]>
Commit | Line | Data |
---|---|---|
54936004 | 1 | /* |
5b6dd868 | 2 | * Virtual page mapping |
5fafdf24 | 3 | * |
54936004 FB |
4 | * Copyright (c) 2003 Fabrice Bellard |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
8167ee88 | 17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
54936004 | 18 | */ |
7b31bbc2 | 19 | #include "qemu/osdep.h" |
da34e65c | 20 | #include "qapi/error.h" |
777872e5 | 21 | #ifndef _WIN32 |
d5a8f07c | 22 | #endif |
54936004 | 23 | |
f348b6d1 | 24 | #include "qemu/cutils.h" |
6180a181 | 25 | #include "cpu.h" |
63c91552 | 26 | #include "exec/exec-all.h" |
b67d9a52 | 27 | #include "tcg.h" |
741da0d3 | 28 | #include "hw/qdev-core.h" |
4485bd26 | 29 | #if !defined(CONFIG_USER_ONLY) |
47c8ca53 | 30 | #include "hw/boards.h" |
33c11879 | 31 | #include "hw/xen/xen.h" |
4485bd26 | 32 | #endif |
9c17d615 | 33 | #include "sysemu/kvm.h" |
2ff3de68 | 34 | #include "sysemu/sysemu.h" |
1de7afc9 PB |
35 | #include "qemu/timer.h" |
36 | #include "qemu/config-file.h" | |
75a34036 | 37 | #include "qemu/error-report.h" |
53a5960a | 38 | #if defined(CONFIG_USER_ONLY) |
a9c94277 | 39 | #include "qemu.h" |
432d268c | 40 | #else /* !CONFIG_USER_ONLY */ |
741da0d3 PB |
41 | #include "hw/hw.h" |
42 | #include "exec/memory.h" | |
df43d49c | 43 | #include "exec/ioport.h" |
741da0d3 PB |
44 | #include "sysemu/dma.h" |
45 | #include "exec/address-spaces.h" | |
9c17d615 | 46 | #include "sysemu/xen-mapcache.h" |
6506e4f9 | 47 | #include "trace.h" |
53a5960a | 48 | #endif |
0d6d3c87 | 49 | #include "exec/cpu-all.h" |
0dc3f44a | 50 | #include "qemu/rcu_queue.h" |
4840f10e | 51 | #include "qemu/main-loop.h" |
5b6dd868 | 52 | #include "translate-all.h" |
7615936e | 53 | #include "sysemu/replay.h" |
0cac1b66 | 54 | |
022c62cb | 55 | #include "exec/memory-internal.h" |
220c3ebd | 56 | #include "exec/ram_addr.h" |
508127e2 | 57 | #include "exec/log.h" |
67d95c15 | 58 | |
9dfeca7c BR |
59 | #include "migration/vmstate.h" |
60 | ||
b35ba30f | 61 | #include "qemu/range.h" |
794e8f30 MT |
62 | #ifndef _WIN32 |
63 | #include "qemu/mmap-alloc.h" | |
64 | #endif | |
b35ba30f | 65 | |
db7b5426 | 66 | //#define DEBUG_SUBPAGE |
1196be37 | 67 | |
e2eef170 | 68 | #if !defined(CONFIG_USER_ONLY) |
0dc3f44a MD |
69 | /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes |
70 | * are protected by the ramlist lock. | |
71 | */ | |
0d53d9fe | 72 | RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) }; |
62152b8a AK |
73 | |
74 | static MemoryRegion *system_memory; | |
309cb471 | 75 | static MemoryRegion *system_io; |
62152b8a | 76 | |
f6790af6 AK |
77 | AddressSpace address_space_io; |
78 | AddressSpace address_space_memory; | |
2673a5da | 79 | |
0844e007 | 80 | MemoryRegion io_mem_rom, io_mem_notdirty; |
acc9d80b | 81 | static MemoryRegion io_mem_unassigned; |
0e0df1e2 | 82 | |
7bd4f430 PB |
83 | /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */ |
84 | #define RAM_PREALLOC (1 << 0) | |
85 | ||
dbcb8981 PB |
86 | /* RAM is mmap-ed with MAP_SHARED */ |
87 | #define RAM_SHARED (1 << 1) | |
88 | ||
62be4e3a MT |
89 | /* Only a portion of RAM (used_length) is actually used, and migrated. |
90 | * This used_length size can change across reboots. | |
91 | */ | |
92 | #define RAM_RESIZEABLE (1 << 2) | |
93 | ||
e2eef170 | 94 | #endif |
9fa3e853 | 95 | |
bdc44640 | 96 | struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus); |
6a00d601 FB |
97 | /* current CPU in the current thread. It is only valid inside |
98 | cpu_exec() */ | |
f240eb6f | 99 | __thread CPUState *current_cpu; |
2e70f6ef | 100 | /* 0 = Do not count executed instructions. |
bf20dc07 | 101 | 1 = Precise instruction counting. |
2e70f6ef | 102 | 2 = Adaptive rate instruction counting. */ |
5708fc66 | 103 | int use_icount; |
6a00d601 | 104 | |
e2eef170 | 105 | #if !defined(CONFIG_USER_ONLY) |
4346ae3e | 106 | |
1db8abb1 PB |
107 | typedef struct PhysPageEntry PhysPageEntry; |
108 | ||
109 | struct PhysPageEntry { | |
9736e55b | 110 | /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */ |
8b795765 | 111 | uint32_t skip : 6; |
9736e55b | 112 | /* index into phys_sections (!skip) or phys_map_nodes (skip) */ |
8b795765 | 113 | uint32_t ptr : 26; |
1db8abb1 PB |
114 | }; |
115 | ||
8b795765 MT |
116 | #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6) |
117 | ||
03f49957 | 118 | /* Size of the L2 (and L3, etc) page tables. */ |
57271d63 | 119 | #define ADDR_SPACE_BITS 64 |
03f49957 | 120 | |
026736ce | 121 | #define P_L2_BITS 9 |
03f49957 PB |
122 | #define P_L2_SIZE (1 << P_L2_BITS) |
123 | ||
124 | #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1) | |
125 | ||
126 | typedef PhysPageEntry Node[P_L2_SIZE]; | |
0475d94f | 127 | |
53cb28cb | 128 | typedef struct PhysPageMap { |
79e2b9ae PB |
129 | struct rcu_head rcu; |
130 | ||
53cb28cb MA |
131 | unsigned sections_nb; |
132 | unsigned sections_nb_alloc; | |
133 | unsigned nodes_nb; | |
134 | unsigned nodes_nb_alloc; | |
135 | Node *nodes; | |
136 | MemoryRegionSection *sections; | |
137 | } PhysPageMap; | |
138 | ||
1db8abb1 | 139 | struct AddressSpaceDispatch { |
79e2b9ae PB |
140 | struct rcu_head rcu; |
141 | ||
729633c2 | 142 | MemoryRegionSection *mru_section; |
1db8abb1 PB |
143 | /* This is a multi-level map on the physical address space. |
144 | * The bottom level has pointers to MemoryRegionSections. | |
145 | */ | |
146 | PhysPageEntry phys_map; | |
53cb28cb | 147 | PhysPageMap map; |
acc9d80b | 148 | AddressSpace *as; |
1db8abb1 PB |
149 | }; |
150 | ||
90260c6c JK |
151 | #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) |
152 | typedef struct subpage_t { | |
153 | MemoryRegion iomem; | |
acc9d80b | 154 | AddressSpace *as; |
90260c6c JK |
155 | hwaddr base; |
156 | uint16_t sub_section[TARGET_PAGE_SIZE]; | |
157 | } subpage_t; | |
158 | ||
b41aac4f LPF |
159 | #define PHYS_SECTION_UNASSIGNED 0 |
160 | #define PHYS_SECTION_NOTDIRTY 1 | |
161 | #define PHYS_SECTION_ROM 2 | |
162 | #define PHYS_SECTION_WATCH 3 | |
5312bd8b | 163 | |
e2eef170 | 164 | static void io_mem_init(void); |
62152b8a | 165 | static void memory_map_init(void); |
09daed84 | 166 | static void tcg_commit(MemoryListener *listener); |
e2eef170 | 167 | |
1ec9b909 | 168 | static MemoryRegion io_mem_watch; |
32857f4d PM |
169 | |
170 | /** | |
171 | * CPUAddressSpace: all the information a CPU needs about an AddressSpace | |
172 | * @cpu: the CPU whose AddressSpace this is | |
173 | * @as: the AddressSpace itself | |
174 | * @memory_dispatch: its dispatch pointer (cached, RCU protected) | |
175 | * @tcg_as_listener: listener for tracking changes to the AddressSpace | |
176 | */ | |
177 | struct CPUAddressSpace { | |
178 | CPUState *cpu; | |
179 | AddressSpace *as; | |
180 | struct AddressSpaceDispatch *memory_dispatch; | |
181 | MemoryListener tcg_as_listener; | |
182 | }; | |
183 | ||
6658ffb8 | 184 | #endif |
fd6ce8f6 | 185 | |
6d9a1304 | 186 | #if !defined(CONFIG_USER_ONLY) |
d6f2ea22 | 187 | |
53cb28cb | 188 | static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes) |
d6f2ea22 | 189 | { |
101420b8 | 190 | static unsigned alloc_hint = 16; |
53cb28cb | 191 | if (map->nodes_nb + nodes > map->nodes_nb_alloc) { |
101420b8 | 192 | map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint); |
53cb28cb MA |
193 | map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes); |
194 | map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc); | |
101420b8 | 195 | alloc_hint = map->nodes_nb_alloc; |
d6f2ea22 | 196 | } |
f7bf5461 AK |
197 | } |
198 | ||
db94604b | 199 | static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf) |
f7bf5461 AK |
200 | { |
201 | unsigned i; | |
8b795765 | 202 | uint32_t ret; |
db94604b PB |
203 | PhysPageEntry e; |
204 | PhysPageEntry *p; | |
f7bf5461 | 205 | |
53cb28cb | 206 | ret = map->nodes_nb++; |
db94604b | 207 | p = map->nodes[ret]; |
f7bf5461 | 208 | assert(ret != PHYS_MAP_NODE_NIL); |
53cb28cb | 209 | assert(ret != map->nodes_nb_alloc); |
db94604b PB |
210 | |
211 | e.skip = leaf ? 0 : 1; | |
212 | e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL; | |
03f49957 | 213 | for (i = 0; i < P_L2_SIZE; ++i) { |
db94604b | 214 | memcpy(&p[i], &e, sizeof(e)); |
d6f2ea22 | 215 | } |
f7bf5461 | 216 | return ret; |
d6f2ea22 AK |
217 | } |
218 | ||
53cb28cb MA |
219 | static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp, |
220 | hwaddr *index, hwaddr *nb, uint16_t leaf, | |
2999097b | 221 | int level) |
f7bf5461 AK |
222 | { |
223 | PhysPageEntry *p; | |
03f49957 | 224 | hwaddr step = (hwaddr)1 << (level * P_L2_BITS); |
108c49b8 | 225 | |
9736e55b | 226 | if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) { |
db94604b | 227 | lp->ptr = phys_map_node_alloc(map, level == 0); |
92e873b9 | 228 | } |
db94604b | 229 | p = map->nodes[lp->ptr]; |
03f49957 | 230 | lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)]; |
f7bf5461 | 231 | |
03f49957 | 232 | while (*nb && lp < &p[P_L2_SIZE]) { |
07f07b31 | 233 | if ((*index & (step - 1)) == 0 && *nb >= step) { |
9736e55b | 234 | lp->skip = 0; |
c19e8800 | 235 | lp->ptr = leaf; |
07f07b31 AK |
236 | *index += step; |
237 | *nb -= step; | |
2999097b | 238 | } else { |
53cb28cb | 239 | phys_page_set_level(map, lp, index, nb, leaf, level - 1); |
2999097b AK |
240 | } |
241 | ++lp; | |
f7bf5461 AK |
242 | } |
243 | } | |
244 | ||
ac1970fb | 245 | static void phys_page_set(AddressSpaceDispatch *d, |
a8170e5e | 246 | hwaddr index, hwaddr nb, |
2999097b | 247 | uint16_t leaf) |
f7bf5461 | 248 | { |
2999097b | 249 | /* Wildly overreserve - it doesn't matter much. */ |
53cb28cb | 250 | phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS); |
5cd2c5b6 | 251 | |
53cb28cb | 252 | phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1); |
92e873b9 FB |
253 | } |
254 | ||
b35ba30f MT |
255 | /* Compact a non leaf page entry. Simply detect that the entry has a single child, |
256 | * and update our entry so we can skip it and go directly to the destination. | |
257 | */ | |
258 | static void phys_page_compact(PhysPageEntry *lp, Node *nodes, unsigned long *compacted) | |
259 | { | |
260 | unsigned valid_ptr = P_L2_SIZE; | |
261 | int valid = 0; | |
262 | PhysPageEntry *p; | |
263 | int i; | |
264 | ||
265 | if (lp->ptr == PHYS_MAP_NODE_NIL) { | |
266 | return; | |
267 | } | |
268 | ||
269 | p = nodes[lp->ptr]; | |
270 | for (i = 0; i < P_L2_SIZE; i++) { | |
271 | if (p[i].ptr == PHYS_MAP_NODE_NIL) { | |
272 | continue; | |
273 | } | |
274 | ||
275 | valid_ptr = i; | |
276 | valid++; | |
277 | if (p[i].skip) { | |
278 | phys_page_compact(&p[i], nodes, compacted); | |
279 | } | |
280 | } | |
281 | ||
282 | /* We can only compress if there's only one child. */ | |
283 | if (valid != 1) { | |
284 | return; | |
285 | } | |
286 | ||
287 | assert(valid_ptr < P_L2_SIZE); | |
288 | ||
289 | /* Don't compress if it won't fit in the # of bits we have. */ | |
290 | if (lp->skip + p[valid_ptr].skip >= (1 << 3)) { | |
291 | return; | |
292 | } | |
293 | ||
294 | lp->ptr = p[valid_ptr].ptr; | |
295 | if (!p[valid_ptr].skip) { | |
296 | /* If our only child is a leaf, make this a leaf. */ | |
297 | /* By design, we should have made this node a leaf to begin with so we | |
298 | * should never reach here. | |
299 | * But since it's so simple to handle this, let's do it just in case we | |
300 | * change this rule. | |
301 | */ | |
302 | lp->skip = 0; | |
303 | } else { | |
304 | lp->skip += p[valid_ptr].skip; | |
305 | } | |
306 | } | |
307 | ||
308 | static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb) | |
309 | { | |
310 | DECLARE_BITMAP(compacted, nodes_nb); | |
311 | ||
312 | if (d->phys_map.skip) { | |
53cb28cb | 313 | phys_page_compact(&d->phys_map, d->map.nodes, compacted); |
b35ba30f MT |
314 | } |
315 | } | |
316 | ||
29cb533d FZ |
317 | static inline bool section_covers_addr(const MemoryRegionSection *section, |
318 | hwaddr addr) | |
319 | { | |
320 | /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means | |
321 | * the section must cover the entire address space. | |
322 | */ | |
323 | return section->size.hi || | |
324 | range_covers_byte(section->offset_within_address_space, | |
325 | section->size.lo, addr); | |
326 | } | |
327 | ||
97115a8d | 328 | static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr addr, |
9affd6fc | 329 | Node *nodes, MemoryRegionSection *sections) |
92e873b9 | 330 | { |
31ab2b4a | 331 | PhysPageEntry *p; |
97115a8d | 332 | hwaddr index = addr >> TARGET_PAGE_BITS; |
31ab2b4a | 333 | int i; |
f1f6e3b8 | 334 | |
9736e55b | 335 | for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) { |
c19e8800 | 336 | if (lp.ptr == PHYS_MAP_NODE_NIL) { |
9affd6fc | 337 | return §ions[PHYS_SECTION_UNASSIGNED]; |
31ab2b4a | 338 | } |
9affd6fc | 339 | p = nodes[lp.ptr]; |
03f49957 | 340 | lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)]; |
5312bd8b | 341 | } |
b35ba30f | 342 | |
29cb533d | 343 | if (section_covers_addr(§ions[lp.ptr], addr)) { |
b35ba30f MT |
344 | return §ions[lp.ptr]; |
345 | } else { | |
346 | return §ions[PHYS_SECTION_UNASSIGNED]; | |
347 | } | |
f3705d53 AK |
348 | } |
349 | ||
e5548617 BS |
350 | bool memory_region_is_unassigned(MemoryRegion *mr) |
351 | { | |
2a8e7499 | 352 | return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device |
5b6dd868 | 353 | && mr != &io_mem_watch; |
fd6ce8f6 | 354 | } |
149f54b5 | 355 | |
79e2b9ae | 356 | /* Called from RCU critical section */ |
c7086b4a | 357 | static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d, |
90260c6c JK |
358 | hwaddr addr, |
359 | bool resolve_subpage) | |
9f029603 | 360 | { |
729633c2 | 361 | MemoryRegionSection *section = atomic_read(&d->mru_section); |
90260c6c | 362 | subpage_t *subpage; |
729633c2 | 363 | bool update; |
90260c6c | 364 | |
729633c2 FZ |
365 | if (section && section != &d->map.sections[PHYS_SECTION_UNASSIGNED] && |
366 | section_covers_addr(section, addr)) { | |
367 | update = false; | |
368 | } else { | |
369 | section = phys_page_find(d->phys_map, addr, d->map.nodes, | |
370 | d->map.sections); | |
371 | update = true; | |
372 | } | |
90260c6c JK |
373 | if (resolve_subpage && section->mr->subpage) { |
374 | subpage = container_of(section->mr, subpage_t, iomem); | |
53cb28cb | 375 | section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]]; |
90260c6c | 376 | } |
729633c2 FZ |
377 | if (update) { |
378 | atomic_set(&d->mru_section, section); | |
379 | } | |
90260c6c | 380 | return section; |
9f029603 JK |
381 | } |
382 | ||
79e2b9ae | 383 | /* Called from RCU critical section */ |
90260c6c | 384 | static MemoryRegionSection * |
c7086b4a | 385 | address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat, |
90260c6c | 386 | hwaddr *plen, bool resolve_subpage) |
149f54b5 PB |
387 | { |
388 | MemoryRegionSection *section; | |
965eb2fc | 389 | MemoryRegion *mr; |
a87f3954 | 390 | Int128 diff; |
149f54b5 | 391 | |
c7086b4a | 392 | section = address_space_lookup_region(d, addr, resolve_subpage); |
149f54b5 PB |
393 | /* Compute offset within MemoryRegionSection */ |
394 | addr -= section->offset_within_address_space; | |
395 | ||
396 | /* Compute offset within MemoryRegion */ | |
397 | *xlat = addr + section->offset_within_region; | |
398 | ||
965eb2fc | 399 | mr = section->mr; |
b242e0e0 PB |
400 | |
401 | /* MMIO registers can be expected to perform full-width accesses based only | |
402 | * on their address, without considering adjacent registers that could | |
403 | * decode to completely different MemoryRegions. When such registers | |
404 | * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO | |
405 | * regions overlap wildly. For this reason we cannot clamp the accesses | |
406 | * here. | |
407 | * | |
408 | * If the length is small (as is the case for address_space_ldl/stl), | |
409 | * everything works fine. If the incoming length is large, however, | |
410 | * the caller really has to do the clamping through memory_access_size. | |
411 | */ | |
965eb2fc | 412 | if (memory_region_is_ram(mr)) { |
e4a511f8 | 413 | diff = int128_sub(section->size, int128_make64(addr)); |
965eb2fc PB |
414 | *plen = int128_get64(int128_min(diff, int128_make64(*plen))); |
415 | } | |
149f54b5 PB |
416 | return section; |
417 | } | |
90260c6c | 418 | |
41063e1e | 419 | /* Called from RCU critical section */ |
5c8a00ce PB |
420 | MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr, |
421 | hwaddr *xlat, hwaddr *plen, | |
422 | bool is_write) | |
90260c6c | 423 | { |
30951157 AK |
424 | IOMMUTLBEntry iotlb; |
425 | MemoryRegionSection *section; | |
426 | MemoryRegion *mr; | |
30951157 AK |
427 | |
428 | for (;;) { | |
79e2b9ae PB |
429 | AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch); |
430 | section = address_space_translate_internal(d, addr, &addr, plen, true); | |
30951157 AK |
431 | mr = section->mr; |
432 | ||
433 | if (!mr->iommu_ops) { | |
434 | break; | |
435 | } | |
436 | ||
8d7b8cb9 | 437 | iotlb = mr->iommu_ops->translate(mr, addr, is_write); |
30951157 AK |
438 | addr = ((iotlb.translated_addr & ~iotlb.addr_mask) |
439 | | (addr & iotlb.addr_mask)); | |
23820dbf | 440 | *plen = MIN(*plen, (addr | iotlb.addr_mask) - addr + 1); |
30951157 AK |
441 | if (!(iotlb.perm & (1 << is_write))) { |
442 | mr = &io_mem_unassigned; | |
443 | break; | |
444 | } | |
445 | ||
446 | as = iotlb.target_as; | |
447 | } | |
448 | ||
fe680d0d | 449 | if (xen_enabled() && memory_access_is_direct(mr, is_write)) { |
a87f3954 | 450 | hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr; |
23820dbf | 451 | *plen = MIN(page, *plen); |
a87f3954 PB |
452 | } |
453 | ||
30951157 AK |
454 | *xlat = addr; |
455 | return mr; | |
90260c6c JK |
456 | } |
457 | ||
79e2b9ae | 458 | /* Called from RCU critical section */ |
90260c6c | 459 | MemoryRegionSection * |
d7898cda | 460 | address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr, |
9d82b5a7 | 461 | hwaddr *xlat, hwaddr *plen) |
90260c6c | 462 | { |
30951157 | 463 | MemoryRegionSection *section; |
d7898cda PM |
464 | AddressSpaceDispatch *d = cpu->cpu_ases[asidx].memory_dispatch; |
465 | ||
466 | section = address_space_translate_internal(d, addr, xlat, plen, false); | |
30951157 AK |
467 | |
468 | assert(!section->mr->iommu_ops); | |
469 | return section; | |
90260c6c | 470 | } |
5b6dd868 | 471 | #endif |
fd6ce8f6 | 472 | |
b170fce3 | 473 | #if !defined(CONFIG_USER_ONLY) |
5b6dd868 BS |
474 | |
475 | static int cpu_common_post_load(void *opaque, int version_id) | |
fd6ce8f6 | 476 | { |
259186a7 | 477 | CPUState *cpu = opaque; |
a513fe19 | 478 | |
5b6dd868 BS |
479 | /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the |
480 | version_id is increased. */ | |
259186a7 | 481 | cpu->interrupt_request &= ~0x01; |
c01a71c1 | 482 | tlb_flush(cpu, 1); |
5b6dd868 BS |
483 | |
484 | return 0; | |
a513fe19 | 485 | } |
7501267e | 486 | |
6c3bff0e PD |
487 | static int cpu_common_pre_load(void *opaque) |
488 | { | |
489 | CPUState *cpu = opaque; | |
490 | ||
adee6424 | 491 | cpu->exception_index = -1; |
6c3bff0e PD |
492 | |
493 | return 0; | |
494 | } | |
495 | ||
496 | static bool cpu_common_exception_index_needed(void *opaque) | |
497 | { | |
498 | CPUState *cpu = opaque; | |
499 | ||
adee6424 | 500 | return tcg_enabled() && cpu->exception_index != -1; |
6c3bff0e PD |
501 | } |
502 | ||
503 | static const VMStateDescription vmstate_cpu_common_exception_index = { | |
504 | .name = "cpu_common/exception_index", | |
505 | .version_id = 1, | |
506 | .minimum_version_id = 1, | |
5cd8cada | 507 | .needed = cpu_common_exception_index_needed, |
6c3bff0e PD |
508 | .fields = (VMStateField[]) { |
509 | VMSTATE_INT32(exception_index, CPUState), | |
510 | VMSTATE_END_OF_LIST() | |
511 | } | |
512 | }; | |
513 | ||
bac05aa9 AS |
514 | static bool cpu_common_crash_occurred_needed(void *opaque) |
515 | { | |
516 | CPUState *cpu = opaque; | |
517 | ||
518 | return cpu->crash_occurred; | |
519 | } | |
520 | ||
521 | static const VMStateDescription vmstate_cpu_common_crash_occurred = { | |
522 | .name = "cpu_common/crash_occurred", | |
523 | .version_id = 1, | |
524 | .minimum_version_id = 1, | |
525 | .needed = cpu_common_crash_occurred_needed, | |
526 | .fields = (VMStateField[]) { | |
527 | VMSTATE_BOOL(crash_occurred, CPUState), | |
528 | VMSTATE_END_OF_LIST() | |
529 | } | |
530 | }; | |
531 | ||
1a1562f5 | 532 | const VMStateDescription vmstate_cpu_common = { |
5b6dd868 BS |
533 | .name = "cpu_common", |
534 | .version_id = 1, | |
535 | .minimum_version_id = 1, | |
6c3bff0e | 536 | .pre_load = cpu_common_pre_load, |
5b6dd868 | 537 | .post_load = cpu_common_post_load, |
35d08458 | 538 | .fields = (VMStateField[]) { |
259186a7 AF |
539 | VMSTATE_UINT32(halted, CPUState), |
540 | VMSTATE_UINT32(interrupt_request, CPUState), | |
5b6dd868 | 541 | VMSTATE_END_OF_LIST() |
6c3bff0e | 542 | }, |
5cd8cada JQ |
543 | .subsections = (const VMStateDescription*[]) { |
544 | &vmstate_cpu_common_exception_index, | |
bac05aa9 | 545 | &vmstate_cpu_common_crash_occurred, |
5cd8cada | 546 | NULL |
5b6dd868 BS |
547 | } |
548 | }; | |
1a1562f5 | 549 | |
5b6dd868 | 550 | #endif |
ea041c0e | 551 | |
38d8f5c8 | 552 | CPUState *qemu_get_cpu(int index) |
ea041c0e | 553 | { |
bdc44640 | 554 | CPUState *cpu; |
ea041c0e | 555 | |
bdc44640 | 556 | CPU_FOREACH(cpu) { |
55e5c285 | 557 | if (cpu->cpu_index == index) { |
bdc44640 | 558 | return cpu; |
55e5c285 | 559 | } |
ea041c0e | 560 | } |
5b6dd868 | 561 | |
bdc44640 | 562 | return NULL; |
ea041c0e FB |
563 | } |
564 | ||
09daed84 | 565 | #if !defined(CONFIG_USER_ONLY) |
56943e8c | 566 | void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx) |
09daed84 | 567 | { |
12ebc9a7 PM |
568 | CPUAddressSpace *newas; |
569 | ||
570 | /* Target code should have set num_ases before calling us */ | |
571 | assert(asidx < cpu->num_ases); | |
572 | ||
56943e8c PM |
573 | if (asidx == 0) { |
574 | /* address space 0 gets the convenience alias */ | |
575 | cpu->as = as; | |
576 | } | |
577 | ||
12ebc9a7 PM |
578 | /* KVM cannot currently support multiple address spaces. */ |
579 | assert(asidx == 0 || !kvm_enabled()); | |
09daed84 | 580 | |
12ebc9a7 PM |
581 | if (!cpu->cpu_ases) { |
582 | cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases); | |
09daed84 | 583 | } |
32857f4d | 584 | |
12ebc9a7 PM |
585 | newas = &cpu->cpu_ases[asidx]; |
586 | newas->cpu = cpu; | |
587 | newas->as = as; | |
56943e8c | 588 | if (tcg_enabled()) { |
12ebc9a7 PM |
589 | newas->tcg_as_listener.commit = tcg_commit; |
590 | memory_listener_register(&newas->tcg_as_listener, as); | |
56943e8c | 591 | } |
09daed84 | 592 | } |
651a5bc0 PM |
593 | |
594 | AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx) | |
595 | { | |
596 | /* Return the AddressSpace corresponding to the specified index */ | |
597 | return cpu->cpu_ases[asidx].as; | |
598 | } | |
09daed84 EI |
599 | #endif |
600 | ||
630eb0fa IM |
601 | static bool cpu_index_auto_assigned; |
602 | ||
a07f953e | 603 | static int cpu_get_free_index(void) |
b7bca733 BR |
604 | { |
605 | CPUState *some_cpu; | |
606 | int cpu_index = 0; | |
607 | ||
630eb0fa | 608 | cpu_index_auto_assigned = true; |
b7bca733 BR |
609 | CPU_FOREACH(some_cpu) { |
610 | cpu_index++; | |
611 | } | |
612 | return cpu_index; | |
613 | } | |
614 | ||
1c59eb39 BR |
615 | void cpu_exec_exit(CPUState *cpu) |
616 | { | |
9dfeca7c BR |
617 | CPUClass *cc = CPU_GET_CLASS(cpu); |
618 | ||
1c59eb39 | 619 | cpu_list_lock(); |
3b8c1761 | 620 | if (!QTAILQ_IN_USE(cpu, node)) { |
8b1b8350 | 621 | /* there is nothing to undo since cpu_exec_init() hasn't been called */ |
1c59eb39 | 622 | cpu_list_unlock(); |
1c59eb39 BR |
623 | return; |
624 | } | |
625 | ||
630eb0fa IM |
626 | assert(!(cpu_index_auto_assigned && cpu != QTAILQ_LAST(&cpus, CPUTailQ))); |
627 | ||
1c59eb39 | 628 | QTAILQ_REMOVE(&cpus, cpu, node); |
a07f953e | 629 | cpu->cpu_index = UNASSIGNED_CPU_INDEX; |
1c59eb39 | 630 | cpu_list_unlock(); |
9dfeca7c BR |
631 | |
632 | if (cc->vmsd != NULL) { | |
633 | vmstate_unregister(NULL, cc->vmsd, cpu); | |
634 | } | |
635 | if (qdev_get_vmsd(DEVICE(cpu)) == NULL) { | |
636 | vmstate_unregister(NULL, &vmstate_cpu_common, cpu); | |
637 | } | |
1c59eb39 BR |
638 | } |
639 | ||
4bad9e39 | 640 | void cpu_exec_init(CPUState *cpu, Error **errp) |
ea041c0e | 641 | { |
1bc7e522 | 642 | CPUClass *cc ATTRIBUTE_UNUSED = CPU_GET_CLASS(cpu); |
a07f953e | 643 | Error *local_err ATTRIBUTE_UNUSED = NULL; |
5b6dd868 | 644 | |
56943e8c | 645 | cpu->as = NULL; |
12ebc9a7 | 646 | cpu->num_ases = 0; |
56943e8c | 647 | |
291135b5 | 648 | #ifndef CONFIG_USER_ONLY |
291135b5 | 649 | cpu->thread_id = qemu_get_thread_id(); |
6731d864 PC |
650 | |
651 | /* This is a softmmu CPU object, so create a property for it | |
652 | * so users can wire up its memory. (This can't go in qom/cpu.c | |
653 | * because that file is compiled only once for both user-mode | |
654 | * and system builds.) The default if no link is set up is to use | |
655 | * the system address space. | |
656 | */ | |
657 | object_property_add_link(OBJECT(cpu), "memory", TYPE_MEMORY_REGION, | |
658 | (Object **)&cpu->memory, | |
659 | qdev_prop_allow_set_link_before_realize, | |
660 | OBJ_PROP_LINK_UNREF_ON_RELEASE, | |
661 | &error_abort); | |
662 | cpu->memory = system_memory; | |
663 | object_ref(OBJECT(cpu->memory)); | |
291135b5 EH |
664 | #endif |
665 | ||
5b6dd868 | 666 | cpu_list_lock(); |
a07f953e IM |
667 | if (cpu->cpu_index == UNASSIGNED_CPU_INDEX) { |
668 | cpu->cpu_index = cpu_get_free_index(); | |
669 | assert(cpu->cpu_index != UNASSIGNED_CPU_INDEX); | |
630eb0fa IM |
670 | } else { |
671 | assert(!cpu_index_auto_assigned); | |
5b6dd868 | 672 | } |
bdc44640 | 673 | QTAILQ_INSERT_TAIL(&cpus, cpu, node); |
5b6dd868 | 674 | cpu_list_unlock(); |
1bc7e522 IM |
675 | |
676 | #ifndef CONFIG_USER_ONLY | |
e0d47944 | 677 | if (qdev_get_vmsd(DEVICE(cpu)) == NULL) { |
741da0d3 | 678 | vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu); |
e0d47944 | 679 | } |
b170fce3 | 680 | if (cc->vmsd != NULL) { |
741da0d3 | 681 | vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu); |
b170fce3 | 682 | } |
741da0d3 | 683 | #endif |
ea041c0e FB |
684 | } |
685 | ||
94df27fd | 686 | #if defined(CONFIG_USER_ONLY) |
00b941e5 | 687 | static void breakpoint_invalidate(CPUState *cpu, target_ulong pc) |
94df27fd PB |
688 | { |
689 | tb_invalidate_phys_page_range(pc, pc + 1, 0); | |
690 | } | |
691 | #else | |
00b941e5 | 692 | static void breakpoint_invalidate(CPUState *cpu, target_ulong pc) |
1e7855a5 | 693 | { |
5232e4c7 PM |
694 | MemTxAttrs attrs; |
695 | hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs); | |
696 | int asidx = cpu_asidx_from_attrs(cpu, attrs); | |
e8262a1b | 697 | if (phys != -1) { |
5232e4c7 | 698 | tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as, |
29d8ec7b | 699 | phys | (pc & ~TARGET_PAGE_MASK)); |
e8262a1b | 700 | } |
1e7855a5 | 701 | } |
c27004ec | 702 | #endif |
d720b93d | 703 | |
c527ee8f | 704 | #if defined(CONFIG_USER_ONLY) |
75a34036 | 705 | void cpu_watchpoint_remove_all(CPUState *cpu, int mask) |
c527ee8f PB |
706 | |
707 | { | |
708 | } | |
709 | ||
3ee887e8 PM |
710 | int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len, |
711 | int flags) | |
712 | { | |
713 | return -ENOSYS; | |
714 | } | |
715 | ||
716 | void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint) | |
717 | { | |
718 | } | |
719 | ||
75a34036 | 720 | int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, |
c527ee8f PB |
721 | int flags, CPUWatchpoint **watchpoint) |
722 | { | |
723 | return -ENOSYS; | |
724 | } | |
725 | #else | |
6658ffb8 | 726 | /* Add a watchpoint. */ |
75a34036 | 727 | int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, |
a1d1bb31 | 728 | int flags, CPUWatchpoint **watchpoint) |
6658ffb8 | 729 | { |
c0ce998e | 730 | CPUWatchpoint *wp; |
6658ffb8 | 731 | |
05068c0d | 732 | /* forbid ranges which are empty or run off the end of the address space */ |
07e2863d | 733 | if (len == 0 || (addr + len - 1) < addr) { |
75a34036 AF |
734 | error_report("tried to set invalid watchpoint at %" |
735 | VADDR_PRIx ", len=%" VADDR_PRIu, addr, len); | |
b4051334 AL |
736 | return -EINVAL; |
737 | } | |
7267c094 | 738 | wp = g_malloc(sizeof(*wp)); |
a1d1bb31 AL |
739 | |
740 | wp->vaddr = addr; | |
05068c0d | 741 | wp->len = len; |
a1d1bb31 AL |
742 | wp->flags = flags; |
743 | ||
2dc9f411 | 744 | /* keep all GDB-injected watchpoints in front */ |
ff4700b0 AF |
745 | if (flags & BP_GDB) { |
746 | QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry); | |
747 | } else { | |
748 | QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry); | |
749 | } | |
6658ffb8 | 750 | |
31b030d4 | 751 | tlb_flush_page(cpu, addr); |
a1d1bb31 AL |
752 | |
753 | if (watchpoint) | |
754 | *watchpoint = wp; | |
755 | return 0; | |
6658ffb8 PB |
756 | } |
757 | ||
a1d1bb31 | 758 | /* Remove a specific watchpoint. */ |
75a34036 | 759 | int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len, |
a1d1bb31 | 760 | int flags) |
6658ffb8 | 761 | { |
a1d1bb31 | 762 | CPUWatchpoint *wp; |
6658ffb8 | 763 | |
ff4700b0 | 764 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { |
05068c0d | 765 | if (addr == wp->vaddr && len == wp->len |
6e140f28 | 766 | && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) { |
75a34036 | 767 | cpu_watchpoint_remove_by_ref(cpu, wp); |
6658ffb8 PB |
768 | return 0; |
769 | } | |
770 | } | |
a1d1bb31 | 771 | return -ENOENT; |
6658ffb8 PB |
772 | } |
773 | ||
a1d1bb31 | 774 | /* Remove a specific watchpoint by reference. */ |
75a34036 | 775 | void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint) |
a1d1bb31 | 776 | { |
ff4700b0 | 777 | QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry); |
7d03f82f | 778 | |
31b030d4 | 779 | tlb_flush_page(cpu, watchpoint->vaddr); |
a1d1bb31 | 780 | |
7267c094 | 781 | g_free(watchpoint); |
a1d1bb31 AL |
782 | } |
783 | ||
784 | /* Remove all matching watchpoints. */ | |
75a34036 | 785 | void cpu_watchpoint_remove_all(CPUState *cpu, int mask) |
a1d1bb31 | 786 | { |
c0ce998e | 787 | CPUWatchpoint *wp, *next; |
a1d1bb31 | 788 | |
ff4700b0 | 789 | QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) { |
75a34036 AF |
790 | if (wp->flags & mask) { |
791 | cpu_watchpoint_remove_by_ref(cpu, wp); | |
792 | } | |
c0ce998e | 793 | } |
7d03f82f | 794 | } |
05068c0d PM |
795 | |
796 | /* Return true if this watchpoint address matches the specified | |
797 | * access (ie the address range covered by the watchpoint overlaps | |
798 | * partially or completely with the address range covered by the | |
799 | * access). | |
800 | */ | |
801 | static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp, | |
802 | vaddr addr, | |
803 | vaddr len) | |
804 | { | |
805 | /* We know the lengths are non-zero, but a little caution is | |
806 | * required to avoid errors in the case where the range ends | |
807 | * exactly at the top of the address space and so addr + len | |
808 | * wraps round to zero. | |
809 | */ | |
810 | vaddr wpend = wp->vaddr + wp->len - 1; | |
811 | vaddr addrend = addr + len - 1; | |
812 | ||
813 | return !(addr > wpend || wp->vaddr > addrend); | |
814 | } | |
815 | ||
c527ee8f | 816 | #endif |
7d03f82f | 817 | |
a1d1bb31 | 818 | /* Add a breakpoint. */ |
b3310ab3 | 819 | int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, |
a1d1bb31 | 820 | CPUBreakpoint **breakpoint) |
4c3a88a2 | 821 | { |
c0ce998e | 822 | CPUBreakpoint *bp; |
3b46e624 | 823 | |
7267c094 | 824 | bp = g_malloc(sizeof(*bp)); |
4c3a88a2 | 825 | |
a1d1bb31 AL |
826 | bp->pc = pc; |
827 | bp->flags = flags; | |
828 | ||
2dc9f411 | 829 | /* keep all GDB-injected breakpoints in front */ |
00b941e5 | 830 | if (flags & BP_GDB) { |
f0c3c505 | 831 | QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry); |
00b941e5 | 832 | } else { |
f0c3c505 | 833 | QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry); |
00b941e5 | 834 | } |
3b46e624 | 835 | |
f0c3c505 | 836 | breakpoint_invalidate(cpu, pc); |
a1d1bb31 | 837 | |
00b941e5 | 838 | if (breakpoint) { |
a1d1bb31 | 839 | *breakpoint = bp; |
00b941e5 | 840 | } |
4c3a88a2 | 841 | return 0; |
4c3a88a2 FB |
842 | } |
843 | ||
a1d1bb31 | 844 | /* Remove a specific breakpoint. */ |
b3310ab3 | 845 | int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags) |
a1d1bb31 | 846 | { |
a1d1bb31 AL |
847 | CPUBreakpoint *bp; |
848 | ||
f0c3c505 | 849 | QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { |
a1d1bb31 | 850 | if (bp->pc == pc && bp->flags == flags) { |
b3310ab3 | 851 | cpu_breakpoint_remove_by_ref(cpu, bp); |
a1d1bb31 AL |
852 | return 0; |
853 | } | |
7d03f82f | 854 | } |
a1d1bb31 | 855 | return -ENOENT; |
7d03f82f EI |
856 | } |
857 | ||
a1d1bb31 | 858 | /* Remove a specific breakpoint by reference. */ |
b3310ab3 | 859 | void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint) |
4c3a88a2 | 860 | { |
f0c3c505 AF |
861 | QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry); |
862 | ||
863 | breakpoint_invalidate(cpu, breakpoint->pc); | |
a1d1bb31 | 864 | |
7267c094 | 865 | g_free(breakpoint); |
a1d1bb31 AL |
866 | } |
867 | ||
868 | /* Remove all matching breakpoints. */ | |
b3310ab3 | 869 | void cpu_breakpoint_remove_all(CPUState *cpu, int mask) |
a1d1bb31 | 870 | { |
c0ce998e | 871 | CPUBreakpoint *bp, *next; |
a1d1bb31 | 872 | |
f0c3c505 | 873 | QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) { |
b3310ab3 AF |
874 | if (bp->flags & mask) { |
875 | cpu_breakpoint_remove_by_ref(cpu, bp); | |
876 | } | |
c0ce998e | 877 | } |
4c3a88a2 FB |
878 | } |
879 | ||
c33a346e FB |
880 | /* enable or disable single step mode. EXCP_DEBUG is returned by the |
881 | CPU loop after each instruction */ | |
3825b28f | 882 | void cpu_single_step(CPUState *cpu, int enabled) |
c33a346e | 883 | { |
ed2803da AF |
884 | if (cpu->singlestep_enabled != enabled) { |
885 | cpu->singlestep_enabled = enabled; | |
886 | if (kvm_enabled()) { | |
38e478ec | 887 | kvm_update_guest_debug(cpu, 0); |
ed2803da | 888 | } else { |
ccbb4d44 | 889 | /* must flush all the translated code to avoid inconsistencies */ |
e22a25c9 | 890 | /* XXX: only flush what is necessary */ |
bbd77c18 | 891 | tb_flush(cpu); |
e22a25c9 | 892 | } |
c33a346e | 893 | } |
c33a346e FB |
894 | } |
895 | ||
a47dddd7 | 896 | void cpu_abort(CPUState *cpu, const char *fmt, ...) |
7501267e FB |
897 | { |
898 | va_list ap; | |
493ae1f0 | 899 | va_list ap2; |
7501267e FB |
900 | |
901 | va_start(ap, fmt); | |
493ae1f0 | 902 | va_copy(ap2, ap); |
7501267e FB |
903 | fprintf(stderr, "qemu: fatal: "); |
904 | vfprintf(stderr, fmt, ap); | |
905 | fprintf(stderr, "\n"); | |
878096ee | 906 | cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP); |
013a2942 | 907 | if (qemu_log_separate()) { |
93fcfe39 AL |
908 | qemu_log("qemu: fatal: "); |
909 | qemu_log_vprintf(fmt, ap2); | |
910 | qemu_log("\n"); | |
a0762859 | 911 | log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP); |
31b1a7b4 | 912 | qemu_log_flush(); |
93fcfe39 | 913 | qemu_log_close(); |
924edcae | 914 | } |
493ae1f0 | 915 | va_end(ap2); |
f9373291 | 916 | va_end(ap); |
7615936e | 917 | replay_finish(); |
fd052bf6 RV |
918 | #if defined(CONFIG_USER_ONLY) |
919 | { | |
920 | struct sigaction act; | |
921 | sigfillset(&act.sa_mask); | |
922 | act.sa_handler = SIG_DFL; | |
923 | sigaction(SIGABRT, &act, NULL); | |
924 | } | |
925 | #endif | |
7501267e FB |
926 | abort(); |
927 | } | |
928 | ||
0124311e | 929 | #if !defined(CONFIG_USER_ONLY) |
0dc3f44a | 930 | /* Called from RCU critical section */ |
041603fe PB |
931 | static RAMBlock *qemu_get_ram_block(ram_addr_t addr) |
932 | { | |
933 | RAMBlock *block; | |
934 | ||
43771539 | 935 | block = atomic_rcu_read(&ram_list.mru_block); |
9b8424d5 | 936 | if (block && addr - block->offset < block->max_length) { |
68851b98 | 937 | return block; |
041603fe | 938 | } |
0dc3f44a | 939 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
9b8424d5 | 940 | if (addr - block->offset < block->max_length) { |
041603fe PB |
941 | goto found; |
942 | } | |
943 | } | |
944 | ||
945 | fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); | |
946 | abort(); | |
947 | ||
948 | found: | |
43771539 PB |
949 | /* It is safe to write mru_block outside the iothread lock. This |
950 | * is what happens: | |
951 | * | |
952 | * mru_block = xxx | |
953 | * rcu_read_unlock() | |
954 | * xxx removed from list | |
955 | * rcu_read_lock() | |
956 | * read mru_block | |
957 | * mru_block = NULL; | |
958 | * call_rcu(reclaim_ramblock, xxx); | |
959 | * rcu_read_unlock() | |
960 | * | |
961 | * atomic_rcu_set is not needed here. The block was already published | |
962 | * when it was placed into the list. Here we're just making an extra | |
963 | * copy of the pointer. | |
964 | */ | |
041603fe PB |
965 | ram_list.mru_block = block; |
966 | return block; | |
967 | } | |
968 | ||
a2f4d5be | 969 | static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length) |
d24981d3 | 970 | { |
9a13565d | 971 | CPUState *cpu; |
041603fe | 972 | ram_addr_t start1; |
a2f4d5be JQ |
973 | RAMBlock *block; |
974 | ram_addr_t end; | |
975 | ||
976 | end = TARGET_PAGE_ALIGN(start + length); | |
977 | start &= TARGET_PAGE_MASK; | |
d24981d3 | 978 | |
0dc3f44a | 979 | rcu_read_lock(); |
041603fe PB |
980 | block = qemu_get_ram_block(start); |
981 | assert(block == qemu_get_ram_block(end - 1)); | |
1240be24 | 982 | start1 = (uintptr_t)ramblock_ptr(block, start - block->offset); |
9a13565d PC |
983 | CPU_FOREACH(cpu) { |
984 | tlb_reset_dirty(cpu, start1, length); | |
985 | } | |
0dc3f44a | 986 | rcu_read_unlock(); |
d24981d3 JQ |
987 | } |
988 | ||
5579c7f3 | 989 | /* Note: start and end must be within the same ram block. */ |
03eebc9e SH |
990 | bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start, |
991 | ram_addr_t length, | |
992 | unsigned client) | |
1ccde1cb | 993 | { |
5b82b703 | 994 | DirtyMemoryBlocks *blocks; |
03eebc9e | 995 | unsigned long end, page; |
5b82b703 | 996 | bool dirty = false; |
03eebc9e SH |
997 | |
998 | if (length == 0) { | |
999 | return false; | |
1000 | } | |
f23db169 | 1001 | |
03eebc9e SH |
1002 | end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; |
1003 | page = start >> TARGET_PAGE_BITS; | |
5b82b703 SH |
1004 | |
1005 | rcu_read_lock(); | |
1006 | ||
1007 | blocks = atomic_rcu_read(&ram_list.dirty_memory[client]); | |
1008 | ||
1009 | while (page < end) { | |
1010 | unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; | |
1011 | unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE; | |
1012 | unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset); | |
1013 | ||
1014 | dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx], | |
1015 | offset, num); | |
1016 | page += num; | |
1017 | } | |
1018 | ||
1019 | rcu_read_unlock(); | |
03eebc9e SH |
1020 | |
1021 | if (dirty && tcg_enabled()) { | |
a2f4d5be | 1022 | tlb_reset_dirty_range_all(start, length); |
5579c7f3 | 1023 | } |
03eebc9e SH |
1024 | |
1025 | return dirty; | |
1ccde1cb FB |
1026 | } |
1027 | ||
79e2b9ae | 1028 | /* Called from RCU critical section */ |
bb0e627a | 1029 | hwaddr memory_region_section_get_iotlb(CPUState *cpu, |
149f54b5 PB |
1030 | MemoryRegionSection *section, |
1031 | target_ulong vaddr, | |
1032 | hwaddr paddr, hwaddr xlat, | |
1033 | int prot, | |
1034 | target_ulong *address) | |
e5548617 | 1035 | { |
a8170e5e | 1036 | hwaddr iotlb; |
e5548617 BS |
1037 | CPUWatchpoint *wp; |
1038 | ||
cc5bea60 | 1039 | if (memory_region_is_ram(section->mr)) { |
e5548617 | 1040 | /* Normal RAM. */ |
e4e69794 | 1041 | iotlb = memory_region_get_ram_addr(section->mr) + xlat; |
e5548617 | 1042 | if (!section->readonly) { |
b41aac4f | 1043 | iotlb |= PHYS_SECTION_NOTDIRTY; |
e5548617 | 1044 | } else { |
b41aac4f | 1045 | iotlb |= PHYS_SECTION_ROM; |
e5548617 BS |
1046 | } |
1047 | } else { | |
0b8e2c10 PM |
1048 | AddressSpaceDispatch *d; |
1049 | ||
1050 | d = atomic_rcu_read(§ion->address_space->dispatch); | |
1051 | iotlb = section - d->map.sections; | |
149f54b5 | 1052 | iotlb += xlat; |
e5548617 BS |
1053 | } |
1054 | ||
1055 | /* Make accesses to pages with watchpoints go via the | |
1056 | watchpoint trap routines. */ | |
ff4700b0 | 1057 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { |
05068c0d | 1058 | if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) { |
e5548617 BS |
1059 | /* Avoid trapping reads of pages with a write breakpoint. */ |
1060 | if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) { | |
b41aac4f | 1061 | iotlb = PHYS_SECTION_WATCH + paddr; |
e5548617 BS |
1062 | *address |= TLB_MMIO; |
1063 | break; | |
1064 | } | |
1065 | } | |
1066 | } | |
1067 | ||
1068 | return iotlb; | |
1069 | } | |
9fa3e853 FB |
1070 | #endif /* defined(CONFIG_USER_ONLY) */ |
1071 | ||
e2eef170 | 1072 | #if !defined(CONFIG_USER_ONLY) |
8da3ff18 | 1073 | |
c227f099 | 1074 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, |
5312bd8b | 1075 | uint16_t section); |
acc9d80b | 1076 | static subpage_t *subpage_init(AddressSpace *as, hwaddr base); |
54688b1e | 1077 | |
a2b257d6 IM |
1078 | static void *(*phys_mem_alloc)(size_t size, uint64_t *align) = |
1079 | qemu_anon_ram_alloc; | |
91138037 MA |
1080 | |
1081 | /* | |
1082 | * Set a custom physical guest memory alloator. | |
1083 | * Accelerators with unusual needs may need this. Hopefully, we can | |
1084 | * get rid of it eventually. | |
1085 | */ | |
a2b257d6 | 1086 | void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align)) |
91138037 MA |
1087 | { |
1088 | phys_mem_alloc = alloc; | |
1089 | } | |
1090 | ||
53cb28cb MA |
1091 | static uint16_t phys_section_add(PhysPageMap *map, |
1092 | MemoryRegionSection *section) | |
5312bd8b | 1093 | { |
68f3f65b PB |
1094 | /* The physical section number is ORed with a page-aligned |
1095 | * pointer to produce the iotlb entries. Thus it should | |
1096 | * never overflow into the page-aligned value. | |
1097 | */ | |
53cb28cb | 1098 | assert(map->sections_nb < TARGET_PAGE_SIZE); |
68f3f65b | 1099 | |
53cb28cb MA |
1100 | if (map->sections_nb == map->sections_nb_alloc) { |
1101 | map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16); | |
1102 | map->sections = g_renew(MemoryRegionSection, map->sections, | |
1103 | map->sections_nb_alloc); | |
5312bd8b | 1104 | } |
53cb28cb | 1105 | map->sections[map->sections_nb] = *section; |
dfde4e6e | 1106 | memory_region_ref(section->mr); |
53cb28cb | 1107 | return map->sections_nb++; |
5312bd8b AK |
1108 | } |
1109 | ||
058bc4b5 PB |
1110 | static void phys_section_destroy(MemoryRegion *mr) |
1111 | { | |
55b4e80b DS |
1112 | bool have_sub_page = mr->subpage; |
1113 | ||
dfde4e6e PB |
1114 | memory_region_unref(mr); |
1115 | ||
55b4e80b | 1116 | if (have_sub_page) { |
058bc4b5 | 1117 | subpage_t *subpage = container_of(mr, subpage_t, iomem); |
b4fefef9 | 1118 | object_unref(OBJECT(&subpage->iomem)); |
058bc4b5 PB |
1119 | g_free(subpage); |
1120 | } | |
1121 | } | |
1122 | ||
6092666e | 1123 | static void phys_sections_free(PhysPageMap *map) |
5312bd8b | 1124 | { |
9affd6fc PB |
1125 | while (map->sections_nb > 0) { |
1126 | MemoryRegionSection *section = &map->sections[--map->sections_nb]; | |
058bc4b5 PB |
1127 | phys_section_destroy(section->mr); |
1128 | } | |
9affd6fc PB |
1129 | g_free(map->sections); |
1130 | g_free(map->nodes); | |
5312bd8b AK |
1131 | } |
1132 | ||
ac1970fb | 1133 | static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section) |
0f0cb164 AK |
1134 | { |
1135 | subpage_t *subpage; | |
a8170e5e | 1136 | hwaddr base = section->offset_within_address_space |
0f0cb164 | 1137 | & TARGET_PAGE_MASK; |
97115a8d | 1138 | MemoryRegionSection *existing = phys_page_find(d->phys_map, base, |
53cb28cb | 1139 | d->map.nodes, d->map.sections); |
0f0cb164 AK |
1140 | MemoryRegionSection subsection = { |
1141 | .offset_within_address_space = base, | |
052e87b0 | 1142 | .size = int128_make64(TARGET_PAGE_SIZE), |
0f0cb164 | 1143 | }; |
a8170e5e | 1144 | hwaddr start, end; |
0f0cb164 | 1145 | |
f3705d53 | 1146 | assert(existing->mr->subpage || existing->mr == &io_mem_unassigned); |
0f0cb164 | 1147 | |
f3705d53 | 1148 | if (!(existing->mr->subpage)) { |
acc9d80b | 1149 | subpage = subpage_init(d->as, base); |
3be91e86 | 1150 | subsection.address_space = d->as; |
0f0cb164 | 1151 | subsection.mr = &subpage->iomem; |
ac1970fb | 1152 | phys_page_set(d, base >> TARGET_PAGE_BITS, 1, |
53cb28cb | 1153 | phys_section_add(&d->map, &subsection)); |
0f0cb164 | 1154 | } else { |
f3705d53 | 1155 | subpage = container_of(existing->mr, subpage_t, iomem); |
0f0cb164 AK |
1156 | } |
1157 | start = section->offset_within_address_space & ~TARGET_PAGE_MASK; | |
052e87b0 | 1158 | end = start + int128_get64(section->size) - 1; |
53cb28cb MA |
1159 | subpage_register(subpage, start, end, |
1160 | phys_section_add(&d->map, section)); | |
0f0cb164 AK |
1161 | } |
1162 | ||
1163 | ||
052e87b0 PB |
1164 | static void register_multipage(AddressSpaceDispatch *d, |
1165 | MemoryRegionSection *section) | |
33417e70 | 1166 | { |
a8170e5e | 1167 | hwaddr start_addr = section->offset_within_address_space; |
53cb28cb | 1168 | uint16_t section_index = phys_section_add(&d->map, section); |
052e87b0 PB |
1169 | uint64_t num_pages = int128_get64(int128_rshift(section->size, |
1170 | TARGET_PAGE_BITS)); | |
dd81124b | 1171 | |
733d5ef5 PB |
1172 | assert(num_pages); |
1173 | phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index); | |
33417e70 FB |
1174 | } |
1175 | ||
ac1970fb | 1176 | static void mem_add(MemoryListener *listener, MemoryRegionSection *section) |
0f0cb164 | 1177 | { |
89ae337a | 1178 | AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener); |
00752703 | 1179 | AddressSpaceDispatch *d = as->next_dispatch; |
99b9cc06 | 1180 | MemoryRegionSection now = *section, remain = *section; |
052e87b0 | 1181 | Int128 page_size = int128_make64(TARGET_PAGE_SIZE); |
0f0cb164 | 1182 | |
733d5ef5 PB |
1183 | if (now.offset_within_address_space & ~TARGET_PAGE_MASK) { |
1184 | uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space) | |
1185 | - now.offset_within_address_space; | |
1186 | ||
052e87b0 | 1187 | now.size = int128_min(int128_make64(left), now.size); |
ac1970fb | 1188 | register_subpage(d, &now); |
733d5ef5 | 1189 | } else { |
052e87b0 | 1190 | now.size = int128_zero(); |
733d5ef5 | 1191 | } |
052e87b0 PB |
1192 | while (int128_ne(remain.size, now.size)) { |
1193 | remain.size = int128_sub(remain.size, now.size); | |
1194 | remain.offset_within_address_space += int128_get64(now.size); | |
1195 | remain.offset_within_region += int128_get64(now.size); | |
69b67646 | 1196 | now = remain; |
052e87b0 | 1197 | if (int128_lt(remain.size, page_size)) { |
733d5ef5 | 1198 | register_subpage(d, &now); |
88266249 | 1199 | } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) { |
052e87b0 | 1200 | now.size = page_size; |
ac1970fb | 1201 | register_subpage(d, &now); |
69b67646 | 1202 | } else { |
052e87b0 | 1203 | now.size = int128_and(now.size, int128_neg(page_size)); |
ac1970fb | 1204 | register_multipage(d, &now); |
69b67646 | 1205 | } |
0f0cb164 AK |
1206 | } |
1207 | } | |
1208 | ||
62a2744c SY |
1209 | void qemu_flush_coalesced_mmio_buffer(void) |
1210 | { | |
1211 | if (kvm_enabled()) | |
1212 | kvm_flush_coalesced_mmio_buffer(); | |
1213 | } | |
1214 | ||
b2a8658e UD |
1215 | void qemu_mutex_lock_ramlist(void) |
1216 | { | |
1217 | qemu_mutex_lock(&ram_list.mutex); | |
1218 | } | |
1219 | ||
1220 | void qemu_mutex_unlock_ramlist(void) | |
1221 | { | |
1222 | qemu_mutex_unlock(&ram_list.mutex); | |
1223 | } | |
1224 | ||
e1e84ba0 | 1225 | #ifdef __linux__ |
04b16653 AW |
1226 | static void *file_ram_alloc(RAMBlock *block, |
1227 | ram_addr_t memory, | |
7f56e740 PB |
1228 | const char *path, |
1229 | Error **errp) | |
c902760f | 1230 | { |
fd97fd44 | 1231 | bool unlink_on_error = false; |
c902760f | 1232 | char *filename; |
8ca761f6 PF |
1233 | char *sanitized_name; |
1234 | char *c; | |
056b68af | 1235 | void *area = MAP_FAILED; |
5c3ece79 | 1236 | int fd = -1; |
e1fb6471 | 1237 | int64_t page_size; |
c902760f MT |
1238 | |
1239 | if (kvm_enabled() && !kvm_has_sync_mmu()) { | |
7f56e740 PB |
1240 | error_setg(errp, |
1241 | "host lacks kvm mmu notifiers, -mem-path unsupported"); | |
fd97fd44 | 1242 | return NULL; |
c902760f MT |
1243 | } |
1244 | ||
fd97fd44 MA |
1245 | for (;;) { |
1246 | fd = open(path, O_RDWR); | |
1247 | if (fd >= 0) { | |
1248 | /* @path names an existing file, use it */ | |
1249 | break; | |
8d31d6b6 | 1250 | } |
fd97fd44 MA |
1251 | if (errno == ENOENT) { |
1252 | /* @path names a file that doesn't exist, create it */ | |
1253 | fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644); | |
1254 | if (fd >= 0) { | |
1255 | unlink_on_error = true; | |
1256 | break; | |
1257 | } | |
1258 | } else if (errno == EISDIR) { | |
1259 | /* @path names a directory, create a file there */ | |
1260 | /* Make name safe to use with mkstemp by replacing '/' with '_'. */ | |
1261 | sanitized_name = g_strdup(memory_region_name(block->mr)); | |
1262 | for (c = sanitized_name; *c != '\0'; c++) { | |
1263 | if (*c == '/') { | |
1264 | *c = '_'; | |
1265 | } | |
1266 | } | |
8ca761f6 | 1267 | |
fd97fd44 MA |
1268 | filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path, |
1269 | sanitized_name); | |
1270 | g_free(sanitized_name); | |
8d31d6b6 | 1271 | |
fd97fd44 MA |
1272 | fd = mkstemp(filename); |
1273 | if (fd >= 0) { | |
1274 | unlink(filename); | |
1275 | g_free(filename); | |
1276 | break; | |
1277 | } | |
1278 | g_free(filename); | |
8d31d6b6 | 1279 | } |
fd97fd44 MA |
1280 | if (errno != EEXIST && errno != EINTR) { |
1281 | error_setg_errno(errp, errno, | |
1282 | "can't open backing store %s for guest RAM", | |
1283 | path); | |
1284 | goto error; | |
1285 | } | |
1286 | /* | |
1287 | * Try again on EINTR and EEXIST. The latter happens when | |
1288 | * something else creates the file between our two open(). | |
1289 | */ | |
8d31d6b6 | 1290 | } |
c902760f | 1291 | |
e1fb6471 | 1292 | page_size = qemu_fd_getpagesize(fd); |
d2f39add | 1293 | block->mr->align = MAX(page_size, QEMU_VMALLOC_ALIGN); |
fd97fd44 | 1294 | |
e1fb6471 | 1295 | if (memory < page_size) { |
fd97fd44 MA |
1296 | error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to " |
1297 | "or larger than page size 0x%" PRIx64, | |
e1fb6471 | 1298 | memory, page_size); |
f9a49dfa | 1299 | goto error; |
c902760f | 1300 | } |
c902760f | 1301 | |
e1fb6471 | 1302 | memory = ROUND_UP(memory, page_size); |
c902760f MT |
1303 | |
1304 | /* | |
1305 | * ftruncate is not supported by hugetlbfs in older | |
1306 | * hosts, so don't bother bailing out on errors. | |
1307 | * If anything goes wrong with it under other filesystems, | |
1308 | * mmap will fail. | |
1309 | */ | |
7f56e740 | 1310 | if (ftruncate(fd, memory)) { |
9742bf26 | 1311 | perror("ftruncate"); |
7f56e740 | 1312 | } |
c902760f | 1313 | |
d2f39add DD |
1314 | area = qemu_ram_mmap(fd, memory, block->mr->align, |
1315 | block->flags & RAM_SHARED); | |
c902760f | 1316 | if (area == MAP_FAILED) { |
7f56e740 | 1317 | error_setg_errno(errp, errno, |
fd97fd44 | 1318 | "unable to map backing store for guest RAM"); |
f9a49dfa | 1319 | goto error; |
c902760f | 1320 | } |
ef36fa14 MT |
1321 | |
1322 | if (mem_prealloc) { | |
056b68af IM |
1323 | os_mem_prealloc(fd, area, memory, errp); |
1324 | if (errp && *errp) { | |
1325 | goto error; | |
1326 | } | |
ef36fa14 MT |
1327 | } |
1328 | ||
04b16653 | 1329 | block->fd = fd; |
c902760f | 1330 | return area; |
f9a49dfa MT |
1331 | |
1332 | error: | |
056b68af IM |
1333 | if (area != MAP_FAILED) { |
1334 | qemu_ram_munmap(area, memory); | |
1335 | } | |
fd97fd44 MA |
1336 | if (unlink_on_error) { |
1337 | unlink(path); | |
1338 | } | |
5c3ece79 PB |
1339 | if (fd != -1) { |
1340 | close(fd); | |
1341 | } | |
f9a49dfa | 1342 | return NULL; |
c902760f MT |
1343 | } |
1344 | #endif | |
1345 | ||
0dc3f44a | 1346 | /* Called with the ramlist lock held. */ |
d17b5288 | 1347 | static ram_addr_t find_ram_offset(ram_addr_t size) |
04b16653 AW |
1348 | { |
1349 | RAMBlock *block, *next_block; | |
3e837b2c | 1350 | ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX; |
04b16653 | 1351 | |
49cd9ac6 SH |
1352 | assert(size != 0); /* it would hand out same offset multiple times */ |
1353 | ||
0dc3f44a | 1354 | if (QLIST_EMPTY_RCU(&ram_list.blocks)) { |
04b16653 | 1355 | return 0; |
0d53d9fe | 1356 | } |
04b16653 | 1357 | |
0dc3f44a | 1358 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
f15fbc4b | 1359 | ram_addr_t end, next = RAM_ADDR_MAX; |
04b16653 | 1360 | |
62be4e3a | 1361 | end = block->offset + block->max_length; |
04b16653 | 1362 | |
0dc3f44a | 1363 | QLIST_FOREACH_RCU(next_block, &ram_list.blocks, next) { |
04b16653 AW |
1364 | if (next_block->offset >= end) { |
1365 | next = MIN(next, next_block->offset); | |
1366 | } | |
1367 | } | |
1368 | if (next - end >= size && next - end < mingap) { | |
3e837b2c | 1369 | offset = end; |
04b16653 AW |
1370 | mingap = next - end; |
1371 | } | |
1372 | } | |
3e837b2c AW |
1373 | |
1374 | if (offset == RAM_ADDR_MAX) { | |
1375 | fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n", | |
1376 | (uint64_t)size); | |
1377 | abort(); | |
1378 | } | |
1379 | ||
04b16653 AW |
1380 | return offset; |
1381 | } | |
1382 | ||
652d7ec2 | 1383 | ram_addr_t last_ram_offset(void) |
d17b5288 AW |
1384 | { |
1385 | RAMBlock *block; | |
1386 | ram_addr_t last = 0; | |
1387 | ||
0dc3f44a MD |
1388 | rcu_read_lock(); |
1389 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | |
62be4e3a | 1390 | last = MAX(last, block->offset + block->max_length); |
0d53d9fe | 1391 | } |
0dc3f44a | 1392 | rcu_read_unlock(); |
d17b5288 AW |
1393 | return last; |
1394 | } | |
1395 | ||
ddb97f1d JB |
1396 | static void qemu_ram_setup_dump(void *addr, ram_addr_t size) |
1397 | { | |
1398 | int ret; | |
ddb97f1d JB |
1399 | |
1400 | /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */ | |
47c8ca53 | 1401 | if (!machine_dump_guest_core(current_machine)) { |
ddb97f1d JB |
1402 | ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP); |
1403 | if (ret) { | |
1404 | perror("qemu_madvise"); | |
1405 | fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, " | |
1406 | "but dump_guest_core=off specified\n"); | |
1407 | } | |
1408 | } | |
1409 | } | |
1410 | ||
422148d3 DDAG |
1411 | const char *qemu_ram_get_idstr(RAMBlock *rb) |
1412 | { | |
1413 | return rb->idstr; | |
1414 | } | |
1415 | ||
ae3a7047 | 1416 | /* Called with iothread lock held. */ |
fa53a0e5 | 1417 | void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev) |
20cfe881 | 1418 | { |
fa53a0e5 | 1419 | RAMBlock *block; |
20cfe881 | 1420 | |
c5705a77 AK |
1421 | assert(new_block); |
1422 | assert(!new_block->idstr[0]); | |
84b89d78 | 1423 | |
09e5ab63 AL |
1424 | if (dev) { |
1425 | char *id = qdev_get_dev_path(dev); | |
84b89d78 CM |
1426 | if (id) { |
1427 | snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id); | |
7267c094 | 1428 | g_free(id); |
84b89d78 CM |
1429 | } |
1430 | } | |
1431 | pstrcat(new_block->idstr, sizeof(new_block->idstr), name); | |
1432 | ||
ab0a9956 | 1433 | rcu_read_lock(); |
0dc3f44a | 1434 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
fa53a0e5 GA |
1435 | if (block != new_block && |
1436 | !strcmp(block->idstr, new_block->idstr)) { | |
84b89d78 CM |
1437 | fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n", |
1438 | new_block->idstr); | |
1439 | abort(); | |
1440 | } | |
1441 | } | |
0dc3f44a | 1442 | rcu_read_unlock(); |
c5705a77 AK |
1443 | } |
1444 | ||
ae3a7047 | 1445 | /* Called with iothread lock held. */ |
fa53a0e5 | 1446 | void qemu_ram_unset_idstr(RAMBlock *block) |
20cfe881 | 1447 | { |
ae3a7047 MD |
1448 | /* FIXME: arch_init.c assumes that this is not called throughout |
1449 | * migration. Ignore the problem since hot-unplug during migration | |
1450 | * does not work anyway. | |
1451 | */ | |
20cfe881 HT |
1452 | if (block) { |
1453 | memset(block->idstr, 0, sizeof(block->idstr)); | |
1454 | } | |
1455 | } | |
1456 | ||
8490fc78 LC |
1457 | static int memory_try_enable_merging(void *addr, size_t len) |
1458 | { | |
75cc7f01 | 1459 | if (!machine_mem_merge(current_machine)) { |
8490fc78 LC |
1460 | /* disabled by the user */ |
1461 | return 0; | |
1462 | } | |
1463 | ||
1464 | return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE); | |
1465 | } | |
1466 | ||
62be4e3a MT |
1467 | /* Only legal before guest might have detected the memory size: e.g. on |
1468 | * incoming migration, or right after reset. | |
1469 | * | |
1470 | * As memory core doesn't know how is memory accessed, it is up to | |
1471 | * resize callback to update device state and/or add assertions to detect | |
1472 | * misuse, if necessary. | |
1473 | */ | |
fa53a0e5 | 1474 | int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp) |
62be4e3a | 1475 | { |
62be4e3a MT |
1476 | assert(block); |
1477 | ||
4ed023ce | 1478 | newsize = HOST_PAGE_ALIGN(newsize); |
129ddaf3 | 1479 | |
62be4e3a MT |
1480 | if (block->used_length == newsize) { |
1481 | return 0; | |
1482 | } | |
1483 | ||
1484 | if (!(block->flags & RAM_RESIZEABLE)) { | |
1485 | error_setg_errno(errp, EINVAL, | |
1486 | "Length mismatch: %s: 0x" RAM_ADDR_FMT | |
1487 | " in != 0x" RAM_ADDR_FMT, block->idstr, | |
1488 | newsize, block->used_length); | |
1489 | return -EINVAL; | |
1490 | } | |
1491 | ||
1492 | if (block->max_length < newsize) { | |
1493 | error_setg_errno(errp, EINVAL, | |
1494 | "Length too large: %s: 0x" RAM_ADDR_FMT | |
1495 | " > 0x" RAM_ADDR_FMT, block->idstr, | |
1496 | newsize, block->max_length); | |
1497 | return -EINVAL; | |
1498 | } | |
1499 | ||
1500 | cpu_physical_memory_clear_dirty_range(block->offset, block->used_length); | |
1501 | block->used_length = newsize; | |
58d2707e PB |
1502 | cpu_physical_memory_set_dirty_range(block->offset, block->used_length, |
1503 | DIRTY_CLIENTS_ALL); | |
62be4e3a MT |
1504 | memory_region_set_size(block->mr, newsize); |
1505 | if (block->resized) { | |
1506 | block->resized(block->idstr, newsize, block->host); | |
1507 | } | |
1508 | return 0; | |
1509 | } | |
1510 | ||
5b82b703 SH |
1511 | /* Called with ram_list.mutex held */ |
1512 | static void dirty_memory_extend(ram_addr_t old_ram_size, | |
1513 | ram_addr_t new_ram_size) | |
1514 | { | |
1515 | ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size, | |
1516 | DIRTY_MEMORY_BLOCK_SIZE); | |
1517 | ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size, | |
1518 | DIRTY_MEMORY_BLOCK_SIZE); | |
1519 | int i; | |
1520 | ||
1521 | /* Only need to extend if block count increased */ | |
1522 | if (new_num_blocks <= old_num_blocks) { | |
1523 | return; | |
1524 | } | |
1525 | ||
1526 | for (i = 0; i < DIRTY_MEMORY_NUM; i++) { | |
1527 | DirtyMemoryBlocks *old_blocks; | |
1528 | DirtyMemoryBlocks *new_blocks; | |
1529 | int j; | |
1530 | ||
1531 | old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]); | |
1532 | new_blocks = g_malloc(sizeof(*new_blocks) + | |
1533 | sizeof(new_blocks->blocks[0]) * new_num_blocks); | |
1534 | ||
1535 | if (old_num_blocks) { | |
1536 | memcpy(new_blocks->blocks, old_blocks->blocks, | |
1537 | old_num_blocks * sizeof(old_blocks->blocks[0])); | |
1538 | } | |
1539 | ||
1540 | for (j = old_num_blocks; j < new_num_blocks; j++) { | |
1541 | new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE); | |
1542 | } | |
1543 | ||
1544 | atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks); | |
1545 | ||
1546 | if (old_blocks) { | |
1547 | g_free_rcu(old_blocks, rcu); | |
1548 | } | |
1549 | } | |
1550 | } | |
1551 | ||
528f46af | 1552 | static void ram_block_add(RAMBlock *new_block, Error **errp) |
c5705a77 | 1553 | { |
e1c57ab8 | 1554 | RAMBlock *block; |
0d53d9fe | 1555 | RAMBlock *last_block = NULL; |
2152f5ca | 1556 | ram_addr_t old_ram_size, new_ram_size; |
37aa7a0e | 1557 | Error *err = NULL; |
2152f5ca JQ |
1558 | |
1559 | old_ram_size = last_ram_offset() >> TARGET_PAGE_BITS; | |
c5705a77 | 1560 | |
b2a8658e | 1561 | qemu_mutex_lock_ramlist(); |
9b8424d5 | 1562 | new_block->offset = find_ram_offset(new_block->max_length); |
e1c57ab8 PB |
1563 | |
1564 | if (!new_block->host) { | |
1565 | if (xen_enabled()) { | |
9b8424d5 | 1566 | xen_ram_alloc(new_block->offset, new_block->max_length, |
37aa7a0e MA |
1567 | new_block->mr, &err); |
1568 | if (err) { | |
1569 | error_propagate(errp, err); | |
1570 | qemu_mutex_unlock_ramlist(); | |
39c350ee | 1571 | return; |
37aa7a0e | 1572 | } |
e1c57ab8 | 1573 | } else { |
9b8424d5 | 1574 | new_block->host = phys_mem_alloc(new_block->max_length, |
a2b257d6 | 1575 | &new_block->mr->align); |
39228250 | 1576 | if (!new_block->host) { |
ef701d7b HT |
1577 | error_setg_errno(errp, errno, |
1578 | "cannot set up guest memory '%s'", | |
1579 | memory_region_name(new_block->mr)); | |
1580 | qemu_mutex_unlock_ramlist(); | |
39c350ee | 1581 | return; |
39228250 | 1582 | } |
9b8424d5 | 1583 | memory_try_enable_merging(new_block->host, new_block->max_length); |
6977dfe6 | 1584 | } |
c902760f | 1585 | } |
94a6b54f | 1586 | |
dd631697 LZ |
1587 | new_ram_size = MAX(old_ram_size, |
1588 | (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS); | |
1589 | if (new_ram_size > old_ram_size) { | |
1590 | migration_bitmap_extend(old_ram_size, new_ram_size); | |
5b82b703 | 1591 | dirty_memory_extend(old_ram_size, new_ram_size); |
dd631697 | 1592 | } |
0d53d9fe MD |
1593 | /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ, |
1594 | * QLIST (which has an RCU-friendly variant) does not have insertion at | |
1595 | * tail, so save the last element in last_block. | |
1596 | */ | |
0dc3f44a | 1597 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
0d53d9fe | 1598 | last_block = block; |
9b8424d5 | 1599 | if (block->max_length < new_block->max_length) { |
abb26d63 PB |
1600 | break; |
1601 | } | |
1602 | } | |
1603 | if (block) { | |
0dc3f44a | 1604 | QLIST_INSERT_BEFORE_RCU(block, new_block, next); |
0d53d9fe | 1605 | } else if (last_block) { |
0dc3f44a | 1606 | QLIST_INSERT_AFTER_RCU(last_block, new_block, next); |
0d53d9fe | 1607 | } else { /* list is empty */ |
0dc3f44a | 1608 | QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next); |
abb26d63 | 1609 | } |
0d6d3c87 | 1610 | ram_list.mru_block = NULL; |
94a6b54f | 1611 | |
0dc3f44a MD |
1612 | /* Write list before version */ |
1613 | smp_wmb(); | |
f798b07f | 1614 | ram_list.version++; |
b2a8658e | 1615 | qemu_mutex_unlock_ramlist(); |
f798b07f | 1616 | |
9b8424d5 | 1617 | cpu_physical_memory_set_dirty_range(new_block->offset, |
58d2707e PB |
1618 | new_block->used_length, |
1619 | DIRTY_CLIENTS_ALL); | |
94a6b54f | 1620 | |
a904c911 PB |
1621 | if (new_block->host) { |
1622 | qemu_ram_setup_dump(new_block->host, new_block->max_length); | |
1623 | qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE); | |
c2cd627d | 1624 | /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */ |
a904c911 | 1625 | qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK); |
e1c57ab8 | 1626 | } |
94a6b54f | 1627 | } |
e9a1ab19 | 1628 | |
0b183fc8 | 1629 | #ifdef __linux__ |
528f46af FZ |
1630 | RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr, |
1631 | bool share, const char *mem_path, | |
1632 | Error **errp) | |
e1c57ab8 PB |
1633 | { |
1634 | RAMBlock *new_block; | |
ef701d7b | 1635 | Error *local_err = NULL; |
e1c57ab8 PB |
1636 | |
1637 | if (xen_enabled()) { | |
7f56e740 | 1638 | error_setg(errp, "-mem-path not supported with Xen"); |
528f46af | 1639 | return NULL; |
e1c57ab8 PB |
1640 | } |
1641 | ||
1642 | if (phys_mem_alloc != qemu_anon_ram_alloc) { | |
1643 | /* | |
1644 | * file_ram_alloc() needs to allocate just like | |
1645 | * phys_mem_alloc, but we haven't bothered to provide | |
1646 | * a hook there. | |
1647 | */ | |
7f56e740 PB |
1648 | error_setg(errp, |
1649 | "-mem-path not supported with this accelerator"); | |
528f46af | 1650 | return NULL; |
e1c57ab8 PB |
1651 | } |
1652 | ||
4ed023ce | 1653 | size = HOST_PAGE_ALIGN(size); |
e1c57ab8 PB |
1654 | new_block = g_malloc0(sizeof(*new_block)); |
1655 | new_block->mr = mr; | |
9b8424d5 MT |
1656 | new_block->used_length = size; |
1657 | new_block->max_length = size; | |
dbcb8981 | 1658 | new_block->flags = share ? RAM_SHARED : 0; |
7f56e740 PB |
1659 | new_block->host = file_ram_alloc(new_block, size, |
1660 | mem_path, errp); | |
1661 | if (!new_block->host) { | |
1662 | g_free(new_block); | |
528f46af | 1663 | return NULL; |
7f56e740 PB |
1664 | } |
1665 | ||
528f46af | 1666 | ram_block_add(new_block, &local_err); |
ef701d7b HT |
1667 | if (local_err) { |
1668 | g_free(new_block); | |
1669 | error_propagate(errp, local_err); | |
528f46af | 1670 | return NULL; |
ef701d7b | 1671 | } |
528f46af | 1672 | return new_block; |
e1c57ab8 | 1673 | } |
0b183fc8 | 1674 | #endif |
e1c57ab8 | 1675 | |
62be4e3a | 1676 | static |
528f46af FZ |
1677 | RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size, |
1678 | void (*resized)(const char*, | |
1679 | uint64_t length, | |
1680 | void *host), | |
1681 | void *host, bool resizeable, | |
1682 | MemoryRegion *mr, Error **errp) | |
e1c57ab8 PB |
1683 | { |
1684 | RAMBlock *new_block; | |
ef701d7b | 1685 | Error *local_err = NULL; |
e1c57ab8 | 1686 | |
4ed023ce DDAG |
1687 | size = HOST_PAGE_ALIGN(size); |
1688 | max_size = HOST_PAGE_ALIGN(max_size); | |
e1c57ab8 PB |
1689 | new_block = g_malloc0(sizeof(*new_block)); |
1690 | new_block->mr = mr; | |
62be4e3a | 1691 | new_block->resized = resized; |
9b8424d5 MT |
1692 | new_block->used_length = size; |
1693 | new_block->max_length = max_size; | |
62be4e3a | 1694 | assert(max_size >= size); |
e1c57ab8 PB |
1695 | new_block->fd = -1; |
1696 | new_block->host = host; | |
1697 | if (host) { | |
7bd4f430 | 1698 | new_block->flags |= RAM_PREALLOC; |
e1c57ab8 | 1699 | } |
62be4e3a MT |
1700 | if (resizeable) { |
1701 | new_block->flags |= RAM_RESIZEABLE; | |
1702 | } | |
528f46af | 1703 | ram_block_add(new_block, &local_err); |
ef701d7b HT |
1704 | if (local_err) { |
1705 | g_free(new_block); | |
1706 | error_propagate(errp, local_err); | |
528f46af | 1707 | return NULL; |
ef701d7b | 1708 | } |
528f46af | 1709 | return new_block; |
e1c57ab8 PB |
1710 | } |
1711 | ||
528f46af | 1712 | RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host, |
62be4e3a MT |
1713 | MemoryRegion *mr, Error **errp) |
1714 | { | |
1715 | return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp); | |
1716 | } | |
1717 | ||
528f46af | 1718 | RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp) |
6977dfe6 | 1719 | { |
62be4e3a MT |
1720 | return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp); |
1721 | } | |
1722 | ||
528f46af | 1723 | RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz, |
62be4e3a MT |
1724 | void (*resized)(const char*, |
1725 | uint64_t length, | |
1726 | void *host), | |
1727 | MemoryRegion *mr, Error **errp) | |
1728 | { | |
1729 | return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp); | |
6977dfe6 YT |
1730 | } |
1731 | ||
43771539 PB |
1732 | static void reclaim_ramblock(RAMBlock *block) |
1733 | { | |
1734 | if (block->flags & RAM_PREALLOC) { | |
1735 | ; | |
1736 | } else if (xen_enabled()) { | |
1737 | xen_invalidate_map_cache_entry(block->host); | |
1738 | #ifndef _WIN32 | |
1739 | } else if (block->fd >= 0) { | |
2f3a2bb1 | 1740 | qemu_ram_munmap(block->host, block->max_length); |
43771539 PB |
1741 | close(block->fd); |
1742 | #endif | |
1743 | } else { | |
1744 | qemu_anon_ram_free(block->host, block->max_length); | |
1745 | } | |
1746 | g_free(block); | |
1747 | } | |
1748 | ||
f1060c55 | 1749 | void qemu_ram_free(RAMBlock *block) |
e9a1ab19 | 1750 | { |
85bc2a15 MAL |
1751 | if (!block) { |
1752 | return; | |
1753 | } | |
1754 | ||
b2a8658e | 1755 | qemu_mutex_lock_ramlist(); |
f1060c55 FZ |
1756 | QLIST_REMOVE_RCU(block, next); |
1757 | ram_list.mru_block = NULL; | |
1758 | /* Write list before version */ | |
1759 | smp_wmb(); | |
1760 | ram_list.version++; | |
1761 | call_rcu(block, reclaim_ramblock, rcu); | |
b2a8658e | 1762 | qemu_mutex_unlock_ramlist(); |
e9a1ab19 FB |
1763 | } |
1764 | ||
cd19cfa2 HY |
1765 | #ifndef _WIN32 |
1766 | void qemu_ram_remap(ram_addr_t addr, ram_addr_t length) | |
1767 | { | |
1768 | RAMBlock *block; | |
1769 | ram_addr_t offset; | |
1770 | int flags; | |
1771 | void *area, *vaddr; | |
1772 | ||
0dc3f44a | 1773 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
cd19cfa2 | 1774 | offset = addr - block->offset; |
9b8424d5 | 1775 | if (offset < block->max_length) { |
1240be24 | 1776 | vaddr = ramblock_ptr(block, offset); |
7bd4f430 | 1777 | if (block->flags & RAM_PREALLOC) { |
cd19cfa2 | 1778 | ; |
dfeaf2ab MA |
1779 | } else if (xen_enabled()) { |
1780 | abort(); | |
cd19cfa2 HY |
1781 | } else { |
1782 | flags = MAP_FIXED; | |
3435f395 | 1783 | if (block->fd >= 0) { |
dbcb8981 PB |
1784 | flags |= (block->flags & RAM_SHARED ? |
1785 | MAP_SHARED : MAP_PRIVATE); | |
3435f395 MA |
1786 | area = mmap(vaddr, length, PROT_READ | PROT_WRITE, |
1787 | flags, block->fd, offset); | |
cd19cfa2 | 1788 | } else { |
2eb9fbaa MA |
1789 | /* |
1790 | * Remap needs to match alloc. Accelerators that | |
1791 | * set phys_mem_alloc never remap. If they did, | |
1792 | * we'd need a remap hook here. | |
1793 | */ | |
1794 | assert(phys_mem_alloc == qemu_anon_ram_alloc); | |
1795 | ||
cd19cfa2 HY |
1796 | flags |= MAP_PRIVATE | MAP_ANONYMOUS; |
1797 | area = mmap(vaddr, length, PROT_READ | PROT_WRITE, | |
1798 | flags, -1, 0); | |
cd19cfa2 HY |
1799 | } |
1800 | if (area != vaddr) { | |
f15fbc4b AP |
1801 | fprintf(stderr, "Could not remap addr: " |
1802 | RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n", | |
cd19cfa2 HY |
1803 | length, addr); |
1804 | exit(1); | |
1805 | } | |
8490fc78 | 1806 | memory_try_enable_merging(vaddr, length); |
ddb97f1d | 1807 | qemu_ram_setup_dump(vaddr, length); |
cd19cfa2 | 1808 | } |
cd19cfa2 HY |
1809 | } |
1810 | } | |
1811 | } | |
1812 | #endif /* !_WIN32 */ | |
1813 | ||
1b5ec234 | 1814 | /* Return a host pointer to ram allocated with qemu_ram_alloc. |
ae3a7047 MD |
1815 | * This should not be used for general purpose DMA. Use address_space_map |
1816 | * or address_space_rw instead. For local memory (e.g. video ram) that the | |
1817 | * device owns, use memory_region_get_ram_ptr. | |
0dc3f44a | 1818 | * |
49b24afc | 1819 | * Called within RCU critical section. |
1b5ec234 | 1820 | */ |
0878d0e1 | 1821 | void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr) |
1b5ec234 | 1822 | { |
3655cb9c GA |
1823 | RAMBlock *block = ram_block; |
1824 | ||
1825 | if (block == NULL) { | |
1826 | block = qemu_get_ram_block(addr); | |
0878d0e1 | 1827 | addr -= block->offset; |
3655cb9c | 1828 | } |
ae3a7047 MD |
1829 | |
1830 | if (xen_enabled() && block->host == NULL) { | |
0d6d3c87 PB |
1831 | /* We need to check if the requested address is in the RAM |
1832 | * because we don't want to map the entire memory in QEMU. | |
1833 | * In that case just map until the end of the page. | |
1834 | */ | |
1835 | if (block->offset == 0) { | |
49b24afc | 1836 | return xen_map_cache(addr, 0, 0); |
0d6d3c87 | 1837 | } |
ae3a7047 MD |
1838 | |
1839 | block->host = xen_map_cache(block->offset, block->max_length, 1); | |
0d6d3c87 | 1840 | } |
0878d0e1 | 1841 | return ramblock_ptr(block, addr); |
dc828ca1 PB |
1842 | } |
1843 | ||
0878d0e1 | 1844 | /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr |
ae3a7047 | 1845 | * but takes a size argument. |
0dc3f44a | 1846 | * |
e81bcda5 | 1847 | * Called within RCU critical section. |
ae3a7047 | 1848 | */ |
3655cb9c GA |
1849 | static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr, |
1850 | hwaddr *size) | |
38bee5dc | 1851 | { |
3655cb9c | 1852 | RAMBlock *block = ram_block; |
8ab934f9 SS |
1853 | if (*size == 0) { |
1854 | return NULL; | |
1855 | } | |
e81bcda5 | 1856 | |
3655cb9c GA |
1857 | if (block == NULL) { |
1858 | block = qemu_get_ram_block(addr); | |
0878d0e1 | 1859 | addr -= block->offset; |
3655cb9c | 1860 | } |
0878d0e1 | 1861 | *size = MIN(*size, block->max_length - addr); |
e81bcda5 PB |
1862 | |
1863 | if (xen_enabled() && block->host == NULL) { | |
1864 | /* We need to check if the requested address is in the RAM | |
1865 | * because we don't want to map the entire memory in QEMU. | |
1866 | * In that case just map the requested area. | |
1867 | */ | |
1868 | if (block->offset == 0) { | |
1869 | return xen_map_cache(addr, *size, 1); | |
38bee5dc SS |
1870 | } |
1871 | ||
e81bcda5 | 1872 | block->host = xen_map_cache(block->offset, block->max_length, 1); |
38bee5dc | 1873 | } |
e81bcda5 | 1874 | |
0878d0e1 | 1875 | return ramblock_ptr(block, addr); |
38bee5dc SS |
1876 | } |
1877 | ||
422148d3 DDAG |
1878 | /* |
1879 | * Translates a host ptr back to a RAMBlock, a ram_addr and an offset | |
1880 | * in that RAMBlock. | |
1881 | * | |
1882 | * ptr: Host pointer to look up | |
1883 | * round_offset: If true round the result offset down to a page boundary | |
1884 | * *ram_addr: set to result ram_addr | |
1885 | * *offset: set to result offset within the RAMBlock | |
1886 | * | |
1887 | * Returns: RAMBlock (or NULL if not found) | |
ae3a7047 MD |
1888 | * |
1889 | * By the time this function returns, the returned pointer is not protected | |
1890 | * by RCU anymore. If the caller is not within an RCU critical section and | |
1891 | * does not hold the iothread lock, it must have other means of protecting the | |
1892 | * pointer, such as a reference to the region that includes the incoming | |
1893 | * ram_addr_t. | |
1894 | */ | |
422148d3 | 1895 | RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset, |
422148d3 | 1896 | ram_addr_t *offset) |
5579c7f3 | 1897 | { |
94a6b54f PB |
1898 | RAMBlock *block; |
1899 | uint8_t *host = ptr; | |
1900 | ||
868bb33f | 1901 | if (xen_enabled()) { |
f615f396 | 1902 | ram_addr_t ram_addr; |
0dc3f44a | 1903 | rcu_read_lock(); |
f615f396 PB |
1904 | ram_addr = xen_ram_addr_from_mapcache(ptr); |
1905 | block = qemu_get_ram_block(ram_addr); | |
422148d3 | 1906 | if (block) { |
d6b6aec4 | 1907 | *offset = ram_addr - block->offset; |
422148d3 | 1908 | } |
0dc3f44a | 1909 | rcu_read_unlock(); |
422148d3 | 1910 | return block; |
712c2b41 SS |
1911 | } |
1912 | ||
0dc3f44a MD |
1913 | rcu_read_lock(); |
1914 | block = atomic_rcu_read(&ram_list.mru_block); | |
9b8424d5 | 1915 | if (block && block->host && host - block->host < block->max_length) { |
23887b79 PB |
1916 | goto found; |
1917 | } | |
1918 | ||
0dc3f44a | 1919 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
432d268c JN |
1920 | /* This case append when the block is not mapped. */ |
1921 | if (block->host == NULL) { | |
1922 | continue; | |
1923 | } | |
9b8424d5 | 1924 | if (host - block->host < block->max_length) { |
23887b79 | 1925 | goto found; |
f471a17e | 1926 | } |
94a6b54f | 1927 | } |
432d268c | 1928 | |
0dc3f44a | 1929 | rcu_read_unlock(); |
1b5ec234 | 1930 | return NULL; |
23887b79 PB |
1931 | |
1932 | found: | |
422148d3 DDAG |
1933 | *offset = (host - block->host); |
1934 | if (round_offset) { | |
1935 | *offset &= TARGET_PAGE_MASK; | |
1936 | } | |
0dc3f44a | 1937 | rcu_read_unlock(); |
422148d3 DDAG |
1938 | return block; |
1939 | } | |
1940 | ||
e3dd7493 DDAG |
1941 | /* |
1942 | * Finds the named RAMBlock | |
1943 | * | |
1944 | * name: The name of RAMBlock to find | |
1945 | * | |
1946 | * Returns: RAMBlock (or NULL if not found) | |
1947 | */ | |
1948 | RAMBlock *qemu_ram_block_by_name(const char *name) | |
1949 | { | |
1950 | RAMBlock *block; | |
1951 | ||
1952 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | |
1953 | if (!strcmp(name, block->idstr)) { | |
1954 | return block; | |
1955 | } | |
1956 | } | |
1957 | ||
1958 | return NULL; | |
1959 | } | |
1960 | ||
422148d3 DDAG |
1961 | /* Some of the softmmu routines need to translate from a host pointer |
1962 | (typically a TLB entry) back to a ram offset. */ | |
07bdaa41 | 1963 | ram_addr_t qemu_ram_addr_from_host(void *ptr) |
422148d3 DDAG |
1964 | { |
1965 | RAMBlock *block; | |
f615f396 | 1966 | ram_addr_t offset; |
422148d3 | 1967 | |
f615f396 | 1968 | block = qemu_ram_block_from_host(ptr, false, &offset); |
422148d3 | 1969 | if (!block) { |
07bdaa41 | 1970 | return RAM_ADDR_INVALID; |
422148d3 DDAG |
1971 | } |
1972 | ||
07bdaa41 | 1973 | return block->offset + offset; |
e890261f | 1974 | } |
f471a17e | 1975 | |
49b24afc | 1976 | /* Called within RCU critical section. */ |
a8170e5e | 1977 | static void notdirty_mem_write(void *opaque, hwaddr ram_addr, |
0e0df1e2 | 1978 | uint64_t val, unsigned size) |
9fa3e853 | 1979 | { |
52159192 | 1980 | if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) { |
0e0df1e2 | 1981 | tb_invalidate_phys_page_fast(ram_addr, size); |
3a7d929e | 1982 | } |
0e0df1e2 AK |
1983 | switch (size) { |
1984 | case 1: | |
0878d0e1 | 1985 | stb_p(qemu_map_ram_ptr(NULL, ram_addr), val); |
0e0df1e2 AK |
1986 | break; |
1987 | case 2: | |
0878d0e1 | 1988 | stw_p(qemu_map_ram_ptr(NULL, ram_addr), val); |
0e0df1e2 AK |
1989 | break; |
1990 | case 4: | |
0878d0e1 | 1991 | stl_p(qemu_map_ram_ptr(NULL, ram_addr), val); |
0e0df1e2 AK |
1992 | break; |
1993 | default: | |
1994 | abort(); | |
3a7d929e | 1995 | } |
58d2707e PB |
1996 | /* Set both VGA and migration bits for simplicity and to remove |
1997 | * the notdirty callback faster. | |
1998 | */ | |
1999 | cpu_physical_memory_set_dirty_range(ram_addr, size, | |
2000 | DIRTY_CLIENTS_NOCODE); | |
f23db169 FB |
2001 | /* we remove the notdirty callback only if the code has been |
2002 | flushed */ | |
a2cd8c85 | 2003 | if (!cpu_physical_memory_is_clean(ram_addr)) { |
bcae01e4 | 2004 | tlb_set_dirty(current_cpu, current_cpu->mem_io_vaddr); |
4917cf44 | 2005 | } |
9fa3e853 FB |
2006 | } |
2007 | ||
b018ddf6 PB |
2008 | static bool notdirty_mem_accepts(void *opaque, hwaddr addr, |
2009 | unsigned size, bool is_write) | |
2010 | { | |
2011 | return is_write; | |
2012 | } | |
2013 | ||
0e0df1e2 | 2014 | static const MemoryRegionOps notdirty_mem_ops = { |
0e0df1e2 | 2015 | .write = notdirty_mem_write, |
b018ddf6 | 2016 | .valid.accepts = notdirty_mem_accepts, |
0e0df1e2 | 2017 | .endianness = DEVICE_NATIVE_ENDIAN, |
1ccde1cb FB |
2018 | }; |
2019 | ||
0f459d16 | 2020 | /* Generate a debug exception if a watchpoint has been hit. */ |
66b9b43c | 2021 | static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags) |
0f459d16 | 2022 | { |
93afeade | 2023 | CPUState *cpu = current_cpu; |
568496c0 | 2024 | CPUClass *cc = CPU_GET_CLASS(cpu); |
93afeade | 2025 | CPUArchState *env = cpu->env_ptr; |
06d55cc1 | 2026 | target_ulong pc, cs_base; |
0f459d16 | 2027 | target_ulong vaddr; |
a1d1bb31 | 2028 | CPUWatchpoint *wp; |
89fee74a | 2029 | uint32_t cpu_flags; |
0f459d16 | 2030 | |
ff4700b0 | 2031 | if (cpu->watchpoint_hit) { |
06d55cc1 AL |
2032 | /* We re-entered the check after replacing the TB. Now raise |
2033 | * the debug interrupt so that is will trigger after the | |
2034 | * current instruction. */ | |
93afeade | 2035 | cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG); |
06d55cc1 AL |
2036 | return; |
2037 | } | |
93afeade | 2038 | vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset; |
ff4700b0 | 2039 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { |
05068c0d PM |
2040 | if (cpu_watchpoint_address_matches(wp, vaddr, len) |
2041 | && (wp->flags & flags)) { | |
08225676 PM |
2042 | if (flags == BP_MEM_READ) { |
2043 | wp->flags |= BP_WATCHPOINT_HIT_READ; | |
2044 | } else { | |
2045 | wp->flags |= BP_WATCHPOINT_HIT_WRITE; | |
2046 | } | |
2047 | wp->hitaddr = vaddr; | |
66b9b43c | 2048 | wp->hitattrs = attrs; |
ff4700b0 | 2049 | if (!cpu->watchpoint_hit) { |
568496c0 SF |
2050 | if (wp->flags & BP_CPU && |
2051 | !cc->debug_check_watchpoint(cpu, wp)) { | |
2052 | wp->flags &= ~BP_WATCHPOINT_HIT; | |
2053 | continue; | |
2054 | } | |
ff4700b0 | 2055 | cpu->watchpoint_hit = wp; |
239c51a5 | 2056 | tb_check_watchpoint(cpu); |
6e140f28 | 2057 | if (wp->flags & BP_STOP_BEFORE_ACCESS) { |
27103424 | 2058 | cpu->exception_index = EXCP_DEBUG; |
5638d180 | 2059 | cpu_loop_exit(cpu); |
6e140f28 AL |
2060 | } else { |
2061 | cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags); | |
648f034c | 2062 | tb_gen_code(cpu, pc, cs_base, cpu_flags, 1); |
6886b980 | 2063 | cpu_loop_exit_noexc(cpu); |
6e140f28 | 2064 | } |
06d55cc1 | 2065 | } |
6e140f28 AL |
2066 | } else { |
2067 | wp->flags &= ~BP_WATCHPOINT_HIT; | |
0f459d16 PB |
2068 | } |
2069 | } | |
2070 | } | |
2071 | ||
6658ffb8 PB |
2072 | /* Watchpoint access routines. Watchpoints are inserted using TLB tricks, |
2073 | so these check for a hit then pass through to the normal out-of-line | |
2074 | phys routines. */ | |
66b9b43c PM |
2075 | static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata, |
2076 | unsigned size, MemTxAttrs attrs) | |
6658ffb8 | 2077 | { |
66b9b43c PM |
2078 | MemTxResult res; |
2079 | uint64_t data; | |
79ed0416 PM |
2080 | int asidx = cpu_asidx_from_attrs(current_cpu, attrs); |
2081 | AddressSpace *as = current_cpu->cpu_ases[asidx].as; | |
66b9b43c PM |
2082 | |
2083 | check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ); | |
1ec9b909 | 2084 | switch (size) { |
66b9b43c | 2085 | case 1: |
79ed0416 | 2086 | data = address_space_ldub(as, addr, attrs, &res); |
66b9b43c PM |
2087 | break; |
2088 | case 2: | |
79ed0416 | 2089 | data = address_space_lduw(as, addr, attrs, &res); |
66b9b43c PM |
2090 | break; |
2091 | case 4: | |
79ed0416 | 2092 | data = address_space_ldl(as, addr, attrs, &res); |
66b9b43c | 2093 | break; |
1ec9b909 AK |
2094 | default: abort(); |
2095 | } | |
66b9b43c PM |
2096 | *pdata = data; |
2097 | return res; | |
6658ffb8 PB |
2098 | } |
2099 | ||
66b9b43c PM |
2100 | static MemTxResult watch_mem_write(void *opaque, hwaddr addr, |
2101 | uint64_t val, unsigned size, | |
2102 | MemTxAttrs attrs) | |
6658ffb8 | 2103 | { |
66b9b43c | 2104 | MemTxResult res; |
79ed0416 PM |
2105 | int asidx = cpu_asidx_from_attrs(current_cpu, attrs); |
2106 | AddressSpace *as = current_cpu->cpu_ases[asidx].as; | |
66b9b43c PM |
2107 | |
2108 | check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE); | |
1ec9b909 | 2109 | switch (size) { |
67364150 | 2110 | case 1: |
79ed0416 | 2111 | address_space_stb(as, addr, val, attrs, &res); |
67364150 MF |
2112 | break; |
2113 | case 2: | |
79ed0416 | 2114 | address_space_stw(as, addr, val, attrs, &res); |
67364150 MF |
2115 | break; |
2116 | case 4: | |
79ed0416 | 2117 | address_space_stl(as, addr, val, attrs, &res); |
67364150 | 2118 | break; |
1ec9b909 AK |
2119 | default: abort(); |
2120 | } | |
66b9b43c | 2121 | return res; |
6658ffb8 PB |
2122 | } |
2123 | ||
1ec9b909 | 2124 | static const MemoryRegionOps watch_mem_ops = { |
66b9b43c PM |
2125 | .read_with_attrs = watch_mem_read, |
2126 | .write_with_attrs = watch_mem_write, | |
1ec9b909 | 2127 | .endianness = DEVICE_NATIVE_ENDIAN, |
6658ffb8 | 2128 | }; |
6658ffb8 | 2129 | |
f25a49e0 PM |
2130 | static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data, |
2131 | unsigned len, MemTxAttrs attrs) | |
db7b5426 | 2132 | { |
acc9d80b | 2133 | subpage_t *subpage = opaque; |
ff6cff75 | 2134 | uint8_t buf[8]; |
5c9eb028 | 2135 | MemTxResult res; |
791af8c8 | 2136 | |
db7b5426 | 2137 | #if defined(DEBUG_SUBPAGE) |
016e9d62 | 2138 | printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__, |
acc9d80b | 2139 | subpage, len, addr); |
db7b5426 | 2140 | #endif |
5c9eb028 PM |
2141 | res = address_space_read(subpage->as, addr + subpage->base, |
2142 | attrs, buf, len); | |
2143 | if (res) { | |
2144 | return res; | |
f25a49e0 | 2145 | } |
acc9d80b JK |
2146 | switch (len) { |
2147 | case 1: | |
f25a49e0 PM |
2148 | *data = ldub_p(buf); |
2149 | return MEMTX_OK; | |
acc9d80b | 2150 | case 2: |
f25a49e0 PM |
2151 | *data = lduw_p(buf); |
2152 | return MEMTX_OK; | |
acc9d80b | 2153 | case 4: |
f25a49e0 PM |
2154 | *data = ldl_p(buf); |
2155 | return MEMTX_OK; | |
ff6cff75 | 2156 | case 8: |
f25a49e0 PM |
2157 | *data = ldq_p(buf); |
2158 | return MEMTX_OK; | |
acc9d80b JK |
2159 | default: |
2160 | abort(); | |
2161 | } | |
db7b5426 BS |
2162 | } |
2163 | ||
f25a49e0 PM |
2164 | static MemTxResult subpage_write(void *opaque, hwaddr addr, |
2165 | uint64_t value, unsigned len, MemTxAttrs attrs) | |
db7b5426 | 2166 | { |
acc9d80b | 2167 | subpage_t *subpage = opaque; |
ff6cff75 | 2168 | uint8_t buf[8]; |
acc9d80b | 2169 | |
db7b5426 | 2170 | #if defined(DEBUG_SUBPAGE) |
016e9d62 | 2171 | printf("%s: subpage %p len %u addr " TARGET_FMT_plx |
acc9d80b JK |
2172 | " value %"PRIx64"\n", |
2173 | __func__, subpage, len, addr, value); | |
db7b5426 | 2174 | #endif |
acc9d80b JK |
2175 | switch (len) { |
2176 | case 1: | |
2177 | stb_p(buf, value); | |
2178 | break; | |
2179 | case 2: | |
2180 | stw_p(buf, value); | |
2181 | break; | |
2182 | case 4: | |
2183 | stl_p(buf, value); | |
2184 | break; | |
ff6cff75 PB |
2185 | case 8: |
2186 | stq_p(buf, value); | |
2187 | break; | |
acc9d80b JK |
2188 | default: |
2189 | abort(); | |
2190 | } | |
5c9eb028 PM |
2191 | return address_space_write(subpage->as, addr + subpage->base, |
2192 | attrs, buf, len); | |
db7b5426 BS |
2193 | } |
2194 | ||
c353e4cc | 2195 | static bool subpage_accepts(void *opaque, hwaddr addr, |
016e9d62 | 2196 | unsigned len, bool is_write) |
c353e4cc | 2197 | { |
acc9d80b | 2198 | subpage_t *subpage = opaque; |
c353e4cc | 2199 | #if defined(DEBUG_SUBPAGE) |
016e9d62 | 2200 | printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n", |
acc9d80b | 2201 | __func__, subpage, is_write ? 'w' : 'r', len, addr); |
c353e4cc PB |
2202 | #endif |
2203 | ||
acc9d80b | 2204 | return address_space_access_valid(subpage->as, addr + subpage->base, |
016e9d62 | 2205 | len, is_write); |
c353e4cc PB |
2206 | } |
2207 | ||
70c68e44 | 2208 | static const MemoryRegionOps subpage_ops = { |
f25a49e0 PM |
2209 | .read_with_attrs = subpage_read, |
2210 | .write_with_attrs = subpage_write, | |
ff6cff75 PB |
2211 | .impl.min_access_size = 1, |
2212 | .impl.max_access_size = 8, | |
2213 | .valid.min_access_size = 1, | |
2214 | .valid.max_access_size = 8, | |
c353e4cc | 2215 | .valid.accepts = subpage_accepts, |
70c68e44 | 2216 | .endianness = DEVICE_NATIVE_ENDIAN, |
db7b5426 BS |
2217 | }; |
2218 | ||
c227f099 | 2219 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, |
5312bd8b | 2220 | uint16_t section) |
db7b5426 BS |
2221 | { |
2222 | int idx, eidx; | |
2223 | ||
2224 | if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) | |
2225 | return -1; | |
2226 | idx = SUBPAGE_IDX(start); | |
2227 | eidx = SUBPAGE_IDX(end); | |
2228 | #if defined(DEBUG_SUBPAGE) | |
016e9d62 AK |
2229 | printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n", |
2230 | __func__, mmio, start, end, idx, eidx, section); | |
db7b5426 | 2231 | #endif |
db7b5426 | 2232 | for (; idx <= eidx; idx++) { |
5312bd8b | 2233 | mmio->sub_section[idx] = section; |
db7b5426 BS |
2234 | } |
2235 | ||
2236 | return 0; | |
2237 | } | |
2238 | ||
acc9d80b | 2239 | static subpage_t *subpage_init(AddressSpace *as, hwaddr base) |
db7b5426 | 2240 | { |
c227f099 | 2241 | subpage_t *mmio; |
db7b5426 | 2242 | |
7267c094 | 2243 | mmio = g_malloc0(sizeof(subpage_t)); |
1eec614b | 2244 | |
acc9d80b | 2245 | mmio->as = as; |
1eec614b | 2246 | mmio->base = base; |
2c9b15ca | 2247 | memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio, |
b4fefef9 | 2248 | NULL, TARGET_PAGE_SIZE); |
b3b00c78 | 2249 | mmio->iomem.subpage = true; |
db7b5426 | 2250 | #if defined(DEBUG_SUBPAGE) |
016e9d62 AK |
2251 | printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__, |
2252 | mmio, base, TARGET_PAGE_SIZE); | |
db7b5426 | 2253 | #endif |
b41aac4f | 2254 | subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED); |
db7b5426 BS |
2255 | |
2256 | return mmio; | |
2257 | } | |
2258 | ||
a656e22f PC |
2259 | static uint16_t dummy_section(PhysPageMap *map, AddressSpace *as, |
2260 | MemoryRegion *mr) | |
5312bd8b | 2261 | { |
a656e22f | 2262 | assert(as); |
5312bd8b | 2263 | MemoryRegionSection section = { |
a656e22f | 2264 | .address_space = as, |
5312bd8b AK |
2265 | .mr = mr, |
2266 | .offset_within_address_space = 0, | |
2267 | .offset_within_region = 0, | |
052e87b0 | 2268 | .size = int128_2_64(), |
5312bd8b AK |
2269 | }; |
2270 | ||
53cb28cb | 2271 | return phys_section_add(map, §ion); |
5312bd8b AK |
2272 | } |
2273 | ||
a54c87b6 | 2274 | MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs) |
aa102231 | 2275 | { |
a54c87b6 PM |
2276 | int asidx = cpu_asidx_from_attrs(cpu, attrs); |
2277 | CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx]; | |
32857f4d | 2278 | AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch); |
79e2b9ae | 2279 | MemoryRegionSection *sections = d->map.sections; |
9d82b5a7 PB |
2280 | |
2281 | return sections[index & ~TARGET_PAGE_MASK].mr; | |
aa102231 AK |
2282 | } |
2283 | ||
e9179ce1 AK |
2284 | static void io_mem_init(void) |
2285 | { | |
1f6245e5 | 2286 | memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX); |
2c9b15ca | 2287 | memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL, |
1f6245e5 | 2288 | NULL, UINT64_MAX); |
2c9b15ca | 2289 | memory_region_init_io(&io_mem_notdirty, NULL, ¬dirty_mem_ops, NULL, |
1f6245e5 | 2290 | NULL, UINT64_MAX); |
2c9b15ca | 2291 | memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL, |
1f6245e5 | 2292 | NULL, UINT64_MAX); |
e9179ce1 AK |
2293 | } |
2294 | ||
ac1970fb | 2295 | static void mem_begin(MemoryListener *listener) |
00752703 PB |
2296 | { |
2297 | AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener); | |
53cb28cb MA |
2298 | AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1); |
2299 | uint16_t n; | |
2300 | ||
a656e22f | 2301 | n = dummy_section(&d->map, as, &io_mem_unassigned); |
53cb28cb | 2302 | assert(n == PHYS_SECTION_UNASSIGNED); |
a656e22f | 2303 | n = dummy_section(&d->map, as, &io_mem_notdirty); |
53cb28cb | 2304 | assert(n == PHYS_SECTION_NOTDIRTY); |
a656e22f | 2305 | n = dummy_section(&d->map, as, &io_mem_rom); |
53cb28cb | 2306 | assert(n == PHYS_SECTION_ROM); |
a656e22f | 2307 | n = dummy_section(&d->map, as, &io_mem_watch); |
53cb28cb | 2308 | assert(n == PHYS_SECTION_WATCH); |
00752703 | 2309 | |
9736e55b | 2310 | d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 }; |
00752703 PB |
2311 | d->as = as; |
2312 | as->next_dispatch = d; | |
2313 | } | |
2314 | ||
79e2b9ae PB |
2315 | static void address_space_dispatch_free(AddressSpaceDispatch *d) |
2316 | { | |
2317 | phys_sections_free(&d->map); | |
2318 | g_free(d); | |
2319 | } | |
2320 | ||
00752703 | 2321 | static void mem_commit(MemoryListener *listener) |
ac1970fb | 2322 | { |
89ae337a | 2323 | AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener); |
0475d94f PB |
2324 | AddressSpaceDispatch *cur = as->dispatch; |
2325 | AddressSpaceDispatch *next = as->next_dispatch; | |
2326 | ||
53cb28cb | 2327 | phys_page_compact_all(next, next->map.nodes_nb); |
b35ba30f | 2328 | |
79e2b9ae | 2329 | atomic_rcu_set(&as->dispatch, next); |
53cb28cb | 2330 | if (cur) { |
79e2b9ae | 2331 | call_rcu(cur, address_space_dispatch_free, rcu); |
53cb28cb | 2332 | } |
9affd6fc PB |
2333 | } |
2334 | ||
1d71148e | 2335 | static void tcg_commit(MemoryListener *listener) |
50c1e149 | 2336 | { |
32857f4d PM |
2337 | CPUAddressSpace *cpuas; |
2338 | AddressSpaceDispatch *d; | |
117712c3 AK |
2339 | |
2340 | /* since each CPU stores ram addresses in its TLB cache, we must | |
2341 | reset the modified entries */ | |
32857f4d PM |
2342 | cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); |
2343 | cpu_reloading_memory_map(); | |
2344 | /* The CPU and TLB are protected by the iothread lock. | |
2345 | * We reload the dispatch pointer now because cpu_reloading_memory_map() | |
2346 | * may have split the RCU critical section. | |
2347 | */ | |
2348 | d = atomic_rcu_read(&cpuas->as->dispatch); | |
2349 | cpuas->memory_dispatch = d; | |
2350 | tlb_flush(cpuas->cpu, 1); | |
50c1e149 AK |
2351 | } |
2352 | ||
ac1970fb AK |
2353 | void address_space_init_dispatch(AddressSpace *as) |
2354 | { | |
00752703 | 2355 | as->dispatch = NULL; |
89ae337a | 2356 | as->dispatch_listener = (MemoryListener) { |
ac1970fb | 2357 | .begin = mem_begin, |
00752703 | 2358 | .commit = mem_commit, |
ac1970fb AK |
2359 | .region_add = mem_add, |
2360 | .region_nop = mem_add, | |
2361 | .priority = 0, | |
2362 | }; | |
89ae337a | 2363 | memory_listener_register(&as->dispatch_listener, as); |
ac1970fb AK |
2364 | } |
2365 | ||
6e48e8f9 PB |
2366 | void address_space_unregister(AddressSpace *as) |
2367 | { | |
2368 | memory_listener_unregister(&as->dispatch_listener); | |
2369 | } | |
2370 | ||
83f3c251 AK |
2371 | void address_space_destroy_dispatch(AddressSpace *as) |
2372 | { | |
2373 | AddressSpaceDispatch *d = as->dispatch; | |
2374 | ||
79e2b9ae PB |
2375 | atomic_rcu_set(&as->dispatch, NULL); |
2376 | if (d) { | |
2377 | call_rcu(d, address_space_dispatch_free, rcu); | |
2378 | } | |
83f3c251 AK |
2379 | } |
2380 | ||
62152b8a AK |
2381 | static void memory_map_init(void) |
2382 | { | |
7267c094 | 2383 | system_memory = g_malloc(sizeof(*system_memory)); |
03f49957 | 2384 | |
57271d63 | 2385 | memory_region_init(system_memory, NULL, "system", UINT64_MAX); |
7dca8043 | 2386 | address_space_init(&address_space_memory, system_memory, "memory"); |
309cb471 | 2387 | |
7267c094 | 2388 | system_io = g_malloc(sizeof(*system_io)); |
3bb28b72 JK |
2389 | memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io", |
2390 | 65536); | |
7dca8043 | 2391 | address_space_init(&address_space_io, system_io, "I/O"); |
62152b8a AK |
2392 | } |
2393 | ||
2394 | MemoryRegion *get_system_memory(void) | |
2395 | { | |
2396 | return system_memory; | |
2397 | } | |
2398 | ||
309cb471 AK |
2399 | MemoryRegion *get_system_io(void) |
2400 | { | |
2401 | return system_io; | |
2402 | } | |
2403 | ||
e2eef170 PB |
2404 | #endif /* !defined(CONFIG_USER_ONLY) */ |
2405 | ||
13eb76e0 FB |
2406 | /* physical memory access (slow version, mainly for debug) */ |
2407 | #if defined(CONFIG_USER_ONLY) | |
f17ec444 | 2408 | int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr, |
a68fe89c | 2409 | uint8_t *buf, int len, int is_write) |
13eb76e0 FB |
2410 | { |
2411 | int l, flags; | |
2412 | target_ulong page; | |
53a5960a | 2413 | void * p; |
13eb76e0 FB |
2414 | |
2415 | while (len > 0) { | |
2416 | page = addr & TARGET_PAGE_MASK; | |
2417 | l = (page + TARGET_PAGE_SIZE) - addr; | |
2418 | if (l > len) | |
2419 | l = len; | |
2420 | flags = page_get_flags(page); | |
2421 | if (!(flags & PAGE_VALID)) | |
a68fe89c | 2422 | return -1; |
13eb76e0 FB |
2423 | if (is_write) { |
2424 | if (!(flags & PAGE_WRITE)) | |
a68fe89c | 2425 | return -1; |
579a97f7 | 2426 | /* XXX: this code should not depend on lock_user */ |
72fb7daa | 2427 | if (!(p = lock_user(VERIFY_WRITE, addr, l, 0))) |
a68fe89c | 2428 | return -1; |
72fb7daa AJ |
2429 | memcpy(p, buf, l); |
2430 | unlock_user(p, addr, l); | |
13eb76e0 FB |
2431 | } else { |
2432 | if (!(flags & PAGE_READ)) | |
a68fe89c | 2433 | return -1; |
579a97f7 | 2434 | /* XXX: this code should not depend on lock_user */ |
72fb7daa | 2435 | if (!(p = lock_user(VERIFY_READ, addr, l, 1))) |
a68fe89c | 2436 | return -1; |
72fb7daa | 2437 | memcpy(buf, p, l); |
5b257578 | 2438 | unlock_user(p, addr, 0); |
13eb76e0 FB |
2439 | } |
2440 | len -= l; | |
2441 | buf += l; | |
2442 | addr += l; | |
2443 | } | |
a68fe89c | 2444 | return 0; |
13eb76e0 | 2445 | } |
8df1cd07 | 2446 | |
13eb76e0 | 2447 | #else |
51d7a9eb | 2448 | |
845b6214 | 2449 | static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr, |
a8170e5e | 2450 | hwaddr length) |
51d7a9eb | 2451 | { |
e87f7778 | 2452 | uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr); |
0878d0e1 PB |
2453 | addr += memory_region_get_ram_addr(mr); |
2454 | ||
e87f7778 PB |
2455 | /* No early return if dirty_log_mask is or becomes 0, because |
2456 | * cpu_physical_memory_set_dirty_range will still call | |
2457 | * xen_modified_memory. | |
2458 | */ | |
2459 | if (dirty_log_mask) { | |
2460 | dirty_log_mask = | |
2461 | cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask); | |
2462 | } | |
2463 | if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) { | |
2464 | tb_invalidate_phys_range(addr, addr + length); | |
2465 | dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE); | |
51d7a9eb | 2466 | } |
e87f7778 | 2467 | cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask); |
51d7a9eb AP |
2468 | } |
2469 | ||
23326164 | 2470 | static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr) |
82f2563f | 2471 | { |
e1622f4b | 2472 | unsigned access_size_max = mr->ops->valid.max_access_size; |
23326164 RH |
2473 | |
2474 | /* Regions are assumed to support 1-4 byte accesses unless | |
2475 | otherwise specified. */ | |
23326164 RH |
2476 | if (access_size_max == 0) { |
2477 | access_size_max = 4; | |
2478 | } | |
2479 | ||
2480 | /* Bound the maximum access by the alignment of the address. */ | |
2481 | if (!mr->ops->impl.unaligned) { | |
2482 | unsigned align_size_max = addr & -addr; | |
2483 | if (align_size_max != 0 && align_size_max < access_size_max) { | |
2484 | access_size_max = align_size_max; | |
2485 | } | |
82f2563f | 2486 | } |
23326164 RH |
2487 | |
2488 | /* Don't attempt accesses larger than the maximum. */ | |
2489 | if (l > access_size_max) { | |
2490 | l = access_size_max; | |
82f2563f | 2491 | } |
6554f5c0 | 2492 | l = pow2floor(l); |
23326164 RH |
2493 | |
2494 | return l; | |
82f2563f PB |
2495 | } |
2496 | ||
4840f10e | 2497 | static bool prepare_mmio_access(MemoryRegion *mr) |
125b3806 | 2498 | { |
4840f10e JK |
2499 | bool unlocked = !qemu_mutex_iothread_locked(); |
2500 | bool release_lock = false; | |
2501 | ||
2502 | if (unlocked && mr->global_locking) { | |
2503 | qemu_mutex_lock_iothread(); | |
2504 | unlocked = false; | |
2505 | release_lock = true; | |
2506 | } | |
125b3806 | 2507 | if (mr->flush_coalesced_mmio) { |
4840f10e JK |
2508 | if (unlocked) { |
2509 | qemu_mutex_lock_iothread(); | |
2510 | } | |
125b3806 | 2511 | qemu_flush_coalesced_mmio_buffer(); |
4840f10e JK |
2512 | if (unlocked) { |
2513 | qemu_mutex_unlock_iothread(); | |
2514 | } | |
125b3806 | 2515 | } |
4840f10e JK |
2516 | |
2517 | return release_lock; | |
125b3806 PB |
2518 | } |
2519 | ||
a203ac70 PB |
2520 | /* Called within RCU critical section. */ |
2521 | static MemTxResult address_space_write_continue(AddressSpace *as, hwaddr addr, | |
2522 | MemTxAttrs attrs, | |
2523 | const uint8_t *buf, | |
2524 | int len, hwaddr addr1, | |
2525 | hwaddr l, MemoryRegion *mr) | |
13eb76e0 | 2526 | { |
13eb76e0 | 2527 | uint8_t *ptr; |
791af8c8 | 2528 | uint64_t val; |
3b643495 | 2529 | MemTxResult result = MEMTX_OK; |
4840f10e | 2530 | bool release_lock = false; |
3b46e624 | 2531 | |
a203ac70 | 2532 | for (;;) { |
eb7eeb88 PB |
2533 | if (!memory_access_is_direct(mr, true)) { |
2534 | release_lock |= prepare_mmio_access(mr); | |
2535 | l = memory_access_size(mr, l, addr1); | |
2536 | /* XXX: could force current_cpu to NULL to avoid | |
2537 | potential bugs */ | |
2538 | switch (l) { | |
2539 | case 8: | |
2540 | /* 64 bit write access */ | |
2541 | val = ldq_p(buf); | |
2542 | result |= memory_region_dispatch_write(mr, addr1, val, 8, | |
2543 | attrs); | |
2544 | break; | |
2545 | case 4: | |
2546 | /* 32 bit write access */ | |
2547 | val = ldl_p(buf); | |
2548 | result |= memory_region_dispatch_write(mr, addr1, val, 4, | |
2549 | attrs); | |
2550 | break; | |
2551 | case 2: | |
2552 | /* 16 bit write access */ | |
2553 | val = lduw_p(buf); | |
2554 | result |= memory_region_dispatch_write(mr, addr1, val, 2, | |
2555 | attrs); | |
2556 | break; | |
2557 | case 1: | |
2558 | /* 8 bit write access */ | |
2559 | val = ldub_p(buf); | |
2560 | result |= memory_region_dispatch_write(mr, addr1, val, 1, | |
2561 | attrs); | |
2562 | break; | |
2563 | default: | |
2564 | abort(); | |
13eb76e0 FB |
2565 | } |
2566 | } else { | |
eb7eeb88 | 2567 | /* RAM case */ |
0878d0e1 | 2568 | ptr = qemu_map_ram_ptr(mr->ram_block, addr1); |
eb7eeb88 PB |
2569 | memcpy(ptr, buf, l); |
2570 | invalidate_and_set_dirty(mr, addr1, l); | |
13eb76e0 | 2571 | } |
4840f10e JK |
2572 | |
2573 | if (release_lock) { | |
2574 | qemu_mutex_unlock_iothread(); | |
2575 | release_lock = false; | |
2576 | } | |
2577 | ||
13eb76e0 FB |
2578 | len -= l; |
2579 | buf += l; | |
2580 | addr += l; | |
a203ac70 PB |
2581 | |
2582 | if (!len) { | |
2583 | break; | |
2584 | } | |
2585 | ||
2586 | l = len; | |
2587 | mr = address_space_translate(as, addr, &addr1, &l, true); | |
13eb76e0 | 2588 | } |
fd8aaa76 | 2589 | |
3b643495 | 2590 | return result; |
13eb76e0 | 2591 | } |
8df1cd07 | 2592 | |
a203ac70 PB |
2593 | MemTxResult address_space_write(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, |
2594 | const uint8_t *buf, int len) | |
ac1970fb | 2595 | { |
eb7eeb88 | 2596 | hwaddr l; |
eb7eeb88 PB |
2597 | hwaddr addr1; |
2598 | MemoryRegion *mr; | |
2599 | MemTxResult result = MEMTX_OK; | |
eb7eeb88 | 2600 | |
a203ac70 PB |
2601 | if (len > 0) { |
2602 | rcu_read_lock(); | |
eb7eeb88 | 2603 | l = len; |
a203ac70 PB |
2604 | mr = address_space_translate(as, addr, &addr1, &l, true); |
2605 | result = address_space_write_continue(as, addr, attrs, buf, len, | |
2606 | addr1, l, mr); | |
2607 | rcu_read_unlock(); | |
2608 | } | |
2609 | ||
2610 | return result; | |
2611 | } | |
2612 | ||
2613 | /* Called within RCU critical section. */ | |
2614 | MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr, | |
2615 | MemTxAttrs attrs, uint8_t *buf, | |
2616 | int len, hwaddr addr1, hwaddr l, | |
2617 | MemoryRegion *mr) | |
2618 | { | |
2619 | uint8_t *ptr; | |
2620 | uint64_t val; | |
2621 | MemTxResult result = MEMTX_OK; | |
2622 | bool release_lock = false; | |
eb7eeb88 | 2623 | |
a203ac70 | 2624 | for (;;) { |
eb7eeb88 PB |
2625 | if (!memory_access_is_direct(mr, false)) { |
2626 | /* I/O case */ | |
2627 | release_lock |= prepare_mmio_access(mr); | |
2628 | l = memory_access_size(mr, l, addr1); | |
2629 | switch (l) { | |
2630 | case 8: | |
2631 | /* 64 bit read access */ | |
2632 | result |= memory_region_dispatch_read(mr, addr1, &val, 8, | |
2633 | attrs); | |
2634 | stq_p(buf, val); | |
2635 | break; | |
2636 | case 4: | |
2637 | /* 32 bit read access */ | |
2638 | result |= memory_region_dispatch_read(mr, addr1, &val, 4, | |
2639 | attrs); | |
2640 | stl_p(buf, val); | |
2641 | break; | |
2642 | case 2: | |
2643 | /* 16 bit read access */ | |
2644 | result |= memory_region_dispatch_read(mr, addr1, &val, 2, | |
2645 | attrs); | |
2646 | stw_p(buf, val); | |
2647 | break; | |
2648 | case 1: | |
2649 | /* 8 bit read access */ | |
2650 | result |= memory_region_dispatch_read(mr, addr1, &val, 1, | |
2651 | attrs); | |
2652 | stb_p(buf, val); | |
2653 | break; | |
2654 | default: | |
2655 | abort(); | |
2656 | } | |
2657 | } else { | |
2658 | /* RAM case */ | |
0878d0e1 | 2659 | ptr = qemu_map_ram_ptr(mr->ram_block, addr1); |
eb7eeb88 PB |
2660 | memcpy(buf, ptr, l); |
2661 | } | |
2662 | ||
2663 | if (release_lock) { | |
2664 | qemu_mutex_unlock_iothread(); | |
2665 | release_lock = false; | |
2666 | } | |
2667 | ||
2668 | len -= l; | |
2669 | buf += l; | |
2670 | addr += l; | |
a203ac70 PB |
2671 | |
2672 | if (!len) { | |
2673 | break; | |
2674 | } | |
2675 | ||
2676 | l = len; | |
2677 | mr = address_space_translate(as, addr, &addr1, &l, false); | |
2678 | } | |
2679 | ||
2680 | return result; | |
2681 | } | |
2682 | ||
3cc8f884 PB |
2683 | MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, |
2684 | MemTxAttrs attrs, uint8_t *buf, int len) | |
a203ac70 PB |
2685 | { |
2686 | hwaddr l; | |
2687 | hwaddr addr1; | |
2688 | MemoryRegion *mr; | |
2689 | MemTxResult result = MEMTX_OK; | |
2690 | ||
2691 | if (len > 0) { | |
2692 | rcu_read_lock(); | |
2693 | l = len; | |
2694 | mr = address_space_translate(as, addr, &addr1, &l, false); | |
2695 | result = address_space_read_continue(as, addr, attrs, buf, len, | |
2696 | addr1, l, mr); | |
2697 | rcu_read_unlock(); | |
eb7eeb88 | 2698 | } |
eb7eeb88 PB |
2699 | |
2700 | return result; | |
ac1970fb AK |
2701 | } |
2702 | ||
eb7eeb88 PB |
2703 | MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, |
2704 | uint8_t *buf, int len, bool is_write) | |
2705 | { | |
2706 | if (is_write) { | |
2707 | return address_space_write(as, addr, attrs, (uint8_t *)buf, len); | |
2708 | } else { | |
2709 | return address_space_read(as, addr, attrs, (uint8_t *)buf, len); | |
2710 | } | |
2711 | } | |
ac1970fb | 2712 | |
a8170e5e | 2713 | void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf, |
ac1970fb AK |
2714 | int len, int is_write) |
2715 | { | |
5c9eb028 PM |
2716 | address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED, |
2717 | buf, len, is_write); | |
ac1970fb AK |
2718 | } |
2719 | ||
582b55a9 AG |
2720 | enum write_rom_type { |
2721 | WRITE_DATA, | |
2722 | FLUSH_CACHE, | |
2723 | }; | |
2724 | ||
2a221651 | 2725 | static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as, |
582b55a9 | 2726 | hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type) |
d0ecd2aa | 2727 | { |
149f54b5 | 2728 | hwaddr l; |
d0ecd2aa | 2729 | uint8_t *ptr; |
149f54b5 | 2730 | hwaddr addr1; |
5c8a00ce | 2731 | MemoryRegion *mr; |
3b46e624 | 2732 | |
41063e1e | 2733 | rcu_read_lock(); |
d0ecd2aa | 2734 | while (len > 0) { |
149f54b5 | 2735 | l = len; |
2a221651 | 2736 | mr = address_space_translate(as, addr, &addr1, &l, true); |
3b46e624 | 2737 | |
5c8a00ce PB |
2738 | if (!(memory_region_is_ram(mr) || |
2739 | memory_region_is_romd(mr))) { | |
b242e0e0 | 2740 | l = memory_access_size(mr, l, addr1); |
d0ecd2aa | 2741 | } else { |
d0ecd2aa | 2742 | /* ROM/RAM case */ |
0878d0e1 | 2743 | ptr = qemu_map_ram_ptr(mr->ram_block, addr1); |
582b55a9 AG |
2744 | switch (type) { |
2745 | case WRITE_DATA: | |
2746 | memcpy(ptr, buf, l); | |
845b6214 | 2747 | invalidate_and_set_dirty(mr, addr1, l); |
582b55a9 AG |
2748 | break; |
2749 | case FLUSH_CACHE: | |
2750 | flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l); | |
2751 | break; | |
2752 | } | |
d0ecd2aa FB |
2753 | } |
2754 | len -= l; | |
2755 | buf += l; | |
2756 | addr += l; | |
2757 | } | |
41063e1e | 2758 | rcu_read_unlock(); |
d0ecd2aa FB |
2759 | } |
2760 | ||
582b55a9 | 2761 | /* used for ROM loading : can write in RAM and ROM */ |
2a221651 | 2762 | void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr, |
582b55a9 AG |
2763 | const uint8_t *buf, int len) |
2764 | { | |
2a221651 | 2765 | cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA); |
582b55a9 AG |
2766 | } |
2767 | ||
2768 | void cpu_flush_icache_range(hwaddr start, int len) | |
2769 | { | |
2770 | /* | |
2771 | * This function should do the same thing as an icache flush that was | |
2772 | * triggered from within the guest. For TCG we are always cache coherent, | |
2773 | * so there is no need to flush anything. For KVM / Xen we need to flush | |
2774 | * the host's instruction cache at least. | |
2775 | */ | |
2776 | if (tcg_enabled()) { | |
2777 | return; | |
2778 | } | |
2779 | ||
2a221651 EI |
2780 | cpu_physical_memory_write_rom_internal(&address_space_memory, |
2781 | start, NULL, len, FLUSH_CACHE); | |
582b55a9 AG |
2782 | } |
2783 | ||
6d16c2f8 | 2784 | typedef struct { |
d3e71559 | 2785 | MemoryRegion *mr; |
6d16c2f8 | 2786 | void *buffer; |
a8170e5e AK |
2787 | hwaddr addr; |
2788 | hwaddr len; | |
c2cba0ff | 2789 | bool in_use; |
6d16c2f8 AL |
2790 | } BounceBuffer; |
2791 | ||
2792 | static BounceBuffer bounce; | |
2793 | ||
ba223c29 | 2794 | typedef struct MapClient { |
e95205e1 | 2795 | QEMUBH *bh; |
72cf2d4f | 2796 | QLIST_ENTRY(MapClient) link; |
ba223c29 AL |
2797 | } MapClient; |
2798 | ||
38e047b5 | 2799 | QemuMutex map_client_list_lock; |
72cf2d4f BS |
2800 | static QLIST_HEAD(map_client_list, MapClient) map_client_list |
2801 | = QLIST_HEAD_INITIALIZER(map_client_list); | |
ba223c29 | 2802 | |
e95205e1 FZ |
2803 | static void cpu_unregister_map_client_do(MapClient *client) |
2804 | { | |
2805 | QLIST_REMOVE(client, link); | |
2806 | g_free(client); | |
2807 | } | |
2808 | ||
33b6c2ed FZ |
2809 | static void cpu_notify_map_clients_locked(void) |
2810 | { | |
2811 | MapClient *client; | |
2812 | ||
2813 | while (!QLIST_EMPTY(&map_client_list)) { | |
2814 | client = QLIST_FIRST(&map_client_list); | |
e95205e1 FZ |
2815 | qemu_bh_schedule(client->bh); |
2816 | cpu_unregister_map_client_do(client); | |
33b6c2ed FZ |
2817 | } |
2818 | } | |
2819 | ||
e95205e1 | 2820 | void cpu_register_map_client(QEMUBH *bh) |
ba223c29 | 2821 | { |
7267c094 | 2822 | MapClient *client = g_malloc(sizeof(*client)); |
ba223c29 | 2823 | |
38e047b5 | 2824 | qemu_mutex_lock(&map_client_list_lock); |
e95205e1 | 2825 | client->bh = bh; |
72cf2d4f | 2826 | QLIST_INSERT_HEAD(&map_client_list, client, link); |
33b6c2ed FZ |
2827 | if (!atomic_read(&bounce.in_use)) { |
2828 | cpu_notify_map_clients_locked(); | |
2829 | } | |
38e047b5 | 2830 | qemu_mutex_unlock(&map_client_list_lock); |
ba223c29 AL |
2831 | } |
2832 | ||
38e047b5 | 2833 | void cpu_exec_init_all(void) |
ba223c29 | 2834 | { |
38e047b5 | 2835 | qemu_mutex_init(&ram_list.mutex); |
38e047b5 | 2836 | io_mem_init(); |
680a4783 | 2837 | memory_map_init(); |
38e047b5 | 2838 | qemu_mutex_init(&map_client_list_lock); |
ba223c29 AL |
2839 | } |
2840 | ||
e95205e1 | 2841 | void cpu_unregister_map_client(QEMUBH *bh) |
ba223c29 AL |
2842 | { |
2843 | MapClient *client; | |
2844 | ||
e95205e1 FZ |
2845 | qemu_mutex_lock(&map_client_list_lock); |
2846 | QLIST_FOREACH(client, &map_client_list, link) { | |
2847 | if (client->bh == bh) { | |
2848 | cpu_unregister_map_client_do(client); | |
2849 | break; | |
2850 | } | |
ba223c29 | 2851 | } |
e95205e1 | 2852 | qemu_mutex_unlock(&map_client_list_lock); |
ba223c29 AL |
2853 | } |
2854 | ||
2855 | static void cpu_notify_map_clients(void) | |
2856 | { | |
38e047b5 | 2857 | qemu_mutex_lock(&map_client_list_lock); |
33b6c2ed | 2858 | cpu_notify_map_clients_locked(); |
38e047b5 | 2859 | qemu_mutex_unlock(&map_client_list_lock); |
ba223c29 AL |
2860 | } |
2861 | ||
51644ab7 PB |
2862 | bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write) |
2863 | { | |
5c8a00ce | 2864 | MemoryRegion *mr; |
51644ab7 PB |
2865 | hwaddr l, xlat; |
2866 | ||
41063e1e | 2867 | rcu_read_lock(); |
51644ab7 PB |
2868 | while (len > 0) { |
2869 | l = len; | |
5c8a00ce PB |
2870 | mr = address_space_translate(as, addr, &xlat, &l, is_write); |
2871 | if (!memory_access_is_direct(mr, is_write)) { | |
2872 | l = memory_access_size(mr, l, addr); | |
2873 | if (!memory_region_access_valid(mr, xlat, l, is_write)) { | |
51644ab7 PB |
2874 | return false; |
2875 | } | |
2876 | } | |
2877 | ||
2878 | len -= l; | |
2879 | addr += l; | |
2880 | } | |
41063e1e | 2881 | rcu_read_unlock(); |
51644ab7 PB |
2882 | return true; |
2883 | } | |
2884 | ||
6d16c2f8 AL |
2885 | /* Map a physical memory region into a host virtual address. |
2886 | * May map a subset of the requested range, given by and returned in *plen. | |
2887 | * May return NULL if resources needed to perform the mapping are exhausted. | |
2888 | * Use only for reads OR writes - not for read-modify-write operations. | |
ba223c29 AL |
2889 | * Use cpu_register_map_client() to know when retrying the map operation is |
2890 | * likely to succeed. | |
6d16c2f8 | 2891 | */ |
ac1970fb | 2892 | void *address_space_map(AddressSpace *as, |
a8170e5e AK |
2893 | hwaddr addr, |
2894 | hwaddr *plen, | |
ac1970fb | 2895 | bool is_write) |
6d16c2f8 | 2896 | { |
a8170e5e | 2897 | hwaddr len = *plen; |
e3127ae0 PB |
2898 | hwaddr done = 0; |
2899 | hwaddr l, xlat, base; | |
2900 | MemoryRegion *mr, *this_mr; | |
e81bcda5 | 2901 | void *ptr; |
6d16c2f8 | 2902 | |
e3127ae0 PB |
2903 | if (len == 0) { |
2904 | return NULL; | |
2905 | } | |
38bee5dc | 2906 | |
e3127ae0 | 2907 | l = len; |
41063e1e | 2908 | rcu_read_lock(); |
e3127ae0 | 2909 | mr = address_space_translate(as, addr, &xlat, &l, is_write); |
41063e1e | 2910 | |
e3127ae0 | 2911 | if (!memory_access_is_direct(mr, is_write)) { |
c2cba0ff | 2912 | if (atomic_xchg(&bounce.in_use, true)) { |
41063e1e | 2913 | rcu_read_unlock(); |
e3127ae0 | 2914 | return NULL; |
6d16c2f8 | 2915 | } |
e85d9db5 KW |
2916 | /* Avoid unbounded allocations */ |
2917 | l = MIN(l, TARGET_PAGE_SIZE); | |
2918 | bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l); | |
e3127ae0 PB |
2919 | bounce.addr = addr; |
2920 | bounce.len = l; | |
d3e71559 PB |
2921 | |
2922 | memory_region_ref(mr); | |
2923 | bounce.mr = mr; | |
e3127ae0 | 2924 | if (!is_write) { |
5c9eb028 PM |
2925 | address_space_read(as, addr, MEMTXATTRS_UNSPECIFIED, |
2926 | bounce.buffer, l); | |
8ab934f9 | 2927 | } |
6d16c2f8 | 2928 | |
41063e1e | 2929 | rcu_read_unlock(); |
e3127ae0 PB |
2930 | *plen = l; |
2931 | return bounce.buffer; | |
2932 | } | |
2933 | ||
2934 | base = xlat; | |
e3127ae0 PB |
2935 | |
2936 | for (;;) { | |
6d16c2f8 AL |
2937 | len -= l; |
2938 | addr += l; | |
e3127ae0 PB |
2939 | done += l; |
2940 | if (len == 0) { | |
2941 | break; | |
2942 | } | |
2943 | ||
2944 | l = len; | |
2945 | this_mr = address_space_translate(as, addr, &xlat, &l, is_write); | |
2946 | if (this_mr != mr || xlat != base + done) { | |
2947 | break; | |
2948 | } | |
6d16c2f8 | 2949 | } |
e3127ae0 | 2950 | |
d3e71559 | 2951 | memory_region_ref(mr); |
e3127ae0 | 2952 | *plen = done; |
0878d0e1 | 2953 | ptr = qemu_ram_ptr_length(mr->ram_block, base, plen); |
e81bcda5 PB |
2954 | rcu_read_unlock(); |
2955 | ||
2956 | return ptr; | |
6d16c2f8 AL |
2957 | } |
2958 | ||
ac1970fb | 2959 | /* Unmaps a memory region previously mapped by address_space_map(). |
6d16c2f8 AL |
2960 | * Will also mark the memory as dirty if is_write == 1. access_len gives |
2961 | * the amount of memory that was actually read or written by the caller. | |
2962 | */ | |
a8170e5e AK |
2963 | void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, |
2964 | int is_write, hwaddr access_len) | |
6d16c2f8 AL |
2965 | { |
2966 | if (buffer != bounce.buffer) { | |
d3e71559 PB |
2967 | MemoryRegion *mr; |
2968 | ram_addr_t addr1; | |
2969 | ||
07bdaa41 | 2970 | mr = memory_region_from_host(buffer, &addr1); |
d3e71559 | 2971 | assert(mr != NULL); |
6d16c2f8 | 2972 | if (is_write) { |
845b6214 | 2973 | invalidate_and_set_dirty(mr, addr1, access_len); |
6d16c2f8 | 2974 | } |
868bb33f | 2975 | if (xen_enabled()) { |
e41d7c69 | 2976 | xen_invalidate_map_cache_entry(buffer); |
050a0ddf | 2977 | } |
d3e71559 | 2978 | memory_region_unref(mr); |
6d16c2f8 AL |
2979 | return; |
2980 | } | |
2981 | if (is_write) { | |
5c9eb028 PM |
2982 | address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED, |
2983 | bounce.buffer, access_len); | |
6d16c2f8 | 2984 | } |
f8a83245 | 2985 | qemu_vfree(bounce.buffer); |
6d16c2f8 | 2986 | bounce.buffer = NULL; |
d3e71559 | 2987 | memory_region_unref(bounce.mr); |
c2cba0ff | 2988 | atomic_mb_set(&bounce.in_use, false); |
ba223c29 | 2989 | cpu_notify_map_clients(); |
6d16c2f8 | 2990 | } |
d0ecd2aa | 2991 | |
a8170e5e AK |
2992 | void *cpu_physical_memory_map(hwaddr addr, |
2993 | hwaddr *plen, | |
ac1970fb AK |
2994 | int is_write) |
2995 | { | |
2996 | return address_space_map(&address_space_memory, addr, plen, is_write); | |
2997 | } | |
2998 | ||
a8170e5e AK |
2999 | void cpu_physical_memory_unmap(void *buffer, hwaddr len, |
3000 | int is_write, hwaddr access_len) | |
ac1970fb AK |
3001 | { |
3002 | return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len); | |
3003 | } | |
3004 | ||
8df1cd07 | 3005 | /* warning: addr must be aligned */ |
50013115 PM |
3006 | static inline uint32_t address_space_ldl_internal(AddressSpace *as, hwaddr addr, |
3007 | MemTxAttrs attrs, | |
3008 | MemTxResult *result, | |
3009 | enum device_endian endian) | |
8df1cd07 | 3010 | { |
8df1cd07 | 3011 | uint8_t *ptr; |
791af8c8 | 3012 | uint64_t val; |
5c8a00ce | 3013 | MemoryRegion *mr; |
149f54b5 PB |
3014 | hwaddr l = 4; |
3015 | hwaddr addr1; | |
50013115 | 3016 | MemTxResult r; |
4840f10e | 3017 | bool release_lock = false; |
8df1cd07 | 3018 | |
41063e1e | 3019 | rcu_read_lock(); |
fdfba1a2 | 3020 | mr = address_space_translate(as, addr, &addr1, &l, false); |
5c8a00ce | 3021 | if (l < 4 || !memory_access_is_direct(mr, false)) { |
4840f10e | 3022 | release_lock |= prepare_mmio_access(mr); |
125b3806 | 3023 | |
8df1cd07 | 3024 | /* I/O case */ |
50013115 | 3025 | r = memory_region_dispatch_read(mr, addr1, &val, 4, attrs); |
1e78bcc1 AG |
3026 | #if defined(TARGET_WORDS_BIGENDIAN) |
3027 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
3028 | val = bswap32(val); | |
3029 | } | |
3030 | #else | |
3031 | if (endian == DEVICE_BIG_ENDIAN) { | |
3032 | val = bswap32(val); | |
3033 | } | |
3034 | #endif | |
8df1cd07 FB |
3035 | } else { |
3036 | /* RAM case */ | |
0878d0e1 | 3037 | ptr = qemu_map_ram_ptr(mr->ram_block, addr1); |
1e78bcc1 AG |
3038 | switch (endian) { |
3039 | case DEVICE_LITTLE_ENDIAN: | |
3040 | val = ldl_le_p(ptr); | |
3041 | break; | |
3042 | case DEVICE_BIG_ENDIAN: | |
3043 | val = ldl_be_p(ptr); | |
3044 | break; | |
3045 | default: | |
3046 | val = ldl_p(ptr); | |
3047 | break; | |
3048 | } | |
50013115 PM |
3049 | r = MEMTX_OK; |
3050 | } | |
3051 | if (result) { | |
3052 | *result = r; | |
8df1cd07 | 3053 | } |
4840f10e JK |
3054 | if (release_lock) { |
3055 | qemu_mutex_unlock_iothread(); | |
3056 | } | |
41063e1e | 3057 | rcu_read_unlock(); |
8df1cd07 FB |
3058 | return val; |
3059 | } | |
3060 | ||
50013115 PM |
3061 | uint32_t address_space_ldl(AddressSpace *as, hwaddr addr, |
3062 | MemTxAttrs attrs, MemTxResult *result) | |
3063 | { | |
3064 | return address_space_ldl_internal(as, addr, attrs, result, | |
3065 | DEVICE_NATIVE_ENDIAN); | |
3066 | } | |
3067 | ||
3068 | uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr, | |
3069 | MemTxAttrs attrs, MemTxResult *result) | |
3070 | { | |
3071 | return address_space_ldl_internal(as, addr, attrs, result, | |
3072 | DEVICE_LITTLE_ENDIAN); | |
3073 | } | |
3074 | ||
3075 | uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr, | |
3076 | MemTxAttrs attrs, MemTxResult *result) | |
3077 | { | |
3078 | return address_space_ldl_internal(as, addr, attrs, result, | |
3079 | DEVICE_BIG_ENDIAN); | |
3080 | } | |
3081 | ||
fdfba1a2 | 3082 | uint32_t ldl_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3083 | { |
50013115 | 3084 | return address_space_ldl(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3085 | } |
3086 | ||
fdfba1a2 | 3087 | uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3088 | { |
50013115 | 3089 | return address_space_ldl_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3090 | } |
3091 | ||
fdfba1a2 | 3092 | uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3093 | { |
50013115 | 3094 | return address_space_ldl_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3095 | } |
3096 | ||
84b7b8e7 | 3097 | /* warning: addr must be aligned */ |
50013115 PM |
3098 | static inline uint64_t address_space_ldq_internal(AddressSpace *as, hwaddr addr, |
3099 | MemTxAttrs attrs, | |
3100 | MemTxResult *result, | |
3101 | enum device_endian endian) | |
84b7b8e7 | 3102 | { |
84b7b8e7 FB |
3103 | uint8_t *ptr; |
3104 | uint64_t val; | |
5c8a00ce | 3105 | MemoryRegion *mr; |
149f54b5 PB |
3106 | hwaddr l = 8; |
3107 | hwaddr addr1; | |
50013115 | 3108 | MemTxResult r; |
4840f10e | 3109 | bool release_lock = false; |
84b7b8e7 | 3110 | |
41063e1e | 3111 | rcu_read_lock(); |
2c17449b | 3112 | mr = address_space_translate(as, addr, &addr1, &l, |
5c8a00ce PB |
3113 | false); |
3114 | if (l < 8 || !memory_access_is_direct(mr, false)) { | |
4840f10e | 3115 | release_lock |= prepare_mmio_access(mr); |
125b3806 | 3116 | |
84b7b8e7 | 3117 | /* I/O case */ |
50013115 | 3118 | r = memory_region_dispatch_read(mr, addr1, &val, 8, attrs); |
968a5627 PB |
3119 | #if defined(TARGET_WORDS_BIGENDIAN) |
3120 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
3121 | val = bswap64(val); | |
3122 | } | |
3123 | #else | |
3124 | if (endian == DEVICE_BIG_ENDIAN) { | |
3125 | val = bswap64(val); | |
3126 | } | |
84b7b8e7 FB |
3127 | #endif |
3128 | } else { | |
3129 | /* RAM case */ | |
0878d0e1 | 3130 | ptr = qemu_map_ram_ptr(mr->ram_block, addr1); |
1e78bcc1 AG |
3131 | switch (endian) { |
3132 | case DEVICE_LITTLE_ENDIAN: | |
3133 | val = ldq_le_p(ptr); | |
3134 | break; | |
3135 | case DEVICE_BIG_ENDIAN: | |
3136 | val = ldq_be_p(ptr); | |
3137 | break; | |
3138 | default: | |
3139 | val = ldq_p(ptr); | |
3140 | break; | |
3141 | } | |
50013115 PM |
3142 | r = MEMTX_OK; |
3143 | } | |
3144 | if (result) { | |
3145 | *result = r; | |
84b7b8e7 | 3146 | } |
4840f10e JK |
3147 | if (release_lock) { |
3148 | qemu_mutex_unlock_iothread(); | |
3149 | } | |
41063e1e | 3150 | rcu_read_unlock(); |
84b7b8e7 FB |
3151 | return val; |
3152 | } | |
3153 | ||
50013115 PM |
3154 | uint64_t address_space_ldq(AddressSpace *as, hwaddr addr, |
3155 | MemTxAttrs attrs, MemTxResult *result) | |
3156 | { | |
3157 | return address_space_ldq_internal(as, addr, attrs, result, | |
3158 | DEVICE_NATIVE_ENDIAN); | |
3159 | } | |
3160 | ||
3161 | uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr, | |
3162 | MemTxAttrs attrs, MemTxResult *result) | |
3163 | { | |
3164 | return address_space_ldq_internal(as, addr, attrs, result, | |
3165 | DEVICE_LITTLE_ENDIAN); | |
3166 | } | |
3167 | ||
3168 | uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr, | |
3169 | MemTxAttrs attrs, MemTxResult *result) | |
3170 | { | |
3171 | return address_space_ldq_internal(as, addr, attrs, result, | |
3172 | DEVICE_BIG_ENDIAN); | |
3173 | } | |
3174 | ||
2c17449b | 3175 | uint64_t ldq_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3176 | { |
50013115 | 3177 | return address_space_ldq(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3178 | } |
3179 | ||
2c17449b | 3180 | uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3181 | { |
50013115 | 3182 | return address_space_ldq_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3183 | } |
3184 | ||
2c17449b | 3185 | uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3186 | { |
50013115 | 3187 | return address_space_ldq_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3188 | } |
3189 | ||
aab33094 | 3190 | /* XXX: optimize */ |
50013115 PM |
3191 | uint32_t address_space_ldub(AddressSpace *as, hwaddr addr, |
3192 | MemTxAttrs attrs, MemTxResult *result) | |
aab33094 FB |
3193 | { |
3194 | uint8_t val; | |
50013115 PM |
3195 | MemTxResult r; |
3196 | ||
3197 | r = address_space_rw(as, addr, attrs, &val, 1, 0); | |
3198 | if (result) { | |
3199 | *result = r; | |
3200 | } | |
aab33094 FB |
3201 | return val; |
3202 | } | |
3203 | ||
50013115 PM |
3204 | uint32_t ldub_phys(AddressSpace *as, hwaddr addr) |
3205 | { | |
3206 | return address_space_ldub(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); | |
3207 | } | |
3208 | ||
733f0b02 | 3209 | /* warning: addr must be aligned */ |
50013115 PM |
3210 | static inline uint32_t address_space_lduw_internal(AddressSpace *as, |
3211 | hwaddr addr, | |
3212 | MemTxAttrs attrs, | |
3213 | MemTxResult *result, | |
3214 | enum device_endian endian) | |
aab33094 | 3215 | { |
733f0b02 MT |
3216 | uint8_t *ptr; |
3217 | uint64_t val; | |
5c8a00ce | 3218 | MemoryRegion *mr; |
149f54b5 PB |
3219 | hwaddr l = 2; |
3220 | hwaddr addr1; | |
50013115 | 3221 | MemTxResult r; |
4840f10e | 3222 | bool release_lock = false; |
733f0b02 | 3223 | |
41063e1e | 3224 | rcu_read_lock(); |
41701aa4 | 3225 | mr = address_space_translate(as, addr, &addr1, &l, |
5c8a00ce PB |
3226 | false); |
3227 | if (l < 2 || !memory_access_is_direct(mr, false)) { | |
4840f10e | 3228 | release_lock |= prepare_mmio_access(mr); |
125b3806 | 3229 | |
733f0b02 | 3230 | /* I/O case */ |
50013115 | 3231 | r = memory_region_dispatch_read(mr, addr1, &val, 2, attrs); |
1e78bcc1 AG |
3232 | #if defined(TARGET_WORDS_BIGENDIAN) |
3233 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
3234 | val = bswap16(val); | |
3235 | } | |
3236 | #else | |
3237 | if (endian == DEVICE_BIG_ENDIAN) { | |
3238 | val = bswap16(val); | |
3239 | } | |
3240 | #endif | |
733f0b02 MT |
3241 | } else { |
3242 | /* RAM case */ | |
0878d0e1 | 3243 | ptr = qemu_map_ram_ptr(mr->ram_block, addr1); |
1e78bcc1 AG |
3244 | switch (endian) { |
3245 | case DEVICE_LITTLE_ENDIAN: | |
3246 | val = lduw_le_p(ptr); | |
3247 | break; | |
3248 | case DEVICE_BIG_ENDIAN: | |
3249 | val = lduw_be_p(ptr); | |
3250 | break; | |
3251 | default: | |
3252 | val = lduw_p(ptr); | |
3253 | break; | |
3254 | } | |
50013115 PM |
3255 | r = MEMTX_OK; |
3256 | } | |
3257 | if (result) { | |
3258 | *result = r; | |
733f0b02 | 3259 | } |
4840f10e JK |
3260 | if (release_lock) { |
3261 | qemu_mutex_unlock_iothread(); | |
3262 | } | |
41063e1e | 3263 | rcu_read_unlock(); |
733f0b02 | 3264 | return val; |
aab33094 FB |
3265 | } |
3266 | ||
50013115 PM |
3267 | uint32_t address_space_lduw(AddressSpace *as, hwaddr addr, |
3268 | MemTxAttrs attrs, MemTxResult *result) | |
3269 | { | |
3270 | return address_space_lduw_internal(as, addr, attrs, result, | |
3271 | DEVICE_NATIVE_ENDIAN); | |
3272 | } | |
3273 | ||
3274 | uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr, | |
3275 | MemTxAttrs attrs, MemTxResult *result) | |
3276 | { | |
3277 | return address_space_lduw_internal(as, addr, attrs, result, | |
3278 | DEVICE_LITTLE_ENDIAN); | |
3279 | } | |
3280 | ||
3281 | uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr, | |
3282 | MemTxAttrs attrs, MemTxResult *result) | |
3283 | { | |
3284 | return address_space_lduw_internal(as, addr, attrs, result, | |
3285 | DEVICE_BIG_ENDIAN); | |
3286 | } | |
3287 | ||
41701aa4 | 3288 | uint32_t lduw_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3289 | { |
50013115 | 3290 | return address_space_lduw(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3291 | } |
3292 | ||
41701aa4 | 3293 | uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3294 | { |
50013115 | 3295 | return address_space_lduw_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3296 | } |
3297 | ||
41701aa4 | 3298 | uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3299 | { |
50013115 | 3300 | return address_space_lduw_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3301 | } |
3302 | ||
8df1cd07 FB |
3303 | /* warning: addr must be aligned. The ram page is not masked as dirty |
3304 | and the code inside is not invalidated. It is useful if the dirty | |
3305 | bits are used to track modified PTEs */ | |
50013115 PM |
3306 | void address_space_stl_notdirty(AddressSpace *as, hwaddr addr, uint32_t val, |
3307 | MemTxAttrs attrs, MemTxResult *result) | |
8df1cd07 | 3308 | { |
8df1cd07 | 3309 | uint8_t *ptr; |
5c8a00ce | 3310 | MemoryRegion *mr; |
149f54b5 PB |
3311 | hwaddr l = 4; |
3312 | hwaddr addr1; | |
50013115 | 3313 | MemTxResult r; |
845b6214 | 3314 | uint8_t dirty_log_mask; |
4840f10e | 3315 | bool release_lock = false; |
8df1cd07 | 3316 | |
41063e1e | 3317 | rcu_read_lock(); |
2198a121 | 3318 | mr = address_space_translate(as, addr, &addr1, &l, |
5c8a00ce PB |
3319 | true); |
3320 | if (l < 4 || !memory_access_is_direct(mr, true)) { | |
4840f10e | 3321 | release_lock |= prepare_mmio_access(mr); |
125b3806 | 3322 | |
50013115 | 3323 | r = memory_region_dispatch_write(mr, addr1, val, 4, attrs); |
8df1cd07 | 3324 | } else { |
0878d0e1 | 3325 | ptr = qemu_map_ram_ptr(mr->ram_block, addr1); |
8df1cd07 | 3326 | stl_p(ptr, val); |
74576198 | 3327 | |
845b6214 PB |
3328 | dirty_log_mask = memory_region_get_dirty_log_mask(mr); |
3329 | dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE); | |
0878d0e1 PB |
3330 | cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr) + addr, |
3331 | 4, dirty_log_mask); | |
50013115 PM |
3332 | r = MEMTX_OK; |
3333 | } | |
3334 | if (result) { | |
3335 | *result = r; | |
8df1cd07 | 3336 | } |
4840f10e JK |
3337 | if (release_lock) { |
3338 | qemu_mutex_unlock_iothread(); | |
3339 | } | |
41063e1e | 3340 | rcu_read_unlock(); |
8df1cd07 FB |
3341 | } |
3342 | ||
50013115 PM |
3343 | void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val) |
3344 | { | |
3345 | address_space_stl_notdirty(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); | |
3346 | } | |
3347 | ||
8df1cd07 | 3348 | /* warning: addr must be aligned */ |
50013115 PM |
3349 | static inline void address_space_stl_internal(AddressSpace *as, |
3350 | hwaddr addr, uint32_t val, | |
3351 | MemTxAttrs attrs, | |
3352 | MemTxResult *result, | |
3353 | enum device_endian endian) | |
8df1cd07 | 3354 | { |
8df1cd07 | 3355 | uint8_t *ptr; |
5c8a00ce | 3356 | MemoryRegion *mr; |
149f54b5 PB |
3357 | hwaddr l = 4; |
3358 | hwaddr addr1; | |
50013115 | 3359 | MemTxResult r; |
4840f10e | 3360 | bool release_lock = false; |
8df1cd07 | 3361 | |
41063e1e | 3362 | rcu_read_lock(); |
ab1da857 | 3363 | mr = address_space_translate(as, addr, &addr1, &l, |
5c8a00ce PB |
3364 | true); |
3365 | if (l < 4 || !memory_access_is_direct(mr, true)) { | |
4840f10e | 3366 | release_lock |= prepare_mmio_access(mr); |
125b3806 | 3367 | |
1e78bcc1 AG |
3368 | #if defined(TARGET_WORDS_BIGENDIAN) |
3369 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
3370 | val = bswap32(val); | |
3371 | } | |
3372 | #else | |
3373 | if (endian == DEVICE_BIG_ENDIAN) { | |
3374 | val = bswap32(val); | |
3375 | } | |
3376 | #endif | |
50013115 | 3377 | r = memory_region_dispatch_write(mr, addr1, val, 4, attrs); |
8df1cd07 | 3378 | } else { |
8df1cd07 | 3379 | /* RAM case */ |
0878d0e1 | 3380 | ptr = qemu_map_ram_ptr(mr->ram_block, addr1); |
1e78bcc1 AG |
3381 | switch (endian) { |
3382 | case DEVICE_LITTLE_ENDIAN: | |
3383 | stl_le_p(ptr, val); | |
3384 | break; | |
3385 | case DEVICE_BIG_ENDIAN: | |
3386 | stl_be_p(ptr, val); | |
3387 | break; | |
3388 | default: | |
3389 | stl_p(ptr, val); | |
3390 | break; | |
3391 | } | |
845b6214 | 3392 | invalidate_and_set_dirty(mr, addr1, 4); |
50013115 PM |
3393 | r = MEMTX_OK; |
3394 | } | |
3395 | if (result) { | |
3396 | *result = r; | |
8df1cd07 | 3397 | } |
4840f10e JK |
3398 | if (release_lock) { |
3399 | qemu_mutex_unlock_iothread(); | |
3400 | } | |
41063e1e | 3401 | rcu_read_unlock(); |
8df1cd07 FB |
3402 | } |
3403 | ||
50013115 PM |
3404 | void address_space_stl(AddressSpace *as, hwaddr addr, uint32_t val, |
3405 | MemTxAttrs attrs, MemTxResult *result) | |
3406 | { | |
3407 | address_space_stl_internal(as, addr, val, attrs, result, | |
3408 | DEVICE_NATIVE_ENDIAN); | |
3409 | } | |
3410 | ||
3411 | void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val, | |
3412 | MemTxAttrs attrs, MemTxResult *result) | |
3413 | { | |
3414 | address_space_stl_internal(as, addr, val, attrs, result, | |
3415 | DEVICE_LITTLE_ENDIAN); | |
3416 | } | |
3417 | ||
3418 | void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val, | |
3419 | MemTxAttrs attrs, MemTxResult *result) | |
3420 | { | |
3421 | address_space_stl_internal(as, addr, val, attrs, result, | |
3422 | DEVICE_BIG_ENDIAN); | |
3423 | } | |
3424 | ||
ab1da857 | 3425 | void stl_phys(AddressSpace *as, hwaddr addr, uint32_t val) |
1e78bcc1 | 3426 | { |
50013115 | 3427 | address_space_stl(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3428 | } |
3429 | ||
ab1da857 | 3430 | void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val) |
1e78bcc1 | 3431 | { |
50013115 | 3432 | address_space_stl_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3433 | } |
3434 | ||
ab1da857 | 3435 | void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val) |
1e78bcc1 | 3436 | { |
50013115 | 3437 | address_space_stl_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3438 | } |
3439 | ||
aab33094 | 3440 | /* XXX: optimize */ |
50013115 PM |
3441 | void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val, |
3442 | MemTxAttrs attrs, MemTxResult *result) | |
aab33094 FB |
3443 | { |
3444 | uint8_t v = val; | |
50013115 PM |
3445 | MemTxResult r; |
3446 | ||
3447 | r = address_space_rw(as, addr, attrs, &v, 1, 1); | |
3448 | if (result) { | |
3449 | *result = r; | |
3450 | } | |
3451 | } | |
3452 | ||
3453 | void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val) | |
3454 | { | |
3455 | address_space_stb(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); | |
aab33094 FB |
3456 | } |
3457 | ||
733f0b02 | 3458 | /* warning: addr must be aligned */ |
50013115 PM |
3459 | static inline void address_space_stw_internal(AddressSpace *as, |
3460 | hwaddr addr, uint32_t val, | |
3461 | MemTxAttrs attrs, | |
3462 | MemTxResult *result, | |
3463 | enum device_endian endian) | |
aab33094 | 3464 | { |
733f0b02 | 3465 | uint8_t *ptr; |
5c8a00ce | 3466 | MemoryRegion *mr; |
149f54b5 PB |
3467 | hwaddr l = 2; |
3468 | hwaddr addr1; | |
50013115 | 3469 | MemTxResult r; |
4840f10e | 3470 | bool release_lock = false; |
733f0b02 | 3471 | |
41063e1e | 3472 | rcu_read_lock(); |
5ce5944d | 3473 | mr = address_space_translate(as, addr, &addr1, &l, true); |
5c8a00ce | 3474 | if (l < 2 || !memory_access_is_direct(mr, true)) { |
4840f10e | 3475 | release_lock |= prepare_mmio_access(mr); |
125b3806 | 3476 | |
1e78bcc1 AG |
3477 | #if defined(TARGET_WORDS_BIGENDIAN) |
3478 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
3479 | val = bswap16(val); | |
3480 | } | |
3481 | #else | |
3482 | if (endian == DEVICE_BIG_ENDIAN) { | |
3483 | val = bswap16(val); | |
3484 | } | |
3485 | #endif | |
50013115 | 3486 | r = memory_region_dispatch_write(mr, addr1, val, 2, attrs); |
733f0b02 | 3487 | } else { |
733f0b02 | 3488 | /* RAM case */ |
0878d0e1 | 3489 | ptr = qemu_map_ram_ptr(mr->ram_block, addr1); |
1e78bcc1 AG |
3490 | switch (endian) { |
3491 | case DEVICE_LITTLE_ENDIAN: | |
3492 | stw_le_p(ptr, val); | |
3493 | break; | |
3494 | case DEVICE_BIG_ENDIAN: | |
3495 | stw_be_p(ptr, val); | |
3496 | break; | |
3497 | default: | |
3498 | stw_p(ptr, val); | |
3499 | break; | |
3500 | } | |
845b6214 | 3501 | invalidate_and_set_dirty(mr, addr1, 2); |
50013115 PM |
3502 | r = MEMTX_OK; |
3503 | } | |
3504 | if (result) { | |
3505 | *result = r; | |
733f0b02 | 3506 | } |
4840f10e JK |
3507 | if (release_lock) { |
3508 | qemu_mutex_unlock_iothread(); | |
3509 | } | |
41063e1e | 3510 | rcu_read_unlock(); |
aab33094 FB |
3511 | } |
3512 | ||
50013115 PM |
3513 | void address_space_stw(AddressSpace *as, hwaddr addr, uint32_t val, |
3514 | MemTxAttrs attrs, MemTxResult *result) | |
3515 | { | |
3516 | address_space_stw_internal(as, addr, val, attrs, result, | |
3517 | DEVICE_NATIVE_ENDIAN); | |
3518 | } | |
3519 | ||
3520 | void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val, | |
3521 | MemTxAttrs attrs, MemTxResult *result) | |
3522 | { | |
3523 | address_space_stw_internal(as, addr, val, attrs, result, | |
3524 | DEVICE_LITTLE_ENDIAN); | |
3525 | } | |
3526 | ||
3527 | void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val, | |
3528 | MemTxAttrs attrs, MemTxResult *result) | |
3529 | { | |
3530 | address_space_stw_internal(as, addr, val, attrs, result, | |
3531 | DEVICE_BIG_ENDIAN); | |
3532 | } | |
3533 | ||
5ce5944d | 3534 | void stw_phys(AddressSpace *as, hwaddr addr, uint32_t val) |
1e78bcc1 | 3535 | { |
50013115 | 3536 | address_space_stw(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3537 | } |
3538 | ||
5ce5944d | 3539 | void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val) |
1e78bcc1 | 3540 | { |
50013115 | 3541 | address_space_stw_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3542 | } |
3543 | ||
5ce5944d | 3544 | void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val) |
1e78bcc1 | 3545 | { |
50013115 | 3546 | address_space_stw_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3547 | } |
3548 | ||
aab33094 | 3549 | /* XXX: optimize */ |
50013115 PM |
3550 | void address_space_stq(AddressSpace *as, hwaddr addr, uint64_t val, |
3551 | MemTxAttrs attrs, MemTxResult *result) | |
aab33094 | 3552 | { |
50013115 | 3553 | MemTxResult r; |
aab33094 | 3554 | val = tswap64(val); |
50013115 PM |
3555 | r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1); |
3556 | if (result) { | |
3557 | *result = r; | |
3558 | } | |
aab33094 FB |
3559 | } |
3560 | ||
50013115 PM |
3561 | void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val, |
3562 | MemTxAttrs attrs, MemTxResult *result) | |
1e78bcc1 | 3563 | { |
50013115 | 3564 | MemTxResult r; |
1e78bcc1 | 3565 | val = cpu_to_le64(val); |
50013115 PM |
3566 | r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1); |
3567 | if (result) { | |
3568 | *result = r; | |
3569 | } | |
3570 | } | |
3571 | void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val, | |
3572 | MemTxAttrs attrs, MemTxResult *result) | |
3573 | { | |
3574 | MemTxResult r; | |
3575 | val = cpu_to_be64(val); | |
3576 | r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1); | |
3577 | if (result) { | |
3578 | *result = r; | |
3579 | } | |
3580 | } | |
3581 | ||
3582 | void stq_phys(AddressSpace *as, hwaddr addr, uint64_t val) | |
3583 | { | |
3584 | address_space_stq(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); | |
3585 | } | |
3586 | ||
3587 | void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val) | |
3588 | { | |
3589 | address_space_stq_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); | |
1e78bcc1 AG |
3590 | } |
3591 | ||
f606604f | 3592 | void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val) |
1e78bcc1 | 3593 | { |
50013115 | 3594 | address_space_stq_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3595 | } |
3596 | ||
5e2972fd | 3597 | /* virtual memory access for debug (includes writing to ROM) */ |
f17ec444 | 3598 | int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr, |
b448f2f3 | 3599 | uint8_t *buf, int len, int is_write) |
13eb76e0 FB |
3600 | { |
3601 | int l; | |
a8170e5e | 3602 | hwaddr phys_addr; |
9b3c35e0 | 3603 | target_ulong page; |
13eb76e0 FB |
3604 | |
3605 | while (len > 0) { | |
5232e4c7 PM |
3606 | int asidx; |
3607 | MemTxAttrs attrs; | |
3608 | ||
13eb76e0 | 3609 | page = addr & TARGET_PAGE_MASK; |
5232e4c7 PM |
3610 | phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs); |
3611 | asidx = cpu_asidx_from_attrs(cpu, attrs); | |
13eb76e0 FB |
3612 | /* if no physical page mapped, return an error */ |
3613 | if (phys_addr == -1) | |
3614 | return -1; | |
3615 | l = (page + TARGET_PAGE_SIZE) - addr; | |
3616 | if (l > len) | |
3617 | l = len; | |
5e2972fd | 3618 | phys_addr += (addr & ~TARGET_PAGE_MASK); |
2e38847b | 3619 | if (is_write) { |
5232e4c7 PM |
3620 | cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as, |
3621 | phys_addr, buf, l); | |
2e38847b | 3622 | } else { |
5232e4c7 PM |
3623 | address_space_rw(cpu->cpu_ases[asidx].as, phys_addr, |
3624 | MEMTXATTRS_UNSPECIFIED, | |
5c9eb028 | 3625 | buf, l, 0); |
2e38847b | 3626 | } |
13eb76e0 FB |
3627 | len -= l; |
3628 | buf += l; | |
3629 | addr += l; | |
3630 | } | |
3631 | return 0; | |
3632 | } | |
038629a6 DDAG |
3633 | |
3634 | /* | |
3635 | * Allows code that needs to deal with migration bitmaps etc to still be built | |
3636 | * target independent. | |
3637 | */ | |
3638 | size_t qemu_target_page_bits(void) | |
3639 | { | |
3640 | return TARGET_PAGE_BITS; | |
3641 | } | |
3642 | ||
a68fe89c | 3643 | #endif |
13eb76e0 | 3644 | |
8e4a424b BS |
3645 | /* |
3646 | * A helper function for the _utterly broken_ virtio device model to find out if | |
3647 | * it's running on a big endian machine. Don't do this at home kids! | |
3648 | */ | |
98ed8ecf GK |
3649 | bool target_words_bigendian(void); |
3650 | bool target_words_bigendian(void) | |
8e4a424b BS |
3651 | { |
3652 | #if defined(TARGET_WORDS_BIGENDIAN) | |
3653 | return true; | |
3654 | #else | |
3655 | return false; | |
3656 | #endif | |
3657 | } | |
3658 | ||
76f35538 | 3659 | #ifndef CONFIG_USER_ONLY |
a8170e5e | 3660 | bool cpu_physical_memory_is_io(hwaddr phys_addr) |
76f35538 | 3661 | { |
5c8a00ce | 3662 | MemoryRegion*mr; |
149f54b5 | 3663 | hwaddr l = 1; |
41063e1e | 3664 | bool res; |
76f35538 | 3665 | |
41063e1e | 3666 | rcu_read_lock(); |
5c8a00ce PB |
3667 | mr = address_space_translate(&address_space_memory, |
3668 | phys_addr, &phys_addr, &l, false); | |
76f35538 | 3669 | |
41063e1e PB |
3670 | res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr)); |
3671 | rcu_read_unlock(); | |
3672 | return res; | |
76f35538 | 3673 | } |
bd2fa51f | 3674 | |
e3807054 | 3675 | int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque) |
bd2fa51f MH |
3676 | { |
3677 | RAMBlock *block; | |
e3807054 | 3678 | int ret = 0; |
bd2fa51f | 3679 | |
0dc3f44a MD |
3680 | rcu_read_lock(); |
3681 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | |
e3807054 DDAG |
3682 | ret = func(block->idstr, block->host, block->offset, |
3683 | block->used_length, opaque); | |
3684 | if (ret) { | |
3685 | break; | |
3686 | } | |
bd2fa51f | 3687 | } |
0dc3f44a | 3688 | rcu_read_unlock(); |
e3807054 | 3689 | return ret; |
bd2fa51f | 3690 | } |
ec3f8c99 | 3691 | #endif |