]> Git Repo - qemu.git/blame - target/arm/cpu.h
target/arm: New function armv7m_nvic_set_pending_lazyfp()
[qemu.git] / target / arm / cpu.h
CommitLineData
2c0262af
FB
1/*
2 * ARM virtual CPU header
5fafdf24 3 *
2c0262af
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
2c0262af 18 */
2c0262af 19
07f5a258
MA
20#ifndef ARM_CPU_H
21#define ARM_CPU_H
3cf1e035 22
72b0cd35 23#include "kvm-consts.h"
2c4da50d 24#include "hw/registerfields.h"
72b0cd35 25
3926cc84
AG
26#if defined(TARGET_AARCH64)
27 /* AArch64 definitions */
28# define TARGET_LONG_BITS 64
3926cc84
AG
29#else
30# define TARGET_LONG_BITS 32
3926cc84 31#endif
9042c0e2 32
ca759f9e
AB
33/* ARM processors have a weak memory model */
34#define TCG_GUEST_DEFAULT_MO (0)
35
9349b4f9 36#define CPUArchState struct CPUARMState
c2764719 37
9a78eead 38#include "qemu-common.h"
74e75564 39#include "cpu-qom.h"
022c62cb 40#include "exec/cpu-defs.h"
2c0262af 41
b8a9e8f1
FB
42#define EXCP_UDEF 1 /* undefined instruction */
43#define EXCP_SWI 2 /* software interrupt */
44#define EXCP_PREFETCH_ABORT 3
45#define EXCP_DATA_ABORT 4
b5ff1b31
FB
46#define EXCP_IRQ 5
47#define EXCP_FIQ 6
06c949e6 48#define EXCP_BKPT 7
9ee6e8bb 49#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
fbb4a2e3 50#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
35979d71 51#define EXCP_HVC 11 /* HyperVisor Call */
607d98b8 52#define EXCP_HYP_TRAP 12
e0d6e6a5 53#define EXCP_SMC 13 /* Secure Monitor Call */
136e67e9
EI
54#define EXCP_VIRQ 14
55#define EXCP_VFIQ 15
19a6e31c 56#define EXCP_SEMIHOST 16 /* semihosting call */
7517748e 57#define EXCP_NOCP 17 /* v7M NOCP UsageFault */
e13886e3 58#define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */
86f026de 59#define EXCP_STKOF 19 /* v8M STKOF UsageFault */
2c4a7cc5 60/* NB: add new EXCP_ defines to the array in arm_log_exception() too */
9ee6e8bb
PB
61
62#define ARMV7M_EXCP_RESET 1
63#define ARMV7M_EXCP_NMI 2
64#define ARMV7M_EXCP_HARD 3
65#define ARMV7M_EXCP_MEM 4
66#define ARMV7M_EXCP_BUS 5
67#define ARMV7M_EXCP_USAGE 6
1e577cc7 68#define ARMV7M_EXCP_SECURE 7
9ee6e8bb
PB
69#define ARMV7M_EXCP_SVC 11
70#define ARMV7M_EXCP_DEBUG 12
71#define ARMV7M_EXCP_PENDSV 14
72#define ARMV7M_EXCP_SYSTICK 15
2c0262af 73
acf94941
PM
74/* For M profile, some registers are banked secure vs non-secure;
75 * these are represented as a 2-element array where the first element
76 * is the non-secure copy and the second is the secure copy.
77 * When the CPU does not have implement the security extension then
78 * only the first element is used.
79 * This means that the copy for the current security state can be
80 * accessed via env->registerfield[env->v7m.secure] (whether the security
81 * extension is implemented or not).
82 */
4a16724f
PM
83enum {
84 M_REG_NS = 0,
85 M_REG_S = 1,
86 M_REG_NUM_BANKS = 2,
87};
acf94941 88
403946c0
RH
89/* ARM-specific interrupt pending bits. */
90#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
136e67e9
EI
91#define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
92#define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
403946c0 93
e4fe830b
PM
94/* The usual mapping for an AArch64 system register to its AArch32
95 * counterpart is for the 32 bit world to have access to the lower
96 * half only (with writes leaving the upper half untouched). It's
97 * therefore useful to be able to pass TCG the offset of the least
98 * significant half of a uint64_t struct member.
99 */
100#ifdef HOST_WORDS_BIGENDIAN
5cd8a118 101#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
b0fe2427 102#define offsetofhigh32(S, M) offsetof(S, M)
e4fe830b
PM
103#else
104#define offsetoflow32(S, M) offsetof(S, M)
b0fe2427 105#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
e4fe830b
PM
106#endif
107
136e67e9 108/* Meanings of the ARMCPU object's four inbound GPIO lines */
7c1840b6
PM
109#define ARM_CPU_IRQ 0
110#define ARM_CPU_FIQ 1
136e67e9
EI
111#define ARM_CPU_VIRQ 2
112#define ARM_CPU_VFIQ 3
403946c0 113
62593718 114#define NB_MMU_MODES 8
aaa1f954
EI
115/* ARM-specific extra insn start words:
116 * 1: Conditional execution bits
117 * 2: Partial exception syndrome for data aborts
118 */
119#define TARGET_INSN_START_EXTRA_WORDS 2
120
121/* The 2nd extra word holding syndrome info for data aborts does not use
122 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
123 * help the sleb128 encoder do a better job.
124 * When restoring the CPU state, we shift it back up.
125 */
126#define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
127#define ARM_INSN_START_WORD2_SHIFT 14
6ebbf390 128
b7bcbe95
FB
129/* We currently assume float and double are IEEE single and double
130 precision respectively.
131 Doing runtime conversions is tricky because VFP registers may contain
132 integer values (eg. as the result of a FTOSI instruction).
8e96005d
FB
133 s<2n> maps to the least significant half of d<n>
134 s<2n+1> maps to the most significant half of d<n>
135 */
b7bcbe95 136
200bf5b7
AB
137/**
138 * DynamicGDBXMLInfo:
139 * @desc: Contains the XML descriptions.
140 * @num_cpregs: Number of the Coprocessor registers seen by GDB.
141 * @cpregs_keys: Array that contains the corresponding Key of
142 * a given cpreg with the same order of the cpreg in the XML description.
143 */
144typedef struct DynamicGDBXMLInfo {
145 char *desc;
146 int num_cpregs;
147 uint32_t *cpregs_keys;
148} DynamicGDBXMLInfo;
149
55d284af
PM
150/* CPU state for each instance of a generic timer (in cp15 c14) */
151typedef struct ARMGenericTimer {
152 uint64_t cval; /* Timer CompareValue register */
a7adc4b7 153 uint64_t ctl; /* Timer Control register */
55d284af
PM
154} ARMGenericTimer;
155
156#define GTIMER_PHYS 0
157#define GTIMER_VIRT 1
b0e66d95 158#define GTIMER_HYP 2
b4d3978c
PM
159#define GTIMER_SEC 3
160#define NUM_GTIMERS 4
55d284af 161
11f136ee
FA
162typedef struct {
163 uint64_t raw_tcr;
164 uint32_t mask;
165 uint32_t base_mask;
166} TCR;
167
c39c2b90
RH
168/* Define a maximum sized vector register.
169 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
170 * For 64-bit, this is a 2048-bit SVE register.
171 *
172 * Note that the mapping between S, D, and Q views of the register bank
173 * differs between AArch64 and AArch32.
174 * In AArch32:
175 * Qn = regs[n].d[1]:regs[n].d[0]
176 * Dn = regs[n / 2].d[n & 1]
177 * Sn = regs[n / 4].d[n % 4 / 2],
178 * bits 31..0 for even n, and bits 63..32 for odd n
179 * (and regs[16] to regs[31] are inaccessible)
180 * In AArch64:
181 * Zn = regs[n].d[*]
182 * Qn = regs[n].d[1]:regs[n].d[0]
183 * Dn = regs[n].d[0]
184 * Sn = regs[n].d[0] bits 31..0
d0e69ea8 185 * Hn = regs[n].d[0] bits 15..0
c39c2b90
RH
186 *
187 * This corresponds to the architecturally defined mapping between
188 * the two execution states, and means we do not need to explicitly
189 * map these registers when changing states.
190 *
191 * Align the data for use with TCG host vector operations.
192 */
193
194#ifdef TARGET_AARCH64
195# define ARM_MAX_VQ 16
196#else
197# define ARM_MAX_VQ 1
198#endif
199
200typedef struct ARMVectorReg {
201 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
202} ARMVectorReg;
203
3c7d3086 204#ifdef TARGET_AARCH64
991ad91b 205/* In AArch32 mode, predicate registers do not exist at all. */
3c7d3086
RH
206typedef struct ARMPredicateReg {
207 uint64_t p[2 * ARM_MAX_VQ / 8] QEMU_ALIGNED(16);
208} ARMPredicateReg;
991ad91b
RH
209
210/* In AArch32 mode, PAC keys do not exist at all. */
211typedef struct ARMPACKey {
212 uint64_t lo, hi;
213} ARMPACKey;
3c7d3086
RH
214#endif
215
c39c2b90 216
2c0262af 217typedef struct CPUARMState {
b5ff1b31 218 /* Regs for current mode. */
2c0262af 219 uint32_t regs[16];
3926cc84
AG
220
221 /* 32/64 switch only happens when taking and returning from
222 * exceptions so the overlap semantics are taken care of then
223 * instead of having a complicated union.
224 */
225 /* Regs for A64 mode. */
226 uint64_t xregs[32];
227 uint64_t pc;
d356312f
PM
228 /* PSTATE isn't an architectural register for ARMv8. However, it is
229 * convenient for us to assemble the underlying state into a 32 bit format
230 * identical to the architectural format used for the SPSR. (This is also
231 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
232 * 'pstate' register are.) Of the PSTATE bits:
233 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
234 * semantics as for AArch32, as described in the comments on each field)
235 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
4cc35614 236 * DAIF (exception masks) are kept in env->daif
f6e52eaa 237 * BTYPE is kept in env->btype
d356312f 238 * all other bits are stored in their correct places in env->pstate
3926cc84
AG
239 */
240 uint32_t pstate;
241 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
242
b90372ad 243 /* Frequently accessed CPSR bits are stored separately for efficiency.
d37aca66 244 This contains all the other bits. Use cpsr_{read,write} to access
b5ff1b31
FB
245 the whole CPSR. */
246 uint32_t uncached_cpsr;
247 uint32_t spsr;
248
249 /* Banked registers. */
28c9457d 250 uint64_t banked_spsr[8];
0b7d409d
FA
251 uint32_t banked_r13[8];
252 uint32_t banked_r14[8];
3b46e624 253
b5ff1b31
FB
254 /* These hold r8-r12. */
255 uint32_t usr_regs[5];
256 uint32_t fiq_regs[5];
3b46e624 257
2c0262af
FB
258 /* cpsr flag cache for faster execution */
259 uint32_t CF; /* 0 or 1 */
260 uint32_t VF; /* V is the bit 31. All other bits are undefined */
6fbe23d5
PB
261 uint32_t NF; /* N is bit 31. All other bits are undefined. */
262 uint32_t ZF; /* Z set if zero. */
99c475ab 263 uint32_t QF; /* 0 or 1 */
9ee6e8bb 264 uint32_t GE; /* cpsr[19:16] */
b26eefb6 265 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
9ee6e8bb 266 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
f6e52eaa 267 uint32_t btype; /* BTI branch type. spsr[11:10]. */
b6af0975 268 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
2c0262af 269
1b174238 270 uint64_t elr_el[4]; /* AArch64 exception link regs */
73fb3b76 271 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
a0618a19 272
b5ff1b31
FB
273 /* System control coprocessor (cp15) */
274 struct {
40f137e1 275 uint32_t c0_cpuid;
b85a1fd6
FA
276 union { /* Cache size selection */
277 struct {
278 uint64_t _unused_csselr0;
279 uint64_t csselr_ns;
280 uint64_t _unused_csselr1;
281 uint64_t csselr_s;
282 };
283 uint64_t csselr_el[4];
284 };
137feaa9
FA
285 union { /* System control register. */
286 struct {
287 uint64_t _unused_sctlr;
288 uint64_t sctlr_ns;
289 uint64_t hsctlr;
290 uint64_t sctlr_s;
291 };
292 uint64_t sctlr_el[4];
293 };
7ebd5f2e 294 uint64_t cpacr_el1; /* Architectural feature access control register */
c6f19164 295 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
610c3c8a 296 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
144634ae 297 uint64_t sder; /* Secure debug enable register. */
77022576 298 uint32_t nsacr; /* Non-secure access control register. */
7dd8c9af
FA
299 union { /* MMU translation table base 0. */
300 struct {
301 uint64_t _unused_ttbr0_0;
302 uint64_t ttbr0_ns;
303 uint64_t _unused_ttbr0_1;
304 uint64_t ttbr0_s;
305 };
306 uint64_t ttbr0_el[4];
307 };
308 union { /* MMU translation table base 1. */
309 struct {
310 uint64_t _unused_ttbr1_0;
311 uint64_t ttbr1_ns;
312 uint64_t _unused_ttbr1_1;
313 uint64_t ttbr1_s;
314 };
315 uint64_t ttbr1_el[4];
316 };
b698e9cf 317 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
11f136ee
FA
318 /* MMU translation table base control. */
319 TCR tcr_el[4];
68e9c2fe 320 TCR vtcr_el2; /* Virtualization Translation Control. */
67cc32eb
VL
321 uint32_t c2_data; /* MPU data cacheable bits. */
322 uint32_t c2_insn; /* MPU instruction cacheable bits. */
0c17d68c
FA
323 union { /* MMU domain access control register
324 * MPU write buffer control.
325 */
326 struct {
327 uint64_t dacr_ns;
328 uint64_t dacr_s;
329 };
330 struct {
331 uint64_t dacr32_el2;
332 };
333 };
7e09797c
PM
334 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
335 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
f149e3e8 336 uint64_t hcr_el2; /* Hypervisor configuration register */
64e0e2de 337 uint64_t scr_el3; /* Secure configuration register. */
88ca1c2d
FA
338 union { /* Fault status registers. */
339 struct {
340 uint64_t ifsr_ns;
341 uint64_t ifsr_s;
342 };
343 struct {
344 uint64_t ifsr32_el2;
345 };
346 };
4a7e2d73
FA
347 union {
348 struct {
349 uint64_t _unused_dfsr;
350 uint64_t dfsr_ns;
351 uint64_t hsr;
352 uint64_t dfsr_s;
353 };
354 uint64_t esr_el[4];
355 };
ce819861 356 uint32_t c6_region[8]; /* MPU base/size registers. */
b848ce2b
FA
357 union { /* Fault address registers. */
358 struct {
359 uint64_t _unused_far0;
360#ifdef HOST_WORDS_BIGENDIAN
361 uint32_t ifar_ns;
362 uint32_t dfar_ns;
363 uint32_t ifar_s;
364 uint32_t dfar_s;
365#else
366 uint32_t dfar_ns;
367 uint32_t ifar_ns;
368 uint32_t dfar_s;
369 uint32_t ifar_s;
370#endif
371 uint64_t _unused_far3;
372 };
373 uint64_t far_el[4];
374 };
59e05530 375 uint64_t hpfar_el2;
2a5a9abd 376 uint64_t hstr_el2;
01c097f7
FA
377 union { /* Translation result. */
378 struct {
379 uint64_t _unused_par_0;
380 uint64_t par_ns;
381 uint64_t _unused_par_1;
382 uint64_t par_s;
383 };
384 uint64_t par_el[4];
385 };
6cb0b013 386
b5ff1b31
FB
387 uint32_t c9_insn; /* Cache lockdown registers. */
388 uint32_t c9_data;
8521466b
AF
389 uint64_t c9_pmcr; /* performance monitor control register */
390 uint64_t c9_pmcnten; /* perf monitor counter enables */
e4e91a21
AL
391 uint64_t c9_pmovsr; /* perf monitor overflow status */
392 uint64_t c9_pmuserenr; /* perf monitor user enable */
6b040780 393 uint64_t c9_pmselr; /* perf monitor counter selection register */
e6ec5457 394 uint64_t c9_pminten; /* perf monitor interrupt enables */
be693c87
GB
395 union { /* Memory attribute redirection */
396 struct {
397#ifdef HOST_WORDS_BIGENDIAN
398 uint64_t _unused_mair_0;
399 uint32_t mair1_ns;
400 uint32_t mair0_ns;
401 uint64_t _unused_mair_1;
402 uint32_t mair1_s;
403 uint32_t mair0_s;
404#else
405 uint64_t _unused_mair_0;
406 uint32_t mair0_ns;
407 uint32_t mair1_ns;
408 uint64_t _unused_mair_1;
409 uint32_t mair0_s;
410 uint32_t mair1_s;
411#endif
412 };
413 uint64_t mair_el[4];
414 };
fb6c91ba
GB
415 union { /* vector base address register */
416 struct {
417 uint64_t _unused_vbar;
418 uint64_t vbar_ns;
419 uint64_t hvbar;
420 uint64_t vbar_s;
421 };
422 uint64_t vbar_el[4];
423 };
e89e51a1 424 uint32_t mvbar; /* (monitor) vector base address register */
54bf36ed
FA
425 struct { /* FCSE PID. */
426 uint32_t fcseidr_ns;
427 uint32_t fcseidr_s;
428 };
429 union { /* Context ID. */
430 struct {
431 uint64_t _unused_contextidr_0;
432 uint64_t contextidr_ns;
433 uint64_t _unused_contextidr_1;
434 uint64_t contextidr_s;
435 };
436 uint64_t contextidr_el[4];
437 };
438 union { /* User RW Thread register. */
439 struct {
440 uint64_t tpidrurw_ns;
441 uint64_t tpidrprw_ns;
442 uint64_t htpidr;
443 uint64_t _tpidr_el3;
444 };
445 uint64_t tpidr_el[4];
446 };
447 /* The secure banks of these registers don't map anywhere */
448 uint64_t tpidrurw_s;
449 uint64_t tpidrprw_s;
450 uint64_t tpidruro_s;
451
452 union { /* User RO Thread register. */
453 uint64_t tpidruro_ns;
454 uint64_t tpidrro_el[1];
455 };
a7adc4b7
PM
456 uint64_t c14_cntfrq; /* Counter Frequency register */
457 uint64_t c14_cntkctl; /* Timer Control register */
0b6440af 458 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
edac4d8a 459 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
55d284af 460 ARMGenericTimer c14_timer[NUM_GTIMERS];
c1713132 461 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
c3d2689d
AZ
462 uint32_t c15_ticonfig; /* TI925T configuration byte. */
463 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
464 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
465 uint32_t c15_threadid; /* TI debugger thread-ID. */
7da362d0
ML
466 uint32_t c15_config_base_address; /* SCU base address. */
467 uint32_t c15_diagnostic; /* diagnostic register */
468 uint32_t c15_power_diagnostic;
469 uint32_t c15_power_control; /* power control */
0b45451e
PM
470 uint64_t dbgbvr[16]; /* breakpoint value registers */
471 uint64_t dbgbcr[16]; /* breakpoint control registers */
472 uint64_t dbgwvr[16]; /* watchpoint value registers */
473 uint64_t dbgwcr[16]; /* watchpoint control registers */
3a298203 474 uint64_t mdscr_el1;
1424ca8d 475 uint64_t oslsr_el1; /* OS Lock Status */
14cc7b54 476 uint64_t mdcr_el2;
5513c3ab 477 uint64_t mdcr_el3;
5d05b9d4
AL
478 /* Stores the architectural value of the counter *the last time it was
479 * updated* by pmccntr_op_start. Accesses should always be surrounded
480 * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
481 * architecturally-correct value is being read/set.
7c2cb42b 482 */
c92c0687 483 uint64_t c15_ccnt;
5d05b9d4
AL
484 /* Stores the delta between the architectural value and the underlying
485 * cycle count during normal operation. It is used to update c15_ccnt
486 * to be the correct architectural value before accesses. During
487 * accesses, c15_ccnt_delta contains the underlying count being used
488 * for the access, after which it reverts to the delta value in
489 * pmccntr_op_finish.
490 */
491 uint64_t c15_ccnt_delta;
5ecdd3e4
AL
492 uint64_t c14_pmevcntr[31];
493 uint64_t c14_pmevcntr_delta[31];
494 uint64_t c14_pmevtyper[31];
8521466b 495 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
731de9e6 496 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
f0d574d6 497 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
b5ff1b31 498 } cp15;
40f137e1 499
9ee6e8bb 500 struct {
fb602cb7
PM
501 /* M profile has up to 4 stack pointers:
502 * a Main Stack Pointer and a Process Stack Pointer for each
503 * of the Secure and Non-Secure states. (If the CPU doesn't support
504 * the security extension then it has only two SPs.)
505 * In QEMU we always store the currently active SP in regs[13],
506 * and the non-active SP for the current security state in
507 * v7m.other_sp. The stack pointers for the inactive security state
508 * are stored in other_ss_msp and other_ss_psp.
509 * switch_v7m_security_state() is responsible for rearranging them
510 * when we change security state.
511 */
9ee6e8bb 512 uint32_t other_sp;
fb602cb7
PM
513 uint32_t other_ss_msp;
514 uint32_t other_ss_psp;
4a16724f
PM
515 uint32_t vecbase[M_REG_NUM_BANKS];
516 uint32_t basepri[M_REG_NUM_BANKS];
517 uint32_t control[M_REG_NUM_BANKS];
518 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
519 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
2c4da50d
PM
520 uint32_t hfsr; /* HardFault Status */
521 uint32_t dfsr; /* Debug Fault Status Register */
bed079da 522 uint32_t sfsr; /* Secure Fault Status Register */
4a16724f 523 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
2c4da50d 524 uint32_t bfar; /* BusFault Address */
bed079da 525 uint32_t sfar; /* Secure Fault Address Register */
4a16724f 526 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
9ee6e8bb 527 int exception;
4a16724f
PM
528 uint32_t primask[M_REG_NUM_BANKS];
529 uint32_t faultmask[M_REG_NUM_BANKS];
3b2e9344 530 uint32_t aircr; /* only holds r/w state if security extn implemented */
1e577cc7 531 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
43bbce7f 532 uint32_t csselr[M_REG_NUM_BANKS];
24ac0fb1 533 uint32_t scr[M_REG_NUM_BANKS];
57bb3156
PM
534 uint32_t msplim[M_REG_NUM_BANKS];
535 uint32_t psplim[M_REG_NUM_BANKS];
d33abe82
PM
536 uint32_t fpcar[M_REG_NUM_BANKS];
537 uint32_t fpccr[M_REG_NUM_BANKS];
538 uint32_t fpdscr[M_REG_NUM_BANKS];
539 uint32_t cpacr[M_REG_NUM_BANKS];
540 uint32_t nsacr;
9ee6e8bb
PB
541 } v7m;
542
abf1172f
PM
543 /* Information associated with an exception about to be taken:
544 * code which raises an exception must set cs->exception_index and
545 * the relevant parts of this structure; the cpu_do_interrupt function
546 * will then set the guest-visible registers as part of the exception
547 * entry process.
548 */
549 struct {
550 uint32_t syndrome; /* AArch64 format syndrome register */
551 uint32_t fsr; /* AArch32 format fault status register info */
552 uint64_t vaddress; /* virtual addr associated with exception, if any */
73710361 553 uint32_t target_el; /* EL the exception should be targeted for */
abf1172f
PM
554 /* If we implement EL2 we will also need to store information
555 * about the intermediate physical address for stage 2 faults.
556 */
557 } exception;
558
202ccb6b
DG
559 /* Information associated with an SError */
560 struct {
561 uint8_t pending;
562 uint8_t has_esr;
563 uint64_t esr;
564 } serror;
565
ed89f078
PM
566 /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
567 uint32_t irq_line_state;
568
fe1479c3
PB
569 /* Thumb-2 EE state. */
570 uint32_t teecr;
571 uint32_t teehbr;
572
b7bcbe95
FB
573 /* VFP coprocessor state. */
574 struct {
c39c2b90 575 ARMVectorReg zregs[32];
b7bcbe95 576
3c7d3086
RH
577#ifdef TARGET_AARCH64
578 /* Store FFR as pregs[16] to make it easier to treat as any other. */
028e2a7b 579#define FFR_PRED_NUM 16
3c7d3086 580 ARMPredicateReg pregs[17];
516e246a
RH
581 /* Scratch space for aa64 sve predicate temporary. */
582 ARMPredicateReg preg_tmp;
3c7d3086
RH
583#endif
584
b7bcbe95 585 /* We store these fpcsr fields separately for convenience. */
a4d58462 586 uint32_t qc[4] QEMU_ALIGNED(16);
b7bcbe95
FB
587 int vec_len;
588 int vec_stride;
589
a4d58462
RH
590 uint32_t xregs[16];
591
516e246a 592 /* Scratch space for aa32 neon expansion. */
9ee6e8bb 593 uint32_t scratch[8];
3b46e624 594
d81ce0ef
AB
595 /* There are a number of distinct float control structures:
596 *
597 * fp_status: is the "normal" fp status.
598 * fp_status_fp16: used for half-precision calculations
599 * standard_fp_status : the ARM "Standard FPSCR Value"
600 *
601 * Half-precision operations are governed by a separate
602 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
603 * status structure to control this.
604 *
605 * The "Standard FPSCR", ie default-NaN, flush-to-zero,
606 * round-to-nearest and is used by any operations (generally
607 * Neon) which the architecture defines as controlled by the
608 * standard FPSCR value rather than the FPSCR.
3a492f3a
PM
609 *
610 * To avoid having to transfer exception bits around, we simply
611 * say that the FPSCR cumulative exception flags are the logical
d81ce0ef 612 * OR of the flags in the three fp statuses. This relies on the
3a492f3a
PM
613 * only thing which needs to read the exception flags being
614 * an explicit FPSCR read.
615 */
53cd6637 616 float_status fp_status;
d81ce0ef 617 float_status fp_status_f16;
3a492f3a 618 float_status standard_fp_status;
5be5e8ed
RH
619
620 /* ZCR_EL[1-3] */
621 uint64_t zcr_el[4];
b7bcbe95 622 } vfp;
03d05e2d
PM
623 uint64_t exclusive_addr;
624 uint64_t exclusive_val;
625 uint64_t exclusive_high;
b7bcbe95 626
18c9b560
AZ
627 /* iwMMXt coprocessor state. */
628 struct {
629 uint64_t regs[16];
630 uint64_t val;
631
632 uint32_t cregs[16];
633 } iwmmxt;
634
991ad91b
RH
635#ifdef TARGET_AARCH64
636 ARMPACKey apia_key;
637 ARMPACKey apib_key;
638 ARMPACKey apda_key;
639 ARMPACKey apdb_key;
640 ARMPACKey apga_key;
641#endif
642
ce4defa0
PB
643#if defined(CONFIG_USER_ONLY)
644 /* For usermode syscall translation. */
645 int eabi;
646#endif
647
46747d15 648 struct CPUBreakpoint *cpu_breakpoint[16];
9ee98ce8
PM
649 struct CPUWatchpoint *cpu_watchpoint[16];
650
1f5c00cf
AB
651 /* Fields up to this point are cleared by a CPU reset */
652 struct {} end_reset_fields;
653
a316d335
FB
654 CPU_COMMON
655
1f5c00cf 656 /* Fields after CPU_COMMON are preserved across CPU reset. */
9ba8c3f4 657
581be094 658 /* Internal CPU feature flags. */
918f5dca 659 uint64_t features;
581be094 660
6cb0b013
PC
661 /* PMSAv7 MPU */
662 struct {
663 uint32_t *drbar;
664 uint32_t *drsr;
665 uint32_t *dracr;
4a16724f 666 uint32_t rnr[M_REG_NUM_BANKS];
6cb0b013
PC
667 } pmsav7;
668
0e1a46bb
PM
669 /* PMSAv8 MPU */
670 struct {
671 /* The PMSAv8 implementation also shares some PMSAv7 config
672 * and state:
673 * pmsav7.rnr (region number register)
674 * pmsav7_dregion (number of configured regions)
675 */
4a16724f
PM
676 uint32_t *rbar[M_REG_NUM_BANKS];
677 uint32_t *rlar[M_REG_NUM_BANKS];
678 uint32_t mair0[M_REG_NUM_BANKS];
679 uint32_t mair1[M_REG_NUM_BANKS];
0e1a46bb
PM
680 } pmsav8;
681
9901c576
PM
682 /* v8M SAU */
683 struct {
684 uint32_t *rbar;
685 uint32_t *rlar;
686 uint32_t rnr;
687 uint32_t ctrl;
688 } sau;
689
983fe826 690 void *nvic;
462a8bc6 691 const struct arm_boot_info *boot_info;
d3a3e529
VK
692 /* Store GICv3CPUState to access from this struct */
693 void *gicv3state;
2c0262af
FB
694} CPUARMState;
695
bd7d00fc 696/**
08267487 697 * ARMELChangeHookFn:
bd7d00fc
PM
698 * type of a function which can be registered via arm_register_el_change_hook()
699 * to get callbacks when the CPU changes its exception level or mode.
700 */
08267487
AL
701typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
702typedef struct ARMELChangeHook ARMELChangeHook;
703struct ARMELChangeHook {
704 ARMELChangeHookFn *hook;
705 void *opaque;
706 QLIST_ENTRY(ARMELChangeHook) node;
707};
062ba099
AB
708
709/* These values map onto the return values for
710 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
711typedef enum ARMPSCIState {
d5affb0d
AJ
712 PSCI_ON = 0,
713 PSCI_OFF = 1,
062ba099
AB
714 PSCI_ON_PENDING = 2
715} ARMPSCIState;
716
962fcbf2
RH
717typedef struct ARMISARegisters ARMISARegisters;
718
74e75564
PB
719/**
720 * ARMCPU:
721 * @env: #CPUARMState
722 *
723 * An ARM CPU core.
724 */
725struct ARMCPU {
726 /*< private >*/
727 CPUState parent_obj;
728 /*< public >*/
729
730 CPUARMState env;
731
732 /* Coprocessor information */
733 GHashTable *cp_regs;
734 /* For marshalling (mostly coprocessor) register state between the
735 * kernel and QEMU (for KVM) and between two QEMUs (for migration),
736 * we use these arrays.
737 */
738 /* List of register indexes managed via these arrays; (full KVM style
739 * 64 bit indexes, not CPRegInfo 32 bit indexes)
740 */
741 uint64_t *cpreg_indexes;
742 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
743 uint64_t *cpreg_values;
744 /* Length of the indexes, values, reset_values arrays */
745 int32_t cpreg_array_len;
746 /* These are used only for migration: incoming data arrives in
747 * these fields and is sanity checked in post_load before copying
748 * to the working data structures above.
749 */
750 uint64_t *cpreg_vmstate_indexes;
751 uint64_t *cpreg_vmstate_values;
752 int32_t cpreg_vmstate_array_len;
753
200bf5b7
AB
754 DynamicGDBXMLInfo dyn_xml;
755
74e75564
PB
756 /* Timers used by the generic (architected) timer */
757 QEMUTimer *gt_timer[NUM_GTIMERS];
4e7beb0c
AL
758 /*
759 * Timer used by the PMU. Its state is restored after migration by
760 * pmu_op_finish() - it does not need other handling during migration
761 */
762 QEMUTimer *pmu_timer;
74e75564
PB
763 /* GPIO outputs for generic timer */
764 qemu_irq gt_timer_outputs[NUM_GTIMERS];
aa1b3111
PM
765 /* GPIO output for GICv3 maintenance interrupt signal */
766 qemu_irq gicv3_maintenance_interrupt;
07f48730
AJ
767 /* GPIO output for the PMU interrupt */
768 qemu_irq pmu_interrupt;
74e75564
PB
769
770 /* MemoryRegion to use for secure physical accesses */
771 MemoryRegion *secure_memory;
772
181962fd
PM
773 /* For v8M, pointer to the IDAU interface provided by board/SoC */
774 Object *idau;
775
74e75564
PB
776 /* 'compatible' string for this CPU for Linux device trees */
777 const char *dtb_compatible;
778
779 /* PSCI version for this CPU
780 * Bits[31:16] = Major Version
781 * Bits[15:0] = Minor Version
782 */
783 uint32_t psci_version;
784
785 /* Should CPU start in PSCI powered-off state? */
786 bool start_powered_off;
062ba099
AB
787
788 /* Current power state, access guarded by BQL */
789 ARMPSCIState power_state;
790
c25bd18a
PM
791 /* CPU has virtualization extension */
792 bool has_el2;
74e75564
PB
793 /* CPU has security extension */
794 bool has_el3;
5c0a3819
SZ
795 /* CPU has PMU (Performance Monitor Unit) */
796 bool has_pmu;
74e75564
PB
797
798 /* CPU has memory protection unit */
799 bool has_mpu;
800 /* PMSAv7 MPU number of supported regions */
801 uint32_t pmsav7_dregion;
9901c576
PM
802 /* v8M SAU number of supported regions */
803 uint32_t sau_sregion;
74e75564
PB
804
805 /* PSCI conduit used to invoke PSCI methods
806 * 0 - disabled, 1 - smc, 2 - hvc
807 */
808 uint32_t psci_conduit;
809
38e2a77c
PM
810 /* For v8M, initial value of the Secure VTOR */
811 uint32_t init_svtor;
812
74e75564
PB
813 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
814 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
815 */
816 uint32_t kvm_target;
817
818 /* KVM init features for this CPU */
819 uint32_t kvm_init_features[7];
820
821 /* Uniprocessor system with MP extensions */
822 bool mp_is_up;
823
c4487d76
PM
824 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
825 * and the probe failed (so we need to report the error in realize)
826 */
827 bool host_cpu_probe_failed;
828
f9a69711
AF
829 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
830 * register.
831 */
832 int32_t core_count;
833
74e75564
PB
834 /* The instance init functions for implementation-specific subclasses
835 * set these fields to specify the implementation-dependent values of
836 * various constant registers and reset values of non-constant
837 * registers.
838 * Some of these might become QOM properties eventually.
839 * Field names match the official register names as defined in the
840 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
841 * is used for reset values of non-constant registers; no reset_
842 * prefix means a constant register.
47576b94
RH
843 * Some of these registers are split out into a substructure that
844 * is shared with the translators to control the ISA.
74e75564 845 */
47576b94
RH
846 struct ARMISARegisters {
847 uint32_t id_isar0;
848 uint32_t id_isar1;
849 uint32_t id_isar2;
850 uint32_t id_isar3;
851 uint32_t id_isar4;
852 uint32_t id_isar5;
853 uint32_t id_isar6;
854 uint32_t mvfr0;
855 uint32_t mvfr1;
856 uint32_t mvfr2;
857 uint64_t id_aa64isar0;
858 uint64_t id_aa64isar1;
859 uint64_t id_aa64pfr0;
860 uint64_t id_aa64pfr1;
3dc91ddb
PM
861 uint64_t id_aa64mmfr0;
862 uint64_t id_aa64mmfr1;
47576b94 863 } isar;
74e75564
PB
864 uint32_t midr;
865 uint32_t revidr;
866 uint32_t reset_fpsid;
74e75564
PB
867 uint32_t ctr;
868 uint32_t reset_sctlr;
869 uint32_t id_pfr0;
870 uint32_t id_pfr1;
871 uint32_t id_dfr0;
cad86737
AL
872 uint64_t pmceid0;
873 uint64_t pmceid1;
74e75564
PB
874 uint32_t id_afr0;
875 uint32_t id_mmfr0;
876 uint32_t id_mmfr1;
877 uint32_t id_mmfr2;
878 uint32_t id_mmfr3;
879 uint32_t id_mmfr4;
74e75564
PB
880 uint64_t id_aa64dfr0;
881 uint64_t id_aa64dfr1;
882 uint64_t id_aa64afr0;
883 uint64_t id_aa64afr1;
74e75564
PB
884 uint32_t dbgdidr;
885 uint32_t clidr;
886 uint64_t mp_affinity; /* MP ID without feature bits */
887 /* The elements of this array are the CCSIDR values for each cache,
888 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
889 */
890 uint32_t ccsidr[16];
891 uint64_t reset_cbar;
892 uint32_t reset_auxcr;
893 bool reset_hivecs;
894 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
895 uint32_t dcz_blocksize;
896 uint64_t rvbar;
bd7d00fc 897
e45868a3
PM
898 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
899 int gic_num_lrs; /* number of list registers */
900 int gic_vpribits; /* number of virtual priority bits */
901 int gic_vprebits; /* number of virtual preemption bits */
902
3a062d57
JB
903 /* Whether the cfgend input is high (i.e. this CPU should reset into
904 * big-endian mode). This setting isn't used directly: instead it modifies
905 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
906 * architecture version.
907 */
908 bool cfgend;
909
b5c53d1b 910 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
08267487 911 QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
15f8b142
IM
912
913 int32_t node_id; /* NUMA node this CPU belongs to */
5d721b78
AG
914
915 /* Used to synchronize KVM and QEMU in-kernel device levels */
916 uint8_t device_irq_level;
adf92eab
RH
917
918 /* Used to set the maximum vector length the cpu will support. */
919 uint32_t sve_max_vq;
74e75564
PB
920};
921
922static inline ARMCPU *arm_env_get_cpu(CPUARMState *env)
923{
924 return container_of(env, ARMCPU, env);
925}
926
51e5ef45
MAL
927void arm_cpu_post_init(Object *obj);
928
46de5913
IM
929uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
930
74e75564
PB
931#define ENV_GET_CPU(e) CPU(arm_env_get_cpu(e))
932
933#define ENV_OFFSET offsetof(ARMCPU, env)
934
935#ifndef CONFIG_USER_ONLY
936extern const struct VMStateDescription vmstate_arm_cpu;
937#endif
938
939void arm_cpu_do_interrupt(CPUState *cpu);
940void arm_v7m_cpu_do_interrupt(CPUState *cpu);
941bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
942
90c84c56 943void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags);
74e75564
PB
944
945hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
946 MemTxAttrs *attrs);
947
948int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
949int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
950
200bf5b7
AB
951/* Dynamically generates for gdb stub an XML description of the sysregs from
952 * the cp_regs hashtable. Returns the registered sysregs number.
953 */
954int arm_gen_dynamic_xml(CPUState *cpu);
955
956/* Returns the dynamically generated XML for the gdb stub.
957 * Returns a pointer to the XML contents for the specified XML file or NULL
958 * if the XML name doesn't match the predefined one.
959 */
960const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
961
74e75564
PB
962int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
963 int cpuid, void *opaque);
964int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
965 int cpuid, void *opaque);
966
967#ifdef TARGET_AARCH64
968int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
969int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
85fc7167 970void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
9a05f7b6
RH
971void aarch64_sve_change_el(CPUARMState *env, int old_el,
972 int new_el, bool el0_a64);
0ab5953b
RH
973#else
974static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
9a05f7b6
RH
975static inline void aarch64_sve_change_el(CPUARMState *env, int o,
976 int n, bool a)
977{ }
74e75564 978#endif
778c3a06 979
faacc041 980target_ulong do_arm_semihosting(CPUARMState *env);
ce02049d
GB
981void aarch64_sync_32_to_64(CPUARMState *env);
982void aarch64_sync_64_to_32(CPUARMState *env);
b5ff1b31 983
ced31551
RH
984int fp_exception_el(CPUARMState *env, int cur_el);
985int sve_exception_el(CPUARMState *env, int cur_el);
986uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
987
3926cc84
AG
988static inline bool is_a64(CPUARMState *env)
989{
990 return env->aarch64;
991}
992
2c0262af
FB
993/* you can call this signal handler from your SIGBUS and SIGSEGV
994 signal handlers to inform the virtual CPU of exceptions. non zero
995 is returned if the signal was handled by the virtual CPU. */
5fafdf24 996int cpu_arm_signal_handler(int host_signum, void *pinfo,
2c0262af
FB
997 void *puc);
998
5d05b9d4
AL
999/**
1000 * pmu_op_start/finish
ec7b4ce4
AF
1001 * @env: CPUARMState
1002 *
5d05b9d4
AL
1003 * Convert all PMU counters between their delta form (the typical mode when
1004 * they are enabled) and the guest-visible values. These two calls must
1005 * surround any action which might affect the counters.
ec7b4ce4 1006 */
5d05b9d4
AL
1007void pmu_op_start(CPUARMState *env);
1008void pmu_op_finish(CPUARMState *env);
ec7b4ce4 1009
4e7beb0c
AL
1010/*
1011 * Called when a PMU counter is due to overflow
1012 */
1013void arm_pmu_timer_cb(void *opaque);
1014
033614c4
AL
1015/**
1016 * Functions to register as EL change hooks for PMU mode filtering
1017 */
1018void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1019void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1020
57a4a11b 1021/*
bf8d0969
AL
1022 * pmu_init
1023 * @cpu: ARMCPU
57a4a11b 1024 *
bf8d0969
AL
1025 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1026 * for the current configuration
57a4a11b 1027 */
bf8d0969 1028void pmu_init(ARMCPU *cpu);
57a4a11b 1029
76e3e1bc
PM
1030/* SCTLR bit meanings. Several bits have been reused in newer
1031 * versions of the architecture; in that case we define constants
1032 * for both old and new bit meanings. Code which tests against those
1033 * bits should probably check or otherwise arrange that the CPU
1034 * is the architectural version it expects.
1035 */
1036#define SCTLR_M (1U << 0)
1037#define SCTLR_A (1U << 1)
1038#define SCTLR_C (1U << 2)
1039#define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
b2af69d0
RH
1040#define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1041#define SCTLR_SA (1U << 3) /* AArch64 only */
76e3e1bc 1042#define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
b2af69d0 1043#define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
76e3e1bc
PM
1044#define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
1045#define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
1046#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1047#define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
b2af69d0 1048#define SCTLR_nAA (1U << 6) /* when v8.4-LSE is implemented */
76e3e1bc
PM
1049#define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
1050#define SCTLR_ITD (1U << 7) /* v8 onward */
1051#define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
1052#define SCTLR_SED (1U << 8) /* v8 onward */
1053#define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
1054#define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
1055#define SCTLR_F (1U << 10) /* up to v6 */
cb570bd3
RH
1056#define SCTLR_SW (1U << 10) /* v7 */
1057#define SCTLR_EnRCTX (1U << 10) /* in v8.0-PredInv */
b2af69d0
RH
1058#define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */
1059#define SCTLR_EOS (1U << 11) /* v8.5-ExS */
76e3e1bc 1060#define SCTLR_I (1U << 12)
b2af69d0
RH
1061#define SCTLR_V (1U << 13) /* AArch32 only */
1062#define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */
76e3e1bc
PM
1063#define SCTLR_RR (1U << 14) /* up to v7 */
1064#define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
1065#define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
1066#define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
1067#define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
1068#define SCTLR_nTWI (1U << 16) /* v8 onward */
b2af69d0 1069#define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */
f6bda88f 1070#define SCTLR_BR (1U << 17) /* PMSA only */
76e3e1bc
PM
1071#define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
1072#define SCTLR_nTWE (1U << 18) /* v8 onward */
1073#define SCTLR_WXN (1U << 19)
1074#define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
b2af69d0
RH
1075#define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */
1076#define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */
1077#define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */
1078#define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */
1079#define SCTLR_EIS (1U << 22) /* v8.5-ExS */
76e3e1bc 1080#define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
b2af69d0 1081#define SCTLR_SPAN (1U << 23) /* v8.1-PAN */
76e3e1bc
PM
1082#define SCTLR_VE (1U << 24) /* up to v7 */
1083#define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
1084#define SCTLR_EE (1U << 25)
1085#define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
1086#define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
b2af69d0
RH
1087#define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1088#define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */
1089#define SCTLR_TRE (1U << 28) /* AArch32 only */
1090#define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1091#define SCTLR_AFE (1U << 29) /* AArch32 only */
1092#define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1093#define SCTLR_TE (1U << 30) /* AArch32 only */
1094#define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */
1095#define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */
1096#define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */
1097#define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */
1098#define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */
1099#define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */
1100#define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */
1101#define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */
1102#define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */
1103#define SCTLR_DSSBS (1ULL << 44) /* v8.5 */
76e3e1bc 1104
c6f19164
GB
1105#define CPTR_TCPAC (1U << 31)
1106#define CPTR_TTA (1U << 20)
1107#define CPTR_TFP (1U << 10)
5be5e8ed
RH
1108#define CPTR_TZ (1U << 8) /* CPTR_EL2 */
1109#define CPTR_EZ (1U << 8) /* CPTR_EL3 */
c6f19164 1110
187f678d
PM
1111#define MDCR_EPMAD (1U << 21)
1112#define MDCR_EDAD (1U << 20)
033614c4
AL
1113#define MDCR_SPME (1U << 17) /* MDCR_EL3 */
1114#define MDCR_HPMD (1U << 17) /* MDCR_EL2 */
187f678d 1115#define MDCR_SDD (1U << 16)
a8d64e73 1116#define MDCR_SPD (3U << 14)
187f678d
PM
1117#define MDCR_TDRA (1U << 11)
1118#define MDCR_TDOSA (1U << 10)
1119#define MDCR_TDA (1U << 9)
1120#define MDCR_TDE (1U << 8)
1121#define MDCR_HPME (1U << 7)
1122#define MDCR_TPM (1U << 6)
1123#define MDCR_TPMCR (1U << 5)
033614c4 1124#define MDCR_HPMN (0x1fU)
187f678d 1125
a8d64e73
PM
1126/* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1127#define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1128
78dbbbe4
PM
1129#define CPSR_M (0x1fU)
1130#define CPSR_T (1U << 5)
1131#define CPSR_F (1U << 6)
1132#define CPSR_I (1U << 7)
1133#define CPSR_A (1U << 8)
1134#define CPSR_E (1U << 9)
1135#define CPSR_IT_2_7 (0xfc00U)
1136#define CPSR_GE (0xfU << 16)
4051e12c
PM
1137#define CPSR_IL (1U << 20)
1138/* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
1139 * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
1140 * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
1141 * where it is live state but not accessible to the AArch32 code.
1142 */
1143#define CPSR_RESERVED (0x7U << 21)
78dbbbe4
PM
1144#define CPSR_J (1U << 24)
1145#define CPSR_IT_0_1 (3U << 25)
1146#define CPSR_Q (1U << 27)
1147#define CPSR_V (1U << 28)
1148#define CPSR_C (1U << 29)
1149#define CPSR_Z (1U << 30)
1150#define CPSR_N (1U << 31)
9ee6e8bb 1151#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
4cc35614 1152#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
9ee6e8bb
PB
1153
1154#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
4cc35614
PM
1155#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1156 | CPSR_NZCV)
9ee6e8bb
PB
1157/* Bits writable in user mode. */
1158#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
1159/* Execution state bits. MRS read as zero, MSR writes ignored. */
4051e12c
PM
1160#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1161/* Mask of bits which may be set by exception return copying them from SPSR */
1162#define CPSR_ERET_MASK (~CPSR_RESERVED)
b5ff1b31 1163
987ab45e
PM
1164/* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1165#define XPSR_EXCP 0x1ffU
1166#define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1167#define XPSR_IT_2_7 CPSR_IT_2_7
1168#define XPSR_GE CPSR_GE
1169#define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1170#define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1171#define XPSR_IT_0_1 CPSR_IT_0_1
1172#define XPSR_Q CPSR_Q
1173#define XPSR_V CPSR_V
1174#define XPSR_C CPSR_C
1175#define XPSR_Z CPSR_Z
1176#define XPSR_N CPSR_N
1177#define XPSR_NZCV CPSR_NZCV
1178#define XPSR_IT CPSR_IT
1179
e389be16
FA
1180#define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
1181#define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
1182#define TTBCR_PD0 (1U << 4)
1183#define TTBCR_PD1 (1U << 5)
1184#define TTBCR_EPD0 (1U << 7)
1185#define TTBCR_IRGN0 (3U << 8)
1186#define TTBCR_ORGN0 (3U << 10)
1187#define TTBCR_SH0 (3U << 12)
1188#define TTBCR_T1SZ (3U << 16)
1189#define TTBCR_A1 (1U << 22)
1190#define TTBCR_EPD1 (1U << 23)
1191#define TTBCR_IRGN1 (3U << 24)
1192#define TTBCR_ORGN1 (3U << 26)
1193#define TTBCR_SH1 (1U << 28)
1194#define TTBCR_EAE (1U << 31)
1195
d356312f
PM
1196/* Bit definitions for ARMv8 SPSR (PSTATE) format.
1197 * Only these are valid when in AArch64 mode; in
1198 * AArch32 mode SPSRs are basically CPSR-format.
1199 */
f502cfc2 1200#define PSTATE_SP (1U)
d356312f
PM
1201#define PSTATE_M (0xFU)
1202#define PSTATE_nRW (1U << 4)
1203#define PSTATE_F (1U << 6)
1204#define PSTATE_I (1U << 7)
1205#define PSTATE_A (1U << 8)
1206#define PSTATE_D (1U << 9)
f6e52eaa 1207#define PSTATE_BTYPE (3U << 10)
d356312f
PM
1208#define PSTATE_IL (1U << 20)
1209#define PSTATE_SS (1U << 21)
1210#define PSTATE_V (1U << 28)
1211#define PSTATE_C (1U << 29)
1212#define PSTATE_Z (1U << 30)
1213#define PSTATE_N (1U << 31)
1214#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
4cc35614 1215#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
f6e52eaa 1216#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
d356312f
PM
1217/* Mode values for AArch64 */
1218#define PSTATE_MODE_EL3h 13
1219#define PSTATE_MODE_EL3t 12
1220#define PSTATE_MODE_EL2h 9
1221#define PSTATE_MODE_EL2t 8
1222#define PSTATE_MODE_EL1h 5
1223#define PSTATE_MODE_EL1t 4
1224#define PSTATE_MODE_EL0t 0
1225
de2db7ec
PM
1226/* Write a new value to v7m.exception, thus transitioning into or out
1227 * of Handler mode; this may result in a change of active stack pointer.
1228 */
1229void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1230
9e729b57
EI
1231/* Map EL and handler into a PSTATE_MODE. */
1232static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1233{
1234 return (el << 2) | handler;
1235}
1236
d356312f
PM
1237/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1238 * interprocessing, so we don't attempt to sync with the cpsr state used by
1239 * the 32 bit decoder.
1240 */
1241static inline uint32_t pstate_read(CPUARMState *env)
1242{
1243 int ZF;
1244
1245 ZF = (env->ZF == 0);
1246 return (env->NF & 0x80000000) | (ZF << 30)
1247 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
f6e52eaa 1248 | env->pstate | env->daif | (env->btype << 10);
d356312f
PM
1249}
1250
1251static inline void pstate_write(CPUARMState *env, uint32_t val)
1252{
1253 env->ZF = (~val) & PSTATE_Z;
1254 env->NF = val;
1255 env->CF = (val >> 29) & 1;
1256 env->VF = (val << 3) & 0x80000000;
4cc35614 1257 env->daif = val & PSTATE_DAIF;
f6e52eaa 1258 env->btype = (val >> 10) & 3;
d356312f
PM
1259 env->pstate = val & ~CACHED_PSTATE_BITS;
1260}
1261
b5ff1b31 1262/* Return the current CPSR value. */
2f4a40e5 1263uint32_t cpsr_read(CPUARMState *env);
50866ba5
PM
1264
1265typedef enum CPSRWriteType {
1266 CPSRWriteByInstr = 0, /* from guest MSR or CPS */
1267 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1268 CPSRWriteRaw = 2, /* trust values, do not switch reg banks */
1269 CPSRWriteByGDBStub = 3, /* from the GDB stub */
1270} CPSRWriteType;
1271
1272/* Set the CPSR. Note that some bits of mask must be all-set or all-clear.*/
1273void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1274 CPSRWriteType write_type);
9ee6e8bb
PB
1275
1276/* Return the current xPSR value. */
1277static inline uint32_t xpsr_read(CPUARMState *env)
1278{
1279 int ZF;
6fbe23d5
PB
1280 ZF = (env->ZF == 0);
1281 return (env->NF & 0x80000000) | (ZF << 30)
9ee6e8bb
PB
1282 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1283 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1284 | ((env->condexec_bits & 0xfc) << 8)
1285 | env->v7m.exception;
b5ff1b31
FB
1286}
1287
9ee6e8bb
PB
1288/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
1289static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1290{
987ab45e
PM
1291 if (mask & XPSR_NZCV) {
1292 env->ZF = (~val) & XPSR_Z;
6fbe23d5 1293 env->NF = val;
9ee6e8bb
PB
1294 env->CF = (val >> 29) & 1;
1295 env->VF = (val << 3) & 0x80000000;
1296 }
987ab45e
PM
1297 if (mask & XPSR_Q) {
1298 env->QF = ((val & XPSR_Q) != 0);
1299 }
1300 if (mask & XPSR_T) {
1301 env->thumb = ((val & XPSR_T) != 0);
1302 }
1303 if (mask & XPSR_IT_0_1) {
9ee6e8bb
PB
1304 env->condexec_bits &= ~3;
1305 env->condexec_bits |= (val >> 25) & 3;
1306 }
987ab45e 1307 if (mask & XPSR_IT_2_7) {
9ee6e8bb
PB
1308 env->condexec_bits &= 3;
1309 env->condexec_bits |= (val >> 8) & 0xfc;
1310 }
987ab45e 1311 if (mask & XPSR_EXCP) {
de2db7ec
PM
1312 /* Note that this only happens on exception exit */
1313 write_v7m_exception(env, val & XPSR_EXCP);
9ee6e8bb
PB
1314 }
1315}
1316
f149e3e8
EI
1317#define HCR_VM (1ULL << 0)
1318#define HCR_SWIO (1ULL << 1)
1319#define HCR_PTW (1ULL << 2)
1320#define HCR_FMO (1ULL << 3)
1321#define HCR_IMO (1ULL << 4)
1322#define HCR_AMO (1ULL << 5)
1323#define HCR_VF (1ULL << 6)
1324#define HCR_VI (1ULL << 7)
1325#define HCR_VSE (1ULL << 8)
1326#define HCR_FB (1ULL << 9)
1327#define HCR_BSU_MASK (3ULL << 10)
1328#define HCR_DC (1ULL << 12)
1329#define HCR_TWI (1ULL << 13)
1330#define HCR_TWE (1ULL << 14)
1331#define HCR_TID0 (1ULL << 15)
1332#define HCR_TID1 (1ULL << 16)
1333#define HCR_TID2 (1ULL << 17)
1334#define HCR_TID3 (1ULL << 18)
1335#define HCR_TSC (1ULL << 19)
1336#define HCR_TIDCP (1ULL << 20)
1337#define HCR_TACR (1ULL << 21)
1338#define HCR_TSW (1ULL << 22)
099bf53b 1339#define HCR_TPCP (1ULL << 23)
f149e3e8
EI
1340#define HCR_TPU (1ULL << 24)
1341#define HCR_TTLB (1ULL << 25)
1342#define HCR_TVM (1ULL << 26)
1343#define HCR_TGE (1ULL << 27)
1344#define HCR_TDZ (1ULL << 28)
1345#define HCR_HCD (1ULL << 29)
1346#define HCR_TRVM (1ULL << 30)
1347#define HCR_RW (1ULL << 31)
1348#define HCR_CD (1ULL << 32)
1349#define HCR_ID (1ULL << 33)
ac656b16 1350#define HCR_E2H (1ULL << 34)
099bf53b
RH
1351#define HCR_TLOR (1ULL << 35)
1352#define HCR_TERR (1ULL << 36)
1353#define HCR_TEA (1ULL << 37)
1354#define HCR_MIOCNCE (1ULL << 38)
1355#define HCR_APK (1ULL << 40)
1356#define HCR_API (1ULL << 41)
1357#define HCR_NV (1ULL << 42)
1358#define HCR_NV1 (1ULL << 43)
1359#define HCR_AT (1ULL << 44)
1360#define HCR_NV2 (1ULL << 45)
1361#define HCR_FWB (1ULL << 46)
1362#define HCR_FIEN (1ULL << 47)
1363#define HCR_TID4 (1ULL << 49)
1364#define HCR_TICAB (1ULL << 50)
1365#define HCR_TOCU (1ULL << 52)
1366#define HCR_TTLBIS (1ULL << 54)
1367#define HCR_TTLBOS (1ULL << 55)
1368#define HCR_ATA (1ULL << 56)
1369#define HCR_DCT (1ULL << 57)
1370
ac656b16
PM
1371/*
1372 * When we actually implement ARMv8.1-VHE we should add HCR_E2H to
1373 * HCR_MASK and then clear it again if the feature bit is not set in
1374 * hcr_write().
1375 */
f149e3e8
EI
1376#define HCR_MASK ((1ULL << 34) - 1)
1377
64e0e2de
EI
1378#define SCR_NS (1U << 0)
1379#define SCR_IRQ (1U << 1)
1380#define SCR_FIQ (1U << 2)
1381#define SCR_EA (1U << 3)
1382#define SCR_FW (1U << 4)
1383#define SCR_AW (1U << 5)
1384#define SCR_NET (1U << 6)
1385#define SCR_SMD (1U << 7)
1386#define SCR_HCE (1U << 8)
1387#define SCR_SIF (1U << 9)
1388#define SCR_RW (1U << 10)
1389#define SCR_ST (1U << 11)
1390#define SCR_TWI (1U << 12)
1391#define SCR_TWE (1U << 13)
99f8f86d
RH
1392#define SCR_TLOR (1U << 14)
1393#define SCR_TERR (1U << 15)
1394#define SCR_APK (1U << 16)
1395#define SCR_API (1U << 17)
1396#define SCR_EEL2 (1U << 18)
1397#define SCR_EASE (1U << 19)
1398#define SCR_NMEA (1U << 20)
1399#define SCR_FIEN (1U << 21)
1400#define SCR_ENSCXT (1U << 25)
1401#define SCR_ATA (1U << 26)
64e0e2de 1402
01653295
PM
1403/* Return the current FPSCR value. */
1404uint32_t vfp_get_fpscr(CPUARMState *env);
1405void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1406
d81ce0ef
AB
1407/* FPCR, Floating Point Control Register
1408 * FPSR, Floating Poiht Status Register
1409 *
1410 * For A64 the FPSCR is split into two logically distinct registers,
f903fa22
PM
1411 * FPCR and FPSR. However since they still use non-overlapping bits
1412 * we store the underlying state in fpscr and just mask on read/write.
1413 */
1414#define FPSR_MASK 0xf800009f
0b62159b 1415#define FPCR_MASK 0x07ff9f00
d81ce0ef 1416
a15945d9
PM
1417#define FPCR_IOE (1 << 8) /* Invalid Operation exception trap enable */
1418#define FPCR_DZE (1 << 9) /* Divide by Zero exception trap enable */
1419#define FPCR_OFE (1 << 10) /* Overflow exception trap enable */
1420#define FPCR_UFE (1 << 11) /* Underflow exception trap enable */
1421#define FPCR_IXE (1 << 12) /* Inexact exception trap enable */
1422#define FPCR_IDE (1 << 15) /* Input Denormal exception trap enable */
d81ce0ef
AB
1423#define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */
1424#define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */
1425#define FPCR_DN (1 << 25) /* Default NaN enable bit */
a4d58462 1426#define FPCR_QC (1 << 27) /* Cumulative saturation bit */
d81ce0ef 1427
f903fa22
PM
1428static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1429{
1430 return vfp_get_fpscr(env) & FPSR_MASK;
1431}
1432
1433static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1434{
1435 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1436 vfp_set_fpscr(env, new_fpscr);
1437}
1438
1439static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1440{
1441 return vfp_get_fpscr(env) & FPCR_MASK;
1442}
1443
1444static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1445{
1446 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1447 vfp_set_fpscr(env, new_fpscr);
1448}
1449
b5ff1b31
FB
1450enum arm_cpu_mode {
1451 ARM_CPU_MODE_USR = 0x10,
1452 ARM_CPU_MODE_FIQ = 0x11,
1453 ARM_CPU_MODE_IRQ = 0x12,
1454 ARM_CPU_MODE_SVC = 0x13,
28c9457d 1455 ARM_CPU_MODE_MON = 0x16,
b5ff1b31 1456 ARM_CPU_MODE_ABT = 0x17,
28c9457d 1457 ARM_CPU_MODE_HYP = 0x1a,
b5ff1b31
FB
1458 ARM_CPU_MODE_UND = 0x1b,
1459 ARM_CPU_MODE_SYS = 0x1f
1460};
1461
40f137e1
PB
1462/* VFP system registers. */
1463#define ARM_VFP_FPSID 0
1464#define ARM_VFP_FPSCR 1
a50c0f51 1465#define ARM_VFP_MVFR2 5
9ee6e8bb
PB
1466#define ARM_VFP_MVFR1 6
1467#define ARM_VFP_MVFR0 7
40f137e1
PB
1468#define ARM_VFP_FPEXC 8
1469#define ARM_VFP_FPINST 9
1470#define ARM_VFP_FPINST2 10
1471
18c9b560 1472/* iwMMXt coprocessor control registers. */
6e0fafe2
PM
1473#define ARM_IWMMXT_wCID 0
1474#define ARM_IWMMXT_wCon 1
1475#define ARM_IWMMXT_wCSSF 2
1476#define ARM_IWMMXT_wCASF 3
1477#define ARM_IWMMXT_wCGR0 8
1478#define ARM_IWMMXT_wCGR1 9
1479#define ARM_IWMMXT_wCGR2 10
1480#define ARM_IWMMXT_wCGR3 11
18c9b560 1481
2c4da50d
PM
1482/* V7M CCR bits */
1483FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1484FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1485FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1486FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1487FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1488FIELD(V7M_CCR, STKALIGN, 9, 1)
4730fb85 1489FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
2c4da50d
PM
1490FIELD(V7M_CCR, DC, 16, 1)
1491FIELD(V7M_CCR, IC, 17, 1)
4730fb85 1492FIELD(V7M_CCR, BP, 18, 1)
2c4da50d 1493
24ac0fb1
PM
1494/* V7M SCR bits */
1495FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1496FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1497FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1498FIELD(V7M_SCR, SEVONPEND, 4, 1)
1499
3b2e9344
PM
1500/* V7M AIRCR bits */
1501FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1502FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1503FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1504FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1505FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1506FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1507FIELD(V7M_AIRCR, PRIS, 14, 1)
1508FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1509FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1510
2c4da50d
PM
1511/* V7M CFSR bits for MMFSR */
1512FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1513FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1514FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1515FIELD(V7M_CFSR, MSTKERR, 4, 1)
1516FIELD(V7M_CFSR, MLSPERR, 5, 1)
1517FIELD(V7M_CFSR, MMARVALID, 7, 1)
1518
1519/* V7M CFSR bits for BFSR */
1520FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1521FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1522FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1523FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1524FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1525FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1526FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1527
1528/* V7M CFSR bits for UFSR */
1529FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1530FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1531FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1532FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
86f026de 1533FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
2c4da50d
PM
1534FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1535FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1536
334e8dad
PM
1537/* V7M CFSR bit masks covering all of the subregister bits */
1538FIELD(V7M_CFSR, MMFSR, 0, 8)
1539FIELD(V7M_CFSR, BFSR, 8, 8)
1540FIELD(V7M_CFSR, UFSR, 16, 16)
1541
2c4da50d
PM
1542/* V7M HFSR bits */
1543FIELD(V7M_HFSR, VECTTBL, 1, 1)
1544FIELD(V7M_HFSR, FORCED, 30, 1)
1545FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1546
1547/* V7M DFSR bits */
1548FIELD(V7M_DFSR, HALTED, 0, 1)
1549FIELD(V7M_DFSR, BKPT, 1, 1)
1550FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1551FIELD(V7M_DFSR, VCATCH, 3, 1)
1552FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1553
bed079da
PM
1554/* V7M SFSR bits */
1555FIELD(V7M_SFSR, INVEP, 0, 1)
1556FIELD(V7M_SFSR, INVIS, 1, 1)
1557FIELD(V7M_SFSR, INVER, 2, 1)
1558FIELD(V7M_SFSR, AUVIOL, 3, 1)
1559FIELD(V7M_SFSR, INVTRAN, 4, 1)
1560FIELD(V7M_SFSR, LSPERR, 5, 1)
1561FIELD(V7M_SFSR, SFARVALID, 6, 1)
1562FIELD(V7M_SFSR, LSERR, 7, 1)
1563
29c483a5
MD
1564/* v7M MPU_CTRL bits */
1565FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1566FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1567FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1568
43bbce7f
PM
1569/* v7M CLIDR bits */
1570FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1571FIELD(V7M_CLIDR, LOUIS, 21, 3)
1572FIELD(V7M_CLIDR, LOC, 24, 3)
1573FIELD(V7M_CLIDR, LOUU, 27, 3)
1574FIELD(V7M_CLIDR, ICB, 30, 2)
1575
1576FIELD(V7M_CSSELR, IND, 0, 1)
1577FIELD(V7M_CSSELR, LEVEL, 1, 3)
1578/* We use the combination of InD and Level to index into cpu->ccsidr[];
1579 * define a mask for this and check that it doesn't permit running off
1580 * the end of the array.
1581 */
1582FIELD(V7M_CSSELR, INDEX, 0, 4)
d33abe82
PM
1583
1584/* v7M FPCCR bits */
1585FIELD(V7M_FPCCR, LSPACT, 0, 1)
1586FIELD(V7M_FPCCR, USER, 1, 1)
1587FIELD(V7M_FPCCR, S, 2, 1)
1588FIELD(V7M_FPCCR, THREAD, 3, 1)
1589FIELD(V7M_FPCCR, HFRDY, 4, 1)
1590FIELD(V7M_FPCCR, MMRDY, 5, 1)
1591FIELD(V7M_FPCCR, BFRDY, 6, 1)
1592FIELD(V7M_FPCCR, SFRDY, 7, 1)
1593FIELD(V7M_FPCCR, MONRDY, 8, 1)
1594FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1595FIELD(V7M_FPCCR, UFRDY, 10, 1)
1596FIELD(V7M_FPCCR, RES0, 11, 15)
1597FIELD(V7M_FPCCR, TS, 26, 1)
1598FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1599FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1600FIELD(V7M_FPCCR, LSPENS, 29, 1)
1601FIELD(V7M_FPCCR, LSPEN, 30, 1)
1602FIELD(V7M_FPCCR, ASPEN, 31, 1)
1603/* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1604#define R_V7M_FPCCR_BANKED_MASK \
1605 (R_V7M_FPCCR_LSPACT_MASK | \
1606 R_V7M_FPCCR_USER_MASK | \
1607 R_V7M_FPCCR_THREAD_MASK | \
1608 R_V7M_FPCCR_MMRDY_MASK | \
1609 R_V7M_FPCCR_SPLIMVIOL_MASK | \
1610 R_V7M_FPCCR_UFRDY_MASK | \
1611 R_V7M_FPCCR_ASPEN_MASK)
43bbce7f 1612
a62e62af
RH
1613/*
1614 * System register ID fields.
1615 */
1616FIELD(ID_ISAR0, SWAP, 0, 4)
1617FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1618FIELD(ID_ISAR0, BITFIELD, 8, 4)
1619FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1620FIELD(ID_ISAR0, COPROC, 16, 4)
1621FIELD(ID_ISAR0, DEBUG, 20, 4)
1622FIELD(ID_ISAR0, DIVIDE, 24, 4)
1623
1624FIELD(ID_ISAR1, ENDIAN, 0, 4)
1625FIELD(ID_ISAR1, EXCEPT, 4, 4)
1626FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1627FIELD(ID_ISAR1, EXTEND, 12, 4)
1628FIELD(ID_ISAR1, IFTHEN, 16, 4)
1629FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1630FIELD(ID_ISAR1, INTERWORK, 24, 4)
1631FIELD(ID_ISAR1, JAZELLE, 28, 4)
1632
1633FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1634FIELD(ID_ISAR2, MEMHINT, 4, 4)
1635FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1636FIELD(ID_ISAR2, MULT, 12, 4)
1637FIELD(ID_ISAR2, MULTS, 16, 4)
1638FIELD(ID_ISAR2, MULTU, 20, 4)
1639FIELD(ID_ISAR2, PSR_AR, 24, 4)
1640FIELD(ID_ISAR2, REVERSAL, 28, 4)
1641
1642FIELD(ID_ISAR3, SATURATE, 0, 4)
1643FIELD(ID_ISAR3, SIMD, 4, 4)
1644FIELD(ID_ISAR3, SVC, 8, 4)
1645FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1646FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1647FIELD(ID_ISAR3, T32COPY, 20, 4)
1648FIELD(ID_ISAR3, TRUENOP, 24, 4)
1649FIELD(ID_ISAR3, T32EE, 28, 4)
1650
1651FIELD(ID_ISAR4, UNPRIV, 0, 4)
1652FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1653FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1654FIELD(ID_ISAR4, SMC, 12, 4)
1655FIELD(ID_ISAR4, BARRIER, 16, 4)
1656FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1657FIELD(ID_ISAR4, PSR_M, 24, 4)
1658FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1659
1660FIELD(ID_ISAR5, SEVL, 0, 4)
1661FIELD(ID_ISAR5, AES, 4, 4)
1662FIELD(ID_ISAR5, SHA1, 8, 4)
1663FIELD(ID_ISAR5, SHA2, 12, 4)
1664FIELD(ID_ISAR5, CRC32, 16, 4)
1665FIELD(ID_ISAR5, RDM, 24, 4)
1666FIELD(ID_ISAR5, VCMA, 28, 4)
1667
1668FIELD(ID_ISAR6, JSCVT, 0, 4)
1669FIELD(ID_ISAR6, DP, 4, 4)
1670FIELD(ID_ISAR6, FHM, 8, 4)
1671FIELD(ID_ISAR6, SB, 12, 4)
1672FIELD(ID_ISAR6, SPECRES, 16, 4)
1673
ab638a32
RH
1674FIELD(ID_MMFR4, SPECSEI, 0, 4)
1675FIELD(ID_MMFR4, AC2, 4, 4)
1676FIELD(ID_MMFR4, XNX, 8, 4)
1677FIELD(ID_MMFR4, CNP, 12, 4)
1678FIELD(ID_MMFR4, HPDS, 16, 4)
1679FIELD(ID_MMFR4, LSM, 20, 4)
1680FIELD(ID_MMFR4, CCIDX, 24, 4)
1681FIELD(ID_MMFR4, EVT, 28, 4)
1682
a62e62af
RH
1683FIELD(ID_AA64ISAR0, AES, 4, 4)
1684FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1685FIELD(ID_AA64ISAR0, SHA2, 12, 4)
1686FIELD(ID_AA64ISAR0, CRC32, 16, 4)
1687FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
1688FIELD(ID_AA64ISAR0, RDM, 28, 4)
1689FIELD(ID_AA64ISAR0, SHA3, 32, 4)
1690FIELD(ID_AA64ISAR0, SM3, 36, 4)
1691FIELD(ID_AA64ISAR0, SM4, 40, 4)
1692FIELD(ID_AA64ISAR0, DP, 44, 4)
1693FIELD(ID_AA64ISAR0, FHM, 48, 4)
1694FIELD(ID_AA64ISAR0, TS, 52, 4)
1695FIELD(ID_AA64ISAR0, TLB, 56, 4)
1696FIELD(ID_AA64ISAR0, RNDR, 60, 4)
1697
1698FIELD(ID_AA64ISAR1, DPB, 0, 4)
1699FIELD(ID_AA64ISAR1, APA, 4, 4)
1700FIELD(ID_AA64ISAR1, API, 8, 4)
1701FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
1702FIELD(ID_AA64ISAR1, FCMA, 16, 4)
1703FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
1704FIELD(ID_AA64ISAR1, GPA, 24, 4)
1705FIELD(ID_AA64ISAR1, GPI, 28, 4)
1706FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
1707FIELD(ID_AA64ISAR1, SB, 36, 4)
1708FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
1709
cd208a1c
RH
1710FIELD(ID_AA64PFR0, EL0, 0, 4)
1711FIELD(ID_AA64PFR0, EL1, 4, 4)
1712FIELD(ID_AA64PFR0, EL2, 8, 4)
1713FIELD(ID_AA64PFR0, EL3, 12, 4)
1714FIELD(ID_AA64PFR0, FP, 16, 4)
1715FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
1716FIELD(ID_AA64PFR0, GIC, 24, 4)
1717FIELD(ID_AA64PFR0, RAS, 28, 4)
1718FIELD(ID_AA64PFR0, SVE, 32, 4)
1719
be53b6f4
RH
1720FIELD(ID_AA64PFR1, BT, 0, 4)
1721FIELD(ID_AA64PFR1, SBSS, 4, 4)
1722FIELD(ID_AA64PFR1, MTE, 8, 4)
1723FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
1724
3dc91ddb
PM
1725FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
1726FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
1727FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
1728FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
1729FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
1730FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
1731FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
1732FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
1733FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
1734FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
1735FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
1736FIELD(ID_AA64MMFR0, EXS, 44, 4)
1737
1738FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
1739FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
1740FIELD(ID_AA64MMFR1, VH, 8, 4)
1741FIELD(ID_AA64MMFR1, HPDS, 12, 4)
1742FIELD(ID_AA64MMFR1, LO, 16, 4)
1743FIELD(ID_AA64MMFR1, PAN, 20, 4)
1744FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
1745FIELD(ID_AA64MMFR1, XNX, 28, 4)
1746
beceb99c
AL
1747FIELD(ID_DFR0, COPDBG, 0, 4)
1748FIELD(ID_DFR0, COPSDBG, 4, 4)
1749FIELD(ID_DFR0, MMAPDBG, 8, 4)
1750FIELD(ID_DFR0, COPTRC, 12, 4)
1751FIELD(ID_DFR0, MMAPTRC, 16, 4)
1752FIELD(ID_DFR0, MPROFDBG, 20, 4)
1753FIELD(ID_DFR0, PERFMON, 24, 4)
1754FIELD(ID_DFR0, TRACEFILT, 28, 4)
1755
602f6e42
PM
1756FIELD(MVFR0, SIMDREG, 0, 4)
1757FIELD(MVFR0, FPSP, 4, 4)
1758FIELD(MVFR0, FPDP, 8, 4)
1759FIELD(MVFR0, FPTRAP, 12, 4)
1760FIELD(MVFR0, FPDIVIDE, 16, 4)
1761FIELD(MVFR0, FPSQRT, 20, 4)
1762FIELD(MVFR0, FPSHVEC, 24, 4)
1763FIELD(MVFR0, FPROUND, 28, 4)
1764
1765FIELD(MVFR1, FPFTZ, 0, 4)
1766FIELD(MVFR1, FPDNAN, 4, 4)
1767FIELD(MVFR1, SIMDLS, 8, 4)
1768FIELD(MVFR1, SIMDINT, 12, 4)
1769FIELD(MVFR1, SIMDSP, 16, 4)
1770FIELD(MVFR1, SIMDHP, 20, 4)
1771FIELD(MVFR1, FPHP, 24, 4)
1772FIELD(MVFR1, SIMDFMAC, 28, 4)
1773
1774FIELD(MVFR2, SIMDMISC, 0, 4)
1775FIELD(MVFR2, FPMISC, 4, 4)
1776
43bbce7f
PM
1777QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
1778
ce854d7c
BC
1779/* If adding a feature bit which corresponds to a Linux ELF
1780 * HWCAP bit, remember to update the feature-bit-to-hwcap
1781 * mapping in linux-user/elfload.c:get_elf_hwcap().
1782 */
40f137e1
PB
1783enum arm_features {
1784 ARM_FEATURE_VFP,
c1713132
AZ
1785 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
1786 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
ce819861 1787 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
9ee6e8bb
PB
1788 ARM_FEATURE_V6,
1789 ARM_FEATURE_V6K,
1790 ARM_FEATURE_V7,
1791 ARM_FEATURE_THUMB2,
452a0955 1792 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */
9ee6e8bb
PB
1793 ARM_FEATURE_VFP3,
1794 ARM_FEATURE_NEON,
9ee6e8bb 1795 ARM_FEATURE_M, /* Microcontroller profile. */
fe1479c3 1796 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
e1bbf446 1797 ARM_FEATURE_THUMB2EE,
be5e7a76 1798 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
5110e683 1799 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
be5e7a76
DES
1800 ARM_FEATURE_V4T,
1801 ARM_FEATURE_V5,
5bc95aa2 1802 ARM_FEATURE_STRONGARM,
906879a9 1803 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
da97f52c 1804 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
0383ac00 1805 ARM_FEATURE_GENERIC_TIMER,
06ed5d66 1806 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1047b9d7 1807 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
c4804214
PM
1808 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1809 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1810 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
81bdde9d 1811 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
de9b05b8
PM
1812 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1813 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
81e69fb0 1814 ARM_FEATURE_V8,
3926cc84 1815 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
d8ba780b 1816 ARM_FEATURE_CBAR, /* has cp15 CBAR */
eb0ecd5a 1817 ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
f318cec6 1818 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
cca7c2f5 1819 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1fe8141e 1820 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
62b44f05 1821 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
929e754d 1822 ARM_FEATURE_PMU, /* has PMU support */
91db4642 1823 ARM_FEATURE_VBAR, /* has cp15 VBAR */
1e577cc7 1824 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
cc2ae7c9 1825 ARM_FEATURE_M_MAIN, /* M profile Main Extension */
40f137e1
PB
1826};
1827
1828static inline int arm_feature(CPUARMState *env, int feature)
1829{
918f5dca 1830 return (env->features & (1ULL << feature)) != 0;
40f137e1
PB
1831}
1832
19e0fefa
FA
1833#if !defined(CONFIG_USER_ONLY)
1834/* Return true if exception levels below EL3 are in secure state,
1835 * or would be following an exception return to that level.
1836 * Unlike arm_is_secure() (which is always a question about the
1837 * _current_ state of the CPU) this doesn't care about the current
1838 * EL or mode.
1839 */
1840static inline bool arm_is_secure_below_el3(CPUARMState *env)
1841{
1842 if (arm_feature(env, ARM_FEATURE_EL3)) {
1843 return !(env->cp15.scr_el3 & SCR_NS);
1844 } else {
6b7f0b61 1845 /* If EL3 is not supported then the secure state is implementation
19e0fefa
FA
1846 * defined, in which case QEMU defaults to non-secure.
1847 */
1848 return false;
1849 }
1850}
1851
71205876
PM
1852/* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1853static inline bool arm_is_el3_or_mon(CPUARMState *env)
19e0fefa
FA
1854{
1855 if (arm_feature(env, ARM_FEATURE_EL3)) {
1856 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1857 /* CPU currently in AArch64 state and EL3 */
1858 return true;
1859 } else if (!is_a64(env) &&
1860 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1861 /* CPU currently in AArch32 state and monitor mode */
1862 return true;
1863 }
1864 }
71205876
PM
1865 return false;
1866}
1867
1868/* Return true if the processor is in secure state */
1869static inline bool arm_is_secure(CPUARMState *env)
1870{
1871 if (arm_is_el3_or_mon(env)) {
1872 return true;
1873 }
19e0fefa
FA
1874 return arm_is_secure_below_el3(env);
1875}
1876
1877#else
1878static inline bool arm_is_secure_below_el3(CPUARMState *env)
1879{
1880 return false;
1881}
1882
1883static inline bool arm_is_secure(CPUARMState *env)
1884{
1885 return false;
1886}
1887#endif
1888
f7778444
RH
1889/**
1890 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
1891 * E.g. when in secure state, fields in HCR_EL2 are suppressed,
1892 * "for all purposes other than a direct read or write access of HCR_EL2."
1893 * Not included here is HCR_RW.
1894 */
1895uint64_t arm_hcr_el2_eff(CPUARMState *env);
1896
1f79ee32
PM
1897/* Return true if the specified exception level is running in AArch64 state. */
1898static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1899{
446c81ab
PM
1900 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1901 * and if we're not in EL0 then the state of EL0 isn't well defined.)
1f79ee32 1902 */
446c81ab
PM
1903 assert(el >= 1 && el <= 3);
1904 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
592125f8 1905
446c81ab
PM
1906 /* The highest exception level is always at the maximum supported
1907 * register width, and then lower levels have a register width controlled
1908 * by bits in the SCR or HCR registers.
1f79ee32 1909 */
446c81ab
PM
1910 if (el == 3) {
1911 return aa64;
1912 }
1913
1914 if (arm_feature(env, ARM_FEATURE_EL3)) {
1915 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1916 }
1917
1918 if (el == 2) {
1919 return aa64;
1920 }
1921
1922 if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1923 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1924 }
1925
1926 return aa64;
1f79ee32
PM
1927}
1928
3f342b9e
SF
1929/* Function for determing whether guest cp register reads and writes should
1930 * access the secure or non-secure bank of a cp register. When EL3 is
1931 * operating in AArch32 state, the NS-bit determines whether the secure
1932 * instance of a cp register should be used. When EL3 is AArch64 (or if
1933 * it doesn't exist at all) then there is no register banking, and all
1934 * accesses are to the non-secure version.
1935 */
1936static inline bool access_secure_reg(CPUARMState *env)
1937{
1938 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1939 !arm_el_is_aa64(env, 3) &&
1940 !(env->cp15.scr_el3 & SCR_NS));
1941
1942 return ret;
1943}
1944
ea30a4b8
FA
1945/* Macros for accessing a specified CP register bank */
1946#define A32_BANKED_REG_GET(_env, _regname, _secure) \
1947 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1948
1949#define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
1950 do { \
1951 if (_secure) { \
1952 (_env)->cp15._regname##_s = (_val); \
1953 } else { \
1954 (_env)->cp15._regname##_ns = (_val); \
1955 } \
1956 } while (0)
1957
1958/* Macros for automatically accessing a specific CP register bank depending on
1959 * the current secure state of the system. These macros are not intended for
1960 * supporting instruction translation reads/writes as these are dependent
1961 * solely on the SCR.NS bit and not the mode.
1962 */
1963#define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
1964 A32_BANKED_REG_GET((_env), _regname, \
2cde031f 1965 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
ea30a4b8
FA
1966
1967#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
1968 A32_BANKED_REG_SET((_env), _regname, \
2cde031f 1969 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
ea30a4b8
FA
1970 (_val))
1971
0442428a 1972void arm_cpu_list(void);
012a906b
GB
1973uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1974 uint32_t cur_el, bool secure);
40f137e1 1975
9ee6e8bb 1976/* Interface between CPU and Interrupt controller. */
7ecdaa4a
PM
1977#ifndef CONFIG_USER_ONLY
1978bool armv7m_nvic_can_take_pending_exception(void *opaque);
1979#else
1980static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
1981{
1982 return true;
1983}
1984#endif
2fb50a33
PM
1985/**
1986 * armv7m_nvic_set_pending: mark the specified exception as pending
1987 * @opaque: the NVIC
1988 * @irq: the exception number to mark pending
1989 * @secure: false for non-banked exceptions or for the nonsecure
1990 * version of a banked exception, true for the secure version of a banked
1991 * exception.
1992 *
1993 * Marks the specified exception as pending. Note that we will assert()
1994 * if @secure is true and @irq does not specify one of the fixed set
1995 * of architecturally banked exceptions.
1996 */
1997void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
5ede82b8
PM
1998/**
1999 * armv7m_nvic_set_pending_derived: mark this derived exception as pending
2000 * @opaque: the NVIC
2001 * @irq: the exception number to mark pending
2002 * @secure: false for non-banked exceptions or for the nonsecure
2003 * version of a banked exception, true for the secure version of a banked
2004 * exception.
2005 *
2006 * Similar to armv7m_nvic_set_pending(), but specifically for derived
2007 * exceptions (exceptions generated in the course of trying to take
2008 * a different exception).
2009 */
2010void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
a99ba8ab
PM
2011/**
2012 * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
2013 * @opaque: the NVIC
2014 * @irq: the exception number to mark pending
2015 * @secure: false for non-banked exceptions or for the nonsecure
2016 * version of a banked exception, true for the secure version of a banked
2017 * exception.
2018 *
2019 * Similar to armv7m_nvic_set_pending(), but specifically for exceptions
2020 * generated in the course of lazy stacking of FP registers.
2021 */
2022void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure);
6c948518
PM
2023/**
2024 * armv7m_nvic_get_pending_irq_info: return highest priority pending
2025 * exception, and whether it targets Secure state
2026 * @opaque: the NVIC
2027 * @pirq: set to pending exception number
2028 * @ptargets_secure: set to whether pending exception targets Secure
2029 *
2030 * This function writes the number of the highest priority pending
2031 * exception (the one which would be made active by
2032 * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2033 * to true if the current highest priority pending exception should
2034 * be taken to Secure state, false for NS.
2035 */
2036void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
2037 bool *ptargets_secure);
5cb18069
PM
2038/**
2039 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2040 * @opaque: the NVIC
2041 *
2042 * Move the current highest priority pending exception from the pending
2043 * state to the active state, and update v7m.exception to indicate that
2044 * it is the exception currently being handled.
5cb18069 2045 */
6c948518 2046void armv7m_nvic_acknowledge_irq(void *opaque);
aa488fe3
PM
2047/**
2048 * armv7m_nvic_complete_irq: complete specified interrupt or exception
2049 * @opaque: the NVIC
2050 * @irq: the exception number to complete
5cb18069 2051 * @secure: true if this exception was secure
aa488fe3
PM
2052 *
2053 * Returns: -1 if the irq was not active
2054 * 1 if completing this irq brought us back to base (no active irqs)
2055 * 0 if there is still an irq active after this one was completed
2056 * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2057 */
5cb18069 2058int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
b593c2b8
PM
2059/**
2060 * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
2061 * @opaque: the NVIC
2062 * @irq: the exception number to mark pending
2063 * @secure: false for non-banked exceptions or for the nonsecure
2064 * version of a banked exception, true for the secure version of a banked
2065 * exception.
2066 *
2067 * Return whether an exception is "ready", i.e. whether the exception is
2068 * enabled and is configured at a priority which would allow it to
2069 * interrupt the current execution priority. This controls whether the
2070 * RDY bit for it in the FPCCR is set.
2071 */
2072bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
42a6686b
PM
2073/**
2074 * armv7m_nvic_raw_execution_priority: return the raw execution priority
2075 * @opaque: the NVIC
2076 *
2077 * Returns: the raw execution priority as defined by the v8M architecture.
2078 * This is the execution priority minus the effects of AIRCR.PRIS,
2079 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2080 * (v8M ARM ARM I_PKLD.)
2081 */
2082int armv7m_nvic_raw_execution_priority(void *opaque);
5d479199
PM
2083/**
2084 * armv7m_nvic_neg_prio_requested: return true if the requested execution
2085 * priority is negative for the specified security state.
2086 * @opaque: the NVIC
2087 * @secure: the security state to test
2088 * This corresponds to the pseudocode IsReqExecPriNeg().
2089 */
2090#ifndef CONFIG_USER_ONLY
2091bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2092#else
2093static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2094{
2095 return false;
2096}
2097#endif
9ee6e8bb 2098
4b6a83fb
PM
2099/* Interface for defining coprocessor registers.
2100 * Registers are defined in tables of arm_cp_reginfo structs
2101 * which are passed to define_arm_cp_regs().
2102 */
2103
2104/* When looking up a coprocessor register we look for it
2105 * via an integer which encodes all of:
2106 * coprocessor number
2107 * Crn, Crm, opc1, opc2 fields
2108 * 32 or 64 bit register (ie is it accessed via MRC/MCR
2109 * or via MRRC/MCRR?)
51a79b03 2110 * non-secure/secure bank (AArch32 only)
4b6a83fb
PM
2111 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2112 * (In this case crn and opc2 should be zero.)
f5a0a5a5
PM
2113 * For AArch64, there is no 32/64 bit size distinction;
2114 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2115 * and 4 bit CRn and CRm. The encoding patterns are chosen
2116 * to be easy to convert to and from the KVM encodings, and also
2117 * so that the hashtable can contain both AArch32 and AArch64
2118 * registers (to allow for interprocessing where we might run
2119 * 32 bit code on a 64 bit core).
4b6a83fb 2120 */
f5a0a5a5
PM
2121/* This bit is private to our hashtable cpreg; in KVM register
2122 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2123 * in the upper bits of the 64 bit ID.
2124 */
2125#define CP_REG_AA64_SHIFT 28
2126#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2127
51a79b03
PM
2128/* To enable banking of coprocessor registers depending on ns-bit we
2129 * add a bit to distinguish between secure and non-secure cpregs in the
2130 * hashtable.
2131 */
2132#define CP_REG_NS_SHIFT 29
2133#define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2134
2135#define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
2136 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
2137 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
4b6a83fb 2138
f5a0a5a5
PM
2139#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2140 (CP_REG_AA64_MASK | \
2141 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
2142 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
2143 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
2144 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
2145 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
2146 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2147
721fae12
PM
2148/* Convert a full 64 bit KVM register ID to the truncated 32 bit
2149 * version used as a key for the coprocessor register hashtable
2150 */
2151static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2152{
2153 uint32_t cpregid = kvmid;
f5a0a5a5
PM
2154 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2155 cpregid |= CP_REG_AA64_MASK;
51a79b03
PM
2156 } else {
2157 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2158 cpregid |= (1 << 15);
2159 }
2160
2161 /* KVM is always non-secure so add the NS flag on AArch32 register
2162 * entries.
2163 */
2164 cpregid |= 1 << CP_REG_NS_SHIFT;
721fae12
PM
2165 }
2166 return cpregid;
2167}
2168
2169/* Convert a truncated 32 bit hashtable key into the full
2170 * 64 bit KVM register ID.
2171 */
2172static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2173{
f5a0a5a5
PM
2174 uint64_t kvmid;
2175
2176 if (cpregid & CP_REG_AA64_MASK) {
2177 kvmid = cpregid & ~CP_REG_AA64_MASK;
2178 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
721fae12 2179 } else {
f5a0a5a5
PM
2180 kvmid = cpregid & ~(1 << 15);
2181 if (cpregid & (1 << 15)) {
2182 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2183 } else {
2184 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2185 }
721fae12
PM
2186 }
2187 return kvmid;
2188}
2189
4b6a83fb 2190/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
fe03d45f 2191 * special-behaviour cp reg and bits [11..8] indicate what behaviour
4b6a83fb
PM
2192 * it has. Otherwise it is a simple cp reg, where CONST indicates that
2193 * TCG can assume the value to be constant (ie load at translate time)
2194 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
2195 * indicates that the TB should not be ended after a write to this register
2196 * (the default is that the TB ends after cp writes). OVERRIDE permits
2197 * a register definition to override a previous definition for the
2198 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
2199 * old must have the OVERRIDE bit set.
7a0e58fa
PM
2200 * ALIAS indicates that this register is an alias view of some underlying
2201 * state which is also visible via another register, and that the other
b061a82b
SF
2202 * register is handling migration and reset; registers marked ALIAS will not be
2203 * migrated but may have their state set by syncing of register state from KVM.
7a0e58fa
PM
2204 * NO_RAW indicates that this register has no underlying state and does not
2205 * support raw access for state saving/loading; it will not be used for either
2206 * migration or KVM state synchronization. (Typically this is for "registers"
2207 * which are actually used as instructions for cache maintenance and so on.)
2452731c
PM
2208 * IO indicates that this register does I/O and therefore its accesses
2209 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
2210 * registers which implement clocks or timers require this.
4b6a83fb 2211 */
fe03d45f
RH
2212#define ARM_CP_SPECIAL 0x0001
2213#define ARM_CP_CONST 0x0002
2214#define ARM_CP_64BIT 0x0004
2215#define ARM_CP_SUPPRESS_TB_END 0x0008
2216#define ARM_CP_OVERRIDE 0x0010
2217#define ARM_CP_ALIAS 0x0020
2218#define ARM_CP_IO 0x0040
2219#define ARM_CP_NO_RAW 0x0080
2220#define ARM_CP_NOP (ARM_CP_SPECIAL | 0x0100)
2221#define ARM_CP_WFI (ARM_CP_SPECIAL | 0x0200)
2222#define ARM_CP_NZCV (ARM_CP_SPECIAL | 0x0300)
2223#define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | 0x0400)
2224#define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | 0x0500)
2225#define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
2226#define ARM_CP_FPU 0x1000
490aa7f1 2227#define ARM_CP_SVE 0x2000
1f163787 2228#define ARM_CP_NO_GDB 0x4000
4b6a83fb 2229/* Used only as a terminator for ARMCPRegInfo lists */
fe03d45f 2230#define ARM_CP_SENTINEL 0xffff
4b6a83fb 2231/* Mask of only the flag bits in a type field */
1f163787 2232#define ARM_CP_FLAG_MASK 0x70ff
4b6a83fb 2233
f5a0a5a5
PM
2234/* Valid values for ARMCPRegInfo state field, indicating which of
2235 * the AArch32 and AArch64 execution states this register is visible in.
2236 * If the reginfo doesn't explicitly specify then it is AArch32 only.
2237 * If the reginfo is declared to be visible in both states then a second
2238 * reginfo is synthesised for the AArch32 view of the AArch64 register,
2239 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
2240 * Note that we rely on the values of these enums as we iterate through
2241 * the various states in some places.
2242 */
2243enum {
2244 ARM_CP_STATE_AA32 = 0,
2245 ARM_CP_STATE_AA64 = 1,
2246 ARM_CP_STATE_BOTH = 2,
2247};
2248
c3e30260
FA
2249/* ARM CP register secure state flags. These flags identify security state
2250 * attributes for a given CP register entry.
2251 * The existence of both or neither secure and non-secure flags indicates that
2252 * the register has both a secure and non-secure hash entry. A single one of
2253 * these flags causes the register to only be hashed for the specified
2254 * security state.
2255 * Although definitions may have any combination of the S/NS bits, each
2256 * registered entry will only have one to identify whether the entry is secure
2257 * or non-secure.
2258 */
2259enum {
2260 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */
2261 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */
2262};
2263
4b6a83fb
PM
2264/* Return true if cptype is a valid type field. This is used to try to
2265 * catch errors where the sentinel has been accidentally left off the end
2266 * of a list of registers.
2267 */
2268static inline bool cptype_valid(int cptype)
2269{
2270 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
2271 || ((cptype & ARM_CP_SPECIAL) &&
34affeef 2272 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
4b6a83fb
PM
2273}
2274
2275/* Access rights:
2276 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
2277 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
2278 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
2279 * (ie any of the privileged modes in Secure state, or Monitor mode).
2280 * If a register is accessible in one privilege level it's always accessible
2281 * in higher privilege levels too. Since "Secure PL1" also follows this rule
2282 * (ie anything visible in PL2 is visible in S-PL1, some things are only
2283 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
2284 * terminology a little and call this PL3.
f5a0a5a5
PM
2285 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
2286 * with the ELx exception levels.
4b6a83fb
PM
2287 *
2288 * If access permissions for a register are more complex than can be
2289 * described with these bits, then use a laxer set of restrictions, and
2290 * do the more restrictive/complex check inside a helper function.
2291 */
2292#define PL3_R 0x80
2293#define PL3_W 0x40
2294#define PL2_R (0x20 | PL3_R)
2295#define PL2_W (0x10 | PL3_W)
2296#define PL1_R (0x08 | PL2_R)
2297#define PL1_W (0x04 | PL2_W)
2298#define PL0_R (0x02 | PL1_R)
2299#define PL0_W (0x01 | PL1_W)
2300
b5bd7440
AB
2301/*
2302 * For user-mode some registers are accessible to EL0 via a kernel
2303 * trap-and-emulate ABI. In this case we define the read permissions
2304 * as actually being PL0_R. However some bits of any given register
2305 * may still be masked.
2306 */
2307#ifdef CONFIG_USER_ONLY
2308#define PL0U_R PL0_R
2309#else
2310#define PL0U_R PL1_R
2311#endif
2312
4b6a83fb
PM
2313#define PL3_RW (PL3_R | PL3_W)
2314#define PL2_RW (PL2_R | PL2_W)
2315#define PL1_RW (PL1_R | PL1_W)
2316#define PL0_RW (PL0_R | PL0_W)
2317
75502672
PM
2318/* Return the highest implemented Exception Level */
2319static inline int arm_highest_el(CPUARMState *env)
2320{
2321 if (arm_feature(env, ARM_FEATURE_EL3)) {
2322 return 3;
2323 }
2324 if (arm_feature(env, ARM_FEATURE_EL2)) {
2325 return 2;
2326 }
2327 return 1;
2328}
2329
15b3f556
PM
2330/* Return true if a v7M CPU is in Handler mode */
2331static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2332{
2333 return env->v7m.exception != 0;
2334}
2335
dcbff19b
GB
2336/* Return the current Exception Level (as per ARMv8; note that this differs
2337 * from the ARMv7 Privilege Level).
2338 */
2339static inline int arm_current_el(CPUARMState *env)
4b6a83fb 2340{
6d54ed3c 2341 if (arm_feature(env, ARM_FEATURE_M)) {
8bfc26ea
PM
2342 return arm_v7m_is_handler_mode(env) ||
2343 !(env->v7m.control[env->v7m.secure] & 1);
6d54ed3c
PM
2344 }
2345
592125f8 2346 if (is_a64(env)) {
f5a0a5a5
PM
2347 return extract32(env->pstate, 2, 2);
2348 }
2349
592125f8
FA
2350 switch (env->uncached_cpsr & 0x1f) {
2351 case ARM_CPU_MODE_USR:
4b6a83fb 2352 return 0;
592125f8
FA
2353 case ARM_CPU_MODE_HYP:
2354 return 2;
2355 case ARM_CPU_MODE_MON:
2356 return 3;
2357 default:
2358 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2359 /* If EL3 is 32-bit then all secure privileged modes run in
2360 * EL3
2361 */
2362 return 3;
2363 }
2364
2365 return 1;
4b6a83fb 2366 }
4b6a83fb
PM
2367}
2368
2369typedef struct ARMCPRegInfo ARMCPRegInfo;
2370
f59df3f2
PM
2371typedef enum CPAccessResult {
2372 /* Access is permitted */
2373 CP_ACCESS_OK = 0,
2374 /* Access fails due to a configurable trap or enable which would
2375 * result in a categorized exception syndrome giving information about
2376 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
38836a2c
PM
2377 * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2378 * PL1 if in EL0, otherwise to the current EL).
f59df3f2
PM
2379 */
2380 CP_ACCESS_TRAP = 1,
2381 /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2382 * Note that this is not a catch-all case -- the set of cases which may
2383 * result in this failure is specifically defined by the architecture.
2384 */
2385 CP_ACCESS_TRAP_UNCATEGORIZED = 2,
38836a2c
PM
2386 /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2387 CP_ACCESS_TRAP_EL2 = 3,
2388 CP_ACCESS_TRAP_EL3 = 4,
e7615726
PM
2389 /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2390 CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2391 CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
f2cae609
PM
2392 /* Access fails and results in an exception syndrome for an FP access,
2393 * trapped directly to EL2 or EL3
2394 */
2395 CP_ACCESS_TRAP_FP_EL2 = 7,
2396 CP_ACCESS_TRAP_FP_EL3 = 8,
f59df3f2
PM
2397} CPAccessResult;
2398
c4241c7d
PM
2399/* Access functions for coprocessor registers. These cannot fail and
2400 * may not raise exceptions.
2401 */
2402typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2403typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2404 uint64_t value);
f59df3f2 2405/* Access permission check functions for coprocessor registers. */
3f208fd7
PM
2406typedef CPAccessResult CPAccessFn(CPUARMState *env,
2407 const ARMCPRegInfo *opaque,
2408 bool isread);
4b6a83fb
PM
2409/* Hook function for register reset */
2410typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2411
2412#define CP_ANY 0xff
2413
2414/* Definition of an ARM coprocessor register */
2415struct ARMCPRegInfo {
2416 /* Name of register (useful mainly for debugging, need not be unique) */
2417 const char *name;
2418 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2419 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2420 * 'wildcard' field -- any value of that field in the MRC/MCR insn
2421 * will be decoded to this register. The register read and write
2422 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2423 * used by the program, so it is possible to register a wildcard and
2424 * then behave differently on read/write if necessary.
2425 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2426 * must both be zero.
f5a0a5a5
PM
2427 * For AArch64-visible registers, opc0 is also used.
2428 * Since there are no "coprocessors" in AArch64, cp is purely used as a
2429 * way to distinguish (for KVM's benefit) guest-visible system registers
2430 * from demuxed ones provided to preserve the "no side effects on
2431 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2432 * visible (to match KVM's encoding); cp==0 will be converted to
2433 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
4b6a83fb
PM
2434 */
2435 uint8_t cp;
2436 uint8_t crn;
2437 uint8_t crm;
f5a0a5a5 2438 uint8_t opc0;
4b6a83fb
PM
2439 uint8_t opc1;
2440 uint8_t opc2;
f5a0a5a5
PM
2441 /* Execution state in which this register is visible: ARM_CP_STATE_* */
2442 int state;
4b6a83fb
PM
2443 /* Register type: ARM_CP_* bits/values */
2444 int type;
2445 /* Access rights: PL*_[RW] */
2446 int access;
c3e30260
FA
2447 /* Security state: ARM_CP_SECSTATE_* bits/values */
2448 int secure;
4b6a83fb
PM
2449 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2450 * this register was defined: can be used to hand data through to the
2451 * register read/write functions, since they are passed the ARMCPRegInfo*.
2452 */
2453 void *opaque;
2454 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2455 * fieldoffset is non-zero, the reset value of the register.
2456 */
2457 uint64_t resetvalue;
c3e30260
FA
2458 /* Offset of the field in CPUARMState for this register.
2459 *
2460 * This is not needed if either:
4b6a83fb
PM
2461 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2462 * 2. both readfn and writefn are specified
2463 */
2464 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
c3e30260
FA
2465
2466 /* Offsets of the secure and non-secure fields in CPUARMState for the
2467 * register if it is banked. These fields are only used during the static
2468 * registration of a register. During hashing the bank associated
2469 * with a given security state is copied to fieldoffset which is used from
2470 * there on out.
2471 *
2472 * It is expected that register definitions use either fieldoffset or
2473 * bank_fieldoffsets in the definition but not both. It is also expected
2474 * that both bank offsets are set when defining a banked register. This
2475 * use indicates that a register is banked.
2476 */
2477 ptrdiff_t bank_fieldoffsets[2];
2478
f59df3f2
PM
2479 /* Function for making any access checks for this register in addition to
2480 * those specified by the 'access' permissions bits. If NULL, no extra
2481 * checks required. The access check is performed at runtime, not at
2482 * translate time.
2483 */
2484 CPAccessFn *accessfn;
4b6a83fb
PM
2485 /* Function for handling reads of this register. If NULL, then reads
2486 * will be done by loading from the offset into CPUARMState specified
2487 * by fieldoffset.
2488 */
2489 CPReadFn *readfn;
2490 /* Function for handling writes of this register. If NULL, then writes
2491 * will be done by writing to the offset into CPUARMState specified
2492 * by fieldoffset.
2493 */
2494 CPWriteFn *writefn;
7023ec7e
PM
2495 /* Function for doing a "raw" read; used when we need to copy
2496 * coprocessor state to the kernel for KVM or out for
2497 * migration. This only needs to be provided if there is also a
c4241c7d 2498 * readfn and it has side effects (for instance clear-on-read bits).
7023ec7e
PM
2499 */
2500 CPReadFn *raw_readfn;
2501 /* Function for doing a "raw" write; used when we need to copy KVM
2502 * kernel coprocessor state into userspace, or for inbound
2503 * migration. This only needs to be provided if there is also a
c4241c7d
PM
2504 * writefn and it masks out "unwritable" bits or has write-one-to-clear
2505 * or similar behaviour.
7023ec7e
PM
2506 */
2507 CPWriteFn *raw_writefn;
4b6a83fb
PM
2508 /* Function for resetting the register. If NULL, then reset will be done
2509 * by writing resetvalue to the field specified in fieldoffset. If
2510 * fieldoffset is 0 then no reset will be done.
2511 */
2512 CPResetFn *resetfn;
2513};
2514
2515/* Macros which are lvalues for the field in CPUARMState for the
2516 * ARMCPRegInfo *ri.
2517 */
2518#define CPREG_FIELD32(env, ri) \
2519 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2520#define CPREG_FIELD64(env, ri) \
2521 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2522
2523#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2524
2525void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2526 const ARMCPRegInfo *regs, void *opaque);
2527void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2528 const ARMCPRegInfo *regs, void *opaque);
2529static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2530{
2531 define_arm_cp_regs_with_opaque(cpu, regs, 0);
2532}
2533static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2534{
2535 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2536}
60322b39 2537const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
4b6a83fb 2538
6c5c0fec
AB
2539/*
2540 * Definition of an ARM co-processor register as viewed from
2541 * userspace. This is used for presenting sanitised versions of
2542 * registers to userspace when emulating the Linux AArch64 CPU
2543 * ID/feature ABI (advertised as HWCAP_CPUID).
2544 */
2545typedef struct ARMCPRegUserSpaceInfo {
2546 /* Name of register */
2547 const char *name;
2548
d040242e
AB
2549 /* Is the name actually a glob pattern */
2550 bool is_glob;
2551
6c5c0fec
AB
2552 /* Only some bits are exported to user space */
2553 uint64_t exported_bits;
2554
2555 /* Fixed bits are applied after the mask */
2556 uint64_t fixed_bits;
2557} ARMCPRegUserSpaceInfo;
2558
2559#define REGUSERINFO_SENTINEL { .name = NULL }
2560
2561void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods);
2562
4b6a83fb 2563/* CPWriteFn that can be used to implement writes-ignored behaviour */
c4241c7d
PM
2564void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2565 uint64_t value);
4b6a83fb 2566/* CPReadFn that can be used for read-as-zero behaviour */
c4241c7d 2567uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
4b6a83fb 2568
f5a0a5a5
PM
2569/* CPResetFn that does nothing, for use if no reset is required even
2570 * if fieldoffset is non zero.
2571 */
2572void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2573
67ed771d
PM
2574/* Return true if this reginfo struct's field in the cpu state struct
2575 * is 64 bits wide.
2576 */
2577static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2578{
2579 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2580}
2581
dcbff19b 2582static inline bool cp_access_ok(int current_el,
4b6a83fb
PM
2583 const ARMCPRegInfo *ri, int isread)
2584{
dcbff19b 2585 return (ri->access >> ((current_el * 2) + isread)) & 1;
4b6a83fb
PM
2586}
2587
49a66191
PM
2588/* Raw read of a coprocessor register (as needed for migration, etc) */
2589uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2590
721fae12
PM
2591/**
2592 * write_list_to_cpustate
2593 * @cpu: ARMCPU
2594 *
2595 * For each register listed in the ARMCPU cpreg_indexes list, write
2596 * its value from the cpreg_values list into the ARMCPUState structure.
2597 * This updates TCG's working data structures from KVM data or
2598 * from incoming migration state.
2599 *
2600 * Returns: true if all register values were updated correctly,
2601 * false if some register was unknown or could not be written.
2602 * Note that we do not stop early on failure -- we will attempt
2603 * writing all registers in the list.
2604 */
2605bool write_list_to_cpustate(ARMCPU *cpu);
2606
2607/**
2608 * write_cpustate_to_list:
2609 * @cpu: ARMCPU
2610 *
2611 * For each register listed in the ARMCPU cpreg_indexes list, write
2612 * its value from the ARMCPUState structure into the cpreg_values list.
2613 * This is used to copy info from TCG's working data structures into
2614 * KVM or for outbound migration.
2615 *
2616 * Returns: true if all register values were read correctly,
2617 * false if some register was unknown or could not be read.
2618 * Note that we do not stop early on failure -- we will attempt
2619 * reading all registers in the list.
2620 */
942f99c8 2621bool write_cpustate_to_list(ARMCPU *cpu);
721fae12 2622
9ee6e8bb
PB
2623#define ARM_CPUID_TI915T 0x54029152
2624#define ARM_CPUID_TI925T 0x54029252
40f137e1 2625
b5ff1b31 2626#if defined(CONFIG_USER_ONLY)
2c0262af 2627#define TARGET_PAGE_BITS 12
b5ff1b31 2628#else
e97da98f
PM
2629/* ARMv7 and later CPUs have 4K pages minimum, but ARMv5 and v6
2630 * have to support 1K tiny pages.
2631 */
2632#define TARGET_PAGE_BITS_VARY
2633#define TARGET_PAGE_BITS_MIN 10
b5ff1b31 2634#endif
9467d44c 2635
3926cc84
AG
2636#if defined(TARGET_AARCH64)
2637# define TARGET_PHYS_ADDR_SPACE_BITS 48
f6768aa1 2638# define TARGET_VIRT_ADDR_SPACE_BITS 48
3926cc84
AG
2639#else
2640# define TARGET_PHYS_ADDR_SPACE_BITS 40
2641# define TARGET_VIRT_ADDR_SPACE_BITS 32
2642#endif
52705890 2643
012a906b
GB
2644static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
2645 unsigned int target_el)
043b7f8d
EI
2646{
2647 CPUARMState *env = cs->env_ptr;
dcbff19b 2648 unsigned int cur_el = arm_current_el(env);
57e3a0c7 2649 bool secure = arm_is_secure(env);
57e3a0c7
GB
2650 bool pstate_unmasked;
2651 int8_t unmasked = 0;
f7778444 2652 uint64_t hcr_el2;
57e3a0c7
GB
2653
2654 /* Don't take exceptions if they target a lower EL.
2655 * This check should catch any exceptions that would not be taken but left
2656 * pending.
2657 */
dfafd090
EI
2658 if (cur_el > target_el) {
2659 return false;
2660 }
043b7f8d 2661
f7778444
RH
2662 hcr_el2 = arm_hcr_el2_eff(env);
2663
043b7f8d
EI
2664 switch (excp_idx) {
2665 case EXCP_FIQ:
57e3a0c7
GB
2666 pstate_unmasked = !(env->daif & PSTATE_F);
2667 break;
2668
043b7f8d 2669 case EXCP_IRQ:
57e3a0c7
GB
2670 pstate_unmasked = !(env->daif & PSTATE_I);
2671 break;
2672
136e67e9 2673 case EXCP_VFIQ:
f7778444 2674 if (secure || !(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
136e67e9
EI
2675 /* VFIQs are only taken when hypervized and non-secure. */
2676 return false;
2677 }
2678 return !(env->daif & PSTATE_F);
2679 case EXCP_VIRQ:
f7778444 2680 if (secure || !(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
136e67e9
EI
2681 /* VIRQs are only taken when hypervized and non-secure. */
2682 return false;
2683 }
b5c633c5 2684 return !(env->daif & PSTATE_I);
043b7f8d
EI
2685 default:
2686 g_assert_not_reached();
2687 }
57e3a0c7
GB
2688
2689 /* Use the target EL, current execution state and SCR/HCR settings to
2690 * determine whether the corresponding CPSR bit is used to mask the
2691 * interrupt.
2692 */
2693 if ((target_el > cur_el) && (target_el != 1)) {
7cd6de3b
PM
2694 /* Exceptions targeting a higher EL may not be maskable */
2695 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
2696 /* 64-bit masking rules are simple: exceptions to EL3
2697 * can't be masked, and exceptions to EL2 can only be
2698 * masked from Secure state. The HCR and SCR settings
2699 * don't affect the masking logic, only the interrupt routing.
2700 */
2701 if (target_el == 3 || !secure) {
2702 unmasked = 1;
2703 }
2704 } else {
2705 /* The old 32-bit-only environment has a more complicated
2706 * masking setup. HCR and SCR bits not only affect interrupt
2707 * routing but also change the behaviour of masking.
2708 */
2709 bool hcr, scr;
2710
2711 switch (excp_idx) {
2712 case EXCP_FIQ:
2713 /* If FIQs are routed to EL3 or EL2 then there are cases where
2714 * we override the CPSR.F in determining if the exception is
2715 * masked or not. If neither of these are set then we fall back
2716 * to the CPSR.F setting otherwise we further assess the state
2717 * below.
2718 */
f7778444 2719 hcr = hcr_el2 & HCR_FMO;
7cd6de3b
PM
2720 scr = (env->cp15.scr_el3 & SCR_FIQ);
2721
2722 /* When EL3 is 32-bit, the SCR.FW bit controls whether the
2723 * CPSR.F bit masks FIQ interrupts when taken in non-secure
2724 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
2725 * when non-secure but only when FIQs are only routed to EL3.
2726 */
2727 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
2728 break;
2729 case EXCP_IRQ:
2730 /* When EL3 execution state is 32-bit, if HCR.IMO is set then
2731 * we may override the CPSR.I masking when in non-secure state.
2732 * The SCR.IRQ setting has already been taken into consideration
2733 * when setting the target EL, so it does not have a further
2734 * affect here.
2735 */
f7778444 2736 hcr = hcr_el2 & HCR_IMO;
7cd6de3b
PM
2737 scr = false;
2738 break;
2739 default:
2740 g_assert_not_reached();
2741 }
2742
2743 if ((scr || hcr) && !secure) {
2744 unmasked = 1;
2745 }
57e3a0c7
GB
2746 }
2747 }
2748
2749 /* The PSTATE bits only mask the interrupt if we have not overriden the
2750 * ability above.
2751 */
2752 return unmasked || pstate_unmasked;
043b7f8d
EI
2753}
2754
ba1ba5cc
IM
2755#define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2756#define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
0dacec87 2757#define CPU_RESOLVING_TYPE TYPE_ARM_CPU
ba1ba5cc 2758
9467d44c 2759#define cpu_signal_handler cpu_arm_signal_handler
c732abe2 2760#define cpu_list arm_cpu_list
9467d44c 2761
c1e37810
PM
2762/* ARM has the following "translation regimes" (as the ARM ARM calls them):
2763 *
2764 * If EL3 is 64-bit:
2765 * + NonSecure EL1 & 0 stage 1
2766 * + NonSecure EL1 & 0 stage 2
2767 * + NonSecure EL2
2768 * + Secure EL1 & EL0
2769 * + Secure EL3
2770 * If EL3 is 32-bit:
2771 * + NonSecure PL1 & 0 stage 1
2772 * + NonSecure PL1 & 0 stage 2
2773 * + NonSecure PL2
2774 * + Secure PL0 & PL1
2775 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2776 *
2777 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2778 * 1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
2779 * may differ in access permissions even if the VA->PA map is the same
2780 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2781 * translation, which means that we have one mmu_idx that deals with two
2782 * concatenated translation regimes [this sort of combined s1+2 TLB is
2783 * architecturally permitted]
2784 * 3. we don't need to allocate an mmu_idx to translations that we won't be
2785 * handling via the TLB. The only way to do a stage 1 translation without
2786 * the immediate stage 2 translation is via the ATS or AT system insns,
2787 * which can be slow-pathed and always do a page table walk.
2788 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2789 * translation regimes, because they map reasonably well to each other
2790 * and they can't both be active at the same time.
2791 * This gives us the following list of mmu_idx values:
2792 *
2793 * NS EL0 (aka NS PL0) stage 1+2
2794 * NS EL1 (aka NS PL1) stage 1+2
2795 * NS EL2 (aka NS PL2)
2796 * S EL3 (aka S PL1)
2797 * S EL0 (aka S PL0)
2798 * S EL1 (not used if EL3 is 32 bit)
2799 * NS EL0+1 stage 2
2800 *
2801 * (The last of these is an mmu_idx because we want to be able to use the TLB
2802 * for the accesses done as part of a stage 1 page table walk, rather than
2803 * having to walk the stage 2 page table over and over.)
2804 *
3bef7012
PM
2805 * R profile CPUs have an MPU, but can use the same set of MMU indexes
2806 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2807 * NS EL2 if we ever model a Cortex-R52).
2808 *
2809 * M profile CPUs are rather different as they do not have a true MMU.
2810 * They have the following different MMU indexes:
2811 * User
2812 * Privileged
62593718
PM
2813 * User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2814 * Privileged, execution priority negative (ditto)
66787c78
PM
2815 * If the CPU supports the v8M Security Extension then there are also:
2816 * Secure User
2817 * Secure Privileged
62593718
PM
2818 * Secure User, execution priority negative
2819 * Secure Privileged, execution priority negative
3bef7012 2820 *
8bd5c820
PM
2821 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2822 * are not quite the same -- different CPU types (most notably M profile
2823 * vs A/R profile) would like to use MMU indexes with different semantics,
2824 * but since we don't ever need to use all of those in a single CPU we
2825 * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
2826 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2827 * the same for any particular CPU.
2828 * Variables of type ARMMUIdx are always full values, and the core
2829 * index values are in variables of type 'int'.
2830 *
c1e37810
PM
2831 * Our enumeration includes at the end some entries which are not "true"
2832 * mmu_idx values in that they don't have corresponding TLBs and are only
2833 * valid for doing slow path page table walks.
2834 *
2835 * The constant names here are patterned after the general style of the names
2836 * of the AT/ATS operations.
2837 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
62593718
PM
2838 * For M profile we arrange them to have a bit for priv, a bit for negpri
2839 * and a bit for secure.
c1e37810 2840 */
e7b921c2 2841#define ARM_MMU_IDX_A 0x10 /* A profile */
8bd5c820 2842#define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
e7b921c2 2843#define ARM_MMU_IDX_M 0x40 /* M profile */
8bd5c820 2844
62593718
PM
2845/* meanings of the bits for M profile mmu idx values */
2846#define ARM_MMU_IDX_M_PRIV 0x1
2847#define ARM_MMU_IDX_M_NEGPRI 0x2
2848#define ARM_MMU_IDX_M_S 0x4
2849
8bd5c820
PM
2850#define ARM_MMU_IDX_TYPE_MASK (~0x7)
2851#define ARM_MMU_IDX_COREIDX_MASK 0x7
2852
c1e37810 2853typedef enum ARMMMUIdx {
8bd5c820
PM
2854 ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A,
2855 ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A,
2856 ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A,
2857 ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A,
2858 ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A,
2859 ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A,
2860 ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A,
e7b921c2
PM
2861 ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M,
2862 ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M,
62593718
PM
2863 ARMMMUIdx_MUserNegPri = 2 | ARM_MMU_IDX_M,
2864 ARMMMUIdx_MPrivNegPri = 3 | ARM_MMU_IDX_M,
2865 ARMMMUIdx_MSUser = 4 | ARM_MMU_IDX_M,
2866 ARMMMUIdx_MSPriv = 5 | ARM_MMU_IDX_M,
2867 ARMMMUIdx_MSUserNegPri = 6 | ARM_MMU_IDX_M,
2868 ARMMMUIdx_MSPrivNegPri = 7 | ARM_MMU_IDX_M,
c1e37810
PM
2869 /* Indexes below here don't have TLBs and are used only for AT system
2870 * instructions or for the first stage of an S12 page table walk.
2871 */
8bd5c820
PM
2872 ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB,
2873 ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB,
c1e37810
PM
2874} ARMMMUIdx;
2875
8bd5c820
PM
2876/* Bit macros for the core-mmu-index values for each index,
2877 * for use when calling tlb_flush_by_mmuidx() and friends.
2878 */
2879typedef enum ARMMMUIdxBit {
2880 ARMMMUIdxBit_S12NSE0 = 1 << 0,
2881 ARMMMUIdxBit_S12NSE1 = 1 << 1,
2882 ARMMMUIdxBit_S1E2 = 1 << 2,
2883 ARMMMUIdxBit_S1E3 = 1 << 3,
2884 ARMMMUIdxBit_S1SE0 = 1 << 4,
2885 ARMMMUIdxBit_S1SE1 = 1 << 5,
2886 ARMMMUIdxBit_S2NS = 1 << 6,
e7b921c2
PM
2887 ARMMMUIdxBit_MUser = 1 << 0,
2888 ARMMMUIdxBit_MPriv = 1 << 1,
62593718
PM
2889 ARMMMUIdxBit_MUserNegPri = 1 << 2,
2890 ARMMMUIdxBit_MPrivNegPri = 1 << 3,
2891 ARMMMUIdxBit_MSUser = 1 << 4,
2892 ARMMMUIdxBit_MSPriv = 1 << 5,
2893 ARMMMUIdxBit_MSUserNegPri = 1 << 6,
2894 ARMMMUIdxBit_MSPrivNegPri = 1 << 7,
8bd5c820
PM
2895} ARMMMUIdxBit;
2896
f79fbf39 2897#define MMU_USER_IDX 0
c1e37810 2898
8bd5c820
PM
2899static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
2900{
2901 return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
2902}
2903
2904static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
2905{
e7b921c2
PM
2906 if (arm_feature(env, ARM_FEATURE_M)) {
2907 return mmu_idx | ARM_MMU_IDX_M;
2908 } else {
2909 return mmu_idx | ARM_MMU_IDX_A;
2910 }
8bd5c820
PM
2911}
2912
c1e37810
PM
2913/* Return the exception level we're running at if this is our mmu_idx */
2914static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
6ebbf390 2915{
8bd5c820
PM
2916 switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) {
2917 case ARM_MMU_IDX_A:
2918 return mmu_idx & 3;
e7b921c2 2919 case ARM_MMU_IDX_M:
62593718 2920 return mmu_idx & ARM_MMU_IDX_M_PRIV;
8bd5c820
PM
2921 default:
2922 g_assert_not_reached();
2923 }
c1e37810
PM
2924}
2925
fa6252a9
PM
2926/*
2927 * Return the MMU index for a v7M CPU with all relevant information
2928 * manually specified.
2929 */
2930ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env,
2931 bool secstate, bool priv, bool negpri);
2932
ec8e3340 2933/* Return the MMU index for a v7M CPU in the specified security and
65e4655c 2934 * privilege state.
ec8e3340 2935 */
65e4655c
RH
2936ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
2937 bool secstate, bool priv);
b81ac0eb 2938
ec8e3340 2939/* Return the MMU index for a v7M CPU in the specified security state */
65e4655c 2940ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
ec8e3340 2941
50494a27
RH
2942/**
2943 * cpu_mmu_index:
2944 * @env: The cpu environment
2945 * @ifetch: True for code access, false for data access.
2946 *
2947 * Return the core mmu index for the current translation regime.
2948 * This function is used by generic TCG code paths.
2949 */
65e4655c 2950int cpu_mmu_index(CPUARMState *env, bool ifetch);
6ebbf390 2951
9e273ef2
PM
2952/* Indexes used when registering address spaces with cpu_address_space_init */
2953typedef enum ARMASIdx {
2954 ARMASIdx_NS = 0,
2955 ARMASIdx_S = 1,
2956} ARMASIdx;
2957
533e93f1 2958/* Return the Exception Level targeted by debug exceptions. */
3a298203
PM
2959static inline int arm_debug_target_el(CPUARMState *env)
2960{
81669b8b
SF
2961 bool secure = arm_is_secure(env);
2962 bool route_to_el2 = false;
2963
2964 if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2965 route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
b281ba42 2966 env->cp15.mdcr_el2 & MDCR_TDE;
81669b8b
SF
2967 }
2968
2969 if (route_to_el2) {
2970 return 2;
2971 } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2972 !arm_el_is_aa64(env, 3) && secure) {
2973 return 3;
2974 } else {
2975 return 1;
2976 }
3a298203
PM
2977}
2978
43bbce7f
PM
2979static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2980{
2981 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2982 * CSSELR is RAZ/WI.
2983 */
2984 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2985}
2986
22af9025 2987/* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
3a298203
PM
2988static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2989{
22af9025
AB
2990 int cur_el = arm_current_el(env);
2991 int debug_el;
2992
2993 if (cur_el == 3) {
2994 return false;
533e93f1
PM
2995 }
2996
22af9025
AB
2997 /* MDCR_EL3.SDD disables debug events from Secure state */
2998 if (arm_is_secure_below_el3(env)
2999 && extract32(env->cp15.mdcr_el3, 16, 1)) {
3000 return false;
3a298203 3001 }
22af9025
AB
3002
3003 /*
3004 * Same EL to same EL debug exceptions need MDSCR_KDE enabled
3005 * while not masking the (D)ebug bit in DAIF.
3006 */
3007 debug_el = arm_debug_target_el(env);
3008
3009 if (cur_el == debug_el) {
3010 return extract32(env->cp15.mdscr_el1, 13, 1)
3011 && !(env->daif & PSTATE_D);
3012 }
3013
3014 /* Otherwise the debug target needs to be a higher EL */
3015 return debug_el > cur_el;
3a298203
PM
3016}
3017
3018static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
3019{
533e93f1
PM
3020 int el = arm_current_el(env);
3021
3022 if (el == 0 && arm_el_is_aa64(env, 1)) {
3a298203
PM
3023 return aa64_generate_debug_exceptions(env);
3024 }
533e93f1
PM
3025
3026 if (arm_is_secure(env)) {
3027 int spd;
3028
3029 if (el == 0 && (env->cp15.sder & 1)) {
3030 /* SDER.SUIDEN means debug exceptions from Secure EL0
3031 * are always enabled. Otherwise they are controlled by
3032 * SDCR.SPD like those from other Secure ELs.
3033 */
3034 return true;
3035 }
3036
3037 spd = extract32(env->cp15.mdcr_el3, 14, 2);
3038 switch (spd) {
3039 case 1:
3040 /* SPD == 0b01 is reserved, but behaves as 0b00. */
3041 case 0:
3042 /* For 0b00 we return true if external secure invasive debug
3043 * is enabled. On real hardware this is controlled by external
3044 * signals to the core. QEMU always permits debug, and behaves
3045 * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
3046 */
3047 return true;
3048 case 2:
3049 return false;
3050 case 3:
3051 return true;
3052 }
3053 }
3054
3055 return el != 2;
3a298203
PM
3056}
3057
3058/* Return true if debugging exceptions are currently enabled.
3059 * This corresponds to what in ARM ARM pseudocode would be
3060 * if UsingAArch32() then
3061 * return AArch32.GenerateDebugExceptions()
3062 * else
3063 * return AArch64.GenerateDebugExceptions()
3064 * We choose to push the if() down into this function for clarity,
3065 * since the pseudocode has it at all callsites except for the one in
3066 * CheckSoftwareStep(), where it is elided because both branches would
3067 * always return the same value.
3a298203
PM
3068 */
3069static inline bool arm_generate_debug_exceptions(CPUARMState *env)
3070{
3071 if (env->aarch64) {
3072 return aa64_generate_debug_exceptions(env);
3073 } else {
3074 return aa32_generate_debug_exceptions(env);
3075 }
3076}
3077
3078/* Is single-stepping active? (Note that the "is EL_D AArch64?" check
3079 * implicitly means this always returns false in pre-v8 CPUs.)
3080 */
3081static inline bool arm_singlestep_active(CPUARMState *env)
3082{
3083 return extract32(env->cp15.mdscr_el1, 0, 1)
3084 && arm_el_is_aa64(env, arm_debug_target_el(env))
3085 && arm_generate_debug_exceptions(env);
3086}
3087
f9fd40eb
PB
3088static inline bool arm_sctlr_b(CPUARMState *env)
3089{
3090 return
3091 /* We need not implement SCTLR.ITD in user-mode emulation, so
3092 * let linux-user ignore the fact that it conflicts with SCTLR_B.
3093 * This lets people run BE32 binaries with "-cpu any".
3094 */
3095#ifndef CONFIG_USER_ONLY
3096 !arm_feature(env, ARM_FEATURE_V7) &&
3097#endif
3098 (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3099}
3100
64e40755
RH
3101static inline uint64_t arm_sctlr(CPUARMState *env, int el)
3102{
3103 if (el == 0) {
3104 /* FIXME: ARMv8.1-VHE S2 translation regime. */
3105 return env->cp15.sctlr_el[1];
3106 } else {
3107 return env->cp15.sctlr_el[el];
3108 }
3109}
3110
3111
ed50ff78
PC
3112/* Return true if the processor is in big-endian mode. */
3113static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3114{
ed50ff78
PC
3115 /* In 32bit endianness is determined by looking at CPSR's E bit */
3116 if (!is_a64(env)) {
b2e62d9a
PC
3117 return
3118#ifdef CONFIG_USER_ONLY
3119 /* In system mode, BE32 is modelled in line with the
3120 * architecture (as word-invariant big-endianness), where loads
3121 * and stores are done little endian but from addresses which
3122 * are adjusted by XORing with the appropriate constant. So the
3123 * endianness to use for the raw data access is not affected by
3124 * SCTLR.B.
3125 * In user mode, however, we model BE32 as byte-invariant
3126 * big-endianness (because user-only code cannot tell the
3127 * difference), and so we need to use a data access endianness
3128 * that depends on SCTLR.B.
3129 */
3130 arm_sctlr_b(env) ||
3131#endif
3132 ((env->uncached_cpsr & CPSR_E) ? 1 : 0);
64e40755
RH
3133 } else {
3134 int cur_el = arm_current_el(env);
3135 uint64_t sctlr = arm_sctlr(env, cur_el);
ed50ff78 3136
64e40755 3137 return (sctlr & (cur_el ? SCTLR_EE : SCTLR_E0E)) != 0;
ed50ff78 3138 }
ed50ff78
PC
3139}
3140
022c62cb 3141#include "exec/cpu-all.h"
622ed360 3142
3926cc84
AG
3143/* Bit usage in the TB flags field: bit 31 indicates whether we are
3144 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
c1e37810
PM
3145 * We put flags which are shared between 32 and 64 bit mode at the top
3146 * of the word, and flags which apply to only one mode at the bottom.
3926cc84 3147 */
aad821ac
RH
3148FIELD(TBFLAG_ANY, AARCH64_STATE, 31, 1)
3149FIELD(TBFLAG_ANY, MMUIDX, 28, 3)
3150FIELD(TBFLAG_ANY, SS_ACTIVE, 27, 1)
3151FIELD(TBFLAG_ANY, PSTATE_SS, 26, 1)
9dbbc748 3152/* Target EL if we take a floating-point-disabled exception */
aad821ac
RH
3153FIELD(TBFLAG_ANY, FPEXC_EL, 24, 2)
3154FIELD(TBFLAG_ANY, BE_DATA, 23, 1)
3926cc84
AG
3155
3156/* Bit usage when in AArch32 state: */
aad821ac
RH
3157FIELD(TBFLAG_A32, THUMB, 0, 1)
3158FIELD(TBFLAG_A32, VECLEN, 1, 3)
3159FIELD(TBFLAG_A32, VECSTRIDE, 4, 2)
ea7ac69d
PM
3160/*
3161 * We store the bottom two bits of the CPAR as TB flags and handle
3162 * checks on the other bits at runtime. This shares the same bits as
3163 * VECSTRIDE, which is OK as no XScale CPU has VFP.
3164 */
3165FIELD(TBFLAG_A32, XSCALE_CPAR, 4, 2)
7fbb535f
PM
3166/*
3167 * Indicates whether cp register reads and writes by guest code should access
3168 * the secure or nonsecure bank of banked registers; note that this is not
3169 * the same thing as the current security state of the processor!
3170 */
3171FIELD(TBFLAG_A32, NS, 6, 1)
aad821ac
RH
3172FIELD(TBFLAG_A32, VFPEN, 7, 1)
3173FIELD(TBFLAG_A32, CONDEXEC, 8, 8)
3174FIELD(TBFLAG_A32, SCTLR_B, 16, 1)
6000531e
PM
3175/* For M profile only, set if we must create a new FP context */
3176FIELD(TBFLAG_A32, NEW_FP_CTXT_NEEDED, 19, 1)
6d60c67a
PM
3177/* For M profile only, set if FPCCR.S does not match current security state */
3178FIELD(TBFLAG_A32, FPCCR_S_WRONG, 20, 1)
064c379c 3179/* For M profile only, Handler (ie not Thread) mode */
aad821ac 3180FIELD(TBFLAG_A32, HANDLER, 21, 1)
4730fb85 3181/* For M profile only, whether we should generate stack-limit checks */
aad821ac 3182FIELD(TBFLAG_A32, STACKCHECK, 22, 1)
3926cc84 3183
86fb3fa4 3184/* Bit usage when in AArch64 state */
476a4692 3185FIELD(TBFLAG_A64, TBII, 0, 2)
aad821ac
RH
3186FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3187FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
0816ef1b 3188FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
08f1434a
RH
3189FIELD(TBFLAG_A64, BT, 9, 1)
3190FIELD(TBFLAG_A64, BTYPE, 10, 2)
4a9ee99d 3191FIELD(TBFLAG_A64, TBID, 12, 2)
a1705768 3192
f9fd40eb
PB
3193static inline bool bswap_code(bool sctlr_b)
3194{
3195#ifdef CONFIG_USER_ONLY
3196 /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
3197 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
3198 * would also end up as a mixed-endian mode with BE code, LE data.
3199 */
3200 return
3201#ifdef TARGET_WORDS_BIGENDIAN
3202 1 ^
3203#endif
3204 sctlr_b;
3205#else
e334bd31
PB
3206 /* All code access in ARM is little endian, and there are no loaders
3207 * doing swaps that need to be reversed
f9fd40eb
PB
3208 */
3209 return 0;
3210#endif
3211}
3212
c3ae85fc
PB
3213#ifdef CONFIG_USER_ONLY
3214static inline bool arm_cpu_bswap_data(CPUARMState *env)
3215{
3216 return
3217#ifdef TARGET_WORDS_BIGENDIAN
3218 1 ^
3219#endif
3220 arm_cpu_data_is_big_endian(env);
3221}
3222#endif
3223
a9e01311
RH
3224void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3225 target_ulong *cs_base, uint32_t *flags);
6b917547 3226
98128601
RH
3227enum {
3228 QEMU_PSCI_CONDUIT_DISABLED = 0,
3229 QEMU_PSCI_CONDUIT_SMC = 1,
3230 QEMU_PSCI_CONDUIT_HVC = 2,
3231};
3232
017518c1
PM
3233#ifndef CONFIG_USER_ONLY
3234/* Return the address space index to use for a memory access */
3235static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3236{
3237 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3238}
5ce4ff65
PM
3239
3240/* Return the AddressSpace to use for a memory access
3241 * (which depends on whether the access is S or NS, and whether
3242 * the board gave us a separate AddressSpace for S accesses).
3243 */
3244static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3245{
3246 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3247}
017518c1
PM
3248#endif
3249
bd7d00fc 3250/**
b5c53d1b
AL
3251 * arm_register_pre_el_change_hook:
3252 * Register a hook function which will be called immediately before this
bd7d00fc
PM
3253 * CPU changes exception level or mode. The hook function will be
3254 * passed a pointer to the ARMCPU and the opaque data pointer passed
3255 * to this function when the hook was registered.
b5c53d1b
AL
3256 *
3257 * Note that if a pre-change hook is called, any registered post-change hooks
3258 * are guaranteed to subsequently be called.
bd7d00fc 3259 */
b5c53d1b 3260void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
bd7d00fc 3261 void *opaque);
b5c53d1b
AL
3262/**
3263 * arm_register_el_change_hook:
3264 * Register a hook function which will be called immediately after this
3265 * CPU changes exception level or mode. The hook function will be
3266 * passed a pointer to the ARMCPU and the opaque data pointer passed
3267 * to this function when the hook was registered.
3268 *
3269 * Note that any registered hooks registered here are guaranteed to be called
3270 * if pre-change hooks have been.
3271 */
3272void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3273 *opaque);
bd7d00fc 3274
9a2b5256
RH
3275/**
3276 * aa32_vfp_dreg:
3277 * Return a pointer to the Dn register within env in 32-bit mode.
3278 */
3279static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3280{
c39c2b90 3281 return &env->vfp.zregs[regno >> 1].d[regno & 1];
9a2b5256
RH
3282}
3283
3284/**
3285 * aa32_vfp_qreg:
3286 * Return a pointer to the Qn register within env in 32-bit mode.
3287 */
3288static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3289{
c39c2b90 3290 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3291}
3292
3293/**
3294 * aa64_vfp_qreg:
3295 * Return a pointer to the Qn register within env in 64-bit mode.
3296 */
3297static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3298{
c39c2b90 3299 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3300}
3301
028e2a7b
RH
3302/* Shared between translate-sve.c and sve_helper.c. */
3303extern const uint64_t pred_esz_masks[4];
3304
962fcbf2
RH
3305/*
3306 * 32-bit feature tests via id registers.
3307 */
7e0cf8b4
RH
3308static inline bool isar_feature_thumb_div(const ARMISARegisters *id)
3309{
3310 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3311}
3312
3313static inline bool isar_feature_arm_div(const ARMISARegisters *id)
3314{
3315 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3316}
3317
09cbd501
RH
3318static inline bool isar_feature_jazelle(const ARMISARegisters *id)
3319{
3320 return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3321}
3322
962fcbf2
RH
3323static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3324{
3325 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3326}
3327
3328static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3329{
3330 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3331}
3332
3333static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3334{
3335 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3336}
3337
3338static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3339{
3340 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3341}
3342
3343static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3344{
3345 return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3346}
3347
3348static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3349{
3350 return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3351}
3352
3353static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3354{
3355 return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3356}
3357
6c1f6f27
RH
3358static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3359{
3360 return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3361}
3362
962fcbf2
RH
3363static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3364{
3365 return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3366}
3367
87732318
RH
3368static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3369{
3370 return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3371}
3372
9888bd1e
RH
3373static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3374{
3375 return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3376}
3377
cb570bd3
RH
3378static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3379{
3380 return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3381}
3382
5763190f
RH
3383static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3384{
3385 /*
3386 * This is a placeholder for use by VCMA until the rest of
3387 * the ARMv8.2-FP16 extension is implemented for aa32 mode.
3388 * At which point we can properly set and check MVFR1.FPHP.
3389 */
3390 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3391}
3392
602f6e42
PM
3393/*
3394 * We always set the FP and SIMD FP16 fields to indicate identical
3395 * levels of support (assuming SIMD is implemented at all), so
3396 * we only need one set of accessors.
3397 */
3398static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3399{
3400 return FIELD_EX64(id->mvfr1, MVFR1, FPHP) > 0;
3401}
3402
3403static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3404{
3405 return FIELD_EX64(id->mvfr1, MVFR1, FPHP) > 1;
3406}
3407
c0c760af
PM
3408static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3409{
3410 return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 1;
3411}
3412
3413static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3414{
3415 return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 2;
3416}
3417
3418static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3419{
3420 return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 3;
3421}
3422
3423static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3424{
3425 return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 4;
3426}
3427
962fcbf2
RH
3428/*
3429 * 64-bit feature tests via id registers.
3430 */
3431static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3432{
3433 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3434}
3435
3436static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3437{
3438 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3439}
3440
3441static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3442{
3443 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3444}
3445
3446static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3447{
3448 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3449}
3450
3451static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3452{
3453 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3454}
3455
3456static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3457{
3458 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3459}
3460
3461static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3462{
3463 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3464}
3465
3466static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3467{
3468 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3469}
3470
3471static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3472{
3473 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3474}
3475
3476static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3477{
3478 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3479}
3480
3481static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3482{
3483 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3484}
3485
3486static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3487{
3488 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3489}
3490
0caa5af8
RH
3491static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3492{
3493 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3494}
3495
b89d9c98
RH
3496static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3497{
3498 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3499}
3500
5ef84f11
RH
3501static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3502{
3503 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3504}
3505
6c1f6f27
RH
3506static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3507{
3508 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3509}
3510
962fcbf2
RH
3511static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3512{
3513 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3514}
3515
991ad91b
RH
3516static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3517{
3518 /*
3519 * Note that while QEMU will only implement the architected algorithm
3520 * QARMA, and thus APA+GPA, the host cpu for kvm may use implementation
3521 * defined algorithms, and thus API+GPI, and this predicate controls
3522 * migration of the 128-bit keys.
3523 */
3524 return (id->id_aa64isar1 &
3525 (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3526 FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3527 FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3528 FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3529}
3530
9888bd1e
RH
3531static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3532{
3533 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3534}
3535
cb570bd3
RH
3536static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3537{
3538 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
3539}
3540
6bea2563
RH
3541static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
3542{
3543 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
3544}
3545
5763190f
RH
3546static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3547{
3548 /* We always set the AdvSIMD and FP fields identically wrt FP16. */
3549 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3550}
3551
0f8d06f1
RH
3552static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3553{
3554 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3555}
3556
cd208a1c
RH
3557static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3558{
3559 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3560}
3561
2d7137c1
RH
3562static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3563{
3564 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3565}
3566
be53b6f4
RH
3567static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
3568{
3569 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
3570}
3571
962fcbf2
RH
3572/*
3573 * Forward to the above feature tests given an ARMCPU pointer.
3574 */
3575#define cpu_isar_feature(name, cpu) \
3576 ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
3577
2c0262af 3578#endif
This page took 1.669433 seconds and 4 git commands to generate.