]>
Commit | Line | Data |
---|---|---|
b49e97c9 | 1 | /* MIPS-specific support for ELF |
64543e1a RS |
2 | Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, |
3 | 2003 Free Software Foundation, Inc. | |
b49e97c9 TS |
4 | |
5 | Most of the information added by Ian Lance Taylor, Cygnus Support, | |
6 | <[email protected]>. | |
7 | N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC. | |
8 | <[email protected]> | |
9 | Traditional MIPS targets support added by Koundinya.K, Dansk Data | |
10 | Elektronik & Operations Research Group. <[email protected]> | |
11 | ||
ae9a127f | 12 | This file is part of BFD, the Binary File Descriptor library. |
b49e97c9 | 13 | |
ae9a127f NC |
14 | This program is free software; you can redistribute it and/or modify |
15 | it under the terms of the GNU General Public License as published by | |
16 | the Free Software Foundation; either version 2 of the License, or | |
17 | (at your option) any later version. | |
b49e97c9 | 18 | |
ae9a127f NC |
19 | This program is distributed in the hope that it will be useful, |
20 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
21 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
22 | GNU General Public License for more details. | |
b49e97c9 | 23 | |
ae9a127f NC |
24 | You should have received a copy of the GNU General Public License |
25 | along with this program; if not, write to the Free Software | |
26 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ | |
b49e97c9 TS |
27 | |
28 | /* This file handles functionality common to the different MIPS ABI's. */ | |
29 | ||
30 | #include "bfd.h" | |
31 | #include "sysdep.h" | |
32 | #include "libbfd.h" | |
64543e1a | 33 | #include "libiberty.h" |
b49e97c9 TS |
34 | #include "elf-bfd.h" |
35 | #include "elfxx-mips.h" | |
36 | #include "elf/mips.h" | |
37 | ||
38 | /* Get the ECOFF swapping routines. */ | |
39 | #include "coff/sym.h" | |
40 | #include "coff/symconst.h" | |
41 | #include "coff/ecoff.h" | |
42 | #include "coff/mips.h" | |
43 | ||
b15e6682 AO |
44 | #include "hashtab.h" |
45 | ||
46 | /* This structure is used to hold .got entries while estimating got | |
47 | sizes. */ | |
48 | struct mips_got_entry | |
49 | { | |
50 | /* The input bfd in which the symbol is defined. */ | |
51 | bfd *abfd; | |
f4416af6 AO |
52 | /* The index of the symbol, as stored in the relocation r_info, if |
53 | we have a local symbol; -1 otherwise. */ | |
54 | long symndx; | |
55 | union | |
56 | { | |
57 | /* If abfd == NULL, an address that must be stored in the got. */ | |
58 | bfd_vma address; | |
59 | /* If abfd != NULL && symndx != -1, the addend of the relocation | |
60 | that should be added to the symbol value. */ | |
61 | bfd_vma addend; | |
62 | /* If abfd != NULL && symndx == -1, the hash table entry | |
63 | corresponding to a global symbol in the got (or, local, if | |
64 | h->forced_local). */ | |
65 | struct mips_elf_link_hash_entry *h; | |
66 | } d; | |
b15e6682 | 67 | /* The offset from the beginning of the .got section to the entry |
f4416af6 AO |
68 | corresponding to this symbol+addend. If it's a global symbol |
69 | whose offset is yet to be decided, it's going to be -1. */ | |
70 | long gotidx; | |
b15e6682 AO |
71 | }; |
72 | ||
f0abc2a1 | 73 | /* This structure is used to hold .got information when linking. */ |
b49e97c9 TS |
74 | |
75 | struct mips_got_info | |
76 | { | |
77 | /* The global symbol in the GOT with the lowest index in the dynamic | |
78 | symbol table. */ | |
79 | struct elf_link_hash_entry *global_gotsym; | |
80 | /* The number of global .got entries. */ | |
81 | unsigned int global_gotno; | |
82 | /* The number of local .got entries. */ | |
83 | unsigned int local_gotno; | |
84 | /* The number of local .got entries we have used. */ | |
85 | unsigned int assigned_gotno; | |
b15e6682 AO |
86 | /* A hash table holding members of the got. */ |
87 | struct htab *got_entries; | |
f4416af6 AO |
88 | /* A hash table mapping input bfds to other mips_got_info. NULL |
89 | unless multi-got was necessary. */ | |
90 | struct htab *bfd2got; | |
91 | /* In multi-got links, a pointer to the next got (err, rather, most | |
92 | of the time, it points to the previous got). */ | |
93 | struct mips_got_info *next; | |
94 | }; | |
95 | ||
96 | /* Map an input bfd to a got in a multi-got link. */ | |
97 | ||
98 | struct mips_elf_bfd2got_hash { | |
99 | bfd *bfd; | |
100 | struct mips_got_info *g; | |
101 | }; | |
102 | ||
103 | /* Structure passed when traversing the bfd2got hash table, used to | |
104 | create and merge bfd's gots. */ | |
105 | ||
106 | struct mips_elf_got_per_bfd_arg | |
107 | { | |
108 | /* A hashtable that maps bfds to gots. */ | |
109 | htab_t bfd2got; | |
110 | /* The output bfd. */ | |
111 | bfd *obfd; | |
112 | /* The link information. */ | |
113 | struct bfd_link_info *info; | |
114 | /* A pointer to the primary got, i.e., the one that's going to get | |
115 | the implicit relocations from DT_MIPS_LOCAL_GOTNO and | |
116 | DT_MIPS_GOTSYM. */ | |
117 | struct mips_got_info *primary; | |
118 | /* A non-primary got we're trying to merge with other input bfd's | |
119 | gots. */ | |
120 | struct mips_got_info *current; | |
121 | /* The maximum number of got entries that can be addressed with a | |
122 | 16-bit offset. */ | |
123 | unsigned int max_count; | |
124 | /* The number of local and global entries in the primary got. */ | |
125 | unsigned int primary_count; | |
126 | /* The number of local and global entries in the current got. */ | |
127 | unsigned int current_count; | |
128 | }; | |
129 | ||
130 | /* Another structure used to pass arguments for got entries traversal. */ | |
131 | ||
132 | struct mips_elf_set_global_got_offset_arg | |
133 | { | |
134 | struct mips_got_info *g; | |
135 | int value; | |
136 | unsigned int needed_relocs; | |
137 | struct bfd_link_info *info; | |
b49e97c9 TS |
138 | }; |
139 | ||
f0abc2a1 AM |
140 | struct _mips_elf_section_data |
141 | { | |
142 | struct bfd_elf_section_data elf; | |
143 | union | |
144 | { | |
145 | struct mips_got_info *got_info; | |
146 | bfd_byte *tdata; | |
147 | } u; | |
148 | }; | |
149 | ||
150 | #define mips_elf_section_data(sec) \ | |
68bfbfcc | 151 | ((struct _mips_elf_section_data *) elf_section_data (sec)) |
f0abc2a1 | 152 | |
b49e97c9 TS |
153 | /* This structure is passed to mips_elf_sort_hash_table_f when sorting |
154 | the dynamic symbols. */ | |
155 | ||
156 | struct mips_elf_hash_sort_data | |
157 | { | |
158 | /* The symbol in the global GOT with the lowest dynamic symbol table | |
159 | index. */ | |
160 | struct elf_link_hash_entry *low; | |
161 | /* The least dynamic symbol table index corresponding to a symbol | |
162 | with a GOT entry. */ | |
163 | long min_got_dynindx; | |
f4416af6 AO |
164 | /* The greatest dynamic symbol table index corresponding to a symbol |
165 | with a GOT entry that is not referenced (e.g., a dynamic symbol | |
9e4aeb93 | 166 | with dynamic relocations pointing to it from non-primary GOTs). */ |
f4416af6 | 167 | long max_unref_got_dynindx; |
b49e97c9 TS |
168 | /* The greatest dynamic symbol table index not corresponding to a |
169 | symbol without a GOT entry. */ | |
170 | long max_non_got_dynindx; | |
171 | }; | |
172 | ||
173 | /* The MIPS ELF linker needs additional information for each symbol in | |
174 | the global hash table. */ | |
175 | ||
176 | struct mips_elf_link_hash_entry | |
177 | { | |
178 | struct elf_link_hash_entry root; | |
179 | ||
180 | /* External symbol information. */ | |
181 | EXTR esym; | |
182 | ||
183 | /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against | |
184 | this symbol. */ | |
185 | unsigned int possibly_dynamic_relocs; | |
186 | ||
187 | /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against | |
188 | a readonly section. */ | |
b34976b6 | 189 | bfd_boolean readonly_reloc; |
b49e97c9 | 190 | |
b49e97c9 TS |
191 | /* We must not create a stub for a symbol that has relocations |
192 | related to taking the function's address, i.e. any but | |
193 | R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition", | |
194 | p. 4-20. */ | |
b34976b6 | 195 | bfd_boolean no_fn_stub; |
b49e97c9 TS |
196 | |
197 | /* If there is a stub that 32 bit functions should use to call this | |
198 | 16 bit function, this points to the section containing the stub. */ | |
199 | asection *fn_stub; | |
200 | ||
201 | /* Whether we need the fn_stub; this is set if this symbol appears | |
202 | in any relocs other than a 16 bit call. */ | |
b34976b6 | 203 | bfd_boolean need_fn_stub; |
b49e97c9 TS |
204 | |
205 | /* If there is a stub that 16 bit functions should use to call this | |
206 | 32 bit function, this points to the section containing the stub. */ | |
207 | asection *call_stub; | |
208 | ||
209 | /* This is like the call_stub field, but it is used if the function | |
210 | being called returns a floating point value. */ | |
211 | asection *call_fp_stub; | |
7c5fcef7 L |
212 | |
213 | /* Are we forced local? .*/ | |
b34976b6 | 214 | bfd_boolean forced_local; |
b49e97c9 TS |
215 | }; |
216 | ||
217 | /* MIPS ELF linker hash table. */ | |
218 | ||
219 | struct mips_elf_link_hash_table | |
220 | { | |
221 | struct elf_link_hash_table root; | |
222 | #if 0 | |
223 | /* We no longer use this. */ | |
224 | /* String section indices for the dynamic section symbols. */ | |
225 | bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES]; | |
226 | #endif | |
227 | /* The number of .rtproc entries. */ | |
228 | bfd_size_type procedure_count; | |
229 | /* The size of the .compact_rel section (if SGI_COMPAT). */ | |
230 | bfd_size_type compact_rel_size; | |
231 | /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic | |
8dc1a139 | 232 | entry is set to the address of __rld_obj_head as in IRIX5. */ |
b34976b6 | 233 | bfd_boolean use_rld_obj_head; |
b49e97c9 TS |
234 | /* This is the value of the __rld_map or __rld_obj_head symbol. */ |
235 | bfd_vma rld_value; | |
236 | /* This is set if we see any mips16 stub sections. */ | |
b34976b6 | 237 | bfd_boolean mips16_stubs_seen; |
b49e97c9 TS |
238 | }; |
239 | ||
240 | /* Structure used to pass information to mips_elf_output_extsym. */ | |
241 | ||
242 | struct extsym_info | |
243 | { | |
9e4aeb93 RS |
244 | bfd *abfd; |
245 | struct bfd_link_info *info; | |
b49e97c9 TS |
246 | struct ecoff_debug_info *debug; |
247 | const struct ecoff_debug_swap *swap; | |
b34976b6 | 248 | bfd_boolean failed; |
b49e97c9 TS |
249 | }; |
250 | ||
8dc1a139 | 251 | /* The names of the runtime procedure table symbols used on IRIX5. */ |
b49e97c9 TS |
252 | |
253 | static const char * const mips_elf_dynsym_rtproc_names[] = | |
254 | { | |
255 | "_procedure_table", | |
256 | "_procedure_string_table", | |
257 | "_procedure_table_size", | |
258 | NULL | |
259 | }; | |
260 | ||
261 | /* These structures are used to generate the .compact_rel section on | |
8dc1a139 | 262 | IRIX5. */ |
b49e97c9 TS |
263 | |
264 | typedef struct | |
265 | { | |
266 | unsigned long id1; /* Always one? */ | |
267 | unsigned long num; /* Number of compact relocation entries. */ | |
268 | unsigned long id2; /* Always two? */ | |
269 | unsigned long offset; /* The file offset of the first relocation. */ | |
270 | unsigned long reserved0; /* Zero? */ | |
271 | unsigned long reserved1; /* Zero? */ | |
272 | } Elf32_compact_rel; | |
273 | ||
274 | typedef struct | |
275 | { | |
276 | bfd_byte id1[4]; | |
277 | bfd_byte num[4]; | |
278 | bfd_byte id2[4]; | |
279 | bfd_byte offset[4]; | |
280 | bfd_byte reserved0[4]; | |
281 | bfd_byte reserved1[4]; | |
282 | } Elf32_External_compact_rel; | |
283 | ||
284 | typedef struct | |
285 | { | |
286 | unsigned int ctype : 1; /* 1: long 0: short format. See below. */ | |
287 | unsigned int rtype : 4; /* Relocation types. See below. */ | |
288 | unsigned int dist2to : 8; | |
289 | unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */ | |
290 | unsigned long konst; /* KONST field. See below. */ | |
291 | unsigned long vaddr; /* VADDR to be relocated. */ | |
292 | } Elf32_crinfo; | |
293 | ||
294 | typedef struct | |
295 | { | |
296 | unsigned int ctype : 1; /* 1: long 0: short format. See below. */ | |
297 | unsigned int rtype : 4; /* Relocation types. See below. */ | |
298 | unsigned int dist2to : 8; | |
299 | unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */ | |
300 | unsigned long konst; /* KONST field. See below. */ | |
301 | } Elf32_crinfo2; | |
302 | ||
303 | typedef struct | |
304 | { | |
305 | bfd_byte info[4]; | |
306 | bfd_byte konst[4]; | |
307 | bfd_byte vaddr[4]; | |
308 | } Elf32_External_crinfo; | |
309 | ||
310 | typedef struct | |
311 | { | |
312 | bfd_byte info[4]; | |
313 | bfd_byte konst[4]; | |
314 | } Elf32_External_crinfo2; | |
315 | ||
316 | /* These are the constants used to swap the bitfields in a crinfo. */ | |
317 | ||
318 | #define CRINFO_CTYPE (0x1) | |
319 | #define CRINFO_CTYPE_SH (31) | |
320 | #define CRINFO_RTYPE (0xf) | |
321 | #define CRINFO_RTYPE_SH (27) | |
322 | #define CRINFO_DIST2TO (0xff) | |
323 | #define CRINFO_DIST2TO_SH (19) | |
324 | #define CRINFO_RELVADDR (0x7ffff) | |
325 | #define CRINFO_RELVADDR_SH (0) | |
326 | ||
327 | /* A compact relocation info has long (3 words) or short (2 words) | |
328 | formats. A short format doesn't have VADDR field and relvaddr | |
329 | fields contains ((VADDR - vaddr of the previous entry) >> 2). */ | |
330 | #define CRF_MIPS_LONG 1 | |
331 | #define CRF_MIPS_SHORT 0 | |
332 | ||
333 | /* There are 4 types of compact relocation at least. The value KONST | |
334 | has different meaning for each type: | |
335 | ||
336 | (type) (konst) | |
337 | CT_MIPS_REL32 Address in data | |
338 | CT_MIPS_WORD Address in word (XXX) | |
339 | CT_MIPS_GPHI_LO GP - vaddr | |
340 | CT_MIPS_JMPAD Address to jump | |
341 | */ | |
342 | ||
343 | #define CRT_MIPS_REL32 0xa | |
344 | #define CRT_MIPS_WORD 0xb | |
345 | #define CRT_MIPS_GPHI_LO 0xc | |
346 | #define CRT_MIPS_JMPAD 0xd | |
347 | ||
348 | #define mips_elf_set_cr_format(x,format) ((x).ctype = (format)) | |
349 | #define mips_elf_set_cr_type(x,type) ((x).rtype = (type)) | |
350 | #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v)) | |
351 | #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2) | |
352 | \f | |
353 | /* The structure of the runtime procedure descriptor created by the | |
354 | loader for use by the static exception system. */ | |
355 | ||
356 | typedef struct runtime_pdr { | |
ae9a127f NC |
357 | bfd_vma adr; /* Memory address of start of procedure. */ |
358 | long regmask; /* Save register mask. */ | |
359 | long regoffset; /* Save register offset. */ | |
360 | long fregmask; /* Save floating point register mask. */ | |
361 | long fregoffset; /* Save floating point register offset. */ | |
362 | long frameoffset; /* Frame size. */ | |
363 | short framereg; /* Frame pointer register. */ | |
364 | short pcreg; /* Offset or reg of return pc. */ | |
365 | long irpss; /* Index into the runtime string table. */ | |
b49e97c9 | 366 | long reserved; |
ae9a127f | 367 | struct exception_info *exception_info;/* Pointer to exception array. */ |
b49e97c9 TS |
368 | } RPDR, *pRPDR; |
369 | #define cbRPDR sizeof (RPDR) | |
370 | #define rpdNil ((pRPDR) 0) | |
371 | \f | |
372 | static struct bfd_hash_entry *mips_elf_link_hash_newfunc | |
373 | PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *)); | |
374 | static void ecoff_swap_rpdr_out | |
375 | PARAMS ((bfd *, const RPDR *, struct rpdr_ext *)); | |
b34976b6 | 376 | static bfd_boolean mips_elf_create_procedure_table |
b49e97c9 TS |
377 | PARAMS ((PTR, bfd *, struct bfd_link_info *, asection *, |
378 | struct ecoff_debug_info *)); | |
b34976b6 | 379 | static bfd_boolean mips_elf_check_mips16_stubs |
b49e97c9 TS |
380 | PARAMS ((struct mips_elf_link_hash_entry *, PTR)); |
381 | static void bfd_mips_elf32_swap_gptab_in | |
382 | PARAMS ((bfd *, const Elf32_External_gptab *, Elf32_gptab *)); | |
383 | static void bfd_mips_elf32_swap_gptab_out | |
384 | PARAMS ((bfd *, const Elf32_gptab *, Elf32_External_gptab *)); | |
385 | static void bfd_elf32_swap_compact_rel_out | |
386 | PARAMS ((bfd *, const Elf32_compact_rel *, Elf32_External_compact_rel *)); | |
387 | static void bfd_elf32_swap_crinfo_out | |
388 | PARAMS ((bfd *, const Elf32_crinfo *, Elf32_External_crinfo *)); | |
b49e97c9 TS |
389 | static int sort_dynamic_relocs |
390 | PARAMS ((const void *, const void *)); | |
f4416af6 AO |
391 | static int sort_dynamic_relocs_64 |
392 | PARAMS ((const void *, const void *)); | |
b34976b6 | 393 | static bfd_boolean mips_elf_output_extsym |
b49e97c9 TS |
394 | PARAMS ((struct mips_elf_link_hash_entry *, PTR)); |
395 | static int gptab_compare PARAMS ((const void *, const void *)); | |
f4416af6 AO |
396 | static asection * mips_elf_rel_dyn_section PARAMS ((bfd *, bfd_boolean)); |
397 | static asection * mips_elf_got_section PARAMS ((bfd *, bfd_boolean)); | |
b49e97c9 TS |
398 | static struct mips_got_info *mips_elf_got_info |
399 | PARAMS ((bfd *, asection **)); | |
0176c794 | 400 | static long mips_elf_get_global_gotsym_index PARAMS ((bfd *abfd)); |
b49e97c9 | 401 | static bfd_vma mips_elf_local_got_index |
f4416af6 | 402 | PARAMS ((bfd *, bfd *, struct bfd_link_info *, bfd_vma)); |
b49e97c9 | 403 | static bfd_vma mips_elf_global_got_index |
f4416af6 | 404 | PARAMS ((bfd *, bfd *, struct elf_link_hash_entry *)); |
b49e97c9 | 405 | static bfd_vma mips_elf_got_page |
f4416af6 | 406 | PARAMS ((bfd *, bfd *, struct bfd_link_info *, bfd_vma, bfd_vma *)); |
b49e97c9 | 407 | static bfd_vma mips_elf_got16_entry |
f4416af6 | 408 | PARAMS ((bfd *, bfd *, struct bfd_link_info *, bfd_vma, bfd_boolean)); |
b49e97c9 | 409 | static bfd_vma mips_elf_got_offset_from_index |
f4416af6 | 410 | PARAMS ((bfd *, bfd *, bfd *, bfd_vma)); |
b15e6682 | 411 | static struct mips_got_entry *mips_elf_create_local_got_entry |
f4416af6 | 412 | PARAMS ((bfd *, bfd *, struct mips_got_info *, asection *, bfd_vma)); |
b34976b6 | 413 | static bfd_boolean mips_elf_sort_hash_table |
b49e97c9 | 414 | PARAMS ((struct bfd_link_info *, unsigned long)); |
b34976b6 | 415 | static bfd_boolean mips_elf_sort_hash_table_f |
b49e97c9 | 416 | PARAMS ((struct mips_elf_link_hash_entry *, PTR)); |
f4416af6 AO |
417 | static bfd_boolean mips_elf_record_local_got_symbol |
418 | PARAMS ((bfd *, long, bfd_vma, struct mips_got_info *)); | |
b34976b6 | 419 | static bfd_boolean mips_elf_record_global_got_symbol |
f4416af6 | 420 | PARAMS ((struct elf_link_hash_entry *, bfd *, struct bfd_link_info *, |
b49e97c9 TS |
421 | struct mips_got_info *)); |
422 | static const Elf_Internal_Rela *mips_elf_next_relocation | |
423 | PARAMS ((bfd *, unsigned int, const Elf_Internal_Rela *, | |
424 | const Elf_Internal_Rela *)); | |
b34976b6 AM |
425 | static bfd_boolean mips_elf_local_relocation_p |
426 | PARAMS ((bfd *, const Elf_Internal_Rela *, asection **, bfd_boolean)); | |
b34976b6 | 427 | static bfd_boolean mips_elf_overflow_p PARAMS ((bfd_vma, int)); |
b49e97c9 TS |
428 | static bfd_vma mips_elf_high PARAMS ((bfd_vma)); |
429 | static bfd_vma mips_elf_higher PARAMS ((bfd_vma)); | |
430 | static bfd_vma mips_elf_highest PARAMS ((bfd_vma)); | |
b34976b6 | 431 | static bfd_boolean mips_elf_create_compact_rel_section |
b49e97c9 | 432 | PARAMS ((bfd *, struct bfd_link_info *)); |
b34976b6 | 433 | static bfd_boolean mips_elf_create_got_section |
f4416af6 | 434 | PARAMS ((bfd *, struct bfd_link_info *, bfd_boolean)); |
b49e97c9 TS |
435 | static bfd_reloc_status_type mips_elf_calculate_relocation |
436 | PARAMS ((bfd *, bfd *, asection *, struct bfd_link_info *, | |
437 | const Elf_Internal_Rela *, bfd_vma, reloc_howto_type *, | |
438 | Elf_Internal_Sym *, asection **, bfd_vma *, const char **, | |
b34976b6 | 439 | bfd_boolean *, bfd_boolean)); |
b49e97c9 TS |
440 | static bfd_vma mips_elf_obtain_contents |
441 | PARAMS ((reloc_howto_type *, const Elf_Internal_Rela *, bfd *, bfd_byte *)); | |
b34976b6 | 442 | static bfd_boolean mips_elf_perform_relocation |
b49e97c9 TS |
443 | PARAMS ((struct bfd_link_info *, reloc_howto_type *, |
444 | const Elf_Internal_Rela *, bfd_vma, bfd *, asection *, bfd_byte *, | |
b34976b6 AM |
445 | bfd_boolean)); |
446 | static bfd_boolean mips_elf_stub_section_p | |
b49e97c9 TS |
447 | PARAMS ((bfd *, asection *)); |
448 | static void mips_elf_allocate_dynamic_relocations | |
449 | PARAMS ((bfd *, unsigned int)); | |
b34976b6 | 450 | static bfd_boolean mips_elf_create_dynamic_relocation |
b49e97c9 TS |
451 | PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Rela *, |
452 | struct mips_elf_link_hash_entry *, asection *, | |
453 | bfd_vma, bfd_vma *, asection *)); | |
64543e1a | 454 | static void mips_set_isa_flags PARAMS ((bfd *)); |
b49e97c9 TS |
455 | static INLINE char* elf_mips_abi_name PARAMS ((bfd *)); |
456 | static void mips_elf_irix6_finish_dynamic_symbol | |
457 | PARAMS ((bfd *, const char *, Elf_Internal_Sym *)); | |
64543e1a RS |
458 | static bfd_boolean mips_mach_extends_p PARAMS ((unsigned long, unsigned long)); |
459 | static bfd_boolean mips_32bit_flags_p PARAMS ((flagword)); | |
f4416af6 | 460 | static INLINE hashval_t mips_elf_hash_bfd_vma PARAMS ((bfd_vma)); |
b15e6682 AO |
461 | static hashval_t mips_elf_got_entry_hash PARAMS ((const PTR)); |
462 | static int mips_elf_got_entry_eq PARAMS ((const PTR, const PTR)); | |
b49e97c9 | 463 | |
f4416af6 AO |
464 | static bfd_boolean mips_elf_multi_got |
465 | PARAMS ((bfd *, struct bfd_link_info *, struct mips_got_info *, | |
466 | asection *, bfd_size_type)); | |
467 | static hashval_t mips_elf_multi_got_entry_hash PARAMS ((const PTR)); | |
468 | static int mips_elf_multi_got_entry_eq PARAMS ((const PTR, const PTR)); | |
469 | static hashval_t mips_elf_bfd2got_entry_hash PARAMS ((const PTR)); | |
470 | static int mips_elf_bfd2got_entry_eq PARAMS ((const PTR, const PTR)); | |
471 | static int mips_elf_make_got_per_bfd PARAMS ((void **, void *)); | |
472 | static int mips_elf_merge_gots PARAMS ((void **, void *)); | |
473 | static int mips_elf_set_global_got_offset PARAMS ((void**, void *)); | |
474 | static int mips_elf_resolve_final_got_entry PARAMS ((void**, void *)); | |
475 | static void mips_elf_resolve_final_got_entries | |
476 | PARAMS ((struct mips_got_info *)); | |
477 | static bfd_vma mips_elf_adjust_gp | |
478 | PARAMS ((bfd *, struct mips_got_info *, bfd *)); | |
479 | static struct mips_got_info *mips_elf_got_for_ibfd | |
480 | PARAMS ((struct mips_got_info *, bfd *)); | |
481 | ||
b49e97c9 TS |
482 | /* This will be used when we sort the dynamic relocation records. */ |
483 | static bfd *reldyn_sorting_bfd; | |
484 | ||
485 | /* Nonzero if ABFD is using the N32 ABI. */ | |
0b25d3e6 | 486 | |
b49e97c9 TS |
487 | #define ABI_N32_P(abfd) \ |
488 | ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0) | |
489 | ||
4a14403c | 490 | /* Nonzero if ABFD is using the N64 ABI. */ |
b49e97c9 | 491 | #define ABI_64_P(abfd) \ |
141ff970 | 492 | (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64) |
b49e97c9 | 493 | |
4a14403c TS |
494 | /* Nonzero if ABFD is using NewABI conventions. */ |
495 | #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd)) | |
496 | ||
497 | /* The IRIX compatibility level we are striving for. */ | |
b49e97c9 TS |
498 | #define IRIX_COMPAT(abfd) \ |
499 | (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd)) | |
500 | ||
b49e97c9 TS |
501 | /* Whether we are trying to be compatible with IRIX at all. */ |
502 | #define SGI_COMPAT(abfd) \ | |
503 | (IRIX_COMPAT (abfd) != ict_none) | |
504 | ||
505 | /* The name of the options section. */ | |
506 | #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \ | |
d80dcc6a | 507 | (NEWABI_P (abfd) ? ".MIPS.options" : ".options") |
b49e97c9 TS |
508 | |
509 | /* The name of the stub section. */ | |
510 | #define MIPS_ELF_STUB_SECTION_NAME(abfd) \ | |
d80dcc6a | 511 | (NEWABI_P (abfd) ? ".MIPS.stubs" : ".stub") |
b49e97c9 TS |
512 | |
513 | /* The size of an external REL relocation. */ | |
514 | #define MIPS_ELF_REL_SIZE(abfd) \ | |
515 | (get_elf_backend_data (abfd)->s->sizeof_rel) | |
516 | ||
517 | /* The size of an external dynamic table entry. */ | |
518 | #define MIPS_ELF_DYN_SIZE(abfd) \ | |
519 | (get_elf_backend_data (abfd)->s->sizeof_dyn) | |
520 | ||
521 | /* The size of a GOT entry. */ | |
522 | #define MIPS_ELF_GOT_SIZE(abfd) \ | |
523 | (get_elf_backend_data (abfd)->s->arch_size / 8) | |
524 | ||
525 | /* The size of a symbol-table entry. */ | |
526 | #define MIPS_ELF_SYM_SIZE(abfd) \ | |
527 | (get_elf_backend_data (abfd)->s->sizeof_sym) | |
528 | ||
529 | /* The default alignment for sections, as a power of two. */ | |
530 | #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \ | |
45d6a902 | 531 | (get_elf_backend_data (abfd)->s->log_file_align) |
b49e97c9 TS |
532 | |
533 | /* Get word-sized data. */ | |
534 | #define MIPS_ELF_GET_WORD(abfd, ptr) \ | |
535 | (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr)) | |
536 | ||
537 | /* Put out word-sized data. */ | |
538 | #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \ | |
539 | (ABI_64_P (abfd) \ | |
540 | ? bfd_put_64 (abfd, val, ptr) \ | |
541 | : bfd_put_32 (abfd, val, ptr)) | |
542 | ||
543 | /* Add a dynamic symbol table-entry. */ | |
544 | #ifdef BFD64 | |
545 | #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \ | |
546 | (ABI_64_P (elf_hash_table (info)->dynobj) \ | |
547 | ? bfd_elf64_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val) \ | |
548 | : bfd_elf32_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val)) | |
549 | #else | |
550 | #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \ | |
551 | (ABI_64_P (elf_hash_table (info)->dynobj) \ | |
b34976b6 | 552 | ? (abort (), FALSE) \ |
b49e97c9 TS |
553 | : bfd_elf32_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val)) |
554 | #endif | |
555 | ||
556 | #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \ | |
557 | (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela)) | |
558 | ||
4ffba85c AO |
559 | /* Determine whether the internal relocation of index REL_IDX is REL |
560 | (zero) or RELA (non-zero). The assumption is that, if there are | |
561 | two relocation sections for this section, one of them is REL and | |
562 | the other is RELA. If the index of the relocation we're testing is | |
563 | in range for the first relocation section, check that the external | |
564 | relocation size is that for RELA. It is also assumed that, if | |
565 | rel_idx is not in range for the first section, and this first | |
566 | section contains REL relocs, then the relocation is in the second | |
567 | section, that is RELA. */ | |
568 | #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \ | |
569 | ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \ | |
570 | * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \ | |
571 | > (bfd_vma)(rel_idx)) \ | |
572 | == (elf_section_data (sec)->rel_hdr.sh_entsize \ | |
573 | == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \ | |
574 | : sizeof (Elf32_External_Rela)))) | |
575 | ||
b49e97c9 TS |
576 | /* In case we're on a 32-bit machine, construct a 64-bit "-1" value |
577 | from smaller values. Start with zero, widen, *then* decrement. */ | |
578 | #define MINUS_ONE (((bfd_vma)0) - 1) | |
579 | ||
580 | /* The number of local .got entries we reserve. */ | |
581 | #define MIPS_RESERVED_GOTNO (2) | |
582 | ||
f4416af6 AO |
583 | /* The offset of $gp from the beginning of the .got section. */ |
584 | #define ELF_MIPS_GP_OFFSET(abfd) (0x7ff0) | |
585 | ||
586 | /* The maximum size of the GOT for it to be addressable using 16-bit | |
587 | offsets from $gp. */ | |
588 | #define MIPS_ELF_GOT_MAX_SIZE(abfd) (ELF_MIPS_GP_OFFSET(abfd) + 0x7fff) | |
589 | ||
6a691779 | 590 | /* Instructions which appear in a stub. */ |
b49e97c9 | 591 | #define STUB_LW(abfd) \ |
f4416af6 AO |
592 | ((ABI_64_P (abfd) \ |
593 | ? 0xdf998010 /* ld t9,0x8010(gp) */ \ | |
594 | : 0x8f998010)) /* lw t9,0x8010(gp) */ | |
b49e97c9 | 595 | #define STUB_MOVE(abfd) \ |
6a691779 TS |
596 | ((ABI_64_P (abfd) \ |
597 | ? 0x03e0782d /* daddu t7,ra */ \ | |
598 | : 0x03e07821)) /* addu t7,ra */ | |
599 | #define STUB_JALR 0x0320f809 /* jalr t9,ra */ | |
b49e97c9 | 600 | #define STUB_LI16(abfd) \ |
6a691779 TS |
601 | ((ABI_64_P (abfd) \ |
602 | ? 0x64180000 /* daddiu t8,zero,0 */ \ | |
603 | : 0x24180000)) /* addiu t8,zero,0 */ | |
b49e97c9 TS |
604 | #define MIPS_FUNCTION_STUB_SIZE (16) |
605 | ||
606 | /* The name of the dynamic interpreter. This is put in the .interp | |
607 | section. */ | |
608 | ||
609 | #define ELF_DYNAMIC_INTERPRETER(abfd) \ | |
610 | (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \ | |
611 | : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \ | |
612 | : "/usr/lib/libc.so.1") | |
613 | ||
614 | #ifdef BFD64 | |
ee6423ed AO |
615 | #define MNAME(bfd,pre,pos) \ |
616 | (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos)) | |
b49e97c9 TS |
617 | #define ELF_R_SYM(bfd, i) \ |
618 | (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i)) | |
619 | #define ELF_R_TYPE(bfd, i) \ | |
620 | (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i)) | |
621 | #define ELF_R_INFO(bfd, s, t) \ | |
622 | (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t)) | |
623 | #else | |
ee6423ed | 624 | #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos) |
b49e97c9 TS |
625 | #define ELF_R_SYM(bfd, i) \ |
626 | (ELF32_R_SYM (i)) | |
627 | #define ELF_R_TYPE(bfd, i) \ | |
628 | (ELF32_R_TYPE (i)) | |
629 | #define ELF_R_INFO(bfd, s, t) \ | |
630 | (ELF32_R_INFO (s, t)) | |
631 | #endif | |
632 | \f | |
633 | /* The mips16 compiler uses a couple of special sections to handle | |
634 | floating point arguments. | |
635 | ||
636 | Section names that look like .mips16.fn.FNNAME contain stubs that | |
637 | copy floating point arguments from the fp regs to the gp regs and | |
638 | then jump to FNNAME. If any 32 bit function calls FNNAME, the | |
639 | call should be redirected to the stub instead. If no 32 bit | |
640 | function calls FNNAME, the stub should be discarded. We need to | |
641 | consider any reference to the function, not just a call, because | |
642 | if the address of the function is taken we will need the stub, | |
643 | since the address might be passed to a 32 bit function. | |
644 | ||
645 | Section names that look like .mips16.call.FNNAME contain stubs | |
646 | that copy floating point arguments from the gp regs to the fp | |
647 | regs and then jump to FNNAME. If FNNAME is a 32 bit function, | |
648 | then any 16 bit function that calls FNNAME should be redirected | |
649 | to the stub instead. If FNNAME is not a 32 bit function, the | |
650 | stub should be discarded. | |
651 | ||
652 | .mips16.call.fp.FNNAME sections are similar, but contain stubs | |
653 | which call FNNAME and then copy the return value from the fp regs | |
654 | to the gp regs. These stubs store the return value in $18 while | |
655 | calling FNNAME; any function which might call one of these stubs | |
656 | must arrange to save $18 around the call. (This case is not | |
657 | needed for 32 bit functions that call 16 bit functions, because | |
658 | 16 bit functions always return floating point values in both | |
659 | $f0/$f1 and $2/$3.) | |
660 | ||
661 | Note that in all cases FNNAME might be defined statically. | |
662 | Therefore, FNNAME is not used literally. Instead, the relocation | |
663 | information will indicate which symbol the section is for. | |
664 | ||
665 | We record any stubs that we find in the symbol table. */ | |
666 | ||
667 | #define FN_STUB ".mips16.fn." | |
668 | #define CALL_STUB ".mips16.call." | |
669 | #define CALL_FP_STUB ".mips16.call.fp." | |
670 | \f | |
671 | /* Look up an entry in a MIPS ELF linker hash table. */ | |
672 | ||
673 | #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \ | |
674 | ((struct mips_elf_link_hash_entry *) \ | |
675 | elf_link_hash_lookup (&(table)->root, (string), (create), \ | |
676 | (copy), (follow))) | |
677 | ||
678 | /* Traverse a MIPS ELF linker hash table. */ | |
679 | ||
680 | #define mips_elf_link_hash_traverse(table, func, info) \ | |
681 | (elf_link_hash_traverse \ | |
682 | (&(table)->root, \ | |
b34976b6 | 683 | (bfd_boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \ |
b49e97c9 TS |
684 | (info))) |
685 | ||
686 | /* Get the MIPS ELF linker hash table from a link_info structure. */ | |
687 | ||
688 | #define mips_elf_hash_table(p) \ | |
689 | ((struct mips_elf_link_hash_table *) ((p)->hash)) | |
690 | ||
691 | /* Create an entry in a MIPS ELF linker hash table. */ | |
692 | ||
693 | static struct bfd_hash_entry * | |
694 | mips_elf_link_hash_newfunc (entry, table, string) | |
695 | struct bfd_hash_entry *entry; | |
696 | struct bfd_hash_table *table; | |
697 | const char *string; | |
698 | { | |
699 | struct mips_elf_link_hash_entry *ret = | |
700 | (struct mips_elf_link_hash_entry *) entry; | |
701 | ||
702 | /* Allocate the structure if it has not already been allocated by a | |
703 | subclass. */ | |
704 | if (ret == (struct mips_elf_link_hash_entry *) NULL) | |
705 | ret = ((struct mips_elf_link_hash_entry *) | |
706 | bfd_hash_allocate (table, | |
707 | sizeof (struct mips_elf_link_hash_entry))); | |
708 | if (ret == (struct mips_elf_link_hash_entry *) NULL) | |
709 | return (struct bfd_hash_entry *) ret; | |
710 | ||
711 | /* Call the allocation method of the superclass. */ | |
712 | ret = ((struct mips_elf_link_hash_entry *) | |
713 | _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret, | |
714 | table, string)); | |
715 | if (ret != (struct mips_elf_link_hash_entry *) NULL) | |
716 | { | |
717 | /* Set local fields. */ | |
718 | memset (&ret->esym, 0, sizeof (EXTR)); | |
719 | /* We use -2 as a marker to indicate that the information has | |
720 | not been set. -1 means there is no associated ifd. */ | |
721 | ret->esym.ifd = -2; | |
722 | ret->possibly_dynamic_relocs = 0; | |
b34976b6 | 723 | ret->readonly_reloc = FALSE; |
b34976b6 | 724 | ret->no_fn_stub = FALSE; |
b49e97c9 | 725 | ret->fn_stub = NULL; |
b34976b6 | 726 | ret->need_fn_stub = FALSE; |
b49e97c9 TS |
727 | ret->call_stub = NULL; |
728 | ret->call_fp_stub = NULL; | |
b34976b6 | 729 | ret->forced_local = FALSE; |
b49e97c9 TS |
730 | } |
731 | ||
732 | return (struct bfd_hash_entry *) ret; | |
733 | } | |
f0abc2a1 AM |
734 | |
735 | bfd_boolean | |
736 | _bfd_mips_elf_new_section_hook (abfd, sec) | |
737 | bfd *abfd; | |
738 | asection *sec; | |
739 | { | |
740 | struct _mips_elf_section_data *sdata; | |
741 | bfd_size_type amt = sizeof (*sdata); | |
742 | ||
743 | sdata = (struct _mips_elf_section_data *) bfd_zalloc (abfd, amt); | |
744 | if (sdata == NULL) | |
745 | return FALSE; | |
746 | sec->used_by_bfd = (PTR) sdata; | |
747 | ||
748 | return _bfd_elf_new_section_hook (abfd, sec); | |
749 | } | |
b49e97c9 TS |
750 | \f |
751 | /* Read ECOFF debugging information from a .mdebug section into a | |
752 | ecoff_debug_info structure. */ | |
753 | ||
b34976b6 | 754 | bfd_boolean |
b49e97c9 TS |
755 | _bfd_mips_elf_read_ecoff_info (abfd, section, debug) |
756 | bfd *abfd; | |
757 | asection *section; | |
758 | struct ecoff_debug_info *debug; | |
759 | { | |
760 | HDRR *symhdr; | |
761 | const struct ecoff_debug_swap *swap; | |
762 | char *ext_hdr = NULL; | |
763 | ||
764 | swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; | |
765 | memset (debug, 0, sizeof (*debug)); | |
766 | ||
767 | ext_hdr = (char *) bfd_malloc (swap->external_hdr_size); | |
768 | if (ext_hdr == NULL && swap->external_hdr_size != 0) | |
769 | goto error_return; | |
770 | ||
82e51918 AM |
771 | if (! bfd_get_section_contents (abfd, section, ext_hdr, (file_ptr) 0, |
772 | swap->external_hdr_size)) | |
b49e97c9 TS |
773 | goto error_return; |
774 | ||
775 | symhdr = &debug->symbolic_header; | |
776 | (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr); | |
777 | ||
778 | /* The symbolic header contains absolute file offsets and sizes to | |
779 | read. */ | |
780 | #define READ(ptr, offset, count, size, type) \ | |
781 | if (symhdr->count == 0) \ | |
782 | debug->ptr = NULL; \ | |
783 | else \ | |
784 | { \ | |
785 | bfd_size_type amt = (bfd_size_type) size * symhdr->count; \ | |
786 | debug->ptr = (type) bfd_malloc (amt); \ | |
787 | if (debug->ptr == NULL) \ | |
788 | goto error_return; \ | |
789 | if (bfd_seek (abfd, (file_ptr) symhdr->offset, SEEK_SET) != 0 \ | |
790 | || bfd_bread (debug->ptr, amt, abfd) != amt) \ | |
791 | goto error_return; \ | |
792 | } | |
793 | ||
794 | READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *); | |
795 | READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, PTR); | |
796 | READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, PTR); | |
797 | READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, PTR); | |
798 | READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, PTR); | |
799 | READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext), | |
800 | union aux_ext *); | |
801 | READ (ss, cbSsOffset, issMax, sizeof (char), char *); | |
802 | READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *); | |
803 | READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, PTR); | |
804 | READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, PTR); | |
805 | READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, PTR); | |
806 | #undef READ | |
807 | ||
808 | debug->fdr = NULL; | |
809 | debug->adjust = NULL; | |
810 | ||
b34976b6 | 811 | return TRUE; |
b49e97c9 TS |
812 | |
813 | error_return: | |
814 | if (ext_hdr != NULL) | |
815 | free (ext_hdr); | |
816 | if (debug->line != NULL) | |
817 | free (debug->line); | |
818 | if (debug->external_dnr != NULL) | |
819 | free (debug->external_dnr); | |
820 | if (debug->external_pdr != NULL) | |
821 | free (debug->external_pdr); | |
822 | if (debug->external_sym != NULL) | |
823 | free (debug->external_sym); | |
824 | if (debug->external_opt != NULL) | |
825 | free (debug->external_opt); | |
826 | if (debug->external_aux != NULL) | |
827 | free (debug->external_aux); | |
828 | if (debug->ss != NULL) | |
829 | free (debug->ss); | |
830 | if (debug->ssext != NULL) | |
831 | free (debug->ssext); | |
832 | if (debug->external_fdr != NULL) | |
833 | free (debug->external_fdr); | |
834 | if (debug->external_rfd != NULL) | |
835 | free (debug->external_rfd); | |
836 | if (debug->external_ext != NULL) | |
837 | free (debug->external_ext); | |
b34976b6 | 838 | return FALSE; |
b49e97c9 TS |
839 | } |
840 | \f | |
841 | /* Swap RPDR (runtime procedure table entry) for output. */ | |
842 | ||
843 | static void | |
844 | ecoff_swap_rpdr_out (abfd, in, ex) | |
845 | bfd *abfd; | |
846 | const RPDR *in; | |
847 | struct rpdr_ext *ex; | |
848 | { | |
849 | H_PUT_S32 (abfd, in->adr, ex->p_adr); | |
850 | H_PUT_32 (abfd, in->regmask, ex->p_regmask); | |
851 | H_PUT_32 (abfd, in->regoffset, ex->p_regoffset); | |
852 | H_PUT_32 (abfd, in->fregmask, ex->p_fregmask); | |
853 | H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset); | |
854 | H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset); | |
855 | ||
856 | H_PUT_16 (abfd, in->framereg, ex->p_framereg); | |
857 | H_PUT_16 (abfd, in->pcreg, ex->p_pcreg); | |
858 | ||
859 | H_PUT_32 (abfd, in->irpss, ex->p_irpss); | |
860 | #if 0 /* FIXME */ | |
861 | H_PUT_S32 (abfd, in->exception_info, ex->p_exception_info); | |
862 | #endif | |
863 | } | |
864 | ||
865 | /* Create a runtime procedure table from the .mdebug section. */ | |
866 | ||
b34976b6 | 867 | static bfd_boolean |
b49e97c9 TS |
868 | mips_elf_create_procedure_table (handle, abfd, info, s, debug) |
869 | PTR handle; | |
870 | bfd *abfd; | |
871 | struct bfd_link_info *info; | |
872 | asection *s; | |
873 | struct ecoff_debug_info *debug; | |
874 | { | |
875 | const struct ecoff_debug_swap *swap; | |
876 | HDRR *hdr = &debug->symbolic_header; | |
877 | RPDR *rpdr, *rp; | |
878 | struct rpdr_ext *erp; | |
879 | PTR rtproc; | |
880 | struct pdr_ext *epdr; | |
881 | struct sym_ext *esym; | |
882 | char *ss, **sv; | |
883 | char *str; | |
884 | bfd_size_type size; | |
885 | bfd_size_type count; | |
886 | unsigned long sindex; | |
887 | unsigned long i; | |
888 | PDR pdr; | |
889 | SYMR sym; | |
890 | const char *no_name_func = _("static procedure (no name)"); | |
891 | ||
892 | epdr = NULL; | |
893 | rpdr = NULL; | |
894 | esym = NULL; | |
895 | ss = NULL; | |
896 | sv = NULL; | |
897 | ||
898 | swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; | |
899 | ||
900 | sindex = strlen (no_name_func) + 1; | |
901 | count = hdr->ipdMax; | |
902 | if (count > 0) | |
903 | { | |
904 | size = swap->external_pdr_size; | |
905 | ||
906 | epdr = (struct pdr_ext *) bfd_malloc (size * count); | |
907 | if (epdr == NULL) | |
908 | goto error_return; | |
909 | ||
910 | if (! _bfd_ecoff_get_accumulated_pdr (handle, (PTR) epdr)) | |
911 | goto error_return; | |
912 | ||
913 | size = sizeof (RPDR); | |
914 | rp = rpdr = (RPDR *) bfd_malloc (size * count); | |
915 | if (rpdr == NULL) | |
916 | goto error_return; | |
917 | ||
918 | size = sizeof (char *); | |
919 | sv = (char **) bfd_malloc (size * count); | |
920 | if (sv == NULL) | |
921 | goto error_return; | |
922 | ||
923 | count = hdr->isymMax; | |
924 | size = swap->external_sym_size; | |
925 | esym = (struct sym_ext *) bfd_malloc (size * count); | |
926 | if (esym == NULL) | |
927 | goto error_return; | |
928 | ||
929 | if (! _bfd_ecoff_get_accumulated_sym (handle, (PTR) esym)) | |
930 | goto error_return; | |
931 | ||
932 | count = hdr->issMax; | |
933 | ss = (char *) bfd_malloc (count); | |
934 | if (ss == NULL) | |
935 | goto error_return; | |
936 | if (! _bfd_ecoff_get_accumulated_ss (handle, (PTR) ss)) | |
937 | goto error_return; | |
938 | ||
939 | count = hdr->ipdMax; | |
940 | for (i = 0; i < (unsigned long) count; i++, rp++) | |
941 | { | |
942 | (*swap->swap_pdr_in) (abfd, (PTR) (epdr + i), &pdr); | |
943 | (*swap->swap_sym_in) (abfd, (PTR) &esym[pdr.isym], &sym); | |
944 | rp->adr = sym.value; | |
945 | rp->regmask = pdr.regmask; | |
946 | rp->regoffset = pdr.regoffset; | |
947 | rp->fregmask = pdr.fregmask; | |
948 | rp->fregoffset = pdr.fregoffset; | |
949 | rp->frameoffset = pdr.frameoffset; | |
950 | rp->framereg = pdr.framereg; | |
951 | rp->pcreg = pdr.pcreg; | |
952 | rp->irpss = sindex; | |
953 | sv[i] = ss + sym.iss; | |
954 | sindex += strlen (sv[i]) + 1; | |
955 | } | |
956 | } | |
957 | ||
958 | size = sizeof (struct rpdr_ext) * (count + 2) + sindex; | |
959 | size = BFD_ALIGN (size, 16); | |
960 | rtproc = (PTR) bfd_alloc (abfd, size); | |
961 | if (rtproc == NULL) | |
962 | { | |
963 | mips_elf_hash_table (info)->procedure_count = 0; | |
964 | goto error_return; | |
965 | } | |
966 | ||
967 | mips_elf_hash_table (info)->procedure_count = count + 2; | |
968 | ||
969 | erp = (struct rpdr_ext *) rtproc; | |
970 | memset (erp, 0, sizeof (struct rpdr_ext)); | |
971 | erp++; | |
972 | str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2); | |
973 | strcpy (str, no_name_func); | |
974 | str += strlen (no_name_func) + 1; | |
975 | for (i = 0; i < count; i++) | |
976 | { | |
977 | ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i); | |
978 | strcpy (str, sv[i]); | |
979 | str += strlen (sv[i]) + 1; | |
980 | } | |
981 | H_PUT_S32 (abfd, -1, (erp + count)->p_adr); | |
982 | ||
983 | /* Set the size and contents of .rtproc section. */ | |
984 | s->_raw_size = size; | |
985 | s->contents = (bfd_byte *) rtproc; | |
986 | ||
987 | /* Skip this section later on (I don't think this currently | |
988 | matters, but someday it might). */ | |
989 | s->link_order_head = (struct bfd_link_order *) NULL; | |
990 | ||
991 | if (epdr != NULL) | |
992 | free (epdr); | |
993 | if (rpdr != NULL) | |
994 | free (rpdr); | |
995 | if (esym != NULL) | |
996 | free (esym); | |
997 | if (ss != NULL) | |
998 | free (ss); | |
999 | if (sv != NULL) | |
1000 | free (sv); | |
1001 | ||
b34976b6 | 1002 | return TRUE; |
b49e97c9 TS |
1003 | |
1004 | error_return: | |
1005 | if (epdr != NULL) | |
1006 | free (epdr); | |
1007 | if (rpdr != NULL) | |
1008 | free (rpdr); | |
1009 | if (esym != NULL) | |
1010 | free (esym); | |
1011 | if (ss != NULL) | |
1012 | free (ss); | |
1013 | if (sv != NULL) | |
1014 | free (sv); | |
b34976b6 | 1015 | return FALSE; |
b49e97c9 TS |
1016 | } |
1017 | ||
1018 | /* Check the mips16 stubs for a particular symbol, and see if we can | |
1019 | discard them. */ | |
1020 | ||
b34976b6 | 1021 | static bfd_boolean |
b49e97c9 TS |
1022 | mips_elf_check_mips16_stubs (h, data) |
1023 | struct mips_elf_link_hash_entry *h; | |
1024 | PTR data ATTRIBUTE_UNUSED; | |
1025 | { | |
1026 | if (h->root.root.type == bfd_link_hash_warning) | |
1027 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | |
1028 | ||
1029 | if (h->fn_stub != NULL | |
1030 | && ! h->need_fn_stub) | |
1031 | { | |
1032 | /* We don't need the fn_stub; the only references to this symbol | |
1033 | are 16 bit calls. Clobber the size to 0 to prevent it from | |
1034 | being included in the link. */ | |
1035 | h->fn_stub->_raw_size = 0; | |
1036 | h->fn_stub->_cooked_size = 0; | |
1037 | h->fn_stub->flags &= ~SEC_RELOC; | |
1038 | h->fn_stub->reloc_count = 0; | |
1039 | h->fn_stub->flags |= SEC_EXCLUDE; | |
1040 | } | |
1041 | ||
1042 | if (h->call_stub != NULL | |
1043 | && h->root.other == STO_MIPS16) | |
1044 | { | |
1045 | /* We don't need the call_stub; this is a 16 bit function, so | |
1046 | calls from other 16 bit functions are OK. Clobber the size | |
1047 | to 0 to prevent it from being included in the link. */ | |
1048 | h->call_stub->_raw_size = 0; | |
1049 | h->call_stub->_cooked_size = 0; | |
1050 | h->call_stub->flags &= ~SEC_RELOC; | |
1051 | h->call_stub->reloc_count = 0; | |
1052 | h->call_stub->flags |= SEC_EXCLUDE; | |
1053 | } | |
1054 | ||
1055 | if (h->call_fp_stub != NULL | |
1056 | && h->root.other == STO_MIPS16) | |
1057 | { | |
1058 | /* We don't need the call_stub; this is a 16 bit function, so | |
1059 | calls from other 16 bit functions are OK. Clobber the size | |
1060 | to 0 to prevent it from being included in the link. */ | |
1061 | h->call_fp_stub->_raw_size = 0; | |
1062 | h->call_fp_stub->_cooked_size = 0; | |
1063 | h->call_fp_stub->flags &= ~SEC_RELOC; | |
1064 | h->call_fp_stub->reloc_count = 0; | |
1065 | h->call_fp_stub->flags |= SEC_EXCLUDE; | |
1066 | } | |
1067 | ||
b34976b6 | 1068 | return TRUE; |
b49e97c9 TS |
1069 | } |
1070 | \f | |
1071 | bfd_reloc_status_type | |
1072 | _bfd_mips_elf_gprel16_with_gp (abfd, symbol, reloc_entry, input_section, | |
1049f94e | 1073 | relocatable, data, gp) |
b49e97c9 TS |
1074 | bfd *abfd; |
1075 | asymbol *symbol; | |
1076 | arelent *reloc_entry; | |
1077 | asection *input_section; | |
1049f94e | 1078 | bfd_boolean relocatable; |
b49e97c9 TS |
1079 | PTR data; |
1080 | bfd_vma gp; | |
1081 | { | |
1082 | bfd_vma relocation; | |
a7ebbfdf TS |
1083 | unsigned long insn = 0; |
1084 | bfd_signed_vma val; | |
b49e97c9 TS |
1085 | |
1086 | if (bfd_is_com_section (symbol->section)) | |
1087 | relocation = 0; | |
1088 | else | |
1089 | relocation = symbol->value; | |
1090 | ||
1091 | relocation += symbol->section->output_section->vma; | |
1092 | relocation += symbol->section->output_offset; | |
1093 | ||
1094 | if (reloc_entry->address > input_section->_cooked_size) | |
1095 | return bfd_reloc_outofrange; | |
1096 | ||
b49e97c9 | 1097 | /* Set val to the offset into the section or symbol. */ |
a7ebbfdf TS |
1098 | val = reloc_entry->addend; |
1099 | ||
1100 | if (reloc_entry->howto->partial_inplace) | |
b49e97c9 | 1101 | { |
a7ebbfdf TS |
1102 | insn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address); |
1103 | val += insn & 0xffff; | |
b49e97c9 TS |
1104 | } |
1105 | ||
a7ebbfdf TS |
1106 | _bfd_mips_elf_sign_extend(val, 16); |
1107 | ||
b49e97c9 | 1108 | /* Adjust val for the final section location and GP value. If we |
1049f94e | 1109 | are producing relocatable output, we don't want to do this for |
b49e97c9 | 1110 | an external symbol. */ |
1049f94e | 1111 | if (! relocatable |
b49e97c9 TS |
1112 | || (symbol->flags & BSF_SECTION_SYM) != 0) |
1113 | val += relocation - gp; | |
1114 | ||
a7ebbfdf TS |
1115 | if (reloc_entry->howto->partial_inplace) |
1116 | { | |
1117 | insn = (insn & ~0xffff) | (val & 0xffff); | |
1118 | bfd_put_32 (abfd, (bfd_vma) insn, | |
1119 | (bfd_byte *) data + reloc_entry->address); | |
1120 | } | |
1121 | else | |
1122 | reloc_entry->addend = val; | |
b49e97c9 | 1123 | |
1049f94e | 1124 | if (relocatable) |
b49e97c9 | 1125 | reloc_entry->address += input_section->output_offset; |
a7ebbfdf | 1126 | else if (((val & ~0xffff) != ~0xffff) && ((val & ~0xffff) != 0)) |
b49e97c9 TS |
1127 | return bfd_reloc_overflow; |
1128 | ||
1129 | return bfd_reloc_ok; | |
1130 | } | |
1131 | \f | |
1132 | /* Swap an entry in a .gptab section. Note that these routines rely | |
1133 | on the equivalence of the two elements of the union. */ | |
1134 | ||
1135 | static void | |
1136 | bfd_mips_elf32_swap_gptab_in (abfd, ex, in) | |
1137 | bfd *abfd; | |
1138 | const Elf32_External_gptab *ex; | |
1139 | Elf32_gptab *in; | |
1140 | { | |
1141 | in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value); | |
1142 | in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes); | |
1143 | } | |
1144 | ||
1145 | static void | |
1146 | bfd_mips_elf32_swap_gptab_out (abfd, in, ex) | |
1147 | bfd *abfd; | |
1148 | const Elf32_gptab *in; | |
1149 | Elf32_External_gptab *ex; | |
1150 | { | |
1151 | H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value); | |
1152 | H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes); | |
1153 | } | |
1154 | ||
1155 | static void | |
1156 | bfd_elf32_swap_compact_rel_out (abfd, in, ex) | |
1157 | bfd *abfd; | |
1158 | const Elf32_compact_rel *in; | |
1159 | Elf32_External_compact_rel *ex; | |
1160 | { | |
1161 | H_PUT_32 (abfd, in->id1, ex->id1); | |
1162 | H_PUT_32 (abfd, in->num, ex->num); | |
1163 | H_PUT_32 (abfd, in->id2, ex->id2); | |
1164 | H_PUT_32 (abfd, in->offset, ex->offset); | |
1165 | H_PUT_32 (abfd, in->reserved0, ex->reserved0); | |
1166 | H_PUT_32 (abfd, in->reserved1, ex->reserved1); | |
1167 | } | |
1168 | ||
1169 | static void | |
1170 | bfd_elf32_swap_crinfo_out (abfd, in, ex) | |
1171 | bfd *abfd; | |
1172 | const Elf32_crinfo *in; | |
1173 | Elf32_External_crinfo *ex; | |
1174 | { | |
1175 | unsigned long l; | |
1176 | ||
1177 | l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH) | |
1178 | | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH) | |
1179 | | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH) | |
1180 | | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH)); | |
1181 | H_PUT_32 (abfd, l, ex->info); | |
1182 | H_PUT_32 (abfd, in->konst, ex->konst); | |
1183 | H_PUT_32 (abfd, in->vaddr, ex->vaddr); | |
1184 | } | |
b49e97c9 TS |
1185 | \f |
1186 | /* A .reginfo section holds a single Elf32_RegInfo structure. These | |
1187 | routines swap this structure in and out. They are used outside of | |
1188 | BFD, so they are globally visible. */ | |
1189 | ||
1190 | void | |
1191 | bfd_mips_elf32_swap_reginfo_in (abfd, ex, in) | |
1192 | bfd *abfd; | |
1193 | const Elf32_External_RegInfo *ex; | |
1194 | Elf32_RegInfo *in; | |
1195 | { | |
1196 | in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask); | |
1197 | in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]); | |
1198 | in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]); | |
1199 | in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]); | |
1200 | in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]); | |
1201 | in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value); | |
1202 | } | |
1203 | ||
1204 | void | |
1205 | bfd_mips_elf32_swap_reginfo_out (abfd, in, ex) | |
1206 | bfd *abfd; | |
1207 | const Elf32_RegInfo *in; | |
1208 | Elf32_External_RegInfo *ex; | |
1209 | { | |
1210 | H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask); | |
1211 | H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]); | |
1212 | H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]); | |
1213 | H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]); | |
1214 | H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]); | |
1215 | H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value); | |
1216 | } | |
1217 | ||
1218 | /* In the 64 bit ABI, the .MIPS.options section holds register | |
1219 | information in an Elf64_Reginfo structure. These routines swap | |
1220 | them in and out. They are globally visible because they are used | |
1221 | outside of BFD. These routines are here so that gas can call them | |
1222 | without worrying about whether the 64 bit ABI has been included. */ | |
1223 | ||
1224 | void | |
1225 | bfd_mips_elf64_swap_reginfo_in (abfd, ex, in) | |
1226 | bfd *abfd; | |
1227 | const Elf64_External_RegInfo *ex; | |
1228 | Elf64_Internal_RegInfo *in; | |
1229 | { | |
1230 | in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask); | |
1231 | in->ri_pad = H_GET_32 (abfd, ex->ri_pad); | |
1232 | in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]); | |
1233 | in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]); | |
1234 | in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]); | |
1235 | in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]); | |
1236 | in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value); | |
1237 | } | |
1238 | ||
1239 | void | |
1240 | bfd_mips_elf64_swap_reginfo_out (abfd, in, ex) | |
1241 | bfd *abfd; | |
1242 | const Elf64_Internal_RegInfo *in; | |
1243 | Elf64_External_RegInfo *ex; | |
1244 | { | |
1245 | H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask); | |
1246 | H_PUT_32 (abfd, in->ri_pad, ex->ri_pad); | |
1247 | H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]); | |
1248 | H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]); | |
1249 | H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]); | |
1250 | H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]); | |
1251 | H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value); | |
1252 | } | |
1253 | ||
1254 | /* Swap in an options header. */ | |
1255 | ||
1256 | void | |
1257 | bfd_mips_elf_swap_options_in (abfd, ex, in) | |
1258 | bfd *abfd; | |
1259 | const Elf_External_Options *ex; | |
1260 | Elf_Internal_Options *in; | |
1261 | { | |
1262 | in->kind = H_GET_8 (abfd, ex->kind); | |
1263 | in->size = H_GET_8 (abfd, ex->size); | |
1264 | in->section = H_GET_16 (abfd, ex->section); | |
1265 | in->info = H_GET_32 (abfd, ex->info); | |
1266 | } | |
1267 | ||
1268 | /* Swap out an options header. */ | |
1269 | ||
1270 | void | |
1271 | bfd_mips_elf_swap_options_out (abfd, in, ex) | |
1272 | bfd *abfd; | |
1273 | const Elf_Internal_Options *in; | |
1274 | Elf_External_Options *ex; | |
1275 | { | |
1276 | H_PUT_8 (abfd, in->kind, ex->kind); | |
1277 | H_PUT_8 (abfd, in->size, ex->size); | |
1278 | H_PUT_16 (abfd, in->section, ex->section); | |
1279 | H_PUT_32 (abfd, in->info, ex->info); | |
1280 | } | |
1281 | \f | |
1282 | /* This function is called via qsort() to sort the dynamic relocation | |
1283 | entries by increasing r_symndx value. */ | |
1284 | ||
1285 | static int | |
1286 | sort_dynamic_relocs (arg1, arg2) | |
1287 | const PTR arg1; | |
1288 | const PTR arg2; | |
1289 | { | |
947216bf AM |
1290 | Elf_Internal_Rela int_reloc1; |
1291 | Elf_Internal_Rela int_reloc2; | |
b49e97c9 | 1292 | |
947216bf AM |
1293 | bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1); |
1294 | bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2); | |
b49e97c9 | 1295 | |
947216bf | 1296 | return ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info); |
b49e97c9 TS |
1297 | } |
1298 | ||
f4416af6 AO |
1299 | /* Like sort_dynamic_relocs, but used for elf64 relocations. */ |
1300 | ||
1301 | static int | |
1302 | sort_dynamic_relocs_64 (arg1, arg2) | |
1303 | const PTR arg1; | |
1304 | const PTR arg2; | |
1305 | { | |
1306 | Elf_Internal_Rela int_reloc1[3]; | |
1307 | Elf_Internal_Rela int_reloc2[3]; | |
1308 | ||
1309 | (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in) | |
1310 | (reldyn_sorting_bfd, arg1, int_reloc1); | |
1311 | (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in) | |
1312 | (reldyn_sorting_bfd, arg2, int_reloc2); | |
1313 | ||
1314 | return (ELF64_R_SYM (int_reloc1[0].r_info) | |
1315 | - ELF64_R_SYM (int_reloc2[0].r_info)); | |
1316 | } | |
1317 | ||
1318 | ||
b49e97c9 TS |
1319 | /* This routine is used to write out ECOFF debugging external symbol |
1320 | information. It is called via mips_elf_link_hash_traverse. The | |
1321 | ECOFF external symbol information must match the ELF external | |
1322 | symbol information. Unfortunately, at this point we don't know | |
1323 | whether a symbol is required by reloc information, so the two | |
1324 | tables may wind up being different. We must sort out the external | |
1325 | symbol information before we can set the final size of the .mdebug | |
1326 | section, and we must set the size of the .mdebug section before we | |
1327 | can relocate any sections, and we can't know which symbols are | |
1328 | required by relocation until we relocate the sections. | |
1329 | Fortunately, it is relatively unlikely that any symbol will be | |
1330 | stripped but required by a reloc. In particular, it can not happen | |
1331 | when generating a final executable. */ | |
1332 | ||
b34976b6 | 1333 | static bfd_boolean |
b49e97c9 TS |
1334 | mips_elf_output_extsym (h, data) |
1335 | struct mips_elf_link_hash_entry *h; | |
1336 | PTR data; | |
1337 | { | |
1338 | struct extsym_info *einfo = (struct extsym_info *) data; | |
b34976b6 | 1339 | bfd_boolean strip; |
b49e97c9 TS |
1340 | asection *sec, *output_section; |
1341 | ||
1342 | if (h->root.root.type == bfd_link_hash_warning) | |
1343 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | |
1344 | ||
1345 | if (h->root.indx == -2) | |
b34976b6 | 1346 | strip = FALSE; |
b49e97c9 TS |
1347 | else if (((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 |
1348 | || (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0) | |
1349 | && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0 | |
1350 | && (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0) | |
b34976b6 | 1351 | strip = TRUE; |
b49e97c9 TS |
1352 | else if (einfo->info->strip == strip_all |
1353 | || (einfo->info->strip == strip_some | |
1354 | && bfd_hash_lookup (einfo->info->keep_hash, | |
1355 | h->root.root.root.string, | |
b34976b6 AM |
1356 | FALSE, FALSE) == NULL)) |
1357 | strip = TRUE; | |
b49e97c9 | 1358 | else |
b34976b6 | 1359 | strip = FALSE; |
b49e97c9 TS |
1360 | |
1361 | if (strip) | |
b34976b6 | 1362 | return TRUE; |
b49e97c9 TS |
1363 | |
1364 | if (h->esym.ifd == -2) | |
1365 | { | |
1366 | h->esym.jmptbl = 0; | |
1367 | h->esym.cobol_main = 0; | |
1368 | h->esym.weakext = 0; | |
1369 | h->esym.reserved = 0; | |
1370 | h->esym.ifd = ifdNil; | |
1371 | h->esym.asym.value = 0; | |
1372 | h->esym.asym.st = stGlobal; | |
1373 | ||
1374 | if (h->root.root.type == bfd_link_hash_undefined | |
1375 | || h->root.root.type == bfd_link_hash_undefweak) | |
1376 | { | |
1377 | const char *name; | |
1378 | ||
1379 | /* Use undefined class. Also, set class and type for some | |
1380 | special symbols. */ | |
1381 | name = h->root.root.root.string; | |
1382 | if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0 | |
1383 | || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0) | |
1384 | { | |
1385 | h->esym.asym.sc = scData; | |
1386 | h->esym.asym.st = stLabel; | |
1387 | h->esym.asym.value = 0; | |
1388 | } | |
1389 | else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0) | |
1390 | { | |
1391 | h->esym.asym.sc = scAbs; | |
1392 | h->esym.asym.st = stLabel; | |
1393 | h->esym.asym.value = | |
1394 | mips_elf_hash_table (einfo->info)->procedure_count; | |
1395 | } | |
4a14403c | 1396 | else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd)) |
b49e97c9 TS |
1397 | { |
1398 | h->esym.asym.sc = scAbs; | |
1399 | h->esym.asym.st = stLabel; | |
1400 | h->esym.asym.value = elf_gp (einfo->abfd); | |
1401 | } | |
1402 | else | |
1403 | h->esym.asym.sc = scUndefined; | |
1404 | } | |
1405 | else if (h->root.root.type != bfd_link_hash_defined | |
1406 | && h->root.root.type != bfd_link_hash_defweak) | |
1407 | h->esym.asym.sc = scAbs; | |
1408 | else | |
1409 | { | |
1410 | const char *name; | |
1411 | ||
1412 | sec = h->root.root.u.def.section; | |
1413 | output_section = sec->output_section; | |
1414 | ||
1415 | /* When making a shared library and symbol h is the one from | |
1416 | the another shared library, OUTPUT_SECTION may be null. */ | |
1417 | if (output_section == NULL) | |
1418 | h->esym.asym.sc = scUndefined; | |
1419 | else | |
1420 | { | |
1421 | name = bfd_section_name (output_section->owner, output_section); | |
1422 | ||
1423 | if (strcmp (name, ".text") == 0) | |
1424 | h->esym.asym.sc = scText; | |
1425 | else if (strcmp (name, ".data") == 0) | |
1426 | h->esym.asym.sc = scData; | |
1427 | else if (strcmp (name, ".sdata") == 0) | |
1428 | h->esym.asym.sc = scSData; | |
1429 | else if (strcmp (name, ".rodata") == 0 | |
1430 | || strcmp (name, ".rdata") == 0) | |
1431 | h->esym.asym.sc = scRData; | |
1432 | else if (strcmp (name, ".bss") == 0) | |
1433 | h->esym.asym.sc = scBss; | |
1434 | else if (strcmp (name, ".sbss") == 0) | |
1435 | h->esym.asym.sc = scSBss; | |
1436 | else if (strcmp (name, ".init") == 0) | |
1437 | h->esym.asym.sc = scInit; | |
1438 | else if (strcmp (name, ".fini") == 0) | |
1439 | h->esym.asym.sc = scFini; | |
1440 | else | |
1441 | h->esym.asym.sc = scAbs; | |
1442 | } | |
1443 | } | |
1444 | ||
1445 | h->esym.asym.reserved = 0; | |
1446 | h->esym.asym.index = indexNil; | |
1447 | } | |
1448 | ||
1449 | if (h->root.root.type == bfd_link_hash_common) | |
1450 | h->esym.asym.value = h->root.root.u.c.size; | |
1451 | else if (h->root.root.type == bfd_link_hash_defined | |
1452 | || h->root.root.type == bfd_link_hash_defweak) | |
1453 | { | |
1454 | if (h->esym.asym.sc == scCommon) | |
1455 | h->esym.asym.sc = scBss; | |
1456 | else if (h->esym.asym.sc == scSCommon) | |
1457 | h->esym.asym.sc = scSBss; | |
1458 | ||
1459 | sec = h->root.root.u.def.section; | |
1460 | output_section = sec->output_section; | |
1461 | if (output_section != NULL) | |
1462 | h->esym.asym.value = (h->root.root.u.def.value | |
1463 | + sec->output_offset | |
1464 | + output_section->vma); | |
1465 | else | |
1466 | h->esym.asym.value = 0; | |
1467 | } | |
1468 | else if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0) | |
1469 | { | |
1470 | struct mips_elf_link_hash_entry *hd = h; | |
b34976b6 | 1471 | bfd_boolean no_fn_stub = h->no_fn_stub; |
b49e97c9 TS |
1472 | |
1473 | while (hd->root.root.type == bfd_link_hash_indirect) | |
1474 | { | |
1475 | hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link; | |
1476 | no_fn_stub = no_fn_stub || hd->no_fn_stub; | |
1477 | } | |
1478 | ||
1479 | if (!no_fn_stub) | |
1480 | { | |
1481 | /* Set type and value for a symbol with a function stub. */ | |
1482 | h->esym.asym.st = stProc; | |
1483 | sec = hd->root.root.u.def.section; | |
1484 | if (sec == NULL) | |
1485 | h->esym.asym.value = 0; | |
1486 | else | |
1487 | { | |
1488 | output_section = sec->output_section; | |
1489 | if (output_section != NULL) | |
1490 | h->esym.asym.value = (hd->root.plt.offset | |
1491 | + sec->output_offset | |
1492 | + output_section->vma); | |
1493 | else | |
1494 | h->esym.asym.value = 0; | |
1495 | } | |
1496 | #if 0 /* FIXME? */ | |
1497 | h->esym.ifd = 0; | |
1498 | #endif | |
1499 | } | |
1500 | } | |
1501 | ||
1502 | if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap, | |
1503 | h->root.root.root.string, | |
1504 | &h->esym)) | |
1505 | { | |
b34976b6 AM |
1506 | einfo->failed = TRUE; |
1507 | return FALSE; | |
b49e97c9 TS |
1508 | } |
1509 | ||
b34976b6 | 1510 | return TRUE; |
b49e97c9 TS |
1511 | } |
1512 | ||
1513 | /* A comparison routine used to sort .gptab entries. */ | |
1514 | ||
1515 | static int | |
1516 | gptab_compare (p1, p2) | |
1517 | const PTR p1; | |
1518 | const PTR p2; | |
1519 | { | |
1520 | const Elf32_gptab *a1 = (const Elf32_gptab *) p1; | |
1521 | const Elf32_gptab *a2 = (const Elf32_gptab *) p2; | |
1522 | ||
1523 | return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value; | |
1524 | } | |
1525 | \f | |
b15e6682 | 1526 | /* Functions to manage the got entry hash table. */ |
f4416af6 AO |
1527 | |
1528 | /* Use all 64 bits of a bfd_vma for the computation of a 32-bit | |
1529 | hash number. */ | |
1530 | ||
1531 | static INLINE hashval_t | |
1532 | mips_elf_hash_bfd_vma (addr) | |
1533 | bfd_vma addr; | |
1534 | { | |
1535 | #ifdef BFD64 | |
1536 | return addr + (addr >> 32); | |
1537 | #else | |
1538 | return addr; | |
1539 | #endif | |
1540 | } | |
1541 | ||
1542 | /* got_entries only match if they're identical, except for gotidx, so | |
1543 | use all fields to compute the hash, and compare the appropriate | |
1544 | union members. */ | |
1545 | ||
b15e6682 AO |
1546 | static hashval_t |
1547 | mips_elf_got_entry_hash (entry_) | |
1548 | const PTR entry_; | |
1549 | { | |
1550 | const struct mips_got_entry *entry = (struct mips_got_entry *)entry_; | |
1551 | ||
38985a1c | 1552 | return entry->symndx |
f4416af6 | 1553 | + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address) |
38985a1c AO |
1554 | : entry->abfd->id |
1555 | + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend) | |
1556 | : entry->d.h->root.root.root.hash)); | |
b15e6682 AO |
1557 | } |
1558 | ||
1559 | static int | |
1560 | mips_elf_got_entry_eq (entry1, entry2) | |
1561 | const PTR entry1; | |
1562 | const PTR entry2; | |
1563 | { | |
1564 | const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1; | |
1565 | const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2; | |
1566 | ||
1567 | return e1->abfd == e2->abfd && e1->symndx == e2->symndx | |
f4416af6 AO |
1568 | && (! e1->abfd ? e1->d.address == e2->d.address |
1569 | : e1->symndx >= 0 ? e1->d.addend == e2->d.addend | |
1570 | : e1->d.h == e2->d.h); | |
1571 | } | |
1572 | ||
1573 | /* multi_got_entries are still a match in the case of global objects, | |
1574 | even if the input bfd in which they're referenced differs, so the | |
1575 | hash computation and compare functions are adjusted | |
1576 | accordingly. */ | |
1577 | ||
1578 | static hashval_t | |
1579 | mips_elf_multi_got_entry_hash (entry_) | |
1580 | const PTR entry_; | |
1581 | { | |
1582 | const struct mips_got_entry *entry = (struct mips_got_entry *)entry_; | |
1583 | ||
1584 | return entry->symndx | |
1585 | + (! entry->abfd | |
1586 | ? mips_elf_hash_bfd_vma (entry->d.address) | |
1587 | : entry->symndx >= 0 | |
1588 | ? (entry->abfd->id | |
1589 | + mips_elf_hash_bfd_vma (entry->d.addend)) | |
1590 | : entry->d.h->root.root.root.hash); | |
1591 | } | |
1592 | ||
1593 | static int | |
1594 | mips_elf_multi_got_entry_eq (entry1, entry2) | |
1595 | const PTR entry1; | |
1596 | const PTR entry2; | |
1597 | { | |
1598 | const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1; | |
1599 | const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2; | |
1600 | ||
1601 | return e1->symndx == e2->symndx | |
1602 | && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend | |
1603 | : e1->abfd == NULL || e2->abfd == NULL | |
1604 | ? e1->abfd == e2->abfd && e1->d.address == e2->d.address | |
1605 | : e1->d.h == e2->d.h); | |
b15e6682 AO |
1606 | } |
1607 | \f | |
f4416af6 AO |
1608 | /* Returns the dynamic relocation section for DYNOBJ. */ |
1609 | ||
1610 | static asection * | |
1611 | mips_elf_rel_dyn_section (dynobj, create_p) | |
1612 | bfd *dynobj; | |
1613 | bfd_boolean create_p; | |
1614 | { | |
1615 | static const char dname[] = ".rel.dyn"; | |
1616 | asection *sreloc; | |
1617 | ||
1618 | sreloc = bfd_get_section_by_name (dynobj, dname); | |
1619 | if (sreloc == NULL && create_p) | |
1620 | { | |
1621 | sreloc = bfd_make_section (dynobj, dname); | |
1622 | if (sreloc == NULL | |
1623 | || ! bfd_set_section_flags (dynobj, sreloc, | |
1624 | (SEC_ALLOC | |
1625 | | SEC_LOAD | |
1626 | | SEC_HAS_CONTENTS | |
1627 | | SEC_IN_MEMORY | |
1628 | | SEC_LINKER_CREATED | |
1629 | | SEC_READONLY)) | |
1630 | || ! bfd_set_section_alignment (dynobj, sreloc, | |
d80dcc6a | 1631 | MIPS_ELF_LOG_FILE_ALIGN (dynobj))) |
f4416af6 AO |
1632 | return NULL; |
1633 | } | |
1634 | return sreloc; | |
1635 | } | |
1636 | ||
b49e97c9 TS |
1637 | /* Returns the GOT section for ABFD. */ |
1638 | ||
1639 | static asection * | |
f4416af6 | 1640 | mips_elf_got_section (abfd, maybe_excluded) |
b49e97c9 | 1641 | bfd *abfd; |
f4416af6 | 1642 | bfd_boolean maybe_excluded; |
b49e97c9 | 1643 | { |
f4416af6 AO |
1644 | asection *sgot = bfd_get_section_by_name (abfd, ".got"); |
1645 | if (sgot == NULL | |
1646 | || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0)) | |
1647 | return NULL; | |
1648 | return sgot; | |
b49e97c9 TS |
1649 | } |
1650 | ||
1651 | /* Returns the GOT information associated with the link indicated by | |
1652 | INFO. If SGOTP is non-NULL, it is filled in with the GOT | |
1653 | section. */ | |
1654 | ||
1655 | static struct mips_got_info * | |
1656 | mips_elf_got_info (abfd, sgotp) | |
1657 | bfd *abfd; | |
1658 | asection **sgotp; | |
1659 | { | |
1660 | asection *sgot; | |
1661 | struct mips_got_info *g; | |
1662 | ||
f4416af6 | 1663 | sgot = mips_elf_got_section (abfd, TRUE); |
b49e97c9 | 1664 | BFD_ASSERT (sgot != NULL); |
f0abc2a1 AM |
1665 | BFD_ASSERT (mips_elf_section_data (sgot) != NULL); |
1666 | g = mips_elf_section_data (sgot)->u.got_info; | |
b49e97c9 TS |
1667 | BFD_ASSERT (g != NULL); |
1668 | ||
1669 | if (sgotp) | |
f4416af6 AO |
1670 | *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL; |
1671 | ||
b49e97c9 TS |
1672 | return g; |
1673 | } | |
1674 | ||
0176c794 AO |
1675 | /* Obtain the lowest dynamic index of a symbol that was assigned a |
1676 | global GOT entry. */ | |
1677 | static long | |
1678 | mips_elf_get_global_gotsym_index (abfd) | |
1679 | bfd *abfd; | |
1680 | { | |
1681 | asection *sgot; | |
1682 | struct mips_got_info *g; | |
1683 | ||
1684 | if (abfd == NULL) | |
1685 | return 0; | |
143d77c5 | 1686 | |
0176c794 AO |
1687 | sgot = mips_elf_got_section (abfd, TRUE); |
1688 | if (sgot == NULL || mips_elf_section_data (sgot) == NULL) | |
1689 | return 0; | |
143d77c5 | 1690 | |
0176c794 AO |
1691 | g = mips_elf_section_data (sgot)->u.got_info; |
1692 | if (g == NULL || g->global_gotsym == NULL) | |
1693 | return 0; | |
143d77c5 | 1694 | |
0176c794 AO |
1695 | return g->global_gotsym->dynindx; |
1696 | } | |
1697 | ||
b49e97c9 TS |
1698 | /* Returns the GOT offset at which the indicated address can be found. |
1699 | If there is not yet a GOT entry for this value, create one. Returns | |
1700 | -1 if no satisfactory GOT offset can be found. */ | |
1701 | ||
1702 | static bfd_vma | |
f4416af6 AO |
1703 | mips_elf_local_got_index (abfd, ibfd, info, value) |
1704 | bfd *abfd, *ibfd; | |
b49e97c9 TS |
1705 | struct bfd_link_info *info; |
1706 | bfd_vma value; | |
1707 | { | |
1708 | asection *sgot; | |
1709 | struct mips_got_info *g; | |
b15e6682 | 1710 | struct mips_got_entry *entry; |
b49e97c9 TS |
1711 | |
1712 | g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot); | |
1713 | ||
f4416af6 | 1714 | entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value); |
b15e6682 AO |
1715 | if (entry) |
1716 | return entry->gotidx; | |
1717 | else | |
1718 | return MINUS_ONE; | |
b49e97c9 TS |
1719 | } |
1720 | ||
1721 | /* Returns the GOT index for the global symbol indicated by H. */ | |
1722 | ||
1723 | static bfd_vma | |
f4416af6 AO |
1724 | mips_elf_global_got_index (abfd, ibfd, h) |
1725 | bfd *abfd, *ibfd; | |
b49e97c9 TS |
1726 | struct elf_link_hash_entry *h; |
1727 | { | |
1728 | bfd_vma index; | |
1729 | asection *sgot; | |
f4416af6 | 1730 | struct mips_got_info *g, *gg; |
d0c7ff07 | 1731 | long global_got_dynindx = 0; |
b49e97c9 | 1732 | |
f4416af6 AO |
1733 | gg = g = mips_elf_got_info (abfd, &sgot); |
1734 | if (g->bfd2got && ibfd) | |
1735 | { | |
1736 | struct mips_got_entry e, *p; | |
143d77c5 | 1737 | |
f4416af6 AO |
1738 | BFD_ASSERT (h->dynindx >= 0); |
1739 | ||
1740 | g = mips_elf_got_for_ibfd (g, ibfd); | |
1741 | if (g->next != gg) | |
1742 | { | |
1743 | e.abfd = ibfd; | |
1744 | e.symndx = -1; | |
1745 | e.d.h = (struct mips_elf_link_hash_entry *)h; | |
1746 | ||
1747 | p = (struct mips_got_entry *) htab_find (g->got_entries, &e); | |
1748 | ||
1749 | BFD_ASSERT (p->gotidx > 0); | |
1750 | return p->gotidx; | |
1751 | } | |
1752 | } | |
1753 | ||
1754 | if (gg->global_gotsym != NULL) | |
1755 | global_got_dynindx = gg->global_gotsym->dynindx; | |
b49e97c9 TS |
1756 | |
1757 | /* Once we determine the global GOT entry with the lowest dynamic | |
1758 | symbol table index, we must put all dynamic symbols with greater | |
1759 | indices into the GOT. That makes it easy to calculate the GOT | |
1760 | offset. */ | |
d0c7ff07 TS |
1761 | BFD_ASSERT (h->dynindx >= global_got_dynindx); |
1762 | index = ((h->dynindx - global_got_dynindx + g->local_gotno) | |
b49e97c9 TS |
1763 | * MIPS_ELF_GOT_SIZE (abfd)); |
1764 | BFD_ASSERT (index < sgot->_raw_size); | |
1765 | ||
1766 | return index; | |
1767 | } | |
1768 | ||
1769 | /* Find a GOT entry that is within 32KB of the VALUE. These entries | |
1770 | are supposed to be placed at small offsets in the GOT, i.e., | |
1771 | within 32KB of GP. Return the index into the GOT for this page, | |
1772 | and store the offset from this entry to the desired address in | |
1773 | OFFSETP, if it is non-NULL. */ | |
1774 | ||
1775 | static bfd_vma | |
f4416af6 AO |
1776 | mips_elf_got_page (abfd, ibfd, info, value, offsetp) |
1777 | bfd *abfd, *ibfd; | |
b49e97c9 TS |
1778 | struct bfd_link_info *info; |
1779 | bfd_vma value; | |
1780 | bfd_vma *offsetp; | |
1781 | { | |
1782 | asection *sgot; | |
1783 | struct mips_got_info *g; | |
b15e6682 AO |
1784 | bfd_vma index; |
1785 | struct mips_got_entry *entry; | |
b49e97c9 TS |
1786 | |
1787 | g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot); | |
1788 | ||
f4416af6 | 1789 | entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, |
b15e6682 AO |
1790 | (value + 0x8000) |
1791 | & (~(bfd_vma)0xffff)); | |
b49e97c9 | 1792 | |
b15e6682 AO |
1793 | if (!entry) |
1794 | return MINUS_ONE; | |
143d77c5 | 1795 | |
b15e6682 | 1796 | index = entry->gotidx; |
b49e97c9 TS |
1797 | |
1798 | if (offsetp) | |
f4416af6 | 1799 | *offsetp = value - entry->d.address; |
b49e97c9 TS |
1800 | |
1801 | return index; | |
1802 | } | |
1803 | ||
1804 | /* Find a GOT entry whose higher-order 16 bits are the same as those | |
1805 | for value. Return the index into the GOT for this entry. */ | |
1806 | ||
1807 | static bfd_vma | |
f4416af6 AO |
1808 | mips_elf_got16_entry (abfd, ibfd, info, value, external) |
1809 | bfd *abfd, *ibfd; | |
b49e97c9 TS |
1810 | struct bfd_link_info *info; |
1811 | bfd_vma value; | |
b34976b6 | 1812 | bfd_boolean external; |
b49e97c9 TS |
1813 | { |
1814 | asection *sgot; | |
1815 | struct mips_got_info *g; | |
b15e6682 | 1816 | struct mips_got_entry *entry; |
b49e97c9 TS |
1817 | |
1818 | if (! external) | |
1819 | { | |
1820 | /* Although the ABI says that it is "the high-order 16 bits" that we | |
1821 | want, it is really the %high value. The complete value is | |
1822 | calculated with a `addiu' of a LO16 relocation, just as with a | |
1823 | HI16/LO16 pair. */ | |
1824 | value = mips_elf_high (value) << 16; | |
1825 | } | |
1826 | ||
1827 | g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot); | |
1828 | ||
f4416af6 | 1829 | entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value); |
b15e6682 AO |
1830 | if (entry) |
1831 | return entry->gotidx; | |
1832 | else | |
1833 | return MINUS_ONE; | |
b49e97c9 TS |
1834 | } |
1835 | ||
1836 | /* Returns the offset for the entry at the INDEXth position | |
1837 | in the GOT. */ | |
1838 | ||
1839 | static bfd_vma | |
f4416af6 | 1840 | mips_elf_got_offset_from_index (dynobj, output_bfd, input_bfd, index) |
b49e97c9 TS |
1841 | bfd *dynobj; |
1842 | bfd *output_bfd; | |
f4416af6 | 1843 | bfd *input_bfd; |
b49e97c9 TS |
1844 | bfd_vma index; |
1845 | { | |
1846 | asection *sgot; | |
1847 | bfd_vma gp; | |
f4416af6 | 1848 | struct mips_got_info *g; |
b49e97c9 | 1849 | |
f4416af6 AO |
1850 | g = mips_elf_got_info (dynobj, &sgot); |
1851 | gp = _bfd_get_gp_value (output_bfd) | |
1852 | + mips_elf_adjust_gp (output_bfd, g, input_bfd); | |
143d77c5 | 1853 | |
f4416af6 | 1854 | return sgot->output_section->vma + sgot->output_offset + index - gp; |
b49e97c9 TS |
1855 | } |
1856 | ||
1857 | /* Create a local GOT entry for VALUE. Return the index of the entry, | |
1858 | or -1 if it could not be created. */ | |
1859 | ||
b15e6682 | 1860 | static struct mips_got_entry * |
f4416af6 AO |
1861 | mips_elf_create_local_got_entry (abfd, ibfd, gg, sgot, value) |
1862 | bfd *abfd, *ibfd; | |
1863 | struct mips_got_info *gg; | |
b49e97c9 TS |
1864 | asection *sgot; |
1865 | bfd_vma value; | |
1866 | { | |
b15e6682 | 1867 | struct mips_got_entry entry, **loc; |
f4416af6 | 1868 | struct mips_got_info *g; |
b15e6682 | 1869 | |
f4416af6 AO |
1870 | entry.abfd = NULL; |
1871 | entry.symndx = -1; | |
1872 | entry.d.address = value; | |
1873 | ||
1874 | g = mips_elf_got_for_ibfd (gg, ibfd); | |
1875 | if (g == NULL) | |
1876 | { | |
1877 | g = mips_elf_got_for_ibfd (gg, abfd); | |
1878 | BFD_ASSERT (g != NULL); | |
1879 | } | |
b15e6682 AO |
1880 | |
1881 | loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry, | |
1882 | INSERT); | |
1883 | if (*loc) | |
1884 | return *loc; | |
143d77c5 | 1885 | |
b15e6682 AO |
1886 | entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++; |
1887 | ||
1888 | *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry); | |
1889 | ||
1890 | if (! *loc) | |
1891 | return NULL; | |
143d77c5 | 1892 | |
b15e6682 AO |
1893 | memcpy (*loc, &entry, sizeof entry); |
1894 | ||
b49e97c9 TS |
1895 | if (g->assigned_gotno >= g->local_gotno) |
1896 | { | |
f4416af6 | 1897 | (*loc)->gotidx = -1; |
b49e97c9 TS |
1898 | /* We didn't allocate enough space in the GOT. */ |
1899 | (*_bfd_error_handler) | |
1900 | (_("not enough GOT space for local GOT entries")); | |
1901 | bfd_set_error (bfd_error_bad_value); | |
b15e6682 | 1902 | return NULL; |
b49e97c9 TS |
1903 | } |
1904 | ||
1905 | MIPS_ELF_PUT_WORD (abfd, value, | |
b15e6682 AO |
1906 | (sgot->contents + entry.gotidx)); |
1907 | ||
1908 | return *loc; | |
b49e97c9 TS |
1909 | } |
1910 | ||
1911 | /* Sort the dynamic symbol table so that symbols that need GOT entries | |
1912 | appear towards the end. This reduces the amount of GOT space | |
1913 | required. MAX_LOCAL is used to set the number of local symbols | |
1914 | known to be in the dynamic symbol table. During | |
1915 | _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the | |
1916 | section symbols are added and the count is higher. */ | |
1917 | ||
b34976b6 | 1918 | static bfd_boolean |
b49e97c9 TS |
1919 | mips_elf_sort_hash_table (info, max_local) |
1920 | struct bfd_link_info *info; | |
1921 | unsigned long max_local; | |
1922 | { | |
1923 | struct mips_elf_hash_sort_data hsd; | |
1924 | struct mips_got_info *g; | |
1925 | bfd *dynobj; | |
1926 | ||
1927 | dynobj = elf_hash_table (info)->dynobj; | |
1928 | ||
f4416af6 AO |
1929 | g = mips_elf_got_info (dynobj, NULL); |
1930 | ||
b49e97c9 | 1931 | hsd.low = NULL; |
143d77c5 | 1932 | hsd.max_unref_got_dynindx = |
f4416af6 AO |
1933 | hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount |
1934 | /* In the multi-got case, assigned_gotno of the master got_info | |
1935 | indicate the number of entries that aren't referenced in the | |
1936 | primary GOT, but that must have entries because there are | |
1937 | dynamic relocations that reference it. Since they aren't | |
1938 | referenced, we move them to the end of the GOT, so that they | |
1939 | don't prevent other entries that are referenced from getting | |
1940 | too large offsets. */ | |
1941 | - (g->next ? g->assigned_gotno : 0); | |
b49e97c9 TS |
1942 | hsd.max_non_got_dynindx = max_local; |
1943 | mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *) | |
1944 | elf_hash_table (info)), | |
1945 | mips_elf_sort_hash_table_f, | |
1946 | &hsd); | |
1947 | ||
1948 | /* There should have been enough room in the symbol table to | |
44c410de | 1949 | accommodate both the GOT and non-GOT symbols. */ |
b49e97c9 | 1950 | BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx); |
f4416af6 AO |
1951 | BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx |
1952 | <= elf_hash_table (info)->dynsymcount); | |
b49e97c9 TS |
1953 | |
1954 | /* Now we know which dynamic symbol has the lowest dynamic symbol | |
1955 | table index in the GOT. */ | |
b49e97c9 TS |
1956 | g->global_gotsym = hsd.low; |
1957 | ||
b34976b6 | 1958 | return TRUE; |
b49e97c9 TS |
1959 | } |
1960 | ||
1961 | /* If H needs a GOT entry, assign it the highest available dynamic | |
1962 | index. Otherwise, assign it the lowest available dynamic | |
1963 | index. */ | |
1964 | ||
b34976b6 | 1965 | static bfd_boolean |
b49e97c9 TS |
1966 | mips_elf_sort_hash_table_f (h, data) |
1967 | struct mips_elf_link_hash_entry *h; | |
1968 | PTR data; | |
1969 | { | |
1970 | struct mips_elf_hash_sort_data *hsd | |
1971 | = (struct mips_elf_hash_sort_data *) data; | |
1972 | ||
1973 | if (h->root.root.type == bfd_link_hash_warning) | |
1974 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | |
1975 | ||
1976 | /* Symbols without dynamic symbol table entries aren't interesting | |
1977 | at all. */ | |
1978 | if (h->root.dynindx == -1) | |
b34976b6 | 1979 | return TRUE; |
b49e97c9 | 1980 | |
f4416af6 AO |
1981 | /* Global symbols that need GOT entries that are not explicitly |
1982 | referenced are marked with got offset 2. Those that are | |
1983 | referenced get a 1, and those that don't need GOT entries get | |
1984 | -1. */ | |
1985 | if (h->root.got.offset == 2) | |
1986 | { | |
1987 | if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx) | |
1988 | hsd->low = (struct elf_link_hash_entry *) h; | |
1989 | h->root.dynindx = hsd->max_unref_got_dynindx++; | |
1990 | } | |
1991 | else if (h->root.got.offset != 1) | |
b49e97c9 TS |
1992 | h->root.dynindx = hsd->max_non_got_dynindx++; |
1993 | else | |
1994 | { | |
1995 | h->root.dynindx = --hsd->min_got_dynindx; | |
1996 | hsd->low = (struct elf_link_hash_entry *) h; | |
1997 | } | |
1998 | ||
b34976b6 | 1999 | return TRUE; |
b49e97c9 TS |
2000 | } |
2001 | ||
2002 | /* If H is a symbol that needs a global GOT entry, but has a dynamic | |
2003 | symbol table index lower than any we've seen to date, record it for | |
2004 | posterity. */ | |
2005 | ||
b34976b6 | 2006 | static bfd_boolean |
f4416af6 | 2007 | mips_elf_record_global_got_symbol (h, abfd, info, g) |
b49e97c9 | 2008 | struct elf_link_hash_entry *h; |
f4416af6 | 2009 | bfd *abfd; |
b49e97c9 | 2010 | struct bfd_link_info *info; |
f4416af6 | 2011 | struct mips_got_info *g; |
b49e97c9 | 2012 | { |
f4416af6 AO |
2013 | struct mips_got_entry entry, **loc; |
2014 | ||
b49e97c9 TS |
2015 | /* A global symbol in the GOT must also be in the dynamic symbol |
2016 | table. */ | |
7c5fcef7 L |
2017 | if (h->dynindx == -1) |
2018 | { | |
2019 | switch (ELF_ST_VISIBILITY (h->other)) | |
2020 | { | |
2021 | case STV_INTERNAL: | |
2022 | case STV_HIDDEN: | |
b34976b6 | 2023 | _bfd_mips_elf_hide_symbol (info, h, TRUE); |
7c5fcef7 L |
2024 | break; |
2025 | } | |
2026 | if (!bfd_elf32_link_record_dynamic_symbol (info, h)) | |
b34976b6 | 2027 | return FALSE; |
7c5fcef7 | 2028 | } |
b49e97c9 | 2029 | |
f4416af6 AO |
2030 | entry.abfd = abfd; |
2031 | entry.symndx = -1; | |
2032 | entry.d.h = (struct mips_elf_link_hash_entry *) h; | |
2033 | ||
2034 | loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry, | |
2035 | INSERT); | |
2036 | ||
b49e97c9 TS |
2037 | /* If we've already marked this entry as needing GOT space, we don't |
2038 | need to do it again. */ | |
f4416af6 AO |
2039 | if (*loc) |
2040 | return TRUE; | |
2041 | ||
2042 | *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry); | |
2043 | ||
2044 | if (! *loc) | |
2045 | return FALSE; | |
143d77c5 | 2046 | |
f4416af6 AO |
2047 | entry.gotidx = -1; |
2048 | memcpy (*loc, &entry, sizeof entry); | |
2049 | ||
b49e97c9 | 2050 | if (h->got.offset != MINUS_ONE) |
b34976b6 | 2051 | return TRUE; |
b49e97c9 TS |
2052 | |
2053 | /* By setting this to a value other than -1, we are indicating that | |
2054 | there needs to be a GOT entry for H. Avoid using zero, as the | |
2055 | generic ELF copy_indirect_symbol tests for <= 0. */ | |
2056 | h->got.offset = 1; | |
2057 | ||
b34976b6 | 2058 | return TRUE; |
b49e97c9 | 2059 | } |
f4416af6 AO |
2060 | |
2061 | /* Reserve space in G for a GOT entry containing the value of symbol | |
2062 | SYMNDX in input bfd ABDF, plus ADDEND. */ | |
2063 | ||
2064 | static bfd_boolean | |
2065 | mips_elf_record_local_got_symbol (abfd, symndx, addend, g) | |
2066 | bfd *abfd; | |
2067 | long symndx; | |
2068 | bfd_vma addend; | |
2069 | struct mips_got_info *g; | |
2070 | { | |
2071 | struct mips_got_entry entry, **loc; | |
2072 | ||
2073 | entry.abfd = abfd; | |
2074 | entry.symndx = symndx; | |
2075 | entry.d.addend = addend; | |
2076 | loc = (struct mips_got_entry **) | |
2077 | htab_find_slot (g->got_entries, &entry, INSERT); | |
2078 | ||
2079 | if (*loc) | |
2080 | return TRUE; | |
2081 | ||
2082 | entry.gotidx = g->local_gotno++; | |
2083 | ||
2084 | *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry); | |
2085 | ||
2086 | if (! *loc) | |
2087 | return FALSE; | |
143d77c5 | 2088 | |
f4416af6 AO |
2089 | memcpy (*loc, &entry, sizeof entry); |
2090 | ||
2091 | return TRUE; | |
2092 | } | |
2093 | \f | |
2094 | /* Compute the hash value of the bfd in a bfd2got hash entry. */ | |
2095 | ||
2096 | static hashval_t | |
2097 | mips_elf_bfd2got_entry_hash (entry_) | |
2098 | const PTR entry_; | |
2099 | { | |
2100 | const struct mips_elf_bfd2got_hash *entry | |
2101 | = (struct mips_elf_bfd2got_hash *)entry_; | |
2102 | ||
2103 | return entry->bfd->id; | |
2104 | } | |
2105 | ||
2106 | /* Check whether two hash entries have the same bfd. */ | |
2107 | ||
2108 | static int | |
2109 | mips_elf_bfd2got_entry_eq (entry1, entry2) | |
2110 | const PTR entry1; | |
2111 | const PTR entry2; | |
2112 | { | |
2113 | const struct mips_elf_bfd2got_hash *e1 | |
2114 | = (const struct mips_elf_bfd2got_hash *)entry1; | |
2115 | const struct mips_elf_bfd2got_hash *e2 | |
2116 | = (const struct mips_elf_bfd2got_hash *)entry2; | |
2117 | ||
2118 | return e1->bfd == e2->bfd; | |
2119 | } | |
2120 | ||
0b25d3e6 | 2121 | /* In a multi-got link, determine the GOT to be used for IBDF. G must |
f4416af6 AO |
2122 | be the master GOT data. */ |
2123 | ||
2124 | static struct mips_got_info * | |
2125 | mips_elf_got_for_ibfd (g, ibfd) | |
2126 | struct mips_got_info *g; | |
2127 | bfd *ibfd; | |
2128 | { | |
2129 | struct mips_elf_bfd2got_hash e, *p; | |
2130 | ||
2131 | if (! g->bfd2got) | |
2132 | return g; | |
2133 | ||
2134 | e.bfd = ibfd; | |
2135 | p = (struct mips_elf_bfd2got_hash *) htab_find (g->bfd2got, &e); | |
2136 | return p ? p->g : NULL; | |
2137 | } | |
2138 | ||
2139 | /* Create one separate got for each bfd that has entries in the global | |
2140 | got, such that we can tell how many local and global entries each | |
2141 | bfd requires. */ | |
2142 | ||
2143 | static int | |
2144 | mips_elf_make_got_per_bfd (entryp, p) | |
2145 | void **entryp; | |
2146 | void *p; | |
2147 | { | |
2148 | struct mips_got_entry *entry = (struct mips_got_entry *)*entryp; | |
2149 | struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p; | |
2150 | htab_t bfd2got = arg->bfd2got; | |
2151 | struct mips_got_info *g; | |
2152 | struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot; | |
2153 | void **bfdgotp; | |
143d77c5 | 2154 | |
f4416af6 AO |
2155 | /* Find the got_info for this GOT entry's input bfd. Create one if |
2156 | none exists. */ | |
2157 | bfdgot_entry.bfd = entry->abfd; | |
2158 | bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT); | |
2159 | bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp; | |
2160 | ||
2161 | if (bfdgot != NULL) | |
2162 | g = bfdgot->g; | |
2163 | else | |
2164 | { | |
2165 | bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc | |
2166 | (arg->obfd, sizeof (struct mips_elf_bfd2got_hash)); | |
2167 | ||
2168 | if (bfdgot == NULL) | |
2169 | { | |
2170 | arg->obfd = 0; | |
2171 | return 0; | |
2172 | } | |
2173 | ||
2174 | *bfdgotp = bfdgot; | |
2175 | ||
2176 | bfdgot->bfd = entry->abfd; | |
2177 | bfdgot->g = g = (struct mips_got_info *) | |
2178 | bfd_alloc (arg->obfd, sizeof (struct mips_got_info)); | |
2179 | if (g == NULL) | |
2180 | { | |
2181 | arg->obfd = 0; | |
2182 | return 0; | |
2183 | } | |
2184 | ||
2185 | g->global_gotsym = NULL; | |
2186 | g->global_gotno = 0; | |
2187 | g->local_gotno = 0; | |
2188 | g->assigned_gotno = -1; | |
2189 | g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash, | |
2190 | mips_elf_multi_got_entry_eq, | |
2191 | (htab_del) NULL); | |
2192 | if (g->got_entries == NULL) | |
2193 | { | |
2194 | arg->obfd = 0; | |
2195 | return 0; | |
2196 | } | |
2197 | ||
2198 | g->bfd2got = NULL; | |
2199 | g->next = NULL; | |
2200 | } | |
2201 | ||
2202 | /* Insert the GOT entry in the bfd's got entry hash table. */ | |
2203 | entryp = htab_find_slot (g->got_entries, entry, INSERT); | |
2204 | if (*entryp != NULL) | |
2205 | return 1; | |
143d77c5 | 2206 | |
f4416af6 AO |
2207 | *entryp = entry; |
2208 | ||
2209 | if (entry->symndx >= 0 || entry->d.h->forced_local) | |
2210 | ++g->local_gotno; | |
2211 | else | |
2212 | ++g->global_gotno; | |
2213 | ||
2214 | return 1; | |
2215 | } | |
2216 | ||
2217 | /* Attempt to merge gots of different input bfds. Try to use as much | |
2218 | as possible of the primary got, since it doesn't require explicit | |
2219 | dynamic relocations, but don't use bfds that would reference global | |
2220 | symbols out of the addressable range. Failing the primary got, | |
2221 | attempt to merge with the current got, or finish the current got | |
2222 | and then make make the new got current. */ | |
2223 | ||
2224 | static int | |
2225 | mips_elf_merge_gots (bfd2got_, p) | |
2226 | void **bfd2got_; | |
2227 | void *p; | |
2228 | { | |
2229 | struct mips_elf_bfd2got_hash *bfd2got | |
2230 | = (struct mips_elf_bfd2got_hash *)*bfd2got_; | |
2231 | struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p; | |
2232 | unsigned int lcount = bfd2got->g->local_gotno; | |
2233 | unsigned int gcount = bfd2got->g->global_gotno; | |
2234 | unsigned int maxcnt = arg->max_count; | |
143d77c5 | 2235 | |
f4416af6 AO |
2236 | /* If we don't have a primary GOT and this is not too big, use it as |
2237 | a starting point for the primary GOT. */ | |
2238 | if (! arg->primary && lcount + gcount <= maxcnt) | |
2239 | { | |
2240 | arg->primary = bfd2got->g; | |
2241 | arg->primary_count = lcount + gcount; | |
2242 | } | |
2243 | /* If it looks like we can merge this bfd's entries with those of | |
2244 | the primary, merge them. The heuristics is conservative, but we | |
2245 | don't have to squeeze it too hard. */ | |
2246 | else if (arg->primary | |
2247 | && (arg->primary_count + lcount + gcount) <= maxcnt) | |
2248 | { | |
2249 | struct mips_got_info *g = bfd2got->g; | |
2250 | int old_lcount = arg->primary->local_gotno; | |
2251 | int old_gcount = arg->primary->global_gotno; | |
2252 | ||
2253 | bfd2got->g = arg->primary; | |
2254 | ||
2255 | htab_traverse (g->got_entries, | |
2256 | mips_elf_make_got_per_bfd, | |
2257 | arg); | |
2258 | if (arg->obfd == NULL) | |
2259 | return 0; | |
2260 | ||
2261 | htab_delete (g->got_entries); | |
2262 | /* We don't have to worry about releasing memory of the actual | |
2263 | got entries, since they're all in the master got_entries hash | |
2264 | table anyway. */ | |
2265 | ||
2266 | BFD_ASSERT (old_lcount + lcount == arg->primary->local_gotno); | |
2267 | BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno); | |
2268 | ||
2269 | arg->primary_count = arg->primary->local_gotno | |
2270 | + arg->primary->global_gotno; | |
2271 | } | |
2272 | /* If we can merge with the last-created got, do it. */ | |
2273 | else if (arg->current | |
2274 | && arg->current_count + lcount + gcount <= maxcnt) | |
2275 | { | |
2276 | struct mips_got_info *g = bfd2got->g; | |
2277 | int old_lcount = arg->current->local_gotno; | |
2278 | int old_gcount = arg->current->global_gotno; | |
2279 | ||
2280 | bfd2got->g = arg->current; | |
2281 | ||
2282 | htab_traverse (g->got_entries, | |
2283 | mips_elf_make_got_per_bfd, | |
2284 | arg); | |
2285 | if (arg->obfd == NULL) | |
2286 | return 0; | |
2287 | ||
2288 | htab_delete (g->got_entries); | |
2289 | ||
2290 | BFD_ASSERT (old_lcount + lcount == arg->current->local_gotno); | |
2291 | BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno); | |
2292 | ||
2293 | arg->current_count = arg->current->local_gotno | |
2294 | + arg->current->global_gotno; | |
2295 | } | |
2296 | /* Well, we couldn't merge, so create a new GOT. Don't check if it | |
2297 | fits; if it turns out that it doesn't, we'll get relocation | |
2298 | overflows anyway. */ | |
2299 | else | |
2300 | { | |
2301 | bfd2got->g->next = arg->current; | |
2302 | arg->current = bfd2got->g; | |
143d77c5 | 2303 | |
f4416af6 AO |
2304 | arg->current_count = lcount + gcount; |
2305 | } | |
2306 | ||
2307 | return 1; | |
2308 | } | |
2309 | ||
2310 | /* If passed a NULL mips_got_info in the argument, set the marker used | |
2311 | to tell whether a global symbol needs a got entry (in the primary | |
2312 | got) to the given VALUE. | |
2313 | ||
2314 | If passed a pointer G to a mips_got_info in the argument (it must | |
2315 | not be the primary GOT), compute the offset from the beginning of | |
2316 | the (primary) GOT section to the entry in G corresponding to the | |
2317 | global symbol. G's assigned_gotno must contain the index of the | |
2318 | first available global GOT entry in G. VALUE must contain the size | |
2319 | of a GOT entry in bytes. For each global GOT entry that requires a | |
2320 | dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is | |
2321 | marked as not elligible for lazy resolution through a function | |
2322 | stub. */ | |
2323 | static int | |
2324 | mips_elf_set_global_got_offset (entryp, p) | |
2325 | void **entryp; | |
2326 | void *p; | |
2327 | { | |
2328 | struct mips_got_entry *entry = (struct mips_got_entry *)*entryp; | |
2329 | struct mips_elf_set_global_got_offset_arg *arg | |
2330 | = (struct mips_elf_set_global_got_offset_arg *)p; | |
2331 | struct mips_got_info *g = arg->g; | |
2332 | ||
2333 | if (entry->abfd != NULL && entry->symndx == -1 | |
2334 | && entry->d.h->root.dynindx != -1) | |
2335 | { | |
2336 | if (g) | |
2337 | { | |
2338 | BFD_ASSERT (g->global_gotsym == NULL); | |
2339 | ||
2340 | entry->gotidx = arg->value * (long) g->assigned_gotno++; | |
2341 | /* We can't do lazy update of GOT entries for | |
2342 | non-primary GOTs since the PLT entries don't use the | |
2343 | right offsets, so punt at it for now. */ | |
2344 | entry->d.h->no_fn_stub = TRUE; | |
2345 | if (arg->info->shared | |
2346 | || (elf_hash_table (arg->info)->dynamic_sections_created | |
2347 | && ((entry->d.h->root.elf_link_hash_flags | |
2348 | & ELF_LINK_HASH_DEF_DYNAMIC) != 0) | |
2349 | && ((entry->d.h->root.elf_link_hash_flags | |
2350 | & ELF_LINK_HASH_DEF_REGULAR) == 0))) | |
2351 | ++arg->needed_relocs; | |
2352 | } | |
2353 | else | |
2354 | entry->d.h->root.got.offset = arg->value; | |
2355 | } | |
2356 | ||
2357 | return 1; | |
2358 | } | |
2359 | ||
2360 | /* Follow indirect and warning hash entries so that each got entry | |
2361 | points to the final symbol definition. P must point to a pointer | |
2362 | to the hash table we're traversing. Since this traversal may | |
2363 | modify the hash table, we set this pointer to NULL to indicate | |
2364 | we've made a potentially-destructive change to the hash table, so | |
2365 | the traversal must be restarted. */ | |
2366 | static int | |
2367 | mips_elf_resolve_final_got_entry (entryp, p) | |
2368 | void **entryp; | |
2369 | void *p; | |
2370 | { | |
2371 | struct mips_got_entry *entry = (struct mips_got_entry *)*entryp; | |
2372 | htab_t got_entries = *(htab_t *)p; | |
2373 | ||
2374 | if (entry->abfd != NULL && entry->symndx == -1) | |
2375 | { | |
2376 | struct mips_elf_link_hash_entry *h = entry->d.h; | |
2377 | ||
2378 | while (h->root.root.type == bfd_link_hash_indirect | |
2379 | || h->root.root.type == bfd_link_hash_warning) | |
2380 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | |
2381 | ||
2382 | if (entry->d.h == h) | |
2383 | return 1; | |
143d77c5 | 2384 | |
f4416af6 AO |
2385 | entry->d.h = h; |
2386 | ||
2387 | /* If we can't find this entry with the new bfd hash, re-insert | |
2388 | it, and get the traversal restarted. */ | |
2389 | if (! htab_find (got_entries, entry)) | |
2390 | { | |
2391 | htab_clear_slot (got_entries, entryp); | |
2392 | entryp = htab_find_slot (got_entries, entry, INSERT); | |
2393 | if (! *entryp) | |
2394 | *entryp = entry; | |
2395 | /* Abort the traversal, since the whole table may have | |
2396 | moved, and leave it up to the parent to restart the | |
2397 | process. */ | |
2398 | *(htab_t *)p = NULL; | |
2399 | return 0; | |
2400 | } | |
2401 | /* We might want to decrement the global_gotno count, but it's | |
2402 | either too early or too late for that at this point. */ | |
2403 | } | |
143d77c5 | 2404 | |
f4416af6 AO |
2405 | return 1; |
2406 | } | |
2407 | ||
2408 | /* Turn indirect got entries in a got_entries table into their final | |
2409 | locations. */ | |
2410 | static void | |
2411 | mips_elf_resolve_final_got_entries (g) | |
2412 | struct mips_got_info *g; | |
2413 | { | |
2414 | htab_t got_entries; | |
2415 | ||
2416 | do | |
2417 | { | |
2418 | got_entries = g->got_entries; | |
2419 | ||
2420 | htab_traverse (got_entries, | |
2421 | mips_elf_resolve_final_got_entry, | |
2422 | &got_entries); | |
2423 | } | |
2424 | while (got_entries == NULL); | |
2425 | } | |
2426 | ||
2427 | /* Return the offset of an input bfd IBFD's GOT from the beginning of | |
2428 | the primary GOT. */ | |
2429 | static bfd_vma | |
2430 | mips_elf_adjust_gp (abfd, g, ibfd) | |
2431 | bfd *abfd; | |
2432 | struct mips_got_info *g; | |
2433 | bfd *ibfd; | |
2434 | { | |
2435 | if (g->bfd2got == NULL) | |
2436 | return 0; | |
2437 | ||
2438 | g = mips_elf_got_for_ibfd (g, ibfd); | |
2439 | if (! g) | |
2440 | return 0; | |
2441 | ||
2442 | BFD_ASSERT (g->next); | |
2443 | ||
2444 | g = g->next; | |
143d77c5 | 2445 | |
f4416af6 AO |
2446 | return (g->local_gotno + g->global_gotno) * MIPS_ELF_GOT_SIZE (abfd); |
2447 | } | |
2448 | ||
2449 | /* Turn a single GOT that is too big for 16-bit addressing into | |
2450 | a sequence of GOTs, each one 16-bit addressable. */ | |
2451 | ||
2452 | static bfd_boolean | |
2453 | mips_elf_multi_got (abfd, info, g, got, pages) | |
2454 | bfd *abfd; | |
2455 | struct bfd_link_info *info; | |
2456 | struct mips_got_info *g; | |
2457 | asection *got; | |
2458 | bfd_size_type pages; | |
2459 | { | |
2460 | struct mips_elf_got_per_bfd_arg got_per_bfd_arg; | |
2461 | struct mips_elf_set_global_got_offset_arg set_got_offset_arg; | |
2462 | struct mips_got_info *gg; | |
2463 | unsigned int assign; | |
2464 | ||
2465 | g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash, | |
2466 | mips_elf_bfd2got_entry_eq, | |
2467 | (htab_del) NULL); | |
2468 | if (g->bfd2got == NULL) | |
2469 | return FALSE; | |
2470 | ||
2471 | got_per_bfd_arg.bfd2got = g->bfd2got; | |
2472 | got_per_bfd_arg.obfd = abfd; | |
2473 | got_per_bfd_arg.info = info; | |
2474 | ||
2475 | /* Count how many GOT entries each input bfd requires, creating a | |
2476 | map from bfd to got info while at that. */ | |
2477 | mips_elf_resolve_final_got_entries (g); | |
2478 | htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg); | |
2479 | if (got_per_bfd_arg.obfd == NULL) | |
2480 | return FALSE; | |
2481 | ||
2482 | got_per_bfd_arg.current = NULL; | |
2483 | got_per_bfd_arg.primary = NULL; | |
2484 | /* Taking out PAGES entries is a worst-case estimate. We could | |
2485 | compute the maximum number of pages that each separate input bfd | |
2486 | uses, but it's probably not worth it. */ | |
2487 | got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (abfd) | |
2488 | / MIPS_ELF_GOT_SIZE (abfd)) | |
2489 | - MIPS_RESERVED_GOTNO - pages); | |
2490 | ||
2491 | /* Try to merge the GOTs of input bfds together, as long as they | |
2492 | don't seem to exceed the maximum GOT size, choosing one of them | |
2493 | to be the primary GOT. */ | |
2494 | htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg); | |
2495 | if (got_per_bfd_arg.obfd == NULL) | |
2496 | return FALSE; | |
2497 | ||
2498 | /* If we find any suitable primary GOT, create an empty one. */ | |
2499 | if (got_per_bfd_arg.primary == NULL) | |
2500 | { | |
2501 | g->next = (struct mips_got_info *) | |
2502 | bfd_alloc (abfd, sizeof (struct mips_got_info)); | |
2503 | if (g->next == NULL) | |
2504 | return FALSE; | |
2505 | ||
2506 | g->next->global_gotsym = NULL; | |
2507 | g->next->global_gotno = 0; | |
2508 | g->next->local_gotno = 0; | |
2509 | g->next->assigned_gotno = 0; | |
2510 | g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash, | |
2511 | mips_elf_multi_got_entry_eq, | |
2512 | (htab_del) NULL); | |
2513 | if (g->next->got_entries == NULL) | |
2514 | return FALSE; | |
2515 | g->next->bfd2got = NULL; | |
2516 | } | |
2517 | else | |
2518 | g->next = got_per_bfd_arg.primary; | |
2519 | g->next->next = got_per_bfd_arg.current; | |
2520 | ||
2521 | /* GG is now the master GOT, and G is the primary GOT. */ | |
2522 | gg = g; | |
2523 | g = g->next; | |
2524 | ||
2525 | /* Map the output bfd to the primary got. That's what we're going | |
2526 | to use for bfds that use GOT16 or GOT_PAGE relocations that we | |
2527 | didn't mark in check_relocs, and we want a quick way to find it. | |
2528 | We can't just use gg->next because we're going to reverse the | |
2529 | list. */ | |
2530 | { | |
2531 | struct mips_elf_bfd2got_hash *bfdgot; | |
2532 | void **bfdgotp; | |
143d77c5 | 2533 | |
f4416af6 AO |
2534 | bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc |
2535 | (abfd, sizeof (struct mips_elf_bfd2got_hash)); | |
2536 | ||
2537 | if (bfdgot == NULL) | |
2538 | return FALSE; | |
2539 | ||
2540 | bfdgot->bfd = abfd; | |
2541 | bfdgot->g = g; | |
2542 | bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT); | |
2543 | ||
2544 | BFD_ASSERT (*bfdgotp == NULL); | |
2545 | *bfdgotp = bfdgot; | |
2546 | } | |
2547 | ||
2548 | /* The IRIX dynamic linker requires every symbol that is referenced | |
2549 | in a dynamic relocation to be present in the primary GOT, so | |
2550 | arrange for them to appear after those that are actually | |
2551 | referenced. | |
2552 | ||
2553 | GNU/Linux could very well do without it, but it would slow down | |
2554 | the dynamic linker, since it would have to resolve every dynamic | |
2555 | symbol referenced in other GOTs more than once, without help from | |
2556 | the cache. Also, knowing that every external symbol has a GOT | |
2557 | helps speed up the resolution of local symbols too, so GNU/Linux | |
2558 | follows IRIX's practice. | |
143d77c5 | 2559 | |
f4416af6 AO |
2560 | The number 2 is used by mips_elf_sort_hash_table_f to count |
2561 | global GOT symbols that are unreferenced in the primary GOT, with | |
2562 | an initial dynamic index computed from gg->assigned_gotno, where | |
2563 | the number of unreferenced global entries in the primary GOT is | |
2564 | preserved. */ | |
2565 | if (1) | |
2566 | { | |
2567 | gg->assigned_gotno = gg->global_gotno - g->global_gotno; | |
2568 | g->global_gotno = gg->global_gotno; | |
2569 | set_got_offset_arg.value = 2; | |
2570 | } | |
2571 | else | |
2572 | { | |
2573 | /* This could be used for dynamic linkers that don't optimize | |
2574 | symbol resolution while applying relocations so as to use | |
2575 | primary GOT entries or assuming the symbol is locally-defined. | |
2576 | With this code, we assign lower dynamic indices to global | |
2577 | symbols that are not referenced in the primary GOT, so that | |
2578 | their entries can be omitted. */ | |
2579 | gg->assigned_gotno = 0; | |
2580 | set_got_offset_arg.value = -1; | |
2581 | } | |
2582 | ||
2583 | /* Reorder dynamic symbols as described above (which behavior | |
2584 | depends on the setting of VALUE). */ | |
2585 | set_got_offset_arg.g = NULL; | |
2586 | htab_traverse (gg->got_entries, mips_elf_set_global_got_offset, | |
2587 | &set_got_offset_arg); | |
2588 | set_got_offset_arg.value = 1; | |
2589 | htab_traverse (g->got_entries, mips_elf_set_global_got_offset, | |
2590 | &set_got_offset_arg); | |
2591 | if (! mips_elf_sort_hash_table (info, 1)) | |
2592 | return FALSE; | |
2593 | ||
2594 | /* Now go through the GOTs assigning them offset ranges. | |
2595 | [assigned_gotno, local_gotno[ will be set to the range of local | |
2596 | entries in each GOT. We can then compute the end of a GOT by | |
2597 | adding local_gotno to global_gotno. We reverse the list and make | |
2598 | it circular since then we'll be able to quickly compute the | |
2599 | beginning of a GOT, by computing the end of its predecessor. To | |
2600 | avoid special cases for the primary GOT, while still preserving | |
2601 | assertions that are valid for both single- and multi-got links, | |
2602 | we arrange for the main got struct to have the right number of | |
2603 | global entries, but set its local_gotno such that the initial | |
2604 | offset of the primary GOT is zero. Remember that the primary GOT | |
2605 | will become the last item in the circular linked list, so it | |
2606 | points back to the master GOT. */ | |
2607 | gg->local_gotno = -g->global_gotno; | |
2608 | gg->global_gotno = g->global_gotno; | |
2609 | assign = 0; | |
2610 | gg->next = gg; | |
2611 | ||
2612 | do | |
2613 | { | |
2614 | struct mips_got_info *gn; | |
2615 | ||
2616 | assign += MIPS_RESERVED_GOTNO; | |
2617 | g->assigned_gotno = assign; | |
2618 | g->local_gotno += assign + pages; | |
2619 | assign = g->local_gotno + g->global_gotno; | |
2620 | ||
2621 | /* Take g out of the direct list, and push it onto the reversed | |
2622 | list that gg points to. */ | |
2623 | gn = g->next; | |
2624 | g->next = gg->next; | |
2625 | gg->next = g; | |
2626 | g = gn; | |
2627 | } | |
2628 | while (g); | |
2629 | ||
2630 | got->_raw_size = (gg->next->local_gotno | |
2631 | + gg->next->global_gotno) * MIPS_ELF_GOT_SIZE (abfd); | |
143d77c5 | 2632 | |
f4416af6 AO |
2633 | return TRUE; |
2634 | } | |
143d77c5 | 2635 | |
b49e97c9 TS |
2636 | \f |
2637 | /* Returns the first relocation of type r_type found, beginning with | |
2638 | RELOCATION. RELEND is one-past-the-end of the relocation table. */ | |
2639 | ||
2640 | static const Elf_Internal_Rela * | |
2641 | mips_elf_next_relocation (abfd, r_type, relocation, relend) | |
2642 | bfd *abfd ATTRIBUTE_UNUSED; | |
2643 | unsigned int r_type; | |
2644 | const Elf_Internal_Rela *relocation; | |
2645 | const Elf_Internal_Rela *relend; | |
2646 | { | |
2647 | /* According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must be | |
2648 | immediately following. However, for the IRIX6 ABI, the next | |
2649 | relocation may be a composed relocation consisting of several | |
2650 | relocations for the same address. In that case, the R_MIPS_LO16 | |
2651 | relocation may occur as one of these. We permit a similar | |
2652 | extension in general, as that is useful for GCC. */ | |
2653 | while (relocation < relend) | |
2654 | { | |
2655 | if (ELF_R_TYPE (abfd, relocation->r_info) == r_type) | |
2656 | return relocation; | |
2657 | ||
2658 | ++relocation; | |
2659 | } | |
2660 | ||
2661 | /* We didn't find it. */ | |
2662 | bfd_set_error (bfd_error_bad_value); | |
2663 | return NULL; | |
2664 | } | |
2665 | ||
2666 | /* Return whether a relocation is against a local symbol. */ | |
2667 | ||
b34976b6 | 2668 | static bfd_boolean |
b49e97c9 TS |
2669 | mips_elf_local_relocation_p (input_bfd, relocation, local_sections, |
2670 | check_forced) | |
2671 | bfd *input_bfd; | |
2672 | const Elf_Internal_Rela *relocation; | |
2673 | asection **local_sections; | |
b34976b6 | 2674 | bfd_boolean check_forced; |
b49e97c9 TS |
2675 | { |
2676 | unsigned long r_symndx; | |
2677 | Elf_Internal_Shdr *symtab_hdr; | |
2678 | struct mips_elf_link_hash_entry *h; | |
2679 | size_t extsymoff; | |
2680 | ||
2681 | r_symndx = ELF_R_SYM (input_bfd, relocation->r_info); | |
2682 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | |
2683 | extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info; | |
2684 | ||
2685 | if (r_symndx < extsymoff) | |
b34976b6 | 2686 | return TRUE; |
b49e97c9 | 2687 | if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL) |
b34976b6 | 2688 | return TRUE; |
b49e97c9 TS |
2689 | |
2690 | if (check_forced) | |
2691 | { | |
2692 | /* Look up the hash table to check whether the symbol | |
2693 | was forced local. */ | |
2694 | h = (struct mips_elf_link_hash_entry *) | |
2695 | elf_sym_hashes (input_bfd) [r_symndx - extsymoff]; | |
2696 | /* Find the real hash-table entry for this symbol. */ | |
2697 | while (h->root.root.type == bfd_link_hash_indirect | |
2698 | || h->root.root.type == bfd_link_hash_warning) | |
2699 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | |
2700 | if ((h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0) | |
b34976b6 | 2701 | return TRUE; |
b49e97c9 TS |
2702 | } |
2703 | ||
b34976b6 | 2704 | return FALSE; |
b49e97c9 TS |
2705 | } |
2706 | \f | |
2707 | /* Sign-extend VALUE, which has the indicated number of BITS. */ | |
2708 | ||
a7ebbfdf TS |
2709 | bfd_vma |
2710 | _bfd_mips_elf_sign_extend (value, bits) | |
b49e97c9 TS |
2711 | bfd_vma value; |
2712 | int bits; | |
2713 | { | |
2714 | if (value & ((bfd_vma) 1 << (bits - 1))) | |
2715 | /* VALUE is negative. */ | |
2716 | value |= ((bfd_vma) - 1) << bits; | |
2717 | ||
2718 | return value; | |
2719 | } | |
2720 | ||
2721 | /* Return non-zero if the indicated VALUE has overflowed the maximum | |
2722 | range expressable by a signed number with the indicated number of | |
2723 | BITS. */ | |
2724 | ||
b34976b6 | 2725 | static bfd_boolean |
b49e97c9 TS |
2726 | mips_elf_overflow_p (value, bits) |
2727 | bfd_vma value; | |
2728 | int bits; | |
2729 | { | |
2730 | bfd_signed_vma svalue = (bfd_signed_vma) value; | |
2731 | ||
2732 | if (svalue > (1 << (bits - 1)) - 1) | |
2733 | /* The value is too big. */ | |
b34976b6 | 2734 | return TRUE; |
b49e97c9 TS |
2735 | else if (svalue < -(1 << (bits - 1))) |
2736 | /* The value is too small. */ | |
b34976b6 | 2737 | return TRUE; |
b49e97c9 TS |
2738 | |
2739 | /* All is well. */ | |
b34976b6 | 2740 | return FALSE; |
b49e97c9 TS |
2741 | } |
2742 | ||
2743 | /* Calculate the %high function. */ | |
2744 | ||
2745 | static bfd_vma | |
2746 | mips_elf_high (value) | |
2747 | bfd_vma value; | |
2748 | { | |
2749 | return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff; | |
2750 | } | |
2751 | ||
2752 | /* Calculate the %higher function. */ | |
2753 | ||
2754 | static bfd_vma | |
2755 | mips_elf_higher (value) | |
2756 | bfd_vma value ATTRIBUTE_UNUSED; | |
2757 | { | |
2758 | #ifdef BFD64 | |
2759 | return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff; | |
2760 | #else | |
2761 | abort (); | |
2762 | return (bfd_vma) -1; | |
2763 | #endif | |
2764 | } | |
2765 | ||
2766 | /* Calculate the %highest function. */ | |
2767 | ||
2768 | static bfd_vma | |
2769 | mips_elf_highest (value) | |
2770 | bfd_vma value ATTRIBUTE_UNUSED; | |
2771 | { | |
2772 | #ifdef BFD64 | |
b15e6682 | 2773 | return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff; |
b49e97c9 TS |
2774 | #else |
2775 | abort (); | |
2776 | return (bfd_vma) -1; | |
2777 | #endif | |
2778 | } | |
2779 | \f | |
2780 | /* Create the .compact_rel section. */ | |
2781 | ||
b34976b6 | 2782 | static bfd_boolean |
b49e97c9 TS |
2783 | mips_elf_create_compact_rel_section (abfd, info) |
2784 | bfd *abfd; | |
2785 | struct bfd_link_info *info ATTRIBUTE_UNUSED; | |
2786 | { | |
2787 | flagword flags; | |
2788 | register asection *s; | |
2789 | ||
2790 | if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL) | |
2791 | { | |
2792 | flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED | |
2793 | | SEC_READONLY); | |
2794 | ||
2795 | s = bfd_make_section (abfd, ".compact_rel"); | |
2796 | if (s == NULL | |
2797 | || ! bfd_set_section_flags (abfd, s, flags) | |
2798 | || ! bfd_set_section_alignment (abfd, s, | |
2799 | MIPS_ELF_LOG_FILE_ALIGN (abfd))) | |
b34976b6 | 2800 | return FALSE; |
b49e97c9 TS |
2801 | |
2802 | s->_raw_size = sizeof (Elf32_External_compact_rel); | |
2803 | } | |
2804 | ||
b34976b6 | 2805 | return TRUE; |
b49e97c9 TS |
2806 | } |
2807 | ||
2808 | /* Create the .got section to hold the global offset table. */ | |
2809 | ||
b34976b6 | 2810 | static bfd_boolean |
f4416af6 | 2811 | mips_elf_create_got_section (abfd, info, maybe_exclude) |
b49e97c9 TS |
2812 | bfd *abfd; |
2813 | struct bfd_link_info *info; | |
f4416af6 | 2814 | bfd_boolean maybe_exclude; |
b49e97c9 TS |
2815 | { |
2816 | flagword flags; | |
2817 | register asection *s; | |
2818 | struct elf_link_hash_entry *h; | |
14a793b2 | 2819 | struct bfd_link_hash_entry *bh; |
b49e97c9 TS |
2820 | struct mips_got_info *g; |
2821 | bfd_size_type amt; | |
2822 | ||
2823 | /* This function may be called more than once. */ | |
f4416af6 AO |
2824 | s = mips_elf_got_section (abfd, TRUE); |
2825 | if (s) | |
2826 | { | |
2827 | if (! maybe_exclude) | |
2828 | s->flags &= ~SEC_EXCLUDE; | |
2829 | return TRUE; | |
2830 | } | |
b49e97c9 TS |
2831 | |
2832 | flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | |
2833 | | SEC_LINKER_CREATED); | |
2834 | ||
f4416af6 AO |
2835 | if (maybe_exclude) |
2836 | flags |= SEC_EXCLUDE; | |
2837 | ||
72b4917c TS |
2838 | /* We have to use an alignment of 2**4 here because this is hardcoded |
2839 | in the function stub generation and in the linker script. */ | |
b49e97c9 TS |
2840 | s = bfd_make_section (abfd, ".got"); |
2841 | if (s == NULL | |
2842 | || ! bfd_set_section_flags (abfd, s, flags) | |
72b4917c | 2843 | || ! bfd_set_section_alignment (abfd, s, 4)) |
b34976b6 | 2844 | return FALSE; |
b49e97c9 TS |
2845 | |
2846 | /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the | |
2847 | linker script because we don't want to define the symbol if we | |
2848 | are not creating a global offset table. */ | |
14a793b2 | 2849 | bh = NULL; |
b49e97c9 TS |
2850 | if (! (_bfd_generic_link_add_one_symbol |
2851 | (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s, | |
b34976b6 | 2852 | (bfd_vma) 0, (const char *) NULL, FALSE, |
14a793b2 | 2853 | get_elf_backend_data (abfd)->collect, &bh))) |
b34976b6 | 2854 | return FALSE; |
14a793b2 AM |
2855 | |
2856 | h = (struct elf_link_hash_entry *) bh; | |
b49e97c9 TS |
2857 | h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF; |
2858 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; | |
2859 | h->type = STT_OBJECT; | |
2860 | ||
2861 | if (info->shared | |
2862 | && ! bfd_elf32_link_record_dynamic_symbol (info, h)) | |
b34976b6 | 2863 | return FALSE; |
b49e97c9 | 2864 | |
b49e97c9 TS |
2865 | amt = sizeof (struct mips_got_info); |
2866 | g = (struct mips_got_info *) bfd_alloc (abfd, amt); | |
2867 | if (g == NULL) | |
b34976b6 | 2868 | return FALSE; |
b49e97c9 | 2869 | g->global_gotsym = NULL; |
e3d54347 | 2870 | g->global_gotno = 0; |
b49e97c9 TS |
2871 | g->local_gotno = MIPS_RESERVED_GOTNO; |
2872 | g->assigned_gotno = MIPS_RESERVED_GOTNO; | |
f4416af6 AO |
2873 | g->bfd2got = NULL; |
2874 | g->next = NULL; | |
b15e6682 AO |
2875 | g->got_entries = htab_try_create (1, mips_elf_got_entry_hash, |
2876 | mips_elf_got_entry_eq, | |
2877 | (htab_del) NULL); | |
2878 | if (g->got_entries == NULL) | |
2879 | return FALSE; | |
f0abc2a1 AM |
2880 | mips_elf_section_data (s)->u.got_info = g; |
2881 | mips_elf_section_data (s)->elf.this_hdr.sh_flags | |
b49e97c9 TS |
2882 | |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL; |
2883 | ||
b34976b6 | 2884 | return TRUE; |
b49e97c9 | 2885 | } |
b49e97c9 TS |
2886 | \f |
2887 | /* Calculate the value produced by the RELOCATION (which comes from | |
2888 | the INPUT_BFD). The ADDEND is the addend to use for this | |
2889 | RELOCATION; RELOCATION->R_ADDEND is ignored. | |
2890 | ||
2891 | The result of the relocation calculation is stored in VALUEP. | |
2892 | REQUIRE_JALXP indicates whether or not the opcode used with this | |
2893 | relocation must be JALX. | |
2894 | ||
2895 | This function returns bfd_reloc_continue if the caller need take no | |
2896 | further action regarding this relocation, bfd_reloc_notsupported if | |
2897 | something goes dramatically wrong, bfd_reloc_overflow if an | |
2898 | overflow occurs, and bfd_reloc_ok to indicate success. */ | |
2899 | ||
2900 | static bfd_reloc_status_type | |
2901 | mips_elf_calculate_relocation (abfd, input_bfd, input_section, info, | |
2902 | relocation, addend, howto, local_syms, | |
2903 | local_sections, valuep, namep, | |
bce03d3d | 2904 | require_jalxp, save_addend) |
b49e97c9 TS |
2905 | bfd *abfd; |
2906 | bfd *input_bfd; | |
2907 | asection *input_section; | |
2908 | struct bfd_link_info *info; | |
2909 | const Elf_Internal_Rela *relocation; | |
2910 | bfd_vma addend; | |
2911 | reloc_howto_type *howto; | |
2912 | Elf_Internal_Sym *local_syms; | |
2913 | asection **local_sections; | |
2914 | bfd_vma *valuep; | |
2915 | const char **namep; | |
b34976b6 AM |
2916 | bfd_boolean *require_jalxp; |
2917 | bfd_boolean save_addend; | |
b49e97c9 TS |
2918 | { |
2919 | /* The eventual value we will return. */ | |
2920 | bfd_vma value; | |
2921 | /* The address of the symbol against which the relocation is | |
2922 | occurring. */ | |
2923 | bfd_vma symbol = 0; | |
2924 | /* The final GP value to be used for the relocatable, executable, or | |
2925 | shared object file being produced. */ | |
2926 | bfd_vma gp = MINUS_ONE; | |
2927 | /* The place (section offset or address) of the storage unit being | |
2928 | relocated. */ | |
2929 | bfd_vma p; | |
2930 | /* The value of GP used to create the relocatable object. */ | |
2931 | bfd_vma gp0 = MINUS_ONE; | |
2932 | /* The offset into the global offset table at which the address of | |
2933 | the relocation entry symbol, adjusted by the addend, resides | |
2934 | during execution. */ | |
2935 | bfd_vma g = MINUS_ONE; | |
2936 | /* The section in which the symbol referenced by the relocation is | |
2937 | located. */ | |
2938 | asection *sec = NULL; | |
2939 | struct mips_elf_link_hash_entry *h = NULL; | |
b34976b6 | 2940 | /* TRUE if the symbol referred to by this relocation is a local |
b49e97c9 | 2941 | symbol. */ |
b34976b6 AM |
2942 | bfd_boolean local_p, was_local_p; |
2943 | /* TRUE if the symbol referred to by this relocation is "_gp_disp". */ | |
2944 | bfd_boolean gp_disp_p = FALSE; | |
b49e97c9 TS |
2945 | Elf_Internal_Shdr *symtab_hdr; |
2946 | size_t extsymoff; | |
2947 | unsigned long r_symndx; | |
2948 | int r_type; | |
b34976b6 | 2949 | /* TRUE if overflow occurred during the calculation of the |
b49e97c9 | 2950 | relocation value. */ |
b34976b6 AM |
2951 | bfd_boolean overflowed_p; |
2952 | /* TRUE if this relocation refers to a MIPS16 function. */ | |
2953 | bfd_boolean target_is_16_bit_code_p = FALSE; | |
b49e97c9 TS |
2954 | |
2955 | /* Parse the relocation. */ | |
2956 | r_symndx = ELF_R_SYM (input_bfd, relocation->r_info); | |
2957 | r_type = ELF_R_TYPE (input_bfd, relocation->r_info); | |
2958 | p = (input_section->output_section->vma | |
2959 | + input_section->output_offset | |
2960 | + relocation->r_offset); | |
2961 | ||
2962 | /* Assume that there will be no overflow. */ | |
b34976b6 | 2963 | overflowed_p = FALSE; |
b49e97c9 TS |
2964 | |
2965 | /* Figure out whether or not the symbol is local, and get the offset | |
2966 | used in the array of hash table entries. */ | |
2967 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | |
2968 | local_p = mips_elf_local_relocation_p (input_bfd, relocation, | |
b34976b6 | 2969 | local_sections, FALSE); |
bce03d3d | 2970 | was_local_p = local_p; |
b49e97c9 TS |
2971 | if (! elf_bad_symtab (input_bfd)) |
2972 | extsymoff = symtab_hdr->sh_info; | |
2973 | else | |
2974 | { | |
2975 | /* The symbol table does not follow the rule that local symbols | |
2976 | must come before globals. */ | |
2977 | extsymoff = 0; | |
2978 | } | |
2979 | ||
2980 | /* Figure out the value of the symbol. */ | |
2981 | if (local_p) | |
2982 | { | |
2983 | Elf_Internal_Sym *sym; | |
2984 | ||
2985 | sym = local_syms + r_symndx; | |
2986 | sec = local_sections[r_symndx]; | |
2987 | ||
2988 | symbol = sec->output_section->vma + sec->output_offset; | |
d4df96e6 L |
2989 | if (ELF_ST_TYPE (sym->st_info) != STT_SECTION |
2990 | || (sec->flags & SEC_MERGE)) | |
b49e97c9 | 2991 | symbol += sym->st_value; |
d4df96e6 L |
2992 | if ((sec->flags & SEC_MERGE) |
2993 | && ELF_ST_TYPE (sym->st_info) == STT_SECTION) | |
2994 | { | |
2995 | addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend); | |
2996 | addend -= symbol; | |
2997 | addend += sec->output_section->vma + sec->output_offset; | |
2998 | } | |
b49e97c9 TS |
2999 | |
3000 | /* MIPS16 text labels should be treated as odd. */ | |
3001 | if (sym->st_other == STO_MIPS16) | |
3002 | ++symbol; | |
3003 | ||
3004 | /* Record the name of this symbol, for our caller. */ | |
3005 | *namep = bfd_elf_string_from_elf_section (input_bfd, | |
3006 | symtab_hdr->sh_link, | |
3007 | sym->st_name); | |
3008 | if (*namep == '\0') | |
3009 | *namep = bfd_section_name (input_bfd, sec); | |
3010 | ||
3011 | target_is_16_bit_code_p = (sym->st_other == STO_MIPS16); | |
3012 | } | |
3013 | else | |
3014 | { | |
560e09e9 NC |
3015 | /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */ |
3016 | ||
b49e97c9 TS |
3017 | /* For global symbols we look up the symbol in the hash-table. */ |
3018 | h = ((struct mips_elf_link_hash_entry *) | |
3019 | elf_sym_hashes (input_bfd) [r_symndx - extsymoff]); | |
3020 | /* Find the real hash-table entry for this symbol. */ | |
3021 | while (h->root.root.type == bfd_link_hash_indirect | |
3022 | || h->root.root.type == bfd_link_hash_warning) | |
3023 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | |
3024 | ||
3025 | /* Record the name of this symbol, for our caller. */ | |
3026 | *namep = h->root.root.root.string; | |
3027 | ||
3028 | /* See if this is the special _gp_disp symbol. Note that such a | |
3029 | symbol must always be a global symbol. */ | |
560e09e9 | 3030 | if (strcmp (*namep, "_gp_disp") == 0 |
b49e97c9 TS |
3031 | && ! NEWABI_P (input_bfd)) |
3032 | { | |
3033 | /* Relocations against _gp_disp are permitted only with | |
3034 | R_MIPS_HI16 and R_MIPS_LO16 relocations. */ | |
3035 | if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16) | |
3036 | return bfd_reloc_notsupported; | |
3037 | ||
b34976b6 | 3038 | gp_disp_p = TRUE; |
b49e97c9 TS |
3039 | } |
3040 | /* If this symbol is defined, calculate its address. Note that | |
3041 | _gp_disp is a magic symbol, always implicitly defined by the | |
3042 | linker, so it's inappropriate to check to see whether or not | |
3043 | its defined. */ | |
3044 | else if ((h->root.root.type == bfd_link_hash_defined | |
3045 | || h->root.root.type == bfd_link_hash_defweak) | |
3046 | && h->root.root.u.def.section) | |
3047 | { | |
3048 | sec = h->root.root.u.def.section; | |
3049 | if (sec->output_section) | |
3050 | symbol = (h->root.root.u.def.value | |
3051 | + sec->output_section->vma | |
3052 | + sec->output_offset); | |
3053 | else | |
3054 | symbol = h->root.root.u.def.value; | |
3055 | } | |
3056 | else if (h->root.root.type == bfd_link_hash_undefweak) | |
3057 | /* We allow relocations against undefined weak symbols, giving | |
3058 | it the value zero, so that you can undefined weak functions | |
3059 | and check to see if they exist by looking at their | |
3060 | addresses. */ | |
3061 | symbol = 0; | |
3062 | else if (info->shared | |
560e09e9 | 3063 | && info->unresolved_syms_in_objects == RM_IGNORE |
b49e97c9 TS |
3064 | && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT) |
3065 | symbol = 0; | |
560e09e9 NC |
3066 | else if (strcmp (*namep, "_DYNAMIC_LINK") == 0 || |
3067 | strcmp (*namep, "_DYNAMIC_LINKING") == 0) | |
b49e97c9 TS |
3068 | { |
3069 | /* If this is a dynamic link, we should have created a | |
3070 | _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol | |
3071 | in in _bfd_mips_elf_create_dynamic_sections. | |
3072 | Otherwise, we should define the symbol with a value of 0. | |
3073 | FIXME: It should probably get into the symbol table | |
3074 | somehow as well. */ | |
3075 | BFD_ASSERT (! info->shared); | |
3076 | BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL); | |
3077 | symbol = 0; | |
3078 | } | |
3079 | else | |
3080 | { | |
3081 | if (! ((*info->callbacks->undefined_symbol) | |
3082 | (info, h->root.root.root.string, input_bfd, | |
3083 | input_section, relocation->r_offset, | |
560e09e9 NC |
3084 | ((info->shared && info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR) |
3085 | || (!info->shared && info->unresolved_syms_in_objects == RM_GENERATE_ERROR) | |
b49e97c9 TS |
3086 | || ELF_ST_VISIBILITY (h->root.other))))) |
3087 | return bfd_reloc_undefined; | |
3088 | symbol = 0; | |
3089 | } | |
3090 | ||
3091 | target_is_16_bit_code_p = (h->root.other == STO_MIPS16); | |
3092 | } | |
3093 | ||
3094 | /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we | |
3095 | need to redirect the call to the stub, unless we're already *in* | |
3096 | a stub. */ | |
1049f94e | 3097 | if (r_type != R_MIPS16_26 && !info->relocatable |
b49e97c9 TS |
3098 | && ((h != NULL && h->fn_stub != NULL) |
3099 | || (local_p && elf_tdata (input_bfd)->local_stubs != NULL | |
3100 | && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL)) | |
3101 | && !mips_elf_stub_section_p (input_bfd, input_section)) | |
3102 | { | |
3103 | /* This is a 32- or 64-bit call to a 16-bit function. We should | |
3104 | have already noticed that we were going to need the | |
3105 | stub. */ | |
3106 | if (local_p) | |
3107 | sec = elf_tdata (input_bfd)->local_stubs[r_symndx]; | |
3108 | else | |
3109 | { | |
3110 | BFD_ASSERT (h->need_fn_stub); | |
3111 | sec = h->fn_stub; | |
3112 | } | |
3113 | ||
3114 | symbol = sec->output_section->vma + sec->output_offset; | |
3115 | } | |
3116 | /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we | |
3117 | need to redirect the call to the stub. */ | |
1049f94e | 3118 | else if (r_type == R_MIPS16_26 && !info->relocatable |
b49e97c9 TS |
3119 | && h != NULL |
3120 | && (h->call_stub != NULL || h->call_fp_stub != NULL) | |
3121 | && !target_is_16_bit_code_p) | |
3122 | { | |
3123 | /* If both call_stub and call_fp_stub are defined, we can figure | |
3124 | out which one to use by seeing which one appears in the input | |
3125 | file. */ | |
3126 | if (h->call_stub != NULL && h->call_fp_stub != NULL) | |
3127 | { | |
3128 | asection *o; | |
3129 | ||
3130 | sec = NULL; | |
3131 | for (o = input_bfd->sections; o != NULL; o = o->next) | |
3132 | { | |
3133 | if (strncmp (bfd_get_section_name (input_bfd, o), | |
3134 | CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0) | |
3135 | { | |
3136 | sec = h->call_fp_stub; | |
3137 | break; | |
3138 | } | |
3139 | } | |
3140 | if (sec == NULL) | |
3141 | sec = h->call_stub; | |
3142 | } | |
3143 | else if (h->call_stub != NULL) | |
3144 | sec = h->call_stub; | |
3145 | else | |
3146 | sec = h->call_fp_stub; | |
3147 | ||
3148 | BFD_ASSERT (sec->_raw_size > 0); | |
3149 | symbol = sec->output_section->vma + sec->output_offset; | |
3150 | } | |
3151 | ||
3152 | /* Calls from 16-bit code to 32-bit code and vice versa require the | |
3153 | special jalx instruction. */ | |
1049f94e | 3154 | *require_jalxp = (!info->relocatable |
b49e97c9 TS |
3155 | && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p) |
3156 | || ((r_type == R_MIPS_26) && target_is_16_bit_code_p))); | |
3157 | ||
3158 | local_p = mips_elf_local_relocation_p (input_bfd, relocation, | |
b34976b6 | 3159 | local_sections, TRUE); |
b49e97c9 TS |
3160 | |
3161 | /* If we haven't already determined the GOT offset, or the GP value, | |
3162 | and we're going to need it, get it now. */ | |
3163 | switch (r_type) | |
3164 | { | |
0fdc1bf1 | 3165 | case R_MIPS_GOT_PAGE: |
93a2b7ae | 3166 | case R_MIPS_GOT_OFST: |
0176c794 AO |
3167 | /* If this symbol got a global GOT entry, we have to decay |
3168 | GOT_PAGE/GOT_OFST to GOT_DISP/addend. */ | |
93a2b7ae AO |
3169 | local_p = local_p || ! h |
3170 | || (h->root.dynindx | |
3171 | < mips_elf_get_global_gotsym_index (elf_hash_table (info) | |
3172 | ->dynobj)); | |
3173 | if (local_p || r_type == R_MIPS_GOT_OFST) | |
0fdc1bf1 AO |
3174 | break; |
3175 | /* Fall through. */ | |
3176 | ||
b49e97c9 TS |
3177 | case R_MIPS_CALL16: |
3178 | case R_MIPS_GOT16: | |
3179 | case R_MIPS_GOT_DISP: | |
3180 | case R_MIPS_GOT_HI16: | |
3181 | case R_MIPS_CALL_HI16: | |
3182 | case R_MIPS_GOT_LO16: | |
3183 | case R_MIPS_CALL_LO16: | |
3184 | /* Find the index into the GOT where this value is located. */ | |
3185 | if (!local_p) | |
3186 | { | |
0fdc1bf1 AO |
3187 | /* GOT_PAGE may take a non-zero addend, that is ignored in a |
3188 | GOT_PAGE relocation that decays to GOT_DISP because the | |
3189 | symbol turns out to be global. The addend is then added | |
3190 | as GOT_OFST. */ | |
3191 | BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE); | |
b49e97c9 | 3192 | g = mips_elf_global_got_index (elf_hash_table (info)->dynobj, |
f4416af6 | 3193 | input_bfd, |
b49e97c9 TS |
3194 | (struct elf_link_hash_entry *) h); |
3195 | if (! elf_hash_table(info)->dynamic_sections_created | |
3196 | || (info->shared | |
3197 | && (info->symbolic || h->root.dynindx == -1) | |
3198 | && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))) | |
3199 | { | |
3200 | /* This is a static link or a -Bsymbolic link. The | |
3201 | symbol is defined locally, or was forced to be local. | |
3202 | We must initialize this entry in the GOT. */ | |
3203 | bfd *tmpbfd = elf_hash_table (info)->dynobj; | |
f4416af6 | 3204 | asection *sgot = mips_elf_got_section (tmpbfd, FALSE); |
0fdc1bf1 | 3205 | MIPS_ELF_PUT_WORD (tmpbfd, symbol, sgot->contents + g); |
b49e97c9 TS |
3206 | } |
3207 | } | |
3208 | else if (r_type == R_MIPS_GOT16 || r_type == R_MIPS_CALL16) | |
3209 | /* There's no need to create a local GOT entry here; the | |
3210 | calculation for a local GOT16 entry does not involve G. */ | |
3211 | break; | |
3212 | else | |
3213 | { | |
f4416af6 AO |
3214 | g = mips_elf_local_got_index (abfd, input_bfd, |
3215 | info, symbol + addend); | |
b49e97c9 TS |
3216 | if (g == MINUS_ONE) |
3217 | return bfd_reloc_outofrange; | |
3218 | } | |
3219 | ||
3220 | /* Convert GOT indices to actual offsets. */ | |
3221 | g = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj, | |
f4416af6 | 3222 | abfd, input_bfd, g); |
b49e97c9 TS |
3223 | break; |
3224 | ||
3225 | case R_MIPS_HI16: | |
3226 | case R_MIPS_LO16: | |
3227 | case R_MIPS16_GPREL: | |
3228 | case R_MIPS_GPREL16: | |
3229 | case R_MIPS_GPREL32: | |
3230 | case R_MIPS_LITERAL: | |
3231 | gp0 = _bfd_get_gp_value (input_bfd); | |
3232 | gp = _bfd_get_gp_value (abfd); | |
f4416af6 AO |
3233 | if (elf_hash_table (info)->dynobj) |
3234 | gp += mips_elf_adjust_gp (abfd, | |
3235 | mips_elf_got_info | |
3236 | (elf_hash_table (info)->dynobj, NULL), | |
3237 | input_bfd); | |
b49e97c9 TS |
3238 | break; |
3239 | ||
3240 | default: | |
3241 | break; | |
3242 | } | |
3243 | ||
3244 | /* Figure out what kind of relocation is being performed. */ | |
3245 | switch (r_type) | |
3246 | { | |
3247 | case R_MIPS_NONE: | |
3248 | return bfd_reloc_continue; | |
3249 | ||
3250 | case R_MIPS_16: | |
a7ebbfdf | 3251 | value = symbol + _bfd_mips_elf_sign_extend (addend, 16); |
b49e97c9 TS |
3252 | overflowed_p = mips_elf_overflow_p (value, 16); |
3253 | break; | |
3254 | ||
3255 | case R_MIPS_32: | |
3256 | case R_MIPS_REL32: | |
3257 | case R_MIPS_64: | |
3258 | if ((info->shared | |
3259 | || (elf_hash_table (info)->dynamic_sections_created | |
3260 | && h != NULL | |
3261 | && ((h->root.elf_link_hash_flags | |
3262 | & ELF_LINK_HASH_DEF_DYNAMIC) != 0) | |
3263 | && ((h->root.elf_link_hash_flags | |
3264 | & ELF_LINK_HASH_DEF_REGULAR) == 0))) | |
3265 | && r_symndx != 0 | |
3266 | && (input_section->flags & SEC_ALLOC) != 0) | |
3267 | { | |
3268 | /* If we're creating a shared library, or this relocation is | |
3269 | against a symbol in a shared library, then we can't know | |
3270 | where the symbol will end up. So, we create a relocation | |
3271 | record in the output, and leave the job up to the dynamic | |
3272 | linker. */ | |
3273 | value = addend; | |
3274 | if (!mips_elf_create_dynamic_relocation (abfd, | |
3275 | info, | |
3276 | relocation, | |
3277 | h, | |
3278 | sec, | |
3279 | symbol, | |
3280 | &value, | |
3281 | input_section)) | |
3282 | return bfd_reloc_undefined; | |
3283 | } | |
3284 | else | |
3285 | { | |
3286 | if (r_type != R_MIPS_REL32) | |
3287 | value = symbol + addend; | |
3288 | else | |
3289 | value = addend; | |
3290 | } | |
3291 | value &= howto->dst_mask; | |
3292 | break; | |
3293 | ||
3294 | case R_MIPS_PC32: | |
3295 | case R_MIPS_PC64: | |
3296 | case R_MIPS_GNU_REL_LO16: | |
3297 | value = symbol + addend - p; | |
3298 | value &= howto->dst_mask; | |
3299 | break; | |
3300 | ||
0b25d3e6 | 3301 | case R_MIPS_GNU_REL16_S2: |
a7ebbfdf | 3302 | value = symbol + _bfd_mips_elf_sign_extend (addend << 2, 18) - p; |
0b25d3e6 AO |
3303 | overflowed_p = mips_elf_overflow_p (value, 18); |
3304 | value = (value >> 2) & howto->dst_mask; | |
3305 | break; | |
3306 | ||
b49e97c9 TS |
3307 | case R_MIPS_GNU_REL_HI16: |
3308 | /* Instead of subtracting 'p' here, we should be subtracting the | |
3309 | equivalent value for the LO part of the reloc, since the value | |
3310 | here is relative to that address. Because that's not easy to do, | |
3311 | we adjust 'addend' in _bfd_mips_elf_relocate_section(). See also | |
3312 | the comment there for more information. */ | |
3313 | value = mips_elf_high (addend + symbol - p); | |
3314 | value &= howto->dst_mask; | |
3315 | break; | |
3316 | ||
3317 | case R_MIPS16_26: | |
3318 | /* The calculation for R_MIPS16_26 is just the same as for an | |
3319 | R_MIPS_26. It's only the storage of the relocated field into | |
3320 | the output file that's different. That's handled in | |
3321 | mips_elf_perform_relocation. So, we just fall through to the | |
3322 | R_MIPS_26 case here. */ | |
3323 | case R_MIPS_26: | |
3324 | if (local_p) | |
3325 | value = (((addend << 2) | ((p + 4) & 0xf0000000)) + symbol) >> 2; | |
3326 | else | |
a7ebbfdf | 3327 | value = (_bfd_mips_elf_sign_extend (addend << 2, 28) + symbol) >> 2; |
b49e97c9 TS |
3328 | value &= howto->dst_mask; |
3329 | break; | |
3330 | ||
3331 | case R_MIPS_HI16: | |
3332 | if (!gp_disp_p) | |
3333 | { | |
3334 | value = mips_elf_high (addend + symbol); | |
3335 | value &= howto->dst_mask; | |
3336 | } | |
3337 | else | |
3338 | { | |
3339 | value = mips_elf_high (addend + gp - p); | |
3340 | overflowed_p = mips_elf_overflow_p (value, 16); | |
3341 | } | |
3342 | break; | |
3343 | ||
3344 | case R_MIPS_LO16: | |
3345 | if (!gp_disp_p) | |
3346 | value = (symbol + addend) & howto->dst_mask; | |
3347 | else | |
3348 | { | |
3349 | value = addend + gp - p + 4; | |
3350 | /* The MIPS ABI requires checking the R_MIPS_LO16 relocation | |
8dc1a139 | 3351 | for overflow. But, on, say, IRIX5, relocations against |
b49e97c9 TS |
3352 | _gp_disp are normally generated from the .cpload |
3353 | pseudo-op. It generates code that normally looks like | |
3354 | this: | |
3355 | ||
3356 | lui $gp,%hi(_gp_disp) | |
3357 | addiu $gp,$gp,%lo(_gp_disp) | |
3358 | addu $gp,$gp,$t9 | |
3359 | ||
3360 | Here $t9 holds the address of the function being called, | |
3361 | as required by the MIPS ELF ABI. The R_MIPS_LO16 | |
3362 | relocation can easily overflow in this situation, but the | |
3363 | R_MIPS_HI16 relocation will handle the overflow. | |
3364 | Therefore, we consider this a bug in the MIPS ABI, and do | |
3365 | not check for overflow here. */ | |
3366 | } | |
3367 | break; | |
3368 | ||
3369 | case R_MIPS_LITERAL: | |
3370 | /* Because we don't merge literal sections, we can handle this | |
3371 | just like R_MIPS_GPREL16. In the long run, we should merge | |
3372 | shared literals, and then we will need to additional work | |
3373 | here. */ | |
3374 | ||
3375 | /* Fall through. */ | |
3376 | ||
3377 | case R_MIPS16_GPREL: | |
3378 | /* The R_MIPS16_GPREL performs the same calculation as | |
3379 | R_MIPS_GPREL16, but stores the relocated bits in a different | |
3380 | order. We don't need to do anything special here; the | |
3381 | differences are handled in mips_elf_perform_relocation. */ | |
3382 | case R_MIPS_GPREL16: | |
bce03d3d AO |
3383 | /* Only sign-extend the addend if it was extracted from the |
3384 | instruction. If the addend was separate, leave it alone, | |
3385 | otherwise we may lose significant bits. */ | |
3386 | if (howto->partial_inplace) | |
a7ebbfdf | 3387 | addend = _bfd_mips_elf_sign_extend (addend, 16); |
bce03d3d AO |
3388 | value = symbol + addend - gp; |
3389 | /* If the symbol was local, any earlier relocatable links will | |
3390 | have adjusted its addend with the gp offset, so compensate | |
3391 | for that now. Don't do it for symbols forced local in this | |
3392 | link, though, since they won't have had the gp offset applied | |
3393 | to them before. */ | |
3394 | if (was_local_p) | |
3395 | value += gp0; | |
b49e97c9 TS |
3396 | overflowed_p = mips_elf_overflow_p (value, 16); |
3397 | break; | |
3398 | ||
3399 | case R_MIPS_GOT16: | |
3400 | case R_MIPS_CALL16: | |
3401 | if (local_p) | |
3402 | { | |
b34976b6 | 3403 | bfd_boolean forced; |
b49e97c9 TS |
3404 | |
3405 | /* The special case is when the symbol is forced to be local. We | |
3406 | need the full address in the GOT since no R_MIPS_LO16 relocation | |
3407 | follows. */ | |
3408 | forced = ! mips_elf_local_relocation_p (input_bfd, relocation, | |
b34976b6 | 3409 | local_sections, FALSE); |
f4416af6 AO |
3410 | value = mips_elf_got16_entry (abfd, input_bfd, info, |
3411 | symbol + addend, forced); | |
b49e97c9 TS |
3412 | if (value == MINUS_ONE) |
3413 | return bfd_reloc_outofrange; | |
3414 | value | |
3415 | = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj, | |
f4416af6 | 3416 | abfd, input_bfd, value); |
b49e97c9 TS |
3417 | overflowed_p = mips_elf_overflow_p (value, 16); |
3418 | break; | |
3419 | } | |
3420 | ||
3421 | /* Fall through. */ | |
3422 | ||
3423 | case R_MIPS_GOT_DISP: | |
0fdc1bf1 | 3424 | got_disp: |
b49e97c9 TS |
3425 | value = g; |
3426 | overflowed_p = mips_elf_overflow_p (value, 16); | |
3427 | break; | |
3428 | ||
3429 | case R_MIPS_GPREL32: | |
bce03d3d AO |
3430 | value = (addend + symbol + gp0 - gp); |
3431 | if (!save_addend) | |
3432 | value &= howto->dst_mask; | |
b49e97c9 TS |
3433 | break; |
3434 | ||
3435 | case R_MIPS_PC16: | |
a7ebbfdf | 3436 | value = _bfd_mips_elf_sign_extend (addend, 16) + symbol - p; |
0b25d3e6 | 3437 | overflowed_p = mips_elf_overflow_p (value, 16); |
b49e97c9 TS |
3438 | break; |
3439 | ||
3440 | case R_MIPS_GOT_HI16: | |
3441 | case R_MIPS_CALL_HI16: | |
3442 | /* We're allowed to handle these two relocations identically. | |
3443 | The dynamic linker is allowed to handle the CALL relocations | |
3444 | differently by creating a lazy evaluation stub. */ | |
3445 | value = g; | |
3446 | value = mips_elf_high (value); | |
3447 | value &= howto->dst_mask; | |
3448 | break; | |
3449 | ||
3450 | case R_MIPS_GOT_LO16: | |
3451 | case R_MIPS_CALL_LO16: | |
3452 | value = g & howto->dst_mask; | |
3453 | break; | |
3454 | ||
3455 | case R_MIPS_GOT_PAGE: | |
0fdc1bf1 AO |
3456 | /* GOT_PAGE relocations that reference non-local symbols decay |
3457 | to GOT_DISP. The corresponding GOT_OFST relocation decays to | |
3458 | 0. */ | |
93a2b7ae | 3459 | if (! local_p) |
0fdc1bf1 | 3460 | goto got_disp; |
f4416af6 | 3461 | value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL); |
b49e97c9 TS |
3462 | if (value == MINUS_ONE) |
3463 | return bfd_reloc_outofrange; | |
3464 | value = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj, | |
f4416af6 | 3465 | abfd, input_bfd, value); |
b49e97c9 TS |
3466 | overflowed_p = mips_elf_overflow_p (value, 16); |
3467 | break; | |
3468 | ||
3469 | case R_MIPS_GOT_OFST: | |
93a2b7ae | 3470 | if (local_p) |
0fdc1bf1 AO |
3471 | mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value); |
3472 | else | |
3473 | value = addend; | |
b49e97c9 TS |
3474 | overflowed_p = mips_elf_overflow_p (value, 16); |
3475 | break; | |
3476 | ||
3477 | case R_MIPS_SUB: | |
3478 | value = symbol - addend; | |
3479 | value &= howto->dst_mask; | |
3480 | break; | |
3481 | ||
3482 | case R_MIPS_HIGHER: | |
3483 | value = mips_elf_higher (addend + symbol); | |
3484 | value &= howto->dst_mask; | |
3485 | break; | |
3486 | ||
3487 | case R_MIPS_HIGHEST: | |
3488 | value = mips_elf_highest (addend + symbol); | |
3489 | value &= howto->dst_mask; | |
3490 | break; | |
3491 | ||
3492 | case R_MIPS_SCN_DISP: | |
3493 | value = symbol + addend - sec->output_offset; | |
3494 | value &= howto->dst_mask; | |
3495 | break; | |
3496 | ||
3497 | case R_MIPS_PJUMP: | |
3498 | case R_MIPS_JALR: | |
3499 | /* Both of these may be ignored. R_MIPS_JALR is an optimization | |
3500 | hint; we could improve performance by honoring that hint. */ | |
3501 | return bfd_reloc_continue; | |
3502 | ||
3503 | case R_MIPS_GNU_VTINHERIT: | |
3504 | case R_MIPS_GNU_VTENTRY: | |
3505 | /* We don't do anything with these at present. */ | |
3506 | return bfd_reloc_continue; | |
3507 | ||
3508 | default: | |
3509 | /* An unrecognized relocation type. */ | |
3510 | return bfd_reloc_notsupported; | |
3511 | } | |
3512 | ||
3513 | /* Store the VALUE for our caller. */ | |
3514 | *valuep = value; | |
3515 | return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok; | |
3516 | } | |
3517 | ||
3518 | /* Obtain the field relocated by RELOCATION. */ | |
3519 | ||
3520 | static bfd_vma | |
3521 | mips_elf_obtain_contents (howto, relocation, input_bfd, contents) | |
3522 | reloc_howto_type *howto; | |
3523 | const Elf_Internal_Rela *relocation; | |
3524 | bfd *input_bfd; | |
3525 | bfd_byte *contents; | |
3526 | { | |
3527 | bfd_vma x; | |
3528 | bfd_byte *location = contents + relocation->r_offset; | |
3529 | ||
3530 | /* Obtain the bytes. */ | |
3531 | x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location); | |
3532 | ||
3533 | if ((ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_26 | |
3534 | || ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_GPREL) | |
3535 | && bfd_little_endian (input_bfd)) | |
3536 | /* The two 16-bit words will be reversed on a little-endian system. | |
3537 | See mips_elf_perform_relocation for more details. */ | |
3538 | x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16)); | |
3539 | ||
3540 | return x; | |
3541 | } | |
3542 | ||
3543 | /* It has been determined that the result of the RELOCATION is the | |
3544 | VALUE. Use HOWTO to place VALUE into the output file at the | |
3545 | appropriate position. The SECTION is the section to which the | |
b34976b6 | 3546 | relocation applies. If REQUIRE_JALX is TRUE, then the opcode used |
b49e97c9 TS |
3547 | for the relocation must be either JAL or JALX, and it is |
3548 | unconditionally converted to JALX. | |
3549 | ||
b34976b6 | 3550 | Returns FALSE if anything goes wrong. */ |
b49e97c9 | 3551 | |
b34976b6 | 3552 | static bfd_boolean |
b49e97c9 TS |
3553 | mips_elf_perform_relocation (info, howto, relocation, value, input_bfd, |
3554 | input_section, contents, require_jalx) | |
3555 | struct bfd_link_info *info; | |
3556 | reloc_howto_type *howto; | |
3557 | const Elf_Internal_Rela *relocation; | |
3558 | bfd_vma value; | |
3559 | bfd *input_bfd; | |
3560 | asection *input_section; | |
3561 | bfd_byte *contents; | |
b34976b6 | 3562 | bfd_boolean require_jalx; |
b49e97c9 TS |
3563 | { |
3564 | bfd_vma x; | |
3565 | bfd_byte *location; | |
3566 | int r_type = ELF_R_TYPE (input_bfd, relocation->r_info); | |
3567 | ||
3568 | /* Figure out where the relocation is occurring. */ | |
3569 | location = contents + relocation->r_offset; | |
3570 | ||
3571 | /* Obtain the current value. */ | |
3572 | x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents); | |
3573 | ||
3574 | /* Clear the field we are setting. */ | |
3575 | x &= ~howto->dst_mask; | |
3576 | ||
3577 | /* If this is the R_MIPS16_26 relocation, we must store the | |
3578 | value in a funny way. */ | |
3579 | if (r_type == R_MIPS16_26) | |
3580 | { | |
3581 | /* R_MIPS16_26 is used for the mips16 jal and jalx instructions. | |
3582 | Most mips16 instructions are 16 bits, but these instructions | |
3583 | are 32 bits. | |
3584 | ||
3585 | The format of these instructions is: | |
3586 | ||
3587 | +--------------+--------------------------------+ | |
3588 | ! JALX ! X! Imm 20:16 ! Imm 25:21 ! | |
3589 | +--------------+--------------------------------+ | |
3590 | ! Immediate 15:0 ! | |
3591 | +-----------------------------------------------+ | |
3592 | ||
3593 | JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx. | |
3594 | Note that the immediate value in the first word is swapped. | |
3595 | ||
1049f94e | 3596 | When producing a relocatable object file, R_MIPS16_26 is |
b49e97c9 TS |
3597 | handled mostly like R_MIPS_26. In particular, the addend is |
3598 | stored as a straight 26-bit value in a 32-bit instruction. | |
3599 | (gas makes life simpler for itself by never adjusting a | |
3600 | R_MIPS16_26 reloc to be against a section, so the addend is | |
3601 | always zero). However, the 32 bit instruction is stored as 2 | |
3602 | 16-bit values, rather than a single 32-bit value. In a | |
3603 | big-endian file, the result is the same; in a little-endian | |
3604 | file, the two 16-bit halves of the 32 bit value are swapped. | |
3605 | This is so that a disassembler can recognize the jal | |
3606 | instruction. | |
3607 | ||
3608 | When doing a final link, R_MIPS16_26 is treated as a 32 bit | |
3609 | instruction stored as two 16-bit values. The addend A is the | |
3610 | contents of the targ26 field. The calculation is the same as | |
3611 | R_MIPS_26. When storing the calculated value, reorder the | |
3612 | immediate value as shown above, and don't forget to store the | |
3613 | value as two 16-bit values. | |
3614 | ||
3615 | To put it in MIPS ABI terms, the relocation field is T-targ26-16, | |
3616 | defined as | |
3617 | ||
3618 | big-endian: | |
3619 | +--------+----------------------+ | |
3620 | | | | | |
3621 | | | targ26-16 | | |
3622 | |31 26|25 0| | |
3623 | +--------+----------------------+ | |
3624 | ||
3625 | little-endian: | |
3626 | +----------+------+-------------+ | |
3627 | | | | | | |
3628 | | sub1 | | sub2 | | |
3629 | |0 9|10 15|16 31| | |
3630 | +----------+--------------------+ | |
3631 | where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is | |
3632 | ((sub1 << 16) | sub2)). | |
3633 | ||
1049f94e | 3634 | When producing a relocatable object file, the calculation is |
b49e97c9 TS |
3635 | (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2) |
3636 | When producing a fully linked file, the calculation is | |
3637 | let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2) | |
3638 | ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) */ | |
3639 | ||
1049f94e | 3640 | if (!info->relocatable) |
b49e97c9 TS |
3641 | /* Shuffle the bits according to the formula above. */ |
3642 | value = (((value & 0x1f0000) << 5) | |
3643 | | ((value & 0x3e00000) >> 5) | |
3644 | | (value & 0xffff)); | |
3645 | } | |
3646 | else if (r_type == R_MIPS16_GPREL) | |
3647 | { | |
3648 | /* R_MIPS16_GPREL is used for GP-relative addressing in mips16 | |
3649 | mode. A typical instruction will have a format like this: | |
3650 | ||
3651 | +--------------+--------------------------------+ | |
3652 | ! EXTEND ! Imm 10:5 ! Imm 15:11 ! | |
3653 | +--------------+--------------------------------+ | |
3654 | ! Major ! rx ! ry ! Imm 4:0 ! | |
3655 | +--------------+--------------------------------+ | |
3656 | ||
3657 | EXTEND is the five bit value 11110. Major is the instruction | |
3658 | opcode. | |
3659 | ||
3660 | This is handled exactly like R_MIPS_GPREL16, except that the | |
3661 | addend is retrieved and stored as shown in this diagram; that | |
3662 | is, the Imm fields above replace the V-rel16 field. | |
3663 | ||
3664 | All we need to do here is shuffle the bits appropriately. As | |
3665 | above, the two 16-bit halves must be swapped on a | |
3666 | little-endian system. */ | |
3667 | value = (((value & 0x7e0) << 16) | |
3668 | | ((value & 0xf800) << 5) | |
3669 | | (value & 0x1f)); | |
3670 | } | |
3671 | ||
3672 | /* Set the field. */ | |
3673 | x |= (value & howto->dst_mask); | |
3674 | ||
3675 | /* If required, turn JAL into JALX. */ | |
3676 | if (require_jalx) | |
3677 | { | |
b34976b6 | 3678 | bfd_boolean ok; |
b49e97c9 TS |
3679 | bfd_vma opcode = x >> 26; |
3680 | bfd_vma jalx_opcode; | |
3681 | ||
3682 | /* Check to see if the opcode is already JAL or JALX. */ | |
3683 | if (r_type == R_MIPS16_26) | |
3684 | { | |
3685 | ok = ((opcode == 0x6) || (opcode == 0x7)); | |
3686 | jalx_opcode = 0x7; | |
3687 | } | |
3688 | else | |
3689 | { | |
3690 | ok = ((opcode == 0x3) || (opcode == 0x1d)); | |
3691 | jalx_opcode = 0x1d; | |
3692 | } | |
3693 | ||
3694 | /* If the opcode is not JAL or JALX, there's a problem. */ | |
3695 | if (!ok) | |
3696 | { | |
3697 | (*_bfd_error_handler) | |
3698 | (_("%s: %s+0x%lx: jump to stub routine which is not jal"), | |
3699 | bfd_archive_filename (input_bfd), | |
3700 | input_section->name, | |
3701 | (unsigned long) relocation->r_offset); | |
3702 | bfd_set_error (bfd_error_bad_value); | |
b34976b6 | 3703 | return FALSE; |
b49e97c9 TS |
3704 | } |
3705 | ||
3706 | /* Make this the JALX opcode. */ | |
3707 | x = (x & ~(0x3f << 26)) | (jalx_opcode << 26); | |
3708 | } | |
3709 | ||
3710 | /* Swap the high- and low-order 16 bits on little-endian systems | |
3711 | when doing a MIPS16 relocation. */ | |
3712 | if ((r_type == R_MIPS16_GPREL || r_type == R_MIPS16_26) | |
3713 | && bfd_little_endian (input_bfd)) | |
3714 | x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16)); | |
3715 | ||
3716 | /* Put the value into the output. */ | |
3717 | bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location); | |
b34976b6 | 3718 | return TRUE; |
b49e97c9 TS |
3719 | } |
3720 | ||
b34976b6 | 3721 | /* Returns TRUE if SECTION is a MIPS16 stub section. */ |
b49e97c9 | 3722 | |
b34976b6 | 3723 | static bfd_boolean |
b49e97c9 TS |
3724 | mips_elf_stub_section_p (abfd, section) |
3725 | bfd *abfd ATTRIBUTE_UNUSED; | |
3726 | asection *section; | |
3727 | { | |
3728 | const char *name = bfd_get_section_name (abfd, section); | |
3729 | ||
3730 | return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0 | |
3731 | || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0 | |
3732 | || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0); | |
3733 | } | |
3734 | \f | |
3735 | /* Add room for N relocations to the .rel.dyn section in ABFD. */ | |
3736 | ||
3737 | static void | |
3738 | mips_elf_allocate_dynamic_relocations (abfd, n) | |
3739 | bfd *abfd; | |
3740 | unsigned int n; | |
3741 | { | |
3742 | asection *s; | |
3743 | ||
f4416af6 | 3744 | s = mips_elf_rel_dyn_section (abfd, FALSE); |
b49e97c9 TS |
3745 | BFD_ASSERT (s != NULL); |
3746 | ||
3747 | if (s->_raw_size == 0) | |
3748 | { | |
3749 | /* Make room for a null element. */ | |
3750 | s->_raw_size += MIPS_ELF_REL_SIZE (abfd); | |
3751 | ++s->reloc_count; | |
3752 | } | |
3753 | s->_raw_size += n * MIPS_ELF_REL_SIZE (abfd); | |
3754 | } | |
3755 | ||
3756 | /* Create a rel.dyn relocation for the dynamic linker to resolve. REL | |
3757 | is the original relocation, which is now being transformed into a | |
3758 | dynamic relocation. The ADDENDP is adjusted if necessary; the | |
3759 | caller should store the result in place of the original addend. */ | |
3760 | ||
b34976b6 | 3761 | static bfd_boolean |
b49e97c9 TS |
3762 | mips_elf_create_dynamic_relocation (output_bfd, info, rel, h, sec, |
3763 | symbol, addendp, input_section) | |
3764 | bfd *output_bfd; | |
3765 | struct bfd_link_info *info; | |
3766 | const Elf_Internal_Rela *rel; | |
3767 | struct mips_elf_link_hash_entry *h; | |
3768 | asection *sec; | |
3769 | bfd_vma symbol; | |
3770 | bfd_vma *addendp; | |
3771 | asection *input_section; | |
3772 | { | |
947216bf | 3773 | Elf_Internal_Rela outrel[3]; |
b34976b6 | 3774 | bfd_boolean skip; |
b49e97c9 TS |
3775 | asection *sreloc; |
3776 | bfd *dynobj; | |
3777 | int r_type; | |
3778 | ||
3779 | r_type = ELF_R_TYPE (output_bfd, rel->r_info); | |
3780 | dynobj = elf_hash_table (info)->dynobj; | |
f4416af6 | 3781 | sreloc = mips_elf_rel_dyn_section (dynobj, FALSE); |
b49e97c9 TS |
3782 | BFD_ASSERT (sreloc != NULL); |
3783 | BFD_ASSERT (sreloc->contents != NULL); | |
3784 | BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd) | |
3785 | < sreloc->_raw_size); | |
3786 | ||
b34976b6 | 3787 | skip = FALSE; |
b49e97c9 TS |
3788 | outrel[0].r_offset = |
3789 | _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset); | |
3790 | outrel[1].r_offset = | |
3791 | _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset); | |
3792 | outrel[2].r_offset = | |
3793 | _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset); | |
3794 | ||
3795 | #if 0 | |
3796 | /* We begin by assuming that the offset for the dynamic relocation | |
3797 | is the same as for the original relocation. We'll adjust this | |
3798 | later to reflect the correct output offsets. */ | |
a7ebbfdf | 3799 | if (input_section->sec_info_type != ELF_INFO_TYPE_STABS) |
b49e97c9 TS |
3800 | { |
3801 | outrel[1].r_offset = rel[1].r_offset; | |
3802 | outrel[2].r_offset = rel[2].r_offset; | |
3803 | } | |
3804 | else | |
3805 | { | |
3806 | /* Except that in a stab section things are more complex. | |
3807 | Because we compress stab information, the offset given in the | |
3808 | relocation may not be the one we want; we must let the stabs | |
3809 | machinery tell us the offset. */ | |
3810 | outrel[1].r_offset = outrel[0].r_offset; | |
3811 | outrel[2].r_offset = outrel[0].r_offset; | |
3812 | /* If we didn't need the relocation at all, this value will be | |
3813 | -1. */ | |
3814 | if (outrel[0].r_offset == (bfd_vma) -1) | |
b34976b6 | 3815 | skip = TRUE; |
b49e97c9 TS |
3816 | } |
3817 | #endif | |
3818 | ||
0d591ff7 RS |
3819 | if (outrel[0].r_offset == (bfd_vma) -1) |
3820 | /* The relocation field has been deleted. */ | |
b34976b6 | 3821 | skip = TRUE; |
0d591ff7 RS |
3822 | else if (outrel[0].r_offset == (bfd_vma) -2) |
3823 | { | |
3824 | /* The relocation field has been converted into a relative value of | |
3825 | some sort. Functions like _bfd_elf_write_section_eh_frame expect | |
3826 | the field to be fully relocated, so add in the symbol's value. */ | |
3827 | skip = TRUE; | |
3828 | *addendp += symbol; | |
3829 | } | |
b49e97c9 TS |
3830 | |
3831 | /* If we've decided to skip this relocation, just output an empty | |
3832 | record. Note that R_MIPS_NONE == 0, so that this call to memset | |
3833 | is a way of setting R_TYPE to R_MIPS_NONE. */ | |
3834 | if (skip) | |
947216bf | 3835 | memset (outrel, 0, sizeof (Elf_Internal_Rela) * 3); |
b49e97c9 TS |
3836 | else |
3837 | { | |
3838 | long indx; | |
d2fba50d | 3839 | bfd_boolean defined_p; |
b49e97c9 TS |
3840 | |
3841 | /* We must now calculate the dynamic symbol table index to use | |
3842 | in the relocation. */ | |
3843 | if (h != NULL | |
3844 | && (! info->symbolic || (h->root.elf_link_hash_flags | |
fdd07405 | 3845 | & ELF_LINK_HASH_DEF_REGULAR) == 0) |
b49e97c9 TS |
3846 | /* h->root.dynindx may be -1 if this symbol was marked to |
3847 | become local. */ | |
fdd07405 RS |
3848 | && h->root.dynindx != -1) |
3849 | { | |
3850 | indx = h->root.dynindx; | |
d2fba50d RS |
3851 | if (SGI_COMPAT (output_bfd)) |
3852 | defined_p = ((h->root.elf_link_hash_flags | |
3853 | & ELF_LINK_HASH_DEF_REGULAR) != 0); | |
3854 | else | |
3855 | /* ??? glibc's ld.so just adds the final GOT entry to the | |
3856 | relocation field. It therefore treats relocs against | |
3857 | defined symbols in the same way as relocs against | |
3858 | undefined symbols. */ | |
3859 | defined_p = FALSE; | |
b49e97c9 TS |
3860 | } |
3861 | else | |
3862 | { | |
3863 | if (sec != NULL && bfd_is_abs_section (sec)) | |
3864 | indx = 0; | |
3865 | else if (sec == NULL || sec->owner == NULL) | |
3866 | { | |
3867 | bfd_set_error (bfd_error_bad_value); | |
b34976b6 | 3868 | return FALSE; |
b49e97c9 TS |
3869 | } |
3870 | else | |
3871 | { | |
3872 | indx = elf_section_data (sec->output_section)->dynindx; | |
3873 | if (indx == 0) | |
3874 | abort (); | |
3875 | } | |
3876 | ||
908488f1 AO |
3877 | /* Instead of generating a relocation using the section |
3878 | symbol, we may as well make it a fully relative | |
3879 | relocation. We want to avoid generating relocations to | |
3880 | local symbols because we used to generate them | |
3881 | incorrectly, without adding the original symbol value, | |
3882 | which is mandated by the ABI for section symbols. In | |
3883 | order to give dynamic loaders and applications time to | |
3884 | phase out the incorrect use, we refrain from emitting | |
3885 | section-relative relocations. It's not like they're | |
3886 | useful, after all. This should be a bit more efficient | |
3887 | as well. */ | |
fdd07405 RS |
3888 | /* ??? Although this behavior is compatible with glibc's ld.so, |
3889 | the ABI says that relocations against STN_UNDEF should have | |
3890 | a symbol value of 0. Irix rld honors this, so relocations | |
3891 | against STN_UNDEF have no effect. */ | |
3892 | if (!SGI_COMPAT (output_bfd)) | |
3893 | indx = 0; | |
d2fba50d | 3894 | defined_p = TRUE; |
b49e97c9 TS |
3895 | } |
3896 | ||
3897 | /* If the relocation was previously an absolute relocation and | |
3898 | this symbol will not be referred to by the relocation, we must | |
3899 | adjust it by the value we give it in the dynamic symbol table. | |
3900 | Otherwise leave the job up to the dynamic linker. */ | |
d2fba50d | 3901 | if (defined_p && r_type != R_MIPS_REL32) |
b49e97c9 TS |
3902 | *addendp += symbol; |
3903 | ||
3904 | /* The relocation is always an REL32 relocation because we don't | |
3905 | know where the shared library will wind up at load-time. */ | |
34ea4a36 TS |
3906 | outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx, |
3907 | R_MIPS_REL32); | |
908488f1 AO |
3908 | /* For strict adherence to the ABI specification, we should |
3909 | generate a R_MIPS_64 relocation record by itself before the | |
3910 | _REL32/_64 record as well, such that the addend is read in as | |
3911 | a 64-bit value (REL32 is a 32-bit relocation, after all). | |
3912 | However, since none of the existing ELF64 MIPS dynamic | |
3913 | loaders seems to care, we don't waste space with these | |
3914 | artificial relocations. If this turns out to not be true, | |
3915 | mips_elf_allocate_dynamic_relocation() should be tweaked so | |
3916 | as to make room for a pair of dynamic relocations per | |
3917 | invocation if ABI_64_P, and here we should generate an | |
3918 | additional relocation record with R_MIPS_64 by itself for a | |
3919 | NULL symbol before this relocation record. */ | |
7c4ca42d | 3920 | outrel[1].r_info = ELF_R_INFO (output_bfd, (unsigned long) 0, |
033fd5f9 AO |
3921 | ABI_64_P (output_bfd) |
3922 | ? R_MIPS_64 | |
3923 | : R_MIPS_NONE); | |
7c4ca42d AO |
3924 | outrel[2].r_info = ELF_R_INFO (output_bfd, (unsigned long) 0, |
3925 | R_MIPS_NONE); | |
b49e97c9 TS |
3926 | |
3927 | /* Adjust the output offset of the relocation to reference the | |
3928 | correct location in the output file. */ | |
3929 | outrel[0].r_offset += (input_section->output_section->vma | |
3930 | + input_section->output_offset); | |
3931 | outrel[1].r_offset += (input_section->output_section->vma | |
3932 | + input_section->output_offset); | |
3933 | outrel[2].r_offset += (input_section->output_section->vma | |
3934 | + input_section->output_offset); | |
3935 | } | |
3936 | ||
3937 | /* Put the relocation back out. We have to use the special | |
3938 | relocation outputter in the 64-bit case since the 64-bit | |
3939 | relocation format is non-standard. */ | |
3940 | if (ABI_64_P (output_bfd)) | |
3941 | { | |
3942 | (*get_elf_backend_data (output_bfd)->s->swap_reloc_out) | |
3943 | (output_bfd, &outrel[0], | |
3944 | (sreloc->contents | |
3945 | + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel))); | |
3946 | } | |
3947 | else | |
947216bf AM |
3948 | bfd_elf32_swap_reloc_out |
3949 | (output_bfd, &outrel[0], | |
3950 | (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel))); | |
b49e97c9 | 3951 | |
b49e97c9 TS |
3952 | /* We've now added another relocation. */ |
3953 | ++sreloc->reloc_count; | |
3954 | ||
3955 | /* Make sure the output section is writable. The dynamic linker | |
3956 | will be writing to it. */ | |
3957 | elf_section_data (input_section->output_section)->this_hdr.sh_flags | |
3958 | |= SHF_WRITE; | |
3959 | ||
3960 | /* On IRIX5, make an entry of compact relocation info. */ | |
3961 | if (! skip && IRIX_COMPAT (output_bfd) == ict_irix5) | |
3962 | { | |
3963 | asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel"); | |
3964 | bfd_byte *cr; | |
3965 | ||
3966 | if (scpt) | |
3967 | { | |
3968 | Elf32_crinfo cptrel; | |
3969 | ||
3970 | mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG); | |
3971 | cptrel.vaddr = (rel->r_offset | |
3972 | + input_section->output_section->vma | |
3973 | + input_section->output_offset); | |
3974 | if (r_type == R_MIPS_REL32) | |
3975 | mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32); | |
3976 | else | |
3977 | mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD); | |
3978 | mips_elf_set_cr_dist2to (cptrel, 0); | |
3979 | cptrel.konst = *addendp; | |
3980 | ||
3981 | cr = (scpt->contents | |
3982 | + sizeof (Elf32_External_compact_rel)); | |
3983 | bfd_elf32_swap_crinfo_out (output_bfd, &cptrel, | |
3984 | ((Elf32_External_crinfo *) cr | |
3985 | + scpt->reloc_count)); | |
3986 | ++scpt->reloc_count; | |
3987 | } | |
3988 | } | |
3989 | ||
b34976b6 | 3990 | return TRUE; |
b49e97c9 TS |
3991 | } |
3992 | \f | |
b49e97c9 TS |
3993 | /* Return the MACH for a MIPS e_flags value. */ |
3994 | ||
3995 | unsigned long | |
3996 | _bfd_elf_mips_mach (flags) | |
3997 | flagword flags; | |
3998 | { | |
3999 | switch (flags & EF_MIPS_MACH) | |
4000 | { | |
4001 | case E_MIPS_MACH_3900: | |
4002 | return bfd_mach_mips3900; | |
4003 | ||
4004 | case E_MIPS_MACH_4010: | |
4005 | return bfd_mach_mips4010; | |
4006 | ||
4007 | case E_MIPS_MACH_4100: | |
4008 | return bfd_mach_mips4100; | |
4009 | ||
4010 | case E_MIPS_MACH_4111: | |
4011 | return bfd_mach_mips4111; | |
4012 | ||
00707a0e RS |
4013 | case E_MIPS_MACH_4120: |
4014 | return bfd_mach_mips4120; | |
4015 | ||
b49e97c9 TS |
4016 | case E_MIPS_MACH_4650: |
4017 | return bfd_mach_mips4650; | |
4018 | ||
00707a0e RS |
4019 | case E_MIPS_MACH_5400: |
4020 | return bfd_mach_mips5400; | |
4021 | ||
4022 | case E_MIPS_MACH_5500: | |
4023 | return bfd_mach_mips5500; | |
4024 | ||
b49e97c9 TS |
4025 | case E_MIPS_MACH_SB1: |
4026 | return bfd_mach_mips_sb1; | |
4027 | ||
4028 | default: | |
4029 | switch (flags & EF_MIPS_ARCH) | |
4030 | { | |
4031 | default: | |
4032 | case E_MIPS_ARCH_1: | |
4033 | return bfd_mach_mips3000; | |
4034 | break; | |
4035 | ||
4036 | case E_MIPS_ARCH_2: | |
4037 | return bfd_mach_mips6000; | |
4038 | break; | |
4039 | ||
4040 | case E_MIPS_ARCH_3: | |
4041 | return bfd_mach_mips4000; | |
4042 | break; | |
4043 | ||
4044 | case E_MIPS_ARCH_4: | |
4045 | return bfd_mach_mips8000; | |
4046 | break; | |
4047 | ||
4048 | case E_MIPS_ARCH_5: | |
4049 | return bfd_mach_mips5; | |
4050 | break; | |
4051 | ||
4052 | case E_MIPS_ARCH_32: | |
4053 | return bfd_mach_mipsisa32; | |
4054 | break; | |
4055 | ||
4056 | case E_MIPS_ARCH_64: | |
4057 | return bfd_mach_mipsisa64; | |
4058 | break; | |
af7ee8bf CD |
4059 | |
4060 | case E_MIPS_ARCH_32R2: | |
4061 | return bfd_mach_mipsisa32r2; | |
4062 | break; | |
5f74bc13 CD |
4063 | |
4064 | case E_MIPS_ARCH_64R2: | |
4065 | return bfd_mach_mipsisa64r2; | |
4066 | break; | |
b49e97c9 TS |
4067 | } |
4068 | } | |
4069 | ||
4070 | return 0; | |
4071 | } | |
4072 | ||
4073 | /* Return printable name for ABI. */ | |
4074 | ||
4075 | static INLINE char * | |
4076 | elf_mips_abi_name (abfd) | |
4077 | bfd *abfd; | |
4078 | { | |
4079 | flagword flags; | |
4080 | ||
4081 | flags = elf_elfheader (abfd)->e_flags; | |
4082 | switch (flags & EF_MIPS_ABI) | |
4083 | { | |
4084 | case 0: | |
4085 | if (ABI_N32_P (abfd)) | |
4086 | return "N32"; | |
4087 | else if (ABI_64_P (abfd)) | |
4088 | return "64"; | |
4089 | else | |
4090 | return "none"; | |
4091 | case E_MIPS_ABI_O32: | |
4092 | return "O32"; | |
4093 | case E_MIPS_ABI_O64: | |
4094 | return "O64"; | |
4095 | case E_MIPS_ABI_EABI32: | |
4096 | return "EABI32"; | |
4097 | case E_MIPS_ABI_EABI64: | |
4098 | return "EABI64"; | |
4099 | default: | |
4100 | return "unknown abi"; | |
4101 | } | |
4102 | } | |
4103 | \f | |
4104 | /* MIPS ELF uses two common sections. One is the usual one, and the | |
4105 | other is for small objects. All the small objects are kept | |
4106 | together, and then referenced via the gp pointer, which yields | |
4107 | faster assembler code. This is what we use for the small common | |
4108 | section. This approach is copied from ecoff.c. */ | |
4109 | static asection mips_elf_scom_section; | |
4110 | static asymbol mips_elf_scom_symbol; | |
4111 | static asymbol *mips_elf_scom_symbol_ptr; | |
4112 | ||
4113 | /* MIPS ELF also uses an acommon section, which represents an | |
4114 | allocated common symbol which may be overridden by a | |
4115 | definition in a shared library. */ | |
4116 | static asection mips_elf_acom_section; | |
4117 | static asymbol mips_elf_acom_symbol; | |
4118 | static asymbol *mips_elf_acom_symbol_ptr; | |
4119 | ||
4120 | /* Handle the special MIPS section numbers that a symbol may use. | |
4121 | This is used for both the 32-bit and the 64-bit ABI. */ | |
4122 | ||
4123 | void | |
4124 | _bfd_mips_elf_symbol_processing (abfd, asym) | |
4125 | bfd *abfd; | |
4126 | asymbol *asym; | |
4127 | { | |
4128 | elf_symbol_type *elfsym; | |
4129 | ||
4130 | elfsym = (elf_symbol_type *) asym; | |
4131 | switch (elfsym->internal_elf_sym.st_shndx) | |
4132 | { | |
4133 | case SHN_MIPS_ACOMMON: | |
4134 | /* This section is used in a dynamically linked executable file. | |
4135 | It is an allocated common section. The dynamic linker can | |
4136 | either resolve these symbols to something in a shared | |
4137 | library, or it can just leave them here. For our purposes, | |
4138 | we can consider these symbols to be in a new section. */ | |
4139 | if (mips_elf_acom_section.name == NULL) | |
4140 | { | |
4141 | /* Initialize the acommon section. */ | |
4142 | mips_elf_acom_section.name = ".acommon"; | |
4143 | mips_elf_acom_section.flags = SEC_ALLOC; | |
4144 | mips_elf_acom_section.output_section = &mips_elf_acom_section; | |
4145 | mips_elf_acom_section.symbol = &mips_elf_acom_symbol; | |
4146 | mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr; | |
4147 | mips_elf_acom_symbol.name = ".acommon"; | |
4148 | mips_elf_acom_symbol.flags = BSF_SECTION_SYM; | |
4149 | mips_elf_acom_symbol.section = &mips_elf_acom_section; | |
4150 | mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol; | |
4151 | } | |
4152 | asym->section = &mips_elf_acom_section; | |
4153 | break; | |
4154 | ||
4155 | case SHN_COMMON: | |
4156 | /* Common symbols less than the GP size are automatically | |
4157 | treated as SHN_MIPS_SCOMMON symbols on IRIX5. */ | |
4158 | if (asym->value > elf_gp_size (abfd) | |
4159 | || IRIX_COMPAT (abfd) == ict_irix6) | |
4160 | break; | |
4161 | /* Fall through. */ | |
4162 | case SHN_MIPS_SCOMMON: | |
4163 | if (mips_elf_scom_section.name == NULL) | |
4164 | { | |
4165 | /* Initialize the small common section. */ | |
4166 | mips_elf_scom_section.name = ".scommon"; | |
4167 | mips_elf_scom_section.flags = SEC_IS_COMMON; | |
4168 | mips_elf_scom_section.output_section = &mips_elf_scom_section; | |
4169 | mips_elf_scom_section.symbol = &mips_elf_scom_symbol; | |
4170 | mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr; | |
4171 | mips_elf_scom_symbol.name = ".scommon"; | |
4172 | mips_elf_scom_symbol.flags = BSF_SECTION_SYM; | |
4173 | mips_elf_scom_symbol.section = &mips_elf_scom_section; | |
4174 | mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol; | |
4175 | } | |
4176 | asym->section = &mips_elf_scom_section; | |
4177 | asym->value = elfsym->internal_elf_sym.st_size; | |
4178 | break; | |
4179 | ||
4180 | case SHN_MIPS_SUNDEFINED: | |
4181 | asym->section = bfd_und_section_ptr; | |
4182 | break; | |
4183 | ||
4184 | #if 0 /* for SGI_COMPAT */ | |
4185 | case SHN_MIPS_TEXT: | |
4186 | asym->section = mips_elf_text_section_ptr; | |
4187 | break; | |
4188 | ||
4189 | case SHN_MIPS_DATA: | |
4190 | asym->section = mips_elf_data_section_ptr; | |
4191 | break; | |
4192 | #endif | |
4193 | } | |
4194 | } | |
4195 | \f | |
4196 | /* Work over a section just before writing it out. This routine is | |
4197 | used by both the 32-bit and the 64-bit ABI. FIXME: We recognize | |
4198 | sections that need the SHF_MIPS_GPREL flag by name; there has to be | |
4199 | a better way. */ | |
4200 | ||
b34976b6 | 4201 | bfd_boolean |
b49e97c9 TS |
4202 | _bfd_mips_elf_section_processing (abfd, hdr) |
4203 | bfd *abfd; | |
4204 | Elf_Internal_Shdr *hdr; | |
4205 | { | |
4206 | if (hdr->sh_type == SHT_MIPS_REGINFO | |
4207 | && hdr->sh_size > 0) | |
4208 | { | |
4209 | bfd_byte buf[4]; | |
4210 | ||
4211 | BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo)); | |
4212 | BFD_ASSERT (hdr->contents == NULL); | |
4213 | ||
4214 | if (bfd_seek (abfd, | |
4215 | hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4, | |
4216 | SEEK_SET) != 0) | |
b34976b6 | 4217 | return FALSE; |
b49e97c9 TS |
4218 | H_PUT_32 (abfd, elf_gp (abfd), buf); |
4219 | if (bfd_bwrite (buf, (bfd_size_type) 4, abfd) != 4) | |
b34976b6 | 4220 | return FALSE; |
b49e97c9 TS |
4221 | } |
4222 | ||
4223 | if (hdr->sh_type == SHT_MIPS_OPTIONS | |
4224 | && hdr->bfd_section != NULL | |
f0abc2a1 AM |
4225 | && mips_elf_section_data (hdr->bfd_section) != NULL |
4226 | && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL) | |
b49e97c9 TS |
4227 | { |
4228 | bfd_byte *contents, *l, *lend; | |
4229 | ||
f0abc2a1 AM |
4230 | /* We stored the section contents in the tdata field in the |
4231 | set_section_contents routine. We save the section contents | |
4232 | so that we don't have to read them again. | |
b49e97c9 TS |
4233 | At this point we know that elf_gp is set, so we can look |
4234 | through the section contents to see if there is an | |
4235 | ODK_REGINFO structure. */ | |
4236 | ||
f0abc2a1 | 4237 | contents = mips_elf_section_data (hdr->bfd_section)->u.tdata; |
b49e97c9 TS |
4238 | l = contents; |
4239 | lend = contents + hdr->sh_size; | |
4240 | while (l + sizeof (Elf_External_Options) <= lend) | |
4241 | { | |
4242 | Elf_Internal_Options intopt; | |
4243 | ||
4244 | bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l, | |
4245 | &intopt); | |
4246 | if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO) | |
4247 | { | |
4248 | bfd_byte buf[8]; | |
4249 | ||
4250 | if (bfd_seek (abfd, | |
4251 | (hdr->sh_offset | |
4252 | + (l - contents) | |
4253 | + sizeof (Elf_External_Options) | |
4254 | + (sizeof (Elf64_External_RegInfo) - 8)), | |
4255 | SEEK_SET) != 0) | |
b34976b6 | 4256 | return FALSE; |
b49e97c9 TS |
4257 | H_PUT_64 (abfd, elf_gp (abfd), buf); |
4258 | if (bfd_bwrite (buf, (bfd_size_type) 8, abfd) != 8) | |
b34976b6 | 4259 | return FALSE; |
b49e97c9 TS |
4260 | } |
4261 | else if (intopt.kind == ODK_REGINFO) | |
4262 | { | |
4263 | bfd_byte buf[4]; | |
4264 | ||
4265 | if (bfd_seek (abfd, | |
4266 | (hdr->sh_offset | |
4267 | + (l - contents) | |
4268 | + sizeof (Elf_External_Options) | |
4269 | + (sizeof (Elf32_External_RegInfo) - 4)), | |
4270 | SEEK_SET) != 0) | |
b34976b6 | 4271 | return FALSE; |
b49e97c9 TS |
4272 | H_PUT_32 (abfd, elf_gp (abfd), buf); |
4273 | if (bfd_bwrite (buf, (bfd_size_type) 4, abfd) != 4) | |
b34976b6 | 4274 | return FALSE; |
b49e97c9 TS |
4275 | } |
4276 | l += intopt.size; | |
4277 | } | |
4278 | } | |
4279 | ||
4280 | if (hdr->bfd_section != NULL) | |
4281 | { | |
4282 | const char *name = bfd_get_section_name (abfd, hdr->bfd_section); | |
4283 | ||
4284 | if (strcmp (name, ".sdata") == 0 | |
4285 | || strcmp (name, ".lit8") == 0 | |
4286 | || strcmp (name, ".lit4") == 0) | |
4287 | { | |
4288 | hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL; | |
4289 | hdr->sh_type = SHT_PROGBITS; | |
4290 | } | |
4291 | else if (strcmp (name, ".sbss") == 0) | |
4292 | { | |
4293 | hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL; | |
4294 | hdr->sh_type = SHT_NOBITS; | |
4295 | } | |
4296 | else if (strcmp (name, ".srdata") == 0) | |
4297 | { | |
4298 | hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL; | |
4299 | hdr->sh_type = SHT_PROGBITS; | |
4300 | } | |
4301 | else if (strcmp (name, ".compact_rel") == 0) | |
4302 | { | |
4303 | hdr->sh_flags = 0; | |
4304 | hdr->sh_type = SHT_PROGBITS; | |
4305 | } | |
4306 | else if (strcmp (name, ".rtproc") == 0) | |
4307 | { | |
4308 | if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0) | |
4309 | { | |
4310 | unsigned int adjust; | |
4311 | ||
4312 | adjust = hdr->sh_size % hdr->sh_addralign; | |
4313 | if (adjust != 0) | |
4314 | hdr->sh_size += hdr->sh_addralign - adjust; | |
4315 | } | |
4316 | } | |
4317 | } | |
4318 | ||
b34976b6 | 4319 | return TRUE; |
b49e97c9 TS |
4320 | } |
4321 | ||
4322 | /* Handle a MIPS specific section when reading an object file. This | |
4323 | is called when elfcode.h finds a section with an unknown type. | |
4324 | This routine supports both the 32-bit and 64-bit ELF ABI. | |
4325 | ||
4326 | FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure | |
4327 | how to. */ | |
4328 | ||
b34976b6 | 4329 | bfd_boolean |
b49e97c9 TS |
4330 | _bfd_mips_elf_section_from_shdr (abfd, hdr, name) |
4331 | bfd *abfd; | |
4332 | Elf_Internal_Shdr *hdr; | |
90937f86 | 4333 | const char *name; |
b49e97c9 TS |
4334 | { |
4335 | flagword flags = 0; | |
4336 | ||
4337 | /* There ought to be a place to keep ELF backend specific flags, but | |
4338 | at the moment there isn't one. We just keep track of the | |
4339 | sections by their name, instead. Fortunately, the ABI gives | |
4340 | suggested names for all the MIPS specific sections, so we will | |
4341 | probably get away with this. */ | |
4342 | switch (hdr->sh_type) | |
4343 | { | |
4344 | case SHT_MIPS_LIBLIST: | |
4345 | if (strcmp (name, ".liblist") != 0) | |
b34976b6 | 4346 | return FALSE; |
b49e97c9 TS |
4347 | break; |
4348 | case SHT_MIPS_MSYM: | |
4349 | if (strcmp (name, ".msym") != 0) | |
b34976b6 | 4350 | return FALSE; |
b49e97c9 TS |
4351 | break; |
4352 | case SHT_MIPS_CONFLICT: | |
4353 | if (strcmp (name, ".conflict") != 0) | |
b34976b6 | 4354 | return FALSE; |
b49e97c9 TS |
4355 | break; |
4356 | case SHT_MIPS_GPTAB: | |
4357 | if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0) | |
b34976b6 | 4358 | return FALSE; |
b49e97c9 TS |
4359 | break; |
4360 | case SHT_MIPS_UCODE: | |
4361 | if (strcmp (name, ".ucode") != 0) | |
b34976b6 | 4362 | return FALSE; |
b49e97c9 TS |
4363 | break; |
4364 | case SHT_MIPS_DEBUG: | |
4365 | if (strcmp (name, ".mdebug") != 0) | |
b34976b6 | 4366 | return FALSE; |
b49e97c9 TS |
4367 | flags = SEC_DEBUGGING; |
4368 | break; | |
4369 | case SHT_MIPS_REGINFO: | |
4370 | if (strcmp (name, ".reginfo") != 0 | |
4371 | || hdr->sh_size != sizeof (Elf32_External_RegInfo)) | |
b34976b6 | 4372 | return FALSE; |
b49e97c9 TS |
4373 | flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE); |
4374 | break; | |
4375 | case SHT_MIPS_IFACE: | |
4376 | if (strcmp (name, ".MIPS.interfaces") != 0) | |
b34976b6 | 4377 | return FALSE; |
b49e97c9 TS |
4378 | break; |
4379 | case SHT_MIPS_CONTENT: | |
4380 | if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0) | |
b34976b6 | 4381 | return FALSE; |
b49e97c9 TS |
4382 | break; |
4383 | case SHT_MIPS_OPTIONS: | |
4384 | if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) != 0) | |
b34976b6 | 4385 | return FALSE; |
b49e97c9 TS |
4386 | break; |
4387 | case SHT_MIPS_DWARF: | |
4388 | if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0) | |
b34976b6 | 4389 | return FALSE; |
b49e97c9 TS |
4390 | break; |
4391 | case SHT_MIPS_SYMBOL_LIB: | |
4392 | if (strcmp (name, ".MIPS.symlib") != 0) | |
b34976b6 | 4393 | return FALSE; |
b49e97c9 TS |
4394 | break; |
4395 | case SHT_MIPS_EVENTS: | |
4396 | if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0 | |
4397 | && strncmp (name, ".MIPS.post_rel", | |
4398 | sizeof ".MIPS.post_rel" - 1) != 0) | |
b34976b6 | 4399 | return FALSE; |
b49e97c9 TS |
4400 | break; |
4401 | default: | |
b34976b6 | 4402 | return FALSE; |
b49e97c9 TS |
4403 | } |
4404 | ||
4405 | if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name)) | |
b34976b6 | 4406 | return FALSE; |
b49e97c9 TS |
4407 | |
4408 | if (flags) | |
4409 | { | |
4410 | if (! bfd_set_section_flags (abfd, hdr->bfd_section, | |
4411 | (bfd_get_section_flags (abfd, | |
4412 | hdr->bfd_section) | |
4413 | | flags))) | |
b34976b6 | 4414 | return FALSE; |
b49e97c9 TS |
4415 | } |
4416 | ||
4417 | /* FIXME: We should record sh_info for a .gptab section. */ | |
4418 | ||
4419 | /* For a .reginfo section, set the gp value in the tdata information | |
4420 | from the contents of this section. We need the gp value while | |
4421 | processing relocs, so we just get it now. The .reginfo section | |
4422 | is not used in the 64-bit MIPS ELF ABI. */ | |
4423 | if (hdr->sh_type == SHT_MIPS_REGINFO) | |
4424 | { | |
4425 | Elf32_External_RegInfo ext; | |
4426 | Elf32_RegInfo s; | |
4427 | ||
4428 | if (! bfd_get_section_contents (abfd, hdr->bfd_section, (PTR) &ext, | |
4429 | (file_ptr) 0, | |
4430 | (bfd_size_type) sizeof ext)) | |
b34976b6 | 4431 | return FALSE; |
b49e97c9 TS |
4432 | bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s); |
4433 | elf_gp (abfd) = s.ri_gp_value; | |
4434 | } | |
4435 | ||
4436 | /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and | |
4437 | set the gp value based on what we find. We may see both | |
4438 | SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case, | |
4439 | they should agree. */ | |
4440 | if (hdr->sh_type == SHT_MIPS_OPTIONS) | |
4441 | { | |
4442 | bfd_byte *contents, *l, *lend; | |
4443 | ||
4444 | contents = (bfd_byte *) bfd_malloc (hdr->sh_size); | |
4445 | if (contents == NULL) | |
b34976b6 | 4446 | return FALSE; |
b49e97c9 TS |
4447 | if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents, |
4448 | (file_ptr) 0, hdr->sh_size)) | |
4449 | { | |
4450 | free (contents); | |
b34976b6 | 4451 | return FALSE; |
b49e97c9 TS |
4452 | } |
4453 | l = contents; | |
4454 | lend = contents + hdr->sh_size; | |
4455 | while (l + sizeof (Elf_External_Options) <= lend) | |
4456 | { | |
4457 | Elf_Internal_Options intopt; | |
4458 | ||
4459 | bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l, | |
4460 | &intopt); | |
4461 | if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO) | |
4462 | { | |
4463 | Elf64_Internal_RegInfo intreg; | |
4464 | ||
4465 | bfd_mips_elf64_swap_reginfo_in | |
4466 | (abfd, | |
4467 | ((Elf64_External_RegInfo *) | |
4468 | (l + sizeof (Elf_External_Options))), | |
4469 | &intreg); | |
4470 | elf_gp (abfd) = intreg.ri_gp_value; | |
4471 | } | |
4472 | else if (intopt.kind == ODK_REGINFO) | |
4473 | { | |
4474 | Elf32_RegInfo intreg; | |
4475 | ||
4476 | bfd_mips_elf32_swap_reginfo_in | |
4477 | (abfd, | |
4478 | ((Elf32_External_RegInfo *) | |
4479 | (l + sizeof (Elf_External_Options))), | |
4480 | &intreg); | |
4481 | elf_gp (abfd) = intreg.ri_gp_value; | |
4482 | } | |
4483 | l += intopt.size; | |
4484 | } | |
4485 | free (contents); | |
4486 | } | |
4487 | ||
b34976b6 | 4488 | return TRUE; |
b49e97c9 TS |
4489 | } |
4490 | ||
4491 | /* Set the correct type for a MIPS ELF section. We do this by the | |
4492 | section name, which is a hack, but ought to work. This routine is | |
4493 | used by both the 32-bit and the 64-bit ABI. */ | |
4494 | ||
b34976b6 | 4495 | bfd_boolean |
b49e97c9 TS |
4496 | _bfd_mips_elf_fake_sections (abfd, hdr, sec) |
4497 | bfd *abfd; | |
947216bf | 4498 | Elf_Internal_Shdr *hdr; |
b49e97c9 TS |
4499 | asection *sec; |
4500 | { | |
4501 | register const char *name; | |
4502 | ||
4503 | name = bfd_get_section_name (abfd, sec); | |
4504 | ||
4505 | if (strcmp (name, ".liblist") == 0) | |
4506 | { | |
4507 | hdr->sh_type = SHT_MIPS_LIBLIST; | |
4508 | hdr->sh_info = sec->_raw_size / sizeof (Elf32_Lib); | |
4509 | /* The sh_link field is set in final_write_processing. */ | |
4510 | } | |
4511 | else if (strcmp (name, ".conflict") == 0) | |
4512 | hdr->sh_type = SHT_MIPS_CONFLICT; | |
4513 | else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0) | |
4514 | { | |
4515 | hdr->sh_type = SHT_MIPS_GPTAB; | |
4516 | hdr->sh_entsize = sizeof (Elf32_External_gptab); | |
4517 | /* The sh_info field is set in final_write_processing. */ | |
4518 | } | |
4519 | else if (strcmp (name, ".ucode") == 0) | |
4520 | hdr->sh_type = SHT_MIPS_UCODE; | |
4521 | else if (strcmp (name, ".mdebug") == 0) | |
4522 | { | |
4523 | hdr->sh_type = SHT_MIPS_DEBUG; | |
8dc1a139 | 4524 | /* In a shared object on IRIX 5.3, the .mdebug section has an |
b49e97c9 TS |
4525 | entsize of 0. FIXME: Does this matter? */ |
4526 | if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0) | |
4527 | hdr->sh_entsize = 0; | |
4528 | else | |
4529 | hdr->sh_entsize = 1; | |
4530 | } | |
4531 | else if (strcmp (name, ".reginfo") == 0) | |
4532 | { | |
4533 | hdr->sh_type = SHT_MIPS_REGINFO; | |
8dc1a139 | 4534 | /* In a shared object on IRIX 5.3, the .reginfo section has an |
b49e97c9 TS |
4535 | entsize of 0x18. FIXME: Does this matter? */ |
4536 | if (SGI_COMPAT (abfd)) | |
4537 | { | |
4538 | if ((abfd->flags & DYNAMIC) != 0) | |
4539 | hdr->sh_entsize = sizeof (Elf32_External_RegInfo); | |
4540 | else | |
4541 | hdr->sh_entsize = 1; | |
4542 | } | |
4543 | else | |
4544 | hdr->sh_entsize = sizeof (Elf32_External_RegInfo); | |
4545 | } | |
4546 | else if (SGI_COMPAT (abfd) | |
4547 | && (strcmp (name, ".hash") == 0 | |
4548 | || strcmp (name, ".dynamic") == 0 | |
4549 | || strcmp (name, ".dynstr") == 0)) | |
4550 | { | |
4551 | if (SGI_COMPAT (abfd)) | |
4552 | hdr->sh_entsize = 0; | |
4553 | #if 0 | |
8dc1a139 | 4554 | /* This isn't how the IRIX6 linker behaves. */ |
b49e97c9 TS |
4555 | hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES; |
4556 | #endif | |
4557 | } | |
4558 | else if (strcmp (name, ".got") == 0 | |
4559 | || strcmp (name, ".srdata") == 0 | |
4560 | || strcmp (name, ".sdata") == 0 | |
4561 | || strcmp (name, ".sbss") == 0 | |
4562 | || strcmp (name, ".lit4") == 0 | |
4563 | || strcmp (name, ".lit8") == 0) | |
4564 | hdr->sh_flags |= SHF_MIPS_GPREL; | |
4565 | else if (strcmp (name, ".MIPS.interfaces") == 0) | |
4566 | { | |
4567 | hdr->sh_type = SHT_MIPS_IFACE; | |
4568 | hdr->sh_flags |= SHF_MIPS_NOSTRIP; | |
4569 | } | |
4570 | else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0) | |
4571 | { | |
4572 | hdr->sh_type = SHT_MIPS_CONTENT; | |
4573 | hdr->sh_flags |= SHF_MIPS_NOSTRIP; | |
4574 | /* The sh_info field is set in final_write_processing. */ | |
4575 | } | |
4576 | else if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0) | |
4577 | { | |
4578 | hdr->sh_type = SHT_MIPS_OPTIONS; | |
4579 | hdr->sh_entsize = 1; | |
4580 | hdr->sh_flags |= SHF_MIPS_NOSTRIP; | |
4581 | } | |
4582 | else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0) | |
4583 | hdr->sh_type = SHT_MIPS_DWARF; | |
4584 | else if (strcmp (name, ".MIPS.symlib") == 0) | |
4585 | { | |
4586 | hdr->sh_type = SHT_MIPS_SYMBOL_LIB; | |
4587 | /* The sh_link and sh_info fields are set in | |
4588 | final_write_processing. */ | |
4589 | } | |
4590 | else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0 | |
4591 | || strncmp (name, ".MIPS.post_rel", | |
4592 | sizeof ".MIPS.post_rel" - 1) == 0) | |
4593 | { | |
4594 | hdr->sh_type = SHT_MIPS_EVENTS; | |
4595 | hdr->sh_flags |= SHF_MIPS_NOSTRIP; | |
4596 | /* The sh_link field is set in final_write_processing. */ | |
4597 | } | |
4598 | else if (strcmp (name, ".msym") == 0) | |
4599 | { | |
4600 | hdr->sh_type = SHT_MIPS_MSYM; | |
4601 | hdr->sh_flags |= SHF_ALLOC; | |
4602 | hdr->sh_entsize = 8; | |
4603 | } | |
4604 | ||
7a79a000 TS |
4605 | /* The generic elf_fake_sections will set up REL_HDR using the default |
4606 | kind of relocations. We used to set up a second header for the | |
4607 | non-default kind of relocations here, but only NewABI would use | |
4608 | these, and the IRIX ld doesn't like resulting empty RELA sections. | |
4609 | Thus we create those header only on demand now. */ | |
b49e97c9 | 4610 | |
b34976b6 | 4611 | return TRUE; |
b49e97c9 TS |
4612 | } |
4613 | ||
4614 | /* Given a BFD section, try to locate the corresponding ELF section | |
4615 | index. This is used by both the 32-bit and the 64-bit ABI. | |
4616 | Actually, it's not clear to me that the 64-bit ABI supports these, | |
4617 | but for non-PIC objects we will certainly want support for at least | |
4618 | the .scommon section. */ | |
4619 | ||
b34976b6 | 4620 | bfd_boolean |
b49e97c9 TS |
4621 | _bfd_mips_elf_section_from_bfd_section (abfd, sec, retval) |
4622 | bfd *abfd ATTRIBUTE_UNUSED; | |
4623 | asection *sec; | |
4624 | int *retval; | |
4625 | { | |
4626 | if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0) | |
4627 | { | |
4628 | *retval = SHN_MIPS_SCOMMON; | |
b34976b6 | 4629 | return TRUE; |
b49e97c9 TS |
4630 | } |
4631 | if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0) | |
4632 | { | |
4633 | *retval = SHN_MIPS_ACOMMON; | |
b34976b6 | 4634 | return TRUE; |
b49e97c9 | 4635 | } |
b34976b6 | 4636 | return FALSE; |
b49e97c9 TS |
4637 | } |
4638 | \f | |
4639 | /* Hook called by the linker routine which adds symbols from an object | |
4640 | file. We must handle the special MIPS section numbers here. */ | |
4641 | ||
b34976b6 | 4642 | bfd_boolean |
b49e97c9 TS |
4643 | _bfd_mips_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp) |
4644 | bfd *abfd; | |
4645 | struct bfd_link_info *info; | |
4646 | const Elf_Internal_Sym *sym; | |
4647 | const char **namep; | |
4648 | flagword *flagsp ATTRIBUTE_UNUSED; | |
4649 | asection **secp; | |
4650 | bfd_vma *valp; | |
4651 | { | |
4652 | if (SGI_COMPAT (abfd) | |
4653 | && (abfd->flags & DYNAMIC) != 0 | |
4654 | && strcmp (*namep, "_rld_new_interface") == 0) | |
4655 | { | |
8dc1a139 | 4656 | /* Skip IRIX5 rld entry name. */ |
b49e97c9 | 4657 | *namep = NULL; |
b34976b6 | 4658 | return TRUE; |
b49e97c9 TS |
4659 | } |
4660 | ||
4661 | switch (sym->st_shndx) | |
4662 | { | |
4663 | case SHN_COMMON: | |
4664 | /* Common symbols less than the GP size are automatically | |
4665 | treated as SHN_MIPS_SCOMMON symbols. */ | |
4666 | if (sym->st_size > elf_gp_size (abfd) | |
4667 | || IRIX_COMPAT (abfd) == ict_irix6) | |
4668 | break; | |
4669 | /* Fall through. */ | |
4670 | case SHN_MIPS_SCOMMON: | |
4671 | *secp = bfd_make_section_old_way (abfd, ".scommon"); | |
4672 | (*secp)->flags |= SEC_IS_COMMON; | |
4673 | *valp = sym->st_size; | |
4674 | break; | |
4675 | ||
4676 | case SHN_MIPS_TEXT: | |
4677 | /* This section is used in a shared object. */ | |
4678 | if (elf_tdata (abfd)->elf_text_section == NULL) | |
4679 | { | |
4680 | asymbol *elf_text_symbol; | |
4681 | asection *elf_text_section; | |
4682 | bfd_size_type amt = sizeof (asection); | |
4683 | ||
4684 | elf_text_section = bfd_zalloc (abfd, amt); | |
4685 | if (elf_text_section == NULL) | |
b34976b6 | 4686 | return FALSE; |
b49e97c9 TS |
4687 | |
4688 | amt = sizeof (asymbol); | |
4689 | elf_text_symbol = bfd_zalloc (abfd, amt); | |
4690 | if (elf_text_symbol == NULL) | |
b34976b6 | 4691 | return FALSE; |
b49e97c9 TS |
4692 | |
4693 | /* Initialize the section. */ | |
4694 | ||
4695 | elf_tdata (abfd)->elf_text_section = elf_text_section; | |
4696 | elf_tdata (abfd)->elf_text_symbol = elf_text_symbol; | |
4697 | ||
4698 | elf_text_section->symbol = elf_text_symbol; | |
4699 | elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol; | |
4700 | ||
4701 | elf_text_section->name = ".text"; | |
4702 | elf_text_section->flags = SEC_NO_FLAGS; | |
4703 | elf_text_section->output_section = NULL; | |
4704 | elf_text_section->owner = abfd; | |
4705 | elf_text_symbol->name = ".text"; | |
4706 | elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC; | |
4707 | elf_text_symbol->section = elf_text_section; | |
4708 | } | |
4709 | /* This code used to do *secp = bfd_und_section_ptr if | |
4710 | info->shared. I don't know why, and that doesn't make sense, | |
4711 | so I took it out. */ | |
4712 | *secp = elf_tdata (abfd)->elf_text_section; | |
4713 | break; | |
4714 | ||
4715 | case SHN_MIPS_ACOMMON: | |
4716 | /* Fall through. XXX Can we treat this as allocated data? */ | |
4717 | case SHN_MIPS_DATA: | |
4718 | /* This section is used in a shared object. */ | |
4719 | if (elf_tdata (abfd)->elf_data_section == NULL) | |
4720 | { | |
4721 | asymbol *elf_data_symbol; | |
4722 | asection *elf_data_section; | |
4723 | bfd_size_type amt = sizeof (asection); | |
4724 | ||
4725 | elf_data_section = bfd_zalloc (abfd, amt); | |
4726 | if (elf_data_section == NULL) | |
b34976b6 | 4727 | return FALSE; |
b49e97c9 TS |
4728 | |
4729 | amt = sizeof (asymbol); | |
4730 | elf_data_symbol = bfd_zalloc (abfd, amt); | |
4731 | if (elf_data_symbol == NULL) | |
b34976b6 | 4732 | return FALSE; |
b49e97c9 TS |
4733 | |
4734 | /* Initialize the section. */ | |
4735 | ||
4736 | elf_tdata (abfd)->elf_data_section = elf_data_section; | |
4737 | elf_tdata (abfd)->elf_data_symbol = elf_data_symbol; | |
4738 | ||
4739 | elf_data_section->symbol = elf_data_symbol; | |
4740 | elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol; | |
4741 | ||
4742 | elf_data_section->name = ".data"; | |
4743 | elf_data_section->flags = SEC_NO_FLAGS; | |
4744 | elf_data_section->output_section = NULL; | |
4745 | elf_data_section->owner = abfd; | |
4746 | elf_data_symbol->name = ".data"; | |
4747 | elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC; | |
4748 | elf_data_symbol->section = elf_data_section; | |
4749 | } | |
4750 | /* This code used to do *secp = bfd_und_section_ptr if | |
4751 | info->shared. I don't know why, and that doesn't make sense, | |
4752 | so I took it out. */ | |
4753 | *secp = elf_tdata (abfd)->elf_data_section; | |
4754 | break; | |
4755 | ||
4756 | case SHN_MIPS_SUNDEFINED: | |
4757 | *secp = bfd_und_section_ptr; | |
4758 | break; | |
4759 | } | |
4760 | ||
4761 | if (SGI_COMPAT (abfd) | |
4762 | && ! info->shared | |
4763 | && info->hash->creator == abfd->xvec | |
4764 | && strcmp (*namep, "__rld_obj_head") == 0) | |
4765 | { | |
4766 | struct elf_link_hash_entry *h; | |
14a793b2 | 4767 | struct bfd_link_hash_entry *bh; |
b49e97c9 TS |
4768 | |
4769 | /* Mark __rld_obj_head as dynamic. */ | |
14a793b2 | 4770 | bh = NULL; |
b49e97c9 TS |
4771 | if (! (_bfd_generic_link_add_one_symbol |
4772 | (info, abfd, *namep, BSF_GLOBAL, *secp, | |
b34976b6 | 4773 | (bfd_vma) *valp, (const char *) NULL, FALSE, |
14a793b2 | 4774 | get_elf_backend_data (abfd)->collect, &bh))) |
b34976b6 | 4775 | return FALSE; |
14a793b2 AM |
4776 | |
4777 | h = (struct elf_link_hash_entry *) bh; | |
b49e97c9 TS |
4778 | h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF; |
4779 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; | |
4780 | h->type = STT_OBJECT; | |
4781 | ||
4782 | if (! bfd_elf32_link_record_dynamic_symbol (info, h)) | |
b34976b6 | 4783 | return FALSE; |
b49e97c9 | 4784 | |
b34976b6 | 4785 | mips_elf_hash_table (info)->use_rld_obj_head = TRUE; |
b49e97c9 TS |
4786 | } |
4787 | ||
4788 | /* If this is a mips16 text symbol, add 1 to the value to make it | |
4789 | odd. This will cause something like .word SYM to come up with | |
4790 | the right value when it is loaded into the PC. */ | |
4791 | if (sym->st_other == STO_MIPS16) | |
4792 | ++*valp; | |
4793 | ||
b34976b6 | 4794 | return TRUE; |
b49e97c9 TS |
4795 | } |
4796 | ||
4797 | /* This hook function is called before the linker writes out a global | |
4798 | symbol. We mark symbols as small common if appropriate. This is | |
4799 | also where we undo the increment of the value for a mips16 symbol. */ | |
4800 | ||
b34976b6 | 4801 | bfd_boolean |
b49e97c9 TS |
4802 | _bfd_mips_elf_link_output_symbol_hook (abfd, info, name, sym, input_sec) |
4803 | bfd *abfd ATTRIBUTE_UNUSED; | |
4804 | struct bfd_link_info *info ATTRIBUTE_UNUSED; | |
4805 | const char *name ATTRIBUTE_UNUSED; | |
4806 | Elf_Internal_Sym *sym; | |
4807 | asection *input_sec; | |
4808 | { | |
4809 | /* If we see a common symbol, which implies a relocatable link, then | |
4810 | if a symbol was small common in an input file, mark it as small | |
4811 | common in the output file. */ | |
4812 | if (sym->st_shndx == SHN_COMMON | |
4813 | && strcmp (input_sec->name, ".scommon") == 0) | |
4814 | sym->st_shndx = SHN_MIPS_SCOMMON; | |
4815 | ||
4816 | if (sym->st_other == STO_MIPS16 | |
4817 | && (sym->st_value & 1) != 0) | |
4818 | --sym->st_value; | |
4819 | ||
b34976b6 | 4820 | return TRUE; |
b49e97c9 TS |
4821 | } |
4822 | \f | |
4823 | /* Functions for the dynamic linker. */ | |
4824 | ||
4825 | /* Create dynamic sections when linking against a dynamic object. */ | |
4826 | ||
b34976b6 | 4827 | bfd_boolean |
b49e97c9 TS |
4828 | _bfd_mips_elf_create_dynamic_sections (abfd, info) |
4829 | bfd *abfd; | |
4830 | struct bfd_link_info *info; | |
4831 | { | |
4832 | struct elf_link_hash_entry *h; | |
14a793b2 | 4833 | struct bfd_link_hash_entry *bh; |
b49e97c9 TS |
4834 | flagword flags; |
4835 | register asection *s; | |
4836 | const char * const *namep; | |
4837 | ||
4838 | flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | |
4839 | | SEC_LINKER_CREATED | SEC_READONLY); | |
4840 | ||
4841 | /* Mips ABI requests the .dynamic section to be read only. */ | |
4842 | s = bfd_get_section_by_name (abfd, ".dynamic"); | |
4843 | if (s != NULL) | |
4844 | { | |
4845 | if (! bfd_set_section_flags (abfd, s, flags)) | |
b34976b6 | 4846 | return FALSE; |
b49e97c9 TS |
4847 | } |
4848 | ||
4849 | /* We need to create .got section. */ | |
f4416af6 AO |
4850 | if (! mips_elf_create_got_section (abfd, info, FALSE)) |
4851 | return FALSE; | |
4852 | ||
4853 | if (! mips_elf_rel_dyn_section (elf_hash_table (info)->dynobj, TRUE)) | |
b34976b6 | 4854 | return FALSE; |
b49e97c9 | 4855 | |
b49e97c9 TS |
4856 | /* Create .stub section. */ |
4857 | if (bfd_get_section_by_name (abfd, | |
4858 | MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL) | |
4859 | { | |
4860 | s = bfd_make_section (abfd, MIPS_ELF_STUB_SECTION_NAME (abfd)); | |
4861 | if (s == NULL | |
4862 | || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE) | |
4863 | || ! bfd_set_section_alignment (abfd, s, | |
4864 | MIPS_ELF_LOG_FILE_ALIGN (abfd))) | |
b34976b6 | 4865 | return FALSE; |
b49e97c9 TS |
4866 | } |
4867 | ||
4868 | if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none) | |
4869 | && !info->shared | |
4870 | && bfd_get_section_by_name (abfd, ".rld_map") == NULL) | |
4871 | { | |
4872 | s = bfd_make_section (abfd, ".rld_map"); | |
4873 | if (s == NULL | |
4874 | || ! bfd_set_section_flags (abfd, s, flags &~ (flagword) SEC_READONLY) | |
4875 | || ! bfd_set_section_alignment (abfd, s, | |
4876 | MIPS_ELF_LOG_FILE_ALIGN (abfd))) | |
b34976b6 | 4877 | return FALSE; |
b49e97c9 TS |
4878 | } |
4879 | ||
4880 | /* On IRIX5, we adjust add some additional symbols and change the | |
4881 | alignments of several sections. There is no ABI documentation | |
4882 | indicating that this is necessary on IRIX6, nor any evidence that | |
4883 | the linker takes such action. */ | |
4884 | if (IRIX_COMPAT (abfd) == ict_irix5) | |
4885 | { | |
4886 | for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++) | |
4887 | { | |
14a793b2 | 4888 | bh = NULL; |
b49e97c9 TS |
4889 | if (! (_bfd_generic_link_add_one_symbol |
4890 | (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, | |
b34976b6 | 4891 | (bfd_vma) 0, (const char *) NULL, FALSE, |
14a793b2 | 4892 | get_elf_backend_data (abfd)->collect, &bh))) |
b34976b6 | 4893 | return FALSE; |
14a793b2 AM |
4894 | |
4895 | h = (struct elf_link_hash_entry *) bh; | |
b49e97c9 TS |
4896 | h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF; |
4897 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; | |
4898 | h->type = STT_SECTION; | |
4899 | ||
4900 | if (! bfd_elf32_link_record_dynamic_symbol (info, h)) | |
b34976b6 | 4901 | return FALSE; |
b49e97c9 TS |
4902 | } |
4903 | ||
4904 | /* We need to create a .compact_rel section. */ | |
4905 | if (SGI_COMPAT (abfd)) | |
4906 | { | |
4907 | if (!mips_elf_create_compact_rel_section (abfd, info)) | |
b34976b6 | 4908 | return FALSE; |
b49e97c9 TS |
4909 | } |
4910 | ||
44c410de | 4911 | /* Change alignments of some sections. */ |
b49e97c9 TS |
4912 | s = bfd_get_section_by_name (abfd, ".hash"); |
4913 | if (s != NULL) | |
d80dcc6a | 4914 | bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); |
b49e97c9 TS |
4915 | s = bfd_get_section_by_name (abfd, ".dynsym"); |
4916 | if (s != NULL) | |
d80dcc6a | 4917 | bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); |
b49e97c9 TS |
4918 | s = bfd_get_section_by_name (abfd, ".dynstr"); |
4919 | if (s != NULL) | |
d80dcc6a | 4920 | bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); |
b49e97c9 TS |
4921 | s = bfd_get_section_by_name (abfd, ".reginfo"); |
4922 | if (s != NULL) | |
d80dcc6a | 4923 | bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); |
b49e97c9 TS |
4924 | s = bfd_get_section_by_name (abfd, ".dynamic"); |
4925 | if (s != NULL) | |
d80dcc6a | 4926 | bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); |
b49e97c9 TS |
4927 | } |
4928 | ||
4929 | if (!info->shared) | |
4930 | { | |
14a793b2 AM |
4931 | const char *name; |
4932 | ||
4933 | name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING"; | |
4934 | bh = NULL; | |
4935 | if (!(_bfd_generic_link_add_one_symbol | |
4936 | (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, | |
b34976b6 | 4937 | (bfd_vma) 0, (const char *) NULL, FALSE, |
14a793b2 | 4938 | get_elf_backend_data (abfd)->collect, &bh))) |
b34976b6 | 4939 | return FALSE; |
14a793b2 AM |
4940 | |
4941 | h = (struct elf_link_hash_entry *) bh; | |
b49e97c9 TS |
4942 | h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF; |
4943 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; | |
4944 | h->type = STT_SECTION; | |
4945 | ||
4946 | if (! bfd_elf32_link_record_dynamic_symbol (info, h)) | |
b34976b6 | 4947 | return FALSE; |
b49e97c9 TS |
4948 | |
4949 | if (! mips_elf_hash_table (info)->use_rld_obj_head) | |
4950 | { | |
4951 | /* __rld_map is a four byte word located in the .data section | |
4952 | and is filled in by the rtld to contain a pointer to | |
4953 | the _r_debug structure. Its symbol value will be set in | |
4954 | _bfd_mips_elf_finish_dynamic_symbol. */ | |
4955 | s = bfd_get_section_by_name (abfd, ".rld_map"); | |
4956 | BFD_ASSERT (s != NULL); | |
4957 | ||
14a793b2 AM |
4958 | name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP"; |
4959 | bh = NULL; | |
4960 | if (!(_bfd_generic_link_add_one_symbol | |
4961 | (info, abfd, name, BSF_GLOBAL, s, | |
b34976b6 | 4962 | (bfd_vma) 0, (const char *) NULL, FALSE, |
14a793b2 | 4963 | get_elf_backend_data (abfd)->collect, &bh))) |
b34976b6 | 4964 | return FALSE; |
14a793b2 AM |
4965 | |
4966 | h = (struct elf_link_hash_entry *) bh; | |
b49e97c9 TS |
4967 | h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF; |
4968 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; | |
4969 | h->type = STT_OBJECT; | |
4970 | ||
4971 | if (! bfd_elf32_link_record_dynamic_symbol (info, h)) | |
b34976b6 | 4972 | return FALSE; |
b49e97c9 TS |
4973 | } |
4974 | } | |
4975 | ||
b34976b6 | 4976 | return TRUE; |
b49e97c9 TS |
4977 | } |
4978 | \f | |
4979 | /* Look through the relocs for a section during the first phase, and | |
4980 | allocate space in the global offset table. */ | |
4981 | ||
b34976b6 | 4982 | bfd_boolean |
b49e97c9 TS |
4983 | _bfd_mips_elf_check_relocs (abfd, info, sec, relocs) |
4984 | bfd *abfd; | |
4985 | struct bfd_link_info *info; | |
4986 | asection *sec; | |
4987 | const Elf_Internal_Rela *relocs; | |
4988 | { | |
4989 | const char *name; | |
4990 | bfd *dynobj; | |
4991 | Elf_Internal_Shdr *symtab_hdr; | |
4992 | struct elf_link_hash_entry **sym_hashes; | |
4993 | struct mips_got_info *g; | |
4994 | size_t extsymoff; | |
4995 | const Elf_Internal_Rela *rel; | |
4996 | const Elf_Internal_Rela *rel_end; | |
4997 | asection *sgot; | |
4998 | asection *sreloc; | |
9c5bfbb7 | 4999 | const struct elf_backend_data *bed; |
b49e97c9 | 5000 | |
1049f94e | 5001 | if (info->relocatable) |
b34976b6 | 5002 | return TRUE; |
b49e97c9 TS |
5003 | |
5004 | dynobj = elf_hash_table (info)->dynobj; | |
5005 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
5006 | sym_hashes = elf_sym_hashes (abfd); | |
5007 | extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info; | |
5008 | ||
5009 | /* Check for the mips16 stub sections. */ | |
5010 | ||
5011 | name = bfd_get_section_name (abfd, sec); | |
5012 | if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0) | |
5013 | { | |
5014 | unsigned long r_symndx; | |
5015 | ||
5016 | /* Look at the relocation information to figure out which symbol | |
5017 | this is for. */ | |
5018 | ||
5019 | r_symndx = ELF_R_SYM (abfd, relocs->r_info); | |
5020 | ||
5021 | if (r_symndx < extsymoff | |
5022 | || sym_hashes[r_symndx - extsymoff] == NULL) | |
5023 | { | |
5024 | asection *o; | |
5025 | ||
5026 | /* This stub is for a local symbol. This stub will only be | |
5027 | needed if there is some relocation in this BFD, other | |
5028 | than a 16 bit function call, which refers to this symbol. */ | |
5029 | for (o = abfd->sections; o != NULL; o = o->next) | |
5030 | { | |
5031 | Elf_Internal_Rela *sec_relocs; | |
5032 | const Elf_Internal_Rela *r, *rend; | |
5033 | ||
5034 | /* We can ignore stub sections when looking for relocs. */ | |
5035 | if ((o->flags & SEC_RELOC) == 0 | |
5036 | || o->reloc_count == 0 | |
5037 | || strncmp (bfd_get_section_name (abfd, o), FN_STUB, | |
5038 | sizeof FN_STUB - 1) == 0 | |
5039 | || strncmp (bfd_get_section_name (abfd, o), CALL_STUB, | |
5040 | sizeof CALL_STUB - 1) == 0 | |
5041 | || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB, | |
5042 | sizeof CALL_FP_STUB - 1) == 0) | |
5043 | continue; | |
5044 | ||
45d6a902 AM |
5045 | sec_relocs |
5046 | = _bfd_elf_link_read_relocs (abfd, o, (PTR) NULL, | |
5047 | (Elf_Internal_Rela *) NULL, | |
5048 | info->keep_memory); | |
b49e97c9 | 5049 | if (sec_relocs == NULL) |
b34976b6 | 5050 | return FALSE; |
b49e97c9 TS |
5051 | |
5052 | rend = sec_relocs + o->reloc_count; | |
5053 | for (r = sec_relocs; r < rend; r++) | |
5054 | if (ELF_R_SYM (abfd, r->r_info) == r_symndx | |
5055 | && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26) | |
5056 | break; | |
5057 | ||
6cdc0ccc | 5058 | if (elf_section_data (o)->relocs != sec_relocs) |
b49e97c9 TS |
5059 | free (sec_relocs); |
5060 | ||
5061 | if (r < rend) | |
5062 | break; | |
5063 | } | |
5064 | ||
5065 | if (o == NULL) | |
5066 | { | |
5067 | /* There is no non-call reloc for this stub, so we do | |
5068 | not need it. Since this function is called before | |
5069 | the linker maps input sections to output sections, we | |
5070 | can easily discard it by setting the SEC_EXCLUDE | |
5071 | flag. */ | |
5072 | sec->flags |= SEC_EXCLUDE; | |
b34976b6 | 5073 | return TRUE; |
b49e97c9 TS |
5074 | } |
5075 | ||
5076 | /* Record this stub in an array of local symbol stubs for | |
5077 | this BFD. */ | |
5078 | if (elf_tdata (abfd)->local_stubs == NULL) | |
5079 | { | |
5080 | unsigned long symcount; | |
5081 | asection **n; | |
5082 | bfd_size_type amt; | |
5083 | ||
5084 | if (elf_bad_symtab (abfd)) | |
5085 | symcount = NUM_SHDR_ENTRIES (symtab_hdr); | |
5086 | else | |
5087 | symcount = symtab_hdr->sh_info; | |
5088 | amt = symcount * sizeof (asection *); | |
5089 | n = (asection **) bfd_zalloc (abfd, amt); | |
5090 | if (n == NULL) | |
b34976b6 | 5091 | return FALSE; |
b49e97c9 TS |
5092 | elf_tdata (abfd)->local_stubs = n; |
5093 | } | |
5094 | ||
5095 | elf_tdata (abfd)->local_stubs[r_symndx] = sec; | |
5096 | ||
5097 | /* We don't need to set mips16_stubs_seen in this case. | |
5098 | That flag is used to see whether we need to look through | |
5099 | the global symbol table for stubs. We don't need to set | |
5100 | it here, because we just have a local stub. */ | |
5101 | } | |
5102 | else | |
5103 | { | |
5104 | struct mips_elf_link_hash_entry *h; | |
5105 | ||
5106 | h = ((struct mips_elf_link_hash_entry *) | |
5107 | sym_hashes[r_symndx - extsymoff]); | |
5108 | ||
5109 | /* H is the symbol this stub is for. */ | |
5110 | ||
5111 | h->fn_stub = sec; | |
b34976b6 | 5112 | mips_elf_hash_table (info)->mips16_stubs_seen = TRUE; |
b49e97c9 TS |
5113 | } |
5114 | } | |
5115 | else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0 | |
5116 | || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0) | |
5117 | { | |
5118 | unsigned long r_symndx; | |
5119 | struct mips_elf_link_hash_entry *h; | |
5120 | asection **loc; | |
5121 | ||
5122 | /* Look at the relocation information to figure out which symbol | |
5123 | this is for. */ | |
5124 | ||
5125 | r_symndx = ELF_R_SYM (abfd, relocs->r_info); | |
5126 | ||
5127 | if (r_symndx < extsymoff | |
5128 | || sym_hashes[r_symndx - extsymoff] == NULL) | |
5129 | { | |
5130 | /* This stub was actually built for a static symbol defined | |
5131 | in the same file. We assume that all static symbols in | |
5132 | mips16 code are themselves mips16, so we can simply | |
5133 | discard this stub. Since this function is called before | |
5134 | the linker maps input sections to output sections, we can | |
5135 | easily discard it by setting the SEC_EXCLUDE flag. */ | |
5136 | sec->flags |= SEC_EXCLUDE; | |
b34976b6 | 5137 | return TRUE; |
b49e97c9 TS |
5138 | } |
5139 | ||
5140 | h = ((struct mips_elf_link_hash_entry *) | |
5141 | sym_hashes[r_symndx - extsymoff]); | |
5142 | ||
5143 | /* H is the symbol this stub is for. */ | |
5144 | ||
5145 | if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0) | |
5146 | loc = &h->call_fp_stub; | |
5147 | else | |
5148 | loc = &h->call_stub; | |
5149 | ||
5150 | /* If we already have an appropriate stub for this function, we | |
5151 | don't need another one, so we can discard this one. Since | |
5152 | this function is called before the linker maps input sections | |
5153 | to output sections, we can easily discard it by setting the | |
5154 | SEC_EXCLUDE flag. We can also discard this section if we | |
5155 | happen to already know that this is a mips16 function; it is | |
5156 | not necessary to check this here, as it is checked later, but | |
5157 | it is slightly faster to check now. */ | |
5158 | if (*loc != NULL || h->root.other == STO_MIPS16) | |
5159 | { | |
5160 | sec->flags |= SEC_EXCLUDE; | |
b34976b6 | 5161 | return TRUE; |
b49e97c9 TS |
5162 | } |
5163 | ||
5164 | *loc = sec; | |
b34976b6 | 5165 | mips_elf_hash_table (info)->mips16_stubs_seen = TRUE; |
b49e97c9 TS |
5166 | } |
5167 | ||
5168 | if (dynobj == NULL) | |
5169 | { | |
5170 | sgot = NULL; | |
5171 | g = NULL; | |
5172 | } | |
5173 | else | |
5174 | { | |
f4416af6 | 5175 | sgot = mips_elf_got_section (dynobj, FALSE); |
b49e97c9 TS |
5176 | if (sgot == NULL) |
5177 | g = NULL; | |
5178 | else | |
5179 | { | |
f0abc2a1 AM |
5180 | BFD_ASSERT (mips_elf_section_data (sgot) != NULL); |
5181 | g = mips_elf_section_data (sgot)->u.got_info; | |
b49e97c9 TS |
5182 | BFD_ASSERT (g != NULL); |
5183 | } | |
5184 | } | |
5185 | ||
5186 | sreloc = NULL; | |
5187 | bed = get_elf_backend_data (abfd); | |
5188 | rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel; | |
5189 | for (rel = relocs; rel < rel_end; ++rel) | |
5190 | { | |
5191 | unsigned long r_symndx; | |
5192 | unsigned int r_type; | |
5193 | struct elf_link_hash_entry *h; | |
5194 | ||
5195 | r_symndx = ELF_R_SYM (abfd, rel->r_info); | |
5196 | r_type = ELF_R_TYPE (abfd, rel->r_info); | |
5197 | ||
5198 | if (r_symndx < extsymoff) | |
5199 | h = NULL; | |
5200 | else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr)) | |
5201 | { | |
5202 | (*_bfd_error_handler) | |
5203 | (_("%s: Malformed reloc detected for section %s"), | |
5204 | bfd_archive_filename (abfd), name); | |
5205 | bfd_set_error (bfd_error_bad_value); | |
b34976b6 | 5206 | return FALSE; |
b49e97c9 TS |
5207 | } |
5208 | else | |
5209 | { | |
5210 | h = sym_hashes[r_symndx - extsymoff]; | |
5211 | ||
5212 | /* This may be an indirect symbol created because of a version. */ | |
5213 | if (h != NULL) | |
5214 | { | |
5215 | while (h->root.type == bfd_link_hash_indirect) | |
5216 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
5217 | } | |
5218 | } | |
5219 | ||
5220 | /* Some relocs require a global offset table. */ | |
5221 | if (dynobj == NULL || sgot == NULL) | |
5222 | { | |
5223 | switch (r_type) | |
5224 | { | |
5225 | case R_MIPS_GOT16: | |
5226 | case R_MIPS_CALL16: | |
5227 | case R_MIPS_CALL_HI16: | |
5228 | case R_MIPS_CALL_LO16: | |
5229 | case R_MIPS_GOT_HI16: | |
5230 | case R_MIPS_GOT_LO16: | |
5231 | case R_MIPS_GOT_PAGE: | |
5232 | case R_MIPS_GOT_OFST: | |
5233 | case R_MIPS_GOT_DISP: | |
5234 | if (dynobj == NULL) | |
5235 | elf_hash_table (info)->dynobj = dynobj = abfd; | |
f4416af6 | 5236 | if (! mips_elf_create_got_section (dynobj, info, FALSE)) |
b34976b6 | 5237 | return FALSE; |
b49e97c9 TS |
5238 | g = mips_elf_got_info (dynobj, &sgot); |
5239 | break; | |
5240 | ||
5241 | case R_MIPS_32: | |
5242 | case R_MIPS_REL32: | |
5243 | case R_MIPS_64: | |
5244 | if (dynobj == NULL | |
5245 | && (info->shared || h != NULL) | |
5246 | && (sec->flags & SEC_ALLOC) != 0) | |
5247 | elf_hash_table (info)->dynobj = dynobj = abfd; | |
5248 | break; | |
5249 | ||
5250 | default: | |
5251 | break; | |
5252 | } | |
5253 | } | |
5254 | ||
5255 | if (!h && (r_type == R_MIPS_CALL_LO16 | |
5256 | || r_type == R_MIPS_GOT_LO16 | |
5257 | || r_type == R_MIPS_GOT_DISP)) | |
5258 | { | |
5259 | /* We may need a local GOT entry for this relocation. We | |
5260 | don't count R_MIPS_GOT_PAGE because we can estimate the | |
5261 | maximum number of pages needed by looking at the size of | |
5262 | the segment. Similar comments apply to R_MIPS_GOT16 and | |
5263 | R_MIPS_CALL16. We don't count R_MIPS_GOT_HI16, or | |
5264 | R_MIPS_CALL_HI16 because these are always followed by an | |
b15e6682 | 5265 | R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */ |
f4416af6 AO |
5266 | if (! mips_elf_record_local_got_symbol (abfd, r_symndx, |
5267 | rel->r_addend, g)) | |
5268 | return FALSE; | |
b49e97c9 TS |
5269 | } |
5270 | ||
5271 | switch (r_type) | |
5272 | { | |
5273 | case R_MIPS_CALL16: | |
5274 | if (h == NULL) | |
5275 | { | |
5276 | (*_bfd_error_handler) | |
5277 | (_("%s: CALL16 reloc at 0x%lx not against global symbol"), | |
5278 | bfd_archive_filename (abfd), (unsigned long) rel->r_offset); | |
5279 | bfd_set_error (bfd_error_bad_value); | |
b34976b6 | 5280 | return FALSE; |
b49e97c9 TS |
5281 | } |
5282 | /* Fall through. */ | |
5283 | ||
5284 | case R_MIPS_CALL_HI16: | |
5285 | case R_MIPS_CALL_LO16: | |
5286 | if (h != NULL) | |
5287 | { | |
5288 | /* This symbol requires a global offset table entry. */ | |
f4416af6 | 5289 | if (! mips_elf_record_global_got_symbol (h, abfd, info, g)) |
b34976b6 | 5290 | return FALSE; |
b49e97c9 TS |
5291 | |
5292 | /* We need a stub, not a plt entry for the undefined | |
5293 | function. But we record it as if it needs plt. See | |
5294 | elf_adjust_dynamic_symbol in elflink.h. */ | |
5295 | h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT; | |
5296 | h->type = STT_FUNC; | |
5297 | } | |
5298 | break; | |
5299 | ||
0fdc1bf1 AO |
5300 | case R_MIPS_GOT_PAGE: |
5301 | /* If this is a global, overridable symbol, GOT_PAGE will | |
5302 | decay to GOT_DISP, so we'll need a GOT entry for it. */ | |
5303 | if (h == NULL) | |
5304 | break; | |
5305 | else | |
5306 | { | |
5307 | struct mips_elf_link_hash_entry *hmips = | |
5308 | (struct mips_elf_link_hash_entry *) h; | |
143d77c5 | 5309 | |
0fdc1bf1 AO |
5310 | while (hmips->root.root.type == bfd_link_hash_indirect |
5311 | || hmips->root.root.type == bfd_link_hash_warning) | |
5312 | hmips = (struct mips_elf_link_hash_entry *) | |
5313 | hmips->root.root.u.i.link; | |
143d77c5 | 5314 | |
0fdc1bf1 AO |
5315 | if ((hmips->root.root.type == bfd_link_hash_defined |
5316 | || hmips->root.root.type == bfd_link_hash_defweak) | |
5317 | && hmips->root.root.u.def.section | |
5318 | && ! (info->shared && ! info->symbolic | |
5319 | && ! (hmips->root.elf_link_hash_flags | |
5320 | & ELF_LINK_FORCED_LOCAL)) | |
5321 | /* If we've encountered any other relocation | |
5322 | referencing the symbol, we'll have marked it as | |
5323 | dynamic, and, even though we might be able to get | |
5324 | rid of the GOT entry should we know for sure all | |
5325 | previous relocations were GOT_PAGE ones, at this | |
5326 | point we can't tell, so just keep using the | |
5327 | symbol as dynamic. This is very important in the | |
5328 | multi-got case, since we don't decide whether to | |
5329 | decay GOT_PAGE to GOT_DISP on a per-GOT basis: if | |
5330 | the symbol is dynamic, we'll need a GOT entry for | |
5331 | every GOT in which the symbol is referenced with | |
5332 | a GOT_PAGE relocation. */ | |
5333 | && hmips->root.dynindx == -1) | |
5334 | break; | |
5335 | } | |
5336 | /* Fall through. */ | |
5337 | ||
b49e97c9 TS |
5338 | case R_MIPS_GOT16: |
5339 | case R_MIPS_GOT_HI16: | |
5340 | case R_MIPS_GOT_LO16: | |
5341 | case R_MIPS_GOT_DISP: | |
5342 | /* This symbol requires a global offset table entry. */ | |
f4416af6 | 5343 | if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g)) |
b34976b6 | 5344 | return FALSE; |
b49e97c9 TS |
5345 | break; |
5346 | ||
5347 | case R_MIPS_32: | |
5348 | case R_MIPS_REL32: | |
5349 | case R_MIPS_64: | |
5350 | if ((info->shared || h != NULL) | |
5351 | && (sec->flags & SEC_ALLOC) != 0) | |
5352 | { | |
5353 | if (sreloc == NULL) | |
5354 | { | |
f4416af6 | 5355 | sreloc = mips_elf_rel_dyn_section (dynobj, TRUE); |
b49e97c9 | 5356 | if (sreloc == NULL) |
f4416af6 | 5357 | return FALSE; |
b49e97c9 TS |
5358 | } |
5359 | #define MIPS_READONLY_SECTION (SEC_ALLOC | SEC_LOAD | SEC_READONLY) | |
5360 | if (info->shared) | |
5361 | { | |
5362 | /* When creating a shared object, we must copy these | |
5363 | reloc types into the output file as R_MIPS_REL32 | |
5364 | relocs. We make room for this reloc in the | |
5365 | .rel.dyn reloc section. */ | |
5366 | mips_elf_allocate_dynamic_relocations (dynobj, 1); | |
5367 | if ((sec->flags & MIPS_READONLY_SECTION) | |
5368 | == MIPS_READONLY_SECTION) | |
5369 | /* We tell the dynamic linker that there are | |
5370 | relocations against the text segment. */ | |
5371 | info->flags |= DF_TEXTREL; | |
5372 | } | |
5373 | else | |
5374 | { | |
5375 | struct mips_elf_link_hash_entry *hmips; | |
5376 | ||
5377 | /* We only need to copy this reloc if the symbol is | |
5378 | defined in a dynamic object. */ | |
5379 | hmips = (struct mips_elf_link_hash_entry *) h; | |
5380 | ++hmips->possibly_dynamic_relocs; | |
5381 | if ((sec->flags & MIPS_READONLY_SECTION) | |
5382 | == MIPS_READONLY_SECTION) | |
5383 | /* We need it to tell the dynamic linker if there | |
5384 | are relocations against the text segment. */ | |
b34976b6 | 5385 | hmips->readonly_reloc = TRUE; |
b49e97c9 TS |
5386 | } |
5387 | ||
5388 | /* Even though we don't directly need a GOT entry for | |
5389 | this symbol, a symbol must have a dynamic symbol | |
5390 | table index greater that DT_MIPS_GOTSYM if there are | |
5391 | dynamic relocations against it. */ | |
f4416af6 AO |
5392 | if (h != NULL) |
5393 | { | |
5394 | if (dynobj == NULL) | |
5395 | elf_hash_table (info)->dynobj = dynobj = abfd; | |
5396 | if (! mips_elf_create_got_section (dynobj, info, TRUE)) | |
5397 | return FALSE; | |
5398 | g = mips_elf_got_info (dynobj, &sgot); | |
5399 | if (! mips_elf_record_global_got_symbol (h, abfd, info, g)) | |
5400 | return FALSE; | |
5401 | } | |
b49e97c9 TS |
5402 | } |
5403 | ||
5404 | if (SGI_COMPAT (abfd)) | |
5405 | mips_elf_hash_table (info)->compact_rel_size += | |
5406 | sizeof (Elf32_External_crinfo); | |
5407 | break; | |
5408 | ||
5409 | case R_MIPS_26: | |
5410 | case R_MIPS_GPREL16: | |
5411 | case R_MIPS_LITERAL: | |
5412 | case R_MIPS_GPREL32: | |
5413 | if (SGI_COMPAT (abfd)) | |
5414 | mips_elf_hash_table (info)->compact_rel_size += | |
5415 | sizeof (Elf32_External_crinfo); | |
5416 | break; | |
5417 | ||
5418 | /* This relocation describes the C++ object vtable hierarchy. | |
5419 | Reconstruct it for later use during GC. */ | |
5420 | case R_MIPS_GNU_VTINHERIT: | |
5421 | if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) | |
b34976b6 | 5422 | return FALSE; |
b49e97c9 TS |
5423 | break; |
5424 | ||
5425 | /* This relocation describes which C++ vtable entries are actually | |
5426 | used. Record for later use during GC. */ | |
5427 | case R_MIPS_GNU_VTENTRY: | |
5428 | if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset)) | |
b34976b6 | 5429 | return FALSE; |
b49e97c9 TS |
5430 | break; |
5431 | ||
5432 | default: | |
5433 | break; | |
5434 | } | |
5435 | ||
5436 | /* We must not create a stub for a symbol that has relocations | |
5437 | related to taking the function's address. */ | |
5438 | switch (r_type) | |
5439 | { | |
5440 | default: | |
5441 | if (h != NULL) | |
5442 | { | |
5443 | struct mips_elf_link_hash_entry *mh; | |
5444 | ||
5445 | mh = (struct mips_elf_link_hash_entry *) h; | |
b34976b6 | 5446 | mh->no_fn_stub = TRUE; |
b49e97c9 TS |
5447 | } |
5448 | break; | |
5449 | case R_MIPS_CALL16: | |
5450 | case R_MIPS_CALL_HI16: | |
5451 | case R_MIPS_CALL_LO16: | |
2b86c02e | 5452 | case R_MIPS_JALR: |
b49e97c9 TS |
5453 | break; |
5454 | } | |
5455 | ||
5456 | /* If this reloc is not a 16 bit call, and it has a global | |
5457 | symbol, then we will need the fn_stub if there is one. | |
5458 | References from a stub section do not count. */ | |
5459 | if (h != NULL | |
5460 | && r_type != R_MIPS16_26 | |
5461 | && strncmp (bfd_get_section_name (abfd, sec), FN_STUB, | |
5462 | sizeof FN_STUB - 1) != 0 | |
5463 | && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB, | |
5464 | sizeof CALL_STUB - 1) != 0 | |
5465 | && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB, | |
5466 | sizeof CALL_FP_STUB - 1) != 0) | |
5467 | { | |
5468 | struct mips_elf_link_hash_entry *mh; | |
5469 | ||
5470 | mh = (struct mips_elf_link_hash_entry *) h; | |
b34976b6 | 5471 | mh->need_fn_stub = TRUE; |
b49e97c9 TS |
5472 | } |
5473 | } | |
5474 | ||
b34976b6 | 5475 | return TRUE; |
b49e97c9 TS |
5476 | } |
5477 | \f | |
d0647110 AO |
5478 | bfd_boolean |
5479 | _bfd_mips_relax_section (abfd, sec, link_info, again) | |
5480 | bfd *abfd; | |
5481 | asection *sec; | |
5482 | struct bfd_link_info *link_info; | |
5483 | bfd_boolean *again; | |
5484 | { | |
5485 | Elf_Internal_Rela *internal_relocs; | |
5486 | Elf_Internal_Rela *irel, *irelend; | |
5487 | Elf_Internal_Shdr *symtab_hdr; | |
5488 | bfd_byte *contents = NULL; | |
5489 | bfd_byte *free_contents = NULL; | |
5490 | size_t extsymoff; | |
5491 | bfd_boolean changed_contents = FALSE; | |
5492 | bfd_vma sec_start = sec->output_section->vma + sec->output_offset; | |
5493 | Elf_Internal_Sym *isymbuf = NULL; | |
5494 | ||
5495 | /* We are not currently changing any sizes, so only one pass. */ | |
5496 | *again = FALSE; | |
5497 | ||
1049f94e | 5498 | if (link_info->relocatable) |
d0647110 AO |
5499 | return TRUE; |
5500 | ||
45d6a902 AM |
5501 | internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, (PTR) NULL, |
5502 | (Elf_Internal_Rela *) NULL, | |
5503 | link_info->keep_memory); | |
d0647110 AO |
5504 | if (internal_relocs == NULL) |
5505 | return TRUE; | |
5506 | ||
5507 | irelend = internal_relocs + sec->reloc_count | |
5508 | * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel; | |
5509 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
5510 | extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info; | |
5511 | ||
5512 | for (irel = internal_relocs; irel < irelend; irel++) | |
5513 | { | |
5514 | bfd_vma symval; | |
5515 | bfd_signed_vma sym_offset; | |
5516 | unsigned int r_type; | |
5517 | unsigned long r_symndx; | |
5518 | asection *sym_sec; | |
5519 | unsigned long instruction; | |
5520 | ||
5521 | /* Turn jalr into bgezal, and jr into beq, if they're marked | |
5522 | with a JALR relocation, that indicate where they jump to. | |
5523 | This saves some pipeline bubbles. */ | |
5524 | r_type = ELF_R_TYPE (abfd, irel->r_info); | |
5525 | if (r_type != R_MIPS_JALR) | |
5526 | continue; | |
5527 | ||
5528 | r_symndx = ELF_R_SYM (abfd, irel->r_info); | |
5529 | /* Compute the address of the jump target. */ | |
5530 | if (r_symndx >= extsymoff) | |
5531 | { | |
5532 | struct mips_elf_link_hash_entry *h | |
5533 | = ((struct mips_elf_link_hash_entry *) | |
5534 | elf_sym_hashes (abfd) [r_symndx - extsymoff]); | |
5535 | ||
5536 | while (h->root.root.type == bfd_link_hash_indirect | |
5537 | || h->root.root.type == bfd_link_hash_warning) | |
5538 | h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; | |
143d77c5 | 5539 | |
d0647110 AO |
5540 | /* If a symbol is undefined, or if it may be overridden, |
5541 | skip it. */ | |
5542 | if (! ((h->root.root.type == bfd_link_hash_defined | |
5543 | || h->root.root.type == bfd_link_hash_defweak) | |
5544 | && h->root.root.u.def.section) | |
5545 | || (link_info->shared && ! link_info->symbolic | |
5546 | && ! (h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))) | |
5547 | continue; | |
5548 | ||
5549 | sym_sec = h->root.root.u.def.section; | |
5550 | if (sym_sec->output_section) | |
5551 | symval = (h->root.root.u.def.value | |
5552 | + sym_sec->output_section->vma | |
5553 | + sym_sec->output_offset); | |
5554 | else | |
5555 | symval = h->root.root.u.def.value; | |
5556 | } | |
5557 | else | |
5558 | { | |
5559 | Elf_Internal_Sym *isym; | |
5560 | ||
5561 | /* Read this BFD's symbols if we haven't done so already. */ | |
5562 | if (isymbuf == NULL && symtab_hdr->sh_info != 0) | |
5563 | { | |
5564 | isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; | |
5565 | if (isymbuf == NULL) | |
5566 | isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr, | |
5567 | symtab_hdr->sh_info, 0, | |
5568 | NULL, NULL, NULL); | |
5569 | if (isymbuf == NULL) | |
5570 | goto relax_return; | |
5571 | } | |
5572 | ||
5573 | isym = isymbuf + r_symndx; | |
5574 | if (isym->st_shndx == SHN_UNDEF) | |
5575 | continue; | |
5576 | else if (isym->st_shndx == SHN_ABS) | |
5577 | sym_sec = bfd_abs_section_ptr; | |
5578 | else if (isym->st_shndx == SHN_COMMON) | |
5579 | sym_sec = bfd_com_section_ptr; | |
5580 | else | |
5581 | sym_sec | |
5582 | = bfd_section_from_elf_index (abfd, isym->st_shndx); | |
5583 | symval = isym->st_value | |
5584 | + sym_sec->output_section->vma | |
5585 | + sym_sec->output_offset; | |
5586 | } | |
5587 | ||
5588 | /* Compute branch offset, from delay slot of the jump to the | |
5589 | branch target. */ | |
5590 | sym_offset = (symval + irel->r_addend) | |
5591 | - (sec_start + irel->r_offset + 4); | |
5592 | ||
5593 | /* Branch offset must be properly aligned. */ | |
5594 | if ((sym_offset & 3) != 0) | |
5595 | continue; | |
5596 | ||
5597 | sym_offset >>= 2; | |
5598 | ||
5599 | /* Check that it's in range. */ | |
5600 | if (sym_offset < -0x8000 || sym_offset >= 0x8000) | |
5601 | continue; | |
143d77c5 | 5602 | |
d0647110 AO |
5603 | /* Get the section contents if we haven't done so already. */ |
5604 | if (contents == NULL) | |
5605 | { | |
5606 | /* Get cached copy if it exists. */ | |
5607 | if (elf_section_data (sec)->this_hdr.contents != NULL) | |
5608 | contents = elf_section_data (sec)->this_hdr.contents; | |
5609 | else | |
5610 | { | |
5611 | contents = (bfd_byte *) bfd_malloc (sec->_raw_size); | |
5612 | if (contents == NULL) | |
5613 | goto relax_return; | |
5614 | ||
5615 | free_contents = contents; | |
5616 | if (! bfd_get_section_contents (abfd, sec, contents, | |
5617 | (file_ptr) 0, sec->_raw_size)) | |
5618 | goto relax_return; | |
5619 | } | |
5620 | } | |
5621 | ||
5622 | instruction = bfd_get_32 (abfd, contents + irel->r_offset); | |
5623 | ||
5624 | /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */ | |
5625 | if ((instruction & 0xfc1fffff) == 0x0000f809) | |
5626 | instruction = 0x04110000; | |
5627 | /* If it was jr <reg>, turn it into b <target>. */ | |
5628 | else if ((instruction & 0xfc1fffff) == 0x00000008) | |
5629 | instruction = 0x10000000; | |
5630 | else | |
5631 | continue; | |
5632 | ||
5633 | instruction |= (sym_offset & 0xffff); | |
5634 | bfd_put_32 (abfd, instruction, contents + irel->r_offset); | |
5635 | changed_contents = TRUE; | |
5636 | } | |
5637 | ||
5638 | if (contents != NULL | |
5639 | && elf_section_data (sec)->this_hdr.contents != contents) | |
5640 | { | |
5641 | if (!changed_contents && !link_info->keep_memory) | |
5642 | free (contents); | |
5643 | else | |
5644 | { | |
5645 | /* Cache the section contents for elf_link_input_bfd. */ | |
5646 | elf_section_data (sec)->this_hdr.contents = contents; | |
5647 | } | |
5648 | } | |
5649 | return TRUE; | |
5650 | ||
143d77c5 | 5651 | relax_return: |
d0647110 AO |
5652 | if (free_contents != NULL) |
5653 | free (free_contents); | |
5654 | return FALSE; | |
5655 | } | |
5656 | \f | |
b49e97c9 TS |
5657 | /* Adjust a symbol defined by a dynamic object and referenced by a |
5658 | regular object. The current definition is in some section of the | |
5659 | dynamic object, but we're not including those sections. We have to | |
5660 | change the definition to something the rest of the link can | |
5661 | understand. */ | |
5662 | ||
b34976b6 | 5663 | bfd_boolean |
b49e97c9 TS |
5664 | _bfd_mips_elf_adjust_dynamic_symbol (info, h) |
5665 | struct bfd_link_info *info; | |
5666 | struct elf_link_hash_entry *h; | |
5667 | { | |
5668 | bfd *dynobj; | |
5669 | struct mips_elf_link_hash_entry *hmips; | |
5670 | asection *s; | |
5671 | ||
5672 | dynobj = elf_hash_table (info)->dynobj; | |
5673 | ||
5674 | /* Make sure we know what is going on here. */ | |
5675 | BFD_ASSERT (dynobj != NULL | |
5676 | && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) | |
5677 | || h->weakdef != NULL | |
5678 | || ((h->elf_link_hash_flags | |
5679 | & ELF_LINK_HASH_DEF_DYNAMIC) != 0 | |
5680 | && (h->elf_link_hash_flags | |
5681 | & ELF_LINK_HASH_REF_REGULAR) != 0 | |
5682 | && (h->elf_link_hash_flags | |
5683 | & ELF_LINK_HASH_DEF_REGULAR) == 0))); | |
5684 | ||
5685 | /* If this symbol is defined in a dynamic object, we need to copy | |
5686 | any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output | |
5687 | file. */ | |
5688 | hmips = (struct mips_elf_link_hash_entry *) h; | |
1049f94e | 5689 | if (! info->relocatable |
b49e97c9 TS |
5690 | && hmips->possibly_dynamic_relocs != 0 |
5691 | && (h->root.type == bfd_link_hash_defweak | |
5692 | || (h->elf_link_hash_flags | |
5693 | & ELF_LINK_HASH_DEF_REGULAR) == 0)) | |
5694 | { | |
5695 | mips_elf_allocate_dynamic_relocations (dynobj, | |
5696 | hmips->possibly_dynamic_relocs); | |
5697 | if (hmips->readonly_reloc) | |
5698 | /* We tell the dynamic linker that there are relocations | |
5699 | against the text segment. */ | |
5700 | info->flags |= DF_TEXTREL; | |
5701 | } | |
5702 | ||
5703 | /* For a function, create a stub, if allowed. */ | |
5704 | if (! hmips->no_fn_stub | |
5705 | && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0) | |
5706 | { | |
5707 | if (! elf_hash_table (info)->dynamic_sections_created) | |
b34976b6 | 5708 | return TRUE; |
b49e97c9 TS |
5709 | |
5710 | /* If this symbol is not defined in a regular file, then set | |
5711 | the symbol to the stub location. This is required to make | |
5712 | function pointers compare as equal between the normal | |
5713 | executable and the shared library. */ | |
5714 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) | |
5715 | { | |
5716 | /* We need .stub section. */ | |
5717 | s = bfd_get_section_by_name (dynobj, | |
5718 | MIPS_ELF_STUB_SECTION_NAME (dynobj)); | |
5719 | BFD_ASSERT (s != NULL); | |
5720 | ||
5721 | h->root.u.def.section = s; | |
5722 | h->root.u.def.value = s->_raw_size; | |
5723 | ||
5724 | /* XXX Write this stub address somewhere. */ | |
5725 | h->plt.offset = s->_raw_size; | |
5726 | ||
5727 | /* Make room for this stub code. */ | |
5728 | s->_raw_size += MIPS_FUNCTION_STUB_SIZE; | |
5729 | ||
5730 | /* The last half word of the stub will be filled with the index | |
5731 | of this symbol in .dynsym section. */ | |
b34976b6 | 5732 | return TRUE; |
b49e97c9 TS |
5733 | } |
5734 | } | |
5735 | else if ((h->type == STT_FUNC) | |
5736 | && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0) | |
5737 | { | |
5738 | /* This will set the entry for this symbol in the GOT to 0, and | |
5739 | the dynamic linker will take care of this. */ | |
5740 | h->root.u.def.value = 0; | |
b34976b6 | 5741 | return TRUE; |
b49e97c9 TS |
5742 | } |
5743 | ||
5744 | /* If this is a weak symbol, and there is a real definition, the | |
5745 | processor independent code will have arranged for us to see the | |
5746 | real definition first, and we can just use the same value. */ | |
5747 | if (h->weakdef != NULL) | |
5748 | { | |
5749 | BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined | |
5750 | || h->weakdef->root.type == bfd_link_hash_defweak); | |
5751 | h->root.u.def.section = h->weakdef->root.u.def.section; | |
5752 | h->root.u.def.value = h->weakdef->root.u.def.value; | |
b34976b6 | 5753 | return TRUE; |
b49e97c9 TS |
5754 | } |
5755 | ||
5756 | /* This is a reference to a symbol defined by a dynamic object which | |
5757 | is not a function. */ | |
5758 | ||
b34976b6 | 5759 | return TRUE; |
b49e97c9 TS |
5760 | } |
5761 | \f | |
5762 | /* This function is called after all the input files have been read, | |
5763 | and the input sections have been assigned to output sections. We | |
5764 | check for any mips16 stub sections that we can discard. */ | |
5765 | ||
b34976b6 | 5766 | bfd_boolean |
b49e97c9 TS |
5767 | _bfd_mips_elf_always_size_sections (output_bfd, info) |
5768 | bfd *output_bfd; | |
5769 | struct bfd_link_info *info; | |
5770 | { | |
5771 | asection *ri; | |
5772 | ||
f4416af6 AO |
5773 | bfd *dynobj; |
5774 | asection *s; | |
5775 | struct mips_got_info *g; | |
5776 | int i; | |
5777 | bfd_size_type loadable_size = 0; | |
5778 | bfd_size_type local_gotno; | |
5779 | bfd *sub; | |
5780 | ||
b49e97c9 TS |
5781 | /* The .reginfo section has a fixed size. */ |
5782 | ri = bfd_get_section_by_name (output_bfd, ".reginfo"); | |
5783 | if (ri != NULL) | |
5784 | bfd_set_section_size (output_bfd, ri, | |
5785 | (bfd_size_type) sizeof (Elf32_External_RegInfo)); | |
5786 | ||
1049f94e | 5787 | if (! (info->relocatable |
f4416af6 AO |
5788 | || ! mips_elf_hash_table (info)->mips16_stubs_seen)) |
5789 | mips_elf_link_hash_traverse (mips_elf_hash_table (info), | |
5790 | mips_elf_check_mips16_stubs, | |
5791 | (PTR) NULL); | |
5792 | ||
5793 | dynobj = elf_hash_table (info)->dynobj; | |
5794 | if (dynobj == NULL) | |
5795 | /* Relocatable links don't have it. */ | |
5796 | return TRUE; | |
143d77c5 | 5797 | |
f4416af6 AO |
5798 | g = mips_elf_got_info (dynobj, &s); |
5799 | if (s == NULL) | |
b34976b6 | 5800 | return TRUE; |
b49e97c9 | 5801 | |
f4416af6 AO |
5802 | /* Calculate the total loadable size of the output. That |
5803 | will give us the maximum number of GOT_PAGE entries | |
5804 | required. */ | |
5805 | for (sub = info->input_bfds; sub; sub = sub->link_next) | |
5806 | { | |
5807 | asection *subsection; | |
5808 | ||
5809 | for (subsection = sub->sections; | |
5810 | subsection; | |
5811 | subsection = subsection->next) | |
5812 | { | |
5813 | if ((subsection->flags & SEC_ALLOC) == 0) | |
5814 | continue; | |
5815 | loadable_size += ((subsection->_raw_size + 0xf) | |
5816 | &~ (bfd_size_type) 0xf); | |
5817 | } | |
5818 | } | |
5819 | ||
5820 | /* There has to be a global GOT entry for every symbol with | |
5821 | a dynamic symbol table index of DT_MIPS_GOTSYM or | |
5822 | higher. Therefore, it make sense to put those symbols | |
5823 | that need GOT entries at the end of the symbol table. We | |
5824 | do that here. */ | |
5825 | if (! mips_elf_sort_hash_table (info, 1)) | |
5826 | return FALSE; | |
5827 | ||
5828 | if (g->global_gotsym != NULL) | |
5829 | i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx; | |
5830 | else | |
5831 | /* If there are no global symbols, or none requiring | |
5832 | relocations, then GLOBAL_GOTSYM will be NULL. */ | |
5833 | i = 0; | |
5834 | ||
5835 | /* In the worst case, we'll get one stub per dynamic symbol, plus | |
5836 | one to account for the dummy entry at the end required by IRIX | |
5837 | rld. */ | |
5838 | loadable_size += MIPS_FUNCTION_STUB_SIZE * (i + 1); | |
5839 | ||
5840 | /* Assume there are two loadable segments consisting of | |
5841 | contiguous sections. Is 5 enough? */ | |
5842 | local_gotno = (loadable_size >> 16) + 5; | |
5843 | ||
5844 | g->local_gotno += local_gotno; | |
5845 | s->_raw_size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd); | |
5846 | ||
5847 | g->global_gotno = i; | |
5848 | s->_raw_size += i * MIPS_ELF_GOT_SIZE (output_bfd); | |
5849 | ||
5850 | if (s->_raw_size > MIPS_ELF_GOT_MAX_SIZE (output_bfd) | |
5851 | && ! mips_elf_multi_got (output_bfd, info, g, s, local_gotno)) | |
5852 | return FALSE; | |
b49e97c9 | 5853 | |
b34976b6 | 5854 | return TRUE; |
b49e97c9 TS |
5855 | } |
5856 | ||
5857 | /* Set the sizes of the dynamic sections. */ | |
5858 | ||
b34976b6 | 5859 | bfd_boolean |
b49e97c9 TS |
5860 | _bfd_mips_elf_size_dynamic_sections (output_bfd, info) |
5861 | bfd *output_bfd; | |
5862 | struct bfd_link_info *info; | |
5863 | { | |
5864 | bfd *dynobj; | |
5865 | asection *s; | |
b34976b6 | 5866 | bfd_boolean reltext; |
b49e97c9 TS |
5867 | |
5868 | dynobj = elf_hash_table (info)->dynobj; | |
5869 | BFD_ASSERT (dynobj != NULL); | |
5870 | ||
5871 | if (elf_hash_table (info)->dynamic_sections_created) | |
5872 | { | |
5873 | /* Set the contents of the .interp section to the interpreter. */ | |
893c4fe2 | 5874 | if (info->executable) |
b49e97c9 TS |
5875 | { |
5876 | s = bfd_get_section_by_name (dynobj, ".interp"); | |
5877 | BFD_ASSERT (s != NULL); | |
5878 | s->_raw_size | |
5879 | = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1; | |
5880 | s->contents | |
5881 | = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd); | |
5882 | } | |
5883 | } | |
5884 | ||
5885 | /* The check_relocs and adjust_dynamic_symbol entry points have | |
5886 | determined the sizes of the various dynamic sections. Allocate | |
5887 | memory for them. */ | |
b34976b6 | 5888 | reltext = FALSE; |
b49e97c9 TS |
5889 | for (s = dynobj->sections; s != NULL; s = s->next) |
5890 | { | |
5891 | const char *name; | |
b34976b6 | 5892 | bfd_boolean strip; |
b49e97c9 TS |
5893 | |
5894 | /* It's OK to base decisions on the section name, because none | |
5895 | of the dynobj section names depend upon the input files. */ | |
5896 | name = bfd_get_section_name (dynobj, s); | |
5897 | ||
5898 | if ((s->flags & SEC_LINKER_CREATED) == 0) | |
5899 | continue; | |
5900 | ||
b34976b6 | 5901 | strip = FALSE; |
b49e97c9 TS |
5902 | |
5903 | if (strncmp (name, ".rel", 4) == 0) | |
5904 | { | |
5905 | if (s->_raw_size == 0) | |
5906 | { | |
5907 | /* We only strip the section if the output section name | |
5908 | has the same name. Otherwise, there might be several | |
5909 | input sections for this output section. FIXME: This | |
5910 | code is probably not needed these days anyhow, since | |
5911 | the linker now does not create empty output sections. */ | |
5912 | if (s->output_section != NULL | |
5913 | && strcmp (name, | |
5914 | bfd_get_section_name (s->output_section->owner, | |
5915 | s->output_section)) == 0) | |
b34976b6 | 5916 | strip = TRUE; |
b49e97c9 TS |
5917 | } |
5918 | else | |
5919 | { | |
5920 | const char *outname; | |
5921 | asection *target; | |
5922 | ||
5923 | /* If this relocation section applies to a read only | |
5924 | section, then we probably need a DT_TEXTREL entry. | |
5925 | If the relocation section is .rel.dyn, we always | |
5926 | assert a DT_TEXTREL entry rather than testing whether | |
5927 | there exists a relocation to a read only section or | |
5928 | not. */ | |
5929 | outname = bfd_get_section_name (output_bfd, | |
5930 | s->output_section); | |
5931 | target = bfd_get_section_by_name (output_bfd, outname + 4); | |
5932 | if ((target != NULL | |
5933 | && (target->flags & SEC_READONLY) != 0 | |
5934 | && (target->flags & SEC_ALLOC) != 0) | |
5935 | || strcmp (outname, ".rel.dyn") == 0) | |
b34976b6 | 5936 | reltext = TRUE; |
b49e97c9 TS |
5937 | |
5938 | /* We use the reloc_count field as a counter if we need | |
5939 | to copy relocs into the output file. */ | |
5940 | if (strcmp (name, ".rel.dyn") != 0) | |
5941 | s->reloc_count = 0; | |
f4416af6 AO |
5942 | |
5943 | /* If combreloc is enabled, elf_link_sort_relocs() will | |
5944 | sort relocations, but in a different way than we do, | |
5945 | and before we're done creating relocations. Also, it | |
5946 | will move them around between input sections' | |
5947 | relocation's contents, so our sorting would be | |
5948 | broken, so don't let it run. */ | |
5949 | info->combreloc = 0; | |
b49e97c9 TS |
5950 | } |
5951 | } | |
5952 | else if (strncmp (name, ".got", 4) == 0) | |
5953 | { | |
f4416af6 AO |
5954 | /* _bfd_mips_elf_always_size_sections() has already done |
5955 | most of the work, but some symbols may have been mapped | |
5956 | to versions that we must now resolve in the got_entries | |
5957 | hash tables. */ | |
5958 | struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL); | |
5959 | struct mips_got_info *g = gg; | |
5960 | struct mips_elf_set_global_got_offset_arg set_got_offset_arg; | |
5961 | unsigned int needed_relocs = 0; | |
143d77c5 | 5962 | |
f4416af6 | 5963 | if (gg->next) |
b49e97c9 | 5964 | { |
f4416af6 AO |
5965 | set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd); |
5966 | set_got_offset_arg.info = info; | |
b49e97c9 | 5967 | |
f4416af6 AO |
5968 | mips_elf_resolve_final_got_entries (gg); |
5969 | for (g = gg->next; g && g->next != gg; g = g->next) | |
b49e97c9 | 5970 | { |
f4416af6 AO |
5971 | unsigned int save_assign; |
5972 | ||
5973 | mips_elf_resolve_final_got_entries (g); | |
5974 | ||
5975 | /* Assign offsets to global GOT entries. */ | |
5976 | save_assign = g->assigned_gotno; | |
5977 | g->assigned_gotno = g->local_gotno; | |
5978 | set_got_offset_arg.g = g; | |
5979 | set_got_offset_arg.needed_relocs = 0; | |
5980 | htab_traverse (g->got_entries, | |
5981 | mips_elf_set_global_got_offset, | |
5982 | &set_got_offset_arg); | |
5983 | needed_relocs += set_got_offset_arg.needed_relocs; | |
5984 | BFD_ASSERT (g->assigned_gotno - g->local_gotno | |
5985 | <= g->global_gotno); | |
5986 | ||
5987 | g->assigned_gotno = save_assign; | |
5988 | if (info->shared) | |
5989 | { | |
5990 | needed_relocs += g->local_gotno - g->assigned_gotno; | |
5991 | BFD_ASSERT (g->assigned_gotno == g->next->local_gotno | |
5992 | + g->next->global_gotno | |
5993 | + MIPS_RESERVED_GOTNO); | |
5994 | } | |
b49e97c9 | 5995 | } |
b49e97c9 | 5996 | |
f4416af6 AO |
5997 | if (needed_relocs) |
5998 | mips_elf_allocate_dynamic_relocations (dynobj, needed_relocs); | |
5999 | } | |
b49e97c9 TS |
6000 | } |
6001 | else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0) | |
6002 | { | |
8dc1a139 | 6003 | /* IRIX rld assumes that the function stub isn't at the end |
b49e97c9 TS |
6004 | of .text section. So put a dummy. XXX */ |
6005 | s->_raw_size += MIPS_FUNCTION_STUB_SIZE; | |
6006 | } | |
6007 | else if (! info->shared | |
6008 | && ! mips_elf_hash_table (info)->use_rld_obj_head | |
6009 | && strncmp (name, ".rld_map", 8) == 0) | |
6010 | { | |
6011 | /* We add a room for __rld_map. It will be filled in by the | |
6012 | rtld to contain a pointer to the _r_debug structure. */ | |
6013 | s->_raw_size += 4; | |
6014 | } | |
6015 | else if (SGI_COMPAT (output_bfd) | |
6016 | && strncmp (name, ".compact_rel", 12) == 0) | |
6017 | s->_raw_size += mips_elf_hash_table (info)->compact_rel_size; | |
b49e97c9 TS |
6018 | else if (strncmp (name, ".init", 5) != 0) |
6019 | { | |
6020 | /* It's not one of our sections, so don't allocate space. */ | |
6021 | continue; | |
6022 | } | |
6023 | ||
6024 | if (strip) | |
6025 | { | |
6026 | _bfd_strip_section_from_output (info, s); | |
6027 | continue; | |
6028 | } | |
6029 | ||
6030 | /* Allocate memory for the section contents. */ | |
6031 | s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size); | |
6032 | if (s->contents == NULL && s->_raw_size != 0) | |
6033 | { | |
6034 | bfd_set_error (bfd_error_no_memory); | |
b34976b6 | 6035 | return FALSE; |
b49e97c9 TS |
6036 | } |
6037 | } | |
6038 | ||
6039 | if (elf_hash_table (info)->dynamic_sections_created) | |
6040 | { | |
6041 | /* Add some entries to the .dynamic section. We fill in the | |
6042 | values later, in _bfd_mips_elf_finish_dynamic_sections, but we | |
6043 | must add the entries now so that we get the correct size for | |
6044 | the .dynamic section. The DT_DEBUG entry is filled in by the | |
6045 | dynamic linker and used by the debugger. */ | |
6046 | if (! info->shared) | |
6047 | { | |
6048 | /* SGI object has the equivalence of DT_DEBUG in the | |
6049 | DT_MIPS_RLD_MAP entry. */ | |
6050 | if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0)) | |
b34976b6 | 6051 | return FALSE; |
b49e97c9 TS |
6052 | if (!SGI_COMPAT (output_bfd)) |
6053 | { | |
6054 | if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0)) | |
b34976b6 | 6055 | return FALSE; |
b49e97c9 TS |
6056 | } |
6057 | } | |
6058 | else | |
6059 | { | |
6060 | /* Shared libraries on traditional mips have DT_DEBUG. */ | |
6061 | if (!SGI_COMPAT (output_bfd)) | |
6062 | { | |
6063 | if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0)) | |
b34976b6 | 6064 | return FALSE; |
b49e97c9 TS |
6065 | } |
6066 | } | |
6067 | ||
6068 | if (reltext && SGI_COMPAT (output_bfd)) | |
6069 | info->flags |= DF_TEXTREL; | |
6070 | ||
6071 | if ((info->flags & DF_TEXTREL) != 0) | |
6072 | { | |
6073 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0)) | |
b34976b6 | 6074 | return FALSE; |
b49e97c9 TS |
6075 | } |
6076 | ||
6077 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0)) | |
b34976b6 | 6078 | return FALSE; |
b49e97c9 | 6079 | |
f4416af6 | 6080 | if (mips_elf_rel_dyn_section (dynobj, FALSE)) |
b49e97c9 TS |
6081 | { |
6082 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0)) | |
b34976b6 | 6083 | return FALSE; |
b49e97c9 TS |
6084 | |
6085 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0)) | |
b34976b6 | 6086 | return FALSE; |
b49e97c9 TS |
6087 | |
6088 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0)) | |
b34976b6 | 6089 | return FALSE; |
b49e97c9 TS |
6090 | } |
6091 | ||
b49e97c9 | 6092 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0)) |
b34976b6 | 6093 | return FALSE; |
b49e97c9 TS |
6094 | |
6095 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0)) | |
b34976b6 | 6096 | return FALSE; |
b49e97c9 TS |
6097 | |
6098 | #if 0 | |
6099 | /* Time stamps in executable files are a bad idea. */ | |
6100 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_TIME_STAMP, 0)) | |
b34976b6 | 6101 | return FALSE; |
b49e97c9 TS |
6102 | #endif |
6103 | ||
6104 | #if 0 /* FIXME */ | |
6105 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_ICHECKSUM, 0)) | |
b34976b6 | 6106 | return FALSE; |
b49e97c9 TS |
6107 | #endif |
6108 | ||
6109 | #if 0 /* FIXME */ | |
6110 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_IVERSION, 0)) | |
b34976b6 | 6111 | return FALSE; |
b49e97c9 TS |
6112 | #endif |
6113 | ||
6114 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0)) | |
b34976b6 | 6115 | return FALSE; |
b49e97c9 TS |
6116 | |
6117 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0)) | |
b34976b6 | 6118 | return FALSE; |
b49e97c9 TS |
6119 | |
6120 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0)) | |
b34976b6 | 6121 | return FALSE; |
b49e97c9 TS |
6122 | |
6123 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0)) | |
b34976b6 | 6124 | return FALSE; |
b49e97c9 TS |
6125 | |
6126 | if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0)) | |
b34976b6 | 6127 | return FALSE; |
b49e97c9 TS |
6128 | |
6129 | if (IRIX_COMPAT (dynobj) == ict_irix5 | |
6130 | && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0)) | |
b34976b6 | 6131 | return FALSE; |
b49e97c9 TS |
6132 | |
6133 | if (IRIX_COMPAT (dynobj) == ict_irix6 | |
6134 | && (bfd_get_section_by_name | |
6135 | (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj))) | |
6136 | && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0)) | |
b34976b6 | 6137 | return FALSE; |
b49e97c9 TS |
6138 | } |
6139 | ||
b34976b6 | 6140 | return TRUE; |
b49e97c9 TS |
6141 | } |
6142 | \f | |
6143 | /* Relocate a MIPS ELF section. */ | |
6144 | ||
b34976b6 | 6145 | bfd_boolean |
b49e97c9 TS |
6146 | _bfd_mips_elf_relocate_section (output_bfd, info, input_bfd, input_section, |
6147 | contents, relocs, local_syms, local_sections) | |
6148 | bfd *output_bfd; | |
6149 | struct bfd_link_info *info; | |
6150 | bfd *input_bfd; | |
6151 | asection *input_section; | |
6152 | bfd_byte *contents; | |
6153 | Elf_Internal_Rela *relocs; | |
6154 | Elf_Internal_Sym *local_syms; | |
6155 | asection **local_sections; | |
6156 | { | |
6157 | Elf_Internal_Rela *rel; | |
6158 | const Elf_Internal_Rela *relend; | |
6159 | bfd_vma addend = 0; | |
b34976b6 | 6160 | bfd_boolean use_saved_addend_p = FALSE; |
9c5bfbb7 | 6161 | const struct elf_backend_data *bed; |
b49e97c9 TS |
6162 | |
6163 | bed = get_elf_backend_data (output_bfd); | |
6164 | relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel; | |
6165 | for (rel = relocs; rel < relend; ++rel) | |
6166 | { | |
6167 | const char *name; | |
6168 | bfd_vma value; | |
6169 | reloc_howto_type *howto; | |
b34976b6 AM |
6170 | bfd_boolean require_jalx; |
6171 | /* TRUE if the relocation is a RELA relocation, rather than a | |
b49e97c9 | 6172 | REL relocation. */ |
b34976b6 | 6173 | bfd_boolean rela_relocation_p = TRUE; |
b49e97c9 TS |
6174 | unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info); |
6175 | const char * msg = (const char *) NULL; | |
6176 | ||
6177 | /* Find the relocation howto for this relocation. */ | |
4a14403c | 6178 | if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd)) |
b49e97c9 TS |
6179 | { |
6180 | /* Some 32-bit code uses R_MIPS_64. In particular, people use | |
6181 | 64-bit code, but make sure all their addresses are in the | |
6182 | lowermost or uppermost 32-bit section of the 64-bit address | |
6183 | space. Thus, when they use an R_MIPS_64 they mean what is | |
6184 | usually meant by R_MIPS_32, with the exception that the | |
6185 | stored value is sign-extended to 64 bits. */ | |
b34976b6 | 6186 | howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE); |
b49e97c9 TS |
6187 | |
6188 | /* On big-endian systems, we need to lie about the position | |
6189 | of the reloc. */ | |
6190 | if (bfd_big_endian (input_bfd)) | |
6191 | rel->r_offset += 4; | |
6192 | } | |
6193 | else | |
6194 | /* NewABI defaults to RELA relocations. */ | |
6195 | howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, | |
4ffba85c AO |
6196 | NEWABI_P (input_bfd) |
6197 | && (MIPS_RELOC_RELA_P | |
6198 | (input_bfd, input_section, | |
6199 | rel - relocs))); | |
b49e97c9 TS |
6200 | |
6201 | if (!use_saved_addend_p) | |
6202 | { | |
6203 | Elf_Internal_Shdr *rel_hdr; | |
6204 | ||
6205 | /* If these relocations were originally of the REL variety, | |
6206 | we must pull the addend out of the field that will be | |
6207 | relocated. Otherwise, we simply use the contents of the | |
6208 | RELA relocation. To determine which flavor or relocation | |
6209 | this is, we depend on the fact that the INPUT_SECTION's | |
6210 | REL_HDR is read before its REL_HDR2. */ | |
6211 | rel_hdr = &elf_section_data (input_section)->rel_hdr; | |
6212 | if ((size_t) (rel - relocs) | |
6213 | >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel)) | |
6214 | rel_hdr = elf_section_data (input_section)->rel_hdr2; | |
6215 | if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd)) | |
6216 | { | |
6217 | /* Note that this is a REL relocation. */ | |
b34976b6 | 6218 | rela_relocation_p = FALSE; |
b49e97c9 TS |
6219 | |
6220 | /* Get the addend, which is stored in the input file. */ | |
6221 | addend = mips_elf_obtain_contents (howto, rel, input_bfd, | |
6222 | contents); | |
6223 | addend &= howto->src_mask; | |
5a659663 | 6224 | addend <<= howto->rightshift; |
b49e97c9 TS |
6225 | |
6226 | /* For some kinds of relocations, the ADDEND is a | |
6227 | combination of the addend stored in two different | |
6228 | relocations. */ | |
6229 | if (r_type == R_MIPS_HI16 | |
6230 | || r_type == R_MIPS_GNU_REL_HI16 | |
6231 | || (r_type == R_MIPS_GOT16 | |
6232 | && mips_elf_local_relocation_p (input_bfd, rel, | |
b34976b6 | 6233 | local_sections, FALSE))) |
b49e97c9 TS |
6234 | { |
6235 | bfd_vma l; | |
6236 | const Elf_Internal_Rela *lo16_relocation; | |
6237 | reloc_howto_type *lo16_howto; | |
6238 | unsigned int lo; | |
6239 | ||
6240 | /* The combined value is the sum of the HI16 addend, | |
6241 | left-shifted by sixteen bits, and the LO16 | |
6242 | addend, sign extended. (Usually, the code does | |
6243 | a `lui' of the HI16 value, and then an `addiu' of | |
6244 | the LO16 value.) | |
6245 | ||
6246 | Scan ahead to find a matching LO16 relocation. */ | |
6247 | if (r_type == R_MIPS_GNU_REL_HI16) | |
6248 | lo = R_MIPS_GNU_REL_LO16; | |
6249 | else | |
6250 | lo = R_MIPS_LO16; | |
6251 | lo16_relocation = mips_elf_next_relocation (input_bfd, lo, | |
6252 | rel, relend); | |
6253 | if (lo16_relocation == NULL) | |
b34976b6 | 6254 | return FALSE; |
b49e97c9 TS |
6255 | |
6256 | /* Obtain the addend kept there. */ | |
b34976b6 | 6257 | lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, lo, FALSE); |
b49e97c9 TS |
6258 | l = mips_elf_obtain_contents (lo16_howto, lo16_relocation, |
6259 | input_bfd, contents); | |
6260 | l &= lo16_howto->src_mask; | |
5a659663 | 6261 | l <<= lo16_howto->rightshift; |
a7ebbfdf | 6262 | l = _bfd_mips_elf_sign_extend (l, 16); |
b49e97c9 TS |
6263 | |
6264 | addend <<= 16; | |
6265 | ||
6266 | /* Compute the combined addend. */ | |
6267 | addend += l; | |
6268 | ||
6269 | /* If PC-relative, subtract the difference between the | |
6270 | address of the LO part of the reloc and the address of | |
6271 | the HI part. The relocation is relative to the LO | |
6272 | part, but mips_elf_calculate_relocation() doesn't | |
6273 | know its address or the difference from the HI part, so | |
6274 | we subtract that difference here. See also the | |
6275 | comment in mips_elf_calculate_relocation(). */ | |
6276 | if (r_type == R_MIPS_GNU_REL_HI16) | |
6277 | addend -= (lo16_relocation->r_offset - rel->r_offset); | |
6278 | } | |
6279 | else if (r_type == R_MIPS16_GPREL) | |
6280 | { | |
6281 | /* The addend is scrambled in the object file. See | |
6282 | mips_elf_perform_relocation for details on the | |
6283 | format. */ | |
6284 | addend = (((addend & 0x1f0000) >> 5) | |
6285 | | ((addend & 0x7e00000) >> 16) | |
6286 | | (addend & 0x1f)); | |
6287 | } | |
6288 | } | |
6289 | else | |
6290 | addend = rel->r_addend; | |
6291 | } | |
6292 | ||
1049f94e | 6293 | if (info->relocatable) |
b49e97c9 TS |
6294 | { |
6295 | Elf_Internal_Sym *sym; | |
6296 | unsigned long r_symndx; | |
6297 | ||
4a14403c | 6298 | if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd) |
b49e97c9 TS |
6299 | && bfd_big_endian (input_bfd)) |
6300 | rel->r_offset -= 4; | |
6301 | ||
6302 | /* Since we're just relocating, all we need to do is copy | |
6303 | the relocations back out to the object file, unless | |
6304 | they're against a section symbol, in which case we need | |
6305 | to adjust by the section offset, or unless they're GP | |
6306 | relative in which case we need to adjust by the amount | |
1049f94e | 6307 | that we're adjusting GP in this relocatable object. */ |
b49e97c9 TS |
6308 | |
6309 | if (! mips_elf_local_relocation_p (input_bfd, rel, local_sections, | |
b34976b6 | 6310 | FALSE)) |
b49e97c9 TS |
6311 | /* There's nothing to do for non-local relocations. */ |
6312 | continue; | |
6313 | ||
6314 | if (r_type == R_MIPS16_GPREL | |
6315 | || r_type == R_MIPS_GPREL16 | |
6316 | || r_type == R_MIPS_GPREL32 | |
6317 | || r_type == R_MIPS_LITERAL) | |
6318 | addend -= (_bfd_get_gp_value (output_bfd) | |
6319 | - _bfd_get_gp_value (input_bfd)); | |
b49e97c9 TS |
6320 | |
6321 | r_symndx = ELF_R_SYM (output_bfd, rel->r_info); | |
6322 | sym = local_syms + r_symndx; | |
6323 | if (ELF_ST_TYPE (sym->st_info) == STT_SECTION) | |
6324 | /* Adjust the addend appropriately. */ | |
6325 | addend += local_sections[r_symndx]->output_offset; | |
6326 | ||
5a659663 TS |
6327 | if (howto->partial_inplace) |
6328 | { | |
6329 | /* If the relocation is for a R_MIPS_HI16 or R_MIPS_GOT16, | |
6330 | then we only want to write out the high-order 16 bits. | |
6331 | The subsequent R_MIPS_LO16 will handle the low-order bits. | |
6332 | */ | |
6333 | if (r_type == R_MIPS_HI16 || r_type == R_MIPS_GOT16 | |
6334 | || r_type == R_MIPS_GNU_REL_HI16) | |
6335 | addend = mips_elf_high (addend); | |
6336 | else if (r_type == R_MIPS_HIGHER) | |
6337 | addend = mips_elf_higher (addend); | |
6338 | else if (r_type == R_MIPS_HIGHEST) | |
6339 | addend = mips_elf_highest (addend); | |
6340 | } | |
b49e97c9 TS |
6341 | |
6342 | if (rela_relocation_p) | |
6343 | /* If this is a RELA relocation, just update the addend. | |
6344 | We have to cast away constness for REL. */ | |
6345 | rel->r_addend = addend; | |
6346 | else | |
6347 | { | |
6348 | /* Otherwise, we have to write the value back out. Note | |
6349 | that we use the source mask, rather than the | |
6350 | destination mask because the place to which we are | |
6351 | writing will be source of the addend in the final | |
6352 | link. */ | |
5a659663 | 6353 | addend >>= howto->rightshift; |
b49e97c9 TS |
6354 | addend &= howto->src_mask; |
6355 | ||
5a659663 | 6356 | if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)) |
b49e97c9 TS |
6357 | /* See the comment above about using R_MIPS_64 in the 32-bit |
6358 | ABI. Here, we need to update the addend. It would be | |
6359 | possible to get away with just using the R_MIPS_32 reloc | |
6360 | but for endianness. */ | |
6361 | { | |
6362 | bfd_vma sign_bits; | |
6363 | bfd_vma low_bits; | |
6364 | bfd_vma high_bits; | |
6365 | ||
6366 | if (addend & ((bfd_vma) 1 << 31)) | |
6367 | #ifdef BFD64 | |
6368 | sign_bits = ((bfd_vma) 1 << 32) - 1; | |
6369 | #else | |
6370 | sign_bits = -1; | |
6371 | #endif | |
6372 | else | |
6373 | sign_bits = 0; | |
6374 | ||
6375 | /* If we don't know that we have a 64-bit type, | |
6376 | do two separate stores. */ | |
6377 | if (bfd_big_endian (input_bfd)) | |
6378 | { | |
6379 | /* Store the sign-bits (which are most significant) | |
6380 | first. */ | |
6381 | low_bits = sign_bits; | |
6382 | high_bits = addend; | |
6383 | } | |
6384 | else | |
6385 | { | |
6386 | low_bits = addend; | |
6387 | high_bits = sign_bits; | |
6388 | } | |
6389 | bfd_put_32 (input_bfd, low_bits, | |
6390 | contents + rel->r_offset); | |
6391 | bfd_put_32 (input_bfd, high_bits, | |
6392 | contents + rel->r_offset + 4); | |
6393 | continue; | |
6394 | } | |
6395 | ||
6396 | if (! mips_elf_perform_relocation (info, howto, rel, addend, | |
6397 | input_bfd, input_section, | |
b34976b6 AM |
6398 | contents, FALSE)) |
6399 | return FALSE; | |
b49e97c9 TS |
6400 | } |
6401 | ||
6402 | /* Go on to the next relocation. */ | |
6403 | continue; | |
6404 | } | |
6405 | ||
6406 | /* In the N32 and 64-bit ABIs there may be multiple consecutive | |
6407 | relocations for the same offset. In that case we are | |
6408 | supposed to treat the output of each relocation as the addend | |
6409 | for the next. */ | |
6410 | if (rel + 1 < relend | |
6411 | && rel->r_offset == rel[1].r_offset | |
6412 | && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE) | |
b34976b6 | 6413 | use_saved_addend_p = TRUE; |
b49e97c9 | 6414 | else |
b34976b6 | 6415 | use_saved_addend_p = FALSE; |
b49e97c9 | 6416 | |
5a659663 TS |
6417 | addend >>= howto->rightshift; |
6418 | ||
b49e97c9 TS |
6419 | /* Figure out what value we are supposed to relocate. */ |
6420 | switch (mips_elf_calculate_relocation (output_bfd, input_bfd, | |
6421 | input_section, info, rel, | |
6422 | addend, howto, local_syms, | |
6423 | local_sections, &value, | |
bce03d3d AO |
6424 | &name, &require_jalx, |
6425 | use_saved_addend_p)) | |
b49e97c9 TS |
6426 | { |
6427 | case bfd_reloc_continue: | |
6428 | /* There's nothing to do. */ | |
6429 | continue; | |
6430 | ||
6431 | case bfd_reloc_undefined: | |
6432 | /* mips_elf_calculate_relocation already called the | |
6433 | undefined_symbol callback. There's no real point in | |
6434 | trying to perform the relocation at this point, so we | |
6435 | just skip ahead to the next relocation. */ | |
6436 | continue; | |
6437 | ||
6438 | case bfd_reloc_notsupported: | |
6439 | msg = _("internal error: unsupported relocation error"); | |
6440 | info->callbacks->warning | |
6441 | (info, msg, name, input_bfd, input_section, rel->r_offset); | |
b34976b6 | 6442 | return FALSE; |
b49e97c9 TS |
6443 | |
6444 | case bfd_reloc_overflow: | |
6445 | if (use_saved_addend_p) | |
6446 | /* Ignore overflow until we reach the last relocation for | |
6447 | a given location. */ | |
6448 | ; | |
6449 | else | |
6450 | { | |
6451 | BFD_ASSERT (name != NULL); | |
6452 | if (! ((*info->callbacks->reloc_overflow) | |
6453 | (info, name, howto->name, (bfd_vma) 0, | |
6454 | input_bfd, input_section, rel->r_offset))) | |
b34976b6 | 6455 | return FALSE; |
b49e97c9 TS |
6456 | } |
6457 | break; | |
6458 | ||
6459 | case bfd_reloc_ok: | |
6460 | break; | |
6461 | ||
6462 | default: | |
6463 | abort (); | |
6464 | break; | |
6465 | } | |
6466 | ||
6467 | /* If we've got another relocation for the address, keep going | |
6468 | until we reach the last one. */ | |
6469 | if (use_saved_addend_p) | |
6470 | { | |
6471 | addend = value; | |
6472 | continue; | |
6473 | } | |
6474 | ||
4a14403c | 6475 | if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)) |
b49e97c9 TS |
6476 | /* See the comment above about using R_MIPS_64 in the 32-bit |
6477 | ABI. Until now, we've been using the HOWTO for R_MIPS_32; | |
6478 | that calculated the right value. Now, however, we | |
6479 | sign-extend the 32-bit result to 64-bits, and store it as a | |
6480 | 64-bit value. We are especially generous here in that we | |
6481 | go to extreme lengths to support this usage on systems with | |
6482 | only a 32-bit VMA. */ | |
6483 | { | |
6484 | bfd_vma sign_bits; | |
6485 | bfd_vma low_bits; | |
6486 | bfd_vma high_bits; | |
6487 | ||
6488 | if (value & ((bfd_vma) 1 << 31)) | |
6489 | #ifdef BFD64 | |
6490 | sign_bits = ((bfd_vma) 1 << 32) - 1; | |
6491 | #else | |
6492 | sign_bits = -1; | |
6493 | #endif | |
6494 | else | |
6495 | sign_bits = 0; | |
6496 | ||
6497 | /* If we don't know that we have a 64-bit type, | |
6498 | do two separate stores. */ | |
6499 | if (bfd_big_endian (input_bfd)) | |
6500 | { | |
6501 | /* Undo what we did above. */ | |
6502 | rel->r_offset -= 4; | |
6503 | /* Store the sign-bits (which are most significant) | |
6504 | first. */ | |
6505 | low_bits = sign_bits; | |
6506 | high_bits = value; | |
6507 | } | |
6508 | else | |
6509 | { | |
6510 | low_bits = value; | |
6511 | high_bits = sign_bits; | |
6512 | } | |
6513 | bfd_put_32 (input_bfd, low_bits, | |
6514 | contents + rel->r_offset); | |
6515 | bfd_put_32 (input_bfd, high_bits, | |
6516 | contents + rel->r_offset + 4); | |
6517 | continue; | |
6518 | } | |
6519 | ||
6520 | /* Actually perform the relocation. */ | |
6521 | if (! mips_elf_perform_relocation (info, howto, rel, value, | |
6522 | input_bfd, input_section, | |
6523 | contents, require_jalx)) | |
b34976b6 | 6524 | return FALSE; |
b49e97c9 TS |
6525 | } |
6526 | ||
b34976b6 | 6527 | return TRUE; |
b49e97c9 TS |
6528 | } |
6529 | \f | |
6530 | /* If NAME is one of the special IRIX6 symbols defined by the linker, | |
6531 | adjust it appropriately now. */ | |
6532 | ||
6533 | static void | |
6534 | mips_elf_irix6_finish_dynamic_symbol (abfd, name, sym) | |
6535 | bfd *abfd ATTRIBUTE_UNUSED; | |
6536 | const char *name; | |
6537 | Elf_Internal_Sym *sym; | |
6538 | { | |
6539 | /* The linker script takes care of providing names and values for | |
6540 | these, but we must place them into the right sections. */ | |
6541 | static const char* const text_section_symbols[] = { | |
6542 | "_ftext", | |
6543 | "_etext", | |
6544 | "__dso_displacement", | |
6545 | "__elf_header", | |
6546 | "__program_header_table", | |
6547 | NULL | |
6548 | }; | |
6549 | ||
6550 | static const char* const data_section_symbols[] = { | |
6551 | "_fdata", | |
6552 | "_edata", | |
6553 | "_end", | |
6554 | "_fbss", | |
6555 | NULL | |
6556 | }; | |
6557 | ||
6558 | const char* const *p; | |
6559 | int i; | |
6560 | ||
6561 | for (i = 0; i < 2; ++i) | |
6562 | for (p = (i == 0) ? text_section_symbols : data_section_symbols; | |
6563 | *p; | |
6564 | ++p) | |
6565 | if (strcmp (*p, name) == 0) | |
6566 | { | |
6567 | /* All of these symbols are given type STT_SECTION by the | |
6568 | IRIX6 linker. */ | |
6569 | sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); | |
e10609d3 | 6570 | sym->st_other = STO_PROTECTED; |
b49e97c9 TS |
6571 | |
6572 | /* The IRIX linker puts these symbols in special sections. */ | |
6573 | if (i == 0) | |
6574 | sym->st_shndx = SHN_MIPS_TEXT; | |
6575 | else | |
6576 | sym->st_shndx = SHN_MIPS_DATA; | |
6577 | ||
6578 | break; | |
6579 | } | |
6580 | } | |
6581 | ||
6582 | /* Finish up dynamic symbol handling. We set the contents of various | |
6583 | dynamic sections here. */ | |
6584 | ||
b34976b6 | 6585 | bfd_boolean |
b49e97c9 TS |
6586 | _bfd_mips_elf_finish_dynamic_symbol (output_bfd, info, h, sym) |
6587 | bfd *output_bfd; | |
6588 | struct bfd_link_info *info; | |
6589 | struct elf_link_hash_entry *h; | |
6590 | Elf_Internal_Sym *sym; | |
6591 | { | |
6592 | bfd *dynobj; | |
6593 | bfd_vma gval; | |
6594 | asection *sgot; | |
f4416af6 | 6595 | struct mips_got_info *g, *gg; |
b49e97c9 | 6596 | const char *name; |
b49e97c9 TS |
6597 | |
6598 | dynobj = elf_hash_table (info)->dynobj; | |
6599 | gval = sym->st_value; | |
b49e97c9 TS |
6600 | |
6601 | if (h->plt.offset != (bfd_vma) -1) | |
6602 | { | |
6603 | asection *s; | |
6604 | bfd_byte stub[MIPS_FUNCTION_STUB_SIZE]; | |
6605 | ||
6606 | /* This symbol has a stub. Set it up. */ | |
6607 | ||
6608 | BFD_ASSERT (h->dynindx != -1); | |
6609 | ||
6610 | s = bfd_get_section_by_name (dynobj, | |
6611 | MIPS_ELF_STUB_SECTION_NAME (dynobj)); | |
6612 | BFD_ASSERT (s != NULL); | |
6613 | ||
6614 | /* FIXME: Can h->dynindex be more than 64K? */ | |
6615 | if (h->dynindx & 0xffff0000) | |
b34976b6 | 6616 | return FALSE; |
b49e97c9 TS |
6617 | |
6618 | /* Fill the stub. */ | |
6619 | bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub); | |
6620 | bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + 4); | |
6621 | bfd_put_32 (output_bfd, STUB_JALR, stub + 8); | |
6622 | bfd_put_32 (output_bfd, STUB_LI16 (output_bfd) + h->dynindx, stub + 12); | |
6623 | ||
6624 | BFD_ASSERT (h->plt.offset <= s->_raw_size); | |
6625 | memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE); | |
6626 | ||
6627 | /* Mark the symbol as undefined. plt.offset != -1 occurs | |
6628 | only for the referenced symbol. */ | |
6629 | sym->st_shndx = SHN_UNDEF; | |
6630 | ||
6631 | /* The run-time linker uses the st_value field of the symbol | |
6632 | to reset the global offset table entry for this external | |
6633 | to its stub address when unlinking a shared object. */ | |
6634 | gval = s->output_section->vma + s->output_offset + h->plt.offset; | |
6635 | sym->st_value = gval; | |
6636 | } | |
6637 | ||
6638 | BFD_ASSERT (h->dynindx != -1 | |
6639 | || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0); | |
6640 | ||
f4416af6 | 6641 | sgot = mips_elf_got_section (dynobj, FALSE); |
b49e97c9 | 6642 | BFD_ASSERT (sgot != NULL); |
f4416af6 | 6643 | BFD_ASSERT (mips_elf_section_data (sgot) != NULL); |
f0abc2a1 | 6644 | g = mips_elf_section_data (sgot)->u.got_info; |
b49e97c9 TS |
6645 | BFD_ASSERT (g != NULL); |
6646 | ||
6647 | /* Run through the global symbol table, creating GOT entries for all | |
6648 | the symbols that need them. */ | |
6649 | if (g->global_gotsym != NULL | |
6650 | && h->dynindx >= g->global_gotsym->dynindx) | |
6651 | { | |
6652 | bfd_vma offset; | |
6653 | bfd_vma value; | |
6654 | ||
6eaa6adc | 6655 | value = sym->st_value; |
f4416af6 | 6656 | offset = mips_elf_global_got_index (dynobj, output_bfd, h); |
b49e97c9 TS |
6657 | MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset); |
6658 | } | |
6659 | ||
f4416af6 AO |
6660 | if (g->next && h->dynindx != -1) |
6661 | { | |
6662 | struct mips_got_entry e, *p; | |
6663 | bfd_vma offset; | |
6664 | bfd_vma value; | |
6665 | Elf_Internal_Rela rel[3]; | |
6666 | bfd_vma addend = 0; | |
6667 | ||
6668 | gg = g; | |
6669 | ||
6670 | e.abfd = output_bfd; | |
6671 | e.symndx = -1; | |
6672 | e.d.h = (struct mips_elf_link_hash_entry *)h; | |
143d77c5 | 6673 | |
f4416af6 AO |
6674 | if (info->shared |
6675 | || h->root.type == bfd_link_hash_undefined | |
6676 | || h->root.type == bfd_link_hash_undefweak) | |
6677 | value = 0; | |
6678 | else if (sym->st_value) | |
6679 | value = sym->st_value; | |
6680 | else | |
6681 | value = h->root.u.def.value; | |
6682 | ||
6683 | memset (rel, 0, sizeof (rel)); | |
6684 | rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32); | |
6685 | ||
6686 | for (g = g->next; g->next != gg; g = g->next) | |
6687 | { | |
6688 | if (g->got_entries | |
6689 | && (p = (struct mips_got_entry *) htab_find (g->got_entries, | |
6690 | &e))) | |
6691 | { | |
6692 | offset = p->gotidx; | |
6693 | rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset; | |
6694 | ||
6695 | MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset); | |
6696 | ||
6697 | if ((info->shared | |
6698 | || (elf_hash_table (info)->dynamic_sections_created | |
6699 | && p->d.h != NULL | |
6700 | && ((p->d.h->root.elf_link_hash_flags | |
6701 | & ELF_LINK_HASH_DEF_DYNAMIC) != 0) | |
6702 | && ((p->d.h->root.elf_link_hash_flags | |
6703 | & ELF_LINK_HASH_DEF_REGULAR) == 0))) | |
6704 | && ! (mips_elf_create_dynamic_relocation | |
6705 | (output_bfd, info, rel, | |
6706 | e.d.h, NULL, value, &addend, sgot))) | |
6707 | return FALSE; | |
6708 | BFD_ASSERT (addend == 0); | |
6709 | } | |
6710 | } | |
6711 | } | |
6712 | ||
b49e97c9 TS |
6713 | /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */ |
6714 | name = h->root.root.string; | |
6715 | if (strcmp (name, "_DYNAMIC") == 0 | |
6716 | || strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0) | |
6717 | sym->st_shndx = SHN_ABS; | |
6718 | else if (strcmp (name, "_DYNAMIC_LINK") == 0 | |
6719 | || strcmp (name, "_DYNAMIC_LINKING") == 0) | |
6720 | { | |
6721 | sym->st_shndx = SHN_ABS; | |
6722 | sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); | |
6723 | sym->st_value = 1; | |
6724 | } | |
4a14403c | 6725 | else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd)) |
b49e97c9 TS |
6726 | { |
6727 | sym->st_shndx = SHN_ABS; | |
6728 | sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); | |
6729 | sym->st_value = elf_gp (output_bfd); | |
6730 | } | |
6731 | else if (SGI_COMPAT (output_bfd)) | |
6732 | { | |
6733 | if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0 | |
6734 | || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0) | |
6735 | { | |
6736 | sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); | |
6737 | sym->st_other = STO_PROTECTED; | |
6738 | sym->st_value = 0; | |
6739 | sym->st_shndx = SHN_MIPS_DATA; | |
6740 | } | |
6741 | else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0) | |
6742 | { | |
6743 | sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); | |
6744 | sym->st_other = STO_PROTECTED; | |
6745 | sym->st_value = mips_elf_hash_table (info)->procedure_count; | |
6746 | sym->st_shndx = SHN_ABS; | |
6747 | } | |
6748 | else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS) | |
6749 | { | |
6750 | if (h->type == STT_FUNC) | |
6751 | sym->st_shndx = SHN_MIPS_TEXT; | |
6752 | else if (h->type == STT_OBJECT) | |
6753 | sym->st_shndx = SHN_MIPS_DATA; | |
6754 | } | |
6755 | } | |
6756 | ||
6757 | /* Handle the IRIX6-specific symbols. */ | |
6758 | if (IRIX_COMPAT (output_bfd) == ict_irix6) | |
6759 | mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym); | |
6760 | ||
6761 | if (! info->shared) | |
6762 | { | |
6763 | if (! mips_elf_hash_table (info)->use_rld_obj_head | |
6764 | && (strcmp (name, "__rld_map") == 0 | |
6765 | || strcmp (name, "__RLD_MAP") == 0)) | |
6766 | { | |
6767 | asection *s = bfd_get_section_by_name (dynobj, ".rld_map"); | |
6768 | BFD_ASSERT (s != NULL); | |
6769 | sym->st_value = s->output_section->vma + s->output_offset; | |
6770 | bfd_put_32 (output_bfd, (bfd_vma) 0, s->contents); | |
6771 | if (mips_elf_hash_table (info)->rld_value == 0) | |
6772 | mips_elf_hash_table (info)->rld_value = sym->st_value; | |
6773 | } | |
6774 | else if (mips_elf_hash_table (info)->use_rld_obj_head | |
6775 | && strcmp (name, "__rld_obj_head") == 0) | |
6776 | { | |
6777 | /* IRIX6 does not use a .rld_map section. */ | |
6778 | if (IRIX_COMPAT (output_bfd) == ict_irix5 | |
6779 | || IRIX_COMPAT (output_bfd) == ict_none) | |
6780 | BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map") | |
6781 | != NULL); | |
6782 | mips_elf_hash_table (info)->rld_value = sym->st_value; | |
6783 | } | |
6784 | } | |
6785 | ||
6786 | /* If this is a mips16 symbol, force the value to be even. */ | |
6787 | if (sym->st_other == STO_MIPS16 | |
6788 | && (sym->st_value & 1) != 0) | |
6789 | --sym->st_value; | |
6790 | ||
b34976b6 | 6791 | return TRUE; |
b49e97c9 TS |
6792 | } |
6793 | ||
6794 | /* Finish up the dynamic sections. */ | |
6795 | ||
b34976b6 | 6796 | bfd_boolean |
b49e97c9 TS |
6797 | _bfd_mips_elf_finish_dynamic_sections (output_bfd, info) |
6798 | bfd *output_bfd; | |
6799 | struct bfd_link_info *info; | |
6800 | { | |
6801 | bfd *dynobj; | |
6802 | asection *sdyn; | |
6803 | asection *sgot; | |
f4416af6 | 6804 | struct mips_got_info *gg, *g; |
b49e97c9 TS |
6805 | |
6806 | dynobj = elf_hash_table (info)->dynobj; | |
6807 | ||
6808 | sdyn = bfd_get_section_by_name (dynobj, ".dynamic"); | |
6809 | ||
f4416af6 | 6810 | sgot = mips_elf_got_section (dynobj, FALSE); |
b49e97c9 | 6811 | if (sgot == NULL) |
f4416af6 | 6812 | gg = g = NULL; |
b49e97c9 TS |
6813 | else |
6814 | { | |
f4416af6 AO |
6815 | BFD_ASSERT (mips_elf_section_data (sgot) != NULL); |
6816 | gg = mips_elf_section_data (sgot)->u.got_info; | |
6817 | BFD_ASSERT (gg != NULL); | |
6818 | g = mips_elf_got_for_ibfd (gg, output_bfd); | |
b49e97c9 TS |
6819 | BFD_ASSERT (g != NULL); |
6820 | } | |
6821 | ||
6822 | if (elf_hash_table (info)->dynamic_sections_created) | |
6823 | { | |
6824 | bfd_byte *b; | |
6825 | ||
6826 | BFD_ASSERT (sdyn != NULL); | |
6827 | BFD_ASSERT (g != NULL); | |
6828 | ||
6829 | for (b = sdyn->contents; | |
6830 | b < sdyn->contents + sdyn->_raw_size; | |
6831 | b += MIPS_ELF_DYN_SIZE (dynobj)) | |
6832 | { | |
6833 | Elf_Internal_Dyn dyn; | |
6834 | const char *name; | |
6835 | size_t elemsize; | |
6836 | asection *s; | |
b34976b6 | 6837 | bfd_boolean swap_out_p; |
b49e97c9 TS |
6838 | |
6839 | /* Read in the current dynamic entry. */ | |
6840 | (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn); | |
6841 | ||
6842 | /* Assume that we're going to modify it and write it out. */ | |
b34976b6 | 6843 | swap_out_p = TRUE; |
b49e97c9 TS |
6844 | |
6845 | switch (dyn.d_tag) | |
6846 | { | |
6847 | case DT_RELENT: | |
f4416af6 | 6848 | s = mips_elf_rel_dyn_section (dynobj, FALSE); |
b49e97c9 TS |
6849 | BFD_ASSERT (s != NULL); |
6850 | dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj); | |
6851 | break; | |
6852 | ||
6853 | case DT_STRSZ: | |
6854 | /* Rewrite DT_STRSZ. */ | |
6855 | dyn.d_un.d_val = | |
6856 | _bfd_elf_strtab_size (elf_hash_table (info)->dynstr); | |
6857 | break; | |
6858 | ||
6859 | case DT_PLTGOT: | |
6860 | name = ".got"; | |
b49e97c9 TS |
6861 | s = bfd_get_section_by_name (output_bfd, name); |
6862 | BFD_ASSERT (s != NULL); | |
6863 | dyn.d_un.d_ptr = s->vma; | |
6864 | break; | |
6865 | ||
6866 | case DT_MIPS_RLD_VERSION: | |
6867 | dyn.d_un.d_val = 1; /* XXX */ | |
6868 | break; | |
6869 | ||
6870 | case DT_MIPS_FLAGS: | |
6871 | dyn.d_un.d_val = RHF_NOTPOT; /* XXX */ | |
6872 | break; | |
6873 | ||
b49e97c9 TS |
6874 | case DT_MIPS_TIME_STAMP: |
6875 | time ((time_t *) &dyn.d_un.d_val); | |
6876 | break; | |
6877 | ||
6878 | case DT_MIPS_ICHECKSUM: | |
6879 | /* XXX FIXME: */ | |
b34976b6 | 6880 | swap_out_p = FALSE; |
b49e97c9 TS |
6881 | break; |
6882 | ||
6883 | case DT_MIPS_IVERSION: | |
6884 | /* XXX FIXME: */ | |
b34976b6 | 6885 | swap_out_p = FALSE; |
b49e97c9 TS |
6886 | break; |
6887 | ||
6888 | case DT_MIPS_BASE_ADDRESS: | |
6889 | s = output_bfd->sections; | |
6890 | BFD_ASSERT (s != NULL); | |
6891 | dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff; | |
6892 | break; | |
6893 | ||
6894 | case DT_MIPS_LOCAL_GOTNO: | |
6895 | dyn.d_un.d_val = g->local_gotno; | |
6896 | break; | |
6897 | ||
6898 | case DT_MIPS_UNREFEXTNO: | |
6899 | /* The index into the dynamic symbol table which is the | |
6900 | entry of the first external symbol that is not | |
6901 | referenced within the same object. */ | |
6902 | dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1; | |
6903 | break; | |
6904 | ||
6905 | case DT_MIPS_GOTSYM: | |
f4416af6 | 6906 | if (gg->global_gotsym) |
b49e97c9 | 6907 | { |
f4416af6 | 6908 | dyn.d_un.d_val = gg->global_gotsym->dynindx; |
b49e97c9 TS |
6909 | break; |
6910 | } | |
6911 | /* In case if we don't have global got symbols we default | |
6912 | to setting DT_MIPS_GOTSYM to the same value as | |
6913 | DT_MIPS_SYMTABNO, so we just fall through. */ | |
6914 | ||
6915 | case DT_MIPS_SYMTABNO: | |
6916 | name = ".dynsym"; | |
6917 | elemsize = MIPS_ELF_SYM_SIZE (output_bfd); | |
6918 | s = bfd_get_section_by_name (output_bfd, name); | |
6919 | BFD_ASSERT (s != NULL); | |
6920 | ||
6921 | if (s->_cooked_size != 0) | |
6922 | dyn.d_un.d_val = s->_cooked_size / elemsize; | |
6923 | else | |
6924 | dyn.d_un.d_val = s->_raw_size / elemsize; | |
6925 | break; | |
6926 | ||
6927 | case DT_MIPS_HIPAGENO: | |
6928 | dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO; | |
6929 | break; | |
6930 | ||
6931 | case DT_MIPS_RLD_MAP: | |
6932 | dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value; | |
6933 | break; | |
6934 | ||
6935 | case DT_MIPS_OPTIONS: | |
6936 | s = (bfd_get_section_by_name | |
6937 | (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd))); | |
6938 | dyn.d_un.d_ptr = s->vma; | |
6939 | break; | |
6940 | ||
98a8deaf RS |
6941 | case DT_RELSZ: |
6942 | /* Reduce DT_RELSZ to account for any relocations we | |
6943 | decided not to make. This is for the n64 irix rld, | |
6944 | which doesn't seem to apply any relocations if there | |
6945 | are trailing null entries. */ | |
6946 | s = mips_elf_rel_dyn_section (dynobj, FALSE); | |
6947 | dyn.d_un.d_val = (s->reloc_count | |
6948 | * (ABI_64_P (output_bfd) | |
6949 | ? sizeof (Elf64_Mips_External_Rel) | |
6950 | : sizeof (Elf32_External_Rel))); | |
b49e97c9 TS |
6951 | break; |
6952 | ||
6953 | default: | |
b34976b6 | 6954 | swap_out_p = FALSE; |
b49e97c9 TS |
6955 | break; |
6956 | } | |
6957 | ||
6958 | if (swap_out_p) | |
6959 | (*get_elf_backend_data (dynobj)->s->swap_dyn_out) | |
6960 | (dynobj, &dyn, b); | |
6961 | } | |
6962 | } | |
6963 | ||
6964 | /* The first entry of the global offset table will be filled at | |
6965 | runtime. The second entry will be used by some runtime loaders. | |
8dc1a139 | 6966 | This isn't the case of IRIX rld. */ |
b49e97c9 TS |
6967 | if (sgot != NULL && sgot->_raw_size > 0) |
6968 | { | |
6969 | MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents); | |
6970 | MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000, | |
6971 | sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd)); | |
6972 | } | |
6973 | ||
6974 | if (sgot != NULL) | |
6975 | elf_section_data (sgot->output_section)->this_hdr.sh_entsize | |
6976 | = MIPS_ELF_GOT_SIZE (output_bfd); | |
6977 | ||
f4416af6 AO |
6978 | /* Generate dynamic relocations for the non-primary gots. */ |
6979 | if (gg != NULL && gg->next) | |
6980 | { | |
6981 | Elf_Internal_Rela rel[3]; | |
6982 | bfd_vma addend = 0; | |
6983 | ||
6984 | memset (rel, 0, sizeof (rel)); | |
6985 | rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32); | |
6986 | ||
6987 | for (g = gg->next; g->next != gg; g = g->next) | |
6988 | { | |
6989 | bfd_vma index = g->next->local_gotno + g->next->global_gotno; | |
6990 | ||
6991 | MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents | |
6992 | + index++ * MIPS_ELF_GOT_SIZE (output_bfd)); | |
6993 | MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000, sgot->contents | |
6994 | + index++ * MIPS_ELF_GOT_SIZE (output_bfd)); | |
6995 | ||
6996 | if (! info->shared) | |
6997 | continue; | |
6998 | ||
6999 | while (index < g->assigned_gotno) | |
7000 | { | |
7001 | rel[0].r_offset = rel[1].r_offset = rel[2].r_offset | |
7002 | = index++ * MIPS_ELF_GOT_SIZE (output_bfd); | |
7003 | if (!(mips_elf_create_dynamic_relocation | |
7004 | (output_bfd, info, rel, NULL, | |
7005 | bfd_abs_section_ptr, | |
7006 | 0, &addend, sgot))) | |
7007 | return FALSE; | |
7008 | BFD_ASSERT (addend == 0); | |
7009 | } | |
7010 | } | |
7011 | } | |
7012 | ||
b49e97c9 | 7013 | { |
b49e97c9 TS |
7014 | asection *s; |
7015 | Elf32_compact_rel cpt; | |
7016 | ||
b49e97c9 TS |
7017 | if (SGI_COMPAT (output_bfd)) |
7018 | { | |
7019 | /* Write .compact_rel section out. */ | |
7020 | s = bfd_get_section_by_name (dynobj, ".compact_rel"); | |
7021 | if (s != NULL) | |
7022 | { | |
7023 | cpt.id1 = 1; | |
7024 | cpt.num = s->reloc_count; | |
7025 | cpt.id2 = 2; | |
7026 | cpt.offset = (s->output_section->filepos | |
7027 | + sizeof (Elf32_External_compact_rel)); | |
7028 | cpt.reserved0 = 0; | |
7029 | cpt.reserved1 = 0; | |
7030 | bfd_elf32_swap_compact_rel_out (output_bfd, &cpt, | |
7031 | ((Elf32_External_compact_rel *) | |
7032 | s->contents)); | |
7033 | ||
7034 | /* Clean up a dummy stub function entry in .text. */ | |
7035 | s = bfd_get_section_by_name (dynobj, | |
7036 | MIPS_ELF_STUB_SECTION_NAME (dynobj)); | |
7037 | if (s != NULL) | |
7038 | { | |
7039 | file_ptr dummy_offset; | |
7040 | ||
7041 | BFD_ASSERT (s->_raw_size >= MIPS_FUNCTION_STUB_SIZE); | |
7042 | dummy_offset = s->_raw_size - MIPS_FUNCTION_STUB_SIZE; | |
7043 | memset (s->contents + dummy_offset, 0, | |
7044 | MIPS_FUNCTION_STUB_SIZE); | |
7045 | } | |
7046 | } | |
7047 | } | |
7048 | ||
7049 | /* We need to sort the entries of the dynamic relocation section. */ | |
7050 | ||
f4416af6 AO |
7051 | s = mips_elf_rel_dyn_section (dynobj, FALSE); |
7052 | ||
7053 | if (s != NULL | |
7054 | && s->_raw_size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd)) | |
b49e97c9 | 7055 | { |
f4416af6 | 7056 | reldyn_sorting_bfd = output_bfd; |
b49e97c9 | 7057 | |
f4416af6 AO |
7058 | if (ABI_64_P (output_bfd)) |
7059 | qsort ((Elf64_External_Rel *) s->contents + 1, | |
7060 | (size_t) s->reloc_count - 1, | |
7061 | sizeof (Elf64_Mips_External_Rel), sort_dynamic_relocs_64); | |
7062 | else | |
7063 | qsort ((Elf32_External_Rel *) s->contents + 1, | |
7064 | (size_t) s->reloc_count - 1, | |
7065 | sizeof (Elf32_External_Rel), sort_dynamic_relocs); | |
b49e97c9 | 7066 | } |
b49e97c9 TS |
7067 | } |
7068 | ||
b34976b6 | 7069 | return TRUE; |
b49e97c9 TS |
7070 | } |
7071 | ||
b49e97c9 | 7072 | |
64543e1a RS |
7073 | /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */ |
7074 | ||
7075 | static void | |
7076 | mips_set_isa_flags (abfd) | |
b49e97c9 | 7077 | bfd *abfd; |
b49e97c9 | 7078 | { |
64543e1a | 7079 | flagword val; |
b49e97c9 TS |
7080 | |
7081 | switch (bfd_get_mach (abfd)) | |
7082 | { | |
7083 | default: | |
7084 | case bfd_mach_mips3000: | |
7085 | val = E_MIPS_ARCH_1; | |
7086 | break; | |
7087 | ||
7088 | case bfd_mach_mips3900: | |
7089 | val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900; | |
7090 | break; | |
7091 | ||
7092 | case bfd_mach_mips6000: | |
7093 | val = E_MIPS_ARCH_2; | |
7094 | break; | |
7095 | ||
7096 | case bfd_mach_mips4000: | |
7097 | case bfd_mach_mips4300: | |
7098 | case bfd_mach_mips4400: | |
7099 | case bfd_mach_mips4600: | |
7100 | val = E_MIPS_ARCH_3; | |
7101 | break; | |
7102 | ||
7103 | case bfd_mach_mips4010: | |
7104 | val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010; | |
7105 | break; | |
7106 | ||
7107 | case bfd_mach_mips4100: | |
7108 | val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100; | |
7109 | break; | |
7110 | ||
7111 | case bfd_mach_mips4111: | |
7112 | val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111; | |
7113 | break; | |
7114 | ||
00707a0e RS |
7115 | case bfd_mach_mips4120: |
7116 | val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120; | |
7117 | break; | |
7118 | ||
b49e97c9 TS |
7119 | case bfd_mach_mips4650: |
7120 | val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650; | |
7121 | break; | |
7122 | ||
00707a0e RS |
7123 | case bfd_mach_mips5400: |
7124 | val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400; | |
7125 | break; | |
7126 | ||
7127 | case bfd_mach_mips5500: | |
7128 | val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500; | |
7129 | break; | |
7130 | ||
b49e97c9 | 7131 | case bfd_mach_mips5000: |
5a7ea749 | 7132 | case bfd_mach_mips7000: |
b49e97c9 TS |
7133 | case bfd_mach_mips8000: |
7134 | case bfd_mach_mips10000: | |
7135 | case bfd_mach_mips12000: | |
7136 | val = E_MIPS_ARCH_4; | |
7137 | break; | |
7138 | ||
7139 | case bfd_mach_mips5: | |
7140 | val = E_MIPS_ARCH_5; | |
7141 | break; | |
7142 | ||
7143 | case bfd_mach_mips_sb1: | |
7144 | val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1; | |
7145 | break; | |
7146 | ||
7147 | case bfd_mach_mipsisa32: | |
7148 | val = E_MIPS_ARCH_32; | |
7149 | break; | |
7150 | ||
7151 | case bfd_mach_mipsisa64: | |
7152 | val = E_MIPS_ARCH_64; | |
af7ee8bf CD |
7153 | break; |
7154 | ||
7155 | case bfd_mach_mipsisa32r2: | |
7156 | val = E_MIPS_ARCH_32R2; | |
7157 | break; | |
5f74bc13 CD |
7158 | |
7159 | case bfd_mach_mipsisa64r2: | |
7160 | val = E_MIPS_ARCH_64R2; | |
7161 | break; | |
b49e97c9 | 7162 | } |
b49e97c9 TS |
7163 | elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH); |
7164 | elf_elfheader (abfd)->e_flags |= val; | |
7165 | ||
64543e1a RS |
7166 | } |
7167 | ||
7168 | ||
7169 | /* The final processing done just before writing out a MIPS ELF object | |
7170 | file. This gets the MIPS architecture right based on the machine | |
7171 | number. This is used by both the 32-bit and the 64-bit ABI. */ | |
7172 | ||
7173 | void | |
7174 | _bfd_mips_elf_final_write_processing (abfd, linker) | |
7175 | bfd *abfd; | |
7176 | bfd_boolean linker ATTRIBUTE_UNUSED; | |
7177 | { | |
7178 | unsigned int i; | |
7179 | Elf_Internal_Shdr **hdrpp; | |
7180 | const char *name; | |
7181 | asection *sec; | |
7182 | ||
7183 | /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former | |
7184 | is nonzero. This is for compatibility with old objects, which used | |
7185 | a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */ | |
7186 | if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0) | |
7187 | mips_set_isa_flags (abfd); | |
7188 | ||
b49e97c9 TS |
7189 | /* Set the sh_info field for .gptab sections and other appropriate |
7190 | info for each special section. */ | |
7191 | for (i = 1, hdrpp = elf_elfsections (abfd) + 1; | |
7192 | i < elf_numsections (abfd); | |
7193 | i++, hdrpp++) | |
7194 | { | |
7195 | switch ((*hdrpp)->sh_type) | |
7196 | { | |
7197 | case SHT_MIPS_MSYM: | |
7198 | case SHT_MIPS_LIBLIST: | |
7199 | sec = bfd_get_section_by_name (abfd, ".dynstr"); | |
7200 | if (sec != NULL) | |
7201 | (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; | |
7202 | break; | |
7203 | ||
7204 | case SHT_MIPS_GPTAB: | |
7205 | BFD_ASSERT ((*hdrpp)->bfd_section != NULL); | |
7206 | name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section); | |
7207 | BFD_ASSERT (name != NULL | |
7208 | && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0); | |
7209 | sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1); | |
7210 | BFD_ASSERT (sec != NULL); | |
7211 | (*hdrpp)->sh_info = elf_section_data (sec)->this_idx; | |
7212 | break; | |
7213 | ||
7214 | case SHT_MIPS_CONTENT: | |
7215 | BFD_ASSERT ((*hdrpp)->bfd_section != NULL); | |
7216 | name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section); | |
7217 | BFD_ASSERT (name != NULL | |
7218 | && strncmp (name, ".MIPS.content", | |
7219 | sizeof ".MIPS.content" - 1) == 0); | |
7220 | sec = bfd_get_section_by_name (abfd, | |
7221 | name + sizeof ".MIPS.content" - 1); | |
7222 | BFD_ASSERT (sec != NULL); | |
7223 | (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; | |
7224 | break; | |
7225 | ||
7226 | case SHT_MIPS_SYMBOL_LIB: | |
7227 | sec = bfd_get_section_by_name (abfd, ".dynsym"); | |
7228 | if (sec != NULL) | |
7229 | (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; | |
7230 | sec = bfd_get_section_by_name (abfd, ".liblist"); | |
7231 | if (sec != NULL) | |
7232 | (*hdrpp)->sh_info = elf_section_data (sec)->this_idx; | |
7233 | break; | |
7234 | ||
7235 | case SHT_MIPS_EVENTS: | |
7236 | BFD_ASSERT ((*hdrpp)->bfd_section != NULL); | |
7237 | name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section); | |
7238 | BFD_ASSERT (name != NULL); | |
7239 | if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0) | |
7240 | sec = bfd_get_section_by_name (abfd, | |
7241 | name + sizeof ".MIPS.events" - 1); | |
7242 | else | |
7243 | { | |
7244 | BFD_ASSERT (strncmp (name, ".MIPS.post_rel", | |
7245 | sizeof ".MIPS.post_rel" - 1) == 0); | |
7246 | sec = bfd_get_section_by_name (abfd, | |
7247 | (name | |
7248 | + sizeof ".MIPS.post_rel" - 1)); | |
7249 | } | |
7250 | BFD_ASSERT (sec != NULL); | |
7251 | (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; | |
7252 | break; | |
7253 | ||
7254 | } | |
7255 | } | |
7256 | } | |
7257 | \f | |
8dc1a139 | 7258 | /* When creating an IRIX5 executable, we need REGINFO and RTPROC |
b49e97c9 TS |
7259 | segments. */ |
7260 | ||
7261 | int | |
7262 | _bfd_mips_elf_additional_program_headers (abfd) | |
7263 | bfd *abfd; | |
7264 | { | |
7265 | asection *s; | |
7266 | int ret = 0; | |
7267 | ||
7268 | /* See if we need a PT_MIPS_REGINFO segment. */ | |
7269 | s = bfd_get_section_by_name (abfd, ".reginfo"); | |
7270 | if (s && (s->flags & SEC_LOAD)) | |
7271 | ++ret; | |
7272 | ||
7273 | /* See if we need a PT_MIPS_OPTIONS segment. */ | |
7274 | if (IRIX_COMPAT (abfd) == ict_irix6 | |
7275 | && bfd_get_section_by_name (abfd, | |
7276 | MIPS_ELF_OPTIONS_SECTION_NAME (abfd))) | |
7277 | ++ret; | |
7278 | ||
7279 | /* See if we need a PT_MIPS_RTPROC segment. */ | |
7280 | if (IRIX_COMPAT (abfd) == ict_irix5 | |
7281 | && bfd_get_section_by_name (abfd, ".dynamic") | |
7282 | && bfd_get_section_by_name (abfd, ".mdebug")) | |
7283 | ++ret; | |
7284 | ||
7285 | return ret; | |
7286 | } | |
7287 | ||
8dc1a139 | 7288 | /* Modify the segment map for an IRIX5 executable. */ |
b49e97c9 | 7289 | |
b34976b6 | 7290 | bfd_boolean |
b49e97c9 TS |
7291 | _bfd_mips_elf_modify_segment_map (abfd) |
7292 | bfd *abfd; | |
7293 | { | |
7294 | asection *s; | |
7295 | struct elf_segment_map *m, **pm; | |
7296 | bfd_size_type amt; | |
7297 | ||
7298 | /* If there is a .reginfo section, we need a PT_MIPS_REGINFO | |
7299 | segment. */ | |
7300 | s = bfd_get_section_by_name (abfd, ".reginfo"); | |
7301 | if (s != NULL && (s->flags & SEC_LOAD) != 0) | |
7302 | { | |
7303 | for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next) | |
7304 | if (m->p_type == PT_MIPS_REGINFO) | |
7305 | break; | |
7306 | if (m == NULL) | |
7307 | { | |
7308 | amt = sizeof *m; | |
7309 | m = (struct elf_segment_map *) bfd_zalloc (abfd, amt); | |
7310 | if (m == NULL) | |
b34976b6 | 7311 | return FALSE; |
b49e97c9 TS |
7312 | |
7313 | m->p_type = PT_MIPS_REGINFO; | |
7314 | m->count = 1; | |
7315 | m->sections[0] = s; | |
7316 | ||
7317 | /* We want to put it after the PHDR and INTERP segments. */ | |
7318 | pm = &elf_tdata (abfd)->segment_map; | |
7319 | while (*pm != NULL | |
7320 | && ((*pm)->p_type == PT_PHDR | |
7321 | || (*pm)->p_type == PT_INTERP)) | |
7322 | pm = &(*pm)->next; | |
7323 | ||
7324 | m->next = *pm; | |
7325 | *pm = m; | |
7326 | } | |
7327 | } | |
7328 | ||
7329 | /* For IRIX 6, we don't have .mdebug sections, nor does anything but | |
7330 | .dynamic end up in PT_DYNAMIC. However, we do have to insert a | |
98a8deaf | 7331 | PT_MIPS_OPTIONS segment immediately following the program header |
b49e97c9 | 7332 | table. */ |
c1fd6598 AO |
7333 | if (NEWABI_P (abfd) |
7334 | /* On non-IRIX6 new abi, we'll have already created a segment | |
7335 | for this section, so don't create another. I'm not sure this | |
7336 | is not also the case for IRIX 6, but I can't test it right | |
7337 | now. */ | |
7338 | && IRIX_COMPAT (abfd) == ict_irix6) | |
b49e97c9 TS |
7339 | { |
7340 | for (s = abfd->sections; s; s = s->next) | |
7341 | if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS) | |
7342 | break; | |
7343 | ||
7344 | if (s) | |
7345 | { | |
7346 | struct elf_segment_map *options_segment; | |
7347 | ||
98a8deaf RS |
7348 | pm = &elf_tdata (abfd)->segment_map; |
7349 | while (*pm != NULL | |
7350 | && ((*pm)->p_type == PT_PHDR | |
7351 | || (*pm)->p_type == PT_INTERP)) | |
7352 | pm = &(*pm)->next; | |
b49e97c9 TS |
7353 | |
7354 | amt = sizeof (struct elf_segment_map); | |
7355 | options_segment = bfd_zalloc (abfd, amt); | |
7356 | options_segment->next = *pm; | |
7357 | options_segment->p_type = PT_MIPS_OPTIONS; | |
7358 | options_segment->p_flags = PF_R; | |
b34976b6 | 7359 | options_segment->p_flags_valid = TRUE; |
b49e97c9 TS |
7360 | options_segment->count = 1; |
7361 | options_segment->sections[0] = s; | |
7362 | *pm = options_segment; | |
7363 | } | |
7364 | } | |
7365 | else | |
7366 | { | |
7367 | if (IRIX_COMPAT (abfd) == ict_irix5) | |
7368 | { | |
7369 | /* If there are .dynamic and .mdebug sections, we make a room | |
7370 | for the RTPROC header. FIXME: Rewrite without section names. */ | |
7371 | if (bfd_get_section_by_name (abfd, ".interp") == NULL | |
7372 | && bfd_get_section_by_name (abfd, ".dynamic") != NULL | |
7373 | && bfd_get_section_by_name (abfd, ".mdebug") != NULL) | |
7374 | { | |
7375 | for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next) | |
7376 | if (m->p_type == PT_MIPS_RTPROC) | |
7377 | break; | |
7378 | if (m == NULL) | |
7379 | { | |
7380 | amt = sizeof *m; | |
7381 | m = (struct elf_segment_map *) bfd_zalloc (abfd, amt); | |
7382 | if (m == NULL) | |
b34976b6 | 7383 | return FALSE; |
b49e97c9 TS |
7384 | |
7385 | m->p_type = PT_MIPS_RTPROC; | |
7386 | ||
7387 | s = bfd_get_section_by_name (abfd, ".rtproc"); | |
7388 | if (s == NULL) | |
7389 | { | |
7390 | m->count = 0; | |
7391 | m->p_flags = 0; | |
7392 | m->p_flags_valid = 1; | |
7393 | } | |
7394 | else | |
7395 | { | |
7396 | m->count = 1; | |
7397 | m->sections[0] = s; | |
7398 | } | |
7399 | ||
7400 | /* We want to put it after the DYNAMIC segment. */ | |
7401 | pm = &elf_tdata (abfd)->segment_map; | |
7402 | while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC) | |
7403 | pm = &(*pm)->next; | |
7404 | if (*pm != NULL) | |
7405 | pm = &(*pm)->next; | |
7406 | ||
7407 | m->next = *pm; | |
7408 | *pm = m; | |
7409 | } | |
7410 | } | |
7411 | } | |
8dc1a139 | 7412 | /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic, |
b49e97c9 TS |
7413 | .dynstr, .dynsym, and .hash sections, and everything in |
7414 | between. */ | |
7415 | for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; | |
7416 | pm = &(*pm)->next) | |
7417 | if ((*pm)->p_type == PT_DYNAMIC) | |
7418 | break; | |
7419 | m = *pm; | |
7420 | if (m != NULL && IRIX_COMPAT (abfd) == ict_none) | |
7421 | { | |
7422 | /* For a normal mips executable the permissions for the PT_DYNAMIC | |
7423 | segment are read, write and execute. We do that here since | |
7424 | the code in elf.c sets only the read permission. This matters | |
7425 | sometimes for the dynamic linker. */ | |
7426 | if (bfd_get_section_by_name (abfd, ".dynamic") != NULL) | |
7427 | { | |
7428 | m->p_flags = PF_R | PF_W | PF_X; | |
7429 | m->p_flags_valid = 1; | |
7430 | } | |
7431 | } | |
7432 | if (m != NULL | |
7433 | && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0) | |
7434 | { | |
7435 | static const char *sec_names[] = | |
7436 | { | |
7437 | ".dynamic", ".dynstr", ".dynsym", ".hash" | |
7438 | }; | |
7439 | bfd_vma low, high; | |
7440 | unsigned int i, c; | |
7441 | struct elf_segment_map *n; | |
7442 | ||
792b4a53 | 7443 | low = ~(bfd_vma) 0; |
b49e97c9 TS |
7444 | high = 0; |
7445 | for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++) | |
7446 | { | |
7447 | s = bfd_get_section_by_name (abfd, sec_names[i]); | |
7448 | if (s != NULL && (s->flags & SEC_LOAD) != 0) | |
7449 | { | |
7450 | bfd_size_type sz; | |
7451 | ||
7452 | if (low > s->vma) | |
7453 | low = s->vma; | |
7454 | sz = s->_cooked_size; | |
7455 | if (sz == 0) | |
7456 | sz = s->_raw_size; | |
7457 | if (high < s->vma + sz) | |
7458 | high = s->vma + sz; | |
7459 | } | |
7460 | } | |
7461 | ||
7462 | c = 0; | |
7463 | for (s = abfd->sections; s != NULL; s = s->next) | |
7464 | if ((s->flags & SEC_LOAD) != 0 | |
7465 | && s->vma >= low | |
7466 | && ((s->vma | |
7467 | + (s->_cooked_size != | |
7468 | 0 ? s->_cooked_size : s->_raw_size)) <= high)) | |
7469 | ++c; | |
7470 | ||
7471 | amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *); | |
7472 | n = (struct elf_segment_map *) bfd_zalloc (abfd, amt); | |
7473 | if (n == NULL) | |
b34976b6 | 7474 | return FALSE; |
b49e97c9 TS |
7475 | *n = *m; |
7476 | n->count = c; | |
7477 | ||
7478 | i = 0; | |
7479 | for (s = abfd->sections; s != NULL; s = s->next) | |
7480 | { | |
7481 | if ((s->flags & SEC_LOAD) != 0 | |
7482 | && s->vma >= low | |
7483 | && ((s->vma | |
7484 | + (s->_cooked_size != 0 ? | |
7485 | s->_cooked_size : s->_raw_size)) <= high)) | |
7486 | { | |
7487 | n->sections[i] = s; | |
7488 | ++i; | |
7489 | } | |
7490 | } | |
7491 | ||
7492 | *pm = n; | |
7493 | } | |
7494 | } | |
7495 | ||
b34976b6 | 7496 | return TRUE; |
b49e97c9 TS |
7497 | } |
7498 | \f | |
7499 | /* Return the section that should be marked against GC for a given | |
7500 | relocation. */ | |
7501 | ||
7502 | asection * | |
1e2f5b6e AM |
7503 | _bfd_mips_elf_gc_mark_hook (sec, info, rel, h, sym) |
7504 | asection *sec; | |
b49e97c9 TS |
7505 | struct bfd_link_info *info ATTRIBUTE_UNUSED; |
7506 | Elf_Internal_Rela *rel; | |
7507 | struct elf_link_hash_entry *h; | |
7508 | Elf_Internal_Sym *sym; | |
7509 | { | |
7510 | /* ??? Do mips16 stub sections need to be handled special? */ | |
7511 | ||
7512 | if (h != NULL) | |
7513 | { | |
1e2f5b6e | 7514 | switch (ELF_R_TYPE (sec->owner, rel->r_info)) |
b49e97c9 TS |
7515 | { |
7516 | case R_MIPS_GNU_VTINHERIT: | |
7517 | case R_MIPS_GNU_VTENTRY: | |
7518 | break; | |
7519 | ||
7520 | default: | |
7521 | switch (h->root.type) | |
7522 | { | |
7523 | case bfd_link_hash_defined: | |
7524 | case bfd_link_hash_defweak: | |
7525 | return h->root.u.def.section; | |
7526 | ||
7527 | case bfd_link_hash_common: | |
7528 | return h->root.u.c.p->section; | |
7529 | ||
7530 | default: | |
7531 | break; | |
7532 | } | |
7533 | } | |
7534 | } | |
7535 | else | |
1e2f5b6e | 7536 | return bfd_section_from_elf_index (sec->owner, sym->st_shndx); |
b49e97c9 TS |
7537 | |
7538 | return NULL; | |
7539 | } | |
7540 | ||
7541 | /* Update the got entry reference counts for the section being removed. */ | |
7542 | ||
b34976b6 | 7543 | bfd_boolean |
b49e97c9 TS |
7544 | _bfd_mips_elf_gc_sweep_hook (abfd, info, sec, relocs) |
7545 | bfd *abfd ATTRIBUTE_UNUSED; | |
7546 | struct bfd_link_info *info ATTRIBUTE_UNUSED; | |
7547 | asection *sec ATTRIBUTE_UNUSED; | |
7548 | const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED; | |
7549 | { | |
7550 | #if 0 | |
7551 | Elf_Internal_Shdr *symtab_hdr; | |
7552 | struct elf_link_hash_entry **sym_hashes; | |
7553 | bfd_signed_vma *local_got_refcounts; | |
7554 | const Elf_Internal_Rela *rel, *relend; | |
7555 | unsigned long r_symndx; | |
7556 | struct elf_link_hash_entry *h; | |
7557 | ||
7558 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
7559 | sym_hashes = elf_sym_hashes (abfd); | |
7560 | local_got_refcounts = elf_local_got_refcounts (abfd); | |
7561 | ||
7562 | relend = relocs + sec->reloc_count; | |
7563 | for (rel = relocs; rel < relend; rel++) | |
7564 | switch (ELF_R_TYPE (abfd, rel->r_info)) | |
7565 | { | |
7566 | case R_MIPS_GOT16: | |
7567 | case R_MIPS_CALL16: | |
7568 | case R_MIPS_CALL_HI16: | |
7569 | case R_MIPS_CALL_LO16: | |
7570 | case R_MIPS_GOT_HI16: | |
7571 | case R_MIPS_GOT_LO16: | |
4a14403c TS |
7572 | case R_MIPS_GOT_DISP: |
7573 | case R_MIPS_GOT_PAGE: | |
7574 | case R_MIPS_GOT_OFST: | |
b49e97c9 TS |
7575 | /* ??? It would seem that the existing MIPS code does no sort |
7576 | of reference counting or whatnot on its GOT and PLT entries, | |
7577 | so it is not possible to garbage collect them at this time. */ | |
7578 | break; | |
7579 | ||
7580 | default: | |
7581 | break; | |
7582 | } | |
7583 | #endif | |
7584 | ||
b34976b6 | 7585 | return TRUE; |
b49e97c9 TS |
7586 | } |
7587 | \f | |
7588 | /* Copy data from a MIPS ELF indirect symbol to its direct symbol, | |
7589 | hiding the old indirect symbol. Process additional relocation | |
7590 | information. Also called for weakdefs, in which case we just let | |
7591 | _bfd_elf_link_hash_copy_indirect copy the flags for us. */ | |
7592 | ||
7593 | void | |
b48fa14c | 7594 | _bfd_mips_elf_copy_indirect_symbol (bed, dir, ind) |
9c5bfbb7 | 7595 | const struct elf_backend_data *bed; |
b49e97c9 TS |
7596 | struct elf_link_hash_entry *dir, *ind; |
7597 | { | |
7598 | struct mips_elf_link_hash_entry *dirmips, *indmips; | |
7599 | ||
b48fa14c | 7600 | _bfd_elf_link_hash_copy_indirect (bed, dir, ind); |
b49e97c9 TS |
7601 | |
7602 | if (ind->root.type != bfd_link_hash_indirect) | |
7603 | return; | |
7604 | ||
7605 | dirmips = (struct mips_elf_link_hash_entry *) dir; | |
7606 | indmips = (struct mips_elf_link_hash_entry *) ind; | |
7607 | dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs; | |
7608 | if (indmips->readonly_reloc) | |
b34976b6 | 7609 | dirmips->readonly_reloc = TRUE; |
b49e97c9 | 7610 | if (indmips->no_fn_stub) |
b34976b6 | 7611 | dirmips->no_fn_stub = TRUE; |
b49e97c9 TS |
7612 | } |
7613 | ||
7614 | void | |
7615 | _bfd_mips_elf_hide_symbol (info, entry, force_local) | |
7616 | struct bfd_link_info *info; | |
7617 | struct elf_link_hash_entry *entry; | |
b34976b6 | 7618 | bfd_boolean force_local; |
b49e97c9 TS |
7619 | { |
7620 | bfd *dynobj; | |
7621 | asection *got; | |
7622 | struct mips_got_info *g; | |
7623 | struct mips_elf_link_hash_entry *h; | |
7c5fcef7 | 7624 | |
b49e97c9 | 7625 | h = (struct mips_elf_link_hash_entry *) entry; |
7c5fcef7 L |
7626 | if (h->forced_local) |
7627 | return; | |
4b555070 | 7628 | h->forced_local = force_local; |
7c5fcef7 | 7629 | |
b49e97c9 | 7630 | dynobj = elf_hash_table (info)->dynobj; |
4b555070 | 7631 | if (dynobj != NULL && force_local) |
f4416af6 | 7632 | { |
c45a316a AM |
7633 | got = mips_elf_got_section (dynobj, FALSE); |
7634 | g = mips_elf_section_data (got)->u.got_info; | |
f4416af6 | 7635 | |
c45a316a AM |
7636 | if (g->next) |
7637 | { | |
7638 | struct mips_got_entry e; | |
7639 | struct mips_got_info *gg = g; | |
7640 | ||
7641 | /* Since we're turning what used to be a global symbol into a | |
7642 | local one, bump up the number of local entries of each GOT | |
7643 | that had an entry for it. This will automatically decrease | |
7644 | the number of global entries, since global_gotno is actually | |
7645 | the upper limit of global entries. */ | |
7646 | e.abfd = dynobj; | |
7647 | e.symndx = -1; | |
7648 | e.d.h = h; | |
7649 | ||
7650 | for (g = g->next; g != gg; g = g->next) | |
7651 | if (htab_find (g->got_entries, &e)) | |
7652 | { | |
7653 | BFD_ASSERT (g->global_gotno > 0); | |
7654 | g->local_gotno++; | |
7655 | g->global_gotno--; | |
7656 | } | |
b49e97c9 | 7657 | |
c45a316a AM |
7658 | /* If this was a global symbol forced into the primary GOT, we |
7659 | no longer need an entry for it. We can't release the entry | |
7660 | at this point, but we must at least stop counting it as one | |
7661 | of the symbols that required a forced got entry. */ | |
7662 | if (h->root.got.offset == 2) | |
7663 | { | |
7664 | BFD_ASSERT (gg->assigned_gotno > 0); | |
7665 | gg->assigned_gotno--; | |
7666 | } | |
7667 | } | |
7668 | else if (g->global_gotno == 0 && g->global_gotsym == NULL) | |
7669 | /* If we haven't got through GOT allocation yet, just bump up the | |
7670 | number of local entries, as this symbol won't be counted as | |
7671 | global. */ | |
7672 | g->local_gotno++; | |
7673 | else if (h->root.got.offset == 1) | |
f4416af6 | 7674 | { |
c45a316a AM |
7675 | /* If we're past non-multi-GOT allocation and this symbol had |
7676 | been marked for a global got entry, give it a local entry | |
7677 | instead. */ | |
7678 | BFD_ASSERT (g->global_gotno > 0); | |
7679 | g->local_gotno++; | |
7680 | g->global_gotno--; | |
f4416af6 AO |
7681 | } |
7682 | } | |
f4416af6 AO |
7683 | |
7684 | _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local); | |
b49e97c9 TS |
7685 | } |
7686 | \f | |
d01414a5 TS |
7687 | #define PDR_SIZE 32 |
7688 | ||
b34976b6 | 7689 | bfd_boolean |
d01414a5 TS |
7690 | _bfd_mips_elf_discard_info (abfd, cookie, info) |
7691 | bfd *abfd; | |
7692 | struct elf_reloc_cookie *cookie; | |
7693 | struct bfd_link_info *info; | |
7694 | { | |
7695 | asection *o; | |
b34976b6 | 7696 | bfd_boolean ret = FALSE; |
d01414a5 TS |
7697 | unsigned char *tdata; |
7698 | size_t i, skip; | |
7699 | ||
7700 | o = bfd_get_section_by_name (abfd, ".pdr"); | |
7701 | if (! o) | |
b34976b6 | 7702 | return FALSE; |
d01414a5 | 7703 | if (o->_raw_size == 0) |
b34976b6 | 7704 | return FALSE; |
d01414a5 | 7705 | if (o->_raw_size % PDR_SIZE != 0) |
b34976b6 | 7706 | return FALSE; |
d01414a5 TS |
7707 | if (o->output_section != NULL |
7708 | && bfd_is_abs_section (o->output_section)) | |
b34976b6 | 7709 | return FALSE; |
d01414a5 TS |
7710 | |
7711 | tdata = bfd_zmalloc (o->_raw_size / PDR_SIZE); | |
7712 | if (! tdata) | |
b34976b6 | 7713 | return FALSE; |
d01414a5 | 7714 | |
45d6a902 AM |
7715 | cookie->rels = _bfd_elf_link_read_relocs (abfd, o, (PTR) NULL, |
7716 | (Elf_Internal_Rela *) NULL, | |
7717 | info->keep_memory); | |
d01414a5 TS |
7718 | if (!cookie->rels) |
7719 | { | |
7720 | free (tdata); | |
b34976b6 | 7721 | return FALSE; |
d01414a5 TS |
7722 | } |
7723 | ||
7724 | cookie->rel = cookie->rels; | |
7725 | cookie->relend = cookie->rels + o->reloc_count; | |
7726 | ||
c9c27aad | 7727 | for (i = 0, skip = 0; i < o->_raw_size / PDR_SIZE; i ++) |
d01414a5 | 7728 | { |
ee6423ed | 7729 | if (MNAME(abfd,_bfd_elf,reloc_symbol_deleted_p) (i * PDR_SIZE, cookie)) |
d01414a5 TS |
7730 | { |
7731 | tdata[i] = 1; | |
7732 | skip ++; | |
7733 | } | |
7734 | } | |
7735 | ||
7736 | if (skip != 0) | |
7737 | { | |
f0abc2a1 | 7738 | mips_elf_section_data (o)->u.tdata = tdata; |
d01414a5 | 7739 | o->_cooked_size = o->_raw_size - skip * PDR_SIZE; |
b34976b6 | 7740 | ret = TRUE; |
d01414a5 TS |
7741 | } |
7742 | else | |
7743 | free (tdata); | |
7744 | ||
7745 | if (! info->keep_memory) | |
7746 | free (cookie->rels); | |
7747 | ||
7748 | return ret; | |
7749 | } | |
7750 | ||
b34976b6 | 7751 | bfd_boolean |
53bfd6b4 MR |
7752 | _bfd_mips_elf_ignore_discarded_relocs (sec) |
7753 | asection *sec; | |
7754 | { | |
7755 | if (strcmp (sec->name, ".pdr") == 0) | |
b34976b6 AM |
7756 | return TRUE; |
7757 | return FALSE; | |
53bfd6b4 | 7758 | } |
d01414a5 | 7759 | |
b34976b6 | 7760 | bfd_boolean |
d01414a5 TS |
7761 | _bfd_mips_elf_write_section (output_bfd, sec, contents) |
7762 | bfd *output_bfd; | |
7763 | asection *sec; | |
7764 | bfd_byte *contents; | |
7765 | { | |
7766 | bfd_byte *to, *from, *end; | |
7767 | int i; | |
7768 | ||
7769 | if (strcmp (sec->name, ".pdr") != 0) | |
b34976b6 | 7770 | return FALSE; |
d01414a5 | 7771 | |
f0abc2a1 | 7772 | if (mips_elf_section_data (sec)->u.tdata == NULL) |
b34976b6 | 7773 | return FALSE; |
d01414a5 TS |
7774 | |
7775 | to = contents; | |
7776 | end = contents + sec->_raw_size; | |
7777 | for (from = contents, i = 0; | |
7778 | from < end; | |
7779 | from += PDR_SIZE, i++) | |
7780 | { | |
f0abc2a1 | 7781 | if ((mips_elf_section_data (sec)->u.tdata)[i] == 1) |
d01414a5 TS |
7782 | continue; |
7783 | if (to != from) | |
7784 | memcpy (to, from, PDR_SIZE); | |
7785 | to += PDR_SIZE; | |
7786 | } | |
7787 | bfd_set_section_contents (output_bfd, sec->output_section, contents, | |
7788 | (file_ptr) sec->output_offset, | |
7789 | sec->_cooked_size); | |
b34976b6 | 7790 | return TRUE; |
d01414a5 | 7791 | } |
53bfd6b4 | 7792 | \f |
b49e97c9 TS |
7793 | /* MIPS ELF uses a special find_nearest_line routine in order the |
7794 | handle the ECOFF debugging information. */ | |
7795 | ||
7796 | struct mips_elf_find_line | |
7797 | { | |
7798 | struct ecoff_debug_info d; | |
7799 | struct ecoff_find_line i; | |
7800 | }; | |
7801 | ||
b34976b6 | 7802 | bfd_boolean |
b49e97c9 TS |
7803 | _bfd_mips_elf_find_nearest_line (abfd, section, symbols, offset, filename_ptr, |
7804 | functionname_ptr, line_ptr) | |
7805 | bfd *abfd; | |
7806 | asection *section; | |
7807 | asymbol **symbols; | |
7808 | bfd_vma offset; | |
7809 | const char **filename_ptr; | |
7810 | const char **functionname_ptr; | |
7811 | unsigned int *line_ptr; | |
7812 | { | |
7813 | asection *msec; | |
7814 | ||
7815 | if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset, | |
7816 | filename_ptr, functionname_ptr, | |
7817 | line_ptr)) | |
b34976b6 | 7818 | return TRUE; |
b49e97c9 TS |
7819 | |
7820 | if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset, | |
7821 | filename_ptr, functionname_ptr, | |
7822 | line_ptr, | |
7823 | (unsigned) (ABI_64_P (abfd) ? 8 : 0), | |
7824 | &elf_tdata (abfd)->dwarf2_find_line_info)) | |
b34976b6 | 7825 | return TRUE; |
b49e97c9 TS |
7826 | |
7827 | msec = bfd_get_section_by_name (abfd, ".mdebug"); | |
7828 | if (msec != NULL) | |
7829 | { | |
7830 | flagword origflags; | |
7831 | struct mips_elf_find_line *fi; | |
7832 | const struct ecoff_debug_swap * const swap = | |
7833 | get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; | |
7834 | ||
7835 | /* If we are called during a link, mips_elf_final_link may have | |
7836 | cleared the SEC_HAS_CONTENTS field. We force it back on here | |
7837 | if appropriate (which it normally will be). */ | |
7838 | origflags = msec->flags; | |
7839 | if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS) | |
7840 | msec->flags |= SEC_HAS_CONTENTS; | |
7841 | ||
7842 | fi = elf_tdata (abfd)->find_line_info; | |
7843 | if (fi == NULL) | |
7844 | { | |
7845 | bfd_size_type external_fdr_size; | |
7846 | char *fraw_src; | |
7847 | char *fraw_end; | |
7848 | struct fdr *fdr_ptr; | |
7849 | bfd_size_type amt = sizeof (struct mips_elf_find_line); | |
7850 | ||
7851 | fi = (struct mips_elf_find_line *) bfd_zalloc (abfd, amt); | |
7852 | if (fi == NULL) | |
7853 | { | |
7854 | msec->flags = origflags; | |
b34976b6 | 7855 | return FALSE; |
b49e97c9 TS |
7856 | } |
7857 | ||
7858 | if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d)) | |
7859 | { | |
7860 | msec->flags = origflags; | |
b34976b6 | 7861 | return FALSE; |
b49e97c9 TS |
7862 | } |
7863 | ||
7864 | /* Swap in the FDR information. */ | |
7865 | amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr); | |
7866 | fi->d.fdr = (struct fdr *) bfd_alloc (abfd, amt); | |
7867 | if (fi->d.fdr == NULL) | |
7868 | { | |
7869 | msec->flags = origflags; | |
b34976b6 | 7870 | return FALSE; |
b49e97c9 TS |
7871 | } |
7872 | external_fdr_size = swap->external_fdr_size; | |
7873 | fdr_ptr = fi->d.fdr; | |
7874 | fraw_src = (char *) fi->d.external_fdr; | |
7875 | fraw_end = (fraw_src | |
7876 | + fi->d.symbolic_header.ifdMax * external_fdr_size); | |
7877 | for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++) | |
7878 | (*swap->swap_fdr_in) (abfd, (PTR) fraw_src, fdr_ptr); | |
7879 | ||
7880 | elf_tdata (abfd)->find_line_info = fi; | |
7881 | ||
7882 | /* Note that we don't bother to ever free this information. | |
7883 | find_nearest_line is either called all the time, as in | |
7884 | objdump -l, so the information should be saved, or it is | |
7885 | rarely called, as in ld error messages, so the memory | |
7886 | wasted is unimportant. Still, it would probably be a | |
7887 | good idea for free_cached_info to throw it away. */ | |
7888 | } | |
7889 | ||
7890 | if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap, | |
7891 | &fi->i, filename_ptr, functionname_ptr, | |
7892 | line_ptr)) | |
7893 | { | |
7894 | msec->flags = origflags; | |
b34976b6 | 7895 | return TRUE; |
b49e97c9 TS |
7896 | } |
7897 | ||
7898 | msec->flags = origflags; | |
7899 | } | |
7900 | ||
7901 | /* Fall back on the generic ELF find_nearest_line routine. */ | |
7902 | ||
7903 | return _bfd_elf_find_nearest_line (abfd, section, symbols, offset, | |
7904 | filename_ptr, functionname_ptr, | |
7905 | line_ptr); | |
7906 | } | |
7907 | \f | |
7908 | /* When are writing out the .options or .MIPS.options section, | |
7909 | remember the bytes we are writing out, so that we can install the | |
7910 | GP value in the section_processing routine. */ | |
7911 | ||
b34976b6 | 7912 | bfd_boolean |
b49e97c9 TS |
7913 | _bfd_mips_elf_set_section_contents (abfd, section, location, offset, count) |
7914 | bfd *abfd; | |
7915 | sec_ptr section; | |
0f867abe | 7916 | const PTR location; |
b49e97c9 TS |
7917 | file_ptr offset; |
7918 | bfd_size_type count; | |
7919 | { | |
7920 | if (strcmp (section->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0) | |
7921 | { | |
7922 | bfd_byte *c; | |
7923 | ||
7924 | if (elf_section_data (section) == NULL) | |
7925 | { | |
7926 | bfd_size_type amt = sizeof (struct bfd_elf_section_data); | |
7927 | section->used_by_bfd = (PTR) bfd_zalloc (abfd, amt); | |
7928 | if (elf_section_data (section) == NULL) | |
b34976b6 | 7929 | return FALSE; |
b49e97c9 | 7930 | } |
f0abc2a1 | 7931 | c = mips_elf_section_data (section)->u.tdata; |
b49e97c9 TS |
7932 | if (c == NULL) |
7933 | { | |
7934 | bfd_size_type size; | |
7935 | ||
7936 | if (section->_cooked_size != 0) | |
7937 | size = section->_cooked_size; | |
7938 | else | |
7939 | size = section->_raw_size; | |
7940 | c = (bfd_byte *) bfd_zalloc (abfd, size); | |
7941 | if (c == NULL) | |
b34976b6 | 7942 | return FALSE; |
f0abc2a1 | 7943 | mips_elf_section_data (section)->u.tdata = c; |
b49e97c9 TS |
7944 | } |
7945 | ||
7946 | memcpy (c + offset, location, (size_t) count); | |
7947 | } | |
7948 | ||
7949 | return _bfd_elf_set_section_contents (abfd, section, location, offset, | |
7950 | count); | |
7951 | } | |
7952 | ||
7953 | /* This is almost identical to bfd_generic_get_... except that some | |
7954 | MIPS relocations need to be handled specially. Sigh. */ | |
7955 | ||
7956 | bfd_byte * | |
7957 | _bfd_elf_mips_get_relocated_section_contents (abfd, link_info, link_order, | |
1049f94e | 7958 | data, relocatable, symbols) |
b49e97c9 TS |
7959 | bfd *abfd; |
7960 | struct bfd_link_info *link_info; | |
7961 | struct bfd_link_order *link_order; | |
7962 | bfd_byte *data; | |
1049f94e | 7963 | bfd_boolean relocatable; |
b49e97c9 TS |
7964 | asymbol **symbols; |
7965 | { | |
7966 | /* Get enough memory to hold the stuff */ | |
7967 | bfd *input_bfd = link_order->u.indirect.section->owner; | |
7968 | asection *input_section = link_order->u.indirect.section; | |
7969 | ||
7970 | long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section); | |
7971 | arelent **reloc_vector = NULL; | |
7972 | long reloc_count; | |
7973 | ||
7974 | if (reloc_size < 0) | |
7975 | goto error_return; | |
7976 | ||
7977 | reloc_vector = (arelent **) bfd_malloc ((bfd_size_type) reloc_size); | |
7978 | if (reloc_vector == NULL && reloc_size != 0) | |
7979 | goto error_return; | |
7980 | ||
7981 | /* read in the section */ | |
7982 | if (!bfd_get_section_contents (input_bfd, | |
7983 | input_section, | |
7984 | (PTR) data, | |
7985 | (file_ptr) 0, | |
7986 | input_section->_raw_size)) | |
7987 | goto error_return; | |
7988 | ||
7989 | /* We're not relaxing the section, so just copy the size info */ | |
7990 | input_section->_cooked_size = input_section->_raw_size; | |
b34976b6 | 7991 | input_section->reloc_done = TRUE; |
b49e97c9 TS |
7992 | |
7993 | reloc_count = bfd_canonicalize_reloc (input_bfd, | |
7994 | input_section, | |
7995 | reloc_vector, | |
7996 | symbols); | |
7997 | if (reloc_count < 0) | |
7998 | goto error_return; | |
7999 | ||
8000 | if (reloc_count > 0) | |
8001 | { | |
8002 | arelent **parent; | |
8003 | /* for mips */ | |
8004 | int gp_found; | |
8005 | bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */ | |
8006 | ||
8007 | { | |
8008 | struct bfd_hash_entry *h; | |
8009 | struct bfd_link_hash_entry *lh; | |
8010 | /* Skip all this stuff if we aren't mixing formats. */ | |
8011 | if (abfd && input_bfd | |
8012 | && abfd->xvec == input_bfd->xvec) | |
8013 | lh = 0; | |
8014 | else | |
8015 | { | |
b34976b6 | 8016 | h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE); |
b49e97c9 TS |
8017 | lh = (struct bfd_link_hash_entry *) h; |
8018 | } | |
8019 | lookup: | |
8020 | if (lh) | |
8021 | { | |
8022 | switch (lh->type) | |
8023 | { | |
8024 | case bfd_link_hash_undefined: | |
8025 | case bfd_link_hash_undefweak: | |
8026 | case bfd_link_hash_common: | |
8027 | gp_found = 0; | |
8028 | break; | |
8029 | case bfd_link_hash_defined: | |
8030 | case bfd_link_hash_defweak: | |
8031 | gp_found = 1; | |
8032 | gp = lh->u.def.value; | |
8033 | break; | |
8034 | case bfd_link_hash_indirect: | |
8035 | case bfd_link_hash_warning: | |
8036 | lh = lh->u.i.link; | |
8037 | /* @@FIXME ignoring warning for now */ | |
8038 | goto lookup; | |
8039 | case bfd_link_hash_new: | |
8040 | default: | |
8041 | abort (); | |
8042 | } | |
8043 | } | |
8044 | else | |
8045 | gp_found = 0; | |
8046 | } | |
8047 | /* end mips */ | |
8048 | for (parent = reloc_vector; *parent != (arelent *) NULL; | |
8049 | parent++) | |
8050 | { | |
8051 | char *error_message = (char *) NULL; | |
8052 | bfd_reloc_status_type r; | |
8053 | ||
8054 | /* Specific to MIPS: Deal with relocation types that require | |
8055 | knowing the gp of the output bfd. */ | |
8056 | asymbol *sym = *(*parent)->sym_ptr_ptr; | |
8057 | if (bfd_is_abs_section (sym->section) && abfd) | |
8058 | { | |
44c410de | 8059 | /* The special_function wouldn't get called anyway. */ |
b49e97c9 TS |
8060 | } |
8061 | else if (!gp_found) | |
8062 | { | |
8063 | /* The gp isn't there; let the special function code | |
8064 | fall over on its own. */ | |
8065 | } | |
8066 | else if ((*parent)->howto->special_function | |
8067 | == _bfd_mips_elf32_gprel16_reloc) | |
8068 | { | |
8069 | /* bypass special_function call */ | |
8070 | r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent, | |
1049f94e | 8071 | input_section, relocatable, |
b49e97c9 TS |
8072 | (PTR) data, gp); |
8073 | goto skip_bfd_perform_relocation; | |
8074 | } | |
8075 | /* end mips specific stuff */ | |
8076 | ||
8077 | r = bfd_perform_relocation (input_bfd, | |
8078 | *parent, | |
8079 | (PTR) data, | |
8080 | input_section, | |
1049f94e | 8081 | relocatable ? abfd : (bfd *) NULL, |
b49e97c9 TS |
8082 | &error_message); |
8083 | skip_bfd_perform_relocation: | |
8084 | ||
1049f94e | 8085 | if (relocatable) |
b49e97c9 TS |
8086 | { |
8087 | asection *os = input_section->output_section; | |
8088 | ||
8089 | /* A partial link, so keep the relocs */ | |
8090 | os->orelocation[os->reloc_count] = *parent; | |
8091 | os->reloc_count++; | |
8092 | } | |
8093 | ||
8094 | if (r != bfd_reloc_ok) | |
8095 | { | |
8096 | switch (r) | |
8097 | { | |
8098 | case bfd_reloc_undefined: | |
8099 | if (!((*link_info->callbacks->undefined_symbol) | |
8100 | (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr), | |
8101 | input_bfd, input_section, (*parent)->address, | |
b34976b6 | 8102 | TRUE))) |
b49e97c9 TS |
8103 | goto error_return; |
8104 | break; | |
8105 | case bfd_reloc_dangerous: | |
8106 | BFD_ASSERT (error_message != (char *) NULL); | |
8107 | if (!((*link_info->callbacks->reloc_dangerous) | |
8108 | (link_info, error_message, input_bfd, input_section, | |
8109 | (*parent)->address))) | |
8110 | goto error_return; | |
8111 | break; | |
8112 | case bfd_reloc_overflow: | |
8113 | if (!((*link_info->callbacks->reloc_overflow) | |
8114 | (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr), | |
8115 | (*parent)->howto->name, (*parent)->addend, | |
8116 | input_bfd, input_section, (*parent)->address))) | |
8117 | goto error_return; | |
8118 | break; | |
8119 | case bfd_reloc_outofrange: | |
8120 | default: | |
8121 | abort (); | |
8122 | break; | |
8123 | } | |
8124 | ||
8125 | } | |
8126 | } | |
8127 | } | |
8128 | if (reloc_vector != NULL) | |
8129 | free (reloc_vector); | |
8130 | return data; | |
8131 | ||
8132 | error_return: | |
8133 | if (reloc_vector != NULL) | |
8134 | free (reloc_vector); | |
8135 | return NULL; | |
8136 | } | |
8137 | \f | |
8138 | /* Create a MIPS ELF linker hash table. */ | |
8139 | ||
8140 | struct bfd_link_hash_table * | |
8141 | _bfd_mips_elf_link_hash_table_create (abfd) | |
8142 | bfd *abfd; | |
8143 | { | |
8144 | struct mips_elf_link_hash_table *ret; | |
8145 | bfd_size_type amt = sizeof (struct mips_elf_link_hash_table); | |
8146 | ||
e2d34d7d | 8147 | ret = (struct mips_elf_link_hash_table *) bfd_malloc (amt); |
b49e97c9 TS |
8148 | if (ret == (struct mips_elf_link_hash_table *) NULL) |
8149 | return NULL; | |
8150 | ||
8151 | if (! _bfd_elf_link_hash_table_init (&ret->root, abfd, | |
8152 | mips_elf_link_hash_newfunc)) | |
8153 | { | |
e2d34d7d | 8154 | free (ret); |
b49e97c9 TS |
8155 | return NULL; |
8156 | } | |
8157 | ||
8158 | #if 0 | |
8159 | /* We no longer use this. */ | |
8160 | for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++) | |
8161 | ret->dynsym_sec_strindex[i] = (bfd_size_type) -1; | |
8162 | #endif | |
8163 | ret->procedure_count = 0; | |
8164 | ret->compact_rel_size = 0; | |
b34976b6 | 8165 | ret->use_rld_obj_head = FALSE; |
b49e97c9 | 8166 | ret->rld_value = 0; |
b34976b6 | 8167 | ret->mips16_stubs_seen = FALSE; |
b49e97c9 TS |
8168 | |
8169 | return &ret->root.root; | |
8170 | } | |
8171 | \f | |
8172 | /* We need to use a special link routine to handle the .reginfo and | |
8173 | the .mdebug sections. We need to merge all instances of these | |
8174 | sections together, not write them all out sequentially. */ | |
8175 | ||
b34976b6 | 8176 | bfd_boolean |
b49e97c9 TS |
8177 | _bfd_mips_elf_final_link (abfd, info) |
8178 | bfd *abfd; | |
8179 | struct bfd_link_info *info; | |
8180 | { | |
8181 | asection **secpp; | |
8182 | asection *o; | |
8183 | struct bfd_link_order *p; | |
8184 | asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec; | |
8185 | asection *rtproc_sec; | |
8186 | Elf32_RegInfo reginfo; | |
8187 | struct ecoff_debug_info debug; | |
8188 | const struct ecoff_debug_swap *swap | |
8189 | = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; | |
8190 | HDRR *symhdr = &debug.symbolic_header; | |
8191 | PTR mdebug_handle = NULL; | |
8192 | asection *s; | |
8193 | EXTR esym; | |
8194 | unsigned int i; | |
8195 | bfd_size_type amt; | |
8196 | ||
8197 | static const char * const secname[] = | |
8198 | { | |
8199 | ".text", ".init", ".fini", ".data", | |
8200 | ".rodata", ".sdata", ".sbss", ".bss" | |
8201 | }; | |
8202 | static const int sc[] = | |
8203 | { | |
8204 | scText, scInit, scFini, scData, | |
8205 | scRData, scSData, scSBss, scBss | |
8206 | }; | |
8207 | ||
b49e97c9 TS |
8208 | /* We'd carefully arranged the dynamic symbol indices, and then the |
8209 | generic size_dynamic_sections renumbered them out from under us. | |
8210 | Rather than trying somehow to prevent the renumbering, just do | |
8211 | the sort again. */ | |
8212 | if (elf_hash_table (info)->dynamic_sections_created) | |
8213 | { | |
8214 | bfd *dynobj; | |
8215 | asection *got; | |
8216 | struct mips_got_info *g; | |
8217 | ||
8218 | /* When we resort, we must tell mips_elf_sort_hash_table what | |
8219 | the lowest index it may use is. That's the number of section | |
8220 | symbols we're going to add. The generic ELF linker only | |
8221 | adds these symbols when building a shared object. Note that | |
8222 | we count the sections after (possibly) removing the .options | |
8223 | section above. */ | |
8224 | if (! mips_elf_sort_hash_table (info, (info->shared | |
8225 | ? bfd_count_sections (abfd) + 1 | |
8226 | : 1))) | |
b34976b6 | 8227 | return FALSE; |
b49e97c9 TS |
8228 | |
8229 | /* Make sure we didn't grow the global .got region. */ | |
8230 | dynobj = elf_hash_table (info)->dynobj; | |
f4416af6 | 8231 | got = mips_elf_got_section (dynobj, FALSE); |
f0abc2a1 | 8232 | g = mips_elf_section_data (got)->u.got_info; |
b49e97c9 TS |
8233 | |
8234 | if (g->global_gotsym != NULL) | |
8235 | BFD_ASSERT ((elf_hash_table (info)->dynsymcount | |
8236 | - g->global_gotsym->dynindx) | |
8237 | <= g->global_gotno); | |
8238 | } | |
8239 | ||
a902ee94 SC |
8240 | #if 0 |
8241 | /* We want to set the GP value for ld -r. */ | |
b49e97c9 TS |
8242 | /* On IRIX5, we omit the .options section. On IRIX6, however, we |
8243 | include it, even though we don't process it quite right. (Some | |
8244 | entries are supposed to be merged.) Empirically, we seem to be | |
8245 | better off including it then not. */ | |
8246 | if (IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none) | |
8247 | for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next) | |
8248 | { | |
8249 | if (strcmp ((*secpp)->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0) | |
8250 | { | |
8251 | for (p = (*secpp)->link_order_head; p != NULL; p = p->next) | |
8252 | if (p->type == bfd_indirect_link_order) | |
8253 | p->u.indirect.section->flags &= ~SEC_HAS_CONTENTS; | |
8254 | (*secpp)->link_order_head = NULL; | |
8255 | bfd_section_list_remove (abfd, secpp); | |
8256 | --abfd->section_count; | |
8257 | ||
8258 | break; | |
8259 | } | |
8260 | } | |
8261 | ||
8262 | /* We include .MIPS.options, even though we don't process it quite right. | |
8263 | (Some entries are supposed to be merged.) At IRIX6 empirically we seem | |
8264 | to be better off including it than not. */ | |
8265 | for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next) | |
8266 | { | |
8267 | if (strcmp ((*secpp)->name, ".MIPS.options") == 0) | |
8268 | { | |
8269 | for (p = (*secpp)->link_order_head; p != NULL; p = p->next) | |
8270 | if (p->type == bfd_indirect_link_order) | |
8271 | p->u.indirect.section->flags &=~ SEC_HAS_CONTENTS; | |
8272 | (*secpp)->link_order_head = NULL; | |
8273 | bfd_section_list_remove (abfd, secpp); | |
8274 | --abfd->section_count; | |
b34976b6 | 8275 | |
b49e97c9 TS |
8276 | break; |
8277 | } | |
8278 | } | |
a902ee94 | 8279 | #endif |
b49e97c9 TS |
8280 | |
8281 | /* Get a value for the GP register. */ | |
8282 | if (elf_gp (abfd) == 0) | |
8283 | { | |
8284 | struct bfd_link_hash_entry *h; | |
8285 | ||
b34976b6 | 8286 | h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE); |
b49e97c9 TS |
8287 | if (h != (struct bfd_link_hash_entry *) NULL |
8288 | && h->type == bfd_link_hash_defined) | |
8289 | elf_gp (abfd) = (h->u.def.value | |
8290 | + h->u.def.section->output_section->vma | |
8291 | + h->u.def.section->output_offset); | |
1049f94e | 8292 | else if (info->relocatable) |
b49e97c9 TS |
8293 | { |
8294 | bfd_vma lo = MINUS_ONE; | |
8295 | ||
8296 | /* Find the GP-relative section with the lowest offset. */ | |
8297 | for (o = abfd->sections; o != (asection *) NULL; o = o->next) | |
8298 | if (o->vma < lo | |
8299 | && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL)) | |
8300 | lo = o->vma; | |
8301 | ||
8302 | /* And calculate GP relative to that. */ | |
8303 | elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (abfd); | |
8304 | } | |
8305 | else | |
8306 | { | |
8307 | /* If the relocate_section function needs to do a reloc | |
8308 | involving the GP value, it should make a reloc_dangerous | |
8309 | callback to warn that GP is not defined. */ | |
8310 | } | |
8311 | } | |
8312 | ||
8313 | /* Go through the sections and collect the .reginfo and .mdebug | |
8314 | information. */ | |
8315 | reginfo_sec = NULL; | |
8316 | mdebug_sec = NULL; | |
8317 | gptab_data_sec = NULL; | |
8318 | gptab_bss_sec = NULL; | |
8319 | for (o = abfd->sections; o != (asection *) NULL; o = o->next) | |
8320 | { | |
8321 | if (strcmp (o->name, ".reginfo") == 0) | |
8322 | { | |
8323 | memset (®info, 0, sizeof reginfo); | |
8324 | ||
8325 | /* We have found the .reginfo section in the output file. | |
8326 | Look through all the link_orders comprising it and merge | |
8327 | the information together. */ | |
8328 | for (p = o->link_order_head; | |
8329 | p != (struct bfd_link_order *) NULL; | |
8330 | p = p->next) | |
8331 | { | |
8332 | asection *input_section; | |
8333 | bfd *input_bfd; | |
8334 | Elf32_External_RegInfo ext; | |
8335 | Elf32_RegInfo sub; | |
8336 | ||
8337 | if (p->type != bfd_indirect_link_order) | |
8338 | { | |
8339 | if (p->type == bfd_data_link_order) | |
8340 | continue; | |
8341 | abort (); | |
8342 | } | |
8343 | ||
8344 | input_section = p->u.indirect.section; | |
8345 | input_bfd = input_section->owner; | |
8346 | ||
8347 | /* The linker emulation code has probably clobbered the | |
8348 | size to be zero bytes. */ | |
8349 | if (input_section->_raw_size == 0) | |
8350 | input_section->_raw_size = sizeof (Elf32_External_RegInfo); | |
8351 | ||
8352 | if (! bfd_get_section_contents (input_bfd, input_section, | |
8353 | (PTR) &ext, | |
8354 | (file_ptr) 0, | |
8355 | (bfd_size_type) sizeof ext)) | |
b34976b6 | 8356 | return FALSE; |
b49e97c9 TS |
8357 | |
8358 | bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub); | |
8359 | ||
8360 | reginfo.ri_gprmask |= sub.ri_gprmask; | |
8361 | reginfo.ri_cprmask[0] |= sub.ri_cprmask[0]; | |
8362 | reginfo.ri_cprmask[1] |= sub.ri_cprmask[1]; | |
8363 | reginfo.ri_cprmask[2] |= sub.ri_cprmask[2]; | |
8364 | reginfo.ri_cprmask[3] |= sub.ri_cprmask[3]; | |
8365 | ||
8366 | /* ri_gp_value is set by the function | |
8367 | mips_elf32_section_processing when the section is | |
8368 | finally written out. */ | |
8369 | ||
8370 | /* Hack: reset the SEC_HAS_CONTENTS flag so that | |
8371 | elf_link_input_bfd ignores this section. */ | |
8372 | input_section->flags &= ~SEC_HAS_CONTENTS; | |
8373 | } | |
8374 | ||
8375 | /* Size has been set in _bfd_mips_elf_always_size_sections. */ | |
8376 | BFD_ASSERT(o->_raw_size == sizeof (Elf32_External_RegInfo)); | |
8377 | ||
8378 | /* Skip this section later on (I don't think this currently | |
8379 | matters, but someday it might). */ | |
8380 | o->link_order_head = (struct bfd_link_order *) NULL; | |
8381 | ||
8382 | reginfo_sec = o; | |
8383 | } | |
8384 | ||
8385 | if (strcmp (o->name, ".mdebug") == 0) | |
8386 | { | |
8387 | struct extsym_info einfo; | |
8388 | bfd_vma last; | |
8389 | ||
8390 | /* We have found the .mdebug section in the output file. | |
8391 | Look through all the link_orders comprising it and merge | |
8392 | the information together. */ | |
8393 | symhdr->magic = swap->sym_magic; | |
8394 | /* FIXME: What should the version stamp be? */ | |
8395 | symhdr->vstamp = 0; | |
8396 | symhdr->ilineMax = 0; | |
8397 | symhdr->cbLine = 0; | |
8398 | symhdr->idnMax = 0; | |
8399 | symhdr->ipdMax = 0; | |
8400 | symhdr->isymMax = 0; | |
8401 | symhdr->ioptMax = 0; | |
8402 | symhdr->iauxMax = 0; | |
8403 | symhdr->issMax = 0; | |
8404 | symhdr->issExtMax = 0; | |
8405 | symhdr->ifdMax = 0; | |
8406 | symhdr->crfd = 0; | |
8407 | symhdr->iextMax = 0; | |
8408 | ||
8409 | /* We accumulate the debugging information itself in the | |
8410 | debug_info structure. */ | |
8411 | debug.line = NULL; | |
8412 | debug.external_dnr = NULL; | |
8413 | debug.external_pdr = NULL; | |
8414 | debug.external_sym = NULL; | |
8415 | debug.external_opt = NULL; | |
8416 | debug.external_aux = NULL; | |
8417 | debug.ss = NULL; | |
8418 | debug.ssext = debug.ssext_end = NULL; | |
8419 | debug.external_fdr = NULL; | |
8420 | debug.external_rfd = NULL; | |
8421 | debug.external_ext = debug.external_ext_end = NULL; | |
8422 | ||
8423 | mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info); | |
8424 | if (mdebug_handle == (PTR) NULL) | |
b34976b6 | 8425 | return FALSE; |
b49e97c9 TS |
8426 | |
8427 | esym.jmptbl = 0; | |
8428 | esym.cobol_main = 0; | |
8429 | esym.weakext = 0; | |
8430 | esym.reserved = 0; | |
8431 | esym.ifd = ifdNil; | |
8432 | esym.asym.iss = issNil; | |
8433 | esym.asym.st = stLocal; | |
8434 | esym.asym.reserved = 0; | |
8435 | esym.asym.index = indexNil; | |
8436 | last = 0; | |
8437 | for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++) | |
8438 | { | |
8439 | esym.asym.sc = sc[i]; | |
8440 | s = bfd_get_section_by_name (abfd, secname[i]); | |
8441 | if (s != NULL) | |
8442 | { | |
8443 | esym.asym.value = s->vma; | |
8444 | last = s->vma + s->_raw_size; | |
8445 | } | |
8446 | else | |
8447 | esym.asym.value = last; | |
8448 | if (!bfd_ecoff_debug_one_external (abfd, &debug, swap, | |
8449 | secname[i], &esym)) | |
b34976b6 | 8450 | return FALSE; |
b49e97c9 TS |
8451 | } |
8452 | ||
8453 | for (p = o->link_order_head; | |
8454 | p != (struct bfd_link_order *) NULL; | |
8455 | p = p->next) | |
8456 | { | |
8457 | asection *input_section; | |
8458 | bfd *input_bfd; | |
8459 | const struct ecoff_debug_swap *input_swap; | |
8460 | struct ecoff_debug_info input_debug; | |
8461 | char *eraw_src; | |
8462 | char *eraw_end; | |
8463 | ||
8464 | if (p->type != bfd_indirect_link_order) | |
8465 | { | |
8466 | if (p->type == bfd_data_link_order) | |
8467 | continue; | |
8468 | abort (); | |
8469 | } | |
8470 | ||
8471 | input_section = p->u.indirect.section; | |
8472 | input_bfd = input_section->owner; | |
8473 | ||
8474 | if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour | |
8475 | || (get_elf_backend_data (input_bfd) | |
8476 | ->elf_backend_ecoff_debug_swap) == NULL) | |
8477 | { | |
8478 | /* I don't know what a non MIPS ELF bfd would be | |
8479 | doing with a .mdebug section, but I don't really | |
8480 | want to deal with it. */ | |
8481 | continue; | |
8482 | } | |
8483 | ||
8484 | input_swap = (get_elf_backend_data (input_bfd) | |
8485 | ->elf_backend_ecoff_debug_swap); | |
8486 | ||
8487 | BFD_ASSERT (p->size == input_section->_raw_size); | |
8488 | ||
8489 | /* The ECOFF linking code expects that we have already | |
8490 | read in the debugging information and set up an | |
8491 | ecoff_debug_info structure, so we do that now. */ | |
8492 | if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section, | |
8493 | &input_debug)) | |
b34976b6 | 8494 | return FALSE; |
b49e97c9 TS |
8495 | |
8496 | if (! (bfd_ecoff_debug_accumulate | |
8497 | (mdebug_handle, abfd, &debug, swap, input_bfd, | |
8498 | &input_debug, input_swap, info))) | |
b34976b6 | 8499 | return FALSE; |
b49e97c9 TS |
8500 | |
8501 | /* Loop through the external symbols. For each one with | |
8502 | interesting information, try to find the symbol in | |
8503 | the linker global hash table and save the information | |
8504 | for the output external symbols. */ | |
8505 | eraw_src = input_debug.external_ext; | |
8506 | eraw_end = (eraw_src | |
8507 | + (input_debug.symbolic_header.iextMax | |
8508 | * input_swap->external_ext_size)); | |
8509 | for (; | |
8510 | eraw_src < eraw_end; | |
8511 | eraw_src += input_swap->external_ext_size) | |
8512 | { | |
8513 | EXTR ext; | |
8514 | const char *name; | |
8515 | struct mips_elf_link_hash_entry *h; | |
8516 | ||
8517 | (*input_swap->swap_ext_in) (input_bfd, (PTR) eraw_src, &ext); | |
8518 | if (ext.asym.sc == scNil | |
8519 | || ext.asym.sc == scUndefined | |
8520 | || ext.asym.sc == scSUndefined) | |
8521 | continue; | |
8522 | ||
8523 | name = input_debug.ssext + ext.asym.iss; | |
8524 | h = mips_elf_link_hash_lookup (mips_elf_hash_table (info), | |
b34976b6 | 8525 | name, FALSE, FALSE, TRUE); |
b49e97c9 TS |
8526 | if (h == NULL || h->esym.ifd != -2) |
8527 | continue; | |
8528 | ||
8529 | if (ext.ifd != -1) | |
8530 | { | |
8531 | BFD_ASSERT (ext.ifd | |
8532 | < input_debug.symbolic_header.ifdMax); | |
8533 | ext.ifd = input_debug.ifdmap[ext.ifd]; | |
8534 | } | |
8535 | ||
8536 | h->esym = ext; | |
8537 | } | |
8538 | ||
8539 | /* Free up the information we just read. */ | |
8540 | free (input_debug.line); | |
8541 | free (input_debug.external_dnr); | |
8542 | free (input_debug.external_pdr); | |
8543 | free (input_debug.external_sym); | |
8544 | free (input_debug.external_opt); | |
8545 | free (input_debug.external_aux); | |
8546 | free (input_debug.ss); | |
8547 | free (input_debug.ssext); | |
8548 | free (input_debug.external_fdr); | |
8549 | free (input_debug.external_rfd); | |
8550 | free (input_debug.external_ext); | |
8551 | ||
8552 | /* Hack: reset the SEC_HAS_CONTENTS flag so that | |
8553 | elf_link_input_bfd ignores this section. */ | |
8554 | input_section->flags &= ~SEC_HAS_CONTENTS; | |
8555 | } | |
8556 | ||
8557 | if (SGI_COMPAT (abfd) && info->shared) | |
8558 | { | |
8559 | /* Create .rtproc section. */ | |
8560 | rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc"); | |
8561 | if (rtproc_sec == NULL) | |
8562 | { | |
8563 | flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | |
8564 | | SEC_LINKER_CREATED | SEC_READONLY); | |
8565 | ||
8566 | rtproc_sec = bfd_make_section (abfd, ".rtproc"); | |
8567 | if (rtproc_sec == NULL | |
8568 | || ! bfd_set_section_flags (abfd, rtproc_sec, flags) | |
8569 | || ! bfd_set_section_alignment (abfd, rtproc_sec, 4)) | |
b34976b6 | 8570 | return FALSE; |
b49e97c9 TS |
8571 | } |
8572 | ||
8573 | if (! mips_elf_create_procedure_table (mdebug_handle, abfd, | |
8574 | info, rtproc_sec, | |
8575 | &debug)) | |
b34976b6 | 8576 | return FALSE; |
b49e97c9 TS |
8577 | } |
8578 | ||
8579 | /* Build the external symbol information. */ | |
8580 | einfo.abfd = abfd; | |
8581 | einfo.info = info; | |
8582 | einfo.debug = &debug; | |
8583 | einfo.swap = swap; | |
b34976b6 | 8584 | einfo.failed = FALSE; |
b49e97c9 TS |
8585 | mips_elf_link_hash_traverse (mips_elf_hash_table (info), |
8586 | mips_elf_output_extsym, | |
8587 | (PTR) &einfo); | |
8588 | if (einfo.failed) | |
b34976b6 | 8589 | return FALSE; |
b49e97c9 TS |
8590 | |
8591 | /* Set the size of the .mdebug section. */ | |
8592 | o->_raw_size = bfd_ecoff_debug_size (abfd, &debug, swap); | |
8593 | ||
8594 | /* Skip this section later on (I don't think this currently | |
8595 | matters, but someday it might). */ | |
8596 | o->link_order_head = (struct bfd_link_order *) NULL; | |
8597 | ||
8598 | mdebug_sec = o; | |
8599 | } | |
8600 | ||
8601 | if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0) | |
8602 | { | |
8603 | const char *subname; | |
8604 | unsigned int c; | |
8605 | Elf32_gptab *tab; | |
8606 | Elf32_External_gptab *ext_tab; | |
8607 | unsigned int j; | |
8608 | ||
8609 | /* The .gptab.sdata and .gptab.sbss sections hold | |
8610 | information describing how the small data area would | |
8611 | change depending upon the -G switch. These sections | |
8612 | not used in executables files. */ | |
1049f94e | 8613 | if (! info->relocatable) |
b49e97c9 TS |
8614 | { |
8615 | for (p = o->link_order_head; | |
8616 | p != (struct bfd_link_order *) NULL; | |
8617 | p = p->next) | |
8618 | { | |
8619 | asection *input_section; | |
8620 | ||
8621 | if (p->type != bfd_indirect_link_order) | |
8622 | { | |
8623 | if (p->type == bfd_data_link_order) | |
8624 | continue; | |
8625 | abort (); | |
8626 | } | |
8627 | ||
8628 | input_section = p->u.indirect.section; | |
8629 | ||
8630 | /* Hack: reset the SEC_HAS_CONTENTS flag so that | |
8631 | elf_link_input_bfd ignores this section. */ | |
8632 | input_section->flags &= ~SEC_HAS_CONTENTS; | |
8633 | } | |
8634 | ||
8635 | /* Skip this section later on (I don't think this | |
8636 | currently matters, but someday it might). */ | |
8637 | o->link_order_head = (struct bfd_link_order *) NULL; | |
8638 | ||
8639 | /* Really remove the section. */ | |
8640 | for (secpp = &abfd->sections; | |
8641 | *secpp != o; | |
8642 | secpp = &(*secpp)->next) | |
8643 | ; | |
8644 | bfd_section_list_remove (abfd, secpp); | |
8645 | --abfd->section_count; | |
8646 | ||
8647 | continue; | |
8648 | } | |
8649 | ||
8650 | /* There is one gptab for initialized data, and one for | |
8651 | uninitialized data. */ | |
8652 | if (strcmp (o->name, ".gptab.sdata") == 0) | |
8653 | gptab_data_sec = o; | |
8654 | else if (strcmp (o->name, ".gptab.sbss") == 0) | |
8655 | gptab_bss_sec = o; | |
8656 | else | |
8657 | { | |
8658 | (*_bfd_error_handler) | |
8659 | (_("%s: illegal section name `%s'"), | |
8660 | bfd_get_filename (abfd), o->name); | |
8661 | bfd_set_error (bfd_error_nonrepresentable_section); | |
b34976b6 | 8662 | return FALSE; |
b49e97c9 TS |
8663 | } |
8664 | ||
8665 | /* The linker script always combines .gptab.data and | |
8666 | .gptab.sdata into .gptab.sdata, and likewise for | |
8667 | .gptab.bss and .gptab.sbss. It is possible that there is | |
8668 | no .sdata or .sbss section in the output file, in which | |
8669 | case we must change the name of the output section. */ | |
8670 | subname = o->name + sizeof ".gptab" - 1; | |
8671 | if (bfd_get_section_by_name (abfd, subname) == NULL) | |
8672 | { | |
8673 | if (o == gptab_data_sec) | |
8674 | o->name = ".gptab.data"; | |
8675 | else | |
8676 | o->name = ".gptab.bss"; | |
8677 | subname = o->name + sizeof ".gptab" - 1; | |
8678 | BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL); | |
8679 | } | |
8680 | ||
8681 | /* Set up the first entry. */ | |
8682 | c = 1; | |
8683 | amt = c * sizeof (Elf32_gptab); | |
8684 | tab = (Elf32_gptab *) bfd_malloc (amt); | |
8685 | if (tab == NULL) | |
b34976b6 | 8686 | return FALSE; |
b49e97c9 TS |
8687 | tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd); |
8688 | tab[0].gt_header.gt_unused = 0; | |
8689 | ||
8690 | /* Combine the input sections. */ | |
8691 | for (p = o->link_order_head; | |
8692 | p != (struct bfd_link_order *) NULL; | |
8693 | p = p->next) | |
8694 | { | |
8695 | asection *input_section; | |
8696 | bfd *input_bfd; | |
8697 | bfd_size_type size; | |
8698 | unsigned long last; | |
8699 | bfd_size_type gpentry; | |
8700 | ||
8701 | if (p->type != bfd_indirect_link_order) | |
8702 | { | |
8703 | if (p->type == bfd_data_link_order) | |
8704 | continue; | |
8705 | abort (); | |
8706 | } | |
8707 | ||
8708 | input_section = p->u.indirect.section; | |
8709 | input_bfd = input_section->owner; | |
8710 | ||
8711 | /* Combine the gptab entries for this input section one | |
8712 | by one. We know that the input gptab entries are | |
8713 | sorted by ascending -G value. */ | |
8714 | size = bfd_section_size (input_bfd, input_section); | |
8715 | last = 0; | |
8716 | for (gpentry = sizeof (Elf32_External_gptab); | |
8717 | gpentry < size; | |
8718 | gpentry += sizeof (Elf32_External_gptab)) | |
8719 | { | |
8720 | Elf32_External_gptab ext_gptab; | |
8721 | Elf32_gptab int_gptab; | |
8722 | unsigned long val; | |
8723 | unsigned long add; | |
b34976b6 | 8724 | bfd_boolean exact; |
b49e97c9 TS |
8725 | unsigned int look; |
8726 | ||
8727 | if (! (bfd_get_section_contents | |
8728 | (input_bfd, input_section, (PTR) &ext_gptab, | |
8729 | (file_ptr) gpentry, | |
8730 | (bfd_size_type) sizeof (Elf32_External_gptab)))) | |
8731 | { | |
8732 | free (tab); | |
b34976b6 | 8733 | return FALSE; |
b49e97c9 TS |
8734 | } |
8735 | ||
8736 | bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab, | |
8737 | &int_gptab); | |
8738 | val = int_gptab.gt_entry.gt_g_value; | |
8739 | add = int_gptab.gt_entry.gt_bytes - last; | |
8740 | ||
b34976b6 | 8741 | exact = FALSE; |
b49e97c9 TS |
8742 | for (look = 1; look < c; look++) |
8743 | { | |
8744 | if (tab[look].gt_entry.gt_g_value >= val) | |
8745 | tab[look].gt_entry.gt_bytes += add; | |
8746 | ||
8747 | if (tab[look].gt_entry.gt_g_value == val) | |
b34976b6 | 8748 | exact = TRUE; |
b49e97c9 TS |
8749 | } |
8750 | ||
8751 | if (! exact) | |
8752 | { | |
8753 | Elf32_gptab *new_tab; | |
8754 | unsigned int max; | |
8755 | ||
8756 | /* We need a new table entry. */ | |
8757 | amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab); | |
8758 | new_tab = (Elf32_gptab *) bfd_realloc ((PTR) tab, amt); | |
8759 | if (new_tab == NULL) | |
8760 | { | |
8761 | free (tab); | |
b34976b6 | 8762 | return FALSE; |
b49e97c9 TS |
8763 | } |
8764 | tab = new_tab; | |
8765 | tab[c].gt_entry.gt_g_value = val; | |
8766 | tab[c].gt_entry.gt_bytes = add; | |
8767 | ||
8768 | /* Merge in the size for the next smallest -G | |
8769 | value, since that will be implied by this new | |
8770 | value. */ | |
8771 | max = 0; | |
8772 | for (look = 1; look < c; look++) | |
8773 | { | |
8774 | if (tab[look].gt_entry.gt_g_value < val | |
8775 | && (max == 0 | |
8776 | || (tab[look].gt_entry.gt_g_value | |
8777 | > tab[max].gt_entry.gt_g_value))) | |
8778 | max = look; | |
8779 | } | |
8780 | if (max != 0) | |
8781 | tab[c].gt_entry.gt_bytes += | |
8782 | tab[max].gt_entry.gt_bytes; | |
8783 | ||
8784 | ++c; | |
8785 | } | |
8786 | ||
8787 | last = int_gptab.gt_entry.gt_bytes; | |
8788 | } | |
8789 | ||
8790 | /* Hack: reset the SEC_HAS_CONTENTS flag so that | |
8791 | elf_link_input_bfd ignores this section. */ | |
8792 | input_section->flags &= ~SEC_HAS_CONTENTS; | |
8793 | } | |
8794 | ||
8795 | /* The table must be sorted by -G value. */ | |
8796 | if (c > 2) | |
8797 | qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare); | |
8798 | ||
8799 | /* Swap out the table. */ | |
8800 | amt = (bfd_size_type) c * sizeof (Elf32_External_gptab); | |
8801 | ext_tab = (Elf32_External_gptab *) bfd_alloc (abfd, amt); | |
8802 | if (ext_tab == NULL) | |
8803 | { | |
8804 | free (tab); | |
b34976b6 | 8805 | return FALSE; |
b49e97c9 TS |
8806 | } |
8807 | ||
8808 | for (j = 0; j < c; j++) | |
8809 | bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j); | |
8810 | free (tab); | |
8811 | ||
8812 | o->_raw_size = c * sizeof (Elf32_External_gptab); | |
8813 | o->contents = (bfd_byte *) ext_tab; | |
8814 | ||
8815 | /* Skip this section later on (I don't think this currently | |
8816 | matters, but someday it might). */ | |
8817 | o->link_order_head = (struct bfd_link_order *) NULL; | |
8818 | } | |
8819 | } | |
8820 | ||
8821 | /* Invoke the regular ELF backend linker to do all the work. */ | |
ee6423ed | 8822 | if (!MNAME(abfd,bfd_elf,bfd_final_link) (abfd, info)) |
b34976b6 | 8823 | return FALSE; |
b49e97c9 TS |
8824 | |
8825 | /* Now write out the computed sections. */ | |
8826 | ||
8827 | if (reginfo_sec != (asection *) NULL) | |
8828 | { | |
8829 | Elf32_External_RegInfo ext; | |
8830 | ||
8831 | bfd_mips_elf32_swap_reginfo_out (abfd, ®info, &ext); | |
8832 | if (! bfd_set_section_contents (abfd, reginfo_sec, (PTR) &ext, | |
8833 | (file_ptr) 0, | |
8834 | (bfd_size_type) sizeof ext)) | |
b34976b6 | 8835 | return FALSE; |
b49e97c9 TS |
8836 | } |
8837 | ||
8838 | if (mdebug_sec != (asection *) NULL) | |
8839 | { | |
8840 | BFD_ASSERT (abfd->output_has_begun); | |
8841 | if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug, | |
8842 | swap, info, | |
8843 | mdebug_sec->filepos)) | |
b34976b6 | 8844 | return FALSE; |
b49e97c9 TS |
8845 | |
8846 | bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info); | |
8847 | } | |
8848 | ||
8849 | if (gptab_data_sec != (asection *) NULL) | |
8850 | { | |
8851 | if (! bfd_set_section_contents (abfd, gptab_data_sec, | |
8852 | gptab_data_sec->contents, | |
8853 | (file_ptr) 0, | |
8854 | gptab_data_sec->_raw_size)) | |
b34976b6 | 8855 | return FALSE; |
b49e97c9 TS |
8856 | } |
8857 | ||
8858 | if (gptab_bss_sec != (asection *) NULL) | |
8859 | { | |
8860 | if (! bfd_set_section_contents (abfd, gptab_bss_sec, | |
8861 | gptab_bss_sec->contents, | |
8862 | (file_ptr) 0, | |
8863 | gptab_bss_sec->_raw_size)) | |
b34976b6 | 8864 | return FALSE; |
b49e97c9 TS |
8865 | } |
8866 | ||
8867 | if (SGI_COMPAT (abfd)) | |
8868 | { | |
8869 | rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc"); | |
8870 | if (rtproc_sec != NULL) | |
8871 | { | |
8872 | if (! bfd_set_section_contents (abfd, rtproc_sec, | |
8873 | rtproc_sec->contents, | |
8874 | (file_ptr) 0, | |
8875 | rtproc_sec->_raw_size)) | |
b34976b6 | 8876 | return FALSE; |
b49e97c9 TS |
8877 | } |
8878 | } | |
8879 | ||
b34976b6 | 8880 | return TRUE; |
b49e97c9 TS |
8881 | } |
8882 | \f | |
64543e1a RS |
8883 | /* Structure for saying that BFD machine EXTENSION extends BASE. */ |
8884 | ||
8885 | struct mips_mach_extension { | |
8886 | unsigned long extension, base; | |
8887 | }; | |
8888 | ||
8889 | ||
8890 | /* An array describing how BFD machines relate to one another. The entries | |
8891 | are ordered topologically with MIPS I extensions listed last. */ | |
8892 | ||
8893 | static const struct mips_mach_extension mips_mach_extensions[] = { | |
8894 | /* MIPS64 extensions. */ | |
5f74bc13 | 8895 | { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 }, |
64543e1a RS |
8896 | { bfd_mach_mips_sb1, bfd_mach_mipsisa64 }, |
8897 | ||
8898 | /* MIPS V extensions. */ | |
8899 | { bfd_mach_mipsisa64, bfd_mach_mips5 }, | |
8900 | ||
8901 | /* R10000 extensions. */ | |
8902 | { bfd_mach_mips12000, bfd_mach_mips10000 }, | |
8903 | ||
8904 | /* R5000 extensions. Note: the vr5500 ISA is an extension of the core | |
8905 | vr5400 ISA, but doesn't include the multimedia stuff. It seems | |
8906 | better to allow vr5400 and vr5500 code to be merged anyway, since | |
8907 | many libraries will just use the core ISA. Perhaps we could add | |
8908 | some sort of ASE flag if this ever proves a problem. */ | |
8909 | { bfd_mach_mips5500, bfd_mach_mips5400 }, | |
8910 | { bfd_mach_mips5400, bfd_mach_mips5000 }, | |
8911 | ||
8912 | /* MIPS IV extensions. */ | |
8913 | { bfd_mach_mips5, bfd_mach_mips8000 }, | |
8914 | { bfd_mach_mips10000, bfd_mach_mips8000 }, | |
8915 | { bfd_mach_mips5000, bfd_mach_mips8000 }, | |
5a7ea749 | 8916 | { bfd_mach_mips7000, bfd_mach_mips8000 }, |
64543e1a RS |
8917 | |
8918 | /* VR4100 extensions. */ | |
8919 | { bfd_mach_mips4120, bfd_mach_mips4100 }, | |
8920 | { bfd_mach_mips4111, bfd_mach_mips4100 }, | |
8921 | ||
8922 | /* MIPS III extensions. */ | |
8923 | { bfd_mach_mips8000, bfd_mach_mips4000 }, | |
8924 | { bfd_mach_mips4650, bfd_mach_mips4000 }, | |
8925 | { bfd_mach_mips4600, bfd_mach_mips4000 }, | |
8926 | { bfd_mach_mips4400, bfd_mach_mips4000 }, | |
8927 | { bfd_mach_mips4300, bfd_mach_mips4000 }, | |
8928 | { bfd_mach_mips4100, bfd_mach_mips4000 }, | |
8929 | { bfd_mach_mips4010, bfd_mach_mips4000 }, | |
8930 | ||
8931 | /* MIPS32 extensions. */ | |
8932 | { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 }, | |
8933 | ||
8934 | /* MIPS II extensions. */ | |
8935 | { bfd_mach_mips4000, bfd_mach_mips6000 }, | |
8936 | { bfd_mach_mipsisa32, bfd_mach_mips6000 }, | |
8937 | ||
8938 | /* MIPS I extensions. */ | |
8939 | { bfd_mach_mips6000, bfd_mach_mips3000 }, | |
8940 | { bfd_mach_mips3900, bfd_mach_mips3000 } | |
8941 | }; | |
8942 | ||
8943 | ||
8944 | /* Return true if bfd machine EXTENSION is an extension of machine BASE. */ | |
8945 | ||
8946 | static bfd_boolean | |
8947 | mips_mach_extends_p (base, extension) | |
8948 | unsigned long base, extension; | |
8949 | { | |
8950 | size_t i; | |
8951 | ||
8952 | for (i = 0; extension != base && i < ARRAY_SIZE (mips_mach_extensions); i++) | |
8953 | if (extension == mips_mach_extensions[i].extension) | |
8954 | extension = mips_mach_extensions[i].base; | |
8955 | ||
8956 | return extension == base; | |
8957 | } | |
8958 | ||
8959 | ||
8960 | /* Return true if the given ELF header flags describe a 32-bit binary. */ | |
00707a0e | 8961 | |
b34976b6 | 8962 | static bfd_boolean |
64543e1a RS |
8963 | mips_32bit_flags_p (flags) |
8964 | flagword flags; | |
00707a0e | 8965 | { |
64543e1a RS |
8966 | return ((flags & EF_MIPS_32BITMODE) != 0 |
8967 | || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32 | |
8968 | || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32 | |
8969 | || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1 | |
8970 | || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2 | |
8971 | || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32 | |
8972 | || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2); | |
00707a0e RS |
8973 | } |
8974 | ||
64543e1a | 8975 | |
b49e97c9 TS |
8976 | /* Merge backend specific data from an object file to the output |
8977 | object file when linking. */ | |
8978 | ||
b34976b6 | 8979 | bfd_boolean |
b49e97c9 TS |
8980 | _bfd_mips_elf_merge_private_bfd_data (ibfd, obfd) |
8981 | bfd *ibfd; | |
8982 | bfd *obfd; | |
8983 | { | |
8984 | flagword old_flags; | |
8985 | flagword new_flags; | |
b34976b6 AM |
8986 | bfd_boolean ok; |
8987 | bfd_boolean null_input_bfd = TRUE; | |
b49e97c9 TS |
8988 | asection *sec; |
8989 | ||
8990 | /* Check if we have the same endianess */ | |
82e51918 | 8991 | if (! _bfd_generic_verify_endian_match (ibfd, obfd)) |
aa701218 AO |
8992 | { |
8993 | (*_bfd_error_handler) | |
8994 | (_("%s: endianness incompatible with that of the selected emulation"), | |
8995 | bfd_archive_filename (ibfd)); | |
8996 | return FALSE; | |
8997 | } | |
b49e97c9 TS |
8998 | |
8999 | if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour | |
9000 | || bfd_get_flavour (obfd) != bfd_target_elf_flavour) | |
b34976b6 | 9001 | return TRUE; |
b49e97c9 | 9002 | |
aa701218 AO |
9003 | if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0) |
9004 | { | |
9005 | (*_bfd_error_handler) | |
9006 | (_("%s: ABI is incompatible with that of the selected emulation"), | |
9007 | bfd_archive_filename (ibfd)); | |
9008 | return FALSE; | |
9009 | } | |
9010 | ||
b49e97c9 TS |
9011 | new_flags = elf_elfheader (ibfd)->e_flags; |
9012 | elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER; | |
9013 | old_flags = elf_elfheader (obfd)->e_flags; | |
9014 | ||
9015 | if (! elf_flags_init (obfd)) | |
9016 | { | |
b34976b6 | 9017 | elf_flags_init (obfd) = TRUE; |
b49e97c9 TS |
9018 | elf_elfheader (obfd)->e_flags = new_flags; |
9019 | elf_elfheader (obfd)->e_ident[EI_CLASS] | |
9020 | = elf_elfheader (ibfd)->e_ident[EI_CLASS]; | |
9021 | ||
9022 | if (bfd_get_arch (obfd) == bfd_get_arch (ibfd) | |
9023 | && bfd_get_arch_info (obfd)->the_default) | |
9024 | { | |
9025 | if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), | |
9026 | bfd_get_mach (ibfd))) | |
b34976b6 | 9027 | return FALSE; |
b49e97c9 TS |
9028 | } |
9029 | ||
b34976b6 | 9030 | return TRUE; |
b49e97c9 TS |
9031 | } |
9032 | ||
9033 | /* Check flag compatibility. */ | |
9034 | ||
9035 | new_flags &= ~EF_MIPS_NOREORDER; | |
9036 | old_flags &= ~EF_MIPS_NOREORDER; | |
9037 | ||
f4416af6 AO |
9038 | /* Some IRIX 6 BSD-compatibility objects have this bit set. It |
9039 | doesn't seem to matter. */ | |
9040 | new_flags &= ~EF_MIPS_XGOT; | |
9041 | old_flags &= ~EF_MIPS_XGOT; | |
9042 | ||
98a8deaf RS |
9043 | /* MIPSpro generates ucode info in n64 objects. Again, we should |
9044 | just be able to ignore this. */ | |
9045 | new_flags &= ~EF_MIPS_UCODE; | |
9046 | old_flags &= ~EF_MIPS_UCODE; | |
9047 | ||
b49e97c9 | 9048 | if (new_flags == old_flags) |
b34976b6 | 9049 | return TRUE; |
b49e97c9 TS |
9050 | |
9051 | /* Check to see if the input BFD actually contains any sections. | |
9052 | If not, its flags may not have been initialised either, but it cannot | |
9053 | actually cause any incompatibility. */ | |
9054 | for (sec = ibfd->sections; sec != NULL; sec = sec->next) | |
9055 | { | |
9056 | /* Ignore synthetic sections and empty .text, .data and .bss sections | |
9057 | which are automatically generated by gas. */ | |
9058 | if (strcmp (sec->name, ".reginfo") | |
9059 | && strcmp (sec->name, ".mdebug") | |
9060 | && ((!strcmp (sec->name, ".text") | |
9061 | || !strcmp (sec->name, ".data") | |
9062 | || !strcmp (sec->name, ".bss")) | |
9063 | && sec->_raw_size != 0)) | |
9064 | { | |
b34976b6 | 9065 | null_input_bfd = FALSE; |
b49e97c9 TS |
9066 | break; |
9067 | } | |
9068 | } | |
9069 | if (null_input_bfd) | |
b34976b6 | 9070 | return TRUE; |
b49e97c9 | 9071 | |
b34976b6 | 9072 | ok = TRUE; |
b49e97c9 | 9073 | |
143d77c5 EC |
9074 | if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0) |
9075 | != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)) | |
b49e97c9 | 9076 | { |
b49e97c9 | 9077 | (*_bfd_error_handler) |
143d77c5 | 9078 | (_("%s: warning: linking PIC files with non-PIC files"), |
b49e97c9 | 9079 | bfd_archive_filename (ibfd)); |
143d77c5 | 9080 | ok = TRUE; |
b49e97c9 TS |
9081 | } |
9082 | ||
143d77c5 EC |
9083 | if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) |
9084 | elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC; | |
9085 | if (! (new_flags & EF_MIPS_PIC)) | |
9086 | elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC; | |
9087 | ||
9088 | new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC); | |
9089 | old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC); | |
b49e97c9 | 9090 | |
64543e1a RS |
9091 | /* Compare the ISAs. */ |
9092 | if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags)) | |
b49e97c9 | 9093 | { |
64543e1a RS |
9094 | (*_bfd_error_handler) |
9095 | (_("%s: linking 32-bit code with 64-bit code"), | |
9096 | bfd_archive_filename (ibfd)); | |
9097 | ok = FALSE; | |
9098 | } | |
9099 | else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd))) | |
9100 | { | |
9101 | /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */ | |
9102 | if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd))) | |
b49e97c9 | 9103 | { |
64543e1a RS |
9104 | /* Copy the architecture info from IBFD to OBFD. Also copy |
9105 | the 32-bit flag (if set) so that we continue to recognise | |
9106 | OBFD as a 32-bit binary. */ | |
9107 | bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd)); | |
9108 | elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH); | |
9109 | elf_elfheader (obfd)->e_flags | |
9110 | |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE); | |
9111 | ||
9112 | /* Copy across the ABI flags if OBFD doesn't use them | |
9113 | and if that was what caused us to treat IBFD as 32-bit. */ | |
9114 | if ((old_flags & EF_MIPS_ABI) == 0 | |
9115 | && mips_32bit_flags_p (new_flags) | |
9116 | && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI)) | |
9117 | elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI; | |
b49e97c9 TS |
9118 | } |
9119 | else | |
9120 | { | |
64543e1a | 9121 | /* The ISAs aren't compatible. */ |
b49e97c9 | 9122 | (*_bfd_error_handler) |
64543e1a | 9123 | (_("%s: linking %s module with previous %s modules"), |
b49e97c9 | 9124 | bfd_archive_filename (ibfd), |
64543e1a RS |
9125 | bfd_printable_name (ibfd), |
9126 | bfd_printable_name (obfd)); | |
b34976b6 | 9127 | ok = FALSE; |
b49e97c9 | 9128 | } |
b49e97c9 TS |
9129 | } |
9130 | ||
64543e1a RS |
9131 | new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE); |
9132 | old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE); | |
9133 | ||
9134 | /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it | |
b49e97c9 TS |
9135 | does set EI_CLASS differently from any 32-bit ABI. */ |
9136 | if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI) | |
9137 | || (elf_elfheader (ibfd)->e_ident[EI_CLASS] | |
9138 | != elf_elfheader (obfd)->e_ident[EI_CLASS])) | |
9139 | { | |
9140 | /* Only error if both are set (to different values). */ | |
9141 | if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI)) | |
9142 | || (elf_elfheader (ibfd)->e_ident[EI_CLASS] | |
9143 | != elf_elfheader (obfd)->e_ident[EI_CLASS])) | |
9144 | { | |
9145 | (*_bfd_error_handler) | |
9146 | (_("%s: ABI mismatch: linking %s module with previous %s modules"), | |
9147 | bfd_archive_filename (ibfd), | |
9148 | elf_mips_abi_name (ibfd), | |
9149 | elf_mips_abi_name (obfd)); | |
b34976b6 | 9150 | ok = FALSE; |
b49e97c9 TS |
9151 | } |
9152 | new_flags &= ~EF_MIPS_ABI; | |
9153 | old_flags &= ~EF_MIPS_ABI; | |
9154 | } | |
9155 | ||
fb39dac1 RS |
9156 | /* For now, allow arbitrary mixing of ASEs (retain the union). */ |
9157 | if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE)) | |
9158 | { | |
9159 | elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE; | |
9160 | ||
9161 | new_flags &= ~ EF_MIPS_ARCH_ASE; | |
9162 | old_flags &= ~ EF_MIPS_ARCH_ASE; | |
9163 | } | |
9164 | ||
b49e97c9 TS |
9165 | /* Warn about any other mismatches */ |
9166 | if (new_flags != old_flags) | |
9167 | { | |
9168 | (*_bfd_error_handler) | |
9169 | (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"), | |
9170 | bfd_archive_filename (ibfd), (unsigned long) new_flags, | |
9171 | (unsigned long) old_flags); | |
b34976b6 | 9172 | ok = FALSE; |
b49e97c9 TS |
9173 | } |
9174 | ||
9175 | if (! ok) | |
9176 | { | |
9177 | bfd_set_error (bfd_error_bad_value); | |
b34976b6 | 9178 | return FALSE; |
b49e97c9 TS |
9179 | } |
9180 | ||
b34976b6 | 9181 | return TRUE; |
b49e97c9 TS |
9182 | } |
9183 | ||
9184 | /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */ | |
9185 | ||
b34976b6 | 9186 | bfd_boolean |
b49e97c9 TS |
9187 | _bfd_mips_elf_set_private_flags (abfd, flags) |
9188 | bfd *abfd; | |
9189 | flagword flags; | |
9190 | { | |
9191 | BFD_ASSERT (!elf_flags_init (abfd) | |
9192 | || elf_elfheader (abfd)->e_flags == flags); | |
9193 | ||
9194 | elf_elfheader (abfd)->e_flags = flags; | |
b34976b6 AM |
9195 | elf_flags_init (abfd) = TRUE; |
9196 | return TRUE; | |
b49e97c9 TS |
9197 | } |
9198 | ||
b34976b6 | 9199 | bfd_boolean |
b49e97c9 TS |
9200 | _bfd_mips_elf_print_private_bfd_data (abfd, ptr) |
9201 | bfd *abfd; | |
9202 | PTR ptr; | |
9203 | { | |
9204 | FILE *file = (FILE *) ptr; | |
9205 | ||
9206 | BFD_ASSERT (abfd != NULL && ptr != NULL); | |
9207 | ||
9208 | /* Print normal ELF private data. */ | |
9209 | _bfd_elf_print_private_bfd_data (abfd, ptr); | |
9210 | ||
9211 | /* xgettext:c-format */ | |
9212 | fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags); | |
9213 | ||
9214 | if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32) | |
9215 | fprintf (file, _(" [abi=O32]")); | |
9216 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64) | |
9217 | fprintf (file, _(" [abi=O64]")); | |
9218 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32) | |
9219 | fprintf (file, _(" [abi=EABI32]")); | |
9220 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64) | |
9221 | fprintf (file, _(" [abi=EABI64]")); | |
9222 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI)) | |
9223 | fprintf (file, _(" [abi unknown]")); | |
9224 | else if (ABI_N32_P (abfd)) | |
9225 | fprintf (file, _(" [abi=N32]")); | |
9226 | else if (ABI_64_P (abfd)) | |
9227 | fprintf (file, _(" [abi=64]")); | |
9228 | else | |
9229 | fprintf (file, _(" [no abi set]")); | |
9230 | ||
9231 | if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1) | |
9232 | fprintf (file, _(" [mips1]")); | |
9233 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2) | |
9234 | fprintf (file, _(" [mips2]")); | |
9235 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3) | |
9236 | fprintf (file, _(" [mips3]")); | |
9237 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4) | |
9238 | fprintf (file, _(" [mips4]")); | |
9239 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5) | |
9240 | fprintf (file, _(" [mips5]")); | |
9241 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32) | |
9242 | fprintf (file, _(" [mips32]")); | |
9243 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64) | |
9244 | fprintf (file, _(" [mips64]")); | |
af7ee8bf CD |
9245 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2) |
9246 | fprintf (file, _(" [mips32r2]")); | |
5f74bc13 CD |
9247 | else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2) |
9248 | fprintf (file, _(" [mips64r2]")); | |
b49e97c9 TS |
9249 | else |
9250 | fprintf (file, _(" [unknown ISA]")); | |
9251 | ||
40d32fc6 CD |
9252 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX) |
9253 | fprintf (file, _(" [mdmx]")); | |
9254 | ||
9255 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16) | |
9256 | fprintf (file, _(" [mips16]")); | |
9257 | ||
b49e97c9 TS |
9258 | if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE) |
9259 | fprintf (file, _(" [32bitmode]")); | |
9260 | else | |
9261 | fprintf (file, _(" [not 32bitmode]")); | |
9262 | ||
9263 | fputc ('\n', file); | |
9264 | ||
b34976b6 | 9265 | return TRUE; |
b49e97c9 | 9266 | } |
2f89ff8d L |
9267 | |
9268 | struct bfd_elf_special_section const _bfd_mips_elf_special_sections[]= | |
9269 | { | |
7dcb9820 AM |
9270 | { ".sdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, |
9271 | { ".sbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, | |
9272 | { ".lit4", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, | |
9273 | { ".lit8", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, | |
9274 | { ".ucode", 6, 0, SHT_MIPS_UCODE, 0 }, | |
9275 | { ".mdebug", 7, 0, SHT_MIPS_DEBUG, 0 }, | |
9276 | { NULL, 0, 0, 0, 0 } | |
2f89ff8d | 9277 | }; |