]> Git Repo - qemu.git/blame - target-ppc/op_helper.c
For consistency, move muls64 / mulu64 prototypes to host-utils.h
[qemu.git] / target-ppc / op_helper.c
CommitLineData
9a64fbe4 1/*
3fc6c082 2 * PowerPC emulation helpers for qemu.
5fafdf24 3 *
76a66253 4 * Copyright (c) 2003-2007 Jocelyn Mayer
9a64fbe4
FB
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
9a64fbe4 20#include "exec.h"
603fccce 21#include "host-utils.h"
9a64fbe4 22
0411a972 23#include "helper_regs.h"
0487d6a8
JM
24#include "op_helper.h"
25
9a64fbe4 26#define MEMSUFFIX _raw
0487d6a8 27#include "op_helper.h"
9a64fbe4 28#include "op_helper_mem.h"
a541f297 29#if !defined(CONFIG_USER_ONLY)
9a64fbe4 30#define MEMSUFFIX _user
0487d6a8 31#include "op_helper.h"
9a64fbe4
FB
32#include "op_helper_mem.h"
33#define MEMSUFFIX _kernel
0487d6a8 34#include "op_helper.h"
9a64fbe4 35#include "op_helper_mem.h"
1e42b8f0
JM
36#if defined(TARGET_PPC64H)
37#define MEMSUFFIX _hypv
38#include "op_helper.h"
39#include "op_helper_mem.h"
40#endif
9a64fbe4
FB
41#endif
42
fdabc366
FB
43//#define DEBUG_OP
44//#define DEBUG_EXCEPTIONS
76a66253 45//#define DEBUG_SOFTWARE_TLB
fdabc366 46
9a64fbe4
FB
47/*****************************************************************************/
48/* Exceptions processing helpers */
9a64fbe4 49
9fddaa0c 50void do_raise_exception_err (uint32_t exception, int error_code)
9a64fbe4 51{
9fddaa0c
FB
52#if 0
53 printf("Raise exception %3x code : %d\n", exception, error_code);
54#endif
9fddaa0c
FB
55 env->exception_index = exception;
56 env->error_code = error_code;
76a66253
JM
57 cpu_loop_exit();
58}
9fddaa0c
FB
59
60void do_raise_exception (uint32_t exception)
61{
62 do_raise_exception_err(exception, 0);
9a64fbe4
FB
63}
64
a496775f
JM
65void cpu_dump_EA (target_ulong EA);
66void do_print_mem_EA (target_ulong EA)
67{
68 cpu_dump_EA(EA);
69}
70
76a66253
JM
71/*****************************************************************************/
72/* Registers load and stores */
73void do_load_cr (void)
74{
75 T0 = (env->crf[0] << 28) |
76 (env->crf[1] << 24) |
77 (env->crf[2] << 20) |
78 (env->crf[3] << 16) |
79 (env->crf[4] << 12) |
80 (env->crf[5] << 8) |
81 (env->crf[6] << 4) |
82 (env->crf[7] << 0);
83}
84
85void do_store_cr (uint32_t mask)
86{
87 int i, sh;
88
36081602 89 for (i = 0, sh = 7; i < 8; i++, sh--) {
76a66253
JM
90 if (mask & (1 << sh))
91 env->crf[i] = (T0 >> (sh * 4)) & 0xFUL;
92 }
93}
94
c80f84e3
JM
95#if defined(TARGET_PPC64)
96void do_store_pri (int prio)
97{
98 env->spr[SPR_PPR] &= ~0x001C000000000000ULL;
99 env->spr[SPR_PPR] |= ((uint64_t)prio & 0x7) << 50;
100}
101#endif
102
a496775f
JM
103target_ulong ppc_load_dump_spr (int sprn)
104{
6b80055d 105 if (loglevel != 0) {
a496775f
JM
106 fprintf(logfile, "Read SPR %d %03x => " ADDRX "\n",
107 sprn, sprn, env->spr[sprn]);
108 }
109
110 return env->spr[sprn];
111}
112
113void ppc_store_dump_spr (int sprn, target_ulong val)
114{
6b80055d 115 if (loglevel != 0) {
a496775f
JM
116 fprintf(logfile, "Write SPR %d %03x => " ADDRX " <= " ADDRX "\n",
117 sprn, sprn, env->spr[sprn], val);
118 }
119 env->spr[sprn] = val;
120}
121
9a64fbe4 122/*****************************************************************************/
fdabc366 123/* Fixed point operations helpers */
fdabc366
FB
124void do_adde (void)
125{
126 T2 = T0;
127 T0 += T1 + xer_ca;
d9bce9d9
JM
128 if (likely(!((uint32_t)T0 < (uint32_t)T2 ||
129 (xer_ca == 1 && (uint32_t)T0 == (uint32_t)T2)))) {
fdabc366
FB
130 xer_ca = 0;
131 } else {
132 xer_ca = 1;
133 }
134}
135
d9bce9d9
JM
136#if defined(TARGET_PPC64)
137void do_adde_64 (void)
fdabc366
FB
138{
139 T2 = T0;
140 T0 += T1 + xer_ca;
d9bce9d9
JM
141 if (likely(!((uint64_t)T0 < (uint64_t)T2 ||
142 (xer_ca == 1 && (uint64_t)T0 == (uint64_t)T2)))) {
fdabc366
FB
143 xer_ca = 0;
144 } else {
145 xer_ca = 1;
146 }
fdabc366 147}
d9bce9d9 148#endif
fdabc366
FB
149
150void do_addmeo (void)
151{
152 T1 = T0;
153 T0 += xer_ca + (-1);
d9bce9d9
JM
154 if (likely(!((uint32_t)T1 &
155 ((uint32_t)T1 ^ (uint32_t)T0) & (1UL << 31)))) {
fdabc366
FB
156 xer_ov = 0;
157 } else {
fdabc366 158 xer_ov = 1;
966439a6 159 xer_so = 1;
fdabc366
FB
160 }
161 if (likely(T1 != 0))
162 xer_ca = 1;
163}
164
d9bce9d9
JM
165#if defined(TARGET_PPC64)
166void do_addmeo_64 (void)
fdabc366
FB
167{
168 T1 = T0;
d9bce9d9
JM
169 T0 += xer_ca + (-1);
170 if (likely(!((uint64_t)T1 &
171 ((uint64_t)T1 ^ (uint64_t)T0) & (1ULL << 63)))) {
fdabc366
FB
172 xer_ov = 0;
173 } else {
fdabc366 174 xer_ov = 1;
966439a6 175 xer_so = 1;
fdabc366 176 }
d9bce9d9 177 if (likely(T1 != 0))
fdabc366 178 xer_ca = 1;
fdabc366 179}
d9bce9d9 180#endif
fdabc366
FB
181
182void do_divwo (void)
183{
d9bce9d9
JM
184 if (likely(!(((int32_t)T0 == INT32_MIN && (int32_t)T1 == -1) ||
185 (int32_t)T1 == 0))) {
fdabc366 186 xer_ov = 0;
d9bce9d9 187 T0 = (int32_t)T0 / (int32_t)T1;
fdabc366 188 } else {
fdabc366 189 xer_ov = 1;
966439a6 190 xer_so = 1;
fdabc366
FB
191 T0 = (-1) * ((uint32_t)T0 >> 31);
192 }
193}
194
d9bce9d9
JM
195#if defined(TARGET_PPC64)
196void do_divdo (void)
197{
198 if (likely(!(((int64_t)T0 == INT64_MIN && (int64_t)T1 == -1ULL) ||
199 (int64_t)T1 == 0))) {
200 xer_ov = 0;
201 T0 = (int64_t)T0 / (int64_t)T1;
202 } else {
d9bce9d9 203 xer_ov = 1;
966439a6 204 xer_so = 1;
d9bce9d9
JM
205 T0 = (-1ULL) * ((uint64_t)T0 >> 63);
206 }
207}
208#endif
209
fdabc366
FB
210void do_divwuo (void)
211{
212 if (likely((uint32_t)T1 != 0)) {
213 xer_ov = 0;
214 T0 = (uint32_t)T0 / (uint32_t)T1;
215 } else {
fdabc366 216 xer_ov = 1;
966439a6 217 xer_so = 1;
fdabc366
FB
218 T0 = 0;
219 }
220}
221
d9bce9d9
JM
222#if defined(TARGET_PPC64)
223void do_divduo (void)
224{
225 if (likely((uint64_t)T1 != 0)) {
226 xer_ov = 0;
227 T0 = (uint64_t)T0 / (uint64_t)T1;
228 } else {
d9bce9d9 229 xer_ov = 1;
966439a6 230 xer_so = 1;
d9bce9d9
JM
231 T0 = 0;
232 }
233}
234#endif
235
fdabc366
FB
236void do_mullwo (void)
237{
d9bce9d9 238 int64_t res = (int64_t)T0 * (int64_t)T1;
fdabc366
FB
239
240 if (likely((int32_t)res == res)) {
241 xer_ov = 0;
242 } else {
243 xer_ov = 1;
244 xer_so = 1;
245 }
246 T0 = (int32_t)res;
247}
248
d9bce9d9
JM
249#if defined(TARGET_PPC64)
250void do_mulldo (void)
fdabc366 251{
d9bce9d9
JM
252 int64_t th;
253 uint64_t tl;
254
9d901a20 255 muls64(&tl, &th, T0, T1);
88ad920b
JM
256 /* If th != 0 && th != -1, then we had an overflow */
257 if (likely((th + 1) <= 1)) {
fdabc366 258 xer_ov = 0;
fdabc366
FB
259 } else {
260 xer_ov = 1;
261 xer_so = 1;
262 }
d9bce9d9 263 T0 = (int64_t)tl;
fdabc366 264}
d9bce9d9 265#endif
fdabc366 266
d9bce9d9 267void do_nego (void)
fdabc366 268{
d9bce9d9 269 if (likely((int32_t)T0 != INT32_MIN)) {
fdabc366 270 xer_ov = 0;
d9bce9d9 271 T0 = -(int32_t)T0;
fdabc366 272 } else {
fdabc366 273 xer_ov = 1;
d9bce9d9 274 xer_so = 1;
fdabc366 275 }
fdabc366
FB
276}
277
d9bce9d9
JM
278#if defined(TARGET_PPC64)
279void do_nego_64 (void)
fdabc366 280{
d9bce9d9 281 if (likely((int64_t)T0 != INT64_MIN)) {
fdabc366 282 xer_ov = 0;
d9bce9d9 283 T0 = -(int64_t)T0;
fdabc366 284 } else {
fdabc366 285 xer_ov = 1;
d9bce9d9 286 xer_so = 1;
fdabc366
FB
287 }
288}
d9bce9d9 289#endif
fdabc366
FB
290
291void do_subfe (void)
292{
293 T0 = T1 + ~T0 + xer_ca;
d9bce9d9
JM
294 if (likely((uint32_t)T0 >= (uint32_t)T1 &&
295 (xer_ca == 0 || (uint32_t)T0 != (uint32_t)T1))) {
fdabc366
FB
296 xer_ca = 0;
297 } else {
298 xer_ca = 1;
299 }
300}
301
d9bce9d9
JM
302#if defined(TARGET_PPC64)
303void do_subfe_64 (void)
fdabc366 304{
fdabc366 305 T0 = T1 + ~T0 + xer_ca;
d9bce9d9
JM
306 if (likely((uint64_t)T0 >= (uint64_t)T1 &&
307 (xer_ca == 0 || (uint64_t)T0 != (uint64_t)T1))) {
308 xer_ca = 0;
309 } else {
310 xer_ca = 1;
311 }
312}
313#endif
314
315void do_subfmeo (void)
316{
317 T1 = T0;
318 T0 = ~T0 + xer_ca - 1;
319 if (likely(!((uint32_t)~T1 & ((uint32_t)~T1 ^ (uint32_t)T0) &
320 (1UL << 31)))) {
fdabc366
FB
321 xer_ov = 0;
322 } else {
fdabc366 323 xer_ov = 1;
966439a6 324 xer_so = 1;
fdabc366 325 }
d9bce9d9 326 if (likely((uint32_t)T1 != UINT32_MAX))
fdabc366 327 xer_ca = 1;
fdabc366
FB
328}
329
d9bce9d9
JM
330#if defined(TARGET_PPC64)
331void do_subfmeo_64 (void)
fdabc366
FB
332{
333 T1 = T0;
334 T0 = ~T0 + xer_ca - 1;
d9bce9d9
JM
335 if (likely(!((uint64_t)~T1 & ((uint64_t)~T1 ^ (uint64_t)T0) &
336 (1ULL << 63)))) {
fdabc366
FB
337 xer_ov = 0;
338 } else {
fdabc366 339 xer_ov = 1;
966439a6 340 xer_so = 1;
fdabc366 341 }
d9bce9d9 342 if (likely((uint64_t)T1 != UINT64_MAX))
fdabc366
FB
343 xer_ca = 1;
344}
d9bce9d9 345#endif
fdabc366
FB
346
347void do_subfzeo (void)
348{
349 T1 = T0;
350 T0 = ~T0 + xer_ca;
d9bce9d9
JM
351 if (likely(!(((uint32_t)~T1 ^ UINT32_MAX) &
352 ((uint32_t)(~T1) ^ (uint32_t)T0) & (1UL << 31)))) {
fdabc366
FB
353 xer_ov = 0;
354 } else {
355 xer_ov = 1;
356 xer_so = 1;
357 }
d9bce9d9 358 if (likely((uint32_t)T0 >= (uint32_t)~T1)) {
fdabc366
FB
359 xer_ca = 0;
360 } else {
361 xer_ca = 1;
362 }
363}
364
d9bce9d9
JM
365#if defined(TARGET_PPC64)
366void do_subfzeo_64 (void)
367{
368 T1 = T0;
369 T0 = ~T0 + xer_ca;
370 if (likely(!(((uint64_t)~T1 ^ UINT64_MAX) &
371 ((uint64_t)(~T1) ^ (uint64_t)T0) & (1ULL << 63)))) {
372 xer_ov = 0;
373 } else {
374 xer_ov = 1;
375 xer_so = 1;
376 }
377 if (likely((uint64_t)T0 >= (uint64_t)~T1)) {
378 xer_ca = 0;
379 } else {
380 xer_ca = 1;
381 }
382}
383#endif
384
603fccce
JM
385void do_cntlzw (void)
386{
387 T0 = clz32(T0);
388}
389
390#if defined(TARGET_PPC64)
391void do_cntlzd (void)
392{
393 T0 = clz64(T0);
394}
395#endif
396
9a64fbe4
FB
397/* shift right arithmetic helper */
398void do_sraw (void)
399{
400 int32_t ret;
401
fdabc366 402 if (likely(!(T1 & 0x20UL))) {
d9bce9d9 403 if (likely((uint32_t)T1 != 0)) {
fdabc366
FB
404 ret = (int32_t)T0 >> (T1 & 0x1fUL);
405 if (likely(ret >= 0 || ((int32_t)T0 & ((1 << T1) - 1)) == 0)) {
76a66253 406 xer_ca = 0;
fdabc366 407 } else {
76a66253 408 xer_ca = 1;
fdabc366
FB
409 }
410 } else {
76a66253 411 ret = T0;
fdabc366
FB
412 xer_ca = 0;
413 }
414 } else {
415 ret = (-1) * ((uint32_t)T0 >> 31);
416 if (likely(ret >= 0 || ((uint32_t)T0 & ~0x80000000UL) == 0)) {
417 xer_ca = 0;
76a66253 418 } else {
9a64fbe4 419 xer_ca = 1;
76a66253 420 }
fdabc366 421 }
4b3686fa 422 T0 = ret;
9a64fbe4
FB
423}
424
d9bce9d9
JM
425#if defined(TARGET_PPC64)
426void do_srad (void)
427{
428 int64_t ret;
429
430 if (likely(!(T1 & 0x40UL))) {
431 if (likely((uint64_t)T1 != 0)) {
432 ret = (int64_t)T0 >> (T1 & 0x3FUL);
433 if (likely(ret >= 0 || ((int64_t)T0 & ((1 << T1) - 1)) == 0)) {
434 xer_ca = 0;
435 } else {
436 xer_ca = 1;
437 }
438 } else {
439 ret = T0;
440 xer_ca = 0;
441 }
442 } else {
443 ret = (-1) * ((uint64_t)T0 >> 63);
444 if (likely(ret >= 0 || ((uint64_t)T0 & ~0x8000000000000000ULL) == 0)) {
445 xer_ca = 0;
446 } else {
447 xer_ca = 1;
448 }
449 }
450 T0 = ret;
451}
452#endif
453
d9bce9d9
JM
454void do_popcntb (void)
455{
456 uint32_t ret;
457 int i;
458
459 ret = 0;
460 for (i = 0; i < 32; i += 8)
603fccce 461 ret |= ctpop8((T0 >> i) & 0xFF) << i;
d9bce9d9
JM
462 T0 = ret;
463}
464
465#if defined(TARGET_PPC64)
466void do_popcntb_64 (void)
467{
468 uint64_t ret;
469 int i;
470
471 ret = 0;
472 for (i = 0; i < 64; i += 8)
603fccce 473 ret |= ctpop8((T0 >> i) & 0xFF) << i;
d9bce9d9
JM
474 T0 = ret;
475}
476#endif
477
fdabc366 478/*****************************************************************************/
9a64fbe4 479/* Floating point operations helpers */
a11b8151 480static always_inline int fpisneg (float64 f)
7c58044c
JM
481{
482 union {
483 float64 f;
484 uint64_t u;
485 } u;
486
487 u.f = f;
488
489 return u.u >> 63 != 0;
490}
491
a11b8151 492static always_inline int isden (float f)
7c58044c
JM
493{
494 union {
495 float64 f;
496 uint64_t u;
497 } u;
498
499 u.f = f;
500
501 return ((u.u >> 52) & 0x7FF) == 0;
502}
503
a11b8151 504static always_inline int iszero (float64 f)
7c58044c
JM
505{
506 union {
507 float64 f;
508 uint64_t u;
509 } u;
510
511 u.f = f;
512
513 return (u.u & ~0x8000000000000000ULL) == 0;
514}
515
a11b8151 516static always_inline int isinfinity (float64 f)
7c58044c
JM
517{
518 union {
519 float64 f;
520 uint64_t u;
521 } u;
522
523 u.f = f;
524
86c4a9f5 525 return ((u.u >> 52) & 0x7FF) == 0x7FF &&
7c58044c
JM
526 (u.u & 0x000FFFFFFFFFFFFFULL) == 0;
527}
528
529void do_compute_fprf (int set_fprf)
530{
531 int isneg;
532
533 isneg = fpisneg(FT0);
534 if (unlikely(float64_is_nan(FT0))) {
535 if (float64_is_signaling_nan(FT0)) {
536 /* Signaling NaN: flags are undefined */
537 T0 = 0x00;
538 } else {
539 /* Quiet NaN */
540 T0 = 0x11;
541 }
542 } else if (unlikely(isinfinity(FT0))) {
543 /* +/- infinity */
544 if (isneg)
545 T0 = 0x09;
546 else
547 T0 = 0x05;
548 } else {
549 if (iszero(FT0)) {
550 /* +/- zero */
551 if (isneg)
552 T0 = 0x12;
553 else
554 T0 = 0x02;
555 } else {
556 if (isden(FT0)) {
557 /* Denormalized numbers */
558 T0 = 0x10;
559 } else {
560 /* Normalized numbers */
561 T0 = 0x00;
562 }
563 if (isneg) {
564 T0 |= 0x08;
565 } else {
566 T0 |= 0x04;
567 }
568 }
569 }
570 if (set_fprf) {
571 /* We update FPSCR_FPRF */
572 env->fpscr &= ~(0x1F << FPSCR_FPRF);
573 env->fpscr |= T0 << FPSCR_FPRF;
574 }
575 /* We just need fpcc to update Rc1 */
576 T0 &= 0xF;
577}
578
579/* Floating-point invalid operations exception */
580static always_inline void fload_invalid_op_excp (int op)
581{
582 int ve;
583
584 ve = fpscr_ve;
585 if (op & POWERPC_EXCP_FP_VXSNAN) {
586 /* Operation on signaling NaN */
587 env->fpscr |= 1 << FPSCR_VXSNAN;
588 }
589 if (op & POWERPC_EXCP_FP_VXSOFT) {
590 /* Software-defined condition */
591 env->fpscr |= 1 << FPSCR_VXSOFT;
592 }
593 switch (op & ~(POWERPC_EXCP_FP_VXSOFT | POWERPC_EXCP_FP_VXSNAN)) {
594 case POWERPC_EXCP_FP_VXISI:
595 /* Magnitude subtraction of infinities */
596 env->fpscr |= 1 << FPSCR_VXISI;
597 goto update_arith;
598 case POWERPC_EXCP_FP_VXIDI:
599 /* Division of infinity by infinity */
600 env->fpscr |= 1 << FPSCR_VXIDI;
601 goto update_arith;
602 case POWERPC_EXCP_FP_VXZDZ:
603 /* Division of zero by zero */
604 env->fpscr |= 1 << FPSCR_VXZDZ;
605 goto update_arith;
606 case POWERPC_EXCP_FP_VXIMZ:
607 /* Multiplication of zero by infinity */
608 env->fpscr |= 1 << FPSCR_VXIMZ;
609 goto update_arith;
610 case POWERPC_EXCP_FP_VXVC:
611 /* Ordered comparison of NaN */
612 env->fpscr |= 1 << FPSCR_VXVC;
613 env->fpscr &= ~(0xF << FPSCR_FPCC);
614 env->fpscr |= 0x11 << FPSCR_FPCC;
615 /* We must update the target FPR before raising the exception */
616 if (ve != 0) {
617 env->exception_index = POWERPC_EXCP_PROGRAM;
618 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC;
619 /* Update the floating-point enabled exception summary */
620 env->fpscr |= 1 << FPSCR_FEX;
621 /* Exception is differed */
622 ve = 0;
623 }
624 break;
625 case POWERPC_EXCP_FP_VXSQRT:
626 /* Square root of a negative number */
627 env->fpscr |= 1 << FPSCR_VXSQRT;
628 update_arith:
629 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
630 if (ve == 0) {
631 /* Set the result to quiet NaN */
632 FT0 = (uint64_t)-1;
633 env->fpscr &= ~(0xF << FPSCR_FPCC);
634 env->fpscr |= 0x11 << FPSCR_FPCC;
635 }
636 break;
637 case POWERPC_EXCP_FP_VXCVI:
638 /* Invalid conversion */
639 env->fpscr |= 1 << FPSCR_VXCVI;
640 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
641 if (ve == 0) {
642 /* Set the result to quiet NaN */
643 FT0 = (uint64_t)-1;
644 env->fpscr &= ~(0xF << FPSCR_FPCC);
645 env->fpscr |= 0x11 << FPSCR_FPCC;
646 }
647 break;
648 }
649 /* Update the floating-point invalid operation summary */
650 env->fpscr |= 1 << FPSCR_VX;
651 /* Update the floating-point exception summary */
652 env->fpscr |= 1 << FPSCR_FX;
653 if (ve != 0) {
654 /* Update the floating-point enabled exception summary */
655 env->fpscr |= 1 << FPSCR_FEX;
656 if (msr_fe0 != 0 || msr_fe1 != 0)
657 do_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_FP | op);
658 }
659}
660
661static always_inline void float_zero_divide_excp (void)
662{
663 union {
664 float64 f;
665 uint64_t u;
666 } u0, u1;
7c58044c
JM
667
668 env->fpscr |= 1 << FPSCR_ZX;
669 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
670 /* Update the floating-point exception summary */
671 env->fpscr |= 1 << FPSCR_FX;
672 if (fpscr_ze != 0) {
673 /* Update the floating-point enabled exception summary */
674 env->fpscr |= 1 << FPSCR_FEX;
675 if (msr_fe0 != 0 || msr_fe1 != 0) {
676 do_raise_exception_err(POWERPC_EXCP_PROGRAM,
677 POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX);
678 }
679 } else {
680 /* Set the result to infinity */
681 u0.f = FT0;
682 u1.f = FT1;
683 u0.u = ((u0.u ^ u1.u) & 0x8000000000000000ULL);
86c4a9f5 684 u0.u |= 0x7FFULL << 52;
7c58044c
JM
685 FT0 = u0.f;
686 }
687}
688
689static always_inline void float_overflow_excp (void)
690{
691 env->fpscr |= 1 << FPSCR_OX;
692 /* Update the floating-point exception summary */
693 env->fpscr |= 1 << FPSCR_FX;
694 if (fpscr_oe != 0) {
695 /* XXX: should adjust the result */
696 /* Update the floating-point enabled exception summary */
697 env->fpscr |= 1 << FPSCR_FEX;
698 /* We must update the target FPR before raising the exception */
699 env->exception_index = POWERPC_EXCP_PROGRAM;
700 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
701 } else {
702 env->fpscr |= 1 << FPSCR_XX;
703 env->fpscr |= 1 << FPSCR_FI;
704 }
705}
706
707static always_inline void float_underflow_excp (void)
708{
709 env->fpscr |= 1 << FPSCR_UX;
710 /* Update the floating-point exception summary */
711 env->fpscr |= 1 << FPSCR_FX;
712 if (fpscr_ue != 0) {
713 /* XXX: should adjust the result */
714 /* Update the floating-point enabled exception summary */
715 env->fpscr |= 1 << FPSCR_FEX;
716 /* We must update the target FPR before raising the exception */
717 env->exception_index = POWERPC_EXCP_PROGRAM;
718 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
719 }
720}
721
722static always_inline void float_inexact_excp (void)
723{
724 env->fpscr |= 1 << FPSCR_XX;
725 /* Update the floating-point exception summary */
726 env->fpscr |= 1 << FPSCR_FX;
727 if (fpscr_xe != 0) {
728 /* Update the floating-point enabled exception summary */
729 env->fpscr |= 1 << FPSCR_FEX;
730 /* We must update the target FPR before raising the exception */
731 env->exception_index = POWERPC_EXCP_PROGRAM;
732 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
733 }
734}
735
736static always_inline void fpscr_set_rounding_mode (void)
737{
738 int rnd_type;
739
740 /* Set rounding mode */
741 switch (fpscr_rn) {
742 case 0:
743 /* Best approximation (round to nearest) */
744 rnd_type = float_round_nearest_even;
745 break;
746 case 1:
747 /* Smaller magnitude (round toward zero) */
748 rnd_type = float_round_to_zero;
749 break;
750 case 2:
751 /* Round toward +infinite */
752 rnd_type = float_round_up;
753 break;
754 default:
755 case 3:
756 /* Round toward -infinite */
757 rnd_type = float_round_down;
758 break;
759 }
760 set_float_rounding_mode(rnd_type, &env->fp_status);
761}
762
763void do_fpscr_setbit (int bit)
764{
765 int prev;
766
767 prev = (env->fpscr >> bit) & 1;
768 env->fpscr |= 1 << bit;
769 if (prev == 0) {
770 switch (bit) {
771 case FPSCR_VX:
772 env->fpscr |= 1 << FPSCR_FX;
773 if (fpscr_ve)
774 goto raise_ve;
775 case FPSCR_OX:
776 env->fpscr |= 1 << FPSCR_FX;
777 if (fpscr_oe)
778 goto raise_oe;
779 break;
780 case FPSCR_UX:
781 env->fpscr |= 1 << FPSCR_FX;
782 if (fpscr_ue)
783 goto raise_ue;
784 break;
785 case FPSCR_ZX:
786 env->fpscr |= 1 << FPSCR_FX;
787 if (fpscr_ze)
788 goto raise_ze;
789 break;
790 case FPSCR_XX:
791 env->fpscr |= 1 << FPSCR_FX;
792 if (fpscr_xe)
793 goto raise_xe;
794 break;
795 case FPSCR_VXSNAN:
796 case FPSCR_VXISI:
797 case FPSCR_VXIDI:
798 case FPSCR_VXZDZ:
799 case FPSCR_VXIMZ:
800 case FPSCR_VXVC:
801 case FPSCR_VXSOFT:
802 case FPSCR_VXSQRT:
803 case FPSCR_VXCVI:
804 env->fpscr |= 1 << FPSCR_VX;
805 env->fpscr |= 1 << FPSCR_FX;
806 if (fpscr_ve != 0)
807 goto raise_ve;
808 break;
809 case FPSCR_VE:
810 if (fpscr_vx != 0) {
811 raise_ve:
812 env->error_code = POWERPC_EXCP_FP;
813 if (fpscr_vxsnan)
814 env->error_code |= POWERPC_EXCP_FP_VXSNAN;
815 if (fpscr_vxisi)
816 env->error_code |= POWERPC_EXCP_FP_VXISI;
817 if (fpscr_vxidi)
818 env->error_code |= POWERPC_EXCP_FP_VXIDI;
819 if (fpscr_vxzdz)
820 env->error_code |= POWERPC_EXCP_FP_VXZDZ;
821 if (fpscr_vximz)
822 env->error_code |= POWERPC_EXCP_FP_VXIMZ;
823 if (fpscr_vxvc)
824 env->error_code |= POWERPC_EXCP_FP_VXVC;
825 if (fpscr_vxsoft)
826 env->error_code |= POWERPC_EXCP_FP_VXSOFT;
827 if (fpscr_vxsqrt)
828 env->error_code |= POWERPC_EXCP_FP_VXSQRT;
829 if (fpscr_vxcvi)
830 env->error_code |= POWERPC_EXCP_FP_VXCVI;
831 goto raise_excp;
832 }
833 break;
834 case FPSCR_OE:
835 if (fpscr_ox != 0) {
836 raise_oe:
837 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
838 goto raise_excp;
839 }
840 break;
841 case FPSCR_UE:
842 if (fpscr_ux != 0) {
843 raise_ue:
844 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
845 goto raise_excp;
846 }
847 break;
848 case FPSCR_ZE:
849 if (fpscr_zx != 0) {
850 raise_ze:
851 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX;
852 goto raise_excp;
853 }
854 break;
855 case FPSCR_XE:
856 if (fpscr_xx != 0) {
857 raise_xe:
858 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
859 goto raise_excp;
860 }
861 break;
862 case FPSCR_RN1:
863 case FPSCR_RN:
864 fpscr_set_rounding_mode();
865 break;
866 default:
867 break;
868 raise_excp:
869 /* Update the floating-point enabled exception summary */
870 env->fpscr |= 1 << FPSCR_FEX;
871 /* We have to update Rc1 before raising the exception */
872 env->exception_index = POWERPC_EXCP_PROGRAM;
873 break;
874 }
875 }
876}
877
878#if defined(WORDS_BIGENDIAN)
879#define WORD0 0
880#define WORD1 1
881#else
882#define WORD0 1
883#define WORD1 0
884#endif
885void do_store_fpscr (uint32_t mask)
886{
887 /*
888 * We use only the 32 LSB of the incoming fpr
889 */
890 union {
891 double d;
892 struct {
893 uint32_t u[2];
894 } s;
895 } u;
896 uint32_t prev, new;
897 int i;
898
899 u.d = FT0;
900 prev = env->fpscr;
901 new = u.s.u[WORD1];
902 new &= ~0x90000000;
903 new |= prev & 0x90000000;
904 for (i = 0; i < 7; i++) {
905 if (mask & (1 << i)) {
906 env->fpscr &= ~(0xF << (4 * i));
907 env->fpscr |= new & (0xF << (4 * i));
908 }
909 }
910 /* Update VX and FEX */
911 if (fpscr_ix != 0)
912 env->fpscr |= 1 << FPSCR_VX;
913 if ((fpscr_ex & fpscr_eex) != 0) {
914 env->fpscr |= 1 << FPSCR_FEX;
915 env->exception_index = POWERPC_EXCP_PROGRAM;
916 /* XXX: we should compute it properly */
917 env->error_code = POWERPC_EXCP_FP;
918 }
919 fpscr_set_rounding_mode();
920}
921#undef WORD0
922#undef WORD1
923
924#ifdef CONFIG_SOFTFLOAT
925void do_float_check_status (void)
926{
927 if (env->exception_index == POWERPC_EXCP_PROGRAM &&
928 (env->error_code & POWERPC_EXCP_FP)) {
929 /* Differred floating-point exception after target FPR update */
930 if (msr_fe0 != 0 || msr_fe1 != 0)
931 do_raise_exception_err(env->exception_index, env->error_code);
932 } else if (env->fp_status.float_exception_flags & float_flag_overflow) {
933 float_overflow_excp();
934 } else if (env->fp_status.float_exception_flags & float_flag_underflow) {
935 float_underflow_excp();
936 } else if (env->fp_status.float_exception_flags & float_flag_inexact) {
937 float_inexact_excp();
938 }
939}
940#endif
941
942#if USE_PRECISE_EMULATION
943void do_fadd (void)
944{
945 if (unlikely(float64_is_signaling_nan(FT0) ||
946 float64_is_signaling_nan(FT1))) {
947 /* sNaN addition */
948 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
949 } else if (likely(isfinite(FT0) || isfinite(FT1) ||
950 fpisneg(FT0) == fpisneg(FT1))) {
951 FT0 = float64_add(FT0, FT1, &env->fp_status);
952 } else {
953 /* Magnitude subtraction of infinities */
954 fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
955 }
956}
957
958void do_fsub (void)
959{
960 if (unlikely(float64_is_signaling_nan(FT0) ||
961 float64_is_signaling_nan(FT1))) {
962 /* sNaN subtraction */
963 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
964 } else if (likely(isfinite(FT0) || isfinite(FT1) ||
965 fpisneg(FT0) != fpisneg(FT1))) {
966 FT0 = float64_sub(FT0, FT1, &env->fp_status);
967 } else {
968 /* Magnitude subtraction of infinities */
969 fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
970 }
971}
972
973void do_fmul (void)
974{
975 if (unlikely(float64_is_signaling_nan(FT0) ||
976 float64_is_signaling_nan(FT1))) {
977 /* sNaN multiplication */
978 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
5bda2843
JM
979 } else if (unlikely((isinfinity(FT0) && iszero(FT1)) ||
980 (iszero(FT0) && isinfinity(FT1)))) {
7c58044c
JM
981 /* Multiplication of zero by infinity */
982 fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ);
983 } else {
984 FT0 = float64_mul(FT0, FT1, &env->fp_status);
985 }
986}
987
988void do_fdiv (void)
989{
990 if (unlikely(float64_is_signaling_nan(FT0) ||
991 float64_is_signaling_nan(FT1))) {
992 /* sNaN division */
993 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
994 } else if (unlikely(isinfinity(FT0) && isinfinity(FT1))) {
995 /* Division of infinity by infinity */
996 fload_invalid_op_excp(POWERPC_EXCP_FP_VXIDI);
997 } else if (unlikely(iszero(FT1))) {
998 if (iszero(FT0)) {
999 /* Division of zero by zero */
1000 fload_invalid_op_excp(POWERPC_EXCP_FP_VXZDZ);
1001 } else {
1002 /* Division by zero */
1003 float_zero_divide_excp();
1004 }
1005 } else {
1006 FT0 = float64_div(FT0, FT1, &env->fp_status);
1007 }
1008}
1009#endif /* USE_PRECISE_EMULATION */
1010
9a64fbe4
FB
1011void do_fctiw (void)
1012{
1013 union {
1014 double d;
1015 uint64_t i;
4ecc3190 1016 } p;
9a64fbe4 1017
7c58044c
JM
1018 if (unlikely(float64_is_signaling_nan(FT0))) {
1019 /* sNaN conversion */
1020 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1021 } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) {
1022 /* qNan / infinity conversion */
1023 fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1024 } else {
1025 p.i = float64_to_int32(FT0, &env->fp_status);
e864cabd 1026#if USE_PRECISE_EMULATION
7c58044c
JM
1027 /* XXX: higher bits are not supposed to be significant.
1028 * to make tests easier, return the same as a real PowerPC 750
1029 */
1030 p.i |= 0xFFF80000ULL << 32;
e864cabd 1031#endif
7c58044c
JM
1032 FT0 = p.d;
1033 }
9a64fbe4
FB
1034}
1035
1036void do_fctiwz (void)
1037{
1038 union {
1039 double d;
1040 uint64_t i;
4ecc3190
FB
1041 } p;
1042
7c58044c
JM
1043 if (unlikely(float64_is_signaling_nan(FT0))) {
1044 /* sNaN conversion */
1045 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1046 } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) {
1047 /* qNan / infinity conversion */
1048 fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1049 } else {
1050 p.i = float64_to_int32_round_to_zero(FT0, &env->fp_status);
e864cabd 1051#if USE_PRECISE_EMULATION
7c58044c
JM
1052 /* XXX: higher bits are not supposed to be significant.
1053 * to make tests easier, return the same as a real PowerPC 750
1054 */
1055 p.i |= 0xFFF80000ULL << 32;
e864cabd 1056#endif
7c58044c
JM
1057 FT0 = p.d;
1058 }
9a64fbe4
FB
1059}
1060
426613db
JM
1061#if defined(TARGET_PPC64)
1062void do_fcfid (void)
1063{
1064 union {
1065 double d;
1066 uint64_t i;
1067 } p;
1068
1069 p.d = FT0;
1070 FT0 = int64_to_float64(p.i, &env->fp_status);
1071}
1072
1073void do_fctid (void)
1074{
1075 union {
1076 double d;
1077 uint64_t i;
1078 } p;
1079
7c58044c
JM
1080 if (unlikely(float64_is_signaling_nan(FT0))) {
1081 /* sNaN conversion */
1082 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1083 } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) {
1084 /* qNan / infinity conversion */
1085 fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1086 } else {
1087 p.i = float64_to_int64(FT0, &env->fp_status);
1088 FT0 = p.d;
1089 }
426613db
JM
1090}
1091
1092void do_fctidz (void)
1093{
1094 union {
1095 double d;
1096 uint64_t i;
1097 } p;
1098
7c58044c
JM
1099 if (unlikely(float64_is_signaling_nan(FT0))) {
1100 /* sNaN conversion */
1101 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1102 } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) {
1103 /* qNan / infinity conversion */
1104 fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1105 } else {
1106 p.i = float64_to_int64_round_to_zero(FT0, &env->fp_status);
1107 FT0 = p.d;
1108 }
426613db
JM
1109}
1110
1111#endif
1112
b068d6a7 1113static always_inline void do_fri (int rounding_mode)
d7e4b87e 1114{
7c58044c
JM
1115 if (unlikely(float64_is_signaling_nan(FT0))) {
1116 /* sNaN round */
1117 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1118 } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) {
1119 /* qNan / infinity round */
1120 fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1121 } else {
1122 set_float_rounding_mode(rounding_mode, &env->fp_status);
1123 FT0 = float64_round_to_int(FT0, &env->fp_status);
1124 /* Restore rounding mode from FPSCR */
1125 fpscr_set_rounding_mode();
1126 }
d7e4b87e
JM
1127}
1128
1129void do_frin (void)
1130{
1131 do_fri(float_round_nearest_even);
1132}
1133
1134void do_friz (void)
1135{
1136 do_fri(float_round_to_zero);
1137}
1138
1139void do_frip (void)
1140{
1141 do_fri(float_round_up);
1142}
1143
1144void do_frim (void)
1145{
1146 do_fri(float_round_down);
1147}
1148
e864cabd
JM
1149#if USE_PRECISE_EMULATION
1150void do_fmadd (void)
1151{
7c58044c
JM
1152 if (unlikely(float64_is_signaling_nan(FT0) ||
1153 float64_is_signaling_nan(FT1) ||
1154 float64_is_signaling_nan(FT2))) {
1155 /* sNaN operation */
1156 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1157 } else {
e864cabd 1158#ifdef FLOAT128
7c58044c
JM
1159 /* This is the way the PowerPC specification defines it */
1160 float128 ft0_128, ft1_128;
1161
1162 ft0_128 = float64_to_float128(FT0, &env->fp_status);
1163 ft1_128 = float64_to_float128(FT1, &env->fp_status);
1164 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1165 ft1_128 = float64_to_float128(FT2, &env->fp_status);
1166 ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
1167 FT0 = float128_to_float64(ft0_128, &env->fp_status);
e864cabd 1168#else
7c58044c
JM
1169 /* This is OK on x86 hosts */
1170 FT0 = (FT0 * FT1) + FT2;
e864cabd 1171#endif
7c58044c 1172 }
e864cabd
JM
1173}
1174
1175void do_fmsub (void)
1176{
7c58044c
JM
1177 if (unlikely(float64_is_signaling_nan(FT0) ||
1178 float64_is_signaling_nan(FT1) ||
1179 float64_is_signaling_nan(FT2))) {
1180 /* sNaN operation */
1181 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1182 } else {
e864cabd 1183#ifdef FLOAT128
7c58044c
JM
1184 /* This is the way the PowerPC specification defines it */
1185 float128 ft0_128, ft1_128;
1186
1187 ft0_128 = float64_to_float128(FT0, &env->fp_status);
1188 ft1_128 = float64_to_float128(FT1, &env->fp_status);
1189 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1190 ft1_128 = float64_to_float128(FT2, &env->fp_status);
1191 ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
1192 FT0 = float128_to_float64(ft0_128, &env->fp_status);
e864cabd 1193#else
7c58044c
JM
1194 /* This is OK on x86 hosts */
1195 FT0 = (FT0 * FT1) - FT2;
e864cabd 1196#endif
7c58044c 1197 }
e864cabd
JM
1198}
1199#endif /* USE_PRECISE_EMULATION */
1200
4b3686fa
FB
1201void do_fnmadd (void)
1202{
7c58044c
JM
1203 if (unlikely(float64_is_signaling_nan(FT0) ||
1204 float64_is_signaling_nan(FT1) ||
1205 float64_is_signaling_nan(FT2))) {
1206 /* sNaN operation */
1207 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1208 } else {
e864cabd
JM
1209#if USE_PRECISE_EMULATION
1210#ifdef FLOAT128
7c58044c
JM
1211 /* This is the way the PowerPC specification defines it */
1212 float128 ft0_128, ft1_128;
1213
1214 ft0_128 = float64_to_float128(FT0, &env->fp_status);
1215 ft1_128 = float64_to_float128(FT1, &env->fp_status);
1216 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1217 ft1_128 = float64_to_float128(FT2, &env->fp_status);
1218 ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
1219 FT0 = float128_to_float64(ft0_128, &env->fp_status);
e864cabd 1220#else
7c58044c
JM
1221 /* This is OK on x86 hosts */
1222 FT0 = (FT0 * FT1) + FT2;
e864cabd
JM
1223#endif
1224#else
7c58044c
JM
1225 FT0 = float64_mul(FT0, FT1, &env->fp_status);
1226 FT0 = float64_add(FT0, FT2, &env->fp_status);
e864cabd 1227#endif
7c58044c
JM
1228 if (likely(!isnan(FT0)))
1229 FT0 = float64_chs(FT0);
1230 }
4b3686fa
FB
1231}
1232
1233void do_fnmsub (void)
1234{
7c58044c
JM
1235 if (unlikely(float64_is_signaling_nan(FT0) ||
1236 float64_is_signaling_nan(FT1) ||
1237 float64_is_signaling_nan(FT2))) {
1238 /* sNaN operation */
1239 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1240 } else {
e864cabd
JM
1241#if USE_PRECISE_EMULATION
1242#ifdef FLOAT128
7c58044c
JM
1243 /* This is the way the PowerPC specification defines it */
1244 float128 ft0_128, ft1_128;
1245
1246 ft0_128 = float64_to_float128(FT0, &env->fp_status);
1247 ft1_128 = float64_to_float128(FT1, &env->fp_status);
1248 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1249 ft1_128 = float64_to_float128(FT2, &env->fp_status);
1250 ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
1251 FT0 = float128_to_float64(ft0_128, &env->fp_status);
e864cabd 1252#else
7c58044c
JM
1253 /* This is OK on x86 hosts */
1254 FT0 = (FT0 * FT1) - FT2;
e864cabd
JM
1255#endif
1256#else
7c58044c
JM
1257 FT0 = float64_mul(FT0, FT1, &env->fp_status);
1258 FT0 = float64_sub(FT0, FT2, &env->fp_status);
e864cabd 1259#endif
7c58044c
JM
1260 if (likely(!isnan(FT0)))
1261 FT0 = float64_chs(FT0);
1262 }
1ef59d0a
FB
1263}
1264
7c58044c
JM
1265#if USE_PRECISE_EMULATION
1266void do_frsp (void)
1267{
1268 if (unlikely(float64_is_signaling_nan(FT0))) {
1269 /* sNaN square root */
1270 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1271 } else {
1272 FT0 = float64_to_float32(FT0, &env->fp_status);
1273 }
1274}
1275#endif /* USE_PRECISE_EMULATION */
1276
9a64fbe4
FB
1277void do_fsqrt (void)
1278{
7c58044c
JM
1279 if (unlikely(float64_is_signaling_nan(FT0))) {
1280 /* sNaN square root */
1281 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1282 } else if (unlikely(fpisneg(FT0) && !iszero(FT0))) {
1283 /* Square root of a negative nonzero number */
1284 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT);
1285 } else {
1286 FT0 = float64_sqrt(FT0, &env->fp_status);
1287 }
9a64fbe4
FB
1288}
1289
d7e4b87e
JM
1290void do_fre (void)
1291{
1292 union {
1293 double d;
1294 uint64_t i;
1295 } p;
1296
7c58044c
JM
1297 if (unlikely(float64_is_signaling_nan(FT0))) {
1298 /* sNaN reciprocal */
1299 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1300 } else if (unlikely(iszero(FT0))) {
1301 /* Zero reciprocal */
1302 float_zero_divide_excp();
1303 } else if (likely(isnormal(FT0))) {
d7e4b87e
JM
1304 FT0 = float64_div(1.0, FT0, &env->fp_status);
1305 } else {
1306 p.d = FT0;
1307 if (p.i == 0x8000000000000000ULL) {
1308 p.i = 0xFFF0000000000000ULL;
1309 } else if (p.i == 0x0000000000000000ULL) {
1310 p.i = 0x7FF0000000000000ULL;
1311 } else if (isnan(FT0)) {
1312 p.i = 0x7FF8000000000000ULL;
7c58044c 1313 } else if (fpisneg(FT0)) {
d7e4b87e
JM
1314 p.i = 0x8000000000000000ULL;
1315 } else {
1316 p.i = 0x0000000000000000ULL;
1317 }
1318 FT0 = p.d;
1319 }
1320}
1321
9a64fbe4
FB
1322void do_fres (void)
1323{
4ecc3190
FB
1324 union {
1325 double d;
1326 uint64_t i;
1327 } p;
1328
7c58044c
JM
1329 if (unlikely(float64_is_signaling_nan(FT0))) {
1330 /* sNaN reciprocal */
1331 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1332 } else if (unlikely(iszero(FT0))) {
1333 /* Zero reciprocal */
1334 float_zero_divide_excp();
1335 } else if (likely(isnormal(FT0))) {
e864cabd
JM
1336#if USE_PRECISE_EMULATION
1337 FT0 = float64_div(1.0, FT0, &env->fp_status);
1338 FT0 = float64_to_float32(FT0, &env->fp_status);
1339#else
76a66253 1340 FT0 = float32_div(1.0, FT0, &env->fp_status);
e864cabd 1341#endif
4ecc3190
FB
1342 } else {
1343 p.d = FT0;
1344 if (p.i == 0x8000000000000000ULL) {
1345 p.i = 0xFFF0000000000000ULL;
1346 } else if (p.i == 0x0000000000000000ULL) {
1347 p.i = 0x7FF0000000000000ULL;
1348 } else if (isnan(FT0)) {
1349 p.i = 0x7FF8000000000000ULL;
7c58044c 1350 } else if (fpisneg(FT0)) {
4ecc3190
FB
1351 p.i = 0x8000000000000000ULL;
1352 } else {
1353 p.i = 0x0000000000000000ULL;
1354 }
1355 FT0 = p.d;
1356 }
9a64fbe4
FB
1357}
1358
4ecc3190 1359void do_frsqrte (void)
9a64fbe4 1360{
4ecc3190
FB
1361 union {
1362 double d;
1363 uint64_t i;
1364 } p;
1365
7c58044c
JM
1366 if (unlikely(float64_is_signaling_nan(FT0))) {
1367 /* sNaN reciprocal square root */
1368 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1369 } else if (unlikely(fpisneg(FT0) && !iszero(FT0))) {
1370 /* Reciprocal square root of a negative nonzero number */
1371 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT);
1372 } else if (likely(isnormal(FT0))) {
fdabc366
FB
1373 FT0 = float64_sqrt(FT0, &env->fp_status);
1374 FT0 = float32_div(1.0, FT0, &env->fp_status);
4ecc3190
FB
1375 } else {
1376 p.d = FT0;
1377 if (p.i == 0x8000000000000000ULL) {
1378 p.i = 0xFFF0000000000000ULL;
1379 } else if (p.i == 0x0000000000000000ULL) {
1380 p.i = 0x7FF0000000000000ULL;
1381 } else if (isnan(FT0)) {
7c58044c
JM
1382 p.i |= 0x000FFFFFFFFFFFFFULL;
1383 } else if (fpisneg(FT0)) {
4ecc3190
FB
1384 p.i = 0x7FF8000000000000ULL;
1385 } else {
1386 p.i = 0x0000000000000000ULL;
1387 }
1388 FT0 = p.d;
1389 }
9a64fbe4
FB
1390}
1391
1392void do_fsel (void)
1393{
7c58044c 1394 if (!fpisneg(FT0) || iszero(FT0))
9a64fbe4 1395 FT0 = FT1;
4ecc3190
FB
1396 else
1397 FT0 = FT2;
9a64fbe4
FB
1398}
1399
1400void do_fcmpu (void)
1401{
7c58044c
JM
1402 if (unlikely(float64_is_signaling_nan(FT0) ||
1403 float64_is_signaling_nan(FT1))) {
1404 /* sNaN comparison */
1405 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1406 } else {
fdabc366
FB
1407 if (float64_lt(FT0, FT1, &env->fp_status)) {
1408 T0 = 0x08UL;
1409 } else if (!float64_le(FT0, FT1, &env->fp_status)) {
1410 T0 = 0x04UL;
1411 } else {
1412 T0 = 0x02UL;
1413 }
9a64fbe4 1414 }
7c58044c
JM
1415 env->fpscr &= ~(0x0F << FPSCR_FPRF);
1416 env->fpscr |= T0 << FPSCR_FPRF;
9a64fbe4
FB
1417}
1418
1419void do_fcmpo (void)
1420{
7c58044c
JM
1421 if (unlikely(float64_is_nan(FT0) ||
1422 float64_is_nan(FT1))) {
1423 if (float64_is_signaling_nan(FT0) ||
1424 float64_is_signaling_nan(FT1)) {
1425 /* sNaN comparison */
1426 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN |
1427 POWERPC_EXCP_FP_VXVC);
1428 } else {
1429 /* qNaN comparison */
1430 fload_invalid_op_excp(POWERPC_EXCP_FP_VXVC);
1431 }
1432 } else {
fdabc366
FB
1433 if (float64_lt(FT0, FT1, &env->fp_status)) {
1434 T0 = 0x08UL;
1435 } else if (!float64_le(FT0, FT1, &env->fp_status)) {
1436 T0 = 0x04UL;
1437 } else {
1438 T0 = 0x02UL;
1439 }
9a64fbe4 1440 }
7c58044c
JM
1441 env->fpscr &= ~(0x0F << FPSCR_FPRF);
1442 env->fpscr |= T0 << FPSCR_FPRF;
9a64fbe4
FB
1443}
1444
76a66253 1445#if !defined (CONFIG_USER_ONLY)
6b80055d 1446void cpu_dump_rfi (target_ulong RA, target_ulong msr);
0411a972
JM
1447
1448void do_store_msr (void)
1449{
1450 T0 = hreg_store_msr(env, T0);
1451 if (T0 != 0) {
1452 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
1453 do_raise_exception(T0);
1454 }
1455}
1456
1457static always_inline void __do_rfi (target_ulong nip, target_ulong msr,
1458 target_ulong msrm, int keep_msrh)
9a64fbe4 1459{
426613db 1460#if defined(TARGET_PPC64)
0411a972
JM
1461 if (msr & (1ULL << MSR_SF)) {
1462 nip = (uint64_t)nip;
1463 msr &= (uint64_t)msrm;
a42bd6cc 1464 } else {
0411a972
JM
1465 nip = (uint32_t)nip;
1466 msr = (uint32_t)(msr & msrm);
1467 if (keep_msrh)
1468 msr |= env->msr & ~((uint64_t)0xFFFFFFFF);
a42bd6cc 1469 }
426613db 1470#else
0411a972
JM
1471 nip = (uint32_t)nip;
1472 msr &= (uint32_t)msrm;
426613db 1473#endif
0411a972
JM
1474 /* XXX: beware: this is false if VLE is supported */
1475 env->nip = nip & ~((target_ulong)0x00000003);
1476 hreg_store_msr(env, msr);
fdabc366 1477#if defined (DEBUG_OP)
0411a972 1478 cpu_dump_rfi(env->nip, env->msr);
fdabc366 1479#endif
0411a972
JM
1480 /* No need to raise an exception here,
1481 * as rfi is always the last insn of a TB
1482 */
fdabc366 1483 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
9a64fbe4 1484}
d9bce9d9 1485
0411a972
JM
1486void do_rfi (void)
1487{
1488 __do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1],
1489 ~((target_ulong)0xFFFF0000), 1);
1490}
1491
d9bce9d9 1492#if defined(TARGET_PPC64)
426613db
JM
1493void do_rfid (void)
1494{
0411a972
JM
1495 __do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1],
1496 ~((target_ulong)0xFFFF0000), 0);
d9bce9d9
JM
1497}
1498#endif
be147d08
JM
1499#if defined(TARGET_PPC64H)
1500void do_hrfid (void)
1501{
0411a972
JM
1502 __do_rfi(env->spr[SPR_HSRR0], env->spr[SPR_HSRR1],
1503 ~((target_ulong)0xFFFF0000), 0);
be147d08
JM
1504}
1505#endif
76a66253 1506#endif
9a64fbe4 1507
76a66253 1508void do_tw (int flags)
9a64fbe4 1509{
d9bce9d9
JM
1510 if (!likely(!(((int32_t)T0 < (int32_t)T1 && (flags & 0x10)) ||
1511 ((int32_t)T0 > (int32_t)T1 && (flags & 0x08)) ||
1512 ((int32_t)T0 == (int32_t)T1 && (flags & 0x04)) ||
1513 ((uint32_t)T0 < (uint32_t)T1 && (flags & 0x02)) ||
a42bd6cc 1514 ((uint32_t)T0 > (uint32_t)T1 && (flags & 0x01))))) {
e1833e1f 1515 do_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP);
a42bd6cc 1516 }
9a64fbe4
FB
1517}
1518
d9bce9d9
JM
1519#if defined(TARGET_PPC64)
1520void do_td (int flags)
1521{
1522 if (!likely(!(((int64_t)T0 < (int64_t)T1 && (flags & 0x10)) ||
1523 ((int64_t)T0 > (int64_t)T1 && (flags & 0x08)) ||
1524 ((int64_t)T0 == (int64_t)T1 && (flags & 0x04)) ||
1525 ((uint64_t)T0 < (uint64_t)T1 && (flags & 0x02)) ||
1526 ((uint64_t)T0 > (uint64_t)T1 && (flags & 0x01)))))
e1833e1f 1527 do_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP);
d9bce9d9
JM
1528}
1529#endif
1530
fdabc366 1531/*****************************************************************************/
76a66253
JM
1532/* PowerPC 601 specific instructions (POWER bridge) */
1533void do_POWER_abso (void)
9a64fbe4 1534{
d9bce9d9 1535 if ((uint32_t)T0 == INT32_MIN) {
76a66253
JM
1536 T0 = INT32_MAX;
1537 xer_ov = 1;
1538 xer_so = 1;
1539 } else {
1540 T0 = -T0;
1541 xer_ov = 0;
1542 }
9a64fbe4
FB
1543}
1544
76a66253 1545void do_POWER_clcs (void)
9a64fbe4 1546{
76a66253
JM
1547 switch (T0) {
1548 case 0x0CUL:
1549 /* Instruction cache line size */
d63001d1 1550 T0 = env->icache_line_size;
76a66253
JM
1551 break;
1552 case 0x0DUL:
1553 /* Data cache line size */
d63001d1 1554 T0 = env->dcache_line_size;
76a66253
JM
1555 break;
1556 case 0x0EUL:
1557 /* Minimum cache line size */
d63001d1
JM
1558 T0 = env->icache_line_size < env->dcache_line_size ?
1559 env->icache_line_size : env->dcache_line_size;
76a66253
JM
1560 break;
1561 case 0x0FUL:
1562 /* Maximum cache line size */
d63001d1
JM
1563 T0 = env->icache_line_size > env->dcache_line_size ?
1564 env->icache_line_size : env->dcache_line_size;
76a66253
JM
1565 break;
1566 default:
1567 /* Undefined */
1568 break;
1569 }
1570}
1571
1572void do_POWER_div (void)
1573{
1574 uint64_t tmp;
1575
d9bce9d9 1576 if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == -1) || (int32_t)T1 == 0) {
76a66253
JM
1577 T0 = (long)((-1) * (T0 >> 31));
1578 env->spr[SPR_MQ] = 0;
1579 } else {
1580 tmp = ((uint64_t)T0 << 32) | env->spr[SPR_MQ];
1581 env->spr[SPR_MQ] = tmp % T1;
d9bce9d9 1582 T0 = tmp / (int32_t)T1;
76a66253
JM
1583 }
1584}
1585
1586void do_POWER_divo (void)
1587{
1588 int64_t tmp;
1589
d9bce9d9 1590 if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == -1) || (int32_t)T1 == 0) {
76a66253
JM
1591 T0 = (long)((-1) * (T0 >> 31));
1592 env->spr[SPR_MQ] = 0;
1593 xer_ov = 1;
1594 xer_so = 1;
1595 } else {
1596 tmp = ((uint64_t)T0 << 32) | env->spr[SPR_MQ];
1597 env->spr[SPR_MQ] = tmp % T1;
d9bce9d9 1598 tmp /= (int32_t)T1;
76a66253
JM
1599 if (tmp > (int64_t)INT32_MAX || tmp < (int64_t)INT32_MIN) {
1600 xer_ov = 1;
1601 xer_so = 1;
1602 } else {
1603 xer_ov = 0;
1604 }
1605 T0 = tmp;
1606 }
1607}
1608
1609void do_POWER_divs (void)
1610{
d9bce9d9 1611 if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == -1) || (int32_t)T1 == 0) {
76a66253
JM
1612 T0 = (long)((-1) * (T0 >> 31));
1613 env->spr[SPR_MQ] = 0;
1614 } else {
1615 env->spr[SPR_MQ] = T0 % T1;
d9bce9d9 1616 T0 = (int32_t)T0 / (int32_t)T1;
76a66253
JM
1617 }
1618}
1619
1620void do_POWER_divso (void)
1621{
d9bce9d9 1622 if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == -1) || (int32_t)T1 == 0) {
76a66253
JM
1623 T0 = (long)((-1) * (T0 >> 31));
1624 env->spr[SPR_MQ] = 0;
1625 xer_ov = 1;
1626 xer_so = 1;
1627 } else {
d9bce9d9
JM
1628 T0 = (int32_t)T0 / (int32_t)T1;
1629 env->spr[SPR_MQ] = (int32_t)T0 % (int32_t)T1;
76a66253
JM
1630 xer_ov = 0;
1631 }
1632}
1633
1634void do_POWER_dozo (void)
1635{
d9bce9d9 1636 if ((int32_t)T1 > (int32_t)T0) {
76a66253
JM
1637 T2 = T0;
1638 T0 = T1 - T0;
d9bce9d9
JM
1639 if (((uint32_t)(~T2) ^ (uint32_t)T1 ^ UINT32_MAX) &
1640 ((uint32_t)(~T2) ^ (uint32_t)T0) & (1UL << 31)) {
76a66253 1641 xer_ov = 1;
966439a6 1642 xer_so = 1;
76a66253
JM
1643 } else {
1644 xer_ov = 0;
1645 }
1646 } else {
1647 T0 = 0;
1648 xer_ov = 0;
1649 }
1650}
1651
1652void do_POWER_maskg (void)
1653{
1654 uint32_t ret;
1655
d9bce9d9 1656 if ((uint32_t)T0 == (uint32_t)(T1 + 1)) {
76a66253
JM
1657 ret = -1;
1658 } else {
d9bce9d9
JM
1659 ret = (((uint32_t)(-1)) >> ((uint32_t)T0)) ^
1660 (((uint32_t)(-1) >> ((uint32_t)T1)) >> 1);
1661 if ((uint32_t)T0 > (uint32_t)T1)
76a66253
JM
1662 ret = ~ret;
1663 }
1664 T0 = ret;
1665}
1666
1667void do_POWER_mulo (void)
1668{
1669 uint64_t tmp;
1670
1671 tmp = (uint64_t)T0 * (uint64_t)T1;
1672 env->spr[SPR_MQ] = tmp >> 32;
1673 T0 = tmp;
1674 if (tmp >> 32 != ((uint64_t)T0 >> 16) * ((uint64_t)T1 >> 16)) {
1675 xer_ov = 1;
1676 xer_so = 1;
1677 } else {
1678 xer_ov = 0;
1679 }
1680}
1681
1682#if !defined (CONFIG_USER_ONLY)
1683void do_POWER_rac (void)
1684{
76a66253 1685 mmu_ctx_t ctx;
faadf50e 1686 int nb_BATs;
76a66253
JM
1687
1688 /* We don't have to generate many instances of this instruction,
1689 * as rac is supervisor only.
1690 */
faadf50e
JM
1691 /* XXX: FIX THIS: Pretend we have no BAT */
1692 nb_BATs = env->nb_BATs;
1693 env->nb_BATs = 0;
1694 if (get_physical_address(env, &ctx, T0, 0, ACCESS_INT) == 0)
76a66253 1695 T0 = ctx.raddr;
faadf50e 1696 env->nb_BATs = nb_BATs;
76a66253
JM
1697}
1698
1699void do_POWER_rfsvc (void)
1700{
0411a972 1701 __do_rfi(env->lr, env->ctr, 0x0000FFFF, 0);
76a66253
JM
1702}
1703
1704/* PowerPC 601 BAT management helper */
1705void do_store_601_batu (int nr)
1706{
d9bce9d9 1707 do_store_ibatu(env, nr, (uint32_t)T0);
76a66253
JM
1708 env->DBAT[0][nr] = env->IBAT[0][nr];
1709 env->DBAT[1][nr] = env->IBAT[1][nr];
1710}
1711#endif
1712
1713/*****************************************************************************/
1714/* 602 specific instructions */
1715/* mfrom is the most crazy instruction ever seen, imho ! */
1716/* Real implementation uses a ROM table. Do the same */
1717#define USE_MFROM_ROM_TABLE
1718void do_op_602_mfrom (void)
1719{
1720 if (likely(T0 < 602)) {
d9bce9d9 1721#if defined(USE_MFROM_ROM_TABLE)
76a66253
JM
1722#include "mfrom_table.c"
1723 T0 = mfrom_ROM_table[T0];
fdabc366 1724#else
76a66253
JM
1725 double d;
1726 /* Extremly decomposed:
1727 * -T0 / 256
1728 * T0 = 256 * log10(10 + 1.0) + 0.5
1729 */
1730 d = T0;
1731 d = float64_div(d, 256, &env->fp_status);
1732 d = float64_chs(d);
1733 d = exp10(d); // XXX: use float emulation function
1734 d = float64_add(d, 1.0, &env->fp_status);
1735 d = log10(d); // XXX: use float emulation function
1736 d = float64_mul(d, 256, &env->fp_status);
1737 d = float64_add(d, 0.5, &env->fp_status);
1738 T0 = float64_round_to_int(d, &env->fp_status);
fdabc366 1739#endif
76a66253
JM
1740 } else {
1741 T0 = 0;
1742 }
1743}
1744
1745/*****************************************************************************/
1746/* Embedded PowerPC specific helpers */
1747void do_405_check_ov (void)
1748{
d9bce9d9
JM
1749 if (likely((((uint32_t)T1 ^ (uint32_t)T2) >> 31) ||
1750 !(((uint32_t)T0 ^ (uint32_t)T2) >> 31))) {
76a66253
JM
1751 xer_ov = 0;
1752 } else {
1753 xer_ov = 1;
1754 xer_so = 1;
1755 }
1756}
1757
1758void do_405_check_sat (void)
1759{
d9bce9d9
JM
1760 if (!likely((((uint32_t)T1 ^ (uint32_t)T2) >> 31) ||
1761 !(((uint32_t)T0 ^ (uint32_t)T2) >> 31))) {
76a66253
JM
1762 /* Saturate result */
1763 if (T2 >> 31) {
1764 T0 = INT32_MIN;
1765 } else {
1766 T0 = INT32_MAX;
1767 }
1768 }
1769}
1770
a750fc0b
JM
1771/* XXX: to be improved to check access rights when in user-mode */
1772void do_load_dcr (void)
1773{
1774 target_ulong val;
1775
1776 if (unlikely(env->dcr_env == NULL)) {
1777 if (loglevel != 0) {
1778 fprintf(logfile, "No DCR environment\n");
1779 }
e1833e1f
JM
1780 do_raise_exception_err(POWERPC_EXCP_PROGRAM,
1781 POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL);
a750fc0b
JM
1782 } else if (unlikely(ppc_dcr_read(env->dcr_env, T0, &val) != 0)) {
1783 if (loglevel != 0) {
1784 fprintf(logfile, "DCR read error %d %03x\n", (int)T0, (int)T0);
1785 }
e1833e1f
JM
1786 do_raise_exception_err(POWERPC_EXCP_PROGRAM,
1787 POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG);
a750fc0b
JM
1788 } else {
1789 T0 = val;
1790 }
1791}
1792
1793void do_store_dcr (void)
1794{
1795 if (unlikely(env->dcr_env == NULL)) {
1796 if (loglevel != 0) {
1797 fprintf(logfile, "No DCR environment\n");
1798 }
e1833e1f
JM
1799 do_raise_exception_err(POWERPC_EXCP_PROGRAM,
1800 POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL);
a750fc0b
JM
1801 } else if (unlikely(ppc_dcr_write(env->dcr_env, T0, T1) != 0)) {
1802 if (loglevel != 0) {
1803 fprintf(logfile, "DCR write error %d %03x\n", (int)T0, (int)T0);
1804 }
e1833e1f
JM
1805 do_raise_exception_err(POWERPC_EXCP_PROGRAM,
1806 POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG);
a750fc0b
JM
1807 }
1808}
1809
76a66253 1810#if !defined(CONFIG_USER_ONLY)
a42bd6cc 1811void do_40x_rfci (void)
76a66253 1812{
0411a972
JM
1813 __do_rfi(env->spr[SPR_40x_SRR2], env->spr[SPR_40x_SRR3],
1814 ~((target_ulong)0xFFFF0000), 0);
a42bd6cc
JM
1815}
1816
1817void do_rfci (void)
1818{
0411a972
JM
1819 __do_rfi(env->spr[SPR_BOOKE_CSRR0], SPR_BOOKE_CSRR1,
1820 ~((target_ulong)0x3FFF0000), 0);
a42bd6cc
JM
1821}
1822
1823void do_rfdi (void)
1824{
0411a972
JM
1825 __do_rfi(env->spr[SPR_BOOKE_DSRR0], SPR_BOOKE_DSRR1,
1826 ~((target_ulong)0x3FFF0000), 0);
a42bd6cc
JM
1827}
1828
1829void do_rfmci (void)
1830{
0411a972
JM
1831 __do_rfi(env->spr[SPR_BOOKE_MCSRR0], SPR_BOOKE_MCSRR1,
1832 ~((target_ulong)0x3FFF0000), 0);
76a66253
JM
1833}
1834
76a66253
JM
1835void do_load_403_pb (int num)
1836{
1837 T0 = env->pb[num];
1838}
1839
1840void do_store_403_pb (int num)
1841{
1842 if (likely(env->pb[num] != T0)) {
1843 env->pb[num] = T0;
1844 /* Should be optimized */
1845 tlb_flush(env, 1);
1846 }
1847}
1848#endif
1849
1850/* 440 specific */
1851void do_440_dlmzb (void)
1852{
1853 target_ulong mask;
1854 int i;
1855
1856 i = 1;
1857 for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
1858 if ((T0 & mask) == 0)
1859 goto done;
1860 i++;
1861 }
1862 for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
1863 if ((T1 & mask) == 0)
1864 break;
1865 i++;
1866 }
1867 done:
1868 T0 = i;
fdabc366
FB
1869}
1870
35cdaad6 1871#if defined(TARGET_PPCEMB)
0487d6a8
JM
1872/* SPE extension helpers */
1873/* Use a table to make this quicker */
1874static uint8_t hbrev[16] = {
1875 0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE,
1876 0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF,
1877};
1878
b068d6a7 1879static always_inline uint8_t byte_reverse (uint8_t val)
0487d6a8
JM
1880{
1881 return hbrev[val >> 4] | (hbrev[val & 0xF] << 4);
1882}
1883
b068d6a7 1884static always_inline uint32_t word_reverse (uint32_t val)
0487d6a8
JM
1885{
1886 return byte_reverse(val >> 24) | (byte_reverse(val >> 16) << 8) |
1887 (byte_reverse(val >> 8) << 16) | (byte_reverse(val) << 24);
1888}
1889
1890#define MASKBITS 16 // Random value - to be fixed
1891void do_brinc (void)
1892{
1893 uint32_t a, b, d, mask;
1894
1895 mask = (uint32_t)(-1UL) >> MASKBITS;
1896 b = T1_64 & mask;
1897 a = T0_64 & mask;
1898 d = word_reverse(1 + word_reverse(a | ~mask));
1899 T0_64 = (T0_64 & ~mask) | (d & mask);
1900}
1901
1902#define DO_SPE_OP2(name) \
1903void do_ev##name (void) \
1904{ \
1905 T0_64 = ((uint64_t)_do_e##name(T0_64 >> 32, T1_64 >> 32) << 32) | \
1906 (uint64_t)_do_e##name(T0_64, T1_64); \
1907}
1908
1909#define DO_SPE_OP1(name) \
1910void do_ev##name (void) \
1911{ \
1912 T0_64 = ((uint64_t)_do_e##name(T0_64 >> 32) << 32) | \
1913 (uint64_t)_do_e##name(T0_64); \
1914}
1915
1916/* Fixed-point vector arithmetic */
b068d6a7 1917static always_inline uint32_t _do_eabs (uint32_t val)
0487d6a8
JM
1918{
1919 if (val != 0x80000000)
1920 val &= ~0x80000000;
1921
1922 return val;
1923}
1924
b068d6a7 1925static always_inline uint32_t _do_eaddw (uint32_t op1, uint32_t op2)
0487d6a8
JM
1926{
1927 return op1 + op2;
1928}
1929
b068d6a7 1930static always_inline int _do_ecntlsw (uint32_t val)
0487d6a8
JM
1931{
1932 if (val & 0x80000000)
603fccce 1933 return clz32(~val);
0487d6a8 1934 else
603fccce 1935 return clz32(val);
0487d6a8
JM
1936}
1937
b068d6a7 1938static always_inline int _do_ecntlzw (uint32_t val)
0487d6a8 1939{
603fccce 1940 return clz32(val);
0487d6a8
JM
1941}
1942
b068d6a7 1943static always_inline uint32_t _do_eneg (uint32_t val)
0487d6a8
JM
1944{
1945 if (val != 0x80000000)
1946 val ^= 0x80000000;
1947
1948 return val;
1949}
1950
b068d6a7 1951static always_inline uint32_t _do_erlw (uint32_t op1, uint32_t op2)
0487d6a8
JM
1952{
1953 return rotl32(op1, op2);
1954}
1955
b068d6a7 1956static always_inline uint32_t _do_erndw (uint32_t val)
0487d6a8
JM
1957{
1958 return (val + 0x000080000000) & 0xFFFF0000;
1959}
1960
b068d6a7 1961static always_inline uint32_t _do_eslw (uint32_t op1, uint32_t op2)
0487d6a8
JM
1962{
1963 /* No error here: 6 bits are used */
1964 return op1 << (op2 & 0x3F);
1965}
1966
b068d6a7 1967static always_inline int32_t _do_esrws (int32_t op1, uint32_t op2)
0487d6a8
JM
1968{
1969 /* No error here: 6 bits are used */
1970 return op1 >> (op2 & 0x3F);
1971}
1972
b068d6a7 1973static always_inline uint32_t _do_esrwu (uint32_t op1, uint32_t op2)
0487d6a8
JM
1974{
1975 /* No error here: 6 bits are used */
1976 return op1 >> (op2 & 0x3F);
1977}
1978
b068d6a7 1979static always_inline uint32_t _do_esubfw (uint32_t op1, uint32_t op2)
0487d6a8
JM
1980{
1981 return op2 - op1;
1982}
1983
1984/* evabs */
1985DO_SPE_OP1(abs);
1986/* evaddw */
1987DO_SPE_OP2(addw);
1988/* evcntlsw */
1989DO_SPE_OP1(cntlsw);
1990/* evcntlzw */
1991DO_SPE_OP1(cntlzw);
1992/* evneg */
1993DO_SPE_OP1(neg);
1994/* evrlw */
1995DO_SPE_OP2(rlw);
1996/* evrnd */
1997DO_SPE_OP1(rndw);
1998/* evslw */
1999DO_SPE_OP2(slw);
2000/* evsrws */
2001DO_SPE_OP2(srws);
2002/* evsrwu */
2003DO_SPE_OP2(srwu);
2004/* evsubfw */
2005DO_SPE_OP2(subfw);
2006
2007/* evsel is a little bit more complicated... */
b068d6a7 2008static always_inline uint32_t _do_esel (uint32_t op1, uint32_t op2, int n)
0487d6a8
JM
2009{
2010 if (n)
2011 return op1;
2012 else
2013 return op2;
2014}
2015
2016void do_evsel (void)
2017{
2018 T0_64 = ((uint64_t)_do_esel(T0_64 >> 32, T1_64 >> 32, T0 >> 3) << 32) |
2019 (uint64_t)_do_esel(T0_64, T1_64, (T0 >> 2) & 1);
2020}
2021
2022/* Fixed-point vector comparisons */
2023#define DO_SPE_CMP(name) \
2024void do_ev##name (void) \
2025{ \
2026 T0 = _do_evcmp_merge((uint64_t)_do_e##name(T0_64 >> 32, \
2027 T1_64 >> 32) << 32, \
2028 _do_e##name(T0_64, T1_64)); \
2029}
2030
b068d6a7 2031static always_inline uint32_t _do_evcmp_merge (int t0, int t1)
0487d6a8
JM
2032{
2033 return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1);
2034}
b068d6a7 2035static always_inline int _do_ecmpeq (uint32_t op1, uint32_t op2)
0487d6a8
JM
2036{
2037 return op1 == op2 ? 1 : 0;
2038}
2039
b068d6a7 2040static always_inline int _do_ecmpgts (int32_t op1, int32_t op2)
0487d6a8
JM
2041{
2042 return op1 > op2 ? 1 : 0;
2043}
2044
b068d6a7 2045static always_inline int _do_ecmpgtu (uint32_t op1, uint32_t op2)
0487d6a8
JM
2046{
2047 return op1 > op2 ? 1 : 0;
2048}
2049
b068d6a7 2050static always_inline int _do_ecmplts (int32_t op1, int32_t op2)
0487d6a8
JM
2051{
2052 return op1 < op2 ? 1 : 0;
2053}
2054
b068d6a7 2055static always_inline int _do_ecmpltu (uint32_t op1, uint32_t op2)
0487d6a8
JM
2056{
2057 return op1 < op2 ? 1 : 0;
2058}
2059
2060/* evcmpeq */
2061DO_SPE_CMP(cmpeq);
2062/* evcmpgts */
2063DO_SPE_CMP(cmpgts);
2064/* evcmpgtu */
2065DO_SPE_CMP(cmpgtu);
2066/* evcmplts */
2067DO_SPE_CMP(cmplts);
2068/* evcmpltu */
2069DO_SPE_CMP(cmpltu);
2070
2071/* Single precision floating-point conversions from/to integer */
b068d6a7 2072static always_inline uint32_t _do_efscfsi (int32_t val)
0487d6a8
JM
2073{
2074 union {
2075 uint32_t u;
2076 float32 f;
2077 } u;
2078
2079 u.f = int32_to_float32(val, &env->spe_status);
2080
2081 return u.u;
2082}
2083
b068d6a7 2084static always_inline uint32_t _do_efscfui (uint32_t val)
0487d6a8
JM
2085{
2086 union {
2087 uint32_t u;
2088 float32 f;
2089 } u;
2090
2091 u.f = uint32_to_float32(val, &env->spe_status);
2092
2093 return u.u;
2094}
2095
b068d6a7 2096static always_inline int32_t _do_efsctsi (uint32_t val)
0487d6a8
JM
2097{
2098 union {
2099 int32_t u;
2100 float32 f;
2101 } u;
2102
2103 u.u = val;
2104 /* NaN are not treated the same way IEEE 754 does */
2105 if (unlikely(isnan(u.f)))
2106 return 0;
2107
2108 return float32_to_int32(u.f, &env->spe_status);
2109}
2110
b068d6a7 2111static always_inline uint32_t _do_efsctui (uint32_t val)
0487d6a8
JM
2112{
2113 union {
2114 int32_t u;
2115 float32 f;
2116 } u;
2117
2118 u.u = val;
2119 /* NaN are not treated the same way IEEE 754 does */
2120 if (unlikely(isnan(u.f)))
2121 return 0;
2122
2123 return float32_to_uint32(u.f, &env->spe_status);
2124}
2125
b068d6a7 2126static always_inline int32_t _do_efsctsiz (uint32_t val)
0487d6a8
JM
2127{
2128 union {
2129 int32_t u;
2130 float32 f;
2131 } u;
2132
2133 u.u = val;
2134 /* NaN are not treated the same way IEEE 754 does */
2135 if (unlikely(isnan(u.f)))
2136 return 0;
2137
2138 return float32_to_int32_round_to_zero(u.f, &env->spe_status);
2139}
2140
b068d6a7 2141static always_inline uint32_t _do_efsctuiz (uint32_t val)
0487d6a8
JM
2142{
2143 union {
2144 int32_t u;
2145 float32 f;
2146 } u;
2147
2148 u.u = val;
2149 /* NaN are not treated the same way IEEE 754 does */
2150 if (unlikely(isnan(u.f)))
2151 return 0;
2152
2153 return float32_to_uint32_round_to_zero(u.f, &env->spe_status);
2154}
2155
2156void do_efscfsi (void)
2157{
2158 T0_64 = _do_efscfsi(T0_64);
2159}
2160
2161void do_efscfui (void)
2162{
2163 T0_64 = _do_efscfui(T0_64);
2164}
2165
2166void do_efsctsi (void)
2167{
2168 T0_64 = _do_efsctsi(T0_64);
2169}
2170
2171void do_efsctui (void)
2172{
2173 T0_64 = _do_efsctui(T0_64);
2174}
2175
2176void do_efsctsiz (void)
2177{
2178 T0_64 = _do_efsctsiz(T0_64);
2179}
2180
2181void do_efsctuiz (void)
2182{
2183 T0_64 = _do_efsctuiz(T0_64);
2184}
2185
2186/* Single precision floating-point conversion to/from fractional */
b068d6a7 2187static always_inline uint32_t _do_efscfsf (uint32_t val)
0487d6a8
JM
2188{
2189 union {
2190 uint32_t u;
2191 float32 f;
2192 } u;
2193 float32 tmp;
2194
2195 u.f = int32_to_float32(val, &env->spe_status);
2196 tmp = int64_to_float32(1ULL << 32, &env->spe_status);
2197 u.f = float32_div(u.f, tmp, &env->spe_status);
2198
2199 return u.u;
2200}
2201
b068d6a7 2202static always_inline uint32_t _do_efscfuf (uint32_t val)
0487d6a8
JM
2203{
2204 union {
2205 uint32_t u;
2206 float32 f;
2207 } u;
2208 float32 tmp;
2209
2210 u.f = uint32_to_float32(val, &env->spe_status);
2211 tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
2212 u.f = float32_div(u.f, tmp, &env->spe_status);
2213
2214 return u.u;
2215}
2216
b068d6a7 2217static always_inline int32_t _do_efsctsf (uint32_t val)
0487d6a8
JM
2218{
2219 union {
2220 int32_t u;
2221 float32 f;
2222 } u;
2223 float32 tmp;
2224
2225 u.u = val;
2226 /* NaN are not treated the same way IEEE 754 does */
2227 if (unlikely(isnan(u.f)))
2228 return 0;
2229 tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
2230 u.f = float32_mul(u.f, tmp, &env->spe_status);
2231
2232 return float32_to_int32(u.f, &env->spe_status);
2233}
2234
b068d6a7 2235static always_inline uint32_t _do_efsctuf (uint32_t val)
0487d6a8
JM
2236{
2237 union {
2238 int32_t u;
2239 float32 f;
2240 } u;
2241 float32 tmp;
2242
2243 u.u = val;
2244 /* NaN are not treated the same way IEEE 754 does */
2245 if (unlikely(isnan(u.f)))
2246 return 0;
2247 tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
2248 u.f = float32_mul(u.f, tmp, &env->spe_status);
2249
2250 return float32_to_uint32(u.f, &env->spe_status);
2251}
2252
b068d6a7 2253static always_inline int32_t _do_efsctsfz (uint32_t val)
0487d6a8
JM
2254{
2255 union {
2256 int32_t u;
2257 float32 f;
2258 } u;
2259 float32 tmp;
2260
2261 u.u = val;
2262 /* NaN are not treated the same way IEEE 754 does */
2263 if (unlikely(isnan(u.f)))
2264 return 0;
2265 tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
2266 u.f = float32_mul(u.f, tmp, &env->spe_status);
2267
2268 return float32_to_int32_round_to_zero(u.f, &env->spe_status);
2269}
2270
b068d6a7 2271static always_inline uint32_t _do_efsctufz (uint32_t val)
0487d6a8
JM
2272{
2273 union {
2274 int32_t u;
2275 float32 f;
2276 } u;
2277 float32 tmp;
2278
2279 u.u = val;
2280 /* NaN are not treated the same way IEEE 754 does */
2281 if (unlikely(isnan(u.f)))
2282 return 0;
2283 tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
2284 u.f = float32_mul(u.f, tmp, &env->spe_status);
2285
2286 return float32_to_uint32_round_to_zero(u.f, &env->spe_status);
2287}
2288
2289void do_efscfsf (void)
2290{
2291 T0_64 = _do_efscfsf(T0_64);
2292}
2293
2294void do_efscfuf (void)
2295{
2296 T0_64 = _do_efscfuf(T0_64);
2297}
2298
2299void do_efsctsf (void)
2300{
2301 T0_64 = _do_efsctsf(T0_64);
2302}
2303
2304void do_efsctuf (void)
2305{
2306 T0_64 = _do_efsctuf(T0_64);
2307}
2308
2309void do_efsctsfz (void)
2310{
2311 T0_64 = _do_efsctsfz(T0_64);
2312}
2313
2314void do_efsctufz (void)
2315{
2316 T0_64 = _do_efsctufz(T0_64);
2317}
2318
2319/* Double precision floating point helpers */
b068d6a7 2320static always_inline int _do_efdcmplt (uint64_t op1, uint64_t op2)
0487d6a8
JM
2321{
2322 /* XXX: TODO: test special values (NaN, infinites, ...) */
2323 return _do_efdtstlt(op1, op2);
2324}
2325
b068d6a7 2326static always_inline int _do_efdcmpgt (uint64_t op1, uint64_t op2)
0487d6a8
JM
2327{
2328 /* XXX: TODO: test special values (NaN, infinites, ...) */
2329 return _do_efdtstgt(op1, op2);
2330}
2331
b068d6a7 2332static always_inline int _do_efdcmpeq (uint64_t op1, uint64_t op2)
0487d6a8
JM
2333{
2334 /* XXX: TODO: test special values (NaN, infinites, ...) */
2335 return _do_efdtsteq(op1, op2);
2336}
2337
2338void do_efdcmplt (void)
2339{
2340 T0 = _do_efdcmplt(T0_64, T1_64);
2341}
2342
2343void do_efdcmpgt (void)
2344{
2345 T0 = _do_efdcmpgt(T0_64, T1_64);
2346}
2347
2348void do_efdcmpeq (void)
2349{
2350 T0 = _do_efdcmpeq(T0_64, T1_64);
2351}
2352
2353/* Double precision floating-point conversion to/from integer */
b068d6a7 2354static always_inline uint64_t _do_efdcfsi (int64_t val)
0487d6a8
JM
2355{
2356 union {
2357 uint64_t u;
2358 float64 f;
2359 } u;
2360
2361 u.f = int64_to_float64(val, &env->spe_status);
2362
2363 return u.u;
2364}
2365
b068d6a7 2366static always_inline uint64_t _do_efdcfui (uint64_t val)
0487d6a8
JM
2367{
2368 union {
2369 uint64_t u;
2370 float64 f;
2371 } u;
2372
2373 u.f = uint64_to_float64(val, &env->spe_status);
2374
2375 return u.u;
2376}
2377
b068d6a7 2378static always_inline int64_t _do_efdctsi (uint64_t val)
0487d6a8
JM
2379{
2380 union {
2381 int64_t u;
2382 float64 f;
2383 } u;
2384
2385 u.u = val;
2386 /* NaN are not treated the same way IEEE 754 does */
2387 if (unlikely(isnan(u.f)))
2388 return 0;
2389
2390 return float64_to_int64(u.f, &env->spe_status);
2391}
2392
b068d6a7 2393static always_inline uint64_t _do_efdctui (uint64_t val)
0487d6a8
JM
2394{
2395 union {
2396 int64_t u;
2397 float64 f;
2398 } u;
2399
2400 u.u = val;
2401 /* NaN are not treated the same way IEEE 754 does */
2402 if (unlikely(isnan(u.f)))
2403 return 0;
2404
2405 return float64_to_uint64(u.f, &env->spe_status);
2406}
2407
b068d6a7 2408static always_inline int64_t _do_efdctsiz (uint64_t val)
0487d6a8
JM
2409{
2410 union {
2411 int64_t u;
2412 float64 f;
2413 } u;
2414
2415 u.u = val;
2416 /* NaN are not treated the same way IEEE 754 does */
2417 if (unlikely(isnan(u.f)))
2418 return 0;
2419
2420 return float64_to_int64_round_to_zero(u.f, &env->spe_status);
2421}
2422
b068d6a7 2423static always_inline uint64_t _do_efdctuiz (uint64_t val)
0487d6a8
JM
2424{
2425 union {
2426 int64_t u;
2427 float64 f;
2428 } u;
2429
2430 u.u = val;
2431 /* NaN are not treated the same way IEEE 754 does */
2432 if (unlikely(isnan(u.f)))
2433 return 0;
2434
2435 return float64_to_uint64_round_to_zero(u.f, &env->spe_status);
2436}
2437
2438void do_efdcfsi (void)
2439{
2440 T0_64 = _do_efdcfsi(T0_64);
2441}
2442
2443void do_efdcfui (void)
2444{
2445 T0_64 = _do_efdcfui(T0_64);
2446}
2447
2448void do_efdctsi (void)
2449{
2450 T0_64 = _do_efdctsi(T0_64);
2451}
2452
2453void do_efdctui (void)
2454{
2455 T0_64 = _do_efdctui(T0_64);
2456}
2457
2458void do_efdctsiz (void)
2459{
2460 T0_64 = _do_efdctsiz(T0_64);
2461}
2462
2463void do_efdctuiz (void)
2464{
2465 T0_64 = _do_efdctuiz(T0_64);
2466}
2467
2468/* Double precision floating-point conversion to/from fractional */
b068d6a7 2469static always_inline uint64_t _do_efdcfsf (int64_t val)
0487d6a8
JM
2470{
2471 union {
2472 uint64_t u;
2473 float64 f;
2474 } u;
2475 float64 tmp;
2476
2477 u.f = int32_to_float64(val, &env->spe_status);
2478 tmp = int64_to_float64(1ULL << 32, &env->spe_status);
2479 u.f = float64_div(u.f, tmp, &env->spe_status);
2480
2481 return u.u;
2482}
2483
b068d6a7 2484static always_inline uint64_t _do_efdcfuf (uint64_t val)
0487d6a8
JM
2485{
2486 union {
2487 uint64_t u;
2488 float64 f;
2489 } u;
2490 float64 tmp;
2491
2492 u.f = uint32_to_float64(val, &env->spe_status);
2493 tmp = int64_to_float64(1ULL << 32, &env->spe_status);
2494 u.f = float64_div(u.f, tmp, &env->spe_status);
2495
2496 return u.u;
2497}
2498
b068d6a7 2499static always_inline int64_t _do_efdctsf (uint64_t val)
0487d6a8
JM
2500{
2501 union {
2502 int64_t u;
2503 float64 f;
2504 } u;
2505 float64 tmp;
2506
2507 u.u = val;
2508 /* NaN are not treated the same way IEEE 754 does */
2509 if (unlikely(isnan(u.f)))
2510 return 0;
2511 tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
2512 u.f = float64_mul(u.f, tmp, &env->spe_status);
2513
2514 return float64_to_int32(u.f, &env->spe_status);
2515}
2516
b068d6a7 2517static always_inline uint64_t _do_efdctuf (uint64_t val)
0487d6a8
JM
2518{
2519 union {
2520 int64_t u;
2521 float64 f;
2522 } u;
2523 float64 tmp;
2524
2525 u.u = val;
2526 /* NaN are not treated the same way IEEE 754 does */
2527 if (unlikely(isnan(u.f)))
2528 return 0;
2529 tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
2530 u.f = float64_mul(u.f, tmp, &env->spe_status);
2531
2532 return float64_to_uint32(u.f, &env->spe_status);
2533}
2534
b068d6a7 2535static always_inline int64_t _do_efdctsfz (uint64_t val)
0487d6a8
JM
2536{
2537 union {
2538 int64_t u;
2539 float64 f;
2540 } u;
2541 float64 tmp;
2542
2543 u.u = val;
2544 /* NaN are not treated the same way IEEE 754 does */
2545 if (unlikely(isnan(u.f)))
2546 return 0;
2547 tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
2548 u.f = float64_mul(u.f, tmp, &env->spe_status);
2549
2550 return float64_to_int32_round_to_zero(u.f, &env->spe_status);
2551}
2552
b068d6a7 2553static always_inline uint64_t _do_efdctufz (uint64_t val)
0487d6a8
JM
2554{
2555 union {
2556 int64_t u;
2557 float64 f;
2558 } u;
2559 float64 tmp;
2560
2561 u.u = val;
2562 /* NaN are not treated the same way IEEE 754 does */
2563 if (unlikely(isnan(u.f)))
2564 return 0;
2565 tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
2566 u.f = float64_mul(u.f, tmp, &env->spe_status);
2567
2568 return float64_to_uint32_round_to_zero(u.f, &env->spe_status);
2569}
2570
2571void do_efdcfsf (void)
2572{
2573 T0_64 = _do_efdcfsf(T0_64);
2574}
2575
2576void do_efdcfuf (void)
2577{
2578 T0_64 = _do_efdcfuf(T0_64);
2579}
2580
2581void do_efdctsf (void)
2582{
2583 T0_64 = _do_efdctsf(T0_64);
2584}
2585
2586void do_efdctuf (void)
2587{
2588 T0_64 = _do_efdctuf(T0_64);
2589}
2590
2591void do_efdctsfz (void)
2592{
2593 T0_64 = _do_efdctsfz(T0_64);
2594}
2595
2596void do_efdctufz (void)
2597{
2598 T0_64 = _do_efdctufz(T0_64);
2599}
2600
2601/* Floating point conversion between single and double precision */
b068d6a7 2602static always_inline uint32_t _do_efscfd (uint64_t val)
0487d6a8
JM
2603{
2604 union {
2605 uint64_t u;
2606 float64 f;
2607 } u1;
2608 union {
2609 uint32_t u;
2610 float32 f;
2611 } u2;
2612
2613 u1.u = val;
2614 u2.f = float64_to_float32(u1.f, &env->spe_status);
2615
2616 return u2.u;
2617}
2618
b068d6a7 2619static always_inline uint64_t _do_efdcfs (uint32_t val)
0487d6a8
JM
2620{
2621 union {
2622 uint64_t u;
2623 float64 f;
2624 } u2;
2625 union {
2626 uint32_t u;
2627 float32 f;
2628 } u1;
2629
2630 u1.u = val;
2631 u2.f = float32_to_float64(u1.f, &env->spe_status);
2632
2633 return u2.u;
2634}
2635
2636void do_efscfd (void)
2637{
2638 T0_64 = _do_efscfd(T0_64);
2639}
2640
2641void do_efdcfs (void)
2642{
2643 T0_64 = _do_efdcfs(T0_64);
2644}
2645
2646/* Single precision fixed-point vector arithmetic */
2647/* evfsabs */
2648DO_SPE_OP1(fsabs);
2649/* evfsnabs */
2650DO_SPE_OP1(fsnabs);
2651/* evfsneg */
2652DO_SPE_OP1(fsneg);
2653/* evfsadd */
2654DO_SPE_OP2(fsadd);
2655/* evfssub */
2656DO_SPE_OP2(fssub);
2657/* evfsmul */
2658DO_SPE_OP2(fsmul);
2659/* evfsdiv */
2660DO_SPE_OP2(fsdiv);
2661
2662/* Single-precision floating-point comparisons */
b068d6a7 2663static always_inline int _do_efscmplt (uint32_t op1, uint32_t op2)
0487d6a8
JM
2664{
2665 /* XXX: TODO: test special values (NaN, infinites, ...) */
2666 return _do_efststlt(op1, op2);
2667}
2668
b068d6a7 2669static always_inline int _do_efscmpgt (uint32_t op1, uint32_t op2)
0487d6a8
JM
2670{
2671 /* XXX: TODO: test special values (NaN, infinites, ...) */
2672 return _do_efststgt(op1, op2);
2673}
2674
b068d6a7 2675static always_inline int _do_efscmpeq (uint32_t op1, uint32_t op2)
0487d6a8
JM
2676{
2677 /* XXX: TODO: test special values (NaN, infinites, ...) */
2678 return _do_efststeq(op1, op2);
2679}
2680
2681void do_efscmplt (void)
2682{
2683 T0 = _do_efscmplt(T0_64, T1_64);
2684}
2685
2686void do_efscmpgt (void)
2687{
2688 T0 = _do_efscmpgt(T0_64, T1_64);
2689}
2690
2691void do_efscmpeq (void)
2692{
2693 T0 = _do_efscmpeq(T0_64, T1_64);
2694}
2695
2696/* Single-precision floating-point vector comparisons */
2697/* evfscmplt */
2698DO_SPE_CMP(fscmplt);
2699/* evfscmpgt */
2700DO_SPE_CMP(fscmpgt);
2701/* evfscmpeq */
2702DO_SPE_CMP(fscmpeq);
2703/* evfststlt */
2704DO_SPE_CMP(fststlt);
2705/* evfststgt */
2706DO_SPE_CMP(fststgt);
2707/* evfststeq */
2708DO_SPE_CMP(fststeq);
2709
2710/* Single-precision floating-point vector conversions */
2711/* evfscfsi */
2712DO_SPE_OP1(fscfsi);
2713/* evfscfui */
2714DO_SPE_OP1(fscfui);
2715/* evfscfuf */
2716DO_SPE_OP1(fscfuf);
2717/* evfscfsf */
2718DO_SPE_OP1(fscfsf);
2719/* evfsctsi */
2720DO_SPE_OP1(fsctsi);
2721/* evfsctui */
2722DO_SPE_OP1(fsctui);
2723/* evfsctsiz */
2724DO_SPE_OP1(fsctsiz);
2725/* evfsctuiz */
2726DO_SPE_OP1(fsctuiz);
2727/* evfsctsf */
2728DO_SPE_OP1(fsctsf);
2729/* evfsctuf */
2730DO_SPE_OP1(fsctuf);
35cdaad6 2731#endif /* defined(TARGET_PPCEMB) */
0487d6a8 2732
fdabc366
FB
2733/*****************************************************************************/
2734/* Softmmu support */
2735#if !defined (CONFIG_USER_ONLY)
2736
2737#define MMUSUFFIX _mmu
273af660
TS
2738#ifdef __s390__
2739# define GETPC() ((void*)((unsigned long)__builtin_return_address(0) & 0x7fffffffUL))
2740#else
2741# define GETPC() (__builtin_return_address(0))
2742#endif
fdabc366
FB
2743
2744#define SHIFT 0
2745#include "softmmu_template.h"
2746
2747#define SHIFT 1
2748#include "softmmu_template.h"
2749
2750#define SHIFT 2
2751#include "softmmu_template.h"
2752
2753#define SHIFT 3
2754#include "softmmu_template.h"
2755
2756/* try to fill the TLB and return an exception if error. If retaddr is
2757 NULL, it means that the function was called in C code (i.e. not
2758 from generated code or from helper.c) */
2759/* XXX: fix it to restore all registers */
6ebbf390 2760void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr)
fdabc366
FB
2761{
2762 TranslationBlock *tb;
2763 CPUState *saved_env;
2764 target_phys_addr_t pc;
2765 int ret;
2766
2767 /* XXX: hack to restore env in all cases, even if not called from
2768 generated code */
2769 saved_env = env;
2770 env = cpu_single_env;
6ebbf390 2771 ret = cpu_ppc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
76a66253 2772 if (unlikely(ret != 0)) {
fdabc366
FB
2773 if (likely(retaddr)) {
2774 /* now we have a real cpu fault */
a750fc0b 2775 pc = (target_phys_addr_t)(unsigned long)retaddr;
fdabc366
FB
2776 tb = tb_find_pc(pc);
2777 if (likely(tb)) {
2778 /* the PC is inside the translated code. It means that we have
2779 a virtual CPU fault */
2780 cpu_restore_state(tb, env, pc, NULL);
76a66253 2781 }
fdabc366
FB
2782 }
2783 do_raise_exception_err(env->exception_index, env->error_code);
2784 }
2785 env = saved_env;
9a64fbe4
FB
2786}
2787
76a66253
JM
2788/* Software driven TLBs management */
2789/* PowerPC 602/603 software TLB load instructions helpers */
2790void do_load_6xx_tlb (int is_code)
2791{
2792 target_ulong RPN, CMP, EPN;
2793 int way;
d9bce9d9 2794
76a66253
JM
2795 RPN = env->spr[SPR_RPA];
2796 if (is_code) {
2797 CMP = env->spr[SPR_ICMP];
2798 EPN = env->spr[SPR_IMISS];
2799 } else {
2800 CMP = env->spr[SPR_DCMP];
2801 EPN = env->spr[SPR_DMISS];
2802 }
2803 way = (env->spr[SPR_SRR1] >> 17) & 1;
2804#if defined (DEBUG_SOFTWARE_TLB)
2805 if (loglevel != 0) {
2806 fprintf(logfile, "%s: EPN %08lx %08lx PTE0 %08lx PTE1 %08lx way %d\n",
2807 __func__, (unsigned long)T0, (unsigned long)EPN,
2808 (unsigned long)CMP, (unsigned long)RPN, way);
2809 }
2810#endif
2811 /* Store this TLB */
d9bce9d9
JM
2812 ppc6xx_tlb_store(env, (uint32_t)(T0 & TARGET_PAGE_MASK),
2813 way, is_code, CMP, RPN);
76a66253
JM
2814}
2815
7dbe11ac
JM
2816void do_load_74xx_tlb (int is_code)
2817{
2818 target_ulong RPN, CMP, EPN;
2819 int way;
2820
2821 RPN = env->spr[SPR_PTELO];
2822 CMP = env->spr[SPR_PTEHI];
2823 EPN = env->spr[SPR_TLBMISS] & ~0x3;
2824 way = env->spr[SPR_TLBMISS] & 0x3;
2825#if defined (DEBUG_SOFTWARE_TLB)
2826 if (loglevel != 0) {
2827 fprintf(logfile, "%s: EPN %08lx %08lx PTE0 %08lx PTE1 %08lx way %d\n",
2828 __func__, (unsigned long)T0, (unsigned long)EPN,
2829 (unsigned long)CMP, (unsigned long)RPN, way);
2830 }
2831#endif
2832 /* Store this TLB */
2833 ppc6xx_tlb_store(env, (uint32_t)(T0 & TARGET_PAGE_MASK),
2834 way, is_code, CMP, RPN);
2835}
2836
a11b8151 2837static always_inline target_ulong booke_tlb_to_page_size (int size)
a8dea12f
JM
2838{
2839 return 1024 << (2 * size);
2840}
2841
a11b8151 2842static always_inline int booke_page_size_to_tlb (target_ulong page_size)
a8dea12f
JM
2843{
2844 int size;
2845
2846 switch (page_size) {
2847 case 0x00000400UL:
2848 size = 0x0;
2849 break;
2850 case 0x00001000UL:
2851 size = 0x1;
2852 break;
2853 case 0x00004000UL:
2854 size = 0x2;
2855 break;
2856 case 0x00010000UL:
2857 size = 0x3;
2858 break;
2859 case 0x00040000UL:
2860 size = 0x4;
2861 break;
2862 case 0x00100000UL:
2863 size = 0x5;
2864 break;
2865 case 0x00400000UL:
2866 size = 0x6;
2867 break;
2868 case 0x01000000UL:
2869 size = 0x7;
2870 break;
2871 case 0x04000000UL:
2872 size = 0x8;
2873 break;
2874 case 0x10000000UL:
2875 size = 0x9;
2876 break;
2877 case 0x40000000UL:
2878 size = 0xA;
2879 break;
2880#if defined (TARGET_PPC64)
2881 case 0x000100000000ULL:
2882 size = 0xB;
2883 break;
2884 case 0x000400000000ULL:
2885 size = 0xC;
2886 break;
2887 case 0x001000000000ULL:
2888 size = 0xD;
2889 break;
2890 case 0x004000000000ULL:
2891 size = 0xE;
2892 break;
2893 case 0x010000000000ULL:
2894 size = 0xF;
2895 break;
2896#endif
2897 default:
2898 size = -1;
2899 break;
2900 }
2901
2902 return size;
2903}
2904
76a66253 2905/* Helpers for 4xx TLB management */
76a66253
JM
2906void do_4xx_tlbre_lo (void)
2907{
a8dea12f
JM
2908 ppcemb_tlb_t *tlb;
2909 int size;
76a66253
JM
2910
2911 T0 &= 0x3F;
a8dea12f
JM
2912 tlb = &env->tlb[T0].tlbe;
2913 T0 = tlb->EPN;
2914 if (tlb->prot & PAGE_VALID)
2915 T0 |= 0x400;
2916 size = booke_page_size_to_tlb(tlb->size);
2917 if (size < 0 || size > 0x7)
2918 size = 1;
2919 T0 |= size << 7;
2920 env->spr[SPR_40x_PID] = tlb->PID;
76a66253
JM
2921}
2922
2923void do_4xx_tlbre_hi (void)
2924{
a8dea12f 2925 ppcemb_tlb_t *tlb;
76a66253
JM
2926
2927 T0 &= 0x3F;
a8dea12f
JM
2928 tlb = &env->tlb[T0].tlbe;
2929 T0 = tlb->RPN;
2930 if (tlb->prot & PAGE_EXEC)
2931 T0 |= 0x200;
2932 if (tlb->prot & PAGE_WRITE)
2933 T0 |= 0x100;
76a66253
JM
2934}
2935
c55e9aef 2936void do_4xx_tlbwe_hi (void)
76a66253 2937{
a8dea12f 2938 ppcemb_tlb_t *tlb;
76a66253
JM
2939 target_ulong page, end;
2940
c55e9aef 2941#if defined (DEBUG_SOFTWARE_TLB)
6b80055d 2942 if (loglevel != 0) {
c55e9aef
JM
2943 fprintf(logfile, "%s T0 " REGX " T1 " REGX "\n", __func__, T0, T1);
2944 }
2945#endif
76a66253 2946 T0 &= 0x3F;
a8dea12f 2947 tlb = &env->tlb[T0].tlbe;
76a66253
JM
2948 /* Invalidate previous TLB (if it's valid) */
2949 if (tlb->prot & PAGE_VALID) {
2950 end = tlb->EPN + tlb->size;
c55e9aef 2951#if defined (DEBUG_SOFTWARE_TLB)
6b80055d 2952 if (loglevel != 0) {
c55e9aef
JM
2953 fprintf(logfile, "%s: invalidate old TLB %d start " ADDRX
2954 " end " ADDRX "\n", __func__, (int)T0, tlb->EPN, end);
2955 }
2956#endif
76a66253
JM
2957 for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE)
2958 tlb_flush_page(env, page);
2959 }
a8dea12f 2960 tlb->size = booke_tlb_to_page_size((T1 >> 7) & 0x7);
c294fc58
JM
2961 /* We cannot handle TLB size < TARGET_PAGE_SIZE.
2962 * If this ever occurs, one should use the ppcemb target instead
2963 * of the ppc or ppc64 one
2964 */
2965 if ((T1 & 0x40) && tlb->size < TARGET_PAGE_SIZE) {
71c8b8fd
JM
2966 cpu_abort(env, "TLB size " TARGET_FMT_lu " < %u "
2967 "are not supported (%d)\n",
c294fc58
JM
2968 tlb->size, TARGET_PAGE_SIZE, (int)((T1 >> 7) & 0x7));
2969 }
a750fc0b 2970 tlb->EPN = T1 & ~(tlb->size - 1);
c55e9aef 2971 if (T1 & 0x40)
76a66253
JM
2972 tlb->prot |= PAGE_VALID;
2973 else
2974 tlb->prot &= ~PAGE_VALID;
c294fc58
JM
2975 if (T1 & 0x20) {
2976 /* XXX: TO BE FIXED */
2977 cpu_abort(env, "Little-endian TLB entries are not supported by now\n");
2978 }
c55e9aef 2979 tlb->PID = env->spr[SPR_40x_PID]; /* PID */
a8dea12f 2980 tlb->attr = T1 & 0xFF;
c55e9aef 2981#if defined (DEBUG_SOFTWARE_TLB)
c294fc58
JM
2982 if (loglevel != 0) {
2983 fprintf(logfile, "%s: set up TLB %d RPN " PADDRX " EPN " ADDRX
c55e9aef 2984 " size " ADDRX " prot %c%c%c%c PID %d\n", __func__,
5fafdf24 2985 (int)T0, tlb->RPN, tlb->EPN, tlb->size,
c55e9aef
JM
2986 tlb->prot & PAGE_READ ? 'r' : '-',
2987 tlb->prot & PAGE_WRITE ? 'w' : '-',
2988 tlb->prot & PAGE_EXEC ? 'x' : '-',
2989 tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID);
2990 }
2991#endif
76a66253
JM
2992 /* Invalidate new TLB (if valid) */
2993 if (tlb->prot & PAGE_VALID) {
2994 end = tlb->EPN + tlb->size;
c55e9aef 2995#if defined (DEBUG_SOFTWARE_TLB)
6b80055d 2996 if (loglevel != 0) {
c55e9aef
JM
2997 fprintf(logfile, "%s: invalidate TLB %d start " ADDRX
2998 " end " ADDRX "\n", __func__, (int)T0, tlb->EPN, end);
2999 }
3000#endif
76a66253
JM
3001 for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE)
3002 tlb_flush_page(env, page);
3003 }
76a66253
JM
3004}
3005
c55e9aef 3006void do_4xx_tlbwe_lo (void)
76a66253 3007{
a8dea12f 3008 ppcemb_tlb_t *tlb;
76a66253 3009
c55e9aef 3010#if defined (DEBUG_SOFTWARE_TLB)
6b80055d 3011 if (loglevel != 0) {
c55e9aef
JM
3012 fprintf(logfile, "%s T0 " REGX " T1 " REGX "\n", __func__, T0, T1);
3013 }
3014#endif
76a66253 3015 T0 &= 0x3F;
a8dea12f 3016 tlb = &env->tlb[T0].tlbe;
76a66253
JM
3017 tlb->RPN = T1 & 0xFFFFFC00;
3018 tlb->prot = PAGE_READ;
3019 if (T1 & 0x200)
3020 tlb->prot |= PAGE_EXEC;
3021 if (T1 & 0x100)
3022 tlb->prot |= PAGE_WRITE;
c55e9aef 3023#if defined (DEBUG_SOFTWARE_TLB)
6b80055d
JM
3024 if (loglevel != 0) {
3025 fprintf(logfile, "%s: set up TLB %d RPN " PADDRX " EPN " ADDRX
c55e9aef 3026 " size " ADDRX " prot %c%c%c%c PID %d\n", __func__,
5fafdf24 3027 (int)T0, tlb->RPN, tlb->EPN, tlb->size,
c55e9aef
JM
3028 tlb->prot & PAGE_READ ? 'r' : '-',
3029 tlb->prot & PAGE_WRITE ? 'w' : '-',
3030 tlb->prot & PAGE_EXEC ? 'x' : '-',
3031 tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID);
3032 }
3033#endif
76a66253 3034}
5eb7995e 3035
a4bb6c3e
JM
3036/* PowerPC 440 TLB management */
3037void do_440_tlbwe (int word)
5eb7995e
JM
3038{
3039 ppcemb_tlb_t *tlb;
a4bb6c3e 3040 target_ulong EPN, RPN, size;
5eb7995e
JM
3041 int do_flush_tlbs;
3042
3043#if defined (DEBUG_SOFTWARE_TLB)
3044 if (loglevel != 0) {
a4bb6c3e
JM
3045 fprintf(logfile, "%s word %d T0 " REGX " T1 " REGX "\n",
3046 __func__, word, T0, T1);
5eb7995e
JM
3047 }
3048#endif
3049 do_flush_tlbs = 0;
3050 T0 &= 0x3F;
3051 tlb = &env->tlb[T0].tlbe;
a4bb6c3e
JM
3052 switch (word) {
3053 default:
3054 /* Just here to please gcc */
3055 case 0:
3056 EPN = T1 & 0xFFFFFC00;
3057 if ((tlb->prot & PAGE_VALID) && EPN != tlb->EPN)
5eb7995e 3058 do_flush_tlbs = 1;
a4bb6c3e
JM
3059 tlb->EPN = EPN;
3060 size = booke_tlb_to_page_size((T1 >> 4) & 0xF);
3061 if ((tlb->prot & PAGE_VALID) && tlb->size < size)
3062 do_flush_tlbs = 1;
3063 tlb->size = size;
3064 tlb->attr &= ~0x1;
3065 tlb->attr |= (T1 >> 8) & 1;
3066 if (T1 & 0x200) {
3067 tlb->prot |= PAGE_VALID;
3068 } else {
3069 if (tlb->prot & PAGE_VALID) {
3070 tlb->prot &= ~PAGE_VALID;
3071 do_flush_tlbs = 1;
3072 }
5eb7995e 3073 }
a4bb6c3e
JM
3074 tlb->PID = env->spr[SPR_440_MMUCR] & 0x000000FF;
3075 if (do_flush_tlbs)
3076 tlb_flush(env, 1);
3077 break;
3078 case 1:
3079 RPN = T1 & 0xFFFFFC0F;
3080 if ((tlb->prot & PAGE_VALID) && tlb->RPN != RPN)
3081 tlb_flush(env, 1);
3082 tlb->RPN = RPN;
3083 break;
3084 case 2:
3085 tlb->attr = (tlb->attr & 0x1) | (T1 & 0x0000FF00);
3086 tlb->prot = tlb->prot & PAGE_VALID;
3087 if (T1 & 0x1)
3088 tlb->prot |= PAGE_READ << 4;
3089 if (T1 & 0x2)
3090 tlb->prot |= PAGE_WRITE << 4;
3091 if (T1 & 0x4)
3092 tlb->prot |= PAGE_EXEC << 4;
3093 if (T1 & 0x8)
3094 tlb->prot |= PAGE_READ;
3095 if (T1 & 0x10)
3096 tlb->prot |= PAGE_WRITE;
3097 if (T1 & 0x20)
3098 tlb->prot |= PAGE_EXEC;
3099 break;
5eb7995e 3100 }
5eb7995e
JM
3101}
3102
a4bb6c3e 3103void do_440_tlbre (int word)
5eb7995e
JM
3104{
3105 ppcemb_tlb_t *tlb;
3106 int size;
3107
3108 T0 &= 0x3F;
3109 tlb = &env->tlb[T0].tlbe;
a4bb6c3e
JM
3110 switch (word) {
3111 default:
3112 /* Just here to please gcc */
3113 case 0:
3114 T0 = tlb->EPN;
3115 size = booke_page_size_to_tlb(tlb->size);
3116 if (size < 0 || size > 0xF)
3117 size = 1;
3118 T0 |= size << 4;
3119 if (tlb->attr & 0x1)
3120 T0 |= 0x100;
3121 if (tlb->prot & PAGE_VALID)
3122 T0 |= 0x200;
3123 env->spr[SPR_440_MMUCR] &= ~0x000000FF;
3124 env->spr[SPR_440_MMUCR] |= tlb->PID;
3125 break;
3126 case 1:
3127 T0 = tlb->RPN;
3128 break;
3129 case 2:
3130 T0 = tlb->attr & ~0x1;
3131 if (tlb->prot & (PAGE_READ << 4))
3132 T0 |= 0x1;
3133 if (tlb->prot & (PAGE_WRITE << 4))
3134 T0 |= 0x2;
3135 if (tlb->prot & (PAGE_EXEC << 4))
3136 T0 |= 0x4;
3137 if (tlb->prot & PAGE_READ)
3138 T0 |= 0x8;
3139 if (tlb->prot & PAGE_WRITE)
3140 T0 |= 0x10;
3141 if (tlb->prot & PAGE_EXEC)
3142 T0 |= 0x20;
3143 break;
3144 }
5eb7995e 3145}
76a66253 3146#endif /* !CONFIG_USER_ONLY */
This page took 0.567495 seconds and 4 git commands to generate.