Commit | Line | Data |
---|---|---|
9a64fbe4 | 1 | /* |
3fc6c082 | 2 | * PowerPC emulation helpers for qemu. |
5fafdf24 | 3 | * |
76a66253 | 4 | * Copyright (c) 2003-2007 Jocelyn Mayer |
9a64fbe4 FB |
5 | * |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
17 | * License along with this library; if not, write to the Free Software | |
18 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | |
19 | */ | |
9a64fbe4 | 20 | #include "exec.h" |
603fccce | 21 | #include "host-utils.h" |
9a64fbe4 | 22 | |
0411a972 | 23 | #include "helper_regs.h" |
0487d6a8 JM |
24 | #include "op_helper.h" |
25 | ||
9a64fbe4 | 26 | #define MEMSUFFIX _raw |
0487d6a8 | 27 | #include "op_helper.h" |
9a64fbe4 | 28 | #include "op_helper_mem.h" |
a541f297 | 29 | #if !defined(CONFIG_USER_ONLY) |
9a64fbe4 | 30 | #define MEMSUFFIX _user |
0487d6a8 | 31 | #include "op_helper.h" |
9a64fbe4 FB |
32 | #include "op_helper_mem.h" |
33 | #define MEMSUFFIX _kernel | |
0487d6a8 | 34 | #include "op_helper.h" |
9a64fbe4 | 35 | #include "op_helper_mem.h" |
1e42b8f0 JM |
36 | #define MEMSUFFIX _hypv |
37 | #include "op_helper.h" | |
38 | #include "op_helper_mem.h" | |
39 | #endif | |
9a64fbe4 | 40 | |
fdabc366 FB |
41 | //#define DEBUG_OP |
42 | //#define DEBUG_EXCEPTIONS | |
76a66253 | 43 | //#define DEBUG_SOFTWARE_TLB |
fdabc366 | 44 | |
9a64fbe4 FB |
45 | /*****************************************************************************/ |
46 | /* Exceptions processing helpers */ | |
9a64fbe4 | 47 | |
9fddaa0c | 48 | void do_raise_exception_err (uint32_t exception, int error_code) |
9a64fbe4 | 49 | { |
9fddaa0c FB |
50 | #if 0 |
51 | printf("Raise exception %3x code : %d\n", exception, error_code); | |
52 | #endif | |
9fddaa0c FB |
53 | env->exception_index = exception; |
54 | env->error_code = error_code; | |
76a66253 JM |
55 | cpu_loop_exit(); |
56 | } | |
9fddaa0c FB |
57 | |
58 | void do_raise_exception (uint32_t exception) | |
59 | { | |
60 | do_raise_exception_err(exception, 0); | |
9a64fbe4 FB |
61 | } |
62 | ||
a496775f JM |
63 | void cpu_dump_EA (target_ulong EA); |
64 | void do_print_mem_EA (target_ulong EA) | |
65 | { | |
66 | cpu_dump_EA(EA); | |
67 | } | |
68 | ||
76a66253 JM |
69 | /*****************************************************************************/ |
70 | /* Registers load and stores */ | |
71 | void do_load_cr (void) | |
72 | { | |
73 | T0 = (env->crf[0] << 28) | | |
74 | (env->crf[1] << 24) | | |
75 | (env->crf[2] << 20) | | |
76 | (env->crf[3] << 16) | | |
77 | (env->crf[4] << 12) | | |
78 | (env->crf[5] << 8) | | |
79 | (env->crf[6] << 4) | | |
80 | (env->crf[7] << 0); | |
81 | } | |
82 | ||
83 | void do_store_cr (uint32_t mask) | |
84 | { | |
85 | int i, sh; | |
86 | ||
36081602 | 87 | for (i = 0, sh = 7; i < 8; i++, sh--) { |
76a66253 JM |
88 | if (mask & (1 << sh)) |
89 | env->crf[i] = (T0 >> (sh * 4)) & 0xFUL; | |
90 | } | |
91 | } | |
92 | ||
c80f84e3 JM |
93 | #if defined(TARGET_PPC64) |
94 | void do_store_pri (int prio) | |
95 | { | |
96 | env->spr[SPR_PPR] &= ~0x001C000000000000ULL; | |
97 | env->spr[SPR_PPR] |= ((uint64_t)prio & 0x7) << 50; | |
98 | } | |
99 | #endif | |
100 | ||
a496775f JM |
101 | target_ulong ppc_load_dump_spr (int sprn) |
102 | { | |
6b80055d | 103 | if (loglevel != 0) { |
a496775f JM |
104 | fprintf(logfile, "Read SPR %d %03x => " ADDRX "\n", |
105 | sprn, sprn, env->spr[sprn]); | |
106 | } | |
107 | ||
108 | return env->spr[sprn]; | |
109 | } | |
110 | ||
111 | void ppc_store_dump_spr (int sprn, target_ulong val) | |
112 | { | |
6b80055d | 113 | if (loglevel != 0) { |
a496775f JM |
114 | fprintf(logfile, "Write SPR %d %03x => " ADDRX " <= " ADDRX "\n", |
115 | sprn, sprn, env->spr[sprn], val); | |
116 | } | |
117 | env->spr[sprn] = val; | |
118 | } | |
119 | ||
9a64fbe4 | 120 | /*****************************************************************************/ |
fdabc366 | 121 | /* Fixed point operations helpers */ |
fdabc366 FB |
122 | void do_adde (void) |
123 | { | |
124 | T2 = T0; | |
125 | T0 += T1 + xer_ca; | |
d9bce9d9 JM |
126 | if (likely(!((uint32_t)T0 < (uint32_t)T2 || |
127 | (xer_ca == 1 && (uint32_t)T0 == (uint32_t)T2)))) { | |
fdabc366 FB |
128 | xer_ca = 0; |
129 | } else { | |
130 | xer_ca = 1; | |
131 | } | |
132 | } | |
133 | ||
d9bce9d9 JM |
134 | #if defined(TARGET_PPC64) |
135 | void do_adde_64 (void) | |
fdabc366 FB |
136 | { |
137 | T2 = T0; | |
138 | T0 += T1 + xer_ca; | |
d9bce9d9 JM |
139 | if (likely(!((uint64_t)T0 < (uint64_t)T2 || |
140 | (xer_ca == 1 && (uint64_t)T0 == (uint64_t)T2)))) { | |
fdabc366 FB |
141 | xer_ca = 0; |
142 | } else { | |
143 | xer_ca = 1; | |
144 | } | |
fdabc366 | 145 | } |
d9bce9d9 | 146 | #endif |
fdabc366 FB |
147 | |
148 | void do_addmeo (void) | |
149 | { | |
150 | T1 = T0; | |
151 | T0 += xer_ca + (-1); | |
c3e10c7b JM |
152 | xer_ov = ((uint32_t)T1 & ((uint32_t)T1 ^ (uint32_t)T0)) >> 31; |
153 | xer_so |= xer_ov; | |
fdabc366 FB |
154 | if (likely(T1 != 0)) |
155 | xer_ca = 1; | |
c3e10c7b JM |
156 | else |
157 | xer_ca = 0; | |
fdabc366 FB |
158 | } |
159 | ||
d9bce9d9 JM |
160 | #if defined(TARGET_PPC64) |
161 | void do_addmeo_64 (void) | |
fdabc366 FB |
162 | { |
163 | T1 = T0; | |
d9bce9d9 | 164 | T0 += xer_ca + (-1); |
c3e10c7b JM |
165 | xer_ov = ((uint64_t)T1 & ((uint64_t)T1 ^ (uint64_t)T0)) >> 63; |
166 | xer_so |= xer_ov; | |
d9bce9d9 | 167 | if (likely(T1 != 0)) |
fdabc366 | 168 | xer_ca = 1; |
c3e10c7b JM |
169 | else |
170 | xer_ca = 0; | |
fdabc366 | 171 | } |
d9bce9d9 | 172 | #endif |
fdabc366 FB |
173 | |
174 | void do_divwo (void) | |
175 | { | |
6f2d8978 | 176 | if (likely(!(((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) || |
d9bce9d9 | 177 | (int32_t)T1 == 0))) { |
fdabc366 | 178 | xer_ov = 0; |
d9bce9d9 | 179 | T0 = (int32_t)T0 / (int32_t)T1; |
fdabc366 | 180 | } else { |
fdabc366 | 181 | xer_ov = 1; |
6f2d8978 | 182 | T0 = UINT32_MAX * ((uint32_t)T0 >> 31); |
fdabc366 | 183 | } |
6f2d8978 | 184 | xer_so |= xer_ov; |
fdabc366 FB |
185 | } |
186 | ||
d9bce9d9 JM |
187 | #if defined(TARGET_PPC64) |
188 | void do_divdo (void) | |
189 | { | |
6f2d8978 | 190 | if (likely(!(((int64_t)T0 == INT64_MIN && (int64_t)T1 == (int64_t)-1LL) || |
d9bce9d9 JM |
191 | (int64_t)T1 == 0))) { |
192 | xer_ov = 0; | |
193 | T0 = (int64_t)T0 / (int64_t)T1; | |
194 | } else { | |
d9bce9d9 | 195 | xer_ov = 1; |
6f2d8978 | 196 | T0 = UINT64_MAX * ((uint64_t)T0 >> 63); |
d9bce9d9 | 197 | } |
6f2d8978 | 198 | xer_so |= xer_ov; |
d9bce9d9 JM |
199 | } |
200 | #endif | |
201 | ||
fdabc366 FB |
202 | void do_divwuo (void) |
203 | { | |
204 | if (likely((uint32_t)T1 != 0)) { | |
205 | xer_ov = 0; | |
206 | T0 = (uint32_t)T0 / (uint32_t)T1; | |
207 | } else { | |
fdabc366 | 208 | xer_ov = 1; |
966439a6 | 209 | xer_so = 1; |
fdabc366 FB |
210 | T0 = 0; |
211 | } | |
212 | } | |
213 | ||
d9bce9d9 JM |
214 | #if defined(TARGET_PPC64) |
215 | void do_divduo (void) | |
216 | { | |
217 | if (likely((uint64_t)T1 != 0)) { | |
218 | xer_ov = 0; | |
219 | T0 = (uint64_t)T0 / (uint64_t)T1; | |
220 | } else { | |
d9bce9d9 | 221 | xer_ov = 1; |
966439a6 | 222 | xer_so = 1; |
d9bce9d9 JM |
223 | T0 = 0; |
224 | } | |
225 | } | |
226 | #endif | |
227 | ||
fdabc366 FB |
228 | void do_mullwo (void) |
229 | { | |
d9bce9d9 | 230 | int64_t res = (int64_t)T0 * (int64_t)T1; |
fdabc366 FB |
231 | |
232 | if (likely((int32_t)res == res)) { | |
233 | xer_ov = 0; | |
234 | } else { | |
235 | xer_ov = 1; | |
236 | xer_so = 1; | |
237 | } | |
238 | T0 = (int32_t)res; | |
239 | } | |
240 | ||
d9bce9d9 JM |
241 | #if defined(TARGET_PPC64) |
242 | void do_mulldo (void) | |
fdabc366 | 243 | { |
d9bce9d9 JM |
244 | int64_t th; |
245 | uint64_t tl; | |
246 | ||
9d901a20 | 247 | muls64(&tl, &th, T0, T1); |
6f2d8978 | 248 | T0 = (int64_t)tl; |
88ad920b | 249 | /* If th != 0 && th != -1, then we had an overflow */ |
6f2d8978 | 250 | if (likely((uint64_t)(th + 1) <= 1)) { |
fdabc366 | 251 | xer_ov = 0; |
fdabc366 FB |
252 | } else { |
253 | xer_ov = 1; | |
fdabc366 | 254 | } |
6f2d8978 | 255 | xer_so |= xer_ov; |
fdabc366 | 256 | } |
d9bce9d9 | 257 | #endif |
fdabc366 | 258 | |
d9bce9d9 | 259 | void do_nego (void) |
fdabc366 | 260 | { |
d9bce9d9 | 261 | if (likely((int32_t)T0 != INT32_MIN)) { |
fdabc366 | 262 | xer_ov = 0; |
d9bce9d9 | 263 | T0 = -(int32_t)T0; |
fdabc366 | 264 | } else { |
fdabc366 | 265 | xer_ov = 1; |
d9bce9d9 | 266 | xer_so = 1; |
fdabc366 | 267 | } |
fdabc366 FB |
268 | } |
269 | ||
d9bce9d9 JM |
270 | #if defined(TARGET_PPC64) |
271 | void do_nego_64 (void) | |
fdabc366 | 272 | { |
d9bce9d9 | 273 | if (likely((int64_t)T0 != INT64_MIN)) { |
fdabc366 | 274 | xer_ov = 0; |
d9bce9d9 | 275 | T0 = -(int64_t)T0; |
fdabc366 | 276 | } else { |
fdabc366 | 277 | xer_ov = 1; |
d9bce9d9 | 278 | xer_so = 1; |
fdabc366 FB |
279 | } |
280 | } | |
d9bce9d9 | 281 | #endif |
fdabc366 FB |
282 | |
283 | void do_subfe (void) | |
284 | { | |
285 | T0 = T1 + ~T0 + xer_ca; | |
d9bce9d9 JM |
286 | if (likely((uint32_t)T0 >= (uint32_t)T1 && |
287 | (xer_ca == 0 || (uint32_t)T0 != (uint32_t)T1))) { | |
fdabc366 FB |
288 | xer_ca = 0; |
289 | } else { | |
290 | xer_ca = 1; | |
291 | } | |
292 | } | |
293 | ||
d9bce9d9 JM |
294 | #if defined(TARGET_PPC64) |
295 | void do_subfe_64 (void) | |
fdabc366 | 296 | { |
fdabc366 | 297 | T0 = T1 + ~T0 + xer_ca; |
d9bce9d9 JM |
298 | if (likely((uint64_t)T0 >= (uint64_t)T1 && |
299 | (xer_ca == 0 || (uint64_t)T0 != (uint64_t)T1))) { | |
300 | xer_ca = 0; | |
301 | } else { | |
302 | xer_ca = 1; | |
303 | } | |
304 | } | |
305 | #endif | |
306 | ||
307 | void do_subfmeo (void) | |
308 | { | |
309 | T1 = T0; | |
310 | T0 = ~T0 + xer_ca - 1; | |
c3e10c7b JM |
311 | xer_ov = ((uint32_t)~T1 & ((uint32_t)~T1 ^ (uint32_t)T0)) >> 31; |
312 | xer_so |= xer_ov; | |
d9bce9d9 | 313 | if (likely((uint32_t)T1 != UINT32_MAX)) |
fdabc366 | 314 | xer_ca = 1; |
c3e10c7b JM |
315 | else |
316 | xer_ca = 0; | |
fdabc366 FB |
317 | } |
318 | ||
d9bce9d9 JM |
319 | #if defined(TARGET_PPC64) |
320 | void do_subfmeo_64 (void) | |
fdabc366 FB |
321 | { |
322 | T1 = T0; | |
323 | T0 = ~T0 + xer_ca - 1; | |
c3e10c7b JM |
324 | xer_ov = ((uint64_t)~T1 & ((uint64_t)~T1 ^ (uint64_t)T0)) >> 63; |
325 | xer_so |= xer_ov; | |
d9bce9d9 | 326 | if (likely((uint64_t)T1 != UINT64_MAX)) |
fdabc366 | 327 | xer_ca = 1; |
c3e10c7b JM |
328 | else |
329 | xer_ca = 0; | |
fdabc366 | 330 | } |
d9bce9d9 | 331 | #endif |
fdabc366 FB |
332 | |
333 | void do_subfzeo (void) | |
334 | { | |
335 | T1 = T0; | |
336 | T0 = ~T0 + xer_ca; | |
c3e10c7b JM |
337 | xer_ov = (((uint32_t)~T1 ^ UINT32_MAX) & |
338 | ((uint32_t)(~T1) ^ (uint32_t)T0)) >> 31; | |
339 | xer_so |= xer_ov; | |
d9bce9d9 | 340 | if (likely((uint32_t)T0 >= (uint32_t)~T1)) { |
fdabc366 FB |
341 | xer_ca = 0; |
342 | } else { | |
343 | xer_ca = 1; | |
344 | } | |
345 | } | |
346 | ||
d9bce9d9 JM |
347 | #if defined(TARGET_PPC64) |
348 | void do_subfzeo_64 (void) | |
349 | { | |
350 | T1 = T0; | |
351 | T0 = ~T0 + xer_ca; | |
c3e10c7b JM |
352 | xer_ov = (((uint64_t)~T1 ^ UINT64_MAX) & |
353 | ((uint64_t)(~T1) ^ (uint64_t)T0)) >> 63; | |
354 | xer_so |= xer_ov; | |
d9bce9d9 JM |
355 | if (likely((uint64_t)T0 >= (uint64_t)~T1)) { |
356 | xer_ca = 0; | |
357 | } else { | |
358 | xer_ca = 1; | |
359 | } | |
360 | } | |
361 | #endif | |
362 | ||
603fccce JM |
363 | void do_cntlzw (void) |
364 | { | |
365 | T0 = clz32(T0); | |
366 | } | |
367 | ||
368 | #if defined(TARGET_PPC64) | |
369 | void do_cntlzd (void) | |
370 | { | |
371 | T0 = clz64(T0); | |
372 | } | |
373 | #endif | |
374 | ||
9a64fbe4 FB |
375 | /* shift right arithmetic helper */ |
376 | void do_sraw (void) | |
377 | { | |
378 | int32_t ret; | |
379 | ||
fdabc366 | 380 | if (likely(!(T1 & 0x20UL))) { |
d9bce9d9 | 381 | if (likely((uint32_t)T1 != 0)) { |
fdabc366 FB |
382 | ret = (int32_t)T0 >> (T1 & 0x1fUL); |
383 | if (likely(ret >= 0 || ((int32_t)T0 & ((1 << T1) - 1)) == 0)) { | |
76a66253 | 384 | xer_ca = 0; |
fdabc366 | 385 | } else { |
76a66253 | 386 | xer_ca = 1; |
fdabc366 FB |
387 | } |
388 | } else { | |
76a66253 | 389 | ret = T0; |
fdabc366 FB |
390 | xer_ca = 0; |
391 | } | |
392 | } else { | |
6f2d8978 | 393 | ret = UINT32_MAX * ((uint32_t)T0 >> 31); |
fdabc366 FB |
394 | if (likely(ret >= 0 || ((uint32_t)T0 & ~0x80000000UL) == 0)) { |
395 | xer_ca = 0; | |
76a66253 | 396 | } else { |
9a64fbe4 | 397 | xer_ca = 1; |
76a66253 | 398 | } |
fdabc366 | 399 | } |
4b3686fa | 400 | T0 = ret; |
9a64fbe4 FB |
401 | } |
402 | ||
d9bce9d9 JM |
403 | #if defined(TARGET_PPC64) |
404 | void do_srad (void) | |
405 | { | |
406 | int64_t ret; | |
407 | ||
408 | if (likely(!(T1 & 0x40UL))) { | |
409 | if (likely((uint64_t)T1 != 0)) { | |
410 | ret = (int64_t)T0 >> (T1 & 0x3FUL); | |
411 | if (likely(ret >= 0 || ((int64_t)T0 & ((1 << T1) - 1)) == 0)) { | |
412 | xer_ca = 0; | |
413 | } else { | |
414 | xer_ca = 1; | |
415 | } | |
416 | } else { | |
417 | ret = T0; | |
418 | xer_ca = 0; | |
419 | } | |
420 | } else { | |
6f2d8978 | 421 | ret = UINT64_MAX * ((uint64_t)T0 >> 63); |
d9bce9d9 JM |
422 | if (likely(ret >= 0 || ((uint64_t)T0 & ~0x8000000000000000ULL) == 0)) { |
423 | xer_ca = 0; | |
424 | } else { | |
425 | xer_ca = 1; | |
426 | } | |
427 | } | |
428 | T0 = ret; | |
429 | } | |
430 | #endif | |
431 | ||
d9bce9d9 JM |
432 | void do_popcntb (void) |
433 | { | |
434 | uint32_t ret; | |
435 | int i; | |
436 | ||
437 | ret = 0; | |
438 | for (i = 0; i < 32; i += 8) | |
603fccce | 439 | ret |= ctpop8((T0 >> i) & 0xFF) << i; |
d9bce9d9 JM |
440 | T0 = ret; |
441 | } | |
442 | ||
443 | #if defined(TARGET_PPC64) | |
444 | void do_popcntb_64 (void) | |
445 | { | |
446 | uint64_t ret; | |
447 | int i; | |
448 | ||
449 | ret = 0; | |
450 | for (i = 0; i < 64; i += 8) | |
603fccce | 451 | ret |= ctpop8((T0 >> i) & 0xFF) << i; |
d9bce9d9 JM |
452 | T0 = ret; |
453 | } | |
454 | #endif | |
455 | ||
fdabc366 | 456 | /*****************************************************************************/ |
9a64fbe4 | 457 | /* Floating point operations helpers */ |
0ca9d380 | 458 | static always_inline int fpisneg (float64 d) |
7c58044c | 459 | { |
0ca9d380 | 460 | CPU_DoubleU u; |
7c58044c | 461 | |
0ca9d380 | 462 | u.d = d; |
7c58044c | 463 | |
0ca9d380 | 464 | return u.ll >> 63 != 0; |
7c58044c JM |
465 | } |
466 | ||
0ca9d380 | 467 | static always_inline int isden (float64 d) |
7c58044c | 468 | { |
0ca9d380 | 469 | CPU_DoubleU u; |
7c58044c | 470 | |
0ca9d380 | 471 | u.d = d; |
7c58044c | 472 | |
0ca9d380 | 473 | return ((u.ll >> 52) & 0x7FF) == 0; |
7c58044c JM |
474 | } |
475 | ||
0ca9d380 | 476 | static always_inline int iszero (float64 d) |
7c58044c | 477 | { |
0ca9d380 | 478 | CPU_DoubleU u; |
7c58044c | 479 | |
0ca9d380 | 480 | u.d = d; |
7c58044c | 481 | |
0ca9d380 | 482 | return (u.ll & ~0x8000000000000000ULL) == 0; |
7c58044c JM |
483 | } |
484 | ||
0ca9d380 | 485 | static always_inline int isinfinity (float64 d) |
7c58044c | 486 | { |
0ca9d380 | 487 | CPU_DoubleU u; |
7c58044c | 488 | |
0ca9d380 | 489 | u.d = d; |
7c58044c | 490 | |
0ca9d380 AJ |
491 | return ((u.ll >> 52) & 0x7FF) == 0x7FF && |
492 | (u.ll & 0x000FFFFFFFFFFFFFULL) == 0; | |
7c58044c JM |
493 | } |
494 | ||
495 | void do_compute_fprf (int set_fprf) | |
496 | { | |
497 | int isneg; | |
498 | ||
499 | isneg = fpisneg(FT0); | |
500 | if (unlikely(float64_is_nan(FT0))) { | |
501 | if (float64_is_signaling_nan(FT0)) { | |
502 | /* Signaling NaN: flags are undefined */ | |
503 | T0 = 0x00; | |
504 | } else { | |
505 | /* Quiet NaN */ | |
506 | T0 = 0x11; | |
507 | } | |
508 | } else if (unlikely(isinfinity(FT0))) { | |
509 | /* +/- infinity */ | |
510 | if (isneg) | |
511 | T0 = 0x09; | |
512 | else | |
513 | T0 = 0x05; | |
514 | } else { | |
515 | if (iszero(FT0)) { | |
516 | /* +/- zero */ | |
517 | if (isneg) | |
518 | T0 = 0x12; | |
519 | else | |
520 | T0 = 0x02; | |
521 | } else { | |
522 | if (isden(FT0)) { | |
523 | /* Denormalized numbers */ | |
524 | T0 = 0x10; | |
525 | } else { | |
526 | /* Normalized numbers */ | |
527 | T0 = 0x00; | |
528 | } | |
529 | if (isneg) { | |
530 | T0 |= 0x08; | |
531 | } else { | |
532 | T0 |= 0x04; | |
533 | } | |
534 | } | |
535 | } | |
536 | if (set_fprf) { | |
537 | /* We update FPSCR_FPRF */ | |
538 | env->fpscr &= ~(0x1F << FPSCR_FPRF); | |
539 | env->fpscr |= T0 << FPSCR_FPRF; | |
540 | } | |
541 | /* We just need fpcc to update Rc1 */ | |
542 | T0 &= 0xF; | |
543 | } | |
544 | ||
545 | /* Floating-point invalid operations exception */ | |
546 | static always_inline void fload_invalid_op_excp (int op) | |
547 | { | |
548 | int ve; | |
549 | ||
550 | ve = fpscr_ve; | |
551 | if (op & POWERPC_EXCP_FP_VXSNAN) { | |
552 | /* Operation on signaling NaN */ | |
553 | env->fpscr |= 1 << FPSCR_VXSNAN; | |
554 | } | |
555 | if (op & POWERPC_EXCP_FP_VXSOFT) { | |
556 | /* Software-defined condition */ | |
557 | env->fpscr |= 1 << FPSCR_VXSOFT; | |
558 | } | |
559 | switch (op & ~(POWERPC_EXCP_FP_VXSOFT | POWERPC_EXCP_FP_VXSNAN)) { | |
560 | case POWERPC_EXCP_FP_VXISI: | |
561 | /* Magnitude subtraction of infinities */ | |
562 | env->fpscr |= 1 << FPSCR_VXISI; | |
563 | goto update_arith; | |
564 | case POWERPC_EXCP_FP_VXIDI: | |
565 | /* Division of infinity by infinity */ | |
566 | env->fpscr |= 1 << FPSCR_VXIDI; | |
567 | goto update_arith; | |
568 | case POWERPC_EXCP_FP_VXZDZ: | |
569 | /* Division of zero by zero */ | |
570 | env->fpscr |= 1 << FPSCR_VXZDZ; | |
571 | goto update_arith; | |
572 | case POWERPC_EXCP_FP_VXIMZ: | |
573 | /* Multiplication of zero by infinity */ | |
574 | env->fpscr |= 1 << FPSCR_VXIMZ; | |
575 | goto update_arith; | |
576 | case POWERPC_EXCP_FP_VXVC: | |
577 | /* Ordered comparison of NaN */ | |
578 | env->fpscr |= 1 << FPSCR_VXVC; | |
579 | env->fpscr &= ~(0xF << FPSCR_FPCC); | |
580 | env->fpscr |= 0x11 << FPSCR_FPCC; | |
581 | /* We must update the target FPR before raising the exception */ | |
582 | if (ve != 0) { | |
583 | env->exception_index = POWERPC_EXCP_PROGRAM; | |
584 | env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC; | |
585 | /* Update the floating-point enabled exception summary */ | |
586 | env->fpscr |= 1 << FPSCR_FEX; | |
587 | /* Exception is differed */ | |
588 | ve = 0; | |
589 | } | |
590 | break; | |
591 | case POWERPC_EXCP_FP_VXSQRT: | |
592 | /* Square root of a negative number */ | |
593 | env->fpscr |= 1 << FPSCR_VXSQRT; | |
594 | update_arith: | |
595 | env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI)); | |
596 | if (ve == 0) { | |
597 | /* Set the result to quiet NaN */ | |
6f2d8978 | 598 | FT0 = UINT64_MAX; |
7c58044c JM |
599 | env->fpscr &= ~(0xF << FPSCR_FPCC); |
600 | env->fpscr |= 0x11 << FPSCR_FPCC; | |
601 | } | |
602 | break; | |
603 | case POWERPC_EXCP_FP_VXCVI: | |
604 | /* Invalid conversion */ | |
605 | env->fpscr |= 1 << FPSCR_VXCVI; | |
606 | env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI)); | |
607 | if (ve == 0) { | |
608 | /* Set the result to quiet NaN */ | |
6f2d8978 | 609 | FT0 = UINT64_MAX; |
7c58044c JM |
610 | env->fpscr &= ~(0xF << FPSCR_FPCC); |
611 | env->fpscr |= 0x11 << FPSCR_FPCC; | |
612 | } | |
613 | break; | |
614 | } | |
615 | /* Update the floating-point invalid operation summary */ | |
616 | env->fpscr |= 1 << FPSCR_VX; | |
617 | /* Update the floating-point exception summary */ | |
618 | env->fpscr |= 1 << FPSCR_FX; | |
619 | if (ve != 0) { | |
620 | /* Update the floating-point enabled exception summary */ | |
621 | env->fpscr |= 1 << FPSCR_FEX; | |
622 | if (msr_fe0 != 0 || msr_fe1 != 0) | |
623 | do_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_FP | op); | |
624 | } | |
625 | } | |
626 | ||
627 | static always_inline void float_zero_divide_excp (void) | |
628 | { | |
0ca9d380 | 629 | CPU_DoubleU u0, u1; |
7c58044c JM |
630 | |
631 | env->fpscr |= 1 << FPSCR_ZX; | |
632 | env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI)); | |
633 | /* Update the floating-point exception summary */ | |
634 | env->fpscr |= 1 << FPSCR_FX; | |
635 | if (fpscr_ze != 0) { | |
636 | /* Update the floating-point enabled exception summary */ | |
637 | env->fpscr |= 1 << FPSCR_FEX; | |
638 | if (msr_fe0 != 0 || msr_fe1 != 0) { | |
639 | do_raise_exception_err(POWERPC_EXCP_PROGRAM, | |
640 | POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX); | |
641 | } | |
642 | } else { | |
643 | /* Set the result to infinity */ | |
0ca9d380 AJ |
644 | u0.d = FT0; |
645 | u1.d = FT1; | |
646 | u0.ll = ((u0.ll ^ u1.ll) & 0x8000000000000000ULL); | |
647 | u0.ll |= 0x7FFULL << 52; | |
648 | FT0 = u0.d; | |
7c58044c JM |
649 | } |
650 | } | |
651 | ||
652 | static always_inline void float_overflow_excp (void) | |
653 | { | |
654 | env->fpscr |= 1 << FPSCR_OX; | |
655 | /* Update the floating-point exception summary */ | |
656 | env->fpscr |= 1 << FPSCR_FX; | |
657 | if (fpscr_oe != 0) { | |
658 | /* XXX: should adjust the result */ | |
659 | /* Update the floating-point enabled exception summary */ | |
660 | env->fpscr |= 1 << FPSCR_FEX; | |
661 | /* We must update the target FPR before raising the exception */ | |
662 | env->exception_index = POWERPC_EXCP_PROGRAM; | |
663 | env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX; | |
664 | } else { | |
665 | env->fpscr |= 1 << FPSCR_XX; | |
666 | env->fpscr |= 1 << FPSCR_FI; | |
667 | } | |
668 | } | |
669 | ||
670 | static always_inline void float_underflow_excp (void) | |
671 | { | |
672 | env->fpscr |= 1 << FPSCR_UX; | |
673 | /* Update the floating-point exception summary */ | |
674 | env->fpscr |= 1 << FPSCR_FX; | |
675 | if (fpscr_ue != 0) { | |
676 | /* XXX: should adjust the result */ | |
677 | /* Update the floating-point enabled exception summary */ | |
678 | env->fpscr |= 1 << FPSCR_FEX; | |
679 | /* We must update the target FPR before raising the exception */ | |
680 | env->exception_index = POWERPC_EXCP_PROGRAM; | |
681 | env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX; | |
682 | } | |
683 | } | |
684 | ||
685 | static always_inline void float_inexact_excp (void) | |
686 | { | |
687 | env->fpscr |= 1 << FPSCR_XX; | |
688 | /* Update the floating-point exception summary */ | |
689 | env->fpscr |= 1 << FPSCR_FX; | |
690 | if (fpscr_xe != 0) { | |
691 | /* Update the floating-point enabled exception summary */ | |
692 | env->fpscr |= 1 << FPSCR_FEX; | |
693 | /* We must update the target FPR before raising the exception */ | |
694 | env->exception_index = POWERPC_EXCP_PROGRAM; | |
695 | env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX; | |
696 | } | |
697 | } | |
698 | ||
699 | static always_inline void fpscr_set_rounding_mode (void) | |
700 | { | |
701 | int rnd_type; | |
702 | ||
703 | /* Set rounding mode */ | |
704 | switch (fpscr_rn) { | |
705 | case 0: | |
706 | /* Best approximation (round to nearest) */ | |
707 | rnd_type = float_round_nearest_even; | |
708 | break; | |
709 | case 1: | |
710 | /* Smaller magnitude (round toward zero) */ | |
711 | rnd_type = float_round_to_zero; | |
712 | break; | |
713 | case 2: | |
714 | /* Round toward +infinite */ | |
715 | rnd_type = float_round_up; | |
716 | break; | |
717 | default: | |
718 | case 3: | |
719 | /* Round toward -infinite */ | |
720 | rnd_type = float_round_down; | |
721 | break; | |
722 | } | |
723 | set_float_rounding_mode(rnd_type, &env->fp_status); | |
724 | } | |
725 | ||
726 | void do_fpscr_setbit (int bit) | |
727 | { | |
728 | int prev; | |
729 | ||
730 | prev = (env->fpscr >> bit) & 1; | |
731 | env->fpscr |= 1 << bit; | |
732 | if (prev == 0) { | |
733 | switch (bit) { | |
734 | case FPSCR_VX: | |
735 | env->fpscr |= 1 << FPSCR_FX; | |
736 | if (fpscr_ve) | |
737 | goto raise_ve; | |
738 | case FPSCR_OX: | |
739 | env->fpscr |= 1 << FPSCR_FX; | |
740 | if (fpscr_oe) | |
741 | goto raise_oe; | |
742 | break; | |
743 | case FPSCR_UX: | |
744 | env->fpscr |= 1 << FPSCR_FX; | |
745 | if (fpscr_ue) | |
746 | goto raise_ue; | |
747 | break; | |
748 | case FPSCR_ZX: | |
749 | env->fpscr |= 1 << FPSCR_FX; | |
750 | if (fpscr_ze) | |
751 | goto raise_ze; | |
752 | break; | |
753 | case FPSCR_XX: | |
754 | env->fpscr |= 1 << FPSCR_FX; | |
755 | if (fpscr_xe) | |
756 | goto raise_xe; | |
757 | break; | |
758 | case FPSCR_VXSNAN: | |
759 | case FPSCR_VXISI: | |
760 | case FPSCR_VXIDI: | |
761 | case FPSCR_VXZDZ: | |
762 | case FPSCR_VXIMZ: | |
763 | case FPSCR_VXVC: | |
764 | case FPSCR_VXSOFT: | |
765 | case FPSCR_VXSQRT: | |
766 | case FPSCR_VXCVI: | |
767 | env->fpscr |= 1 << FPSCR_VX; | |
768 | env->fpscr |= 1 << FPSCR_FX; | |
769 | if (fpscr_ve != 0) | |
770 | goto raise_ve; | |
771 | break; | |
772 | case FPSCR_VE: | |
773 | if (fpscr_vx != 0) { | |
774 | raise_ve: | |
775 | env->error_code = POWERPC_EXCP_FP; | |
776 | if (fpscr_vxsnan) | |
777 | env->error_code |= POWERPC_EXCP_FP_VXSNAN; | |
778 | if (fpscr_vxisi) | |
779 | env->error_code |= POWERPC_EXCP_FP_VXISI; | |
780 | if (fpscr_vxidi) | |
781 | env->error_code |= POWERPC_EXCP_FP_VXIDI; | |
782 | if (fpscr_vxzdz) | |
783 | env->error_code |= POWERPC_EXCP_FP_VXZDZ; | |
784 | if (fpscr_vximz) | |
785 | env->error_code |= POWERPC_EXCP_FP_VXIMZ; | |
786 | if (fpscr_vxvc) | |
787 | env->error_code |= POWERPC_EXCP_FP_VXVC; | |
788 | if (fpscr_vxsoft) | |
789 | env->error_code |= POWERPC_EXCP_FP_VXSOFT; | |
790 | if (fpscr_vxsqrt) | |
791 | env->error_code |= POWERPC_EXCP_FP_VXSQRT; | |
792 | if (fpscr_vxcvi) | |
793 | env->error_code |= POWERPC_EXCP_FP_VXCVI; | |
794 | goto raise_excp; | |
795 | } | |
796 | break; | |
797 | case FPSCR_OE: | |
798 | if (fpscr_ox != 0) { | |
799 | raise_oe: | |
800 | env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX; | |
801 | goto raise_excp; | |
802 | } | |
803 | break; | |
804 | case FPSCR_UE: | |
805 | if (fpscr_ux != 0) { | |
806 | raise_ue: | |
807 | env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX; | |
808 | goto raise_excp; | |
809 | } | |
810 | break; | |
811 | case FPSCR_ZE: | |
812 | if (fpscr_zx != 0) { | |
813 | raise_ze: | |
814 | env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX; | |
815 | goto raise_excp; | |
816 | } | |
817 | break; | |
818 | case FPSCR_XE: | |
819 | if (fpscr_xx != 0) { | |
820 | raise_xe: | |
821 | env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX; | |
822 | goto raise_excp; | |
823 | } | |
824 | break; | |
825 | case FPSCR_RN1: | |
826 | case FPSCR_RN: | |
827 | fpscr_set_rounding_mode(); | |
828 | break; | |
829 | default: | |
830 | break; | |
831 | raise_excp: | |
832 | /* Update the floating-point enabled exception summary */ | |
833 | env->fpscr |= 1 << FPSCR_FEX; | |
834 | /* We have to update Rc1 before raising the exception */ | |
835 | env->exception_index = POWERPC_EXCP_PROGRAM; | |
836 | break; | |
837 | } | |
838 | } | |
839 | } | |
840 | ||
841 | #if defined(WORDS_BIGENDIAN) | |
842 | #define WORD0 0 | |
843 | #define WORD1 1 | |
844 | #else | |
845 | #define WORD0 1 | |
846 | #define WORD1 0 | |
847 | #endif | |
848 | void do_store_fpscr (uint32_t mask) | |
849 | { | |
850 | /* | |
851 | * We use only the 32 LSB of the incoming fpr | |
852 | */ | |
0ca9d380 | 853 | CPU_DoubleU u; |
7c58044c JM |
854 | uint32_t prev, new; |
855 | int i; | |
856 | ||
857 | u.d = FT0; | |
858 | prev = env->fpscr; | |
0ca9d380 | 859 | new = u.l.lower; |
7c58044c JM |
860 | new &= ~0x90000000; |
861 | new |= prev & 0x90000000; | |
862 | for (i = 0; i < 7; i++) { | |
863 | if (mask & (1 << i)) { | |
864 | env->fpscr &= ~(0xF << (4 * i)); | |
865 | env->fpscr |= new & (0xF << (4 * i)); | |
866 | } | |
867 | } | |
868 | /* Update VX and FEX */ | |
869 | if (fpscr_ix != 0) | |
870 | env->fpscr |= 1 << FPSCR_VX; | |
5567025f AJ |
871 | else |
872 | env->fpscr &= ~(1 << FPSCR_VX); | |
7c58044c JM |
873 | if ((fpscr_ex & fpscr_eex) != 0) { |
874 | env->fpscr |= 1 << FPSCR_FEX; | |
875 | env->exception_index = POWERPC_EXCP_PROGRAM; | |
876 | /* XXX: we should compute it properly */ | |
877 | env->error_code = POWERPC_EXCP_FP; | |
878 | } | |
5567025f AJ |
879 | else |
880 | env->fpscr &= ~(1 << FPSCR_FEX); | |
7c58044c JM |
881 | fpscr_set_rounding_mode(); |
882 | } | |
883 | #undef WORD0 | |
884 | #undef WORD1 | |
885 | ||
886 | #ifdef CONFIG_SOFTFLOAT | |
887 | void do_float_check_status (void) | |
888 | { | |
889 | if (env->exception_index == POWERPC_EXCP_PROGRAM && | |
890 | (env->error_code & POWERPC_EXCP_FP)) { | |
891 | /* Differred floating-point exception after target FPR update */ | |
892 | if (msr_fe0 != 0 || msr_fe1 != 0) | |
893 | do_raise_exception_err(env->exception_index, env->error_code); | |
894 | } else if (env->fp_status.float_exception_flags & float_flag_overflow) { | |
895 | float_overflow_excp(); | |
896 | } else if (env->fp_status.float_exception_flags & float_flag_underflow) { | |
897 | float_underflow_excp(); | |
898 | } else if (env->fp_status.float_exception_flags & float_flag_inexact) { | |
899 | float_inexact_excp(); | |
900 | } | |
901 | } | |
902 | #endif | |
903 | ||
904 | #if USE_PRECISE_EMULATION | |
905 | void do_fadd (void) | |
906 | { | |
907 | if (unlikely(float64_is_signaling_nan(FT0) || | |
908 | float64_is_signaling_nan(FT1))) { | |
909 | /* sNaN addition */ | |
910 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
911 | } else if (likely(isfinite(FT0) || isfinite(FT1) || | |
912 | fpisneg(FT0) == fpisneg(FT1))) { | |
913 | FT0 = float64_add(FT0, FT1, &env->fp_status); | |
914 | } else { | |
915 | /* Magnitude subtraction of infinities */ | |
916 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI); | |
917 | } | |
918 | } | |
919 | ||
920 | void do_fsub (void) | |
921 | { | |
922 | if (unlikely(float64_is_signaling_nan(FT0) || | |
923 | float64_is_signaling_nan(FT1))) { | |
924 | /* sNaN subtraction */ | |
925 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
926 | } else if (likely(isfinite(FT0) || isfinite(FT1) || | |
927 | fpisneg(FT0) != fpisneg(FT1))) { | |
928 | FT0 = float64_sub(FT0, FT1, &env->fp_status); | |
929 | } else { | |
930 | /* Magnitude subtraction of infinities */ | |
931 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI); | |
932 | } | |
933 | } | |
934 | ||
935 | void do_fmul (void) | |
936 | { | |
937 | if (unlikely(float64_is_signaling_nan(FT0) || | |
938 | float64_is_signaling_nan(FT1))) { | |
939 | /* sNaN multiplication */ | |
940 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
5bda2843 JM |
941 | } else if (unlikely((isinfinity(FT0) && iszero(FT1)) || |
942 | (iszero(FT0) && isinfinity(FT1)))) { | |
7c58044c JM |
943 | /* Multiplication of zero by infinity */ |
944 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ); | |
945 | } else { | |
946 | FT0 = float64_mul(FT0, FT1, &env->fp_status); | |
947 | } | |
948 | } | |
949 | ||
950 | void do_fdiv (void) | |
951 | { | |
952 | if (unlikely(float64_is_signaling_nan(FT0) || | |
953 | float64_is_signaling_nan(FT1))) { | |
954 | /* sNaN division */ | |
955 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
956 | } else if (unlikely(isinfinity(FT0) && isinfinity(FT1))) { | |
957 | /* Division of infinity by infinity */ | |
958 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXIDI); | |
959 | } else if (unlikely(iszero(FT1))) { | |
960 | if (iszero(FT0)) { | |
961 | /* Division of zero by zero */ | |
962 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXZDZ); | |
963 | } else { | |
964 | /* Division by zero */ | |
965 | float_zero_divide_excp(); | |
966 | } | |
967 | } else { | |
968 | FT0 = float64_div(FT0, FT1, &env->fp_status); | |
969 | } | |
970 | } | |
971 | #endif /* USE_PRECISE_EMULATION */ | |
972 | ||
9a64fbe4 FB |
973 | void do_fctiw (void) |
974 | { | |
0ca9d380 | 975 | CPU_DoubleU p; |
9a64fbe4 | 976 | |
7c58044c JM |
977 | if (unlikely(float64_is_signaling_nan(FT0))) { |
978 | /* sNaN conversion */ | |
979 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI); | |
980 | } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) { | |
981 | /* qNan / infinity conversion */ | |
982 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI); | |
983 | } else { | |
0ca9d380 | 984 | p.ll = float64_to_int32(FT0, &env->fp_status); |
e864cabd | 985 | #if USE_PRECISE_EMULATION |
7c58044c JM |
986 | /* XXX: higher bits are not supposed to be significant. |
987 | * to make tests easier, return the same as a real PowerPC 750 | |
988 | */ | |
0ca9d380 | 989 | p.ll |= 0xFFF80000ULL << 32; |
e864cabd | 990 | #endif |
7c58044c JM |
991 | FT0 = p.d; |
992 | } | |
9a64fbe4 FB |
993 | } |
994 | ||
995 | void do_fctiwz (void) | |
996 | { | |
0ca9d380 | 997 | CPU_DoubleU p; |
4ecc3190 | 998 | |
7c58044c JM |
999 | if (unlikely(float64_is_signaling_nan(FT0))) { |
1000 | /* sNaN conversion */ | |
1001 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI); | |
1002 | } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) { | |
1003 | /* qNan / infinity conversion */ | |
1004 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI); | |
1005 | } else { | |
0ca9d380 | 1006 | p.ll = float64_to_int32_round_to_zero(FT0, &env->fp_status); |
e864cabd | 1007 | #if USE_PRECISE_EMULATION |
7c58044c JM |
1008 | /* XXX: higher bits are not supposed to be significant. |
1009 | * to make tests easier, return the same as a real PowerPC 750 | |
1010 | */ | |
0ca9d380 | 1011 | p.ll |= 0xFFF80000ULL << 32; |
e864cabd | 1012 | #endif |
7c58044c JM |
1013 | FT0 = p.d; |
1014 | } | |
9a64fbe4 FB |
1015 | } |
1016 | ||
426613db JM |
1017 | #if defined(TARGET_PPC64) |
1018 | void do_fcfid (void) | |
1019 | { | |
0ca9d380 | 1020 | CPU_DoubleU p; |
426613db JM |
1021 | |
1022 | p.d = FT0; | |
0ca9d380 | 1023 | FT0 = int64_to_float64(p.ll, &env->fp_status); |
426613db JM |
1024 | } |
1025 | ||
1026 | void do_fctid (void) | |
1027 | { | |
0ca9d380 | 1028 | CPU_DoubleU p; |
426613db | 1029 | |
7c58044c JM |
1030 | if (unlikely(float64_is_signaling_nan(FT0))) { |
1031 | /* sNaN conversion */ | |
1032 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI); | |
1033 | } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) { | |
1034 | /* qNan / infinity conversion */ | |
1035 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI); | |
1036 | } else { | |
0ca9d380 | 1037 | p.ll = float64_to_int64(FT0, &env->fp_status); |
7c58044c JM |
1038 | FT0 = p.d; |
1039 | } | |
426613db JM |
1040 | } |
1041 | ||
1042 | void do_fctidz (void) | |
1043 | { | |
0ca9d380 | 1044 | CPU_DoubleU p; |
426613db | 1045 | |
7c58044c JM |
1046 | if (unlikely(float64_is_signaling_nan(FT0))) { |
1047 | /* sNaN conversion */ | |
1048 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI); | |
1049 | } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) { | |
1050 | /* qNan / infinity conversion */ | |
1051 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI); | |
1052 | } else { | |
0ca9d380 | 1053 | p.ll = float64_to_int64_round_to_zero(FT0, &env->fp_status); |
7c58044c JM |
1054 | FT0 = p.d; |
1055 | } | |
426613db JM |
1056 | } |
1057 | ||
1058 | #endif | |
1059 | ||
b068d6a7 | 1060 | static always_inline void do_fri (int rounding_mode) |
d7e4b87e | 1061 | { |
7c58044c JM |
1062 | if (unlikely(float64_is_signaling_nan(FT0))) { |
1063 | /* sNaN round */ | |
1064 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI); | |
1065 | } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) { | |
1066 | /* qNan / infinity round */ | |
1067 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI); | |
1068 | } else { | |
1069 | set_float_rounding_mode(rounding_mode, &env->fp_status); | |
1070 | FT0 = float64_round_to_int(FT0, &env->fp_status); | |
1071 | /* Restore rounding mode from FPSCR */ | |
1072 | fpscr_set_rounding_mode(); | |
1073 | } | |
d7e4b87e JM |
1074 | } |
1075 | ||
1076 | void do_frin (void) | |
1077 | { | |
1078 | do_fri(float_round_nearest_even); | |
1079 | } | |
1080 | ||
1081 | void do_friz (void) | |
1082 | { | |
1083 | do_fri(float_round_to_zero); | |
1084 | } | |
1085 | ||
1086 | void do_frip (void) | |
1087 | { | |
1088 | do_fri(float_round_up); | |
1089 | } | |
1090 | ||
1091 | void do_frim (void) | |
1092 | { | |
1093 | do_fri(float_round_down); | |
1094 | } | |
1095 | ||
e864cabd JM |
1096 | #if USE_PRECISE_EMULATION |
1097 | void do_fmadd (void) | |
1098 | { | |
7c58044c JM |
1099 | if (unlikely(float64_is_signaling_nan(FT0) || |
1100 | float64_is_signaling_nan(FT1) || | |
1101 | float64_is_signaling_nan(FT2))) { | |
1102 | /* sNaN operation */ | |
1103 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1104 | } else { | |
e864cabd | 1105 | #ifdef FLOAT128 |
7c58044c JM |
1106 | /* This is the way the PowerPC specification defines it */ |
1107 | float128 ft0_128, ft1_128; | |
1108 | ||
1109 | ft0_128 = float64_to_float128(FT0, &env->fp_status); | |
1110 | ft1_128 = float64_to_float128(FT1, &env->fp_status); | |
1111 | ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status); | |
1112 | ft1_128 = float64_to_float128(FT2, &env->fp_status); | |
1113 | ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status); | |
1114 | FT0 = float128_to_float64(ft0_128, &env->fp_status); | |
e864cabd | 1115 | #else |
7c58044c JM |
1116 | /* This is OK on x86 hosts */ |
1117 | FT0 = (FT0 * FT1) + FT2; | |
e864cabd | 1118 | #endif |
7c58044c | 1119 | } |
e864cabd JM |
1120 | } |
1121 | ||
1122 | void do_fmsub (void) | |
1123 | { | |
7c58044c JM |
1124 | if (unlikely(float64_is_signaling_nan(FT0) || |
1125 | float64_is_signaling_nan(FT1) || | |
1126 | float64_is_signaling_nan(FT2))) { | |
1127 | /* sNaN operation */ | |
1128 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1129 | } else { | |
e864cabd | 1130 | #ifdef FLOAT128 |
7c58044c JM |
1131 | /* This is the way the PowerPC specification defines it */ |
1132 | float128 ft0_128, ft1_128; | |
1133 | ||
1134 | ft0_128 = float64_to_float128(FT0, &env->fp_status); | |
1135 | ft1_128 = float64_to_float128(FT1, &env->fp_status); | |
1136 | ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status); | |
1137 | ft1_128 = float64_to_float128(FT2, &env->fp_status); | |
1138 | ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status); | |
1139 | FT0 = float128_to_float64(ft0_128, &env->fp_status); | |
e864cabd | 1140 | #else |
7c58044c JM |
1141 | /* This is OK on x86 hosts */ |
1142 | FT0 = (FT0 * FT1) - FT2; | |
e864cabd | 1143 | #endif |
7c58044c | 1144 | } |
e864cabd JM |
1145 | } |
1146 | #endif /* USE_PRECISE_EMULATION */ | |
1147 | ||
4b3686fa FB |
1148 | void do_fnmadd (void) |
1149 | { | |
7c58044c JM |
1150 | if (unlikely(float64_is_signaling_nan(FT0) || |
1151 | float64_is_signaling_nan(FT1) || | |
1152 | float64_is_signaling_nan(FT2))) { | |
1153 | /* sNaN operation */ | |
1154 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1155 | } else { | |
e864cabd JM |
1156 | #if USE_PRECISE_EMULATION |
1157 | #ifdef FLOAT128 | |
7c58044c JM |
1158 | /* This is the way the PowerPC specification defines it */ |
1159 | float128 ft0_128, ft1_128; | |
1160 | ||
1161 | ft0_128 = float64_to_float128(FT0, &env->fp_status); | |
1162 | ft1_128 = float64_to_float128(FT1, &env->fp_status); | |
1163 | ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status); | |
1164 | ft1_128 = float64_to_float128(FT2, &env->fp_status); | |
1165 | ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status); | |
1166 | FT0 = float128_to_float64(ft0_128, &env->fp_status); | |
e864cabd | 1167 | #else |
7c58044c JM |
1168 | /* This is OK on x86 hosts */ |
1169 | FT0 = (FT0 * FT1) + FT2; | |
e864cabd JM |
1170 | #endif |
1171 | #else | |
7c58044c JM |
1172 | FT0 = float64_mul(FT0, FT1, &env->fp_status); |
1173 | FT0 = float64_add(FT0, FT2, &env->fp_status); | |
e864cabd | 1174 | #endif |
7c58044c JM |
1175 | if (likely(!isnan(FT0))) |
1176 | FT0 = float64_chs(FT0); | |
1177 | } | |
4b3686fa FB |
1178 | } |
1179 | ||
1180 | void do_fnmsub (void) | |
1181 | { | |
7c58044c JM |
1182 | if (unlikely(float64_is_signaling_nan(FT0) || |
1183 | float64_is_signaling_nan(FT1) || | |
1184 | float64_is_signaling_nan(FT2))) { | |
1185 | /* sNaN operation */ | |
1186 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1187 | } else { | |
e864cabd JM |
1188 | #if USE_PRECISE_EMULATION |
1189 | #ifdef FLOAT128 | |
7c58044c JM |
1190 | /* This is the way the PowerPC specification defines it */ |
1191 | float128 ft0_128, ft1_128; | |
1192 | ||
1193 | ft0_128 = float64_to_float128(FT0, &env->fp_status); | |
1194 | ft1_128 = float64_to_float128(FT1, &env->fp_status); | |
1195 | ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status); | |
1196 | ft1_128 = float64_to_float128(FT2, &env->fp_status); | |
1197 | ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status); | |
1198 | FT0 = float128_to_float64(ft0_128, &env->fp_status); | |
e864cabd | 1199 | #else |
7c58044c JM |
1200 | /* This is OK on x86 hosts */ |
1201 | FT0 = (FT0 * FT1) - FT2; | |
e864cabd JM |
1202 | #endif |
1203 | #else | |
7c58044c JM |
1204 | FT0 = float64_mul(FT0, FT1, &env->fp_status); |
1205 | FT0 = float64_sub(FT0, FT2, &env->fp_status); | |
e864cabd | 1206 | #endif |
7c58044c JM |
1207 | if (likely(!isnan(FT0))) |
1208 | FT0 = float64_chs(FT0); | |
1209 | } | |
1ef59d0a FB |
1210 | } |
1211 | ||
7c58044c JM |
1212 | #if USE_PRECISE_EMULATION |
1213 | void do_frsp (void) | |
1214 | { | |
1215 | if (unlikely(float64_is_signaling_nan(FT0))) { | |
1216 | /* sNaN square root */ | |
1217 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1218 | } else { | |
1219 | FT0 = float64_to_float32(FT0, &env->fp_status); | |
1220 | } | |
1221 | } | |
1222 | #endif /* USE_PRECISE_EMULATION */ | |
1223 | ||
9a64fbe4 FB |
1224 | void do_fsqrt (void) |
1225 | { | |
7c58044c JM |
1226 | if (unlikely(float64_is_signaling_nan(FT0))) { |
1227 | /* sNaN square root */ | |
1228 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1229 | } else if (unlikely(fpisneg(FT0) && !iszero(FT0))) { | |
1230 | /* Square root of a negative nonzero number */ | |
1231 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT); | |
1232 | } else { | |
1233 | FT0 = float64_sqrt(FT0, &env->fp_status); | |
1234 | } | |
9a64fbe4 FB |
1235 | } |
1236 | ||
d7e4b87e JM |
1237 | void do_fre (void) |
1238 | { | |
0ca9d380 | 1239 | CPU_DoubleU p; |
d7e4b87e | 1240 | |
7c58044c JM |
1241 | if (unlikely(float64_is_signaling_nan(FT0))) { |
1242 | /* sNaN reciprocal */ | |
1243 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1244 | } else if (unlikely(iszero(FT0))) { | |
1245 | /* Zero reciprocal */ | |
1246 | float_zero_divide_excp(); | |
1247 | } else if (likely(isnormal(FT0))) { | |
d7e4b87e JM |
1248 | FT0 = float64_div(1.0, FT0, &env->fp_status); |
1249 | } else { | |
1250 | p.d = FT0; | |
0ca9d380 AJ |
1251 | if (p.ll == 0x8000000000000000ULL) { |
1252 | p.ll = 0xFFF0000000000000ULL; | |
1253 | } else if (p.ll == 0x0000000000000000ULL) { | |
1254 | p.ll = 0x7FF0000000000000ULL; | |
d7e4b87e | 1255 | } else if (isnan(FT0)) { |
0ca9d380 | 1256 | p.ll = 0x7FF8000000000000ULL; |
7c58044c | 1257 | } else if (fpisneg(FT0)) { |
0ca9d380 | 1258 | p.ll = 0x8000000000000000ULL; |
d7e4b87e | 1259 | } else { |
0ca9d380 | 1260 | p.ll = 0x0000000000000000ULL; |
d7e4b87e JM |
1261 | } |
1262 | FT0 = p.d; | |
1263 | } | |
1264 | } | |
1265 | ||
9a64fbe4 FB |
1266 | void do_fres (void) |
1267 | { | |
0ca9d380 | 1268 | CPU_DoubleU p; |
4ecc3190 | 1269 | |
7c58044c JM |
1270 | if (unlikely(float64_is_signaling_nan(FT0))) { |
1271 | /* sNaN reciprocal */ | |
1272 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1273 | } else if (unlikely(iszero(FT0))) { | |
1274 | /* Zero reciprocal */ | |
1275 | float_zero_divide_excp(); | |
1276 | } else if (likely(isnormal(FT0))) { | |
e864cabd JM |
1277 | #if USE_PRECISE_EMULATION |
1278 | FT0 = float64_div(1.0, FT0, &env->fp_status); | |
1279 | FT0 = float64_to_float32(FT0, &env->fp_status); | |
1280 | #else | |
76a66253 | 1281 | FT0 = float32_div(1.0, FT0, &env->fp_status); |
e864cabd | 1282 | #endif |
4ecc3190 FB |
1283 | } else { |
1284 | p.d = FT0; | |
0ca9d380 AJ |
1285 | if (p.ll == 0x8000000000000000ULL) { |
1286 | p.ll = 0xFFF0000000000000ULL; | |
1287 | } else if (p.ll == 0x0000000000000000ULL) { | |
1288 | p.ll = 0x7FF0000000000000ULL; | |
4ecc3190 | 1289 | } else if (isnan(FT0)) { |
0ca9d380 | 1290 | p.ll = 0x7FF8000000000000ULL; |
7c58044c | 1291 | } else if (fpisneg(FT0)) { |
0ca9d380 | 1292 | p.ll = 0x8000000000000000ULL; |
4ecc3190 | 1293 | } else { |
0ca9d380 | 1294 | p.ll = 0x0000000000000000ULL; |
4ecc3190 FB |
1295 | } |
1296 | FT0 = p.d; | |
1297 | } | |
9a64fbe4 FB |
1298 | } |
1299 | ||
4ecc3190 | 1300 | void do_frsqrte (void) |
9a64fbe4 | 1301 | { |
0ca9d380 | 1302 | CPU_DoubleU p; |
4ecc3190 | 1303 | |
7c58044c JM |
1304 | if (unlikely(float64_is_signaling_nan(FT0))) { |
1305 | /* sNaN reciprocal square root */ | |
1306 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1307 | } else if (unlikely(fpisneg(FT0) && !iszero(FT0))) { | |
1308 | /* Reciprocal square root of a negative nonzero number */ | |
1309 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT); | |
1310 | } else if (likely(isnormal(FT0))) { | |
fdabc366 FB |
1311 | FT0 = float64_sqrt(FT0, &env->fp_status); |
1312 | FT0 = float32_div(1.0, FT0, &env->fp_status); | |
4ecc3190 FB |
1313 | } else { |
1314 | p.d = FT0; | |
0ca9d380 AJ |
1315 | if (p.ll == 0x8000000000000000ULL) { |
1316 | p.ll = 0xFFF0000000000000ULL; | |
1317 | } else if (p.ll == 0x0000000000000000ULL) { | |
1318 | p.ll = 0x7FF0000000000000ULL; | |
4ecc3190 | 1319 | } else if (isnan(FT0)) { |
0ca9d380 | 1320 | p.ll |= 0x000FFFFFFFFFFFFFULL; |
7c58044c | 1321 | } else if (fpisneg(FT0)) { |
0ca9d380 | 1322 | p.ll = 0x7FF8000000000000ULL; |
4ecc3190 | 1323 | } else { |
0ca9d380 | 1324 | p.ll = 0x0000000000000000ULL; |
4ecc3190 FB |
1325 | } |
1326 | FT0 = p.d; | |
1327 | } | |
9a64fbe4 FB |
1328 | } |
1329 | ||
1330 | void do_fsel (void) | |
1331 | { | |
7c58044c | 1332 | if (!fpisneg(FT0) || iszero(FT0)) |
9a64fbe4 | 1333 | FT0 = FT1; |
4ecc3190 FB |
1334 | else |
1335 | FT0 = FT2; | |
9a64fbe4 FB |
1336 | } |
1337 | ||
1338 | void do_fcmpu (void) | |
1339 | { | |
7c58044c JM |
1340 | if (unlikely(float64_is_signaling_nan(FT0) || |
1341 | float64_is_signaling_nan(FT1))) { | |
1342 | /* sNaN comparison */ | |
1343 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1344 | } else { | |
fdabc366 FB |
1345 | if (float64_lt(FT0, FT1, &env->fp_status)) { |
1346 | T0 = 0x08UL; | |
1347 | } else if (!float64_le(FT0, FT1, &env->fp_status)) { | |
1348 | T0 = 0x04UL; | |
1349 | } else { | |
1350 | T0 = 0x02UL; | |
1351 | } | |
9a64fbe4 | 1352 | } |
7c58044c JM |
1353 | env->fpscr &= ~(0x0F << FPSCR_FPRF); |
1354 | env->fpscr |= T0 << FPSCR_FPRF; | |
9a64fbe4 FB |
1355 | } |
1356 | ||
1357 | void do_fcmpo (void) | |
1358 | { | |
7c58044c JM |
1359 | if (unlikely(float64_is_nan(FT0) || |
1360 | float64_is_nan(FT1))) { | |
1361 | if (float64_is_signaling_nan(FT0) || | |
1362 | float64_is_signaling_nan(FT1)) { | |
1363 | /* sNaN comparison */ | |
1364 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | | |
1365 | POWERPC_EXCP_FP_VXVC); | |
1366 | } else { | |
1367 | /* qNaN comparison */ | |
1368 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXVC); | |
1369 | } | |
1370 | } else { | |
fdabc366 FB |
1371 | if (float64_lt(FT0, FT1, &env->fp_status)) { |
1372 | T0 = 0x08UL; | |
1373 | } else if (!float64_le(FT0, FT1, &env->fp_status)) { | |
1374 | T0 = 0x04UL; | |
1375 | } else { | |
1376 | T0 = 0x02UL; | |
1377 | } | |
9a64fbe4 | 1378 | } |
7c58044c JM |
1379 | env->fpscr &= ~(0x0F << FPSCR_FPRF); |
1380 | env->fpscr |= T0 << FPSCR_FPRF; | |
9a64fbe4 FB |
1381 | } |
1382 | ||
76a66253 | 1383 | #if !defined (CONFIG_USER_ONLY) |
6b80055d | 1384 | void cpu_dump_rfi (target_ulong RA, target_ulong msr); |
0411a972 JM |
1385 | |
1386 | void do_store_msr (void) | |
1387 | { | |
a4f30719 | 1388 | T0 = hreg_store_msr(env, T0, 0); |
0411a972 JM |
1389 | if (T0 != 0) { |
1390 | env->interrupt_request |= CPU_INTERRUPT_EXITTB; | |
1391 | do_raise_exception(T0); | |
1392 | } | |
1393 | } | |
1394 | ||
1395 | static always_inline void __do_rfi (target_ulong nip, target_ulong msr, | |
1396 | target_ulong msrm, int keep_msrh) | |
9a64fbe4 | 1397 | { |
426613db | 1398 | #if defined(TARGET_PPC64) |
0411a972 JM |
1399 | if (msr & (1ULL << MSR_SF)) { |
1400 | nip = (uint64_t)nip; | |
1401 | msr &= (uint64_t)msrm; | |
a42bd6cc | 1402 | } else { |
0411a972 JM |
1403 | nip = (uint32_t)nip; |
1404 | msr = (uint32_t)(msr & msrm); | |
1405 | if (keep_msrh) | |
1406 | msr |= env->msr & ~((uint64_t)0xFFFFFFFF); | |
a42bd6cc | 1407 | } |
426613db | 1408 | #else |
0411a972 JM |
1409 | nip = (uint32_t)nip; |
1410 | msr &= (uint32_t)msrm; | |
426613db | 1411 | #endif |
0411a972 JM |
1412 | /* XXX: beware: this is false if VLE is supported */ |
1413 | env->nip = nip & ~((target_ulong)0x00000003); | |
a4f30719 | 1414 | hreg_store_msr(env, msr, 1); |
fdabc366 | 1415 | #if defined (DEBUG_OP) |
0411a972 | 1416 | cpu_dump_rfi(env->nip, env->msr); |
fdabc366 | 1417 | #endif |
0411a972 JM |
1418 | /* No need to raise an exception here, |
1419 | * as rfi is always the last insn of a TB | |
1420 | */ | |
fdabc366 | 1421 | env->interrupt_request |= CPU_INTERRUPT_EXITTB; |
9a64fbe4 | 1422 | } |
d9bce9d9 | 1423 | |
0411a972 JM |
1424 | void do_rfi (void) |
1425 | { | |
1426 | __do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1], | |
1427 | ~((target_ulong)0xFFFF0000), 1); | |
1428 | } | |
1429 | ||
d9bce9d9 | 1430 | #if defined(TARGET_PPC64) |
426613db JM |
1431 | void do_rfid (void) |
1432 | { | |
0411a972 JM |
1433 | __do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1], |
1434 | ~((target_ulong)0xFFFF0000), 0); | |
d9bce9d9 | 1435 | } |
7863667f | 1436 | |
be147d08 JM |
1437 | void do_hrfid (void) |
1438 | { | |
0411a972 JM |
1439 | __do_rfi(env->spr[SPR_HSRR0], env->spr[SPR_HSRR1], |
1440 | ~((target_ulong)0xFFFF0000), 0); | |
be147d08 JM |
1441 | } |
1442 | #endif | |
76a66253 | 1443 | #endif |
9a64fbe4 | 1444 | |
76a66253 | 1445 | void do_tw (int flags) |
9a64fbe4 | 1446 | { |
d9bce9d9 JM |
1447 | if (!likely(!(((int32_t)T0 < (int32_t)T1 && (flags & 0x10)) || |
1448 | ((int32_t)T0 > (int32_t)T1 && (flags & 0x08)) || | |
1449 | ((int32_t)T0 == (int32_t)T1 && (flags & 0x04)) || | |
1450 | ((uint32_t)T0 < (uint32_t)T1 && (flags & 0x02)) || | |
a42bd6cc | 1451 | ((uint32_t)T0 > (uint32_t)T1 && (flags & 0x01))))) { |
e1833e1f | 1452 | do_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP); |
a42bd6cc | 1453 | } |
9a64fbe4 FB |
1454 | } |
1455 | ||
d9bce9d9 JM |
1456 | #if defined(TARGET_PPC64) |
1457 | void do_td (int flags) | |
1458 | { | |
1459 | if (!likely(!(((int64_t)T0 < (int64_t)T1 && (flags & 0x10)) || | |
1460 | ((int64_t)T0 > (int64_t)T1 && (flags & 0x08)) || | |
1461 | ((int64_t)T0 == (int64_t)T1 && (flags & 0x04)) || | |
1462 | ((uint64_t)T0 < (uint64_t)T1 && (flags & 0x02)) || | |
1463 | ((uint64_t)T0 > (uint64_t)T1 && (flags & 0x01))))) | |
e1833e1f | 1464 | do_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP); |
d9bce9d9 JM |
1465 | } |
1466 | #endif | |
1467 | ||
fdabc366 | 1468 | /*****************************************************************************/ |
76a66253 JM |
1469 | /* PowerPC 601 specific instructions (POWER bridge) */ |
1470 | void do_POWER_abso (void) | |
9a64fbe4 | 1471 | { |
9c7e37e7 | 1472 | if ((int32_t)T0 == INT32_MIN) { |
76a66253 JM |
1473 | T0 = INT32_MAX; |
1474 | xer_ov = 1; | |
9c7e37e7 | 1475 | } else if ((int32_t)T0 < 0) { |
76a66253 JM |
1476 | T0 = -T0; |
1477 | xer_ov = 0; | |
9c7e37e7 JM |
1478 | } else { |
1479 | xer_ov = 0; | |
76a66253 | 1480 | } |
9c7e37e7 | 1481 | xer_so |= xer_ov; |
9a64fbe4 FB |
1482 | } |
1483 | ||
76a66253 | 1484 | void do_POWER_clcs (void) |
9a64fbe4 | 1485 | { |
76a66253 JM |
1486 | switch (T0) { |
1487 | case 0x0CUL: | |
1488 | /* Instruction cache line size */ | |
d63001d1 | 1489 | T0 = env->icache_line_size; |
76a66253 JM |
1490 | break; |
1491 | case 0x0DUL: | |
1492 | /* Data cache line size */ | |
d63001d1 | 1493 | T0 = env->dcache_line_size; |
76a66253 JM |
1494 | break; |
1495 | case 0x0EUL: | |
1496 | /* Minimum cache line size */ | |
d63001d1 JM |
1497 | T0 = env->icache_line_size < env->dcache_line_size ? |
1498 | env->icache_line_size : env->dcache_line_size; | |
76a66253 JM |
1499 | break; |
1500 | case 0x0FUL: | |
1501 | /* Maximum cache line size */ | |
d63001d1 JM |
1502 | T0 = env->icache_line_size > env->dcache_line_size ? |
1503 | env->icache_line_size : env->dcache_line_size; | |
76a66253 JM |
1504 | break; |
1505 | default: | |
1506 | /* Undefined */ | |
1507 | break; | |
1508 | } | |
1509 | } | |
1510 | ||
1511 | void do_POWER_div (void) | |
1512 | { | |
1513 | uint64_t tmp; | |
1514 | ||
6f2d8978 JM |
1515 | if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) || |
1516 | (int32_t)T1 == 0) { | |
1517 | T0 = UINT32_MAX * ((uint32_t)T0 >> 31); | |
76a66253 JM |
1518 | env->spr[SPR_MQ] = 0; |
1519 | } else { | |
1520 | tmp = ((uint64_t)T0 << 32) | env->spr[SPR_MQ]; | |
1521 | env->spr[SPR_MQ] = tmp % T1; | |
d9bce9d9 | 1522 | T0 = tmp / (int32_t)T1; |
76a66253 JM |
1523 | } |
1524 | } | |
1525 | ||
1526 | void do_POWER_divo (void) | |
1527 | { | |
1528 | int64_t tmp; | |
1529 | ||
6f2d8978 JM |
1530 | if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) || |
1531 | (int32_t)T1 == 0) { | |
1532 | T0 = UINT32_MAX * ((uint32_t)T0 >> 31); | |
76a66253 JM |
1533 | env->spr[SPR_MQ] = 0; |
1534 | xer_ov = 1; | |
76a66253 JM |
1535 | } else { |
1536 | tmp = ((uint64_t)T0 << 32) | env->spr[SPR_MQ]; | |
1537 | env->spr[SPR_MQ] = tmp % T1; | |
d9bce9d9 | 1538 | tmp /= (int32_t)T1; |
76a66253 JM |
1539 | if (tmp > (int64_t)INT32_MAX || tmp < (int64_t)INT32_MIN) { |
1540 | xer_ov = 1; | |
76a66253 JM |
1541 | } else { |
1542 | xer_ov = 0; | |
1543 | } | |
1544 | T0 = tmp; | |
1545 | } | |
6f2d8978 | 1546 | xer_so |= xer_ov; |
76a66253 JM |
1547 | } |
1548 | ||
1549 | void do_POWER_divs (void) | |
1550 | { | |
6f2d8978 JM |
1551 | if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) || |
1552 | (int32_t)T1 == 0) { | |
1553 | T0 = UINT32_MAX * ((uint32_t)T0 >> 31); | |
76a66253 JM |
1554 | env->spr[SPR_MQ] = 0; |
1555 | } else { | |
1556 | env->spr[SPR_MQ] = T0 % T1; | |
d9bce9d9 | 1557 | T0 = (int32_t)T0 / (int32_t)T1; |
76a66253 JM |
1558 | } |
1559 | } | |
1560 | ||
1561 | void do_POWER_divso (void) | |
1562 | { | |
6f2d8978 JM |
1563 | if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) || |
1564 | (int32_t)T1 == 0) { | |
1565 | T0 = UINT32_MAX * ((uint32_t)T0 >> 31); | |
76a66253 JM |
1566 | env->spr[SPR_MQ] = 0; |
1567 | xer_ov = 1; | |
76a66253 | 1568 | } else { |
d9bce9d9 JM |
1569 | T0 = (int32_t)T0 / (int32_t)T1; |
1570 | env->spr[SPR_MQ] = (int32_t)T0 % (int32_t)T1; | |
76a66253 JM |
1571 | xer_ov = 0; |
1572 | } | |
6f2d8978 | 1573 | xer_so |= xer_ov; |
76a66253 JM |
1574 | } |
1575 | ||
1576 | void do_POWER_dozo (void) | |
1577 | { | |
d9bce9d9 | 1578 | if ((int32_t)T1 > (int32_t)T0) { |
76a66253 JM |
1579 | T2 = T0; |
1580 | T0 = T1 - T0; | |
d9bce9d9 JM |
1581 | if (((uint32_t)(~T2) ^ (uint32_t)T1 ^ UINT32_MAX) & |
1582 | ((uint32_t)(~T2) ^ (uint32_t)T0) & (1UL << 31)) { | |
76a66253 | 1583 | xer_ov = 1; |
966439a6 | 1584 | xer_so = 1; |
76a66253 JM |
1585 | } else { |
1586 | xer_ov = 0; | |
1587 | } | |
1588 | } else { | |
1589 | T0 = 0; | |
1590 | xer_ov = 0; | |
1591 | } | |
1592 | } | |
1593 | ||
1594 | void do_POWER_maskg (void) | |
1595 | { | |
1596 | uint32_t ret; | |
1597 | ||
d9bce9d9 | 1598 | if ((uint32_t)T0 == (uint32_t)(T1 + 1)) { |
6f2d8978 | 1599 | ret = UINT32_MAX; |
76a66253 | 1600 | } else { |
6f2d8978 JM |
1601 | ret = (UINT32_MAX >> ((uint32_t)T0)) ^ |
1602 | ((UINT32_MAX >> ((uint32_t)T1)) >> 1); | |
d9bce9d9 | 1603 | if ((uint32_t)T0 > (uint32_t)T1) |
76a66253 JM |
1604 | ret = ~ret; |
1605 | } | |
1606 | T0 = ret; | |
1607 | } | |
1608 | ||
1609 | void do_POWER_mulo (void) | |
1610 | { | |
1611 | uint64_t tmp; | |
1612 | ||
1613 | tmp = (uint64_t)T0 * (uint64_t)T1; | |
1614 | env->spr[SPR_MQ] = tmp >> 32; | |
1615 | T0 = tmp; | |
1616 | if (tmp >> 32 != ((uint64_t)T0 >> 16) * ((uint64_t)T1 >> 16)) { | |
1617 | xer_ov = 1; | |
1618 | xer_so = 1; | |
1619 | } else { | |
1620 | xer_ov = 0; | |
1621 | } | |
1622 | } | |
1623 | ||
1624 | #if !defined (CONFIG_USER_ONLY) | |
1625 | void do_POWER_rac (void) | |
1626 | { | |
76a66253 | 1627 | mmu_ctx_t ctx; |
faadf50e | 1628 | int nb_BATs; |
76a66253 JM |
1629 | |
1630 | /* We don't have to generate many instances of this instruction, | |
1631 | * as rac is supervisor only. | |
1632 | */ | |
faadf50e JM |
1633 | /* XXX: FIX THIS: Pretend we have no BAT */ |
1634 | nb_BATs = env->nb_BATs; | |
1635 | env->nb_BATs = 0; | |
1636 | if (get_physical_address(env, &ctx, T0, 0, ACCESS_INT) == 0) | |
76a66253 | 1637 | T0 = ctx.raddr; |
faadf50e | 1638 | env->nb_BATs = nb_BATs; |
76a66253 JM |
1639 | } |
1640 | ||
1641 | void do_POWER_rfsvc (void) | |
1642 | { | |
0411a972 | 1643 | __do_rfi(env->lr, env->ctr, 0x0000FFFF, 0); |
76a66253 JM |
1644 | } |
1645 | ||
056401ea JM |
1646 | void do_store_hid0_601 (void) |
1647 | { | |
1648 | uint32_t hid0; | |
1649 | ||
1650 | hid0 = env->spr[SPR_HID0]; | |
1651 | if ((T0 ^ hid0) & 0x00000008) { | |
1652 | /* Change current endianness */ | |
1653 | env->hflags &= ~(1 << MSR_LE); | |
1654 | env->hflags_nmsr &= ~(1 << MSR_LE); | |
1655 | env->hflags_nmsr |= (1 << MSR_LE) & (((T0 >> 3) & 1) << MSR_LE); | |
1656 | env->hflags |= env->hflags_nmsr; | |
1657 | if (loglevel != 0) { | |
1658 | fprintf(logfile, "%s: set endianness to %c => " ADDRX "\n", | |
1659 | __func__, T0 & 0x8 ? 'l' : 'b', env->hflags); | |
1660 | } | |
1661 | } | |
1662 | env->spr[SPR_HID0] = T0; | |
76a66253 JM |
1663 | } |
1664 | #endif | |
1665 | ||
1666 | /*****************************************************************************/ | |
1667 | /* 602 specific instructions */ | |
1668 | /* mfrom is the most crazy instruction ever seen, imho ! */ | |
1669 | /* Real implementation uses a ROM table. Do the same */ | |
1670 | #define USE_MFROM_ROM_TABLE | |
1671 | void do_op_602_mfrom (void) | |
1672 | { | |
1673 | if (likely(T0 < 602)) { | |
d9bce9d9 | 1674 | #if defined(USE_MFROM_ROM_TABLE) |
76a66253 JM |
1675 | #include "mfrom_table.c" |
1676 | T0 = mfrom_ROM_table[T0]; | |
fdabc366 | 1677 | #else |
76a66253 JM |
1678 | double d; |
1679 | /* Extremly decomposed: | |
1680 | * -T0 / 256 | |
1681 | * T0 = 256 * log10(10 + 1.0) + 0.5 | |
1682 | */ | |
1683 | d = T0; | |
1684 | d = float64_div(d, 256, &env->fp_status); | |
1685 | d = float64_chs(d); | |
1686 | d = exp10(d); // XXX: use float emulation function | |
1687 | d = float64_add(d, 1.0, &env->fp_status); | |
1688 | d = log10(d); // XXX: use float emulation function | |
1689 | d = float64_mul(d, 256, &env->fp_status); | |
1690 | d = float64_add(d, 0.5, &env->fp_status); | |
1691 | T0 = float64_round_to_int(d, &env->fp_status); | |
fdabc366 | 1692 | #endif |
76a66253 JM |
1693 | } else { |
1694 | T0 = 0; | |
1695 | } | |
1696 | } | |
1697 | ||
1698 | /*****************************************************************************/ | |
1699 | /* Embedded PowerPC specific helpers */ | |
76a66253 JM |
1700 | void do_405_check_sat (void) |
1701 | { | |
d9bce9d9 JM |
1702 | if (!likely((((uint32_t)T1 ^ (uint32_t)T2) >> 31) || |
1703 | !(((uint32_t)T0 ^ (uint32_t)T2) >> 31))) { | |
76a66253 JM |
1704 | /* Saturate result */ |
1705 | if (T2 >> 31) { | |
1706 | T0 = INT32_MIN; | |
1707 | } else { | |
1708 | T0 = INT32_MAX; | |
1709 | } | |
1710 | } | |
1711 | } | |
1712 | ||
a750fc0b JM |
1713 | /* XXX: to be improved to check access rights when in user-mode */ |
1714 | void do_load_dcr (void) | |
1715 | { | |
1716 | target_ulong val; | |
1717 | ||
1718 | if (unlikely(env->dcr_env == NULL)) { | |
1719 | if (loglevel != 0) { | |
1720 | fprintf(logfile, "No DCR environment\n"); | |
1721 | } | |
e1833e1f JM |
1722 | do_raise_exception_err(POWERPC_EXCP_PROGRAM, |
1723 | POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL); | |
a750fc0b JM |
1724 | } else if (unlikely(ppc_dcr_read(env->dcr_env, T0, &val) != 0)) { |
1725 | if (loglevel != 0) { | |
1726 | fprintf(logfile, "DCR read error %d %03x\n", (int)T0, (int)T0); | |
1727 | } | |
e1833e1f JM |
1728 | do_raise_exception_err(POWERPC_EXCP_PROGRAM, |
1729 | POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG); | |
a750fc0b JM |
1730 | } else { |
1731 | T0 = val; | |
1732 | } | |
1733 | } | |
1734 | ||
1735 | void do_store_dcr (void) | |
1736 | { | |
1737 | if (unlikely(env->dcr_env == NULL)) { | |
1738 | if (loglevel != 0) { | |
1739 | fprintf(logfile, "No DCR environment\n"); | |
1740 | } | |
e1833e1f JM |
1741 | do_raise_exception_err(POWERPC_EXCP_PROGRAM, |
1742 | POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL); | |
a750fc0b JM |
1743 | } else if (unlikely(ppc_dcr_write(env->dcr_env, T0, T1) != 0)) { |
1744 | if (loglevel != 0) { | |
1745 | fprintf(logfile, "DCR write error %d %03x\n", (int)T0, (int)T0); | |
1746 | } | |
e1833e1f JM |
1747 | do_raise_exception_err(POWERPC_EXCP_PROGRAM, |
1748 | POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG); | |
a750fc0b JM |
1749 | } |
1750 | } | |
1751 | ||
76a66253 | 1752 | #if !defined(CONFIG_USER_ONLY) |
a42bd6cc | 1753 | void do_40x_rfci (void) |
76a66253 | 1754 | { |
0411a972 JM |
1755 | __do_rfi(env->spr[SPR_40x_SRR2], env->spr[SPR_40x_SRR3], |
1756 | ~((target_ulong)0xFFFF0000), 0); | |
a42bd6cc JM |
1757 | } |
1758 | ||
1759 | void do_rfci (void) | |
1760 | { | |
0411a972 JM |
1761 | __do_rfi(env->spr[SPR_BOOKE_CSRR0], SPR_BOOKE_CSRR1, |
1762 | ~((target_ulong)0x3FFF0000), 0); | |
a42bd6cc JM |
1763 | } |
1764 | ||
1765 | void do_rfdi (void) | |
1766 | { | |
0411a972 JM |
1767 | __do_rfi(env->spr[SPR_BOOKE_DSRR0], SPR_BOOKE_DSRR1, |
1768 | ~((target_ulong)0x3FFF0000), 0); | |
a42bd6cc JM |
1769 | } |
1770 | ||
1771 | void do_rfmci (void) | |
1772 | { | |
0411a972 JM |
1773 | __do_rfi(env->spr[SPR_BOOKE_MCSRR0], SPR_BOOKE_MCSRR1, |
1774 | ~((target_ulong)0x3FFF0000), 0); | |
76a66253 JM |
1775 | } |
1776 | ||
76a66253 JM |
1777 | void do_load_403_pb (int num) |
1778 | { | |
1779 | T0 = env->pb[num]; | |
1780 | } | |
1781 | ||
1782 | void do_store_403_pb (int num) | |
1783 | { | |
1784 | if (likely(env->pb[num] != T0)) { | |
1785 | env->pb[num] = T0; | |
1786 | /* Should be optimized */ | |
1787 | tlb_flush(env, 1); | |
1788 | } | |
1789 | } | |
1790 | #endif | |
1791 | ||
1792 | /* 440 specific */ | |
1793 | void do_440_dlmzb (void) | |
1794 | { | |
1795 | target_ulong mask; | |
1796 | int i; | |
1797 | ||
1798 | i = 1; | |
1799 | for (mask = 0xFF000000; mask != 0; mask = mask >> 8) { | |
1800 | if ((T0 & mask) == 0) | |
1801 | goto done; | |
1802 | i++; | |
1803 | } | |
1804 | for (mask = 0xFF000000; mask != 0; mask = mask >> 8) { | |
1805 | if ((T1 & mask) == 0) | |
1806 | break; | |
1807 | i++; | |
1808 | } | |
1809 | done: | |
1810 | T0 = i; | |
fdabc366 FB |
1811 | } |
1812 | ||
0487d6a8 JM |
1813 | /* SPE extension helpers */ |
1814 | /* Use a table to make this quicker */ | |
1815 | static uint8_t hbrev[16] = { | |
1816 | 0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE, | |
1817 | 0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF, | |
1818 | }; | |
1819 | ||
b068d6a7 | 1820 | static always_inline uint8_t byte_reverse (uint8_t val) |
0487d6a8 JM |
1821 | { |
1822 | return hbrev[val >> 4] | (hbrev[val & 0xF] << 4); | |
1823 | } | |
1824 | ||
b068d6a7 | 1825 | static always_inline uint32_t word_reverse (uint32_t val) |
0487d6a8 JM |
1826 | { |
1827 | return byte_reverse(val >> 24) | (byte_reverse(val >> 16) << 8) | | |
1828 | (byte_reverse(val >> 8) << 16) | (byte_reverse(val) << 24); | |
1829 | } | |
1830 | ||
3cd7d1dd | 1831 | #define MASKBITS 16 // Random value - to be fixed (implementation dependant) |
0487d6a8 JM |
1832 | void do_brinc (void) |
1833 | { | |
1834 | uint32_t a, b, d, mask; | |
1835 | ||
3cd7d1dd JM |
1836 | mask = UINT32_MAX >> (32 - MASKBITS); |
1837 | a = T0 & mask; | |
1838 | b = T1 & mask; | |
1839 | d = word_reverse(1 + word_reverse(a | ~b)); | |
1840 | T0 = (T0 & ~mask) | (d & b); | |
0487d6a8 JM |
1841 | } |
1842 | ||
1843 | #define DO_SPE_OP2(name) \ | |
1844 | void do_ev##name (void) \ | |
1845 | { \ | |
1846 | T0_64 = ((uint64_t)_do_e##name(T0_64 >> 32, T1_64 >> 32) << 32) | \ | |
1847 | (uint64_t)_do_e##name(T0_64, T1_64); \ | |
1848 | } | |
1849 | ||
1850 | #define DO_SPE_OP1(name) \ | |
1851 | void do_ev##name (void) \ | |
1852 | { \ | |
1853 | T0_64 = ((uint64_t)_do_e##name(T0_64 >> 32) << 32) | \ | |
1854 | (uint64_t)_do_e##name(T0_64); \ | |
1855 | } | |
1856 | ||
1857 | /* Fixed-point vector arithmetic */ | |
b068d6a7 | 1858 | static always_inline uint32_t _do_eabs (uint32_t val) |
0487d6a8 | 1859 | { |
9c7e37e7 JM |
1860 | if ((val & 0x80000000) && val != 0x80000000) |
1861 | val -= val; | |
0487d6a8 JM |
1862 | |
1863 | return val; | |
1864 | } | |
1865 | ||
b068d6a7 | 1866 | static always_inline uint32_t _do_eaddw (uint32_t op1, uint32_t op2) |
0487d6a8 JM |
1867 | { |
1868 | return op1 + op2; | |
1869 | } | |
1870 | ||
b068d6a7 | 1871 | static always_inline int _do_ecntlsw (uint32_t val) |
0487d6a8 JM |
1872 | { |
1873 | if (val & 0x80000000) | |
603fccce | 1874 | return clz32(~val); |
0487d6a8 | 1875 | else |
603fccce | 1876 | return clz32(val); |
0487d6a8 JM |
1877 | } |
1878 | ||
b068d6a7 | 1879 | static always_inline int _do_ecntlzw (uint32_t val) |
0487d6a8 | 1880 | { |
603fccce | 1881 | return clz32(val); |
0487d6a8 JM |
1882 | } |
1883 | ||
b068d6a7 | 1884 | static always_inline uint32_t _do_eneg (uint32_t val) |
0487d6a8 JM |
1885 | { |
1886 | if (val != 0x80000000) | |
9c7e37e7 | 1887 | val -= val; |
0487d6a8 JM |
1888 | |
1889 | return val; | |
1890 | } | |
1891 | ||
b068d6a7 | 1892 | static always_inline uint32_t _do_erlw (uint32_t op1, uint32_t op2) |
0487d6a8 JM |
1893 | { |
1894 | return rotl32(op1, op2); | |
1895 | } | |
1896 | ||
b068d6a7 | 1897 | static always_inline uint32_t _do_erndw (uint32_t val) |
0487d6a8 JM |
1898 | { |
1899 | return (val + 0x000080000000) & 0xFFFF0000; | |
1900 | } | |
1901 | ||
b068d6a7 | 1902 | static always_inline uint32_t _do_eslw (uint32_t op1, uint32_t op2) |
0487d6a8 JM |
1903 | { |
1904 | /* No error here: 6 bits are used */ | |
1905 | return op1 << (op2 & 0x3F); | |
1906 | } | |
1907 | ||
b068d6a7 | 1908 | static always_inline int32_t _do_esrws (int32_t op1, uint32_t op2) |
0487d6a8 JM |
1909 | { |
1910 | /* No error here: 6 bits are used */ | |
1911 | return op1 >> (op2 & 0x3F); | |
1912 | } | |
1913 | ||
b068d6a7 | 1914 | static always_inline uint32_t _do_esrwu (uint32_t op1, uint32_t op2) |
0487d6a8 JM |
1915 | { |
1916 | /* No error here: 6 bits are used */ | |
1917 | return op1 >> (op2 & 0x3F); | |
1918 | } | |
1919 | ||
b068d6a7 | 1920 | static always_inline uint32_t _do_esubfw (uint32_t op1, uint32_t op2) |
0487d6a8 JM |
1921 | { |
1922 | return op2 - op1; | |
1923 | } | |
1924 | ||
1925 | /* evabs */ | |
1926 | DO_SPE_OP1(abs); | |
1927 | /* evaddw */ | |
1928 | DO_SPE_OP2(addw); | |
1929 | /* evcntlsw */ | |
1930 | DO_SPE_OP1(cntlsw); | |
1931 | /* evcntlzw */ | |
1932 | DO_SPE_OP1(cntlzw); | |
1933 | /* evneg */ | |
1934 | DO_SPE_OP1(neg); | |
1935 | /* evrlw */ | |
1936 | DO_SPE_OP2(rlw); | |
1937 | /* evrnd */ | |
1938 | DO_SPE_OP1(rndw); | |
1939 | /* evslw */ | |
1940 | DO_SPE_OP2(slw); | |
1941 | /* evsrws */ | |
1942 | DO_SPE_OP2(srws); | |
1943 | /* evsrwu */ | |
1944 | DO_SPE_OP2(srwu); | |
1945 | /* evsubfw */ | |
1946 | DO_SPE_OP2(subfw); | |
1947 | ||
1948 | /* evsel is a little bit more complicated... */ | |
b068d6a7 | 1949 | static always_inline uint32_t _do_esel (uint32_t op1, uint32_t op2, int n) |
0487d6a8 JM |
1950 | { |
1951 | if (n) | |
1952 | return op1; | |
1953 | else | |
1954 | return op2; | |
1955 | } | |
1956 | ||
1957 | void do_evsel (void) | |
1958 | { | |
1959 | T0_64 = ((uint64_t)_do_esel(T0_64 >> 32, T1_64 >> 32, T0 >> 3) << 32) | | |
1960 | (uint64_t)_do_esel(T0_64, T1_64, (T0 >> 2) & 1); | |
1961 | } | |
1962 | ||
1963 | /* Fixed-point vector comparisons */ | |
1964 | #define DO_SPE_CMP(name) \ | |
1965 | void do_ev##name (void) \ | |
1966 | { \ | |
1967 | T0 = _do_evcmp_merge((uint64_t)_do_e##name(T0_64 >> 32, \ | |
1968 | T1_64 >> 32) << 32, \ | |
1969 | _do_e##name(T0_64, T1_64)); \ | |
1970 | } | |
1971 | ||
b068d6a7 | 1972 | static always_inline uint32_t _do_evcmp_merge (int t0, int t1) |
0487d6a8 JM |
1973 | { |
1974 | return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1); | |
1975 | } | |
b068d6a7 | 1976 | static always_inline int _do_ecmpeq (uint32_t op1, uint32_t op2) |
0487d6a8 JM |
1977 | { |
1978 | return op1 == op2 ? 1 : 0; | |
1979 | } | |
1980 | ||
b068d6a7 | 1981 | static always_inline int _do_ecmpgts (int32_t op1, int32_t op2) |
0487d6a8 JM |
1982 | { |
1983 | return op1 > op2 ? 1 : 0; | |
1984 | } | |
1985 | ||
b068d6a7 | 1986 | static always_inline int _do_ecmpgtu (uint32_t op1, uint32_t op2) |
0487d6a8 JM |
1987 | { |
1988 | return op1 > op2 ? 1 : 0; | |
1989 | } | |
1990 | ||
b068d6a7 | 1991 | static always_inline int _do_ecmplts (int32_t op1, int32_t op2) |
0487d6a8 JM |
1992 | { |
1993 | return op1 < op2 ? 1 : 0; | |
1994 | } | |
1995 | ||
b068d6a7 | 1996 | static always_inline int _do_ecmpltu (uint32_t op1, uint32_t op2) |
0487d6a8 JM |
1997 | { |
1998 | return op1 < op2 ? 1 : 0; | |
1999 | } | |
2000 | ||
2001 | /* evcmpeq */ | |
2002 | DO_SPE_CMP(cmpeq); | |
2003 | /* evcmpgts */ | |
2004 | DO_SPE_CMP(cmpgts); | |
2005 | /* evcmpgtu */ | |
2006 | DO_SPE_CMP(cmpgtu); | |
2007 | /* evcmplts */ | |
2008 | DO_SPE_CMP(cmplts); | |
2009 | /* evcmpltu */ | |
2010 | DO_SPE_CMP(cmpltu); | |
2011 | ||
2012 | /* Single precision floating-point conversions from/to integer */ | |
b068d6a7 | 2013 | static always_inline uint32_t _do_efscfsi (int32_t val) |
0487d6a8 | 2014 | { |
0ca9d380 | 2015 | CPU_FloatU u; |
0487d6a8 JM |
2016 | |
2017 | u.f = int32_to_float32(val, &env->spe_status); | |
2018 | ||
0ca9d380 | 2019 | return u.l; |
0487d6a8 JM |
2020 | } |
2021 | ||
b068d6a7 | 2022 | static always_inline uint32_t _do_efscfui (uint32_t val) |
0487d6a8 | 2023 | { |
0ca9d380 | 2024 | CPU_FloatU u; |
0487d6a8 JM |
2025 | |
2026 | u.f = uint32_to_float32(val, &env->spe_status); | |
2027 | ||
0ca9d380 | 2028 | return u.l; |
0487d6a8 JM |
2029 | } |
2030 | ||
b068d6a7 | 2031 | static always_inline int32_t _do_efsctsi (uint32_t val) |
0487d6a8 | 2032 | { |
0ca9d380 | 2033 | CPU_FloatU u; |
0487d6a8 | 2034 | |
0ca9d380 | 2035 | u.l = val; |
0487d6a8 JM |
2036 | /* NaN are not treated the same way IEEE 754 does */ |
2037 | if (unlikely(isnan(u.f))) | |
2038 | return 0; | |
2039 | ||
2040 | return float32_to_int32(u.f, &env->spe_status); | |
2041 | } | |
2042 | ||
b068d6a7 | 2043 | static always_inline uint32_t _do_efsctui (uint32_t val) |
0487d6a8 | 2044 | { |
0ca9d380 | 2045 | CPU_FloatU u; |
0487d6a8 | 2046 | |
0ca9d380 | 2047 | u.l = val; |
0487d6a8 JM |
2048 | /* NaN are not treated the same way IEEE 754 does */ |
2049 | if (unlikely(isnan(u.f))) | |
2050 | return 0; | |
2051 | ||
2052 | return float32_to_uint32(u.f, &env->spe_status); | |
2053 | } | |
2054 | ||
b068d6a7 | 2055 | static always_inline int32_t _do_efsctsiz (uint32_t val) |
0487d6a8 | 2056 | { |
0ca9d380 | 2057 | CPU_FloatU u; |
0487d6a8 | 2058 | |
0ca9d380 | 2059 | u.l = val; |
0487d6a8 JM |
2060 | /* NaN are not treated the same way IEEE 754 does */ |
2061 | if (unlikely(isnan(u.f))) | |
2062 | return 0; | |
2063 | ||
2064 | return float32_to_int32_round_to_zero(u.f, &env->spe_status); | |
2065 | } | |
2066 | ||
b068d6a7 | 2067 | static always_inline uint32_t _do_efsctuiz (uint32_t val) |
0487d6a8 | 2068 | { |
0ca9d380 | 2069 | CPU_FloatU u; |
0487d6a8 | 2070 | |
0ca9d380 | 2071 | u.l = val; |
0487d6a8 JM |
2072 | /* NaN are not treated the same way IEEE 754 does */ |
2073 | if (unlikely(isnan(u.f))) | |
2074 | return 0; | |
2075 | ||
2076 | return float32_to_uint32_round_to_zero(u.f, &env->spe_status); | |
2077 | } | |
2078 | ||
2079 | void do_efscfsi (void) | |
2080 | { | |
2081 | T0_64 = _do_efscfsi(T0_64); | |
2082 | } | |
2083 | ||
2084 | void do_efscfui (void) | |
2085 | { | |
2086 | T0_64 = _do_efscfui(T0_64); | |
2087 | } | |
2088 | ||
2089 | void do_efsctsi (void) | |
2090 | { | |
2091 | T0_64 = _do_efsctsi(T0_64); | |
2092 | } | |
2093 | ||
2094 | void do_efsctui (void) | |
2095 | { | |
2096 | T0_64 = _do_efsctui(T0_64); | |
2097 | } | |
2098 | ||
2099 | void do_efsctsiz (void) | |
2100 | { | |
2101 | T0_64 = _do_efsctsiz(T0_64); | |
2102 | } | |
2103 | ||
2104 | void do_efsctuiz (void) | |
2105 | { | |
2106 | T0_64 = _do_efsctuiz(T0_64); | |
2107 | } | |
2108 | ||
2109 | /* Single precision floating-point conversion to/from fractional */ | |
b068d6a7 | 2110 | static always_inline uint32_t _do_efscfsf (uint32_t val) |
0487d6a8 | 2111 | { |
0ca9d380 | 2112 | CPU_FloatU u; |
0487d6a8 JM |
2113 | float32 tmp; |
2114 | ||
2115 | u.f = int32_to_float32(val, &env->spe_status); | |
2116 | tmp = int64_to_float32(1ULL << 32, &env->spe_status); | |
2117 | u.f = float32_div(u.f, tmp, &env->spe_status); | |
2118 | ||
0ca9d380 | 2119 | return u.l; |
0487d6a8 JM |
2120 | } |
2121 | ||
b068d6a7 | 2122 | static always_inline uint32_t _do_efscfuf (uint32_t val) |
0487d6a8 | 2123 | { |
0ca9d380 | 2124 | CPU_FloatU u; |
0487d6a8 JM |
2125 | float32 tmp; |
2126 | ||
2127 | u.f = uint32_to_float32(val, &env->spe_status); | |
2128 | tmp = uint64_to_float32(1ULL << 32, &env->spe_status); | |
2129 | u.f = float32_div(u.f, tmp, &env->spe_status); | |
2130 | ||
0ca9d380 | 2131 | return u.l; |
0487d6a8 JM |
2132 | } |
2133 | ||
b068d6a7 | 2134 | static always_inline int32_t _do_efsctsf (uint32_t val) |
0487d6a8 | 2135 | { |
0ca9d380 | 2136 | CPU_FloatU u; |
0487d6a8 JM |
2137 | float32 tmp; |
2138 | ||
0ca9d380 | 2139 | u.l = val; |
0487d6a8 JM |
2140 | /* NaN are not treated the same way IEEE 754 does */ |
2141 | if (unlikely(isnan(u.f))) | |
2142 | return 0; | |
2143 | tmp = uint64_to_float32(1ULL << 32, &env->spe_status); | |
2144 | u.f = float32_mul(u.f, tmp, &env->spe_status); | |
2145 | ||
2146 | return float32_to_int32(u.f, &env->spe_status); | |
2147 | } | |
2148 | ||
b068d6a7 | 2149 | static always_inline uint32_t _do_efsctuf (uint32_t val) |
0487d6a8 | 2150 | { |
0ca9d380 | 2151 | CPU_FloatU u; |
0487d6a8 JM |
2152 | float32 tmp; |
2153 | ||
0ca9d380 | 2154 | u.l = val; |
0487d6a8 JM |
2155 | /* NaN are not treated the same way IEEE 754 does */ |
2156 | if (unlikely(isnan(u.f))) | |
2157 | return 0; | |
2158 | tmp = uint64_to_float32(1ULL << 32, &env->spe_status); | |
2159 | u.f = float32_mul(u.f, tmp, &env->spe_status); | |
2160 | ||
2161 | return float32_to_uint32(u.f, &env->spe_status); | |
2162 | } | |
2163 | ||
b068d6a7 | 2164 | static always_inline int32_t _do_efsctsfz (uint32_t val) |
0487d6a8 | 2165 | { |
0ca9d380 | 2166 | CPU_FloatU u; |
0487d6a8 JM |
2167 | float32 tmp; |
2168 | ||
0ca9d380 | 2169 | u.l = val; |
0487d6a8 JM |
2170 | /* NaN are not treated the same way IEEE 754 does */ |
2171 | if (unlikely(isnan(u.f))) | |
2172 | return 0; | |
2173 | tmp = uint64_to_float32(1ULL << 32, &env->spe_status); | |
2174 | u.f = float32_mul(u.f, tmp, &env->spe_status); | |
2175 | ||
2176 | return float32_to_int32_round_to_zero(u.f, &env->spe_status); | |
2177 | } | |
2178 | ||
b068d6a7 | 2179 | static always_inline uint32_t _do_efsctufz (uint32_t val) |
0487d6a8 | 2180 | { |
0ca9d380 | 2181 | CPU_FloatU u; |
0487d6a8 JM |
2182 | float32 tmp; |
2183 | ||
0ca9d380 | 2184 | u.l = val; |
0487d6a8 JM |
2185 | /* NaN are not treated the same way IEEE 754 does */ |
2186 | if (unlikely(isnan(u.f))) | |
2187 | return 0; | |
2188 | tmp = uint64_to_float32(1ULL << 32, &env->spe_status); | |
2189 | u.f = float32_mul(u.f, tmp, &env->spe_status); | |
2190 | ||
2191 | return float32_to_uint32_round_to_zero(u.f, &env->spe_status); | |
2192 | } | |
2193 | ||
2194 | void do_efscfsf (void) | |
2195 | { | |
2196 | T0_64 = _do_efscfsf(T0_64); | |
2197 | } | |
2198 | ||
2199 | void do_efscfuf (void) | |
2200 | { | |
2201 | T0_64 = _do_efscfuf(T0_64); | |
2202 | } | |
2203 | ||
2204 | void do_efsctsf (void) | |
2205 | { | |
2206 | T0_64 = _do_efsctsf(T0_64); | |
2207 | } | |
2208 | ||
2209 | void do_efsctuf (void) | |
2210 | { | |
2211 | T0_64 = _do_efsctuf(T0_64); | |
2212 | } | |
2213 | ||
2214 | void do_efsctsfz (void) | |
2215 | { | |
2216 | T0_64 = _do_efsctsfz(T0_64); | |
2217 | } | |
2218 | ||
2219 | void do_efsctufz (void) | |
2220 | { | |
2221 | T0_64 = _do_efsctufz(T0_64); | |
2222 | } | |
2223 | ||
2224 | /* Double precision floating point helpers */ | |
b068d6a7 | 2225 | static always_inline int _do_efdcmplt (uint64_t op1, uint64_t op2) |
0487d6a8 JM |
2226 | { |
2227 | /* XXX: TODO: test special values (NaN, infinites, ...) */ | |
2228 | return _do_efdtstlt(op1, op2); | |
2229 | } | |
2230 | ||
b068d6a7 | 2231 | static always_inline int _do_efdcmpgt (uint64_t op1, uint64_t op2) |
0487d6a8 JM |
2232 | { |
2233 | /* XXX: TODO: test special values (NaN, infinites, ...) */ | |
2234 | return _do_efdtstgt(op1, op2); | |
2235 | } | |
2236 | ||
b068d6a7 | 2237 | static always_inline int _do_efdcmpeq (uint64_t op1, uint64_t op2) |
0487d6a8 JM |
2238 | { |
2239 | /* XXX: TODO: test special values (NaN, infinites, ...) */ | |
2240 | return _do_efdtsteq(op1, op2); | |
2241 | } | |
2242 | ||
2243 | void do_efdcmplt (void) | |
2244 | { | |
2245 | T0 = _do_efdcmplt(T0_64, T1_64); | |
2246 | } | |
2247 | ||
2248 | void do_efdcmpgt (void) | |
2249 | { | |
2250 | T0 = _do_efdcmpgt(T0_64, T1_64); | |
2251 | } | |
2252 | ||
2253 | void do_efdcmpeq (void) | |
2254 | { | |
2255 | T0 = _do_efdcmpeq(T0_64, T1_64); | |
2256 | } | |
2257 | ||
2258 | /* Double precision floating-point conversion to/from integer */ | |
b068d6a7 | 2259 | static always_inline uint64_t _do_efdcfsi (int64_t val) |
0487d6a8 | 2260 | { |
0ca9d380 | 2261 | CPU_DoubleU u; |
0487d6a8 | 2262 | |
0ca9d380 | 2263 | u.d = int64_to_float64(val, &env->spe_status); |
0487d6a8 | 2264 | |
0ca9d380 | 2265 | return u.ll; |
0487d6a8 JM |
2266 | } |
2267 | ||
b068d6a7 | 2268 | static always_inline uint64_t _do_efdcfui (uint64_t val) |
0487d6a8 | 2269 | { |
0ca9d380 | 2270 | CPU_DoubleU u; |
0487d6a8 | 2271 | |
0ca9d380 | 2272 | u.d = uint64_to_float64(val, &env->spe_status); |
0487d6a8 | 2273 | |
0ca9d380 | 2274 | return u.ll; |
0487d6a8 JM |
2275 | } |
2276 | ||
b068d6a7 | 2277 | static always_inline int64_t _do_efdctsi (uint64_t val) |
0487d6a8 | 2278 | { |
0ca9d380 | 2279 | CPU_DoubleU u; |
0487d6a8 | 2280 | |
0ca9d380 | 2281 | u.ll = val; |
0487d6a8 | 2282 | /* NaN are not treated the same way IEEE 754 does */ |
0ca9d380 | 2283 | if (unlikely(isnan(u.d))) |
0487d6a8 JM |
2284 | return 0; |
2285 | ||
0ca9d380 | 2286 | return float64_to_int64(u.d, &env->spe_status); |
0487d6a8 JM |
2287 | } |
2288 | ||
b068d6a7 | 2289 | static always_inline uint64_t _do_efdctui (uint64_t val) |
0487d6a8 | 2290 | { |
0ca9d380 | 2291 | CPU_DoubleU u; |
0487d6a8 | 2292 | |
0ca9d380 | 2293 | u.ll = val; |
0487d6a8 | 2294 | /* NaN are not treated the same way IEEE 754 does */ |
0ca9d380 | 2295 | if (unlikely(isnan(u.d))) |
0487d6a8 JM |
2296 | return 0; |
2297 | ||
0ca9d380 | 2298 | return float64_to_uint64(u.d, &env->spe_status); |
0487d6a8 JM |
2299 | } |
2300 | ||
b068d6a7 | 2301 | static always_inline int64_t _do_efdctsiz (uint64_t val) |
0487d6a8 | 2302 | { |
0ca9d380 | 2303 | CPU_DoubleU u; |
0487d6a8 | 2304 | |
0ca9d380 | 2305 | u.ll = val; |
0487d6a8 | 2306 | /* NaN are not treated the same way IEEE 754 does */ |
0ca9d380 | 2307 | if (unlikely(isnan(u.d))) |
0487d6a8 JM |
2308 | return 0; |
2309 | ||
0ca9d380 | 2310 | return float64_to_int64_round_to_zero(u.d, &env->spe_status); |
0487d6a8 JM |
2311 | } |
2312 | ||
b068d6a7 | 2313 | static always_inline uint64_t _do_efdctuiz (uint64_t val) |
0487d6a8 | 2314 | { |
0ca9d380 | 2315 | CPU_DoubleU u; |
0487d6a8 | 2316 | |
0ca9d380 | 2317 | u.ll = val; |
0487d6a8 | 2318 | /* NaN are not treated the same way IEEE 754 does */ |
0ca9d380 | 2319 | if (unlikely(isnan(u.d))) |
0487d6a8 JM |
2320 | return 0; |
2321 | ||
0ca9d380 | 2322 | return float64_to_uint64_round_to_zero(u.d, &env->spe_status); |
0487d6a8 JM |
2323 | } |
2324 | ||
2325 | void do_efdcfsi (void) | |
2326 | { | |
2327 | T0_64 = _do_efdcfsi(T0_64); | |
2328 | } | |
2329 | ||
2330 | void do_efdcfui (void) | |
2331 | { | |
2332 | T0_64 = _do_efdcfui(T0_64); | |
2333 | } | |
2334 | ||
2335 | void do_efdctsi (void) | |
2336 | { | |
2337 | T0_64 = _do_efdctsi(T0_64); | |
2338 | } | |
2339 | ||
2340 | void do_efdctui (void) | |
2341 | { | |
2342 | T0_64 = _do_efdctui(T0_64); | |
2343 | } | |
2344 | ||
2345 | void do_efdctsiz (void) | |
2346 | { | |
2347 | T0_64 = _do_efdctsiz(T0_64); | |
2348 | } | |
2349 | ||
2350 | void do_efdctuiz (void) | |
2351 | { | |
2352 | T0_64 = _do_efdctuiz(T0_64); | |
2353 | } | |
2354 | ||
2355 | /* Double precision floating-point conversion to/from fractional */ | |
b068d6a7 | 2356 | static always_inline uint64_t _do_efdcfsf (int64_t val) |
0487d6a8 | 2357 | { |
0ca9d380 | 2358 | CPU_DoubleU u; |
0487d6a8 JM |
2359 | float64 tmp; |
2360 | ||
0ca9d380 | 2361 | u.d = int32_to_float64(val, &env->spe_status); |
0487d6a8 | 2362 | tmp = int64_to_float64(1ULL << 32, &env->spe_status); |
0ca9d380 | 2363 | u.d = float64_div(u.d, tmp, &env->spe_status); |
0487d6a8 | 2364 | |
0ca9d380 | 2365 | return u.ll; |
0487d6a8 JM |
2366 | } |
2367 | ||
b068d6a7 | 2368 | static always_inline uint64_t _do_efdcfuf (uint64_t val) |
0487d6a8 | 2369 | { |
0ca9d380 | 2370 | CPU_DoubleU u; |
0487d6a8 JM |
2371 | float64 tmp; |
2372 | ||
0ca9d380 | 2373 | u.d = uint32_to_float64(val, &env->spe_status); |
0487d6a8 | 2374 | tmp = int64_to_float64(1ULL << 32, &env->spe_status); |
0ca9d380 | 2375 | u.d = float64_div(u.d, tmp, &env->spe_status); |
0487d6a8 | 2376 | |
0ca9d380 | 2377 | return u.ll; |
0487d6a8 JM |
2378 | } |
2379 | ||
b068d6a7 | 2380 | static always_inline int64_t _do_efdctsf (uint64_t val) |
0487d6a8 | 2381 | { |
0ca9d380 | 2382 | CPU_DoubleU u; |
0487d6a8 JM |
2383 | float64 tmp; |
2384 | ||
0ca9d380 | 2385 | u.ll = val; |
0487d6a8 | 2386 | /* NaN are not treated the same way IEEE 754 does */ |
0ca9d380 | 2387 | if (unlikely(isnan(u.d))) |
0487d6a8 JM |
2388 | return 0; |
2389 | tmp = uint64_to_float64(1ULL << 32, &env->spe_status); | |
0ca9d380 | 2390 | u.d = float64_mul(u.d, tmp, &env->spe_status); |
0487d6a8 | 2391 | |
0ca9d380 | 2392 | return float64_to_int32(u.d, &env->spe_status); |
0487d6a8 JM |
2393 | } |
2394 | ||
b068d6a7 | 2395 | static always_inline uint64_t _do_efdctuf (uint64_t val) |
0487d6a8 | 2396 | { |
0ca9d380 | 2397 | CPU_DoubleU u; |
0487d6a8 JM |
2398 | float64 tmp; |
2399 | ||
0ca9d380 | 2400 | u.ll = val; |
0487d6a8 | 2401 | /* NaN are not treated the same way IEEE 754 does */ |
0ca9d380 | 2402 | if (unlikely(isnan(u.d))) |
0487d6a8 JM |
2403 | return 0; |
2404 | tmp = uint64_to_float64(1ULL << 32, &env->spe_status); | |
0ca9d380 | 2405 | u.d = float64_mul(u.d, tmp, &env->spe_status); |
0487d6a8 | 2406 | |
0ca9d380 | 2407 | return float64_to_uint32(u.d, &env->spe_status); |
0487d6a8 JM |
2408 | } |
2409 | ||
b068d6a7 | 2410 | static always_inline int64_t _do_efdctsfz (uint64_t val) |
0487d6a8 | 2411 | { |
0ca9d380 | 2412 | CPU_DoubleU u; |
0487d6a8 JM |
2413 | float64 tmp; |
2414 | ||
0ca9d380 | 2415 | u.ll = val; |
0487d6a8 | 2416 | /* NaN are not treated the same way IEEE 754 does */ |
0ca9d380 | 2417 | if (unlikely(isnan(u.d))) |
0487d6a8 JM |
2418 | return 0; |
2419 | tmp = uint64_to_float64(1ULL << 32, &env->spe_status); | |
0ca9d380 | 2420 | u.d = float64_mul(u.d, tmp, &env->spe_status); |
0487d6a8 | 2421 | |
0ca9d380 | 2422 | return float64_to_int32_round_to_zero(u.d, &env->spe_status); |
0487d6a8 JM |
2423 | } |
2424 | ||
b068d6a7 | 2425 | static always_inline uint64_t _do_efdctufz (uint64_t val) |
0487d6a8 | 2426 | { |
0ca9d380 | 2427 | CPU_DoubleU u; |
0487d6a8 JM |
2428 | float64 tmp; |
2429 | ||
0ca9d380 | 2430 | u.ll = val; |
0487d6a8 | 2431 | /* NaN are not treated the same way IEEE 754 does */ |
0ca9d380 | 2432 | if (unlikely(isnan(u.d))) |
0487d6a8 JM |
2433 | return 0; |
2434 | tmp = uint64_to_float64(1ULL << 32, &env->spe_status); | |
0ca9d380 | 2435 | u.d = float64_mul(u.d, tmp, &env->spe_status); |
0487d6a8 | 2436 | |
0ca9d380 | 2437 | return float64_to_uint32_round_to_zero(u.d, &env->spe_status); |
0487d6a8 JM |
2438 | } |
2439 | ||
2440 | void do_efdcfsf (void) | |
2441 | { | |
2442 | T0_64 = _do_efdcfsf(T0_64); | |
2443 | } | |
2444 | ||
2445 | void do_efdcfuf (void) | |
2446 | { | |
2447 | T0_64 = _do_efdcfuf(T0_64); | |
2448 | } | |
2449 | ||
2450 | void do_efdctsf (void) | |
2451 | { | |
2452 | T0_64 = _do_efdctsf(T0_64); | |
2453 | } | |
2454 | ||
2455 | void do_efdctuf (void) | |
2456 | { | |
2457 | T0_64 = _do_efdctuf(T0_64); | |
2458 | } | |
2459 | ||
2460 | void do_efdctsfz (void) | |
2461 | { | |
2462 | T0_64 = _do_efdctsfz(T0_64); | |
2463 | } | |
2464 | ||
2465 | void do_efdctufz (void) | |
2466 | { | |
2467 | T0_64 = _do_efdctufz(T0_64); | |
2468 | } | |
2469 | ||
2470 | /* Floating point conversion between single and double precision */ | |
b068d6a7 | 2471 | static always_inline uint32_t _do_efscfd (uint64_t val) |
0487d6a8 | 2472 | { |
0ca9d380 AJ |
2473 | CPU_DoubleU u1; |
2474 | CPU_FloatU u2; | |
0487d6a8 | 2475 | |
0ca9d380 AJ |
2476 | u1.ll = val; |
2477 | u2.f = float64_to_float32(u1.d, &env->spe_status); | |
0487d6a8 | 2478 | |
0ca9d380 | 2479 | return u2.l; |
0487d6a8 JM |
2480 | } |
2481 | ||
b068d6a7 | 2482 | static always_inline uint64_t _do_efdcfs (uint32_t val) |
0487d6a8 | 2483 | { |
0ca9d380 AJ |
2484 | CPU_DoubleU u2; |
2485 | CPU_FloatU u1; | |
0487d6a8 | 2486 | |
0ca9d380 AJ |
2487 | u1.l = val; |
2488 | u2.d = float32_to_float64(u1.f, &env->spe_status); | |
0487d6a8 | 2489 | |
0ca9d380 | 2490 | return u2.ll; |
0487d6a8 JM |
2491 | } |
2492 | ||
2493 | void do_efscfd (void) | |
2494 | { | |
2495 | T0_64 = _do_efscfd(T0_64); | |
2496 | } | |
2497 | ||
2498 | void do_efdcfs (void) | |
2499 | { | |
2500 | T0_64 = _do_efdcfs(T0_64); | |
2501 | } | |
2502 | ||
2503 | /* Single precision fixed-point vector arithmetic */ | |
2504 | /* evfsabs */ | |
2505 | DO_SPE_OP1(fsabs); | |
2506 | /* evfsnabs */ | |
2507 | DO_SPE_OP1(fsnabs); | |
2508 | /* evfsneg */ | |
2509 | DO_SPE_OP1(fsneg); | |
2510 | /* evfsadd */ | |
2511 | DO_SPE_OP2(fsadd); | |
2512 | /* evfssub */ | |
2513 | DO_SPE_OP2(fssub); | |
2514 | /* evfsmul */ | |
2515 | DO_SPE_OP2(fsmul); | |
2516 | /* evfsdiv */ | |
2517 | DO_SPE_OP2(fsdiv); | |
2518 | ||
2519 | /* Single-precision floating-point comparisons */ | |
b068d6a7 | 2520 | static always_inline int _do_efscmplt (uint32_t op1, uint32_t op2) |
0487d6a8 JM |
2521 | { |
2522 | /* XXX: TODO: test special values (NaN, infinites, ...) */ | |
2523 | return _do_efststlt(op1, op2); | |
2524 | } | |
2525 | ||
b068d6a7 | 2526 | static always_inline int _do_efscmpgt (uint32_t op1, uint32_t op2) |
0487d6a8 JM |
2527 | { |
2528 | /* XXX: TODO: test special values (NaN, infinites, ...) */ | |
2529 | return _do_efststgt(op1, op2); | |
2530 | } | |
2531 | ||
b068d6a7 | 2532 | static always_inline int _do_efscmpeq (uint32_t op1, uint32_t op2) |
0487d6a8 JM |
2533 | { |
2534 | /* XXX: TODO: test special values (NaN, infinites, ...) */ | |
2535 | return _do_efststeq(op1, op2); | |
2536 | } | |
2537 | ||
2538 | void do_efscmplt (void) | |
2539 | { | |
2540 | T0 = _do_efscmplt(T0_64, T1_64); | |
2541 | } | |
2542 | ||
2543 | void do_efscmpgt (void) | |
2544 | { | |
2545 | T0 = _do_efscmpgt(T0_64, T1_64); | |
2546 | } | |
2547 | ||
2548 | void do_efscmpeq (void) | |
2549 | { | |
2550 | T0 = _do_efscmpeq(T0_64, T1_64); | |
2551 | } | |
2552 | ||
2553 | /* Single-precision floating-point vector comparisons */ | |
2554 | /* evfscmplt */ | |
2555 | DO_SPE_CMP(fscmplt); | |
2556 | /* evfscmpgt */ | |
2557 | DO_SPE_CMP(fscmpgt); | |
2558 | /* evfscmpeq */ | |
2559 | DO_SPE_CMP(fscmpeq); | |
2560 | /* evfststlt */ | |
2561 | DO_SPE_CMP(fststlt); | |
2562 | /* evfststgt */ | |
2563 | DO_SPE_CMP(fststgt); | |
2564 | /* evfststeq */ | |
2565 | DO_SPE_CMP(fststeq); | |
2566 | ||
2567 | /* Single-precision floating-point vector conversions */ | |
2568 | /* evfscfsi */ | |
2569 | DO_SPE_OP1(fscfsi); | |
2570 | /* evfscfui */ | |
2571 | DO_SPE_OP1(fscfui); | |
2572 | /* evfscfuf */ | |
2573 | DO_SPE_OP1(fscfuf); | |
2574 | /* evfscfsf */ | |
2575 | DO_SPE_OP1(fscfsf); | |
2576 | /* evfsctsi */ | |
2577 | DO_SPE_OP1(fsctsi); | |
2578 | /* evfsctui */ | |
2579 | DO_SPE_OP1(fsctui); | |
2580 | /* evfsctsiz */ | |
2581 | DO_SPE_OP1(fsctsiz); | |
2582 | /* evfsctuiz */ | |
2583 | DO_SPE_OP1(fsctuiz); | |
2584 | /* evfsctsf */ | |
2585 | DO_SPE_OP1(fsctsf); | |
2586 | /* evfsctuf */ | |
2587 | DO_SPE_OP1(fsctuf); | |
0487d6a8 | 2588 | |
fdabc366 FB |
2589 | /*****************************************************************************/ |
2590 | /* Softmmu support */ | |
2591 | #if !defined (CONFIG_USER_ONLY) | |
2592 | ||
2593 | #define MMUSUFFIX _mmu | |
273af660 TS |
2594 | #ifdef __s390__ |
2595 | # define GETPC() ((void*)((unsigned long)__builtin_return_address(0) & 0x7fffffffUL)) | |
2596 | #else | |
2597 | # define GETPC() (__builtin_return_address(0)) | |
2598 | #endif | |
fdabc366 FB |
2599 | |
2600 | #define SHIFT 0 | |
2601 | #include "softmmu_template.h" | |
2602 | ||
2603 | #define SHIFT 1 | |
2604 | #include "softmmu_template.h" | |
2605 | ||
2606 | #define SHIFT 2 | |
2607 | #include "softmmu_template.h" | |
2608 | ||
2609 | #define SHIFT 3 | |
2610 | #include "softmmu_template.h" | |
2611 | ||
2612 | /* try to fill the TLB and return an exception if error. If retaddr is | |
2613 | NULL, it means that the function was called in C code (i.e. not | |
2614 | from generated code or from helper.c) */ | |
2615 | /* XXX: fix it to restore all registers */ | |
6ebbf390 | 2616 | void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr) |
fdabc366 FB |
2617 | { |
2618 | TranslationBlock *tb; | |
2619 | CPUState *saved_env; | |
44f8625d | 2620 | unsigned long pc; |
fdabc366 FB |
2621 | int ret; |
2622 | ||
2623 | /* XXX: hack to restore env in all cases, even if not called from | |
2624 | generated code */ | |
2625 | saved_env = env; | |
2626 | env = cpu_single_env; | |
6ebbf390 | 2627 | ret = cpu_ppc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1); |
76a66253 | 2628 | if (unlikely(ret != 0)) { |
fdabc366 FB |
2629 | if (likely(retaddr)) { |
2630 | /* now we have a real cpu fault */ | |
44f8625d | 2631 | pc = (unsigned long)retaddr; |
fdabc366 FB |
2632 | tb = tb_find_pc(pc); |
2633 | if (likely(tb)) { | |
2634 | /* the PC is inside the translated code. It means that we have | |
2635 | a virtual CPU fault */ | |
2636 | cpu_restore_state(tb, env, pc, NULL); | |
76a66253 | 2637 | } |
fdabc366 FB |
2638 | } |
2639 | do_raise_exception_err(env->exception_index, env->error_code); | |
2640 | } | |
2641 | env = saved_env; | |
9a64fbe4 FB |
2642 | } |
2643 | ||
76a66253 JM |
2644 | /* Software driven TLBs management */ |
2645 | /* PowerPC 602/603 software TLB load instructions helpers */ | |
2646 | void do_load_6xx_tlb (int is_code) | |
2647 | { | |
2648 | target_ulong RPN, CMP, EPN; | |
2649 | int way; | |
d9bce9d9 | 2650 | |
76a66253 JM |
2651 | RPN = env->spr[SPR_RPA]; |
2652 | if (is_code) { | |
2653 | CMP = env->spr[SPR_ICMP]; | |
2654 | EPN = env->spr[SPR_IMISS]; | |
2655 | } else { | |
2656 | CMP = env->spr[SPR_DCMP]; | |
2657 | EPN = env->spr[SPR_DMISS]; | |
2658 | } | |
2659 | way = (env->spr[SPR_SRR1] >> 17) & 1; | |
2660 | #if defined (DEBUG_SOFTWARE_TLB) | |
2661 | if (loglevel != 0) { | |
6b542af7 JM |
2662 | fprintf(logfile, "%s: EPN " TDX " " ADDRX " PTE0 " ADDRX |
2663 | " PTE1 " ADDRX " way %d\n", | |
2664 | __func__, T0, EPN, CMP, RPN, way); | |
76a66253 JM |
2665 | } |
2666 | #endif | |
2667 | /* Store this TLB */ | |
d9bce9d9 JM |
2668 | ppc6xx_tlb_store(env, (uint32_t)(T0 & TARGET_PAGE_MASK), |
2669 | way, is_code, CMP, RPN); | |
76a66253 JM |
2670 | } |
2671 | ||
7dbe11ac JM |
2672 | void do_load_74xx_tlb (int is_code) |
2673 | { | |
2674 | target_ulong RPN, CMP, EPN; | |
2675 | int way; | |
2676 | ||
2677 | RPN = env->spr[SPR_PTELO]; | |
2678 | CMP = env->spr[SPR_PTEHI]; | |
2679 | EPN = env->spr[SPR_TLBMISS] & ~0x3; | |
2680 | way = env->spr[SPR_TLBMISS] & 0x3; | |
2681 | #if defined (DEBUG_SOFTWARE_TLB) | |
2682 | if (loglevel != 0) { | |
6b542af7 JM |
2683 | fprintf(logfile, "%s: EPN " TDX " " ADDRX " PTE0 " ADDRX |
2684 | " PTE1 " ADDRX " way %d\n", | |
2685 | __func__, T0, EPN, CMP, RPN, way); | |
7dbe11ac JM |
2686 | } |
2687 | #endif | |
2688 | /* Store this TLB */ | |
2689 | ppc6xx_tlb_store(env, (uint32_t)(T0 & TARGET_PAGE_MASK), | |
2690 | way, is_code, CMP, RPN); | |
2691 | } | |
2692 | ||
a11b8151 | 2693 | static always_inline target_ulong booke_tlb_to_page_size (int size) |
a8dea12f JM |
2694 | { |
2695 | return 1024 << (2 * size); | |
2696 | } | |
2697 | ||
a11b8151 | 2698 | static always_inline int booke_page_size_to_tlb (target_ulong page_size) |
a8dea12f JM |
2699 | { |
2700 | int size; | |
2701 | ||
2702 | switch (page_size) { | |
2703 | case 0x00000400UL: | |
2704 | size = 0x0; | |
2705 | break; | |
2706 | case 0x00001000UL: | |
2707 | size = 0x1; | |
2708 | break; | |
2709 | case 0x00004000UL: | |
2710 | size = 0x2; | |
2711 | break; | |
2712 | case 0x00010000UL: | |
2713 | size = 0x3; | |
2714 | break; | |
2715 | case 0x00040000UL: | |
2716 | size = 0x4; | |
2717 | break; | |
2718 | case 0x00100000UL: | |
2719 | size = 0x5; | |
2720 | break; | |
2721 | case 0x00400000UL: | |
2722 | size = 0x6; | |
2723 | break; | |
2724 | case 0x01000000UL: | |
2725 | size = 0x7; | |
2726 | break; | |
2727 | case 0x04000000UL: | |
2728 | size = 0x8; | |
2729 | break; | |
2730 | case 0x10000000UL: | |
2731 | size = 0x9; | |
2732 | break; | |
2733 | case 0x40000000UL: | |
2734 | size = 0xA; | |
2735 | break; | |
2736 | #if defined (TARGET_PPC64) | |
2737 | case 0x000100000000ULL: | |
2738 | size = 0xB; | |
2739 | break; | |
2740 | case 0x000400000000ULL: | |
2741 | size = 0xC; | |
2742 | break; | |
2743 | case 0x001000000000ULL: | |
2744 | size = 0xD; | |
2745 | break; | |
2746 | case 0x004000000000ULL: | |
2747 | size = 0xE; | |
2748 | break; | |
2749 | case 0x010000000000ULL: | |
2750 | size = 0xF; | |
2751 | break; | |
2752 | #endif | |
2753 | default: | |
2754 | size = -1; | |
2755 | break; | |
2756 | } | |
2757 | ||
2758 | return size; | |
2759 | } | |
2760 | ||
76a66253 | 2761 | /* Helpers for 4xx TLB management */ |
76a66253 JM |
2762 | void do_4xx_tlbre_lo (void) |
2763 | { | |
a8dea12f JM |
2764 | ppcemb_tlb_t *tlb; |
2765 | int size; | |
76a66253 JM |
2766 | |
2767 | T0 &= 0x3F; | |
a8dea12f JM |
2768 | tlb = &env->tlb[T0].tlbe; |
2769 | T0 = tlb->EPN; | |
2770 | if (tlb->prot & PAGE_VALID) | |
2771 | T0 |= 0x400; | |
2772 | size = booke_page_size_to_tlb(tlb->size); | |
2773 | if (size < 0 || size > 0x7) | |
2774 | size = 1; | |
2775 | T0 |= size << 7; | |
2776 | env->spr[SPR_40x_PID] = tlb->PID; | |
76a66253 JM |
2777 | } |
2778 | ||
2779 | void do_4xx_tlbre_hi (void) | |
2780 | { | |
a8dea12f | 2781 | ppcemb_tlb_t *tlb; |
76a66253 JM |
2782 | |
2783 | T0 &= 0x3F; | |
a8dea12f JM |
2784 | tlb = &env->tlb[T0].tlbe; |
2785 | T0 = tlb->RPN; | |
2786 | if (tlb->prot & PAGE_EXEC) | |
2787 | T0 |= 0x200; | |
2788 | if (tlb->prot & PAGE_WRITE) | |
2789 | T0 |= 0x100; | |
76a66253 JM |
2790 | } |
2791 | ||
c55e9aef | 2792 | void do_4xx_tlbwe_hi (void) |
76a66253 | 2793 | { |
a8dea12f | 2794 | ppcemb_tlb_t *tlb; |
76a66253 JM |
2795 | target_ulong page, end; |
2796 | ||
c55e9aef | 2797 | #if defined (DEBUG_SOFTWARE_TLB) |
6b80055d | 2798 | if (loglevel != 0) { |
6b542af7 | 2799 | fprintf(logfile, "%s T0 " TDX " T1 " TDX "\n", __func__, T0, T1); |
c55e9aef JM |
2800 | } |
2801 | #endif | |
76a66253 | 2802 | T0 &= 0x3F; |
a8dea12f | 2803 | tlb = &env->tlb[T0].tlbe; |
76a66253 JM |
2804 | /* Invalidate previous TLB (if it's valid) */ |
2805 | if (tlb->prot & PAGE_VALID) { | |
2806 | end = tlb->EPN + tlb->size; | |
c55e9aef | 2807 | #if defined (DEBUG_SOFTWARE_TLB) |
6b80055d | 2808 | if (loglevel != 0) { |
c55e9aef JM |
2809 | fprintf(logfile, "%s: invalidate old TLB %d start " ADDRX |
2810 | " end " ADDRX "\n", __func__, (int)T0, tlb->EPN, end); | |
2811 | } | |
2812 | #endif | |
76a66253 JM |
2813 | for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE) |
2814 | tlb_flush_page(env, page); | |
2815 | } | |
a8dea12f | 2816 | tlb->size = booke_tlb_to_page_size((T1 >> 7) & 0x7); |
c294fc58 JM |
2817 | /* We cannot handle TLB size < TARGET_PAGE_SIZE. |
2818 | * If this ever occurs, one should use the ppcemb target instead | |
2819 | * of the ppc or ppc64 one | |
2820 | */ | |
2821 | if ((T1 & 0x40) && tlb->size < TARGET_PAGE_SIZE) { | |
71c8b8fd JM |
2822 | cpu_abort(env, "TLB size " TARGET_FMT_lu " < %u " |
2823 | "are not supported (%d)\n", | |
c294fc58 JM |
2824 | tlb->size, TARGET_PAGE_SIZE, (int)((T1 >> 7) & 0x7)); |
2825 | } | |
a750fc0b | 2826 | tlb->EPN = T1 & ~(tlb->size - 1); |
c55e9aef | 2827 | if (T1 & 0x40) |
76a66253 JM |
2828 | tlb->prot |= PAGE_VALID; |
2829 | else | |
2830 | tlb->prot &= ~PAGE_VALID; | |
c294fc58 JM |
2831 | if (T1 & 0x20) { |
2832 | /* XXX: TO BE FIXED */ | |
2833 | cpu_abort(env, "Little-endian TLB entries are not supported by now\n"); | |
2834 | } | |
c55e9aef | 2835 | tlb->PID = env->spr[SPR_40x_PID]; /* PID */ |
a8dea12f | 2836 | tlb->attr = T1 & 0xFF; |
c55e9aef | 2837 | #if defined (DEBUG_SOFTWARE_TLB) |
c294fc58 JM |
2838 | if (loglevel != 0) { |
2839 | fprintf(logfile, "%s: set up TLB %d RPN " PADDRX " EPN " ADDRX | |
c55e9aef | 2840 | " size " ADDRX " prot %c%c%c%c PID %d\n", __func__, |
5fafdf24 | 2841 | (int)T0, tlb->RPN, tlb->EPN, tlb->size, |
c55e9aef JM |
2842 | tlb->prot & PAGE_READ ? 'r' : '-', |
2843 | tlb->prot & PAGE_WRITE ? 'w' : '-', | |
2844 | tlb->prot & PAGE_EXEC ? 'x' : '-', | |
2845 | tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID); | |
2846 | } | |
2847 | #endif | |
76a66253 JM |
2848 | /* Invalidate new TLB (if valid) */ |
2849 | if (tlb->prot & PAGE_VALID) { | |
2850 | end = tlb->EPN + tlb->size; | |
c55e9aef | 2851 | #if defined (DEBUG_SOFTWARE_TLB) |
6b80055d | 2852 | if (loglevel != 0) { |
c55e9aef JM |
2853 | fprintf(logfile, "%s: invalidate TLB %d start " ADDRX |
2854 | " end " ADDRX "\n", __func__, (int)T0, tlb->EPN, end); | |
2855 | } | |
2856 | #endif | |
76a66253 JM |
2857 | for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE) |
2858 | tlb_flush_page(env, page); | |
2859 | } | |
76a66253 JM |
2860 | } |
2861 | ||
c55e9aef | 2862 | void do_4xx_tlbwe_lo (void) |
76a66253 | 2863 | { |
a8dea12f | 2864 | ppcemb_tlb_t *tlb; |
76a66253 | 2865 | |
c55e9aef | 2866 | #if defined (DEBUG_SOFTWARE_TLB) |
6b80055d | 2867 | if (loglevel != 0) { |
6b542af7 | 2868 | fprintf(logfile, "%s T0 " TDX " T1 " TDX "\n", __func__, T0, T1); |
c55e9aef JM |
2869 | } |
2870 | #endif | |
76a66253 | 2871 | T0 &= 0x3F; |
a8dea12f | 2872 | tlb = &env->tlb[T0].tlbe; |
76a66253 JM |
2873 | tlb->RPN = T1 & 0xFFFFFC00; |
2874 | tlb->prot = PAGE_READ; | |
2875 | if (T1 & 0x200) | |
2876 | tlb->prot |= PAGE_EXEC; | |
2877 | if (T1 & 0x100) | |
2878 | tlb->prot |= PAGE_WRITE; | |
c55e9aef | 2879 | #if defined (DEBUG_SOFTWARE_TLB) |
6b80055d JM |
2880 | if (loglevel != 0) { |
2881 | fprintf(logfile, "%s: set up TLB %d RPN " PADDRX " EPN " ADDRX | |
c55e9aef | 2882 | " size " ADDRX " prot %c%c%c%c PID %d\n", __func__, |
5fafdf24 | 2883 | (int)T0, tlb->RPN, tlb->EPN, tlb->size, |
c55e9aef JM |
2884 | tlb->prot & PAGE_READ ? 'r' : '-', |
2885 | tlb->prot & PAGE_WRITE ? 'w' : '-', | |
2886 | tlb->prot & PAGE_EXEC ? 'x' : '-', | |
2887 | tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID); | |
2888 | } | |
2889 | #endif | |
76a66253 | 2890 | } |
5eb7995e | 2891 | |
a4bb6c3e JM |
2892 | /* PowerPC 440 TLB management */ |
2893 | void do_440_tlbwe (int word) | |
5eb7995e JM |
2894 | { |
2895 | ppcemb_tlb_t *tlb; | |
a4bb6c3e | 2896 | target_ulong EPN, RPN, size; |
5eb7995e JM |
2897 | int do_flush_tlbs; |
2898 | ||
2899 | #if defined (DEBUG_SOFTWARE_TLB) | |
2900 | if (loglevel != 0) { | |
6b542af7 | 2901 | fprintf(logfile, "%s word %d T0 " TDX " T1 " TDX "\n", |
69facb78 | 2902 | __func__, word, T0, T1); |
5eb7995e JM |
2903 | } |
2904 | #endif | |
2905 | do_flush_tlbs = 0; | |
2906 | T0 &= 0x3F; | |
2907 | tlb = &env->tlb[T0].tlbe; | |
a4bb6c3e JM |
2908 | switch (word) { |
2909 | default: | |
2910 | /* Just here to please gcc */ | |
2911 | case 0: | |
2912 | EPN = T1 & 0xFFFFFC00; | |
2913 | if ((tlb->prot & PAGE_VALID) && EPN != tlb->EPN) | |
5eb7995e | 2914 | do_flush_tlbs = 1; |
a4bb6c3e JM |
2915 | tlb->EPN = EPN; |
2916 | size = booke_tlb_to_page_size((T1 >> 4) & 0xF); | |
2917 | if ((tlb->prot & PAGE_VALID) && tlb->size < size) | |
2918 | do_flush_tlbs = 1; | |
2919 | tlb->size = size; | |
2920 | tlb->attr &= ~0x1; | |
2921 | tlb->attr |= (T1 >> 8) & 1; | |
2922 | if (T1 & 0x200) { | |
2923 | tlb->prot |= PAGE_VALID; | |
2924 | } else { | |
2925 | if (tlb->prot & PAGE_VALID) { | |
2926 | tlb->prot &= ~PAGE_VALID; | |
2927 | do_flush_tlbs = 1; | |
2928 | } | |
5eb7995e | 2929 | } |
a4bb6c3e JM |
2930 | tlb->PID = env->spr[SPR_440_MMUCR] & 0x000000FF; |
2931 | if (do_flush_tlbs) | |
2932 | tlb_flush(env, 1); | |
2933 | break; | |
2934 | case 1: | |
2935 | RPN = T1 & 0xFFFFFC0F; | |
2936 | if ((tlb->prot & PAGE_VALID) && tlb->RPN != RPN) | |
2937 | tlb_flush(env, 1); | |
2938 | tlb->RPN = RPN; | |
2939 | break; | |
2940 | case 2: | |
2941 | tlb->attr = (tlb->attr & 0x1) | (T1 & 0x0000FF00); | |
2942 | tlb->prot = tlb->prot & PAGE_VALID; | |
2943 | if (T1 & 0x1) | |
2944 | tlb->prot |= PAGE_READ << 4; | |
2945 | if (T1 & 0x2) | |
2946 | tlb->prot |= PAGE_WRITE << 4; | |
2947 | if (T1 & 0x4) | |
2948 | tlb->prot |= PAGE_EXEC << 4; | |
2949 | if (T1 & 0x8) | |
2950 | tlb->prot |= PAGE_READ; | |
2951 | if (T1 & 0x10) | |
2952 | tlb->prot |= PAGE_WRITE; | |
2953 | if (T1 & 0x20) | |
2954 | tlb->prot |= PAGE_EXEC; | |
2955 | break; | |
5eb7995e | 2956 | } |
5eb7995e JM |
2957 | } |
2958 | ||
a4bb6c3e | 2959 | void do_440_tlbre (int word) |
5eb7995e JM |
2960 | { |
2961 | ppcemb_tlb_t *tlb; | |
2962 | int size; | |
2963 | ||
2964 | T0 &= 0x3F; | |
2965 | tlb = &env->tlb[T0].tlbe; | |
a4bb6c3e JM |
2966 | switch (word) { |
2967 | default: | |
2968 | /* Just here to please gcc */ | |
2969 | case 0: | |
2970 | T0 = tlb->EPN; | |
2971 | size = booke_page_size_to_tlb(tlb->size); | |
2972 | if (size < 0 || size > 0xF) | |
2973 | size = 1; | |
2974 | T0 |= size << 4; | |
2975 | if (tlb->attr & 0x1) | |
2976 | T0 |= 0x100; | |
2977 | if (tlb->prot & PAGE_VALID) | |
2978 | T0 |= 0x200; | |
2979 | env->spr[SPR_440_MMUCR] &= ~0x000000FF; | |
2980 | env->spr[SPR_440_MMUCR] |= tlb->PID; | |
2981 | break; | |
2982 | case 1: | |
2983 | T0 = tlb->RPN; | |
2984 | break; | |
2985 | case 2: | |
2986 | T0 = tlb->attr & ~0x1; | |
2987 | if (tlb->prot & (PAGE_READ << 4)) | |
2988 | T0 |= 0x1; | |
2989 | if (tlb->prot & (PAGE_WRITE << 4)) | |
2990 | T0 |= 0x2; | |
2991 | if (tlb->prot & (PAGE_EXEC << 4)) | |
2992 | T0 |= 0x4; | |
2993 | if (tlb->prot & PAGE_READ) | |
2994 | T0 |= 0x8; | |
2995 | if (tlb->prot & PAGE_WRITE) | |
2996 | T0 |= 0x10; | |
2997 | if (tlb->prot & PAGE_EXEC) | |
2998 | T0 |= 0x20; | |
2999 | break; | |
3000 | } | |
5eb7995e | 3001 | } |
76a66253 | 3002 | #endif /* !CONFIG_USER_ONLY */ |