]> Git Repo - qemu.git/blame - target-ppc/op_helper.c
PPC: Switch a few instructions to TCG
[qemu.git] / target-ppc / op_helper.c
CommitLineData
9a64fbe4 1/*
3fc6c082 2 * PowerPC emulation helpers for qemu.
5fafdf24 3 *
76a66253 4 * Copyright (c) 2003-2007 Jocelyn Mayer
9a64fbe4
FB
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
9a64fbe4 20#include "exec.h"
603fccce 21#include "host-utils.h"
9a64fbe4 22
0411a972 23#include "helper_regs.h"
0487d6a8
JM
24#include "op_helper.h"
25
9a64fbe4 26#define MEMSUFFIX _raw
0487d6a8 27#include "op_helper.h"
9a64fbe4 28#include "op_helper_mem.h"
a541f297 29#if !defined(CONFIG_USER_ONLY)
9a64fbe4 30#define MEMSUFFIX _user
0487d6a8 31#include "op_helper.h"
9a64fbe4
FB
32#include "op_helper_mem.h"
33#define MEMSUFFIX _kernel
0487d6a8 34#include "op_helper.h"
9a64fbe4 35#include "op_helper_mem.h"
1e42b8f0
JM
36#define MEMSUFFIX _hypv
37#include "op_helper.h"
38#include "op_helper_mem.h"
39#endif
9a64fbe4 40
fdabc366
FB
41//#define DEBUG_OP
42//#define DEBUG_EXCEPTIONS
76a66253 43//#define DEBUG_SOFTWARE_TLB
fdabc366 44
9a64fbe4
FB
45/*****************************************************************************/
46/* Exceptions processing helpers */
9a64fbe4 47
9fddaa0c 48void do_raise_exception_err (uint32_t exception, int error_code)
9a64fbe4 49{
9fddaa0c
FB
50#if 0
51 printf("Raise exception %3x code : %d\n", exception, error_code);
52#endif
9fddaa0c
FB
53 env->exception_index = exception;
54 env->error_code = error_code;
76a66253
JM
55 cpu_loop_exit();
56}
9fddaa0c
FB
57
58void do_raise_exception (uint32_t exception)
59{
60 do_raise_exception_err(exception, 0);
9a64fbe4
FB
61}
62
a496775f
JM
63void cpu_dump_EA (target_ulong EA);
64void do_print_mem_EA (target_ulong EA)
65{
66 cpu_dump_EA(EA);
67}
68
76a66253
JM
69/*****************************************************************************/
70/* Registers load and stores */
61c04807 71target_ulong do_load_cr (void)
76a66253 72{
61c04807
AJ
73 return (env->crf[0] << 28) |
74 (env->crf[1] << 24) |
75 (env->crf[2] << 20) |
76 (env->crf[3] << 16) |
77 (env->crf[4] << 12) |
78 (env->crf[5] << 8) |
79 (env->crf[6] << 4) |
80 (env->crf[7] << 0);
76a66253
JM
81}
82
83void do_store_cr (uint32_t mask)
84{
85 int i, sh;
86
36081602 87 for (i = 0, sh = 7; i < 8; i++, sh--) {
76a66253
JM
88 if (mask & (1 << sh))
89 env->crf[i] = (T0 >> (sh * 4)) & 0xFUL;
90 }
91}
92
c80f84e3
JM
93#if defined(TARGET_PPC64)
94void do_store_pri (int prio)
95{
96 env->spr[SPR_PPR] &= ~0x001C000000000000ULL;
97 env->spr[SPR_PPR] |= ((uint64_t)prio & 0x7) << 50;
98}
99#endif
100
a496775f
JM
101target_ulong ppc_load_dump_spr (int sprn)
102{
6b80055d 103 if (loglevel != 0) {
a496775f
JM
104 fprintf(logfile, "Read SPR %d %03x => " ADDRX "\n",
105 sprn, sprn, env->spr[sprn]);
106 }
107
108 return env->spr[sprn];
109}
110
111void ppc_store_dump_spr (int sprn, target_ulong val)
112{
6b80055d 113 if (loglevel != 0) {
a496775f
JM
114 fprintf(logfile, "Write SPR %d %03x => " ADDRX " <= " ADDRX "\n",
115 sprn, sprn, env->spr[sprn], val);
116 }
117 env->spr[sprn] = val;
118}
119
9a64fbe4 120/*****************************************************************************/
fdabc366 121/* Fixed point operations helpers */
fdabc366
FB
122void do_adde (void)
123{
124 T2 = T0;
125 T0 += T1 + xer_ca;
d9bce9d9
JM
126 if (likely(!((uint32_t)T0 < (uint32_t)T2 ||
127 (xer_ca == 1 && (uint32_t)T0 == (uint32_t)T2)))) {
fdabc366
FB
128 xer_ca = 0;
129 } else {
130 xer_ca = 1;
131 }
132}
133
d9bce9d9
JM
134#if defined(TARGET_PPC64)
135void do_adde_64 (void)
fdabc366
FB
136{
137 T2 = T0;
138 T0 += T1 + xer_ca;
d9bce9d9
JM
139 if (likely(!((uint64_t)T0 < (uint64_t)T2 ||
140 (xer_ca == 1 && (uint64_t)T0 == (uint64_t)T2)))) {
fdabc366
FB
141 xer_ca = 0;
142 } else {
143 xer_ca = 1;
144 }
fdabc366 145}
d9bce9d9 146#endif
fdabc366
FB
147
148void do_addmeo (void)
149{
150 T1 = T0;
151 T0 += xer_ca + (-1);
c3e10c7b
JM
152 xer_ov = ((uint32_t)T1 & ((uint32_t)T1 ^ (uint32_t)T0)) >> 31;
153 xer_so |= xer_ov;
fdabc366
FB
154 if (likely(T1 != 0))
155 xer_ca = 1;
c3e10c7b
JM
156 else
157 xer_ca = 0;
fdabc366
FB
158}
159
d9bce9d9
JM
160#if defined(TARGET_PPC64)
161void do_addmeo_64 (void)
fdabc366
FB
162{
163 T1 = T0;
d9bce9d9 164 T0 += xer_ca + (-1);
c3e10c7b
JM
165 xer_ov = ((uint64_t)T1 & ((uint64_t)T1 ^ (uint64_t)T0)) >> 63;
166 xer_so |= xer_ov;
d9bce9d9 167 if (likely(T1 != 0))
fdabc366 168 xer_ca = 1;
c3e10c7b
JM
169 else
170 xer_ca = 0;
fdabc366 171}
d9bce9d9 172#endif
fdabc366
FB
173
174void do_divwo (void)
175{
6f2d8978 176 if (likely(!(((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) ||
d9bce9d9 177 (int32_t)T1 == 0))) {
fdabc366 178 xer_ov = 0;
d9bce9d9 179 T0 = (int32_t)T0 / (int32_t)T1;
fdabc366 180 } else {
fdabc366 181 xer_ov = 1;
6f2d8978 182 T0 = UINT32_MAX * ((uint32_t)T0 >> 31);
fdabc366 183 }
6f2d8978 184 xer_so |= xer_ov;
fdabc366
FB
185}
186
d9bce9d9
JM
187#if defined(TARGET_PPC64)
188void do_divdo (void)
189{
6f2d8978 190 if (likely(!(((int64_t)T0 == INT64_MIN && (int64_t)T1 == (int64_t)-1LL) ||
d9bce9d9
JM
191 (int64_t)T1 == 0))) {
192 xer_ov = 0;
193 T0 = (int64_t)T0 / (int64_t)T1;
194 } else {
d9bce9d9 195 xer_ov = 1;
6f2d8978 196 T0 = UINT64_MAX * ((uint64_t)T0 >> 63);
d9bce9d9 197 }
6f2d8978 198 xer_so |= xer_ov;
d9bce9d9
JM
199}
200#endif
201
fdabc366
FB
202void do_divwuo (void)
203{
204 if (likely((uint32_t)T1 != 0)) {
205 xer_ov = 0;
206 T0 = (uint32_t)T0 / (uint32_t)T1;
207 } else {
fdabc366 208 xer_ov = 1;
966439a6 209 xer_so = 1;
fdabc366
FB
210 T0 = 0;
211 }
212}
213
d9bce9d9
JM
214#if defined(TARGET_PPC64)
215void do_divduo (void)
216{
217 if (likely((uint64_t)T1 != 0)) {
218 xer_ov = 0;
219 T0 = (uint64_t)T0 / (uint64_t)T1;
220 } else {
d9bce9d9 221 xer_ov = 1;
966439a6 222 xer_so = 1;
d9bce9d9
JM
223 T0 = 0;
224 }
225}
226#endif
227
fdabc366
FB
228void do_mullwo (void)
229{
d9bce9d9 230 int64_t res = (int64_t)T0 * (int64_t)T1;
fdabc366
FB
231
232 if (likely((int32_t)res == res)) {
233 xer_ov = 0;
234 } else {
235 xer_ov = 1;
236 xer_so = 1;
237 }
238 T0 = (int32_t)res;
239}
240
d9bce9d9
JM
241#if defined(TARGET_PPC64)
242void do_mulldo (void)
fdabc366 243{
d9bce9d9
JM
244 int64_t th;
245 uint64_t tl;
246
9d901a20 247 muls64(&tl, &th, T0, T1);
6f2d8978 248 T0 = (int64_t)tl;
88ad920b 249 /* If th != 0 && th != -1, then we had an overflow */
6f2d8978 250 if (likely((uint64_t)(th + 1) <= 1)) {
fdabc366 251 xer_ov = 0;
fdabc366
FB
252 } else {
253 xer_ov = 1;
fdabc366 254 }
6f2d8978 255 xer_so |= xer_ov;
fdabc366 256}
d9bce9d9 257#endif
fdabc366 258
d9bce9d9 259void do_nego (void)
fdabc366 260{
d9bce9d9 261 if (likely((int32_t)T0 != INT32_MIN)) {
fdabc366 262 xer_ov = 0;
d9bce9d9 263 T0 = -(int32_t)T0;
fdabc366 264 } else {
fdabc366 265 xer_ov = 1;
d9bce9d9 266 xer_so = 1;
fdabc366 267 }
fdabc366
FB
268}
269
d9bce9d9
JM
270#if defined(TARGET_PPC64)
271void do_nego_64 (void)
fdabc366 272{
d9bce9d9 273 if (likely((int64_t)T0 != INT64_MIN)) {
fdabc366 274 xer_ov = 0;
d9bce9d9 275 T0 = -(int64_t)T0;
fdabc366 276 } else {
fdabc366 277 xer_ov = 1;
d9bce9d9 278 xer_so = 1;
fdabc366
FB
279 }
280}
d9bce9d9 281#endif
fdabc366
FB
282
283void do_subfe (void)
284{
285 T0 = T1 + ~T0 + xer_ca;
d9bce9d9
JM
286 if (likely((uint32_t)T0 >= (uint32_t)T1 &&
287 (xer_ca == 0 || (uint32_t)T0 != (uint32_t)T1))) {
fdabc366
FB
288 xer_ca = 0;
289 } else {
290 xer_ca = 1;
291 }
292}
293
d9bce9d9
JM
294#if defined(TARGET_PPC64)
295void do_subfe_64 (void)
fdabc366 296{
fdabc366 297 T0 = T1 + ~T0 + xer_ca;
d9bce9d9
JM
298 if (likely((uint64_t)T0 >= (uint64_t)T1 &&
299 (xer_ca == 0 || (uint64_t)T0 != (uint64_t)T1))) {
300 xer_ca = 0;
301 } else {
302 xer_ca = 1;
303 }
304}
305#endif
306
307void do_subfmeo (void)
308{
309 T1 = T0;
310 T0 = ~T0 + xer_ca - 1;
c3e10c7b
JM
311 xer_ov = ((uint32_t)~T1 & ((uint32_t)~T1 ^ (uint32_t)T0)) >> 31;
312 xer_so |= xer_ov;
d9bce9d9 313 if (likely((uint32_t)T1 != UINT32_MAX))
fdabc366 314 xer_ca = 1;
c3e10c7b
JM
315 else
316 xer_ca = 0;
fdabc366
FB
317}
318
d9bce9d9
JM
319#if defined(TARGET_PPC64)
320void do_subfmeo_64 (void)
fdabc366
FB
321{
322 T1 = T0;
323 T0 = ~T0 + xer_ca - 1;
c3e10c7b
JM
324 xer_ov = ((uint64_t)~T1 & ((uint64_t)~T1 ^ (uint64_t)T0)) >> 63;
325 xer_so |= xer_ov;
d9bce9d9 326 if (likely((uint64_t)T1 != UINT64_MAX))
fdabc366 327 xer_ca = 1;
c3e10c7b
JM
328 else
329 xer_ca = 0;
fdabc366 330}
d9bce9d9 331#endif
fdabc366
FB
332
333void do_subfzeo (void)
334{
335 T1 = T0;
336 T0 = ~T0 + xer_ca;
c3e10c7b
JM
337 xer_ov = (((uint32_t)~T1 ^ UINT32_MAX) &
338 ((uint32_t)(~T1) ^ (uint32_t)T0)) >> 31;
339 xer_so |= xer_ov;
d9bce9d9 340 if (likely((uint32_t)T0 >= (uint32_t)~T1)) {
fdabc366
FB
341 xer_ca = 0;
342 } else {
343 xer_ca = 1;
344 }
345}
346
d9bce9d9
JM
347#if defined(TARGET_PPC64)
348void do_subfzeo_64 (void)
349{
350 T1 = T0;
351 T0 = ~T0 + xer_ca;
c3e10c7b
JM
352 xer_ov = (((uint64_t)~T1 ^ UINT64_MAX) &
353 ((uint64_t)(~T1) ^ (uint64_t)T0)) >> 63;
354 xer_so |= xer_ov;
d9bce9d9
JM
355 if (likely((uint64_t)T0 >= (uint64_t)~T1)) {
356 xer_ca = 0;
357 } else {
358 xer_ca = 1;
359 }
360}
361#endif
362
603fccce
JM
363void do_cntlzw (void)
364{
365 T0 = clz32(T0);
366}
367
368#if defined(TARGET_PPC64)
369void do_cntlzd (void)
370{
371 T0 = clz64(T0);
372}
373#endif
374
9a64fbe4
FB
375/* shift right arithmetic helper */
376void do_sraw (void)
377{
378 int32_t ret;
379
fdabc366 380 if (likely(!(T1 & 0x20UL))) {
d9bce9d9 381 if (likely((uint32_t)T1 != 0)) {
fdabc366
FB
382 ret = (int32_t)T0 >> (T1 & 0x1fUL);
383 if (likely(ret >= 0 || ((int32_t)T0 & ((1 << T1) - 1)) == 0)) {
76a66253 384 xer_ca = 0;
fdabc366 385 } else {
76a66253 386 xer_ca = 1;
fdabc366
FB
387 }
388 } else {
76a66253 389 ret = T0;
fdabc366
FB
390 xer_ca = 0;
391 }
392 } else {
6f2d8978 393 ret = UINT32_MAX * ((uint32_t)T0 >> 31);
fdabc366
FB
394 if (likely(ret >= 0 || ((uint32_t)T0 & ~0x80000000UL) == 0)) {
395 xer_ca = 0;
76a66253 396 } else {
9a64fbe4 397 xer_ca = 1;
76a66253 398 }
fdabc366 399 }
4b3686fa 400 T0 = ret;
9a64fbe4
FB
401}
402
d9bce9d9
JM
403#if defined(TARGET_PPC64)
404void do_srad (void)
405{
406 int64_t ret;
407
408 if (likely(!(T1 & 0x40UL))) {
409 if (likely((uint64_t)T1 != 0)) {
410 ret = (int64_t)T0 >> (T1 & 0x3FUL);
411 if (likely(ret >= 0 || ((int64_t)T0 & ((1 << T1) - 1)) == 0)) {
412 xer_ca = 0;
413 } else {
414 xer_ca = 1;
415 }
416 } else {
417 ret = T0;
418 xer_ca = 0;
419 }
420 } else {
6f2d8978 421 ret = UINT64_MAX * ((uint64_t)T0 >> 63);
d9bce9d9
JM
422 if (likely(ret >= 0 || ((uint64_t)T0 & ~0x8000000000000000ULL) == 0)) {
423 xer_ca = 0;
424 } else {
425 xer_ca = 1;
426 }
427 }
428 T0 = ret;
429}
430#endif
431
61c04807 432target_ulong do_popcntb (target_ulong t0)
d9bce9d9
JM
433{
434 uint32_t ret;
435 int i;
436
437 ret = 0;
438 for (i = 0; i < 32; i += 8)
61c04807
AJ
439 ret |= ctpop8((t0 >> i) & 0xFF) << i;
440 return ret;
d9bce9d9
JM
441}
442
443#if defined(TARGET_PPC64)
61c04807 444target_ulong do_popcntb_64 (target_ulong t0)
d9bce9d9
JM
445{
446 uint64_t ret;
447 int i;
448
449 ret = 0;
450 for (i = 0; i < 64; i += 8)
61c04807
AJ
451 ret |= ctpop8((t0 >> i) & 0xFF) << i;
452 return ret;
d9bce9d9
JM
453}
454#endif
455
fdabc366 456/*****************************************************************************/
9a64fbe4 457/* Floating point operations helpers */
0ca9d380 458static always_inline int fpisneg (float64 d)
7c58044c 459{
0ca9d380 460 CPU_DoubleU u;
7c58044c 461
0ca9d380 462 u.d = d;
7c58044c 463
0ca9d380 464 return u.ll >> 63 != 0;
7c58044c
JM
465}
466
0ca9d380 467static always_inline int isden (float64 d)
7c58044c 468{
0ca9d380 469 CPU_DoubleU u;
7c58044c 470
0ca9d380 471 u.d = d;
7c58044c 472
0ca9d380 473 return ((u.ll >> 52) & 0x7FF) == 0;
7c58044c
JM
474}
475
0ca9d380 476static always_inline int iszero (float64 d)
7c58044c 477{
0ca9d380 478 CPU_DoubleU u;
7c58044c 479
0ca9d380 480 u.d = d;
7c58044c 481
0ca9d380 482 return (u.ll & ~0x8000000000000000ULL) == 0;
7c58044c
JM
483}
484
0ca9d380 485static always_inline int isinfinity (float64 d)
7c58044c 486{
0ca9d380 487 CPU_DoubleU u;
7c58044c 488
0ca9d380 489 u.d = d;
7c58044c 490
0ca9d380
AJ
491 return ((u.ll >> 52) & 0x7FF) == 0x7FF &&
492 (u.ll & 0x000FFFFFFFFFFFFFULL) == 0;
7c58044c
JM
493}
494
80621676
AJ
495#ifdef CONFIG_SOFTFLOAT
496static always_inline int isfinite (float64 d)
497{
498 CPU_DoubleU u;
499
500 u.d = d;
501
502 return (((u.ll >> 52) & 0x7FF) != 0x7FF);
503}
504
505static always_inline int isnormal (float64 d)
506{
507 CPU_DoubleU u;
508
509 u.d = d;
510
511 uint32_t exp = (u.ll >> 52) & 0x7FF;
512 return ((0 < exp) && (exp < 0x7FF));
513}
514#endif
515
7c58044c
JM
516void do_compute_fprf (int set_fprf)
517{
518 int isneg;
519
520 isneg = fpisneg(FT0);
521 if (unlikely(float64_is_nan(FT0))) {
522 if (float64_is_signaling_nan(FT0)) {
523 /* Signaling NaN: flags are undefined */
524 T0 = 0x00;
525 } else {
526 /* Quiet NaN */
527 T0 = 0x11;
528 }
529 } else if (unlikely(isinfinity(FT0))) {
530 /* +/- infinity */
531 if (isneg)
532 T0 = 0x09;
533 else
534 T0 = 0x05;
535 } else {
536 if (iszero(FT0)) {
537 /* +/- zero */
538 if (isneg)
539 T0 = 0x12;
540 else
541 T0 = 0x02;
542 } else {
543 if (isden(FT0)) {
544 /* Denormalized numbers */
545 T0 = 0x10;
546 } else {
547 /* Normalized numbers */
548 T0 = 0x00;
549 }
550 if (isneg) {
551 T0 |= 0x08;
552 } else {
553 T0 |= 0x04;
554 }
555 }
556 }
557 if (set_fprf) {
558 /* We update FPSCR_FPRF */
559 env->fpscr &= ~(0x1F << FPSCR_FPRF);
560 env->fpscr |= T0 << FPSCR_FPRF;
561 }
562 /* We just need fpcc to update Rc1 */
563 T0 &= 0xF;
564}
565
566/* Floating-point invalid operations exception */
567static always_inline void fload_invalid_op_excp (int op)
568{
569 int ve;
570
571 ve = fpscr_ve;
572 if (op & POWERPC_EXCP_FP_VXSNAN) {
573 /* Operation on signaling NaN */
574 env->fpscr |= 1 << FPSCR_VXSNAN;
575 }
576 if (op & POWERPC_EXCP_FP_VXSOFT) {
577 /* Software-defined condition */
578 env->fpscr |= 1 << FPSCR_VXSOFT;
579 }
580 switch (op & ~(POWERPC_EXCP_FP_VXSOFT | POWERPC_EXCP_FP_VXSNAN)) {
581 case POWERPC_EXCP_FP_VXISI:
582 /* Magnitude subtraction of infinities */
583 env->fpscr |= 1 << FPSCR_VXISI;
584 goto update_arith;
585 case POWERPC_EXCP_FP_VXIDI:
586 /* Division of infinity by infinity */
587 env->fpscr |= 1 << FPSCR_VXIDI;
588 goto update_arith;
589 case POWERPC_EXCP_FP_VXZDZ:
590 /* Division of zero by zero */
591 env->fpscr |= 1 << FPSCR_VXZDZ;
592 goto update_arith;
593 case POWERPC_EXCP_FP_VXIMZ:
594 /* Multiplication of zero by infinity */
595 env->fpscr |= 1 << FPSCR_VXIMZ;
596 goto update_arith;
597 case POWERPC_EXCP_FP_VXVC:
598 /* Ordered comparison of NaN */
599 env->fpscr |= 1 << FPSCR_VXVC;
600 env->fpscr &= ~(0xF << FPSCR_FPCC);
601 env->fpscr |= 0x11 << FPSCR_FPCC;
602 /* We must update the target FPR before raising the exception */
603 if (ve != 0) {
604 env->exception_index = POWERPC_EXCP_PROGRAM;
605 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC;
606 /* Update the floating-point enabled exception summary */
607 env->fpscr |= 1 << FPSCR_FEX;
608 /* Exception is differed */
609 ve = 0;
610 }
611 break;
612 case POWERPC_EXCP_FP_VXSQRT:
613 /* Square root of a negative number */
614 env->fpscr |= 1 << FPSCR_VXSQRT;
615 update_arith:
616 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
617 if (ve == 0) {
618 /* Set the result to quiet NaN */
6f2d8978 619 FT0 = UINT64_MAX;
7c58044c
JM
620 env->fpscr &= ~(0xF << FPSCR_FPCC);
621 env->fpscr |= 0x11 << FPSCR_FPCC;
622 }
623 break;
624 case POWERPC_EXCP_FP_VXCVI:
625 /* Invalid conversion */
626 env->fpscr |= 1 << FPSCR_VXCVI;
627 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
628 if (ve == 0) {
629 /* Set the result to quiet NaN */
6f2d8978 630 FT0 = UINT64_MAX;
7c58044c
JM
631 env->fpscr &= ~(0xF << FPSCR_FPCC);
632 env->fpscr |= 0x11 << FPSCR_FPCC;
633 }
634 break;
635 }
636 /* Update the floating-point invalid operation summary */
637 env->fpscr |= 1 << FPSCR_VX;
638 /* Update the floating-point exception summary */
639 env->fpscr |= 1 << FPSCR_FX;
640 if (ve != 0) {
641 /* Update the floating-point enabled exception summary */
642 env->fpscr |= 1 << FPSCR_FEX;
643 if (msr_fe0 != 0 || msr_fe1 != 0)
644 do_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_FP | op);
645 }
646}
647
648static always_inline void float_zero_divide_excp (void)
649{
0ca9d380 650 CPU_DoubleU u0, u1;
7c58044c
JM
651
652 env->fpscr |= 1 << FPSCR_ZX;
653 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
654 /* Update the floating-point exception summary */
655 env->fpscr |= 1 << FPSCR_FX;
656 if (fpscr_ze != 0) {
657 /* Update the floating-point enabled exception summary */
658 env->fpscr |= 1 << FPSCR_FEX;
659 if (msr_fe0 != 0 || msr_fe1 != 0) {
660 do_raise_exception_err(POWERPC_EXCP_PROGRAM,
661 POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX);
662 }
663 } else {
664 /* Set the result to infinity */
0ca9d380
AJ
665 u0.d = FT0;
666 u1.d = FT1;
667 u0.ll = ((u0.ll ^ u1.ll) & 0x8000000000000000ULL);
668 u0.ll |= 0x7FFULL << 52;
669 FT0 = u0.d;
7c58044c
JM
670 }
671}
672
673static always_inline void float_overflow_excp (void)
674{
675 env->fpscr |= 1 << FPSCR_OX;
676 /* Update the floating-point exception summary */
677 env->fpscr |= 1 << FPSCR_FX;
678 if (fpscr_oe != 0) {
679 /* XXX: should adjust the result */
680 /* Update the floating-point enabled exception summary */
681 env->fpscr |= 1 << FPSCR_FEX;
682 /* We must update the target FPR before raising the exception */
683 env->exception_index = POWERPC_EXCP_PROGRAM;
684 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
685 } else {
686 env->fpscr |= 1 << FPSCR_XX;
687 env->fpscr |= 1 << FPSCR_FI;
688 }
689}
690
691static always_inline void float_underflow_excp (void)
692{
693 env->fpscr |= 1 << FPSCR_UX;
694 /* Update the floating-point exception summary */
695 env->fpscr |= 1 << FPSCR_FX;
696 if (fpscr_ue != 0) {
697 /* XXX: should adjust the result */
698 /* Update the floating-point enabled exception summary */
699 env->fpscr |= 1 << FPSCR_FEX;
700 /* We must update the target FPR before raising the exception */
701 env->exception_index = POWERPC_EXCP_PROGRAM;
702 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
703 }
704}
705
706static always_inline void float_inexact_excp (void)
707{
708 env->fpscr |= 1 << FPSCR_XX;
709 /* Update the floating-point exception summary */
710 env->fpscr |= 1 << FPSCR_FX;
711 if (fpscr_xe != 0) {
712 /* Update the floating-point enabled exception summary */
713 env->fpscr |= 1 << FPSCR_FEX;
714 /* We must update the target FPR before raising the exception */
715 env->exception_index = POWERPC_EXCP_PROGRAM;
716 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
717 }
718}
719
720static always_inline void fpscr_set_rounding_mode (void)
721{
722 int rnd_type;
723
724 /* Set rounding mode */
725 switch (fpscr_rn) {
726 case 0:
727 /* Best approximation (round to nearest) */
728 rnd_type = float_round_nearest_even;
729 break;
730 case 1:
731 /* Smaller magnitude (round toward zero) */
732 rnd_type = float_round_to_zero;
733 break;
734 case 2:
735 /* Round toward +infinite */
736 rnd_type = float_round_up;
737 break;
738 default:
739 case 3:
740 /* Round toward -infinite */
741 rnd_type = float_round_down;
742 break;
743 }
744 set_float_rounding_mode(rnd_type, &env->fp_status);
745}
746
747void do_fpscr_setbit (int bit)
748{
749 int prev;
750
751 prev = (env->fpscr >> bit) & 1;
752 env->fpscr |= 1 << bit;
753 if (prev == 0) {
754 switch (bit) {
755 case FPSCR_VX:
756 env->fpscr |= 1 << FPSCR_FX;
757 if (fpscr_ve)
758 goto raise_ve;
759 case FPSCR_OX:
760 env->fpscr |= 1 << FPSCR_FX;
761 if (fpscr_oe)
762 goto raise_oe;
763 break;
764 case FPSCR_UX:
765 env->fpscr |= 1 << FPSCR_FX;
766 if (fpscr_ue)
767 goto raise_ue;
768 break;
769 case FPSCR_ZX:
770 env->fpscr |= 1 << FPSCR_FX;
771 if (fpscr_ze)
772 goto raise_ze;
773 break;
774 case FPSCR_XX:
775 env->fpscr |= 1 << FPSCR_FX;
776 if (fpscr_xe)
777 goto raise_xe;
778 break;
779 case FPSCR_VXSNAN:
780 case FPSCR_VXISI:
781 case FPSCR_VXIDI:
782 case FPSCR_VXZDZ:
783 case FPSCR_VXIMZ:
784 case FPSCR_VXVC:
785 case FPSCR_VXSOFT:
786 case FPSCR_VXSQRT:
787 case FPSCR_VXCVI:
788 env->fpscr |= 1 << FPSCR_VX;
789 env->fpscr |= 1 << FPSCR_FX;
790 if (fpscr_ve != 0)
791 goto raise_ve;
792 break;
793 case FPSCR_VE:
794 if (fpscr_vx != 0) {
795 raise_ve:
796 env->error_code = POWERPC_EXCP_FP;
797 if (fpscr_vxsnan)
798 env->error_code |= POWERPC_EXCP_FP_VXSNAN;
799 if (fpscr_vxisi)
800 env->error_code |= POWERPC_EXCP_FP_VXISI;
801 if (fpscr_vxidi)
802 env->error_code |= POWERPC_EXCP_FP_VXIDI;
803 if (fpscr_vxzdz)
804 env->error_code |= POWERPC_EXCP_FP_VXZDZ;
805 if (fpscr_vximz)
806 env->error_code |= POWERPC_EXCP_FP_VXIMZ;
807 if (fpscr_vxvc)
808 env->error_code |= POWERPC_EXCP_FP_VXVC;
809 if (fpscr_vxsoft)
810 env->error_code |= POWERPC_EXCP_FP_VXSOFT;
811 if (fpscr_vxsqrt)
812 env->error_code |= POWERPC_EXCP_FP_VXSQRT;
813 if (fpscr_vxcvi)
814 env->error_code |= POWERPC_EXCP_FP_VXCVI;
815 goto raise_excp;
816 }
817 break;
818 case FPSCR_OE:
819 if (fpscr_ox != 0) {
820 raise_oe:
821 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
822 goto raise_excp;
823 }
824 break;
825 case FPSCR_UE:
826 if (fpscr_ux != 0) {
827 raise_ue:
828 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
829 goto raise_excp;
830 }
831 break;
832 case FPSCR_ZE:
833 if (fpscr_zx != 0) {
834 raise_ze:
835 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX;
836 goto raise_excp;
837 }
838 break;
839 case FPSCR_XE:
840 if (fpscr_xx != 0) {
841 raise_xe:
842 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
843 goto raise_excp;
844 }
845 break;
846 case FPSCR_RN1:
847 case FPSCR_RN:
848 fpscr_set_rounding_mode();
849 break;
850 default:
851 break;
852 raise_excp:
853 /* Update the floating-point enabled exception summary */
854 env->fpscr |= 1 << FPSCR_FEX;
855 /* We have to update Rc1 before raising the exception */
856 env->exception_index = POWERPC_EXCP_PROGRAM;
857 break;
858 }
859 }
860}
861
862#if defined(WORDS_BIGENDIAN)
863#define WORD0 0
864#define WORD1 1
865#else
866#define WORD0 1
867#define WORD1 0
868#endif
869void do_store_fpscr (uint32_t mask)
870{
871 /*
872 * We use only the 32 LSB of the incoming fpr
873 */
0ca9d380 874 CPU_DoubleU u;
7c58044c
JM
875 uint32_t prev, new;
876 int i;
877
878 u.d = FT0;
879 prev = env->fpscr;
0ca9d380 880 new = u.l.lower;
7c58044c
JM
881 new &= ~0x90000000;
882 new |= prev & 0x90000000;
883 for (i = 0; i < 7; i++) {
884 if (mask & (1 << i)) {
885 env->fpscr &= ~(0xF << (4 * i));
886 env->fpscr |= new & (0xF << (4 * i));
887 }
888 }
889 /* Update VX and FEX */
890 if (fpscr_ix != 0)
891 env->fpscr |= 1 << FPSCR_VX;
5567025f
AJ
892 else
893 env->fpscr &= ~(1 << FPSCR_VX);
7c58044c
JM
894 if ((fpscr_ex & fpscr_eex) != 0) {
895 env->fpscr |= 1 << FPSCR_FEX;
896 env->exception_index = POWERPC_EXCP_PROGRAM;
897 /* XXX: we should compute it properly */
898 env->error_code = POWERPC_EXCP_FP;
899 }
5567025f
AJ
900 else
901 env->fpscr &= ~(1 << FPSCR_FEX);
7c58044c
JM
902 fpscr_set_rounding_mode();
903}
904#undef WORD0
905#undef WORD1
906
907#ifdef CONFIG_SOFTFLOAT
908void do_float_check_status (void)
909{
910 if (env->exception_index == POWERPC_EXCP_PROGRAM &&
911 (env->error_code & POWERPC_EXCP_FP)) {
912 /* Differred floating-point exception after target FPR update */
913 if (msr_fe0 != 0 || msr_fe1 != 0)
914 do_raise_exception_err(env->exception_index, env->error_code);
915 } else if (env->fp_status.float_exception_flags & float_flag_overflow) {
916 float_overflow_excp();
917 } else if (env->fp_status.float_exception_flags & float_flag_underflow) {
918 float_underflow_excp();
919 } else if (env->fp_status.float_exception_flags & float_flag_inexact) {
920 float_inexact_excp();
921 }
922}
923#endif
924
1cdb9c3d 925#if USE_PRECISE_EMULATION
7c58044c
JM
926void do_fadd (void)
927{
928 if (unlikely(float64_is_signaling_nan(FT0) ||
929 float64_is_signaling_nan(FT1))) {
930 /* sNaN addition */
931 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
932 } else if (likely(isfinite(FT0) || isfinite(FT1) ||
933 fpisneg(FT0) == fpisneg(FT1))) {
934 FT0 = float64_add(FT0, FT1, &env->fp_status);
935 } else {
936 /* Magnitude subtraction of infinities */
937 fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
938 }
939}
940
941void do_fsub (void)
942{
943 if (unlikely(float64_is_signaling_nan(FT0) ||
944 float64_is_signaling_nan(FT1))) {
945 /* sNaN subtraction */
946 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
947 } else if (likely(isfinite(FT0) || isfinite(FT1) ||
948 fpisneg(FT0) != fpisneg(FT1))) {
949 FT0 = float64_sub(FT0, FT1, &env->fp_status);
950 } else {
951 /* Magnitude subtraction of infinities */
952 fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
953 }
954}
955
956void do_fmul (void)
957{
958 if (unlikely(float64_is_signaling_nan(FT0) ||
959 float64_is_signaling_nan(FT1))) {
960 /* sNaN multiplication */
961 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
5bda2843
JM
962 } else if (unlikely((isinfinity(FT0) && iszero(FT1)) ||
963 (iszero(FT0) && isinfinity(FT1)))) {
7c58044c
JM
964 /* Multiplication of zero by infinity */
965 fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ);
966 } else {
967 FT0 = float64_mul(FT0, FT1, &env->fp_status);
968 }
969}
970
971void do_fdiv (void)
972{
973 if (unlikely(float64_is_signaling_nan(FT0) ||
974 float64_is_signaling_nan(FT1))) {
975 /* sNaN division */
976 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
977 } else if (unlikely(isinfinity(FT0) && isinfinity(FT1))) {
978 /* Division of infinity by infinity */
979 fload_invalid_op_excp(POWERPC_EXCP_FP_VXIDI);
980 } else if (unlikely(iszero(FT1))) {
981 if (iszero(FT0)) {
982 /* Division of zero by zero */
983 fload_invalid_op_excp(POWERPC_EXCP_FP_VXZDZ);
984 } else {
985 /* Division by zero */
986 float_zero_divide_excp();
987 }
988 } else {
989 FT0 = float64_div(FT0, FT1, &env->fp_status);
990 }
991}
1cdb9c3d 992#endif /* USE_PRECISE_EMULATION */
7c58044c 993
9a64fbe4
FB
994void do_fctiw (void)
995{
0ca9d380 996 CPU_DoubleU p;
9a64fbe4 997
7c58044c
JM
998 if (unlikely(float64_is_signaling_nan(FT0))) {
999 /* sNaN conversion */
1000 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1001 } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) {
1002 /* qNan / infinity conversion */
1003 fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1004 } else {
0ca9d380 1005 p.ll = float64_to_int32(FT0, &env->fp_status);
1cdb9c3d 1006#if USE_PRECISE_EMULATION
7c58044c
JM
1007 /* XXX: higher bits are not supposed to be significant.
1008 * to make tests easier, return the same as a real PowerPC 750
1009 */
0ca9d380 1010 p.ll |= 0xFFF80000ULL << 32;
e864cabd 1011#endif
7c58044c
JM
1012 FT0 = p.d;
1013 }
9a64fbe4
FB
1014}
1015
1016void do_fctiwz (void)
1017{
0ca9d380 1018 CPU_DoubleU p;
4ecc3190 1019
7c58044c
JM
1020 if (unlikely(float64_is_signaling_nan(FT0))) {
1021 /* sNaN conversion */
1022 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1023 } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) {
1024 /* qNan / infinity conversion */
1025 fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1026 } else {
0ca9d380 1027 p.ll = float64_to_int32_round_to_zero(FT0, &env->fp_status);
1cdb9c3d 1028#if USE_PRECISE_EMULATION
7c58044c
JM
1029 /* XXX: higher bits are not supposed to be significant.
1030 * to make tests easier, return the same as a real PowerPC 750
1031 */
0ca9d380 1032 p.ll |= 0xFFF80000ULL << 32;
e864cabd 1033#endif
7c58044c
JM
1034 FT0 = p.d;
1035 }
9a64fbe4
FB
1036}
1037
426613db
JM
1038#if defined(TARGET_PPC64)
1039void do_fcfid (void)
1040{
0ca9d380 1041 CPU_DoubleU p;
426613db
JM
1042
1043 p.d = FT0;
0ca9d380 1044 FT0 = int64_to_float64(p.ll, &env->fp_status);
426613db
JM
1045}
1046
1047void do_fctid (void)
1048{
0ca9d380 1049 CPU_DoubleU p;
426613db 1050
7c58044c
JM
1051 if (unlikely(float64_is_signaling_nan(FT0))) {
1052 /* sNaN conversion */
1053 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1054 } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) {
1055 /* qNan / infinity conversion */
1056 fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1057 } else {
0ca9d380 1058 p.ll = float64_to_int64(FT0, &env->fp_status);
7c58044c
JM
1059 FT0 = p.d;
1060 }
426613db
JM
1061}
1062
1063void do_fctidz (void)
1064{
0ca9d380 1065 CPU_DoubleU p;
426613db 1066
7c58044c
JM
1067 if (unlikely(float64_is_signaling_nan(FT0))) {
1068 /* sNaN conversion */
1069 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1070 } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) {
1071 /* qNan / infinity conversion */
1072 fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1073 } else {
0ca9d380 1074 p.ll = float64_to_int64_round_to_zero(FT0, &env->fp_status);
7c58044c
JM
1075 FT0 = p.d;
1076 }
426613db
JM
1077}
1078
1079#endif
1080
b068d6a7 1081static always_inline void do_fri (int rounding_mode)
d7e4b87e 1082{
7c58044c
JM
1083 if (unlikely(float64_is_signaling_nan(FT0))) {
1084 /* sNaN round */
1085 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1086 } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) {
1087 /* qNan / infinity round */
1088 fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1089 } else {
1090 set_float_rounding_mode(rounding_mode, &env->fp_status);
1091 FT0 = float64_round_to_int(FT0, &env->fp_status);
1092 /* Restore rounding mode from FPSCR */
1093 fpscr_set_rounding_mode();
1094 }
d7e4b87e
JM
1095}
1096
1097void do_frin (void)
1098{
1099 do_fri(float_round_nearest_even);
1100}
1101
1102void do_friz (void)
1103{
1104 do_fri(float_round_to_zero);
1105}
1106
1107void do_frip (void)
1108{
1109 do_fri(float_round_up);
1110}
1111
1112void do_frim (void)
1113{
1114 do_fri(float_round_down);
1115}
1116
1cdb9c3d 1117#if USE_PRECISE_EMULATION
e864cabd
JM
1118void do_fmadd (void)
1119{
7c58044c
JM
1120 if (unlikely(float64_is_signaling_nan(FT0) ||
1121 float64_is_signaling_nan(FT1) ||
1122 float64_is_signaling_nan(FT2))) {
1123 /* sNaN operation */
1124 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1125 } else {
e864cabd 1126#ifdef FLOAT128
7c58044c
JM
1127 /* This is the way the PowerPC specification defines it */
1128 float128 ft0_128, ft1_128;
1129
1130 ft0_128 = float64_to_float128(FT0, &env->fp_status);
1131 ft1_128 = float64_to_float128(FT1, &env->fp_status);
1132 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1133 ft1_128 = float64_to_float128(FT2, &env->fp_status);
1134 ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
1135 FT0 = float128_to_float64(ft0_128, &env->fp_status);
e864cabd 1136#else
7c58044c
JM
1137 /* This is OK on x86 hosts */
1138 FT0 = (FT0 * FT1) + FT2;
e864cabd 1139#endif
7c58044c 1140 }
e864cabd
JM
1141}
1142
1143void do_fmsub (void)
1144{
7c58044c
JM
1145 if (unlikely(float64_is_signaling_nan(FT0) ||
1146 float64_is_signaling_nan(FT1) ||
1147 float64_is_signaling_nan(FT2))) {
1148 /* sNaN operation */
1149 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1150 } else {
e864cabd 1151#ifdef FLOAT128
7c58044c
JM
1152 /* This is the way the PowerPC specification defines it */
1153 float128 ft0_128, ft1_128;
1154
1155 ft0_128 = float64_to_float128(FT0, &env->fp_status);
1156 ft1_128 = float64_to_float128(FT1, &env->fp_status);
1157 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1158 ft1_128 = float64_to_float128(FT2, &env->fp_status);
1159 ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
1160 FT0 = float128_to_float64(ft0_128, &env->fp_status);
e864cabd 1161#else
7c58044c
JM
1162 /* This is OK on x86 hosts */
1163 FT0 = (FT0 * FT1) - FT2;
e864cabd 1164#endif
7c58044c 1165 }
e864cabd 1166}
1cdb9c3d 1167#endif /* USE_PRECISE_EMULATION */
e864cabd 1168
4b3686fa
FB
1169void do_fnmadd (void)
1170{
7c58044c
JM
1171 if (unlikely(float64_is_signaling_nan(FT0) ||
1172 float64_is_signaling_nan(FT1) ||
1173 float64_is_signaling_nan(FT2))) {
1174 /* sNaN operation */
1175 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1176 } else {
1cdb9c3d 1177#if USE_PRECISE_EMULATION
e864cabd 1178#ifdef FLOAT128
7c58044c
JM
1179 /* This is the way the PowerPC specification defines it */
1180 float128 ft0_128, ft1_128;
1181
1182 ft0_128 = float64_to_float128(FT0, &env->fp_status);
1183 ft1_128 = float64_to_float128(FT1, &env->fp_status);
1184 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1185 ft1_128 = float64_to_float128(FT2, &env->fp_status);
1186 ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
1187 FT0 = float128_to_float64(ft0_128, &env->fp_status);
e864cabd 1188#else
7c58044c
JM
1189 /* This is OK on x86 hosts */
1190 FT0 = (FT0 * FT1) + FT2;
e864cabd
JM
1191#endif
1192#else
7c58044c
JM
1193 FT0 = float64_mul(FT0, FT1, &env->fp_status);
1194 FT0 = float64_add(FT0, FT2, &env->fp_status);
e864cabd 1195#endif
7c58044c
JM
1196 if (likely(!isnan(FT0)))
1197 FT0 = float64_chs(FT0);
1198 }
4b3686fa
FB
1199}
1200
1201void do_fnmsub (void)
1202{
7c58044c
JM
1203 if (unlikely(float64_is_signaling_nan(FT0) ||
1204 float64_is_signaling_nan(FT1) ||
1205 float64_is_signaling_nan(FT2))) {
1206 /* sNaN operation */
1207 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1208 } else {
1cdb9c3d 1209#if USE_PRECISE_EMULATION
e864cabd 1210#ifdef FLOAT128
7c58044c
JM
1211 /* This is the way the PowerPC specification defines it */
1212 float128 ft0_128, ft1_128;
1213
1214 ft0_128 = float64_to_float128(FT0, &env->fp_status);
1215 ft1_128 = float64_to_float128(FT1, &env->fp_status);
1216 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1217 ft1_128 = float64_to_float128(FT2, &env->fp_status);
1218 ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
1219 FT0 = float128_to_float64(ft0_128, &env->fp_status);
e864cabd 1220#else
7c58044c
JM
1221 /* This is OK on x86 hosts */
1222 FT0 = (FT0 * FT1) - FT2;
e864cabd
JM
1223#endif
1224#else
7c58044c
JM
1225 FT0 = float64_mul(FT0, FT1, &env->fp_status);
1226 FT0 = float64_sub(FT0, FT2, &env->fp_status);
e864cabd 1227#endif
7c58044c
JM
1228 if (likely(!isnan(FT0)))
1229 FT0 = float64_chs(FT0);
1230 }
1ef59d0a
FB
1231}
1232
1cdb9c3d 1233#if USE_PRECISE_EMULATION
7c58044c
JM
1234void do_frsp (void)
1235{
1236 if (unlikely(float64_is_signaling_nan(FT0))) {
1237 /* sNaN square root */
1238 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1239 } else {
1240 FT0 = float64_to_float32(FT0, &env->fp_status);
1241 }
1242}
1cdb9c3d 1243#endif /* USE_PRECISE_EMULATION */
7c58044c 1244
9a64fbe4
FB
1245void do_fsqrt (void)
1246{
7c58044c
JM
1247 if (unlikely(float64_is_signaling_nan(FT0))) {
1248 /* sNaN square root */
1249 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1250 } else if (unlikely(fpisneg(FT0) && !iszero(FT0))) {
1251 /* Square root of a negative nonzero number */
1252 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT);
1253 } else {
1254 FT0 = float64_sqrt(FT0, &env->fp_status);
1255 }
9a64fbe4
FB
1256}
1257
d7e4b87e
JM
1258void do_fre (void)
1259{
0ca9d380 1260 CPU_DoubleU p;
d7e4b87e 1261
7c58044c
JM
1262 if (unlikely(float64_is_signaling_nan(FT0))) {
1263 /* sNaN reciprocal */
1264 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1265 } else if (unlikely(iszero(FT0))) {
1266 /* Zero reciprocal */
1267 float_zero_divide_excp();
1268 } else if (likely(isnormal(FT0))) {
d7e4b87e
JM
1269 FT0 = float64_div(1.0, FT0, &env->fp_status);
1270 } else {
1271 p.d = FT0;
0ca9d380
AJ
1272 if (p.ll == 0x8000000000000000ULL) {
1273 p.ll = 0xFFF0000000000000ULL;
1274 } else if (p.ll == 0x0000000000000000ULL) {
1275 p.ll = 0x7FF0000000000000ULL;
d7e4b87e 1276 } else if (isnan(FT0)) {
0ca9d380 1277 p.ll = 0x7FF8000000000000ULL;
7c58044c 1278 } else if (fpisneg(FT0)) {
0ca9d380 1279 p.ll = 0x8000000000000000ULL;
d7e4b87e 1280 } else {
0ca9d380 1281 p.ll = 0x0000000000000000ULL;
d7e4b87e
JM
1282 }
1283 FT0 = p.d;
1284 }
1285}
1286
9a64fbe4
FB
1287void do_fres (void)
1288{
0ca9d380 1289 CPU_DoubleU p;
4ecc3190 1290
7c58044c
JM
1291 if (unlikely(float64_is_signaling_nan(FT0))) {
1292 /* sNaN reciprocal */
1293 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1294 } else if (unlikely(iszero(FT0))) {
1295 /* Zero reciprocal */
1296 float_zero_divide_excp();
1297 } else if (likely(isnormal(FT0))) {
1cdb9c3d 1298#if USE_PRECISE_EMULATION
e864cabd
JM
1299 FT0 = float64_div(1.0, FT0, &env->fp_status);
1300 FT0 = float64_to_float32(FT0, &env->fp_status);
1301#else
76a66253 1302 FT0 = float32_div(1.0, FT0, &env->fp_status);
e864cabd 1303#endif
4ecc3190
FB
1304 } else {
1305 p.d = FT0;
0ca9d380
AJ
1306 if (p.ll == 0x8000000000000000ULL) {
1307 p.ll = 0xFFF0000000000000ULL;
1308 } else if (p.ll == 0x0000000000000000ULL) {
1309 p.ll = 0x7FF0000000000000ULL;
4ecc3190 1310 } else if (isnan(FT0)) {
0ca9d380 1311 p.ll = 0x7FF8000000000000ULL;
7c58044c 1312 } else if (fpisneg(FT0)) {
0ca9d380 1313 p.ll = 0x8000000000000000ULL;
4ecc3190 1314 } else {
0ca9d380 1315 p.ll = 0x0000000000000000ULL;
4ecc3190
FB
1316 }
1317 FT0 = p.d;
1318 }
9a64fbe4
FB
1319}
1320
4ecc3190 1321void do_frsqrte (void)
9a64fbe4 1322{
0ca9d380 1323 CPU_DoubleU p;
4ecc3190 1324
7c58044c
JM
1325 if (unlikely(float64_is_signaling_nan(FT0))) {
1326 /* sNaN reciprocal square root */
1327 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1328 } else if (unlikely(fpisneg(FT0) && !iszero(FT0))) {
1329 /* Reciprocal square root of a negative nonzero number */
1330 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT);
1331 } else if (likely(isnormal(FT0))) {
fdabc366
FB
1332 FT0 = float64_sqrt(FT0, &env->fp_status);
1333 FT0 = float32_div(1.0, FT0, &env->fp_status);
4ecc3190
FB
1334 } else {
1335 p.d = FT0;
0ca9d380
AJ
1336 if (p.ll == 0x8000000000000000ULL) {
1337 p.ll = 0xFFF0000000000000ULL;
1338 } else if (p.ll == 0x0000000000000000ULL) {
1339 p.ll = 0x7FF0000000000000ULL;
4ecc3190 1340 } else if (isnan(FT0)) {
0ca9d380 1341 p.ll |= 0x000FFFFFFFFFFFFFULL;
7c58044c 1342 } else if (fpisneg(FT0)) {
0ca9d380 1343 p.ll = 0x7FF8000000000000ULL;
4ecc3190 1344 } else {
0ca9d380 1345 p.ll = 0x0000000000000000ULL;
4ecc3190
FB
1346 }
1347 FT0 = p.d;
1348 }
9a64fbe4
FB
1349}
1350
1351void do_fsel (void)
1352{
7c58044c 1353 if (!fpisneg(FT0) || iszero(FT0))
9a64fbe4 1354 FT0 = FT1;
4ecc3190
FB
1355 else
1356 FT0 = FT2;
9a64fbe4
FB
1357}
1358
1359void do_fcmpu (void)
1360{
7c58044c
JM
1361 if (unlikely(float64_is_signaling_nan(FT0) ||
1362 float64_is_signaling_nan(FT1))) {
1363 /* sNaN comparison */
1364 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1365 } else {
fdabc366
FB
1366 if (float64_lt(FT0, FT1, &env->fp_status)) {
1367 T0 = 0x08UL;
1368 } else if (!float64_le(FT0, FT1, &env->fp_status)) {
1369 T0 = 0x04UL;
1370 } else {
1371 T0 = 0x02UL;
1372 }
9a64fbe4 1373 }
7c58044c
JM
1374 env->fpscr &= ~(0x0F << FPSCR_FPRF);
1375 env->fpscr |= T0 << FPSCR_FPRF;
9a64fbe4
FB
1376}
1377
1378void do_fcmpo (void)
1379{
7c58044c
JM
1380 if (unlikely(float64_is_nan(FT0) ||
1381 float64_is_nan(FT1))) {
1382 if (float64_is_signaling_nan(FT0) ||
1383 float64_is_signaling_nan(FT1)) {
1384 /* sNaN comparison */
1385 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN |
1386 POWERPC_EXCP_FP_VXVC);
1387 } else {
1388 /* qNaN comparison */
1389 fload_invalid_op_excp(POWERPC_EXCP_FP_VXVC);
1390 }
1391 } else {
fdabc366
FB
1392 if (float64_lt(FT0, FT1, &env->fp_status)) {
1393 T0 = 0x08UL;
1394 } else if (!float64_le(FT0, FT1, &env->fp_status)) {
1395 T0 = 0x04UL;
1396 } else {
1397 T0 = 0x02UL;
1398 }
9a64fbe4 1399 }
7c58044c
JM
1400 env->fpscr &= ~(0x0F << FPSCR_FPRF);
1401 env->fpscr |= T0 << FPSCR_FPRF;
9a64fbe4
FB
1402}
1403
76a66253 1404#if !defined (CONFIG_USER_ONLY)
6b80055d 1405void cpu_dump_rfi (target_ulong RA, target_ulong msr);
0411a972 1406
61c04807 1407void do_store_msr (target_ulong t0)
0411a972 1408{
61c04807
AJ
1409 t0 = hreg_store_msr(env, t0, 0);
1410 if (t0 != 0) {
0411a972 1411 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
61c04807 1412 do_raise_exception(t0);
0411a972
JM
1413 }
1414}
1415
61c04807
AJ
1416#if defined (TARGET_PPC64)
1417void do_store_msr_32 (target_ulong t0)
1418{
1419 t0 = (env->msr & ~0xFFFFFFFFULL) | (t0 & 0xFFFFFFFF);
1420 do_store_msr(t0);
1421}
1422#endif
1423
0411a972
JM
1424static always_inline void __do_rfi (target_ulong nip, target_ulong msr,
1425 target_ulong msrm, int keep_msrh)
9a64fbe4 1426{
426613db 1427#if defined(TARGET_PPC64)
0411a972
JM
1428 if (msr & (1ULL << MSR_SF)) {
1429 nip = (uint64_t)nip;
1430 msr &= (uint64_t)msrm;
a42bd6cc 1431 } else {
0411a972
JM
1432 nip = (uint32_t)nip;
1433 msr = (uint32_t)(msr & msrm);
1434 if (keep_msrh)
1435 msr |= env->msr & ~((uint64_t)0xFFFFFFFF);
a42bd6cc 1436 }
426613db 1437#else
0411a972
JM
1438 nip = (uint32_t)nip;
1439 msr &= (uint32_t)msrm;
426613db 1440#endif
0411a972
JM
1441 /* XXX: beware: this is false if VLE is supported */
1442 env->nip = nip & ~((target_ulong)0x00000003);
a4f30719 1443 hreg_store_msr(env, msr, 1);
fdabc366 1444#if defined (DEBUG_OP)
0411a972 1445 cpu_dump_rfi(env->nip, env->msr);
fdabc366 1446#endif
0411a972
JM
1447 /* No need to raise an exception here,
1448 * as rfi is always the last insn of a TB
1449 */
fdabc366 1450 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
9a64fbe4 1451}
d9bce9d9 1452
0411a972
JM
1453void do_rfi (void)
1454{
1455 __do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1],
1456 ~((target_ulong)0xFFFF0000), 1);
1457}
1458
d9bce9d9 1459#if defined(TARGET_PPC64)
426613db
JM
1460void do_rfid (void)
1461{
0411a972
JM
1462 __do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1],
1463 ~((target_ulong)0xFFFF0000), 0);
d9bce9d9 1464}
7863667f 1465
be147d08
JM
1466void do_hrfid (void)
1467{
0411a972
JM
1468 __do_rfi(env->spr[SPR_HSRR0], env->spr[SPR_HSRR1],
1469 ~((target_ulong)0xFFFF0000), 0);
be147d08
JM
1470}
1471#endif
76a66253 1472#endif
9a64fbe4 1473
76a66253 1474void do_tw (int flags)
9a64fbe4 1475{
d9bce9d9
JM
1476 if (!likely(!(((int32_t)T0 < (int32_t)T1 && (flags & 0x10)) ||
1477 ((int32_t)T0 > (int32_t)T1 && (flags & 0x08)) ||
1478 ((int32_t)T0 == (int32_t)T1 && (flags & 0x04)) ||
1479 ((uint32_t)T0 < (uint32_t)T1 && (flags & 0x02)) ||
a42bd6cc 1480 ((uint32_t)T0 > (uint32_t)T1 && (flags & 0x01))))) {
e1833e1f 1481 do_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP);
a42bd6cc 1482 }
9a64fbe4
FB
1483}
1484
d9bce9d9
JM
1485#if defined(TARGET_PPC64)
1486void do_td (int flags)
1487{
1488 if (!likely(!(((int64_t)T0 < (int64_t)T1 && (flags & 0x10)) ||
1489 ((int64_t)T0 > (int64_t)T1 && (flags & 0x08)) ||
1490 ((int64_t)T0 == (int64_t)T1 && (flags & 0x04)) ||
1491 ((uint64_t)T0 < (uint64_t)T1 && (flags & 0x02)) ||
1492 ((uint64_t)T0 > (uint64_t)T1 && (flags & 0x01)))))
e1833e1f 1493 do_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP);
d9bce9d9
JM
1494}
1495#endif
1496
fdabc366 1497/*****************************************************************************/
76a66253
JM
1498/* PowerPC 601 specific instructions (POWER bridge) */
1499void do_POWER_abso (void)
9a64fbe4 1500{
9c7e37e7 1501 if ((int32_t)T0 == INT32_MIN) {
76a66253
JM
1502 T0 = INT32_MAX;
1503 xer_ov = 1;
9c7e37e7 1504 } else if ((int32_t)T0 < 0) {
76a66253
JM
1505 T0 = -T0;
1506 xer_ov = 0;
9c7e37e7
JM
1507 } else {
1508 xer_ov = 0;
76a66253 1509 }
9c7e37e7 1510 xer_so |= xer_ov;
9a64fbe4
FB
1511}
1512
76a66253 1513void do_POWER_clcs (void)
9a64fbe4 1514{
76a66253
JM
1515 switch (T0) {
1516 case 0x0CUL:
1517 /* Instruction cache line size */
d63001d1 1518 T0 = env->icache_line_size;
76a66253
JM
1519 break;
1520 case 0x0DUL:
1521 /* Data cache line size */
d63001d1 1522 T0 = env->dcache_line_size;
76a66253
JM
1523 break;
1524 case 0x0EUL:
1525 /* Minimum cache line size */
d63001d1
JM
1526 T0 = env->icache_line_size < env->dcache_line_size ?
1527 env->icache_line_size : env->dcache_line_size;
76a66253
JM
1528 break;
1529 case 0x0FUL:
1530 /* Maximum cache line size */
d63001d1
JM
1531 T0 = env->icache_line_size > env->dcache_line_size ?
1532 env->icache_line_size : env->dcache_line_size;
76a66253
JM
1533 break;
1534 default:
1535 /* Undefined */
1536 break;
1537 }
1538}
1539
1540void do_POWER_div (void)
1541{
1542 uint64_t tmp;
1543
6f2d8978
JM
1544 if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) ||
1545 (int32_t)T1 == 0) {
1546 T0 = UINT32_MAX * ((uint32_t)T0 >> 31);
76a66253
JM
1547 env->spr[SPR_MQ] = 0;
1548 } else {
1549 tmp = ((uint64_t)T0 << 32) | env->spr[SPR_MQ];
1550 env->spr[SPR_MQ] = tmp % T1;
d9bce9d9 1551 T0 = tmp / (int32_t)T1;
76a66253
JM
1552 }
1553}
1554
1555void do_POWER_divo (void)
1556{
1557 int64_t tmp;
1558
6f2d8978
JM
1559 if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) ||
1560 (int32_t)T1 == 0) {
1561 T0 = UINT32_MAX * ((uint32_t)T0 >> 31);
76a66253
JM
1562 env->spr[SPR_MQ] = 0;
1563 xer_ov = 1;
76a66253
JM
1564 } else {
1565 tmp = ((uint64_t)T0 << 32) | env->spr[SPR_MQ];
1566 env->spr[SPR_MQ] = tmp % T1;
d9bce9d9 1567 tmp /= (int32_t)T1;
76a66253
JM
1568 if (tmp > (int64_t)INT32_MAX || tmp < (int64_t)INT32_MIN) {
1569 xer_ov = 1;
76a66253
JM
1570 } else {
1571 xer_ov = 0;
1572 }
1573 T0 = tmp;
1574 }
6f2d8978 1575 xer_so |= xer_ov;
76a66253
JM
1576}
1577
1578void do_POWER_divs (void)
1579{
6f2d8978
JM
1580 if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) ||
1581 (int32_t)T1 == 0) {
1582 T0 = UINT32_MAX * ((uint32_t)T0 >> 31);
76a66253
JM
1583 env->spr[SPR_MQ] = 0;
1584 } else {
1585 env->spr[SPR_MQ] = T0 % T1;
d9bce9d9 1586 T0 = (int32_t)T0 / (int32_t)T1;
76a66253
JM
1587 }
1588}
1589
1590void do_POWER_divso (void)
1591{
6f2d8978
JM
1592 if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) ||
1593 (int32_t)T1 == 0) {
1594 T0 = UINT32_MAX * ((uint32_t)T0 >> 31);
76a66253
JM
1595 env->spr[SPR_MQ] = 0;
1596 xer_ov = 1;
76a66253 1597 } else {
d9bce9d9
JM
1598 T0 = (int32_t)T0 / (int32_t)T1;
1599 env->spr[SPR_MQ] = (int32_t)T0 % (int32_t)T1;
76a66253
JM
1600 xer_ov = 0;
1601 }
6f2d8978 1602 xer_so |= xer_ov;
76a66253
JM
1603}
1604
1605void do_POWER_dozo (void)
1606{
d9bce9d9 1607 if ((int32_t)T1 > (int32_t)T0) {
76a66253
JM
1608 T2 = T0;
1609 T0 = T1 - T0;
d9bce9d9
JM
1610 if (((uint32_t)(~T2) ^ (uint32_t)T1 ^ UINT32_MAX) &
1611 ((uint32_t)(~T2) ^ (uint32_t)T0) & (1UL << 31)) {
76a66253 1612 xer_ov = 1;
966439a6 1613 xer_so = 1;
76a66253
JM
1614 } else {
1615 xer_ov = 0;
1616 }
1617 } else {
1618 T0 = 0;
1619 xer_ov = 0;
1620 }
1621}
1622
1623void do_POWER_maskg (void)
1624{
1625 uint32_t ret;
1626
d9bce9d9 1627 if ((uint32_t)T0 == (uint32_t)(T1 + 1)) {
6f2d8978 1628 ret = UINT32_MAX;
76a66253 1629 } else {
6f2d8978
JM
1630 ret = (UINT32_MAX >> ((uint32_t)T0)) ^
1631 ((UINT32_MAX >> ((uint32_t)T1)) >> 1);
d9bce9d9 1632 if ((uint32_t)T0 > (uint32_t)T1)
76a66253
JM
1633 ret = ~ret;
1634 }
1635 T0 = ret;
1636}
1637
1638void do_POWER_mulo (void)
1639{
1640 uint64_t tmp;
1641
1642 tmp = (uint64_t)T0 * (uint64_t)T1;
1643 env->spr[SPR_MQ] = tmp >> 32;
1644 T0 = tmp;
1645 if (tmp >> 32 != ((uint64_t)T0 >> 16) * ((uint64_t)T1 >> 16)) {
1646 xer_ov = 1;
1647 xer_so = 1;
1648 } else {
1649 xer_ov = 0;
1650 }
1651}
1652
1653#if !defined (CONFIG_USER_ONLY)
1654void do_POWER_rac (void)
1655{
76a66253 1656 mmu_ctx_t ctx;
faadf50e 1657 int nb_BATs;
76a66253
JM
1658
1659 /* We don't have to generate many instances of this instruction,
1660 * as rac is supervisor only.
1661 */
faadf50e
JM
1662 /* XXX: FIX THIS: Pretend we have no BAT */
1663 nb_BATs = env->nb_BATs;
1664 env->nb_BATs = 0;
1665 if (get_physical_address(env, &ctx, T0, 0, ACCESS_INT) == 0)
76a66253 1666 T0 = ctx.raddr;
faadf50e 1667 env->nb_BATs = nb_BATs;
76a66253
JM
1668}
1669
1670void do_POWER_rfsvc (void)
1671{
0411a972 1672 __do_rfi(env->lr, env->ctr, 0x0000FFFF, 0);
76a66253
JM
1673}
1674
056401ea
JM
1675void do_store_hid0_601 (void)
1676{
1677 uint32_t hid0;
1678
1679 hid0 = env->spr[SPR_HID0];
1680 if ((T0 ^ hid0) & 0x00000008) {
1681 /* Change current endianness */
1682 env->hflags &= ~(1 << MSR_LE);
1683 env->hflags_nmsr &= ~(1 << MSR_LE);
1684 env->hflags_nmsr |= (1 << MSR_LE) & (((T0 >> 3) & 1) << MSR_LE);
1685 env->hflags |= env->hflags_nmsr;
1686 if (loglevel != 0) {
1687 fprintf(logfile, "%s: set endianness to %c => " ADDRX "\n",
1688 __func__, T0 & 0x8 ? 'l' : 'b', env->hflags);
1689 }
1690 }
1691 env->spr[SPR_HID0] = T0;
76a66253
JM
1692}
1693#endif
1694
1695/*****************************************************************************/
1696/* 602 specific instructions */
1697/* mfrom is the most crazy instruction ever seen, imho ! */
1698/* Real implementation uses a ROM table. Do the same */
1699#define USE_MFROM_ROM_TABLE
1700void do_op_602_mfrom (void)
1701{
1702 if (likely(T0 < 602)) {
d9bce9d9 1703#if defined(USE_MFROM_ROM_TABLE)
76a66253
JM
1704#include "mfrom_table.c"
1705 T0 = mfrom_ROM_table[T0];
fdabc366 1706#else
76a66253
JM
1707 double d;
1708 /* Extremly decomposed:
1709 * -T0 / 256
1710 * T0 = 256 * log10(10 + 1.0) + 0.5
1711 */
1712 d = T0;
1713 d = float64_div(d, 256, &env->fp_status);
1714 d = float64_chs(d);
1715 d = exp10(d); // XXX: use float emulation function
1716 d = float64_add(d, 1.0, &env->fp_status);
1717 d = log10(d); // XXX: use float emulation function
1718 d = float64_mul(d, 256, &env->fp_status);
1719 d = float64_add(d, 0.5, &env->fp_status);
1720 T0 = float64_round_to_int(d, &env->fp_status);
fdabc366 1721#endif
76a66253
JM
1722 } else {
1723 T0 = 0;
1724 }
1725}
1726
1727/*****************************************************************************/
1728/* Embedded PowerPC specific helpers */
76a66253
JM
1729void do_405_check_sat (void)
1730{
d9bce9d9
JM
1731 if (!likely((((uint32_t)T1 ^ (uint32_t)T2) >> 31) ||
1732 !(((uint32_t)T0 ^ (uint32_t)T2) >> 31))) {
76a66253
JM
1733 /* Saturate result */
1734 if (T2 >> 31) {
1735 T0 = INT32_MIN;
1736 } else {
1737 T0 = INT32_MAX;
1738 }
1739 }
1740}
1741
a750fc0b
JM
1742/* XXX: to be improved to check access rights when in user-mode */
1743void do_load_dcr (void)
1744{
1745 target_ulong val;
1746
1747 if (unlikely(env->dcr_env == NULL)) {
1748 if (loglevel != 0) {
1749 fprintf(logfile, "No DCR environment\n");
1750 }
e1833e1f
JM
1751 do_raise_exception_err(POWERPC_EXCP_PROGRAM,
1752 POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL);
a750fc0b
JM
1753 } else if (unlikely(ppc_dcr_read(env->dcr_env, T0, &val) != 0)) {
1754 if (loglevel != 0) {
1755 fprintf(logfile, "DCR read error %d %03x\n", (int)T0, (int)T0);
1756 }
e1833e1f
JM
1757 do_raise_exception_err(POWERPC_EXCP_PROGRAM,
1758 POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG);
a750fc0b
JM
1759 } else {
1760 T0 = val;
1761 }
1762}
1763
1764void do_store_dcr (void)
1765{
1766 if (unlikely(env->dcr_env == NULL)) {
1767 if (loglevel != 0) {
1768 fprintf(logfile, "No DCR environment\n");
1769 }
e1833e1f
JM
1770 do_raise_exception_err(POWERPC_EXCP_PROGRAM,
1771 POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL);
a750fc0b
JM
1772 } else if (unlikely(ppc_dcr_write(env->dcr_env, T0, T1) != 0)) {
1773 if (loglevel != 0) {
1774 fprintf(logfile, "DCR write error %d %03x\n", (int)T0, (int)T0);
1775 }
e1833e1f
JM
1776 do_raise_exception_err(POWERPC_EXCP_PROGRAM,
1777 POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG);
a750fc0b
JM
1778 }
1779}
1780
76a66253 1781#if !defined(CONFIG_USER_ONLY)
a42bd6cc 1782void do_40x_rfci (void)
76a66253 1783{
0411a972
JM
1784 __do_rfi(env->spr[SPR_40x_SRR2], env->spr[SPR_40x_SRR3],
1785 ~((target_ulong)0xFFFF0000), 0);
a42bd6cc
JM
1786}
1787
1788void do_rfci (void)
1789{
0411a972
JM
1790 __do_rfi(env->spr[SPR_BOOKE_CSRR0], SPR_BOOKE_CSRR1,
1791 ~((target_ulong)0x3FFF0000), 0);
a42bd6cc
JM
1792}
1793
1794void do_rfdi (void)
1795{
0411a972
JM
1796 __do_rfi(env->spr[SPR_BOOKE_DSRR0], SPR_BOOKE_DSRR1,
1797 ~((target_ulong)0x3FFF0000), 0);
a42bd6cc
JM
1798}
1799
1800void do_rfmci (void)
1801{
0411a972
JM
1802 __do_rfi(env->spr[SPR_BOOKE_MCSRR0], SPR_BOOKE_MCSRR1,
1803 ~((target_ulong)0x3FFF0000), 0);
76a66253
JM
1804}
1805
76a66253
JM
1806void do_load_403_pb (int num)
1807{
1808 T0 = env->pb[num];
1809}
1810
1811void do_store_403_pb (int num)
1812{
1813 if (likely(env->pb[num] != T0)) {
1814 env->pb[num] = T0;
1815 /* Should be optimized */
1816 tlb_flush(env, 1);
1817 }
1818}
1819#endif
1820
1821/* 440 specific */
1822void do_440_dlmzb (void)
1823{
1824 target_ulong mask;
1825 int i;
1826
1827 i = 1;
1828 for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
1829 if ((T0 & mask) == 0)
1830 goto done;
1831 i++;
1832 }
1833 for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
1834 if ((T1 & mask) == 0)
1835 break;
1836 i++;
1837 }
1838 done:
1839 T0 = i;
fdabc366
FB
1840}
1841
0487d6a8
JM
1842/* SPE extension helpers */
1843/* Use a table to make this quicker */
1844static uint8_t hbrev[16] = {
1845 0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE,
1846 0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF,
1847};
1848
b068d6a7 1849static always_inline uint8_t byte_reverse (uint8_t val)
0487d6a8
JM
1850{
1851 return hbrev[val >> 4] | (hbrev[val & 0xF] << 4);
1852}
1853
b068d6a7 1854static always_inline uint32_t word_reverse (uint32_t val)
0487d6a8
JM
1855{
1856 return byte_reverse(val >> 24) | (byte_reverse(val >> 16) << 8) |
1857 (byte_reverse(val >> 8) << 16) | (byte_reverse(val) << 24);
1858}
1859
3cd7d1dd 1860#define MASKBITS 16 // Random value - to be fixed (implementation dependant)
0487d6a8
JM
1861void do_brinc (void)
1862{
1863 uint32_t a, b, d, mask;
1864
3cd7d1dd
JM
1865 mask = UINT32_MAX >> (32 - MASKBITS);
1866 a = T0 & mask;
1867 b = T1 & mask;
1868 d = word_reverse(1 + word_reverse(a | ~b));
1869 T0 = (T0 & ~mask) | (d & b);
0487d6a8
JM
1870}
1871
1872#define DO_SPE_OP2(name) \
1873void do_ev##name (void) \
1874{ \
1875 T0_64 = ((uint64_t)_do_e##name(T0_64 >> 32, T1_64 >> 32) << 32) | \
1876 (uint64_t)_do_e##name(T0_64, T1_64); \
1877}
1878
1879#define DO_SPE_OP1(name) \
1880void do_ev##name (void) \
1881{ \
1882 T0_64 = ((uint64_t)_do_e##name(T0_64 >> 32) << 32) | \
1883 (uint64_t)_do_e##name(T0_64); \
1884}
1885
1886/* Fixed-point vector arithmetic */
b068d6a7 1887static always_inline uint32_t _do_eabs (uint32_t val)
0487d6a8 1888{
9c7e37e7
JM
1889 if ((val & 0x80000000) && val != 0x80000000)
1890 val -= val;
0487d6a8
JM
1891
1892 return val;
1893}
1894
b068d6a7 1895static always_inline uint32_t _do_eaddw (uint32_t op1, uint32_t op2)
0487d6a8
JM
1896{
1897 return op1 + op2;
1898}
1899
b068d6a7 1900static always_inline int _do_ecntlsw (uint32_t val)
0487d6a8
JM
1901{
1902 if (val & 0x80000000)
603fccce 1903 return clz32(~val);
0487d6a8 1904 else
603fccce 1905 return clz32(val);
0487d6a8
JM
1906}
1907
b068d6a7 1908static always_inline int _do_ecntlzw (uint32_t val)
0487d6a8 1909{
603fccce 1910 return clz32(val);
0487d6a8
JM
1911}
1912
b068d6a7 1913static always_inline uint32_t _do_eneg (uint32_t val)
0487d6a8
JM
1914{
1915 if (val != 0x80000000)
9c7e37e7 1916 val -= val;
0487d6a8
JM
1917
1918 return val;
1919}
1920
b068d6a7 1921static always_inline uint32_t _do_erlw (uint32_t op1, uint32_t op2)
0487d6a8
JM
1922{
1923 return rotl32(op1, op2);
1924}
1925
b068d6a7 1926static always_inline uint32_t _do_erndw (uint32_t val)
0487d6a8
JM
1927{
1928 return (val + 0x000080000000) & 0xFFFF0000;
1929}
1930
b068d6a7 1931static always_inline uint32_t _do_eslw (uint32_t op1, uint32_t op2)
0487d6a8
JM
1932{
1933 /* No error here: 6 bits are used */
1934 return op1 << (op2 & 0x3F);
1935}
1936
b068d6a7 1937static always_inline int32_t _do_esrws (int32_t op1, uint32_t op2)
0487d6a8
JM
1938{
1939 /* No error here: 6 bits are used */
1940 return op1 >> (op2 & 0x3F);
1941}
1942
b068d6a7 1943static always_inline uint32_t _do_esrwu (uint32_t op1, uint32_t op2)
0487d6a8
JM
1944{
1945 /* No error here: 6 bits are used */
1946 return op1 >> (op2 & 0x3F);
1947}
1948
b068d6a7 1949static always_inline uint32_t _do_esubfw (uint32_t op1, uint32_t op2)
0487d6a8
JM
1950{
1951 return op2 - op1;
1952}
1953
1954/* evabs */
1955DO_SPE_OP1(abs);
1956/* evaddw */
1957DO_SPE_OP2(addw);
1958/* evcntlsw */
1959DO_SPE_OP1(cntlsw);
1960/* evcntlzw */
1961DO_SPE_OP1(cntlzw);
1962/* evneg */
1963DO_SPE_OP1(neg);
1964/* evrlw */
1965DO_SPE_OP2(rlw);
1966/* evrnd */
1967DO_SPE_OP1(rndw);
1968/* evslw */
1969DO_SPE_OP2(slw);
1970/* evsrws */
1971DO_SPE_OP2(srws);
1972/* evsrwu */
1973DO_SPE_OP2(srwu);
1974/* evsubfw */
1975DO_SPE_OP2(subfw);
1976
1977/* evsel is a little bit more complicated... */
b068d6a7 1978static always_inline uint32_t _do_esel (uint32_t op1, uint32_t op2, int n)
0487d6a8
JM
1979{
1980 if (n)
1981 return op1;
1982 else
1983 return op2;
1984}
1985
1986void do_evsel (void)
1987{
1988 T0_64 = ((uint64_t)_do_esel(T0_64 >> 32, T1_64 >> 32, T0 >> 3) << 32) |
1989 (uint64_t)_do_esel(T0_64, T1_64, (T0 >> 2) & 1);
1990}
1991
1992/* Fixed-point vector comparisons */
1993#define DO_SPE_CMP(name) \
1994void do_ev##name (void) \
1995{ \
1996 T0 = _do_evcmp_merge((uint64_t)_do_e##name(T0_64 >> 32, \
1997 T1_64 >> 32) << 32, \
1998 _do_e##name(T0_64, T1_64)); \
1999}
2000
b068d6a7 2001static always_inline uint32_t _do_evcmp_merge (int t0, int t1)
0487d6a8
JM
2002{
2003 return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1);
2004}
b068d6a7 2005static always_inline int _do_ecmpeq (uint32_t op1, uint32_t op2)
0487d6a8
JM
2006{
2007 return op1 == op2 ? 1 : 0;
2008}
2009
b068d6a7 2010static always_inline int _do_ecmpgts (int32_t op1, int32_t op2)
0487d6a8
JM
2011{
2012 return op1 > op2 ? 1 : 0;
2013}
2014
b068d6a7 2015static always_inline int _do_ecmpgtu (uint32_t op1, uint32_t op2)
0487d6a8
JM
2016{
2017 return op1 > op2 ? 1 : 0;
2018}
2019
b068d6a7 2020static always_inline int _do_ecmplts (int32_t op1, int32_t op2)
0487d6a8
JM
2021{
2022 return op1 < op2 ? 1 : 0;
2023}
2024
b068d6a7 2025static always_inline int _do_ecmpltu (uint32_t op1, uint32_t op2)
0487d6a8
JM
2026{
2027 return op1 < op2 ? 1 : 0;
2028}
2029
2030/* evcmpeq */
2031DO_SPE_CMP(cmpeq);
2032/* evcmpgts */
2033DO_SPE_CMP(cmpgts);
2034/* evcmpgtu */
2035DO_SPE_CMP(cmpgtu);
2036/* evcmplts */
2037DO_SPE_CMP(cmplts);
2038/* evcmpltu */
2039DO_SPE_CMP(cmpltu);
2040
2041/* Single precision floating-point conversions from/to integer */
b068d6a7 2042static always_inline uint32_t _do_efscfsi (int32_t val)
0487d6a8 2043{
0ca9d380 2044 CPU_FloatU u;
0487d6a8
JM
2045
2046 u.f = int32_to_float32(val, &env->spe_status);
2047
0ca9d380 2048 return u.l;
0487d6a8
JM
2049}
2050
b068d6a7 2051static always_inline uint32_t _do_efscfui (uint32_t val)
0487d6a8 2052{
0ca9d380 2053 CPU_FloatU u;
0487d6a8
JM
2054
2055 u.f = uint32_to_float32(val, &env->spe_status);
2056
0ca9d380 2057 return u.l;
0487d6a8
JM
2058}
2059
b068d6a7 2060static always_inline int32_t _do_efsctsi (uint32_t val)
0487d6a8 2061{
0ca9d380 2062 CPU_FloatU u;
0487d6a8 2063
0ca9d380 2064 u.l = val;
0487d6a8
JM
2065 /* NaN are not treated the same way IEEE 754 does */
2066 if (unlikely(isnan(u.f)))
2067 return 0;
2068
2069 return float32_to_int32(u.f, &env->spe_status);
2070}
2071
b068d6a7 2072static always_inline uint32_t _do_efsctui (uint32_t val)
0487d6a8 2073{
0ca9d380 2074 CPU_FloatU u;
0487d6a8 2075
0ca9d380 2076 u.l = val;
0487d6a8
JM
2077 /* NaN are not treated the same way IEEE 754 does */
2078 if (unlikely(isnan(u.f)))
2079 return 0;
2080
2081 return float32_to_uint32(u.f, &env->spe_status);
2082}
2083
b068d6a7 2084static always_inline int32_t _do_efsctsiz (uint32_t val)
0487d6a8 2085{
0ca9d380 2086 CPU_FloatU u;
0487d6a8 2087
0ca9d380 2088 u.l = val;
0487d6a8
JM
2089 /* NaN are not treated the same way IEEE 754 does */
2090 if (unlikely(isnan(u.f)))
2091 return 0;
2092
2093 return float32_to_int32_round_to_zero(u.f, &env->spe_status);
2094}
2095
b068d6a7 2096static always_inline uint32_t _do_efsctuiz (uint32_t val)
0487d6a8 2097{
0ca9d380 2098 CPU_FloatU u;
0487d6a8 2099
0ca9d380 2100 u.l = val;
0487d6a8
JM
2101 /* NaN are not treated the same way IEEE 754 does */
2102 if (unlikely(isnan(u.f)))
2103 return 0;
2104
2105 return float32_to_uint32_round_to_zero(u.f, &env->spe_status);
2106}
2107
2108void do_efscfsi (void)
2109{
2110 T0_64 = _do_efscfsi(T0_64);
2111}
2112
2113void do_efscfui (void)
2114{
2115 T0_64 = _do_efscfui(T0_64);
2116}
2117
2118void do_efsctsi (void)
2119{
2120 T0_64 = _do_efsctsi(T0_64);
2121}
2122
2123void do_efsctui (void)
2124{
2125 T0_64 = _do_efsctui(T0_64);
2126}
2127
2128void do_efsctsiz (void)
2129{
2130 T0_64 = _do_efsctsiz(T0_64);
2131}
2132
2133void do_efsctuiz (void)
2134{
2135 T0_64 = _do_efsctuiz(T0_64);
2136}
2137
2138/* Single precision floating-point conversion to/from fractional */
b068d6a7 2139static always_inline uint32_t _do_efscfsf (uint32_t val)
0487d6a8 2140{
0ca9d380 2141 CPU_FloatU u;
0487d6a8
JM
2142 float32 tmp;
2143
2144 u.f = int32_to_float32(val, &env->spe_status);
2145 tmp = int64_to_float32(1ULL << 32, &env->spe_status);
2146 u.f = float32_div(u.f, tmp, &env->spe_status);
2147
0ca9d380 2148 return u.l;
0487d6a8
JM
2149}
2150
b068d6a7 2151static always_inline uint32_t _do_efscfuf (uint32_t val)
0487d6a8 2152{
0ca9d380 2153 CPU_FloatU u;
0487d6a8
JM
2154 float32 tmp;
2155
2156 u.f = uint32_to_float32(val, &env->spe_status);
2157 tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
2158 u.f = float32_div(u.f, tmp, &env->spe_status);
2159
0ca9d380 2160 return u.l;
0487d6a8
JM
2161}
2162
b068d6a7 2163static always_inline int32_t _do_efsctsf (uint32_t val)
0487d6a8 2164{
0ca9d380 2165 CPU_FloatU u;
0487d6a8
JM
2166 float32 tmp;
2167
0ca9d380 2168 u.l = val;
0487d6a8
JM
2169 /* NaN are not treated the same way IEEE 754 does */
2170 if (unlikely(isnan(u.f)))
2171 return 0;
2172 tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
2173 u.f = float32_mul(u.f, tmp, &env->spe_status);
2174
2175 return float32_to_int32(u.f, &env->spe_status);
2176}
2177
b068d6a7 2178static always_inline uint32_t _do_efsctuf (uint32_t val)
0487d6a8 2179{
0ca9d380 2180 CPU_FloatU u;
0487d6a8
JM
2181 float32 tmp;
2182
0ca9d380 2183 u.l = val;
0487d6a8
JM
2184 /* NaN are not treated the same way IEEE 754 does */
2185 if (unlikely(isnan(u.f)))
2186 return 0;
2187 tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
2188 u.f = float32_mul(u.f, tmp, &env->spe_status);
2189
2190 return float32_to_uint32(u.f, &env->spe_status);
2191}
2192
b068d6a7 2193static always_inline int32_t _do_efsctsfz (uint32_t val)
0487d6a8 2194{
0ca9d380 2195 CPU_FloatU u;
0487d6a8
JM
2196 float32 tmp;
2197
0ca9d380 2198 u.l = val;
0487d6a8
JM
2199 /* NaN are not treated the same way IEEE 754 does */
2200 if (unlikely(isnan(u.f)))
2201 return 0;
2202 tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
2203 u.f = float32_mul(u.f, tmp, &env->spe_status);
2204
2205 return float32_to_int32_round_to_zero(u.f, &env->spe_status);
2206}
2207
b068d6a7 2208static always_inline uint32_t _do_efsctufz (uint32_t val)
0487d6a8 2209{
0ca9d380 2210 CPU_FloatU u;
0487d6a8
JM
2211 float32 tmp;
2212
0ca9d380 2213 u.l = val;
0487d6a8
JM
2214 /* NaN are not treated the same way IEEE 754 does */
2215 if (unlikely(isnan(u.f)))
2216 return 0;
2217 tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
2218 u.f = float32_mul(u.f, tmp, &env->spe_status);
2219
2220 return float32_to_uint32_round_to_zero(u.f, &env->spe_status);
2221}
2222
2223void do_efscfsf (void)
2224{
2225 T0_64 = _do_efscfsf(T0_64);
2226}
2227
2228void do_efscfuf (void)
2229{
2230 T0_64 = _do_efscfuf(T0_64);
2231}
2232
2233void do_efsctsf (void)
2234{
2235 T0_64 = _do_efsctsf(T0_64);
2236}
2237
2238void do_efsctuf (void)
2239{
2240 T0_64 = _do_efsctuf(T0_64);
2241}
2242
2243void do_efsctsfz (void)
2244{
2245 T0_64 = _do_efsctsfz(T0_64);
2246}
2247
2248void do_efsctufz (void)
2249{
2250 T0_64 = _do_efsctufz(T0_64);
2251}
2252
2253/* Double precision floating point helpers */
b068d6a7 2254static always_inline int _do_efdcmplt (uint64_t op1, uint64_t op2)
0487d6a8
JM
2255{
2256 /* XXX: TODO: test special values (NaN, infinites, ...) */
2257 return _do_efdtstlt(op1, op2);
2258}
2259
b068d6a7 2260static always_inline int _do_efdcmpgt (uint64_t op1, uint64_t op2)
0487d6a8
JM
2261{
2262 /* XXX: TODO: test special values (NaN, infinites, ...) */
2263 return _do_efdtstgt(op1, op2);
2264}
2265
b068d6a7 2266static always_inline int _do_efdcmpeq (uint64_t op1, uint64_t op2)
0487d6a8
JM
2267{
2268 /* XXX: TODO: test special values (NaN, infinites, ...) */
2269 return _do_efdtsteq(op1, op2);
2270}
2271
2272void do_efdcmplt (void)
2273{
2274 T0 = _do_efdcmplt(T0_64, T1_64);
2275}
2276
2277void do_efdcmpgt (void)
2278{
2279 T0 = _do_efdcmpgt(T0_64, T1_64);
2280}
2281
2282void do_efdcmpeq (void)
2283{
2284 T0 = _do_efdcmpeq(T0_64, T1_64);
2285}
2286
2287/* Double precision floating-point conversion to/from integer */
b068d6a7 2288static always_inline uint64_t _do_efdcfsi (int64_t val)
0487d6a8 2289{
0ca9d380 2290 CPU_DoubleU u;
0487d6a8 2291
0ca9d380 2292 u.d = int64_to_float64(val, &env->spe_status);
0487d6a8 2293
0ca9d380 2294 return u.ll;
0487d6a8
JM
2295}
2296
b068d6a7 2297static always_inline uint64_t _do_efdcfui (uint64_t val)
0487d6a8 2298{
0ca9d380 2299 CPU_DoubleU u;
0487d6a8 2300
0ca9d380 2301 u.d = uint64_to_float64(val, &env->spe_status);
0487d6a8 2302
0ca9d380 2303 return u.ll;
0487d6a8
JM
2304}
2305
b068d6a7 2306static always_inline int64_t _do_efdctsi (uint64_t val)
0487d6a8 2307{
0ca9d380 2308 CPU_DoubleU u;
0487d6a8 2309
0ca9d380 2310 u.ll = val;
0487d6a8 2311 /* NaN are not treated the same way IEEE 754 does */
0ca9d380 2312 if (unlikely(isnan(u.d)))
0487d6a8
JM
2313 return 0;
2314
0ca9d380 2315 return float64_to_int64(u.d, &env->spe_status);
0487d6a8
JM
2316}
2317
b068d6a7 2318static always_inline uint64_t _do_efdctui (uint64_t val)
0487d6a8 2319{
0ca9d380 2320 CPU_DoubleU u;
0487d6a8 2321
0ca9d380 2322 u.ll = val;
0487d6a8 2323 /* NaN are not treated the same way IEEE 754 does */
0ca9d380 2324 if (unlikely(isnan(u.d)))
0487d6a8
JM
2325 return 0;
2326
0ca9d380 2327 return float64_to_uint64(u.d, &env->spe_status);
0487d6a8
JM
2328}
2329
b068d6a7 2330static always_inline int64_t _do_efdctsiz (uint64_t val)
0487d6a8 2331{
0ca9d380 2332 CPU_DoubleU u;
0487d6a8 2333
0ca9d380 2334 u.ll = val;
0487d6a8 2335 /* NaN are not treated the same way IEEE 754 does */
0ca9d380 2336 if (unlikely(isnan(u.d)))
0487d6a8
JM
2337 return 0;
2338
0ca9d380 2339 return float64_to_int64_round_to_zero(u.d, &env->spe_status);
0487d6a8
JM
2340}
2341
b068d6a7 2342static always_inline uint64_t _do_efdctuiz (uint64_t val)
0487d6a8 2343{
0ca9d380 2344 CPU_DoubleU u;
0487d6a8 2345
0ca9d380 2346 u.ll = val;
0487d6a8 2347 /* NaN are not treated the same way IEEE 754 does */
0ca9d380 2348 if (unlikely(isnan(u.d)))
0487d6a8
JM
2349 return 0;
2350
0ca9d380 2351 return float64_to_uint64_round_to_zero(u.d, &env->spe_status);
0487d6a8
JM
2352}
2353
2354void do_efdcfsi (void)
2355{
2356 T0_64 = _do_efdcfsi(T0_64);
2357}
2358
2359void do_efdcfui (void)
2360{
2361 T0_64 = _do_efdcfui(T0_64);
2362}
2363
2364void do_efdctsi (void)
2365{
2366 T0_64 = _do_efdctsi(T0_64);
2367}
2368
2369void do_efdctui (void)
2370{
2371 T0_64 = _do_efdctui(T0_64);
2372}
2373
2374void do_efdctsiz (void)
2375{
2376 T0_64 = _do_efdctsiz(T0_64);
2377}
2378
2379void do_efdctuiz (void)
2380{
2381 T0_64 = _do_efdctuiz(T0_64);
2382}
2383
2384/* Double precision floating-point conversion to/from fractional */
b068d6a7 2385static always_inline uint64_t _do_efdcfsf (int64_t val)
0487d6a8 2386{
0ca9d380 2387 CPU_DoubleU u;
0487d6a8
JM
2388 float64 tmp;
2389
0ca9d380 2390 u.d = int32_to_float64(val, &env->spe_status);
0487d6a8 2391 tmp = int64_to_float64(1ULL << 32, &env->spe_status);
0ca9d380 2392 u.d = float64_div(u.d, tmp, &env->spe_status);
0487d6a8 2393
0ca9d380 2394 return u.ll;
0487d6a8
JM
2395}
2396
b068d6a7 2397static always_inline uint64_t _do_efdcfuf (uint64_t val)
0487d6a8 2398{
0ca9d380 2399 CPU_DoubleU u;
0487d6a8
JM
2400 float64 tmp;
2401
0ca9d380 2402 u.d = uint32_to_float64(val, &env->spe_status);
0487d6a8 2403 tmp = int64_to_float64(1ULL << 32, &env->spe_status);
0ca9d380 2404 u.d = float64_div(u.d, tmp, &env->spe_status);
0487d6a8 2405
0ca9d380 2406 return u.ll;
0487d6a8
JM
2407}
2408
b068d6a7 2409static always_inline int64_t _do_efdctsf (uint64_t val)
0487d6a8 2410{
0ca9d380 2411 CPU_DoubleU u;
0487d6a8
JM
2412 float64 tmp;
2413
0ca9d380 2414 u.ll = val;
0487d6a8 2415 /* NaN are not treated the same way IEEE 754 does */
0ca9d380 2416 if (unlikely(isnan(u.d)))
0487d6a8
JM
2417 return 0;
2418 tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
0ca9d380 2419 u.d = float64_mul(u.d, tmp, &env->spe_status);
0487d6a8 2420
0ca9d380 2421 return float64_to_int32(u.d, &env->spe_status);
0487d6a8
JM
2422}
2423
b068d6a7 2424static always_inline uint64_t _do_efdctuf (uint64_t val)
0487d6a8 2425{
0ca9d380 2426 CPU_DoubleU u;
0487d6a8
JM
2427 float64 tmp;
2428
0ca9d380 2429 u.ll = val;
0487d6a8 2430 /* NaN are not treated the same way IEEE 754 does */
0ca9d380 2431 if (unlikely(isnan(u.d)))
0487d6a8
JM
2432 return 0;
2433 tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
0ca9d380 2434 u.d = float64_mul(u.d, tmp, &env->spe_status);
0487d6a8 2435
0ca9d380 2436 return float64_to_uint32(u.d, &env->spe_status);
0487d6a8
JM
2437}
2438
b068d6a7 2439static always_inline int64_t _do_efdctsfz (uint64_t val)
0487d6a8 2440{
0ca9d380 2441 CPU_DoubleU u;
0487d6a8
JM
2442 float64 tmp;
2443
0ca9d380 2444 u.ll = val;
0487d6a8 2445 /* NaN are not treated the same way IEEE 754 does */
0ca9d380 2446 if (unlikely(isnan(u.d)))
0487d6a8
JM
2447 return 0;
2448 tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
0ca9d380 2449 u.d = float64_mul(u.d, tmp, &env->spe_status);
0487d6a8 2450
0ca9d380 2451 return float64_to_int32_round_to_zero(u.d, &env->spe_status);
0487d6a8
JM
2452}
2453
b068d6a7 2454static always_inline uint64_t _do_efdctufz (uint64_t val)
0487d6a8 2455{
0ca9d380 2456 CPU_DoubleU u;
0487d6a8
JM
2457 float64 tmp;
2458
0ca9d380 2459 u.ll = val;
0487d6a8 2460 /* NaN are not treated the same way IEEE 754 does */
0ca9d380 2461 if (unlikely(isnan(u.d)))
0487d6a8
JM
2462 return 0;
2463 tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
0ca9d380 2464 u.d = float64_mul(u.d, tmp, &env->spe_status);
0487d6a8 2465
0ca9d380 2466 return float64_to_uint32_round_to_zero(u.d, &env->spe_status);
0487d6a8
JM
2467}
2468
2469void do_efdcfsf (void)
2470{
2471 T0_64 = _do_efdcfsf(T0_64);
2472}
2473
2474void do_efdcfuf (void)
2475{
2476 T0_64 = _do_efdcfuf(T0_64);
2477}
2478
2479void do_efdctsf (void)
2480{
2481 T0_64 = _do_efdctsf(T0_64);
2482}
2483
2484void do_efdctuf (void)
2485{
2486 T0_64 = _do_efdctuf(T0_64);
2487}
2488
2489void do_efdctsfz (void)
2490{
2491 T0_64 = _do_efdctsfz(T0_64);
2492}
2493
2494void do_efdctufz (void)
2495{
2496 T0_64 = _do_efdctufz(T0_64);
2497}
2498
2499/* Floating point conversion between single and double precision */
b068d6a7 2500static always_inline uint32_t _do_efscfd (uint64_t val)
0487d6a8 2501{
0ca9d380
AJ
2502 CPU_DoubleU u1;
2503 CPU_FloatU u2;
0487d6a8 2504
0ca9d380
AJ
2505 u1.ll = val;
2506 u2.f = float64_to_float32(u1.d, &env->spe_status);
0487d6a8 2507
0ca9d380 2508 return u2.l;
0487d6a8
JM
2509}
2510
b068d6a7 2511static always_inline uint64_t _do_efdcfs (uint32_t val)
0487d6a8 2512{
0ca9d380
AJ
2513 CPU_DoubleU u2;
2514 CPU_FloatU u1;
0487d6a8 2515
0ca9d380
AJ
2516 u1.l = val;
2517 u2.d = float32_to_float64(u1.f, &env->spe_status);
0487d6a8 2518
0ca9d380 2519 return u2.ll;
0487d6a8
JM
2520}
2521
2522void do_efscfd (void)
2523{
2524 T0_64 = _do_efscfd(T0_64);
2525}
2526
2527void do_efdcfs (void)
2528{
2529 T0_64 = _do_efdcfs(T0_64);
2530}
2531
2532/* Single precision fixed-point vector arithmetic */
2533/* evfsabs */
2534DO_SPE_OP1(fsabs);
2535/* evfsnabs */
2536DO_SPE_OP1(fsnabs);
2537/* evfsneg */
2538DO_SPE_OP1(fsneg);
2539/* evfsadd */
2540DO_SPE_OP2(fsadd);
2541/* evfssub */
2542DO_SPE_OP2(fssub);
2543/* evfsmul */
2544DO_SPE_OP2(fsmul);
2545/* evfsdiv */
2546DO_SPE_OP2(fsdiv);
2547
2548/* Single-precision floating-point comparisons */
b068d6a7 2549static always_inline int _do_efscmplt (uint32_t op1, uint32_t op2)
0487d6a8
JM
2550{
2551 /* XXX: TODO: test special values (NaN, infinites, ...) */
2552 return _do_efststlt(op1, op2);
2553}
2554
b068d6a7 2555static always_inline int _do_efscmpgt (uint32_t op1, uint32_t op2)
0487d6a8
JM
2556{
2557 /* XXX: TODO: test special values (NaN, infinites, ...) */
2558 return _do_efststgt(op1, op2);
2559}
2560
b068d6a7 2561static always_inline int _do_efscmpeq (uint32_t op1, uint32_t op2)
0487d6a8
JM
2562{
2563 /* XXX: TODO: test special values (NaN, infinites, ...) */
2564 return _do_efststeq(op1, op2);
2565}
2566
2567void do_efscmplt (void)
2568{
2569 T0 = _do_efscmplt(T0_64, T1_64);
2570}
2571
2572void do_efscmpgt (void)
2573{
2574 T0 = _do_efscmpgt(T0_64, T1_64);
2575}
2576
2577void do_efscmpeq (void)
2578{
2579 T0 = _do_efscmpeq(T0_64, T1_64);
2580}
2581
2582/* Single-precision floating-point vector comparisons */
2583/* evfscmplt */
2584DO_SPE_CMP(fscmplt);
2585/* evfscmpgt */
2586DO_SPE_CMP(fscmpgt);
2587/* evfscmpeq */
2588DO_SPE_CMP(fscmpeq);
2589/* evfststlt */
2590DO_SPE_CMP(fststlt);
2591/* evfststgt */
2592DO_SPE_CMP(fststgt);
2593/* evfststeq */
2594DO_SPE_CMP(fststeq);
2595
2596/* Single-precision floating-point vector conversions */
2597/* evfscfsi */
2598DO_SPE_OP1(fscfsi);
2599/* evfscfui */
2600DO_SPE_OP1(fscfui);
2601/* evfscfuf */
2602DO_SPE_OP1(fscfuf);
2603/* evfscfsf */
2604DO_SPE_OP1(fscfsf);
2605/* evfsctsi */
2606DO_SPE_OP1(fsctsi);
2607/* evfsctui */
2608DO_SPE_OP1(fsctui);
2609/* evfsctsiz */
2610DO_SPE_OP1(fsctsiz);
2611/* evfsctuiz */
2612DO_SPE_OP1(fsctuiz);
2613/* evfsctsf */
2614DO_SPE_OP1(fsctsf);
2615/* evfsctuf */
2616DO_SPE_OP1(fsctuf);
0487d6a8 2617
fdabc366
FB
2618/*****************************************************************************/
2619/* Softmmu support */
2620#if !defined (CONFIG_USER_ONLY)
2621
2622#define MMUSUFFIX _mmu
fdabc366
FB
2623
2624#define SHIFT 0
2625#include "softmmu_template.h"
2626
2627#define SHIFT 1
2628#include "softmmu_template.h"
2629
2630#define SHIFT 2
2631#include "softmmu_template.h"
2632
2633#define SHIFT 3
2634#include "softmmu_template.h"
2635
2636/* try to fill the TLB and return an exception if error. If retaddr is
2637 NULL, it means that the function was called in C code (i.e. not
2638 from generated code or from helper.c) */
2639/* XXX: fix it to restore all registers */
6ebbf390 2640void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr)
fdabc366
FB
2641{
2642 TranslationBlock *tb;
2643 CPUState *saved_env;
44f8625d 2644 unsigned long pc;
fdabc366
FB
2645 int ret;
2646
2647 /* XXX: hack to restore env in all cases, even if not called from
2648 generated code */
2649 saved_env = env;
2650 env = cpu_single_env;
6ebbf390 2651 ret = cpu_ppc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
76a66253 2652 if (unlikely(ret != 0)) {
fdabc366
FB
2653 if (likely(retaddr)) {
2654 /* now we have a real cpu fault */
44f8625d 2655 pc = (unsigned long)retaddr;
fdabc366
FB
2656 tb = tb_find_pc(pc);
2657 if (likely(tb)) {
2658 /* the PC is inside the translated code. It means that we have
2659 a virtual CPU fault */
2660 cpu_restore_state(tb, env, pc, NULL);
76a66253 2661 }
fdabc366
FB
2662 }
2663 do_raise_exception_err(env->exception_index, env->error_code);
2664 }
2665 env = saved_env;
9a64fbe4
FB
2666}
2667
76a66253
JM
2668/* Software driven TLBs management */
2669/* PowerPC 602/603 software TLB load instructions helpers */
2670void do_load_6xx_tlb (int is_code)
2671{
2672 target_ulong RPN, CMP, EPN;
2673 int way;
d9bce9d9 2674
76a66253
JM
2675 RPN = env->spr[SPR_RPA];
2676 if (is_code) {
2677 CMP = env->spr[SPR_ICMP];
2678 EPN = env->spr[SPR_IMISS];
2679 } else {
2680 CMP = env->spr[SPR_DCMP];
2681 EPN = env->spr[SPR_DMISS];
2682 }
2683 way = (env->spr[SPR_SRR1] >> 17) & 1;
2684#if defined (DEBUG_SOFTWARE_TLB)
2685 if (loglevel != 0) {
6b542af7
JM
2686 fprintf(logfile, "%s: EPN " TDX " " ADDRX " PTE0 " ADDRX
2687 " PTE1 " ADDRX " way %d\n",
2688 __func__, T0, EPN, CMP, RPN, way);
76a66253
JM
2689 }
2690#endif
2691 /* Store this TLB */
d9bce9d9
JM
2692 ppc6xx_tlb_store(env, (uint32_t)(T0 & TARGET_PAGE_MASK),
2693 way, is_code, CMP, RPN);
76a66253
JM
2694}
2695
7dbe11ac
JM
2696void do_load_74xx_tlb (int is_code)
2697{
2698 target_ulong RPN, CMP, EPN;
2699 int way;
2700
2701 RPN = env->spr[SPR_PTELO];
2702 CMP = env->spr[SPR_PTEHI];
2703 EPN = env->spr[SPR_TLBMISS] & ~0x3;
2704 way = env->spr[SPR_TLBMISS] & 0x3;
2705#if defined (DEBUG_SOFTWARE_TLB)
2706 if (loglevel != 0) {
6b542af7
JM
2707 fprintf(logfile, "%s: EPN " TDX " " ADDRX " PTE0 " ADDRX
2708 " PTE1 " ADDRX " way %d\n",
2709 __func__, T0, EPN, CMP, RPN, way);
7dbe11ac
JM
2710 }
2711#endif
2712 /* Store this TLB */
2713 ppc6xx_tlb_store(env, (uint32_t)(T0 & TARGET_PAGE_MASK),
2714 way, is_code, CMP, RPN);
2715}
2716
a11b8151 2717static always_inline target_ulong booke_tlb_to_page_size (int size)
a8dea12f
JM
2718{
2719 return 1024 << (2 * size);
2720}
2721
a11b8151 2722static always_inline int booke_page_size_to_tlb (target_ulong page_size)
a8dea12f
JM
2723{
2724 int size;
2725
2726 switch (page_size) {
2727 case 0x00000400UL:
2728 size = 0x0;
2729 break;
2730 case 0x00001000UL:
2731 size = 0x1;
2732 break;
2733 case 0x00004000UL:
2734 size = 0x2;
2735 break;
2736 case 0x00010000UL:
2737 size = 0x3;
2738 break;
2739 case 0x00040000UL:
2740 size = 0x4;
2741 break;
2742 case 0x00100000UL:
2743 size = 0x5;
2744 break;
2745 case 0x00400000UL:
2746 size = 0x6;
2747 break;
2748 case 0x01000000UL:
2749 size = 0x7;
2750 break;
2751 case 0x04000000UL:
2752 size = 0x8;
2753 break;
2754 case 0x10000000UL:
2755 size = 0x9;
2756 break;
2757 case 0x40000000UL:
2758 size = 0xA;
2759 break;
2760#if defined (TARGET_PPC64)
2761 case 0x000100000000ULL:
2762 size = 0xB;
2763 break;
2764 case 0x000400000000ULL:
2765 size = 0xC;
2766 break;
2767 case 0x001000000000ULL:
2768 size = 0xD;
2769 break;
2770 case 0x004000000000ULL:
2771 size = 0xE;
2772 break;
2773 case 0x010000000000ULL:
2774 size = 0xF;
2775 break;
2776#endif
2777 default:
2778 size = -1;
2779 break;
2780 }
2781
2782 return size;
2783}
2784
76a66253 2785/* Helpers for 4xx TLB management */
76a66253
JM
2786void do_4xx_tlbre_lo (void)
2787{
a8dea12f
JM
2788 ppcemb_tlb_t *tlb;
2789 int size;
76a66253
JM
2790
2791 T0 &= 0x3F;
a8dea12f
JM
2792 tlb = &env->tlb[T0].tlbe;
2793 T0 = tlb->EPN;
2794 if (tlb->prot & PAGE_VALID)
2795 T0 |= 0x400;
2796 size = booke_page_size_to_tlb(tlb->size);
2797 if (size < 0 || size > 0x7)
2798 size = 1;
2799 T0 |= size << 7;
2800 env->spr[SPR_40x_PID] = tlb->PID;
76a66253
JM
2801}
2802
2803void do_4xx_tlbre_hi (void)
2804{
a8dea12f 2805 ppcemb_tlb_t *tlb;
76a66253
JM
2806
2807 T0 &= 0x3F;
a8dea12f
JM
2808 tlb = &env->tlb[T0].tlbe;
2809 T0 = tlb->RPN;
2810 if (tlb->prot & PAGE_EXEC)
2811 T0 |= 0x200;
2812 if (tlb->prot & PAGE_WRITE)
2813 T0 |= 0x100;
76a66253
JM
2814}
2815
c55e9aef 2816void do_4xx_tlbwe_hi (void)
76a66253 2817{
a8dea12f 2818 ppcemb_tlb_t *tlb;
76a66253
JM
2819 target_ulong page, end;
2820
c55e9aef 2821#if defined (DEBUG_SOFTWARE_TLB)
6b80055d 2822 if (loglevel != 0) {
6b542af7 2823 fprintf(logfile, "%s T0 " TDX " T1 " TDX "\n", __func__, T0, T1);
c55e9aef
JM
2824 }
2825#endif
76a66253 2826 T0 &= 0x3F;
a8dea12f 2827 tlb = &env->tlb[T0].tlbe;
76a66253
JM
2828 /* Invalidate previous TLB (if it's valid) */
2829 if (tlb->prot & PAGE_VALID) {
2830 end = tlb->EPN + tlb->size;
c55e9aef 2831#if defined (DEBUG_SOFTWARE_TLB)
6b80055d 2832 if (loglevel != 0) {
c55e9aef
JM
2833 fprintf(logfile, "%s: invalidate old TLB %d start " ADDRX
2834 " end " ADDRX "\n", __func__, (int)T0, tlb->EPN, end);
2835 }
2836#endif
76a66253
JM
2837 for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE)
2838 tlb_flush_page(env, page);
2839 }
a8dea12f 2840 tlb->size = booke_tlb_to_page_size((T1 >> 7) & 0x7);
c294fc58
JM
2841 /* We cannot handle TLB size < TARGET_PAGE_SIZE.
2842 * If this ever occurs, one should use the ppcemb target instead
2843 * of the ppc or ppc64 one
2844 */
2845 if ((T1 & 0x40) && tlb->size < TARGET_PAGE_SIZE) {
71c8b8fd
JM
2846 cpu_abort(env, "TLB size " TARGET_FMT_lu " < %u "
2847 "are not supported (%d)\n",
c294fc58
JM
2848 tlb->size, TARGET_PAGE_SIZE, (int)((T1 >> 7) & 0x7));
2849 }
a750fc0b 2850 tlb->EPN = T1 & ~(tlb->size - 1);
c55e9aef 2851 if (T1 & 0x40)
76a66253
JM
2852 tlb->prot |= PAGE_VALID;
2853 else
2854 tlb->prot &= ~PAGE_VALID;
c294fc58
JM
2855 if (T1 & 0x20) {
2856 /* XXX: TO BE FIXED */
2857 cpu_abort(env, "Little-endian TLB entries are not supported by now\n");
2858 }
c55e9aef 2859 tlb->PID = env->spr[SPR_40x_PID]; /* PID */
a8dea12f 2860 tlb->attr = T1 & 0xFF;
c55e9aef 2861#if defined (DEBUG_SOFTWARE_TLB)
c294fc58
JM
2862 if (loglevel != 0) {
2863 fprintf(logfile, "%s: set up TLB %d RPN " PADDRX " EPN " ADDRX
c55e9aef 2864 " size " ADDRX " prot %c%c%c%c PID %d\n", __func__,
5fafdf24 2865 (int)T0, tlb->RPN, tlb->EPN, tlb->size,
c55e9aef
JM
2866 tlb->prot & PAGE_READ ? 'r' : '-',
2867 tlb->prot & PAGE_WRITE ? 'w' : '-',
2868 tlb->prot & PAGE_EXEC ? 'x' : '-',
2869 tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID);
2870 }
2871#endif
76a66253
JM
2872 /* Invalidate new TLB (if valid) */
2873 if (tlb->prot & PAGE_VALID) {
2874 end = tlb->EPN + tlb->size;
c55e9aef 2875#if defined (DEBUG_SOFTWARE_TLB)
6b80055d 2876 if (loglevel != 0) {
c55e9aef
JM
2877 fprintf(logfile, "%s: invalidate TLB %d start " ADDRX
2878 " end " ADDRX "\n", __func__, (int)T0, tlb->EPN, end);
2879 }
2880#endif
76a66253
JM
2881 for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE)
2882 tlb_flush_page(env, page);
2883 }
76a66253
JM
2884}
2885
c55e9aef 2886void do_4xx_tlbwe_lo (void)
76a66253 2887{
a8dea12f 2888 ppcemb_tlb_t *tlb;
76a66253 2889
c55e9aef 2890#if defined (DEBUG_SOFTWARE_TLB)
6b80055d 2891 if (loglevel != 0) {
6b542af7 2892 fprintf(logfile, "%s T0 " TDX " T1 " TDX "\n", __func__, T0, T1);
c55e9aef
JM
2893 }
2894#endif
76a66253 2895 T0 &= 0x3F;
a8dea12f 2896 tlb = &env->tlb[T0].tlbe;
76a66253
JM
2897 tlb->RPN = T1 & 0xFFFFFC00;
2898 tlb->prot = PAGE_READ;
2899 if (T1 & 0x200)
2900 tlb->prot |= PAGE_EXEC;
2901 if (T1 & 0x100)
2902 tlb->prot |= PAGE_WRITE;
c55e9aef 2903#if defined (DEBUG_SOFTWARE_TLB)
6b80055d
JM
2904 if (loglevel != 0) {
2905 fprintf(logfile, "%s: set up TLB %d RPN " PADDRX " EPN " ADDRX
c55e9aef 2906 " size " ADDRX " prot %c%c%c%c PID %d\n", __func__,
5fafdf24 2907 (int)T0, tlb->RPN, tlb->EPN, tlb->size,
c55e9aef
JM
2908 tlb->prot & PAGE_READ ? 'r' : '-',
2909 tlb->prot & PAGE_WRITE ? 'w' : '-',
2910 tlb->prot & PAGE_EXEC ? 'x' : '-',
2911 tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID);
2912 }
2913#endif
76a66253 2914}
5eb7995e 2915
a4bb6c3e
JM
2916/* PowerPC 440 TLB management */
2917void do_440_tlbwe (int word)
5eb7995e
JM
2918{
2919 ppcemb_tlb_t *tlb;
a4bb6c3e 2920 target_ulong EPN, RPN, size;
5eb7995e
JM
2921 int do_flush_tlbs;
2922
2923#if defined (DEBUG_SOFTWARE_TLB)
2924 if (loglevel != 0) {
6b542af7 2925 fprintf(logfile, "%s word %d T0 " TDX " T1 " TDX "\n",
69facb78 2926 __func__, word, T0, T1);
5eb7995e
JM
2927 }
2928#endif
2929 do_flush_tlbs = 0;
2930 T0 &= 0x3F;
2931 tlb = &env->tlb[T0].tlbe;
a4bb6c3e
JM
2932 switch (word) {
2933 default:
2934 /* Just here to please gcc */
2935 case 0:
2936 EPN = T1 & 0xFFFFFC00;
2937 if ((tlb->prot & PAGE_VALID) && EPN != tlb->EPN)
5eb7995e 2938 do_flush_tlbs = 1;
a4bb6c3e
JM
2939 tlb->EPN = EPN;
2940 size = booke_tlb_to_page_size((T1 >> 4) & 0xF);
2941 if ((tlb->prot & PAGE_VALID) && tlb->size < size)
2942 do_flush_tlbs = 1;
2943 tlb->size = size;
2944 tlb->attr &= ~0x1;
2945 tlb->attr |= (T1 >> 8) & 1;
2946 if (T1 & 0x200) {
2947 tlb->prot |= PAGE_VALID;
2948 } else {
2949 if (tlb->prot & PAGE_VALID) {
2950 tlb->prot &= ~PAGE_VALID;
2951 do_flush_tlbs = 1;
2952 }
5eb7995e 2953 }
a4bb6c3e
JM
2954 tlb->PID = env->spr[SPR_440_MMUCR] & 0x000000FF;
2955 if (do_flush_tlbs)
2956 tlb_flush(env, 1);
2957 break;
2958 case 1:
2959 RPN = T1 & 0xFFFFFC0F;
2960 if ((tlb->prot & PAGE_VALID) && tlb->RPN != RPN)
2961 tlb_flush(env, 1);
2962 tlb->RPN = RPN;
2963 break;
2964 case 2:
2965 tlb->attr = (tlb->attr & 0x1) | (T1 & 0x0000FF00);
2966 tlb->prot = tlb->prot & PAGE_VALID;
2967 if (T1 & 0x1)
2968 tlb->prot |= PAGE_READ << 4;
2969 if (T1 & 0x2)
2970 tlb->prot |= PAGE_WRITE << 4;
2971 if (T1 & 0x4)
2972 tlb->prot |= PAGE_EXEC << 4;
2973 if (T1 & 0x8)
2974 tlb->prot |= PAGE_READ;
2975 if (T1 & 0x10)
2976 tlb->prot |= PAGE_WRITE;
2977 if (T1 & 0x20)
2978 tlb->prot |= PAGE_EXEC;
2979 break;
5eb7995e 2980 }
5eb7995e
JM
2981}
2982
a4bb6c3e 2983void do_440_tlbre (int word)
5eb7995e
JM
2984{
2985 ppcemb_tlb_t *tlb;
2986 int size;
2987
2988 T0 &= 0x3F;
2989 tlb = &env->tlb[T0].tlbe;
a4bb6c3e
JM
2990 switch (word) {
2991 default:
2992 /* Just here to please gcc */
2993 case 0:
2994 T0 = tlb->EPN;
2995 size = booke_page_size_to_tlb(tlb->size);
2996 if (size < 0 || size > 0xF)
2997 size = 1;
2998 T0 |= size << 4;
2999 if (tlb->attr & 0x1)
3000 T0 |= 0x100;
3001 if (tlb->prot & PAGE_VALID)
3002 T0 |= 0x200;
3003 env->spr[SPR_440_MMUCR] &= ~0x000000FF;
3004 env->spr[SPR_440_MMUCR] |= tlb->PID;
3005 break;
3006 case 1:
3007 T0 = tlb->RPN;
3008 break;
3009 case 2:
3010 T0 = tlb->attr & ~0x1;
3011 if (tlb->prot & (PAGE_READ << 4))
3012 T0 |= 0x1;
3013 if (tlb->prot & (PAGE_WRITE << 4))
3014 T0 |= 0x2;
3015 if (tlb->prot & (PAGE_EXEC << 4))
3016 T0 |= 0x4;
3017 if (tlb->prot & PAGE_READ)
3018 T0 |= 0x8;
3019 if (tlb->prot & PAGE_WRITE)
3020 T0 |= 0x10;
3021 if (tlb->prot & PAGE_EXEC)
3022 T0 |= 0x20;
3023 break;
3024 }
5eb7995e 3025}
76a66253 3026#endif /* !CONFIG_USER_ONLY */
This page took 0.629364 seconds and 4 git commands to generate.