]> Git Repo - qemu.git/blame - linux-user/elfload.c
target/arm: Enable ARMv8.2-FHM for -cpu max
[qemu.git] / linux-user / elfload.c
CommitLineData
31e31b8a 1/* This is the Linux kernel elf-loading code, ported into user space */
d39594e9 2#include "qemu/osdep.h"
edf8e2af 3#include <sys/param.h>
31e31b8a 4
edf8e2af 5#include <sys/resource.h>
31e31b8a 6
3ef693a0 7#include "qemu.h"
76cad711 8#include "disas/disas.h"
f348b6d1 9#include "qemu/path.h"
31e31b8a 10
e58ffeb3 11#ifdef _ARCH_PPC64
a6cc84f4 12#undef ARCH_DLINFO
13#undef ELF_PLATFORM
14#undef ELF_HWCAP
ad6919dc 15#undef ELF_HWCAP2
a6cc84f4 16#undef ELF_CLASS
17#undef ELF_DATA
18#undef ELF_ARCH
19#endif
20
edf8e2af
MW
21#define ELF_OSABI ELFOSABI_SYSV
22
cb33da57
BS
23/* from personality.h */
24
25/*
26 * Flags for bug emulation.
27 *
28 * These occupy the top three bytes.
29 */
30enum {
d97ef72e
RH
31 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
32 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
33 descriptors (signal handling) */
34 MMAP_PAGE_ZERO = 0x0100000,
35 ADDR_COMPAT_LAYOUT = 0x0200000,
36 READ_IMPLIES_EXEC = 0x0400000,
37 ADDR_LIMIT_32BIT = 0x0800000,
38 SHORT_INODE = 0x1000000,
39 WHOLE_SECONDS = 0x2000000,
40 STICKY_TIMEOUTS = 0x4000000,
41 ADDR_LIMIT_3GB = 0x8000000,
cb33da57
BS
42};
43
44/*
45 * Personality types.
46 *
47 * These go in the low byte. Avoid using the top bit, it will
48 * conflict with error returns.
49 */
50enum {
d97ef72e
RH
51 PER_LINUX = 0x0000,
52 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
53 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
54 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
55 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
56 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
57 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
58 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
59 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
60 PER_BSD = 0x0006,
61 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
62 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
63 PER_LINUX32 = 0x0008,
64 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
65 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
66 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
67 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
68 PER_RISCOS = 0x000c,
69 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
70 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
71 PER_OSF4 = 0x000f, /* OSF/1 v4 */
72 PER_HPUX = 0x0010,
73 PER_MASK = 0x00ff,
cb33da57
BS
74};
75
76/*
77 * Return the base personality without flags.
78 */
d97ef72e 79#define personality(pers) (pers & PER_MASK)
cb33da57 80
3cb10cfa
CL
81int info_is_fdpic(struct image_info *info)
82{
83 return info->personality == PER_LINUX_FDPIC;
84}
85
83fb7adf
FB
86/* this flag is uneffective under linux too, should be deleted */
87#ifndef MAP_DENYWRITE
88#define MAP_DENYWRITE 0
89#endif
90
91/* should probably go in elf.h */
92#ifndef ELIBBAD
93#define ELIBBAD 80
94#endif
95
28490231
RH
96#ifdef TARGET_WORDS_BIGENDIAN
97#define ELF_DATA ELFDATA2MSB
98#else
99#define ELF_DATA ELFDATA2LSB
100#endif
101
a29f998d 102#ifdef TARGET_ABI_MIPSN32
918fc54c
PB
103typedef abi_ullong target_elf_greg_t;
104#define tswapreg(ptr) tswap64(ptr)
a29f998d
PB
105#else
106typedef abi_ulong target_elf_greg_t;
107#define tswapreg(ptr) tswapal(ptr)
108#endif
109
21e807fa 110#ifdef USE_UID16
1ddd592f
PB
111typedef abi_ushort target_uid_t;
112typedef abi_ushort target_gid_t;
21e807fa 113#else
f8fd4fc4
PB
114typedef abi_uint target_uid_t;
115typedef abi_uint target_gid_t;
21e807fa 116#endif
f8fd4fc4 117typedef abi_int target_pid_t;
21e807fa 118
30ac07d4
FB
119#ifdef TARGET_I386
120
15338fd7
FB
121#define ELF_PLATFORM get_elf_platform()
122
123static const char *get_elf_platform(void)
124{
125 static char elf_platform[] = "i386";
a2247f8e 126 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
15338fd7
FB
127 if (family > 6)
128 family = 6;
129 if (family >= 3)
130 elf_platform[1] = '0' + family;
131 return elf_platform;
132}
133
134#define ELF_HWCAP get_elf_hwcap()
135
136static uint32_t get_elf_hwcap(void)
137{
a2247f8e
AF
138 X86CPU *cpu = X86_CPU(thread_cpu);
139
140 return cpu->env.features[FEAT_1_EDX];
15338fd7
FB
141}
142
84409ddb
JM
143#ifdef TARGET_X86_64
144#define ELF_START_MMAP 0x2aaaaab000ULL
84409ddb
JM
145
146#define ELF_CLASS ELFCLASS64
84409ddb
JM
147#define ELF_ARCH EM_X86_64
148
149static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
150{
151 regs->rax = 0;
152 regs->rsp = infop->start_stack;
153 regs->rip = infop->entry;
154}
155
9edc5d79 156#define ELF_NREG 27
c227f099 157typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
158
159/*
160 * Note that ELF_NREG should be 29 as there should be place for
161 * TRAPNO and ERR "registers" as well but linux doesn't dump
162 * those.
163 *
164 * See linux kernel: arch/x86/include/asm/elf.h
165 */
05390248 166static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
9edc5d79
MW
167{
168 (*regs)[0] = env->regs[15];
169 (*regs)[1] = env->regs[14];
170 (*regs)[2] = env->regs[13];
171 (*regs)[3] = env->regs[12];
172 (*regs)[4] = env->regs[R_EBP];
173 (*regs)[5] = env->regs[R_EBX];
174 (*regs)[6] = env->regs[11];
175 (*regs)[7] = env->regs[10];
176 (*regs)[8] = env->regs[9];
177 (*regs)[9] = env->regs[8];
178 (*regs)[10] = env->regs[R_EAX];
179 (*regs)[11] = env->regs[R_ECX];
180 (*regs)[12] = env->regs[R_EDX];
181 (*regs)[13] = env->regs[R_ESI];
182 (*regs)[14] = env->regs[R_EDI];
183 (*regs)[15] = env->regs[R_EAX]; /* XXX */
184 (*regs)[16] = env->eip;
185 (*regs)[17] = env->segs[R_CS].selector & 0xffff;
186 (*regs)[18] = env->eflags;
187 (*regs)[19] = env->regs[R_ESP];
188 (*regs)[20] = env->segs[R_SS].selector & 0xffff;
189 (*regs)[21] = env->segs[R_FS].selector & 0xffff;
190 (*regs)[22] = env->segs[R_GS].selector & 0xffff;
191 (*regs)[23] = env->segs[R_DS].selector & 0xffff;
192 (*regs)[24] = env->segs[R_ES].selector & 0xffff;
193 (*regs)[25] = env->segs[R_FS].selector & 0xffff;
194 (*regs)[26] = env->segs[R_GS].selector & 0xffff;
195}
196
84409ddb
JM
197#else
198
30ac07d4
FB
199#define ELF_START_MMAP 0x80000000
200
30ac07d4
FB
201/*
202 * This is used to ensure we don't load something for the wrong architecture.
203 */
204#define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
205
206/*
207 * These are used to set parameters in the core dumps.
208 */
d97ef72e 209#define ELF_CLASS ELFCLASS32
d97ef72e 210#define ELF_ARCH EM_386
30ac07d4 211
d97ef72e
RH
212static inline void init_thread(struct target_pt_regs *regs,
213 struct image_info *infop)
b346ff46
FB
214{
215 regs->esp = infop->start_stack;
216 regs->eip = infop->entry;
e5fe0c52
PB
217
218 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
219 starts %edx contains a pointer to a function which might be
220 registered using `atexit'. This provides a mean for the
221 dynamic linker to call DT_FINI functions for shared libraries
222 that have been loaded before the code runs.
223
224 A value of 0 tells we have no such handler. */
225 regs->edx = 0;
b346ff46 226}
9edc5d79 227
9edc5d79 228#define ELF_NREG 17
c227f099 229typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
230
231/*
232 * Note that ELF_NREG should be 19 as there should be place for
233 * TRAPNO and ERR "registers" as well but linux doesn't dump
234 * those.
235 *
236 * See linux kernel: arch/x86/include/asm/elf.h
237 */
05390248 238static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
9edc5d79
MW
239{
240 (*regs)[0] = env->regs[R_EBX];
241 (*regs)[1] = env->regs[R_ECX];
242 (*regs)[2] = env->regs[R_EDX];
243 (*regs)[3] = env->regs[R_ESI];
244 (*regs)[4] = env->regs[R_EDI];
245 (*regs)[5] = env->regs[R_EBP];
246 (*regs)[6] = env->regs[R_EAX];
247 (*regs)[7] = env->segs[R_DS].selector & 0xffff;
248 (*regs)[8] = env->segs[R_ES].selector & 0xffff;
249 (*regs)[9] = env->segs[R_FS].selector & 0xffff;
250 (*regs)[10] = env->segs[R_GS].selector & 0xffff;
251 (*regs)[11] = env->regs[R_EAX]; /* XXX */
252 (*regs)[12] = env->eip;
253 (*regs)[13] = env->segs[R_CS].selector & 0xffff;
254 (*regs)[14] = env->eflags;
255 (*regs)[15] = env->regs[R_ESP];
256 (*regs)[16] = env->segs[R_SS].selector & 0xffff;
257}
84409ddb 258#endif
b346ff46 259
9edc5d79 260#define USE_ELF_CORE_DUMP
d97ef72e 261#define ELF_EXEC_PAGESIZE 4096
b346ff46
FB
262
263#endif
264
265#ifdef TARGET_ARM
266
24e76ff0
PM
267#ifndef TARGET_AARCH64
268/* 32 bit ARM definitions */
269
b346ff46
FB
270#define ELF_START_MMAP 0x80000000
271
b597c3f7 272#define ELF_ARCH EM_ARM
d97ef72e 273#define ELF_CLASS ELFCLASS32
b346ff46 274
d97ef72e
RH
275static inline void init_thread(struct target_pt_regs *regs,
276 struct image_info *infop)
b346ff46 277{
992f48a0 278 abi_long stack = infop->start_stack;
b346ff46 279 memset(regs, 0, sizeof(*regs));
99033cae 280
167e4cdc
PM
281 regs->uregs[16] = ARM_CPU_MODE_USR;
282 if (infop->entry & 1) {
283 regs->uregs[16] |= CPSR_T;
284 }
285 regs->uregs[15] = infop->entry & 0xfffffffe;
286 regs->uregs[13] = infop->start_stack;
2f619698 287 /* FIXME - what to for failure of get_user()? */
167e4cdc
PM
288 get_user_ual(regs->uregs[2], stack + 8); /* envp */
289 get_user_ual(regs->uregs[1], stack + 4); /* envp */
a1516e92 290 /* XXX: it seems that r0 is zeroed after ! */
167e4cdc 291 regs->uregs[0] = 0;
e5fe0c52 292 /* For uClinux PIC binaries. */
863cf0b7 293 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
167e4cdc 294 regs->uregs[10] = infop->start_data;
3cb10cfa
CL
295
296 /* Support ARM FDPIC. */
297 if (info_is_fdpic(infop)) {
298 /* As described in the ABI document, r7 points to the loadmap info
299 * prepared by the kernel. If an interpreter is needed, r8 points
300 * to the interpreter loadmap and r9 points to the interpreter
301 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
302 * r9 points to the main program PT_DYNAMIC info.
303 */
304 regs->uregs[7] = infop->loadmap_addr;
305 if (infop->interpreter_loadmap_addr) {
306 /* Executable is dynamically loaded. */
307 regs->uregs[8] = infop->interpreter_loadmap_addr;
308 regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
309 } else {
310 regs->uregs[8] = 0;
311 regs->uregs[9] = infop->pt_dynamic_addr;
312 }
313 }
b346ff46
FB
314}
315
edf8e2af 316#define ELF_NREG 18
c227f099 317typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 318
05390248 319static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
edf8e2af 320{
86cd7b2d
PB
321 (*regs)[0] = tswapreg(env->regs[0]);
322 (*regs)[1] = tswapreg(env->regs[1]);
323 (*regs)[2] = tswapreg(env->regs[2]);
324 (*regs)[3] = tswapreg(env->regs[3]);
325 (*regs)[4] = tswapreg(env->regs[4]);
326 (*regs)[5] = tswapreg(env->regs[5]);
327 (*regs)[6] = tswapreg(env->regs[6]);
328 (*regs)[7] = tswapreg(env->regs[7]);
329 (*regs)[8] = tswapreg(env->regs[8]);
330 (*regs)[9] = tswapreg(env->regs[9]);
331 (*regs)[10] = tswapreg(env->regs[10]);
332 (*regs)[11] = tswapreg(env->regs[11]);
333 (*regs)[12] = tswapreg(env->regs[12]);
334 (*regs)[13] = tswapreg(env->regs[13]);
335 (*regs)[14] = tswapreg(env->regs[14]);
336 (*regs)[15] = tswapreg(env->regs[15]);
337
338 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
339 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
edf8e2af
MW
340}
341
30ac07d4 342#define USE_ELF_CORE_DUMP
d97ef72e 343#define ELF_EXEC_PAGESIZE 4096
30ac07d4 344
afce2927
FB
345enum
346{
d97ef72e
RH
347 ARM_HWCAP_ARM_SWP = 1 << 0,
348 ARM_HWCAP_ARM_HALF = 1 << 1,
349 ARM_HWCAP_ARM_THUMB = 1 << 2,
350 ARM_HWCAP_ARM_26BIT = 1 << 3,
351 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
352 ARM_HWCAP_ARM_FPA = 1 << 5,
353 ARM_HWCAP_ARM_VFP = 1 << 6,
354 ARM_HWCAP_ARM_EDSP = 1 << 7,
355 ARM_HWCAP_ARM_JAVA = 1 << 8,
356 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
43ce393e
PM
357 ARM_HWCAP_ARM_CRUNCH = 1 << 10,
358 ARM_HWCAP_ARM_THUMBEE = 1 << 11,
359 ARM_HWCAP_ARM_NEON = 1 << 12,
360 ARM_HWCAP_ARM_VFPv3 = 1 << 13,
361 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
24682654
PM
362 ARM_HWCAP_ARM_TLS = 1 << 15,
363 ARM_HWCAP_ARM_VFPv4 = 1 << 16,
364 ARM_HWCAP_ARM_IDIVA = 1 << 17,
365 ARM_HWCAP_ARM_IDIVT = 1 << 18,
366 ARM_HWCAP_ARM_VFPD32 = 1 << 19,
367 ARM_HWCAP_ARM_LPAE = 1 << 20,
368 ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
afce2927
FB
369};
370
ad6919dc
PM
371enum {
372 ARM_HWCAP2_ARM_AES = 1 << 0,
373 ARM_HWCAP2_ARM_PMULL = 1 << 1,
374 ARM_HWCAP2_ARM_SHA1 = 1 << 2,
375 ARM_HWCAP2_ARM_SHA2 = 1 << 3,
376 ARM_HWCAP2_ARM_CRC32 = 1 << 4,
377};
378
6b1275ff
PM
379/* The commpage only exists for 32 bit kernels */
380
806d1021
MI
381/* Return 1 if the proposed guest space is suitable for the guest.
382 * Return 0 if the proposed guest space isn't suitable, but another
383 * address space should be tried.
384 * Return -1 if there is no way the proposed guest space can be
385 * valid regardless of the base.
386 * The guest code may leave a page mapped and populate it if the
387 * address is suitable.
388 */
c3637eaf
LS
389static int init_guest_commpage(unsigned long guest_base,
390 unsigned long guest_size)
97cc7560
DDAG
391{
392 unsigned long real_start, test_page_addr;
393
394 /* We need to check that we can force a fault on access to the
395 * commpage at 0xffff0fxx
396 */
397 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
806d1021
MI
398
399 /* If the commpage lies within the already allocated guest space,
400 * then there is no way we can allocate it.
955e304f
LS
401 *
402 * You may be thinking that that this check is redundant because
403 * we already validated the guest size against MAX_RESERVED_VA;
404 * but if qemu_host_page_mask is unusually large, then
405 * test_page_addr may be lower.
806d1021
MI
406 */
407 if (test_page_addr >= guest_base
e568f9df 408 && test_page_addr < (guest_base + guest_size)) {
806d1021
MI
409 return -1;
410 }
411
97cc7560
DDAG
412 /* Note it needs to be writeable to let us initialise it */
413 real_start = (unsigned long)
414 mmap((void *)test_page_addr, qemu_host_page_size,
415 PROT_READ | PROT_WRITE,
416 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
417
418 /* If we can't map it then try another address */
419 if (real_start == -1ul) {
420 return 0;
421 }
422
423 if (real_start != test_page_addr) {
424 /* OS didn't put the page where we asked - unmap and reject */
425 munmap((void *)real_start, qemu_host_page_size);
426 return 0;
427 }
428
429 /* Leave the page mapped
430 * Populate it (mmap should have left it all 0'd)
431 */
432
433 /* Kernel helper versions */
434 __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
435
436 /* Now it's populated make it RO */
437 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
438 perror("Protecting guest commpage");
439 exit(-1);
440 }
441
442 return 1; /* All good */
443}
adf050b1
BC
444
445#define ELF_HWCAP get_elf_hwcap()
ad6919dc 446#define ELF_HWCAP2 get_elf_hwcap2()
adf050b1
BC
447
448static uint32_t get_elf_hwcap(void)
449{
a2247f8e 450 ARMCPU *cpu = ARM_CPU(thread_cpu);
adf050b1
BC
451 uint32_t hwcaps = 0;
452
453 hwcaps |= ARM_HWCAP_ARM_SWP;
454 hwcaps |= ARM_HWCAP_ARM_HALF;
455 hwcaps |= ARM_HWCAP_ARM_THUMB;
456 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
adf050b1
BC
457
458 /* probe for the extra features */
459#define GET_FEATURE(feat, hwcap) \
a2247f8e 460 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
962fcbf2
RH
461
462#define GET_FEATURE_ID(feat, hwcap) \
463 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
464
24682654
PM
465 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
466 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
adf050b1
BC
467 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
468 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
469 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
470 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
471 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
24682654
PM
472 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
473 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
7e0cf8b4
RH
474 GET_FEATURE_ID(arm_div, ARM_HWCAP_ARM_IDIVA);
475 GET_FEATURE_ID(thumb_div, ARM_HWCAP_ARM_IDIVT);
24682654
PM
476 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
477 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
478 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
479 * to our VFP_FP16 feature bit.
480 */
481 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
482 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
adf050b1
BC
483
484 return hwcaps;
485}
afce2927 486
ad6919dc
PM
487static uint32_t get_elf_hwcap2(void)
488{
489 ARMCPU *cpu = ARM_CPU(thread_cpu);
490 uint32_t hwcaps = 0;
491
962fcbf2
RH
492 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
493 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
494 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
495 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
496 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
ad6919dc
PM
497 return hwcaps;
498}
499
500#undef GET_FEATURE
962fcbf2 501#undef GET_FEATURE_ID
ad6919dc 502
24e76ff0
PM
503#else
504/* 64 bit ARM definitions */
505#define ELF_START_MMAP 0x80000000
506
b597c3f7 507#define ELF_ARCH EM_AARCH64
24e76ff0
PM
508#define ELF_CLASS ELFCLASS64
509#define ELF_PLATFORM "aarch64"
510
511static inline void init_thread(struct target_pt_regs *regs,
512 struct image_info *infop)
513{
514 abi_long stack = infop->start_stack;
515 memset(regs, 0, sizeof(*regs));
516
517 regs->pc = infop->entry & ~0x3ULL;
518 regs->sp = stack;
519}
520
521#define ELF_NREG 34
522typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
523
524static void elf_core_copy_regs(target_elf_gregset_t *regs,
525 const CPUARMState *env)
526{
527 int i;
528
529 for (i = 0; i < 32; i++) {
530 (*regs)[i] = tswapreg(env->xregs[i]);
531 }
532 (*regs)[32] = tswapreg(env->pc);
533 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
534}
535
536#define USE_ELF_CORE_DUMP
537#define ELF_EXEC_PAGESIZE 4096
538
539enum {
540 ARM_HWCAP_A64_FP = 1 << 0,
541 ARM_HWCAP_A64_ASIMD = 1 << 1,
542 ARM_HWCAP_A64_EVTSTRM = 1 << 2,
543 ARM_HWCAP_A64_AES = 1 << 3,
544 ARM_HWCAP_A64_PMULL = 1 << 4,
545 ARM_HWCAP_A64_SHA1 = 1 << 5,
546 ARM_HWCAP_A64_SHA2 = 1 << 6,
547 ARM_HWCAP_A64_CRC32 = 1 << 7,
955f56d4
AB
548 ARM_HWCAP_A64_ATOMICS = 1 << 8,
549 ARM_HWCAP_A64_FPHP = 1 << 9,
550 ARM_HWCAP_A64_ASIMDHP = 1 << 10,
551 ARM_HWCAP_A64_CPUID = 1 << 11,
552 ARM_HWCAP_A64_ASIMDRDM = 1 << 12,
553 ARM_HWCAP_A64_JSCVT = 1 << 13,
554 ARM_HWCAP_A64_FCMA = 1 << 14,
555 ARM_HWCAP_A64_LRCPC = 1 << 15,
556 ARM_HWCAP_A64_DCPOP = 1 << 16,
557 ARM_HWCAP_A64_SHA3 = 1 << 17,
558 ARM_HWCAP_A64_SM3 = 1 << 18,
559 ARM_HWCAP_A64_SM4 = 1 << 19,
560 ARM_HWCAP_A64_ASIMDDP = 1 << 20,
561 ARM_HWCAP_A64_SHA512 = 1 << 21,
562 ARM_HWCAP_A64_SVE = 1 << 22,
0083a1fa
RH
563 ARM_HWCAP_A64_ASIMDFHM = 1 << 23,
564 ARM_HWCAP_A64_DIT = 1 << 24,
565 ARM_HWCAP_A64_USCAT = 1 << 25,
566 ARM_HWCAP_A64_ILRCPC = 1 << 26,
567 ARM_HWCAP_A64_FLAGM = 1 << 27,
568 ARM_HWCAP_A64_SSBS = 1 << 28,
569 ARM_HWCAP_A64_SB = 1 << 29,
570 ARM_HWCAP_A64_PACA = 1 << 30,
571 ARM_HWCAP_A64_PACG = 1UL << 31,
24e76ff0
PM
572};
573
574#define ELF_HWCAP get_elf_hwcap()
575
576static uint32_t get_elf_hwcap(void)
577{
578 ARMCPU *cpu = ARM_CPU(thread_cpu);
579 uint32_t hwcaps = 0;
580
581 hwcaps |= ARM_HWCAP_A64_FP;
582 hwcaps |= ARM_HWCAP_A64_ASIMD;
37020ff1 583 hwcaps |= ARM_HWCAP_A64_CPUID;
24e76ff0
PM
584
585 /* probe for the extra features */
962fcbf2
RH
586#define GET_FEATURE_ID(feat, hwcap) \
587 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
588
589 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
590 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
591 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
592 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
593 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
594 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
595 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
596 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
597 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
5763190f 598 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
962fcbf2
RH
599 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
600 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
601 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
602 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
cd208a1c 603 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
29d26ab2 604 GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
962fcbf2 605
962fcbf2 606#undef GET_FEATURE_ID
24e76ff0
PM
607
608 return hwcaps;
609}
610
611#endif /* not TARGET_AARCH64 */
612#endif /* TARGET_ARM */
30ac07d4 613
853d6f7a 614#ifdef TARGET_SPARC
a315a145 615#ifdef TARGET_SPARC64
853d6f7a
FB
616
617#define ELF_START_MMAP 0x80000000
cf973e46
AT
618#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
619 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
992f48a0 620#ifndef TARGET_ABI32
cb33da57 621#define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
992f48a0
BS
622#else
623#define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
624#endif
853d6f7a 625
a315a145 626#define ELF_CLASS ELFCLASS64
5ef54116
FB
627#define ELF_ARCH EM_SPARCV9
628
d97ef72e 629#define STACK_BIAS 2047
a315a145 630
d97ef72e
RH
631static inline void init_thread(struct target_pt_regs *regs,
632 struct image_info *infop)
a315a145 633{
992f48a0 634#ifndef TARGET_ABI32
a315a145 635 regs->tstate = 0;
992f48a0 636#endif
a315a145
FB
637 regs->pc = infop->entry;
638 regs->npc = regs->pc + 4;
639 regs->y = 0;
992f48a0
BS
640#ifdef TARGET_ABI32
641 regs->u_regs[14] = infop->start_stack - 16 * 4;
642#else
cb33da57
BS
643 if (personality(infop->personality) == PER_LINUX32)
644 regs->u_regs[14] = infop->start_stack - 16 * 4;
645 else
646 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
992f48a0 647#endif
a315a145
FB
648}
649
650#else
651#define ELF_START_MMAP 0x80000000
cf973e46
AT
652#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
653 | HWCAP_SPARC_MULDIV)
a315a145 654
853d6f7a 655#define ELF_CLASS ELFCLASS32
853d6f7a
FB
656#define ELF_ARCH EM_SPARC
657
d97ef72e
RH
658static inline void init_thread(struct target_pt_regs *regs,
659 struct image_info *infop)
853d6f7a 660{
f5155289
FB
661 regs->psr = 0;
662 regs->pc = infop->entry;
663 regs->npc = regs->pc + 4;
664 regs->y = 0;
665 regs->u_regs[14] = infop->start_stack - 16 * 4;
853d6f7a
FB
666}
667
a315a145 668#endif
853d6f7a
FB
669#endif
670
67867308
FB
671#ifdef TARGET_PPC
672
4ecd4d16 673#define ELF_MACHINE PPC_ELF_MACHINE
67867308
FB
674#define ELF_START_MMAP 0x80000000
675
e85e7c6e 676#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
84409ddb
JM
677
678#define elf_check_arch(x) ( (x) == EM_PPC64 )
679
d97ef72e 680#define ELF_CLASS ELFCLASS64
84409ddb
JM
681
682#else
683
d97ef72e 684#define ELF_CLASS ELFCLASS32
84409ddb
JM
685
686#endif
687
d97ef72e 688#define ELF_ARCH EM_PPC
67867308 689
df84e4f3
NF
690/* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
691 See arch/powerpc/include/asm/cputable.h. */
692enum {
3efa9a67 693 QEMU_PPC_FEATURE_32 = 0x80000000,
694 QEMU_PPC_FEATURE_64 = 0x40000000,
695 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
696 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
697 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
698 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
699 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
700 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
701 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
702 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
703 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
704 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
705 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
706 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
707 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
708 QEMU_PPC_FEATURE_CELL = 0x00010000,
709 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
710 QEMU_PPC_FEATURE_SMT = 0x00004000,
711 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
712 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
713 QEMU_PPC_FEATURE_PA6T = 0x00000800,
714 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
715 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
716 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
717 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
718 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
719
720 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
721 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
a60438dd
TM
722
723 /* Feature definitions in AT_HWCAP2. */
724 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
725 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
726 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
727 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
728 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
729 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
be0c46d4 730 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
df84e4f3
NF
731};
732
733#define ELF_HWCAP get_elf_hwcap()
734
735static uint32_t get_elf_hwcap(void)
736{
a2247f8e 737 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
df84e4f3
NF
738 uint32_t features = 0;
739
740 /* We don't have to be terribly complete here; the high points are
741 Altivec/FP/SPE support. Anything else is just a bonus. */
d97ef72e 742#define GET_FEATURE(flag, feature) \
a2247f8e 743 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
58eb5308
MW
744#define GET_FEATURE2(flags, feature) \
745 do { \
746 if ((cpu->env.insns_flags2 & flags) == flags) { \
747 features |= feature; \
748 } \
749 } while (0)
3efa9a67 750 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
751 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
752 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
753 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
754 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
755 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
756 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
757 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
0e019746
TM
758 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
759 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
760 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
761 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
762 QEMU_PPC_FEATURE_ARCH_2_06);
df84e4f3 763#undef GET_FEATURE
0e019746 764#undef GET_FEATURE2
df84e4f3
NF
765
766 return features;
767}
768
a60438dd
TM
769#define ELF_HWCAP2 get_elf_hwcap2()
770
771static uint32_t get_elf_hwcap2(void)
772{
773 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
774 uint32_t features = 0;
775
776#define GET_FEATURE(flag, feature) \
777 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
778#define GET_FEATURE2(flag, feature) \
779 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
780
781 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
782 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
783 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
784 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07);
be0c46d4 785 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00);
a60438dd
TM
786
787#undef GET_FEATURE
788#undef GET_FEATURE2
789
790 return features;
791}
792
f5155289
FB
793/*
794 * The requirements here are:
795 * - keep the final alignment of sp (sp & 0xf)
796 * - make sure the 32-bit value at the first 16 byte aligned position of
797 * AUXV is greater than 16 for glibc compatibility.
798 * AT_IGNOREPPC is used for that.
799 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
800 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
801 */
0bccf03d 802#define DLINFO_ARCH_ITEMS 5
d97ef72e
RH
803#define ARCH_DLINFO \
804 do { \
623e250a 805 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
d97ef72e 806 /* \
82991bed
PM
807 * Handle glibc compatibility: these magic entries must \
808 * be at the lowest addresses in the final auxv. \
d97ef72e
RH
809 */ \
810 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
811 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
82991bed
PM
812 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
813 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
814 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
d97ef72e 815 } while (0)
f5155289 816
67867308
FB
817static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
818{
67867308 819 _regs->gpr[1] = infop->start_stack;
e85e7c6e 820#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
d90b94cd 821 if (get_ppc64_abi(infop) < 2) {
2ccf97ec
PM
822 uint64_t val;
823 get_user_u64(val, infop->entry + 8);
824 _regs->gpr[2] = val + infop->load_bias;
825 get_user_u64(val, infop->entry);
826 infop->entry = val + infop->load_bias;
d90b94cd
DK
827 } else {
828 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
829 }
84409ddb 830#endif
67867308
FB
831 _regs->nip = infop->entry;
832}
833
e2f3e741
NF
834/* See linux kernel: arch/powerpc/include/asm/elf.h. */
835#define ELF_NREG 48
836typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
837
05390248 838static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
e2f3e741
NF
839{
840 int i;
841 target_ulong ccr = 0;
842
843 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
86cd7b2d 844 (*regs)[i] = tswapreg(env->gpr[i]);
e2f3e741
NF
845 }
846
86cd7b2d
PB
847 (*regs)[32] = tswapreg(env->nip);
848 (*regs)[33] = tswapreg(env->msr);
849 (*regs)[35] = tswapreg(env->ctr);
850 (*regs)[36] = tswapreg(env->lr);
851 (*regs)[37] = tswapreg(env->xer);
e2f3e741
NF
852
853 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
854 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
855 }
86cd7b2d 856 (*regs)[38] = tswapreg(ccr);
e2f3e741
NF
857}
858
859#define USE_ELF_CORE_DUMP
d97ef72e 860#define ELF_EXEC_PAGESIZE 4096
67867308
FB
861
862#endif
863
048f6b4d
FB
864#ifdef TARGET_MIPS
865
866#define ELF_START_MMAP 0x80000000
867
388bb21a
TS
868#ifdef TARGET_MIPS64
869#define ELF_CLASS ELFCLASS64
870#else
048f6b4d 871#define ELF_CLASS ELFCLASS32
388bb21a 872#endif
048f6b4d
FB
873#define ELF_ARCH EM_MIPS
874
f72541f3
AM
875#define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS)
876
d97ef72e
RH
877static inline void init_thread(struct target_pt_regs *regs,
878 struct image_info *infop)
048f6b4d 879{
623a930e 880 regs->cp0_status = 2 << CP0St_KSU;
048f6b4d
FB
881 regs->cp0_epc = infop->entry;
882 regs->regs[29] = infop->start_stack;
883}
884
51e52606
NF
885/* See linux kernel: arch/mips/include/asm/elf.h. */
886#define ELF_NREG 45
887typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
888
889/* See linux kernel: arch/mips/include/asm/reg.h. */
890enum {
891#ifdef TARGET_MIPS64
892 TARGET_EF_R0 = 0,
893#else
894 TARGET_EF_R0 = 6,
895#endif
896 TARGET_EF_R26 = TARGET_EF_R0 + 26,
897 TARGET_EF_R27 = TARGET_EF_R0 + 27,
898 TARGET_EF_LO = TARGET_EF_R0 + 32,
899 TARGET_EF_HI = TARGET_EF_R0 + 33,
900 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
901 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
902 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
903 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
904};
905
906/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
05390248 907static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
51e52606
NF
908{
909 int i;
910
911 for (i = 0; i < TARGET_EF_R0; i++) {
912 (*regs)[i] = 0;
913 }
914 (*regs)[TARGET_EF_R0] = 0;
915
916 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
a29f998d 917 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
51e52606
NF
918 }
919
920 (*regs)[TARGET_EF_R26] = 0;
921 (*regs)[TARGET_EF_R27] = 0;
a29f998d
PB
922 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
923 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
924 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
925 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
926 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
927 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
51e52606
NF
928}
929
930#define USE_ELF_CORE_DUMP
388bb21a
TS
931#define ELF_EXEC_PAGESIZE 4096
932
46a1ee4f
JC
933/* See arch/mips/include/uapi/asm/hwcap.h. */
934enum {
935 HWCAP_MIPS_R6 = (1 << 0),
936 HWCAP_MIPS_MSA = (1 << 1),
937};
938
939#define ELF_HWCAP get_elf_hwcap()
940
941static uint32_t get_elf_hwcap(void)
942{
943 MIPSCPU *cpu = MIPS_CPU(thread_cpu);
944 uint32_t hwcaps = 0;
945
946#define GET_FEATURE(flag, hwcap) \
947 do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0)
948
949 GET_FEATURE(ISA_MIPS32R6 | ISA_MIPS64R6, HWCAP_MIPS_R6);
950 GET_FEATURE(ASE_MSA, HWCAP_MIPS_MSA);
951
952#undef GET_FEATURE
953
954 return hwcaps;
955}
956
048f6b4d
FB
957#endif /* TARGET_MIPS */
958
b779e29e
EI
959#ifdef TARGET_MICROBLAZE
960
961#define ELF_START_MMAP 0x80000000
962
0d5d4699 963#define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
b779e29e
EI
964
965#define ELF_CLASS ELFCLASS32
0d5d4699 966#define ELF_ARCH EM_MICROBLAZE
b779e29e 967
d97ef72e
RH
968static inline void init_thread(struct target_pt_regs *regs,
969 struct image_info *infop)
b779e29e
EI
970{
971 regs->pc = infop->entry;
972 regs->r1 = infop->start_stack;
973
974}
975
b779e29e
EI
976#define ELF_EXEC_PAGESIZE 4096
977
e4cbd44d
EI
978#define USE_ELF_CORE_DUMP
979#define ELF_NREG 38
980typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
981
982/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
05390248 983static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
e4cbd44d
EI
984{
985 int i, pos = 0;
986
987 for (i = 0; i < 32; i++) {
86cd7b2d 988 (*regs)[pos++] = tswapreg(env->regs[i]);
e4cbd44d
EI
989 }
990
991 for (i = 0; i < 6; i++) {
86cd7b2d 992 (*regs)[pos++] = tswapreg(env->sregs[i]);
e4cbd44d
EI
993 }
994}
995
b779e29e
EI
996#endif /* TARGET_MICROBLAZE */
997
a0a839b6
MV
998#ifdef TARGET_NIOS2
999
1000#define ELF_START_MMAP 0x80000000
1001
1002#define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1003
1004#define ELF_CLASS ELFCLASS32
1005#define ELF_ARCH EM_ALTERA_NIOS2
1006
1007static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1008{
1009 regs->ea = infop->entry;
1010 regs->sp = infop->start_stack;
1011 regs->estatus = 0x3;
1012}
1013
1014#define ELF_EXEC_PAGESIZE 4096
1015
1016#define USE_ELF_CORE_DUMP
1017#define ELF_NREG 49
1018typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1019
1020/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1021static void elf_core_copy_regs(target_elf_gregset_t *regs,
1022 const CPUNios2State *env)
1023{
1024 int i;
1025
1026 (*regs)[0] = -1;
1027 for (i = 1; i < 8; i++) /* r0-r7 */
1028 (*regs)[i] = tswapreg(env->regs[i + 7]);
1029
1030 for (i = 8; i < 16; i++) /* r8-r15 */
1031 (*regs)[i] = tswapreg(env->regs[i - 8]);
1032
1033 for (i = 16; i < 24; i++) /* r16-r23 */
1034 (*regs)[i] = tswapreg(env->regs[i + 7]);
1035 (*regs)[24] = -1; /* R_ET */
1036 (*regs)[25] = -1; /* R_BT */
1037 (*regs)[26] = tswapreg(env->regs[R_GP]);
1038 (*regs)[27] = tswapreg(env->regs[R_SP]);
1039 (*regs)[28] = tswapreg(env->regs[R_FP]);
1040 (*regs)[29] = tswapreg(env->regs[R_EA]);
1041 (*regs)[30] = -1; /* R_SSTATUS */
1042 (*regs)[31] = tswapreg(env->regs[R_RA]);
1043
1044 (*regs)[32] = tswapreg(env->regs[R_PC]);
1045
1046 (*regs)[33] = -1; /* R_STATUS */
1047 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1048
1049 for (i = 35; i < 49; i++) /* ... */
1050 (*regs)[i] = -1;
1051}
1052
1053#endif /* TARGET_NIOS2 */
1054
d962783e
JL
1055#ifdef TARGET_OPENRISC
1056
1057#define ELF_START_MMAP 0x08000000
1058
d962783e
JL
1059#define ELF_ARCH EM_OPENRISC
1060#define ELF_CLASS ELFCLASS32
1061#define ELF_DATA ELFDATA2MSB
1062
1063static inline void init_thread(struct target_pt_regs *regs,
1064 struct image_info *infop)
1065{
1066 regs->pc = infop->entry;
1067 regs->gpr[1] = infop->start_stack;
1068}
1069
1070#define USE_ELF_CORE_DUMP
1071#define ELF_EXEC_PAGESIZE 8192
1072
1073/* See linux kernel arch/openrisc/include/asm/elf.h. */
1074#define ELF_NREG 34 /* gprs and pc, sr */
1075typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1076
1077static void elf_core_copy_regs(target_elf_gregset_t *regs,
1078 const CPUOpenRISCState *env)
1079{
1080 int i;
1081
1082 for (i = 0; i < 32; i++) {
d89e71e8 1083 (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
d962783e 1084 }
86cd7b2d 1085 (*regs)[32] = tswapreg(env->pc);
84775c43 1086 (*regs)[33] = tswapreg(cpu_get_sr(env));
d962783e
JL
1087}
1088#define ELF_HWCAP 0
1089#define ELF_PLATFORM NULL
1090
1091#endif /* TARGET_OPENRISC */
1092
fdf9b3e8
FB
1093#ifdef TARGET_SH4
1094
1095#define ELF_START_MMAP 0x80000000
1096
fdf9b3e8 1097#define ELF_CLASS ELFCLASS32
fdf9b3e8
FB
1098#define ELF_ARCH EM_SH
1099
d97ef72e
RH
1100static inline void init_thread(struct target_pt_regs *regs,
1101 struct image_info *infop)
fdf9b3e8 1102{
d97ef72e
RH
1103 /* Check other registers XXXXX */
1104 regs->pc = infop->entry;
1105 regs->regs[15] = infop->start_stack;
fdf9b3e8
FB
1106}
1107
7631c97e
NF
1108/* See linux kernel: arch/sh/include/asm/elf.h. */
1109#define ELF_NREG 23
1110typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1111
1112/* See linux kernel: arch/sh/include/asm/ptrace.h. */
1113enum {
1114 TARGET_REG_PC = 16,
1115 TARGET_REG_PR = 17,
1116 TARGET_REG_SR = 18,
1117 TARGET_REG_GBR = 19,
1118 TARGET_REG_MACH = 20,
1119 TARGET_REG_MACL = 21,
1120 TARGET_REG_SYSCALL = 22
1121};
1122
d97ef72e 1123static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
05390248 1124 const CPUSH4State *env)
7631c97e
NF
1125{
1126 int i;
1127
1128 for (i = 0; i < 16; i++) {
72cd500b 1129 (*regs)[i] = tswapreg(env->gregs[i]);
7631c97e
NF
1130 }
1131
86cd7b2d
PB
1132 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1133 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1134 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1135 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1136 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1137 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
7631c97e
NF
1138 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1139}
1140
1141#define USE_ELF_CORE_DUMP
fdf9b3e8
FB
1142#define ELF_EXEC_PAGESIZE 4096
1143
e42fd944
RH
1144enum {
1145 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
1146 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
1147 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1148 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
1149 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
1150 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
1151 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
1152 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
1153 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
1154 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
1155};
1156
1157#define ELF_HWCAP get_elf_hwcap()
1158
1159static uint32_t get_elf_hwcap(void)
1160{
1161 SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1162 uint32_t hwcap = 0;
1163
1164 hwcap |= SH_CPU_HAS_FPU;
1165
1166 if (cpu->env.features & SH_FEATURE_SH4A) {
1167 hwcap |= SH_CPU_HAS_LLSC;
1168 }
1169
1170 return hwcap;
1171}
1172
fdf9b3e8
FB
1173#endif
1174
48733d19
TS
1175#ifdef TARGET_CRIS
1176
1177#define ELF_START_MMAP 0x80000000
1178
48733d19 1179#define ELF_CLASS ELFCLASS32
48733d19
TS
1180#define ELF_ARCH EM_CRIS
1181
d97ef72e
RH
1182static inline void init_thread(struct target_pt_regs *regs,
1183 struct image_info *infop)
48733d19 1184{
d97ef72e 1185 regs->erp = infop->entry;
48733d19
TS
1186}
1187
48733d19
TS
1188#define ELF_EXEC_PAGESIZE 8192
1189
1190#endif
1191
e6e5906b
PB
1192#ifdef TARGET_M68K
1193
1194#define ELF_START_MMAP 0x80000000
1195
d97ef72e 1196#define ELF_CLASS ELFCLASS32
d97ef72e 1197#define ELF_ARCH EM_68K
e6e5906b
PB
1198
1199/* ??? Does this need to do anything?
d97ef72e 1200 #define ELF_PLAT_INIT(_r) */
e6e5906b 1201
d97ef72e
RH
1202static inline void init_thread(struct target_pt_regs *regs,
1203 struct image_info *infop)
e6e5906b
PB
1204{
1205 regs->usp = infop->start_stack;
1206 regs->sr = 0;
1207 regs->pc = infop->entry;
1208}
1209
7a93cc55
NF
1210/* See linux kernel: arch/m68k/include/asm/elf.h. */
1211#define ELF_NREG 20
1212typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1213
05390248 1214static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
7a93cc55 1215{
86cd7b2d
PB
1216 (*regs)[0] = tswapreg(env->dregs[1]);
1217 (*regs)[1] = tswapreg(env->dregs[2]);
1218 (*regs)[2] = tswapreg(env->dregs[3]);
1219 (*regs)[3] = tswapreg(env->dregs[4]);
1220 (*regs)[4] = tswapreg(env->dregs[5]);
1221 (*regs)[5] = tswapreg(env->dregs[6]);
1222 (*regs)[6] = tswapreg(env->dregs[7]);
1223 (*regs)[7] = tswapreg(env->aregs[0]);
1224 (*regs)[8] = tswapreg(env->aregs[1]);
1225 (*regs)[9] = tswapreg(env->aregs[2]);
1226 (*regs)[10] = tswapreg(env->aregs[3]);
1227 (*regs)[11] = tswapreg(env->aregs[4]);
1228 (*regs)[12] = tswapreg(env->aregs[5]);
1229 (*regs)[13] = tswapreg(env->aregs[6]);
1230 (*regs)[14] = tswapreg(env->dregs[0]);
1231 (*regs)[15] = tswapreg(env->aregs[7]);
1232 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1233 (*regs)[17] = tswapreg(env->sr);
1234 (*regs)[18] = tswapreg(env->pc);
7a93cc55
NF
1235 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
1236}
1237
1238#define USE_ELF_CORE_DUMP
d97ef72e 1239#define ELF_EXEC_PAGESIZE 8192
e6e5906b
PB
1240
1241#endif
1242
7a3148a9
JM
1243#ifdef TARGET_ALPHA
1244
1245#define ELF_START_MMAP (0x30000000000ULL)
1246
7a3148a9 1247#define ELF_CLASS ELFCLASS64
7a3148a9
JM
1248#define ELF_ARCH EM_ALPHA
1249
d97ef72e
RH
1250static inline void init_thread(struct target_pt_regs *regs,
1251 struct image_info *infop)
7a3148a9
JM
1252{
1253 regs->pc = infop->entry;
1254 regs->ps = 8;
1255 regs->usp = infop->start_stack;
7a3148a9
JM
1256}
1257
7a3148a9
JM
1258#define ELF_EXEC_PAGESIZE 8192
1259
1260#endif /* TARGET_ALPHA */
1261
a4c075f1
UH
1262#ifdef TARGET_S390X
1263
1264#define ELF_START_MMAP (0x20000000000ULL)
1265
a4c075f1
UH
1266#define ELF_CLASS ELFCLASS64
1267#define ELF_DATA ELFDATA2MSB
1268#define ELF_ARCH EM_S390
1269
1270static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1271{
1272 regs->psw.addr = infop->entry;
1273 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1274 regs->gprs[15] = infop->start_stack;
1275}
1276
1277#endif /* TARGET_S390X */
1278
b16189b2
CG
1279#ifdef TARGET_TILEGX
1280
1281/* 42 bits real used address, a half for user mode */
1282#define ELF_START_MMAP (0x00000020000000000ULL)
1283
1284#define elf_check_arch(x) ((x) == EM_TILEGX)
1285
1286#define ELF_CLASS ELFCLASS64
1287#define ELF_DATA ELFDATA2LSB
1288#define ELF_ARCH EM_TILEGX
1289
1290static inline void init_thread(struct target_pt_regs *regs,
1291 struct image_info *infop)
1292{
1293 regs->pc = infop->entry;
1294 regs->sp = infop->start_stack;
1295
1296}
1297
1298#define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */
1299
1300#endif /* TARGET_TILEGX */
1301
47ae93cd
MC
1302#ifdef TARGET_RISCV
1303
1304#define ELF_START_MMAP 0x80000000
1305#define ELF_ARCH EM_RISCV
1306
1307#ifdef TARGET_RISCV32
1308#define ELF_CLASS ELFCLASS32
1309#else
1310#define ELF_CLASS ELFCLASS64
1311#endif
1312
1313static inline void init_thread(struct target_pt_regs *regs,
1314 struct image_info *infop)
1315{
1316 regs->sepc = infop->entry;
1317 regs->sp = infop->start_stack;
1318}
1319
1320#define ELF_EXEC_PAGESIZE 4096
1321
1322#endif /* TARGET_RISCV */
1323
7c248bcd
RH
1324#ifdef TARGET_HPPA
1325
1326#define ELF_START_MMAP 0x80000000
1327#define ELF_CLASS ELFCLASS32
1328#define ELF_ARCH EM_PARISC
1329#define ELF_PLATFORM "PARISC"
1330#define STACK_GROWS_DOWN 0
1331#define STACK_ALIGNMENT 64
1332
1333static inline void init_thread(struct target_pt_regs *regs,
1334 struct image_info *infop)
1335{
1336 regs->iaoq[0] = infop->entry;
1337 regs->iaoq[1] = infop->entry + 4;
1338 regs->gr[23] = 0;
1339 regs->gr[24] = infop->arg_start;
1340 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1341 /* The top-of-stack contains a linkage buffer. */
1342 regs->gr[30] = infop->start_stack + 64;
1343 regs->gr[31] = infop->entry;
1344}
1345
1346#endif /* TARGET_HPPA */
1347
ba7651fb
MF
1348#ifdef TARGET_XTENSA
1349
1350#define ELF_START_MMAP 0x20000000
1351
1352#define ELF_CLASS ELFCLASS32
1353#define ELF_ARCH EM_XTENSA
1354
1355static inline void init_thread(struct target_pt_regs *regs,
1356 struct image_info *infop)
1357{
1358 regs->windowbase = 0;
1359 regs->windowstart = 1;
1360 regs->areg[1] = infop->start_stack;
1361 regs->pc = infop->entry;
1362}
1363
1364/* See linux kernel: arch/xtensa/include/asm/elf.h. */
1365#define ELF_NREG 128
1366typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1367
1368enum {
1369 TARGET_REG_PC,
1370 TARGET_REG_PS,
1371 TARGET_REG_LBEG,
1372 TARGET_REG_LEND,
1373 TARGET_REG_LCOUNT,
1374 TARGET_REG_SAR,
1375 TARGET_REG_WINDOWSTART,
1376 TARGET_REG_WINDOWBASE,
1377 TARGET_REG_THREADPTR,
1378 TARGET_REG_AR0 = 64,
1379};
1380
1381static void elf_core_copy_regs(target_elf_gregset_t *regs,
1382 const CPUXtensaState *env)
1383{
1384 unsigned i;
1385
1386 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1387 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1388 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1389 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1390 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1391 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1392 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1393 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1394 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1395 xtensa_sync_phys_from_window((CPUXtensaState *)env);
1396 for (i = 0; i < env->config->nareg; ++i) {
1397 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1398 }
1399}
1400
1401#define USE_ELF_CORE_DUMP
1402#define ELF_EXEC_PAGESIZE 4096
1403
1404#endif /* TARGET_XTENSA */
1405
15338fd7
FB
1406#ifndef ELF_PLATFORM
1407#define ELF_PLATFORM (NULL)
1408#endif
1409
75be901c
PC
1410#ifndef ELF_MACHINE
1411#define ELF_MACHINE ELF_ARCH
1412#endif
1413
d276a604
PC
1414#ifndef elf_check_arch
1415#define elf_check_arch(x) ((x) == ELF_ARCH)
1416#endif
1417
15338fd7
FB
1418#ifndef ELF_HWCAP
1419#define ELF_HWCAP 0
1420#endif
1421
7c4ee5bc
RH
1422#ifndef STACK_GROWS_DOWN
1423#define STACK_GROWS_DOWN 1
1424#endif
1425
1426#ifndef STACK_ALIGNMENT
1427#define STACK_ALIGNMENT 16
1428#endif
1429
992f48a0 1430#ifdef TARGET_ABI32
cb33da57 1431#undef ELF_CLASS
992f48a0 1432#define ELF_CLASS ELFCLASS32
cb33da57
BS
1433#undef bswaptls
1434#define bswaptls(ptr) bswap32s(ptr)
1435#endif
1436
31e31b8a 1437#include "elf.h"
09bfb054 1438
09bfb054
FB
1439struct exec
1440{
d97ef72e
RH
1441 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
1442 unsigned int a_text; /* length of text, in bytes */
1443 unsigned int a_data; /* length of data, in bytes */
1444 unsigned int a_bss; /* length of uninitialized data area, in bytes */
1445 unsigned int a_syms; /* length of symbol table data in file, in bytes */
1446 unsigned int a_entry; /* start address */
1447 unsigned int a_trsize; /* length of relocation info for text, in bytes */
1448 unsigned int a_drsize; /* length of relocation info for data, in bytes */
09bfb054
FB
1449};
1450
1451
1452#define N_MAGIC(exec) ((exec).a_info & 0xffff)
1453#define OMAGIC 0407
1454#define NMAGIC 0410
1455#define ZMAGIC 0413
1456#define QMAGIC 0314
1457
31e31b8a 1458/* Necessary parameters */
94894ff2
SB
1459#define TARGET_ELF_EXEC_PAGESIZE \
1460 (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1461 TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1462#define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
79cb1f1d
YK
1463#define TARGET_ELF_PAGESTART(_v) ((_v) & \
1464 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
54936004 1465#define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
31e31b8a 1466
444cd5c3 1467#define DLINFO_ITEMS 15
31e31b8a 1468
09bfb054
FB
1469static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1470{
d97ef72e 1471 memcpy(to, from, n);
09bfb054 1472}
d691f669 1473
31e31b8a 1474#ifdef BSWAP_NEEDED
92a31b1f 1475static void bswap_ehdr(struct elfhdr *ehdr)
31e31b8a 1476{
d97ef72e
RH
1477 bswap16s(&ehdr->e_type); /* Object file type */
1478 bswap16s(&ehdr->e_machine); /* Architecture */
1479 bswap32s(&ehdr->e_version); /* Object file version */
1480 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
1481 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
1482 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
1483 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
1484 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
1485 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
1486 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
1487 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
1488 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
1489 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
31e31b8a
FB
1490}
1491
991f8f0c 1492static void bswap_phdr(struct elf_phdr *phdr, int phnum)
31e31b8a 1493{
991f8f0c
RH
1494 int i;
1495 for (i = 0; i < phnum; ++i, ++phdr) {
1496 bswap32s(&phdr->p_type); /* Segment type */
1497 bswap32s(&phdr->p_flags); /* Segment flags */
1498 bswaptls(&phdr->p_offset); /* Segment file offset */
1499 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
1500 bswaptls(&phdr->p_paddr); /* Segment physical address */
1501 bswaptls(&phdr->p_filesz); /* Segment size in file */
1502 bswaptls(&phdr->p_memsz); /* Segment size in memory */
1503 bswaptls(&phdr->p_align); /* Segment alignment */
1504 }
31e31b8a 1505}
689f936f 1506
991f8f0c 1507static void bswap_shdr(struct elf_shdr *shdr, int shnum)
689f936f 1508{
991f8f0c
RH
1509 int i;
1510 for (i = 0; i < shnum; ++i, ++shdr) {
1511 bswap32s(&shdr->sh_name);
1512 bswap32s(&shdr->sh_type);
1513 bswaptls(&shdr->sh_flags);
1514 bswaptls(&shdr->sh_addr);
1515 bswaptls(&shdr->sh_offset);
1516 bswaptls(&shdr->sh_size);
1517 bswap32s(&shdr->sh_link);
1518 bswap32s(&shdr->sh_info);
1519 bswaptls(&shdr->sh_addralign);
1520 bswaptls(&shdr->sh_entsize);
1521 }
689f936f
FB
1522}
1523
7a3148a9 1524static void bswap_sym(struct elf_sym *sym)
689f936f
FB
1525{
1526 bswap32s(&sym->st_name);
7a3148a9
JM
1527 bswaptls(&sym->st_value);
1528 bswaptls(&sym->st_size);
689f936f
FB
1529 bswap16s(&sym->st_shndx);
1530}
5dd0db52
SM
1531
1532#ifdef TARGET_MIPS
1533static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
1534{
1535 bswap16s(&abiflags->version);
1536 bswap32s(&abiflags->ases);
1537 bswap32s(&abiflags->isa_ext);
1538 bswap32s(&abiflags->flags1);
1539 bswap32s(&abiflags->flags2);
1540}
1541#endif
991f8f0c
RH
1542#else
1543static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1544static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1545static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1546static inline void bswap_sym(struct elf_sym *sym) { }
5dd0db52
SM
1547#ifdef TARGET_MIPS
1548static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
1549#endif
31e31b8a
FB
1550#endif
1551
edf8e2af 1552#ifdef USE_ELF_CORE_DUMP
9349b4f9 1553static int elf_core_dump(int, const CPUArchState *);
edf8e2af 1554#endif /* USE_ELF_CORE_DUMP */
682674b8 1555static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
edf8e2af 1556
9058abdd
RH
1557/* Verify the portions of EHDR within E_IDENT for the target.
1558 This can be performed before bswapping the entire header. */
1559static bool elf_check_ident(struct elfhdr *ehdr)
1560{
1561 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1562 && ehdr->e_ident[EI_MAG1] == ELFMAG1
1563 && ehdr->e_ident[EI_MAG2] == ELFMAG2
1564 && ehdr->e_ident[EI_MAG3] == ELFMAG3
1565 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1566 && ehdr->e_ident[EI_DATA] == ELF_DATA
1567 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1568}
1569
1570/* Verify the portions of EHDR outside of E_IDENT for the target.
1571 This has to wait until after bswapping the header. */
1572static bool elf_check_ehdr(struct elfhdr *ehdr)
1573{
1574 return (elf_check_arch(ehdr->e_machine)
1575 && ehdr->e_ehsize == sizeof(struct elfhdr)
1576 && ehdr->e_phentsize == sizeof(struct elf_phdr)
9058abdd
RH
1577 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1578}
1579
31e31b8a 1580/*
e5fe0c52 1581 * 'copy_elf_strings()' copies argument/envelope strings from user
31e31b8a
FB
1582 * memory to free pages in kernel mem. These are in a format ready
1583 * to be put directly into the top of new user memory.
1584 *
1585 */
59baae9a
SB
1586static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1587 abi_ulong p, abi_ulong stack_limit)
31e31b8a 1588{
59baae9a 1589 char *tmp;
7c4ee5bc 1590 int len, i;
59baae9a 1591 abi_ulong top = p;
31e31b8a
FB
1592
1593 if (!p) {
d97ef72e 1594 return 0; /* bullet-proofing */
31e31b8a 1595 }
59baae9a 1596
7c4ee5bc
RH
1597 if (STACK_GROWS_DOWN) {
1598 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1599 for (i = argc - 1; i >= 0; --i) {
1600 tmp = argv[i];
1601 if (!tmp) {
1602 fprintf(stderr, "VFS: argc is wrong");
1603 exit(-1);
1604 }
1605 len = strlen(tmp) + 1;
1606 tmp += len;
59baae9a 1607
7c4ee5bc
RH
1608 if (len > (p - stack_limit)) {
1609 return 0;
1610 }
1611 while (len) {
1612 int bytes_to_copy = (len > offset) ? offset : len;
1613 tmp -= bytes_to_copy;
1614 p -= bytes_to_copy;
1615 offset -= bytes_to_copy;
1616 len -= bytes_to_copy;
1617
1618 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1619
1620 if (offset == 0) {
1621 memcpy_to_target(p, scratch, top - p);
1622 top = p;
1623 offset = TARGET_PAGE_SIZE;
1624 }
1625 }
d97ef72e 1626 }
7c4ee5bc
RH
1627 if (p != top) {
1628 memcpy_to_target(p, scratch + offset, top - p);
d97ef72e 1629 }
7c4ee5bc
RH
1630 } else {
1631 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1632 for (i = 0; i < argc; ++i) {
1633 tmp = argv[i];
1634 if (!tmp) {
1635 fprintf(stderr, "VFS: argc is wrong");
1636 exit(-1);
1637 }
1638 len = strlen(tmp) + 1;
1639 if (len > (stack_limit - p)) {
1640 return 0;
1641 }
1642 while (len) {
1643 int bytes_to_copy = (len > remaining) ? remaining : len;
1644
1645 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1646
1647 tmp += bytes_to_copy;
1648 remaining -= bytes_to_copy;
1649 p += bytes_to_copy;
1650 len -= bytes_to_copy;
1651
1652 if (remaining == 0) {
1653 memcpy_to_target(top, scratch, p - top);
1654 top = p;
1655 remaining = TARGET_PAGE_SIZE;
1656 }
d97ef72e
RH
1657 }
1658 }
7c4ee5bc
RH
1659 if (p != top) {
1660 memcpy_to_target(top, scratch, p - top);
1661 }
59baae9a
SB
1662 }
1663
31e31b8a
FB
1664 return p;
1665}
1666
59baae9a
SB
1667/* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1668 * argument/environment space. Newer kernels (>2.6.33) allow more,
1669 * dependent on stack size, but guarantee at least 32 pages for
1670 * backwards compatibility.
1671 */
1672#define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1673
1674static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
992f48a0 1675 struct image_info *info)
53a5960a 1676{
59baae9a 1677 abi_ulong size, error, guard;
31e31b8a 1678
703e0e89 1679 size = guest_stack_size;
59baae9a
SB
1680 if (size < STACK_LOWER_LIMIT) {
1681 size = STACK_LOWER_LIMIT;
60dcbcb5
RH
1682 }
1683 guard = TARGET_PAGE_SIZE;
1684 if (guard < qemu_real_host_page_size) {
1685 guard = qemu_real_host_page_size;
1686 }
1687
1688 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1689 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
09bfb054 1690 if (error == -1) {
60dcbcb5 1691 perror("mmap stack");
09bfb054
FB
1692 exit(-1);
1693 }
31e31b8a 1694
60dcbcb5 1695 /* We reserve one extra page at the top of the stack as guard. */
7c4ee5bc
RH
1696 if (STACK_GROWS_DOWN) {
1697 target_mprotect(error, guard, PROT_NONE);
1698 info->stack_limit = error + guard;
1699 return info->stack_limit + size - sizeof(void *);
1700 } else {
1701 target_mprotect(error + size, guard, PROT_NONE);
1702 info->stack_limit = error + size;
1703 return error;
1704 }
31e31b8a
FB
1705}
1706
cf129f3a
RH
1707/* Map and zero the bss. We need to explicitly zero any fractional pages
1708 after the data section (i.e. bss). */
1709static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
31e31b8a 1710{
cf129f3a
RH
1711 uintptr_t host_start, host_map_start, host_end;
1712
1713 last_bss = TARGET_PAGE_ALIGN(last_bss);
1714
1715 /* ??? There is confusion between qemu_real_host_page_size and
1716 qemu_host_page_size here and elsewhere in target_mmap, which
1717 may lead to the end of the data section mapping from the file
1718 not being mapped. At least there was an explicit test and
1719 comment for that here, suggesting that "the file size must
1720 be known". The comment probably pre-dates the introduction
1721 of the fstat system call in target_mmap which does in fact
1722 find out the size. What isn't clear is if the workaround
1723 here is still actually needed. For now, continue with it,
1724 but merge it with the "normal" mmap that would allocate the bss. */
1725
1726 host_start = (uintptr_t) g2h(elf_bss);
1727 host_end = (uintptr_t) g2h(last_bss);
0c2d70c4 1728 host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
cf129f3a
RH
1729
1730 if (host_map_start < host_end) {
1731 void *p = mmap((void *)host_map_start, host_end - host_map_start,
1732 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1733 if (p == MAP_FAILED) {
1734 perror("cannot mmap brk");
1735 exit(-1);
853d6f7a 1736 }
f46e9a0b 1737 }
853d6f7a 1738
f46e9a0b
TM
1739 /* Ensure that the bss page(s) are valid */
1740 if ((page_get_flags(last_bss-1) & prot) != prot) {
1741 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
cf129f3a 1742 }
31e31b8a 1743
cf129f3a
RH
1744 if (host_start < host_map_start) {
1745 memset((void *)host_start, 0, host_map_start - host_start);
1746 }
1747}
53a5960a 1748
cf58affe
CL
1749#ifdef TARGET_ARM
1750static int elf_is_fdpic(struct elfhdr *exec)
1751{
1752 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1753}
1754#else
a99856cd
CL
1755/* Default implementation, always false. */
1756static int elf_is_fdpic(struct elfhdr *exec)
1757{
1758 return 0;
1759}
cf58affe 1760#endif
a99856cd 1761
1af02e83
MF
1762static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1763{
1764 uint16_t n;
1765 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1766
1767 /* elf32_fdpic_loadseg */
1768 n = info->nsegs;
1769 while (n--) {
1770 sp -= 12;
1771 put_user_u32(loadsegs[n].addr, sp+0);
1772 put_user_u32(loadsegs[n].p_vaddr, sp+4);
1773 put_user_u32(loadsegs[n].p_memsz, sp+8);
1774 }
1775
1776 /* elf32_fdpic_loadmap */
1777 sp -= 4;
1778 put_user_u16(0, sp+0); /* version */
1779 put_user_u16(info->nsegs, sp+2); /* nsegs */
1780
1781 info->personality = PER_LINUX_FDPIC;
1782 info->loadmap_addr = sp;
1783
1784 return sp;
1785}
1af02e83 1786
992f48a0 1787static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
8e62a717
RH
1788 struct elfhdr *exec,
1789 struct image_info *info,
1790 struct image_info *interp_info)
31e31b8a 1791{
d97ef72e 1792 abi_ulong sp;
7c4ee5bc 1793 abi_ulong u_argc, u_argv, u_envp, u_auxv;
d97ef72e 1794 int size;
14322bad
LA
1795 int i;
1796 abi_ulong u_rand_bytes;
1797 uint8_t k_rand_bytes[16];
d97ef72e
RH
1798 abi_ulong u_platform;
1799 const char *k_platform;
1800 const int n = sizeof(elf_addr_t);
1801
1802 sp = p;
1af02e83 1803
1af02e83
MF
1804 /* Needs to be before we load the env/argc/... */
1805 if (elf_is_fdpic(exec)) {
1806 /* Need 4 byte alignment for these structs */
1807 sp &= ~3;
1808 sp = loader_build_fdpic_loadmap(info, sp);
1809 info->other_info = interp_info;
1810 if (interp_info) {
1811 interp_info->other_info = info;
1812 sp = loader_build_fdpic_loadmap(interp_info, sp);
3cb10cfa
CL
1813 info->interpreter_loadmap_addr = interp_info->loadmap_addr;
1814 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
1815 } else {
1816 info->interpreter_loadmap_addr = 0;
1817 info->interpreter_pt_dynamic_addr = 0;
1af02e83
MF
1818 }
1819 }
1af02e83 1820
d97ef72e
RH
1821 u_platform = 0;
1822 k_platform = ELF_PLATFORM;
1823 if (k_platform) {
1824 size_t len = strlen(k_platform) + 1;
7c4ee5bc
RH
1825 if (STACK_GROWS_DOWN) {
1826 sp -= (len + n - 1) & ~(n - 1);
1827 u_platform = sp;
1828 /* FIXME - check return value of memcpy_to_target() for failure */
1829 memcpy_to_target(sp, k_platform, len);
1830 } else {
1831 memcpy_to_target(sp, k_platform, len);
1832 u_platform = sp;
1833 sp += len + 1;
1834 }
1835 }
1836
1837 /* Provide 16 byte alignment for the PRNG, and basic alignment for
1838 * the argv and envp pointers.
1839 */
1840 if (STACK_GROWS_DOWN) {
1841 sp = QEMU_ALIGN_DOWN(sp, 16);
1842 } else {
1843 sp = QEMU_ALIGN_UP(sp, 16);
d97ef72e 1844 }
14322bad
LA
1845
1846 /*
1847 * Generate 16 random bytes for userspace PRNG seeding (not
1848 * cryptically secure but it's not the aim of QEMU).
1849 */
14322bad
LA
1850 for (i = 0; i < 16; i++) {
1851 k_rand_bytes[i] = rand();
1852 }
7c4ee5bc
RH
1853 if (STACK_GROWS_DOWN) {
1854 sp -= 16;
1855 u_rand_bytes = sp;
1856 /* FIXME - check return value of memcpy_to_target() for failure */
1857 memcpy_to_target(sp, k_rand_bytes, 16);
1858 } else {
1859 memcpy_to_target(sp, k_rand_bytes, 16);
1860 u_rand_bytes = sp;
1861 sp += 16;
1862 }
14322bad 1863
d97ef72e
RH
1864 size = (DLINFO_ITEMS + 1) * 2;
1865 if (k_platform)
1866 size += 2;
f5155289 1867#ifdef DLINFO_ARCH_ITEMS
d97ef72e 1868 size += DLINFO_ARCH_ITEMS * 2;
ad6919dc
PM
1869#endif
1870#ifdef ELF_HWCAP2
1871 size += 2;
f5155289 1872#endif
f516511e
PM
1873 info->auxv_len = size * n;
1874
d97ef72e 1875 size += envc + argc + 2;
b9329d4b 1876 size += 1; /* argc itself */
d97ef72e 1877 size *= n;
7c4ee5bc
RH
1878
1879 /* Allocate space and finalize stack alignment for entry now. */
1880 if (STACK_GROWS_DOWN) {
1881 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
1882 sp = u_argc;
1883 } else {
1884 u_argc = sp;
1885 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
1886 }
1887
1888 u_argv = u_argc + n;
1889 u_envp = u_argv + (argc + 1) * n;
1890 u_auxv = u_envp + (envc + 1) * n;
1891 info->saved_auxv = u_auxv;
1892 info->arg_start = u_argv;
1893 info->arg_end = u_argv + argc * n;
d97ef72e
RH
1894
1895 /* This is correct because Linux defines
1896 * elf_addr_t as Elf32_Off / Elf64_Off
1897 */
1898#define NEW_AUX_ENT(id, val) do { \
7c4ee5bc
RH
1899 put_user_ual(id, u_auxv); u_auxv += n; \
1900 put_user_ual(val, u_auxv); u_auxv += n; \
d97ef72e
RH
1901 } while(0)
1902
82991bed
PM
1903#ifdef ARCH_DLINFO
1904 /*
1905 * ARCH_DLINFO must come first so platform specific code can enforce
1906 * special alignment requirements on the AUXV if necessary (eg. PPC).
1907 */
1908 ARCH_DLINFO;
1909#endif
f516511e
PM
1910 /* There must be exactly DLINFO_ITEMS entries here, or the assert
1911 * on info->auxv_len will trigger.
1912 */
8e62a717 1913 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
d97ef72e
RH
1914 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1915 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
33143c44
LV
1916 if ((info->alignment & ~qemu_host_page_mask) != 0) {
1917 /* Target doesn't support host page size alignment */
1918 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
1919 } else {
1920 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
1921 qemu_host_page_size)));
1922 }
8e62a717 1923 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
d97ef72e 1924 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
8e62a717 1925 NEW_AUX_ENT(AT_ENTRY, info->entry);
d97ef72e
RH
1926 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1927 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1928 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1929 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1930 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1931 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
14322bad 1932 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
444cd5c3 1933 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
14322bad 1934
ad6919dc
PM
1935#ifdef ELF_HWCAP2
1936 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
1937#endif
1938
7c4ee5bc 1939 if (u_platform) {
d97ef72e 1940 NEW_AUX_ENT(AT_PLATFORM, u_platform);
7c4ee5bc 1941 }
7c4ee5bc 1942 NEW_AUX_ENT (AT_NULL, 0);
f5155289
FB
1943#undef NEW_AUX_ENT
1944
f516511e
PM
1945 /* Check that our initial calculation of the auxv length matches how much
1946 * we actually put into it.
1947 */
1948 assert(info->auxv_len == u_auxv - info->saved_auxv);
7c4ee5bc
RH
1949
1950 put_user_ual(argc, u_argc);
1951
1952 p = info->arg_strings;
1953 for (i = 0; i < argc; ++i) {
1954 put_user_ual(p, u_argv);
1955 u_argv += n;
1956 p += target_strlen(p) + 1;
1957 }
1958 put_user_ual(0, u_argv);
1959
1960 p = info->env_strings;
1961 for (i = 0; i < envc; ++i) {
1962 put_user_ual(p, u_envp);
1963 u_envp += n;
1964 p += target_strlen(p) + 1;
1965 }
1966 put_user_ual(0, u_envp);
edf8e2af 1967
d97ef72e 1968 return sp;
31e31b8a
FB
1969}
1970
dce10401
MI
1971unsigned long init_guest_space(unsigned long host_start,
1972 unsigned long host_size,
1973 unsigned long guest_start,
1974 bool fixed)
1975{
293f2060 1976 unsigned long current_start, aligned_start;
dce10401
MI
1977 int flags;
1978
1979 assert(host_start || host_size);
1980
1981 /* If just a starting address is given, then just verify that
1982 * address. */
1983 if (host_start && !host_size) {
8756e136 1984#if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
c3637eaf 1985 if (init_guest_commpage(host_start, host_size) != 1) {
dce10401
MI
1986 return (unsigned long)-1;
1987 }
8756e136
LS
1988#endif
1989 return host_start;
dce10401
MI
1990 }
1991
1992 /* Setup the initial flags and start address. */
1993 current_start = host_start & qemu_host_page_mask;
1994 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
1995 if (fixed) {
1996 flags |= MAP_FIXED;
1997 }
1998
1999 /* Otherwise, a non-zero size region of memory needs to be mapped
2000 * and validated. */
2a53535a
LS
2001
2002#if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
2003 /* On 32-bit ARM, we need to map not just the usable memory, but
2004 * also the commpage. Try to find a suitable place by allocating
2005 * a big chunk for all of it. If host_start, then the naive
2006 * strategy probably does good enough.
2007 */
2008 if (!host_start) {
2009 unsigned long guest_full_size, host_full_size, real_start;
2010
2011 guest_full_size =
2012 (0xffff0f00 & qemu_host_page_mask) + qemu_host_page_size;
2013 host_full_size = guest_full_size - guest_start;
2014 real_start = (unsigned long)
2015 mmap(NULL, host_full_size, PROT_NONE, flags, -1, 0);
2016 if (real_start == (unsigned long)-1) {
2017 if (host_size < host_full_size - qemu_host_page_size) {
2018 /* We failed to map a continous segment, but we're
2019 * allowed to have a gap between the usable memory and
2020 * the commpage where other things can be mapped.
2021 * This sparseness gives us more flexibility to find
2022 * an address range.
2023 */
2024 goto naive;
2025 }
2026 return (unsigned long)-1;
2027 }
2028 munmap((void *)real_start, host_full_size);
2029 if (real_start & ~qemu_host_page_mask) {
2030 /* The same thing again, but with an extra qemu_host_page_size
2031 * so that we can shift around alignment.
2032 */
2033 unsigned long real_size = host_full_size + qemu_host_page_size;
2034 real_start = (unsigned long)
2035 mmap(NULL, real_size, PROT_NONE, flags, -1, 0);
2036 if (real_start == (unsigned long)-1) {
2037 if (host_size < host_full_size - qemu_host_page_size) {
2038 goto naive;
2039 }
2040 return (unsigned long)-1;
2041 }
2042 munmap((void *)real_start, real_size);
2043 real_start = HOST_PAGE_ALIGN(real_start);
2044 }
2045 current_start = real_start;
2046 }
2047 naive:
2048#endif
2049
dce10401 2050 while (1) {
293f2060
LS
2051 unsigned long real_start, real_size, aligned_size;
2052 aligned_size = real_size = host_size;
806d1021 2053
dce10401
MI
2054 /* Do not use mmap_find_vma here because that is limited to the
2055 * guest address space. We are going to make the
2056 * guest address space fit whatever we're given.
2057 */
2058 real_start = (unsigned long)
2059 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
2060 if (real_start == (unsigned long)-1) {
2061 return (unsigned long)-1;
2062 }
2063
aac362e4
LS
2064 /* Check to see if the address is valid. */
2065 if (host_start && real_start != current_start) {
2066 goto try_again;
2067 }
2068
806d1021
MI
2069 /* Ensure the address is properly aligned. */
2070 if (real_start & ~qemu_host_page_mask) {
293f2060
LS
2071 /* Ideally, we adjust like
2072 *
2073 * pages: [ ][ ][ ][ ][ ]
2074 * old: [ real ]
2075 * [ aligned ]
2076 * new: [ real ]
2077 * [ aligned ]
2078 *
2079 * But if there is something else mapped right after it,
2080 * then obviously it won't have room to grow, and the
2081 * kernel will put the new larger real someplace else with
2082 * unknown alignment (if we made it to here, then
2083 * fixed=false). Which is why we grow real by a full page
2084 * size, instead of by part of one; so that even if we get
2085 * moved, we can still guarantee alignment. But this does
2086 * mean that there is a padding of < 1 page both before
2087 * and after the aligned range; the "after" could could
2088 * cause problems for ARM emulation where it could butt in
2089 * to where we need to put the commpage.
2090 */
806d1021 2091 munmap((void *)real_start, host_size);
293f2060 2092 real_size = aligned_size + qemu_host_page_size;
806d1021
MI
2093 real_start = (unsigned long)
2094 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
2095 if (real_start == (unsigned long)-1) {
2096 return (unsigned long)-1;
2097 }
293f2060
LS
2098 aligned_start = HOST_PAGE_ALIGN(real_start);
2099 } else {
2100 aligned_start = real_start;
806d1021
MI
2101 }
2102
8756e136 2103#if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
7ad75eea
LS
2104 /* On 32-bit ARM, we need to also be able to map the commpage. */
2105 int valid = init_guest_commpage(aligned_start - guest_start,
2106 aligned_size + guest_start);
2107 if (valid == -1) {
2108 munmap((void *)real_start, real_size);
2109 return (unsigned long)-1;
2110 } else if (valid == 0) {
2111 goto try_again;
dce10401 2112 }
7ad75eea
LS
2113#endif
2114
2115 /* If nothing has said `return -1` or `goto try_again` yet,
2116 * then the address we have is good.
2117 */
2118 break;
dce10401 2119
7ad75eea 2120 try_again:
dce10401
MI
2121 /* That address didn't work. Unmap and try a different one.
2122 * The address the host picked because is typically right at
2123 * the top of the host address space and leaves the guest with
2124 * no usable address space. Resort to a linear search. We
2125 * already compensated for mmap_min_addr, so this should not
2126 * happen often. Probably means we got unlucky and host
2127 * address space randomization put a shared library somewhere
2128 * inconvenient.
8c17d862
LS
2129 *
2130 * This is probably a good strategy if host_start, but is
2131 * probably a bad strategy if not, which means we got here
2132 * because of trouble with ARM commpage setup.
dce10401 2133 */
293f2060 2134 munmap((void *)real_start, real_size);
dce10401
MI
2135 current_start += qemu_host_page_size;
2136 if (host_start == current_start) {
2137 /* Theoretically possible if host doesn't have any suitably
2138 * aligned areas. Normally the first mmap will fail.
2139 */
2140 return (unsigned long)-1;
2141 }
2142 }
2143
13829020 2144 qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size);
806d1021 2145
293f2060 2146 return aligned_start;
dce10401
MI
2147}
2148
f3ed1f5d
PM
2149static void probe_guest_base(const char *image_name,
2150 abi_ulong loaddr, abi_ulong hiaddr)
2151{
2152 /* Probe for a suitable guest base address, if the user has not set
2153 * it explicitly, and set guest_base appropriately.
2154 * In case of error we will print a suitable message and exit.
2155 */
f3ed1f5d
PM
2156 const char *errmsg;
2157 if (!have_guest_base && !reserved_va) {
2158 unsigned long host_start, real_start, host_size;
2159
2160 /* Round addresses to page boundaries. */
2161 loaddr &= qemu_host_page_mask;
2162 hiaddr = HOST_PAGE_ALIGN(hiaddr);
2163
2164 if (loaddr < mmap_min_addr) {
2165 host_start = HOST_PAGE_ALIGN(mmap_min_addr);
2166 } else {
2167 host_start = loaddr;
2168 if (host_start != loaddr) {
2169 errmsg = "Address overflow loading ELF binary";
2170 goto exit_errmsg;
2171 }
2172 }
2173 host_size = hiaddr - loaddr;
dce10401
MI
2174
2175 /* Setup the initial guest memory space with ranges gleaned from
2176 * the ELF image that is being loaded.
2177 */
2178 real_start = init_guest_space(host_start, host_size, loaddr, false);
2179 if (real_start == (unsigned long)-1) {
2180 errmsg = "Unable to find space for application";
2181 goto exit_errmsg;
f3ed1f5d 2182 }
dce10401
MI
2183 guest_base = real_start - loaddr;
2184
13829020
PB
2185 qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x"
2186 TARGET_ABI_FMT_lx " to 0x%lx\n",
2187 loaddr, real_start);
f3ed1f5d
PM
2188 }
2189 return;
2190
f3ed1f5d
PM
2191exit_errmsg:
2192 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2193 exit(-1);
f3ed1f5d
PM
2194}
2195
2196
8e62a717 2197/* Load an ELF image into the address space.
31e31b8a 2198
8e62a717
RH
2199 IMAGE_NAME is the filename of the image, to use in error messages.
2200 IMAGE_FD is the open file descriptor for the image.
2201
2202 BPRM_BUF is a copy of the beginning of the file; this of course
2203 contains the elf file header at offset 0. It is assumed that this
2204 buffer is sufficiently aligned to present no problems to the host
2205 in accessing data at aligned offsets within the buffer.
2206
2207 On return: INFO values will be filled in, as necessary or available. */
2208
2209static void load_elf_image(const char *image_name, int image_fd,
bf858897 2210 struct image_info *info, char **pinterp_name,
8e62a717 2211 char bprm_buf[BPRM_BUF_SIZE])
31e31b8a 2212{
8e62a717
RH
2213 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2214 struct elf_phdr *phdr;
2215 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2216 int i, retval;
2217 const char *errmsg;
5fafdf24 2218
8e62a717
RH
2219 /* First of all, some simple consistency checks */
2220 errmsg = "Invalid ELF image for this architecture";
2221 if (!elf_check_ident(ehdr)) {
2222 goto exit_errmsg;
2223 }
2224 bswap_ehdr(ehdr);
2225 if (!elf_check_ehdr(ehdr)) {
2226 goto exit_errmsg;
d97ef72e 2227 }
5fafdf24 2228
8e62a717
RH
2229 i = ehdr->e_phnum * sizeof(struct elf_phdr);
2230 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2231 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
9955ffac 2232 } else {
8e62a717
RH
2233 phdr = (struct elf_phdr *) alloca(i);
2234 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
9955ffac 2235 if (retval != i) {
8e62a717 2236 goto exit_read;
9955ffac 2237 }
d97ef72e 2238 }
8e62a717 2239 bswap_phdr(phdr, ehdr->e_phnum);
09bfb054 2240
1af02e83
MF
2241 info->nsegs = 0;
2242 info->pt_dynamic_addr = 0;
1af02e83 2243
98c1076c
AB
2244 mmap_lock();
2245
682674b8
RH
2246 /* Find the maximum size of the image and allocate an appropriate
2247 amount of memory to handle that. */
2248 loaddr = -1, hiaddr = 0;
33143c44 2249 info->alignment = 0;
8e62a717
RH
2250 for (i = 0; i < ehdr->e_phnum; ++i) {
2251 if (phdr[i].p_type == PT_LOAD) {
a93934fe 2252 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
682674b8
RH
2253 if (a < loaddr) {
2254 loaddr = a;
2255 }
ccf661f8 2256 a = phdr[i].p_vaddr + phdr[i].p_memsz;
682674b8
RH
2257 if (a > hiaddr) {
2258 hiaddr = a;
2259 }
1af02e83 2260 ++info->nsegs;
33143c44 2261 info->alignment |= phdr[i].p_align;
682674b8
RH
2262 }
2263 }
2264
2265 load_addr = loaddr;
8e62a717 2266 if (ehdr->e_type == ET_DYN) {
682674b8
RH
2267 /* The image indicates that it can be loaded anywhere. Find a
2268 location that can hold the memory space required. If the
2269 image is pre-linked, LOADDR will be non-zero. Since we do
2270 not supply MAP_FIXED here we'll use that address if and
2271 only if it remains available. */
2272 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2273 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
2274 -1, 0);
2275 if (load_addr == -1) {
8e62a717 2276 goto exit_perror;
d97ef72e 2277 }
bf858897
RH
2278 } else if (pinterp_name != NULL) {
2279 /* This is the main executable. Make sure that the low
2280 address does not conflict with MMAP_MIN_ADDR or the
2281 QEMU application itself. */
f3ed1f5d 2282 probe_guest_base(image_name, loaddr, hiaddr);
d97ef72e 2283 }
682674b8 2284 load_bias = load_addr - loaddr;
d97ef72e 2285
a99856cd 2286 if (elf_is_fdpic(ehdr)) {
1af02e83 2287 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
7267c094 2288 g_malloc(sizeof(*loadsegs) * info->nsegs);
1af02e83
MF
2289
2290 for (i = 0; i < ehdr->e_phnum; ++i) {
2291 switch (phdr[i].p_type) {
2292 case PT_DYNAMIC:
2293 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2294 break;
2295 case PT_LOAD:
2296 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2297 loadsegs->p_vaddr = phdr[i].p_vaddr;
2298 loadsegs->p_memsz = phdr[i].p_memsz;
2299 ++loadsegs;
2300 break;
2301 }
2302 }
2303 }
1af02e83 2304
8e62a717
RH
2305 info->load_bias = load_bias;
2306 info->load_addr = load_addr;
2307 info->entry = ehdr->e_entry + load_bias;
2308 info->start_code = -1;
2309 info->end_code = 0;
2310 info->start_data = -1;
2311 info->end_data = 0;
2312 info->brk = 0;
d8fd2954 2313 info->elf_flags = ehdr->e_flags;
8e62a717
RH
2314
2315 for (i = 0; i < ehdr->e_phnum; i++) {
2316 struct elf_phdr *eppnt = phdr + i;
d97ef72e 2317 if (eppnt->p_type == PT_LOAD) {
94894ff2 2318 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
d97ef72e 2319 int elf_prot = 0;
d97ef72e
RH
2320
2321 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ;
2322 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
2323 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
d97ef72e 2324
682674b8
RH
2325 vaddr = load_bias + eppnt->p_vaddr;
2326 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2327 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
94894ff2 2328 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
682674b8 2329
94894ff2 2330 error = target_mmap(vaddr_ps, vaddr_len,
682674b8 2331 elf_prot, MAP_PRIVATE | MAP_FIXED,
8e62a717 2332 image_fd, eppnt->p_offset - vaddr_po);
09bfb054 2333 if (error == -1) {
8e62a717 2334 goto exit_perror;
09bfb054 2335 }
09bfb054 2336
682674b8
RH
2337 vaddr_ef = vaddr + eppnt->p_filesz;
2338 vaddr_em = vaddr + eppnt->p_memsz;
31e31b8a 2339
cf129f3a 2340 /* If the load segment requests extra zeros (e.g. bss), map it. */
682674b8
RH
2341 if (vaddr_ef < vaddr_em) {
2342 zero_bss(vaddr_ef, vaddr_em, elf_prot);
cf129f3a 2343 }
8e62a717
RH
2344
2345 /* Find the full program boundaries. */
2346 if (elf_prot & PROT_EXEC) {
2347 if (vaddr < info->start_code) {
2348 info->start_code = vaddr;
2349 }
2350 if (vaddr_ef > info->end_code) {
2351 info->end_code = vaddr_ef;
2352 }
2353 }
2354 if (elf_prot & PROT_WRITE) {
2355 if (vaddr < info->start_data) {
2356 info->start_data = vaddr;
2357 }
2358 if (vaddr_ef > info->end_data) {
2359 info->end_data = vaddr_ef;
2360 }
2361 if (vaddr_em > info->brk) {
2362 info->brk = vaddr_em;
2363 }
2364 }
bf858897
RH
2365 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2366 char *interp_name;
2367
2368 if (*pinterp_name) {
2369 errmsg = "Multiple PT_INTERP entries";
2370 goto exit_errmsg;
2371 }
2372 interp_name = malloc(eppnt->p_filesz);
2373 if (!interp_name) {
2374 goto exit_perror;
2375 }
2376
2377 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2378 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2379 eppnt->p_filesz);
2380 } else {
2381 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2382 eppnt->p_offset);
2383 if (retval != eppnt->p_filesz) {
2384 goto exit_perror;
2385 }
2386 }
2387 if (interp_name[eppnt->p_filesz - 1] != 0) {
2388 errmsg = "Invalid PT_INTERP entry";
2389 goto exit_errmsg;
2390 }
2391 *pinterp_name = interp_name;
5dd0db52
SM
2392#ifdef TARGET_MIPS
2393 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
2394 Mips_elf_abiflags_v0 abiflags;
2395 if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
2396 errmsg = "Invalid PT_MIPS_ABIFLAGS entry";
2397 goto exit_errmsg;
2398 }
2399 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2400 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
2401 sizeof(Mips_elf_abiflags_v0));
2402 } else {
2403 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
2404 eppnt->p_offset);
2405 if (retval != sizeof(Mips_elf_abiflags_v0)) {
2406 goto exit_perror;
2407 }
2408 }
2409 bswap_mips_abiflags(&abiflags);
c94cb6c9 2410 info->fp_abi = abiflags.fp_abi;
5dd0db52 2411#endif
d97ef72e 2412 }
682674b8 2413 }
5fafdf24 2414
8e62a717
RH
2415 if (info->end_data == 0) {
2416 info->start_data = info->end_code;
2417 info->end_data = info->end_code;
2418 info->brk = info->end_code;
2419 }
2420
682674b8 2421 if (qemu_log_enabled()) {
8e62a717 2422 load_symbols(ehdr, image_fd, load_bias);
682674b8 2423 }
31e31b8a 2424
98c1076c
AB
2425 mmap_unlock();
2426
8e62a717
RH
2427 close(image_fd);
2428 return;
2429
2430 exit_read:
2431 if (retval >= 0) {
2432 errmsg = "Incomplete read of file header";
2433 goto exit_errmsg;
2434 }
2435 exit_perror:
2436 errmsg = strerror(errno);
2437 exit_errmsg:
2438 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2439 exit(-1);
2440}
2441
2442static void load_elf_interp(const char *filename, struct image_info *info,
2443 char bprm_buf[BPRM_BUF_SIZE])
2444{
2445 int fd, retval;
2446
2447 fd = open(path(filename), O_RDONLY);
2448 if (fd < 0) {
2449 goto exit_perror;
2450 }
31e31b8a 2451
8e62a717
RH
2452 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2453 if (retval < 0) {
2454 goto exit_perror;
2455 }
2456 if (retval < BPRM_BUF_SIZE) {
2457 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2458 }
2459
bf858897 2460 load_elf_image(filename, fd, info, NULL, bprm_buf);
8e62a717
RH
2461 return;
2462
2463 exit_perror:
2464 fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2465 exit(-1);
31e31b8a
FB
2466}
2467
49918a75
PB
2468static int symfind(const void *s0, const void *s1)
2469{
c7c530cd 2470 target_ulong addr = *(target_ulong *)s0;
49918a75
PB
2471 struct elf_sym *sym = (struct elf_sym *)s1;
2472 int result = 0;
c7c530cd 2473 if (addr < sym->st_value) {
49918a75 2474 result = -1;
c7c530cd 2475 } else if (addr >= sym->st_value + sym->st_size) {
49918a75
PB
2476 result = 1;
2477 }
2478 return result;
2479}
2480
2481static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2482{
2483#if ELF_CLASS == ELFCLASS32
2484 struct elf_sym *syms = s->disas_symtab.elf32;
2485#else
2486 struct elf_sym *syms = s->disas_symtab.elf64;
2487#endif
2488
2489 // binary search
49918a75
PB
2490 struct elf_sym *sym;
2491
c7c530cd 2492 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
7cba04f6 2493 if (sym != NULL) {
49918a75
PB
2494 return s->disas_strtab + sym->st_name;
2495 }
2496
2497 return "";
2498}
2499
2500/* FIXME: This should use elf_ops.h */
2501static int symcmp(const void *s0, const void *s1)
2502{
2503 struct elf_sym *sym0 = (struct elf_sym *)s0;
2504 struct elf_sym *sym1 = (struct elf_sym *)s1;
2505 return (sym0->st_value < sym1->st_value)
2506 ? -1
2507 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2508}
2509
689f936f 2510/* Best attempt to load symbols from this ELF object. */
682674b8 2511static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
689f936f 2512{
682674b8 2513 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
1e06262d 2514 uint64_t segsz;
682674b8 2515 struct elf_shdr *shdr;
b9475279
CV
2516 char *strings = NULL;
2517 struct syminfo *s = NULL;
2518 struct elf_sym *new_syms, *syms = NULL;
689f936f 2519
682674b8
RH
2520 shnum = hdr->e_shnum;
2521 i = shnum * sizeof(struct elf_shdr);
2522 shdr = (struct elf_shdr *)alloca(i);
2523 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2524 return;
2525 }
2526
2527 bswap_shdr(shdr, shnum);
2528 for (i = 0; i < shnum; ++i) {
2529 if (shdr[i].sh_type == SHT_SYMTAB) {
2530 sym_idx = i;
2531 str_idx = shdr[i].sh_link;
49918a75
PB
2532 goto found;
2533 }
689f936f 2534 }
682674b8
RH
2535
2536 /* There will be no symbol table if the file was stripped. */
2537 return;
689f936f
FB
2538
2539 found:
682674b8 2540 /* Now know where the strtab and symtab are. Snarf them. */
0ef9ea29 2541 s = g_try_new(struct syminfo, 1);
682674b8 2542 if (!s) {
b9475279 2543 goto give_up;
682674b8 2544 }
5fafdf24 2545
1e06262d
PM
2546 segsz = shdr[str_idx].sh_size;
2547 s->disas_strtab = strings = g_try_malloc(segsz);
2548 if (!strings ||
2549 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
b9475279 2550 goto give_up;
682674b8 2551 }
49918a75 2552
1e06262d
PM
2553 segsz = shdr[sym_idx].sh_size;
2554 syms = g_try_malloc(segsz);
2555 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
b9475279 2556 goto give_up;
682674b8 2557 }
31e31b8a 2558
1e06262d
PM
2559 if (segsz / sizeof(struct elf_sym) > INT_MAX) {
2560 /* Implausibly large symbol table: give up rather than ploughing
2561 * on with the number of symbols calculation overflowing
2562 */
2563 goto give_up;
2564 }
2565 nsyms = segsz / sizeof(struct elf_sym);
682674b8 2566 for (i = 0; i < nsyms; ) {
49918a75 2567 bswap_sym(syms + i);
682674b8
RH
2568 /* Throw away entries which we do not need. */
2569 if (syms[i].st_shndx == SHN_UNDEF
2570 || syms[i].st_shndx >= SHN_LORESERVE
2571 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2572 if (i < --nsyms) {
49918a75
PB
2573 syms[i] = syms[nsyms];
2574 }
682674b8 2575 } else {
49918a75 2576#if defined(TARGET_ARM) || defined (TARGET_MIPS)
682674b8
RH
2577 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
2578 syms[i].st_value &= ~(target_ulong)1;
0774bed1 2579#endif
682674b8
RH
2580 syms[i].st_value += load_bias;
2581 i++;
2582 }
0774bed1 2583 }
49918a75 2584
b9475279
CV
2585 /* No "useful" symbol. */
2586 if (nsyms == 0) {
2587 goto give_up;
2588 }
2589
5d5c9930
RH
2590 /* Attempt to free the storage associated with the local symbols
2591 that we threw away. Whether or not this has any effect on the
2592 memory allocation depends on the malloc implementation and how
2593 many symbols we managed to discard. */
0ef9ea29 2594 new_syms = g_try_renew(struct elf_sym, syms, nsyms);
8d79de6e 2595 if (new_syms == NULL) {
b9475279 2596 goto give_up;
5d5c9930 2597 }
8d79de6e 2598 syms = new_syms;
5d5c9930 2599
49918a75 2600 qsort(syms, nsyms, sizeof(*syms), symcmp);
689f936f 2601
49918a75
PB
2602 s->disas_num_syms = nsyms;
2603#if ELF_CLASS == ELFCLASS32
2604 s->disas_symtab.elf32 = syms;
49918a75
PB
2605#else
2606 s->disas_symtab.elf64 = syms;
49918a75 2607#endif
682674b8 2608 s->lookup_symbol = lookup_symbolxx;
e80cfcfc
FB
2609 s->next = syminfos;
2610 syminfos = s;
b9475279
CV
2611
2612 return;
2613
2614give_up:
0ef9ea29
PM
2615 g_free(s);
2616 g_free(strings);
2617 g_free(syms);
689f936f 2618}
31e31b8a 2619
768fe76e
YS
2620uint32_t get_elf_eflags(int fd)
2621{
2622 struct elfhdr ehdr;
2623 off_t offset;
2624 int ret;
2625
2626 /* Read ELF header */
2627 offset = lseek(fd, 0, SEEK_SET);
2628 if (offset == (off_t) -1) {
2629 return 0;
2630 }
2631 ret = read(fd, &ehdr, sizeof(ehdr));
2632 if (ret < sizeof(ehdr)) {
2633 return 0;
2634 }
2635 offset = lseek(fd, offset, SEEK_SET);
2636 if (offset == (off_t) -1) {
2637 return 0;
2638 }
2639
2640 /* Check ELF signature */
2641 if (!elf_check_ident(&ehdr)) {
2642 return 0;
2643 }
2644
2645 /* check header */
2646 bswap_ehdr(&ehdr);
2647 if (!elf_check_ehdr(&ehdr)) {
2648 return 0;
2649 }
2650
2651 /* return architecture id */
2652 return ehdr.e_flags;
2653}
2654
f0116c54 2655int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
31e31b8a 2656{
8e62a717 2657 struct image_info interp_info;
31e31b8a 2658 struct elfhdr elf_ex;
8e62a717 2659 char *elf_interpreter = NULL;
59baae9a 2660 char *scratch;
31e31b8a 2661
bf858897 2662 info->start_mmap = (abi_ulong)ELF_START_MMAP;
bf858897
RH
2663
2664 load_elf_image(bprm->filename, bprm->fd, info,
2665 &elf_interpreter, bprm->buf);
31e31b8a 2666
bf858897
RH
2667 /* ??? We need a copy of the elf header for passing to create_elf_tables.
2668 If we do nothing, we'll have overwritten this when we re-use bprm->buf
2669 when we load the interpreter. */
2670 elf_ex = *(struct elfhdr *)bprm->buf;
31e31b8a 2671
59baae9a
SB
2672 /* Do this so that we can load the interpreter, if need be. We will
2673 change some of these later */
2674 bprm->p = setup_arg_pages(bprm, info);
2675
2676 scratch = g_new0(char, TARGET_PAGE_SIZE);
7c4ee5bc
RH
2677 if (STACK_GROWS_DOWN) {
2678 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2679 bprm->p, info->stack_limit);
2680 info->file_string = bprm->p;
2681 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2682 bprm->p, info->stack_limit);
2683 info->env_strings = bprm->p;
2684 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2685 bprm->p, info->stack_limit);
2686 info->arg_strings = bprm->p;
2687 } else {
2688 info->arg_strings = bprm->p;
2689 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2690 bprm->p, info->stack_limit);
2691 info->env_strings = bprm->p;
2692 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2693 bprm->p, info->stack_limit);
2694 info->file_string = bprm->p;
2695 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2696 bprm->p, info->stack_limit);
2697 }
2698
59baae9a
SB
2699 g_free(scratch);
2700
e5fe0c52 2701 if (!bprm->p) {
bf858897
RH
2702 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2703 exit(-1);
379f6698 2704 }
379f6698 2705
8e62a717
RH
2706 if (elf_interpreter) {
2707 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
31e31b8a 2708
8e62a717
RH
2709 /* If the program interpreter is one of these two, then assume
2710 an iBCS2 image. Otherwise assume a native linux image. */
2711
2712 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2713 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2714 info->personality = PER_SVR4;
31e31b8a 2715
8e62a717
RH
2716 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
2717 and some applications "depend" upon this behavior. Since
2718 we do not have the power to recompile these, we emulate
2719 the SVr4 behavior. Sigh. */
2720 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
68754b44 2721 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
8e62a717 2722 }
c94cb6c9
SM
2723#ifdef TARGET_MIPS
2724 info->interp_fp_abi = interp_info.fp_abi;
2725#endif
31e31b8a
FB
2726 }
2727
8e62a717
RH
2728 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2729 info, (elf_interpreter ? &interp_info : NULL));
2730 info->start_stack = bprm->p;
2731
2732 /* If we have an interpreter, set that as the program's entry point.
8e78064e 2733 Copy the load_bias as well, to help PPC64 interpret the entry
8e62a717
RH
2734 point as a function descriptor. Do this after creating elf tables
2735 so that we copy the original program entry point into the AUXV. */
2736 if (elf_interpreter) {
8e78064e 2737 info->load_bias = interp_info.load_bias;
8e62a717 2738 info->entry = interp_info.entry;
bf858897 2739 free(elf_interpreter);
8e62a717 2740 }
31e31b8a 2741
edf8e2af
MW
2742#ifdef USE_ELF_CORE_DUMP
2743 bprm->core_dump = &elf_core_dump;
2744#endif
2745
31e31b8a
FB
2746 return 0;
2747}
2748
edf8e2af 2749#ifdef USE_ELF_CORE_DUMP
edf8e2af
MW
2750/*
2751 * Definitions to generate Intel SVR4-like core files.
a2547a13 2752 * These mostly have the same names as the SVR4 types with "target_elf_"
edf8e2af
MW
2753 * tacked on the front to prevent clashes with linux definitions,
2754 * and the typedef forms have been avoided. This is mostly like
2755 * the SVR4 structure, but more Linuxy, with things that Linux does
2756 * not support and which gdb doesn't really use excluded.
2757 *
2758 * Fields we don't dump (their contents is zero) in linux-user qemu
2759 * are marked with XXX.
2760 *
2761 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2762 *
2763 * Porting ELF coredump for target is (quite) simple process. First you
dd0a3651 2764 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
edf8e2af
MW
2765 * the target resides):
2766 *
2767 * #define USE_ELF_CORE_DUMP
2768 *
2769 * Next you define type of register set used for dumping. ELF specification
2770 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2771 *
c227f099 2772 * typedef <target_regtype> target_elf_greg_t;
edf8e2af 2773 * #define ELF_NREG <number of registers>
c227f099 2774 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 2775 *
edf8e2af
MW
2776 * Last step is to implement target specific function that copies registers
2777 * from given cpu into just specified register set. Prototype is:
2778 *
c227f099 2779 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
9349b4f9 2780 * const CPUArchState *env);
edf8e2af
MW
2781 *
2782 * Parameters:
2783 * regs - copy register values into here (allocated and zeroed by caller)
2784 * env - copy registers from here
2785 *
2786 * Example for ARM target is provided in this file.
2787 */
2788
2789/* An ELF note in memory */
2790struct memelfnote {
2791 const char *name;
2792 size_t namesz;
2793 size_t namesz_rounded;
2794 int type;
2795 size_t datasz;
80f5ce75 2796 size_t datasz_rounded;
edf8e2af
MW
2797 void *data;
2798 size_t notesz;
2799};
2800
a2547a13 2801struct target_elf_siginfo {
f8fd4fc4
PB
2802 abi_int si_signo; /* signal number */
2803 abi_int si_code; /* extra code */
2804 abi_int si_errno; /* errno */
edf8e2af
MW
2805};
2806
a2547a13
LD
2807struct target_elf_prstatus {
2808 struct target_elf_siginfo pr_info; /* Info associated with signal */
1ddd592f 2809 abi_short pr_cursig; /* Current signal */
ca98ac83
PB
2810 abi_ulong pr_sigpend; /* XXX */
2811 abi_ulong pr_sighold; /* XXX */
c227f099
AL
2812 target_pid_t pr_pid;
2813 target_pid_t pr_ppid;
2814 target_pid_t pr_pgrp;
2815 target_pid_t pr_sid;
edf8e2af
MW
2816 struct target_timeval pr_utime; /* XXX User time */
2817 struct target_timeval pr_stime; /* XXX System time */
2818 struct target_timeval pr_cutime; /* XXX Cumulative user time */
2819 struct target_timeval pr_cstime; /* XXX Cumulative system time */
c227f099 2820 target_elf_gregset_t pr_reg; /* GP registers */
f8fd4fc4 2821 abi_int pr_fpvalid; /* XXX */
edf8e2af
MW
2822};
2823
2824#define ELF_PRARGSZ (80) /* Number of chars for args */
2825
a2547a13 2826struct target_elf_prpsinfo {
edf8e2af
MW
2827 char pr_state; /* numeric process state */
2828 char pr_sname; /* char for pr_state */
2829 char pr_zomb; /* zombie */
2830 char pr_nice; /* nice val */
ca98ac83 2831 abi_ulong pr_flag; /* flags */
c227f099
AL
2832 target_uid_t pr_uid;
2833 target_gid_t pr_gid;
2834 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
edf8e2af
MW
2835 /* Lots missing */
2836 char pr_fname[16]; /* filename of executable */
2837 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2838};
2839
2840/* Here is the structure in which status of each thread is captured. */
2841struct elf_thread_status {
72cf2d4f 2842 QTAILQ_ENTRY(elf_thread_status) ets_link;
a2547a13 2843 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
edf8e2af
MW
2844#if 0
2845 elf_fpregset_t fpu; /* NT_PRFPREG */
2846 struct task_struct *thread;
2847 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
2848#endif
2849 struct memelfnote notes[1];
2850 int num_notes;
2851};
2852
2853struct elf_note_info {
2854 struct memelfnote *notes;
a2547a13
LD
2855 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
2856 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
edf8e2af 2857
b58deb34 2858 QTAILQ_HEAD(, elf_thread_status) thread_list;
edf8e2af
MW
2859#if 0
2860 /*
2861 * Current version of ELF coredump doesn't support
2862 * dumping fp regs etc.
2863 */
2864 elf_fpregset_t *fpu;
2865 elf_fpxregset_t *xfpu;
2866 int thread_status_size;
2867#endif
2868 int notes_size;
2869 int numnote;
2870};
2871
2872struct vm_area_struct {
1a1c4db9
MI
2873 target_ulong vma_start; /* start vaddr of memory region */
2874 target_ulong vma_end; /* end vaddr of memory region */
2875 abi_ulong vma_flags; /* protection etc. flags for the region */
72cf2d4f 2876 QTAILQ_ENTRY(vm_area_struct) vma_link;
edf8e2af
MW
2877};
2878
2879struct mm_struct {
72cf2d4f 2880 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
edf8e2af
MW
2881 int mm_count; /* number of mappings */
2882};
2883
2884static struct mm_struct *vma_init(void);
2885static void vma_delete(struct mm_struct *);
1a1c4db9
MI
2886static int vma_add_mapping(struct mm_struct *, target_ulong,
2887 target_ulong, abi_ulong);
edf8e2af
MW
2888static int vma_get_mapping_count(const struct mm_struct *);
2889static struct vm_area_struct *vma_first(const struct mm_struct *);
2890static struct vm_area_struct *vma_next(struct vm_area_struct *);
2891static abi_ulong vma_dump_size(const struct vm_area_struct *);
1a1c4db9 2892static int vma_walker(void *priv, target_ulong start, target_ulong end,
d97ef72e 2893 unsigned long flags);
edf8e2af
MW
2894
2895static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2896static void fill_note(struct memelfnote *, const char *, int,
d97ef72e 2897 unsigned int, void *);
a2547a13
LD
2898static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2899static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
edf8e2af
MW
2900static void fill_auxv_note(struct memelfnote *, const TaskState *);
2901static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2902static size_t note_size(const struct memelfnote *);
2903static void free_note_info(struct elf_note_info *);
9349b4f9
AF
2904static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2905static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
edf8e2af
MW
2906static int core_dump_filename(const TaskState *, char *, size_t);
2907
2908static int dump_write(int, const void *, size_t);
2909static int write_note(struct memelfnote *, int);
2910static int write_note_info(struct elf_note_info *, int);
2911
2912#ifdef BSWAP_NEEDED
a2547a13 2913static void bswap_prstatus(struct target_elf_prstatus *prstatus)
edf8e2af 2914{
ca98ac83
PB
2915 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2916 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2917 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
edf8e2af 2918 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
ca98ac83
PB
2919 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
2920 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
edf8e2af
MW
2921 prstatus->pr_pid = tswap32(prstatus->pr_pid);
2922 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2923 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2924 prstatus->pr_sid = tswap32(prstatus->pr_sid);
2925 /* cpu times are not filled, so we skip them */
2926 /* regs should be in correct format already */
2927 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2928}
2929
a2547a13 2930static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
edf8e2af 2931{
ca98ac83 2932 psinfo->pr_flag = tswapal(psinfo->pr_flag);
edf8e2af
MW
2933 psinfo->pr_uid = tswap16(psinfo->pr_uid);
2934 psinfo->pr_gid = tswap16(psinfo->pr_gid);
2935 psinfo->pr_pid = tswap32(psinfo->pr_pid);
2936 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2937 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2938 psinfo->pr_sid = tswap32(psinfo->pr_sid);
2939}
991f8f0c
RH
2940
2941static void bswap_note(struct elf_note *en)
2942{
2943 bswap32s(&en->n_namesz);
2944 bswap32s(&en->n_descsz);
2945 bswap32s(&en->n_type);
2946}
2947#else
2948static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2949static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2950static inline void bswap_note(struct elf_note *en) { }
edf8e2af
MW
2951#endif /* BSWAP_NEEDED */
2952
2953/*
2954 * Minimal support for linux memory regions. These are needed
2955 * when we are finding out what memory exactly belongs to
2956 * emulated process. No locks needed here, as long as
2957 * thread that received the signal is stopped.
2958 */
2959
2960static struct mm_struct *vma_init(void)
2961{
2962 struct mm_struct *mm;
2963
7267c094 2964 if ((mm = g_malloc(sizeof (*mm))) == NULL)
edf8e2af
MW
2965 return (NULL);
2966
2967 mm->mm_count = 0;
72cf2d4f 2968 QTAILQ_INIT(&mm->mm_mmap);
edf8e2af
MW
2969
2970 return (mm);
2971}
2972
2973static void vma_delete(struct mm_struct *mm)
2974{
2975 struct vm_area_struct *vma;
2976
2977 while ((vma = vma_first(mm)) != NULL) {
72cf2d4f 2978 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
7267c094 2979 g_free(vma);
edf8e2af 2980 }
7267c094 2981 g_free(mm);
edf8e2af
MW
2982}
2983
1a1c4db9
MI
2984static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
2985 target_ulong end, abi_ulong flags)
edf8e2af
MW
2986{
2987 struct vm_area_struct *vma;
2988
7267c094 2989 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
edf8e2af
MW
2990 return (-1);
2991
2992 vma->vma_start = start;
2993 vma->vma_end = end;
2994 vma->vma_flags = flags;
2995
72cf2d4f 2996 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
edf8e2af
MW
2997 mm->mm_count++;
2998
2999 return (0);
3000}
3001
3002static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3003{
72cf2d4f 3004 return (QTAILQ_FIRST(&mm->mm_mmap));
edf8e2af
MW
3005}
3006
3007static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3008{
72cf2d4f 3009 return (QTAILQ_NEXT(vma, vma_link));
edf8e2af
MW
3010}
3011
3012static int vma_get_mapping_count(const struct mm_struct *mm)
3013{
3014 return (mm->mm_count);
3015}
3016
3017/*
3018 * Calculate file (dump) size of given memory region.
3019 */
3020static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3021{
3022 /* if we cannot even read the first page, skip it */
3023 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
3024 return (0);
3025
3026 /*
3027 * Usually we don't dump executable pages as they contain
3028 * non-writable code that debugger can read directly from
3029 * target library etc. However, thread stacks are marked
3030 * also executable so we read in first page of given region
3031 * and check whether it contains elf header. If there is
3032 * no elf header, we dump it.
3033 */
3034 if (vma->vma_flags & PROT_EXEC) {
3035 char page[TARGET_PAGE_SIZE];
3036
3037 copy_from_user(page, vma->vma_start, sizeof (page));
3038 if ((page[EI_MAG0] == ELFMAG0) &&
3039 (page[EI_MAG1] == ELFMAG1) &&
3040 (page[EI_MAG2] == ELFMAG2) &&
3041 (page[EI_MAG3] == ELFMAG3)) {
3042 /*
3043 * Mappings are possibly from ELF binary. Don't dump
3044 * them.
3045 */
3046 return (0);
3047 }
3048 }
3049
3050 return (vma->vma_end - vma->vma_start);
3051}
3052
1a1c4db9 3053static int vma_walker(void *priv, target_ulong start, target_ulong end,
d97ef72e 3054 unsigned long flags)
edf8e2af
MW
3055{
3056 struct mm_struct *mm = (struct mm_struct *)priv;
3057
edf8e2af
MW
3058 vma_add_mapping(mm, start, end, flags);
3059 return (0);
3060}
3061
3062static void fill_note(struct memelfnote *note, const char *name, int type,
d97ef72e 3063 unsigned int sz, void *data)
edf8e2af
MW
3064{
3065 unsigned int namesz;
3066
3067 namesz = strlen(name) + 1;
3068 note->name = name;
3069 note->namesz = namesz;
3070 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3071 note->type = type;
80f5ce75
LV
3072 note->datasz = sz;
3073 note->datasz_rounded = roundup(sz, sizeof (int32_t));
3074
edf8e2af
MW
3075 note->data = data;
3076
3077 /*
3078 * We calculate rounded up note size here as specified by
3079 * ELF document.
3080 */
3081 note->notesz = sizeof (struct elf_note) +
80f5ce75 3082 note->namesz_rounded + note->datasz_rounded;
edf8e2af
MW
3083}
3084
3085static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
d97ef72e 3086 uint32_t flags)
edf8e2af
MW
3087{
3088 (void) memset(elf, 0, sizeof(*elf));
3089
3090 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3091 elf->e_ident[EI_CLASS] = ELF_CLASS;
3092 elf->e_ident[EI_DATA] = ELF_DATA;
3093 elf->e_ident[EI_VERSION] = EV_CURRENT;
3094 elf->e_ident[EI_OSABI] = ELF_OSABI;
3095
3096 elf->e_type = ET_CORE;
3097 elf->e_machine = machine;
3098 elf->e_version = EV_CURRENT;
3099 elf->e_phoff = sizeof(struct elfhdr);
3100 elf->e_flags = flags;
3101 elf->e_ehsize = sizeof(struct elfhdr);
3102 elf->e_phentsize = sizeof(struct elf_phdr);
3103 elf->e_phnum = segs;
3104
edf8e2af 3105 bswap_ehdr(elf);
edf8e2af
MW
3106}
3107
3108static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3109{
3110 phdr->p_type = PT_NOTE;
3111 phdr->p_offset = offset;
3112 phdr->p_vaddr = 0;
3113 phdr->p_paddr = 0;
3114 phdr->p_filesz = sz;
3115 phdr->p_memsz = 0;
3116 phdr->p_flags = 0;
3117 phdr->p_align = 0;
3118
991f8f0c 3119 bswap_phdr(phdr, 1);
edf8e2af
MW
3120}
3121
3122static size_t note_size(const struct memelfnote *note)
3123{
3124 return (note->notesz);
3125}
3126
a2547a13 3127static void fill_prstatus(struct target_elf_prstatus *prstatus,
d97ef72e 3128 const TaskState *ts, int signr)
edf8e2af
MW
3129{
3130 (void) memset(prstatus, 0, sizeof (*prstatus));
3131 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3132 prstatus->pr_pid = ts->ts_tid;
3133 prstatus->pr_ppid = getppid();
3134 prstatus->pr_pgrp = getpgrp();
3135 prstatus->pr_sid = getsid(0);
3136
edf8e2af 3137 bswap_prstatus(prstatus);
edf8e2af
MW
3138}
3139
a2547a13 3140static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
edf8e2af 3141{
900cfbca 3142 char *base_filename;
edf8e2af
MW
3143 unsigned int i, len;
3144
3145 (void) memset(psinfo, 0, sizeof (*psinfo));
3146
3147 len = ts->info->arg_end - ts->info->arg_start;
3148 if (len >= ELF_PRARGSZ)
3149 len = ELF_PRARGSZ - 1;
3150 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
3151 return -EFAULT;
3152 for (i = 0; i < len; i++)
3153 if (psinfo->pr_psargs[i] == 0)
3154 psinfo->pr_psargs[i] = ' ';
3155 psinfo->pr_psargs[len] = 0;
3156
3157 psinfo->pr_pid = getpid();
3158 psinfo->pr_ppid = getppid();
3159 psinfo->pr_pgrp = getpgrp();
3160 psinfo->pr_sid = getsid(0);
3161 psinfo->pr_uid = getuid();
3162 psinfo->pr_gid = getgid();
3163
900cfbca
JM
3164 base_filename = g_path_get_basename(ts->bprm->filename);
3165 /*
3166 * Using strncpy here is fine: at max-length,
3167 * this field is not NUL-terminated.
3168 */
edf8e2af 3169 (void) strncpy(psinfo->pr_fname, base_filename,
d97ef72e 3170 sizeof(psinfo->pr_fname));
edf8e2af 3171
900cfbca 3172 g_free(base_filename);
edf8e2af 3173 bswap_psinfo(psinfo);
edf8e2af
MW
3174 return (0);
3175}
3176
3177static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3178{
3179 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3180 elf_addr_t orig_auxv = auxv;
edf8e2af 3181 void *ptr;
125b0f55 3182 int len = ts->info->auxv_len;
edf8e2af
MW
3183
3184 /*
3185 * Auxiliary vector is stored in target process stack. It contains
3186 * {type, value} pairs that we need to dump into note. This is not
3187 * strictly necessary but we do it here for sake of completeness.
3188 */
3189
edf8e2af
MW
3190 /* read in whole auxv vector and copy it to memelfnote */
3191 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3192 if (ptr != NULL) {
3193 fill_note(note, "CORE", NT_AUXV, len, ptr);
3194 unlock_user(ptr, auxv, len);
3195 }
3196}
3197
3198/*
3199 * Constructs name of coredump file. We have following convention
3200 * for the name:
3201 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3202 *
3203 * Returns 0 in case of success, -1 otherwise (errno is set).
3204 */
3205static int core_dump_filename(const TaskState *ts, char *buf,
d97ef72e 3206 size_t bufsize)
edf8e2af
MW
3207{
3208 char timestamp[64];
edf8e2af
MW
3209 char *base_filename = NULL;
3210 struct timeval tv;
3211 struct tm tm;
3212
3213 assert(bufsize >= PATH_MAX);
3214
3215 if (gettimeofday(&tv, NULL) < 0) {
3216 (void) fprintf(stderr, "unable to get current timestamp: %s",
d97ef72e 3217 strerror(errno));
edf8e2af
MW
3218 return (-1);
3219 }
3220
b8da57fa 3221 base_filename = g_path_get_basename(ts->bprm->filename);
edf8e2af 3222 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
d97ef72e 3223 localtime_r(&tv.tv_sec, &tm));
edf8e2af 3224 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
d97ef72e 3225 base_filename, timestamp, (int)getpid());
b8da57fa 3226 g_free(base_filename);
edf8e2af
MW
3227
3228 return (0);
3229}
3230
3231static int dump_write(int fd, const void *ptr, size_t size)
3232{
3233 const char *bufp = (const char *)ptr;
3234 ssize_t bytes_written, bytes_left;
3235 struct rlimit dumpsize;
3236 off_t pos;
3237
3238 bytes_written = 0;
3239 getrlimit(RLIMIT_CORE, &dumpsize);
3240 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3241 if (errno == ESPIPE) { /* not a seekable stream */
3242 bytes_left = size;
3243 } else {
3244 return pos;
3245 }
3246 } else {
3247 if (dumpsize.rlim_cur <= pos) {
3248 return -1;
3249 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3250 bytes_left = size;
3251 } else {
3252 size_t limit_left=dumpsize.rlim_cur - pos;
3253 bytes_left = limit_left >= size ? size : limit_left ;
3254 }
3255 }
3256
3257 /*
3258 * In normal conditions, single write(2) should do but
3259 * in case of socket etc. this mechanism is more portable.
3260 */
3261 do {
3262 bytes_written = write(fd, bufp, bytes_left);
3263 if (bytes_written < 0) {
3264 if (errno == EINTR)
3265 continue;
3266 return (-1);
3267 } else if (bytes_written == 0) { /* eof */
3268 return (-1);
3269 }
3270 bufp += bytes_written;
3271 bytes_left -= bytes_written;
3272 } while (bytes_left > 0);
3273
3274 return (0);
3275}
3276
3277static int write_note(struct memelfnote *men, int fd)
3278{
3279 struct elf_note en;
3280
3281 en.n_namesz = men->namesz;
3282 en.n_type = men->type;
3283 en.n_descsz = men->datasz;
3284
edf8e2af 3285 bswap_note(&en);
edf8e2af
MW
3286
3287 if (dump_write(fd, &en, sizeof(en)) != 0)
3288 return (-1);
3289 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3290 return (-1);
80f5ce75 3291 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
edf8e2af
MW
3292 return (-1);
3293
3294 return (0);
3295}
3296
9349b4f9 3297static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
edf8e2af 3298{
0429a971
AF
3299 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3300 TaskState *ts = (TaskState *)cpu->opaque;
edf8e2af
MW
3301 struct elf_thread_status *ets;
3302
7267c094 3303 ets = g_malloc0(sizeof (*ets));
edf8e2af
MW
3304 ets->num_notes = 1; /* only prstatus is dumped */
3305 fill_prstatus(&ets->prstatus, ts, 0);
3306 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3307 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
d97ef72e 3308 &ets->prstatus);
edf8e2af 3309
72cf2d4f 3310 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
edf8e2af
MW
3311
3312 info->notes_size += note_size(&ets->notes[0]);
3313}
3314
6afafa86
PM
3315static void init_note_info(struct elf_note_info *info)
3316{
3317 /* Initialize the elf_note_info structure so that it is at
3318 * least safe to call free_note_info() on it. Must be
3319 * called before calling fill_note_info().
3320 */
3321 memset(info, 0, sizeof (*info));
3322 QTAILQ_INIT(&info->thread_list);
3323}
3324
edf8e2af 3325static int fill_note_info(struct elf_note_info *info,
9349b4f9 3326 long signr, const CPUArchState *env)
edf8e2af
MW
3327{
3328#define NUMNOTES 3
0429a971
AF
3329 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3330 TaskState *ts = (TaskState *)cpu->opaque;
edf8e2af
MW
3331 int i;
3332
c78d65e8 3333 info->notes = g_new0(struct memelfnote, NUMNOTES);
edf8e2af
MW
3334 if (info->notes == NULL)
3335 return (-ENOMEM);
7267c094 3336 info->prstatus = g_malloc0(sizeof (*info->prstatus));
edf8e2af
MW
3337 if (info->prstatus == NULL)
3338 return (-ENOMEM);
7267c094 3339 info->psinfo = g_malloc0(sizeof (*info->psinfo));
edf8e2af
MW
3340 if (info->prstatus == NULL)
3341 return (-ENOMEM);
3342
3343 /*
3344 * First fill in status (and registers) of current thread
3345 * including process info & aux vector.
3346 */
3347 fill_prstatus(info->prstatus, ts, signr);
3348 elf_core_copy_regs(&info->prstatus->pr_reg, env);
3349 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
d97ef72e 3350 sizeof (*info->prstatus), info->prstatus);
edf8e2af
MW
3351 fill_psinfo(info->psinfo, ts);
3352 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
d97ef72e 3353 sizeof (*info->psinfo), info->psinfo);
edf8e2af
MW
3354 fill_auxv_note(&info->notes[2], ts);
3355 info->numnote = 3;
3356
3357 info->notes_size = 0;
3358 for (i = 0; i < info->numnote; i++)
3359 info->notes_size += note_size(&info->notes[i]);
3360
3361 /* read and fill status of all threads */
3362 cpu_list_lock();
bdc44640 3363 CPU_FOREACH(cpu) {
a2247f8e 3364 if (cpu == thread_cpu) {
edf8e2af 3365 continue;
182735ef
AF
3366 }
3367 fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
edf8e2af
MW
3368 }
3369 cpu_list_unlock();
3370
3371 return (0);
3372}
3373
3374static void free_note_info(struct elf_note_info *info)
3375{
3376 struct elf_thread_status *ets;
3377
72cf2d4f
BS
3378 while (!QTAILQ_EMPTY(&info->thread_list)) {
3379 ets = QTAILQ_FIRST(&info->thread_list);
3380 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
7267c094 3381 g_free(ets);
edf8e2af
MW
3382 }
3383
7267c094
AL
3384 g_free(info->prstatus);
3385 g_free(info->psinfo);
3386 g_free(info->notes);
edf8e2af
MW
3387}
3388
3389static int write_note_info(struct elf_note_info *info, int fd)
3390{
3391 struct elf_thread_status *ets;
3392 int i, error = 0;
3393
3394 /* write prstatus, psinfo and auxv for current thread */
3395 for (i = 0; i < info->numnote; i++)
3396 if ((error = write_note(&info->notes[i], fd)) != 0)
3397 return (error);
3398
3399 /* write prstatus for each thread */
52a53afe 3400 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
edf8e2af
MW
3401 if ((error = write_note(&ets->notes[0], fd)) != 0)
3402 return (error);
3403 }
3404
3405 return (0);
3406}
3407
3408/*
3409 * Write out ELF coredump.
3410 *
3411 * See documentation of ELF object file format in:
3412 * http://www.caldera.com/developers/devspecs/gabi41.pdf
3413 *
3414 * Coredump format in linux is following:
3415 *
3416 * 0 +----------------------+ \
3417 * | ELF header | ET_CORE |
3418 * +----------------------+ |
3419 * | ELF program headers | |--- headers
3420 * | - NOTE section | |
3421 * | - PT_LOAD sections | |
3422 * +----------------------+ /
3423 * | NOTEs: |
3424 * | - NT_PRSTATUS |
3425 * | - NT_PRSINFO |
3426 * | - NT_AUXV |
3427 * +----------------------+ <-- aligned to target page
3428 * | Process memory dump |
3429 * : :
3430 * . .
3431 * : :
3432 * | |
3433 * +----------------------+
3434 *
3435 * NT_PRSTATUS -> struct elf_prstatus (per thread)
3436 * NT_PRSINFO -> struct elf_prpsinfo
3437 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3438 *
3439 * Format follows System V format as close as possible. Current
3440 * version limitations are as follows:
3441 * - no floating point registers are dumped
3442 *
3443 * Function returns 0 in case of success, negative errno otherwise.
3444 *
3445 * TODO: make this work also during runtime: it should be
3446 * possible to force coredump from running process and then
3447 * continue processing. For example qemu could set up SIGUSR2
3448 * handler (provided that target process haven't registered
3449 * handler for that) that does the dump when signal is received.
3450 */
9349b4f9 3451static int elf_core_dump(int signr, const CPUArchState *env)
edf8e2af 3452{
0429a971
AF
3453 const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3454 const TaskState *ts = (const TaskState *)cpu->opaque;
edf8e2af
MW
3455 struct vm_area_struct *vma = NULL;
3456 char corefile[PATH_MAX];
3457 struct elf_note_info info;
3458 struct elfhdr elf;
3459 struct elf_phdr phdr;
3460 struct rlimit dumpsize;
3461 struct mm_struct *mm = NULL;
3462 off_t offset = 0, data_offset = 0;
3463 int segs = 0;
3464 int fd = -1;
3465
6afafa86
PM
3466 init_note_info(&info);
3467
edf8e2af
MW
3468 errno = 0;
3469 getrlimit(RLIMIT_CORE, &dumpsize);
3470 if (dumpsize.rlim_cur == 0)
d97ef72e 3471 return 0;
edf8e2af
MW
3472
3473 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3474 return (-errno);
3475
3476 if ((fd = open(corefile, O_WRONLY | O_CREAT,
d97ef72e 3477 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
edf8e2af
MW
3478 return (-errno);
3479
3480 /*
3481 * Walk through target process memory mappings and
3482 * set up structure containing this information. After
3483 * this point vma_xxx functions can be used.
3484 */
3485 if ((mm = vma_init()) == NULL)
3486 goto out;
3487
3488 walk_memory_regions(mm, vma_walker);
3489 segs = vma_get_mapping_count(mm);
3490
3491 /*
3492 * Construct valid coredump ELF header. We also
3493 * add one more segment for notes.
3494 */
3495 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3496 if (dump_write(fd, &elf, sizeof (elf)) != 0)
3497 goto out;
3498
b6af0975 3499 /* fill in the in-memory version of notes */
edf8e2af
MW
3500 if (fill_note_info(&info, signr, env) < 0)
3501 goto out;
3502
3503 offset += sizeof (elf); /* elf header */
3504 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
3505
3506 /* write out notes program header */
3507 fill_elf_note_phdr(&phdr, info.notes_size, offset);
3508
3509 offset += info.notes_size;
3510 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3511 goto out;
3512
3513 /*
3514 * ELF specification wants data to start at page boundary so
3515 * we align it here.
3516 */
80f5ce75 3517 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
edf8e2af
MW
3518
3519 /*
3520 * Write program headers for memory regions mapped in
3521 * the target process.
3522 */
3523 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3524 (void) memset(&phdr, 0, sizeof (phdr));
3525
3526 phdr.p_type = PT_LOAD;
3527 phdr.p_offset = offset;
3528 phdr.p_vaddr = vma->vma_start;
3529 phdr.p_paddr = 0;
3530 phdr.p_filesz = vma_dump_size(vma);
3531 offset += phdr.p_filesz;
3532 phdr.p_memsz = vma->vma_end - vma->vma_start;
3533 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3534 if (vma->vma_flags & PROT_WRITE)
3535 phdr.p_flags |= PF_W;
3536 if (vma->vma_flags & PROT_EXEC)
3537 phdr.p_flags |= PF_X;
3538 phdr.p_align = ELF_EXEC_PAGESIZE;
3539
80f5ce75 3540 bswap_phdr(&phdr, 1);
772034b6
PM
3541 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
3542 goto out;
3543 }
edf8e2af
MW
3544 }
3545
3546 /*
3547 * Next we write notes just after program headers. No
3548 * alignment needed here.
3549 */
3550 if (write_note_info(&info, fd) < 0)
3551 goto out;
3552
3553 /* align data to page boundary */
edf8e2af
MW
3554 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3555 goto out;
3556
3557 /*
3558 * Finally we can dump process memory into corefile as well.
3559 */
3560 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3561 abi_ulong addr;
3562 abi_ulong end;
3563
3564 end = vma->vma_start + vma_dump_size(vma);
3565
3566 for (addr = vma->vma_start; addr < end;
d97ef72e 3567 addr += TARGET_PAGE_SIZE) {
edf8e2af
MW
3568 char page[TARGET_PAGE_SIZE];
3569 int error;
3570
3571 /*
3572 * Read in page from target process memory and
3573 * write it to coredump file.
3574 */
3575 error = copy_from_user(page, addr, sizeof (page));
3576 if (error != 0) {
49995e17 3577 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
d97ef72e 3578 addr);
edf8e2af
MW
3579 errno = -error;
3580 goto out;
3581 }
3582 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3583 goto out;
3584 }
3585 }
3586
d97ef72e 3587 out:
edf8e2af
MW
3588 free_note_info(&info);
3589 if (mm != NULL)
3590 vma_delete(mm);
3591 (void) close(fd);
3592
3593 if (errno != 0)
3594 return (-errno);
3595 return (0);
3596}
edf8e2af
MW
3597#endif /* USE_ELF_CORE_DUMP */
3598
e5fe0c52
PB
3599void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3600{
3601 init_thread(regs, infop);
3602}
This page took 1.352752 seconds and 4 git commands to generate.