]>
Commit | Line | Data |
---|---|---|
05330448 AL |
1 | /* |
2 | * QEMU KVM support | |
3 | * | |
4 | * Copyright IBM, Corp. 2008 | |
5832d1f2 | 5 | * Red Hat, Inc. 2008 |
05330448 AL |
6 | * |
7 | * Authors: | |
8 | * Anthony Liguori <[email protected]> | |
5832d1f2 | 9 | * Glauber Costa <[email protected]> |
05330448 AL |
10 | * |
11 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
12 | * See the COPYING file in the top-level directory. | |
13 | * | |
14 | */ | |
15 | ||
16 | #include <sys/types.h> | |
17 | #include <sys/ioctl.h> | |
18 | #include <sys/mman.h> | |
984b5181 | 19 | #include <stdarg.h> |
05330448 AL |
20 | |
21 | #include <linux/kvm.h> | |
22 | ||
23 | #include "qemu-common.h" | |
85199474 | 24 | #include "qemu-barrier.h" |
05330448 | 25 | #include "sysemu.h" |
d33a1810 | 26 | #include "hw/hw.h" |
e22a25c9 | 27 | #include "gdbstub.h" |
05330448 | 28 | #include "kvm.h" |
8369e01c | 29 | #include "bswap.h" |
a01672d3 | 30 | #include "memory.h" |
05330448 | 31 | |
d2f2b8a7 SH |
32 | /* This check must be after config-host.h is included */ |
33 | #ifdef CONFIG_EVENTFD | |
34 | #include <sys/eventfd.h> | |
35 | #endif | |
36 | ||
f65ed4c1 AL |
37 | /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */ |
38 | #define PAGE_SIZE TARGET_PAGE_SIZE | |
39 | ||
05330448 AL |
40 | //#define DEBUG_KVM |
41 | ||
42 | #ifdef DEBUG_KVM | |
8c0d577e | 43 | #define DPRINTF(fmt, ...) \ |
05330448 AL |
44 | do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) |
45 | #else | |
8c0d577e | 46 | #define DPRINTF(fmt, ...) \ |
05330448 AL |
47 | do { } while (0) |
48 | #endif | |
49 | ||
34fc643f AL |
50 | typedef struct KVMSlot |
51 | { | |
c227f099 AL |
52 | target_phys_addr_t start_addr; |
53 | ram_addr_t memory_size; | |
9f213ed9 | 54 | void *ram; |
34fc643f AL |
55 | int slot; |
56 | int flags; | |
57 | } KVMSlot; | |
05330448 | 58 | |
5832d1f2 AL |
59 | typedef struct kvm_dirty_log KVMDirtyLog; |
60 | ||
05330448 AL |
61 | struct KVMState |
62 | { | |
63 | KVMSlot slots[32]; | |
64 | int fd; | |
65 | int vmfd; | |
f65ed4c1 | 66 | int coalesced_mmio; |
62a2744c | 67 | struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; |
1cae88b9 | 68 | bool coalesced_flush_in_progress; |
e69917e2 | 69 | int broken_set_mem_region; |
4495d6a7 | 70 | int migration_log; |
a0fb002c | 71 | int vcpu_events; |
b0b1d690 | 72 | int robust_singlestep; |
ff44f1a3 | 73 | int debugregs; |
e22a25c9 AL |
74 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
75 | struct kvm_sw_breakpoint_head kvm_sw_breakpoints; | |
76 | #endif | |
6f725c13 | 77 | int pit_in_kernel; |
f1665b21 | 78 | int xsave, xcrs; |
d2f2b8a7 | 79 | int many_ioeventfds; |
84b058d7 JK |
80 | int irqchip_inject_ioctl; |
81 | #ifdef KVM_CAP_IRQ_ROUTING | |
82 | struct kvm_irq_routing *irq_routes; | |
83 | int nr_allocated_irq_routes; | |
84 | uint32_t *used_gsi_bitmap; | |
85 | unsigned int max_gsi; | |
86 | #endif | |
05330448 AL |
87 | }; |
88 | ||
6a7af8cb | 89 | KVMState *kvm_state; |
3d4b2649 | 90 | bool kvm_kernel_irqchip; |
05330448 | 91 | |
94a8d39a JK |
92 | static const KVMCapabilityInfo kvm_required_capabilites[] = { |
93 | KVM_CAP_INFO(USER_MEMORY), | |
94 | KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), | |
95 | KVM_CAP_LAST_INFO | |
96 | }; | |
97 | ||
05330448 AL |
98 | static KVMSlot *kvm_alloc_slot(KVMState *s) |
99 | { | |
100 | int i; | |
101 | ||
102 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
a426e122 | 103 | if (s->slots[i].memory_size == 0) { |
05330448 | 104 | return &s->slots[i]; |
a426e122 | 105 | } |
05330448 AL |
106 | } |
107 | ||
d3f8d37f AL |
108 | fprintf(stderr, "%s: no free slot available\n", __func__); |
109 | abort(); | |
110 | } | |
111 | ||
112 | static KVMSlot *kvm_lookup_matching_slot(KVMState *s, | |
c227f099 AL |
113 | target_phys_addr_t start_addr, |
114 | target_phys_addr_t end_addr) | |
d3f8d37f AL |
115 | { |
116 | int i; | |
117 | ||
118 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
119 | KVMSlot *mem = &s->slots[i]; | |
120 | ||
121 | if (start_addr == mem->start_addr && | |
122 | end_addr == mem->start_addr + mem->memory_size) { | |
123 | return mem; | |
124 | } | |
125 | } | |
126 | ||
05330448 AL |
127 | return NULL; |
128 | } | |
129 | ||
6152e2ae AL |
130 | /* |
131 | * Find overlapping slot with lowest start address | |
132 | */ | |
133 | static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s, | |
c227f099 AL |
134 | target_phys_addr_t start_addr, |
135 | target_phys_addr_t end_addr) | |
05330448 | 136 | { |
6152e2ae | 137 | KVMSlot *found = NULL; |
05330448 AL |
138 | int i; |
139 | ||
140 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
141 | KVMSlot *mem = &s->slots[i]; | |
142 | ||
6152e2ae AL |
143 | if (mem->memory_size == 0 || |
144 | (found && found->start_addr < mem->start_addr)) { | |
145 | continue; | |
146 | } | |
147 | ||
148 | if (end_addr > mem->start_addr && | |
149 | start_addr < mem->start_addr + mem->memory_size) { | |
150 | found = mem; | |
151 | } | |
05330448 AL |
152 | } |
153 | ||
6152e2ae | 154 | return found; |
05330448 AL |
155 | } |
156 | ||
9f213ed9 AK |
157 | int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, |
158 | target_phys_addr_t *phys_addr) | |
983dfc3b HY |
159 | { |
160 | int i; | |
161 | ||
162 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
163 | KVMSlot *mem = &s->slots[i]; | |
164 | ||
9f213ed9 AK |
165 | if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { |
166 | *phys_addr = mem->start_addr + (ram - mem->ram); | |
983dfc3b HY |
167 | return 1; |
168 | } | |
169 | } | |
170 | ||
171 | return 0; | |
172 | } | |
173 | ||
5832d1f2 AL |
174 | static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot) |
175 | { | |
176 | struct kvm_userspace_memory_region mem; | |
177 | ||
178 | mem.slot = slot->slot; | |
179 | mem.guest_phys_addr = slot->start_addr; | |
180 | mem.memory_size = slot->memory_size; | |
9f213ed9 | 181 | mem.userspace_addr = (unsigned long)slot->ram; |
5832d1f2 | 182 | mem.flags = slot->flags; |
4495d6a7 JK |
183 | if (s->migration_log) { |
184 | mem.flags |= KVM_MEM_LOG_DIRTY_PAGES; | |
185 | } | |
5832d1f2 AL |
186 | return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); |
187 | } | |
188 | ||
8d2ba1fb JK |
189 | static void kvm_reset_vcpu(void *opaque) |
190 | { | |
191 | CPUState *env = opaque; | |
192 | ||
caa5af0f | 193 | kvm_arch_reset_vcpu(env); |
8d2ba1fb | 194 | } |
5832d1f2 | 195 | |
6f725c13 GC |
196 | int kvm_pit_in_kernel(void) |
197 | { | |
198 | return kvm_state->pit_in_kernel; | |
199 | } | |
200 | ||
05330448 AL |
201 | int kvm_init_vcpu(CPUState *env) |
202 | { | |
203 | KVMState *s = kvm_state; | |
204 | long mmap_size; | |
205 | int ret; | |
206 | ||
8c0d577e | 207 | DPRINTF("kvm_init_vcpu\n"); |
05330448 | 208 | |
984b5181 | 209 | ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index); |
05330448 | 210 | if (ret < 0) { |
8c0d577e | 211 | DPRINTF("kvm_create_vcpu failed\n"); |
05330448 AL |
212 | goto err; |
213 | } | |
214 | ||
215 | env->kvm_fd = ret; | |
216 | env->kvm_state = s; | |
d841b6c4 | 217 | env->kvm_vcpu_dirty = 1; |
05330448 AL |
218 | |
219 | mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); | |
220 | if (mmap_size < 0) { | |
748a680b | 221 | ret = mmap_size; |
8c0d577e | 222 | DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); |
05330448 AL |
223 | goto err; |
224 | } | |
225 | ||
226 | env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, | |
227 | env->kvm_fd, 0); | |
228 | if (env->kvm_run == MAP_FAILED) { | |
229 | ret = -errno; | |
8c0d577e | 230 | DPRINTF("mmap'ing vcpu state failed\n"); |
05330448 AL |
231 | goto err; |
232 | } | |
233 | ||
a426e122 JK |
234 | if (s->coalesced_mmio && !s->coalesced_mmio_ring) { |
235 | s->coalesced_mmio_ring = | |
236 | (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE; | |
237 | } | |
62a2744c | 238 | |
05330448 | 239 | ret = kvm_arch_init_vcpu(env); |
8d2ba1fb | 240 | if (ret == 0) { |
a08d4367 | 241 | qemu_register_reset(kvm_reset_vcpu, env); |
caa5af0f | 242 | kvm_arch_reset_vcpu(env); |
8d2ba1fb | 243 | } |
05330448 AL |
244 | err: |
245 | return ret; | |
246 | } | |
247 | ||
5832d1f2 AL |
248 | /* |
249 | * dirty pages logging control | |
250 | */ | |
25254bbc MT |
251 | |
252 | static int kvm_mem_flags(KVMState *s, bool log_dirty) | |
253 | { | |
254 | return log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0; | |
255 | } | |
256 | ||
257 | static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty) | |
5832d1f2 AL |
258 | { |
259 | KVMState *s = kvm_state; | |
25254bbc | 260 | int flags, mask = KVM_MEM_LOG_DIRTY_PAGES; |
4495d6a7 JK |
261 | int old_flags; |
262 | ||
4495d6a7 | 263 | old_flags = mem->flags; |
5832d1f2 | 264 | |
25254bbc | 265 | flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty); |
5832d1f2 AL |
266 | mem->flags = flags; |
267 | ||
4495d6a7 JK |
268 | /* If nothing changed effectively, no need to issue ioctl */ |
269 | if (s->migration_log) { | |
270 | flags |= KVM_MEM_LOG_DIRTY_PAGES; | |
271 | } | |
25254bbc | 272 | |
4495d6a7 | 273 | if (flags == old_flags) { |
25254bbc | 274 | return 0; |
4495d6a7 JK |
275 | } |
276 | ||
5832d1f2 AL |
277 | return kvm_set_user_memory_region(s, mem); |
278 | } | |
279 | ||
25254bbc MT |
280 | static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr, |
281 | ram_addr_t size, bool log_dirty) | |
282 | { | |
283 | KVMState *s = kvm_state; | |
284 | KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size); | |
285 | ||
286 | if (mem == NULL) { | |
287 | fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-" | |
288 | TARGET_FMT_plx "\n", __func__, phys_addr, | |
289 | (target_phys_addr_t)(phys_addr + size - 1)); | |
290 | return -EINVAL; | |
291 | } | |
292 | return kvm_slot_dirty_pages_log_change(mem, log_dirty); | |
293 | } | |
294 | ||
a01672d3 AK |
295 | static void kvm_log_start(MemoryListener *listener, |
296 | MemoryRegionSection *section) | |
5832d1f2 | 297 | { |
a01672d3 AK |
298 | int r; |
299 | ||
300 | r = kvm_dirty_pages_log_change(section->offset_within_address_space, | |
301 | section->size, true); | |
302 | if (r < 0) { | |
303 | abort(); | |
304 | } | |
5832d1f2 AL |
305 | } |
306 | ||
a01672d3 AK |
307 | static void kvm_log_stop(MemoryListener *listener, |
308 | MemoryRegionSection *section) | |
5832d1f2 | 309 | { |
a01672d3 AK |
310 | int r; |
311 | ||
312 | r = kvm_dirty_pages_log_change(section->offset_within_address_space, | |
313 | section->size, false); | |
314 | if (r < 0) { | |
315 | abort(); | |
316 | } | |
5832d1f2 AL |
317 | } |
318 | ||
7b8f3b78 | 319 | static int kvm_set_migration_log(int enable) |
4495d6a7 JK |
320 | { |
321 | KVMState *s = kvm_state; | |
322 | KVMSlot *mem; | |
323 | int i, err; | |
324 | ||
325 | s->migration_log = enable; | |
326 | ||
327 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
328 | mem = &s->slots[i]; | |
329 | ||
70fedd76 AW |
330 | if (!mem->memory_size) { |
331 | continue; | |
332 | } | |
4495d6a7 JK |
333 | if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) { |
334 | continue; | |
335 | } | |
336 | err = kvm_set_user_memory_region(s, mem); | |
337 | if (err) { | |
338 | return err; | |
339 | } | |
340 | } | |
341 | return 0; | |
342 | } | |
343 | ||
8369e01c | 344 | /* get kvm's dirty pages bitmap and update qemu's */ |
ffcde12f AK |
345 | static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section, |
346 | unsigned long *bitmap) | |
96c1606b | 347 | { |
8369e01c | 348 | unsigned int i, j; |
aa90fec7 BH |
349 | unsigned long page_number, c; |
350 | target_phys_addr_t addr, addr1; | |
ffcde12f | 351 | unsigned int len = ((section->size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) / HOST_LONG_BITS; |
8369e01c MT |
352 | |
353 | /* | |
354 | * bitmap-traveling is faster than memory-traveling (for addr...) | |
355 | * especially when most of the memory is not dirty. | |
356 | */ | |
357 | for (i = 0; i < len; i++) { | |
358 | if (bitmap[i] != 0) { | |
359 | c = leul_to_cpu(bitmap[i]); | |
360 | do { | |
361 | j = ffsl(c) - 1; | |
362 | c &= ~(1ul << j); | |
363 | page_number = i * HOST_LONG_BITS + j; | |
364 | addr1 = page_number * TARGET_PAGE_SIZE; | |
ffcde12f | 365 | addr = section->offset_within_region + addr1; |
fd4aa979 | 366 | memory_region_set_dirty(section->mr, addr, TARGET_PAGE_SIZE); |
8369e01c MT |
367 | } while (c != 0); |
368 | } | |
369 | } | |
370 | return 0; | |
96c1606b AG |
371 | } |
372 | ||
8369e01c MT |
373 | #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) |
374 | ||
5832d1f2 AL |
375 | /** |
376 | * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space | |
fd4aa979 BS |
377 | * This function updates qemu's dirty bitmap using |
378 | * memory_region_set_dirty(). This means all bits are set | |
379 | * to dirty. | |
5832d1f2 | 380 | * |
d3f8d37f | 381 | * @start_add: start of logged region. |
5832d1f2 AL |
382 | * @end_addr: end of logged region. |
383 | */ | |
ffcde12f | 384 | static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section) |
5832d1f2 AL |
385 | { |
386 | KVMState *s = kvm_state; | |
151f7749 | 387 | unsigned long size, allocated_size = 0; |
151f7749 JK |
388 | KVMDirtyLog d; |
389 | KVMSlot *mem; | |
390 | int ret = 0; | |
ffcde12f AK |
391 | target_phys_addr_t start_addr = section->offset_within_address_space; |
392 | target_phys_addr_t end_addr = start_addr + section->size; | |
5832d1f2 | 393 | |
151f7749 JK |
394 | d.dirty_bitmap = NULL; |
395 | while (start_addr < end_addr) { | |
396 | mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr); | |
397 | if (mem == NULL) { | |
398 | break; | |
399 | } | |
5832d1f2 | 400 | |
51b0c606 MT |
401 | /* XXX bad kernel interface alert |
402 | * For dirty bitmap, kernel allocates array of size aligned to | |
403 | * bits-per-long. But for case when the kernel is 64bits and | |
404 | * the userspace is 32bits, userspace can't align to the same | |
405 | * bits-per-long, since sizeof(long) is different between kernel | |
406 | * and user space. This way, userspace will provide buffer which | |
407 | * may be 4 bytes less than the kernel will use, resulting in | |
408 | * userspace memory corruption (which is not detectable by valgrind | |
409 | * too, in most cases). | |
410 | * So for now, let's align to 64 instead of HOST_LONG_BITS here, in | |
411 | * a hope that sizeof(long) wont become >8 any time soon. | |
412 | */ | |
413 | size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), | |
414 | /*HOST_LONG_BITS*/ 64) / 8; | |
151f7749 | 415 | if (!d.dirty_bitmap) { |
7267c094 | 416 | d.dirty_bitmap = g_malloc(size); |
151f7749 | 417 | } else if (size > allocated_size) { |
7267c094 | 418 | d.dirty_bitmap = g_realloc(d.dirty_bitmap, size); |
151f7749 JK |
419 | } |
420 | allocated_size = size; | |
421 | memset(d.dirty_bitmap, 0, allocated_size); | |
5832d1f2 | 422 | |
151f7749 | 423 | d.slot = mem->slot; |
5832d1f2 | 424 | |
6e489f3f | 425 | if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) { |
8c0d577e | 426 | DPRINTF("ioctl failed %d\n", errno); |
151f7749 JK |
427 | ret = -1; |
428 | break; | |
429 | } | |
5832d1f2 | 430 | |
ffcde12f | 431 | kvm_get_dirty_pages_log_range(section, d.dirty_bitmap); |
8369e01c | 432 | start_addr = mem->start_addr + mem->memory_size; |
5832d1f2 | 433 | } |
7267c094 | 434 | g_free(d.dirty_bitmap); |
151f7749 JK |
435 | |
436 | return ret; | |
5832d1f2 AL |
437 | } |
438 | ||
c227f099 | 439 | int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size) |
f65ed4c1 AL |
440 | { |
441 | int ret = -ENOSYS; | |
f65ed4c1 AL |
442 | KVMState *s = kvm_state; |
443 | ||
444 | if (s->coalesced_mmio) { | |
445 | struct kvm_coalesced_mmio_zone zone; | |
446 | ||
447 | zone.addr = start; | |
448 | zone.size = size; | |
449 | ||
450 | ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); | |
451 | } | |
f65ed4c1 AL |
452 | |
453 | return ret; | |
454 | } | |
455 | ||
c227f099 | 456 | int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size) |
f65ed4c1 AL |
457 | { |
458 | int ret = -ENOSYS; | |
f65ed4c1 AL |
459 | KVMState *s = kvm_state; |
460 | ||
461 | if (s->coalesced_mmio) { | |
462 | struct kvm_coalesced_mmio_zone zone; | |
463 | ||
464 | zone.addr = start; | |
465 | zone.size = size; | |
466 | ||
467 | ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); | |
468 | } | |
f65ed4c1 AL |
469 | |
470 | return ret; | |
471 | } | |
472 | ||
ad7b8b33 AL |
473 | int kvm_check_extension(KVMState *s, unsigned int extension) |
474 | { | |
475 | int ret; | |
476 | ||
477 | ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); | |
478 | if (ret < 0) { | |
479 | ret = 0; | |
480 | } | |
481 | ||
482 | return ret; | |
483 | } | |
484 | ||
d2f2b8a7 SH |
485 | static int kvm_check_many_ioeventfds(void) |
486 | { | |
d0dcac83 SH |
487 | /* Userspace can use ioeventfd for io notification. This requires a host |
488 | * that supports eventfd(2) and an I/O thread; since eventfd does not | |
489 | * support SIGIO it cannot interrupt the vcpu. | |
490 | * | |
491 | * Older kernels have a 6 device limit on the KVM io bus. Find out so we | |
d2f2b8a7 SH |
492 | * can avoid creating too many ioeventfds. |
493 | */ | |
12d4536f | 494 | #if defined(CONFIG_EVENTFD) |
d2f2b8a7 SH |
495 | int ioeventfds[7]; |
496 | int i, ret = 0; | |
497 | for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { | |
498 | ioeventfds[i] = eventfd(0, EFD_CLOEXEC); | |
499 | if (ioeventfds[i] < 0) { | |
500 | break; | |
501 | } | |
502 | ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true); | |
503 | if (ret < 0) { | |
504 | close(ioeventfds[i]); | |
505 | break; | |
506 | } | |
507 | } | |
508 | ||
509 | /* Decide whether many devices are supported or not */ | |
510 | ret = i == ARRAY_SIZE(ioeventfds); | |
511 | ||
512 | while (i-- > 0) { | |
513 | kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false); | |
514 | close(ioeventfds[i]); | |
515 | } | |
516 | return ret; | |
517 | #else | |
518 | return 0; | |
519 | #endif | |
520 | } | |
521 | ||
94a8d39a JK |
522 | static const KVMCapabilityInfo * |
523 | kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) | |
524 | { | |
525 | while (list->name) { | |
526 | if (!kvm_check_extension(s, list->value)) { | |
527 | return list; | |
528 | } | |
529 | list++; | |
530 | } | |
531 | return NULL; | |
532 | } | |
533 | ||
a01672d3 | 534 | static void kvm_set_phys_mem(MemoryRegionSection *section, bool add) |
46dbef6a MT |
535 | { |
536 | KVMState *s = kvm_state; | |
46dbef6a MT |
537 | KVMSlot *mem, old; |
538 | int err; | |
a01672d3 AK |
539 | MemoryRegion *mr = section->mr; |
540 | bool log_dirty = memory_region_is_logging(mr); | |
541 | target_phys_addr_t start_addr = section->offset_within_address_space; | |
542 | ram_addr_t size = section->size; | |
9f213ed9 | 543 | void *ram = NULL; |
46dbef6a | 544 | |
14542fea GN |
545 | /* kvm works in page size chunks, but the function may be called |
546 | with sub-page size and unaligned start address. */ | |
547 | size = TARGET_PAGE_ALIGN(size); | |
548 | start_addr = TARGET_PAGE_ALIGN(start_addr); | |
46dbef6a | 549 | |
a01672d3 AK |
550 | if (!memory_region_is_ram(mr)) { |
551 | return; | |
9f213ed9 AK |
552 | } |
553 | ||
a01672d3 AK |
554 | ram = memory_region_get_ram_ptr(mr) + section->offset_within_region; |
555 | ||
46dbef6a MT |
556 | while (1) { |
557 | mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size); | |
558 | if (!mem) { | |
559 | break; | |
560 | } | |
561 | ||
a01672d3 | 562 | if (add && start_addr >= mem->start_addr && |
46dbef6a | 563 | (start_addr + size <= mem->start_addr + mem->memory_size) && |
9f213ed9 | 564 | (ram - start_addr == mem->ram - mem->start_addr)) { |
46dbef6a | 565 | /* The new slot fits into the existing one and comes with |
25254bbc MT |
566 | * identical parameters - update flags and done. */ |
567 | kvm_slot_dirty_pages_log_change(mem, log_dirty); | |
46dbef6a MT |
568 | return; |
569 | } | |
570 | ||
571 | old = *mem; | |
572 | ||
3fbffb62 AK |
573 | if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { |
574 | kvm_physical_sync_dirty_bitmap(section); | |
575 | } | |
576 | ||
46dbef6a MT |
577 | /* unregister the overlapping slot */ |
578 | mem->memory_size = 0; | |
579 | err = kvm_set_user_memory_region(s, mem); | |
580 | if (err) { | |
581 | fprintf(stderr, "%s: error unregistering overlapping slot: %s\n", | |
582 | __func__, strerror(-err)); | |
583 | abort(); | |
584 | } | |
585 | ||
586 | /* Workaround for older KVM versions: we can't join slots, even not by | |
587 | * unregistering the previous ones and then registering the larger | |
588 | * slot. We have to maintain the existing fragmentation. Sigh. | |
589 | * | |
590 | * This workaround assumes that the new slot starts at the same | |
591 | * address as the first existing one. If not or if some overlapping | |
592 | * slot comes around later, we will fail (not seen in practice so far) | |
593 | * - and actually require a recent KVM version. */ | |
594 | if (s->broken_set_mem_region && | |
a01672d3 | 595 | old.start_addr == start_addr && old.memory_size < size && add) { |
46dbef6a MT |
596 | mem = kvm_alloc_slot(s); |
597 | mem->memory_size = old.memory_size; | |
598 | mem->start_addr = old.start_addr; | |
9f213ed9 | 599 | mem->ram = old.ram; |
25254bbc | 600 | mem->flags = kvm_mem_flags(s, log_dirty); |
46dbef6a MT |
601 | |
602 | err = kvm_set_user_memory_region(s, mem); | |
603 | if (err) { | |
604 | fprintf(stderr, "%s: error updating slot: %s\n", __func__, | |
605 | strerror(-err)); | |
606 | abort(); | |
607 | } | |
608 | ||
609 | start_addr += old.memory_size; | |
9f213ed9 | 610 | ram += old.memory_size; |
46dbef6a MT |
611 | size -= old.memory_size; |
612 | continue; | |
613 | } | |
614 | ||
615 | /* register prefix slot */ | |
616 | if (old.start_addr < start_addr) { | |
617 | mem = kvm_alloc_slot(s); | |
618 | mem->memory_size = start_addr - old.start_addr; | |
619 | mem->start_addr = old.start_addr; | |
9f213ed9 | 620 | mem->ram = old.ram; |
25254bbc | 621 | mem->flags = kvm_mem_flags(s, log_dirty); |
46dbef6a MT |
622 | |
623 | err = kvm_set_user_memory_region(s, mem); | |
624 | if (err) { | |
625 | fprintf(stderr, "%s: error registering prefix slot: %s\n", | |
626 | __func__, strerror(-err)); | |
d4d6868f AG |
627 | #ifdef TARGET_PPC |
628 | fprintf(stderr, "%s: This is probably because your kernel's " \ | |
629 | "PAGE_SIZE is too big. Please try to use 4k " \ | |
630 | "PAGE_SIZE!\n", __func__); | |
631 | #endif | |
46dbef6a MT |
632 | abort(); |
633 | } | |
634 | } | |
635 | ||
636 | /* register suffix slot */ | |
637 | if (old.start_addr + old.memory_size > start_addr + size) { | |
638 | ram_addr_t size_delta; | |
639 | ||
640 | mem = kvm_alloc_slot(s); | |
641 | mem->start_addr = start_addr + size; | |
642 | size_delta = mem->start_addr - old.start_addr; | |
643 | mem->memory_size = old.memory_size - size_delta; | |
9f213ed9 | 644 | mem->ram = old.ram + size_delta; |
25254bbc | 645 | mem->flags = kvm_mem_flags(s, log_dirty); |
46dbef6a MT |
646 | |
647 | err = kvm_set_user_memory_region(s, mem); | |
648 | if (err) { | |
649 | fprintf(stderr, "%s: error registering suffix slot: %s\n", | |
650 | __func__, strerror(-err)); | |
651 | abort(); | |
652 | } | |
653 | } | |
654 | } | |
655 | ||
656 | /* in case the KVM bug workaround already "consumed" the new slot */ | |
a426e122 | 657 | if (!size) { |
46dbef6a | 658 | return; |
a426e122 | 659 | } |
a01672d3 | 660 | if (!add) { |
46dbef6a | 661 | return; |
a426e122 | 662 | } |
46dbef6a MT |
663 | mem = kvm_alloc_slot(s); |
664 | mem->memory_size = size; | |
665 | mem->start_addr = start_addr; | |
9f213ed9 | 666 | mem->ram = ram; |
25254bbc | 667 | mem->flags = kvm_mem_flags(s, log_dirty); |
46dbef6a MT |
668 | |
669 | err = kvm_set_user_memory_region(s, mem); | |
670 | if (err) { | |
671 | fprintf(stderr, "%s: error registering slot: %s\n", __func__, | |
672 | strerror(-err)); | |
673 | abort(); | |
674 | } | |
675 | } | |
676 | ||
a01672d3 AK |
677 | static void kvm_region_add(MemoryListener *listener, |
678 | MemoryRegionSection *section) | |
679 | { | |
680 | kvm_set_phys_mem(section, true); | |
681 | } | |
682 | ||
683 | static void kvm_region_del(MemoryListener *listener, | |
684 | MemoryRegionSection *section) | |
685 | { | |
686 | kvm_set_phys_mem(section, false); | |
687 | } | |
688 | ||
689 | static void kvm_log_sync(MemoryListener *listener, | |
690 | MemoryRegionSection *section) | |
7b8f3b78 | 691 | { |
a01672d3 AK |
692 | int r; |
693 | ||
ffcde12f | 694 | r = kvm_physical_sync_dirty_bitmap(section); |
a01672d3 AK |
695 | if (r < 0) { |
696 | abort(); | |
697 | } | |
7b8f3b78 MT |
698 | } |
699 | ||
a01672d3 | 700 | static void kvm_log_global_start(struct MemoryListener *listener) |
7b8f3b78 | 701 | { |
a01672d3 AK |
702 | int r; |
703 | ||
704 | r = kvm_set_migration_log(1); | |
705 | assert(r >= 0); | |
7b8f3b78 MT |
706 | } |
707 | ||
a01672d3 | 708 | static void kvm_log_global_stop(struct MemoryListener *listener) |
7b8f3b78 | 709 | { |
a01672d3 AK |
710 | int r; |
711 | ||
712 | r = kvm_set_migration_log(0); | |
713 | assert(r >= 0); | |
7b8f3b78 MT |
714 | } |
715 | ||
a01672d3 AK |
716 | static MemoryListener kvm_memory_listener = { |
717 | .region_add = kvm_region_add, | |
718 | .region_del = kvm_region_del, | |
e5896b12 AP |
719 | .log_start = kvm_log_start, |
720 | .log_stop = kvm_log_stop, | |
a01672d3 AK |
721 | .log_sync = kvm_log_sync, |
722 | .log_global_start = kvm_log_global_start, | |
723 | .log_global_stop = kvm_log_global_stop, | |
7b8f3b78 MT |
724 | }; |
725 | ||
aa7f74d1 JK |
726 | static void kvm_handle_interrupt(CPUState *env, int mask) |
727 | { | |
728 | env->interrupt_request |= mask; | |
729 | ||
730 | if (!qemu_cpu_is_self(env)) { | |
731 | qemu_cpu_kick(env); | |
732 | } | |
733 | } | |
734 | ||
84b058d7 JK |
735 | int kvm_irqchip_set_irq(KVMState *s, int irq, int level) |
736 | { | |
737 | struct kvm_irq_level event; | |
738 | int ret; | |
739 | ||
3d4b2649 | 740 | assert(kvm_irqchip_in_kernel()); |
84b058d7 JK |
741 | |
742 | event.level = level; | |
743 | event.irq = irq; | |
744 | ret = kvm_vm_ioctl(s, s->irqchip_inject_ioctl, &event); | |
745 | if (ret < 0) { | |
746 | perror("kvm_set_irqchip_line"); | |
747 | abort(); | |
748 | } | |
749 | ||
750 | return (s->irqchip_inject_ioctl == KVM_IRQ_LINE) ? 1 : event.status; | |
751 | } | |
752 | ||
753 | #ifdef KVM_CAP_IRQ_ROUTING | |
754 | static void set_gsi(KVMState *s, unsigned int gsi) | |
755 | { | |
756 | assert(gsi < s->max_gsi); | |
757 | ||
758 | s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32); | |
759 | } | |
760 | ||
761 | static void kvm_init_irq_routing(KVMState *s) | |
762 | { | |
763 | int gsi_count; | |
764 | ||
765 | gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING); | |
766 | if (gsi_count > 0) { | |
767 | unsigned int gsi_bits, i; | |
768 | ||
769 | /* Round up so we can search ints using ffs */ | |
770 | gsi_bits = (gsi_count + 31) / 32; | |
771 | s->used_gsi_bitmap = g_malloc0(gsi_bits / 8); | |
772 | s->max_gsi = gsi_bits; | |
773 | ||
774 | /* Mark any over-allocated bits as already in use */ | |
775 | for (i = gsi_count; i < gsi_bits; i++) { | |
776 | set_gsi(s, i); | |
777 | } | |
778 | } | |
779 | ||
780 | s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); | |
781 | s->nr_allocated_irq_routes = 0; | |
782 | ||
783 | kvm_arch_init_irq_routing(s); | |
784 | } | |
785 | ||
786 | static void kvm_add_routing_entry(KVMState *s, | |
787 | struct kvm_irq_routing_entry *entry) | |
788 | { | |
789 | struct kvm_irq_routing_entry *new; | |
790 | int n, size; | |
791 | ||
792 | if (s->irq_routes->nr == s->nr_allocated_irq_routes) { | |
793 | n = s->nr_allocated_irq_routes * 2; | |
794 | if (n < 64) { | |
795 | n = 64; | |
796 | } | |
797 | size = sizeof(struct kvm_irq_routing); | |
798 | size += n * sizeof(*new); | |
799 | s->irq_routes = g_realloc(s->irq_routes, size); | |
800 | s->nr_allocated_irq_routes = n; | |
801 | } | |
802 | n = s->irq_routes->nr++; | |
803 | new = &s->irq_routes->entries[n]; | |
804 | memset(new, 0, sizeof(*new)); | |
805 | new->gsi = entry->gsi; | |
806 | new->type = entry->type; | |
807 | new->flags = entry->flags; | |
808 | new->u = entry->u; | |
809 | ||
810 | set_gsi(s, entry->gsi); | |
811 | } | |
812 | ||
813 | void kvm_irqchip_add_route(KVMState *s, int irq, int irqchip, int pin) | |
814 | { | |
815 | struct kvm_irq_routing_entry e; | |
816 | ||
817 | e.gsi = irq; | |
818 | e.type = KVM_IRQ_ROUTING_IRQCHIP; | |
819 | e.flags = 0; | |
820 | e.u.irqchip.irqchip = irqchip; | |
821 | e.u.irqchip.pin = pin; | |
822 | kvm_add_routing_entry(s, &e); | |
823 | } | |
824 | ||
825 | int kvm_irqchip_commit_routes(KVMState *s) | |
826 | { | |
827 | s->irq_routes->flags = 0; | |
828 | return kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); | |
829 | } | |
830 | ||
831 | #else /* !KVM_CAP_IRQ_ROUTING */ | |
832 | ||
833 | static void kvm_init_irq_routing(KVMState *s) | |
834 | { | |
835 | } | |
836 | #endif /* !KVM_CAP_IRQ_ROUTING */ | |
837 | ||
838 | static int kvm_irqchip_create(KVMState *s) | |
839 | { | |
840 | QemuOptsList *list = qemu_find_opts("machine"); | |
841 | int ret; | |
842 | ||
843 | if (QTAILQ_EMPTY(&list->head) || | |
844 | !qemu_opt_get_bool(QTAILQ_FIRST(&list->head), | |
845 | "kernel_irqchip", false) || | |
846 | !kvm_check_extension(s, KVM_CAP_IRQCHIP)) { | |
847 | return 0; | |
848 | } | |
849 | ||
850 | ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); | |
851 | if (ret < 0) { | |
852 | fprintf(stderr, "Create kernel irqchip failed\n"); | |
853 | return ret; | |
854 | } | |
855 | ||
856 | s->irqchip_inject_ioctl = KVM_IRQ_LINE; | |
857 | if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { | |
858 | s->irqchip_inject_ioctl = KVM_IRQ_LINE_STATUS; | |
859 | } | |
3d4b2649 | 860 | kvm_kernel_irqchip = true; |
84b058d7 JK |
861 | |
862 | kvm_init_irq_routing(s); | |
863 | ||
864 | return 0; | |
865 | } | |
866 | ||
cad1e282 | 867 | int kvm_init(void) |
05330448 | 868 | { |
168ccc11 JK |
869 | static const char upgrade_note[] = |
870 | "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" | |
871 | "(see http://sourceforge.net/projects/kvm).\n"; | |
05330448 | 872 | KVMState *s; |
94a8d39a | 873 | const KVMCapabilityInfo *missing_cap; |
05330448 AL |
874 | int ret; |
875 | int i; | |
876 | ||
7267c094 | 877 | s = g_malloc0(sizeof(KVMState)); |
05330448 | 878 | |
e22a25c9 | 879 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
72cf2d4f | 880 | QTAILQ_INIT(&s->kvm_sw_breakpoints); |
e22a25c9 | 881 | #endif |
a426e122 | 882 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { |
05330448 | 883 | s->slots[i].slot = i; |
a426e122 | 884 | } |
05330448 | 885 | s->vmfd = -1; |
40ff6d7e | 886 | s->fd = qemu_open("/dev/kvm", O_RDWR); |
05330448 AL |
887 | if (s->fd == -1) { |
888 | fprintf(stderr, "Could not access KVM kernel module: %m\n"); | |
889 | ret = -errno; | |
890 | goto err; | |
891 | } | |
892 | ||
893 | ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); | |
894 | if (ret < KVM_API_VERSION) { | |
a426e122 | 895 | if (ret > 0) { |
05330448 | 896 | ret = -EINVAL; |
a426e122 | 897 | } |
05330448 AL |
898 | fprintf(stderr, "kvm version too old\n"); |
899 | goto err; | |
900 | } | |
901 | ||
902 | if (ret > KVM_API_VERSION) { | |
903 | ret = -EINVAL; | |
904 | fprintf(stderr, "kvm version not supported\n"); | |
905 | goto err; | |
906 | } | |
907 | ||
908 | s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0); | |
0104dcac AG |
909 | if (s->vmfd < 0) { |
910 | #ifdef TARGET_S390X | |
911 | fprintf(stderr, "Please add the 'switch_amode' kernel parameter to " | |
912 | "your host kernel command line\n"); | |
913 | #endif | |
db9eae1c | 914 | ret = s->vmfd; |
05330448 | 915 | goto err; |
0104dcac | 916 | } |
05330448 | 917 | |
94a8d39a JK |
918 | missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); |
919 | if (!missing_cap) { | |
920 | missing_cap = | |
921 | kvm_check_extension_list(s, kvm_arch_required_capabilities); | |
05330448 | 922 | } |
94a8d39a | 923 | if (missing_cap) { |
ad7b8b33 | 924 | ret = -EINVAL; |
94a8d39a JK |
925 | fprintf(stderr, "kvm does not support %s\n%s", |
926 | missing_cap->name, upgrade_note); | |
d85dc283 AL |
927 | goto err; |
928 | } | |
929 | ||
ad7b8b33 | 930 | s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); |
f65ed4c1 | 931 | |
e69917e2 | 932 | s->broken_set_mem_region = 1; |
14a09518 | 933 | ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS); |
e69917e2 JK |
934 | if (ret > 0) { |
935 | s->broken_set_mem_region = 0; | |
936 | } | |
e69917e2 | 937 | |
a0fb002c JK |
938 | #ifdef KVM_CAP_VCPU_EVENTS |
939 | s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); | |
940 | #endif | |
941 | ||
b0b1d690 JK |
942 | s->robust_singlestep = |
943 | kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); | |
b0b1d690 | 944 | |
ff44f1a3 JK |
945 | #ifdef KVM_CAP_DEBUGREGS |
946 | s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); | |
947 | #endif | |
948 | ||
f1665b21 SY |
949 | #ifdef KVM_CAP_XSAVE |
950 | s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE); | |
951 | #endif | |
952 | ||
f1665b21 SY |
953 | #ifdef KVM_CAP_XCRS |
954 | s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS); | |
955 | #endif | |
956 | ||
cad1e282 | 957 | ret = kvm_arch_init(s); |
a426e122 | 958 | if (ret < 0) { |
05330448 | 959 | goto err; |
a426e122 | 960 | } |
05330448 | 961 | |
84b058d7 JK |
962 | ret = kvm_irqchip_create(s); |
963 | if (ret < 0) { | |
964 | goto err; | |
965 | } | |
966 | ||
05330448 | 967 | kvm_state = s; |
a01672d3 | 968 | memory_listener_register(&kvm_memory_listener); |
05330448 | 969 | |
d2f2b8a7 SH |
970 | s->many_ioeventfds = kvm_check_many_ioeventfds(); |
971 | ||
aa7f74d1 JK |
972 | cpu_interrupt_handler = kvm_handle_interrupt; |
973 | ||
05330448 AL |
974 | return 0; |
975 | ||
976 | err: | |
977 | if (s) { | |
db9eae1c | 978 | if (s->vmfd >= 0) { |
05330448 | 979 | close(s->vmfd); |
a426e122 JK |
980 | } |
981 | if (s->fd != -1) { | |
05330448 | 982 | close(s->fd); |
a426e122 | 983 | } |
05330448 | 984 | } |
7267c094 | 985 | g_free(s); |
05330448 AL |
986 | |
987 | return ret; | |
988 | } | |
989 | ||
b30e93e9 JK |
990 | static void kvm_handle_io(uint16_t port, void *data, int direction, int size, |
991 | uint32_t count) | |
05330448 AL |
992 | { |
993 | int i; | |
994 | uint8_t *ptr = data; | |
995 | ||
996 | for (i = 0; i < count; i++) { | |
997 | if (direction == KVM_EXIT_IO_IN) { | |
998 | switch (size) { | |
999 | case 1: | |
afcea8cb | 1000 | stb_p(ptr, cpu_inb(port)); |
05330448 AL |
1001 | break; |
1002 | case 2: | |
afcea8cb | 1003 | stw_p(ptr, cpu_inw(port)); |
05330448 AL |
1004 | break; |
1005 | case 4: | |
afcea8cb | 1006 | stl_p(ptr, cpu_inl(port)); |
05330448 AL |
1007 | break; |
1008 | } | |
1009 | } else { | |
1010 | switch (size) { | |
1011 | case 1: | |
afcea8cb | 1012 | cpu_outb(port, ldub_p(ptr)); |
05330448 AL |
1013 | break; |
1014 | case 2: | |
afcea8cb | 1015 | cpu_outw(port, lduw_p(ptr)); |
05330448 AL |
1016 | break; |
1017 | case 4: | |
afcea8cb | 1018 | cpu_outl(port, ldl_p(ptr)); |
05330448 AL |
1019 | break; |
1020 | } | |
1021 | } | |
1022 | ||
1023 | ptr += size; | |
1024 | } | |
05330448 AL |
1025 | } |
1026 | ||
73aaec4a | 1027 | static int kvm_handle_internal_error(CPUState *env, struct kvm_run *run) |
7c80eef8 | 1028 | { |
bb44e0d1 | 1029 | fprintf(stderr, "KVM internal error."); |
7c80eef8 MT |
1030 | if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { |
1031 | int i; | |
1032 | ||
bb44e0d1 | 1033 | fprintf(stderr, " Suberror: %d\n", run->internal.suberror); |
7c80eef8 MT |
1034 | for (i = 0; i < run->internal.ndata; ++i) { |
1035 | fprintf(stderr, "extra data[%d]: %"PRIx64"\n", | |
1036 | i, (uint64_t)run->internal.data[i]); | |
1037 | } | |
bb44e0d1 JK |
1038 | } else { |
1039 | fprintf(stderr, "\n"); | |
7c80eef8 | 1040 | } |
7c80eef8 MT |
1041 | if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { |
1042 | fprintf(stderr, "emulation failure\n"); | |
a426e122 | 1043 | if (!kvm_arch_stop_on_emulation_error(env)) { |
f5c848ee | 1044 | cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE); |
d73cd8f4 | 1045 | return EXCP_INTERRUPT; |
a426e122 | 1046 | } |
7c80eef8 MT |
1047 | } |
1048 | /* FIXME: Should trigger a qmp message to let management know | |
1049 | * something went wrong. | |
1050 | */ | |
73aaec4a | 1051 | return -1; |
7c80eef8 | 1052 | } |
7c80eef8 | 1053 | |
62a2744c | 1054 | void kvm_flush_coalesced_mmio_buffer(void) |
f65ed4c1 | 1055 | { |
f65ed4c1 | 1056 | KVMState *s = kvm_state; |
1cae88b9 AK |
1057 | |
1058 | if (s->coalesced_flush_in_progress) { | |
1059 | return; | |
1060 | } | |
1061 | ||
1062 | s->coalesced_flush_in_progress = true; | |
1063 | ||
62a2744c SY |
1064 | if (s->coalesced_mmio_ring) { |
1065 | struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; | |
f65ed4c1 AL |
1066 | while (ring->first != ring->last) { |
1067 | struct kvm_coalesced_mmio *ent; | |
1068 | ||
1069 | ent = &ring->coalesced_mmio[ring->first]; | |
1070 | ||
1071 | cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); | |
85199474 | 1072 | smp_wmb(); |
f65ed4c1 AL |
1073 | ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; |
1074 | } | |
1075 | } | |
1cae88b9 AK |
1076 | |
1077 | s->coalesced_flush_in_progress = false; | |
f65ed4c1 AL |
1078 | } |
1079 | ||
2705d56a | 1080 | static void do_kvm_cpu_synchronize_state(void *_env) |
4c0960c0 | 1081 | { |
2705d56a JK |
1082 | CPUState *env = _env; |
1083 | ||
9ded2744 | 1084 | if (!env->kvm_vcpu_dirty) { |
4c0960c0 | 1085 | kvm_arch_get_registers(env); |
9ded2744 | 1086 | env->kvm_vcpu_dirty = 1; |
4c0960c0 AK |
1087 | } |
1088 | } | |
1089 | ||
2705d56a JK |
1090 | void kvm_cpu_synchronize_state(CPUState *env) |
1091 | { | |
a426e122 | 1092 | if (!env->kvm_vcpu_dirty) { |
2705d56a | 1093 | run_on_cpu(env, do_kvm_cpu_synchronize_state, env); |
a426e122 | 1094 | } |
2705d56a JK |
1095 | } |
1096 | ||
ea375f9a JK |
1097 | void kvm_cpu_synchronize_post_reset(CPUState *env) |
1098 | { | |
1099 | kvm_arch_put_registers(env, KVM_PUT_RESET_STATE); | |
1100 | env->kvm_vcpu_dirty = 0; | |
1101 | } | |
1102 | ||
1103 | void kvm_cpu_synchronize_post_init(CPUState *env) | |
1104 | { | |
1105 | kvm_arch_put_registers(env, KVM_PUT_FULL_STATE); | |
1106 | env->kvm_vcpu_dirty = 0; | |
1107 | } | |
1108 | ||
05330448 AL |
1109 | int kvm_cpu_exec(CPUState *env) |
1110 | { | |
1111 | struct kvm_run *run = env->kvm_run; | |
7cbb533f | 1112 | int ret, run_ret; |
05330448 | 1113 | |
8c0d577e | 1114 | DPRINTF("kvm_cpu_exec()\n"); |
05330448 | 1115 | |
99036865 | 1116 | if (kvm_arch_process_async_events(env)) { |
9ccfac9e | 1117 | env->exit_request = 0; |
6792a57b | 1118 | return EXCP_HLT; |
9ccfac9e | 1119 | } |
0af691d7 | 1120 | |
6792a57b JK |
1121 | cpu_single_env = env; |
1122 | ||
9ccfac9e | 1123 | do { |
9ded2744 | 1124 | if (env->kvm_vcpu_dirty) { |
ea375f9a | 1125 | kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE); |
9ded2744 | 1126 | env->kvm_vcpu_dirty = 0; |
4c0960c0 AK |
1127 | } |
1128 | ||
8c14c173 | 1129 | kvm_arch_pre_run(env, run); |
9ccfac9e JK |
1130 | if (env->exit_request) { |
1131 | DPRINTF("interrupt exit requested\n"); | |
1132 | /* | |
1133 | * KVM requires us to reenter the kernel after IO exits to complete | |
1134 | * instruction emulation. This self-signal will ensure that we | |
1135 | * leave ASAP again. | |
1136 | */ | |
1137 | qemu_cpu_kick_self(); | |
1138 | } | |
273faf1b | 1139 | cpu_single_env = NULL; |
d549db5a | 1140 | qemu_mutex_unlock_iothread(); |
9ccfac9e | 1141 | |
7cbb533f | 1142 | run_ret = kvm_vcpu_ioctl(env, KVM_RUN, 0); |
9ccfac9e | 1143 | |
d549db5a | 1144 | qemu_mutex_lock_iothread(); |
273faf1b | 1145 | cpu_single_env = env; |
05330448 AL |
1146 | kvm_arch_post_run(env, run); |
1147 | ||
b0c883b5 JK |
1148 | kvm_flush_coalesced_mmio_buffer(); |
1149 | ||
7cbb533f | 1150 | if (run_ret < 0) { |
dc77d341 JK |
1151 | if (run_ret == -EINTR || run_ret == -EAGAIN) { |
1152 | DPRINTF("io window exit\n"); | |
d73cd8f4 | 1153 | ret = EXCP_INTERRUPT; |
dc77d341 JK |
1154 | break; |
1155 | } | |
7b011fbc ME |
1156 | fprintf(stderr, "error: kvm run failed %s\n", |
1157 | strerror(-run_ret)); | |
05330448 AL |
1158 | abort(); |
1159 | } | |
1160 | ||
05330448 AL |
1161 | switch (run->exit_reason) { |
1162 | case KVM_EXIT_IO: | |
8c0d577e | 1163 | DPRINTF("handle_io\n"); |
b30e93e9 JK |
1164 | kvm_handle_io(run->io.port, |
1165 | (uint8_t *)run + run->io.data_offset, | |
1166 | run->io.direction, | |
1167 | run->io.size, | |
1168 | run->io.count); | |
d73cd8f4 | 1169 | ret = 0; |
05330448 AL |
1170 | break; |
1171 | case KVM_EXIT_MMIO: | |
8c0d577e | 1172 | DPRINTF("handle_mmio\n"); |
05330448 AL |
1173 | cpu_physical_memory_rw(run->mmio.phys_addr, |
1174 | run->mmio.data, | |
1175 | run->mmio.len, | |
1176 | run->mmio.is_write); | |
d73cd8f4 | 1177 | ret = 0; |
05330448 AL |
1178 | break; |
1179 | case KVM_EXIT_IRQ_WINDOW_OPEN: | |
8c0d577e | 1180 | DPRINTF("irq_window_open\n"); |
d73cd8f4 | 1181 | ret = EXCP_INTERRUPT; |
05330448 AL |
1182 | break; |
1183 | case KVM_EXIT_SHUTDOWN: | |
8c0d577e | 1184 | DPRINTF("shutdown\n"); |
05330448 | 1185 | qemu_system_reset_request(); |
d73cd8f4 | 1186 | ret = EXCP_INTERRUPT; |
05330448 AL |
1187 | break; |
1188 | case KVM_EXIT_UNKNOWN: | |
bb44e0d1 JK |
1189 | fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", |
1190 | (uint64_t)run->hw.hardware_exit_reason); | |
73aaec4a | 1191 | ret = -1; |
05330448 | 1192 | break; |
7c80eef8 | 1193 | case KVM_EXIT_INTERNAL_ERROR: |
73aaec4a | 1194 | ret = kvm_handle_internal_error(env, run); |
7c80eef8 | 1195 | break; |
05330448 | 1196 | default: |
8c0d577e | 1197 | DPRINTF("kvm_arch_handle_exit\n"); |
05330448 AL |
1198 | ret = kvm_arch_handle_exit(env, run); |
1199 | break; | |
1200 | } | |
d73cd8f4 | 1201 | } while (ret == 0); |
05330448 | 1202 | |
73aaec4a | 1203 | if (ret < 0) { |
f5c848ee | 1204 | cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE); |
0461d5a6 | 1205 | vm_stop(RUN_STATE_INTERNAL_ERROR); |
becfc390 AL |
1206 | } |
1207 | ||
6792a57b JK |
1208 | env->exit_request = 0; |
1209 | cpu_single_env = NULL; | |
05330448 AL |
1210 | return ret; |
1211 | } | |
1212 | ||
984b5181 | 1213 | int kvm_ioctl(KVMState *s, int type, ...) |
05330448 AL |
1214 | { |
1215 | int ret; | |
984b5181 AL |
1216 | void *arg; |
1217 | va_list ap; | |
05330448 | 1218 | |
984b5181 AL |
1219 | va_start(ap, type); |
1220 | arg = va_arg(ap, void *); | |
1221 | va_end(ap); | |
1222 | ||
1223 | ret = ioctl(s->fd, type, arg); | |
a426e122 | 1224 | if (ret == -1) { |
05330448 | 1225 | ret = -errno; |
a426e122 | 1226 | } |
05330448 AL |
1227 | return ret; |
1228 | } | |
1229 | ||
984b5181 | 1230 | int kvm_vm_ioctl(KVMState *s, int type, ...) |
05330448 AL |
1231 | { |
1232 | int ret; | |
984b5181 AL |
1233 | void *arg; |
1234 | va_list ap; | |
1235 | ||
1236 | va_start(ap, type); | |
1237 | arg = va_arg(ap, void *); | |
1238 | va_end(ap); | |
05330448 | 1239 | |
984b5181 | 1240 | ret = ioctl(s->vmfd, type, arg); |
a426e122 | 1241 | if (ret == -1) { |
05330448 | 1242 | ret = -errno; |
a426e122 | 1243 | } |
05330448 AL |
1244 | return ret; |
1245 | } | |
1246 | ||
984b5181 | 1247 | int kvm_vcpu_ioctl(CPUState *env, int type, ...) |
05330448 AL |
1248 | { |
1249 | int ret; | |
984b5181 AL |
1250 | void *arg; |
1251 | va_list ap; | |
1252 | ||
1253 | va_start(ap, type); | |
1254 | arg = va_arg(ap, void *); | |
1255 | va_end(ap); | |
05330448 | 1256 | |
984b5181 | 1257 | ret = ioctl(env->kvm_fd, type, arg); |
a426e122 | 1258 | if (ret == -1) { |
05330448 | 1259 | ret = -errno; |
a426e122 | 1260 | } |
05330448 AL |
1261 | return ret; |
1262 | } | |
bd322087 AL |
1263 | |
1264 | int kvm_has_sync_mmu(void) | |
1265 | { | |
94a8d39a | 1266 | return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); |
bd322087 | 1267 | } |
e22a25c9 | 1268 | |
a0fb002c JK |
1269 | int kvm_has_vcpu_events(void) |
1270 | { | |
1271 | return kvm_state->vcpu_events; | |
1272 | } | |
1273 | ||
b0b1d690 JK |
1274 | int kvm_has_robust_singlestep(void) |
1275 | { | |
1276 | return kvm_state->robust_singlestep; | |
1277 | } | |
1278 | ||
ff44f1a3 JK |
1279 | int kvm_has_debugregs(void) |
1280 | { | |
1281 | return kvm_state->debugregs; | |
1282 | } | |
1283 | ||
f1665b21 SY |
1284 | int kvm_has_xsave(void) |
1285 | { | |
1286 | return kvm_state->xsave; | |
1287 | } | |
1288 | ||
1289 | int kvm_has_xcrs(void) | |
1290 | { | |
1291 | return kvm_state->xcrs; | |
1292 | } | |
1293 | ||
d2f2b8a7 SH |
1294 | int kvm_has_many_ioeventfds(void) |
1295 | { | |
1296 | if (!kvm_enabled()) { | |
1297 | return 0; | |
1298 | } | |
1299 | return kvm_state->many_ioeventfds; | |
1300 | } | |
1301 | ||
84b058d7 JK |
1302 | int kvm_has_gsi_routing(void) |
1303 | { | |
a9c5eb0d | 1304 | #ifdef KVM_CAP_IRQ_ROUTING |
84b058d7 | 1305 | return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); |
a9c5eb0d AG |
1306 | #else |
1307 | return false; | |
1308 | #endif | |
84b058d7 JK |
1309 | } |
1310 | ||
9b5b76d4 JK |
1311 | int kvm_allows_irq0_override(void) |
1312 | { | |
3d4b2649 | 1313 | return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing(); |
9b5b76d4 JK |
1314 | } |
1315 | ||
6f0437e8 JK |
1316 | void kvm_setup_guest_memory(void *start, size_t size) |
1317 | { | |
1318 | if (!kvm_has_sync_mmu()) { | |
e78815a5 | 1319 | int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK); |
6f0437e8 JK |
1320 | |
1321 | if (ret) { | |
e78815a5 AF |
1322 | perror("qemu_madvise"); |
1323 | fprintf(stderr, | |
1324 | "Need MADV_DONTFORK in absence of synchronous KVM MMU\n"); | |
6f0437e8 JK |
1325 | exit(1); |
1326 | } | |
6f0437e8 JK |
1327 | } |
1328 | } | |
1329 | ||
e22a25c9 AL |
1330 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
1331 | struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env, | |
1332 | target_ulong pc) | |
1333 | { | |
1334 | struct kvm_sw_breakpoint *bp; | |
1335 | ||
72cf2d4f | 1336 | QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) { |
a426e122 | 1337 | if (bp->pc == pc) { |
e22a25c9 | 1338 | return bp; |
a426e122 | 1339 | } |
e22a25c9 AL |
1340 | } |
1341 | return NULL; | |
1342 | } | |
1343 | ||
1344 | int kvm_sw_breakpoints_active(CPUState *env) | |
1345 | { | |
72cf2d4f | 1346 | return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints); |
e22a25c9 AL |
1347 | } |
1348 | ||
452e4751 GC |
1349 | struct kvm_set_guest_debug_data { |
1350 | struct kvm_guest_debug dbg; | |
1351 | CPUState *env; | |
1352 | int err; | |
1353 | }; | |
1354 | ||
1355 | static void kvm_invoke_set_guest_debug(void *data) | |
1356 | { | |
1357 | struct kvm_set_guest_debug_data *dbg_data = data; | |
b3807725 JK |
1358 | CPUState *env = dbg_data->env; |
1359 | ||
b3807725 | 1360 | dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg); |
452e4751 GC |
1361 | } |
1362 | ||
e22a25c9 AL |
1363 | int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap) |
1364 | { | |
452e4751 | 1365 | struct kvm_set_guest_debug_data data; |
e22a25c9 | 1366 | |
b0b1d690 | 1367 | data.dbg.control = reinject_trap; |
e22a25c9 | 1368 | |
b0b1d690 JK |
1369 | if (env->singlestep_enabled) { |
1370 | data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; | |
1371 | } | |
452e4751 | 1372 | kvm_arch_update_guest_debug(env, &data.dbg); |
452e4751 | 1373 | data.env = env; |
e22a25c9 | 1374 | |
be41cbe0 | 1375 | run_on_cpu(env, kvm_invoke_set_guest_debug, &data); |
452e4751 | 1376 | return data.err; |
e22a25c9 AL |
1377 | } |
1378 | ||
1379 | int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr, | |
1380 | target_ulong len, int type) | |
1381 | { | |
1382 | struct kvm_sw_breakpoint *bp; | |
1383 | CPUState *env; | |
1384 | int err; | |
1385 | ||
1386 | if (type == GDB_BREAKPOINT_SW) { | |
1387 | bp = kvm_find_sw_breakpoint(current_env, addr); | |
1388 | if (bp) { | |
1389 | bp->use_count++; | |
1390 | return 0; | |
1391 | } | |
1392 | ||
7267c094 | 1393 | bp = g_malloc(sizeof(struct kvm_sw_breakpoint)); |
a426e122 | 1394 | if (!bp) { |
e22a25c9 | 1395 | return -ENOMEM; |
a426e122 | 1396 | } |
e22a25c9 AL |
1397 | |
1398 | bp->pc = addr; | |
1399 | bp->use_count = 1; | |
1400 | err = kvm_arch_insert_sw_breakpoint(current_env, bp); | |
1401 | if (err) { | |
7267c094 | 1402 | g_free(bp); |
e22a25c9 AL |
1403 | return err; |
1404 | } | |
1405 | ||
72cf2d4f | 1406 | QTAILQ_INSERT_HEAD(¤t_env->kvm_state->kvm_sw_breakpoints, |
e22a25c9 AL |
1407 | bp, entry); |
1408 | } else { | |
1409 | err = kvm_arch_insert_hw_breakpoint(addr, len, type); | |
a426e122 | 1410 | if (err) { |
e22a25c9 | 1411 | return err; |
a426e122 | 1412 | } |
e22a25c9 AL |
1413 | } |
1414 | ||
1415 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
1416 | err = kvm_update_guest_debug(env, 0); | |
a426e122 | 1417 | if (err) { |
e22a25c9 | 1418 | return err; |
a426e122 | 1419 | } |
e22a25c9 AL |
1420 | } |
1421 | return 0; | |
1422 | } | |
1423 | ||
1424 | int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr, | |
1425 | target_ulong len, int type) | |
1426 | { | |
1427 | struct kvm_sw_breakpoint *bp; | |
1428 | CPUState *env; | |
1429 | int err; | |
1430 | ||
1431 | if (type == GDB_BREAKPOINT_SW) { | |
1432 | bp = kvm_find_sw_breakpoint(current_env, addr); | |
a426e122 | 1433 | if (!bp) { |
e22a25c9 | 1434 | return -ENOENT; |
a426e122 | 1435 | } |
e22a25c9 AL |
1436 | |
1437 | if (bp->use_count > 1) { | |
1438 | bp->use_count--; | |
1439 | return 0; | |
1440 | } | |
1441 | ||
1442 | err = kvm_arch_remove_sw_breakpoint(current_env, bp); | |
a426e122 | 1443 | if (err) { |
e22a25c9 | 1444 | return err; |
a426e122 | 1445 | } |
e22a25c9 | 1446 | |
72cf2d4f | 1447 | QTAILQ_REMOVE(¤t_env->kvm_state->kvm_sw_breakpoints, bp, entry); |
7267c094 | 1448 | g_free(bp); |
e22a25c9 AL |
1449 | } else { |
1450 | err = kvm_arch_remove_hw_breakpoint(addr, len, type); | |
a426e122 | 1451 | if (err) { |
e22a25c9 | 1452 | return err; |
a426e122 | 1453 | } |
e22a25c9 AL |
1454 | } |
1455 | ||
1456 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
1457 | err = kvm_update_guest_debug(env, 0); | |
a426e122 | 1458 | if (err) { |
e22a25c9 | 1459 | return err; |
a426e122 | 1460 | } |
e22a25c9 AL |
1461 | } |
1462 | return 0; | |
1463 | } | |
1464 | ||
1465 | void kvm_remove_all_breakpoints(CPUState *current_env) | |
1466 | { | |
1467 | struct kvm_sw_breakpoint *bp, *next; | |
1468 | KVMState *s = current_env->kvm_state; | |
1469 | CPUState *env; | |
1470 | ||
72cf2d4f | 1471 | QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { |
e22a25c9 AL |
1472 | if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) { |
1473 | /* Try harder to find a CPU that currently sees the breakpoint. */ | |
1474 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
a426e122 | 1475 | if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) { |
e22a25c9 | 1476 | break; |
a426e122 | 1477 | } |
e22a25c9 AL |
1478 | } |
1479 | } | |
1480 | } | |
1481 | kvm_arch_remove_all_hw_breakpoints(); | |
1482 | ||
a426e122 | 1483 | for (env = first_cpu; env != NULL; env = env->next_cpu) { |
e22a25c9 | 1484 | kvm_update_guest_debug(env, 0); |
a426e122 | 1485 | } |
e22a25c9 AL |
1486 | } |
1487 | ||
1488 | #else /* !KVM_CAP_SET_GUEST_DEBUG */ | |
1489 | ||
1490 | int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap) | |
1491 | { | |
1492 | return -EINVAL; | |
1493 | } | |
1494 | ||
1495 | int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr, | |
1496 | target_ulong len, int type) | |
1497 | { | |
1498 | return -EINVAL; | |
1499 | } | |
1500 | ||
1501 | int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr, | |
1502 | target_ulong len, int type) | |
1503 | { | |
1504 | return -EINVAL; | |
1505 | } | |
1506 | ||
1507 | void kvm_remove_all_breakpoints(CPUState *current_env) | |
1508 | { | |
1509 | } | |
1510 | #endif /* !KVM_CAP_SET_GUEST_DEBUG */ | |
cc84de95 MT |
1511 | |
1512 | int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset) | |
1513 | { | |
1514 | struct kvm_signal_mask *sigmask; | |
1515 | int r; | |
1516 | ||
a426e122 | 1517 | if (!sigset) { |
cc84de95 | 1518 | return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL); |
a426e122 | 1519 | } |
cc84de95 | 1520 | |
7267c094 | 1521 | sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); |
cc84de95 MT |
1522 | |
1523 | sigmask->len = 8; | |
1524 | memcpy(sigmask->sigset, sigset, sizeof(*sigset)); | |
1525 | r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask); | |
7267c094 | 1526 | g_free(sigmask); |
cc84de95 MT |
1527 | |
1528 | return r; | |
1529 | } | |
ca821806 | 1530 | |
44f1a3d8 CM |
1531 | int kvm_set_ioeventfd_mmio_long(int fd, uint32_t addr, uint32_t val, bool assign) |
1532 | { | |
44f1a3d8 CM |
1533 | int ret; |
1534 | struct kvm_ioeventfd iofd; | |
1535 | ||
1536 | iofd.datamatch = val; | |
1537 | iofd.addr = addr; | |
1538 | iofd.len = 4; | |
1539 | iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH; | |
1540 | iofd.fd = fd; | |
1541 | ||
1542 | if (!kvm_enabled()) { | |
1543 | return -ENOSYS; | |
1544 | } | |
1545 | ||
1546 | if (!assign) { | |
1547 | iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; | |
1548 | } | |
1549 | ||
1550 | ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); | |
1551 | ||
1552 | if (ret < 0) { | |
1553 | return -errno; | |
1554 | } | |
1555 | ||
1556 | return 0; | |
44f1a3d8 CM |
1557 | } |
1558 | ||
ca821806 MT |
1559 | int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign) |
1560 | { | |
1561 | struct kvm_ioeventfd kick = { | |
1562 | .datamatch = val, | |
1563 | .addr = addr, | |
1564 | .len = 2, | |
1565 | .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO, | |
1566 | .fd = fd, | |
1567 | }; | |
1568 | int r; | |
a426e122 | 1569 | if (!kvm_enabled()) { |
ca821806 | 1570 | return -ENOSYS; |
a426e122 JK |
1571 | } |
1572 | if (!assign) { | |
ca821806 | 1573 | kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; |
a426e122 | 1574 | } |
ca821806 | 1575 | r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); |
a426e122 | 1576 | if (r < 0) { |
ca821806 | 1577 | return r; |
a426e122 | 1578 | } |
ca821806 | 1579 | return 0; |
98c8573e | 1580 | } |
a1b87fe0 JK |
1581 | |
1582 | int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr) | |
1583 | { | |
1584 | return kvm_arch_on_sigbus_vcpu(env, code, addr); | |
1585 | } | |
1586 | ||
1587 | int kvm_on_sigbus(int code, void *addr) | |
1588 | { | |
1589 | return kvm_arch_on_sigbus(code, addr); | |
1590 | } |