919 | |
10920 | BFD_ASSERT (abfd != NULL && ptr != NULL); | |
10921 | ||
10922 | /* Print normal ELF private data. */ | |
10923 | _bfd_elf_print_private_bfd_data (abfd, ptr); | |
10924 | ||
10925 | /* xgettext:c-format */ | |
10926 | fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags); | |
10927 | ||
10928 | if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32) | |
10929 | fprintf (file, _(" [abi=O32]")); | |
10930 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64) | |
10931 | fprintf (file, _(" [abi=O64]")); | |
10932 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32) | |
10933 | fprintf (file, _(" [abi=EABI32]")); | |
10934 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64) | |
10935 | fprintf (file, _(" [abi=EABI64]")); | |
10936 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI)) | |
10937 | fprintf (file, _(" [abi unknown]")); | |
10938 | else if (ABI_N32_P (abfd)) | |
10939 | fprintf (file, _(" [abi=N32]")); | |
10940 | else if (ABI_64_P (abfd)) | |
10941 | fprintf (file, _(" [abi=64]")); | |
10942 | else | |
10943 | fprintf (file, _(" [no abi set]")); | |
10944 | ||
10945 | if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1) | |
10946 | fprintf (file, _(" [mips1]")); | |
10947 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2) | |
10948 | fprintf (file, _(" [mips2]")); | |
10949 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3) | |
10950 | fprintf (file, _(" [mips3]")); | |
10951 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4) | |
10952 | fprintf (file, _(" [mips4]")); | |
10953 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5) | |
10954 | fprintf (file, _(" [mips5]")); | |
10955 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32) | |
10956 | fprintf (file, _(" [mips32]")); | |
10957 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64) | |
10958 | fprintf (file, _(" [mips64]")); | |
af7ee8bf CD |
10959 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2) |
10960 | fprintf (file, _(" [mips32r2]")); | |
5f74bc13 CD |
10961 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2) |
10962 | fprintf (file, _(" [mips64r2]")); | |
b49e97c9 TS |
10963 | else |
10964 | fprintf (file, _(" [unknown ISA]")); | |
10965 | ||
40d32fc6 CD |
10966 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX) |
10967 | fprintf (file, _(" [mdmx]")); | |
10968 | ||
10969 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16) | |
10970 | fprintf (file, _(" [mips16]")); | |
10971 | ||
b49e97c9 TS |
10972 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE) |
10973 | fprintf (file, _(" [32bitmode]")); | |
10974 | else | |
10975 | fprintf (file, _(" [not 32bitmode]")); | |
10976 | ||
10977 | fputc ('\n', file); | |
10978 | ||
b34976b6 | 10979 | return TRUE; |
b49e97c9 | 10980 | } |
2f89ff8d | 10981 | |
b35d266b | 10982 | const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] = |
2f89ff8d | 10983 | { |
7dcb9820 AM |
10984 | { ".lit4", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, |
10985 | { ".lit8", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, | |
7dcb9820 | 10986 | { ".mdebug", 7, 0, SHT_MIPS_DEBUG, 0 }, |
551b43fd AM |
10987 | { ".sbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, |
10988 | { ".sdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, | |
10989 | { ".ucode", 6, 0, SHT_MIPS_UCODE, 0 }, | |
7dcb9820 | 10990 | { NULL, 0, 0, 0, 0 } |
2f89ff8d | 10991 | }; |
5e2b0d47 NC |
10992 | |
10993 | /* Ensure that the STO_OPTIONAL flag is copied into h->other, | |
10994 | even if this is not a defintion of the symbol. */ | |
10995 | void | |
10996 | _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h, | |
10997 | const Elf_Internal_Sym *isym, | |
10998 | bfd_boolean definition, | |
10999 | bfd_boolean dynamic ATTRIBUTE_UNUSED) | |
11000 | { | |
11001 | if (! definition | |
11002 | && ELF_MIPS_IS_OPTIONAL (isym->st_other)) | |
11003 | h->other |= STO_OPTIONAL; | |
11004 | } | |
12ac1cf5 NC |
11005 | |
11006 | /* Decide whether an undefined symbol is special and can be ignored. | |
11007 | This is the case for OPTIONAL symbols on IRIX. */ | |
11008 | bfd_boolean | |
11009 | _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h) | |
11010 | { | |
11011 | return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE; | |
11012 | } |