]> Git Repo - qemu.git/blame - linux-user/elfload.c
works with less than base ISA qemu-system-riscv32 -M virt -bios none -kernel output...
[qemu.git] / linux-user / elfload.c
CommitLineData
31e31b8a 1/* This is the Linux kernel elf-loading code, ported into user space */
d39594e9 2#include "qemu/osdep.h"
edf8e2af 3#include <sys/param.h>
31e31b8a 4
edf8e2af 5#include <sys/resource.h>
30ab9ef2 6#include <sys/shm.h>
31e31b8a 7
3ef693a0 8#include "qemu.h"
3b249d26 9#include "user-internals.h"
db2af69d 10#include "signal-common.h"
3ad0a769 11#include "loader.h"
5423e6d3 12#include "user-mmap.h"
76cad711 13#include "disas/disas.h"
ce543844 14#include "qemu/bitops.h"
f348b6d1 15#include "qemu/path.h"
dc5e9ac7 16#include "qemu/queue.h"
c6a2377f 17#include "qemu/guest-random.h"
6fd59449 18#include "qemu/units.h"
ee947430 19#include "qemu/selfmap.h"
c7f17e7b 20#include "qapi/error.h"
db2af69d 21#include "target_signal.h"
31e31b8a 22
e58ffeb3 23#ifdef _ARCH_PPC64
a6cc84f4 24#undef ARCH_DLINFO
25#undef ELF_PLATFORM
26#undef ELF_HWCAP
ad6919dc 27#undef ELF_HWCAP2
a6cc84f4 28#undef ELF_CLASS
29#undef ELF_DATA
30#undef ELF_ARCH
31#endif
32
edf8e2af
MW
33#define ELF_OSABI ELFOSABI_SYSV
34
cb33da57
BS
35/* from personality.h */
36
37/*
38 * Flags for bug emulation.
39 *
40 * These occupy the top three bytes.
41 */
42enum {
d97ef72e
RH
43 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
44 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
45 descriptors (signal handling) */
46 MMAP_PAGE_ZERO = 0x0100000,
47 ADDR_COMPAT_LAYOUT = 0x0200000,
48 READ_IMPLIES_EXEC = 0x0400000,
49 ADDR_LIMIT_32BIT = 0x0800000,
50 SHORT_INODE = 0x1000000,
51 WHOLE_SECONDS = 0x2000000,
52 STICKY_TIMEOUTS = 0x4000000,
53 ADDR_LIMIT_3GB = 0x8000000,
cb33da57
BS
54};
55
56/*
57 * Personality types.
58 *
59 * These go in the low byte. Avoid using the top bit, it will
60 * conflict with error returns.
61 */
62enum {
d97ef72e
RH
63 PER_LINUX = 0x0000,
64 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
65 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
66 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
67 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
68 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
69 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
70 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
71 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
72 PER_BSD = 0x0006,
73 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
74 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
75 PER_LINUX32 = 0x0008,
76 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
77 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
78 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
79 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
80 PER_RISCOS = 0x000c,
81 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
82 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
83 PER_OSF4 = 0x000f, /* OSF/1 v4 */
84 PER_HPUX = 0x0010,
85 PER_MASK = 0x00ff,
cb33da57
BS
86};
87
88/*
89 * Return the base personality without flags.
90 */
d97ef72e 91#define personality(pers) (pers & PER_MASK)
cb33da57 92
3cb10cfa
CL
93int info_is_fdpic(struct image_info *info)
94{
95 return info->personality == PER_LINUX_FDPIC;
96}
97
83fb7adf
FB
98/* this flag is uneffective under linux too, should be deleted */
99#ifndef MAP_DENYWRITE
100#define MAP_DENYWRITE 0
101#endif
102
103/* should probably go in elf.h */
104#ifndef ELIBBAD
105#define ELIBBAD 80
106#endif
107
ee3eb3a7 108#if TARGET_BIG_ENDIAN
28490231
RH
109#define ELF_DATA ELFDATA2MSB
110#else
111#define ELF_DATA ELFDATA2LSB
112#endif
113
a29f998d 114#ifdef TARGET_ABI_MIPSN32
918fc54c
PB
115typedef abi_ullong target_elf_greg_t;
116#define tswapreg(ptr) tswap64(ptr)
a29f998d
PB
117#else
118typedef abi_ulong target_elf_greg_t;
119#define tswapreg(ptr) tswapal(ptr)
120#endif
121
21e807fa 122#ifdef USE_UID16
1ddd592f
PB
123typedef abi_ushort target_uid_t;
124typedef abi_ushort target_gid_t;
21e807fa 125#else
f8fd4fc4
PB
126typedef abi_uint target_uid_t;
127typedef abi_uint target_gid_t;
21e807fa 128#endif
f8fd4fc4 129typedef abi_int target_pid_t;
21e807fa 130
30ac07d4
FB
131#ifdef TARGET_I386
132
15338fd7
FB
133#define ELF_HWCAP get_elf_hwcap()
134
135static uint32_t get_elf_hwcap(void)
136{
a2247f8e
AF
137 X86CPU *cpu = X86_CPU(thread_cpu);
138
139 return cpu->env.features[FEAT_1_EDX];
15338fd7
FB
140}
141
84409ddb
JM
142#ifdef TARGET_X86_64
143#define ELF_START_MMAP 0x2aaaaab000ULL
84409ddb
JM
144
145#define ELF_CLASS ELFCLASS64
84409ddb
JM
146#define ELF_ARCH EM_X86_64
147
9263ba84
RH
148#define ELF_PLATFORM "x86_64"
149
84409ddb
JM
150static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
151{
152 regs->rax = 0;
153 regs->rsp = infop->start_stack;
154 regs->rip = infop->entry;
155}
156
9edc5d79 157#define ELF_NREG 27
c227f099 158typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
159
160/*
161 * Note that ELF_NREG should be 29 as there should be place for
162 * TRAPNO and ERR "registers" as well but linux doesn't dump
163 * those.
164 *
165 * See linux kernel: arch/x86/include/asm/elf.h
166 */
05390248 167static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
9edc5d79 168{
030912e0
IL
169 (*regs)[0] = tswapreg(env->regs[15]);
170 (*regs)[1] = tswapreg(env->regs[14]);
171 (*regs)[2] = tswapreg(env->regs[13]);
172 (*regs)[3] = tswapreg(env->regs[12]);
173 (*regs)[4] = tswapreg(env->regs[R_EBP]);
174 (*regs)[5] = tswapreg(env->regs[R_EBX]);
175 (*regs)[6] = tswapreg(env->regs[11]);
176 (*regs)[7] = tswapreg(env->regs[10]);
177 (*regs)[8] = tswapreg(env->regs[9]);
178 (*regs)[9] = tswapreg(env->regs[8]);
179 (*regs)[10] = tswapreg(env->regs[R_EAX]);
180 (*regs)[11] = tswapreg(env->regs[R_ECX]);
181 (*regs)[12] = tswapreg(env->regs[R_EDX]);
182 (*regs)[13] = tswapreg(env->regs[R_ESI]);
183 (*regs)[14] = tswapreg(env->regs[R_EDI]);
184 (*regs)[15] = tswapreg(env->regs[R_EAX]); /* XXX */
185 (*regs)[16] = tswapreg(env->eip);
186 (*regs)[17] = tswapreg(env->segs[R_CS].selector & 0xffff);
187 (*regs)[18] = tswapreg(env->eflags);
188 (*regs)[19] = tswapreg(env->regs[R_ESP]);
189 (*regs)[20] = tswapreg(env->segs[R_SS].selector & 0xffff);
190 (*regs)[21] = tswapreg(env->segs[R_FS].selector & 0xffff);
191 (*regs)[22] = tswapreg(env->segs[R_GS].selector & 0xffff);
192 (*regs)[23] = tswapreg(env->segs[R_DS].selector & 0xffff);
193 (*regs)[24] = tswapreg(env->segs[R_ES].selector & 0xffff);
194 (*regs)[25] = tswapreg(env->segs[R_FS].selector & 0xffff);
195 (*regs)[26] = tswapreg(env->segs[R_GS].selector & 0xffff);
9edc5d79
MW
196}
197
d461b73e
RH
198#if ULONG_MAX > UINT32_MAX
199#define INIT_GUEST_COMMPAGE
200static bool init_guest_commpage(void)
201{
202 /*
203 * The vsyscall page is at a high negative address aka kernel space,
204 * which means that we cannot actually allocate it with target_mmap.
205 * We still should be able to use page_set_flags, unless the user
206 * has specified -R reserved_va, which would trigger an assert().
207 */
208 if (reserved_va != 0 &&
209 TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE >= reserved_va) {
210 error_report("Cannot allocate vsyscall page");
211 exit(EXIT_FAILURE);
212 }
213 page_set_flags(TARGET_VSYSCALL_PAGE,
214 TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE,
215 PAGE_EXEC | PAGE_VALID);
216 return true;
217}
218#endif
84409ddb
JM
219#else
220
30ac07d4
FB
221#define ELF_START_MMAP 0x80000000
222
30ac07d4
FB
223/*
224 * This is used to ensure we don't load something for the wrong architecture.
225 */
226#define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
227
228/*
229 * These are used to set parameters in the core dumps.
230 */
d97ef72e 231#define ELF_CLASS ELFCLASS32
d97ef72e 232#define ELF_ARCH EM_386
30ac07d4 233
9263ba84 234#define ELF_PLATFORM get_elf_platform()
872f3d04 235#define EXSTACK_DEFAULT true
9263ba84
RH
236
237static const char *get_elf_platform(void)
238{
239 static char elf_platform[] = "i386";
240 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
241 if (family > 6) {
242 family = 6;
243 }
244 if (family >= 3) {
245 elf_platform[1] = '0' + family;
246 }
247 return elf_platform;
248}
249
d97ef72e
RH
250static inline void init_thread(struct target_pt_regs *regs,
251 struct image_info *infop)
b346ff46
FB
252{
253 regs->esp = infop->start_stack;
254 regs->eip = infop->entry;
e5fe0c52
PB
255
256 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
257 starts %edx contains a pointer to a function which might be
258 registered using `atexit'. This provides a mean for the
259 dynamic linker to call DT_FINI functions for shared libraries
260 that have been loaded before the code runs.
261
262 A value of 0 tells we have no such handler. */
263 regs->edx = 0;
b346ff46 264}
9edc5d79 265
9edc5d79 266#define ELF_NREG 17
c227f099 267typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
268
269/*
270 * Note that ELF_NREG should be 19 as there should be place for
271 * TRAPNO and ERR "registers" as well but linux doesn't dump
272 * those.
273 *
274 * See linux kernel: arch/x86/include/asm/elf.h
275 */
05390248 276static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
9edc5d79 277{
030912e0
IL
278 (*regs)[0] = tswapreg(env->regs[R_EBX]);
279 (*regs)[1] = tswapreg(env->regs[R_ECX]);
280 (*regs)[2] = tswapreg(env->regs[R_EDX]);
281 (*regs)[3] = tswapreg(env->regs[R_ESI]);
282 (*regs)[4] = tswapreg(env->regs[R_EDI]);
283 (*regs)[5] = tswapreg(env->regs[R_EBP]);
284 (*regs)[6] = tswapreg(env->regs[R_EAX]);
285 (*regs)[7] = tswapreg(env->segs[R_DS].selector & 0xffff);
286 (*regs)[8] = tswapreg(env->segs[R_ES].selector & 0xffff);
287 (*regs)[9] = tswapreg(env->segs[R_FS].selector & 0xffff);
288 (*regs)[10] = tswapreg(env->segs[R_GS].selector & 0xffff);
289 (*regs)[11] = tswapreg(env->regs[R_EAX]); /* XXX */
290 (*regs)[12] = tswapreg(env->eip);
291 (*regs)[13] = tswapreg(env->segs[R_CS].selector & 0xffff);
292 (*regs)[14] = tswapreg(env->eflags);
293 (*regs)[15] = tswapreg(env->regs[R_ESP]);
294 (*regs)[16] = tswapreg(env->segs[R_SS].selector & 0xffff);
9edc5d79 295}
84409ddb 296#endif
b346ff46 297
9edc5d79 298#define USE_ELF_CORE_DUMP
d97ef72e 299#define ELF_EXEC_PAGESIZE 4096
b346ff46
FB
300
301#endif
302
303#ifdef TARGET_ARM
304
24e76ff0
PM
305#ifndef TARGET_AARCH64
306/* 32 bit ARM definitions */
307
b346ff46
FB
308#define ELF_START_MMAP 0x80000000
309
b597c3f7 310#define ELF_ARCH EM_ARM
d97ef72e 311#define ELF_CLASS ELFCLASS32
872f3d04 312#define EXSTACK_DEFAULT true
b346ff46 313
d97ef72e
RH
314static inline void init_thread(struct target_pt_regs *regs,
315 struct image_info *infop)
b346ff46 316{
992f48a0 317 abi_long stack = infop->start_stack;
b346ff46 318 memset(regs, 0, sizeof(*regs));
99033cae 319
167e4cdc
PM
320 regs->uregs[16] = ARM_CPU_MODE_USR;
321 if (infop->entry & 1) {
322 regs->uregs[16] |= CPSR_T;
323 }
324 regs->uregs[15] = infop->entry & 0xfffffffe;
325 regs->uregs[13] = infop->start_stack;
2f619698 326 /* FIXME - what to for failure of get_user()? */
167e4cdc
PM
327 get_user_ual(regs->uregs[2], stack + 8); /* envp */
328 get_user_ual(regs->uregs[1], stack + 4); /* envp */
a1516e92 329 /* XXX: it seems that r0 is zeroed after ! */
167e4cdc 330 regs->uregs[0] = 0;
e5fe0c52 331 /* For uClinux PIC binaries. */
863cf0b7 332 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
167e4cdc 333 regs->uregs[10] = infop->start_data;
3cb10cfa
CL
334
335 /* Support ARM FDPIC. */
336 if (info_is_fdpic(infop)) {
337 /* As described in the ABI document, r7 points to the loadmap info
338 * prepared by the kernel. If an interpreter is needed, r8 points
339 * to the interpreter loadmap and r9 points to the interpreter
340 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
341 * r9 points to the main program PT_DYNAMIC info.
342 */
343 regs->uregs[7] = infop->loadmap_addr;
344 if (infop->interpreter_loadmap_addr) {
345 /* Executable is dynamically loaded. */
346 regs->uregs[8] = infop->interpreter_loadmap_addr;
347 regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
348 } else {
349 regs->uregs[8] = 0;
350 regs->uregs[9] = infop->pt_dynamic_addr;
351 }
352 }
b346ff46
FB
353}
354
edf8e2af 355#define ELF_NREG 18
c227f099 356typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 357
05390248 358static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
edf8e2af 359{
86cd7b2d
PB
360 (*regs)[0] = tswapreg(env->regs[0]);
361 (*regs)[1] = tswapreg(env->regs[1]);
362 (*regs)[2] = tswapreg(env->regs[2]);
363 (*regs)[3] = tswapreg(env->regs[3]);
364 (*regs)[4] = tswapreg(env->regs[4]);
365 (*regs)[5] = tswapreg(env->regs[5]);
366 (*regs)[6] = tswapreg(env->regs[6]);
367 (*regs)[7] = tswapreg(env->regs[7]);
368 (*regs)[8] = tswapreg(env->regs[8]);
369 (*regs)[9] = tswapreg(env->regs[9]);
370 (*regs)[10] = tswapreg(env->regs[10]);
371 (*regs)[11] = tswapreg(env->regs[11]);
372 (*regs)[12] = tswapreg(env->regs[12]);
373 (*regs)[13] = tswapreg(env->regs[13]);
374 (*regs)[14] = tswapreg(env->regs[14]);
375 (*regs)[15] = tswapreg(env->regs[15]);
376
377 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
378 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
edf8e2af
MW
379}
380
30ac07d4 381#define USE_ELF_CORE_DUMP
d97ef72e 382#define ELF_EXEC_PAGESIZE 4096
30ac07d4 383
afce2927
FB
384enum
385{
d97ef72e
RH
386 ARM_HWCAP_ARM_SWP = 1 << 0,
387 ARM_HWCAP_ARM_HALF = 1 << 1,
388 ARM_HWCAP_ARM_THUMB = 1 << 2,
389 ARM_HWCAP_ARM_26BIT = 1 << 3,
390 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
391 ARM_HWCAP_ARM_FPA = 1 << 5,
392 ARM_HWCAP_ARM_VFP = 1 << 6,
393 ARM_HWCAP_ARM_EDSP = 1 << 7,
394 ARM_HWCAP_ARM_JAVA = 1 << 8,
395 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
43ce393e
PM
396 ARM_HWCAP_ARM_CRUNCH = 1 << 10,
397 ARM_HWCAP_ARM_THUMBEE = 1 << 11,
398 ARM_HWCAP_ARM_NEON = 1 << 12,
399 ARM_HWCAP_ARM_VFPv3 = 1 << 13,
400 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
24682654
PM
401 ARM_HWCAP_ARM_TLS = 1 << 15,
402 ARM_HWCAP_ARM_VFPv4 = 1 << 16,
403 ARM_HWCAP_ARM_IDIVA = 1 << 17,
404 ARM_HWCAP_ARM_IDIVT = 1 << 18,
405 ARM_HWCAP_ARM_VFPD32 = 1 << 19,
406 ARM_HWCAP_ARM_LPAE = 1 << 20,
407 ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
afce2927
FB
408};
409
ad6919dc
PM
410enum {
411 ARM_HWCAP2_ARM_AES = 1 << 0,
412 ARM_HWCAP2_ARM_PMULL = 1 << 1,
413 ARM_HWCAP2_ARM_SHA1 = 1 << 2,
414 ARM_HWCAP2_ARM_SHA2 = 1 << 3,
415 ARM_HWCAP2_ARM_CRC32 = 1 << 4,
416};
417
6b1275ff
PM
418/* The commpage only exists for 32 bit kernels */
419
66346faf 420#define HI_COMMPAGE (intptr_t)0xffff0f00u
806d1021 421
ee947430
AB
422static bool init_guest_commpage(void)
423{
fbd3c4cf
RH
424 abi_ptr commpage = HI_COMMPAGE & -qemu_host_page_size;
425 void *want = g2h_untagged(commpage);
ee947430 426 void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
5c3e87f3 427 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
97cc7560 428
ee947430
AB
429 if (addr == MAP_FAILED) {
430 perror("Allocating guest commpage");
431 exit(EXIT_FAILURE);
97cc7560 432 }
ee947430
AB
433 if (addr != want) {
434 return false;
97cc7560
DDAG
435 }
436
ee947430 437 /* Set kernel helper versions; rest of page is 0. */
3e8f1628 438 __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu));
97cc7560 439
ee947430 440 if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
97cc7560 441 perror("Protecting guest commpage");
ee947430 442 exit(EXIT_FAILURE);
97cc7560 443 }
fbd3c4cf
RH
444
445 page_set_flags(commpage, commpage + qemu_host_page_size,
446 PAGE_READ | PAGE_EXEC | PAGE_VALID);
ee947430 447 return true;
97cc7560 448}
adf050b1
BC
449
450#define ELF_HWCAP get_elf_hwcap()
ad6919dc 451#define ELF_HWCAP2 get_elf_hwcap2()
adf050b1
BC
452
453static uint32_t get_elf_hwcap(void)
454{
a2247f8e 455 ARMCPU *cpu = ARM_CPU(thread_cpu);
adf050b1
BC
456 uint32_t hwcaps = 0;
457
458 hwcaps |= ARM_HWCAP_ARM_SWP;
459 hwcaps |= ARM_HWCAP_ARM_HALF;
460 hwcaps |= ARM_HWCAP_ARM_THUMB;
461 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
adf050b1
BC
462
463 /* probe for the extra features */
464#define GET_FEATURE(feat, hwcap) \
a2247f8e 465 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
962fcbf2
RH
466
467#define GET_FEATURE_ID(feat, hwcap) \
468 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
469
24682654
PM
470 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
471 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
adf050b1
BC
472 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
473 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
474 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
24682654 475 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
bfa8a370 476 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
873b73c0
PM
477 GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
478 GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
bfa8a370
RH
479 GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
480
481 if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
482 cpu_isar_feature(aa32_fpdp_v3, cpu)) {
483 hwcaps |= ARM_HWCAP_ARM_VFPv3;
484 if (cpu_isar_feature(aa32_simd_r32, cpu)) {
485 hwcaps |= ARM_HWCAP_ARM_VFPD32;
486 } else {
487 hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
488 }
489 }
490 GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
adf050b1
BC
491
492 return hwcaps;
493}
afce2927 494
ad6919dc
PM
495static uint32_t get_elf_hwcap2(void)
496{
497 ARMCPU *cpu = ARM_CPU(thread_cpu);
498 uint32_t hwcaps = 0;
499
962fcbf2
RH
500 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
501 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
502 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
503 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
504 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
ad6919dc
PM
505 return hwcaps;
506}
507
508#undef GET_FEATURE
962fcbf2 509#undef GET_FEATURE_ID
ad6919dc 510
13ec4ec3
RH
511#define ELF_PLATFORM get_elf_platform()
512
513static const char *get_elf_platform(void)
514{
515 CPUARMState *env = thread_cpu->env_ptr;
516
ee3eb3a7 517#if TARGET_BIG_ENDIAN
13ec4ec3
RH
518# define END "b"
519#else
520# define END "l"
521#endif
522
523 if (arm_feature(env, ARM_FEATURE_V8)) {
524 return "v8" END;
525 } else if (arm_feature(env, ARM_FEATURE_V7)) {
526 if (arm_feature(env, ARM_FEATURE_M)) {
527 return "v7m" END;
528 } else {
529 return "v7" END;
530 }
531 } else if (arm_feature(env, ARM_FEATURE_V6)) {
532 return "v6" END;
533 } else if (arm_feature(env, ARM_FEATURE_V5)) {
534 return "v5" END;
535 } else {
536 return "v4" END;
537 }
538
539#undef END
540}
541
24e76ff0
PM
542#else
543/* 64 bit ARM definitions */
544#define ELF_START_MMAP 0x80000000
545
b597c3f7 546#define ELF_ARCH EM_AARCH64
24e76ff0 547#define ELF_CLASS ELFCLASS64
ee3eb3a7 548#if TARGET_BIG_ENDIAN
e20e3ec9
RH
549# define ELF_PLATFORM "aarch64_be"
550#else
551# define ELF_PLATFORM "aarch64"
552#endif
24e76ff0
PM
553
554static inline void init_thread(struct target_pt_regs *regs,
555 struct image_info *infop)
556{
557 abi_long stack = infop->start_stack;
558 memset(regs, 0, sizeof(*regs));
559
560 regs->pc = infop->entry & ~0x3ULL;
561 regs->sp = stack;
562}
563
564#define ELF_NREG 34
565typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
566
567static void elf_core_copy_regs(target_elf_gregset_t *regs,
568 const CPUARMState *env)
569{
570 int i;
571
572 for (i = 0; i < 32; i++) {
573 (*regs)[i] = tswapreg(env->xregs[i]);
574 }
575 (*regs)[32] = tswapreg(env->pc);
576 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
577}
578
579#define USE_ELF_CORE_DUMP
580#define ELF_EXEC_PAGESIZE 4096
581
582enum {
583 ARM_HWCAP_A64_FP = 1 << 0,
584 ARM_HWCAP_A64_ASIMD = 1 << 1,
585 ARM_HWCAP_A64_EVTSTRM = 1 << 2,
586 ARM_HWCAP_A64_AES = 1 << 3,
587 ARM_HWCAP_A64_PMULL = 1 << 4,
588 ARM_HWCAP_A64_SHA1 = 1 << 5,
589 ARM_HWCAP_A64_SHA2 = 1 << 6,
590 ARM_HWCAP_A64_CRC32 = 1 << 7,
955f56d4
AB
591 ARM_HWCAP_A64_ATOMICS = 1 << 8,
592 ARM_HWCAP_A64_FPHP = 1 << 9,
593 ARM_HWCAP_A64_ASIMDHP = 1 << 10,
594 ARM_HWCAP_A64_CPUID = 1 << 11,
595 ARM_HWCAP_A64_ASIMDRDM = 1 << 12,
596 ARM_HWCAP_A64_JSCVT = 1 << 13,
597 ARM_HWCAP_A64_FCMA = 1 << 14,
598 ARM_HWCAP_A64_LRCPC = 1 << 15,
599 ARM_HWCAP_A64_DCPOP = 1 << 16,
600 ARM_HWCAP_A64_SHA3 = 1 << 17,
601 ARM_HWCAP_A64_SM3 = 1 << 18,
602 ARM_HWCAP_A64_SM4 = 1 << 19,
603 ARM_HWCAP_A64_ASIMDDP = 1 << 20,
604 ARM_HWCAP_A64_SHA512 = 1 << 21,
605 ARM_HWCAP_A64_SVE = 1 << 22,
0083a1fa
RH
606 ARM_HWCAP_A64_ASIMDFHM = 1 << 23,
607 ARM_HWCAP_A64_DIT = 1 << 24,
608 ARM_HWCAP_A64_USCAT = 1 << 25,
609 ARM_HWCAP_A64_ILRCPC = 1 << 26,
610 ARM_HWCAP_A64_FLAGM = 1 << 27,
611 ARM_HWCAP_A64_SSBS = 1 << 28,
612 ARM_HWCAP_A64_SB = 1 << 29,
613 ARM_HWCAP_A64_PACA = 1 << 30,
614 ARM_HWCAP_A64_PACG = 1UL << 31,
2041df4a
RH
615
616 ARM_HWCAP2_A64_DCPODP = 1 << 0,
617 ARM_HWCAP2_A64_SVE2 = 1 << 1,
618 ARM_HWCAP2_A64_SVEAES = 1 << 2,
619 ARM_HWCAP2_A64_SVEPMULL = 1 << 3,
620 ARM_HWCAP2_A64_SVEBITPERM = 1 << 4,
621 ARM_HWCAP2_A64_SVESHA3 = 1 << 5,
622 ARM_HWCAP2_A64_SVESM4 = 1 << 6,
623 ARM_HWCAP2_A64_FLAGM2 = 1 << 7,
624 ARM_HWCAP2_A64_FRINT = 1 << 8,
68948d18
RH
625 ARM_HWCAP2_A64_SVEI8MM = 1 << 9,
626 ARM_HWCAP2_A64_SVEF32MM = 1 << 10,
627 ARM_HWCAP2_A64_SVEF64MM = 1 << 11,
628 ARM_HWCAP2_A64_SVEBF16 = 1 << 12,
629 ARM_HWCAP2_A64_I8MM = 1 << 13,
630 ARM_HWCAP2_A64_BF16 = 1 << 14,
631 ARM_HWCAP2_A64_DGH = 1 << 15,
632 ARM_HWCAP2_A64_RNG = 1 << 16,
633 ARM_HWCAP2_A64_BTI = 1 << 17,
634 ARM_HWCAP2_A64_MTE = 1 << 18,
f9982cea
RH
635 ARM_HWCAP2_A64_ECV = 1 << 19,
636 ARM_HWCAP2_A64_AFP = 1 << 20,
637 ARM_HWCAP2_A64_RPRES = 1 << 21,
638 ARM_HWCAP2_A64_MTE3 = 1 << 22,
639 ARM_HWCAP2_A64_SME = 1 << 23,
640 ARM_HWCAP2_A64_SME_I16I64 = 1 << 24,
641 ARM_HWCAP2_A64_SME_F64F64 = 1 << 25,
642 ARM_HWCAP2_A64_SME_I8I32 = 1 << 26,
643 ARM_HWCAP2_A64_SME_F16F32 = 1 << 27,
644 ARM_HWCAP2_A64_SME_B16F32 = 1 << 28,
645 ARM_HWCAP2_A64_SME_F32F32 = 1 << 29,
646 ARM_HWCAP2_A64_SME_FA64 = 1 << 30,
24e76ff0
PM
647};
648
2041df4a
RH
649#define ELF_HWCAP get_elf_hwcap()
650#define ELF_HWCAP2 get_elf_hwcap2()
651
652#define GET_FEATURE_ID(feat, hwcap) \
653 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
24e76ff0
PM
654
655static uint32_t get_elf_hwcap(void)
656{
657 ARMCPU *cpu = ARM_CPU(thread_cpu);
658 uint32_t hwcaps = 0;
659
660 hwcaps |= ARM_HWCAP_A64_FP;
661 hwcaps |= ARM_HWCAP_A64_ASIMD;
37020ff1 662 hwcaps |= ARM_HWCAP_A64_CPUID;
24e76ff0
PM
663
664 /* probe for the extra features */
962fcbf2
RH
665
666 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
667 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
668 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
669 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
670 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
671 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
672 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
673 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
674 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
5763190f 675 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
962fcbf2
RH
676 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
677 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
678 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
679 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
cd208a1c 680 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
29d26ab2 681 GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
1c9af3a9
RH
682 GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
683 GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
9888bd1e 684 GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
b89d9c98 685 GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
0d57b499 686 GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
2677cf9f 687 GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
a1229109 688 GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
962fcbf2 689
2041df4a
RH
690 return hwcaps;
691}
692
693static uint32_t get_elf_hwcap2(void)
694{
695 ARMCPU *cpu = ARM_CPU(thread_cpu);
696 uint32_t hwcaps = 0;
697
0d57b499 698 GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
cdc8d8b2
RH
699 GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2);
700 GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES);
701 GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL);
702 GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM);
703 GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3);
704 GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4);
2041df4a
RH
705 GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
706 GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
cdc8d8b2
RH
707 GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM);
708 GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM);
709 GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM);
6c47a905 710 GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16);
cdc8d8b2 711 GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM);
6c47a905 712 GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16);
68948d18
RH
713 GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG);
714 GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI);
715 GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE);
f9982cea
RH
716 GET_FEATURE_ID(aa64_sme, (ARM_HWCAP2_A64_SME |
717 ARM_HWCAP2_A64_SME_F32F32 |
718 ARM_HWCAP2_A64_SME_B16F32 |
719 ARM_HWCAP2_A64_SME_F16F32 |
720 ARM_HWCAP2_A64_SME_I8I32));
721 GET_FEATURE_ID(aa64_sme_f64f64, ARM_HWCAP2_A64_SME_F64F64);
722 GET_FEATURE_ID(aa64_sme_i16i64, ARM_HWCAP2_A64_SME_I16I64);
723 GET_FEATURE_ID(aa64_sme_fa64, ARM_HWCAP2_A64_SME_FA64);
24e76ff0
PM
724
725 return hwcaps;
726}
727
2041df4a
RH
728#undef GET_FEATURE_ID
729
24e76ff0
PM
730#endif /* not TARGET_AARCH64 */
731#endif /* TARGET_ARM */
30ac07d4 732
853d6f7a 733#ifdef TARGET_SPARC
a315a145 734#ifdef TARGET_SPARC64
853d6f7a
FB
735
736#define ELF_START_MMAP 0x80000000
cf973e46
AT
737#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
738 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
992f48a0 739#ifndef TARGET_ABI32
cb33da57 740#define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
992f48a0
BS
741#else
742#define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
743#endif
853d6f7a 744
a315a145 745#define ELF_CLASS ELFCLASS64
5ef54116 746#define ELF_ARCH EM_SPARCV9
a315a145
FB
747#else
748#define ELF_START_MMAP 0x80000000
cf973e46
AT
749#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
750 | HWCAP_SPARC_MULDIV)
853d6f7a 751#define ELF_CLASS ELFCLASS32
853d6f7a 752#define ELF_ARCH EM_SPARC
089a2256 753#endif /* TARGET_SPARC64 */
853d6f7a 754
d97ef72e
RH
755static inline void init_thread(struct target_pt_regs *regs,
756 struct image_info *infop)
853d6f7a 757{
089a2256 758 /* Note that target_cpu_copy_regs does not read psr/tstate. */
f5155289
FB
759 regs->pc = infop->entry;
760 regs->npc = regs->pc + 4;
761 regs->y = 0;
089a2256
RH
762 regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong)
763 - TARGET_STACK_BIAS);
853d6f7a 764}
089a2256 765#endif /* TARGET_SPARC */
853d6f7a 766
67867308
FB
767#ifdef TARGET_PPC
768
4ecd4d16 769#define ELF_MACHINE PPC_ELF_MACHINE
67867308
FB
770#define ELF_START_MMAP 0x80000000
771
74154d7e 772#if defined(TARGET_PPC64)
84409ddb
JM
773
774#define elf_check_arch(x) ( (x) == EM_PPC64 )
775
d97ef72e 776#define ELF_CLASS ELFCLASS64
84409ddb
JM
777
778#else
779
d97ef72e 780#define ELF_CLASS ELFCLASS32
872f3d04 781#define EXSTACK_DEFAULT true
84409ddb
JM
782
783#endif
784
d97ef72e 785#define ELF_ARCH EM_PPC
67867308 786
df84e4f3
NF
787/* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
788 See arch/powerpc/include/asm/cputable.h. */
789enum {
3efa9a67 790 QEMU_PPC_FEATURE_32 = 0x80000000,
791 QEMU_PPC_FEATURE_64 = 0x40000000,
792 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
793 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
794 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
795 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
796 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
797 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
798 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
799 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
800 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
801 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
802 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
803 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
804 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
805 QEMU_PPC_FEATURE_CELL = 0x00010000,
806 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
807 QEMU_PPC_FEATURE_SMT = 0x00004000,
808 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
809 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
810 QEMU_PPC_FEATURE_PA6T = 0x00000800,
811 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
812 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
813 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
814 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
815 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
816
817 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
818 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
a60438dd
TM
819
820 /* Feature definitions in AT_HWCAP2. */
821 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
822 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
823 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
824 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
825 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
826 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
24c373ec
LV
827 QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
828 QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
be0c46d4 829 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
24c373ec
LV
830 QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
831 QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
832 QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
833 QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
96c343cc
JS
834 QEMU_PPC_FEATURE2_ARCH_3_1 = 0x00040000, /* ISA 3.1 */
835 QEMU_PPC_FEATURE2_MMA = 0x00020000, /* Matrix-Multiply Assist */
df84e4f3
NF
836};
837
838#define ELF_HWCAP get_elf_hwcap()
839
840static uint32_t get_elf_hwcap(void)
841{
a2247f8e 842 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
df84e4f3
NF
843 uint32_t features = 0;
844
845 /* We don't have to be terribly complete here; the high points are
846 Altivec/FP/SPE support. Anything else is just a bonus. */
d97ef72e 847#define GET_FEATURE(flag, feature) \
a2247f8e 848 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
58eb5308
MW
849#define GET_FEATURE2(flags, feature) \
850 do { \
851 if ((cpu->env.insns_flags2 & flags) == flags) { \
852 features |= feature; \
853 } \
854 } while (0)
3efa9a67 855 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
856 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
857 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
858 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
859 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
860 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
861 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
862 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
0e019746
TM
863 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
864 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
865 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
866 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
867 QEMU_PPC_FEATURE_ARCH_2_06);
df84e4f3 868#undef GET_FEATURE
0e019746 869#undef GET_FEATURE2
df84e4f3
NF
870
871 return features;
872}
873
a60438dd
TM
874#define ELF_HWCAP2 get_elf_hwcap2()
875
876static uint32_t get_elf_hwcap2(void)
877{
878 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
879 uint32_t features = 0;
880
881#define GET_FEATURE(flag, feature) \
882 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
883#define GET_FEATURE2(flag, feature) \
884 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
885
886 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
887 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
888 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
24c373ec
LV
889 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
890 QEMU_PPC_FEATURE2_VEC_CRYPTO);
891 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
8a589aeb 892 QEMU_PPC_FEATURE2_DARN | QEMU_PPC_FEATURE2_HAS_IEEE128);
96c343cc
JS
893 GET_FEATURE2(PPC2_ISA310, QEMU_PPC_FEATURE2_ARCH_3_1 |
894 QEMU_PPC_FEATURE2_MMA);
a60438dd
TM
895
896#undef GET_FEATURE
897#undef GET_FEATURE2
898
899 return features;
900}
901
f5155289
FB
902/*
903 * The requirements here are:
904 * - keep the final alignment of sp (sp & 0xf)
905 * - make sure the 32-bit value at the first 16 byte aligned position of
906 * AUXV is greater than 16 for glibc compatibility.
907 * AT_IGNOREPPC is used for that.
908 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
909 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
910 */
0bccf03d 911#define DLINFO_ARCH_ITEMS 5
d97ef72e
RH
912#define ARCH_DLINFO \
913 do { \
623e250a 914 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
d97ef72e 915 /* \
82991bed
PM
916 * Handle glibc compatibility: these magic entries must \
917 * be at the lowest addresses in the final auxv. \
d97ef72e
RH
918 */ \
919 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
920 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
82991bed
PM
921 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
922 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
923 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
d97ef72e 924 } while (0)
f5155289 925
67867308
FB
926static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
927{
67867308 928 _regs->gpr[1] = infop->start_stack;
74154d7e 929#if defined(TARGET_PPC64)
d90b94cd 930 if (get_ppc64_abi(infop) < 2) {
2ccf97ec
PM
931 uint64_t val;
932 get_user_u64(val, infop->entry + 8);
933 _regs->gpr[2] = val + infop->load_bias;
934 get_user_u64(val, infop->entry);
935 infop->entry = val + infop->load_bias;
d90b94cd
DK
936 } else {
937 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
938 }
84409ddb 939#endif
67867308
FB
940 _regs->nip = infop->entry;
941}
942
e2f3e741
NF
943/* See linux kernel: arch/powerpc/include/asm/elf.h. */
944#define ELF_NREG 48
945typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
946
05390248 947static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
e2f3e741
NF
948{
949 int i;
950 target_ulong ccr = 0;
951
952 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
86cd7b2d 953 (*regs)[i] = tswapreg(env->gpr[i]);
e2f3e741
NF
954 }
955
86cd7b2d
PB
956 (*regs)[32] = tswapreg(env->nip);
957 (*regs)[33] = tswapreg(env->msr);
958 (*regs)[35] = tswapreg(env->ctr);
959 (*regs)[36] = tswapreg(env->lr);
10de0521 960 (*regs)[37] = tswapreg(cpu_read_xer(env));
e2f3e741
NF
961
962 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
963 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
964 }
86cd7b2d 965 (*regs)[38] = tswapreg(ccr);
e2f3e741
NF
966}
967
968#define USE_ELF_CORE_DUMP
d97ef72e 969#define ELF_EXEC_PAGESIZE 4096
67867308
FB
970
971#endif
972
3418fe25
SG
973#ifdef TARGET_LOONGARCH64
974
975#define ELF_START_MMAP 0x80000000
976
977#define ELF_CLASS ELFCLASS64
978#define ELF_ARCH EM_LOONGARCH
872f3d04 979#define EXSTACK_DEFAULT true
3418fe25
SG
980
981#define elf_check_arch(x) ((x) == EM_LOONGARCH)
982
983static inline void init_thread(struct target_pt_regs *regs,
984 struct image_info *infop)
985{
986 /*Set crmd PG,DA = 1,0 */
987 regs->csr.crmd = 2 << 3;
988 regs->csr.era = infop->entry;
989 regs->regs[3] = infop->start_stack;
990}
991
992/* See linux kernel: arch/loongarch/include/asm/elf.h */
993#define ELF_NREG 45
994typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
995
996enum {
997 TARGET_EF_R0 = 0,
998 TARGET_EF_CSR_ERA = TARGET_EF_R0 + 33,
999 TARGET_EF_CSR_BADV = TARGET_EF_R0 + 34,
1000};
1001
1002static void elf_core_copy_regs(target_elf_gregset_t *regs,
1003 const CPULoongArchState *env)
1004{
1005 int i;
1006
1007 (*regs)[TARGET_EF_R0] = 0;
1008
1009 for (i = 1; i < ARRAY_SIZE(env->gpr); i++) {
1010 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->gpr[i]);
1011 }
1012
1013 (*regs)[TARGET_EF_CSR_ERA] = tswapreg(env->pc);
1014 (*regs)[TARGET_EF_CSR_BADV] = tswapreg(env->CSR_BADV);
1015}
1016
1017#define USE_ELF_CORE_DUMP
1018#define ELF_EXEC_PAGESIZE 4096
1019
1020#define ELF_HWCAP get_elf_hwcap()
1021
1022/* See arch/loongarch/include/uapi/asm/hwcap.h */
1023enum {
1024 HWCAP_LOONGARCH_CPUCFG = (1 << 0),
1025 HWCAP_LOONGARCH_LAM = (1 << 1),
1026 HWCAP_LOONGARCH_UAL = (1 << 2),
1027 HWCAP_LOONGARCH_FPU = (1 << 3),
1028 HWCAP_LOONGARCH_LSX = (1 << 4),
1029 HWCAP_LOONGARCH_LASX = (1 << 5),
1030 HWCAP_LOONGARCH_CRC32 = (1 << 6),
1031 HWCAP_LOONGARCH_COMPLEX = (1 << 7),
1032 HWCAP_LOONGARCH_CRYPTO = (1 << 8),
1033 HWCAP_LOONGARCH_LVZ = (1 << 9),
1034 HWCAP_LOONGARCH_LBT_X86 = (1 << 10),
1035 HWCAP_LOONGARCH_LBT_ARM = (1 << 11),
1036 HWCAP_LOONGARCH_LBT_MIPS = (1 << 12),
1037};
1038
1039static uint32_t get_elf_hwcap(void)
1040{
1041 LoongArchCPU *cpu = LOONGARCH_CPU(thread_cpu);
1042 uint32_t hwcaps = 0;
1043
1044 hwcaps |= HWCAP_LOONGARCH_CRC32;
1045
1046 if (FIELD_EX32(cpu->env.cpucfg[1], CPUCFG1, UAL)) {
1047 hwcaps |= HWCAP_LOONGARCH_UAL;
1048 }
1049
1050 if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, FP)) {
1051 hwcaps |= HWCAP_LOONGARCH_FPU;
1052 }
1053
1054 if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LAM)) {
1055 hwcaps |= HWCAP_LOONGARCH_LAM;
1056 }
1057
1058 return hwcaps;
1059}
1060
1061#define ELF_PLATFORM "loongarch"
1062
1063#endif /* TARGET_LOONGARCH64 */
1064
048f6b4d
FB
1065#ifdef TARGET_MIPS
1066
1067#define ELF_START_MMAP 0x80000000
1068
388bb21a
TS
1069#ifdef TARGET_MIPS64
1070#define ELF_CLASS ELFCLASS64
1071#else
048f6b4d 1072#define ELF_CLASS ELFCLASS32
388bb21a 1073#endif
048f6b4d 1074#define ELF_ARCH EM_MIPS
872f3d04 1075#define EXSTACK_DEFAULT true
048f6b4d 1076
ace3d654
CMAB
1077#ifdef TARGET_ABI_MIPSN32
1078#define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
1079#else
1080#define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
1081#endif
1082
fbf47c18
JY
1083#define ELF_BASE_PLATFORM get_elf_base_platform()
1084
1085#define MATCH_PLATFORM_INSN(_flags, _base_platform) \
1086 do { if ((cpu->env.insn_flags & (_flags)) == _flags) \
1087 { return _base_platform; } } while (0)
1088
1089static const char *get_elf_base_platform(void)
1090{
1091 MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1092
1093 /* 64 bit ISAs goes first */
1094 MATCH_PLATFORM_INSN(CPU_MIPS64R6, "mips64r6");
1095 MATCH_PLATFORM_INSN(CPU_MIPS64R5, "mips64r5");
1096 MATCH_PLATFORM_INSN(CPU_MIPS64R2, "mips64r2");
1097 MATCH_PLATFORM_INSN(CPU_MIPS64R1, "mips64");
1098 MATCH_PLATFORM_INSN(CPU_MIPS5, "mips5");
1099 MATCH_PLATFORM_INSN(CPU_MIPS4, "mips4");
1100 MATCH_PLATFORM_INSN(CPU_MIPS3, "mips3");
1101
1102 /* 32 bit ISAs */
1103 MATCH_PLATFORM_INSN(CPU_MIPS32R6, "mips32r6");
1104 MATCH_PLATFORM_INSN(CPU_MIPS32R5, "mips32r5");
1105 MATCH_PLATFORM_INSN(CPU_MIPS32R2, "mips32r2");
1106 MATCH_PLATFORM_INSN(CPU_MIPS32R1, "mips32");
1107 MATCH_PLATFORM_INSN(CPU_MIPS2, "mips2");
1108
1109 /* Fallback */
1110 return "mips";
1111}
1112#undef MATCH_PLATFORM_INSN
1113
d97ef72e
RH
1114static inline void init_thread(struct target_pt_regs *regs,
1115 struct image_info *infop)
048f6b4d 1116{
623a930e 1117 regs->cp0_status = 2 << CP0St_KSU;
048f6b4d
FB
1118 regs->cp0_epc = infop->entry;
1119 regs->regs[29] = infop->start_stack;
1120}
1121
51e52606
NF
1122/* See linux kernel: arch/mips/include/asm/elf.h. */
1123#define ELF_NREG 45
1124typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1125
1126/* See linux kernel: arch/mips/include/asm/reg.h. */
1127enum {
1128#ifdef TARGET_MIPS64
1129 TARGET_EF_R0 = 0,
1130#else
1131 TARGET_EF_R0 = 6,
1132#endif
1133 TARGET_EF_R26 = TARGET_EF_R0 + 26,
1134 TARGET_EF_R27 = TARGET_EF_R0 + 27,
1135 TARGET_EF_LO = TARGET_EF_R0 + 32,
1136 TARGET_EF_HI = TARGET_EF_R0 + 33,
1137 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
1138 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
1139 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
1140 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
1141};
1142
1143/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
05390248 1144static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
51e52606
NF
1145{
1146 int i;
1147
1148 for (i = 0; i < TARGET_EF_R0; i++) {
1149 (*regs)[i] = 0;
1150 }
1151 (*regs)[TARGET_EF_R0] = 0;
1152
1153 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
a29f998d 1154 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
51e52606
NF
1155 }
1156
1157 (*regs)[TARGET_EF_R26] = 0;
1158 (*regs)[TARGET_EF_R27] = 0;
a29f998d
PB
1159 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
1160 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
1161 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
1162 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
1163 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
1164 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
51e52606
NF
1165}
1166
1167#define USE_ELF_CORE_DUMP
388bb21a
TS
1168#define ELF_EXEC_PAGESIZE 4096
1169
46a1ee4f
JC
1170/* See arch/mips/include/uapi/asm/hwcap.h. */
1171enum {
1172 HWCAP_MIPS_R6 = (1 << 0),
1173 HWCAP_MIPS_MSA = (1 << 1),
9ea313ba
PMD
1174 HWCAP_MIPS_CRC32 = (1 << 2),
1175 HWCAP_MIPS_MIPS16 = (1 << 3),
1176 HWCAP_MIPS_MDMX = (1 << 4),
1177 HWCAP_MIPS_MIPS3D = (1 << 5),
1178 HWCAP_MIPS_SMARTMIPS = (1 << 6),
1179 HWCAP_MIPS_DSP = (1 << 7),
1180 HWCAP_MIPS_DSP2 = (1 << 8),
1181 HWCAP_MIPS_DSP3 = (1 << 9),
1182 HWCAP_MIPS_MIPS16E2 = (1 << 10),
1183 HWCAP_LOONGSON_MMI = (1 << 11),
1184 HWCAP_LOONGSON_EXT = (1 << 12),
1185 HWCAP_LOONGSON_EXT2 = (1 << 13),
1186 HWCAP_LOONGSON_CPUCFG = (1 << 14),
46a1ee4f
JC
1187};
1188
1189#define ELF_HWCAP get_elf_hwcap()
1190
7d9a3d96 1191#define GET_FEATURE_INSN(_flag, _hwcap) \
6dd97bfc
PMD
1192 do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0)
1193
388765a0
PMD
1194#define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \
1195 do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0)
1196
ce543844
PMD
1197#define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \
1198 do { \
1199 if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \
1200 hwcaps |= _hwcap; \
1201 } \
1202 } while (0)
1203
46a1ee4f
JC
1204static uint32_t get_elf_hwcap(void)
1205{
1206 MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1207 uint32_t hwcaps = 0;
1208
ce543844
PMD
1209 GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH,
1210 2, HWCAP_MIPS_R6);
388765a0 1211 GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA);
53673d0f
PMD
1212 GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI);
1213 GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT);
46a1ee4f 1214
46a1ee4f
JC
1215 return hwcaps;
1216}
1217
ce543844 1218#undef GET_FEATURE_REG_EQU
388765a0 1219#undef GET_FEATURE_REG_SET
7d9a3d96 1220#undef GET_FEATURE_INSN
6dd97bfc 1221
048f6b4d
FB
1222#endif /* TARGET_MIPS */
1223
b779e29e
EI
1224#ifdef TARGET_MICROBLAZE
1225
1226#define ELF_START_MMAP 0x80000000
1227
0d5d4699 1228#define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
b779e29e
EI
1229
1230#define ELF_CLASS ELFCLASS32
0d5d4699 1231#define ELF_ARCH EM_MICROBLAZE
b779e29e 1232
d97ef72e
RH
1233static inline void init_thread(struct target_pt_regs *regs,
1234 struct image_info *infop)
b779e29e
EI
1235{
1236 regs->pc = infop->entry;
1237 regs->r1 = infop->start_stack;
1238
1239}
1240
b779e29e
EI
1241#define ELF_EXEC_PAGESIZE 4096
1242
e4cbd44d
EI
1243#define USE_ELF_CORE_DUMP
1244#define ELF_NREG 38
1245typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1246
1247/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
05390248 1248static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
e4cbd44d
EI
1249{
1250 int i, pos = 0;
1251
1252 for (i = 0; i < 32; i++) {
86cd7b2d 1253 (*regs)[pos++] = tswapreg(env->regs[i]);
e4cbd44d
EI
1254 }
1255
af20a93a 1256 (*regs)[pos++] = tswapreg(env->pc);
1074c0fb 1257 (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env));
af20a93a
RH
1258 (*regs)[pos++] = 0;
1259 (*regs)[pos++] = tswapreg(env->ear);
1260 (*regs)[pos++] = 0;
1261 (*regs)[pos++] = tswapreg(env->esr);
e4cbd44d
EI
1262}
1263
b779e29e
EI
1264#endif /* TARGET_MICROBLAZE */
1265
a0a839b6
MV
1266#ifdef TARGET_NIOS2
1267
1268#define ELF_START_MMAP 0x80000000
1269
1270#define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1271
1272#define ELF_CLASS ELFCLASS32
1273#define ELF_ARCH EM_ALTERA_NIOS2
1274
1275static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1276{
1277 regs->ea = infop->entry;
1278 regs->sp = infop->start_stack;
a0a839b6
MV
1279}
1280
f5ef0e51
RH
1281#define LO_COMMPAGE TARGET_PAGE_SIZE
1282
1283static bool init_guest_commpage(void)
1284{
1285 static const uint8_t kuser_page[4 + 2 * 64] = {
1286 /* __kuser_helper_version */
1287 [0x00] = 0x02, 0x00, 0x00, 0x00,
1288
1289 /* __kuser_cmpxchg */
1290 [0x04] = 0x3a, 0x6c, 0x3b, 0x00, /* trap 16 */
1291 0x3a, 0x28, 0x00, 0xf8, /* ret */
1292
1293 /* __kuser_sigtramp */
1294 [0x44] = 0xc4, 0x22, 0x80, 0x00, /* movi r2, __NR_rt_sigreturn */
1295 0x3a, 0x68, 0x3b, 0x00, /* trap 0 */
1296 };
1297
1298 void *want = g2h_untagged(LO_COMMPAGE & -qemu_host_page_size);
1299 void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
1300 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
1301
1302 if (addr == MAP_FAILED) {
1303 perror("Allocating guest commpage");
1304 exit(EXIT_FAILURE);
1305 }
1306 if (addr != want) {
1307 return false;
1308 }
1309
1310 memcpy(addr, kuser_page, sizeof(kuser_page));
1311
1312 if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
1313 perror("Protecting guest commpage");
1314 exit(EXIT_FAILURE);
1315 }
1316
1317 page_set_flags(LO_COMMPAGE, LO_COMMPAGE + TARGET_PAGE_SIZE,
1318 PAGE_READ | PAGE_EXEC | PAGE_VALID);
1319 return true;
1320}
1321
a0a839b6
MV
1322#define ELF_EXEC_PAGESIZE 4096
1323
1324#define USE_ELF_CORE_DUMP
1325#define ELF_NREG 49
1326typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1327
1328/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1329static void elf_core_copy_regs(target_elf_gregset_t *regs,
1330 const CPUNios2State *env)
1331{
1332 int i;
1333
1334 (*regs)[0] = -1;
1335 for (i = 1; i < 8; i++) /* r0-r7 */
1336 (*regs)[i] = tswapreg(env->regs[i + 7]);
1337
1338 for (i = 8; i < 16; i++) /* r8-r15 */
1339 (*regs)[i] = tswapreg(env->regs[i - 8]);
1340
1341 for (i = 16; i < 24; i++) /* r16-r23 */
1342 (*regs)[i] = tswapreg(env->regs[i + 7]);
1343 (*regs)[24] = -1; /* R_ET */
1344 (*regs)[25] = -1; /* R_BT */
1345 (*regs)[26] = tswapreg(env->regs[R_GP]);
1346 (*regs)[27] = tswapreg(env->regs[R_SP]);
1347 (*regs)[28] = tswapreg(env->regs[R_FP]);
1348 (*regs)[29] = tswapreg(env->regs[R_EA]);
1349 (*regs)[30] = -1; /* R_SSTATUS */
1350 (*regs)[31] = tswapreg(env->regs[R_RA]);
1351
17a406ee 1352 (*regs)[32] = tswapreg(env->pc);
a0a839b6
MV
1353
1354 (*regs)[33] = -1; /* R_STATUS */
1355 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1356
1357 for (i = 35; i < 49; i++) /* ... */
1358 (*regs)[i] = -1;
1359}
1360
1361#endif /* TARGET_NIOS2 */
1362
d962783e
JL
1363#ifdef TARGET_OPENRISC
1364
1365#define ELF_START_MMAP 0x08000000
1366
d962783e
JL
1367#define ELF_ARCH EM_OPENRISC
1368#define ELF_CLASS ELFCLASS32
1369#define ELF_DATA ELFDATA2MSB
1370
1371static inline void init_thread(struct target_pt_regs *regs,
1372 struct image_info *infop)
1373{
1374 regs->pc = infop->entry;
1375 regs->gpr[1] = infop->start_stack;
1376}
1377
1378#define USE_ELF_CORE_DUMP
1379#define ELF_EXEC_PAGESIZE 8192
1380
1381/* See linux kernel arch/openrisc/include/asm/elf.h. */
1382#define ELF_NREG 34 /* gprs and pc, sr */
1383typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1384
1385static void elf_core_copy_regs(target_elf_gregset_t *regs,
1386 const CPUOpenRISCState *env)
1387{
1388 int i;
1389
1390 for (i = 0; i < 32; i++) {
d89e71e8 1391 (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
d962783e 1392 }
86cd7b2d 1393 (*regs)[32] = tswapreg(env->pc);
84775c43 1394 (*regs)[33] = tswapreg(cpu_get_sr(env));
d962783e
JL
1395}
1396#define ELF_HWCAP 0
1397#define ELF_PLATFORM NULL
1398
1399#endif /* TARGET_OPENRISC */
1400
fdf9b3e8
FB
1401#ifdef TARGET_SH4
1402
1403#define ELF_START_MMAP 0x80000000
1404
fdf9b3e8 1405#define ELF_CLASS ELFCLASS32
fdf9b3e8
FB
1406#define ELF_ARCH EM_SH
1407
d97ef72e
RH
1408static inline void init_thread(struct target_pt_regs *regs,
1409 struct image_info *infop)
fdf9b3e8 1410{
d97ef72e
RH
1411 /* Check other registers XXXXX */
1412 regs->pc = infop->entry;
1413 regs->regs[15] = infop->start_stack;
fdf9b3e8
FB
1414}
1415
7631c97e
NF
1416/* See linux kernel: arch/sh/include/asm/elf.h. */
1417#define ELF_NREG 23
1418typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1419
1420/* See linux kernel: arch/sh/include/asm/ptrace.h. */
1421enum {
1422 TARGET_REG_PC = 16,
1423 TARGET_REG_PR = 17,
1424 TARGET_REG_SR = 18,
1425 TARGET_REG_GBR = 19,
1426 TARGET_REG_MACH = 20,
1427 TARGET_REG_MACL = 21,
1428 TARGET_REG_SYSCALL = 22
1429};
1430
d97ef72e 1431static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
05390248 1432 const CPUSH4State *env)
7631c97e
NF
1433{
1434 int i;
1435
1436 for (i = 0; i < 16; i++) {
72cd500b 1437 (*regs)[i] = tswapreg(env->gregs[i]);
7631c97e
NF
1438 }
1439
86cd7b2d
PB
1440 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1441 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1442 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1443 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1444 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1445 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
7631c97e
NF
1446 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1447}
1448
1449#define USE_ELF_CORE_DUMP
fdf9b3e8
FB
1450#define ELF_EXEC_PAGESIZE 4096
1451
e42fd944
RH
1452enum {
1453 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
1454 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
1455 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1456 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
1457 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
1458 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
1459 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
1460 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
1461 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
1462 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
1463};
1464
1465#define ELF_HWCAP get_elf_hwcap()
1466
1467static uint32_t get_elf_hwcap(void)
1468{
1469 SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1470 uint32_t hwcap = 0;
1471
1472 hwcap |= SH_CPU_HAS_FPU;
1473
1474 if (cpu->env.features & SH_FEATURE_SH4A) {
1475 hwcap |= SH_CPU_HAS_LLSC;
1476 }
1477
1478 return hwcap;
1479}
1480
fdf9b3e8
FB
1481#endif
1482
48733d19
TS
1483#ifdef TARGET_CRIS
1484
1485#define ELF_START_MMAP 0x80000000
1486
48733d19 1487#define ELF_CLASS ELFCLASS32
48733d19
TS
1488#define ELF_ARCH EM_CRIS
1489
d97ef72e
RH
1490static inline void init_thread(struct target_pt_regs *regs,
1491 struct image_info *infop)
48733d19 1492{
d97ef72e 1493 regs->erp = infop->entry;
48733d19
TS
1494}
1495
48733d19
TS
1496#define ELF_EXEC_PAGESIZE 8192
1497
1498#endif
1499
e6e5906b
PB
1500#ifdef TARGET_M68K
1501
1502#define ELF_START_MMAP 0x80000000
1503
d97ef72e 1504#define ELF_CLASS ELFCLASS32
d97ef72e 1505#define ELF_ARCH EM_68K
e6e5906b
PB
1506
1507/* ??? Does this need to do anything?
d97ef72e 1508 #define ELF_PLAT_INIT(_r) */
e6e5906b 1509
d97ef72e
RH
1510static inline void init_thread(struct target_pt_regs *regs,
1511 struct image_info *infop)
e6e5906b
PB
1512{
1513 regs->usp = infop->start_stack;
1514 regs->sr = 0;
1515 regs->pc = infop->entry;
1516}
1517
7a93cc55
NF
1518/* See linux kernel: arch/m68k/include/asm/elf.h. */
1519#define ELF_NREG 20
1520typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1521
05390248 1522static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
7a93cc55 1523{
86cd7b2d
PB
1524 (*regs)[0] = tswapreg(env->dregs[1]);
1525 (*regs)[1] = tswapreg(env->dregs[2]);
1526 (*regs)[2] = tswapreg(env->dregs[3]);
1527 (*regs)[3] = tswapreg(env->dregs[4]);
1528 (*regs)[4] = tswapreg(env->dregs[5]);
1529 (*regs)[5] = tswapreg(env->dregs[6]);
1530 (*regs)[6] = tswapreg(env->dregs[7]);
1531 (*regs)[7] = tswapreg(env->aregs[0]);
1532 (*regs)[8] = tswapreg(env->aregs[1]);
1533 (*regs)[9] = tswapreg(env->aregs[2]);
1534 (*regs)[10] = tswapreg(env->aregs[3]);
1535 (*regs)[11] = tswapreg(env->aregs[4]);
1536 (*regs)[12] = tswapreg(env->aregs[5]);
1537 (*regs)[13] = tswapreg(env->aregs[6]);
1538 (*regs)[14] = tswapreg(env->dregs[0]);
1539 (*regs)[15] = tswapreg(env->aregs[7]);
1540 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1541 (*regs)[17] = tswapreg(env->sr);
1542 (*regs)[18] = tswapreg(env->pc);
7a93cc55
NF
1543 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
1544}
1545
1546#define USE_ELF_CORE_DUMP
d97ef72e 1547#define ELF_EXEC_PAGESIZE 8192
e6e5906b
PB
1548
1549#endif
1550
7a3148a9
JM
1551#ifdef TARGET_ALPHA
1552
1553#define ELF_START_MMAP (0x30000000000ULL)
1554
7a3148a9 1555#define ELF_CLASS ELFCLASS64
7a3148a9
JM
1556#define ELF_ARCH EM_ALPHA
1557
d97ef72e
RH
1558static inline void init_thread(struct target_pt_regs *regs,
1559 struct image_info *infop)
7a3148a9
JM
1560{
1561 regs->pc = infop->entry;
1562 regs->ps = 8;
1563 regs->usp = infop->start_stack;
7a3148a9
JM
1564}
1565
7a3148a9
JM
1566#define ELF_EXEC_PAGESIZE 8192
1567
1568#endif /* TARGET_ALPHA */
1569
a4c075f1
UH
1570#ifdef TARGET_S390X
1571
1572#define ELF_START_MMAP (0x20000000000ULL)
1573
a4c075f1
UH
1574#define ELF_CLASS ELFCLASS64
1575#define ELF_DATA ELFDATA2MSB
1576#define ELF_ARCH EM_S390
1577
6d88baf1
DH
1578#include "elf.h"
1579
1580#define ELF_HWCAP get_elf_hwcap()
1581
1582#define GET_FEATURE(_feat, _hwcap) \
1583 do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1584
1585static uint32_t get_elf_hwcap(void)
1586{
1587 /*
1588 * Let's assume we always have esan3 and zarch.
1589 * 31-bit processes can use 64-bit registers (high gprs).
1590 */
1591 uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1592
1593 GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1594 GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1595 GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1596 GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1597 if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1598 s390_has_feat(S390_FEAT_ETF3_ENH)) {
1599 hwcap |= HWCAP_S390_ETF3EH;
1600 }
1601 GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
da215c23 1602 GET_FEATURE(S390_FEAT_VECTOR_ENH, HWCAP_S390_VXRS_EXT);
6d88baf1
DH
1603
1604 return hwcap;
1605}
1606
a4c075f1
UH
1607static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1608{
1609 regs->psw.addr = infop->entry;
1610 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1611 regs->gprs[15] = infop->start_stack;
1612}
1613
4a1e8931
IL
1614/* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs). */
1615#define ELF_NREG 27
1616typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1617
1618enum {
1619 TARGET_REG_PSWM = 0,
1620 TARGET_REG_PSWA = 1,
1621 TARGET_REG_GPRS = 2,
1622 TARGET_REG_ARS = 18,
1623 TARGET_REG_ORIG_R2 = 26,
1624};
1625
1626static void elf_core_copy_regs(target_elf_gregset_t *regs,
1627 const CPUS390XState *env)
1628{
1629 int i;
1630 uint32_t *aregs;
1631
1632 (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask);
1633 (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr);
1634 for (i = 0; i < 16; i++) {
1635 (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]);
1636 }
1637 aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]);
1638 for (i = 0; i < 16; i++) {
1639 aregs[i] = tswap32(env->aregs[i]);
1640 }
1641 (*regs)[TARGET_REG_ORIG_R2] = 0;
1642}
1643
1644#define USE_ELF_CORE_DUMP
1645#define ELF_EXEC_PAGESIZE 4096
1646
a4c075f1
UH
1647#endif /* TARGET_S390X */
1648
47ae93cd
MC
1649#ifdef TARGET_RISCV
1650
1651#define ELF_START_MMAP 0x80000000
1652#define ELF_ARCH EM_RISCV
1653
1654#ifdef TARGET_RISCV32
1655#define ELF_CLASS ELFCLASS32
1656#else
1657#define ELF_CLASS ELFCLASS64
1658#endif
1659
cb46938c
KC
1660#define ELF_HWCAP get_elf_hwcap()
1661
1662static uint32_t get_elf_hwcap(void)
1663{
1664#define MISA_BIT(EXT) (1 << (EXT - 'A'))
1665 RISCVCPU *cpu = RISCV_CPU(thread_cpu);
1666 uint32_t mask = MISA_BIT('I') | MISA_BIT('M') | MISA_BIT('A')
1667 | MISA_BIT('F') | MISA_BIT('D') | MISA_BIT('C');
1668
e91a7227 1669 return cpu->env.misa_ext & mask;
cb46938c
KC
1670#undef MISA_BIT
1671}
1672
47ae93cd
MC
1673static inline void init_thread(struct target_pt_regs *regs,
1674 struct image_info *infop)
1675{
1676 regs->sepc = infop->entry;
1677 regs->sp = infop->start_stack;
1678}
1679
1680#define ELF_EXEC_PAGESIZE 4096
1681
1682#endif /* TARGET_RISCV */
1683
7c248bcd
RH
1684#ifdef TARGET_HPPA
1685
1686#define ELF_START_MMAP 0x80000000
1687#define ELF_CLASS ELFCLASS32
1688#define ELF_ARCH EM_PARISC
1689#define ELF_PLATFORM "PARISC"
1690#define STACK_GROWS_DOWN 0
1691#define STACK_ALIGNMENT 64
1692
1693static inline void init_thread(struct target_pt_regs *regs,
1694 struct image_info *infop)
1695{
1696 regs->iaoq[0] = infop->entry;
1697 regs->iaoq[1] = infop->entry + 4;
1698 regs->gr[23] = 0;
60f1c801
RH
1699 regs->gr[24] = infop->argv;
1700 regs->gr[25] = infop->argc;
7c248bcd
RH
1701 /* The top-of-stack contains a linkage buffer. */
1702 regs->gr[30] = infop->start_stack + 64;
1703 regs->gr[31] = infop->entry;
1704}
1705
eee816c0
RH
1706#define LO_COMMPAGE 0
1707
1708static bool init_guest_commpage(void)
1709{
1710 void *want = g2h_untagged(LO_COMMPAGE);
1711 void *addr = mmap(want, qemu_host_page_size, PROT_NONE,
1712 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
1713
1714 if (addr == MAP_FAILED) {
1715 perror("Allocating guest commpage");
1716 exit(EXIT_FAILURE);
1717 }
1718 if (addr != want) {
1719 return false;
1720 }
1721
1722 /*
1723 * On Linux, page zero is normally marked execute only + gateway.
1724 * Normal read or write is supposed to fail (thus PROT_NONE above),
1725 * but specific offsets have kernel code mapped to raise permissions
1726 * and implement syscalls. Here, simply mark the page executable.
1727 * Special case the entry points during translation (see do_page_zero).
1728 */
1729 page_set_flags(LO_COMMPAGE, LO_COMMPAGE + TARGET_PAGE_SIZE,
1730 PAGE_EXEC | PAGE_VALID);
1731 return true;
1732}
1733
7c248bcd
RH
1734#endif /* TARGET_HPPA */
1735
ba7651fb
MF
1736#ifdef TARGET_XTENSA
1737
1738#define ELF_START_MMAP 0x20000000
1739
1740#define ELF_CLASS ELFCLASS32
1741#define ELF_ARCH EM_XTENSA
1742
1743static inline void init_thread(struct target_pt_regs *regs,
1744 struct image_info *infop)
1745{
1746 regs->windowbase = 0;
1747 regs->windowstart = 1;
1748 regs->areg[1] = infop->start_stack;
1749 regs->pc = infop->entry;
1750}
1751
1752/* See linux kernel: arch/xtensa/include/asm/elf.h. */
1753#define ELF_NREG 128
1754typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1755
1756enum {
1757 TARGET_REG_PC,
1758 TARGET_REG_PS,
1759 TARGET_REG_LBEG,
1760 TARGET_REG_LEND,
1761 TARGET_REG_LCOUNT,
1762 TARGET_REG_SAR,
1763 TARGET_REG_WINDOWSTART,
1764 TARGET_REG_WINDOWBASE,
1765 TARGET_REG_THREADPTR,
1766 TARGET_REG_AR0 = 64,
1767};
1768
1769static void elf_core_copy_regs(target_elf_gregset_t *regs,
1770 const CPUXtensaState *env)
1771{
1772 unsigned i;
1773
1774 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1775 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1776 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1777 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1778 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1779 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1780 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1781 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1782 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1783 xtensa_sync_phys_from_window((CPUXtensaState *)env);
1784 for (i = 0; i < env->config->nareg; ++i) {
1785 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1786 }
1787}
1788
1789#define USE_ELF_CORE_DUMP
1790#define ELF_EXEC_PAGESIZE 4096
1791
1792#endif /* TARGET_XTENSA */
1793
d2a56bd2
TS
1794#ifdef TARGET_HEXAGON
1795
1796#define ELF_START_MMAP 0x20000000
1797
1798#define ELF_CLASS ELFCLASS32
1799#define ELF_ARCH EM_HEXAGON
1800
1801static inline void init_thread(struct target_pt_regs *regs,
1802 struct image_info *infop)
1803{
1804 regs->sepc = infop->entry;
1805 regs->sp = infop->start_stack;
1806}
1807
1808#endif /* TARGET_HEXAGON */
1809
fcdc0ab4
JY
1810#ifndef ELF_BASE_PLATFORM
1811#define ELF_BASE_PLATFORM (NULL)
1812#endif
1813
15338fd7
FB
1814#ifndef ELF_PLATFORM
1815#define ELF_PLATFORM (NULL)
1816#endif
1817
75be901c
PC
1818#ifndef ELF_MACHINE
1819#define ELF_MACHINE ELF_ARCH
1820#endif
1821
d276a604
PC
1822#ifndef elf_check_arch
1823#define elf_check_arch(x) ((x) == ELF_ARCH)
1824#endif
1825
ace3d654
CMAB
1826#ifndef elf_check_abi
1827#define elf_check_abi(x) (1)
1828#endif
1829
15338fd7
FB
1830#ifndef ELF_HWCAP
1831#define ELF_HWCAP 0
1832#endif
1833
7c4ee5bc
RH
1834#ifndef STACK_GROWS_DOWN
1835#define STACK_GROWS_DOWN 1
1836#endif
1837
1838#ifndef STACK_ALIGNMENT
1839#define STACK_ALIGNMENT 16
1840#endif
1841
992f48a0 1842#ifdef TARGET_ABI32
cb33da57 1843#undef ELF_CLASS
992f48a0 1844#define ELF_CLASS ELFCLASS32
cb33da57
BS
1845#undef bswaptls
1846#define bswaptls(ptr) bswap32s(ptr)
1847#endif
1848
872f3d04
RH
1849#ifndef EXSTACK_DEFAULT
1850#define EXSTACK_DEFAULT false
1851#endif
1852
31e31b8a 1853#include "elf.h"
09bfb054 1854
e8384b37
RH
1855/* We must delay the following stanzas until after "elf.h". */
1856#if defined(TARGET_AARCH64)
1857
1858static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1859 const uint32_t *data,
1860 struct image_info *info,
1861 Error **errp)
1862{
1863 if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
1864 if (pr_datasz != sizeof(uint32_t)) {
1865 error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND");
1866 return false;
1867 }
1868 /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */
1869 info->note_flags = *data;
1870 }
1871 return true;
1872}
1873#define ARCH_USE_GNU_PROPERTY 1
1874
1875#else
1876
83f990eb
RH
1877static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1878 const uint32_t *data,
1879 struct image_info *info,
1880 Error **errp)
1881{
1882 g_assert_not_reached();
1883}
1884#define ARCH_USE_GNU_PROPERTY 0
1885
e8384b37
RH
1886#endif
1887
09bfb054
FB
1888struct exec
1889{
d97ef72e
RH
1890 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
1891 unsigned int a_text; /* length of text, in bytes */
1892 unsigned int a_data; /* length of data, in bytes */
1893 unsigned int a_bss; /* length of uninitialized data area, in bytes */
1894 unsigned int a_syms; /* length of symbol table data in file, in bytes */
1895 unsigned int a_entry; /* start address */
1896 unsigned int a_trsize; /* length of relocation info for text, in bytes */
1897 unsigned int a_drsize; /* length of relocation info for data, in bytes */
09bfb054
FB
1898};
1899
1900
1901#define N_MAGIC(exec) ((exec).a_info & 0xffff)
1902#define OMAGIC 0407
1903#define NMAGIC 0410
1904#define ZMAGIC 0413
1905#define QMAGIC 0314
1906
31e31b8a 1907/* Necessary parameters */
94894ff2
SB
1908#define TARGET_ELF_EXEC_PAGESIZE \
1909 (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1910 TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1911#define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
79cb1f1d
YK
1912#define TARGET_ELF_PAGESTART(_v) ((_v) & \
1913 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
54936004 1914#define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
31e31b8a 1915
e0d1673d 1916#define DLINFO_ITEMS 16
31e31b8a 1917
09bfb054
FB
1918static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1919{
d97ef72e 1920 memcpy(to, from, n);
09bfb054 1921}
d691f669 1922
31e31b8a 1923#ifdef BSWAP_NEEDED
92a31b1f 1924static void bswap_ehdr(struct elfhdr *ehdr)
31e31b8a 1925{
d97ef72e
RH
1926 bswap16s(&ehdr->e_type); /* Object file type */
1927 bswap16s(&ehdr->e_machine); /* Architecture */
1928 bswap32s(&ehdr->e_version); /* Object file version */
1929 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
1930 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
1931 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
1932 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
1933 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
1934 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
1935 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
1936 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
1937 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
1938 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
31e31b8a
FB
1939}
1940
991f8f0c 1941static void bswap_phdr(struct elf_phdr *phdr, int phnum)
31e31b8a 1942{
991f8f0c
RH
1943 int i;
1944 for (i = 0; i < phnum; ++i, ++phdr) {
1945 bswap32s(&phdr->p_type); /* Segment type */
1946 bswap32s(&phdr->p_flags); /* Segment flags */
1947 bswaptls(&phdr->p_offset); /* Segment file offset */
1948 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
1949 bswaptls(&phdr->p_paddr); /* Segment physical address */
1950 bswaptls(&phdr->p_filesz); /* Segment size in file */
1951 bswaptls(&phdr->p_memsz); /* Segment size in memory */
1952 bswaptls(&phdr->p_align); /* Segment alignment */
1953 }
31e31b8a 1954}
689f936f 1955
991f8f0c 1956static void bswap_shdr(struct elf_shdr *shdr, int shnum)
689f936f 1957{
991f8f0c
RH
1958 int i;
1959 for (i = 0; i < shnum; ++i, ++shdr) {
1960 bswap32s(&shdr->sh_name);
1961 bswap32s(&shdr->sh_type);
1962 bswaptls(&shdr->sh_flags);
1963 bswaptls(&shdr->sh_addr);
1964 bswaptls(&shdr->sh_offset);
1965 bswaptls(&shdr->sh_size);
1966 bswap32s(&shdr->sh_link);
1967 bswap32s(&shdr->sh_info);
1968 bswaptls(&shdr->sh_addralign);
1969 bswaptls(&shdr->sh_entsize);
1970 }
689f936f
FB
1971}
1972
7a3148a9 1973static void bswap_sym(struct elf_sym *sym)
689f936f
FB
1974{
1975 bswap32s(&sym->st_name);
7a3148a9
JM
1976 bswaptls(&sym->st_value);
1977 bswaptls(&sym->st_size);
689f936f
FB
1978 bswap16s(&sym->st_shndx);
1979}
5dd0db52
SM
1980
1981#ifdef TARGET_MIPS
1982static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
1983{
1984 bswap16s(&abiflags->version);
1985 bswap32s(&abiflags->ases);
1986 bswap32s(&abiflags->isa_ext);
1987 bswap32s(&abiflags->flags1);
1988 bswap32s(&abiflags->flags2);
1989}
1990#endif
991f8f0c
RH
1991#else
1992static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1993static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1994static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1995static inline void bswap_sym(struct elf_sym *sym) { }
5dd0db52
SM
1996#ifdef TARGET_MIPS
1997static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
1998#endif
31e31b8a
FB
1999#endif
2000
edf8e2af 2001#ifdef USE_ELF_CORE_DUMP
9349b4f9 2002static int elf_core_dump(int, const CPUArchState *);
edf8e2af 2003#endif /* USE_ELF_CORE_DUMP */
682674b8 2004static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
edf8e2af 2005
9058abdd
RH
2006/* Verify the portions of EHDR within E_IDENT for the target.
2007 This can be performed before bswapping the entire header. */
2008static bool elf_check_ident(struct elfhdr *ehdr)
2009{
2010 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
2011 && ehdr->e_ident[EI_MAG1] == ELFMAG1
2012 && ehdr->e_ident[EI_MAG2] == ELFMAG2
2013 && ehdr->e_ident[EI_MAG3] == ELFMAG3
2014 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
2015 && ehdr->e_ident[EI_DATA] == ELF_DATA
2016 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
2017}
2018
2019/* Verify the portions of EHDR outside of E_IDENT for the target.
2020 This has to wait until after bswapping the header. */
2021static bool elf_check_ehdr(struct elfhdr *ehdr)
2022{
2023 return (elf_check_arch(ehdr->e_machine)
ace3d654 2024 && elf_check_abi(ehdr->e_flags)
9058abdd
RH
2025 && ehdr->e_ehsize == sizeof(struct elfhdr)
2026 && ehdr->e_phentsize == sizeof(struct elf_phdr)
9058abdd
RH
2027 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
2028}
2029
31e31b8a 2030/*
e5fe0c52 2031 * 'copy_elf_strings()' copies argument/envelope strings from user
31e31b8a
FB
2032 * memory to free pages in kernel mem. These are in a format ready
2033 * to be put directly into the top of new user memory.
2034 *
2035 */
59baae9a
SB
2036static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
2037 abi_ulong p, abi_ulong stack_limit)
31e31b8a 2038{
59baae9a 2039 char *tmp;
7c4ee5bc 2040 int len, i;
59baae9a 2041 abi_ulong top = p;
31e31b8a
FB
2042
2043 if (!p) {
d97ef72e 2044 return 0; /* bullet-proofing */
31e31b8a 2045 }
59baae9a 2046
7c4ee5bc
RH
2047 if (STACK_GROWS_DOWN) {
2048 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
2049 for (i = argc - 1; i >= 0; --i) {
2050 tmp = argv[i];
2051 if (!tmp) {
2052 fprintf(stderr, "VFS: argc is wrong");
2053 exit(-1);
2054 }
2055 len = strlen(tmp) + 1;
2056 tmp += len;
59baae9a 2057
7c4ee5bc
RH
2058 if (len > (p - stack_limit)) {
2059 return 0;
2060 }
2061 while (len) {
2062 int bytes_to_copy = (len > offset) ? offset : len;
2063 tmp -= bytes_to_copy;
2064 p -= bytes_to_copy;
2065 offset -= bytes_to_copy;
2066 len -= bytes_to_copy;
2067
2068 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
2069
2070 if (offset == 0) {
2071 memcpy_to_target(p, scratch, top - p);
2072 top = p;
2073 offset = TARGET_PAGE_SIZE;
2074 }
2075 }
d97ef72e 2076 }
7c4ee5bc
RH
2077 if (p != top) {
2078 memcpy_to_target(p, scratch + offset, top - p);
d97ef72e 2079 }
7c4ee5bc
RH
2080 } else {
2081 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
2082 for (i = 0; i < argc; ++i) {
2083 tmp = argv[i];
2084 if (!tmp) {
2085 fprintf(stderr, "VFS: argc is wrong");
2086 exit(-1);
2087 }
2088 len = strlen(tmp) + 1;
2089 if (len > (stack_limit - p)) {
2090 return 0;
2091 }
2092 while (len) {
2093 int bytes_to_copy = (len > remaining) ? remaining : len;
2094
2095 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
2096
2097 tmp += bytes_to_copy;
2098 remaining -= bytes_to_copy;
2099 p += bytes_to_copy;
2100 len -= bytes_to_copy;
2101
2102 if (remaining == 0) {
2103 memcpy_to_target(top, scratch, p - top);
2104 top = p;
2105 remaining = TARGET_PAGE_SIZE;
2106 }
d97ef72e
RH
2107 }
2108 }
7c4ee5bc
RH
2109 if (p != top) {
2110 memcpy_to_target(top, scratch, p - top);
2111 }
59baae9a
SB
2112 }
2113
31e31b8a
FB
2114 return p;
2115}
2116
59baae9a
SB
2117/* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
2118 * argument/environment space. Newer kernels (>2.6.33) allow more,
2119 * dependent on stack size, but guarantee at least 32 pages for
2120 * backwards compatibility.
2121 */
2122#define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
2123
2124static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
992f48a0 2125 struct image_info *info)
53a5960a 2126{
59baae9a 2127 abi_ulong size, error, guard;
872f3d04 2128 int prot;
31e31b8a 2129
703e0e89 2130 size = guest_stack_size;
59baae9a
SB
2131 if (size < STACK_LOWER_LIMIT) {
2132 size = STACK_LOWER_LIMIT;
60dcbcb5 2133 }
f4388205
HD
2134
2135 if (STACK_GROWS_DOWN) {
2136 guard = TARGET_PAGE_SIZE;
2137 if (guard < qemu_real_host_page_size()) {
2138 guard = qemu_real_host_page_size();
2139 }
2140 } else {
2141 /* no guard page for hppa target where stack grows upwards. */
2142 guard = 0;
60dcbcb5
RH
2143 }
2144
872f3d04
RH
2145 prot = PROT_READ | PROT_WRITE;
2146 if (info->exec_stack) {
2147 prot |= PROT_EXEC;
2148 }
2149 error = target_mmap(0, size + guard, prot,
60dcbcb5 2150 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
09bfb054 2151 if (error == -1) {
60dcbcb5 2152 perror("mmap stack");
09bfb054
FB
2153 exit(-1);
2154 }
31e31b8a 2155
60dcbcb5 2156 /* We reserve one extra page at the top of the stack as guard. */
7c4ee5bc
RH
2157 if (STACK_GROWS_DOWN) {
2158 target_mprotect(error, guard, PROT_NONE);
2159 info->stack_limit = error + guard;
2160 return info->stack_limit + size - sizeof(void *);
2161 } else {
7c4ee5bc
RH
2162 info->stack_limit = error + size;
2163 return error;
2164 }
31e31b8a
FB
2165}
2166
cf129f3a
RH
2167/* Map and zero the bss. We need to explicitly zero any fractional pages
2168 after the data section (i.e. bss). */
2169static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
31e31b8a 2170{
cf129f3a
RH
2171 uintptr_t host_start, host_map_start, host_end;
2172
2173 last_bss = TARGET_PAGE_ALIGN(last_bss);
2174
2175 /* ??? There is confusion between qemu_real_host_page_size and
2176 qemu_host_page_size here and elsewhere in target_mmap, which
2177 may lead to the end of the data section mapping from the file
2178 not being mapped. At least there was an explicit test and
2179 comment for that here, suggesting that "the file size must
2180 be known". The comment probably pre-dates the introduction
2181 of the fstat system call in target_mmap which does in fact
2182 find out the size. What isn't clear is if the workaround
2183 here is still actually needed. For now, continue with it,
2184 but merge it with the "normal" mmap that would allocate the bss. */
2185
3e8f1628
RH
2186 host_start = (uintptr_t) g2h_untagged(elf_bss);
2187 host_end = (uintptr_t) g2h_untagged(last_bss);
0c2d70c4 2188 host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
cf129f3a
RH
2189
2190 if (host_map_start < host_end) {
2191 void *p = mmap((void *)host_map_start, host_end - host_map_start,
2192 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2193 if (p == MAP_FAILED) {
2194 perror("cannot mmap brk");
2195 exit(-1);
853d6f7a 2196 }
f46e9a0b 2197 }
853d6f7a 2198
f46e9a0b
TM
2199 /* Ensure that the bss page(s) are valid */
2200 if ((page_get_flags(last_bss-1) & prot) != prot) {
2201 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
cf129f3a 2202 }
31e31b8a 2203
cf129f3a
RH
2204 if (host_start < host_map_start) {
2205 memset((void *)host_start, 0, host_map_start - host_start);
2206 }
2207}
53a5960a 2208
cf58affe
CL
2209#ifdef TARGET_ARM
2210static int elf_is_fdpic(struct elfhdr *exec)
2211{
2212 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
2213}
2214#else
a99856cd
CL
2215/* Default implementation, always false. */
2216static int elf_is_fdpic(struct elfhdr *exec)
2217{
2218 return 0;
2219}
cf58affe 2220#endif
a99856cd 2221
1af02e83
MF
2222static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
2223{
2224 uint16_t n;
2225 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
2226
2227 /* elf32_fdpic_loadseg */
2228 n = info->nsegs;
2229 while (n--) {
2230 sp -= 12;
2231 put_user_u32(loadsegs[n].addr, sp+0);
2232 put_user_u32(loadsegs[n].p_vaddr, sp+4);
2233 put_user_u32(loadsegs[n].p_memsz, sp+8);
2234 }
2235
2236 /* elf32_fdpic_loadmap */
2237 sp -= 4;
2238 put_user_u16(0, sp+0); /* version */
2239 put_user_u16(info->nsegs, sp+2); /* nsegs */
2240
2241 info->personality = PER_LINUX_FDPIC;
2242 info->loadmap_addr = sp;
2243
2244 return sp;
2245}
1af02e83 2246
992f48a0 2247static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
8e62a717
RH
2248 struct elfhdr *exec,
2249 struct image_info *info,
2250 struct image_info *interp_info)
31e31b8a 2251{
d97ef72e 2252 abi_ulong sp;
7c4ee5bc 2253 abi_ulong u_argc, u_argv, u_envp, u_auxv;
d97ef72e 2254 int size;
14322bad
LA
2255 int i;
2256 abi_ulong u_rand_bytes;
2257 uint8_t k_rand_bytes[16];
fcdc0ab4
JY
2258 abi_ulong u_platform, u_base_platform;
2259 const char *k_platform, *k_base_platform;
d97ef72e
RH
2260 const int n = sizeof(elf_addr_t);
2261
2262 sp = p;
1af02e83 2263
1af02e83
MF
2264 /* Needs to be before we load the env/argc/... */
2265 if (elf_is_fdpic(exec)) {
2266 /* Need 4 byte alignment for these structs */
2267 sp &= ~3;
2268 sp = loader_build_fdpic_loadmap(info, sp);
2269 info->other_info = interp_info;
2270 if (interp_info) {
2271 interp_info->other_info = info;
2272 sp = loader_build_fdpic_loadmap(interp_info, sp);
3cb10cfa
CL
2273 info->interpreter_loadmap_addr = interp_info->loadmap_addr;
2274 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
2275 } else {
2276 info->interpreter_loadmap_addr = 0;
2277 info->interpreter_pt_dynamic_addr = 0;
1af02e83
MF
2278 }
2279 }
1af02e83 2280
fcdc0ab4
JY
2281 u_base_platform = 0;
2282 k_base_platform = ELF_BASE_PLATFORM;
2283 if (k_base_platform) {
2284 size_t len = strlen(k_base_platform) + 1;
2285 if (STACK_GROWS_DOWN) {
2286 sp -= (len + n - 1) & ~(n - 1);
2287 u_base_platform = sp;
2288 /* FIXME - check return value of memcpy_to_target() for failure */
2289 memcpy_to_target(sp, k_base_platform, len);
2290 } else {
2291 memcpy_to_target(sp, k_base_platform, len);
2292 u_base_platform = sp;
2293 sp += len + 1;
2294 }
2295 }
2296
d97ef72e
RH
2297 u_platform = 0;
2298 k_platform = ELF_PLATFORM;
2299 if (k_platform) {
2300 size_t len = strlen(k_platform) + 1;
7c4ee5bc
RH
2301 if (STACK_GROWS_DOWN) {
2302 sp -= (len + n - 1) & ~(n - 1);
2303 u_platform = sp;
2304 /* FIXME - check return value of memcpy_to_target() for failure */
2305 memcpy_to_target(sp, k_platform, len);
2306 } else {
2307 memcpy_to_target(sp, k_platform, len);
2308 u_platform = sp;
2309 sp += len + 1;
2310 }
2311 }
2312
2313 /* Provide 16 byte alignment for the PRNG, and basic alignment for
2314 * the argv and envp pointers.
2315 */
2316 if (STACK_GROWS_DOWN) {
2317 sp = QEMU_ALIGN_DOWN(sp, 16);
2318 } else {
2319 sp = QEMU_ALIGN_UP(sp, 16);
d97ef72e 2320 }
14322bad
LA
2321
2322 /*
c6a2377f 2323 * Generate 16 random bytes for userspace PRNG seeding.
14322bad 2324 */
c6a2377f 2325 qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
7c4ee5bc
RH
2326 if (STACK_GROWS_DOWN) {
2327 sp -= 16;
2328 u_rand_bytes = sp;
2329 /* FIXME - check return value of memcpy_to_target() for failure */
2330 memcpy_to_target(sp, k_rand_bytes, 16);
2331 } else {
2332 memcpy_to_target(sp, k_rand_bytes, 16);
2333 u_rand_bytes = sp;
2334 sp += 16;
2335 }
14322bad 2336
d97ef72e 2337 size = (DLINFO_ITEMS + 1) * 2;
fcdc0ab4
JY
2338 if (k_base_platform)
2339 size += 2;
d97ef72e
RH
2340 if (k_platform)
2341 size += 2;
f5155289 2342#ifdef DLINFO_ARCH_ITEMS
d97ef72e 2343 size += DLINFO_ARCH_ITEMS * 2;
ad6919dc
PM
2344#endif
2345#ifdef ELF_HWCAP2
2346 size += 2;
f5155289 2347#endif
f516511e
PM
2348 info->auxv_len = size * n;
2349
d97ef72e 2350 size += envc + argc + 2;
b9329d4b 2351 size += 1; /* argc itself */
d97ef72e 2352 size *= n;
7c4ee5bc
RH
2353
2354 /* Allocate space and finalize stack alignment for entry now. */
2355 if (STACK_GROWS_DOWN) {
2356 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
2357 sp = u_argc;
2358 } else {
2359 u_argc = sp;
2360 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
2361 }
2362
2363 u_argv = u_argc + n;
2364 u_envp = u_argv + (argc + 1) * n;
2365 u_auxv = u_envp + (envc + 1) * n;
2366 info->saved_auxv = u_auxv;
60f1c801
RH
2367 info->argc = argc;
2368 info->envc = envc;
2369 info->argv = u_argv;
2370 info->envp = u_envp;
d97ef72e
RH
2371
2372 /* This is correct because Linux defines
2373 * elf_addr_t as Elf32_Off / Elf64_Off
2374 */
2375#define NEW_AUX_ENT(id, val) do { \
7c4ee5bc
RH
2376 put_user_ual(id, u_auxv); u_auxv += n; \
2377 put_user_ual(val, u_auxv); u_auxv += n; \
d97ef72e
RH
2378 } while(0)
2379
82991bed
PM
2380#ifdef ARCH_DLINFO
2381 /*
2382 * ARCH_DLINFO must come first so platform specific code can enforce
2383 * special alignment requirements on the AUXV if necessary (eg. PPC).
2384 */
2385 ARCH_DLINFO;
2386#endif
f516511e
PM
2387 /* There must be exactly DLINFO_ITEMS entries here, or the assert
2388 * on info->auxv_len will trigger.
2389 */
8e62a717 2390 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
d97ef72e
RH
2391 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
2392 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
33143c44
LV
2393 if ((info->alignment & ~qemu_host_page_mask) != 0) {
2394 /* Target doesn't support host page size alignment */
2395 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
2396 } else {
2397 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
2398 qemu_host_page_size)));
2399 }
8e62a717 2400 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
d97ef72e 2401 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
8e62a717 2402 NEW_AUX_ENT(AT_ENTRY, info->entry);
d97ef72e
RH
2403 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
2404 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
2405 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
2406 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
2407 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2408 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
14322bad 2409 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
444cd5c3 2410 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
e0d1673d 2411 NEW_AUX_ENT(AT_EXECFN, info->file_string);
14322bad 2412
ad6919dc
PM
2413#ifdef ELF_HWCAP2
2414 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2415#endif
2416
fcdc0ab4
JY
2417 if (u_base_platform) {
2418 NEW_AUX_ENT(AT_BASE_PLATFORM, u_base_platform);
2419 }
7c4ee5bc 2420 if (u_platform) {
d97ef72e 2421 NEW_AUX_ENT(AT_PLATFORM, u_platform);
7c4ee5bc 2422 }
7c4ee5bc 2423 NEW_AUX_ENT (AT_NULL, 0);
f5155289
FB
2424#undef NEW_AUX_ENT
2425
f516511e
PM
2426 /* Check that our initial calculation of the auxv length matches how much
2427 * we actually put into it.
2428 */
2429 assert(info->auxv_len == u_auxv - info->saved_auxv);
7c4ee5bc
RH
2430
2431 put_user_ual(argc, u_argc);
2432
2433 p = info->arg_strings;
2434 for (i = 0; i < argc; ++i) {
2435 put_user_ual(p, u_argv);
2436 u_argv += n;
2437 p += target_strlen(p) + 1;
2438 }
2439 put_user_ual(0, u_argv);
2440
2441 p = info->env_strings;
2442 for (i = 0; i < envc; ++i) {
2443 put_user_ual(p, u_envp);
2444 u_envp += n;
2445 p += target_strlen(p) + 1;
2446 }
2447 put_user_ual(0, u_envp);
edf8e2af 2448
d97ef72e 2449 return sp;
31e31b8a
FB
2450}
2451
f5ef0e51 2452#if defined(HI_COMMPAGE)
eee816c0 2453#define LO_COMMPAGE -1
f5ef0e51
RH
2454#elif defined(LO_COMMPAGE)
2455#define HI_COMMPAGE 0
2456#else
66346faf 2457#define HI_COMMPAGE 0
eee816c0 2458#define LO_COMMPAGE -1
d461b73e 2459#ifndef INIT_GUEST_COMMPAGE
ee947430 2460#define init_guest_commpage() true
8756e136 2461#endif
d461b73e 2462#endif
dce10401 2463
ee947430
AB
2464static void pgb_fail_in_use(const char *image_name)
2465{
2466 error_report("%s: requires virtual address space that is in use "
2467 "(omit the -B option or choose a different value)",
2468 image_name);
2469 exit(EXIT_FAILURE);
2470}
dce10401 2471
ee947430
AB
2472static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr,
2473 abi_ulong guest_hiaddr, long align)
2474{
2475 const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2476 void *addr, *test;
2a53535a 2477
ee947430 2478 if (!QEMU_IS_ALIGNED(guest_base, align)) {
5ca870b9 2479 fprintf(stderr, "Requested guest base %p does not satisfy "
ee947430 2480 "host minimum alignment (0x%lx)\n",
5ca870b9 2481 (void *)guest_base, align);
ee947430
AB
2482 exit(EXIT_FAILURE);
2483 }
2484
2485 /* Sanity check the guest binary. */
2486 if (reserved_va) {
2487 if (guest_hiaddr > reserved_va) {
2488 error_report("%s: requires more than reserved virtual "
2489 "address space (0x%" PRIx64 " > 0x%lx)",
2490 image_name, (uint64_t)guest_hiaddr, reserved_va);
2491 exit(EXIT_FAILURE);
2a53535a 2492 }
ee947430 2493 } else {
a932eec4 2494#if HOST_LONG_BITS < TARGET_ABI_BITS
ee947430
AB
2495 if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) {
2496 error_report("%s: requires more virtual address space "
2497 "than the host can provide (0x%" PRIx64 ")",
2498 image_name, (uint64_t)guest_hiaddr - guest_base);
2499 exit(EXIT_FAILURE);
2a53535a 2500 }
a932eec4 2501#endif
2a53535a 2502 }
2a53535a 2503
ee947430
AB
2504 /*
2505 * Expand the allocation to the entire reserved_va.
2506 * Exclude the mmap_min_addr hole.
2507 */
2508 if (reserved_va) {
2509 guest_loaddr = (guest_base >= mmap_min_addr ? 0
2510 : mmap_min_addr - guest_base);
2511 guest_hiaddr = reserved_va;
2512 }
806d1021 2513
ee947430 2514 /* Reserve the address space for the binary, or reserved_va. */
3e8f1628 2515 test = g2h_untagged(guest_loaddr);
ee947430
AB
2516 addr = mmap(test, guest_hiaddr - guest_loaddr, PROT_NONE, flags, -1, 0);
2517 if (test != addr) {
2518 pgb_fail_in_use(image_name);
2519 }
e7588237
AB
2520 qemu_log_mask(CPU_LOG_PAGE,
2521 "%s: base @ %p for " TARGET_ABI_FMT_ld " bytes\n",
2522 __func__, addr, guest_hiaddr - guest_loaddr);
ee947430
AB
2523}
2524
ad592e37
AB
2525/**
2526 * pgd_find_hole_fallback: potential mmap address
2527 * @guest_size: size of available space
2528 * @brk: location of break
2529 * @align: memory alignment
2530 *
2531 * This is a fallback method for finding a hole in the host address
2532 * space if we don't have the benefit of being able to access
2533 * /proc/self/map. It can potentially take a very long time as we can
2534 * only dumbly iterate up the host address space seeing if the
2535 * allocation would work.
2536 */
5c3e87f3
AB
2537static uintptr_t pgd_find_hole_fallback(uintptr_t guest_size, uintptr_t brk,
2538 long align, uintptr_t offset)
ad592e37
AB
2539{
2540 uintptr_t base;
2541
2542 /* Start (aligned) at the bottom and work our way up */
2543 base = ROUND_UP(mmap_min_addr, align);
2544
2545 while (true) {
2546 uintptr_t align_start, end;
2547 align_start = ROUND_UP(base, align);
5c3e87f3 2548 end = align_start + guest_size + offset;
ad592e37
AB
2549
2550 /* if brk is anywhere in the range give ourselves some room to grow. */
2551 if (align_start <= brk && brk < end) {
2552 base = brk + (16 * MiB);
2553 continue;
2554 } else if (align_start + guest_size < align_start) {
2555 /* we have run out of space */
2556 return -1;
2557 } else {
2667e069
AB
2558 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE |
2559 MAP_FIXED_NOREPLACE;
ad592e37
AB
2560 void * mmap_start = mmap((void *) align_start, guest_size,
2561 PROT_NONE, flags, -1, 0);
2562 if (mmap_start != MAP_FAILED) {
7e588fbc 2563 munmap(mmap_start, guest_size);
934eed51 2564 if (mmap_start == (void *) align_start) {
e7588237
AB
2565 qemu_log_mask(CPU_LOG_PAGE,
2566 "%s: base @ %p for %" PRIdPTR" bytes\n",
2567 __func__, mmap_start + offset, guest_size);
2667e069
AB
2568 return (uintptr_t) mmap_start + offset;
2569 }
ad592e37
AB
2570 }
2571 base += qemu_host_page_size;
2572 }
2573 }
2574}
2575
ee947430
AB
2576/* Return value for guest_base, or -1 if no hole found. */
2577static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size,
5c3e87f3 2578 long align, uintptr_t offset)
ee947430
AB
2579{
2580 GSList *maps, *iter;
2581 uintptr_t this_start, this_end, next_start, brk;
2582 intptr_t ret = -1;
2583
2584 assert(QEMU_IS_ALIGNED(guest_loaddr, align));
2585
2586 maps = read_self_maps();
dce10401 2587
ee947430
AB
2588 /* Read brk after we've read the maps, which will malloc. */
2589 brk = (uintptr_t)sbrk(0);
2590
ad592e37 2591 if (!maps) {
190674f3 2592 return pgd_find_hole_fallback(guest_size, brk, align, offset);
ad592e37
AB
2593 }
2594
ee947430
AB
2595 /* The first hole is before the first map entry. */
2596 this_start = mmap_min_addr;
2597
2598 for (iter = maps; iter;
2599 this_start = next_start, iter = g_slist_next(iter)) {
2600 uintptr_t align_start, hole_size;
2601
2602 this_end = ((MapInfo *)iter->data)->start;
2603 next_start = ((MapInfo *)iter->data)->end;
5c3e87f3 2604 align_start = ROUND_UP(this_start + offset, align);
ee947430
AB
2605
2606 /* Skip holes that are too small. */
2607 if (align_start >= this_end) {
2608 continue;
2609 }
2610 hole_size = this_end - align_start;
2611 if (hole_size < guest_size) {
2612 continue;
aac362e4
LS
2613 }
2614
ee947430
AB
2615 /* If this hole contains brk, give ourselves some room to grow. */
2616 if (this_start <= brk && brk < this_end) {
2617 hole_size -= guest_size;
2618 if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) {
2619 align_start += 1 * GiB;
2620 } else if (hole_size >= 16 * MiB) {
2621 align_start += 16 * MiB;
2622 } else {
2623 align_start = (this_end - guest_size) & -align;
2624 if (align_start < this_start) {
2625 continue;
2626 }
806d1021 2627 }
806d1021
MI
2628 }
2629
ee947430
AB
2630 /* Record the lowest successful match. */
2631 if (ret < 0) {
190674f3 2632 ret = align_start;
dce10401 2633 }
ee947430
AB
2634 /* If this hole contains the identity map, select it. */
2635 if (align_start <= guest_loaddr &&
2636 guest_loaddr + guest_size <= this_end) {
2637 ret = 0;
b859040d 2638 }
ee947430
AB
2639 /* If this hole ends above the identity map, stop looking. */
2640 if (this_end >= guest_loaddr) {
2641 break;
dce10401
MI
2642 }
2643 }
ee947430 2644 free_self_maps(maps);
dce10401 2645
e7588237
AB
2646 if (ret != -1) {
2647 qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %" PRIxPTR
2648 " for %" PRIuPTR " bytes\n",
2649 __func__, ret, guest_size);
2650 }
2651
ee947430 2652 return ret;
dce10401
MI
2653}
2654
ee947430
AB
2655static void pgb_static(const char *image_name, abi_ulong orig_loaddr,
2656 abi_ulong orig_hiaddr, long align)
f3ed1f5d 2657{
ee947430
AB
2658 uintptr_t loaddr = orig_loaddr;
2659 uintptr_t hiaddr = orig_hiaddr;
5c3e87f3 2660 uintptr_t offset = 0;
ee947430 2661 uintptr_t addr;
f3ed1f5d 2662
ee947430
AB
2663 if (hiaddr != orig_hiaddr) {
2664 error_report("%s: requires virtual address space that the "
2665 "host cannot provide (0x%" PRIx64 ")",
2666 image_name, (uint64_t)orig_hiaddr);
2667 exit(EXIT_FAILURE);
2668 }
f3ed1f5d 2669
ee947430 2670 loaddr &= -align;
66346faf 2671 if (HI_COMMPAGE) {
ee947430
AB
2672 /*
2673 * Extend the allocation to include the commpage.
5c3e87f3
AB
2674 * For a 64-bit host, this is just 4GiB; for a 32-bit host we
2675 * need to ensure there is space bellow the guest_base so we
2676 * can map the commpage in the place needed when the address
2677 * arithmetic wraps around.
ee947430
AB
2678 */
2679 if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) {
5c3e87f3 2680 hiaddr = (uintptr_t) 4 << 30;
f3ed1f5d 2681 } else {
66346faf 2682 offset = -(HI_COMMPAGE & -align);
f3ed1f5d 2683 }
eee816c0 2684 } else if (LO_COMMPAGE != -1) {
f5ef0e51 2685 loaddr = MIN(loaddr, LO_COMMPAGE & -align);
ee947430 2686 }
dce10401 2687
5c3e87f3 2688 addr = pgb_find_hole(loaddr, hiaddr - loaddr, align, offset);
ee947430
AB
2689 if (addr == -1) {
2690 /*
66346faf 2691 * If HI_COMMPAGE, there *might* be a non-consecutive allocation
ee947430
AB
2692 * that can satisfy both. But as the normal arm32 link base address
2693 * is ~32k, and we extend down to include the commpage, making the
2694 * overhead only ~96k, this is unlikely.
dce10401 2695 */
ee947430
AB
2696 error_report("%s: Unable to allocate %#zx bytes of "
2697 "virtual address space", image_name,
2698 (size_t)(hiaddr - loaddr));
2699 exit(EXIT_FAILURE);
2700 }
2701
2702 guest_base = addr;
e7588237
AB
2703
2704 qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %"PRIxPTR" for %" PRIuPTR" bytes\n",
2705 __func__, addr, hiaddr - loaddr);
ee947430 2706}
dce10401 2707
ee947430
AB
2708static void pgb_dynamic(const char *image_name, long align)
2709{
2710 /*
2711 * The executable is dynamic and does not require a fixed address.
2712 * All we need is a commpage that satisfies align.
2713 * If we do not need a commpage, leave guest_base == 0.
2714 */
66346faf 2715 if (HI_COMMPAGE) {
ee947430
AB
2716 uintptr_t addr, commpage;
2717
2718 /* 64-bit hosts should have used reserved_va. */
2719 assert(sizeof(uintptr_t) == 4);
2720
2721 /*
2722 * By putting the commpage at the first hole, that puts guest_base
2723 * just above that, and maximises the positive guest addresses.
2724 */
66346faf 2725 commpage = HI_COMMPAGE & -align;
5c3e87f3 2726 addr = pgb_find_hole(commpage, -commpage, align, 0);
ee947430
AB
2727 assert(addr != -1);
2728 guest_base = addr;
2729 }
2730}
2731
2732static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr,
2733 abi_ulong guest_hiaddr, long align)
2734{
c1f6ad79 2735 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
ee947430
AB
2736 void *addr, *test;
2737
2738 if (guest_hiaddr > reserved_va) {
2739 error_report("%s: requires more than reserved virtual "
2740 "address space (0x%" PRIx64 " > 0x%lx)",
2741 image_name, (uint64_t)guest_hiaddr, reserved_va);
2742 exit(EXIT_FAILURE);
f3ed1f5d 2743 }
f3ed1f5d 2744
ee947430
AB
2745 /* Widen the "image" to the entire reserved address space. */
2746 pgb_static(image_name, 0, reserved_va, align);
2747
2667e069 2748 /* osdep.h defines this as 0 if it's missing */
c1f6ad79 2749 flags |= MAP_FIXED_NOREPLACE;
c1f6ad79 2750
ee947430
AB
2751 /* Reserve the memory on the host. */
2752 assert(guest_base != 0);
3e8f1628 2753 test = g2h_untagged(0);
ee947430 2754 addr = mmap(test, reserved_va, PROT_NONE, flags, -1, 0);
fb730c86 2755 if (addr == MAP_FAILED || addr != test) {
ee947430 2756 error_report("Unable to reserve 0x%lx bytes of virtual address "
87966743 2757 "space at %p (%s) for use as guest address space (check your "
fb730c86
AB
2758 "virtual memory ulimit setting, min_mmap_addr or reserve less "
2759 "using -R option)", reserved_va, test, strerror(errno));
ee947430
AB
2760 exit(EXIT_FAILURE);
2761 }
e7588237
AB
2762
2763 qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %p for %lu bytes\n",
2764 __func__, addr, reserved_va);
f3ed1f5d
PM
2765}
2766
ee947430
AB
2767void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
2768 abi_ulong guest_hiaddr)
2769{
2770 /* In order to use host shmat, we must be able to honor SHMLBA. */
2771 uintptr_t align = MAX(SHMLBA, qemu_host_page_size);
2772
2773 if (have_guest_base) {
2774 pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align);
2775 } else if (reserved_va) {
2776 pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align);
2777 } else if (guest_loaddr) {
2778 pgb_static(image_name, guest_loaddr, guest_hiaddr, align);
2779 } else {
2780 pgb_dynamic(image_name, align);
2781 }
2782
2783 /* Reserve and initialize the commpage. */
2784 if (!init_guest_commpage()) {
2785 /*
2786 * With have_guest_base, the user has selected the address and
2787 * we are trying to work with that. Otherwise, we have selected
2788 * free space and init_guest_commpage must succeeded.
2789 */
2790 assert(have_guest_base);
2791 pgb_fail_in_use(image_name);
2792 }
2793
2794 assert(QEMU_IS_ALIGNED(guest_base, align));
2795 qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
2796 "@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
2797}
f3ed1f5d 2798
83f990eb
RH
2799enum {
2800 /* The string "GNU\0" as a magic number. */
2801 GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16),
2802 NOTE_DATA_SZ = 1 * KiB,
2803 NOTE_NAME_SZ = 4,
2804 ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8,
2805};
2806
2807/*
2808 * Process a single gnu_property entry.
2809 * Return false for error.
2810 */
2811static bool parse_elf_property(const uint32_t *data, int *off, int datasz,
2812 struct image_info *info, bool have_prev_type,
2813 uint32_t *prev_type, Error **errp)
2814{
2815 uint32_t pr_type, pr_datasz, step;
2816
2817 if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) {
2818 goto error_data;
2819 }
2820 datasz -= *off;
2821 data += *off / sizeof(uint32_t);
2822
2823 if (datasz < 2 * sizeof(uint32_t)) {
2824 goto error_data;
2825 }
2826 pr_type = data[0];
2827 pr_datasz = data[1];
2828 data += 2;
2829 datasz -= 2 * sizeof(uint32_t);
2830 step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN);
2831 if (step > datasz) {
2832 goto error_data;
2833 }
2834
2835 /* Properties are supposed to be unique and sorted on pr_type. */
2836 if (have_prev_type && pr_type <= *prev_type) {
2837 if (pr_type == *prev_type) {
2838 error_setg(errp, "Duplicate property in PT_GNU_PROPERTY");
2839 } else {
2840 error_setg(errp, "Unsorted property in PT_GNU_PROPERTY");
2841 }
2842 return false;
2843 }
2844 *prev_type = pr_type;
2845
2846 if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) {
2847 return false;
2848 }
2849
2850 *off += 2 * sizeof(uint32_t) + step;
2851 return true;
2852
2853 error_data:
2854 error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY");
2855 return false;
2856}
2857
2858/* Process NT_GNU_PROPERTY_TYPE_0. */
2859static bool parse_elf_properties(int image_fd,
2860 struct image_info *info,
2861 const struct elf_phdr *phdr,
2862 char bprm_buf[BPRM_BUF_SIZE],
2863 Error **errp)
2864{
2865 union {
2866 struct elf_note nhdr;
2867 uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)];
2868 } note;
2869
2870 int n, off, datasz;
2871 bool have_prev_type;
2872 uint32_t prev_type;
2873
2874 /* Unless the arch requires properties, ignore them. */
2875 if (!ARCH_USE_GNU_PROPERTY) {
2876 return true;
2877 }
2878
2879 /* If the properties are crazy large, that's too bad. */
2880 n = phdr->p_filesz;
2881 if (n > sizeof(note)) {
2882 error_setg(errp, "PT_GNU_PROPERTY too large");
2883 return false;
2884 }
2885 if (n < sizeof(note.nhdr)) {
2886 error_setg(errp, "PT_GNU_PROPERTY too small");
2887 return false;
2888 }
2889
2890 if (phdr->p_offset + n <= BPRM_BUF_SIZE) {
2891 memcpy(&note, bprm_buf + phdr->p_offset, n);
2892 } else {
2893 ssize_t len = pread(image_fd, &note, n, phdr->p_offset);
2894 if (len != n) {
2895 error_setg_errno(errp, errno, "Error reading file header");
2896 return false;
2897 }
2898 }
2899
2900 /*
2901 * The contents of a valid PT_GNU_PROPERTY is a sequence
2902 * of uint32_t -- swap them all now.
2903 */
2904#ifdef BSWAP_NEEDED
2905 for (int i = 0; i < n / 4; i++) {
2906 bswap32s(note.data + i);
2907 }
2908#endif
2909
2910 /*
2911 * Note that nhdr is 3 words, and that the "name" described by namesz
2912 * immediately follows nhdr and is thus at the 4th word. Further, all
2913 * of the inputs to the kernel's round_up are multiples of 4.
2914 */
2915 if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
2916 note.nhdr.n_namesz != NOTE_NAME_SZ ||
2917 note.data[3] != GNU0_MAGIC) {
2918 error_setg(errp, "Invalid note in PT_GNU_PROPERTY");
2919 return false;
2920 }
2921 off = sizeof(note.nhdr) + NOTE_NAME_SZ;
2922
2923 datasz = note.nhdr.n_descsz + off;
2924 if (datasz > n) {
2925 error_setg(errp, "Invalid note size in PT_GNU_PROPERTY");
2926 return false;
2927 }
2928
2929 have_prev_type = false;
2930 prev_type = 0;
2931 while (1) {
2932 if (off == datasz) {
2933 return true; /* end, exit ok */
2934 }
2935 if (!parse_elf_property(note.data, &off, datasz, info,
2936 have_prev_type, &prev_type, errp)) {
2937 return false;
2938 }
2939 have_prev_type = true;
2940 }
2941}
2942
8e62a717 2943/* Load an ELF image into the address space.
31e31b8a 2944
8e62a717
RH
2945 IMAGE_NAME is the filename of the image, to use in error messages.
2946 IMAGE_FD is the open file descriptor for the image.
2947
2948 BPRM_BUF is a copy of the beginning of the file; this of course
2949 contains the elf file header at offset 0. It is assumed that this
2950 buffer is sufficiently aligned to present no problems to the host
2951 in accessing data at aligned offsets within the buffer.
2952
2953 On return: INFO values will be filled in, as necessary or available. */
2954
2955static void load_elf_image(const char *image_name, int image_fd,
bf858897 2956 struct image_info *info, char **pinterp_name,
8e62a717 2957 char bprm_buf[BPRM_BUF_SIZE])
31e31b8a 2958{
8e62a717
RH
2959 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2960 struct elf_phdr *phdr;
2961 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
e8384b37 2962 int i, retval, prot_exec;
c7f17e7b 2963 Error *err = NULL;
5fafdf24 2964
8e62a717 2965 /* First of all, some simple consistency checks */
8e62a717 2966 if (!elf_check_ident(ehdr)) {
c7f17e7b 2967 error_setg(&err, "Invalid ELF image for this architecture");
8e62a717
RH
2968 goto exit_errmsg;
2969 }
2970 bswap_ehdr(ehdr);
2971 if (!elf_check_ehdr(ehdr)) {
c7f17e7b 2972 error_setg(&err, "Invalid ELF image for this architecture");
8e62a717 2973 goto exit_errmsg;
d97ef72e 2974 }
5fafdf24 2975
8e62a717
RH
2976 i = ehdr->e_phnum * sizeof(struct elf_phdr);
2977 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2978 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
9955ffac 2979 } else {
8e62a717
RH
2980 phdr = (struct elf_phdr *) alloca(i);
2981 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
9955ffac 2982 if (retval != i) {
8e62a717 2983 goto exit_read;
9955ffac 2984 }
d97ef72e 2985 }
8e62a717 2986 bswap_phdr(phdr, ehdr->e_phnum);
09bfb054 2987
1af02e83
MF
2988 info->nsegs = 0;
2989 info->pt_dynamic_addr = 0;
1af02e83 2990
98c1076c
AB
2991 mmap_lock();
2992
8a1a5274
RH
2993 /*
2994 * Find the maximum size of the image and allocate an appropriate
2995 * amount of memory to handle that. Locate the interpreter, if any.
2996 */
682674b8 2997 loaddr = -1, hiaddr = 0;
33143c44 2998 info->alignment = 0;
872f3d04 2999 info->exec_stack = EXSTACK_DEFAULT;
8e62a717 3000 for (i = 0; i < ehdr->e_phnum; ++i) {
4d9d535a
RH
3001 struct elf_phdr *eppnt = phdr + i;
3002 if (eppnt->p_type == PT_LOAD) {
3003 abi_ulong a = eppnt->p_vaddr - eppnt->p_offset;
682674b8
RH
3004 if (a < loaddr) {
3005 loaddr = a;
3006 }
4d9d535a 3007 a = eppnt->p_vaddr + eppnt->p_memsz;
682674b8
RH
3008 if (a > hiaddr) {
3009 hiaddr = a;
3010 }
1af02e83 3011 ++info->nsegs;
4d9d535a 3012 info->alignment |= eppnt->p_align;
8a1a5274
RH
3013 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
3014 g_autofree char *interp_name = NULL;
3015
3016 if (*pinterp_name) {
c7f17e7b 3017 error_setg(&err, "Multiple PT_INTERP entries");
8a1a5274
RH
3018 goto exit_errmsg;
3019 }
c7f17e7b 3020
8a1a5274 3021 interp_name = g_malloc(eppnt->p_filesz);
8a1a5274
RH
3022
3023 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
3024 memcpy(interp_name, bprm_buf + eppnt->p_offset,
3025 eppnt->p_filesz);
3026 } else {
3027 retval = pread(image_fd, interp_name, eppnt->p_filesz,
3028 eppnt->p_offset);
3029 if (retval != eppnt->p_filesz) {
c7f17e7b 3030 goto exit_read;
8a1a5274
RH
3031 }
3032 }
3033 if (interp_name[eppnt->p_filesz - 1] != 0) {
c7f17e7b 3034 error_setg(&err, "Invalid PT_INTERP entry");
8a1a5274
RH
3035 goto exit_errmsg;
3036 }
3037 *pinterp_name = g_steal_pointer(&interp_name);
83f990eb
RH
3038 } else if (eppnt->p_type == PT_GNU_PROPERTY) {
3039 if (!parse_elf_properties(image_fd, info, eppnt, bprm_buf, &err)) {
3040 goto exit_errmsg;
3041 }
872f3d04
RH
3042 } else if (eppnt->p_type == PT_GNU_STACK) {
3043 info->exec_stack = eppnt->p_flags & PF_X;
682674b8
RH
3044 }
3045 }
3046
6fd59449
RH
3047 if (pinterp_name != NULL) {
3048 /*
3049 * This is the main executable.
3050 *
3051 * Reserve extra space for brk.
3052 * We hold on to this space while placing the interpreter
3053 * and the stack, lest they be placed immediately after
3054 * the data segment and block allocation from the brk.
3055 *
11d36727
AB
3056 * 16MB is chosen as "large enough" without being so large as
3057 * to allow the result to not fit with a 32-bit guest on a
3058 * 32-bit host. However some 64 bit guests (e.g. s390x)
3059 * attempt to place their heap further ahead and currently
3060 * nothing stops them smashing into QEMUs address space.
6fd59449 3061 */
11d36727
AB
3062#if TARGET_LONG_BITS == 64
3063 info->reserve_brk = 32 * MiB;
3064#else
6fd59449 3065 info->reserve_brk = 16 * MiB;
11d36727 3066#endif
6fd59449
RH
3067 hiaddr += info->reserve_brk;
3068
3069 if (ehdr->e_type == ET_EXEC) {
3070 /*
3071 * Make sure that the low address does not conflict with
3072 * MMAP_MIN_ADDR or the QEMU application itself.
3073 */
3074 probe_guest_base(image_name, loaddr, hiaddr);
ee947430
AB
3075 } else {
3076 /*
3077 * The binary is dynamic, but we still need to
3078 * select guest_base. In this case we pass a size.
3079 */
3080 probe_guest_base(image_name, 0, hiaddr - loaddr);
d97ef72e 3081 }
6fd59449
RH
3082 }
3083
3084 /*
3085 * Reserve address space for all of this.
3086 *
3087 * In the case of ET_EXEC, we supply MAP_FIXED so that we get
3088 * exactly the address range that is required.
3089 *
3090 * Otherwise this is ET_DYN, and we are searching for a location
3091 * that can hold the memory space required. If the image is
3092 * pre-linked, LOADDR will be non-zero, and the kernel should
3093 * honor that address if it happens to be free.
3094 *
3095 * In both cases, we will overwrite pages in this range with mappings
3096 * from the executable.
3097 */
3098 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
3099 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
3100 (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0),
3101 -1, 0);
3102 if (load_addr == -1) {
c7f17e7b 3103 goto exit_mmap;
d97ef72e 3104 }
682674b8 3105 load_bias = load_addr - loaddr;
d97ef72e 3106
a99856cd 3107 if (elf_is_fdpic(ehdr)) {
1af02e83 3108 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
7267c094 3109 g_malloc(sizeof(*loadsegs) * info->nsegs);
1af02e83
MF
3110
3111 for (i = 0; i < ehdr->e_phnum; ++i) {
3112 switch (phdr[i].p_type) {
3113 case PT_DYNAMIC:
3114 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
3115 break;
3116 case PT_LOAD:
3117 loadsegs->addr = phdr[i].p_vaddr + load_bias;
3118 loadsegs->p_vaddr = phdr[i].p_vaddr;
3119 loadsegs->p_memsz = phdr[i].p_memsz;
3120 ++loadsegs;
3121 break;
3122 }
3123 }
3124 }
1af02e83 3125
8e62a717 3126 info->load_bias = load_bias;
dc12567a
JK
3127 info->code_offset = load_bias;
3128 info->data_offset = load_bias;
8e62a717
RH
3129 info->load_addr = load_addr;
3130 info->entry = ehdr->e_entry + load_bias;
3131 info->start_code = -1;
3132 info->end_code = 0;
3133 info->start_data = -1;
3134 info->end_data = 0;
3135 info->brk = 0;
d8fd2954 3136 info->elf_flags = ehdr->e_flags;
8e62a717 3137
e8384b37
RH
3138 prot_exec = PROT_EXEC;
3139#ifdef TARGET_AARCH64
3140 /*
3141 * If the BTI feature is present, this indicates that the executable
3142 * pages of the startup binary should be mapped with PROT_BTI, so that
3143 * branch targets are enforced.
3144 *
3145 * The startup binary is either the interpreter or the static executable.
3146 * The interpreter is responsible for all pages of a dynamic executable.
3147 *
3148 * Elf notes are backward compatible to older cpus.
3149 * Do not enable BTI unless it is supported.
3150 */
3151 if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
3152 && (pinterp_name == NULL || *pinterp_name == 0)
3153 && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) {
3154 prot_exec |= TARGET_PROT_BTI;
3155 }
3156#endif
3157
8e62a717
RH
3158 for (i = 0; i < ehdr->e_phnum; i++) {
3159 struct elf_phdr *eppnt = phdr + i;
d97ef72e 3160 if (eppnt->p_type == PT_LOAD) {
94894ff2 3161 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
d97ef72e 3162 int elf_prot = 0;
d97ef72e 3163
e5eaf570
RH
3164 if (eppnt->p_flags & PF_R) {
3165 elf_prot |= PROT_READ;
3166 }
3167 if (eppnt->p_flags & PF_W) {
3168 elf_prot |= PROT_WRITE;
3169 }
3170 if (eppnt->p_flags & PF_X) {
e8384b37 3171 elf_prot |= prot_exec;
e5eaf570 3172 }
d97ef72e 3173
682674b8
RH
3174 vaddr = load_bias + eppnt->p_vaddr;
3175 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
3176 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
22d113b5
GM
3177
3178 vaddr_ef = vaddr + eppnt->p_filesz;
3179 vaddr_em = vaddr + eppnt->p_memsz;
682674b8 3180
d87146bc 3181 /*
22d113b5
GM
3182 * Some segments may be completely empty, with a non-zero p_memsz
3183 * but no backing file segment.
d87146bc
GM
3184 */
3185 if (eppnt->p_filesz != 0) {
22d113b5 3186 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
d87146bc
GM
3187 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
3188 MAP_PRIVATE | MAP_FIXED,
3189 image_fd, eppnt->p_offset - vaddr_po);
3190
3191 if (error == -1) {
c7f17e7b 3192 goto exit_mmap;
d87146bc 3193 }
09bfb054 3194
22d113b5
GM
3195 /*
3196 * If the load segment requests extra zeros (e.g. bss), map it.
3197 */
3198 if (eppnt->p_filesz < eppnt->p_memsz) {
3199 zero_bss(vaddr_ef, vaddr_em, elf_prot);
3200 }
3201 } else if (eppnt->p_memsz != 0) {
3202 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_memsz + vaddr_po);
3203 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
3204 MAP_PRIVATE | MAP_FIXED | MAP_ANONYMOUS,
3205 -1, 0);
31e31b8a 3206
22d113b5
GM
3207 if (error == -1) {
3208 goto exit_mmap;
3209 }
cf129f3a 3210 }
8e62a717
RH
3211
3212 /* Find the full program boundaries. */
3213 if (elf_prot & PROT_EXEC) {
3214 if (vaddr < info->start_code) {
3215 info->start_code = vaddr;
3216 }
3217 if (vaddr_ef > info->end_code) {
3218 info->end_code = vaddr_ef;
3219 }
3220 }
3221 if (elf_prot & PROT_WRITE) {
3222 if (vaddr < info->start_data) {
3223 info->start_data = vaddr;
3224 }
3225 if (vaddr_ef > info->end_data) {
3226 info->end_data = vaddr_ef;
3227 }
8a045188
TB
3228 }
3229 if (vaddr_em > info->brk) {
3230 info->brk = vaddr_em;
8e62a717 3231 }
5dd0db52
SM
3232#ifdef TARGET_MIPS
3233 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
3234 Mips_elf_abiflags_v0 abiflags;
3235 if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
c7f17e7b 3236 error_setg(&err, "Invalid PT_MIPS_ABIFLAGS entry");
5dd0db52
SM
3237 goto exit_errmsg;
3238 }
3239 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
3240 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
3241 sizeof(Mips_elf_abiflags_v0));
3242 } else {
3243 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
3244 eppnt->p_offset);
3245 if (retval != sizeof(Mips_elf_abiflags_v0)) {
c7f17e7b 3246 goto exit_read;
5dd0db52
SM
3247 }
3248 }
3249 bswap_mips_abiflags(&abiflags);
c94cb6c9 3250 info->fp_abi = abiflags.fp_abi;
5dd0db52 3251#endif
d97ef72e 3252 }
682674b8 3253 }
5fafdf24 3254
8e62a717
RH
3255 if (info->end_data == 0) {
3256 info->start_data = info->end_code;
3257 info->end_data = info->end_code;
8e62a717
RH
3258 }
3259
682674b8 3260 if (qemu_log_enabled()) {
8e62a717 3261 load_symbols(ehdr, image_fd, load_bias);
682674b8 3262 }
31e31b8a 3263
98c1076c
AB
3264 mmap_unlock();
3265
8e62a717
RH
3266 close(image_fd);
3267 return;
3268
3269 exit_read:
3270 if (retval >= 0) {
c7f17e7b
RH
3271 error_setg(&err, "Incomplete read of file header");
3272 } else {
3273 error_setg_errno(&err, errno, "Error reading file header");
8e62a717 3274 }
c7f17e7b
RH
3275 goto exit_errmsg;
3276 exit_mmap:
3277 error_setg_errno(&err, errno, "Error mapping file");
3278 goto exit_errmsg;
8e62a717 3279 exit_errmsg:
c7f17e7b 3280 error_reportf_err(err, "%s: ", image_name);
8e62a717
RH
3281 exit(-1);
3282}
3283
3284static void load_elf_interp(const char *filename, struct image_info *info,
3285 char bprm_buf[BPRM_BUF_SIZE])
3286{
3287 int fd, retval;
808f6563 3288 Error *err = NULL;
8e62a717
RH
3289
3290 fd = open(path(filename), O_RDONLY);
3291 if (fd < 0) {
808f6563
RH
3292 error_setg_file_open(&err, errno, filename);
3293 error_report_err(err);
3294 exit(-1);
8e62a717 3295 }
31e31b8a 3296
8e62a717
RH
3297 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
3298 if (retval < 0) {
808f6563
RH
3299 error_setg_errno(&err, errno, "Error reading file header");
3300 error_reportf_err(err, "%s: ", filename);
3301 exit(-1);
8e62a717 3302 }
808f6563 3303
8e62a717
RH
3304 if (retval < BPRM_BUF_SIZE) {
3305 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
3306 }
3307
bf858897 3308 load_elf_image(filename, fd, info, NULL, bprm_buf);
31e31b8a
FB
3309}
3310
49918a75
PB
3311static int symfind(const void *s0, const void *s1)
3312{
c7c530cd 3313 target_ulong addr = *(target_ulong *)s0;
49918a75
PB
3314 struct elf_sym *sym = (struct elf_sym *)s1;
3315 int result = 0;
c7c530cd 3316 if (addr < sym->st_value) {
49918a75 3317 result = -1;
c7c530cd 3318 } else if (addr >= sym->st_value + sym->st_size) {
49918a75
PB
3319 result = 1;
3320 }
3321 return result;
3322}
3323
3324static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
3325{
3326#if ELF_CLASS == ELFCLASS32
3327 struct elf_sym *syms = s->disas_symtab.elf32;
3328#else
3329 struct elf_sym *syms = s->disas_symtab.elf64;
3330#endif
3331
3332 // binary search
49918a75
PB
3333 struct elf_sym *sym;
3334
c7c530cd 3335 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
7cba04f6 3336 if (sym != NULL) {
49918a75
PB
3337 return s->disas_strtab + sym->st_name;
3338 }
3339
3340 return "";
3341}
3342
3343/* FIXME: This should use elf_ops.h */
3344static int symcmp(const void *s0, const void *s1)
3345{
3346 struct elf_sym *sym0 = (struct elf_sym *)s0;
3347 struct elf_sym *sym1 = (struct elf_sym *)s1;
3348 return (sym0->st_value < sym1->st_value)
3349 ? -1
3350 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
3351}
3352
689f936f 3353/* Best attempt to load symbols from this ELF object. */
682674b8 3354static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
689f936f 3355{
682674b8 3356 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
1e06262d 3357 uint64_t segsz;
682674b8 3358 struct elf_shdr *shdr;
b9475279
CV
3359 char *strings = NULL;
3360 struct syminfo *s = NULL;
3361 struct elf_sym *new_syms, *syms = NULL;
689f936f 3362
682674b8
RH
3363 shnum = hdr->e_shnum;
3364 i = shnum * sizeof(struct elf_shdr);
3365 shdr = (struct elf_shdr *)alloca(i);
3366 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
3367 return;
3368 }
3369
3370 bswap_shdr(shdr, shnum);
3371 for (i = 0; i < shnum; ++i) {
3372 if (shdr[i].sh_type == SHT_SYMTAB) {
3373 sym_idx = i;
3374 str_idx = shdr[i].sh_link;
49918a75
PB
3375 goto found;
3376 }
689f936f 3377 }
682674b8
RH
3378
3379 /* There will be no symbol table if the file was stripped. */
3380 return;
689f936f
FB
3381
3382 found:
682674b8 3383 /* Now know where the strtab and symtab are. Snarf them. */
0ef9ea29 3384 s = g_try_new(struct syminfo, 1);
682674b8 3385 if (!s) {
b9475279 3386 goto give_up;
682674b8 3387 }
5fafdf24 3388
1e06262d
PM
3389 segsz = shdr[str_idx].sh_size;
3390 s->disas_strtab = strings = g_try_malloc(segsz);
3391 if (!strings ||
3392 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
b9475279 3393 goto give_up;
682674b8 3394 }
49918a75 3395
1e06262d
PM
3396 segsz = shdr[sym_idx].sh_size;
3397 syms = g_try_malloc(segsz);
3398 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
b9475279 3399 goto give_up;
682674b8 3400 }
31e31b8a 3401
1e06262d
PM
3402 if (segsz / sizeof(struct elf_sym) > INT_MAX) {
3403 /* Implausibly large symbol table: give up rather than ploughing
3404 * on with the number of symbols calculation overflowing
3405 */
3406 goto give_up;
3407 }
3408 nsyms = segsz / sizeof(struct elf_sym);
682674b8 3409 for (i = 0; i < nsyms; ) {
49918a75 3410 bswap_sym(syms + i);
682674b8
RH
3411 /* Throw away entries which we do not need. */
3412 if (syms[i].st_shndx == SHN_UNDEF
3413 || syms[i].st_shndx >= SHN_LORESERVE
3414 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
3415 if (i < --nsyms) {
49918a75
PB
3416 syms[i] = syms[nsyms];
3417 }
682674b8 3418 } else {
49918a75 3419#if defined(TARGET_ARM) || defined (TARGET_MIPS)
682674b8
RH
3420 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
3421 syms[i].st_value &= ~(target_ulong)1;
0774bed1 3422#endif
682674b8
RH
3423 syms[i].st_value += load_bias;
3424 i++;
3425 }
0774bed1 3426 }
49918a75 3427
b9475279
CV
3428 /* No "useful" symbol. */
3429 if (nsyms == 0) {
3430 goto give_up;
3431 }
3432
5d5c9930
RH
3433 /* Attempt to free the storage associated with the local symbols
3434 that we threw away. Whether or not this has any effect on the
3435 memory allocation depends on the malloc implementation and how
3436 many symbols we managed to discard. */
0ef9ea29 3437 new_syms = g_try_renew(struct elf_sym, syms, nsyms);
8d79de6e 3438 if (new_syms == NULL) {
b9475279 3439 goto give_up;
5d5c9930 3440 }
8d79de6e 3441 syms = new_syms;
5d5c9930 3442
49918a75 3443 qsort(syms, nsyms, sizeof(*syms), symcmp);
689f936f 3444
49918a75
PB
3445 s->disas_num_syms = nsyms;
3446#if ELF_CLASS == ELFCLASS32
3447 s->disas_symtab.elf32 = syms;
49918a75
PB
3448#else
3449 s->disas_symtab.elf64 = syms;
49918a75 3450#endif
682674b8 3451 s->lookup_symbol = lookup_symbolxx;
e80cfcfc
FB
3452 s->next = syminfos;
3453 syminfos = s;
b9475279
CV
3454
3455 return;
3456
3457give_up:
0ef9ea29
PM
3458 g_free(s);
3459 g_free(strings);
3460 g_free(syms);
689f936f 3461}
31e31b8a 3462
768fe76e
YS
3463uint32_t get_elf_eflags(int fd)
3464{
3465 struct elfhdr ehdr;
3466 off_t offset;
3467 int ret;
3468
3469 /* Read ELF header */
3470 offset = lseek(fd, 0, SEEK_SET);
3471 if (offset == (off_t) -1) {
3472 return 0;
3473 }
3474 ret = read(fd, &ehdr, sizeof(ehdr));
3475 if (ret < sizeof(ehdr)) {
3476 return 0;
3477 }
3478 offset = lseek(fd, offset, SEEK_SET);
3479 if (offset == (off_t) -1) {
3480 return 0;
3481 }
3482
3483 /* Check ELF signature */
3484 if (!elf_check_ident(&ehdr)) {
3485 return 0;
3486 }
3487
3488 /* check header */
3489 bswap_ehdr(&ehdr);
3490 if (!elf_check_ehdr(&ehdr)) {
3491 return 0;
3492 }
3493
3494 /* return architecture id */
3495 return ehdr.e_flags;
3496}
3497
f0116c54 3498int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
31e31b8a 3499{
8e62a717 3500 struct image_info interp_info;
31e31b8a 3501 struct elfhdr elf_ex;
8e62a717 3502 char *elf_interpreter = NULL;
59baae9a 3503 char *scratch;
31e31b8a 3504
abcac736
DS
3505 memset(&interp_info, 0, sizeof(interp_info));
3506#ifdef TARGET_MIPS
3507 interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
3508#endif
3509
bf858897 3510 info->start_mmap = (abi_ulong)ELF_START_MMAP;
bf858897
RH
3511
3512 load_elf_image(bprm->filename, bprm->fd, info,
3513 &elf_interpreter, bprm->buf);
31e31b8a 3514
bf858897
RH
3515 /* ??? We need a copy of the elf header for passing to create_elf_tables.
3516 If we do nothing, we'll have overwritten this when we re-use bprm->buf
3517 when we load the interpreter. */
3518 elf_ex = *(struct elfhdr *)bprm->buf;
31e31b8a 3519
59baae9a
SB
3520 /* Do this so that we can load the interpreter, if need be. We will
3521 change some of these later */
3522 bprm->p = setup_arg_pages(bprm, info);
3523
3524 scratch = g_new0(char, TARGET_PAGE_SIZE);
7c4ee5bc
RH
3525 if (STACK_GROWS_DOWN) {
3526 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3527 bprm->p, info->stack_limit);
3528 info->file_string = bprm->p;
3529 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3530 bprm->p, info->stack_limit);
3531 info->env_strings = bprm->p;
3532 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3533 bprm->p, info->stack_limit);
3534 info->arg_strings = bprm->p;
3535 } else {
3536 info->arg_strings = bprm->p;
3537 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3538 bprm->p, info->stack_limit);
3539 info->env_strings = bprm->p;
3540 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3541 bprm->p, info->stack_limit);
3542 info->file_string = bprm->p;
3543 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3544 bprm->p, info->stack_limit);
3545 }
3546
59baae9a
SB
3547 g_free(scratch);
3548
e5fe0c52 3549 if (!bprm->p) {
bf858897
RH
3550 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
3551 exit(-1);
379f6698 3552 }
379f6698 3553
8e62a717
RH
3554 if (elf_interpreter) {
3555 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
31e31b8a 3556
8e62a717
RH
3557 /* If the program interpreter is one of these two, then assume
3558 an iBCS2 image. Otherwise assume a native linux image. */
3559
3560 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
3561 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
3562 info->personality = PER_SVR4;
31e31b8a 3563
8e62a717
RH
3564 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
3565 and some applications "depend" upon this behavior. Since
3566 we do not have the power to recompile these, we emulate
3567 the SVr4 behavior. Sigh. */
3568 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
68754b44 3569 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
8e62a717 3570 }
c94cb6c9
SM
3571#ifdef TARGET_MIPS
3572 info->interp_fp_abi = interp_info.fp_abi;
3573#endif
31e31b8a
FB
3574 }
3575
db2af69d
RH
3576 /*
3577 * TODO: load a vdso, which would also contain the signal trampolines.
3578 * Otherwise, allocate a private page to hold them.
3579 */
3580 if (TARGET_ARCH_HAS_SIGTRAMP_PAGE) {
802ae45e
LV
3581 abi_long tramp_page = target_mmap(0, TARGET_PAGE_SIZE,
3582 PROT_READ | PROT_WRITE,
3583 MAP_PRIVATE | MAP_ANON, -1, 0);
3584 if (tramp_page == -1) {
3585 return -errno;
3586 }
3587
db2af69d
RH
3588 setup_sigtramp(tramp_page);
3589 target_mprotect(tramp_page, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC);
3590 }
3591
8e62a717
RH
3592 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
3593 info, (elf_interpreter ? &interp_info : NULL));
3594 info->start_stack = bprm->p;
3595
3596 /* If we have an interpreter, set that as the program's entry point.
8e78064e 3597 Copy the load_bias as well, to help PPC64 interpret the entry
8e62a717
RH
3598 point as a function descriptor. Do this after creating elf tables
3599 so that we copy the original program entry point into the AUXV. */
3600 if (elf_interpreter) {
8e78064e 3601 info->load_bias = interp_info.load_bias;
8e62a717 3602 info->entry = interp_info.entry;
2b323087 3603 g_free(elf_interpreter);
8e62a717 3604 }
31e31b8a 3605
edf8e2af
MW
3606#ifdef USE_ELF_CORE_DUMP
3607 bprm->core_dump = &elf_core_dump;
3608#endif
3609
6fd59449
RH
3610 /*
3611 * If we reserved extra space for brk, release it now.
3612 * The implementation of do_brk in syscalls.c expects to be able
3613 * to mmap pages in this space.
3614 */
3615 if (info->reserve_brk) {
3616 abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk);
3617 abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk);
3618 target_munmap(start_brk, end_brk - start_brk);
3619 }
3620
31e31b8a
FB
3621 return 0;
3622}
3623
edf8e2af 3624#ifdef USE_ELF_CORE_DUMP
edf8e2af
MW
3625/*
3626 * Definitions to generate Intel SVR4-like core files.
a2547a13 3627 * These mostly have the same names as the SVR4 types with "target_elf_"
edf8e2af
MW
3628 * tacked on the front to prevent clashes with linux definitions,
3629 * and the typedef forms have been avoided. This is mostly like
3630 * the SVR4 structure, but more Linuxy, with things that Linux does
3631 * not support and which gdb doesn't really use excluded.
3632 *
3633 * Fields we don't dump (their contents is zero) in linux-user qemu
3634 * are marked with XXX.
3635 *
3636 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
3637 *
3638 * Porting ELF coredump for target is (quite) simple process. First you
dd0a3651 3639 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
edf8e2af
MW
3640 * the target resides):
3641 *
3642 * #define USE_ELF_CORE_DUMP
3643 *
3644 * Next you define type of register set used for dumping. ELF specification
3645 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
3646 *
c227f099 3647 * typedef <target_regtype> target_elf_greg_t;
edf8e2af 3648 * #define ELF_NREG <number of registers>
c227f099 3649 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 3650 *
edf8e2af
MW
3651 * Last step is to implement target specific function that copies registers
3652 * from given cpu into just specified register set. Prototype is:
3653 *
c227f099 3654 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
9349b4f9 3655 * const CPUArchState *env);
edf8e2af
MW
3656 *
3657 * Parameters:
3658 * regs - copy register values into here (allocated and zeroed by caller)
3659 * env - copy registers from here
3660 *
3661 * Example for ARM target is provided in this file.
3662 */
3663
3664/* An ELF note in memory */
3665struct memelfnote {
3666 const char *name;
3667 size_t namesz;
3668 size_t namesz_rounded;
3669 int type;
3670 size_t datasz;
80f5ce75 3671 size_t datasz_rounded;
edf8e2af
MW
3672 void *data;
3673 size_t notesz;
3674};
3675
a2547a13 3676struct target_elf_siginfo {
f8fd4fc4
PB
3677 abi_int si_signo; /* signal number */
3678 abi_int si_code; /* extra code */
3679 abi_int si_errno; /* errno */
edf8e2af
MW
3680};
3681
a2547a13
LD
3682struct target_elf_prstatus {
3683 struct target_elf_siginfo pr_info; /* Info associated with signal */
1ddd592f 3684 abi_short pr_cursig; /* Current signal */
ca98ac83
PB
3685 abi_ulong pr_sigpend; /* XXX */
3686 abi_ulong pr_sighold; /* XXX */
c227f099
AL
3687 target_pid_t pr_pid;
3688 target_pid_t pr_ppid;
3689 target_pid_t pr_pgrp;
3690 target_pid_t pr_sid;
edf8e2af
MW
3691 struct target_timeval pr_utime; /* XXX User time */
3692 struct target_timeval pr_stime; /* XXX System time */
3693 struct target_timeval pr_cutime; /* XXX Cumulative user time */
3694 struct target_timeval pr_cstime; /* XXX Cumulative system time */
c227f099 3695 target_elf_gregset_t pr_reg; /* GP registers */
f8fd4fc4 3696 abi_int pr_fpvalid; /* XXX */
edf8e2af
MW
3697};
3698
3699#define ELF_PRARGSZ (80) /* Number of chars for args */
3700
a2547a13 3701struct target_elf_prpsinfo {
edf8e2af
MW
3702 char pr_state; /* numeric process state */
3703 char pr_sname; /* char for pr_state */
3704 char pr_zomb; /* zombie */
3705 char pr_nice; /* nice val */
ca98ac83 3706 abi_ulong pr_flag; /* flags */
c227f099
AL
3707 target_uid_t pr_uid;
3708 target_gid_t pr_gid;
3709 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
edf8e2af 3710 /* Lots missing */
d7eb2b92 3711 char pr_fname[16] QEMU_NONSTRING; /* filename of executable */
edf8e2af
MW
3712 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
3713};
3714
3715/* Here is the structure in which status of each thread is captured. */
3716struct elf_thread_status {
72cf2d4f 3717 QTAILQ_ENTRY(elf_thread_status) ets_link;
a2547a13 3718 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
edf8e2af
MW
3719#if 0
3720 elf_fpregset_t fpu; /* NT_PRFPREG */
3721 struct task_struct *thread;
3722 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
3723#endif
3724 struct memelfnote notes[1];
3725 int num_notes;
3726};
3727
3728struct elf_note_info {
3729 struct memelfnote *notes;
a2547a13
LD
3730 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
3731 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
edf8e2af 3732
b58deb34 3733 QTAILQ_HEAD(, elf_thread_status) thread_list;
edf8e2af
MW
3734#if 0
3735 /*
3736 * Current version of ELF coredump doesn't support
3737 * dumping fp regs etc.
3738 */
3739 elf_fpregset_t *fpu;
3740 elf_fpxregset_t *xfpu;
3741 int thread_status_size;
3742#endif
3743 int notes_size;
3744 int numnote;
3745};
3746
3747struct vm_area_struct {
1a1c4db9
MI
3748 target_ulong vma_start; /* start vaddr of memory region */
3749 target_ulong vma_end; /* end vaddr of memory region */
3750 abi_ulong vma_flags; /* protection etc. flags for the region */
72cf2d4f 3751 QTAILQ_ENTRY(vm_area_struct) vma_link;
edf8e2af
MW
3752};
3753
3754struct mm_struct {
72cf2d4f 3755 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
edf8e2af
MW
3756 int mm_count; /* number of mappings */
3757};
3758
3759static struct mm_struct *vma_init(void);
3760static void vma_delete(struct mm_struct *);
1a1c4db9
MI
3761static int vma_add_mapping(struct mm_struct *, target_ulong,
3762 target_ulong, abi_ulong);
edf8e2af
MW
3763static int vma_get_mapping_count(const struct mm_struct *);
3764static struct vm_area_struct *vma_first(const struct mm_struct *);
3765static struct vm_area_struct *vma_next(struct vm_area_struct *);
3766static abi_ulong vma_dump_size(const struct vm_area_struct *);
1a1c4db9 3767static int vma_walker(void *priv, target_ulong start, target_ulong end,
d97ef72e 3768 unsigned long flags);
edf8e2af
MW
3769
3770static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
3771static void fill_note(struct memelfnote *, const char *, int,
d97ef72e 3772 unsigned int, void *);
a2547a13
LD
3773static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
3774static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
edf8e2af
MW
3775static void fill_auxv_note(struct memelfnote *, const TaskState *);
3776static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
3777static size_t note_size(const struct memelfnote *);
3778static void free_note_info(struct elf_note_info *);
9349b4f9
AF
3779static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
3780static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
edf8e2af
MW
3781
3782static int dump_write(int, const void *, size_t);
3783static int write_note(struct memelfnote *, int);
3784static int write_note_info(struct elf_note_info *, int);
3785
3786#ifdef BSWAP_NEEDED
a2547a13 3787static void bswap_prstatus(struct target_elf_prstatus *prstatus)
edf8e2af 3788{
ca98ac83
PB
3789 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
3790 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
3791 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
edf8e2af 3792 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
ca98ac83
PB
3793 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
3794 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
edf8e2af
MW
3795 prstatus->pr_pid = tswap32(prstatus->pr_pid);
3796 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
3797 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
3798 prstatus->pr_sid = tswap32(prstatus->pr_sid);
3799 /* cpu times are not filled, so we skip them */
3800 /* regs should be in correct format already */
3801 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
3802}
3803
a2547a13 3804static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
edf8e2af 3805{
ca98ac83 3806 psinfo->pr_flag = tswapal(psinfo->pr_flag);
edf8e2af
MW
3807 psinfo->pr_uid = tswap16(psinfo->pr_uid);
3808 psinfo->pr_gid = tswap16(psinfo->pr_gid);
3809 psinfo->pr_pid = tswap32(psinfo->pr_pid);
3810 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
3811 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
3812 psinfo->pr_sid = tswap32(psinfo->pr_sid);
3813}
991f8f0c
RH
3814
3815static void bswap_note(struct elf_note *en)
3816{
3817 bswap32s(&en->n_namesz);
3818 bswap32s(&en->n_descsz);
3819 bswap32s(&en->n_type);
3820}
3821#else
3822static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
3823static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
3824static inline void bswap_note(struct elf_note *en) { }
edf8e2af
MW
3825#endif /* BSWAP_NEEDED */
3826
3827/*
3828 * Minimal support for linux memory regions. These are needed
3829 * when we are finding out what memory exactly belongs to
3830 * emulated process. No locks needed here, as long as
3831 * thread that received the signal is stopped.
3832 */
3833
3834static struct mm_struct *vma_init(void)
3835{
3836 struct mm_struct *mm;
3837
7267c094 3838 if ((mm = g_malloc(sizeof (*mm))) == NULL)
edf8e2af
MW
3839 return (NULL);
3840
3841 mm->mm_count = 0;
72cf2d4f 3842 QTAILQ_INIT(&mm->mm_mmap);
edf8e2af
MW
3843
3844 return (mm);
3845}
3846
3847static void vma_delete(struct mm_struct *mm)
3848{
3849 struct vm_area_struct *vma;
3850
3851 while ((vma = vma_first(mm)) != NULL) {
72cf2d4f 3852 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
7267c094 3853 g_free(vma);
edf8e2af 3854 }
7267c094 3855 g_free(mm);
edf8e2af
MW
3856}
3857
1a1c4db9
MI
3858static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
3859 target_ulong end, abi_ulong flags)
edf8e2af
MW
3860{
3861 struct vm_area_struct *vma;
3862
7267c094 3863 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
edf8e2af
MW
3864 return (-1);
3865
3866 vma->vma_start = start;
3867 vma->vma_end = end;
3868 vma->vma_flags = flags;
3869
72cf2d4f 3870 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
edf8e2af
MW
3871 mm->mm_count++;
3872
3873 return (0);
3874}
3875
3876static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3877{
72cf2d4f 3878 return (QTAILQ_FIRST(&mm->mm_mmap));
edf8e2af
MW
3879}
3880
3881static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3882{
72cf2d4f 3883 return (QTAILQ_NEXT(vma, vma_link));
edf8e2af
MW
3884}
3885
3886static int vma_get_mapping_count(const struct mm_struct *mm)
3887{
3888 return (mm->mm_count);
3889}
3890
3891/*
3892 * Calculate file (dump) size of given memory region.
3893 */
3894static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3895{
3896 /* if we cannot even read the first page, skip it */
c7169b02 3897 if (!access_ok_untagged(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
edf8e2af
MW
3898 return (0);
3899
3900 /*
3901 * Usually we don't dump executable pages as they contain
3902 * non-writable code that debugger can read directly from
3903 * target library etc. However, thread stacks are marked
3904 * also executable so we read in first page of given region
3905 * and check whether it contains elf header. If there is
3906 * no elf header, we dump it.
3907 */
3908 if (vma->vma_flags & PROT_EXEC) {
3909 char page[TARGET_PAGE_SIZE];
3910
022625a8
PM
3911 if (copy_from_user(page, vma->vma_start, sizeof (page))) {
3912 return 0;
3913 }
edf8e2af
MW
3914 if ((page[EI_MAG0] == ELFMAG0) &&
3915 (page[EI_MAG1] == ELFMAG1) &&
3916 (page[EI_MAG2] == ELFMAG2) &&
3917 (page[EI_MAG3] == ELFMAG3)) {
3918 /*
3919 * Mappings are possibly from ELF binary. Don't dump
3920 * them.
3921 */
3922 return (0);
3923 }
3924 }
3925
3926 return (vma->vma_end - vma->vma_start);
3927}
3928
1a1c4db9 3929static int vma_walker(void *priv, target_ulong start, target_ulong end,
d97ef72e 3930 unsigned long flags)
edf8e2af
MW
3931{
3932 struct mm_struct *mm = (struct mm_struct *)priv;
3933
edf8e2af
MW
3934 vma_add_mapping(mm, start, end, flags);
3935 return (0);
3936}
3937
3938static void fill_note(struct memelfnote *note, const char *name, int type,
d97ef72e 3939 unsigned int sz, void *data)
edf8e2af
MW
3940{
3941 unsigned int namesz;
3942
3943 namesz = strlen(name) + 1;
3944 note->name = name;
3945 note->namesz = namesz;
3946 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3947 note->type = type;
80f5ce75
LV
3948 note->datasz = sz;
3949 note->datasz_rounded = roundup(sz, sizeof (int32_t));
3950
edf8e2af
MW
3951 note->data = data;
3952
3953 /*
3954 * We calculate rounded up note size here as specified by
3955 * ELF document.
3956 */
3957 note->notesz = sizeof (struct elf_note) +
80f5ce75 3958 note->namesz_rounded + note->datasz_rounded;
edf8e2af
MW
3959}
3960
3961static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
d97ef72e 3962 uint32_t flags)
edf8e2af
MW
3963{
3964 (void) memset(elf, 0, sizeof(*elf));
3965
3966 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3967 elf->e_ident[EI_CLASS] = ELF_CLASS;
3968 elf->e_ident[EI_DATA] = ELF_DATA;
3969 elf->e_ident[EI_VERSION] = EV_CURRENT;
3970 elf->e_ident[EI_OSABI] = ELF_OSABI;
3971
3972 elf->e_type = ET_CORE;
3973 elf->e_machine = machine;
3974 elf->e_version = EV_CURRENT;
3975 elf->e_phoff = sizeof(struct elfhdr);
3976 elf->e_flags = flags;
3977 elf->e_ehsize = sizeof(struct elfhdr);
3978 elf->e_phentsize = sizeof(struct elf_phdr);
3979 elf->e_phnum = segs;
3980
edf8e2af 3981 bswap_ehdr(elf);
edf8e2af
MW
3982}
3983
3984static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3985{
3986 phdr->p_type = PT_NOTE;
3987 phdr->p_offset = offset;
3988 phdr->p_vaddr = 0;
3989 phdr->p_paddr = 0;
3990 phdr->p_filesz = sz;
3991 phdr->p_memsz = 0;
3992 phdr->p_flags = 0;
3993 phdr->p_align = 0;
3994
991f8f0c 3995 bswap_phdr(phdr, 1);
edf8e2af
MW
3996}
3997
3998static size_t note_size(const struct memelfnote *note)
3999{
4000 return (note->notesz);
4001}
4002
a2547a13 4003static void fill_prstatus(struct target_elf_prstatus *prstatus,
d97ef72e 4004 const TaskState *ts, int signr)
edf8e2af
MW
4005{
4006 (void) memset(prstatus, 0, sizeof (*prstatus));
4007 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
4008 prstatus->pr_pid = ts->ts_tid;
4009 prstatus->pr_ppid = getppid();
4010 prstatus->pr_pgrp = getpgrp();
4011 prstatus->pr_sid = getsid(0);
4012
edf8e2af 4013 bswap_prstatus(prstatus);
edf8e2af
MW
4014}
4015
a2547a13 4016static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
edf8e2af 4017{
900cfbca 4018 char *base_filename;
edf8e2af
MW
4019 unsigned int i, len;
4020
4021 (void) memset(psinfo, 0, sizeof (*psinfo));
4022
5f779a3a 4023 len = ts->info->env_strings - ts->info->arg_strings;
edf8e2af
MW
4024 if (len >= ELF_PRARGSZ)
4025 len = ELF_PRARGSZ - 1;
5f779a3a 4026 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_strings, len)) {
edf8e2af 4027 return -EFAULT;
5f779a3a 4028 }
edf8e2af
MW
4029 for (i = 0; i < len; i++)
4030 if (psinfo->pr_psargs[i] == 0)
4031 psinfo->pr_psargs[i] = ' ';
4032 psinfo->pr_psargs[len] = 0;
4033
4034 psinfo->pr_pid = getpid();
4035 psinfo->pr_ppid = getppid();
4036 psinfo->pr_pgrp = getpgrp();
4037 psinfo->pr_sid = getsid(0);
4038 psinfo->pr_uid = getuid();
4039 psinfo->pr_gid = getgid();
4040
900cfbca
JM
4041 base_filename = g_path_get_basename(ts->bprm->filename);
4042 /*
4043 * Using strncpy here is fine: at max-length,
4044 * this field is not NUL-terminated.
4045 */
edf8e2af 4046 (void) strncpy(psinfo->pr_fname, base_filename,
d97ef72e 4047 sizeof(psinfo->pr_fname));
edf8e2af 4048
900cfbca 4049 g_free(base_filename);
edf8e2af 4050 bswap_psinfo(psinfo);
edf8e2af
MW
4051 return (0);
4052}
4053
4054static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
4055{
4056 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
4057 elf_addr_t orig_auxv = auxv;
edf8e2af 4058 void *ptr;
125b0f55 4059 int len = ts->info->auxv_len;
edf8e2af
MW
4060
4061 /*
4062 * Auxiliary vector is stored in target process stack. It contains
4063 * {type, value} pairs that we need to dump into note. This is not
4064 * strictly necessary but we do it here for sake of completeness.
4065 */
4066
edf8e2af
MW
4067 /* read in whole auxv vector and copy it to memelfnote */
4068 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
4069 if (ptr != NULL) {
4070 fill_note(note, "CORE", NT_AUXV, len, ptr);
4071 unlock_user(ptr, auxv, len);
4072 }
4073}
4074
4075/*
4076 * Constructs name of coredump file. We have following convention
4077 * for the name:
4078 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
4079 *
68af19ad 4080 * Returns the filename
edf8e2af 4081 */
68af19ad 4082static char *core_dump_filename(const TaskState *ts)
edf8e2af 4083{
68af19ad
DB
4084 g_autoptr(GDateTime) now = g_date_time_new_now_local();
4085 g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S");
4086 g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename);
edf8e2af 4087
68af19ad
DB
4088 return g_strdup_printf("qemu_%s_%s_%d.core",
4089 base_filename, nowstr, (int)getpid());
edf8e2af
MW
4090}
4091
4092static int dump_write(int fd, const void *ptr, size_t size)
4093{
4094 const char *bufp = (const char *)ptr;
4095 ssize_t bytes_written, bytes_left;
4096 struct rlimit dumpsize;
4097 off_t pos;
4098
4099 bytes_written = 0;
4100 getrlimit(RLIMIT_CORE, &dumpsize);
4101 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
4102 if (errno == ESPIPE) { /* not a seekable stream */
4103 bytes_left = size;
4104 } else {
4105 return pos;
4106 }
4107 } else {
4108 if (dumpsize.rlim_cur <= pos) {
4109 return -1;
4110 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
4111 bytes_left = size;
4112 } else {
4113 size_t limit_left=dumpsize.rlim_cur - pos;
4114 bytes_left = limit_left >= size ? size : limit_left ;
4115 }
4116 }
4117
4118 /*
4119 * In normal conditions, single write(2) should do but
4120 * in case of socket etc. this mechanism is more portable.
4121 */
4122 do {
4123 bytes_written = write(fd, bufp, bytes_left);
4124 if (bytes_written < 0) {
4125 if (errno == EINTR)
4126 continue;
4127 return (-1);
4128 } else if (bytes_written == 0) { /* eof */
4129 return (-1);
4130 }
4131 bufp += bytes_written;
4132 bytes_left -= bytes_written;
4133 } while (bytes_left > 0);
4134
4135 return (0);
4136}
4137
4138static int write_note(struct memelfnote *men, int fd)
4139{
4140 struct elf_note en;
4141
4142 en.n_namesz = men->namesz;
4143 en.n_type = men->type;
4144 en.n_descsz = men->datasz;
4145
edf8e2af 4146 bswap_note(&en);
edf8e2af
MW
4147
4148 if (dump_write(fd, &en, sizeof(en)) != 0)
4149 return (-1);
4150 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
4151 return (-1);
80f5ce75 4152 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
edf8e2af
MW
4153 return (-1);
4154
4155 return (0);
4156}
4157
9349b4f9 4158static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
edf8e2af 4159{
29a0af61 4160 CPUState *cpu = env_cpu((CPUArchState *)env);
0429a971 4161 TaskState *ts = (TaskState *)cpu->opaque;
edf8e2af
MW
4162 struct elf_thread_status *ets;
4163
7267c094 4164 ets = g_malloc0(sizeof (*ets));
edf8e2af
MW
4165 ets->num_notes = 1; /* only prstatus is dumped */
4166 fill_prstatus(&ets->prstatus, ts, 0);
4167 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
4168 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
d97ef72e 4169 &ets->prstatus);
edf8e2af 4170
72cf2d4f 4171 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
edf8e2af
MW
4172
4173 info->notes_size += note_size(&ets->notes[0]);
4174}
4175
6afafa86
PM
4176static void init_note_info(struct elf_note_info *info)
4177{
4178 /* Initialize the elf_note_info structure so that it is at
4179 * least safe to call free_note_info() on it. Must be
4180 * called before calling fill_note_info().
4181 */
4182 memset(info, 0, sizeof (*info));
4183 QTAILQ_INIT(&info->thread_list);
4184}
4185
edf8e2af 4186static int fill_note_info(struct elf_note_info *info,
9349b4f9 4187 long signr, const CPUArchState *env)
edf8e2af
MW
4188{
4189#define NUMNOTES 3
29a0af61 4190 CPUState *cpu = env_cpu((CPUArchState *)env);
0429a971 4191 TaskState *ts = (TaskState *)cpu->opaque;
edf8e2af
MW
4192 int i;
4193
c78d65e8 4194 info->notes = g_new0(struct memelfnote, NUMNOTES);
edf8e2af
MW
4195 if (info->notes == NULL)
4196 return (-ENOMEM);
7267c094 4197 info->prstatus = g_malloc0(sizeof (*info->prstatus));
edf8e2af
MW
4198 if (info->prstatus == NULL)
4199 return (-ENOMEM);
7267c094 4200 info->psinfo = g_malloc0(sizeof (*info->psinfo));
edf8e2af
MW
4201 if (info->prstatus == NULL)
4202 return (-ENOMEM);
4203
4204 /*
4205 * First fill in status (and registers) of current thread
4206 * including process info & aux vector.
4207 */
4208 fill_prstatus(info->prstatus, ts, signr);
4209 elf_core_copy_regs(&info->prstatus->pr_reg, env);
4210 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
d97ef72e 4211 sizeof (*info->prstatus), info->prstatus);
edf8e2af
MW
4212 fill_psinfo(info->psinfo, ts);
4213 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
d97ef72e 4214 sizeof (*info->psinfo), info->psinfo);
edf8e2af
MW
4215 fill_auxv_note(&info->notes[2], ts);
4216 info->numnote = 3;
4217
4218 info->notes_size = 0;
4219 for (i = 0; i < info->numnote; i++)
4220 info->notes_size += note_size(&info->notes[i]);
4221
4222 /* read and fill status of all threads */
4223 cpu_list_lock();
bdc44640 4224 CPU_FOREACH(cpu) {
a2247f8e 4225 if (cpu == thread_cpu) {
edf8e2af 4226 continue;
182735ef 4227 }
2f6f4290 4228 fill_thread_info(info, cpu->env_ptr);
edf8e2af
MW
4229 }
4230 cpu_list_unlock();
4231
4232 return (0);
4233}
4234
4235static void free_note_info(struct elf_note_info *info)
4236{
4237 struct elf_thread_status *ets;
4238
72cf2d4f
BS
4239 while (!QTAILQ_EMPTY(&info->thread_list)) {
4240 ets = QTAILQ_FIRST(&info->thread_list);
4241 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
7267c094 4242 g_free(ets);
edf8e2af
MW
4243 }
4244
7267c094
AL
4245 g_free(info->prstatus);
4246 g_free(info->psinfo);
4247 g_free(info->notes);
edf8e2af
MW
4248}
4249
4250static int write_note_info(struct elf_note_info *info, int fd)
4251{
4252 struct elf_thread_status *ets;
4253 int i, error = 0;
4254
4255 /* write prstatus, psinfo and auxv for current thread */
4256 for (i = 0; i < info->numnote; i++)
4257 if ((error = write_note(&info->notes[i], fd)) != 0)
4258 return (error);
4259
4260 /* write prstatus for each thread */
52a53afe 4261 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
edf8e2af
MW
4262 if ((error = write_note(&ets->notes[0], fd)) != 0)
4263 return (error);
4264 }
4265
4266 return (0);
4267}
4268
4269/*
4270 * Write out ELF coredump.
4271 *
4272 * See documentation of ELF object file format in:
4273 * http://www.caldera.com/developers/devspecs/gabi41.pdf
4274 *
4275 * Coredump format in linux is following:
4276 *
4277 * 0 +----------------------+ \
4278 * | ELF header | ET_CORE |
4279 * +----------------------+ |
4280 * | ELF program headers | |--- headers
4281 * | - NOTE section | |
4282 * | - PT_LOAD sections | |
4283 * +----------------------+ /
4284 * | NOTEs: |
4285 * | - NT_PRSTATUS |
4286 * | - NT_PRSINFO |
4287 * | - NT_AUXV |
4288 * +----------------------+ <-- aligned to target page
4289 * | Process memory dump |
4290 * : :
4291 * . .
4292 * : :
4293 * | |
4294 * +----------------------+
4295 *
4296 * NT_PRSTATUS -> struct elf_prstatus (per thread)
4297 * NT_PRSINFO -> struct elf_prpsinfo
4298 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
4299 *
4300 * Format follows System V format as close as possible. Current
4301 * version limitations are as follows:
4302 * - no floating point registers are dumped
4303 *
4304 * Function returns 0 in case of success, negative errno otherwise.
4305 *
4306 * TODO: make this work also during runtime: it should be
4307 * possible to force coredump from running process and then
4308 * continue processing. For example qemu could set up SIGUSR2
4309 * handler (provided that target process haven't registered
4310 * handler for that) that does the dump when signal is received.
4311 */
9349b4f9 4312static int elf_core_dump(int signr, const CPUArchState *env)
edf8e2af 4313{
29a0af61 4314 const CPUState *cpu = env_cpu((CPUArchState *)env);
0429a971 4315 const TaskState *ts = (const TaskState *)cpu->opaque;
edf8e2af 4316 struct vm_area_struct *vma = NULL;
68af19ad 4317 g_autofree char *corefile = NULL;
edf8e2af
MW
4318 struct elf_note_info info;
4319 struct elfhdr elf;
4320 struct elf_phdr phdr;
4321 struct rlimit dumpsize;
4322 struct mm_struct *mm = NULL;
4323 off_t offset = 0, data_offset = 0;
4324 int segs = 0;
4325 int fd = -1;
4326
6afafa86
PM
4327 init_note_info(&info);
4328
edf8e2af
MW
4329 errno = 0;
4330 getrlimit(RLIMIT_CORE, &dumpsize);
4331 if (dumpsize.rlim_cur == 0)
d97ef72e 4332 return 0;
edf8e2af 4333
68af19ad 4334 corefile = core_dump_filename(ts);
edf8e2af
MW
4335
4336 if ((fd = open(corefile, O_WRONLY | O_CREAT,
d97ef72e 4337 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
edf8e2af
MW
4338 return (-errno);
4339
4340 /*
4341 * Walk through target process memory mappings and
4342 * set up structure containing this information. After
4343 * this point vma_xxx functions can be used.
4344 */
4345 if ((mm = vma_init()) == NULL)
4346 goto out;
4347
4348 walk_memory_regions(mm, vma_walker);
4349 segs = vma_get_mapping_count(mm);
4350
4351 /*
4352 * Construct valid coredump ELF header. We also
4353 * add one more segment for notes.
4354 */
4355 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
4356 if (dump_write(fd, &elf, sizeof (elf)) != 0)
4357 goto out;
4358
b6af0975 4359 /* fill in the in-memory version of notes */
edf8e2af
MW
4360 if (fill_note_info(&info, signr, env) < 0)
4361 goto out;
4362
4363 offset += sizeof (elf); /* elf header */
4364 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
4365
4366 /* write out notes program header */
4367 fill_elf_note_phdr(&phdr, info.notes_size, offset);
4368
4369 offset += info.notes_size;
4370 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
4371 goto out;
4372
4373 /*
4374 * ELF specification wants data to start at page boundary so
4375 * we align it here.
4376 */
80f5ce75 4377 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
edf8e2af
MW
4378
4379 /*
4380 * Write program headers for memory regions mapped in
4381 * the target process.
4382 */
4383 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4384 (void) memset(&phdr, 0, sizeof (phdr));
4385
4386 phdr.p_type = PT_LOAD;
4387 phdr.p_offset = offset;
4388 phdr.p_vaddr = vma->vma_start;
4389 phdr.p_paddr = 0;
4390 phdr.p_filesz = vma_dump_size(vma);
4391 offset += phdr.p_filesz;
4392 phdr.p_memsz = vma->vma_end - vma->vma_start;
4393 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
4394 if (vma->vma_flags & PROT_WRITE)
4395 phdr.p_flags |= PF_W;
4396 if (vma->vma_flags & PROT_EXEC)
4397 phdr.p_flags |= PF_X;
4398 phdr.p_align = ELF_EXEC_PAGESIZE;
4399
80f5ce75 4400 bswap_phdr(&phdr, 1);
772034b6
PM
4401 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
4402 goto out;
4403 }
edf8e2af
MW
4404 }
4405
4406 /*
4407 * Next we write notes just after program headers. No
4408 * alignment needed here.
4409 */
4410 if (write_note_info(&info, fd) < 0)
4411 goto out;
4412
4413 /* align data to page boundary */
edf8e2af
MW
4414 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
4415 goto out;
4416
4417 /*
4418 * Finally we can dump process memory into corefile as well.
4419 */
4420 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4421 abi_ulong addr;
4422 abi_ulong end;
4423
4424 end = vma->vma_start + vma_dump_size(vma);
4425
4426 for (addr = vma->vma_start; addr < end;
d97ef72e 4427 addr += TARGET_PAGE_SIZE) {
edf8e2af
MW
4428 char page[TARGET_PAGE_SIZE];
4429 int error;
4430
4431 /*
4432 * Read in page from target process memory and
4433 * write it to coredump file.
4434 */
4435 error = copy_from_user(page, addr, sizeof (page));
4436 if (error != 0) {
49995e17 4437 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
d97ef72e 4438 addr);
edf8e2af
MW
4439 errno = -error;
4440 goto out;
4441 }
4442 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
4443 goto out;
4444 }
4445 }
4446
d97ef72e 4447 out:
edf8e2af
MW
4448 free_note_info(&info);
4449 if (mm != NULL)
4450 vma_delete(mm);
4451 (void) close(fd);
4452
4453 if (errno != 0)
4454 return (-errno);
4455 return (0);
4456}
edf8e2af
MW
4457#endif /* USE_ELF_CORE_DUMP */
4458
e5fe0c52
PB
4459void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
4460{
4461 init_thread(regs, infop);
4462}
This page took 1.680916 seconds and 5 git commands to generate.