]> Git Repo - qemu.git/blame - linux-user/elfload.c
linux-user: Split safe-syscall macro into its own header
[qemu.git] / linux-user / elfload.c
CommitLineData
31e31b8a 1/* This is the Linux kernel elf-loading code, ported into user space */
d39594e9 2#include "qemu/osdep.h"
edf8e2af 3#include <sys/param.h>
31e31b8a 4
edf8e2af 5#include <sys/resource.h>
30ab9ef2 6#include <sys/shm.h>
31e31b8a 7
3ef693a0 8#include "qemu.h"
3ad0a769 9#include "loader.h"
5423e6d3 10#include "user-mmap.h"
76cad711 11#include "disas/disas.h"
ce543844 12#include "qemu/bitops.h"
f348b6d1 13#include "qemu/path.h"
dc5e9ac7 14#include "qemu/queue.h"
c6a2377f 15#include "qemu/guest-random.h"
6fd59449 16#include "qemu/units.h"
ee947430 17#include "qemu/selfmap.h"
c7f17e7b 18#include "qapi/error.h"
31e31b8a 19
e58ffeb3 20#ifdef _ARCH_PPC64
a6cc84f4 21#undef ARCH_DLINFO
22#undef ELF_PLATFORM
23#undef ELF_HWCAP
ad6919dc 24#undef ELF_HWCAP2
a6cc84f4 25#undef ELF_CLASS
26#undef ELF_DATA
27#undef ELF_ARCH
28#endif
29
edf8e2af
MW
30#define ELF_OSABI ELFOSABI_SYSV
31
cb33da57
BS
32/* from personality.h */
33
34/*
35 * Flags for bug emulation.
36 *
37 * These occupy the top three bytes.
38 */
39enum {
d97ef72e
RH
40 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
41 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
42 descriptors (signal handling) */
43 MMAP_PAGE_ZERO = 0x0100000,
44 ADDR_COMPAT_LAYOUT = 0x0200000,
45 READ_IMPLIES_EXEC = 0x0400000,
46 ADDR_LIMIT_32BIT = 0x0800000,
47 SHORT_INODE = 0x1000000,
48 WHOLE_SECONDS = 0x2000000,
49 STICKY_TIMEOUTS = 0x4000000,
50 ADDR_LIMIT_3GB = 0x8000000,
cb33da57
BS
51};
52
53/*
54 * Personality types.
55 *
56 * These go in the low byte. Avoid using the top bit, it will
57 * conflict with error returns.
58 */
59enum {
d97ef72e
RH
60 PER_LINUX = 0x0000,
61 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
62 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
63 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
64 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
65 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
66 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
67 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
68 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
69 PER_BSD = 0x0006,
70 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
71 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
72 PER_LINUX32 = 0x0008,
73 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
74 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
75 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
76 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
77 PER_RISCOS = 0x000c,
78 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
79 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
80 PER_OSF4 = 0x000f, /* OSF/1 v4 */
81 PER_HPUX = 0x0010,
82 PER_MASK = 0x00ff,
cb33da57
BS
83};
84
85/*
86 * Return the base personality without flags.
87 */
d97ef72e 88#define personality(pers) (pers & PER_MASK)
cb33da57 89
3cb10cfa
CL
90int info_is_fdpic(struct image_info *info)
91{
92 return info->personality == PER_LINUX_FDPIC;
93}
94
83fb7adf
FB
95/* this flag is uneffective under linux too, should be deleted */
96#ifndef MAP_DENYWRITE
97#define MAP_DENYWRITE 0
98#endif
99
100/* should probably go in elf.h */
101#ifndef ELIBBAD
102#define ELIBBAD 80
103#endif
104
28490231
RH
105#ifdef TARGET_WORDS_BIGENDIAN
106#define ELF_DATA ELFDATA2MSB
107#else
108#define ELF_DATA ELFDATA2LSB
109#endif
110
a29f998d 111#ifdef TARGET_ABI_MIPSN32
918fc54c
PB
112typedef abi_ullong target_elf_greg_t;
113#define tswapreg(ptr) tswap64(ptr)
a29f998d
PB
114#else
115typedef abi_ulong target_elf_greg_t;
116#define tswapreg(ptr) tswapal(ptr)
117#endif
118
21e807fa 119#ifdef USE_UID16
1ddd592f
PB
120typedef abi_ushort target_uid_t;
121typedef abi_ushort target_gid_t;
21e807fa 122#else
f8fd4fc4
PB
123typedef abi_uint target_uid_t;
124typedef abi_uint target_gid_t;
21e807fa 125#endif
f8fd4fc4 126typedef abi_int target_pid_t;
21e807fa 127
30ac07d4
FB
128#ifdef TARGET_I386
129
15338fd7
FB
130#define ELF_PLATFORM get_elf_platform()
131
132static const char *get_elf_platform(void)
133{
134 static char elf_platform[] = "i386";
a2247f8e 135 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
15338fd7
FB
136 if (family > 6)
137 family = 6;
138 if (family >= 3)
139 elf_platform[1] = '0' + family;
140 return elf_platform;
141}
142
143#define ELF_HWCAP get_elf_hwcap()
144
145static uint32_t get_elf_hwcap(void)
146{
a2247f8e
AF
147 X86CPU *cpu = X86_CPU(thread_cpu);
148
149 return cpu->env.features[FEAT_1_EDX];
15338fd7
FB
150}
151
84409ddb
JM
152#ifdef TARGET_X86_64
153#define ELF_START_MMAP 0x2aaaaab000ULL
84409ddb
JM
154
155#define ELF_CLASS ELFCLASS64
84409ddb
JM
156#define ELF_ARCH EM_X86_64
157
158static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
159{
160 regs->rax = 0;
161 regs->rsp = infop->start_stack;
162 regs->rip = infop->entry;
163}
164
9edc5d79 165#define ELF_NREG 27
c227f099 166typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
167
168/*
169 * Note that ELF_NREG should be 29 as there should be place for
170 * TRAPNO and ERR "registers" as well but linux doesn't dump
171 * those.
172 *
173 * See linux kernel: arch/x86/include/asm/elf.h
174 */
05390248 175static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
9edc5d79 176{
030912e0
IL
177 (*regs)[0] = tswapreg(env->regs[15]);
178 (*regs)[1] = tswapreg(env->regs[14]);
179 (*regs)[2] = tswapreg(env->regs[13]);
180 (*regs)[3] = tswapreg(env->regs[12]);
181 (*regs)[4] = tswapreg(env->regs[R_EBP]);
182 (*regs)[5] = tswapreg(env->regs[R_EBX]);
183 (*regs)[6] = tswapreg(env->regs[11]);
184 (*regs)[7] = tswapreg(env->regs[10]);
185 (*regs)[8] = tswapreg(env->regs[9]);
186 (*regs)[9] = tswapreg(env->regs[8]);
187 (*regs)[10] = tswapreg(env->regs[R_EAX]);
188 (*regs)[11] = tswapreg(env->regs[R_ECX]);
189 (*regs)[12] = tswapreg(env->regs[R_EDX]);
190 (*regs)[13] = tswapreg(env->regs[R_ESI]);
191 (*regs)[14] = tswapreg(env->regs[R_EDI]);
192 (*regs)[15] = tswapreg(env->regs[R_EAX]); /* XXX */
193 (*regs)[16] = tswapreg(env->eip);
194 (*regs)[17] = tswapreg(env->segs[R_CS].selector & 0xffff);
195 (*regs)[18] = tswapreg(env->eflags);
196 (*regs)[19] = tswapreg(env->regs[R_ESP]);
197 (*regs)[20] = tswapreg(env->segs[R_SS].selector & 0xffff);
198 (*regs)[21] = tswapreg(env->segs[R_FS].selector & 0xffff);
199 (*regs)[22] = tswapreg(env->segs[R_GS].selector & 0xffff);
200 (*regs)[23] = tswapreg(env->segs[R_DS].selector & 0xffff);
201 (*regs)[24] = tswapreg(env->segs[R_ES].selector & 0xffff);
202 (*regs)[25] = tswapreg(env->segs[R_FS].selector & 0xffff);
203 (*regs)[26] = tswapreg(env->segs[R_GS].selector & 0xffff);
9edc5d79
MW
204}
205
84409ddb
JM
206#else
207
30ac07d4
FB
208#define ELF_START_MMAP 0x80000000
209
30ac07d4
FB
210/*
211 * This is used to ensure we don't load something for the wrong architecture.
212 */
213#define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
214
215/*
216 * These are used to set parameters in the core dumps.
217 */
d97ef72e 218#define ELF_CLASS ELFCLASS32
d97ef72e 219#define ELF_ARCH EM_386
30ac07d4 220
d97ef72e
RH
221static inline void init_thread(struct target_pt_regs *regs,
222 struct image_info *infop)
b346ff46
FB
223{
224 regs->esp = infop->start_stack;
225 regs->eip = infop->entry;
e5fe0c52
PB
226
227 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
228 starts %edx contains a pointer to a function which might be
229 registered using `atexit'. This provides a mean for the
230 dynamic linker to call DT_FINI functions for shared libraries
231 that have been loaded before the code runs.
232
233 A value of 0 tells we have no such handler. */
234 regs->edx = 0;
b346ff46 235}
9edc5d79 236
9edc5d79 237#define ELF_NREG 17
c227f099 238typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
239
240/*
241 * Note that ELF_NREG should be 19 as there should be place for
242 * TRAPNO and ERR "registers" as well but linux doesn't dump
243 * those.
244 *
245 * See linux kernel: arch/x86/include/asm/elf.h
246 */
05390248 247static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
9edc5d79 248{
030912e0
IL
249 (*regs)[0] = tswapreg(env->regs[R_EBX]);
250 (*regs)[1] = tswapreg(env->regs[R_ECX]);
251 (*regs)[2] = tswapreg(env->regs[R_EDX]);
252 (*regs)[3] = tswapreg(env->regs[R_ESI]);
253 (*regs)[4] = tswapreg(env->regs[R_EDI]);
254 (*regs)[5] = tswapreg(env->regs[R_EBP]);
255 (*regs)[6] = tswapreg(env->regs[R_EAX]);
256 (*regs)[7] = tswapreg(env->segs[R_DS].selector & 0xffff);
257 (*regs)[8] = tswapreg(env->segs[R_ES].selector & 0xffff);
258 (*regs)[9] = tswapreg(env->segs[R_FS].selector & 0xffff);
259 (*regs)[10] = tswapreg(env->segs[R_GS].selector & 0xffff);
260 (*regs)[11] = tswapreg(env->regs[R_EAX]); /* XXX */
261 (*regs)[12] = tswapreg(env->eip);
262 (*regs)[13] = tswapreg(env->segs[R_CS].selector & 0xffff);
263 (*regs)[14] = tswapreg(env->eflags);
264 (*regs)[15] = tswapreg(env->regs[R_ESP]);
265 (*regs)[16] = tswapreg(env->segs[R_SS].selector & 0xffff);
9edc5d79 266}
84409ddb 267#endif
b346ff46 268
9edc5d79 269#define USE_ELF_CORE_DUMP
d97ef72e 270#define ELF_EXEC_PAGESIZE 4096
b346ff46
FB
271
272#endif
273
274#ifdef TARGET_ARM
275
24e76ff0
PM
276#ifndef TARGET_AARCH64
277/* 32 bit ARM definitions */
278
b346ff46
FB
279#define ELF_START_MMAP 0x80000000
280
b597c3f7 281#define ELF_ARCH EM_ARM
d97ef72e 282#define ELF_CLASS ELFCLASS32
b346ff46 283
d97ef72e
RH
284static inline void init_thread(struct target_pt_regs *regs,
285 struct image_info *infop)
b346ff46 286{
992f48a0 287 abi_long stack = infop->start_stack;
b346ff46 288 memset(regs, 0, sizeof(*regs));
99033cae 289
167e4cdc
PM
290 regs->uregs[16] = ARM_CPU_MODE_USR;
291 if (infop->entry & 1) {
292 regs->uregs[16] |= CPSR_T;
293 }
294 regs->uregs[15] = infop->entry & 0xfffffffe;
295 regs->uregs[13] = infop->start_stack;
2f619698 296 /* FIXME - what to for failure of get_user()? */
167e4cdc
PM
297 get_user_ual(regs->uregs[2], stack + 8); /* envp */
298 get_user_ual(regs->uregs[1], stack + 4); /* envp */
a1516e92 299 /* XXX: it seems that r0 is zeroed after ! */
167e4cdc 300 regs->uregs[0] = 0;
e5fe0c52 301 /* For uClinux PIC binaries. */
863cf0b7 302 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
167e4cdc 303 regs->uregs[10] = infop->start_data;
3cb10cfa
CL
304
305 /* Support ARM FDPIC. */
306 if (info_is_fdpic(infop)) {
307 /* As described in the ABI document, r7 points to the loadmap info
308 * prepared by the kernel. If an interpreter is needed, r8 points
309 * to the interpreter loadmap and r9 points to the interpreter
310 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
311 * r9 points to the main program PT_DYNAMIC info.
312 */
313 regs->uregs[7] = infop->loadmap_addr;
314 if (infop->interpreter_loadmap_addr) {
315 /* Executable is dynamically loaded. */
316 regs->uregs[8] = infop->interpreter_loadmap_addr;
317 regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
318 } else {
319 regs->uregs[8] = 0;
320 regs->uregs[9] = infop->pt_dynamic_addr;
321 }
322 }
b346ff46
FB
323}
324
edf8e2af 325#define ELF_NREG 18
c227f099 326typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 327
05390248 328static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
edf8e2af 329{
86cd7b2d
PB
330 (*regs)[0] = tswapreg(env->regs[0]);
331 (*regs)[1] = tswapreg(env->regs[1]);
332 (*regs)[2] = tswapreg(env->regs[2]);
333 (*regs)[3] = tswapreg(env->regs[3]);
334 (*regs)[4] = tswapreg(env->regs[4]);
335 (*regs)[5] = tswapreg(env->regs[5]);
336 (*regs)[6] = tswapreg(env->regs[6]);
337 (*regs)[7] = tswapreg(env->regs[7]);
338 (*regs)[8] = tswapreg(env->regs[8]);
339 (*regs)[9] = tswapreg(env->regs[9]);
340 (*regs)[10] = tswapreg(env->regs[10]);
341 (*regs)[11] = tswapreg(env->regs[11]);
342 (*regs)[12] = tswapreg(env->regs[12]);
343 (*regs)[13] = tswapreg(env->regs[13]);
344 (*regs)[14] = tswapreg(env->regs[14]);
345 (*regs)[15] = tswapreg(env->regs[15]);
346
347 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
348 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
edf8e2af
MW
349}
350
30ac07d4 351#define USE_ELF_CORE_DUMP
d97ef72e 352#define ELF_EXEC_PAGESIZE 4096
30ac07d4 353
afce2927
FB
354enum
355{
d97ef72e
RH
356 ARM_HWCAP_ARM_SWP = 1 << 0,
357 ARM_HWCAP_ARM_HALF = 1 << 1,
358 ARM_HWCAP_ARM_THUMB = 1 << 2,
359 ARM_HWCAP_ARM_26BIT = 1 << 3,
360 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
361 ARM_HWCAP_ARM_FPA = 1 << 5,
362 ARM_HWCAP_ARM_VFP = 1 << 6,
363 ARM_HWCAP_ARM_EDSP = 1 << 7,
364 ARM_HWCAP_ARM_JAVA = 1 << 8,
365 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
43ce393e
PM
366 ARM_HWCAP_ARM_CRUNCH = 1 << 10,
367 ARM_HWCAP_ARM_THUMBEE = 1 << 11,
368 ARM_HWCAP_ARM_NEON = 1 << 12,
369 ARM_HWCAP_ARM_VFPv3 = 1 << 13,
370 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
24682654
PM
371 ARM_HWCAP_ARM_TLS = 1 << 15,
372 ARM_HWCAP_ARM_VFPv4 = 1 << 16,
373 ARM_HWCAP_ARM_IDIVA = 1 << 17,
374 ARM_HWCAP_ARM_IDIVT = 1 << 18,
375 ARM_HWCAP_ARM_VFPD32 = 1 << 19,
376 ARM_HWCAP_ARM_LPAE = 1 << 20,
377 ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
afce2927
FB
378};
379
ad6919dc
PM
380enum {
381 ARM_HWCAP2_ARM_AES = 1 << 0,
382 ARM_HWCAP2_ARM_PMULL = 1 << 1,
383 ARM_HWCAP2_ARM_SHA1 = 1 << 2,
384 ARM_HWCAP2_ARM_SHA2 = 1 << 3,
385 ARM_HWCAP2_ARM_CRC32 = 1 << 4,
386};
387
6b1275ff
PM
388/* The commpage only exists for 32 bit kernels */
389
ee947430 390#define ARM_COMMPAGE (intptr_t)0xffff0f00u
806d1021 391
ee947430
AB
392static bool init_guest_commpage(void)
393{
3e8f1628 394 void *want = g2h_untagged(ARM_COMMPAGE & -qemu_host_page_size);
ee947430 395 void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
5c3e87f3 396 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
97cc7560 397
ee947430
AB
398 if (addr == MAP_FAILED) {
399 perror("Allocating guest commpage");
400 exit(EXIT_FAILURE);
97cc7560 401 }
ee947430
AB
402 if (addr != want) {
403 return false;
97cc7560
DDAG
404 }
405
ee947430 406 /* Set kernel helper versions; rest of page is 0. */
3e8f1628 407 __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu));
97cc7560 408
ee947430 409 if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
97cc7560 410 perror("Protecting guest commpage");
ee947430 411 exit(EXIT_FAILURE);
97cc7560 412 }
ee947430 413 return true;
97cc7560 414}
adf050b1
BC
415
416#define ELF_HWCAP get_elf_hwcap()
ad6919dc 417#define ELF_HWCAP2 get_elf_hwcap2()
adf050b1
BC
418
419static uint32_t get_elf_hwcap(void)
420{
a2247f8e 421 ARMCPU *cpu = ARM_CPU(thread_cpu);
adf050b1
BC
422 uint32_t hwcaps = 0;
423
424 hwcaps |= ARM_HWCAP_ARM_SWP;
425 hwcaps |= ARM_HWCAP_ARM_HALF;
426 hwcaps |= ARM_HWCAP_ARM_THUMB;
427 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
adf050b1
BC
428
429 /* probe for the extra features */
430#define GET_FEATURE(feat, hwcap) \
a2247f8e 431 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
962fcbf2
RH
432
433#define GET_FEATURE_ID(feat, hwcap) \
434 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
435
24682654
PM
436 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
437 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
adf050b1
BC
438 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
439 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
440 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
24682654 441 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
bfa8a370 442 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
873b73c0
PM
443 GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
444 GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
bfa8a370
RH
445 GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
446
447 if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
448 cpu_isar_feature(aa32_fpdp_v3, cpu)) {
449 hwcaps |= ARM_HWCAP_ARM_VFPv3;
450 if (cpu_isar_feature(aa32_simd_r32, cpu)) {
451 hwcaps |= ARM_HWCAP_ARM_VFPD32;
452 } else {
453 hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
454 }
455 }
456 GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
adf050b1
BC
457
458 return hwcaps;
459}
afce2927 460
ad6919dc
PM
461static uint32_t get_elf_hwcap2(void)
462{
463 ARMCPU *cpu = ARM_CPU(thread_cpu);
464 uint32_t hwcaps = 0;
465
962fcbf2
RH
466 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
467 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
468 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
469 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
470 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
ad6919dc
PM
471 return hwcaps;
472}
473
474#undef GET_FEATURE
962fcbf2 475#undef GET_FEATURE_ID
ad6919dc 476
13ec4ec3
RH
477#define ELF_PLATFORM get_elf_platform()
478
479static const char *get_elf_platform(void)
480{
481 CPUARMState *env = thread_cpu->env_ptr;
482
483#ifdef TARGET_WORDS_BIGENDIAN
484# define END "b"
485#else
486# define END "l"
487#endif
488
489 if (arm_feature(env, ARM_FEATURE_V8)) {
490 return "v8" END;
491 } else if (arm_feature(env, ARM_FEATURE_V7)) {
492 if (arm_feature(env, ARM_FEATURE_M)) {
493 return "v7m" END;
494 } else {
495 return "v7" END;
496 }
497 } else if (arm_feature(env, ARM_FEATURE_V6)) {
498 return "v6" END;
499 } else if (arm_feature(env, ARM_FEATURE_V5)) {
500 return "v5" END;
501 } else {
502 return "v4" END;
503 }
504
505#undef END
506}
507
24e76ff0
PM
508#else
509/* 64 bit ARM definitions */
510#define ELF_START_MMAP 0x80000000
511
b597c3f7 512#define ELF_ARCH EM_AARCH64
24e76ff0 513#define ELF_CLASS ELFCLASS64
e20e3ec9
RH
514#ifdef TARGET_WORDS_BIGENDIAN
515# define ELF_PLATFORM "aarch64_be"
516#else
517# define ELF_PLATFORM "aarch64"
518#endif
24e76ff0
PM
519
520static inline void init_thread(struct target_pt_regs *regs,
521 struct image_info *infop)
522{
523 abi_long stack = infop->start_stack;
524 memset(regs, 0, sizeof(*regs));
525
526 regs->pc = infop->entry & ~0x3ULL;
527 regs->sp = stack;
528}
529
530#define ELF_NREG 34
531typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
532
533static void elf_core_copy_regs(target_elf_gregset_t *regs,
534 const CPUARMState *env)
535{
536 int i;
537
538 for (i = 0; i < 32; i++) {
539 (*regs)[i] = tswapreg(env->xregs[i]);
540 }
541 (*regs)[32] = tswapreg(env->pc);
542 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
543}
544
545#define USE_ELF_CORE_DUMP
546#define ELF_EXEC_PAGESIZE 4096
547
548enum {
549 ARM_HWCAP_A64_FP = 1 << 0,
550 ARM_HWCAP_A64_ASIMD = 1 << 1,
551 ARM_HWCAP_A64_EVTSTRM = 1 << 2,
552 ARM_HWCAP_A64_AES = 1 << 3,
553 ARM_HWCAP_A64_PMULL = 1 << 4,
554 ARM_HWCAP_A64_SHA1 = 1 << 5,
555 ARM_HWCAP_A64_SHA2 = 1 << 6,
556 ARM_HWCAP_A64_CRC32 = 1 << 7,
955f56d4
AB
557 ARM_HWCAP_A64_ATOMICS = 1 << 8,
558 ARM_HWCAP_A64_FPHP = 1 << 9,
559 ARM_HWCAP_A64_ASIMDHP = 1 << 10,
560 ARM_HWCAP_A64_CPUID = 1 << 11,
561 ARM_HWCAP_A64_ASIMDRDM = 1 << 12,
562 ARM_HWCAP_A64_JSCVT = 1 << 13,
563 ARM_HWCAP_A64_FCMA = 1 << 14,
564 ARM_HWCAP_A64_LRCPC = 1 << 15,
565 ARM_HWCAP_A64_DCPOP = 1 << 16,
566 ARM_HWCAP_A64_SHA3 = 1 << 17,
567 ARM_HWCAP_A64_SM3 = 1 << 18,
568 ARM_HWCAP_A64_SM4 = 1 << 19,
569 ARM_HWCAP_A64_ASIMDDP = 1 << 20,
570 ARM_HWCAP_A64_SHA512 = 1 << 21,
571 ARM_HWCAP_A64_SVE = 1 << 22,
0083a1fa
RH
572 ARM_HWCAP_A64_ASIMDFHM = 1 << 23,
573 ARM_HWCAP_A64_DIT = 1 << 24,
574 ARM_HWCAP_A64_USCAT = 1 << 25,
575 ARM_HWCAP_A64_ILRCPC = 1 << 26,
576 ARM_HWCAP_A64_FLAGM = 1 << 27,
577 ARM_HWCAP_A64_SSBS = 1 << 28,
578 ARM_HWCAP_A64_SB = 1 << 29,
579 ARM_HWCAP_A64_PACA = 1 << 30,
580 ARM_HWCAP_A64_PACG = 1UL << 31,
2041df4a
RH
581
582 ARM_HWCAP2_A64_DCPODP = 1 << 0,
583 ARM_HWCAP2_A64_SVE2 = 1 << 1,
584 ARM_HWCAP2_A64_SVEAES = 1 << 2,
585 ARM_HWCAP2_A64_SVEPMULL = 1 << 3,
586 ARM_HWCAP2_A64_SVEBITPERM = 1 << 4,
587 ARM_HWCAP2_A64_SVESHA3 = 1 << 5,
588 ARM_HWCAP2_A64_SVESM4 = 1 << 6,
589 ARM_HWCAP2_A64_FLAGM2 = 1 << 7,
590 ARM_HWCAP2_A64_FRINT = 1 << 8,
68948d18
RH
591 ARM_HWCAP2_A64_SVEI8MM = 1 << 9,
592 ARM_HWCAP2_A64_SVEF32MM = 1 << 10,
593 ARM_HWCAP2_A64_SVEF64MM = 1 << 11,
594 ARM_HWCAP2_A64_SVEBF16 = 1 << 12,
595 ARM_HWCAP2_A64_I8MM = 1 << 13,
596 ARM_HWCAP2_A64_BF16 = 1 << 14,
597 ARM_HWCAP2_A64_DGH = 1 << 15,
598 ARM_HWCAP2_A64_RNG = 1 << 16,
599 ARM_HWCAP2_A64_BTI = 1 << 17,
600 ARM_HWCAP2_A64_MTE = 1 << 18,
24e76ff0
PM
601};
602
2041df4a
RH
603#define ELF_HWCAP get_elf_hwcap()
604#define ELF_HWCAP2 get_elf_hwcap2()
605
606#define GET_FEATURE_ID(feat, hwcap) \
607 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
24e76ff0
PM
608
609static uint32_t get_elf_hwcap(void)
610{
611 ARMCPU *cpu = ARM_CPU(thread_cpu);
612 uint32_t hwcaps = 0;
613
614 hwcaps |= ARM_HWCAP_A64_FP;
615 hwcaps |= ARM_HWCAP_A64_ASIMD;
37020ff1 616 hwcaps |= ARM_HWCAP_A64_CPUID;
24e76ff0
PM
617
618 /* probe for the extra features */
962fcbf2
RH
619
620 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
621 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
622 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
623 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
624 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
625 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
626 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
627 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
628 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
5763190f 629 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
962fcbf2
RH
630 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
631 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
632 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
633 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
cd208a1c 634 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
29d26ab2 635 GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
1c9af3a9
RH
636 GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
637 GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
9888bd1e 638 GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
b89d9c98 639 GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
0d57b499 640 GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
2677cf9f 641 GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
a1229109 642 GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
962fcbf2 643
2041df4a
RH
644 return hwcaps;
645}
646
647static uint32_t get_elf_hwcap2(void)
648{
649 ARMCPU *cpu = ARM_CPU(thread_cpu);
650 uint32_t hwcaps = 0;
651
0d57b499 652 GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
cdc8d8b2
RH
653 GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2);
654 GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES);
655 GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL);
656 GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM);
657 GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3);
658 GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4);
2041df4a
RH
659 GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
660 GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
cdc8d8b2
RH
661 GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM);
662 GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM);
663 GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM);
6c47a905 664 GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16);
cdc8d8b2 665 GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM);
6c47a905 666 GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16);
68948d18
RH
667 GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG);
668 GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI);
669 GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE);
24e76ff0
PM
670
671 return hwcaps;
672}
673
2041df4a
RH
674#undef GET_FEATURE_ID
675
24e76ff0
PM
676#endif /* not TARGET_AARCH64 */
677#endif /* TARGET_ARM */
30ac07d4 678
853d6f7a 679#ifdef TARGET_SPARC
a315a145 680#ifdef TARGET_SPARC64
853d6f7a
FB
681
682#define ELF_START_MMAP 0x80000000
cf973e46
AT
683#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
684 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
992f48a0 685#ifndef TARGET_ABI32
cb33da57 686#define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
992f48a0
BS
687#else
688#define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
689#endif
853d6f7a 690
a315a145 691#define ELF_CLASS ELFCLASS64
5ef54116 692#define ELF_ARCH EM_SPARCV9
a315a145
FB
693#else
694#define ELF_START_MMAP 0x80000000
cf973e46
AT
695#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
696 | HWCAP_SPARC_MULDIV)
853d6f7a 697#define ELF_CLASS ELFCLASS32
853d6f7a 698#define ELF_ARCH EM_SPARC
089a2256 699#endif /* TARGET_SPARC64 */
853d6f7a 700
d97ef72e
RH
701static inline void init_thread(struct target_pt_regs *regs,
702 struct image_info *infop)
853d6f7a 703{
089a2256 704 /* Note that target_cpu_copy_regs does not read psr/tstate. */
f5155289
FB
705 regs->pc = infop->entry;
706 regs->npc = regs->pc + 4;
707 regs->y = 0;
089a2256
RH
708 regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong)
709 - TARGET_STACK_BIAS);
853d6f7a 710}
089a2256 711#endif /* TARGET_SPARC */
853d6f7a 712
67867308
FB
713#ifdef TARGET_PPC
714
4ecd4d16 715#define ELF_MACHINE PPC_ELF_MACHINE
67867308
FB
716#define ELF_START_MMAP 0x80000000
717
e85e7c6e 718#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
84409ddb
JM
719
720#define elf_check_arch(x) ( (x) == EM_PPC64 )
721
d97ef72e 722#define ELF_CLASS ELFCLASS64
84409ddb
JM
723
724#else
725
d97ef72e 726#define ELF_CLASS ELFCLASS32
84409ddb
JM
727
728#endif
729
d97ef72e 730#define ELF_ARCH EM_PPC
67867308 731
df84e4f3
NF
732/* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
733 See arch/powerpc/include/asm/cputable.h. */
734enum {
3efa9a67 735 QEMU_PPC_FEATURE_32 = 0x80000000,
736 QEMU_PPC_FEATURE_64 = 0x40000000,
737 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
738 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
739 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
740 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
741 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
742 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
743 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
744 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
745 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
746 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
747 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
748 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
749 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
750 QEMU_PPC_FEATURE_CELL = 0x00010000,
751 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
752 QEMU_PPC_FEATURE_SMT = 0x00004000,
753 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
754 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
755 QEMU_PPC_FEATURE_PA6T = 0x00000800,
756 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
757 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
758 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
759 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
760 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
761
762 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
763 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
a60438dd
TM
764
765 /* Feature definitions in AT_HWCAP2. */
766 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
767 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
768 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
769 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
770 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
771 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
24c373ec
LV
772 QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
773 QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
be0c46d4 774 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
24c373ec
LV
775 QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
776 QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
777 QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
778 QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
df84e4f3
NF
779};
780
781#define ELF_HWCAP get_elf_hwcap()
782
783static uint32_t get_elf_hwcap(void)
784{
a2247f8e 785 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
df84e4f3
NF
786 uint32_t features = 0;
787
788 /* We don't have to be terribly complete here; the high points are
789 Altivec/FP/SPE support. Anything else is just a bonus. */
d97ef72e 790#define GET_FEATURE(flag, feature) \
a2247f8e 791 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
58eb5308
MW
792#define GET_FEATURE2(flags, feature) \
793 do { \
794 if ((cpu->env.insns_flags2 & flags) == flags) { \
795 features |= feature; \
796 } \
797 } while (0)
3efa9a67 798 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
799 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
800 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
801 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
802 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
803 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
804 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
805 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
0e019746
TM
806 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
807 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
808 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
809 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
810 QEMU_PPC_FEATURE_ARCH_2_06);
df84e4f3 811#undef GET_FEATURE
0e019746 812#undef GET_FEATURE2
df84e4f3
NF
813
814 return features;
815}
816
a60438dd
TM
817#define ELF_HWCAP2 get_elf_hwcap2()
818
819static uint32_t get_elf_hwcap2(void)
820{
821 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
822 uint32_t features = 0;
823
824#define GET_FEATURE(flag, feature) \
825 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
826#define GET_FEATURE2(flag, feature) \
827 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
828
829 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
830 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
831 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
24c373ec
LV
832 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
833 QEMU_PPC_FEATURE2_VEC_CRYPTO);
834 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
8a589aeb 835 QEMU_PPC_FEATURE2_DARN | QEMU_PPC_FEATURE2_HAS_IEEE128);
a60438dd
TM
836
837#undef GET_FEATURE
838#undef GET_FEATURE2
839
840 return features;
841}
842
f5155289
FB
843/*
844 * The requirements here are:
845 * - keep the final alignment of sp (sp & 0xf)
846 * - make sure the 32-bit value at the first 16 byte aligned position of
847 * AUXV is greater than 16 for glibc compatibility.
848 * AT_IGNOREPPC is used for that.
849 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
850 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
851 */
0bccf03d 852#define DLINFO_ARCH_ITEMS 5
d97ef72e
RH
853#define ARCH_DLINFO \
854 do { \
623e250a 855 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
d97ef72e 856 /* \
82991bed
PM
857 * Handle glibc compatibility: these magic entries must \
858 * be at the lowest addresses in the final auxv. \
d97ef72e
RH
859 */ \
860 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
861 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
82991bed
PM
862 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
863 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
864 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
d97ef72e 865 } while (0)
f5155289 866
67867308
FB
867static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
868{
67867308 869 _regs->gpr[1] = infop->start_stack;
e85e7c6e 870#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
d90b94cd 871 if (get_ppc64_abi(infop) < 2) {
2ccf97ec
PM
872 uint64_t val;
873 get_user_u64(val, infop->entry + 8);
874 _regs->gpr[2] = val + infop->load_bias;
875 get_user_u64(val, infop->entry);
876 infop->entry = val + infop->load_bias;
d90b94cd
DK
877 } else {
878 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
879 }
84409ddb 880#endif
67867308
FB
881 _regs->nip = infop->entry;
882}
883
e2f3e741
NF
884/* See linux kernel: arch/powerpc/include/asm/elf.h. */
885#define ELF_NREG 48
886typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
887
05390248 888static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
e2f3e741
NF
889{
890 int i;
891 target_ulong ccr = 0;
892
893 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
86cd7b2d 894 (*regs)[i] = tswapreg(env->gpr[i]);
e2f3e741
NF
895 }
896
86cd7b2d
PB
897 (*regs)[32] = tswapreg(env->nip);
898 (*regs)[33] = tswapreg(env->msr);
899 (*regs)[35] = tswapreg(env->ctr);
900 (*regs)[36] = tswapreg(env->lr);
901 (*regs)[37] = tswapreg(env->xer);
e2f3e741
NF
902
903 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
904 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
905 }
86cd7b2d 906 (*regs)[38] = tswapreg(ccr);
e2f3e741
NF
907}
908
909#define USE_ELF_CORE_DUMP
d97ef72e 910#define ELF_EXEC_PAGESIZE 4096
67867308
FB
911
912#endif
913
048f6b4d
FB
914#ifdef TARGET_MIPS
915
916#define ELF_START_MMAP 0x80000000
917
388bb21a
TS
918#ifdef TARGET_MIPS64
919#define ELF_CLASS ELFCLASS64
920#else
048f6b4d 921#define ELF_CLASS ELFCLASS32
388bb21a 922#endif
048f6b4d
FB
923#define ELF_ARCH EM_MIPS
924
f72541f3
AM
925#define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS)
926
ace3d654
CMAB
927#ifdef TARGET_ABI_MIPSN32
928#define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
929#else
930#define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
931#endif
932
d97ef72e
RH
933static inline void init_thread(struct target_pt_regs *regs,
934 struct image_info *infop)
048f6b4d 935{
623a930e 936 regs->cp0_status = 2 << CP0St_KSU;
048f6b4d
FB
937 regs->cp0_epc = infop->entry;
938 regs->regs[29] = infop->start_stack;
939}
940
51e52606
NF
941/* See linux kernel: arch/mips/include/asm/elf.h. */
942#define ELF_NREG 45
943typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
944
945/* See linux kernel: arch/mips/include/asm/reg.h. */
946enum {
947#ifdef TARGET_MIPS64
948 TARGET_EF_R0 = 0,
949#else
950 TARGET_EF_R0 = 6,
951#endif
952 TARGET_EF_R26 = TARGET_EF_R0 + 26,
953 TARGET_EF_R27 = TARGET_EF_R0 + 27,
954 TARGET_EF_LO = TARGET_EF_R0 + 32,
955 TARGET_EF_HI = TARGET_EF_R0 + 33,
956 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
957 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
958 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
959 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
960};
961
962/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
05390248 963static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
51e52606
NF
964{
965 int i;
966
967 for (i = 0; i < TARGET_EF_R0; i++) {
968 (*regs)[i] = 0;
969 }
970 (*regs)[TARGET_EF_R0] = 0;
971
972 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
a29f998d 973 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
51e52606
NF
974 }
975
976 (*regs)[TARGET_EF_R26] = 0;
977 (*regs)[TARGET_EF_R27] = 0;
a29f998d
PB
978 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
979 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
980 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
981 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
982 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
983 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
51e52606
NF
984}
985
986#define USE_ELF_CORE_DUMP
388bb21a
TS
987#define ELF_EXEC_PAGESIZE 4096
988
46a1ee4f
JC
989/* See arch/mips/include/uapi/asm/hwcap.h. */
990enum {
991 HWCAP_MIPS_R6 = (1 << 0),
992 HWCAP_MIPS_MSA = (1 << 1),
9ea313ba
PMD
993 HWCAP_MIPS_CRC32 = (1 << 2),
994 HWCAP_MIPS_MIPS16 = (1 << 3),
995 HWCAP_MIPS_MDMX = (1 << 4),
996 HWCAP_MIPS_MIPS3D = (1 << 5),
997 HWCAP_MIPS_SMARTMIPS = (1 << 6),
998 HWCAP_MIPS_DSP = (1 << 7),
999 HWCAP_MIPS_DSP2 = (1 << 8),
1000 HWCAP_MIPS_DSP3 = (1 << 9),
1001 HWCAP_MIPS_MIPS16E2 = (1 << 10),
1002 HWCAP_LOONGSON_MMI = (1 << 11),
1003 HWCAP_LOONGSON_EXT = (1 << 12),
1004 HWCAP_LOONGSON_EXT2 = (1 << 13),
1005 HWCAP_LOONGSON_CPUCFG = (1 << 14),
46a1ee4f
JC
1006};
1007
1008#define ELF_HWCAP get_elf_hwcap()
1009
7d9a3d96 1010#define GET_FEATURE_INSN(_flag, _hwcap) \
6dd97bfc
PMD
1011 do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0)
1012
388765a0
PMD
1013#define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \
1014 do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0)
1015
ce543844
PMD
1016#define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \
1017 do { \
1018 if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \
1019 hwcaps |= _hwcap; \
1020 } \
1021 } while (0)
1022
46a1ee4f
JC
1023static uint32_t get_elf_hwcap(void)
1024{
1025 MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1026 uint32_t hwcaps = 0;
1027
ce543844
PMD
1028 GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH,
1029 2, HWCAP_MIPS_R6);
388765a0 1030 GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA);
53673d0f
PMD
1031 GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI);
1032 GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT);
46a1ee4f 1033
46a1ee4f
JC
1034 return hwcaps;
1035}
1036
ce543844 1037#undef GET_FEATURE_REG_EQU
388765a0 1038#undef GET_FEATURE_REG_SET
7d9a3d96 1039#undef GET_FEATURE_INSN
6dd97bfc 1040
048f6b4d
FB
1041#endif /* TARGET_MIPS */
1042
b779e29e
EI
1043#ifdef TARGET_MICROBLAZE
1044
1045#define ELF_START_MMAP 0x80000000
1046
0d5d4699 1047#define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
b779e29e
EI
1048
1049#define ELF_CLASS ELFCLASS32
0d5d4699 1050#define ELF_ARCH EM_MICROBLAZE
b779e29e 1051
d97ef72e
RH
1052static inline void init_thread(struct target_pt_regs *regs,
1053 struct image_info *infop)
b779e29e
EI
1054{
1055 regs->pc = infop->entry;
1056 regs->r1 = infop->start_stack;
1057
1058}
1059
b779e29e
EI
1060#define ELF_EXEC_PAGESIZE 4096
1061
e4cbd44d
EI
1062#define USE_ELF_CORE_DUMP
1063#define ELF_NREG 38
1064typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1065
1066/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
05390248 1067static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
e4cbd44d
EI
1068{
1069 int i, pos = 0;
1070
1071 for (i = 0; i < 32; i++) {
86cd7b2d 1072 (*regs)[pos++] = tswapreg(env->regs[i]);
e4cbd44d
EI
1073 }
1074
af20a93a 1075 (*regs)[pos++] = tswapreg(env->pc);
1074c0fb 1076 (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env));
af20a93a
RH
1077 (*regs)[pos++] = 0;
1078 (*regs)[pos++] = tswapreg(env->ear);
1079 (*regs)[pos++] = 0;
1080 (*regs)[pos++] = tswapreg(env->esr);
e4cbd44d
EI
1081}
1082
b779e29e
EI
1083#endif /* TARGET_MICROBLAZE */
1084
a0a839b6
MV
1085#ifdef TARGET_NIOS2
1086
1087#define ELF_START_MMAP 0x80000000
1088
1089#define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1090
1091#define ELF_CLASS ELFCLASS32
1092#define ELF_ARCH EM_ALTERA_NIOS2
1093
1094static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1095{
1096 regs->ea = infop->entry;
1097 regs->sp = infop->start_stack;
1098 regs->estatus = 0x3;
1099}
1100
1101#define ELF_EXEC_PAGESIZE 4096
1102
1103#define USE_ELF_CORE_DUMP
1104#define ELF_NREG 49
1105typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1106
1107/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1108static void elf_core_copy_regs(target_elf_gregset_t *regs,
1109 const CPUNios2State *env)
1110{
1111 int i;
1112
1113 (*regs)[0] = -1;
1114 for (i = 1; i < 8; i++) /* r0-r7 */
1115 (*regs)[i] = tswapreg(env->regs[i + 7]);
1116
1117 for (i = 8; i < 16; i++) /* r8-r15 */
1118 (*regs)[i] = tswapreg(env->regs[i - 8]);
1119
1120 for (i = 16; i < 24; i++) /* r16-r23 */
1121 (*regs)[i] = tswapreg(env->regs[i + 7]);
1122 (*regs)[24] = -1; /* R_ET */
1123 (*regs)[25] = -1; /* R_BT */
1124 (*regs)[26] = tswapreg(env->regs[R_GP]);
1125 (*regs)[27] = tswapreg(env->regs[R_SP]);
1126 (*regs)[28] = tswapreg(env->regs[R_FP]);
1127 (*regs)[29] = tswapreg(env->regs[R_EA]);
1128 (*regs)[30] = -1; /* R_SSTATUS */
1129 (*regs)[31] = tswapreg(env->regs[R_RA]);
1130
1131 (*regs)[32] = tswapreg(env->regs[R_PC]);
1132
1133 (*regs)[33] = -1; /* R_STATUS */
1134 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1135
1136 for (i = 35; i < 49; i++) /* ... */
1137 (*regs)[i] = -1;
1138}
1139
1140#endif /* TARGET_NIOS2 */
1141
d962783e
JL
1142#ifdef TARGET_OPENRISC
1143
1144#define ELF_START_MMAP 0x08000000
1145
d962783e
JL
1146#define ELF_ARCH EM_OPENRISC
1147#define ELF_CLASS ELFCLASS32
1148#define ELF_DATA ELFDATA2MSB
1149
1150static inline void init_thread(struct target_pt_regs *regs,
1151 struct image_info *infop)
1152{
1153 regs->pc = infop->entry;
1154 regs->gpr[1] = infop->start_stack;
1155}
1156
1157#define USE_ELF_CORE_DUMP
1158#define ELF_EXEC_PAGESIZE 8192
1159
1160/* See linux kernel arch/openrisc/include/asm/elf.h. */
1161#define ELF_NREG 34 /* gprs and pc, sr */
1162typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1163
1164static void elf_core_copy_regs(target_elf_gregset_t *regs,
1165 const CPUOpenRISCState *env)
1166{
1167 int i;
1168
1169 for (i = 0; i < 32; i++) {
d89e71e8 1170 (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
d962783e 1171 }
86cd7b2d 1172 (*regs)[32] = tswapreg(env->pc);
84775c43 1173 (*regs)[33] = tswapreg(cpu_get_sr(env));
d962783e
JL
1174}
1175#define ELF_HWCAP 0
1176#define ELF_PLATFORM NULL
1177
1178#endif /* TARGET_OPENRISC */
1179
fdf9b3e8
FB
1180#ifdef TARGET_SH4
1181
1182#define ELF_START_MMAP 0x80000000
1183
fdf9b3e8 1184#define ELF_CLASS ELFCLASS32
fdf9b3e8
FB
1185#define ELF_ARCH EM_SH
1186
d97ef72e
RH
1187static inline void init_thread(struct target_pt_regs *regs,
1188 struct image_info *infop)
fdf9b3e8 1189{
d97ef72e
RH
1190 /* Check other registers XXXXX */
1191 regs->pc = infop->entry;
1192 regs->regs[15] = infop->start_stack;
fdf9b3e8
FB
1193}
1194
7631c97e
NF
1195/* See linux kernel: arch/sh/include/asm/elf.h. */
1196#define ELF_NREG 23
1197typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1198
1199/* See linux kernel: arch/sh/include/asm/ptrace.h. */
1200enum {
1201 TARGET_REG_PC = 16,
1202 TARGET_REG_PR = 17,
1203 TARGET_REG_SR = 18,
1204 TARGET_REG_GBR = 19,
1205 TARGET_REG_MACH = 20,
1206 TARGET_REG_MACL = 21,
1207 TARGET_REG_SYSCALL = 22
1208};
1209
d97ef72e 1210static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
05390248 1211 const CPUSH4State *env)
7631c97e
NF
1212{
1213 int i;
1214
1215 for (i = 0; i < 16; i++) {
72cd500b 1216 (*regs)[i] = tswapreg(env->gregs[i]);
7631c97e
NF
1217 }
1218
86cd7b2d
PB
1219 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1220 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1221 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1222 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1223 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1224 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
7631c97e
NF
1225 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1226}
1227
1228#define USE_ELF_CORE_DUMP
fdf9b3e8
FB
1229#define ELF_EXEC_PAGESIZE 4096
1230
e42fd944
RH
1231enum {
1232 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
1233 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
1234 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1235 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
1236 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
1237 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
1238 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
1239 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
1240 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
1241 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
1242};
1243
1244#define ELF_HWCAP get_elf_hwcap()
1245
1246static uint32_t get_elf_hwcap(void)
1247{
1248 SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1249 uint32_t hwcap = 0;
1250
1251 hwcap |= SH_CPU_HAS_FPU;
1252
1253 if (cpu->env.features & SH_FEATURE_SH4A) {
1254 hwcap |= SH_CPU_HAS_LLSC;
1255 }
1256
1257 return hwcap;
1258}
1259
fdf9b3e8
FB
1260#endif
1261
48733d19
TS
1262#ifdef TARGET_CRIS
1263
1264#define ELF_START_MMAP 0x80000000
1265
48733d19 1266#define ELF_CLASS ELFCLASS32
48733d19
TS
1267#define ELF_ARCH EM_CRIS
1268
d97ef72e
RH
1269static inline void init_thread(struct target_pt_regs *regs,
1270 struct image_info *infop)
48733d19 1271{
d97ef72e 1272 regs->erp = infop->entry;
48733d19
TS
1273}
1274
48733d19
TS
1275#define ELF_EXEC_PAGESIZE 8192
1276
1277#endif
1278
e6e5906b
PB
1279#ifdef TARGET_M68K
1280
1281#define ELF_START_MMAP 0x80000000
1282
d97ef72e 1283#define ELF_CLASS ELFCLASS32
d97ef72e 1284#define ELF_ARCH EM_68K
e6e5906b
PB
1285
1286/* ??? Does this need to do anything?
d97ef72e 1287 #define ELF_PLAT_INIT(_r) */
e6e5906b 1288
d97ef72e
RH
1289static inline void init_thread(struct target_pt_regs *regs,
1290 struct image_info *infop)
e6e5906b
PB
1291{
1292 regs->usp = infop->start_stack;
1293 regs->sr = 0;
1294 regs->pc = infop->entry;
1295}
1296
7a93cc55
NF
1297/* See linux kernel: arch/m68k/include/asm/elf.h. */
1298#define ELF_NREG 20
1299typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1300
05390248 1301static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
7a93cc55 1302{
86cd7b2d
PB
1303 (*regs)[0] = tswapreg(env->dregs[1]);
1304 (*regs)[1] = tswapreg(env->dregs[2]);
1305 (*regs)[2] = tswapreg(env->dregs[3]);
1306 (*regs)[3] = tswapreg(env->dregs[4]);
1307 (*regs)[4] = tswapreg(env->dregs[5]);
1308 (*regs)[5] = tswapreg(env->dregs[6]);
1309 (*regs)[6] = tswapreg(env->dregs[7]);
1310 (*regs)[7] = tswapreg(env->aregs[0]);
1311 (*regs)[8] = tswapreg(env->aregs[1]);
1312 (*regs)[9] = tswapreg(env->aregs[2]);
1313 (*regs)[10] = tswapreg(env->aregs[3]);
1314 (*regs)[11] = tswapreg(env->aregs[4]);
1315 (*regs)[12] = tswapreg(env->aregs[5]);
1316 (*regs)[13] = tswapreg(env->aregs[6]);
1317 (*regs)[14] = tswapreg(env->dregs[0]);
1318 (*regs)[15] = tswapreg(env->aregs[7]);
1319 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1320 (*regs)[17] = tswapreg(env->sr);
1321 (*regs)[18] = tswapreg(env->pc);
7a93cc55
NF
1322 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
1323}
1324
1325#define USE_ELF_CORE_DUMP
d97ef72e 1326#define ELF_EXEC_PAGESIZE 8192
e6e5906b
PB
1327
1328#endif
1329
7a3148a9
JM
1330#ifdef TARGET_ALPHA
1331
1332#define ELF_START_MMAP (0x30000000000ULL)
1333
7a3148a9 1334#define ELF_CLASS ELFCLASS64
7a3148a9
JM
1335#define ELF_ARCH EM_ALPHA
1336
d97ef72e
RH
1337static inline void init_thread(struct target_pt_regs *regs,
1338 struct image_info *infop)
7a3148a9
JM
1339{
1340 regs->pc = infop->entry;
1341 regs->ps = 8;
1342 regs->usp = infop->start_stack;
7a3148a9
JM
1343}
1344
7a3148a9
JM
1345#define ELF_EXEC_PAGESIZE 8192
1346
1347#endif /* TARGET_ALPHA */
1348
a4c075f1
UH
1349#ifdef TARGET_S390X
1350
1351#define ELF_START_MMAP (0x20000000000ULL)
1352
a4c075f1
UH
1353#define ELF_CLASS ELFCLASS64
1354#define ELF_DATA ELFDATA2MSB
1355#define ELF_ARCH EM_S390
1356
6d88baf1
DH
1357#include "elf.h"
1358
1359#define ELF_HWCAP get_elf_hwcap()
1360
1361#define GET_FEATURE(_feat, _hwcap) \
1362 do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1363
1364static uint32_t get_elf_hwcap(void)
1365{
1366 /*
1367 * Let's assume we always have esan3 and zarch.
1368 * 31-bit processes can use 64-bit registers (high gprs).
1369 */
1370 uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1371
1372 GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1373 GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1374 GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1375 GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1376 if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1377 s390_has_feat(S390_FEAT_ETF3_ENH)) {
1378 hwcap |= HWCAP_S390_ETF3EH;
1379 }
1380 GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
da215c23 1381 GET_FEATURE(S390_FEAT_VECTOR_ENH, HWCAP_S390_VXRS_EXT);
6d88baf1
DH
1382
1383 return hwcap;
1384}
1385
a4c075f1
UH
1386static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1387{
1388 regs->psw.addr = infop->entry;
1389 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1390 regs->gprs[15] = infop->start_stack;
1391}
1392
4a1e8931
IL
1393/* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs). */
1394#define ELF_NREG 27
1395typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1396
1397enum {
1398 TARGET_REG_PSWM = 0,
1399 TARGET_REG_PSWA = 1,
1400 TARGET_REG_GPRS = 2,
1401 TARGET_REG_ARS = 18,
1402 TARGET_REG_ORIG_R2 = 26,
1403};
1404
1405static void elf_core_copy_regs(target_elf_gregset_t *regs,
1406 const CPUS390XState *env)
1407{
1408 int i;
1409 uint32_t *aregs;
1410
1411 (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask);
1412 (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr);
1413 for (i = 0; i < 16; i++) {
1414 (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]);
1415 }
1416 aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]);
1417 for (i = 0; i < 16; i++) {
1418 aregs[i] = tswap32(env->aregs[i]);
1419 }
1420 (*regs)[TARGET_REG_ORIG_R2] = 0;
1421}
1422
1423#define USE_ELF_CORE_DUMP
1424#define ELF_EXEC_PAGESIZE 4096
1425
a4c075f1
UH
1426#endif /* TARGET_S390X */
1427
47ae93cd
MC
1428#ifdef TARGET_RISCV
1429
1430#define ELF_START_MMAP 0x80000000
1431#define ELF_ARCH EM_RISCV
1432
1433#ifdef TARGET_RISCV32
1434#define ELF_CLASS ELFCLASS32
1435#else
1436#define ELF_CLASS ELFCLASS64
1437#endif
1438
cb46938c
KC
1439#define ELF_HWCAP get_elf_hwcap()
1440
1441static uint32_t get_elf_hwcap(void)
1442{
1443#define MISA_BIT(EXT) (1 << (EXT - 'A'))
1444 RISCVCPU *cpu = RISCV_CPU(thread_cpu);
1445 uint32_t mask = MISA_BIT('I') | MISA_BIT('M') | MISA_BIT('A')
1446 | MISA_BIT('F') | MISA_BIT('D') | MISA_BIT('C');
1447
1448 return cpu->env.misa & mask;
1449#undef MISA_BIT
1450}
1451
47ae93cd
MC
1452static inline void init_thread(struct target_pt_regs *regs,
1453 struct image_info *infop)
1454{
1455 regs->sepc = infop->entry;
1456 regs->sp = infop->start_stack;
1457}
1458
1459#define ELF_EXEC_PAGESIZE 4096
1460
1461#endif /* TARGET_RISCV */
1462
7c248bcd
RH
1463#ifdef TARGET_HPPA
1464
1465#define ELF_START_MMAP 0x80000000
1466#define ELF_CLASS ELFCLASS32
1467#define ELF_ARCH EM_PARISC
1468#define ELF_PLATFORM "PARISC"
1469#define STACK_GROWS_DOWN 0
1470#define STACK_ALIGNMENT 64
1471
1472static inline void init_thread(struct target_pt_regs *regs,
1473 struct image_info *infop)
1474{
1475 regs->iaoq[0] = infop->entry;
1476 regs->iaoq[1] = infop->entry + 4;
1477 regs->gr[23] = 0;
1478 regs->gr[24] = infop->arg_start;
1479 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1480 /* The top-of-stack contains a linkage buffer. */
1481 regs->gr[30] = infop->start_stack + 64;
1482 regs->gr[31] = infop->entry;
1483}
1484
1485#endif /* TARGET_HPPA */
1486
ba7651fb
MF
1487#ifdef TARGET_XTENSA
1488
1489#define ELF_START_MMAP 0x20000000
1490
1491#define ELF_CLASS ELFCLASS32
1492#define ELF_ARCH EM_XTENSA
1493
1494static inline void init_thread(struct target_pt_regs *regs,
1495 struct image_info *infop)
1496{
1497 regs->windowbase = 0;
1498 regs->windowstart = 1;
1499 regs->areg[1] = infop->start_stack;
1500 regs->pc = infop->entry;
1501}
1502
1503/* See linux kernel: arch/xtensa/include/asm/elf.h. */
1504#define ELF_NREG 128
1505typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1506
1507enum {
1508 TARGET_REG_PC,
1509 TARGET_REG_PS,
1510 TARGET_REG_LBEG,
1511 TARGET_REG_LEND,
1512 TARGET_REG_LCOUNT,
1513 TARGET_REG_SAR,
1514 TARGET_REG_WINDOWSTART,
1515 TARGET_REG_WINDOWBASE,
1516 TARGET_REG_THREADPTR,
1517 TARGET_REG_AR0 = 64,
1518};
1519
1520static void elf_core_copy_regs(target_elf_gregset_t *regs,
1521 const CPUXtensaState *env)
1522{
1523 unsigned i;
1524
1525 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1526 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1527 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1528 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1529 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1530 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1531 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1532 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1533 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1534 xtensa_sync_phys_from_window((CPUXtensaState *)env);
1535 for (i = 0; i < env->config->nareg; ++i) {
1536 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1537 }
1538}
1539
1540#define USE_ELF_CORE_DUMP
1541#define ELF_EXEC_PAGESIZE 4096
1542
1543#endif /* TARGET_XTENSA */
1544
d2a56bd2
TS
1545#ifdef TARGET_HEXAGON
1546
1547#define ELF_START_MMAP 0x20000000
1548
1549#define ELF_CLASS ELFCLASS32
1550#define ELF_ARCH EM_HEXAGON
1551
1552static inline void init_thread(struct target_pt_regs *regs,
1553 struct image_info *infop)
1554{
1555 regs->sepc = infop->entry;
1556 regs->sp = infop->start_stack;
1557}
1558
1559#endif /* TARGET_HEXAGON */
1560
15338fd7
FB
1561#ifndef ELF_PLATFORM
1562#define ELF_PLATFORM (NULL)
1563#endif
1564
75be901c
PC
1565#ifndef ELF_MACHINE
1566#define ELF_MACHINE ELF_ARCH
1567#endif
1568
d276a604
PC
1569#ifndef elf_check_arch
1570#define elf_check_arch(x) ((x) == ELF_ARCH)
1571#endif
1572
ace3d654
CMAB
1573#ifndef elf_check_abi
1574#define elf_check_abi(x) (1)
1575#endif
1576
15338fd7
FB
1577#ifndef ELF_HWCAP
1578#define ELF_HWCAP 0
1579#endif
1580
7c4ee5bc
RH
1581#ifndef STACK_GROWS_DOWN
1582#define STACK_GROWS_DOWN 1
1583#endif
1584
1585#ifndef STACK_ALIGNMENT
1586#define STACK_ALIGNMENT 16
1587#endif
1588
992f48a0 1589#ifdef TARGET_ABI32
cb33da57 1590#undef ELF_CLASS
992f48a0 1591#define ELF_CLASS ELFCLASS32
cb33da57
BS
1592#undef bswaptls
1593#define bswaptls(ptr) bswap32s(ptr)
1594#endif
1595
31e31b8a 1596#include "elf.h"
09bfb054 1597
e8384b37
RH
1598/* We must delay the following stanzas until after "elf.h". */
1599#if defined(TARGET_AARCH64)
1600
1601static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1602 const uint32_t *data,
1603 struct image_info *info,
1604 Error **errp)
1605{
1606 if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
1607 if (pr_datasz != sizeof(uint32_t)) {
1608 error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND");
1609 return false;
1610 }
1611 /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */
1612 info->note_flags = *data;
1613 }
1614 return true;
1615}
1616#define ARCH_USE_GNU_PROPERTY 1
1617
1618#else
1619
83f990eb
RH
1620static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1621 const uint32_t *data,
1622 struct image_info *info,
1623 Error **errp)
1624{
1625 g_assert_not_reached();
1626}
1627#define ARCH_USE_GNU_PROPERTY 0
1628
e8384b37
RH
1629#endif
1630
09bfb054
FB
1631struct exec
1632{
d97ef72e
RH
1633 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
1634 unsigned int a_text; /* length of text, in bytes */
1635 unsigned int a_data; /* length of data, in bytes */
1636 unsigned int a_bss; /* length of uninitialized data area, in bytes */
1637 unsigned int a_syms; /* length of symbol table data in file, in bytes */
1638 unsigned int a_entry; /* start address */
1639 unsigned int a_trsize; /* length of relocation info for text, in bytes */
1640 unsigned int a_drsize; /* length of relocation info for data, in bytes */
09bfb054
FB
1641};
1642
1643
1644#define N_MAGIC(exec) ((exec).a_info & 0xffff)
1645#define OMAGIC 0407
1646#define NMAGIC 0410
1647#define ZMAGIC 0413
1648#define QMAGIC 0314
1649
31e31b8a 1650/* Necessary parameters */
94894ff2
SB
1651#define TARGET_ELF_EXEC_PAGESIZE \
1652 (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1653 TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1654#define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
79cb1f1d
YK
1655#define TARGET_ELF_PAGESTART(_v) ((_v) & \
1656 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
54936004 1657#define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
31e31b8a 1658
e0d1673d 1659#define DLINFO_ITEMS 16
31e31b8a 1660
09bfb054
FB
1661static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1662{
d97ef72e 1663 memcpy(to, from, n);
09bfb054 1664}
d691f669 1665
31e31b8a 1666#ifdef BSWAP_NEEDED
92a31b1f 1667static void bswap_ehdr(struct elfhdr *ehdr)
31e31b8a 1668{
d97ef72e
RH
1669 bswap16s(&ehdr->e_type); /* Object file type */
1670 bswap16s(&ehdr->e_machine); /* Architecture */
1671 bswap32s(&ehdr->e_version); /* Object file version */
1672 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
1673 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
1674 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
1675 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
1676 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
1677 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
1678 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
1679 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
1680 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
1681 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
31e31b8a
FB
1682}
1683
991f8f0c 1684static void bswap_phdr(struct elf_phdr *phdr, int phnum)
31e31b8a 1685{
991f8f0c
RH
1686 int i;
1687 for (i = 0; i < phnum; ++i, ++phdr) {
1688 bswap32s(&phdr->p_type); /* Segment type */
1689 bswap32s(&phdr->p_flags); /* Segment flags */
1690 bswaptls(&phdr->p_offset); /* Segment file offset */
1691 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
1692 bswaptls(&phdr->p_paddr); /* Segment physical address */
1693 bswaptls(&phdr->p_filesz); /* Segment size in file */
1694 bswaptls(&phdr->p_memsz); /* Segment size in memory */
1695 bswaptls(&phdr->p_align); /* Segment alignment */
1696 }
31e31b8a 1697}
689f936f 1698
991f8f0c 1699static void bswap_shdr(struct elf_shdr *shdr, int shnum)
689f936f 1700{
991f8f0c
RH
1701 int i;
1702 for (i = 0; i < shnum; ++i, ++shdr) {
1703 bswap32s(&shdr->sh_name);
1704 bswap32s(&shdr->sh_type);
1705 bswaptls(&shdr->sh_flags);
1706 bswaptls(&shdr->sh_addr);
1707 bswaptls(&shdr->sh_offset);
1708 bswaptls(&shdr->sh_size);
1709 bswap32s(&shdr->sh_link);
1710 bswap32s(&shdr->sh_info);
1711 bswaptls(&shdr->sh_addralign);
1712 bswaptls(&shdr->sh_entsize);
1713 }
689f936f
FB
1714}
1715
7a3148a9 1716static void bswap_sym(struct elf_sym *sym)
689f936f
FB
1717{
1718 bswap32s(&sym->st_name);
7a3148a9
JM
1719 bswaptls(&sym->st_value);
1720 bswaptls(&sym->st_size);
689f936f
FB
1721 bswap16s(&sym->st_shndx);
1722}
5dd0db52
SM
1723
1724#ifdef TARGET_MIPS
1725static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
1726{
1727 bswap16s(&abiflags->version);
1728 bswap32s(&abiflags->ases);
1729 bswap32s(&abiflags->isa_ext);
1730 bswap32s(&abiflags->flags1);
1731 bswap32s(&abiflags->flags2);
1732}
1733#endif
991f8f0c
RH
1734#else
1735static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1736static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1737static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1738static inline void bswap_sym(struct elf_sym *sym) { }
5dd0db52
SM
1739#ifdef TARGET_MIPS
1740static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
1741#endif
31e31b8a
FB
1742#endif
1743
edf8e2af 1744#ifdef USE_ELF_CORE_DUMP
9349b4f9 1745static int elf_core_dump(int, const CPUArchState *);
edf8e2af 1746#endif /* USE_ELF_CORE_DUMP */
682674b8 1747static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
edf8e2af 1748
9058abdd
RH
1749/* Verify the portions of EHDR within E_IDENT for the target.
1750 This can be performed before bswapping the entire header. */
1751static bool elf_check_ident(struct elfhdr *ehdr)
1752{
1753 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1754 && ehdr->e_ident[EI_MAG1] == ELFMAG1
1755 && ehdr->e_ident[EI_MAG2] == ELFMAG2
1756 && ehdr->e_ident[EI_MAG3] == ELFMAG3
1757 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1758 && ehdr->e_ident[EI_DATA] == ELF_DATA
1759 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1760}
1761
1762/* Verify the portions of EHDR outside of E_IDENT for the target.
1763 This has to wait until after bswapping the header. */
1764static bool elf_check_ehdr(struct elfhdr *ehdr)
1765{
1766 return (elf_check_arch(ehdr->e_machine)
ace3d654 1767 && elf_check_abi(ehdr->e_flags)
9058abdd
RH
1768 && ehdr->e_ehsize == sizeof(struct elfhdr)
1769 && ehdr->e_phentsize == sizeof(struct elf_phdr)
9058abdd
RH
1770 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1771}
1772
31e31b8a 1773/*
e5fe0c52 1774 * 'copy_elf_strings()' copies argument/envelope strings from user
31e31b8a
FB
1775 * memory to free pages in kernel mem. These are in a format ready
1776 * to be put directly into the top of new user memory.
1777 *
1778 */
59baae9a
SB
1779static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1780 abi_ulong p, abi_ulong stack_limit)
31e31b8a 1781{
59baae9a 1782 char *tmp;
7c4ee5bc 1783 int len, i;
59baae9a 1784 abi_ulong top = p;
31e31b8a
FB
1785
1786 if (!p) {
d97ef72e 1787 return 0; /* bullet-proofing */
31e31b8a 1788 }
59baae9a 1789
7c4ee5bc
RH
1790 if (STACK_GROWS_DOWN) {
1791 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1792 for (i = argc - 1; i >= 0; --i) {
1793 tmp = argv[i];
1794 if (!tmp) {
1795 fprintf(stderr, "VFS: argc is wrong");
1796 exit(-1);
1797 }
1798 len = strlen(tmp) + 1;
1799 tmp += len;
59baae9a 1800
7c4ee5bc
RH
1801 if (len > (p - stack_limit)) {
1802 return 0;
1803 }
1804 while (len) {
1805 int bytes_to_copy = (len > offset) ? offset : len;
1806 tmp -= bytes_to_copy;
1807 p -= bytes_to_copy;
1808 offset -= bytes_to_copy;
1809 len -= bytes_to_copy;
1810
1811 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1812
1813 if (offset == 0) {
1814 memcpy_to_target(p, scratch, top - p);
1815 top = p;
1816 offset = TARGET_PAGE_SIZE;
1817 }
1818 }
d97ef72e 1819 }
7c4ee5bc
RH
1820 if (p != top) {
1821 memcpy_to_target(p, scratch + offset, top - p);
d97ef72e 1822 }
7c4ee5bc
RH
1823 } else {
1824 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1825 for (i = 0; i < argc; ++i) {
1826 tmp = argv[i];
1827 if (!tmp) {
1828 fprintf(stderr, "VFS: argc is wrong");
1829 exit(-1);
1830 }
1831 len = strlen(tmp) + 1;
1832 if (len > (stack_limit - p)) {
1833 return 0;
1834 }
1835 while (len) {
1836 int bytes_to_copy = (len > remaining) ? remaining : len;
1837
1838 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1839
1840 tmp += bytes_to_copy;
1841 remaining -= bytes_to_copy;
1842 p += bytes_to_copy;
1843 len -= bytes_to_copy;
1844
1845 if (remaining == 0) {
1846 memcpy_to_target(top, scratch, p - top);
1847 top = p;
1848 remaining = TARGET_PAGE_SIZE;
1849 }
d97ef72e
RH
1850 }
1851 }
7c4ee5bc
RH
1852 if (p != top) {
1853 memcpy_to_target(top, scratch, p - top);
1854 }
59baae9a
SB
1855 }
1856
31e31b8a
FB
1857 return p;
1858}
1859
59baae9a
SB
1860/* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1861 * argument/environment space. Newer kernels (>2.6.33) allow more,
1862 * dependent on stack size, but guarantee at least 32 pages for
1863 * backwards compatibility.
1864 */
1865#define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1866
1867static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
992f48a0 1868 struct image_info *info)
53a5960a 1869{
59baae9a 1870 abi_ulong size, error, guard;
31e31b8a 1871
703e0e89 1872 size = guest_stack_size;
59baae9a
SB
1873 if (size < STACK_LOWER_LIMIT) {
1874 size = STACK_LOWER_LIMIT;
60dcbcb5
RH
1875 }
1876 guard = TARGET_PAGE_SIZE;
1877 if (guard < qemu_real_host_page_size) {
1878 guard = qemu_real_host_page_size;
1879 }
1880
1881 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1882 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
09bfb054 1883 if (error == -1) {
60dcbcb5 1884 perror("mmap stack");
09bfb054
FB
1885 exit(-1);
1886 }
31e31b8a 1887
60dcbcb5 1888 /* We reserve one extra page at the top of the stack as guard. */
7c4ee5bc
RH
1889 if (STACK_GROWS_DOWN) {
1890 target_mprotect(error, guard, PROT_NONE);
1891 info->stack_limit = error + guard;
1892 return info->stack_limit + size - sizeof(void *);
1893 } else {
1894 target_mprotect(error + size, guard, PROT_NONE);
1895 info->stack_limit = error + size;
1896 return error;
1897 }
31e31b8a
FB
1898}
1899
cf129f3a
RH
1900/* Map and zero the bss. We need to explicitly zero any fractional pages
1901 after the data section (i.e. bss). */
1902static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
31e31b8a 1903{
cf129f3a
RH
1904 uintptr_t host_start, host_map_start, host_end;
1905
1906 last_bss = TARGET_PAGE_ALIGN(last_bss);
1907
1908 /* ??? There is confusion between qemu_real_host_page_size and
1909 qemu_host_page_size here and elsewhere in target_mmap, which
1910 may lead to the end of the data section mapping from the file
1911 not being mapped. At least there was an explicit test and
1912 comment for that here, suggesting that "the file size must
1913 be known". The comment probably pre-dates the introduction
1914 of the fstat system call in target_mmap which does in fact
1915 find out the size. What isn't clear is if the workaround
1916 here is still actually needed. For now, continue with it,
1917 but merge it with the "normal" mmap that would allocate the bss. */
1918
3e8f1628
RH
1919 host_start = (uintptr_t) g2h_untagged(elf_bss);
1920 host_end = (uintptr_t) g2h_untagged(last_bss);
0c2d70c4 1921 host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
cf129f3a
RH
1922
1923 if (host_map_start < host_end) {
1924 void *p = mmap((void *)host_map_start, host_end - host_map_start,
1925 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1926 if (p == MAP_FAILED) {
1927 perror("cannot mmap brk");
1928 exit(-1);
853d6f7a 1929 }
f46e9a0b 1930 }
853d6f7a 1931
f46e9a0b
TM
1932 /* Ensure that the bss page(s) are valid */
1933 if ((page_get_flags(last_bss-1) & prot) != prot) {
1934 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
cf129f3a 1935 }
31e31b8a 1936
cf129f3a
RH
1937 if (host_start < host_map_start) {
1938 memset((void *)host_start, 0, host_map_start - host_start);
1939 }
1940}
53a5960a 1941
cf58affe
CL
1942#ifdef TARGET_ARM
1943static int elf_is_fdpic(struct elfhdr *exec)
1944{
1945 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1946}
1947#else
a99856cd
CL
1948/* Default implementation, always false. */
1949static int elf_is_fdpic(struct elfhdr *exec)
1950{
1951 return 0;
1952}
cf58affe 1953#endif
a99856cd 1954
1af02e83
MF
1955static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1956{
1957 uint16_t n;
1958 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1959
1960 /* elf32_fdpic_loadseg */
1961 n = info->nsegs;
1962 while (n--) {
1963 sp -= 12;
1964 put_user_u32(loadsegs[n].addr, sp+0);
1965 put_user_u32(loadsegs[n].p_vaddr, sp+4);
1966 put_user_u32(loadsegs[n].p_memsz, sp+8);
1967 }
1968
1969 /* elf32_fdpic_loadmap */
1970 sp -= 4;
1971 put_user_u16(0, sp+0); /* version */
1972 put_user_u16(info->nsegs, sp+2); /* nsegs */
1973
1974 info->personality = PER_LINUX_FDPIC;
1975 info->loadmap_addr = sp;
1976
1977 return sp;
1978}
1af02e83 1979
992f48a0 1980static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
8e62a717
RH
1981 struct elfhdr *exec,
1982 struct image_info *info,
1983 struct image_info *interp_info)
31e31b8a 1984{
d97ef72e 1985 abi_ulong sp;
7c4ee5bc 1986 abi_ulong u_argc, u_argv, u_envp, u_auxv;
d97ef72e 1987 int size;
14322bad
LA
1988 int i;
1989 abi_ulong u_rand_bytes;
1990 uint8_t k_rand_bytes[16];
d97ef72e
RH
1991 abi_ulong u_platform;
1992 const char *k_platform;
1993 const int n = sizeof(elf_addr_t);
1994
1995 sp = p;
1af02e83 1996
1af02e83
MF
1997 /* Needs to be before we load the env/argc/... */
1998 if (elf_is_fdpic(exec)) {
1999 /* Need 4 byte alignment for these structs */
2000 sp &= ~3;
2001 sp = loader_build_fdpic_loadmap(info, sp);
2002 info->other_info = interp_info;
2003 if (interp_info) {
2004 interp_info->other_info = info;
2005 sp = loader_build_fdpic_loadmap(interp_info, sp);
3cb10cfa
CL
2006 info->interpreter_loadmap_addr = interp_info->loadmap_addr;
2007 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
2008 } else {
2009 info->interpreter_loadmap_addr = 0;
2010 info->interpreter_pt_dynamic_addr = 0;
1af02e83
MF
2011 }
2012 }
1af02e83 2013
d97ef72e
RH
2014 u_platform = 0;
2015 k_platform = ELF_PLATFORM;
2016 if (k_platform) {
2017 size_t len = strlen(k_platform) + 1;
7c4ee5bc
RH
2018 if (STACK_GROWS_DOWN) {
2019 sp -= (len + n - 1) & ~(n - 1);
2020 u_platform = sp;
2021 /* FIXME - check return value of memcpy_to_target() for failure */
2022 memcpy_to_target(sp, k_platform, len);
2023 } else {
2024 memcpy_to_target(sp, k_platform, len);
2025 u_platform = sp;
2026 sp += len + 1;
2027 }
2028 }
2029
2030 /* Provide 16 byte alignment for the PRNG, and basic alignment for
2031 * the argv and envp pointers.
2032 */
2033 if (STACK_GROWS_DOWN) {
2034 sp = QEMU_ALIGN_DOWN(sp, 16);
2035 } else {
2036 sp = QEMU_ALIGN_UP(sp, 16);
d97ef72e 2037 }
14322bad
LA
2038
2039 /*
c6a2377f 2040 * Generate 16 random bytes for userspace PRNG seeding.
14322bad 2041 */
c6a2377f 2042 qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
7c4ee5bc
RH
2043 if (STACK_GROWS_DOWN) {
2044 sp -= 16;
2045 u_rand_bytes = sp;
2046 /* FIXME - check return value of memcpy_to_target() for failure */
2047 memcpy_to_target(sp, k_rand_bytes, 16);
2048 } else {
2049 memcpy_to_target(sp, k_rand_bytes, 16);
2050 u_rand_bytes = sp;
2051 sp += 16;
2052 }
14322bad 2053
d97ef72e
RH
2054 size = (DLINFO_ITEMS + 1) * 2;
2055 if (k_platform)
2056 size += 2;
f5155289 2057#ifdef DLINFO_ARCH_ITEMS
d97ef72e 2058 size += DLINFO_ARCH_ITEMS * 2;
ad6919dc
PM
2059#endif
2060#ifdef ELF_HWCAP2
2061 size += 2;
f5155289 2062#endif
f516511e
PM
2063 info->auxv_len = size * n;
2064
d97ef72e 2065 size += envc + argc + 2;
b9329d4b 2066 size += 1; /* argc itself */
d97ef72e 2067 size *= n;
7c4ee5bc
RH
2068
2069 /* Allocate space and finalize stack alignment for entry now. */
2070 if (STACK_GROWS_DOWN) {
2071 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
2072 sp = u_argc;
2073 } else {
2074 u_argc = sp;
2075 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
2076 }
2077
2078 u_argv = u_argc + n;
2079 u_envp = u_argv + (argc + 1) * n;
2080 u_auxv = u_envp + (envc + 1) * n;
2081 info->saved_auxv = u_auxv;
2082 info->arg_start = u_argv;
2083 info->arg_end = u_argv + argc * n;
d97ef72e
RH
2084
2085 /* This is correct because Linux defines
2086 * elf_addr_t as Elf32_Off / Elf64_Off
2087 */
2088#define NEW_AUX_ENT(id, val) do { \
7c4ee5bc
RH
2089 put_user_ual(id, u_auxv); u_auxv += n; \
2090 put_user_ual(val, u_auxv); u_auxv += n; \
d97ef72e
RH
2091 } while(0)
2092
82991bed
PM
2093#ifdef ARCH_DLINFO
2094 /*
2095 * ARCH_DLINFO must come first so platform specific code can enforce
2096 * special alignment requirements on the AUXV if necessary (eg. PPC).
2097 */
2098 ARCH_DLINFO;
2099#endif
f516511e
PM
2100 /* There must be exactly DLINFO_ITEMS entries here, or the assert
2101 * on info->auxv_len will trigger.
2102 */
8e62a717 2103 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
d97ef72e
RH
2104 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
2105 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
33143c44
LV
2106 if ((info->alignment & ~qemu_host_page_mask) != 0) {
2107 /* Target doesn't support host page size alignment */
2108 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
2109 } else {
2110 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
2111 qemu_host_page_size)));
2112 }
8e62a717 2113 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
d97ef72e 2114 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
8e62a717 2115 NEW_AUX_ENT(AT_ENTRY, info->entry);
d97ef72e
RH
2116 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
2117 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
2118 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
2119 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
2120 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2121 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
14322bad 2122 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
444cd5c3 2123 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
e0d1673d 2124 NEW_AUX_ENT(AT_EXECFN, info->file_string);
14322bad 2125
ad6919dc
PM
2126#ifdef ELF_HWCAP2
2127 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2128#endif
2129
7c4ee5bc 2130 if (u_platform) {
d97ef72e 2131 NEW_AUX_ENT(AT_PLATFORM, u_platform);
7c4ee5bc 2132 }
7c4ee5bc 2133 NEW_AUX_ENT (AT_NULL, 0);
f5155289
FB
2134#undef NEW_AUX_ENT
2135
f516511e
PM
2136 /* Check that our initial calculation of the auxv length matches how much
2137 * we actually put into it.
2138 */
2139 assert(info->auxv_len == u_auxv - info->saved_auxv);
7c4ee5bc
RH
2140
2141 put_user_ual(argc, u_argc);
2142
2143 p = info->arg_strings;
2144 for (i = 0; i < argc; ++i) {
2145 put_user_ual(p, u_argv);
2146 u_argv += n;
2147 p += target_strlen(p) + 1;
2148 }
2149 put_user_ual(0, u_argv);
2150
2151 p = info->env_strings;
2152 for (i = 0; i < envc; ++i) {
2153 put_user_ual(p, u_envp);
2154 u_envp += n;
2155 p += target_strlen(p) + 1;
2156 }
2157 put_user_ual(0, u_envp);
edf8e2af 2158
d97ef72e 2159 return sp;
31e31b8a
FB
2160}
2161
ee947430
AB
2162#ifndef ARM_COMMPAGE
2163#define ARM_COMMPAGE 0
2164#define init_guest_commpage() true
8756e136 2165#endif
dce10401 2166
ee947430
AB
2167static void pgb_fail_in_use(const char *image_name)
2168{
2169 error_report("%s: requires virtual address space that is in use "
2170 "(omit the -B option or choose a different value)",
2171 image_name);
2172 exit(EXIT_FAILURE);
2173}
dce10401 2174
ee947430
AB
2175static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr,
2176 abi_ulong guest_hiaddr, long align)
2177{
2178 const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2179 void *addr, *test;
2a53535a 2180
ee947430 2181 if (!QEMU_IS_ALIGNED(guest_base, align)) {
5ca870b9 2182 fprintf(stderr, "Requested guest base %p does not satisfy "
ee947430 2183 "host minimum alignment (0x%lx)\n",
5ca870b9 2184 (void *)guest_base, align);
ee947430
AB
2185 exit(EXIT_FAILURE);
2186 }
2187
2188 /* Sanity check the guest binary. */
2189 if (reserved_va) {
2190 if (guest_hiaddr > reserved_va) {
2191 error_report("%s: requires more than reserved virtual "
2192 "address space (0x%" PRIx64 " > 0x%lx)",
2193 image_name, (uint64_t)guest_hiaddr, reserved_va);
2194 exit(EXIT_FAILURE);
2a53535a 2195 }
ee947430 2196 } else {
a932eec4 2197#if HOST_LONG_BITS < TARGET_ABI_BITS
ee947430
AB
2198 if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) {
2199 error_report("%s: requires more virtual address space "
2200 "than the host can provide (0x%" PRIx64 ")",
2201 image_name, (uint64_t)guest_hiaddr - guest_base);
2202 exit(EXIT_FAILURE);
2a53535a 2203 }
a932eec4 2204#endif
2a53535a 2205 }
2a53535a 2206
ee947430
AB
2207 /*
2208 * Expand the allocation to the entire reserved_va.
2209 * Exclude the mmap_min_addr hole.
2210 */
2211 if (reserved_va) {
2212 guest_loaddr = (guest_base >= mmap_min_addr ? 0
2213 : mmap_min_addr - guest_base);
2214 guest_hiaddr = reserved_va;
2215 }
806d1021 2216
ee947430 2217 /* Reserve the address space for the binary, or reserved_va. */
3e8f1628 2218 test = g2h_untagged(guest_loaddr);
ee947430
AB
2219 addr = mmap(test, guest_hiaddr - guest_loaddr, PROT_NONE, flags, -1, 0);
2220 if (test != addr) {
2221 pgb_fail_in_use(image_name);
2222 }
2223}
2224
ad592e37
AB
2225/**
2226 * pgd_find_hole_fallback: potential mmap address
2227 * @guest_size: size of available space
2228 * @brk: location of break
2229 * @align: memory alignment
2230 *
2231 * This is a fallback method for finding a hole in the host address
2232 * space if we don't have the benefit of being able to access
2233 * /proc/self/map. It can potentially take a very long time as we can
2234 * only dumbly iterate up the host address space seeing if the
2235 * allocation would work.
2236 */
5c3e87f3
AB
2237static uintptr_t pgd_find_hole_fallback(uintptr_t guest_size, uintptr_t brk,
2238 long align, uintptr_t offset)
ad592e37
AB
2239{
2240 uintptr_t base;
2241
2242 /* Start (aligned) at the bottom and work our way up */
2243 base = ROUND_UP(mmap_min_addr, align);
2244
2245 while (true) {
2246 uintptr_t align_start, end;
2247 align_start = ROUND_UP(base, align);
5c3e87f3 2248 end = align_start + guest_size + offset;
ad592e37
AB
2249
2250 /* if brk is anywhere in the range give ourselves some room to grow. */
2251 if (align_start <= brk && brk < end) {
2252 base = brk + (16 * MiB);
2253 continue;
2254 } else if (align_start + guest_size < align_start) {
2255 /* we have run out of space */
2256 return -1;
2257 } else {
2667e069
AB
2258 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE |
2259 MAP_FIXED_NOREPLACE;
ad592e37
AB
2260 void * mmap_start = mmap((void *) align_start, guest_size,
2261 PROT_NONE, flags, -1, 0);
2262 if (mmap_start != MAP_FAILED) {
7e588fbc 2263 munmap(mmap_start, guest_size);
934eed51 2264 if (mmap_start == (void *) align_start) {
2667e069
AB
2265 return (uintptr_t) mmap_start + offset;
2266 }
ad592e37
AB
2267 }
2268 base += qemu_host_page_size;
2269 }
2270 }
2271}
2272
ee947430
AB
2273/* Return value for guest_base, or -1 if no hole found. */
2274static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size,
5c3e87f3 2275 long align, uintptr_t offset)
ee947430
AB
2276{
2277 GSList *maps, *iter;
2278 uintptr_t this_start, this_end, next_start, brk;
2279 intptr_t ret = -1;
2280
2281 assert(QEMU_IS_ALIGNED(guest_loaddr, align));
2282
2283 maps = read_self_maps();
dce10401 2284
ee947430
AB
2285 /* Read brk after we've read the maps, which will malloc. */
2286 brk = (uintptr_t)sbrk(0);
2287
ad592e37 2288 if (!maps) {
0266e8e3
VF
2289 ret = pgd_find_hole_fallback(guest_size, brk, align, offset);
2290 return ret == -1 ? -1 : ret - guest_loaddr;
ad592e37
AB
2291 }
2292
ee947430
AB
2293 /* The first hole is before the first map entry. */
2294 this_start = mmap_min_addr;
2295
2296 for (iter = maps; iter;
2297 this_start = next_start, iter = g_slist_next(iter)) {
2298 uintptr_t align_start, hole_size;
2299
2300 this_end = ((MapInfo *)iter->data)->start;
2301 next_start = ((MapInfo *)iter->data)->end;
5c3e87f3 2302 align_start = ROUND_UP(this_start + offset, align);
ee947430
AB
2303
2304 /* Skip holes that are too small. */
2305 if (align_start >= this_end) {
2306 continue;
2307 }
2308 hole_size = this_end - align_start;
2309 if (hole_size < guest_size) {
2310 continue;
aac362e4
LS
2311 }
2312
ee947430
AB
2313 /* If this hole contains brk, give ourselves some room to grow. */
2314 if (this_start <= brk && brk < this_end) {
2315 hole_size -= guest_size;
2316 if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) {
2317 align_start += 1 * GiB;
2318 } else if (hole_size >= 16 * MiB) {
2319 align_start += 16 * MiB;
2320 } else {
2321 align_start = (this_end - guest_size) & -align;
2322 if (align_start < this_start) {
2323 continue;
2324 }
806d1021 2325 }
806d1021
MI
2326 }
2327
ee947430
AB
2328 /* Record the lowest successful match. */
2329 if (ret < 0) {
2330 ret = align_start - guest_loaddr;
dce10401 2331 }
ee947430
AB
2332 /* If this hole contains the identity map, select it. */
2333 if (align_start <= guest_loaddr &&
2334 guest_loaddr + guest_size <= this_end) {
2335 ret = 0;
b859040d 2336 }
ee947430
AB
2337 /* If this hole ends above the identity map, stop looking. */
2338 if (this_end >= guest_loaddr) {
2339 break;
dce10401
MI
2340 }
2341 }
ee947430 2342 free_self_maps(maps);
dce10401 2343
ee947430 2344 return ret;
dce10401
MI
2345}
2346
ee947430
AB
2347static void pgb_static(const char *image_name, abi_ulong orig_loaddr,
2348 abi_ulong orig_hiaddr, long align)
f3ed1f5d 2349{
ee947430
AB
2350 uintptr_t loaddr = orig_loaddr;
2351 uintptr_t hiaddr = orig_hiaddr;
5c3e87f3 2352 uintptr_t offset = 0;
ee947430 2353 uintptr_t addr;
f3ed1f5d 2354
ee947430
AB
2355 if (hiaddr != orig_hiaddr) {
2356 error_report("%s: requires virtual address space that the "
2357 "host cannot provide (0x%" PRIx64 ")",
2358 image_name, (uint64_t)orig_hiaddr);
2359 exit(EXIT_FAILURE);
2360 }
f3ed1f5d 2361
ee947430
AB
2362 loaddr &= -align;
2363 if (ARM_COMMPAGE) {
2364 /*
2365 * Extend the allocation to include the commpage.
5c3e87f3
AB
2366 * For a 64-bit host, this is just 4GiB; for a 32-bit host we
2367 * need to ensure there is space bellow the guest_base so we
2368 * can map the commpage in the place needed when the address
2369 * arithmetic wraps around.
ee947430
AB
2370 */
2371 if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) {
5c3e87f3 2372 hiaddr = (uintptr_t) 4 << 30;
f3ed1f5d 2373 } else {
5c3e87f3 2374 offset = -(ARM_COMMPAGE & -align);
f3ed1f5d 2375 }
ee947430 2376 }
dce10401 2377
5c3e87f3 2378 addr = pgb_find_hole(loaddr, hiaddr - loaddr, align, offset);
ee947430
AB
2379 if (addr == -1) {
2380 /*
2381 * If ARM_COMMPAGE, there *might* be a non-consecutive allocation
2382 * that can satisfy both. But as the normal arm32 link base address
2383 * is ~32k, and we extend down to include the commpage, making the
2384 * overhead only ~96k, this is unlikely.
dce10401 2385 */
ee947430
AB
2386 error_report("%s: Unable to allocate %#zx bytes of "
2387 "virtual address space", image_name,
2388 (size_t)(hiaddr - loaddr));
2389 exit(EXIT_FAILURE);
2390 }
2391
2392 guest_base = addr;
2393}
dce10401 2394
ee947430
AB
2395static void pgb_dynamic(const char *image_name, long align)
2396{
2397 /*
2398 * The executable is dynamic and does not require a fixed address.
2399 * All we need is a commpage that satisfies align.
2400 * If we do not need a commpage, leave guest_base == 0.
2401 */
2402 if (ARM_COMMPAGE) {
2403 uintptr_t addr, commpage;
2404
2405 /* 64-bit hosts should have used reserved_va. */
2406 assert(sizeof(uintptr_t) == 4);
2407
2408 /*
2409 * By putting the commpage at the first hole, that puts guest_base
2410 * just above that, and maximises the positive guest addresses.
2411 */
2412 commpage = ARM_COMMPAGE & -align;
5c3e87f3 2413 addr = pgb_find_hole(commpage, -commpage, align, 0);
ee947430
AB
2414 assert(addr != -1);
2415 guest_base = addr;
2416 }
2417}
2418
2419static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr,
2420 abi_ulong guest_hiaddr, long align)
2421{
c1f6ad79 2422 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
ee947430
AB
2423 void *addr, *test;
2424
2425 if (guest_hiaddr > reserved_va) {
2426 error_report("%s: requires more than reserved virtual "
2427 "address space (0x%" PRIx64 " > 0x%lx)",
2428 image_name, (uint64_t)guest_hiaddr, reserved_va);
2429 exit(EXIT_FAILURE);
f3ed1f5d 2430 }
f3ed1f5d 2431
ee947430
AB
2432 /* Widen the "image" to the entire reserved address space. */
2433 pgb_static(image_name, 0, reserved_va, align);
2434
2667e069 2435 /* osdep.h defines this as 0 if it's missing */
c1f6ad79 2436 flags |= MAP_FIXED_NOREPLACE;
c1f6ad79 2437
ee947430
AB
2438 /* Reserve the memory on the host. */
2439 assert(guest_base != 0);
3e8f1628 2440 test = g2h_untagged(0);
ee947430 2441 addr = mmap(test, reserved_va, PROT_NONE, flags, -1, 0);
fb730c86 2442 if (addr == MAP_FAILED || addr != test) {
ee947430 2443 error_report("Unable to reserve 0x%lx bytes of virtual address "
fb730c86
AB
2444 "space at %p (%s) for use as guest address space (check your"
2445 "virtual memory ulimit setting, min_mmap_addr or reserve less "
2446 "using -R option)", reserved_va, test, strerror(errno));
ee947430
AB
2447 exit(EXIT_FAILURE);
2448 }
f3ed1f5d
PM
2449}
2450
ee947430
AB
2451void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
2452 abi_ulong guest_hiaddr)
2453{
2454 /* In order to use host shmat, we must be able to honor SHMLBA. */
2455 uintptr_t align = MAX(SHMLBA, qemu_host_page_size);
2456
2457 if (have_guest_base) {
2458 pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align);
2459 } else if (reserved_va) {
2460 pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align);
2461 } else if (guest_loaddr) {
2462 pgb_static(image_name, guest_loaddr, guest_hiaddr, align);
2463 } else {
2464 pgb_dynamic(image_name, align);
2465 }
2466
2467 /* Reserve and initialize the commpage. */
2468 if (!init_guest_commpage()) {
2469 /*
2470 * With have_guest_base, the user has selected the address and
2471 * we are trying to work with that. Otherwise, we have selected
2472 * free space and init_guest_commpage must succeeded.
2473 */
2474 assert(have_guest_base);
2475 pgb_fail_in_use(image_name);
2476 }
2477
2478 assert(QEMU_IS_ALIGNED(guest_base, align));
2479 qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
2480 "@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
2481}
f3ed1f5d 2482
83f990eb
RH
2483enum {
2484 /* The string "GNU\0" as a magic number. */
2485 GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16),
2486 NOTE_DATA_SZ = 1 * KiB,
2487 NOTE_NAME_SZ = 4,
2488 ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8,
2489};
2490
2491/*
2492 * Process a single gnu_property entry.
2493 * Return false for error.
2494 */
2495static bool parse_elf_property(const uint32_t *data, int *off, int datasz,
2496 struct image_info *info, bool have_prev_type,
2497 uint32_t *prev_type, Error **errp)
2498{
2499 uint32_t pr_type, pr_datasz, step;
2500
2501 if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) {
2502 goto error_data;
2503 }
2504 datasz -= *off;
2505 data += *off / sizeof(uint32_t);
2506
2507 if (datasz < 2 * sizeof(uint32_t)) {
2508 goto error_data;
2509 }
2510 pr_type = data[0];
2511 pr_datasz = data[1];
2512 data += 2;
2513 datasz -= 2 * sizeof(uint32_t);
2514 step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN);
2515 if (step > datasz) {
2516 goto error_data;
2517 }
2518
2519 /* Properties are supposed to be unique and sorted on pr_type. */
2520 if (have_prev_type && pr_type <= *prev_type) {
2521 if (pr_type == *prev_type) {
2522 error_setg(errp, "Duplicate property in PT_GNU_PROPERTY");
2523 } else {
2524 error_setg(errp, "Unsorted property in PT_GNU_PROPERTY");
2525 }
2526 return false;
2527 }
2528 *prev_type = pr_type;
2529
2530 if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) {
2531 return false;
2532 }
2533
2534 *off += 2 * sizeof(uint32_t) + step;
2535 return true;
2536
2537 error_data:
2538 error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY");
2539 return false;
2540}
2541
2542/* Process NT_GNU_PROPERTY_TYPE_0. */
2543static bool parse_elf_properties(int image_fd,
2544 struct image_info *info,
2545 const struct elf_phdr *phdr,
2546 char bprm_buf[BPRM_BUF_SIZE],
2547 Error **errp)
2548{
2549 union {
2550 struct elf_note nhdr;
2551 uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)];
2552 } note;
2553
2554 int n, off, datasz;
2555 bool have_prev_type;
2556 uint32_t prev_type;
2557
2558 /* Unless the arch requires properties, ignore them. */
2559 if (!ARCH_USE_GNU_PROPERTY) {
2560 return true;
2561 }
2562
2563 /* If the properties are crazy large, that's too bad. */
2564 n = phdr->p_filesz;
2565 if (n > sizeof(note)) {
2566 error_setg(errp, "PT_GNU_PROPERTY too large");
2567 return false;
2568 }
2569 if (n < sizeof(note.nhdr)) {
2570 error_setg(errp, "PT_GNU_PROPERTY too small");
2571 return false;
2572 }
2573
2574 if (phdr->p_offset + n <= BPRM_BUF_SIZE) {
2575 memcpy(&note, bprm_buf + phdr->p_offset, n);
2576 } else {
2577 ssize_t len = pread(image_fd, &note, n, phdr->p_offset);
2578 if (len != n) {
2579 error_setg_errno(errp, errno, "Error reading file header");
2580 return false;
2581 }
2582 }
2583
2584 /*
2585 * The contents of a valid PT_GNU_PROPERTY is a sequence
2586 * of uint32_t -- swap them all now.
2587 */
2588#ifdef BSWAP_NEEDED
2589 for (int i = 0; i < n / 4; i++) {
2590 bswap32s(note.data + i);
2591 }
2592#endif
2593
2594 /*
2595 * Note that nhdr is 3 words, and that the "name" described by namesz
2596 * immediately follows nhdr and is thus at the 4th word. Further, all
2597 * of the inputs to the kernel's round_up are multiples of 4.
2598 */
2599 if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
2600 note.nhdr.n_namesz != NOTE_NAME_SZ ||
2601 note.data[3] != GNU0_MAGIC) {
2602 error_setg(errp, "Invalid note in PT_GNU_PROPERTY");
2603 return false;
2604 }
2605 off = sizeof(note.nhdr) + NOTE_NAME_SZ;
2606
2607 datasz = note.nhdr.n_descsz + off;
2608 if (datasz > n) {
2609 error_setg(errp, "Invalid note size in PT_GNU_PROPERTY");
2610 return false;
2611 }
2612
2613 have_prev_type = false;
2614 prev_type = 0;
2615 while (1) {
2616 if (off == datasz) {
2617 return true; /* end, exit ok */
2618 }
2619 if (!parse_elf_property(note.data, &off, datasz, info,
2620 have_prev_type, &prev_type, errp)) {
2621 return false;
2622 }
2623 have_prev_type = true;
2624 }
2625}
2626
8e62a717 2627/* Load an ELF image into the address space.
31e31b8a 2628
8e62a717
RH
2629 IMAGE_NAME is the filename of the image, to use in error messages.
2630 IMAGE_FD is the open file descriptor for the image.
2631
2632 BPRM_BUF is a copy of the beginning of the file; this of course
2633 contains the elf file header at offset 0. It is assumed that this
2634 buffer is sufficiently aligned to present no problems to the host
2635 in accessing data at aligned offsets within the buffer.
2636
2637 On return: INFO values will be filled in, as necessary or available. */
2638
2639static void load_elf_image(const char *image_name, int image_fd,
bf858897 2640 struct image_info *info, char **pinterp_name,
8e62a717 2641 char bprm_buf[BPRM_BUF_SIZE])
31e31b8a 2642{
8e62a717
RH
2643 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2644 struct elf_phdr *phdr;
2645 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
e8384b37 2646 int i, retval, prot_exec;
c7f17e7b 2647 Error *err = NULL;
5fafdf24 2648
8e62a717 2649 /* First of all, some simple consistency checks */
8e62a717 2650 if (!elf_check_ident(ehdr)) {
c7f17e7b 2651 error_setg(&err, "Invalid ELF image for this architecture");
8e62a717
RH
2652 goto exit_errmsg;
2653 }
2654 bswap_ehdr(ehdr);
2655 if (!elf_check_ehdr(ehdr)) {
c7f17e7b 2656 error_setg(&err, "Invalid ELF image for this architecture");
8e62a717 2657 goto exit_errmsg;
d97ef72e 2658 }
5fafdf24 2659
8e62a717
RH
2660 i = ehdr->e_phnum * sizeof(struct elf_phdr);
2661 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2662 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
9955ffac 2663 } else {
8e62a717
RH
2664 phdr = (struct elf_phdr *) alloca(i);
2665 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
9955ffac 2666 if (retval != i) {
8e62a717 2667 goto exit_read;
9955ffac 2668 }
d97ef72e 2669 }
8e62a717 2670 bswap_phdr(phdr, ehdr->e_phnum);
09bfb054 2671
1af02e83
MF
2672 info->nsegs = 0;
2673 info->pt_dynamic_addr = 0;
1af02e83 2674
98c1076c
AB
2675 mmap_lock();
2676
8a1a5274
RH
2677 /*
2678 * Find the maximum size of the image and allocate an appropriate
2679 * amount of memory to handle that. Locate the interpreter, if any.
2680 */
682674b8 2681 loaddr = -1, hiaddr = 0;
33143c44 2682 info->alignment = 0;
8e62a717 2683 for (i = 0; i < ehdr->e_phnum; ++i) {
4d9d535a
RH
2684 struct elf_phdr *eppnt = phdr + i;
2685 if (eppnt->p_type == PT_LOAD) {
2686 abi_ulong a = eppnt->p_vaddr - eppnt->p_offset;
682674b8
RH
2687 if (a < loaddr) {
2688 loaddr = a;
2689 }
4d9d535a 2690 a = eppnt->p_vaddr + eppnt->p_memsz;
682674b8
RH
2691 if (a > hiaddr) {
2692 hiaddr = a;
2693 }
1af02e83 2694 ++info->nsegs;
4d9d535a 2695 info->alignment |= eppnt->p_align;
8a1a5274
RH
2696 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2697 g_autofree char *interp_name = NULL;
2698
2699 if (*pinterp_name) {
c7f17e7b 2700 error_setg(&err, "Multiple PT_INTERP entries");
8a1a5274
RH
2701 goto exit_errmsg;
2702 }
c7f17e7b 2703
8a1a5274 2704 interp_name = g_malloc(eppnt->p_filesz);
8a1a5274
RH
2705
2706 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2707 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2708 eppnt->p_filesz);
2709 } else {
2710 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2711 eppnt->p_offset);
2712 if (retval != eppnt->p_filesz) {
c7f17e7b 2713 goto exit_read;
8a1a5274
RH
2714 }
2715 }
2716 if (interp_name[eppnt->p_filesz - 1] != 0) {
c7f17e7b 2717 error_setg(&err, "Invalid PT_INTERP entry");
8a1a5274
RH
2718 goto exit_errmsg;
2719 }
2720 *pinterp_name = g_steal_pointer(&interp_name);
83f990eb
RH
2721 } else if (eppnt->p_type == PT_GNU_PROPERTY) {
2722 if (!parse_elf_properties(image_fd, info, eppnt, bprm_buf, &err)) {
2723 goto exit_errmsg;
2724 }
682674b8
RH
2725 }
2726 }
2727
6fd59449
RH
2728 if (pinterp_name != NULL) {
2729 /*
2730 * This is the main executable.
2731 *
2732 * Reserve extra space for brk.
2733 * We hold on to this space while placing the interpreter
2734 * and the stack, lest they be placed immediately after
2735 * the data segment and block allocation from the brk.
2736 *
2737 * 16MB is chosen as "large enough" without being so large
2738 * as to allow the result to not fit with a 32-bit guest on
2739 * a 32-bit host.
2740 */
2741 info->reserve_brk = 16 * MiB;
2742 hiaddr += info->reserve_brk;
2743
2744 if (ehdr->e_type == ET_EXEC) {
2745 /*
2746 * Make sure that the low address does not conflict with
2747 * MMAP_MIN_ADDR or the QEMU application itself.
2748 */
2749 probe_guest_base(image_name, loaddr, hiaddr);
ee947430
AB
2750 } else {
2751 /*
2752 * The binary is dynamic, but we still need to
2753 * select guest_base. In this case we pass a size.
2754 */
2755 probe_guest_base(image_name, 0, hiaddr - loaddr);
d97ef72e 2756 }
6fd59449
RH
2757 }
2758
2759 /*
2760 * Reserve address space for all of this.
2761 *
2762 * In the case of ET_EXEC, we supply MAP_FIXED so that we get
2763 * exactly the address range that is required.
2764 *
2765 * Otherwise this is ET_DYN, and we are searching for a location
2766 * that can hold the memory space required. If the image is
2767 * pre-linked, LOADDR will be non-zero, and the kernel should
2768 * honor that address if it happens to be free.
2769 *
2770 * In both cases, we will overwrite pages in this range with mappings
2771 * from the executable.
2772 */
2773 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2774 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
2775 (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0),
2776 -1, 0);
2777 if (load_addr == -1) {
c7f17e7b 2778 goto exit_mmap;
d97ef72e 2779 }
682674b8 2780 load_bias = load_addr - loaddr;
d97ef72e 2781
a99856cd 2782 if (elf_is_fdpic(ehdr)) {
1af02e83 2783 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
7267c094 2784 g_malloc(sizeof(*loadsegs) * info->nsegs);
1af02e83
MF
2785
2786 for (i = 0; i < ehdr->e_phnum; ++i) {
2787 switch (phdr[i].p_type) {
2788 case PT_DYNAMIC:
2789 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2790 break;
2791 case PT_LOAD:
2792 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2793 loadsegs->p_vaddr = phdr[i].p_vaddr;
2794 loadsegs->p_memsz = phdr[i].p_memsz;
2795 ++loadsegs;
2796 break;
2797 }
2798 }
2799 }
1af02e83 2800
8e62a717 2801 info->load_bias = load_bias;
dc12567a
JK
2802 info->code_offset = load_bias;
2803 info->data_offset = load_bias;
8e62a717
RH
2804 info->load_addr = load_addr;
2805 info->entry = ehdr->e_entry + load_bias;
2806 info->start_code = -1;
2807 info->end_code = 0;
2808 info->start_data = -1;
2809 info->end_data = 0;
2810 info->brk = 0;
d8fd2954 2811 info->elf_flags = ehdr->e_flags;
8e62a717 2812
e8384b37
RH
2813 prot_exec = PROT_EXEC;
2814#ifdef TARGET_AARCH64
2815 /*
2816 * If the BTI feature is present, this indicates that the executable
2817 * pages of the startup binary should be mapped with PROT_BTI, so that
2818 * branch targets are enforced.
2819 *
2820 * The startup binary is either the interpreter or the static executable.
2821 * The interpreter is responsible for all pages of a dynamic executable.
2822 *
2823 * Elf notes are backward compatible to older cpus.
2824 * Do not enable BTI unless it is supported.
2825 */
2826 if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
2827 && (pinterp_name == NULL || *pinterp_name == 0)
2828 && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) {
2829 prot_exec |= TARGET_PROT_BTI;
2830 }
2831#endif
2832
8e62a717
RH
2833 for (i = 0; i < ehdr->e_phnum; i++) {
2834 struct elf_phdr *eppnt = phdr + i;
d97ef72e 2835 if (eppnt->p_type == PT_LOAD) {
94894ff2 2836 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
d97ef72e 2837 int elf_prot = 0;
d97ef72e 2838
e5eaf570
RH
2839 if (eppnt->p_flags & PF_R) {
2840 elf_prot |= PROT_READ;
2841 }
2842 if (eppnt->p_flags & PF_W) {
2843 elf_prot |= PROT_WRITE;
2844 }
2845 if (eppnt->p_flags & PF_X) {
e8384b37 2846 elf_prot |= prot_exec;
e5eaf570 2847 }
d97ef72e 2848
682674b8
RH
2849 vaddr = load_bias + eppnt->p_vaddr;
2850 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2851 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
22d113b5
GM
2852
2853 vaddr_ef = vaddr + eppnt->p_filesz;
2854 vaddr_em = vaddr + eppnt->p_memsz;
682674b8 2855
d87146bc 2856 /*
22d113b5
GM
2857 * Some segments may be completely empty, with a non-zero p_memsz
2858 * but no backing file segment.
d87146bc
GM
2859 */
2860 if (eppnt->p_filesz != 0) {
22d113b5 2861 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
d87146bc
GM
2862 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
2863 MAP_PRIVATE | MAP_FIXED,
2864 image_fd, eppnt->p_offset - vaddr_po);
2865
2866 if (error == -1) {
c7f17e7b 2867 goto exit_mmap;
d87146bc 2868 }
09bfb054 2869
22d113b5
GM
2870 /*
2871 * If the load segment requests extra zeros (e.g. bss), map it.
2872 */
2873 if (eppnt->p_filesz < eppnt->p_memsz) {
2874 zero_bss(vaddr_ef, vaddr_em, elf_prot);
2875 }
2876 } else if (eppnt->p_memsz != 0) {
2877 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_memsz + vaddr_po);
2878 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
2879 MAP_PRIVATE | MAP_FIXED | MAP_ANONYMOUS,
2880 -1, 0);
31e31b8a 2881
22d113b5
GM
2882 if (error == -1) {
2883 goto exit_mmap;
2884 }
cf129f3a 2885 }
8e62a717
RH
2886
2887 /* Find the full program boundaries. */
2888 if (elf_prot & PROT_EXEC) {
2889 if (vaddr < info->start_code) {
2890 info->start_code = vaddr;
2891 }
2892 if (vaddr_ef > info->end_code) {
2893 info->end_code = vaddr_ef;
2894 }
2895 }
2896 if (elf_prot & PROT_WRITE) {
2897 if (vaddr < info->start_data) {
2898 info->start_data = vaddr;
2899 }
2900 if (vaddr_ef > info->end_data) {
2901 info->end_data = vaddr_ef;
2902 }
8a045188
TB
2903 }
2904 if (vaddr_em > info->brk) {
2905 info->brk = vaddr_em;
8e62a717 2906 }
5dd0db52
SM
2907#ifdef TARGET_MIPS
2908 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
2909 Mips_elf_abiflags_v0 abiflags;
2910 if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
c7f17e7b 2911 error_setg(&err, "Invalid PT_MIPS_ABIFLAGS entry");
5dd0db52
SM
2912 goto exit_errmsg;
2913 }
2914 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2915 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
2916 sizeof(Mips_elf_abiflags_v0));
2917 } else {
2918 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
2919 eppnt->p_offset);
2920 if (retval != sizeof(Mips_elf_abiflags_v0)) {
c7f17e7b 2921 goto exit_read;
5dd0db52
SM
2922 }
2923 }
2924 bswap_mips_abiflags(&abiflags);
c94cb6c9 2925 info->fp_abi = abiflags.fp_abi;
5dd0db52 2926#endif
d97ef72e 2927 }
682674b8 2928 }
5fafdf24 2929
8e62a717
RH
2930 if (info->end_data == 0) {
2931 info->start_data = info->end_code;
2932 info->end_data = info->end_code;
8e62a717
RH
2933 }
2934
682674b8 2935 if (qemu_log_enabled()) {
8e62a717 2936 load_symbols(ehdr, image_fd, load_bias);
682674b8 2937 }
31e31b8a 2938
98c1076c
AB
2939 mmap_unlock();
2940
8e62a717
RH
2941 close(image_fd);
2942 return;
2943
2944 exit_read:
2945 if (retval >= 0) {
c7f17e7b
RH
2946 error_setg(&err, "Incomplete read of file header");
2947 } else {
2948 error_setg_errno(&err, errno, "Error reading file header");
8e62a717 2949 }
c7f17e7b
RH
2950 goto exit_errmsg;
2951 exit_mmap:
2952 error_setg_errno(&err, errno, "Error mapping file");
2953 goto exit_errmsg;
8e62a717 2954 exit_errmsg:
c7f17e7b 2955 error_reportf_err(err, "%s: ", image_name);
8e62a717
RH
2956 exit(-1);
2957}
2958
2959static void load_elf_interp(const char *filename, struct image_info *info,
2960 char bprm_buf[BPRM_BUF_SIZE])
2961{
2962 int fd, retval;
808f6563 2963 Error *err = NULL;
8e62a717
RH
2964
2965 fd = open(path(filename), O_RDONLY);
2966 if (fd < 0) {
808f6563
RH
2967 error_setg_file_open(&err, errno, filename);
2968 error_report_err(err);
2969 exit(-1);
8e62a717 2970 }
31e31b8a 2971
8e62a717
RH
2972 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2973 if (retval < 0) {
808f6563
RH
2974 error_setg_errno(&err, errno, "Error reading file header");
2975 error_reportf_err(err, "%s: ", filename);
2976 exit(-1);
8e62a717 2977 }
808f6563 2978
8e62a717
RH
2979 if (retval < BPRM_BUF_SIZE) {
2980 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2981 }
2982
bf858897 2983 load_elf_image(filename, fd, info, NULL, bprm_buf);
31e31b8a
FB
2984}
2985
49918a75
PB
2986static int symfind(const void *s0, const void *s1)
2987{
c7c530cd 2988 target_ulong addr = *(target_ulong *)s0;
49918a75
PB
2989 struct elf_sym *sym = (struct elf_sym *)s1;
2990 int result = 0;
c7c530cd 2991 if (addr < sym->st_value) {
49918a75 2992 result = -1;
c7c530cd 2993 } else if (addr >= sym->st_value + sym->st_size) {
49918a75
PB
2994 result = 1;
2995 }
2996 return result;
2997}
2998
2999static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
3000{
3001#if ELF_CLASS == ELFCLASS32
3002 struct elf_sym *syms = s->disas_symtab.elf32;
3003#else
3004 struct elf_sym *syms = s->disas_symtab.elf64;
3005#endif
3006
3007 // binary search
49918a75
PB
3008 struct elf_sym *sym;
3009
c7c530cd 3010 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
7cba04f6 3011 if (sym != NULL) {
49918a75
PB
3012 return s->disas_strtab + sym->st_name;
3013 }
3014
3015 return "";
3016}
3017
3018/* FIXME: This should use elf_ops.h */
3019static int symcmp(const void *s0, const void *s1)
3020{
3021 struct elf_sym *sym0 = (struct elf_sym *)s0;
3022 struct elf_sym *sym1 = (struct elf_sym *)s1;
3023 return (sym0->st_value < sym1->st_value)
3024 ? -1
3025 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
3026}
3027
689f936f 3028/* Best attempt to load symbols from this ELF object. */
682674b8 3029static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
689f936f 3030{
682674b8 3031 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
1e06262d 3032 uint64_t segsz;
682674b8 3033 struct elf_shdr *shdr;
b9475279
CV
3034 char *strings = NULL;
3035 struct syminfo *s = NULL;
3036 struct elf_sym *new_syms, *syms = NULL;
689f936f 3037
682674b8
RH
3038 shnum = hdr->e_shnum;
3039 i = shnum * sizeof(struct elf_shdr);
3040 shdr = (struct elf_shdr *)alloca(i);
3041 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
3042 return;
3043 }
3044
3045 bswap_shdr(shdr, shnum);
3046 for (i = 0; i < shnum; ++i) {
3047 if (shdr[i].sh_type == SHT_SYMTAB) {
3048 sym_idx = i;
3049 str_idx = shdr[i].sh_link;
49918a75
PB
3050 goto found;
3051 }
689f936f 3052 }
682674b8
RH
3053
3054 /* There will be no symbol table if the file was stripped. */
3055 return;
689f936f
FB
3056
3057 found:
682674b8 3058 /* Now know where the strtab and symtab are. Snarf them. */
0ef9ea29 3059 s = g_try_new(struct syminfo, 1);
682674b8 3060 if (!s) {
b9475279 3061 goto give_up;
682674b8 3062 }
5fafdf24 3063
1e06262d
PM
3064 segsz = shdr[str_idx].sh_size;
3065 s->disas_strtab = strings = g_try_malloc(segsz);
3066 if (!strings ||
3067 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
b9475279 3068 goto give_up;
682674b8 3069 }
49918a75 3070
1e06262d
PM
3071 segsz = shdr[sym_idx].sh_size;
3072 syms = g_try_malloc(segsz);
3073 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
b9475279 3074 goto give_up;
682674b8 3075 }
31e31b8a 3076
1e06262d
PM
3077 if (segsz / sizeof(struct elf_sym) > INT_MAX) {
3078 /* Implausibly large symbol table: give up rather than ploughing
3079 * on with the number of symbols calculation overflowing
3080 */
3081 goto give_up;
3082 }
3083 nsyms = segsz / sizeof(struct elf_sym);
682674b8 3084 for (i = 0; i < nsyms; ) {
49918a75 3085 bswap_sym(syms + i);
682674b8
RH
3086 /* Throw away entries which we do not need. */
3087 if (syms[i].st_shndx == SHN_UNDEF
3088 || syms[i].st_shndx >= SHN_LORESERVE
3089 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
3090 if (i < --nsyms) {
49918a75
PB
3091 syms[i] = syms[nsyms];
3092 }
682674b8 3093 } else {
49918a75 3094#if defined(TARGET_ARM) || defined (TARGET_MIPS)
682674b8
RH
3095 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
3096 syms[i].st_value &= ~(target_ulong)1;
0774bed1 3097#endif
682674b8
RH
3098 syms[i].st_value += load_bias;
3099 i++;
3100 }
0774bed1 3101 }
49918a75 3102
b9475279
CV
3103 /* No "useful" symbol. */
3104 if (nsyms == 0) {
3105 goto give_up;
3106 }
3107
5d5c9930
RH
3108 /* Attempt to free the storage associated with the local symbols
3109 that we threw away. Whether or not this has any effect on the
3110 memory allocation depends on the malloc implementation and how
3111 many symbols we managed to discard. */
0ef9ea29 3112 new_syms = g_try_renew(struct elf_sym, syms, nsyms);
8d79de6e 3113 if (new_syms == NULL) {
b9475279 3114 goto give_up;
5d5c9930 3115 }
8d79de6e 3116 syms = new_syms;
5d5c9930 3117
49918a75 3118 qsort(syms, nsyms, sizeof(*syms), symcmp);
689f936f 3119
49918a75
PB
3120 s->disas_num_syms = nsyms;
3121#if ELF_CLASS == ELFCLASS32
3122 s->disas_symtab.elf32 = syms;
49918a75
PB
3123#else
3124 s->disas_symtab.elf64 = syms;
49918a75 3125#endif
682674b8 3126 s->lookup_symbol = lookup_symbolxx;
e80cfcfc
FB
3127 s->next = syminfos;
3128 syminfos = s;
b9475279
CV
3129
3130 return;
3131
3132give_up:
0ef9ea29
PM
3133 g_free(s);
3134 g_free(strings);
3135 g_free(syms);
689f936f 3136}
31e31b8a 3137
768fe76e
YS
3138uint32_t get_elf_eflags(int fd)
3139{
3140 struct elfhdr ehdr;
3141 off_t offset;
3142 int ret;
3143
3144 /* Read ELF header */
3145 offset = lseek(fd, 0, SEEK_SET);
3146 if (offset == (off_t) -1) {
3147 return 0;
3148 }
3149 ret = read(fd, &ehdr, sizeof(ehdr));
3150 if (ret < sizeof(ehdr)) {
3151 return 0;
3152 }
3153 offset = lseek(fd, offset, SEEK_SET);
3154 if (offset == (off_t) -1) {
3155 return 0;
3156 }
3157
3158 /* Check ELF signature */
3159 if (!elf_check_ident(&ehdr)) {
3160 return 0;
3161 }
3162
3163 /* check header */
3164 bswap_ehdr(&ehdr);
3165 if (!elf_check_ehdr(&ehdr)) {
3166 return 0;
3167 }
3168
3169 /* return architecture id */
3170 return ehdr.e_flags;
3171}
3172
f0116c54 3173int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
31e31b8a 3174{
8e62a717 3175 struct image_info interp_info;
31e31b8a 3176 struct elfhdr elf_ex;
8e62a717 3177 char *elf_interpreter = NULL;
59baae9a 3178 char *scratch;
31e31b8a 3179
abcac736
DS
3180 memset(&interp_info, 0, sizeof(interp_info));
3181#ifdef TARGET_MIPS
3182 interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
3183#endif
3184
bf858897 3185 info->start_mmap = (abi_ulong)ELF_START_MMAP;
bf858897
RH
3186
3187 load_elf_image(bprm->filename, bprm->fd, info,
3188 &elf_interpreter, bprm->buf);
31e31b8a 3189
bf858897
RH
3190 /* ??? We need a copy of the elf header for passing to create_elf_tables.
3191 If we do nothing, we'll have overwritten this when we re-use bprm->buf
3192 when we load the interpreter. */
3193 elf_ex = *(struct elfhdr *)bprm->buf;
31e31b8a 3194
59baae9a
SB
3195 /* Do this so that we can load the interpreter, if need be. We will
3196 change some of these later */
3197 bprm->p = setup_arg_pages(bprm, info);
3198
3199 scratch = g_new0(char, TARGET_PAGE_SIZE);
7c4ee5bc
RH
3200 if (STACK_GROWS_DOWN) {
3201 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3202 bprm->p, info->stack_limit);
3203 info->file_string = bprm->p;
3204 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3205 bprm->p, info->stack_limit);
3206 info->env_strings = bprm->p;
3207 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3208 bprm->p, info->stack_limit);
3209 info->arg_strings = bprm->p;
3210 } else {
3211 info->arg_strings = bprm->p;
3212 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3213 bprm->p, info->stack_limit);
3214 info->env_strings = bprm->p;
3215 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3216 bprm->p, info->stack_limit);
3217 info->file_string = bprm->p;
3218 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3219 bprm->p, info->stack_limit);
3220 }
3221
59baae9a
SB
3222 g_free(scratch);
3223
e5fe0c52 3224 if (!bprm->p) {
bf858897
RH
3225 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
3226 exit(-1);
379f6698 3227 }
379f6698 3228
8e62a717
RH
3229 if (elf_interpreter) {
3230 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
31e31b8a 3231
8e62a717
RH
3232 /* If the program interpreter is one of these two, then assume
3233 an iBCS2 image. Otherwise assume a native linux image. */
3234
3235 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
3236 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
3237 info->personality = PER_SVR4;
31e31b8a 3238
8e62a717
RH
3239 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
3240 and some applications "depend" upon this behavior. Since
3241 we do not have the power to recompile these, we emulate
3242 the SVr4 behavior. Sigh. */
3243 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
68754b44 3244 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
8e62a717 3245 }
c94cb6c9
SM
3246#ifdef TARGET_MIPS
3247 info->interp_fp_abi = interp_info.fp_abi;
3248#endif
31e31b8a
FB
3249 }
3250
8e62a717
RH
3251 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
3252 info, (elf_interpreter ? &interp_info : NULL));
3253 info->start_stack = bprm->p;
3254
3255 /* If we have an interpreter, set that as the program's entry point.
8e78064e 3256 Copy the load_bias as well, to help PPC64 interpret the entry
8e62a717
RH
3257 point as a function descriptor. Do this after creating elf tables
3258 so that we copy the original program entry point into the AUXV. */
3259 if (elf_interpreter) {
8e78064e 3260 info->load_bias = interp_info.load_bias;
8e62a717 3261 info->entry = interp_info.entry;
2b323087 3262 g_free(elf_interpreter);
8e62a717 3263 }
31e31b8a 3264
edf8e2af
MW
3265#ifdef USE_ELF_CORE_DUMP
3266 bprm->core_dump = &elf_core_dump;
3267#endif
3268
6fd59449
RH
3269 /*
3270 * If we reserved extra space for brk, release it now.
3271 * The implementation of do_brk in syscalls.c expects to be able
3272 * to mmap pages in this space.
3273 */
3274 if (info->reserve_brk) {
3275 abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk);
3276 abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk);
3277 target_munmap(start_brk, end_brk - start_brk);
3278 }
3279
31e31b8a
FB
3280 return 0;
3281}
3282
edf8e2af 3283#ifdef USE_ELF_CORE_DUMP
edf8e2af
MW
3284/*
3285 * Definitions to generate Intel SVR4-like core files.
a2547a13 3286 * These mostly have the same names as the SVR4 types with "target_elf_"
edf8e2af
MW
3287 * tacked on the front to prevent clashes with linux definitions,
3288 * and the typedef forms have been avoided. This is mostly like
3289 * the SVR4 structure, but more Linuxy, with things that Linux does
3290 * not support and which gdb doesn't really use excluded.
3291 *
3292 * Fields we don't dump (their contents is zero) in linux-user qemu
3293 * are marked with XXX.
3294 *
3295 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
3296 *
3297 * Porting ELF coredump for target is (quite) simple process. First you
dd0a3651 3298 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
edf8e2af
MW
3299 * the target resides):
3300 *
3301 * #define USE_ELF_CORE_DUMP
3302 *
3303 * Next you define type of register set used for dumping. ELF specification
3304 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
3305 *
c227f099 3306 * typedef <target_regtype> target_elf_greg_t;
edf8e2af 3307 * #define ELF_NREG <number of registers>
c227f099 3308 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 3309 *
edf8e2af
MW
3310 * Last step is to implement target specific function that copies registers
3311 * from given cpu into just specified register set. Prototype is:
3312 *
c227f099 3313 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
9349b4f9 3314 * const CPUArchState *env);
edf8e2af
MW
3315 *
3316 * Parameters:
3317 * regs - copy register values into here (allocated and zeroed by caller)
3318 * env - copy registers from here
3319 *
3320 * Example for ARM target is provided in this file.
3321 */
3322
3323/* An ELF note in memory */
3324struct memelfnote {
3325 const char *name;
3326 size_t namesz;
3327 size_t namesz_rounded;
3328 int type;
3329 size_t datasz;
80f5ce75 3330 size_t datasz_rounded;
edf8e2af
MW
3331 void *data;
3332 size_t notesz;
3333};
3334
a2547a13 3335struct target_elf_siginfo {
f8fd4fc4
PB
3336 abi_int si_signo; /* signal number */
3337 abi_int si_code; /* extra code */
3338 abi_int si_errno; /* errno */
edf8e2af
MW
3339};
3340
a2547a13
LD
3341struct target_elf_prstatus {
3342 struct target_elf_siginfo pr_info; /* Info associated with signal */
1ddd592f 3343 abi_short pr_cursig; /* Current signal */
ca98ac83
PB
3344 abi_ulong pr_sigpend; /* XXX */
3345 abi_ulong pr_sighold; /* XXX */
c227f099
AL
3346 target_pid_t pr_pid;
3347 target_pid_t pr_ppid;
3348 target_pid_t pr_pgrp;
3349 target_pid_t pr_sid;
edf8e2af
MW
3350 struct target_timeval pr_utime; /* XXX User time */
3351 struct target_timeval pr_stime; /* XXX System time */
3352 struct target_timeval pr_cutime; /* XXX Cumulative user time */
3353 struct target_timeval pr_cstime; /* XXX Cumulative system time */
c227f099 3354 target_elf_gregset_t pr_reg; /* GP registers */
f8fd4fc4 3355 abi_int pr_fpvalid; /* XXX */
edf8e2af
MW
3356};
3357
3358#define ELF_PRARGSZ (80) /* Number of chars for args */
3359
a2547a13 3360struct target_elf_prpsinfo {
edf8e2af
MW
3361 char pr_state; /* numeric process state */
3362 char pr_sname; /* char for pr_state */
3363 char pr_zomb; /* zombie */
3364 char pr_nice; /* nice val */
ca98ac83 3365 abi_ulong pr_flag; /* flags */
c227f099
AL
3366 target_uid_t pr_uid;
3367 target_gid_t pr_gid;
3368 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
edf8e2af 3369 /* Lots missing */
d7eb2b92 3370 char pr_fname[16] QEMU_NONSTRING; /* filename of executable */
edf8e2af
MW
3371 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
3372};
3373
3374/* Here is the structure in which status of each thread is captured. */
3375struct elf_thread_status {
72cf2d4f 3376 QTAILQ_ENTRY(elf_thread_status) ets_link;
a2547a13 3377 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
edf8e2af
MW
3378#if 0
3379 elf_fpregset_t fpu; /* NT_PRFPREG */
3380 struct task_struct *thread;
3381 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
3382#endif
3383 struct memelfnote notes[1];
3384 int num_notes;
3385};
3386
3387struct elf_note_info {
3388 struct memelfnote *notes;
a2547a13
LD
3389 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
3390 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
edf8e2af 3391
b58deb34 3392 QTAILQ_HEAD(, elf_thread_status) thread_list;
edf8e2af
MW
3393#if 0
3394 /*
3395 * Current version of ELF coredump doesn't support
3396 * dumping fp regs etc.
3397 */
3398 elf_fpregset_t *fpu;
3399 elf_fpxregset_t *xfpu;
3400 int thread_status_size;
3401#endif
3402 int notes_size;
3403 int numnote;
3404};
3405
3406struct vm_area_struct {
1a1c4db9
MI
3407 target_ulong vma_start; /* start vaddr of memory region */
3408 target_ulong vma_end; /* end vaddr of memory region */
3409 abi_ulong vma_flags; /* protection etc. flags for the region */
72cf2d4f 3410 QTAILQ_ENTRY(vm_area_struct) vma_link;
edf8e2af
MW
3411};
3412
3413struct mm_struct {
72cf2d4f 3414 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
edf8e2af
MW
3415 int mm_count; /* number of mappings */
3416};
3417
3418static struct mm_struct *vma_init(void);
3419static void vma_delete(struct mm_struct *);
1a1c4db9
MI
3420static int vma_add_mapping(struct mm_struct *, target_ulong,
3421 target_ulong, abi_ulong);
edf8e2af
MW
3422static int vma_get_mapping_count(const struct mm_struct *);
3423static struct vm_area_struct *vma_first(const struct mm_struct *);
3424static struct vm_area_struct *vma_next(struct vm_area_struct *);
3425static abi_ulong vma_dump_size(const struct vm_area_struct *);
1a1c4db9 3426static int vma_walker(void *priv, target_ulong start, target_ulong end,
d97ef72e 3427 unsigned long flags);
edf8e2af
MW
3428
3429static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
3430static void fill_note(struct memelfnote *, const char *, int,
d97ef72e 3431 unsigned int, void *);
a2547a13
LD
3432static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
3433static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
edf8e2af
MW
3434static void fill_auxv_note(struct memelfnote *, const TaskState *);
3435static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
3436static size_t note_size(const struct memelfnote *);
3437static void free_note_info(struct elf_note_info *);
9349b4f9
AF
3438static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
3439static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
edf8e2af
MW
3440
3441static int dump_write(int, const void *, size_t);
3442static int write_note(struct memelfnote *, int);
3443static int write_note_info(struct elf_note_info *, int);
3444
3445#ifdef BSWAP_NEEDED
a2547a13 3446static void bswap_prstatus(struct target_elf_prstatus *prstatus)
edf8e2af 3447{
ca98ac83
PB
3448 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
3449 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
3450 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
edf8e2af 3451 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
ca98ac83
PB
3452 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
3453 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
edf8e2af
MW
3454 prstatus->pr_pid = tswap32(prstatus->pr_pid);
3455 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
3456 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
3457 prstatus->pr_sid = tswap32(prstatus->pr_sid);
3458 /* cpu times are not filled, so we skip them */
3459 /* regs should be in correct format already */
3460 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
3461}
3462
a2547a13 3463static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
edf8e2af 3464{
ca98ac83 3465 psinfo->pr_flag = tswapal(psinfo->pr_flag);
edf8e2af
MW
3466 psinfo->pr_uid = tswap16(psinfo->pr_uid);
3467 psinfo->pr_gid = tswap16(psinfo->pr_gid);
3468 psinfo->pr_pid = tswap32(psinfo->pr_pid);
3469 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
3470 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
3471 psinfo->pr_sid = tswap32(psinfo->pr_sid);
3472}
991f8f0c
RH
3473
3474static void bswap_note(struct elf_note *en)
3475{
3476 bswap32s(&en->n_namesz);
3477 bswap32s(&en->n_descsz);
3478 bswap32s(&en->n_type);
3479}
3480#else
3481static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
3482static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
3483static inline void bswap_note(struct elf_note *en) { }
edf8e2af
MW
3484#endif /* BSWAP_NEEDED */
3485
3486/*
3487 * Minimal support for linux memory regions. These are needed
3488 * when we are finding out what memory exactly belongs to
3489 * emulated process. No locks needed here, as long as
3490 * thread that received the signal is stopped.
3491 */
3492
3493static struct mm_struct *vma_init(void)
3494{
3495 struct mm_struct *mm;
3496
7267c094 3497 if ((mm = g_malloc(sizeof (*mm))) == NULL)
edf8e2af
MW
3498 return (NULL);
3499
3500 mm->mm_count = 0;
72cf2d4f 3501 QTAILQ_INIT(&mm->mm_mmap);
edf8e2af
MW
3502
3503 return (mm);
3504}
3505
3506static void vma_delete(struct mm_struct *mm)
3507{
3508 struct vm_area_struct *vma;
3509
3510 while ((vma = vma_first(mm)) != NULL) {
72cf2d4f 3511 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
7267c094 3512 g_free(vma);
edf8e2af 3513 }
7267c094 3514 g_free(mm);
edf8e2af
MW
3515}
3516
1a1c4db9
MI
3517static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
3518 target_ulong end, abi_ulong flags)
edf8e2af
MW
3519{
3520 struct vm_area_struct *vma;
3521
7267c094 3522 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
edf8e2af
MW
3523 return (-1);
3524
3525 vma->vma_start = start;
3526 vma->vma_end = end;
3527 vma->vma_flags = flags;
3528
72cf2d4f 3529 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
edf8e2af
MW
3530 mm->mm_count++;
3531
3532 return (0);
3533}
3534
3535static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3536{
72cf2d4f 3537 return (QTAILQ_FIRST(&mm->mm_mmap));
edf8e2af
MW
3538}
3539
3540static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3541{
72cf2d4f 3542 return (QTAILQ_NEXT(vma, vma_link));
edf8e2af
MW
3543}
3544
3545static int vma_get_mapping_count(const struct mm_struct *mm)
3546{
3547 return (mm->mm_count);
3548}
3549
3550/*
3551 * Calculate file (dump) size of given memory region.
3552 */
3553static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3554{
3555 /* if we cannot even read the first page, skip it */
c7169b02 3556 if (!access_ok_untagged(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
edf8e2af
MW
3557 return (0);
3558
3559 /*
3560 * Usually we don't dump executable pages as they contain
3561 * non-writable code that debugger can read directly from
3562 * target library etc. However, thread stacks are marked
3563 * also executable so we read in first page of given region
3564 * and check whether it contains elf header. If there is
3565 * no elf header, we dump it.
3566 */
3567 if (vma->vma_flags & PROT_EXEC) {
3568 char page[TARGET_PAGE_SIZE];
3569
022625a8
PM
3570 if (copy_from_user(page, vma->vma_start, sizeof (page))) {
3571 return 0;
3572 }
edf8e2af
MW
3573 if ((page[EI_MAG0] == ELFMAG0) &&
3574 (page[EI_MAG1] == ELFMAG1) &&
3575 (page[EI_MAG2] == ELFMAG2) &&
3576 (page[EI_MAG3] == ELFMAG3)) {
3577 /*
3578 * Mappings are possibly from ELF binary. Don't dump
3579 * them.
3580 */
3581 return (0);
3582 }
3583 }
3584
3585 return (vma->vma_end - vma->vma_start);
3586}
3587
1a1c4db9 3588static int vma_walker(void *priv, target_ulong start, target_ulong end,
d97ef72e 3589 unsigned long flags)
edf8e2af
MW
3590{
3591 struct mm_struct *mm = (struct mm_struct *)priv;
3592
edf8e2af
MW
3593 vma_add_mapping(mm, start, end, flags);
3594 return (0);
3595}
3596
3597static void fill_note(struct memelfnote *note, const char *name, int type,
d97ef72e 3598 unsigned int sz, void *data)
edf8e2af
MW
3599{
3600 unsigned int namesz;
3601
3602 namesz = strlen(name) + 1;
3603 note->name = name;
3604 note->namesz = namesz;
3605 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3606 note->type = type;
80f5ce75
LV
3607 note->datasz = sz;
3608 note->datasz_rounded = roundup(sz, sizeof (int32_t));
3609
edf8e2af
MW
3610 note->data = data;
3611
3612 /*
3613 * We calculate rounded up note size here as specified by
3614 * ELF document.
3615 */
3616 note->notesz = sizeof (struct elf_note) +
80f5ce75 3617 note->namesz_rounded + note->datasz_rounded;
edf8e2af
MW
3618}
3619
3620static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
d97ef72e 3621 uint32_t flags)
edf8e2af
MW
3622{
3623 (void) memset(elf, 0, sizeof(*elf));
3624
3625 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3626 elf->e_ident[EI_CLASS] = ELF_CLASS;
3627 elf->e_ident[EI_DATA] = ELF_DATA;
3628 elf->e_ident[EI_VERSION] = EV_CURRENT;
3629 elf->e_ident[EI_OSABI] = ELF_OSABI;
3630
3631 elf->e_type = ET_CORE;
3632 elf->e_machine = machine;
3633 elf->e_version = EV_CURRENT;
3634 elf->e_phoff = sizeof(struct elfhdr);
3635 elf->e_flags = flags;
3636 elf->e_ehsize = sizeof(struct elfhdr);
3637 elf->e_phentsize = sizeof(struct elf_phdr);
3638 elf->e_phnum = segs;
3639
edf8e2af 3640 bswap_ehdr(elf);
edf8e2af
MW
3641}
3642
3643static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3644{
3645 phdr->p_type = PT_NOTE;
3646 phdr->p_offset = offset;
3647 phdr->p_vaddr = 0;
3648 phdr->p_paddr = 0;
3649 phdr->p_filesz = sz;
3650 phdr->p_memsz = 0;
3651 phdr->p_flags = 0;
3652 phdr->p_align = 0;
3653
991f8f0c 3654 bswap_phdr(phdr, 1);
edf8e2af
MW
3655}
3656
3657static size_t note_size(const struct memelfnote *note)
3658{
3659 return (note->notesz);
3660}
3661
a2547a13 3662static void fill_prstatus(struct target_elf_prstatus *prstatus,
d97ef72e 3663 const TaskState *ts, int signr)
edf8e2af
MW
3664{
3665 (void) memset(prstatus, 0, sizeof (*prstatus));
3666 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3667 prstatus->pr_pid = ts->ts_tid;
3668 prstatus->pr_ppid = getppid();
3669 prstatus->pr_pgrp = getpgrp();
3670 prstatus->pr_sid = getsid(0);
3671
edf8e2af 3672 bswap_prstatus(prstatus);
edf8e2af
MW
3673}
3674
a2547a13 3675static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
edf8e2af 3676{
900cfbca 3677 char *base_filename;
edf8e2af
MW
3678 unsigned int i, len;
3679
3680 (void) memset(psinfo, 0, sizeof (*psinfo));
3681
5f779a3a 3682 len = ts->info->env_strings - ts->info->arg_strings;
edf8e2af
MW
3683 if (len >= ELF_PRARGSZ)
3684 len = ELF_PRARGSZ - 1;
5f779a3a 3685 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_strings, len)) {
edf8e2af 3686 return -EFAULT;
5f779a3a 3687 }
edf8e2af
MW
3688 for (i = 0; i < len; i++)
3689 if (psinfo->pr_psargs[i] == 0)
3690 psinfo->pr_psargs[i] = ' ';
3691 psinfo->pr_psargs[len] = 0;
3692
3693 psinfo->pr_pid = getpid();
3694 psinfo->pr_ppid = getppid();
3695 psinfo->pr_pgrp = getpgrp();
3696 psinfo->pr_sid = getsid(0);
3697 psinfo->pr_uid = getuid();
3698 psinfo->pr_gid = getgid();
3699
900cfbca
JM
3700 base_filename = g_path_get_basename(ts->bprm->filename);
3701 /*
3702 * Using strncpy here is fine: at max-length,
3703 * this field is not NUL-terminated.
3704 */
edf8e2af 3705 (void) strncpy(psinfo->pr_fname, base_filename,
d97ef72e 3706 sizeof(psinfo->pr_fname));
edf8e2af 3707
900cfbca 3708 g_free(base_filename);
edf8e2af 3709 bswap_psinfo(psinfo);
edf8e2af
MW
3710 return (0);
3711}
3712
3713static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3714{
3715 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3716 elf_addr_t orig_auxv = auxv;
edf8e2af 3717 void *ptr;
125b0f55 3718 int len = ts->info->auxv_len;
edf8e2af
MW
3719
3720 /*
3721 * Auxiliary vector is stored in target process stack. It contains
3722 * {type, value} pairs that we need to dump into note. This is not
3723 * strictly necessary but we do it here for sake of completeness.
3724 */
3725
edf8e2af
MW
3726 /* read in whole auxv vector and copy it to memelfnote */
3727 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3728 if (ptr != NULL) {
3729 fill_note(note, "CORE", NT_AUXV, len, ptr);
3730 unlock_user(ptr, auxv, len);
3731 }
3732}
3733
3734/*
3735 * Constructs name of coredump file. We have following convention
3736 * for the name:
3737 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3738 *
68af19ad 3739 * Returns the filename
edf8e2af 3740 */
68af19ad 3741static char *core_dump_filename(const TaskState *ts)
edf8e2af 3742{
68af19ad
DB
3743 g_autoptr(GDateTime) now = g_date_time_new_now_local();
3744 g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S");
3745 g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename);
edf8e2af 3746
68af19ad
DB
3747 return g_strdup_printf("qemu_%s_%s_%d.core",
3748 base_filename, nowstr, (int)getpid());
edf8e2af
MW
3749}
3750
3751static int dump_write(int fd, const void *ptr, size_t size)
3752{
3753 const char *bufp = (const char *)ptr;
3754 ssize_t bytes_written, bytes_left;
3755 struct rlimit dumpsize;
3756 off_t pos;
3757
3758 bytes_written = 0;
3759 getrlimit(RLIMIT_CORE, &dumpsize);
3760 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3761 if (errno == ESPIPE) { /* not a seekable stream */
3762 bytes_left = size;
3763 } else {
3764 return pos;
3765 }
3766 } else {
3767 if (dumpsize.rlim_cur <= pos) {
3768 return -1;
3769 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3770 bytes_left = size;
3771 } else {
3772 size_t limit_left=dumpsize.rlim_cur - pos;
3773 bytes_left = limit_left >= size ? size : limit_left ;
3774 }
3775 }
3776
3777 /*
3778 * In normal conditions, single write(2) should do but
3779 * in case of socket etc. this mechanism is more portable.
3780 */
3781 do {
3782 bytes_written = write(fd, bufp, bytes_left);
3783 if (bytes_written < 0) {
3784 if (errno == EINTR)
3785 continue;
3786 return (-1);
3787 } else if (bytes_written == 0) { /* eof */
3788 return (-1);
3789 }
3790 bufp += bytes_written;
3791 bytes_left -= bytes_written;
3792 } while (bytes_left > 0);
3793
3794 return (0);
3795}
3796
3797static int write_note(struct memelfnote *men, int fd)
3798{
3799 struct elf_note en;
3800
3801 en.n_namesz = men->namesz;
3802 en.n_type = men->type;
3803 en.n_descsz = men->datasz;
3804
edf8e2af 3805 bswap_note(&en);
edf8e2af
MW
3806
3807 if (dump_write(fd, &en, sizeof(en)) != 0)
3808 return (-1);
3809 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3810 return (-1);
80f5ce75 3811 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
edf8e2af
MW
3812 return (-1);
3813
3814 return (0);
3815}
3816
9349b4f9 3817static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
edf8e2af 3818{
29a0af61 3819 CPUState *cpu = env_cpu((CPUArchState *)env);
0429a971 3820 TaskState *ts = (TaskState *)cpu->opaque;
edf8e2af
MW
3821 struct elf_thread_status *ets;
3822
7267c094 3823 ets = g_malloc0(sizeof (*ets));
edf8e2af
MW
3824 ets->num_notes = 1; /* only prstatus is dumped */
3825 fill_prstatus(&ets->prstatus, ts, 0);
3826 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3827 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
d97ef72e 3828 &ets->prstatus);
edf8e2af 3829
72cf2d4f 3830 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
edf8e2af
MW
3831
3832 info->notes_size += note_size(&ets->notes[0]);
3833}
3834
6afafa86
PM
3835static void init_note_info(struct elf_note_info *info)
3836{
3837 /* Initialize the elf_note_info structure so that it is at
3838 * least safe to call free_note_info() on it. Must be
3839 * called before calling fill_note_info().
3840 */
3841 memset(info, 0, sizeof (*info));
3842 QTAILQ_INIT(&info->thread_list);
3843}
3844
edf8e2af 3845static int fill_note_info(struct elf_note_info *info,
9349b4f9 3846 long signr, const CPUArchState *env)
edf8e2af
MW
3847{
3848#define NUMNOTES 3
29a0af61 3849 CPUState *cpu = env_cpu((CPUArchState *)env);
0429a971 3850 TaskState *ts = (TaskState *)cpu->opaque;
edf8e2af
MW
3851 int i;
3852
c78d65e8 3853 info->notes = g_new0(struct memelfnote, NUMNOTES);
edf8e2af
MW
3854 if (info->notes == NULL)
3855 return (-ENOMEM);
7267c094 3856 info->prstatus = g_malloc0(sizeof (*info->prstatus));
edf8e2af
MW
3857 if (info->prstatus == NULL)
3858 return (-ENOMEM);
7267c094 3859 info->psinfo = g_malloc0(sizeof (*info->psinfo));
edf8e2af
MW
3860 if (info->prstatus == NULL)
3861 return (-ENOMEM);
3862
3863 /*
3864 * First fill in status (and registers) of current thread
3865 * including process info & aux vector.
3866 */
3867 fill_prstatus(info->prstatus, ts, signr);
3868 elf_core_copy_regs(&info->prstatus->pr_reg, env);
3869 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
d97ef72e 3870 sizeof (*info->prstatus), info->prstatus);
edf8e2af
MW
3871 fill_psinfo(info->psinfo, ts);
3872 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
d97ef72e 3873 sizeof (*info->psinfo), info->psinfo);
edf8e2af
MW
3874 fill_auxv_note(&info->notes[2], ts);
3875 info->numnote = 3;
3876
3877 info->notes_size = 0;
3878 for (i = 0; i < info->numnote; i++)
3879 info->notes_size += note_size(&info->notes[i]);
3880
3881 /* read and fill status of all threads */
3882 cpu_list_lock();
bdc44640 3883 CPU_FOREACH(cpu) {
a2247f8e 3884 if (cpu == thread_cpu) {
edf8e2af 3885 continue;
182735ef
AF
3886 }
3887 fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
edf8e2af
MW
3888 }
3889 cpu_list_unlock();
3890
3891 return (0);
3892}
3893
3894static void free_note_info(struct elf_note_info *info)
3895{
3896 struct elf_thread_status *ets;
3897
72cf2d4f
BS
3898 while (!QTAILQ_EMPTY(&info->thread_list)) {
3899 ets = QTAILQ_FIRST(&info->thread_list);
3900 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
7267c094 3901 g_free(ets);
edf8e2af
MW
3902 }
3903
7267c094
AL
3904 g_free(info->prstatus);
3905 g_free(info->psinfo);
3906 g_free(info->notes);
edf8e2af
MW
3907}
3908
3909static int write_note_info(struct elf_note_info *info, int fd)
3910{
3911 struct elf_thread_status *ets;
3912 int i, error = 0;
3913
3914 /* write prstatus, psinfo and auxv for current thread */
3915 for (i = 0; i < info->numnote; i++)
3916 if ((error = write_note(&info->notes[i], fd)) != 0)
3917 return (error);
3918
3919 /* write prstatus for each thread */
52a53afe 3920 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
edf8e2af
MW
3921 if ((error = write_note(&ets->notes[0], fd)) != 0)
3922 return (error);
3923 }
3924
3925 return (0);
3926}
3927
3928/*
3929 * Write out ELF coredump.
3930 *
3931 * See documentation of ELF object file format in:
3932 * http://www.caldera.com/developers/devspecs/gabi41.pdf
3933 *
3934 * Coredump format in linux is following:
3935 *
3936 * 0 +----------------------+ \
3937 * | ELF header | ET_CORE |
3938 * +----------------------+ |
3939 * | ELF program headers | |--- headers
3940 * | - NOTE section | |
3941 * | - PT_LOAD sections | |
3942 * +----------------------+ /
3943 * | NOTEs: |
3944 * | - NT_PRSTATUS |
3945 * | - NT_PRSINFO |
3946 * | - NT_AUXV |
3947 * +----------------------+ <-- aligned to target page
3948 * | Process memory dump |
3949 * : :
3950 * . .
3951 * : :
3952 * | |
3953 * +----------------------+
3954 *
3955 * NT_PRSTATUS -> struct elf_prstatus (per thread)
3956 * NT_PRSINFO -> struct elf_prpsinfo
3957 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3958 *
3959 * Format follows System V format as close as possible. Current
3960 * version limitations are as follows:
3961 * - no floating point registers are dumped
3962 *
3963 * Function returns 0 in case of success, negative errno otherwise.
3964 *
3965 * TODO: make this work also during runtime: it should be
3966 * possible to force coredump from running process and then
3967 * continue processing. For example qemu could set up SIGUSR2
3968 * handler (provided that target process haven't registered
3969 * handler for that) that does the dump when signal is received.
3970 */
9349b4f9 3971static int elf_core_dump(int signr, const CPUArchState *env)
edf8e2af 3972{
29a0af61 3973 const CPUState *cpu = env_cpu((CPUArchState *)env);
0429a971 3974 const TaskState *ts = (const TaskState *)cpu->opaque;
edf8e2af 3975 struct vm_area_struct *vma = NULL;
68af19ad 3976 g_autofree char *corefile = NULL;
edf8e2af
MW
3977 struct elf_note_info info;
3978 struct elfhdr elf;
3979 struct elf_phdr phdr;
3980 struct rlimit dumpsize;
3981 struct mm_struct *mm = NULL;
3982 off_t offset = 0, data_offset = 0;
3983 int segs = 0;
3984 int fd = -1;
3985
6afafa86
PM
3986 init_note_info(&info);
3987
edf8e2af
MW
3988 errno = 0;
3989 getrlimit(RLIMIT_CORE, &dumpsize);
3990 if (dumpsize.rlim_cur == 0)
d97ef72e 3991 return 0;
edf8e2af 3992
68af19ad 3993 corefile = core_dump_filename(ts);
edf8e2af
MW
3994
3995 if ((fd = open(corefile, O_WRONLY | O_CREAT,
d97ef72e 3996 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
edf8e2af
MW
3997 return (-errno);
3998
3999 /*
4000 * Walk through target process memory mappings and
4001 * set up structure containing this information. After
4002 * this point vma_xxx functions can be used.
4003 */
4004 if ((mm = vma_init()) == NULL)
4005 goto out;
4006
4007 walk_memory_regions(mm, vma_walker);
4008 segs = vma_get_mapping_count(mm);
4009
4010 /*
4011 * Construct valid coredump ELF header. We also
4012 * add one more segment for notes.
4013 */
4014 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
4015 if (dump_write(fd, &elf, sizeof (elf)) != 0)
4016 goto out;
4017
b6af0975 4018 /* fill in the in-memory version of notes */
edf8e2af
MW
4019 if (fill_note_info(&info, signr, env) < 0)
4020 goto out;
4021
4022 offset += sizeof (elf); /* elf header */
4023 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
4024
4025 /* write out notes program header */
4026 fill_elf_note_phdr(&phdr, info.notes_size, offset);
4027
4028 offset += info.notes_size;
4029 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
4030 goto out;
4031
4032 /*
4033 * ELF specification wants data to start at page boundary so
4034 * we align it here.
4035 */
80f5ce75 4036 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
edf8e2af
MW
4037
4038 /*
4039 * Write program headers for memory regions mapped in
4040 * the target process.
4041 */
4042 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4043 (void) memset(&phdr, 0, sizeof (phdr));
4044
4045 phdr.p_type = PT_LOAD;
4046 phdr.p_offset = offset;
4047 phdr.p_vaddr = vma->vma_start;
4048 phdr.p_paddr = 0;
4049 phdr.p_filesz = vma_dump_size(vma);
4050 offset += phdr.p_filesz;
4051 phdr.p_memsz = vma->vma_end - vma->vma_start;
4052 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
4053 if (vma->vma_flags & PROT_WRITE)
4054 phdr.p_flags |= PF_W;
4055 if (vma->vma_flags & PROT_EXEC)
4056 phdr.p_flags |= PF_X;
4057 phdr.p_align = ELF_EXEC_PAGESIZE;
4058
80f5ce75 4059 bswap_phdr(&phdr, 1);
772034b6
PM
4060 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
4061 goto out;
4062 }
edf8e2af
MW
4063 }
4064
4065 /*
4066 * Next we write notes just after program headers. No
4067 * alignment needed here.
4068 */
4069 if (write_note_info(&info, fd) < 0)
4070 goto out;
4071
4072 /* align data to page boundary */
edf8e2af
MW
4073 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
4074 goto out;
4075
4076 /*
4077 * Finally we can dump process memory into corefile as well.
4078 */
4079 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4080 abi_ulong addr;
4081 abi_ulong end;
4082
4083 end = vma->vma_start + vma_dump_size(vma);
4084
4085 for (addr = vma->vma_start; addr < end;
d97ef72e 4086 addr += TARGET_PAGE_SIZE) {
edf8e2af
MW
4087 char page[TARGET_PAGE_SIZE];
4088 int error;
4089
4090 /*
4091 * Read in page from target process memory and
4092 * write it to coredump file.
4093 */
4094 error = copy_from_user(page, addr, sizeof (page));
4095 if (error != 0) {
49995e17 4096 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
d97ef72e 4097 addr);
edf8e2af
MW
4098 errno = -error;
4099 goto out;
4100 }
4101 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
4102 goto out;
4103 }
4104 }
4105
d97ef72e 4106 out:
edf8e2af
MW
4107 free_note_info(&info);
4108 if (mm != NULL)
4109 vma_delete(mm);
4110 (void) close(fd);
4111
4112 if (errno != 0)
4113 return (-errno);
4114 return (0);
4115}
edf8e2af
MW
4116#endif /* USE_ELF_CORE_DUMP */
4117
e5fe0c52
PB
4118void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
4119{
4120 init_thread(regs, infop);
4121}
This page took 1.524691 seconds and 4 git commands to generate.