]>
Commit | Line | Data |
---|---|---|
9a64fbe4 | 1 | /* |
3fc6c082 | 2 | * PowerPC emulation helpers for qemu. |
5fafdf24 | 3 | * |
76a66253 | 4 | * Copyright (c) 2003-2007 Jocelyn Mayer |
9a64fbe4 FB |
5 | * |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
17 | * License along with this library; if not, write to the Free Software | |
18 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | |
19 | */ | |
9a64fbe4 | 20 | #include "exec.h" |
603fccce | 21 | #include "host-utils.h" |
9a64fbe4 | 22 | |
0411a972 | 23 | #include "helper_regs.h" |
0487d6a8 JM |
24 | #include "op_helper.h" |
25 | ||
9a64fbe4 | 26 | #define MEMSUFFIX _raw |
0487d6a8 | 27 | #include "op_helper.h" |
9a64fbe4 | 28 | #include "op_helper_mem.h" |
a541f297 | 29 | #if !defined(CONFIG_USER_ONLY) |
9a64fbe4 | 30 | #define MEMSUFFIX _user |
0487d6a8 | 31 | #include "op_helper.h" |
9a64fbe4 FB |
32 | #include "op_helper_mem.h" |
33 | #define MEMSUFFIX _kernel | |
0487d6a8 | 34 | #include "op_helper.h" |
9a64fbe4 | 35 | #include "op_helper_mem.h" |
1e42b8f0 JM |
36 | #define MEMSUFFIX _hypv |
37 | #include "op_helper.h" | |
38 | #include "op_helper_mem.h" | |
39 | #endif | |
9a64fbe4 | 40 | |
fdabc366 FB |
41 | //#define DEBUG_OP |
42 | //#define DEBUG_EXCEPTIONS | |
76a66253 | 43 | //#define DEBUG_SOFTWARE_TLB |
fdabc366 | 44 | |
9a64fbe4 FB |
45 | /*****************************************************************************/ |
46 | /* Exceptions processing helpers */ | |
9a64fbe4 | 47 | |
9fddaa0c | 48 | void do_raise_exception_err (uint32_t exception, int error_code) |
9a64fbe4 | 49 | { |
9fddaa0c FB |
50 | #if 0 |
51 | printf("Raise exception %3x code : %d\n", exception, error_code); | |
52 | #endif | |
9fddaa0c FB |
53 | env->exception_index = exception; |
54 | env->error_code = error_code; | |
76a66253 JM |
55 | cpu_loop_exit(); |
56 | } | |
9fddaa0c FB |
57 | |
58 | void do_raise_exception (uint32_t exception) | |
59 | { | |
60 | do_raise_exception_err(exception, 0); | |
9a64fbe4 FB |
61 | } |
62 | ||
a496775f JM |
63 | void cpu_dump_EA (target_ulong EA); |
64 | void do_print_mem_EA (target_ulong EA) | |
65 | { | |
66 | cpu_dump_EA(EA); | |
67 | } | |
68 | ||
76a66253 JM |
69 | /*****************************************************************************/ |
70 | /* Registers load and stores */ | |
61c04807 | 71 | target_ulong do_load_cr (void) |
76a66253 | 72 | { |
61c04807 AJ |
73 | return (env->crf[0] << 28) | |
74 | (env->crf[1] << 24) | | |
75 | (env->crf[2] << 20) | | |
76 | (env->crf[3] << 16) | | |
77 | (env->crf[4] << 12) | | |
78 | (env->crf[5] << 8) | | |
79 | (env->crf[6] << 4) | | |
80 | (env->crf[7] << 0); | |
76a66253 JM |
81 | } |
82 | ||
83 | void do_store_cr (uint32_t mask) | |
84 | { | |
85 | int i, sh; | |
86 | ||
36081602 | 87 | for (i = 0, sh = 7; i < 8; i++, sh--) { |
76a66253 JM |
88 | if (mask & (1 << sh)) |
89 | env->crf[i] = (T0 >> (sh * 4)) & 0xFUL; | |
90 | } | |
91 | } | |
92 | ||
c80f84e3 JM |
93 | #if defined(TARGET_PPC64) |
94 | void do_store_pri (int prio) | |
95 | { | |
96 | env->spr[SPR_PPR] &= ~0x001C000000000000ULL; | |
97 | env->spr[SPR_PPR] |= ((uint64_t)prio & 0x7) << 50; | |
98 | } | |
99 | #endif | |
100 | ||
a496775f JM |
101 | target_ulong ppc_load_dump_spr (int sprn) |
102 | { | |
6b80055d | 103 | if (loglevel != 0) { |
a496775f JM |
104 | fprintf(logfile, "Read SPR %d %03x => " ADDRX "\n", |
105 | sprn, sprn, env->spr[sprn]); | |
106 | } | |
107 | ||
108 | return env->spr[sprn]; | |
109 | } | |
110 | ||
111 | void ppc_store_dump_spr (int sprn, target_ulong val) | |
112 | { | |
6b80055d | 113 | if (loglevel != 0) { |
a496775f JM |
114 | fprintf(logfile, "Write SPR %d %03x => " ADDRX " <= " ADDRX "\n", |
115 | sprn, sprn, env->spr[sprn], val); | |
116 | } | |
117 | env->spr[sprn] = val; | |
118 | } | |
119 | ||
9a64fbe4 | 120 | /*****************************************************************************/ |
fdabc366 | 121 | /* Fixed point operations helpers */ |
fdabc366 FB |
122 | void do_adde (void) |
123 | { | |
124 | T2 = T0; | |
125 | T0 += T1 + xer_ca; | |
d9bce9d9 JM |
126 | if (likely(!((uint32_t)T0 < (uint32_t)T2 || |
127 | (xer_ca == 1 && (uint32_t)T0 == (uint32_t)T2)))) { | |
fdabc366 FB |
128 | xer_ca = 0; |
129 | } else { | |
130 | xer_ca = 1; | |
131 | } | |
132 | } | |
133 | ||
d9bce9d9 JM |
134 | #if defined(TARGET_PPC64) |
135 | void do_adde_64 (void) | |
fdabc366 FB |
136 | { |
137 | T2 = T0; | |
138 | T0 += T1 + xer_ca; | |
d9bce9d9 JM |
139 | if (likely(!((uint64_t)T0 < (uint64_t)T2 || |
140 | (xer_ca == 1 && (uint64_t)T0 == (uint64_t)T2)))) { | |
fdabc366 FB |
141 | xer_ca = 0; |
142 | } else { | |
143 | xer_ca = 1; | |
144 | } | |
fdabc366 | 145 | } |
d9bce9d9 | 146 | #endif |
fdabc366 FB |
147 | |
148 | void do_addmeo (void) | |
149 | { | |
150 | T1 = T0; | |
151 | T0 += xer_ca + (-1); | |
c3e10c7b JM |
152 | xer_ov = ((uint32_t)T1 & ((uint32_t)T1 ^ (uint32_t)T0)) >> 31; |
153 | xer_so |= xer_ov; | |
fdabc366 FB |
154 | if (likely(T1 != 0)) |
155 | xer_ca = 1; | |
c3e10c7b JM |
156 | else |
157 | xer_ca = 0; | |
fdabc366 FB |
158 | } |
159 | ||
d9bce9d9 JM |
160 | #if defined(TARGET_PPC64) |
161 | void do_addmeo_64 (void) | |
fdabc366 FB |
162 | { |
163 | T1 = T0; | |
d9bce9d9 | 164 | T0 += xer_ca + (-1); |
c3e10c7b JM |
165 | xer_ov = ((uint64_t)T1 & ((uint64_t)T1 ^ (uint64_t)T0)) >> 63; |
166 | xer_so |= xer_ov; | |
d9bce9d9 | 167 | if (likely(T1 != 0)) |
fdabc366 | 168 | xer_ca = 1; |
c3e10c7b JM |
169 | else |
170 | xer_ca = 0; | |
fdabc366 | 171 | } |
d9bce9d9 | 172 | #endif |
fdabc366 FB |
173 | |
174 | void do_divwo (void) | |
175 | { | |
6f2d8978 | 176 | if (likely(!(((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) || |
d9bce9d9 | 177 | (int32_t)T1 == 0))) { |
fdabc366 | 178 | xer_ov = 0; |
d9bce9d9 | 179 | T0 = (int32_t)T0 / (int32_t)T1; |
fdabc366 | 180 | } else { |
fdabc366 | 181 | xer_ov = 1; |
6f2d8978 | 182 | T0 = UINT32_MAX * ((uint32_t)T0 >> 31); |
fdabc366 | 183 | } |
6f2d8978 | 184 | xer_so |= xer_ov; |
fdabc366 FB |
185 | } |
186 | ||
d9bce9d9 JM |
187 | #if defined(TARGET_PPC64) |
188 | void do_divdo (void) | |
189 | { | |
6f2d8978 | 190 | if (likely(!(((int64_t)T0 == INT64_MIN && (int64_t)T1 == (int64_t)-1LL) || |
d9bce9d9 JM |
191 | (int64_t)T1 == 0))) { |
192 | xer_ov = 0; | |
193 | T0 = (int64_t)T0 / (int64_t)T1; | |
194 | } else { | |
d9bce9d9 | 195 | xer_ov = 1; |
6f2d8978 | 196 | T0 = UINT64_MAX * ((uint64_t)T0 >> 63); |
d9bce9d9 | 197 | } |
6f2d8978 | 198 | xer_so |= xer_ov; |
d9bce9d9 JM |
199 | } |
200 | #endif | |
201 | ||
fdabc366 FB |
202 | void do_divwuo (void) |
203 | { | |
204 | if (likely((uint32_t)T1 != 0)) { | |
205 | xer_ov = 0; | |
206 | T0 = (uint32_t)T0 / (uint32_t)T1; | |
207 | } else { | |
fdabc366 | 208 | xer_ov = 1; |
966439a6 | 209 | xer_so = 1; |
fdabc366 FB |
210 | T0 = 0; |
211 | } | |
212 | } | |
213 | ||
d9bce9d9 JM |
214 | #if defined(TARGET_PPC64) |
215 | void do_divduo (void) | |
216 | { | |
217 | if (likely((uint64_t)T1 != 0)) { | |
218 | xer_ov = 0; | |
219 | T0 = (uint64_t)T0 / (uint64_t)T1; | |
220 | } else { | |
d9bce9d9 | 221 | xer_ov = 1; |
966439a6 | 222 | xer_so = 1; |
d9bce9d9 JM |
223 | T0 = 0; |
224 | } | |
225 | } | |
226 | #endif | |
227 | ||
fdabc366 FB |
228 | void do_mullwo (void) |
229 | { | |
d9bce9d9 | 230 | int64_t res = (int64_t)T0 * (int64_t)T1; |
fdabc366 FB |
231 | |
232 | if (likely((int32_t)res == res)) { | |
233 | xer_ov = 0; | |
234 | } else { | |
235 | xer_ov = 1; | |
236 | xer_so = 1; | |
237 | } | |
238 | T0 = (int32_t)res; | |
239 | } | |
240 | ||
d9bce9d9 JM |
241 | #if defined(TARGET_PPC64) |
242 | void do_mulldo (void) | |
fdabc366 | 243 | { |
d9bce9d9 JM |
244 | int64_t th; |
245 | uint64_t tl; | |
246 | ||
9d901a20 | 247 | muls64(&tl, &th, T0, T1); |
6f2d8978 | 248 | T0 = (int64_t)tl; |
88ad920b | 249 | /* If th != 0 && th != -1, then we had an overflow */ |
6f2d8978 | 250 | if (likely((uint64_t)(th + 1) <= 1)) { |
fdabc366 | 251 | xer_ov = 0; |
fdabc366 FB |
252 | } else { |
253 | xer_ov = 1; | |
fdabc366 | 254 | } |
6f2d8978 | 255 | xer_so |= xer_ov; |
fdabc366 | 256 | } |
d9bce9d9 | 257 | #endif |
fdabc366 | 258 | |
d9bce9d9 | 259 | void do_nego (void) |
fdabc366 | 260 | { |
d9bce9d9 | 261 | if (likely((int32_t)T0 != INT32_MIN)) { |
fdabc366 | 262 | xer_ov = 0; |
d9bce9d9 | 263 | T0 = -(int32_t)T0; |
fdabc366 | 264 | } else { |
fdabc366 | 265 | xer_ov = 1; |
d9bce9d9 | 266 | xer_so = 1; |
fdabc366 | 267 | } |
fdabc366 FB |
268 | } |
269 | ||
d9bce9d9 JM |
270 | #if defined(TARGET_PPC64) |
271 | void do_nego_64 (void) | |
fdabc366 | 272 | { |
d9bce9d9 | 273 | if (likely((int64_t)T0 != INT64_MIN)) { |
fdabc366 | 274 | xer_ov = 0; |
d9bce9d9 | 275 | T0 = -(int64_t)T0; |
fdabc366 | 276 | } else { |
fdabc366 | 277 | xer_ov = 1; |
d9bce9d9 | 278 | xer_so = 1; |
fdabc366 FB |
279 | } |
280 | } | |
d9bce9d9 | 281 | #endif |
fdabc366 FB |
282 | |
283 | void do_subfe (void) | |
284 | { | |
285 | T0 = T1 + ~T0 + xer_ca; | |
d9bce9d9 JM |
286 | if (likely((uint32_t)T0 >= (uint32_t)T1 && |
287 | (xer_ca == 0 || (uint32_t)T0 != (uint32_t)T1))) { | |
fdabc366 FB |
288 | xer_ca = 0; |
289 | } else { | |
290 | xer_ca = 1; | |
291 | } | |
292 | } | |
293 | ||
d9bce9d9 JM |
294 | #if defined(TARGET_PPC64) |
295 | void do_subfe_64 (void) | |
fdabc366 | 296 | { |
fdabc366 | 297 | T0 = T1 + ~T0 + xer_ca; |
d9bce9d9 JM |
298 | if (likely((uint64_t)T0 >= (uint64_t)T1 && |
299 | (xer_ca == 0 || (uint64_t)T0 != (uint64_t)T1))) { | |
300 | xer_ca = 0; | |
301 | } else { | |
302 | xer_ca = 1; | |
303 | } | |
304 | } | |
305 | #endif | |
306 | ||
307 | void do_subfmeo (void) | |
308 | { | |
309 | T1 = T0; | |
310 | T0 = ~T0 + xer_ca - 1; | |
c3e10c7b JM |
311 | xer_ov = ((uint32_t)~T1 & ((uint32_t)~T1 ^ (uint32_t)T0)) >> 31; |
312 | xer_so |= xer_ov; | |
d9bce9d9 | 313 | if (likely((uint32_t)T1 != UINT32_MAX)) |
fdabc366 | 314 | xer_ca = 1; |
c3e10c7b JM |
315 | else |
316 | xer_ca = 0; | |
fdabc366 FB |
317 | } |
318 | ||
d9bce9d9 JM |
319 | #if defined(TARGET_PPC64) |
320 | void do_subfmeo_64 (void) | |
fdabc366 FB |
321 | { |
322 | T1 = T0; | |
323 | T0 = ~T0 + xer_ca - 1; | |
c3e10c7b JM |
324 | xer_ov = ((uint64_t)~T1 & ((uint64_t)~T1 ^ (uint64_t)T0)) >> 63; |
325 | xer_so |= xer_ov; | |
d9bce9d9 | 326 | if (likely((uint64_t)T1 != UINT64_MAX)) |
fdabc366 | 327 | xer_ca = 1; |
c3e10c7b JM |
328 | else |
329 | xer_ca = 0; | |
fdabc366 | 330 | } |
d9bce9d9 | 331 | #endif |
fdabc366 FB |
332 | |
333 | void do_subfzeo (void) | |
334 | { | |
335 | T1 = T0; | |
336 | T0 = ~T0 + xer_ca; | |
c3e10c7b JM |
337 | xer_ov = (((uint32_t)~T1 ^ UINT32_MAX) & |
338 | ((uint32_t)(~T1) ^ (uint32_t)T0)) >> 31; | |
339 | xer_so |= xer_ov; | |
d9bce9d9 | 340 | if (likely((uint32_t)T0 >= (uint32_t)~T1)) { |
fdabc366 FB |
341 | xer_ca = 0; |
342 | } else { | |
343 | xer_ca = 1; | |
344 | } | |
345 | } | |
346 | ||
d9bce9d9 JM |
347 | #if defined(TARGET_PPC64) |
348 | void do_subfzeo_64 (void) | |
349 | { | |
350 | T1 = T0; | |
351 | T0 = ~T0 + xer_ca; | |
c3e10c7b JM |
352 | xer_ov = (((uint64_t)~T1 ^ UINT64_MAX) & |
353 | ((uint64_t)(~T1) ^ (uint64_t)T0)) >> 63; | |
354 | xer_so |= xer_ov; | |
d9bce9d9 JM |
355 | if (likely((uint64_t)T0 >= (uint64_t)~T1)) { |
356 | xer_ca = 0; | |
357 | } else { | |
358 | xer_ca = 1; | |
359 | } | |
360 | } | |
361 | #endif | |
362 | ||
603fccce JM |
363 | void do_cntlzw (void) |
364 | { | |
365 | T0 = clz32(T0); | |
366 | } | |
367 | ||
368 | #if defined(TARGET_PPC64) | |
369 | void do_cntlzd (void) | |
370 | { | |
371 | T0 = clz64(T0); | |
372 | } | |
373 | #endif | |
374 | ||
9a64fbe4 FB |
375 | /* shift right arithmetic helper */ |
376 | void do_sraw (void) | |
377 | { | |
378 | int32_t ret; | |
379 | ||
fdabc366 | 380 | if (likely(!(T1 & 0x20UL))) { |
d9bce9d9 | 381 | if (likely((uint32_t)T1 != 0)) { |
fdabc366 FB |
382 | ret = (int32_t)T0 >> (T1 & 0x1fUL); |
383 | if (likely(ret >= 0 || ((int32_t)T0 & ((1 << T1) - 1)) == 0)) { | |
76a66253 | 384 | xer_ca = 0; |
fdabc366 | 385 | } else { |
76a66253 | 386 | xer_ca = 1; |
fdabc366 FB |
387 | } |
388 | } else { | |
76a66253 | 389 | ret = T0; |
fdabc366 FB |
390 | xer_ca = 0; |
391 | } | |
392 | } else { | |
6f2d8978 | 393 | ret = UINT32_MAX * ((uint32_t)T0 >> 31); |
fdabc366 FB |
394 | if (likely(ret >= 0 || ((uint32_t)T0 & ~0x80000000UL) == 0)) { |
395 | xer_ca = 0; | |
76a66253 | 396 | } else { |
9a64fbe4 | 397 | xer_ca = 1; |
76a66253 | 398 | } |
fdabc366 | 399 | } |
4b3686fa | 400 | T0 = ret; |
9a64fbe4 FB |
401 | } |
402 | ||
d9bce9d9 JM |
403 | #if defined(TARGET_PPC64) |
404 | void do_srad (void) | |
405 | { | |
406 | int64_t ret; | |
407 | ||
408 | if (likely(!(T1 & 0x40UL))) { | |
409 | if (likely((uint64_t)T1 != 0)) { | |
410 | ret = (int64_t)T0 >> (T1 & 0x3FUL); | |
411 | if (likely(ret >= 0 || ((int64_t)T0 & ((1 << T1) - 1)) == 0)) { | |
412 | xer_ca = 0; | |
413 | } else { | |
414 | xer_ca = 1; | |
415 | } | |
416 | } else { | |
417 | ret = T0; | |
418 | xer_ca = 0; | |
419 | } | |
420 | } else { | |
6f2d8978 | 421 | ret = UINT64_MAX * ((uint64_t)T0 >> 63); |
d9bce9d9 JM |
422 | if (likely(ret >= 0 || ((uint64_t)T0 & ~0x8000000000000000ULL) == 0)) { |
423 | xer_ca = 0; | |
424 | } else { | |
425 | xer_ca = 1; | |
426 | } | |
427 | } | |
428 | T0 = ret; | |
429 | } | |
430 | #endif | |
431 | ||
61c04807 | 432 | target_ulong do_popcntb (target_ulong t0) |
d9bce9d9 JM |
433 | { |
434 | uint32_t ret; | |
435 | int i; | |
436 | ||
437 | ret = 0; | |
438 | for (i = 0; i < 32; i += 8) | |
61c04807 AJ |
439 | ret |= ctpop8((t0 >> i) & 0xFF) << i; |
440 | return ret; | |
d9bce9d9 JM |
441 | } |
442 | ||
443 | #if defined(TARGET_PPC64) | |
61c04807 | 444 | target_ulong do_popcntb_64 (target_ulong t0) |
d9bce9d9 JM |
445 | { |
446 | uint64_t ret; | |
447 | int i; | |
448 | ||
449 | ret = 0; | |
450 | for (i = 0; i < 64; i += 8) | |
61c04807 AJ |
451 | ret |= ctpop8((t0 >> i) & 0xFF) << i; |
452 | return ret; | |
d9bce9d9 JM |
453 | } |
454 | #endif | |
455 | ||
fdabc366 | 456 | /*****************************************************************************/ |
9a64fbe4 | 457 | /* Floating point operations helpers */ |
0ca9d380 | 458 | static always_inline int fpisneg (float64 d) |
7c58044c | 459 | { |
0ca9d380 | 460 | CPU_DoubleU u; |
7c58044c | 461 | |
0ca9d380 | 462 | u.d = d; |
7c58044c | 463 | |
0ca9d380 | 464 | return u.ll >> 63 != 0; |
7c58044c JM |
465 | } |
466 | ||
0ca9d380 | 467 | static always_inline int isden (float64 d) |
7c58044c | 468 | { |
0ca9d380 | 469 | CPU_DoubleU u; |
7c58044c | 470 | |
0ca9d380 | 471 | u.d = d; |
7c58044c | 472 | |
0ca9d380 | 473 | return ((u.ll >> 52) & 0x7FF) == 0; |
7c58044c JM |
474 | } |
475 | ||
0ca9d380 | 476 | static always_inline int iszero (float64 d) |
7c58044c | 477 | { |
0ca9d380 | 478 | CPU_DoubleU u; |
7c58044c | 479 | |
0ca9d380 | 480 | u.d = d; |
7c58044c | 481 | |
0ca9d380 | 482 | return (u.ll & ~0x8000000000000000ULL) == 0; |
7c58044c JM |
483 | } |
484 | ||
0ca9d380 | 485 | static always_inline int isinfinity (float64 d) |
7c58044c | 486 | { |
0ca9d380 | 487 | CPU_DoubleU u; |
7c58044c | 488 | |
0ca9d380 | 489 | u.d = d; |
7c58044c | 490 | |
0ca9d380 AJ |
491 | return ((u.ll >> 52) & 0x7FF) == 0x7FF && |
492 | (u.ll & 0x000FFFFFFFFFFFFFULL) == 0; | |
7c58044c JM |
493 | } |
494 | ||
80621676 AJ |
495 | #ifdef CONFIG_SOFTFLOAT |
496 | static always_inline int isfinite (float64 d) | |
497 | { | |
498 | CPU_DoubleU u; | |
499 | ||
500 | u.d = d; | |
501 | ||
502 | return (((u.ll >> 52) & 0x7FF) != 0x7FF); | |
503 | } | |
504 | ||
505 | static always_inline int isnormal (float64 d) | |
506 | { | |
507 | CPU_DoubleU u; | |
508 | ||
509 | u.d = d; | |
510 | ||
511 | uint32_t exp = (u.ll >> 52) & 0x7FF; | |
512 | return ((0 < exp) && (exp < 0x7FF)); | |
513 | } | |
514 | #endif | |
515 | ||
7c58044c JM |
516 | void do_compute_fprf (int set_fprf) |
517 | { | |
518 | int isneg; | |
519 | ||
520 | isneg = fpisneg(FT0); | |
521 | if (unlikely(float64_is_nan(FT0))) { | |
522 | if (float64_is_signaling_nan(FT0)) { | |
523 | /* Signaling NaN: flags are undefined */ | |
524 | T0 = 0x00; | |
525 | } else { | |
526 | /* Quiet NaN */ | |
527 | T0 = 0x11; | |
528 | } | |
529 | } else if (unlikely(isinfinity(FT0))) { | |
530 | /* +/- infinity */ | |
531 | if (isneg) | |
532 | T0 = 0x09; | |
533 | else | |
534 | T0 = 0x05; | |
535 | } else { | |
536 | if (iszero(FT0)) { | |
537 | /* +/- zero */ | |
538 | if (isneg) | |
539 | T0 = 0x12; | |
540 | else | |
541 | T0 = 0x02; | |
542 | } else { | |
543 | if (isden(FT0)) { | |
544 | /* Denormalized numbers */ | |
545 | T0 = 0x10; | |
546 | } else { | |
547 | /* Normalized numbers */ | |
548 | T0 = 0x00; | |
549 | } | |
550 | if (isneg) { | |
551 | T0 |= 0x08; | |
552 | } else { | |
553 | T0 |= 0x04; | |
554 | } | |
555 | } | |
556 | } | |
557 | if (set_fprf) { | |
558 | /* We update FPSCR_FPRF */ | |
559 | env->fpscr &= ~(0x1F << FPSCR_FPRF); | |
560 | env->fpscr |= T0 << FPSCR_FPRF; | |
561 | } | |
562 | /* We just need fpcc to update Rc1 */ | |
563 | T0 &= 0xF; | |
564 | } | |
565 | ||
566 | /* Floating-point invalid operations exception */ | |
567 | static always_inline void fload_invalid_op_excp (int op) | |
568 | { | |
569 | int ve; | |
570 | ||
571 | ve = fpscr_ve; | |
572 | if (op & POWERPC_EXCP_FP_VXSNAN) { | |
573 | /* Operation on signaling NaN */ | |
574 | env->fpscr |= 1 << FPSCR_VXSNAN; | |
575 | } | |
576 | if (op & POWERPC_EXCP_FP_VXSOFT) { | |
577 | /* Software-defined condition */ | |
578 | env->fpscr |= 1 << FPSCR_VXSOFT; | |
579 | } | |
580 | switch (op & ~(POWERPC_EXCP_FP_VXSOFT | POWERPC_EXCP_FP_VXSNAN)) { | |
581 | case POWERPC_EXCP_FP_VXISI: | |
582 | /* Magnitude subtraction of infinities */ | |
583 | env->fpscr |= 1 << FPSCR_VXISI; | |
584 | goto update_arith; | |
585 | case POWERPC_EXCP_FP_VXIDI: | |
586 | /* Division of infinity by infinity */ | |
587 | env->fpscr |= 1 << FPSCR_VXIDI; | |
588 | goto update_arith; | |
589 | case POWERPC_EXCP_FP_VXZDZ: | |
590 | /* Division of zero by zero */ | |
591 | env->fpscr |= 1 << FPSCR_VXZDZ; | |
592 | goto update_arith; | |
593 | case POWERPC_EXCP_FP_VXIMZ: | |
594 | /* Multiplication of zero by infinity */ | |
595 | env->fpscr |= 1 << FPSCR_VXIMZ; | |
596 | goto update_arith; | |
597 | case POWERPC_EXCP_FP_VXVC: | |
598 | /* Ordered comparison of NaN */ | |
599 | env->fpscr |= 1 << FPSCR_VXVC; | |
600 | env->fpscr &= ~(0xF << FPSCR_FPCC); | |
601 | env->fpscr |= 0x11 << FPSCR_FPCC; | |
602 | /* We must update the target FPR before raising the exception */ | |
603 | if (ve != 0) { | |
604 | env->exception_index = POWERPC_EXCP_PROGRAM; | |
605 | env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC; | |
606 | /* Update the floating-point enabled exception summary */ | |
607 | env->fpscr |= 1 << FPSCR_FEX; | |
608 | /* Exception is differed */ | |
609 | ve = 0; | |
610 | } | |
611 | break; | |
612 | case POWERPC_EXCP_FP_VXSQRT: | |
613 | /* Square root of a negative number */ | |
614 | env->fpscr |= 1 << FPSCR_VXSQRT; | |
615 | update_arith: | |
616 | env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI)); | |
617 | if (ve == 0) { | |
618 | /* Set the result to quiet NaN */ | |
6f2d8978 | 619 | FT0 = UINT64_MAX; |
7c58044c JM |
620 | env->fpscr &= ~(0xF << FPSCR_FPCC); |
621 | env->fpscr |= 0x11 << FPSCR_FPCC; | |
622 | } | |
623 | break; | |
624 | case POWERPC_EXCP_FP_VXCVI: | |
625 | /* Invalid conversion */ | |
626 | env->fpscr |= 1 << FPSCR_VXCVI; | |
627 | env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI)); | |
628 | if (ve == 0) { | |
629 | /* Set the result to quiet NaN */ | |
6f2d8978 | 630 | FT0 = UINT64_MAX; |
7c58044c JM |
631 | env->fpscr &= ~(0xF << FPSCR_FPCC); |
632 | env->fpscr |= 0x11 << FPSCR_FPCC; | |
633 | } | |
634 | break; | |
635 | } | |
636 | /* Update the floating-point invalid operation summary */ | |
637 | env->fpscr |= 1 << FPSCR_VX; | |
638 | /* Update the floating-point exception summary */ | |
639 | env->fpscr |= 1 << FPSCR_FX; | |
640 | if (ve != 0) { | |
641 | /* Update the floating-point enabled exception summary */ | |
642 | env->fpscr |= 1 << FPSCR_FEX; | |
643 | if (msr_fe0 != 0 || msr_fe1 != 0) | |
644 | do_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_FP | op); | |
645 | } | |
646 | } | |
647 | ||
648 | static always_inline void float_zero_divide_excp (void) | |
649 | { | |
0ca9d380 | 650 | CPU_DoubleU u0, u1; |
7c58044c JM |
651 | |
652 | env->fpscr |= 1 << FPSCR_ZX; | |
653 | env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI)); | |
654 | /* Update the floating-point exception summary */ | |
655 | env->fpscr |= 1 << FPSCR_FX; | |
656 | if (fpscr_ze != 0) { | |
657 | /* Update the floating-point enabled exception summary */ | |
658 | env->fpscr |= 1 << FPSCR_FEX; | |
659 | if (msr_fe0 != 0 || msr_fe1 != 0) { | |
660 | do_raise_exception_err(POWERPC_EXCP_PROGRAM, | |
661 | POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX); | |
662 | } | |
663 | } else { | |
664 | /* Set the result to infinity */ | |
0ca9d380 AJ |
665 | u0.d = FT0; |
666 | u1.d = FT1; | |
667 | u0.ll = ((u0.ll ^ u1.ll) & 0x8000000000000000ULL); | |
668 | u0.ll |= 0x7FFULL << 52; | |
669 | FT0 = u0.d; | |
7c58044c JM |
670 | } |
671 | } | |
672 | ||
673 | static always_inline void float_overflow_excp (void) | |
674 | { | |
675 | env->fpscr |= 1 << FPSCR_OX; | |
676 | /* Update the floating-point exception summary */ | |
677 | env->fpscr |= 1 << FPSCR_FX; | |
678 | if (fpscr_oe != 0) { | |
679 | /* XXX: should adjust the result */ | |
680 | /* Update the floating-point enabled exception summary */ | |
681 | env->fpscr |= 1 << FPSCR_FEX; | |
682 | /* We must update the target FPR before raising the exception */ | |
683 | env->exception_index = POWERPC_EXCP_PROGRAM; | |
684 | env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX; | |
685 | } else { | |
686 | env->fpscr |= 1 << FPSCR_XX; | |
687 | env->fpscr |= 1 << FPSCR_FI; | |
688 | } | |
689 | } | |
690 | ||
691 | static always_inline void float_underflow_excp (void) | |
692 | { | |
693 | env->fpscr |= 1 << FPSCR_UX; | |
694 | /* Update the floating-point exception summary */ | |
695 | env->fpscr |= 1 << FPSCR_FX; | |
696 | if (fpscr_ue != 0) { | |
697 | /* XXX: should adjust the result */ | |
698 | /* Update the floating-point enabled exception summary */ | |
699 | env->fpscr |= 1 << FPSCR_FEX; | |
700 | /* We must update the target FPR before raising the exception */ | |
701 | env->exception_index = POWERPC_EXCP_PROGRAM; | |
702 | env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX; | |
703 | } | |
704 | } | |
705 | ||
706 | static always_inline void float_inexact_excp (void) | |
707 | { | |
708 | env->fpscr |= 1 << FPSCR_XX; | |
709 | /* Update the floating-point exception summary */ | |
710 | env->fpscr |= 1 << FPSCR_FX; | |
711 | if (fpscr_xe != 0) { | |
712 | /* Update the floating-point enabled exception summary */ | |
713 | env->fpscr |= 1 << FPSCR_FEX; | |
714 | /* We must update the target FPR before raising the exception */ | |
715 | env->exception_index = POWERPC_EXCP_PROGRAM; | |
716 | env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX; | |
717 | } | |
718 | } | |
719 | ||
720 | static always_inline void fpscr_set_rounding_mode (void) | |
721 | { | |
722 | int rnd_type; | |
723 | ||
724 | /* Set rounding mode */ | |
725 | switch (fpscr_rn) { | |
726 | case 0: | |
727 | /* Best approximation (round to nearest) */ | |
728 | rnd_type = float_round_nearest_even; | |
729 | break; | |
730 | case 1: | |
731 | /* Smaller magnitude (round toward zero) */ | |
732 | rnd_type = float_round_to_zero; | |
733 | break; | |
734 | case 2: | |
735 | /* Round toward +infinite */ | |
736 | rnd_type = float_round_up; | |
737 | break; | |
738 | default: | |
739 | case 3: | |
740 | /* Round toward -infinite */ | |
741 | rnd_type = float_round_down; | |
742 | break; | |
743 | } | |
744 | set_float_rounding_mode(rnd_type, &env->fp_status); | |
745 | } | |
746 | ||
747 | void do_fpscr_setbit (int bit) | |
748 | { | |
749 | int prev; | |
750 | ||
751 | prev = (env->fpscr >> bit) & 1; | |
752 | env->fpscr |= 1 << bit; | |
753 | if (prev == 0) { | |
754 | switch (bit) { | |
755 | case FPSCR_VX: | |
756 | env->fpscr |= 1 << FPSCR_FX; | |
757 | if (fpscr_ve) | |
758 | goto raise_ve; | |
759 | case FPSCR_OX: | |
760 | env->fpscr |= 1 << FPSCR_FX; | |
761 | if (fpscr_oe) | |
762 | goto raise_oe; | |
763 | break; | |
764 | case FPSCR_UX: | |
765 | env->fpscr |= 1 << FPSCR_FX; | |
766 | if (fpscr_ue) | |
767 | goto raise_ue; | |
768 | break; | |
769 | case FPSCR_ZX: | |
770 | env->fpscr |= 1 << FPSCR_FX; | |
771 | if (fpscr_ze) | |
772 | goto raise_ze; | |
773 | break; | |
774 | case FPSCR_XX: | |
775 | env->fpscr |= 1 << FPSCR_FX; | |
776 | if (fpscr_xe) | |
777 | goto raise_xe; | |
778 | break; | |
779 | case FPSCR_VXSNAN: | |
780 | case FPSCR_VXISI: | |
781 | case FPSCR_VXIDI: | |
782 | case FPSCR_VXZDZ: | |
783 | case FPSCR_VXIMZ: | |
784 | case FPSCR_VXVC: | |
785 | case FPSCR_VXSOFT: | |
786 | case FPSCR_VXSQRT: | |
787 | case FPSCR_VXCVI: | |
788 | env->fpscr |= 1 << FPSCR_VX; | |
789 | env->fpscr |= 1 << FPSCR_FX; | |
790 | if (fpscr_ve != 0) | |
791 | goto raise_ve; | |
792 | break; | |
793 | case FPSCR_VE: | |
794 | if (fpscr_vx != 0) { | |
795 | raise_ve: | |
796 | env->error_code = POWERPC_EXCP_FP; | |
797 | if (fpscr_vxsnan) | |
798 | env->error_code |= POWERPC_EXCP_FP_VXSNAN; | |
799 | if (fpscr_vxisi) | |
800 | env->error_code |= POWERPC_EXCP_FP_VXISI; | |
801 | if (fpscr_vxidi) | |
802 | env->error_code |= POWERPC_EXCP_FP_VXIDI; | |
803 | if (fpscr_vxzdz) | |
804 | env->error_code |= POWERPC_EXCP_FP_VXZDZ; | |
805 | if (fpscr_vximz) | |
806 | env->error_code |= POWERPC_EXCP_FP_VXIMZ; | |
807 | if (fpscr_vxvc) | |
808 | env->error_code |= POWERPC_EXCP_FP_VXVC; | |
809 | if (fpscr_vxsoft) | |
810 | env->error_code |= POWERPC_EXCP_FP_VXSOFT; | |
811 | if (fpscr_vxsqrt) | |
812 | env->error_code |= POWERPC_EXCP_FP_VXSQRT; | |
813 | if (fpscr_vxcvi) | |
814 | env->error_code |= POWERPC_EXCP_FP_VXCVI; | |
815 | goto raise_excp; | |
816 | } | |
817 | break; | |
818 | case FPSCR_OE: | |
819 | if (fpscr_ox != 0) { | |
820 | raise_oe: | |
821 | env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX; | |
822 | goto raise_excp; | |
823 | } | |
824 | break; | |
825 | case FPSCR_UE: | |
826 | if (fpscr_ux != 0) { | |
827 | raise_ue: | |
828 | env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX; | |
829 | goto raise_excp; | |
830 | } | |
831 | break; | |
832 | case FPSCR_ZE: | |
833 | if (fpscr_zx != 0) { | |
834 | raise_ze: | |
835 | env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX; | |
836 | goto raise_excp; | |
837 | } | |
838 | break; | |
839 | case FPSCR_XE: | |
840 | if (fpscr_xx != 0) { | |
841 | raise_xe: | |
842 | env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX; | |
843 | goto raise_excp; | |
844 | } | |
845 | break; | |
846 | case FPSCR_RN1: | |
847 | case FPSCR_RN: | |
848 | fpscr_set_rounding_mode(); | |
849 | break; | |
850 | default: | |
851 | break; | |
852 | raise_excp: | |
853 | /* Update the floating-point enabled exception summary */ | |
854 | env->fpscr |= 1 << FPSCR_FEX; | |
855 | /* We have to update Rc1 before raising the exception */ | |
856 | env->exception_index = POWERPC_EXCP_PROGRAM; | |
857 | break; | |
858 | } | |
859 | } | |
860 | } | |
861 | ||
862 | #if defined(WORDS_BIGENDIAN) | |
863 | #define WORD0 0 | |
864 | #define WORD1 1 | |
865 | #else | |
866 | #define WORD0 1 | |
867 | #define WORD1 0 | |
868 | #endif | |
869 | void do_store_fpscr (uint32_t mask) | |
870 | { | |
871 | /* | |
872 | * We use only the 32 LSB of the incoming fpr | |
873 | */ | |
0ca9d380 | 874 | CPU_DoubleU u; |
7c58044c JM |
875 | uint32_t prev, new; |
876 | int i; | |
877 | ||
878 | u.d = FT0; | |
879 | prev = env->fpscr; | |
0ca9d380 | 880 | new = u.l.lower; |
7c58044c JM |
881 | new &= ~0x90000000; |
882 | new |= prev & 0x90000000; | |
883 | for (i = 0; i < 7; i++) { | |
884 | if (mask & (1 << i)) { | |
885 | env->fpscr &= ~(0xF << (4 * i)); | |
886 | env->fpscr |= new & (0xF << (4 * i)); | |
887 | } | |
888 | } | |
889 | /* Update VX and FEX */ | |
890 | if (fpscr_ix != 0) | |
891 | env->fpscr |= 1 << FPSCR_VX; | |
5567025f AJ |
892 | else |
893 | env->fpscr &= ~(1 << FPSCR_VX); | |
7c58044c JM |
894 | if ((fpscr_ex & fpscr_eex) != 0) { |
895 | env->fpscr |= 1 << FPSCR_FEX; | |
896 | env->exception_index = POWERPC_EXCP_PROGRAM; | |
897 | /* XXX: we should compute it properly */ | |
898 | env->error_code = POWERPC_EXCP_FP; | |
899 | } | |
5567025f AJ |
900 | else |
901 | env->fpscr &= ~(1 << FPSCR_FEX); | |
7c58044c JM |
902 | fpscr_set_rounding_mode(); |
903 | } | |
904 | #undef WORD0 | |
905 | #undef WORD1 | |
906 | ||
907 | #ifdef CONFIG_SOFTFLOAT | |
908 | void do_float_check_status (void) | |
909 | { | |
910 | if (env->exception_index == POWERPC_EXCP_PROGRAM && | |
911 | (env->error_code & POWERPC_EXCP_FP)) { | |
912 | /* Differred floating-point exception after target FPR update */ | |
913 | if (msr_fe0 != 0 || msr_fe1 != 0) | |
914 | do_raise_exception_err(env->exception_index, env->error_code); | |
915 | } else if (env->fp_status.float_exception_flags & float_flag_overflow) { | |
916 | float_overflow_excp(); | |
917 | } else if (env->fp_status.float_exception_flags & float_flag_underflow) { | |
918 | float_underflow_excp(); | |
919 | } else if (env->fp_status.float_exception_flags & float_flag_inexact) { | |
920 | float_inexact_excp(); | |
921 | } | |
922 | } | |
923 | #endif | |
924 | ||
1cdb9c3d | 925 | #if USE_PRECISE_EMULATION |
7c58044c JM |
926 | void do_fadd (void) |
927 | { | |
928 | if (unlikely(float64_is_signaling_nan(FT0) || | |
929 | float64_is_signaling_nan(FT1))) { | |
930 | /* sNaN addition */ | |
931 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
932 | } else if (likely(isfinite(FT0) || isfinite(FT1) || | |
933 | fpisneg(FT0) == fpisneg(FT1))) { | |
934 | FT0 = float64_add(FT0, FT1, &env->fp_status); | |
935 | } else { | |
936 | /* Magnitude subtraction of infinities */ | |
937 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI); | |
938 | } | |
939 | } | |
940 | ||
941 | void do_fsub (void) | |
942 | { | |
943 | if (unlikely(float64_is_signaling_nan(FT0) || | |
944 | float64_is_signaling_nan(FT1))) { | |
945 | /* sNaN subtraction */ | |
946 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
947 | } else if (likely(isfinite(FT0) || isfinite(FT1) || | |
948 | fpisneg(FT0) != fpisneg(FT1))) { | |
949 | FT0 = float64_sub(FT0, FT1, &env->fp_status); | |
950 | } else { | |
951 | /* Magnitude subtraction of infinities */ | |
952 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI); | |
953 | } | |
954 | } | |
955 | ||
956 | void do_fmul (void) | |
957 | { | |
958 | if (unlikely(float64_is_signaling_nan(FT0) || | |
959 | float64_is_signaling_nan(FT1))) { | |
960 | /* sNaN multiplication */ | |
961 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
5bda2843 JM |
962 | } else if (unlikely((isinfinity(FT0) && iszero(FT1)) || |
963 | (iszero(FT0) && isinfinity(FT1)))) { | |
7c58044c JM |
964 | /* Multiplication of zero by infinity */ |
965 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ); | |
966 | } else { | |
967 | FT0 = float64_mul(FT0, FT1, &env->fp_status); | |
968 | } | |
969 | } | |
970 | ||
971 | void do_fdiv (void) | |
972 | { | |
973 | if (unlikely(float64_is_signaling_nan(FT0) || | |
974 | float64_is_signaling_nan(FT1))) { | |
975 | /* sNaN division */ | |
976 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
977 | } else if (unlikely(isinfinity(FT0) && isinfinity(FT1))) { | |
978 | /* Division of infinity by infinity */ | |
979 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXIDI); | |
980 | } else if (unlikely(iszero(FT1))) { | |
981 | if (iszero(FT0)) { | |
982 | /* Division of zero by zero */ | |
983 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXZDZ); | |
984 | } else { | |
985 | /* Division by zero */ | |
986 | float_zero_divide_excp(); | |
987 | } | |
988 | } else { | |
989 | FT0 = float64_div(FT0, FT1, &env->fp_status); | |
990 | } | |
991 | } | |
1cdb9c3d | 992 | #endif /* USE_PRECISE_EMULATION */ |
7c58044c | 993 | |
9a64fbe4 FB |
994 | void do_fctiw (void) |
995 | { | |
0ca9d380 | 996 | CPU_DoubleU p; |
9a64fbe4 | 997 | |
7c58044c JM |
998 | if (unlikely(float64_is_signaling_nan(FT0))) { |
999 | /* sNaN conversion */ | |
1000 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI); | |
1001 | } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) { | |
1002 | /* qNan / infinity conversion */ | |
1003 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI); | |
1004 | } else { | |
0ca9d380 | 1005 | p.ll = float64_to_int32(FT0, &env->fp_status); |
1cdb9c3d | 1006 | #if USE_PRECISE_EMULATION |
7c58044c JM |
1007 | /* XXX: higher bits are not supposed to be significant. |
1008 | * to make tests easier, return the same as a real PowerPC 750 | |
1009 | */ | |
0ca9d380 | 1010 | p.ll |= 0xFFF80000ULL << 32; |
e864cabd | 1011 | #endif |
7c58044c JM |
1012 | FT0 = p.d; |
1013 | } | |
9a64fbe4 FB |
1014 | } |
1015 | ||
1016 | void do_fctiwz (void) | |
1017 | { | |
0ca9d380 | 1018 | CPU_DoubleU p; |
4ecc3190 | 1019 | |
7c58044c JM |
1020 | if (unlikely(float64_is_signaling_nan(FT0))) { |
1021 | /* sNaN conversion */ | |
1022 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI); | |
1023 | } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) { | |
1024 | /* qNan / infinity conversion */ | |
1025 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI); | |
1026 | } else { | |
0ca9d380 | 1027 | p.ll = float64_to_int32_round_to_zero(FT0, &env->fp_status); |
1cdb9c3d | 1028 | #if USE_PRECISE_EMULATION |
7c58044c JM |
1029 | /* XXX: higher bits are not supposed to be significant. |
1030 | * to make tests easier, return the same as a real PowerPC 750 | |
1031 | */ | |
0ca9d380 | 1032 | p.ll |= 0xFFF80000ULL << 32; |
e864cabd | 1033 | #endif |
7c58044c JM |
1034 | FT0 = p.d; |
1035 | } | |
9a64fbe4 FB |
1036 | } |
1037 | ||
426613db JM |
1038 | #if defined(TARGET_PPC64) |
1039 | void do_fcfid (void) | |
1040 | { | |
0ca9d380 | 1041 | CPU_DoubleU p; |
426613db JM |
1042 | |
1043 | p.d = FT0; | |
0ca9d380 | 1044 | FT0 = int64_to_float64(p.ll, &env->fp_status); |
426613db JM |
1045 | } |
1046 | ||
1047 | void do_fctid (void) | |
1048 | { | |
0ca9d380 | 1049 | CPU_DoubleU p; |
426613db | 1050 | |
7c58044c JM |
1051 | if (unlikely(float64_is_signaling_nan(FT0))) { |
1052 | /* sNaN conversion */ | |
1053 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI); | |
1054 | } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) { | |
1055 | /* qNan / infinity conversion */ | |
1056 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI); | |
1057 | } else { | |
0ca9d380 | 1058 | p.ll = float64_to_int64(FT0, &env->fp_status); |
7c58044c JM |
1059 | FT0 = p.d; |
1060 | } | |
426613db JM |
1061 | } |
1062 | ||
1063 | void do_fctidz (void) | |
1064 | { | |
0ca9d380 | 1065 | CPU_DoubleU p; |
426613db | 1066 | |
7c58044c JM |
1067 | if (unlikely(float64_is_signaling_nan(FT0))) { |
1068 | /* sNaN conversion */ | |
1069 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI); | |
1070 | } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) { | |
1071 | /* qNan / infinity conversion */ | |
1072 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI); | |
1073 | } else { | |
0ca9d380 | 1074 | p.ll = float64_to_int64_round_to_zero(FT0, &env->fp_status); |
7c58044c JM |
1075 | FT0 = p.d; |
1076 | } | |
426613db JM |
1077 | } |
1078 | ||
1079 | #endif | |
1080 | ||
b068d6a7 | 1081 | static always_inline void do_fri (int rounding_mode) |
d7e4b87e | 1082 | { |
7c58044c JM |
1083 | if (unlikely(float64_is_signaling_nan(FT0))) { |
1084 | /* sNaN round */ | |
1085 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI); | |
1086 | } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) { | |
1087 | /* qNan / infinity round */ | |
1088 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI); | |
1089 | } else { | |
1090 | set_float_rounding_mode(rounding_mode, &env->fp_status); | |
1091 | FT0 = float64_round_to_int(FT0, &env->fp_status); | |
1092 | /* Restore rounding mode from FPSCR */ | |
1093 | fpscr_set_rounding_mode(); | |
1094 | } | |
d7e4b87e JM |
1095 | } |
1096 | ||
1097 | void do_frin (void) | |
1098 | { | |
1099 | do_fri(float_round_nearest_even); | |
1100 | } | |
1101 | ||
1102 | void do_friz (void) | |
1103 | { | |
1104 | do_fri(float_round_to_zero); | |
1105 | } | |
1106 | ||
1107 | void do_frip (void) | |
1108 | { | |
1109 | do_fri(float_round_up); | |
1110 | } | |
1111 | ||
1112 | void do_frim (void) | |
1113 | { | |
1114 | do_fri(float_round_down); | |
1115 | } | |
1116 | ||
1cdb9c3d | 1117 | #if USE_PRECISE_EMULATION |
e864cabd JM |
1118 | void do_fmadd (void) |
1119 | { | |
7c58044c JM |
1120 | if (unlikely(float64_is_signaling_nan(FT0) || |
1121 | float64_is_signaling_nan(FT1) || | |
1122 | float64_is_signaling_nan(FT2))) { | |
1123 | /* sNaN operation */ | |
1124 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1125 | } else { | |
e864cabd | 1126 | #ifdef FLOAT128 |
7c58044c JM |
1127 | /* This is the way the PowerPC specification defines it */ |
1128 | float128 ft0_128, ft1_128; | |
1129 | ||
1130 | ft0_128 = float64_to_float128(FT0, &env->fp_status); | |
1131 | ft1_128 = float64_to_float128(FT1, &env->fp_status); | |
1132 | ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status); | |
1133 | ft1_128 = float64_to_float128(FT2, &env->fp_status); | |
1134 | ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status); | |
1135 | FT0 = float128_to_float64(ft0_128, &env->fp_status); | |
e864cabd | 1136 | #else |
7c58044c JM |
1137 | /* This is OK on x86 hosts */ |
1138 | FT0 = (FT0 * FT1) + FT2; | |
e864cabd | 1139 | #endif |
7c58044c | 1140 | } |
e864cabd JM |
1141 | } |
1142 | ||
1143 | void do_fmsub (void) | |
1144 | { | |
7c58044c JM |
1145 | if (unlikely(float64_is_signaling_nan(FT0) || |
1146 | float64_is_signaling_nan(FT1) || | |
1147 | float64_is_signaling_nan(FT2))) { | |
1148 | /* sNaN operation */ | |
1149 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1150 | } else { | |
e864cabd | 1151 | #ifdef FLOAT128 |
7c58044c JM |
1152 | /* This is the way the PowerPC specification defines it */ |
1153 | float128 ft0_128, ft1_128; | |
1154 | ||
1155 | ft0_128 = float64_to_float128(FT0, &env->fp_status); | |
1156 | ft1_128 = float64_to_float128(FT1, &env->fp_status); | |
1157 | ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status); | |
1158 | ft1_128 = float64_to_float128(FT2, &env->fp_status); | |
1159 | ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status); | |
1160 | FT0 = float128_to_float64(ft0_128, &env->fp_status); | |
e864cabd | 1161 | #else |
7c58044c JM |
1162 | /* This is OK on x86 hosts */ |
1163 | FT0 = (FT0 * FT1) - FT2; | |
e864cabd | 1164 | #endif |
7c58044c | 1165 | } |
e864cabd | 1166 | } |
1cdb9c3d | 1167 | #endif /* USE_PRECISE_EMULATION */ |
e864cabd | 1168 | |
4b3686fa FB |
1169 | void do_fnmadd (void) |
1170 | { | |
7c58044c JM |
1171 | if (unlikely(float64_is_signaling_nan(FT0) || |
1172 | float64_is_signaling_nan(FT1) || | |
1173 | float64_is_signaling_nan(FT2))) { | |
1174 | /* sNaN operation */ | |
1175 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1176 | } else { | |
1cdb9c3d | 1177 | #if USE_PRECISE_EMULATION |
e864cabd | 1178 | #ifdef FLOAT128 |
7c58044c JM |
1179 | /* This is the way the PowerPC specification defines it */ |
1180 | float128 ft0_128, ft1_128; | |
1181 | ||
1182 | ft0_128 = float64_to_float128(FT0, &env->fp_status); | |
1183 | ft1_128 = float64_to_float128(FT1, &env->fp_status); | |
1184 | ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status); | |
1185 | ft1_128 = float64_to_float128(FT2, &env->fp_status); | |
1186 | ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status); | |
1187 | FT0 = float128_to_float64(ft0_128, &env->fp_status); | |
e864cabd | 1188 | #else |
7c58044c JM |
1189 | /* This is OK on x86 hosts */ |
1190 | FT0 = (FT0 * FT1) + FT2; | |
e864cabd JM |
1191 | #endif |
1192 | #else | |
7c58044c JM |
1193 | FT0 = float64_mul(FT0, FT1, &env->fp_status); |
1194 | FT0 = float64_add(FT0, FT2, &env->fp_status); | |
e864cabd | 1195 | #endif |
7c58044c JM |
1196 | if (likely(!isnan(FT0))) |
1197 | FT0 = float64_chs(FT0); | |
1198 | } | |
4b3686fa FB |
1199 | } |
1200 | ||
1201 | void do_fnmsub (void) | |
1202 | { | |
7c58044c JM |
1203 | if (unlikely(float64_is_signaling_nan(FT0) || |
1204 | float64_is_signaling_nan(FT1) || | |
1205 | float64_is_signaling_nan(FT2))) { | |
1206 | /* sNaN operation */ | |
1207 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1208 | } else { | |
1cdb9c3d | 1209 | #if USE_PRECISE_EMULATION |
e864cabd | 1210 | #ifdef FLOAT128 |
7c58044c JM |
1211 | /* This is the way the PowerPC specification defines it */ |
1212 | float128 ft0_128, ft1_128; | |
1213 | ||
1214 | ft0_128 = float64_to_float128(FT0, &env->fp_status); | |
1215 | ft1_128 = float64_to_float128(FT1, &env->fp_status); | |
1216 | ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status); | |
1217 | ft1_128 = float64_to_float128(FT2, &env->fp_status); | |
1218 | ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status); | |
1219 | FT0 = float128_to_float64(ft0_128, &env->fp_status); | |
e864cabd | 1220 | #else |
7c58044c JM |
1221 | /* This is OK on x86 hosts */ |
1222 | FT0 = (FT0 * FT1) - FT2; | |
e864cabd JM |
1223 | #endif |
1224 | #else | |
7c58044c JM |
1225 | FT0 = float64_mul(FT0, FT1, &env->fp_status); |
1226 | FT0 = float64_sub(FT0, FT2, &env->fp_status); | |
e864cabd | 1227 | #endif |
7c58044c JM |
1228 | if (likely(!isnan(FT0))) |
1229 | FT0 = float64_chs(FT0); | |
1230 | } | |
1ef59d0a FB |
1231 | } |
1232 | ||
1cdb9c3d | 1233 | #if USE_PRECISE_EMULATION |
7c58044c JM |
1234 | void do_frsp (void) |
1235 | { | |
1236 | if (unlikely(float64_is_signaling_nan(FT0))) { | |
1237 | /* sNaN square root */ | |
1238 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1239 | } else { | |
1240 | FT0 = float64_to_float32(FT0, &env->fp_status); | |
1241 | } | |
1242 | } | |
1cdb9c3d | 1243 | #endif /* USE_PRECISE_EMULATION */ |
7c58044c | 1244 | |
9a64fbe4 FB |
1245 | void do_fsqrt (void) |
1246 | { | |
7c58044c JM |
1247 | if (unlikely(float64_is_signaling_nan(FT0))) { |
1248 | /* sNaN square root */ | |
1249 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1250 | } else if (unlikely(fpisneg(FT0) && !iszero(FT0))) { | |
1251 | /* Square root of a negative nonzero number */ | |
1252 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT); | |
1253 | } else { | |
1254 | FT0 = float64_sqrt(FT0, &env->fp_status); | |
1255 | } | |
9a64fbe4 FB |
1256 | } |
1257 | ||
d7e4b87e JM |
1258 | void do_fre (void) |
1259 | { | |
0ca9d380 | 1260 | CPU_DoubleU p; |
d7e4b87e | 1261 | |
7c58044c JM |
1262 | if (unlikely(float64_is_signaling_nan(FT0))) { |
1263 | /* sNaN reciprocal */ | |
1264 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1265 | } else if (unlikely(iszero(FT0))) { | |
1266 | /* Zero reciprocal */ | |
1267 | float_zero_divide_excp(); | |
1268 | } else if (likely(isnormal(FT0))) { | |
d7e4b87e JM |
1269 | FT0 = float64_div(1.0, FT0, &env->fp_status); |
1270 | } else { | |
1271 | p.d = FT0; | |
0ca9d380 AJ |
1272 | if (p.ll == 0x8000000000000000ULL) { |
1273 | p.ll = 0xFFF0000000000000ULL; | |
1274 | } else if (p.ll == 0x0000000000000000ULL) { | |
1275 | p.ll = 0x7FF0000000000000ULL; | |
d7e4b87e | 1276 | } else if (isnan(FT0)) { |
0ca9d380 | 1277 | p.ll = 0x7FF8000000000000ULL; |
7c58044c | 1278 | } else if (fpisneg(FT0)) { |
0ca9d380 | 1279 | p.ll = 0x8000000000000000ULL; |
d7e4b87e | 1280 | } else { |
0ca9d380 | 1281 | p.ll = 0x0000000000000000ULL; |
d7e4b87e JM |
1282 | } |
1283 | FT0 = p.d; | |
1284 | } | |
1285 | } | |
1286 | ||
9a64fbe4 FB |
1287 | void do_fres (void) |
1288 | { | |
0ca9d380 | 1289 | CPU_DoubleU p; |
4ecc3190 | 1290 | |
7c58044c JM |
1291 | if (unlikely(float64_is_signaling_nan(FT0))) { |
1292 | /* sNaN reciprocal */ | |
1293 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1294 | } else if (unlikely(iszero(FT0))) { | |
1295 | /* Zero reciprocal */ | |
1296 | float_zero_divide_excp(); | |
1297 | } else if (likely(isnormal(FT0))) { | |
1cdb9c3d | 1298 | #if USE_PRECISE_EMULATION |
e864cabd JM |
1299 | FT0 = float64_div(1.0, FT0, &env->fp_status); |
1300 | FT0 = float64_to_float32(FT0, &env->fp_status); | |
1301 | #else | |
76a66253 | 1302 | FT0 = float32_div(1.0, FT0, &env->fp_status); |
e864cabd | 1303 | #endif |
4ecc3190 FB |
1304 | } else { |
1305 | p.d = FT0; | |
0ca9d380 AJ |
1306 | if (p.ll == 0x8000000000000000ULL) { |
1307 | p.ll = 0xFFF0000000000000ULL; | |
1308 | } else if (p.ll == 0x0000000000000000ULL) { | |
1309 | p.ll = 0x7FF0000000000000ULL; | |
4ecc3190 | 1310 | } else if (isnan(FT0)) { |
0ca9d380 | 1311 | p.ll = 0x7FF8000000000000ULL; |
7c58044c | 1312 | } else if (fpisneg(FT0)) { |
0ca9d380 | 1313 | p.ll = 0x8000000000000000ULL; |
4ecc3190 | 1314 | } else { |
0ca9d380 | 1315 | p.ll = 0x0000000000000000ULL; |
4ecc3190 FB |
1316 | } |
1317 | FT0 = p.d; | |
1318 | } | |
9a64fbe4 FB |
1319 | } |
1320 | ||
4ecc3190 | 1321 | void do_frsqrte (void) |
9a64fbe4 | 1322 | { |
0ca9d380 | 1323 | CPU_DoubleU p; |
4ecc3190 | 1324 | |
7c58044c JM |
1325 | if (unlikely(float64_is_signaling_nan(FT0))) { |
1326 | /* sNaN reciprocal square root */ | |
1327 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1328 | } else if (unlikely(fpisneg(FT0) && !iszero(FT0))) { | |
1329 | /* Reciprocal square root of a negative nonzero number */ | |
1330 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT); | |
1331 | } else if (likely(isnormal(FT0))) { | |
fdabc366 FB |
1332 | FT0 = float64_sqrt(FT0, &env->fp_status); |
1333 | FT0 = float32_div(1.0, FT0, &env->fp_status); | |
4ecc3190 FB |
1334 | } else { |
1335 | p.d = FT0; | |
0ca9d380 AJ |
1336 | if (p.ll == 0x8000000000000000ULL) { |
1337 | p.ll = 0xFFF0000000000000ULL; | |
1338 | } else if (p.ll == 0x0000000000000000ULL) { | |
1339 | p.ll = 0x7FF0000000000000ULL; | |
4ecc3190 | 1340 | } else if (isnan(FT0)) { |
0ca9d380 | 1341 | p.ll |= 0x000FFFFFFFFFFFFFULL; |
7c58044c | 1342 | } else if (fpisneg(FT0)) { |
0ca9d380 | 1343 | p.ll = 0x7FF8000000000000ULL; |
4ecc3190 | 1344 | } else { |
0ca9d380 | 1345 | p.ll = 0x0000000000000000ULL; |
4ecc3190 FB |
1346 | } |
1347 | FT0 = p.d; | |
1348 | } | |
9a64fbe4 FB |
1349 | } |
1350 | ||
1351 | void do_fsel (void) | |
1352 | { | |
7c58044c | 1353 | if (!fpisneg(FT0) || iszero(FT0)) |
9a64fbe4 | 1354 | FT0 = FT1; |
4ecc3190 FB |
1355 | else |
1356 | FT0 = FT2; | |
9a64fbe4 FB |
1357 | } |
1358 | ||
1359 | void do_fcmpu (void) | |
1360 | { | |
7c58044c JM |
1361 | if (unlikely(float64_is_signaling_nan(FT0) || |
1362 | float64_is_signaling_nan(FT1))) { | |
1363 | /* sNaN comparison */ | |
1364 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1365 | } else { | |
fdabc366 FB |
1366 | if (float64_lt(FT0, FT1, &env->fp_status)) { |
1367 | T0 = 0x08UL; | |
1368 | } else if (!float64_le(FT0, FT1, &env->fp_status)) { | |
1369 | T0 = 0x04UL; | |
1370 | } else { | |
1371 | T0 = 0x02UL; | |
1372 | } | |
9a64fbe4 | 1373 | } |
7c58044c JM |
1374 | env->fpscr &= ~(0x0F << FPSCR_FPRF); |
1375 | env->fpscr |= T0 << FPSCR_FPRF; | |
9a64fbe4 FB |
1376 | } |
1377 | ||
1378 | void do_fcmpo (void) | |
1379 | { | |
7c58044c JM |
1380 | if (unlikely(float64_is_nan(FT0) || |
1381 | float64_is_nan(FT1))) { | |
1382 | if (float64_is_signaling_nan(FT0) || | |
1383 | float64_is_signaling_nan(FT1)) { | |
1384 | /* sNaN comparison */ | |
1385 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | | |
1386 | POWERPC_EXCP_FP_VXVC); | |
1387 | } else { | |
1388 | /* qNaN comparison */ | |
1389 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXVC); | |
1390 | } | |
1391 | } else { | |
fdabc366 FB |
1392 | if (float64_lt(FT0, FT1, &env->fp_status)) { |
1393 | T0 = 0x08UL; | |
1394 | } else if (!float64_le(FT0, FT1, &env->fp_status)) { | |
1395 | T0 = 0x04UL; | |
1396 | } else { | |
1397 | T0 = 0x02UL; | |
1398 | } | |
9a64fbe4 | 1399 | } |
7c58044c JM |
1400 | env->fpscr &= ~(0x0F << FPSCR_FPRF); |
1401 | env->fpscr |= T0 << FPSCR_FPRF; | |
9a64fbe4 FB |
1402 | } |
1403 | ||
76a66253 | 1404 | #if !defined (CONFIG_USER_ONLY) |
6b80055d | 1405 | void cpu_dump_rfi (target_ulong RA, target_ulong msr); |
0411a972 | 1406 | |
61c04807 | 1407 | void do_store_msr (target_ulong t0) |
0411a972 | 1408 | { |
61c04807 AJ |
1409 | t0 = hreg_store_msr(env, t0, 0); |
1410 | if (t0 != 0) { | |
0411a972 | 1411 | env->interrupt_request |= CPU_INTERRUPT_EXITTB; |
61c04807 | 1412 | do_raise_exception(t0); |
0411a972 JM |
1413 | } |
1414 | } | |
1415 | ||
61c04807 AJ |
1416 | #if defined (TARGET_PPC64) |
1417 | void do_store_msr_32 (target_ulong t0) | |
1418 | { | |
1419 | t0 = (env->msr & ~0xFFFFFFFFULL) | (t0 & 0xFFFFFFFF); | |
1420 | do_store_msr(t0); | |
1421 | } | |
1422 | #endif | |
1423 | ||
0411a972 JM |
1424 | static always_inline void __do_rfi (target_ulong nip, target_ulong msr, |
1425 | target_ulong msrm, int keep_msrh) | |
9a64fbe4 | 1426 | { |
426613db | 1427 | #if defined(TARGET_PPC64) |
0411a972 JM |
1428 | if (msr & (1ULL << MSR_SF)) { |
1429 | nip = (uint64_t)nip; | |
1430 | msr &= (uint64_t)msrm; | |
a42bd6cc | 1431 | } else { |
0411a972 JM |
1432 | nip = (uint32_t)nip; |
1433 | msr = (uint32_t)(msr & msrm); | |
1434 | if (keep_msrh) | |
1435 | msr |= env->msr & ~((uint64_t)0xFFFFFFFF); | |
a42bd6cc | 1436 | } |
426613db | 1437 | #else |
0411a972 JM |
1438 | nip = (uint32_t)nip; |
1439 | msr &= (uint32_t)msrm; | |
426613db | 1440 | #endif |
0411a972 JM |
1441 | /* XXX: beware: this is false if VLE is supported */ |
1442 | env->nip = nip & ~((target_ulong)0x00000003); | |
a4f30719 | 1443 | hreg_store_msr(env, msr, 1); |
fdabc366 | 1444 | #if defined (DEBUG_OP) |
0411a972 | 1445 | cpu_dump_rfi(env->nip, env->msr); |
fdabc366 | 1446 | #endif |
0411a972 JM |
1447 | /* No need to raise an exception here, |
1448 | * as rfi is always the last insn of a TB | |
1449 | */ | |
fdabc366 | 1450 | env->interrupt_request |= CPU_INTERRUPT_EXITTB; |
9a64fbe4 | 1451 | } |
d9bce9d9 | 1452 | |
0411a972 JM |
1453 | void do_rfi (void) |
1454 | { | |
1455 | __do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1], | |
1456 | ~((target_ulong)0xFFFF0000), 1); | |
1457 | } | |
1458 | ||
d9bce9d9 | 1459 | #if defined(TARGET_PPC64) |
426613db JM |
1460 | void do_rfid (void) |
1461 | { | |
0411a972 JM |
1462 | __do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1], |
1463 | ~((target_ulong)0xFFFF0000), 0); | |
d9bce9d9 | 1464 | } |
7863667f | 1465 | |
be147d08 JM |
1466 | void do_hrfid (void) |
1467 | { | |
0411a972 JM |
1468 | __do_rfi(env->spr[SPR_HSRR0], env->spr[SPR_HSRR1], |
1469 | ~((target_ulong)0xFFFF0000), 0); | |
be147d08 JM |
1470 | } |
1471 | #endif | |
76a66253 | 1472 | #endif |
9a64fbe4 | 1473 | |
76a66253 | 1474 | void do_tw (int flags) |
9a64fbe4 | 1475 | { |
d9bce9d9 JM |
1476 | if (!likely(!(((int32_t)T0 < (int32_t)T1 && (flags & 0x10)) || |
1477 | ((int32_t)T0 > (int32_t)T1 && (flags & 0x08)) || | |
1478 | ((int32_t)T0 == (int32_t)T1 && (flags & 0x04)) || | |
1479 | ((uint32_t)T0 < (uint32_t)T1 && (flags & 0x02)) || | |
a42bd6cc | 1480 | ((uint32_t)T0 > (uint32_t)T1 && (flags & 0x01))))) { |
e1833e1f | 1481 | do_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP); |
a42bd6cc | 1482 | } |
9a64fbe4 FB |
1483 | } |
1484 | ||
d9bce9d9 JM |
1485 | #if defined(TARGET_PPC64) |
1486 | void do_td (int flags) | |
1487 | { | |
1488 | if (!likely(!(((int64_t)T0 < (int64_t)T1 && (flags & 0x10)) || | |
1489 | ((int64_t)T0 > (int64_t)T1 && (flags & 0x08)) || | |
1490 | ((int64_t)T0 == (int64_t)T1 && (flags & 0x04)) || | |
1491 | ((uint64_t)T0 < (uint64_t)T1 && (flags & 0x02)) || | |
1492 | ((uint64_t)T0 > (uint64_t)T1 && (flags & 0x01))))) | |
e1833e1f | 1493 | do_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP); |
d9bce9d9 JM |
1494 | } |
1495 | #endif | |
1496 | ||
fdabc366 | 1497 | /*****************************************************************************/ |
76a66253 JM |
1498 | /* PowerPC 601 specific instructions (POWER bridge) */ |
1499 | void do_POWER_abso (void) | |
9a64fbe4 | 1500 | { |
9c7e37e7 | 1501 | if ((int32_t)T0 == INT32_MIN) { |
76a66253 JM |
1502 | T0 = INT32_MAX; |
1503 | xer_ov = 1; | |
9c7e37e7 | 1504 | } else if ((int32_t)T0 < 0) { |
76a66253 JM |
1505 | T0 = -T0; |
1506 | xer_ov = 0; | |
9c7e37e7 JM |
1507 | } else { |
1508 | xer_ov = 0; | |
76a66253 | 1509 | } |
9c7e37e7 | 1510 | xer_so |= xer_ov; |
9a64fbe4 FB |
1511 | } |
1512 | ||
76a66253 | 1513 | void do_POWER_clcs (void) |
9a64fbe4 | 1514 | { |
76a66253 JM |
1515 | switch (T0) { |
1516 | case 0x0CUL: | |
1517 | /* Instruction cache line size */ | |
d63001d1 | 1518 | T0 = env->icache_line_size; |
76a66253 JM |
1519 | break; |
1520 | case 0x0DUL: | |
1521 | /* Data cache line size */ | |
d63001d1 | 1522 | T0 = env->dcache_line_size; |
76a66253 JM |
1523 | break; |
1524 | case 0x0EUL: | |
1525 | /* Minimum cache line size */ | |
d63001d1 JM |
1526 | T0 = env->icache_line_size < env->dcache_line_size ? |
1527 | env->icache_line_size : env->dcache_line_size; | |
76a66253 JM |
1528 | break; |
1529 | case 0x0FUL: | |
1530 | /* Maximum cache line size */ | |
d63001d1 JM |
1531 | T0 = env->icache_line_size > env->dcache_line_size ? |
1532 | env->icache_line_size : env->dcache_line_size; | |
76a66253 JM |
1533 | break; |
1534 | default: | |
1535 | /* Undefined */ | |
1536 | break; | |
1537 | } | |
1538 | } | |
1539 | ||
1540 | void do_POWER_div (void) | |
1541 | { | |
1542 | uint64_t tmp; | |
1543 | ||
6f2d8978 JM |
1544 | if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) || |
1545 | (int32_t)T1 == 0) { | |
1546 | T0 = UINT32_MAX * ((uint32_t)T0 >> 31); | |
76a66253 JM |
1547 | env->spr[SPR_MQ] = 0; |
1548 | } else { | |
1549 | tmp = ((uint64_t)T0 << 32) | env->spr[SPR_MQ]; | |
1550 | env->spr[SPR_MQ] = tmp % T1; | |
d9bce9d9 | 1551 | T0 = tmp / (int32_t)T1; |
76a66253 JM |
1552 | } |
1553 | } | |
1554 | ||
1555 | void do_POWER_divo (void) | |
1556 | { | |
1557 | int64_t tmp; | |
1558 | ||
6f2d8978 JM |
1559 | if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) || |
1560 | (int32_t)T1 == 0) { | |
1561 | T0 = UINT32_MAX * ((uint32_t)T0 >> 31); | |
76a66253 JM |
1562 | env->spr[SPR_MQ] = 0; |
1563 | xer_ov = 1; | |
76a66253 JM |
1564 | } else { |
1565 | tmp = ((uint64_t)T0 << 32) | env->spr[SPR_MQ]; | |
1566 | env->spr[SPR_MQ] = tmp % T1; | |
d9bce9d9 | 1567 | tmp /= (int32_t)T1; |
76a66253 JM |
1568 | if (tmp > (int64_t)INT32_MAX || tmp < (int64_t)INT32_MIN) { |
1569 | xer_ov = 1; | |
76a66253 JM |
1570 | } else { |
1571 | xer_ov = 0; | |
1572 | } | |
1573 | T0 = tmp; | |
1574 | } | |
6f2d8978 | 1575 | xer_so |= xer_ov; |
76a66253 JM |
1576 | } |
1577 | ||
1578 | void do_POWER_divs (void) | |
1579 | { | |
6f2d8978 JM |
1580 | if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) || |
1581 | (int32_t)T1 == 0) { | |
1582 | T0 = UINT32_MAX * ((uint32_t)T0 >> 31); | |
76a66253 JM |
1583 | env->spr[SPR_MQ] = 0; |
1584 | } else { | |
1585 | env->spr[SPR_MQ] = T0 % T1; | |
d9bce9d9 | 1586 | T0 = (int32_t)T0 / (int32_t)T1; |
76a66253 JM |
1587 | } |
1588 | } | |
1589 | ||
1590 | void do_POWER_divso (void) | |
1591 | { | |
6f2d8978 JM |
1592 | if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) || |
1593 | (int32_t)T1 == 0) { | |
1594 | T0 = UINT32_MAX * ((uint32_t)T0 >> 31); | |
76a66253 JM |
1595 | env->spr[SPR_MQ] = 0; |
1596 | xer_ov = 1; | |
76a66253 | 1597 | } else { |
d9bce9d9 JM |
1598 | T0 = (int32_t)T0 / (int32_t)T1; |
1599 | env->spr[SPR_MQ] = (int32_t)T0 % (int32_t)T1; | |
76a66253 JM |
1600 | xer_ov = 0; |
1601 | } | |
6f2d8978 | 1602 | xer_so |= xer_ov; |
76a66253 JM |
1603 | } |
1604 | ||
1605 | void do_POWER_dozo (void) | |
1606 | { | |
d9bce9d9 | 1607 | if ((int32_t)T1 > (int32_t)T0) { |
76a66253 JM |
1608 | T2 = T0; |
1609 | T0 = T1 - T0; | |
d9bce9d9 JM |
1610 | if (((uint32_t)(~T2) ^ (uint32_t)T1 ^ UINT32_MAX) & |
1611 | ((uint32_t)(~T2) ^ (uint32_t)T0) & (1UL << 31)) { | |
76a66253 | 1612 | xer_ov = 1; |
966439a6 | 1613 | xer_so = 1; |
76a66253 JM |
1614 | } else { |
1615 | xer_ov = 0; | |
1616 | } | |
1617 | } else { | |
1618 | T0 = 0; | |
1619 | xer_ov = 0; | |
1620 | } | |
1621 | } | |
1622 | ||
1623 | void do_POWER_maskg (void) | |
1624 | { | |
1625 | uint32_t ret; | |
1626 | ||
d9bce9d9 | 1627 | if ((uint32_t)T0 == (uint32_t)(T1 + 1)) { |
6f2d8978 | 1628 | ret = UINT32_MAX; |
76a66253 | 1629 | } else { |
6f2d8978 JM |
1630 | ret = (UINT32_MAX >> ((uint32_t)T0)) ^ |
1631 | ((UINT32_MAX >> ((uint32_t)T1)) >> 1); | |
d9bce9d9 | 1632 | if ((uint32_t)T0 > (uint32_t)T1) |
76a66253 JM |
1633 | ret = ~ret; |
1634 | } | |
1635 | T0 = ret; | |
1636 | } | |
1637 | ||
1638 | void do_POWER_mulo (void) | |
1639 | { | |
1640 | uint64_t tmp; | |
1641 | ||
1642 | tmp = (uint64_t)T0 * (uint64_t)T1; | |
1643 | env->spr[SPR_MQ] = tmp >> 32; | |
1644 | T0 = tmp; | |
1645 | if (tmp >> 32 != ((uint64_t)T0 >> 16) * ((uint64_t)T1 >> 16)) { | |
1646 | xer_ov = 1; | |
1647 | xer_so = 1; | |
1648 | } else { | |
1649 | xer_ov = 0; | |
1650 | } | |
1651 | } | |
1652 | ||
1653 | #if !defined (CONFIG_USER_ONLY) | |
1654 | void do_POWER_rac (void) | |
1655 | { | |
76a66253 | 1656 | mmu_ctx_t ctx; |
faadf50e | 1657 | int nb_BATs; |
76a66253 JM |
1658 | |
1659 | /* We don't have to generate many instances of this instruction, | |
1660 | * as rac is supervisor only. | |
1661 | */ | |
faadf50e JM |
1662 | /* XXX: FIX THIS: Pretend we have no BAT */ |
1663 | nb_BATs = env->nb_BATs; | |
1664 | env->nb_BATs = 0; | |
1665 | if (get_physical_address(env, &ctx, T0, 0, ACCESS_INT) == 0) | |
76a66253 | 1666 | T0 = ctx.raddr; |
faadf50e | 1667 | env->nb_BATs = nb_BATs; |
76a66253 JM |
1668 | } |
1669 | ||
1670 | void do_POWER_rfsvc (void) | |
1671 | { | |
0411a972 | 1672 | __do_rfi(env->lr, env->ctr, 0x0000FFFF, 0); |
76a66253 JM |
1673 | } |
1674 | ||
056401ea JM |
1675 | void do_store_hid0_601 (void) |
1676 | { | |
1677 | uint32_t hid0; | |
1678 | ||
1679 | hid0 = env->spr[SPR_HID0]; | |
1680 | if ((T0 ^ hid0) & 0x00000008) { | |
1681 | /* Change current endianness */ | |
1682 | env->hflags &= ~(1 << MSR_LE); | |
1683 | env->hflags_nmsr &= ~(1 << MSR_LE); | |
1684 | env->hflags_nmsr |= (1 << MSR_LE) & (((T0 >> 3) & 1) << MSR_LE); | |
1685 | env->hflags |= env->hflags_nmsr; | |
1686 | if (loglevel != 0) { | |
1687 | fprintf(logfile, "%s: set endianness to %c => " ADDRX "\n", | |
1688 | __func__, T0 & 0x8 ? 'l' : 'b', env->hflags); | |
1689 | } | |
1690 | } | |
1691 | env->spr[SPR_HID0] = T0; | |
76a66253 JM |
1692 | } |
1693 | #endif | |
1694 | ||
1695 | /*****************************************************************************/ | |
1696 | /* 602 specific instructions */ | |
1697 | /* mfrom is the most crazy instruction ever seen, imho ! */ | |
1698 | /* Real implementation uses a ROM table. Do the same */ | |
1699 | #define USE_MFROM_ROM_TABLE | |
1700 | void do_op_602_mfrom (void) | |
1701 | { | |
1702 | if (likely(T0 < 602)) { | |
d9bce9d9 | 1703 | #if defined(USE_MFROM_ROM_TABLE) |
76a66253 JM |
1704 | #include "mfrom_table.c" |
1705 | T0 = mfrom_ROM_table[T0]; | |
fdabc366 | 1706 | #else |
76a66253 JM |
1707 | double d; |
1708 | /* Extremly decomposed: | |
1709 | * -T0 / 256 | |
1710 | * T0 = 256 * log10(10 + 1.0) + 0.5 | |
1711 | */ | |
1712 | d = T0; | |
1713 | d = float64_div(d, 256, &env->fp_status); | |
1714 | d = float64_chs(d); | |
1715 | d = exp10(d); // XXX: use float emulation function | |
1716 | d = float64_add(d, 1.0, &env->fp_status); | |
1717 | d = log10(d); // XXX: use float emulation function | |
1718 | d = float64_mul(d, 256, &env->fp_status); | |
1719 | d = float64_add(d, 0.5, &env->fp_status); | |
1720 | T0 = float64_round_to_int(d, &env->fp_status); | |
fdabc366 | 1721 | #endif |
76a66253 JM |
1722 | } else { |
1723 | T0 = 0; | |
1724 | } | |
1725 | } | |
1726 | ||
1727 | /*****************************************************************************/ | |
1728 | /* Embedded PowerPC specific helpers */ | |
76a66253 JM |
1729 | void do_405_check_sat (void) |
1730 | { | |
d9bce9d9 JM |
1731 | if (!likely((((uint32_t)T1 ^ (uint32_t)T2) >> 31) || |
1732 | !(((uint32_t)T0 ^ (uint32_t)T2) >> 31))) { | |
76a66253 JM |
1733 | /* Saturate result */ |
1734 | if (T2 >> 31) { | |
1735 | T0 = INT32_MIN; | |
1736 | } else { | |
1737 | T0 = INT32_MAX; | |
1738 | } | |
1739 | } | |
1740 | } | |
1741 | ||
a750fc0b JM |
1742 | /* XXX: to be improved to check access rights when in user-mode */ |
1743 | void do_load_dcr (void) | |
1744 | { | |
1745 | target_ulong val; | |
1746 | ||
1747 | if (unlikely(env->dcr_env == NULL)) { | |
1748 | if (loglevel != 0) { | |
1749 | fprintf(logfile, "No DCR environment\n"); | |
1750 | } | |
e1833e1f JM |
1751 | do_raise_exception_err(POWERPC_EXCP_PROGRAM, |
1752 | POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL); | |
a750fc0b JM |
1753 | } else if (unlikely(ppc_dcr_read(env->dcr_env, T0, &val) != 0)) { |
1754 | if (loglevel != 0) { | |
1755 | fprintf(logfile, "DCR read error %d %03x\n", (int)T0, (int)T0); | |
1756 | } | |
e1833e1f JM |
1757 | do_raise_exception_err(POWERPC_EXCP_PROGRAM, |
1758 | POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG); | |
a750fc0b JM |
1759 | } else { |
1760 | T0 = val; | |
1761 | } | |
1762 | } | |
1763 | ||
1764 | void do_store_dcr (void) | |
1765 | { | |
1766 | if (unlikely(env->dcr_env == NULL)) { | |
1767 | if (loglevel != 0) { | |
1768 | fprintf(logfile, "No DCR environment\n"); | |
1769 | } | |
e1833e1f JM |
1770 | do_raise_exception_err(POWERPC_EXCP_PROGRAM, |
1771 | POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL); | |
a750fc0b JM |
1772 | } else if (unlikely(ppc_dcr_write(env->dcr_env, T0, T1) != 0)) { |
1773 | if (loglevel != 0) { | |
1774 | fprintf(logfile, "DCR write error %d %03x\n", (int)T0, (int)T0); | |
1775 | } | |
e1833e1f JM |
1776 | do_raise_exception_err(POWERPC_EXCP_PROGRAM, |
1777 | POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG); | |
a750fc0b JM |
1778 | } |
1779 | } | |
1780 | ||
76a66253 | 1781 | #if !defined(CONFIG_USER_ONLY) |
a42bd6cc | 1782 | void do_40x_rfci (void) |
76a66253 | 1783 | { |
0411a972 JM |
1784 | __do_rfi(env->spr[SPR_40x_SRR2], env->spr[SPR_40x_SRR3], |
1785 | ~((target_ulong)0xFFFF0000), 0); | |
a42bd6cc JM |
1786 | } |
1787 | ||
1788 | void do_rfci (void) | |
1789 | { | |
0411a972 JM |
1790 | __do_rfi(env->spr[SPR_BOOKE_CSRR0], SPR_BOOKE_CSRR1, |
1791 | ~((target_ulong)0x3FFF0000), 0); | |
a42bd6cc JM |
1792 | } |
1793 | ||
1794 | void do_rfdi (void) | |
1795 | { | |
0411a972 JM |
1796 | __do_rfi(env->spr[SPR_BOOKE_DSRR0], SPR_BOOKE_DSRR1, |
1797 | ~((target_ulong)0x3FFF0000), 0); | |
a42bd6cc JM |
1798 | } |
1799 | ||
1800 | void do_rfmci (void) | |
1801 | { | |
0411a972 JM |
1802 | __do_rfi(env->spr[SPR_BOOKE_MCSRR0], SPR_BOOKE_MCSRR1, |
1803 | ~((target_ulong)0x3FFF0000), 0); | |
76a66253 JM |
1804 | } |
1805 | ||
76a66253 JM |
1806 | void do_load_403_pb (int num) |
1807 | { | |
1808 | T0 = env->pb[num]; | |
1809 | } | |
1810 | ||
1811 | void do_store_403_pb (int num) | |
1812 | { | |
1813 | if (likely(env->pb[num] != T0)) { | |
1814 | env->pb[num] = T0; | |
1815 | /* Should be optimized */ | |
1816 | tlb_flush(env, 1); | |
1817 | } | |
1818 | } | |
1819 | #endif | |
1820 | ||
1821 | /* 440 specific */ | |
1822 | void do_440_dlmzb (void) | |
1823 | { | |
1824 | target_ulong mask; | |
1825 | int i; | |
1826 | ||
1827 | i = 1; | |
1828 | for (mask = 0xFF000000; mask != 0; mask = mask >> 8) { | |
1829 | if ((T0 & mask) == 0) | |
1830 | goto done; | |
1831 | i++; | |
1832 | } | |
1833 | for (mask = 0xFF000000; mask != 0; mask = mask >> 8) { | |
1834 | if ((T1 & mask) == 0) | |
1835 | break; | |
1836 | i++; | |
1837 | } | |
1838 | done: | |
1839 | T0 = i; | |
fdabc366 FB |
1840 | } |
1841 | ||
0487d6a8 JM |
1842 | /* SPE extension helpers */ |
1843 | /* Use a table to make this quicker */ | |
1844 | static uint8_t hbrev[16] = { | |
1845 | 0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE, | |
1846 | 0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF, | |
1847 | }; | |
1848 | ||
b068d6a7 | 1849 | static always_inline uint8_t byte_reverse (uint8_t val) |
0487d6a8 JM |
1850 | { |
1851 | return hbrev[val >> 4] | (hbrev[val & 0xF] << 4); | |
1852 | } | |
1853 | ||
b068d6a7 | 1854 | static always_inline uint32_t word_reverse (uint32_t val) |
0487d6a8 JM |
1855 | { |
1856 | return byte_reverse(val >> 24) | (byte_reverse(val >> 16) << 8) | | |
1857 | (byte_reverse(val >> 8) << 16) | (byte_reverse(val) << 24); | |
1858 | } | |
1859 | ||
3cd7d1dd | 1860 | #define MASKBITS 16 // Random value - to be fixed (implementation dependant) |
0487d6a8 JM |
1861 | void do_brinc (void) |
1862 | { | |
1863 | uint32_t a, b, d, mask; | |
1864 | ||
3cd7d1dd JM |
1865 | mask = UINT32_MAX >> (32 - MASKBITS); |
1866 | a = T0 & mask; | |
1867 | b = T1 & mask; | |
1868 | d = word_reverse(1 + word_reverse(a | ~b)); | |
1869 | T0 = (T0 & ~mask) | (d & b); | |
0487d6a8 JM |
1870 | } |
1871 | ||
1872 | #define DO_SPE_OP2(name) \ | |
1873 | void do_ev##name (void) \ | |
1874 | { \ | |
1875 | T0_64 = ((uint64_t)_do_e##name(T0_64 >> 32, T1_64 >> 32) << 32) | \ | |
1876 | (uint64_t)_do_e##name(T0_64, T1_64); \ | |
1877 | } | |
1878 | ||
1879 | #define DO_SPE_OP1(name) \ | |
1880 | void do_ev##name (void) \ | |
1881 | { \ | |
1882 | T0_64 = ((uint64_t)_do_e##name(T0_64 >> 32) << 32) | \ | |
1883 | (uint64_t)_do_e##name(T0_64); \ | |
1884 | } | |
1885 | ||
1886 | /* Fixed-point vector arithmetic */ | |
b068d6a7 | 1887 | static always_inline uint32_t _do_eabs (uint32_t val) |
0487d6a8 | 1888 | { |
9c7e37e7 JM |
1889 | if ((val & 0x80000000) && val != 0x80000000) |
1890 | val -= val; | |
0487d6a8 JM |
1891 | |
1892 | return val; | |
1893 | } | |
1894 | ||
b068d6a7 | 1895 | static always_inline uint32_t _do_eaddw (uint32_t op1, uint32_t op2) |
0487d6a8 JM |
1896 | { |
1897 | return op1 + op2; | |
1898 | } | |
1899 | ||
b068d6a7 | 1900 | static always_inline int _do_ecntlsw (uint32_t val) |
0487d6a8 JM |
1901 | { |
1902 | if (val & 0x80000000) | |
603fccce | 1903 | return clz32(~val); |
0487d6a8 | 1904 | else |
603fccce | 1905 | return clz32(val); |
0487d6a8 JM |
1906 | } |
1907 | ||
b068d6a7 | 1908 | static always_inline int _do_ecntlzw (uint32_t val) |
0487d6a8 | 1909 | { |
603fccce | 1910 | return clz32(val); |
0487d6a8 JM |
1911 | } |
1912 | ||
b068d6a7 | 1913 | static always_inline uint32_t _do_eneg (uint32_t val) |
0487d6a8 JM |
1914 | { |
1915 | if (val != 0x80000000) | |
9c7e37e7 | 1916 | val -= val; |
0487d6a8 JM |
1917 | |
1918 | return val; | |
1919 | } | |
1920 | ||
b068d6a7 | 1921 | static always_inline uint32_t _do_erlw (uint32_t op1, uint32_t op2) |
0487d6a8 JM |
1922 | { |
1923 | return rotl32(op1, op2); | |
1924 | } | |
1925 | ||
b068d6a7 | 1926 | static always_inline uint32_t _do_erndw (uint32_t val) |
0487d6a8 JM |
1927 | { |
1928 | return (val + 0x000080000000) & 0xFFFF0000; | |
1929 | } | |
1930 | ||
b068d6a7 | 1931 | static always_inline uint32_t _do_eslw (uint32_t op1, uint32_t op2) |
0487d6a8 JM |
1932 | { |
1933 | /* No error here: 6 bits are used */ | |
1934 | return op1 << (op2 & 0x3F); | |
1935 | } | |
1936 | ||
b068d6a7 | 1937 | static always_inline int32_t _do_esrws (int32_t op1, uint32_t op2) |
0487d6a8 JM |
1938 | { |
1939 | /* No error here: 6 bits are used */ | |
1940 | return op1 >> (op2 & 0x3F); | |
1941 | } | |
1942 | ||
b068d6a7 | 1943 | static always_inline uint32_t _do_esrwu (uint32_t op1, uint32_t op2) |
0487d6a8 JM |
1944 | { |
1945 | /* No error here: 6 bits are used */ | |
1946 | return op1 >> (op2 & 0x3F); | |
1947 | } | |
1948 | ||
b068d6a7 | 1949 | static always_inline uint32_t _do_esubfw (uint32_t op1, uint32_t op2) |
0487d6a8 JM |
1950 | { |
1951 | return op2 - op1; | |
1952 | } | |
1953 | ||
1954 | /* evabs */ | |
1955 | DO_SPE_OP1(abs); | |
1956 | /* evaddw */ | |
1957 | DO_SPE_OP2(addw); | |
1958 | /* evcntlsw */ | |
1959 | DO_SPE_OP1(cntlsw); | |
1960 | /* evcntlzw */ | |
1961 | DO_SPE_OP1(cntlzw); | |
1962 | /* evneg */ | |
1963 | DO_SPE_OP1(neg); | |
1964 | /* evrlw */ | |
1965 | DO_SPE_OP2(rlw); | |
1966 | /* evrnd */ | |
1967 | DO_SPE_OP1(rndw); | |
1968 | /* evslw */ | |
1969 | DO_SPE_OP2(slw); | |
1970 | /* evsrws */ | |
1971 | DO_SPE_OP2(srws); | |
1972 | /* evsrwu */ | |
1973 | DO_SPE_OP2(srwu); | |
1974 | /* evsubfw */ | |
1975 | DO_SPE_OP2(subfw); | |
1976 | ||
1977 | /* evsel is a little bit more complicated... */ | |
b068d6a7 | 1978 | static always_inline uint32_t _do_esel (uint32_t op1, uint32_t op2, int n) |
0487d6a8 JM |
1979 | { |
1980 | if (n) | |
1981 | return op1; | |
1982 | else | |
1983 | return op2; | |
1984 | } | |
1985 | ||
1986 | void do_evsel (void) | |
1987 | { | |
1988 | T0_64 = ((uint64_t)_do_esel(T0_64 >> 32, T1_64 >> 32, T0 >> 3) << 32) | | |
1989 | (uint64_t)_do_esel(T0_64, T1_64, (T0 >> 2) & 1); | |
1990 | } | |
1991 | ||
1992 | /* Fixed-point vector comparisons */ | |
1993 | #define DO_SPE_CMP(name) \ | |
1994 | void do_ev##name (void) \ | |
1995 | { \ | |
1996 | T0 = _do_evcmp_merge((uint64_t)_do_e##name(T0_64 >> 32, \ | |
1997 | T1_64 >> 32) << 32, \ | |
1998 | _do_e##name(T0_64, T1_64)); \ | |
1999 | } | |
2000 | ||
b068d6a7 | 2001 | static always_inline uint32_t _do_evcmp_merge (int t0, int t1) |
0487d6a8 JM |
2002 | { |
2003 | return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1); | |
2004 | } | |
b068d6a7 | 2005 | static always_inline int _do_ecmpeq (uint32_t op1, uint32_t op2) |
0487d6a8 JM |
2006 | { |
2007 | return op1 == op2 ? 1 : 0; | |
2008 | } | |
2009 | ||
b068d6a7 | 2010 | static always_inline int _do_ecmpgts (int32_t op1, int32_t op2) |
0487d6a8 JM |
2011 | { |
2012 | return op1 > op2 ? 1 : 0; | |
2013 | } | |
2014 | ||
b068d6a7 | 2015 | static always_inline int _do_ecmpgtu (uint32_t op1, uint32_t op2) |
0487d6a8 JM |
2016 | { |
2017 | return op1 > op2 ? 1 : 0; | |
2018 | } | |
2019 | ||
b068d6a7 | 2020 | static always_inline int _do_ecmplts (int32_t op1, int32_t op2) |
0487d6a8 JM |
2021 | { |
2022 | return op1 < op2 ? 1 : 0; | |
2023 | } | |
2024 | ||
b068d6a7 | 2025 | static always_inline int _do_ecmpltu (uint32_t op1, uint32_t op2) |
0487d6a8 JM |
2026 | { |
2027 | return op1 < op2 ? 1 : 0; | |
2028 | } | |
2029 | ||
2030 | /* evcmpeq */ | |
2031 | DO_SPE_CMP(cmpeq); | |
2032 | /* evcmpgts */ | |
2033 | DO_SPE_CMP(cmpgts); | |
2034 | /* evcmpgtu */ | |
2035 | DO_SPE_CMP(cmpgtu); | |
2036 | /* evcmplts */ | |
2037 | DO_SPE_CMP(cmplts); | |
2038 | /* evcmpltu */ | |
2039 | DO_SPE_CMP(cmpltu); | |
2040 | ||
2041 | /* Single precision floating-point conversions from/to integer */ | |
b068d6a7 | 2042 | static always_inline uint32_t _do_efscfsi (int32_t val) |
0487d6a8 | 2043 | { |
0ca9d380 | 2044 | CPU_FloatU u; |
0487d6a8 JM |
2045 | |
2046 | u.f = int32_to_float32(val, &env->spe_status); | |
2047 | ||
0ca9d380 | 2048 | return u.l; |
0487d6a8 JM |
2049 | } |
2050 | ||
b068d6a7 | 2051 | static always_inline uint32_t _do_efscfui (uint32_t val) |
0487d6a8 | 2052 | { |
0ca9d380 | 2053 | CPU_FloatU u; |
0487d6a8 JM |
2054 | |
2055 | u.f = uint32_to_float32(val, &env->spe_status); | |
2056 | ||
0ca9d380 | 2057 | return u.l; |
0487d6a8 JM |
2058 | } |
2059 | ||
b068d6a7 | 2060 | static always_inline int32_t _do_efsctsi (uint32_t val) |
0487d6a8 | 2061 | { |
0ca9d380 | 2062 | CPU_FloatU u; |
0487d6a8 | 2063 | |
0ca9d380 | 2064 | u.l = val; |
0487d6a8 JM |
2065 | /* NaN are not treated the same way IEEE 754 does */ |
2066 | if (unlikely(isnan(u.f))) | |
2067 | return 0; | |
2068 | ||
2069 | return float32_to_int32(u.f, &env->spe_status); | |
2070 | } | |
2071 | ||
b068d6a7 | 2072 | static always_inline uint32_t _do_efsctui (uint32_t val) |
0487d6a8 | 2073 | { |
0ca9d380 | 2074 | CPU_FloatU u; |
0487d6a8 | 2075 | |
0ca9d380 | 2076 | u.l = val; |
0487d6a8 JM |
2077 | /* NaN are not treated the same way IEEE 754 does */ |
2078 | if (unlikely(isnan(u.f))) | |
2079 | return 0; | |
2080 | ||
2081 | return float32_to_uint32(u.f, &env->spe_status); | |
2082 | } | |
2083 | ||
b068d6a7 | 2084 | static always_inline int32_t _do_efsctsiz (uint32_t val) |
0487d6a8 | 2085 | { |
0ca9d380 | 2086 | CPU_FloatU u; |
0487d6a8 | 2087 | |
0ca9d380 | 2088 | u.l = val; |
0487d6a8 JM |
2089 | /* NaN are not treated the same way IEEE 754 does */ |
2090 | if (unlikely(isnan(u.f))) | |
2091 | return 0; | |
2092 | ||
2093 | return float32_to_int32_round_to_zero(u.f, &env->spe_status); | |
2094 | } | |
2095 | ||
b068d6a7 | 2096 | static always_inline uint32_t _do_efsctuiz (uint32_t val) |
0487d6a8 | 2097 | { |
0ca9d380 | 2098 | CPU_FloatU u; |
0487d6a8 | 2099 | |
0ca9d380 | 2100 | u.l = val; |
0487d6a8 JM |
2101 | /* NaN are not treated the same way IEEE 754 does */ |
2102 | if (unlikely(isnan(u.f))) | |
2103 | return 0; | |
2104 | ||
2105 | return float32_to_uint32_round_to_zero(u.f, &env->spe_status); | |
2106 | } | |
2107 | ||
2108 | void do_efscfsi (void) | |
2109 | { | |
2110 | T0_64 = _do_efscfsi(T0_64); | |
2111 | } | |
2112 | ||
2113 | void do_efscfui (void) | |
2114 | { | |
2115 | T0_64 = _do_efscfui(T0_64); | |
2116 | } | |
2117 | ||
2118 | void do_efsctsi (void) | |
2119 | { | |
2120 | T0_64 = _do_efsctsi(T0_64); | |
2121 | } | |
2122 | ||
2123 | void do_efsctui (void) | |
2124 | { | |
2125 | T0_64 = _do_efsctui(T0_64); | |
2126 | } | |
2127 | ||
2128 | void do_efsctsiz (void) | |
2129 | { | |
2130 | T0_64 = _do_efsctsiz(T0_64); | |
2131 | } | |
2132 | ||
2133 | void do_efsctuiz (void) | |
2134 | { | |
2135 | T0_64 = _do_efsctuiz(T0_64); | |
2136 | } | |
2137 | ||
2138 | /* Single precision floating-point conversion to/from fractional */ | |
b068d6a7 | 2139 | static always_inline uint32_t _do_efscfsf (uint32_t val) |
0487d6a8 | 2140 | { |
0ca9d380 | 2141 | CPU_FloatU u; |
0487d6a8 JM |
2142 | float32 tmp; |
2143 | ||
2144 | u.f = int32_to_float32(val, &env->spe_status); | |
2145 | tmp = int64_to_float32(1ULL << 32, &env->spe_status); | |
2146 | u.f = float32_div(u.f, tmp, &env->spe_status); | |
2147 | ||
0ca9d380 | 2148 | return u.l; |
0487d6a8 JM |
2149 | } |
2150 | ||
b068d6a7 | 2151 | static always_inline uint32_t _do_efscfuf (uint32_t val) |
0487d6a8 | 2152 | { |
0ca9d380 | 2153 | CPU_FloatU u; |
0487d6a8 JM |
2154 | float32 tmp; |
2155 | ||
2156 | u.f = uint32_to_float32(val, &env->spe_status); | |
2157 | tmp = uint64_to_float32(1ULL << 32, &env->spe_status); | |
2158 | u.f = float32_div(u.f, tmp, &env->spe_status); | |
2159 | ||
0ca9d380 | 2160 | return u.l; |
0487d6a8 JM |
2161 | } |
2162 | ||
b068d6a7 | 2163 | static always_inline int32_t _do_efsctsf (uint32_t val) |
0487d6a8 | 2164 | { |
0ca9d380 | 2165 | CPU_FloatU u; |
0487d6a8 JM |
2166 | float32 tmp; |
2167 | ||
0ca9d380 | 2168 | u.l = val; |
0487d6a8 JM |
2169 | /* NaN are not treated the same way IEEE 754 does */ |
2170 | if (unlikely(isnan(u.f))) | |
2171 | return 0; | |
2172 | tmp = uint64_to_float32(1ULL << 32, &env->spe_status); | |
2173 | u.f = float32_mul(u.f, tmp, &env->spe_status); | |
2174 | ||
2175 | return float32_to_int32(u.f, &env->spe_status); | |
2176 | } | |
2177 | ||
b068d6a7 | 2178 | static always_inline uint32_t _do_efsctuf (uint32_t val) |
0487d6a8 | 2179 | { |
0ca9d380 | 2180 | CPU_FloatU u; |
0487d6a8 JM |
2181 | float32 tmp; |
2182 | ||
0ca9d380 | 2183 | u.l = val; |
0487d6a8 JM |
2184 | /* NaN are not treated the same way IEEE 754 does */ |
2185 | if (unlikely(isnan(u.f))) | |
2186 | return 0; | |
2187 | tmp = uint64_to_float32(1ULL << 32, &env->spe_status); | |
2188 | u.f = float32_mul(u.f, tmp, &env->spe_status); | |
2189 | ||
2190 | return float32_to_uint32(u.f, &env->spe_status); | |
2191 | } | |
2192 | ||
b068d6a7 | 2193 | static always_inline int32_t _do_efsctsfz (uint32_t val) |
0487d6a8 | 2194 | { |
0ca9d380 | 2195 | CPU_FloatU u; |
0487d6a8 JM |
2196 | float32 tmp; |
2197 | ||
0ca9d380 | 2198 | u.l = val; |
0487d6a8 JM |
2199 | /* NaN are not treated the same way IEEE 754 does */ |
2200 | if (unlikely(isnan(u.f))) | |
2201 | return 0; | |
2202 | tmp = uint64_to_float32(1ULL << 32, &env->spe_status); | |
2203 | u.f = float32_mul(u.f, tmp, &env->spe_status); | |
2204 | ||
2205 | return float32_to_int32_round_to_zero(u.f, &env->spe_status); | |
2206 | } | |
2207 | ||
b068d6a7 | 2208 | static always_inline uint32_t _do_efsctufz (uint32_t val) |
0487d6a8 | 2209 | { |
0ca9d380 | 2210 | CPU_FloatU u; |
0487d6a8 JM |
2211 | float32 tmp; |
2212 | ||
0ca9d380 | 2213 | u.l = val; |
0487d6a8 JM |
2214 | /* NaN are not treated the same way IEEE 754 does */ |
2215 | if (unlikely(isnan(u.f))) | |
2216 | return 0; | |
2217 | tmp = uint64_to_float32(1ULL << 32, &env->spe_status); | |
2218 | u.f = float32_mul(u.f, tmp, &env->spe_status); | |
2219 | ||
2220 | return float32_to_uint32_round_to_zero(u.f, &env->spe_status); | |
2221 | } | |
2222 | ||
2223 | void do_efscfsf (void) | |
2224 | { | |
2225 | T0_64 = _do_efscfsf(T0_64); | |
2226 | } | |
2227 | ||
2228 | void do_efscfuf (void) | |
2229 | { | |
2230 | T0_64 = _do_efscfuf(T0_64); | |
2231 | } | |
2232 | ||
2233 | void do_efsctsf (void) | |
2234 | { | |
2235 | T0_64 = _do_efsctsf(T0_64); | |
2236 | } | |
2237 | ||
2238 | void do_efsctuf (void) | |
2239 | { | |
2240 | T0_64 = _do_efsctuf(T0_64); | |
2241 | } | |
2242 | ||
2243 | void do_efsctsfz (void) | |
2244 | { | |
2245 | T0_64 = _do_efsctsfz(T0_64); | |
2246 | } | |
2247 | ||
2248 | void do_efsctufz (void) | |
2249 | { | |
2250 | T0_64 = _do_efsctufz(T0_64); | |
2251 | } | |
2252 | ||
2253 | /* Double precision floating point helpers */ | |
b068d6a7 | 2254 | static always_inline int _do_efdcmplt (uint64_t op1, uint64_t op2) |
0487d6a8 JM |
2255 | { |
2256 | /* XXX: TODO: test special values (NaN, infinites, ...) */ | |
2257 | return _do_efdtstlt(op1, op2); | |
2258 | } | |
2259 | ||
b068d6a7 | 2260 | static always_inline int _do_efdcmpgt (uint64_t op1, uint64_t op2) |
0487d6a8 JM |
2261 | { |
2262 | /* XXX: TODO: test special values (NaN, infinites, ...) */ | |
2263 | return _do_efdtstgt(op1, op2); | |
2264 | } | |
2265 | ||
b068d6a7 | 2266 | static always_inline int _do_efdcmpeq (uint64_t op1, uint64_t op2) |
0487d6a8 JM |
2267 | { |
2268 | /* XXX: TODO: test special values (NaN, infinites, ...) */ | |
2269 | return _do_efdtsteq(op1, op2); | |
2270 | } | |
2271 | ||
2272 | void do_efdcmplt (void) | |
2273 | { | |
2274 | T0 = _do_efdcmplt(T0_64, T1_64); | |
2275 | } | |
2276 | ||
2277 | void do_efdcmpgt (void) | |
2278 | { | |
2279 | T0 = _do_efdcmpgt(T0_64, T1_64); | |
2280 | } | |
2281 | ||
2282 | void do_efdcmpeq (void) | |
2283 | { | |
2284 | T0 = _do_efdcmpeq(T0_64, T1_64); | |
2285 | } | |
2286 | ||
2287 | /* Double precision floating-point conversion to/from integer */ | |
b068d6a7 | 2288 | static always_inline uint64_t _do_efdcfsi (int64_t val) |
0487d6a8 | 2289 | { |
0ca9d380 | 2290 | CPU_DoubleU u; |
0487d6a8 | 2291 | |
0ca9d380 | 2292 | u.d = int64_to_float64(val, &env->spe_status); |
0487d6a8 | 2293 | |
0ca9d380 | 2294 | return u.ll; |
0487d6a8 JM |
2295 | } |
2296 | ||
b068d6a7 | 2297 | static always_inline uint64_t _do_efdcfui (uint64_t val) |
0487d6a8 | 2298 | { |
0ca9d380 | 2299 | CPU_DoubleU u; |
0487d6a8 | 2300 | |
0ca9d380 | 2301 | u.d = uint64_to_float64(val, &env->spe_status); |
0487d6a8 | 2302 | |
0ca9d380 | 2303 | return u.ll; |
0487d6a8 JM |
2304 | } |
2305 | ||
b068d6a7 | 2306 | static always_inline int64_t _do_efdctsi (uint64_t val) |
0487d6a8 | 2307 | { |
0ca9d380 | 2308 | CPU_DoubleU u; |
0487d6a8 | 2309 | |
0ca9d380 | 2310 | u.ll = val; |
0487d6a8 | 2311 | /* NaN are not treated the same way IEEE 754 does */ |
0ca9d380 | 2312 | if (unlikely(isnan(u.d))) |
0487d6a8 JM |
2313 | return 0; |
2314 | ||
0ca9d380 | 2315 | return float64_to_int64(u.d, &env->spe_status); |
0487d6a8 JM |
2316 | } |
2317 | ||
b068d6a7 | 2318 | static always_inline uint64_t _do_efdctui (uint64_t val) |
0487d6a8 | 2319 | { |
0ca9d380 | 2320 | CPU_DoubleU u; |
0487d6a8 | 2321 | |
0ca9d380 | 2322 | u.ll = val; |
0487d6a8 | 2323 | /* NaN are not treated the same way IEEE 754 does */ |
0ca9d380 | 2324 | if (unlikely(isnan(u.d))) |
0487d6a8 JM |
2325 | return 0; |
2326 | ||
0ca9d380 | 2327 | return float64_to_uint64(u.d, &env->spe_status); |
0487d6a8 JM |
2328 | } |
2329 | ||
b068d6a7 | 2330 | static always_inline int64_t _do_efdctsiz (uint64_t val) |
0487d6a8 | 2331 | { |
0ca9d380 | 2332 | CPU_DoubleU u; |
0487d6a8 | 2333 | |
0ca9d380 | 2334 | u.ll = val; |
0487d6a8 | 2335 | /* NaN are not treated the same way IEEE 754 does */ |
0ca9d380 | 2336 | if (unlikely(isnan(u.d))) |
0487d6a8 JM |
2337 | return 0; |
2338 | ||
0ca9d380 | 2339 | return float64_to_int64_round_to_zero(u.d, &env->spe_status); |
0487d6a8 JM |
2340 | } |
2341 | ||
b068d6a7 | 2342 | static always_inline uint64_t _do_efdctuiz (uint64_t val) |
0487d6a8 | 2343 | { |
0ca9d380 | 2344 | CPU_DoubleU u; |
0487d6a8 | 2345 | |
0ca9d380 | 2346 | u.ll = val; |
0487d6a8 | 2347 | /* NaN are not treated the same way IEEE 754 does */ |
0ca9d380 | 2348 | if (unlikely(isnan(u.d))) |
0487d6a8 JM |
2349 | return 0; |
2350 | ||
0ca9d380 | 2351 | return float64_to_uint64_round_to_zero(u.d, &env->spe_status); |
0487d6a8 JM |
2352 | } |
2353 | ||
2354 | void do_efdcfsi (void) | |
2355 | { | |
2356 | T0_64 = _do_efdcfsi(T0_64); | |
2357 | } | |
2358 | ||
2359 | void do_efdcfui (void) | |
2360 | { | |
2361 | T0_64 = _do_efdcfui(T0_64); | |
2362 | } | |
2363 | ||
2364 | void do_efdctsi (void) | |
2365 | { | |
2366 | T0_64 = _do_efdctsi(T0_64); | |
2367 | } | |
2368 | ||
2369 | void do_efdctui (void) | |
2370 | { | |
2371 | T0_64 = _do_efdctui(T0_64); | |
2372 | } | |
2373 | ||
2374 | void do_efdctsiz (void) | |
2375 | { | |
2376 | T0_64 = _do_efdctsiz(T0_64); | |
2377 | } | |
2378 | ||
2379 | void do_efdctuiz (void) | |
2380 | { | |
2381 | T0_64 = _do_efdctuiz(T0_64); | |
2382 | } | |
2383 | ||
2384 | /* Double precision floating-point conversion to/from fractional */ | |
b068d6a7 | 2385 | static always_inline uint64_t _do_efdcfsf (int64_t val) |
0487d6a8 | 2386 | { |
0ca9d380 | 2387 | CPU_DoubleU u; |
0487d6a8 JM |
2388 | float64 tmp; |
2389 | ||
0ca9d380 | 2390 | u.d = int32_to_float64(val, &env->spe_status); |
0487d6a8 | 2391 | tmp = int64_to_float64(1ULL << 32, &env->spe_status); |
0ca9d380 | 2392 | u.d = float64_div(u.d, tmp, &env->spe_status); |
0487d6a8 | 2393 | |
0ca9d380 | 2394 | return u.ll; |
0487d6a8 JM |
2395 | } |
2396 | ||
b068d6a7 | 2397 | static always_inline uint64_t _do_efdcfuf (uint64_t val) |
0487d6a8 | 2398 | { |
0ca9d380 | 2399 | CPU_DoubleU u; |
0487d6a8 JM |
2400 | float64 tmp; |
2401 | ||
0ca9d380 | 2402 | u.d = uint32_to_float64(val, &env->spe_status); |
0487d6a8 | 2403 | tmp = int64_to_float64(1ULL << 32, &env->spe_status); |
0ca9d380 | 2404 | u.d = float64_div(u.d, tmp, &env->spe_status); |
0487d6a8 | 2405 | |
0ca9d380 | 2406 | return u.ll; |
0487d6a8 JM |
2407 | } |
2408 | ||
b068d6a7 | 2409 | static always_inline int64_t _do_efdctsf (uint64_t val) |
0487d6a8 | 2410 | { |
0ca9d380 | 2411 | CPU_DoubleU u; |
0487d6a8 JM |
2412 | float64 tmp; |
2413 | ||
0ca9d380 | 2414 | u.ll = val; |
0487d6a8 | 2415 | /* NaN are not treated the same way IEEE 754 does */ |
0ca9d380 | 2416 | if (unlikely(isnan(u.d))) |
0487d6a8 JM |
2417 | return 0; |
2418 | tmp = uint64_to_float64(1ULL << 32, &env->spe_status); | |
0ca9d380 | 2419 | u.d = float64_mul(u.d, tmp, &env->spe_status); |
0487d6a8 | 2420 | |
0ca9d380 | 2421 | return float64_to_int32(u.d, &env->spe_status); |
0487d6a8 JM |
2422 | } |
2423 | ||
b068d6a7 | 2424 | static always_inline uint64_t _do_efdctuf (uint64_t val) |
0487d6a8 | 2425 | { |
0ca9d380 | 2426 | CPU_DoubleU u; |
0487d6a8 JM |
2427 | float64 tmp; |
2428 | ||
0ca9d380 | 2429 | u.ll = val; |
0487d6a8 | 2430 | /* NaN are not treated the same way IEEE 754 does */ |
0ca9d380 | 2431 | if (unlikely(isnan(u.d))) |
0487d6a8 JM |
2432 | return 0; |
2433 | tmp = uint64_to_float64(1ULL << 32, &env->spe_status); | |
0ca9d380 | 2434 | u.d = float64_mul(u.d, tmp, &env->spe_status); |
0487d6a8 | 2435 | |
0ca9d380 | 2436 | return float64_to_uint32(u.d, &env->spe_status); |
0487d6a8 JM |
2437 | } |
2438 | ||
b068d6a7 | 2439 | static always_inline int64_t _do_efdctsfz (uint64_t val) |
0487d6a8 | 2440 | { |
0ca9d380 | 2441 | CPU_DoubleU u; |
0487d6a8 JM |
2442 | float64 tmp; |
2443 | ||
0ca9d380 | 2444 | u.ll = val; |
0487d6a8 | 2445 | /* NaN are not treated the same way IEEE 754 does */ |
0ca9d380 | 2446 | if (unlikely(isnan(u.d))) |
0487d6a8 JM |
2447 | return 0; |
2448 | tmp = uint64_to_float64(1ULL << 32, &env->spe_status); | |
0ca9d380 | 2449 | u.d = float64_mul(u.d, tmp, &env->spe_status); |
0487d6a8 | 2450 | |
0ca9d380 | 2451 | return float64_to_int32_round_to_zero(u.d, &env->spe_status); |
0487d6a8 JM |
2452 | } |
2453 | ||
b068d6a7 | 2454 | static always_inline uint64_t _do_efdctufz (uint64_t val) |
0487d6a8 | 2455 | { |
0ca9d380 | 2456 | CPU_DoubleU u; |
0487d6a8 JM |
2457 | float64 tmp; |
2458 | ||
0ca9d380 | 2459 | u.ll = val; |
0487d6a8 | 2460 | /* NaN are not treated the same way IEEE 754 does */ |
0ca9d380 | 2461 | if (unlikely(isnan(u.d))) |
0487d6a8 JM |
2462 | return 0; |
2463 | tmp = uint64_to_float64(1ULL << 32, &env->spe_status); | |
0ca9d380 | 2464 | u.d = float64_mul(u.d, tmp, &env->spe_status); |
0487d6a8 | 2465 | |
0ca9d380 | 2466 | return float64_to_uint32_round_to_zero(u.d, &env->spe_status); |
0487d6a8 JM |
2467 | } |
2468 | ||
2469 | void do_efdcfsf (void) | |
2470 | { | |
2471 | T0_64 = _do_efdcfsf(T0_64); | |
2472 | } | |
2473 | ||
2474 | void do_efdcfuf (void) | |
2475 | { | |
2476 | T0_64 = _do_efdcfuf(T0_64); | |
2477 | } | |
2478 | ||
2479 | void do_efdctsf (void) | |
2480 | { | |
2481 | T0_64 = _do_efdctsf(T0_64); | |
2482 | } | |
2483 | ||
2484 | void do_efdctuf (void) | |
2485 | { | |
2486 | T0_64 = _do_efdctuf(T0_64); | |
2487 | } | |
2488 | ||
2489 | void do_efdctsfz (void) | |
2490 | { | |
2491 | T0_64 = _do_efdctsfz(T0_64); | |
2492 | } | |
2493 | ||
2494 | void do_efdctufz (void) | |
2495 | { | |
2496 | T0_64 = _do_efdctufz(T0_64); | |
2497 | } | |
2498 | ||
2499 | /* Floating point conversion between single and double precision */ | |
b068d6a7 | 2500 | static always_inline uint32_t _do_efscfd (uint64_t val) |
0487d6a8 | 2501 | { |
0ca9d380 AJ |
2502 | CPU_DoubleU u1; |
2503 | CPU_FloatU u2; | |
0487d6a8 | 2504 | |
0ca9d380 AJ |
2505 | u1.ll = val; |
2506 | u2.f = float64_to_float32(u1.d, &env->spe_status); | |
0487d6a8 | 2507 | |
0ca9d380 | 2508 | return u2.l; |
0487d6a8 JM |
2509 | } |
2510 | ||
b068d6a7 | 2511 | static always_inline uint64_t _do_efdcfs (uint32_t val) |
0487d6a8 | 2512 | { |
0ca9d380 AJ |
2513 | CPU_DoubleU u2; |
2514 | CPU_FloatU u1; | |
0487d6a8 | 2515 | |
0ca9d380 AJ |
2516 | u1.l = val; |
2517 | u2.d = float32_to_float64(u1.f, &env->spe_status); | |
0487d6a8 | 2518 | |
0ca9d380 | 2519 | return u2.ll; |
0487d6a8 JM |
2520 | } |
2521 | ||
2522 | void do_efscfd (void) | |
2523 | { | |
2524 | T0_64 = _do_efscfd(T0_64); | |
2525 | } | |
2526 | ||
2527 | void do_efdcfs (void) | |
2528 | { | |
2529 | T0_64 = _do_efdcfs(T0_64); | |
2530 | } | |
2531 | ||
2532 | /* Single precision fixed-point vector arithmetic */ | |
2533 | /* evfsabs */ | |
2534 | DO_SPE_OP1(fsabs); | |
2535 | /* evfsnabs */ | |
2536 | DO_SPE_OP1(fsnabs); | |
2537 | /* evfsneg */ | |
2538 | DO_SPE_OP1(fsneg); | |
2539 | /* evfsadd */ | |
2540 | DO_SPE_OP2(fsadd); | |
2541 | /* evfssub */ | |
2542 | DO_SPE_OP2(fssub); | |
2543 | /* evfsmul */ | |
2544 | DO_SPE_OP2(fsmul); | |
2545 | /* evfsdiv */ | |
2546 | DO_SPE_OP2(fsdiv); | |
2547 | ||
2548 | /* Single-precision floating-point comparisons */ | |
b068d6a7 | 2549 | static always_inline int _do_efscmplt (uint32_t op1, uint32_t op2) |
0487d6a8 JM |
2550 | { |
2551 | /* XXX: TODO: test special values (NaN, infinites, ...) */ | |
2552 | return _do_efststlt(op1, op2); | |
2553 | } | |
2554 | ||
b068d6a7 | 2555 | static always_inline int _do_efscmpgt (uint32_t op1, uint32_t op2) |
0487d6a8 JM |
2556 | { |
2557 | /* XXX: TODO: test special values (NaN, infinites, ...) */ | |
2558 | return _do_efststgt(op1, op2); | |
2559 | } | |
2560 | ||
b068d6a7 | 2561 | static always_inline int _do_efscmpeq (uint32_t op1, uint32_t op2) |
0487d6a8 JM |
2562 | { |
2563 | /* XXX: TODO: test special values (NaN, infinites, ...) */ | |
2564 | return _do_efststeq(op1, op2); | |
2565 | } | |
2566 | ||
2567 | void do_efscmplt (void) | |
2568 | { | |
2569 | T0 = _do_efscmplt(T0_64, T1_64); | |
2570 | } | |
2571 | ||
2572 | void do_efscmpgt (void) | |
2573 | { | |
2574 | T0 = _do_efscmpgt(T0_64, T1_64); | |
2575 | } | |
2576 | ||
2577 | void do_efscmpeq (void) | |
2578 | { | |
2579 | T0 = _do_efscmpeq(T0_64, T1_64); | |
2580 | } | |
2581 | ||
2582 | /* Single-precision floating-point vector comparisons */ | |
2583 | /* evfscmplt */ | |
2584 | DO_SPE_CMP(fscmplt); | |
2585 | /* evfscmpgt */ | |
2586 | DO_SPE_CMP(fscmpgt); | |
2587 | /* evfscmpeq */ | |
2588 | DO_SPE_CMP(fscmpeq); | |
2589 | /* evfststlt */ | |
2590 | DO_SPE_CMP(fststlt); | |
2591 | /* evfststgt */ | |
2592 | DO_SPE_CMP(fststgt); | |
2593 | /* evfststeq */ | |
2594 | DO_SPE_CMP(fststeq); | |
2595 | ||
2596 | /* Single-precision floating-point vector conversions */ | |
2597 | /* evfscfsi */ | |
2598 | DO_SPE_OP1(fscfsi); | |
2599 | /* evfscfui */ | |
2600 | DO_SPE_OP1(fscfui); | |
2601 | /* evfscfuf */ | |
2602 | DO_SPE_OP1(fscfuf); | |
2603 | /* evfscfsf */ | |
2604 | DO_SPE_OP1(fscfsf); | |
2605 | /* evfsctsi */ | |
2606 | DO_SPE_OP1(fsctsi); | |
2607 | /* evfsctui */ | |
2608 | DO_SPE_OP1(fsctui); | |
2609 | /* evfsctsiz */ | |
2610 | DO_SPE_OP1(fsctsiz); | |
2611 | /* evfsctuiz */ | |
2612 | DO_SPE_OP1(fsctuiz); | |
2613 | /* evfsctsf */ | |
2614 | DO_SPE_OP1(fsctsf); | |
2615 | /* evfsctuf */ | |
2616 | DO_SPE_OP1(fsctuf); | |
0487d6a8 | 2617 | |
fdabc366 FB |
2618 | /*****************************************************************************/ |
2619 | /* Softmmu support */ | |
2620 | #if !defined (CONFIG_USER_ONLY) | |
2621 | ||
2622 | #define MMUSUFFIX _mmu | |
fdabc366 FB |
2623 | |
2624 | #define SHIFT 0 | |
2625 | #include "softmmu_template.h" | |
2626 | ||
2627 | #define SHIFT 1 | |
2628 | #include "softmmu_template.h" | |
2629 | ||
2630 | #define SHIFT 2 | |
2631 | #include "softmmu_template.h" | |
2632 | ||
2633 | #define SHIFT 3 | |
2634 | #include "softmmu_template.h" | |
2635 | ||
2636 | /* try to fill the TLB and return an exception if error. If retaddr is | |
2637 | NULL, it means that the function was called in C code (i.e. not | |
2638 | from generated code or from helper.c) */ | |
2639 | /* XXX: fix it to restore all registers */ | |
6ebbf390 | 2640 | void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr) |
fdabc366 FB |
2641 | { |
2642 | TranslationBlock *tb; | |
2643 | CPUState *saved_env; | |
44f8625d | 2644 | unsigned long pc; |
fdabc366 FB |
2645 | int ret; |
2646 | ||
2647 | /* XXX: hack to restore env in all cases, even if not called from | |
2648 | generated code */ | |
2649 | saved_env = env; | |
2650 | env = cpu_single_env; | |
6ebbf390 | 2651 | ret = cpu_ppc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1); |
76a66253 | 2652 | if (unlikely(ret != 0)) { |
fdabc366 FB |
2653 | if (likely(retaddr)) { |
2654 | /* now we have a real cpu fault */ | |
44f8625d | 2655 | pc = (unsigned long)retaddr; |
fdabc366 FB |
2656 | tb = tb_find_pc(pc); |
2657 | if (likely(tb)) { | |
2658 | /* the PC is inside the translated code. It means that we have | |
2659 | a virtual CPU fault */ | |
2660 | cpu_restore_state(tb, env, pc, NULL); | |
76a66253 | 2661 | } |
fdabc366 FB |
2662 | } |
2663 | do_raise_exception_err(env->exception_index, env->error_code); | |
2664 | } | |
2665 | env = saved_env; | |
9a64fbe4 FB |
2666 | } |
2667 | ||
76a66253 JM |
2668 | /* Software driven TLBs management */ |
2669 | /* PowerPC 602/603 software TLB load instructions helpers */ | |
2670 | void do_load_6xx_tlb (int is_code) | |
2671 | { | |
2672 | target_ulong RPN, CMP, EPN; | |
2673 | int way; | |
d9bce9d9 | 2674 | |
76a66253 JM |
2675 | RPN = env->spr[SPR_RPA]; |
2676 | if (is_code) { | |
2677 | CMP = env->spr[SPR_ICMP]; | |
2678 | EPN = env->spr[SPR_IMISS]; | |
2679 | } else { | |
2680 | CMP = env->spr[SPR_DCMP]; | |
2681 | EPN = env->spr[SPR_DMISS]; | |
2682 | } | |
2683 | way = (env->spr[SPR_SRR1] >> 17) & 1; | |
2684 | #if defined (DEBUG_SOFTWARE_TLB) | |
2685 | if (loglevel != 0) { | |
6b542af7 JM |
2686 | fprintf(logfile, "%s: EPN " TDX " " ADDRX " PTE0 " ADDRX |
2687 | " PTE1 " ADDRX " way %d\n", | |
2688 | __func__, T0, EPN, CMP, RPN, way); | |
76a66253 JM |
2689 | } |
2690 | #endif | |
2691 | /* Store this TLB */ | |
d9bce9d9 JM |
2692 | ppc6xx_tlb_store(env, (uint32_t)(T0 & TARGET_PAGE_MASK), |
2693 | way, is_code, CMP, RPN); | |
76a66253 JM |
2694 | } |
2695 | ||
7dbe11ac JM |
2696 | void do_load_74xx_tlb (int is_code) |
2697 | { | |
2698 | target_ulong RPN, CMP, EPN; | |
2699 | int way; | |
2700 | ||
2701 | RPN = env->spr[SPR_PTELO]; | |
2702 | CMP = env->spr[SPR_PTEHI]; | |
2703 | EPN = env->spr[SPR_TLBMISS] & ~0x3; | |
2704 | way = env->spr[SPR_TLBMISS] & 0x3; | |
2705 | #if defined (DEBUG_SOFTWARE_TLB) | |
2706 | if (loglevel != 0) { | |
6b542af7 JM |
2707 | fprintf(logfile, "%s: EPN " TDX " " ADDRX " PTE0 " ADDRX |
2708 | " PTE1 " ADDRX " way %d\n", | |
2709 | __func__, T0, EPN, CMP, RPN, way); | |
7dbe11ac JM |
2710 | } |
2711 | #endif | |
2712 | /* Store this TLB */ | |
2713 | ppc6xx_tlb_store(env, (uint32_t)(T0 & TARGET_PAGE_MASK), | |
2714 | way, is_code, CMP, RPN); | |
2715 | } | |
2716 | ||
a11b8151 | 2717 | static always_inline target_ulong booke_tlb_to_page_size (int size) |
a8dea12f JM |
2718 | { |
2719 | return 1024 << (2 * size); | |
2720 | } | |
2721 | ||
a11b8151 | 2722 | static always_inline int booke_page_size_to_tlb (target_ulong page_size) |
a8dea12f JM |
2723 | { |
2724 | int size; | |
2725 | ||
2726 | switch (page_size) { | |
2727 | case 0x00000400UL: | |
2728 | size = 0x0; | |
2729 | break; | |
2730 | case 0x00001000UL: | |
2731 | size = 0x1; | |
2732 | break; | |
2733 | case 0x00004000UL: | |
2734 | size = 0x2; | |
2735 | break; | |
2736 | case 0x00010000UL: | |
2737 | size = 0x3; | |
2738 | break; | |
2739 | case 0x00040000UL: | |
2740 | size = 0x4; | |
2741 | break; | |
2742 | case 0x00100000UL: | |
2743 | size = 0x5; | |
2744 | break; | |
2745 | case 0x00400000UL: | |
2746 | size = 0x6; | |
2747 | break; | |
2748 | case 0x01000000UL: | |
2749 | size = 0x7; | |
2750 | break; | |
2751 | case 0x04000000UL: | |
2752 | size = 0x8; | |
2753 | break; | |
2754 | case 0x10000000UL: | |
2755 | size = 0x9; | |
2756 | break; | |
2757 | case 0x40000000UL: | |
2758 | size = 0xA; | |
2759 | break; | |
2760 | #if defined (TARGET_PPC64) | |
2761 | case 0x000100000000ULL: | |
2762 | size = 0xB; | |
2763 | break; | |
2764 | case 0x000400000000ULL: | |
2765 | size = 0xC; | |
2766 | break; | |
2767 | case 0x001000000000ULL: | |
2768 | size = 0xD; | |
2769 | break; | |
2770 | case 0x004000000000ULL: | |
2771 | size = 0xE; | |
2772 | break; | |
2773 | case 0x010000000000ULL: | |
2774 | size = 0xF; | |
2775 | break; | |
2776 | #endif | |
2777 | default: | |
2778 | size = -1; | |
2779 | break; | |
2780 | } | |
2781 | ||
2782 | return size; | |
2783 | } | |
2784 | ||
76a66253 | 2785 | /* Helpers for 4xx TLB management */ |
76a66253 JM |
2786 | void do_4xx_tlbre_lo (void) |
2787 | { | |
a8dea12f JM |
2788 | ppcemb_tlb_t *tlb; |
2789 | int size; | |
76a66253 JM |
2790 | |
2791 | T0 &= 0x3F; | |
a8dea12f JM |
2792 | tlb = &env->tlb[T0].tlbe; |
2793 | T0 = tlb->EPN; | |
2794 | if (tlb->prot & PAGE_VALID) | |
2795 | T0 |= 0x400; | |
2796 | size = booke_page_size_to_tlb(tlb->size); | |
2797 | if (size < 0 || size > 0x7) | |
2798 | size = 1; | |
2799 | T0 |= size << 7; | |
2800 | env->spr[SPR_40x_PID] = tlb->PID; | |
76a66253 JM |
2801 | } |
2802 | ||
2803 | void do_4xx_tlbre_hi (void) | |
2804 | { | |
a8dea12f | 2805 | ppcemb_tlb_t *tlb; |
76a66253 JM |
2806 | |
2807 | T0 &= 0x3F; | |
a8dea12f JM |
2808 | tlb = &env->tlb[T0].tlbe; |
2809 | T0 = tlb->RPN; | |
2810 | if (tlb->prot & PAGE_EXEC) | |
2811 | T0 |= 0x200; | |
2812 | if (tlb->prot & PAGE_WRITE) | |
2813 | T0 |= 0x100; | |
76a66253 JM |
2814 | } |
2815 | ||
c55e9aef | 2816 | void do_4xx_tlbwe_hi (void) |
76a66253 | 2817 | { |
a8dea12f | 2818 | ppcemb_tlb_t *tlb; |
76a66253 JM |
2819 | target_ulong page, end; |
2820 | ||
c55e9aef | 2821 | #if defined (DEBUG_SOFTWARE_TLB) |
6b80055d | 2822 | if (loglevel != 0) { |
6b542af7 | 2823 | fprintf(logfile, "%s T0 " TDX " T1 " TDX "\n", __func__, T0, T1); |
c55e9aef JM |
2824 | } |
2825 | #endif | |
76a66253 | 2826 | T0 &= 0x3F; |
a8dea12f | 2827 | tlb = &env->tlb[T0].tlbe; |
76a66253 JM |
2828 | /* Invalidate previous TLB (if it's valid) */ |
2829 | if (tlb->prot & PAGE_VALID) { | |
2830 | end = tlb->EPN + tlb->size; | |
c55e9aef | 2831 | #if defined (DEBUG_SOFTWARE_TLB) |
6b80055d | 2832 | if (loglevel != 0) { |
c55e9aef JM |
2833 | fprintf(logfile, "%s: invalidate old TLB %d start " ADDRX |
2834 | " end " ADDRX "\n", __func__, (int)T0, tlb->EPN, end); | |
2835 | } | |
2836 | #endif | |
76a66253 JM |
2837 | for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE) |
2838 | tlb_flush_page(env, page); | |
2839 | } | |
a8dea12f | 2840 | tlb->size = booke_tlb_to_page_size((T1 >> 7) & 0x7); |
c294fc58 JM |
2841 | /* We cannot handle TLB size < TARGET_PAGE_SIZE. |
2842 | * If this ever occurs, one should use the ppcemb target instead | |
2843 | * of the ppc or ppc64 one | |
2844 | */ | |
2845 | if ((T1 & 0x40) && tlb->size < TARGET_PAGE_SIZE) { | |
71c8b8fd JM |
2846 | cpu_abort(env, "TLB size " TARGET_FMT_lu " < %u " |
2847 | "are not supported (%d)\n", | |
c294fc58 JM |
2848 | tlb->size, TARGET_PAGE_SIZE, (int)((T1 >> 7) & 0x7)); |
2849 | } | |
a750fc0b | 2850 | tlb->EPN = T1 & ~(tlb->size - 1); |
c55e9aef | 2851 | if (T1 & 0x40) |
76a66253 JM |
2852 | tlb->prot |= PAGE_VALID; |
2853 | else | |
2854 | tlb->prot &= ~PAGE_VALID; | |
c294fc58 JM |
2855 | if (T1 & 0x20) { |
2856 | /* XXX: TO BE FIXED */ | |
2857 | cpu_abort(env, "Little-endian TLB entries are not supported by now\n"); | |
2858 | } | |
c55e9aef | 2859 | tlb->PID = env->spr[SPR_40x_PID]; /* PID */ |
a8dea12f | 2860 | tlb->attr = T1 & 0xFF; |
c55e9aef | 2861 | #if defined (DEBUG_SOFTWARE_TLB) |
c294fc58 JM |
2862 | if (loglevel != 0) { |
2863 | fprintf(logfile, "%s: set up TLB %d RPN " PADDRX " EPN " ADDRX | |
c55e9aef | 2864 | " size " ADDRX " prot %c%c%c%c PID %d\n", __func__, |
5fafdf24 | 2865 | (int)T0, tlb->RPN, tlb->EPN, tlb->size, |
c55e9aef JM |
2866 | tlb->prot & PAGE_READ ? 'r' : '-', |
2867 | tlb->prot & PAGE_WRITE ? 'w' : '-', | |
2868 | tlb->prot & PAGE_EXEC ? 'x' : '-', | |
2869 | tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID); | |
2870 | } | |
2871 | #endif | |
76a66253 JM |
2872 | /* Invalidate new TLB (if valid) */ |
2873 | if (tlb->prot & PAGE_VALID) { | |
2874 | end = tlb->EPN + tlb->size; | |
c55e9aef | 2875 | #if defined (DEBUG_SOFTWARE_TLB) |
6b80055d | 2876 | if (loglevel != 0) { |
c55e9aef JM |
2877 | fprintf(logfile, "%s: invalidate TLB %d start " ADDRX |
2878 | " end " ADDRX "\n", __func__, (int)T0, tlb->EPN, end); | |
2879 | } | |
2880 | #endif | |
76a66253 JM |
2881 | for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE) |
2882 | tlb_flush_page(env, page); | |
2883 | } | |
76a66253 JM |
2884 | } |
2885 | ||
c55e9aef | 2886 | void do_4xx_tlbwe_lo (void) |
76a66253 | 2887 | { |
a8dea12f | 2888 | ppcemb_tlb_t *tlb; |
76a66253 | 2889 | |
c55e9aef | 2890 | #if defined (DEBUG_SOFTWARE_TLB) |
6b80055d | 2891 | if (loglevel != 0) { |
6b542af7 | 2892 | fprintf(logfile, "%s T0 " TDX " T1 " TDX "\n", __func__, T0, T1); |
c55e9aef JM |
2893 | } |
2894 | #endif | |
76a66253 | 2895 | T0 &= 0x3F; |
a8dea12f | 2896 | tlb = &env->tlb[T0].tlbe; |
76a66253 JM |
2897 | tlb->RPN = T1 & 0xFFFFFC00; |
2898 | tlb->prot = PAGE_READ; | |
2899 | if (T1 & 0x200) | |
2900 | tlb->prot |= PAGE_EXEC; | |
2901 | if (T1 & 0x100) | |
2902 | tlb->prot |= PAGE_WRITE; | |
c55e9aef | 2903 | #if defined (DEBUG_SOFTWARE_TLB) |
6b80055d JM |
2904 | if (loglevel != 0) { |
2905 | fprintf(logfile, "%s: set up TLB %d RPN " PADDRX " EPN " ADDRX | |
c55e9aef | 2906 | " size " ADDRX " prot %c%c%c%c PID %d\n", __func__, |
5fafdf24 | 2907 | (int)T0, tlb->RPN, tlb->EPN, tlb->size, |
c55e9aef JM |
2908 | tlb->prot & PAGE_READ ? 'r' : '-', |
2909 | tlb->prot & PAGE_WRITE ? 'w' : '-', | |
2910 | tlb->prot & PAGE_EXEC ? 'x' : '-', | |
2911 | tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID); | |
2912 | } | |
2913 | #endif | |
76a66253 | 2914 | } |
5eb7995e | 2915 | |
a4bb6c3e JM |
2916 | /* PowerPC 440 TLB management */ |
2917 | void do_440_tlbwe (int word) | |
5eb7995e JM |
2918 | { |
2919 | ppcemb_tlb_t *tlb; | |
a4bb6c3e | 2920 | target_ulong EPN, RPN, size; |
5eb7995e JM |
2921 | int do_flush_tlbs; |
2922 | ||
2923 | #if defined (DEBUG_SOFTWARE_TLB) | |
2924 | if (loglevel != 0) { | |
6b542af7 | 2925 | fprintf(logfile, "%s word %d T0 " TDX " T1 " TDX "\n", |
69facb78 | 2926 | __func__, word, T0, T1); |
5eb7995e JM |
2927 | } |
2928 | #endif | |
2929 | do_flush_tlbs = 0; | |
2930 | T0 &= 0x3F; | |
2931 | tlb = &env->tlb[T0].tlbe; | |
a4bb6c3e JM |
2932 | switch (word) { |
2933 | default: | |
2934 | /* Just here to please gcc */ | |
2935 | case 0: | |
2936 | EPN = T1 & 0xFFFFFC00; | |
2937 | if ((tlb->prot & PAGE_VALID) && EPN != tlb->EPN) | |
5eb7995e | 2938 | do_flush_tlbs = 1; |
a4bb6c3e JM |
2939 | tlb->EPN = EPN; |
2940 | size = booke_tlb_to_page_size((T1 >> 4) & 0xF); | |
2941 | if ((tlb->prot & PAGE_VALID) && tlb->size < size) | |
2942 | do_flush_tlbs = 1; | |
2943 | tlb->size = size; | |
2944 | tlb->attr &= ~0x1; | |
2945 | tlb->attr |= (T1 >> 8) & 1; | |
2946 | if (T1 & 0x200) { | |
2947 | tlb->prot |= PAGE_VALID; | |
2948 | } else { | |
2949 | if (tlb->prot & PAGE_VALID) { | |
2950 | tlb->prot &= ~PAGE_VALID; | |
2951 | do_flush_tlbs = 1; | |
2952 | } | |
5eb7995e | 2953 | } |
a4bb6c3e JM |
2954 | tlb->PID = env->spr[SPR_440_MMUCR] & 0x000000FF; |
2955 | if (do_flush_tlbs) | |
2956 | tlb_flush(env, 1); | |
2957 | break; | |
2958 | case 1: | |
2959 | RPN = T1 & 0xFFFFFC0F; | |
2960 | if ((tlb->prot & PAGE_VALID) && tlb->RPN != RPN) | |
2961 | tlb_flush(env, 1); | |
2962 | tlb->RPN = RPN; | |
2963 | break; | |
2964 | case 2: | |
2965 | tlb->attr = (tlb->attr & 0x1) | (T1 & 0x0000FF00); | |
2966 | tlb->prot = tlb->prot & PAGE_VALID; | |
2967 | if (T1 & 0x1) | |
2968 | tlb->prot |= PAGE_READ << 4; | |
2969 | if (T1 & 0x2) | |
2970 | tlb->prot |= PAGE_WRITE << 4; | |
2971 | if (T1 & 0x4) | |
2972 | tlb->prot |= PAGE_EXEC << 4; | |
2973 | if (T1 & 0x8) | |
2974 | tlb->prot |= PAGE_READ; | |
2975 | if (T1 & 0x10) | |
2976 | tlb->prot |= PAGE_WRITE; | |
2977 | if (T1 & 0x20) | |
2978 | tlb->prot |= PAGE_EXEC; | |
2979 | break; | |
5eb7995e | 2980 | } |
5eb7995e JM |
2981 | } |
2982 | ||
a4bb6c3e | 2983 | void do_440_tlbre (int word) |
5eb7995e JM |
2984 | { |
2985 | ppcemb_tlb_t *tlb; | |
2986 | int size; | |
2987 | ||
2988 | T0 &= 0x3F; | |
2989 | tlb = &env->tlb[T0].tlbe; | |
a4bb6c3e JM |
2990 | switch (word) { |
2991 | default: | |
2992 | /* Just here to please gcc */ | |
2993 | case 0: | |
2994 | T0 = tlb->EPN; | |
2995 | size = booke_page_size_to_tlb(tlb->size); | |
2996 | if (size < 0 || size > 0xF) | |
2997 | size = 1; | |
2998 | T0 |= size << 4; | |
2999 | if (tlb->attr & 0x1) | |
3000 | T0 |= 0x100; | |
3001 | if (tlb->prot & PAGE_VALID) | |
3002 | T0 |= 0x200; | |
3003 | env->spr[SPR_440_MMUCR] &= ~0x000000FF; | |
3004 | env->spr[SPR_440_MMUCR] |= tlb->PID; | |
3005 | break; | |
3006 | case 1: | |
3007 | T0 = tlb->RPN; | |
3008 | break; | |
3009 | case 2: | |
3010 | T0 = tlb->attr & ~0x1; | |
3011 | if (tlb->prot & (PAGE_READ << 4)) | |
3012 | T0 |= 0x1; | |
3013 | if (tlb->prot & (PAGE_WRITE << 4)) | |
3014 | T0 |= 0x2; | |
3015 | if (tlb->prot & (PAGE_EXEC << 4)) | |
3016 | T0 |= 0x4; | |
3017 | if (tlb->prot & PAGE_READ) | |
3018 | T0 |= 0x8; | |
3019 | if (tlb->prot & PAGE_WRITE) | |
3020 | T0 |= 0x10; | |
3021 | if (tlb->prot & PAGE_EXEC) | |
3022 | T0 |= 0x20; | |
3023 | break; | |
3024 | } | |
5eb7995e | 3025 | } |
76a66253 | 3026 | #endif /* !CONFIG_USER_ONLY */ |