]> Git Repo - binutils.git/blame - bfd/elfxx-mips.c
* emultempl/spu_ovl.S: Don't trash lr on tail call from one
[binutils.git] / bfd / elfxx-mips.c
CommitLineData
b49e97c9 1/* MIPS-specific support for ELF
64543e1a 2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3db64b00 3 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
b49e97c9
TS
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <[email protected]>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <[email protected]>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <[email protected]>
11
ae9a127f 12 This file is part of BFD, the Binary File Descriptor library.
b49e97c9 13
ae9a127f
NC
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
b49e97c9 18
ae9a127f
NC
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
b49e97c9 23
ae9a127f
NC
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
3e110533 26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
b49e97c9
TS
27
28/* This file handles functionality common to the different MIPS ABI's. */
29
b49e97c9 30#include "sysdep.h"
3db64b00 31#include "bfd.h"
b49e97c9 32#include "libbfd.h"
64543e1a 33#include "libiberty.h"
b49e97c9
TS
34#include "elf-bfd.h"
35#include "elfxx-mips.h"
36#include "elf/mips.h"
0a44bf69 37#include "elf-vxworks.h"
b49e97c9
TS
38
39/* Get the ECOFF swapping routines. */
40#include "coff/sym.h"
41#include "coff/symconst.h"
42#include "coff/ecoff.h"
43#include "coff/mips.h"
44
b15e6682
AO
45#include "hashtab.h"
46
ead49a57
RS
47/* This structure is used to hold information about one GOT entry.
48 There are three types of entry:
49
50 (1) absolute addresses
51 (abfd == NULL)
52 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
53 (abfd != NULL, symndx >= 0)
54 (3) global and forced-local symbols
55 (abfd != NULL, symndx == -1)
56
57 Type (3) entries are treated differently for different types of GOT.
58 In the "master" GOT -- i.e. the one that describes every GOT
59 reference needed in the link -- the mips_got_entry is keyed on both
60 the symbol and the input bfd that references it. If it turns out
61 that we need multiple GOTs, we can then use this information to
62 create separate GOTs for each input bfd.
63
64 However, we want each of these separate GOTs to have at most one
65 entry for a given symbol, so their type (3) entries are keyed only
66 on the symbol. The input bfd given by the "abfd" field is somewhat
67 arbitrary in this case.
68
69 This means that when there are multiple GOTs, each GOT has a unique
70 mips_got_entry for every symbol within it. We can therefore use the
71 mips_got_entry fields (tls_type and gotidx) to track the symbol's
72 GOT index.
73
74 However, if it turns out that we need only a single GOT, we continue
75 to use the master GOT to describe it. There may therefore be several
76 mips_got_entries for the same symbol, each with a different input bfd.
77 We want to make sure that each symbol gets a unique GOT entry, so when
78 there's a single GOT, we use the symbol's hash entry, not the
79 mips_got_entry fields, to track a symbol's GOT index. */
b15e6682
AO
80struct mips_got_entry
81{
82 /* The input bfd in which the symbol is defined. */
83 bfd *abfd;
f4416af6
AO
84 /* The index of the symbol, as stored in the relocation r_info, if
85 we have a local symbol; -1 otherwise. */
86 long symndx;
87 union
88 {
89 /* If abfd == NULL, an address that must be stored in the got. */
90 bfd_vma address;
91 /* If abfd != NULL && symndx != -1, the addend of the relocation
92 that should be added to the symbol value. */
93 bfd_vma addend;
94 /* If abfd != NULL && symndx == -1, the hash table entry
95 corresponding to a global symbol in the got (or, local, if
96 h->forced_local). */
97 struct mips_elf_link_hash_entry *h;
98 } d;
0f20cc35
DJ
99
100 /* The TLS types included in this GOT entry (specifically, GD and
101 IE). The GD and IE flags can be added as we encounter new
102 relocations. LDM can also be set; it will always be alone, not
103 combined with any GD or IE flags. An LDM GOT entry will be
104 a local symbol entry with r_symndx == 0. */
105 unsigned char tls_type;
106
b15e6682 107 /* The offset from the beginning of the .got section to the entry
f4416af6
AO
108 corresponding to this symbol+addend. If it's a global symbol
109 whose offset is yet to be decided, it's going to be -1. */
110 long gotidx;
b15e6682
AO
111};
112
f0abc2a1 113/* This structure is used to hold .got information when linking. */
b49e97c9
TS
114
115struct mips_got_info
116{
117 /* The global symbol in the GOT with the lowest index in the dynamic
118 symbol table. */
119 struct elf_link_hash_entry *global_gotsym;
120 /* The number of global .got entries. */
121 unsigned int global_gotno;
0f20cc35
DJ
122 /* The number of .got slots used for TLS. */
123 unsigned int tls_gotno;
124 /* The first unused TLS .got entry. Used only during
125 mips_elf_initialize_tls_index. */
126 unsigned int tls_assigned_gotno;
b49e97c9
TS
127 /* The number of local .got entries. */
128 unsigned int local_gotno;
129 /* The number of local .got entries we have used. */
130 unsigned int assigned_gotno;
b15e6682
AO
131 /* A hash table holding members of the got. */
132 struct htab *got_entries;
f4416af6
AO
133 /* A hash table mapping input bfds to other mips_got_info. NULL
134 unless multi-got was necessary. */
135 struct htab *bfd2got;
136 /* In multi-got links, a pointer to the next got (err, rather, most
137 of the time, it points to the previous got). */
138 struct mips_got_info *next;
0f20cc35
DJ
139 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
140 for none, or MINUS_TWO for not yet assigned. This is needed
141 because a single-GOT link may have multiple hash table entries
142 for the LDM. It does not get initialized in multi-GOT mode. */
143 bfd_vma tls_ldm_offset;
f4416af6
AO
144};
145
146/* Map an input bfd to a got in a multi-got link. */
147
148struct mips_elf_bfd2got_hash {
149 bfd *bfd;
150 struct mips_got_info *g;
151};
152
153/* Structure passed when traversing the bfd2got hash table, used to
154 create and merge bfd's gots. */
155
156struct mips_elf_got_per_bfd_arg
157{
158 /* A hashtable that maps bfds to gots. */
159 htab_t bfd2got;
160 /* The output bfd. */
161 bfd *obfd;
162 /* The link information. */
163 struct bfd_link_info *info;
164 /* A pointer to the primary got, i.e., the one that's going to get
165 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
166 DT_MIPS_GOTSYM. */
167 struct mips_got_info *primary;
168 /* A non-primary got we're trying to merge with other input bfd's
169 gots. */
170 struct mips_got_info *current;
171 /* The maximum number of got entries that can be addressed with a
172 16-bit offset. */
173 unsigned int max_count;
174 /* The number of local and global entries in the primary got. */
175 unsigned int primary_count;
176 /* The number of local and global entries in the current got. */
177 unsigned int current_count;
0f20cc35
DJ
178 /* The total number of global entries which will live in the
179 primary got and be automatically relocated. This includes
180 those not referenced by the primary GOT but included in
181 the "master" GOT. */
182 unsigned int global_count;
f4416af6
AO
183};
184
185/* Another structure used to pass arguments for got entries traversal. */
186
187struct mips_elf_set_global_got_offset_arg
188{
189 struct mips_got_info *g;
190 int value;
191 unsigned int needed_relocs;
192 struct bfd_link_info *info;
b49e97c9
TS
193};
194
0f20cc35
DJ
195/* A structure used to count TLS relocations or GOT entries, for GOT
196 entry or ELF symbol table traversal. */
197
198struct mips_elf_count_tls_arg
199{
200 struct bfd_link_info *info;
201 unsigned int needed;
202};
203
f0abc2a1
AM
204struct _mips_elf_section_data
205{
206 struct bfd_elf_section_data elf;
207 union
208 {
209 struct mips_got_info *got_info;
210 bfd_byte *tdata;
211 } u;
212};
213
214#define mips_elf_section_data(sec) \
68bfbfcc 215 ((struct _mips_elf_section_data *) elf_section_data (sec))
f0abc2a1 216
b49e97c9
TS
217/* This structure is passed to mips_elf_sort_hash_table_f when sorting
218 the dynamic symbols. */
219
220struct mips_elf_hash_sort_data
221{
222 /* The symbol in the global GOT with the lowest dynamic symbol table
223 index. */
224 struct elf_link_hash_entry *low;
0f20cc35
DJ
225 /* The least dynamic symbol table index corresponding to a non-TLS
226 symbol with a GOT entry. */
b49e97c9 227 long min_got_dynindx;
f4416af6
AO
228 /* The greatest dynamic symbol table index corresponding to a symbol
229 with a GOT entry that is not referenced (e.g., a dynamic symbol
9e4aeb93 230 with dynamic relocations pointing to it from non-primary GOTs). */
f4416af6 231 long max_unref_got_dynindx;
b49e97c9
TS
232 /* The greatest dynamic symbol table index not corresponding to a
233 symbol without a GOT entry. */
234 long max_non_got_dynindx;
235};
236
237/* The MIPS ELF linker needs additional information for each symbol in
238 the global hash table. */
239
240struct mips_elf_link_hash_entry
241{
242 struct elf_link_hash_entry root;
243
244 /* External symbol information. */
245 EXTR esym;
246
247 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
248 this symbol. */
249 unsigned int possibly_dynamic_relocs;
250
251 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
252 a readonly section. */
b34976b6 253 bfd_boolean readonly_reloc;
b49e97c9 254
b49e97c9
TS
255 /* We must not create a stub for a symbol that has relocations
256 related to taking the function's address, i.e. any but
257 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
258 p. 4-20. */
b34976b6 259 bfd_boolean no_fn_stub;
b49e97c9
TS
260
261 /* If there is a stub that 32 bit functions should use to call this
262 16 bit function, this points to the section containing the stub. */
263 asection *fn_stub;
264
265 /* Whether we need the fn_stub; this is set if this symbol appears
266 in any relocs other than a 16 bit call. */
b34976b6 267 bfd_boolean need_fn_stub;
b49e97c9
TS
268
269 /* If there is a stub that 16 bit functions should use to call this
270 32 bit function, this points to the section containing the stub. */
271 asection *call_stub;
272
273 /* This is like the call_stub field, but it is used if the function
274 being called returns a floating point value. */
275 asection *call_fp_stub;
7c5fcef7 276
a008ac03
DJ
277 /* Are we forced local? This will only be set if we have converted
278 the initial global GOT entry to a local GOT entry. */
b34976b6 279 bfd_boolean forced_local;
0f20cc35 280
0a44bf69
RS
281 /* Are we referenced by some kind of relocation? */
282 bfd_boolean is_relocation_target;
283
284 /* Are we referenced by branch relocations? */
285 bfd_boolean is_branch_target;
286
0f20cc35
DJ
287#define GOT_NORMAL 0
288#define GOT_TLS_GD 1
289#define GOT_TLS_LDM 2
290#define GOT_TLS_IE 4
291#define GOT_TLS_OFFSET_DONE 0x40
292#define GOT_TLS_DONE 0x80
293 unsigned char tls_type;
294 /* This is only used in single-GOT mode; in multi-GOT mode there
295 is one mips_got_entry per GOT entry, so the offset is stored
296 there. In single-GOT mode there may be many mips_got_entry
297 structures all referring to the same GOT slot. It might be
298 possible to use root.got.offset instead, but that field is
299 overloaded already. */
300 bfd_vma tls_got_offset;
b49e97c9
TS
301};
302
303/* MIPS ELF linker hash table. */
304
305struct mips_elf_link_hash_table
306{
307 struct elf_link_hash_table root;
308#if 0
309 /* We no longer use this. */
310 /* String section indices for the dynamic section symbols. */
311 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
312#endif
313 /* The number of .rtproc entries. */
314 bfd_size_type procedure_count;
315 /* The size of the .compact_rel section (if SGI_COMPAT). */
316 bfd_size_type compact_rel_size;
317 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
8dc1a139 318 entry is set to the address of __rld_obj_head as in IRIX5. */
b34976b6 319 bfd_boolean use_rld_obj_head;
b49e97c9
TS
320 /* This is the value of the __rld_map or __rld_obj_head symbol. */
321 bfd_vma rld_value;
322 /* This is set if we see any mips16 stub sections. */
b34976b6 323 bfd_boolean mips16_stubs_seen;
0a44bf69
RS
324 /* True if we're generating code for VxWorks. */
325 bfd_boolean is_vxworks;
326 /* Shortcuts to some dynamic sections, or NULL if they are not
327 being used. */
328 asection *srelbss;
329 asection *sdynbss;
330 asection *srelplt;
331 asection *srelplt2;
332 asection *sgotplt;
333 asection *splt;
334 /* The size of the PLT header in bytes (VxWorks only). */
335 bfd_vma plt_header_size;
336 /* The size of a PLT entry in bytes (VxWorks only). */
337 bfd_vma plt_entry_size;
5108fc1b
RS
338 /* The size of a function stub entry in bytes. */
339 bfd_vma function_stub_size;
b49e97c9
TS
340};
341
0f20cc35
DJ
342#define TLS_RELOC_P(r_type) \
343 (r_type == R_MIPS_TLS_DTPMOD32 \
344 || r_type == R_MIPS_TLS_DTPMOD64 \
345 || r_type == R_MIPS_TLS_DTPREL32 \
346 || r_type == R_MIPS_TLS_DTPREL64 \
347 || r_type == R_MIPS_TLS_GD \
348 || r_type == R_MIPS_TLS_LDM \
349 || r_type == R_MIPS_TLS_DTPREL_HI16 \
350 || r_type == R_MIPS_TLS_DTPREL_LO16 \
351 || r_type == R_MIPS_TLS_GOTTPREL \
352 || r_type == R_MIPS_TLS_TPREL32 \
353 || r_type == R_MIPS_TLS_TPREL64 \
354 || r_type == R_MIPS_TLS_TPREL_HI16 \
355 || r_type == R_MIPS_TLS_TPREL_LO16)
356
b49e97c9
TS
357/* Structure used to pass information to mips_elf_output_extsym. */
358
359struct extsym_info
360{
9e4aeb93
RS
361 bfd *abfd;
362 struct bfd_link_info *info;
b49e97c9
TS
363 struct ecoff_debug_info *debug;
364 const struct ecoff_debug_swap *swap;
b34976b6 365 bfd_boolean failed;
b49e97c9
TS
366};
367
8dc1a139 368/* The names of the runtime procedure table symbols used on IRIX5. */
b49e97c9
TS
369
370static const char * const mips_elf_dynsym_rtproc_names[] =
371{
372 "_procedure_table",
373 "_procedure_string_table",
374 "_procedure_table_size",
375 NULL
376};
377
378/* These structures are used to generate the .compact_rel section on
8dc1a139 379 IRIX5. */
b49e97c9
TS
380
381typedef struct
382{
383 unsigned long id1; /* Always one? */
384 unsigned long num; /* Number of compact relocation entries. */
385 unsigned long id2; /* Always two? */
386 unsigned long offset; /* The file offset of the first relocation. */
387 unsigned long reserved0; /* Zero? */
388 unsigned long reserved1; /* Zero? */
389} Elf32_compact_rel;
390
391typedef struct
392{
393 bfd_byte id1[4];
394 bfd_byte num[4];
395 bfd_byte id2[4];
396 bfd_byte offset[4];
397 bfd_byte reserved0[4];
398 bfd_byte reserved1[4];
399} Elf32_External_compact_rel;
400
401typedef struct
402{
403 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
404 unsigned int rtype : 4; /* Relocation types. See below. */
405 unsigned int dist2to : 8;
406 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
407 unsigned long konst; /* KONST field. See below. */
408 unsigned long vaddr; /* VADDR to be relocated. */
409} Elf32_crinfo;
410
411typedef struct
412{
413 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
414 unsigned int rtype : 4; /* Relocation types. See below. */
415 unsigned int dist2to : 8;
416 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
417 unsigned long konst; /* KONST field. See below. */
418} Elf32_crinfo2;
419
420typedef struct
421{
422 bfd_byte info[4];
423 bfd_byte konst[4];
424 bfd_byte vaddr[4];
425} Elf32_External_crinfo;
426
427typedef struct
428{
429 bfd_byte info[4];
430 bfd_byte konst[4];
431} Elf32_External_crinfo2;
432
433/* These are the constants used to swap the bitfields in a crinfo. */
434
435#define CRINFO_CTYPE (0x1)
436#define CRINFO_CTYPE_SH (31)
437#define CRINFO_RTYPE (0xf)
438#define CRINFO_RTYPE_SH (27)
439#define CRINFO_DIST2TO (0xff)
440#define CRINFO_DIST2TO_SH (19)
441#define CRINFO_RELVADDR (0x7ffff)
442#define CRINFO_RELVADDR_SH (0)
443
444/* A compact relocation info has long (3 words) or short (2 words)
445 formats. A short format doesn't have VADDR field and relvaddr
446 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
447#define CRF_MIPS_LONG 1
448#define CRF_MIPS_SHORT 0
449
450/* There are 4 types of compact relocation at least. The value KONST
451 has different meaning for each type:
452
453 (type) (konst)
454 CT_MIPS_REL32 Address in data
455 CT_MIPS_WORD Address in word (XXX)
456 CT_MIPS_GPHI_LO GP - vaddr
457 CT_MIPS_JMPAD Address to jump
458 */
459
460#define CRT_MIPS_REL32 0xa
461#define CRT_MIPS_WORD 0xb
462#define CRT_MIPS_GPHI_LO 0xc
463#define CRT_MIPS_JMPAD 0xd
464
465#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
466#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
467#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
468#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
469\f
470/* The structure of the runtime procedure descriptor created by the
471 loader for use by the static exception system. */
472
473typedef struct runtime_pdr {
ae9a127f
NC
474 bfd_vma adr; /* Memory address of start of procedure. */
475 long regmask; /* Save register mask. */
476 long regoffset; /* Save register offset. */
477 long fregmask; /* Save floating point register mask. */
478 long fregoffset; /* Save floating point register offset. */
479 long frameoffset; /* Frame size. */
480 short framereg; /* Frame pointer register. */
481 short pcreg; /* Offset or reg of return pc. */
482 long irpss; /* Index into the runtime string table. */
b49e97c9 483 long reserved;
ae9a127f 484 struct exception_info *exception_info;/* Pointer to exception array. */
b49e97c9
TS
485} RPDR, *pRPDR;
486#define cbRPDR sizeof (RPDR)
487#define rpdNil ((pRPDR) 0)
488\f
b15e6682 489static struct mips_got_entry *mips_elf_create_local_got_entry
0a44bf69 490 (bfd *, struct bfd_link_info *, bfd *, struct mips_got_info *, asection *,
5c18022e 491 bfd_vma, unsigned long, struct mips_elf_link_hash_entry *, int);
b34976b6 492static bfd_boolean mips_elf_sort_hash_table_f
9719ad41 493 (struct mips_elf_link_hash_entry *, void *);
9719ad41
RS
494static bfd_vma mips_elf_high
495 (bfd_vma);
b9d58d71 496static bfd_boolean mips16_stub_section_p
9719ad41 497 (bfd *, asection *);
b34976b6 498static bfd_boolean mips_elf_create_dynamic_relocation
9719ad41
RS
499 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
500 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
501 bfd_vma *, asection *);
9719ad41
RS
502static hashval_t mips_elf_got_entry_hash
503 (const void *);
f4416af6 504static bfd_vma mips_elf_adjust_gp
9719ad41 505 (bfd *, struct mips_got_info *, bfd *);
f4416af6 506static struct mips_got_info *mips_elf_got_for_ibfd
9719ad41 507 (struct mips_got_info *, bfd *);
f4416af6 508
b49e97c9
TS
509/* This will be used when we sort the dynamic relocation records. */
510static bfd *reldyn_sorting_bfd;
511
512/* Nonzero if ABFD is using the N32 ABI. */
b49e97c9
TS
513#define ABI_N32_P(abfd) \
514 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
515
4a14403c 516/* Nonzero if ABFD is using the N64 ABI. */
b49e97c9 517#define ABI_64_P(abfd) \
141ff970 518 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
b49e97c9 519
4a14403c
TS
520/* Nonzero if ABFD is using NewABI conventions. */
521#define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
522
523/* The IRIX compatibility level we are striving for. */
b49e97c9
TS
524#define IRIX_COMPAT(abfd) \
525 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
526
b49e97c9
TS
527/* Whether we are trying to be compatible with IRIX at all. */
528#define SGI_COMPAT(abfd) \
529 (IRIX_COMPAT (abfd) != ict_none)
530
531/* The name of the options section. */
532#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
d80dcc6a 533 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
b49e97c9 534
cc2e31b9
RS
535/* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
536 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
537#define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
538 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
539
943284cc
DJ
540/* Whether the section is readonly. */
541#define MIPS_ELF_READONLY_SECTION(sec) \
542 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
543 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
544
b49e97c9 545/* The name of the stub section. */
ca07892d 546#define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
b49e97c9
TS
547
548/* The size of an external REL relocation. */
549#define MIPS_ELF_REL_SIZE(abfd) \
550 (get_elf_backend_data (abfd)->s->sizeof_rel)
551
0a44bf69
RS
552/* The size of an external RELA relocation. */
553#define MIPS_ELF_RELA_SIZE(abfd) \
554 (get_elf_backend_data (abfd)->s->sizeof_rela)
555
b49e97c9
TS
556/* The size of an external dynamic table entry. */
557#define MIPS_ELF_DYN_SIZE(abfd) \
558 (get_elf_backend_data (abfd)->s->sizeof_dyn)
559
560/* The size of a GOT entry. */
561#define MIPS_ELF_GOT_SIZE(abfd) \
562 (get_elf_backend_data (abfd)->s->arch_size / 8)
563
564/* The size of a symbol-table entry. */
565#define MIPS_ELF_SYM_SIZE(abfd) \
566 (get_elf_backend_data (abfd)->s->sizeof_sym)
567
568/* The default alignment for sections, as a power of two. */
569#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
45d6a902 570 (get_elf_backend_data (abfd)->s->log_file_align)
b49e97c9
TS
571
572/* Get word-sized data. */
573#define MIPS_ELF_GET_WORD(abfd, ptr) \
574 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
575
576/* Put out word-sized data. */
577#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
578 (ABI_64_P (abfd) \
579 ? bfd_put_64 (abfd, val, ptr) \
580 : bfd_put_32 (abfd, val, ptr))
581
582/* Add a dynamic symbol table-entry. */
9719ad41 583#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
5a580b3a 584 _bfd_elf_add_dynamic_entry (info, tag, val)
b49e97c9
TS
585
586#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
587 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
588
4ffba85c
AO
589/* Determine whether the internal relocation of index REL_IDX is REL
590 (zero) or RELA (non-zero). The assumption is that, if there are
591 two relocation sections for this section, one of them is REL and
592 the other is RELA. If the index of the relocation we're testing is
593 in range for the first relocation section, check that the external
594 relocation size is that for RELA. It is also assumed that, if
595 rel_idx is not in range for the first section, and this first
596 section contains REL relocs, then the relocation is in the second
597 section, that is RELA. */
598#define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
599 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
600 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
601 > (bfd_vma)(rel_idx)) \
602 == (elf_section_data (sec)->rel_hdr.sh_entsize \
603 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
604 : sizeof (Elf32_External_Rela))))
605
0a44bf69
RS
606/* The name of the dynamic relocation section. */
607#define MIPS_ELF_REL_DYN_NAME(INFO) \
608 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
609
b49e97c9
TS
610/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
611 from smaller values. Start with zero, widen, *then* decrement. */
612#define MINUS_ONE (((bfd_vma)0) - 1)
c5ae1840 613#define MINUS_TWO (((bfd_vma)0) - 2)
b49e97c9
TS
614
615/* The number of local .got entries we reserve. */
0a44bf69
RS
616#define MIPS_RESERVED_GOTNO(INFO) \
617 (mips_elf_hash_table (INFO)->is_vxworks ? 3 : 2)
b49e97c9 618
f4416af6 619/* The offset of $gp from the beginning of the .got section. */
0a44bf69
RS
620#define ELF_MIPS_GP_OFFSET(INFO) \
621 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
f4416af6
AO
622
623/* The maximum size of the GOT for it to be addressable using 16-bit
624 offsets from $gp. */
0a44bf69 625#define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
f4416af6 626
6a691779 627/* Instructions which appear in a stub. */
3d6746ca
DD
628#define STUB_LW(abfd) \
629 ((ABI_64_P (abfd) \
630 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
631 : 0x8f998010)) /* lw t9,0x8010(gp) */
632#define STUB_MOVE(abfd) \
633 ((ABI_64_P (abfd) \
634 ? 0x03e0782d /* daddu t7,ra */ \
635 : 0x03e07821)) /* addu t7,ra */
636#define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
637#define STUB_JALR 0x0320f809 /* jalr t9,ra */
5108fc1b
RS
638#define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
639#define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
3d6746ca
DD
640#define STUB_LI16S(abfd, VAL) \
641 ((ABI_64_P (abfd) \
642 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
643 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
644
5108fc1b
RS
645#define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
646#define MIPS_FUNCTION_STUB_BIG_SIZE 20
b49e97c9
TS
647
648/* The name of the dynamic interpreter. This is put in the .interp
649 section. */
650
651#define ELF_DYNAMIC_INTERPRETER(abfd) \
652 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
653 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
654 : "/usr/lib/libc.so.1")
655
656#ifdef BFD64
ee6423ed
AO
657#define MNAME(bfd,pre,pos) \
658 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
b49e97c9
TS
659#define ELF_R_SYM(bfd, i) \
660 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
661#define ELF_R_TYPE(bfd, i) \
662 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
663#define ELF_R_INFO(bfd, s, t) \
664 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
665#else
ee6423ed 666#define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
b49e97c9
TS
667#define ELF_R_SYM(bfd, i) \
668 (ELF32_R_SYM (i))
669#define ELF_R_TYPE(bfd, i) \
670 (ELF32_R_TYPE (i))
671#define ELF_R_INFO(bfd, s, t) \
672 (ELF32_R_INFO (s, t))
673#endif
674\f
675 /* The mips16 compiler uses a couple of special sections to handle
676 floating point arguments.
677
678 Section names that look like .mips16.fn.FNNAME contain stubs that
679 copy floating point arguments from the fp regs to the gp regs and
680 then jump to FNNAME. If any 32 bit function calls FNNAME, the
681 call should be redirected to the stub instead. If no 32 bit
682 function calls FNNAME, the stub should be discarded. We need to
683 consider any reference to the function, not just a call, because
684 if the address of the function is taken we will need the stub,
685 since the address might be passed to a 32 bit function.
686
687 Section names that look like .mips16.call.FNNAME contain stubs
688 that copy floating point arguments from the gp regs to the fp
689 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
690 then any 16 bit function that calls FNNAME should be redirected
691 to the stub instead. If FNNAME is not a 32 bit function, the
692 stub should be discarded.
693
694 .mips16.call.fp.FNNAME sections are similar, but contain stubs
695 which call FNNAME and then copy the return value from the fp regs
696 to the gp regs. These stubs store the return value in $18 while
697 calling FNNAME; any function which might call one of these stubs
698 must arrange to save $18 around the call. (This case is not
699 needed for 32 bit functions that call 16 bit functions, because
700 16 bit functions always return floating point values in both
701 $f0/$f1 and $2/$3.)
702
703 Note that in all cases FNNAME might be defined statically.
704 Therefore, FNNAME is not used literally. Instead, the relocation
705 information will indicate which symbol the section is for.
706
707 We record any stubs that we find in the symbol table. */
708
709#define FN_STUB ".mips16.fn."
710#define CALL_STUB ".mips16.call."
711#define CALL_FP_STUB ".mips16.call.fp."
b9d58d71
TS
712
713#define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
714#define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
715#define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
b49e97c9 716\f
0a44bf69
RS
717/* The format of the first PLT entry in a VxWorks executable. */
718static const bfd_vma mips_vxworks_exec_plt0_entry[] = {
719 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
720 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
721 0x8f390008, /* lw t9, 8(t9) */
722 0x00000000, /* nop */
723 0x03200008, /* jr t9 */
724 0x00000000 /* nop */
725};
726
727/* The format of subsequent PLT entries. */
728static const bfd_vma mips_vxworks_exec_plt_entry[] = {
729 0x10000000, /* b .PLT_resolver */
730 0x24180000, /* li t8, <pltindex> */
731 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
732 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
733 0x8f390000, /* lw t9, 0(t9) */
734 0x00000000, /* nop */
735 0x03200008, /* jr t9 */
736 0x00000000 /* nop */
737};
738
739/* The format of the first PLT entry in a VxWorks shared object. */
740static const bfd_vma mips_vxworks_shared_plt0_entry[] = {
741 0x8f990008, /* lw t9, 8(gp) */
742 0x00000000, /* nop */
743 0x03200008, /* jr t9 */
744 0x00000000, /* nop */
745 0x00000000, /* nop */
746 0x00000000 /* nop */
747};
748
749/* The format of subsequent PLT entries. */
750static const bfd_vma mips_vxworks_shared_plt_entry[] = {
751 0x10000000, /* b .PLT_resolver */
752 0x24180000 /* li t8, <pltindex> */
753};
754\f
b49e97c9
TS
755/* Look up an entry in a MIPS ELF linker hash table. */
756
757#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
758 ((struct mips_elf_link_hash_entry *) \
759 elf_link_hash_lookup (&(table)->root, (string), (create), \
760 (copy), (follow)))
761
762/* Traverse a MIPS ELF linker hash table. */
763
764#define mips_elf_link_hash_traverse(table, func, info) \
765 (elf_link_hash_traverse \
766 (&(table)->root, \
9719ad41 767 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
b49e97c9
TS
768 (info)))
769
770/* Get the MIPS ELF linker hash table from a link_info structure. */
771
772#define mips_elf_hash_table(p) \
773 ((struct mips_elf_link_hash_table *) ((p)->hash))
774
0f20cc35
DJ
775/* Find the base offsets for thread-local storage in this object,
776 for GD/LD and IE/LE respectively. */
777
778#define TP_OFFSET 0x7000
779#define DTP_OFFSET 0x8000
780
781static bfd_vma
782dtprel_base (struct bfd_link_info *info)
783{
784 /* If tls_sec is NULL, we should have signalled an error already. */
785 if (elf_hash_table (info)->tls_sec == NULL)
786 return 0;
787 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
788}
789
790static bfd_vma
791tprel_base (struct bfd_link_info *info)
792{
793 /* If tls_sec is NULL, we should have signalled an error already. */
794 if (elf_hash_table (info)->tls_sec == NULL)
795 return 0;
796 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
797}
798
b49e97c9
TS
799/* Create an entry in a MIPS ELF linker hash table. */
800
801static struct bfd_hash_entry *
9719ad41
RS
802mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
803 struct bfd_hash_table *table, const char *string)
b49e97c9
TS
804{
805 struct mips_elf_link_hash_entry *ret =
806 (struct mips_elf_link_hash_entry *) entry;
807
808 /* Allocate the structure if it has not already been allocated by a
809 subclass. */
9719ad41
RS
810 if (ret == NULL)
811 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
812 if (ret == NULL)
b49e97c9
TS
813 return (struct bfd_hash_entry *) ret;
814
815 /* Call the allocation method of the superclass. */
816 ret = ((struct mips_elf_link_hash_entry *)
817 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
818 table, string));
9719ad41 819 if (ret != NULL)
b49e97c9
TS
820 {
821 /* Set local fields. */
822 memset (&ret->esym, 0, sizeof (EXTR));
823 /* We use -2 as a marker to indicate that the information has
824 not been set. -1 means there is no associated ifd. */
825 ret->esym.ifd = -2;
826 ret->possibly_dynamic_relocs = 0;
b34976b6 827 ret->readonly_reloc = FALSE;
b34976b6 828 ret->no_fn_stub = FALSE;
b49e97c9 829 ret->fn_stub = NULL;
b34976b6 830 ret->need_fn_stub = FALSE;
b49e97c9
TS
831 ret->call_stub = NULL;
832 ret->call_fp_stub = NULL;
b34976b6 833 ret->forced_local = FALSE;
0a44bf69
RS
834 ret->is_branch_target = FALSE;
835 ret->is_relocation_target = FALSE;
0f20cc35 836 ret->tls_type = GOT_NORMAL;
b49e97c9
TS
837 }
838
839 return (struct bfd_hash_entry *) ret;
840}
f0abc2a1
AM
841
842bfd_boolean
9719ad41 843_bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
f0abc2a1 844{
f592407e
AM
845 if (!sec->used_by_bfd)
846 {
847 struct _mips_elf_section_data *sdata;
848 bfd_size_type amt = sizeof (*sdata);
f0abc2a1 849
f592407e
AM
850 sdata = bfd_zalloc (abfd, amt);
851 if (sdata == NULL)
852 return FALSE;
853 sec->used_by_bfd = sdata;
854 }
f0abc2a1
AM
855
856 return _bfd_elf_new_section_hook (abfd, sec);
857}
b49e97c9
TS
858\f
859/* Read ECOFF debugging information from a .mdebug section into a
860 ecoff_debug_info structure. */
861
b34976b6 862bfd_boolean
9719ad41
RS
863_bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
864 struct ecoff_debug_info *debug)
b49e97c9
TS
865{
866 HDRR *symhdr;
867 const struct ecoff_debug_swap *swap;
9719ad41 868 char *ext_hdr;
b49e97c9
TS
869
870 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
871 memset (debug, 0, sizeof (*debug));
872
9719ad41 873 ext_hdr = bfd_malloc (swap->external_hdr_size);
b49e97c9
TS
874 if (ext_hdr == NULL && swap->external_hdr_size != 0)
875 goto error_return;
876
9719ad41 877 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
82e51918 878 swap->external_hdr_size))
b49e97c9
TS
879 goto error_return;
880
881 symhdr = &debug->symbolic_header;
882 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
883
884 /* The symbolic header contains absolute file offsets and sizes to
885 read. */
886#define READ(ptr, offset, count, size, type) \
887 if (symhdr->count == 0) \
888 debug->ptr = NULL; \
889 else \
890 { \
891 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
9719ad41 892 debug->ptr = bfd_malloc (amt); \
b49e97c9
TS
893 if (debug->ptr == NULL) \
894 goto error_return; \
9719ad41 895 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
b49e97c9
TS
896 || bfd_bread (debug->ptr, amt, abfd) != amt) \
897 goto error_return; \
898 }
899
900 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
9719ad41
RS
901 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
902 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
903 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
904 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
b49e97c9
TS
905 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
906 union aux_ext *);
907 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
908 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
9719ad41
RS
909 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
910 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
911 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
b49e97c9
TS
912#undef READ
913
914 debug->fdr = NULL;
b49e97c9 915
b34976b6 916 return TRUE;
b49e97c9
TS
917
918 error_return:
919 if (ext_hdr != NULL)
920 free (ext_hdr);
921 if (debug->line != NULL)
922 free (debug->line);
923 if (debug->external_dnr != NULL)
924 free (debug->external_dnr);
925 if (debug->external_pdr != NULL)
926 free (debug->external_pdr);
927 if (debug->external_sym != NULL)
928 free (debug->external_sym);
929 if (debug->external_opt != NULL)
930 free (debug->external_opt);
931 if (debug->external_aux != NULL)
932 free (debug->external_aux);
933 if (debug->ss != NULL)
934 free (debug->ss);
935 if (debug->ssext != NULL)
936 free (debug->ssext);
937 if (debug->external_fdr != NULL)
938 free (debug->external_fdr);
939 if (debug->external_rfd != NULL)
940 free (debug->external_rfd);
941 if (debug->external_ext != NULL)
942 free (debug->external_ext);
b34976b6 943 return FALSE;
b49e97c9
TS
944}
945\f
946/* Swap RPDR (runtime procedure table entry) for output. */
947
948static void
9719ad41 949ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
b49e97c9
TS
950{
951 H_PUT_S32 (abfd, in->adr, ex->p_adr);
952 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
953 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
954 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
955 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
956 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
957
958 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
959 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
960
961 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
b49e97c9
TS
962}
963
964/* Create a runtime procedure table from the .mdebug section. */
965
b34976b6 966static bfd_boolean
9719ad41
RS
967mips_elf_create_procedure_table (void *handle, bfd *abfd,
968 struct bfd_link_info *info, asection *s,
969 struct ecoff_debug_info *debug)
b49e97c9
TS
970{
971 const struct ecoff_debug_swap *swap;
972 HDRR *hdr = &debug->symbolic_header;
973 RPDR *rpdr, *rp;
974 struct rpdr_ext *erp;
9719ad41 975 void *rtproc;
b49e97c9
TS
976 struct pdr_ext *epdr;
977 struct sym_ext *esym;
978 char *ss, **sv;
979 char *str;
980 bfd_size_type size;
981 bfd_size_type count;
982 unsigned long sindex;
983 unsigned long i;
984 PDR pdr;
985 SYMR sym;
986 const char *no_name_func = _("static procedure (no name)");
987
988 epdr = NULL;
989 rpdr = NULL;
990 esym = NULL;
991 ss = NULL;
992 sv = NULL;
993
994 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
995
996 sindex = strlen (no_name_func) + 1;
997 count = hdr->ipdMax;
998 if (count > 0)
999 {
1000 size = swap->external_pdr_size;
1001
9719ad41 1002 epdr = bfd_malloc (size * count);
b49e97c9
TS
1003 if (epdr == NULL)
1004 goto error_return;
1005
9719ad41 1006 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
b49e97c9
TS
1007 goto error_return;
1008
1009 size = sizeof (RPDR);
9719ad41 1010 rp = rpdr = bfd_malloc (size * count);
b49e97c9
TS
1011 if (rpdr == NULL)
1012 goto error_return;
1013
1014 size = sizeof (char *);
9719ad41 1015 sv = bfd_malloc (size * count);
b49e97c9
TS
1016 if (sv == NULL)
1017 goto error_return;
1018
1019 count = hdr->isymMax;
1020 size = swap->external_sym_size;
9719ad41 1021 esym = bfd_malloc (size * count);
b49e97c9
TS
1022 if (esym == NULL)
1023 goto error_return;
1024
9719ad41 1025 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
b49e97c9
TS
1026 goto error_return;
1027
1028 count = hdr->issMax;
9719ad41 1029 ss = bfd_malloc (count);
b49e97c9
TS
1030 if (ss == NULL)
1031 goto error_return;
f075ee0c 1032 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
b49e97c9
TS
1033 goto error_return;
1034
1035 count = hdr->ipdMax;
1036 for (i = 0; i < (unsigned long) count; i++, rp++)
1037 {
9719ad41
RS
1038 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1039 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
b49e97c9
TS
1040 rp->adr = sym.value;
1041 rp->regmask = pdr.regmask;
1042 rp->regoffset = pdr.regoffset;
1043 rp->fregmask = pdr.fregmask;
1044 rp->fregoffset = pdr.fregoffset;
1045 rp->frameoffset = pdr.frameoffset;
1046 rp->framereg = pdr.framereg;
1047 rp->pcreg = pdr.pcreg;
1048 rp->irpss = sindex;
1049 sv[i] = ss + sym.iss;
1050 sindex += strlen (sv[i]) + 1;
1051 }
1052 }
1053
1054 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1055 size = BFD_ALIGN (size, 16);
9719ad41 1056 rtproc = bfd_alloc (abfd, size);
b49e97c9
TS
1057 if (rtproc == NULL)
1058 {
1059 mips_elf_hash_table (info)->procedure_count = 0;
1060 goto error_return;
1061 }
1062
1063 mips_elf_hash_table (info)->procedure_count = count + 2;
1064
9719ad41 1065 erp = rtproc;
b49e97c9
TS
1066 memset (erp, 0, sizeof (struct rpdr_ext));
1067 erp++;
1068 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1069 strcpy (str, no_name_func);
1070 str += strlen (no_name_func) + 1;
1071 for (i = 0; i < count; i++)
1072 {
1073 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1074 strcpy (str, sv[i]);
1075 str += strlen (sv[i]) + 1;
1076 }
1077 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1078
1079 /* Set the size and contents of .rtproc section. */
eea6121a 1080 s->size = size;
9719ad41 1081 s->contents = rtproc;
b49e97c9
TS
1082
1083 /* Skip this section later on (I don't think this currently
1084 matters, but someday it might). */
8423293d 1085 s->map_head.link_order = NULL;
b49e97c9
TS
1086
1087 if (epdr != NULL)
1088 free (epdr);
1089 if (rpdr != NULL)
1090 free (rpdr);
1091 if (esym != NULL)
1092 free (esym);
1093 if (ss != NULL)
1094 free (ss);
1095 if (sv != NULL)
1096 free (sv);
1097
b34976b6 1098 return TRUE;
b49e97c9
TS
1099
1100 error_return:
1101 if (epdr != NULL)
1102 free (epdr);
1103 if (rpdr != NULL)
1104 free (rpdr);
1105 if (esym != NULL)
1106 free (esym);
1107 if (ss != NULL)
1108 free (ss);
1109 if (sv != NULL)
1110 free (sv);
b34976b6 1111 return FALSE;
b49e97c9
TS
1112}
1113
1114/* Check the mips16 stubs for a particular symbol, and see if we can
1115 discard them. */
1116
b34976b6 1117static bfd_boolean
9719ad41
RS
1118mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h,
1119 void *data ATTRIBUTE_UNUSED)
b49e97c9
TS
1120{
1121 if (h->root.root.type == bfd_link_hash_warning)
1122 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1123
1124 if (h->fn_stub != NULL
1125 && ! h->need_fn_stub)
1126 {
1127 /* We don't need the fn_stub; the only references to this symbol
1128 are 16 bit calls. Clobber the size to 0 to prevent it from
1129 being included in the link. */
eea6121a 1130 h->fn_stub->size = 0;
b49e97c9
TS
1131 h->fn_stub->flags &= ~SEC_RELOC;
1132 h->fn_stub->reloc_count = 0;
1133 h->fn_stub->flags |= SEC_EXCLUDE;
1134 }
1135
1136 if (h->call_stub != NULL
1137 && h->root.other == STO_MIPS16)
1138 {
1139 /* We don't need the call_stub; this is a 16 bit function, so
1140 calls from other 16 bit functions are OK. Clobber the size
1141 to 0 to prevent it from being included in the link. */
eea6121a 1142 h->call_stub->size = 0;
b49e97c9
TS
1143 h->call_stub->flags &= ~SEC_RELOC;
1144 h->call_stub->reloc_count = 0;
1145 h->call_stub->flags |= SEC_EXCLUDE;
1146 }
1147
1148 if (h->call_fp_stub != NULL
1149 && h->root.other == STO_MIPS16)
1150 {
1151 /* We don't need the call_stub; this is a 16 bit function, so
1152 calls from other 16 bit functions are OK. Clobber the size
1153 to 0 to prevent it from being included in the link. */
eea6121a 1154 h->call_fp_stub->size = 0;
b49e97c9
TS
1155 h->call_fp_stub->flags &= ~SEC_RELOC;
1156 h->call_fp_stub->reloc_count = 0;
1157 h->call_fp_stub->flags |= SEC_EXCLUDE;
1158 }
1159
b34976b6 1160 return TRUE;
b49e97c9
TS
1161}
1162\f
d6f16593
MR
1163/* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1164 Most mips16 instructions are 16 bits, but these instructions
1165 are 32 bits.
1166
1167 The format of these instructions is:
1168
1169 +--------------+--------------------------------+
1170 | JALX | X| Imm 20:16 | Imm 25:21 |
1171 +--------------+--------------------------------+
1172 | Immediate 15:0 |
1173 +-----------------------------------------------+
1174
1175 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1176 Note that the immediate value in the first word is swapped.
1177
1178 When producing a relocatable object file, R_MIPS16_26 is
1179 handled mostly like R_MIPS_26. In particular, the addend is
1180 stored as a straight 26-bit value in a 32-bit instruction.
1181 (gas makes life simpler for itself by never adjusting a
1182 R_MIPS16_26 reloc to be against a section, so the addend is
1183 always zero). However, the 32 bit instruction is stored as 2
1184 16-bit values, rather than a single 32-bit value. In a
1185 big-endian file, the result is the same; in a little-endian
1186 file, the two 16-bit halves of the 32 bit value are swapped.
1187 This is so that a disassembler can recognize the jal
1188 instruction.
1189
1190 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1191 instruction stored as two 16-bit values. The addend A is the
1192 contents of the targ26 field. The calculation is the same as
1193 R_MIPS_26. When storing the calculated value, reorder the
1194 immediate value as shown above, and don't forget to store the
1195 value as two 16-bit values.
1196
1197 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1198 defined as
1199
1200 big-endian:
1201 +--------+----------------------+
1202 | | |
1203 | | targ26-16 |
1204 |31 26|25 0|
1205 +--------+----------------------+
1206
1207 little-endian:
1208 +----------+------+-------------+
1209 | | | |
1210 | sub1 | | sub2 |
1211 |0 9|10 15|16 31|
1212 +----------+--------------------+
1213 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1214 ((sub1 << 16) | sub2)).
1215
1216 When producing a relocatable object file, the calculation is
1217 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1218 When producing a fully linked file, the calculation is
1219 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1220 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1221
1222 R_MIPS16_GPREL is used for GP-relative addressing in mips16
1223 mode. A typical instruction will have a format like this:
1224
1225 +--------------+--------------------------------+
1226 | EXTEND | Imm 10:5 | Imm 15:11 |
1227 +--------------+--------------------------------+
1228 | Major | rx | ry | Imm 4:0 |
1229 +--------------+--------------------------------+
1230
1231 EXTEND is the five bit value 11110. Major is the instruction
1232 opcode.
1233
1234 This is handled exactly like R_MIPS_GPREL16, except that the
1235 addend is retrieved and stored as shown in this diagram; that
1236 is, the Imm fields above replace the V-rel16 field.
1237
1238 All we need to do here is shuffle the bits appropriately. As
1239 above, the two 16-bit halves must be swapped on a
1240 little-endian system.
1241
1242 R_MIPS16_HI16 and R_MIPS16_LO16 are used in mips16 mode to
1243 access data when neither GP-relative nor PC-relative addressing
1244 can be used. They are handled like R_MIPS_HI16 and R_MIPS_LO16,
1245 except that the addend is retrieved and stored as shown above
1246 for R_MIPS16_GPREL.
1247 */
1248void
1249_bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type,
1250 bfd_boolean jal_shuffle, bfd_byte *data)
1251{
1252 bfd_vma extend, insn, val;
1253
1254 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1255 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1256 return;
1257
1258 /* Pick up the mips16 extend instruction and the real instruction. */
1259 extend = bfd_get_16 (abfd, data);
1260 insn = bfd_get_16 (abfd, data + 2);
1261 if (r_type == R_MIPS16_26)
1262 {
1263 if (jal_shuffle)
1264 val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11)
1265 | ((extend & 0x1f) << 21) | insn;
1266 else
1267 val = extend << 16 | insn;
1268 }
1269 else
1270 val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11)
1271 | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f);
1272 bfd_put_32 (abfd, val, data);
1273}
1274
1275void
1276_bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type,
1277 bfd_boolean jal_shuffle, bfd_byte *data)
1278{
1279 bfd_vma extend, insn, val;
1280
1281 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1282 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1283 return;
1284
1285 val = bfd_get_32 (abfd, data);
1286 if (r_type == R_MIPS16_26)
1287 {
1288 if (jal_shuffle)
1289 {
1290 insn = val & 0xffff;
1291 extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
1292 | ((val >> 21) & 0x1f);
1293 }
1294 else
1295 {
1296 insn = val & 0xffff;
1297 extend = val >> 16;
1298 }
1299 }
1300 else
1301 {
1302 insn = ((val >> 11) & 0xffe0) | (val & 0x1f);
1303 extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
1304 }
1305 bfd_put_16 (abfd, insn, data + 2);
1306 bfd_put_16 (abfd, extend, data);
1307}
1308
b49e97c9 1309bfd_reloc_status_type
9719ad41
RS
1310_bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1311 arelent *reloc_entry, asection *input_section,
1312 bfd_boolean relocatable, void *data, bfd_vma gp)
b49e97c9
TS
1313{
1314 bfd_vma relocation;
a7ebbfdf 1315 bfd_signed_vma val;
30ac9238 1316 bfd_reloc_status_type status;
b49e97c9
TS
1317
1318 if (bfd_is_com_section (symbol->section))
1319 relocation = 0;
1320 else
1321 relocation = symbol->value;
1322
1323 relocation += symbol->section->output_section->vma;
1324 relocation += symbol->section->output_offset;
1325
07515404 1326 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
b49e97c9
TS
1327 return bfd_reloc_outofrange;
1328
b49e97c9 1329 /* Set val to the offset into the section or symbol. */
a7ebbfdf
TS
1330 val = reloc_entry->addend;
1331
30ac9238 1332 _bfd_mips_elf_sign_extend (val, 16);
a7ebbfdf 1333
b49e97c9 1334 /* Adjust val for the final section location and GP value. If we
1049f94e 1335 are producing relocatable output, we don't want to do this for
b49e97c9 1336 an external symbol. */
1049f94e 1337 if (! relocatable
b49e97c9
TS
1338 || (symbol->flags & BSF_SECTION_SYM) != 0)
1339 val += relocation - gp;
1340
a7ebbfdf
TS
1341 if (reloc_entry->howto->partial_inplace)
1342 {
30ac9238
RS
1343 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1344 (bfd_byte *) data
1345 + reloc_entry->address);
1346 if (status != bfd_reloc_ok)
1347 return status;
a7ebbfdf
TS
1348 }
1349 else
1350 reloc_entry->addend = val;
b49e97c9 1351
1049f94e 1352 if (relocatable)
b49e97c9 1353 reloc_entry->address += input_section->output_offset;
30ac9238
RS
1354
1355 return bfd_reloc_ok;
1356}
1357
1358/* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1359 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1360 that contains the relocation field and DATA points to the start of
1361 INPUT_SECTION. */
1362
1363struct mips_hi16
1364{
1365 struct mips_hi16 *next;
1366 bfd_byte *data;
1367 asection *input_section;
1368 arelent rel;
1369};
1370
1371/* FIXME: This should not be a static variable. */
1372
1373static struct mips_hi16 *mips_hi16_list;
1374
1375/* A howto special_function for REL *HI16 relocations. We can only
1376 calculate the correct value once we've seen the partnering
1377 *LO16 relocation, so just save the information for later.
1378
1379 The ABI requires that the *LO16 immediately follow the *HI16.
1380 However, as a GNU extension, we permit an arbitrary number of
1381 *HI16s to be associated with a single *LO16. This significantly
1382 simplies the relocation handling in gcc. */
1383
1384bfd_reloc_status_type
1385_bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1386 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
1387 asection *input_section, bfd *output_bfd,
1388 char **error_message ATTRIBUTE_UNUSED)
1389{
1390 struct mips_hi16 *n;
1391
07515404 1392 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1393 return bfd_reloc_outofrange;
1394
1395 n = bfd_malloc (sizeof *n);
1396 if (n == NULL)
1397 return bfd_reloc_outofrange;
1398
1399 n->next = mips_hi16_list;
1400 n->data = data;
1401 n->input_section = input_section;
1402 n->rel = *reloc_entry;
1403 mips_hi16_list = n;
1404
1405 if (output_bfd != NULL)
1406 reloc_entry->address += input_section->output_offset;
1407
1408 return bfd_reloc_ok;
1409}
1410
1411/* A howto special_function for REL R_MIPS_GOT16 relocations. This is just
1412 like any other 16-bit relocation when applied to global symbols, but is
1413 treated in the same as R_MIPS_HI16 when applied to local symbols. */
1414
1415bfd_reloc_status_type
1416_bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1417 void *data, asection *input_section,
1418 bfd *output_bfd, char **error_message)
1419{
1420 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
1421 || bfd_is_und_section (bfd_get_section (symbol))
1422 || bfd_is_com_section (bfd_get_section (symbol)))
1423 /* The relocation is against a global symbol. */
1424 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1425 input_section, output_bfd,
1426 error_message);
1427
1428 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1429 input_section, output_bfd, error_message);
1430}
1431
1432/* A howto special_function for REL *LO16 relocations. The *LO16 itself
1433 is a straightforward 16 bit inplace relocation, but we must deal with
1434 any partnering high-part relocations as well. */
1435
1436bfd_reloc_status_type
1437_bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1438 void *data, asection *input_section,
1439 bfd *output_bfd, char **error_message)
1440{
1441 bfd_vma vallo;
d6f16593 1442 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
30ac9238 1443
07515404 1444 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1445 return bfd_reloc_outofrange;
1446
d6f16593
MR
1447 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1448 location);
1449 vallo = bfd_get_32 (abfd, location);
1450 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1451 location);
1452
30ac9238
RS
1453 while (mips_hi16_list != NULL)
1454 {
1455 bfd_reloc_status_type ret;
1456 struct mips_hi16 *hi;
1457
1458 hi = mips_hi16_list;
1459
1460 /* R_MIPS_GOT16 relocations are something of a special case. We
1461 want to install the addend in the same way as for a R_MIPS_HI16
1462 relocation (with a rightshift of 16). However, since GOT16
1463 relocations can also be used with global symbols, their howto
1464 has a rightshift of 0. */
1465 if (hi->rel.howto->type == R_MIPS_GOT16)
1466 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
1467
1468 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
1469 carry or borrow will induce a change of +1 or -1 in the high part. */
1470 hi->rel.addend += (vallo + 0x8000) & 0xffff;
1471
30ac9238
RS
1472 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
1473 hi->input_section, output_bfd,
1474 error_message);
1475 if (ret != bfd_reloc_ok)
1476 return ret;
1477
1478 mips_hi16_list = hi->next;
1479 free (hi);
1480 }
1481
1482 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1483 input_section, output_bfd,
1484 error_message);
1485}
1486
1487/* A generic howto special_function. This calculates and installs the
1488 relocation itself, thus avoiding the oft-discussed problems in
1489 bfd_perform_relocation and bfd_install_relocation. */
1490
1491bfd_reloc_status_type
1492_bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1493 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
1494 asection *input_section, bfd *output_bfd,
1495 char **error_message ATTRIBUTE_UNUSED)
1496{
1497 bfd_signed_vma val;
1498 bfd_reloc_status_type status;
1499 bfd_boolean relocatable;
1500
1501 relocatable = (output_bfd != NULL);
1502
07515404 1503 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1504 return bfd_reloc_outofrange;
1505
1506 /* Build up the field adjustment in VAL. */
1507 val = 0;
1508 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
1509 {
1510 /* Either we're calculating the final field value or we have a
1511 relocation against a section symbol. Add in the section's
1512 offset or address. */
1513 val += symbol->section->output_section->vma;
1514 val += symbol->section->output_offset;
1515 }
1516
1517 if (!relocatable)
1518 {
1519 /* We're calculating the final field value. Add in the symbol's value
1520 and, if pc-relative, subtract the address of the field itself. */
1521 val += symbol->value;
1522 if (reloc_entry->howto->pc_relative)
1523 {
1524 val -= input_section->output_section->vma;
1525 val -= input_section->output_offset;
1526 val -= reloc_entry->address;
1527 }
1528 }
1529
1530 /* VAL is now the final adjustment. If we're keeping this relocation
1531 in the output file, and if the relocation uses a separate addend,
1532 we just need to add VAL to that addend. Otherwise we need to add
1533 VAL to the relocation field itself. */
1534 if (relocatable && !reloc_entry->howto->partial_inplace)
1535 reloc_entry->addend += val;
1536 else
1537 {
d6f16593
MR
1538 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1539
30ac9238
RS
1540 /* Add in the separate addend, if any. */
1541 val += reloc_entry->addend;
1542
1543 /* Add VAL to the relocation field. */
d6f16593
MR
1544 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1545 location);
30ac9238 1546 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
d6f16593
MR
1547 location);
1548 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1549 location);
1550
30ac9238
RS
1551 if (status != bfd_reloc_ok)
1552 return status;
1553 }
1554
1555 if (relocatable)
1556 reloc_entry->address += input_section->output_offset;
b49e97c9
TS
1557
1558 return bfd_reloc_ok;
1559}
1560\f
1561/* Swap an entry in a .gptab section. Note that these routines rely
1562 on the equivalence of the two elements of the union. */
1563
1564static void
9719ad41
RS
1565bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
1566 Elf32_gptab *in)
b49e97c9
TS
1567{
1568 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1569 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1570}
1571
1572static void
9719ad41
RS
1573bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
1574 Elf32_External_gptab *ex)
b49e97c9
TS
1575{
1576 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1577 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1578}
1579
1580static void
9719ad41
RS
1581bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
1582 Elf32_External_compact_rel *ex)
b49e97c9
TS
1583{
1584 H_PUT_32 (abfd, in->id1, ex->id1);
1585 H_PUT_32 (abfd, in->num, ex->num);
1586 H_PUT_32 (abfd, in->id2, ex->id2);
1587 H_PUT_32 (abfd, in->offset, ex->offset);
1588 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1589 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1590}
1591
1592static void
9719ad41
RS
1593bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
1594 Elf32_External_crinfo *ex)
b49e97c9
TS
1595{
1596 unsigned long l;
1597
1598 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1599 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1600 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1601 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1602 H_PUT_32 (abfd, l, ex->info);
1603 H_PUT_32 (abfd, in->konst, ex->konst);
1604 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1605}
b49e97c9
TS
1606\f
1607/* A .reginfo section holds a single Elf32_RegInfo structure. These
1608 routines swap this structure in and out. They are used outside of
1609 BFD, so they are globally visible. */
1610
1611void
9719ad41
RS
1612bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
1613 Elf32_RegInfo *in)
b49e97c9
TS
1614{
1615 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1616 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1617 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1618 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1619 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1620 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1621}
1622
1623void
9719ad41
RS
1624bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
1625 Elf32_External_RegInfo *ex)
b49e97c9
TS
1626{
1627 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1628 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1629 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1630 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1631 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1632 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1633}
1634
1635/* In the 64 bit ABI, the .MIPS.options section holds register
1636 information in an Elf64_Reginfo structure. These routines swap
1637 them in and out. They are globally visible because they are used
1638 outside of BFD. These routines are here so that gas can call them
1639 without worrying about whether the 64 bit ABI has been included. */
1640
1641void
9719ad41
RS
1642bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
1643 Elf64_Internal_RegInfo *in)
b49e97c9
TS
1644{
1645 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1646 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1647 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1648 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1649 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1650 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1651 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1652}
1653
1654void
9719ad41
RS
1655bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
1656 Elf64_External_RegInfo *ex)
b49e97c9
TS
1657{
1658 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1659 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1660 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1661 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1662 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1663 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1664 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1665}
1666
1667/* Swap in an options header. */
1668
1669void
9719ad41
RS
1670bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
1671 Elf_Internal_Options *in)
b49e97c9
TS
1672{
1673 in->kind = H_GET_8 (abfd, ex->kind);
1674 in->size = H_GET_8 (abfd, ex->size);
1675 in->section = H_GET_16 (abfd, ex->section);
1676 in->info = H_GET_32 (abfd, ex->info);
1677}
1678
1679/* Swap out an options header. */
1680
1681void
9719ad41
RS
1682bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
1683 Elf_External_Options *ex)
b49e97c9
TS
1684{
1685 H_PUT_8 (abfd, in->kind, ex->kind);
1686 H_PUT_8 (abfd, in->size, ex->size);
1687 H_PUT_16 (abfd, in->section, ex->section);
1688 H_PUT_32 (abfd, in->info, ex->info);
1689}
1690\f
1691/* This function is called via qsort() to sort the dynamic relocation
1692 entries by increasing r_symndx value. */
1693
1694static int
9719ad41 1695sort_dynamic_relocs (const void *arg1, const void *arg2)
b49e97c9 1696{
947216bf
AM
1697 Elf_Internal_Rela int_reloc1;
1698 Elf_Internal_Rela int_reloc2;
6870500c 1699 int diff;
b49e97c9 1700
947216bf
AM
1701 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1702 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
b49e97c9 1703
6870500c
RS
1704 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
1705 if (diff != 0)
1706 return diff;
1707
1708 if (int_reloc1.r_offset < int_reloc2.r_offset)
1709 return -1;
1710 if (int_reloc1.r_offset > int_reloc2.r_offset)
1711 return 1;
1712 return 0;
b49e97c9
TS
1713}
1714
f4416af6
AO
1715/* Like sort_dynamic_relocs, but used for elf64 relocations. */
1716
1717static int
7e3102a7
AM
1718sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
1719 const void *arg2 ATTRIBUTE_UNUSED)
f4416af6 1720{
7e3102a7 1721#ifdef BFD64
f4416af6
AO
1722 Elf_Internal_Rela int_reloc1[3];
1723 Elf_Internal_Rela int_reloc2[3];
1724
1725 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1726 (reldyn_sorting_bfd, arg1, int_reloc1);
1727 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1728 (reldyn_sorting_bfd, arg2, int_reloc2);
1729
6870500c
RS
1730 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
1731 return -1;
1732 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
1733 return 1;
1734
1735 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
1736 return -1;
1737 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
1738 return 1;
1739 return 0;
7e3102a7
AM
1740#else
1741 abort ();
1742#endif
f4416af6
AO
1743}
1744
1745
b49e97c9
TS
1746/* This routine is used to write out ECOFF debugging external symbol
1747 information. It is called via mips_elf_link_hash_traverse. The
1748 ECOFF external symbol information must match the ELF external
1749 symbol information. Unfortunately, at this point we don't know
1750 whether a symbol is required by reloc information, so the two
1751 tables may wind up being different. We must sort out the external
1752 symbol information before we can set the final size of the .mdebug
1753 section, and we must set the size of the .mdebug section before we
1754 can relocate any sections, and we can't know which symbols are
1755 required by relocation until we relocate the sections.
1756 Fortunately, it is relatively unlikely that any symbol will be
1757 stripped but required by a reloc. In particular, it can not happen
1758 when generating a final executable. */
1759
b34976b6 1760static bfd_boolean
9719ad41 1761mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 1762{
9719ad41 1763 struct extsym_info *einfo = data;
b34976b6 1764 bfd_boolean strip;
b49e97c9
TS
1765 asection *sec, *output_section;
1766
1767 if (h->root.root.type == bfd_link_hash_warning)
1768 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1769
1770 if (h->root.indx == -2)
b34976b6 1771 strip = FALSE;
f5385ebf 1772 else if ((h->root.def_dynamic
77cfaee6
AM
1773 || h->root.ref_dynamic
1774 || h->root.type == bfd_link_hash_new)
f5385ebf
AM
1775 && !h->root.def_regular
1776 && !h->root.ref_regular)
b34976b6 1777 strip = TRUE;
b49e97c9
TS
1778 else if (einfo->info->strip == strip_all
1779 || (einfo->info->strip == strip_some
1780 && bfd_hash_lookup (einfo->info->keep_hash,
1781 h->root.root.root.string,
b34976b6
AM
1782 FALSE, FALSE) == NULL))
1783 strip = TRUE;
b49e97c9 1784 else
b34976b6 1785 strip = FALSE;
b49e97c9
TS
1786
1787 if (strip)
b34976b6 1788 return TRUE;
b49e97c9
TS
1789
1790 if (h->esym.ifd == -2)
1791 {
1792 h->esym.jmptbl = 0;
1793 h->esym.cobol_main = 0;
1794 h->esym.weakext = 0;
1795 h->esym.reserved = 0;
1796 h->esym.ifd = ifdNil;
1797 h->esym.asym.value = 0;
1798 h->esym.asym.st = stGlobal;
1799
1800 if (h->root.root.type == bfd_link_hash_undefined
1801 || h->root.root.type == bfd_link_hash_undefweak)
1802 {
1803 const char *name;
1804
1805 /* Use undefined class. Also, set class and type for some
1806 special symbols. */
1807 name = h->root.root.root.string;
1808 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1809 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1810 {
1811 h->esym.asym.sc = scData;
1812 h->esym.asym.st = stLabel;
1813 h->esym.asym.value = 0;
1814 }
1815 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1816 {
1817 h->esym.asym.sc = scAbs;
1818 h->esym.asym.st = stLabel;
1819 h->esym.asym.value =
1820 mips_elf_hash_table (einfo->info)->procedure_count;
1821 }
4a14403c 1822 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
b49e97c9
TS
1823 {
1824 h->esym.asym.sc = scAbs;
1825 h->esym.asym.st = stLabel;
1826 h->esym.asym.value = elf_gp (einfo->abfd);
1827 }
1828 else
1829 h->esym.asym.sc = scUndefined;
1830 }
1831 else if (h->root.root.type != bfd_link_hash_defined
1832 && h->root.root.type != bfd_link_hash_defweak)
1833 h->esym.asym.sc = scAbs;
1834 else
1835 {
1836 const char *name;
1837
1838 sec = h->root.root.u.def.section;
1839 output_section = sec->output_section;
1840
1841 /* When making a shared library and symbol h is the one from
1842 the another shared library, OUTPUT_SECTION may be null. */
1843 if (output_section == NULL)
1844 h->esym.asym.sc = scUndefined;
1845 else
1846 {
1847 name = bfd_section_name (output_section->owner, output_section);
1848
1849 if (strcmp (name, ".text") == 0)
1850 h->esym.asym.sc = scText;
1851 else if (strcmp (name, ".data") == 0)
1852 h->esym.asym.sc = scData;
1853 else if (strcmp (name, ".sdata") == 0)
1854 h->esym.asym.sc = scSData;
1855 else if (strcmp (name, ".rodata") == 0
1856 || strcmp (name, ".rdata") == 0)
1857 h->esym.asym.sc = scRData;
1858 else if (strcmp (name, ".bss") == 0)
1859 h->esym.asym.sc = scBss;
1860 else if (strcmp (name, ".sbss") == 0)
1861 h->esym.asym.sc = scSBss;
1862 else if (strcmp (name, ".init") == 0)
1863 h->esym.asym.sc = scInit;
1864 else if (strcmp (name, ".fini") == 0)
1865 h->esym.asym.sc = scFini;
1866 else
1867 h->esym.asym.sc = scAbs;
1868 }
1869 }
1870
1871 h->esym.asym.reserved = 0;
1872 h->esym.asym.index = indexNil;
1873 }
1874
1875 if (h->root.root.type == bfd_link_hash_common)
1876 h->esym.asym.value = h->root.root.u.c.size;
1877 else if (h->root.root.type == bfd_link_hash_defined
1878 || h->root.root.type == bfd_link_hash_defweak)
1879 {
1880 if (h->esym.asym.sc == scCommon)
1881 h->esym.asym.sc = scBss;
1882 else if (h->esym.asym.sc == scSCommon)
1883 h->esym.asym.sc = scSBss;
1884
1885 sec = h->root.root.u.def.section;
1886 output_section = sec->output_section;
1887 if (output_section != NULL)
1888 h->esym.asym.value = (h->root.root.u.def.value
1889 + sec->output_offset
1890 + output_section->vma);
1891 else
1892 h->esym.asym.value = 0;
1893 }
f5385ebf 1894 else if (h->root.needs_plt)
b49e97c9
TS
1895 {
1896 struct mips_elf_link_hash_entry *hd = h;
b34976b6 1897 bfd_boolean no_fn_stub = h->no_fn_stub;
b49e97c9
TS
1898
1899 while (hd->root.root.type == bfd_link_hash_indirect)
1900 {
1901 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1902 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1903 }
1904
1905 if (!no_fn_stub)
1906 {
1907 /* Set type and value for a symbol with a function stub. */
1908 h->esym.asym.st = stProc;
1909 sec = hd->root.root.u.def.section;
1910 if (sec == NULL)
1911 h->esym.asym.value = 0;
1912 else
1913 {
1914 output_section = sec->output_section;
1915 if (output_section != NULL)
1916 h->esym.asym.value = (hd->root.plt.offset
1917 + sec->output_offset
1918 + output_section->vma);
1919 else
1920 h->esym.asym.value = 0;
1921 }
b49e97c9
TS
1922 }
1923 }
1924
1925 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1926 h->root.root.root.string,
1927 &h->esym))
1928 {
b34976b6
AM
1929 einfo->failed = TRUE;
1930 return FALSE;
b49e97c9
TS
1931 }
1932
b34976b6 1933 return TRUE;
b49e97c9
TS
1934}
1935
1936/* A comparison routine used to sort .gptab entries. */
1937
1938static int
9719ad41 1939gptab_compare (const void *p1, const void *p2)
b49e97c9 1940{
9719ad41
RS
1941 const Elf32_gptab *a1 = p1;
1942 const Elf32_gptab *a2 = p2;
b49e97c9
TS
1943
1944 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1945}
1946\f
b15e6682 1947/* Functions to manage the got entry hash table. */
f4416af6
AO
1948
1949/* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1950 hash number. */
1951
1952static INLINE hashval_t
9719ad41 1953mips_elf_hash_bfd_vma (bfd_vma addr)
f4416af6
AO
1954{
1955#ifdef BFD64
1956 return addr + (addr >> 32);
1957#else
1958 return addr;
1959#endif
1960}
1961
1962/* got_entries only match if they're identical, except for gotidx, so
1963 use all fields to compute the hash, and compare the appropriate
1964 union members. */
1965
b15e6682 1966static hashval_t
9719ad41 1967mips_elf_got_entry_hash (const void *entry_)
b15e6682
AO
1968{
1969 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1970
38985a1c 1971 return entry->symndx
0f20cc35 1972 + ((entry->tls_type & GOT_TLS_LDM) << 17)
f4416af6 1973 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
38985a1c
AO
1974 : entry->abfd->id
1975 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1976 : entry->d.h->root.root.root.hash));
b15e6682
AO
1977}
1978
1979static int
9719ad41 1980mips_elf_got_entry_eq (const void *entry1, const void *entry2)
b15e6682
AO
1981{
1982 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1983 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1984
0f20cc35
DJ
1985 /* An LDM entry can only match another LDM entry. */
1986 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
1987 return 0;
1988
b15e6682 1989 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
f4416af6
AO
1990 && (! e1->abfd ? e1->d.address == e2->d.address
1991 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1992 : e1->d.h == e2->d.h);
1993}
1994
1995/* multi_got_entries are still a match in the case of global objects,
1996 even if the input bfd in which they're referenced differs, so the
1997 hash computation and compare functions are adjusted
1998 accordingly. */
1999
2000static hashval_t
9719ad41 2001mips_elf_multi_got_entry_hash (const void *entry_)
f4416af6
AO
2002{
2003 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2004
2005 return entry->symndx
2006 + (! entry->abfd
2007 ? mips_elf_hash_bfd_vma (entry->d.address)
2008 : entry->symndx >= 0
0f20cc35
DJ
2009 ? ((entry->tls_type & GOT_TLS_LDM)
2010 ? (GOT_TLS_LDM << 17)
2011 : (entry->abfd->id
2012 + mips_elf_hash_bfd_vma (entry->d.addend)))
f4416af6
AO
2013 : entry->d.h->root.root.root.hash);
2014}
2015
2016static int
9719ad41 2017mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
2018{
2019 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2020 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2021
0f20cc35
DJ
2022 /* Any two LDM entries match. */
2023 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2024 return 1;
2025
2026 /* Nothing else matches an LDM entry. */
2027 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2028 return 0;
2029
f4416af6
AO
2030 return e1->symndx == e2->symndx
2031 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2032 : e1->abfd == NULL || e2->abfd == NULL
2033 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2034 : e1->d.h == e2->d.h);
b15e6682
AO
2035}
2036\f
0a44bf69
RS
2037/* Return the dynamic relocation section. If it doesn't exist, try to
2038 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2039 if creation fails. */
f4416af6
AO
2040
2041static asection *
0a44bf69 2042mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
f4416af6 2043{
0a44bf69 2044 const char *dname;
f4416af6 2045 asection *sreloc;
0a44bf69 2046 bfd *dynobj;
f4416af6 2047
0a44bf69
RS
2048 dname = MIPS_ELF_REL_DYN_NAME (info);
2049 dynobj = elf_hash_table (info)->dynobj;
f4416af6
AO
2050 sreloc = bfd_get_section_by_name (dynobj, dname);
2051 if (sreloc == NULL && create_p)
2052 {
3496cb2a
L
2053 sreloc = bfd_make_section_with_flags (dynobj, dname,
2054 (SEC_ALLOC
2055 | SEC_LOAD
2056 | SEC_HAS_CONTENTS
2057 | SEC_IN_MEMORY
2058 | SEC_LINKER_CREATED
2059 | SEC_READONLY));
f4416af6 2060 if (sreloc == NULL
f4416af6 2061 || ! bfd_set_section_alignment (dynobj, sreloc,
d80dcc6a 2062 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
f4416af6
AO
2063 return NULL;
2064 }
2065 return sreloc;
2066}
2067
b49e97c9
TS
2068/* Returns the GOT section for ABFD. */
2069
2070static asection *
9719ad41 2071mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded)
b49e97c9 2072{
f4416af6
AO
2073 asection *sgot = bfd_get_section_by_name (abfd, ".got");
2074 if (sgot == NULL
2075 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
2076 return NULL;
2077 return sgot;
b49e97c9
TS
2078}
2079
2080/* Returns the GOT information associated with the link indicated by
2081 INFO. If SGOTP is non-NULL, it is filled in with the GOT
2082 section. */
2083
2084static struct mips_got_info *
9719ad41 2085mips_elf_got_info (bfd *abfd, asection **sgotp)
b49e97c9
TS
2086{
2087 asection *sgot;
2088 struct mips_got_info *g;
2089
f4416af6 2090 sgot = mips_elf_got_section (abfd, TRUE);
b49e97c9 2091 BFD_ASSERT (sgot != NULL);
f0abc2a1
AM
2092 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
2093 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
2094 BFD_ASSERT (g != NULL);
2095
2096 if (sgotp)
f4416af6
AO
2097 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
2098
b49e97c9
TS
2099 return g;
2100}
2101
0f20cc35
DJ
2102/* Count the number of relocations needed for a TLS GOT entry, with
2103 access types from TLS_TYPE, and symbol H (or a local symbol if H
2104 is NULL). */
2105
2106static int
2107mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2108 struct elf_link_hash_entry *h)
2109{
2110 int indx = 0;
2111 int ret = 0;
2112 bfd_boolean need_relocs = FALSE;
2113 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2114
2115 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2116 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2117 indx = h->dynindx;
2118
2119 if ((info->shared || indx != 0)
2120 && (h == NULL
2121 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2122 || h->root.type != bfd_link_hash_undefweak))
2123 need_relocs = TRUE;
2124
2125 if (!need_relocs)
2126 return FALSE;
2127
2128 if (tls_type & GOT_TLS_GD)
2129 {
2130 ret++;
2131 if (indx != 0)
2132 ret++;
2133 }
2134
2135 if (tls_type & GOT_TLS_IE)
2136 ret++;
2137
2138 if ((tls_type & GOT_TLS_LDM) && info->shared)
2139 ret++;
2140
2141 return ret;
2142}
2143
2144/* Count the number of TLS relocations required for the GOT entry in
2145 ARG1, if it describes a local symbol. */
2146
2147static int
2148mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2149{
2150 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2151 struct mips_elf_count_tls_arg *arg = arg2;
2152
2153 if (entry->abfd != NULL && entry->symndx != -1)
2154 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2155
2156 return 1;
2157}
2158
2159/* Count the number of TLS GOT entries required for the global (or
2160 forced-local) symbol in ARG1. */
2161
2162static int
2163mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2164{
2165 struct mips_elf_link_hash_entry *hm
2166 = (struct mips_elf_link_hash_entry *) arg1;
2167 struct mips_elf_count_tls_arg *arg = arg2;
2168
2169 if (hm->tls_type & GOT_TLS_GD)
2170 arg->needed += 2;
2171 if (hm->tls_type & GOT_TLS_IE)
2172 arg->needed += 1;
2173
2174 return 1;
2175}
2176
2177/* Count the number of TLS relocations required for the global (or
2178 forced-local) symbol in ARG1. */
2179
2180static int
2181mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2182{
2183 struct mips_elf_link_hash_entry *hm
2184 = (struct mips_elf_link_hash_entry *) arg1;
2185 struct mips_elf_count_tls_arg *arg = arg2;
2186
2187 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2188
2189 return 1;
2190}
2191
2192/* Output a simple dynamic relocation into SRELOC. */
2193
2194static void
2195mips_elf_output_dynamic_relocation (bfd *output_bfd,
2196 asection *sreloc,
2197 unsigned long indx,
2198 int r_type,
2199 bfd_vma offset)
2200{
2201 Elf_Internal_Rela rel[3];
2202
2203 memset (rel, 0, sizeof (rel));
2204
2205 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2206 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2207
2208 if (ABI_64_P (output_bfd))
2209 {
2210 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2211 (output_bfd, &rel[0],
2212 (sreloc->contents
2213 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
2214 }
2215 else
2216 bfd_elf32_swap_reloc_out
2217 (output_bfd, &rel[0],
2218 (sreloc->contents
2219 + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
2220 ++sreloc->reloc_count;
2221}
2222
2223/* Initialize a set of TLS GOT entries for one symbol. */
2224
2225static void
2226mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
2227 unsigned char *tls_type_p,
2228 struct bfd_link_info *info,
2229 struct mips_elf_link_hash_entry *h,
2230 bfd_vma value)
2231{
2232 int indx;
2233 asection *sreloc, *sgot;
2234 bfd_vma offset, offset2;
2235 bfd *dynobj;
2236 bfd_boolean need_relocs = FALSE;
2237
2238 dynobj = elf_hash_table (info)->dynobj;
2239 sgot = mips_elf_got_section (dynobj, FALSE);
2240
2241 indx = 0;
2242 if (h != NULL)
2243 {
2244 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2245
2246 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
2247 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
2248 indx = h->root.dynindx;
2249 }
2250
2251 if (*tls_type_p & GOT_TLS_DONE)
2252 return;
2253
2254 if ((info->shared || indx != 0)
2255 && (h == NULL
2256 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
2257 || h->root.type != bfd_link_hash_undefweak))
2258 need_relocs = TRUE;
2259
2260 /* MINUS_ONE means the symbol is not defined in this object. It may not
2261 be defined at all; assume that the value doesn't matter in that
2262 case. Otherwise complain if we would use the value. */
2263 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
2264 || h->root.root.type == bfd_link_hash_undefweak);
2265
2266 /* Emit necessary relocations. */
0a44bf69 2267 sreloc = mips_elf_rel_dyn_section (info, FALSE);
0f20cc35
DJ
2268
2269 /* General Dynamic. */
2270 if (*tls_type_p & GOT_TLS_GD)
2271 {
2272 offset = got_offset;
2273 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
2274
2275 if (need_relocs)
2276 {
2277 mips_elf_output_dynamic_relocation
2278 (abfd, sreloc, indx,
2279 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2280 sgot->output_offset + sgot->output_section->vma + offset);
2281
2282 if (indx)
2283 mips_elf_output_dynamic_relocation
2284 (abfd, sreloc, indx,
2285 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
2286 sgot->output_offset + sgot->output_section->vma + offset2);
2287 else
2288 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2289 sgot->contents + offset2);
2290 }
2291 else
2292 {
2293 MIPS_ELF_PUT_WORD (abfd, 1,
2294 sgot->contents + offset);
2295 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2296 sgot->contents + offset2);
2297 }
2298
2299 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
2300 }
2301
2302 /* Initial Exec model. */
2303 if (*tls_type_p & GOT_TLS_IE)
2304 {
2305 offset = got_offset;
2306
2307 if (need_relocs)
2308 {
2309 if (indx == 0)
2310 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
2311 sgot->contents + offset);
2312 else
2313 MIPS_ELF_PUT_WORD (abfd, 0,
2314 sgot->contents + offset);
2315
2316 mips_elf_output_dynamic_relocation
2317 (abfd, sreloc, indx,
2318 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
2319 sgot->output_offset + sgot->output_section->vma + offset);
2320 }
2321 else
2322 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
2323 sgot->contents + offset);
2324 }
2325
2326 if (*tls_type_p & GOT_TLS_LDM)
2327 {
2328 /* The initial offset is zero, and the LD offsets will include the
2329 bias by DTP_OFFSET. */
2330 MIPS_ELF_PUT_WORD (abfd, 0,
2331 sgot->contents + got_offset
2332 + MIPS_ELF_GOT_SIZE (abfd));
2333
2334 if (!info->shared)
2335 MIPS_ELF_PUT_WORD (abfd, 1,
2336 sgot->contents + got_offset);
2337 else
2338 mips_elf_output_dynamic_relocation
2339 (abfd, sreloc, indx,
2340 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2341 sgot->output_offset + sgot->output_section->vma + got_offset);
2342 }
2343
2344 *tls_type_p |= GOT_TLS_DONE;
2345}
2346
2347/* Return the GOT index to use for a relocation of type R_TYPE against
2348 a symbol accessed using TLS_TYPE models. The GOT entries for this
2349 symbol in this GOT start at GOT_INDEX. This function initializes the
2350 GOT entries and corresponding relocations. */
2351
2352static bfd_vma
2353mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
2354 int r_type, struct bfd_link_info *info,
2355 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
2356{
2357 BFD_ASSERT (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS_TLS_GD
2358 || r_type == R_MIPS_TLS_LDM);
2359
2360 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
2361
2362 if (r_type == R_MIPS_TLS_GOTTPREL)
2363 {
2364 BFD_ASSERT (*tls_type & GOT_TLS_IE);
2365 if (*tls_type & GOT_TLS_GD)
2366 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
2367 else
2368 return got_index;
2369 }
2370
2371 if (r_type == R_MIPS_TLS_GD)
2372 {
2373 BFD_ASSERT (*tls_type & GOT_TLS_GD);
2374 return got_index;
2375 }
2376
2377 if (r_type == R_MIPS_TLS_LDM)
2378 {
2379 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
2380 return got_index;
2381 }
2382
2383 return got_index;
2384}
2385
0a44bf69
RS
2386/* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
2387 for global symbol H. .got.plt comes before the GOT, so the offset
2388 will be negative. */
2389
2390static bfd_vma
2391mips_elf_gotplt_index (struct bfd_link_info *info,
2392 struct elf_link_hash_entry *h)
2393{
2394 bfd_vma plt_index, got_address, got_value;
2395 struct mips_elf_link_hash_table *htab;
2396
2397 htab = mips_elf_hash_table (info);
2398 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
2399
2400 /* Calculate the index of the symbol's PLT entry. */
2401 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
2402
2403 /* Calculate the address of the associated .got.plt entry. */
2404 got_address = (htab->sgotplt->output_section->vma
2405 + htab->sgotplt->output_offset
2406 + plt_index * 4);
2407
2408 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
2409 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
2410 + htab->root.hgot->root.u.def.section->output_offset
2411 + htab->root.hgot->root.u.def.value);
2412
2413 return got_address - got_value;
2414}
2415
5c18022e 2416/* Return the GOT offset for address VALUE. If there is not yet a GOT
0a44bf69
RS
2417 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
2418 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
2419 offset can be found. */
b49e97c9
TS
2420
2421static bfd_vma
9719ad41 2422mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 2423 bfd_vma value, unsigned long r_symndx,
0f20cc35 2424 struct mips_elf_link_hash_entry *h, int r_type)
b49e97c9
TS
2425{
2426 asection *sgot;
2427 struct mips_got_info *g;
b15e6682 2428 struct mips_got_entry *entry;
b49e97c9
TS
2429
2430 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2431
0a44bf69 2432 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
5c18022e 2433 value, r_symndx, h, r_type);
0f20cc35 2434 if (!entry)
b15e6682 2435 return MINUS_ONE;
0f20cc35
DJ
2436
2437 if (TLS_RELOC_P (r_type))
ead49a57
RS
2438 {
2439 if (entry->symndx == -1 && g->next == NULL)
2440 /* A type (3) entry in the single-GOT case. We use the symbol's
2441 hash table entry to track the index. */
2442 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
2443 r_type, info, h, value);
2444 else
2445 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
2446 r_type, info, h, value);
2447 }
0f20cc35
DJ
2448 else
2449 return entry->gotidx;
b49e97c9
TS
2450}
2451
2452/* Returns the GOT index for the global symbol indicated by H. */
2453
2454static bfd_vma
0f20cc35
DJ
2455mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
2456 int r_type, struct bfd_link_info *info)
b49e97c9
TS
2457{
2458 bfd_vma index;
2459 asection *sgot;
f4416af6 2460 struct mips_got_info *g, *gg;
d0c7ff07 2461 long global_got_dynindx = 0;
b49e97c9 2462
f4416af6
AO
2463 gg = g = mips_elf_got_info (abfd, &sgot);
2464 if (g->bfd2got && ibfd)
2465 {
2466 struct mips_got_entry e, *p;
143d77c5 2467
f4416af6
AO
2468 BFD_ASSERT (h->dynindx >= 0);
2469
2470 g = mips_elf_got_for_ibfd (g, ibfd);
0f20cc35 2471 if (g->next != gg || TLS_RELOC_P (r_type))
f4416af6
AO
2472 {
2473 e.abfd = ibfd;
2474 e.symndx = -1;
2475 e.d.h = (struct mips_elf_link_hash_entry *)h;
0f20cc35 2476 e.tls_type = 0;
f4416af6 2477
9719ad41 2478 p = htab_find (g->got_entries, &e);
f4416af6
AO
2479
2480 BFD_ASSERT (p->gotidx > 0);
0f20cc35
DJ
2481
2482 if (TLS_RELOC_P (r_type))
2483 {
2484 bfd_vma value = MINUS_ONE;
2485 if ((h->root.type == bfd_link_hash_defined
2486 || h->root.type == bfd_link_hash_defweak)
2487 && h->root.u.def.section->output_section)
2488 value = (h->root.u.def.value
2489 + h->root.u.def.section->output_offset
2490 + h->root.u.def.section->output_section->vma);
2491
2492 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
2493 info, e.d.h, value);
2494 }
2495 else
2496 return p->gotidx;
f4416af6
AO
2497 }
2498 }
2499
2500 if (gg->global_gotsym != NULL)
2501 global_got_dynindx = gg->global_gotsym->dynindx;
b49e97c9 2502
0f20cc35
DJ
2503 if (TLS_RELOC_P (r_type))
2504 {
2505 struct mips_elf_link_hash_entry *hm
2506 = (struct mips_elf_link_hash_entry *) h;
2507 bfd_vma value = MINUS_ONE;
2508
2509 if ((h->root.type == bfd_link_hash_defined
2510 || h->root.type == bfd_link_hash_defweak)
2511 && h->root.u.def.section->output_section)
2512 value = (h->root.u.def.value
2513 + h->root.u.def.section->output_offset
2514 + h->root.u.def.section->output_section->vma);
2515
2516 index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
2517 r_type, info, hm, value);
2518 }
2519 else
2520 {
2521 /* Once we determine the global GOT entry with the lowest dynamic
2522 symbol table index, we must put all dynamic symbols with greater
2523 indices into the GOT. That makes it easy to calculate the GOT
2524 offset. */
2525 BFD_ASSERT (h->dynindx >= global_got_dynindx);
2526 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
2527 * MIPS_ELF_GOT_SIZE (abfd));
2528 }
eea6121a 2529 BFD_ASSERT (index < sgot->size);
b49e97c9
TS
2530
2531 return index;
2532}
2533
5c18022e
RS
2534/* Find a GOT page entry that points to within 32KB of VALUE. These
2535 entries are supposed to be placed at small offsets in the GOT, i.e.,
2536 within 32KB of GP. Return the index of the GOT entry, or -1 if no
2537 entry could be created. If OFFSETP is nonnull, use it to return the
0a44bf69 2538 offset of the GOT entry from VALUE. */
b49e97c9
TS
2539
2540static bfd_vma
9719ad41 2541mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 2542 bfd_vma value, bfd_vma *offsetp)
b49e97c9
TS
2543{
2544 asection *sgot;
2545 struct mips_got_info *g;
0a44bf69 2546 bfd_vma page, index;
b15e6682 2547 struct mips_got_entry *entry;
b49e97c9
TS
2548
2549 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2550
0a44bf69
RS
2551 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
2552 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
5c18022e 2553 page, 0, NULL, R_MIPS_GOT_PAGE);
b49e97c9 2554
b15e6682
AO
2555 if (!entry)
2556 return MINUS_ONE;
143d77c5 2557
b15e6682 2558 index = entry->gotidx;
b49e97c9
TS
2559
2560 if (offsetp)
f4416af6 2561 *offsetp = value - entry->d.address;
b49e97c9
TS
2562
2563 return index;
2564}
2565
5c18022e 2566/* Find a local GOT entry for an R_MIPS_GOT16 relocation against VALUE.
0a44bf69
RS
2567 EXTERNAL is true if the relocation was against a global symbol
2568 that has been forced local. */
b49e97c9
TS
2569
2570static bfd_vma
9719ad41 2571mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 2572 bfd_vma value, bfd_boolean external)
b49e97c9
TS
2573{
2574 asection *sgot;
2575 struct mips_got_info *g;
b15e6682 2576 struct mips_got_entry *entry;
b49e97c9 2577
0a44bf69
RS
2578 /* GOT16 relocations against local symbols are followed by a LO16
2579 relocation; those against global symbols are not. Thus if the
2580 symbol was originally local, the GOT16 relocation should load the
2581 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
b49e97c9 2582 if (! external)
0a44bf69 2583 value = mips_elf_high (value) << 16;
b49e97c9
TS
2584
2585 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2586
0a44bf69 2587 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
5c18022e 2588 value, 0, NULL, R_MIPS_GOT16);
b15e6682
AO
2589 if (entry)
2590 return entry->gotidx;
2591 else
2592 return MINUS_ONE;
b49e97c9
TS
2593}
2594
2595/* Returns the offset for the entry at the INDEXth position
2596 in the GOT. */
2597
2598static bfd_vma
9719ad41
RS
2599mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd,
2600 bfd *input_bfd, bfd_vma index)
b49e97c9
TS
2601{
2602 asection *sgot;
2603 bfd_vma gp;
f4416af6 2604 struct mips_got_info *g;
b49e97c9 2605
f4416af6
AO
2606 g = mips_elf_got_info (dynobj, &sgot);
2607 gp = _bfd_get_gp_value (output_bfd)
2608 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
143d77c5 2609
f4416af6 2610 return sgot->output_section->vma + sgot->output_offset + index - gp;
b49e97c9
TS
2611}
2612
0a44bf69
RS
2613/* Create and return a local GOT entry for VALUE, which was calculated
2614 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
2615 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
2616 instead. */
b49e97c9 2617
b15e6682 2618static struct mips_got_entry *
0a44bf69
RS
2619mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
2620 bfd *ibfd, struct mips_got_info *gg,
5c18022e
RS
2621 asection *sgot, bfd_vma value,
2622 unsigned long r_symndx,
0f20cc35
DJ
2623 struct mips_elf_link_hash_entry *h,
2624 int r_type)
b49e97c9 2625{
b15e6682 2626 struct mips_got_entry entry, **loc;
f4416af6 2627 struct mips_got_info *g;
0a44bf69
RS
2628 struct mips_elf_link_hash_table *htab;
2629
2630 htab = mips_elf_hash_table (info);
b15e6682 2631
f4416af6
AO
2632 entry.abfd = NULL;
2633 entry.symndx = -1;
2634 entry.d.address = value;
0f20cc35 2635 entry.tls_type = 0;
f4416af6
AO
2636
2637 g = mips_elf_got_for_ibfd (gg, ibfd);
2638 if (g == NULL)
2639 {
2640 g = mips_elf_got_for_ibfd (gg, abfd);
2641 BFD_ASSERT (g != NULL);
2642 }
b15e6682 2643
0f20cc35
DJ
2644 /* We might have a symbol, H, if it has been forced local. Use the
2645 global entry then. It doesn't matter whether an entry is local
2646 or global for TLS, since the dynamic linker does not
2647 automatically relocate TLS GOT entries. */
a008ac03 2648 BFD_ASSERT (h == NULL || h->root.forced_local);
0f20cc35
DJ
2649 if (TLS_RELOC_P (r_type))
2650 {
2651 struct mips_got_entry *p;
2652
2653 entry.abfd = ibfd;
2654 if (r_type == R_MIPS_TLS_LDM)
2655 {
2656 entry.tls_type = GOT_TLS_LDM;
2657 entry.symndx = 0;
2658 entry.d.addend = 0;
2659 }
2660 else if (h == NULL)
2661 {
2662 entry.symndx = r_symndx;
2663 entry.d.addend = 0;
2664 }
2665 else
2666 entry.d.h = h;
2667
2668 p = (struct mips_got_entry *)
2669 htab_find (g->got_entries, &entry);
2670
2671 BFD_ASSERT (p);
2672 return p;
2673 }
2674
b15e6682
AO
2675 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2676 INSERT);
2677 if (*loc)
2678 return *loc;
143d77c5 2679
b15e6682 2680 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
0f20cc35 2681 entry.tls_type = 0;
b15e6682
AO
2682
2683 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2684
2685 if (! *loc)
2686 return NULL;
143d77c5 2687
b15e6682
AO
2688 memcpy (*loc, &entry, sizeof entry);
2689
b49e97c9
TS
2690 if (g->assigned_gotno >= g->local_gotno)
2691 {
f4416af6 2692 (*loc)->gotidx = -1;
b49e97c9
TS
2693 /* We didn't allocate enough space in the GOT. */
2694 (*_bfd_error_handler)
2695 (_("not enough GOT space for local GOT entries"));
2696 bfd_set_error (bfd_error_bad_value);
b15e6682 2697 return NULL;
b49e97c9
TS
2698 }
2699
2700 MIPS_ELF_PUT_WORD (abfd, value,
b15e6682
AO
2701 (sgot->contents + entry.gotidx));
2702
5c18022e 2703 /* These GOT entries need a dynamic relocation on VxWorks. */
0a44bf69
RS
2704 if (htab->is_vxworks)
2705 {
2706 Elf_Internal_Rela outrel;
5c18022e 2707 asection *s;
0a44bf69
RS
2708 bfd_byte *loc;
2709 bfd_vma got_address;
0a44bf69
RS
2710
2711 s = mips_elf_rel_dyn_section (info, FALSE);
0a44bf69
RS
2712 got_address = (sgot->output_section->vma
2713 + sgot->output_offset
2714 + entry.gotidx);
2715
2716 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
2717 outrel.r_offset = got_address;
5c18022e
RS
2718 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
2719 outrel.r_addend = value;
0a44bf69
RS
2720 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
2721 }
2722
b15e6682 2723 return *loc;
b49e97c9
TS
2724}
2725
2726/* Sort the dynamic symbol table so that symbols that need GOT entries
2727 appear towards the end. This reduces the amount of GOT space
2728 required. MAX_LOCAL is used to set the number of local symbols
2729 known to be in the dynamic symbol table. During
2730 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
2731 section symbols are added and the count is higher. */
2732
b34976b6 2733static bfd_boolean
9719ad41 2734mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local)
b49e97c9
TS
2735{
2736 struct mips_elf_hash_sort_data hsd;
2737 struct mips_got_info *g;
2738 bfd *dynobj;
2739
2740 dynobj = elf_hash_table (info)->dynobj;
2741
f4416af6
AO
2742 g = mips_elf_got_info (dynobj, NULL);
2743
b49e97c9 2744 hsd.low = NULL;
143d77c5 2745 hsd.max_unref_got_dynindx =
f4416af6
AO
2746 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
2747 /* In the multi-got case, assigned_gotno of the master got_info
2748 indicate the number of entries that aren't referenced in the
2749 primary GOT, but that must have entries because there are
2750 dynamic relocations that reference it. Since they aren't
2751 referenced, we move them to the end of the GOT, so that they
2752 don't prevent other entries that are referenced from getting
2753 too large offsets. */
2754 - (g->next ? g->assigned_gotno : 0);
b49e97c9
TS
2755 hsd.max_non_got_dynindx = max_local;
2756 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
2757 elf_hash_table (info)),
2758 mips_elf_sort_hash_table_f,
2759 &hsd);
2760
2761 /* There should have been enough room in the symbol table to
44c410de 2762 accommodate both the GOT and non-GOT symbols. */
b49e97c9 2763 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
f4416af6
AO
2764 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
2765 <= elf_hash_table (info)->dynsymcount);
b49e97c9
TS
2766
2767 /* Now we know which dynamic symbol has the lowest dynamic symbol
2768 table index in the GOT. */
b49e97c9
TS
2769 g->global_gotsym = hsd.low;
2770
b34976b6 2771 return TRUE;
b49e97c9
TS
2772}
2773
2774/* If H needs a GOT entry, assign it the highest available dynamic
2775 index. Otherwise, assign it the lowest available dynamic
2776 index. */
2777
b34976b6 2778static bfd_boolean
9719ad41 2779mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 2780{
9719ad41 2781 struct mips_elf_hash_sort_data *hsd = data;
b49e97c9
TS
2782
2783 if (h->root.root.type == bfd_link_hash_warning)
2784 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2785
2786 /* Symbols without dynamic symbol table entries aren't interesting
2787 at all. */
2788 if (h->root.dynindx == -1)
b34976b6 2789 return TRUE;
b49e97c9 2790
f4416af6
AO
2791 /* Global symbols that need GOT entries that are not explicitly
2792 referenced are marked with got offset 2. Those that are
2793 referenced get a 1, and those that don't need GOT entries get
2794 -1. */
2795 if (h->root.got.offset == 2)
2796 {
0f20cc35
DJ
2797 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2798
f4416af6
AO
2799 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2800 hsd->low = (struct elf_link_hash_entry *) h;
2801 h->root.dynindx = hsd->max_unref_got_dynindx++;
2802 }
2803 else if (h->root.got.offset != 1)
b49e97c9
TS
2804 h->root.dynindx = hsd->max_non_got_dynindx++;
2805 else
2806 {
0f20cc35
DJ
2807 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2808
b49e97c9
TS
2809 h->root.dynindx = --hsd->min_got_dynindx;
2810 hsd->low = (struct elf_link_hash_entry *) h;
2811 }
2812
b34976b6 2813 return TRUE;
b49e97c9
TS
2814}
2815
2816/* If H is a symbol that needs a global GOT entry, but has a dynamic
2817 symbol table index lower than any we've seen to date, record it for
2818 posterity. */
2819
b34976b6 2820static bfd_boolean
9719ad41
RS
2821mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
2822 bfd *abfd, struct bfd_link_info *info,
0f20cc35
DJ
2823 struct mips_got_info *g,
2824 unsigned char tls_flag)
b49e97c9 2825{
f4416af6
AO
2826 struct mips_got_entry entry, **loc;
2827
b49e97c9
TS
2828 /* A global symbol in the GOT must also be in the dynamic symbol
2829 table. */
7c5fcef7
L
2830 if (h->dynindx == -1)
2831 {
2832 switch (ELF_ST_VISIBILITY (h->other))
2833 {
2834 case STV_INTERNAL:
2835 case STV_HIDDEN:
b34976b6 2836 _bfd_mips_elf_hide_symbol (info, h, TRUE);
7c5fcef7
L
2837 break;
2838 }
c152c796 2839 if (!bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 2840 return FALSE;
7c5fcef7 2841 }
b49e97c9 2842
86324f90
EC
2843 /* Make sure we have a GOT to put this entry into. */
2844 BFD_ASSERT (g != NULL);
2845
f4416af6
AO
2846 entry.abfd = abfd;
2847 entry.symndx = -1;
2848 entry.d.h = (struct mips_elf_link_hash_entry *) h;
0f20cc35 2849 entry.tls_type = 0;
f4416af6
AO
2850
2851 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2852 INSERT);
2853
b49e97c9
TS
2854 /* If we've already marked this entry as needing GOT space, we don't
2855 need to do it again. */
f4416af6 2856 if (*loc)
0f20cc35
DJ
2857 {
2858 (*loc)->tls_type |= tls_flag;
2859 return TRUE;
2860 }
f4416af6
AO
2861
2862 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2863
2864 if (! *loc)
2865 return FALSE;
143d77c5 2866
f4416af6 2867 entry.gotidx = -1;
0f20cc35
DJ
2868 entry.tls_type = tls_flag;
2869
f4416af6
AO
2870 memcpy (*loc, &entry, sizeof entry);
2871
b49e97c9 2872 if (h->got.offset != MINUS_ONE)
b34976b6 2873 return TRUE;
b49e97c9
TS
2874
2875 /* By setting this to a value other than -1, we are indicating that
2876 there needs to be a GOT entry for H. Avoid using zero, as the
2877 generic ELF copy_indirect_symbol tests for <= 0. */
0f20cc35
DJ
2878 if (tls_flag == 0)
2879 h->got.offset = 1;
b49e97c9 2880
b34976b6 2881 return TRUE;
b49e97c9 2882}
f4416af6
AO
2883
2884/* Reserve space in G for a GOT entry containing the value of symbol
2885 SYMNDX in input bfd ABDF, plus ADDEND. */
2886
2887static bfd_boolean
9719ad41 2888mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
0f20cc35
DJ
2889 struct mips_got_info *g,
2890 unsigned char tls_flag)
f4416af6
AO
2891{
2892 struct mips_got_entry entry, **loc;
2893
2894 entry.abfd = abfd;
2895 entry.symndx = symndx;
2896 entry.d.addend = addend;
0f20cc35 2897 entry.tls_type = tls_flag;
f4416af6
AO
2898 loc = (struct mips_got_entry **)
2899 htab_find_slot (g->got_entries, &entry, INSERT);
2900
2901 if (*loc)
0f20cc35
DJ
2902 {
2903 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
2904 {
2905 g->tls_gotno += 2;
2906 (*loc)->tls_type |= tls_flag;
2907 }
2908 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
2909 {
2910 g->tls_gotno += 1;
2911 (*loc)->tls_type |= tls_flag;
2912 }
2913 return TRUE;
2914 }
f4416af6 2915
0f20cc35
DJ
2916 if (tls_flag != 0)
2917 {
2918 entry.gotidx = -1;
2919 entry.tls_type = tls_flag;
2920 if (tls_flag == GOT_TLS_IE)
2921 g->tls_gotno += 1;
2922 else if (tls_flag == GOT_TLS_GD)
2923 g->tls_gotno += 2;
2924 else if (g->tls_ldm_offset == MINUS_ONE)
2925 {
2926 g->tls_ldm_offset = MINUS_TWO;
2927 g->tls_gotno += 2;
2928 }
2929 }
2930 else
2931 {
2932 entry.gotidx = g->local_gotno++;
2933 entry.tls_type = 0;
2934 }
f4416af6
AO
2935
2936 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2937
2938 if (! *loc)
2939 return FALSE;
143d77c5 2940
f4416af6
AO
2941 memcpy (*loc, &entry, sizeof entry);
2942
2943 return TRUE;
2944}
2945\f
2946/* Compute the hash value of the bfd in a bfd2got hash entry. */
2947
2948static hashval_t
9719ad41 2949mips_elf_bfd2got_entry_hash (const void *entry_)
f4416af6
AO
2950{
2951 const struct mips_elf_bfd2got_hash *entry
2952 = (struct mips_elf_bfd2got_hash *)entry_;
2953
2954 return entry->bfd->id;
2955}
2956
2957/* Check whether two hash entries have the same bfd. */
2958
2959static int
9719ad41 2960mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
2961{
2962 const struct mips_elf_bfd2got_hash *e1
2963 = (const struct mips_elf_bfd2got_hash *)entry1;
2964 const struct mips_elf_bfd2got_hash *e2
2965 = (const struct mips_elf_bfd2got_hash *)entry2;
2966
2967 return e1->bfd == e2->bfd;
2968}
2969
bad36eac 2970/* In a multi-got link, determine the GOT to be used for IBFD. G must
f4416af6
AO
2971 be the master GOT data. */
2972
2973static struct mips_got_info *
9719ad41 2974mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
f4416af6
AO
2975{
2976 struct mips_elf_bfd2got_hash e, *p;
2977
2978 if (! g->bfd2got)
2979 return g;
2980
2981 e.bfd = ibfd;
9719ad41 2982 p = htab_find (g->bfd2got, &e);
f4416af6
AO
2983 return p ? p->g : NULL;
2984}
2985
2986/* Create one separate got for each bfd that has entries in the global
2987 got, such that we can tell how many local and global entries each
2988 bfd requires. */
2989
2990static int
9719ad41 2991mips_elf_make_got_per_bfd (void **entryp, void *p)
f4416af6
AO
2992{
2993 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2994 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2995 htab_t bfd2got = arg->bfd2got;
2996 struct mips_got_info *g;
2997 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
2998 void **bfdgotp;
143d77c5 2999
f4416af6
AO
3000 /* Find the got_info for this GOT entry's input bfd. Create one if
3001 none exists. */
3002 bfdgot_entry.bfd = entry->abfd;
3003 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
3004 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
3005
3006 if (bfdgot != NULL)
3007 g = bfdgot->g;
3008 else
3009 {
3010 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3011 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
3012
3013 if (bfdgot == NULL)
3014 {
3015 arg->obfd = 0;
3016 return 0;
3017 }
3018
3019 *bfdgotp = bfdgot;
3020
3021 bfdgot->bfd = entry->abfd;
3022 bfdgot->g = g = (struct mips_got_info *)
3023 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
3024 if (g == NULL)
3025 {
3026 arg->obfd = 0;
3027 return 0;
3028 }
3029
3030 g->global_gotsym = NULL;
3031 g->global_gotno = 0;
3032 g->local_gotno = 0;
3033 g->assigned_gotno = -1;
0f20cc35
DJ
3034 g->tls_gotno = 0;
3035 g->tls_assigned_gotno = 0;
3036 g->tls_ldm_offset = MINUS_ONE;
f4416af6 3037 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
9719ad41 3038 mips_elf_multi_got_entry_eq, NULL);
f4416af6
AO
3039 if (g->got_entries == NULL)
3040 {
3041 arg->obfd = 0;
3042 return 0;
3043 }
3044
3045 g->bfd2got = NULL;
3046 g->next = NULL;
3047 }
3048
3049 /* Insert the GOT entry in the bfd's got entry hash table. */
3050 entryp = htab_find_slot (g->got_entries, entry, INSERT);
3051 if (*entryp != NULL)
3052 return 1;
143d77c5 3053
f4416af6
AO
3054 *entryp = entry;
3055
0f20cc35
DJ
3056 if (entry->tls_type)
3057 {
3058 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3059 g->tls_gotno += 2;
3060 if (entry->tls_type & GOT_TLS_IE)
3061 g->tls_gotno += 1;
3062 }
3063 else if (entry->symndx >= 0 || entry->d.h->forced_local)
f4416af6
AO
3064 ++g->local_gotno;
3065 else
3066 ++g->global_gotno;
3067
3068 return 1;
3069}
3070
3071/* Attempt to merge gots of different input bfds. Try to use as much
3072 as possible of the primary got, since it doesn't require explicit
3073 dynamic relocations, but don't use bfds that would reference global
3074 symbols out of the addressable range. Failing the primary got,
3075 attempt to merge with the current got, or finish the current got
3076 and then make make the new got current. */
3077
3078static int
9719ad41 3079mips_elf_merge_gots (void **bfd2got_, void *p)
f4416af6
AO
3080{
3081 struct mips_elf_bfd2got_hash *bfd2got
3082 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
3083 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
3084 unsigned int lcount = bfd2got->g->local_gotno;
3085 unsigned int gcount = bfd2got->g->global_gotno;
0f20cc35 3086 unsigned int tcount = bfd2got->g->tls_gotno;
f4416af6 3087 unsigned int maxcnt = arg->max_count;
0f20cc35
DJ
3088 bfd_boolean too_many_for_tls = FALSE;
3089
3090 /* We place TLS GOT entries after both locals and globals. The globals
3091 for the primary GOT may overflow the normal GOT size limit, so be
3092 sure not to merge a GOT which requires TLS with the primary GOT in that
3093 case. This doesn't affect non-primary GOTs. */
3094 if (tcount > 0)
3095 {
3096 unsigned int primary_total = lcount + tcount + arg->global_count;
3110dbc9 3097 if (primary_total > maxcnt)
0f20cc35
DJ
3098 too_many_for_tls = TRUE;
3099 }
143d77c5 3100
f4416af6
AO
3101 /* If we don't have a primary GOT and this is not too big, use it as
3102 a starting point for the primary GOT. */
0f20cc35
DJ
3103 if (! arg->primary && lcount + gcount + tcount <= maxcnt
3104 && ! too_many_for_tls)
f4416af6
AO
3105 {
3106 arg->primary = bfd2got->g;
3107 arg->primary_count = lcount + gcount;
3108 }
3109 /* If it looks like we can merge this bfd's entries with those of
3110 the primary, merge them. The heuristics is conservative, but we
3111 don't have to squeeze it too hard. */
0f20cc35
DJ
3112 else if (arg->primary && ! too_many_for_tls
3113 && (arg->primary_count + lcount + gcount + tcount) <= maxcnt)
f4416af6
AO
3114 {
3115 struct mips_got_info *g = bfd2got->g;
3116 int old_lcount = arg->primary->local_gotno;
3117 int old_gcount = arg->primary->global_gotno;
0f20cc35 3118 int old_tcount = arg->primary->tls_gotno;
f4416af6
AO
3119
3120 bfd2got->g = arg->primary;
3121
3122 htab_traverse (g->got_entries,
3123 mips_elf_make_got_per_bfd,
3124 arg);
3125 if (arg->obfd == NULL)
3126 return 0;
3127
3128 htab_delete (g->got_entries);
3129 /* We don't have to worry about releasing memory of the actual
3130 got entries, since they're all in the master got_entries hash
3131 table anyway. */
3132
caec41ff 3133 BFD_ASSERT (old_lcount + lcount >= arg->primary->local_gotno);
f4416af6 3134 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
0f20cc35 3135 BFD_ASSERT (old_tcount + tcount >= arg->primary->tls_gotno);
f4416af6
AO
3136
3137 arg->primary_count = arg->primary->local_gotno
0f20cc35 3138 + arg->primary->global_gotno + arg->primary->tls_gotno;
f4416af6
AO
3139 }
3140 /* If we can merge with the last-created got, do it. */
3141 else if (arg->current
0f20cc35 3142 && arg->current_count + lcount + gcount + tcount <= maxcnt)
f4416af6
AO
3143 {
3144 struct mips_got_info *g = bfd2got->g;
3145 int old_lcount = arg->current->local_gotno;
3146 int old_gcount = arg->current->global_gotno;
0f20cc35 3147 int old_tcount = arg->current->tls_gotno;
f4416af6
AO
3148
3149 bfd2got->g = arg->current;
3150
3151 htab_traverse (g->got_entries,
3152 mips_elf_make_got_per_bfd,
3153 arg);
3154 if (arg->obfd == NULL)
3155 return 0;
3156
3157 htab_delete (g->got_entries);
3158
caec41ff 3159 BFD_ASSERT (old_lcount + lcount >= arg->current->local_gotno);
f4416af6 3160 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
0f20cc35 3161 BFD_ASSERT (old_tcount + tcount >= arg->current->tls_gotno);
f4416af6
AO
3162
3163 arg->current_count = arg->current->local_gotno
0f20cc35 3164 + arg->current->global_gotno + arg->current->tls_gotno;
f4416af6
AO
3165 }
3166 /* Well, we couldn't merge, so create a new GOT. Don't check if it
3167 fits; if it turns out that it doesn't, we'll get relocation
3168 overflows anyway. */
3169 else
3170 {
3171 bfd2got->g->next = arg->current;
3172 arg->current = bfd2got->g;
143d77c5 3173
0f20cc35
DJ
3174 arg->current_count = lcount + gcount + 2 * tcount;
3175 }
3176
3177 return 1;
3178}
3179
ead49a57
RS
3180/* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
3181 is null iff there is just a single GOT. */
0f20cc35
DJ
3182
3183static int
3184mips_elf_initialize_tls_index (void **entryp, void *p)
3185{
3186 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3187 struct mips_got_info *g = p;
ead49a57 3188 bfd_vma next_index;
cbf2cba4 3189 unsigned char tls_type;
0f20cc35
DJ
3190
3191 /* We're only interested in TLS symbols. */
3192 if (entry->tls_type == 0)
3193 return 1;
3194
ead49a57
RS
3195 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
3196
3197 if (entry->symndx == -1 && g->next == NULL)
0f20cc35 3198 {
ead49a57
RS
3199 /* A type (3) got entry in the single-GOT case. We use the symbol's
3200 hash table entry to track its index. */
3201 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
3202 return 1;
3203 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
3204 entry->d.h->tls_got_offset = next_index;
cbf2cba4 3205 tls_type = entry->d.h->tls_type;
ead49a57
RS
3206 }
3207 else
3208 {
3209 if (entry->tls_type & GOT_TLS_LDM)
0f20cc35 3210 {
ead49a57
RS
3211 /* There are separate mips_got_entry objects for each input bfd
3212 that requires an LDM entry. Make sure that all LDM entries in
3213 a GOT resolve to the same index. */
3214 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
4005427f 3215 {
ead49a57 3216 entry->gotidx = g->tls_ldm_offset;
4005427f
RS
3217 return 1;
3218 }
ead49a57 3219 g->tls_ldm_offset = next_index;
0f20cc35 3220 }
ead49a57 3221 entry->gotidx = next_index;
cbf2cba4 3222 tls_type = entry->tls_type;
f4416af6
AO
3223 }
3224
ead49a57 3225 /* Account for the entries we've just allocated. */
cbf2cba4 3226 if (tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
0f20cc35 3227 g->tls_assigned_gotno += 2;
cbf2cba4 3228 if (tls_type & GOT_TLS_IE)
0f20cc35
DJ
3229 g->tls_assigned_gotno += 1;
3230
f4416af6
AO
3231 return 1;
3232}
3233
3234/* If passed a NULL mips_got_info in the argument, set the marker used
3235 to tell whether a global symbol needs a got entry (in the primary
3236 got) to the given VALUE.
3237
3238 If passed a pointer G to a mips_got_info in the argument (it must
3239 not be the primary GOT), compute the offset from the beginning of
3240 the (primary) GOT section to the entry in G corresponding to the
3241 global symbol. G's assigned_gotno must contain the index of the
3242 first available global GOT entry in G. VALUE must contain the size
3243 of a GOT entry in bytes. For each global GOT entry that requires a
3244 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
4cc11e76 3245 marked as not eligible for lazy resolution through a function
f4416af6
AO
3246 stub. */
3247static int
9719ad41 3248mips_elf_set_global_got_offset (void **entryp, void *p)
f4416af6
AO
3249{
3250 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3251 struct mips_elf_set_global_got_offset_arg *arg
3252 = (struct mips_elf_set_global_got_offset_arg *)p;
3253 struct mips_got_info *g = arg->g;
3254
0f20cc35
DJ
3255 if (g && entry->tls_type != GOT_NORMAL)
3256 arg->needed_relocs +=
3257 mips_tls_got_relocs (arg->info, entry->tls_type,
3258 entry->symndx == -1 ? &entry->d.h->root : NULL);
3259
f4416af6 3260 if (entry->abfd != NULL && entry->symndx == -1
0f20cc35
DJ
3261 && entry->d.h->root.dynindx != -1
3262 && entry->d.h->tls_type == GOT_NORMAL)
f4416af6
AO
3263 {
3264 if (g)
3265 {
3266 BFD_ASSERT (g->global_gotsym == NULL);
3267
3268 entry->gotidx = arg->value * (long) g->assigned_gotno++;
f4416af6
AO
3269 if (arg->info->shared
3270 || (elf_hash_table (arg->info)->dynamic_sections_created
f5385ebf
AM
3271 && entry->d.h->root.def_dynamic
3272 && !entry->d.h->root.def_regular))
f4416af6
AO
3273 ++arg->needed_relocs;
3274 }
3275 else
3276 entry->d.h->root.got.offset = arg->value;
3277 }
3278
3279 return 1;
3280}
3281
0626d451
RS
3282/* Mark any global symbols referenced in the GOT we are iterating over
3283 as inelligible for lazy resolution stubs. */
3284static int
9719ad41 3285mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED)
0626d451
RS
3286{
3287 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3288
3289 if (entry->abfd != NULL
3290 && entry->symndx == -1
3291 && entry->d.h->root.dynindx != -1)
3292 entry->d.h->no_fn_stub = TRUE;
3293
3294 return 1;
3295}
3296
f4416af6
AO
3297/* Follow indirect and warning hash entries so that each got entry
3298 points to the final symbol definition. P must point to a pointer
3299 to the hash table we're traversing. Since this traversal may
3300 modify the hash table, we set this pointer to NULL to indicate
3301 we've made a potentially-destructive change to the hash table, so
3302 the traversal must be restarted. */
3303static int
9719ad41 3304mips_elf_resolve_final_got_entry (void **entryp, void *p)
f4416af6
AO
3305{
3306 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3307 htab_t got_entries = *(htab_t *)p;
3308
3309 if (entry->abfd != NULL && entry->symndx == -1)
3310 {
3311 struct mips_elf_link_hash_entry *h = entry->d.h;
3312
3313 while (h->root.root.type == bfd_link_hash_indirect
3314 || h->root.root.type == bfd_link_hash_warning)
3315 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3316
3317 if (entry->d.h == h)
3318 return 1;
143d77c5 3319
f4416af6
AO
3320 entry->d.h = h;
3321
3322 /* If we can't find this entry with the new bfd hash, re-insert
3323 it, and get the traversal restarted. */
3324 if (! htab_find (got_entries, entry))
3325 {
3326 htab_clear_slot (got_entries, entryp);
3327 entryp = htab_find_slot (got_entries, entry, INSERT);
3328 if (! *entryp)
3329 *entryp = entry;
3330 /* Abort the traversal, since the whole table may have
3331 moved, and leave it up to the parent to restart the
3332 process. */
3333 *(htab_t *)p = NULL;
3334 return 0;
3335 }
3336 /* We might want to decrement the global_gotno count, but it's
3337 either too early or too late for that at this point. */
3338 }
143d77c5 3339
f4416af6
AO
3340 return 1;
3341}
3342
3343/* Turn indirect got entries in a got_entries table into their final
3344 locations. */
3345static void
9719ad41 3346mips_elf_resolve_final_got_entries (struct mips_got_info *g)
f4416af6
AO
3347{
3348 htab_t got_entries;
3349
3350 do
3351 {
3352 got_entries = g->got_entries;
3353
3354 htab_traverse (got_entries,
3355 mips_elf_resolve_final_got_entry,
3356 &got_entries);
3357 }
3358 while (got_entries == NULL);
3359}
3360
3361/* Return the offset of an input bfd IBFD's GOT from the beginning of
3362 the primary GOT. */
3363static bfd_vma
9719ad41 3364mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
f4416af6
AO
3365{
3366 if (g->bfd2got == NULL)
3367 return 0;
3368
3369 g = mips_elf_got_for_ibfd (g, ibfd);
3370 if (! g)
3371 return 0;
3372
3373 BFD_ASSERT (g->next);
3374
3375 g = g->next;
143d77c5 3376
0f20cc35
DJ
3377 return (g->local_gotno + g->global_gotno + g->tls_gotno)
3378 * MIPS_ELF_GOT_SIZE (abfd);
f4416af6
AO
3379}
3380
3381/* Turn a single GOT that is too big for 16-bit addressing into
3382 a sequence of GOTs, each one 16-bit addressable. */
3383
3384static bfd_boolean
9719ad41
RS
3385mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
3386 struct mips_got_info *g, asection *got,
3387 bfd_size_type pages)
f4416af6
AO
3388{
3389 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
3390 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
3391 struct mips_got_info *gg;
3392 unsigned int assign;
3393
3394 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
9719ad41 3395 mips_elf_bfd2got_entry_eq, NULL);
f4416af6
AO
3396 if (g->bfd2got == NULL)
3397 return FALSE;
3398
3399 got_per_bfd_arg.bfd2got = g->bfd2got;
3400 got_per_bfd_arg.obfd = abfd;
3401 got_per_bfd_arg.info = info;
3402
3403 /* Count how many GOT entries each input bfd requires, creating a
3404 map from bfd to got info while at that. */
f4416af6
AO
3405 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
3406 if (got_per_bfd_arg.obfd == NULL)
3407 return FALSE;
3408
3409 got_per_bfd_arg.current = NULL;
3410 got_per_bfd_arg.primary = NULL;
3411 /* Taking out PAGES entries is a worst-case estimate. We could
3412 compute the maximum number of pages that each separate input bfd
3413 uses, but it's probably not worth it. */
0a44bf69 3414 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
f4416af6 3415 / MIPS_ELF_GOT_SIZE (abfd))
0a44bf69 3416 - MIPS_RESERVED_GOTNO (info) - pages);
0f20cc35
DJ
3417 /* The number of globals that will be included in the primary GOT.
3418 See the calls to mips_elf_set_global_got_offset below for more
3419 information. */
3420 got_per_bfd_arg.global_count = g->global_gotno;
f4416af6
AO
3421
3422 /* Try to merge the GOTs of input bfds together, as long as they
3423 don't seem to exceed the maximum GOT size, choosing one of them
3424 to be the primary GOT. */
3425 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
3426 if (got_per_bfd_arg.obfd == NULL)
3427 return FALSE;
3428
0f20cc35 3429 /* If we do not find any suitable primary GOT, create an empty one. */
f4416af6
AO
3430 if (got_per_bfd_arg.primary == NULL)
3431 {
3432 g->next = (struct mips_got_info *)
3433 bfd_alloc (abfd, sizeof (struct mips_got_info));
3434 if (g->next == NULL)
3435 return FALSE;
3436
3437 g->next->global_gotsym = NULL;
3438 g->next->global_gotno = 0;
3439 g->next->local_gotno = 0;
0f20cc35 3440 g->next->tls_gotno = 0;
f4416af6 3441 g->next->assigned_gotno = 0;
0f20cc35
DJ
3442 g->next->tls_assigned_gotno = 0;
3443 g->next->tls_ldm_offset = MINUS_ONE;
f4416af6
AO
3444 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3445 mips_elf_multi_got_entry_eq,
9719ad41 3446 NULL);
f4416af6
AO
3447 if (g->next->got_entries == NULL)
3448 return FALSE;
3449 g->next->bfd2got = NULL;
3450 }
3451 else
3452 g->next = got_per_bfd_arg.primary;
3453 g->next->next = got_per_bfd_arg.current;
3454
3455 /* GG is now the master GOT, and G is the primary GOT. */
3456 gg = g;
3457 g = g->next;
3458
3459 /* Map the output bfd to the primary got. That's what we're going
3460 to use for bfds that use GOT16 or GOT_PAGE relocations that we
3461 didn't mark in check_relocs, and we want a quick way to find it.
3462 We can't just use gg->next because we're going to reverse the
3463 list. */
3464 {
3465 struct mips_elf_bfd2got_hash *bfdgot;
3466 void **bfdgotp;
143d77c5 3467
f4416af6
AO
3468 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3469 (abfd, sizeof (struct mips_elf_bfd2got_hash));
3470
3471 if (bfdgot == NULL)
3472 return FALSE;
3473
3474 bfdgot->bfd = abfd;
3475 bfdgot->g = g;
3476 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
3477
3478 BFD_ASSERT (*bfdgotp == NULL);
3479 *bfdgotp = bfdgot;
3480 }
3481
3482 /* The IRIX dynamic linker requires every symbol that is referenced
3483 in a dynamic relocation to be present in the primary GOT, so
3484 arrange for them to appear after those that are actually
3485 referenced.
3486
3487 GNU/Linux could very well do without it, but it would slow down
3488 the dynamic linker, since it would have to resolve every dynamic
3489 symbol referenced in other GOTs more than once, without help from
3490 the cache. Also, knowing that every external symbol has a GOT
3491 helps speed up the resolution of local symbols too, so GNU/Linux
3492 follows IRIX's practice.
143d77c5 3493
f4416af6
AO
3494 The number 2 is used by mips_elf_sort_hash_table_f to count
3495 global GOT symbols that are unreferenced in the primary GOT, with
3496 an initial dynamic index computed from gg->assigned_gotno, where
3497 the number of unreferenced global entries in the primary GOT is
3498 preserved. */
3499 if (1)
3500 {
3501 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
3502 g->global_gotno = gg->global_gotno;
3503 set_got_offset_arg.value = 2;
3504 }
3505 else
3506 {
3507 /* This could be used for dynamic linkers that don't optimize
3508 symbol resolution while applying relocations so as to use
3509 primary GOT entries or assuming the symbol is locally-defined.
3510 With this code, we assign lower dynamic indices to global
3511 symbols that are not referenced in the primary GOT, so that
3512 their entries can be omitted. */
3513 gg->assigned_gotno = 0;
3514 set_got_offset_arg.value = -1;
3515 }
3516
3517 /* Reorder dynamic symbols as described above (which behavior
3518 depends on the setting of VALUE). */
3519 set_got_offset_arg.g = NULL;
3520 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
3521 &set_got_offset_arg);
3522 set_got_offset_arg.value = 1;
3523 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
3524 &set_got_offset_arg);
3525 if (! mips_elf_sort_hash_table (info, 1))
3526 return FALSE;
3527
3528 /* Now go through the GOTs assigning them offset ranges.
3529 [assigned_gotno, local_gotno[ will be set to the range of local
3530 entries in each GOT. We can then compute the end of a GOT by
3531 adding local_gotno to global_gotno. We reverse the list and make
3532 it circular since then we'll be able to quickly compute the
3533 beginning of a GOT, by computing the end of its predecessor. To
3534 avoid special cases for the primary GOT, while still preserving
3535 assertions that are valid for both single- and multi-got links,
3536 we arrange for the main got struct to have the right number of
3537 global entries, but set its local_gotno such that the initial
3538 offset of the primary GOT is zero. Remember that the primary GOT
3539 will become the last item in the circular linked list, so it
3540 points back to the master GOT. */
3541 gg->local_gotno = -g->global_gotno;
3542 gg->global_gotno = g->global_gotno;
0f20cc35 3543 gg->tls_gotno = 0;
f4416af6
AO
3544 assign = 0;
3545 gg->next = gg;
3546
3547 do
3548 {
3549 struct mips_got_info *gn;
3550
0a44bf69 3551 assign += MIPS_RESERVED_GOTNO (info);
f4416af6
AO
3552 g->assigned_gotno = assign;
3553 g->local_gotno += assign + pages;
0f20cc35
DJ
3554 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
3555
ead49a57
RS
3556 /* Take g out of the direct list, and push it onto the reversed
3557 list that gg points to. g->next is guaranteed to be nonnull after
3558 this operation, as required by mips_elf_initialize_tls_index. */
3559 gn = g->next;
3560 g->next = gg->next;
3561 gg->next = g;
3562
0f20cc35
DJ
3563 /* Set up any TLS entries. We always place the TLS entries after
3564 all non-TLS entries. */
3565 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
3566 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
f4416af6 3567
ead49a57 3568 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
f4416af6 3569 g = gn;
0626d451
RS
3570
3571 /* Mark global symbols in every non-primary GOT as ineligible for
3572 stubs. */
3573 if (g)
3574 htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL);
f4416af6
AO
3575 }
3576 while (g);
3577
eea6121a 3578 got->size = (gg->next->local_gotno
0f20cc35
DJ
3579 + gg->next->global_gotno
3580 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
143d77c5 3581
f4416af6
AO
3582 return TRUE;
3583}
143d77c5 3584
b49e97c9
TS
3585\f
3586/* Returns the first relocation of type r_type found, beginning with
3587 RELOCATION. RELEND is one-past-the-end of the relocation table. */
3588
3589static const Elf_Internal_Rela *
9719ad41
RS
3590mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
3591 const Elf_Internal_Rela *relocation,
3592 const Elf_Internal_Rela *relend)
b49e97c9 3593{
c000e262
TS
3594 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
3595
b49e97c9
TS
3596 while (relocation < relend)
3597 {
c000e262
TS
3598 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
3599 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
b49e97c9
TS
3600 return relocation;
3601
3602 ++relocation;
3603 }
3604
3605 /* We didn't find it. */
b49e97c9
TS
3606 return NULL;
3607}
3608
3609/* Return whether a relocation is against a local symbol. */
3610
b34976b6 3611static bfd_boolean
9719ad41
RS
3612mips_elf_local_relocation_p (bfd *input_bfd,
3613 const Elf_Internal_Rela *relocation,
3614 asection **local_sections,
3615 bfd_boolean check_forced)
b49e97c9
TS
3616{
3617 unsigned long r_symndx;
3618 Elf_Internal_Shdr *symtab_hdr;
3619 struct mips_elf_link_hash_entry *h;
3620 size_t extsymoff;
3621
3622 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3623 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3624 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
3625
3626 if (r_symndx < extsymoff)
b34976b6 3627 return TRUE;
b49e97c9 3628 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
b34976b6 3629 return TRUE;
b49e97c9
TS
3630
3631 if (check_forced)
3632 {
3633 /* Look up the hash table to check whether the symbol
3634 was forced local. */
3635 h = (struct mips_elf_link_hash_entry *)
3636 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
3637 /* Find the real hash-table entry for this symbol. */
3638 while (h->root.root.type == bfd_link_hash_indirect
3639 || h->root.root.type == bfd_link_hash_warning)
3640 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
f5385ebf 3641 if (h->root.forced_local)
b34976b6 3642 return TRUE;
b49e97c9
TS
3643 }
3644
b34976b6 3645 return FALSE;
b49e97c9
TS
3646}
3647\f
3648/* Sign-extend VALUE, which has the indicated number of BITS. */
3649
a7ebbfdf 3650bfd_vma
9719ad41 3651_bfd_mips_elf_sign_extend (bfd_vma value, int bits)
b49e97c9
TS
3652{
3653 if (value & ((bfd_vma) 1 << (bits - 1)))
3654 /* VALUE is negative. */
3655 value |= ((bfd_vma) - 1) << bits;
3656
3657 return value;
3658}
3659
3660/* Return non-zero if the indicated VALUE has overflowed the maximum
4cc11e76 3661 range expressible by a signed number with the indicated number of
b49e97c9
TS
3662 BITS. */
3663
b34976b6 3664static bfd_boolean
9719ad41 3665mips_elf_overflow_p (bfd_vma value, int bits)
b49e97c9
TS
3666{
3667 bfd_signed_vma svalue = (bfd_signed_vma) value;
3668
3669 if (svalue > (1 << (bits - 1)) - 1)
3670 /* The value is too big. */
b34976b6 3671 return TRUE;
b49e97c9
TS
3672 else if (svalue < -(1 << (bits - 1)))
3673 /* The value is too small. */
b34976b6 3674 return TRUE;
b49e97c9
TS
3675
3676 /* All is well. */
b34976b6 3677 return FALSE;
b49e97c9
TS
3678}
3679
3680/* Calculate the %high function. */
3681
3682static bfd_vma
9719ad41 3683mips_elf_high (bfd_vma value)
b49e97c9
TS
3684{
3685 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
3686}
3687
3688/* Calculate the %higher function. */
3689
3690static bfd_vma
9719ad41 3691mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
3692{
3693#ifdef BFD64
3694 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
3695#else
3696 abort ();
c5ae1840 3697 return MINUS_ONE;
b49e97c9
TS
3698#endif
3699}
3700
3701/* Calculate the %highest function. */
3702
3703static bfd_vma
9719ad41 3704mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
3705{
3706#ifdef BFD64
b15e6682 3707 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
b49e97c9
TS
3708#else
3709 abort ();
c5ae1840 3710 return MINUS_ONE;
b49e97c9
TS
3711#endif
3712}
3713\f
3714/* Create the .compact_rel section. */
3715
b34976b6 3716static bfd_boolean
9719ad41
RS
3717mips_elf_create_compact_rel_section
3718 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
3719{
3720 flagword flags;
3721 register asection *s;
3722
3723 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
3724 {
3725 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
3726 | SEC_READONLY);
3727
3496cb2a 3728 s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
b49e97c9 3729 if (s == NULL
b49e97c9
TS
3730 || ! bfd_set_section_alignment (abfd, s,
3731 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 3732 return FALSE;
b49e97c9 3733
eea6121a 3734 s->size = sizeof (Elf32_External_compact_rel);
b49e97c9
TS
3735 }
3736
b34976b6 3737 return TRUE;
b49e97c9
TS
3738}
3739
3740/* Create the .got section to hold the global offset table. */
3741
b34976b6 3742static bfd_boolean
9719ad41
RS
3743mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info,
3744 bfd_boolean maybe_exclude)
b49e97c9
TS
3745{
3746 flagword flags;
3747 register asection *s;
3748 struct elf_link_hash_entry *h;
14a793b2 3749 struct bfd_link_hash_entry *bh;
b49e97c9
TS
3750 struct mips_got_info *g;
3751 bfd_size_type amt;
0a44bf69
RS
3752 struct mips_elf_link_hash_table *htab;
3753
3754 htab = mips_elf_hash_table (info);
b49e97c9
TS
3755
3756 /* This function may be called more than once. */
f4416af6
AO
3757 s = mips_elf_got_section (abfd, TRUE);
3758 if (s)
3759 {
3760 if (! maybe_exclude)
3761 s->flags &= ~SEC_EXCLUDE;
3762 return TRUE;
3763 }
b49e97c9
TS
3764
3765 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3766 | SEC_LINKER_CREATED);
3767
f4416af6
AO
3768 if (maybe_exclude)
3769 flags |= SEC_EXCLUDE;
3770
72b4917c
TS
3771 /* We have to use an alignment of 2**4 here because this is hardcoded
3772 in the function stub generation and in the linker script. */
3496cb2a 3773 s = bfd_make_section_with_flags (abfd, ".got", flags);
b49e97c9 3774 if (s == NULL
72b4917c 3775 || ! bfd_set_section_alignment (abfd, s, 4))
b34976b6 3776 return FALSE;
b49e97c9
TS
3777
3778 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
3779 linker script because we don't want to define the symbol if we
3780 are not creating a global offset table. */
14a793b2 3781 bh = NULL;
b49e97c9
TS
3782 if (! (_bfd_generic_link_add_one_symbol
3783 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
9719ad41 3784 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 3785 return FALSE;
14a793b2
AM
3786
3787 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
3788 h->non_elf = 0;
3789 h->def_regular = 1;
b49e97c9 3790 h->type = STT_OBJECT;
d329bcd1 3791 elf_hash_table (info)->hgot = h;
b49e97c9
TS
3792
3793 if (info->shared
c152c796 3794 && ! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 3795 return FALSE;
b49e97c9 3796
b49e97c9 3797 amt = sizeof (struct mips_got_info);
9719ad41 3798 g = bfd_alloc (abfd, amt);
b49e97c9 3799 if (g == NULL)
b34976b6 3800 return FALSE;
b49e97c9 3801 g->global_gotsym = NULL;
e3d54347 3802 g->global_gotno = 0;
0f20cc35 3803 g->tls_gotno = 0;
0a44bf69
RS
3804 g->local_gotno = MIPS_RESERVED_GOTNO (info);
3805 g->assigned_gotno = MIPS_RESERVED_GOTNO (info);
f4416af6
AO
3806 g->bfd2got = NULL;
3807 g->next = NULL;
0f20cc35 3808 g->tls_ldm_offset = MINUS_ONE;
b15e6682 3809 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
9719ad41 3810 mips_elf_got_entry_eq, NULL);
b15e6682
AO
3811 if (g->got_entries == NULL)
3812 return FALSE;
f0abc2a1
AM
3813 mips_elf_section_data (s)->u.got_info = g;
3814 mips_elf_section_data (s)->elf.this_hdr.sh_flags
b49e97c9
TS
3815 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3816
0a44bf69
RS
3817 /* VxWorks also needs a .got.plt section. */
3818 if (htab->is_vxworks)
3819 {
3820 s = bfd_make_section_with_flags (abfd, ".got.plt",
3821 SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
3822 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3823 if (s == NULL || !bfd_set_section_alignment (abfd, s, 4))
3824 return FALSE;
3825
3826 htab->sgotplt = s;
3827 }
b34976b6 3828 return TRUE;
b49e97c9 3829}
b49e97c9 3830\f
0a44bf69
RS
3831/* Return true if H refers to the special VxWorks __GOTT_BASE__ or
3832 __GOTT_INDEX__ symbols. These symbols are only special for
3833 shared objects; they are not used in executables. */
3834
3835static bfd_boolean
3836is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
3837{
3838 return (mips_elf_hash_table (info)->is_vxworks
3839 && info->shared
3840 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
3841 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
3842}
3843\f
b49e97c9
TS
3844/* Calculate the value produced by the RELOCATION (which comes from
3845 the INPUT_BFD). The ADDEND is the addend to use for this
3846 RELOCATION; RELOCATION->R_ADDEND is ignored.
3847
3848 The result of the relocation calculation is stored in VALUEP.
3849 REQUIRE_JALXP indicates whether or not the opcode used with this
3850 relocation must be JALX.
3851
3852 This function returns bfd_reloc_continue if the caller need take no
3853 further action regarding this relocation, bfd_reloc_notsupported if
3854 something goes dramatically wrong, bfd_reloc_overflow if an
3855 overflow occurs, and bfd_reloc_ok to indicate success. */
3856
3857static bfd_reloc_status_type
9719ad41
RS
3858mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
3859 asection *input_section,
3860 struct bfd_link_info *info,
3861 const Elf_Internal_Rela *relocation,
3862 bfd_vma addend, reloc_howto_type *howto,
3863 Elf_Internal_Sym *local_syms,
3864 asection **local_sections, bfd_vma *valuep,
3865 const char **namep, bfd_boolean *require_jalxp,
3866 bfd_boolean save_addend)
b49e97c9
TS
3867{
3868 /* The eventual value we will return. */
3869 bfd_vma value;
3870 /* The address of the symbol against which the relocation is
3871 occurring. */
3872 bfd_vma symbol = 0;
3873 /* The final GP value to be used for the relocatable, executable, or
3874 shared object file being produced. */
3875 bfd_vma gp = MINUS_ONE;
3876 /* The place (section offset or address) of the storage unit being
3877 relocated. */
3878 bfd_vma p;
3879 /* The value of GP used to create the relocatable object. */
3880 bfd_vma gp0 = MINUS_ONE;
3881 /* The offset into the global offset table at which the address of
3882 the relocation entry symbol, adjusted by the addend, resides
3883 during execution. */
3884 bfd_vma g = MINUS_ONE;
3885 /* The section in which the symbol referenced by the relocation is
3886 located. */
3887 asection *sec = NULL;
3888 struct mips_elf_link_hash_entry *h = NULL;
b34976b6 3889 /* TRUE if the symbol referred to by this relocation is a local
b49e97c9 3890 symbol. */
b34976b6
AM
3891 bfd_boolean local_p, was_local_p;
3892 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
3893 bfd_boolean gp_disp_p = FALSE;
bbe506e8
TS
3894 /* TRUE if the symbol referred to by this relocation is
3895 "__gnu_local_gp". */
3896 bfd_boolean gnu_local_gp_p = FALSE;
b49e97c9
TS
3897 Elf_Internal_Shdr *symtab_hdr;
3898 size_t extsymoff;
3899 unsigned long r_symndx;
3900 int r_type;
b34976b6 3901 /* TRUE if overflow occurred during the calculation of the
b49e97c9 3902 relocation value. */
b34976b6
AM
3903 bfd_boolean overflowed_p;
3904 /* TRUE if this relocation refers to a MIPS16 function. */
3905 bfd_boolean target_is_16_bit_code_p = FALSE;
0a44bf69
RS
3906 struct mips_elf_link_hash_table *htab;
3907 bfd *dynobj;
3908
3909 dynobj = elf_hash_table (info)->dynobj;
3910 htab = mips_elf_hash_table (info);
b49e97c9
TS
3911
3912 /* Parse the relocation. */
3913 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3914 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3915 p = (input_section->output_section->vma
3916 + input_section->output_offset
3917 + relocation->r_offset);
3918
3919 /* Assume that there will be no overflow. */
b34976b6 3920 overflowed_p = FALSE;
b49e97c9
TS
3921
3922 /* Figure out whether or not the symbol is local, and get the offset
3923 used in the array of hash table entries. */
3924 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3925 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 3926 local_sections, FALSE);
bce03d3d 3927 was_local_p = local_p;
b49e97c9
TS
3928 if (! elf_bad_symtab (input_bfd))
3929 extsymoff = symtab_hdr->sh_info;
3930 else
3931 {
3932 /* The symbol table does not follow the rule that local symbols
3933 must come before globals. */
3934 extsymoff = 0;
3935 }
3936
3937 /* Figure out the value of the symbol. */
3938 if (local_p)
3939 {
3940 Elf_Internal_Sym *sym;
3941
3942 sym = local_syms + r_symndx;
3943 sec = local_sections[r_symndx];
3944
3945 symbol = sec->output_section->vma + sec->output_offset;
d4df96e6
L
3946 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3947 || (sec->flags & SEC_MERGE))
b49e97c9 3948 symbol += sym->st_value;
d4df96e6
L
3949 if ((sec->flags & SEC_MERGE)
3950 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3951 {
3952 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3953 addend -= symbol;
3954 addend += sec->output_section->vma + sec->output_offset;
3955 }
b49e97c9
TS
3956
3957 /* MIPS16 text labels should be treated as odd. */
3958 if (sym->st_other == STO_MIPS16)
3959 ++symbol;
3960
3961 /* Record the name of this symbol, for our caller. */
3962 *namep = bfd_elf_string_from_elf_section (input_bfd,
3963 symtab_hdr->sh_link,
3964 sym->st_name);
3965 if (*namep == '\0')
3966 *namep = bfd_section_name (input_bfd, sec);
3967
3968 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3969 }
3970 else
3971 {
560e09e9
NC
3972 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
3973
b49e97c9
TS
3974 /* For global symbols we look up the symbol in the hash-table. */
3975 h = ((struct mips_elf_link_hash_entry *)
3976 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3977 /* Find the real hash-table entry for this symbol. */
3978 while (h->root.root.type == bfd_link_hash_indirect
3979 || h->root.root.type == bfd_link_hash_warning)
3980 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3981
3982 /* Record the name of this symbol, for our caller. */
3983 *namep = h->root.root.root.string;
3984
3985 /* See if this is the special _gp_disp symbol. Note that such a
3986 symbol must always be a global symbol. */
560e09e9 3987 if (strcmp (*namep, "_gp_disp") == 0
b49e97c9
TS
3988 && ! NEWABI_P (input_bfd))
3989 {
3990 /* Relocations against _gp_disp are permitted only with
3991 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
d6f16593
MR
3992 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16
3993 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
b49e97c9
TS
3994 return bfd_reloc_notsupported;
3995
b34976b6 3996 gp_disp_p = TRUE;
b49e97c9 3997 }
bbe506e8
TS
3998 /* See if this is the special _gp symbol. Note that such a
3999 symbol must always be a global symbol. */
4000 else if (strcmp (*namep, "__gnu_local_gp") == 0)
4001 gnu_local_gp_p = TRUE;
4002
4003
b49e97c9
TS
4004 /* If this symbol is defined, calculate its address. Note that
4005 _gp_disp is a magic symbol, always implicitly defined by the
4006 linker, so it's inappropriate to check to see whether or not
4007 its defined. */
4008 else if ((h->root.root.type == bfd_link_hash_defined
4009 || h->root.root.type == bfd_link_hash_defweak)
4010 && h->root.root.u.def.section)
4011 {
4012 sec = h->root.root.u.def.section;
4013 if (sec->output_section)
4014 symbol = (h->root.root.u.def.value
4015 + sec->output_section->vma
4016 + sec->output_offset);
4017 else
4018 symbol = h->root.root.u.def.value;
4019 }
4020 else if (h->root.root.type == bfd_link_hash_undefweak)
4021 /* We allow relocations against undefined weak symbols, giving
4022 it the value zero, so that you can undefined weak functions
4023 and check to see if they exist by looking at their
4024 addresses. */
4025 symbol = 0;
59c2e50f 4026 else if (info->unresolved_syms_in_objects == RM_IGNORE
b49e97c9
TS
4027 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
4028 symbol = 0;
a4d0f181
TS
4029 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
4030 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
b49e97c9
TS
4031 {
4032 /* If this is a dynamic link, we should have created a
4033 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
4034 in in _bfd_mips_elf_create_dynamic_sections.
4035 Otherwise, we should define the symbol with a value of 0.
4036 FIXME: It should probably get into the symbol table
4037 somehow as well. */
4038 BFD_ASSERT (! info->shared);
4039 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
4040 symbol = 0;
4041 }
5e2b0d47
NC
4042 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
4043 {
4044 /* This is an optional symbol - an Irix specific extension to the
4045 ELF spec. Ignore it for now.
4046 XXX - FIXME - there is more to the spec for OPTIONAL symbols
4047 than simply ignoring them, but we do not handle this for now.
4048 For information see the "64-bit ELF Object File Specification"
4049 which is available from here:
4050 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
4051 symbol = 0;
4052 }
b49e97c9
TS
4053 else
4054 {
4055 if (! ((*info->callbacks->undefined_symbol)
4056 (info, h->root.root.root.string, input_bfd,
4057 input_section, relocation->r_offset,
59c2e50f
L
4058 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
4059 || ELF_ST_VISIBILITY (h->root.other))))
b49e97c9
TS
4060 return bfd_reloc_undefined;
4061 symbol = 0;
4062 }
4063
4064 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
4065 }
4066
4067 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
4068 need to redirect the call to the stub, unless we're already *in*
4069 a stub. */
1049f94e 4070 if (r_type != R_MIPS16_26 && !info->relocatable
b49e97c9 4071 && ((h != NULL && h->fn_stub != NULL)
b9d58d71
TS
4072 || (local_p
4073 && elf_tdata (input_bfd)->local_stubs != NULL
b49e97c9 4074 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
b9d58d71 4075 && !mips16_stub_section_p (input_bfd, input_section))
b49e97c9
TS
4076 {
4077 /* This is a 32- or 64-bit call to a 16-bit function. We should
4078 have already noticed that we were going to need the
4079 stub. */
4080 if (local_p)
4081 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
4082 else
4083 {
4084 BFD_ASSERT (h->need_fn_stub);
4085 sec = h->fn_stub;
4086 }
4087
4088 symbol = sec->output_section->vma + sec->output_offset;
f38c2df5
TS
4089 /* The target is 16-bit, but the stub isn't. */
4090 target_is_16_bit_code_p = FALSE;
b49e97c9
TS
4091 }
4092 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
4093 need to redirect the call to the stub. */
1049f94e 4094 else if (r_type == R_MIPS16_26 && !info->relocatable
b49e97c9 4095 && h != NULL
b9d58d71
TS
4096 && ((h->call_stub != NULL || h->call_fp_stub != NULL)
4097 || (local_p
4098 && elf_tdata (input_bfd)->local_call_stubs != NULL
4099 && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
b49e97c9
TS
4100 && !target_is_16_bit_code_p)
4101 {
b9d58d71
TS
4102 if (local_p)
4103 sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
4104 else
b49e97c9 4105 {
b9d58d71
TS
4106 /* If both call_stub and call_fp_stub are defined, we can figure
4107 out which one to use by checking which one appears in the input
4108 file. */
4109 if (h->call_stub != NULL && h->call_fp_stub != NULL)
b49e97c9 4110 {
b9d58d71
TS
4111 asection *o;
4112
4113 sec = NULL;
4114 for (o = input_bfd->sections; o != NULL; o = o->next)
b49e97c9 4115 {
b9d58d71
TS
4116 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
4117 {
4118 sec = h->call_fp_stub;
4119 break;
4120 }
b49e97c9 4121 }
b9d58d71
TS
4122 if (sec == NULL)
4123 sec = h->call_stub;
b49e97c9 4124 }
b9d58d71 4125 else if (h->call_stub != NULL)
b49e97c9 4126 sec = h->call_stub;
b9d58d71
TS
4127 else
4128 sec = h->call_fp_stub;
4129 }
b49e97c9 4130
eea6121a 4131 BFD_ASSERT (sec->size > 0);
b49e97c9
TS
4132 symbol = sec->output_section->vma + sec->output_offset;
4133 }
4134
4135 /* Calls from 16-bit code to 32-bit code and vice versa require the
4136 special jalx instruction. */
1049f94e 4137 *require_jalxp = (!info->relocatable
b49e97c9
TS
4138 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
4139 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
4140
4141 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 4142 local_sections, TRUE);
b49e97c9
TS
4143
4144 /* If we haven't already determined the GOT offset, or the GP value,
4145 and we're going to need it, get it now. */
4146 switch (r_type)
4147 {
0fdc1bf1 4148 case R_MIPS_GOT_PAGE:
93a2b7ae 4149 case R_MIPS_GOT_OFST:
d25aed71
RS
4150 /* We need to decay to GOT_DISP/addend if the symbol doesn't
4151 bind locally. */
4152 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
93a2b7ae 4153 if (local_p || r_type == R_MIPS_GOT_OFST)
0fdc1bf1
AO
4154 break;
4155 /* Fall through. */
4156
b49e97c9
TS
4157 case R_MIPS_CALL16:
4158 case R_MIPS_GOT16:
4159 case R_MIPS_GOT_DISP:
4160 case R_MIPS_GOT_HI16:
4161 case R_MIPS_CALL_HI16:
4162 case R_MIPS_GOT_LO16:
4163 case R_MIPS_CALL_LO16:
0f20cc35
DJ
4164 case R_MIPS_TLS_GD:
4165 case R_MIPS_TLS_GOTTPREL:
4166 case R_MIPS_TLS_LDM:
b49e97c9 4167 /* Find the index into the GOT where this value is located. */
0f20cc35
DJ
4168 if (r_type == R_MIPS_TLS_LDM)
4169 {
0a44bf69 4170 g = mips_elf_local_got_index (abfd, input_bfd, info,
5c18022e 4171 0, 0, NULL, r_type);
0f20cc35
DJ
4172 if (g == MINUS_ONE)
4173 return bfd_reloc_outofrange;
4174 }
4175 else if (!local_p)
b49e97c9 4176 {
0a44bf69
RS
4177 /* On VxWorks, CALL relocations should refer to the .got.plt
4178 entry, which is initialized to point at the PLT stub. */
4179 if (htab->is_vxworks
4180 && (r_type == R_MIPS_CALL_HI16
4181 || r_type == R_MIPS_CALL_LO16
4182 || r_type == R_MIPS_CALL16))
4183 {
4184 BFD_ASSERT (addend == 0);
4185 BFD_ASSERT (h->root.needs_plt);
4186 g = mips_elf_gotplt_index (info, &h->root);
4187 }
4188 else
b49e97c9 4189 {
0a44bf69
RS
4190 /* GOT_PAGE may take a non-zero addend, that is ignored in a
4191 GOT_PAGE relocation that decays to GOT_DISP because the
4192 symbol turns out to be global. The addend is then added
4193 as GOT_OFST. */
4194 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
4195 g = mips_elf_global_got_index (dynobj, input_bfd,
4196 &h->root, r_type, info);
4197 if (h->tls_type == GOT_NORMAL
4198 && (! elf_hash_table(info)->dynamic_sections_created
4199 || (info->shared
4200 && (info->symbolic || h->root.forced_local)
4201 && h->root.def_regular)))
4202 {
4203 /* This is a static link or a -Bsymbolic link. The
4204 symbol is defined locally, or was forced to be local.
4205 We must initialize this entry in the GOT. */
4206 asection *sgot = mips_elf_got_section (dynobj, FALSE);
4207 MIPS_ELF_PUT_WORD (dynobj, symbol, sgot->contents + g);
4208 }
b49e97c9
TS
4209 }
4210 }
0a44bf69
RS
4211 else if (!htab->is_vxworks
4212 && (r_type == R_MIPS_CALL16 || (r_type == R_MIPS_GOT16)))
4213 /* The calculation below does not involve "g". */
b49e97c9
TS
4214 break;
4215 else
4216 {
5c18022e 4217 g = mips_elf_local_got_index (abfd, input_bfd, info,
0a44bf69 4218 symbol + addend, r_symndx, h, r_type);
b49e97c9
TS
4219 if (g == MINUS_ONE)
4220 return bfd_reloc_outofrange;
4221 }
4222
4223 /* Convert GOT indices to actual offsets. */
0a44bf69 4224 g = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, g);
b49e97c9
TS
4225 break;
4226
4227 case R_MIPS_HI16:
4228 case R_MIPS_LO16:
b49e97c9
TS
4229 case R_MIPS_GPREL16:
4230 case R_MIPS_GPREL32:
4231 case R_MIPS_LITERAL:
d6f16593
MR
4232 case R_MIPS16_HI16:
4233 case R_MIPS16_LO16:
4234 case R_MIPS16_GPREL:
b49e97c9
TS
4235 gp0 = _bfd_get_gp_value (input_bfd);
4236 gp = _bfd_get_gp_value (abfd);
0a44bf69
RS
4237 if (dynobj)
4238 gp += mips_elf_adjust_gp (abfd, mips_elf_got_info (dynobj, NULL),
f4416af6 4239 input_bfd);
b49e97c9
TS
4240 break;
4241
4242 default:
4243 break;
4244 }
4245
bbe506e8
TS
4246 if (gnu_local_gp_p)
4247 symbol = gp;
86324f90 4248
0a44bf69
RS
4249 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
4250 symbols are resolved by the loader. Add them to .rela.dyn. */
4251 if (h != NULL && is_gott_symbol (info, &h->root))
4252 {
4253 Elf_Internal_Rela outrel;
4254 bfd_byte *loc;
4255 asection *s;
4256
4257 s = mips_elf_rel_dyn_section (info, FALSE);
4258 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
4259
4260 outrel.r_offset = (input_section->output_section->vma
4261 + input_section->output_offset
4262 + relocation->r_offset);
4263 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
4264 outrel.r_addend = addend;
4265 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
9e3313ae
RS
4266
4267 /* If we've written this relocation for a readonly section,
4268 we need to set DF_TEXTREL again, so that we do not delete the
4269 DT_TEXTREL tag. */
4270 if (MIPS_ELF_READONLY_SECTION (input_section))
4271 info->flags |= DF_TEXTREL;
4272
0a44bf69
RS
4273 *valuep = 0;
4274 return bfd_reloc_ok;
4275 }
4276
b49e97c9
TS
4277 /* Figure out what kind of relocation is being performed. */
4278 switch (r_type)
4279 {
4280 case R_MIPS_NONE:
4281 return bfd_reloc_continue;
4282
4283 case R_MIPS_16:
a7ebbfdf 4284 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
b49e97c9
TS
4285 overflowed_p = mips_elf_overflow_p (value, 16);
4286 break;
4287
4288 case R_MIPS_32:
4289 case R_MIPS_REL32:
4290 case R_MIPS_64:
4291 if ((info->shared
0a44bf69
RS
4292 || (!htab->is_vxworks
4293 && htab->root.dynamic_sections_created
b49e97c9 4294 && h != NULL
f5385ebf
AM
4295 && h->root.def_dynamic
4296 && !h->root.def_regular))
b49e97c9
TS
4297 && r_symndx != 0
4298 && (input_section->flags & SEC_ALLOC) != 0)
4299 {
4300 /* If we're creating a shared library, or this relocation is
4301 against a symbol in a shared library, then we can't know
4302 where the symbol will end up. So, we create a relocation
4303 record in the output, and leave the job up to the dynamic
0a44bf69
RS
4304 linker.
4305
4306 In VxWorks executables, references to external symbols
4307 are handled using copy relocs or PLT stubs, so there's
4308 no need to add a dynamic relocation here. */
b49e97c9
TS
4309 value = addend;
4310 if (!mips_elf_create_dynamic_relocation (abfd,
4311 info,
4312 relocation,
4313 h,
4314 sec,
4315 symbol,
4316 &value,
4317 input_section))
4318 return bfd_reloc_undefined;
4319 }
4320 else
4321 {
4322 if (r_type != R_MIPS_REL32)
4323 value = symbol + addend;
4324 else
4325 value = addend;
4326 }
4327 value &= howto->dst_mask;
092dcd75
CD
4328 break;
4329
4330 case R_MIPS_PC32:
4331 value = symbol + addend - p;
4332 value &= howto->dst_mask;
b49e97c9
TS
4333 break;
4334
b49e97c9
TS
4335 case R_MIPS16_26:
4336 /* The calculation for R_MIPS16_26 is just the same as for an
4337 R_MIPS_26. It's only the storage of the relocated field into
4338 the output file that's different. That's handled in
4339 mips_elf_perform_relocation. So, we just fall through to the
4340 R_MIPS_26 case here. */
4341 case R_MIPS_26:
4342 if (local_p)
30ac9238 4343 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
b49e97c9 4344 else
728b2f21
ILT
4345 {
4346 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
c314987d
RS
4347 if (h->root.root.type != bfd_link_hash_undefweak)
4348 overflowed_p = (value >> 26) != ((p + 4) >> 28);
728b2f21 4349 }
b49e97c9
TS
4350 value &= howto->dst_mask;
4351 break;
4352
0f20cc35
DJ
4353 case R_MIPS_TLS_DTPREL_HI16:
4354 value = (mips_elf_high (addend + symbol - dtprel_base (info))
4355 & howto->dst_mask);
4356 break;
4357
4358 case R_MIPS_TLS_DTPREL_LO16:
4359 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
4360 break;
4361
4362 case R_MIPS_TLS_TPREL_HI16:
4363 value = (mips_elf_high (addend + symbol - tprel_base (info))
4364 & howto->dst_mask);
4365 break;
4366
4367 case R_MIPS_TLS_TPREL_LO16:
4368 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
4369 break;
4370
b49e97c9 4371 case R_MIPS_HI16:
d6f16593 4372 case R_MIPS16_HI16:
b49e97c9
TS
4373 if (!gp_disp_p)
4374 {
4375 value = mips_elf_high (addend + symbol);
4376 value &= howto->dst_mask;
4377 }
4378 else
4379 {
d6f16593
MR
4380 /* For MIPS16 ABI code we generate this sequence
4381 0: li $v0,%hi(_gp_disp)
4382 4: addiupc $v1,%lo(_gp_disp)
4383 8: sll $v0,16
4384 12: addu $v0,$v1
4385 14: move $gp,$v0
4386 So the offsets of hi and lo relocs are the same, but the
4387 $pc is four higher than $t9 would be, so reduce
4388 both reloc addends by 4. */
4389 if (r_type == R_MIPS16_HI16)
4390 value = mips_elf_high (addend + gp - p - 4);
4391 else
4392 value = mips_elf_high (addend + gp - p);
b49e97c9
TS
4393 overflowed_p = mips_elf_overflow_p (value, 16);
4394 }
4395 break;
4396
4397 case R_MIPS_LO16:
d6f16593 4398 case R_MIPS16_LO16:
b49e97c9
TS
4399 if (!gp_disp_p)
4400 value = (symbol + addend) & howto->dst_mask;
4401 else
4402 {
d6f16593
MR
4403 /* See the comment for R_MIPS16_HI16 above for the reason
4404 for this conditional. */
4405 if (r_type == R_MIPS16_LO16)
4406 value = addend + gp - p;
4407 else
4408 value = addend + gp - p + 4;
b49e97c9 4409 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
8dc1a139 4410 for overflow. But, on, say, IRIX5, relocations against
b49e97c9
TS
4411 _gp_disp are normally generated from the .cpload
4412 pseudo-op. It generates code that normally looks like
4413 this:
4414
4415 lui $gp,%hi(_gp_disp)
4416 addiu $gp,$gp,%lo(_gp_disp)
4417 addu $gp,$gp,$t9
4418
4419 Here $t9 holds the address of the function being called,
4420 as required by the MIPS ELF ABI. The R_MIPS_LO16
4421 relocation can easily overflow in this situation, but the
4422 R_MIPS_HI16 relocation will handle the overflow.
4423 Therefore, we consider this a bug in the MIPS ABI, and do
4424 not check for overflow here. */
4425 }
4426 break;
4427
4428 case R_MIPS_LITERAL:
4429 /* Because we don't merge literal sections, we can handle this
4430 just like R_MIPS_GPREL16. In the long run, we should merge
4431 shared literals, and then we will need to additional work
4432 here. */
4433
4434 /* Fall through. */
4435
4436 case R_MIPS16_GPREL:
4437 /* The R_MIPS16_GPREL performs the same calculation as
4438 R_MIPS_GPREL16, but stores the relocated bits in a different
4439 order. We don't need to do anything special here; the
4440 differences are handled in mips_elf_perform_relocation. */
4441 case R_MIPS_GPREL16:
bce03d3d
AO
4442 /* Only sign-extend the addend if it was extracted from the
4443 instruction. If the addend was separate, leave it alone,
4444 otherwise we may lose significant bits. */
4445 if (howto->partial_inplace)
a7ebbfdf 4446 addend = _bfd_mips_elf_sign_extend (addend, 16);
bce03d3d
AO
4447 value = symbol + addend - gp;
4448 /* If the symbol was local, any earlier relocatable links will
4449 have adjusted its addend with the gp offset, so compensate
4450 for that now. Don't do it for symbols forced local in this
4451 link, though, since they won't have had the gp offset applied
4452 to them before. */
4453 if (was_local_p)
4454 value += gp0;
b49e97c9
TS
4455 overflowed_p = mips_elf_overflow_p (value, 16);
4456 break;
4457
4458 case R_MIPS_GOT16:
4459 case R_MIPS_CALL16:
0a44bf69
RS
4460 /* VxWorks does not have separate local and global semantics for
4461 R_MIPS_GOT16; every relocation evaluates to "G". */
4462 if (!htab->is_vxworks && local_p)
b49e97c9 4463 {
b34976b6 4464 bfd_boolean forced;
b49e97c9 4465
b49e97c9 4466 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 4467 local_sections, FALSE);
5c18022e 4468 value = mips_elf_got16_entry (abfd, input_bfd, info,
f4416af6 4469 symbol + addend, forced);
b49e97c9
TS
4470 if (value == MINUS_ONE)
4471 return bfd_reloc_outofrange;
4472 value
0a44bf69 4473 = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
b49e97c9
TS
4474 overflowed_p = mips_elf_overflow_p (value, 16);
4475 break;
4476 }
4477
4478 /* Fall through. */
4479
0f20cc35
DJ
4480 case R_MIPS_TLS_GD:
4481 case R_MIPS_TLS_GOTTPREL:
4482 case R_MIPS_TLS_LDM:
b49e97c9 4483 case R_MIPS_GOT_DISP:
0fdc1bf1 4484 got_disp:
b49e97c9
TS
4485 value = g;
4486 overflowed_p = mips_elf_overflow_p (value, 16);
4487 break;
4488
4489 case R_MIPS_GPREL32:
bce03d3d
AO
4490 value = (addend + symbol + gp0 - gp);
4491 if (!save_addend)
4492 value &= howto->dst_mask;
b49e97c9
TS
4493 break;
4494
4495 case R_MIPS_PC16:
bad36eac
DJ
4496 case R_MIPS_GNU_REL16_S2:
4497 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
4498 overflowed_p = mips_elf_overflow_p (value, 18);
37caec6b
TS
4499 value >>= howto->rightshift;
4500 value &= howto->dst_mask;
b49e97c9
TS
4501 break;
4502
4503 case R_MIPS_GOT_HI16:
4504 case R_MIPS_CALL_HI16:
4505 /* We're allowed to handle these two relocations identically.
4506 The dynamic linker is allowed to handle the CALL relocations
4507 differently by creating a lazy evaluation stub. */
4508 value = g;
4509 value = mips_elf_high (value);
4510 value &= howto->dst_mask;
4511 break;
4512
4513 case R_MIPS_GOT_LO16:
4514 case R_MIPS_CALL_LO16:
4515 value = g & howto->dst_mask;
4516 break;
4517
4518 case R_MIPS_GOT_PAGE:
0fdc1bf1
AO
4519 /* GOT_PAGE relocations that reference non-local symbols decay
4520 to GOT_DISP. The corresponding GOT_OFST relocation decays to
4521 0. */
93a2b7ae 4522 if (! local_p)
0fdc1bf1 4523 goto got_disp;
5c18022e 4524 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
b49e97c9
TS
4525 if (value == MINUS_ONE)
4526 return bfd_reloc_outofrange;
0a44bf69 4527 value = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
b49e97c9
TS
4528 overflowed_p = mips_elf_overflow_p (value, 16);
4529 break;
4530
4531 case R_MIPS_GOT_OFST:
93a2b7ae 4532 if (local_p)
5c18022e 4533 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
0fdc1bf1
AO
4534 else
4535 value = addend;
b49e97c9
TS
4536 overflowed_p = mips_elf_overflow_p (value, 16);
4537 break;
4538
4539 case R_MIPS_SUB:
4540 value = symbol - addend;
4541 value &= howto->dst_mask;
4542 break;
4543
4544 case R_MIPS_HIGHER:
4545 value = mips_elf_higher (addend + symbol);
4546 value &= howto->dst_mask;
4547 break;
4548
4549 case R_MIPS_HIGHEST:
4550 value = mips_elf_highest (addend + symbol);
4551 value &= howto->dst_mask;
4552 break;
4553
4554 case R_MIPS_SCN_DISP:
4555 value = symbol + addend - sec->output_offset;
4556 value &= howto->dst_mask;
4557 break;
4558
b49e97c9 4559 case R_MIPS_JALR:
1367d393
ILT
4560 /* This relocation is only a hint. In some cases, we optimize
4561 it into a bal instruction. But we don't try to optimize
4562 branches to the PLT; that will wind up wasting time. */
4563 if (h != NULL && h->root.plt.offset != (bfd_vma) -1)
4564 return bfd_reloc_continue;
4565 value = symbol + addend;
4566 break;
b49e97c9 4567
1367d393 4568 case R_MIPS_PJUMP:
b49e97c9
TS
4569 case R_MIPS_GNU_VTINHERIT:
4570 case R_MIPS_GNU_VTENTRY:
4571 /* We don't do anything with these at present. */
4572 return bfd_reloc_continue;
4573
4574 default:
4575 /* An unrecognized relocation type. */
4576 return bfd_reloc_notsupported;
4577 }
4578
4579 /* Store the VALUE for our caller. */
4580 *valuep = value;
4581 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
4582}
4583
4584/* Obtain the field relocated by RELOCATION. */
4585
4586static bfd_vma
9719ad41
RS
4587mips_elf_obtain_contents (reloc_howto_type *howto,
4588 const Elf_Internal_Rela *relocation,
4589 bfd *input_bfd, bfd_byte *contents)
b49e97c9
TS
4590{
4591 bfd_vma x;
4592 bfd_byte *location = contents + relocation->r_offset;
4593
4594 /* Obtain the bytes. */
4595 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
4596
b49e97c9
TS
4597 return x;
4598}
4599
4600/* It has been determined that the result of the RELOCATION is the
4601 VALUE. Use HOWTO to place VALUE into the output file at the
4602 appropriate position. The SECTION is the section to which the
b34976b6 4603 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
b49e97c9
TS
4604 for the relocation must be either JAL or JALX, and it is
4605 unconditionally converted to JALX.
4606
b34976b6 4607 Returns FALSE if anything goes wrong. */
b49e97c9 4608
b34976b6 4609static bfd_boolean
9719ad41
RS
4610mips_elf_perform_relocation (struct bfd_link_info *info,
4611 reloc_howto_type *howto,
4612 const Elf_Internal_Rela *relocation,
4613 bfd_vma value, bfd *input_bfd,
4614 asection *input_section, bfd_byte *contents,
4615 bfd_boolean require_jalx)
b49e97c9
TS
4616{
4617 bfd_vma x;
4618 bfd_byte *location;
4619 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
4620
4621 /* Figure out where the relocation is occurring. */
4622 location = contents + relocation->r_offset;
4623
d6f16593
MR
4624 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
4625
b49e97c9
TS
4626 /* Obtain the current value. */
4627 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
4628
4629 /* Clear the field we are setting. */
4630 x &= ~howto->dst_mask;
4631
b49e97c9
TS
4632 /* Set the field. */
4633 x |= (value & howto->dst_mask);
4634
4635 /* If required, turn JAL into JALX. */
4636 if (require_jalx)
4637 {
b34976b6 4638 bfd_boolean ok;
b49e97c9
TS
4639 bfd_vma opcode = x >> 26;
4640 bfd_vma jalx_opcode;
4641
4642 /* Check to see if the opcode is already JAL or JALX. */
4643 if (r_type == R_MIPS16_26)
4644 {
4645 ok = ((opcode == 0x6) || (opcode == 0x7));
4646 jalx_opcode = 0x7;
4647 }
4648 else
4649 {
4650 ok = ((opcode == 0x3) || (opcode == 0x1d));
4651 jalx_opcode = 0x1d;
4652 }
4653
4654 /* If the opcode is not JAL or JALX, there's a problem. */
4655 if (!ok)
4656 {
4657 (*_bfd_error_handler)
d003868e
AM
4658 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
4659 input_bfd,
4660 input_section,
b49e97c9
TS
4661 (unsigned long) relocation->r_offset);
4662 bfd_set_error (bfd_error_bad_value);
b34976b6 4663 return FALSE;
b49e97c9
TS
4664 }
4665
4666 /* Make this the JALX opcode. */
4667 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
4668 }
4669
1367d393
ILT
4670 /* On the RM9000, bal is faster than jal, because bal uses branch
4671 prediction hardware. If we are linking for the RM9000, and we
4672 see jal, and bal fits, use it instead. Note that this
4673 transformation should be safe for all architectures. */
4674 if (bfd_get_mach (input_bfd) == bfd_mach_mips9000
4675 && !info->relocatable
4676 && !require_jalx
4677 && ((r_type == R_MIPS_26 && (x >> 26) == 0x3) /* jal addr */
4678 || (r_type == R_MIPS_JALR && x == 0x0320f809))) /* jalr t9 */
4679 {
4680 bfd_vma addr;
4681 bfd_vma dest;
4682 bfd_signed_vma off;
4683
4684 addr = (input_section->output_section->vma
4685 + input_section->output_offset
4686 + relocation->r_offset
4687 + 4);
4688 if (r_type == R_MIPS_26)
4689 dest = (value << 2) | ((addr >> 28) << 28);
4690 else
4691 dest = value;
4692 off = dest - addr;
4693 if (off <= 0x1ffff && off >= -0x20000)
4694 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
4695 }
4696
b49e97c9
TS
4697 /* Put the value into the output. */
4698 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
d6f16593
MR
4699
4700 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable,
4701 location);
4702
b34976b6 4703 return TRUE;
b49e97c9
TS
4704}
4705
b34976b6 4706/* Returns TRUE if SECTION is a MIPS16 stub section. */
b49e97c9 4707
b34976b6 4708static bfd_boolean
b9d58d71 4709mips16_stub_section_p (bfd *abfd ATTRIBUTE_UNUSED, asection *section)
b49e97c9
TS
4710{
4711 const char *name = bfd_get_section_name (abfd, section);
4712
b9d58d71 4713 return FN_STUB_P (name) || CALL_STUB_P (name) || CALL_FP_STUB_P (name);
b49e97c9
TS
4714}
4715\f
0a44bf69 4716/* Add room for N relocations to the .rel(a).dyn section in ABFD. */
b49e97c9
TS
4717
4718static void
0a44bf69
RS
4719mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4720 unsigned int n)
b49e97c9
TS
4721{
4722 asection *s;
0a44bf69 4723 struct mips_elf_link_hash_table *htab;
b49e97c9 4724
0a44bf69
RS
4725 htab = mips_elf_hash_table (info);
4726 s = mips_elf_rel_dyn_section (info, FALSE);
b49e97c9
TS
4727 BFD_ASSERT (s != NULL);
4728
0a44bf69
RS
4729 if (htab->is_vxworks)
4730 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4731 else
b49e97c9 4732 {
0a44bf69
RS
4733 if (s->size == 0)
4734 {
4735 /* Make room for a null element. */
4736 s->size += MIPS_ELF_REL_SIZE (abfd);
4737 ++s->reloc_count;
4738 }
4739 s->size += n * MIPS_ELF_REL_SIZE (abfd);
b49e97c9 4740 }
b49e97c9
TS
4741}
4742
4743/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
4744 is the original relocation, which is now being transformed into a
4745 dynamic relocation. The ADDENDP is adjusted if necessary; the
4746 caller should store the result in place of the original addend. */
4747
b34976b6 4748static bfd_boolean
9719ad41
RS
4749mips_elf_create_dynamic_relocation (bfd *output_bfd,
4750 struct bfd_link_info *info,
4751 const Elf_Internal_Rela *rel,
4752 struct mips_elf_link_hash_entry *h,
4753 asection *sec, bfd_vma symbol,
4754 bfd_vma *addendp, asection *input_section)
b49e97c9 4755{
947216bf 4756 Elf_Internal_Rela outrel[3];
b49e97c9
TS
4757 asection *sreloc;
4758 bfd *dynobj;
4759 int r_type;
5d41f0b6
RS
4760 long indx;
4761 bfd_boolean defined_p;
0a44bf69 4762 struct mips_elf_link_hash_table *htab;
b49e97c9 4763
0a44bf69 4764 htab = mips_elf_hash_table (info);
b49e97c9
TS
4765 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
4766 dynobj = elf_hash_table (info)->dynobj;
0a44bf69 4767 sreloc = mips_elf_rel_dyn_section (info, FALSE);
b49e97c9
TS
4768 BFD_ASSERT (sreloc != NULL);
4769 BFD_ASSERT (sreloc->contents != NULL);
4770 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
eea6121a 4771 < sreloc->size);
b49e97c9 4772
b49e97c9
TS
4773 outrel[0].r_offset =
4774 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
9ddf8309
TS
4775 if (ABI_64_P (output_bfd))
4776 {
4777 outrel[1].r_offset =
4778 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
4779 outrel[2].r_offset =
4780 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
4781 }
b49e97c9 4782
c5ae1840 4783 if (outrel[0].r_offset == MINUS_ONE)
0d591ff7 4784 /* The relocation field has been deleted. */
5d41f0b6
RS
4785 return TRUE;
4786
4787 if (outrel[0].r_offset == MINUS_TWO)
0d591ff7
RS
4788 {
4789 /* The relocation field has been converted into a relative value of
4790 some sort. Functions like _bfd_elf_write_section_eh_frame expect
4791 the field to be fully relocated, so add in the symbol's value. */
0d591ff7 4792 *addendp += symbol;
5d41f0b6 4793 return TRUE;
0d591ff7 4794 }
b49e97c9 4795
5d41f0b6
RS
4796 /* We must now calculate the dynamic symbol table index to use
4797 in the relocation. */
4798 if (h != NULL
6ece8836
TS
4799 && (!h->root.def_regular
4800 || (info->shared && !info->symbolic && !h->root.forced_local)))
5d41f0b6
RS
4801 {
4802 indx = h->root.dynindx;
4803 if (SGI_COMPAT (output_bfd))
4804 defined_p = h->root.def_regular;
4805 else
4806 /* ??? glibc's ld.so just adds the final GOT entry to the
4807 relocation field. It therefore treats relocs against
4808 defined symbols in the same way as relocs against
4809 undefined symbols. */
4810 defined_p = FALSE;
4811 }
b49e97c9
TS
4812 else
4813 {
5d41f0b6
RS
4814 if (sec != NULL && bfd_is_abs_section (sec))
4815 indx = 0;
4816 else if (sec == NULL || sec->owner == NULL)
fdd07405 4817 {
5d41f0b6
RS
4818 bfd_set_error (bfd_error_bad_value);
4819 return FALSE;
b49e97c9
TS
4820 }
4821 else
4822 {
5d41f0b6 4823 indx = elf_section_data (sec->output_section)->dynindx;
74541ad4
AM
4824 if (indx == 0)
4825 {
4826 asection *osec = htab->root.text_index_section;
4827 indx = elf_section_data (osec)->dynindx;
4828 }
5d41f0b6
RS
4829 if (indx == 0)
4830 abort ();
b49e97c9
TS
4831 }
4832
5d41f0b6
RS
4833 /* Instead of generating a relocation using the section
4834 symbol, we may as well make it a fully relative
4835 relocation. We want to avoid generating relocations to
4836 local symbols because we used to generate them
4837 incorrectly, without adding the original symbol value,
4838 which is mandated by the ABI for section symbols. In
4839 order to give dynamic loaders and applications time to
4840 phase out the incorrect use, we refrain from emitting
4841 section-relative relocations. It's not like they're
4842 useful, after all. This should be a bit more efficient
4843 as well. */
4844 /* ??? Although this behavior is compatible with glibc's ld.so,
4845 the ABI says that relocations against STN_UNDEF should have
4846 a symbol value of 0. Irix rld honors this, so relocations
4847 against STN_UNDEF have no effect. */
4848 if (!SGI_COMPAT (output_bfd))
4849 indx = 0;
4850 defined_p = TRUE;
b49e97c9
TS
4851 }
4852
5d41f0b6
RS
4853 /* If the relocation was previously an absolute relocation and
4854 this symbol will not be referred to by the relocation, we must
4855 adjust it by the value we give it in the dynamic symbol table.
4856 Otherwise leave the job up to the dynamic linker. */
4857 if (defined_p && r_type != R_MIPS_REL32)
4858 *addendp += symbol;
4859
0a44bf69
RS
4860 if (htab->is_vxworks)
4861 /* VxWorks uses non-relative relocations for this. */
4862 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
4863 else
4864 /* The relocation is always an REL32 relocation because we don't
4865 know where the shared library will wind up at load-time. */
4866 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
4867 R_MIPS_REL32);
4868
5d41f0b6
RS
4869 /* For strict adherence to the ABI specification, we should
4870 generate a R_MIPS_64 relocation record by itself before the
4871 _REL32/_64 record as well, such that the addend is read in as
4872 a 64-bit value (REL32 is a 32-bit relocation, after all).
4873 However, since none of the existing ELF64 MIPS dynamic
4874 loaders seems to care, we don't waste space with these
4875 artificial relocations. If this turns out to not be true,
4876 mips_elf_allocate_dynamic_relocation() should be tweaked so
4877 as to make room for a pair of dynamic relocations per
4878 invocation if ABI_64_P, and here we should generate an
4879 additional relocation record with R_MIPS_64 by itself for a
4880 NULL symbol before this relocation record. */
4881 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
4882 ABI_64_P (output_bfd)
4883 ? R_MIPS_64
4884 : R_MIPS_NONE);
4885 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
4886
4887 /* Adjust the output offset of the relocation to reference the
4888 correct location in the output file. */
4889 outrel[0].r_offset += (input_section->output_section->vma
4890 + input_section->output_offset);
4891 outrel[1].r_offset += (input_section->output_section->vma
4892 + input_section->output_offset);
4893 outrel[2].r_offset += (input_section->output_section->vma
4894 + input_section->output_offset);
4895
b49e97c9
TS
4896 /* Put the relocation back out. We have to use the special
4897 relocation outputter in the 64-bit case since the 64-bit
4898 relocation format is non-standard. */
4899 if (ABI_64_P (output_bfd))
4900 {
4901 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
4902 (output_bfd, &outrel[0],
4903 (sreloc->contents
4904 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
4905 }
0a44bf69
RS
4906 else if (htab->is_vxworks)
4907 {
4908 /* VxWorks uses RELA rather than REL dynamic relocations. */
4909 outrel[0].r_addend = *addendp;
4910 bfd_elf32_swap_reloca_out
4911 (output_bfd, &outrel[0],
4912 (sreloc->contents
4913 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
4914 }
b49e97c9 4915 else
947216bf
AM
4916 bfd_elf32_swap_reloc_out
4917 (output_bfd, &outrel[0],
4918 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
b49e97c9 4919
b49e97c9
TS
4920 /* We've now added another relocation. */
4921 ++sreloc->reloc_count;
4922
4923 /* Make sure the output section is writable. The dynamic linker
4924 will be writing to it. */
4925 elf_section_data (input_section->output_section)->this_hdr.sh_flags
4926 |= SHF_WRITE;
4927
4928 /* On IRIX5, make an entry of compact relocation info. */
5d41f0b6 4929 if (IRIX_COMPAT (output_bfd) == ict_irix5)
b49e97c9
TS
4930 {
4931 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
4932 bfd_byte *cr;
4933
4934 if (scpt)
4935 {
4936 Elf32_crinfo cptrel;
4937
4938 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
4939 cptrel.vaddr = (rel->r_offset
4940 + input_section->output_section->vma
4941 + input_section->output_offset);
4942 if (r_type == R_MIPS_REL32)
4943 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
4944 else
4945 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
4946 mips_elf_set_cr_dist2to (cptrel, 0);
4947 cptrel.konst = *addendp;
4948
4949 cr = (scpt->contents
4950 + sizeof (Elf32_External_compact_rel));
abc0f8d0 4951 mips_elf_set_cr_relvaddr (cptrel, 0);
b49e97c9
TS
4952 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
4953 ((Elf32_External_crinfo *) cr
4954 + scpt->reloc_count));
4955 ++scpt->reloc_count;
4956 }
4957 }
4958
943284cc
DJ
4959 /* If we've written this relocation for a readonly section,
4960 we need to set DF_TEXTREL again, so that we do not delete the
4961 DT_TEXTREL tag. */
4962 if (MIPS_ELF_READONLY_SECTION (input_section))
4963 info->flags |= DF_TEXTREL;
4964
b34976b6 4965 return TRUE;
b49e97c9
TS
4966}
4967\f
b49e97c9
TS
4968/* Return the MACH for a MIPS e_flags value. */
4969
4970unsigned long
9719ad41 4971_bfd_elf_mips_mach (flagword flags)
b49e97c9
TS
4972{
4973 switch (flags & EF_MIPS_MACH)
4974 {
4975 case E_MIPS_MACH_3900:
4976 return bfd_mach_mips3900;
4977
4978 case E_MIPS_MACH_4010:
4979 return bfd_mach_mips4010;
4980
4981 case E_MIPS_MACH_4100:
4982 return bfd_mach_mips4100;
4983
4984 case E_MIPS_MACH_4111:
4985 return bfd_mach_mips4111;
4986
00707a0e
RS
4987 case E_MIPS_MACH_4120:
4988 return bfd_mach_mips4120;
4989
b49e97c9
TS
4990 case E_MIPS_MACH_4650:
4991 return bfd_mach_mips4650;
4992
00707a0e
RS
4993 case E_MIPS_MACH_5400:
4994 return bfd_mach_mips5400;
4995
4996 case E_MIPS_MACH_5500:
4997 return bfd_mach_mips5500;
4998
0d2e43ed
ILT
4999 case E_MIPS_MACH_9000:
5000 return bfd_mach_mips9000;
5001
b49e97c9
TS
5002 case E_MIPS_MACH_SB1:
5003 return bfd_mach_mips_sb1;
5004
5005 default:
5006 switch (flags & EF_MIPS_ARCH)
5007 {
5008 default:
5009 case E_MIPS_ARCH_1:
5010 return bfd_mach_mips3000;
b49e97c9
TS
5011
5012 case E_MIPS_ARCH_2:
5013 return bfd_mach_mips6000;
b49e97c9
TS
5014
5015 case E_MIPS_ARCH_3:
5016 return bfd_mach_mips4000;
b49e97c9
TS
5017
5018 case E_MIPS_ARCH_4:
5019 return bfd_mach_mips8000;
b49e97c9
TS
5020
5021 case E_MIPS_ARCH_5:
5022 return bfd_mach_mips5;
b49e97c9
TS
5023
5024 case E_MIPS_ARCH_32:
5025 return bfd_mach_mipsisa32;
b49e97c9
TS
5026
5027 case E_MIPS_ARCH_64:
5028 return bfd_mach_mipsisa64;
af7ee8bf
CD
5029
5030 case E_MIPS_ARCH_32R2:
5031 return bfd_mach_mipsisa32r2;
5f74bc13
CD
5032
5033 case E_MIPS_ARCH_64R2:
5034 return bfd_mach_mipsisa64r2;
b49e97c9
TS
5035 }
5036 }
5037
5038 return 0;
5039}
5040
5041/* Return printable name for ABI. */
5042
5043static INLINE char *
9719ad41 5044elf_mips_abi_name (bfd *abfd)
b49e97c9
TS
5045{
5046 flagword flags;
5047
5048 flags = elf_elfheader (abfd)->e_flags;
5049 switch (flags & EF_MIPS_ABI)
5050 {
5051 case 0:
5052 if (ABI_N32_P (abfd))
5053 return "N32";
5054 else if (ABI_64_P (abfd))
5055 return "64";
5056 else
5057 return "none";
5058 case E_MIPS_ABI_O32:
5059 return "O32";
5060 case E_MIPS_ABI_O64:
5061 return "O64";
5062 case E_MIPS_ABI_EABI32:
5063 return "EABI32";
5064 case E_MIPS_ABI_EABI64:
5065 return "EABI64";
5066 default:
5067 return "unknown abi";
5068 }
5069}
5070\f
5071/* MIPS ELF uses two common sections. One is the usual one, and the
5072 other is for small objects. All the small objects are kept
5073 together, and then referenced via the gp pointer, which yields
5074 faster assembler code. This is what we use for the small common
5075 section. This approach is copied from ecoff.c. */
5076static asection mips_elf_scom_section;
5077static asymbol mips_elf_scom_symbol;
5078static asymbol *mips_elf_scom_symbol_ptr;
5079
5080/* MIPS ELF also uses an acommon section, which represents an
5081 allocated common symbol which may be overridden by a
5082 definition in a shared library. */
5083static asection mips_elf_acom_section;
5084static asymbol mips_elf_acom_symbol;
5085static asymbol *mips_elf_acom_symbol_ptr;
5086
5087/* Handle the special MIPS section numbers that a symbol may use.
5088 This is used for both the 32-bit and the 64-bit ABI. */
5089
5090void
9719ad41 5091_bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
b49e97c9
TS
5092{
5093 elf_symbol_type *elfsym;
5094
5095 elfsym = (elf_symbol_type *) asym;
5096 switch (elfsym->internal_elf_sym.st_shndx)
5097 {
5098 case SHN_MIPS_ACOMMON:
5099 /* This section is used in a dynamically linked executable file.
5100 It is an allocated common section. The dynamic linker can
5101 either resolve these symbols to something in a shared
5102 library, or it can just leave them here. For our purposes,
5103 we can consider these symbols to be in a new section. */
5104 if (mips_elf_acom_section.name == NULL)
5105 {
5106 /* Initialize the acommon section. */
5107 mips_elf_acom_section.name = ".acommon";
5108 mips_elf_acom_section.flags = SEC_ALLOC;
5109 mips_elf_acom_section.output_section = &mips_elf_acom_section;
5110 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
5111 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
5112 mips_elf_acom_symbol.name = ".acommon";
5113 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
5114 mips_elf_acom_symbol.section = &mips_elf_acom_section;
5115 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
5116 }
5117 asym->section = &mips_elf_acom_section;
5118 break;
5119
5120 case SHN_COMMON:
5121 /* Common symbols less than the GP size are automatically
5122 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
5123 if (asym->value > elf_gp_size (abfd)
b59eed79 5124 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
b49e97c9
TS
5125 || IRIX_COMPAT (abfd) == ict_irix6)
5126 break;
5127 /* Fall through. */
5128 case SHN_MIPS_SCOMMON:
5129 if (mips_elf_scom_section.name == NULL)
5130 {
5131 /* Initialize the small common section. */
5132 mips_elf_scom_section.name = ".scommon";
5133 mips_elf_scom_section.flags = SEC_IS_COMMON;
5134 mips_elf_scom_section.output_section = &mips_elf_scom_section;
5135 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
5136 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
5137 mips_elf_scom_symbol.name = ".scommon";
5138 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
5139 mips_elf_scom_symbol.section = &mips_elf_scom_section;
5140 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
5141 }
5142 asym->section = &mips_elf_scom_section;
5143 asym->value = elfsym->internal_elf_sym.st_size;
5144 break;
5145
5146 case SHN_MIPS_SUNDEFINED:
5147 asym->section = bfd_und_section_ptr;
5148 break;
5149
b49e97c9 5150 case SHN_MIPS_TEXT:
00b4930b
TS
5151 {
5152 asection *section = bfd_get_section_by_name (abfd, ".text");
5153
5154 BFD_ASSERT (SGI_COMPAT (abfd));
5155 if (section != NULL)
5156 {
5157 asym->section = section;
5158 /* MIPS_TEXT is a bit special, the address is not an offset
5159 to the base of the .text section. So substract the section
5160 base address to make it an offset. */
5161 asym->value -= section->vma;
5162 }
5163 }
b49e97c9
TS
5164 break;
5165
5166 case SHN_MIPS_DATA:
00b4930b
TS
5167 {
5168 asection *section = bfd_get_section_by_name (abfd, ".data");
5169
5170 BFD_ASSERT (SGI_COMPAT (abfd));
5171 if (section != NULL)
5172 {
5173 asym->section = section;
5174 /* MIPS_DATA is a bit special, the address is not an offset
5175 to the base of the .data section. So substract the section
5176 base address to make it an offset. */
5177 asym->value -= section->vma;
5178 }
5179 }
b49e97c9 5180 break;
b49e97c9
TS
5181 }
5182}
5183\f
8c946ed5
RS
5184/* Implement elf_backend_eh_frame_address_size. This differs from
5185 the default in the way it handles EABI64.
5186
5187 EABI64 was originally specified as an LP64 ABI, and that is what
5188 -mabi=eabi normally gives on a 64-bit target. However, gcc has
5189 historically accepted the combination of -mabi=eabi and -mlong32,
5190 and this ILP32 variation has become semi-official over time.
5191 Both forms use elf32 and have pointer-sized FDE addresses.
5192
5193 If an EABI object was generated by GCC 4.0 or above, it will have
5194 an empty .gcc_compiled_longXX section, where XX is the size of longs
5195 in bits. Unfortunately, ILP32 objects generated by earlier compilers
5196 have no special marking to distinguish them from LP64 objects.
5197
5198 We don't want users of the official LP64 ABI to be punished for the
5199 existence of the ILP32 variant, but at the same time, we don't want
5200 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
5201 We therefore take the following approach:
5202
5203 - If ABFD contains a .gcc_compiled_longXX section, use it to
5204 determine the pointer size.
5205
5206 - Otherwise check the type of the first relocation. Assume that
5207 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
5208
5209 - Otherwise punt.
5210
5211 The second check is enough to detect LP64 objects generated by pre-4.0
5212 compilers because, in the kind of output generated by those compilers,
5213 the first relocation will be associated with either a CIE personality
5214 routine or an FDE start address. Furthermore, the compilers never
5215 used a special (non-pointer) encoding for this ABI.
5216
5217 Checking the relocation type should also be safe because there is no
5218 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
5219 did so. */
5220
5221unsigned int
5222_bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
5223{
5224 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5225 return 8;
5226 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
5227 {
5228 bfd_boolean long32_p, long64_p;
5229
5230 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
5231 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
5232 if (long32_p && long64_p)
5233 return 0;
5234 if (long32_p)
5235 return 4;
5236 if (long64_p)
5237 return 8;
5238
5239 if (sec->reloc_count > 0
5240 && elf_section_data (sec)->relocs != NULL
5241 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
5242 == R_MIPS_64))
5243 return 8;
5244
5245 return 0;
5246 }
5247 return 4;
5248}
5249\f
174fd7f9
RS
5250/* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
5251 relocations against two unnamed section symbols to resolve to the
5252 same address. For example, if we have code like:
5253
5254 lw $4,%got_disp(.data)($gp)
5255 lw $25,%got_disp(.text)($gp)
5256 jalr $25
5257
5258 then the linker will resolve both relocations to .data and the program
5259 will jump there rather than to .text.
5260
5261 We can work around this problem by giving names to local section symbols.
5262 This is also what the MIPSpro tools do. */
5263
5264bfd_boolean
5265_bfd_mips_elf_name_local_section_symbols (bfd *abfd)
5266{
5267 return SGI_COMPAT (abfd);
5268}
5269\f
b49e97c9
TS
5270/* Work over a section just before writing it out. This routine is
5271 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
5272 sections that need the SHF_MIPS_GPREL flag by name; there has to be
5273 a better way. */
5274
b34976b6 5275bfd_boolean
9719ad41 5276_bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
b49e97c9
TS
5277{
5278 if (hdr->sh_type == SHT_MIPS_REGINFO
5279 && hdr->sh_size > 0)
5280 {
5281 bfd_byte buf[4];
5282
5283 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
5284 BFD_ASSERT (hdr->contents == NULL);
5285
5286 if (bfd_seek (abfd,
5287 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
5288 SEEK_SET) != 0)
b34976b6 5289 return FALSE;
b49e97c9 5290 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 5291 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 5292 return FALSE;
b49e97c9
TS
5293 }
5294
5295 if (hdr->sh_type == SHT_MIPS_OPTIONS
5296 && hdr->bfd_section != NULL
f0abc2a1
AM
5297 && mips_elf_section_data (hdr->bfd_section) != NULL
5298 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
b49e97c9
TS
5299 {
5300 bfd_byte *contents, *l, *lend;
5301
f0abc2a1
AM
5302 /* We stored the section contents in the tdata field in the
5303 set_section_contents routine. We save the section contents
5304 so that we don't have to read them again.
b49e97c9
TS
5305 At this point we know that elf_gp is set, so we can look
5306 through the section contents to see if there is an
5307 ODK_REGINFO structure. */
5308
f0abc2a1 5309 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
b49e97c9
TS
5310 l = contents;
5311 lend = contents + hdr->sh_size;
5312 while (l + sizeof (Elf_External_Options) <= lend)
5313 {
5314 Elf_Internal_Options intopt;
5315
5316 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5317 &intopt);
1bc8074d
MR
5318 if (intopt.size < sizeof (Elf_External_Options))
5319 {
5320 (*_bfd_error_handler)
5321 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5322 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5323 break;
5324 }
b49e97c9
TS
5325 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5326 {
5327 bfd_byte buf[8];
5328
5329 if (bfd_seek (abfd,
5330 (hdr->sh_offset
5331 + (l - contents)
5332 + sizeof (Elf_External_Options)
5333 + (sizeof (Elf64_External_RegInfo) - 8)),
5334 SEEK_SET) != 0)
b34976b6 5335 return FALSE;
b49e97c9 5336 H_PUT_64 (abfd, elf_gp (abfd), buf);
9719ad41 5337 if (bfd_bwrite (buf, 8, abfd) != 8)
b34976b6 5338 return FALSE;
b49e97c9
TS
5339 }
5340 else if (intopt.kind == ODK_REGINFO)
5341 {
5342 bfd_byte buf[4];
5343
5344 if (bfd_seek (abfd,
5345 (hdr->sh_offset
5346 + (l - contents)
5347 + sizeof (Elf_External_Options)
5348 + (sizeof (Elf32_External_RegInfo) - 4)),
5349 SEEK_SET) != 0)
b34976b6 5350 return FALSE;
b49e97c9 5351 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 5352 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 5353 return FALSE;
b49e97c9
TS
5354 }
5355 l += intopt.size;
5356 }
5357 }
5358
5359 if (hdr->bfd_section != NULL)
5360 {
5361 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
5362
5363 if (strcmp (name, ".sdata") == 0
5364 || strcmp (name, ".lit8") == 0
5365 || strcmp (name, ".lit4") == 0)
5366 {
5367 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5368 hdr->sh_type = SHT_PROGBITS;
5369 }
5370 else if (strcmp (name, ".sbss") == 0)
5371 {
5372 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5373 hdr->sh_type = SHT_NOBITS;
5374 }
5375 else if (strcmp (name, ".srdata") == 0)
5376 {
5377 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
5378 hdr->sh_type = SHT_PROGBITS;
5379 }
5380 else if (strcmp (name, ".compact_rel") == 0)
5381 {
5382 hdr->sh_flags = 0;
5383 hdr->sh_type = SHT_PROGBITS;
5384 }
5385 else if (strcmp (name, ".rtproc") == 0)
5386 {
5387 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
5388 {
5389 unsigned int adjust;
5390
5391 adjust = hdr->sh_size % hdr->sh_addralign;
5392 if (adjust != 0)
5393 hdr->sh_size += hdr->sh_addralign - adjust;
5394 }
5395 }
5396 }
5397
b34976b6 5398 return TRUE;
b49e97c9
TS
5399}
5400
5401/* Handle a MIPS specific section when reading an object file. This
5402 is called when elfcode.h finds a section with an unknown type.
5403 This routine supports both the 32-bit and 64-bit ELF ABI.
5404
5405 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
5406 how to. */
5407
b34976b6 5408bfd_boolean
6dc132d9
L
5409_bfd_mips_elf_section_from_shdr (bfd *abfd,
5410 Elf_Internal_Shdr *hdr,
5411 const char *name,
5412 int shindex)
b49e97c9
TS
5413{
5414 flagword flags = 0;
5415
5416 /* There ought to be a place to keep ELF backend specific flags, but
5417 at the moment there isn't one. We just keep track of the
5418 sections by their name, instead. Fortunately, the ABI gives
5419 suggested names for all the MIPS specific sections, so we will
5420 probably get away with this. */
5421 switch (hdr->sh_type)
5422 {
5423 case SHT_MIPS_LIBLIST:
5424 if (strcmp (name, ".liblist") != 0)
b34976b6 5425 return FALSE;
b49e97c9
TS
5426 break;
5427 case SHT_MIPS_MSYM:
5428 if (strcmp (name, ".msym") != 0)
b34976b6 5429 return FALSE;
b49e97c9
TS
5430 break;
5431 case SHT_MIPS_CONFLICT:
5432 if (strcmp (name, ".conflict") != 0)
b34976b6 5433 return FALSE;
b49e97c9
TS
5434 break;
5435 case SHT_MIPS_GPTAB:
0112cd26 5436 if (! CONST_STRNEQ (name, ".gptab."))
b34976b6 5437 return FALSE;
b49e97c9
TS
5438 break;
5439 case SHT_MIPS_UCODE:
5440 if (strcmp (name, ".ucode") != 0)
b34976b6 5441 return FALSE;
b49e97c9
TS
5442 break;
5443 case SHT_MIPS_DEBUG:
5444 if (strcmp (name, ".mdebug") != 0)
b34976b6 5445 return FALSE;
b49e97c9
TS
5446 flags = SEC_DEBUGGING;
5447 break;
5448 case SHT_MIPS_REGINFO:
5449 if (strcmp (name, ".reginfo") != 0
5450 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
b34976b6 5451 return FALSE;
b49e97c9
TS
5452 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
5453 break;
5454 case SHT_MIPS_IFACE:
5455 if (strcmp (name, ".MIPS.interfaces") != 0)
b34976b6 5456 return FALSE;
b49e97c9
TS
5457 break;
5458 case SHT_MIPS_CONTENT:
0112cd26 5459 if (! CONST_STRNEQ (name, ".MIPS.content"))
b34976b6 5460 return FALSE;
b49e97c9
TS
5461 break;
5462 case SHT_MIPS_OPTIONS:
cc2e31b9 5463 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b34976b6 5464 return FALSE;
b49e97c9
TS
5465 break;
5466 case SHT_MIPS_DWARF:
0112cd26 5467 if (! CONST_STRNEQ (name, ".debug_"))
b34976b6 5468 return FALSE;
b49e97c9
TS
5469 break;
5470 case SHT_MIPS_SYMBOL_LIB:
5471 if (strcmp (name, ".MIPS.symlib") != 0)
b34976b6 5472 return FALSE;
b49e97c9
TS
5473 break;
5474 case SHT_MIPS_EVENTS:
0112cd26
NC
5475 if (! CONST_STRNEQ (name, ".MIPS.events")
5476 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
b34976b6 5477 return FALSE;
b49e97c9
TS
5478 break;
5479 default:
cc2e31b9 5480 break;
b49e97c9
TS
5481 }
5482
6dc132d9 5483 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
b34976b6 5484 return FALSE;
b49e97c9
TS
5485
5486 if (flags)
5487 {
5488 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
5489 (bfd_get_section_flags (abfd,
5490 hdr->bfd_section)
5491 | flags)))
b34976b6 5492 return FALSE;
b49e97c9
TS
5493 }
5494
5495 /* FIXME: We should record sh_info for a .gptab section. */
5496
5497 /* For a .reginfo section, set the gp value in the tdata information
5498 from the contents of this section. We need the gp value while
5499 processing relocs, so we just get it now. The .reginfo section
5500 is not used in the 64-bit MIPS ELF ABI. */
5501 if (hdr->sh_type == SHT_MIPS_REGINFO)
5502 {
5503 Elf32_External_RegInfo ext;
5504 Elf32_RegInfo s;
5505
9719ad41
RS
5506 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
5507 &ext, 0, sizeof ext))
b34976b6 5508 return FALSE;
b49e97c9
TS
5509 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
5510 elf_gp (abfd) = s.ri_gp_value;
5511 }
5512
5513 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
5514 set the gp value based on what we find. We may see both
5515 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
5516 they should agree. */
5517 if (hdr->sh_type == SHT_MIPS_OPTIONS)
5518 {
5519 bfd_byte *contents, *l, *lend;
5520
9719ad41 5521 contents = bfd_malloc (hdr->sh_size);
b49e97c9 5522 if (contents == NULL)
b34976b6 5523 return FALSE;
b49e97c9 5524 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
9719ad41 5525 0, hdr->sh_size))
b49e97c9
TS
5526 {
5527 free (contents);
b34976b6 5528 return FALSE;
b49e97c9
TS
5529 }
5530 l = contents;
5531 lend = contents + hdr->sh_size;
5532 while (l + sizeof (Elf_External_Options) <= lend)
5533 {
5534 Elf_Internal_Options intopt;
5535
5536 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5537 &intopt);
1bc8074d
MR
5538 if (intopt.size < sizeof (Elf_External_Options))
5539 {
5540 (*_bfd_error_handler)
5541 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5542 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5543 break;
5544 }
b49e97c9
TS
5545 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5546 {
5547 Elf64_Internal_RegInfo intreg;
5548
5549 bfd_mips_elf64_swap_reginfo_in
5550 (abfd,
5551 ((Elf64_External_RegInfo *)
5552 (l + sizeof (Elf_External_Options))),
5553 &intreg);
5554 elf_gp (abfd) = intreg.ri_gp_value;
5555 }
5556 else if (intopt.kind == ODK_REGINFO)
5557 {
5558 Elf32_RegInfo intreg;
5559
5560 bfd_mips_elf32_swap_reginfo_in
5561 (abfd,
5562 ((Elf32_External_RegInfo *)
5563 (l + sizeof (Elf_External_Options))),
5564 &intreg);
5565 elf_gp (abfd) = intreg.ri_gp_value;
5566 }
5567 l += intopt.size;
5568 }
5569 free (contents);
5570 }
5571
b34976b6 5572 return TRUE;
b49e97c9
TS
5573}
5574
5575/* Set the correct type for a MIPS ELF section. We do this by the
5576 section name, which is a hack, but ought to work. This routine is
5577 used by both the 32-bit and the 64-bit ABI. */
5578
b34976b6 5579bfd_boolean
9719ad41 5580_bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
b49e97c9 5581{
0414f35b 5582 const char *name = bfd_get_section_name (abfd, sec);
b49e97c9
TS
5583
5584 if (strcmp (name, ".liblist") == 0)
5585 {
5586 hdr->sh_type = SHT_MIPS_LIBLIST;
eea6121a 5587 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
b49e97c9
TS
5588 /* The sh_link field is set in final_write_processing. */
5589 }
5590 else if (strcmp (name, ".conflict") == 0)
5591 hdr->sh_type = SHT_MIPS_CONFLICT;
0112cd26 5592 else if (CONST_STRNEQ (name, ".gptab."))
b49e97c9
TS
5593 {
5594 hdr->sh_type = SHT_MIPS_GPTAB;
5595 hdr->sh_entsize = sizeof (Elf32_External_gptab);
5596 /* The sh_info field is set in final_write_processing. */
5597 }
5598 else if (strcmp (name, ".ucode") == 0)
5599 hdr->sh_type = SHT_MIPS_UCODE;
5600 else if (strcmp (name, ".mdebug") == 0)
5601 {
5602 hdr->sh_type = SHT_MIPS_DEBUG;
8dc1a139 5603 /* In a shared object on IRIX 5.3, the .mdebug section has an
b49e97c9
TS
5604 entsize of 0. FIXME: Does this matter? */
5605 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
5606 hdr->sh_entsize = 0;
5607 else
5608 hdr->sh_entsize = 1;
5609 }
5610 else if (strcmp (name, ".reginfo") == 0)
5611 {
5612 hdr->sh_type = SHT_MIPS_REGINFO;
8dc1a139 5613 /* In a shared object on IRIX 5.3, the .reginfo section has an
b49e97c9
TS
5614 entsize of 0x18. FIXME: Does this matter? */
5615 if (SGI_COMPAT (abfd))
5616 {
5617 if ((abfd->flags & DYNAMIC) != 0)
5618 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5619 else
5620 hdr->sh_entsize = 1;
5621 }
5622 else
5623 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5624 }
5625 else if (SGI_COMPAT (abfd)
5626 && (strcmp (name, ".hash") == 0
5627 || strcmp (name, ".dynamic") == 0
5628 || strcmp (name, ".dynstr") == 0))
5629 {
5630 if (SGI_COMPAT (abfd))
5631 hdr->sh_entsize = 0;
5632#if 0
8dc1a139 5633 /* This isn't how the IRIX6 linker behaves. */
b49e97c9
TS
5634 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
5635#endif
5636 }
5637 else if (strcmp (name, ".got") == 0
5638 || strcmp (name, ".srdata") == 0
5639 || strcmp (name, ".sdata") == 0
5640 || strcmp (name, ".sbss") == 0
5641 || strcmp (name, ".lit4") == 0
5642 || strcmp (name, ".lit8") == 0)
5643 hdr->sh_flags |= SHF_MIPS_GPREL;
5644 else if (strcmp (name, ".MIPS.interfaces") == 0)
5645 {
5646 hdr->sh_type = SHT_MIPS_IFACE;
5647 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5648 }
0112cd26 5649 else if (CONST_STRNEQ (name, ".MIPS.content"))
b49e97c9
TS
5650 {
5651 hdr->sh_type = SHT_MIPS_CONTENT;
5652 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5653 /* The sh_info field is set in final_write_processing. */
5654 }
cc2e31b9 5655 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b49e97c9
TS
5656 {
5657 hdr->sh_type = SHT_MIPS_OPTIONS;
5658 hdr->sh_entsize = 1;
5659 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5660 }
0112cd26 5661 else if (CONST_STRNEQ (name, ".debug_"))
b49e97c9
TS
5662 hdr->sh_type = SHT_MIPS_DWARF;
5663 else if (strcmp (name, ".MIPS.symlib") == 0)
5664 {
5665 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
5666 /* The sh_link and sh_info fields are set in
5667 final_write_processing. */
5668 }
0112cd26
NC
5669 else if (CONST_STRNEQ (name, ".MIPS.events")
5670 || CONST_STRNEQ (name, ".MIPS.post_rel"))
b49e97c9
TS
5671 {
5672 hdr->sh_type = SHT_MIPS_EVENTS;
5673 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5674 /* The sh_link field is set in final_write_processing. */
5675 }
5676 else if (strcmp (name, ".msym") == 0)
5677 {
5678 hdr->sh_type = SHT_MIPS_MSYM;
5679 hdr->sh_flags |= SHF_ALLOC;
5680 hdr->sh_entsize = 8;
5681 }
5682
7a79a000
TS
5683 /* The generic elf_fake_sections will set up REL_HDR using the default
5684 kind of relocations. We used to set up a second header for the
5685 non-default kind of relocations here, but only NewABI would use
5686 these, and the IRIX ld doesn't like resulting empty RELA sections.
5687 Thus we create those header only on demand now. */
b49e97c9 5688
b34976b6 5689 return TRUE;
b49e97c9
TS
5690}
5691
5692/* Given a BFD section, try to locate the corresponding ELF section
5693 index. This is used by both the 32-bit and the 64-bit ABI.
5694 Actually, it's not clear to me that the 64-bit ABI supports these,
5695 but for non-PIC objects we will certainly want support for at least
5696 the .scommon section. */
5697
b34976b6 5698bfd_boolean
9719ad41
RS
5699_bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
5700 asection *sec, int *retval)
b49e97c9
TS
5701{
5702 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
5703 {
5704 *retval = SHN_MIPS_SCOMMON;
b34976b6 5705 return TRUE;
b49e97c9
TS
5706 }
5707 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
5708 {
5709 *retval = SHN_MIPS_ACOMMON;
b34976b6 5710 return TRUE;
b49e97c9 5711 }
b34976b6 5712 return FALSE;
b49e97c9
TS
5713}
5714\f
5715/* Hook called by the linker routine which adds symbols from an object
5716 file. We must handle the special MIPS section numbers here. */
5717
b34976b6 5718bfd_boolean
9719ad41 5719_bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
555cd476 5720 Elf_Internal_Sym *sym, const char **namep,
9719ad41
RS
5721 flagword *flagsp ATTRIBUTE_UNUSED,
5722 asection **secp, bfd_vma *valp)
b49e97c9
TS
5723{
5724 if (SGI_COMPAT (abfd)
5725 && (abfd->flags & DYNAMIC) != 0
5726 && strcmp (*namep, "_rld_new_interface") == 0)
5727 {
8dc1a139 5728 /* Skip IRIX5 rld entry name. */
b49e97c9 5729 *namep = NULL;
b34976b6 5730 return TRUE;
b49e97c9
TS
5731 }
5732
eedecc07
DD
5733 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
5734 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
5735 by setting a DT_NEEDED for the shared object. Since _gp_disp is
5736 a magic symbol resolved by the linker, we ignore this bogus definition
5737 of _gp_disp. New ABI objects do not suffer from this problem so this
5738 is not done for them. */
5739 if (!NEWABI_P(abfd)
5740 && (sym->st_shndx == SHN_ABS)
5741 && (strcmp (*namep, "_gp_disp") == 0))
5742 {
5743 *namep = NULL;
5744 return TRUE;
5745 }
5746
b49e97c9
TS
5747 switch (sym->st_shndx)
5748 {
5749 case SHN_COMMON:
5750 /* Common symbols less than the GP size are automatically
5751 treated as SHN_MIPS_SCOMMON symbols. */
5752 if (sym->st_size > elf_gp_size (abfd)
b59eed79 5753 || ELF_ST_TYPE (sym->st_info) == STT_TLS
b49e97c9
TS
5754 || IRIX_COMPAT (abfd) == ict_irix6)
5755 break;
5756 /* Fall through. */
5757 case SHN_MIPS_SCOMMON:
5758 *secp = bfd_make_section_old_way (abfd, ".scommon");
5759 (*secp)->flags |= SEC_IS_COMMON;
5760 *valp = sym->st_size;
5761 break;
5762
5763 case SHN_MIPS_TEXT:
5764 /* This section is used in a shared object. */
5765 if (elf_tdata (abfd)->elf_text_section == NULL)
5766 {
5767 asymbol *elf_text_symbol;
5768 asection *elf_text_section;
5769 bfd_size_type amt = sizeof (asection);
5770
5771 elf_text_section = bfd_zalloc (abfd, amt);
5772 if (elf_text_section == NULL)
b34976b6 5773 return FALSE;
b49e97c9
TS
5774
5775 amt = sizeof (asymbol);
5776 elf_text_symbol = bfd_zalloc (abfd, amt);
5777 if (elf_text_symbol == NULL)
b34976b6 5778 return FALSE;
b49e97c9
TS
5779
5780 /* Initialize the section. */
5781
5782 elf_tdata (abfd)->elf_text_section = elf_text_section;
5783 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
5784
5785 elf_text_section->symbol = elf_text_symbol;
5786 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
5787
5788 elf_text_section->name = ".text";
5789 elf_text_section->flags = SEC_NO_FLAGS;
5790 elf_text_section->output_section = NULL;
5791 elf_text_section->owner = abfd;
5792 elf_text_symbol->name = ".text";
5793 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5794 elf_text_symbol->section = elf_text_section;
5795 }
5796 /* This code used to do *secp = bfd_und_section_ptr if
5797 info->shared. I don't know why, and that doesn't make sense,
5798 so I took it out. */
5799 *secp = elf_tdata (abfd)->elf_text_section;
5800 break;
5801
5802 case SHN_MIPS_ACOMMON:
5803 /* Fall through. XXX Can we treat this as allocated data? */
5804 case SHN_MIPS_DATA:
5805 /* This section is used in a shared object. */
5806 if (elf_tdata (abfd)->elf_data_section == NULL)
5807 {
5808 asymbol *elf_data_symbol;
5809 asection *elf_data_section;
5810 bfd_size_type amt = sizeof (asection);
5811
5812 elf_data_section = bfd_zalloc (abfd, amt);
5813 if (elf_data_section == NULL)
b34976b6 5814 return FALSE;
b49e97c9
TS
5815
5816 amt = sizeof (asymbol);
5817 elf_data_symbol = bfd_zalloc (abfd, amt);
5818 if (elf_data_symbol == NULL)
b34976b6 5819 return FALSE;
b49e97c9
TS
5820
5821 /* Initialize the section. */
5822
5823 elf_tdata (abfd)->elf_data_section = elf_data_section;
5824 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
5825
5826 elf_data_section->symbol = elf_data_symbol;
5827 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
5828
5829 elf_data_section->name = ".data";
5830 elf_data_section->flags = SEC_NO_FLAGS;
5831 elf_data_section->output_section = NULL;
5832 elf_data_section->owner = abfd;
5833 elf_data_symbol->name = ".data";
5834 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5835 elf_data_symbol->section = elf_data_section;
5836 }
5837 /* This code used to do *secp = bfd_und_section_ptr if
5838 info->shared. I don't know why, and that doesn't make sense,
5839 so I took it out. */
5840 *secp = elf_tdata (abfd)->elf_data_section;
5841 break;
5842
5843 case SHN_MIPS_SUNDEFINED:
5844 *secp = bfd_und_section_ptr;
5845 break;
5846 }
5847
5848 if (SGI_COMPAT (abfd)
5849 && ! info->shared
5850 && info->hash->creator == abfd->xvec
5851 && strcmp (*namep, "__rld_obj_head") == 0)
5852 {
5853 struct elf_link_hash_entry *h;
14a793b2 5854 struct bfd_link_hash_entry *bh;
b49e97c9
TS
5855
5856 /* Mark __rld_obj_head as dynamic. */
14a793b2 5857 bh = NULL;
b49e97c9 5858 if (! (_bfd_generic_link_add_one_symbol
9719ad41 5859 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
14a793b2 5860 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 5861 return FALSE;
14a793b2
AM
5862
5863 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5864 h->non_elf = 0;
5865 h->def_regular = 1;
b49e97c9
TS
5866 h->type = STT_OBJECT;
5867
c152c796 5868 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 5869 return FALSE;
b49e97c9 5870
b34976b6 5871 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
b49e97c9
TS
5872 }
5873
5874 /* If this is a mips16 text symbol, add 1 to the value to make it
5875 odd. This will cause something like .word SYM to come up with
5876 the right value when it is loaded into the PC. */
5877 if (sym->st_other == STO_MIPS16)
5878 ++*valp;
5879
b34976b6 5880 return TRUE;
b49e97c9
TS
5881}
5882
5883/* This hook function is called before the linker writes out a global
5884 symbol. We mark symbols as small common if appropriate. This is
5885 also where we undo the increment of the value for a mips16 symbol. */
5886
b34976b6 5887bfd_boolean
9719ad41
RS
5888_bfd_mips_elf_link_output_symbol_hook
5889 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5890 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
5891 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
b49e97c9
TS
5892{
5893 /* If we see a common symbol, which implies a relocatable link, then
5894 if a symbol was small common in an input file, mark it as small
5895 common in the output file. */
5896 if (sym->st_shndx == SHN_COMMON
5897 && strcmp (input_sec->name, ".scommon") == 0)
5898 sym->st_shndx = SHN_MIPS_SCOMMON;
5899
79cda7cf
FF
5900 if (sym->st_other == STO_MIPS16)
5901 sym->st_value &= ~1;
b49e97c9 5902
b34976b6 5903 return TRUE;
b49e97c9
TS
5904}
5905\f
5906/* Functions for the dynamic linker. */
5907
5908/* Create dynamic sections when linking against a dynamic object. */
5909
b34976b6 5910bfd_boolean
9719ad41 5911_bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
5912{
5913 struct elf_link_hash_entry *h;
14a793b2 5914 struct bfd_link_hash_entry *bh;
b49e97c9
TS
5915 flagword flags;
5916 register asection *s;
5917 const char * const *namep;
0a44bf69 5918 struct mips_elf_link_hash_table *htab;
b49e97c9 5919
0a44bf69 5920 htab = mips_elf_hash_table (info);
b49e97c9
TS
5921 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5922 | SEC_LINKER_CREATED | SEC_READONLY);
5923
0a44bf69
RS
5924 /* The psABI requires a read-only .dynamic section, but the VxWorks
5925 EABI doesn't. */
5926 if (!htab->is_vxworks)
b49e97c9 5927 {
0a44bf69
RS
5928 s = bfd_get_section_by_name (abfd, ".dynamic");
5929 if (s != NULL)
5930 {
5931 if (! bfd_set_section_flags (abfd, s, flags))
5932 return FALSE;
5933 }
b49e97c9
TS
5934 }
5935
5936 /* We need to create .got section. */
f4416af6
AO
5937 if (! mips_elf_create_got_section (abfd, info, FALSE))
5938 return FALSE;
5939
0a44bf69 5940 if (! mips_elf_rel_dyn_section (info, TRUE))
b34976b6 5941 return FALSE;
b49e97c9 5942
b49e97c9
TS
5943 /* Create .stub section. */
5944 if (bfd_get_section_by_name (abfd,
5945 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
5946 {
3496cb2a
L
5947 s = bfd_make_section_with_flags (abfd,
5948 MIPS_ELF_STUB_SECTION_NAME (abfd),
5949 flags | SEC_CODE);
b49e97c9 5950 if (s == NULL
b49e97c9
TS
5951 || ! bfd_set_section_alignment (abfd, s,
5952 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 5953 return FALSE;
b49e97c9
TS
5954 }
5955
5956 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
5957 && !info->shared
5958 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
5959 {
3496cb2a
L
5960 s = bfd_make_section_with_flags (abfd, ".rld_map",
5961 flags &~ (flagword) SEC_READONLY);
b49e97c9 5962 if (s == NULL
b49e97c9
TS
5963 || ! bfd_set_section_alignment (abfd, s,
5964 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 5965 return FALSE;
b49e97c9
TS
5966 }
5967
5968 /* On IRIX5, we adjust add some additional symbols and change the
5969 alignments of several sections. There is no ABI documentation
5970 indicating that this is necessary on IRIX6, nor any evidence that
5971 the linker takes such action. */
5972 if (IRIX_COMPAT (abfd) == ict_irix5)
5973 {
5974 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
5975 {
14a793b2 5976 bh = NULL;
b49e97c9 5977 if (! (_bfd_generic_link_add_one_symbol
9719ad41
RS
5978 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
5979 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 5980 return FALSE;
14a793b2
AM
5981
5982 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5983 h->non_elf = 0;
5984 h->def_regular = 1;
b49e97c9
TS
5985 h->type = STT_SECTION;
5986
c152c796 5987 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 5988 return FALSE;
b49e97c9
TS
5989 }
5990
5991 /* We need to create a .compact_rel section. */
5992 if (SGI_COMPAT (abfd))
5993 {
5994 if (!mips_elf_create_compact_rel_section (abfd, info))
b34976b6 5995 return FALSE;
b49e97c9
TS
5996 }
5997
44c410de 5998 /* Change alignments of some sections. */
b49e97c9
TS
5999 s = bfd_get_section_by_name (abfd, ".hash");
6000 if (s != NULL)
d80dcc6a 6001 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
6002 s = bfd_get_section_by_name (abfd, ".dynsym");
6003 if (s != NULL)
d80dcc6a 6004 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
6005 s = bfd_get_section_by_name (abfd, ".dynstr");
6006 if (s != NULL)
d80dcc6a 6007 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
6008 s = bfd_get_section_by_name (abfd, ".reginfo");
6009 if (s != NULL)
d80dcc6a 6010 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
6011 s = bfd_get_section_by_name (abfd, ".dynamic");
6012 if (s != NULL)
d80dcc6a 6013 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
6014 }
6015
6016 if (!info->shared)
6017 {
14a793b2
AM
6018 const char *name;
6019
6020 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
6021 bh = NULL;
6022 if (!(_bfd_generic_link_add_one_symbol
9719ad41
RS
6023 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
6024 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 6025 return FALSE;
14a793b2
AM
6026
6027 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
6028 h->non_elf = 0;
6029 h->def_regular = 1;
b49e97c9
TS
6030 h->type = STT_SECTION;
6031
c152c796 6032 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 6033 return FALSE;
b49e97c9
TS
6034
6035 if (! mips_elf_hash_table (info)->use_rld_obj_head)
6036 {
6037 /* __rld_map is a four byte word located in the .data section
6038 and is filled in by the rtld to contain a pointer to
6039 the _r_debug structure. Its symbol value will be set in
6040 _bfd_mips_elf_finish_dynamic_symbol. */
6041 s = bfd_get_section_by_name (abfd, ".rld_map");
6042 BFD_ASSERT (s != NULL);
6043
14a793b2
AM
6044 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
6045 bh = NULL;
6046 if (!(_bfd_generic_link_add_one_symbol
9719ad41 6047 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
14a793b2 6048 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 6049 return FALSE;
14a793b2
AM
6050
6051 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
6052 h->non_elf = 0;
6053 h->def_regular = 1;
b49e97c9
TS
6054 h->type = STT_OBJECT;
6055
c152c796 6056 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 6057 return FALSE;
b49e97c9
TS
6058 }
6059 }
6060
0a44bf69
RS
6061 if (htab->is_vxworks)
6062 {
6063 /* Create the .plt, .rela.plt, .dynbss and .rela.bss sections.
6064 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
6065 if (!_bfd_elf_create_dynamic_sections (abfd, info))
6066 return FALSE;
6067
6068 /* Cache the sections created above. */
6069 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
6070 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
6071 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
6072 htab->splt = bfd_get_section_by_name (abfd, ".plt");
6073 if (!htab->sdynbss
6074 || (!htab->srelbss && !info->shared)
6075 || !htab->srelplt
6076 || !htab->splt)
6077 abort ();
6078
6079 /* Do the usual VxWorks handling. */
6080 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
6081 return FALSE;
6082
6083 /* Work out the PLT sizes. */
6084 if (info->shared)
6085 {
6086 htab->plt_header_size
6087 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
6088 htab->plt_entry_size
6089 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
6090 }
6091 else
6092 {
6093 htab->plt_header_size
6094 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
6095 htab->plt_entry_size
6096 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
6097 }
6098 }
6099
b34976b6 6100 return TRUE;
b49e97c9
TS
6101}
6102\f
6103/* Look through the relocs for a section during the first phase, and
6104 allocate space in the global offset table. */
6105
b34976b6 6106bfd_boolean
9719ad41
RS
6107_bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
6108 asection *sec, const Elf_Internal_Rela *relocs)
b49e97c9
TS
6109{
6110 const char *name;
6111 bfd *dynobj;
6112 Elf_Internal_Shdr *symtab_hdr;
6113 struct elf_link_hash_entry **sym_hashes;
6114 struct mips_got_info *g;
6115 size_t extsymoff;
6116 const Elf_Internal_Rela *rel;
6117 const Elf_Internal_Rela *rel_end;
6118 asection *sgot;
6119 asection *sreloc;
9c5bfbb7 6120 const struct elf_backend_data *bed;
0a44bf69 6121 struct mips_elf_link_hash_table *htab;
b49e97c9 6122
1049f94e 6123 if (info->relocatable)
b34976b6 6124 return TRUE;
b49e97c9 6125
0a44bf69 6126 htab = mips_elf_hash_table (info);
b49e97c9
TS
6127 dynobj = elf_hash_table (info)->dynobj;
6128 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6129 sym_hashes = elf_sym_hashes (abfd);
6130 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6131
6132 /* Check for the mips16 stub sections. */
6133
6134 name = bfd_get_section_name (abfd, sec);
b9d58d71 6135 if (FN_STUB_P (name))
b49e97c9
TS
6136 {
6137 unsigned long r_symndx;
6138
6139 /* Look at the relocation information to figure out which symbol
6140 this is for. */
6141
6142 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6143
6144 if (r_symndx < extsymoff
6145 || sym_hashes[r_symndx - extsymoff] == NULL)
6146 {
6147 asection *o;
6148
6149 /* This stub is for a local symbol. This stub will only be
6150 needed if there is some relocation in this BFD, other
6151 than a 16 bit function call, which refers to this symbol. */
6152 for (o = abfd->sections; o != NULL; o = o->next)
6153 {
6154 Elf_Internal_Rela *sec_relocs;
6155 const Elf_Internal_Rela *r, *rend;
6156
6157 /* We can ignore stub sections when looking for relocs. */
6158 if ((o->flags & SEC_RELOC) == 0
6159 || o->reloc_count == 0
b9d58d71 6160 || mips16_stub_section_p (abfd, o))
b49e97c9
TS
6161 continue;
6162
45d6a902 6163 sec_relocs
9719ad41 6164 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 6165 info->keep_memory);
b49e97c9 6166 if (sec_relocs == NULL)
b34976b6 6167 return FALSE;
b49e97c9
TS
6168
6169 rend = sec_relocs + o->reloc_count;
6170 for (r = sec_relocs; r < rend; r++)
6171 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
6172 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
6173 break;
6174
6cdc0ccc 6175 if (elf_section_data (o)->relocs != sec_relocs)
b49e97c9
TS
6176 free (sec_relocs);
6177
6178 if (r < rend)
6179 break;
6180 }
6181
6182 if (o == NULL)
6183 {
6184 /* There is no non-call reloc for this stub, so we do
6185 not need it. Since this function is called before
6186 the linker maps input sections to output sections, we
6187 can easily discard it by setting the SEC_EXCLUDE
6188 flag. */
6189 sec->flags |= SEC_EXCLUDE;
b34976b6 6190 return TRUE;
b49e97c9
TS
6191 }
6192
6193 /* Record this stub in an array of local symbol stubs for
6194 this BFD. */
6195 if (elf_tdata (abfd)->local_stubs == NULL)
6196 {
6197 unsigned long symcount;
6198 asection **n;
6199 bfd_size_type amt;
6200
6201 if (elf_bad_symtab (abfd))
6202 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
6203 else
6204 symcount = symtab_hdr->sh_info;
6205 amt = symcount * sizeof (asection *);
9719ad41 6206 n = bfd_zalloc (abfd, amt);
b49e97c9 6207 if (n == NULL)
b34976b6 6208 return FALSE;
b49e97c9
TS
6209 elf_tdata (abfd)->local_stubs = n;
6210 }
6211
b9d58d71 6212 sec->flags |= SEC_KEEP;
b49e97c9
TS
6213 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
6214
6215 /* We don't need to set mips16_stubs_seen in this case.
6216 That flag is used to see whether we need to look through
6217 the global symbol table for stubs. We don't need to set
6218 it here, because we just have a local stub. */
6219 }
6220 else
6221 {
6222 struct mips_elf_link_hash_entry *h;
6223
6224 h = ((struct mips_elf_link_hash_entry *)
6225 sym_hashes[r_symndx - extsymoff]);
6226
973a3492
L
6227 while (h->root.root.type == bfd_link_hash_indirect
6228 || h->root.root.type == bfd_link_hash_warning)
6229 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6230
b49e97c9
TS
6231 /* H is the symbol this stub is for. */
6232
b9d58d71
TS
6233 /* If we already have an appropriate stub for this function, we
6234 don't need another one, so we can discard this one. Since
6235 this function is called before the linker maps input sections
6236 to output sections, we can easily discard it by setting the
6237 SEC_EXCLUDE flag. */
6238 if (h->fn_stub != NULL)
6239 {
6240 sec->flags |= SEC_EXCLUDE;
6241 return TRUE;
6242 }
6243
6244 sec->flags |= SEC_KEEP;
b49e97c9 6245 h->fn_stub = sec;
b34976b6 6246 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
6247 }
6248 }
b9d58d71 6249 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
b49e97c9
TS
6250 {
6251 unsigned long r_symndx;
6252 struct mips_elf_link_hash_entry *h;
6253 asection **loc;
6254
6255 /* Look at the relocation information to figure out which symbol
6256 this is for. */
6257
6258 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6259
6260 if (r_symndx < extsymoff
6261 || sym_hashes[r_symndx - extsymoff] == NULL)
6262 {
b9d58d71 6263 asection *o;
b49e97c9 6264
b9d58d71
TS
6265 /* This stub is for a local symbol. This stub will only be
6266 needed if there is some relocation (R_MIPS16_26) in this BFD
6267 that refers to this symbol. */
6268 for (o = abfd->sections; o != NULL; o = o->next)
6269 {
6270 Elf_Internal_Rela *sec_relocs;
6271 const Elf_Internal_Rela *r, *rend;
6272
6273 /* We can ignore stub sections when looking for relocs. */
6274 if ((o->flags & SEC_RELOC) == 0
6275 || o->reloc_count == 0
6276 || mips16_stub_section_p (abfd, o))
6277 continue;
6278
6279 sec_relocs
6280 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
6281 info->keep_memory);
6282 if (sec_relocs == NULL)
6283 return FALSE;
6284
6285 rend = sec_relocs + o->reloc_count;
6286 for (r = sec_relocs; r < rend; r++)
6287 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
6288 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
6289 break;
6290
6291 if (elf_section_data (o)->relocs != sec_relocs)
6292 free (sec_relocs);
6293
6294 if (r < rend)
6295 break;
6296 }
6297
6298 if (o == NULL)
6299 {
6300 /* There is no non-call reloc for this stub, so we do
6301 not need it. Since this function is called before
6302 the linker maps input sections to output sections, we
6303 can easily discard it by setting the SEC_EXCLUDE
6304 flag. */
6305 sec->flags |= SEC_EXCLUDE;
6306 return TRUE;
6307 }
6308
6309 /* Record this stub in an array of local symbol call_stubs for
6310 this BFD. */
6311 if (elf_tdata (abfd)->local_call_stubs == NULL)
6312 {
6313 unsigned long symcount;
6314 asection **n;
6315 bfd_size_type amt;
6316
6317 if (elf_bad_symtab (abfd))
6318 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
6319 else
6320 symcount = symtab_hdr->sh_info;
6321 amt = symcount * sizeof (asection *);
6322 n = bfd_zalloc (abfd, amt);
6323 if (n == NULL)
6324 return FALSE;
6325 elf_tdata (abfd)->local_call_stubs = n;
6326 }
b49e97c9 6327
b9d58d71
TS
6328 sec->flags |= SEC_KEEP;
6329 elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
b49e97c9 6330
b9d58d71
TS
6331 /* We don't need to set mips16_stubs_seen in this case.
6332 That flag is used to see whether we need to look through
6333 the global symbol table for stubs. We don't need to set
6334 it here, because we just have a local stub. */
6335 }
b49e97c9 6336 else
b49e97c9 6337 {
b9d58d71
TS
6338 h = ((struct mips_elf_link_hash_entry *)
6339 sym_hashes[r_symndx - extsymoff]);
6340
6341 /* H is the symbol this stub is for. */
6342
6343 if (CALL_FP_STUB_P (name))
6344 loc = &h->call_fp_stub;
6345 else
6346 loc = &h->call_stub;
6347
6348 /* If we already have an appropriate stub for this function, we
6349 don't need another one, so we can discard this one. Since
6350 this function is called before the linker maps input sections
6351 to output sections, we can easily discard it by setting the
6352 SEC_EXCLUDE flag. */
6353 if (*loc != NULL)
6354 {
6355 sec->flags |= SEC_EXCLUDE;
6356 return TRUE;
6357 }
b49e97c9 6358
b9d58d71
TS
6359 sec->flags |= SEC_KEEP;
6360 *loc = sec;
6361 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
6362 }
b49e97c9
TS
6363 }
6364
6365 if (dynobj == NULL)
6366 {
6367 sgot = NULL;
6368 g = NULL;
6369 }
6370 else
6371 {
f4416af6 6372 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9
TS
6373 if (sgot == NULL)
6374 g = NULL;
6375 else
6376 {
f0abc2a1
AM
6377 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6378 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
6379 BFD_ASSERT (g != NULL);
6380 }
6381 }
6382
6383 sreloc = NULL;
6384 bed = get_elf_backend_data (abfd);
6385 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6386 for (rel = relocs; rel < rel_end; ++rel)
6387 {
6388 unsigned long r_symndx;
6389 unsigned int r_type;
6390 struct elf_link_hash_entry *h;
6391
6392 r_symndx = ELF_R_SYM (abfd, rel->r_info);
6393 r_type = ELF_R_TYPE (abfd, rel->r_info);
6394
6395 if (r_symndx < extsymoff)
6396 h = NULL;
6397 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
6398 {
6399 (*_bfd_error_handler)
d003868e
AM
6400 (_("%B: Malformed reloc detected for section %s"),
6401 abfd, name);
b49e97c9 6402 bfd_set_error (bfd_error_bad_value);
b34976b6 6403 return FALSE;
b49e97c9
TS
6404 }
6405 else
6406 {
6407 h = sym_hashes[r_symndx - extsymoff];
6408
6409 /* This may be an indirect symbol created because of a version. */
6410 if (h != NULL)
6411 {
6412 while (h->root.type == bfd_link_hash_indirect)
6413 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6414 }
6415 }
6416
6417 /* Some relocs require a global offset table. */
6418 if (dynobj == NULL || sgot == NULL)
6419 {
6420 switch (r_type)
6421 {
6422 case R_MIPS_GOT16:
6423 case R_MIPS_CALL16:
6424 case R_MIPS_CALL_HI16:
6425 case R_MIPS_CALL_LO16:
6426 case R_MIPS_GOT_HI16:
6427 case R_MIPS_GOT_LO16:
6428 case R_MIPS_GOT_PAGE:
6429 case R_MIPS_GOT_OFST:
6430 case R_MIPS_GOT_DISP:
86324f90 6431 case R_MIPS_TLS_GOTTPREL:
0f20cc35
DJ
6432 case R_MIPS_TLS_GD:
6433 case R_MIPS_TLS_LDM:
b49e97c9
TS
6434 if (dynobj == NULL)
6435 elf_hash_table (info)->dynobj = dynobj = abfd;
f4416af6 6436 if (! mips_elf_create_got_section (dynobj, info, FALSE))
b34976b6 6437 return FALSE;
b49e97c9 6438 g = mips_elf_got_info (dynobj, &sgot);
0a44bf69
RS
6439 if (htab->is_vxworks && !info->shared)
6440 {
6441 (*_bfd_error_handler)
6442 (_("%B: GOT reloc at 0x%lx not expected in executables"),
6443 abfd, (unsigned long) rel->r_offset);
6444 bfd_set_error (bfd_error_bad_value);
6445 return FALSE;
6446 }
b49e97c9
TS
6447 break;
6448
6449 case R_MIPS_32:
6450 case R_MIPS_REL32:
6451 case R_MIPS_64:
0a44bf69
RS
6452 /* In VxWorks executables, references to external symbols
6453 are handled using copy relocs or PLT stubs, so there's
6454 no need to add a dynamic relocation here. */
b49e97c9 6455 if (dynobj == NULL
0a44bf69 6456 && (info->shared || (h != NULL && !htab->is_vxworks))
b49e97c9
TS
6457 && (sec->flags & SEC_ALLOC) != 0)
6458 elf_hash_table (info)->dynobj = dynobj = abfd;
6459 break;
6460
6461 default:
6462 break;
6463 }
6464 }
6465
0a44bf69
RS
6466 if (h)
6467 {
6468 ((struct mips_elf_link_hash_entry *) h)->is_relocation_target = TRUE;
6469
6470 /* Relocations against the special VxWorks __GOTT_BASE__ and
6471 __GOTT_INDEX__ symbols must be left to the loader. Allocate
6472 room for them in .rela.dyn. */
6473 if (is_gott_symbol (info, h))
6474 {
6475 if (sreloc == NULL)
6476 {
6477 sreloc = mips_elf_rel_dyn_section (info, TRUE);
6478 if (sreloc == NULL)
6479 return FALSE;
6480 }
6481 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9e3313ae
RS
6482 if (MIPS_ELF_READONLY_SECTION (sec))
6483 /* We tell the dynamic linker that there are
6484 relocations against the text segment. */
6485 info->flags |= DF_TEXTREL;
0a44bf69
RS
6486 }
6487 }
6488 else if (r_type == R_MIPS_CALL_LO16
6489 || r_type == R_MIPS_GOT_LO16
6490 || r_type == R_MIPS_GOT_DISP
6491 || (r_type == R_MIPS_GOT16 && htab->is_vxworks))
b49e97c9
TS
6492 {
6493 /* We may need a local GOT entry for this relocation. We
6494 don't count R_MIPS_GOT_PAGE because we can estimate the
6495 maximum number of pages needed by looking at the size of
6496 the segment. Similar comments apply to R_MIPS_GOT16 and
0a44bf69
RS
6497 R_MIPS_CALL16, except on VxWorks, where GOT relocations
6498 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
b49e97c9 6499 R_MIPS_CALL_HI16 because these are always followed by an
b15e6682 6500 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
f4416af6 6501 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
0f20cc35 6502 rel->r_addend, g, 0))
f4416af6 6503 return FALSE;
b49e97c9
TS
6504 }
6505
6506 switch (r_type)
6507 {
6508 case R_MIPS_CALL16:
6509 if (h == NULL)
6510 {
6511 (*_bfd_error_handler)
d003868e
AM
6512 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
6513 abfd, (unsigned long) rel->r_offset);
b49e97c9 6514 bfd_set_error (bfd_error_bad_value);
b34976b6 6515 return FALSE;
b49e97c9
TS
6516 }
6517 /* Fall through. */
6518
6519 case R_MIPS_CALL_HI16:
6520 case R_MIPS_CALL_LO16:
6521 if (h != NULL)
6522 {
0a44bf69
RS
6523 /* VxWorks call relocations point the function's .got.plt
6524 entry, which will be allocated by adjust_dynamic_symbol.
6525 Otherwise, this symbol requires a global GOT entry. */
6526 if (!htab->is_vxworks
6527 && !mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
b34976b6 6528 return FALSE;
b49e97c9
TS
6529
6530 /* We need a stub, not a plt entry for the undefined
6531 function. But we record it as if it needs plt. See
c152c796 6532 _bfd_elf_adjust_dynamic_symbol. */
f5385ebf 6533 h->needs_plt = 1;
b49e97c9
TS
6534 h->type = STT_FUNC;
6535 }
6536 break;
6537
0fdc1bf1
AO
6538 case R_MIPS_GOT_PAGE:
6539 /* If this is a global, overridable symbol, GOT_PAGE will
6540 decay to GOT_DISP, so we'll need a GOT entry for it. */
6541 if (h == NULL)
6542 break;
6543 else
6544 {
6545 struct mips_elf_link_hash_entry *hmips =
6546 (struct mips_elf_link_hash_entry *) h;
143d77c5 6547
0fdc1bf1
AO
6548 while (hmips->root.root.type == bfd_link_hash_indirect
6549 || hmips->root.root.type == bfd_link_hash_warning)
6550 hmips = (struct mips_elf_link_hash_entry *)
6551 hmips->root.root.u.i.link;
143d77c5 6552
f5385ebf 6553 if (hmips->root.def_regular
0fdc1bf1 6554 && ! (info->shared && ! info->symbolic
f5385ebf 6555 && ! hmips->root.forced_local))
0fdc1bf1
AO
6556 break;
6557 }
6558 /* Fall through. */
6559
b49e97c9
TS
6560 case R_MIPS_GOT16:
6561 case R_MIPS_GOT_HI16:
6562 case R_MIPS_GOT_LO16:
6563 case R_MIPS_GOT_DISP:
0f20cc35 6564 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
b34976b6 6565 return FALSE;
b49e97c9
TS
6566 break;
6567
0f20cc35
DJ
6568 case R_MIPS_TLS_GOTTPREL:
6569 if (info->shared)
6570 info->flags |= DF_STATIC_TLS;
6571 /* Fall through */
6572
6573 case R_MIPS_TLS_LDM:
6574 if (r_type == R_MIPS_TLS_LDM)
6575 {
6576 r_symndx = 0;
6577 h = NULL;
6578 }
6579 /* Fall through */
6580
6581 case R_MIPS_TLS_GD:
6582 /* This symbol requires a global offset table entry, or two
6583 for TLS GD relocations. */
6584 {
6585 unsigned char flag = (r_type == R_MIPS_TLS_GD
6586 ? GOT_TLS_GD
6587 : r_type == R_MIPS_TLS_LDM
6588 ? GOT_TLS_LDM
6589 : GOT_TLS_IE);
6590 if (h != NULL)
6591 {
6592 struct mips_elf_link_hash_entry *hmips =
6593 (struct mips_elf_link_hash_entry *) h;
6594 hmips->tls_type |= flag;
6595
6596 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, flag))
6597 return FALSE;
6598 }
6599 else
6600 {
6601 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != 0);
6602
6603 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
6604 rel->r_addend, g, flag))
6605 return FALSE;
6606 }
6607 }
6608 break;
6609
b49e97c9
TS
6610 case R_MIPS_32:
6611 case R_MIPS_REL32:
6612 case R_MIPS_64:
0a44bf69
RS
6613 /* In VxWorks executables, references to external symbols
6614 are handled using copy relocs or PLT stubs, so there's
6615 no need to add a .rela.dyn entry for this relocation. */
6616 if ((info->shared || (h != NULL && !htab->is_vxworks))
b49e97c9
TS
6617 && (sec->flags & SEC_ALLOC) != 0)
6618 {
6619 if (sreloc == NULL)
6620 {
0a44bf69 6621 sreloc = mips_elf_rel_dyn_section (info, TRUE);
b49e97c9 6622 if (sreloc == NULL)
f4416af6 6623 return FALSE;
b49e97c9 6624 }
b49e97c9 6625 if (info->shared)
82f0cfbd
EC
6626 {
6627 /* When creating a shared object, we must copy these
6628 reloc types into the output file as R_MIPS_REL32
0a44bf69
RS
6629 relocs. Make room for this reloc in .rel(a).dyn. */
6630 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
943284cc 6631 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
6632 /* We tell the dynamic linker that there are
6633 relocations against the text segment. */
6634 info->flags |= DF_TEXTREL;
6635 }
b49e97c9
TS
6636 else
6637 {
6638 struct mips_elf_link_hash_entry *hmips;
82f0cfbd 6639
b49e97c9
TS
6640 /* We only need to copy this reloc if the symbol is
6641 defined in a dynamic object. */
6642 hmips = (struct mips_elf_link_hash_entry *) h;
6643 ++hmips->possibly_dynamic_relocs;
943284cc 6644 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
6645 /* We need it to tell the dynamic linker if there
6646 are relocations against the text segment. */
6647 hmips->readonly_reloc = TRUE;
b49e97c9
TS
6648 }
6649
6650 /* Even though we don't directly need a GOT entry for
6651 this symbol, a symbol must have a dynamic symbol
6652 table index greater that DT_MIPS_GOTSYM if there are
0a44bf69
RS
6653 dynamic relocations against it. This does not apply
6654 to VxWorks, which does not have the usual coupling
6655 between global GOT entries and .dynsym entries. */
6656 if (h != NULL && !htab->is_vxworks)
f4416af6
AO
6657 {
6658 if (dynobj == NULL)
6659 elf_hash_table (info)->dynobj = dynobj = abfd;
6660 if (! mips_elf_create_got_section (dynobj, info, TRUE))
6661 return FALSE;
6662 g = mips_elf_got_info (dynobj, &sgot);
0f20cc35 6663 if (! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
f4416af6
AO
6664 return FALSE;
6665 }
b49e97c9
TS
6666 }
6667
6668 if (SGI_COMPAT (abfd))
6669 mips_elf_hash_table (info)->compact_rel_size +=
6670 sizeof (Elf32_External_crinfo);
6671 break;
6672
0a44bf69
RS
6673 case R_MIPS_PC16:
6674 if (h)
6675 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
6676 break;
6677
b49e97c9 6678 case R_MIPS_26:
0a44bf69
RS
6679 if (h)
6680 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
6681 /* Fall through. */
6682
b49e97c9
TS
6683 case R_MIPS_GPREL16:
6684 case R_MIPS_LITERAL:
6685 case R_MIPS_GPREL32:
6686 if (SGI_COMPAT (abfd))
6687 mips_elf_hash_table (info)->compact_rel_size +=
6688 sizeof (Elf32_External_crinfo);
6689 break;
6690
6691 /* This relocation describes the C++ object vtable hierarchy.
6692 Reconstruct it for later use during GC. */
6693 case R_MIPS_GNU_VTINHERIT:
c152c796 6694 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 6695 return FALSE;
b49e97c9
TS
6696 break;
6697
6698 /* This relocation describes which C++ vtable entries are actually
6699 used. Record for later use during GC. */
6700 case R_MIPS_GNU_VTENTRY:
c152c796 6701 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
b34976b6 6702 return FALSE;
b49e97c9
TS
6703 break;
6704
6705 default:
6706 break;
6707 }
6708
6709 /* We must not create a stub for a symbol that has relocations
0a44bf69
RS
6710 related to taking the function's address. This doesn't apply to
6711 VxWorks, where CALL relocs refer to a .got.plt entry instead of
6712 a normal .got entry. */
6713 if (!htab->is_vxworks && h != NULL)
6714 switch (r_type)
6715 {
6716 default:
6717 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
6718 break;
6719 case R_MIPS_CALL16:
6720 case R_MIPS_CALL_HI16:
6721 case R_MIPS_CALL_LO16:
6722 case R_MIPS_JALR:
6723 break;
6724 }
b49e97c9
TS
6725
6726 /* If this reloc is not a 16 bit call, and it has a global
6727 symbol, then we will need the fn_stub if there is one.
6728 References from a stub section do not count. */
6729 if (h != NULL
6730 && r_type != R_MIPS16_26
b9d58d71 6731 && !mips16_stub_section_p (abfd, sec))
b49e97c9
TS
6732 {
6733 struct mips_elf_link_hash_entry *mh;
6734
6735 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 6736 mh->need_fn_stub = TRUE;
b49e97c9
TS
6737 }
6738 }
6739
b34976b6 6740 return TRUE;
b49e97c9
TS
6741}
6742\f
d0647110 6743bfd_boolean
9719ad41
RS
6744_bfd_mips_relax_section (bfd *abfd, asection *sec,
6745 struct bfd_link_info *link_info,
6746 bfd_boolean *again)
d0647110
AO
6747{
6748 Elf_Internal_Rela *internal_relocs;
6749 Elf_Internal_Rela *irel, *irelend;
6750 Elf_Internal_Shdr *symtab_hdr;
6751 bfd_byte *contents = NULL;
d0647110
AO
6752 size_t extsymoff;
6753 bfd_boolean changed_contents = FALSE;
6754 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
6755 Elf_Internal_Sym *isymbuf = NULL;
6756
6757 /* We are not currently changing any sizes, so only one pass. */
6758 *again = FALSE;
6759
1049f94e 6760 if (link_info->relocatable)
d0647110
AO
6761 return TRUE;
6762
9719ad41 6763 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
45d6a902 6764 link_info->keep_memory);
d0647110
AO
6765 if (internal_relocs == NULL)
6766 return TRUE;
6767
6768 irelend = internal_relocs + sec->reloc_count
6769 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
6770 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6771 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6772
6773 for (irel = internal_relocs; irel < irelend; irel++)
6774 {
6775 bfd_vma symval;
6776 bfd_signed_vma sym_offset;
6777 unsigned int r_type;
6778 unsigned long r_symndx;
6779 asection *sym_sec;
6780 unsigned long instruction;
6781
6782 /* Turn jalr into bgezal, and jr into beq, if they're marked
6783 with a JALR relocation, that indicate where they jump to.
6784 This saves some pipeline bubbles. */
6785 r_type = ELF_R_TYPE (abfd, irel->r_info);
6786 if (r_type != R_MIPS_JALR)
6787 continue;
6788
6789 r_symndx = ELF_R_SYM (abfd, irel->r_info);
6790 /* Compute the address of the jump target. */
6791 if (r_symndx >= extsymoff)
6792 {
6793 struct mips_elf_link_hash_entry *h
6794 = ((struct mips_elf_link_hash_entry *)
6795 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
6796
6797 while (h->root.root.type == bfd_link_hash_indirect
6798 || h->root.root.type == bfd_link_hash_warning)
6799 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
143d77c5 6800
d0647110
AO
6801 /* If a symbol is undefined, or if it may be overridden,
6802 skip it. */
6803 if (! ((h->root.root.type == bfd_link_hash_defined
6804 || h->root.root.type == bfd_link_hash_defweak)
6805 && h->root.root.u.def.section)
6806 || (link_info->shared && ! link_info->symbolic
f5385ebf 6807 && !h->root.forced_local))
d0647110
AO
6808 continue;
6809
6810 sym_sec = h->root.root.u.def.section;
6811 if (sym_sec->output_section)
6812 symval = (h->root.root.u.def.value
6813 + sym_sec->output_section->vma
6814 + sym_sec->output_offset);
6815 else
6816 symval = h->root.root.u.def.value;
6817 }
6818 else
6819 {
6820 Elf_Internal_Sym *isym;
6821
6822 /* Read this BFD's symbols if we haven't done so already. */
6823 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
6824 {
6825 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6826 if (isymbuf == NULL)
6827 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
6828 symtab_hdr->sh_info, 0,
6829 NULL, NULL, NULL);
6830 if (isymbuf == NULL)
6831 goto relax_return;
6832 }
6833
6834 isym = isymbuf + r_symndx;
6835 if (isym->st_shndx == SHN_UNDEF)
6836 continue;
6837 else if (isym->st_shndx == SHN_ABS)
6838 sym_sec = bfd_abs_section_ptr;
6839 else if (isym->st_shndx == SHN_COMMON)
6840 sym_sec = bfd_com_section_ptr;
6841 else
6842 sym_sec
6843 = bfd_section_from_elf_index (abfd, isym->st_shndx);
6844 symval = isym->st_value
6845 + sym_sec->output_section->vma
6846 + sym_sec->output_offset;
6847 }
6848
6849 /* Compute branch offset, from delay slot of the jump to the
6850 branch target. */
6851 sym_offset = (symval + irel->r_addend)
6852 - (sec_start + irel->r_offset + 4);
6853
6854 /* Branch offset must be properly aligned. */
6855 if ((sym_offset & 3) != 0)
6856 continue;
6857
6858 sym_offset >>= 2;
6859
6860 /* Check that it's in range. */
6861 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
6862 continue;
143d77c5 6863
d0647110
AO
6864 /* Get the section contents if we haven't done so already. */
6865 if (contents == NULL)
6866 {
6867 /* Get cached copy if it exists. */
6868 if (elf_section_data (sec)->this_hdr.contents != NULL)
6869 contents = elf_section_data (sec)->this_hdr.contents;
6870 else
6871 {
eea6121a 6872 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
d0647110
AO
6873 goto relax_return;
6874 }
6875 }
6876
6877 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
6878
6879 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
6880 if ((instruction & 0xfc1fffff) == 0x0000f809)
6881 instruction = 0x04110000;
6882 /* If it was jr <reg>, turn it into b <target>. */
6883 else if ((instruction & 0xfc1fffff) == 0x00000008)
6884 instruction = 0x10000000;
6885 else
6886 continue;
6887
6888 instruction |= (sym_offset & 0xffff);
6889 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
6890 changed_contents = TRUE;
6891 }
6892
6893 if (contents != NULL
6894 && elf_section_data (sec)->this_hdr.contents != contents)
6895 {
6896 if (!changed_contents && !link_info->keep_memory)
6897 free (contents);
6898 else
6899 {
6900 /* Cache the section contents for elf_link_input_bfd. */
6901 elf_section_data (sec)->this_hdr.contents = contents;
6902 }
6903 }
6904 return TRUE;
6905
143d77c5 6906 relax_return:
eea6121a
AM
6907 if (contents != NULL
6908 && elf_section_data (sec)->this_hdr.contents != contents)
6909 free (contents);
d0647110
AO
6910 return FALSE;
6911}
6912\f
b49e97c9
TS
6913/* Adjust a symbol defined by a dynamic object and referenced by a
6914 regular object. The current definition is in some section of the
6915 dynamic object, but we're not including those sections. We have to
6916 change the definition to something the rest of the link can
6917 understand. */
6918
b34976b6 6919bfd_boolean
9719ad41
RS
6920_bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
6921 struct elf_link_hash_entry *h)
b49e97c9
TS
6922{
6923 bfd *dynobj;
6924 struct mips_elf_link_hash_entry *hmips;
6925 asection *s;
5108fc1b 6926 struct mips_elf_link_hash_table *htab;
b49e97c9 6927
5108fc1b 6928 htab = mips_elf_hash_table (info);
b49e97c9
TS
6929 dynobj = elf_hash_table (info)->dynobj;
6930
6931 /* Make sure we know what is going on here. */
6932 BFD_ASSERT (dynobj != NULL
f5385ebf 6933 && (h->needs_plt
f6e332e6 6934 || h->u.weakdef != NULL
f5385ebf
AM
6935 || (h->def_dynamic
6936 && h->ref_regular
6937 && !h->def_regular)));
b49e97c9
TS
6938
6939 /* If this symbol is defined in a dynamic object, we need to copy
6940 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
6941 file. */
6942 hmips = (struct mips_elf_link_hash_entry *) h;
1049f94e 6943 if (! info->relocatable
b49e97c9
TS
6944 && hmips->possibly_dynamic_relocs != 0
6945 && (h->root.type == bfd_link_hash_defweak
f5385ebf 6946 || !h->def_regular))
b49e97c9 6947 {
0a44bf69
RS
6948 mips_elf_allocate_dynamic_relocations
6949 (dynobj, info, hmips->possibly_dynamic_relocs);
82f0cfbd 6950 if (hmips->readonly_reloc)
b49e97c9
TS
6951 /* We tell the dynamic linker that there are relocations
6952 against the text segment. */
6953 info->flags |= DF_TEXTREL;
6954 }
6955
6956 /* For a function, create a stub, if allowed. */
6957 if (! hmips->no_fn_stub
f5385ebf 6958 && h->needs_plt)
b49e97c9
TS
6959 {
6960 if (! elf_hash_table (info)->dynamic_sections_created)
b34976b6 6961 return TRUE;
b49e97c9
TS
6962
6963 /* If this symbol is not defined in a regular file, then set
6964 the symbol to the stub location. This is required to make
6965 function pointers compare as equal between the normal
6966 executable and the shared library. */
f5385ebf 6967 if (!h->def_regular)
b49e97c9
TS
6968 {
6969 /* We need .stub section. */
6970 s = bfd_get_section_by_name (dynobj,
6971 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6972 BFD_ASSERT (s != NULL);
6973
6974 h->root.u.def.section = s;
eea6121a 6975 h->root.u.def.value = s->size;
b49e97c9
TS
6976
6977 /* XXX Write this stub address somewhere. */
eea6121a 6978 h->plt.offset = s->size;
b49e97c9
TS
6979
6980 /* Make room for this stub code. */
5108fc1b 6981 s->size += htab->function_stub_size;
b49e97c9
TS
6982
6983 /* The last half word of the stub will be filled with the index
6984 of this symbol in .dynsym section. */
b34976b6 6985 return TRUE;
b49e97c9
TS
6986 }
6987 }
6988 else if ((h->type == STT_FUNC)
f5385ebf 6989 && !h->needs_plt)
b49e97c9
TS
6990 {
6991 /* This will set the entry for this symbol in the GOT to 0, and
6992 the dynamic linker will take care of this. */
6993 h->root.u.def.value = 0;
b34976b6 6994 return TRUE;
b49e97c9
TS
6995 }
6996
6997 /* If this is a weak symbol, and there is a real definition, the
6998 processor independent code will have arranged for us to see the
6999 real definition first, and we can just use the same value. */
f6e332e6 7000 if (h->u.weakdef != NULL)
b49e97c9 7001 {
f6e332e6
AM
7002 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7003 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7004 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7005 h->root.u.def.value = h->u.weakdef->root.u.def.value;
b34976b6 7006 return TRUE;
b49e97c9
TS
7007 }
7008
7009 /* This is a reference to a symbol defined by a dynamic object which
7010 is not a function. */
7011
b34976b6 7012 return TRUE;
b49e97c9 7013}
0a44bf69
RS
7014
7015/* Likewise, for VxWorks. */
7016
7017bfd_boolean
7018_bfd_mips_vxworks_adjust_dynamic_symbol (struct bfd_link_info *info,
7019 struct elf_link_hash_entry *h)
7020{
7021 bfd *dynobj;
7022 struct mips_elf_link_hash_entry *hmips;
7023 struct mips_elf_link_hash_table *htab;
0a44bf69
RS
7024
7025 htab = mips_elf_hash_table (info);
7026 dynobj = elf_hash_table (info)->dynobj;
7027 hmips = (struct mips_elf_link_hash_entry *) h;
7028
7029 /* Make sure we know what is going on here. */
7030 BFD_ASSERT (dynobj != NULL
7031 && (h->needs_plt
7032 || h->needs_copy
7033 || h->u.weakdef != NULL
7034 || (h->def_dynamic
7035 && h->ref_regular
7036 && !h->def_regular)));
7037
7038 /* If the symbol is defined by a dynamic object, we need a PLT stub if
7039 either (a) we want to branch to the symbol or (b) we're linking an
7040 executable that needs a canonical function address. In the latter
7041 case, the canonical address will be the address of the executable's
7042 load stub. */
7043 if ((hmips->is_branch_target
7044 || (!info->shared
7045 && h->type == STT_FUNC
7046 && hmips->is_relocation_target))
7047 && h->def_dynamic
7048 && h->ref_regular
7049 && !h->def_regular
7050 && !h->forced_local)
7051 h->needs_plt = 1;
7052
7053 /* Locally-binding symbols do not need a PLT stub; we can refer to
7054 the functions directly. */
7055 else if (h->needs_plt
7056 && (SYMBOL_CALLS_LOCAL (info, h)
7057 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
7058 && h->root.type == bfd_link_hash_undefweak)))
7059 {
7060 h->needs_plt = 0;
7061 return TRUE;
7062 }
7063
7064 if (h->needs_plt)
7065 {
7066 /* If this is the first symbol to need a PLT entry, allocate room
7067 for the header, and for the header's .rela.plt.unloaded entries. */
7068 if (htab->splt->size == 0)
7069 {
7070 htab->splt->size += htab->plt_header_size;
7071 if (!info->shared)
7072 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
7073 }
7074
7075 /* Assign the next .plt entry to this symbol. */
7076 h->plt.offset = htab->splt->size;
7077 htab->splt->size += htab->plt_entry_size;
7078
7079 /* If the output file has no definition of the symbol, set the
7080 symbol's value to the address of the stub. For executables,
7081 point at the PLT load stub rather than the lazy resolution stub;
7082 this stub will become the canonical function address. */
7083 if (!h->def_regular)
7084 {
7085 h->root.u.def.section = htab->splt;
7086 h->root.u.def.value = h->plt.offset;
7087 if (!info->shared)
7088 h->root.u.def.value += 8;
7089 }
7090
7091 /* Make room for the .got.plt entry and the R_JUMP_SLOT relocation. */
7092 htab->sgotplt->size += 4;
7093 htab->srelplt->size += sizeof (Elf32_External_Rela);
7094
7095 /* Make room for the .rela.plt.unloaded relocations. */
7096 if (!info->shared)
7097 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
7098
7099 return TRUE;
7100 }
7101
7102 /* If a function symbol is defined by a dynamic object, and we do not
7103 need a PLT stub for it, the symbol's value should be zero. */
7104 if (h->type == STT_FUNC
7105 && h->def_dynamic
7106 && h->ref_regular
7107 && !h->def_regular)
7108 {
7109 h->root.u.def.value = 0;
7110 return TRUE;
7111 }
7112
7113 /* If this is a weak symbol, and there is a real definition, the
7114 processor independent code will have arranged for us to see the
7115 real definition first, and we can just use the same value. */
7116 if (h->u.weakdef != NULL)
7117 {
7118 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7119 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7120 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7121 h->root.u.def.value = h->u.weakdef->root.u.def.value;
7122 return TRUE;
7123 }
7124
7125 /* This is a reference to a symbol defined by a dynamic object which
7126 is not a function. */
7127 if (info->shared)
7128 return TRUE;
7129
7130 /* We must allocate the symbol in our .dynbss section, which will
7131 become part of the .bss section of the executable. There will be
7132 an entry for this symbol in the .dynsym section. The dynamic
7133 object will contain position independent code, so all references
7134 from the dynamic object to this symbol will go through the global
7135 offset table. The dynamic linker will use the .dynsym entry to
7136 determine the address it must put in the global offset table, so
7137 both the dynamic object and the regular object will refer to the
7138 same memory location for the variable. */
7139
7140 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
7141 {
7142 htab->srelbss->size += sizeof (Elf32_External_Rela);
7143 h->needs_copy = 1;
7144 }
7145
027297b7 7146 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
0a44bf69 7147}
b49e97c9 7148\f
5108fc1b
RS
7149/* Return the number of dynamic section symbols required by OUTPUT_BFD.
7150 The number might be exact or a worst-case estimate, depending on how
7151 much information is available to elf_backend_omit_section_dynsym at
7152 the current linking stage. */
7153
7154static bfd_size_type
7155count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
7156{
7157 bfd_size_type count;
7158
7159 count = 0;
7160 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
7161 {
7162 asection *p;
7163 const struct elf_backend_data *bed;
7164
7165 bed = get_elf_backend_data (output_bfd);
7166 for (p = output_bfd->sections; p ; p = p->next)
7167 if ((p->flags & SEC_EXCLUDE) == 0
7168 && (p->flags & SEC_ALLOC) != 0
7169 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
7170 ++count;
7171 }
7172 return count;
7173}
7174
b49e97c9
TS
7175/* This function is called after all the input files have been read,
7176 and the input sections have been assigned to output sections. We
7177 check for any mips16 stub sections that we can discard. */
7178
b34976b6 7179bfd_boolean
9719ad41
RS
7180_bfd_mips_elf_always_size_sections (bfd *output_bfd,
7181 struct bfd_link_info *info)
b49e97c9
TS
7182{
7183 asection *ri;
7184
f4416af6
AO
7185 bfd *dynobj;
7186 asection *s;
7187 struct mips_got_info *g;
7188 int i;
7189 bfd_size_type loadable_size = 0;
7190 bfd_size_type local_gotno;
5108fc1b 7191 bfd_size_type dynsymcount;
f4416af6 7192 bfd *sub;
0f20cc35 7193 struct mips_elf_count_tls_arg count_tls_arg;
0a44bf69
RS
7194 struct mips_elf_link_hash_table *htab;
7195
7196 htab = mips_elf_hash_table (info);
f4416af6 7197
b49e97c9
TS
7198 /* The .reginfo section has a fixed size. */
7199 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
7200 if (ri != NULL)
9719ad41 7201 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
b49e97c9 7202
1049f94e 7203 if (! (info->relocatable
f4416af6
AO
7204 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
7205 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 7206 mips_elf_check_mips16_stubs, NULL);
f4416af6
AO
7207
7208 dynobj = elf_hash_table (info)->dynobj;
7209 if (dynobj == NULL)
7210 /* Relocatable links don't have it. */
7211 return TRUE;
143d77c5 7212
f4416af6
AO
7213 g = mips_elf_got_info (dynobj, &s);
7214 if (s == NULL)
b34976b6 7215 return TRUE;
b49e97c9 7216
f4416af6
AO
7217 /* Calculate the total loadable size of the output. That
7218 will give us the maximum number of GOT_PAGE entries
7219 required. */
7220 for (sub = info->input_bfds; sub; sub = sub->link_next)
7221 {
7222 asection *subsection;
7223
7224 for (subsection = sub->sections;
7225 subsection;
7226 subsection = subsection->next)
7227 {
7228 if ((subsection->flags & SEC_ALLOC) == 0)
7229 continue;
eea6121a 7230 loadable_size += ((subsection->size + 0xf)
f4416af6
AO
7231 &~ (bfd_size_type) 0xf);
7232 }
7233 }
7234
7235 /* There has to be a global GOT entry for every symbol with
7236 a dynamic symbol table index of DT_MIPS_GOTSYM or
7237 higher. Therefore, it make sense to put those symbols
7238 that need GOT entries at the end of the symbol table. We
7239 do that here. */
7240 if (! mips_elf_sort_hash_table (info, 1))
7241 return FALSE;
7242
7243 if (g->global_gotsym != NULL)
7244 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
7245 else
7246 /* If there are no global symbols, or none requiring
7247 relocations, then GLOBAL_GOTSYM will be NULL. */
7248 i = 0;
7249
5108fc1b
RS
7250 /* Get a worst-case estimate of the number of dynamic symbols needed.
7251 At this point, dynsymcount does not account for section symbols
7252 and count_section_dynsyms may overestimate the number that will
7253 be needed. */
7254 dynsymcount = (elf_hash_table (info)->dynsymcount
7255 + count_section_dynsyms (output_bfd, info));
7256
7257 /* Determine the size of one stub entry. */
7258 htab->function_stub_size = (dynsymcount > 0x10000
7259 ? MIPS_FUNCTION_STUB_BIG_SIZE
7260 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
7261
f4416af6
AO
7262 /* In the worst case, we'll get one stub per dynamic symbol, plus
7263 one to account for the dummy entry at the end required by IRIX
7264 rld. */
5108fc1b 7265 loadable_size += htab->function_stub_size * (i + 1);
f4416af6 7266
0a44bf69
RS
7267 if (htab->is_vxworks)
7268 /* There's no need to allocate page entries for VxWorks; R_MIPS_GOT16
7269 relocations against local symbols evaluate to "G", and the EABI does
7270 not include R_MIPS_GOT_PAGE. */
7271 local_gotno = 0;
7272 else
7273 /* Assume there are two loadable segments consisting of contiguous
7274 sections. Is 5 enough? */
7275 local_gotno = (loadable_size >> 16) + 5;
f4416af6
AO
7276
7277 g->local_gotno += local_gotno;
eea6121a 7278 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6
AO
7279
7280 g->global_gotno = i;
eea6121a 7281 s->size += i * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6 7282
0f20cc35
DJ
7283 /* We need to calculate tls_gotno for global symbols at this point
7284 instead of building it up earlier, to avoid doublecounting
7285 entries for one global symbol from multiple input files. */
7286 count_tls_arg.info = info;
7287 count_tls_arg.needed = 0;
7288 elf_link_hash_traverse (elf_hash_table (info),
7289 mips_elf_count_global_tls_entries,
7290 &count_tls_arg);
7291 g->tls_gotno += count_tls_arg.needed;
7292 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
7293
7294 mips_elf_resolve_final_got_entries (g);
7295
0a44bf69
RS
7296 /* VxWorks does not support multiple GOTs. It initializes $gp to
7297 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
7298 dynamic loader. */
7299 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
0f20cc35
DJ
7300 {
7301 if (! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
7302 return FALSE;
7303 }
7304 else
7305 {
7306 /* Set up TLS entries for the first GOT. */
7307 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
7308 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
7309 }
b49e97c9 7310
b34976b6 7311 return TRUE;
b49e97c9
TS
7312}
7313
7314/* Set the sizes of the dynamic sections. */
7315
b34976b6 7316bfd_boolean
9719ad41
RS
7317_bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
7318 struct bfd_link_info *info)
b49e97c9
TS
7319{
7320 bfd *dynobj;
0a44bf69 7321 asection *s, *sreldyn;
b34976b6 7322 bfd_boolean reltext;
0a44bf69 7323 struct mips_elf_link_hash_table *htab;
b49e97c9 7324
0a44bf69 7325 htab = mips_elf_hash_table (info);
b49e97c9
TS
7326 dynobj = elf_hash_table (info)->dynobj;
7327 BFD_ASSERT (dynobj != NULL);
7328
7329 if (elf_hash_table (info)->dynamic_sections_created)
7330 {
7331 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 7332 if (info->executable)
b49e97c9
TS
7333 {
7334 s = bfd_get_section_by_name (dynobj, ".interp");
7335 BFD_ASSERT (s != NULL);
eea6121a 7336 s->size
b49e97c9
TS
7337 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
7338 s->contents
7339 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
7340 }
7341 }
7342
7343 /* The check_relocs and adjust_dynamic_symbol entry points have
7344 determined the sizes of the various dynamic sections. Allocate
7345 memory for them. */
b34976b6 7346 reltext = FALSE;
0a44bf69 7347 sreldyn = NULL;
b49e97c9
TS
7348 for (s = dynobj->sections; s != NULL; s = s->next)
7349 {
7350 const char *name;
b49e97c9
TS
7351
7352 /* It's OK to base decisions on the section name, because none
7353 of the dynobj section names depend upon the input files. */
7354 name = bfd_get_section_name (dynobj, s);
7355
7356 if ((s->flags & SEC_LINKER_CREATED) == 0)
7357 continue;
7358
0112cd26 7359 if (CONST_STRNEQ (name, ".rel"))
b49e97c9 7360 {
c456f082 7361 if (s->size != 0)
b49e97c9
TS
7362 {
7363 const char *outname;
7364 asection *target;
7365
7366 /* If this relocation section applies to a read only
7367 section, then we probably need a DT_TEXTREL entry.
0a44bf69 7368 If the relocation section is .rel(a).dyn, we always
b49e97c9
TS
7369 assert a DT_TEXTREL entry rather than testing whether
7370 there exists a relocation to a read only section or
7371 not. */
7372 outname = bfd_get_section_name (output_bfd,
7373 s->output_section);
7374 target = bfd_get_section_by_name (output_bfd, outname + 4);
7375 if ((target != NULL
7376 && (target->flags & SEC_READONLY) != 0
7377 && (target->flags & SEC_ALLOC) != 0)
0a44bf69 7378 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
b34976b6 7379 reltext = TRUE;
b49e97c9
TS
7380
7381 /* We use the reloc_count field as a counter if we need
7382 to copy relocs into the output file. */
0a44bf69 7383 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
b49e97c9 7384 s->reloc_count = 0;
f4416af6
AO
7385
7386 /* If combreloc is enabled, elf_link_sort_relocs() will
7387 sort relocations, but in a different way than we do,
7388 and before we're done creating relocations. Also, it
7389 will move them around between input sections'
7390 relocation's contents, so our sorting would be
7391 broken, so don't let it run. */
7392 info->combreloc = 0;
b49e97c9
TS
7393 }
7394 }
0a44bf69
RS
7395 else if (htab->is_vxworks && strcmp (name, ".got") == 0)
7396 {
7397 /* Executables do not need a GOT. */
7398 if (info->shared)
7399 {
7400 /* Allocate relocations for all but the reserved entries. */
7401 struct mips_got_info *g;
7402 unsigned int count;
7403
7404 g = mips_elf_got_info (dynobj, NULL);
7405 count = (g->global_gotno
7406 + g->local_gotno
7407 - MIPS_RESERVED_GOTNO (info));
7408 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
7409 }
7410 }
0112cd26 7411 else if (!htab->is_vxworks && CONST_STRNEQ (name, ".got"))
b49e97c9 7412 {
f4416af6
AO
7413 /* _bfd_mips_elf_always_size_sections() has already done
7414 most of the work, but some symbols may have been mapped
7415 to versions that we must now resolve in the got_entries
7416 hash tables. */
7417 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
7418 struct mips_got_info *g = gg;
7419 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
7420 unsigned int needed_relocs = 0;
143d77c5 7421
f4416af6 7422 if (gg->next)
b49e97c9 7423 {
f4416af6
AO
7424 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
7425 set_got_offset_arg.info = info;
b49e97c9 7426
0f20cc35
DJ
7427 /* NOTE 2005-02-03: How can this call, or the next, ever
7428 find any indirect entries to resolve? They were all
7429 resolved in mips_elf_multi_got. */
f4416af6
AO
7430 mips_elf_resolve_final_got_entries (gg);
7431 for (g = gg->next; g && g->next != gg; g = g->next)
b49e97c9 7432 {
f4416af6
AO
7433 unsigned int save_assign;
7434
7435 mips_elf_resolve_final_got_entries (g);
7436
7437 /* Assign offsets to global GOT entries. */
7438 save_assign = g->assigned_gotno;
7439 g->assigned_gotno = g->local_gotno;
7440 set_got_offset_arg.g = g;
7441 set_got_offset_arg.needed_relocs = 0;
7442 htab_traverse (g->got_entries,
7443 mips_elf_set_global_got_offset,
7444 &set_got_offset_arg);
7445 needed_relocs += set_got_offset_arg.needed_relocs;
7446 BFD_ASSERT (g->assigned_gotno - g->local_gotno
7447 <= g->global_gotno);
7448
7449 g->assigned_gotno = save_assign;
7450 if (info->shared)
7451 {
7452 needed_relocs += g->local_gotno - g->assigned_gotno;
7453 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
7454 + g->next->global_gotno
0f20cc35 7455 + g->next->tls_gotno
0a44bf69 7456 + MIPS_RESERVED_GOTNO (info));
f4416af6 7457 }
b49e97c9 7458 }
0f20cc35
DJ
7459 }
7460 else
7461 {
7462 struct mips_elf_count_tls_arg arg;
7463 arg.info = info;
7464 arg.needed = 0;
b49e97c9 7465
0f20cc35
DJ
7466 htab_traverse (gg->got_entries, mips_elf_count_local_tls_relocs,
7467 &arg);
7468 elf_link_hash_traverse (elf_hash_table (info),
7469 mips_elf_count_global_tls_relocs,
7470 &arg);
7471
7472 needed_relocs += arg.needed;
f4416af6 7473 }
0f20cc35
DJ
7474
7475 if (needed_relocs)
0a44bf69
RS
7476 mips_elf_allocate_dynamic_relocations (dynobj, info,
7477 needed_relocs);
b49e97c9
TS
7478 }
7479 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
7480 {
8dc1a139 7481 /* IRIX rld assumes that the function stub isn't at the end
5108fc1b
RS
7482 of .text section. So put a dummy. XXX */
7483 s->size += htab->function_stub_size;
b49e97c9
TS
7484 }
7485 else if (! info->shared
7486 && ! mips_elf_hash_table (info)->use_rld_obj_head
0112cd26 7487 && CONST_STRNEQ (name, ".rld_map"))
b49e97c9 7488 {
5108fc1b 7489 /* We add a room for __rld_map. It will be filled in by the
b49e97c9 7490 rtld to contain a pointer to the _r_debug structure. */
eea6121a 7491 s->size += 4;
b49e97c9
TS
7492 }
7493 else if (SGI_COMPAT (output_bfd)
0112cd26 7494 && CONST_STRNEQ (name, ".compact_rel"))
eea6121a 7495 s->size += mips_elf_hash_table (info)->compact_rel_size;
0112cd26 7496 else if (! CONST_STRNEQ (name, ".init")
0a44bf69
RS
7497 && s != htab->sgotplt
7498 && s != htab->splt)
b49e97c9
TS
7499 {
7500 /* It's not one of our sections, so don't allocate space. */
7501 continue;
7502 }
7503
c456f082 7504 if (s->size == 0)
b49e97c9 7505 {
8423293d 7506 s->flags |= SEC_EXCLUDE;
b49e97c9
TS
7507 continue;
7508 }
7509
c456f082
AM
7510 if ((s->flags & SEC_HAS_CONTENTS) == 0)
7511 continue;
7512
0a44bf69
RS
7513 /* Allocate memory for this section last, since we may increase its
7514 size above. */
7515 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) == 0)
7516 {
7517 sreldyn = s;
7518 continue;
7519 }
7520
b49e97c9 7521 /* Allocate memory for the section contents. */
eea6121a 7522 s->contents = bfd_zalloc (dynobj, s->size);
c456f082 7523 if (s->contents == NULL)
b49e97c9
TS
7524 {
7525 bfd_set_error (bfd_error_no_memory);
b34976b6 7526 return FALSE;
b49e97c9
TS
7527 }
7528 }
7529
0a44bf69
RS
7530 /* Allocate memory for the .rel(a).dyn section. */
7531 if (sreldyn != NULL)
7532 {
7533 sreldyn->contents = bfd_zalloc (dynobj, sreldyn->size);
7534 if (sreldyn->contents == NULL)
7535 {
7536 bfd_set_error (bfd_error_no_memory);
7537 return FALSE;
7538 }
7539 }
7540
b49e97c9
TS
7541 if (elf_hash_table (info)->dynamic_sections_created)
7542 {
7543 /* Add some entries to the .dynamic section. We fill in the
7544 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
7545 must add the entries now so that we get the correct size for
5750dcec 7546 the .dynamic section. */
af5978fb
RS
7547
7548 /* SGI object has the equivalence of DT_DEBUG in the
5750dcec
DJ
7549 DT_MIPS_RLD_MAP entry. This must come first because glibc
7550 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and GDB only
7551 looks at the first one it sees. */
af5978fb
RS
7552 if (!info->shared
7553 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
7554 return FALSE;
b49e97c9 7555
5750dcec
DJ
7556 /* The DT_DEBUG entry may be filled in by the dynamic linker and
7557 used by the debugger. */
7558 if (info->executable
7559 && !SGI_COMPAT (output_bfd)
7560 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
7561 return FALSE;
7562
0a44bf69 7563 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
b49e97c9
TS
7564 info->flags |= DF_TEXTREL;
7565
7566 if ((info->flags & DF_TEXTREL) != 0)
7567 {
7568 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
b34976b6 7569 return FALSE;
943284cc
DJ
7570
7571 /* Clear the DF_TEXTREL flag. It will be set again if we
7572 write out an actual text relocation; we may not, because
7573 at this point we do not know whether e.g. any .eh_frame
7574 absolute relocations have been converted to PC-relative. */
7575 info->flags &= ~DF_TEXTREL;
b49e97c9
TS
7576 }
7577
7578 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
b34976b6 7579 return FALSE;
b49e97c9 7580
0a44bf69 7581 if (htab->is_vxworks)
b49e97c9 7582 {
0a44bf69
RS
7583 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
7584 use any of the DT_MIPS_* tags. */
7585 if (mips_elf_rel_dyn_section (info, FALSE))
7586 {
7587 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
7588 return FALSE;
b49e97c9 7589
0a44bf69
RS
7590 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
7591 return FALSE;
b49e97c9 7592
0a44bf69
RS
7593 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
7594 return FALSE;
7595 }
7596 if (htab->splt->size > 0)
7597 {
7598 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
7599 return FALSE;
7600
7601 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
7602 return FALSE;
7603
7604 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
7605 return FALSE;
7606 }
b49e97c9 7607 }
0a44bf69
RS
7608 else
7609 {
7610 if (mips_elf_rel_dyn_section (info, FALSE))
7611 {
7612 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
7613 return FALSE;
b49e97c9 7614
0a44bf69
RS
7615 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
7616 return FALSE;
b49e97c9 7617
0a44bf69
RS
7618 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
7619 return FALSE;
7620 }
b49e97c9 7621
0a44bf69
RS
7622 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
7623 return FALSE;
b49e97c9 7624
0a44bf69
RS
7625 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
7626 return FALSE;
b49e97c9 7627
0a44bf69
RS
7628 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
7629 return FALSE;
b49e97c9 7630
0a44bf69
RS
7631 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
7632 return FALSE;
b49e97c9 7633
0a44bf69
RS
7634 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
7635 return FALSE;
b49e97c9 7636
0a44bf69
RS
7637 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
7638 return FALSE;
b49e97c9 7639
0a44bf69
RS
7640 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
7641 return FALSE;
7642
7643 if (IRIX_COMPAT (dynobj) == ict_irix5
7644 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
7645 return FALSE;
7646
7647 if (IRIX_COMPAT (dynobj) == ict_irix6
7648 && (bfd_get_section_by_name
7649 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
7650 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
7651 return FALSE;
7652 }
b49e97c9
TS
7653 }
7654
b34976b6 7655 return TRUE;
b49e97c9
TS
7656}
7657\f
81d43bff
RS
7658/* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
7659 Adjust its R_ADDEND field so that it is correct for the output file.
7660 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
7661 and sections respectively; both use symbol indexes. */
7662
7663static void
7664mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
7665 bfd *input_bfd, Elf_Internal_Sym *local_syms,
7666 asection **local_sections, Elf_Internal_Rela *rel)
7667{
7668 unsigned int r_type, r_symndx;
7669 Elf_Internal_Sym *sym;
7670 asection *sec;
7671
7672 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
7673 {
7674 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
7675 if (r_type == R_MIPS16_GPREL
7676 || r_type == R_MIPS_GPREL16
7677 || r_type == R_MIPS_GPREL32
7678 || r_type == R_MIPS_LITERAL)
7679 {
7680 rel->r_addend += _bfd_get_gp_value (input_bfd);
7681 rel->r_addend -= _bfd_get_gp_value (output_bfd);
7682 }
7683
7684 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
7685 sym = local_syms + r_symndx;
7686
7687 /* Adjust REL's addend to account for section merging. */
7688 if (!info->relocatable)
7689 {
7690 sec = local_sections[r_symndx];
7691 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
7692 }
7693
7694 /* This would normally be done by the rela_normal code in elflink.c. */
7695 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7696 rel->r_addend += local_sections[r_symndx]->output_offset;
7697 }
7698}
7699
b49e97c9
TS
7700/* Relocate a MIPS ELF section. */
7701
b34976b6 7702bfd_boolean
9719ad41
RS
7703_bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
7704 bfd *input_bfd, asection *input_section,
7705 bfd_byte *contents, Elf_Internal_Rela *relocs,
7706 Elf_Internal_Sym *local_syms,
7707 asection **local_sections)
b49e97c9
TS
7708{
7709 Elf_Internal_Rela *rel;
7710 const Elf_Internal_Rela *relend;
7711 bfd_vma addend = 0;
b34976b6 7712 bfd_boolean use_saved_addend_p = FALSE;
9c5bfbb7 7713 const struct elf_backend_data *bed;
b49e97c9
TS
7714
7715 bed = get_elf_backend_data (output_bfd);
7716 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
7717 for (rel = relocs; rel < relend; ++rel)
7718 {
7719 const char *name;
c9adbffe 7720 bfd_vma value = 0;
b49e97c9 7721 reloc_howto_type *howto;
b34976b6
AM
7722 bfd_boolean require_jalx;
7723 /* TRUE if the relocation is a RELA relocation, rather than a
b49e97c9 7724 REL relocation. */
b34976b6 7725 bfd_boolean rela_relocation_p = TRUE;
b49e97c9 7726 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9719ad41 7727 const char *msg;
ab96bf03
AM
7728 unsigned long r_symndx;
7729 asection *sec;
749b8d9d
L
7730 Elf_Internal_Shdr *symtab_hdr;
7731 struct elf_link_hash_entry *h;
b49e97c9
TS
7732
7733 /* Find the relocation howto for this relocation. */
ab96bf03
AM
7734 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
7735 NEWABI_P (input_bfd)
7736 && (MIPS_RELOC_RELA_P
7737 (input_bfd, input_section,
7738 rel - relocs)));
7739
7740 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
749b8d9d 7741 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
ab96bf03 7742 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
749b8d9d
L
7743 {
7744 sec = local_sections[r_symndx];
7745 h = NULL;
7746 }
ab96bf03
AM
7747 else
7748 {
ab96bf03 7749 unsigned long extsymoff;
ab96bf03 7750
ab96bf03
AM
7751 extsymoff = 0;
7752 if (!elf_bad_symtab (input_bfd))
7753 extsymoff = symtab_hdr->sh_info;
7754 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
7755 while (h->root.type == bfd_link_hash_indirect
7756 || h->root.type == bfd_link_hash_warning)
7757 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7758
7759 sec = NULL;
7760 if (h->root.type == bfd_link_hash_defined
7761 || h->root.type == bfd_link_hash_defweak)
7762 sec = h->root.u.def.section;
7763 }
7764
7765 if (sec != NULL && elf_discarded_section (sec))
7766 {
7767 /* For relocs against symbols from removed linkonce sections,
7768 or sections discarded by a linker script, we just want the
7769 section contents zeroed. Avoid any special processing. */
7770 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
7771 rel->r_info = 0;
7772 rel->r_addend = 0;
7773 continue;
7774 }
7775
4a14403c 7776 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
b49e97c9
TS
7777 {
7778 /* Some 32-bit code uses R_MIPS_64. In particular, people use
7779 64-bit code, but make sure all their addresses are in the
7780 lowermost or uppermost 32-bit section of the 64-bit address
7781 space. Thus, when they use an R_MIPS_64 they mean what is
7782 usually meant by R_MIPS_32, with the exception that the
7783 stored value is sign-extended to 64 bits. */
b34976b6 7784 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
b49e97c9
TS
7785
7786 /* On big-endian systems, we need to lie about the position
7787 of the reloc. */
7788 if (bfd_big_endian (input_bfd))
7789 rel->r_offset += 4;
7790 }
b49e97c9
TS
7791
7792 if (!use_saved_addend_p)
7793 {
7794 Elf_Internal_Shdr *rel_hdr;
7795
7796 /* If these relocations were originally of the REL variety,
7797 we must pull the addend out of the field that will be
7798 relocated. Otherwise, we simply use the contents of the
7799 RELA relocation. To determine which flavor or relocation
7800 this is, we depend on the fact that the INPUT_SECTION's
7801 REL_HDR is read before its REL_HDR2. */
7802 rel_hdr = &elf_section_data (input_section)->rel_hdr;
7803 if ((size_t) (rel - relocs)
7804 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
7805 rel_hdr = elf_section_data (input_section)->rel_hdr2;
7806 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
7807 {
d6f16593
MR
7808 bfd_byte *location = contents + rel->r_offset;
7809
b49e97c9 7810 /* Note that this is a REL relocation. */
b34976b6 7811 rela_relocation_p = FALSE;
b49e97c9
TS
7812
7813 /* Get the addend, which is stored in the input file. */
d6f16593
MR
7814 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE,
7815 location);
b49e97c9
TS
7816 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
7817 contents);
d6f16593
MR
7818 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, FALSE,
7819 location);
7820
b49e97c9
TS
7821 addend &= howto->src_mask;
7822
7823 /* For some kinds of relocations, the ADDEND is a
7824 combination of the addend stored in two different
7825 relocations. */
d6f16593 7826 if (r_type == R_MIPS_HI16 || r_type == R_MIPS16_HI16
b49e97c9
TS
7827 || (r_type == R_MIPS_GOT16
7828 && mips_elf_local_relocation_p (input_bfd, rel,
b34976b6 7829 local_sections, FALSE)))
b49e97c9 7830 {
b49e97c9
TS
7831 const Elf_Internal_Rela *lo16_relocation;
7832 reloc_howto_type *lo16_howto;
d6f16593
MR
7833 int lo16_type;
7834
7835 if (r_type == R_MIPS16_HI16)
7836 lo16_type = R_MIPS16_LO16;
7837 else
7838 lo16_type = R_MIPS_LO16;
b49e97c9
TS
7839
7840 /* The combined value is the sum of the HI16 addend,
7841 left-shifted by sixteen bits, and the LO16
7842 addend, sign extended. (Usually, the code does
7843 a `lui' of the HI16 value, and then an `addiu' of
7844 the LO16 value.)
7845
4030e8f6
CD
7846 Scan ahead to find a matching LO16 relocation.
7847
7848 According to the MIPS ELF ABI, the R_MIPS_LO16
7849 relocation must be immediately following.
7850 However, for the IRIX6 ABI, the next relocation
7851 may be a composed relocation consisting of
7852 several relocations for the same address. In
7853 that case, the R_MIPS_LO16 relocation may occur
7854 as one of these. We permit a similar extension
2d82d84d
TS
7855 in general, as that is useful for GCC.
7856
7857 In some cases GCC dead code elimination removes
7858 the LO16 but keeps the corresponding HI16. This
7859 is strictly speaking a violation of the ABI but
7860 not immediately harmful. */
4030e8f6 7861 lo16_relocation = mips_elf_next_relocation (input_bfd,
d6f16593 7862 lo16_type,
b49e97c9
TS
7863 rel, relend);
7864 if (lo16_relocation == NULL)
749b8d9d
L
7865 {
7866 const char *name;
7867
7868 if (h)
7869 name = h->root.root.string;
7870 else
7871 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
7872 local_syms + r_symndx,
7873 sec);
7874 (*_bfd_error_handler)
7875 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
7876 input_bfd, input_section, name, howto->name,
7877 rel->r_offset);
749b8d9d 7878 }
2d82d84d
TS
7879 else
7880 {
7881 bfd_byte *lo16_location;
7882 bfd_vma l;
7883
7884 lo16_location = contents + lo16_relocation->r_offset;
7885
7886 /* Obtain the addend kept there. */
7887 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd,
7888 lo16_type, FALSE);
7889 _bfd_mips16_elf_reloc_unshuffle (input_bfd, lo16_type,
7890 FALSE, lo16_location);
7891 l = mips_elf_obtain_contents (lo16_howto,
7892 lo16_relocation,
7893 input_bfd, contents);
7894 _bfd_mips16_elf_reloc_shuffle (input_bfd, lo16_type,
7895 FALSE, lo16_location);
7896 l &= lo16_howto->src_mask;
7897 l <<= lo16_howto->rightshift;
7898 l = _bfd_mips_elf_sign_extend (l, 16);
7899
7900 addend <<= 16;
7901
7902 /* Compute the combined addend. */
7903 addend += l;
7904 }
b49e97c9 7905 }
30ac9238
RS
7906 else
7907 addend <<= howto->rightshift;
b49e97c9
TS
7908 }
7909 else
7910 addend = rel->r_addend;
81d43bff
RS
7911 mips_elf_adjust_addend (output_bfd, info, input_bfd,
7912 local_syms, local_sections, rel);
b49e97c9
TS
7913 }
7914
1049f94e 7915 if (info->relocatable)
b49e97c9 7916 {
4a14403c 7917 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
b49e97c9
TS
7918 && bfd_big_endian (input_bfd))
7919 rel->r_offset -= 4;
7920
81d43bff 7921 if (!rela_relocation_p && rel->r_addend)
5a659663 7922 {
81d43bff 7923 addend += rel->r_addend;
30ac9238 7924 if (r_type == R_MIPS_HI16
4030e8f6 7925 || r_type == R_MIPS_GOT16)
5a659663
TS
7926 addend = mips_elf_high (addend);
7927 else if (r_type == R_MIPS_HIGHER)
7928 addend = mips_elf_higher (addend);
7929 else if (r_type == R_MIPS_HIGHEST)
7930 addend = mips_elf_highest (addend);
30ac9238
RS
7931 else
7932 addend >>= howto->rightshift;
b49e97c9 7933
30ac9238
RS
7934 /* We use the source mask, rather than the destination
7935 mask because the place to which we are writing will be
7936 source of the addend in the final link. */
b49e97c9
TS
7937 addend &= howto->src_mask;
7938
5a659663 7939 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
7940 /* See the comment above about using R_MIPS_64 in the 32-bit
7941 ABI. Here, we need to update the addend. It would be
7942 possible to get away with just using the R_MIPS_32 reloc
7943 but for endianness. */
7944 {
7945 bfd_vma sign_bits;
7946 bfd_vma low_bits;
7947 bfd_vma high_bits;
7948
7949 if (addend & ((bfd_vma) 1 << 31))
7950#ifdef BFD64
7951 sign_bits = ((bfd_vma) 1 << 32) - 1;
7952#else
7953 sign_bits = -1;
7954#endif
7955 else
7956 sign_bits = 0;
7957
7958 /* If we don't know that we have a 64-bit type,
7959 do two separate stores. */
7960 if (bfd_big_endian (input_bfd))
7961 {
7962 /* Store the sign-bits (which are most significant)
7963 first. */
7964 low_bits = sign_bits;
7965 high_bits = addend;
7966 }
7967 else
7968 {
7969 low_bits = addend;
7970 high_bits = sign_bits;
7971 }
7972 bfd_put_32 (input_bfd, low_bits,
7973 contents + rel->r_offset);
7974 bfd_put_32 (input_bfd, high_bits,
7975 contents + rel->r_offset + 4);
7976 continue;
7977 }
7978
7979 if (! mips_elf_perform_relocation (info, howto, rel, addend,
7980 input_bfd, input_section,
b34976b6
AM
7981 contents, FALSE))
7982 return FALSE;
b49e97c9
TS
7983 }
7984
7985 /* Go on to the next relocation. */
7986 continue;
7987 }
7988
7989 /* In the N32 and 64-bit ABIs there may be multiple consecutive
7990 relocations for the same offset. In that case we are
7991 supposed to treat the output of each relocation as the addend
7992 for the next. */
7993 if (rel + 1 < relend
7994 && rel->r_offset == rel[1].r_offset
7995 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
b34976b6 7996 use_saved_addend_p = TRUE;
b49e97c9 7997 else
b34976b6 7998 use_saved_addend_p = FALSE;
b49e97c9
TS
7999
8000 /* Figure out what value we are supposed to relocate. */
8001 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
8002 input_section, info, rel,
8003 addend, howto, local_syms,
8004 local_sections, &value,
bce03d3d
AO
8005 &name, &require_jalx,
8006 use_saved_addend_p))
b49e97c9
TS
8007 {
8008 case bfd_reloc_continue:
8009 /* There's nothing to do. */
8010 continue;
8011
8012 case bfd_reloc_undefined:
8013 /* mips_elf_calculate_relocation already called the
8014 undefined_symbol callback. There's no real point in
8015 trying to perform the relocation at this point, so we
8016 just skip ahead to the next relocation. */
8017 continue;
8018
8019 case bfd_reloc_notsupported:
8020 msg = _("internal error: unsupported relocation error");
8021 info->callbacks->warning
8022 (info, msg, name, input_bfd, input_section, rel->r_offset);
b34976b6 8023 return FALSE;
b49e97c9
TS
8024
8025 case bfd_reloc_overflow:
8026 if (use_saved_addend_p)
8027 /* Ignore overflow until we reach the last relocation for
8028 a given location. */
8029 ;
8030 else
8031 {
8032 BFD_ASSERT (name != NULL);
8033 if (! ((*info->callbacks->reloc_overflow)
dfeffb9f 8034 (info, NULL, name, howto->name, (bfd_vma) 0,
b49e97c9 8035 input_bfd, input_section, rel->r_offset)))
b34976b6 8036 return FALSE;
b49e97c9
TS
8037 }
8038 break;
8039
8040 case bfd_reloc_ok:
8041 break;
8042
8043 default:
8044 abort ();
8045 break;
8046 }
8047
8048 /* If we've got another relocation for the address, keep going
8049 until we reach the last one. */
8050 if (use_saved_addend_p)
8051 {
8052 addend = value;
8053 continue;
8054 }
8055
4a14403c 8056 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
8057 /* See the comment above about using R_MIPS_64 in the 32-bit
8058 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
8059 that calculated the right value. Now, however, we
8060 sign-extend the 32-bit result to 64-bits, and store it as a
8061 64-bit value. We are especially generous here in that we
8062 go to extreme lengths to support this usage on systems with
8063 only a 32-bit VMA. */
8064 {
8065 bfd_vma sign_bits;
8066 bfd_vma low_bits;
8067 bfd_vma high_bits;
8068
8069 if (value & ((bfd_vma) 1 << 31))
8070#ifdef BFD64
8071 sign_bits = ((bfd_vma) 1 << 32) - 1;
8072#else
8073 sign_bits = -1;
8074#endif
8075 else
8076 sign_bits = 0;
8077
8078 /* If we don't know that we have a 64-bit type,
8079 do two separate stores. */
8080 if (bfd_big_endian (input_bfd))
8081 {
8082 /* Undo what we did above. */
8083 rel->r_offset -= 4;
8084 /* Store the sign-bits (which are most significant)
8085 first. */
8086 low_bits = sign_bits;
8087 high_bits = value;
8088 }
8089 else
8090 {
8091 low_bits = value;
8092 high_bits = sign_bits;
8093 }
8094 bfd_put_32 (input_bfd, low_bits,
8095 contents + rel->r_offset);
8096 bfd_put_32 (input_bfd, high_bits,
8097 contents + rel->r_offset + 4);
8098 continue;
8099 }
8100
8101 /* Actually perform the relocation. */
8102 if (! mips_elf_perform_relocation (info, howto, rel, value,
8103 input_bfd, input_section,
8104 contents, require_jalx))
b34976b6 8105 return FALSE;
b49e97c9
TS
8106 }
8107
b34976b6 8108 return TRUE;
b49e97c9
TS
8109}
8110\f
8111/* If NAME is one of the special IRIX6 symbols defined by the linker,
8112 adjust it appropriately now. */
8113
8114static void
9719ad41
RS
8115mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
8116 const char *name, Elf_Internal_Sym *sym)
b49e97c9
TS
8117{
8118 /* The linker script takes care of providing names and values for
8119 these, but we must place them into the right sections. */
8120 static const char* const text_section_symbols[] = {
8121 "_ftext",
8122 "_etext",
8123 "__dso_displacement",
8124 "__elf_header",
8125 "__program_header_table",
8126 NULL
8127 };
8128
8129 static const char* const data_section_symbols[] = {
8130 "_fdata",
8131 "_edata",
8132 "_end",
8133 "_fbss",
8134 NULL
8135 };
8136
8137 const char* const *p;
8138 int i;
8139
8140 for (i = 0; i < 2; ++i)
8141 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
8142 *p;
8143 ++p)
8144 if (strcmp (*p, name) == 0)
8145 {
8146 /* All of these symbols are given type STT_SECTION by the
8147 IRIX6 linker. */
8148 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
e10609d3 8149 sym->st_other = STO_PROTECTED;
b49e97c9
TS
8150
8151 /* The IRIX linker puts these symbols in special sections. */
8152 if (i == 0)
8153 sym->st_shndx = SHN_MIPS_TEXT;
8154 else
8155 sym->st_shndx = SHN_MIPS_DATA;
8156
8157 break;
8158 }
8159}
8160
8161/* Finish up dynamic symbol handling. We set the contents of various
8162 dynamic sections here. */
8163
b34976b6 8164bfd_boolean
9719ad41
RS
8165_bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
8166 struct bfd_link_info *info,
8167 struct elf_link_hash_entry *h,
8168 Elf_Internal_Sym *sym)
b49e97c9
TS
8169{
8170 bfd *dynobj;
b49e97c9 8171 asection *sgot;
f4416af6 8172 struct mips_got_info *g, *gg;
b49e97c9 8173 const char *name;
3d6746ca 8174 int idx;
5108fc1b 8175 struct mips_elf_link_hash_table *htab;
b49e97c9 8176
5108fc1b 8177 htab = mips_elf_hash_table (info);
b49e97c9 8178 dynobj = elf_hash_table (info)->dynobj;
b49e97c9 8179
c5ae1840 8180 if (h->plt.offset != MINUS_ONE)
b49e97c9
TS
8181 {
8182 asection *s;
5108fc1b 8183 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
b49e97c9
TS
8184
8185 /* This symbol has a stub. Set it up. */
8186
8187 BFD_ASSERT (h->dynindx != -1);
8188
8189 s = bfd_get_section_by_name (dynobj,
8190 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8191 BFD_ASSERT (s != NULL);
8192
5108fc1b
RS
8193 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8194 || (h->dynindx <= 0xffff));
3d6746ca
DD
8195
8196 /* Values up to 2^31 - 1 are allowed. Larger values would cause
5108fc1b
RS
8197 sign extension at runtime in the stub, resulting in a negative
8198 index value. */
8199 if (h->dynindx & ~0x7fffffff)
b34976b6 8200 return FALSE;
b49e97c9
TS
8201
8202 /* Fill the stub. */
3d6746ca
DD
8203 idx = 0;
8204 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
8205 idx += 4;
8206 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
8207 idx += 4;
5108fc1b 8208 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
3d6746ca 8209 {
5108fc1b 8210 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
3d6746ca
DD
8211 stub + idx);
8212 idx += 4;
8213 }
8214 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
8215 idx += 4;
b49e97c9 8216
3d6746ca
DD
8217 /* If a large stub is not required and sign extension is not a
8218 problem, then use legacy code in the stub. */
5108fc1b
RS
8219 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8220 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
8221 else if (h->dynindx & ~0x7fff)
3d6746ca
DD
8222 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
8223 else
5108fc1b
RS
8224 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
8225 stub + idx);
8226
eea6121a 8227 BFD_ASSERT (h->plt.offset <= s->size);
5108fc1b 8228 memcpy (s->contents + h->plt.offset, stub, htab->function_stub_size);
b49e97c9
TS
8229
8230 /* Mark the symbol as undefined. plt.offset != -1 occurs
8231 only for the referenced symbol. */
8232 sym->st_shndx = SHN_UNDEF;
8233
8234 /* The run-time linker uses the st_value field of the symbol
8235 to reset the global offset table entry for this external
8236 to its stub address when unlinking a shared object. */
c5ae1840
TS
8237 sym->st_value = (s->output_section->vma + s->output_offset
8238 + h->plt.offset);
b49e97c9
TS
8239 }
8240
8241 BFD_ASSERT (h->dynindx != -1
f5385ebf 8242 || h->forced_local);
b49e97c9 8243
f4416af6 8244 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9 8245 BFD_ASSERT (sgot != NULL);
f4416af6 8246 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
f0abc2a1 8247 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
8248 BFD_ASSERT (g != NULL);
8249
8250 /* Run through the global symbol table, creating GOT entries for all
8251 the symbols that need them. */
8252 if (g->global_gotsym != NULL
8253 && h->dynindx >= g->global_gotsym->dynindx)
8254 {
8255 bfd_vma offset;
8256 bfd_vma value;
8257
6eaa6adc 8258 value = sym->st_value;
0f20cc35 8259 offset = mips_elf_global_got_index (dynobj, output_bfd, h, R_MIPS_GOT16, info);
b49e97c9
TS
8260 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
8261 }
8262
0f20cc35 8263 if (g->next && h->dynindx != -1 && h->type != STT_TLS)
f4416af6
AO
8264 {
8265 struct mips_got_entry e, *p;
0626d451 8266 bfd_vma entry;
f4416af6 8267 bfd_vma offset;
f4416af6
AO
8268
8269 gg = g;
8270
8271 e.abfd = output_bfd;
8272 e.symndx = -1;
8273 e.d.h = (struct mips_elf_link_hash_entry *)h;
0f20cc35 8274 e.tls_type = 0;
143d77c5 8275
f4416af6
AO
8276 for (g = g->next; g->next != gg; g = g->next)
8277 {
8278 if (g->got_entries
8279 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
8280 &e)))
8281 {
8282 offset = p->gotidx;
0626d451
RS
8283 if (info->shared
8284 || (elf_hash_table (info)->dynamic_sections_created
8285 && p->d.h != NULL
f5385ebf
AM
8286 && p->d.h->root.def_dynamic
8287 && !p->d.h->root.def_regular))
0626d451
RS
8288 {
8289 /* Create an R_MIPS_REL32 relocation for this entry. Due to
8290 the various compatibility problems, it's easier to mock
8291 up an R_MIPS_32 or R_MIPS_64 relocation and leave
8292 mips_elf_create_dynamic_relocation to calculate the
8293 appropriate addend. */
8294 Elf_Internal_Rela rel[3];
8295
8296 memset (rel, 0, sizeof (rel));
8297 if (ABI_64_P (output_bfd))
8298 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
8299 else
8300 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
8301 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
8302
8303 entry = 0;
8304 if (! (mips_elf_create_dynamic_relocation
8305 (output_bfd, info, rel,
8306 e.d.h, NULL, sym->st_value, &entry, sgot)))
8307 return FALSE;
8308 }
8309 else
8310 entry = sym->st_value;
8311 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
f4416af6
AO
8312 }
8313 }
8314 }
8315
b49e97c9
TS
8316 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
8317 name = h->root.root.string;
8318 if (strcmp (name, "_DYNAMIC") == 0
22edb2f1 8319 || h == elf_hash_table (info)->hgot)
b49e97c9
TS
8320 sym->st_shndx = SHN_ABS;
8321 else if (strcmp (name, "_DYNAMIC_LINK") == 0
8322 || strcmp (name, "_DYNAMIC_LINKING") == 0)
8323 {
8324 sym->st_shndx = SHN_ABS;
8325 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8326 sym->st_value = 1;
8327 }
4a14403c 8328 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
b49e97c9
TS
8329 {
8330 sym->st_shndx = SHN_ABS;
8331 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8332 sym->st_value = elf_gp (output_bfd);
8333 }
8334 else if (SGI_COMPAT (output_bfd))
8335 {
8336 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
8337 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
8338 {
8339 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8340 sym->st_other = STO_PROTECTED;
8341 sym->st_value = 0;
8342 sym->st_shndx = SHN_MIPS_DATA;
8343 }
8344 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
8345 {
8346 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8347 sym->st_other = STO_PROTECTED;
8348 sym->st_value = mips_elf_hash_table (info)->procedure_count;
8349 sym->st_shndx = SHN_ABS;
8350 }
8351 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
8352 {
8353 if (h->type == STT_FUNC)
8354 sym->st_shndx = SHN_MIPS_TEXT;
8355 else if (h->type == STT_OBJECT)
8356 sym->st_shndx = SHN_MIPS_DATA;
8357 }
8358 }
8359
8360 /* Handle the IRIX6-specific symbols. */
8361 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8362 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
8363
8364 if (! info->shared)
8365 {
8366 if (! mips_elf_hash_table (info)->use_rld_obj_head
8367 && (strcmp (name, "__rld_map") == 0
8368 || strcmp (name, "__RLD_MAP") == 0))
8369 {
8370 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
8371 BFD_ASSERT (s != NULL);
8372 sym->st_value = s->output_section->vma + s->output_offset;
9719ad41 8373 bfd_put_32 (output_bfd, 0, s->contents);
b49e97c9
TS
8374 if (mips_elf_hash_table (info)->rld_value == 0)
8375 mips_elf_hash_table (info)->rld_value = sym->st_value;
8376 }
8377 else if (mips_elf_hash_table (info)->use_rld_obj_head
8378 && strcmp (name, "__rld_obj_head") == 0)
8379 {
8380 /* IRIX6 does not use a .rld_map section. */
8381 if (IRIX_COMPAT (output_bfd) == ict_irix5
8382 || IRIX_COMPAT (output_bfd) == ict_none)
8383 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
8384 != NULL);
8385 mips_elf_hash_table (info)->rld_value = sym->st_value;
8386 }
8387 }
8388
8389 /* If this is a mips16 symbol, force the value to be even. */
79cda7cf
FF
8390 if (sym->st_other == STO_MIPS16)
8391 sym->st_value &= ~1;
b49e97c9 8392
b34976b6 8393 return TRUE;
b49e97c9
TS
8394}
8395
0a44bf69
RS
8396/* Likewise, for VxWorks. */
8397
8398bfd_boolean
8399_bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
8400 struct bfd_link_info *info,
8401 struct elf_link_hash_entry *h,
8402 Elf_Internal_Sym *sym)
8403{
8404 bfd *dynobj;
8405 asection *sgot;
8406 struct mips_got_info *g;
8407 struct mips_elf_link_hash_table *htab;
8408
8409 htab = mips_elf_hash_table (info);
8410 dynobj = elf_hash_table (info)->dynobj;
8411
8412 if (h->plt.offset != (bfd_vma) -1)
8413 {
6d79d2ed 8414 bfd_byte *loc;
0a44bf69
RS
8415 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
8416 Elf_Internal_Rela rel;
8417 static const bfd_vma *plt_entry;
8418
8419 BFD_ASSERT (h->dynindx != -1);
8420 BFD_ASSERT (htab->splt != NULL);
8421 BFD_ASSERT (h->plt.offset <= htab->splt->size);
8422
8423 /* Calculate the address of the .plt entry. */
8424 plt_address = (htab->splt->output_section->vma
8425 + htab->splt->output_offset
8426 + h->plt.offset);
8427
8428 /* Calculate the index of the entry. */
8429 plt_index = ((h->plt.offset - htab->plt_header_size)
8430 / htab->plt_entry_size);
8431
8432 /* Calculate the address of the .got.plt entry. */
8433 got_address = (htab->sgotplt->output_section->vma
8434 + htab->sgotplt->output_offset
8435 + plt_index * 4);
8436
8437 /* Calculate the offset of the .got.plt entry from
8438 _GLOBAL_OFFSET_TABLE_. */
8439 got_offset = mips_elf_gotplt_index (info, h);
8440
8441 /* Calculate the offset for the branch at the start of the PLT
8442 entry. The branch jumps to the beginning of .plt. */
8443 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
8444
8445 /* Fill in the initial value of the .got.plt entry. */
8446 bfd_put_32 (output_bfd, plt_address,
8447 htab->sgotplt->contents + plt_index * 4);
8448
8449 /* Find out where the .plt entry should go. */
8450 loc = htab->splt->contents + h->plt.offset;
8451
8452 if (info->shared)
8453 {
8454 plt_entry = mips_vxworks_shared_plt_entry;
8455 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8456 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8457 }
8458 else
8459 {
8460 bfd_vma got_address_high, got_address_low;
8461
8462 plt_entry = mips_vxworks_exec_plt_entry;
8463 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
8464 got_address_low = got_address & 0xffff;
8465
8466 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8467 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8468 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
8469 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
8470 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8471 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8472 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
8473 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
8474
8475 loc = (htab->srelplt2->contents
8476 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
8477
8478 /* Emit a relocation for the .got.plt entry. */
8479 rel.r_offset = got_address;
8480 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8481 rel.r_addend = h->plt.offset;
8482 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8483
8484 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
8485 loc += sizeof (Elf32_External_Rela);
8486 rel.r_offset = plt_address + 8;
8487 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8488 rel.r_addend = got_offset;
8489 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8490
8491 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
8492 loc += sizeof (Elf32_External_Rela);
8493 rel.r_offset += 4;
8494 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8495 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8496 }
8497
8498 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
8499 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
8500 rel.r_offset = got_address;
8501 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
8502 rel.r_addend = 0;
8503 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8504
8505 if (!h->def_regular)
8506 sym->st_shndx = SHN_UNDEF;
8507 }
8508
8509 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
8510
8511 sgot = mips_elf_got_section (dynobj, FALSE);
8512 BFD_ASSERT (sgot != NULL);
8513 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8514 g = mips_elf_section_data (sgot)->u.got_info;
8515 BFD_ASSERT (g != NULL);
8516
8517 /* See if this symbol has an entry in the GOT. */
8518 if (g->global_gotsym != NULL
8519 && h->dynindx >= g->global_gotsym->dynindx)
8520 {
8521 bfd_vma offset;
8522 Elf_Internal_Rela outrel;
8523 bfd_byte *loc;
8524 asection *s;
8525
8526 /* Install the symbol value in the GOT. */
8527 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
8528 R_MIPS_GOT16, info);
8529 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
8530
8531 /* Add a dynamic relocation for it. */
8532 s = mips_elf_rel_dyn_section (info, FALSE);
8533 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
8534 outrel.r_offset = (sgot->output_section->vma
8535 + sgot->output_offset
8536 + offset);
8537 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
8538 outrel.r_addend = 0;
8539 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
8540 }
8541
8542 /* Emit a copy reloc, if needed. */
8543 if (h->needs_copy)
8544 {
8545 Elf_Internal_Rela rel;
8546
8547 BFD_ASSERT (h->dynindx != -1);
8548
8549 rel.r_offset = (h->root.u.def.section->output_section->vma
8550 + h->root.u.def.section->output_offset
8551 + h->root.u.def.value);
8552 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
8553 rel.r_addend = 0;
8554 bfd_elf32_swap_reloca_out (output_bfd, &rel,
8555 htab->srelbss->contents
8556 + (htab->srelbss->reloc_count
8557 * sizeof (Elf32_External_Rela)));
8558 ++htab->srelbss->reloc_count;
8559 }
8560
8561 /* If this is a mips16 symbol, force the value to be even. */
8562 if (sym->st_other == STO_MIPS16)
8563 sym->st_value &= ~1;
8564
8565 return TRUE;
8566}
8567
8568/* Install the PLT header for a VxWorks executable and finalize the
8569 contents of .rela.plt.unloaded. */
8570
8571static void
8572mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
8573{
8574 Elf_Internal_Rela rela;
8575 bfd_byte *loc;
8576 bfd_vma got_value, got_value_high, got_value_low, plt_address;
8577 static const bfd_vma *plt_entry;
8578 struct mips_elf_link_hash_table *htab;
8579
8580 htab = mips_elf_hash_table (info);
8581 plt_entry = mips_vxworks_exec_plt0_entry;
8582
8583 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
8584 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
8585 + htab->root.hgot->root.u.def.section->output_offset
8586 + htab->root.hgot->root.u.def.value);
8587
8588 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
8589 got_value_low = got_value & 0xffff;
8590
8591 /* Calculate the address of the PLT header. */
8592 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
8593
8594 /* Install the PLT header. */
8595 loc = htab->splt->contents;
8596 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
8597 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
8598 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
8599 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
8600 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8601 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8602
8603 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
8604 loc = htab->srelplt2->contents;
8605 rela.r_offset = plt_address;
8606 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8607 rela.r_addend = 0;
8608 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8609 loc += sizeof (Elf32_External_Rela);
8610
8611 /* Output the relocation for the following addiu of
8612 %lo(_GLOBAL_OFFSET_TABLE_). */
8613 rela.r_offset += 4;
8614 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8615 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8616 loc += sizeof (Elf32_External_Rela);
8617
8618 /* Fix up the remaining relocations. They may have the wrong
8619 symbol index for _G_O_T_ or _P_L_T_ depending on the order
8620 in which symbols were output. */
8621 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
8622 {
8623 Elf_Internal_Rela rel;
8624
8625 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8626 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8627 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8628 loc += sizeof (Elf32_External_Rela);
8629
8630 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8631 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8632 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8633 loc += sizeof (Elf32_External_Rela);
8634
8635 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8636 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8637 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8638 loc += sizeof (Elf32_External_Rela);
8639 }
8640}
8641
8642/* Install the PLT header for a VxWorks shared library. */
8643
8644static void
8645mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
8646{
8647 unsigned int i;
8648 struct mips_elf_link_hash_table *htab;
8649
8650 htab = mips_elf_hash_table (info);
8651
8652 /* We just need to copy the entry byte-by-byte. */
8653 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
8654 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
8655 htab->splt->contents + i * 4);
8656}
8657
b49e97c9
TS
8658/* Finish up the dynamic sections. */
8659
b34976b6 8660bfd_boolean
9719ad41
RS
8661_bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
8662 struct bfd_link_info *info)
b49e97c9
TS
8663{
8664 bfd *dynobj;
8665 asection *sdyn;
8666 asection *sgot;
f4416af6 8667 struct mips_got_info *gg, *g;
0a44bf69 8668 struct mips_elf_link_hash_table *htab;
b49e97c9 8669
0a44bf69 8670 htab = mips_elf_hash_table (info);
b49e97c9
TS
8671 dynobj = elf_hash_table (info)->dynobj;
8672
8673 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
8674
f4416af6 8675 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9 8676 if (sgot == NULL)
f4416af6 8677 gg = g = NULL;
b49e97c9
TS
8678 else
8679 {
f4416af6
AO
8680 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8681 gg = mips_elf_section_data (sgot)->u.got_info;
8682 BFD_ASSERT (gg != NULL);
8683 g = mips_elf_got_for_ibfd (gg, output_bfd);
b49e97c9
TS
8684 BFD_ASSERT (g != NULL);
8685 }
8686
8687 if (elf_hash_table (info)->dynamic_sections_created)
8688 {
8689 bfd_byte *b;
943284cc 8690 int dyn_to_skip = 0, dyn_skipped = 0;
b49e97c9
TS
8691
8692 BFD_ASSERT (sdyn != NULL);
8693 BFD_ASSERT (g != NULL);
8694
8695 for (b = sdyn->contents;
eea6121a 8696 b < sdyn->contents + sdyn->size;
b49e97c9
TS
8697 b += MIPS_ELF_DYN_SIZE (dynobj))
8698 {
8699 Elf_Internal_Dyn dyn;
8700 const char *name;
8701 size_t elemsize;
8702 asection *s;
b34976b6 8703 bfd_boolean swap_out_p;
b49e97c9
TS
8704
8705 /* Read in the current dynamic entry. */
8706 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8707
8708 /* Assume that we're going to modify it and write it out. */
b34976b6 8709 swap_out_p = TRUE;
b49e97c9
TS
8710
8711 switch (dyn.d_tag)
8712 {
8713 case DT_RELENT:
b49e97c9
TS
8714 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
8715 break;
8716
0a44bf69
RS
8717 case DT_RELAENT:
8718 BFD_ASSERT (htab->is_vxworks);
8719 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
8720 break;
8721
b49e97c9
TS
8722 case DT_STRSZ:
8723 /* Rewrite DT_STRSZ. */
8724 dyn.d_un.d_val =
8725 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
8726 break;
8727
8728 case DT_PLTGOT:
8729 name = ".got";
0a44bf69
RS
8730 if (htab->is_vxworks)
8731 {
8732 /* _GLOBAL_OFFSET_TABLE_ is defined to be the beginning
8733 of the ".got" section in DYNOBJ. */
8734 s = bfd_get_section_by_name (dynobj, name);
8735 BFD_ASSERT (s != NULL);
8736 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
8737 }
8738 else
8739 {
8740 s = bfd_get_section_by_name (output_bfd, name);
8741 BFD_ASSERT (s != NULL);
8742 dyn.d_un.d_ptr = s->vma;
8743 }
b49e97c9
TS
8744 break;
8745
8746 case DT_MIPS_RLD_VERSION:
8747 dyn.d_un.d_val = 1; /* XXX */
8748 break;
8749
8750 case DT_MIPS_FLAGS:
8751 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
8752 break;
8753
b49e97c9 8754 case DT_MIPS_TIME_STAMP:
6edfbbad
DJ
8755 {
8756 time_t t;
8757 time (&t);
8758 dyn.d_un.d_val = t;
8759 }
b49e97c9
TS
8760 break;
8761
8762 case DT_MIPS_ICHECKSUM:
8763 /* XXX FIXME: */
b34976b6 8764 swap_out_p = FALSE;
b49e97c9
TS
8765 break;
8766
8767 case DT_MIPS_IVERSION:
8768 /* XXX FIXME: */
b34976b6 8769 swap_out_p = FALSE;
b49e97c9
TS
8770 break;
8771
8772 case DT_MIPS_BASE_ADDRESS:
8773 s = output_bfd->sections;
8774 BFD_ASSERT (s != NULL);
8775 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
8776 break;
8777
8778 case DT_MIPS_LOCAL_GOTNO:
8779 dyn.d_un.d_val = g->local_gotno;
8780 break;
8781
8782 case DT_MIPS_UNREFEXTNO:
8783 /* The index into the dynamic symbol table which is the
8784 entry of the first external symbol that is not
8785 referenced within the same object. */
8786 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
8787 break;
8788
8789 case DT_MIPS_GOTSYM:
f4416af6 8790 if (gg->global_gotsym)
b49e97c9 8791 {
f4416af6 8792 dyn.d_un.d_val = gg->global_gotsym->dynindx;
b49e97c9
TS
8793 break;
8794 }
8795 /* In case if we don't have global got symbols we default
8796 to setting DT_MIPS_GOTSYM to the same value as
8797 DT_MIPS_SYMTABNO, so we just fall through. */
8798
8799 case DT_MIPS_SYMTABNO:
8800 name = ".dynsym";
8801 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
8802 s = bfd_get_section_by_name (output_bfd, name);
8803 BFD_ASSERT (s != NULL);
8804
eea6121a 8805 dyn.d_un.d_val = s->size / elemsize;
b49e97c9
TS
8806 break;
8807
8808 case DT_MIPS_HIPAGENO:
0a44bf69 8809 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO (info);
b49e97c9
TS
8810 break;
8811
8812 case DT_MIPS_RLD_MAP:
8813 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
8814 break;
8815
8816 case DT_MIPS_OPTIONS:
8817 s = (bfd_get_section_by_name
8818 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
8819 dyn.d_un.d_ptr = s->vma;
8820 break;
8821
0a44bf69
RS
8822 case DT_RELASZ:
8823 BFD_ASSERT (htab->is_vxworks);
8824 /* The count does not include the JUMP_SLOT relocations. */
8825 if (htab->srelplt)
8826 dyn.d_un.d_val -= htab->srelplt->size;
8827 break;
8828
8829 case DT_PLTREL:
8830 BFD_ASSERT (htab->is_vxworks);
8831 dyn.d_un.d_val = DT_RELA;
8832 break;
8833
8834 case DT_PLTRELSZ:
8835 BFD_ASSERT (htab->is_vxworks);
8836 dyn.d_un.d_val = htab->srelplt->size;
8837 break;
8838
8839 case DT_JMPREL:
8840 BFD_ASSERT (htab->is_vxworks);
8841 dyn.d_un.d_val = (htab->srelplt->output_section->vma
8842 + htab->srelplt->output_offset);
8843 break;
8844
943284cc
DJ
8845 case DT_TEXTREL:
8846 /* If we didn't need any text relocations after all, delete
8847 the dynamic tag. */
8848 if (!(info->flags & DF_TEXTREL))
8849 {
8850 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
8851 swap_out_p = FALSE;
8852 }
8853 break;
8854
8855 case DT_FLAGS:
8856 /* If we didn't need any text relocations after all, clear
8857 DF_TEXTREL from DT_FLAGS. */
8858 if (!(info->flags & DF_TEXTREL))
8859 dyn.d_un.d_val &= ~DF_TEXTREL;
8860 else
8861 swap_out_p = FALSE;
8862 break;
8863
b49e97c9 8864 default:
b34976b6 8865 swap_out_p = FALSE;
b49e97c9
TS
8866 break;
8867 }
8868
943284cc 8869 if (swap_out_p || dyn_skipped)
b49e97c9 8870 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
943284cc
DJ
8871 (dynobj, &dyn, b - dyn_skipped);
8872
8873 if (dyn_to_skip)
8874 {
8875 dyn_skipped += dyn_to_skip;
8876 dyn_to_skip = 0;
8877 }
b49e97c9 8878 }
943284cc
DJ
8879
8880 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
8881 if (dyn_skipped > 0)
8882 memset (b - dyn_skipped, 0, dyn_skipped);
b49e97c9
TS
8883 }
8884
eea6121a 8885 if (sgot != NULL && sgot->size > 0)
b49e97c9 8886 {
0a44bf69
RS
8887 if (htab->is_vxworks)
8888 {
8889 /* The first entry of the global offset table points to the
8890 ".dynamic" section. The second is initialized by the
8891 loader and contains the shared library identifier.
8892 The third is also initialized by the loader and points
8893 to the lazy resolution stub. */
8894 MIPS_ELF_PUT_WORD (output_bfd,
8895 sdyn->output_offset + sdyn->output_section->vma,
8896 sgot->contents);
8897 MIPS_ELF_PUT_WORD (output_bfd, 0,
8898 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8899 MIPS_ELF_PUT_WORD (output_bfd, 0,
8900 sgot->contents
8901 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
8902 }
8903 else
8904 {
8905 /* The first entry of the global offset table will be filled at
8906 runtime. The second entry will be used by some runtime loaders.
8907 This isn't the case of IRIX rld. */
8908 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
8909 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000,
8910 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8911 }
b49e97c9 8912
54938e2a
TS
8913 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
8914 = MIPS_ELF_GOT_SIZE (output_bfd);
8915 }
b49e97c9 8916
f4416af6
AO
8917 /* Generate dynamic relocations for the non-primary gots. */
8918 if (gg != NULL && gg->next)
8919 {
8920 Elf_Internal_Rela rel[3];
8921 bfd_vma addend = 0;
8922
8923 memset (rel, 0, sizeof (rel));
8924 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
8925
8926 for (g = gg->next; g->next != gg; g = g->next)
8927 {
0f20cc35
DJ
8928 bfd_vma index = g->next->local_gotno + g->next->global_gotno
8929 + g->next->tls_gotno;
f4416af6 8930
9719ad41 8931 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
f4416af6 8932 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
9719ad41 8933 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000, sgot->contents
f4416af6
AO
8934 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
8935
8936 if (! info->shared)
8937 continue;
8938
8939 while (index < g->assigned_gotno)
8940 {
8941 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
8942 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
8943 if (!(mips_elf_create_dynamic_relocation
8944 (output_bfd, info, rel, NULL,
8945 bfd_abs_section_ptr,
8946 0, &addend, sgot)))
8947 return FALSE;
8948 BFD_ASSERT (addend == 0);
8949 }
8950 }
8951 }
8952
3133ddbf
DJ
8953 /* The generation of dynamic relocations for the non-primary gots
8954 adds more dynamic relocations. We cannot count them until
8955 here. */
8956
8957 if (elf_hash_table (info)->dynamic_sections_created)
8958 {
8959 bfd_byte *b;
8960 bfd_boolean swap_out_p;
8961
8962 BFD_ASSERT (sdyn != NULL);
8963
8964 for (b = sdyn->contents;
8965 b < sdyn->contents + sdyn->size;
8966 b += MIPS_ELF_DYN_SIZE (dynobj))
8967 {
8968 Elf_Internal_Dyn dyn;
8969 asection *s;
8970
8971 /* Read in the current dynamic entry. */
8972 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8973
8974 /* Assume that we're going to modify it and write it out. */
8975 swap_out_p = TRUE;
8976
8977 switch (dyn.d_tag)
8978 {
8979 case DT_RELSZ:
8980 /* Reduce DT_RELSZ to account for any relocations we
8981 decided not to make. This is for the n64 irix rld,
8982 which doesn't seem to apply any relocations if there
8983 are trailing null entries. */
0a44bf69 8984 s = mips_elf_rel_dyn_section (info, FALSE);
3133ddbf
DJ
8985 dyn.d_un.d_val = (s->reloc_count
8986 * (ABI_64_P (output_bfd)
8987 ? sizeof (Elf64_Mips_External_Rel)
8988 : sizeof (Elf32_External_Rel)));
bcfdf036
RS
8989 /* Adjust the section size too. Tools like the prelinker
8990 can reasonably expect the values to the same. */
8991 elf_section_data (s->output_section)->this_hdr.sh_size
8992 = dyn.d_un.d_val;
3133ddbf
DJ
8993 break;
8994
8995 default:
8996 swap_out_p = FALSE;
8997 break;
8998 }
8999
9000 if (swap_out_p)
9001 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
9002 (dynobj, &dyn, b);
9003 }
9004 }
9005
b49e97c9 9006 {
b49e97c9
TS
9007 asection *s;
9008 Elf32_compact_rel cpt;
9009
b49e97c9
TS
9010 if (SGI_COMPAT (output_bfd))
9011 {
9012 /* Write .compact_rel section out. */
9013 s = bfd_get_section_by_name (dynobj, ".compact_rel");
9014 if (s != NULL)
9015 {
9016 cpt.id1 = 1;
9017 cpt.num = s->reloc_count;
9018 cpt.id2 = 2;
9019 cpt.offset = (s->output_section->filepos
9020 + sizeof (Elf32_External_compact_rel));
9021 cpt.reserved0 = 0;
9022 cpt.reserved1 = 0;
9023 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
9024 ((Elf32_External_compact_rel *)
9025 s->contents));
9026
9027 /* Clean up a dummy stub function entry in .text. */
9028 s = bfd_get_section_by_name (dynobj,
9029 MIPS_ELF_STUB_SECTION_NAME (dynobj));
9030 if (s != NULL)
9031 {
9032 file_ptr dummy_offset;
9033
5108fc1b
RS
9034 BFD_ASSERT (s->size >= htab->function_stub_size);
9035 dummy_offset = s->size - htab->function_stub_size;
b49e97c9 9036 memset (s->contents + dummy_offset, 0,
5108fc1b 9037 htab->function_stub_size);
b49e97c9
TS
9038 }
9039 }
9040 }
9041
0a44bf69
RS
9042 /* The psABI says that the dynamic relocations must be sorted in
9043 increasing order of r_symndx. The VxWorks EABI doesn't require
9044 this, and because the code below handles REL rather than RELA
9045 relocations, using it for VxWorks would be outright harmful. */
9046 if (!htab->is_vxworks)
b49e97c9 9047 {
0a44bf69
RS
9048 s = mips_elf_rel_dyn_section (info, FALSE);
9049 if (s != NULL
9050 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
9051 {
9052 reldyn_sorting_bfd = output_bfd;
b49e97c9 9053
0a44bf69
RS
9054 if (ABI_64_P (output_bfd))
9055 qsort ((Elf64_External_Rel *) s->contents + 1,
9056 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
9057 sort_dynamic_relocs_64);
9058 else
9059 qsort ((Elf32_External_Rel *) s->contents + 1,
9060 s->reloc_count - 1, sizeof (Elf32_External_Rel),
9061 sort_dynamic_relocs);
9062 }
b49e97c9 9063 }
b49e97c9
TS
9064 }
9065
0a44bf69
RS
9066 if (htab->is_vxworks && htab->splt->size > 0)
9067 {
9068 if (info->shared)
9069 mips_vxworks_finish_shared_plt (output_bfd, info);
9070 else
9071 mips_vxworks_finish_exec_plt (output_bfd, info);
9072 }
b34976b6 9073 return TRUE;
b49e97c9
TS
9074}
9075
b49e97c9 9076
64543e1a
RS
9077/* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
9078
9079static void
9719ad41 9080mips_set_isa_flags (bfd *abfd)
b49e97c9 9081{
64543e1a 9082 flagword val;
b49e97c9
TS
9083
9084 switch (bfd_get_mach (abfd))
9085 {
9086 default:
9087 case bfd_mach_mips3000:
9088 val = E_MIPS_ARCH_1;
9089 break;
9090
9091 case bfd_mach_mips3900:
9092 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
9093 break;
9094
9095 case bfd_mach_mips6000:
9096 val = E_MIPS_ARCH_2;
9097 break;
9098
9099 case bfd_mach_mips4000:
9100 case bfd_mach_mips4300:
9101 case bfd_mach_mips4400:
9102 case bfd_mach_mips4600:
9103 val = E_MIPS_ARCH_3;
9104 break;
9105
9106 case bfd_mach_mips4010:
9107 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
9108 break;
9109
9110 case bfd_mach_mips4100:
9111 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
9112 break;
9113
9114 case bfd_mach_mips4111:
9115 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
9116 break;
9117
00707a0e
RS
9118 case bfd_mach_mips4120:
9119 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
9120 break;
9121
b49e97c9
TS
9122 case bfd_mach_mips4650:
9123 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
9124 break;
9125
00707a0e
RS
9126 case bfd_mach_mips5400:
9127 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
9128 break;
9129
9130 case bfd_mach_mips5500:
9131 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
9132 break;
9133
0d2e43ed
ILT
9134 case bfd_mach_mips9000:
9135 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
9136 break;
9137
b49e97c9 9138 case bfd_mach_mips5000:
5a7ea749 9139 case bfd_mach_mips7000:
b49e97c9
TS
9140 case bfd_mach_mips8000:
9141 case bfd_mach_mips10000:
9142 case bfd_mach_mips12000:
9143 val = E_MIPS_ARCH_4;
9144 break;
9145
9146 case bfd_mach_mips5:
9147 val = E_MIPS_ARCH_5;
9148 break;
9149
9150 case bfd_mach_mips_sb1:
9151 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
9152 break;
9153
9154 case bfd_mach_mipsisa32:
9155 val = E_MIPS_ARCH_32;
9156 break;
9157
9158 case bfd_mach_mipsisa64:
9159 val = E_MIPS_ARCH_64;
af7ee8bf
CD
9160 break;
9161
9162 case bfd_mach_mipsisa32r2:
9163 val = E_MIPS_ARCH_32R2;
9164 break;
5f74bc13
CD
9165
9166 case bfd_mach_mipsisa64r2:
9167 val = E_MIPS_ARCH_64R2;
9168 break;
b49e97c9 9169 }
b49e97c9
TS
9170 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
9171 elf_elfheader (abfd)->e_flags |= val;
9172
64543e1a
RS
9173}
9174
9175
9176/* The final processing done just before writing out a MIPS ELF object
9177 file. This gets the MIPS architecture right based on the machine
9178 number. This is used by both the 32-bit and the 64-bit ABI. */
9179
9180void
9719ad41
RS
9181_bfd_mips_elf_final_write_processing (bfd *abfd,
9182 bfd_boolean linker ATTRIBUTE_UNUSED)
64543e1a
RS
9183{
9184 unsigned int i;
9185 Elf_Internal_Shdr **hdrpp;
9186 const char *name;
9187 asection *sec;
9188
9189 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
9190 is nonzero. This is for compatibility with old objects, which used
9191 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
9192 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
9193 mips_set_isa_flags (abfd);
9194
b49e97c9
TS
9195 /* Set the sh_info field for .gptab sections and other appropriate
9196 info for each special section. */
9197 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
9198 i < elf_numsections (abfd);
9199 i++, hdrpp++)
9200 {
9201 switch ((*hdrpp)->sh_type)
9202 {
9203 case SHT_MIPS_MSYM:
9204 case SHT_MIPS_LIBLIST:
9205 sec = bfd_get_section_by_name (abfd, ".dynstr");
9206 if (sec != NULL)
9207 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9208 break;
9209
9210 case SHT_MIPS_GPTAB:
9211 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9212 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9213 BFD_ASSERT (name != NULL
0112cd26 9214 && CONST_STRNEQ (name, ".gptab."));
b49e97c9
TS
9215 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
9216 BFD_ASSERT (sec != NULL);
9217 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9218 break;
9219
9220 case SHT_MIPS_CONTENT:
9221 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9222 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9223 BFD_ASSERT (name != NULL
0112cd26 9224 && CONST_STRNEQ (name, ".MIPS.content"));
b49e97c9
TS
9225 sec = bfd_get_section_by_name (abfd,
9226 name + sizeof ".MIPS.content" - 1);
9227 BFD_ASSERT (sec != NULL);
9228 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9229 break;
9230
9231 case SHT_MIPS_SYMBOL_LIB:
9232 sec = bfd_get_section_by_name (abfd, ".dynsym");
9233 if (sec != NULL)
9234 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9235 sec = bfd_get_section_by_name (abfd, ".liblist");
9236 if (sec != NULL)
9237 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9238 break;
9239
9240 case SHT_MIPS_EVENTS:
9241 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9242 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9243 BFD_ASSERT (name != NULL);
0112cd26 9244 if (CONST_STRNEQ (name, ".MIPS.events"))
b49e97c9
TS
9245 sec = bfd_get_section_by_name (abfd,
9246 name + sizeof ".MIPS.events" - 1);
9247 else
9248 {
0112cd26 9249 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
b49e97c9
TS
9250 sec = bfd_get_section_by_name (abfd,
9251 (name
9252 + sizeof ".MIPS.post_rel" - 1));
9253 }
9254 BFD_ASSERT (sec != NULL);
9255 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9256 break;
9257
9258 }
9259 }
9260}
9261\f
8dc1a139 9262/* When creating an IRIX5 executable, we need REGINFO and RTPROC
b49e97c9
TS
9263 segments. */
9264
9265int
a6b96beb
AM
9266_bfd_mips_elf_additional_program_headers (bfd *abfd,
9267 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
9268{
9269 asection *s;
9270 int ret = 0;
9271
9272 /* See if we need a PT_MIPS_REGINFO segment. */
9273 s = bfd_get_section_by_name (abfd, ".reginfo");
9274 if (s && (s->flags & SEC_LOAD))
9275 ++ret;
9276
9277 /* See if we need a PT_MIPS_OPTIONS segment. */
9278 if (IRIX_COMPAT (abfd) == ict_irix6
9279 && bfd_get_section_by_name (abfd,
9280 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
9281 ++ret;
9282
9283 /* See if we need a PT_MIPS_RTPROC segment. */
9284 if (IRIX_COMPAT (abfd) == ict_irix5
9285 && bfd_get_section_by_name (abfd, ".dynamic")
9286 && bfd_get_section_by_name (abfd, ".mdebug"))
9287 ++ret;
9288
98c904a8
RS
9289 /* Allocate a PT_NULL header in dynamic objects. See
9290 _bfd_mips_elf_modify_segment_map for details. */
9291 if (!SGI_COMPAT (abfd)
9292 && bfd_get_section_by_name (abfd, ".dynamic"))
9293 ++ret;
9294
b49e97c9
TS
9295 return ret;
9296}
9297
8dc1a139 9298/* Modify the segment map for an IRIX5 executable. */
b49e97c9 9299
b34976b6 9300bfd_boolean
9719ad41
RS
9301_bfd_mips_elf_modify_segment_map (bfd *abfd,
9302 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
9303{
9304 asection *s;
9305 struct elf_segment_map *m, **pm;
9306 bfd_size_type amt;
9307
9308 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
9309 segment. */
9310 s = bfd_get_section_by_name (abfd, ".reginfo");
9311 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9312 {
9313 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9314 if (m->p_type == PT_MIPS_REGINFO)
9315 break;
9316 if (m == NULL)
9317 {
9318 amt = sizeof *m;
9719ad41 9319 m = bfd_zalloc (abfd, amt);
b49e97c9 9320 if (m == NULL)
b34976b6 9321 return FALSE;
b49e97c9
TS
9322
9323 m->p_type = PT_MIPS_REGINFO;
9324 m->count = 1;
9325 m->sections[0] = s;
9326
9327 /* We want to put it after the PHDR and INTERP segments. */
9328 pm = &elf_tdata (abfd)->segment_map;
9329 while (*pm != NULL
9330 && ((*pm)->p_type == PT_PHDR
9331 || (*pm)->p_type == PT_INTERP))
9332 pm = &(*pm)->next;
9333
9334 m->next = *pm;
9335 *pm = m;
9336 }
9337 }
9338
9339 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
9340 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
98a8deaf 9341 PT_MIPS_OPTIONS segment immediately following the program header
b49e97c9 9342 table. */
c1fd6598
AO
9343 if (NEWABI_P (abfd)
9344 /* On non-IRIX6 new abi, we'll have already created a segment
9345 for this section, so don't create another. I'm not sure this
9346 is not also the case for IRIX 6, but I can't test it right
9347 now. */
9348 && IRIX_COMPAT (abfd) == ict_irix6)
b49e97c9
TS
9349 {
9350 for (s = abfd->sections; s; s = s->next)
9351 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
9352 break;
9353
9354 if (s)
9355 {
9356 struct elf_segment_map *options_segment;
9357
98a8deaf
RS
9358 pm = &elf_tdata (abfd)->segment_map;
9359 while (*pm != NULL
9360 && ((*pm)->p_type == PT_PHDR
9361 || (*pm)->p_type == PT_INTERP))
9362 pm = &(*pm)->next;
b49e97c9 9363
8ded5a0f
AM
9364 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
9365 {
9366 amt = sizeof (struct elf_segment_map);
9367 options_segment = bfd_zalloc (abfd, amt);
9368 options_segment->next = *pm;
9369 options_segment->p_type = PT_MIPS_OPTIONS;
9370 options_segment->p_flags = PF_R;
9371 options_segment->p_flags_valid = TRUE;
9372 options_segment->count = 1;
9373 options_segment->sections[0] = s;
9374 *pm = options_segment;
9375 }
b49e97c9
TS
9376 }
9377 }
9378 else
9379 {
9380 if (IRIX_COMPAT (abfd) == ict_irix5)
9381 {
9382 /* If there are .dynamic and .mdebug sections, we make a room
9383 for the RTPROC header. FIXME: Rewrite without section names. */
9384 if (bfd_get_section_by_name (abfd, ".interp") == NULL
9385 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
9386 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
9387 {
9388 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9389 if (m->p_type == PT_MIPS_RTPROC)
9390 break;
9391 if (m == NULL)
9392 {
9393 amt = sizeof *m;
9719ad41 9394 m = bfd_zalloc (abfd, amt);
b49e97c9 9395 if (m == NULL)
b34976b6 9396 return FALSE;
b49e97c9
TS
9397
9398 m->p_type = PT_MIPS_RTPROC;
9399
9400 s = bfd_get_section_by_name (abfd, ".rtproc");
9401 if (s == NULL)
9402 {
9403 m->count = 0;
9404 m->p_flags = 0;
9405 m->p_flags_valid = 1;
9406 }
9407 else
9408 {
9409 m->count = 1;
9410 m->sections[0] = s;
9411 }
9412
9413 /* We want to put it after the DYNAMIC segment. */
9414 pm = &elf_tdata (abfd)->segment_map;
9415 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
9416 pm = &(*pm)->next;
9417 if (*pm != NULL)
9418 pm = &(*pm)->next;
9419
9420 m->next = *pm;
9421 *pm = m;
9422 }
9423 }
9424 }
8dc1a139 9425 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
b49e97c9
TS
9426 .dynstr, .dynsym, and .hash sections, and everything in
9427 between. */
9428 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
9429 pm = &(*pm)->next)
9430 if ((*pm)->p_type == PT_DYNAMIC)
9431 break;
9432 m = *pm;
9433 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
9434 {
9435 /* For a normal mips executable the permissions for the PT_DYNAMIC
9436 segment are read, write and execute. We do that here since
9437 the code in elf.c sets only the read permission. This matters
9438 sometimes for the dynamic linker. */
9439 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
9440 {
9441 m->p_flags = PF_R | PF_W | PF_X;
9442 m->p_flags_valid = 1;
9443 }
9444 }
f6f62d6f
RS
9445 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
9446 glibc's dynamic linker has traditionally derived the number of
9447 tags from the p_filesz field, and sometimes allocates stack
9448 arrays of that size. An overly-big PT_DYNAMIC segment can
9449 be actively harmful in such cases. Making PT_DYNAMIC contain
9450 other sections can also make life hard for the prelinker,
9451 which might move one of the other sections to a different
9452 PT_LOAD segment. */
9453 if (SGI_COMPAT (abfd)
9454 && m != NULL
9455 && m->count == 1
9456 && strcmp (m->sections[0]->name, ".dynamic") == 0)
b49e97c9
TS
9457 {
9458 static const char *sec_names[] =
9459 {
9460 ".dynamic", ".dynstr", ".dynsym", ".hash"
9461 };
9462 bfd_vma low, high;
9463 unsigned int i, c;
9464 struct elf_segment_map *n;
9465
792b4a53 9466 low = ~(bfd_vma) 0;
b49e97c9
TS
9467 high = 0;
9468 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
9469 {
9470 s = bfd_get_section_by_name (abfd, sec_names[i]);
9471 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9472 {
9473 bfd_size_type sz;
9474
9475 if (low > s->vma)
9476 low = s->vma;
eea6121a 9477 sz = s->size;
b49e97c9
TS
9478 if (high < s->vma + sz)
9479 high = s->vma + sz;
9480 }
9481 }
9482
9483 c = 0;
9484 for (s = abfd->sections; s != NULL; s = s->next)
9485 if ((s->flags & SEC_LOAD) != 0
9486 && s->vma >= low
eea6121a 9487 && s->vma + s->size <= high)
b49e97c9
TS
9488 ++c;
9489
9490 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9719ad41 9491 n = bfd_zalloc (abfd, amt);
b49e97c9 9492 if (n == NULL)
b34976b6 9493 return FALSE;
b49e97c9
TS
9494 *n = *m;
9495 n->count = c;
9496
9497 i = 0;
9498 for (s = abfd->sections; s != NULL; s = s->next)
9499 {
9500 if ((s->flags & SEC_LOAD) != 0
9501 && s->vma >= low
eea6121a 9502 && s->vma + s->size <= high)
b49e97c9
TS
9503 {
9504 n->sections[i] = s;
9505 ++i;
9506 }
9507 }
9508
9509 *pm = n;
9510 }
9511 }
9512
98c904a8
RS
9513 /* Allocate a spare program header in dynamic objects so that tools
9514 like the prelinker can add an extra PT_LOAD entry.
9515
9516 If the prelinker needs to make room for a new PT_LOAD entry, its
9517 standard procedure is to move the first (read-only) sections into
9518 the new (writable) segment. However, the MIPS ABI requires
9519 .dynamic to be in a read-only segment, and the section will often
9520 start within sizeof (ElfNN_Phdr) bytes of the last program header.
9521
9522 Although the prelinker could in principle move .dynamic to a
9523 writable segment, it seems better to allocate a spare program
9524 header instead, and avoid the need to move any sections.
9525 There is a long tradition of allocating spare dynamic tags,
9526 so allocating a spare program header seems like a natural
9527 extension. */
9528 if (!SGI_COMPAT (abfd)
9529 && bfd_get_section_by_name (abfd, ".dynamic"))
9530 {
9531 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
9532 if ((*pm)->p_type == PT_NULL)
9533 break;
9534 if (*pm == NULL)
9535 {
9536 m = bfd_zalloc (abfd, sizeof (*m));
9537 if (m == NULL)
9538 return FALSE;
9539
9540 m->p_type = PT_NULL;
9541 *pm = m;
9542 }
9543 }
9544
b34976b6 9545 return TRUE;
b49e97c9
TS
9546}
9547\f
9548/* Return the section that should be marked against GC for a given
9549 relocation. */
9550
9551asection *
9719ad41 9552_bfd_mips_elf_gc_mark_hook (asection *sec,
07adf181 9553 struct bfd_link_info *info,
9719ad41
RS
9554 Elf_Internal_Rela *rel,
9555 struct elf_link_hash_entry *h,
9556 Elf_Internal_Sym *sym)
b49e97c9
TS
9557{
9558 /* ??? Do mips16 stub sections need to be handled special? */
9559
9560 if (h != NULL)
07adf181
AM
9561 switch (ELF_R_TYPE (sec->owner, rel->r_info))
9562 {
9563 case R_MIPS_GNU_VTINHERIT:
9564 case R_MIPS_GNU_VTENTRY:
9565 return NULL;
9566 }
b49e97c9 9567
07adf181 9568 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
b49e97c9
TS
9569}
9570
9571/* Update the got entry reference counts for the section being removed. */
9572
b34976b6 9573bfd_boolean
9719ad41
RS
9574_bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
9575 struct bfd_link_info *info ATTRIBUTE_UNUSED,
9576 asection *sec ATTRIBUTE_UNUSED,
9577 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
b49e97c9
TS
9578{
9579#if 0
9580 Elf_Internal_Shdr *symtab_hdr;
9581 struct elf_link_hash_entry **sym_hashes;
9582 bfd_signed_vma *local_got_refcounts;
9583 const Elf_Internal_Rela *rel, *relend;
9584 unsigned long r_symndx;
9585 struct elf_link_hash_entry *h;
9586
9587 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9588 sym_hashes = elf_sym_hashes (abfd);
9589 local_got_refcounts = elf_local_got_refcounts (abfd);
9590
9591 relend = relocs + sec->reloc_count;
9592 for (rel = relocs; rel < relend; rel++)
9593 switch (ELF_R_TYPE (abfd, rel->r_info))
9594 {
9595 case R_MIPS_GOT16:
9596 case R_MIPS_CALL16:
9597 case R_MIPS_CALL_HI16:
9598 case R_MIPS_CALL_LO16:
9599 case R_MIPS_GOT_HI16:
9600 case R_MIPS_GOT_LO16:
4a14403c
TS
9601 case R_MIPS_GOT_DISP:
9602 case R_MIPS_GOT_PAGE:
9603 case R_MIPS_GOT_OFST:
b49e97c9
TS
9604 /* ??? It would seem that the existing MIPS code does no sort
9605 of reference counting or whatnot on its GOT and PLT entries,
9606 so it is not possible to garbage collect them at this time. */
9607 break;
9608
9609 default:
9610 break;
9611 }
9612#endif
9613
b34976b6 9614 return TRUE;
b49e97c9
TS
9615}
9616\f
9617/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
9618 hiding the old indirect symbol. Process additional relocation
9619 information. Also called for weakdefs, in which case we just let
9620 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
9621
9622void
fcfa13d2 9623_bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
9719ad41
RS
9624 struct elf_link_hash_entry *dir,
9625 struct elf_link_hash_entry *ind)
b49e97c9
TS
9626{
9627 struct mips_elf_link_hash_entry *dirmips, *indmips;
9628
fcfa13d2 9629 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
b49e97c9
TS
9630
9631 if (ind->root.type != bfd_link_hash_indirect)
9632 return;
9633
9634 dirmips = (struct mips_elf_link_hash_entry *) dir;
9635 indmips = (struct mips_elf_link_hash_entry *) ind;
9636 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
9637 if (indmips->readonly_reloc)
b34976b6 9638 dirmips->readonly_reloc = TRUE;
b49e97c9 9639 if (indmips->no_fn_stub)
b34976b6 9640 dirmips->no_fn_stub = TRUE;
0f20cc35
DJ
9641
9642 if (dirmips->tls_type == 0)
9643 dirmips->tls_type = indmips->tls_type;
b49e97c9
TS
9644}
9645
9646void
9719ad41
RS
9647_bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
9648 struct elf_link_hash_entry *entry,
9649 bfd_boolean force_local)
b49e97c9
TS
9650{
9651 bfd *dynobj;
9652 asection *got;
9653 struct mips_got_info *g;
9654 struct mips_elf_link_hash_entry *h;
7c5fcef7 9655
b49e97c9 9656 h = (struct mips_elf_link_hash_entry *) entry;
7c5fcef7
L
9657 if (h->forced_local)
9658 return;
4b555070 9659 h->forced_local = force_local;
7c5fcef7 9660
b49e97c9 9661 dynobj = elf_hash_table (info)->dynobj;
8d1d654f 9662 if (dynobj != NULL && force_local && h->root.type != STT_TLS
003b8e1d 9663 && (got = mips_elf_got_section (dynobj, TRUE)) != NULL
8d1d654f 9664 && (g = mips_elf_section_data (got)->u.got_info) != NULL)
f4416af6 9665 {
c45a316a
AM
9666 if (g->next)
9667 {
9668 struct mips_got_entry e;
9669 struct mips_got_info *gg = g;
9670
9671 /* Since we're turning what used to be a global symbol into a
9672 local one, bump up the number of local entries of each GOT
9673 that had an entry for it. This will automatically decrease
9674 the number of global entries, since global_gotno is actually
9675 the upper limit of global entries. */
9676 e.abfd = dynobj;
9677 e.symndx = -1;
9678 e.d.h = h;
0f20cc35 9679 e.tls_type = 0;
c45a316a
AM
9680
9681 for (g = g->next; g != gg; g = g->next)
9682 if (htab_find (g->got_entries, &e))
9683 {
9684 BFD_ASSERT (g->global_gotno > 0);
9685 g->local_gotno++;
9686 g->global_gotno--;
9687 }
b49e97c9 9688
c45a316a
AM
9689 /* If this was a global symbol forced into the primary GOT, we
9690 no longer need an entry for it. We can't release the entry
9691 at this point, but we must at least stop counting it as one
9692 of the symbols that required a forced got entry. */
9693 if (h->root.got.offset == 2)
9694 {
9695 BFD_ASSERT (gg->assigned_gotno > 0);
9696 gg->assigned_gotno--;
9697 }
9698 }
9699 else if (g->global_gotno == 0 && g->global_gotsym == NULL)
9700 /* If we haven't got through GOT allocation yet, just bump up the
9701 number of local entries, as this symbol won't be counted as
9702 global. */
9703 g->local_gotno++;
9704 else if (h->root.got.offset == 1)
f4416af6 9705 {
c45a316a
AM
9706 /* If we're past non-multi-GOT allocation and this symbol had
9707 been marked for a global got entry, give it a local entry
9708 instead. */
9709 BFD_ASSERT (g->global_gotno > 0);
9710 g->local_gotno++;
9711 g->global_gotno--;
f4416af6
AO
9712 }
9713 }
f4416af6
AO
9714
9715 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
b49e97c9
TS
9716}
9717\f
d01414a5
TS
9718#define PDR_SIZE 32
9719
b34976b6 9720bfd_boolean
9719ad41
RS
9721_bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
9722 struct bfd_link_info *info)
d01414a5
TS
9723{
9724 asection *o;
b34976b6 9725 bfd_boolean ret = FALSE;
d01414a5
TS
9726 unsigned char *tdata;
9727 size_t i, skip;
9728
9729 o = bfd_get_section_by_name (abfd, ".pdr");
9730 if (! o)
b34976b6 9731 return FALSE;
eea6121a 9732 if (o->size == 0)
b34976b6 9733 return FALSE;
eea6121a 9734 if (o->size % PDR_SIZE != 0)
b34976b6 9735 return FALSE;
d01414a5
TS
9736 if (o->output_section != NULL
9737 && bfd_is_abs_section (o->output_section))
b34976b6 9738 return FALSE;
d01414a5 9739
eea6121a 9740 tdata = bfd_zmalloc (o->size / PDR_SIZE);
d01414a5 9741 if (! tdata)
b34976b6 9742 return FALSE;
d01414a5 9743
9719ad41 9744 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 9745 info->keep_memory);
d01414a5
TS
9746 if (!cookie->rels)
9747 {
9748 free (tdata);
b34976b6 9749 return FALSE;
d01414a5
TS
9750 }
9751
9752 cookie->rel = cookie->rels;
9753 cookie->relend = cookie->rels + o->reloc_count;
9754
eea6121a 9755 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
d01414a5 9756 {
c152c796 9757 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
d01414a5
TS
9758 {
9759 tdata[i] = 1;
9760 skip ++;
9761 }
9762 }
9763
9764 if (skip != 0)
9765 {
f0abc2a1 9766 mips_elf_section_data (o)->u.tdata = tdata;
eea6121a 9767 o->size -= skip * PDR_SIZE;
b34976b6 9768 ret = TRUE;
d01414a5
TS
9769 }
9770 else
9771 free (tdata);
9772
9773 if (! info->keep_memory)
9774 free (cookie->rels);
9775
9776 return ret;
9777}
9778
b34976b6 9779bfd_boolean
9719ad41 9780_bfd_mips_elf_ignore_discarded_relocs (asection *sec)
53bfd6b4
MR
9781{
9782 if (strcmp (sec->name, ".pdr") == 0)
b34976b6
AM
9783 return TRUE;
9784 return FALSE;
53bfd6b4 9785}
d01414a5 9786
b34976b6 9787bfd_boolean
c7b8f16e
JB
9788_bfd_mips_elf_write_section (bfd *output_bfd,
9789 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
9790 asection *sec, bfd_byte *contents)
d01414a5
TS
9791{
9792 bfd_byte *to, *from, *end;
9793 int i;
9794
9795 if (strcmp (sec->name, ".pdr") != 0)
b34976b6 9796 return FALSE;
d01414a5 9797
f0abc2a1 9798 if (mips_elf_section_data (sec)->u.tdata == NULL)
b34976b6 9799 return FALSE;
d01414a5
TS
9800
9801 to = contents;
eea6121a 9802 end = contents + sec->size;
d01414a5
TS
9803 for (from = contents, i = 0;
9804 from < end;
9805 from += PDR_SIZE, i++)
9806 {
f0abc2a1 9807 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
d01414a5
TS
9808 continue;
9809 if (to != from)
9810 memcpy (to, from, PDR_SIZE);
9811 to += PDR_SIZE;
9812 }
9813 bfd_set_section_contents (output_bfd, sec->output_section, contents,
eea6121a 9814 sec->output_offset, sec->size);
b34976b6 9815 return TRUE;
d01414a5 9816}
53bfd6b4 9817\f
b49e97c9
TS
9818/* MIPS ELF uses a special find_nearest_line routine in order the
9819 handle the ECOFF debugging information. */
9820
9821struct mips_elf_find_line
9822{
9823 struct ecoff_debug_info d;
9824 struct ecoff_find_line i;
9825};
9826
b34976b6 9827bfd_boolean
9719ad41
RS
9828_bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
9829 asymbol **symbols, bfd_vma offset,
9830 const char **filename_ptr,
9831 const char **functionname_ptr,
9832 unsigned int *line_ptr)
b49e97c9
TS
9833{
9834 asection *msec;
9835
9836 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
9837 filename_ptr, functionname_ptr,
9838 line_ptr))
b34976b6 9839 return TRUE;
b49e97c9
TS
9840
9841 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
9842 filename_ptr, functionname_ptr,
9719ad41 9843 line_ptr, ABI_64_P (abfd) ? 8 : 0,
b49e97c9 9844 &elf_tdata (abfd)->dwarf2_find_line_info))
b34976b6 9845 return TRUE;
b49e97c9
TS
9846
9847 msec = bfd_get_section_by_name (abfd, ".mdebug");
9848 if (msec != NULL)
9849 {
9850 flagword origflags;
9851 struct mips_elf_find_line *fi;
9852 const struct ecoff_debug_swap * const swap =
9853 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
9854
9855 /* If we are called during a link, mips_elf_final_link may have
9856 cleared the SEC_HAS_CONTENTS field. We force it back on here
9857 if appropriate (which it normally will be). */
9858 origflags = msec->flags;
9859 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
9860 msec->flags |= SEC_HAS_CONTENTS;
9861
9862 fi = elf_tdata (abfd)->find_line_info;
9863 if (fi == NULL)
9864 {
9865 bfd_size_type external_fdr_size;
9866 char *fraw_src;
9867 char *fraw_end;
9868 struct fdr *fdr_ptr;
9869 bfd_size_type amt = sizeof (struct mips_elf_find_line);
9870
9719ad41 9871 fi = bfd_zalloc (abfd, amt);
b49e97c9
TS
9872 if (fi == NULL)
9873 {
9874 msec->flags = origflags;
b34976b6 9875 return FALSE;
b49e97c9
TS
9876 }
9877
9878 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
9879 {
9880 msec->flags = origflags;
b34976b6 9881 return FALSE;
b49e97c9
TS
9882 }
9883
9884 /* Swap in the FDR information. */
9885 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9719ad41 9886 fi->d.fdr = bfd_alloc (abfd, amt);
b49e97c9
TS
9887 if (fi->d.fdr == NULL)
9888 {
9889 msec->flags = origflags;
b34976b6 9890 return FALSE;
b49e97c9
TS
9891 }
9892 external_fdr_size = swap->external_fdr_size;
9893 fdr_ptr = fi->d.fdr;
9894 fraw_src = (char *) fi->d.external_fdr;
9895 fraw_end = (fraw_src
9896 + fi->d.symbolic_header.ifdMax * external_fdr_size);
9897 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9719ad41 9898 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
b49e97c9
TS
9899
9900 elf_tdata (abfd)->find_line_info = fi;
9901
9902 /* Note that we don't bother to ever free this information.
9903 find_nearest_line is either called all the time, as in
9904 objdump -l, so the information should be saved, or it is
9905 rarely called, as in ld error messages, so the memory
9906 wasted is unimportant. Still, it would probably be a
9907 good idea for free_cached_info to throw it away. */
9908 }
9909
9910 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
9911 &fi->i, filename_ptr, functionname_ptr,
9912 line_ptr))
9913 {
9914 msec->flags = origflags;
b34976b6 9915 return TRUE;
b49e97c9
TS
9916 }
9917
9918 msec->flags = origflags;
9919 }
9920
9921 /* Fall back on the generic ELF find_nearest_line routine. */
9922
9923 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
9924 filename_ptr, functionname_ptr,
9925 line_ptr);
9926}
4ab527b0
FF
9927
9928bfd_boolean
9929_bfd_mips_elf_find_inliner_info (bfd *abfd,
9930 const char **filename_ptr,
9931 const char **functionname_ptr,
9932 unsigned int *line_ptr)
9933{
9934 bfd_boolean found;
9935 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
9936 functionname_ptr, line_ptr,
9937 & elf_tdata (abfd)->dwarf2_find_line_info);
9938 return found;
9939}
9940
b49e97c9
TS
9941\f
9942/* When are writing out the .options or .MIPS.options section,
9943 remember the bytes we are writing out, so that we can install the
9944 GP value in the section_processing routine. */
9945
b34976b6 9946bfd_boolean
9719ad41
RS
9947_bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
9948 const void *location,
9949 file_ptr offset, bfd_size_type count)
b49e97c9 9950{
cc2e31b9 9951 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
b49e97c9
TS
9952 {
9953 bfd_byte *c;
9954
9955 if (elf_section_data (section) == NULL)
9956 {
9957 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9719ad41 9958 section->used_by_bfd = bfd_zalloc (abfd, amt);
b49e97c9 9959 if (elf_section_data (section) == NULL)
b34976b6 9960 return FALSE;
b49e97c9 9961 }
f0abc2a1 9962 c = mips_elf_section_data (section)->u.tdata;
b49e97c9
TS
9963 if (c == NULL)
9964 {
eea6121a 9965 c = bfd_zalloc (abfd, section->size);
b49e97c9 9966 if (c == NULL)
b34976b6 9967 return FALSE;
f0abc2a1 9968 mips_elf_section_data (section)->u.tdata = c;
b49e97c9
TS
9969 }
9970
9719ad41 9971 memcpy (c + offset, location, count);
b49e97c9
TS
9972 }
9973
9974 return _bfd_elf_set_section_contents (abfd, section, location, offset,
9975 count);
9976}
9977
9978/* This is almost identical to bfd_generic_get_... except that some
9979 MIPS relocations need to be handled specially. Sigh. */
9980
9981bfd_byte *
9719ad41
RS
9982_bfd_elf_mips_get_relocated_section_contents
9983 (bfd *abfd,
9984 struct bfd_link_info *link_info,
9985 struct bfd_link_order *link_order,
9986 bfd_byte *data,
9987 bfd_boolean relocatable,
9988 asymbol **symbols)
b49e97c9
TS
9989{
9990 /* Get enough memory to hold the stuff */
9991 bfd *input_bfd = link_order->u.indirect.section->owner;
9992 asection *input_section = link_order->u.indirect.section;
eea6121a 9993 bfd_size_type sz;
b49e97c9
TS
9994
9995 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
9996 arelent **reloc_vector = NULL;
9997 long reloc_count;
9998
9999 if (reloc_size < 0)
10000 goto error_return;
10001
9719ad41 10002 reloc_vector = bfd_malloc (reloc_size);
b49e97c9
TS
10003 if (reloc_vector == NULL && reloc_size != 0)
10004 goto error_return;
10005
10006 /* read in the section */
eea6121a
AM
10007 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
10008 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
b49e97c9
TS
10009 goto error_return;
10010
b49e97c9
TS
10011 reloc_count = bfd_canonicalize_reloc (input_bfd,
10012 input_section,
10013 reloc_vector,
10014 symbols);
10015 if (reloc_count < 0)
10016 goto error_return;
10017
10018 if (reloc_count > 0)
10019 {
10020 arelent **parent;
10021 /* for mips */
10022 int gp_found;
10023 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
10024
10025 {
10026 struct bfd_hash_entry *h;
10027 struct bfd_link_hash_entry *lh;
10028 /* Skip all this stuff if we aren't mixing formats. */
10029 if (abfd && input_bfd
10030 && abfd->xvec == input_bfd->xvec)
10031 lh = 0;
10032 else
10033 {
b34976b6 10034 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
b49e97c9
TS
10035 lh = (struct bfd_link_hash_entry *) h;
10036 }
10037 lookup:
10038 if (lh)
10039 {
10040 switch (lh->type)
10041 {
10042 case bfd_link_hash_undefined:
10043 case bfd_link_hash_undefweak:
10044 case bfd_link_hash_common:
10045 gp_found = 0;
10046 break;
10047 case bfd_link_hash_defined:
10048 case bfd_link_hash_defweak:
10049 gp_found = 1;
10050 gp = lh->u.def.value;
10051 break;
10052 case bfd_link_hash_indirect:
10053 case bfd_link_hash_warning:
10054 lh = lh->u.i.link;
10055 /* @@FIXME ignoring warning for now */
10056 goto lookup;
10057 case bfd_link_hash_new:
10058 default:
10059 abort ();
10060 }
10061 }
10062 else
10063 gp_found = 0;
10064 }
10065 /* end mips */
9719ad41 10066 for (parent = reloc_vector; *parent != NULL; parent++)
b49e97c9 10067 {
9719ad41 10068 char *error_message = NULL;
b49e97c9
TS
10069 bfd_reloc_status_type r;
10070
10071 /* Specific to MIPS: Deal with relocation types that require
10072 knowing the gp of the output bfd. */
10073 asymbol *sym = *(*parent)->sym_ptr_ptr;
b49e97c9 10074
8236346f
EC
10075 /* If we've managed to find the gp and have a special
10076 function for the relocation then go ahead, else default
10077 to the generic handling. */
10078 if (gp_found
10079 && (*parent)->howto->special_function
10080 == _bfd_mips_elf32_gprel16_reloc)
10081 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
10082 input_section, relocatable,
10083 data, gp);
10084 else
86324f90 10085 r = bfd_perform_relocation (input_bfd, *parent, data,
8236346f
EC
10086 input_section,
10087 relocatable ? abfd : NULL,
10088 &error_message);
b49e97c9 10089
1049f94e 10090 if (relocatable)
b49e97c9
TS
10091 {
10092 asection *os = input_section->output_section;
10093
10094 /* A partial link, so keep the relocs */
10095 os->orelocation[os->reloc_count] = *parent;
10096 os->reloc_count++;
10097 }
10098
10099 if (r != bfd_reloc_ok)
10100 {
10101 switch (r)
10102 {
10103 case bfd_reloc_undefined:
10104 if (!((*link_info->callbacks->undefined_symbol)
10105 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
5e2b0d47 10106 input_bfd, input_section, (*parent)->address, TRUE)))
b49e97c9
TS
10107 goto error_return;
10108 break;
10109 case bfd_reloc_dangerous:
9719ad41 10110 BFD_ASSERT (error_message != NULL);
b49e97c9
TS
10111 if (!((*link_info->callbacks->reloc_dangerous)
10112 (link_info, error_message, input_bfd, input_section,
10113 (*parent)->address)))
10114 goto error_return;
10115 break;
10116 case bfd_reloc_overflow:
10117 if (!((*link_info->callbacks->reloc_overflow)
dfeffb9f
L
10118 (link_info, NULL,
10119 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
b49e97c9
TS
10120 (*parent)->howto->name, (*parent)->addend,
10121 input_bfd, input_section, (*parent)->address)))
10122 goto error_return;
10123 break;
10124 case bfd_reloc_outofrange:
10125 default:
10126 abort ();
10127 break;
10128 }
10129
10130 }
10131 }
10132 }
10133 if (reloc_vector != NULL)
10134 free (reloc_vector);
10135 return data;
10136
10137error_return:
10138 if (reloc_vector != NULL)
10139 free (reloc_vector);
10140 return NULL;
10141}
10142\f
10143/* Create a MIPS ELF linker hash table. */
10144
10145struct bfd_link_hash_table *
9719ad41 10146_bfd_mips_elf_link_hash_table_create (bfd *abfd)
b49e97c9
TS
10147{
10148 struct mips_elf_link_hash_table *ret;
10149 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
10150
9719ad41
RS
10151 ret = bfd_malloc (amt);
10152 if (ret == NULL)
b49e97c9
TS
10153 return NULL;
10154
66eb6687
AM
10155 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
10156 mips_elf_link_hash_newfunc,
10157 sizeof (struct mips_elf_link_hash_entry)))
b49e97c9 10158 {
e2d34d7d 10159 free (ret);
b49e97c9
TS
10160 return NULL;
10161 }
10162
10163#if 0
10164 /* We no longer use this. */
10165 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
10166 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
10167#endif
10168 ret->procedure_count = 0;
10169 ret->compact_rel_size = 0;
b34976b6 10170 ret->use_rld_obj_head = FALSE;
b49e97c9 10171 ret->rld_value = 0;
b34976b6 10172 ret->mips16_stubs_seen = FALSE;
0a44bf69
RS
10173 ret->is_vxworks = FALSE;
10174 ret->srelbss = NULL;
10175 ret->sdynbss = NULL;
10176 ret->srelplt = NULL;
10177 ret->srelplt2 = NULL;
10178 ret->sgotplt = NULL;
10179 ret->splt = NULL;
10180 ret->plt_header_size = 0;
10181 ret->plt_entry_size = 0;
5108fc1b 10182 ret->function_stub_size = 0;
b49e97c9
TS
10183
10184 return &ret->root.root;
10185}
0a44bf69
RS
10186
10187/* Likewise, but indicate that the target is VxWorks. */
10188
10189struct bfd_link_hash_table *
10190_bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
10191{
10192 struct bfd_link_hash_table *ret;
10193
10194 ret = _bfd_mips_elf_link_hash_table_create (abfd);
10195 if (ret)
10196 {
10197 struct mips_elf_link_hash_table *htab;
10198
10199 htab = (struct mips_elf_link_hash_table *) ret;
10200 htab->is_vxworks = 1;
10201 }
10202 return ret;
10203}
b49e97c9
TS
10204\f
10205/* We need to use a special link routine to handle the .reginfo and
10206 the .mdebug sections. We need to merge all instances of these
10207 sections together, not write them all out sequentially. */
10208
b34976b6 10209bfd_boolean
9719ad41 10210_bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
b49e97c9 10211{
b49e97c9
TS
10212 asection *o;
10213 struct bfd_link_order *p;
10214 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
10215 asection *rtproc_sec;
10216 Elf32_RegInfo reginfo;
10217 struct ecoff_debug_info debug;
7a2a6943
NC
10218 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10219 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
b49e97c9 10220 HDRR *symhdr = &debug.symbolic_header;
9719ad41 10221 void *mdebug_handle = NULL;
b49e97c9
TS
10222 asection *s;
10223 EXTR esym;
10224 unsigned int i;
10225 bfd_size_type amt;
0a44bf69 10226 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
10227
10228 static const char * const secname[] =
10229 {
10230 ".text", ".init", ".fini", ".data",
10231 ".rodata", ".sdata", ".sbss", ".bss"
10232 };
10233 static const int sc[] =
10234 {
10235 scText, scInit, scFini, scData,
10236 scRData, scSData, scSBss, scBss
10237 };
10238
b49e97c9
TS
10239 /* We'd carefully arranged the dynamic symbol indices, and then the
10240 generic size_dynamic_sections renumbered them out from under us.
10241 Rather than trying somehow to prevent the renumbering, just do
10242 the sort again. */
0a44bf69 10243 htab = mips_elf_hash_table (info);
b49e97c9
TS
10244 if (elf_hash_table (info)->dynamic_sections_created)
10245 {
10246 bfd *dynobj;
10247 asection *got;
10248 struct mips_got_info *g;
7a2a6943 10249 bfd_size_type dynsecsymcount;
b49e97c9
TS
10250
10251 /* When we resort, we must tell mips_elf_sort_hash_table what
10252 the lowest index it may use is. That's the number of section
10253 symbols we're going to add. The generic ELF linker only
10254 adds these symbols when building a shared object. Note that
10255 we count the sections after (possibly) removing the .options
10256 section above. */
7a2a6943 10257
5108fc1b 10258 dynsecsymcount = count_section_dynsyms (abfd, info);
7a2a6943 10259 if (! mips_elf_sort_hash_table (info, dynsecsymcount + 1))
b34976b6 10260 return FALSE;
b49e97c9
TS
10261
10262 /* Make sure we didn't grow the global .got region. */
10263 dynobj = elf_hash_table (info)->dynobj;
f4416af6 10264 got = mips_elf_got_section (dynobj, FALSE);
f0abc2a1 10265 g = mips_elf_section_data (got)->u.got_info;
b49e97c9
TS
10266
10267 if (g->global_gotsym != NULL)
10268 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
10269 - g->global_gotsym->dynindx)
10270 <= g->global_gotno);
10271 }
10272
b49e97c9
TS
10273 /* Get a value for the GP register. */
10274 if (elf_gp (abfd) == 0)
10275 {
10276 struct bfd_link_hash_entry *h;
10277
b34976b6 10278 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
9719ad41 10279 if (h != NULL && h->type == bfd_link_hash_defined)
b49e97c9
TS
10280 elf_gp (abfd) = (h->u.def.value
10281 + h->u.def.section->output_section->vma
10282 + h->u.def.section->output_offset);
0a44bf69
RS
10283 else if (htab->is_vxworks
10284 && (h = bfd_link_hash_lookup (info->hash,
10285 "_GLOBAL_OFFSET_TABLE_",
10286 FALSE, FALSE, TRUE))
10287 && h->type == bfd_link_hash_defined)
10288 elf_gp (abfd) = (h->u.def.section->output_section->vma
10289 + h->u.def.section->output_offset
10290 + h->u.def.value);
1049f94e 10291 else if (info->relocatable)
b49e97c9
TS
10292 {
10293 bfd_vma lo = MINUS_ONE;
10294
10295 /* Find the GP-relative section with the lowest offset. */
9719ad41 10296 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
10297 if (o->vma < lo
10298 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
10299 lo = o->vma;
10300
10301 /* And calculate GP relative to that. */
0a44bf69 10302 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
b49e97c9
TS
10303 }
10304 else
10305 {
10306 /* If the relocate_section function needs to do a reloc
10307 involving the GP value, it should make a reloc_dangerous
10308 callback to warn that GP is not defined. */
10309 }
10310 }
10311
10312 /* Go through the sections and collect the .reginfo and .mdebug
10313 information. */
10314 reginfo_sec = NULL;
10315 mdebug_sec = NULL;
10316 gptab_data_sec = NULL;
10317 gptab_bss_sec = NULL;
9719ad41 10318 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
10319 {
10320 if (strcmp (o->name, ".reginfo") == 0)
10321 {
10322 memset (&reginfo, 0, sizeof reginfo);
10323
10324 /* We have found the .reginfo section in the output file.
10325 Look through all the link_orders comprising it and merge
10326 the information together. */
8423293d 10327 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
10328 {
10329 asection *input_section;
10330 bfd *input_bfd;
10331 Elf32_External_RegInfo ext;
10332 Elf32_RegInfo sub;
10333
10334 if (p->type != bfd_indirect_link_order)
10335 {
10336 if (p->type == bfd_data_link_order)
10337 continue;
10338 abort ();
10339 }
10340
10341 input_section = p->u.indirect.section;
10342 input_bfd = input_section->owner;
10343
b49e97c9 10344 if (! bfd_get_section_contents (input_bfd, input_section,
9719ad41 10345 &ext, 0, sizeof ext))
b34976b6 10346 return FALSE;
b49e97c9
TS
10347
10348 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
10349
10350 reginfo.ri_gprmask |= sub.ri_gprmask;
10351 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
10352 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
10353 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
10354 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
10355
10356 /* ri_gp_value is set by the function
10357 mips_elf32_section_processing when the section is
10358 finally written out. */
10359
10360 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10361 elf_link_input_bfd ignores this section. */
10362 input_section->flags &= ~SEC_HAS_CONTENTS;
10363 }
10364
10365 /* Size has been set in _bfd_mips_elf_always_size_sections. */
eea6121a 10366 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
b49e97c9
TS
10367
10368 /* Skip this section later on (I don't think this currently
10369 matters, but someday it might). */
8423293d 10370 o->map_head.link_order = NULL;
b49e97c9
TS
10371
10372 reginfo_sec = o;
10373 }
10374
10375 if (strcmp (o->name, ".mdebug") == 0)
10376 {
10377 struct extsym_info einfo;
10378 bfd_vma last;
10379
10380 /* We have found the .mdebug section in the output file.
10381 Look through all the link_orders comprising it and merge
10382 the information together. */
10383 symhdr->magic = swap->sym_magic;
10384 /* FIXME: What should the version stamp be? */
10385 symhdr->vstamp = 0;
10386 symhdr->ilineMax = 0;
10387 symhdr->cbLine = 0;
10388 symhdr->idnMax = 0;
10389 symhdr->ipdMax = 0;
10390 symhdr->isymMax = 0;
10391 symhdr->ioptMax = 0;
10392 symhdr->iauxMax = 0;
10393 symhdr->issMax = 0;
10394 symhdr->issExtMax = 0;
10395 symhdr->ifdMax = 0;
10396 symhdr->crfd = 0;
10397 symhdr->iextMax = 0;
10398
10399 /* We accumulate the debugging information itself in the
10400 debug_info structure. */
10401 debug.line = NULL;
10402 debug.external_dnr = NULL;
10403 debug.external_pdr = NULL;
10404 debug.external_sym = NULL;
10405 debug.external_opt = NULL;
10406 debug.external_aux = NULL;
10407 debug.ss = NULL;
10408 debug.ssext = debug.ssext_end = NULL;
10409 debug.external_fdr = NULL;
10410 debug.external_rfd = NULL;
10411 debug.external_ext = debug.external_ext_end = NULL;
10412
10413 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
9719ad41 10414 if (mdebug_handle == NULL)
b34976b6 10415 return FALSE;
b49e97c9
TS
10416
10417 esym.jmptbl = 0;
10418 esym.cobol_main = 0;
10419 esym.weakext = 0;
10420 esym.reserved = 0;
10421 esym.ifd = ifdNil;
10422 esym.asym.iss = issNil;
10423 esym.asym.st = stLocal;
10424 esym.asym.reserved = 0;
10425 esym.asym.index = indexNil;
10426 last = 0;
10427 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
10428 {
10429 esym.asym.sc = sc[i];
10430 s = bfd_get_section_by_name (abfd, secname[i]);
10431 if (s != NULL)
10432 {
10433 esym.asym.value = s->vma;
eea6121a 10434 last = s->vma + s->size;
b49e97c9
TS
10435 }
10436 else
10437 esym.asym.value = last;
10438 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
10439 secname[i], &esym))
b34976b6 10440 return FALSE;
b49e97c9
TS
10441 }
10442
8423293d 10443 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
10444 {
10445 asection *input_section;
10446 bfd *input_bfd;
10447 const struct ecoff_debug_swap *input_swap;
10448 struct ecoff_debug_info input_debug;
10449 char *eraw_src;
10450 char *eraw_end;
10451
10452 if (p->type != bfd_indirect_link_order)
10453 {
10454 if (p->type == bfd_data_link_order)
10455 continue;
10456 abort ();
10457 }
10458
10459 input_section = p->u.indirect.section;
10460 input_bfd = input_section->owner;
10461
10462 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
10463 || (get_elf_backend_data (input_bfd)
10464 ->elf_backend_ecoff_debug_swap) == NULL)
10465 {
10466 /* I don't know what a non MIPS ELF bfd would be
10467 doing with a .mdebug section, but I don't really
10468 want to deal with it. */
10469 continue;
10470 }
10471
10472 input_swap = (get_elf_backend_data (input_bfd)
10473 ->elf_backend_ecoff_debug_swap);
10474
eea6121a 10475 BFD_ASSERT (p->size == input_section->size);
b49e97c9
TS
10476
10477 /* The ECOFF linking code expects that we have already
10478 read in the debugging information and set up an
10479 ecoff_debug_info structure, so we do that now. */
10480 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
10481 &input_debug))
b34976b6 10482 return FALSE;
b49e97c9
TS
10483
10484 if (! (bfd_ecoff_debug_accumulate
10485 (mdebug_handle, abfd, &debug, swap, input_bfd,
10486 &input_debug, input_swap, info)))
b34976b6 10487 return FALSE;
b49e97c9
TS
10488
10489 /* Loop through the external symbols. For each one with
10490 interesting information, try to find the symbol in
10491 the linker global hash table and save the information
10492 for the output external symbols. */
10493 eraw_src = input_debug.external_ext;
10494 eraw_end = (eraw_src
10495 + (input_debug.symbolic_header.iextMax
10496 * input_swap->external_ext_size));
10497 for (;
10498 eraw_src < eraw_end;
10499 eraw_src += input_swap->external_ext_size)
10500 {
10501 EXTR ext;
10502 const char *name;
10503 struct mips_elf_link_hash_entry *h;
10504
9719ad41 10505 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
b49e97c9
TS
10506 if (ext.asym.sc == scNil
10507 || ext.asym.sc == scUndefined
10508 || ext.asym.sc == scSUndefined)
10509 continue;
10510
10511 name = input_debug.ssext + ext.asym.iss;
10512 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
b34976b6 10513 name, FALSE, FALSE, TRUE);
b49e97c9
TS
10514 if (h == NULL || h->esym.ifd != -2)
10515 continue;
10516
10517 if (ext.ifd != -1)
10518 {
10519 BFD_ASSERT (ext.ifd
10520 < input_debug.symbolic_header.ifdMax);
10521 ext.ifd = input_debug.ifdmap[ext.ifd];
10522 }
10523
10524 h->esym = ext;
10525 }
10526
10527 /* Free up the information we just read. */
10528 free (input_debug.line);
10529 free (input_debug.external_dnr);
10530 free (input_debug.external_pdr);
10531 free (input_debug.external_sym);
10532 free (input_debug.external_opt);
10533 free (input_debug.external_aux);
10534 free (input_debug.ss);
10535 free (input_debug.ssext);
10536 free (input_debug.external_fdr);
10537 free (input_debug.external_rfd);
10538 free (input_debug.external_ext);
10539
10540 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10541 elf_link_input_bfd ignores this section. */
10542 input_section->flags &= ~SEC_HAS_CONTENTS;
10543 }
10544
10545 if (SGI_COMPAT (abfd) && info->shared)
10546 {
10547 /* Create .rtproc section. */
10548 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10549 if (rtproc_sec == NULL)
10550 {
10551 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
10552 | SEC_LINKER_CREATED | SEC_READONLY);
10553
3496cb2a
L
10554 rtproc_sec = bfd_make_section_with_flags (abfd,
10555 ".rtproc",
10556 flags);
b49e97c9 10557 if (rtproc_sec == NULL
b49e97c9 10558 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
b34976b6 10559 return FALSE;
b49e97c9
TS
10560 }
10561
10562 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
10563 info, rtproc_sec,
10564 &debug))
b34976b6 10565 return FALSE;
b49e97c9
TS
10566 }
10567
10568 /* Build the external symbol information. */
10569 einfo.abfd = abfd;
10570 einfo.info = info;
10571 einfo.debug = &debug;
10572 einfo.swap = swap;
b34976b6 10573 einfo.failed = FALSE;
b49e97c9 10574 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 10575 mips_elf_output_extsym, &einfo);
b49e97c9 10576 if (einfo.failed)
b34976b6 10577 return FALSE;
b49e97c9
TS
10578
10579 /* Set the size of the .mdebug section. */
eea6121a 10580 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
b49e97c9
TS
10581
10582 /* Skip this section later on (I don't think this currently
10583 matters, but someday it might). */
8423293d 10584 o->map_head.link_order = NULL;
b49e97c9
TS
10585
10586 mdebug_sec = o;
10587 }
10588
0112cd26 10589 if (CONST_STRNEQ (o->name, ".gptab."))
b49e97c9
TS
10590 {
10591 const char *subname;
10592 unsigned int c;
10593 Elf32_gptab *tab;
10594 Elf32_External_gptab *ext_tab;
10595 unsigned int j;
10596
10597 /* The .gptab.sdata and .gptab.sbss sections hold
10598 information describing how the small data area would
10599 change depending upon the -G switch. These sections
10600 not used in executables files. */
1049f94e 10601 if (! info->relocatable)
b49e97c9 10602 {
8423293d 10603 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
10604 {
10605 asection *input_section;
10606
10607 if (p->type != bfd_indirect_link_order)
10608 {
10609 if (p->type == bfd_data_link_order)
10610 continue;
10611 abort ();
10612 }
10613
10614 input_section = p->u.indirect.section;
10615
10616 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10617 elf_link_input_bfd ignores this section. */
10618 input_section->flags &= ~SEC_HAS_CONTENTS;
10619 }
10620
10621 /* Skip this section later on (I don't think this
10622 currently matters, but someday it might). */
8423293d 10623 o->map_head.link_order = NULL;
b49e97c9
TS
10624
10625 /* Really remove the section. */
5daa8fe7 10626 bfd_section_list_remove (abfd, o);
b49e97c9
TS
10627 --abfd->section_count;
10628
10629 continue;
10630 }
10631
10632 /* There is one gptab for initialized data, and one for
10633 uninitialized data. */
10634 if (strcmp (o->name, ".gptab.sdata") == 0)
10635 gptab_data_sec = o;
10636 else if (strcmp (o->name, ".gptab.sbss") == 0)
10637 gptab_bss_sec = o;
10638 else
10639 {
10640 (*_bfd_error_handler)
10641 (_("%s: illegal section name `%s'"),
10642 bfd_get_filename (abfd), o->name);
10643 bfd_set_error (bfd_error_nonrepresentable_section);
b34976b6 10644 return FALSE;
b49e97c9
TS
10645 }
10646
10647 /* The linker script always combines .gptab.data and
10648 .gptab.sdata into .gptab.sdata, and likewise for
10649 .gptab.bss and .gptab.sbss. It is possible that there is
10650 no .sdata or .sbss section in the output file, in which
10651 case we must change the name of the output section. */
10652 subname = o->name + sizeof ".gptab" - 1;
10653 if (bfd_get_section_by_name (abfd, subname) == NULL)
10654 {
10655 if (o == gptab_data_sec)
10656 o->name = ".gptab.data";
10657 else
10658 o->name = ".gptab.bss";
10659 subname = o->name + sizeof ".gptab" - 1;
10660 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
10661 }
10662
10663 /* Set up the first entry. */
10664 c = 1;
10665 amt = c * sizeof (Elf32_gptab);
9719ad41 10666 tab = bfd_malloc (amt);
b49e97c9 10667 if (tab == NULL)
b34976b6 10668 return FALSE;
b49e97c9
TS
10669 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
10670 tab[0].gt_header.gt_unused = 0;
10671
10672 /* Combine the input sections. */
8423293d 10673 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
10674 {
10675 asection *input_section;
10676 bfd *input_bfd;
10677 bfd_size_type size;
10678 unsigned long last;
10679 bfd_size_type gpentry;
10680
10681 if (p->type != bfd_indirect_link_order)
10682 {
10683 if (p->type == bfd_data_link_order)
10684 continue;
10685 abort ();
10686 }
10687
10688 input_section = p->u.indirect.section;
10689 input_bfd = input_section->owner;
10690
10691 /* Combine the gptab entries for this input section one
10692 by one. We know that the input gptab entries are
10693 sorted by ascending -G value. */
eea6121a 10694 size = input_section->size;
b49e97c9
TS
10695 last = 0;
10696 for (gpentry = sizeof (Elf32_External_gptab);
10697 gpentry < size;
10698 gpentry += sizeof (Elf32_External_gptab))
10699 {
10700 Elf32_External_gptab ext_gptab;
10701 Elf32_gptab int_gptab;
10702 unsigned long val;
10703 unsigned long add;
b34976b6 10704 bfd_boolean exact;
b49e97c9
TS
10705 unsigned int look;
10706
10707 if (! (bfd_get_section_contents
9719ad41
RS
10708 (input_bfd, input_section, &ext_gptab, gpentry,
10709 sizeof (Elf32_External_gptab))))
b49e97c9
TS
10710 {
10711 free (tab);
b34976b6 10712 return FALSE;
b49e97c9
TS
10713 }
10714
10715 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
10716 &int_gptab);
10717 val = int_gptab.gt_entry.gt_g_value;
10718 add = int_gptab.gt_entry.gt_bytes - last;
10719
b34976b6 10720 exact = FALSE;
b49e97c9
TS
10721 for (look = 1; look < c; look++)
10722 {
10723 if (tab[look].gt_entry.gt_g_value >= val)
10724 tab[look].gt_entry.gt_bytes += add;
10725
10726 if (tab[look].gt_entry.gt_g_value == val)
b34976b6 10727 exact = TRUE;
b49e97c9
TS
10728 }
10729
10730 if (! exact)
10731 {
10732 Elf32_gptab *new_tab;
10733 unsigned int max;
10734
10735 /* We need a new table entry. */
10736 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
9719ad41 10737 new_tab = bfd_realloc (tab, amt);
b49e97c9
TS
10738 if (new_tab == NULL)
10739 {
10740 free (tab);
b34976b6 10741 return FALSE;
b49e97c9
TS
10742 }
10743 tab = new_tab;
10744 tab[c].gt_entry.gt_g_value = val;
10745 tab[c].gt_entry.gt_bytes = add;
10746
10747 /* Merge in the size for the next smallest -G
10748 value, since that will be implied by this new
10749 value. */
10750 max = 0;
10751 for (look = 1; look < c; look++)
10752 {
10753 if (tab[look].gt_entry.gt_g_value < val
10754 && (max == 0
10755 || (tab[look].gt_entry.gt_g_value
10756 > tab[max].gt_entry.gt_g_value)))
10757 max = look;
10758 }
10759 if (max != 0)
10760 tab[c].gt_entry.gt_bytes +=
10761 tab[max].gt_entry.gt_bytes;
10762
10763 ++c;
10764 }
10765
10766 last = int_gptab.gt_entry.gt_bytes;
10767 }
10768
10769 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10770 elf_link_input_bfd ignores this section. */
10771 input_section->flags &= ~SEC_HAS_CONTENTS;
10772 }
10773
10774 /* The table must be sorted by -G value. */
10775 if (c > 2)
10776 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
10777
10778 /* Swap out the table. */
10779 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
9719ad41 10780 ext_tab = bfd_alloc (abfd, amt);
b49e97c9
TS
10781 if (ext_tab == NULL)
10782 {
10783 free (tab);
b34976b6 10784 return FALSE;
b49e97c9
TS
10785 }
10786
10787 for (j = 0; j < c; j++)
10788 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
10789 free (tab);
10790
eea6121a 10791 o->size = c * sizeof (Elf32_External_gptab);
b49e97c9
TS
10792 o->contents = (bfd_byte *) ext_tab;
10793
10794 /* Skip this section later on (I don't think this currently
10795 matters, but someday it might). */
8423293d 10796 o->map_head.link_order = NULL;
b49e97c9
TS
10797 }
10798 }
10799
10800 /* Invoke the regular ELF backend linker to do all the work. */
c152c796 10801 if (!bfd_elf_final_link (abfd, info))
b34976b6 10802 return FALSE;
b49e97c9
TS
10803
10804 /* Now write out the computed sections. */
10805
9719ad41 10806 if (reginfo_sec != NULL)
b49e97c9
TS
10807 {
10808 Elf32_External_RegInfo ext;
10809
10810 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
9719ad41 10811 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
b34976b6 10812 return FALSE;
b49e97c9
TS
10813 }
10814
9719ad41 10815 if (mdebug_sec != NULL)
b49e97c9
TS
10816 {
10817 BFD_ASSERT (abfd->output_has_begun);
10818 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
10819 swap, info,
10820 mdebug_sec->filepos))
b34976b6 10821 return FALSE;
b49e97c9
TS
10822
10823 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
10824 }
10825
9719ad41 10826 if (gptab_data_sec != NULL)
b49e97c9
TS
10827 {
10828 if (! bfd_set_section_contents (abfd, gptab_data_sec,
10829 gptab_data_sec->contents,
eea6121a 10830 0, gptab_data_sec->size))
b34976b6 10831 return FALSE;
b49e97c9
TS
10832 }
10833
9719ad41 10834 if (gptab_bss_sec != NULL)
b49e97c9
TS
10835 {
10836 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
10837 gptab_bss_sec->contents,
eea6121a 10838 0, gptab_bss_sec->size))
b34976b6 10839 return FALSE;
b49e97c9
TS
10840 }
10841
10842 if (SGI_COMPAT (abfd))
10843 {
10844 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10845 if (rtproc_sec != NULL)
10846 {
10847 if (! bfd_set_section_contents (abfd, rtproc_sec,
10848 rtproc_sec->contents,
eea6121a 10849 0, rtproc_sec->size))
b34976b6 10850 return FALSE;
b49e97c9
TS
10851 }
10852 }
10853
b34976b6 10854 return TRUE;
b49e97c9
TS
10855}
10856\f
64543e1a
RS
10857/* Structure for saying that BFD machine EXTENSION extends BASE. */
10858
10859struct mips_mach_extension {
10860 unsigned long extension, base;
10861};
10862
10863
10864/* An array describing how BFD machines relate to one another. The entries
10865 are ordered topologically with MIPS I extensions listed last. */
10866
10867static const struct mips_mach_extension mips_mach_extensions[] = {
10868 /* MIPS64 extensions. */
5f74bc13 10869 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
64543e1a
RS
10870 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
10871
10872 /* MIPS V extensions. */
10873 { bfd_mach_mipsisa64, bfd_mach_mips5 },
10874
10875 /* R10000 extensions. */
10876 { bfd_mach_mips12000, bfd_mach_mips10000 },
10877
10878 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
10879 vr5400 ISA, but doesn't include the multimedia stuff. It seems
10880 better to allow vr5400 and vr5500 code to be merged anyway, since
10881 many libraries will just use the core ISA. Perhaps we could add
10882 some sort of ASE flag if this ever proves a problem. */
10883 { bfd_mach_mips5500, bfd_mach_mips5400 },
10884 { bfd_mach_mips5400, bfd_mach_mips5000 },
10885
10886 /* MIPS IV extensions. */
10887 { bfd_mach_mips5, bfd_mach_mips8000 },
10888 { bfd_mach_mips10000, bfd_mach_mips8000 },
10889 { bfd_mach_mips5000, bfd_mach_mips8000 },
5a7ea749 10890 { bfd_mach_mips7000, bfd_mach_mips8000 },
0d2e43ed 10891 { bfd_mach_mips9000, bfd_mach_mips8000 },
64543e1a
RS
10892
10893 /* VR4100 extensions. */
10894 { bfd_mach_mips4120, bfd_mach_mips4100 },
10895 { bfd_mach_mips4111, bfd_mach_mips4100 },
10896
10897 /* MIPS III extensions. */
10898 { bfd_mach_mips8000, bfd_mach_mips4000 },
10899 { bfd_mach_mips4650, bfd_mach_mips4000 },
10900 { bfd_mach_mips4600, bfd_mach_mips4000 },
10901 { bfd_mach_mips4400, bfd_mach_mips4000 },
10902 { bfd_mach_mips4300, bfd_mach_mips4000 },
10903 { bfd_mach_mips4100, bfd_mach_mips4000 },
10904 { bfd_mach_mips4010, bfd_mach_mips4000 },
10905
10906 /* MIPS32 extensions. */
10907 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
10908
10909 /* MIPS II extensions. */
10910 { bfd_mach_mips4000, bfd_mach_mips6000 },
10911 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
10912
10913 /* MIPS I extensions. */
10914 { bfd_mach_mips6000, bfd_mach_mips3000 },
10915 { bfd_mach_mips3900, bfd_mach_mips3000 }
10916};
10917
10918
10919/* Return true if bfd machine EXTENSION is an extension of machine BASE. */
10920
10921static bfd_boolean
9719ad41 10922mips_mach_extends_p (unsigned long base, unsigned long extension)
64543e1a
RS
10923{
10924 size_t i;
10925
c5211a54
RS
10926 if (extension == base)
10927 return TRUE;
10928
10929 if (base == bfd_mach_mipsisa32
10930 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
10931 return TRUE;
10932
10933 if (base == bfd_mach_mipsisa32r2
10934 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
10935 return TRUE;
10936
10937 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
64543e1a 10938 if (extension == mips_mach_extensions[i].extension)
c5211a54
RS
10939 {
10940 extension = mips_mach_extensions[i].base;
10941 if (extension == base)
10942 return TRUE;
10943 }
64543e1a 10944
c5211a54 10945 return FALSE;
64543e1a
RS
10946}
10947
10948
10949/* Return true if the given ELF header flags describe a 32-bit binary. */
00707a0e 10950
b34976b6 10951static bfd_boolean
9719ad41 10952mips_32bit_flags_p (flagword flags)
00707a0e 10953{
64543e1a
RS
10954 return ((flags & EF_MIPS_32BITMODE) != 0
10955 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
10956 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
10957 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
10958 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
10959 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
10960 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
00707a0e
RS
10961}
10962
64543e1a 10963
b49e97c9
TS
10964/* Merge backend specific data from an object file to the output
10965 object file when linking. */
10966
b34976b6 10967bfd_boolean
9719ad41 10968_bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
b49e97c9
TS
10969{
10970 flagword old_flags;
10971 flagword new_flags;
b34976b6
AM
10972 bfd_boolean ok;
10973 bfd_boolean null_input_bfd = TRUE;
b49e97c9
TS
10974 asection *sec;
10975
10976 /* Check if we have the same endianess */
82e51918 10977 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
aa701218
AO
10978 {
10979 (*_bfd_error_handler)
d003868e
AM
10980 (_("%B: endianness incompatible with that of the selected emulation"),
10981 ibfd);
aa701218
AO
10982 return FALSE;
10983 }
b49e97c9
TS
10984
10985 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
10986 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
b34976b6 10987 return TRUE;
b49e97c9 10988
aa701218
AO
10989 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
10990 {
10991 (*_bfd_error_handler)
d003868e
AM
10992 (_("%B: ABI is incompatible with that of the selected emulation"),
10993 ibfd);
aa701218
AO
10994 return FALSE;
10995 }
10996
b49e97c9
TS
10997 new_flags = elf_elfheader (ibfd)->e_flags;
10998 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
10999 old_flags = elf_elfheader (obfd)->e_flags;
11000
11001 if (! elf_flags_init (obfd))
11002 {
b34976b6 11003 elf_flags_init (obfd) = TRUE;
b49e97c9
TS
11004 elf_elfheader (obfd)->e_flags = new_flags;
11005 elf_elfheader (obfd)->e_ident[EI_CLASS]
11006 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
11007
11008 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2907b861
TS
11009 && (bfd_get_arch_info (obfd)->the_default
11010 || mips_mach_extends_p (bfd_get_mach (obfd),
11011 bfd_get_mach (ibfd))))
b49e97c9
TS
11012 {
11013 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
11014 bfd_get_mach (ibfd)))
b34976b6 11015 return FALSE;
b49e97c9
TS
11016 }
11017
b34976b6 11018 return TRUE;
b49e97c9
TS
11019 }
11020
11021 /* Check flag compatibility. */
11022
11023 new_flags &= ~EF_MIPS_NOREORDER;
11024 old_flags &= ~EF_MIPS_NOREORDER;
11025
f4416af6
AO
11026 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
11027 doesn't seem to matter. */
11028 new_flags &= ~EF_MIPS_XGOT;
11029 old_flags &= ~EF_MIPS_XGOT;
11030
98a8deaf
RS
11031 /* MIPSpro generates ucode info in n64 objects. Again, we should
11032 just be able to ignore this. */
11033 new_flags &= ~EF_MIPS_UCODE;
11034 old_flags &= ~EF_MIPS_UCODE;
11035
0a44bf69
RS
11036 /* Don't care about the PIC flags from dynamic objects; they are
11037 PIC by design. */
11038 if ((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0
11039 && (ibfd->flags & DYNAMIC) != 0)
11040 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11041
b49e97c9 11042 if (new_flags == old_flags)
b34976b6 11043 return TRUE;
b49e97c9
TS
11044
11045 /* Check to see if the input BFD actually contains any sections.
11046 If not, its flags may not have been initialised either, but it cannot
11047 actually cause any incompatibility. */
11048 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
11049 {
11050 /* Ignore synthetic sections and empty .text, .data and .bss sections
11051 which are automatically generated by gas. */
11052 if (strcmp (sec->name, ".reginfo")
11053 && strcmp (sec->name, ".mdebug")
eea6121a 11054 && (sec->size != 0
d13d89fa
NS
11055 || (strcmp (sec->name, ".text")
11056 && strcmp (sec->name, ".data")
11057 && strcmp (sec->name, ".bss"))))
b49e97c9 11058 {
b34976b6 11059 null_input_bfd = FALSE;
b49e97c9
TS
11060 break;
11061 }
11062 }
11063 if (null_input_bfd)
b34976b6 11064 return TRUE;
b49e97c9 11065
b34976b6 11066 ok = TRUE;
b49e97c9 11067
143d77c5
EC
11068 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
11069 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
b49e97c9 11070 {
b49e97c9 11071 (*_bfd_error_handler)
d003868e
AM
11072 (_("%B: warning: linking PIC files with non-PIC files"),
11073 ibfd);
143d77c5 11074 ok = TRUE;
b49e97c9
TS
11075 }
11076
143d77c5
EC
11077 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
11078 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
11079 if (! (new_flags & EF_MIPS_PIC))
11080 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
11081
11082 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11083 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
b49e97c9 11084
64543e1a
RS
11085 /* Compare the ISAs. */
11086 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
b49e97c9 11087 {
64543e1a 11088 (*_bfd_error_handler)
d003868e
AM
11089 (_("%B: linking 32-bit code with 64-bit code"),
11090 ibfd);
64543e1a
RS
11091 ok = FALSE;
11092 }
11093 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
11094 {
11095 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
11096 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
b49e97c9 11097 {
64543e1a
RS
11098 /* Copy the architecture info from IBFD to OBFD. Also copy
11099 the 32-bit flag (if set) so that we continue to recognise
11100 OBFD as a 32-bit binary. */
11101 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
11102 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11103 elf_elfheader (obfd)->e_flags
11104 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11105
11106 /* Copy across the ABI flags if OBFD doesn't use them
11107 and if that was what caused us to treat IBFD as 32-bit. */
11108 if ((old_flags & EF_MIPS_ABI) == 0
11109 && mips_32bit_flags_p (new_flags)
11110 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
11111 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
b49e97c9
TS
11112 }
11113 else
11114 {
64543e1a 11115 /* The ISAs aren't compatible. */
b49e97c9 11116 (*_bfd_error_handler)
d003868e
AM
11117 (_("%B: linking %s module with previous %s modules"),
11118 ibfd,
64543e1a
RS
11119 bfd_printable_name (ibfd),
11120 bfd_printable_name (obfd));
b34976b6 11121 ok = FALSE;
b49e97c9 11122 }
b49e97c9
TS
11123 }
11124
64543e1a
RS
11125 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11126 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11127
11128 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
b49e97c9
TS
11129 does set EI_CLASS differently from any 32-bit ABI. */
11130 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
11131 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
11132 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
11133 {
11134 /* Only error if both are set (to different values). */
11135 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
11136 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
11137 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
11138 {
11139 (*_bfd_error_handler)
d003868e
AM
11140 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
11141 ibfd,
b49e97c9
TS
11142 elf_mips_abi_name (ibfd),
11143 elf_mips_abi_name (obfd));
b34976b6 11144 ok = FALSE;
b49e97c9
TS
11145 }
11146 new_flags &= ~EF_MIPS_ABI;
11147 old_flags &= ~EF_MIPS_ABI;
11148 }
11149
fb39dac1
RS
11150 /* For now, allow arbitrary mixing of ASEs (retain the union). */
11151 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
11152 {
11153 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
11154
11155 new_flags &= ~ EF_MIPS_ARCH_ASE;
11156 old_flags &= ~ EF_MIPS_ARCH_ASE;
11157 }
11158
b49e97c9
TS
11159 /* Warn about any other mismatches */
11160 if (new_flags != old_flags)
11161 {
11162 (*_bfd_error_handler)
d003868e
AM
11163 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
11164 ibfd, (unsigned long) new_flags,
b49e97c9 11165 (unsigned long) old_flags);
b34976b6 11166 ok = FALSE;
b49e97c9
TS
11167 }
11168
11169 if (! ok)
11170 {
11171 bfd_set_error (bfd_error_bad_value);
b34976b6 11172 return FALSE;
b49e97c9
TS
11173 }
11174
b34976b6 11175 return TRUE;
b49e97c9
TS
11176}
11177
11178/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
11179
b34976b6 11180bfd_boolean
9719ad41 11181_bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
b49e97c9
TS
11182{
11183 BFD_ASSERT (!elf_flags_init (abfd)
11184 || elf_elfheader (abfd)->e_flags == flags);
11185
11186 elf_elfheader (abfd)->e_flags = flags;
b34976b6
AM
11187 elf_flags_init (abfd) = TRUE;
11188 return TRUE;
b49e97c9
TS
11189}
11190
b34976b6 11191bfd_boolean
9719ad41 11192_bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
b49e97c9 11193{
9719ad41 11194 FILE *file = ptr;
b49e97c9
TS
11195
11196 BFD_ASSERT (abfd != NULL && ptr != NULL);
11197
11198 /* Print normal ELF private data. */
11199 _bfd_elf_print_private_bfd_data (abfd, ptr);
11200
11201 /* xgettext:c-format */
11202 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
11203
11204 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
11205 fprintf (file, _(" [abi=O32]"));
11206 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
11207 fprintf (file, _(" [abi=O64]"));
11208 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
11209 fprintf (file, _(" [abi=EABI32]"));
11210 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
11211 fprintf (file, _(" [abi=EABI64]"));
11212 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
11213 fprintf (file, _(" [abi unknown]"));
11214 else if (ABI_N32_P (abfd))
11215 fprintf (file, _(" [abi=N32]"));
11216 else if (ABI_64_P (abfd))
11217 fprintf (file, _(" [abi=64]"));
11218 else
11219 fprintf (file, _(" [no abi set]"));
11220
11221 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
ae0d2616 11222 fprintf (file, " [mips1]");
b49e97c9 11223 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
ae0d2616 11224 fprintf (file, " [mips2]");
b49e97c9 11225 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
ae0d2616 11226 fprintf (file, " [mips3]");
b49e97c9 11227 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
ae0d2616 11228 fprintf (file, " [mips4]");
b49e97c9 11229 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
ae0d2616 11230 fprintf (file, " [mips5]");
b49e97c9 11231 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
ae0d2616 11232 fprintf (file, " [mips32]");
b49e97c9 11233 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
ae0d2616 11234 fprintf (file, " [mips64]");
af7ee8bf 11235 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
ae0d2616 11236 fprintf (file, " [mips32r2]");
5f74bc13 11237 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
ae0d2616 11238 fprintf (file, " [mips64r2]");
b49e97c9
TS
11239 else
11240 fprintf (file, _(" [unknown ISA]"));
11241
40d32fc6 11242 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
ae0d2616 11243 fprintf (file, " [mdmx]");
40d32fc6
CD
11244
11245 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
ae0d2616 11246 fprintf (file, " [mips16]");
40d32fc6 11247
b49e97c9 11248 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
ae0d2616 11249 fprintf (file, " [32bitmode]");
b49e97c9
TS
11250 else
11251 fprintf (file, _(" [not 32bitmode]"));
11252
c0e3f241 11253 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
ae0d2616 11254 fprintf (file, " [noreorder]");
c0e3f241
CD
11255
11256 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
ae0d2616 11257 fprintf (file, " [PIC]");
c0e3f241
CD
11258
11259 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
ae0d2616 11260 fprintf (file, " [CPIC]");
c0e3f241
CD
11261
11262 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
ae0d2616 11263 fprintf (file, " [XGOT]");
c0e3f241
CD
11264
11265 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
ae0d2616 11266 fprintf (file, " [UCODE]");
c0e3f241 11267
b49e97c9
TS
11268 fputc ('\n', file);
11269
b34976b6 11270 return TRUE;
b49e97c9 11271}
2f89ff8d 11272
b35d266b 11273const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
2f89ff8d 11274{
0112cd26
NC
11275 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11276 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11277 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
11278 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11279 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11280 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
11281 { NULL, 0, 0, 0, 0 }
2f89ff8d 11282};
5e2b0d47 11283
8992f0d7
TS
11284/* Merge non visibility st_other attributes. Ensure that the
11285 STO_OPTIONAL flag is copied into h->other, even if this is not a
11286 definiton of the symbol. */
5e2b0d47
NC
11287void
11288_bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
11289 const Elf_Internal_Sym *isym,
11290 bfd_boolean definition,
11291 bfd_boolean dynamic ATTRIBUTE_UNUSED)
11292{
8992f0d7
TS
11293 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
11294 {
11295 unsigned char other;
11296
11297 other = (definition ? isym->st_other : h->other);
11298 other &= ~ELF_ST_VISIBILITY (-1);
11299 h->other = other | ELF_ST_VISIBILITY (h->other);
11300 }
11301
11302 if (!definition
5e2b0d47
NC
11303 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
11304 h->other |= STO_OPTIONAL;
11305}
12ac1cf5
NC
11306
11307/* Decide whether an undefined symbol is special and can be ignored.
11308 This is the case for OPTIONAL symbols on IRIX. */
11309bfd_boolean
11310_bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
11311{
11312 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
11313}
e0764319
NC
11314
11315bfd_boolean
11316_bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
11317{
11318 return (sym->st_shndx == SHN_COMMON
11319 || sym->st_shndx == SHN_MIPS_ACOMMON
11320 || sym->st_shndx == SHN_MIPS_SCOMMON);
11321}
This page took 2.319215 seconds and 4 git commands to generate.