]> Git Repo - qemu.git/blame - linux-user/elfload.c
microblaze: Add linux-user core dumping support.
[qemu.git] / linux-user / elfload.c
CommitLineData
31e31b8a 1/* This is the Linux kernel elf-loading code, ported into user space */
edf8e2af
MW
2#include <sys/time.h>
3#include <sys/param.h>
31e31b8a
FB
4
5#include <stdio.h>
6#include <sys/types.h>
7#include <fcntl.h>
31e31b8a
FB
8#include <errno.h>
9#include <unistd.h>
10#include <sys/mman.h>
edf8e2af 11#include <sys/resource.h>
31e31b8a
FB
12#include <stdlib.h>
13#include <string.h>
edf8e2af 14#include <time.h>
31e31b8a 15
3ef693a0 16#include "qemu.h"
689f936f 17#include "disas.h"
31e31b8a 18
e58ffeb3 19#ifdef _ARCH_PPC64
a6cc84f4 20#undef ARCH_DLINFO
21#undef ELF_PLATFORM
22#undef ELF_HWCAP
23#undef ELF_CLASS
24#undef ELF_DATA
25#undef ELF_ARCH
26#endif
27
edf8e2af
MW
28#define ELF_OSABI ELFOSABI_SYSV
29
cb33da57
BS
30/* from personality.h */
31
32/*
33 * Flags for bug emulation.
34 *
35 * These occupy the top three bytes.
36 */
37enum {
38 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
39 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to descriptors
40 * (signal handling)
41 */
42 MMAP_PAGE_ZERO = 0x0100000,
43 ADDR_COMPAT_LAYOUT = 0x0200000,
44 READ_IMPLIES_EXEC = 0x0400000,
45 ADDR_LIMIT_32BIT = 0x0800000,
46 SHORT_INODE = 0x1000000,
47 WHOLE_SECONDS = 0x2000000,
48 STICKY_TIMEOUTS = 0x4000000,
49 ADDR_LIMIT_3GB = 0x8000000,
50};
51
52/*
53 * Personality types.
54 *
55 * These go in the low byte. Avoid using the top bit, it will
56 * conflict with error returns.
57 */
58enum {
59 PER_LINUX = 0x0000,
60 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
61 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
62 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
63 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
64 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS |
65 WHOLE_SECONDS | SHORT_INODE,
66 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
67 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
68 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
69 PER_BSD = 0x0006,
70 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
71 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
72 PER_LINUX32 = 0x0008,
73 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
74 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
75 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
76 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
77 PER_RISCOS = 0x000c,
78 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
79 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
80 PER_OSF4 = 0x000f, /* OSF/1 v4 */
81 PER_HPUX = 0x0010,
82 PER_MASK = 0x00ff,
83};
84
85/*
86 * Return the base personality without flags.
87 */
88#define personality(pers) (pers & PER_MASK)
89
83fb7adf
FB
90/* this flag is uneffective under linux too, should be deleted */
91#ifndef MAP_DENYWRITE
92#define MAP_DENYWRITE 0
93#endif
94
95/* should probably go in elf.h */
96#ifndef ELIBBAD
97#define ELIBBAD 80
98#endif
99
21e807fa
NF
100typedef target_ulong target_elf_greg_t;
101#ifdef USE_UID16
102typedef uint16_t target_uid_t;
103typedef uint16_t target_gid_t;
104#else
105typedef uint32_t target_uid_t;
106typedef uint32_t target_gid_t;
107#endif
108typedef int32_t target_pid_t;
109
30ac07d4
FB
110#ifdef TARGET_I386
111
15338fd7
FB
112#define ELF_PLATFORM get_elf_platform()
113
114static const char *get_elf_platform(void)
115{
116 static char elf_platform[] = "i386";
d5975363 117 int family = (thread_env->cpuid_version >> 8) & 0xff;
15338fd7
FB
118 if (family > 6)
119 family = 6;
120 if (family >= 3)
121 elf_platform[1] = '0' + family;
122 return elf_platform;
123}
124
125#define ELF_HWCAP get_elf_hwcap()
126
127static uint32_t get_elf_hwcap(void)
128{
d5975363 129 return thread_env->cpuid_features;
15338fd7
FB
130}
131
84409ddb
JM
132#ifdef TARGET_X86_64
133#define ELF_START_MMAP 0x2aaaaab000ULL
134#define elf_check_arch(x) ( ((x) == ELF_ARCH) )
135
136#define ELF_CLASS ELFCLASS64
137#define ELF_DATA ELFDATA2LSB
138#define ELF_ARCH EM_X86_64
139
140static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
141{
142 regs->rax = 0;
143 regs->rsp = infop->start_stack;
144 regs->rip = infop->entry;
145}
146
9edc5d79 147#define ELF_NREG 27
c227f099 148typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
149
150/*
151 * Note that ELF_NREG should be 29 as there should be place for
152 * TRAPNO and ERR "registers" as well but linux doesn't dump
153 * those.
154 *
155 * See linux kernel: arch/x86/include/asm/elf.h
156 */
c227f099 157static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
9edc5d79
MW
158{
159 (*regs)[0] = env->regs[15];
160 (*regs)[1] = env->regs[14];
161 (*regs)[2] = env->regs[13];
162 (*regs)[3] = env->regs[12];
163 (*regs)[4] = env->regs[R_EBP];
164 (*regs)[5] = env->regs[R_EBX];
165 (*regs)[6] = env->regs[11];
166 (*regs)[7] = env->regs[10];
167 (*regs)[8] = env->regs[9];
168 (*regs)[9] = env->regs[8];
169 (*regs)[10] = env->regs[R_EAX];
170 (*regs)[11] = env->regs[R_ECX];
171 (*regs)[12] = env->regs[R_EDX];
172 (*regs)[13] = env->regs[R_ESI];
173 (*regs)[14] = env->regs[R_EDI];
174 (*regs)[15] = env->regs[R_EAX]; /* XXX */
175 (*regs)[16] = env->eip;
176 (*regs)[17] = env->segs[R_CS].selector & 0xffff;
177 (*regs)[18] = env->eflags;
178 (*regs)[19] = env->regs[R_ESP];
179 (*regs)[20] = env->segs[R_SS].selector & 0xffff;
180 (*regs)[21] = env->segs[R_FS].selector & 0xffff;
181 (*regs)[22] = env->segs[R_GS].selector & 0xffff;
182 (*regs)[23] = env->segs[R_DS].selector & 0xffff;
183 (*regs)[24] = env->segs[R_ES].selector & 0xffff;
184 (*regs)[25] = env->segs[R_FS].selector & 0xffff;
185 (*regs)[26] = env->segs[R_GS].selector & 0xffff;
186}
187
84409ddb
JM
188#else
189
30ac07d4
FB
190#define ELF_START_MMAP 0x80000000
191
30ac07d4
FB
192/*
193 * This is used to ensure we don't load something for the wrong architecture.
194 */
195#define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
196
197/*
198 * These are used to set parameters in the core dumps.
199 */
200#define ELF_CLASS ELFCLASS32
201#define ELF_DATA ELFDATA2LSB
202#define ELF_ARCH EM_386
203
b346ff46
FB
204static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
205{
206 regs->esp = infop->start_stack;
207 regs->eip = infop->entry;
e5fe0c52
PB
208
209 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
210 starts %edx contains a pointer to a function which might be
211 registered using `atexit'. This provides a mean for the
212 dynamic linker to call DT_FINI functions for shared libraries
213 that have been loaded before the code runs.
214
215 A value of 0 tells we have no such handler. */
216 regs->edx = 0;
b346ff46 217}
9edc5d79 218
9edc5d79 219#define ELF_NREG 17
c227f099 220typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
221
222/*
223 * Note that ELF_NREG should be 19 as there should be place for
224 * TRAPNO and ERR "registers" as well but linux doesn't dump
225 * those.
226 *
227 * See linux kernel: arch/x86/include/asm/elf.h
228 */
c227f099 229static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
9edc5d79
MW
230{
231 (*regs)[0] = env->regs[R_EBX];
232 (*regs)[1] = env->regs[R_ECX];
233 (*regs)[2] = env->regs[R_EDX];
234 (*regs)[3] = env->regs[R_ESI];
235 (*regs)[4] = env->regs[R_EDI];
236 (*regs)[5] = env->regs[R_EBP];
237 (*regs)[6] = env->regs[R_EAX];
238 (*regs)[7] = env->segs[R_DS].selector & 0xffff;
239 (*regs)[8] = env->segs[R_ES].selector & 0xffff;
240 (*regs)[9] = env->segs[R_FS].selector & 0xffff;
241 (*regs)[10] = env->segs[R_GS].selector & 0xffff;
242 (*regs)[11] = env->regs[R_EAX]; /* XXX */
243 (*regs)[12] = env->eip;
244 (*regs)[13] = env->segs[R_CS].selector & 0xffff;
245 (*regs)[14] = env->eflags;
246 (*regs)[15] = env->regs[R_ESP];
247 (*regs)[16] = env->segs[R_SS].selector & 0xffff;
248}
84409ddb 249#endif
b346ff46 250
9edc5d79 251#define USE_ELF_CORE_DUMP
b346ff46
FB
252#define ELF_EXEC_PAGESIZE 4096
253
254#endif
255
256#ifdef TARGET_ARM
257
258#define ELF_START_MMAP 0x80000000
259
260#define elf_check_arch(x) ( (x) == EM_ARM )
261
262#define ELF_CLASS ELFCLASS32
263#ifdef TARGET_WORDS_BIGENDIAN
264#define ELF_DATA ELFDATA2MSB
265#else
266#define ELF_DATA ELFDATA2LSB
267#endif
268#define ELF_ARCH EM_ARM
269
b346ff46
FB
270static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
271{
992f48a0 272 abi_long stack = infop->start_stack;
b346ff46
FB
273 memset(regs, 0, sizeof(*regs));
274 regs->ARM_cpsr = 0x10;
0240ded8
PB
275 if (infop->entry & 1)
276 regs->ARM_cpsr |= CPSR_T;
277 regs->ARM_pc = infop->entry & 0xfffffffe;
b346ff46 278 regs->ARM_sp = infop->start_stack;
2f619698
FB
279 /* FIXME - what to for failure of get_user()? */
280 get_user_ual(regs->ARM_r2, stack + 8); /* envp */
281 get_user_ual(regs->ARM_r1, stack + 4); /* envp */
a1516e92 282 /* XXX: it seems that r0 is zeroed after ! */
e5fe0c52
PB
283 regs->ARM_r0 = 0;
284 /* For uClinux PIC binaries. */
863cf0b7 285 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
e5fe0c52 286 regs->ARM_r10 = infop->start_data;
b346ff46
FB
287}
288
edf8e2af 289#define ELF_NREG 18
c227f099 290typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 291
c227f099 292static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
edf8e2af 293{
d049e626
NF
294 (*regs)[0] = tswapl(env->regs[0]);
295 (*regs)[1] = tswapl(env->regs[1]);
296 (*regs)[2] = tswapl(env->regs[2]);
297 (*regs)[3] = tswapl(env->regs[3]);
298 (*regs)[4] = tswapl(env->regs[4]);
299 (*regs)[5] = tswapl(env->regs[5]);
300 (*regs)[6] = tswapl(env->regs[6]);
301 (*regs)[7] = tswapl(env->regs[7]);
302 (*regs)[8] = tswapl(env->regs[8]);
303 (*regs)[9] = tswapl(env->regs[9]);
304 (*regs)[10] = tswapl(env->regs[10]);
305 (*regs)[11] = tswapl(env->regs[11]);
306 (*regs)[12] = tswapl(env->regs[12]);
307 (*regs)[13] = tswapl(env->regs[13]);
308 (*regs)[14] = tswapl(env->regs[14]);
309 (*regs)[15] = tswapl(env->regs[15]);
310
311 (*regs)[16] = tswapl(cpsr_read((CPUState *)env));
312 (*regs)[17] = tswapl(env->regs[0]); /* XXX */
edf8e2af
MW
313}
314
30ac07d4
FB
315#define USE_ELF_CORE_DUMP
316#define ELF_EXEC_PAGESIZE 4096
317
afce2927
FB
318enum
319{
320 ARM_HWCAP_ARM_SWP = 1 << 0,
321 ARM_HWCAP_ARM_HALF = 1 << 1,
322 ARM_HWCAP_ARM_THUMB = 1 << 2,
323 ARM_HWCAP_ARM_26BIT = 1 << 3,
324 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
325 ARM_HWCAP_ARM_FPA = 1 << 5,
326 ARM_HWCAP_ARM_VFP = 1 << 6,
327 ARM_HWCAP_ARM_EDSP = 1 << 7,
cf6de34a
RV
328 ARM_HWCAP_ARM_JAVA = 1 << 8,
329 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
330 ARM_HWCAP_ARM_THUMBEE = 1 << 10,
331 ARM_HWCAP_ARM_NEON = 1 << 11,
332 ARM_HWCAP_ARM_VFPv3 = 1 << 12,
333 ARM_HWCAP_ARM_VFPv3D16 = 1 << 13,
afce2927
FB
334};
335
15338fd7 336#define ELF_HWCAP (ARM_HWCAP_ARM_SWP | ARM_HWCAP_ARM_HALF \
afce2927 337 | ARM_HWCAP_ARM_THUMB | ARM_HWCAP_ARM_FAST_MULT \
cf6de34a
RV
338 | ARM_HWCAP_ARM_FPA | ARM_HWCAP_ARM_VFP \
339 | ARM_HWCAP_ARM_NEON | ARM_HWCAP_ARM_VFPv3 )
afce2927 340
30ac07d4
FB
341#endif
342
853d6f7a 343#ifdef TARGET_SPARC
a315a145 344#ifdef TARGET_SPARC64
853d6f7a
FB
345
346#define ELF_START_MMAP 0x80000000
347
992f48a0 348#ifndef TARGET_ABI32
cb33da57 349#define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
992f48a0
BS
350#else
351#define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
352#endif
853d6f7a 353
a315a145
FB
354#define ELF_CLASS ELFCLASS64
355#define ELF_DATA ELFDATA2MSB
5ef54116
FB
356#define ELF_ARCH EM_SPARCV9
357
358#define STACK_BIAS 2047
a315a145 359
a315a145
FB
360static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
361{
992f48a0 362#ifndef TARGET_ABI32
a315a145 363 regs->tstate = 0;
992f48a0 364#endif
a315a145
FB
365 regs->pc = infop->entry;
366 regs->npc = regs->pc + 4;
367 regs->y = 0;
992f48a0
BS
368#ifdef TARGET_ABI32
369 regs->u_regs[14] = infop->start_stack - 16 * 4;
370#else
cb33da57
BS
371 if (personality(infop->personality) == PER_LINUX32)
372 regs->u_regs[14] = infop->start_stack - 16 * 4;
373 else
374 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
992f48a0 375#endif
a315a145
FB
376}
377
378#else
379#define ELF_START_MMAP 0x80000000
380
381#define elf_check_arch(x) ( (x) == EM_SPARC )
382
853d6f7a
FB
383#define ELF_CLASS ELFCLASS32
384#define ELF_DATA ELFDATA2MSB
385#define ELF_ARCH EM_SPARC
386
853d6f7a
FB
387static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
388{
f5155289
FB
389 regs->psr = 0;
390 regs->pc = infop->entry;
391 regs->npc = regs->pc + 4;
392 regs->y = 0;
393 regs->u_regs[14] = infop->start_stack - 16 * 4;
853d6f7a
FB
394}
395
a315a145 396#endif
853d6f7a
FB
397#endif
398
67867308
FB
399#ifdef TARGET_PPC
400
401#define ELF_START_MMAP 0x80000000
402
e85e7c6e 403#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
84409ddb
JM
404
405#define elf_check_arch(x) ( (x) == EM_PPC64 )
406
407#define ELF_CLASS ELFCLASS64
408
409#else
410
67867308
FB
411#define elf_check_arch(x) ( (x) == EM_PPC )
412
413#define ELF_CLASS ELFCLASS32
84409ddb
JM
414
415#endif
416
67867308
FB
417#ifdef TARGET_WORDS_BIGENDIAN
418#define ELF_DATA ELFDATA2MSB
419#else
420#define ELF_DATA ELFDATA2LSB
421#endif
422#define ELF_ARCH EM_PPC
423
df84e4f3
NF
424/* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
425 See arch/powerpc/include/asm/cputable.h. */
426enum {
3efa9a67 427 QEMU_PPC_FEATURE_32 = 0x80000000,
428 QEMU_PPC_FEATURE_64 = 0x40000000,
429 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
430 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
431 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
432 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
433 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
434 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
435 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
436 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
437 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
438 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
439 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
440 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
441 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
442 QEMU_PPC_FEATURE_CELL = 0x00010000,
443 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
444 QEMU_PPC_FEATURE_SMT = 0x00004000,
445 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
446 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
447 QEMU_PPC_FEATURE_PA6T = 0x00000800,
448 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
449 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
450 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
451 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
452 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
453
454 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
455 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
df84e4f3
NF
456};
457
458#define ELF_HWCAP get_elf_hwcap()
459
460static uint32_t get_elf_hwcap(void)
461{
462 CPUState *e = thread_env;
463 uint32_t features = 0;
464
465 /* We don't have to be terribly complete here; the high points are
466 Altivec/FP/SPE support. Anything else is just a bonus. */
467#define GET_FEATURE(flag, feature) \
468 do {if (e->insns_flags & flag) features |= feature; } while(0)
3efa9a67 469 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
470 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
471 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
472 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
473 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
474 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
475 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
476 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
df84e4f3
NF
477#undef GET_FEATURE
478
479 return features;
480}
481
f5155289
FB
482/*
483 * We need to put in some extra aux table entries to tell glibc what
484 * the cache block size is, so it can use the dcbz instruction safely.
485 */
486#define AT_DCACHEBSIZE 19
487#define AT_ICACHEBSIZE 20
488#define AT_UCACHEBSIZE 21
489/* A special ignored type value for PPC, for glibc compatibility. */
490#define AT_IGNOREPPC 22
491/*
492 * The requirements here are:
493 * - keep the final alignment of sp (sp & 0xf)
494 * - make sure the 32-bit value at the first 16 byte aligned position of
495 * AUXV is greater than 16 for glibc compatibility.
496 * AT_IGNOREPPC is used for that.
497 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
498 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
499 */
0bccf03d 500#define DLINFO_ARCH_ITEMS 5
f5155289
FB
501#define ARCH_DLINFO \
502do { \
0bccf03d
FB
503 NEW_AUX_ENT(AT_DCACHEBSIZE, 0x20); \
504 NEW_AUX_ENT(AT_ICACHEBSIZE, 0x20); \
505 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
f5155289
FB
506 /* \
507 * Now handle glibc compatibility. \
508 */ \
0bccf03d
FB
509 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
510 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
f5155289
FB
511 } while (0)
512
67867308
FB
513static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
514{
67867308 515 _regs->gpr[1] = infop->start_stack;
e85e7c6e 516#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
7983f435
RL
517 _regs->gpr[2] = ldq_raw(infop->entry + 8) + infop->load_addr;
518 infop->entry = ldq_raw(infop->entry) + infop->load_addr;
84409ddb 519#endif
67867308
FB
520 _regs->nip = infop->entry;
521}
522
e2f3e741
NF
523/* See linux kernel: arch/powerpc/include/asm/elf.h. */
524#define ELF_NREG 48
525typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
526
527static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
528{
529 int i;
530 target_ulong ccr = 0;
531
532 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
533 (*regs)[i] = tswapl(env->gpr[i]);
534 }
535
536 (*regs)[32] = tswapl(env->nip);
537 (*regs)[33] = tswapl(env->msr);
538 (*regs)[35] = tswapl(env->ctr);
539 (*regs)[36] = tswapl(env->lr);
540 (*regs)[37] = tswapl(env->xer);
541
542 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
543 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
544 }
545 (*regs)[38] = tswapl(ccr);
546}
547
548#define USE_ELF_CORE_DUMP
67867308
FB
549#define ELF_EXEC_PAGESIZE 4096
550
551#endif
552
048f6b4d
FB
553#ifdef TARGET_MIPS
554
555#define ELF_START_MMAP 0x80000000
556
557#define elf_check_arch(x) ( (x) == EM_MIPS )
558
388bb21a
TS
559#ifdef TARGET_MIPS64
560#define ELF_CLASS ELFCLASS64
561#else
048f6b4d 562#define ELF_CLASS ELFCLASS32
388bb21a 563#endif
048f6b4d
FB
564#ifdef TARGET_WORDS_BIGENDIAN
565#define ELF_DATA ELFDATA2MSB
566#else
567#define ELF_DATA ELFDATA2LSB
568#endif
569#define ELF_ARCH EM_MIPS
570
048f6b4d
FB
571static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
572{
623a930e 573 regs->cp0_status = 2 << CP0St_KSU;
048f6b4d
FB
574 regs->cp0_epc = infop->entry;
575 regs->regs[29] = infop->start_stack;
576}
577
51e52606
NF
578/* See linux kernel: arch/mips/include/asm/elf.h. */
579#define ELF_NREG 45
580typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
581
582/* See linux kernel: arch/mips/include/asm/reg.h. */
583enum {
584#ifdef TARGET_MIPS64
585 TARGET_EF_R0 = 0,
586#else
587 TARGET_EF_R0 = 6,
588#endif
589 TARGET_EF_R26 = TARGET_EF_R0 + 26,
590 TARGET_EF_R27 = TARGET_EF_R0 + 27,
591 TARGET_EF_LO = TARGET_EF_R0 + 32,
592 TARGET_EF_HI = TARGET_EF_R0 + 33,
593 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
594 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
595 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
596 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
597};
598
599/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
600static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
601{
602 int i;
603
604 for (i = 0; i < TARGET_EF_R0; i++) {
605 (*regs)[i] = 0;
606 }
607 (*regs)[TARGET_EF_R0] = 0;
608
609 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
610 (*regs)[TARGET_EF_R0 + i] = tswapl(env->active_tc.gpr[i]);
611 }
612
613 (*regs)[TARGET_EF_R26] = 0;
614 (*regs)[TARGET_EF_R27] = 0;
615 (*regs)[TARGET_EF_LO] = tswapl(env->active_tc.LO[0]);
616 (*regs)[TARGET_EF_HI] = tswapl(env->active_tc.HI[0]);
617 (*regs)[TARGET_EF_CP0_EPC] = tswapl(env->active_tc.PC);
618 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapl(env->CP0_BadVAddr);
619 (*regs)[TARGET_EF_CP0_STATUS] = tswapl(env->CP0_Status);
620 (*regs)[TARGET_EF_CP0_CAUSE] = tswapl(env->CP0_Cause);
621}
622
623#define USE_ELF_CORE_DUMP
388bb21a
TS
624#define ELF_EXEC_PAGESIZE 4096
625
048f6b4d
FB
626#endif /* TARGET_MIPS */
627
b779e29e
EI
628#ifdef TARGET_MICROBLAZE
629
630#define ELF_START_MMAP 0x80000000
631
632#define elf_check_arch(x) ( (x) == EM_XILINX_MICROBLAZE )
633
634#define ELF_CLASS ELFCLASS32
635#define ELF_DATA ELFDATA2MSB
0ddbc96e 636#define ELF_ARCH EM_XILINX_MICROBLAZE
b779e29e
EI
637
638static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
639{
640 regs->pc = infop->entry;
641 regs->r1 = infop->start_stack;
642
643}
644
b779e29e
EI
645#define ELF_EXEC_PAGESIZE 4096
646
e4cbd44d
EI
647#define USE_ELF_CORE_DUMP
648#define ELF_NREG 38
649typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
650
651/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
652static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
653{
654 int i, pos = 0;
655
656 for (i = 0; i < 32; i++) {
657 (*regs)[pos++] = tswapl(env->regs[i]);
658 }
659
660 for (i = 0; i < 6; i++) {
661 (*regs)[pos++] = tswapl(env->sregs[i]);
662 }
663}
664
b779e29e
EI
665#endif /* TARGET_MICROBLAZE */
666
fdf9b3e8
FB
667#ifdef TARGET_SH4
668
669#define ELF_START_MMAP 0x80000000
670
671#define elf_check_arch(x) ( (x) == EM_SH )
672
673#define ELF_CLASS ELFCLASS32
674#define ELF_DATA ELFDATA2LSB
675#define ELF_ARCH EM_SH
676
fdf9b3e8
FB
677static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
678{
679 /* Check other registers XXXXX */
680 regs->pc = infop->entry;
072ae847 681 regs->regs[15] = infop->start_stack;
fdf9b3e8
FB
682}
683
7631c97e
NF
684/* See linux kernel: arch/sh/include/asm/elf.h. */
685#define ELF_NREG 23
686typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
687
688/* See linux kernel: arch/sh/include/asm/ptrace.h. */
689enum {
690 TARGET_REG_PC = 16,
691 TARGET_REG_PR = 17,
692 TARGET_REG_SR = 18,
693 TARGET_REG_GBR = 19,
694 TARGET_REG_MACH = 20,
695 TARGET_REG_MACL = 21,
696 TARGET_REG_SYSCALL = 22
697};
698
699static inline void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
700{
701 int i;
702
703 for (i = 0; i < 16; i++) {
704 (*regs[i]) = tswapl(env->gregs[i]);
705 }
706
707 (*regs)[TARGET_REG_PC] = tswapl(env->pc);
708 (*regs)[TARGET_REG_PR] = tswapl(env->pr);
709 (*regs)[TARGET_REG_SR] = tswapl(env->sr);
710 (*regs)[TARGET_REG_GBR] = tswapl(env->gbr);
711 (*regs)[TARGET_REG_MACH] = tswapl(env->mach);
712 (*regs)[TARGET_REG_MACL] = tswapl(env->macl);
713 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
714}
715
716#define USE_ELF_CORE_DUMP
fdf9b3e8
FB
717#define ELF_EXEC_PAGESIZE 4096
718
719#endif
720
48733d19
TS
721#ifdef TARGET_CRIS
722
723#define ELF_START_MMAP 0x80000000
724
725#define elf_check_arch(x) ( (x) == EM_CRIS )
726
727#define ELF_CLASS ELFCLASS32
728#define ELF_DATA ELFDATA2LSB
729#define ELF_ARCH EM_CRIS
730
731static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
732{
733 regs->erp = infop->entry;
734}
735
48733d19
TS
736#define ELF_EXEC_PAGESIZE 8192
737
738#endif
739
e6e5906b
PB
740#ifdef TARGET_M68K
741
742#define ELF_START_MMAP 0x80000000
743
744#define elf_check_arch(x) ( (x) == EM_68K )
745
746#define ELF_CLASS ELFCLASS32
747#define ELF_DATA ELFDATA2MSB
748#define ELF_ARCH EM_68K
749
750/* ??? Does this need to do anything?
751#define ELF_PLAT_INIT(_r) */
752
753static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
754{
755 regs->usp = infop->start_stack;
756 regs->sr = 0;
757 regs->pc = infop->entry;
758}
759
7a93cc55
NF
760/* See linux kernel: arch/m68k/include/asm/elf.h. */
761#define ELF_NREG 20
762typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
763
764static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
765{
766 (*regs)[0] = tswapl(env->dregs[1]);
767 (*regs)[1] = tswapl(env->dregs[2]);
768 (*regs)[2] = tswapl(env->dregs[3]);
769 (*regs)[3] = tswapl(env->dregs[4]);
770 (*regs)[4] = tswapl(env->dregs[5]);
771 (*regs)[5] = tswapl(env->dregs[6]);
772 (*regs)[6] = tswapl(env->dregs[7]);
773 (*regs)[7] = tswapl(env->aregs[0]);
774 (*regs)[8] = tswapl(env->aregs[1]);
775 (*regs)[9] = tswapl(env->aregs[2]);
776 (*regs)[10] = tswapl(env->aregs[3]);
777 (*regs)[11] = tswapl(env->aregs[4]);
778 (*regs)[12] = tswapl(env->aregs[5]);
779 (*regs)[13] = tswapl(env->aregs[6]);
780 (*regs)[14] = tswapl(env->dregs[0]);
781 (*regs)[15] = tswapl(env->aregs[7]);
782 (*regs)[16] = tswapl(env->dregs[0]); /* FIXME: orig_d0 */
783 (*regs)[17] = tswapl(env->sr);
784 (*regs)[18] = tswapl(env->pc);
785 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
786}
787
788#define USE_ELF_CORE_DUMP
e6e5906b
PB
789#define ELF_EXEC_PAGESIZE 8192
790
791#endif
792
7a3148a9
JM
793#ifdef TARGET_ALPHA
794
795#define ELF_START_MMAP (0x30000000000ULL)
796
797#define elf_check_arch(x) ( (x) == ELF_ARCH )
798
799#define ELF_CLASS ELFCLASS64
800#define ELF_DATA ELFDATA2MSB
801#define ELF_ARCH EM_ALPHA
802
803static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
804{
805 regs->pc = infop->entry;
806 regs->ps = 8;
807 regs->usp = infop->start_stack;
7a3148a9
JM
808}
809
7a3148a9
JM
810#define ELF_EXEC_PAGESIZE 8192
811
812#endif /* TARGET_ALPHA */
813
15338fd7
FB
814#ifndef ELF_PLATFORM
815#define ELF_PLATFORM (NULL)
816#endif
817
818#ifndef ELF_HWCAP
819#define ELF_HWCAP 0
820#endif
821
992f48a0 822#ifdef TARGET_ABI32
cb33da57 823#undef ELF_CLASS
992f48a0 824#define ELF_CLASS ELFCLASS32
cb33da57
BS
825#undef bswaptls
826#define bswaptls(ptr) bswap32s(ptr)
827#endif
828
31e31b8a 829#include "elf.h"
09bfb054 830
09bfb054
FB
831struct exec
832{
833 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
834 unsigned int a_text; /* length of text, in bytes */
835 unsigned int a_data; /* length of data, in bytes */
836 unsigned int a_bss; /* length of uninitialized data area, in bytes */
837 unsigned int a_syms; /* length of symbol table data in file, in bytes */
838 unsigned int a_entry; /* start address */
839 unsigned int a_trsize; /* length of relocation info for text, in bytes */
840 unsigned int a_drsize; /* length of relocation info for data, in bytes */
841};
842
843
844#define N_MAGIC(exec) ((exec).a_info & 0xffff)
845#define OMAGIC 0407
846#define NMAGIC 0410
847#define ZMAGIC 0413
848#define QMAGIC 0314
849
09bfb054
FB
850/* max code+data+bss space allocated to elf interpreter */
851#define INTERP_MAP_SIZE (32 * 1024 * 1024)
852
853/* max code+data+bss+brk space allocated to ET_DYN executables */
854#define ET_DYN_MAP_SIZE (128 * 1024 * 1024)
855
31e31b8a 856/* Necessary parameters */
54936004
FB
857#define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
858#define TARGET_ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(TARGET_ELF_EXEC_PAGESIZE-1))
859#define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
31e31b8a
FB
860
861#define INTERPRETER_NONE 0
862#define INTERPRETER_AOUT 1
863#define INTERPRETER_ELF 2
864
15338fd7 865#define DLINFO_ITEMS 12
31e31b8a 866
09bfb054
FB
867static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
868{
869 memcpy(to, from, n);
870}
d691f669 871
31e31b8a
FB
872static int load_aout_interp(void * exptr, int interp_fd);
873
874#ifdef BSWAP_NEEDED
92a31b1f 875static void bswap_ehdr(struct elfhdr *ehdr)
31e31b8a
FB
876{
877 bswap16s(&ehdr->e_type); /* Object file type */
878 bswap16s(&ehdr->e_machine); /* Architecture */
879 bswap32s(&ehdr->e_version); /* Object file version */
92a31b1f
FB
880 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
881 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
882 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
31e31b8a
FB
883 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
884 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
885 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
886 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
887 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
888 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
889 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
890}
891
92a31b1f 892static void bswap_phdr(struct elf_phdr *phdr)
31e31b8a
FB
893{
894 bswap32s(&phdr->p_type); /* Segment type */
92a31b1f
FB
895 bswaptls(&phdr->p_offset); /* Segment file offset */
896 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
897 bswaptls(&phdr->p_paddr); /* Segment physical address */
898 bswaptls(&phdr->p_filesz); /* Segment size in file */
899 bswaptls(&phdr->p_memsz); /* Segment size in memory */
31e31b8a 900 bswap32s(&phdr->p_flags); /* Segment flags */
92a31b1f 901 bswaptls(&phdr->p_align); /* Segment alignment */
31e31b8a 902}
689f936f 903
92a31b1f 904static void bswap_shdr(struct elf_shdr *shdr)
689f936f
FB
905{
906 bswap32s(&shdr->sh_name);
907 bswap32s(&shdr->sh_type);
92a31b1f
FB
908 bswaptls(&shdr->sh_flags);
909 bswaptls(&shdr->sh_addr);
910 bswaptls(&shdr->sh_offset);
911 bswaptls(&shdr->sh_size);
689f936f
FB
912 bswap32s(&shdr->sh_link);
913 bswap32s(&shdr->sh_info);
92a31b1f
FB
914 bswaptls(&shdr->sh_addralign);
915 bswaptls(&shdr->sh_entsize);
689f936f
FB
916}
917
7a3148a9 918static void bswap_sym(struct elf_sym *sym)
689f936f
FB
919{
920 bswap32s(&sym->st_name);
7a3148a9
JM
921 bswaptls(&sym->st_value);
922 bswaptls(&sym->st_size);
689f936f
FB
923 bswap16s(&sym->st_shndx);
924}
31e31b8a
FB
925#endif
926
edf8e2af
MW
927#ifdef USE_ELF_CORE_DUMP
928static int elf_core_dump(int, const CPUState *);
929
930#ifdef BSWAP_NEEDED
931static void bswap_note(struct elf_note *en)
932{
9fdca5aa 933 bswap32s(&en->n_namesz);
934 bswap32s(&en->n_descsz);
935 bswap32s(&en->n_type);
edf8e2af
MW
936}
937#endif /* BSWAP_NEEDED */
938
939#endif /* USE_ELF_CORE_DUMP */
940
31e31b8a 941/*
e5fe0c52 942 * 'copy_elf_strings()' copies argument/envelope strings from user
31e31b8a
FB
943 * memory to free pages in kernel mem. These are in a format ready
944 * to be put directly into the top of new user memory.
945 *
946 */
992f48a0
BS
947static abi_ulong copy_elf_strings(int argc,char ** argv, void **page,
948 abi_ulong p)
31e31b8a
FB
949{
950 char *tmp, *tmp1, *pag = NULL;
951 int len, offset = 0;
952
953 if (!p) {
954 return 0; /* bullet-proofing */
955 }
956 while (argc-- > 0) {
edf779ff
FB
957 tmp = argv[argc];
958 if (!tmp) {
31e31b8a
FB
959 fprintf(stderr, "VFS: argc is wrong");
960 exit(-1);
961 }
edf779ff
FB
962 tmp1 = tmp;
963 while (*tmp++);
31e31b8a
FB
964 len = tmp - tmp1;
965 if (p < len) { /* this shouldn't happen - 128kB */
966 return 0;
967 }
968 while (len) {
969 --p; --tmp; --len;
970 if (--offset < 0) {
54936004 971 offset = p % TARGET_PAGE_SIZE;
53a5960a 972 pag = (char *)page[p/TARGET_PAGE_SIZE];
44a91cae 973 if (!pag) {
53a5960a 974 pag = (char *)malloc(TARGET_PAGE_SIZE);
4118a970 975 memset(pag, 0, TARGET_PAGE_SIZE);
53a5960a 976 page[p/TARGET_PAGE_SIZE] = pag;
44a91cae
FB
977 if (!pag)
978 return 0;
31e31b8a
FB
979 }
980 }
981 if (len == 0 || offset == 0) {
edf779ff 982 *(pag + offset) = *tmp;
31e31b8a
FB
983 }
984 else {
985 int bytes_to_copy = (len > offset) ? offset : len;
986 tmp -= bytes_to_copy;
987 p -= bytes_to_copy;
988 offset -= bytes_to_copy;
989 len -= bytes_to_copy;
990 memcpy_fromfs(pag + offset, tmp, bytes_to_copy + 1);
991 }
992 }
993 }
994 return p;
995}
996
992f48a0
BS
997static abi_ulong setup_arg_pages(abi_ulong p, struct linux_binprm *bprm,
998 struct image_info *info)
53a5960a 999{
992f48a0 1000 abi_ulong stack_base, size, error;
31e31b8a 1001 int i;
31e31b8a 1002
09bfb054
FB
1003 /* Create enough stack to hold everything. If we don't use
1004 * it for args, we'll use it for something else...
1005 */
703e0e89 1006 size = guest_stack_size;
54936004
FB
1007 if (size < MAX_ARG_PAGES*TARGET_PAGE_SIZE)
1008 size = MAX_ARG_PAGES*TARGET_PAGE_SIZE;
5fafdf24 1009 error = target_mmap(0,
83fb7adf 1010 size + qemu_host_page_size,
54936004
FB
1011 PROT_READ | PROT_WRITE,
1012 MAP_PRIVATE | MAP_ANONYMOUS,
1013 -1, 0);
09bfb054
FB
1014 if (error == -1) {
1015 perror("stk mmap");
1016 exit(-1);
1017 }
1018 /* we reserve one extra page at the top of the stack as guard */
83fb7adf 1019 target_mprotect(error + size, qemu_host_page_size, PROT_NONE);
31e31b8a 1020
54936004 1021 stack_base = error + size - MAX_ARG_PAGES*TARGET_PAGE_SIZE;
31e31b8a 1022 p += stack_base;
09bfb054 1023
31e31b8a
FB
1024 for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
1025 if (bprm->page[i]) {
1026 info->rss++;
579a97f7 1027 /* FIXME - check return value of memcpy_to_target() for failure */
53a5960a
PB
1028 memcpy_to_target(stack_base, bprm->page[i], TARGET_PAGE_SIZE);
1029 free(bprm->page[i]);
31e31b8a 1030 }
53a5960a 1031 stack_base += TARGET_PAGE_SIZE;
31e31b8a
FB
1032 }
1033 return p;
1034}
1035
992f48a0 1036static void set_brk(abi_ulong start, abi_ulong end)
31e31b8a
FB
1037{
1038 /* page-align the start and end addresses... */
54936004
FB
1039 start = HOST_PAGE_ALIGN(start);
1040 end = HOST_PAGE_ALIGN(end);
31e31b8a
FB
1041 if (end <= start)
1042 return;
54936004
FB
1043 if(target_mmap(start, end - start,
1044 PROT_READ | PROT_WRITE | PROT_EXEC,
1045 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0) == -1) {
31e31b8a
FB
1046 perror("cannot mmap brk");
1047 exit(-1);
1048 }
1049}
1050
1051
853d6f7a
FB
1052/* We need to explicitly zero any fractional pages after the data
1053 section (i.e. bss). This would contain the junk from the file that
1054 should not be in memory. */
992f48a0 1055static void padzero(abi_ulong elf_bss, abi_ulong last_bss)
31e31b8a 1056{
992f48a0 1057 abi_ulong nbyte;
31e31b8a 1058
768a4a36
TS
1059 if (elf_bss >= last_bss)
1060 return;
1061
853d6f7a
FB
1062 /* XXX: this is really a hack : if the real host page size is
1063 smaller than the target page size, some pages after the end
1064 of the file may not be mapped. A better fix would be to
1065 patch target_mmap(), but it is more complicated as the file
1066 size must be known */
83fb7adf 1067 if (qemu_real_host_page_size < qemu_host_page_size) {
992f48a0 1068 abi_ulong end_addr, end_addr1;
5fafdf24 1069 end_addr1 = (elf_bss + qemu_real_host_page_size - 1) &
83fb7adf 1070 ~(qemu_real_host_page_size - 1);
853d6f7a
FB
1071 end_addr = HOST_PAGE_ALIGN(elf_bss);
1072 if (end_addr1 < end_addr) {
863cf0b7 1073 mmap((void *)g2h(end_addr1), end_addr - end_addr1,
853d6f7a
FB
1074 PROT_READ|PROT_WRITE|PROT_EXEC,
1075 MAP_FIXED|MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
1076 }
1077 }
1078
83fb7adf 1079 nbyte = elf_bss & (qemu_host_page_size-1);
31e31b8a 1080 if (nbyte) {
83fb7adf 1081 nbyte = qemu_host_page_size - nbyte;
31e31b8a 1082 do {
2f619698
FB
1083 /* FIXME - what to do if put_user() fails? */
1084 put_user_u8(0, elf_bss);
53a5960a 1085 elf_bss++;
31e31b8a
FB
1086 } while (--nbyte);
1087 }
1088}
1089
53a5960a 1090
992f48a0
BS
1091static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1092 struct elfhdr * exec,
1093 abi_ulong load_addr,
1094 abi_ulong load_bias,
1095 abi_ulong interp_load_addr, int ibcs,
1096 struct image_info *info)
31e31b8a 1097{
992f48a0 1098 abi_ulong sp;
53a5960a 1099 int size;
992f48a0 1100 abi_ulong u_platform;
15338fd7 1101 const char *k_platform;
863cf0b7 1102 const int n = sizeof(elf_addr_t);
edf779ff 1103
53a5960a
PB
1104 sp = p;
1105 u_platform = 0;
15338fd7
FB
1106 k_platform = ELF_PLATFORM;
1107 if (k_platform) {
1108 size_t len = strlen(k_platform) + 1;
53a5960a
PB
1109 sp -= (len + n - 1) & ~(n - 1);
1110 u_platform = sp;
579a97f7 1111 /* FIXME - check return value of memcpy_to_target() for failure */
53a5960a 1112 memcpy_to_target(sp, k_platform, len);
15338fd7 1113 }
53a5960a
PB
1114 /*
1115 * Force 16 byte _final_ alignment here for generality.
1116 */
992f48a0 1117 sp = sp &~ (abi_ulong)15;
53a5960a 1118 size = (DLINFO_ITEMS + 1) * 2;
15338fd7 1119 if (k_platform)
53a5960a 1120 size += 2;
f5155289 1121#ifdef DLINFO_ARCH_ITEMS
53a5960a 1122 size += DLINFO_ARCH_ITEMS * 2;
f5155289 1123#endif
53a5960a
PB
1124 size += envc + argc + 2;
1125 size += (!ibcs ? 3 : 1); /* argc itself */
1126 size *= n;
1127 if (size & 15)
1128 sp -= 16 - (size & 15);
3b46e624 1129
863cf0b7
JM
1130 /* This is correct because Linux defines
1131 * elf_addr_t as Elf32_Off / Elf64_Off
1132 */
2f619698
FB
1133#define NEW_AUX_ENT(id, val) do { \
1134 sp -= n; put_user_ual(val, sp); \
1135 sp -= n; put_user_ual(id, sp); \
53a5960a 1136 } while(0)
2f619698 1137
0bccf03d
FB
1138 NEW_AUX_ENT (AT_NULL, 0);
1139
1140 /* There must be exactly DLINFO_ITEMS entries here. */
992f48a0
BS
1141 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(load_addr + exec->e_phoff));
1142 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1143 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1144 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
1145 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_load_addr));
1146 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
0bccf03d 1147 NEW_AUX_ENT(AT_ENTRY, load_bias + exec->e_entry);
992f48a0
BS
1148 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1149 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1150 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1151 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1152 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
a07c67df 1153 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
15338fd7 1154 if (k_platform)
53a5960a 1155 NEW_AUX_ENT(AT_PLATFORM, u_platform);
f5155289 1156#ifdef ARCH_DLINFO
5fafdf24 1157 /*
f5155289
FB
1158 * ARCH_DLINFO must come last so platform specific code can enforce
1159 * special alignment requirements on the AUXV if necessary (eg. PPC).
1160 */
1161 ARCH_DLINFO;
1162#endif
1163#undef NEW_AUX_ENT
1164
edf8e2af
MW
1165 info->saved_auxv = sp;
1166
e5fe0c52 1167 sp = loader_build_argptr(envc, argc, sp, p, !ibcs);
31e31b8a
FB
1168 return sp;
1169}
1170
1171
992f48a0
BS
1172static abi_ulong load_elf_interp(struct elfhdr * interp_elf_ex,
1173 int interpreter_fd,
1174 abi_ulong *interp_load_addr)
31e31b8a
FB
1175{
1176 struct elf_phdr *elf_phdata = NULL;
1177 struct elf_phdr *eppnt;
992f48a0 1178 abi_ulong load_addr = 0;
31e31b8a
FB
1179 int load_addr_set = 0;
1180 int retval;
992f48a0
BS
1181 abi_ulong last_bss, elf_bss;
1182 abi_ulong error;
31e31b8a 1183 int i;
5fafdf24 1184
31e31b8a
FB
1185 elf_bss = 0;
1186 last_bss = 0;
1187 error = 0;
1188
644c433c
FB
1189#ifdef BSWAP_NEEDED
1190 bswap_ehdr(interp_elf_ex);
1191#endif
31e31b8a 1192 /* First of all, some simple consistency checks */
5fafdf24
TS
1193 if ((interp_elf_ex->e_type != ET_EXEC &&
1194 interp_elf_ex->e_type != ET_DYN) ||
31e31b8a 1195 !elf_check_arch(interp_elf_ex->e_machine)) {
992f48a0 1196 return ~((abi_ulong)0UL);
31e31b8a 1197 }
5fafdf24 1198
644c433c 1199
31e31b8a 1200 /* Now read in all of the header information */
5fafdf24 1201
54936004 1202 if (sizeof(struct elf_phdr) * interp_elf_ex->e_phnum > TARGET_PAGE_SIZE)
992f48a0 1203 return ~(abi_ulong)0UL;
5fafdf24
TS
1204
1205 elf_phdata = (struct elf_phdr *)
31e31b8a
FB
1206 malloc(sizeof(struct elf_phdr) * interp_elf_ex->e_phnum);
1207
1208 if (!elf_phdata)
992f48a0 1209 return ~((abi_ulong)0UL);
5fafdf24 1210
31e31b8a
FB
1211 /*
1212 * If the size of this structure has changed, then punt, since
1213 * we will be doing the wrong thing.
1214 */
09bfb054 1215 if (interp_elf_ex->e_phentsize != sizeof(struct elf_phdr)) {
31e31b8a 1216 free(elf_phdata);
992f48a0 1217 return ~((abi_ulong)0UL);
09bfb054 1218 }
31e31b8a
FB
1219
1220 retval = lseek(interpreter_fd, interp_elf_ex->e_phoff, SEEK_SET);
1221 if(retval >= 0) {
1222 retval = read(interpreter_fd,
1223 (char *) elf_phdata,
1224 sizeof(struct elf_phdr) * interp_elf_ex->e_phnum);
1225 }
31e31b8a
FB
1226 if (retval < 0) {
1227 perror("load_elf_interp");
1228 exit(-1);
1229 free (elf_phdata);
1230 return retval;
1231 }
1232#ifdef BSWAP_NEEDED
1233 eppnt = elf_phdata;
1234 for (i=0; i<interp_elf_ex->e_phnum; i++, eppnt++) {
1235 bswap_phdr(eppnt);
1236 }
1237#endif
09bfb054
FB
1238
1239 if (interp_elf_ex->e_type == ET_DYN) {
e91c8a77 1240 /* in order to avoid hardcoding the interpreter load
09bfb054 1241 address in qemu, we allocate a big enough memory zone */
54936004 1242 error = target_mmap(0, INTERP_MAP_SIZE,
5fafdf24 1243 PROT_NONE, MAP_PRIVATE | MAP_ANON,
54936004 1244 -1, 0);
09bfb054
FB
1245 if (error == -1) {
1246 perror("mmap");
1247 exit(-1);
1248 }
1249 load_addr = error;
1250 load_addr_set = 1;
1251 }
1252
31e31b8a
FB
1253 eppnt = elf_phdata;
1254 for(i=0; i<interp_elf_ex->e_phnum; i++, eppnt++)
1255 if (eppnt->p_type == PT_LOAD) {
1256 int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
1257 int elf_prot = 0;
992f48a0
BS
1258 abi_ulong vaddr = 0;
1259 abi_ulong k;
31e31b8a
FB
1260
1261 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ;
1262 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
1263 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
1264 if (interp_elf_ex->e_type == ET_EXEC || load_addr_set) {
1265 elf_type |= MAP_FIXED;
1266 vaddr = eppnt->p_vaddr;
1267 }
54936004
FB
1268 error = target_mmap(load_addr+TARGET_ELF_PAGESTART(vaddr),
1269 eppnt->p_filesz + TARGET_ELF_PAGEOFFSET(eppnt->p_vaddr),
31e31b8a
FB
1270 elf_prot,
1271 elf_type,
1272 interpreter_fd,
54936004 1273 eppnt->p_offset - TARGET_ELF_PAGEOFFSET(eppnt->p_vaddr));
3b46e624 1274
e89f07d3 1275 if (error == -1) {
31e31b8a
FB
1276 /* Real error */
1277 close(interpreter_fd);
1278 free(elf_phdata);
992f48a0 1279 return ~((abi_ulong)0UL);
31e31b8a
FB
1280 }
1281
1282 if (!load_addr_set && interp_elf_ex->e_type == ET_DYN) {
1283 load_addr = error;
1284 load_addr_set = 1;
1285 }
1286
1287 /*
1288 * Find the end of the file mapping for this phdr, and keep
1289 * track of the largest address we see for this.
1290 */
1291 k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
1292 if (k > elf_bss) elf_bss = k;
1293
1294 /*
1295 * Do the same thing for the memory mapping - between
1296 * elf_bss and last_bss is the bss section.
1297 */
1298 k = load_addr + eppnt->p_memsz + eppnt->p_vaddr;
1299 if (k > last_bss) last_bss = k;
1300 }
5fafdf24 1301
31e31b8a
FB
1302 /* Now use mmap to map the library into memory. */
1303
1304 close(interpreter_fd);
1305
1306 /*
1307 * Now fill out the bss section. First pad the last page up
1308 * to the page boundary, and then perform a mmap to make sure
1309 * that there are zeromapped pages up to and including the last
1310 * bss page.
1311 */
768a4a36 1312 padzero(elf_bss, last_bss);
83fb7adf 1313 elf_bss = TARGET_ELF_PAGESTART(elf_bss + qemu_host_page_size - 1); /* What we have mapped so far */
31e31b8a
FB
1314
1315 /* Map the last of the bss segment */
1316 if (last_bss > elf_bss) {
54936004
FB
1317 target_mmap(elf_bss, last_bss-elf_bss,
1318 PROT_READ|PROT_WRITE|PROT_EXEC,
1319 MAP_FIXED|MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
31e31b8a
FB
1320 }
1321 free(elf_phdata);
1322
1323 *interp_load_addr = load_addr;
992f48a0 1324 return ((abi_ulong) interp_elf_ex->e_entry) + load_addr;
31e31b8a
FB
1325}
1326
49918a75
PB
1327static int symfind(const void *s0, const void *s1)
1328{
1329 struct elf_sym *key = (struct elf_sym *)s0;
1330 struct elf_sym *sym = (struct elf_sym *)s1;
1331 int result = 0;
1332 if (key->st_value < sym->st_value) {
1333 result = -1;
ec822001 1334 } else if (key->st_value >= sym->st_value + sym->st_size) {
49918a75
PB
1335 result = 1;
1336 }
1337 return result;
1338}
1339
1340static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
1341{
1342#if ELF_CLASS == ELFCLASS32
1343 struct elf_sym *syms = s->disas_symtab.elf32;
1344#else
1345 struct elf_sym *syms = s->disas_symtab.elf64;
1346#endif
1347
1348 // binary search
1349 struct elf_sym key;
1350 struct elf_sym *sym;
1351
1352 key.st_value = orig_addr;
1353
1354 sym = bsearch(&key, syms, s->disas_num_syms, sizeof(*syms), symfind);
7cba04f6 1355 if (sym != NULL) {
49918a75
PB
1356 return s->disas_strtab + sym->st_name;
1357 }
1358
1359 return "";
1360}
1361
1362/* FIXME: This should use elf_ops.h */
1363static int symcmp(const void *s0, const void *s1)
1364{
1365 struct elf_sym *sym0 = (struct elf_sym *)s0;
1366 struct elf_sym *sym1 = (struct elf_sym *)s1;
1367 return (sym0->st_value < sym1->st_value)
1368 ? -1
1369 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
1370}
1371
689f936f
FB
1372/* Best attempt to load symbols from this ELF object. */
1373static void load_symbols(struct elfhdr *hdr, int fd)
1374{
49918a75 1375 unsigned int i, nsyms;
689f936f
FB
1376 struct elf_shdr sechdr, symtab, strtab;
1377 char *strings;
e80cfcfc 1378 struct syminfo *s;
49918a75 1379 struct elf_sym *syms;
689f936f
FB
1380
1381 lseek(fd, hdr->e_shoff, SEEK_SET);
1382 for (i = 0; i < hdr->e_shnum; i++) {
49918a75
PB
1383 if (read(fd, &sechdr, sizeof(sechdr)) != sizeof(sechdr))
1384 return;
689f936f 1385#ifdef BSWAP_NEEDED
49918a75 1386 bswap_shdr(&sechdr);
689f936f 1387#endif
49918a75
PB
1388 if (sechdr.sh_type == SHT_SYMTAB) {
1389 symtab = sechdr;
1390 lseek(fd, hdr->e_shoff
1391 + sizeof(sechdr) * sechdr.sh_link, SEEK_SET);
1392 if (read(fd, &strtab, sizeof(strtab))
1393 != sizeof(strtab))
1394 return;
689f936f 1395#ifdef BSWAP_NEEDED
49918a75 1396 bswap_shdr(&strtab);
689f936f 1397#endif
49918a75
PB
1398 goto found;
1399 }
689f936f
FB
1400 }
1401 return; /* Shouldn't happen... */
1402
1403 found:
1404 /* Now know where the strtab and symtab are. Snarf them. */
e80cfcfc 1405 s = malloc(sizeof(*s));
49918a75
PB
1406 syms = malloc(symtab.sh_size);
1407 if (!syms)
1408 return;
e80cfcfc 1409 s->disas_strtab = strings = malloc(strtab.sh_size);
49918a75
PB
1410 if (!s->disas_strtab)
1411 return;
5fafdf24 1412
689f936f 1413 lseek(fd, symtab.sh_offset, SEEK_SET);
49918a75
PB
1414 if (read(fd, syms, symtab.sh_size) != symtab.sh_size)
1415 return;
1416
1417 nsyms = symtab.sh_size / sizeof(struct elf_sym);
31e31b8a 1418
49918a75
PB
1419 i = 0;
1420 while (i < nsyms) {
689f936f 1421#ifdef BSWAP_NEEDED
49918a75 1422 bswap_sym(syms + i);
689f936f 1423#endif
49918a75
PB
1424 // Throw away entries which we do not need.
1425 if (syms[i].st_shndx == SHN_UNDEF ||
1426 syms[i].st_shndx >= SHN_LORESERVE ||
1427 ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
1428 nsyms--;
1429 if (i < nsyms) {
1430 syms[i] = syms[nsyms];
1431 }
1432 continue;
1433 }
1434#if defined(TARGET_ARM) || defined (TARGET_MIPS)
1435 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
1436 syms[i].st_value &= ~(target_ulong)1;
0774bed1 1437#endif
49918a75 1438 i++;
0774bed1 1439 }
49918a75
PB
1440 syms = realloc(syms, nsyms * sizeof(*syms));
1441
1442 qsort(syms, nsyms, sizeof(*syms), symcmp);
689f936f
FB
1443
1444 lseek(fd, strtab.sh_offset, SEEK_SET);
1445 if (read(fd, strings, strtab.sh_size) != strtab.sh_size)
49918a75
PB
1446 return;
1447 s->disas_num_syms = nsyms;
1448#if ELF_CLASS == ELFCLASS32
1449 s->disas_symtab.elf32 = syms;
9f9f0309 1450 s->lookup_symbol = lookup_symbolxx;
49918a75
PB
1451#else
1452 s->disas_symtab.elf64 = syms;
9f9f0309 1453 s->lookup_symbol = lookup_symbolxx;
49918a75 1454#endif
e80cfcfc
FB
1455 s->next = syminfos;
1456 syminfos = s;
689f936f 1457}
31e31b8a 1458
e5fe0c52
PB
1459int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
1460 struct image_info * info)
31e31b8a
FB
1461{
1462 struct elfhdr elf_ex;
1463 struct elfhdr interp_elf_ex;
1464 struct exec interp_ex;
1465 int interpreter_fd = -1; /* avoid warning */
992f48a0 1466 abi_ulong load_addr, load_bias;
31e31b8a
FB
1467 int load_addr_set = 0;
1468 unsigned int interpreter_type = INTERPRETER_NONE;
1469 unsigned char ibcs2_interpreter;
1470 int i;
992f48a0 1471 abi_ulong mapped_addr;
31e31b8a
FB
1472 struct elf_phdr * elf_ppnt;
1473 struct elf_phdr *elf_phdata;
992f48a0 1474 abi_ulong elf_bss, k, elf_brk;
31e31b8a
FB
1475 int retval;
1476 char * elf_interpreter;
992f48a0 1477 abi_ulong elf_entry, interp_load_addr = 0;
31e31b8a 1478 int status;
992f48a0
BS
1479 abi_ulong start_code, end_code, start_data, end_data;
1480 abi_ulong reloc_func_desc = 0;
1481 abi_ulong elf_stack;
31e31b8a
FB
1482 char passed_fileno[6];
1483
1484 ibcs2_interpreter = 0;
1485 status = 0;
1486 load_addr = 0;
09bfb054 1487 load_bias = 0;
31e31b8a
FB
1488 elf_ex = *((struct elfhdr *) bprm->buf); /* exec-header */
1489#ifdef BSWAP_NEEDED
1490 bswap_ehdr(&elf_ex);
1491#endif
1492
31e31b8a
FB
1493 /* First of all, some simple consistency checks */
1494 if ((elf_ex.e_type != ET_EXEC && elf_ex.e_type != ET_DYN) ||
1495 (! elf_check_arch(elf_ex.e_machine))) {
1496 return -ENOEXEC;
1497 }
1498
e5fe0c52
PB
1499 bprm->p = copy_elf_strings(1, &bprm->filename, bprm->page, bprm->p);
1500 bprm->p = copy_elf_strings(bprm->envc,bprm->envp,bprm->page,bprm->p);
1501 bprm->p = copy_elf_strings(bprm->argc,bprm->argv,bprm->page,bprm->p);
1502 if (!bprm->p) {
1503 retval = -E2BIG;
1504 }
1505
31e31b8a 1506 /* Now read in all of the header information */
31e31b8a
FB
1507 elf_phdata = (struct elf_phdr *)malloc(elf_ex.e_phentsize*elf_ex.e_phnum);
1508 if (elf_phdata == NULL) {
1509 return -ENOMEM;
1510 }
1511
1512 retval = lseek(bprm->fd, elf_ex.e_phoff, SEEK_SET);
1513 if(retval > 0) {
5fafdf24 1514 retval = read(bprm->fd, (char *) elf_phdata,
31e31b8a
FB
1515 elf_ex.e_phentsize * elf_ex.e_phnum);
1516 }
1517
1518 if (retval < 0) {
1519 perror("load_elf_binary");
1520 exit(-1);
1521 free (elf_phdata);
1522 return -errno;
1523 }
1524
b17780d5
FB
1525#ifdef BSWAP_NEEDED
1526 elf_ppnt = elf_phdata;
1527 for (i=0; i<elf_ex.e_phnum; i++, elf_ppnt++) {
1528 bswap_phdr(elf_ppnt);
1529 }
1530#endif
31e31b8a
FB
1531 elf_ppnt = elf_phdata;
1532
1533 elf_bss = 0;
1534 elf_brk = 0;
1535
1536
992f48a0 1537 elf_stack = ~((abi_ulong)0UL);
31e31b8a 1538 elf_interpreter = NULL;
992f48a0 1539 start_code = ~((abi_ulong)0UL);
31e31b8a 1540 end_code = 0;
863cf0b7 1541 start_data = 0;
31e31b8a 1542 end_data = 0;
98448f58 1543 interp_ex.a_info = 0;
31e31b8a
FB
1544
1545 for(i=0;i < elf_ex.e_phnum; i++) {
1546 if (elf_ppnt->p_type == PT_INTERP) {
1547 if ( elf_interpreter != NULL )
1548 {
1549 free (elf_phdata);
1550 free(elf_interpreter);
1551 close(bprm->fd);
1552 return -EINVAL;
1553 }
1554
1555 /* This is the program interpreter used for
1556 * shared libraries - for now assume that this
1557 * is an a.out format binary
1558 */
1559
32ce6337 1560 elf_interpreter = (char *)malloc(elf_ppnt->p_filesz);
31e31b8a
FB
1561
1562 if (elf_interpreter == NULL) {
1563 free (elf_phdata);
1564 close(bprm->fd);
1565 return -ENOMEM;
1566 }
1567
31e31b8a
FB
1568 retval = lseek(bprm->fd, elf_ppnt->p_offset, SEEK_SET);
1569 if(retval >= 0) {
32ce6337 1570 retval = read(bprm->fd, elf_interpreter, elf_ppnt->p_filesz);
31e31b8a
FB
1571 }
1572 if(retval < 0) {
1573 perror("load_elf_binary2");
1574 exit(-1);
5fafdf24 1575 }
31e31b8a
FB
1576
1577 /* If the program interpreter is one of these two,
1578 then assume an iBCS2 image. Otherwise assume
1579 a native linux image. */
1580
1581 /* JRP - Need to add X86 lib dir stuff here... */
1582
1583 if (strcmp(elf_interpreter,"/usr/lib/libc.so.1") == 0 ||
1584 strcmp(elf_interpreter,"/usr/lib/ld.so.1") == 0) {
1585 ibcs2_interpreter = 1;
1586 }
1587
1588#if 0
3bc0bdca 1589 printf("Using ELF interpreter %s\n", path(elf_interpreter));
31e31b8a
FB
1590#endif
1591 if (retval >= 0) {
32ce6337 1592 retval = open(path(elf_interpreter), O_RDONLY);
31e31b8a
FB
1593 if(retval >= 0) {
1594 interpreter_fd = retval;
1595 }
1596 else {
1597 perror(elf_interpreter);
1598 exit(-1);
1599 /* retval = -errno; */
1600 }
1601 }
1602
1603 if (retval >= 0) {
1604 retval = lseek(interpreter_fd, 0, SEEK_SET);
1605 if(retval >= 0) {
1606 retval = read(interpreter_fd,bprm->buf,128);
1607 }
1608 }
1609 if (retval >= 0) {
1610 interp_ex = *((struct exec *) bprm->buf); /* aout exec-header */
6ece4df6 1611 interp_elf_ex = *((struct elfhdr *) bprm->buf); /* elf exec-header */
31e31b8a
FB
1612 }
1613 if (retval < 0) {
1614 perror("load_elf_binary3");
1615 exit(-1);
1616 free (elf_phdata);
1617 free(elf_interpreter);
1618 close(bprm->fd);
1619 return retval;
1620 }
1621 }
1622 elf_ppnt++;
1623 }
1624
1625 /* Some simple consistency checks for the interpreter */
1626 if (elf_interpreter){
1627 interpreter_type = INTERPRETER_ELF | INTERPRETER_AOUT;
1628
1629 /* Now figure out which format our binary is */
1630 if ((N_MAGIC(interp_ex) != OMAGIC) && (N_MAGIC(interp_ex) != ZMAGIC) &&
1631 (N_MAGIC(interp_ex) != QMAGIC)) {
1632 interpreter_type = INTERPRETER_ELF;
1633 }
1634
1635 if (interp_elf_ex.e_ident[0] != 0x7f ||
b55266b5 1636 strncmp((char *)&interp_elf_ex.e_ident[1], "ELF",3) != 0) {
31e31b8a
FB
1637 interpreter_type &= ~INTERPRETER_ELF;
1638 }
1639
1640 if (!interpreter_type) {
1641 free(elf_interpreter);
1642 free(elf_phdata);
1643 close(bprm->fd);
1644 return -ELIBBAD;
1645 }
1646 }
1647
1648 /* OK, we are done with that, now set up the arg stuff,
1649 and then start this sucker up */
1650
e5fe0c52 1651 {
31e31b8a
FB
1652 char * passed_p;
1653
1654 if (interpreter_type == INTERPRETER_AOUT) {
eba2af63 1655 snprintf(passed_fileno, sizeof(passed_fileno), "%d", bprm->fd);
31e31b8a
FB
1656 passed_p = passed_fileno;
1657
1658 if (elf_interpreter) {
e5fe0c52 1659 bprm->p = copy_elf_strings(1,&passed_p,bprm->page,bprm->p);
31e31b8a
FB
1660 bprm->argc++;
1661 }
1662 }
1663 if (!bprm->p) {
1664 if (elf_interpreter) {
1665 free(elf_interpreter);
1666 }
1667 free (elf_phdata);
1668 close(bprm->fd);
1669 return -E2BIG;
1670 }
1671 }
1672
1673 /* OK, This is the point of no return */
1674 info->end_data = 0;
1675 info->end_code = 0;
992f48a0 1676 info->start_mmap = (abi_ulong)ELF_START_MMAP;
31e31b8a 1677 info->mmap = 0;
992f48a0 1678 elf_entry = (abi_ulong) elf_ex.e_entry;
31e31b8a 1679
379f6698
PB
1680#if defined(CONFIG_USE_GUEST_BASE)
1681 /*
1682 * In case where user has not explicitly set the guest_base, we
1683 * probe here that should we set it automatically.
1684 */
1685 if (!have_guest_base) {
1686 /*
c581deda
PB
1687 * Go through ELF program header table and find the address
1688 * range used by loadable segments. Check that this is available on
1689 * the host, and if not find a suitable value for guest_base. */
1690 abi_ulong app_start = ~0;
1691 abi_ulong app_end = 0;
1692 abi_ulong addr;
1693 unsigned long host_start;
1694 unsigned long real_start;
1695 unsigned long host_size;
379f6698
PB
1696 for (i = 0, elf_ppnt = elf_phdata; i < elf_ex.e_phnum;
1697 i++, elf_ppnt++) {
1698 if (elf_ppnt->p_type != PT_LOAD)
1699 continue;
c581deda
PB
1700 addr = elf_ppnt->p_vaddr;
1701 if (addr < app_start) {
1702 app_start = addr;
1703 }
1704 addr += elf_ppnt->p_memsz;
1705 if (addr > app_end) {
1706 app_end = addr;
1707 }
1708 }
1709
1710 /* If we don't have any loadable segments then something
1711 is very wrong. */
1712 assert(app_start < app_end);
1713
1714 /* Round addresses to page boundaries. */
1715 app_start = app_start & qemu_host_page_mask;
1716 app_end = HOST_PAGE_ALIGN(app_end);
1717 if (app_start < mmap_min_addr) {
1718 host_start = HOST_PAGE_ALIGN(mmap_min_addr);
1719 } else {
1720 host_start = app_start;
1721 if (host_start != app_start) {
1722 fprintf(stderr, "qemu: Address overflow loading ELF binary\n");
1723 abort();
1724 }
1725 }
1726 host_size = app_end - app_start;
1727 while (1) {
1728 /* Do not use mmap_find_vma here because that is limited to the
1729 guest address space. We are going to make the
1730 guest address space fit whatever we're given. */
1731 real_start = (unsigned long)mmap((void *)host_start, host_size,
1732 PROT_NONE, MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE, -1, 0);
1733 if (real_start == (unsigned long)-1) {
1734 fprintf(stderr, "qemu: Virtual memory exausted\n");
1735 abort();
1736 }
1737 if (real_start == host_start) {
379f6698
PB
1738 break;
1739 }
c581deda
PB
1740 /* That address didn't work. Unmap and try a different one.
1741 The address the host picked because is typically
1742 right at the top of the host address space and leaves the
1743 guest with no usable address space. Resort to a linear search.
1744 We already compensated for mmap_min_addr, so this should not
1745 happen often. Probably means we got unlucky and host address
1746 space randomization put a shared library somewhere
1747 inconvenient. */
1748 munmap((void *)real_start, host_size);
1749 host_start += qemu_host_page_size;
1750 if (host_start == app_start) {
1751 /* Theoretically possible if host doesn't have any
1752 suitably aligned areas. Normally the first mmap will
1753 fail. */
1754 fprintf(stderr, "qemu: Unable to find space for application\n");
1755 abort();
1756 }
379f6698 1757 }
c581deda
PB
1758 qemu_log("Relocating guest address space from 0x" TARGET_ABI_FMT_lx
1759 " to 0x%lx\n", app_start, real_start);
1760 guest_base = real_start - app_start;
379f6698
PB
1761 }
1762#endif /* CONFIG_USE_GUEST_BASE */
1763
31e31b8a
FB
1764 /* Do this so that we can load the interpreter, if need be. We will
1765 change some of these later */
1766 info->rss = 0;
1767 bprm->p = setup_arg_pages(bprm->p, bprm, info);
1768 info->start_stack = bprm->p;
1769
1770 /* Now we do a little grungy work by mmaping the ELF image into
1771 * the correct location in memory. At this point, we assume that
1772 * the image should be loaded at fixed address, not at a variable
1773 * address.
1774 */
1775
31e31b8a 1776 for(i = 0, elf_ppnt = elf_phdata; i < elf_ex.e_phnum; i++, elf_ppnt++) {
09bfb054
FB
1777 int elf_prot = 0;
1778 int elf_flags = 0;
992f48a0 1779 abi_ulong error;
3b46e624 1780
09bfb054
FB
1781 if (elf_ppnt->p_type != PT_LOAD)
1782 continue;
3b46e624 1783
09bfb054
FB
1784 if (elf_ppnt->p_flags & PF_R) elf_prot |= PROT_READ;
1785 if (elf_ppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
1786 if (elf_ppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
1787 elf_flags = MAP_PRIVATE | MAP_DENYWRITE;
1788 if (elf_ex.e_type == ET_EXEC || load_addr_set) {
1789 elf_flags |= MAP_FIXED;
1790 } else if (elf_ex.e_type == ET_DYN) {
1791 /* Try and get dynamic programs out of the way of the default mmap
1792 base, as well as whatever program they might try to exec. This
1793 is because the brk will follow the loader, and is not movable. */
1794 /* NOTE: for qemu, we do a big mmap to get enough space
e91c8a77 1795 without hardcoding any address */
54936004 1796 error = target_mmap(0, ET_DYN_MAP_SIZE,
5fafdf24 1797 PROT_NONE, MAP_PRIVATE | MAP_ANON,
54936004 1798 -1, 0);
09bfb054
FB
1799 if (error == -1) {
1800 perror("mmap");
1801 exit(-1);
1802 }
54936004 1803 load_bias = TARGET_ELF_PAGESTART(error - elf_ppnt->p_vaddr);
09bfb054 1804 }
3b46e624 1805
54936004
FB
1806 error = target_mmap(TARGET_ELF_PAGESTART(load_bias + elf_ppnt->p_vaddr),
1807 (elf_ppnt->p_filesz +
1808 TARGET_ELF_PAGEOFFSET(elf_ppnt->p_vaddr)),
1809 elf_prot,
1810 (MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE),
1811 bprm->fd,
5fafdf24 1812 (elf_ppnt->p_offset -
54936004 1813 TARGET_ELF_PAGEOFFSET(elf_ppnt->p_vaddr)));
09bfb054
FB
1814 if (error == -1) {
1815 perror("mmap");
1816 exit(-1);
1817 }
31e31b8a
FB
1818
1819#ifdef LOW_ELF_STACK
54936004
FB
1820 if (TARGET_ELF_PAGESTART(elf_ppnt->p_vaddr) < elf_stack)
1821 elf_stack = TARGET_ELF_PAGESTART(elf_ppnt->p_vaddr);
31e31b8a 1822#endif
3b46e624 1823
09bfb054
FB
1824 if (!load_addr_set) {
1825 load_addr_set = 1;
1826 load_addr = elf_ppnt->p_vaddr - elf_ppnt->p_offset;
1827 if (elf_ex.e_type == ET_DYN) {
1828 load_bias += error -
54936004 1829 TARGET_ELF_PAGESTART(load_bias + elf_ppnt->p_vaddr);
09bfb054 1830 load_addr += load_bias;
84409ddb 1831 reloc_func_desc = load_bias;
09bfb054
FB
1832 }
1833 }
1834 k = elf_ppnt->p_vaddr;
5fafdf24 1835 if (k < start_code)
09bfb054 1836 start_code = k;
863cf0b7
JM
1837 if (start_data < k)
1838 start_data = k;
09bfb054 1839 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
5fafdf24 1840 if (k > elf_bss)
09bfb054
FB
1841 elf_bss = k;
1842 if ((elf_ppnt->p_flags & PF_X) && end_code < k)
1843 end_code = k;
5fafdf24 1844 if (end_data < k)
09bfb054
FB
1845 end_data = k;
1846 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
1847 if (k > elf_brk) elf_brk = k;
31e31b8a
FB
1848 }
1849
09bfb054
FB
1850 elf_entry += load_bias;
1851 elf_bss += load_bias;
1852 elf_brk += load_bias;
1853 start_code += load_bias;
1854 end_code += load_bias;
863cf0b7 1855 start_data += load_bias;
09bfb054
FB
1856 end_data += load_bias;
1857
31e31b8a
FB
1858 if (elf_interpreter) {
1859 if (interpreter_type & 1) {
1860 elf_entry = load_aout_interp(&interp_ex, interpreter_fd);
1861 }
1862 else if (interpreter_type & 2) {
1863 elf_entry = load_elf_interp(&interp_elf_ex, interpreter_fd,
1864 &interp_load_addr);
1865 }
84409ddb 1866 reloc_func_desc = interp_load_addr;
31e31b8a
FB
1867
1868 close(interpreter_fd);
1869 free(elf_interpreter);
1870
992f48a0 1871 if (elf_entry == ~((abi_ulong)0UL)) {
31e31b8a
FB
1872 printf("Unable to load interpreter\n");
1873 free(elf_phdata);
1874 exit(-1);
1875 return 0;
1876 }
1877 }
1878
1879 free(elf_phdata);
1880
93fcfe39 1881 if (qemu_log_enabled())
689f936f
FB
1882 load_symbols(&elf_ex, bprm->fd);
1883
31e31b8a
FB
1884 if (interpreter_type != INTERPRETER_AOUT) close(bprm->fd);
1885 info->personality = (ibcs2_interpreter ? PER_SVR4 : PER_LINUX);
1886
1887#ifdef LOW_ELF_STACK
1888 info->start_stack = bprm->p = elf_stack - 4;
1889#endif
53a5960a 1890 bprm->p = create_elf_tables(bprm->p,
31e31b8a
FB
1891 bprm->argc,
1892 bprm->envc,
a1516e92 1893 &elf_ex,
09bfb054 1894 load_addr, load_bias,
31e31b8a
FB
1895 interp_load_addr,
1896 (interpreter_type == INTERPRETER_AOUT ? 0 : 1),
1897 info);
92a343da 1898 info->load_addr = reloc_func_desc;
31e31b8a
FB
1899 info->start_brk = info->brk = elf_brk;
1900 info->end_code = end_code;
1901 info->start_code = start_code;
863cf0b7 1902 info->start_data = start_data;
31e31b8a
FB
1903 info->end_data = end_data;
1904 info->start_stack = bprm->p;
1905
1906 /* Calling set_brk effectively mmaps the pages that we need for the bss and break
1907 sections */
1908 set_brk(elf_bss, elf_brk);
1909
768a4a36 1910 padzero(elf_bss, elf_brk);
31e31b8a
FB
1911
1912#if 0
1913 printf("(start_brk) %x\n" , info->start_brk);
1914 printf("(end_code) %x\n" , info->end_code);
1915 printf("(start_code) %x\n" , info->start_code);
1916 printf("(end_data) %x\n" , info->end_data);
1917 printf("(start_stack) %x\n" , info->start_stack);
1918 printf("(brk) %x\n" , info->brk);
1919#endif
1920
1921 if ( info->personality == PER_SVR4 )
1922 {
1923 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
1924 and some applications "depend" upon this behavior.
1925 Since we do not have the power to recompile these, we
1926 emulate the SVr4 behavior. Sigh. */
83fb7adf 1927 mapped_addr = target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
54936004 1928 MAP_FIXED | MAP_PRIVATE, -1, 0);
31e31b8a
FB
1929 }
1930
31e31b8a
FB
1931 info->entry = elf_entry;
1932
edf8e2af
MW
1933#ifdef USE_ELF_CORE_DUMP
1934 bprm->core_dump = &elf_core_dump;
1935#endif
1936
31e31b8a
FB
1937 return 0;
1938}
1939
edf8e2af
MW
1940#ifdef USE_ELF_CORE_DUMP
1941
1942/*
1943 * Definitions to generate Intel SVR4-like core files.
a2547a13 1944 * These mostly have the same names as the SVR4 types with "target_elf_"
edf8e2af
MW
1945 * tacked on the front to prevent clashes with linux definitions,
1946 * and the typedef forms have been avoided. This is mostly like
1947 * the SVR4 structure, but more Linuxy, with things that Linux does
1948 * not support and which gdb doesn't really use excluded.
1949 *
1950 * Fields we don't dump (their contents is zero) in linux-user qemu
1951 * are marked with XXX.
1952 *
1953 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
1954 *
1955 * Porting ELF coredump for target is (quite) simple process. First you
dd0a3651 1956 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
edf8e2af
MW
1957 * the target resides):
1958 *
1959 * #define USE_ELF_CORE_DUMP
1960 *
1961 * Next you define type of register set used for dumping. ELF specification
1962 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
1963 *
c227f099 1964 * typedef <target_regtype> target_elf_greg_t;
edf8e2af 1965 * #define ELF_NREG <number of registers>
c227f099 1966 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 1967 *
edf8e2af
MW
1968 * Last step is to implement target specific function that copies registers
1969 * from given cpu into just specified register set. Prototype is:
1970 *
c227f099 1971 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
a2547a13 1972 * const CPUState *env);
edf8e2af
MW
1973 *
1974 * Parameters:
1975 * regs - copy register values into here (allocated and zeroed by caller)
1976 * env - copy registers from here
1977 *
1978 * Example for ARM target is provided in this file.
1979 */
1980
1981/* An ELF note in memory */
1982struct memelfnote {
1983 const char *name;
1984 size_t namesz;
1985 size_t namesz_rounded;
1986 int type;
1987 size_t datasz;
1988 void *data;
1989 size_t notesz;
1990};
1991
a2547a13 1992struct target_elf_siginfo {
edf8e2af
MW
1993 int si_signo; /* signal number */
1994 int si_code; /* extra code */
1995 int si_errno; /* errno */
1996};
1997
a2547a13
LD
1998struct target_elf_prstatus {
1999 struct target_elf_siginfo pr_info; /* Info associated with signal */
edf8e2af
MW
2000 short pr_cursig; /* Current signal */
2001 target_ulong pr_sigpend; /* XXX */
2002 target_ulong pr_sighold; /* XXX */
c227f099
AL
2003 target_pid_t pr_pid;
2004 target_pid_t pr_ppid;
2005 target_pid_t pr_pgrp;
2006 target_pid_t pr_sid;
edf8e2af
MW
2007 struct target_timeval pr_utime; /* XXX User time */
2008 struct target_timeval pr_stime; /* XXX System time */
2009 struct target_timeval pr_cutime; /* XXX Cumulative user time */
2010 struct target_timeval pr_cstime; /* XXX Cumulative system time */
c227f099 2011 target_elf_gregset_t pr_reg; /* GP registers */
edf8e2af
MW
2012 int pr_fpvalid; /* XXX */
2013};
2014
2015#define ELF_PRARGSZ (80) /* Number of chars for args */
2016
a2547a13 2017struct target_elf_prpsinfo {
edf8e2af
MW
2018 char pr_state; /* numeric process state */
2019 char pr_sname; /* char for pr_state */
2020 char pr_zomb; /* zombie */
2021 char pr_nice; /* nice val */
2022 target_ulong pr_flag; /* flags */
c227f099
AL
2023 target_uid_t pr_uid;
2024 target_gid_t pr_gid;
2025 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
edf8e2af
MW
2026 /* Lots missing */
2027 char pr_fname[16]; /* filename of executable */
2028 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2029};
2030
2031/* Here is the structure in which status of each thread is captured. */
2032struct elf_thread_status {
72cf2d4f 2033 QTAILQ_ENTRY(elf_thread_status) ets_link;
a2547a13 2034 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
edf8e2af
MW
2035#if 0
2036 elf_fpregset_t fpu; /* NT_PRFPREG */
2037 struct task_struct *thread;
2038 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
2039#endif
2040 struct memelfnote notes[1];
2041 int num_notes;
2042};
2043
2044struct elf_note_info {
2045 struct memelfnote *notes;
a2547a13
LD
2046 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
2047 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
edf8e2af 2048
72cf2d4f 2049 QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
edf8e2af
MW
2050#if 0
2051 /*
2052 * Current version of ELF coredump doesn't support
2053 * dumping fp regs etc.
2054 */
2055 elf_fpregset_t *fpu;
2056 elf_fpxregset_t *xfpu;
2057 int thread_status_size;
2058#endif
2059 int notes_size;
2060 int numnote;
2061};
2062
2063struct vm_area_struct {
2064 abi_ulong vma_start; /* start vaddr of memory region */
2065 abi_ulong vma_end; /* end vaddr of memory region */
2066 abi_ulong vma_flags; /* protection etc. flags for the region */
72cf2d4f 2067 QTAILQ_ENTRY(vm_area_struct) vma_link;
edf8e2af
MW
2068};
2069
2070struct mm_struct {
72cf2d4f 2071 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
edf8e2af
MW
2072 int mm_count; /* number of mappings */
2073};
2074
2075static struct mm_struct *vma_init(void);
2076static void vma_delete(struct mm_struct *);
2077static int vma_add_mapping(struct mm_struct *, abi_ulong,
2078 abi_ulong, abi_ulong);
2079static int vma_get_mapping_count(const struct mm_struct *);
2080static struct vm_area_struct *vma_first(const struct mm_struct *);
2081static struct vm_area_struct *vma_next(struct vm_area_struct *);
2082static abi_ulong vma_dump_size(const struct vm_area_struct *);
b480d9b7 2083static int vma_walker(void *priv, abi_ulong start, abi_ulong end,
edf8e2af
MW
2084 unsigned long flags);
2085
2086static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2087static void fill_note(struct memelfnote *, const char *, int,
2088 unsigned int, void *);
a2547a13
LD
2089static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2090static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
edf8e2af
MW
2091static void fill_auxv_note(struct memelfnote *, const TaskState *);
2092static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2093static size_t note_size(const struct memelfnote *);
2094static void free_note_info(struct elf_note_info *);
2095static int fill_note_info(struct elf_note_info *, long, const CPUState *);
2096static void fill_thread_info(struct elf_note_info *, const CPUState *);
2097static int core_dump_filename(const TaskState *, char *, size_t);
2098
2099static int dump_write(int, const void *, size_t);
2100static int write_note(struct memelfnote *, int);
2101static int write_note_info(struct elf_note_info *, int);
2102
2103#ifdef BSWAP_NEEDED
a2547a13
LD
2104static void bswap_prstatus(struct target_elf_prstatus *);
2105static void bswap_psinfo(struct target_elf_prpsinfo *);
edf8e2af 2106
a2547a13 2107static void bswap_prstatus(struct target_elf_prstatus *prstatus)
edf8e2af
MW
2108{
2109 prstatus->pr_info.si_signo = tswapl(prstatus->pr_info.si_signo);
2110 prstatus->pr_info.si_code = tswapl(prstatus->pr_info.si_code);
2111 prstatus->pr_info.si_errno = tswapl(prstatus->pr_info.si_errno);
2112 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
2113 prstatus->pr_sigpend = tswapl(prstatus->pr_sigpend);
2114 prstatus->pr_sighold = tswapl(prstatus->pr_sighold);
2115 prstatus->pr_pid = tswap32(prstatus->pr_pid);
2116 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2117 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2118 prstatus->pr_sid = tswap32(prstatus->pr_sid);
2119 /* cpu times are not filled, so we skip them */
2120 /* regs should be in correct format already */
2121 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2122}
2123
a2547a13 2124static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
edf8e2af
MW
2125{
2126 psinfo->pr_flag = tswapl(psinfo->pr_flag);
2127 psinfo->pr_uid = tswap16(psinfo->pr_uid);
2128 psinfo->pr_gid = tswap16(psinfo->pr_gid);
2129 psinfo->pr_pid = tswap32(psinfo->pr_pid);
2130 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2131 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2132 psinfo->pr_sid = tswap32(psinfo->pr_sid);
2133}
2134#endif /* BSWAP_NEEDED */
2135
2136/*
2137 * Minimal support for linux memory regions. These are needed
2138 * when we are finding out what memory exactly belongs to
2139 * emulated process. No locks needed here, as long as
2140 * thread that received the signal is stopped.
2141 */
2142
2143static struct mm_struct *vma_init(void)
2144{
2145 struct mm_struct *mm;
2146
2147 if ((mm = qemu_malloc(sizeof (*mm))) == NULL)
2148 return (NULL);
2149
2150 mm->mm_count = 0;
72cf2d4f 2151 QTAILQ_INIT(&mm->mm_mmap);
edf8e2af
MW
2152
2153 return (mm);
2154}
2155
2156static void vma_delete(struct mm_struct *mm)
2157{
2158 struct vm_area_struct *vma;
2159
2160 while ((vma = vma_first(mm)) != NULL) {
72cf2d4f 2161 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
edf8e2af
MW
2162 qemu_free(vma);
2163 }
2164 qemu_free(mm);
2165}
2166
2167static int vma_add_mapping(struct mm_struct *mm, abi_ulong start,
2168 abi_ulong end, abi_ulong flags)
2169{
2170 struct vm_area_struct *vma;
2171
2172 if ((vma = qemu_mallocz(sizeof (*vma))) == NULL)
2173 return (-1);
2174
2175 vma->vma_start = start;
2176 vma->vma_end = end;
2177 vma->vma_flags = flags;
2178
72cf2d4f 2179 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
edf8e2af
MW
2180 mm->mm_count++;
2181
2182 return (0);
2183}
2184
2185static struct vm_area_struct *vma_first(const struct mm_struct *mm)
2186{
72cf2d4f 2187 return (QTAILQ_FIRST(&mm->mm_mmap));
edf8e2af
MW
2188}
2189
2190static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
2191{
72cf2d4f 2192 return (QTAILQ_NEXT(vma, vma_link));
edf8e2af
MW
2193}
2194
2195static int vma_get_mapping_count(const struct mm_struct *mm)
2196{
2197 return (mm->mm_count);
2198}
2199
2200/*
2201 * Calculate file (dump) size of given memory region.
2202 */
2203static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
2204{
2205 /* if we cannot even read the first page, skip it */
2206 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
2207 return (0);
2208
2209 /*
2210 * Usually we don't dump executable pages as they contain
2211 * non-writable code that debugger can read directly from
2212 * target library etc. However, thread stacks are marked
2213 * also executable so we read in first page of given region
2214 * and check whether it contains elf header. If there is
2215 * no elf header, we dump it.
2216 */
2217 if (vma->vma_flags & PROT_EXEC) {
2218 char page[TARGET_PAGE_SIZE];
2219
2220 copy_from_user(page, vma->vma_start, sizeof (page));
2221 if ((page[EI_MAG0] == ELFMAG0) &&
2222 (page[EI_MAG1] == ELFMAG1) &&
2223 (page[EI_MAG2] == ELFMAG2) &&
2224 (page[EI_MAG3] == ELFMAG3)) {
2225 /*
2226 * Mappings are possibly from ELF binary. Don't dump
2227 * them.
2228 */
2229 return (0);
2230 }
2231 }
2232
2233 return (vma->vma_end - vma->vma_start);
2234}
2235
b480d9b7 2236static int vma_walker(void *priv, abi_ulong start, abi_ulong end,
edf8e2af
MW
2237 unsigned long flags)
2238{
2239 struct mm_struct *mm = (struct mm_struct *)priv;
2240
edf8e2af
MW
2241 vma_add_mapping(mm, start, end, flags);
2242 return (0);
2243}
2244
2245static void fill_note(struct memelfnote *note, const char *name, int type,
2246 unsigned int sz, void *data)
2247{
2248 unsigned int namesz;
2249
2250 namesz = strlen(name) + 1;
2251 note->name = name;
2252 note->namesz = namesz;
2253 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
2254 note->type = type;
2255 note->datasz = roundup(sz, sizeof (int32_t));;
2256 note->data = data;
2257
2258 /*
2259 * We calculate rounded up note size here as specified by
2260 * ELF document.
2261 */
2262 note->notesz = sizeof (struct elf_note) +
2263 note->namesz_rounded + note->datasz;
2264}
2265
2266static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
2267 uint32_t flags)
2268{
2269 (void) memset(elf, 0, sizeof(*elf));
2270
2271 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
2272 elf->e_ident[EI_CLASS] = ELF_CLASS;
2273 elf->e_ident[EI_DATA] = ELF_DATA;
2274 elf->e_ident[EI_VERSION] = EV_CURRENT;
2275 elf->e_ident[EI_OSABI] = ELF_OSABI;
2276
2277 elf->e_type = ET_CORE;
2278 elf->e_machine = machine;
2279 elf->e_version = EV_CURRENT;
2280 elf->e_phoff = sizeof(struct elfhdr);
2281 elf->e_flags = flags;
2282 elf->e_ehsize = sizeof(struct elfhdr);
2283 elf->e_phentsize = sizeof(struct elf_phdr);
2284 elf->e_phnum = segs;
2285
2286#ifdef BSWAP_NEEDED
2287 bswap_ehdr(elf);
2288#endif
2289}
2290
2291static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
2292{
2293 phdr->p_type = PT_NOTE;
2294 phdr->p_offset = offset;
2295 phdr->p_vaddr = 0;
2296 phdr->p_paddr = 0;
2297 phdr->p_filesz = sz;
2298 phdr->p_memsz = 0;
2299 phdr->p_flags = 0;
2300 phdr->p_align = 0;
2301
2302#ifdef BSWAP_NEEDED
2303 bswap_phdr(phdr);
2304#endif
2305}
2306
2307static size_t note_size(const struct memelfnote *note)
2308{
2309 return (note->notesz);
2310}
2311
a2547a13 2312static void fill_prstatus(struct target_elf_prstatus *prstatus,
edf8e2af
MW
2313 const TaskState *ts, int signr)
2314{
2315 (void) memset(prstatus, 0, sizeof (*prstatus));
2316 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
2317 prstatus->pr_pid = ts->ts_tid;
2318 prstatus->pr_ppid = getppid();
2319 prstatus->pr_pgrp = getpgrp();
2320 prstatus->pr_sid = getsid(0);
2321
2322#ifdef BSWAP_NEEDED
2323 bswap_prstatus(prstatus);
2324#endif
2325}
2326
a2547a13 2327static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
edf8e2af
MW
2328{
2329 char *filename, *base_filename;
2330 unsigned int i, len;
2331
2332 (void) memset(psinfo, 0, sizeof (*psinfo));
2333
2334 len = ts->info->arg_end - ts->info->arg_start;
2335 if (len >= ELF_PRARGSZ)
2336 len = ELF_PRARGSZ - 1;
2337 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
2338 return -EFAULT;
2339 for (i = 0; i < len; i++)
2340 if (psinfo->pr_psargs[i] == 0)
2341 psinfo->pr_psargs[i] = ' ';
2342 psinfo->pr_psargs[len] = 0;
2343
2344 psinfo->pr_pid = getpid();
2345 psinfo->pr_ppid = getppid();
2346 psinfo->pr_pgrp = getpgrp();
2347 psinfo->pr_sid = getsid(0);
2348 psinfo->pr_uid = getuid();
2349 psinfo->pr_gid = getgid();
2350
2351 filename = strdup(ts->bprm->filename);
2352 base_filename = strdup(basename(filename));
2353 (void) strncpy(psinfo->pr_fname, base_filename,
2354 sizeof(psinfo->pr_fname));
2355 free(base_filename);
2356 free(filename);
2357
2358#ifdef BSWAP_NEEDED
2359 bswap_psinfo(psinfo);
2360#endif
2361 return (0);
2362}
2363
2364static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
2365{
2366 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
2367 elf_addr_t orig_auxv = auxv;
2368 abi_ulong val;
2369 void *ptr;
2370 int i, len;
2371
2372 /*
2373 * Auxiliary vector is stored in target process stack. It contains
2374 * {type, value} pairs that we need to dump into note. This is not
2375 * strictly necessary but we do it here for sake of completeness.
2376 */
2377
2378 /* find out lenght of the vector, AT_NULL is terminator */
2379 i = len = 0;
2380 do {
2381 get_user_ual(val, auxv);
2382 i += 2;
2383 auxv += 2 * sizeof (elf_addr_t);
2384 } while (val != AT_NULL);
2385 len = i * sizeof (elf_addr_t);
2386
2387 /* read in whole auxv vector and copy it to memelfnote */
2388 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
2389 if (ptr != NULL) {
2390 fill_note(note, "CORE", NT_AUXV, len, ptr);
2391 unlock_user(ptr, auxv, len);
2392 }
2393}
2394
2395/*
2396 * Constructs name of coredump file. We have following convention
2397 * for the name:
2398 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
2399 *
2400 * Returns 0 in case of success, -1 otherwise (errno is set).
2401 */
2402static int core_dump_filename(const TaskState *ts, char *buf,
2403 size_t bufsize)
2404{
2405 char timestamp[64];
2406 char *filename = NULL;
2407 char *base_filename = NULL;
2408 struct timeval tv;
2409 struct tm tm;
2410
2411 assert(bufsize >= PATH_MAX);
2412
2413 if (gettimeofday(&tv, NULL) < 0) {
2414 (void) fprintf(stderr, "unable to get current timestamp: %s",
2415 strerror(errno));
2416 return (-1);
2417 }
2418
2419 filename = strdup(ts->bprm->filename);
2420 base_filename = strdup(basename(filename));
2421 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
2422 localtime_r(&tv.tv_sec, &tm));
2423 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
2424 base_filename, timestamp, (int)getpid());
2425 free(base_filename);
2426 free(filename);
2427
2428 return (0);
2429}
2430
2431static int dump_write(int fd, const void *ptr, size_t size)
2432{
2433 const char *bufp = (const char *)ptr;
2434 ssize_t bytes_written, bytes_left;
2435 struct rlimit dumpsize;
2436 off_t pos;
2437
2438 bytes_written = 0;
2439 getrlimit(RLIMIT_CORE, &dumpsize);
2440 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
2441 if (errno == ESPIPE) { /* not a seekable stream */
2442 bytes_left = size;
2443 } else {
2444 return pos;
2445 }
2446 } else {
2447 if (dumpsize.rlim_cur <= pos) {
2448 return -1;
2449 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
2450 bytes_left = size;
2451 } else {
2452 size_t limit_left=dumpsize.rlim_cur - pos;
2453 bytes_left = limit_left >= size ? size : limit_left ;
2454 }
2455 }
2456
2457 /*
2458 * In normal conditions, single write(2) should do but
2459 * in case of socket etc. this mechanism is more portable.
2460 */
2461 do {
2462 bytes_written = write(fd, bufp, bytes_left);
2463 if (bytes_written < 0) {
2464 if (errno == EINTR)
2465 continue;
2466 return (-1);
2467 } else if (bytes_written == 0) { /* eof */
2468 return (-1);
2469 }
2470 bufp += bytes_written;
2471 bytes_left -= bytes_written;
2472 } while (bytes_left > 0);
2473
2474 return (0);
2475}
2476
2477static int write_note(struct memelfnote *men, int fd)
2478{
2479 struct elf_note en;
2480
2481 en.n_namesz = men->namesz;
2482 en.n_type = men->type;
2483 en.n_descsz = men->datasz;
2484
2485#ifdef BSWAP_NEEDED
2486 bswap_note(&en);
2487#endif
2488
2489 if (dump_write(fd, &en, sizeof(en)) != 0)
2490 return (-1);
2491 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
2492 return (-1);
2493 if (dump_write(fd, men->data, men->datasz) != 0)
2494 return (-1);
2495
2496 return (0);
2497}
2498
2499static void fill_thread_info(struct elf_note_info *info, const CPUState *env)
2500{
2501 TaskState *ts = (TaskState *)env->opaque;
2502 struct elf_thread_status *ets;
2503
2504 ets = qemu_mallocz(sizeof (*ets));
2505 ets->num_notes = 1; /* only prstatus is dumped */
2506 fill_prstatus(&ets->prstatus, ts, 0);
2507 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
2508 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
2509 &ets->prstatus);
2510
72cf2d4f 2511 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
edf8e2af
MW
2512
2513 info->notes_size += note_size(&ets->notes[0]);
2514}
2515
2516static int fill_note_info(struct elf_note_info *info,
2517 long signr, const CPUState *env)
2518{
2519#define NUMNOTES 3
2520 CPUState *cpu = NULL;
2521 TaskState *ts = (TaskState *)env->opaque;
2522 int i;
2523
2524 (void) memset(info, 0, sizeof (*info));
2525
72cf2d4f 2526 QTAILQ_INIT(&info->thread_list);
edf8e2af
MW
2527
2528 info->notes = qemu_mallocz(NUMNOTES * sizeof (struct memelfnote));
2529 if (info->notes == NULL)
2530 return (-ENOMEM);
2531 info->prstatus = qemu_mallocz(sizeof (*info->prstatus));
2532 if (info->prstatus == NULL)
2533 return (-ENOMEM);
2534 info->psinfo = qemu_mallocz(sizeof (*info->psinfo));
2535 if (info->prstatus == NULL)
2536 return (-ENOMEM);
2537
2538 /*
2539 * First fill in status (and registers) of current thread
2540 * including process info & aux vector.
2541 */
2542 fill_prstatus(info->prstatus, ts, signr);
2543 elf_core_copy_regs(&info->prstatus->pr_reg, env);
2544 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
2545 sizeof (*info->prstatus), info->prstatus);
2546 fill_psinfo(info->psinfo, ts);
2547 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
2548 sizeof (*info->psinfo), info->psinfo);
2549 fill_auxv_note(&info->notes[2], ts);
2550 info->numnote = 3;
2551
2552 info->notes_size = 0;
2553 for (i = 0; i < info->numnote; i++)
2554 info->notes_size += note_size(&info->notes[i]);
2555
2556 /* read and fill status of all threads */
2557 cpu_list_lock();
2558 for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
2559 if (cpu == thread_env)
2560 continue;
2561 fill_thread_info(info, cpu);
2562 }
2563 cpu_list_unlock();
2564
2565 return (0);
2566}
2567
2568static void free_note_info(struct elf_note_info *info)
2569{
2570 struct elf_thread_status *ets;
2571
72cf2d4f
BS
2572 while (!QTAILQ_EMPTY(&info->thread_list)) {
2573 ets = QTAILQ_FIRST(&info->thread_list);
2574 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
edf8e2af
MW
2575 qemu_free(ets);
2576 }
2577
2578 qemu_free(info->prstatus);
2579 qemu_free(info->psinfo);
2580 qemu_free(info->notes);
2581}
2582
2583static int write_note_info(struct elf_note_info *info, int fd)
2584{
2585 struct elf_thread_status *ets;
2586 int i, error = 0;
2587
2588 /* write prstatus, psinfo and auxv for current thread */
2589 for (i = 0; i < info->numnote; i++)
2590 if ((error = write_note(&info->notes[i], fd)) != 0)
2591 return (error);
2592
2593 /* write prstatus for each thread */
2594 for (ets = info->thread_list.tqh_first; ets != NULL;
2595 ets = ets->ets_link.tqe_next) {
2596 if ((error = write_note(&ets->notes[0], fd)) != 0)
2597 return (error);
2598 }
2599
2600 return (0);
2601}
2602
2603/*
2604 * Write out ELF coredump.
2605 *
2606 * See documentation of ELF object file format in:
2607 * http://www.caldera.com/developers/devspecs/gabi41.pdf
2608 *
2609 * Coredump format in linux is following:
2610 *
2611 * 0 +----------------------+ \
2612 * | ELF header | ET_CORE |
2613 * +----------------------+ |
2614 * | ELF program headers | |--- headers
2615 * | - NOTE section | |
2616 * | - PT_LOAD sections | |
2617 * +----------------------+ /
2618 * | NOTEs: |
2619 * | - NT_PRSTATUS |
2620 * | - NT_PRSINFO |
2621 * | - NT_AUXV |
2622 * +----------------------+ <-- aligned to target page
2623 * | Process memory dump |
2624 * : :
2625 * . .
2626 * : :
2627 * | |
2628 * +----------------------+
2629 *
2630 * NT_PRSTATUS -> struct elf_prstatus (per thread)
2631 * NT_PRSINFO -> struct elf_prpsinfo
2632 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
2633 *
2634 * Format follows System V format as close as possible. Current
2635 * version limitations are as follows:
2636 * - no floating point registers are dumped
2637 *
2638 * Function returns 0 in case of success, negative errno otherwise.
2639 *
2640 * TODO: make this work also during runtime: it should be
2641 * possible to force coredump from running process and then
2642 * continue processing. For example qemu could set up SIGUSR2
2643 * handler (provided that target process haven't registered
2644 * handler for that) that does the dump when signal is received.
2645 */
2646static int elf_core_dump(int signr, const CPUState *env)
2647{
2648 const TaskState *ts = (const TaskState *)env->opaque;
2649 struct vm_area_struct *vma = NULL;
2650 char corefile[PATH_MAX];
2651 struct elf_note_info info;
2652 struct elfhdr elf;
2653 struct elf_phdr phdr;
2654 struct rlimit dumpsize;
2655 struct mm_struct *mm = NULL;
2656 off_t offset = 0, data_offset = 0;
2657 int segs = 0;
2658 int fd = -1;
2659
2660 errno = 0;
2661 getrlimit(RLIMIT_CORE, &dumpsize);
2662 if (dumpsize.rlim_cur == 0)
2663 return 0;
2664
2665 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
2666 return (-errno);
2667
2668 if ((fd = open(corefile, O_WRONLY | O_CREAT,
2669 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
2670 return (-errno);
2671
2672 /*
2673 * Walk through target process memory mappings and
2674 * set up structure containing this information. After
2675 * this point vma_xxx functions can be used.
2676 */
2677 if ((mm = vma_init()) == NULL)
2678 goto out;
2679
2680 walk_memory_regions(mm, vma_walker);
2681 segs = vma_get_mapping_count(mm);
2682
2683 /*
2684 * Construct valid coredump ELF header. We also
2685 * add one more segment for notes.
2686 */
2687 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
2688 if (dump_write(fd, &elf, sizeof (elf)) != 0)
2689 goto out;
2690
2691 /* fill in in-memory version of notes */
2692 if (fill_note_info(&info, signr, env) < 0)
2693 goto out;
2694
2695 offset += sizeof (elf); /* elf header */
2696 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
2697
2698 /* write out notes program header */
2699 fill_elf_note_phdr(&phdr, info.notes_size, offset);
2700
2701 offset += info.notes_size;
2702 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
2703 goto out;
2704
2705 /*
2706 * ELF specification wants data to start at page boundary so
2707 * we align it here.
2708 */
2709 offset = roundup(offset, ELF_EXEC_PAGESIZE);
2710
2711 /*
2712 * Write program headers for memory regions mapped in
2713 * the target process.
2714 */
2715 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
2716 (void) memset(&phdr, 0, sizeof (phdr));
2717
2718 phdr.p_type = PT_LOAD;
2719 phdr.p_offset = offset;
2720 phdr.p_vaddr = vma->vma_start;
2721 phdr.p_paddr = 0;
2722 phdr.p_filesz = vma_dump_size(vma);
2723 offset += phdr.p_filesz;
2724 phdr.p_memsz = vma->vma_end - vma->vma_start;
2725 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
2726 if (vma->vma_flags & PROT_WRITE)
2727 phdr.p_flags |= PF_W;
2728 if (vma->vma_flags & PROT_EXEC)
2729 phdr.p_flags |= PF_X;
2730 phdr.p_align = ELF_EXEC_PAGESIZE;
2731
2732 dump_write(fd, &phdr, sizeof (phdr));
2733 }
2734
2735 /*
2736 * Next we write notes just after program headers. No
2737 * alignment needed here.
2738 */
2739 if (write_note_info(&info, fd) < 0)
2740 goto out;
2741
2742 /* align data to page boundary */
2743 data_offset = lseek(fd, 0, SEEK_CUR);
2744 data_offset = TARGET_PAGE_ALIGN(data_offset);
2745 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
2746 goto out;
2747
2748 /*
2749 * Finally we can dump process memory into corefile as well.
2750 */
2751 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
2752 abi_ulong addr;
2753 abi_ulong end;
2754
2755 end = vma->vma_start + vma_dump_size(vma);
2756
2757 for (addr = vma->vma_start; addr < end;
2758 addr += TARGET_PAGE_SIZE) {
2759 char page[TARGET_PAGE_SIZE];
2760 int error;
2761
2762 /*
2763 * Read in page from target process memory and
2764 * write it to coredump file.
2765 */
2766 error = copy_from_user(page, addr, sizeof (page));
2767 if (error != 0) {
49995e17 2768 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
edf8e2af
MW
2769 addr);
2770 errno = -error;
2771 goto out;
2772 }
2773 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
2774 goto out;
2775 }
2776 }
2777
2778out:
2779 free_note_info(&info);
2780 if (mm != NULL)
2781 vma_delete(mm);
2782 (void) close(fd);
2783
2784 if (errno != 0)
2785 return (-errno);
2786 return (0);
2787}
2788
2789#endif /* USE_ELF_CORE_DUMP */
2790
31e31b8a
FB
2791static int load_aout_interp(void * exptr, int interp_fd)
2792{
2793 printf("a.out interpreter not yet supported\n");
2794 return(0);
2795}
2796
e5fe0c52
PB
2797void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
2798{
2799 init_thread(regs, infop);
2800}
This page took 0.747124 seconds and 4 git commands to generate.