]>
Commit | Line | Data |
---|---|---|
9a64fbe4 | 1 | /* |
3fc6c082 | 2 | * PowerPC emulation helpers for qemu. |
5fafdf24 | 3 | * |
76a66253 | 4 | * Copyright (c) 2003-2007 Jocelyn Mayer |
9a64fbe4 FB |
5 | * |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
17 | * License along with this library; if not, write to the Free Software | |
18 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | |
19 | */ | |
9a64fbe4 | 20 | #include "exec.h" |
603fccce | 21 | #include "host-utils.h" |
9a64fbe4 | 22 | |
0411a972 | 23 | #include "helper_regs.h" |
0487d6a8 JM |
24 | #include "op_helper.h" |
25 | ||
9a64fbe4 | 26 | #define MEMSUFFIX _raw |
0487d6a8 | 27 | #include "op_helper.h" |
9a64fbe4 | 28 | #include "op_helper_mem.h" |
a541f297 | 29 | #if !defined(CONFIG_USER_ONLY) |
9a64fbe4 | 30 | #define MEMSUFFIX _user |
0487d6a8 | 31 | #include "op_helper.h" |
9a64fbe4 FB |
32 | #include "op_helper_mem.h" |
33 | #define MEMSUFFIX _kernel | |
0487d6a8 | 34 | #include "op_helper.h" |
9a64fbe4 | 35 | #include "op_helper_mem.h" |
1e42b8f0 JM |
36 | #if defined(TARGET_PPC64H) |
37 | #define MEMSUFFIX _hypv | |
38 | #include "op_helper.h" | |
39 | #include "op_helper_mem.h" | |
40 | #endif | |
9a64fbe4 FB |
41 | #endif |
42 | ||
fdabc366 FB |
43 | //#define DEBUG_OP |
44 | //#define DEBUG_EXCEPTIONS | |
76a66253 | 45 | //#define DEBUG_SOFTWARE_TLB |
fdabc366 | 46 | |
9a64fbe4 FB |
47 | /*****************************************************************************/ |
48 | /* Exceptions processing helpers */ | |
9a64fbe4 | 49 | |
9fddaa0c | 50 | void do_raise_exception_err (uint32_t exception, int error_code) |
9a64fbe4 | 51 | { |
9fddaa0c FB |
52 | #if 0 |
53 | printf("Raise exception %3x code : %d\n", exception, error_code); | |
54 | #endif | |
9fddaa0c FB |
55 | env->exception_index = exception; |
56 | env->error_code = error_code; | |
76a66253 JM |
57 | cpu_loop_exit(); |
58 | } | |
9fddaa0c FB |
59 | |
60 | void do_raise_exception (uint32_t exception) | |
61 | { | |
62 | do_raise_exception_err(exception, 0); | |
9a64fbe4 FB |
63 | } |
64 | ||
a496775f JM |
65 | void cpu_dump_EA (target_ulong EA); |
66 | void do_print_mem_EA (target_ulong EA) | |
67 | { | |
68 | cpu_dump_EA(EA); | |
69 | } | |
70 | ||
76a66253 JM |
71 | /*****************************************************************************/ |
72 | /* Registers load and stores */ | |
73 | void do_load_cr (void) | |
74 | { | |
75 | T0 = (env->crf[0] << 28) | | |
76 | (env->crf[1] << 24) | | |
77 | (env->crf[2] << 20) | | |
78 | (env->crf[3] << 16) | | |
79 | (env->crf[4] << 12) | | |
80 | (env->crf[5] << 8) | | |
81 | (env->crf[6] << 4) | | |
82 | (env->crf[7] << 0); | |
83 | } | |
84 | ||
85 | void do_store_cr (uint32_t mask) | |
86 | { | |
87 | int i, sh; | |
88 | ||
36081602 | 89 | for (i = 0, sh = 7; i < 8; i++, sh--) { |
76a66253 JM |
90 | if (mask & (1 << sh)) |
91 | env->crf[i] = (T0 >> (sh * 4)) & 0xFUL; | |
92 | } | |
93 | } | |
94 | ||
c80f84e3 JM |
95 | #if defined(TARGET_PPC64) |
96 | void do_store_pri (int prio) | |
97 | { | |
98 | env->spr[SPR_PPR] &= ~0x001C000000000000ULL; | |
99 | env->spr[SPR_PPR] |= ((uint64_t)prio & 0x7) << 50; | |
100 | } | |
101 | #endif | |
102 | ||
a496775f JM |
103 | target_ulong ppc_load_dump_spr (int sprn) |
104 | { | |
6b80055d | 105 | if (loglevel != 0) { |
a496775f JM |
106 | fprintf(logfile, "Read SPR %d %03x => " ADDRX "\n", |
107 | sprn, sprn, env->spr[sprn]); | |
108 | } | |
109 | ||
110 | return env->spr[sprn]; | |
111 | } | |
112 | ||
113 | void ppc_store_dump_spr (int sprn, target_ulong val) | |
114 | { | |
6b80055d | 115 | if (loglevel != 0) { |
a496775f JM |
116 | fprintf(logfile, "Write SPR %d %03x => " ADDRX " <= " ADDRX "\n", |
117 | sprn, sprn, env->spr[sprn], val); | |
118 | } | |
119 | env->spr[sprn] = val; | |
120 | } | |
121 | ||
9a64fbe4 | 122 | /*****************************************************************************/ |
fdabc366 | 123 | /* Fixed point operations helpers */ |
fdabc366 FB |
124 | void do_adde (void) |
125 | { | |
126 | T2 = T0; | |
127 | T0 += T1 + xer_ca; | |
d9bce9d9 JM |
128 | if (likely(!((uint32_t)T0 < (uint32_t)T2 || |
129 | (xer_ca == 1 && (uint32_t)T0 == (uint32_t)T2)))) { | |
fdabc366 FB |
130 | xer_ca = 0; |
131 | } else { | |
132 | xer_ca = 1; | |
133 | } | |
134 | } | |
135 | ||
d9bce9d9 JM |
136 | #if defined(TARGET_PPC64) |
137 | void do_adde_64 (void) | |
fdabc366 FB |
138 | { |
139 | T2 = T0; | |
140 | T0 += T1 + xer_ca; | |
d9bce9d9 JM |
141 | if (likely(!((uint64_t)T0 < (uint64_t)T2 || |
142 | (xer_ca == 1 && (uint64_t)T0 == (uint64_t)T2)))) { | |
fdabc366 FB |
143 | xer_ca = 0; |
144 | } else { | |
145 | xer_ca = 1; | |
146 | } | |
fdabc366 | 147 | } |
d9bce9d9 | 148 | #endif |
fdabc366 FB |
149 | |
150 | void do_addmeo (void) | |
151 | { | |
152 | T1 = T0; | |
153 | T0 += xer_ca + (-1); | |
d9bce9d9 JM |
154 | if (likely(!((uint32_t)T1 & |
155 | ((uint32_t)T1 ^ (uint32_t)T0) & (1UL << 31)))) { | |
fdabc366 FB |
156 | xer_ov = 0; |
157 | } else { | |
fdabc366 | 158 | xer_ov = 1; |
966439a6 | 159 | xer_so = 1; |
fdabc366 FB |
160 | } |
161 | if (likely(T1 != 0)) | |
162 | xer_ca = 1; | |
163 | } | |
164 | ||
d9bce9d9 JM |
165 | #if defined(TARGET_PPC64) |
166 | void do_addmeo_64 (void) | |
fdabc366 FB |
167 | { |
168 | T1 = T0; | |
d9bce9d9 JM |
169 | T0 += xer_ca + (-1); |
170 | if (likely(!((uint64_t)T1 & | |
171 | ((uint64_t)T1 ^ (uint64_t)T0) & (1ULL << 63)))) { | |
fdabc366 FB |
172 | xer_ov = 0; |
173 | } else { | |
fdabc366 | 174 | xer_ov = 1; |
966439a6 | 175 | xer_so = 1; |
fdabc366 | 176 | } |
d9bce9d9 | 177 | if (likely(T1 != 0)) |
fdabc366 | 178 | xer_ca = 1; |
fdabc366 | 179 | } |
d9bce9d9 | 180 | #endif |
fdabc366 FB |
181 | |
182 | void do_divwo (void) | |
183 | { | |
d9bce9d9 JM |
184 | if (likely(!(((int32_t)T0 == INT32_MIN && (int32_t)T1 == -1) || |
185 | (int32_t)T1 == 0))) { | |
fdabc366 | 186 | xer_ov = 0; |
d9bce9d9 | 187 | T0 = (int32_t)T0 / (int32_t)T1; |
fdabc366 | 188 | } else { |
fdabc366 | 189 | xer_ov = 1; |
966439a6 | 190 | xer_so = 1; |
fdabc366 FB |
191 | T0 = (-1) * ((uint32_t)T0 >> 31); |
192 | } | |
193 | } | |
194 | ||
d9bce9d9 JM |
195 | #if defined(TARGET_PPC64) |
196 | void do_divdo (void) | |
197 | { | |
198 | if (likely(!(((int64_t)T0 == INT64_MIN && (int64_t)T1 == -1ULL) || | |
199 | (int64_t)T1 == 0))) { | |
200 | xer_ov = 0; | |
201 | T0 = (int64_t)T0 / (int64_t)T1; | |
202 | } else { | |
d9bce9d9 | 203 | xer_ov = 1; |
966439a6 | 204 | xer_so = 1; |
d9bce9d9 JM |
205 | T0 = (-1ULL) * ((uint64_t)T0 >> 63); |
206 | } | |
207 | } | |
208 | #endif | |
209 | ||
fdabc366 FB |
210 | void do_divwuo (void) |
211 | { | |
212 | if (likely((uint32_t)T1 != 0)) { | |
213 | xer_ov = 0; | |
214 | T0 = (uint32_t)T0 / (uint32_t)T1; | |
215 | } else { | |
fdabc366 | 216 | xer_ov = 1; |
966439a6 | 217 | xer_so = 1; |
fdabc366 FB |
218 | T0 = 0; |
219 | } | |
220 | } | |
221 | ||
d9bce9d9 JM |
222 | #if defined(TARGET_PPC64) |
223 | void do_divduo (void) | |
224 | { | |
225 | if (likely((uint64_t)T1 != 0)) { | |
226 | xer_ov = 0; | |
227 | T0 = (uint64_t)T0 / (uint64_t)T1; | |
228 | } else { | |
d9bce9d9 | 229 | xer_ov = 1; |
966439a6 | 230 | xer_so = 1; |
d9bce9d9 JM |
231 | T0 = 0; |
232 | } | |
233 | } | |
234 | #endif | |
235 | ||
fdabc366 FB |
236 | void do_mullwo (void) |
237 | { | |
d9bce9d9 | 238 | int64_t res = (int64_t)T0 * (int64_t)T1; |
fdabc366 FB |
239 | |
240 | if (likely((int32_t)res == res)) { | |
241 | xer_ov = 0; | |
242 | } else { | |
243 | xer_ov = 1; | |
244 | xer_so = 1; | |
245 | } | |
246 | T0 = (int32_t)res; | |
247 | } | |
248 | ||
d9bce9d9 JM |
249 | #if defined(TARGET_PPC64) |
250 | void do_mulldo (void) | |
fdabc366 | 251 | { |
d9bce9d9 JM |
252 | int64_t th; |
253 | uint64_t tl; | |
254 | ||
9d901a20 | 255 | muls64(&tl, &th, T0, T1); |
88ad920b JM |
256 | /* If th != 0 && th != -1, then we had an overflow */ |
257 | if (likely((th + 1) <= 1)) { | |
fdabc366 | 258 | xer_ov = 0; |
fdabc366 FB |
259 | } else { |
260 | xer_ov = 1; | |
261 | xer_so = 1; | |
262 | } | |
d9bce9d9 | 263 | T0 = (int64_t)tl; |
fdabc366 | 264 | } |
d9bce9d9 | 265 | #endif |
fdabc366 | 266 | |
d9bce9d9 | 267 | void do_nego (void) |
fdabc366 | 268 | { |
d9bce9d9 | 269 | if (likely((int32_t)T0 != INT32_MIN)) { |
fdabc366 | 270 | xer_ov = 0; |
d9bce9d9 | 271 | T0 = -(int32_t)T0; |
fdabc366 | 272 | } else { |
fdabc366 | 273 | xer_ov = 1; |
d9bce9d9 | 274 | xer_so = 1; |
fdabc366 | 275 | } |
fdabc366 FB |
276 | } |
277 | ||
d9bce9d9 JM |
278 | #if defined(TARGET_PPC64) |
279 | void do_nego_64 (void) | |
fdabc366 | 280 | { |
d9bce9d9 | 281 | if (likely((int64_t)T0 != INT64_MIN)) { |
fdabc366 | 282 | xer_ov = 0; |
d9bce9d9 | 283 | T0 = -(int64_t)T0; |
fdabc366 | 284 | } else { |
fdabc366 | 285 | xer_ov = 1; |
d9bce9d9 | 286 | xer_so = 1; |
fdabc366 FB |
287 | } |
288 | } | |
d9bce9d9 | 289 | #endif |
fdabc366 FB |
290 | |
291 | void do_subfe (void) | |
292 | { | |
293 | T0 = T1 + ~T0 + xer_ca; | |
d9bce9d9 JM |
294 | if (likely((uint32_t)T0 >= (uint32_t)T1 && |
295 | (xer_ca == 0 || (uint32_t)T0 != (uint32_t)T1))) { | |
fdabc366 FB |
296 | xer_ca = 0; |
297 | } else { | |
298 | xer_ca = 1; | |
299 | } | |
300 | } | |
301 | ||
d9bce9d9 JM |
302 | #if defined(TARGET_PPC64) |
303 | void do_subfe_64 (void) | |
fdabc366 | 304 | { |
fdabc366 | 305 | T0 = T1 + ~T0 + xer_ca; |
d9bce9d9 JM |
306 | if (likely((uint64_t)T0 >= (uint64_t)T1 && |
307 | (xer_ca == 0 || (uint64_t)T0 != (uint64_t)T1))) { | |
308 | xer_ca = 0; | |
309 | } else { | |
310 | xer_ca = 1; | |
311 | } | |
312 | } | |
313 | #endif | |
314 | ||
315 | void do_subfmeo (void) | |
316 | { | |
317 | T1 = T0; | |
318 | T0 = ~T0 + xer_ca - 1; | |
319 | if (likely(!((uint32_t)~T1 & ((uint32_t)~T1 ^ (uint32_t)T0) & | |
320 | (1UL << 31)))) { | |
fdabc366 FB |
321 | xer_ov = 0; |
322 | } else { | |
fdabc366 | 323 | xer_ov = 1; |
966439a6 | 324 | xer_so = 1; |
fdabc366 | 325 | } |
d9bce9d9 | 326 | if (likely((uint32_t)T1 != UINT32_MAX)) |
fdabc366 | 327 | xer_ca = 1; |
fdabc366 FB |
328 | } |
329 | ||
d9bce9d9 JM |
330 | #if defined(TARGET_PPC64) |
331 | void do_subfmeo_64 (void) | |
fdabc366 FB |
332 | { |
333 | T1 = T0; | |
334 | T0 = ~T0 + xer_ca - 1; | |
d9bce9d9 JM |
335 | if (likely(!((uint64_t)~T1 & ((uint64_t)~T1 ^ (uint64_t)T0) & |
336 | (1ULL << 63)))) { | |
fdabc366 FB |
337 | xer_ov = 0; |
338 | } else { | |
fdabc366 | 339 | xer_ov = 1; |
966439a6 | 340 | xer_so = 1; |
fdabc366 | 341 | } |
d9bce9d9 | 342 | if (likely((uint64_t)T1 != UINT64_MAX)) |
fdabc366 FB |
343 | xer_ca = 1; |
344 | } | |
d9bce9d9 | 345 | #endif |
fdabc366 FB |
346 | |
347 | void do_subfzeo (void) | |
348 | { | |
349 | T1 = T0; | |
350 | T0 = ~T0 + xer_ca; | |
d9bce9d9 JM |
351 | if (likely(!(((uint32_t)~T1 ^ UINT32_MAX) & |
352 | ((uint32_t)(~T1) ^ (uint32_t)T0) & (1UL << 31)))) { | |
fdabc366 FB |
353 | xer_ov = 0; |
354 | } else { | |
355 | xer_ov = 1; | |
356 | xer_so = 1; | |
357 | } | |
d9bce9d9 | 358 | if (likely((uint32_t)T0 >= (uint32_t)~T1)) { |
fdabc366 FB |
359 | xer_ca = 0; |
360 | } else { | |
361 | xer_ca = 1; | |
362 | } | |
363 | } | |
364 | ||
d9bce9d9 JM |
365 | #if defined(TARGET_PPC64) |
366 | void do_subfzeo_64 (void) | |
367 | { | |
368 | T1 = T0; | |
369 | T0 = ~T0 + xer_ca; | |
370 | if (likely(!(((uint64_t)~T1 ^ UINT64_MAX) & | |
371 | ((uint64_t)(~T1) ^ (uint64_t)T0) & (1ULL << 63)))) { | |
372 | xer_ov = 0; | |
373 | } else { | |
374 | xer_ov = 1; | |
375 | xer_so = 1; | |
376 | } | |
377 | if (likely((uint64_t)T0 >= (uint64_t)~T1)) { | |
378 | xer_ca = 0; | |
379 | } else { | |
380 | xer_ca = 1; | |
381 | } | |
382 | } | |
383 | #endif | |
384 | ||
603fccce JM |
385 | void do_cntlzw (void) |
386 | { | |
387 | T0 = clz32(T0); | |
388 | } | |
389 | ||
390 | #if defined(TARGET_PPC64) | |
391 | void do_cntlzd (void) | |
392 | { | |
393 | T0 = clz64(T0); | |
394 | } | |
395 | #endif | |
396 | ||
9a64fbe4 FB |
397 | /* shift right arithmetic helper */ |
398 | void do_sraw (void) | |
399 | { | |
400 | int32_t ret; | |
401 | ||
fdabc366 | 402 | if (likely(!(T1 & 0x20UL))) { |
d9bce9d9 | 403 | if (likely((uint32_t)T1 != 0)) { |
fdabc366 FB |
404 | ret = (int32_t)T0 >> (T1 & 0x1fUL); |
405 | if (likely(ret >= 0 || ((int32_t)T0 & ((1 << T1) - 1)) == 0)) { | |
76a66253 | 406 | xer_ca = 0; |
fdabc366 | 407 | } else { |
76a66253 | 408 | xer_ca = 1; |
fdabc366 FB |
409 | } |
410 | } else { | |
76a66253 | 411 | ret = T0; |
fdabc366 FB |
412 | xer_ca = 0; |
413 | } | |
414 | } else { | |
415 | ret = (-1) * ((uint32_t)T0 >> 31); | |
416 | if (likely(ret >= 0 || ((uint32_t)T0 & ~0x80000000UL) == 0)) { | |
417 | xer_ca = 0; | |
76a66253 | 418 | } else { |
9a64fbe4 | 419 | xer_ca = 1; |
76a66253 | 420 | } |
fdabc366 | 421 | } |
4b3686fa | 422 | T0 = ret; |
9a64fbe4 FB |
423 | } |
424 | ||
d9bce9d9 JM |
425 | #if defined(TARGET_PPC64) |
426 | void do_srad (void) | |
427 | { | |
428 | int64_t ret; | |
429 | ||
430 | if (likely(!(T1 & 0x40UL))) { | |
431 | if (likely((uint64_t)T1 != 0)) { | |
432 | ret = (int64_t)T0 >> (T1 & 0x3FUL); | |
433 | if (likely(ret >= 0 || ((int64_t)T0 & ((1 << T1) - 1)) == 0)) { | |
434 | xer_ca = 0; | |
435 | } else { | |
436 | xer_ca = 1; | |
437 | } | |
438 | } else { | |
439 | ret = T0; | |
440 | xer_ca = 0; | |
441 | } | |
442 | } else { | |
443 | ret = (-1) * ((uint64_t)T0 >> 63); | |
444 | if (likely(ret >= 0 || ((uint64_t)T0 & ~0x8000000000000000ULL) == 0)) { | |
445 | xer_ca = 0; | |
446 | } else { | |
447 | xer_ca = 1; | |
448 | } | |
449 | } | |
450 | T0 = ret; | |
451 | } | |
452 | #endif | |
453 | ||
d9bce9d9 JM |
454 | void do_popcntb (void) |
455 | { | |
456 | uint32_t ret; | |
457 | int i; | |
458 | ||
459 | ret = 0; | |
460 | for (i = 0; i < 32; i += 8) | |
603fccce | 461 | ret |= ctpop8((T0 >> i) & 0xFF) << i; |
d9bce9d9 JM |
462 | T0 = ret; |
463 | } | |
464 | ||
465 | #if defined(TARGET_PPC64) | |
466 | void do_popcntb_64 (void) | |
467 | { | |
468 | uint64_t ret; | |
469 | int i; | |
470 | ||
471 | ret = 0; | |
472 | for (i = 0; i < 64; i += 8) | |
603fccce | 473 | ret |= ctpop8((T0 >> i) & 0xFF) << i; |
d9bce9d9 JM |
474 | T0 = ret; |
475 | } | |
476 | #endif | |
477 | ||
fdabc366 | 478 | /*****************************************************************************/ |
9a64fbe4 | 479 | /* Floating point operations helpers */ |
a11b8151 | 480 | static always_inline int fpisneg (float64 f) |
7c58044c JM |
481 | { |
482 | union { | |
483 | float64 f; | |
484 | uint64_t u; | |
485 | } u; | |
486 | ||
487 | u.f = f; | |
488 | ||
489 | return u.u >> 63 != 0; | |
490 | } | |
491 | ||
a11b8151 | 492 | static always_inline int isden (float f) |
7c58044c JM |
493 | { |
494 | union { | |
495 | float64 f; | |
496 | uint64_t u; | |
497 | } u; | |
498 | ||
499 | u.f = f; | |
500 | ||
501 | return ((u.u >> 52) & 0x7FF) == 0; | |
502 | } | |
503 | ||
a11b8151 | 504 | static always_inline int iszero (float64 f) |
7c58044c JM |
505 | { |
506 | union { | |
507 | float64 f; | |
508 | uint64_t u; | |
509 | } u; | |
510 | ||
511 | u.f = f; | |
512 | ||
513 | return (u.u & ~0x8000000000000000ULL) == 0; | |
514 | } | |
515 | ||
a11b8151 | 516 | static always_inline int isinfinity (float64 f) |
7c58044c JM |
517 | { |
518 | union { | |
519 | float64 f; | |
520 | uint64_t u; | |
521 | } u; | |
522 | ||
523 | u.f = f; | |
524 | ||
86c4a9f5 | 525 | return ((u.u >> 52) & 0x7FF) == 0x7FF && |
7c58044c JM |
526 | (u.u & 0x000FFFFFFFFFFFFFULL) == 0; |
527 | } | |
528 | ||
529 | void do_compute_fprf (int set_fprf) | |
530 | { | |
531 | int isneg; | |
532 | ||
533 | isneg = fpisneg(FT0); | |
534 | if (unlikely(float64_is_nan(FT0))) { | |
535 | if (float64_is_signaling_nan(FT0)) { | |
536 | /* Signaling NaN: flags are undefined */ | |
537 | T0 = 0x00; | |
538 | } else { | |
539 | /* Quiet NaN */ | |
540 | T0 = 0x11; | |
541 | } | |
542 | } else if (unlikely(isinfinity(FT0))) { | |
543 | /* +/- infinity */ | |
544 | if (isneg) | |
545 | T0 = 0x09; | |
546 | else | |
547 | T0 = 0x05; | |
548 | } else { | |
549 | if (iszero(FT0)) { | |
550 | /* +/- zero */ | |
551 | if (isneg) | |
552 | T0 = 0x12; | |
553 | else | |
554 | T0 = 0x02; | |
555 | } else { | |
556 | if (isden(FT0)) { | |
557 | /* Denormalized numbers */ | |
558 | T0 = 0x10; | |
559 | } else { | |
560 | /* Normalized numbers */ | |
561 | T0 = 0x00; | |
562 | } | |
563 | if (isneg) { | |
564 | T0 |= 0x08; | |
565 | } else { | |
566 | T0 |= 0x04; | |
567 | } | |
568 | } | |
569 | } | |
570 | if (set_fprf) { | |
571 | /* We update FPSCR_FPRF */ | |
572 | env->fpscr &= ~(0x1F << FPSCR_FPRF); | |
573 | env->fpscr |= T0 << FPSCR_FPRF; | |
574 | } | |
575 | /* We just need fpcc to update Rc1 */ | |
576 | T0 &= 0xF; | |
577 | } | |
578 | ||
579 | /* Floating-point invalid operations exception */ | |
580 | static always_inline void fload_invalid_op_excp (int op) | |
581 | { | |
582 | int ve; | |
583 | ||
584 | ve = fpscr_ve; | |
585 | if (op & POWERPC_EXCP_FP_VXSNAN) { | |
586 | /* Operation on signaling NaN */ | |
587 | env->fpscr |= 1 << FPSCR_VXSNAN; | |
588 | } | |
589 | if (op & POWERPC_EXCP_FP_VXSOFT) { | |
590 | /* Software-defined condition */ | |
591 | env->fpscr |= 1 << FPSCR_VXSOFT; | |
592 | } | |
593 | switch (op & ~(POWERPC_EXCP_FP_VXSOFT | POWERPC_EXCP_FP_VXSNAN)) { | |
594 | case POWERPC_EXCP_FP_VXISI: | |
595 | /* Magnitude subtraction of infinities */ | |
596 | env->fpscr |= 1 << FPSCR_VXISI; | |
597 | goto update_arith; | |
598 | case POWERPC_EXCP_FP_VXIDI: | |
599 | /* Division of infinity by infinity */ | |
600 | env->fpscr |= 1 << FPSCR_VXIDI; | |
601 | goto update_arith; | |
602 | case POWERPC_EXCP_FP_VXZDZ: | |
603 | /* Division of zero by zero */ | |
604 | env->fpscr |= 1 << FPSCR_VXZDZ; | |
605 | goto update_arith; | |
606 | case POWERPC_EXCP_FP_VXIMZ: | |
607 | /* Multiplication of zero by infinity */ | |
608 | env->fpscr |= 1 << FPSCR_VXIMZ; | |
609 | goto update_arith; | |
610 | case POWERPC_EXCP_FP_VXVC: | |
611 | /* Ordered comparison of NaN */ | |
612 | env->fpscr |= 1 << FPSCR_VXVC; | |
613 | env->fpscr &= ~(0xF << FPSCR_FPCC); | |
614 | env->fpscr |= 0x11 << FPSCR_FPCC; | |
615 | /* We must update the target FPR before raising the exception */ | |
616 | if (ve != 0) { | |
617 | env->exception_index = POWERPC_EXCP_PROGRAM; | |
618 | env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC; | |
619 | /* Update the floating-point enabled exception summary */ | |
620 | env->fpscr |= 1 << FPSCR_FEX; | |
621 | /* Exception is differed */ | |
622 | ve = 0; | |
623 | } | |
624 | break; | |
625 | case POWERPC_EXCP_FP_VXSQRT: | |
626 | /* Square root of a negative number */ | |
627 | env->fpscr |= 1 << FPSCR_VXSQRT; | |
628 | update_arith: | |
629 | env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI)); | |
630 | if (ve == 0) { | |
631 | /* Set the result to quiet NaN */ | |
632 | FT0 = (uint64_t)-1; | |
633 | env->fpscr &= ~(0xF << FPSCR_FPCC); | |
634 | env->fpscr |= 0x11 << FPSCR_FPCC; | |
635 | } | |
636 | break; | |
637 | case POWERPC_EXCP_FP_VXCVI: | |
638 | /* Invalid conversion */ | |
639 | env->fpscr |= 1 << FPSCR_VXCVI; | |
640 | env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI)); | |
641 | if (ve == 0) { | |
642 | /* Set the result to quiet NaN */ | |
643 | FT0 = (uint64_t)-1; | |
644 | env->fpscr &= ~(0xF << FPSCR_FPCC); | |
645 | env->fpscr |= 0x11 << FPSCR_FPCC; | |
646 | } | |
647 | break; | |
648 | } | |
649 | /* Update the floating-point invalid operation summary */ | |
650 | env->fpscr |= 1 << FPSCR_VX; | |
651 | /* Update the floating-point exception summary */ | |
652 | env->fpscr |= 1 << FPSCR_FX; | |
653 | if (ve != 0) { | |
654 | /* Update the floating-point enabled exception summary */ | |
655 | env->fpscr |= 1 << FPSCR_FEX; | |
656 | if (msr_fe0 != 0 || msr_fe1 != 0) | |
657 | do_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_FP | op); | |
658 | } | |
659 | } | |
660 | ||
661 | static always_inline void float_zero_divide_excp (void) | |
662 | { | |
663 | union { | |
664 | float64 f; | |
665 | uint64_t u; | |
666 | } u0, u1; | |
7c58044c JM |
667 | |
668 | env->fpscr |= 1 << FPSCR_ZX; | |
669 | env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI)); | |
670 | /* Update the floating-point exception summary */ | |
671 | env->fpscr |= 1 << FPSCR_FX; | |
672 | if (fpscr_ze != 0) { | |
673 | /* Update the floating-point enabled exception summary */ | |
674 | env->fpscr |= 1 << FPSCR_FEX; | |
675 | if (msr_fe0 != 0 || msr_fe1 != 0) { | |
676 | do_raise_exception_err(POWERPC_EXCP_PROGRAM, | |
677 | POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX); | |
678 | } | |
679 | } else { | |
680 | /* Set the result to infinity */ | |
681 | u0.f = FT0; | |
682 | u1.f = FT1; | |
683 | u0.u = ((u0.u ^ u1.u) & 0x8000000000000000ULL); | |
86c4a9f5 | 684 | u0.u |= 0x7FFULL << 52; |
7c58044c JM |
685 | FT0 = u0.f; |
686 | } | |
687 | } | |
688 | ||
689 | static always_inline void float_overflow_excp (void) | |
690 | { | |
691 | env->fpscr |= 1 << FPSCR_OX; | |
692 | /* Update the floating-point exception summary */ | |
693 | env->fpscr |= 1 << FPSCR_FX; | |
694 | if (fpscr_oe != 0) { | |
695 | /* XXX: should adjust the result */ | |
696 | /* Update the floating-point enabled exception summary */ | |
697 | env->fpscr |= 1 << FPSCR_FEX; | |
698 | /* We must update the target FPR before raising the exception */ | |
699 | env->exception_index = POWERPC_EXCP_PROGRAM; | |
700 | env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX; | |
701 | } else { | |
702 | env->fpscr |= 1 << FPSCR_XX; | |
703 | env->fpscr |= 1 << FPSCR_FI; | |
704 | } | |
705 | } | |
706 | ||
707 | static always_inline void float_underflow_excp (void) | |
708 | { | |
709 | env->fpscr |= 1 << FPSCR_UX; | |
710 | /* Update the floating-point exception summary */ | |
711 | env->fpscr |= 1 << FPSCR_FX; | |
712 | if (fpscr_ue != 0) { | |
713 | /* XXX: should adjust the result */ | |
714 | /* Update the floating-point enabled exception summary */ | |
715 | env->fpscr |= 1 << FPSCR_FEX; | |
716 | /* We must update the target FPR before raising the exception */ | |
717 | env->exception_index = POWERPC_EXCP_PROGRAM; | |
718 | env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX; | |
719 | } | |
720 | } | |
721 | ||
722 | static always_inline void float_inexact_excp (void) | |
723 | { | |
724 | env->fpscr |= 1 << FPSCR_XX; | |
725 | /* Update the floating-point exception summary */ | |
726 | env->fpscr |= 1 << FPSCR_FX; | |
727 | if (fpscr_xe != 0) { | |
728 | /* Update the floating-point enabled exception summary */ | |
729 | env->fpscr |= 1 << FPSCR_FEX; | |
730 | /* We must update the target FPR before raising the exception */ | |
731 | env->exception_index = POWERPC_EXCP_PROGRAM; | |
732 | env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX; | |
733 | } | |
734 | } | |
735 | ||
736 | static always_inline void fpscr_set_rounding_mode (void) | |
737 | { | |
738 | int rnd_type; | |
739 | ||
740 | /* Set rounding mode */ | |
741 | switch (fpscr_rn) { | |
742 | case 0: | |
743 | /* Best approximation (round to nearest) */ | |
744 | rnd_type = float_round_nearest_even; | |
745 | break; | |
746 | case 1: | |
747 | /* Smaller magnitude (round toward zero) */ | |
748 | rnd_type = float_round_to_zero; | |
749 | break; | |
750 | case 2: | |
751 | /* Round toward +infinite */ | |
752 | rnd_type = float_round_up; | |
753 | break; | |
754 | default: | |
755 | case 3: | |
756 | /* Round toward -infinite */ | |
757 | rnd_type = float_round_down; | |
758 | break; | |
759 | } | |
760 | set_float_rounding_mode(rnd_type, &env->fp_status); | |
761 | } | |
762 | ||
763 | void do_fpscr_setbit (int bit) | |
764 | { | |
765 | int prev; | |
766 | ||
767 | prev = (env->fpscr >> bit) & 1; | |
768 | env->fpscr |= 1 << bit; | |
769 | if (prev == 0) { | |
770 | switch (bit) { | |
771 | case FPSCR_VX: | |
772 | env->fpscr |= 1 << FPSCR_FX; | |
773 | if (fpscr_ve) | |
774 | goto raise_ve; | |
775 | case FPSCR_OX: | |
776 | env->fpscr |= 1 << FPSCR_FX; | |
777 | if (fpscr_oe) | |
778 | goto raise_oe; | |
779 | break; | |
780 | case FPSCR_UX: | |
781 | env->fpscr |= 1 << FPSCR_FX; | |
782 | if (fpscr_ue) | |
783 | goto raise_ue; | |
784 | break; | |
785 | case FPSCR_ZX: | |
786 | env->fpscr |= 1 << FPSCR_FX; | |
787 | if (fpscr_ze) | |
788 | goto raise_ze; | |
789 | break; | |
790 | case FPSCR_XX: | |
791 | env->fpscr |= 1 << FPSCR_FX; | |
792 | if (fpscr_xe) | |
793 | goto raise_xe; | |
794 | break; | |
795 | case FPSCR_VXSNAN: | |
796 | case FPSCR_VXISI: | |
797 | case FPSCR_VXIDI: | |
798 | case FPSCR_VXZDZ: | |
799 | case FPSCR_VXIMZ: | |
800 | case FPSCR_VXVC: | |
801 | case FPSCR_VXSOFT: | |
802 | case FPSCR_VXSQRT: | |
803 | case FPSCR_VXCVI: | |
804 | env->fpscr |= 1 << FPSCR_VX; | |
805 | env->fpscr |= 1 << FPSCR_FX; | |
806 | if (fpscr_ve != 0) | |
807 | goto raise_ve; | |
808 | break; | |
809 | case FPSCR_VE: | |
810 | if (fpscr_vx != 0) { | |
811 | raise_ve: | |
812 | env->error_code = POWERPC_EXCP_FP; | |
813 | if (fpscr_vxsnan) | |
814 | env->error_code |= POWERPC_EXCP_FP_VXSNAN; | |
815 | if (fpscr_vxisi) | |
816 | env->error_code |= POWERPC_EXCP_FP_VXISI; | |
817 | if (fpscr_vxidi) | |
818 | env->error_code |= POWERPC_EXCP_FP_VXIDI; | |
819 | if (fpscr_vxzdz) | |
820 | env->error_code |= POWERPC_EXCP_FP_VXZDZ; | |
821 | if (fpscr_vximz) | |
822 | env->error_code |= POWERPC_EXCP_FP_VXIMZ; | |
823 | if (fpscr_vxvc) | |
824 | env->error_code |= POWERPC_EXCP_FP_VXVC; | |
825 | if (fpscr_vxsoft) | |
826 | env->error_code |= POWERPC_EXCP_FP_VXSOFT; | |
827 | if (fpscr_vxsqrt) | |
828 | env->error_code |= POWERPC_EXCP_FP_VXSQRT; | |
829 | if (fpscr_vxcvi) | |
830 | env->error_code |= POWERPC_EXCP_FP_VXCVI; | |
831 | goto raise_excp; | |
832 | } | |
833 | break; | |
834 | case FPSCR_OE: | |
835 | if (fpscr_ox != 0) { | |
836 | raise_oe: | |
837 | env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX; | |
838 | goto raise_excp; | |
839 | } | |
840 | break; | |
841 | case FPSCR_UE: | |
842 | if (fpscr_ux != 0) { | |
843 | raise_ue: | |
844 | env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX; | |
845 | goto raise_excp; | |
846 | } | |
847 | break; | |
848 | case FPSCR_ZE: | |
849 | if (fpscr_zx != 0) { | |
850 | raise_ze: | |
851 | env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX; | |
852 | goto raise_excp; | |
853 | } | |
854 | break; | |
855 | case FPSCR_XE: | |
856 | if (fpscr_xx != 0) { | |
857 | raise_xe: | |
858 | env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX; | |
859 | goto raise_excp; | |
860 | } | |
861 | break; | |
862 | case FPSCR_RN1: | |
863 | case FPSCR_RN: | |
864 | fpscr_set_rounding_mode(); | |
865 | break; | |
866 | default: | |
867 | break; | |
868 | raise_excp: | |
869 | /* Update the floating-point enabled exception summary */ | |
870 | env->fpscr |= 1 << FPSCR_FEX; | |
871 | /* We have to update Rc1 before raising the exception */ | |
872 | env->exception_index = POWERPC_EXCP_PROGRAM; | |
873 | break; | |
874 | } | |
875 | } | |
876 | } | |
877 | ||
878 | #if defined(WORDS_BIGENDIAN) | |
879 | #define WORD0 0 | |
880 | #define WORD1 1 | |
881 | #else | |
882 | #define WORD0 1 | |
883 | #define WORD1 0 | |
884 | #endif | |
885 | void do_store_fpscr (uint32_t mask) | |
886 | { | |
887 | /* | |
888 | * We use only the 32 LSB of the incoming fpr | |
889 | */ | |
890 | union { | |
891 | double d; | |
892 | struct { | |
893 | uint32_t u[2]; | |
894 | } s; | |
895 | } u; | |
896 | uint32_t prev, new; | |
897 | int i; | |
898 | ||
899 | u.d = FT0; | |
900 | prev = env->fpscr; | |
901 | new = u.s.u[WORD1]; | |
902 | new &= ~0x90000000; | |
903 | new |= prev & 0x90000000; | |
904 | for (i = 0; i < 7; i++) { | |
905 | if (mask & (1 << i)) { | |
906 | env->fpscr &= ~(0xF << (4 * i)); | |
907 | env->fpscr |= new & (0xF << (4 * i)); | |
908 | } | |
909 | } | |
910 | /* Update VX and FEX */ | |
911 | if (fpscr_ix != 0) | |
912 | env->fpscr |= 1 << FPSCR_VX; | |
913 | if ((fpscr_ex & fpscr_eex) != 0) { | |
914 | env->fpscr |= 1 << FPSCR_FEX; | |
915 | env->exception_index = POWERPC_EXCP_PROGRAM; | |
916 | /* XXX: we should compute it properly */ | |
917 | env->error_code = POWERPC_EXCP_FP; | |
918 | } | |
919 | fpscr_set_rounding_mode(); | |
920 | } | |
921 | #undef WORD0 | |
922 | #undef WORD1 | |
923 | ||
924 | #ifdef CONFIG_SOFTFLOAT | |
925 | void do_float_check_status (void) | |
926 | { | |
927 | if (env->exception_index == POWERPC_EXCP_PROGRAM && | |
928 | (env->error_code & POWERPC_EXCP_FP)) { | |
929 | /* Differred floating-point exception after target FPR update */ | |
930 | if (msr_fe0 != 0 || msr_fe1 != 0) | |
931 | do_raise_exception_err(env->exception_index, env->error_code); | |
932 | } else if (env->fp_status.float_exception_flags & float_flag_overflow) { | |
933 | float_overflow_excp(); | |
934 | } else if (env->fp_status.float_exception_flags & float_flag_underflow) { | |
935 | float_underflow_excp(); | |
936 | } else if (env->fp_status.float_exception_flags & float_flag_inexact) { | |
937 | float_inexact_excp(); | |
938 | } | |
939 | } | |
940 | #endif | |
941 | ||
942 | #if USE_PRECISE_EMULATION | |
943 | void do_fadd (void) | |
944 | { | |
945 | if (unlikely(float64_is_signaling_nan(FT0) || | |
946 | float64_is_signaling_nan(FT1))) { | |
947 | /* sNaN addition */ | |
948 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
949 | } else if (likely(isfinite(FT0) || isfinite(FT1) || | |
950 | fpisneg(FT0) == fpisneg(FT1))) { | |
951 | FT0 = float64_add(FT0, FT1, &env->fp_status); | |
952 | } else { | |
953 | /* Magnitude subtraction of infinities */ | |
954 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI); | |
955 | } | |
956 | } | |
957 | ||
958 | void do_fsub (void) | |
959 | { | |
960 | if (unlikely(float64_is_signaling_nan(FT0) || | |
961 | float64_is_signaling_nan(FT1))) { | |
962 | /* sNaN subtraction */ | |
963 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
964 | } else if (likely(isfinite(FT0) || isfinite(FT1) || | |
965 | fpisneg(FT0) != fpisneg(FT1))) { | |
966 | FT0 = float64_sub(FT0, FT1, &env->fp_status); | |
967 | } else { | |
968 | /* Magnitude subtraction of infinities */ | |
969 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI); | |
970 | } | |
971 | } | |
972 | ||
973 | void do_fmul (void) | |
974 | { | |
975 | if (unlikely(float64_is_signaling_nan(FT0) || | |
976 | float64_is_signaling_nan(FT1))) { | |
977 | /* sNaN multiplication */ | |
978 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
5bda2843 JM |
979 | } else if (unlikely((isinfinity(FT0) && iszero(FT1)) || |
980 | (iszero(FT0) && isinfinity(FT1)))) { | |
7c58044c JM |
981 | /* Multiplication of zero by infinity */ |
982 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ); | |
983 | } else { | |
984 | FT0 = float64_mul(FT0, FT1, &env->fp_status); | |
985 | } | |
986 | } | |
987 | ||
988 | void do_fdiv (void) | |
989 | { | |
990 | if (unlikely(float64_is_signaling_nan(FT0) || | |
991 | float64_is_signaling_nan(FT1))) { | |
992 | /* sNaN division */ | |
993 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
994 | } else if (unlikely(isinfinity(FT0) && isinfinity(FT1))) { | |
995 | /* Division of infinity by infinity */ | |
996 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXIDI); | |
997 | } else if (unlikely(iszero(FT1))) { | |
998 | if (iszero(FT0)) { | |
999 | /* Division of zero by zero */ | |
1000 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXZDZ); | |
1001 | } else { | |
1002 | /* Division by zero */ | |
1003 | float_zero_divide_excp(); | |
1004 | } | |
1005 | } else { | |
1006 | FT0 = float64_div(FT0, FT1, &env->fp_status); | |
1007 | } | |
1008 | } | |
1009 | #endif /* USE_PRECISE_EMULATION */ | |
1010 | ||
9a64fbe4 FB |
1011 | void do_fctiw (void) |
1012 | { | |
1013 | union { | |
1014 | double d; | |
1015 | uint64_t i; | |
4ecc3190 | 1016 | } p; |
9a64fbe4 | 1017 | |
7c58044c JM |
1018 | if (unlikely(float64_is_signaling_nan(FT0))) { |
1019 | /* sNaN conversion */ | |
1020 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI); | |
1021 | } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) { | |
1022 | /* qNan / infinity conversion */ | |
1023 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI); | |
1024 | } else { | |
1025 | p.i = float64_to_int32(FT0, &env->fp_status); | |
e864cabd | 1026 | #if USE_PRECISE_EMULATION |
7c58044c JM |
1027 | /* XXX: higher bits are not supposed to be significant. |
1028 | * to make tests easier, return the same as a real PowerPC 750 | |
1029 | */ | |
1030 | p.i |= 0xFFF80000ULL << 32; | |
e864cabd | 1031 | #endif |
7c58044c JM |
1032 | FT0 = p.d; |
1033 | } | |
9a64fbe4 FB |
1034 | } |
1035 | ||
1036 | void do_fctiwz (void) | |
1037 | { | |
1038 | union { | |
1039 | double d; | |
1040 | uint64_t i; | |
4ecc3190 FB |
1041 | } p; |
1042 | ||
7c58044c JM |
1043 | if (unlikely(float64_is_signaling_nan(FT0))) { |
1044 | /* sNaN conversion */ | |
1045 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI); | |
1046 | } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) { | |
1047 | /* qNan / infinity conversion */ | |
1048 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI); | |
1049 | } else { | |
1050 | p.i = float64_to_int32_round_to_zero(FT0, &env->fp_status); | |
e864cabd | 1051 | #if USE_PRECISE_EMULATION |
7c58044c JM |
1052 | /* XXX: higher bits are not supposed to be significant. |
1053 | * to make tests easier, return the same as a real PowerPC 750 | |
1054 | */ | |
1055 | p.i |= 0xFFF80000ULL << 32; | |
e864cabd | 1056 | #endif |
7c58044c JM |
1057 | FT0 = p.d; |
1058 | } | |
9a64fbe4 FB |
1059 | } |
1060 | ||
426613db JM |
1061 | #if defined(TARGET_PPC64) |
1062 | void do_fcfid (void) | |
1063 | { | |
1064 | union { | |
1065 | double d; | |
1066 | uint64_t i; | |
1067 | } p; | |
1068 | ||
1069 | p.d = FT0; | |
1070 | FT0 = int64_to_float64(p.i, &env->fp_status); | |
1071 | } | |
1072 | ||
1073 | void do_fctid (void) | |
1074 | { | |
1075 | union { | |
1076 | double d; | |
1077 | uint64_t i; | |
1078 | } p; | |
1079 | ||
7c58044c JM |
1080 | if (unlikely(float64_is_signaling_nan(FT0))) { |
1081 | /* sNaN conversion */ | |
1082 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI); | |
1083 | } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) { | |
1084 | /* qNan / infinity conversion */ | |
1085 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI); | |
1086 | } else { | |
1087 | p.i = float64_to_int64(FT0, &env->fp_status); | |
1088 | FT0 = p.d; | |
1089 | } | |
426613db JM |
1090 | } |
1091 | ||
1092 | void do_fctidz (void) | |
1093 | { | |
1094 | union { | |
1095 | double d; | |
1096 | uint64_t i; | |
1097 | } p; | |
1098 | ||
7c58044c JM |
1099 | if (unlikely(float64_is_signaling_nan(FT0))) { |
1100 | /* sNaN conversion */ | |
1101 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI); | |
1102 | } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) { | |
1103 | /* qNan / infinity conversion */ | |
1104 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI); | |
1105 | } else { | |
1106 | p.i = float64_to_int64_round_to_zero(FT0, &env->fp_status); | |
1107 | FT0 = p.d; | |
1108 | } | |
426613db JM |
1109 | } |
1110 | ||
1111 | #endif | |
1112 | ||
b068d6a7 | 1113 | static always_inline void do_fri (int rounding_mode) |
d7e4b87e | 1114 | { |
7c58044c JM |
1115 | if (unlikely(float64_is_signaling_nan(FT0))) { |
1116 | /* sNaN round */ | |
1117 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI); | |
1118 | } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) { | |
1119 | /* qNan / infinity round */ | |
1120 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI); | |
1121 | } else { | |
1122 | set_float_rounding_mode(rounding_mode, &env->fp_status); | |
1123 | FT0 = float64_round_to_int(FT0, &env->fp_status); | |
1124 | /* Restore rounding mode from FPSCR */ | |
1125 | fpscr_set_rounding_mode(); | |
1126 | } | |
d7e4b87e JM |
1127 | } |
1128 | ||
1129 | void do_frin (void) | |
1130 | { | |
1131 | do_fri(float_round_nearest_even); | |
1132 | } | |
1133 | ||
1134 | void do_friz (void) | |
1135 | { | |
1136 | do_fri(float_round_to_zero); | |
1137 | } | |
1138 | ||
1139 | void do_frip (void) | |
1140 | { | |
1141 | do_fri(float_round_up); | |
1142 | } | |
1143 | ||
1144 | void do_frim (void) | |
1145 | { | |
1146 | do_fri(float_round_down); | |
1147 | } | |
1148 | ||
e864cabd JM |
1149 | #if USE_PRECISE_EMULATION |
1150 | void do_fmadd (void) | |
1151 | { | |
7c58044c JM |
1152 | if (unlikely(float64_is_signaling_nan(FT0) || |
1153 | float64_is_signaling_nan(FT1) || | |
1154 | float64_is_signaling_nan(FT2))) { | |
1155 | /* sNaN operation */ | |
1156 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1157 | } else { | |
e864cabd | 1158 | #ifdef FLOAT128 |
7c58044c JM |
1159 | /* This is the way the PowerPC specification defines it */ |
1160 | float128 ft0_128, ft1_128; | |
1161 | ||
1162 | ft0_128 = float64_to_float128(FT0, &env->fp_status); | |
1163 | ft1_128 = float64_to_float128(FT1, &env->fp_status); | |
1164 | ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status); | |
1165 | ft1_128 = float64_to_float128(FT2, &env->fp_status); | |
1166 | ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status); | |
1167 | FT0 = float128_to_float64(ft0_128, &env->fp_status); | |
e864cabd | 1168 | #else |
7c58044c JM |
1169 | /* This is OK on x86 hosts */ |
1170 | FT0 = (FT0 * FT1) + FT2; | |
e864cabd | 1171 | #endif |
7c58044c | 1172 | } |
e864cabd JM |
1173 | } |
1174 | ||
1175 | void do_fmsub (void) | |
1176 | { | |
7c58044c JM |
1177 | if (unlikely(float64_is_signaling_nan(FT0) || |
1178 | float64_is_signaling_nan(FT1) || | |
1179 | float64_is_signaling_nan(FT2))) { | |
1180 | /* sNaN operation */ | |
1181 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1182 | } else { | |
e864cabd | 1183 | #ifdef FLOAT128 |
7c58044c JM |
1184 | /* This is the way the PowerPC specification defines it */ |
1185 | float128 ft0_128, ft1_128; | |
1186 | ||
1187 | ft0_128 = float64_to_float128(FT0, &env->fp_status); | |
1188 | ft1_128 = float64_to_float128(FT1, &env->fp_status); | |
1189 | ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status); | |
1190 | ft1_128 = float64_to_float128(FT2, &env->fp_status); | |
1191 | ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status); | |
1192 | FT0 = float128_to_float64(ft0_128, &env->fp_status); | |
e864cabd | 1193 | #else |
7c58044c JM |
1194 | /* This is OK on x86 hosts */ |
1195 | FT0 = (FT0 * FT1) - FT2; | |
e864cabd | 1196 | #endif |
7c58044c | 1197 | } |
e864cabd JM |
1198 | } |
1199 | #endif /* USE_PRECISE_EMULATION */ | |
1200 | ||
4b3686fa FB |
1201 | void do_fnmadd (void) |
1202 | { | |
7c58044c JM |
1203 | if (unlikely(float64_is_signaling_nan(FT0) || |
1204 | float64_is_signaling_nan(FT1) || | |
1205 | float64_is_signaling_nan(FT2))) { | |
1206 | /* sNaN operation */ | |
1207 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1208 | } else { | |
e864cabd JM |
1209 | #if USE_PRECISE_EMULATION |
1210 | #ifdef FLOAT128 | |
7c58044c JM |
1211 | /* This is the way the PowerPC specification defines it */ |
1212 | float128 ft0_128, ft1_128; | |
1213 | ||
1214 | ft0_128 = float64_to_float128(FT0, &env->fp_status); | |
1215 | ft1_128 = float64_to_float128(FT1, &env->fp_status); | |
1216 | ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status); | |
1217 | ft1_128 = float64_to_float128(FT2, &env->fp_status); | |
1218 | ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status); | |
1219 | FT0 = float128_to_float64(ft0_128, &env->fp_status); | |
e864cabd | 1220 | #else |
7c58044c JM |
1221 | /* This is OK on x86 hosts */ |
1222 | FT0 = (FT0 * FT1) + FT2; | |
e864cabd JM |
1223 | #endif |
1224 | #else | |
7c58044c JM |
1225 | FT0 = float64_mul(FT0, FT1, &env->fp_status); |
1226 | FT0 = float64_add(FT0, FT2, &env->fp_status); | |
e864cabd | 1227 | #endif |
7c58044c JM |
1228 | if (likely(!isnan(FT0))) |
1229 | FT0 = float64_chs(FT0); | |
1230 | } | |
4b3686fa FB |
1231 | } |
1232 | ||
1233 | void do_fnmsub (void) | |
1234 | { | |
7c58044c JM |
1235 | if (unlikely(float64_is_signaling_nan(FT0) || |
1236 | float64_is_signaling_nan(FT1) || | |
1237 | float64_is_signaling_nan(FT2))) { | |
1238 | /* sNaN operation */ | |
1239 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1240 | } else { | |
e864cabd JM |
1241 | #if USE_PRECISE_EMULATION |
1242 | #ifdef FLOAT128 | |
7c58044c JM |
1243 | /* This is the way the PowerPC specification defines it */ |
1244 | float128 ft0_128, ft1_128; | |
1245 | ||
1246 | ft0_128 = float64_to_float128(FT0, &env->fp_status); | |
1247 | ft1_128 = float64_to_float128(FT1, &env->fp_status); | |
1248 | ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status); | |
1249 | ft1_128 = float64_to_float128(FT2, &env->fp_status); | |
1250 | ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status); | |
1251 | FT0 = float128_to_float64(ft0_128, &env->fp_status); | |
e864cabd | 1252 | #else |
7c58044c JM |
1253 | /* This is OK on x86 hosts */ |
1254 | FT0 = (FT0 * FT1) - FT2; | |
e864cabd JM |
1255 | #endif |
1256 | #else | |
7c58044c JM |
1257 | FT0 = float64_mul(FT0, FT1, &env->fp_status); |
1258 | FT0 = float64_sub(FT0, FT2, &env->fp_status); | |
e864cabd | 1259 | #endif |
7c58044c JM |
1260 | if (likely(!isnan(FT0))) |
1261 | FT0 = float64_chs(FT0); | |
1262 | } | |
1ef59d0a FB |
1263 | } |
1264 | ||
7c58044c JM |
1265 | #if USE_PRECISE_EMULATION |
1266 | void do_frsp (void) | |
1267 | { | |
1268 | if (unlikely(float64_is_signaling_nan(FT0))) { | |
1269 | /* sNaN square root */ | |
1270 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1271 | } else { | |
1272 | FT0 = float64_to_float32(FT0, &env->fp_status); | |
1273 | } | |
1274 | } | |
1275 | #endif /* USE_PRECISE_EMULATION */ | |
1276 | ||
9a64fbe4 FB |
1277 | void do_fsqrt (void) |
1278 | { | |
7c58044c JM |
1279 | if (unlikely(float64_is_signaling_nan(FT0))) { |
1280 | /* sNaN square root */ | |
1281 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1282 | } else if (unlikely(fpisneg(FT0) && !iszero(FT0))) { | |
1283 | /* Square root of a negative nonzero number */ | |
1284 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT); | |
1285 | } else { | |
1286 | FT0 = float64_sqrt(FT0, &env->fp_status); | |
1287 | } | |
9a64fbe4 FB |
1288 | } |
1289 | ||
d7e4b87e JM |
1290 | void do_fre (void) |
1291 | { | |
1292 | union { | |
1293 | double d; | |
1294 | uint64_t i; | |
1295 | } p; | |
1296 | ||
7c58044c JM |
1297 | if (unlikely(float64_is_signaling_nan(FT0))) { |
1298 | /* sNaN reciprocal */ | |
1299 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1300 | } else if (unlikely(iszero(FT0))) { | |
1301 | /* Zero reciprocal */ | |
1302 | float_zero_divide_excp(); | |
1303 | } else if (likely(isnormal(FT0))) { | |
d7e4b87e JM |
1304 | FT0 = float64_div(1.0, FT0, &env->fp_status); |
1305 | } else { | |
1306 | p.d = FT0; | |
1307 | if (p.i == 0x8000000000000000ULL) { | |
1308 | p.i = 0xFFF0000000000000ULL; | |
1309 | } else if (p.i == 0x0000000000000000ULL) { | |
1310 | p.i = 0x7FF0000000000000ULL; | |
1311 | } else if (isnan(FT0)) { | |
1312 | p.i = 0x7FF8000000000000ULL; | |
7c58044c | 1313 | } else if (fpisneg(FT0)) { |
d7e4b87e JM |
1314 | p.i = 0x8000000000000000ULL; |
1315 | } else { | |
1316 | p.i = 0x0000000000000000ULL; | |
1317 | } | |
1318 | FT0 = p.d; | |
1319 | } | |
1320 | } | |
1321 | ||
9a64fbe4 FB |
1322 | void do_fres (void) |
1323 | { | |
4ecc3190 FB |
1324 | union { |
1325 | double d; | |
1326 | uint64_t i; | |
1327 | } p; | |
1328 | ||
7c58044c JM |
1329 | if (unlikely(float64_is_signaling_nan(FT0))) { |
1330 | /* sNaN reciprocal */ | |
1331 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1332 | } else if (unlikely(iszero(FT0))) { | |
1333 | /* Zero reciprocal */ | |
1334 | float_zero_divide_excp(); | |
1335 | } else if (likely(isnormal(FT0))) { | |
e864cabd JM |
1336 | #if USE_PRECISE_EMULATION |
1337 | FT0 = float64_div(1.0, FT0, &env->fp_status); | |
1338 | FT0 = float64_to_float32(FT0, &env->fp_status); | |
1339 | #else | |
76a66253 | 1340 | FT0 = float32_div(1.0, FT0, &env->fp_status); |
e864cabd | 1341 | #endif |
4ecc3190 FB |
1342 | } else { |
1343 | p.d = FT0; | |
1344 | if (p.i == 0x8000000000000000ULL) { | |
1345 | p.i = 0xFFF0000000000000ULL; | |
1346 | } else if (p.i == 0x0000000000000000ULL) { | |
1347 | p.i = 0x7FF0000000000000ULL; | |
1348 | } else if (isnan(FT0)) { | |
1349 | p.i = 0x7FF8000000000000ULL; | |
7c58044c | 1350 | } else if (fpisneg(FT0)) { |
4ecc3190 FB |
1351 | p.i = 0x8000000000000000ULL; |
1352 | } else { | |
1353 | p.i = 0x0000000000000000ULL; | |
1354 | } | |
1355 | FT0 = p.d; | |
1356 | } | |
9a64fbe4 FB |
1357 | } |
1358 | ||
4ecc3190 | 1359 | void do_frsqrte (void) |
9a64fbe4 | 1360 | { |
4ecc3190 FB |
1361 | union { |
1362 | double d; | |
1363 | uint64_t i; | |
1364 | } p; | |
1365 | ||
7c58044c JM |
1366 | if (unlikely(float64_is_signaling_nan(FT0))) { |
1367 | /* sNaN reciprocal square root */ | |
1368 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1369 | } else if (unlikely(fpisneg(FT0) && !iszero(FT0))) { | |
1370 | /* Reciprocal square root of a negative nonzero number */ | |
1371 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT); | |
1372 | } else if (likely(isnormal(FT0))) { | |
fdabc366 FB |
1373 | FT0 = float64_sqrt(FT0, &env->fp_status); |
1374 | FT0 = float32_div(1.0, FT0, &env->fp_status); | |
4ecc3190 FB |
1375 | } else { |
1376 | p.d = FT0; | |
1377 | if (p.i == 0x8000000000000000ULL) { | |
1378 | p.i = 0xFFF0000000000000ULL; | |
1379 | } else if (p.i == 0x0000000000000000ULL) { | |
1380 | p.i = 0x7FF0000000000000ULL; | |
1381 | } else if (isnan(FT0)) { | |
7c58044c JM |
1382 | p.i |= 0x000FFFFFFFFFFFFFULL; |
1383 | } else if (fpisneg(FT0)) { | |
4ecc3190 FB |
1384 | p.i = 0x7FF8000000000000ULL; |
1385 | } else { | |
1386 | p.i = 0x0000000000000000ULL; | |
1387 | } | |
1388 | FT0 = p.d; | |
1389 | } | |
9a64fbe4 FB |
1390 | } |
1391 | ||
1392 | void do_fsel (void) | |
1393 | { | |
7c58044c | 1394 | if (!fpisneg(FT0) || iszero(FT0)) |
9a64fbe4 | 1395 | FT0 = FT1; |
4ecc3190 FB |
1396 | else |
1397 | FT0 = FT2; | |
9a64fbe4 FB |
1398 | } |
1399 | ||
1400 | void do_fcmpu (void) | |
1401 | { | |
7c58044c JM |
1402 | if (unlikely(float64_is_signaling_nan(FT0) || |
1403 | float64_is_signaling_nan(FT1))) { | |
1404 | /* sNaN comparison */ | |
1405 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1406 | } else { | |
fdabc366 FB |
1407 | if (float64_lt(FT0, FT1, &env->fp_status)) { |
1408 | T0 = 0x08UL; | |
1409 | } else if (!float64_le(FT0, FT1, &env->fp_status)) { | |
1410 | T0 = 0x04UL; | |
1411 | } else { | |
1412 | T0 = 0x02UL; | |
1413 | } | |
9a64fbe4 | 1414 | } |
7c58044c JM |
1415 | env->fpscr &= ~(0x0F << FPSCR_FPRF); |
1416 | env->fpscr |= T0 << FPSCR_FPRF; | |
9a64fbe4 FB |
1417 | } |
1418 | ||
1419 | void do_fcmpo (void) | |
1420 | { | |
7c58044c JM |
1421 | if (unlikely(float64_is_nan(FT0) || |
1422 | float64_is_nan(FT1))) { | |
1423 | if (float64_is_signaling_nan(FT0) || | |
1424 | float64_is_signaling_nan(FT1)) { | |
1425 | /* sNaN comparison */ | |
1426 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | | |
1427 | POWERPC_EXCP_FP_VXVC); | |
1428 | } else { | |
1429 | /* qNaN comparison */ | |
1430 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXVC); | |
1431 | } | |
1432 | } else { | |
fdabc366 FB |
1433 | if (float64_lt(FT0, FT1, &env->fp_status)) { |
1434 | T0 = 0x08UL; | |
1435 | } else if (!float64_le(FT0, FT1, &env->fp_status)) { | |
1436 | T0 = 0x04UL; | |
1437 | } else { | |
1438 | T0 = 0x02UL; | |
1439 | } | |
9a64fbe4 | 1440 | } |
7c58044c JM |
1441 | env->fpscr &= ~(0x0F << FPSCR_FPRF); |
1442 | env->fpscr |= T0 << FPSCR_FPRF; | |
9a64fbe4 FB |
1443 | } |
1444 | ||
76a66253 | 1445 | #if !defined (CONFIG_USER_ONLY) |
6b80055d | 1446 | void cpu_dump_rfi (target_ulong RA, target_ulong msr); |
0411a972 JM |
1447 | |
1448 | void do_store_msr (void) | |
1449 | { | |
1450 | T0 = hreg_store_msr(env, T0); | |
1451 | if (T0 != 0) { | |
1452 | env->interrupt_request |= CPU_INTERRUPT_EXITTB; | |
1453 | do_raise_exception(T0); | |
1454 | } | |
1455 | } | |
1456 | ||
1457 | static always_inline void __do_rfi (target_ulong nip, target_ulong msr, | |
1458 | target_ulong msrm, int keep_msrh) | |
9a64fbe4 | 1459 | { |
426613db | 1460 | #if defined(TARGET_PPC64) |
0411a972 JM |
1461 | if (msr & (1ULL << MSR_SF)) { |
1462 | nip = (uint64_t)nip; | |
1463 | msr &= (uint64_t)msrm; | |
a42bd6cc | 1464 | } else { |
0411a972 JM |
1465 | nip = (uint32_t)nip; |
1466 | msr = (uint32_t)(msr & msrm); | |
1467 | if (keep_msrh) | |
1468 | msr |= env->msr & ~((uint64_t)0xFFFFFFFF); | |
a42bd6cc | 1469 | } |
426613db | 1470 | #else |
0411a972 JM |
1471 | nip = (uint32_t)nip; |
1472 | msr &= (uint32_t)msrm; | |
426613db | 1473 | #endif |
0411a972 JM |
1474 | /* XXX: beware: this is false if VLE is supported */ |
1475 | env->nip = nip & ~((target_ulong)0x00000003); | |
1476 | hreg_store_msr(env, msr); | |
fdabc366 | 1477 | #if defined (DEBUG_OP) |
0411a972 | 1478 | cpu_dump_rfi(env->nip, env->msr); |
fdabc366 | 1479 | #endif |
0411a972 JM |
1480 | /* No need to raise an exception here, |
1481 | * as rfi is always the last insn of a TB | |
1482 | */ | |
fdabc366 | 1483 | env->interrupt_request |= CPU_INTERRUPT_EXITTB; |
9a64fbe4 | 1484 | } |
d9bce9d9 | 1485 | |
0411a972 JM |
1486 | void do_rfi (void) |
1487 | { | |
1488 | __do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1], | |
1489 | ~((target_ulong)0xFFFF0000), 1); | |
1490 | } | |
1491 | ||
d9bce9d9 | 1492 | #if defined(TARGET_PPC64) |
426613db JM |
1493 | void do_rfid (void) |
1494 | { | |
0411a972 JM |
1495 | __do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1], |
1496 | ~((target_ulong)0xFFFF0000), 0); | |
d9bce9d9 JM |
1497 | } |
1498 | #endif | |
be147d08 JM |
1499 | #if defined(TARGET_PPC64H) |
1500 | void do_hrfid (void) | |
1501 | { | |
0411a972 JM |
1502 | __do_rfi(env->spr[SPR_HSRR0], env->spr[SPR_HSRR1], |
1503 | ~((target_ulong)0xFFFF0000), 0); | |
be147d08 JM |
1504 | } |
1505 | #endif | |
76a66253 | 1506 | #endif |
9a64fbe4 | 1507 | |
76a66253 | 1508 | void do_tw (int flags) |
9a64fbe4 | 1509 | { |
d9bce9d9 JM |
1510 | if (!likely(!(((int32_t)T0 < (int32_t)T1 && (flags & 0x10)) || |
1511 | ((int32_t)T0 > (int32_t)T1 && (flags & 0x08)) || | |
1512 | ((int32_t)T0 == (int32_t)T1 && (flags & 0x04)) || | |
1513 | ((uint32_t)T0 < (uint32_t)T1 && (flags & 0x02)) || | |
a42bd6cc | 1514 | ((uint32_t)T0 > (uint32_t)T1 && (flags & 0x01))))) { |
e1833e1f | 1515 | do_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP); |
a42bd6cc | 1516 | } |
9a64fbe4 FB |
1517 | } |
1518 | ||
d9bce9d9 JM |
1519 | #if defined(TARGET_PPC64) |
1520 | void do_td (int flags) | |
1521 | { | |
1522 | if (!likely(!(((int64_t)T0 < (int64_t)T1 && (flags & 0x10)) || | |
1523 | ((int64_t)T0 > (int64_t)T1 && (flags & 0x08)) || | |
1524 | ((int64_t)T0 == (int64_t)T1 && (flags & 0x04)) || | |
1525 | ((uint64_t)T0 < (uint64_t)T1 && (flags & 0x02)) || | |
1526 | ((uint64_t)T0 > (uint64_t)T1 && (flags & 0x01))))) | |
e1833e1f | 1527 | do_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP); |
d9bce9d9 JM |
1528 | } |
1529 | #endif | |
1530 | ||
fdabc366 | 1531 | /*****************************************************************************/ |
76a66253 JM |
1532 | /* PowerPC 601 specific instructions (POWER bridge) */ |
1533 | void do_POWER_abso (void) | |
9a64fbe4 | 1534 | { |
d9bce9d9 | 1535 | if ((uint32_t)T0 == INT32_MIN) { |
76a66253 JM |
1536 | T0 = INT32_MAX; |
1537 | xer_ov = 1; | |
1538 | xer_so = 1; | |
1539 | } else { | |
1540 | T0 = -T0; | |
1541 | xer_ov = 0; | |
1542 | } | |
9a64fbe4 FB |
1543 | } |
1544 | ||
76a66253 | 1545 | void do_POWER_clcs (void) |
9a64fbe4 | 1546 | { |
76a66253 JM |
1547 | switch (T0) { |
1548 | case 0x0CUL: | |
1549 | /* Instruction cache line size */ | |
d63001d1 | 1550 | T0 = env->icache_line_size; |
76a66253 JM |
1551 | break; |
1552 | case 0x0DUL: | |
1553 | /* Data cache line size */ | |
d63001d1 | 1554 | T0 = env->dcache_line_size; |
76a66253 JM |
1555 | break; |
1556 | case 0x0EUL: | |
1557 | /* Minimum cache line size */ | |
d63001d1 JM |
1558 | T0 = env->icache_line_size < env->dcache_line_size ? |
1559 | env->icache_line_size : env->dcache_line_size; | |
76a66253 JM |
1560 | break; |
1561 | case 0x0FUL: | |
1562 | /* Maximum cache line size */ | |
d63001d1 JM |
1563 | T0 = env->icache_line_size > env->dcache_line_size ? |
1564 | env->icache_line_size : env->dcache_line_size; | |
76a66253 JM |
1565 | break; |
1566 | default: | |
1567 | /* Undefined */ | |
1568 | break; | |
1569 | } | |
1570 | } | |
1571 | ||
1572 | void do_POWER_div (void) | |
1573 | { | |
1574 | uint64_t tmp; | |
1575 | ||
d9bce9d9 | 1576 | if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == -1) || (int32_t)T1 == 0) { |
76a66253 JM |
1577 | T0 = (long)((-1) * (T0 >> 31)); |
1578 | env->spr[SPR_MQ] = 0; | |
1579 | } else { | |
1580 | tmp = ((uint64_t)T0 << 32) | env->spr[SPR_MQ]; | |
1581 | env->spr[SPR_MQ] = tmp % T1; | |
d9bce9d9 | 1582 | T0 = tmp / (int32_t)T1; |
76a66253 JM |
1583 | } |
1584 | } | |
1585 | ||
1586 | void do_POWER_divo (void) | |
1587 | { | |
1588 | int64_t tmp; | |
1589 | ||
d9bce9d9 | 1590 | if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == -1) || (int32_t)T1 == 0) { |
76a66253 JM |
1591 | T0 = (long)((-1) * (T0 >> 31)); |
1592 | env->spr[SPR_MQ] = 0; | |
1593 | xer_ov = 1; | |
1594 | xer_so = 1; | |
1595 | } else { | |
1596 | tmp = ((uint64_t)T0 << 32) | env->spr[SPR_MQ]; | |
1597 | env->spr[SPR_MQ] = tmp % T1; | |
d9bce9d9 | 1598 | tmp /= (int32_t)T1; |
76a66253 JM |
1599 | if (tmp > (int64_t)INT32_MAX || tmp < (int64_t)INT32_MIN) { |
1600 | xer_ov = 1; | |
1601 | xer_so = 1; | |
1602 | } else { | |
1603 | xer_ov = 0; | |
1604 | } | |
1605 | T0 = tmp; | |
1606 | } | |
1607 | } | |
1608 | ||
1609 | void do_POWER_divs (void) | |
1610 | { | |
d9bce9d9 | 1611 | if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == -1) || (int32_t)T1 == 0) { |
76a66253 JM |
1612 | T0 = (long)((-1) * (T0 >> 31)); |
1613 | env->spr[SPR_MQ] = 0; | |
1614 | } else { | |
1615 | env->spr[SPR_MQ] = T0 % T1; | |
d9bce9d9 | 1616 | T0 = (int32_t)T0 / (int32_t)T1; |
76a66253 JM |
1617 | } |
1618 | } | |
1619 | ||
1620 | void do_POWER_divso (void) | |
1621 | { | |
d9bce9d9 | 1622 | if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == -1) || (int32_t)T1 == 0) { |
76a66253 JM |
1623 | T0 = (long)((-1) * (T0 >> 31)); |
1624 | env->spr[SPR_MQ] = 0; | |
1625 | xer_ov = 1; | |
1626 | xer_so = 1; | |
1627 | } else { | |
d9bce9d9 JM |
1628 | T0 = (int32_t)T0 / (int32_t)T1; |
1629 | env->spr[SPR_MQ] = (int32_t)T0 % (int32_t)T1; | |
76a66253 JM |
1630 | xer_ov = 0; |
1631 | } | |
1632 | } | |
1633 | ||
1634 | void do_POWER_dozo (void) | |
1635 | { | |
d9bce9d9 | 1636 | if ((int32_t)T1 > (int32_t)T0) { |
76a66253 JM |
1637 | T2 = T0; |
1638 | T0 = T1 - T0; | |
d9bce9d9 JM |
1639 | if (((uint32_t)(~T2) ^ (uint32_t)T1 ^ UINT32_MAX) & |
1640 | ((uint32_t)(~T2) ^ (uint32_t)T0) & (1UL << 31)) { | |
76a66253 | 1641 | xer_ov = 1; |
966439a6 | 1642 | xer_so = 1; |
76a66253 JM |
1643 | } else { |
1644 | xer_ov = 0; | |
1645 | } | |
1646 | } else { | |
1647 | T0 = 0; | |
1648 | xer_ov = 0; | |
1649 | } | |
1650 | } | |
1651 | ||
1652 | void do_POWER_maskg (void) | |
1653 | { | |
1654 | uint32_t ret; | |
1655 | ||
d9bce9d9 | 1656 | if ((uint32_t)T0 == (uint32_t)(T1 + 1)) { |
76a66253 JM |
1657 | ret = -1; |
1658 | } else { | |
d9bce9d9 JM |
1659 | ret = (((uint32_t)(-1)) >> ((uint32_t)T0)) ^ |
1660 | (((uint32_t)(-1) >> ((uint32_t)T1)) >> 1); | |
1661 | if ((uint32_t)T0 > (uint32_t)T1) | |
76a66253 JM |
1662 | ret = ~ret; |
1663 | } | |
1664 | T0 = ret; | |
1665 | } | |
1666 | ||
1667 | void do_POWER_mulo (void) | |
1668 | { | |
1669 | uint64_t tmp; | |
1670 | ||
1671 | tmp = (uint64_t)T0 * (uint64_t)T1; | |
1672 | env->spr[SPR_MQ] = tmp >> 32; | |
1673 | T0 = tmp; | |
1674 | if (tmp >> 32 != ((uint64_t)T0 >> 16) * ((uint64_t)T1 >> 16)) { | |
1675 | xer_ov = 1; | |
1676 | xer_so = 1; | |
1677 | } else { | |
1678 | xer_ov = 0; | |
1679 | } | |
1680 | } | |
1681 | ||
1682 | #if !defined (CONFIG_USER_ONLY) | |
1683 | void do_POWER_rac (void) | |
1684 | { | |
76a66253 | 1685 | mmu_ctx_t ctx; |
faadf50e | 1686 | int nb_BATs; |
76a66253 JM |
1687 | |
1688 | /* We don't have to generate many instances of this instruction, | |
1689 | * as rac is supervisor only. | |
1690 | */ | |
faadf50e JM |
1691 | /* XXX: FIX THIS: Pretend we have no BAT */ |
1692 | nb_BATs = env->nb_BATs; | |
1693 | env->nb_BATs = 0; | |
1694 | if (get_physical_address(env, &ctx, T0, 0, ACCESS_INT) == 0) | |
76a66253 | 1695 | T0 = ctx.raddr; |
faadf50e | 1696 | env->nb_BATs = nb_BATs; |
76a66253 JM |
1697 | } |
1698 | ||
1699 | void do_POWER_rfsvc (void) | |
1700 | { | |
0411a972 | 1701 | __do_rfi(env->lr, env->ctr, 0x0000FFFF, 0); |
76a66253 JM |
1702 | } |
1703 | ||
1704 | /* PowerPC 601 BAT management helper */ | |
1705 | void do_store_601_batu (int nr) | |
1706 | { | |
d9bce9d9 | 1707 | do_store_ibatu(env, nr, (uint32_t)T0); |
76a66253 JM |
1708 | env->DBAT[0][nr] = env->IBAT[0][nr]; |
1709 | env->DBAT[1][nr] = env->IBAT[1][nr]; | |
1710 | } | |
1711 | #endif | |
1712 | ||
1713 | /*****************************************************************************/ | |
1714 | /* 602 specific instructions */ | |
1715 | /* mfrom is the most crazy instruction ever seen, imho ! */ | |
1716 | /* Real implementation uses a ROM table. Do the same */ | |
1717 | #define USE_MFROM_ROM_TABLE | |
1718 | void do_op_602_mfrom (void) | |
1719 | { | |
1720 | if (likely(T0 < 602)) { | |
d9bce9d9 | 1721 | #if defined(USE_MFROM_ROM_TABLE) |
76a66253 JM |
1722 | #include "mfrom_table.c" |
1723 | T0 = mfrom_ROM_table[T0]; | |
fdabc366 | 1724 | #else |
76a66253 JM |
1725 | double d; |
1726 | /* Extremly decomposed: | |
1727 | * -T0 / 256 | |
1728 | * T0 = 256 * log10(10 + 1.0) + 0.5 | |
1729 | */ | |
1730 | d = T0; | |
1731 | d = float64_div(d, 256, &env->fp_status); | |
1732 | d = float64_chs(d); | |
1733 | d = exp10(d); // XXX: use float emulation function | |
1734 | d = float64_add(d, 1.0, &env->fp_status); | |
1735 | d = log10(d); // XXX: use float emulation function | |
1736 | d = float64_mul(d, 256, &env->fp_status); | |
1737 | d = float64_add(d, 0.5, &env->fp_status); | |
1738 | T0 = float64_round_to_int(d, &env->fp_status); | |
fdabc366 | 1739 | #endif |
76a66253 JM |
1740 | } else { |
1741 | T0 = 0; | |
1742 | } | |
1743 | } | |
1744 | ||
1745 | /*****************************************************************************/ | |
1746 | /* Embedded PowerPC specific helpers */ | |
1747 | void do_405_check_ov (void) | |
1748 | { | |
d9bce9d9 JM |
1749 | if (likely((((uint32_t)T1 ^ (uint32_t)T2) >> 31) || |
1750 | !(((uint32_t)T0 ^ (uint32_t)T2) >> 31))) { | |
76a66253 JM |
1751 | xer_ov = 0; |
1752 | } else { | |
1753 | xer_ov = 1; | |
1754 | xer_so = 1; | |
1755 | } | |
1756 | } | |
1757 | ||
1758 | void do_405_check_sat (void) | |
1759 | { | |
d9bce9d9 JM |
1760 | if (!likely((((uint32_t)T1 ^ (uint32_t)T2) >> 31) || |
1761 | !(((uint32_t)T0 ^ (uint32_t)T2) >> 31))) { | |
76a66253 JM |
1762 | /* Saturate result */ |
1763 | if (T2 >> 31) { | |
1764 | T0 = INT32_MIN; | |
1765 | } else { | |
1766 | T0 = INT32_MAX; | |
1767 | } | |
1768 | } | |
1769 | } | |
1770 | ||
a750fc0b JM |
1771 | /* XXX: to be improved to check access rights when in user-mode */ |
1772 | void do_load_dcr (void) | |
1773 | { | |
1774 | target_ulong val; | |
1775 | ||
1776 | if (unlikely(env->dcr_env == NULL)) { | |
1777 | if (loglevel != 0) { | |
1778 | fprintf(logfile, "No DCR environment\n"); | |
1779 | } | |
e1833e1f JM |
1780 | do_raise_exception_err(POWERPC_EXCP_PROGRAM, |
1781 | POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL); | |
a750fc0b JM |
1782 | } else if (unlikely(ppc_dcr_read(env->dcr_env, T0, &val) != 0)) { |
1783 | if (loglevel != 0) { | |
1784 | fprintf(logfile, "DCR read error %d %03x\n", (int)T0, (int)T0); | |
1785 | } | |
e1833e1f JM |
1786 | do_raise_exception_err(POWERPC_EXCP_PROGRAM, |
1787 | POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG); | |
a750fc0b JM |
1788 | } else { |
1789 | T0 = val; | |
1790 | } | |
1791 | } | |
1792 | ||
1793 | void do_store_dcr (void) | |
1794 | { | |
1795 | if (unlikely(env->dcr_env == NULL)) { | |
1796 | if (loglevel != 0) { | |
1797 | fprintf(logfile, "No DCR environment\n"); | |
1798 | } | |
e1833e1f JM |
1799 | do_raise_exception_err(POWERPC_EXCP_PROGRAM, |
1800 | POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL); | |
a750fc0b JM |
1801 | } else if (unlikely(ppc_dcr_write(env->dcr_env, T0, T1) != 0)) { |
1802 | if (loglevel != 0) { | |
1803 | fprintf(logfile, "DCR write error %d %03x\n", (int)T0, (int)T0); | |
1804 | } | |
e1833e1f JM |
1805 | do_raise_exception_err(POWERPC_EXCP_PROGRAM, |
1806 | POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG); | |
a750fc0b JM |
1807 | } |
1808 | } | |
1809 | ||
76a66253 | 1810 | #if !defined(CONFIG_USER_ONLY) |
a42bd6cc | 1811 | void do_40x_rfci (void) |
76a66253 | 1812 | { |
0411a972 JM |
1813 | __do_rfi(env->spr[SPR_40x_SRR2], env->spr[SPR_40x_SRR3], |
1814 | ~((target_ulong)0xFFFF0000), 0); | |
a42bd6cc JM |
1815 | } |
1816 | ||
1817 | void do_rfci (void) | |
1818 | { | |
0411a972 JM |
1819 | __do_rfi(env->spr[SPR_BOOKE_CSRR0], SPR_BOOKE_CSRR1, |
1820 | ~((target_ulong)0x3FFF0000), 0); | |
a42bd6cc JM |
1821 | } |
1822 | ||
1823 | void do_rfdi (void) | |
1824 | { | |
0411a972 JM |
1825 | __do_rfi(env->spr[SPR_BOOKE_DSRR0], SPR_BOOKE_DSRR1, |
1826 | ~((target_ulong)0x3FFF0000), 0); | |
a42bd6cc JM |
1827 | } |
1828 | ||
1829 | void do_rfmci (void) | |
1830 | { | |
0411a972 JM |
1831 | __do_rfi(env->spr[SPR_BOOKE_MCSRR0], SPR_BOOKE_MCSRR1, |
1832 | ~((target_ulong)0x3FFF0000), 0); | |
76a66253 JM |
1833 | } |
1834 | ||
76a66253 JM |
1835 | void do_load_403_pb (int num) |
1836 | { | |
1837 | T0 = env->pb[num]; | |
1838 | } | |
1839 | ||
1840 | void do_store_403_pb (int num) | |
1841 | { | |
1842 | if (likely(env->pb[num] != T0)) { | |
1843 | env->pb[num] = T0; | |
1844 | /* Should be optimized */ | |
1845 | tlb_flush(env, 1); | |
1846 | } | |
1847 | } | |
1848 | #endif | |
1849 | ||
1850 | /* 440 specific */ | |
1851 | void do_440_dlmzb (void) | |
1852 | { | |
1853 | target_ulong mask; | |
1854 | int i; | |
1855 | ||
1856 | i = 1; | |
1857 | for (mask = 0xFF000000; mask != 0; mask = mask >> 8) { | |
1858 | if ((T0 & mask) == 0) | |
1859 | goto done; | |
1860 | i++; | |
1861 | } | |
1862 | for (mask = 0xFF000000; mask != 0; mask = mask >> 8) { | |
1863 | if ((T1 & mask) == 0) | |
1864 | break; | |
1865 | i++; | |
1866 | } | |
1867 | done: | |
1868 | T0 = i; | |
fdabc366 FB |
1869 | } |
1870 | ||
35cdaad6 | 1871 | #if defined(TARGET_PPCEMB) |
0487d6a8 JM |
1872 | /* SPE extension helpers */ |
1873 | /* Use a table to make this quicker */ | |
1874 | static uint8_t hbrev[16] = { | |
1875 | 0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE, | |
1876 | 0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF, | |
1877 | }; | |
1878 | ||
b068d6a7 | 1879 | static always_inline uint8_t byte_reverse (uint8_t val) |
0487d6a8 JM |
1880 | { |
1881 | return hbrev[val >> 4] | (hbrev[val & 0xF] << 4); | |
1882 | } | |
1883 | ||
b068d6a7 | 1884 | static always_inline uint32_t word_reverse (uint32_t val) |
0487d6a8 JM |
1885 | { |
1886 | return byte_reverse(val >> 24) | (byte_reverse(val >> 16) << 8) | | |
1887 | (byte_reverse(val >> 8) << 16) | (byte_reverse(val) << 24); | |
1888 | } | |
1889 | ||
1890 | #define MASKBITS 16 // Random value - to be fixed | |
1891 | void do_brinc (void) | |
1892 | { | |
1893 | uint32_t a, b, d, mask; | |
1894 | ||
1895 | mask = (uint32_t)(-1UL) >> MASKBITS; | |
1896 | b = T1_64 & mask; | |
1897 | a = T0_64 & mask; | |
1898 | d = word_reverse(1 + word_reverse(a | ~mask)); | |
1899 | T0_64 = (T0_64 & ~mask) | (d & mask); | |
1900 | } | |
1901 | ||
1902 | #define DO_SPE_OP2(name) \ | |
1903 | void do_ev##name (void) \ | |
1904 | { \ | |
1905 | T0_64 = ((uint64_t)_do_e##name(T0_64 >> 32, T1_64 >> 32) << 32) | \ | |
1906 | (uint64_t)_do_e##name(T0_64, T1_64); \ | |
1907 | } | |
1908 | ||
1909 | #define DO_SPE_OP1(name) \ | |
1910 | void do_ev##name (void) \ | |
1911 | { \ | |
1912 | T0_64 = ((uint64_t)_do_e##name(T0_64 >> 32) << 32) | \ | |
1913 | (uint64_t)_do_e##name(T0_64); \ | |
1914 | } | |
1915 | ||
1916 | /* Fixed-point vector arithmetic */ | |
b068d6a7 | 1917 | static always_inline uint32_t _do_eabs (uint32_t val) |
0487d6a8 JM |
1918 | { |
1919 | if (val != 0x80000000) | |
1920 | val &= ~0x80000000; | |
1921 | ||
1922 | return val; | |
1923 | } | |
1924 | ||
b068d6a7 | 1925 | static always_inline uint32_t _do_eaddw (uint32_t op1, uint32_t op2) |
0487d6a8 JM |
1926 | { |
1927 | return op1 + op2; | |
1928 | } | |
1929 | ||
b068d6a7 | 1930 | static always_inline int _do_ecntlsw (uint32_t val) |
0487d6a8 JM |
1931 | { |
1932 | if (val & 0x80000000) | |
603fccce | 1933 | return clz32(~val); |
0487d6a8 | 1934 | else |
603fccce | 1935 | return clz32(val); |
0487d6a8 JM |
1936 | } |
1937 | ||
b068d6a7 | 1938 | static always_inline int _do_ecntlzw (uint32_t val) |
0487d6a8 | 1939 | { |
603fccce | 1940 | return clz32(val); |
0487d6a8 JM |
1941 | } |
1942 | ||
b068d6a7 | 1943 | static always_inline uint32_t _do_eneg (uint32_t val) |
0487d6a8 JM |
1944 | { |
1945 | if (val != 0x80000000) | |
1946 | val ^= 0x80000000; | |
1947 | ||
1948 | return val; | |
1949 | } | |
1950 | ||
b068d6a7 | 1951 | static always_inline uint32_t _do_erlw (uint32_t op1, uint32_t op2) |
0487d6a8 JM |
1952 | { |
1953 | return rotl32(op1, op2); | |
1954 | } | |
1955 | ||
b068d6a7 | 1956 | static always_inline uint32_t _do_erndw (uint32_t val) |
0487d6a8 JM |
1957 | { |
1958 | return (val + 0x000080000000) & 0xFFFF0000; | |
1959 | } | |
1960 | ||
b068d6a7 | 1961 | static always_inline uint32_t _do_eslw (uint32_t op1, uint32_t op2) |
0487d6a8 JM |
1962 | { |
1963 | /* No error here: 6 bits are used */ | |
1964 | return op1 << (op2 & 0x3F); | |
1965 | } | |
1966 | ||
b068d6a7 | 1967 | static always_inline int32_t _do_esrws (int32_t op1, uint32_t op2) |
0487d6a8 JM |
1968 | { |
1969 | /* No error here: 6 bits are used */ | |
1970 | return op1 >> (op2 & 0x3F); | |
1971 | } | |
1972 | ||
b068d6a7 | 1973 | static always_inline uint32_t _do_esrwu (uint32_t op1, uint32_t op2) |
0487d6a8 JM |
1974 | { |
1975 | /* No error here: 6 bits are used */ | |
1976 | return op1 >> (op2 & 0x3F); | |
1977 | } | |
1978 | ||
b068d6a7 | 1979 | static always_inline uint32_t _do_esubfw (uint32_t op1, uint32_t op2) |
0487d6a8 JM |
1980 | { |
1981 | return op2 - op1; | |
1982 | } | |
1983 | ||
1984 | /* evabs */ | |
1985 | DO_SPE_OP1(abs); | |
1986 | /* evaddw */ | |
1987 | DO_SPE_OP2(addw); | |
1988 | /* evcntlsw */ | |
1989 | DO_SPE_OP1(cntlsw); | |
1990 | /* evcntlzw */ | |
1991 | DO_SPE_OP1(cntlzw); | |
1992 | /* evneg */ | |
1993 | DO_SPE_OP1(neg); | |
1994 | /* evrlw */ | |
1995 | DO_SPE_OP2(rlw); | |
1996 | /* evrnd */ | |
1997 | DO_SPE_OP1(rndw); | |
1998 | /* evslw */ | |
1999 | DO_SPE_OP2(slw); | |
2000 | /* evsrws */ | |
2001 | DO_SPE_OP2(srws); | |
2002 | /* evsrwu */ | |
2003 | DO_SPE_OP2(srwu); | |
2004 | /* evsubfw */ | |
2005 | DO_SPE_OP2(subfw); | |
2006 | ||
2007 | /* evsel is a little bit more complicated... */ | |
b068d6a7 | 2008 | static always_inline uint32_t _do_esel (uint32_t op1, uint32_t op2, int n) |
0487d6a8 JM |
2009 | { |
2010 | if (n) | |
2011 | return op1; | |
2012 | else | |
2013 | return op2; | |
2014 | } | |
2015 | ||
2016 | void do_evsel (void) | |
2017 | { | |
2018 | T0_64 = ((uint64_t)_do_esel(T0_64 >> 32, T1_64 >> 32, T0 >> 3) << 32) | | |
2019 | (uint64_t)_do_esel(T0_64, T1_64, (T0 >> 2) & 1); | |
2020 | } | |
2021 | ||
2022 | /* Fixed-point vector comparisons */ | |
2023 | #define DO_SPE_CMP(name) \ | |
2024 | void do_ev##name (void) \ | |
2025 | { \ | |
2026 | T0 = _do_evcmp_merge((uint64_t)_do_e##name(T0_64 >> 32, \ | |
2027 | T1_64 >> 32) << 32, \ | |
2028 | _do_e##name(T0_64, T1_64)); \ | |
2029 | } | |
2030 | ||
b068d6a7 | 2031 | static always_inline uint32_t _do_evcmp_merge (int t0, int t1) |
0487d6a8 JM |
2032 | { |
2033 | return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1); | |
2034 | } | |
b068d6a7 | 2035 | static always_inline int _do_ecmpeq (uint32_t op1, uint32_t op2) |
0487d6a8 JM |
2036 | { |
2037 | return op1 == op2 ? 1 : 0; | |
2038 | } | |
2039 | ||
b068d6a7 | 2040 | static always_inline int _do_ecmpgts (int32_t op1, int32_t op2) |
0487d6a8 JM |
2041 | { |
2042 | return op1 > op2 ? 1 : 0; | |
2043 | } | |
2044 | ||
b068d6a7 | 2045 | static always_inline int _do_ecmpgtu (uint32_t op1, uint32_t op2) |
0487d6a8 JM |
2046 | { |
2047 | return op1 > op2 ? 1 : 0; | |
2048 | } | |
2049 | ||
b068d6a7 | 2050 | static always_inline int _do_ecmplts (int32_t op1, int32_t op2) |
0487d6a8 JM |
2051 | { |
2052 | return op1 < op2 ? 1 : 0; | |
2053 | } | |
2054 | ||
b068d6a7 | 2055 | static always_inline int _do_ecmpltu (uint32_t op1, uint32_t op2) |
0487d6a8 JM |
2056 | { |
2057 | return op1 < op2 ? 1 : 0; | |
2058 | } | |
2059 | ||
2060 | /* evcmpeq */ | |
2061 | DO_SPE_CMP(cmpeq); | |
2062 | /* evcmpgts */ | |
2063 | DO_SPE_CMP(cmpgts); | |
2064 | /* evcmpgtu */ | |
2065 | DO_SPE_CMP(cmpgtu); | |
2066 | /* evcmplts */ | |
2067 | DO_SPE_CMP(cmplts); | |
2068 | /* evcmpltu */ | |
2069 | DO_SPE_CMP(cmpltu); | |
2070 | ||
2071 | /* Single precision floating-point conversions from/to integer */ | |
b068d6a7 | 2072 | static always_inline uint32_t _do_efscfsi (int32_t val) |
0487d6a8 JM |
2073 | { |
2074 | union { | |
2075 | uint32_t u; | |
2076 | float32 f; | |
2077 | } u; | |
2078 | ||
2079 | u.f = int32_to_float32(val, &env->spe_status); | |
2080 | ||
2081 | return u.u; | |
2082 | } | |
2083 | ||
b068d6a7 | 2084 | static always_inline uint32_t _do_efscfui (uint32_t val) |
0487d6a8 JM |
2085 | { |
2086 | union { | |
2087 | uint32_t u; | |
2088 | float32 f; | |
2089 | } u; | |
2090 | ||
2091 | u.f = uint32_to_float32(val, &env->spe_status); | |
2092 | ||
2093 | return u.u; | |
2094 | } | |
2095 | ||
b068d6a7 | 2096 | static always_inline int32_t _do_efsctsi (uint32_t val) |
0487d6a8 JM |
2097 | { |
2098 | union { | |
2099 | int32_t u; | |
2100 | float32 f; | |
2101 | } u; | |
2102 | ||
2103 | u.u = val; | |
2104 | /* NaN are not treated the same way IEEE 754 does */ | |
2105 | if (unlikely(isnan(u.f))) | |
2106 | return 0; | |
2107 | ||
2108 | return float32_to_int32(u.f, &env->spe_status); | |
2109 | } | |
2110 | ||
b068d6a7 | 2111 | static always_inline uint32_t _do_efsctui (uint32_t val) |
0487d6a8 JM |
2112 | { |
2113 | union { | |
2114 | int32_t u; | |
2115 | float32 f; | |
2116 | } u; | |
2117 | ||
2118 | u.u = val; | |
2119 | /* NaN are not treated the same way IEEE 754 does */ | |
2120 | if (unlikely(isnan(u.f))) | |
2121 | return 0; | |
2122 | ||
2123 | return float32_to_uint32(u.f, &env->spe_status); | |
2124 | } | |
2125 | ||
b068d6a7 | 2126 | static always_inline int32_t _do_efsctsiz (uint32_t val) |
0487d6a8 JM |
2127 | { |
2128 | union { | |
2129 | int32_t u; | |
2130 | float32 f; | |
2131 | } u; | |
2132 | ||
2133 | u.u = val; | |
2134 | /* NaN are not treated the same way IEEE 754 does */ | |
2135 | if (unlikely(isnan(u.f))) | |
2136 | return 0; | |
2137 | ||
2138 | return float32_to_int32_round_to_zero(u.f, &env->spe_status); | |
2139 | } | |
2140 | ||
b068d6a7 | 2141 | static always_inline uint32_t _do_efsctuiz (uint32_t val) |
0487d6a8 JM |
2142 | { |
2143 | union { | |
2144 | int32_t u; | |
2145 | float32 f; | |
2146 | } u; | |
2147 | ||
2148 | u.u = val; | |
2149 | /* NaN are not treated the same way IEEE 754 does */ | |
2150 | if (unlikely(isnan(u.f))) | |
2151 | return 0; | |
2152 | ||
2153 | return float32_to_uint32_round_to_zero(u.f, &env->spe_status); | |
2154 | } | |
2155 | ||
2156 | void do_efscfsi (void) | |
2157 | { | |
2158 | T0_64 = _do_efscfsi(T0_64); | |
2159 | } | |
2160 | ||
2161 | void do_efscfui (void) | |
2162 | { | |
2163 | T0_64 = _do_efscfui(T0_64); | |
2164 | } | |
2165 | ||
2166 | void do_efsctsi (void) | |
2167 | { | |
2168 | T0_64 = _do_efsctsi(T0_64); | |
2169 | } | |
2170 | ||
2171 | void do_efsctui (void) | |
2172 | { | |
2173 | T0_64 = _do_efsctui(T0_64); | |
2174 | } | |
2175 | ||
2176 | void do_efsctsiz (void) | |
2177 | { | |
2178 | T0_64 = _do_efsctsiz(T0_64); | |
2179 | } | |
2180 | ||
2181 | void do_efsctuiz (void) | |
2182 | { | |
2183 | T0_64 = _do_efsctuiz(T0_64); | |
2184 | } | |
2185 | ||
2186 | /* Single precision floating-point conversion to/from fractional */ | |
b068d6a7 | 2187 | static always_inline uint32_t _do_efscfsf (uint32_t val) |
0487d6a8 JM |
2188 | { |
2189 | union { | |
2190 | uint32_t u; | |
2191 | float32 f; | |
2192 | } u; | |
2193 | float32 tmp; | |
2194 | ||
2195 | u.f = int32_to_float32(val, &env->spe_status); | |
2196 | tmp = int64_to_float32(1ULL << 32, &env->spe_status); | |
2197 | u.f = float32_div(u.f, tmp, &env->spe_status); | |
2198 | ||
2199 | return u.u; | |
2200 | } | |
2201 | ||
b068d6a7 | 2202 | static always_inline uint32_t _do_efscfuf (uint32_t val) |
0487d6a8 JM |
2203 | { |
2204 | union { | |
2205 | uint32_t u; | |
2206 | float32 f; | |
2207 | } u; | |
2208 | float32 tmp; | |
2209 | ||
2210 | u.f = uint32_to_float32(val, &env->spe_status); | |
2211 | tmp = uint64_to_float32(1ULL << 32, &env->spe_status); | |
2212 | u.f = float32_div(u.f, tmp, &env->spe_status); | |
2213 | ||
2214 | return u.u; | |
2215 | } | |
2216 | ||
b068d6a7 | 2217 | static always_inline int32_t _do_efsctsf (uint32_t val) |
0487d6a8 JM |
2218 | { |
2219 | union { | |
2220 | int32_t u; | |
2221 | float32 f; | |
2222 | } u; | |
2223 | float32 tmp; | |
2224 | ||
2225 | u.u = val; | |
2226 | /* NaN are not treated the same way IEEE 754 does */ | |
2227 | if (unlikely(isnan(u.f))) | |
2228 | return 0; | |
2229 | tmp = uint64_to_float32(1ULL << 32, &env->spe_status); | |
2230 | u.f = float32_mul(u.f, tmp, &env->spe_status); | |
2231 | ||
2232 | return float32_to_int32(u.f, &env->spe_status); | |
2233 | } | |
2234 | ||
b068d6a7 | 2235 | static always_inline uint32_t _do_efsctuf (uint32_t val) |
0487d6a8 JM |
2236 | { |
2237 | union { | |
2238 | int32_t u; | |
2239 | float32 f; | |
2240 | } u; | |
2241 | float32 tmp; | |
2242 | ||
2243 | u.u = val; | |
2244 | /* NaN are not treated the same way IEEE 754 does */ | |
2245 | if (unlikely(isnan(u.f))) | |
2246 | return 0; | |
2247 | tmp = uint64_to_float32(1ULL << 32, &env->spe_status); | |
2248 | u.f = float32_mul(u.f, tmp, &env->spe_status); | |
2249 | ||
2250 | return float32_to_uint32(u.f, &env->spe_status); | |
2251 | } | |
2252 | ||
b068d6a7 | 2253 | static always_inline int32_t _do_efsctsfz (uint32_t val) |
0487d6a8 JM |
2254 | { |
2255 | union { | |
2256 | int32_t u; | |
2257 | float32 f; | |
2258 | } u; | |
2259 | float32 tmp; | |
2260 | ||
2261 | u.u = val; | |
2262 | /* NaN are not treated the same way IEEE 754 does */ | |
2263 | if (unlikely(isnan(u.f))) | |
2264 | return 0; | |
2265 | tmp = uint64_to_float32(1ULL << 32, &env->spe_status); | |
2266 | u.f = float32_mul(u.f, tmp, &env->spe_status); | |
2267 | ||
2268 | return float32_to_int32_round_to_zero(u.f, &env->spe_status); | |
2269 | } | |
2270 | ||
b068d6a7 | 2271 | static always_inline uint32_t _do_efsctufz (uint32_t val) |
0487d6a8 JM |
2272 | { |
2273 | union { | |
2274 | int32_t u; | |
2275 | float32 f; | |
2276 | } u; | |
2277 | float32 tmp; | |
2278 | ||
2279 | u.u = val; | |
2280 | /* NaN are not treated the same way IEEE 754 does */ | |
2281 | if (unlikely(isnan(u.f))) | |
2282 | return 0; | |
2283 | tmp = uint64_to_float32(1ULL << 32, &env->spe_status); | |
2284 | u.f = float32_mul(u.f, tmp, &env->spe_status); | |
2285 | ||
2286 | return float32_to_uint32_round_to_zero(u.f, &env->spe_status); | |
2287 | } | |
2288 | ||
2289 | void do_efscfsf (void) | |
2290 | { | |
2291 | T0_64 = _do_efscfsf(T0_64); | |
2292 | } | |
2293 | ||
2294 | void do_efscfuf (void) | |
2295 | { | |
2296 | T0_64 = _do_efscfuf(T0_64); | |
2297 | } | |
2298 | ||
2299 | void do_efsctsf (void) | |
2300 | { | |
2301 | T0_64 = _do_efsctsf(T0_64); | |
2302 | } | |
2303 | ||
2304 | void do_efsctuf (void) | |
2305 | { | |
2306 | T0_64 = _do_efsctuf(T0_64); | |
2307 | } | |
2308 | ||
2309 | void do_efsctsfz (void) | |
2310 | { | |
2311 | T0_64 = _do_efsctsfz(T0_64); | |
2312 | } | |
2313 | ||
2314 | void do_efsctufz (void) | |
2315 | { | |
2316 | T0_64 = _do_efsctufz(T0_64); | |
2317 | } | |
2318 | ||
2319 | /* Double precision floating point helpers */ | |
b068d6a7 | 2320 | static always_inline int _do_efdcmplt (uint64_t op1, uint64_t op2) |
0487d6a8 JM |
2321 | { |
2322 | /* XXX: TODO: test special values (NaN, infinites, ...) */ | |
2323 | return _do_efdtstlt(op1, op2); | |
2324 | } | |
2325 | ||
b068d6a7 | 2326 | static always_inline int _do_efdcmpgt (uint64_t op1, uint64_t op2) |
0487d6a8 JM |
2327 | { |
2328 | /* XXX: TODO: test special values (NaN, infinites, ...) */ | |
2329 | return _do_efdtstgt(op1, op2); | |
2330 | } | |
2331 | ||
b068d6a7 | 2332 | static always_inline int _do_efdcmpeq (uint64_t op1, uint64_t op2) |
0487d6a8 JM |
2333 | { |
2334 | /* XXX: TODO: test special values (NaN, infinites, ...) */ | |
2335 | return _do_efdtsteq(op1, op2); | |
2336 | } | |
2337 | ||
2338 | void do_efdcmplt (void) | |
2339 | { | |
2340 | T0 = _do_efdcmplt(T0_64, T1_64); | |
2341 | } | |
2342 | ||
2343 | void do_efdcmpgt (void) | |
2344 | { | |
2345 | T0 = _do_efdcmpgt(T0_64, T1_64); | |
2346 | } | |
2347 | ||
2348 | void do_efdcmpeq (void) | |
2349 | { | |
2350 | T0 = _do_efdcmpeq(T0_64, T1_64); | |
2351 | } | |
2352 | ||
2353 | /* Double precision floating-point conversion to/from integer */ | |
b068d6a7 | 2354 | static always_inline uint64_t _do_efdcfsi (int64_t val) |
0487d6a8 JM |
2355 | { |
2356 | union { | |
2357 | uint64_t u; | |
2358 | float64 f; | |
2359 | } u; | |
2360 | ||
2361 | u.f = int64_to_float64(val, &env->spe_status); | |
2362 | ||
2363 | return u.u; | |
2364 | } | |
2365 | ||
b068d6a7 | 2366 | static always_inline uint64_t _do_efdcfui (uint64_t val) |
0487d6a8 JM |
2367 | { |
2368 | union { | |
2369 | uint64_t u; | |
2370 | float64 f; | |
2371 | } u; | |
2372 | ||
2373 | u.f = uint64_to_float64(val, &env->spe_status); | |
2374 | ||
2375 | return u.u; | |
2376 | } | |
2377 | ||
b068d6a7 | 2378 | static always_inline int64_t _do_efdctsi (uint64_t val) |
0487d6a8 JM |
2379 | { |
2380 | union { | |
2381 | int64_t u; | |
2382 | float64 f; | |
2383 | } u; | |
2384 | ||
2385 | u.u = val; | |
2386 | /* NaN are not treated the same way IEEE 754 does */ | |
2387 | if (unlikely(isnan(u.f))) | |
2388 | return 0; | |
2389 | ||
2390 | return float64_to_int64(u.f, &env->spe_status); | |
2391 | } | |
2392 | ||
b068d6a7 | 2393 | static always_inline uint64_t _do_efdctui (uint64_t val) |
0487d6a8 JM |
2394 | { |
2395 | union { | |
2396 | int64_t u; | |
2397 | float64 f; | |
2398 | } u; | |
2399 | ||
2400 | u.u = val; | |
2401 | /* NaN are not treated the same way IEEE 754 does */ | |
2402 | if (unlikely(isnan(u.f))) | |
2403 | return 0; | |
2404 | ||
2405 | return float64_to_uint64(u.f, &env->spe_status); | |
2406 | } | |
2407 | ||
b068d6a7 | 2408 | static always_inline int64_t _do_efdctsiz (uint64_t val) |
0487d6a8 JM |
2409 | { |
2410 | union { | |
2411 | int64_t u; | |
2412 | float64 f; | |
2413 | } u; | |
2414 | ||
2415 | u.u = val; | |
2416 | /* NaN are not treated the same way IEEE 754 does */ | |
2417 | if (unlikely(isnan(u.f))) | |
2418 | return 0; | |
2419 | ||
2420 | return float64_to_int64_round_to_zero(u.f, &env->spe_status); | |
2421 | } | |
2422 | ||
b068d6a7 | 2423 | static always_inline uint64_t _do_efdctuiz (uint64_t val) |
0487d6a8 JM |
2424 | { |
2425 | union { | |
2426 | int64_t u; | |
2427 | float64 f; | |
2428 | } u; | |
2429 | ||
2430 | u.u = val; | |
2431 | /* NaN are not treated the same way IEEE 754 does */ | |
2432 | if (unlikely(isnan(u.f))) | |
2433 | return 0; | |
2434 | ||
2435 | return float64_to_uint64_round_to_zero(u.f, &env->spe_status); | |
2436 | } | |
2437 | ||
2438 | void do_efdcfsi (void) | |
2439 | { | |
2440 | T0_64 = _do_efdcfsi(T0_64); | |
2441 | } | |
2442 | ||
2443 | void do_efdcfui (void) | |
2444 | { | |
2445 | T0_64 = _do_efdcfui(T0_64); | |
2446 | } | |
2447 | ||
2448 | void do_efdctsi (void) | |
2449 | { | |
2450 | T0_64 = _do_efdctsi(T0_64); | |
2451 | } | |
2452 | ||
2453 | void do_efdctui (void) | |
2454 | { | |
2455 | T0_64 = _do_efdctui(T0_64); | |
2456 | } | |
2457 | ||
2458 | void do_efdctsiz (void) | |
2459 | { | |
2460 | T0_64 = _do_efdctsiz(T0_64); | |
2461 | } | |
2462 | ||
2463 | void do_efdctuiz (void) | |
2464 | { | |
2465 | T0_64 = _do_efdctuiz(T0_64); | |
2466 | } | |
2467 | ||
2468 | /* Double precision floating-point conversion to/from fractional */ | |
b068d6a7 | 2469 | static always_inline uint64_t _do_efdcfsf (int64_t val) |
0487d6a8 JM |
2470 | { |
2471 | union { | |
2472 | uint64_t u; | |
2473 | float64 f; | |
2474 | } u; | |
2475 | float64 tmp; | |
2476 | ||
2477 | u.f = int32_to_float64(val, &env->spe_status); | |
2478 | tmp = int64_to_float64(1ULL << 32, &env->spe_status); | |
2479 | u.f = float64_div(u.f, tmp, &env->spe_status); | |
2480 | ||
2481 | return u.u; | |
2482 | } | |
2483 | ||
b068d6a7 | 2484 | static always_inline uint64_t _do_efdcfuf (uint64_t val) |
0487d6a8 JM |
2485 | { |
2486 | union { | |
2487 | uint64_t u; | |
2488 | float64 f; | |
2489 | } u; | |
2490 | float64 tmp; | |
2491 | ||
2492 | u.f = uint32_to_float64(val, &env->spe_status); | |
2493 | tmp = int64_to_float64(1ULL << 32, &env->spe_status); | |
2494 | u.f = float64_div(u.f, tmp, &env->spe_status); | |
2495 | ||
2496 | return u.u; | |
2497 | } | |
2498 | ||
b068d6a7 | 2499 | static always_inline int64_t _do_efdctsf (uint64_t val) |
0487d6a8 JM |
2500 | { |
2501 | union { | |
2502 | int64_t u; | |
2503 | float64 f; | |
2504 | } u; | |
2505 | float64 tmp; | |
2506 | ||
2507 | u.u = val; | |
2508 | /* NaN are not treated the same way IEEE 754 does */ | |
2509 | if (unlikely(isnan(u.f))) | |
2510 | return 0; | |
2511 | tmp = uint64_to_float64(1ULL << 32, &env->spe_status); | |
2512 | u.f = float64_mul(u.f, tmp, &env->spe_status); | |
2513 | ||
2514 | return float64_to_int32(u.f, &env->spe_status); | |
2515 | } | |
2516 | ||
b068d6a7 | 2517 | static always_inline uint64_t _do_efdctuf (uint64_t val) |
0487d6a8 JM |
2518 | { |
2519 | union { | |
2520 | int64_t u; | |
2521 | float64 f; | |
2522 | } u; | |
2523 | float64 tmp; | |
2524 | ||
2525 | u.u = val; | |
2526 | /* NaN are not treated the same way IEEE 754 does */ | |
2527 | if (unlikely(isnan(u.f))) | |
2528 | return 0; | |
2529 | tmp = uint64_to_float64(1ULL << 32, &env->spe_status); | |
2530 | u.f = float64_mul(u.f, tmp, &env->spe_status); | |
2531 | ||
2532 | return float64_to_uint32(u.f, &env->spe_status); | |
2533 | } | |
2534 | ||
b068d6a7 | 2535 | static always_inline int64_t _do_efdctsfz (uint64_t val) |
0487d6a8 JM |
2536 | { |
2537 | union { | |
2538 | int64_t u; | |
2539 | float64 f; | |
2540 | } u; | |
2541 | float64 tmp; | |
2542 | ||
2543 | u.u = val; | |
2544 | /* NaN are not treated the same way IEEE 754 does */ | |
2545 | if (unlikely(isnan(u.f))) | |
2546 | return 0; | |
2547 | tmp = uint64_to_float64(1ULL << 32, &env->spe_status); | |
2548 | u.f = float64_mul(u.f, tmp, &env->spe_status); | |
2549 | ||
2550 | return float64_to_int32_round_to_zero(u.f, &env->spe_status); | |
2551 | } | |
2552 | ||
b068d6a7 | 2553 | static always_inline uint64_t _do_efdctufz (uint64_t val) |
0487d6a8 JM |
2554 | { |
2555 | union { | |
2556 | int64_t u; | |
2557 | float64 f; | |
2558 | } u; | |
2559 | float64 tmp; | |
2560 | ||
2561 | u.u = val; | |
2562 | /* NaN are not treated the same way IEEE 754 does */ | |
2563 | if (unlikely(isnan(u.f))) | |
2564 | return 0; | |
2565 | tmp = uint64_to_float64(1ULL << 32, &env->spe_status); | |
2566 | u.f = float64_mul(u.f, tmp, &env->spe_status); | |
2567 | ||
2568 | return float64_to_uint32_round_to_zero(u.f, &env->spe_status); | |
2569 | } | |
2570 | ||
2571 | void do_efdcfsf (void) | |
2572 | { | |
2573 | T0_64 = _do_efdcfsf(T0_64); | |
2574 | } | |
2575 | ||
2576 | void do_efdcfuf (void) | |
2577 | { | |
2578 | T0_64 = _do_efdcfuf(T0_64); | |
2579 | } | |
2580 | ||
2581 | void do_efdctsf (void) | |
2582 | { | |
2583 | T0_64 = _do_efdctsf(T0_64); | |
2584 | } | |
2585 | ||
2586 | void do_efdctuf (void) | |
2587 | { | |
2588 | T0_64 = _do_efdctuf(T0_64); | |
2589 | } | |
2590 | ||
2591 | void do_efdctsfz (void) | |
2592 | { | |
2593 | T0_64 = _do_efdctsfz(T0_64); | |
2594 | } | |
2595 | ||
2596 | void do_efdctufz (void) | |
2597 | { | |
2598 | T0_64 = _do_efdctufz(T0_64); | |
2599 | } | |
2600 | ||
2601 | /* Floating point conversion between single and double precision */ | |
b068d6a7 | 2602 | static always_inline uint32_t _do_efscfd (uint64_t val) |
0487d6a8 JM |
2603 | { |
2604 | union { | |
2605 | uint64_t u; | |
2606 | float64 f; | |
2607 | } u1; | |
2608 | union { | |
2609 | uint32_t u; | |
2610 | float32 f; | |
2611 | } u2; | |
2612 | ||
2613 | u1.u = val; | |
2614 | u2.f = float64_to_float32(u1.f, &env->spe_status); | |
2615 | ||
2616 | return u2.u; | |
2617 | } | |
2618 | ||
b068d6a7 | 2619 | static always_inline uint64_t _do_efdcfs (uint32_t val) |
0487d6a8 JM |
2620 | { |
2621 | union { | |
2622 | uint64_t u; | |
2623 | float64 f; | |
2624 | } u2; | |
2625 | union { | |
2626 | uint32_t u; | |
2627 | float32 f; | |
2628 | } u1; | |
2629 | ||
2630 | u1.u = val; | |
2631 | u2.f = float32_to_float64(u1.f, &env->spe_status); | |
2632 | ||
2633 | return u2.u; | |
2634 | } | |
2635 | ||
2636 | void do_efscfd (void) | |
2637 | { | |
2638 | T0_64 = _do_efscfd(T0_64); | |
2639 | } | |
2640 | ||
2641 | void do_efdcfs (void) | |
2642 | { | |
2643 | T0_64 = _do_efdcfs(T0_64); | |
2644 | } | |
2645 | ||
2646 | /* Single precision fixed-point vector arithmetic */ | |
2647 | /* evfsabs */ | |
2648 | DO_SPE_OP1(fsabs); | |
2649 | /* evfsnabs */ | |
2650 | DO_SPE_OP1(fsnabs); | |
2651 | /* evfsneg */ | |
2652 | DO_SPE_OP1(fsneg); | |
2653 | /* evfsadd */ | |
2654 | DO_SPE_OP2(fsadd); | |
2655 | /* evfssub */ | |
2656 | DO_SPE_OP2(fssub); | |
2657 | /* evfsmul */ | |
2658 | DO_SPE_OP2(fsmul); | |
2659 | /* evfsdiv */ | |
2660 | DO_SPE_OP2(fsdiv); | |
2661 | ||
2662 | /* Single-precision floating-point comparisons */ | |
b068d6a7 | 2663 | static always_inline int _do_efscmplt (uint32_t op1, uint32_t op2) |
0487d6a8 JM |
2664 | { |
2665 | /* XXX: TODO: test special values (NaN, infinites, ...) */ | |
2666 | return _do_efststlt(op1, op2); | |
2667 | } | |
2668 | ||
b068d6a7 | 2669 | static always_inline int _do_efscmpgt (uint32_t op1, uint32_t op2) |
0487d6a8 JM |
2670 | { |
2671 | /* XXX: TODO: test special values (NaN, infinites, ...) */ | |
2672 | return _do_efststgt(op1, op2); | |
2673 | } | |
2674 | ||
b068d6a7 | 2675 | static always_inline int _do_efscmpeq (uint32_t op1, uint32_t op2) |
0487d6a8 JM |
2676 | { |
2677 | /* XXX: TODO: test special values (NaN, infinites, ...) */ | |
2678 | return _do_efststeq(op1, op2); | |
2679 | } | |
2680 | ||
2681 | void do_efscmplt (void) | |
2682 | { | |
2683 | T0 = _do_efscmplt(T0_64, T1_64); | |
2684 | } | |
2685 | ||
2686 | void do_efscmpgt (void) | |
2687 | { | |
2688 | T0 = _do_efscmpgt(T0_64, T1_64); | |
2689 | } | |
2690 | ||
2691 | void do_efscmpeq (void) | |
2692 | { | |
2693 | T0 = _do_efscmpeq(T0_64, T1_64); | |
2694 | } | |
2695 | ||
2696 | /* Single-precision floating-point vector comparisons */ | |
2697 | /* evfscmplt */ | |
2698 | DO_SPE_CMP(fscmplt); | |
2699 | /* evfscmpgt */ | |
2700 | DO_SPE_CMP(fscmpgt); | |
2701 | /* evfscmpeq */ | |
2702 | DO_SPE_CMP(fscmpeq); | |
2703 | /* evfststlt */ | |
2704 | DO_SPE_CMP(fststlt); | |
2705 | /* evfststgt */ | |
2706 | DO_SPE_CMP(fststgt); | |
2707 | /* evfststeq */ | |
2708 | DO_SPE_CMP(fststeq); | |
2709 | ||
2710 | /* Single-precision floating-point vector conversions */ | |
2711 | /* evfscfsi */ | |
2712 | DO_SPE_OP1(fscfsi); | |
2713 | /* evfscfui */ | |
2714 | DO_SPE_OP1(fscfui); | |
2715 | /* evfscfuf */ | |
2716 | DO_SPE_OP1(fscfuf); | |
2717 | /* evfscfsf */ | |
2718 | DO_SPE_OP1(fscfsf); | |
2719 | /* evfsctsi */ | |
2720 | DO_SPE_OP1(fsctsi); | |
2721 | /* evfsctui */ | |
2722 | DO_SPE_OP1(fsctui); | |
2723 | /* evfsctsiz */ | |
2724 | DO_SPE_OP1(fsctsiz); | |
2725 | /* evfsctuiz */ | |
2726 | DO_SPE_OP1(fsctuiz); | |
2727 | /* evfsctsf */ | |
2728 | DO_SPE_OP1(fsctsf); | |
2729 | /* evfsctuf */ | |
2730 | DO_SPE_OP1(fsctuf); | |
35cdaad6 | 2731 | #endif /* defined(TARGET_PPCEMB) */ |
0487d6a8 | 2732 | |
fdabc366 FB |
2733 | /*****************************************************************************/ |
2734 | /* Softmmu support */ | |
2735 | #if !defined (CONFIG_USER_ONLY) | |
2736 | ||
2737 | #define MMUSUFFIX _mmu | |
273af660 TS |
2738 | #ifdef __s390__ |
2739 | # define GETPC() ((void*)((unsigned long)__builtin_return_address(0) & 0x7fffffffUL)) | |
2740 | #else | |
2741 | # define GETPC() (__builtin_return_address(0)) | |
2742 | #endif | |
fdabc366 FB |
2743 | |
2744 | #define SHIFT 0 | |
2745 | #include "softmmu_template.h" | |
2746 | ||
2747 | #define SHIFT 1 | |
2748 | #include "softmmu_template.h" | |
2749 | ||
2750 | #define SHIFT 2 | |
2751 | #include "softmmu_template.h" | |
2752 | ||
2753 | #define SHIFT 3 | |
2754 | #include "softmmu_template.h" | |
2755 | ||
2756 | /* try to fill the TLB and return an exception if error. If retaddr is | |
2757 | NULL, it means that the function was called in C code (i.e. not | |
2758 | from generated code or from helper.c) */ | |
2759 | /* XXX: fix it to restore all registers */ | |
6ebbf390 | 2760 | void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr) |
fdabc366 FB |
2761 | { |
2762 | TranslationBlock *tb; | |
2763 | CPUState *saved_env; | |
2764 | target_phys_addr_t pc; | |
2765 | int ret; | |
2766 | ||
2767 | /* XXX: hack to restore env in all cases, even if not called from | |
2768 | generated code */ | |
2769 | saved_env = env; | |
2770 | env = cpu_single_env; | |
6ebbf390 | 2771 | ret = cpu_ppc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1); |
76a66253 | 2772 | if (unlikely(ret != 0)) { |
fdabc366 FB |
2773 | if (likely(retaddr)) { |
2774 | /* now we have a real cpu fault */ | |
a750fc0b | 2775 | pc = (target_phys_addr_t)(unsigned long)retaddr; |
fdabc366 FB |
2776 | tb = tb_find_pc(pc); |
2777 | if (likely(tb)) { | |
2778 | /* the PC is inside the translated code. It means that we have | |
2779 | a virtual CPU fault */ | |
2780 | cpu_restore_state(tb, env, pc, NULL); | |
76a66253 | 2781 | } |
fdabc366 FB |
2782 | } |
2783 | do_raise_exception_err(env->exception_index, env->error_code); | |
2784 | } | |
2785 | env = saved_env; | |
9a64fbe4 FB |
2786 | } |
2787 | ||
76a66253 JM |
2788 | /* Software driven TLBs management */ |
2789 | /* PowerPC 602/603 software TLB load instructions helpers */ | |
2790 | void do_load_6xx_tlb (int is_code) | |
2791 | { | |
2792 | target_ulong RPN, CMP, EPN; | |
2793 | int way; | |
d9bce9d9 | 2794 | |
76a66253 JM |
2795 | RPN = env->spr[SPR_RPA]; |
2796 | if (is_code) { | |
2797 | CMP = env->spr[SPR_ICMP]; | |
2798 | EPN = env->spr[SPR_IMISS]; | |
2799 | } else { | |
2800 | CMP = env->spr[SPR_DCMP]; | |
2801 | EPN = env->spr[SPR_DMISS]; | |
2802 | } | |
2803 | way = (env->spr[SPR_SRR1] >> 17) & 1; | |
2804 | #if defined (DEBUG_SOFTWARE_TLB) | |
2805 | if (loglevel != 0) { | |
2806 | fprintf(logfile, "%s: EPN %08lx %08lx PTE0 %08lx PTE1 %08lx way %d\n", | |
2807 | __func__, (unsigned long)T0, (unsigned long)EPN, | |
2808 | (unsigned long)CMP, (unsigned long)RPN, way); | |
2809 | } | |
2810 | #endif | |
2811 | /* Store this TLB */ | |
d9bce9d9 JM |
2812 | ppc6xx_tlb_store(env, (uint32_t)(T0 & TARGET_PAGE_MASK), |
2813 | way, is_code, CMP, RPN); | |
76a66253 JM |
2814 | } |
2815 | ||
7dbe11ac JM |
2816 | void do_load_74xx_tlb (int is_code) |
2817 | { | |
2818 | target_ulong RPN, CMP, EPN; | |
2819 | int way; | |
2820 | ||
2821 | RPN = env->spr[SPR_PTELO]; | |
2822 | CMP = env->spr[SPR_PTEHI]; | |
2823 | EPN = env->spr[SPR_TLBMISS] & ~0x3; | |
2824 | way = env->spr[SPR_TLBMISS] & 0x3; | |
2825 | #if defined (DEBUG_SOFTWARE_TLB) | |
2826 | if (loglevel != 0) { | |
2827 | fprintf(logfile, "%s: EPN %08lx %08lx PTE0 %08lx PTE1 %08lx way %d\n", | |
2828 | __func__, (unsigned long)T0, (unsigned long)EPN, | |
2829 | (unsigned long)CMP, (unsigned long)RPN, way); | |
2830 | } | |
2831 | #endif | |
2832 | /* Store this TLB */ | |
2833 | ppc6xx_tlb_store(env, (uint32_t)(T0 & TARGET_PAGE_MASK), | |
2834 | way, is_code, CMP, RPN); | |
2835 | } | |
2836 | ||
a11b8151 | 2837 | static always_inline target_ulong booke_tlb_to_page_size (int size) |
a8dea12f JM |
2838 | { |
2839 | return 1024 << (2 * size); | |
2840 | } | |
2841 | ||
a11b8151 | 2842 | static always_inline int booke_page_size_to_tlb (target_ulong page_size) |
a8dea12f JM |
2843 | { |
2844 | int size; | |
2845 | ||
2846 | switch (page_size) { | |
2847 | case 0x00000400UL: | |
2848 | size = 0x0; | |
2849 | break; | |
2850 | case 0x00001000UL: | |
2851 | size = 0x1; | |
2852 | break; | |
2853 | case 0x00004000UL: | |
2854 | size = 0x2; | |
2855 | break; | |
2856 | case 0x00010000UL: | |
2857 | size = 0x3; | |
2858 | break; | |
2859 | case 0x00040000UL: | |
2860 | size = 0x4; | |
2861 | break; | |
2862 | case 0x00100000UL: | |
2863 | size = 0x5; | |
2864 | break; | |
2865 | case 0x00400000UL: | |
2866 | size = 0x6; | |
2867 | break; | |
2868 | case 0x01000000UL: | |
2869 | size = 0x7; | |
2870 | break; | |
2871 | case 0x04000000UL: | |
2872 | size = 0x8; | |
2873 | break; | |
2874 | case 0x10000000UL: | |
2875 | size = 0x9; | |
2876 | break; | |
2877 | case 0x40000000UL: | |
2878 | size = 0xA; | |
2879 | break; | |
2880 | #if defined (TARGET_PPC64) | |
2881 | case 0x000100000000ULL: | |
2882 | size = 0xB; | |
2883 | break; | |
2884 | case 0x000400000000ULL: | |
2885 | size = 0xC; | |
2886 | break; | |
2887 | case 0x001000000000ULL: | |
2888 | size = 0xD; | |
2889 | break; | |
2890 | case 0x004000000000ULL: | |
2891 | size = 0xE; | |
2892 | break; | |
2893 | case 0x010000000000ULL: | |
2894 | size = 0xF; | |
2895 | break; | |
2896 | #endif | |
2897 | default: | |
2898 | size = -1; | |
2899 | break; | |
2900 | } | |
2901 | ||
2902 | return size; | |
2903 | } | |
2904 | ||
76a66253 | 2905 | /* Helpers for 4xx TLB management */ |
76a66253 JM |
2906 | void do_4xx_tlbre_lo (void) |
2907 | { | |
a8dea12f JM |
2908 | ppcemb_tlb_t *tlb; |
2909 | int size; | |
76a66253 JM |
2910 | |
2911 | T0 &= 0x3F; | |
a8dea12f JM |
2912 | tlb = &env->tlb[T0].tlbe; |
2913 | T0 = tlb->EPN; | |
2914 | if (tlb->prot & PAGE_VALID) | |
2915 | T0 |= 0x400; | |
2916 | size = booke_page_size_to_tlb(tlb->size); | |
2917 | if (size < 0 || size > 0x7) | |
2918 | size = 1; | |
2919 | T0 |= size << 7; | |
2920 | env->spr[SPR_40x_PID] = tlb->PID; | |
76a66253 JM |
2921 | } |
2922 | ||
2923 | void do_4xx_tlbre_hi (void) | |
2924 | { | |
a8dea12f | 2925 | ppcemb_tlb_t *tlb; |
76a66253 JM |
2926 | |
2927 | T0 &= 0x3F; | |
a8dea12f JM |
2928 | tlb = &env->tlb[T0].tlbe; |
2929 | T0 = tlb->RPN; | |
2930 | if (tlb->prot & PAGE_EXEC) | |
2931 | T0 |= 0x200; | |
2932 | if (tlb->prot & PAGE_WRITE) | |
2933 | T0 |= 0x100; | |
76a66253 JM |
2934 | } |
2935 | ||
c55e9aef | 2936 | void do_4xx_tlbwe_hi (void) |
76a66253 | 2937 | { |
a8dea12f | 2938 | ppcemb_tlb_t *tlb; |
76a66253 JM |
2939 | target_ulong page, end; |
2940 | ||
c55e9aef | 2941 | #if defined (DEBUG_SOFTWARE_TLB) |
6b80055d | 2942 | if (loglevel != 0) { |
c55e9aef JM |
2943 | fprintf(logfile, "%s T0 " REGX " T1 " REGX "\n", __func__, T0, T1); |
2944 | } | |
2945 | #endif | |
76a66253 | 2946 | T0 &= 0x3F; |
a8dea12f | 2947 | tlb = &env->tlb[T0].tlbe; |
76a66253 JM |
2948 | /* Invalidate previous TLB (if it's valid) */ |
2949 | if (tlb->prot & PAGE_VALID) { | |
2950 | end = tlb->EPN + tlb->size; | |
c55e9aef | 2951 | #if defined (DEBUG_SOFTWARE_TLB) |
6b80055d | 2952 | if (loglevel != 0) { |
c55e9aef JM |
2953 | fprintf(logfile, "%s: invalidate old TLB %d start " ADDRX |
2954 | " end " ADDRX "\n", __func__, (int)T0, tlb->EPN, end); | |
2955 | } | |
2956 | #endif | |
76a66253 JM |
2957 | for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE) |
2958 | tlb_flush_page(env, page); | |
2959 | } | |
a8dea12f | 2960 | tlb->size = booke_tlb_to_page_size((T1 >> 7) & 0x7); |
c294fc58 JM |
2961 | /* We cannot handle TLB size < TARGET_PAGE_SIZE. |
2962 | * If this ever occurs, one should use the ppcemb target instead | |
2963 | * of the ppc or ppc64 one | |
2964 | */ | |
2965 | if ((T1 & 0x40) && tlb->size < TARGET_PAGE_SIZE) { | |
71c8b8fd JM |
2966 | cpu_abort(env, "TLB size " TARGET_FMT_lu " < %u " |
2967 | "are not supported (%d)\n", | |
c294fc58 JM |
2968 | tlb->size, TARGET_PAGE_SIZE, (int)((T1 >> 7) & 0x7)); |
2969 | } | |
a750fc0b | 2970 | tlb->EPN = T1 & ~(tlb->size - 1); |
c55e9aef | 2971 | if (T1 & 0x40) |
76a66253 JM |
2972 | tlb->prot |= PAGE_VALID; |
2973 | else | |
2974 | tlb->prot &= ~PAGE_VALID; | |
c294fc58 JM |
2975 | if (T1 & 0x20) { |
2976 | /* XXX: TO BE FIXED */ | |
2977 | cpu_abort(env, "Little-endian TLB entries are not supported by now\n"); | |
2978 | } | |
c55e9aef | 2979 | tlb->PID = env->spr[SPR_40x_PID]; /* PID */ |
a8dea12f | 2980 | tlb->attr = T1 & 0xFF; |
c55e9aef | 2981 | #if defined (DEBUG_SOFTWARE_TLB) |
c294fc58 JM |
2982 | if (loglevel != 0) { |
2983 | fprintf(logfile, "%s: set up TLB %d RPN " PADDRX " EPN " ADDRX | |
c55e9aef | 2984 | " size " ADDRX " prot %c%c%c%c PID %d\n", __func__, |
5fafdf24 | 2985 | (int)T0, tlb->RPN, tlb->EPN, tlb->size, |
c55e9aef JM |
2986 | tlb->prot & PAGE_READ ? 'r' : '-', |
2987 | tlb->prot & PAGE_WRITE ? 'w' : '-', | |
2988 | tlb->prot & PAGE_EXEC ? 'x' : '-', | |
2989 | tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID); | |
2990 | } | |
2991 | #endif | |
76a66253 JM |
2992 | /* Invalidate new TLB (if valid) */ |
2993 | if (tlb->prot & PAGE_VALID) { | |
2994 | end = tlb->EPN + tlb->size; | |
c55e9aef | 2995 | #if defined (DEBUG_SOFTWARE_TLB) |
6b80055d | 2996 | if (loglevel != 0) { |
c55e9aef JM |
2997 | fprintf(logfile, "%s: invalidate TLB %d start " ADDRX |
2998 | " end " ADDRX "\n", __func__, (int)T0, tlb->EPN, end); | |
2999 | } | |
3000 | #endif | |
76a66253 JM |
3001 | for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE) |
3002 | tlb_flush_page(env, page); | |
3003 | } | |
76a66253 JM |
3004 | } |
3005 | ||
c55e9aef | 3006 | void do_4xx_tlbwe_lo (void) |
76a66253 | 3007 | { |
a8dea12f | 3008 | ppcemb_tlb_t *tlb; |
76a66253 | 3009 | |
c55e9aef | 3010 | #if defined (DEBUG_SOFTWARE_TLB) |
6b80055d | 3011 | if (loglevel != 0) { |
c55e9aef JM |
3012 | fprintf(logfile, "%s T0 " REGX " T1 " REGX "\n", __func__, T0, T1); |
3013 | } | |
3014 | #endif | |
76a66253 | 3015 | T0 &= 0x3F; |
a8dea12f | 3016 | tlb = &env->tlb[T0].tlbe; |
76a66253 JM |
3017 | tlb->RPN = T1 & 0xFFFFFC00; |
3018 | tlb->prot = PAGE_READ; | |
3019 | if (T1 & 0x200) | |
3020 | tlb->prot |= PAGE_EXEC; | |
3021 | if (T1 & 0x100) | |
3022 | tlb->prot |= PAGE_WRITE; | |
c55e9aef | 3023 | #if defined (DEBUG_SOFTWARE_TLB) |
6b80055d JM |
3024 | if (loglevel != 0) { |
3025 | fprintf(logfile, "%s: set up TLB %d RPN " PADDRX " EPN " ADDRX | |
c55e9aef | 3026 | " size " ADDRX " prot %c%c%c%c PID %d\n", __func__, |
5fafdf24 | 3027 | (int)T0, tlb->RPN, tlb->EPN, tlb->size, |
c55e9aef JM |
3028 | tlb->prot & PAGE_READ ? 'r' : '-', |
3029 | tlb->prot & PAGE_WRITE ? 'w' : '-', | |
3030 | tlb->prot & PAGE_EXEC ? 'x' : '-', | |
3031 | tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID); | |
3032 | } | |
3033 | #endif | |
76a66253 | 3034 | } |
5eb7995e | 3035 | |
a4bb6c3e JM |
3036 | /* PowerPC 440 TLB management */ |
3037 | void do_440_tlbwe (int word) | |
5eb7995e JM |
3038 | { |
3039 | ppcemb_tlb_t *tlb; | |
a4bb6c3e | 3040 | target_ulong EPN, RPN, size; |
5eb7995e JM |
3041 | int do_flush_tlbs; |
3042 | ||
3043 | #if defined (DEBUG_SOFTWARE_TLB) | |
3044 | if (loglevel != 0) { | |
a4bb6c3e JM |
3045 | fprintf(logfile, "%s word %d T0 " REGX " T1 " REGX "\n", |
3046 | __func__, word, T0, T1); | |
5eb7995e JM |
3047 | } |
3048 | #endif | |
3049 | do_flush_tlbs = 0; | |
3050 | T0 &= 0x3F; | |
3051 | tlb = &env->tlb[T0].tlbe; | |
a4bb6c3e JM |
3052 | switch (word) { |
3053 | default: | |
3054 | /* Just here to please gcc */ | |
3055 | case 0: | |
3056 | EPN = T1 & 0xFFFFFC00; | |
3057 | if ((tlb->prot & PAGE_VALID) && EPN != tlb->EPN) | |
5eb7995e | 3058 | do_flush_tlbs = 1; |
a4bb6c3e JM |
3059 | tlb->EPN = EPN; |
3060 | size = booke_tlb_to_page_size((T1 >> 4) & 0xF); | |
3061 | if ((tlb->prot & PAGE_VALID) && tlb->size < size) | |
3062 | do_flush_tlbs = 1; | |
3063 | tlb->size = size; | |
3064 | tlb->attr &= ~0x1; | |
3065 | tlb->attr |= (T1 >> 8) & 1; | |
3066 | if (T1 & 0x200) { | |
3067 | tlb->prot |= PAGE_VALID; | |
3068 | } else { | |
3069 | if (tlb->prot & PAGE_VALID) { | |
3070 | tlb->prot &= ~PAGE_VALID; | |
3071 | do_flush_tlbs = 1; | |
3072 | } | |
5eb7995e | 3073 | } |
a4bb6c3e JM |
3074 | tlb->PID = env->spr[SPR_440_MMUCR] & 0x000000FF; |
3075 | if (do_flush_tlbs) | |
3076 | tlb_flush(env, 1); | |
3077 | break; | |
3078 | case 1: | |
3079 | RPN = T1 & 0xFFFFFC0F; | |
3080 | if ((tlb->prot & PAGE_VALID) && tlb->RPN != RPN) | |
3081 | tlb_flush(env, 1); | |
3082 | tlb->RPN = RPN; | |
3083 | break; | |
3084 | case 2: | |
3085 | tlb->attr = (tlb->attr & 0x1) | (T1 & 0x0000FF00); | |
3086 | tlb->prot = tlb->prot & PAGE_VALID; | |
3087 | if (T1 & 0x1) | |
3088 | tlb->prot |= PAGE_READ << 4; | |
3089 | if (T1 & 0x2) | |
3090 | tlb->prot |= PAGE_WRITE << 4; | |
3091 | if (T1 & 0x4) | |
3092 | tlb->prot |= PAGE_EXEC << 4; | |
3093 | if (T1 & 0x8) | |
3094 | tlb->prot |= PAGE_READ; | |
3095 | if (T1 & 0x10) | |
3096 | tlb->prot |= PAGE_WRITE; | |
3097 | if (T1 & 0x20) | |
3098 | tlb->prot |= PAGE_EXEC; | |
3099 | break; | |
5eb7995e | 3100 | } |
5eb7995e JM |
3101 | } |
3102 | ||
a4bb6c3e | 3103 | void do_440_tlbre (int word) |
5eb7995e JM |
3104 | { |
3105 | ppcemb_tlb_t *tlb; | |
3106 | int size; | |
3107 | ||
3108 | T0 &= 0x3F; | |
3109 | tlb = &env->tlb[T0].tlbe; | |
a4bb6c3e JM |
3110 | switch (word) { |
3111 | default: | |
3112 | /* Just here to please gcc */ | |
3113 | case 0: | |
3114 | T0 = tlb->EPN; | |
3115 | size = booke_page_size_to_tlb(tlb->size); | |
3116 | if (size < 0 || size > 0xF) | |
3117 | size = 1; | |
3118 | T0 |= size << 4; | |
3119 | if (tlb->attr & 0x1) | |
3120 | T0 |= 0x100; | |
3121 | if (tlb->prot & PAGE_VALID) | |
3122 | T0 |= 0x200; | |
3123 | env->spr[SPR_440_MMUCR] &= ~0x000000FF; | |
3124 | env->spr[SPR_440_MMUCR] |= tlb->PID; | |
3125 | break; | |
3126 | case 1: | |
3127 | T0 = tlb->RPN; | |
3128 | break; | |
3129 | case 2: | |
3130 | T0 = tlb->attr & ~0x1; | |
3131 | if (tlb->prot & (PAGE_READ << 4)) | |
3132 | T0 |= 0x1; | |
3133 | if (tlb->prot & (PAGE_WRITE << 4)) | |
3134 | T0 |= 0x2; | |
3135 | if (tlb->prot & (PAGE_EXEC << 4)) | |
3136 | T0 |= 0x4; | |
3137 | if (tlb->prot & PAGE_READ) | |
3138 | T0 |= 0x8; | |
3139 | if (tlb->prot & PAGE_WRITE) | |
3140 | T0 |= 0x10; | |
3141 | if (tlb->prot & PAGE_EXEC) | |
3142 | T0 |= 0x20; | |
3143 | break; | |
3144 | } | |
5eb7995e | 3145 | } |
76a66253 | 3146 | #endif /* !CONFIG_USER_ONLY */ |