]>
Commit | Line | Data |
---|---|---|
05330448 AL |
1 | /* |
2 | * QEMU KVM support | |
3 | * | |
4 | * Copyright (C) 2006-2008 Qumranet Technologies | |
5 | * Copyright IBM, Corp. 2008 | |
6 | * | |
7 | * Authors: | |
8 | * Anthony Liguori <[email protected]> | |
9 | * | |
10 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
11 | * See the COPYING file in the top-level directory. | |
12 | * | |
13 | */ | |
14 | ||
15 | #include <sys/types.h> | |
16 | #include <sys/ioctl.h> | |
17 | #include <sys/mman.h> | |
25d2e361 | 18 | #include <sys/utsname.h> |
05330448 AL |
19 | |
20 | #include <linux/kvm.h> | |
5802e066 | 21 | #include <linux/kvm_para.h> |
05330448 AL |
22 | |
23 | #include "qemu-common.h" | |
9c17d615 PB |
24 | #include "sysemu/sysemu.h" |
25 | #include "sysemu/kvm.h" | |
1d31f66b | 26 | #include "kvm_i386.h" |
05330448 | 27 | #include "cpu.h" |
022c62cb | 28 | #include "exec/gdbstub.h" |
1de7afc9 PB |
29 | #include "qemu/host-utils.h" |
30 | #include "qemu/config-file.h" | |
0d09e41a PB |
31 | #include "hw/i386/pc.h" |
32 | #include "hw/i386/apic.h" | |
e0723c45 PB |
33 | #include "hw/i386/apic_internal.h" |
34 | #include "hw/i386/apic-msidef.h" | |
022c62cb | 35 | #include "exec/ioport.h" |
92067bf4 | 36 | #include <asm/hyperv.h> |
a2cb15b0 | 37 | #include "hw/pci/pci.h" |
68bfd0ad MT |
38 | #include "migration/migration.h" |
39 | #include "qapi/qmp/qerror.h" | |
05330448 AL |
40 | |
41 | //#define DEBUG_KVM | |
42 | ||
43 | #ifdef DEBUG_KVM | |
8c0d577e | 44 | #define DPRINTF(fmt, ...) \ |
05330448 AL |
45 | do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) |
46 | #else | |
8c0d577e | 47 | #define DPRINTF(fmt, ...) \ |
05330448 AL |
48 | do { } while (0) |
49 | #endif | |
50 | ||
1a03675d GC |
51 | #define MSR_KVM_WALL_CLOCK 0x11 |
52 | #define MSR_KVM_SYSTEM_TIME 0x12 | |
53 | ||
c0532a76 MT |
54 | #ifndef BUS_MCEERR_AR |
55 | #define BUS_MCEERR_AR 4 | |
56 | #endif | |
57 | #ifndef BUS_MCEERR_AO | |
58 | #define BUS_MCEERR_AO 5 | |
59 | #endif | |
60 | ||
94a8d39a JK |
61 | const KVMCapabilityInfo kvm_arch_required_capabilities[] = { |
62 | KVM_CAP_INFO(SET_TSS_ADDR), | |
63 | KVM_CAP_INFO(EXT_CPUID), | |
64 | KVM_CAP_INFO(MP_STATE), | |
65 | KVM_CAP_LAST_INFO | |
66 | }; | |
25d2e361 | 67 | |
c3a3a7d3 JK |
68 | static bool has_msr_star; |
69 | static bool has_msr_hsave_pa; | |
f28558d3 | 70 | static bool has_msr_tsc_adjust; |
aa82ba54 | 71 | static bool has_msr_tsc_deadline; |
df67696e | 72 | static bool has_msr_feature_control; |
c5999bfc | 73 | static bool has_msr_async_pf_en; |
bc9a839d | 74 | static bool has_msr_pv_eoi_en; |
21e87c46 | 75 | static bool has_msr_misc_enable; |
79e9ebeb | 76 | static bool has_msr_bndcfgs; |
917367aa | 77 | static bool has_msr_kvm_steal_time; |
25d2e361 | 78 | static int lm_capable_kernel; |
7bc3d711 PB |
79 | static bool has_msr_hv_hypercall; |
80 | static bool has_msr_hv_vapic; | |
48a5f3bc | 81 | static bool has_msr_hv_tsc; |
d1ae67f6 | 82 | static bool has_msr_mtrr; |
b827df58 | 83 | |
0d894367 PB |
84 | static bool has_msr_architectural_pmu; |
85 | static uint32_t num_architectural_pmu_counters; | |
86 | ||
1d31f66b PM |
87 | bool kvm_allows_irq0_override(void) |
88 | { | |
89 | return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing(); | |
90 | } | |
91 | ||
b827df58 AK |
92 | static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max) |
93 | { | |
94 | struct kvm_cpuid2 *cpuid; | |
95 | int r, size; | |
96 | ||
97 | size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); | |
7267c094 | 98 | cpuid = (struct kvm_cpuid2 *)g_malloc0(size); |
b827df58 AK |
99 | cpuid->nent = max; |
100 | r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid); | |
76ae317f MM |
101 | if (r == 0 && cpuid->nent >= max) { |
102 | r = -E2BIG; | |
103 | } | |
b827df58 AK |
104 | if (r < 0) { |
105 | if (r == -E2BIG) { | |
7267c094 | 106 | g_free(cpuid); |
b827df58 AK |
107 | return NULL; |
108 | } else { | |
109 | fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n", | |
110 | strerror(-r)); | |
111 | exit(1); | |
112 | } | |
113 | } | |
114 | return cpuid; | |
115 | } | |
116 | ||
dd87f8a6 EH |
117 | /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough |
118 | * for all entries. | |
119 | */ | |
120 | static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s) | |
121 | { | |
122 | struct kvm_cpuid2 *cpuid; | |
123 | int max = 1; | |
124 | while ((cpuid = try_get_cpuid(s, max)) == NULL) { | |
125 | max *= 2; | |
126 | } | |
127 | return cpuid; | |
128 | } | |
129 | ||
a443bc34 | 130 | static const struct kvm_para_features { |
0c31b744 GC |
131 | int cap; |
132 | int feature; | |
133 | } para_features[] = { | |
134 | { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE }, | |
135 | { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY }, | |
136 | { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP }, | |
0c31b744 | 137 | { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF }, |
0c31b744 GC |
138 | }; |
139 | ||
ba9bc59e | 140 | static int get_para_features(KVMState *s) |
0c31b744 GC |
141 | { |
142 | int i, features = 0; | |
143 | ||
8e03c100 | 144 | for (i = 0; i < ARRAY_SIZE(para_features); i++) { |
ba9bc59e | 145 | if (kvm_check_extension(s, para_features[i].cap)) { |
0c31b744 GC |
146 | features |= (1 << para_features[i].feature); |
147 | } | |
148 | } | |
149 | ||
150 | return features; | |
151 | } | |
0c31b744 GC |
152 | |
153 | ||
829ae2f9 EH |
154 | /* Returns the value for a specific register on the cpuid entry |
155 | */ | |
156 | static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg) | |
157 | { | |
158 | uint32_t ret = 0; | |
159 | switch (reg) { | |
160 | case R_EAX: | |
161 | ret = entry->eax; | |
162 | break; | |
163 | case R_EBX: | |
164 | ret = entry->ebx; | |
165 | break; | |
166 | case R_ECX: | |
167 | ret = entry->ecx; | |
168 | break; | |
169 | case R_EDX: | |
170 | ret = entry->edx; | |
171 | break; | |
172 | } | |
173 | return ret; | |
174 | } | |
175 | ||
4fb73f1d EH |
176 | /* Find matching entry for function/index on kvm_cpuid2 struct |
177 | */ | |
178 | static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid, | |
179 | uint32_t function, | |
180 | uint32_t index) | |
181 | { | |
182 | int i; | |
183 | for (i = 0; i < cpuid->nent; ++i) { | |
184 | if (cpuid->entries[i].function == function && | |
185 | cpuid->entries[i].index == index) { | |
186 | return &cpuid->entries[i]; | |
187 | } | |
188 | } | |
189 | /* not found: */ | |
190 | return NULL; | |
191 | } | |
192 | ||
ba9bc59e | 193 | uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function, |
c958a8bd | 194 | uint32_t index, int reg) |
b827df58 AK |
195 | { |
196 | struct kvm_cpuid2 *cpuid; | |
b827df58 AK |
197 | uint32_t ret = 0; |
198 | uint32_t cpuid_1_edx; | |
8c723b79 | 199 | bool found = false; |
b827df58 | 200 | |
dd87f8a6 | 201 | cpuid = get_supported_cpuid(s); |
b827df58 | 202 | |
4fb73f1d EH |
203 | struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index); |
204 | if (entry) { | |
205 | found = true; | |
206 | ret = cpuid_entry_get_reg(entry, reg); | |
b827df58 AK |
207 | } |
208 | ||
7b46e5ce EH |
209 | /* Fixups for the data returned by KVM, below */ |
210 | ||
c2acb022 EH |
211 | if (function == 1 && reg == R_EDX) { |
212 | /* KVM before 2.6.30 misreports the following features */ | |
213 | ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA; | |
84bd945c EH |
214 | } else if (function == 1 && reg == R_ECX) { |
215 | /* We can set the hypervisor flag, even if KVM does not return it on | |
216 | * GET_SUPPORTED_CPUID | |
217 | */ | |
218 | ret |= CPUID_EXT_HYPERVISOR; | |
ac67ee26 EH |
219 | /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it |
220 | * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER, | |
221 | * and the irqchip is in the kernel. | |
222 | */ | |
223 | if (kvm_irqchip_in_kernel() && | |
224 | kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) { | |
225 | ret |= CPUID_EXT_TSC_DEADLINE_TIMER; | |
226 | } | |
41e5e76d EH |
227 | |
228 | /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled | |
229 | * without the in-kernel irqchip | |
230 | */ | |
231 | if (!kvm_irqchip_in_kernel()) { | |
232 | ret &= ~CPUID_EXT_X2APIC; | |
b827df58 | 233 | } |
c2acb022 EH |
234 | } else if (function == 0x80000001 && reg == R_EDX) { |
235 | /* On Intel, kvm returns cpuid according to the Intel spec, | |
236 | * so add missing bits according to the AMD spec: | |
237 | */ | |
238 | cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX); | |
239 | ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES; | |
b827df58 AK |
240 | } |
241 | ||
7267c094 | 242 | g_free(cpuid); |
b827df58 | 243 | |
0c31b744 | 244 | /* fallback for older kernels */ |
8c723b79 | 245 | if ((function == KVM_CPUID_FEATURES) && !found) { |
ba9bc59e | 246 | ret = get_para_features(s); |
b9bec74b | 247 | } |
0c31b744 GC |
248 | |
249 | return ret; | |
bb0300dc | 250 | } |
bb0300dc | 251 | |
3c85e74f HY |
252 | typedef struct HWPoisonPage { |
253 | ram_addr_t ram_addr; | |
254 | QLIST_ENTRY(HWPoisonPage) list; | |
255 | } HWPoisonPage; | |
256 | ||
257 | static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list = | |
258 | QLIST_HEAD_INITIALIZER(hwpoison_page_list); | |
259 | ||
260 | static void kvm_unpoison_all(void *param) | |
261 | { | |
262 | HWPoisonPage *page, *next_page; | |
263 | ||
264 | QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) { | |
265 | QLIST_REMOVE(page, list); | |
266 | qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE); | |
7267c094 | 267 | g_free(page); |
3c85e74f HY |
268 | } |
269 | } | |
270 | ||
3c85e74f HY |
271 | static void kvm_hwpoison_page_add(ram_addr_t ram_addr) |
272 | { | |
273 | HWPoisonPage *page; | |
274 | ||
275 | QLIST_FOREACH(page, &hwpoison_page_list, list) { | |
276 | if (page->ram_addr == ram_addr) { | |
277 | return; | |
278 | } | |
279 | } | |
7267c094 | 280 | page = g_malloc(sizeof(HWPoisonPage)); |
3c85e74f HY |
281 | page->ram_addr = ram_addr; |
282 | QLIST_INSERT_HEAD(&hwpoison_page_list, page, list); | |
283 | } | |
284 | ||
e7701825 MT |
285 | static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap, |
286 | int *max_banks) | |
287 | { | |
288 | int r; | |
289 | ||
14a09518 | 290 | r = kvm_check_extension(s, KVM_CAP_MCE); |
e7701825 MT |
291 | if (r > 0) { |
292 | *max_banks = r; | |
293 | return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap); | |
294 | } | |
295 | return -ENOSYS; | |
296 | } | |
297 | ||
bee615d4 | 298 | static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code) |
e7701825 | 299 | { |
bee615d4 | 300 | CPUX86State *env = &cpu->env; |
c34d440a JK |
301 | uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN | |
302 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S; | |
303 | uint64_t mcg_status = MCG_STATUS_MCIP; | |
e7701825 | 304 | |
c34d440a JK |
305 | if (code == BUS_MCEERR_AR) { |
306 | status |= MCI_STATUS_AR | 0x134; | |
307 | mcg_status |= MCG_STATUS_EIPV; | |
308 | } else { | |
309 | status |= 0xc0; | |
310 | mcg_status |= MCG_STATUS_RIPV; | |
419fb20a | 311 | } |
8c5cf3b6 | 312 | cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr, |
c34d440a JK |
313 | (MCM_ADDR_PHYS << 6) | 0xc, |
314 | cpu_x86_support_mca_broadcast(env) ? | |
315 | MCE_INJECT_BROADCAST : 0); | |
419fb20a | 316 | } |
419fb20a JK |
317 | |
318 | static void hardware_memory_error(void) | |
319 | { | |
320 | fprintf(stderr, "Hardware memory error!\n"); | |
321 | exit(1); | |
322 | } | |
323 | ||
20d695a9 | 324 | int kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr) |
419fb20a | 325 | { |
20d695a9 AF |
326 | X86CPU *cpu = X86_CPU(c); |
327 | CPUX86State *env = &cpu->env; | |
419fb20a | 328 | ram_addr_t ram_addr; |
a8170e5e | 329 | hwaddr paddr; |
419fb20a JK |
330 | |
331 | if ((env->mcg_cap & MCG_SER_P) && addr | |
c34d440a | 332 | && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) { |
1b5ec234 | 333 | if (qemu_ram_addr_from_host(addr, &ram_addr) == NULL || |
a60f24b5 | 334 | !kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) { |
419fb20a JK |
335 | fprintf(stderr, "Hardware memory error for memory used by " |
336 | "QEMU itself instead of guest system!\n"); | |
337 | /* Hope we are lucky for AO MCE */ | |
338 | if (code == BUS_MCEERR_AO) { | |
339 | return 0; | |
340 | } else { | |
341 | hardware_memory_error(); | |
342 | } | |
343 | } | |
3c85e74f | 344 | kvm_hwpoison_page_add(ram_addr); |
bee615d4 | 345 | kvm_mce_inject(cpu, paddr, code); |
e56ff191 | 346 | } else { |
419fb20a JK |
347 | if (code == BUS_MCEERR_AO) { |
348 | return 0; | |
349 | } else if (code == BUS_MCEERR_AR) { | |
350 | hardware_memory_error(); | |
351 | } else { | |
352 | return 1; | |
353 | } | |
354 | } | |
355 | return 0; | |
356 | } | |
357 | ||
358 | int kvm_arch_on_sigbus(int code, void *addr) | |
359 | { | |
182735ef AF |
360 | X86CPU *cpu = X86_CPU(first_cpu); |
361 | ||
362 | if ((cpu->env.mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) { | |
419fb20a | 363 | ram_addr_t ram_addr; |
a8170e5e | 364 | hwaddr paddr; |
419fb20a JK |
365 | |
366 | /* Hope we are lucky for AO MCE */ | |
1b5ec234 | 367 | if (qemu_ram_addr_from_host(addr, &ram_addr) == NULL || |
182735ef | 368 | !kvm_physical_memory_addr_from_host(first_cpu->kvm_state, |
a60f24b5 | 369 | addr, &paddr)) { |
419fb20a JK |
370 | fprintf(stderr, "Hardware memory error for memory used by " |
371 | "QEMU itself instead of guest system!: %p\n", addr); | |
372 | return 0; | |
373 | } | |
3c85e74f | 374 | kvm_hwpoison_page_add(ram_addr); |
182735ef | 375 | kvm_mce_inject(X86_CPU(first_cpu), paddr, code); |
e56ff191 | 376 | } else { |
419fb20a JK |
377 | if (code == BUS_MCEERR_AO) { |
378 | return 0; | |
379 | } else if (code == BUS_MCEERR_AR) { | |
380 | hardware_memory_error(); | |
381 | } else { | |
382 | return 1; | |
383 | } | |
384 | } | |
385 | return 0; | |
386 | } | |
e7701825 | 387 | |
1bc22652 | 388 | static int kvm_inject_mce_oldstyle(X86CPU *cpu) |
ab443475 | 389 | { |
1bc22652 AF |
390 | CPUX86State *env = &cpu->env; |
391 | ||
ab443475 JK |
392 | if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) { |
393 | unsigned int bank, bank_num = env->mcg_cap & 0xff; | |
394 | struct kvm_x86_mce mce; | |
395 | ||
396 | env->exception_injected = -1; | |
397 | ||
398 | /* | |
399 | * There must be at least one bank in use if an MCE is pending. | |
400 | * Find it and use its values for the event injection. | |
401 | */ | |
402 | for (bank = 0; bank < bank_num; bank++) { | |
403 | if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) { | |
404 | break; | |
405 | } | |
406 | } | |
407 | assert(bank < bank_num); | |
408 | ||
409 | mce.bank = bank; | |
410 | mce.status = env->mce_banks[bank * 4 + 1]; | |
411 | mce.mcg_status = env->mcg_status; | |
412 | mce.addr = env->mce_banks[bank * 4 + 2]; | |
413 | mce.misc = env->mce_banks[bank * 4 + 3]; | |
414 | ||
1bc22652 | 415 | return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce); |
ab443475 | 416 | } |
ab443475 JK |
417 | return 0; |
418 | } | |
419 | ||
1dfb4dd9 | 420 | static void cpu_update_state(void *opaque, int running, RunState state) |
b8cc45d6 | 421 | { |
317ac620 | 422 | CPUX86State *env = opaque; |
b8cc45d6 GC |
423 | |
424 | if (running) { | |
425 | env->tsc_valid = false; | |
426 | } | |
427 | } | |
428 | ||
83b17af5 | 429 | unsigned long kvm_arch_vcpu_id(CPUState *cs) |
b164e48e | 430 | { |
83b17af5 EH |
431 | X86CPU *cpu = X86_CPU(cs); |
432 | return cpu->env.cpuid_apic_id; | |
b164e48e EH |
433 | } |
434 | ||
92067bf4 IM |
435 | #ifndef KVM_CPUID_SIGNATURE_NEXT |
436 | #define KVM_CPUID_SIGNATURE_NEXT 0x40000100 | |
437 | #endif | |
438 | ||
439 | static bool hyperv_hypercall_available(X86CPU *cpu) | |
440 | { | |
441 | return cpu->hyperv_vapic || | |
442 | (cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY); | |
443 | } | |
444 | ||
445 | static bool hyperv_enabled(X86CPU *cpu) | |
446 | { | |
7bc3d711 PB |
447 | CPUState *cs = CPU(cpu); |
448 | return kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0 && | |
449 | (hyperv_hypercall_available(cpu) || | |
48a5f3bc | 450 | cpu->hyperv_time || |
7bc3d711 | 451 | cpu->hyperv_relaxed_timing); |
92067bf4 IM |
452 | } |
453 | ||
68bfd0ad MT |
454 | static Error *invtsc_mig_blocker; |
455 | ||
f8bb0565 | 456 | #define KVM_MAX_CPUID_ENTRIES 100 |
0893d460 | 457 | |
20d695a9 | 458 | int kvm_arch_init_vcpu(CPUState *cs) |
05330448 AL |
459 | { |
460 | struct { | |
486bd5a2 | 461 | struct kvm_cpuid2 cpuid; |
f8bb0565 | 462 | struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES]; |
541dc0d4 | 463 | } QEMU_PACKED cpuid_data; |
20d695a9 AF |
464 | X86CPU *cpu = X86_CPU(cs); |
465 | CPUX86State *env = &cpu->env; | |
486bd5a2 | 466 | uint32_t limit, i, j, cpuid_i; |
a33609ca | 467 | uint32_t unused; |
bb0300dc | 468 | struct kvm_cpuid_entry2 *c; |
bb0300dc | 469 | uint32_t signature[3]; |
234cc647 | 470 | int kvm_base = KVM_CPUID_SIGNATURE; |
e7429073 | 471 | int r; |
05330448 | 472 | |
ef4cbe14 SW |
473 | memset(&cpuid_data, 0, sizeof(cpuid_data)); |
474 | ||
05330448 AL |
475 | cpuid_i = 0; |
476 | ||
bb0300dc | 477 | /* Paravirtualization CPUIDs */ |
234cc647 PB |
478 | if (hyperv_enabled(cpu)) { |
479 | c = &cpuid_data.entries[cpuid_i++]; | |
480 | c->function = HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS; | |
eab70139 VR |
481 | memcpy(signature, "Microsoft Hv", 12); |
482 | c->eax = HYPERV_CPUID_MIN; | |
234cc647 PB |
483 | c->ebx = signature[0]; |
484 | c->ecx = signature[1]; | |
485 | c->edx = signature[2]; | |
0c31b744 | 486 | |
234cc647 PB |
487 | c = &cpuid_data.entries[cpuid_i++]; |
488 | c->function = HYPERV_CPUID_INTERFACE; | |
eab70139 VR |
489 | memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12); |
490 | c->eax = signature[0]; | |
234cc647 PB |
491 | c->ebx = 0; |
492 | c->ecx = 0; | |
493 | c->edx = 0; | |
eab70139 VR |
494 | |
495 | c = &cpuid_data.entries[cpuid_i++]; | |
eab70139 VR |
496 | c->function = HYPERV_CPUID_VERSION; |
497 | c->eax = 0x00001bbc; | |
498 | c->ebx = 0x00060001; | |
499 | ||
500 | c = &cpuid_data.entries[cpuid_i++]; | |
eab70139 | 501 | c->function = HYPERV_CPUID_FEATURES; |
92067bf4 | 502 | if (cpu->hyperv_relaxed_timing) { |
eab70139 VR |
503 | c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE; |
504 | } | |
92067bf4 | 505 | if (cpu->hyperv_vapic) { |
eab70139 VR |
506 | c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE; |
507 | c->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE; | |
7bc3d711 | 508 | has_msr_hv_vapic = true; |
eab70139 | 509 | } |
48a5f3bc VR |
510 | if (cpu->hyperv_time && |
511 | kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) { | |
512 | c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE; | |
513 | c->eax |= HV_X64_MSR_TIME_REF_COUNT_AVAILABLE; | |
514 | c->eax |= 0x200; | |
515 | has_msr_hv_tsc = true; | |
516 | } | |
eab70139 | 517 | c = &cpuid_data.entries[cpuid_i++]; |
eab70139 | 518 | c->function = HYPERV_CPUID_ENLIGHTMENT_INFO; |
92067bf4 | 519 | if (cpu->hyperv_relaxed_timing) { |
eab70139 VR |
520 | c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED; |
521 | } | |
7bc3d711 | 522 | if (has_msr_hv_vapic) { |
eab70139 VR |
523 | c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED; |
524 | } | |
92067bf4 | 525 | c->ebx = cpu->hyperv_spinlock_attempts; |
eab70139 VR |
526 | |
527 | c = &cpuid_data.entries[cpuid_i++]; | |
eab70139 VR |
528 | c->function = HYPERV_CPUID_IMPLEMENT_LIMITS; |
529 | c->eax = 0x40; | |
530 | c->ebx = 0x40; | |
531 | ||
234cc647 | 532 | kvm_base = KVM_CPUID_SIGNATURE_NEXT; |
7bc3d711 | 533 | has_msr_hv_hypercall = true; |
eab70139 VR |
534 | } |
535 | ||
f522d2ac AW |
536 | if (cpu->expose_kvm) { |
537 | memcpy(signature, "KVMKVMKVM\0\0\0", 12); | |
538 | c = &cpuid_data.entries[cpuid_i++]; | |
539 | c->function = KVM_CPUID_SIGNATURE | kvm_base; | |
79b6f2f6 | 540 | c->eax = KVM_CPUID_FEATURES | kvm_base; |
f522d2ac AW |
541 | c->ebx = signature[0]; |
542 | c->ecx = signature[1]; | |
543 | c->edx = signature[2]; | |
234cc647 | 544 | |
f522d2ac AW |
545 | c = &cpuid_data.entries[cpuid_i++]; |
546 | c->function = KVM_CPUID_FEATURES | kvm_base; | |
547 | c->eax = env->features[FEAT_KVM]; | |
234cc647 | 548 | |
f522d2ac | 549 | has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF); |
bb0300dc | 550 | |
f522d2ac | 551 | has_msr_pv_eoi_en = c->eax & (1 << KVM_FEATURE_PV_EOI); |
bc9a839d | 552 | |
f522d2ac AW |
553 | has_msr_kvm_steal_time = c->eax & (1 << KVM_FEATURE_STEAL_TIME); |
554 | } | |
917367aa | 555 | |
a33609ca | 556 | cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused); |
05330448 AL |
557 | |
558 | for (i = 0; i <= limit; i++) { | |
f8bb0565 IM |
559 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
560 | fprintf(stderr, "unsupported level value: 0x%x\n", limit); | |
561 | abort(); | |
562 | } | |
bb0300dc | 563 | c = &cpuid_data.entries[cpuid_i++]; |
486bd5a2 AL |
564 | |
565 | switch (i) { | |
a36b1029 AL |
566 | case 2: { |
567 | /* Keep reading function 2 till all the input is received */ | |
568 | int times; | |
569 | ||
a36b1029 | 570 | c->function = i; |
a33609ca AL |
571 | c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC | |
572 | KVM_CPUID_FLAG_STATE_READ_NEXT; | |
573 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
574 | times = c->eax & 0xff; | |
a36b1029 AL |
575 | |
576 | for (j = 1; j < times; ++j) { | |
f8bb0565 IM |
577 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
578 | fprintf(stderr, "cpuid_data is full, no space for " | |
579 | "cpuid(eax:2):eax & 0xf = 0x%x\n", times); | |
580 | abort(); | |
581 | } | |
a33609ca | 582 | c = &cpuid_data.entries[cpuid_i++]; |
a36b1029 | 583 | c->function = i; |
a33609ca AL |
584 | c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC; |
585 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
a36b1029 AL |
586 | } |
587 | break; | |
588 | } | |
486bd5a2 AL |
589 | case 4: |
590 | case 0xb: | |
591 | case 0xd: | |
592 | for (j = 0; ; j++) { | |
31e8c696 AP |
593 | if (i == 0xd && j == 64) { |
594 | break; | |
595 | } | |
486bd5a2 AL |
596 | c->function = i; |
597 | c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; | |
598 | c->index = j; | |
a33609ca | 599 | cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); |
486bd5a2 | 600 | |
b9bec74b | 601 | if (i == 4 && c->eax == 0) { |
486bd5a2 | 602 | break; |
b9bec74b JK |
603 | } |
604 | if (i == 0xb && !(c->ecx & 0xff00)) { | |
486bd5a2 | 605 | break; |
b9bec74b JK |
606 | } |
607 | if (i == 0xd && c->eax == 0) { | |
31e8c696 | 608 | continue; |
b9bec74b | 609 | } |
f8bb0565 IM |
610 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
611 | fprintf(stderr, "cpuid_data is full, no space for " | |
612 | "cpuid(eax:0x%x,ecx:0x%x)\n", i, j); | |
613 | abort(); | |
614 | } | |
a33609ca | 615 | c = &cpuid_data.entries[cpuid_i++]; |
486bd5a2 AL |
616 | } |
617 | break; | |
618 | default: | |
486bd5a2 | 619 | c->function = i; |
a33609ca AL |
620 | c->flags = 0; |
621 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
486bd5a2 AL |
622 | break; |
623 | } | |
05330448 | 624 | } |
0d894367 PB |
625 | |
626 | if (limit >= 0x0a) { | |
627 | uint32_t ver; | |
628 | ||
629 | cpu_x86_cpuid(env, 0x0a, 0, &ver, &unused, &unused, &unused); | |
630 | if ((ver & 0xff) > 0) { | |
631 | has_msr_architectural_pmu = true; | |
632 | num_architectural_pmu_counters = (ver & 0xff00) >> 8; | |
633 | ||
634 | /* Shouldn't be more than 32, since that's the number of bits | |
635 | * available in EBX to tell us _which_ counters are available. | |
636 | * Play it safe. | |
637 | */ | |
638 | if (num_architectural_pmu_counters > MAX_GP_COUNTERS) { | |
639 | num_architectural_pmu_counters = MAX_GP_COUNTERS; | |
640 | } | |
641 | } | |
642 | } | |
643 | ||
a33609ca | 644 | cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused); |
05330448 AL |
645 | |
646 | for (i = 0x80000000; i <= limit; i++) { | |
f8bb0565 IM |
647 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
648 | fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit); | |
649 | abort(); | |
650 | } | |
bb0300dc | 651 | c = &cpuid_data.entries[cpuid_i++]; |
05330448 | 652 | |
05330448 | 653 | c->function = i; |
a33609ca AL |
654 | c->flags = 0; |
655 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
05330448 AL |
656 | } |
657 | ||
b3baa152 BW |
658 | /* Call Centaur's CPUID instructions they are supported. */ |
659 | if (env->cpuid_xlevel2 > 0) { | |
b3baa152 BW |
660 | cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused); |
661 | ||
662 | for (i = 0xC0000000; i <= limit; i++) { | |
f8bb0565 IM |
663 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
664 | fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit); | |
665 | abort(); | |
666 | } | |
b3baa152 BW |
667 | c = &cpuid_data.entries[cpuid_i++]; |
668 | ||
669 | c->function = i; | |
670 | c->flags = 0; | |
671 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
672 | } | |
673 | } | |
674 | ||
05330448 AL |
675 | cpuid_data.cpuid.nent = cpuid_i; |
676 | ||
e7701825 | 677 | if (((env->cpuid_version >> 8)&0xF) >= 6 |
0514ef2f | 678 | && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) == |
fc7a504c | 679 | (CPUID_MCE | CPUID_MCA) |
a60f24b5 | 680 | && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) { |
e7701825 MT |
681 | uint64_t mcg_cap; |
682 | int banks; | |
32a42024 | 683 | int ret; |
e7701825 | 684 | |
a60f24b5 | 685 | ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks); |
75d49497 JK |
686 | if (ret < 0) { |
687 | fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret)); | |
688 | return ret; | |
e7701825 | 689 | } |
75d49497 JK |
690 | |
691 | if (banks > MCE_BANKS_DEF) { | |
692 | banks = MCE_BANKS_DEF; | |
693 | } | |
694 | mcg_cap &= MCE_CAP_DEF; | |
695 | mcg_cap |= banks; | |
1bc22652 | 696 | ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &mcg_cap); |
75d49497 JK |
697 | if (ret < 0) { |
698 | fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret)); | |
699 | return ret; | |
700 | } | |
701 | ||
702 | env->mcg_cap = mcg_cap; | |
e7701825 | 703 | } |
e7701825 | 704 | |
b8cc45d6 GC |
705 | qemu_add_vm_change_state_handler(cpu_update_state, env); |
706 | ||
df67696e LJ |
707 | c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0); |
708 | if (c) { | |
709 | has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) || | |
710 | !!(c->ecx & CPUID_EXT_SMX); | |
711 | } | |
712 | ||
68bfd0ad MT |
713 | c = cpuid_find_entry(&cpuid_data.cpuid, 0x80000007, 0); |
714 | if (c && (c->edx & 1<<8) && invtsc_mig_blocker == NULL) { | |
715 | /* for migration */ | |
716 | error_setg(&invtsc_mig_blocker, | |
717 | "State blocked by non-migratable CPU device" | |
718 | " (invtsc flag)"); | |
719 | migrate_add_blocker(invtsc_mig_blocker); | |
720 | /* for savevm */ | |
721 | vmstate_x86_cpu.unmigratable = 1; | |
722 | } | |
723 | ||
7e680753 | 724 | cpuid_data.cpuid.padding = 0; |
1bc22652 | 725 | r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data); |
fdc9c41a JK |
726 | if (r) { |
727 | return r; | |
728 | } | |
e7429073 | 729 | |
a60f24b5 | 730 | r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL); |
e7429073 | 731 | if (r && env->tsc_khz) { |
1bc22652 | 732 | r = kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz); |
e7429073 JR |
733 | if (r < 0) { |
734 | fprintf(stderr, "KVM_SET_TSC_KHZ failed\n"); | |
735 | return r; | |
736 | } | |
737 | } | |
e7429073 | 738 | |
fabacc0f JK |
739 | if (kvm_has_xsave()) { |
740 | env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave)); | |
741 | } | |
742 | ||
d1ae67f6 AW |
743 | if (env->features[FEAT_1_EDX] & CPUID_MTRR) { |
744 | has_msr_mtrr = true; | |
745 | } | |
746 | ||
e7429073 | 747 | return 0; |
05330448 AL |
748 | } |
749 | ||
50a2c6e5 | 750 | void kvm_arch_reset_vcpu(X86CPU *cpu) |
caa5af0f | 751 | { |
20d695a9 | 752 | CPUX86State *env = &cpu->env; |
dd673288 | 753 | |
e73223a5 | 754 | env->exception_injected = -1; |
0e607a80 | 755 | env->interrupt_injected = -1; |
1a5e9d2f | 756 | env->xcr0 = 1; |
ddced198 | 757 | if (kvm_irqchip_in_kernel()) { |
dd673288 | 758 | env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE : |
ddced198 MT |
759 | KVM_MP_STATE_UNINITIALIZED; |
760 | } else { | |
761 | env->mp_state = KVM_MP_STATE_RUNNABLE; | |
762 | } | |
caa5af0f JK |
763 | } |
764 | ||
e0723c45 PB |
765 | void kvm_arch_do_init_vcpu(X86CPU *cpu) |
766 | { | |
767 | CPUX86State *env = &cpu->env; | |
768 | ||
769 | /* APs get directly into wait-for-SIPI state. */ | |
770 | if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) { | |
771 | env->mp_state = KVM_MP_STATE_INIT_RECEIVED; | |
772 | } | |
773 | } | |
774 | ||
c3a3a7d3 | 775 | static int kvm_get_supported_msrs(KVMState *s) |
05330448 | 776 | { |
75b10c43 | 777 | static int kvm_supported_msrs; |
c3a3a7d3 | 778 | int ret = 0; |
05330448 AL |
779 | |
780 | /* first time */ | |
75b10c43 | 781 | if (kvm_supported_msrs == 0) { |
05330448 AL |
782 | struct kvm_msr_list msr_list, *kvm_msr_list; |
783 | ||
75b10c43 | 784 | kvm_supported_msrs = -1; |
05330448 AL |
785 | |
786 | /* Obtain MSR list from KVM. These are the MSRs that we must | |
787 | * save/restore */ | |
4c9f7372 | 788 | msr_list.nmsrs = 0; |
c3a3a7d3 | 789 | ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list); |
6fb6d245 | 790 | if (ret < 0 && ret != -E2BIG) { |
c3a3a7d3 | 791 | return ret; |
6fb6d245 | 792 | } |
d9db889f JK |
793 | /* Old kernel modules had a bug and could write beyond the provided |
794 | memory. Allocate at least a safe amount of 1K. */ | |
7267c094 | 795 | kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) + |
d9db889f JK |
796 | msr_list.nmsrs * |
797 | sizeof(msr_list.indices[0]))); | |
05330448 | 798 | |
55308450 | 799 | kvm_msr_list->nmsrs = msr_list.nmsrs; |
c3a3a7d3 | 800 | ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list); |
05330448 AL |
801 | if (ret >= 0) { |
802 | int i; | |
803 | ||
804 | for (i = 0; i < kvm_msr_list->nmsrs; i++) { | |
805 | if (kvm_msr_list->indices[i] == MSR_STAR) { | |
c3a3a7d3 | 806 | has_msr_star = true; |
75b10c43 MT |
807 | continue; |
808 | } | |
809 | if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) { | |
c3a3a7d3 | 810 | has_msr_hsave_pa = true; |
75b10c43 | 811 | continue; |
05330448 | 812 | } |
f28558d3 WA |
813 | if (kvm_msr_list->indices[i] == MSR_TSC_ADJUST) { |
814 | has_msr_tsc_adjust = true; | |
815 | continue; | |
816 | } | |
aa82ba54 LJ |
817 | if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) { |
818 | has_msr_tsc_deadline = true; | |
819 | continue; | |
820 | } | |
21e87c46 AK |
821 | if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) { |
822 | has_msr_misc_enable = true; | |
823 | continue; | |
824 | } | |
79e9ebeb LJ |
825 | if (kvm_msr_list->indices[i] == MSR_IA32_BNDCFGS) { |
826 | has_msr_bndcfgs = true; | |
827 | continue; | |
828 | } | |
05330448 AL |
829 | } |
830 | } | |
831 | ||
7267c094 | 832 | g_free(kvm_msr_list); |
05330448 AL |
833 | } |
834 | ||
c3a3a7d3 | 835 | return ret; |
05330448 AL |
836 | } |
837 | ||
cad1e282 | 838 | int kvm_arch_init(KVMState *s) |
20420430 | 839 | { |
11076198 | 840 | uint64_t identity_base = 0xfffbc000; |
39d6960a | 841 | uint64_t shadow_mem; |
20420430 | 842 | int ret; |
25d2e361 | 843 | struct utsname utsname; |
20420430 | 844 | |
c3a3a7d3 | 845 | ret = kvm_get_supported_msrs(s); |
20420430 | 846 | if (ret < 0) { |
20420430 SY |
847 | return ret; |
848 | } | |
25d2e361 MT |
849 | |
850 | uname(&utsname); | |
851 | lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0; | |
852 | ||
4c5b10b7 | 853 | /* |
11076198 JK |
854 | * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly. |
855 | * In order to use vm86 mode, an EPT identity map and a TSS are needed. | |
856 | * Since these must be part of guest physical memory, we need to allocate | |
857 | * them, both by setting their start addresses in the kernel and by | |
858 | * creating a corresponding e820 entry. We need 4 pages before the BIOS. | |
859 | * | |
860 | * Older KVM versions may not support setting the identity map base. In | |
861 | * that case we need to stick with the default, i.e. a 256K maximum BIOS | |
862 | * size. | |
4c5b10b7 | 863 | */ |
11076198 JK |
864 | if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) { |
865 | /* Allows up to 16M BIOSes. */ | |
866 | identity_base = 0xfeffc000; | |
867 | ||
868 | ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base); | |
869 | if (ret < 0) { | |
870 | return ret; | |
871 | } | |
4c5b10b7 | 872 | } |
e56ff191 | 873 | |
11076198 JK |
874 | /* Set TSS base one page after EPT identity map. */ |
875 | ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000); | |
20420430 SY |
876 | if (ret < 0) { |
877 | return ret; | |
878 | } | |
879 | ||
11076198 JK |
880 | /* Tell fw_cfg to notify the BIOS to reserve the range. */ |
881 | ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED); | |
20420430 | 882 | if (ret < 0) { |
11076198 | 883 | fprintf(stderr, "e820_add_entry() table is full\n"); |
20420430 SY |
884 | return ret; |
885 | } | |
3c85e74f | 886 | qemu_register_reset(kvm_unpoison_all, NULL); |
20420430 | 887 | |
36ad0e94 MA |
888 | shadow_mem = qemu_opt_get_size(qemu_get_machine_opts(), |
889 | "kvm_shadow_mem", -1); | |
890 | if (shadow_mem != -1) { | |
891 | shadow_mem /= 4096; | |
892 | ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem); | |
893 | if (ret < 0) { | |
894 | return ret; | |
39d6960a JK |
895 | } |
896 | } | |
11076198 | 897 | return 0; |
05330448 | 898 | } |
b9bec74b | 899 | |
05330448 AL |
900 | static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs) |
901 | { | |
902 | lhs->selector = rhs->selector; | |
903 | lhs->base = rhs->base; | |
904 | lhs->limit = rhs->limit; | |
905 | lhs->type = 3; | |
906 | lhs->present = 1; | |
907 | lhs->dpl = 3; | |
908 | lhs->db = 0; | |
909 | lhs->s = 1; | |
910 | lhs->l = 0; | |
911 | lhs->g = 0; | |
912 | lhs->avl = 0; | |
913 | lhs->unusable = 0; | |
914 | } | |
915 | ||
916 | static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs) | |
917 | { | |
918 | unsigned flags = rhs->flags; | |
919 | lhs->selector = rhs->selector; | |
920 | lhs->base = rhs->base; | |
921 | lhs->limit = rhs->limit; | |
922 | lhs->type = (flags >> DESC_TYPE_SHIFT) & 15; | |
923 | lhs->present = (flags & DESC_P_MASK) != 0; | |
acaa7550 | 924 | lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3; |
05330448 AL |
925 | lhs->db = (flags >> DESC_B_SHIFT) & 1; |
926 | lhs->s = (flags & DESC_S_MASK) != 0; | |
927 | lhs->l = (flags >> DESC_L_SHIFT) & 1; | |
928 | lhs->g = (flags & DESC_G_MASK) != 0; | |
929 | lhs->avl = (flags & DESC_AVL_MASK) != 0; | |
930 | lhs->unusable = 0; | |
7e680753 | 931 | lhs->padding = 0; |
05330448 AL |
932 | } |
933 | ||
934 | static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs) | |
935 | { | |
936 | lhs->selector = rhs->selector; | |
937 | lhs->base = rhs->base; | |
938 | lhs->limit = rhs->limit; | |
b9bec74b JK |
939 | lhs->flags = (rhs->type << DESC_TYPE_SHIFT) | |
940 | (rhs->present * DESC_P_MASK) | | |
941 | (rhs->dpl << DESC_DPL_SHIFT) | | |
942 | (rhs->db << DESC_B_SHIFT) | | |
943 | (rhs->s * DESC_S_MASK) | | |
944 | (rhs->l << DESC_L_SHIFT) | | |
945 | (rhs->g * DESC_G_MASK) | | |
946 | (rhs->avl * DESC_AVL_MASK); | |
05330448 AL |
947 | } |
948 | ||
949 | static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set) | |
950 | { | |
b9bec74b | 951 | if (set) { |
05330448 | 952 | *kvm_reg = *qemu_reg; |
b9bec74b | 953 | } else { |
05330448 | 954 | *qemu_reg = *kvm_reg; |
b9bec74b | 955 | } |
05330448 AL |
956 | } |
957 | ||
1bc22652 | 958 | static int kvm_getput_regs(X86CPU *cpu, int set) |
05330448 | 959 | { |
1bc22652 | 960 | CPUX86State *env = &cpu->env; |
05330448 AL |
961 | struct kvm_regs regs; |
962 | int ret = 0; | |
963 | ||
964 | if (!set) { | |
1bc22652 | 965 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, ®s); |
b9bec74b | 966 | if (ret < 0) { |
05330448 | 967 | return ret; |
b9bec74b | 968 | } |
05330448 AL |
969 | } |
970 | ||
971 | kvm_getput_reg(®s.rax, &env->regs[R_EAX], set); | |
972 | kvm_getput_reg(®s.rbx, &env->regs[R_EBX], set); | |
973 | kvm_getput_reg(®s.rcx, &env->regs[R_ECX], set); | |
974 | kvm_getput_reg(®s.rdx, &env->regs[R_EDX], set); | |
975 | kvm_getput_reg(®s.rsi, &env->regs[R_ESI], set); | |
976 | kvm_getput_reg(®s.rdi, &env->regs[R_EDI], set); | |
977 | kvm_getput_reg(®s.rsp, &env->regs[R_ESP], set); | |
978 | kvm_getput_reg(®s.rbp, &env->regs[R_EBP], set); | |
979 | #ifdef TARGET_X86_64 | |
980 | kvm_getput_reg(®s.r8, &env->regs[8], set); | |
981 | kvm_getput_reg(®s.r9, &env->regs[9], set); | |
982 | kvm_getput_reg(®s.r10, &env->regs[10], set); | |
983 | kvm_getput_reg(®s.r11, &env->regs[11], set); | |
984 | kvm_getput_reg(®s.r12, &env->regs[12], set); | |
985 | kvm_getput_reg(®s.r13, &env->regs[13], set); | |
986 | kvm_getput_reg(®s.r14, &env->regs[14], set); | |
987 | kvm_getput_reg(®s.r15, &env->regs[15], set); | |
988 | #endif | |
989 | ||
990 | kvm_getput_reg(®s.rflags, &env->eflags, set); | |
991 | kvm_getput_reg(®s.rip, &env->eip, set); | |
992 | ||
b9bec74b | 993 | if (set) { |
1bc22652 | 994 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, ®s); |
b9bec74b | 995 | } |
05330448 AL |
996 | |
997 | return ret; | |
998 | } | |
999 | ||
1bc22652 | 1000 | static int kvm_put_fpu(X86CPU *cpu) |
05330448 | 1001 | { |
1bc22652 | 1002 | CPUX86State *env = &cpu->env; |
05330448 AL |
1003 | struct kvm_fpu fpu; |
1004 | int i; | |
1005 | ||
1006 | memset(&fpu, 0, sizeof fpu); | |
1007 | fpu.fsw = env->fpus & ~(7 << 11); | |
1008 | fpu.fsw |= (env->fpstt & 7) << 11; | |
1009 | fpu.fcw = env->fpuc; | |
42cc8fa6 JK |
1010 | fpu.last_opcode = env->fpop; |
1011 | fpu.last_ip = env->fpip; | |
1012 | fpu.last_dp = env->fpdp; | |
b9bec74b JK |
1013 | for (i = 0; i < 8; ++i) { |
1014 | fpu.ftwx |= (!env->fptags[i]) << i; | |
1015 | } | |
05330448 AL |
1016 | memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs); |
1017 | memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs); | |
1018 | fpu.mxcsr = env->mxcsr; | |
1019 | ||
1bc22652 | 1020 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu); |
05330448 AL |
1021 | } |
1022 | ||
6b42494b JK |
1023 | #define XSAVE_FCW_FSW 0 |
1024 | #define XSAVE_FTW_FOP 1 | |
f1665b21 SY |
1025 | #define XSAVE_CWD_RIP 2 |
1026 | #define XSAVE_CWD_RDP 4 | |
1027 | #define XSAVE_MXCSR 6 | |
1028 | #define XSAVE_ST_SPACE 8 | |
1029 | #define XSAVE_XMM_SPACE 40 | |
1030 | #define XSAVE_XSTATE_BV 128 | |
1031 | #define XSAVE_YMMH_SPACE 144 | |
79e9ebeb LJ |
1032 | #define XSAVE_BNDREGS 240 |
1033 | #define XSAVE_BNDCSR 256 | |
9aecd6f8 CP |
1034 | #define XSAVE_OPMASK 272 |
1035 | #define XSAVE_ZMM_Hi256 288 | |
1036 | #define XSAVE_Hi16_ZMM 416 | |
f1665b21 | 1037 | |
1bc22652 | 1038 | static int kvm_put_xsave(X86CPU *cpu) |
f1665b21 | 1039 | { |
1bc22652 | 1040 | CPUX86State *env = &cpu->env; |
fabacc0f | 1041 | struct kvm_xsave* xsave = env->kvm_xsave_buf; |
42cc8fa6 | 1042 | uint16_t cwd, swd, twd; |
fabacc0f | 1043 | int i, r; |
f1665b21 | 1044 | |
b9bec74b | 1045 | if (!kvm_has_xsave()) { |
1bc22652 | 1046 | return kvm_put_fpu(cpu); |
b9bec74b | 1047 | } |
f1665b21 | 1048 | |
f1665b21 | 1049 | memset(xsave, 0, sizeof(struct kvm_xsave)); |
6115c0a8 | 1050 | twd = 0; |
f1665b21 SY |
1051 | swd = env->fpus & ~(7 << 11); |
1052 | swd |= (env->fpstt & 7) << 11; | |
1053 | cwd = env->fpuc; | |
b9bec74b | 1054 | for (i = 0; i < 8; ++i) { |
f1665b21 | 1055 | twd |= (!env->fptags[i]) << i; |
b9bec74b | 1056 | } |
6b42494b JK |
1057 | xsave->region[XSAVE_FCW_FSW] = (uint32_t)(swd << 16) + cwd; |
1058 | xsave->region[XSAVE_FTW_FOP] = (uint32_t)(env->fpop << 16) + twd; | |
42cc8fa6 JK |
1059 | memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip)); |
1060 | memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp)); | |
f1665b21 SY |
1061 | memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs, |
1062 | sizeof env->fpregs); | |
1063 | memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs, | |
1064 | sizeof env->xmm_regs); | |
1065 | xsave->region[XSAVE_MXCSR] = env->mxcsr; | |
1066 | *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv; | |
1067 | memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs, | |
1068 | sizeof env->ymmh_regs); | |
79e9ebeb LJ |
1069 | memcpy(&xsave->region[XSAVE_BNDREGS], env->bnd_regs, |
1070 | sizeof env->bnd_regs); | |
1071 | memcpy(&xsave->region[XSAVE_BNDCSR], &env->bndcs_regs, | |
1072 | sizeof(env->bndcs_regs)); | |
9aecd6f8 CP |
1073 | memcpy(&xsave->region[XSAVE_OPMASK], env->opmask_regs, |
1074 | sizeof env->opmask_regs); | |
1075 | memcpy(&xsave->region[XSAVE_ZMM_Hi256], env->zmmh_regs, | |
1076 | sizeof env->zmmh_regs); | |
1077 | #ifdef TARGET_X86_64 | |
1078 | memcpy(&xsave->region[XSAVE_Hi16_ZMM], env->hi16_zmm_regs, | |
1079 | sizeof env->hi16_zmm_regs); | |
1080 | #endif | |
1bc22652 | 1081 | r = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave); |
0f53994f | 1082 | return r; |
f1665b21 SY |
1083 | } |
1084 | ||
1bc22652 | 1085 | static int kvm_put_xcrs(X86CPU *cpu) |
f1665b21 | 1086 | { |
1bc22652 | 1087 | CPUX86State *env = &cpu->env; |
f1665b21 SY |
1088 | struct kvm_xcrs xcrs; |
1089 | ||
b9bec74b | 1090 | if (!kvm_has_xcrs()) { |
f1665b21 | 1091 | return 0; |
b9bec74b | 1092 | } |
f1665b21 SY |
1093 | |
1094 | xcrs.nr_xcrs = 1; | |
1095 | xcrs.flags = 0; | |
1096 | xcrs.xcrs[0].xcr = 0; | |
1097 | xcrs.xcrs[0].value = env->xcr0; | |
1bc22652 | 1098 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs); |
f1665b21 SY |
1099 | } |
1100 | ||
1bc22652 | 1101 | static int kvm_put_sregs(X86CPU *cpu) |
05330448 | 1102 | { |
1bc22652 | 1103 | CPUX86State *env = &cpu->env; |
05330448 AL |
1104 | struct kvm_sregs sregs; |
1105 | ||
0e607a80 JK |
1106 | memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap)); |
1107 | if (env->interrupt_injected >= 0) { | |
1108 | sregs.interrupt_bitmap[env->interrupt_injected / 64] |= | |
1109 | (uint64_t)1 << (env->interrupt_injected % 64); | |
1110 | } | |
05330448 AL |
1111 | |
1112 | if ((env->eflags & VM_MASK)) { | |
b9bec74b JK |
1113 | set_v8086_seg(&sregs.cs, &env->segs[R_CS]); |
1114 | set_v8086_seg(&sregs.ds, &env->segs[R_DS]); | |
1115 | set_v8086_seg(&sregs.es, &env->segs[R_ES]); | |
1116 | set_v8086_seg(&sregs.fs, &env->segs[R_FS]); | |
1117 | set_v8086_seg(&sregs.gs, &env->segs[R_GS]); | |
1118 | set_v8086_seg(&sregs.ss, &env->segs[R_SS]); | |
05330448 | 1119 | } else { |
b9bec74b JK |
1120 | set_seg(&sregs.cs, &env->segs[R_CS]); |
1121 | set_seg(&sregs.ds, &env->segs[R_DS]); | |
1122 | set_seg(&sregs.es, &env->segs[R_ES]); | |
1123 | set_seg(&sregs.fs, &env->segs[R_FS]); | |
1124 | set_seg(&sregs.gs, &env->segs[R_GS]); | |
1125 | set_seg(&sregs.ss, &env->segs[R_SS]); | |
05330448 AL |
1126 | } |
1127 | ||
1128 | set_seg(&sregs.tr, &env->tr); | |
1129 | set_seg(&sregs.ldt, &env->ldt); | |
1130 | ||
1131 | sregs.idt.limit = env->idt.limit; | |
1132 | sregs.idt.base = env->idt.base; | |
7e680753 | 1133 | memset(sregs.idt.padding, 0, sizeof sregs.idt.padding); |
05330448 AL |
1134 | sregs.gdt.limit = env->gdt.limit; |
1135 | sregs.gdt.base = env->gdt.base; | |
7e680753 | 1136 | memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding); |
05330448 AL |
1137 | |
1138 | sregs.cr0 = env->cr[0]; | |
1139 | sregs.cr2 = env->cr[2]; | |
1140 | sregs.cr3 = env->cr[3]; | |
1141 | sregs.cr4 = env->cr[4]; | |
1142 | ||
02e51483 CF |
1143 | sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state); |
1144 | sregs.apic_base = cpu_get_apic_base(cpu->apic_state); | |
05330448 AL |
1145 | |
1146 | sregs.efer = env->efer; | |
1147 | ||
1bc22652 | 1148 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs); |
05330448 AL |
1149 | } |
1150 | ||
1151 | static void kvm_msr_entry_set(struct kvm_msr_entry *entry, | |
1152 | uint32_t index, uint64_t value) | |
1153 | { | |
1154 | entry->index = index; | |
1155 | entry->data = value; | |
1156 | } | |
1157 | ||
7477cd38 MT |
1158 | static int kvm_put_tscdeadline_msr(X86CPU *cpu) |
1159 | { | |
1160 | CPUX86State *env = &cpu->env; | |
1161 | struct { | |
1162 | struct kvm_msrs info; | |
1163 | struct kvm_msr_entry entries[1]; | |
1164 | } msr_data; | |
1165 | struct kvm_msr_entry *msrs = msr_data.entries; | |
1166 | ||
1167 | if (!has_msr_tsc_deadline) { | |
1168 | return 0; | |
1169 | } | |
1170 | ||
1171 | kvm_msr_entry_set(&msrs[0], MSR_IA32_TSCDEADLINE, env->tsc_deadline); | |
1172 | ||
1173 | msr_data.info.nmsrs = 1; | |
1174 | ||
1175 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data); | |
1176 | } | |
1177 | ||
6bdf863d JK |
1178 | /* |
1179 | * Provide a separate write service for the feature control MSR in order to | |
1180 | * kick the VCPU out of VMXON or even guest mode on reset. This has to be done | |
1181 | * before writing any other state because forcibly leaving nested mode | |
1182 | * invalidates the VCPU state. | |
1183 | */ | |
1184 | static int kvm_put_msr_feature_control(X86CPU *cpu) | |
1185 | { | |
1186 | struct { | |
1187 | struct kvm_msrs info; | |
1188 | struct kvm_msr_entry entry; | |
1189 | } msr_data; | |
1190 | ||
1191 | kvm_msr_entry_set(&msr_data.entry, MSR_IA32_FEATURE_CONTROL, | |
1192 | cpu->env.msr_ia32_feature_control); | |
1193 | msr_data.info.nmsrs = 1; | |
1194 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data); | |
1195 | } | |
1196 | ||
1bc22652 | 1197 | static int kvm_put_msrs(X86CPU *cpu, int level) |
05330448 | 1198 | { |
1bc22652 | 1199 | CPUX86State *env = &cpu->env; |
05330448 AL |
1200 | struct { |
1201 | struct kvm_msrs info; | |
d1ae67f6 | 1202 | struct kvm_msr_entry entries[150]; |
05330448 AL |
1203 | } msr_data; |
1204 | struct kvm_msr_entry *msrs = msr_data.entries; | |
0d894367 | 1205 | int n = 0, i; |
05330448 AL |
1206 | |
1207 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs); | |
1208 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp); | |
1209 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip); | |
0c03266a | 1210 | kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat); |
c3a3a7d3 | 1211 | if (has_msr_star) { |
b9bec74b JK |
1212 | kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star); |
1213 | } | |
c3a3a7d3 | 1214 | if (has_msr_hsave_pa) { |
75b10c43 | 1215 | kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave); |
b9bec74b | 1216 | } |
f28558d3 WA |
1217 | if (has_msr_tsc_adjust) { |
1218 | kvm_msr_entry_set(&msrs[n++], MSR_TSC_ADJUST, env->tsc_adjust); | |
1219 | } | |
21e87c46 AK |
1220 | if (has_msr_misc_enable) { |
1221 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE, | |
1222 | env->msr_ia32_misc_enable); | |
1223 | } | |
439d19f2 PB |
1224 | if (has_msr_bndcfgs) { |
1225 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_BNDCFGS, env->msr_bndcfgs); | |
1226 | } | |
05330448 | 1227 | #ifdef TARGET_X86_64 |
25d2e361 MT |
1228 | if (lm_capable_kernel) { |
1229 | kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar); | |
1230 | kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase); | |
1231 | kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask); | |
1232 | kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar); | |
1233 | } | |
05330448 | 1234 | #endif |
ff5c186b | 1235 | /* |
0d894367 PB |
1236 | * The following MSRs have side effects on the guest or are too heavy |
1237 | * for normal writeback. Limit them to reset or full state updates. | |
ff5c186b JK |
1238 | */ |
1239 | if (level >= KVM_PUT_RESET_STATE) { | |
0522604b | 1240 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc); |
ea643051 JK |
1241 | kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME, |
1242 | env->system_time_msr); | |
1243 | kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr); | |
c5999bfc JK |
1244 | if (has_msr_async_pf_en) { |
1245 | kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN, | |
1246 | env->async_pf_en_msr); | |
1247 | } | |
bc9a839d MT |
1248 | if (has_msr_pv_eoi_en) { |
1249 | kvm_msr_entry_set(&msrs[n++], MSR_KVM_PV_EOI_EN, | |
1250 | env->pv_eoi_en_msr); | |
1251 | } | |
917367aa MT |
1252 | if (has_msr_kvm_steal_time) { |
1253 | kvm_msr_entry_set(&msrs[n++], MSR_KVM_STEAL_TIME, | |
1254 | env->steal_time_msr); | |
1255 | } | |
0d894367 PB |
1256 | if (has_msr_architectural_pmu) { |
1257 | /* Stop the counter. */ | |
1258 | kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR_CTRL, 0); | |
1259 | kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_CTRL, 0); | |
1260 | ||
1261 | /* Set the counter values. */ | |
1262 | for (i = 0; i < MAX_FIXED_COUNTERS; i++) { | |
1263 | kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR0 + i, | |
1264 | env->msr_fixed_counters[i]); | |
1265 | } | |
1266 | for (i = 0; i < num_architectural_pmu_counters; i++) { | |
1267 | kvm_msr_entry_set(&msrs[n++], MSR_P6_PERFCTR0 + i, | |
1268 | env->msr_gp_counters[i]); | |
1269 | kvm_msr_entry_set(&msrs[n++], MSR_P6_EVNTSEL0 + i, | |
1270 | env->msr_gp_evtsel[i]); | |
1271 | } | |
1272 | kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_STATUS, | |
1273 | env->msr_global_status); | |
1274 | kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_OVF_CTRL, | |
1275 | env->msr_global_ovf_ctrl); | |
1276 | ||
1277 | /* Now start the PMU. */ | |
1278 | kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR_CTRL, | |
1279 | env->msr_fixed_ctr_ctrl); | |
1280 | kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_CTRL, | |
1281 | env->msr_global_ctrl); | |
1282 | } | |
7bc3d711 | 1283 | if (has_msr_hv_hypercall) { |
1c90ef26 VR |
1284 | kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_GUEST_OS_ID, |
1285 | env->msr_hv_guest_os_id); | |
1286 | kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_HYPERCALL, | |
1287 | env->msr_hv_hypercall); | |
eab70139 | 1288 | } |
7bc3d711 | 1289 | if (has_msr_hv_vapic) { |
5ef68987 VR |
1290 | kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_APIC_ASSIST_PAGE, |
1291 | env->msr_hv_vapic); | |
eab70139 | 1292 | } |
48a5f3bc VR |
1293 | if (has_msr_hv_tsc) { |
1294 | kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_REFERENCE_TSC, | |
1295 | env->msr_hv_tsc); | |
1296 | } | |
d1ae67f6 AW |
1297 | if (has_msr_mtrr) { |
1298 | kvm_msr_entry_set(&msrs[n++], MSR_MTRRdefType, env->mtrr_deftype); | |
1299 | kvm_msr_entry_set(&msrs[n++], | |
1300 | MSR_MTRRfix64K_00000, env->mtrr_fixed[0]); | |
1301 | kvm_msr_entry_set(&msrs[n++], | |
1302 | MSR_MTRRfix16K_80000, env->mtrr_fixed[1]); | |
1303 | kvm_msr_entry_set(&msrs[n++], | |
1304 | MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]); | |
1305 | kvm_msr_entry_set(&msrs[n++], | |
1306 | MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]); | |
1307 | kvm_msr_entry_set(&msrs[n++], | |
1308 | MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]); | |
1309 | kvm_msr_entry_set(&msrs[n++], | |
1310 | MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]); | |
1311 | kvm_msr_entry_set(&msrs[n++], | |
1312 | MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]); | |
1313 | kvm_msr_entry_set(&msrs[n++], | |
1314 | MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]); | |
1315 | kvm_msr_entry_set(&msrs[n++], | |
1316 | MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]); | |
1317 | kvm_msr_entry_set(&msrs[n++], | |
1318 | MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]); | |
1319 | kvm_msr_entry_set(&msrs[n++], | |
1320 | MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]); | |
1321 | for (i = 0; i < MSR_MTRRcap_VCNT; i++) { | |
1322 | kvm_msr_entry_set(&msrs[n++], | |
1323 | MSR_MTRRphysBase(i), env->mtrr_var[i].base); | |
1324 | kvm_msr_entry_set(&msrs[n++], | |
1325 | MSR_MTRRphysMask(i), env->mtrr_var[i].mask); | |
1326 | } | |
1327 | } | |
6bdf863d JK |
1328 | |
1329 | /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see | |
1330 | * kvm_put_msr_feature_control. */ | |
ea643051 | 1331 | } |
57780495 | 1332 | if (env->mcg_cap) { |
d8da8574 | 1333 | int i; |
b9bec74b | 1334 | |
c34d440a JK |
1335 | kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status); |
1336 | kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl); | |
1337 | for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { | |
1338 | kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]); | |
57780495 MT |
1339 | } |
1340 | } | |
1a03675d | 1341 | |
05330448 AL |
1342 | msr_data.info.nmsrs = n; |
1343 | ||
1bc22652 | 1344 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data); |
05330448 AL |
1345 | |
1346 | } | |
1347 | ||
1348 | ||
1bc22652 | 1349 | static int kvm_get_fpu(X86CPU *cpu) |
05330448 | 1350 | { |
1bc22652 | 1351 | CPUX86State *env = &cpu->env; |
05330448 AL |
1352 | struct kvm_fpu fpu; |
1353 | int i, ret; | |
1354 | ||
1bc22652 | 1355 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu); |
b9bec74b | 1356 | if (ret < 0) { |
05330448 | 1357 | return ret; |
b9bec74b | 1358 | } |
05330448 AL |
1359 | |
1360 | env->fpstt = (fpu.fsw >> 11) & 7; | |
1361 | env->fpus = fpu.fsw; | |
1362 | env->fpuc = fpu.fcw; | |
42cc8fa6 JK |
1363 | env->fpop = fpu.last_opcode; |
1364 | env->fpip = fpu.last_ip; | |
1365 | env->fpdp = fpu.last_dp; | |
b9bec74b JK |
1366 | for (i = 0; i < 8; ++i) { |
1367 | env->fptags[i] = !((fpu.ftwx >> i) & 1); | |
1368 | } | |
05330448 AL |
1369 | memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs); |
1370 | memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs); | |
1371 | env->mxcsr = fpu.mxcsr; | |
1372 | ||
1373 | return 0; | |
1374 | } | |
1375 | ||
1bc22652 | 1376 | static int kvm_get_xsave(X86CPU *cpu) |
f1665b21 | 1377 | { |
1bc22652 | 1378 | CPUX86State *env = &cpu->env; |
fabacc0f | 1379 | struct kvm_xsave* xsave = env->kvm_xsave_buf; |
f1665b21 | 1380 | int ret, i; |
42cc8fa6 | 1381 | uint16_t cwd, swd, twd; |
f1665b21 | 1382 | |
b9bec74b | 1383 | if (!kvm_has_xsave()) { |
1bc22652 | 1384 | return kvm_get_fpu(cpu); |
b9bec74b | 1385 | } |
f1665b21 | 1386 | |
1bc22652 | 1387 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave); |
0f53994f | 1388 | if (ret < 0) { |
f1665b21 | 1389 | return ret; |
0f53994f | 1390 | } |
f1665b21 | 1391 | |
6b42494b JK |
1392 | cwd = (uint16_t)xsave->region[XSAVE_FCW_FSW]; |
1393 | swd = (uint16_t)(xsave->region[XSAVE_FCW_FSW] >> 16); | |
1394 | twd = (uint16_t)xsave->region[XSAVE_FTW_FOP]; | |
1395 | env->fpop = (uint16_t)(xsave->region[XSAVE_FTW_FOP] >> 16); | |
f1665b21 SY |
1396 | env->fpstt = (swd >> 11) & 7; |
1397 | env->fpus = swd; | |
1398 | env->fpuc = cwd; | |
b9bec74b | 1399 | for (i = 0; i < 8; ++i) { |
f1665b21 | 1400 | env->fptags[i] = !((twd >> i) & 1); |
b9bec74b | 1401 | } |
42cc8fa6 JK |
1402 | memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip)); |
1403 | memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp)); | |
f1665b21 SY |
1404 | env->mxcsr = xsave->region[XSAVE_MXCSR]; |
1405 | memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE], | |
1406 | sizeof env->fpregs); | |
1407 | memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE], | |
1408 | sizeof env->xmm_regs); | |
1409 | env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV]; | |
1410 | memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE], | |
1411 | sizeof env->ymmh_regs); | |
79e9ebeb LJ |
1412 | memcpy(env->bnd_regs, &xsave->region[XSAVE_BNDREGS], |
1413 | sizeof env->bnd_regs); | |
1414 | memcpy(&env->bndcs_regs, &xsave->region[XSAVE_BNDCSR], | |
1415 | sizeof(env->bndcs_regs)); | |
9aecd6f8 CP |
1416 | memcpy(env->opmask_regs, &xsave->region[XSAVE_OPMASK], |
1417 | sizeof env->opmask_regs); | |
1418 | memcpy(env->zmmh_regs, &xsave->region[XSAVE_ZMM_Hi256], | |
1419 | sizeof env->zmmh_regs); | |
1420 | #ifdef TARGET_X86_64 | |
1421 | memcpy(env->hi16_zmm_regs, &xsave->region[XSAVE_Hi16_ZMM], | |
1422 | sizeof env->hi16_zmm_regs); | |
1423 | #endif | |
f1665b21 | 1424 | return 0; |
f1665b21 SY |
1425 | } |
1426 | ||
1bc22652 | 1427 | static int kvm_get_xcrs(X86CPU *cpu) |
f1665b21 | 1428 | { |
1bc22652 | 1429 | CPUX86State *env = &cpu->env; |
f1665b21 SY |
1430 | int i, ret; |
1431 | struct kvm_xcrs xcrs; | |
1432 | ||
b9bec74b | 1433 | if (!kvm_has_xcrs()) { |
f1665b21 | 1434 | return 0; |
b9bec74b | 1435 | } |
f1665b21 | 1436 | |
1bc22652 | 1437 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs); |
b9bec74b | 1438 | if (ret < 0) { |
f1665b21 | 1439 | return ret; |
b9bec74b | 1440 | } |
f1665b21 | 1441 | |
b9bec74b | 1442 | for (i = 0; i < xcrs.nr_xcrs; i++) { |
f1665b21 | 1443 | /* Only support xcr0 now */ |
0fd53fec PB |
1444 | if (xcrs.xcrs[i].xcr == 0) { |
1445 | env->xcr0 = xcrs.xcrs[i].value; | |
f1665b21 SY |
1446 | break; |
1447 | } | |
b9bec74b | 1448 | } |
f1665b21 | 1449 | return 0; |
f1665b21 SY |
1450 | } |
1451 | ||
1bc22652 | 1452 | static int kvm_get_sregs(X86CPU *cpu) |
05330448 | 1453 | { |
1bc22652 | 1454 | CPUX86State *env = &cpu->env; |
05330448 AL |
1455 | struct kvm_sregs sregs; |
1456 | uint32_t hflags; | |
0e607a80 | 1457 | int bit, i, ret; |
05330448 | 1458 | |
1bc22652 | 1459 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs); |
b9bec74b | 1460 | if (ret < 0) { |
05330448 | 1461 | return ret; |
b9bec74b | 1462 | } |
05330448 | 1463 | |
0e607a80 JK |
1464 | /* There can only be one pending IRQ set in the bitmap at a time, so try |
1465 | to find it and save its number instead (-1 for none). */ | |
1466 | env->interrupt_injected = -1; | |
1467 | for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) { | |
1468 | if (sregs.interrupt_bitmap[i]) { | |
1469 | bit = ctz64(sregs.interrupt_bitmap[i]); | |
1470 | env->interrupt_injected = i * 64 + bit; | |
1471 | break; | |
1472 | } | |
1473 | } | |
05330448 AL |
1474 | |
1475 | get_seg(&env->segs[R_CS], &sregs.cs); | |
1476 | get_seg(&env->segs[R_DS], &sregs.ds); | |
1477 | get_seg(&env->segs[R_ES], &sregs.es); | |
1478 | get_seg(&env->segs[R_FS], &sregs.fs); | |
1479 | get_seg(&env->segs[R_GS], &sregs.gs); | |
1480 | get_seg(&env->segs[R_SS], &sregs.ss); | |
1481 | ||
1482 | get_seg(&env->tr, &sregs.tr); | |
1483 | get_seg(&env->ldt, &sregs.ldt); | |
1484 | ||
1485 | env->idt.limit = sregs.idt.limit; | |
1486 | env->idt.base = sregs.idt.base; | |
1487 | env->gdt.limit = sregs.gdt.limit; | |
1488 | env->gdt.base = sregs.gdt.base; | |
1489 | ||
1490 | env->cr[0] = sregs.cr0; | |
1491 | env->cr[2] = sregs.cr2; | |
1492 | env->cr[3] = sregs.cr3; | |
1493 | env->cr[4] = sregs.cr4; | |
1494 | ||
05330448 | 1495 | env->efer = sregs.efer; |
cce47516 JK |
1496 | |
1497 | /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */ | |
05330448 | 1498 | |
b9bec74b JK |
1499 | #define HFLAG_COPY_MASK \ |
1500 | ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \ | |
1501 | HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \ | |
1502 | HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \ | |
1503 | HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK) | |
05330448 | 1504 | |
7125c937 | 1505 | hflags = (env->segs[R_SS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK; |
05330448 AL |
1506 | hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT); |
1507 | hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) & | |
b9bec74b | 1508 | (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK); |
05330448 AL |
1509 | hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK)); |
1510 | hflags |= (env->cr[4] & CR4_OSFXSR_MASK) << | |
b9bec74b | 1511 | (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT); |
05330448 AL |
1512 | |
1513 | if (env->efer & MSR_EFER_LMA) { | |
1514 | hflags |= HF_LMA_MASK; | |
1515 | } | |
1516 | ||
1517 | if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) { | |
1518 | hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK; | |
1519 | } else { | |
1520 | hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >> | |
b9bec74b | 1521 | (DESC_B_SHIFT - HF_CS32_SHIFT); |
05330448 | 1522 | hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >> |
b9bec74b JK |
1523 | (DESC_B_SHIFT - HF_SS32_SHIFT); |
1524 | if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) || | |
1525 | !(hflags & HF_CS32_MASK)) { | |
1526 | hflags |= HF_ADDSEG_MASK; | |
1527 | } else { | |
1528 | hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base | | |
1529 | env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT; | |
1530 | } | |
05330448 AL |
1531 | } |
1532 | env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags; | |
05330448 AL |
1533 | |
1534 | return 0; | |
1535 | } | |
1536 | ||
1bc22652 | 1537 | static int kvm_get_msrs(X86CPU *cpu) |
05330448 | 1538 | { |
1bc22652 | 1539 | CPUX86State *env = &cpu->env; |
05330448 AL |
1540 | struct { |
1541 | struct kvm_msrs info; | |
d1ae67f6 | 1542 | struct kvm_msr_entry entries[150]; |
05330448 AL |
1543 | } msr_data; |
1544 | struct kvm_msr_entry *msrs = msr_data.entries; | |
1545 | int ret, i, n; | |
1546 | ||
1547 | n = 0; | |
1548 | msrs[n++].index = MSR_IA32_SYSENTER_CS; | |
1549 | msrs[n++].index = MSR_IA32_SYSENTER_ESP; | |
1550 | msrs[n++].index = MSR_IA32_SYSENTER_EIP; | |
0c03266a | 1551 | msrs[n++].index = MSR_PAT; |
c3a3a7d3 | 1552 | if (has_msr_star) { |
b9bec74b JK |
1553 | msrs[n++].index = MSR_STAR; |
1554 | } | |
c3a3a7d3 | 1555 | if (has_msr_hsave_pa) { |
75b10c43 | 1556 | msrs[n++].index = MSR_VM_HSAVE_PA; |
b9bec74b | 1557 | } |
f28558d3 WA |
1558 | if (has_msr_tsc_adjust) { |
1559 | msrs[n++].index = MSR_TSC_ADJUST; | |
1560 | } | |
aa82ba54 LJ |
1561 | if (has_msr_tsc_deadline) { |
1562 | msrs[n++].index = MSR_IA32_TSCDEADLINE; | |
1563 | } | |
21e87c46 AK |
1564 | if (has_msr_misc_enable) { |
1565 | msrs[n++].index = MSR_IA32_MISC_ENABLE; | |
1566 | } | |
df67696e LJ |
1567 | if (has_msr_feature_control) { |
1568 | msrs[n++].index = MSR_IA32_FEATURE_CONTROL; | |
1569 | } | |
79e9ebeb LJ |
1570 | if (has_msr_bndcfgs) { |
1571 | msrs[n++].index = MSR_IA32_BNDCFGS; | |
1572 | } | |
b8cc45d6 GC |
1573 | |
1574 | if (!env->tsc_valid) { | |
1575 | msrs[n++].index = MSR_IA32_TSC; | |
1354869c | 1576 | env->tsc_valid = !runstate_is_running(); |
b8cc45d6 GC |
1577 | } |
1578 | ||
05330448 | 1579 | #ifdef TARGET_X86_64 |
25d2e361 MT |
1580 | if (lm_capable_kernel) { |
1581 | msrs[n++].index = MSR_CSTAR; | |
1582 | msrs[n++].index = MSR_KERNELGSBASE; | |
1583 | msrs[n++].index = MSR_FMASK; | |
1584 | msrs[n++].index = MSR_LSTAR; | |
1585 | } | |
05330448 | 1586 | #endif |
1a03675d GC |
1587 | msrs[n++].index = MSR_KVM_SYSTEM_TIME; |
1588 | msrs[n++].index = MSR_KVM_WALL_CLOCK; | |
c5999bfc JK |
1589 | if (has_msr_async_pf_en) { |
1590 | msrs[n++].index = MSR_KVM_ASYNC_PF_EN; | |
1591 | } | |
bc9a839d MT |
1592 | if (has_msr_pv_eoi_en) { |
1593 | msrs[n++].index = MSR_KVM_PV_EOI_EN; | |
1594 | } | |
917367aa MT |
1595 | if (has_msr_kvm_steal_time) { |
1596 | msrs[n++].index = MSR_KVM_STEAL_TIME; | |
1597 | } | |
0d894367 PB |
1598 | if (has_msr_architectural_pmu) { |
1599 | msrs[n++].index = MSR_CORE_PERF_FIXED_CTR_CTRL; | |
1600 | msrs[n++].index = MSR_CORE_PERF_GLOBAL_CTRL; | |
1601 | msrs[n++].index = MSR_CORE_PERF_GLOBAL_STATUS; | |
1602 | msrs[n++].index = MSR_CORE_PERF_GLOBAL_OVF_CTRL; | |
1603 | for (i = 0; i < MAX_FIXED_COUNTERS; i++) { | |
1604 | msrs[n++].index = MSR_CORE_PERF_FIXED_CTR0 + i; | |
1605 | } | |
1606 | for (i = 0; i < num_architectural_pmu_counters; i++) { | |
1607 | msrs[n++].index = MSR_P6_PERFCTR0 + i; | |
1608 | msrs[n++].index = MSR_P6_EVNTSEL0 + i; | |
1609 | } | |
1610 | } | |
1a03675d | 1611 | |
57780495 MT |
1612 | if (env->mcg_cap) { |
1613 | msrs[n++].index = MSR_MCG_STATUS; | |
1614 | msrs[n++].index = MSR_MCG_CTL; | |
b9bec74b | 1615 | for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { |
57780495 | 1616 | msrs[n++].index = MSR_MC0_CTL + i; |
b9bec74b | 1617 | } |
57780495 | 1618 | } |
57780495 | 1619 | |
1c90ef26 VR |
1620 | if (has_msr_hv_hypercall) { |
1621 | msrs[n++].index = HV_X64_MSR_HYPERCALL; | |
1622 | msrs[n++].index = HV_X64_MSR_GUEST_OS_ID; | |
1623 | } | |
5ef68987 VR |
1624 | if (has_msr_hv_vapic) { |
1625 | msrs[n++].index = HV_X64_MSR_APIC_ASSIST_PAGE; | |
1626 | } | |
48a5f3bc VR |
1627 | if (has_msr_hv_tsc) { |
1628 | msrs[n++].index = HV_X64_MSR_REFERENCE_TSC; | |
1629 | } | |
d1ae67f6 AW |
1630 | if (has_msr_mtrr) { |
1631 | msrs[n++].index = MSR_MTRRdefType; | |
1632 | msrs[n++].index = MSR_MTRRfix64K_00000; | |
1633 | msrs[n++].index = MSR_MTRRfix16K_80000; | |
1634 | msrs[n++].index = MSR_MTRRfix16K_A0000; | |
1635 | msrs[n++].index = MSR_MTRRfix4K_C0000; | |
1636 | msrs[n++].index = MSR_MTRRfix4K_C8000; | |
1637 | msrs[n++].index = MSR_MTRRfix4K_D0000; | |
1638 | msrs[n++].index = MSR_MTRRfix4K_D8000; | |
1639 | msrs[n++].index = MSR_MTRRfix4K_E0000; | |
1640 | msrs[n++].index = MSR_MTRRfix4K_E8000; | |
1641 | msrs[n++].index = MSR_MTRRfix4K_F0000; | |
1642 | msrs[n++].index = MSR_MTRRfix4K_F8000; | |
1643 | for (i = 0; i < MSR_MTRRcap_VCNT; i++) { | |
1644 | msrs[n++].index = MSR_MTRRphysBase(i); | |
1645 | msrs[n++].index = MSR_MTRRphysMask(i); | |
1646 | } | |
1647 | } | |
5ef68987 | 1648 | |
05330448 | 1649 | msr_data.info.nmsrs = n; |
1bc22652 | 1650 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data); |
b9bec74b | 1651 | if (ret < 0) { |
05330448 | 1652 | return ret; |
b9bec74b | 1653 | } |
05330448 AL |
1654 | |
1655 | for (i = 0; i < ret; i++) { | |
0d894367 PB |
1656 | uint32_t index = msrs[i].index; |
1657 | switch (index) { | |
05330448 AL |
1658 | case MSR_IA32_SYSENTER_CS: |
1659 | env->sysenter_cs = msrs[i].data; | |
1660 | break; | |
1661 | case MSR_IA32_SYSENTER_ESP: | |
1662 | env->sysenter_esp = msrs[i].data; | |
1663 | break; | |
1664 | case MSR_IA32_SYSENTER_EIP: | |
1665 | env->sysenter_eip = msrs[i].data; | |
1666 | break; | |
0c03266a JK |
1667 | case MSR_PAT: |
1668 | env->pat = msrs[i].data; | |
1669 | break; | |
05330448 AL |
1670 | case MSR_STAR: |
1671 | env->star = msrs[i].data; | |
1672 | break; | |
1673 | #ifdef TARGET_X86_64 | |
1674 | case MSR_CSTAR: | |
1675 | env->cstar = msrs[i].data; | |
1676 | break; | |
1677 | case MSR_KERNELGSBASE: | |
1678 | env->kernelgsbase = msrs[i].data; | |
1679 | break; | |
1680 | case MSR_FMASK: | |
1681 | env->fmask = msrs[i].data; | |
1682 | break; | |
1683 | case MSR_LSTAR: | |
1684 | env->lstar = msrs[i].data; | |
1685 | break; | |
1686 | #endif | |
1687 | case MSR_IA32_TSC: | |
1688 | env->tsc = msrs[i].data; | |
1689 | break; | |
f28558d3 WA |
1690 | case MSR_TSC_ADJUST: |
1691 | env->tsc_adjust = msrs[i].data; | |
1692 | break; | |
aa82ba54 LJ |
1693 | case MSR_IA32_TSCDEADLINE: |
1694 | env->tsc_deadline = msrs[i].data; | |
1695 | break; | |
aa851e36 MT |
1696 | case MSR_VM_HSAVE_PA: |
1697 | env->vm_hsave = msrs[i].data; | |
1698 | break; | |
1a03675d GC |
1699 | case MSR_KVM_SYSTEM_TIME: |
1700 | env->system_time_msr = msrs[i].data; | |
1701 | break; | |
1702 | case MSR_KVM_WALL_CLOCK: | |
1703 | env->wall_clock_msr = msrs[i].data; | |
1704 | break; | |
57780495 MT |
1705 | case MSR_MCG_STATUS: |
1706 | env->mcg_status = msrs[i].data; | |
1707 | break; | |
1708 | case MSR_MCG_CTL: | |
1709 | env->mcg_ctl = msrs[i].data; | |
1710 | break; | |
21e87c46 AK |
1711 | case MSR_IA32_MISC_ENABLE: |
1712 | env->msr_ia32_misc_enable = msrs[i].data; | |
1713 | break; | |
0779caeb ACL |
1714 | case MSR_IA32_FEATURE_CONTROL: |
1715 | env->msr_ia32_feature_control = msrs[i].data; | |
df67696e | 1716 | break; |
79e9ebeb LJ |
1717 | case MSR_IA32_BNDCFGS: |
1718 | env->msr_bndcfgs = msrs[i].data; | |
1719 | break; | |
57780495 | 1720 | default: |
57780495 MT |
1721 | if (msrs[i].index >= MSR_MC0_CTL && |
1722 | msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) { | |
1723 | env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data; | |
57780495 | 1724 | } |
d8da8574 | 1725 | break; |
f6584ee2 GN |
1726 | case MSR_KVM_ASYNC_PF_EN: |
1727 | env->async_pf_en_msr = msrs[i].data; | |
1728 | break; | |
bc9a839d MT |
1729 | case MSR_KVM_PV_EOI_EN: |
1730 | env->pv_eoi_en_msr = msrs[i].data; | |
1731 | break; | |
917367aa MT |
1732 | case MSR_KVM_STEAL_TIME: |
1733 | env->steal_time_msr = msrs[i].data; | |
1734 | break; | |
0d894367 PB |
1735 | case MSR_CORE_PERF_FIXED_CTR_CTRL: |
1736 | env->msr_fixed_ctr_ctrl = msrs[i].data; | |
1737 | break; | |
1738 | case MSR_CORE_PERF_GLOBAL_CTRL: | |
1739 | env->msr_global_ctrl = msrs[i].data; | |
1740 | break; | |
1741 | case MSR_CORE_PERF_GLOBAL_STATUS: | |
1742 | env->msr_global_status = msrs[i].data; | |
1743 | break; | |
1744 | case MSR_CORE_PERF_GLOBAL_OVF_CTRL: | |
1745 | env->msr_global_ovf_ctrl = msrs[i].data; | |
1746 | break; | |
1747 | case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1: | |
1748 | env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data; | |
1749 | break; | |
1750 | case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1: | |
1751 | env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data; | |
1752 | break; | |
1753 | case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1: | |
1754 | env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data; | |
1755 | break; | |
1c90ef26 VR |
1756 | case HV_X64_MSR_HYPERCALL: |
1757 | env->msr_hv_hypercall = msrs[i].data; | |
1758 | break; | |
1759 | case HV_X64_MSR_GUEST_OS_ID: | |
1760 | env->msr_hv_guest_os_id = msrs[i].data; | |
1761 | break; | |
5ef68987 VR |
1762 | case HV_X64_MSR_APIC_ASSIST_PAGE: |
1763 | env->msr_hv_vapic = msrs[i].data; | |
1764 | break; | |
48a5f3bc VR |
1765 | case HV_X64_MSR_REFERENCE_TSC: |
1766 | env->msr_hv_tsc = msrs[i].data; | |
1767 | break; | |
d1ae67f6 AW |
1768 | case MSR_MTRRdefType: |
1769 | env->mtrr_deftype = msrs[i].data; | |
1770 | break; | |
1771 | case MSR_MTRRfix64K_00000: | |
1772 | env->mtrr_fixed[0] = msrs[i].data; | |
1773 | break; | |
1774 | case MSR_MTRRfix16K_80000: | |
1775 | env->mtrr_fixed[1] = msrs[i].data; | |
1776 | break; | |
1777 | case MSR_MTRRfix16K_A0000: | |
1778 | env->mtrr_fixed[2] = msrs[i].data; | |
1779 | break; | |
1780 | case MSR_MTRRfix4K_C0000: | |
1781 | env->mtrr_fixed[3] = msrs[i].data; | |
1782 | break; | |
1783 | case MSR_MTRRfix4K_C8000: | |
1784 | env->mtrr_fixed[4] = msrs[i].data; | |
1785 | break; | |
1786 | case MSR_MTRRfix4K_D0000: | |
1787 | env->mtrr_fixed[5] = msrs[i].data; | |
1788 | break; | |
1789 | case MSR_MTRRfix4K_D8000: | |
1790 | env->mtrr_fixed[6] = msrs[i].data; | |
1791 | break; | |
1792 | case MSR_MTRRfix4K_E0000: | |
1793 | env->mtrr_fixed[7] = msrs[i].data; | |
1794 | break; | |
1795 | case MSR_MTRRfix4K_E8000: | |
1796 | env->mtrr_fixed[8] = msrs[i].data; | |
1797 | break; | |
1798 | case MSR_MTRRfix4K_F0000: | |
1799 | env->mtrr_fixed[9] = msrs[i].data; | |
1800 | break; | |
1801 | case MSR_MTRRfix4K_F8000: | |
1802 | env->mtrr_fixed[10] = msrs[i].data; | |
1803 | break; | |
1804 | case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1): | |
1805 | if (index & 1) { | |
1806 | env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data; | |
1807 | } else { | |
1808 | env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data; | |
1809 | } | |
1810 | break; | |
05330448 AL |
1811 | } |
1812 | } | |
1813 | ||
1814 | return 0; | |
1815 | } | |
1816 | ||
1bc22652 | 1817 | static int kvm_put_mp_state(X86CPU *cpu) |
9bdbe550 | 1818 | { |
1bc22652 | 1819 | struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state }; |
9bdbe550 | 1820 | |
1bc22652 | 1821 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); |
9bdbe550 HB |
1822 | } |
1823 | ||
23d02d9b | 1824 | static int kvm_get_mp_state(X86CPU *cpu) |
9bdbe550 | 1825 | { |
259186a7 | 1826 | CPUState *cs = CPU(cpu); |
23d02d9b | 1827 | CPUX86State *env = &cpu->env; |
9bdbe550 HB |
1828 | struct kvm_mp_state mp_state; |
1829 | int ret; | |
1830 | ||
259186a7 | 1831 | ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state); |
9bdbe550 HB |
1832 | if (ret < 0) { |
1833 | return ret; | |
1834 | } | |
1835 | env->mp_state = mp_state.mp_state; | |
c14750e8 | 1836 | if (kvm_irqchip_in_kernel()) { |
259186a7 | 1837 | cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED); |
c14750e8 | 1838 | } |
9bdbe550 HB |
1839 | return 0; |
1840 | } | |
1841 | ||
1bc22652 | 1842 | static int kvm_get_apic(X86CPU *cpu) |
680c1c6f | 1843 | { |
02e51483 | 1844 | DeviceState *apic = cpu->apic_state; |
680c1c6f JK |
1845 | struct kvm_lapic_state kapic; |
1846 | int ret; | |
1847 | ||
3d4b2649 | 1848 | if (apic && kvm_irqchip_in_kernel()) { |
1bc22652 | 1849 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic); |
680c1c6f JK |
1850 | if (ret < 0) { |
1851 | return ret; | |
1852 | } | |
1853 | ||
1854 | kvm_get_apic_state(apic, &kapic); | |
1855 | } | |
1856 | return 0; | |
1857 | } | |
1858 | ||
1bc22652 | 1859 | static int kvm_put_apic(X86CPU *cpu) |
680c1c6f | 1860 | { |
02e51483 | 1861 | DeviceState *apic = cpu->apic_state; |
680c1c6f JK |
1862 | struct kvm_lapic_state kapic; |
1863 | ||
3d4b2649 | 1864 | if (apic && kvm_irqchip_in_kernel()) { |
680c1c6f JK |
1865 | kvm_put_apic_state(apic, &kapic); |
1866 | ||
1bc22652 | 1867 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_LAPIC, &kapic); |
680c1c6f JK |
1868 | } |
1869 | return 0; | |
1870 | } | |
1871 | ||
1bc22652 | 1872 | static int kvm_put_vcpu_events(X86CPU *cpu, int level) |
a0fb002c | 1873 | { |
1bc22652 | 1874 | CPUX86State *env = &cpu->env; |
a0fb002c JK |
1875 | struct kvm_vcpu_events events; |
1876 | ||
1877 | if (!kvm_has_vcpu_events()) { | |
1878 | return 0; | |
1879 | } | |
1880 | ||
31827373 JK |
1881 | events.exception.injected = (env->exception_injected >= 0); |
1882 | events.exception.nr = env->exception_injected; | |
a0fb002c JK |
1883 | events.exception.has_error_code = env->has_error_code; |
1884 | events.exception.error_code = env->error_code; | |
7e680753 | 1885 | events.exception.pad = 0; |
a0fb002c JK |
1886 | |
1887 | events.interrupt.injected = (env->interrupt_injected >= 0); | |
1888 | events.interrupt.nr = env->interrupt_injected; | |
1889 | events.interrupt.soft = env->soft_interrupt; | |
1890 | ||
1891 | events.nmi.injected = env->nmi_injected; | |
1892 | events.nmi.pending = env->nmi_pending; | |
1893 | events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK); | |
7e680753 | 1894 | events.nmi.pad = 0; |
a0fb002c JK |
1895 | |
1896 | events.sipi_vector = env->sipi_vector; | |
1897 | ||
ea643051 JK |
1898 | events.flags = 0; |
1899 | if (level >= KVM_PUT_RESET_STATE) { | |
1900 | events.flags |= | |
1901 | KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR; | |
1902 | } | |
aee028b9 | 1903 | |
1bc22652 | 1904 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events); |
a0fb002c JK |
1905 | } |
1906 | ||
1bc22652 | 1907 | static int kvm_get_vcpu_events(X86CPU *cpu) |
a0fb002c | 1908 | { |
1bc22652 | 1909 | CPUX86State *env = &cpu->env; |
a0fb002c JK |
1910 | struct kvm_vcpu_events events; |
1911 | int ret; | |
1912 | ||
1913 | if (!kvm_has_vcpu_events()) { | |
1914 | return 0; | |
1915 | } | |
1916 | ||
1bc22652 | 1917 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events); |
a0fb002c JK |
1918 | if (ret < 0) { |
1919 | return ret; | |
1920 | } | |
31827373 | 1921 | env->exception_injected = |
a0fb002c JK |
1922 | events.exception.injected ? events.exception.nr : -1; |
1923 | env->has_error_code = events.exception.has_error_code; | |
1924 | env->error_code = events.exception.error_code; | |
1925 | ||
1926 | env->interrupt_injected = | |
1927 | events.interrupt.injected ? events.interrupt.nr : -1; | |
1928 | env->soft_interrupt = events.interrupt.soft; | |
1929 | ||
1930 | env->nmi_injected = events.nmi.injected; | |
1931 | env->nmi_pending = events.nmi.pending; | |
1932 | if (events.nmi.masked) { | |
1933 | env->hflags2 |= HF2_NMI_MASK; | |
1934 | } else { | |
1935 | env->hflags2 &= ~HF2_NMI_MASK; | |
1936 | } | |
1937 | ||
1938 | env->sipi_vector = events.sipi_vector; | |
a0fb002c JK |
1939 | |
1940 | return 0; | |
1941 | } | |
1942 | ||
1bc22652 | 1943 | static int kvm_guest_debug_workarounds(X86CPU *cpu) |
b0b1d690 | 1944 | { |
ed2803da | 1945 | CPUState *cs = CPU(cpu); |
1bc22652 | 1946 | CPUX86State *env = &cpu->env; |
b0b1d690 | 1947 | int ret = 0; |
b0b1d690 JK |
1948 | unsigned long reinject_trap = 0; |
1949 | ||
1950 | if (!kvm_has_vcpu_events()) { | |
1951 | if (env->exception_injected == 1) { | |
1952 | reinject_trap = KVM_GUESTDBG_INJECT_DB; | |
1953 | } else if (env->exception_injected == 3) { | |
1954 | reinject_trap = KVM_GUESTDBG_INJECT_BP; | |
1955 | } | |
1956 | env->exception_injected = -1; | |
1957 | } | |
1958 | ||
1959 | /* | |
1960 | * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF | |
1961 | * injected via SET_GUEST_DEBUG while updating GP regs. Work around this | |
1962 | * by updating the debug state once again if single-stepping is on. | |
1963 | * Another reason to call kvm_update_guest_debug here is a pending debug | |
1964 | * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to | |
1965 | * reinject them via SET_GUEST_DEBUG. | |
1966 | */ | |
1967 | if (reinject_trap || | |
ed2803da | 1968 | (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) { |
38e478ec | 1969 | ret = kvm_update_guest_debug(cs, reinject_trap); |
b0b1d690 | 1970 | } |
b0b1d690 JK |
1971 | return ret; |
1972 | } | |
1973 | ||
1bc22652 | 1974 | static int kvm_put_debugregs(X86CPU *cpu) |
ff44f1a3 | 1975 | { |
1bc22652 | 1976 | CPUX86State *env = &cpu->env; |
ff44f1a3 JK |
1977 | struct kvm_debugregs dbgregs; |
1978 | int i; | |
1979 | ||
1980 | if (!kvm_has_debugregs()) { | |
1981 | return 0; | |
1982 | } | |
1983 | ||
1984 | for (i = 0; i < 4; i++) { | |
1985 | dbgregs.db[i] = env->dr[i]; | |
1986 | } | |
1987 | dbgregs.dr6 = env->dr[6]; | |
1988 | dbgregs.dr7 = env->dr[7]; | |
1989 | dbgregs.flags = 0; | |
1990 | ||
1bc22652 | 1991 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs); |
ff44f1a3 JK |
1992 | } |
1993 | ||
1bc22652 | 1994 | static int kvm_get_debugregs(X86CPU *cpu) |
ff44f1a3 | 1995 | { |
1bc22652 | 1996 | CPUX86State *env = &cpu->env; |
ff44f1a3 JK |
1997 | struct kvm_debugregs dbgregs; |
1998 | int i, ret; | |
1999 | ||
2000 | if (!kvm_has_debugregs()) { | |
2001 | return 0; | |
2002 | } | |
2003 | ||
1bc22652 | 2004 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs); |
ff44f1a3 | 2005 | if (ret < 0) { |
b9bec74b | 2006 | return ret; |
ff44f1a3 JK |
2007 | } |
2008 | for (i = 0; i < 4; i++) { | |
2009 | env->dr[i] = dbgregs.db[i]; | |
2010 | } | |
2011 | env->dr[4] = env->dr[6] = dbgregs.dr6; | |
2012 | env->dr[5] = env->dr[7] = dbgregs.dr7; | |
ff44f1a3 JK |
2013 | |
2014 | return 0; | |
2015 | } | |
2016 | ||
20d695a9 | 2017 | int kvm_arch_put_registers(CPUState *cpu, int level) |
05330448 | 2018 | { |
20d695a9 | 2019 | X86CPU *x86_cpu = X86_CPU(cpu); |
05330448 AL |
2020 | int ret; |
2021 | ||
2fa45344 | 2022 | assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu)); |
dbaa07c4 | 2023 | |
6bdf863d JK |
2024 | if (level >= KVM_PUT_RESET_STATE && has_msr_feature_control) { |
2025 | ret = kvm_put_msr_feature_control(x86_cpu); | |
2026 | if (ret < 0) { | |
2027 | return ret; | |
2028 | } | |
2029 | } | |
2030 | ||
1bc22652 | 2031 | ret = kvm_getput_regs(x86_cpu, 1); |
b9bec74b | 2032 | if (ret < 0) { |
05330448 | 2033 | return ret; |
b9bec74b | 2034 | } |
1bc22652 | 2035 | ret = kvm_put_xsave(x86_cpu); |
b9bec74b | 2036 | if (ret < 0) { |
f1665b21 | 2037 | return ret; |
b9bec74b | 2038 | } |
1bc22652 | 2039 | ret = kvm_put_xcrs(x86_cpu); |
b9bec74b | 2040 | if (ret < 0) { |
05330448 | 2041 | return ret; |
b9bec74b | 2042 | } |
1bc22652 | 2043 | ret = kvm_put_sregs(x86_cpu); |
b9bec74b | 2044 | if (ret < 0) { |
05330448 | 2045 | return ret; |
b9bec74b | 2046 | } |
ab443475 | 2047 | /* must be before kvm_put_msrs */ |
1bc22652 | 2048 | ret = kvm_inject_mce_oldstyle(x86_cpu); |
ab443475 JK |
2049 | if (ret < 0) { |
2050 | return ret; | |
2051 | } | |
1bc22652 | 2052 | ret = kvm_put_msrs(x86_cpu, level); |
b9bec74b | 2053 | if (ret < 0) { |
05330448 | 2054 | return ret; |
b9bec74b | 2055 | } |
ea643051 | 2056 | if (level >= KVM_PUT_RESET_STATE) { |
1bc22652 | 2057 | ret = kvm_put_mp_state(x86_cpu); |
b9bec74b | 2058 | if (ret < 0) { |
ea643051 | 2059 | return ret; |
b9bec74b | 2060 | } |
1bc22652 | 2061 | ret = kvm_put_apic(x86_cpu); |
680c1c6f JK |
2062 | if (ret < 0) { |
2063 | return ret; | |
2064 | } | |
ea643051 | 2065 | } |
7477cd38 MT |
2066 | |
2067 | ret = kvm_put_tscdeadline_msr(x86_cpu); | |
2068 | if (ret < 0) { | |
2069 | return ret; | |
2070 | } | |
2071 | ||
1bc22652 | 2072 | ret = kvm_put_vcpu_events(x86_cpu, level); |
b9bec74b | 2073 | if (ret < 0) { |
a0fb002c | 2074 | return ret; |
b9bec74b | 2075 | } |
1bc22652 | 2076 | ret = kvm_put_debugregs(x86_cpu); |
b9bec74b | 2077 | if (ret < 0) { |
b0b1d690 | 2078 | return ret; |
b9bec74b | 2079 | } |
b0b1d690 | 2080 | /* must be last */ |
1bc22652 | 2081 | ret = kvm_guest_debug_workarounds(x86_cpu); |
b9bec74b | 2082 | if (ret < 0) { |
ff44f1a3 | 2083 | return ret; |
b9bec74b | 2084 | } |
05330448 AL |
2085 | return 0; |
2086 | } | |
2087 | ||
20d695a9 | 2088 | int kvm_arch_get_registers(CPUState *cs) |
05330448 | 2089 | { |
20d695a9 | 2090 | X86CPU *cpu = X86_CPU(cs); |
05330448 AL |
2091 | int ret; |
2092 | ||
20d695a9 | 2093 | assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs)); |
dbaa07c4 | 2094 | |
1bc22652 | 2095 | ret = kvm_getput_regs(cpu, 0); |
b9bec74b | 2096 | if (ret < 0) { |
05330448 | 2097 | return ret; |
b9bec74b | 2098 | } |
1bc22652 | 2099 | ret = kvm_get_xsave(cpu); |
b9bec74b | 2100 | if (ret < 0) { |
f1665b21 | 2101 | return ret; |
b9bec74b | 2102 | } |
1bc22652 | 2103 | ret = kvm_get_xcrs(cpu); |
b9bec74b | 2104 | if (ret < 0) { |
05330448 | 2105 | return ret; |
b9bec74b | 2106 | } |
1bc22652 | 2107 | ret = kvm_get_sregs(cpu); |
b9bec74b | 2108 | if (ret < 0) { |
05330448 | 2109 | return ret; |
b9bec74b | 2110 | } |
1bc22652 | 2111 | ret = kvm_get_msrs(cpu); |
b9bec74b | 2112 | if (ret < 0) { |
05330448 | 2113 | return ret; |
b9bec74b | 2114 | } |
23d02d9b | 2115 | ret = kvm_get_mp_state(cpu); |
b9bec74b | 2116 | if (ret < 0) { |
5a2e3c2e | 2117 | return ret; |
b9bec74b | 2118 | } |
1bc22652 | 2119 | ret = kvm_get_apic(cpu); |
680c1c6f JK |
2120 | if (ret < 0) { |
2121 | return ret; | |
2122 | } | |
1bc22652 | 2123 | ret = kvm_get_vcpu_events(cpu); |
b9bec74b | 2124 | if (ret < 0) { |
a0fb002c | 2125 | return ret; |
b9bec74b | 2126 | } |
1bc22652 | 2127 | ret = kvm_get_debugregs(cpu); |
b9bec74b | 2128 | if (ret < 0) { |
ff44f1a3 | 2129 | return ret; |
b9bec74b | 2130 | } |
05330448 AL |
2131 | return 0; |
2132 | } | |
2133 | ||
20d695a9 | 2134 | void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run) |
05330448 | 2135 | { |
20d695a9 AF |
2136 | X86CPU *x86_cpu = X86_CPU(cpu); |
2137 | CPUX86State *env = &x86_cpu->env; | |
ce377af3 JK |
2138 | int ret; |
2139 | ||
276ce815 | 2140 | /* Inject NMI */ |
259186a7 AF |
2141 | if (cpu->interrupt_request & CPU_INTERRUPT_NMI) { |
2142 | cpu->interrupt_request &= ~CPU_INTERRUPT_NMI; | |
276ce815 | 2143 | DPRINTF("injected NMI\n"); |
1bc22652 | 2144 | ret = kvm_vcpu_ioctl(cpu, KVM_NMI); |
ce377af3 JK |
2145 | if (ret < 0) { |
2146 | fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n", | |
2147 | strerror(-ret)); | |
2148 | } | |
276ce815 LJ |
2149 | } |
2150 | ||
e0723c45 PB |
2151 | /* Force the VCPU out of its inner loop to process any INIT requests |
2152 | * or (for userspace APIC, but it is cheap to combine the checks here) | |
2153 | * pending TPR access reports. | |
2154 | */ | |
2155 | if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) { | |
2156 | cpu->exit_request = 1; | |
2157 | } | |
05330448 | 2158 | |
e0723c45 | 2159 | if (!kvm_irqchip_in_kernel()) { |
db1669bc JK |
2160 | /* Try to inject an interrupt if the guest can accept it */ |
2161 | if (run->ready_for_interrupt_injection && | |
259186a7 | 2162 | (cpu->interrupt_request & CPU_INTERRUPT_HARD) && |
db1669bc JK |
2163 | (env->eflags & IF_MASK)) { |
2164 | int irq; | |
2165 | ||
259186a7 | 2166 | cpu->interrupt_request &= ~CPU_INTERRUPT_HARD; |
db1669bc JK |
2167 | irq = cpu_get_pic_interrupt(env); |
2168 | if (irq >= 0) { | |
2169 | struct kvm_interrupt intr; | |
2170 | ||
2171 | intr.irq = irq; | |
db1669bc | 2172 | DPRINTF("injected interrupt %d\n", irq); |
1bc22652 | 2173 | ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr); |
ce377af3 JK |
2174 | if (ret < 0) { |
2175 | fprintf(stderr, | |
2176 | "KVM: injection failed, interrupt lost (%s)\n", | |
2177 | strerror(-ret)); | |
2178 | } | |
db1669bc JK |
2179 | } |
2180 | } | |
05330448 | 2181 | |
db1669bc JK |
2182 | /* If we have an interrupt but the guest is not ready to receive an |
2183 | * interrupt, request an interrupt window exit. This will | |
2184 | * cause a return to userspace as soon as the guest is ready to | |
2185 | * receive interrupts. */ | |
259186a7 | 2186 | if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) { |
db1669bc JK |
2187 | run->request_interrupt_window = 1; |
2188 | } else { | |
2189 | run->request_interrupt_window = 0; | |
2190 | } | |
2191 | ||
2192 | DPRINTF("setting tpr\n"); | |
02e51483 | 2193 | run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state); |
db1669bc | 2194 | } |
05330448 AL |
2195 | } |
2196 | ||
20d695a9 | 2197 | void kvm_arch_post_run(CPUState *cpu, struct kvm_run *run) |
05330448 | 2198 | { |
20d695a9 AF |
2199 | X86CPU *x86_cpu = X86_CPU(cpu); |
2200 | CPUX86State *env = &x86_cpu->env; | |
2201 | ||
b9bec74b | 2202 | if (run->if_flag) { |
05330448 | 2203 | env->eflags |= IF_MASK; |
b9bec74b | 2204 | } else { |
05330448 | 2205 | env->eflags &= ~IF_MASK; |
b9bec74b | 2206 | } |
02e51483 CF |
2207 | cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8); |
2208 | cpu_set_apic_base(x86_cpu->apic_state, run->apic_base); | |
05330448 AL |
2209 | } |
2210 | ||
20d695a9 | 2211 | int kvm_arch_process_async_events(CPUState *cs) |
0af691d7 | 2212 | { |
20d695a9 AF |
2213 | X86CPU *cpu = X86_CPU(cs); |
2214 | CPUX86State *env = &cpu->env; | |
232fc23b | 2215 | |
259186a7 | 2216 | if (cs->interrupt_request & CPU_INTERRUPT_MCE) { |
ab443475 JK |
2217 | /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */ |
2218 | assert(env->mcg_cap); | |
2219 | ||
259186a7 | 2220 | cs->interrupt_request &= ~CPU_INTERRUPT_MCE; |
ab443475 | 2221 | |
dd1750d7 | 2222 | kvm_cpu_synchronize_state(cs); |
ab443475 JK |
2223 | |
2224 | if (env->exception_injected == EXCP08_DBLE) { | |
2225 | /* this means triple fault */ | |
2226 | qemu_system_reset_request(); | |
fcd7d003 | 2227 | cs->exit_request = 1; |
ab443475 JK |
2228 | return 0; |
2229 | } | |
2230 | env->exception_injected = EXCP12_MCHK; | |
2231 | env->has_error_code = 0; | |
2232 | ||
259186a7 | 2233 | cs->halted = 0; |
ab443475 JK |
2234 | if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) { |
2235 | env->mp_state = KVM_MP_STATE_RUNNABLE; | |
2236 | } | |
2237 | } | |
2238 | ||
e0723c45 PB |
2239 | if (cs->interrupt_request & CPU_INTERRUPT_INIT) { |
2240 | kvm_cpu_synchronize_state(cs); | |
2241 | do_cpu_init(cpu); | |
2242 | } | |
2243 | ||
db1669bc JK |
2244 | if (kvm_irqchip_in_kernel()) { |
2245 | return 0; | |
2246 | } | |
2247 | ||
259186a7 AF |
2248 | if (cs->interrupt_request & CPU_INTERRUPT_POLL) { |
2249 | cs->interrupt_request &= ~CPU_INTERRUPT_POLL; | |
02e51483 | 2250 | apic_poll_irq(cpu->apic_state); |
5d62c43a | 2251 | } |
259186a7 | 2252 | if (((cs->interrupt_request & CPU_INTERRUPT_HARD) && |
4601f7b0 | 2253 | (env->eflags & IF_MASK)) || |
259186a7 AF |
2254 | (cs->interrupt_request & CPU_INTERRUPT_NMI)) { |
2255 | cs->halted = 0; | |
6792a57b | 2256 | } |
259186a7 | 2257 | if (cs->interrupt_request & CPU_INTERRUPT_SIPI) { |
dd1750d7 | 2258 | kvm_cpu_synchronize_state(cs); |
232fc23b | 2259 | do_cpu_sipi(cpu); |
0af691d7 | 2260 | } |
259186a7 AF |
2261 | if (cs->interrupt_request & CPU_INTERRUPT_TPR) { |
2262 | cs->interrupt_request &= ~CPU_INTERRUPT_TPR; | |
dd1750d7 | 2263 | kvm_cpu_synchronize_state(cs); |
02e51483 | 2264 | apic_handle_tpr_access_report(cpu->apic_state, env->eip, |
d362e757 JK |
2265 | env->tpr_access_type); |
2266 | } | |
0af691d7 | 2267 | |
259186a7 | 2268 | return cs->halted; |
0af691d7 MT |
2269 | } |
2270 | ||
839b5630 | 2271 | static int kvm_handle_halt(X86CPU *cpu) |
05330448 | 2272 | { |
259186a7 | 2273 | CPUState *cs = CPU(cpu); |
839b5630 AF |
2274 | CPUX86State *env = &cpu->env; |
2275 | ||
259186a7 | 2276 | if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) && |
05330448 | 2277 | (env->eflags & IF_MASK)) && |
259186a7 AF |
2278 | !(cs->interrupt_request & CPU_INTERRUPT_NMI)) { |
2279 | cs->halted = 1; | |
bb4ea393 | 2280 | return EXCP_HLT; |
05330448 AL |
2281 | } |
2282 | ||
bb4ea393 | 2283 | return 0; |
05330448 AL |
2284 | } |
2285 | ||
f7575c96 | 2286 | static int kvm_handle_tpr_access(X86CPU *cpu) |
d362e757 | 2287 | { |
f7575c96 AF |
2288 | CPUState *cs = CPU(cpu); |
2289 | struct kvm_run *run = cs->kvm_run; | |
d362e757 | 2290 | |
02e51483 | 2291 | apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip, |
d362e757 JK |
2292 | run->tpr_access.is_write ? TPR_ACCESS_WRITE |
2293 | : TPR_ACCESS_READ); | |
2294 | return 1; | |
2295 | } | |
2296 | ||
f17ec444 | 2297 | int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) |
e22a25c9 | 2298 | { |
38972938 | 2299 | static const uint8_t int3 = 0xcc; |
64bf3f4e | 2300 | |
f17ec444 AF |
2301 | if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) || |
2302 | cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) { | |
e22a25c9 | 2303 | return -EINVAL; |
b9bec74b | 2304 | } |
e22a25c9 AL |
2305 | return 0; |
2306 | } | |
2307 | ||
f17ec444 | 2308 | int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) |
e22a25c9 AL |
2309 | { |
2310 | uint8_t int3; | |
2311 | ||
f17ec444 AF |
2312 | if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0) || int3 != 0xcc || |
2313 | cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) { | |
e22a25c9 | 2314 | return -EINVAL; |
b9bec74b | 2315 | } |
e22a25c9 AL |
2316 | return 0; |
2317 | } | |
2318 | ||
2319 | static struct { | |
2320 | target_ulong addr; | |
2321 | int len; | |
2322 | int type; | |
2323 | } hw_breakpoint[4]; | |
2324 | ||
2325 | static int nb_hw_breakpoint; | |
2326 | ||
2327 | static int find_hw_breakpoint(target_ulong addr, int len, int type) | |
2328 | { | |
2329 | int n; | |
2330 | ||
b9bec74b | 2331 | for (n = 0; n < nb_hw_breakpoint; n++) { |
e22a25c9 | 2332 | if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type && |
b9bec74b | 2333 | (hw_breakpoint[n].len == len || len == -1)) { |
e22a25c9 | 2334 | return n; |
b9bec74b JK |
2335 | } |
2336 | } | |
e22a25c9 AL |
2337 | return -1; |
2338 | } | |
2339 | ||
2340 | int kvm_arch_insert_hw_breakpoint(target_ulong addr, | |
2341 | target_ulong len, int type) | |
2342 | { | |
2343 | switch (type) { | |
2344 | case GDB_BREAKPOINT_HW: | |
2345 | len = 1; | |
2346 | break; | |
2347 | case GDB_WATCHPOINT_WRITE: | |
2348 | case GDB_WATCHPOINT_ACCESS: | |
2349 | switch (len) { | |
2350 | case 1: | |
2351 | break; | |
2352 | case 2: | |
2353 | case 4: | |
2354 | case 8: | |
b9bec74b | 2355 | if (addr & (len - 1)) { |
e22a25c9 | 2356 | return -EINVAL; |
b9bec74b | 2357 | } |
e22a25c9 AL |
2358 | break; |
2359 | default: | |
2360 | return -EINVAL; | |
2361 | } | |
2362 | break; | |
2363 | default: | |
2364 | return -ENOSYS; | |
2365 | } | |
2366 | ||
b9bec74b | 2367 | if (nb_hw_breakpoint == 4) { |
e22a25c9 | 2368 | return -ENOBUFS; |
b9bec74b JK |
2369 | } |
2370 | if (find_hw_breakpoint(addr, len, type) >= 0) { | |
e22a25c9 | 2371 | return -EEXIST; |
b9bec74b | 2372 | } |
e22a25c9 AL |
2373 | hw_breakpoint[nb_hw_breakpoint].addr = addr; |
2374 | hw_breakpoint[nb_hw_breakpoint].len = len; | |
2375 | hw_breakpoint[nb_hw_breakpoint].type = type; | |
2376 | nb_hw_breakpoint++; | |
2377 | ||
2378 | return 0; | |
2379 | } | |
2380 | ||
2381 | int kvm_arch_remove_hw_breakpoint(target_ulong addr, | |
2382 | target_ulong len, int type) | |
2383 | { | |
2384 | int n; | |
2385 | ||
2386 | n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type); | |
b9bec74b | 2387 | if (n < 0) { |
e22a25c9 | 2388 | return -ENOENT; |
b9bec74b | 2389 | } |
e22a25c9 AL |
2390 | nb_hw_breakpoint--; |
2391 | hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint]; | |
2392 | ||
2393 | return 0; | |
2394 | } | |
2395 | ||
2396 | void kvm_arch_remove_all_hw_breakpoints(void) | |
2397 | { | |
2398 | nb_hw_breakpoint = 0; | |
2399 | } | |
2400 | ||
2401 | static CPUWatchpoint hw_watchpoint; | |
2402 | ||
a60f24b5 | 2403 | static int kvm_handle_debug(X86CPU *cpu, |
48405526 | 2404 | struct kvm_debug_exit_arch *arch_info) |
e22a25c9 | 2405 | { |
ed2803da | 2406 | CPUState *cs = CPU(cpu); |
a60f24b5 | 2407 | CPUX86State *env = &cpu->env; |
f2574737 | 2408 | int ret = 0; |
e22a25c9 AL |
2409 | int n; |
2410 | ||
2411 | if (arch_info->exception == 1) { | |
2412 | if (arch_info->dr6 & (1 << 14)) { | |
ed2803da | 2413 | if (cs->singlestep_enabled) { |
f2574737 | 2414 | ret = EXCP_DEBUG; |
b9bec74b | 2415 | } |
e22a25c9 | 2416 | } else { |
b9bec74b JK |
2417 | for (n = 0; n < 4; n++) { |
2418 | if (arch_info->dr6 & (1 << n)) { | |
e22a25c9 AL |
2419 | switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) { |
2420 | case 0x0: | |
f2574737 | 2421 | ret = EXCP_DEBUG; |
e22a25c9 AL |
2422 | break; |
2423 | case 0x1: | |
f2574737 | 2424 | ret = EXCP_DEBUG; |
ff4700b0 | 2425 | cs->watchpoint_hit = &hw_watchpoint; |
e22a25c9 AL |
2426 | hw_watchpoint.vaddr = hw_breakpoint[n].addr; |
2427 | hw_watchpoint.flags = BP_MEM_WRITE; | |
2428 | break; | |
2429 | case 0x3: | |
f2574737 | 2430 | ret = EXCP_DEBUG; |
ff4700b0 | 2431 | cs->watchpoint_hit = &hw_watchpoint; |
e22a25c9 AL |
2432 | hw_watchpoint.vaddr = hw_breakpoint[n].addr; |
2433 | hw_watchpoint.flags = BP_MEM_ACCESS; | |
2434 | break; | |
2435 | } | |
b9bec74b JK |
2436 | } |
2437 | } | |
e22a25c9 | 2438 | } |
ff4700b0 | 2439 | } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) { |
f2574737 | 2440 | ret = EXCP_DEBUG; |
b9bec74b | 2441 | } |
f2574737 | 2442 | if (ret == 0) { |
ff4700b0 | 2443 | cpu_synchronize_state(cs); |
48405526 | 2444 | assert(env->exception_injected == -1); |
b0b1d690 | 2445 | |
f2574737 | 2446 | /* pass to guest */ |
48405526 BS |
2447 | env->exception_injected = arch_info->exception; |
2448 | env->has_error_code = 0; | |
b0b1d690 | 2449 | } |
e22a25c9 | 2450 | |
f2574737 | 2451 | return ret; |
e22a25c9 AL |
2452 | } |
2453 | ||
20d695a9 | 2454 | void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg) |
e22a25c9 AL |
2455 | { |
2456 | const uint8_t type_code[] = { | |
2457 | [GDB_BREAKPOINT_HW] = 0x0, | |
2458 | [GDB_WATCHPOINT_WRITE] = 0x1, | |
2459 | [GDB_WATCHPOINT_ACCESS] = 0x3 | |
2460 | }; | |
2461 | const uint8_t len_code[] = { | |
2462 | [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2 | |
2463 | }; | |
2464 | int n; | |
2465 | ||
a60f24b5 | 2466 | if (kvm_sw_breakpoints_active(cpu)) { |
e22a25c9 | 2467 | dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; |
b9bec74b | 2468 | } |
e22a25c9 AL |
2469 | if (nb_hw_breakpoint > 0) { |
2470 | dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; | |
2471 | dbg->arch.debugreg[7] = 0x0600; | |
2472 | for (n = 0; n < nb_hw_breakpoint; n++) { | |
2473 | dbg->arch.debugreg[n] = hw_breakpoint[n].addr; | |
2474 | dbg->arch.debugreg[7] |= (2 << (n * 2)) | | |
2475 | (type_code[hw_breakpoint[n].type] << (16 + n*4)) | | |
95c077c9 | 2476 | ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4)); |
e22a25c9 AL |
2477 | } |
2478 | } | |
2479 | } | |
4513d923 | 2480 | |
2a4dac83 JK |
2481 | static bool host_supports_vmx(void) |
2482 | { | |
2483 | uint32_t ecx, unused; | |
2484 | ||
2485 | host_cpuid(1, 0, &unused, &unused, &ecx, &unused); | |
2486 | return ecx & CPUID_EXT_VMX; | |
2487 | } | |
2488 | ||
2489 | #define VMX_INVALID_GUEST_STATE 0x80000021 | |
2490 | ||
20d695a9 | 2491 | int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) |
2a4dac83 | 2492 | { |
20d695a9 | 2493 | X86CPU *cpu = X86_CPU(cs); |
2a4dac83 JK |
2494 | uint64_t code; |
2495 | int ret; | |
2496 | ||
2497 | switch (run->exit_reason) { | |
2498 | case KVM_EXIT_HLT: | |
2499 | DPRINTF("handle_hlt\n"); | |
839b5630 | 2500 | ret = kvm_handle_halt(cpu); |
2a4dac83 JK |
2501 | break; |
2502 | case KVM_EXIT_SET_TPR: | |
2503 | ret = 0; | |
2504 | break; | |
d362e757 | 2505 | case KVM_EXIT_TPR_ACCESS: |
f7575c96 | 2506 | ret = kvm_handle_tpr_access(cpu); |
d362e757 | 2507 | break; |
2a4dac83 JK |
2508 | case KVM_EXIT_FAIL_ENTRY: |
2509 | code = run->fail_entry.hardware_entry_failure_reason; | |
2510 | fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n", | |
2511 | code); | |
2512 | if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) { | |
2513 | fprintf(stderr, | |
12619721 | 2514 | "\nIf you're running a guest on an Intel machine without " |
2a4dac83 JK |
2515 | "unrestricted mode\n" |
2516 | "support, the failure can be most likely due to the guest " | |
2517 | "entering an invalid\n" | |
2518 | "state for Intel VT. For example, the guest maybe running " | |
2519 | "in big real mode\n" | |
2520 | "which is not supported on less recent Intel processors." | |
2521 | "\n\n"); | |
2522 | } | |
2523 | ret = -1; | |
2524 | break; | |
2525 | case KVM_EXIT_EXCEPTION: | |
2526 | fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n", | |
2527 | run->ex.exception, run->ex.error_code); | |
2528 | ret = -1; | |
2529 | break; | |
f2574737 JK |
2530 | case KVM_EXIT_DEBUG: |
2531 | DPRINTF("kvm_exit_debug\n"); | |
a60f24b5 | 2532 | ret = kvm_handle_debug(cpu, &run->debug.arch); |
f2574737 | 2533 | break; |
2a4dac83 JK |
2534 | default: |
2535 | fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason); | |
2536 | ret = -1; | |
2537 | break; | |
2538 | } | |
2539 | ||
2540 | return ret; | |
2541 | } | |
2542 | ||
20d695a9 | 2543 | bool kvm_arch_stop_on_emulation_error(CPUState *cs) |
4513d923 | 2544 | { |
20d695a9 AF |
2545 | X86CPU *cpu = X86_CPU(cs); |
2546 | CPUX86State *env = &cpu->env; | |
2547 | ||
dd1750d7 | 2548 | kvm_cpu_synchronize_state(cs); |
b9bec74b JK |
2549 | return !(env->cr[0] & CR0_PE_MASK) || |
2550 | ((env->segs[R_CS].selector & 3) != 3); | |
4513d923 | 2551 | } |
84b058d7 JK |
2552 | |
2553 | void kvm_arch_init_irq_routing(KVMState *s) | |
2554 | { | |
2555 | if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) { | |
2556 | /* If kernel can't do irq routing, interrupt source | |
2557 | * override 0->2 cannot be set up as required by HPET. | |
2558 | * So we have to disable it. | |
2559 | */ | |
2560 | no_hpet = 1; | |
2561 | } | |
cc7e0ddf | 2562 | /* We know at this point that we're using the in-kernel |
614e41bc | 2563 | * irqchip, so we can use irqfds, and on x86 we know |
f3e1bed8 | 2564 | * we can use msi via irqfd and GSI routing. |
cc7e0ddf PM |
2565 | */ |
2566 | kvm_irqfds_allowed = true; | |
614e41bc | 2567 | kvm_msi_via_irqfd_allowed = true; |
f3e1bed8 | 2568 | kvm_gsi_routing_allowed = true; |
84b058d7 | 2569 | } |
b139bd30 JK |
2570 | |
2571 | /* Classic KVM device assignment interface. Will remain x86 only. */ | |
2572 | int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr, | |
2573 | uint32_t flags, uint32_t *dev_id) | |
2574 | { | |
2575 | struct kvm_assigned_pci_dev dev_data = { | |
2576 | .segnr = dev_addr->domain, | |
2577 | .busnr = dev_addr->bus, | |
2578 | .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function), | |
2579 | .flags = flags, | |
2580 | }; | |
2581 | int ret; | |
2582 | ||
2583 | dev_data.assigned_dev_id = | |
2584 | (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn; | |
2585 | ||
2586 | ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data); | |
2587 | if (ret < 0) { | |
2588 | return ret; | |
2589 | } | |
2590 | ||
2591 | *dev_id = dev_data.assigned_dev_id; | |
2592 | ||
2593 | return 0; | |
2594 | } | |
2595 | ||
2596 | int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id) | |
2597 | { | |
2598 | struct kvm_assigned_pci_dev dev_data = { | |
2599 | .assigned_dev_id = dev_id, | |
2600 | }; | |
2601 | ||
2602 | return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data); | |
2603 | } | |
2604 | ||
2605 | static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id, | |
2606 | uint32_t irq_type, uint32_t guest_irq) | |
2607 | { | |
2608 | struct kvm_assigned_irq assigned_irq = { | |
2609 | .assigned_dev_id = dev_id, | |
2610 | .guest_irq = guest_irq, | |
2611 | .flags = irq_type, | |
2612 | }; | |
2613 | ||
2614 | if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) { | |
2615 | return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq); | |
2616 | } else { | |
2617 | return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq); | |
2618 | } | |
2619 | } | |
2620 | ||
2621 | int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi, | |
2622 | uint32_t guest_irq) | |
2623 | { | |
2624 | uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX | | |
2625 | (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX); | |
2626 | ||
2627 | return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq); | |
2628 | } | |
2629 | ||
2630 | int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked) | |
2631 | { | |
2632 | struct kvm_assigned_pci_dev dev_data = { | |
2633 | .assigned_dev_id = dev_id, | |
2634 | .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0, | |
2635 | }; | |
2636 | ||
2637 | return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data); | |
2638 | } | |
2639 | ||
2640 | static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id, | |
2641 | uint32_t type) | |
2642 | { | |
2643 | struct kvm_assigned_irq assigned_irq = { | |
2644 | .assigned_dev_id = dev_id, | |
2645 | .flags = type, | |
2646 | }; | |
2647 | ||
2648 | return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq); | |
2649 | } | |
2650 | ||
2651 | int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi) | |
2652 | { | |
2653 | return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX | | |
2654 | (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX)); | |
2655 | } | |
2656 | ||
2657 | int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq) | |
2658 | { | |
2659 | return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI | | |
2660 | KVM_DEV_IRQ_GUEST_MSI, virq); | |
2661 | } | |
2662 | ||
2663 | int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id) | |
2664 | { | |
2665 | return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI | | |
2666 | KVM_DEV_IRQ_HOST_MSI); | |
2667 | } | |
2668 | ||
2669 | bool kvm_device_msix_supported(KVMState *s) | |
2670 | { | |
2671 | /* The kernel lacks a corresponding KVM_CAP, so we probe by calling | |
2672 | * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */ | |
2673 | return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT; | |
2674 | } | |
2675 | ||
2676 | int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id, | |
2677 | uint32_t nr_vectors) | |
2678 | { | |
2679 | struct kvm_assigned_msix_nr msix_nr = { | |
2680 | .assigned_dev_id = dev_id, | |
2681 | .entry_nr = nr_vectors, | |
2682 | }; | |
2683 | ||
2684 | return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr); | |
2685 | } | |
2686 | ||
2687 | int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector, | |
2688 | int virq) | |
2689 | { | |
2690 | struct kvm_assigned_msix_entry msix_entry = { | |
2691 | .assigned_dev_id = dev_id, | |
2692 | .gsi = virq, | |
2693 | .entry = vector, | |
2694 | }; | |
2695 | ||
2696 | return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry); | |
2697 | } | |
2698 | ||
2699 | int kvm_device_msix_assign(KVMState *s, uint32_t dev_id) | |
2700 | { | |
2701 | return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX | | |
2702 | KVM_DEV_IRQ_GUEST_MSIX, 0); | |
2703 | } | |
2704 | ||
2705 | int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id) | |
2706 | { | |
2707 | return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX | | |
2708 | KVM_DEV_IRQ_HOST_MSIX); | |
2709 | } |