]>
Commit | Line | Data |
---|---|---|
31e31b8a | 1 | /* This is the Linux kernel elf-loading code, ported into user space */ |
edf8e2af MW |
2 | #include <sys/time.h> |
3 | #include <sys/param.h> | |
31e31b8a FB |
4 | |
5 | #include <stdio.h> | |
6 | #include <sys/types.h> | |
7 | #include <fcntl.h> | |
31e31b8a FB |
8 | #include <errno.h> |
9 | #include <unistd.h> | |
10 | #include <sys/mman.h> | |
edf8e2af | 11 | #include <sys/resource.h> |
31e31b8a FB |
12 | #include <stdlib.h> |
13 | #include <string.h> | |
edf8e2af | 14 | #include <time.h> |
31e31b8a | 15 | |
3ef693a0 | 16 | #include "qemu.h" |
76cad711 | 17 | #include "disas/disas.h" |
31e31b8a | 18 | |
e58ffeb3 | 19 | #ifdef _ARCH_PPC64 |
a6cc84f4 | 20 | #undef ARCH_DLINFO |
21 | #undef ELF_PLATFORM | |
22 | #undef ELF_HWCAP | |
23 | #undef ELF_CLASS | |
24 | #undef ELF_DATA | |
25 | #undef ELF_ARCH | |
26 | #endif | |
27 | ||
edf8e2af MW |
28 | #define ELF_OSABI ELFOSABI_SYSV |
29 | ||
cb33da57 BS |
30 | /* from personality.h */ |
31 | ||
32 | /* | |
33 | * Flags for bug emulation. | |
34 | * | |
35 | * These occupy the top three bytes. | |
36 | */ | |
37 | enum { | |
d97ef72e RH |
38 | ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */ |
39 | FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to | |
40 | descriptors (signal handling) */ | |
41 | MMAP_PAGE_ZERO = 0x0100000, | |
42 | ADDR_COMPAT_LAYOUT = 0x0200000, | |
43 | READ_IMPLIES_EXEC = 0x0400000, | |
44 | ADDR_LIMIT_32BIT = 0x0800000, | |
45 | SHORT_INODE = 0x1000000, | |
46 | WHOLE_SECONDS = 0x2000000, | |
47 | STICKY_TIMEOUTS = 0x4000000, | |
48 | ADDR_LIMIT_3GB = 0x8000000, | |
cb33da57 BS |
49 | }; |
50 | ||
51 | /* | |
52 | * Personality types. | |
53 | * | |
54 | * These go in the low byte. Avoid using the top bit, it will | |
55 | * conflict with error returns. | |
56 | */ | |
57 | enum { | |
d97ef72e RH |
58 | PER_LINUX = 0x0000, |
59 | PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT, | |
60 | PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS, | |
61 | PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, | |
62 | PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE, | |
63 | PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE, | |
64 | PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, | |
65 | PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE, | |
66 | PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS, | |
67 | PER_BSD = 0x0006, | |
68 | PER_SUNOS = 0x0006 | STICKY_TIMEOUTS, | |
69 | PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE, | |
70 | PER_LINUX32 = 0x0008, | |
71 | PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB, | |
72 | PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ | |
73 | PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ | |
74 | PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ | |
75 | PER_RISCOS = 0x000c, | |
76 | PER_SOLARIS = 0x000d | STICKY_TIMEOUTS, | |
77 | PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, | |
78 | PER_OSF4 = 0x000f, /* OSF/1 v4 */ | |
79 | PER_HPUX = 0x0010, | |
80 | PER_MASK = 0x00ff, | |
cb33da57 BS |
81 | }; |
82 | ||
83 | /* | |
84 | * Return the base personality without flags. | |
85 | */ | |
d97ef72e | 86 | #define personality(pers) (pers & PER_MASK) |
cb33da57 | 87 | |
83fb7adf FB |
88 | /* this flag is uneffective under linux too, should be deleted */ |
89 | #ifndef MAP_DENYWRITE | |
90 | #define MAP_DENYWRITE 0 | |
91 | #endif | |
92 | ||
93 | /* should probably go in elf.h */ | |
94 | #ifndef ELIBBAD | |
95 | #define ELIBBAD 80 | |
96 | #endif | |
97 | ||
28490231 RH |
98 | #ifdef TARGET_WORDS_BIGENDIAN |
99 | #define ELF_DATA ELFDATA2MSB | |
100 | #else | |
101 | #define ELF_DATA ELFDATA2LSB | |
102 | #endif | |
103 | ||
a29f998d | 104 | #ifdef TARGET_ABI_MIPSN32 |
d97ef72e | 105 | typedef target_ulong target_elf_greg_t; |
a29f998d PB |
106 | #define tswapreg(ptr) tswapl(ptr) |
107 | #else | |
108 | typedef abi_ulong target_elf_greg_t; | |
109 | #define tswapreg(ptr) tswapal(ptr) | |
110 | #endif | |
111 | ||
21e807fa | 112 | #ifdef USE_UID16 |
1ddd592f PB |
113 | typedef abi_ushort target_uid_t; |
114 | typedef abi_ushort target_gid_t; | |
21e807fa | 115 | #else |
80f5ce75 LV |
116 | typedef target_uint target_uid_t; |
117 | typedef target_uint target_gid_t; | |
21e807fa | 118 | #endif |
80f5ce75 | 119 | typedef target_int target_pid_t; |
21e807fa | 120 | |
30ac07d4 FB |
121 | #ifdef TARGET_I386 |
122 | ||
15338fd7 FB |
123 | #define ELF_PLATFORM get_elf_platform() |
124 | ||
125 | static const char *get_elf_platform(void) | |
126 | { | |
127 | static char elf_platform[] = "i386"; | |
d5975363 | 128 | int family = (thread_env->cpuid_version >> 8) & 0xff; |
15338fd7 FB |
129 | if (family > 6) |
130 | family = 6; | |
131 | if (family >= 3) | |
132 | elf_platform[1] = '0' + family; | |
133 | return elf_platform; | |
134 | } | |
135 | ||
136 | #define ELF_HWCAP get_elf_hwcap() | |
137 | ||
138 | static uint32_t get_elf_hwcap(void) | |
139 | { | |
d97ef72e | 140 | return thread_env->cpuid_features; |
15338fd7 FB |
141 | } |
142 | ||
84409ddb JM |
143 | #ifdef TARGET_X86_64 |
144 | #define ELF_START_MMAP 0x2aaaaab000ULL | |
145 | #define elf_check_arch(x) ( ((x) == ELF_ARCH) ) | |
146 | ||
147 | #define ELF_CLASS ELFCLASS64 | |
84409ddb JM |
148 | #define ELF_ARCH EM_X86_64 |
149 | ||
150 | static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) | |
151 | { | |
152 | regs->rax = 0; | |
153 | regs->rsp = infop->start_stack; | |
154 | regs->rip = infop->entry; | |
155 | } | |
156 | ||
9edc5d79 | 157 | #define ELF_NREG 27 |
c227f099 | 158 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; |
9edc5d79 MW |
159 | |
160 | /* | |
161 | * Note that ELF_NREG should be 29 as there should be place for | |
162 | * TRAPNO and ERR "registers" as well but linux doesn't dump | |
163 | * those. | |
164 | * | |
165 | * See linux kernel: arch/x86/include/asm/elf.h | |
166 | */ | |
05390248 | 167 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) |
9edc5d79 MW |
168 | { |
169 | (*regs)[0] = env->regs[15]; | |
170 | (*regs)[1] = env->regs[14]; | |
171 | (*regs)[2] = env->regs[13]; | |
172 | (*regs)[3] = env->regs[12]; | |
173 | (*regs)[4] = env->regs[R_EBP]; | |
174 | (*regs)[5] = env->regs[R_EBX]; | |
175 | (*regs)[6] = env->regs[11]; | |
176 | (*regs)[7] = env->regs[10]; | |
177 | (*regs)[8] = env->regs[9]; | |
178 | (*regs)[9] = env->regs[8]; | |
179 | (*regs)[10] = env->regs[R_EAX]; | |
180 | (*regs)[11] = env->regs[R_ECX]; | |
181 | (*regs)[12] = env->regs[R_EDX]; | |
182 | (*regs)[13] = env->regs[R_ESI]; | |
183 | (*regs)[14] = env->regs[R_EDI]; | |
184 | (*regs)[15] = env->regs[R_EAX]; /* XXX */ | |
185 | (*regs)[16] = env->eip; | |
186 | (*regs)[17] = env->segs[R_CS].selector & 0xffff; | |
187 | (*regs)[18] = env->eflags; | |
188 | (*regs)[19] = env->regs[R_ESP]; | |
189 | (*regs)[20] = env->segs[R_SS].selector & 0xffff; | |
190 | (*regs)[21] = env->segs[R_FS].selector & 0xffff; | |
191 | (*regs)[22] = env->segs[R_GS].selector & 0xffff; | |
192 | (*regs)[23] = env->segs[R_DS].selector & 0xffff; | |
193 | (*regs)[24] = env->segs[R_ES].selector & 0xffff; | |
194 | (*regs)[25] = env->segs[R_FS].selector & 0xffff; | |
195 | (*regs)[26] = env->segs[R_GS].selector & 0xffff; | |
196 | } | |
197 | ||
84409ddb JM |
198 | #else |
199 | ||
30ac07d4 FB |
200 | #define ELF_START_MMAP 0x80000000 |
201 | ||
30ac07d4 FB |
202 | /* |
203 | * This is used to ensure we don't load something for the wrong architecture. | |
204 | */ | |
205 | #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) | |
206 | ||
207 | /* | |
208 | * These are used to set parameters in the core dumps. | |
209 | */ | |
d97ef72e | 210 | #define ELF_CLASS ELFCLASS32 |
d97ef72e | 211 | #define ELF_ARCH EM_386 |
30ac07d4 | 212 | |
d97ef72e RH |
213 | static inline void init_thread(struct target_pt_regs *regs, |
214 | struct image_info *infop) | |
b346ff46 FB |
215 | { |
216 | regs->esp = infop->start_stack; | |
217 | regs->eip = infop->entry; | |
e5fe0c52 PB |
218 | |
219 | /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program | |
220 | starts %edx contains a pointer to a function which might be | |
221 | registered using `atexit'. This provides a mean for the | |
222 | dynamic linker to call DT_FINI functions for shared libraries | |
223 | that have been loaded before the code runs. | |
224 | ||
225 | A value of 0 tells we have no such handler. */ | |
226 | regs->edx = 0; | |
b346ff46 | 227 | } |
9edc5d79 | 228 | |
9edc5d79 | 229 | #define ELF_NREG 17 |
c227f099 | 230 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; |
9edc5d79 MW |
231 | |
232 | /* | |
233 | * Note that ELF_NREG should be 19 as there should be place for | |
234 | * TRAPNO and ERR "registers" as well but linux doesn't dump | |
235 | * those. | |
236 | * | |
237 | * See linux kernel: arch/x86/include/asm/elf.h | |
238 | */ | |
05390248 | 239 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) |
9edc5d79 MW |
240 | { |
241 | (*regs)[0] = env->regs[R_EBX]; | |
242 | (*regs)[1] = env->regs[R_ECX]; | |
243 | (*regs)[2] = env->regs[R_EDX]; | |
244 | (*regs)[3] = env->regs[R_ESI]; | |
245 | (*regs)[4] = env->regs[R_EDI]; | |
246 | (*regs)[5] = env->regs[R_EBP]; | |
247 | (*regs)[6] = env->regs[R_EAX]; | |
248 | (*regs)[7] = env->segs[R_DS].selector & 0xffff; | |
249 | (*regs)[8] = env->segs[R_ES].selector & 0xffff; | |
250 | (*regs)[9] = env->segs[R_FS].selector & 0xffff; | |
251 | (*regs)[10] = env->segs[R_GS].selector & 0xffff; | |
252 | (*regs)[11] = env->regs[R_EAX]; /* XXX */ | |
253 | (*regs)[12] = env->eip; | |
254 | (*regs)[13] = env->segs[R_CS].selector & 0xffff; | |
255 | (*regs)[14] = env->eflags; | |
256 | (*regs)[15] = env->regs[R_ESP]; | |
257 | (*regs)[16] = env->segs[R_SS].selector & 0xffff; | |
258 | } | |
84409ddb | 259 | #endif |
b346ff46 | 260 | |
9edc5d79 | 261 | #define USE_ELF_CORE_DUMP |
d97ef72e | 262 | #define ELF_EXEC_PAGESIZE 4096 |
b346ff46 FB |
263 | |
264 | #endif | |
265 | ||
266 | #ifdef TARGET_ARM | |
267 | ||
268 | #define ELF_START_MMAP 0x80000000 | |
269 | ||
270 | #define elf_check_arch(x) ( (x) == EM_ARM ) | |
271 | ||
d97ef72e | 272 | #define ELF_CLASS ELFCLASS32 |
d97ef72e | 273 | #define ELF_ARCH EM_ARM |
b346ff46 | 274 | |
d97ef72e RH |
275 | static inline void init_thread(struct target_pt_regs *regs, |
276 | struct image_info *infop) | |
b346ff46 | 277 | { |
992f48a0 | 278 | abi_long stack = infop->start_stack; |
b346ff46 FB |
279 | memset(regs, 0, sizeof(*regs)); |
280 | regs->ARM_cpsr = 0x10; | |
0240ded8 | 281 | if (infop->entry & 1) |
d97ef72e | 282 | regs->ARM_cpsr |= CPSR_T; |
0240ded8 | 283 | regs->ARM_pc = infop->entry & 0xfffffffe; |
b346ff46 | 284 | regs->ARM_sp = infop->start_stack; |
2f619698 FB |
285 | /* FIXME - what to for failure of get_user()? */ |
286 | get_user_ual(regs->ARM_r2, stack + 8); /* envp */ | |
287 | get_user_ual(regs->ARM_r1, stack + 4); /* envp */ | |
a1516e92 | 288 | /* XXX: it seems that r0 is zeroed after ! */ |
e5fe0c52 PB |
289 | regs->ARM_r0 = 0; |
290 | /* For uClinux PIC binaries. */ | |
863cf0b7 | 291 | /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ |
e5fe0c52 | 292 | regs->ARM_r10 = infop->start_data; |
b346ff46 FB |
293 | } |
294 | ||
edf8e2af | 295 | #define ELF_NREG 18 |
c227f099 | 296 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; |
edf8e2af | 297 | |
05390248 | 298 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env) |
edf8e2af | 299 | { |
86cd7b2d PB |
300 | (*regs)[0] = tswapreg(env->regs[0]); |
301 | (*regs)[1] = tswapreg(env->regs[1]); | |
302 | (*regs)[2] = tswapreg(env->regs[2]); | |
303 | (*regs)[3] = tswapreg(env->regs[3]); | |
304 | (*regs)[4] = tswapreg(env->regs[4]); | |
305 | (*regs)[5] = tswapreg(env->regs[5]); | |
306 | (*regs)[6] = tswapreg(env->regs[6]); | |
307 | (*regs)[7] = tswapreg(env->regs[7]); | |
308 | (*regs)[8] = tswapreg(env->regs[8]); | |
309 | (*regs)[9] = tswapreg(env->regs[9]); | |
310 | (*regs)[10] = tswapreg(env->regs[10]); | |
311 | (*regs)[11] = tswapreg(env->regs[11]); | |
312 | (*regs)[12] = tswapreg(env->regs[12]); | |
313 | (*regs)[13] = tswapreg(env->regs[13]); | |
314 | (*regs)[14] = tswapreg(env->regs[14]); | |
315 | (*regs)[15] = tswapreg(env->regs[15]); | |
316 | ||
317 | (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env)); | |
318 | (*regs)[17] = tswapreg(env->regs[0]); /* XXX */ | |
edf8e2af MW |
319 | } |
320 | ||
30ac07d4 | 321 | #define USE_ELF_CORE_DUMP |
d97ef72e | 322 | #define ELF_EXEC_PAGESIZE 4096 |
30ac07d4 | 323 | |
afce2927 FB |
324 | enum |
325 | { | |
d97ef72e RH |
326 | ARM_HWCAP_ARM_SWP = 1 << 0, |
327 | ARM_HWCAP_ARM_HALF = 1 << 1, | |
328 | ARM_HWCAP_ARM_THUMB = 1 << 2, | |
329 | ARM_HWCAP_ARM_26BIT = 1 << 3, | |
330 | ARM_HWCAP_ARM_FAST_MULT = 1 << 4, | |
331 | ARM_HWCAP_ARM_FPA = 1 << 5, | |
332 | ARM_HWCAP_ARM_VFP = 1 << 6, | |
333 | ARM_HWCAP_ARM_EDSP = 1 << 7, | |
334 | ARM_HWCAP_ARM_JAVA = 1 << 8, | |
335 | ARM_HWCAP_ARM_IWMMXT = 1 << 9, | |
336 | ARM_HWCAP_ARM_THUMBEE = 1 << 10, | |
337 | ARM_HWCAP_ARM_NEON = 1 << 11, | |
338 | ARM_HWCAP_ARM_VFPv3 = 1 << 12, | |
339 | ARM_HWCAP_ARM_VFPv3D16 = 1 << 13, | |
afce2927 FB |
340 | }; |
341 | ||
806d1021 MI |
342 | #define TARGET_HAS_VALIDATE_GUEST_SPACE |
343 | /* Return 1 if the proposed guest space is suitable for the guest. | |
344 | * Return 0 if the proposed guest space isn't suitable, but another | |
345 | * address space should be tried. | |
346 | * Return -1 if there is no way the proposed guest space can be | |
347 | * valid regardless of the base. | |
348 | * The guest code may leave a page mapped and populate it if the | |
349 | * address is suitable. | |
350 | */ | |
351 | static int validate_guest_space(unsigned long guest_base, | |
352 | unsigned long guest_size) | |
97cc7560 DDAG |
353 | { |
354 | unsigned long real_start, test_page_addr; | |
355 | ||
356 | /* We need to check that we can force a fault on access to the | |
357 | * commpage at 0xffff0fxx | |
358 | */ | |
359 | test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask); | |
806d1021 MI |
360 | |
361 | /* If the commpage lies within the already allocated guest space, | |
362 | * then there is no way we can allocate it. | |
363 | */ | |
364 | if (test_page_addr >= guest_base | |
365 | && test_page_addr <= (guest_base + guest_size)) { | |
366 | return -1; | |
367 | } | |
368 | ||
97cc7560 DDAG |
369 | /* Note it needs to be writeable to let us initialise it */ |
370 | real_start = (unsigned long) | |
371 | mmap((void *)test_page_addr, qemu_host_page_size, | |
372 | PROT_READ | PROT_WRITE, | |
373 | MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); | |
374 | ||
375 | /* If we can't map it then try another address */ | |
376 | if (real_start == -1ul) { | |
377 | return 0; | |
378 | } | |
379 | ||
380 | if (real_start != test_page_addr) { | |
381 | /* OS didn't put the page where we asked - unmap and reject */ | |
382 | munmap((void *)real_start, qemu_host_page_size); | |
383 | return 0; | |
384 | } | |
385 | ||
386 | /* Leave the page mapped | |
387 | * Populate it (mmap should have left it all 0'd) | |
388 | */ | |
389 | ||
390 | /* Kernel helper versions */ | |
391 | __put_user(5, (uint32_t *)g2h(0xffff0ffcul)); | |
392 | ||
393 | /* Now it's populated make it RO */ | |
394 | if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) { | |
395 | perror("Protecting guest commpage"); | |
396 | exit(-1); | |
397 | } | |
398 | ||
399 | return 1; /* All good */ | |
400 | } | |
401 | ||
adf050b1 BC |
402 | |
403 | #define ELF_HWCAP get_elf_hwcap() | |
404 | ||
405 | static uint32_t get_elf_hwcap(void) | |
406 | { | |
407 | CPUARMState *e = thread_env; | |
408 | uint32_t hwcaps = 0; | |
409 | ||
410 | hwcaps |= ARM_HWCAP_ARM_SWP; | |
411 | hwcaps |= ARM_HWCAP_ARM_HALF; | |
412 | hwcaps |= ARM_HWCAP_ARM_THUMB; | |
413 | hwcaps |= ARM_HWCAP_ARM_FAST_MULT; | |
414 | hwcaps |= ARM_HWCAP_ARM_FPA; | |
415 | ||
416 | /* probe for the extra features */ | |
417 | #define GET_FEATURE(feat, hwcap) \ | |
418 | do {if (arm_feature(e, feat)) { hwcaps |= hwcap; } } while (0) | |
419 | GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP); | |
420 | GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT); | |
421 | GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE); | |
422 | GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON); | |
423 | GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3); | |
424 | GET_FEATURE(ARM_FEATURE_VFP_FP16, ARM_HWCAP_ARM_VFPv3D16); | |
425 | #undef GET_FEATURE | |
426 | ||
427 | return hwcaps; | |
428 | } | |
afce2927 | 429 | |
30ac07d4 FB |
430 | #endif |
431 | ||
d2fbca94 GX |
432 | #ifdef TARGET_UNICORE32 |
433 | ||
434 | #define ELF_START_MMAP 0x80000000 | |
435 | ||
436 | #define elf_check_arch(x) ((x) == EM_UNICORE32) | |
437 | ||
438 | #define ELF_CLASS ELFCLASS32 | |
439 | #define ELF_DATA ELFDATA2LSB | |
440 | #define ELF_ARCH EM_UNICORE32 | |
441 | ||
442 | static inline void init_thread(struct target_pt_regs *regs, | |
443 | struct image_info *infop) | |
444 | { | |
445 | abi_long stack = infop->start_stack; | |
446 | memset(regs, 0, sizeof(*regs)); | |
447 | regs->UC32_REG_asr = 0x10; | |
448 | regs->UC32_REG_pc = infop->entry & 0xfffffffe; | |
449 | regs->UC32_REG_sp = infop->start_stack; | |
450 | /* FIXME - what to for failure of get_user()? */ | |
451 | get_user_ual(regs->UC32_REG_02, stack + 8); /* envp */ | |
452 | get_user_ual(regs->UC32_REG_01, stack + 4); /* envp */ | |
453 | /* XXX: it seems that r0 is zeroed after ! */ | |
454 | regs->UC32_REG_00 = 0; | |
455 | } | |
456 | ||
457 | #define ELF_NREG 34 | |
458 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | |
459 | ||
05390248 | 460 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUUniCore32State *env) |
d2fbca94 GX |
461 | { |
462 | (*regs)[0] = env->regs[0]; | |
463 | (*regs)[1] = env->regs[1]; | |
464 | (*regs)[2] = env->regs[2]; | |
465 | (*regs)[3] = env->regs[3]; | |
466 | (*regs)[4] = env->regs[4]; | |
467 | (*regs)[5] = env->regs[5]; | |
468 | (*regs)[6] = env->regs[6]; | |
469 | (*regs)[7] = env->regs[7]; | |
470 | (*regs)[8] = env->regs[8]; | |
471 | (*regs)[9] = env->regs[9]; | |
472 | (*regs)[10] = env->regs[10]; | |
473 | (*regs)[11] = env->regs[11]; | |
474 | (*regs)[12] = env->regs[12]; | |
475 | (*regs)[13] = env->regs[13]; | |
476 | (*regs)[14] = env->regs[14]; | |
477 | (*regs)[15] = env->regs[15]; | |
478 | (*regs)[16] = env->regs[16]; | |
479 | (*regs)[17] = env->regs[17]; | |
480 | (*regs)[18] = env->regs[18]; | |
481 | (*regs)[19] = env->regs[19]; | |
482 | (*regs)[20] = env->regs[20]; | |
483 | (*regs)[21] = env->regs[21]; | |
484 | (*regs)[22] = env->regs[22]; | |
485 | (*regs)[23] = env->regs[23]; | |
486 | (*regs)[24] = env->regs[24]; | |
487 | (*regs)[25] = env->regs[25]; | |
488 | (*regs)[26] = env->regs[26]; | |
489 | (*regs)[27] = env->regs[27]; | |
490 | (*regs)[28] = env->regs[28]; | |
491 | (*regs)[29] = env->regs[29]; | |
492 | (*regs)[30] = env->regs[30]; | |
493 | (*regs)[31] = env->regs[31]; | |
494 | ||
05390248 | 495 | (*regs)[32] = cpu_asr_read((CPUUniCore32State *)env); |
d2fbca94 GX |
496 | (*regs)[33] = env->regs[0]; /* XXX */ |
497 | } | |
498 | ||
499 | #define USE_ELF_CORE_DUMP | |
500 | #define ELF_EXEC_PAGESIZE 4096 | |
501 | ||
502 | #define ELF_HWCAP (UC32_HWCAP_CMOV | UC32_HWCAP_UCF64) | |
503 | ||
504 | #endif | |
505 | ||
853d6f7a | 506 | #ifdef TARGET_SPARC |
a315a145 | 507 | #ifdef TARGET_SPARC64 |
853d6f7a FB |
508 | |
509 | #define ELF_START_MMAP 0x80000000 | |
cf973e46 AT |
510 | #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ |
511 | | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9) | |
992f48a0 | 512 | #ifndef TARGET_ABI32 |
cb33da57 | 513 | #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS ) |
992f48a0 BS |
514 | #else |
515 | #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC ) | |
516 | #endif | |
853d6f7a | 517 | |
a315a145 | 518 | #define ELF_CLASS ELFCLASS64 |
5ef54116 FB |
519 | #define ELF_ARCH EM_SPARCV9 |
520 | ||
d97ef72e | 521 | #define STACK_BIAS 2047 |
a315a145 | 522 | |
d97ef72e RH |
523 | static inline void init_thread(struct target_pt_regs *regs, |
524 | struct image_info *infop) | |
a315a145 | 525 | { |
992f48a0 | 526 | #ifndef TARGET_ABI32 |
a315a145 | 527 | regs->tstate = 0; |
992f48a0 | 528 | #endif |
a315a145 FB |
529 | regs->pc = infop->entry; |
530 | regs->npc = regs->pc + 4; | |
531 | regs->y = 0; | |
992f48a0 BS |
532 | #ifdef TARGET_ABI32 |
533 | regs->u_regs[14] = infop->start_stack - 16 * 4; | |
534 | #else | |
cb33da57 BS |
535 | if (personality(infop->personality) == PER_LINUX32) |
536 | regs->u_regs[14] = infop->start_stack - 16 * 4; | |
537 | else | |
538 | regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS; | |
992f48a0 | 539 | #endif |
a315a145 FB |
540 | } |
541 | ||
542 | #else | |
543 | #define ELF_START_MMAP 0x80000000 | |
cf973e46 AT |
544 | #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ |
545 | | HWCAP_SPARC_MULDIV) | |
a315a145 FB |
546 | #define elf_check_arch(x) ( (x) == EM_SPARC ) |
547 | ||
853d6f7a | 548 | #define ELF_CLASS ELFCLASS32 |
853d6f7a FB |
549 | #define ELF_ARCH EM_SPARC |
550 | ||
d97ef72e RH |
551 | static inline void init_thread(struct target_pt_regs *regs, |
552 | struct image_info *infop) | |
853d6f7a | 553 | { |
f5155289 FB |
554 | regs->psr = 0; |
555 | regs->pc = infop->entry; | |
556 | regs->npc = regs->pc + 4; | |
557 | regs->y = 0; | |
558 | regs->u_regs[14] = infop->start_stack - 16 * 4; | |
853d6f7a FB |
559 | } |
560 | ||
a315a145 | 561 | #endif |
853d6f7a FB |
562 | #endif |
563 | ||
67867308 FB |
564 | #ifdef TARGET_PPC |
565 | ||
566 | #define ELF_START_MMAP 0x80000000 | |
567 | ||
e85e7c6e | 568 | #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) |
84409ddb JM |
569 | |
570 | #define elf_check_arch(x) ( (x) == EM_PPC64 ) | |
571 | ||
d97ef72e | 572 | #define ELF_CLASS ELFCLASS64 |
84409ddb JM |
573 | |
574 | #else | |
575 | ||
67867308 FB |
576 | #define elf_check_arch(x) ( (x) == EM_PPC ) |
577 | ||
d97ef72e | 578 | #define ELF_CLASS ELFCLASS32 |
84409ddb JM |
579 | |
580 | #endif | |
581 | ||
d97ef72e | 582 | #define ELF_ARCH EM_PPC |
67867308 | 583 | |
df84e4f3 NF |
584 | /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP). |
585 | See arch/powerpc/include/asm/cputable.h. */ | |
586 | enum { | |
3efa9a67 | 587 | QEMU_PPC_FEATURE_32 = 0x80000000, |
588 | QEMU_PPC_FEATURE_64 = 0x40000000, | |
589 | QEMU_PPC_FEATURE_601_INSTR = 0x20000000, | |
590 | QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000, | |
591 | QEMU_PPC_FEATURE_HAS_FPU = 0x08000000, | |
592 | QEMU_PPC_FEATURE_HAS_MMU = 0x04000000, | |
593 | QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000, | |
594 | QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000, | |
595 | QEMU_PPC_FEATURE_HAS_SPE = 0x00800000, | |
596 | QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000, | |
597 | QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000, | |
598 | QEMU_PPC_FEATURE_NO_TB = 0x00100000, | |
599 | QEMU_PPC_FEATURE_POWER4 = 0x00080000, | |
600 | QEMU_PPC_FEATURE_POWER5 = 0x00040000, | |
601 | QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000, | |
602 | QEMU_PPC_FEATURE_CELL = 0x00010000, | |
603 | QEMU_PPC_FEATURE_BOOKE = 0x00008000, | |
604 | QEMU_PPC_FEATURE_SMT = 0x00004000, | |
605 | QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000, | |
606 | QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000, | |
607 | QEMU_PPC_FEATURE_PA6T = 0x00000800, | |
608 | QEMU_PPC_FEATURE_HAS_DFP = 0x00000400, | |
609 | QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200, | |
610 | QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100, | |
611 | QEMU_PPC_FEATURE_HAS_VSX = 0x00000080, | |
612 | QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040, | |
613 | ||
614 | QEMU_PPC_FEATURE_TRUE_LE = 0x00000002, | |
615 | QEMU_PPC_FEATURE_PPC_LE = 0x00000001, | |
df84e4f3 NF |
616 | }; |
617 | ||
618 | #define ELF_HWCAP get_elf_hwcap() | |
619 | ||
620 | static uint32_t get_elf_hwcap(void) | |
621 | { | |
05390248 | 622 | CPUPPCState *e = thread_env; |
df84e4f3 NF |
623 | uint32_t features = 0; |
624 | ||
625 | /* We don't have to be terribly complete here; the high points are | |
626 | Altivec/FP/SPE support. Anything else is just a bonus. */ | |
d97ef72e | 627 | #define GET_FEATURE(flag, feature) \ |
df84e4f3 | 628 | do {if (e->insns_flags & flag) features |= feature; } while(0) |
3efa9a67 | 629 | GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64); |
630 | GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU); | |
631 | GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC); | |
632 | GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE); | |
633 | GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE); | |
634 | GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE); | |
635 | GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE); | |
636 | GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC); | |
df84e4f3 NF |
637 | #undef GET_FEATURE |
638 | ||
639 | return features; | |
640 | } | |
641 | ||
f5155289 FB |
642 | /* |
643 | * The requirements here are: | |
644 | * - keep the final alignment of sp (sp & 0xf) | |
645 | * - make sure the 32-bit value at the first 16 byte aligned position of | |
646 | * AUXV is greater than 16 for glibc compatibility. | |
647 | * AT_IGNOREPPC is used for that. | |
648 | * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, | |
649 | * even if DLINFO_ARCH_ITEMS goes to zero or is undefined. | |
650 | */ | |
0bccf03d | 651 | #define DLINFO_ARCH_ITEMS 5 |
d97ef72e RH |
652 | #define ARCH_DLINFO \ |
653 | do { \ | |
654 | NEW_AUX_ENT(AT_DCACHEBSIZE, 0x20); \ | |
655 | NEW_AUX_ENT(AT_ICACHEBSIZE, 0x20); \ | |
656 | NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \ | |
657 | /* \ | |
658 | * Now handle glibc compatibility. \ | |
659 | */ \ | |
660 | NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ | |
661 | NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ | |
662 | } while (0) | |
f5155289 | 663 | |
67867308 FB |
664 | static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) |
665 | { | |
67867308 | 666 | _regs->gpr[1] = infop->start_stack; |
e85e7c6e | 667 | #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) |
8e78064e RH |
668 | _regs->gpr[2] = ldq_raw(infop->entry + 8) + infop->load_bias; |
669 | infop->entry = ldq_raw(infop->entry) + infop->load_bias; | |
84409ddb | 670 | #endif |
67867308 FB |
671 | _regs->nip = infop->entry; |
672 | } | |
673 | ||
e2f3e741 NF |
674 | /* See linux kernel: arch/powerpc/include/asm/elf.h. */ |
675 | #define ELF_NREG 48 | |
676 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | |
677 | ||
05390248 | 678 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env) |
e2f3e741 NF |
679 | { |
680 | int i; | |
681 | target_ulong ccr = 0; | |
682 | ||
683 | for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { | |
86cd7b2d | 684 | (*regs)[i] = tswapreg(env->gpr[i]); |
e2f3e741 NF |
685 | } |
686 | ||
86cd7b2d PB |
687 | (*regs)[32] = tswapreg(env->nip); |
688 | (*regs)[33] = tswapreg(env->msr); | |
689 | (*regs)[35] = tswapreg(env->ctr); | |
690 | (*regs)[36] = tswapreg(env->lr); | |
691 | (*regs)[37] = tswapreg(env->xer); | |
e2f3e741 NF |
692 | |
693 | for (i = 0; i < ARRAY_SIZE(env->crf); i++) { | |
694 | ccr |= env->crf[i] << (32 - ((i + 1) * 4)); | |
695 | } | |
86cd7b2d | 696 | (*regs)[38] = tswapreg(ccr); |
e2f3e741 NF |
697 | } |
698 | ||
699 | #define USE_ELF_CORE_DUMP | |
d97ef72e | 700 | #define ELF_EXEC_PAGESIZE 4096 |
67867308 FB |
701 | |
702 | #endif | |
703 | ||
048f6b4d FB |
704 | #ifdef TARGET_MIPS |
705 | ||
706 | #define ELF_START_MMAP 0x80000000 | |
707 | ||
708 | #define elf_check_arch(x) ( (x) == EM_MIPS ) | |
709 | ||
388bb21a TS |
710 | #ifdef TARGET_MIPS64 |
711 | #define ELF_CLASS ELFCLASS64 | |
712 | #else | |
048f6b4d | 713 | #define ELF_CLASS ELFCLASS32 |
388bb21a | 714 | #endif |
048f6b4d FB |
715 | #define ELF_ARCH EM_MIPS |
716 | ||
d97ef72e RH |
717 | static inline void init_thread(struct target_pt_regs *regs, |
718 | struct image_info *infop) | |
048f6b4d | 719 | { |
623a930e | 720 | regs->cp0_status = 2 << CP0St_KSU; |
048f6b4d FB |
721 | regs->cp0_epc = infop->entry; |
722 | regs->regs[29] = infop->start_stack; | |
723 | } | |
724 | ||
51e52606 NF |
725 | /* See linux kernel: arch/mips/include/asm/elf.h. */ |
726 | #define ELF_NREG 45 | |
727 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | |
728 | ||
729 | /* See linux kernel: arch/mips/include/asm/reg.h. */ | |
730 | enum { | |
731 | #ifdef TARGET_MIPS64 | |
732 | TARGET_EF_R0 = 0, | |
733 | #else | |
734 | TARGET_EF_R0 = 6, | |
735 | #endif | |
736 | TARGET_EF_R26 = TARGET_EF_R0 + 26, | |
737 | TARGET_EF_R27 = TARGET_EF_R0 + 27, | |
738 | TARGET_EF_LO = TARGET_EF_R0 + 32, | |
739 | TARGET_EF_HI = TARGET_EF_R0 + 33, | |
740 | TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34, | |
741 | TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35, | |
742 | TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36, | |
743 | TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37 | |
744 | }; | |
745 | ||
746 | /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ | |
05390248 | 747 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env) |
51e52606 NF |
748 | { |
749 | int i; | |
750 | ||
751 | for (i = 0; i < TARGET_EF_R0; i++) { | |
752 | (*regs)[i] = 0; | |
753 | } | |
754 | (*regs)[TARGET_EF_R0] = 0; | |
755 | ||
756 | for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) { | |
a29f998d | 757 | (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]); |
51e52606 NF |
758 | } |
759 | ||
760 | (*regs)[TARGET_EF_R26] = 0; | |
761 | (*regs)[TARGET_EF_R27] = 0; | |
a29f998d PB |
762 | (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]); |
763 | (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]); | |
764 | (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC); | |
765 | (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr); | |
766 | (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status); | |
767 | (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause); | |
51e52606 NF |
768 | } |
769 | ||
770 | #define USE_ELF_CORE_DUMP | |
388bb21a TS |
771 | #define ELF_EXEC_PAGESIZE 4096 |
772 | ||
048f6b4d FB |
773 | #endif /* TARGET_MIPS */ |
774 | ||
b779e29e EI |
775 | #ifdef TARGET_MICROBLAZE |
776 | ||
777 | #define ELF_START_MMAP 0x80000000 | |
778 | ||
0d5d4699 | 779 | #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD) |
b779e29e EI |
780 | |
781 | #define ELF_CLASS ELFCLASS32 | |
0d5d4699 | 782 | #define ELF_ARCH EM_MICROBLAZE |
b779e29e | 783 | |
d97ef72e RH |
784 | static inline void init_thread(struct target_pt_regs *regs, |
785 | struct image_info *infop) | |
b779e29e EI |
786 | { |
787 | regs->pc = infop->entry; | |
788 | regs->r1 = infop->start_stack; | |
789 | ||
790 | } | |
791 | ||
b779e29e EI |
792 | #define ELF_EXEC_PAGESIZE 4096 |
793 | ||
e4cbd44d EI |
794 | #define USE_ELF_CORE_DUMP |
795 | #define ELF_NREG 38 | |
796 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | |
797 | ||
798 | /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ | |
05390248 | 799 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env) |
e4cbd44d EI |
800 | { |
801 | int i, pos = 0; | |
802 | ||
803 | for (i = 0; i < 32; i++) { | |
86cd7b2d | 804 | (*regs)[pos++] = tswapreg(env->regs[i]); |
e4cbd44d EI |
805 | } |
806 | ||
807 | for (i = 0; i < 6; i++) { | |
86cd7b2d | 808 | (*regs)[pos++] = tswapreg(env->sregs[i]); |
e4cbd44d EI |
809 | } |
810 | } | |
811 | ||
b779e29e EI |
812 | #endif /* TARGET_MICROBLAZE */ |
813 | ||
d962783e JL |
814 | #ifdef TARGET_OPENRISC |
815 | ||
816 | #define ELF_START_MMAP 0x08000000 | |
817 | ||
818 | #define elf_check_arch(x) ((x) == EM_OPENRISC) | |
819 | ||
820 | #define ELF_ARCH EM_OPENRISC | |
821 | #define ELF_CLASS ELFCLASS32 | |
822 | #define ELF_DATA ELFDATA2MSB | |
823 | ||
824 | static inline void init_thread(struct target_pt_regs *regs, | |
825 | struct image_info *infop) | |
826 | { | |
827 | regs->pc = infop->entry; | |
828 | regs->gpr[1] = infop->start_stack; | |
829 | } | |
830 | ||
831 | #define USE_ELF_CORE_DUMP | |
832 | #define ELF_EXEC_PAGESIZE 8192 | |
833 | ||
834 | /* See linux kernel arch/openrisc/include/asm/elf.h. */ | |
835 | #define ELF_NREG 34 /* gprs and pc, sr */ | |
836 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | |
837 | ||
838 | static void elf_core_copy_regs(target_elf_gregset_t *regs, | |
839 | const CPUOpenRISCState *env) | |
840 | { | |
841 | int i; | |
842 | ||
843 | for (i = 0; i < 32; i++) { | |
86cd7b2d | 844 | (*regs)[i] = tswapreg(env->gpr[i]); |
d962783e JL |
845 | } |
846 | ||
86cd7b2d PB |
847 | (*regs)[32] = tswapreg(env->pc); |
848 | (*regs)[33] = tswapreg(env->sr); | |
d962783e JL |
849 | } |
850 | #define ELF_HWCAP 0 | |
851 | #define ELF_PLATFORM NULL | |
852 | ||
853 | #endif /* TARGET_OPENRISC */ | |
854 | ||
fdf9b3e8 FB |
855 | #ifdef TARGET_SH4 |
856 | ||
857 | #define ELF_START_MMAP 0x80000000 | |
858 | ||
859 | #define elf_check_arch(x) ( (x) == EM_SH ) | |
860 | ||
861 | #define ELF_CLASS ELFCLASS32 | |
fdf9b3e8 FB |
862 | #define ELF_ARCH EM_SH |
863 | ||
d97ef72e RH |
864 | static inline void init_thread(struct target_pt_regs *regs, |
865 | struct image_info *infop) | |
fdf9b3e8 | 866 | { |
d97ef72e RH |
867 | /* Check other registers XXXXX */ |
868 | regs->pc = infop->entry; | |
869 | regs->regs[15] = infop->start_stack; | |
fdf9b3e8 FB |
870 | } |
871 | ||
7631c97e NF |
872 | /* See linux kernel: arch/sh/include/asm/elf.h. */ |
873 | #define ELF_NREG 23 | |
874 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | |
875 | ||
876 | /* See linux kernel: arch/sh/include/asm/ptrace.h. */ | |
877 | enum { | |
878 | TARGET_REG_PC = 16, | |
879 | TARGET_REG_PR = 17, | |
880 | TARGET_REG_SR = 18, | |
881 | TARGET_REG_GBR = 19, | |
882 | TARGET_REG_MACH = 20, | |
883 | TARGET_REG_MACL = 21, | |
884 | TARGET_REG_SYSCALL = 22 | |
885 | }; | |
886 | ||
d97ef72e | 887 | static inline void elf_core_copy_regs(target_elf_gregset_t *regs, |
05390248 | 888 | const CPUSH4State *env) |
7631c97e NF |
889 | { |
890 | int i; | |
891 | ||
892 | for (i = 0; i < 16; i++) { | |
86cd7b2d | 893 | (*regs[i]) = tswapreg(env->gregs[i]); |
7631c97e NF |
894 | } |
895 | ||
86cd7b2d PB |
896 | (*regs)[TARGET_REG_PC] = tswapreg(env->pc); |
897 | (*regs)[TARGET_REG_PR] = tswapreg(env->pr); | |
898 | (*regs)[TARGET_REG_SR] = tswapreg(env->sr); | |
899 | (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr); | |
900 | (*regs)[TARGET_REG_MACH] = tswapreg(env->mach); | |
901 | (*regs)[TARGET_REG_MACL] = tswapreg(env->macl); | |
7631c97e NF |
902 | (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */ |
903 | } | |
904 | ||
905 | #define USE_ELF_CORE_DUMP | |
fdf9b3e8 FB |
906 | #define ELF_EXEC_PAGESIZE 4096 |
907 | ||
908 | #endif | |
909 | ||
48733d19 TS |
910 | #ifdef TARGET_CRIS |
911 | ||
912 | #define ELF_START_MMAP 0x80000000 | |
913 | ||
914 | #define elf_check_arch(x) ( (x) == EM_CRIS ) | |
915 | ||
916 | #define ELF_CLASS ELFCLASS32 | |
48733d19 TS |
917 | #define ELF_ARCH EM_CRIS |
918 | ||
d97ef72e RH |
919 | static inline void init_thread(struct target_pt_regs *regs, |
920 | struct image_info *infop) | |
48733d19 | 921 | { |
d97ef72e | 922 | regs->erp = infop->entry; |
48733d19 TS |
923 | } |
924 | ||
48733d19 TS |
925 | #define ELF_EXEC_PAGESIZE 8192 |
926 | ||
927 | #endif | |
928 | ||
e6e5906b PB |
929 | #ifdef TARGET_M68K |
930 | ||
931 | #define ELF_START_MMAP 0x80000000 | |
932 | ||
933 | #define elf_check_arch(x) ( (x) == EM_68K ) | |
934 | ||
d97ef72e | 935 | #define ELF_CLASS ELFCLASS32 |
d97ef72e | 936 | #define ELF_ARCH EM_68K |
e6e5906b PB |
937 | |
938 | /* ??? Does this need to do anything? | |
d97ef72e | 939 | #define ELF_PLAT_INIT(_r) */ |
e6e5906b | 940 | |
d97ef72e RH |
941 | static inline void init_thread(struct target_pt_regs *regs, |
942 | struct image_info *infop) | |
e6e5906b PB |
943 | { |
944 | regs->usp = infop->start_stack; | |
945 | regs->sr = 0; | |
946 | regs->pc = infop->entry; | |
947 | } | |
948 | ||
7a93cc55 NF |
949 | /* See linux kernel: arch/m68k/include/asm/elf.h. */ |
950 | #define ELF_NREG 20 | |
951 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | |
952 | ||
05390248 | 953 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env) |
7a93cc55 | 954 | { |
86cd7b2d PB |
955 | (*regs)[0] = tswapreg(env->dregs[1]); |
956 | (*regs)[1] = tswapreg(env->dregs[2]); | |
957 | (*regs)[2] = tswapreg(env->dregs[3]); | |
958 | (*regs)[3] = tswapreg(env->dregs[4]); | |
959 | (*regs)[4] = tswapreg(env->dregs[5]); | |
960 | (*regs)[5] = tswapreg(env->dregs[6]); | |
961 | (*regs)[6] = tswapreg(env->dregs[7]); | |
962 | (*regs)[7] = tswapreg(env->aregs[0]); | |
963 | (*regs)[8] = tswapreg(env->aregs[1]); | |
964 | (*regs)[9] = tswapreg(env->aregs[2]); | |
965 | (*regs)[10] = tswapreg(env->aregs[3]); | |
966 | (*regs)[11] = tswapreg(env->aregs[4]); | |
967 | (*regs)[12] = tswapreg(env->aregs[5]); | |
968 | (*regs)[13] = tswapreg(env->aregs[6]); | |
969 | (*regs)[14] = tswapreg(env->dregs[0]); | |
970 | (*regs)[15] = tswapreg(env->aregs[7]); | |
971 | (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */ | |
972 | (*regs)[17] = tswapreg(env->sr); | |
973 | (*regs)[18] = tswapreg(env->pc); | |
7a93cc55 NF |
974 | (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */ |
975 | } | |
976 | ||
977 | #define USE_ELF_CORE_DUMP | |
d97ef72e | 978 | #define ELF_EXEC_PAGESIZE 8192 |
e6e5906b PB |
979 | |
980 | #endif | |
981 | ||
7a3148a9 JM |
982 | #ifdef TARGET_ALPHA |
983 | ||
984 | #define ELF_START_MMAP (0x30000000000ULL) | |
985 | ||
986 | #define elf_check_arch(x) ( (x) == ELF_ARCH ) | |
987 | ||
988 | #define ELF_CLASS ELFCLASS64 | |
7a3148a9 JM |
989 | #define ELF_ARCH EM_ALPHA |
990 | ||
d97ef72e RH |
991 | static inline void init_thread(struct target_pt_regs *regs, |
992 | struct image_info *infop) | |
7a3148a9 JM |
993 | { |
994 | regs->pc = infop->entry; | |
995 | regs->ps = 8; | |
996 | regs->usp = infop->start_stack; | |
7a3148a9 JM |
997 | } |
998 | ||
7a3148a9 JM |
999 | #define ELF_EXEC_PAGESIZE 8192 |
1000 | ||
1001 | #endif /* TARGET_ALPHA */ | |
1002 | ||
a4c075f1 UH |
1003 | #ifdef TARGET_S390X |
1004 | ||
1005 | #define ELF_START_MMAP (0x20000000000ULL) | |
1006 | ||
1007 | #define elf_check_arch(x) ( (x) == ELF_ARCH ) | |
1008 | ||
1009 | #define ELF_CLASS ELFCLASS64 | |
1010 | #define ELF_DATA ELFDATA2MSB | |
1011 | #define ELF_ARCH EM_S390 | |
1012 | ||
1013 | static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) | |
1014 | { | |
1015 | regs->psw.addr = infop->entry; | |
1016 | regs->psw.mask = PSW_MASK_64 | PSW_MASK_32; | |
1017 | regs->gprs[15] = infop->start_stack; | |
1018 | } | |
1019 | ||
1020 | #endif /* TARGET_S390X */ | |
1021 | ||
15338fd7 FB |
1022 | #ifndef ELF_PLATFORM |
1023 | #define ELF_PLATFORM (NULL) | |
1024 | #endif | |
1025 | ||
1026 | #ifndef ELF_HWCAP | |
1027 | #define ELF_HWCAP 0 | |
1028 | #endif | |
1029 | ||
992f48a0 | 1030 | #ifdef TARGET_ABI32 |
cb33da57 | 1031 | #undef ELF_CLASS |
992f48a0 | 1032 | #define ELF_CLASS ELFCLASS32 |
cb33da57 BS |
1033 | #undef bswaptls |
1034 | #define bswaptls(ptr) bswap32s(ptr) | |
1035 | #endif | |
1036 | ||
31e31b8a | 1037 | #include "elf.h" |
09bfb054 | 1038 | |
09bfb054 FB |
1039 | struct exec |
1040 | { | |
d97ef72e RH |
1041 | unsigned int a_info; /* Use macros N_MAGIC, etc for access */ |
1042 | unsigned int a_text; /* length of text, in bytes */ | |
1043 | unsigned int a_data; /* length of data, in bytes */ | |
1044 | unsigned int a_bss; /* length of uninitialized data area, in bytes */ | |
1045 | unsigned int a_syms; /* length of symbol table data in file, in bytes */ | |
1046 | unsigned int a_entry; /* start address */ | |
1047 | unsigned int a_trsize; /* length of relocation info for text, in bytes */ | |
1048 | unsigned int a_drsize; /* length of relocation info for data, in bytes */ | |
09bfb054 FB |
1049 | }; |
1050 | ||
1051 | ||
1052 | #define N_MAGIC(exec) ((exec).a_info & 0xffff) | |
1053 | #define OMAGIC 0407 | |
1054 | #define NMAGIC 0410 | |
1055 | #define ZMAGIC 0413 | |
1056 | #define QMAGIC 0314 | |
1057 | ||
31e31b8a | 1058 | /* Necessary parameters */ |
54936004 FB |
1059 | #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE |
1060 | #define TARGET_ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(TARGET_ELF_EXEC_PAGESIZE-1)) | |
1061 | #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1)) | |
31e31b8a | 1062 | |
14322bad | 1063 | #define DLINFO_ITEMS 13 |
31e31b8a | 1064 | |
09bfb054 FB |
1065 | static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) |
1066 | { | |
d97ef72e | 1067 | memcpy(to, from, n); |
09bfb054 | 1068 | } |
d691f669 | 1069 | |
31e31b8a | 1070 | #ifdef BSWAP_NEEDED |
92a31b1f | 1071 | static void bswap_ehdr(struct elfhdr *ehdr) |
31e31b8a | 1072 | { |
d97ef72e RH |
1073 | bswap16s(&ehdr->e_type); /* Object file type */ |
1074 | bswap16s(&ehdr->e_machine); /* Architecture */ | |
1075 | bswap32s(&ehdr->e_version); /* Object file version */ | |
1076 | bswaptls(&ehdr->e_entry); /* Entry point virtual address */ | |
1077 | bswaptls(&ehdr->e_phoff); /* Program header table file offset */ | |
1078 | bswaptls(&ehdr->e_shoff); /* Section header table file offset */ | |
1079 | bswap32s(&ehdr->e_flags); /* Processor-specific flags */ | |
1080 | bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ | |
1081 | bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ | |
1082 | bswap16s(&ehdr->e_phnum); /* Program header table entry count */ | |
1083 | bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ | |
1084 | bswap16s(&ehdr->e_shnum); /* Section header table entry count */ | |
1085 | bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ | |
31e31b8a FB |
1086 | } |
1087 | ||
991f8f0c | 1088 | static void bswap_phdr(struct elf_phdr *phdr, int phnum) |
31e31b8a | 1089 | { |
991f8f0c RH |
1090 | int i; |
1091 | for (i = 0; i < phnum; ++i, ++phdr) { | |
1092 | bswap32s(&phdr->p_type); /* Segment type */ | |
1093 | bswap32s(&phdr->p_flags); /* Segment flags */ | |
1094 | bswaptls(&phdr->p_offset); /* Segment file offset */ | |
1095 | bswaptls(&phdr->p_vaddr); /* Segment virtual address */ | |
1096 | bswaptls(&phdr->p_paddr); /* Segment physical address */ | |
1097 | bswaptls(&phdr->p_filesz); /* Segment size in file */ | |
1098 | bswaptls(&phdr->p_memsz); /* Segment size in memory */ | |
1099 | bswaptls(&phdr->p_align); /* Segment alignment */ | |
1100 | } | |
31e31b8a | 1101 | } |
689f936f | 1102 | |
991f8f0c | 1103 | static void bswap_shdr(struct elf_shdr *shdr, int shnum) |
689f936f | 1104 | { |
991f8f0c RH |
1105 | int i; |
1106 | for (i = 0; i < shnum; ++i, ++shdr) { | |
1107 | bswap32s(&shdr->sh_name); | |
1108 | bswap32s(&shdr->sh_type); | |
1109 | bswaptls(&shdr->sh_flags); | |
1110 | bswaptls(&shdr->sh_addr); | |
1111 | bswaptls(&shdr->sh_offset); | |
1112 | bswaptls(&shdr->sh_size); | |
1113 | bswap32s(&shdr->sh_link); | |
1114 | bswap32s(&shdr->sh_info); | |
1115 | bswaptls(&shdr->sh_addralign); | |
1116 | bswaptls(&shdr->sh_entsize); | |
1117 | } | |
689f936f FB |
1118 | } |
1119 | ||
7a3148a9 | 1120 | static void bswap_sym(struct elf_sym *sym) |
689f936f FB |
1121 | { |
1122 | bswap32s(&sym->st_name); | |
7a3148a9 JM |
1123 | bswaptls(&sym->st_value); |
1124 | bswaptls(&sym->st_size); | |
689f936f FB |
1125 | bswap16s(&sym->st_shndx); |
1126 | } | |
991f8f0c RH |
1127 | #else |
1128 | static inline void bswap_ehdr(struct elfhdr *ehdr) { } | |
1129 | static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { } | |
1130 | static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { } | |
1131 | static inline void bswap_sym(struct elf_sym *sym) { } | |
31e31b8a FB |
1132 | #endif |
1133 | ||
edf8e2af | 1134 | #ifdef USE_ELF_CORE_DUMP |
9349b4f9 | 1135 | static int elf_core_dump(int, const CPUArchState *); |
edf8e2af | 1136 | #endif /* USE_ELF_CORE_DUMP */ |
682674b8 | 1137 | static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias); |
edf8e2af | 1138 | |
9058abdd RH |
1139 | /* Verify the portions of EHDR within E_IDENT for the target. |
1140 | This can be performed before bswapping the entire header. */ | |
1141 | static bool elf_check_ident(struct elfhdr *ehdr) | |
1142 | { | |
1143 | return (ehdr->e_ident[EI_MAG0] == ELFMAG0 | |
1144 | && ehdr->e_ident[EI_MAG1] == ELFMAG1 | |
1145 | && ehdr->e_ident[EI_MAG2] == ELFMAG2 | |
1146 | && ehdr->e_ident[EI_MAG3] == ELFMAG3 | |
1147 | && ehdr->e_ident[EI_CLASS] == ELF_CLASS | |
1148 | && ehdr->e_ident[EI_DATA] == ELF_DATA | |
1149 | && ehdr->e_ident[EI_VERSION] == EV_CURRENT); | |
1150 | } | |
1151 | ||
1152 | /* Verify the portions of EHDR outside of E_IDENT for the target. | |
1153 | This has to wait until after bswapping the header. */ | |
1154 | static bool elf_check_ehdr(struct elfhdr *ehdr) | |
1155 | { | |
1156 | return (elf_check_arch(ehdr->e_machine) | |
1157 | && ehdr->e_ehsize == sizeof(struct elfhdr) | |
1158 | && ehdr->e_phentsize == sizeof(struct elf_phdr) | |
1159 | && ehdr->e_shentsize == sizeof(struct elf_shdr) | |
1160 | && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN)); | |
1161 | } | |
1162 | ||
31e31b8a | 1163 | /* |
e5fe0c52 | 1164 | * 'copy_elf_strings()' copies argument/envelope strings from user |
31e31b8a FB |
1165 | * memory to free pages in kernel mem. These are in a format ready |
1166 | * to be put directly into the top of new user memory. | |
1167 | * | |
1168 | */ | |
992f48a0 BS |
1169 | static abi_ulong copy_elf_strings(int argc,char ** argv, void **page, |
1170 | abi_ulong p) | |
31e31b8a FB |
1171 | { |
1172 | char *tmp, *tmp1, *pag = NULL; | |
1173 | int len, offset = 0; | |
1174 | ||
1175 | if (!p) { | |
d97ef72e | 1176 | return 0; /* bullet-proofing */ |
31e31b8a FB |
1177 | } |
1178 | while (argc-- > 0) { | |
edf779ff FB |
1179 | tmp = argv[argc]; |
1180 | if (!tmp) { | |
d97ef72e RH |
1181 | fprintf(stderr, "VFS: argc is wrong"); |
1182 | exit(-1); | |
1183 | } | |
edf779ff | 1184 | tmp1 = tmp; |
d97ef72e RH |
1185 | while (*tmp++); |
1186 | len = tmp - tmp1; | |
1187 | if (p < len) { /* this shouldn't happen - 128kB */ | |
1188 | return 0; | |
1189 | } | |
1190 | while (len) { | |
1191 | --p; --tmp; --len; | |
1192 | if (--offset < 0) { | |
1193 | offset = p % TARGET_PAGE_SIZE; | |
53a5960a | 1194 | pag = (char *)page[p/TARGET_PAGE_SIZE]; |
44a91cae | 1195 | if (!pag) { |
7dd47667 | 1196 | pag = g_try_malloc0(TARGET_PAGE_SIZE); |
53a5960a | 1197 | page[p/TARGET_PAGE_SIZE] = pag; |
44a91cae FB |
1198 | if (!pag) |
1199 | return 0; | |
d97ef72e RH |
1200 | } |
1201 | } | |
1202 | if (len == 0 || offset == 0) { | |
1203 | *(pag + offset) = *tmp; | |
1204 | } | |
1205 | else { | |
1206 | int bytes_to_copy = (len > offset) ? offset : len; | |
1207 | tmp -= bytes_to_copy; | |
1208 | p -= bytes_to_copy; | |
1209 | offset -= bytes_to_copy; | |
1210 | len -= bytes_to_copy; | |
1211 | memcpy_fromfs(pag + offset, tmp, bytes_to_copy + 1); | |
1212 | } | |
1213 | } | |
31e31b8a FB |
1214 | } |
1215 | return p; | |
1216 | } | |
1217 | ||
992f48a0 BS |
1218 | static abi_ulong setup_arg_pages(abi_ulong p, struct linux_binprm *bprm, |
1219 | struct image_info *info) | |
53a5960a | 1220 | { |
60dcbcb5 | 1221 | abi_ulong stack_base, size, error, guard; |
31e31b8a | 1222 | int i; |
31e31b8a | 1223 | |
09bfb054 | 1224 | /* Create enough stack to hold everything. If we don't use |
60dcbcb5 | 1225 | it for args, we'll use it for something else. */ |
703e0e89 | 1226 | size = guest_stack_size; |
60dcbcb5 | 1227 | if (size < MAX_ARG_PAGES*TARGET_PAGE_SIZE) { |
54936004 | 1228 | size = MAX_ARG_PAGES*TARGET_PAGE_SIZE; |
60dcbcb5 RH |
1229 | } |
1230 | guard = TARGET_PAGE_SIZE; | |
1231 | if (guard < qemu_real_host_page_size) { | |
1232 | guard = qemu_real_host_page_size; | |
1233 | } | |
1234 | ||
1235 | error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE, | |
1236 | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); | |
09bfb054 | 1237 | if (error == -1) { |
60dcbcb5 | 1238 | perror("mmap stack"); |
09bfb054 FB |
1239 | exit(-1); |
1240 | } | |
31e31b8a | 1241 | |
60dcbcb5 RH |
1242 | /* We reserve one extra page at the top of the stack as guard. */ |
1243 | target_mprotect(error, guard, PROT_NONE); | |
1244 | ||
1245 | info->stack_limit = error + guard; | |
1246 | stack_base = info->stack_limit + size - MAX_ARG_PAGES*TARGET_PAGE_SIZE; | |
31e31b8a | 1247 | p += stack_base; |
09bfb054 | 1248 | |
31e31b8a | 1249 | for (i = 0 ; i < MAX_ARG_PAGES ; i++) { |
d97ef72e RH |
1250 | if (bprm->page[i]) { |
1251 | info->rss++; | |
579a97f7 | 1252 | /* FIXME - check return value of memcpy_to_target() for failure */ |
d97ef72e | 1253 | memcpy_to_target(stack_base, bprm->page[i], TARGET_PAGE_SIZE); |
7dd47667 | 1254 | g_free(bprm->page[i]); |
d97ef72e | 1255 | } |
53a5960a | 1256 | stack_base += TARGET_PAGE_SIZE; |
31e31b8a FB |
1257 | } |
1258 | return p; | |
1259 | } | |
1260 | ||
cf129f3a RH |
1261 | /* Map and zero the bss. We need to explicitly zero any fractional pages |
1262 | after the data section (i.e. bss). */ | |
1263 | static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot) | |
31e31b8a | 1264 | { |
cf129f3a RH |
1265 | uintptr_t host_start, host_map_start, host_end; |
1266 | ||
1267 | last_bss = TARGET_PAGE_ALIGN(last_bss); | |
1268 | ||
1269 | /* ??? There is confusion between qemu_real_host_page_size and | |
1270 | qemu_host_page_size here and elsewhere in target_mmap, which | |
1271 | may lead to the end of the data section mapping from the file | |
1272 | not being mapped. At least there was an explicit test and | |
1273 | comment for that here, suggesting that "the file size must | |
1274 | be known". The comment probably pre-dates the introduction | |
1275 | of the fstat system call in target_mmap which does in fact | |
1276 | find out the size. What isn't clear is if the workaround | |
1277 | here is still actually needed. For now, continue with it, | |
1278 | but merge it with the "normal" mmap that would allocate the bss. */ | |
1279 | ||
1280 | host_start = (uintptr_t) g2h(elf_bss); | |
1281 | host_end = (uintptr_t) g2h(last_bss); | |
1282 | host_map_start = (host_start + qemu_real_host_page_size - 1); | |
1283 | host_map_start &= -qemu_real_host_page_size; | |
1284 | ||
1285 | if (host_map_start < host_end) { | |
1286 | void *p = mmap((void *)host_map_start, host_end - host_map_start, | |
1287 | prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); | |
1288 | if (p == MAP_FAILED) { | |
1289 | perror("cannot mmap brk"); | |
1290 | exit(-1); | |
853d6f7a FB |
1291 | } |
1292 | ||
cf129f3a RH |
1293 | /* Since we didn't use target_mmap, make sure to record |
1294 | the validity of the pages with qemu. */ | |
1295 | page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot|PAGE_VALID); | |
1296 | } | |
31e31b8a | 1297 | |
cf129f3a RH |
1298 | if (host_start < host_map_start) { |
1299 | memset((void *)host_start, 0, host_map_start - host_start); | |
1300 | } | |
1301 | } | |
53a5960a | 1302 | |
1af02e83 MF |
1303 | #ifdef CONFIG_USE_FDPIC |
1304 | static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp) | |
1305 | { | |
1306 | uint16_t n; | |
1307 | struct elf32_fdpic_loadseg *loadsegs = info->loadsegs; | |
1308 | ||
1309 | /* elf32_fdpic_loadseg */ | |
1310 | n = info->nsegs; | |
1311 | while (n--) { | |
1312 | sp -= 12; | |
1313 | put_user_u32(loadsegs[n].addr, sp+0); | |
1314 | put_user_u32(loadsegs[n].p_vaddr, sp+4); | |
1315 | put_user_u32(loadsegs[n].p_memsz, sp+8); | |
1316 | } | |
1317 | ||
1318 | /* elf32_fdpic_loadmap */ | |
1319 | sp -= 4; | |
1320 | put_user_u16(0, sp+0); /* version */ | |
1321 | put_user_u16(info->nsegs, sp+2); /* nsegs */ | |
1322 | ||
1323 | info->personality = PER_LINUX_FDPIC; | |
1324 | info->loadmap_addr = sp; | |
1325 | ||
1326 | return sp; | |
1327 | } | |
1328 | #endif | |
1329 | ||
992f48a0 | 1330 | static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, |
8e62a717 RH |
1331 | struct elfhdr *exec, |
1332 | struct image_info *info, | |
1333 | struct image_info *interp_info) | |
31e31b8a | 1334 | { |
d97ef72e | 1335 | abi_ulong sp; |
125b0f55 | 1336 | abi_ulong sp_auxv; |
d97ef72e | 1337 | int size; |
14322bad LA |
1338 | int i; |
1339 | abi_ulong u_rand_bytes; | |
1340 | uint8_t k_rand_bytes[16]; | |
d97ef72e RH |
1341 | abi_ulong u_platform; |
1342 | const char *k_platform; | |
1343 | const int n = sizeof(elf_addr_t); | |
1344 | ||
1345 | sp = p; | |
1af02e83 MF |
1346 | |
1347 | #ifdef CONFIG_USE_FDPIC | |
1348 | /* Needs to be before we load the env/argc/... */ | |
1349 | if (elf_is_fdpic(exec)) { | |
1350 | /* Need 4 byte alignment for these structs */ | |
1351 | sp &= ~3; | |
1352 | sp = loader_build_fdpic_loadmap(info, sp); | |
1353 | info->other_info = interp_info; | |
1354 | if (interp_info) { | |
1355 | interp_info->other_info = info; | |
1356 | sp = loader_build_fdpic_loadmap(interp_info, sp); | |
1357 | } | |
1358 | } | |
1359 | #endif | |
1360 | ||
d97ef72e RH |
1361 | u_platform = 0; |
1362 | k_platform = ELF_PLATFORM; | |
1363 | if (k_platform) { | |
1364 | size_t len = strlen(k_platform) + 1; | |
1365 | sp -= (len + n - 1) & ~(n - 1); | |
1366 | u_platform = sp; | |
1367 | /* FIXME - check return value of memcpy_to_target() for failure */ | |
1368 | memcpy_to_target(sp, k_platform, len); | |
1369 | } | |
14322bad LA |
1370 | |
1371 | /* | |
1372 | * Generate 16 random bytes for userspace PRNG seeding (not | |
1373 | * cryptically secure but it's not the aim of QEMU). | |
1374 | */ | |
1375 | srand((unsigned int) time(NULL)); | |
1376 | for (i = 0; i < 16; i++) { | |
1377 | k_rand_bytes[i] = rand(); | |
1378 | } | |
1379 | sp -= 16; | |
1380 | u_rand_bytes = sp; | |
1381 | /* FIXME - check return value of memcpy_to_target() for failure */ | |
1382 | memcpy_to_target(sp, k_rand_bytes, 16); | |
1383 | ||
d97ef72e RH |
1384 | /* |
1385 | * Force 16 byte _final_ alignment here for generality. | |
1386 | */ | |
1387 | sp = sp &~ (abi_ulong)15; | |
1388 | size = (DLINFO_ITEMS + 1) * 2; | |
1389 | if (k_platform) | |
1390 | size += 2; | |
f5155289 | 1391 | #ifdef DLINFO_ARCH_ITEMS |
d97ef72e | 1392 | size += DLINFO_ARCH_ITEMS * 2; |
f5155289 | 1393 | #endif |
d97ef72e | 1394 | size += envc + argc + 2; |
b9329d4b | 1395 | size += 1; /* argc itself */ |
d97ef72e RH |
1396 | size *= n; |
1397 | if (size & 15) | |
1398 | sp -= 16 - (size & 15); | |
1399 | ||
1400 | /* This is correct because Linux defines | |
1401 | * elf_addr_t as Elf32_Off / Elf64_Off | |
1402 | */ | |
1403 | #define NEW_AUX_ENT(id, val) do { \ | |
1404 | sp -= n; put_user_ual(val, sp); \ | |
1405 | sp -= n; put_user_ual(id, sp); \ | |
1406 | } while(0) | |
1407 | ||
125b0f55 | 1408 | sp_auxv = sp; |
d97ef72e RH |
1409 | NEW_AUX_ENT (AT_NULL, 0); |
1410 | ||
1411 | /* There must be exactly DLINFO_ITEMS entries here. */ | |
8e62a717 | 1412 | NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff)); |
d97ef72e RH |
1413 | NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr))); |
1414 | NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum)); | |
1415 | NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE)); | |
8e62a717 | 1416 | NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0)); |
d97ef72e | 1417 | NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0); |
8e62a717 | 1418 | NEW_AUX_ENT(AT_ENTRY, info->entry); |
d97ef72e RH |
1419 | NEW_AUX_ENT(AT_UID, (abi_ulong) getuid()); |
1420 | NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid()); | |
1421 | NEW_AUX_ENT(AT_GID, (abi_ulong) getgid()); | |
1422 | NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid()); | |
1423 | NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP); | |
1424 | NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK)); | |
14322bad LA |
1425 | NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes); |
1426 | ||
d97ef72e RH |
1427 | if (k_platform) |
1428 | NEW_AUX_ENT(AT_PLATFORM, u_platform); | |
f5155289 | 1429 | #ifdef ARCH_DLINFO |
d97ef72e RH |
1430 | /* |
1431 | * ARCH_DLINFO must come last so platform specific code can enforce | |
1432 | * special alignment requirements on the AUXV if necessary (eg. PPC). | |
1433 | */ | |
1434 | ARCH_DLINFO; | |
f5155289 FB |
1435 | #endif |
1436 | #undef NEW_AUX_ENT | |
1437 | ||
d97ef72e | 1438 | info->saved_auxv = sp; |
125b0f55 | 1439 | info->auxv_len = sp_auxv - sp; |
edf8e2af | 1440 | |
b9329d4b | 1441 | sp = loader_build_argptr(envc, argc, sp, p, 0); |
d97ef72e | 1442 | return sp; |
31e31b8a FB |
1443 | } |
1444 | ||
806d1021 | 1445 | #ifndef TARGET_HAS_VALIDATE_GUEST_SPACE |
97cc7560 | 1446 | /* If the guest doesn't have a validation function just agree */ |
806d1021 MI |
1447 | static int validate_guest_space(unsigned long guest_base, |
1448 | unsigned long guest_size) | |
97cc7560 DDAG |
1449 | { |
1450 | return 1; | |
1451 | } | |
1452 | #endif | |
1453 | ||
dce10401 MI |
1454 | unsigned long init_guest_space(unsigned long host_start, |
1455 | unsigned long host_size, | |
1456 | unsigned long guest_start, | |
1457 | bool fixed) | |
1458 | { | |
1459 | unsigned long current_start, real_start; | |
1460 | int flags; | |
1461 | ||
1462 | assert(host_start || host_size); | |
1463 | ||
1464 | /* If just a starting address is given, then just verify that | |
1465 | * address. */ | |
1466 | if (host_start && !host_size) { | |
806d1021 | 1467 | if (validate_guest_space(host_start, host_size) == 1) { |
dce10401 MI |
1468 | return host_start; |
1469 | } else { | |
1470 | return (unsigned long)-1; | |
1471 | } | |
1472 | } | |
1473 | ||
1474 | /* Setup the initial flags and start address. */ | |
1475 | current_start = host_start & qemu_host_page_mask; | |
1476 | flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; | |
1477 | if (fixed) { | |
1478 | flags |= MAP_FIXED; | |
1479 | } | |
1480 | ||
1481 | /* Otherwise, a non-zero size region of memory needs to be mapped | |
1482 | * and validated. */ | |
1483 | while (1) { | |
806d1021 MI |
1484 | unsigned long real_size = host_size; |
1485 | ||
dce10401 MI |
1486 | /* Do not use mmap_find_vma here because that is limited to the |
1487 | * guest address space. We are going to make the | |
1488 | * guest address space fit whatever we're given. | |
1489 | */ | |
1490 | real_start = (unsigned long) | |
1491 | mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0); | |
1492 | if (real_start == (unsigned long)-1) { | |
1493 | return (unsigned long)-1; | |
1494 | } | |
1495 | ||
806d1021 MI |
1496 | /* Ensure the address is properly aligned. */ |
1497 | if (real_start & ~qemu_host_page_mask) { | |
1498 | munmap((void *)real_start, host_size); | |
1499 | real_size = host_size + qemu_host_page_size; | |
1500 | real_start = (unsigned long) | |
1501 | mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0); | |
1502 | if (real_start == (unsigned long)-1) { | |
1503 | return (unsigned long)-1; | |
1504 | } | |
1505 | real_start = HOST_PAGE_ALIGN(real_start); | |
1506 | } | |
1507 | ||
1508 | /* Check to see if the address is valid. */ | |
1509 | if (!host_start || real_start == current_start) { | |
1510 | int valid = validate_guest_space(real_start - guest_start, | |
1511 | real_size); | |
1512 | if (valid == 1) { | |
1513 | break; | |
1514 | } else if (valid == -1) { | |
1515 | return (unsigned long)-1; | |
1516 | } | |
1517 | /* valid == 0, so try again. */ | |
dce10401 MI |
1518 | } |
1519 | ||
1520 | /* That address didn't work. Unmap and try a different one. | |
1521 | * The address the host picked because is typically right at | |
1522 | * the top of the host address space and leaves the guest with | |
1523 | * no usable address space. Resort to a linear search. We | |
1524 | * already compensated for mmap_min_addr, so this should not | |
1525 | * happen often. Probably means we got unlucky and host | |
1526 | * address space randomization put a shared library somewhere | |
1527 | * inconvenient. | |
1528 | */ | |
1529 | munmap((void *)real_start, host_size); | |
1530 | current_start += qemu_host_page_size; | |
1531 | if (host_start == current_start) { | |
1532 | /* Theoretically possible if host doesn't have any suitably | |
1533 | * aligned areas. Normally the first mmap will fail. | |
1534 | */ | |
1535 | return (unsigned long)-1; | |
1536 | } | |
1537 | } | |
1538 | ||
806d1021 MI |
1539 | qemu_log("Reserved 0x%lx bytes of guest address space\n", host_size); |
1540 | ||
dce10401 MI |
1541 | return real_start; |
1542 | } | |
1543 | ||
f3ed1f5d PM |
1544 | static void probe_guest_base(const char *image_name, |
1545 | abi_ulong loaddr, abi_ulong hiaddr) | |
1546 | { | |
1547 | /* Probe for a suitable guest base address, if the user has not set | |
1548 | * it explicitly, and set guest_base appropriately. | |
1549 | * In case of error we will print a suitable message and exit. | |
1550 | */ | |
1551 | #if defined(CONFIG_USE_GUEST_BASE) | |
1552 | const char *errmsg; | |
1553 | if (!have_guest_base && !reserved_va) { | |
1554 | unsigned long host_start, real_start, host_size; | |
1555 | ||
1556 | /* Round addresses to page boundaries. */ | |
1557 | loaddr &= qemu_host_page_mask; | |
1558 | hiaddr = HOST_PAGE_ALIGN(hiaddr); | |
1559 | ||
1560 | if (loaddr < mmap_min_addr) { | |
1561 | host_start = HOST_PAGE_ALIGN(mmap_min_addr); | |
1562 | } else { | |
1563 | host_start = loaddr; | |
1564 | if (host_start != loaddr) { | |
1565 | errmsg = "Address overflow loading ELF binary"; | |
1566 | goto exit_errmsg; | |
1567 | } | |
1568 | } | |
1569 | host_size = hiaddr - loaddr; | |
dce10401 MI |
1570 | |
1571 | /* Setup the initial guest memory space with ranges gleaned from | |
1572 | * the ELF image that is being loaded. | |
1573 | */ | |
1574 | real_start = init_guest_space(host_start, host_size, loaddr, false); | |
1575 | if (real_start == (unsigned long)-1) { | |
1576 | errmsg = "Unable to find space for application"; | |
1577 | goto exit_errmsg; | |
f3ed1f5d | 1578 | } |
dce10401 MI |
1579 | guest_base = real_start - loaddr; |
1580 | ||
f3ed1f5d PM |
1581 | qemu_log("Relocating guest address space from 0x" |
1582 | TARGET_ABI_FMT_lx " to 0x%lx\n", | |
1583 | loaddr, real_start); | |
f3ed1f5d PM |
1584 | } |
1585 | return; | |
1586 | ||
f3ed1f5d PM |
1587 | exit_errmsg: |
1588 | fprintf(stderr, "%s: %s\n", image_name, errmsg); | |
1589 | exit(-1); | |
1590 | #endif | |
1591 | } | |
1592 | ||
1593 | ||
8e62a717 | 1594 | /* Load an ELF image into the address space. |
31e31b8a | 1595 | |
8e62a717 RH |
1596 | IMAGE_NAME is the filename of the image, to use in error messages. |
1597 | IMAGE_FD is the open file descriptor for the image. | |
1598 | ||
1599 | BPRM_BUF is a copy of the beginning of the file; this of course | |
1600 | contains the elf file header at offset 0. It is assumed that this | |
1601 | buffer is sufficiently aligned to present no problems to the host | |
1602 | in accessing data at aligned offsets within the buffer. | |
1603 | ||
1604 | On return: INFO values will be filled in, as necessary or available. */ | |
1605 | ||
1606 | static void load_elf_image(const char *image_name, int image_fd, | |
bf858897 | 1607 | struct image_info *info, char **pinterp_name, |
8e62a717 | 1608 | char bprm_buf[BPRM_BUF_SIZE]) |
31e31b8a | 1609 | { |
8e62a717 RH |
1610 | struct elfhdr *ehdr = (struct elfhdr *)bprm_buf; |
1611 | struct elf_phdr *phdr; | |
1612 | abi_ulong load_addr, load_bias, loaddr, hiaddr, error; | |
1613 | int i, retval; | |
1614 | const char *errmsg; | |
5fafdf24 | 1615 | |
8e62a717 RH |
1616 | /* First of all, some simple consistency checks */ |
1617 | errmsg = "Invalid ELF image for this architecture"; | |
1618 | if (!elf_check_ident(ehdr)) { | |
1619 | goto exit_errmsg; | |
1620 | } | |
1621 | bswap_ehdr(ehdr); | |
1622 | if (!elf_check_ehdr(ehdr)) { | |
1623 | goto exit_errmsg; | |
d97ef72e | 1624 | } |
5fafdf24 | 1625 | |
8e62a717 RH |
1626 | i = ehdr->e_phnum * sizeof(struct elf_phdr); |
1627 | if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) { | |
1628 | phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff); | |
9955ffac | 1629 | } else { |
8e62a717 RH |
1630 | phdr = (struct elf_phdr *) alloca(i); |
1631 | retval = pread(image_fd, phdr, i, ehdr->e_phoff); | |
9955ffac | 1632 | if (retval != i) { |
8e62a717 | 1633 | goto exit_read; |
9955ffac | 1634 | } |
d97ef72e | 1635 | } |
8e62a717 | 1636 | bswap_phdr(phdr, ehdr->e_phnum); |
09bfb054 | 1637 | |
1af02e83 MF |
1638 | #ifdef CONFIG_USE_FDPIC |
1639 | info->nsegs = 0; | |
1640 | info->pt_dynamic_addr = 0; | |
1641 | #endif | |
1642 | ||
682674b8 RH |
1643 | /* Find the maximum size of the image and allocate an appropriate |
1644 | amount of memory to handle that. */ | |
1645 | loaddr = -1, hiaddr = 0; | |
8e62a717 RH |
1646 | for (i = 0; i < ehdr->e_phnum; ++i) { |
1647 | if (phdr[i].p_type == PT_LOAD) { | |
1648 | abi_ulong a = phdr[i].p_vaddr; | |
682674b8 RH |
1649 | if (a < loaddr) { |
1650 | loaddr = a; | |
1651 | } | |
8e62a717 | 1652 | a += phdr[i].p_memsz; |
682674b8 RH |
1653 | if (a > hiaddr) { |
1654 | hiaddr = a; | |
1655 | } | |
1af02e83 MF |
1656 | #ifdef CONFIG_USE_FDPIC |
1657 | ++info->nsegs; | |
1658 | #endif | |
682674b8 RH |
1659 | } |
1660 | } | |
1661 | ||
1662 | load_addr = loaddr; | |
8e62a717 | 1663 | if (ehdr->e_type == ET_DYN) { |
682674b8 RH |
1664 | /* The image indicates that it can be loaded anywhere. Find a |
1665 | location that can hold the memory space required. If the | |
1666 | image is pre-linked, LOADDR will be non-zero. Since we do | |
1667 | not supply MAP_FIXED here we'll use that address if and | |
1668 | only if it remains available. */ | |
1669 | load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE, | |
1670 | MAP_PRIVATE | MAP_ANON | MAP_NORESERVE, | |
1671 | -1, 0); | |
1672 | if (load_addr == -1) { | |
8e62a717 | 1673 | goto exit_perror; |
d97ef72e | 1674 | } |
bf858897 RH |
1675 | } else if (pinterp_name != NULL) { |
1676 | /* This is the main executable. Make sure that the low | |
1677 | address does not conflict with MMAP_MIN_ADDR or the | |
1678 | QEMU application itself. */ | |
f3ed1f5d | 1679 | probe_guest_base(image_name, loaddr, hiaddr); |
d97ef72e | 1680 | } |
682674b8 | 1681 | load_bias = load_addr - loaddr; |
d97ef72e | 1682 | |
1af02e83 MF |
1683 | #ifdef CONFIG_USE_FDPIC |
1684 | { | |
1685 | struct elf32_fdpic_loadseg *loadsegs = info->loadsegs = | |
7267c094 | 1686 | g_malloc(sizeof(*loadsegs) * info->nsegs); |
1af02e83 MF |
1687 | |
1688 | for (i = 0; i < ehdr->e_phnum; ++i) { | |
1689 | switch (phdr[i].p_type) { | |
1690 | case PT_DYNAMIC: | |
1691 | info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias; | |
1692 | break; | |
1693 | case PT_LOAD: | |
1694 | loadsegs->addr = phdr[i].p_vaddr + load_bias; | |
1695 | loadsegs->p_vaddr = phdr[i].p_vaddr; | |
1696 | loadsegs->p_memsz = phdr[i].p_memsz; | |
1697 | ++loadsegs; | |
1698 | break; | |
1699 | } | |
1700 | } | |
1701 | } | |
1702 | #endif | |
1703 | ||
8e62a717 RH |
1704 | info->load_bias = load_bias; |
1705 | info->load_addr = load_addr; | |
1706 | info->entry = ehdr->e_entry + load_bias; | |
1707 | info->start_code = -1; | |
1708 | info->end_code = 0; | |
1709 | info->start_data = -1; | |
1710 | info->end_data = 0; | |
1711 | info->brk = 0; | |
d8fd2954 | 1712 | info->elf_flags = ehdr->e_flags; |
8e62a717 RH |
1713 | |
1714 | for (i = 0; i < ehdr->e_phnum; i++) { | |
1715 | struct elf_phdr *eppnt = phdr + i; | |
d97ef72e | 1716 | if (eppnt->p_type == PT_LOAD) { |
682674b8 | 1717 | abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em; |
d97ef72e | 1718 | int elf_prot = 0; |
d97ef72e RH |
1719 | |
1720 | if (eppnt->p_flags & PF_R) elf_prot = PROT_READ; | |
1721 | if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE; | |
1722 | if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC; | |
d97ef72e | 1723 | |
682674b8 RH |
1724 | vaddr = load_bias + eppnt->p_vaddr; |
1725 | vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr); | |
1726 | vaddr_ps = TARGET_ELF_PAGESTART(vaddr); | |
1727 | ||
1728 | error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po, | |
1729 | elf_prot, MAP_PRIVATE | MAP_FIXED, | |
8e62a717 | 1730 | image_fd, eppnt->p_offset - vaddr_po); |
09bfb054 | 1731 | if (error == -1) { |
8e62a717 | 1732 | goto exit_perror; |
09bfb054 | 1733 | } |
09bfb054 | 1734 | |
682674b8 RH |
1735 | vaddr_ef = vaddr + eppnt->p_filesz; |
1736 | vaddr_em = vaddr + eppnt->p_memsz; | |
31e31b8a | 1737 | |
cf129f3a | 1738 | /* If the load segment requests extra zeros (e.g. bss), map it. */ |
682674b8 RH |
1739 | if (vaddr_ef < vaddr_em) { |
1740 | zero_bss(vaddr_ef, vaddr_em, elf_prot); | |
cf129f3a | 1741 | } |
8e62a717 RH |
1742 | |
1743 | /* Find the full program boundaries. */ | |
1744 | if (elf_prot & PROT_EXEC) { | |
1745 | if (vaddr < info->start_code) { | |
1746 | info->start_code = vaddr; | |
1747 | } | |
1748 | if (vaddr_ef > info->end_code) { | |
1749 | info->end_code = vaddr_ef; | |
1750 | } | |
1751 | } | |
1752 | if (elf_prot & PROT_WRITE) { | |
1753 | if (vaddr < info->start_data) { | |
1754 | info->start_data = vaddr; | |
1755 | } | |
1756 | if (vaddr_ef > info->end_data) { | |
1757 | info->end_data = vaddr_ef; | |
1758 | } | |
1759 | if (vaddr_em > info->brk) { | |
1760 | info->brk = vaddr_em; | |
1761 | } | |
1762 | } | |
bf858897 RH |
1763 | } else if (eppnt->p_type == PT_INTERP && pinterp_name) { |
1764 | char *interp_name; | |
1765 | ||
1766 | if (*pinterp_name) { | |
1767 | errmsg = "Multiple PT_INTERP entries"; | |
1768 | goto exit_errmsg; | |
1769 | } | |
1770 | interp_name = malloc(eppnt->p_filesz); | |
1771 | if (!interp_name) { | |
1772 | goto exit_perror; | |
1773 | } | |
1774 | ||
1775 | if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { | |
1776 | memcpy(interp_name, bprm_buf + eppnt->p_offset, | |
1777 | eppnt->p_filesz); | |
1778 | } else { | |
1779 | retval = pread(image_fd, interp_name, eppnt->p_filesz, | |
1780 | eppnt->p_offset); | |
1781 | if (retval != eppnt->p_filesz) { | |
1782 | goto exit_perror; | |
1783 | } | |
1784 | } | |
1785 | if (interp_name[eppnt->p_filesz - 1] != 0) { | |
1786 | errmsg = "Invalid PT_INTERP entry"; | |
1787 | goto exit_errmsg; | |
1788 | } | |
1789 | *pinterp_name = interp_name; | |
d97ef72e | 1790 | } |
682674b8 | 1791 | } |
5fafdf24 | 1792 | |
8e62a717 RH |
1793 | if (info->end_data == 0) { |
1794 | info->start_data = info->end_code; | |
1795 | info->end_data = info->end_code; | |
1796 | info->brk = info->end_code; | |
1797 | } | |
1798 | ||
682674b8 | 1799 | if (qemu_log_enabled()) { |
8e62a717 | 1800 | load_symbols(ehdr, image_fd, load_bias); |
682674b8 | 1801 | } |
31e31b8a | 1802 | |
8e62a717 RH |
1803 | close(image_fd); |
1804 | return; | |
1805 | ||
1806 | exit_read: | |
1807 | if (retval >= 0) { | |
1808 | errmsg = "Incomplete read of file header"; | |
1809 | goto exit_errmsg; | |
1810 | } | |
1811 | exit_perror: | |
1812 | errmsg = strerror(errno); | |
1813 | exit_errmsg: | |
1814 | fprintf(stderr, "%s: %s\n", image_name, errmsg); | |
1815 | exit(-1); | |
1816 | } | |
1817 | ||
1818 | static void load_elf_interp(const char *filename, struct image_info *info, | |
1819 | char bprm_buf[BPRM_BUF_SIZE]) | |
1820 | { | |
1821 | int fd, retval; | |
1822 | ||
1823 | fd = open(path(filename), O_RDONLY); | |
1824 | if (fd < 0) { | |
1825 | goto exit_perror; | |
1826 | } | |
31e31b8a | 1827 | |
8e62a717 RH |
1828 | retval = read(fd, bprm_buf, BPRM_BUF_SIZE); |
1829 | if (retval < 0) { | |
1830 | goto exit_perror; | |
1831 | } | |
1832 | if (retval < BPRM_BUF_SIZE) { | |
1833 | memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval); | |
1834 | } | |
1835 | ||
bf858897 | 1836 | load_elf_image(filename, fd, info, NULL, bprm_buf); |
8e62a717 RH |
1837 | return; |
1838 | ||
1839 | exit_perror: | |
1840 | fprintf(stderr, "%s: %s\n", filename, strerror(errno)); | |
1841 | exit(-1); | |
31e31b8a FB |
1842 | } |
1843 | ||
49918a75 PB |
1844 | static int symfind(const void *s0, const void *s1) |
1845 | { | |
c7c530cd | 1846 | target_ulong addr = *(target_ulong *)s0; |
49918a75 PB |
1847 | struct elf_sym *sym = (struct elf_sym *)s1; |
1848 | int result = 0; | |
c7c530cd | 1849 | if (addr < sym->st_value) { |
49918a75 | 1850 | result = -1; |
c7c530cd | 1851 | } else if (addr >= sym->st_value + sym->st_size) { |
49918a75 PB |
1852 | result = 1; |
1853 | } | |
1854 | return result; | |
1855 | } | |
1856 | ||
1857 | static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr) | |
1858 | { | |
1859 | #if ELF_CLASS == ELFCLASS32 | |
1860 | struct elf_sym *syms = s->disas_symtab.elf32; | |
1861 | #else | |
1862 | struct elf_sym *syms = s->disas_symtab.elf64; | |
1863 | #endif | |
1864 | ||
1865 | // binary search | |
49918a75 PB |
1866 | struct elf_sym *sym; |
1867 | ||
c7c530cd | 1868 | sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind); |
7cba04f6 | 1869 | if (sym != NULL) { |
49918a75 PB |
1870 | return s->disas_strtab + sym->st_name; |
1871 | } | |
1872 | ||
1873 | return ""; | |
1874 | } | |
1875 | ||
1876 | /* FIXME: This should use elf_ops.h */ | |
1877 | static int symcmp(const void *s0, const void *s1) | |
1878 | { | |
1879 | struct elf_sym *sym0 = (struct elf_sym *)s0; | |
1880 | struct elf_sym *sym1 = (struct elf_sym *)s1; | |
1881 | return (sym0->st_value < sym1->st_value) | |
1882 | ? -1 | |
1883 | : ((sym0->st_value > sym1->st_value) ? 1 : 0); | |
1884 | } | |
1885 | ||
689f936f | 1886 | /* Best attempt to load symbols from this ELF object. */ |
682674b8 | 1887 | static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias) |
689f936f | 1888 | { |
682674b8 RH |
1889 | int i, shnum, nsyms, sym_idx = 0, str_idx = 0; |
1890 | struct elf_shdr *shdr; | |
b9475279 CV |
1891 | char *strings = NULL; |
1892 | struct syminfo *s = NULL; | |
1893 | struct elf_sym *new_syms, *syms = NULL; | |
689f936f | 1894 | |
682674b8 RH |
1895 | shnum = hdr->e_shnum; |
1896 | i = shnum * sizeof(struct elf_shdr); | |
1897 | shdr = (struct elf_shdr *)alloca(i); | |
1898 | if (pread(fd, shdr, i, hdr->e_shoff) != i) { | |
1899 | return; | |
1900 | } | |
1901 | ||
1902 | bswap_shdr(shdr, shnum); | |
1903 | for (i = 0; i < shnum; ++i) { | |
1904 | if (shdr[i].sh_type == SHT_SYMTAB) { | |
1905 | sym_idx = i; | |
1906 | str_idx = shdr[i].sh_link; | |
49918a75 PB |
1907 | goto found; |
1908 | } | |
689f936f | 1909 | } |
682674b8 RH |
1910 | |
1911 | /* There will be no symbol table if the file was stripped. */ | |
1912 | return; | |
689f936f FB |
1913 | |
1914 | found: | |
682674b8 | 1915 | /* Now know where the strtab and symtab are. Snarf them. */ |
e80cfcfc | 1916 | s = malloc(sizeof(*s)); |
682674b8 | 1917 | if (!s) { |
b9475279 | 1918 | goto give_up; |
682674b8 | 1919 | } |
5fafdf24 | 1920 | |
682674b8 RH |
1921 | i = shdr[str_idx].sh_size; |
1922 | s->disas_strtab = strings = malloc(i); | |
1923 | if (!strings || pread(fd, strings, i, shdr[str_idx].sh_offset) != i) { | |
b9475279 | 1924 | goto give_up; |
682674b8 | 1925 | } |
49918a75 | 1926 | |
682674b8 RH |
1927 | i = shdr[sym_idx].sh_size; |
1928 | syms = malloc(i); | |
1929 | if (!syms || pread(fd, syms, i, shdr[sym_idx].sh_offset) != i) { | |
b9475279 | 1930 | goto give_up; |
682674b8 | 1931 | } |
31e31b8a | 1932 | |
682674b8 RH |
1933 | nsyms = i / sizeof(struct elf_sym); |
1934 | for (i = 0; i < nsyms; ) { | |
49918a75 | 1935 | bswap_sym(syms + i); |
682674b8 RH |
1936 | /* Throw away entries which we do not need. */ |
1937 | if (syms[i].st_shndx == SHN_UNDEF | |
1938 | || syms[i].st_shndx >= SHN_LORESERVE | |
1939 | || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { | |
1940 | if (i < --nsyms) { | |
49918a75 PB |
1941 | syms[i] = syms[nsyms]; |
1942 | } | |
682674b8 | 1943 | } else { |
49918a75 | 1944 | #if defined(TARGET_ARM) || defined (TARGET_MIPS) |
682674b8 RH |
1945 | /* The bottom address bit marks a Thumb or MIPS16 symbol. */ |
1946 | syms[i].st_value &= ~(target_ulong)1; | |
0774bed1 | 1947 | #endif |
682674b8 RH |
1948 | syms[i].st_value += load_bias; |
1949 | i++; | |
1950 | } | |
0774bed1 | 1951 | } |
49918a75 | 1952 | |
b9475279 CV |
1953 | /* No "useful" symbol. */ |
1954 | if (nsyms == 0) { | |
1955 | goto give_up; | |
1956 | } | |
1957 | ||
5d5c9930 RH |
1958 | /* Attempt to free the storage associated with the local symbols |
1959 | that we threw away. Whether or not this has any effect on the | |
1960 | memory allocation depends on the malloc implementation and how | |
1961 | many symbols we managed to discard. */ | |
8d79de6e SW |
1962 | new_syms = realloc(syms, nsyms * sizeof(*syms)); |
1963 | if (new_syms == NULL) { | |
b9475279 | 1964 | goto give_up; |
5d5c9930 | 1965 | } |
8d79de6e | 1966 | syms = new_syms; |
5d5c9930 | 1967 | |
49918a75 | 1968 | qsort(syms, nsyms, sizeof(*syms), symcmp); |
689f936f | 1969 | |
49918a75 PB |
1970 | s->disas_num_syms = nsyms; |
1971 | #if ELF_CLASS == ELFCLASS32 | |
1972 | s->disas_symtab.elf32 = syms; | |
49918a75 PB |
1973 | #else |
1974 | s->disas_symtab.elf64 = syms; | |
49918a75 | 1975 | #endif |
682674b8 | 1976 | s->lookup_symbol = lookup_symbolxx; |
e80cfcfc FB |
1977 | s->next = syminfos; |
1978 | syminfos = s; | |
b9475279 CV |
1979 | |
1980 | return; | |
1981 | ||
1982 | give_up: | |
1983 | free(s); | |
1984 | free(strings); | |
1985 | free(syms); | |
689f936f | 1986 | } |
31e31b8a | 1987 | |
e5fe0c52 PB |
1988 | int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs, |
1989 | struct image_info * info) | |
31e31b8a | 1990 | { |
8e62a717 | 1991 | struct image_info interp_info; |
31e31b8a | 1992 | struct elfhdr elf_ex; |
8e62a717 | 1993 | char *elf_interpreter = NULL; |
31e31b8a | 1994 | |
bf858897 RH |
1995 | info->start_mmap = (abi_ulong)ELF_START_MMAP; |
1996 | info->mmap = 0; | |
1997 | info->rss = 0; | |
1998 | ||
1999 | load_elf_image(bprm->filename, bprm->fd, info, | |
2000 | &elf_interpreter, bprm->buf); | |
31e31b8a | 2001 | |
bf858897 RH |
2002 | /* ??? We need a copy of the elf header for passing to create_elf_tables. |
2003 | If we do nothing, we'll have overwritten this when we re-use bprm->buf | |
2004 | when we load the interpreter. */ | |
2005 | elf_ex = *(struct elfhdr *)bprm->buf; | |
31e31b8a | 2006 | |
e5fe0c52 PB |
2007 | bprm->p = copy_elf_strings(1, &bprm->filename, bprm->page, bprm->p); |
2008 | bprm->p = copy_elf_strings(bprm->envc,bprm->envp,bprm->page,bprm->p); | |
2009 | bprm->p = copy_elf_strings(bprm->argc,bprm->argv,bprm->page,bprm->p); | |
2010 | if (!bprm->p) { | |
bf858897 RH |
2011 | fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG)); |
2012 | exit(-1); | |
379f6698 | 2013 | } |
379f6698 | 2014 | |
31e31b8a FB |
2015 | /* Do this so that we can load the interpreter, if need be. We will |
2016 | change some of these later */ | |
31e31b8a | 2017 | bprm->p = setup_arg_pages(bprm->p, bprm, info); |
31e31b8a | 2018 | |
8e62a717 RH |
2019 | if (elf_interpreter) { |
2020 | load_elf_interp(elf_interpreter, &interp_info, bprm->buf); | |
31e31b8a | 2021 | |
8e62a717 RH |
2022 | /* If the program interpreter is one of these two, then assume |
2023 | an iBCS2 image. Otherwise assume a native linux image. */ | |
2024 | ||
2025 | if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0 | |
2026 | || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) { | |
2027 | info->personality = PER_SVR4; | |
31e31b8a | 2028 | |
8e62a717 RH |
2029 | /* Why this, you ask??? Well SVr4 maps page 0 as read-only, |
2030 | and some applications "depend" upon this behavior. Since | |
2031 | we do not have the power to recompile these, we emulate | |
2032 | the SVr4 behavior. Sigh. */ | |
2033 | target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC, | |
2034 | MAP_FIXED | MAP_PRIVATE, -1, 0); | |
2035 | } | |
31e31b8a FB |
2036 | } |
2037 | ||
8e62a717 RH |
2038 | bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex, |
2039 | info, (elf_interpreter ? &interp_info : NULL)); | |
2040 | info->start_stack = bprm->p; | |
2041 | ||
2042 | /* If we have an interpreter, set that as the program's entry point. | |
8e78064e | 2043 | Copy the load_bias as well, to help PPC64 interpret the entry |
8e62a717 RH |
2044 | point as a function descriptor. Do this after creating elf tables |
2045 | so that we copy the original program entry point into the AUXV. */ | |
2046 | if (elf_interpreter) { | |
8e78064e | 2047 | info->load_bias = interp_info.load_bias; |
8e62a717 | 2048 | info->entry = interp_info.entry; |
bf858897 | 2049 | free(elf_interpreter); |
8e62a717 | 2050 | } |
31e31b8a | 2051 | |
edf8e2af MW |
2052 | #ifdef USE_ELF_CORE_DUMP |
2053 | bprm->core_dump = &elf_core_dump; | |
2054 | #endif | |
2055 | ||
31e31b8a FB |
2056 | return 0; |
2057 | } | |
2058 | ||
edf8e2af | 2059 | #ifdef USE_ELF_CORE_DUMP |
edf8e2af MW |
2060 | /* |
2061 | * Definitions to generate Intel SVR4-like core files. | |
a2547a13 | 2062 | * These mostly have the same names as the SVR4 types with "target_elf_" |
edf8e2af MW |
2063 | * tacked on the front to prevent clashes with linux definitions, |
2064 | * and the typedef forms have been avoided. This is mostly like | |
2065 | * the SVR4 structure, but more Linuxy, with things that Linux does | |
2066 | * not support and which gdb doesn't really use excluded. | |
2067 | * | |
2068 | * Fields we don't dump (their contents is zero) in linux-user qemu | |
2069 | * are marked with XXX. | |
2070 | * | |
2071 | * Core dump code is copied from linux kernel (fs/binfmt_elf.c). | |
2072 | * | |
2073 | * Porting ELF coredump for target is (quite) simple process. First you | |
dd0a3651 | 2074 | * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for |
edf8e2af MW |
2075 | * the target resides): |
2076 | * | |
2077 | * #define USE_ELF_CORE_DUMP | |
2078 | * | |
2079 | * Next you define type of register set used for dumping. ELF specification | |
2080 | * says that it needs to be array of elf_greg_t that has size of ELF_NREG. | |
2081 | * | |
c227f099 | 2082 | * typedef <target_regtype> target_elf_greg_t; |
edf8e2af | 2083 | * #define ELF_NREG <number of registers> |
c227f099 | 2084 | * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG]; |
edf8e2af | 2085 | * |
edf8e2af MW |
2086 | * Last step is to implement target specific function that copies registers |
2087 | * from given cpu into just specified register set. Prototype is: | |
2088 | * | |
c227f099 | 2089 | * static void elf_core_copy_regs(taret_elf_gregset_t *regs, |
9349b4f9 | 2090 | * const CPUArchState *env); |
edf8e2af MW |
2091 | * |
2092 | * Parameters: | |
2093 | * regs - copy register values into here (allocated and zeroed by caller) | |
2094 | * env - copy registers from here | |
2095 | * | |
2096 | * Example for ARM target is provided in this file. | |
2097 | */ | |
2098 | ||
2099 | /* An ELF note in memory */ | |
2100 | struct memelfnote { | |
2101 | const char *name; | |
2102 | size_t namesz; | |
2103 | size_t namesz_rounded; | |
2104 | int type; | |
2105 | size_t datasz; | |
80f5ce75 | 2106 | size_t datasz_rounded; |
edf8e2af MW |
2107 | void *data; |
2108 | size_t notesz; | |
2109 | }; | |
2110 | ||
a2547a13 | 2111 | struct target_elf_siginfo { |
80f5ce75 LV |
2112 | target_int si_signo; /* signal number */ |
2113 | target_int si_code; /* extra code */ | |
2114 | target_int si_errno; /* errno */ | |
edf8e2af MW |
2115 | }; |
2116 | ||
a2547a13 LD |
2117 | struct target_elf_prstatus { |
2118 | struct target_elf_siginfo pr_info; /* Info associated with signal */ | |
1ddd592f | 2119 | abi_short pr_cursig; /* Current signal */ |
ca98ac83 PB |
2120 | abi_ulong pr_sigpend; /* XXX */ |
2121 | abi_ulong pr_sighold; /* XXX */ | |
c227f099 AL |
2122 | target_pid_t pr_pid; |
2123 | target_pid_t pr_ppid; | |
2124 | target_pid_t pr_pgrp; | |
2125 | target_pid_t pr_sid; | |
edf8e2af MW |
2126 | struct target_timeval pr_utime; /* XXX User time */ |
2127 | struct target_timeval pr_stime; /* XXX System time */ | |
2128 | struct target_timeval pr_cutime; /* XXX Cumulative user time */ | |
2129 | struct target_timeval pr_cstime; /* XXX Cumulative system time */ | |
c227f099 | 2130 | target_elf_gregset_t pr_reg; /* GP registers */ |
80f5ce75 | 2131 | target_int pr_fpvalid; /* XXX */ |
edf8e2af MW |
2132 | }; |
2133 | ||
2134 | #define ELF_PRARGSZ (80) /* Number of chars for args */ | |
2135 | ||
a2547a13 | 2136 | struct target_elf_prpsinfo { |
edf8e2af MW |
2137 | char pr_state; /* numeric process state */ |
2138 | char pr_sname; /* char for pr_state */ | |
2139 | char pr_zomb; /* zombie */ | |
2140 | char pr_nice; /* nice val */ | |
ca98ac83 | 2141 | abi_ulong pr_flag; /* flags */ |
c227f099 AL |
2142 | target_uid_t pr_uid; |
2143 | target_gid_t pr_gid; | |
2144 | target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid; | |
edf8e2af MW |
2145 | /* Lots missing */ |
2146 | char pr_fname[16]; /* filename of executable */ | |
2147 | char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */ | |
2148 | }; | |
2149 | ||
2150 | /* Here is the structure in which status of each thread is captured. */ | |
2151 | struct elf_thread_status { | |
72cf2d4f | 2152 | QTAILQ_ENTRY(elf_thread_status) ets_link; |
a2547a13 | 2153 | struct target_elf_prstatus prstatus; /* NT_PRSTATUS */ |
edf8e2af MW |
2154 | #if 0 |
2155 | elf_fpregset_t fpu; /* NT_PRFPREG */ | |
2156 | struct task_struct *thread; | |
2157 | elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ | |
2158 | #endif | |
2159 | struct memelfnote notes[1]; | |
2160 | int num_notes; | |
2161 | }; | |
2162 | ||
2163 | struct elf_note_info { | |
2164 | struct memelfnote *notes; | |
a2547a13 LD |
2165 | struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */ |
2166 | struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */ | |
edf8e2af | 2167 | |
72cf2d4f | 2168 | QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list; |
edf8e2af MW |
2169 | #if 0 |
2170 | /* | |
2171 | * Current version of ELF coredump doesn't support | |
2172 | * dumping fp regs etc. | |
2173 | */ | |
2174 | elf_fpregset_t *fpu; | |
2175 | elf_fpxregset_t *xfpu; | |
2176 | int thread_status_size; | |
2177 | #endif | |
2178 | int notes_size; | |
2179 | int numnote; | |
2180 | }; | |
2181 | ||
2182 | struct vm_area_struct { | |
2183 | abi_ulong vma_start; /* start vaddr of memory region */ | |
2184 | abi_ulong vma_end; /* end vaddr of memory region */ | |
2185 | abi_ulong vma_flags; /* protection etc. flags for the region */ | |
72cf2d4f | 2186 | QTAILQ_ENTRY(vm_area_struct) vma_link; |
edf8e2af MW |
2187 | }; |
2188 | ||
2189 | struct mm_struct { | |
72cf2d4f | 2190 | QTAILQ_HEAD(, vm_area_struct) mm_mmap; |
edf8e2af MW |
2191 | int mm_count; /* number of mappings */ |
2192 | }; | |
2193 | ||
2194 | static struct mm_struct *vma_init(void); | |
2195 | static void vma_delete(struct mm_struct *); | |
2196 | static int vma_add_mapping(struct mm_struct *, abi_ulong, | |
d97ef72e | 2197 | abi_ulong, abi_ulong); |
edf8e2af MW |
2198 | static int vma_get_mapping_count(const struct mm_struct *); |
2199 | static struct vm_area_struct *vma_first(const struct mm_struct *); | |
2200 | static struct vm_area_struct *vma_next(struct vm_area_struct *); | |
2201 | static abi_ulong vma_dump_size(const struct vm_area_struct *); | |
b480d9b7 | 2202 | static int vma_walker(void *priv, abi_ulong start, abi_ulong end, |
d97ef72e | 2203 | unsigned long flags); |
edf8e2af MW |
2204 | |
2205 | static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t); | |
2206 | static void fill_note(struct memelfnote *, const char *, int, | |
d97ef72e | 2207 | unsigned int, void *); |
a2547a13 LD |
2208 | static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int); |
2209 | static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *); | |
edf8e2af MW |
2210 | static void fill_auxv_note(struct memelfnote *, const TaskState *); |
2211 | static void fill_elf_note_phdr(struct elf_phdr *, int, off_t); | |
2212 | static size_t note_size(const struct memelfnote *); | |
2213 | static void free_note_info(struct elf_note_info *); | |
9349b4f9 AF |
2214 | static int fill_note_info(struct elf_note_info *, long, const CPUArchState *); |
2215 | static void fill_thread_info(struct elf_note_info *, const CPUArchState *); | |
edf8e2af MW |
2216 | static int core_dump_filename(const TaskState *, char *, size_t); |
2217 | ||
2218 | static int dump_write(int, const void *, size_t); | |
2219 | static int write_note(struct memelfnote *, int); | |
2220 | static int write_note_info(struct elf_note_info *, int); | |
2221 | ||
2222 | #ifdef BSWAP_NEEDED | |
a2547a13 | 2223 | static void bswap_prstatus(struct target_elf_prstatus *prstatus) |
edf8e2af | 2224 | { |
ca98ac83 PB |
2225 | prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo); |
2226 | prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code); | |
2227 | prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno); | |
edf8e2af | 2228 | prstatus->pr_cursig = tswap16(prstatus->pr_cursig); |
ca98ac83 PB |
2229 | prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend); |
2230 | prstatus->pr_sighold = tswapal(prstatus->pr_sighold); | |
edf8e2af MW |
2231 | prstatus->pr_pid = tswap32(prstatus->pr_pid); |
2232 | prstatus->pr_ppid = tswap32(prstatus->pr_ppid); | |
2233 | prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp); | |
2234 | prstatus->pr_sid = tswap32(prstatus->pr_sid); | |
2235 | /* cpu times are not filled, so we skip them */ | |
2236 | /* regs should be in correct format already */ | |
2237 | prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid); | |
2238 | } | |
2239 | ||
a2547a13 | 2240 | static void bswap_psinfo(struct target_elf_prpsinfo *psinfo) |
edf8e2af | 2241 | { |
ca98ac83 | 2242 | psinfo->pr_flag = tswapal(psinfo->pr_flag); |
edf8e2af MW |
2243 | psinfo->pr_uid = tswap16(psinfo->pr_uid); |
2244 | psinfo->pr_gid = tswap16(psinfo->pr_gid); | |
2245 | psinfo->pr_pid = tswap32(psinfo->pr_pid); | |
2246 | psinfo->pr_ppid = tswap32(psinfo->pr_ppid); | |
2247 | psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp); | |
2248 | psinfo->pr_sid = tswap32(psinfo->pr_sid); | |
2249 | } | |
991f8f0c RH |
2250 | |
2251 | static void bswap_note(struct elf_note *en) | |
2252 | { | |
2253 | bswap32s(&en->n_namesz); | |
2254 | bswap32s(&en->n_descsz); | |
2255 | bswap32s(&en->n_type); | |
2256 | } | |
2257 | #else | |
2258 | static inline void bswap_prstatus(struct target_elf_prstatus *p) { } | |
2259 | static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {} | |
2260 | static inline void bswap_note(struct elf_note *en) { } | |
edf8e2af MW |
2261 | #endif /* BSWAP_NEEDED */ |
2262 | ||
2263 | /* | |
2264 | * Minimal support for linux memory regions. These are needed | |
2265 | * when we are finding out what memory exactly belongs to | |
2266 | * emulated process. No locks needed here, as long as | |
2267 | * thread that received the signal is stopped. | |
2268 | */ | |
2269 | ||
2270 | static struct mm_struct *vma_init(void) | |
2271 | { | |
2272 | struct mm_struct *mm; | |
2273 | ||
7267c094 | 2274 | if ((mm = g_malloc(sizeof (*mm))) == NULL) |
edf8e2af MW |
2275 | return (NULL); |
2276 | ||
2277 | mm->mm_count = 0; | |
72cf2d4f | 2278 | QTAILQ_INIT(&mm->mm_mmap); |
edf8e2af MW |
2279 | |
2280 | return (mm); | |
2281 | } | |
2282 | ||
2283 | static void vma_delete(struct mm_struct *mm) | |
2284 | { | |
2285 | struct vm_area_struct *vma; | |
2286 | ||
2287 | while ((vma = vma_first(mm)) != NULL) { | |
72cf2d4f | 2288 | QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link); |
7267c094 | 2289 | g_free(vma); |
edf8e2af | 2290 | } |
7267c094 | 2291 | g_free(mm); |
edf8e2af MW |
2292 | } |
2293 | ||
2294 | static int vma_add_mapping(struct mm_struct *mm, abi_ulong start, | |
d97ef72e | 2295 | abi_ulong end, abi_ulong flags) |
edf8e2af MW |
2296 | { |
2297 | struct vm_area_struct *vma; | |
2298 | ||
7267c094 | 2299 | if ((vma = g_malloc0(sizeof (*vma))) == NULL) |
edf8e2af MW |
2300 | return (-1); |
2301 | ||
2302 | vma->vma_start = start; | |
2303 | vma->vma_end = end; | |
2304 | vma->vma_flags = flags; | |
2305 | ||
72cf2d4f | 2306 | QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link); |
edf8e2af MW |
2307 | mm->mm_count++; |
2308 | ||
2309 | return (0); | |
2310 | } | |
2311 | ||
2312 | static struct vm_area_struct *vma_first(const struct mm_struct *mm) | |
2313 | { | |
72cf2d4f | 2314 | return (QTAILQ_FIRST(&mm->mm_mmap)); |
edf8e2af MW |
2315 | } |
2316 | ||
2317 | static struct vm_area_struct *vma_next(struct vm_area_struct *vma) | |
2318 | { | |
72cf2d4f | 2319 | return (QTAILQ_NEXT(vma, vma_link)); |
edf8e2af MW |
2320 | } |
2321 | ||
2322 | static int vma_get_mapping_count(const struct mm_struct *mm) | |
2323 | { | |
2324 | return (mm->mm_count); | |
2325 | } | |
2326 | ||
2327 | /* | |
2328 | * Calculate file (dump) size of given memory region. | |
2329 | */ | |
2330 | static abi_ulong vma_dump_size(const struct vm_area_struct *vma) | |
2331 | { | |
2332 | /* if we cannot even read the first page, skip it */ | |
2333 | if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE)) | |
2334 | return (0); | |
2335 | ||
2336 | /* | |
2337 | * Usually we don't dump executable pages as they contain | |
2338 | * non-writable code that debugger can read directly from | |
2339 | * target library etc. However, thread stacks are marked | |
2340 | * also executable so we read in first page of given region | |
2341 | * and check whether it contains elf header. If there is | |
2342 | * no elf header, we dump it. | |
2343 | */ | |
2344 | if (vma->vma_flags & PROT_EXEC) { | |
2345 | char page[TARGET_PAGE_SIZE]; | |
2346 | ||
2347 | copy_from_user(page, vma->vma_start, sizeof (page)); | |
2348 | if ((page[EI_MAG0] == ELFMAG0) && | |
2349 | (page[EI_MAG1] == ELFMAG1) && | |
2350 | (page[EI_MAG2] == ELFMAG2) && | |
2351 | (page[EI_MAG3] == ELFMAG3)) { | |
2352 | /* | |
2353 | * Mappings are possibly from ELF binary. Don't dump | |
2354 | * them. | |
2355 | */ | |
2356 | return (0); | |
2357 | } | |
2358 | } | |
2359 | ||
2360 | return (vma->vma_end - vma->vma_start); | |
2361 | } | |
2362 | ||
b480d9b7 | 2363 | static int vma_walker(void *priv, abi_ulong start, abi_ulong end, |
d97ef72e | 2364 | unsigned long flags) |
edf8e2af MW |
2365 | { |
2366 | struct mm_struct *mm = (struct mm_struct *)priv; | |
2367 | ||
edf8e2af MW |
2368 | vma_add_mapping(mm, start, end, flags); |
2369 | return (0); | |
2370 | } | |
2371 | ||
2372 | static void fill_note(struct memelfnote *note, const char *name, int type, | |
d97ef72e | 2373 | unsigned int sz, void *data) |
edf8e2af MW |
2374 | { |
2375 | unsigned int namesz; | |
2376 | ||
2377 | namesz = strlen(name) + 1; | |
2378 | note->name = name; | |
2379 | note->namesz = namesz; | |
2380 | note->namesz_rounded = roundup(namesz, sizeof (int32_t)); | |
2381 | note->type = type; | |
80f5ce75 LV |
2382 | note->datasz = sz; |
2383 | note->datasz_rounded = roundup(sz, sizeof (int32_t)); | |
2384 | ||
edf8e2af MW |
2385 | note->data = data; |
2386 | ||
2387 | /* | |
2388 | * We calculate rounded up note size here as specified by | |
2389 | * ELF document. | |
2390 | */ | |
2391 | note->notesz = sizeof (struct elf_note) + | |
80f5ce75 | 2392 | note->namesz_rounded + note->datasz_rounded; |
edf8e2af MW |
2393 | } |
2394 | ||
2395 | static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine, | |
d97ef72e | 2396 | uint32_t flags) |
edf8e2af MW |
2397 | { |
2398 | (void) memset(elf, 0, sizeof(*elf)); | |
2399 | ||
2400 | (void) memcpy(elf->e_ident, ELFMAG, SELFMAG); | |
2401 | elf->e_ident[EI_CLASS] = ELF_CLASS; | |
2402 | elf->e_ident[EI_DATA] = ELF_DATA; | |
2403 | elf->e_ident[EI_VERSION] = EV_CURRENT; | |
2404 | elf->e_ident[EI_OSABI] = ELF_OSABI; | |
2405 | ||
2406 | elf->e_type = ET_CORE; | |
2407 | elf->e_machine = machine; | |
2408 | elf->e_version = EV_CURRENT; | |
2409 | elf->e_phoff = sizeof(struct elfhdr); | |
2410 | elf->e_flags = flags; | |
2411 | elf->e_ehsize = sizeof(struct elfhdr); | |
2412 | elf->e_phentsize = sizeof(struct elf_phdr); | |
2413 | elf->e_phnum = segs; | |
2414 | ||
edf8e2af | 2415 | bswap_ehdr(elf); |
edf8e2af MW |
2416 | } |
2417 | ||
2418 | static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset) | |
2419 | { | |
2420 | phdr->p_type = PT_NOTE; | |
2421 | phdr->p_offset = offset; | |
2422 | phdr->p_vaddr = 0; | |
2423 | phdr->p_paddr = 0; | |
2424 | phdr->p_filesz = sz; | |
2425 | phdr->p_memsz = 0; | |
2426 | phdr->p_flags = 0; | |
2427 | phdr->p_align = 0; | |
2428 | ||
991f8f0c | 2429 | bswap_phdr(phdr, 1); |
edf8e2af MW |
2430 | } |
2431 | ||
2432 | static size_t note_size(const struct memelfnote *note) | |
2433 | { | |
2434 | return (note->notesz); | |
2435 | } | |
2436 | ||
a2547a13 | 2437 | static void fill_prstatus(struct target_elf_prstatus *prstatus, |
d97ef72e | 2438 | const TaskState *ts, int signr) |
edf8e2af MW |
2439 | { |
2440 | (void) memset(prstatus, 0, sizeof (*prstatus)); | |
2441 | prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; | |
2442 | prstatus->pr_pid = ts->ts_tid; | |
2443 | prstatus->pr_ppid = getppid(); | |
2444 | prstatus->pr_pgrp = getpgrp(); | |
2445 | prstatus->pr_sid = getsid(0); | |
2446 | ||
edf8e2af | 2447 | bswap_prstatus(prstatus); |
edf8e2af MW |
2448 | } |
2449 | ||
a2547a13 | 2450 | static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts) |
edf8e2af | 2451 | { |
900cfbca | 2452 | char *base_filename; |
edf8e2af MW |
2453 | unsigned int i, len; |
2454 | ||
2455 | (void) memset(psinfo, 0, sizeof (*psinfo)); | |
2456 | ||
2457 | len = ts->info->arg_end - ts->info->arg_start; | |
2458 | if (len >= ELF_PRARGSZ) | |
2459 | len = ELF_PRARGSZ - 1; | |
2460 | if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len)) | |
2461 | return -EFAULT; | |
2462 | for (i = 0; i < len; i++) | |
2463 | if (psinfo->pr_psargs[i] == 0) | |
2464 | psinfo->pr_psargs[i] = ' '; | |
2465 | psinfo->pr_psargs[len] = 0; | |
2466 | ||
2467 | psinfo->pr_pid = getpid(); | |
2468 | psinfo->pr_ppid = getppid(); | |
2469 | psinfo->pr_pgrp = getpgrp(); | |
2470 | psinfo->pr_sid = getsid(0); | |
2471 | psinfo->pr_uid = getuid(); | |
2472 | psinfo->pr_gid = getgid(); | |
2473 | ||
900cfbca JM |
2474 | base_filename = g_path_get_basename(ts->bprm->filename); |
2475 | /* | |
2476 | * Using strncpy here is fine: at max-length, | |
2477 | * this field is not NUL-terminated. | |
2478 | */ | |
edf8e2af | 2479 | (void) strncpy(psinfo->pr_fname, base_filename, |
d97ef72e | 2480 | sizeof(psinfo->pr_fname)); |
edf8e2af | 2481 | |
900cfbca | 2482 | g_free(base_filename); |
edf8e2af | 2483 | bswap_psinfo(psinfo); |
edf8e2af MW |
2484 | return (0); |
2485 | } | |
2486 | ||
2487 | static void fill_auxv_note(struct memelfnote *note, const TaskState *ts) | |
2488 | { | |
2489 | elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv; | |
2490 | elf_addr_t orig_auxv = auxv; | |
edf8e2af | 2491 | void *ptr; |
125b0f55 | 2492 | int len = ts->info->auxv_len; |
edf8e2af MW |
2493 | |
2494 | /* | |
2495 | * Auxiliary vector is stored in target process stack. It contains | |
2496 | * {type, value} pairs that we need to dump into note. This is not | |
2497 | * strictly necessary but we do it here for sake of completeness. | |
2498 | */ | |
2499 | ||
edf8e2af MW |
2500 | /* read in whole auxv vector and copy it to memelfnote */ |
2501 | ptr = lock_user(VERIFY_READ, orig_auxv, len, 0); | |
2502 | if (ptr != NULL) { | |
2503 | fill_note(note, "CORE", NT_AUXV, len, ptr); | |
2504 | unlock_user(ptr, auxv, len); | |
2505 | } | |
2506 | } | |
2507 | ||
2508 | /* | |
2509 | * Constructs name of coredump file. We have following convention | |
2510 | * for the name: | |
2511 | * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core | |
2512 | * | |
2513 | * Returns 0 in case of success, -1 otherwise (errno is set). | |
2514 | */ | |
2515 | static int core_dump_filename(const TaskState *ts, char *buf, | |
d97ef72e | 2516 | size_t bufsize) |
edf8e2af MW |
2517 | { |
2518 | char timestamp[64]; | |
2519 | char *filename = NULL; | |
2520 | char *base_filename = NULL; | |
2521 | struct timeval tv; | |
2522 | struct tm tm; | |
2523 | ||
2524 | assert(bufsize >= PATH_MAX); | |
2525 | ||
2526 | if (gettimeofday(&tv, NULL) < 0) { | |
2527 | (void) fprintf(stderr, "unable to get current timestamp: %s", | |
d97ef72e | 2528 | strerror(errno)); |
edf8e2af MW |
2529 | return (-1); |
2530 | } | |
2531 | ||
2532 | filename = strdup(ts->bprm->filename); | |
2533 | base_filename = strdup(basename(filename)); | |
2534 | (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S", | |
d97ef72e | 2535 | localtime_r(&tv.tv_sec, &tm)); |
edf8e2af | 2536 | (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core", |
d97ef72e | 2537 | base_filename, timestamp, (int)getpid()); |
edf8e2af MW |
2538 | free(base_filename); |
2539 | free(filename); | |
2540 | ||
2541 | return (0); | |
2542 | } | |
2543 | ||
2544 | static int dump_write(int fd, const void *ptr, size_t size) | |
2545 | { | |
2546 | const char *bufp = (const char *)ptr; | |
2547 | ssize_t bytes_written, bytes_left; | |
2548 | struct rlimit dumpsize; | |
2549 | off_t pos; | |
2550 | ||
2551 | bytes_written = 0; | |
2552 | getrlimit(RLIMIT_CORE, &dumpsize); | |
2553 | if ((pos = lseek(fd, 0, SEEK_CUR))==-1) { | |
2554 | if (errno == ESPIPE) { /* not a seekable stream */ | |
2555 | bytes_left = size; | |
2556 | } else { | |
2557 | return pos; | |
2558 | } | |
2559 | } else { | |
2560 | if (dumpsize.rlim_cur <= pos) { | |
2561 | return -1; | |
2562 | } else if (dumpsize.rlim_cur == RLIM_INFINITY) { | |
2563 | bytes_left = size; | |
2564 | } else { | |
2565 | size_t limit_left=dumpsize.rlim_cur - pos; | |
2566 | bytes_left = limit_left >= size ? size : limit_left ; | |
2567 | } | |
2568 | } | |
2569 | ||
2570 | /* | |
2571 | * In normal conditions, single write(2) should do but | |
2572 | * in case of socket etc. this mechanism is more portable. | |
2573 | */ | |
2574 | do { | |
2575 | bytes_written = write(fd, bufp, bytes_left); | |
2576 | if (bytes_written < 0) { | |
2577 | if (errno == EINTR) | |
2578 | continue; | |
2579 | return (-1); | |
2580 | } else if (bytes_written == 0) { /* eof */ | |
2581 | return (-1); | |
2582 | } | |
2583 | bufp += bytes_written; | |
2584 | bytes_left -= bytes_written; | |
2585 | } while (bytes_left > 0); | |
2586 | ||
2587 | return (0); | |
2588 | } | |
2589 | ||
2590 | static int write_note(struct memelfnote *men, int fd) | |
2591 | { | |
2592 | struct elf_note en; | |
2593 | ||
2594 | en.n_namesz = men->namesz; | |
2595 | en.n_type = men->type; | |
2596 | en.n_descsz = men->datasz; | |
2597 | ||
edf8e2af | 2598 | bswap_note(&en); |
edf8e2af MW |
2599 | |
2600 | if (dump_write(fd, &en, sizeof(en)) != 0) | |
2601 | return (-1); | |
2602 | if (dump_write(fd, men->name, men->namesz_rounded) != 0) | |
2603 | return (-1); | |
80f5ce75 | 2604 | if (dump_write(fd, men->data, men->datasz_rounded) != 0) |
edf8e2af MW |
2605 | return (-1); |
2606 | ||
2607 | return (0); | |
2608 | } | |
2609 | ||
9349b4f9 | 2610 | static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env) |
edf8e2af MW |
2611 | { |
2612 | TaskState *ts = (TaskState *)env->opaque; | |
2613 | struct elf_thread_status *ets; | |
2614 | ||
7267c094 | 2615 | ets = g_malloc0(sizeof (*ets)); |
edf8e2af MW |
2616 | ets->num_notes = 1; /* only prstatus is dumped */ |
2617 | fill_prstatus(&ets->prstatus, ts, 0); | |
2618 | elf_core_copy_regs(&ets->prstatus.pr_reg, env); | |
2619 | fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus), | |
d97ef72e | 2620 | &ets->prstatus); |
edf8e2af | 2621 | |
72cf2d4f | 2622 | QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link); |
edf8e2af MW |
2623 | |
2624 | info->notes_size += note_size(&ets->notes[0]); | |
2625 | } | |
2626 | ||
2627 | static int fill_note_info(struct elf_note_info *info, | |
9349b4f9 | 2628 | long signr, const CPUArchState *env) |
edf8e2af MW |
2629 | { |
2630 | #define NUMNOTES 3 | |
9349b4f9 | 2631 | CPUArchState *cpu = NULL; |
edf8e2af MW |
2632 | TaskState *ts = (TaskState *)env->opaque; |
2633 | int i; | |
2634 | ||
2635 | (void) memset(info, 0, sizeof (*info)); | |
2636 | ||
72cf2d4f | 2637 | QTAILQ_INIT(&info->thread_list); |
edf8e2af | 2638 | |
7267c094 | 2639 | info->notes = g_malloc0(NUMNOTES * sizeof (struct memelfnote)); |
edf8e2af MW |
2640 | if (info->notes == NULL) |
2641 | return (-ENOMEM); | |
7267c094 | 2642 | info->prstatus = g_malloc0(sizeof (*info->prstatus)); |
edf8e2af MW |
2643 | if (info->prstatus == NULL) |
2644 | return (-ENOMEM); | |
7267c094 | 2645 | info->psinfo = g_malloc0(sizeof (*info->psinfo)); |
edf8e2af MW |
2646 | if (info->prstatus == NULL) |
2647 | return (-ENOMEM); | |
2648 | ||
2649 | /* | |
2650 | * First fill in status (and registers) of current thread | |
2651 | * including process info & aux vector. | |
2652 | */ | |
2653 | fill_prstatus(info->prstatus, ts, signr); | |
2654 | elf_core_copy_regs(&info->prstatus->pr_reg, env); | |
2655 | fill_note(&info->notes[0], "CORE", NT_PRSTATUS, | |
d97ef72e | 2656 | sizeof (*info->prstatus), info->prstatus); |
edf8e2af MW |
2657 | fill_psinfo(info->psinfo, ts); |
2658 | fill_note(&info->notes[1], "CORE", NT_PRPSINFO, | |
d97ef72e | 2659 | sizeof (*info->psinfo), info->psinfo); |
edf8e2af MW |
2660 | fill_auxv_note(&info->notes[2], ts); |
2661 | info->numnote = 3; | |
2662 | ||
2663 | info->notes_size = 0; | |
2664 | for (i = 0; i < info->numnote; i++) | |
2665 | info->notes_size += note_size(&info->notes[i]); | |
2666 | ||
2667 | /* read and fill status of all threads */ | |
2668 | cpu_list_lock(); | |
2669 | for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) { | |
2670 | if (cpu == thread_env) | |
2671 | continue; | |
2672 | fill_thread_info(info, cpu); | |
2673 | } | |
2674 | cpu_list_unlock(); | |
2675 | ||
2676 | return (0); | |
2677 | } | |
2678 | ||
2679 | static void free_note_info(struct elf_note_info *info) | |
2680 | { | |
2681 | struct elf_thread_status *ets; | |
2682 | ||
72cf2d4f BS |
2683 | while (!QTAILQ_EMPTY(&info->thread_list)) { |
2684 | ets = QTAILQ_FIRST(&info->thread_list); | |
2685 | QTAILQ_REMOVE(&info->thread_list, ets, ets_link); | |
7267c094 | 2686 | g_free(ets); |
edf8e2af MW |
2687 | } |
2688 | ||
7267c094 AL |
2689 | g_free(info->prstatus); |
2690 | g_free(info->psinfo); | |
2691 | g_free(info->notes); | |
edf8e2af MW |
2692 | } |
2693 | ||
2694 | static int write_note_info(struct elf_note_info *info, int fd) | |
2695 | { | |
2696 | struct elf_thread_status *ets; | |
2697 | int i, error = 0; | |
2698 | ||
2699 | /* write prstatus, psinfo and auxv for current thread */ | |
2700 | for (i = 0; i < info->numnote; i++) | |
2701 | if ((error = write_note(&info->notes[i], fd)) != 0) | |
2702 | return (error); | |
2703 | ||
2704 | /* write prstatus for each thread */ | |
2705 | for (ets = info->thread_list.tqh_first; ets != NULL; | |
d97ef72e | 2706 | ets = ets->ets_link.tqe_next) { |
edf8e2af MW |
2707 | if ((error = write_note(&ets->notes[0], fd)) != 0) |
2708 | return (error); | |
2709 | } | |
2710 | ||
2711 | return (0); | |
2712 | } | |
2713 | ||
2714 | /* | |
2715 | * Write out ELF coredump. | |
2716 | * | |
2717 | * See documentation of ELF object file format in: | |
2718 | * http://www.caldera.com/developers/devspecs/gabi41.pdf | |
2719 | * | |
2720 | * Coredump format in linux is following: | |
2721 | * | |
2722 | * 0 +----------------------+ \ | |
2723 | * | ELF header | ET_CORE | | |
2724 | * +----------------------+ | | |
2725 | * | ELF program headers | |--- headers | |
2726 | * | - NOTE section | | | |
2727 | * | - PT_LOAD sections | | | |
2728 | * +----------------------+ / | |
2729 | * | NOTEs: | | |
2730 | * | - NT_PRSTATUS | | |
2731 | * | - NT_PRSINFO | | |
2732 | * | - NT_AUXV | | |
2733 | * +----------------------+ <-- aligned to target page | |
2734 | * | Process memory dump | | |
2735 | * : : | |
2736 | * . . | |
2737 | * : : | |
2738 | * | | | |
2739 | * +----------------------+ | |
2740 | * | |
2741 | * NT_PRSTATUS -> struct elf_prstatus (per thread) | |
2742 | * NT_PRSINFO -> struct elf_prpsinfo | |
2743 | * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()). | |
2744 | * | |
2745 | * Format follows System V format as close as possible. Current | |
2746 | * version limitations are as follows: | |
2747 | * - no floating point registers are dumped | |
2748 | * | |
2749 | * Function returns 0 in case of success, negative errno otherwise. | |
2750 | * | |
2751 | * TODO: make this work also during runtime: it should be | |
2752 | * possible to force coredump from running process and then | |
2753 | * continue processing. For example qemu could set up SIGUSR2 | |
2754 | * handler (provided that target process haven't registered | |
2755 | * handler for that) that does the dump when signal is received. | |
2756 | */ | |
9349b4f9 | 2757 | static int elf_core_dump(int signr, const CPUArchState *env) |
edf8e2af MW |
2758 | { |
2759 | const TaskState *ts = (const TaskState *)env->opaque; | |
2760 | struct vm_area_struct *vma = NULL; | |
2761 | char corefile[PATH_MAX]; | |
2762 | struct elf_note_info info; | |
2763 | struct elfhdr elf; | |
2764 | struct elf_phdr phdr; | |
2765 | struct rlimit dumpsize; | |
2766 | struct mm_struct *mm = NULL; | |
2767 | off_t offset = 0, data_offset = 0; | |
2768 | int segs = 0; | |
2769 | int fd = -1; | |
2770 | ||
2771 | errno = 0; | |
2772 | getrlimit(RLIMIT_CORE, &dumpsize); | |
2773 | if (dumpsize.rlim_cur == 0) | |
d97ef72e | 2774 | return 0; |
edf8e2af MW |
2775 | |
2776 | if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0) | |
2777 | return (-errno); | |
2778 | ||
2779 | if ((fd = open(corefile, O_WRONLY | O_CREAT, | |
d97ef72e | 2780 | S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0) |
edf8e2af MW |
2781 | return (-errno); |
2782 | ||
2783 | /* | |
2784 | * Walk through target process memory mappings and | |
2785 | * set up structure containing this information. After | |
2786 | * this point vma_xxx functions can be used. | |
2787 | */ | |
2788 | if ((mm = vma_init()) == NULL) | |
2789 | goto out; | |
2790 | ||
2791 | walk_memory_regions(mm, vma_walker); | |
2792 | segs = vma_get_mapping_count(mm); | |
2793 | ||
2794 | /* | |
2795 | * Construct valid coredump ELF header. We also | |
2796 | * add one more segment for notes. | |
2797 | */ | |
2798 | fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0); | |
2799 | if (dump_write(fd, &elf, sizeof (elf)) != 0) | |
2800 | goto out; | |
2801 | ||
2802 | /* fill in in-memory version of notes */ | |
2803 | if (fill_note_info(&info, signr, env) < 0) | |
2804 | goto out; | |
2805 | ||
2806 | offset += sizeof (elf); /* elf header */ | |
2807 | offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */ | |
2808 | ||
2809 | /* write out notes program header */ | |
2810 | fill_elf_note_phdr(&phdr, info.notes_size, offset); | |
2811 | ||
2812 | offset += info.notes_size; | |
2813 | if (dump_write(fd, &phdr, sizeof (phdr)) != 0) | |
2814 | goto out; | |
2815 | ||
2816 | /* | |
2817 | * ELF specification wants data to start at page boundary so | |
2818 | * we align it here. | |
2819 | */ | |
80f5ce75 | 2820 | data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE); |
edf8e2af MW |
2821 | |
2822 | /* | |
2823 | * Write program headers for memory regions mapped in | |
2824 | * the target process. | |
2825 | */ | |
2826 | for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { | |
2827 | (void) memset(&phdr, 0, sizeof (phdr)); | |
2828 | ||
2829 | phdr.p_type = PT_LOAD; | |
2830 | phdr.p_offset = offset; | |
2831 | phdr.p_vaddr = vma->vma_start; | |
2832 | phdr.p_paddr = 0; | |
2833 | phdr.p_filesz = vma_dump_size(vma); | |
2834 | offset += phdr.p_filesz; | |
2835 | phdr.p_memsz = vma->vma_end - vma->vma_start; | |
2836 | phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0; | |
2837 | if (vma->vma_flags & PROT_WRITE) | |
2838 | phdr.p_flags |= PF_W; | |
2839 | if (vma->vma_flags & PROT_EXEC) | |
2840 | phdr.p_flags |= PF_X; | |
2841 | phdr.p_align = ELF_EXEC_PAGESIZE; | |
2842 | ||
80f5ce75 | 2843 | bswap_phdr(&phdr, 1); |
edf8e2af MW |
2844 | dump_write(fd, &phdr, sizeof (phdr)); |
2845 | } | |
2846 | ||
2847 | /* | |
2848 | * Next we write notes just after program headers. No | |
2849 | * alignment needed here. | |
2850 | */ | |
2851 | if (write_note_info(&info, fd) < 0) | |
2852 | goto out; | |
2853 | ||
2854 | /* align data to page boundary */ | |
edf8e2af MW |
2855 | if (lseek(fd, data_offset, SEEK_SET) != data_offset) |
2856 | goto out; | |
2857 | ||
2858 | /* | |
2859 | * Finally we can dump process memory into corefile as well. | |
2860 | */ | |
2861 | for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { | |
2862 | abi_ulong addr; | |
2863 | abi_ulong end; | |
2864 | ||
2865 | end = vma->vma_start + vma_dump_size(vma); | |
2866 | ||
2867 | for (addr = vma->vma_start; addr < end; | |
d97ef72e | 2868 | addr += TARGET_PAGE_SIZE) { |
edf8e2af MW |
2869 | char page[TARGET_PAGE_SIZE]; |
2870 | int error; | |
2871 | ||
2872 | /* | |
2873 | * Read in page from target process memory and | |
2874 | * write it to coredump file. | |
2875 | */ | |
2876 | error = copy_from_user(page, addr, sizeof (page)); | |
2877 | if (error != 0) { | |
49995e17 | 2878 | (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n", |
d97ef72e | 2879 | addr); |
edf8e2af MW |
2880 | errno = -error; |
2881 | goto out; | |
2882 | } | |
2883 | if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0) | |
2884 | goto out; | |
2885 | } | |
2886 | } | |
2887 | ||
d97ef72e | 2888 | out: |
edf8e2af MW |
2889 | free_note_info(&info); |
2890 | if (mm != NULL) | |
2891 | vma_delete(mm); | |
2892 | (void) close(fd); | |
2893 | ||
2894 | if (errno != 0) | |
2895 | return (-errno); | |
2896 | return (0); | |
2897 | } | |
edf8e2af MW |
2898 | #endif /* USE_ELF_CORE_DUMP */ |
2899 | ||
e5fe0c52 PB |
2900 | void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) |
2901 | { | |
2902 | init_thread(regs, infop); | |
2903 | } |