]>
Commit | Line | Data |
---|---|---|
31e31b8a | 1 | /* This is the Linux kernel elf-loading code, ported into user space */ |
d39594e9 | 2 | #include "qemu/osdep.h" |
edf8e2af | 3 | #include <sys/param.h> |
31e31b8a | 4 | |
edf8e2af | 5 | #include <sys/resource.h> |
30ab9ef2 | 6 | #include <sys/shm.h> |
31e31b8a | 7 | |
3ef693a0 | 8 | #include "qemu.h" |
76cad711 | 9 | #include "disas/disas.h" |
f348b6d1 | 10 | #include "qemu/path.h" |
dc5e9ac7 | 11 | #include "qemu/queue.h" |
c6a2377f | 12 | #include "qemu/guest-random.h" |
6fd59449 | 13 | #include "qemu/units.h" |
ee947430 | 14 | #include "qemu/selfmap.h" |
c7f17e7b | 15 | #include "qapi/error.h" |
31e31b8a | 16 | |
e58ffeb3 | 17 | #ifdef _ARCH_PPC64 |
a6cc84f4 | 18 | #undef ARCH_DLINFO |
19 | #undef ELF_PLATFORM | |
20 | #undef ELF_HWCAP | |
ad6919dc | 21 | #undef ELF_HWCAP2 |
a6cc84f4 | 22 | #undef ELF_CLASS |
23 | #undef ELF_DATA | |
24 | #undef ELF_ARCH | |
25 | #endif | |
26 | ||
edf8e2af MW |
27 | #define ELF_OSABI ELFOSABI_SYSV |
28 | ||
cb33da57 BS |
29 | /* from personality.h */ |
30 | ||
31 | /* | |
32 | * Flags for bug emulation. | |
33 | * | |
34 | * These occupy the top three bytes. | |
35 | */ | |
36 | enum { | |
d97ef72e RH |
37 | ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */ |
38 | FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to | |
39 | descriptors (signal handling) */ | |
40 | MMAP_PAGE_ZERO = 0x0100000, | |
41 | ADDR_COMPAT_LAYOUT = 0x0200000, | |
42 | READ_IMPLIES_EXEC = 0x0400000, | |
43 | ADDR_LIMIT_32BIT = 0x0800000, | |
44 | SHORT_INODE = 0x1000000, | |
45 | WHOLE_SECONDS = 0x2000000, | |
46 | STICKY_TIMEOUTS = 0x4000000, | |
47 | ADDR_LIMIT_3GB = 0x8000000, | |
cb33da57 BS |
48 | }; |
49 | ||
50 | /* | |
51 | * Personality types. | |
52 | * | |
53 | * These go in the low byte. Avoid using the top bit, it will | |
54 | * conflict with error returns. | |
55 | */ | |
56 | enum { | |
d97ef72e RH |
57 | PER_LINUX = 0x0000, |
58 | PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT, | |
59 | PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS, | |
60 | PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, | |
61 | PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE, | |
62 | PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE, | |
63 | PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, | |
64 | PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE, | |
65 | PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS, | |
66 | PER_BSD = 0x0006, | |
67 | PER_SUNOS = 0x0006 | STICKY_TIMEOUTS, | |
68 | PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE, | |
69 | PER_LINUX32 = 0x0008, | |
70 | PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB, | |
71 | PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ | |
72 | PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ | |
73 | PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ | |
74 | PER_RISCOS = 0x000c, | |
75 | PER_SOLARIS = 0x000d | STICKY_TIMEOUTS, | |
76 | PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, | |
77 | PER_OSF4 = 0x000f, /* OSF/1 v4 */ | |
78 | PER_HPUX = 0x0010, | |
79 | PER_MASK = 0x00ff, | |
cb33da57 BS |
80 | }; |
81 | ||
82 | /* | |
83 | * Return the base personality without flags. | |
84 | */ | |
d97ef72e | 85 | #define personality(pers) (pers & PER_MASK) |
cb33da57 | 86 | |
3cb10cfa CL |
87 | int info_is_fdpic(struct image_info *info) |
88 | { | |
89 | return info->personality == PER_LINUX_FDPIC; | |
90 | } | |
91 | ||
83fb7adf FB |
92 | /* this flag is uneffective under linux too, should be deleted */ |
93 | #ifndef MAP_DENYWRITE | |
94 | #define MAP_DENYWRITE 0 | |
95 | #endif | |
96 | ||
97 | /* should probably go in elf.h */ | |
98 | #ifndef ELIBBAD | |
99 | #define ELIBBAD 80 | |
100 | #endif | |
101 | ||
28490231 RH |
102 | #ifdef TARGET_WORDS_BIGENDIAN |
103 | #define ELF_DATA ELFDATA2MSB | |
104 | #else | |
105 | #define ELF_DATA ELFDATA2LSB | |
106 | #endif | |
107 | ||
a29f998d | 108 | #ifdef TARGET_ABI_MIPSN32 |
918fc54c PB |
109 | typedef abi_ullong target_elf_greg_t; |
110 | #define tswapreg(ptr) tswap64(ptr) | |
a29f998d PB |
111 | #else |
112 | typedef abi_ulong target_elf_greg_t; | |
113 | #define tswapreg(ptr) tswapal(ptr) | |
114 | #endif | |
115 | ||
21e807fa | 116 | #ifdef USE_UID16 |
1ddd592f PB |
117 | typedef abi_ushort target_uid_t; |
118 | typedef abi_ushort target_gid_t; | |
21e807fa | 119 | #else |
f8fd4fc4 PB |
120 | typedef abi_uint target_uid_t; |
121 | typedef abi_uint target_gid_t; | |
21e807fa | 122 | #endif |
f8fd4fc4 | 123 | typedef abi_int target_pid_t; |
21e807fa | 124 | |
30ac07d4 FB |
125 | #ifdef TARGET_I386 |
126 | ||
15338fd7 FB |
127 | #define ELF_PLATFORM get_elf_platform() |
128 | ||
129 | static const char *get_elf_platform(void) | |
130 | { | |
131 | static char elf_platform[] = "i386"; | |
a2247f8e | 132 | int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL); |
15338fd7 FB |
133 | if (family > 6) |
134 | family = 6; | |
135 | if (family >= 3) | |
136 | elf_platform[1] = '0' + family; | |
137 | return elf_platform; | |
138 | } | |
139 | ||
140 | #define ELF_HWCAP get_elf_hwcap() | |
141 | ||
142 | static uint32_t get_elf_hwcap(void) | |
143 | { | |
a2247f8e AF |
144 | X86CPU *cpu = X86_CPU(thread_cpu); |
145 | ||
146 | return cpu->env.features[FEAT_1_EDX]; | |
15338fd7 FB |
147 | } |
148 | ||
84409ddb JM |
149 | #ifdef TARGET_X86_64 |
150 | #define ELF_START_MMAP 0x2aaaaab000ULL | |
84409ddb JM |
151 | |
152 | #define ELF_CLASS ELFCLASS64 | |
84409ddb JM |
153 | #define ELF_ARCH EM_X86_64 |
154 | ||
155 | static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) | |
156 | { | |
157 | regs->rax = 0; | |
158 | regs->rsp = infop->start_stack; | |
159 | regs->rip = infop->entry; | |
160 | } | |
161 | ||
9edc5d79 | 162 | #define ELF_NREG 27 |
c227f099 | 163 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; |
9edc5d79 MW |
164 | |
165 | /* | |
166 | * Note that ELF_NREG should be 29 as there should be place for | |
167 | * TRAPNO and ERR "registers" as well but linux doesn't dump | |
168 | * those. | |
169 | * | |
170 | * See linux kernel: arch/x86/include/asm/elf.h | |
171 | */ | |
05390248 | 172 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) |
9edc5d79 MW |
173 | { |
174 | (*regs)[0] = env->regs[15]; | |
175 | (*regs)[1] = env->regs[14]; | |
176 | (*regs)[2] = env->regs[13]; | |
177 | (*regs)[3] = env->regs[12]; | |
178 | (*regs)[4] = env->regs[R_EBP]; | |
179 | (*regs)[5] = env->regs[R_EBX]; | |
180 | (*regs)[6] = env->regs[11]; | |
181 | (*regs)[7] = env->regs[10]; | |
182 | (*regs)[8] = env->regs[9]; | |
183 | (*regs)[9] = env->regs[8]; | |
184 | (*regs)[10] = env->regs[R_EAX]; | |
185 | (*regs)[11] = env->regs[R_ECX]; | |
186 | (*regs)[12] = env->regs[R_EDX]; | |
187 | (*regs)[13] = env->regs[R_ESI]; | |
188 | (*regs)[14] = env->regs[R_EDI]; | |
189 | (*regs)[15] = env->regs[R_EAX]; /* XXX */ | |
190 | (*regs)[16] = env->eip; | |
191 | (*regs)[17] = env->segs[R_CS].selector & 0xffff; | |
192 | (*regs)[18] = env->eflags; | |
193 | (*regs)[19] = env->regs[R_ESP]; | |
194 | (*regs)[20] = env->segs[R_SS].selector & 0xffff; | |
195 | (*regs)[21] = env->segs[R_FS].selector & 0xffff; | |
196 | (*regs)[22] = env->segs[R_GS].selector & 0xffff; | |
197 | (*regs)[23] = env->segs[R_DS].selector & 0xffff; | |
198 | (*regs)[24] = env->segs[R_ES].selector & 0xffff; | |
199 | (*regs)[25] = env->segs[R_FS].selector & 0xffff; | |
200 | (*regs)[26] = env->segs[R_GS].selector & 0xffff; | |
201 | } | |
202 | ||
84409ddb JM |
203 | #else |
204 | ||
30ac07d4 FB |
205 | #define ELF_START_MMAP 0x80000000 |
206 | ||
30ac07d4 FB |
207 | /* |
208 | * This is used to ensure we don't load something for the wrong architecture. | |
209 | */ | |
210 | #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) | |
211 | ||
212 | /* | |
213 | * These are used to set parameters in the core dumps. | |
214 | */ | |
d97ef72e | 215 | #define ELF_CLASS ELFCLASS32 |
d97ef72e | 216 | #define ELF_ARCH EM_386 |
30ac07d4 | 217 | |
d97ef72e RH |
218 | static inline void init_thread(struct target_pt_regs *regs, |
219 | struct image_info *infop) | |
b346ff46 FB |
220 | { |
221 | regs->esp = infop->start_stack; | |
222 | regs->eip = infop->entry; | |
e5fe0c52 PB |
223 | |
224 | /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program | |
225 | starts %edx contains a pointer to a function which might be | |
226 | registered using `atexit'. This provides a mean for the | |
227 | dynamic linker to call DT_FINI functions for shared libraries | |
228 | that have been loaded before the code runs. | |
229 | ||
230 | A value of 0 tells we have no such handler. */ | |
231 | regs->edx = 0; | |
b346ff46 | 232 | } |
9edc5d79 | 233 | |
9edc5d79 | 234 | #define ELF_NREG 17 |
c227f099 | 235 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; |
9edc5d79 MW |
236 | |
237 | /* | |
238 | * Note that ELF_NREG should be 19 as there should be place for | |
239 | * TRAPNO and ERR "registers" as well but linux doesn't dump | |
240 | * those. | |
241 | * | |
242 | * See linux kernel: arch/x86/include/asm/elf.h | |
243 | */ | |
05390248 | 244 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) |
9edc5d79 MW |
245 | { |
246 | (*regs)[0] = env->regs[R_EBX]; | |
247 | (*regs)[1] = env->regs[R_ECX]; | |
248 | (*regs)[2] = env->regs[R_EDX]; | |
249 | (*regs)[3] = env->regs[R_ESI]; | |
250 | (*regs)[4] = env->regs[R_EDI]; | |
251 | (*regs)[5] = env->regs[R_EBP]; | |
252 | (*regs)[6] = env->regs[R_EAX]; | |
253 | (*regs)[7] = env->segs[R_DS].selector & 0xffff; | |
254 | (*regs)[8] = env->segs[R_ES].selector & 0xffff; | |
255 | (*regs)[9] = env->segs[R_FS].selector & 0xffff; | |
256 | (*regs)[10] = env->segs[R_GS].selector & 0xffff; | |
257 | (*regs)[11] = env->regs[R_EAX]; /* XXX */ | |
258 | (*regs)[12] = env->eip; | |
259 | (*regs)[13] = env->segs[R_CS].selector & 0xffff; | |
260 | (*regs)[14] = env->eflags; | |
261 | (*regs)[15] = env->regs[R_ESP]; | |
262 | (*regs)[16] = env->segs[R_SS].selector & 0xffff; | |
263 | } | |
84409ddb | 264 | #endif |
b346ff46 | 265 | |
9edc5d79 | 266 | #define USE_ELF_CORE_DUMP |
d97ef72e | 267 | #define ELF_EXEC_PAGESIZE 4096 |
b346ff46 FB |
268 | |
269 | #endif | |
270 | ||
271 | #ifdef TARGET_ARM | |
272 | ||
24e76ff0 PM |
273 | #ifndef TARGET_AARCH64 |
274 | /* 32 bit ARM definitions */ | |
275 | ||
b346ff46 FB |
276 | #define ELF_START_MMAP 0x80000000 |
277 | ||
b597c3f7 | 278 | #define ELF_ARCH EM_ARM |
d97ef72e | 279 | #define ELF_CLASS ELFCLASS32 |
b346ff46 | 280 | |
d97ef72e RH |
281 | static inline void init_thread(struct target_pt_regs *regs, |
282 | struct image_info *infop) | |
b346ff46 | 283 | { |
992f48a0 | 284 | abi_long stack = infop->start_stack; |
b346ff46 | 285 | memset(regs, 0, sizeof(*regs)); |
99033cae | 286 | |
167e4cdc PM |
287 | regs->uregs[16] = ARM_CPU_MODE_USR; |
288 | if (infop->entry & 1) { | |
289 | regs->uregs[16] |= CPSR_T; | |
290 | } | |
291 | regs->uregs[15] = infop->entry & 0xfffffffe; | |
292 | regs->uregs[13] = infop->start_stack; | |
2f619698 | 293 | /* FIXME - what to for failure of get_user()? */ |
167e4cdc PM |
294 | get_user_ual(regs->uregs[2], stack + 8); /* envp */ |
295 | get_user_ual(regs->uregs[1], stack + 4); /* envp */ | |
a1516e92 | 296 | /* XXX: it seems that r0 is zeroed after ! */ |
167e4cdc | 297 | regs->uregs[0] = 0; |
e5fe0c52 | 298 | /* For uClinux PIC binaries. */ |
863cf0b7 | 299 | /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ |
167e4cdc | 300 | regs->uregs[10] = infop->start_data; |
3cb10cfa CL |
301 | |
302 | /* Support ARM FDPIC. */ | |
303 | if (info_is_fdpic(infop)) { | |
304 | /* As described in the ABI document, r7 points to the loadmap info | |
305 | * prepared by the kernel. If an interpreter is needed, r8 points | |
306 | * to the interpreter loadmap and r9 points to the interpreter | |
307 | * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and | |
308 | * r9 points to the main program PT_DYNAMIC info. | |
309 | */ | |
310 | regs->uregs[7] = infop->loadmap_addr; | |
311 | if (infop->interpreter_loadmap_addr) { | |
312 | /* Executable is dynamically loaded. */ | |
313 | regs->uregs[8] = infop->interpreter_loadmap_addr; | |
314 | regs->uregs[9] = infop->interpreter_pt_dynamic_addr; | |
315 | } else { | |
316 | regs->uregs[8] = 0; | |
317 | regs->uregs[9] = infop->pt_dynamic_addr; | |
318 | } | |
319 | } | |
b346ff46 FB |
320 | } |
321 | ||
edf8e2af | 322 | #define ELF_NREG 18 |
c227f099 | 323 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; |
edf8e2af | 324 | |
05390248 | 325 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env) |
edf8e2af | 326 | { |
86cd7b2d PB |
327 | (*regs)[0] = tswapreg(env->regs[0]); |
328 | (*regs)[1] = tswapreg(env->regs[1]); | |
329 | (*regs)[2] = tswapreg(env->regs[2]); | |
330 | (*regs)[3] = tswapreg(env->regs[3]); | |
331 | (*regs)[4] = tswapreg(env->regs[4]); | |
332 | (*regs)[5] = tswapreg(env->regs[5]); | |
333 | (*regs)[6] = tswapreg(env->regs[6]); | |
334 | (*regs)[7] = tswapreg(env->regs[7]); | |
335 | (*regs)[8] = tswapreg(env->regs[8]); | |
336 | (*regs)[9] = tswapreg(env->regs[9]); | |
337 | (*regs)[10] = tswapreg(env->regs[10]); | |
338 | (*regs)[11] = tswapreg(env->regs[11]); | |
339 | (*regs)[12] = tswapreg(env->regs[12]); | |
340 | (*regs)[13] = tswapreg(env->regs[13]); | |
341 | (*regs)[14] = tswapreg(env->regs[14]); | |
342 | (*regs)[15] = tswapreg(env->regs[15]); | |
343 | ||
344 | (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env)); | |
345 | (*regs)[17] = tswapreg(env->regs[0]); /* XXX */ | |
edf8e2af MW |
346 | } |
347 | ||
30ac07d4 | 348 | #define USE_ELF_CORE_DUMP |
d97ef72e | 349 | #define ELF_EXEC_PAGESIZE 4096 |
30ac07d4 | 350 | |
afce2927 FB |
351 | enum |
352 | { | |
d97ef72e RH |
353 | ARM_HWCAP_ARM_SWP = 1 << 0, |
354 | ARM_HWCAP_ARM_HALF = 1 << 1, | |
355 | ARM_HWCAP_ARM_THUMB = 1 << 2, | |
356 | ARM_HWCAP_ARM_26BIT = 1 << 3, | |
357 | ARM_HWCAP_ARM_FAST_MULT = 1 << 4, | |
358 | ARM_HWCAP_ARM_FPA = 1 << 5, | |
359 | ARM_HWCAP_ARM_VFP = 1 << 6, | |
360 | ARM_HWCAP_ARM_EDSP = 1 << 7, | |
361 | ARM_HWCAP_ARM_JAVA = 1 << 8, | |
362 | ARM_HWCAP_ARM_IWMMXT = 1 << 9, | |
43ce393e PM |
363 | ARM_HWCAP_ARM_CRUNCH = 1 << 10, |
364 | ARM_HWCAP_ARM_THUMBEE = 1 << 11, | |
365 | ARM_HWCAP_ARM_NEON = 1 << 12, | |
366 | ARM_HWCAP_ARM_VFPv3 = 1 << 13, | |
367 | ARM_HWCAP_ARM_VFPv3D16 = 1 << 14, | |
24682654 PM |
368 | ARM_HWCAP_ARM_TLS = 1 << 15, |
369 | ARM_HWCAP_ARM_VFPv4 = 1 << 16, | |
370 | ARM_HWCAP_ARM_IDIVA = 1 << 17, | |
371 | ARM_HWCAP_ARM_IDIVT = 1 << 18, | |
372 | ARM_HWCAP_ARM_VFPD32 = 1 << 19, | |
373 | ARM_HWCAP_ARM_LPAE = 1 << 20, | |
374 | ARM_HWCAP_ARM_EVTSTRM = 1 << 21, | |
afce2927 FB |
375 | }; |
376 | ||
ad6919dc PM |
377 | enum { |
378 | ARM_HWCAP2_ARM_AES = 1 << 0, | |
379 | ARM_HWCAP2_ARM_PMULL = 1 << 1, | |
380 | ARM_HWCAP2_ARM_SHA1 = 1 << 2, | |
381 | ARM_HWCAP2_ARM_SHA2 = 1 << 3, | |
382 | ARM_HWCAP2_ARM_CRC32 = 1 << 4, | |
383 | }; | |
384 | ||
6b1275ff PM |
385 | /* The commpage only exists for 32 bit kernels */ |
386 | ||
ee947430 | 387 | #define ARM_COMMPAGE (intptr_t)0xffff0f00u |
806d1021 | 388 | |
ee947430 AB |
389 | static bool init_guest_commpage(void) |
390 | { | |
391 | void *want = g2h(ARM_COMMPAGE & -qemu_host_page_size); | |
392 | void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE, | |
5c3e87f3 | 393 | MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0); |
97cc7560 | 394 | |
ee947430 AB |
395 | if (addr == MAP_FAILED) { |
396 | perror("Allocating guest commpage"); | |
397 | exit(EXIT_FAILURE); | |
97cc7560 | 398 | } |
ee947430 AB |
399 | if (addr != want) { |
400 | return false; | |
97cc7560 DDAG |
401 | } |
402 | ||
ee947430 AB |
403 | /* Set kernel helper versions; rest of page is 0. */ |
404 | __put_user(5, (uint32_t *)g2h(0xffff0ffcu)); | |
97cc7560 | 405 | |
ee947430 | 406 | if (mprotect(addr, qemu_host_page_size, PROT_READ)) { |
97cc7560 | 407 | perror("Protecting guest commpage"); |
ee947430 | 408 | exit(EXIT_FAILURE); |
97cc7560 | 409 | } |
ee947430 | 410 | return true; |
97cc7560 | 411 | } |
adf050b1 BC |
412 | |
413 | #define ELF_HWCAP get_elf_hwcap() | |
ad6919dc | 414 | #define ELF_HWCAP2 get_elf_hwcap2() |
adf050b1 BC |
415 | |
416 | static uint32_t get_elf_hwcap(void) | |
417 | { | |
a2247f8e | 418 | ARMCPU *cpu = ARM_CPU(thread_cpu); |
adf050b1 BC |
419 | uint32_t hwcaps = 0; |
420 | ||
421 | hwcaps |= ARM_HWCAP_ARM_SWP; | |
422 | hwcaps |= ARM_HWCAP_ARM_HALF; | |
423 | hwcaps |= ARM_HWCAP_ARM_THUMB; | |
424 | hwcaps |= ARM_HWCAP_ARM_FAST_MULT; | |
adf050b1 BC |
425 | |
426 | /* probe for the extra features */ | |
427 | #define GET_FEATURE(feat, hwcap) \ | |
a2247f8e | 428 | do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) |
962fcbf2 RH |
429 | |
430 | #define GET_FEATURE_ID(feat, hwcap) \ | |
431 | do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) | |
432 | ||
24682654 PM |
433 | /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */ |
434 | GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP); | |
adf050b1 BC |
435 | GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT); |
436 | GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE); | |
437 | GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON); | |
24682654 | 438 | GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS); |
bfa8a370 | 439 | GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE); |
873b73c0 PM |
440 | GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA); |
441 | GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT); | |
bfa8a370 RH |
442 | GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP); |
443 | ||
444 | if (cpu_isar_feature(aa32_fpsp_v3, cpu) || | |
445 | cpu_isar_feature(aa32_fpdp_v3, cpu)) { | |
446 | hwcaps |= ARM_HWCAP_ARM_VFPv3; | |
447 | if (cpu_isar_feature(aa32_simd_r32, cpu)) { | |
448 | hwcaps |= ARM_HWCAP_ARM_VFPD32; | |
449 | } else { | |
450 | hwcaps |= ARM_HWCAP_ARM_VFPv3D16; | |
451 | } | |
452 | } | |
453 | GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4); | |
adf050b1 BC |
454 | |
455 | return hwcaps; | |
456 | } | |
afce2927 | 457 | |
ad6919dc PM |
458 | static uint32_t get_elf_hwcap2(void) |
459 | { | |
460 | ARMCPU *cpu = ARM_CPU(thread_cpu); | |
461 | uint32_t hwcaps = 0; | |
462 | ||
962fcbf2 RH |
463 | GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES); |
464 | GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL); | |
465 | GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1); | |
466 | GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2); | |
467 | GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32); | |
ad6919dc PM |
468 | return hwcaps; |
469 | } | |
470 | ||
471 | #undef GET_FEATURE | |
962fcbf2 | 472 | #undef GET_FEATURE_ID |
ad6919dc | 473 | |
13ec4ec3 RH |
474 | #define ELF_PLATFORM get_elf_platform() |
475 | ||
476 | static const char *get_elf_platform(void) | |
477 | { | |
478 | CPUARMState *env = thread_cpu->env_ptr; | |
479 | ||
480 | #ifdef TARGET_WORDS_BIGENDIAN | |
481 | # define END "b" | |
482 | #else | |
483 | # define END "l" | |
484 | #endif | |
485 | ||
486 | if (arm_feature(env, ARM_FEATURE_V8)) { | |
487 | return "v8" END; | |
488 | } else if (arm_feature(env, ARM_FEATURE_V7)) { | |
489 | if (arm_feature(env, ARM_FEATURE_M)) { | |
490 | return "v7m" END; | |
491 | } else { | |
492 | return "v7" END; | |
493 | } | |
494 | } else if (arm_feature(env, ARM_FEATURE_V6)) { | |
495 | return "v6" END; | |
496 | } else if (arm_feature(env, ARM_FEATURE_V5)) { | |
497 | return "v5" END; | |
498 | } else { | |
499 | return "v4" END; | |
500 | } | |
501 | ||
502 | #undef END | |
503 | } | |
504 | ||
24e76ff0 PM |
505 | #else |
506 | /* 64 bit ARM definitions */ | |
507 | #define ELF_START_MMAP 0x80000000 | |
508 | ||
b597c3f7 | 509 | #define ELF_ARCH EM_AARCH64 |
24e76ff0 | 510 | #define ELF_CLASS ELFCLASS64 |
e20e3ec9 RH |
511 | #ifdef TARGET_WORDS_BIGENDIAN |
512 | # define ELF_PLATFORM "aarch64_be" | |
513 | #else | |
514 | # define ELF_PLATFORM "aarch64" | |
515 | #endif | |
24e76ff0 PM |
516 | |
517 | static inline void init_thread(struct target_pt_regs *regs, | |
518 | struct image_info *infop) | |
519 | { | |
520 | abi_long stack = infop->start_stack; | |
521 | memset(regs, 0, sizeof(*regs)); | |
522 | ||
523 | regs->pc = infop->entry & ~0x3ULL; | |
524 | regs->sp = stack; | |
525 | } | |
526 | ||
527 | #define ELF_NREG 34 | |
528 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | |
529 | ||
530 | static void elf_core_copy_regs(target_elf_gregset_t *regs, | |
531 | const CPUARMState *env) | |
532 | { | |
533 | int i; | |
534 | ||
535 | for (i = 0; i < 32; i++) { | |
536 | (*regs)[i] = tswapreg(env->xregs[i]); | |
537 | } | |
538 | (*regs)[32] = tswapreg(env->pc); | |
539 | (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env)); | |
540 | } | |
541 | ||
542 | #define USE_ELF_CORE_DUMP | |
543 | #define ELF_EXEC_PAGESIZE 4096 | |
544 | ||
545 | enum { | |
546 | ARM_HWCAP_A64_FP = 1 << 0, | |
547 | ARM_HWCAP_A64_ASIMD = 1 << 1, | |
548 | ARM_HWCAP_A64_EVTSTRM = 1 << 2, | |
549 | ARM_HWCAP_A64_AES = 1 << 3, | |
550 | ARM_HWCAP_A64_PMULL = 1 << 4, | |
551 | ARM_HWCAP_A64_SHA1 = 1 << 5, | |
552 | ARM_HWCAP_A64_SHA2 = 1 << 6, | |
553 | ARM_HWCAP_A64_CRC32 = 1 << 7, | |
955f56d4 AB |
554 | ARM_HWCAP_A64_ATOMICS = 1 << 8, |
555 | ARM_HWCAP_A64_FPHP = 1 << 9, | |
556 | ARM_HWCAP_A64_ASIMDHP = 1 << 10, | |
557 | ARM_HWCAP_A64_CPUID = 1 << 11, | |
558 | ARM_HWCAP_A64_ASIMDRDM = 1 << 12, | |
559 | ARM_HWCAP_A64_JSCVT = 1 << 13, | |
560 | ARM_HWCAP_A64_FCMA = 1 << 14, | |
561 | ARM_HWCAP_A64_LRCPC = 1 << 15, | |
562 | ARM_HWCAP_A64_DCPOP = 1 << 16, | |
563 | ARM_HWCAP_A64_SHA3 = 1 << 17, | |
564 | ARM_HWCAP_A64_SM3 = 1 << 18, | |
565 | ARM_HWCAP_A64_SM4 = 1 << 19, | |
566 | ARM_HWCAP_A64_ASIMDDP = 1 << 20, | |
567 | ARM_HWCAP_A64_SHA512 = 1 << 21, | |
568 | ARM_HWCAP_A64_SVE = 1 << 22, | |
0083a1fa RH |
569 | ARM_HWCAP_A64_ASIMDFHM = 1 << 23, |
570 | ARM_HWCAP_A64_DIT = 1 << 24, | |
571 | ARM_HWCAP_A64_USCAT = 1 << 25, | |
572 | ARM_HWCAP_A64_ILRCPC = 1 << 26, | |
573 | ARM_HWCAP_A64_FLAGM = 1 << 27, | |
574 | ARM_HWCAP_A64_SSBS = 1 << 28, | |
575 | ARM_HWCAP_A64_SB = 1 << 29, | |
576 | ARM_HWCAP_A64_PACA = 1 << 30, | |
577 | ARM_HWCAP_A64_PACG = 1UL << 31, | |
2041df4a RH |
578 | |
579 | ARM_HWCAP2_A64_DCPODP = 1 << 0, | |
580 | ARM_HWCAP2_A64_SVE2 = 1 << 1, | |
581 | ARM_HWCAP2_A64_SVEAES = 1 << 2, | |
582 | ARM_HWCAP2_A64_SVEPMULL = 1 << 3, | |
583 | ARM_HWCAP2_A64_SVEBITPERM = 1 << 4, | |
584 | ARM_HWCAP2_A64_SVESHA3 = 1 << 5, | |
585 | ARM_HWCAP2_A64_SVESM4 = 1 << 6, | |
586 | ARM_HWCAP2_A64_FLAGM2 = 1 << 7, | |
587 | ARM_HWCAP2_A64_FRINT = 1 << 8, | |
24e76ff0 PM |
588 | }; |
589 | ||
2041df4a RH |
590 | #define ELF_HWCAP get_elf_hwcap() |
591 | #define ELF_HWCAP2 get_elf_hwcap2() | |
592 | ||
593 | #define GET_FEATURE_ID(feat, hwcap) \ | |
594 | do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) | |
24e76ff0 PM |
595 | |
596 | static uint32_t get_elf_hwcap(void) | |
597 | { | |
598 | ARMCPU *cpu = ARM_CPU(thread_cpu); | |
599 | uint32_t hwcaps = 0; | |
600 | ||
601 | hwcaps |= ARM_HWCAP_A64_FP; | |
602 | hwcaps |= ARM_HWCAP_A64_ASIMD; | |
37020ff1 | 603 | hwcaps |= ARM_HWCAP_A64_CPUID; |
24e76ff0 PM |
604 | |
605 | /* probe for the extra features */ | |
962fcbf2 RH |
606 | |
607 | GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES); | |
608 | GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL); | |
609 | GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1); | |
610 | GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2); | |
611 | GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512); | |
612 | GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32); | |
613 | GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3); | |
614 | GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3); | |
615 | GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4); | |
5763190f | 616 | GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP); |
962fcbf2 RH |
617 | GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS); |
618 | GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM); | |
619 | GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP); | |
620 | GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA); | |
cd208a1c | 621 | GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE); |
29d26ab2 | 622 | GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG); |
1c9af3a9 RH |
623 | GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM); |
624 | GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT); | |
9888bd1e | 625 | GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB); |
b89d9c98 | 626 | GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM); |
0d57b499 | 627 | GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP); |
2677cf9f | 628 | GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC); |
a1229109 | 629 | GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC); |
962fcbf2 | 630 | |
2041df4a RH |
631 | return hwcaps; |
632 | } | |
633 | ||
634 | static uint32_t get_elf_hwcap2(void) | |
635 | { | |
636 | ARMCPU *cpu = ARM_CPU(thread_cpu); | |
637 | uint32_t hwcaps = 0; | |
638 | ||
0d57b499 | 639 | GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP); |
2041df4a RH |
640 | GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2); |
641 | GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT); | |
24e76ff0 PM |
642 | |
643 | return hwcaps; | |
644 | } | |
645 | ||
2041df4a RH |
646 | #undef GET_FEATURE_ID |
647 | ||
24e76ff0 PM |
648 | #endif /* not TARGET_AARCH64 */ |
649 | #endif /* TARGET_ARM */ | |
30ac07d4 | 650 | |
853d6f7a | 651 | #ifdef TARGET_SPARC |
a315a145 | 652 | #ifdef TARGET_SPARC64 |
853d6f7a FB |
653 | |
654 | #define ELF_START_MMAP 0x80000000 | |
cf973e46 AT |
655 | #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ |
656 | | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9) | |
992f48a0 | 657 | #ifndef TARGET_ABI32 |
cb33da57 | 658 | #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS ) |
992f48a0 BS |
659 | #else |
660 | #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC ) | |
661 | #endif | |
853d6f7a | 662 | |
a315a145 | 663 | #define ELF_CLASS ELFCLASS64 |
5ef54116 FB |
664 | #define ELF_ARCH EM_SPARCV9 |
665 | ||
d97ef72e | 666 | #define STACK_BIAS 2047 |
a315a145 | 667 | |
d97ef72e RH |
668 | static inline void init_thread(struct target_pt_regs *regs, |
669 | struct image_info *infop) | |
a315a145 | 670 | { |
992f48a0 | 671 | #ifndef TARGET_ABI32 |
a315a145 | 672 | regs->tstate = 0; |
992f48a0 | 673 | #endif |
a315a145 FB |
674 | regs->pc = infop->entry; |
675 | regs->npc = regs->pc + 4; | |
676 | regs->y = 0; | |
992f48a0 BS |
677 | #ifdef TARGET_ABI32 |
678 | regs->u_regs[14] = infop->start_stack - 16 * 4; | |
679 | #else | |
cb33da57 BS |
680 | if (personality(infop->personality) == PER_LINUX32) |
681 | regs->u_regs[14] = infop->start_stack - 16 * 4; | |
682 | else | |
683 | regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS; | |
992f48a0 | 684 | #endif |
a315a145 FB |
685 | } |
686 | ||
687 | #else | |
688 | #define ELF_START_MMAP 0x80000000 | |
cf973e46 AT |
689 | #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ |
690 | | HWCAP_SPARC_MULDIV) | |
a315a145 | 691 | |
853d6f7a | 692 | #define ELF_CLASS ELFCLASS32 |
853d6f7a FB |
693 | #define ELF_ARCH EM_SPARC |
694 | ||
d97ef72e RH |
695 | static inline void init_thread(struct target_pt_regs *regs, |
696 | struct image_info *infop) | |
853d6f7a | 697 | { |
f5155289 FB |
698 | regs->psr = 0; |
699 | regs->pc = infop->entry; | |
700 | regs->npc = regs->pc + 4; | |
701 | regs->y = 0; | |
702 | regs->u_regs[14] = infop->start_stack - 16 * 4; | |
853d6f7a FB |
703 | } |
704 | ||
a315a145 | 705 | #endif |
853d6f7a FB |
706 | #endif |
707 | ||
67867308 FB |
708 | #ifdef TARGET_PPC |
709 | ||
4ecd4d16 | 710 | #define ELF_MACHINE PPC_ELF_MACHINE |
67867308 FB |
711 | #define ELF_START_MMAP 0x80000000 |
712 | ||
e85e7c6e | 713 | #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) |
84409ddb JM |
714 | |
715 | #define elf_check_arch(x) ( (x) == EM_PPC64 ) | |
716 | ||
d97ef72e | 717 | #define ELF_CLASS ELFCLASS64 |
84409ddb JM |
718 | |
719 | #else | |
720 | ||
d97ef72e | 721 | #define ELF_CLASS ELFCLASS32 |
84409ddb JM |
722 | |
723 | #endif | |
724 | ||
d97ef72e | 725 | #define ELF_ARCH EM_PPC |
67867308 | 726 | |
df84e4f3 NF |
727 | /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP). |
728 | See arch/powerpc/include/asm/cputable.h. */ | |
729 | enum { | |
3efa9a67 | 730 | QEMU_PPC_FEATURE_32 = 0x80000000, |
731 | QEMU_PPC_FEATURE_64 = 0x40000000, | |
732 | QEMU_PPC_FEATURE_601_INSTR = 0x20000000, | |
733 | QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000, | |
734 | QEMU_PPC_FEATURE_HAS_FPU = 0x08000000, | |
735 | QEMU_PPC_FEATURE_HAS_MMU = 0x04000000, | |
736 | QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000, | |
737 | QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000, | |
738 | QEMU_PPC_FEATURE_HAS_SPE = 0x00800000, | |
739 | QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000, | |
740 | QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000, | |
741 | QEMU_PPC_FEATURE_NO_TB = 0x00100000, | |
742 | QEMU_PPC_FEATURE_POWER4 = 0x00080000, | |
743 | QEMU_PPC_FEATURE_POWER5 = 0x00040000, | |
744 | QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000, | |
745 | QEMU_PPC_FEATURE_CELL = 0x00010000, | |
746 | QEMU_PPC_FEATURE_BOOKE = 0x00008000, | |
747 | QEMU_PPC_FEATURE_SMT = 0x00004000, | |
748 | QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000, | |
749 | QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000, | |
750 | QEMU_PPC_FEATURE_PA6T = 0x00000800, | |
751 | QEMU_PPC_FEATURE_HAS_DFP = 0x00000400, | |
752 | QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200, | |
753 | QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100, | |
754 | QEMU_PPC_FEATURE_HAS_VSX = 0x00000080, | |
755 | QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040, | |
756 | ||
757 | QEMU_PPC_FEATURE_TRUE_LE = 0x00000002, | |
758 | QEMU_PPC_FEATURE_PPC_LE = 0x00000001, | |
a60438dd TM |
759 | |
760 | /* Feature definitions in AT_HWCAP2. */ | |
761 | QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */ | |
762 | QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */ | |
763 | QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */ | |
764 | QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */ | |
765 | QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */ | |
766 | QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */ | |
24c373ec LV |
767 | QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000, |
768 | QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000, | |
be0c46d4 | 769 | QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */ |
24c373ec LV |
770 | QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */ |
771 | QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */ | |
772 | QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */ | |
773 | QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */ | |
df84e4f3 NF |
774 | }; |
775 | ||
776 | #define ELF_HWCAP get_elf_hwcap() | |
777 | ||
778 | static uint32_t get_elf_hwcap(void) | |
779 | { | |
a2247f8e | 780 | PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); |
df84e4f3 NF |
781 | uint32_t features = 0; |
782 | ||
783 | /* We don't have to be terribly complete here; the high points are | |
784 | Altivec/FP/SPE support. Anything else is just a bonus. */ | |
d97ef72e | 785 | #define GET_FEATURE(flag, feature) \ |
a2247f8e | 786 | do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) |
58eb5308 MW |
787 | #define GET_FEATURE2(flags, feature) \ |
788 | do { \ | |
789 | if ((cpu->env.insns_flags2 & flags) == flags) { \ | |
790 | features |= feature; \ | |
791 | } \ | |
792 | } while (0) | |
3efa9a67 | 793 | GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64); |
794 | GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU); | |
795 | GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC); | |
796 | GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE); | |
797 | GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE); | |
798 | GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE); | |
799 | GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE); | |
800 | GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC); | |
0e019746 TM |
801 | GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP); |
802 | GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX); | |
803 | GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 | | |
804 | PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206), | |
805 | QEMU_PPC_FEATURE_ARCH_2_06); | |
df84e4f3 | 806 | #undef GET_FEATURE |
0e019746 | 807 | #undef GET_FEATURE2 |
df84e4f3 NF |
808 | |
809 | return features; | |
810 | } | |
811 | ||
a60438dd TM |
812 | #define ELF_HWCAP2 get_elf_hwcap2() |
813 | ||
814 | static uint32_t get_elf_hwcap2(void) | |
815 | { | |
816 | PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); | |
817 | uint32_t features = 0; | |
818 | ||
819 | #define GET_FEATURE(flag, feature) \ | |
820 | do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) | |
821 | #define GET_FEATURE2(flag, feature) \ | |
822 | do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0) | |
823 | ||
824 | GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL); | |
825 | GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR); | |
826 | GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 | | |
24c373ec LV |
827 | PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 | |
828 | QEMU_PPC_FEATURE2_VEC_CRYPTO); | |
829 | GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 | | |
830 | QEMU_PPC_FEATURE2_DARN); | |
a60438dd TM |
831 | |
832 | #undef GET_FEATURE | |
833 | #undef GET_FEATURE2 | |
834 | ||
835 | return features; | |
836 | } | |
837 | ||
f5155289 FB |
838 | /* |
839 | * The requirements here are: | |
840 | * - keep the final alignment of sp (sp & 0xf) | |
841 | * - make sure the 32-bit value at the first 16 byte aligned position of | |
842 | * AUXV is greater than 16 for glibc compatibility. | |
843 | * AT_IGNOREPPC is used for that. | |
844 | * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, | |
845 | * even if DLINFO_ARCH_ITEMS goes to zero or is undefined. | |
846 | */ | |
0bccf03d | 847 | #define DLINFO_ARCH_ITEMS 5 |
d97ef72e RH |
848 | #define ARCH_DLINFO \ |
849 | do { \ | |
623e250a | 850 | PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \ |
d97ef72e | 851 | /* \ |
82991bed PM |
852 | * Handle glibc compatibility: these magic entries must \ |
853 | * be at the lowest addresses in the final auxv. \ | |
d97ef72e RH |
854 | */ \ |
855 | NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ | |
856 | NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ | |
82991bed PM |
857 | NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \ |
858 | NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \ | |
859 | NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \ | |
d97ef72e | 860 | } while (0) |
f5155289 | 861 | |
67867308 FB |
862 | static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) |
863 | { | |
67867308 | 864 | _regs->gpr[1] = infop->start_stack; |
e85e7c6e | 865 | #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) |
d90b94cd | 866 | if (get_ppc64_abi(infop) < 2) { |
2ccf97ec PM |
867 | uint64_t val; |
868 | get_user_u64(val, infop->entry + 8); | |
869 | _regs->gpr[2] = val + infop->load_bias; | |
870 | get_user_u64(val, infop->entry); | |
871 | infop->entry = val + infop->load_bias; | |
d90b94cd DK |
872 | } else { |
873 | _regs->gpr[12] = infop->entry; /* r12 set to global entry address */ | |
874 | } | |
84409ddb | 875 | #endif |
67867308 FB |
876 | _regs->nip = infop->entry; |
877 | } | |
878 | ||
e2f3e741 NF |
879 | /* See linux kernel: arch/powerpc/include/asm/elf.h. */ |
880 | #define ELF_NREG 48 | |
881 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | |
882 | ||
05390248 | 883 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env) |
e2f3e741 NF |
884 | { |
885 | int i; | |
886 | target_ulong ccr = 0; | |
887 | ||
888 | for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { | |
86cd7b2d | 889 | (*regs)[i] = tswapreg(env->gpr[i]); |
e2f3e741 NF |
890 | } |
891 | ||
86cd7b2d PB |
892 | (*regs)[32] = tswapreg(env->nip); |
893 | (*regs)[33] = tswapreg(env->msr); | |
894 | (*regs)[35] = tswapreg(env->ctr); | |
895 | (*regs)[36] = tswapreg(env->lr); | |
896 | (*regs)[37] = tswapreg(env->xer); | |
e2f3e741 NF |
897 | |
898 | for (i = 0; i < ARRAY_SIZE(env->crf); i++) { | |
899 | ccr |= env->crf[i] << (32 - ((i + 1) * 4)); | |
900 | } | |
86cd7b2d | 901 | (*regs)[38] = tswapreg(ccr); |
e2f3e741 NF |
902 | } |
903 | ||
904 | #define USE_ELF_CORE_DUMP | |
d97ef72e | 905 | #define ELF_EXEC_PAGESIZE 4096 |
67867308 FB |
906 | |
907 | #endif | |
908 | ||
048f6b4d FB |
909 | #ifdef TARGET_MIPS |
910 | ||
911 | #define ELF_START_MMAP 0x80000000 | |
912 | ||
388bb21a TS |
913 | #ifdef TARGET_MIPS64 |
914 | #define ELF_CLASS ELFCLASS64 | |
915 | #else | |
048f6b4d | 916 | #define ELF_CLASS ELFCLASS32 |
388bb21a | 917 | #endif |
048f6b4d FB |
918 | #define ELF_ARCH EM_MIPS |
919 | ||
f72541f3 AM |
920 | #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS) |
921 | ||
ace3d654 CMAB |
922 | #ifdef TARGET_ABI_MIPSN32 |
923 | #define elf_check_abi(x) ((x) & EF_MIPS_ABI2) | |
924 | #else | |
925 | #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2)) | |
926 | #endif | |
927 | ||
d97ef72e RH |
928 | static inline void init_thread(struct target_pt_regs *regs, |
929 | struct image_info *infop) | |
048f6b4d | 930 | { |
623a930e | 931 | regs->cp0_status = 2 << CP0St_KSU; |
048f6b4d FB |
932 | regs->cp0_epc = infop->entry; |
933 | regs->regs[29] = infop->start_stack; | |
934 | } | |
935 | ||
51e52606 NF |
936 | /* See linux kernel: arch/mips/include/asm/elf.h. */ |
937 | #define ELF_NREG 45 | |
938 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | |
939 | ||
940 | /* See linux kernel: arch/mips/include/asm/reg.h. */ | |
941 | enum { | |
942 | #ifdef TARGET_MIPS64 | |
943 | TARGET_EF_R0 = 0, | |
944 | #else | |
945 | TARGET_EF_R0 = 6, | |
946 | #endif | |
947 | TARGET_EF_R26 = TARGET_EF_R0 + 26, | |
948 | TARGET_EF_R27 = TARGET_EF_R0 + 27, | |
949 | TARGET_EF_LO = TARGET_EF_R0 + 32, | |
950 | TARGET_EF_HI = TARGET_EF_R0 + 33, | |
951 | TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34, | |
952 | TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35, | |
953 | TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36, | |
954 | TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37 | |
955 | }; | |
956 | ||
957 | /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ | |
05390248 | 958 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env) |
51e52606 NF |
959 | { |
960 | int i; | |
961 | ||
962 | for (i = 0; i < TARGET_EF_R0; i++) { | |
963 | (*regs)[i] = 0; | |
964 | } | |
965 | (*regs)[TARGET_EF_R0] = 0; | |
966 | ||
967 | for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) { | |
a29f998d | 968 | (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]); |
51e52606 NF |
969 | } |
970 | ||
971 | (*regs)[TARGET_EF_R26] = 0; | |
972 | (*regs)[TARGET_EF_R27] = 0; | |
a29f998d PB |
973 | (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]); |
974 | (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]); | |
975 | (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC); | |
976 | (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr); | |
977 | (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status); | |
978 | (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause); | |
51e52606 NF |
979 | } |
980 | ||
981 | #define USE_ELF_CORE_DUMP | |
388bb21a TS |
982 | #define ELF_EXEC_PAGESIZE 4096 |
983 | ||
46a1ee4f JC |
984 | /* See arch/mips/include/uapi/asm/hwcap.h. */ |
985 | enum { | |
986 | HWCAP_MIPS_R6 = (1 << 0), | |
987 | HWCAP_MIPS_MSA = (1 << 1), | |
988 | }; | |
989 | ||
990 | #define ELF_HWCAP get_elf_hwcap() | |
991 | ||
7d9a3d96 | 992 | #define GET_FEATURE_INSN(_flag, _hwcap) \ |
6dd97bfc PMD |
993 | do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0) |
994 | ||
388765a0 PMD |
995 | #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \ |
996 | do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0) | |
997 | ||
46a1ee4f JC |
998 | static uint32_t get_elf_hwcap(void) |
999 | { | |
1000 | MIPSCPU *cpu = MIPS_CPU(thread_cpu); | |
1001 | uint32_t hwcaps = 0; | |
1002 | ||
7d9a3d96 | 1003 | GET_FEATURE_INSN(ISA_MIPS32R6 | ISA_MIPS64R6, HWCAP_MIPS_R6); |
388765a0 | 1004 | GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA); |
46a1ee4f | 1005 | |
46a1ee4f JC |
1006 | return hwcaps; |
1007 | } | |
1008 | ||
388765a0 | 1009 | #undef GET_FEATURE_REG_SET |
7d9a3d96 | 1010 | #undef GET_FEATURE_INSN |
6dd97bfc | 1011 | |
048f6b4d FB |
1012 | #endif /* TARGET_MIPS */ |
1013 | ||
b779e29e EI |
1014 | #ifdef TARGET_MICROBLAZE |
1015 | ||
1016 | #define ELF_START_MMAP 0x80000000 | |
1017 | ||
0d5d4699 | 1018 | #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD) |
b779e29e EI |
1019 | |
1020 | #define ELF_CLASS ELFCLASS32 | |
0d5d4699 | 1021 | #define ELF_ARCH EM_MICROBLAZE |
b779e29e | 1022 | |
d97ef72e RH |
1023 | static inline void init_thread(struct target_pt_regs *regs, |
1024 | struct image_info *infop) | |
b779e29e EI |
1025 | { |
1026 | regs->pc = infop->entry; | |
1027 | regs->r1 = infop->start_stack; | |
1028 | ||
1029 | } | |
1030 | ||
b779e29e EI |
1031 | #define ELF_EXEC_PAGESIZE 4096 |
1032 | ||
e4cbd44d EI |
1033 | #define USE_ELF_CORE_DUMP |
1034 | #define ELF_NREG 38 | |
1035 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | |
1036 | ||
1037 | /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ | |
05390248 | 1038 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env) |
e4cbd44d EI |
1039 | { |
1040 | int i, pos = 0; | |
1041 | ||
1042 | for (i = 0; i < 32; i++) { | |
86cd7b2d | 1043 | (*regs)[pos++] = tswapreg(env->regs[i]); |
e4cbd44d EI |
1044 | } |
1045 | ||
af20a93a | 1046 | (*regs)[pos++] = tswapreg(env->pc); |
1074c0fb | 1047 | (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env)); |
af20a93a RH |
1048 | (*regs)[pos++] = 0; |
1049 | (*regs)[pos++] = tswapreg(env->ear); | |
1050 | (*regs)[pos++] = 0; | |
1051 | (*regs)[pos++] = tswapreg(env->esr); | |
e4cbd44d EI |
1052 | } |
1053 | ||
b779e29e EI |
1054 | #endif /* TARGET_MICROBLAZE */ |
1055 | ||
a0a839b6 MV |
1056 | #ifdef TARGET_NIOS2 |
1057 | ||
1058 | #define ELF_START_MMAP 0x80000000 | |
1059 | ||
1060 | #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2) | |
1061 | ||
1062 | #define ELF_CLASS ELFCLASS32 | |
1063 | #define ELF_ARCH EM_ALTERA_NIOS2 | |
1064 | ||
1065 | static void init_thread(struct target_pt_regs *regs, struct image_info *infop) | |
1066 | { | |
1067 | regs->ea = infop->entry; | |
1068 | regs->sp = infop->start_stack; | |
1069 | regs->estatus = 0x3; | |
1070 | } | |
1071 | ||
1072 | #define ELF_EXEC_PAGESIZE 4096 | |
1073 | ||
1074 | #define USE_ELF_CORE_DUMP | |
1075 | #define ELF_NREG 49 | |
1076 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | |
1077 | ||
1078 | /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ | |
1079 | static void elf_core_copy_regs(target_elf_gregset_t *regs, | |
1080 | const CPUNios2State *env) | |
1081 | { | |
1082 | int i; | |
1083 | ||
1084 | (*regs)[0] = -1; | |
1085 | for (i = 1; i < 8; i++) /* r0-r7 */ | |
1086 | (*regs)[i] = tswapreg(env->regs[i + 7]); | |
1087 | ||
1088 | for (i = 8; i < 16; i++) /* r8-r15 */ | |
1089 | (*regs)[i] = tswapreg(env->regs[i - 8]); | |
1090 | ||
1091 | for (i = 16; i < 24; i++) /* r16-r23 */ | |
1092 | (*regs)[i] = tswapreg(env->regs[i + 7]); | |
1093 | (*regs)[24] = -1; /* R_ET */ | |
1094 | (*regs)[25] = -1; /* R_BT */ | |
1095 | (*regs)[26] = tswapreg(env->regs[R_GP]); | |
1096 | (*regs)[27] = tswapreg(env->regs[R_SP]); | |
1097 | (*regs)[28] = tswapreg(env->regs[R_FP]); | |
1098 | (*regs)[29] = tswapreg(env->regs[R_EA]); | |
1099 | (*regs)[30] = -1; /* R_SSTATUS */ | |
1100 | (*regs)[31] = tswapreg(env->regs[R_RA]); | |
1101 | ||
1102 | (*regs)[32] = tswapreg(env->regs[R_PC]); | |
1103 | ||
1104 | (*regs)[33] = -1; /* R_STATUS */ | |
1105 | (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]); | |
1106 | ||
1107 | for (i = 35; i < 49; i++) /* ... */ | |
1108 | (*regs)[i] = -1; | |
1109 | } | |
1110 | ||
1111 | #endif /* TARGET_NIOS2 */ | |
1112 | ||
d962783e JL |
1113 | #ifdef TARGET_OPENRISC |
1114 | ||
1115 | #define ELF_START_MMAP 0x08000000 | |
1116 | ||
d962783e JL |
1117 | #define ELF_ARCH EM_OPENRISC |
1118 | #define ELF_CLASS ELFCLASS32 | |
1119 | #define ELF_DATA ELFDATA2MSB | |
1120 | ||
1121 | static inline void init_thread(struct target_pt_regs *regs, | |
1122 | struct image_info *infop) | |
1123 | { | |
1124 | regs->pc = infop->entry; | |
1125 | regs->gpr[1] = infop->start_stack; | |
1126 | } | |
1127 | ||
1128 | #define USE_ELF_CORE_DUMP | |
1129 | #define ELF_EXEC_PAGESIZE 8192 | |
1130 | ||
1131 | /* See linux kernel arch/openrisc/include/asm/elf.h. */ | |
1132 | #define ELF_NREG 34 /* gprs and pc, sr */ | |
1133 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | |
1134 | ||
1135 | static void elf_core_copy_regs(target_elf_gregset_t *regs, | |
1136 | const CPUOpenRISCState *env) | |
1137 | { | |
1138 | int i; | |
1139 | ||
1140 | for (i = 0; i < 32; i++) { | |
d89e71e8 | 1141 | (*regs)[i] = tswapreg(cpu_get_gpr(env, i)); |
d962783e | 1142 | } |
86cd7b2d | 1143 | (*regs)[32] = tswapreg(env->pc); |
84775c43 | 1144 | (*regs)[33] = tswapreg(cpu_get_sr(env)); |
d962783e JL |
1145 | } |
1146 | #define ELF_HWCAP 0 | |
1147 | #define ELF_PLATFORM NULL | |
1148 | ||
1149 | #endif /* TARGET_OPENRISC */ | |
1150 | ||
fdf9b3e8 FB |
1151 | #ifdef TARGET_SH4 |
1152 | ||
1153 | #define ELF_START_MMAP 0x80000000 | |
1154 | ||
fdf9b3e8 | 1155 | #define ELF_CLASS ELFCLASS32 |
fdf9b3e8 FB |
1156 | #define ELF_ARCH EM_SH |
1157 | ||
d97ef72e RH |
1158 | static inline void init_thread(struct target_pt_regs *regs, |
1159 | struct image_info *infop) | |
fdf9b3e8 | 1160 | { |
d97ef72e RH |
1161 | /* Check other registers XXXXX */ |
1162 | regs->pc = infop->entry; | |
1163 | regs->regs[15] = infop->start_stack; | |
fdf9b3e8 FB |
1164 | } |
1165 | ||
7631c97e NF |
1166 | /* See linux kernel: arch/sh/include/asm/elf.h. */ |
1167 | #define ELF_NREG 23 | |
1168 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | |
1169 | ||
1170 | /* See linux kernel: arch/sh/include/asm/ptrace.h. */ | |
1171 | enum { | |
1172 | TARGET_REG_PC = 16, | |
1173 | TARGET_REG_PR = 17, | |
1174 | TARGET_REG_SR = 18, | |
1175 | TARGET_REG_GBR = 19, | |
1176 | TARGET_REG_MACH = 20, | |
1177 | TARGET_REG_MACL = 21, | |
1178 | TARGET_REG_SYSCALL = 22 | |
1179 | }; | |
1180 | ||
d97ef72e | 1181 | static inline void elf_core_copy_regs(target_elf_gregset_t *regs, |
05390248 | 1182 | const CPUSH4State *env) |
7631c97e NF |
1183 | { |
1184 | int i; | |
1185 | ||
1186 | for (i = 0; i < 16; i++) { | |
72cd500b | 1187 | (*regs)[i] = tswapreg(env->gregs[i]); |
7631c97e NF |
1188 | } |
1189 | ||
86cd7b2d PB |
1190 | (*regs)[TARGET_REG_PC] = tswapreg(env->pc); |
1191 | (*regs)[TARGET_REG_PR] = tswapreg(env->pr); | |
1192 | (*regs)[TARGET_REG_SR] = tswapreg(env->sr); | |
1193 | (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr); | |
1194 | (*regs)[TARGET_REG_MACH] = tswapreg(env->mach); | |
1195 | (*regs)[TARGET_REG_MACL] = tswapreg(env->macl); | |
7631c97e NF |
1196 | (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */ |
1197 | } | |
1198 | ||
1199 | #define USE_ELF_CORE_DUMP | |
fdf9b3e8 FB |
1200 | #define ELF_EXEC_PAGESIZE 4096 |
1201 | ||
e42fd944 RH |
1202 | enum { |
1203 | SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */ | |
1204 | SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */ | |
1205 | SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */ | |
1206 | SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */ | |
1207 | SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */ | |
1208 | SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */ | |
1209 | SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */ | |
1210 | SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */ | |
1211 | SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */ | |
1212 | SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */ | |
1213 | }; | |
1214 | ||
1215 | #define ELF_HWCAP get_elf_hwcap() | |
1216 | ||
1217 | static uint32_t get_elf_hwcap(void) | |
1218 | { | |
1219 | SuperHCPU *cpu = SUPERH_CPU(thread_cpu); | |
1220 | uint32_t hwcap = 0; | |
1221 | ||
1222 | hwcap |= SH_CPU_HAS_FPU; | |
1223 | ||
1224 | if (cpu->env.features & SH_FEATURE_SH4A) { | |
1225 | hwcap |= SH_CPU_HAS_LLSC; | |
1226 | } | |
1227 | ||
1228 | return hwcap; | |
1229 | } | |
1230 | ||
fdf9b3e8 FB |
1231 | #endif |
1232 | ||
48733d19 TS |
1233 | #ifdef TARGET_CRIS |
1234 | ||
1235 | #define ELF_START_MMAP 0x80000000 | |
1236 | ||
48733d19 | 1237 | #define ELF_CLASS ELFCLASS32 |
48733d19 TS |
1238 | #define ELF_ARCH EM_CRIS |
1239 | ||
d97ef72e RH |
1240 | static inline void init_thread(struct target_pt_regs *regs, |
1241 | struct image_info *infop) | |
48733d19 | 1242 | { |
d97ef72e | 1243 | regs->erp = infop->entry; |
48733d19 TS |
1244 | } |
1245 | ||
48733d19 TS |
1246 | #define ELF_EXEC_PAGESIZE 8192 |
1247 | ||
1248 | #endif | |
1249 | ||
e6e5906b PB |
1250 | #ifdef TARGET_M68K |
1251 | ||
1252 | #define ELF_START_MMAP 0x80000000 | |
1253 | ||
d97ef72e | 1254 | #define ELF_CLASS ELFCLASS32 |
d97ef72e | 1255 | #define ELF_ARCH EM_68K |
e6e5906b PB |
1256 | |
1257 | /* ??? Does this need to do anything? | |
d97ef72e | 1258 | #define ELF_PLAT_INIT(_r) */ |
e6e5906b | 1259 | |
d97ef72e RH |
1260 | static inline void init_thread(struct target_pt_regs *regs, |
1261 | struct image_info *infop) | |
e6e5906b PB |
1262 | { |
1263 | regs->usp = infop->start_stack; | |
1264 | regs->sr = 0; | |
1265 | regs->pc = infop->entry; | |
1266 | } | |
1267 | ||
7a93cc55 NF |
1268 | /* See linux kernel: arch/m68k/include/asm/elf.h. */ |
1269 | #define ELF_NREG 20 | |
1270 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | |
1271 | ||
05390248 | 1272 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env) |
7a93cc55 | 1273 | { |
86cd7b2d PB |
1274 | (*regs)[0] = tswapreg(env->dregs[1]); |
1275 | (*regs)[1] = tswapreg(env->dregs[2]); | |
1276 | (*regs)[2] = tswapreg(env->dregs[3]); | |
1277 | (*regs)[3] = tswapreg(env->dregs[4]); | |
1278 | (*regs)[4] = tswapreg(env->dregs[5]); | |
1279 | (*regs)[5] = tswapreg(env->dregs[6]); | |
1280 | (*regs)[6] = tswapreg(env->dregs[7]); | |
1281 | (*regs)[7] = tswapreg(env->aregs[0]); | |
1282 | (*regs)[8] = tswapreg(env->aregs[1]); | |
1283 | (*regs)[9] = tswapreg(env->aregs[2]); | |
1284 | (*regs)[10] = tswapreg(env->aregs[3]); | |
1285 | (*regs)[11] = tswapreg(env->aregs[4]); | |
1286 | (*regs)[12] = tswapreg(env->aregs[5]); | |
1287 | (*regs)[13] = tswapreg(env->aregs[6]); | |
1288 | (*regs)[14] = tswapreg(env->dregs[0]); | |
1289 | (*regs)[15] = tswapreg(env->aregs[7]); | |
1290 | (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */ | |
1291 | (*regs)[17] = tswapreg(env->sr); | |
1292 | (*regs)[18] = tswapreg(env->pc); | |
7a93cc55 NF |
1293 | (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */ |
1294 | } | |
1295 | ||
1296 | #define USE_ELF_CORE_DUMP | |
d97ef72e | 1297 | #define ELF_EXEC_PAGESIZE 8192 |
e6e5906b PB |
1298 | |
1299 | #endif | |
1300 | ||
7a3148a9 JM |
1301 | #ifdef TARGET_ALPHA |
1302 | ||
1303 | #define ELF_START_MMAP (0x30000000000ULL) | |
1304 | ||
7a3148a9 | 1305 | #define ELF_CLASS ELFCLASS64 |
7a3148a9 JM |
1306 | #define ELF_ARCH EM_ALPHA |
1307 | ||
d97ef72e RH |
1308 | static inline void init_thread(struct target_pt_regs *regs, |
1309 | struct image_info *infop) | |
7a3148a9 JM |
1310 | { |
1311 | regs->pc = infop->entry; | |
1312 | regs->ps = 8; | |
1313 | regs->usp = infop->start_stack; | |
7a3148a9 JM |
1314 | } |
1315 | ||
7a3148a9 JM |
1316 | #define ELF_EXEC_PAGESIZE 8192 |
1317 | ||
1318 | #endif /* TARGET_ALPHA */ | |
1319 | ||
a4c075f1 UH |
1320 | #ifdef TARGET_S390X |
1321 | ||
1322 | #define ELF_START_MMAP (0x20000000000ULL) | |
1323 | ||
a4c075f1 UH |
1324 | #define ELF_CLASS ELFCLASS64 |
1325 | #define ELF_DATA ELFDATA2MSB | |
1326 | #define ELF_ARCH EM_S390 | |
1327 | ||
6d88baf1 DH |
1328 | #include "elf.h" |
1329 | ||
1330 | #define ELF_HWCAP get_elf_hwcap() | |
1331 | ||
1332 | #define GET_FEATURE(_feat, _hwcap) \ | |
1333 | do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0) | |
1334 | ||
1335 | static uint32_t get_elf_hwcap(void) | |
1336 | { | |
1337 | /* | |
1338 | * Let's assume we always have esan3 and zarch. | |
1339 | * 31-bit processes can use 64-bit registers (high gprs). | |
1340 | */ | |
1341 | uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS; | |
1342 | ||
1343 | GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE); | |
1344 | GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA); | |
1345 | GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP); | |
1346 | GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM); | |
1347 | if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) && | |
1348 | s390_has_feat(S390_FEAT_ETF3_ENH)) { | |
1349 | hwcap |= HWCAP_S390_ETF3EH; | |
1350 | } | |
1351 | GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS); | |
1352 | ||
1353 | return hwcap; | |
1354 | } | |
1355 | ||
a4c075f1 UH |
1356 | static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) |
1357 | { | |
1358 | regs->psw.addr = infop->entry; | |
1359 | regs->psw.mask = PSW_MASK_64 | PSW_MASK_32; | |
1360 | regs->gprs[15] = infop->start_stack; | |
1361 | } | |
1362 | ||
1363 | #endif /* TARGET_S390X */ | |
1364 | ||
b16189b2 CG |
1365 | #ifdef TARGET_TILEGX |
1366 | ||
1367 | /* 42 bits real used address, a half for user mode */ | |
1368 | #define ELF_START_MMAP (0x00000020000000000ULL) | |
1369 | ||
1370 | #define elf_check_arch(x) ((x) == EM_TILEGX) | |
1371 | ||
1372 | #define ELF_CLASS ELFCLASS64 | |
1373 | #define ELF_DATA ELFDATA2LSB | |
1374 | #define ELF_ARCH EM_TILEGX | |
1375 | ||
1376 | static inline void init_thread(struct target_pt_regs *regs, | |
1377 | struct image_info *infop) | |
1378 | { | |
1379 | regs->pc = infop->entry; | |
1380 | regs->sp = infop->start_stack; | |
1381 | ||
1382 | } | |
1383 | ||
1384 | #define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */ | |
1385 | ||
1386 | #endif /* TARGET_TILEGX */ | |
1387 | ||
47ae93cd MC |
1388 | #ifdef TARGET_RISCV |
1389 | ||
1390 | #define ELF_START_MMAP 0x80000000 | |
1391 | #define ELF_ARCH EM_RISCV | |
1392 | ||
1393 | #ifdef TARGET_RISCV32 | |
1394 | #define ELF_CLASS ELFCLASS32 | |
1395 | #else | |
1396 | #define ELF_CLASS ELFCLASS64 | |
1397 | #endif | |
1398 | ||
1399 | static inline void init_thread(struct target_pt_regs *regs, | |
1400 | struct image_info *infop) | |
1401 | { | |
1402 | regs->sepc = infop->entry; | |
1403 | regs->sp = infop->start_stack; | |
1404 | } | |
1405 | ||
1406 | #define ELF_EXEC_PAGESIZE 4096 | |
1407 | ||
1408 | #endif /* TARGET_RISCV */ | |
1409 | ||
7c248bcd RH |
1410 | #ifdef TARGET_HPPA |
1411 | ||
1412 | #define ELF_START_MMAP 0x80000000 | |
1413 | #define ELF_CLASS ELFCLASS32 | |
1414 | #define ELF_ARCH EM_PARISC | |
1415 | #define ELF_PLATFORM "PARISC" | |
1416 | #define STACK_GROWS_DOWN 0 | |
1417 | #define STACK_ALIGNMENT 64 | |
1418 | ||
1419 | static inline void init_thread(struct target_pt_regs *regs, | |
1420 | struct image_info *infop) | |
1421 | { | |
1422 | regs->iaoq[0] = infop->entry; | |
1423 | regs->iaoq[1] = infop->entry + 4; | |
1424 | regs->gr[23] = 0; | |
1425 | regs->gr[24] = infop->arg_start; | |
1426 | regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong); | |
1427 | /* The top-of-stack contains a linkage buffer. */ | |
1428 | regs->gr[30] = infop->start_stack + 64; | |
1429 | regs->gr[31] = infop->entry; | |
1430 | } | |
1431 | ||
1432 | #endif /* TARGET_HPPA */ | |
1433 | ||
ba7651fb MF |
1434 | #ifdef TARGET_XTENSA |
1435 | ||
1436 | #define ELF_START_MMAP 0x20000000 | |
1437 | ||
1438 | #define ELF_CLASS ELFCLASS32 | |
1439 | #define ELF_ARCH EM_XTENSA | |
1440 | ||
1441 | static inline void init_thread(struct target_pt_regs *regs, | |
1442 | struct image_info *infop) | |
1443 | { | |
1444 | regs->windowbase = 0; | |
1445 | regs->windowstart = 1; | |
1446 | regs->areg[1] = infop->start_stack; | |
1447 | regs->pc = infop->entry; | |
1448 | } | |
1449 | ||
1450 | /* See linux kernel: arch/xtensa/include/asm/elf.h. */ | |
1451 | #define ELF_NREG 128 | |
1452 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | |
1453 | ||
1454 | enum { | |
1455 | TARGET_REG_PC, | |
1456 | TARGET_REG_PS, | |
1457 | TARGET_REG_LBEG, | |
1458 | TARGET_REG_LEND, | |
1459 | TARGET_REG_LCOUNT, | |
1460 | TARGET_REG_SAR, | |
1461 | TARGET_REG_WINDOWSTART, | |
1462 | TARGET_REG_WINDOWBASE, | |
1463 | TARGET_REG_THREADPTR, | |
1464 | TARGET_REG_AR0 = 64, | |
1465 | }; | |
1466 | ||
1467 | static void elf_core_copy_regs(target_elf_gregset_t *regs, | |
1468 | const CPUXtensaState *env) | |
1469 | { | |
1470 | unsigned i; | |
1471 | ||
1472 | (*regs)[TARGET_REG_PC] = tswapreg(env->pc); | |
1473 | (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM); | |
1474 | (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]); | |
1475 | (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]); | |
1476 | (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]); | |
1477 | (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]); | |
1478 | (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]); | |
1479 | (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]); | |
1480 | (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]); | |
1481 | xtensa_sync_phys_from_window((CPUXtensaState *)env); | |
1482 | for (i = 0; i < env->config->nareg; ++i) { | |
1483 | (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]); | |
1484 | } | |
1485 | } | |
1486 | ||
1487 | #define USE_ELF_CORE_DUMP | |
1488 | #define ELF_EXEC_PAGESIZE 4096 | |
1489 | ||
1490 | #endif /* TARGET_XTENSA */ | |
1491 | ||
15338fd7 FB |
1492 | #ifndef ELF_PLATFORM |
1493 | #define ELF_PLATFORM (NULL) | |
1494 | #endif | |
1495 | ||
75be901c PC |
1496 | #ifndef ELF_MACHINE |
1497 | #define ELF_MACHINE ELF_ARCH | |
1498 | #endif | |
1499 | ||
d276a604 PC |
1500 | #ifndef elf_check_arch |
1501 | #define elf_check_arch(x) ((x) == ELF_ARCH) | |
1502 | #endif | |
1503 | ||
ace3d654 CMAB |
1504 | #ifndef elf_check_abi |
1505 | #define elf_check_abi(x) (1) | |
1506 | #endif | |
1507 | ||
15338fd7 FB |
1508 | #ifndef ELF_HWCAP |
1509 | #define ELF_HWCAP 0 | |
1510 | #endif | |
1511 | ||
7c4ee5bc RH |
1512 | #ifndef STACK_GROWS_DOWN |
1513 | #define STACK_GROWS_DOWN 1 | |
1514 | #endif | |
1515 | ||
1516 | #ifndef STACK_ALIGNMENT | |
1517 | #define STACK_ALIGNMENT 16 | |
1518 | #endif | |
1519 | ||
992f48a0 | 1520 | #ifdef TARGET_ABI32 |
cb33da57 | 1521 | #undef ELF_CLASS |
992f48a0 | 1522 | #define ELF_CLASS ELFCLASS32 |
cb33da57 BS |
1523 | #undef bswaptls |
1524 | #define bswaptls(ptr) bswap32s(ptr) | |
1525 | #endif | |
1526 | ||
31e31b8a | 1527 | #include "elf.h" |
09bfb054 | 1528 | |
e8384b37 RH |
1529 | /* We must delay the following stanzas until after "elf.h". */ |
1530 | #if defined(TARGET_AARCH64) | |
1531 | ||
1532 | static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz, | |
1533 | const uint32_t *data, | |
1534 | struct image_info *info, | |
1535 | Error **errp) | |
1536 | { | |
1537 | if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) { | |
1538 | if (pr_datasz != sizeof(uint32_t)) { | |
1539 | error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND"); | |
1540 | return false; | |
1541 | } | |
1542 | /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */ | |
1543 | info->note_flags = *data; | |
1544 | } | |
1545 | return true; | |
1546 | } | |
1547 | #define ARCH_USE_GNU_PROPERTY 1 | |
1548 | ||
1549 | #else | |
1550 | ||
83f990eb RH |
1551 | static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz, |
1552 | const uint32_t *data, | |
1553 | struct image_info *info, | |
1554 | Error **errp) | |
1555 | { | |
1556 | g_assert_not_reached(); | |
1557 | } | |
1558 | #define ARCH_USE_GNU_PROPERTY 0 | |
1559 | ||
e8384b37 RH |
1560 | #endif |
1561 | ||
09bfb054 FB |
1562 | struct exec |
1563 | { | |
d97ef72e RH |
1564 | unsigned int a_info; /* Use macros N_MAGIC, etc for access */ |
1565 | unsigned int a_text; /* length of text, in bytes */ | |
1566 | unsigned int a_data; /* length of data, in bytes */ | |
1567 | unsigned int a_bss; /* length of uninitialized data area, in bytes */ | |
1568 | unsigned int a_syms; /* length of symbol table data in file, in bytes */ | |
1569 | unsigned int a_entry; /* start address */ | |
1570 | unsigned int a_trsize; /* length of relocation info for text, in bytes */ | |
1571 | unsigned int a_drsize; /* length of relocation info for data, in bytes */ | |
09bfb054 FB |
1572 | }; |
1573 | ||
1574 | ||
1575 | #define N_MAGIC(exec) ((exec).a_info & 0xffff) | |
1576 | #define OMAGIC 0407 | |
1577 | #define NMAGIC 0410 | |
1578 | #define ZMAGIC 0413 | |
1579 | #define QMAGIC 0314 | |
1580 | ||
31e31b8a | 1581 | /* Necessary parameters */ |
94894ff2 SB |
1582 | #define TARGET_ELF_EXEC_PAGESIZE \ |
1583 | (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \ | |
1584 | TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE)) | |
1585 | #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE) | |
79cb1f1d YK |
1586 | #define TARGET_ELF_PAGESTART(_v) ((_v) & \ |
1587 | ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1)) | |
54936004 | 1588 | #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1)) |
31e31b8a | 1589 | |
e0d1673d | 1590 | #define DLINFO_ITEMS 16 |
31e31b8a | 1591 | |
09bfb054 FB |
1592 | static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) |
1593 | { | |
d97ef72e | 1594 | memcpy(to, from, n); |
09bfb054 | 1595 | } |
d691f669 | 1596 | |
31e31b8a | 1597 | #ifdef BSWAP_NEEDED |
92a31b1f | 1598 | static void bswap_ehdr(struct elfhdr *ehdr) |
31e31b8a | 1599 | { |
d97ef72e RH |
1600 | bswap16s(&ehdr->e_type); /* Object file type */ |
1601 | bswap16s(&ehdr->e_machine); /* Architecture */ | |
1602 | bswap32s(&ehdr->e_version); /* Object file version */ | |
1603 | bswaptls(&ehdr->e_entry); /* Entry point virtual address */ | |
1604 | bswaptls(&ehdr->e_phoff); /* Program header table file offset */ | |
1605 | bswaptls(&ehdr->e_shoff); /* Section header table file offset */ | |
1606 | bswap32s(&ehdr->e_flags); /* Processor-specific flags */ | |
1607 | bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ | |
1608 | bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ | |
1609 | bswap16s(&ehdr->e_phnum); /* Program header table entry count */ | |
1610 | bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ | |
1611 | bswap16s(&ehdr->e_shnum); /* Section header table entry count */ | |
1612 | bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ | |
31e31b8a FB |
1613 | } |
1614 | ||
991f8f0c | 1615 | static void bswap_phdr(struct elf_phdr *phdr, int phnum) |
31e31b8a | 1616 | { |
991f8f0c RH |
1617 | int i; |
1618 | for (i = 0; i < phnum; ++i, ++phdr) { | |
1619 | bswap32s(&phdr->p_type); /* Segment type */ | |
1620 | bswap32s(&phdr->p_flags); /* Segment flags */ | |
1621 | bswaptls(&phdr->p_offset); /* Segment file offset */ | |
1622 | bswaptls(&phdr->p_vaddr); /* Segment virtual address */ | |
1623 | bswaptls(&phdr->p_paddr); /* Segment physical address */ | |
1624 | bswaptls(&phdr->p_filesz); /* Segment size in file */ | |
1625 | bswaptls(&phdr->p_memsz); /* Segment size in memory */ | |
1626 | bswaptls(&phdr->p_align); /* Segment alignment */ | |
1627 | } | |
31e31b8a | 1628 | } |
689f936f | 1629 | |
991f8f0c | 1630 | static void bswap_shdr(struct elf_shdr *shdr, int shnum) |
689f936f | 1631 | { |
991f8f0c RH |
1632 | int i; |
1633 | for (i = 0; i < shnum; ++i, ++shdr) { | |
1634 | bswap32s(&shdr->sh_name); | |
1635 | bswap32s(&shdr->sh_type); | |
1636 | bswaptls(&shdr->sh_flags); | |
1637 | bswaptls(&shdr->sh_addr); | |
1638 | bswaptls(&shdr->sh_offset); | |
1639 | bswaptls(&shdr->sh_size); | |
1640 | bswap32s(&shdr->sh_link); | |
1641 | bswap32s(&shdr->sh_info); | |
1642 | bswaptls(&shdr->sh_addralign); | |
1643 | bswaptls(&shdr->sh_entsize); | |
1644 | } | |
689f936f FB |
1645 | } |
1646 | ||
7a3148a9 | 1647 | static void bswap_sym(struct elf_sym *sym) |
689f936f FB |
1648 | { |
1649 | bswap32s(&sym->st_name); | |
7a3148a9 JM |
1650 | bswaptls(&sym->st_value); |
1651 | bswaptls(&sym->st_size); | |
689f936f FB |
1652 | bswap16s(&sym->st_shndx); |
1653 | } | |
5dd0db52 SM |
1654 | |
1655 | #ifdef TARGET_MIPS | |
1656 | static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) | |
1657 | { | |
1658 | bswap16s(&abiflags->version); | |
1659 | bswap32s(&abiflags->ases); | |
1660 | bswap32s(&abiflags->isa_ext); | |
1661 | bswap32s(&abiflags->flags1); | |
1662 | bswap32s(&abiflags->flags2); | |
1663 | } | |
1664 | #endif | |
991f8f0c RH |
1665 | #else |
1666 | static inline void bswap_ehdr(struct elfhdr *ehdr) { } | |
1667 | static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { } | |
1668 | static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { } | |
1669 | static inline void bswap_sym(struct elf_sym *sym) { } | |
5dd0db52 SM |
1670 | #ifdef TARGET_MIPS |
1671 | static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { } | |
1672 | #endif | |
31e31b8a FB |
1673 | #endif |
1674 | ||
edf8e2af | 1675 | #ifdef USE_ELF_CORE_DUMP |
9349b4f9 | 1676 | static int elf_core_dump(int, const CPUArchState *); |
edf8e2af | 1677 | #endif /* USE_ELF_CORE_DUMP */ |
682674b8 | 1678 | static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias); |
edf8e2af | 1679 | |
9058abdd RH |
1680 | /* Verify the portions of EHDR within E_IDENT for the target. |
1681 | This can be performed before bswapping the entire header. */ | |
1682 | static bool elf_check_ident(struct elfhdr *ehdr) | |
1683 | { | |
1684 | return (ehdr->e_ident[EI_MAG0] == ELFMAG0 | |
1685 | && ehdr->e_ident[EI_MAG1] == ELFMAG1 | |
1686 | && ehdr->e_ident[EI_MAG2] == ELFMAG2 | |
1687 | && ehdr->e_ident[EI_MAG3] == ELFMAG3 | |
1688 | && ehdr->e_ident[EI_CLASS] == ELF_CLASS | |
1689 | && ehdr->e_ident[EI_DATA] == ELF_DATA | |
1690 | && ehdr->e_ident[EI_VERSION] == EV_CURRENT); | |
1691 | } | |
1692 | ||
1693 | /* Verify the portions of EHDR outside of E_IDENT for the target. | |
1694 | This has to wait until after bswapping the header. */ | |
1695 | static bool elf_check_ehdr(struct elfhdr *ehdr) | |
1696 | { | |
1697 | return (elf_check_arch(ehdr->e_machine) | |
ace3d654 | 1698 | && elf_check_abi(ehdr->e_flags) |
9058abdd RH |
1699 | && ehdr->e_ehsize == sizeof(struct elfhdr) |
1700 | && ehdr->e_phentsize == sizeof(struct elf_phdr) | |
9058abdd RH |
1701 | && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN)); |
1702 | } | |
1703 | ||
31e31b8a | 1704 | /* |
e5fe0c52 | 1705 | * 'copy_elf_strings()' copies argument/envelope strings from user |
31e31b8a FB |
1706 | * memory to free pages in kernel mem. These are in a format ready |
1707 | * to be put directly into the top of new user memory. | |
1708 | * | |
1709 | */ | |
59baae9a SB |
1710 | static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch, |
1711 | abi_ulong p, abi_ulong stack_limit) | |
31e31b8a | 1712 | { |
59baae9a | 1713 | char *tmp; |
7c4ee5bc | 1714 | int len, i; |
59baae9a | 1715 | abi_ulong top = p; |
31e31b8a FB |
1716 | |
1717 | if (!p) { | |
d97ef72e | 1718 | return 0; /* bullet-proofing */ |
31e31b8a | 1719 | } |
59baae9a | 1720 | |
7c4ee5bc RH |
1721 | if (STACK_GROWS_DOWN) { |
1722 | int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1; | |
1723 | for (i = argc - 1; i >= 0; --i) { | |
1724 | tmp = argv[i]; | |
1725 | if (!tmp) { | |
1726 | fprintf(stderr, "VFS: argc is wrong"); | |
1727 | exit(-1); | |
1728 | } | |
1729 | len = strlen(tmp) + 1; | |
1730 | tmp += len; | |
59baae9a | 1731 | |
7c4ee5bc RH |
1732 | if (len > (p - stack_limit)) { |
1733 | return 0; | |
1734 | } | |
1735 | while (len) { | |
1736 | int bytes_to_copy = (len > offset) ? offset : len; | |
1737 | tmp -= bytes_to_copy; | |
1738 | p -= bytes_to_copy; | |
1739 | offset -= bytes_to_copy; | |
1740 | len -= bytes_to_copy; | |
1741 | ||
1742 | memcpy_fromfs(scratch + offset, tmp, bytes_to_copy); | |
1743 | ||
1744 | if (offset == 0) { | |
1745 | memcpy_to_target(p, scratch, top - p); | |
1746 | top = p; | |
1747 | offset = TARGET_PAGE_SIZE; | |
1748 | } | |
1749 | } | |
d97ef72e | 1750 | } |
7c4ee5bc RH |
1751 | if (p != top) { |
1752 | memcpy_to_target(p, scratch + offset, top - p); | |
d97ef72e | 1753 | } |
7c4ee5bc RH |
1754 | } else { |
1755 | int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE); | |
1756 | for (i = 0; i < argc; ++i) { | |
1757 | tmp = argv[i]; | |
1758 | if (!tmp) { | |
1759 | fprintf(stderr, "VFS: argc is wrong"); | |
1760 | exit(-1); | |
1761 | } | |
1762 | len = strlen(tmp) + 1; | |
1763 | if (len > (stack_limit - p)) { | |
1764 | return 0; | |
1765 | } | |
1766 | while (len) { | |
1767 | int bytes_to_copy = (len > remaining) ? remaining : len; | |
1768 | ||
1769 | memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy); | |
1770 | ||
1771 | tmp += bytes_to_copy; | |
1772 | remaining -= bytes_to_copy; | |
1773 | p += bytes_to_copy; | |
1774 | len -= bytes_to_copy; | |
1775 | ||
1776 | if (remaining == 0) { | |
1777 | memcpy_to_target(top, scratch, p - top); | |
1778 | top = p; | |
1779 | remaining = TARGET_PAGE_SIZE; | |
1780 | } | |
d97ef72e RH |
1781 | } |
1782 | } | |
7c4ee5bc RH |
1783 | if (p != top) { |
1784 | memcpy_to_target(top, scratch, p - top); | |
1785 | } | |
59baae9a SB |
1786 | } |
1787 | ||
31e31b8a FB |
1788 | return p; |
1789 | } | |
1790 | ||
59baae9a SB |
1791 | /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of |
1792 | * argument/environment space. Newer kernels (>2.6.33) allow more, | |
1793 | * dependent on stack size, but guarantee at least 32 pages for | |
1794 | * backwards compatibility. | |
1795 | */ | |
1796 | #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE) | |
1797 | ||
1798 | static abi_ulong setup_arg_pages(struct linux_binprm *bprm, | |
992f48a0 | 1799 | struct image_info *info) |
53a5960a | 1800 | { |
59baae9a | 1801 | abi_ulong size, error, guard; |
31e31b8a | 1802 | |
703e0e89 | 1803 | size = guest_stack_size; |
59baae9a SB |
1804 | if (size < STACK_LOWER_LIMIT) { |
1805 | size = STACK_LOWER_LIMIT; | |
60dcbcb5 RH |
1806 | } |
1807 | guard = TARGET_PAGE_SIZE; | |
1808 | if (guard < qemu_real_host_page_size) { | |
1809 | guard = qemu_real_host_page_size; | |
1810 | } | |
1811 | ||
1812 | error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE, | |
1813 | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); | |
09bfb054 | 1814 | if (error == -1) { |
60dcbcb5 | 1815 | perror("mmap stack"); |
09bfb054 FB |
1816 | exit(-1); |
1817 | } | |
31e31b8a | 1818 | |
60dcbcb5 | 1819 | /* We reserve one extra page at the top of the stack as guard. */ |
7c4ee5bc RH |
1820 | if (STACK_GROWS_DOWN) { |
1821 | target_mprotect(error, guard, PROT_NONE); | |
1822 | info->stack_limit = error + guard; | |
1823 | return info->stack_limit + size - sizeof(void *); | |
1824 | } else { | |
1825 | target_mprotect(error + size, guard, PROT_NONE); | |
1826 | info->stack_limit = error + size; | |
1827 | return error; | |
1828 | } | |
31e31b8a FB |
1829 | } |
1830 | ||
cf129f3a RH |
1831 | /* Map and zero the bss. We need to explicitly zero any fractional pages |
1832 | after the data section (i.e. bss). */ | |
1833 | static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot) | |
31e31b8a | 1834 | { |
cf129f3a RH |
1835 | uintptr_t host_start, host_map_start, host_end; |
1836 | ||
1837 | last_bss = TARGET_PAGE_ALIGN(last_bss); | |
1838 | ||
1839 | /* ??? There is confusion between qemu_real_host_page_size and | |
1840 | qemu_host_page_size here and elsewhere in target_mmap, which | |
1841 | may lead to the end of the data section mapping from the file | |
1842 | not being mapped. At least there was an explicit test and | |
1843 | comment for that here, suggesting that "the file size must | |
1844 | be known". The comment probably pre-dates the introduction | |
1845 | of the fstat system call in target_mmap which does in fact | |
1846 | find out the size. What isn't clear is if the workaround | |
1847 | here is still actually needed. For now, continue with it, | |
1848 | but merge it with the "normal" mmap that would allocate the bss. */ | |
1849 | ||
1850 | host_start = (uintptr_t) g2h(elf_bss); | |
1851 | host_end = (uintptr_t) g2h(last_bss); | |
0c2d70c4 | 1852 | host_map_start = REAL_HOST_PAGE_ALIGN(host_start); |
cf129f3a RH |
1853 | |
1854 | if (host_map_start < host_end) { | |
1855 | void *p = mmap((void *)host_map_start, host_end - host_map_start, | |
1856 | prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); | |
1857 | if (p == MAP_FAILED) { | |
1858 | perror("cannot mmap brk"); | |
1859 | exit(-1); | |
853d6f7a | 1860 | } |
f46e9a0b | 1861 | } |
853d6f7a | 1862 | |
f46e9a0b TM |
1863 | /* Ensure that the bss page(s) are valid */ |
1864 | if ((page_get_flags(last_bss-1) & prot) != prot) { | |
1865 | page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID); | |
cf129f3a | 1866 | } |
31e31b8a | 1867 | |
cf129f3a RH |
1868 | if (host_start < host_map_start) { |
1869 | memset((void *)host_start, 0, host_map_start - host_start); | |
1870 | } | |
1871 | } | |
53a5960a | 1872 | |
cf58affe CL |
1873 | #ifdef TARGET_ARM |
1874 | static int elf_is_fdpic(struct elfhdr *exec) | |
1875 | { | |
1876 | return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC; | |
1877 | } | |
1878 | #else | |
a99856cd CL |
1879 | /* Default implementation, always false. */ |
1880 | static int elf_is_fdpic(struct elfhdr *exec) | |
1881 | { | |
1882 | return 0; | |
1883 | } | |
cf58affe | 1884 | #endif |
a99856cd | 1885 | |
1af02e83 MF |
1886 | static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp) |
1887 | { | |
1888 | uint16_t n; | |
1889 | struct elf32_fdpic_loadseg *loadsegs = info->loadsegs; | |
1890 | ||
1891 | /* elf32_fdpic_loadseg */ | |
1892 | n = info->nsegs; | |
1893 | while (n--) { | |
1894 | sp -= 12; | |
1895 | put_user_u32(loadsegs[n].addr, sp+0); | |
1896 | put_user_u32(loadsegs[n].p_vaddr, sp+4); | |
1897 | put_user_u32(loadsegs[n].p_memsz, sp+8); | |
1898 | } | |
1899 | ||
1900 | /* elf32_fdpic_loadmap */ | |
1901 | sp -= 4; | |
1902 | put_user_u16(0, sp+0); /* version */ | |
1903 | put_user_u16(info->nsegs, sp+2); /* nsegs */ | |
1904 | ||
1905 | info->personality = PER_LINUX_FDPIC; | |
1906 | info->loadmap_addr = sp; | |
1907 | ||
1908 | return sp; | |
1909 | } | |
1af02e83 | 1910 | |
992f48a0 | 1911 | static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, |
8e62a717 RH |
1912 | struct elfhdr *exec, |
1913 | struct image_info *info, | |
1914 | struct image_info *interp_info) | |
31e31b8a | 1915 | { |
d97ef72e | 1916 | abi_ulong sp; |
7c4ee5bc | 1917 | abi_ulong u_argc, u_argv, u_envp, u_auxv; |
d97ef72e | 1918 | int size; |
14322bad LA |
1919 | int i; |
1920 | abi_ulong u_rand_bytes; | |
1921 | uint8_t k_rand_bytes[16]; | |
d97ef72e RH |
1922 | abi_ulong u_platform; |
1923 | const char *k_platform; | |
1924 | const int n = sizeof(elf_addr_t); | |
1925 | ||
1926 | sp = p; | |
1af02e83 | 1927 | |
1af02e83 MF |
1928 | /* Needs to be before we load the env/argc/... */ |
1929 | if (elf_is_fdpic(exec)) { | |
1930 | /* Need 4 byte alignment for these structs */ | |
1931 | sp &= ~3; | |
1932 | sp = loader_build_fdpic_loadmap(info, sp); | |
1933 | info->other_info = interp_info; | |
1934 | if (interp_info) { | |
1935 | interp_info->other_info = info; | |
1936 | sp = loader_build_fdpic_loadmap(interp_info, sp); | |
3cb10cfa CL |
1937 | info->interpreter_loadmap_addr = interp_info->loadmap_addr; |
1938 | info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr; | |
1939 | } else { | |
1940 | info->interpreter_loadmap_addr = 0; | |
1941 | info->interpreter_pt_dynamic_addr = 0; | |
1af02e83 MF |
1942 | } |
1943 | } | |
1af02e83 | 1944 | |
d97ef72e RH |
1945 | u_platform = 0; |
1946 | k_platform = ELF_PLATFORM; | |
1947 | if (k_platform) { | |
1948 | size_t len = strlen(k_platform) + 1; | |
7c4ee5bc RH |
1949 | if (STACK_GROWS_DOWN) { |
1950 | sp -= (len + n - 1) & ~(n - 1); | |
1951 | u_platform = sp; | |
1952 | /* FIXME - check return value of memcpy_to_target() for failure */ | |
1953 | memcpy_to_target(sp, k_platform, len); | |
1954 | } else { | |
1955 | memcpy_to_target(sp, k_platform, len); | |
1956 | u_platform = sp; | |
1957 | sp += len + 1; | |
1958 | } | |
1959 | } | |
1960 | ||
1961 | /* Provide 16 byte alignment for the PRNG, and basic alignment for | |
1962 | * the argv and envp pointers. | |
1963 | */ | |
1964 | if (STACK_GROWS_DOWN) { | |
1965 | sp = QEMU_ALIGN_DOWN(sp, 16); | |
1966 | } else { | |
1967 | sp = QEMU_ALIGN_UP(sp, 16); | |
d97ef72e | 1968 | } |
14322bad LA |
1969 | |
1970 | /* | |
c6a2377f | 1971 | * Generate 16 random bytes for userspace PRNG seeding. |
14322bad | 1972 | */ |
c6a2377f | 1973 | qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes)); |
7c4ee5bc RH |
1974 | if (STACK_GROWS_DOWN) { |
1975 | sp -= 16; | |
1976 | u_rand_bytes = sp; | |
1977 | /* FIXME - check return value of memcpy_to_target() for failure */ | |
1978 | memcpy_to_target(sp, k_rand_bytes, 16); | |
1979 | } else { | |
1980 | memcpy_to_target(sp, k_rand_bytes, 16); | |
1981 | u_rand_bytes = sp; | |
1982 | sp += 16; | |
1983 | } | |
14322bad | 1984 | |
d97ef72e RH |
1985 | size = (DLINFO_ITEMS + 1) * 2; |
1986 | if (k_platform) | |
1987 | size += 2; | |
f5155289 | 1988 | #ifdef DLINFO_ARCH_ITEMS |
d97ef72e | 1989 | size += DLINFO_ARCH_ITEMS * 2; |
ad6919dc PM |
1990 | #endif |
1991 | #ifdef ELF_HWCAP2 | |
1992 | size += 2; | |
f5155289 | 1993 | #endif |
f516511e PM |
1994 | info->auxv_len = size * n; |
1995 | ||
d97ef72e | 1996 | size += envc + argc + 2; |
b9329d4b | 1997 | size += 1; /* argc itself */ |
d97ef72e | 1998 | size *= n; |
7c4ee5bc RH |
1999 | |
2000 | /* Allocate space and finalize stack alignment for entry now. */ | |
2001 | if (STACK_GROWS_DOWN) { | |
2002 | u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT); | |
2003 | sp = u_argc; | |
2004 | } else { | |
2005 | u_argc = sp; | |
2006 | sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT); | |
2007 | } | |
2008 | ||
2009 | u_argv = u_argc + n; | |
2010 | u_envp = u_argv + (argc + 1) * n; | |
2011 | u_auxv = u_envp + (envc + 1) * n; | |
2012 | info->saved_auxv = u_auxv; | |
2013 | info->arg_start = u_argv; | |
2014 | info->arg_end = u_argv + argc * n; | |
d97ef72e RH |
2015 | |
2016 | /* This is correct because Linux defines | |
2017 | * elf_addr_t as Elf32_Off / Elf64_Off | |
2018 | */ | |
2019 | #define NEW_AUX_ENT(id, val) do { \ | |
7c4ee5bc RH |
2020 | put_user_ual(id, u_auxv); u_auxv += n; \ |
2021 | put_user_ual(val, u_auxv); u_auxv += n; \ | |
d97ef72e RH |
2022 | } while(0) |
2023 | ||
82991bed PM |
2024 | #ifdef ARCH_DLINFO |
2025 | /* | |
2026 | * ARCH_DLINFO must come first so platform specific code can enforce | |
2027 | * special alignment requirements on the AUXV if necessary (eg. PPC). | |
2028 | */ | |
2029 | ARCH_DLINFO; | |
2030 | #endif | |
f516511e PM |
2031 | /* There must be exactly DLINFO_ITEMS entries here, or the assert |
2032 | * on info->auxv_len will trigger. | |
2033 | */ | |
8e62a717 | 2034 | NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff)); |
d97ef72e RH |
2035 | NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr))); |
2036 | NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum)); | |
33143c44 LV |
2037 | if ((info->alignment & ~qemu_host_page_mask) != 0) { |
2038 | /* Target doesn't support host page size alignment */ | |
2039 | NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE)); | |
2040 | } else { | |
2041 | NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, | |
2042 | qemu_host_page_size))); | |
2043 | } | |
8e62a717 | 2044 | NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0)); |
d97ef72e | 2045 | NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0); |
8e62a717 | 2046 | NEW_AUX_ENT(AT_ENTRY, info->entry); |
d97ef72e RH |
2047 | NEW_AUX_ENT(AT_UID, (abi_ulong) getuid()); |
2048 | NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid()); | |
2049 | NEW_AUX_ENT(AT_GID, (abi_ulong) getgid()); | |
2050 | NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid()); | |
2051 | NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP); | |
2052 | NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK)); | |
14322bad | 2053 | NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes); |
444cd5c3 | 2054 | NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE)); |
e0d1673d | 2055 | NEW_AUX_ENT(AT_EXECFN, info->file_string); |
14322bad | 2056 | |
ad6919dc PM |
2057 | #ifdef ELF_HWCAP2 |
2058 | NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2); | |
2059 | #endif | |
2060 | ||
7c4ee5bc | 2061 | if (u_platform) { |
d97ef72e | 2062 | NEW_AUX_ENT(AT_PLATFORM, u_platform); |
7c4ee5bc | 2063 | } |
7c4ee5bc | 2064 | NEW_AUX_ENT (AT_NULL, 0); |
f5155289 FB |
2065 | #undef NEW_AUX_ENT |
2066 | ||
f516511e PM |
2067 | /* Check that our initial calculation of the auxv length matches how much |
2068 | * we actually put into it. | |
2069 | */ | |
2070 | assert(info->auxv_len == u_auxv - info->saved_auxv); | |
7c4ee5bc RH |
2071 | |
2072 | put_user_ual(argc, u_argc); | |
2073 | ||
2074 | p = info->arg_strings; | |
2075 | for (i = 0; i < argc; ++i) { | |
2076 | put_user_ual(p, u_argv); | |
2077 | u_argv += n; | |
2078 | p += target_strlen(p) + 1; | |
2079 | } | |
2080 | put_user_ual(0, u_argv); | |
2081 | ||
2082 | p = info->env_strings; | |
2083 | for (i = 0; i < envc; ++i) { | |
2084 | put_user_ual(p, u_envp); | |
2085 | u_envp += n; | |
2086 | p += target_strlen(p) + 1; | |
2087 | } | |
2088 | put_user_ual(0, u_envp); | |
edf8e2af | 2089 | |
d97ef72e | 2090 | return sp; |
31e31b8a FB |
2091 | } |
2092 | ||
ee947430 AB |
2093 | #ifndef ARM_COMMPAGE |
2094 | #define ARM_COMMPAGE 0 | |
2095 | #define init_guest_commpage() true | |
8756e136 | 2096 | #endif |
dce10401 | 2097 | |
ee947430 AB |
2098 | static void pgb_fail_in_use(const char *image_name) |
2099 | { | |
2100 | error_report("%s: requires virtual address space that is in use " | |
2101 | "(omit the -B option or choose a different value)", | |
2102 | image_name); | |
2103 | exit(EXIT_FAILURE); | |
2104 | } | |
dce10401 | 2105 | |
ee947430 AB |
2106 | static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr, |
2107 | abi_ulong guest_hiaddr, long align) | |
2108 | { | |
2109 | const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; | |
2110 | void *addr, *test; | |
2a53535a | 2111 | |
ee947430 AB |
2112 | if (!QEMU_IS_ALIGNED(guest_base, align)) { |
2113 | fprintf(stderr, "Requested guest base 0x%lx does not satisfy " | |
2114 | "host minimum alignment (0x%lx)\n", | |
2115 | guest_base, align); | |
2116 | exit(EXIT_FAILURE); | |
2117 | } | |
2118 | ||
2119 | /* Sanity check the guest binary. */ | |
2120 | if (reserved_va) { | |
2121 | if (guest_hiaddr > reserved_va) { | |
2122 | error_report("%s: requires more than reserved virtual " | |
2123 | "address space (0x%" PRIx64 " > 0x%lx)", | |
2124 | image_name, (uint64_t)guest_hiaddr, reserved_va); | |
2125 | exit(EXIT_FAILURE); | |
2a53535a | 2126 | } |
ee947430 | 2127 | } else { |
a932eec4 | 2128 | #if HOST_LONG_BITS < TARGET_ABI_BITS |
ee947430 AB |
2129 | if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) { |
2130 | error_report("%s: requires more virtual address space " | |
2131 | "than the host can provide (0x%" PRIx64 ")", | |
2132 | image_name, (uint64_t)guest_hiaddr - guest_base); | |
2133 | exit(EXIT_FAILURE); | |
2a53535a | 2134 | } |
a932eec4 | 2135 | #endif |
2a53535a | 2136 | } |
2a53535a | 2137 | |
ee947430 AB |
2138 | /* |
2139 | * Expand the allocation to the entire reserved_va. | |
2140 | * Exclude the mmap_min_addr hole. | |
2141 | */ | |
2142 | if (reserved_va) { | |
2143 | guest_loaddr = (guest_base >= mmap_min_addr ? 0 | |
2144 | : mmap_min_addr - guest_base); | |
2145 | guest_hiaddr = reserved_va; | |
2146 | } | |
806d1021 | 2147 | |
ee947430 AB |
2148 | /* Reserve the address space for the binary, or reserved_va. */ |
2149 | test = g2h(guest_loaddr); | |
2150 | addr = mmap(test, guest_hiaddr - guest_loaddr, PROT_NONE, flags, -1, 0); | |
2151 | if (test != addr) { | |
2152 | pgb_fail_in_use(image_name); | |
2153 | } | |
2154 | } | |
2155 | ||
ad592e37 AB |
2156 | /** |
2157 | * pgd_find_hole_fallback: potential mmap address | |
2158 | * @guest_size: size of available space | |
2159 | * @brk: location of break | |
2160 | * @align: memory alignment | |
2161 | * | |
2162 | * This is a fallback method for finding a hole in the host address | |
2163 | * space if we don't have the benefit of being able to access | |
2164 | * /proc/self/map. It can potentially take a very long time as we can | |
2165 | * only dumbly iterate up the host address space seeing if the | |
2166 | * allocation would work. | |
2167 | */ | |
5c3e87f3 AB |
2168 | static uintptr_t pgd_find_hole_fallback(uintptr_t guest_size, uintptr_t brk, |
2169 | long align, uintptr_t offset) | |
ad592e37 AB |
2170 | { |
2171 | uintptr_t base; | |
2172 | ||
2173 | /* Start (aligned) at the bottom and work our way up */ | |
2174 | base = ROUND_UP(mmap_min_addr, align); | |
2175 | ||
2176 | while (true) { | |
2177 | uintptr_t align_start, end; | |
2178 | align_start = ROUND_UP(base, align); | |
5c3e87f3 | 2179 | end = align_start + guest_size + offset; |
ad592e37 AB |
2180 | |
2181 | /* if brk is anywhere in the range give ourselves some room to grow. */ | |
2182 | if (align_start <= brk && brk < end) { | |
2183 | base = brk + (16 * MiB); | |
2184 | continue; | |
2185 | } else if (align_start + guest_size < align_start) { | |
2186 | /* we have run out of space */ | |
2187 | return -1; | |
2188 | } else { | |
2667e069 AB |
2189 | int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE | |
2190 | MAP_FIXED_NOREPLACE; | |
ad592e37 AB |
2191 | void * mmap_start = mmap((void *) align_start, guest_size, |
2192 | PROT_NONE, flags, -1, 0); | |
2193 | if (mmap_start != MAP_FAILED) { | |
2194 | munmap((void *) align_start, guest_size); | |
36d2dbc7 PM |
2195 | if (MAP_FIXED_NOREPLACE != 0 || |
2196 | mmap_start == (void *) align_start) { | |
2667e069 AB |
2197 | return (uintptr_t) mmap_start + offset; |
2198 | } | |
ad592e37 AB |
2199 | } |
2200 | base += qemu_host_page_size; | |
2201 | } | |
2202 | } | |
2203 | } | |
2204 | ||
ee947430 AB |
2205 | /* Return value for guest_base, or -1 if no hole found. */ |
2206 | static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size, | |
5c3e87f3 | 2207 | long align, uintptr_t offset) |
ee947430 AB |
2208 | { |
2209 | GSList *maps, *iter; | |
2210 | uintptr_t this_start, this_end, next_start, brk; | |
2211 | intptr_t ret = -1; | |
2212 | ||
2213 | assert(QEMU_IS_ALIGNED(guest_loaddr, align)); | |
2214 | ||
2215 | maps = read_self_maps(); | |
dce10401 | 2216 | |
ee947430 AB |
2217 | /* Read brk after we've read the maps, which will malloc. */ |
2218 | brk = (uintptr_t)sbrk(0); | |
2219 | ||
ad592e37 | 2220 | if (!maps) { |
5c3e87f3 | 2221 | return pgd_find_hole_fallback(guest_size, brk, align, offset); |
ad592e37 AB |
2222 | } |
2223 | ||
ee947430 AB |
2224 | /* The first hole is before the first map entry. */ |
2225 | this_start = mmap_min_addr; | |
2226 | ||
2227 | for (iter = maps; iter; | |
2228 | this_start = next_start, iter = g_slist_next(iter)) { | |
2229 | uintptr_t align_start, hole_size; | |
2230 | ||
2231 | this_end = ((MapInfo *)iter->data)->start; | |
2232 | next_start = ((MapInfo *)iter->data)->end; | |
5c3e87f3 | 2233 | align_start = ROUND_UP(this_start + offset, align); |
ee947430 AB |
2234 | |
2235 | /* Skip holes that are too small. */ | |
2236 | if (align_start >= this_end) { | |
2237 | continue; | |
2238 | } | |
2239 | hole_size = this_end - align_start; | |
2240 | if (hole_size < guest_size) { | |
2241 | continue; | |
aac362e4 LS |
2242 | } |
2243 | ||
ee947430 AB |
2244 | /* If this hole contains brk, give ourselves some room to grow. */ |
2245 | if (this_start <= brk && brk < this_end) { | |
2246 | hole_size -= guest_size; | |
2247 | if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) { | |
2248 | align_start += 1 * GiB; | |
2249 | } else if (hole_size >= 16 * MiB) { | |
2250 | align_start += 16 * MiB; | |
2251 | } else { | |
2252 | align_start = (this_end - guest_size) & -align; | |
2253 | if (align_start < this_start) { | |
2254 | continue; | |
2255 | } | |
806d1021 | 2256 | } |
806d1021 MI |
2257 | } |
2258 | ||
ee947430 AB |
2259 | /* Record the lowest successful match. */ |
2260 | if (ret < 0) { | |
2261 | ret = align_start - guest_loaddr; | |
dce10401 | 2262 | } |
ee947430 AB |
2263 | /* If this hole contains the identity map, select it. */ |
2264 | if (align_start <= guest_loaddr && | |
2265 | guest_loaddr + guest_size <= this_end) { | |
2266 | ret = 0; | |
b859040d | 2267 | } |
ee947430 AB |
2268 | /* If this hole ends above the identity map, stop looking. */ |
2269 | if (this_end >= guest_loaddr) { | |
2270 | break; | |
dce10401 MI |
2271 | } |
2272 | } | |
ee947430 | 2273 | free_self_maps(maps); |
dce10401 | 2274 | |
ee947430 | 2275 | return ret; |
dce10401 MI |
2276 | } |
2277 | ||
ee947430 AB |
2278 | static void pgb_static(const char *image_name, abi_ulong orig_loaddr, |
2279 | abi_ulong orig_hiaddr, long align) | |
f3ed1f5d | 2280 | { |
ee947430 AB |
2281 | uintptr_t loaddr = orig_loaddr; |
2282 | uintptr_t hiaddr = orig_hiaddr; | |
5c3e87f3 | 2283 | uintptr_t offset = 0; |
ee947430 | 2284 | uintptr_t addr; |
f3ed1f5d | 2285 | |
ee947430 AB |
2286 | if (hiaddr != orig_hiaddr) { |
2287 | error_report("%s: requires virtual address space that the " | |
2288 | "host cannot provide (0x%" PRIx64 ")", | |
2289 | image_name, (uint64_t)orig_hiaddr); | |
2290 | exit(EXIT_FAILURE); | |
2291 | } | |
f3ed1f5d | 2292 | |
ee947430 AB |
2293 | loaddr &= -align; |
2294 | if (ARM_COMMPAGE) { | |
2295 | /* | |
2296 | * Extend the allocation to include the commpage. | |
5c3e87f3 AB |
2297 | * For a 64-bit host, this is just 4GiB; for a 32-bit host we |
2298 | * need to ensure there is space bellow the guest_base so we | |
2299 | * can map the commpage in the place needed when the address | |
2300 | * arithmetic wraps around. | |
ee947430 AB |
2301 | */ |
2302 | if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) { | |
5c3e87f3 | 2303 | hiaddr = (uintptr_t) 4 << 30; |
f3ed1f5d | 2304 | } else { |
5c3e87f3 | 2305 | offset = -(ARM_COMMPAGE & -align); |
f3ed1f5d | 2306 | } |
ee947430 | 2307 | } |
dce10401 | 2308 | |
5c3e87f3 | 2309 | addr = pgb_find_hole(loaddr, hiaddr - loaddr, align, offset); |
ee947430 AB |
2310 | if (addr == -1) { |
2311 | /* | |
2312 | * If ARM_COMMPAGE, there *might* be a non-consecutive allocation | |
2313 | * that can satisfy both. But as the normal arm32 link base address | |
2314 | * is ~32k, and we extend down to include the commpage, making the | |
2315 | * overhead only ~96k, this is unlikely. | |
dce10401 | 2316 | */ |
ee947430 AB |
2317 | error_report("%s: Unable to allocate %#zx bytes of " |
2318 | "virtual address space", image_name, | |
2319 | (size_t)(hiaddr - loaddr)); | |
2320 | exit(EXIT_FAILURE); | |
2321 | } | |
2322 | ||
2323 | guest_base = addr; | |
2324 | } | |
dce10401 | 2325 | |
ee947430 AB |
2326 | static void pgb_dynamic(const char *image_name, long align) |
2327 | { | |
2328 | /* | |
2329 | * The executable is dynamic and does not require a fixed address. | |
2330 | * All we need is a commpage that satisfies align. | |
2331 | * If we do not need a commpage, leave guest_base == 0. | |
2332 | */ | |
2333 | if (ARM_COMMPAGE) { | |
2334 | uintptr_t addr, commpage; | |
2335 | ||
2336 | /* 64-bit hosts should have used reserved_va. */ | |
2337 | assert(sizeof(uintptr_t) == 4); | |
2338 | ||
2339 | /* | |
2340 | * By putting the commpage at the first hole, that puts guest_base | |
2341 | * just above that, and maximises the positive guest addresses. | |
2342 | */ | |
2343 | commpage = ARM_COMMPAGE & -align; | |
5c3e87f3 | 2344 | addr = pgb_find_hole(commpage, -commpage, align, 0); |
ee947430 AB |
2345 | assert(addr != -1); |
2346 | guest_base = addr; | |
2347 | } | |
2348 | } | |
2349 | ||
2350 | static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr, | |
2351 | abi_ulong guest_hiaddr, long align) | |
2352 | { | |
c1f6ad79 | 2353 | int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; |
ee947430 AB |
2354 | void *addr, *test; |
2355 | ||
2356 | if (guest_hiaddr > reserved_va) { | |
2357 | error_report("%s: requires more than reserved virtual " | |
2358 | "address space (0x%" PRIx64 " > 0x%lx)", | |
2359 | image_name, (uint64_t)guest_hiaddr, reserved_va); | |
2360 | exit(EXIT_FAILURE); | |
f3ed1f5d | 2361 | } |
f3ed1f5d | 2362 | |
ee947430 AB |
2363 | /* Widen the "image" to the entire reserved address space. */ |
2364 | pgb_static(image_name, 0, reserved_va, align); | |
2365 | ||
2667e069 | 2366 | /* osdep.h defines this as 0 if it's missing */ |
c1f6ad79 | 2367 | flags |= MAP_FIXED_NOREPLACE; |
c1f6ad79 | 2368 | |
ee947430 AB |
2369 | /* Reserve the memory on the host. */ |
2370 | assert(guest_base != 0); | |
2371 | test = g2h(0); | |
2372 | addr = mmap(test, reserved_va, PROT_NONE, flags, -1, 0); | |
fb730c86 | 2373 | if (addr == MAP_FAILED || addr != test) { |
ee947430 | 2374 | error_report("Unable to reserve 0x%lx bytes of virtual address " |
fb730c86 AB |
2375 | "space at %p (%s) for use as guest address space (check your" |
2376 | "virtual memory ulimit setting, min_mmap_addr or reserve less " | |
2377 | "using -R option)", reserved_va, test, strerror(errno)); | |
ee947430 AB |
2378 | exit(EXIT_FAILURE); |
2379 | } | |
f3ed1f5d PM |
2380 | } |
2381 | ||
ee947430 AB |
2382 | void probe_guest_base(const char *image_name, abi_ulong guest_loaddr, |
2383 | abi_ulong guest_hiaddr) | |
2384 | { | |
2385 | /* In order to use host shmat, we must be able to honor SHMLBA. */ | |
2386 | uintptr_t align = MAX(SHMLBA, qemu_host_page_size); | |
2387 | ||
2388 | if (have_guest_base) { | |
2389 | pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align); | |
2390 | } else if (reserved_va) { | |
2391 | pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align); | |
2392 | } else if (guest_loaddr) { | |
2393 | pgb_static(image_name, guest_loaddr, guest_hiaddr, align); | |
2394 | } else { | |
2395 | pgb_dynamic(image_name, align); | |
2396 | } | |
2397 | ||
2398 | /* Reserve and initialize the commpage. */ | |
2399 | if (!init_guest_commpage()) { | |
2400 | /* | |
2401 | * With have_guest_base, the user has selected the address and | |
2402 | * we are trying to work with that. Otherwise, we have selected | |
2403 | * free space and init_guest_commpage must succeeded. | |
2404 | */ | |
2405 | assert(have_guest_base); | |
2406 | pgb_fail_in_use(image_name); | |
2407 | } | |
2408 | ||
2409 | assert(QEMU_IS_ALIGNED(guest_base, align)); | |
2410 | qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space " | |
2411 | "@ 0x%" PRIx64 "\n", (uint64_t)guest_base); | |
2412 | } | |
f3ed1f5d | 2413 | |
83f990eb RH |
2414 | enum { |
2415 | /* The string "GNU\0" as a magic number. */ | |
2416 | GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16), | |
2417 | NOTE_DATA_SZ = 1 * KiB, | |
2418 | NOTE_NAME_SZ = 4, | |
2419 | ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8, | |
2420 | }; | |
2421 | ||
2422 | /* | |
2423 | * Process a single gnu_property entry. | |
2424 | * Return false for error. | |
2425 | */ | |
2426 | static bool parse_elf_property(const uint32_t *data, int *off, int datasz, | |
2427 | struct image_info *info, bool have_prev_type, | |
2428 | uint32_t *prev_type, Error **errp) | |
2429 | { | |
2430 | uint32_t pr_type, pr_datasz, step; | |
2431 | ||
2432 | if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) { | |
2433 | goto error_data; | |
2434 | } | |
2435 | datasz -= *off; | |
2436 | data += *off / sizeof(uint32_t); | |
2437 | ||
2438 | if (datasz < 2 * sizeof(uint32_t)) { | |
2439 | goto error_data; | |
2440 | } | |
2441 | pr_type = data[0]; | |
2442 | pr_datasz = data[1]; | |
2443 | data += 2; | |
2444 | datasz -= 2 * sizeof(uint32_t); | |
2445 | step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN); | |
2446 | if (step > datasz) { | |
2447 | goto error_data; | |
2448 | } | |
2449 | ||
2450 | /* Properties are supposed to be unique and sorted on pr_type. */ | |
2451 | if (have_prev_type && pr_type <= *prev_type) { | |
2452 | if (pr_type == *prev_type) { | |
2453 | error_setg(errp, "Duplicate property in PT_GNU_PROPERTY"); | |
2454 | } else { | |
2455 | error_setg(errp, "Unsorted property in PT_GNU_PROPERTY"); | |
2456 | } | |
2457 | return false; | |
2458 | } | |
2459 | *prev_type = pr_type; | |
2460 | ||
2461 | if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) { | |
2462 | return false; | |
2463 | } | |
2464 | ||
2465 | *off += 2 * sizeof(uint32_t) + step; | |
2466 | return true; | |
2467 | ||
2468 | error_data: | |
2469 | error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY"); | |
2470 | return false; | |
2471 | } | |
2472 | ||
2473 | /* Process NT_GNU_PROPERTY_TYPE_0. */ | |
2474 | static bool parse_elf_properties(int image_fd, | |
2475 | struct image_info *info, | |
2476 | const struct elf_phdr *phdr, | |
2477 | char bprm_buf[BPRM_BUF_SIZE], | |
2478 | Error **errp) | |
2479 | { | |
2480 | union { | |
2481 | struct elf_note nhdr; | |
2482 | uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)]; | |
2483 | } note; | |
2484 | ||
2485 | int n, off, datasz; | |
2486 | bool have_prev_type; | |
2487 | uint32_t prev_type; | |
2488 | ||
2489 | /* Unless the arch requires properties, ignore them. */ | |
2490 | if (!ARCH_USE_GNU_PROPERTY) { | |
2491 | return true; | |
2492 | } | |
2493 | ||
2494 | /* If the properties are crazy large, that's too bad. */ | |
2495 | n = phdr->p_filesz; | |
2496 | if (n > sizeof(note)) { | |
2497 | error_setg(errp, "PT_GNU_PROPERTY too large"); | |
2498 | return false; | |
2499 | } | |
2500 | if (n < sizeof(note.nhdr)) { | |
2501 | error_setg(errp, "PT_GNU_PROPERTY too small"); | |
2502 | return false; | |
2503 | } | |
2504 | ||
2505 | if (phdr->p_offset + n <= BPRM_BUF_SIZE) { | |
2506 | memcpy(¬e, bprm_buf + phdr->p_offset, n); | |
2507 | } else { | |
2508 | ssize_t len = pread(image_fd, ¬e, n, phdr->p_offset); | |
2509 | if (len != n) { | |
2510 | error_setg_errno(errp, errno, "Error reading file header"); | |
2511 | return false; | |
2512 | } | |
2513 | } | |
2514 | ||
2515 | /* | |
2516 | * The contents of a valid PT_GNU_PROPERTY is a sequence | |
2517 | * of uint32_t -- swap them all now. | |
2518 | */ | |
2519 | #ifdef BSWAP_NEEDED | |
2520 | for (int i = 0; i < n / 4; i++) { | |
2521 | bswap32s(note.data + i); | |
2522 | } | |
2523 | #endif | |
2524 | ||
2525 | /* | |
2526 | * Note that nhdr is 3 words, and that the "name" described by namesz | |
2527 | * immediately follows nhdr and is thus at the 4th word. Further, all | |
2528 | * of the inputs to the kernel's round_up are multiples of 4. | |
2529 | */ | |
2530 | if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 || | |
2531 | note.nhdr.n_namesz != NOTE_NAME_SZ || | |
2532 | note.data[3] != GNU0_MAGIC) { | |
2533 | error_setg(errp, "Invalid note in PT_GNU_PROPERTY"); | |
2534 | return false; | |
2535 | } | |
2536 | off = sizeof(note.nhdr) + NOTE_NAME_SZ; | |
2537 | ||
2538 | datasz = note.nhdr.n_descsz + off; | |
2539 | if (datasz > n) { | |
2540 | error_setg(errp, "Invalid note size in PT_GNU_PROPERTY"); | |
2541 | return false; | |
2542 | } | |
2543 | ||
2544 | have_prev_type = false; | |
2545 | prev_type = 0; | |
2546 | while (1) { | |
2547 | if (off == datasz) { | |
2548 | return true; /* end, exit ok */ | |
2549 | } | |
2550 | if (!parse_elf_property(note.data, &off, datasz, info, | |
2551 | have_prev_type, &prev_type, errp)) { | |
2552 | return false; | |
2553 | } | |
2554 | have_prev_type = true; | |
2555 | } | |
2556 | } | |
2557 | ||
8e62a717 | 2558 | /* Load an ELF image into the address space. |
31e31b8a | 2559 | |
8e62a717 RH |
2560 | IMAGE_NAME is the filename of the image, to use in error messages. |
2561 | IMAGE_FD is the open file descriptor for the image. | |
2562 | ||
2563 | BPRM_BUF is a copy of the beginning of the file; this of course | |
2564 | contains the elf file header at offset 0. It is assumed that this | |
2565 | buffer is sufficiently aligned to present no problems to the host | |
2566 | in accessing data at aligned offsets within the buffer. | |
2567 | ||
2568 | On return: INFO values will be filled in, as necessary or available. */ | |
2569 | ||
2570 | static void load_elf_image(const char *image_name, int image_fd, | |
bf858897 | 2571 | struct image_info *info, char **pinterp_name, |
8e62a717 | 2572 | char bprm_buf[BPRM_BUF_SIZE]) |
31e31b8a | 2573 | { |
8e62a717 RH |
2574 | struct elfhdr *ehdr = (struct elfhdr *)bprm_buf; |
2575 | struct elf_phdr *phdr; | |
2576 | abi_ulong load_addr, load_bias, loaddr, hiaddr, error; | |
e8384b37 | 2577 | int i, retval, prot_exec; |
c7f17e7b | 2578 | Error *err = NULL; |
5fafdf24 | 2579 | |
8e62a717 | 2580 | /* First of all, some simple consistency checks */ |
8e62a717 | 2581 | if (!elf_check_ident(ehdr)) { |
c7f17e7b | 2582 | error_setg(&err, "Invalid ELF image for this architecture"); |
8e62a717 RH |
2583 | goto exit_errmsg; |
2584 | } | |
2585 | bswap_ehdr(ehdr); | |
2586 | if (!elf_check_ehdr(ehdr)) { | |
c7f17e7b | 2587 | error_setg(&err, "Invalid ELF image for this architecture"); |
8e62a717 | 2588 | goto exit_errmsg; |
d97ef72e | 2589 | } |
5fafdf24 | 2590 | |
8e62a717 RH |
2591 | i = ehdr->e_phnum * sizeof(struct elf_phdr); |
2592 | if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) { | |
2593 | phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff); | |
9955ffac | 2594 | } else { |
8e62a717 RH |
2595 | phdr = (struct elf_phdr *) alloca(i); |
2596 | retval = pread(image_fd, phdr, i, ehdr->e_phoff); | |
9955ffac | 2597 | if (retval != i) { |
8e62a717 | 2598 | goto exit_read; |
9955ffac | 2599 | } |
d97ef72e | 2600 | } |
8e62a717 | 2601 | bswap_phdr(phdr, ehdr->e_phnum); |
09bfb054 | 2602 | |
1af02e83 MF |
2603 | info->nsegs = 0; |
2604 | info->pt_dynamic_addr = 0; | |
1af02e83 | 2605 | |
98c1076c AB |
2606 | mmap_lock(); |
2607 | ||
8a1a5274 RH |
2608 | /* |
2609 | * Find the maximum size of the image and allocate an appropriate | |
2610 | * amount of memory to handle that. Locate the interpreter, if any. | |
2611 | */ | |
682674b8 | 2612 | loaddr = -1, hiaddr = 0; |
33143c44 | 2613 | info->alignment = 0; |
8e62a717 | 2614 | for (i = 0; i < ehdr->e_phnum; ++i) { |
4d9d535a RH |
2615 | struct elf_phdr *eppnt = phdr + i; |
2616 | if (eppnt->p_type == PT_LOAD) { | |
2617 | abi_ulong a = eppnt->p_vaddr - eppnt->p_offset; | |
682674b8 RH |
2618 | if (a < loaddr) { |
2619 | loaddr = a; | |
2620 | } | |
4d9d535a | 2621 | a = eppnt->p_vaddr + eppnt->p_memsz; |
682674b8 RH |
2622 | if (a > hiaddr) { |
2623 | hiaddr = a; | |
2624 | } | |
1af02e83 | 2625 | ++info->nsegs; |
4d9d535a | 2626 | info->alignment |= eppnt->p_align; |
8a1a5274 RH |
2627 | } else if (eppnt->p_type == PT_INTERP && pinterp_name) { |
2628 | g_autofree char *interp_name = NULL; | |
2629 | ||
2630 | if (*pinterp_name) { | |
c7f17e7b | 2631 | error_setg(&err, "Multiple PT_INTERP entries"); |
8a1a5274 RH |
2632 | goto exit_errmsg; |
2633 | } | |
c7f17e7b | 2634 | |
8a1a5274 | 2635 | interp_name = g_malloc(eppnt->p_filesz); |
8a1a5274 RH |
2636 | |
2637 | if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { | |
2638 | memcpy(interp_name, bprm_buf + eppnt->p_offset, | |
2639 | eppnt->p_filesz); | |
2640 | } else { | |
2641 | retval = pread(image_fd, interp_name, eppnt->p_filesz, | |
2642 | eppnt->p_offset); | |
2643 | if (retval != eppnt->p_filesz) { | |
c7f17e7b | 2644 | goto exit_read; |
8a1a5274 RH |
2645 | } |
2646 | } | |
2647 | if (interp_name[eppnt->p_filesz - 1] != 0) { | |
c7f17e7b | 2648 | error_setg(&err, "Invalid PT_INTERP entry"); |
8a1a5274 RH |
2649 | goto exit_errmsg; |
2650 | } | |
2651 | *pinterp_name = g_steal_pointer(&interp_name); | |
83f990eb RH |
2652 | } else if (eppnt->p_type == PT_GNU_PROPERTY) { |
2653 | if (!parse_elf_properties(image_fd, info, eppnt, bprm_buf, &err)) { | |
2654 | goto exit_errmsg; | |
2655 | } | |
682674b8 RH |
2656 | } |
2657 | } | |
2658 | ||
6fd59449 RH |
2659 | if (pinterp_name != NULL) { |
2660 | /* | |
2661 | * This is the main executable. | |
2662 | * | |
2663 | * Reserve extra space for brk. | |
2664 | * We hold on to this space while placing the interpreter | |
2665 | * and the stack, lest they be placed immediately after | |
2666 | * the data segment and block allocation from the brk. | |
2667 | * | |
2668 | * 16MB is chosen as "large enough" without being so large | |
2669 | * as to allow the result to not fit with a 32-bit guest on | |
2670 | * a 32-bit host. | |
2671 | */ | |
2672 | info->reserve_brk = 16 * MiB; | |
2673 | hiaddr += info->reserve_brk; | |
2674 | ||
2675 | if (ehdr->e_type == ET_EXEC) { | |
2676 | /* | |
2677 | * Make sure that the low address does not conflict with | |
2678 | * MMAP_MIN_ADDR or the QEMU application itself. | |
2679 | */ | |
2680 | probe_guest_base(image_name, loaddr, hiaddr); | |
ee947430 AB |
2681 | } else { |
2682 | /* | |
2683 | * The binary is dynamic, but we still need to | |
2684 | * select guest_base. In this case we pass a size. | |
2685 | */ | |
2686 | probe_guest_base(image_name, 0, hiaddr - loaddr); | |
d97ef72e | 2687 | } |
6fd59449 RH |
2688 | } |
2689 | ||
2690 | /* | |
2691 | * Reserve address space for all of this. | |
2692 | * | |
2693 | * In the case of ET_EXEC, we supply MAP_FIXED so that we get | |
2694 | * exactly the address range that is required. | |
2695 | * | |
2696 | * Otherwise this is ET_DYN, and we are searching for a location | |
2697 | * that can hold the memory space required. If the image is | |
2698 | * pre-linked, LOADDR will be non-zero, and the kernel should | |
2699 | * honor that address if it happens to be free. | |
2700 | * | |
2701 | * In both cases, we will overwrite pages in this range with mappings | |
2702 | * from the executable. | |
2703 | */ | |
2704 | load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE, | |
2705 | MAP_PRIVATE | MAP_ANON | MAP_NORESERVE | | |
2706 | (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0), | |
2707 | -1, 0); | |
2708 | if (load_addr == -1) { | |
c7f17e7b | 2709 | goto exit_mmap; |
d97ef72e | 2710 | } |
682674b8 | 2711 | load_bias = load_addr - loaddr; |
d97ef72e | 2712 | |
a99856cd | 2713 | if (elf_is_fdpic(ehdr)) { |
1af02e83 | 2714 | struct elf32_fdpic_loadseg *loadsegs = info->loadsegs = |
7267c094 | 2715 | g_malloc(sizeof(*loadsegs) * info->nsegs); |
1af02e83 MF |
2716 | |
2717 | for (i = 0; i < ehdr->e_phnum; ++i) { | |
2718 | switch (phdr[i].p_type) { | |
2719 | case PT_DYNAMIC: | |
2720 | info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias; | |
2721 | break; | |
2722 | case PT_LOAD: | |
2723 | loadsegs->addr = phdr[i].p_vaddr + load_bias; | |
2724 | loadsegs->p_vaddr = phdr[i].p_vaddr; | |
2725 | loadsegs->p_memsz = phdr[i].p_memsz; | |
2726 | ++loadsegs; | |
2727 | break; | |
2728 | } | |
2729 | } | |
2730 | } | |
1af02e83 | 2731 | |
8e62a717 | 2732 | info->load_bias = load_bias; |
dc12567a JK |
2733 | info->code_offset = load_bias; |
2734 | info->data_offset = load_bias; | |
8e62a717 RH |
2735 | info->load_addr = load_addr; |
2736 | info->entry = ehdr->e_entry + load_bias; | |
2737 | info->start_code = -1; | |
2738 | info->end_code = 0; | |
2739 | info->start_data = -1; | |
2740 | info->end_data = 0; | |
2741 | info->brk = 0; | |
d8fd2954 | 2742 | info->elf_flags = ehdr->e_flags; |
8e62a717 | 2743 | |
e8384b37 RH |
2744 | prot_exec = PROT_EXEC; |
2745 | #ifdef TARGET_AARCH64 | |
2746 | /* | |
2747 | * If the BTI feature is present, this indicates that the executable | |
2748 | * pages of the startup binary should be mapped with PROT_BTI, so that | |
2749 | * branch targets are enforced. | |
2750 | * | |
2751 | * The startup binary is either the interpreter or the static executable. | |
2752 | * The interpreter is responsible for all pages of a dynamic executable. | |
2753 | * | |
2754 | * Elf notes are backward compatible to older cpus. | |
2755 | * Do not enable BTI unless it is supported. | |
2756 | */ | |
2757 | if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI) | |
2758 | && (pinterp_name == NULL || *pinterp_name == 0) | |
2759 | && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) { | |
2760 | prot_exec |= TARGET_PROT_BTI; | |
2761 | } | |
2762 | #endif | |
2763 | ||
8e62a717 RH |
2764 | for (i = 0; i < ehdr->e_phnum; i++) { |
2765 | struct elf_phdr *eppnt = phdr + i; | |
d97ef72e | 2766 | if (eppnt->p_type == PT_LOAD) { |
94894ff2 | 2767 | abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len; |
d97ef72e | 2768 | int elf_prot = 0; |
d97ef72e | 2769 | |
e5eaf570 RH |
2770 | if (eppnt->p_flags & PF_R) { |
2771 | elf_prot |= PROT_READ; | |
2772 | } | |
2773 | if (eppnt->p_flags & PF_W) { | |
2774 | elf_prot |= PROT_WRITE; | |
2775 | } | |
2776 | if (eppnt->p_flags & PF_X) { | |
e8384b37 | 2777 | elf_prot |= prot_exec; |
e5eaf570 | 2778 | } |
d97ef72e | 2779 | |
682674b8 RH |
2780 | vaddr = load_bias + eppnt->p_vaddr; |
2781 | vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr); | |
2782 | vaddr_ps = TARGET_ELF_PAGESTART(vaddr); | |
94894ff2 | 2783 | vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po); |
682674b8 | 2784 | |
d87146bc GM |
2785 | /* |
2786 | * Some segments may be completely empty without any backing file | |
2787 | * segment, in that case just let zero_bss allocate an empty buffer | |
2788 | * for it. | |
2789 | */ | |
2790 | if (eppnt->p_filesz != 0) { | |
2791 | error = target_mmap(vaddr_ps, vaddr_len, elf_prot, | |
2792 | MAP_PRIVATE | MAP_FIXED, | |
2793 | image_fd, eppnt->p_offset - vaddr_po); | |
2794 | ||
2795 | if (error == -1) { | |
c7f17e7b | 2796 | goto exit_mmap; |
d87146bc | 2797 | } |
09bfb054 | 2798 | } |
09bfb054 | 2799 | |
682674b8 RH |
2800 | vaddr_ef = vaddr + eppnt->p_filesz; |
2801 | vaddr_em = vaddr + eppnt->p_memsz; | |
31e31b8a | 2802 | |
cf129f3a | 2803 | /* If the load segment requests extra zeros (e.g. bss), map it. */ |
682674b8 RH |
2804 | if (vaddr_ef < vaddr_em) { |
2805 | zero_bss(vaddr_ef, vaddr_em, elf_prot); | |
cf129f3a | 2806 | } |
8e62a717 RH |
2807 | |
2808 | /* Find the full program boundaries. */ | |
2809 | if (elf_prot & PROT_EXEC) { | |
2810 | if (vaddr < info->start_code) { | |
2811 | info->start_code = vaddr; | |
2812 | } | |
2813 | if (vaddr_ef > info->end_code) { | |
2814 | info->end_code = vaddr_ef; | |
2815 | } | |
2816 | } | |
2817 | if (elf_prot & PROT_WRITE) { | |
2818 | if (vaddr < info->start_data) { | |
2819 | info->start_data = vaddr; | |
2820 | } | |
2821 | if (vaddr_ef > info->end_data) { | |
2822 | info->end_data = vaddr_ef; | |
2823 | } | |
8a045188 TB |
2824 | } |
2825 | if (vaddr_em > info->brk) { | |
2826 | info->brk = vaddr_em; | |
8e62a717 | 2827 | } |
5dd0db52 SM |
2828 | #ifdef TARGET_MIPS |
2829 | } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) { | |
2830 | Mips_elf_abiflags_v0 abiflags; | |
2831 | if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) { | |
c7f17e7b | 2832 | error_setg(&err, "Invalid PT_MIPS_ABIFLAGS entry"); |
5dd0db52 SM |
2833 | goto exit_errmsg; |
2834 | } | |
2835 | if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { | |
2836 | memcpy(&abiflags, bprm_buf + eppnt->p_offset, | |
2837 | sizeof(Mips_elf_abiflags_v0)); | |
2838 | } else { | |
2839 | retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0), | |
2840 | eppnt->p_offset); | |
2841 | if (retval != sizeof(Mips_elf_abiflags_v0)) { | |
c7f17e7b | 2842 | goto exit_read; |
5dd0db52 SM |
2843 | } |
2844 | } | |
2845 | bswap_mips_abiflags(&abiflags); | |
c94cb6c9 | 2846 | info->fp_abi = abiflags.fp_abi; |
5dd0db52 | 2847 | #endif |
d97ef72e | 2848 | } |
682674b8 | 2849 | } |
5fafdf24 | 2850 | |
8e62a717 RH |
2851 | if (info->end_data == 0) { |
2852 | info->start_data = info->end_code; | |
2853 | info->end_data = info->end_code; | |
8e62a717 RH |
2854 | } |
2855 | ||
682674b8 | 2856 | if (qemu_log_enabled()) { |
8e62a717 | 2857 | load_symbols(ehdr, image_fd, load_bias); |
682674b8 | 2858 | } |
31e31b8a | 2859 | |
98c1076c AB |
2860 | mmap_unlock(); |
2861 | ||
8e62a717 RH |
2862 | close(image_fd); |
2863 | return; | |
2864 | ||
2865 | exit_read: | |
2866 | if (retval >= 0) { | |
c7f17e7b RH |
2867 | error_setg(&err, "Incomplete read of file header"); |
2868 | } else { | |
2869 | error_setg_errno(&err, errno, "Error reading file header"); | |
8e62a717 | 2870 | } |
c7f17e7b RH |
2871 | goto exit_errmsg; |
2872 | exit_mmap: | |
2873 | error_setg_errno(&err, errno, "Error mapping file"); | |
2874 | goto exit_errmsg; | |
8e62a717 | 2875 | exit_errmsg: |
c7f17e7b | 2876 | error_reportf_err(err, "%s: ", image_name); |
8e62a717 RH |
2877 | exit(-1); |
2878 | } | |
2879 | ||
2880 | static void load_elf_interp(const char *filename, struct image_info *info, | |
2881 | char bprm_buf[BPRM_BUF_SIZE]) | |
2882 | { | |
2883 | int fd, retval; | |
808f6563 | 2884 | Error *err = NULL; |
8e62a717 RH |
2885 | |
2886 | fd = open(path(filename), O_RDONLY); | |
2887 | if (fd < 0) { | |
808f6563 RH |
2888 | error_setg_file_open(&err, errno, filename); |
2889 | error_report_err(err); | |
2890 | exit(-1); | |
8e62a717 | 2891 | } |
31e31b8a | 2892 | |
8e62a717 RH |
2893 | retval = read(fd, bprm_buf, BPRM_BUF_SIZE); |
2894 | if (retval < 0) { | |
808f6563 RH |
2895 | error_setg_errno(&err, errno, "Error reading file header"); |
2896 | error_reportf_err(err, "%s: ", filename); | |
2897 | exit(-1); | |
8e62a717 | 2898 | } |
808f6563 | 2899 | |
8e62a717 RH |
2900 | if (retval < BPRM_BUF_SIZE) { |
2901 | memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval); | |
2902 | } | |
2903 | ||
bf858897 | 2904 | load_elf_image(filename, fd, info, NULL, bprm_buf); |
31e31b8a FB |
2905 | } |
2906 | ||
49918a75 PB |
2907 | static int symfind(const void *s0, const void *s1) |
2908 | { | |
c7c530cd | 2909 | target_ulong addr = *(target_ulong *)s0; |
49918a75 PB |
2910 | struct elf_sym *sym = (struct elf_sym *)s1; |
2911 | int result = 0; | |
c7c530cd | 2912 | if (addr < sym->st_value) { |
49918a75 | 2913 | result = -1; |
c7c530cd | 2914 | } else if (addr >= sym->st_value + sym->st_size) { |
49918a75 PB |
2915 | result = 1; |
2916 | } | |
2917 | return result; | |
2918 | } | |
2919 | ||
2920 | static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr) | |
2921 | { | |
2922 | #if ELF_CLASS == ELFCLASS32 | |
2923 | struct elf_sym *syms = s->disas_symtab.elf32; | |
2924 | #else | |
2925 | struct elf_sym *syms = s->disas_symtab.elf64; | |
2926 | #endif | |
2927 | ||
2928 | // binary search | |
49918a75 PB |
2929 | struct elf_sym *sym; |
2930 | ||
c7c530cd | 2931 | sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind); |
7cba04f6 | 2932 | if (sym != NULL) { |
49918a75 PB |
2933 | return s->disas_strtab + sym->st_name; |
2934 | } | |
2935 | ||
2936 | return ""; | |
2937 | } | |
2938 | ||
2939 | /* FIXME: This should use elf_ops.h */ | |
2940 | static int symcmp(const void *s0, const void *s1) | |
2941 | { | |
2942 | struct elf_sym *sym0 = (struct elf_sym *)s0; | |
2943 | struct elf_sym *sym1 = (struct elf_sym *)s1; | |
2944 | return (sym0->st_value < sym1->st_value) | |
2945 | ? -1 | |
2946 | : ((sym0->st_value > sym1->st_value) ? 1 : 0); | |
2947 | } | |
2948 | ||
689f936f | 2949 | /* Best attempt to load symbols from this ELF object. */ |
682674b8 | 2950 | static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias) |
689f936f | 2951 | { |
682674b8 | 2952 | int i, shnum, nsyms, sym_idx = 0, str_idx = 0; |
1e06262d | 2953 | uint64_t segsz; |
682674b8 | 2954 | struct elf_shdr *shdr; |
b9475279 CV |
2955 | char *strings = NULL; |
2956 | struct syminfo *s = NULL; | |
2957 | struct elf_sym *new_syms, *syms = NULL; | |
689f936f | 2958 | |
682674b8 RH |
2959 | shnum = hdr->e_shnum; |
2960 | i = shnum * sizeof(struct elf_shdr); | |
2961 | shdr = (struct elf_shdr *)alloca(i); | |
2962 | if (pread(fd, shdr, i, hdr->e_shoff) != i) { | |
2963 | return; | |
2964 | } | |
2965 | ||
2966 | bswap_shdr(shdr, shnum); | |
2967 | for (i = 0; i < shnum; ++i) { | |
2968 | if (shdr[i].sh_type == SHT_SYMTAB) { | |
2969 | sym_idx = i; | |
2970 | str_idx = shdr[i].sh_link; | |
49918a75 PB |
2971 | goto found; |
2972 | } | |
689f936f | 2973 | } |
682674b8 RH |
2974 | |
2975 | /* There will be no symbol table if the file was stripped. */ | |
2976 | return; | |
689f936f FB |
2977 | |
2978 | found: | |
682674b8 | 2979 | /* Now know where the strtab and symtab are. Snarf them. */ |
0ef9ea29 | 2980 | s = g_try_new(struct syminfo, 1); |
682674b8 | 2981 | if (!s) { |
b9475279 | 2982 | goto give_up; |
682674b8 | 2983 | } |
5fafdf24 | 2984 | |
1e06262d PM |
2985 | segsz = shdr[str_idx].sh_size; |
2986 | s->disas_strtab = strings = g_try_malloc(segsz); | |
2987 | if (!strings || | |
2988 | pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) { | |
b9475279 | 2989 | goto give_up; |
682674b8 | 2990 | } |
49918a75 | 2991 | |
1e06262d PM |
2992 | segsz = shdr[sym_idx].sh_size; |
2993 | syms = g_try_malloc(segsz); | |
2994 | if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) { | |
b9475279 | 2995 | goto give_up; |
682674b8 | 2996 | } |
31e31b8a | 2997 | |
1e06262d PM |
2998 | if (segsz / sizeof(struct elf_sym) > INT_MAX) { |
2999 | /* Implausibly large symbol table: give up rather than ploughing | |
3000 | * on with the number of symbols calculation overflowing | |
3001 | */ | |
3002 | goto give_up; | |
3003 | } | |
3004 | nsyms = segsz / sizeof(struct elf_sym); | |
682674b8 | 3005 | for (i = 0; i < nsyms; ) { |
49918a75 | 3006 | bswap_sym(syms + i); |
682674b8 RH |
3007 | /* Throw away entries which we do not need. */ |
3008 | if (syms[i].st_shndx == SHN_UNDEF | |
3009 | || syms[i].st_shndx >= SHN_LORESERVE | |
3010 | || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { | |
3011 | if (i < --nsyms) { | |
49918a75 PB |
3012 | syms[i] = syms[nsyms]; |
3013 | } | |
682674b8 | 3014 | } else { |
49918a75 | 3015 | #if defined(TARGET_ARM) || defined (TARGET_MIPS) |
682674b8 RH |
3016 | /* The bottom address bit marks a Thumb or MIPS16 symbol. */ |
3017 | syms[i].st_value &= ~(target_ulong)1; | |
0774bed1 | 3018 | #endif |
682674b8 RH |
3019 | syms[i].st_value += load_bias; |
3020 | i++; | |
3021 | } | |
0774bed1 | 3022 | } |
49918a75 | 3023 | |
b9475279 CV |
3024 | /* No "useful" symbol. */ |
3025 | if (nsyms == 0) { | |
3026 | goto give_up; | |
3027 | } | |
3028 | ||
5d5c9930 RH |
3029 | /* Attempt to free the storage associated with the local symbols |
3030 | that we threw away. Whether or not this has any effect on the | |
3031 | memory allocation depends on the malloc implementation and how | |
3032 | many symbols we managed to discard. */ | |
0ef9ea29 | 3033 | new_syms = g_try_renew(struct elf_sym, syms, nsyms); |
8d79de6e | 3034 | if (new_syms == NULL) { |
b9475279 | 3035 | goto give_up; |
5d5c9930 | 3036 | } |
8d79de6e | 3037 | syms = new_syms; |
5d5c9930 | 3038 | |
49918a75 | 3039 | qsort(syms, nsyms, sizeof(*syms), symcmp); |
689f936f | 3040 | |
49918a75 PB |
3041 | s->disas_num_syms = nsyms; |
3042 | #if ELF_CLASS == ELFCLASS32 | |
3043 | s->disas_symtab.elf32 = syms; | |
49918a75 PB |
3044 | #else |
3045 | s->disas_symtab.elf64 = syms; | |
49918a75 | 3046 | #endif |
682674b8 | 3047 | s->lookup_symbol = lookup_symbolxx; |
e80cfcfc FB |
3048 | s->next = syminfos; |
3049 | syminfos = s; | |
b9475279 CV |
3050 | |
3051 | return; | |
3052 | ||
3053 | give_up: | |
0ef9ea29 PM |
3054 | g_free(s); |
3055 | g_free(strings); | |
3056 | g_free(syms); | |
689f936f | 3057 | } |
31e31b8a | 3058 | |
768fe76e YS |
3059 | uint32_t get_elf_eflags(int fd) |
3060 | { | |
3061 | struct elfhdr ehdr; | |
3062 | off_t offset; | |
3063 | int ret; | |
3064 | ||
3065 | /* Read ELF header */ | |
3066 | offset = lseek(fd, 0, SEEK_SET); | |
3067 | if (offset == (off_t) -1) { | |
3068 | return 0; | |
3069 | } | |
3070 | ret = read(fd, &ehdr, sizeof(ehdr)); | |
3071 | if (ret < sizeof(ehdr)) { | |
3072 | return 0; | |
3073 | } | |
3074 | offset = lseek(fd, offset, SEEK_SET); | |
3075 | if (offset == (off_t) -1) { | |
3076 | return 0; | |
3077 | } | |
3078 | ||
3079 | /* Check ELF signature */ | |
3080 | if (!elf_check_ident(&ehdr)) { | |
3081 | return 0; | |
3082 | } | |
3083 | ||
3084 | /* check header */ | |
3085 | bswap_ehdr(&ehdr); | |
3086 | if (!elf_check_ehdr(&ehdr)) { | |
3087 | return 0; | |
3088 | } | |
3089 | ||
3090 | /* return architecture id */ | |
3091 | return ehdr.e_flags; | |
3092 | } | |
3093 | ||
f0116c54 | 3094 | int load_elf_binary(struct linux_binprm *bprm, struct image_info *info) |
31e31b8a | 3095 | { |
8e62a717 | 3096 | struct image_info interp_info; |
31e31b8a | 3097 | struct elfhdr elf_ex; |
8e62a717 | 3098 | char *elf_interpreter = NULL; |
59baae9a | 3099 | char *scratch; |
31e31b8a | 3100 | |
abcac736 DS |
3101 | memset(&interp_info, 0, sizeof(interp_info)); |
3102 | #ifdef TARGET_MIPS | |
3103 | interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN; | |
3104 | #endif | |
3105 | ||
bf858897 | 3106 | info->start_mmap = (abi_ulong)ELF_START_MMAP; |
bf858897 RH |
3107 | |
3108 | load_elf_image(bprm->filename, bprm->fd, info, | |
3109 | &elf_interpreter, bprm->buf); | |
31e31b8a | 3110 | |
bf858897 RH |
3111 | /* ??? We need a copy of the elf header for passing to create_elf_tables. |
3112 | If we do nothing, we'll have overwritten this when we re-use bprm->buf | |
3113 | when we load the interpreter. */ | |
3114 | elf_ex = *(struct elfhdr *)bprm->buf; | |
31e31b8a | 3115 | |
59baae9a SB |
3116 | /* Do this so that we can load the interpreter, if need be. We will |
3117 | change some of these later */ | |
3118 | bprm->p = setup_arg_pages(bprm, info); | |
3119 | ||
3120 | scratch = g_new0(char, TARGET_PAGE_SIZE); | |
7c4ee5bc RH |
3121 | if (STACK_GROWS_DOWN) { |
3122 | bprm->p = copy_elf_strings(1, &bprm->filename, scratch, | |
3123 | bprm->p, info->stack_limit); | |
3124 | info->file_string = bprm->p; | |
3125 | bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, | |
3126 | bprm->p, info->stack_limit); | |
3127 | info->env_strings = bprm->p; | |
3128 | bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, | |
3129 | bprm->p, info->stack_limit); | |
3130 | info->arg_strings = bprm->p; | |
3131 | } else { | |
3132 | info->arg_strings = bprm->p; | |
3133 | bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, | |
3134 | bprm->p, info->stack_limit); | |
3135 | info->env_strings = bprm->p; | |
3136 | bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, | |
3137 | bprm->p, info->stack_limit); | |
3138 | info->file_string = bprm->p; | |
3139 | bprm->p = copy_elf_strings(1, &bprm->filename, scratch, | |
3140 | bprm->p, info->stack_limit); | |
3141 | } | |
3142 | ||
59baae9a SB |
3143 | g_free(scratch); |
3144 | ||
e5fe0c52 | 3145 | if (!bprm->p) { |
bf858897 RH |
3146 | fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG)); |
3147 | exit(-1); | |
379f6698 | 3148 | } |
379f6698 | 3149 | |
8e62a717 RH |
3150 | if (elf_interpreter) { |
3151 | load_elf_interp(elf_interpreter, &interp_info, bprm->buf); | |
31e31b8a | 3152 | |
8e62a717 RH |
3153 | /* If the program interpreter is one of these two, then assume |
3154 | an iBCS2 image. Otherwise assume a native linux image. */ | |
3155 | ||
3156 | if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0 | |
3157 | || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) { | |
3158 | info->personality = PER_SVR4; | |
31e31b8a | 3159 | |
8e62a717 RH |
3160 | /* Why this, you ask??? Well SVr4 maps page 0 as read-only, |
3161 | and some applications "depend" upon this behavior. Since | |
3162 | we do not have the power to recompile these, we emulate | |
3163 | the SVr4 behavior. Sigh. */ | |
3164 | target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC, | |
68754b44 | 3165 | MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); |
8e62a717 | 3166 | } |
c94cb6c9 SM |
3167 | #ifdef TARGET_MIPS |
3168 | info->interp_fp_abi = interp_info.fp_abi; | |
3169 | #endif | |
31e31b8a FB |
3170 | } |
3171 | ||
8e62a717 RH |
3172 | bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex, |
3173 | info, (elf_interpreter ? &interp_info : NULL)); | |
3174 | info->start_stack = bprm->p; | |
3175 | ||
3176 | /* If we have an interpreter, set that as the program's entry point. | |
8e78064e | 3177 | Copy the load_bias as well, to help PPC64 interpret the entry |
8e62a717 RH |
3178 | point as a function descriptor. Do this after creating elf tables |
3179 | so that we copy the original program entry point into the AUXV. */ | |
3180 | if (elf_interpreter) { | |
8e78064e | 3181 | info->load_bias = interp_info.load_bias; |
8e62a717 | 3182 | info->entry = interp_info.entry; |
2b323087 | 3183 | g_free(elf_interpreter); |
8e62a717 | 3184 | } |
31e31b8a | 3185 | |
edf8e2af MW |
3186 | #ifdef USE_ELF_CORE_DUMP |
3187 | bprm->core_dump = &elf_core_dump; | |
3188 | #endif | |
3189 | ||
6fd59449 RH |
3190 | /* |
3191 | * If we reserved extra space for brk, release it now. | |
3192 | * The implementation of do_brk in syscalls.c expects to be able | |
3193 | * to mmap pages in this space. | |
3194 | */ | |
3195 | if (info->reserve_brk) { | |
3196 | abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk); | |
3197 | abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk); | |
3198 | target_munmap(start_brk, end_brk - start_brk); | |
3199 | } | |
3200 | ||
31e31b8a FB |
3201 | return 0; |
3202 | } | |
3203 | ||
edf8e2af | 3204 | #ifdef USE_ELF_CORE_DUMP |
edf8e2af MW |
3205 | /* |
3206 | * Definitions to generate Intel SVR4-like core files. | |
a2547a13 | 3207 | * These mostly have the same names as the SVR4 types with "target_elf_" |
edf8e2af MW |
3208 | * tacked on the front to prevent clashes with linux definitions, |
3209 | * and the typedef forms have been avoided. This is mostly like | |
3210 | * the SVR4 structure, but more Linuxy, with things that Linux does | |
3211 | * not support and which gdb doesn't really use excluded. | |
3212 | * | |
3213 | * Fields we don't dump (their contents is zero) in linux-user qemu | |
3214 | * are marked with XXX. | |
3215 | * | |
3216 | * Core dump code is copied from linux kernel (fs/binfmt_elf.c). | |
3217 | * | |
3218 | * Porting ELF coredump for target is (quite) simple process. First you | |
dd0a3651 | 3219 | * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for |
edf8e2af MW |
3220 | * the target resides): |
3221 | * | |
3222 | * #define USE_ELF_CORE_DUMP | |
3223 | * | |
3224 | * Next you define type of register set used for dumping. ELF specification | |
3225 | * says that it needs to be array of elf_greg_t that has size of ELF_NREG. | |
3226 | * | |
c227f099 | 3227 | * typedef <target_regtype> target_elf_greg_t; |
edf8e2af | 3228 | * #define ELF_NREG <number of registers> |
c227f099 | 3229 | * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG]; |
edf8e2af | 3230 | * |
edf8e2af MW |
3231 | * Last step is to implement target specific function that copies registers |
3232 | * from given cpu into just specified register set. Prototype is: | |
3233 | * | |
c227f099 | 3234 | * static void elf_core_copy_regs(taret_elf_gregset_t *regs, |
9349b4f9 | 3235 | * const CPUArchState *env); |
edf8e2af MW |
3236 | * |
3237 | * Parameters: | |
3238 | * regs - copy register values into here (allocated and zeroed by caller) | |
3239 | * env - copy registers from here | |
3240 | * | |
3241 | * Example for ARM target is provided in this file. | |
3242 | */ | |
3243 | ||
3244 | /* An ELF note in memory */ | |
3245 | struct memelfnote { | |
3246 | const char *name; | |
3247 | size_t namesz; | |
3248 | size_t namesz_rounded; | |
3249 | int type; | |
3250 | size_t datasz; | |
80f5ce75 | 3251 | size_t datasz_rounded; |
edf8e2af MW |
3252 | void *data; |
3253 | size_t notesz; | |
3254 | }; | |
3255 | ||
a2547a13 | 3256 | struct target_elf_siginfo { |
f8fd4fc4 PB |
3257 | abi_int si_signo; /* signal number */ |
3258 | abi_int si_code; /* extra code */ | |
3259 | abi_int si_errno; /* errno */ | |
edf8e2af MW |
3260 | }; |
3261 | ||
a2547a13 LD |
3262 | struct target_elf_prstatus { |
3263 | struct target_elf_siginfo pr_info; /* Info associated with signal */ | |
1ddd592f | 3264 | abi_short pr_cursig; /* Current signal */ |
ca98ac83 PB |
3265 | abi_ulong pr_sigpend; /* XXX */ |
3266 | abi_ulong pr_sighold; /* XXX */ | |
c227f099 AL |
3267 | target_pid_t pr_pid; |
3268 | target_pid_t pr_ppid; | |
3269 | target_pid_t pr_pgrp; | |
3270 | target_pid_t pr_sid; | |
edf8e2af MW |
3271 | struct target_timeval pr_utime; /* XXX User time */ |
3272 | struct target_timeval pr_stime; /* XXX System time */ | |
3273 | struct target_timeval pr_cutime; /* XXX Cumulative user time */ | |
3274 | struct target_timeval pr_cstime; /* XXX Cumulative system time */ | |
c227f099 | 3275 | target_elf_gregset_t pr_reg; /* GP registers */ |
f8fd4fc4 | 3276 | abi_int pr_fpvalid; /* XXX */ |
edf8e2af MW |
3277 | }; |
3278 | ||
3279 | #define ELF_PRARGSZ (80) /* Number of chars for args */ | |
3280 | ||
a2547a13 | 3281 | struct target_elf_prpsinfo { |
edf8e2af MW |
3282 | char pr_state; /* numeric process state */ |
3283 | char pr_sname; /* char for pr_state */ | |
3284 | char pr_zomb; /* zombie */ | |
3285 | char pr_nice; /* nice val */ | |
ca98ac83 | 3286 | abi_ulong pr_flag; /* flags */ |
c227f099 AL |
3287 | target_uid_t pr_uid; |
3288 | target_gid_t pr_gid; | |
3289 | target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid; | |
edf8e2af | 3290 | /* Lots missing */ |
d7eb2b92 | 3291 | char pr_fname[16] QEMU_NONSTRING; /* filename of executable */ |
edf8e2af MW |
3292 | char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */ |
3293 | }; | |
3294 | ||
3295 | /* Here is the structure in which status of each thread is captured. */ | |
3296 | struct elf_thread_status { | |
72cf2d4f | 3297 | QTAILQ_ENTRY(elf_thread_status) ets_link; |
a2547a13 | 3298 | struct target_elf_prstatus prstatus; /* NT_PRSTATUS */ |
edf8e2af MW |
3299 | #if 0 |
3300 | elf_fpregset_t fpu; /* NT_PRFPREG */ | |
3301 | struct task_struct *thread; | |
3302 | elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ | |
3303 | #endif | |
3304 | struct memelfnote notes[1]; | |
3305 | int num_notes; | |
3306 | }; | |
3307 | ||
3308 | struct elf_note_info { | |
3309 | struct memelfnote *notes; | |
a2547a13 LD |
3310 | struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */ |
3311 | struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */ | |
edf8e2af | 3312 | |
b58deb34 | 3313 | QTAILQ_HEAD(, elf_thread_status) thread_list; |
edf8e2af MW |
3314 | #if 0 |
3315 | /* | |
3316 | * Current version of ELF coredump doesn't support | |
3317 | * dumping fp regs etc. | |
3318 | */ | |
3319 | elf_fpregset_t *fpu; | |
3320 | elf_fpxregset_t *xfpu; | |
3321 | int thread_status_size; | |
3322 | #endif | |
3323 | int notes_size; | |
3324 | int numnote; | |
3325 | }; | |
3326 | ||
3327 | struct vm_area_struct { | |
1a1c4db9 MI |
3328 | target_ulong vma_start; /* start vaddr of memory region */ |
3329 | target_ulong vma_end; /* end vaddr of memory region */ | |
3330 | abi_ulong vma_flags; /* protection etc. flags for the region */ | |
72cf2d4f | 3331 | QTAILQ_ENTRY(vm_area_struct) vma_link; |
edf8e2af MW |
3332 | }; |
3333 | ||
3334 | struct mm_struct { | |
72cf2d4f | 3335 | QTAILQ_HEAD(, vm_area_struct) mm_mmap; |
edf8e2af MW |
3336 | int mm_count; /* number of mappings */ |
3337 | }; | |
3338 | ||
3339 | static struct mm_struct *vma_init(void); | |
3340 | static void vma_delete(struct mm_struct *); | |
1a1c4db9 MI |
3341 | static int vma_add_mapping(struct mm_struct *, target_ulong, |
3342 | target_ulong, abi_ulong); | |
edf8e2af MW |
3343 | static int vma_get_mapping_count(const struct mm_struct *); |
3344 | static struct vm_area_struct *vma_first(const struct mm_struct *); | |
3345 | static struct vm_area_struct *vma_next(struct vm_area_struct *); | |
3346 | static abi_ulong vma_dump_size(const struct vm_area_struct *); | |
1a1c4db9 | 3347 | static int vma_walker(void *priv, target_ulong start, target_ulong end, |
d97ef72e | 3348 | unsigned long flags); |
edf8e2af MW |
3349 | |
3350 | static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t); | |
3351 | static void fill_note(struct memelfnote *, const char *, int, | |
d97ef72e | 3352 | unsigned int, void *); |
a2547a13 LD |
3353 | static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int); |
3354 | static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *); | |
edf8e2af MW |
3355 | static void fill_auxv_note(struct memelfnote *, const TaskState *); |
3356 | static void fill_elf_note_phdr(struct elf_phdr *, int, off_t); | |
3357 | static size_t note_size(const struct memelfnote *); | |
3358 | static void free_note_info(struct elf_note_info *); | |
9349b4f9 AF |
3359 | static int fill_note_info(struct elf_note_info *, long, const CPUArchState *); |
3360 | static void fill_thread_info(struct elf_note_info *, const CPUArchState *); | |
edf8e2af MW |
3361 | static int core_dump_filename(const TaskState *, char *, size_t); |
3362 | ||
3363 | static int dump_write(int, const void *, size_t); | |
3364 | static int write_note(struct memelfnote *, int); | |
3365 | static int write_note_info(struct elf_note_info *, int); | |
3366 | ||
3367 | #ifdef BSWAP_NEEDED | |
a2547a13 | 3368 | static void bswap_prstatus(struct target_elf_prstatus *prstatus) |
edf8e2af | 3369 | { |
ca98ac83 PB |
3370 | prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo); |
3371 | prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code); | |
3372 | prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno); | |
edf8e2af | 3373 | prstatus->pr_cursig = tswap16(prstatus->pr_cursig); |
ca98ac83 PB |
3374 | prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend); |
3375 | prstatus->pr_sighold = tswapal(prstatus->pr_sighold); | |
edf8e2af MW |
3376 | prstatus->pr_pid = tswap32(prstatus->pr_pid); |
3377 | prstatus->pr_ppid = tswap32(prstatus->pr_ppid); | |
3378 | prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp); | |
3379 | prstatus->pr_sid = tswap32(prstatus->pr_sid); | |
3380 | /* cpu times are not filled, so we skip them */ | |
3381 | /* regs should be in correct format already */ | |
3382 | prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid); | |
3383 | } | |
3384 | ||
a2547a13 | 3385 | static void bswap_psinfo(struct target_elf_prpsinfo *psinfo) |
edf8e2af | 3386 | { |
ca98ac83 | 3387 | psinfo->pr_flag = tswapal(psinfo->pr_flag); |
edf8e2af MW |
3388 | psinfo->pr_uid = tswap16(psinfo->pr_uid); |
3389 | psinfo->pr_gid = tswap16(psinfo->pr_gid); | |
3390 | psinfo->pr_pid = tswap32(psinfo->pr_pid); | |
3391 | psinfo->pr_ppid = tswap32(psinfo->pr_ppid); | |
3392 | psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp); | |
3393 | psinfo->pr_sid = tswap32(psinfo->pr_sid); | |
3394 | } | |
991f8f0c RH |
3395 | |
3396 | static void bswap_note(struct elf_note *en) | |
3397 | { | |
3398 | bswap32s(&en->n_namesz); | |
3399 | bswap32s(&en->n_descsz); | |
3400 | bswap32s(&en->n_type); | |
3401 | } | |
3402 | #else | |
3403 | static inline void bswap_prstatus(struct target_elf_prstatus *p) { } | |
3404 | static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {} | |
3405 | static inline void bswap_note(struct elf_note *en) { } | |
edf8e2af MW |
3406 | #endif /* BSWAP_NEEDED */ |
3407 | ||
3408 | /* | |
3409 | * Minimal support for linux memory regions. These are needed | |
3410 | * when we are finding out what memory exactly belongs to | |
3411 | * emulated process. No locks needed here, as long as | |
3412 | * thread that received the signal is stopped. | |
3413 | */ | |
3414 | ||
3415 | static struct mm_struct *vma_init(void) | |
3416 | { | |
3417 | struct mm_struct *mm; | |
3418 | ||
7267c094 | 3419 | if ((mm = g_malloc(sizeof (*mm))) == NULL) |
edf8e2af MW |
3420 | return (NULL); |
3421 | ||
3422 | mm->mm_count = 0; | |
72cf2d4f | 3423 | QTAILQ_INIT(&mm->mm_mmap); |
edf8e2af MW |
3424 | |
3425 | return (mm); | |
3426 | } | |
3427 | ||
3428 | static void vma_delete(struct mm_struct *mm) | |
3429 | { | |
3430 | struct vm_area_struct *vma; | |
3431 | ||
3432 | while ((vma = vma_first(mm)) != NULL) { | |
72cf2d4f | 3433 | QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link); |
7267c094 | 3434 | g_free(vma); |
edf8e2af | 3435 | } |
7267c094 | 3436 | g_free(mm); |
edf8e2af MW |
3437 | } |
3438 | ||
1a1c4db9 MI |
3439 | static int vma_add_mapping(struct mm_struct *mm, target_ulong start, |
3440 | target_ulong end, abi_ulong flags) | |
edf8e2af MW |
3441 | { |
3442 | struct vm_area_struct *vma; | |
3443 | ||
7267c094 | 3444 | if ((vma = g_malloc0(sizeof (*vma))) == NULL) |
edf8e2af MW |
3445 | return (-1); |
3446 | ||
3447 | vma->vma_start = start; | |
3448 | vma->vma_end = end; | |
3449 | vma->vma_flags = flags; | |
3450 | ||
72cf2d4f | 3451 | QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link); |
edf8e2af MW |
3452 | mm->mm_count++; |
3453 | ||
3454 | return (0); | |
3455 | } | |
3456 | ||
3457 | static struct vm_area_struct *vma_first(const struct mm_struct *mm) | |
3458 | { | |
72cf2d4f | 3459 | return (QTAILQ_FIRST(&mm->mm_mmap)); |
edf8e2af MW |
3460 | } |
3461 | ||
3462 | static struct vm_area_struct *vma_next(struct vm_area_struct *vma) | |
3463 | { | |
72cf2d4f | 3464 | return (QTAILQ_NEXT(vma, vma_link)); |
edf8e2af MW |
3465 | } |
3466 | ||
3467 | static int vma_get_mapping_count(const struct mm_struct *mm) | |
3468 | { | |
3469 | return (mm->mm_count); | |
3470 | } | |
3471 | ||
3472 | /* | |
3473 | * Calculate file (dump) size of given memory region. | |
3474 | */ | |
3475 | static abi_ulong vma_dump_size(const struct vm_area_struct *vma) | |
3476 | { | |
3477 | /* if we cannot even read the first page, skip it */ | |
3478 | if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE)) | |
3479 | return (0); | |
3480 | ||
3481 | /* | |
3482 | * Usually we don't dump executable pages as they contain | |
3483 | * non-writable code that debugger can read directly from | |
3484 | * target library etc. However, thread stacks are marked | |
3485 | * also executable so we read in first page of given region | |
3486 | * and check whether it contains elf header. If there is | |
3487 | * no elf header, we dump it. | |
3488 | */ | |
3489 | if (vma->vma_flags & PROT_EXEC) { | |
3490 | char page[TARGET_PAGE_SIZE]; | |
3491 | ||
022625a8 PM |
3492 | if (copy_from_user(page, vma->vma_start, sizeof (page))) { |
3493 | return 0; | |
3494 | } | |
edf8e2af MW |
3495 | if ((page[EI_MAG0] == ELFMAG0) && |
3496 | (page[EI_MAG1] == ELFMAG1) && | |
3497 | (page[EI_MAG2] == ELFMAG2) && | |
3498 | (page[EI_MAG3] == ELFMAG3)) { | |
3499 | /* | |
3500 | * Mappings are possibly from ELF binary. Don't dump | |
3501 | * them. | |
3502 | */ | |
3503 | return (0); | |
3504 | } | |
3505 | } | |
3506 | ||
3507 | return (vma->vma_end - vma->vma_start); | |
3508 | } | |
3509 | ||
1a1c4db9 | 3510 | static int vma_walker(void *priv, target_ulong start, target_ulong end, |
d97ef72e | 3511 | unsigned long flags) |
edf8e2af MW |
3512 | { |
3513 | struct mm_struct *mm = (struct mm_struct *)priv; | |
3514 | ||
edf8e2af MW |
3515 | vma_add_mapping(mm, start, end, flags); |
3516 | return (0); | |
3517 | } | |
3518 | ||
3519 | static void fill_note(struct memelfnote *note, const char *name, int type, | |
d97ef72e | 3520 | unsigned int sz, void *data) |
edf8e2af MW |
3521 | { |
3522 | unsigned int namesz; | |
3523 | ||
3524 | namesz = strlen(name) + 1; | |
3525 | note->name = name; | |
3526 | note->namesz = namesz; | |
3527 | note->namesz_rounded = roundup(namesz, sizeof (int32_t)); | |
3528 | note->type = type; | |
80f5ce75 LV |
3529 | note->datasz = sz; |
3530 | note->datasz_rounded = roundup(sz, sizeof (int32_t)); | |
3531 | ||
edf8e2af MW |
3532 | note->data = data; |
3533 | ||
3534 | /* | |
3535 | * We calculate rounded up note size here as specified by | |
3536 | * ELF document. | |
3537 | */ | |
3538 | note->notesz = sizeof (struct elf_note) + | |
80f5ce75 | 3539 | note->namesz_rounded + note->datasz_rounded; |
edf8e2af MW |
3540 | } |
3541 | ||
3542 | static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine, | |
d97ef72e | 3543 | uint32_t flags) |
edf8e2af MW |
3544 | { |
3545 | (void) memset(elf, 0, sizeof(*elf)); | |
3546 | ||
3547 | (void) memcpy(elf->e_ident, ELFMAG, SELFMAG); | |
3548 | elf->e_ident[EI_CLASS] = ELF_CLASS; | |
3549 | elf->e_ident[EI_DATA] = ELF_DATA; | |
3550 | elf->e_ident[EI_VERSION] = EV_CURRENT; | |
3551 | elf->e_ident[EI_OSABI] = ELF_OSABI; | |
3552 | ||
3553 | elf->e_type = ET_CORE; | |
3554 | elf->e_machine = machine; | |
3555 | elf->e_version = EV_CURRENT; | |
3556 | elf->e_phoff = sizeof(struct elfhdr); | |
3557 | elf->e_flags = flags; | |
3558 | elf->e_ehsize = sizeof(struct elfhdr); | |
3559 | elf->e_phentsize = sizeof(struct elf_phdr); | |
3560 | elf->e_phnum = segs; | |
3561 | ||
edf8e2af | 3562 | bswap_ehdr(elf); |
edf8e2af MW |
3563 | } |
3564 | ||
3565 | static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset) | |
3566 | { | |
3567 | phdr->p_type = PT_NOTE; | |
3568 | phdr->p_offset = offset; | |
3569 | phdr->p_vaddr = 0; | |
3570 | phdr->p_paddr = 0; | |
3571 | phdr->p_filesz = sz; | |
3572 | phdr->p_memsz = 0; | |
3573 | phdr->p_flags = 0; | |
3574 | phdr->p_align = 0; | |
3575 | ||
991f8f0c | 3576 | bswap_phdr(phdr, 1); |
edf8e2af MW |
3577 | } |
3578 | ||
3579 | static size_t note_size(const struct memelfnote *note) | |
3580 | { | |
3581 | return (note->notesz); | |
3582 | } | |
3583 | ||
a2547a13 | 3584 | static void fill_prstatus(struct target_elf_prstatus *prstatus, |
d97ef72e | 3585 | const TaskState *ts, int signr) |
edf8e2af MW |
3586 | { |
3587 | (void) memset(prstatus, 0, sizeof (*prstatus)); | |
3588 | prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; | |
3589 | prstatus->pr_pid = ts->ts_tid; | |
3590 | prstatus->pr_ppid = getppid(); | |
3591 | prstatus->pr_pgrp = getpgrp(); | |
3592 | prstatus->pr_sid = getsid(0); | |
3593 | ||
edf8e2af | 3594 | bswap_prstatus(prstatus); |
edf8e2af MW |
3595 | } |
3596 | ||
a2547a13 | 3597 | static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts) |
edf8e2af | 3598 | { |
900cfbca | 3599 | char *base_filename; |
edf8e2af MW |
3600 | unsigned int i, len; |
3601 | ||
3602 | (void) memset(psinfo, 0, sizeof (*psinfo)); | |
3603 | ||
3604 | len = ts->info->arg_end - ts->info->arg_start; | |
3605 | if (len >= ELF_PRARGSZ) | |
3606 | len = ELF_PRARGSZ - 1; | |
3607 | if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len)) | |
3608 | return -EFAULT; | |
3609 | for (i = 0; i < len; i++) | |
3610 | if (psinfo->pr_psargs[i] == 0) | |
3611 | psinfo->pr_psargs[i] = ' '; | |
3612 | psinfo->pr_psargs[len] = 0; | |
3613 | ||
3614 | psinfo->pr_pid = getpid(); | |
3615 | psinfo->pr_ppid = getppid(); | |
3616 | psinfo->pr_pgrp = getpgrp(); | |
3617 | psinfo->pr_sid = getsid(0); | |
3618 | psinfo->pr_uid = getuid(); | |
3619 | psinfo->pr_gid = getgid(); | |
3620 | ||
900cfbca JM |
3621 | base_filename = g_path_get_basename(ts->bprm->filename); |
3622 | /* | |
3623 | * Using strncpy here is fine: at max-length, | |
3624 | * this field is not NUL-terminated. | |
3625 | */ | |
edf8e2af | 3626 | (void) strncpy(psinfo->pr_fname, base_filename, |
d97ef72e | 3627 | sizeof(psinfo->pr_fname)); |
edf8e2af | 3628 | |
900cfbca | 3629 | g_free(base_filename); |
edf8e2af | 3630 | bswap_psinfo(psinfo); |
edf8e2af MW |
3631 | return (0); |
3632 | } | |
3633 | ||
3634 | static void fill_auxv_note(struct memelfnote *note, const TaskState *ts) | |
3635 | { | |
3636 | elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv; | |
3637 | elf_addr_t orig_auxv = auxv; | |
edf8e2af | 3638 | void *ptr; |
125b0f55 | 3639 | int len = ts->info->auxv_len; |
edf8e2af MW |
3640 | |
3641 | /* | |
3642 | * Auxiliary vector is stored in target process stack. It contains | |
3643 | * {type, value} pairs that we need to dump into note. This is not | |
3644 | * strictly necessary but we do it here for sake of completeness. | |
3645 | */ | |
3646 | ||
edf8e2af MW |
3647 | /* read in whole auxv vector and copy it to memelfnote */ |
3648 | ptr = lock_user(VERIFY_READ, orig_auxv, len, 0); | |
3649 | if (ptr != NULL) { | |
3650 | fill_note(note, "CORE", NT_AUXV, len, ptr); | |
3651 | unlock_user(ptr, auxv, len); | |
3652 | } | |
3653 | } | |
3654 | ||
3655 | /* | |
3656 | * Constructs name of coredump file. We have following convention | |
3657 | * for the name: | |
3658 | * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core | |
3659 | * | |
3660 | * Returns 0 in case of success, -1 otherwise (errno is set). | |
3661 | */ | |
3662 | static int core_dump_filename(const TaskState *ts, char *buf, | |
d97ef72e | 3663 | size_t bufsize) |
edf8e2af MW |
3664 | { |
3665 | char timestamp[64]; | |
edf8e2af MW |
3666 | char *base_filename = NULL; |
3667 | struct timeval tv; | |
3668 | struct tm tm; | |
3669 | ||
3670 | assert(bufsize >= PATH_MAX); | |
3671 | ||
3672 | if (gettimeofday(&tv, NULL) < 0) { | |
3673 | (void) fprintf(stderr, "unable to get current timestamp: %s", | |
d97ef72e | 3674 | strerror(errno)); |
edf8e2af MW |
3675 | return (-1); |
3676 | } | |
3677 | ||
b8da57fa | 3678 | base_filename = g_path_get_basename(ts->bprm->filename); |
edf8e2af | 3679 | (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S", |
d97ef72e | 3680 | localtime_r(&tv.tv_sec, &tm)); |
edf8e2af | 3681 | (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core", |
d97ef72e | 3682 | base_filename, timestamp, (int)getpid()); |
b8da57fa | 3683 | g_free(base_filename); |
edf8e2af MW |
3684 | |
3685 | return (0); | |
3686 | } | |
3687 | ||
3688 | static int dump_write(int fd, const void *ptr, size_t size) | |
3689 | { | |
3690 | const char *bufp = (const char *)ptr; | |
3691 | ssize_t bytes_written, bytes_left; | |
3692 | struct rlimit dumpsize; | |
3693 | off_t pos; | |
3694 | ||
3695 | bytes_written = 0; | |
3696 | getrlimit(RLIMIT_CORE, &dumpsize); | |
3697 | if ((pos = lseek(fd, 0, SEEK_CUR))==-1) { | |
3698 | if (errno == ESPIPE) { /* not a seekable stream */ | |
3699 | bytes_left = size; | |
3700 | } else { | |
3701 | return pos; | |
3702 | } | |
3703 | } else { | |
3704 | if (dumpsize.rlim_cur <= pos) { | |
3705 | return -1; | |
3706 | } else if (dumpsize.rlim_cur == RLIM_INFINITY) { | |
3707 | bytes_left = size; | |
3708 | } else { | |
3709 | size_t limit_left=dumpsize.rlim_cur - pos; | |
3710 | bytes_left = limit_left >= size ? size : limit_left ; | |
3711 | } | |
3712 | } | |
3713 | ||
3714 | /* | |
3715 | * In normal conditions, single write(2) should do but | |
3716 | * in case of socket etc. this mechanism is more portable. | |
3717 | */ | |
3718 | do { | |
3719 | bytes_written = write(fd, bufp, bytes_left); | |
3720 | if (bytes_written < 0) { | |
3721 | if (errno == EINTR) | |
3722 | continue; | |
3723 | return (-1); | |
3724 | } else if (bytes_written == 0) { /* eof */ | |
3725 | return (-1); | |
3726 | } | |
3727 | bufp += bytes_written; | |
3728 | bytes_left -= bytes_written; | |
3729 | } while (bytes_left > 0); | |
3730 | ||
3731 | return (0); | |
3732 | } | |
3733 | ||
3734 | static int write_note(struct memelfnote *men, int fd) | |
3735 | { | |
3736 | struct elf_note en; | |
3737 | ||
3738 | en.n_namesz = men->namesz; | |
3739 | en.n_type = men->type; | |
3740 | en.n_descsz = men->datasz; | |
3741 | ||
edf8e2af | 3742 | bswap_note(&en); |
edf8e2af MW |
3743 | |
3744 | if (dump_write(fd, &en, sizeof(en)) != 0) | |
3745 | return (-1); | |
3746 | if (dump_write(fd, men->name, men->namesz_rounded) != 0) | |
3747 | return (-1); | |
80f5ce75 | 3748 | if (dump_write(fd, men->data, men->datasz_rounded) != 0) |
edf8e2af MW |
3749 | return (-1); |
3750 | ||
3751 | return (0); | |
3752 | } | |
3753 | ||
9349b4f9 | 3754 | static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env) |
edf8e2af | 3755 | { |
29a0af61 | 3756 | CPUState *cpu = env_cpu((CPUArchState *)env); |
0429a971 | 3757 | TaskState *ts = (TaskState *)cpu->opaque; |
edf8e2af MW |
3758 | struct elf_thread_status *ets; |
3759 | ||
7267c094 | 3760 | ets = g_malloc0(sizeof (*ets)); |
edf8e2af MW |
3761 | ets->num_notes = 1; /* only prstatus is dumped */ |
3762 | fill_prstatus(&ets->prstatus, ts, 0); | |
3763 | elf_core_copy_regs(&ets->prstatus.pr_reg, env); | |
3764 | fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus), | |
d97ef72e | 3765 | &ets->prstatus); |
edf8e2af | 3766 | |
72cf2d4f | 3767 | QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link); |
edf8e2af MW |
3768 | |
3769 | info->notes_size += note_size(&ets->notes[0]); | |
3770 | } | |
3771 | ||
6afafa86 PM |
3772 | static void init_note_info(struct elf_note_info *info) |
3773 | { | |
3774 | /* Initialize the elf_note_info structure so that it is at | |
3775 | * least safe to call free_note_info() on it. Must be | |
3776 | * called before calling fill_note_info(). | |
3777 | */ | |
3778 | memset(info, 0, sizeof (*info)); | |
3779 | QTAILQ_INIT(&info->thread_list); | |
3780 | } | |
3781 | ||
edf8e2af | 3782 | static int fill_note_info(struct elf_note_info *info, |
9349b4f9 | 3783 | long signr, const CPUArchState *env) |
edf8e2af MW |
3784 | { |
3785 | #define NUMNOTES 3 | |
29a0af61 | 3786 | CPUState *cpu = env_cpu((CPUArchState *)env); |
0429a971 | 3787 | TaskState *ts = (TaskState *)cpu->opaque; |
edf8e2af MW |
3788 | int i; |
3789 | ||
c78d65e8 | 3790 | info->notes = g_new0(struct memelfnote, NUMNOTES); |
edf8e2af MW |
3791 | if (info->notes == NULL) |
3792 | return (-ENOMEM); | |
7267c094 | 3793 | info->prstatus = g_malloc0(sizeof (*info->prstatus)); |
edf8e2af MW |
3794 | if (info->prstatus == NULL) |
3795 | return (-ENOMEM); | |
7267c094 | 3796 | info->psinfo = g_malloc0(sizeof (*info->psinfo)); |
edf8e2af MW |
3797 | if (info->prstatus == NULL) |
3798 | return (-ENOMEM); | |
3799 | ||
3800 | /* | |
3801 | * First fill in status (and registers) of current thread | |
3802 | * including process info & aux vector. | |
3803 | */ | |
3804 | fill_prstatus(info->prstatus, ts, signr); | |
3805 | elf_core_copy_regs(&info->prstatus->pr_reg, env); | |
3806 | fill_note(&info->notes[0], "CORE", NT_PRSTATUS, | |
d97ef72e | 3807 | sizeof (*info->prstatus), info->prstatus); |
edf8e2af MW |
3808 | fill_psinfo(info->psinfo, ts); |
3809 | fill_note(&info->notes[1], "CORE", NT_PRPSINFO, | |
d97ef72e | 3810 | sizeof (*info->psinfo), info->psinfo); |
edf8e2af MW |
3811 | fill_auxv_note(&info->notes[2], ts); |
3812 | info->numnote = 3; | |
3813 | ||
3814 | info->notes_size = 0; | |
3815 | for (i = 0; i < info->numnote; i++) | |
3816 | info->notes_size += note_size(&info->notes[i]); | |
3817 | ||
3818 | /* read and fill status of all threads */ | |
3819 | cpu_list_lock(); | |
bdc44640 | 3820 | CPU_FOREACH(cpu) { |
a2247f8e | 3821 | if (cpu == thread_cpu) { |
edf8e2af | 3822 | continue; |
182735ef AF |
3823 | } |
3824 | fill_thread_info(info, (CPUArchState *)cpu->env_ptr); | |
edf8e2af MW |
3825 | } |
3826 | cpu_list_unlock(); | |
3827 | ||
3828 | return (0); | |
3829 | } | |
3830 | ||
3831 | static void free_note_info(struct elf_note_info *info) | |
3832 | { | |
3833 | struct elf_thread_status *ets; | |
3834 | ||
72cf2d4f BS |
3835 | while (!QTAILQ_EMPTY(&info->thread_list)) { |
3836 | ets = QTAILQ_FIRST(&info->thread_list); | |
3837 | QTAILQ_REMOVE(&info->thread_list, ets, ets_link); | |
7267c094 | 3838 | g_free(ets); |
edf8e2af MW |
3839 | } |
3840 | ||
7267c094 AL |
3841 | g_free(info->prstatus); |
3842 | g_free(info->psinfo); | |
3843 | g_free(info->notes); | |
edf8e2af MW |
3844 | } |
3845 | ||
3846 | static int write_note_info(struct elf_note_info *info, int fd) | |
3847 | { | |
3848 | struct elf_thread_status *ets; | |
3849 | int i, error = 0; | |
3850 | ||
3851 | /* write prstatus, psinfo and auxv for current thread */ | |
3852 | for (i = 0; i < info->numnote; i++) | |
3853 | if ((error = write_note(&info->notes[i], fd)) != 0) | |
3854 | return (error); | |
3855 | ||
3856 | /* write prstatus for each thread */ | |
52a53afe | 3857 | QTAILQ_FOREACH(ets, &info->thread_list, ets_link) { |
edf8e2af MW |
3858 | if ((error = write_note(&ets->notes[0], fd)) != 0) |
3859 | return (error); | |
3860 | } | |
3861 | ||
3862 | return (0); | |
3863 | } | |
3864 | ||
3865 | /* | |
3866 | * Write out ELF coredump. | |
3867 | * | |
3868 | * See documentation of ELF object file format in: | |
3869 | * http://www.caldera.com/developers/devspecs/gabi41.pdf | |
3870 | * | |
3871 | * Coredump format in linux is following: | |
3872 | * | |
3873 | * 0 +----------------------+ \ | |
3874 | * | ELF header | ET_CORE | | |
3875 | * +----------------------+ | | |
3876 | * | ELF program headers | |--- headers | |
3877 | * | - NOTE section | | | |
3878 | * | - PT_LOAD sections | | | |
3879 | * +----------------------+ / | |
3880 | * | NOTEs: | | |
3881 | * | - NT_PRSTATUS | | |
3882 | * | - NT_PRSINFO | | |
3883 | * | - NT_AUXV | | |
3884 | * +----------------------+ <-- aligned to target page | |
3885 | * | Process memory dump | | |
3886 | * : : | |
3887 | * . . | |
3888 | * : : | |
3889 | * | | | |
3890 | * +----------------------+ | |
3891 | * | |
3892 | * NT_PRSTATUS -> struct elf_prstatus (per thread) | |
3893 | * NT_PRSINFO -> struct elf_prpsinfo | |
3894 | * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()). | |
3895 | * | |
3896 | * Format follows System V format as close as possible. Current | |
3897 | * version limitations are as follows: | |
3898 | * - no floating point registers are dumped | |
3899 | * | |
3900 | * Function returns 0 in case of success, negative errno otherwise. | |
3901 | * | |
3902 | * TODO: make this work also during runtime: it should be | |
3903 | * possible to force coredump from running process and then | |
3904 | * continue processing. For example qemu could set up SIGUSR2 | |
3905 | * handler (provided that target process haven't registered | |
3906 | * handler for that) that does the dump when signal is received. | |
3907 | */ | |
9349b4f9 | 3908 | static int elf_core_dump(int signr, const CPUArchState *env) |
edf8e2af | 3909 | { |
29a0af61 | 3910 | const CPUState *cpu = env_cpu((CPUArchState *)env); |
0429a971 | 3911 | const TaskState *ts = (const TaskState *)cpu->opaque; |
edf8e2af MW |
3912 | struct vm_area_struct *vma = NULL; |
3913 | char corefile[PATH_MAX]; | |
3914 | struct elf_note_info info; | |
3915 | struct elfhdr elf; | |
3916 | struct elf_phdr phdr; | |
3917 | struct rlimit dumpsize; | |
3918 | struct mm_struct *mm = NULL; | |
3919 | off_t offset = 0, data_offset = 0; | |
3920 | int segs = 0; | |
3921 | int fd = -1; | |
3922 | ||
6afafa86 PM |
3923 | init_note_info(&info); |
3924 | ||
edf8e2af MW |
3925 | errno = 0; |
3926 | getrlimit(RLIMIT_CORE, &dumpsize); | |
3927 | if (dumpsize.rlim_cur == 0) | |
d97ef72e | 3928 | return 0; |
edf8e2af MW |
3929 | |
3930 | if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0) | |
3931 | return (-errno); | |
3932 | ||
3933 | if ((fd = open(corefile, O_WRONLY | O_CREAT, | |
d97ef72e | 3934 | S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0) |
edf8e2af MW |
3935 | return (-errno); |
3936 | ||
3937 | /* | |
3938 | * Walk through target process memory mappings and | |
3939 | * set up structure containing this information. After | |
3940 | * this point vma_xxx functions can be used. | |
3941 | */ | |
3942 | if ((mm = vma_init()) == NULL) | |
3943 | goto out; | |
3944 | ||
3945 | walk_memory_regions(mm, vma_walker); | |
3946 | segs = vma_get_mapping_count(mm); | |
3947 | ||
3948 | /* | |
3949 | * Construct valid coredump ELF header. We also | |
3950 | * add one more segment for notes. | |
3951 | */ | |
3952 | fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0); | |
3953 | if (dump_write(fd, &elf, sizeof (elf)) != 0) | |
3954 | goto out; | |
3955 | ||
b6af0975 | 3956 | /* fill in the in-memory version of notes */ |
edf8e2af MW |
3957 | if (fill_note_info(&info, signr, env) < 0) |
3958 | goto out; | |
3959 | ||
3960 | offset += sizeof (elf); /* elf header */ | |
3961 | offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */ | |
3962 | ||
3963 | /* write out notes program header */ | |
3964 | fill_elf_note_phdr(&phdr, info.notes_size, offset); | |
3965 | ||
3966 | offset += info.notes_size; | |
3967 | if (dump_write(fd, &phdr, sizeof (phdr)) != 0) | |
3968 | goto out; | |
3969 | ||
3970 | /* | |
3971 | * ELF specification wants data to start at page boundary so | |
3972 | * we align it here. | |
3973 | */ | |
80f5ce75 | 3974 | data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE); |
edf8e2af MW |
3975 | |
3976 | /* | |
3977 | * Write program headers for memory regions mapped in | |
3978 | * the target process. | |
3979 | */ | |
3980 | for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { | |
3981 | (void) memset(&phdr, 0, sizeof (phdr)); | |
3982 | ||
3983 | phdr.p_type = PT_LOAD; | |
3984 | phdr.p_offset = offset; | |
3985 | phdr.p_vaddr = vma->vma_start; | |
3986 | phdr.p_paddr = 0; | |
3987 | phdr.p_filesz = vma_dump_size(vma); | |
3988 | offset += phdr.p_filesz; | |
3989 | phdr.p_memsz = vma->vma_end - vma->vma_start; | |
3990 | phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0; | |
3991 | if (vma->vma_flags & PROT_WRITE) | |
3992 | phdr.p_flags |= PF_W; | |
3993 | if (vma->vma_flags & PROT_EXEC) | |
3994 | phdr.p_flags |= PF_X; | |
3995 | phdr.p_align = ELF_EXEC_PAGESIZE; | |
3996 | ||
80f5ce75 | 3997 | bswap_phdr(&phdr, 1); |
772034b6 PM |
3998 | if (dump_write(fd, &phdr, sizeof(phdr)) != 0) { |
3999 | goto out; | |
4000 | } | |
edf8e2af MW |
4001 | } |
4002 | ||
4003 | /* | |
4004 | * Next we write notes just after program headers. No | |
4005 | * alignment needed here. | |
4006 | */ | |
4007 | if (write_note_info(&info, fd) < 0) | |
4008 | goto out; | |
4009 | ||
4010 | /* align data to page boundary */ | |
edf8e2af MW |
4011 | if (lseek(fd, data_offset, SEEK_SET) != data_offset) |
4012 | goto out; | |
4013 | ||
4014 | /* | |
4015 | * Finally we can dump process memory into corefile as well. | |
4016 | */ | |
4017 | for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { | |
4018 | abi_ulong addr; | |
4019 | abi_ulong end; | |
4020 | ||
4021 | end = vma->vma_start + vma_dump_size(vma); | |
4022 | ||
4023 | for (addr = vma->vma_start; addr < end; | |
d97ef72e | 4024 | addr += TARGET_PAGE_SIZE) { |
edf8e2af MW |
4025 | char page[TARGET_PAGE_SIZE]; |
4026 | int error; | |
4027 | ||
4028 | /* | |
4029 | * Read in page from target process memory and | |
4030 | * write it to coredump file. | |
4031 | */ | |
4032 | error = copy_from_user(page, addr, sizeof (page)); | |
4033 | if (error != 0) { | |
49995e17 | 4034 | (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n", |
d97ef72e | 4035 | addr); |
edf8e2af MW |
4036 | errno = -error; |
4037 | goto out; | |
4038 | } | |
4039 | if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0) | |
4040 | goto out; | |
4041 | } | |
4042 | } | |
4043 | ||
d97ef72e | 4044 | out: |
edf8e2af MW |
4045 | free_note_info(&info); |
4046 | if (mm != NULL) | |
4047 | vma_delete(mm); | |
4048 | (void) close(fd); | |
4049 | ||
4050 | if (errno != 0) | |
4051 | return (-errno); | |
4052 | return (0); | |
4053 | } | |
edf8e2af MW |
4054 | #endif /* USE_ELF_CORE_DUMP */ |
4055 | ||
e5fe0c52 PB |
4056 | void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) |
4057 | { | |
4058 | init_thread(regs, infop); | |
4059 | } |